xref: /openbmc/linux/kernel/events/core.c (revision d9d2c827)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 
58 #include "internal.h"
59 
60 #include <asm/irq_regs.h>
61 
62 typedef int (*remote_function_f)(void *);
63 
64 struct remote_function_call {
65 	struct task_struct	*p;
66 	remote_function_f	func;
67 	void			*info;
68 	int			ret;
69 };
70 
71 static void remote_function(void *data)
72 {
73 	struct remote_function_call *tfc = data;
74 	struct task_struct *p = tfc->p;
75 
76 	if (p) {
77 		/* -EAGAIN */
78 		if (task_cpu(p) != smp_processor_id())
79 			return;
80 
81 		/*
82 		 * Now that we're on right CPU with IRQs disabled, we can test
83 		 * if we hit the right task without races.
84 		 */
85 
86 		tfc->ret = -ESRCH; /* No such (running) process */
87 		if (p != current)
88 			return;
89 	}
90 
91 	tfc->ret = tfc->func(tfc->info);
92 }
93 
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:		the task to evaluate
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110 	struct remote_function_call data = {
111 		.p	= p,
112 		.func	= func,
113 		.info	= info,
114 		.ret	= -EAGAIN,
115 	};
116 	int ret;
117 
118 	for (;;) {
119 		ret = smp_call_function_single(task_cpu(p), remote_function,
120 					       &data, 1);
121 		if (!ret)
122 			ret = data.ret;
123 
124 		if (ret != -EAGAIN)
125 			break;
126 
127 		cond_resched();
128 	}
129 
130 	return ret;
131 }
132 
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @func:	the function to be called
136  * @info:	the function call argument
137  *
138  * Calls the function @func on the remote cpu.
139  *
140  * returns: @func return value or -ENXIO when the cpu is offline
141  */
142 static int cpu_function_call(int cpu, remote_function_f func, void *info)
143 {
144 	struct remote_function_call data = {
145 		.p	= NULL,
146 		.func	= func,
147 		.info	= info,
148 		.ret	= -ENXIO, /* No such CPU */
149 	};
150 
151 	smp_call_function_single(cpu, remote_function, &data, 1);
152 
153 	return data.ret;
154 }
155 
156 static inline struct perf_cpu_context *
157 __get_cpu_context(struct perf_event_context *ctx)
158 {
159 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
160 }
161 
162 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
163 			  struct perf_event_context *ctx)
164 {
165 	raw_spin_lock(&cpuctx->ctx.lock);
166 	if (ctx)
167 		raw_spin_lock(&ctx->lock);
168 }
169 
170 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
171 			    struct perf_event_context *ctx)
172 {
173 	if (ctx)
174 		raw_spin_unlock(&ctx->lock);
175 	raw_spin_unlock(&cpuctx->ctx.lock);
176 }
177 
178 #define TASK_TOMBSTONE ((void *)-1L)
179 
180 static bool is_kernel_event(struct perf_event *event)
181 {
182 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
183 }
184 
185 /*
186  * On task ctx scheduling...
187  *
188  * When !ctx->nr_events a task context will not be scheduled. This means
189  * we can disable the scheduler hooks (for performance) without leaving
190  * pending task ctx state.
191  *
192  * This however results in two special cases:
193  *
194  *  - removing the last event from a task ctx; this is relatively straight
195  *    forward and is done in __perf_remove_from_context.
196  *
197  *  - adding the first event to a task ctx; this is tricky because we cannot
198  *    rely on ctx->is_active and therefore cannot use event_function_call().
199  *    See perf_install_in_context().
200  *
201  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
202  */
203 
204 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
205 			struct perf_event_context *, void *);
206 
207 struct event_function_struct {
208 	struct perf_event *event;
209 	event_f func;
210 	void *data;
211 };
212 
213 static int event_function(void *info)
214 {
215 	struct event_function_struct *efs = info;
216 	struct perf_event *event = efs->event;
217 	struct perf_event_context *ctx = event->ctx;
218 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
219 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
220 	int ret = 0;
221 
222 	lockdep_assert_irqs_disabled();
223 
224 	perf_ctx_lock(cpuctx, task_ctx);
225 	/*
226 	 * Since we do the IPI call without holding ctx->lock things can have
227 	 * changed, double check we hit the task we set out to hit.
228 	 */
229 	if (ctx->task) {
230 		if (ctx->task != current) {
231 			ret = -ESRCH;
232 			goto unlock;
233 		}
234 
235 		/*
236 		 * We only use event_function_call() on established contexts,
237 		 * and event_function() is only ever called when active (or
238 		 * rather, we'll have bailed in task_function_call() or the
239 		 * above ctx->task != current test), therefore we must have
240 		 * ctx->is_active here.
241 		 */
242 		WARN_ON_ONCE(!ctx->is_active);
243 		/*
244 		 * And since we have ctx->is_active, cpuctx->task_ctx must
245 		 * match.
246 		 */
247 		WARN_ON_ONCE(task_ctx != ctx);
248 	} else {
249 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
250 	}
251 
252 	efs->func(event, cpuctx, ctx, efs->data);
253 unlock:
254 	perf_ctx_unlock(cpuctx, task_ctx);
255 
256 	return ret;
257 }
258 
259 static void event_function_call(struct perf_event *event, event_f func, void *data)
260 {
261 	struct perf_event_context *ctx = event->ctx;
262 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
263 	struct event_function_struct efs = {
264 		.event = event,
265 		.func = func,
266 		.data = data,
267 	};
268 
269 	if (!event->parent) {
270 		/*
271 		 * If this is a !child event, we must hold ctx::mutex to
272 		 * stabilize the event->ctx relation. See
273 		 * perf_event_ctx_lock().
274 		 */
275 		lockdep_assert_held(&ctx->mutex);
276 	}
277 
278 	if (!task) {
279 		cpu_function_call(event->cpu, event_function, &efs);
280 		return;
281 	}
282 
283 	if (task == TASK_TOMBSTONE)
284 		return;
285 
286 again:
287 	if (!task_function_call(task, event_function, &efs))
288 		return;
289 
290 	raw_spin_lock_irq(&ctx->lock);
291 	/*
292 	 * Reload the task pointer, it might have been changed by
293 	 * a concurrent perf_event_context_sched_out().
294 	 */
295 	task = ctx->task;
296 	if (task == TASK_TOMBSTONE) {
297 		raw_spin_unlock_irq(&ctx->lock);
298 		return;
299 	}
300 	if (ctx->is_active) {
301 		raw_spin_unlock_irq(&ctx->lock);
302 		goto again;
303 	}
304 	func(event, NULL, ctx, data);
305 	raw_spin_unlock_irq(&ctx->lock);
306 }
307 
308 /*
309  * Similar to event_function_call() + event_function(), but hard assumes IRQs
310  * are already disabled and we're on the right CPU.
311  */
312 static void event_function_local(struct perf_event *event, event_f func, void *data)
313 {
314 	struct perf_event_context *ctx = event->ctx;
315 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
316 	struct task_struct *task = READ_ONCE(ctx->task);
317 	struct perf_event_context *task_ctx = NULL;
318 
319 	lockdep_assert_irqs_disabled();
320 
321 	if (task) {
322 		if (task == TASK_TOMBSTONE)
323 			return;
324 
325 		task_ctx = ctx;
326 	}
327 
328 	perf_ctx_lock(cpuctx, task_ctx);
329 
330 	task = ctx->task;
331 	if (task == TASK_TOMBSTONE)
332 		goto unlock;
333 
334 	if (task) {
335 		/*
336 		 * We must be either inactive or active and the right task,
337 		 * otherwise we're screwed, since we cannot IPI to somewhere
338 		 * else.
339 		 */
340 		if (ctx->is_active) {
341 			if (WARN_ON_ONCE(task != current))
342 				goto unlock;
343 
344 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
345 				goto unlock;
346 		}
347 	} else {
348 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
349 	}
350 
351 	func(event, cpuctx, ctx, data);
352 unlock:
353 	perf_ctx_unlock(cpuctx, task_ctx);
354 }
355 
356 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
357 		       PERF_FLAG_FD_OUTPUT  |\
358 		       PERF_FLAG_PID_CGROUP |\
359 		       PERF_FLAG_FD_CLOEXEC)
360 
361 /*
362  * branch priv levels that need permission checks
363  */
364 #define PERF_SAMPLE_BRANCH_PERM_PLM \
365 	(PERF_SAMPLE_BRANCH_KERNEL |\
366 	 PERF_SAMPLE_BRANCH_HV)
367 
368 enum event_type_t {
369 	EVENT_FLEXIBLE = 0x1,
370 	EVENT_PINNED = 0x2,
371 	EVENT_TIME = 0x4,
372 	/* see ctx_resched() for details */
373 	EVENT_CPU = 0x8,
374 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
375 };
376 
377 /*
378  * perf_sched_events : >0 events exist
379  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
380  */
381 
382 static void perf_sched_delayed(struct work_struct *work);
383 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
384 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
385 static DEFINE_MUTEX(perf_sched_mutex);
386 static atomic_t perf_sched_count;
387 
388 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
389 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
390 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
391 
392 static atomic_t nr_mmap_events __read_mostly;
393 static atomic_t nr_comm_events __read_mostly;
394 static atomic_t nr_namespaces_events __read_mostly;
395 static atomic_t nr_task_events __read_mostly;
396 static atomic_t nr_freq_events __read_mostly;
397 static atomic_t nr_switch_events __read_mostly;
398 static atomic_t nr_ksymbol_events __read_mostly;
399 static atomic_t nr_bpf_events __read_mostly;
400 static atomic_t nr_cgroup_events __read_mostly;
401 static atomic_t nr_text_poke_events __read_mostly;
402 static atomic_t nr_build_id_events __read_mostly;
403 
404 static LIST_HEAD(pmus);
405 static DEFINE_MUTEX(pmus_lock);
406 static struct srcu_struct pmus_srcu;
407 static cpumask_var_t perf_online_mask;
408 static struct kmem_cache *perf_event_cache;
409 
410 /*
411  * perf event paranoia level:
412  *  -1 - not paranoid at all
413  *   0 - disallow raw tracepoint access for unpriv
414  *   1 - disallow cpu events for unpriv
415  *   2 - disallow kernel profiling for unpriv
416  */
417 int sysctl_perf_event_paranoid __read_mostly = 2;
418 
419 /* Minimum for 512 kiB + 1 user control page */
420 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
421 
422 /*
423  * max perf event sample rate
424  */
425 #define DEFAULT_MAX_SAMPLE_RATE		100000
426 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
427 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
428 
429 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
430 
431 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
432 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
433 
434 static int perf_sample_allowed_ns __read_mostly =
435 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
436 
437 static void update_perf_cpu_limits(void)
438 {
439 	u64 tmp = perf_sample_period_ns;
440 
441 	tmp *= sysctl_perf_cpu_time_max_percent;
442 	tmp = div_u64(tmp, 100);
443 	if (!tmp)
444 		tmp = 1;
445 
446 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
447 }
448 
449 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
450 
451 int perf_proc_update_handler(struct ctl_table *table, int write,
452 		void *buffer, size_t *lenp, loff_t *ppos)
453 {
454 	int ret;
455 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
456 	/*
457 	 * If throttling is disabled don't allow the write:
458 	 */
459 	if (write && (perf_cpu == 100 || perf_cpu == 0))
460 		return -EINVAL;
461 
462 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
463 	if (ret || !write)
464 		return ret;
465 
466 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
467 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
468 	update_perf_cpu_limits();
469 
470 	return 0;
471 }
472 
473 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
474 
475 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
476 		void *buffer, size_t *lenp, loff_t *ppos)
477 {
478 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
479 
480 	if (ret || !write)
481 		return ret;
482 
483 	if (sysctl_perf_cpu_time_max_percent == 100 ||
484 	    sysctl_perf_cpu_time_max_percent == 0) {
485 		printk(KERN_WARNING
486 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
487 		WRITE_ONCE(perf_sample_allowed_ns, 0);
488 	} else {
489 		update_perf_cpu_limits();
490 	}
491 
492 	return 0;
493 }
494 
495 /*
496  * perf samples are done in some very critical code paths (NMIs).
497  * If they take too much CPU time, the system can lock up and not
498  * get any real work done.  This will drop the sample rate when
499  * we detect that events are taking too long.
500  */
501 #define NR_ACCUMULATED_SAMPLES 128
502 static DEFINE_PER_CPU(u64, running_sample_length);
503 
504 static u64 __report_avg;
505 static u64 __report_allowed;
506 
507 static void perf_duration_warn(struct irq_work *w)
508 {
509 	printk_ratelimited(KERN_INFO
510 		"perf: interrupt took too long (%lld > %lld), lowering "
511 		"kernel.perf_event_max_sample_rate to %d\n",
512 		__report_avg, __report_allowed,
513 		sysctl_perf_event_sample_rate);
514 }
515 
516 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
517 
518 void perf_sample_event_took(u64 sample_len_ns)
519 {
520 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
521 	u64 running_len;
522 	u64 avg_len;
523 	u32 max;
524 
525 	if (max_len == 0)
526 		return;
527 
528 	/* Decay the counter by 1 average sample. */
529 	running_len = __this_cpu_read(running_sample_length);
530 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
531 	running_len += sample_len_ns;
532 	__this_cpu_write(running_sample_length, running_len);
533 
534 	/*
535 	 * Note: this will be biased artifically low until we have
536 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
537 	 * from having to maintain a count.
538 	 */
539 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
540 	if (avg_len <= max_len)
541 		return;
542 
543 	__report_avg = avg_len;
544 	__report_allowed = max_len;
545 
546 	/*
547 	 * Compute a throttle threshold 25% below the current duration.
548 	 */
549 	avg_len += avg_len / 4;
550 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
551 	if (avg_len < max)
552 		max /= (u32)avg_len;
553 	else
554 		max = 1;
555 
556 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
557 	WRITE_ONCE(max_samples_per_tick, max);
558 
559 	sysctl_perf_event_sample_rate = max * HZ;
560 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
561 
562 	if (!irq_work_queue(&perf_duration_work)) {
563 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
564 			     "kernel.perf_event_max_sample_rate to %d\n",
565 			     __report_avg, __report_allowed,
566 			     sysctl_perf_event_sample_rate);
567 	}
568 }
569 
570 static atomic64_t perf_event_id;
571 
572 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
573 			      enum event_type_t event_type);
574 
575 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
576 			     enum event_type_t event_type,
577 			     struct task_struct *task);
578 
579 static void update_context_time(struct perf_event_context *ctx);
580 static u64 perf_event_time(struct perf_event *event);
581 
582 void __weak perf_event_print_debug(void)	{ }
583 
584 static inline u64 perf_clock(void)
585 {
586 	return local_clock();
587 }
588 
589 static inline u64 perf_event_clock(struct perf_event *event)
590 {
591 	return event->clock();
592 }
593 
594 /*
595  * State based event timekeeping...
596  *
597  * The basic idea is to use event->state to determine which (if any) time
598  * fields to increment with the current delta. This means we only need to
599  * update timestamps when we change state or when they are explicitly requested
600  * (read).
601  *
602  * Event groups make things a little more complicated, but not terribly so. The
603  * rules for a group are that if the group leader is OFF the entire group is
604  * OFF, irrespecive of what the group member states are. This results in
605  * __perf_effective_state().
606  *
607  * A futher ramification is that when a group leader flips between OFF and
608  * !OFF, we need to update all group member times.
609  *
610  *
611  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
612  * need to make sure the relevant context time is updated before we try and
613  * update our timestamps.
614  */
615 
616 static __always_inline enum perf_event_state
617 __perf_effective_state(struct perf_event *event)
618 {
619 	struct perf_event *leader = event->group_leader;
620 
621 	if (leader->state <= PERF_EVENT_STATE_OFF)
622 		return leader->state;
623 
624 	return event->state;
625 }
626 
627 static __always_inline void
628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
629 {
630 	enum perf_event_state state = __perf_effective_state(event);
631 	u64 delta = now - event->tstamp;
632 
633 	*enabled = event->total_time_enabled;
634 	if (state >= PERF_EVENT_STATE_INACTIVE)
635 		*enabled += delta;
636 
637 	*running = event->total_time_running;
638 	if (state >= PERF_EVENT_STATE_ACTIVE)
639 		*running += delta;
640 }
641 
642 static void perf_event_update_time(struct perf_event *event)
643 {
644 	u64 now = perf_event_time(event);
645 
646 	__perf_update_times(event, now, &event->total_time_enabled,
647 					&event->total_time_running);
648 	event->tstamp = now;
649 }
650 
651 static void perf_event_update_sibling_time(struct perf_event *leader)
652 {
653 	struct perf_event *sibling;
654 
655 	for_each_sibling_event(sibling, leader)
656 		perf_event_update_time(sibling);
657 }
658 
659 static void
660 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
661 {
662 	if (event->state == state)
663 		return;
664 
665 	perf_event_update_time(event);
666 	/*
667 	 * If a group leader gets enabled/disabled all its siblings
668 	 * are affected too.
669 	 */
670 	if ((event->state < 0) ^ (state < 0))
671 		perf_event_update_sibling_time(event);
672 
673 	WRITE_ONCE(event->state, state);
674 }
675 
676 #ifdef CONFIG_CGROUP_PERF
677 
678 static inline bool
679 perf_cgroup_match(struct perf_event *event)
680 {
681 	struct perf_event_context *ctx = event->ctx;
682 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
683 
684 	/* @event doesn't care about cgroup */
685 	if (!event->cgrp)
686 		return true;
687 
688 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
689 	if (!cpuctx->cgrp)
690 		return false;
691 
692 	/*
693 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
694 	 * also enabled for all its descendant cgroups.  If @cpuctx's
695 	 * cgroup is a descendant of @event's (the test covers identity
696 	 * case), it's a match.
697 	 */
698 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
699 				    event->cgrp->css.cgroup);
700 }
701 
702 static inline void perf_detach_cgroup(struct perf_event *event)
703 {
704 	css_put(&event->cgrp->css);
705 	event->cgrp = NULL;
706 }
707 
708 static inline int is_cgroup_event(struct perf_event *event)
709 {
710 	return event->cgrp != NULL;
711 }
712 
713 static inline u64 perf_cgroup_event_time(struct perf_event *event)
714 {
715 	struct perf_cgroup_info *t;
716 
717 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
718 	return t->time;
719 }
720 
721 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
722 {
723 	struct perf_cgroup_info *info;
724 	u64 now;
725 
726 	now = perf_clock();
727 
728 	info = this_cpu_ptr(cgrp->info);
729 
730 	info->time += now - info->timestamp;
731 	info->timestamp = now;
732 }
733 
734 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
735 {
736 	struct perf_cgroup *cgrp = cpuctx->cgrp;
737 	struct cgroup_subsys_state *css;
738 
739 	if (cgrp) {
740 		for (css = &cgrp->css; css; css = css->parent) {
741 			cgrp = container_of(css, struct perf_cgroup, css);
742 			__update_cgrp_time(cgrp);
743 		}
744 	}
745 }
746 
747 static inline void update_cgrp_time_from_event(struct perf_event *event)
748 {
749 	struct perf_cgroup *cgrp;
750 
751 	/*
752 	 * ensure we access cgroup data only when needed and
753 	 * when we know the cgroup is pinned (css_get)
754 	 */
755 	if (!is_cgroup_event(event))
756 		return;
757 
758 	cgrp = perf_cgroup_from_task(current, event->ctx);
759 	/*
760 	 * Do not update time when cgroup is not active
761 	 */
762 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
763 		__update_cgrp_time(event->cgrp);
764 }
765 
766 static inline void
767 perf_cgroup_set_timestamp(struct task_struct *task,
768 			  struct perf_event_context *ctx)
769 {
770 	struct perf_cgroup *cgrp;
771 	struct perf_cgroup_info *info;
772 	struct cgroup_subsys_state *css;
773 
774 	/*
775 	 * ctx->lock held by caller
776 	 * ensure we do not access cgroup data
777 	 * unless we have the cgroup pinned (css_get)
778 	 */
779 	if (!task || !ctx->nr_cgroups)
780 		return;
781 
782 	cgrp = perf_cgroup_from_task(task, ctx);
783 
784 	for (css = &cgrp->css; css; css = css->parent) {
785 		cgrp = container_of(css, struct perf_cgroup, css);
786 		info = this_cpu_ptr(cgrp->info);
787 		info->timestamp = ctx->timestamp;
788 	}
789 }
790 
791 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
792 
793 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
794 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
795 
796 /*
797  * reschedule events based on the cgroup constraint of task.
798  *
799  * mode SWOUT : schedule out everything
800  * mode SWIN : schedule in based on cgroup for next
801  */
802 static void perf_cgroup_switch(struct task_struct *task, int mode)
803 {
804 	struct perf_cpu_context *cpuctx;
805 	struct list_head *list;
806 	unsigned long flags;
807 
808 	/*
809 	 * Disable interrupts and preemption to avoid this CPU's
810 	 * cgrp_cpuctx_entry to change under us.
811 	 */
812 	local_irq_save(flags);
813 
814 	list = this_cpu_ptr(&cgrp_cpuctx_list);
815 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
816 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
817 
818 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
819 		perf_pmu_disable(cpuctx->ctx.pmu);
820 
821 		if (mode & PERF_CGROUP_SWOUT) {
822 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
823 			/*
824 			 * must not be done before ctxswout due
825 			 * to event_filter_match() in event_sched_out()
826 			 */
827 			cpuctx->cgrp = NULL;
828 		}
829 
830 		if (mode & PERF_CGROUP_SWIN) {
831 			WARN_ON_ONCE(cpuctx->cgrp);
832 			/*
833 			 * set cgrp before ctxsw in to allow
834 			 * event_filter_match() to not have to pass
835 			 * task around
836 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
837 			 * because cgorup events are only per-cpu
838 			 */
839 			cpuctx->cgrp = perf_cgroup_from_task(task,
840 							     &cpuctx->ctx);
841 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
842 		}
843 		perf_pmu_enable(cpuctx->ctx.pmu);
844 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
845 	}
846 
847 	local_irq_restore(flags);
848 }
849 
850 static inline void perf_cgroup_sched_out(struct task_struct *task,
851 					 struct task_struct *next)
852 {
853 	struct perf_cgroup *cgrp1;
854 	struct perf_cgroup *cgrp2 = NULL;
855 
856 	rcu_read_lock();
857 	/*
858 	 * we come here when we know perf_cgroup_events > 0
859 	 * we do not need to pass the ctx here because we know
860 	 * we are holding the rcu lock
861 	 */
862 	cgrp1 = perf_cgroup_from_task(task, NULL);
863 	cgrp2 = perf_cgroup_from_task(next, NULL);
864 
865 	/*
866 	 * only schedule out current cgroup events if we know
867 	 * that we are switching to a different cgroup. Otherwise,
868 	 * do no touch the cgroup events.
869 	 */
870 	if (cgrp1 != cgrp2)
871 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
872 
873 	rcu_read_unlock();
874 }
875 
876 static inline void perf_cgroup_sched_in(struct task_struct *prev,
877 					struct task_struct *task)
878 {
879 	struct perf_cgroup *cgrp1;
880 	struct perf_cgroup *cgrp2 = NULL;
881 
882 	rcu_read_lock();
883 	/*
884 	 * we come here when we know perf_cgroup_events > 0
885 	 * we do not need to pass the ctx here because we know
886 	 * we are holding the rcu lock
887 	 */
888 	cgrp1 = perf_cgroup_from_task(task, NULL);
889 	cgrp2 = perf_cgroup_from_task(prev, NULL);
890 
891 	/*
892 	 * only need to schedule in cgroup events if we are changing
893 	 * cgroup during ctxsw. Cgroup events were not scheduled
894 	 * out of ctxsw out if that was not the case.
895 	 */
896 	if (cgrp1 != cgrp2)
897 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
898 
899 	rcu_read_unlock();
900 }
901 
902 static int perf_cgroup_ensure_storage(struct perf_event *event,
903 				struct cgroup_subsys_state *css)
904 {
905 	struct perf_cpu_context *cpuctx;
906 	struct perf_event **storage;
907 	int cpu, heap_size, ret = 0;
908 
909 	/*
910 	 * Allow storage to have sufficent space for an iterator for each
911 	 * possibly nested cgroup plus an iterator for events with no cgroup.
912 	 */
913 	for (heap_size = 1; css; css = css->parent)
914 		heap_size++;
915 
916 	for_each_possible_cpu(cpu) {
917 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
918 		if (heap_size <= cpuctx->heap_size)
919 			continue;
920 
921 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
922 				       GFP_KERNEL, cpu_to_node(cpu));
923 		if (!storage) {
924 			ret = -ENOMEM;
925 			break;
926 		}
927 
928 		raw_spin_lock_irq(&cpuctx->ctx.lock);
929 		if (cpuctx->heap_size < heap_size) {
930 			swap(cpuctx->heap, storage);
931 			if (storage == cpuctx->heap_default)
932 				storage = NULL;
933 			cpuctx->heap_size = heap_size;
934 		}
935 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
936 
937 		kfree(storage);
938 	}
939 
940 	return ret;
941 }
942 
943 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
944 				      struct perf_event_attr *attr,
945 				      struct perf_event *group_leader)
946 {
947 	struct perf_cgroup *cgrp;
948 	struct cgroup_subsys_state *css;
949 	struct fd f = fdget(fd);
950 	int ret = 0;
951 
952 	if (!f.file)
953 		return -EBADF;
954 
955 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
956 					 &perf_event_cgrp_subsys);
957 	if (IS_ERR(css)) {
958 		ret = PTR_ERR(css);
959 		goto out;
960 	}
961 
962 	ret = perf_cgroup_ensure_storage(event, css);
963 	if (ret)
964 		goto out;
965 
966 	cgrp = container_of(css, struct perf_cgroup, css);
967 	event->cgrp = cgrp;
968 
969 	/*
970 	 * all events in a group must monitor
971 	 * the same cgroup because a task belongs
972 	 * to only one perf cgroup at a time
973 	 */
974 	if (group_leader && group_leader->cgrp != cgrp) {
975 		perf_detach_cgroup(event);
976 		ret = -EINVAL;
977 	}
978 out:
979 	fdput(f);
980 	return ret;
981 }
982 
983 static inline void
984 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
985 {
986 	struct perf_cgroup_info *t;
987 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
988 	event->shadow_ctx_time = now - t->timestamp;
989 }
990 
991 static inline void
992 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
993 {
994 	struct perf_cpu_context *cpuctx;
995 
996 	if (!is_cgroup_event(event))
997 		return;
998 
999 	/*
1000 	 * Because cgroup events are always per-cpu events,
1001 	 * @ctx == &cpuctx->ctx.
1002 	 */
1003 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004 
1005 	/*
1006 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1007 	 * matching the event's cgroup, we must do this for every new event,
1008 	 * because if the first would mismatch, the second would not try again
1009 	 * and we would leave cpuctx->cgrp unset.
1010 	 */
1011 	if (ctx->is_active && !cpuctx->cgrp) {
1012 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1013 
1014 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1015 			cpuctx->cgrp = cgrp;
1016 	}
1017 
1018 	if (ctx->nr_cgroups++)
1019 		return;
1020 
1021 	list_add(&cpuctx->cgrp_cpuctx_entry,
1022 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1023 }
1024 
1025 static inline void
1026 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1027 {
1028 	struct perf_cpu_context *cpuctx;
1029 
1030 	if (!is_cgroup_event(event))
1031 		return;
1032 
1033 	/*
1034 	 * Because cgroup events are always per-cpu events,
1035 	 * @ctx == &cpuctx->ctx.
1036 	 */
1037 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1038 
1039 	if (--ctx->nr_cgroups)
1040 		return;
1041 
1042 	if (ctx->is_active && cpuctx->cgrp)
1043 		cpuctx->cgrp = NULL;
1044 
1045 	list_del(&cpuctx->cgrp_cpuctx_entry);
1046 }
1047 
1048 #else /* !CONFIG_CGROUP_PERF */
1049 
1050 static inline bool
1051 perf_cgroup_match(struct perf_event *event)
1052 {
1053 	return true;
1054 }
1055 
1056 static inline void perf_detach_cgroup(struct perf_event *event)
1057 {}
1058 
1059 static inline int is_cgroup_event(struct perf_event *event)
1060 {
1061 	return 0;
1062 }
1063 
1064 static inline void update_cgrp_time_from_event(struct perf_event *event)
1065 {
1066 }
1067 
1068 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1069 {
1070 }
1071 
1072 static inline void perf_cgroup_sched_out(struct task_struct *task,
1073 					 struct task_struct *next)
1074 {
1075 }
1076 
1077 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1078 					struct task_struct *task)
1079 {
1080 }
1081 
1082 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1083 				      struct perf_event_attr *attr,
1084 				      struct perf_event *group_leader)
1085 {
1086 	return -EINVAL;
1087 }
1088 
1089 static inline void
1090 perf_cgroup_set_timestamp(struct task_struct *task,
1091 			  struct perf_event_context *ctx)
1092 {
1093 }
1094 
1095 static inline void
1096 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1097 {
1098 }
1099 
1100 static inline void
1101 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1102 {
1103 }
1104 
1105 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1106 {
1107 	return 0;
1108 }
1109 
1110 static inline void
1111 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1112 {
1113 }
1114 
1115 static inline void
1116 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1117 {
1118 }
1119 #endif
1120 
1121 /*
1122  * set default to be dependent on timer tick just
1123  * like original code
1124  */
1125 #define PERF_CPU_HRTIMER (1000 / HZ)
1126 /*
1127  * function must be called with interrupts disabled
1128  */
1129 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1130 {
1131 	struct perf_cpu_context *cpuctx;
1132 	bool rotations;
1133 
1134 	lockdep_assert_irqs_disabled();
1135 
1136 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1137 	rotations = perf_rotate_context(cpuctx);
1138 
1139 	raw_spin_lock(&cpuctx->hrtimer_lock);
1140 	if (rotations)
1141 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1142 	else
1143 		cpuctx->hrtimer_active = 0;
1144 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1145 
1146 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1147 }
1148 
1149 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1150 {
1151 	struct hrtimer *timer = &cpuctx->hrtimer;
1152 	struct pmu *pmu = cpuctx->ctx.pmu;
1153 	u64 interval;
1154 
1155 	/* no multiplexing needed for SW PMU */
1156 	if (pmu->task_ctx_nr == perf_sw_context)
1157 		return;
1158 
1159 	/*
1160 	 * check default is sane, if not set then force to
1161 	 * default interval (1/tick)
1162 	 */
1163 	interval = pmu->hrtimer_interval_ms;
1164 	if (interval < 1)
1165 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1166 
1167 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1168 
1169 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1170 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1171 	timer->function = perf_mux_hrtimer_handler;
1172 }
1173 
1174 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1175 {
1176 	struct hrtimer *timer = &cpuctx->hrtimer;
1177 	struct pmu *pmu = cpuctx->ctx.pmu;
1178 	unsigned long flags;
1179 
1180 	/* not for SW PMU */
1181 	if (pmu->task_ctx_nr == perf_sw_context)
1182 		return 0;
1183 
1184 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1185 	if (!cpuctx->hrtimer_active) {
1186 		cpuctx->hrtimer_active = 1;
1187 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1188 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1189 	}
1190 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1191 
1192 	return 0;
1193 }
1194 
1195 void perf_pmu_disable(struct pmu *pmu)
1196 {
1197 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1198 	if (!(*count)++)
1199 		pmu->pmu_disable(pmu);
1200 }
1201 
1202 void perf_pmu_enable(struct pmu *pmu)
1203 {
1204 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1205 	if (!--(*count))
1206 		pmu->pmu_enable(pmu);
1207 }
1208 
1209 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1210 
1211 /*
1212  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1213  * perf_event_task_tick() are fully serialized because they're strictly cpu
1214  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1215  * disabled, while perf_event_task_tick is called from IRQ context.
1216  */
1217 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1218 {
1219 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1220 
1221 	lockdep_assert_irqs_disabled();
1222 
1223 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1224 
1225 	list_add(&ctx->active_ctx_list, head);
1226 }
1227 
1228 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1229 {
1230 	lockdep_assert_irqs_disabled();
1231 
1232 	WARN_ON(list_empty(&ctx->active_ctx_list));
1233 
1234 	list_del_init(&ctx->active_ctx_list);
1235 }
1236 
1237 static void get_ctx(struct perf_event_context *ctx)
1238 {
1239 	refcount_inc(&ctx->refcount);
1240 }
1241 
1242 static void *alloc_task_ctx_data(struct pmu *pmu)
1243 {
1244 	if (pmu->task_ctx_cache)
1245 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1246 
1247 	return NULL;
1248 }
1249 
1250 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1251 {
1252 	if (pmu->task_ctx_cache && task_ctx_data)
1253 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1254 }
1255 
1256 static void free_ctx(struct rcu_head *head)
1257 {
1258 	struct perf_event_context *ctx;
1259 
1260 	ctx = container_of(head, struct perf_event_context, rcu_head);
1261 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1262 	kfree(ctx);
1263 }
1264 
1265 static void put_ctx(struct perf_event_context *ctx)
1266 {
1267 	if (refcount_dec_and_test(&ctx->refcount)) {
1268 		if (ctx->parent_ctx)
1269 			put_ctx(ctx->parent_ctx);
1270 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1271 			put_task_struct(ctx->task);
1272 		call_rcu(&ctx->rcu_head, free_ctx);
1273 	}
1274 }
1275 
1276 /*
1277  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1278  * perf_pmu_migrate_context() we need some magic.
1279  *
1280  * Those places that change perf_event::ctx will hold both
1281  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1282  *
1283  * Lock ordering is by mutex address. There are two other sites where
1284  * perf_event_context::mutex nests and those are:
1285  *
1286  *  - perf_event_exit_task_context()	[ child , 0 ]
1287  *      perf_event_exit_event()
1288  *        put_event()			[ parent, 1 ]
1289  *
1290  *  - perf_event_init_context()		[ parent, 0 ]
1291  *      inherit_task_group()
1292  *        inherit_group()
1293  *          inherit_event()
1294  *            perf_event_alloc()
1295  *              perf_init_event()
1296  *                perf_try_init_event()	[ child , 1 ]
1297  *
1298  * While it appears there is an obvious deadlock here -- the parent and child
1299  * nesting levels are inverted between the two. This is in fact safe because
1300  * life-time rules separate them. That is an exiting task cannot fork, and a
1301  * spawning task cannot (yet) exit.
1302  *
1303  * But remember that these are parent<->child context relations, and
1304  * migration does not affect children, therefore these two orderings should not
1305  * interact.
1306  *
1307  * The change in perf_event::ctx does not affect children (as claimed above)
1308  * because the sys_perf_event_open() case will install a new event and break
1309  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1310  * concerned with cpuctx and that doesn't have children.
1311  *
1312  * The places that change perf_event::ctx will issue:
1313  *
1314  *   perf_remove_from_context();
1315  *   synchronize_rcu();
1316  *   perf_install_in_context();
1317  *
1318  * to affect the change. The remove_from_context() + synchronize_rcu() should
1319  * quiesce the event, after which we can install it in the new location. This
1320  * means that only external vectors (perf_fops, prctl) can perturb the event
1321  * while in transit. Therefore all such accessors should also acquire
1322  * perf_event_context::mutex to serialize against this.
1323  *
1324  * However; because event->ctx can change while we're waiting to acquire
1325  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1326  * function.
1327  *
1328  * Lock order:
1329  *    exec_update_lock
1330  *	task_struct::perf_event_mutex
1331  *	  perf_event_context::mutex
1332  *	    perf_event::child_mutex;
1333  *	      perf_event_context::lock
1334  *	    perf_event::mmap_mutex
1335  *	    mmap_lock
1336  *	      perf_addr_filters_head::lock
1337  *
1338  *    cpu_hotplug_lock
1339  *      pmus_lock
1340  *	  cpuctx->mutex / perf_event_context::mutex
1341  */
1342 static struct perf_event_context *
1343 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1344 {
1345 	struct perf_event_context *ctx;
1346 
1347 again:
1348 	rcu_read_lock();
1349 	ctx = READ_ONCE(event->ctx);
1350 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1351 		rcu_read_unlock();
1352 		goto again;
1353 	}
1354 	rcu_read_unlock();
1355 
1356 	mutex_lock_nested(&ctx->mutex, nesting);
1357 	if (event->ctx != ctx) {
1358 		mutex_unlock(&ctx->mutex);
1359 		put_ctx(ctx);
1360 		goto again;
1361 	}
1362 
1363 	return ctx;
1364 }
1365 
1366 static inline struct perf_event_context *
1367 perf_event_ctx_lock(struct perf_event *event)
1368 {
1369 	return perf_event_ctx_lock_nested(event, 0);
1370 }
1371 
1372 static void perf_event_ctx_unlock(struct perf_event *event,
1373 				  struct perf_event_context *ctx)
1374 {
1375 	mutex_unlock(&ctx->mutex);
1376 	put_ctx(ctx);
1377 }
1378 
1379 /*
1380  * This must be done under the ctx->lock, such as to serialize against
1381  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1382  * calling scheduler related locks and ctx->lock nests inside those.
1383  */
1384 static __must_check struct perf_event_context *
1385 unclone_ctx(struct perf_event_context *ctx)
1386 {
1387 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1388 
1389 	lockdep_assert_held(&ctx->lock);
1390 
1391 	if (parent_ctx)
1392 		ctx->parent_ctx = NULL;
1393 	ctx->generation++;
1394 
1395 	return parent_ctx;
1396 }
1397 
1398 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1399 				enum pid_type type)
1400 {
1401 	u32 nr;
1402 	/*
1403 	 * only top level events have the pid namespace they were created in
1404 	 */
1405 	if (event->parent)
1406 		event = event->parent;
1407 
1408 	nr = __task_pid_nr_ns(p, type, event->ns);
1409 	/* avoid -1 if it is idle thread or runs in another ns */
1410 	if (!nr && !pid_alive(p))
1411 		nr = -1;
1412 	return nr;
1413 }
1414 
1415 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1416 {
1417 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1418 }
1419 
1420 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1421 {
1422 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1423 }
1424 
1425 /*
1426  * If we inherit events we want to return the parent event id
1427  * to userspace.
1428  */
1429 static u64 primary_event_id(struct perf_event *event)
1430 {
1431 	u64 id = event->id;
1432 
1433 	if (event->parent)
1434 		id = event->parent->id;
1435 
1436 	return id;
1437 }
1438 
1439 /*
1440  * Get the perf_event_context for a task and lock it.
1441  *
1442  * This has to cope with the fact that until it is locked,
1443  * the context could get moved to another task.
1444  */
1445 static struct perf_event_context *
1446 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1447 {
1448 	struct perf_event_context *ctx;
1449 
1450 retry:
1451 	/*
1452 	 * One of the few rules of preemptible RCU is that one cannot do
1453 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1454 	 * part of the read side critical section was irqs-enabled -- see
1455 	 * rcu_read_unlock_special().
1456 	 *
1457 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1458 	 * side critical section has interrupts disabled.
1459 	 */
1460 	local_irq_save(*flags);
1461 	rcu_read_lock();
1462 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1463 	if (ctx) {
1464 		/*
1465 		 * If this context is a clone of another, it might
1466 		 * get swapped for another underneath us by
1467 		 * perf_event_task_sched_out, though the
1468 		 * rcu_read_lock() protects us from any context
1469 		 * getting freed.  Lock the context and check if it
1470 		 * got swapped before we could get the lock, and retry
1471 		 * if so.  If we locked the right context, then it
1472 		 * can't get swapped on us any more.
1473 		 */
1474 		raw_spin_lock(&ctx->lock);
1475 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1476 			raw_spin_unlock(&ctx->lock);
1477 			rcu_read_unlock();
1478 			local_irq_restore(*flags);
1479 			goto retry;
1480 		}
1481 
1482 		if (ctx->task == TASK_TOMBSTONE ||
1483 		    !refcount_inc_not_zero(&ctx->refcount)) {
1484 			raw_spin_unlock(&ctx->lock);
1485 			ctx = NULL;
1486 		} else {
1487 			WARN_ON_ONCE(ctx->task != task);
1488 		}
1489 	}
1490 	rcu_read_unlock();
1491 	if (!ctx)
1492 		local_irq_restore(*flags);
1493 	return ctx;
1494 }
1495 
1496 /*
1497  * Get the context for a task and increment its pin_count so it
1498  * can't get swapped to another task.  This also increments its
1499  * reference count so that the context can't get freed.
1500  */
1501 static struct perf_event_context *
1502 perf_pin_task_context(struct task_struct *task, int ctxn)
1503 {
1504 	struct perf_event_context *ctx;
1505 	unsigned long flags;
1506 
1507 	ctx = perf_lock_task_context(task, ctxn, &flags);
1508 	if (ctx) {
1509 		++ctx->pin_count;
1510 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1511 	}
1512 	return ctx;
1513 }
1514 
1515 static void perf_unpin_context(struct perf_event_context *ctx)
1516 {
1517 	unsigned long flags;
1518 
1519 	raw_spin_lock_irqsave(&ctx->lock, flags);
1520 	--ctx->pin_count;
1521 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1522 }
1523 
1524 /*
1525  * Update the record of the current time in a context.
1526  */
1527 static void update_context_time(struct perf_event_context *ctx)
1528 {
1529 	u64 now = perf_clock();
1530 
1531 	ctx->time += now - ctx->timestamp;
1532 	ctx->timestamp = now;
1533 }
1534 
1535 static u64 perf_event_time(struct perf_event *event)
1536 {
1537 	struct perf_event_context *ctx = event->ctx;
1538 
1539 	if (is_cgroup_event(event))
1540 		return perf_cgroup_event_time(event);
1541 
1542 	return ctx ? ctx->time : 0;
1543 }
1544 
1545 static enum event_type_t get_event_type(struct perf_event *event)
1546 {
1547 	struct perf_event_context *ctx = event->ctx;
1548 	enum event_type_t event_type;
1549 
1550 	lockdep_assert_held(&ctx->lock);
1551 
1552 	/*
1553 	 * It's 'group type', really, because if our group leader is
1554 	 * pinned, so are we.
1555 	 */
1556 	if (event->group_leader != event)
1557 		event = event->group_leader;
1558 
1559 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1560 	if (!ctx->task)
1561 		event_type |= EVENT_CPU;
1562 
1563 	return event_type;
1564 }
1565 
1566 /*
1567  * Helper function to initialize event group nodes.
1568  */
1569 static void init_event_group(struct perf_event *event)
1570 {
1571 	RB_CLEAR_NODE(&event->group_node);
1572 	event->group_index = 0;
1573 }
1574 
1575 /*
1576  * Extract pinned or flexible groups from the context
1577  * based on event attrs bits.
1578  */
1579 static struct perf_event_groups *
1580 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1581 {
1582 	if (event->attr.pinned)
1583 		return &ctx->pinned_groups;
1584 	else
1585 		return &ctx->flexible_groups;
1586 }
1587 
1588 /*
1589  * Helper function to initializes perf_event_group trees.
1590  */
1591 static void perf_event_groups_init(struct perf_event_groups *groups)
1592 {
1593 	groups->tree = RB_ROOT;
1594 	groups->index = 0;
1595 }
1596 
1597 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1598 {
1599 	struct cgroup *cgroup = NULL;
1600 
1601 #ifdef CONFIG_CGROUP_PERF
1602 	if (event->cgrp)
1603 		cgroup = event->cgrp->css.cgroup;
1604 #endif
1605 
1606 	return cgroup;
1607 }
1608 
1609 /*
1610  * Compare function for event groups;
1611  *
1612  * Implements complex key that first sorts by CPU and then by virtual index
1613  * which provides ordering when rotating groups for the same CPU.
1614  */
1615 static __always_inline int
1616 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1617 		      const u64 left_group_index, const struct perf_event *right)
1618 {
1619 	if (left_cpu < right->cpu)
1620 		return -1;
1621 	if (left_cpu > right->cpu)
1622 		return 1;
1623 
1624 #ifdef CONFIG_CGROUP_PERF
1625 	{
1626 		const struct cgroup *right_cgroup = event_cgroup(right);
1627 
1628 		if (left_cgroup != right_cgroup) {
1629 			if (!left_cgroup) {
1630 				/*
1631 				 * Left has no cgroup but right does, no
1632 				 * cgroups come first.
1633 				 */
1634 				return -1;
1635 			}
1636 			if (!right_cgroup) {
1637 				/*
1638 				 * Right has no cgroup but left does, no
1639 				 * cgroups come first.
1640 				 */
1641 				return 1;
1642 			}
1643 			/* Two dissimilar cgroups, order by id. */
1644 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1645 				return -1;
1646 
1647 			return 1;
1648 		}
1649 	}
1650 #endif
1651 
1652 	if (left_group_index < right->group_index)
1653 		return -1;
1654 	if (left_group_index > right->group_index)
1655 		return 1;
1656 
1657 	return 0;
1658 }
1659 
1660 #define __node_2_pe(node) \
1661 	rb_entry((node), struct perf_event, group_node)
1662 
1663 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1664 {
1665 	struct perf_event *e = __node_2_pe(a);
1666 	return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1667 				     __node_2_pe(b)) < 0;
1668 }
1669 
1670 struct __group_key {
1671 	int cpu;
1672 	struct cgroup *cgroup;
1673 };
1674 
1675 static inline int __group_cmp(const void *key, const struct rb_node *node)
1676 {
1677 	const struct __group_key *a = key;
1678 	const struct perf_event *b = __node_2_pe(node);
1679 
1680 	/* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1681 	return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1682 }
1683 
1684 /*
1685  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1686  * key (see perf_event_groups_less). This places it last inside the CPU
1687  * subtree.
1688  */
1689 static void
1690 perf_event_groups_insert(struct perf_event_groups *groups,
1691 			 struct perf_event *event)
1692 {
1693 	event->group_index = ++groups->index;
1694 
1695 	rb_add(&event->group_node, &groups->tree, __group_less);
1696 }
1697 
1698 /*
1699  * Helper function to insert event into the pinned or flexible groups.
1700  */
1701 static void
1702 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1703 {
1704 	struct perf_event_groups *groups;
1705 
1706 	groups = get_event_groups(event, ctx);
1707 	perf_event_groups_insert(groups, event);
1708 }
1709 
1710 /*
1711  * Delete a group from a tree.
1712  */
1713 static void
1714 perf_event_groups_delete(struct perf_event_groups *groups,
1715 			 struct perf_event *event)
1716 {
1717 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1718 		     RB_EMPTY_ROOT(&groups->tree));
1719 
1720 	rb_erase(&event->group_node, &groups->tree);
1721 	init_event_group(event);
1722 }
1723 
1724 /*
1725  * Helper function to delete event from its groups.
1726  */
1727 static void
1728 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1729 {
1730 	struct perf_event_groups *groups;
1731 
1732 	groups = get_event_groups(event, ctx);
1733 	perf_event_groups_delete(groups, event);
1734 }
1735 
1736 /*
1737  * Get the leftmost event in the cpu/cgroup subtree.
1738  */
1739 static struct perf_event *
1740 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1741 			struct cgroup *cgrp)
1742 {
1743 	struct __group_key key = {
1744 		.cpu = cpu,
1745 		.cgroup = cgrp,
1746 	};
1747 	struct rb_node *node;
1748 
1749 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1750 	if (node)
1751 		return __node_2_pe(node);
1752 
1753 	return NULL;
1754 }
1755 
1756 /*
1757  * Like rb_entry_next_safe() for the @cpu subtree.
1758  */
1759 static struct perf_event *
1760 perf_event_groups_next(struct perf_event *event)
1761 {
1762 	struct __group_key key = {
1763 		.cpu = event->cpu,
1764 		.cgroup = event_cgroup(event),
1765 	};
1766 	struct rb_node *next;
1767 
1768 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1769 	if (next)
1770 		return __node_2_pe(next);
1771 
1772 	return NULL;
1773 }
1774 
1775 /*
1776  * Iterate through the whole groups tree.
1777  */
1778 #define perf_event_groups_for_each(event, groups)			\
1779 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1780 				typeof(*event), group_node); event;	\
1781 		event = rb_entry_safe(rb_next(&event->group_node),	\
1782 				typeof(*event), group_node))
1783 
1784 /*
1785  * Add an event from the lists for its context.
1786  * Must be called with ctx->mutex and ctx->lock held.
1787  */
1788 static void
1789 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1790 {
1791 	lockdep_assert_held(&ctx->lock);
1792 
1793 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1794 	event->attach_state |= PERF_ATTACH_CONTEXT;
1795 
1796 	event->tstamp = perf_event_time(event);
1797 
1798 	/*
1799 	 * If we're a stand alone event or group leader, we go to the context
1800 	 * list, group events are kept attached to the group so that
1801 	 * perf_group_detach can, at all times, locate all siblings.
1802 	 */
1803 	if (event->group_leader == event) {
1804 		event->group_caps = event->event_caps;
1805 		add_event_to_groups(event, ctx);
1806 	}
1807 
1808 	list_add_rcu(&event->event_entry, &ctx->event_list);
1809 	ctx->nr_events++;
1810 	if (event->attr.inherit_stat)
1811 		ctx->nr_stat++;
1812 
1813 	if (event->state > PERF_EVENT_STATE_OFF)
1814 		perf_cgroup_event_enable(event, ctx);
1815 
1816 	ctx->generation++;
1817 }
1818 
1819 /*
1820  * Initialize event state based on the perf_event_attr::disabled.
1821  */
1822 static inline void perf_event__state_init(struct perf_event *event)
1823 {
1824 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1825 					      PERF_EVENT_STATE_INACTIVE;
1826 }
1827 
1828 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1829 {
1830 	int entry = sizeof(u64); /* value */
1831 	int size = 0;
1832 	int nr = 1;
1833 
1834 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1835 		size += sizeof(u64);
1836 
1837 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1838 		size += sizeof(u64);
1839 
1840 	if (event->attr.read_format & PERF_FORMAT_ID)
1841 		entry += sizeof(u64);
1842 
1843 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1844 		nr += nr_siblings;
1845 		size += sizeof(u64);
1846 	}
1847 
1848 	size += entry * nr;
1849 	event->read_size = size;
1850 }
1851 
1852 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1853 {
1854 	struct perf_sample_data *data;
1855 	u16 size = 0;
1856 
1857 	if (sample_type & PERF_SAMPLE_IP)
1858 		size += sizeof(data->ip);
1859 
1860 	if (sample_type & PERF_SAMPLE_ADDR)
1861 		size += sizeof(data->addr);
1862 
1863 	if (sample_type & PERF_SAMPLE_PERIOD)
1864 		size += sizeof(data->period);
1865 
1866 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1867 		size += sizeof(data->weight.full);
1868 
1869 	if (sample_type & PERF_SAMPLE_READ)
1870 		size += event->read_size;
1871 
1872 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1873 		size += sizeof(data->data_src.val);
1874 
1875 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1876 		size += sizeof(data->txn);
1877 
1878 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1879 		size += sizeof(data->phys_addr);
1880 
1881 	if (sample_type & PERF_SAMPLE_CGROUP)
1882 		size += sizeof(data->cgroup);
1883 
1884 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1885 		size += sizeof(data->data_page_size);
1886 
1887 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1888 		size += sizeof(data->code_page_size);
1889 
1890 	event->header_size = size;
1891 }
1892 
1893 /*
1894  * Called at perf_event creation and when events are attached/detached from a
1895  * group.
1896  */
1897 static void perf_event__header_size(struct perf_event *event)
1898 {
1899 	__perf_event_read_size(event,
1900 			       event->group_leader->nr_siblings);
1901 	__perf_event_header_size(event, event->attr.sample_type);
1902 }
1903 
1904 static void perf_event__id_header_size(struct perf_event *event)
1905 {
1906 	struct perf_sample_data *data;
1907 	u64 sample_type = event->attr.sample_type;
1908 	u16 size = 0;
1909 
1910 	if (sample_type & PERF_SAMPLE_TID)
1911 		size += sizeof(data->tid_entry);
1912 
1913 	if (sample_type & PERF_SAMPLE_TIME)
1914 		size += sizeof(data->time);
1915 
1916 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1917 		size += sizeof(data->id);
1918 
1919 	if (sample_type & PERF_SAMPLE_ID)
1920 		size += sizeof(data->id);
1921 
1922 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1923 		size += sizeof(data->stream_id);
1924 
1925 	if (sample_type & PERF_SAMPLE_CPU)
1926 		size += sizeof(data->cpu_entry);
1927 
1928 	event->id_header_size = size;
1929 }
1930 
1931 static bool perf_event_validate_size(struct perf_event *event)
1932 {
1933 	/*
1934 	 * The values computed here will be over-written when we actually
1935 	 * attach the event.
1936 	 */
1937 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1938 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1939 	perf_event__id_header_size(event);
1940 
1941 	/*
1942 	 * Sum the lot; should not exceed the 64k limit we have on records.
1943 	 * Conservative limit to allow for callchains and other variable fields.
1944 	 */
1945 	if (event->read_size + event->header_size +
1946 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1947 		return false;
1948 
1949 	return true;
1950 }
1951 
1952 static void perf_group_attach(struct perf_event *event)
1953 {
1954 	struct perf_event *group_leader = event->group_leader, *pos;
1955 
1956 	lockdep_assert_held(&event->ctx->lock);
1957 
1958 	/*
1959 	 * We can have double attach due to group movement in perf_event_open.
1960 	 */
1961 	if (event->attach_state & PERF_ATTACH_GROUP)
1962 		return;
1963 
1964 	event->attach_state |= PERF_ATTACH_GROUP;
1965 
1966 	if (group_leader == event)
1967 		return;
1968 
1969 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1970 
1971 	group_leader->group_caps &= event->event_caps;
1972 
1973 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1974 	group_leader->nr_siblings++;
1975 
1976 	perf_event__header_size(group_leader);
1977 
1978 	for_each_sibling_event(pos, group_leader)
1979 		perf_event__header_size(pos);
1980 }
1981 
1982 /*
1983  * Remove an event from the lists for its context.
1984  * Must be called with ctx->mutex and ctx->lock held.
1985  */
1986 static void
1987 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1988 {
1989 	WARN_ON_ONCE(event->ctx != ctx);
1990 	lockdep_assert_held(&ctx->lock);
1991 
1992 	/*
1993 	 * We can have double detach due to exit/hot-unplug + close.
1994 	 */
1995 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1996 		return;
1997 
1998 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1999 
2000 	ctx->nr_events--;
2001 	if (event->attr.inherit_stat)
2002 		ctx->nr_stat--;
2003 
2004 	list_del_rcu(&event->event_entry);
2005 
2006 	if (event->group_leader == event)
2007 		del_event_from_groups(event, ctx);
2008 
2009 	/*
2010 	 * If event was in error state, then keep it
2011 	 * that way, otherwise bogus counts will be
2012 	 * returned on read(). The only way to get out
2013 	 * of error state is by explicit re-enabling
2014 	 * of the event
2015 	 */
2016 	if (event->state > PERF_EVENT_STATE_OFF) {
2017 		perf_cgroup_event_disable(event, ctx);
2018 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2019 	}
2020 
2021 	ctx->generation++;
2022 }
2023 
2024 static int
2025 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2026 {
2027 	if (!has_aux(aux_event))
2028 		return 0;
2029 
2030 	if (!event->pmu->aux_output_match)
2031 		return 0;
2032 
2033 	return event->pmu->aux_output_match(aux_event);
2034 }
2035 
2036 static void put_event(struct perf_event *event);
2037 static void event_sched_out(struct perf_event *event,
2038 			    struct perf_cpu_context *cpuctx,
2039 			    struct perf_event_context *ctx);
2040 
2041 static void perf_put_aux_event(struct perf_event *event)
2042 {
2043 	struct perf_event_context *ctx = event->ctx;
2044 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2045 	struct perf_event *iter;
2046 
2047 	/*
2048 	 * If event uses aux_event tear down the link
2049 	 */
2050 	if (event->aux_event) {
2051 		iter = event->aux_event;
2052 		event->aux_event = NULL;
2053 		put_event(iter);
2054 		return;
2055 	}
2056 
2057 	/*
2058 	 * If the event is an aux_event, tear down all links to
2059 	 * it from other events.
2060 	 */
2061 	for_each_sibling_event(iter, event->group_leader) {
2062 		if (iter->aux_event != event)
2063 			continue;
2064 
2065 		iter->aux_event = NULL;
2066 		put_event(event);
2067 
2068 		/*
2069 		 * If it's ACTIVE, schedule it out and put it into ERROR
2070 		 * state so that we don't try to schedule it again. Note
2071 		 * that perf_event_enable() will clear the ERROR status.
2072 		 */
2073 		event_sched_out(iter, cpuctx, ctx);
2074 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2075 	}
2076 }
2077 
2078 static bool perf_need_aux_event(struct perf_event *event)
2079 {
2080 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2081 }
2082 
2083 static int perf_get_aux_event(struct perf_event *event,
2084 			      struct perf_event *group_leader)
2085 {
2086 	/*
2087 	 * Our group leader must be an aux event if we want to be
2088 	 * an aux_output. This way, the aux event will precede its
2089 	 * aux_output events in the group, and therefore will always
2090 	 * schedule first.
2091 	 */
2092 	if (!group_leader)
2093 		return 0;
2094 
2095 	/*
2096 	 * aux_output and aux_sample_size are mutually exclusive.
2097 	 */
2098 	if (event->attr.aux_output && event->attr.aux_sample_size)
2099 		return 0;
2100 
2101 	if (event->attr.aux_output &&
2102 	    !perf_aux_output_match(event, group_leader))
2103 		return 0;
2104 
2105 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2106 		return 0;
2107 
2108 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2109 		return 0;
2110 
2111 	/*
2112 	 * Link aux_outputs to their aux event; this is undone in
2113 	 * perf_group_detach() by perf_put_aux_event(). When the
2114 	 * group in torn down, the aux_output events loose their
2115 	 * link to the aux_event and can't schedule any more.
2116 	 */
2117 	event->aux_event = group_leader;
2118 
2119 	return 1;
2120 }
2121 
2122 static inline struct list_head *get_event_list(struct perf_event *event)
2123 {
2124 	struct perf_event_context *ctx = event->ctx;
2125 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2126 }
2127 
2128 /*
2129  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2130  * cannot exist on their own, schedule them out and move them into the ERROR
2131  * state. Also see _perf_event_enable(), it will not be able to recover
2132  * this ERROR state.
2133  */
2134 static inline void perf_remove_sibling_event(struct perf_event *event)
2135 {
2136 	struct perf_event_context *ctx = event->ctx;
2137 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2138 
2139 	event_sched_out(event, cpuctx, ctx);
2140 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2141 }
2142 
2143 static void perf_group_detach(struct perf_event *event)
2144 {
2145 	struct perf_event *leader = event->group_leader;
2146 	struct perf_event *sibling, *tmp;
2147 	struct perf_event_context *ctx = event->ctx;
2148 
2149 	lockdep_assert_held(&ctx->lock);
2150 
2151 	/*
2152 	 * We can have double detach due to exit/hot-unplug + close.
2153 	 */
2154 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2155 		return;
2156 
2157 	event->attach_state &= ~PERF_ATTACH_GROUP;
2158 
2159 	perf_put_aux_event(event);
2160 
2161 	/*
2162 	 * If this is a sibling, remove it from its group.
2163 	 */
2164 	if (leader != event) {
2165 		list_del_init(&event->sibling_list);
2166 		event->group_leader->nr_siblings--;
2167 		goto out;
2168 	}
2169 
2170 	/*
2171 	 * If this was a group event with sibling events then
2172 	 * upgrade the siblings to singleton events by adding them
2173 	 * to whatever list we are on.
2174 	 */
2175 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2176 
2177 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2178 			perf_remove_sibling_event(sibling);
2179 
2180 		sibling->group_leader = sibling;
2181 		list_del_init(&sibling->sibling_list);
2182 
2183 		/* Inherit group flags from the previous leader */
2184 		sibling->group_caps = event->group_caps;
2185 
2186 		if (!RB_EMPTY_NODE(&event->group_node)) {
2187 			add_event_to_groups(sibling, event->ctx);
2188 
2189 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2190 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2191 		}
2192 
2193 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2194 	}
2195 
2196 out:
2197 	for_each_sibling_event(tmp, leader)
2198 		perf_event__header_size(tmp);
2199 
2200 	perf_event__header_size(leader);
2201 }
2202 
2203 static void sync_child_event(struct perf_event *child_event);
2204 
2205 static void perf_child_detach(struct perf_event *event)
2206 {
2207 	struct perf_event *parent_event = event->parent;
2208 
2209 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2210 		return;
2211 
2212 	event->attach_state &= ~PERF_ATTACH_CHILD;
2213 
2214 	if (WARN_ON_ONCE(!parent_event))
2215 		return;
2216 
2217 	lockdep_assert_held(&parent_event->child_mutex);
2218 
2219 	sync_child_event(event);
2220 	list_del_init(&event->child_list);
2221 }
2222 
2223 static bool is_orphaned_event(struct perf_event *event)
2224 {
2225 	return event->state == PERF_EVENT_STATE_DEAD;
2226 }
2227 
2228 static inline int __pmu_filter_match(struct perf_event *event)
2229 {
2230 	struct pmu *pmu = event->pmu;
2231 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2232 }
2233 
2234 /*
2235  * Check whether we should attempt to schedule an event group based on
2236  * PMU-specific filtering. An event group can consist of HW and SW events,
2237  * potentially with a SW leader, so we must check all the filters, to
2238  * determine whether a group is schedulable:
2239  */
2240 static inline int pmu_filter_match(struct perf_event *event)
2241 {
2242 	struct perf_event *sibling;
2243 
2244 	if (!__pmu_filter_match(event))
2245 		return 0;
2246 
2247 	for_each_sibling_event(sibling, event) {
2248 		if (!__pmu_filter_match(sibling))
2249 			return 0;
2250 	}
2251 
2252 	return 1;
2253 }
2254 
2255 static inline int
2256 event_filter_match(struct perf_event *event)
2257 {
2258 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2259 	       perf_cgroup_match(event) && pmu_filter_match(event);
2260 }
2261 
2262 static void
2263 event_sched_out(struct perf_event *event,
2264 		  struct perf_cpu_context *cpuctx,
2265 		  struct perf_event_context *ctx)
2266 {
2267 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2268 
2269 	WARN_ON_ONCE(event->ctx != ctx);
2270 	lockdep_assert_held(&ctx->lock);
2271 
2272 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2273 		return;
2274 
2275 	/*
2276 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2277 	 * we can schedule events _OUT_ individually through things like
2278 	 * __perf_remove_from_context().
2279 	 */
2280 	list_del_init(&event->active_list);
2281 
2282 	perf_pmu_disable(event->pmu);
2283 
2284 	event->pmu->del(event, 0);
2285 	event->oncpu = -1;
2286 
2287 	if (READ_ONCE(event->pending_disable) >= 0) {
2288 		WRITE_ONCE(event->pending_disable, -1);
2289 		perf_cgroup_event_disable(event, ctx);
2290 		state = PERF_EVENT_STATE_OFF;
2291 	}
2292 	perf_event_set_state(event, state);
2293 
2294 	if (!is_software_event(event))
2295 		cpuctx->active_oncpu--;
2296 	if (!--ctx->nr_active)
2297 		perf_event_ctx_deactivate(ctx);
2298 	if (event->attr.freq && event->attr.sample_freq)
2299 		ctx->nr_freq--;
2300 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2301 		cpuctx->exclusive = 0;
2302 
2303 	perf_pmu_enable(event->pmu);
2304 }
2305 
2306 static void
2307 group_sched_out(struct perf_event *group_event,
2308 		struct perf_cpu_context *cpuctx,
2309 		struct perf_event_context *ctx)
2310 {
2311 	struct perf_event *event;
2312 
2313 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2314 		return;
2315 
2316 	perf_pmu_disable(ctx->pmu);
2317 
2318 	event_sched_out(group_event, cpuctx, ctx);
2319 
2320 	/*
2321 	 * Schedule out siblings (if any):
2322 	 */
2323 	for_each_sibling_event(event, group_event)
2324 		event_sched_out(event, cpuctx, ctx);
2325 
2326 	perf_pmu_enable(ctx->pmu);
2327 }
2328 
2329 #define DETACH_GROUP	0x01UL
2330 #define DETACH_CHILD	0x02UL
2331 
2332 /*
2333  * Cross CPU call to remove a performance event
2334  *
2335  * We disable the event on the hardware level first. After that we
2336  * remove it from the context list.
2337  */
2338 static void
2339 __perf_remove_from_context(struct perf_event *event,
2340 			   struct perf_cpu_context *cpuctx,
2341 			   struct perf_event_context *ctx,
2342 			   void *info)
2343 {
2344 	unsigned long flags = (unsigned long)info;
2345 
2346 	if (ctx->is_active & EVENT_TIME) {
2347 		update_context_time(ctx);
2348 		update_cgrp_time_from_cpuctx(cpuctx);
2349 	}
2350 
2351 	event_sched_out(event, cpuctx, ctx);
2352 	if (flags & DETACH_GROUP)
2353 		perf_group_detach(event);
2354 	if (flags & DETACH_CHILD)
2355 		perf_child_detach(event);
2356 	list_del_event(event, ctx);
2357 
2358 	if (!ctx->nr_events && ctx->is_active) {
2359 		ctx->is_active = 0;
2360 		ctx->rotate_necessary = 0;
2361 		if (ctx->task) {
2362 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2363 			cpuctx->task_ctx = NULL;
2364 		}
2365 	}
2366 }
2367 
2368 /*
2369  * Remove the event from a task's (or a CPU's) list of events.
2370  *
2371  * If event->ctx is a cloned context, callers must make sure that
2372  * every task struct that event->ctx->task could possibly point to
2373  * remains valid.  This is OK when called from perf_release since
2374  * that only calls us on the top-level context, which can't be a clone.
2375  * When called from perf_event_exit_task, it's OK because the
2376  * context has been detached from its task.
2377  */
2378 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2379 {
2380 	struct perf_event_context *ctx = event->ctx;
2381 
2382 	lockdep_assert_held(&ctx->mutex);
2383 
2384 	/*
2385 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2386 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2387 	 * event_function_call() user.
2388 	 */
2389 	raw_spin_lock_irq(&ctx->lock);
2390 	if (!ctx->is_active) {
2391 		__perf_remove_from_context(event, __get_cpu_context(ctx),
2392 					   ctx, (void *)flags);
2393 		raw_spin_unlock_irq(&ctx->lock);
2394 		return;
2395 	}
2396 	raw_spin_unlock_irq(&ctx->lock);
2397 
2398 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2399 }
2400 
2401 /*
2402  * Cross CPU call to disable a performance event
2403  */
2404 static void __perf_event_disable(struct perf_event *event,
2405 				 struct perf_cpu_context *cpuctx,
2406 				 struct perf_event_context *ctx,
2407 				 void *info)
2408 {
2409 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2410 		return;
2411 
2412 	if (ctx->is_active & EVENT_TIME) {
2413 		update_context_time(ctx);
2414 		update_cgrp_time_from_event(event);
2415 	}
2416 
2417 	if (event == event->group_leader)
2418 		group_sched_out(event, cpuctx, ctx);
2419 	else
2420 		event_sched_out(event, cpuctx, ctx);
2421 
2422 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2423 	perf_cgroup_event_disable(event, ctx);
2424 }
2425 
2426 /*
2427  * Disable an event.
2428  *
2429  * If event->ctx is a cloned context, callers must make sure that
2430  * every task struct that event->ctx->task could possibly point to
2431  * remains valid.  This condition is satisfied when called through
2432  * perf_event_for_each_child or perf_event_for_each because they
2433  * hold the top-level event's child_mutex, so any descendant that
2434  * goes to exit will block in perf_event_exit_event().
2435  *
2436  * When called from perf_pending_event it's OK because event->ctx
2437  * is the current context on this CPU and preemption is disabled,
2438  * hence we can't get into perf_event_task_sched_out for this context.
2439  */
2440 static void _perf_event_disable(struct perf_event *event)
2441 {
2442 	struct perf_event_context *ctx = event->ctx;
2443 
2444 	raw_spin_lock_irq(&ctx->lock);
2445 	if (event->state <= PERF_EVENT_STATE_OFF) {
2446 		raw_spin_unlock_irq(&ctx->lock);
2447 		return;
2448 	}
2449 	raw_spin_unlock_irq(&ctx->lock);
2450 
2451 	event_function_call(event, __perf_event_disable, NULL);
2452 }
2453 
2454 void perf_event_disable_local(struct perf_event *event)
2455 {
2456 	event_function_local(event, __perf_event_disable, NULL);
2457 }
2458 
2459 /*
2460  * Strictly speaking kernel users cannot create groups and therefore this
2461  * interface does not need the perf_event_ctx_lock() magic.
2462  */
2463 void perf_event_disable(struct perf_event *event)
2464 {
2465 	struct perf_event_context *ctx;
2466 
2467 	ctx = perf_event_ctx_lock(event);
2468 	_perf_event_disable(event);
2469 	perf_event_ctx_unlock(event, ctx);
2470 }
2471 EXPORT_SYMBOL_GPL(perf_event_disable);
2472 
2473 void perf_event_disable_inatomic(struct perf_event *event)
2474 {
2475 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2476 	/* can fail, see perf_pending_event_disable() */
2477 	irq_work_queue(&event->pending);
2478 }
2479 
2480 static void perf_set_shadow_time(struct perf_event *event,
2481 				 struct perf_event_context *ctx)
2482 {
2483 	/*
2484 	 * use the correct time source for the time snapshot
2485 	 *
2486 	 * We could get by without this by leveraging the
2487 	 * fact that to get to this function, the caller
2488 	 * has most likely already called update_context_time()
2489 	 * and update_cgrp_time_xx() and thus both timestamp
2490 	 * are identical (or very close). Given that tstamp is,
2491 	 * already adjusted for cgroup, we could say that:
2492 	 *    tstamp - ctx->timestamp
2493 	 * is equivalent to
2494 	 *    tstamp - cgrp->timestamp.
2495 	 *
2496 	 * Then, in perf_output_read(), the calculation would
2497 	 * work with no changes because:
2498 	 * - event is guaranteed scheduled in
2499 	 * - no scheduled out in between
2500 	 * - thus the timestamp would be the same
2501 	 *
2502 	 * But this is a bit hairy.
2503 	 *
2504 	 * So instead, we have an explicit cgroup call to remain
2505 	 * within the time source all along. We believe it
2506 	 * is cleaner and simpler to understand.
2507 	 */
2508 	if (is_cgroup_event(event))
2509 		perf_cgroup_set_shadow_time(event, event->tstamp);
2510 	else
2511 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2512 }
2513 
2514 #define MAX_INTERRUPTS (~0ULL)
2515 
2516 static void perf_log_throttle(struct perf_event *event, int enable);
2517 static void perf_log_itrace_start(struct perf_event *event);
2518 
2519 static int
2520 event_sched_in(struct perf_event *event,
2521 		 struct perf_cpu_context *cpuctx,
2522 		 struct perf_event_context *ctx)
2523 {
2524 	int ret = 0;
2525 
2526 	WARN_ON_ONCE(event->ctx != ctx);
2527 
2528 	lockdep_assert_held(&ctx->lock);
2529 
2530 	if (event->state <= PERF_EVENT_STATE_OFF)
2531 		return 0;
2532 
2533 	WRITE_ONCE(event->oncpu, smp_processor_id());
2534 	/*
2535 	 * Order event::oncpu write to happen before the ACTIVE state is
2536 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2537 	 * ->oncpu if it sees ACTIVE.
2538 	 */
2539 	smp_wmb();
2540 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2541 
2542 	/*
2543 	 * Unthrottle events, since we scheduled we might have missed several
2544 	 * ticks already, also for a heavily scheduling task there is little
2545 	 * guarantee it'll get a tick in a timely manner.
2546 	 */
2547 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2548 		perf_log_throttle(event, 1);
2549 		event->hw.interrupts = 0;
2550 	}
2551 
2552 	perf_pmu_disable(event->pmu);
2553 
2554 	perf_set_shadow_time(event, ctx);
2555 
2556 	perf_log_itrace_start(event);
2557 
2558 	if (event->pmu->add(event, PERF_EF_START)) {
2559 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2560 		event->oncpu = -1;
2561 		ret = -EAGAIN;
2562 		goto out;
2563 	}
2564 
2565 	if (!is_software_event(event))
2566 		cpuctx->active_oncpu++;
2567 	if (!ctx->nr_active++)
2568 		perf_event_ctx_activate(ctx);
2569 	if (event->attr.freq && event->attr.sample_freq)
2570 		ctx->nr_freq++;
2571 
2572 	if (event->attr.exclusive)
2573 		cpuctx->exclusive = 1;
2574 
2575 out:
2576 	perf_pmu_enable(event->pmu);
2577 
2578 	return ret;
2579 }
2580 
2581 static int
2582 group_sched_in(struct perf_event *group_event,
2583 	       struct perf_cpu_context *cpuctx,
2584 	       struct perf_event_context *ctx)
2585 {
2586 	struct perf_event *event, *partial_group = NULL;
2587 	struct pmu *pmu = ctx->pmu;
2588 
2589 	if (group_event->state == PERF_EVENT_STATE_OFF)
2590 		return 0;
2591 
2592 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2593 
2594 	if (event_sched_in(group_event, cpuctx, ctx))
2595 		goto error;
2596 
2597 	/*
2598 	 * Schedule in siblings as one group (if any):
2599 	 */
2600 	for_each_sibling_event(event, group_event) {
2601 		if (event_sched_in(event, cpuctx, ctx)) {
2602 			partial_group = event;
2603 			goto group_error;
2604 		}
2605 	}
2606 
2607 	if (!pmu->commit_txn(pmu))
2608 		return 0;
2609 
2610 group_error:
2611 	/*
2612 	 * Groups can be scheduled in as one unit only, so undo any
2613 	 * partial group before returning:
2614 	 * The events up to the failed event are scheduled out normally.
2615 	 */
2616 	for_each_sibling_event(event, group_event) {
2617 		if (event == partial_group)
2618 			break;
2619 
2620 		event_sched_out(event, cpuctx, ctx);
2621 	}
2622 	event_sched_out(group_event, cpuctx, ctx);
2623 
2624 error:
2625 	pmu->cancel_txn(pmu);
2626 	return -EAGAIN;
2627 }
2628 
2629 /*
2630  * Work out whether we can put this event group on the CPU now.
2631  */
2632 static int group_can_go_on(struct perf_event *event,
2633 			   struct perf_cpu_context *cpuctx,
2634 			   int can_add_hw)
2635 {
2636 	/*
2637 	 * Groups consisting entirely of software events can always go on.
2638 	 */
2639 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2640 		return 1;
2641 	/*
2642 	 * If an exclusive group is already on, no other hardware
2643 	 * events can go on.
2644 	 */
2645 	if (cpuctx->exclusive)
2646 		return 0;
2647 	/*
2648 	 * If this group is exclusive and there are already
2649 	 * events on the CPU, it can't go on.
2650 	 */
2651 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2652 		return 0;
2653 	/*
2654 	 * Otherwise, try to add it if all previous groups were able
2655 	 * to go on.
2656 	 */
2657 	return can_add_hw;
2658 }
2659 
2660 static void add_event_to_ctx(struct perf_event *event,
2661 			       struct perf_event_context *ctx)
2662 {
2663 	list_add_event(event, ctx);
2664 	perf_group_attach(event);
2665 }
2666 
2667 static void ctx_sched_out(struct perf_event_context *ctx,
2668 			  struct perf_cpu_context *cpuctx,
2669 			  enum event_type_t event_type);
2670 static void
2671 ctx_sched_in(struct perf_event_context *ctx,
2672 	     struct perf_cpu_context *cpuctx,
2673 	     enum event_type_t event_type,
2674 	     struct task_struct *task);
2675 
2676 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2677 			       struct perf_event_context *ctx,
2678 			       enum event_type_t event_type)
2679 {
2680 	if (!cpuctx->task_ctx)
2681 		return;
2682 
2683 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2684 		return;
2685 
2686 	ctx_sched_out(ctx, cpuctx, event_type);
2687 }
2688 
2689 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2690 				struct perf_event_context *ctx,
2691 				struct task_struct *task)
2692 {
2693 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2694 	if (ctx)
2695 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2696 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2697 	if (ctx)
2698 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2699 }
2700 
2701 /*
2702  * We want to maintain the following priority of scheduling:
2703  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2704  *  - task pinned (EVENT_PINNED)
2705  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2706  *  - task flexible (EVENT_FLEXIBLE).
2707  *
2708  * In order to avoid unscheduling and scheduling back in everything every
2709  * time an event is added, only do it for the groups of equal priority and
2710  * below.
2711  *
2712  * This can be called after a batch operation on task events, in which case
2713  * event_type is a bit mask of the types of events involved. For CPU events,
2714  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2715  */
2716 static void ctx_resched(struct perf_cpu_context *cpuctx,
2717 			struct perf_event_context *task_ctx,
2718 			enum event_type_t event_type)
2719 {
2720 	enum event_type_t ctx_event_type;
2721 	bool cpu_event = !!(event_type & EVENT_CPU);
2722 
2723 	/*
2724 	 * If pinned groups are involved, flexible groups also need to be
2725 	 * scheduled out.
2726 	 */
2727 	if (event_type & EVENT_PINNED)
2728 		event_type |= EVENT_FLEXIBLE;
2729 
2730 	ctx_event_type = event_type & EVENT_ALL;
2731 
2732 	perf_pmu_disable(cpuctx->ctx.pmu);
2733 	if (task_ctx)
2734 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2735 
2736 	/*
2737 	 * Decide which cpu ctx groups to schedule out based on the types
2738 	 * of events that caused rescheduling:
2739 	 *  - EVENT_CPU: schedule out corresponding groups;
2740 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2741 	 *  - otherwise, do nothing more.
2742 	 */
2743 	if (cpu_event)
2744 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2745 	else if (ctx_event_type & EVENT_PINNED)
2746 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2747 
2748 	perf_event_sched_in(cpuctx, task_ctx, current);
2749 	perf_pmu_enable(cpuctx->ctx.pmu);
2750 }
2751 
2752 void perf_pmu_resched(struct pmu *pmu)
2753 {
2754 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2755 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2756 
2757 	perf_ctx_lock(cpuctx, task_ctx);
2758 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2759 	perf_ctx_unlock(cpuctx, task_ctx);
2760 }
2761 
2762 /*
2763  * Cross CPU call to install and enable a performance event
2764  *
2765  * Very similar to remote_function() + event_function() but cannot assume that
2766  * things like ctx->is_active and cpuctx->task_ctx are set.
2767  */
2768 static int  __perf_install_in_context(void *info)
2769 {
2770 	struct perf_event *event = info;
2771 	struct perf_event_context *ctx = event->ctx;
2772 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2773 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2774 	bool reprogram = true;
2775 	int ret = 0;
2776 
2777 	raw_spin_lock(&cpuctx->ctx.lock);
2778 	if (ctx->task) {
2779 		raw_spin_lock(&ctx->lock);
2780 		task_ctx = ctx;
2781 
2782 		reprogram = (ctx->task == current);
2783 
2784 		/*
2785 		 * If the task is running, it must be running on this CPU,
2786 		 * otherwise we cannot reprogram things.
2787 		 *
2788 		 * If its not running, we don't care, ctx->lock will
2789 		 * serialize against it becoming runnable.
2790 		 */
2791 		if (task_curr(ctx->task) && !reprogram) {
2792 			ret = -ESRCH;
2793 			goto unlock;
2794 		}
2795 
2796 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2797 	} else if (task_ctx) {
2798 		raw_spin_lock(&task_ctx->lock);
2799 	}
2800 
2801 #ifdef CONFIG_CGROUP_PERF
2802 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2803 		/*
2804 		 * If the current cgroup doesn't match the event's
2805 		 * cgroup, we should not try to schedule it.
2806 		 */
2807 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2808 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2809 					event->cgrp->css.cgroup);
2810 	}
2811 #endif
2812 
2813 	if (reprogram) {
2814 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2815 		add_event_to_ctx(event, ctx);
2816 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2817 	} else {
2818 		add_event_to_ctx(event, ctx);
2819 	}
2820 
2821 unlock:
2822 	perf_ctx_unlock(cpuctx, task_ctx);
2823 
2824 	return ret;
2825 }
2826 
2827 static bool exclusive_event_installable(struct perf_event *event,
2828 					struct perf_event_context *ctx);
2829 
2830 /*
2831  * Attach a performance event to a context.
2832  *
2833  * Very similar to event_function_call, see comment there.
2834  */
2835 static void
2836 perf_install_in_context(struct perf_event_context *ctx,
2837 			struct perf_event *event,
2838 			int cpu)
2839 {
2840 	struct task_struct *task = READ_ONCE(ctx->task);
2841 
2842 	lockdep_assert_held(&ctx->mutex);
2843 
2844 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2845 
2846 	if (event->cpu != -1)
2847 		event->cpu = cpu;
2848 
2849 	/*
2850 	 * Ensures that if we can observe event->ctx, both the event and ctx
2851 	 * will be 'complete'. See perf_iterate_sb_cpu().
2852 	 */
2853 	smp_store_release(&event->ctx, ctx);
2854 
2855 	/*
2856 	 * perf_event_attr::disabled events will not run and can be initialized
2857 	 * without IPI. Except when this is the first event for the context, in
2858 	 * that case we need the magic of the IPI to set ctx->is_active.
2859 	 *
2860 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2861 	 * event will issue the IPI and reprogram the hardware.
2862 	 */
2863 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2864 		raw_spin_lock_irq(&ctx->lock);
2865 		if (ctx->task == TASK_TOMBSTONE) {
2866 			raw_spin_unlock_irq(&ctx->lock);
2867 			return;
2868 		}
2869 		add_event_to_ctx(event, ctx);
2870 		raw_spin_unlock_irq(&ctx->lock);
2871 		return;
2872 	}
2873 
2874 	if (!task) {
2875 		cpu_function_call(cpu, __perf_install_in_context, event);
2876 		return;
2877 	}
2878 
2879 	/*
2880 	 * Should not happen, we validate the ctx is still alive before calling.
2881 	 */
2882 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2883 		return;
2884 
2885 	/*
2886 	 * Installing events is tricky because we cannot rely on ctx->is_active
2887 	 * to be set in case this is the nr_events 0 -> 1 transition.
2888 	 *
2889 	 * Instead we use task_curr(), which tells us if the task is running.
2890 	 * However, since we use task_curr() outside of rq::lock, we can race
2891 	 * against the actual state. This means the result can be wrong.
2892 	 *
2893 	 * If we get a false positive, we retry, this is harmless.
2894 	 *
2895 	 * If we get a false negative, things are complicated. If we are after
2896 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2897 	 * value must be correct. If we're before, it doesn't matter since
2898 	 * perf_event_context_sched_in() will program the counter.
2899 	 *
2900 	 * However, this hinges on the remote context switch having observed
2901 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2902 	 * ctx::lock in perf_event_context_sched_in().
2903 	 *
2904 	 * We do this by task_function_call(), if the IPI fails to hit the task
2905 	 * we know any future context switch of task must see the
2906 	 * perf_event_ctpx[] store.
2907 	 */
2908 
2909 	/*
2910 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2911 	 * task_cpu() load, such that if the IPI then does not find the task
2912 	 * running, a future context switch of that task must observe the
2913 	 * store.
2914 	 */
2915 	smp_mb();
2916 again:
2917 	if (!task_function_call(task, __perf_install_in_context, event))
2918 		return;
2919 
2920 	raw_spin_lock_irq(&ctx->lock);
2921 	task = ctx->task;
2922 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2923 		/*
2924 		 * Cannot happen because we already checked above (which also
2925 		 * cannot happen), and we hold ctx->mutex, which serializes us
2926 		 * against perf_event_exit_task_context().
2927 		 */
2928 		raw_spin_unlock_irq(&ctx->lock);
2929 		return;
2930 	}
2931 	/*
2932 	 * If the task is not running, ctx->lock will avoid it becoming so,
2933 	 * thus we can safely install the event.
2934 	 */
2935 	if (task_curr(task)) {
2936 		raw_spin_unlock_irq(&ctx->lock);
2937 		goto again;
2938 	}
2939 	add_event_to_ctx(event, ctx);
2940 	raw_spin_unlock_irq(&ctx->lock);
2941 }
2942 
2943 /*
2944  * Cross CPU call to enable a performance event
2945  */
2946 static void __perf_event_enable(struct perf_event *event,
2947 				struct perf_cpu_context *cpuctx,
2948 				struct perf_event_context *ctx,
2949 				void *info)
2950 {
2951 	struct perf_event *leader = event->group_leader;
2952 	struct perf_event_context *task_ctx;
2953 
2954 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2955 	    event->state <= PERF_EVENT_STATE_ERROR)
2956 		return;
2957 
2958 	if (ctx->is_active)
2959 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2960 
2961 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2962 	perf_cgroup_event_enable(event, ctx);
2963 
2964 	if (!ctx->is_active)
2965 		return;
2966 
2967 	if (!event_filter_match(event)) {
2968 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2969 		return;
2970 	}
2971 
2972 	/*
2973 	 * If the event is in a group and isn't the group leader,
2974 	 * then don't put it on unless the group is on.
2975 	 */
2976 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2977 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2978 		return;
2979 	}
2980 
2981 	task_ctx = cpuctx->task_ctx;
2982 	if (ctx->task)
2983 		WARN_ON_ONCE(task_ctx != ctx);
2984 
2985 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2986 }
2987 
2988 /*
2989  * Enable an event.
2990  *
2991  * If event->ctx is a cloned context, callers must make sure that
2992  * every task struct that event->ctx->task could possibly point to
2993  * remains valid.  This condition is satisfied when called through
2994  * perf_event_for_each_child or perf_event_for_each as described
2995  * for perf_event_disable.
2996  */
2997 static void _perf_event_enable(struct perf_event *event)
2998 {
2999 	struct perf_event_context *ctx = event->ctx;
3000 
3001 	raw_spin_lock_irq(&ctx->lock);
3002 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3003 	    event->state <  PERF_EVENT_STATE_ERROR) {
3004 out:
3005 		raw_spin_unlock_irq(&ctx->lock);
3006 		return;
3007 	}
3008 
3009 	/*
3010 	 * If the event is in error state, clear that first.
3011 	 *
3012 	 * That way, if we see the event in error state below, we know that it
3013 	 * has gone back into error state, as distinct from the task having
3014 	 * been scheduled away before the cross-call arrived.
3015 	 */
3016 	if (event->state == PERF_EVENT_STATE_ERROR) {
3017 		/*
3018 		 * Detached SIBLING events cannot leave ERROR state.
3019 		 */
3020 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3021 		    event->group_leader == event)
3022 			goto out;
3023 
3024 		event->state = PERF_EVENT_STATE_OFF;
3025 	}
3026 	raw_spin_unlock_irq(&ctx->lock);
3027 
3028 	event_function_call(event, __perf_event_enable, NULL);
3029 }
3030 
3031 /*
3032  * See perf_event_disable();
3033  */
3034 void perf_event_enable(struct perf_event *event)
3035 {
3036 	struct perf_event_context *ctx;
3037 
3038 	ctx = perf_event_ctx_lock(event);
3039 	_perf_event_enable(event);
3040 	perf_event_ctx_unlock(event, ctx);
3041 }
3042 EXPORT_SYMBOL_GPL(perf_event_enable);
3043 
3044 struct stop_event_data {
3045 	struct perf_event	*event;
3046 	unsigned int		restart;
3047 };
3048 
3049 static int __perf_event_stop(void *info)
3050 {
3051 	struct stop_event_data *sd = info;
3052 	struct perf_event *event = sd->event;
3053 
3054 	/* if it's already INACTIVE, do nothing */
3055 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3056 		return 0;
3057 
3058 	/* matches smp_wmb() in event_sched_in() */
3059 	smp_rmb();
3060 
3061 	/*
3062 	 * There is a window with interrupts enabled before we get here,
3063 	 * so we need to check again lest we try to stop another CPU's event.
3064 	 */
3065 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3066 		return -EAGAIN;
3067 
3068 	event->pmu->stop(event, PERF_EF_UPDATE);
3069 
3070 	/*
3071 	 * May race with the actual stop (through perf_pmu_output_stop()),
3072 	 * but it is only used for events with AUX ring buffer, and such
3073 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3074 	 * see comments in perf_aux_output_begin().
3075 	 *
3076 	 * Since this is happening on an event-local CPU, no trace is lost
3077 	 * while restarting.
3078 	 */
3079 	if (sd->restart)
3080 		event->pmu->start(event, 0);
3081 
3082 	return 0;
3083 }
3084 
3085 static int perf_event_stop(struct perf_event *event, int restart)
3086 {
3087 	struct stop_event_data sd = {
3088 		.event		= event,
3089 		.restart	= restart,
3090 	};
3091 	int ret = 0;
3092 
3093 	do {
3094 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3095 			return 0;
3096 
3097 		/* matches smp_wmb() in event_sched_in() */
3098 		smp_rmb();
3099 
3100 		/*
3101 		 * We only want to restart ACTIVE events, so if the event goes
3102 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3103 		 * fall through with ret==-ENXIO.
3104 		 */
3105 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3106 					__perf_event_stop, &sd);
3107 	} while (ret == -EAGAIN);
3108 
3109 	return ret;
3110 }
3111 
3112 /*
3113  * In order to contain the amount of racy and tricky in the address filter
3114  * configuration management, it is a two part process:
3115  *
3116  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3117  *      we update the addresses of corresponding vmas in
3118  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3119  * (p2) when an event is scheduled in (pmu::add), it calls
3120  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3121  *      if the generation has changed since the previous call.
3122  *
3123  * If (p1) happens while the event is active, we restart it to force (p2).
3124  *
3125  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3126  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3127  *     ioctl;
3128  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3129  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3130  *     for reading;
3131  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3132  *     of exec.
3133  */
3134 void perf_event_addr_filters_sync(struct perf_event *event)
3135 {
3136 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3137 
3138 	if (!has_addr_filter(event))
3139 		return;
3140 
3141 	raw_spin_lock(&ifh->lock);
3142 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3143 		event->pmu->addr_filters_sync(event);
3144 		event->hw.addr_filters_gen = event->addr_filters_gen;
3145 	}
3146 	raw_spin_unlock(&ifh->lock);
3147 }
3148 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3149 
3150 static int _perf_event_refresh(struct perf_event *event, int refresh)
3151 {
3152 	/*
3153 	 * not supported on inherited events
3154 	 */
3155 	if (event->attr.inherit || !is_sampling_event(event))
3156 		return -EINVAL;
3157 
3158 	atomic_add(refresh, &event->event_limit);
3159 	_perf_event_enable(event);
3160 
3161 	return 0;
3162 }
3163 
3164 /*
3165  * See perf_event_disable()
3166  */
3167 int perf_event_refresh(struct perf_event *event, int refresh)
3168 {
3169 	struct perf_event_context *ctx;
3170 	int ret;
3171 
3172 	ctx = perf_event_ctx_lock(event);
3173 	ret = _perf_event_refresh(event, refresh);
3174 	perf_event_ctx_unlock(event, ctx);
3175 
3176 	return ret;
3177 }
3178 EXPORT_SYMBOL_GPL(perf_event_refresh);
3179 
3180 static int perf_event_modify_breakpoint(struct perf_event *bp,
3181 					 struct perf_event_attr *attr)
3182 {
3183 	int err;
3184 
3185 	_perf_event_disable(bp);
3186 
3187 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3188 
3189 	if (!bp->attr.disabled)
3190 		_perf_event_enable(bp);
3191 
3192 	return err;
3193 }
3194 
3195 static int perf_event_modify_attr(struct perf_event *event,
3196 				  struct perf_event_attr *attr)
3197 {
3198 	int (*func)(struct perf_event *, struct perf_event_attr *);
3199 	struct perf_event *child;
3200 	int err;
3201 
3202 	if (event->attr.type != attr->type)
3203 		return -EINVAL;
3204 
3205 	switch (event->attr.type) {
3206 	case PERF_TYPE_BREAKPOINT:
3207 		func = perf_event_modify_breakpoint;
3208 		break;
3209 	default:
3210 		/* Place holder for future additions. */
3211 		return -EOPNOTSUPP;
3212 	}
3213 
3214 	WARN_ON_ONCE(event->ctx->parent_ctx);
3215 
3216 	mutex_lock(&event->child_mutex);
3217 	err = func(event, attr);
3218 	if (err)
3219 		goto out;
3220 	list_for_each_entry(child, &event->child_list, child_list) {
3221 		err = func(child, attr);
3222 		if (err)
3223 			goto out;
3224 	}
3225 out:
3226 	mutex_unlock(&event->child_mutex);
3227 	return err;
3228 }
3229 
3230 static void ctx_sched_out(struct perf_event_context *ctx,
3231 			  struct perf_cpu_context *cpuctx,
3232 			  enum event_type_t event_type)
3233 {
3234 	struct perf_event *event, *tmp;
3235 	int is_active = ctx->is_active;
3236 
3237 	lockdep_assert_held(&ctx->lock);
3238 
3239 	if (likely(!ctx->nr_events)) {
3240 		/*
3241 		 * See __perf_remove_from_context().
3242 		 */
3243 		WARN_ON_ONCE(ctx->is_active);
3244 		if (ctx->task)
3245 			WARN_ON_ONCE(cpuctx->task_ctx);
3246 		return;
3247 	}
3248 
3249 	ctx->is_active &= ~event_type;
3250 	if (!(ctx->is_active & EVENT_ALL))
3251 		ctx->is_active = 0;
3252 
3253 	if (ctx->task) {
3254 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3255 		if (!ctx->is_active)
3256 			cpuctx->task_ctx = NULL;
3257 	}
3258 
3259 	/*
3260 	 * Always update time if it was set; not only when it changes.
3261 	 * Otherwise we can 'forget' to update time for any but the last
3262 	 * context we sched out. For example:
3263 	 *
3264 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3265 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3266 	 *
3267 	 * would only update time for the pinned events.
3268 	 */
3269 	if (is_active & EVENT_TIME) {
3270 		/* update (and stop) ctx time */
3271 		update_context_time(ctx);
3272 		update_cgrp_time_from_cpuctx(cpuctx);
3273 	}
3274 
3275 	is_active ^= ctx->is_active; /* changed bits */
3276 
3277 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3278 		return;
3279 
3280 	perf_pmu_disable(ctx->pmu);
3281 	if (is_active & EVENT_PINNED) {
3282 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3283 			group_sched_out(event, cpuctx, ctx);
3284 	}
3285 
3286 	if (is_active & EVENT_FLEXIBLE) {
3287 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3288 			group_sched_out(event, cpuctx, ctx);
3289 
3290 		/*
3291 		 * Since we cleared EVENT_FLEXIBLE, also clear
3292 		 * rotate_necessary, is will be reset by
3293 		 * ctx_flexible_sched_in() when needed.
3294 		 */
3295 		ctx->rotate_necessary = 0;
3296 	}
3297 	perf_pmu_enable(ctx->pmu);
3298 }
3299 
3300 /*
3301  * Test whether two contexts are equivalent, i.e. whether they have both been
3302  * cloned from the same version of the same context.
3303  *
3304  * Equivalence is measured using a generation number in the context that is
3305  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3306  * and list_del_event().
3307  */
3308 static int context_equiv(struct perf_event_context *ctx1,
3309 			 struct perf_event_context *ctx2)
3310 {
3311 	lockdep_assert_held(&ctx1->lock);
3312 	lockdep_assert_held(&ctx2->lock);
3313 
3314 	/* Pinning disables the swap optimization */
3315 	if (ctx1->pin_count || ctx2->pin_count)
3316 		return 0;
3317 
3318 	/* If ctx1 is the parent of ctx2 */
3319 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3320 		return 1;
3321 
3322 	/* If ctx2 is the parent of ctx1 */
3323 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3324 		return 1;
3325 
3326 	/*
3327 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3328 	 * hierarchy, see perf_event_init_context().
3329 	 */
3330 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3331 			ctx1->parent_gen == ctx2->parent_gen)
3332 		return 1;
3333 
3334 	/* Unmatched */
3335 	return 0;
3336 }
3337 
3338 static void __perf_event_sync_stat(struct perf_event *event,
3339 				     struct perf_event *next_event)
3340 {
3341 	u64 value;
3342 
3343 	if (!event->attr.inherit_stat)
3344 		return;
3345 
3346 	/*
3347 	 * Update the event value, we cannot use perf_event_read()
3348 	 * because we're in the middle of a context switch and have IRQs
3349 	 * disabled, which upsets smp_call_function_single(), however
3350 	 * we know the event must be on the current CPU, therefore we
3351 	 * don't need to use it.
3352 	 */
3353 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3354 		event->pmu->read(event);
3355 
3356 	perf_event_update_time(event);
3357 
3358 	/*
3359 	 * In order to keep per-task stats reliable we need to flip the event
3360 	 * values when we flip the contexts.
3361 	 */
3362 	value = local64_read(&next_event->count);
3363 	value = local64_xchg(&event->count, value);
3364 	local64_set(&next_event->count, value);
3365 
3366 	swap(event->total_time_enabled, next_event->total_time_enabled);
3367 	swap(event->total_time_running, next_event->total_time_running);
3368 
3369 	/*
3370 	 * Since we swizzled the values, update the user visible data too.
3371 	 */
3372 	perf_event_update_userpage(event);
3373 	perf_event_update_userpage(next_event);
3374 }
3375 
3376 static void perf_event_sync_stat(struct perf_event_context *ctx,
3377 				   struct perf_event_context *next_ctx)
3378 {
3379 	struct perf_event *event, *next_event;
3380 
3381 	if (!ctx->nr_stat)
3382 		return;
3383 
3384 	update_context_time(ctx);
3385 
3386 	event = list_first_entry(&ctx->event_list,
3387 				   struct perf_event, event_entry);
3388 
3389 	next_event = list_first_entry(&next_ctx->event_list,
3390 					struct perf_event, event_entry);
3391 
3392 	while (&event->event_entry != &ctx->event_list &&
3393 	       &next_event->event_entry != &next_ctx->event_list) {
3394 
3395 		__perf_event_sync_stat(event, next_event);
3396 
3397 		event = list_next_entry(event, event_entry);
3398 		next_event = list_next_entry(next_event, event_entry);
3399 	}
3400 }
3401 
3402 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3403 					 struct task_struct *next)
3404 {
3405 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3406 	struct perf_event_context *next_ctx;
3407 	struct perf_event_context *parent, *next_parent;
3408 	struct perf_cpu_context *cpuctx;
3409 	int do_switch = 1;
3410 	struct pmu *pmu;
3411 
3412 	if (likely(!ctx))
3413 		return;
3414 
3415 	pmu = ctx->pmu;
3416 	cpuctx = __get_cpu_context(ctx);
3417 	if (!cpuctx->task_ctx)
3418 		return;
3419 
3420 	rcu_read_lock();
3421 	next_ctx = next->perf_event_ctxp[ctxn];
3422 	if (!next_ctx)
3423 		goto unlock;
3424 
3425 	parent = rcu_dereference(ctx->parent_ctx);
3426 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3427 
3428 	/* If neither context have a parent context; they cannot be clones. */
3429 	if (!parent && !next_parent)
3430 		goto unlock;
3431 
3432 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3433 		/*
3434 		 * Looks like the two contexts are clones, so we might be
3435 		 * able to optimize the context switch.  We lock both
3436 		 * contexts and check that they are clones under the
3437 		 * lock (including re-checking that neither has been
3438 		 * uncloned in the meantime).  It doesn't matter which
3439 		 * order we take the locks because no other cpu could
3440 		 * be trying to lock both of these tasks.
3441 		 */
3442 		raw_spin_lock(&ctx->lock);
3443 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3444 		if (context_equiv(ctx, next_ctx)) {
3445 
3446 			WRITE_ONCE(ctx->task, next);
3447 			WRITE_ONCE(next_ctx->task, task);
3448 
3449 			perf_pmu_disable(pmu);
3450 
3451 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3452 				pmu->sched_task(ctx, false);
3453 
3454 			/*
3455 			 * PMU specific parts of task perf context can require
3456 			 * additional synchronization. As an example of such
3457 			 * synchronization see implementation details of Intel
3458 			 * LBR call stack data profiling;
3459 			 */
3460 			if (pmu->swap_task_ctx)
3461 				pmu->swap_task_ctx(ctx, next_ctx);
3462 			else
3463 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3464 
3465 			perf_pmu_enable(pmu);
3466 
3467 			/*
3468 			 * RCU_INIT_POINTER here is safe because we've not
3469 			 * modified the ctx and the above modification of
3470 			 * ctx->task and ctx->task_ctx_data are immaterial
3471 			 * since those values are always verified under
3472 			 * ctx->lock which we're now holding.
3473 			 */
3474 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3475 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3476 
3477 			do_switch = 0;
3478 
3479 			perf_event_sync_stat(ctx, next_ctx);
3480 		}
3481 		raw_spin_unlock(&next_ctx->lock);
3482 		raw_spin_unlock(&ctx->lock);
3483 	}
3484 unlock:
3485 	rcu_read_unlock();
3486 
3487 	if (do_switch) {
3488 		raw_spin_lock(&ctx->lock);
3489 		perf_pmu_disable(pmu);
3490 
3491 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3492 			pmu->sched_task(ctx, false);
3493 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3494 
3495 		perf_pmu_enable(pmu);
3496 		raw_spin_unlock(&ctx->lock);
3497 	}
3498 }
3499 
3500 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3501 
3502 void perf_sched_cb_dec(struct pmu *pmu)
3503 {
3504 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3505 
3506 	this_cpu_dec(perf_sched_cb_usages);
3507 
3508 	if (!--cpuctx->sched_cb_usage)
3509 		list_del(&cpuctx->sched_cb_entry);
3510 }
3511 
3512 
3513 void perf_sched_cb_inc(struct pmu *pmu)
3514 {
3515 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3516 
3517 	if (!cpuctx->sched_cb_usage++)
3518 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3519 
3520 	this_cpu_inc(perf_sched_cb_usages);
3521 }
3522 
3523 /*
3524  * This function provides the context switch callback to the lower code
3525  * layer. It is invoked ONLY when the context switch callback is enabled.
3526  *
3527  * This callback is relevant even to per-cpu events; for example multi event
3528  * PEBS requires this to provide PID/TID information. This requires we flush
3529  * all queued PEBS records before we context switch to a new task.
3530  */
3531 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3532 {
3533 	struct pmu *pmu;
3534 
3535 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3536 
3537 	if (WARN_ON_ONCE(!pmu->sched_task))
3538 		return;
3539 
3540 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3541 	perf_pmu_disable(pmu);
3542 
3543 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3544 
3545 	perf_pmu_enable(pmu);
3546 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3547 }
3548 
3549 static void perf_pmu_sched_task(struct task_struct *prev,
3550 				struct task_struct *next,
3551 				bool sched_in)
3552 {
3553 	struct perf_cpu_context *cpuctx;
3554 
3555 	if (prev == next)
3556 		return;
3557 
3558 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3559 		/* will be handled in perf_event_context_sched_in/out */
3560 		if (cpuctx->task_ctx)
3561 			continue;
3562 
3563 		__perf_pmu_sched_task(cpuctx, sched_in);
3564 	}
3565 }
3566 
3567 static void perf_event_switch(struct task_struct *task,
3568 			      struct task_struct *next_prev, bool sched_in);
3569 
3570 #define for_each_task_context_nr(ctxn)					\
3571 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3572 
3573 /*
3574  * Called from scheduler to remove the events of the current task,
3575  * with interrupts disabled.
3576  *
3577  * We stop each event and update the event value in event->count.
3578  *
3579  * This does not protect us against NMI, but disable()
3580  * sets the disabled bit in the control field of event _before_
3581  * accessing the event control register. If a NMI hits, then it will
3582  * not restart the event.
3583  */
3584 void __perf_event_task_sched_out(struct task_struct *task,
3585 				 struct task_struct *next)
3586 {
3587 	int ctxn;
3588 
3589 	if (__this_cpu_read(perf_sched_cb_usages))
3590 		perf_pmu_sched_task(task, next, false);
3591 
3592 	if (atomic_read(&nr_switch_events))
3593 		perf_event_switch(task, next, false);
3594 
3595 	for_each_task_context_nr(ctxn)
3596 		perf_event_context_sched_out(task, ctxn, next);
3597 
3598 	/*
3599 	 * if cgroup events exist on this CPU, then we need
3600 	 * to check if we have to switch out PMU state.
3601 	 * cgroup event are system-wide mode only
3602 	 */
3603 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3604 		perf_cgroup_sched_out(task, next);
3605 }
3606 
3607 /*
3608  * Called with IRQs disabled
3609  */
3610 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3611 			      enum event_type_t event_type)
3612 {
3613 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3614 }
3615 
3616 static bool perf_less_group_idx(const void *l, const void *r)
3617 {
3618 	const struct perf_event *le = *(const struct perf_event **)l;
3619 	const struct perf_event *re = *(const struct perf_event **)r;
3620 
3621 	return le->group_index < re->group_index;
3622 }
3623 
3624 static void swap_ptr(void *l, void *r)
3625 {
3626 	void **lp = l, **rp = r;
3627 
3628 	swap(*lp, *rp);
3629 }
3630 
3631 static const struct min_heap_callbacks perf_min_heap = {
3632 	.elem_size = sizeof(struct perf_event *),
3633 	.less = perf_less_group_idx,
3634 	.swp = swap_ptr,
3635 };
3636 
3637 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3638 {
3639 	struct perf_event **itrs = heap->data;
3640 
3641 	if (event) {
3642 		itrs[heap->nr] = event;
3643 		heap->nr++;
3644 	}
3645 }
3646 
3647 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3648 				struct perf_event_groups *groups, int cpu,
3649 				int (*func)(struct perf_event *, void *),
3650 				void *data)
3651 {
3652 #ifdef CONFIG_CGROUP_PERF
3653 	struct cgroup_subsys_state *css = NULL;
3654 #endif
3655 	/* Space for per CPU and/or any CPU event iterators. */
3656 	struct perf_event *itrs[2];
3657 	struct min_heap event_heap;
3658 	struct perf_event **evt;
3659 	int ret;
3660 
3661 	if (cpuctx) {
3662 		event_heap = (struct min_heap){
3663 			.data = cpuctx->heap,
3664 			.nr = 0,
3665 			.size = cpuctx->heap_size,
3666 		};
3667 
3668 		lockdep_assert_held(&cpuctx->ctx.lock);
3669 
3670 #ifdef CONFIG_CGROUP_PERF
3671 		if (cpuctx->cgrp)
3672 			css = &cpuctx->cgrp->css;
3673 #endif
3674 	} else {
3675 		event_heap = (struct min_heap){
3676 			.data = itrs,
3677 			.nr = 0,
3678 			.size = ARRAY_SIZE(itrs),
3679 		};
3680 		/* Events not within a CPU context may be on any CPU. */
3681 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3682 	}
3683 	evt = event_heap.data;
3684 
3685 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3686 
3687 #ifdef CONFIG_CGROUP_PERF
3688 	for (; css; css = css->parent)
3689 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3690 #endif
3691 
3692 	min_heapify_all(&event_heap, &perf_min_heap);
3693 
3694 	while (event_heap.nr) {
3695 		ret = func(*evt, data);
3696 		if (ret)
3697 			return ret;
3698 
3699 		*evt = perf_event_groups_next(*evt);
3700 		if (*evt)
3701 			min_heapify(&event_heap, 0, &perf_min_heap);
3702 		else
3703 			min_heap_pop(&event_heap, &perf_min_heap);
3704 	}
3705 
3706 	return 0;
3707 }
3708 
3709 static int merge_sched_in(struct perf_event *event, void *data)
3710 {
3711 	struct perf_event_context *ctx = event->ctx;
3712 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3713 	int *can_add_hw = data;
3714 
3715 	if (event->state <= PERF_EVENT_STATE_OFF)
3716 		return 0;
3717 
3718 	if (!event_filter_match(event))
3719 		return 0;
3720 
3721 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3722 		if (!group_sched_in(event, cpuctx, ctx))
3723 			list_add_tail(&event->active_list, get_event_list(event));
3724 	}
3725 
3726 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3727 		if (event->attr.pinned) {
3728 			perf_cgroup_event_disable(event, ctx);
3729 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3730 		}
3731 
3732 		*can_add_hw = 0;
3733 		ctx->rotate_necessary = 1;
3734 		perf_mux_hrtimer_restart(cpuctx);
3735 	}
3736 
3737 	return 0;
3738 }
3739 
3740 static void
3741 ctx_pinned_sched_in(struct perf_event_context *ctx,
3742 		    struct perf_cpu_context *cpuctx)
3743 {
3744 	int can_add_hw = 1;
3745 
3746 	if (ctx != &cpuctx->ctx)
3747 		cpuctx = NULL;
3748 
3749 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3750 			   smp_processor_id(),
3751 			   merge_sched_in, &can_add_hw);
3752 }
3753 
3754 static void
3755 ctx_flexible_sched_in(struct perf_event_context *ctx,
3756 		      struct perf_cpu_context *cpuctx)
3757 {
3758 	int can_add_hw = 1;
3759 
3760 	if (ctx != &cpuctx->ctx)
3761 		cpuctx = NULL;
3762 
3763 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3764 			   smp_processor_id(),
3765 			   merge_sched_in, &can_add_hw);
3766 }
3767 
3768 static void
3769 ctx_sched_in(struct perf_event_context *ctx,
3770 	     struct perf_cpu_context *cpuctx,
3771 	     enum event_type_t event_type,
3772 	     struct task_struct *task)
3773 {
3774 	int is_active = ctx->is_active;
3775 	u64 now;
3776 
3777 	lockdep_assert_held(&ctx->lock);
3778 
3779 	if (likely(!ctx->nr_events))
3780 		return;
3781 
3782 	ctx->is_active |= (event_type | EVENT_TIME);
3783 	if (ctx->task) {
3784 		if (!is_active)
3785 			cpuctx->task_ctx = ctx;
3786 		else
3787 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3788 	}
3789 
3790 	is_active ^= ctx->is_active; /* changed bits */
3791 
3792 	if (is_active & EVENT_TIME) {
3793 		/* start ctx time */
3794 		now = perf_clock();
3795 		ctx->timestamp = now;
3796 		perf_cgroup_set_timestamp(task, ctx);
3797 	}
3798 
3799 	/*
3800 	 * First go through the list and put on any pinned groups
3801 	 * in order to give them the best chance of going on.
3802 	 */
3803 	if (is_active & EVENT_PINNED)
3804 		ctx_pinned_sched_in(ctx, cpuctx);
3805 
3806 	/* Then walk through the lower prio flexible groups */
3807 	if (is_active & EVENT_FLEXIBLE)
3808 		ctx_flexible_sched_in(ctx, cpuctx);
3809 }
3810 
3811 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3812 			     enum event_type_t event_type,
3813 			     struct task_struct *task)
3814 {
3815 	struct perf_event_context *ctx = &cpuctx->ctx;
3816 
3817 	ctx_sched_in(ctx, cpuctx, event_type, task);
3818 }
3819 
3820 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3821 					struct task_struct *task)
3822 {
3823 	struct perf_cpu_context *cpuctx;
3824 	struct pmu *pmu = ctx->pmu;
3825 
3826 	cpuctx = __get_cpu_context(ctx);
3827 	if (cpuctx->task_ctx == ctx) {
3828 		if (cpuctx->sched_cb_usage)
3829 			__perf_pmu_sched_task(cpuctx, true);
3830 		return;
3831 	}
3832 
3833 	perf_ctx_lock(cpuctx, ctx);
3834 	/*
3835 	 * We must check ctx->nr_events while holding ctx->lock, such
3836 	 * that we serialize against perf_install_in_context().
3837 	 */
3838 	if (!ctx->nr_events)
3839 		goto unlock;
3840 
3841 	perf_pmu_disable(pmu);
3842 	/*
3843 	 * We want to keep the following priority order:
3844 	 * cpu pinned (that don't need to move), task pinned,
3845 	 * cpu flexible, task flexible.
3846 	 *
3847 	 * However, if task's ctx is not carrying any pinned
3848 	 * events, no need to flip the cpuctx's events around.
3849 	 */
3850 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3851 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3852 	perf_event_sched_in(cpuctx, ctx, task);
3853 
3854 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3855 		pmu->sched_task(cpuctx->task_ctx, true);
3856 
3857 	perf_pmu_enable(pmu);
3858 
3859 unlock:
3860 	perf_ctx_unlock(cpuctx, ctx);
3861 }
3862 
3863 /*
3864  * Called from scheduler to add the events of the current task
3865  * with interrupts disabled.
3866  *
3867  * We restore the event value and then enable it.
3868  *
3869  * This does not protect us against NMI, but enable()
3870  * sets the enabled bit in the control field of event _before_
3871  * accessing the event control register. If a NMI hits, then it will
3872  * keep the event running.
3873  */
3874 void __perf_event_task_sched_in(struct task_struct *prev,
3875 				struct task_struct *task)
3876 {
3877 	struct perf_event_context *ctx;
3878 	int ctxn;
3879 
3880 	/*
3881 	 * If cgroup events exist on this CPU, then we need to check if we have
3882 	 * to switch in PMU state; cgroup event are system-wide mode only.
3883 	 *
3884 	 * Since cgroup events are CPU events, we must schedule these in before
3885 	 * we schedule in the task events.
3886 	 */
3887 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3888 		perf_cgroup_sched_in(prev, task);
3889 
3890 	for_each_task_context_nr(ctxn) {
3891 		ctx = task->perf_event_ctxp[ctxn];
3892 		if (likely(!ctx))
3893 			continue;
3894 
3895 		perf_event_context_sched_in(ctx, task);
3896 	}
3897 
3898 	if (atomic_read(&nr_switch_events))
3899 		perf_event_switch(task, prev, true);
3900 
3901 	if (__this_cpu_read(perf_sched_cb_usages))
3902 		perf_pmu_sched_task(prev, task, true);
3903 }
3904 
3905 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3906 {
3907 	u64 frequency = event->attr.sample_freq;
3908 	u64 sec = NSEC_PER_SEC;
3909 	u64 divisor, dividend;
3910 
3911 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3912 
3913 	count_fls = fls64(count);
3914 	nsec_fls = fls64(nsec);
3915 	frequency_fls = fls64(frequency);
3916 	sec_fls = 30;
3917 
3918 	/*
3919 	 * We got @count in @nsec, with a target of sample_freq HZ
3920 	 * the target period becomes:
3921 	 *
3922 	 *             @count * 10^9
3923 	 * period = -------------------
3924 	 *          @nsec * sample_freq
3925 	 *
3926 	 */
3927 
3928 	/*
3929 	 * Reduce accuracy by one bit such that @a and @b converge
3930 	 * to a similar magnitude.
3931 	 */
3932 #define REDUCE_FLS(a, b)		\
3933 do {					\
3934 	if (a##_fls > b##_fls) {	\
3935 		a >>= 1;		\
3936 		a##_fls--;		\
3937 	} else {			\
3938 		b >>= 1;		\
3939 		b##_fls--;		\
3940 	}				\
3941 } while (0)
3942 
3943 	/*
3944 	 * Reduce accuracy until either term fits in a u64, then proceed with
3945 	 * the other, so that finally we can do a u64/u64 division.
3946 	 */
3947 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3948 		REDUCE_FLS(nsec, frequency);
3949 		REDUCE_FLS(sec, count);
3950 	}
3951 
3952 	if (count_fls + sec_fls > 64) {
3953 		divisor = nsec * frequency;
3954 
3955 		while (count_fls + sec_fls > 64) {
3956 			REDUCE_FLS(count, sec);
3957 			divisor >>= 1;
3958 		}
3959 
3960 		dividend = count * sec;
3961 	} else {
3962 		dividend = count * sec;
3963 
3964 		while (nsec_fls + frequency_fls > 64) {
3965 			REDUCE_FLS(nsec, frequency);
3966 			dividend >>= 1;
3967 		}
3968 
3969 		divisor = nsec * frequency;
3970 	}
3971 
3972 	if (!divisor)
3973 		return dividend;
3974 
3975 	return div64_u64(dividend, divisor);
3976 }
3977 
3978 static DEFINE_PER_CPU(int, perf_throttled_count);
3979 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3980 
3981 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3982 {
3983 	struct hw_perf_event *hwc = &event->hw;
3984 	s64 period, sample_period;
3985 	s64 delta;
3986 
3987 	period = perf_calculate_period(event, nsec, count);
3988 
3989 	delta = (s64)(period - hwc->sample_period);
3990 	delta = (delta + 7) / 8; /* low pass filter */
3991 
3992 	sample_period = hwc->sample_period + delta;
3993 
3994 	if (!sample_period)
3995 		sample_period = 1;
3996 
3997 	hwc->sample_period = sample_period;
3998 
3999 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4000 		if (disable)
4001 			event->pmu->stop(event, PERF_EF_UPDATE);
4002 
4003 		local64_set(&hwc->period_left, 0);
4004 
4005 		if (disable)
4006 			event->pmu->start(event, PERF_EF_RELOAD);
4007 	}
4008 }
4009 
4010 /*
4011  * combine freq adjustment with unthrottling to avoid two passes over the
4012  * events. At the same time, make sure, having freq events does not change
4013  * the rate of unthrottling as that would introduce bias.
4014  */
4015 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4016 					   int needs_unthr)
4017 {
4018 	struct perf_event *event;
4019 	struct hw_perf_event *hwc;
4020 	u64 now, period = TICK_NSEC;
4021 	s64 delta;
4022 
4023 	/*
4024 	 * only need to iterate over all events iff:
4025 	 * - context have events in frequency mode (needs freq adjust)
4026 	 * - there are events to unthrottle on this cpu
4027 	 */
4028 	if (!(ctx->nr_freq || needs_unthr))
4029 		return;
4030 
4031 	raw_spin_lock(&ctx->lock);
4032 	perf_pmu_disable(ctx->pmu);
4033 
4034 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4035 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4036 			continue;
4037 
4038 		if (!event_filter_match(event))
4039 			continue;
4040 
4041 		perf_pmu_disable(event->pmu);
4042 
4043 		hwc = &event->hw;
4044 
4045 		if (hwc->interrupts == MAX_INTERRUPTS) {
4046 			hwc->interrupts = 0;
4047 			perf_log_throttle(event, 1);
4048 			event->pmu->start(event, 0);
4049 		}
4050 
4051 		if (!event->attr.freq || !event->attr.sample_freq)
4052 			goto next;
4053 
4054 		/*
4055 		 * stop the event and update event->count
4056 		 */
4057 		event->pmu->stop(event, PERF_EF_UPDATE);
4058 
4059 		now = local64_read(&event->count);
4060 		delta = now - hwc->freq_count_stamp;
4061 		hwc->freq_count_stamp = now;
4062 
4063 		/*
4064 		 * restart the event
4065 		 * reload only if value has changed
4066 		 * we have stopped the event so tell that
4067 		 * to perf_adjust_period() to avoid stopping it
4068 		 * twice.
4069 		 */
4070 		if (delta > 0)
4071 			perf_adjust_period(event, period, delta, false);
4072 
4073 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4074 	next:
4075 		perf_pmu_enable(event->pmu);
4076 	}
4077 
4078 	perf_pmu_enable(ctx->pmu);
4079 	raw_spin_unlock(&ctx->lock);
4080 }
4081 
4082 /*
4083  * Move @event to the tail of the @ctx's elegible events.
4084  */
4085 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4086 {
4087 	/*
4088 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4089 	 * disabled by the inheritance code.
4090 	 */
4091 	if (ctx->rotate_disable)
4092 		return;
4093 
4094 	perf_event_groups_delete(&ctx->flexible_groups, event);
4095 	perf_event_groups_insert(&ctx->flexible_groups, event);
4096 }
4097 
4098 /* pick an event from the flexible_groups to rotate */
4099 static inline struct perf_event *
4100 ctx_event_to_rotate(struct perf_event_context *ctx)
4101 {
4102 	struct perf_event *event;
4103 
4104 	/* pick the first active flexible event */
4105 	event = list_first_entry_or_null(&ctx->flexible_active,
4106 					 struct perf_event, active_list);
4107 
4108 	/* if no active flexible event, pick the first event */
4109 	if (!event) {
4110 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4111 				      typeof(*event), group_node);
4112 	}
4113 
4114 	/*
4115 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4116 	 * finds there are unschedulable events, it will set it again.
4117 	 */
4118 	ctx->rotate_necessary = 0;
4119 
4120 	return event;
4121 }
4122 
4123 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4124 {
4125 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4126 	struct perf_event_context *task_ctx = NULL;
4127 	int cpu_rotate, task_rotate;
4128 
4129 	/*
4130 	 * Since we run this from IRQ context, nobody can install new
4131 	 * events, thus the event count values are stable.
4132 	 */
4133 
4134 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4135 	task_ctx = cpuctx->task_ctx;
4136 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4137 
4138 	if (!(cpu_rotate || task_rotate))
4139 		return false;
4140 
4141 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4142 	perf_pmu_disable(cpuctx->ctx.pmu);
4143 
4144 	if (task_rotate)
4145 		task_event = ctx_event_to_rotate(task_ctx);
4146 	if (cpu_rotate)
4147 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4148 
4149 	/*
4150 	 * As per the order given at ctx_resched() first 'pop' task flexible
4151 	 * and then, if needed CPU flexible.
4152 	 */
4153 	if (task_event || (task_ctx && cpu_event))
4154 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4155 	if (cpu_event)
4156 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4157 
4158 	if (task_event)
4159 		rotate_ctx(task_ctx, task_event);
4160 	if (cpu_event)
4161 		rotate_ctx(&cpuctx->ctx, cpu_event);
4162 
4163 	perf_event_sched_in(cpuctx, task_ctx, current);
4164 
4165 	perf_pmu_enable(cpuctx->ctx.pmu);
4166 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4167 
4168 	return true;
4169 }
4170 
4171 void perf_event_task_tick(void)
4172 {
4173 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4174 	struct perf_event_context *ctx, *tmp;
4175 	int throttled;
4176 
4177 	lockdep_assert_irqs_disabled();
4178 
4179 	__this_cpu_inc(perf_throttled_seq);
4180 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4181 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4182 
4183 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4184 		perf_adjust_freq_unthr_context(ctx, throttled);
4185 }
4186 
4187 static int event_enable_on_exec(struct perf_event *event,
4188 				struct perf_event_context *ctx)
4189 {
4190 	if (!event->attr.enable_on_exec)
4191 		return 0;
4192 
4193 	event->attr.enable_on_exec = 0;
4194 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4195 		return 0;
4196 
4197 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4198 
4199 	return 1;
4200 }
4201 
4202 /*
4203  * Enable all of a task's events that have been marked enable-on-exec.
4204  * This expects task == current.
4205  */
4206 static void perf_event_enable_on_exec(int ctxn)
4207 {
4208 	struct perf_event_context *ctx, *clone_ctx = NULL;
4209 	enum event_type_t event_type = 0;
4210 	struct perf_cpu_context *cpuctx;
4211 	struct perf_event *event;
4212 	unsigned long flags;
4213 	int enabled = 0;
4214 
4215 	local_irq_save(flags);
4216 	ctx = current->perf_event_ctxp[ctxn];
4217 	if (!ctx || !ctx->nr_events)
4218 		goto out;
4219 
4220 	cpuctx = __get_cpu_context(ctx);
4221 	perf_ctx_lock(cpuctx, ctx);
4222 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4223 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4224 		enabled |= event_enable_on_exec(event, ctx);
4225 		event_type |= get_event_type(event);
4226 	}
4227 
4228 	/*
4229 	 * Unclone and reschedule this context if we enabled any event.
4230 	 */
4231 	if (enabled) {
4232 		clone_ctx = unclone_ctx(ctx);
4233 		ctx_resched(cpuctx, ctx, event_type);
4234 	} else {
4235 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4236 	}
4237 	perf_ctx_unlock(cpuctx, ctx);
4238 
4239 out:
4240 	local_irq_restore(flags);
4241 
4242 	if (clone_ctx)
4243 		put_ctx(clone_ctx);
4244 }
4245 
4246 static void perf_remove_from_owner(struct perf_event *event);
4247 static void perf_event_exit_event(struct perf_event *event,
4248 				  struct perf_event_context *ctx);
4249 
4250 /*
4251  * Removes all events from the current task that have been marked
4252  * remove-on-exec, and feeds their values back to parent events.
4253  */
4254 static void perf_event_remove_on_exec(int ctxn)
4255 {
4256 	struct perf_event_context *ctx, *clone_ctx = NULL;
4257 	struct perf_event *event, *next;
4258 	LIST_HEAD(free_list);
4259 	unsigned long flags;
4260 	bool modified = false;
4261 
4262 	ctx = perf_pin_task_context(current, ctxn);
4263 	if (!ctx)
4264 		return;
4265 
4266 	mutex_lock(&ctx->mutex);
4267 
4268 	if (WARN_ON_ONCE(ctx->task != current))
4269 		goto unlock;
4270 
4271 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4272 		if (!event->attr.remove_on_exec)
4273 			continue;
4274 
4275 		if (!is_kernel_event(event))
4276 			perf_remove_from_owner(event);
4277 
4278 		modified = true;
4279 
4280 		perf_event_exit_event(event, ctx);
4281 	}
4282 
4283 	raw_spin_lock_irqsave(&ctx->lock, flags);
4284 	if (modified)
4285 		clone_ctx = unclone_ctx(ctx);
4286 	--ctx->pin_count;
4287 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4288 
4289 unlock:
4290 	mutex_unlock(&ctx->mutex);
4291 
4292 	put_ctx(ctx);
4293 	if (clone_ctx)
4294 		put_ctx(clone_ctx);
4295 }
4296 
4297 struct perf_read_data {
4298 	struct perf_event *event;
4299 	bool group;
4300 	int ret;
4301 };
4302 
4303 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4304 {
4305 	u16 local_pkg, event_pkg;
4306 
4307 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4308 		int local_cpu = smp_processor_id();
4309 
4310 		event_pkg = topology_physical_package_id(event_cpu);
4311 		local_pkg = topology_physical_package_id(local_cpu);
4312 
4313 		if (event_pkg == local_pkg)
4314 			return local_cpu;
4315 	}
4316 
4317 	return event_cpu;
4318 }
4319 
4320 /*
4321  * Cross CPU call to read the hardware event
4322  */
4323 static void __perf_event_read(void *info)
4324 {
4325 	struct perf_read_data *data = info;
4326 	struct perf_event *sub, *event = data->event;
4327 	struct perf_event_context *ctx = event->ctx;
4328 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4329 	struct pmu *pmu = event->pmu;
4330 
4331 	/*
4332 	 * If this is a task context, we need to check whether it is
4333 	 * the current task context of this cpu.  If not it has been
4334 	 * scheduled out before the smp call arrived.  In that case
4335 	 * event->count would have been updated to a recent sample
4336 	 * when the event was scheduled out.
4337 	 */
4338 	if (ctx->task && cpuctx->task_ctx != ctx)
4339 		return;
4340 
4341 	raw_spin_lock(&ctx->lock);
4342 	if (ctx->is_active & EVENT_TIME) {
4343 		update_context_time(ctx);
4344 		update_cgrp_time_from_event(event);
4345 	}
4346 
4347 	perf_event_update_time(event);
4348 	if (data->group)
4349 		perf_event_update_sibling_time(event);
4350 
4351 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4352 		goto unlock;
4353 
4354 	if (!data->group) {
4355 		pmu->read(event);
4356 		data->ret = 0;
4357 		goto unlock;
4358 	}
4359 
4360 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4361 
4362 	pmu->read(event);
4363 
4364 	for_each_sibling_event(sub, event) {
4365 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4366 			/*
4367 			 * Use sibling's PMU rather than @event's since
4368 			 * sibling could be on different (eg: software) PMU.
4369 			 */
4370 			sub->pmu->read(sub);
4371 		}
4372 	}
4373 
4374 	data->ret = pmu->commit_txn(pmu);
4375 
4376 unlock:
4377 	raw_spin_unlock(&ctx->lock);
4378 }
4379 
4380 static inline u64 perf_event_count(struct perf_event *event)
4381 {
4382 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4383 }
4384 
4385 /*
4386  * NMI-safe method to read a local event, that is an event that
4387  * is:
4388  *   - either for the current task, or for this CPU
4389  *   - does not have inherit set, for inherited task events
4390  *     will not be local and we cannot read them atomically
4391  *   - must not have a pmu::count method
4392  */
4393 int perf_event_read_local(struct perf_event *event, u64 *value,
4394 			  u64 *enabled, u64 *running)
4395 {
4396 	unsigned long flags;
4397 	int ret = 0;
4398 
4399 	/*
4400 	 * Disabling interrupts avoids all counter scheduling (context
4401 	 * switches, timer based rotation and IPIs).
4402 	 */
4403 	local_irq_save(flags);
4404 
4405 	/*
4406 	 * It must not be an event with inherit set, we cannot read
4407 	 * all child counters from atomic context.
4408 	 */
4409 	if (event->attr.inherit) {
4410 		ret = -EOPNOTSUPP;
4411 		goto out;
4412 	}
4413 
4414 	/* If this is a per-task event, it must be for current */
4415 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4416 	    event->hw.target != current) {
4417 		ret = -EINVAL;
4418 		goto out;
4419 	}
4420 
4421 	/* If this is a per-CPU event, it must be for this CPU */
4422 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4423 	    event->cpu != smp_processor_id()) {
4424 		ret = -EINVAL;
4425 		goto out;
4426 	}
4427 
4428 	/* If this is a pinned event it must be running on this CPU */
4429 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4430 		ret = -EBUSY;
4431 		goto out;
4432 	}
4433 
4434 	/*
4435 	 * If the event is currently on this CPU, its either a per-task event,
4436 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4437 	 * oncpu == -1).
4438 	 */
4439 	if (event->oncpu == smp_processor_id())
4440 		event->pmu->read(event);
4441 
4442 	*value = local64_read(&event->count);
4443 	if (enabled || running) {
4444 		u64 now = event->shadow_ctx_time + perf_clock();
4445 		u64 __enabled, __running;
4446 
4447 		__perf_update_times(event, now, &__enabled, &__running);
4448 		if (enabled)
4449 			*enabled = __enabled;
4450 		if (running)
4451 			*running = __running;
4452 	}
4453 out:
4454 	local_irq_restore(flags);
4455 
4456 	return ret;
4457 }
4458 
4459 static int perf_event_read(struct perf_event *event, bool group)
4460 {
4461 	enum perf_event_state state = READ_ONCE(event->state);
4462 	int event_cpu, ret = 0;
4463 
4464 	/*
4465 	 * If event is enabled and currently active on a CPU, update the
4466 	 * value in the event structure:
4467 	 */
4468 again:
4469 	if (state == PERF_EVENT_STATE_ACTIVE) {
4470 		struct perf_read_data data;
4471 
4472 		/*
4473 		 * Orders the ->state and ->oncpu loads such that if we see
4474 		 * ACTIVE we must also see the right ->oncpu.
4475 		 *
4476 		 * Matches the smp_wmb() from event_sched_in().
4477 		 */
4478 		smp_rmb();
4479 
4480 		event_cpu = READ_ONCE(event->oncpu);
4481 		if ((unsigned)event_cpu >= nr_cpu_ids)
4482 			return 0;
4483 
4484 		data = (struct perf_read_data){
4485 			.event = event,
4486 			.group = group,
4487 			.ret = 0,
4488 		};
4489 
4490 		preempt_disable();
4491 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4492 
4493 		/*
4494 		 * Purposely ignore the smp_call_function_single() return
4495 		 * value.
4496 		 *
4497 		 * If event_cpu isn't a valid CPU it means the event got
4498 		 * scheduled out and that will have updated the event count.
4499 		 *
4500 		 * Therefore, either way, we'll have an up-to-date event count
4501 		 * after this.
4502 		 */
4503 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4504 		preempt_enable();
4505 		ret = data.ret;
4506 
4507 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4508 		struct perf_event_context *ctx = event->ctx;
4509 		unsigned long flags;
4510 
4511 		raw_spin_lock_irqsave(&ctx->lock, flags);
4512 		state = event->state;
4513 		if (state != PERF_EVENT_STATE_INACTIVE) {
4514 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4515 			goto again;
4516 		}
4517 
4518 		/*
4519 		 * May read while context is not active (e.g., thread is
4520 		 * blocked), in that case we cannot update context time
4521 		 */
4522 		if (ctx->is_active & EVENT_TIME) {
4523 			update_context_time(ctx);
4524 			update_cgrp_time_from_event(event);
4525 		}
4526 
4527 		perf_event_update_time(event);
4528 		if (group)
4529 			perf_event_update_sibling_time(event);
4530 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4531 	}
4532 
4533 	return ret;
4534 }
4535 
4536 /*
4537  * Initialize the perf_event context in a task_struct:
4538  */
4539 static void __perf_event_init_context(struct perf_event_context *ctx)
4540 {
4541 	raw_spin_lock_init(&ctx->lock);
4542 	mutex_init(&ctx->mutex);
4543 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4544 	perf_event_groups_init(&ctx->pinned_groups);
4545 	perf_event_groups_init(&ctx->flexible_groups);
4546 	INIT_LIST_HEAD(&ctx->event_list);
4547 	INIT_LIST_HEAD(&ctx->pinned_active);
4548 	INIT_LIST_HEAD(&ctx->flexible_active);
4549 	refcount_set(&ctx->refcount, 1);
4550 }
4551 
4552 static struct perf_event_context *
4553 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4554 {
4555 	struct perf_event_context *ctx;
4556 
4557 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4558 	if (!ctx)
4559 		return NULL;
4560 
4561 	__perf_event_init_context(ctx);
4562 	if (task)
4563 		ctx->task = get_task_struct(task);
4564 	ctx->pmu = pmu;
4565 
4566 	return ctx;
4567 }
4568 
4569 static struct task_struct *
4570 find_lively_task_by_vpid(pid_t vpid)
4571 {
4572 	struct task_struct *task;
4573 
4574 	rcu_read_lock();
4575 	if (!vpid)
4576 		task = current;
4577 	else
4578 		task = find_task_by_vpid(vpid);
4579 	if (task)
4580 		get_task_struct(task);
4581 	rcu_read_unlock();
4582 
4583 	if (!task)
4584 		return ERR_PTR(-ESRCH);
4585 
4586 	return task;
4587 }
4588 
4589 /*
4590  * Returns a matching context with refcount and pincount.
4591  */
4592 static struct perf_event_context *
4593 find_get_context(struct pmu *pmu, struct task_struct *task,
4594 		struct perf_event *event)
4595 {
4596 	struct perf_event_context *ctx, *clone_ctx = NULL;
4597 	struct perf_cpu_context *cpuctx;
4598 	void *task_ctx_data = NULL;
4599 	unsigned long flags;
4600 	int ctxn, err;
4601 	int cpu = event->cpu;
4602 
4603 	if (!task) {
4604 		/* Must be root to operate on a CPU event: */
4605 		err = perf_allow_cpu(&event->attr);
4606 		if (err)
4607 			return ERR_PTR(err);
4608 
4609 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4610 		ctx = &cpuctx->ctx;
4611 		get_ctx(ctx);
4612 		++ctx->pin_count;
4613 
4614 		return ctx;
4615 	}
4616 
4617 	err = -EINVAL;
4618 	ctxn = pmu->task_ctx_nr;
4619 	if (ctxn < 0)
4620 		goto errout;
4621 
4622 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4623 		task_ctx_data = alloc_task_ctx_data(pmu);
4624 		if (!task_ctx_data) {
4625 			err = -ENOMEM;
4626 			goto errout;
4627 		}
4628 	}
4629 
4630 retry:
4631 	ctx = perf_lock_task_context(task, ctxn, &flags);
4632 	if (ctx) {
4633 		clone_ctx = unclone_ctx(ctx);
4634 		++ctx->pin_count;
4635 
4636 		if (task_ctx_data && !ctx->task_ctx_data) {
4637 			ctx->task_ctx_data = task_ctx_data;
4638 			task_ctx_data = NULL;
4639 		}
4640 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4641 
4642 		if (clone_ctx)
4643 			put_ctx(clone_ctx);
4644 	} else {
4645 		ctx = alloc_perf_context(pmu, task);
4646 		err = -ENOMEM;
4647 		if (!ctx)
4648 			goto errout;
4649 
4650 		if (task_ctx_data) {
4651 			ctx->task_ctx_data = task_ctx_data;
4652 			task_ctx_data = NULL;
4653 		}
4654 
4655 		err = 0;
4656 		mutex_lock(&task->perf_event_mutex);
4657 		/*
4658 		 * If it has already passed perf_event_exit_task().
4659 		 * we must see PF_EXITING, it takes this mutex too.
4660 		 */
4661 		if (task->flags & PF_EXITING)
4662 			err = -ESRCH;
4663 		else if (task->perf_event_ctxp[ctxn])
4664 			err = -EAGAIN;
4665 		else {
4666 			get_ctx(ctx);
4667 			++ctx->pin_count;
4668 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4669 		}
4670 		mutex_unlock(&task->perf_event_mutex);
4671 
4672 		if (unlikely(err)) {
4673 			put_ctx(ctx);
4674 
4675 			if (err == -EAGAIN)
4676 				goto retry;
4677 			goto errout;
4678 		}
4679 	}
4680 
4681 	free_task_ctx_data(pmu, task_ctx_data);
4682 	return ctx;
4683 
4684 errout:
4685 	free_task_ctx_data(pmu, task_ctx_data);
4686 	return ERR_PTR(err);
4687 }
4688 
4689 static void perf_event_free_filter(struct perf_event *event);
4690 static void perf_event_free_bpf_prog(struct perf_event *event);
4691 
4692 static void free_event_rcu(struct rcu_head *head)
4693 {
4694 	struct perf_event *event;
4695 
4696 	event = container_of(head, struct perf_event, rcu_head);
4697 	if (event->ns)
4698 		put_pid_ns(event->ns);
4699 	perf_event_free_filter(event);
4700 	kmem_cache_free(perf_event_cache, event);
4701 }
4702 
4703 static void ring_buffer_attach(struct perf_event *event,
4704 			       struct perf_buffer *rb);
4705 
4706 static void detach_sb_event(struct perf_event *event)
4707 {
4708 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4709 
4710 	raw_spin_lock(&pel->lock);
4711 	list_del_rcu(&event->sb_list);
4712 	raw_spin_unlock(&pel->lock);
4713 }
4714 
4715 static bool is_sb_event(struct perf_event *event)
4716 {
4717 	struct perf_event_attr *attr = &event->attr;
4718 
4719 	if (event->parent)
4720 		return false;
4721 
4722 	if (event->attach_state & PERF_ATTACH_TASK)
4723 		return false;
4724 
4725 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4726 	    attr->comm || attr->comm_exec ||
4727 	    attr->task || attr->ksymbol ||
4728 	    attr->context_switch || attr->text_poke ||
4729 	    attr->bpf_event)
4730 		return true;
4731 	return false;
4732 }
4733 
4734 static void unaccount_pmu_sb_event(struct perf_event *event)
4735 {
4736 	if (is_sb_event(event))
4737 		detach_sb_event(event);
4738 }
4739 
4740 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4741 {
4742 	if (event->parent)
4743 		return;
4744 
4745 	if (is_cgroup_event(event))
4746 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4747 }
4748 
4749 #ifdef CONFIG_NO_HZ_FULL
4750 static DEFINE_SPINLOCK(nr_freq_lock);
4751 #endif
4752 
4753 static void unaccount_freq_event_nohz(void)
4754 {
4755 #ifdef CONFIG_NO_HZ_FULL
4756 	spin_lock(&nr_freq_lock);
4757 	if (atomic_dec_and_test(&nr_freq_events))
4758 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4759 	spin_unlock(&nr_freq_lock);
4760 #endif
4761 }
4762 
4763 static void unaccount_freq_event(void)
4764 {
4765 	if (tick_nohz_full_enabled())
4766 		unaccount_freq_event_nohz();
4767 	else
4768 		atomic_dec(&nr_freq_events);
4769 }
4770 
4771 static void unaccount_event(struct perf_event *event)
4772 {
4773 	bool dec = false;
4774 
4775 	if (event->parent)
4776 		return;
4777 
4778 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4779 		dec = true;
4780 	if (event->attr.mmap || event->attr.mmap_data)
4781 		atomic_dec(&nr_mmap_events);
4782 	if (event->attr.build_id)
4783 		atomic_dec(&nr_build_id_events);
4784 	if (event->attr.comm)
4785 		atomic_dec(&nr_comm_events);
4786 	if (event->attr.namespaces)
4787 		atomic_dec(&nr_namespaces_events);
4788 	if (event->attr.cgroup)
4789 		atomic_dec(&nr_cgroup_events);
4790 	if (event->attr.task)
4791 		atomic_dec(&nr_task_events);
4792 	if (event->attr.freq)
4793 		unaccount_freq_event();
4794 	if (event->attr.context_switch) {
4795 		dec = true;
4796 		atomic_dec(&nr_switch_events);
4797 	}
4798 	if (is_cgroup_event(event))
4799 		dec = true;
4800 	if (has_branch_stack(event))
4801 		dec = true;
4802 	if (event->attr.ksymbol)
4803 		atomic_dec(&nr_ksymbol_events);
4804 	if (event->attr.bpf_event)
4805 		atomic_dec(&nr_bpf_events);
4806 	if (event->attr.text_poke)
4807 		atomic_dec(&nr_text_poke_events);
4808 
4809 	if (dec) {
4810 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4811 			schedule_delayed_work(&perf_sched_work, HZ);
4812 	}
4813 
4814 	unaccount_event_cpu(event, event->cpu);
4815 
4816 	unaccount_pmu_sb_event(event);
4817 }
4818 
4819 static void perf_sched_delayed(struct work_struct *work)
4820 {
4821 	mutex_lock(&perf_sched_mutex);
4822 	if (atomic_dec_and_test(&perf_sched_count))
4823 		static_branch_disable(&perf_sched_events);
4824 	mutex_unlock(&perf_sched_mutex);
4825 }
4826 
4827 /*
4828  * The following implement mutual exclusion of events on "exclusive" pmus
4829  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4830  * at a time, so we disallow creating events that might conflict, namely:
4831  *
4832  *  1) cpu-wide events in the presence of per-task events,
4833  *  2) per-task events in the presence of cpu-wide events,
4834  *  3) two matching events on the same context.
4835  *
4836  * The former two cases are handled in the allocation path (perf_event_alloc(),
4837  * _free_event()), the latter -- before the first perf_install_in_context().
4838  */
4839 static int exclusive_event_init(struct perf_event *event)
4840 {
4841 	struct pmu *pmu = event->pmu;
4842 
4843 	if (!is_exclusive_pmu(pmu))
4844 		return 0;
4845 
4846 	/*
4847 	 * Prevent co-existence of per-task and cpu-wide events on the
4848 	 * same exclusive pmu.
4849 	 *
4850 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4851 	 * events on this "exclusive" pmu, positive means there are
4852 	 * per-task events.
4853 	 *
4854 	 * Since this is called in perf_event_alloc() path, event::ctx
4855 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4856 	 * to mean "per-task event", because unlike other attach states it
4857 	 * never gets cleared.
4858 	 */
4859 	if (event->attach_state & PERF_ATTACH_TASK) {
4860 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4861 			return -EBUSY;
4862 	} else {
4863 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4864 			return -EBUSY;
4865 	}
4866 
4867 	return 0;
4868 }
4869 
4870 static void exclusive_event_destroy(struct perf_event *event)
4871 {
4872 	struct pmu *pmu = event->pmu;
4873 
4874 	if (!is_exclusive_pmu(pmu))
4875 		return;
4876 
4877 	/* see comment in exclusive_event_init() */
4878 	if (event->attach_state & PERF_ATTACH_TASK)
4879 		atomic_dec(&pmu->exclusive_cnt);
4880 	else
4881 		atomic_inc(&pmu->exclusive_cnt);
4882 }
4883 
4884 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4885 {
4886 	if ((e1->pmu == e2->pmu) &&
4887 	    (e1->cpu == e2->cpu ||
4888 	     e1->cpu == -1 ||
4889 	     e2->cpu == -1))
4890 		return true;
4891 	return false;
4892 }
4893 
4894 static bool exclusive_event_installable(struct perf_event *event,
4895 					struct perf_event_context *ctx)
4896 {
4897 	struct perf_event *iter_event;
4898 	struct pmu *pmu = event->pmu;
4899 
4900 	lockdep_assert_held(&ctx->mutex);
4901 
4902 	if (!is_exclusive_pmu(pmu))
4903 		return true;
4904 
4905 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4906 		if (exclusive_event_match(iter_event, event))
4907 			return false;
4908 	}
4909 
4910 	return true;
4911 }
4912 
4913 static void perf_addr_filters_splice(struct perf_event *event,
4914 				       struct list_head *head);
4915 
4916 static void _free_event(struct perf_event *event)
4917 {
4918 	irq_work_sync(&event->pending);
4919 
4920 	unaccount_event(event);
4921 
4922 	security_perf_event_free(event);
4923 
4924 	if (event->rb) {
4925 		/*
4926 		 * Can happen when we close an event with re-directed output.
4927 		 *
4928 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4929 		 * over us; possibly making our ring_buffer_put() the last.
4930 		 */
4931 		mutex_lock(&event->mmap_mutex);
4932 		ring_buffer_attach(event, NULL);
4933 		mutex_unlock(&event->mmap_mutex);
4934 	}
4935 
4936 	if (is_cgroup_event(event))
4937 		perf_detach_cgroup(event);
4938 
4939 	if (!event->parent) {
4940 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4941 			put_callchain_buffers();
4942 	}
4943 
4944 	perf_event_free_bpf_prog(event);
4945 	perf_addr_filters_splice(event, NULL);
4946 	kfree(event->addr_filter_ranges);
4947 
4948 	if (event->destroy)
4949 		event->destroy(event);
4950 
4951 	/*
4952 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4953 	 * hw.target.
4954 	 */
4955 	if (event->hw.target)
4956 		put_task_struct(event->hw.target);
4957 
4958 	/*
4959 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4960 	 * all task references must be cleaned up.
4961 	 */
4962 	if (event->ctx)
4963 		put_ctx(event->ctx);
4964 
4965 	exclusive_event_destroy(event);
4966 	module_put(event->pmu->module);
4967 
4968 	call_rcu(&event->rcu_head, free_event_rcu);
4969 }
4970 
4971 /*
4972  * Used to free events which have a known refcount of 1, such as in error paths
4973  * where the event isn't exposed yet and inherited events.
4974  */
4975 static void free_event(struct perf_event *event)
4976 {
4977 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4978 				"unexpected event refcount: %ld; ptr=%p\n",
4979 				atomic_long_read(&event->refcount), event)) {
4980 		/* leak to avoid use-after-free */
4981 		return;
4982 	}
4983 
4984 	_free_event(event);
4985 }
4986 
4987 /*
4988  * Remove user event from the owner task.
4989  */
4990 static void perf_remove_from_owner(struct perf_event *event)
4991 {
4992 	struct task_struct *owner;
4993 
4994 	rcu_read_lock();
4995 	/*
4996 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4997 	 * observe !owner it means the list deletion is complete and we can
4998 	 * indeed free this event, otherwise we need to serialize on
4999 	 * owner->perf_event_mutex.
5000 	 */
5001 	owner = READ_ONCE(event->owner);
5002 	if (owner) {
5003 		/*
5004 		 * Since delayed_put_task_struct() also drops the last
5005 		 * task reference we can safely take a new reference
5006 		 * while holding the rcu_read_lock().
5007 		 */
5008 		get_task_struct(owner);
5009 	}
5010 	rcu_read_unlock();
5011 
5012 	if (owner) {
5013 		/*
5014 		 * If we're here through perf_event_exit_task() we're already
5015 		 * holding ctx->mutex which would be an inversion wrt. the
5016 		 * normal lock order.
5017 		 *
5018 		 * However we can safely take this lock because its the child
5019 		 * ctx->mutex.
5020 		 */
5021 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5022 
5023 		/*
5024 		 * We have to re-check the event->owner field, if it is cleared
5025 		 * we raced with perf_event_exit_task(), acquiring the mutex
5026 		 * ensured they're done, and we can proceed with freeing the
5027 		 * event.
5028 		 */
5029 		if (event->owner) {
5030 			list_del_init(&event->owner_entry);
5031 			smp_store_release(&event->owner, NULL);
5032 		}
5033 		mutex_unlock(&owner->perf_event_mutex);
5034 		put_task_struct(owner);
5035 	}
5036 }
5037 
5038 static void put_event(struct perf_event *event)
5039 {
5040 	if (!atomic_long_dec_and_test(&event->refcount))
5041 		return;
5042 
5043 	_free_event(event);
5044 }
5045 
5046 /*
5047  * Kill an event dead; while event:refcount will preserve the event
5048  * object, it will not preserve its functionality. Once the last 'user'
5049  * gives up the object, we'll destroy the thing.
5050  */
5051 int perf_event_release_kernel(struct perf_event *event)
5052 {
5053 	struct perf_event_context *ctx = event->ctx;
5054 	struct perf_event *child, *tmp;
5055 	LIST_HEAD(free_list);
5056 
5057 	/*
5058 	 * If we got here through err_file: fput(event_file); we will not have
5059 	 * attached to a context yet.
5060 	 */
5061 	if (!ctx) {
5062 		WARN_ON_ONCE(event->attach_state &
5063 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5064 		goto no_ctx;
5065 	}
5066 
5067 	if (!is_kernel_event(event))
5068 		perf_remove_from_owner(event);
5069 
5070 	ctx = perf_event_ctx_lock(event);
5071 	WARN_ON_ONCE(ctx->parent_ctx);
5072 	perf_remove_from_context(event, DETACH_GROUP);
5073 
5074 	raw_spin_lock_irq(&ctx->lock);
5075 	/*
5076 	 * Mark this event as STATE_DEAD, there is no external reference to it
5077 	 * anymore.
5078 	 *
5079 	 * Anybody acquiring event->child_mutex after the below loop _must_
5080 	 * also see this, most importantly inherit_event() which will avoid
5081 	 * placing more children on the list.
5082 	 *
5083 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5084 	 * child events.
5085 	 */
5086 	event->state = PERF_EVENT_STATE_DEAD;
5087 	raw_spin_unlock_irq(&ctx->lock);
5088 
5089 	perf_event_ctx_unlock(event, ctx);
5090 
5091 again:
5092 	mutex_lock(&event->child_mutex);
5093 	list_for_each_entry(child, &event->child_list, child_list) {
5094 
5095 		/*
5096 		 * Cannot change, child events are not migrated, see the
5097 		 * comment with perf_event_ctx_lock_nested().
5098 		 */
5099 		ctx = READ_ONCE(child->ctx);
5100 		/*
5101 		 * Since child_mutex nests inside ctx::mutex, we must jump
5102 		 * through hoops. We start by grabbing a reference on the ctx.
5103 		 *
5104 		 * Since the event cannot get freed while we hold the
5105 		 * child_mutex, the context must also exist and have a !0
5106 		 * reference count.
5107 		 */
5108 		get_ctx(ctx);
5109 
5110 		/*
5111 		 * Now that we have a ctx ref, we can drop child_mutex, and
5112 		 * acquire ctx::mutex without fear of it going away. Then we
5113 		 * can re-acquire child_mutex.
5114 		 */
5115 		mutex_unlock(&event->child_mutex);
5116 		mutex_lock(&ctx->mutex);
5117 		mutex_lock(&event->child_mutex);
5118 
5119 		/*
5120 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5121 		 * state, if child is still the first entry, it didn't get freed
5122 		 * and we can continue doing so.
5123 		 */
5124 		tmp = list_first_entry_or_null(&event->child_list,
5125 					       struct perf_event, child_list);
5126 		if (tmp == child) {
5127 			perf_remove_from_context(child, DETACH_GROUP);
5128 			list_move(&child->child_list, &free_list);
5129 			/*
5130 			 * This matches the refcount bump in inherit_event();
5131 			 * this can't be the last reference.
5132 			 */
5133 			put_event(event);
5134 		}
5135 
5136 		mutex_unlock(&event->child_mutex);
5137 		mutex_unlock(&ctx->mutex);
5138 		put_ctx(ctx);
5139 		goto again;
5140 	}
5141 	mutex_unlock(&event->child_mutex);
5142 
5143 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5144 		void *var = &child->ctx->refcount;
5145 
5146 		list_del(&child->child_list);
5147 		free_event(child);
5148 
5149 		/*
5150 		 * Wake any perf_event_free_task() waiting for this event to be
5151 		 * freed.
5152 		 */
5153 		smp_mb(); /* pairs with wait_var_event() */
5154 		wake_up_var(var);
5155 	}
5156 
5157 no_ctx:
5158 	put_event(event); /* Must be the 'last' reference */
5159 	return 0;
5160 }
5161 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5162 
5163 /*
5164  * Called when the last reference to the file is gone.
5165  */
5166 static int perf_release(struct inode *inode, struct file *file)
5167 {
5168 	perf_event_release_kernel(file->private_data);
5169 	return 0;
5170 }
5171 
5172 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5173 {
5174 	struct perf_event *child;
5175 	u64 total = 0;
5176 
5177 	*enabled = 0;
5178 	*running = 0;
5179 
5180 	mutex_lock(&event->child_mutex);
5181 
5182 	(void)perf_event_read(event, false);
5183 	total += perf_event_count(event);
5184 
5185 	*enabled += event->total_time_enabled +
5186 			atomic64_read(&event->child_total_time_enabled);
5187 	*running += event->total_time_running +
5188 			atomic64_read(&event->child_total_time_running);
5189 
5190 	list_for_each_entry(child, &event->child_list, child_list) {
5191 		(void)perf_event_read(child, false);
5192 		total += perf_event_count(child);
5193 		*enabled += child->total_time_enabled;
5194 		*running += child->total_time_running;
5195 	}
5196 	mutex_unlock(&event->child_mutex);
5197 
5198 	return total;
5199 }
5200 
5201 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5202 {
5203 	struct perf_event_context *ctx;
5204 	u64 count;
5205 
5206 	ctx = perf_event_ctx_lock(event);
5207 	count = __perf_event_read_value(event, enabled, running);
5208 	perf_event_ctx_unlock(event, ctx);
5209 
5210 	return count;
5211 }
5212 EXPORT_SYMBOL_GPL(perf_event_read_value);
5213 
5214 static int __perf_read_group_add(struct perf_event *leader,
5215 					u64 read_format, u64 *values)
5216 {
5217 	struct perf_event_context *ctx = leader->ctx;
5218 	struct perf_event *sub;
5219 	unsigned long flags;
5220 	int n = 1; /* skip @nr */
5221 	int ret;
5222 
5223 	ret = perf_event_read(leader, true);
5224 	if (ret)
5225 		return ret;
5226 
5227 	raw_spin_lock_irqsave(&ctx->lock, flags);
5228 
5229 	/*
5230 	 * Since we co-schedule groups, {enabled,running} times of siblings
5231 	 * will be identical to those of the leader, so we only publish one
5232 	 * set.
5233 	 */
5234 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5235 		values[n++] += leader->total_time_enabled +
5236 			atomic64_read(&leader->child_total_time_enabled);
5237 	}
5238 
5239 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5240 		values[n++] += leader->total_time_running +
5241 			atomic64_read(&leader->child_total_time_running);
5242 	}
5243 
5244 	/*
5245 	 * Write {count,id} tuples for every sibling.
5246 	 */
5247 	values[n++] += perf_event_count(leader);
5248 	if (read_format & PERF_FORMAT_ID)
5249 		values[n++] = primary_event_id(leader);
5250 
5251 	for_each_sibling_event(sub, leader) {
5252 		values[n++] += perf_event_count(sub);
5253 		if (read_format & PERF_FORMAT_ID)
5254 			values[n++] = primary_event_id(sub);
5255 	}
5256 
5257 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5258 	return 0;
5259 }
5260 
5261 static int perf_read_group(struct perf_event *event,
5262 				   u64 read_format, char __user *buf)
5263 {
5264 	struct perf_event *leader = event->group_leader, *child;
5265 	struct perf_event_context *ctx = leader->ctx;
5266 	int ret;
5267 	u64 *values;
5268 
5269 	lockdep_assert_held(&ctx->mutex);
5270 
5271 	values = kzalloc(event->read_size, GFP_KERNEL);
5272 	if (!values)
5273 		return -ENOMEM;
5274 
5275 	values[0] = 1 + leader->nr_siblings;
5276 
5277 	/*
5278 	 * By locking the child_mutex of the leader we effectively
5279 	 * lock the child list of all siblings.. XXX explain how.
5280 	 */
5281 	mutex_lock(&leader->child_mutex);
5282 
5283 	ret = __perf_read_group_add(leader, read_format, values);
5284 	if (ret)
5285 		goto unlock;
5286 
5287 	list_for_each_entry(child, &leader->child_list, child_list) {
5288 		ret = __perf_read_group_add(child, read_format, values);
5289 		if (ret)
5290 			goto unlock;
5291 	}
5292 
5293 	mutex_unlock(&leader->child_mutex);
5294 
5295 	ret = event->read_size;
5296 	if (copy_to_user(buf, values, event->read_size))
5297 		ret = -EFAULT;
5298 	goto out;
5299 
5300 unlock:
5301 	mutex_unlock(&leader->child_mutex);
5302 out:
5303 	kfree(values);
5304 	return ret;
5305 }
5306 
5307 static int perf_read_one(struct perf_event *event,
5308 				 u64 read_format, char __user *buf)
5309 {
5310 	u64 enabled, running;
5311 	u64 values[4];
5312 	int n = 0;
5313 
5314 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5315 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5316 		values[n++] = enabled;
5317 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5318 		values[n++] = running;
5319 	if (read_format & PERF_FORMAT_ID)
5320 		values[n++] = primary_event_id(event);
5321 
5322 	if (copy_to_user(buf, values, n * sizeof(u64)))
5323 		return -EFAULT;
5324 
5325 	return n * sizeof(u64);
5326 }
5327 
5328 static bool is_event_hup(struct perf_event *event)
5329 {
5330 	bool no_children;
5331 
5332 	if (event->state > PERF_EVENT_STATE_EXIT)
5333 		return false;
5334 
5335 	mutex_lock(&event->child_mutex);
5336 	no_children = list_empty(&event->child_list);
5337 	mutex_unlock(&event->child_mutex);
5338 	return no_children;
5339 }
5340 
5341 /*
5342  * Read the performance event - simple non blocking version for now
5343  */
5344 static ssize_t
5345 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5346 {
5347 	u64 read_format = event->attr.read_format;
5348 	int ret;
5349 
5350 	/*
5351 	 * Return end-of-file for a read on an event that is in
5352 	 * error state (i.e. because it was pinned but it couldn't be
5353 	 * scheduled on to the CPU at some point).
5354 	 */
5355 	if (event->state == PERF_EVENT_STATE_ERROR)
5356 		return 0;
5357 
5358 	if (count < event->read_size)
5359 		return -ENOSPC;
5360 
5361 	WARN_ON_ONCE(event->ctx->parent_ctx);
5362 	if (read_format & PERF_FORMAT_GROUP)
5363 		ret = perf_read_group(event, read_format, buf);
5364 	else
5365 		ret = perf_read_one(event, read_format, buf);
5366 
5367 	return ret;
5368 }
5369 
5370 static ssize_t
5371 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5372 {
5373 	struct perf_event *event = file->private_data;
5374 	struct perf_event_context *ctx;
5375 	int ret;
5376 
5377 	ret = security_perf_event_read(event);
5378 	if (ret)
5379 		return ret;
5380 
5381 	ctx = perf_event_ctx_lock(event);
5382 	ret = __perf_read(event, buf, count);
5383 	perf_event_ctx_unlock(event, ctx);
5384 
5385 	return ret;
5386 }
5387 
5388 static __poll_t perf_poll(struct file *file, poll_table *wait)
5389 {
5390 	struct perf_event *event = file->private_data;
5391 	struct perf_buffer *rb;
5392 	__poll_t events = EPOLLHUP;
5393 
5394 	poll_wait(file, &event->waitq, wait);
5395 
5396 	if (is_event_hup(event))
5397 		return events;
5398 
5399 	/*
5400 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5401 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5402 	 */
5403 	mutex_lock(&event->mmap_mutex);
5404 	rb = event->rb;
5405 	if (rb)
5406 		events = atomic_xchg(&rb->poll, 0);
5407 	mutex_unlock(&event->mmap_mutex);
5408 	return events;
5409 }
5410 
5411 static void _perf_event_reset(struct perf_event *event)
5412 {
5413 	(void)perf_event_read(event, false);
5414 	local64_set(&event->count, 0);
5415 	perf_event_update_userpage(event);
5416 }
5417 
5418 /* Assume it's not an event with inherit set. */
5419 u64 perf_event_pause(struct perf_event *event, bool reset)
5420 {
5421 	struct perf_event_context *ctx;
5422 	u64 count;
5423 
5424 	ctx = perf_event_ctx_lock(event);
5425 	WARN_ON_ONCE(event->attr.inherit);
5426 	_perf_event_disable(event);
5427 	count = local64_read(&event->count);
5428 	if (reset)
5429 		local64_set(&event->count, 0);
5430 	perf_event_ctx_unlock(event, ctx);
5431 
5432 	return count;
5433 }
5434 EXPORT_SYMBOL_GPL(perf_event_pause);
5435 
5436 /*
5437  * Holding the top-level event's child_mutex means that any
5438  * descendant process that has inherited this event will block
5439  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5440  * task existence requirements of perf_event_enable/disable.
5441  */
5442 static void perf_event_for_each_child(struct perf_event *event,
5443 					void (*func)(struct perf_event *))
5444 {
5445 	struct perf_event *child;
5446 
5447 	WARN_ON_ONCE(event->ctx->parent_ctx);
5448 
5449 	mutex_lock(&event->child_mutex);
5450 	func(event);
5451 	list_for_each_entry(child, &event->child_list, child_list)
5452 		func(child);
5453 	mutex_unlock(&event->child_mutex);
5454 }
5455 
5456 static void perf_event_for_each(struct perf_event *event,
5457 				  void (*func)(struct perf_event *))
5458 {
5459 	struct perf_event_context *ctx = event->ctx;
5460 	struct perf_event *sibling;
5461 
5462 	lockdep_assert_held(&ctx->mutex);
5463 
5464 	event = event->group_leader;
5465 
5466 	perf_event_for_each_child(event, func);
5467 	for_each_sibling_event(sibling, event)
5468 		perf_event_for_each_child(sibling, func);
5469 }
5470 
5471 static void __perf_event_period(struct perf_event *event,
5472 				struct perf_cpu_context *cpuctx,
5473 				struct perf_event_context *ctx,
5474 				void *info)
5475 {
5476 	u64 value = *((u64 *)info);
5477 	bool active;
5478 
5479 	if (event->attr.freq) {
5480 		event->attr.sample_freq = value;
5481 	} else {
5482 		event->attr.sample_period = value;
5483 		event->hw.sample_period = value;
5484 	}
5485 
5486 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5487 	if (active) {
5488 		perf_pmu_disable(ctx->pmu);
5489 		/*
5490 		 * We could be throttled; unthrottle now to avoid the tick
5491 		 * trying to unthrottle while we already re-started the event.
5492 		 */
5493 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5494 			event->hw.interrupts = 0;
5495 			perf_log_throttle(event, 1);
5496 		}
5497 		event->pmu->stop(event, PERF_EF_UPDATE);
5498 	}
5499 
5500 	local64_set(&event->hw.period_left, 0);
5501 
5502 	if (active) {
5503 		event->pmu->start(event, PERF_EF_RELOAD);
5504 		perf_pmu_enable(ctx->pmu);
5505 	}
5506 }
5507 
5508 static int perf_event_check_period(struct perf_event *event, u64 value)
5509 {
5510 	return event->pmu->check_period(event, value);
5511 }
5512 
5513 static int _perf_event_period(struct perf_event *event, u64 value)
5514 {
5515 	if (!is_sampling_event(event))
5516 		return -EINVAL;
5517 
5518 	if (!value)
5519 		return -EINVAL;
5520 
5521 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5522 		return -EINVAL;
5523 
5524 	if (perf_event_check_period(event, value))
5525 		return -EINVAL;
5526 
5527 	if (!event->attr.freq && (value & (1ULL << 63)))
5528 		return -EINVAL;
5529 
5530 	event_function_call(event, __perf_event_period, &value);
5531 
5532 	return 0;
5533 }
5534 
5535 int perf_event_period(struct perf_event *event, u64 value)
5536 {
5537 	struct perf_event_context *ctx;
5538 	int ret;
5539 
5540 	ctx = perf_event_ctx_lock(event);
5541 	ret = _perf_event_period(event, value);
5542 	perf_event_ctx_unlock(event, ctx);
5543 
5544 	return ret;
5545 }
5546 EXPORT_SYMBOL_GPL(perf_event_period);
5547 
5548 static const struct file_operations perf_fops;
5549 
5550 static inline int perf_fget_light(int fd, struct fd *p)
5551 {
5552 	struct fd f = fdget(fd);
5553 	if (!f.file)
5554 		return -EBADF;
5555 
5556 	if (f.file->f_op != &perf_fops) {
5557 		fdput(f);
5558 		return -EBADF;
5559 	}
5560 	*p = f;
5561 	return 0;
5562 }
5563 
5564 static int perf_event_set_output(struct perf_event *event,
5565 				 struct perf_event *output_event);
5566 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5567 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5568 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5569 			  struct perf_event_attr *attr);
5570 
5571 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5572 {
5573 	void (*func)(struct perf_event *);
5574 	u32 flags = arg;
5575 
5576 	switch (cmd) {
5577 	case PERF_EVENT_IOC_ENABLE:
5578 		func = _perf_event_enable;
5579 		break;
5580 	case PERF_EVENT_IOC_DISABLE:
5581 		func = _perf_event_disable;
5582 		break;
5583 	case PERF_EVENT_IOC_RESET:
5584 		func = _perf_event_reset;
5585 		break;
5586 
5587 	case PERF_EVENT_IOC_REFRESH:
5588 		return _perf_event_refresh(event, arg);
5589 
5590 	case PERF_EVENT_IOC_PERIOD:
5591 	{
5592 		u64 value;
5593 
5594 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5595 			return -EFAULT;
5596 
5597 		return _perf_event_period(event, value);
5598 	}
5599 	case PERF_EVENT_IOC_ID:
5600 	{
5601 		u64 id = primary_event_id(event);
5602 
5603 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5604 			return -EFAULT;
5605 		return 0;
5606 	}
5607 
5608 	case PERF_EVENT_IOC_SET_OUTPUT:
5609 	{
5610 		int ret;
5611 		if (arg != -1) {
5612 			struct perf_event *output_event;
5613 			struct fd output;
5614 			ret = perf_fget_light(arg, &output);
5615 			if (ret)
5616 				return ret;
5617 			output_event = output.file->private_data;
5618 			ret = perf_event_set_output(event, output_event);
5619 			fdput(output);
5620 		} else {
5621 			ret = perf_event_set_output(event, NULL);
5622 		}
5623 		return ret;
5624 	}
5625 
5626 	case PERF_EVENT_IOC_SET_FILTER:
5627 		return perf_event_set_filter(event, (void __user *)arg);
5628 
5629 	case PERF_EVENT_IOC_SET_BPF:
5630 		return perf_event_set_bpf_prog(event, arg);
5631 
5632 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5633 		struct perf_buffer *rb;
5634 
5635 		rcu_read_lock();
5636 		rb = rcu_dereference(event->rb);
5637 		if (!rb || !rb->nr_pages) {
5638 			rcu_read_unlock();
5639 			return -EINVAL;
5640 		}
5641 		rb_toggle_paused(rb, !!arg);
5642 		rcu_read_unlock();
5643 		return 0;
5644 	}
5645 
5646 	case PERF_EVENT_IOC_QUERY_BPF:
5647 		return perf_event_query_prog_array(event, (void __user *)arg);
5648 
5649 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5650 		struct perf_event_attr new_attr;
5651 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5652 					 &new_attr);
5653 
5654 		if (err)
5655 			return err;
5656 
5657 		return perf_event_modify_attr(event,  &new_attr);
5658 	}
5659 	default:
5660 		return -ENOTTY;
5661 	}
5662 
5663 	if (flags & PERF_IOC_FLAG_GROUP)
5664 		perf_event_for_each(event, func);
5665 	else
5666 		perf_event_for_each_child(event, func);
5667 
5668 	return 0;
5669 }
5670 
5671 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5672 {
5673 	struct perf_event *event = file->private_data;
5674 	struct perf_event_context *ctx;
5675 	long ret;
5676 
5677 	/* Treat ioctl like writes as it is likely a mutating operation. */
5678 	ret = security_perf_event_write(event);
5679 	if (ret)
5680 		return ret;
5681 
5682 	ctx = perf_event_ctx_lock(event);
5683 	ret = _perf_ioctl(event, cmd, arg);
5684 	perf_event_ctx_unlock(event, ctx);
5685 
5686 	return ret;
5687 }
5688 
5689 #ifdef CONFIG_COMPAT
5690 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5691 				unsigned long arg)
5692 {
5693 	switch (_IOC_NR(cmd)) {
5694 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5695 	case _IOC_NR(PERF_EVENT_IOC_ID):
5696 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5697 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5698 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5699 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5700 			cmd &= ~IOCSIZE_MASK;
5701 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5702 		}
5703 		break;
5704 	}
5705 	return perf_ioctl(file, cmd, arg);
5706 }
5707 #else
5708 # define perf_compat_ioctl NULL
5709 #endif
5710 
5711 int perf_event_task_enable(void)
5712 {
5713 	struct perf_event_context *ctx;
5714 	struct perf_event *event;
5715 
5716 	mutex_lock(&current->perf_event_mutex);
5717 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5718 		ctx = perf_event_ctx_lock(event);
5719 		perf_event_for_each_child(event, _perf_event_enable);
5720 		perf_event_ctx_unlock(event, ctx);
5721 	}
5722 	mutex_unlock(&current->perf_event_mutex);
5723 
5724 	return 0;
5725 }
5726 
5727 int perf_event_task_disable(void)
5728 {
5729 	struct perf_event_context *ctx;
5730 	struct perf_event *event;
5731 
5732 	mutex_lock(&current->perf_event_mutex);
5733 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5734 		ctx = perf_event_ctx_lock(event);
5735 		perf_event_for_each_child(event, _perf_event_disable);
5736 		perf_event_ctx_unlock(event, ctx);
5737 	}
5738 	mutex_unlock(&current->perf_event_mutex);
5739 
5740 	return 0;
5741 }
5742 
5743 static int perf_event_index(struct perf_event *event)
5744 {
5745 	if (event->hw.state & PERF_HES_STOPPED)
5746 		return 0;
5747 
5748 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5749 		return 0;
5750 
5751 	return event->pmu->event_idx(event);
5752 }
5753 
5754 static void calc_timer_values(struct perf_event *event,
5755 				u64 *now,
5756 				u64 *enabled,
5757 				u64 *running)
5758 {
5759 	u64 ctx_time;
5760 
5761 	*now = perf_clock();
5762 	ctx_time = event->shadow_ctx_time + *now;
5763 	__perf_update_times(event, ctx_time, enabled, running);
5764 }
5765 
5766 static void perf_event_init_userpage(struct perf_event *event)
5767 {
5768 	struct perf_event_mmap_page *userpg;
5769 	struct perf_buffer *rb;
5770 
5771 	rcu_read_lock();
5772 	rb = rcu_dereference(event->rb);
5773 	if (!rb)
5774 		goto unlock;
5775 
5776 	userpg = rb->user_page;
5777 
5778 	/* Allow new userspace to detect that bit 0 is deprecated */
5779 	userpg->cap_bit0_is_deprecated = 1;
5780 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5781 	userpg->data_offset = PAGE_SIZE;
5782 	userpg->data_size = perf_data_size(rb);
5783 
5784 unlock:
5785 	rcu_read_unlock();
5786 }
5787 
5788 void __weak arch_perf_update_userpage(
5789 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5790 {
5791 }
5792 
5793 /*
5794  * Callers need to ensure there can be no nesting of this function, otherwise
5795  * the seqlock logic goes bad. We can not serialize this because the arch
5796  * code calls this from NMI context.
5797  */
5798 void perf_event_update_userpage(struct perf_event *event)
5799 {
5800 	struct perf_event_mmap_page *userpg;
5801 	struct perf_buffer *rb;
5802 	u64 enabled, running, now;
5803 
5804 	rcu_read_lock();
5805 	rb = rcu_dereference(event->rb);
5806 	if (!rb)
5807 		goto unlock;
5808 
5809 	/*
5810 	 * compute total_time_enabled, total_time_running
5811 	 * based on snapshot values taken when the event
5812 	 * was last scheduled in.
5813 	 *
5814 	 * we cannot simply called update_context_time()
5815 	 * because of locking issue as we can be called in
5816 	 * NMI context
5817 	 */
5818 	calc_timer_values(event, &now, &enabled, &running);
5819 
5820 	userpg = rb->user_page;
5821 	/*
5822 	 * Disable preemption to guarantee consistent time stamps are stored to
5823 	 * the user page.
5824 	 */
5825 	preempt_disable();
5826 	++userpg->lock;
5827 	barrier();
5828 	userpg->index = perf_event_index(event);
5829 	userpg->offset = perf_event_count(event);
5830 	if (userpg->index)
5831 		userpg->offset -= local64_read(&event->hw.prev_count);
5832 
5833 	userpg->time_enabled = enabled +
5834 			atomic64_read(&event->child_total_time_enabled);
5835 
5836 	userpg->time_running = running +
5837 			atomic64_read(&event->child_total_time_running);
5838 
5839 	arch_perf_update_userpage(event, userpg, now);
5840 
5841 	barrier();
5842 	++userpg->lock;
5843 	preempt_enable();
5844 unlock:
5845 	rcu_read_unlock();
5846 }
5847 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5848 
5849 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5850 {
5851 	struct perf_event *event = vmf->vma->vm_file->private_data;
5852 	struct perf_buffer *rb;
5853 	vm_fault_t ret = VM_FAULT_SIGBUS;
5854 
5855 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5856 		if (vmf->pgoff == 0)
5857 			ret = 0;
5858 		return ret;
5859 	}
5860 
5861 	rcu_read_lock();
5862 	rb = rcu_dereference(event->rb);
5863 	if (!rb)
5864 		goto unlock;
5865 
5866 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5867 		goto unlock;
5868 
5869 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5870 	if (!vmf->page)
5871 		goto unlock;
5872 
5873 	get_page(vmf->page);
5874 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5875 	vmf->page->index   = vmf->pgoff;
5876 
5877 	ret = 0;
5878 unlock:
5879 	rcu_read_unlock();
5880 
5881 	return ret;
5882 }
5883 
5884 static void ring_buffer_attach(struct perf_event *event,
5885 			       struct perf_buffer *rb)
5886 {
5887 	struct perf_buffer *old_rb = NULL;
5888 	unsigned long flags;
5889 
5890 	if (event->rb) {
5891 		/*
5892 		 * Should be impossible, we set this when removing
5893 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5894 		 */
5895 		WARN_ON_ONCE(event->rcu_pending);
5896 
5897 		old_rb = event->rb;
5898 		spin_lock_irqsave(&old_rb->event_lock, flags);
5899 		list_del_rcu(&event->rb_entry);
5900 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5901 
5902 		event->rcu_batches = get_state_synchronize_rcu();
5903 		event->rcu_pending = 1;
5904 	}
5905 
5906 	if (rb) {
5907 		if (event->rcu_pending) {
5908 			cond_synchronize_rcu(event->rcu_batches);
5909 			event->rcu_pending = 0;
5910 		}
5911 
5912 		spin_lock_irqsave(&rb->event_lock, flags);
5913 		list_add_rcu(&event->rb_entry, &rb->event_list);
5914 		spin_unlock_irqrestore(&rb->event_lock, flags);
5915 	}
5916 
5917 	/*
5918 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5919 	 * before swizzling the event::rb pointer; if it's getting
5920 	 * unmapped, its aux_mmap_count will be 0 and it won't
5921 	 * restart. See the comment in __perf_pmu_output_stop().
5922 	 *
5923 	 * Data will inevitably be lost when set_output is done in
5924 	 * mid-air, but then again, whoever does it like this is
5925 	 * not in for the data anyway.
5926 	 */
5927 	if (has_aux(event))
5928 		perf_event_stop(event, 0);
5929 
5930 	rcu_assign_pointer(event->rb, rb);
5931 
5932 	if (old_rb) {
5933 		ring_buffer_put(old_rb);
5934 		/*
5935 		 * Since we detached before setting the new rb, so that we
5936 		 * could attach the new rb, we could have missed a wakeup.
5937 		 * Provide it now.
5938 		 */
5939 		wake_up_all(&event->waitq);
5940 	}
5941 }
5942 
5943 static void ring_buffer_wakeup(struct perf_event *event)
5944 {
5945 	struct perf_buffer *rb;
5946 
5947 	rcu_read_lock();
5948 	rb = rcu_dereference(event->rb);
5949 	if (rb) {
5950 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5951 			wake_up_all(&event->waitq);
5952 	}
5953 	rcu_read_unlock();
5954 }
5955 
5956 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5957 {
5958 	struct perf_buffer *rb;
5959 
5960 	rcu_read_lock();
5961 	rb = rcu_dereference(event->rb);
5962 	if (rb) {
5963 		if (!refcount_inc_not_zero(&rb->refcount))
5964 			rb = NULL;
5965 	}
5966 	rcu_read_unlock();
5967 
5968 	return rb;
5969 }
5970 
5971 void ring_buffer_put(struct perf_buffer *rb)
5972 {
5973 	if (!refcount_dec_and_test(&rb->refcount))
5974 		return;
5975 
5976 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5977 
5978 	call_rcu(&rb->rcu_head, rb_free_rcu);
5979 }
5980 
5981 static void perf_mmap_open(struct vm_area_struct *vma)
5982 {
5983 	struct perf_event *event = vma->vm_file->private_data;
5984 
5985 	atomic_inc(&event->mmap_count);
5986 	atomic_inc(&event->rb->mmap_count);
5987 
5988 	if (vma->vm_pgoff)
5989 		atomic_inc(&event->rb->aux_mmap_count);
5990 
5991 	if (event->pmu->event_mapped)
5992 		event->pmu->event_mapped(event, vma->vm_mm);
5993 }
5994 
5995 static void perf_pmu_output_stop(struct perf_event *event);
5996 
5997 /*
5998  * A buffer can be mmap()ed multiple times; either directly through the same
5999  * event, or through other events by use of perf_event_set_output().
6000  *
6001  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6002  * the buffer here, where we still have a VM context. This means we need
6003  * to detach all events redirecting to us.
6004  */
6005 static void perf_mmap_close(struct vm_area_struct *vma)
6006 {
6007 	struct perf_event *event = vma->vm_file->private_data;
6008 	struct perf_buffer *rb = ring_buffer_get(event);
6009 	struct user_struct *mmap_user = rb->mmap_user;
6010 	int mmap_locked = rb->mmap_locked;
6011 	unsigned long size = perf_data_size(rb);
6012 	bool detach_rest = false;
6013 
6014 	if (event->pmu->event_unmapped)
6015 		event->pmu->event_unmapped(event, vma->vm_mm);
6016 
6017 	/*
6018 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6019 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6020 	 * serialize with perf_mmap here.
6021 	 */
6022 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6023 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6024 		/*
6025 		 * Stop all AUX events that are writing to this buffer,
6026 		 * so that we can free its AUX pages and corresponding PMU
6027 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6028 		 * they won't start any more (see perf_aux_output_begin()).
6029 		 */
6030 		perf_pmu_output_stop(event);
6031 
6032 		/* now it's safe to free the pages */
6033 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6034 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6035 
6036 		/* this has to be the last one */
6037 		rb_free_aux(rb);
6038 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6039 
6040 		mutex_unlock(&event->mmap_mutex);
6041 	}
6042 
6043 	if (atomic_dec_and_test(&rb->mmap_count))
6044 		detach_rest = true;
6045 
6046 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6047 		goto out_put;
6048 
6049 	ring_buffer_attach(event, NULL);
6050 	mutex_unlock(&event->mmap_mutex);
6051 
6052 	/* If there's still other mmap()s of this buffer, we're done. */
6053 	if (!detach_rest)
6054 		goto out_put;
6055 
6056 	/*
6057 	 * No other mmap()s, detach from all other events that might redirect
6058 	 * into the now unreachable buffer. Somewhat complicated by the
6059 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6060 	 */
6061 again:
6062 	rcu_read_lock();
6063 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6064 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6065 			/*
6066 			 * This event is en-route to free_event() which will
6067 			 * detach it and remove it from the list.
6068 			 */
6069 			continue;
6070 		}
6071 		rcu_read_unlock();
6072 
6073 		mutex_lock(&event->mmap_mutex);
6074 		/*
6075 		 * Check we didn't race with perf_event_set_output() which can
6076 		 * swizzle the rb from under us while we were waiting to
6077 		 * acquire mmap_mutex.
6078 		 *
6079 		 * If we find a different rb; ignore this event, a next
6080 		 * iteration will no longer find it on the list. We have to
6081 		 * still restart the iteration to make sure we're not now
6082 		 * iterating the wrong list.
6083 		 */
6084 		if (event->rb == rb)
6085 			ring_buffer_attach(event, NULL);
6086 
6087 		mutex_unlock(&event->mmap_mutex);
6088 		put_event(event);
6089 
6090 		/*
6091 		 * Restart the iteration; either we're on the wrong list or
6092 		 * destroyed its integrity by doing a deletion.
6093 		 */
6094 		goto again;
6095 	}
6096 	rcu_read_unlock();
6097 
6098 	/*
6099 	 * It could be there's still a few 0-ref events on the list; they'll
6100 	 * get cleaned up by free_event() -- they'll also still have their
6101 	 * ref on the rb and will free it whenever they are done with it.
6102 	 *
6103 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6104 	 * undo the VM accounting.
6105 	 */
6106 
6107 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6108 			&mmap_user->locked_vm);
6109 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6110 	free_uid(mmap_user);
6111 
6112 out_put:
6113 	ring_buffer_put(rb); /* could be last */
6114 }
6115 
6116 static const struct vm_operations_struct perf_mmap_vmops = {
6117 	.open		= perf_mmap_open,
6118 	.close		= perf_mmap_close, /* non mergeable */
6119 	.fault		= perf_mmap_fault,
6120 	.page_mkwrite	= perf_mmap_fault,
6121 };
6122 
6123 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6124 {
6125 	struct perf_event *event = file->private_data;
6126 	unsigned long user_locked, user_lock_limit;
6127 	struct user_struct *user = current_user();
6128 	struct perf_buffer *rb = NULL;
6129 	unsigned long locked, lock_limit;
6130 	unsigned long vma_size;
6131 	unsigned long nr_pages;
6132 	long user_extra = 0, extra = 0;
6133 	int ret = 0, flags = 0;
6134 
6135 	/*
6136 	 * Don't allow mmap() of inherited per-task counters. This would
6137 	 * create a performance issue due to all children writing to the
6138 	 * same rb.
6139 	 */
6140 	if (event->cpu == -1 && event->attr.inherit)
6141 		return -EINVAL;
6142 
6143 	if (!(vma->vm_flags & VM_SHARED))
6144 		return -EINVAL;
6145 
6146 	ret = security_perf_event_read(event);
6147 	if (ret)
6148 		return ret;
6149 
6150 	vma_size = vma->vm_end - vma->vm_start;
6151 
6152 	if (vma->vm_pgoff == 0) {
6153 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6154 	} else {
6155 		/*
6156 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6157 		 * mapped, all subsequent mappings should have the same size
6158 		 * and offset. Must be above the normal perf buffer.
6159 		 */
6160 		u64 aux_offset, aux_size;
6161 
6162 		if (!event->rb)
6163 			return -EINVAL;
6164 
6165 		nr_pages = vma_size / PAGE_SIZE;
6166 
6167 		mutex_lock(&event->mmap_mutex);
6168 		ret = -EINVAL;
6169 
6170 		rb = event->rb;
6171 		if (!rb)
6172 			goto aux_unlock;
6173 
6174 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6175 		aux_size = READ_ONCE(rb->user_page->aux_size);
6176 
6177 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6178 			goto aux_unlock;
6179 
6180 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6181 			goto aux_unlock;
6182 
6183 		/* already mapped with a different offset */
6184 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6185 			goto aux_unlock;
6186 
6187 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6188 			goto aux_unlock;
6189 
6190 		/* already mapped with a different size */
6191 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6192 			goto aux_unlock;
6193 
6194 		if (!is_power_of_2(nr_pages))
6195 			goto aux_unlock;
6196 
6197 		if (!atomic_inc_not_zero(&rb->mmap_count))
6198 			goto aux_unlock;
6199 
6200 		if (rb_has_aux(rb)) {
6201 			atomic_inc(&rb->aux_mmap_count);
6202 			ret = 0;
6203 			goto unlock;
6204 		}
6205 
6206 		atomic_set(&rb->aux_mmap_count, 1);
6207 		user_extra = nr_pages;
6208 
6209 		goto accounting;
6210 	}
6211 
6212 	/*
6213 	 * If we have rb pages ensure they're a power-of-two number, so we
6214 	 * can do bitmasks instead of modulo.
6215 	 */
6216 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6217 		return -EINVAL;
6218 
6219 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6220 		return -EINVAL;
6221 
6222 	WARN_ON_ONCE(event->ctx->parent_ctx);
6223 again:
6224 	mutex_lock(&event->mmap_mutex);
6225 	if (event->rb) {
6226 		if (event->rb->nr_pages != nr_pages) {
6227 			ret = -EINVAL;
6228 			goto unlock;
6229 		}
6230 
6231 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6232 			/*
6233 			 * Raced against perf_mmap_close() through
6234 			 * perf_event_set_output(). Try again, hope for better
6235 			 * luck.
6236 			 */
6237 			mutex_unlock(&event->mmap_mutex);
6238 			goto again;
6239 		}
6240 
6241 		goto unlock;
6242 	}
6243 
6244 	user_extra = nr_pages + 1;
6245 
6246 accounting:
6247 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6248 
6249 	/*
6250 	 * Increase the limit linearly with more CPUs:
6251 	 */
6252 	user_lock_limit *= num_online_cpus();
6253 
6254 	user_locked = atomic_long_read(&user->locked_vm);
6255 
6256 	/*
6257 	 * sysctl_perf_event_mlock may have changed, so that
6258 	 *     user->locked_vm > user_lock_limit
6259 	 */
6260 	if (user_locked > user_lock_limit)
6261 		user_locked = user_lock_limit;
6262 	user_locked += user_extra;
6263 
6264 	if (user_locked > user_lock_limit) {
6265 		/*
6266 		 * charge locked_vm until it hits user_lock_limit;
6267 		 * charge the rest from pinned_vm
6268 		 */
6269 		extra = user_locked - user_lock_limit;
6270 		user_extra -= extra;
6271 	}
6272 
6273 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6274 	lock_limit >>= PAGE_SHIFT;
6275 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6276 
6277 	if ((locked > lock_limit) && perf_is_paranoid() &&
6278 		!capable(CAP_IPC_LOCK)) {
6279 		ret = -EPERM;
6280 		goto unlock;
6281 	}
6282 
6283 	WARN_ON(!rb && event->rb);
6284 
6285 	if (vma->vm_flags & VM_WRITE)
6286 		flags |= RING_BUFFER_WRITABLE;
6287 
6288 	if (!rb) {
6289 		rb = rb_alloc(nr_pages,
6290 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6291 			      event->cpu, flags);
6292 
6293 		if (!rb) {
6294 			ret = -ENOMEM;
6295 			goto unlock;
6296 		}
6297 
6298 		atomic_set(&rb->mmap_count, 1);
6299 		rb->mmap_user = get_current_user();
6300 		rb->mmap_locked = extra;
6301 
6302 		ring_buffer_attach(event, rb);
6303 
6304 		perf_event_init_userpage(event);
6305 		perf_event_update_userpage(event);
6306 	} else {
6307 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6308 				   event->attr.aux_watermark, flags);
6309 		if (!ret)
6310 			rb->aux_mmap_locked = extra;
6311 	}
6312 
6313 unlock:
6314 	if (!ret) {
6315 		atomic_long_add(user_extra, &user->locked_vm);
6316 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6317 
6318 		atomic_inc(&event->mmap_count);
6319 	} else if (rb) {
6320 		atomic_dec(&rb->mmap_count);
6321 	}
6322 aux_unlock:
6323 	mutex_unlock(&event->mmap_mutex);
6324 
6325 	/*
6326 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6327 	 * vma.
6328 	 */
6329 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6330 	vma->vm_ops = &perf_mmap_vmops;
6331 
6332 	if (event->pmu->event_mapped)
6333 		event->pmu->event_mapped(event, vma->vm_mm);
6334 
6335 	return ret;
6336 }
6337 
6338 static int perf_fasync(int fd, struct file *filp, int on)
6339 {
6340 	struct inode *inode = file_inode(filp);
6341 	struct perf_event *event = filp->private_data;
6342 	int retval;
6343 
6344 	inode_lock(inode);
6345 	retval = fasync_helper(fd, filp, on, &event->fasync);
6346 	inode_unlock(inode);
6347 
6348 	if (retval < 0)
6349 		return retval;
6350 
6351 	return 0;
6352 }
6353 
6354 static const struct file_operations perf_fops = {
6355 	.llseek			= no_llseek,
6356 	.release		= perf_release,
6357 	.read			= perf_read,
6358 	.poll			= perf_poll,
6359 	.unlocked_ioctl		= perf_ioctl,
6360 	.compat_ioctl		= perf_compat_ioctl,
6361 	.mmap			= perf_mmap,
6362 	.fasync			= perf_fasync,
6363 };
6364 
6365 /*
6366  * Perf event wakeup
6367  *
6368  * If there's data, ensure we set the poll() state and publish everything
6369  * to user-space before waking everybody up.
6370  */
6371 
6372 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6373 {
6374 	/* only the parent has fasync state */
6375 	if (event->parent)
6376 		event = event->parent;
6377 	return &event->fasync;
6378 }
6379 
6380 void perf_event_wakeup(struct perf_event *event)
6381 {
6382 	ring_buffer_wakeup(event);
6383 
6384 	if (event->pending_kill) {
6385 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6386 		event->pending_kill = 0;
6387 	}
6388 }
6389 
6390 static void perf_sigtrap(struct perf_event *event)
6391 {
6392 	struct kernel_siginfo info;
6393 
6394 	/*
6395 	 * We'd expect this to only occur if the irq_work is delayed and either
6396 	 * ctx->task or current has changed in the meantime. This can be the
6397 	 * case on architectures that do not implement arch_irq_work_raise().
6398 	 */
6399 	if (WARN_ON_ONCE(event->ctx->task != current))
6400 		return;
6401 
6402 	/*
6403 	 * perf_pending_event() can race with the task exiting.
6404 	 */
6405 	if (current->flags & PF_EXITING)
6406 		return;
6407 
6408 	clear_siginfo(&info);
6409 	info.si_signo = SIGTRAP;
6410 	info.si_code = TRAP_PERF;
6411 	info.si_errno = event->attr.type;
6412 	info.si_perf = event->attr.sig_data;
6413 	info.si_addr = (void __user *)event->pending_addr;
6414 	force_sig_info(&info);
6415 }
6416 
6417 static void perf_pending_event_disable(struct perf_event *event)
6418 {
6419 	int cpu = READ_ONCE(event->pending_disable);
6420 
6421 	if (cpu < 0)
6422 		return;
6423 
6424 	if (cpu == smp_processor_id()) {
6425 		WRITE_ONCE(event->pending_disable, -1);
6426 
6427 		if (event->attr.sigtrap) {
6428 			perf_sigtrap(event);
6429 			atomic_set_release(&event->event_limit, 1); /* rearm event */
6430 			return;
6431 		}
6432 
6433 		perf_event_disable_local(event);
6434 		return;
6435 	}
6436 
6437 	/*
6438 	 *  CPU-A			CPU-B
6439 	 *
6440 	 *  perf_event_disable_inatomic()
6441 	 *    @pending_disable = CPU-A;
6442 	 *    irq_work_queue();
6443 	 *
6444 	 *  sched-out
6445 	 *    @pending_disable = -1;
6446 	 *
6447 	 *				sched-in
6448 	 *				perf_event_disable_inatomic()
6449 	 *				  @pending_disable = CPU-B;
6450 	 *				  irq_work_queue(); // FAILS
6451 	 *
6452 	 *  irq_work_run()
6453 	 *    perf_pending_event()
6454 	 *
6455 	 * But the event runs on CPU-B and wants disabling there.
6456 	 */
6457 	irq_work_queue_on(&event->pending, cpu);
6458 }
6459 
6460 static void perf_pending_event(struct irq_work *entry)
6461 {
6462 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6463 	int rctx;
6464 
6465 	rctx = perf_swevent_get_recursion_context();
6466 	/*
6467 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6468 	 * and we won't recurse 'further'.
6469 	 */
6470 
6471 	perf_pending_event_disable(event);
6472 
6473 	if (event->pending_wakeup) {
6474 		event->pending_wakeup = 0;
6475 		perf_event_wakeup(event);
6476 	}
6477 
6478 	if (rctx >= 0)
6479 		perf_swevent_put_recursion_context(rctx);
6480 }
6481 
6482 /*
6483  * We assume there is only KVM supporting the callbacks.
6484  * Later on, we might change it to a list if there is
6485  * another virtualization implementation supporting the callbacks.
6486  */
6487 struct perf_guest_info_callbacks *perf_guest_cbs;
6488 
6489 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6490 {
6491 	perf_guest_cbs = cbs;
6492 	return 0;
6493 }
6494 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6495 
6496 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6497 {
6498 	perf_guest_cbs = NULL;
6499 	return 0;
6500 }
6501 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6502 
6503 static void
6504 perf_output_sample_regs(struct perf_output_handle *handle,
6505 			struct pt_regs *regs, u64 mask)
6506 {
6507 	int bit;
6508 	DECLARE_BITMAP(_mask, 64);
6509 
6510 	bitmap_from_u64(_mask, mask);
6511 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6512 		u64 val;
6513 
6514 		val = perf_reg_value(regs, bit);
6515 		perf_output_put(handle, val);
6516 	}
6517 }
6518 
6519 static void perf_sample_regs_user(struct perf_regs *regs_user,
6520 				  struct pt_regs *regs)
6521 {
6522 	if (user_mode(regs)) {
6523 		regs_user->abi = perf_reg_abi(current);
6524 		regs_user->regs = regs;
6525 	} else if (!(current->flags & PF_KTHREAD)) {
6526 		perf_get_regs_user(regs_user, regs);
6527 	} else {
6528 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6529 		regs_user->regs = NULL;
6530 	}
6531 }
6532 
6533 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6534 				  struct pt_regs *regs)
6535 {
6536 	regs_intr->regs = regs;
6537 	regs_intr->abi  = perf_reg_abi(current);
6538 }
6539 
6540 
6541 /*
6542  * Get remaining task size from user stack pointer.
6543  *
6544  * It'd be better to take stack vma map and limit this more
6545  * precisely, but there's no way to get it safely under interrupt,
6546  * so using TASK_SIZE as limit.
6547  */
6548 static u64 perf_ustack_task_size(struct pt_regs *regs)
6549 {
6550 	unsigned long addr = perf_user_stack_pointer(regs);
6551 
6552 	if (!addr || addr >= TASK_SIZE)
6553 		return 0;
6554 
6555 	return TASK_SIZE - addr;
6556 }
6557 
6558 static u16
6559 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6560 			struct pt_regs *regs)
6561 {
6562 	u64 task_size;
6563 
6564 	/* No regs, no stack pointer, no dump. */
6565 	if (!regs)
6566 		return 0;
6567 
6568 	/*
6569 	 * Check if we fit in with the requested stack size into the:
6570 	 * - TASK_SIZE
6571 	 *   If we don't, we limit the size to the TASK_SIZE.
6572 	 *
6573 	 * - remaining sample size
6574 	 *   If we don't, we customize the stack size to
6575 	 *   fit in to the remaining sample size.
6576 	 */
6577 
6578 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6579 	stack_size = min(stack_size, (u16) task_size);
6580 
6581 	/* Current header size plus static size and dynamic size. */
6582 	header_size += 2 * sizeof(u64);
6583 
6584 	/* Do we fit in with the current stack dump size? */
6585 	if ((u16) (header_size + stack_size) < header_size) {
6586 		/*
6587 		 * If we overflow the maximum size for the sample,
6588 		 * we customize the stack dump size to fit in.
6589 		 */
6590 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6591 		stack_size = round_up(stack_size, sizeof(u64));
6592 	}
6593 
6594 	return stack_size;
6595 }
6596 
6597 static void
6598 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6599 			  struct pt_regs *regs)
6600 {
6601 	/* Case of a kernel thread, nothing to dump */
6602 	if (!regs) {
6603 		u64 size = 0;
6604 		perf_output_put(handle, size);
6605 	} else {
6606 		unsigned long sp;
6607 		unsigned int rem;
6608 		u64 dyn_size;
6609 		mm_segment_t fs;
6610 
6611 		/*
6612 		 * We dump:
6613 		 * static size
6614 		 *   - the size requested by user or the best one we can fit
6615 		 *     in to the sample max size
6616 		 * data
6617 		 *   - user stack dump data
6618 		 * dynamic size
6619 		 *   - the actual dumped size
6620 		 */
6621 
6622 		/* Static size. */
6623 		perf_output_put(handle, dump_size);
6624 
6625 		/* Data. */
6626 		sp = perf_user_stack_pointer(regs);
6627 		fs = force_uaccess_begin();
6628 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6629 		force_uaccess_end(fs);
6630 		dyn_size = dump_size - rem;
6631 
6632 		perf_output_skip(handle, rem);
6633 
6634 		/* Dynamic size. */
6635 		perf_output_put(handle, dyn_size);
6636 	}
6637 }
6638 
6639 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6640 					  struct perf_sample_data *data,
6641 					  size_t size)
6642 {
6643 	struct perf_event *sampler = event->aux_event;
6644 	struct perf_buffer *rb;
6645 
6646 	data->aux_size = 0;
6647 
6648 	if (!sampler)
6649 		goto out;
6650 
6651 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6652 		goto out;
6653 
6654 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6655 		goto out;
6656 
6657 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6658 	if (!rb)
6659 		goto out;
6660 
6661 	/*
6662 	 * If this is an NMI hit inside sampling code, don't take
6663 	 * the sample. See also perf_aux_sample_output().
6664 	 */
6665 	if (READ_ONCE(rb->aux_in_sampling)) {
6666 		data->aux_size = 0;
6667 	} else {
6668 		size = min_t(size_t, size, perf_aux_size(rb));
6669 		data->aux_size = ALIGN(size, sizeof(u64));
6670 	}
6671 	ring_buffer_put(rb);
6672 
6673 out:
6674 	return data->aux_size;
6675 }
6676 
6677 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6678 			   struct perf_event *event,
6679 			   struct perf_output_handle *handle,
6680 			   unsigned long size)
6681 {
6682 	unsigned long flags;
6683 	long ret;
6684 
6685 	/*
6686 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6687 	 * paths. If we start calling them in NMI context, they may race with
6688 	 * the IRQ ones, that is, for example, re-starting an event that's just
6689 	 * been stopped, which is why we're using a separate callback that
6690 	 * doesn't change the event state.
6691 	 *
6692 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6693 	 */
6694 	local_irq_save(flags);
6695 	/*
6696 	 * Guard against NMI hits inside the critical section;
6697 	 * see also perf_prepare_sample_aux().
6698 	 */
6699 	WRITE_ONCE(rb->aux_in_sampling, 1);
6700 	barrier();
6701 
6702 	ret = event->pmu->snapshot_aux(event, handle, size);
6703 
6704 	barrier();
6705 	WRITE_ONCE(rb->aux_in_sampling, 0);
6706 	local_irq_restore(flags);
6707 
6708 	return ret;
6709 }
6710 
6711 static void perf_aux_sample_output(struct perf_event *event,
6712 				   struct perf_output_handle *handle,
6713 				   struct perf_sample_data *data)
6714 {
6715 	struct perf_event *sampler = event->aux_event;
6716 	struct perf_buffer *rb;
6717 	unsigned long pad;
6718 	long size;
6719 
6720 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6721 		return;
6722 
6723 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6724 	if (!rb)
6725 		return;
6726 
6727 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6728 
6729 	/*
6730 	 * An error here means that perf_output_copy() failed (returned a
6731 	 * non-zero surplus that it didn't copy), which in its current
6732 	 * enlightened implementation is not possible. If that changes, we'd
6733 	 * like to know.
6734 	 */
6735 	if (WARN_ON_ONCE(size < 0))
6736 		goto out_put;
6737 
6738 	/*
6739 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6740 	 * perf_prepare_sample_aux(), so should not be more than that.
6741 	 */
6742 	pad = data->aux_size - size;
6743 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6744 		pad = 8;
6745 
6746 	if (pad) {
6747 		u64 zero = 0;
6748 		perf_output_copy(handle, &zero, pad);
6749 	}
6750 
6751 out_put:
6752 	ring_buffer_put(rb);
6753 }
6754 
6755 static void __perf_event_header__init_id(struct perf_event_header *header,
6756 					 struct perf_sample_data *data,
6757 					 struct perf_event *event)
6758 {
6759 	u64 sample_type = event->attr.sample_type;
6760 
6761 	data->type = sample_type;
6762 	header->size += event->id_header_size;
6763 
6764 	if (sample_type & PERF_SAMPLE_TID) {
6765 		/* namespace issues */
6766 		data->tid_entry.pid = perf_event_pid(event, current);
6767 		data->tid_entry.tid = perf_event_tid(event, current);
6768 	}
6769 
6770 	if (sample_type & PERF_SAMPLE_TIME)
6771 		data->time = perf_event_clock(event);
6772 
6773 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6774 		data->id = primary_event_id(event);
6775 
6776 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6777 		data->stream_id = event->id;
6778 
6779 	if (sample_type & PERF_SAMPLE_CPU) {
6780 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6781 		data->cpu_entry.reserved = 0;
6782 	}
6783 }
6784 
6785 void perf_event_header__init_id(struct perf_event_header *header,
6786 				struct perf_sample_data *data,
6787 				struct perf_event *event)
6788 {
6789 	if (event->attr.sample_id_all)
6790 		__perf_event_header__init_id(header, data, event);
6791 }
6792 
6793 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6794 					   struct perf_sample_data *data)
6795 {
6796 	u64 sample_type = data->type;
6797 
6798 	if (sample_type & PERF_SAMPLE_TID)
6799 		perf_output_put(handle, data->tid_entry);
6800 
6801 	if (sample_type & PERF_SAMPLE_TIME)
6802 		perf_output_put(handle, data->time);
6803 
6804 	if (sample_type & PERF_SAMPLE_ID)
6805 		perf_output_put(handle, data->id);
6806 
6807 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6808 		perf_output_put(handle, data->stream_id);
6809 
6810 	if (sample_type & PERF_SAMPLE_CPU)
6811 		perf_output_put(handle, data->cpu_entry);
6812 
6813 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6814 		perf_output_put(handle, data->id);
6815 }
6816 
6817 void perf_event__output_id_sample(struct perf_event *event,
6818 				  struct perf_output_handle *handle,
6819 				  struct perf_sample_data *sample)
6820 {
6821 	if (event->attr.sample_id_all)
6822 		__perf_event__output_id_sample(handle, sample);
6823 }
6824 
6825 static void perf_output_read_one(struct perf_output_handle *handle,
6826 				 struct perf_event *event,
6827 				 u64 enabled, u64 running)
6828 {
6829 	u64 read_format = event->attr.read_format;
6830 	u64 values[4];
6831 	int n = 0;
6832 
6833 	values[n++] = perf_event_count(event);
6834 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6835 		values[n++] = enabled +
6836 			atomic64_read(&event->child_total_time_enabled);
6837 	}
6838 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6839 		values[n++] = running +
6840 			atomic64_read(&event->child_total_time_running);
6841 	}
6842 	if (read_format & PERF_FORMAT_ID)
6843 		values[n++] = primary_event_id(event);
6844 
6845 	__output_copy(handle, values, n * sizeof(u64));
6846 }
6847 
6848 static void perf_output_read_group(struct perf_output_handle *handle,
6849 			    struct perf_event *event,
6850 			    u64 enabled, u64 running)
6851 {
6852 	struct perf_event *leader = event->group_leader, *sub;
6853 	u64 read_format = event->attr.read_format;
6854 	u64 values[5];
6855 	int n = 0;
6856 
6857 	values[n++] = 1 + leader->nr_siblings;
6858 
6859 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6860 		values[n++] = enabled;
6861 
6862 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6863 		values[n++] = running;
6864 
6865 	if ((leader != event) &&
6866 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6867 		leader->pmu->read(leader);
6868 
6869 	values[n++] = perf_event_count(leader);
6870 	if (read_format & PERF_FORMAT_ID)
6871 		values[n++] = primary_event_id(leader);
6872 
6873 	__output_copy(handle, values, n * sizeof(u64));
6874 
6875 	for_each_sibling_event(sub, leader) {
6876 		n = 0;
6877 
6878 		if ((sub != event) &&
6879 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6880 			sub->pmu->read(sub);
6881 
6882 		values[n++] = perf_event_count(sub);
6883 		if (read_format & PERF_FORMAT_ID)
6884 			values[n++] = primary_event_id(sub);
6885 
6886 		__output_copy(handle, values, n * sizeof(u64));
6887 	}
6888 }
6889 
6890 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6891 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6892 
6893 /*
6894  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6895  *
6896  * The problem is that its both hard and excessively expensive to iterate the
6897  * child list, not to mention that its impossible to IPI the children running
6898  * on another CPU, from interrupt/NMI context.
6899  */
6900 static void perf_output_read(struct perf_output_handle *handle,
6901 			     struct perf_event *event)
6902 {
6903 	u64 enabled = 0, running = 0, now;
6904 	u64 read_format = event->attr.read_format;
6905 
6906 	/*
6907 	 * compute total_time_enabled, total_time_running
6908 	 * based on snapshot values taken when the event
6909 	 * was last scheduled in.
6910 	 *
6911 	 * we cannot simply called update_context_time()
6912 	 * because of locking issue as we are called in
6913 	 * NMI context
6914 	 */
6915 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6916 		calc_timer_values(event, &now, &enabled, &running);
6917 
6918 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6919 		perf_output_read_group(handle, event, enabled, running);
6920 	else
6921 		perf_output_read_one(handle, event, enabled, running);
6922 }
6923 
6924 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6925 {
6926 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6927 }
6928 
6929 void perf_output_sample(struct perf_output_handle *handle,
6930 			struct perf_event_header *header,
6931 			struct perf_sample_data *data,
6932 			struct perf_event *event)
6933 {
6934 	u64 sample_type = data->type;
6935 
6936 	perf_output_put(handle, *header);
6937 
6938 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6939 		perf_output_put(handle, data->id);
6940 
6941 	if (sample_type & PERF_SAMPLE_IP)
6942 		perf_output_put(handle, data->ip);
6943 
6944 	if (sample_type & PERF_SAMPLE_TID)
6945 		perf_output_put(handle, data->tid_entry);
6946 
6947 	if (sample_type & PERF_SAMPLE_TIME)
6948 		perf_output_put(handle, data->time);
6949 
6950 	if (sample_type & PERF_SAMPLE_ADDR)
6951 		perf_output_put(handle, data->addr);
6952 
6953 	if (sample_type & PERF_SAMPLE_ID)
6954 		perf_output_put(handle, data->id);
6955 
6956 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6957 		perf_output_put(handle, data->stream_id);
6958 
6959 	if (sample_type & PERF_SAMPLE_CPU)
6960 		perf_output_put(handle, data->cpu_entry);
6961 
6962 	if (sample_type & PERF_SAMPLE_PERIOD)
6963 		perf_output_put(handle, data->period);
6964 
6965 	if (sample_type & PERF_SAMPLE_READ)
6966 		perf_output_read(handle, event);
6967 
6968 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6969 		int size = 1;
6970 
6971 		size += data->callchain->nr;
6972 		size *= sizeof(u64);
6973 		__output_copy(handle, data->callchain, size);
6974 	}
6975 
6976 	if (sample_type & PERF_SAMPLE_RAW) {
6977 		struct perf_raw_record *raw = data->raw;
6978 
6979 		if (raw) {
6980 			struct perf_raw_frag *frag = &raw->frag;
6981 
6982 			perf_output_put(handle, raw->size);
6983 			do {
6984 				if (frag->copy) {
6985 					__output_custom(handle, frag->copy,
6986 							frag->data, frag->size);
6987 				} else {
6988 					__output_copy(handle, frag->data,
6989 						      frag->size);
6990 				}
6991 				if (perf_raw_frag_last(frag))
6992 					break;
6993 				frag = frag->next;
6994 			} while (1);
6995 			if (frag->pad)
6996 				__output_skip(handle, NULL, frag->pad);
6997 		} else {
6998 			struct {
6999 				u32	size;
7000 				u32	data;
7001 			} raw = {
7002 				.size = sizeof(u32),
7003 				.data = 0,
7004 			};
7005 			perf_output_put(handle, raw);
7006 		}
7007 	}
7008 
7009 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7010 		if (data->br_stack) {
7011 			size_t size;
7012 
7013 			size = data->br_stack->nr
7014 			     * sizeof(struct perf_branch_entry);
7015 
7016 			perf_output_put(handle, data->br_stack->nr);
7017 			if (perf_sample_save_hw_index(event))
7018 				perf_output_put(handle, data->br_stack->hw_idx);
7019 			perf_output_copy(handle, data->br_stack->entries, size);
7020 		} else {
7021 			/*
7022 			 * we always store at least the value of nr
7023 			 */
7024 			u64 nr = 0;
7025 			perf_output_put(handle, nr);
7026 		}
7027 	}
7028 
7029 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7030 		u64 abi = data->regs_user.abi;
7031 
7032 		/*
7033 		 * If there are no regs to dump, notice it through
7034 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7035 		 */
7036 		perf_output_put(handle, abi);
7037 
7038 		if (abi) {
7039 			u64 mask = event->attr.sample_regs_user;
7040 			perf_output_sample_regs(handle,
7041 						data->regs_user.regs,
7042 						mask);
7043 		}
7044 	}
7045 
7046 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7047 		perf_output_sample_ustack(handle,
7048 					  data->stack_user_size,
7049 					  data->regs_user.regs);
7050 	}
7051 
7052 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7053 		perf_output_put(handle, data->weight.full);
7054 
7055 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7056 		perf_output_put(handle, data->data_src.val);
7057 
7058 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7059 		perf_output_put(handle, data->txn);
7060 
7061 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7062 		u64 abi = data->regs_intr.abi;
7063 		/*
7064 		 * If there are no regs to dump, notice it through
7065 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7066 		 */
7067 		perf_output_put(handle, abi);
7068 
7069 		if (abi) {
7070 			u64 mask = event->attr.sample_regs_intr;
7071 
7072 			perf_output_sample_regs(handle,
7073 						data->regs_intr.regs,
7074 						mask);
7075 		}
7076 	}
7077 
7078 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7079 		perf_output_put(handle, data->phys_addr);
7080 
7081 	if (sample_type & PERF_SAMPLE_CGROUP)
7082 		perf_output_put(handle, data->cgroup);
7083 
7084 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7085 		perf_output_put(handle, data->data_page_size);
7086 
7087 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7088 		perf_output_put(handle, data->code_page_size);
7089 
7090 	if (sample_type & PERF_SAMPLE_AUX) {
7091 		perf_output_put(handle, data->aux_size);
7092 
7093 		if (data->aux_size)
7094 			perf_aux_sample_output(event, handle, data);
7095 	}
7096 
7097 	if (!event->attr.watermark) {
7098 		int wakeup_events = event->attr.wakeup_events;
7099 
7100 		if (wakeup_events) {
7101 			struct perf_buffer *rb = handle->rb;
7102 			int events = local_inc_return(&rb->events);
7103 
7104 			if (events >= wakeup_events) {
7105 				local_sub(wakeup_events, &rb->events);
7106 				local_inc(&rb->wakeup);
7107 			}
7108 		}
7109 	}
7110 }
7111 
7112 static u64 perf_virt_to_phys(u64 virt)
7113 {
7114 	u64 phys_addr = 0;
7115 	struct page *p = NULL;
7116 
7117 	if (!virt)
7118 		return 0;
7119 
7120 	if (virt >= TASK_SIZE) {
7121 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7122 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7123 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7124 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7125 	} else {
7126 		/*
7127 		 * Walking the pages tables for user address.
7128 		 * Interrupts are disabled, so it prevents any tear down
7129 		 * of the page tables.
7130 		 * Try IRQ-safe get_user_page_fast_only first.
7131 		 * If failed, leave phys_addr as 0.
7132 		 */
7133 		if (current->mm != NULL) {
7134 			pagefault_disable();
7135 			if (get_user_page_fast_only(virt, 0, &p))
7136 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7137 			pagefault_enable();
7138 		}
7139 
7140 		if (p)
7141 			put_page(p);
7142 	}
7143 
7144 	return phys_addr;
7145 }
7146 
7147 /*
7148  * Return the pagetable size of a given virtual address.
7149  */
7150 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7151 {
7152 	u64 size = 0;
7153 
7154 #ifdef CONFIG_HAVE_FAST_GUP
7155 	pgd_t *pgdp, pgd;
7156 	p4d_t *p4dp, p4d;
7157 	pud_t *pudp, pud;
7158 	pmd_t *pmdp, pmd;
7159 	pte_t *ptep, pte;
7160 
7161 	pgdp = pgd_offset(mm, addr);
7162 	pgd = READ_ONCE(*pgdp);
7163 	if (pgd_none(pgd))
7164 		return 0;
7165 
7166 	if (pgd_leaf(pgd))
7167 		return pgd_leaf_size(pgd);
7168 
7169 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7170 	p4d = READ_ONCE(*p4dp);
7171 	if (!p4d_present(p4d))
7172 		return 0;
7173 
7174 	if (p4d_leaf(p4d))
7175 		return p4d_leaf_size(p4d);
7176 
7177 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7178 	pud = READ_ONCE(*pudp);
7179 	if (!pud_present(pud))
7180 		return 0;
7181 
7182 	if (pud_leaf(pud))
7183 		return pud_leaf_size(pud);
7184 
7185 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7186 	pmd = READ_ONCE(*pmdp);
7187 	if (!pmd_present(pmd))
7188 		return 0;
7189 
7190 	if (pmd_leaf(pmd))
7191 		return pmd_leaf_size(pmd);
7192 
7193 	ptep = pte_offset_map(&pmd, addr);
7194 	pte = ptep_get_lockless(ptep);
7195 	if (pte_present(pte))
7196 		size = pte_leaf_size(pte);
7197 	pte_unmap(ptep);
7198 #endif /* CONFIG_HAVE_FAST_GUP */
7199 
7200 	return size;
7201 }
7202 
7203 static u64 perf_get_page_size(unsigned long addr)
7204 {
7205 	struct mm_struct *mm;
7206 	unsigned long flags;
7207 	u64 size;
7208 
7209 	if (!addr)
7210 		return 0;
7211 
7212 	/*
7213 	 * Software page-table walkers must disable IRQs,
7214 	 * which prevents any tear down of the page tables.
7215 	 */
7216 	local_irq_save(flags);
7217 
7218 	mm = current->mm;
7219 	if (!mm) {
7220 		/*
7221 		 * For kernel threads and the like, use init_mm so that
7222 		 * we can find kernel memory.
7223 		 */
7224 		mm = &init_mm;
7225 	}
7226 
7227 	size = perf_get_pgtable_size(mm, addr);
7228 
7229 	local_irq_restore(flags);
7230 
7231 	return size;
7232 }
7233 
7234 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7235 
7236 struct perf_callchain_entry *
7237 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7238 {
7239 	bool kernel = !event->attr.exclude_callchain_kernel;
7240 	bool user   = !event->attr.exclude_callchain_user;
7241 	/* Disallow cross-task user callchains. */
7242 	bool crosstask = event->ctx->task && event->ctx->task != current;
7243 	const u32 max_stack = event->attr.sample_max_stack;
7244 	struct perf_callchain_entry *callchain;
7245 
7246 	if (!kernel && !user)
7247 		return &__empty_callchain;
7248 
7249 	callchain = get_perf_callchain(regs, 0, kernel, user,
7250 				       max_stack, crosstask, true);
7251 	return callchain ?: &__empty_callchain;
7252 }
7253 
7254 void perf_prepare_sample(struct perf_event_header *header,
7255 			 struct perf_sample_data *data,
7256 			 struct perf_event *event,
7257 			 struct pt_regs *regs)
7258 {
7259 	u64 sample_type = event->attr.sample_type;
7260 
7261 	header->type = PERF_RECORD_SAMPLE;
7262 	header->size = sizeof(*header) + event->header_size;
7263 
7264 	header->misc = 0;
7265 	header->misc |= perf_misc_flags(regs);
7266 
7267 	__perf_event_header__init_id(header, data, event);
7268 
7269 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7270 		data->ip = perf_instruction_pointer(regs);
7271 
7272 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7273 		int size = 1;
7274 
7275 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7276 			data->callchain = perf_callchain(event, regs);
7277 
7278 		size += data->callchain->nr;
7279 
7280 		header->size += size * sizeof(u64);
7281 	}
7282 
7283 	if (sample_type & PERF_SAMPLE_RAW) {
7284 		struct perf_raw_record *raw = data->raw;
7285 		int size;
7286 
7287 		if (raw) {
7288 			struct perf_raw_frag *frag = &raw->frag;
7289 			u32 sum = 0;
7290 
7291 			do {
7292 				sum += frag->size;
7293 				if (perf_raw_frag_last(frag))
7294 					break;
7295 				frag = frag->next;
7296 			} while (1);
7297 
7298 			size = round_up(sum + sizeof(u32), sizeof(u64));
7299 			raw->size = size - sizeof(u32);
7300 			frag->pad = raw->size - sum;
7301 		} else {
7302 			size = sizeof(u64);
7303 		}
7304 
7305 		header->size += size;
7306 	}
7307 
7308 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7309 		int size = sizeof(u64); /* nr */
7310 		if (data->br_stack) {
7311 			if (perf_sample_save_hw_index(event))
7312 				size += sizeof(u64);
7313 
7314 			size += data->br_stack->nr
7315 			      * sizeof(struct perf_branch_entry);
7316 		}
7317 		header->size += size;
7318 	}
7319 
7320 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7321 		perf_sample_regs_user(&data->regs_user, regs);
7322 
7323 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7324 		/* regs dump ABI info */
7325 		int size = sizeof(u64);
7326 
7327 		if (data->regs_user.regs) {
7328 			u64 mask = event->attr.sample_regs_user;
7329 			size += hweight64(mask) * sizeof(u64);
7330 		}
7331 
7332 		header->size += size;
7333 	}
7334 
7335 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7336 		/*
7337 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7338 		 * processed as the last one or have additional check added
7339 		 * in case new sample type is added, because we could eat
7340 		 * up the rest of the sample size.
7341 		 */
7342 		u16 stack_size = event->attr.sample_stack_user;
7343 		u16 size = sizeof(u64);
7344 
7345 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7346 						     data->regs_user.regs);
7347 
7348 		/*
7349 		 * If there is something to dump, add space for the dump
7350 		 * itself and for the field that tells the dynamic size,
7351 		 * which is how many have been actually dumped.
7352 		 */
7353 		if (stack_size)
7354 			size += sizeof(u64) + stack_size;
7355 
7356 		data->stack_user_size = stack_size;
7357 		header->size += size;
7358 	}
7359 
7360 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7361 		/* regs dump ABI info */
7362 		int size = sizeof(u64);
7363 
7364 		perf_sample_regs_intr(&data->regs_intr, regs);
7365 
7366 		if (data->regs_intr.regs) {
7367 			u64 mask = event->attr.sample_regs_intr;
7368 
7369 			size += hweight64(mask) * sizeof(u64);
7370 		}
7371 
7372 		header->size += size;
7373 	}
7374 
7375 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7376 		data->phys_addr = perf_virt_to_phys(data->addr);
7377 
7378 #ifdef CONFIG_CGROUP_PERF
7379 	if (sample_type & PERF_SAMPLE_CGROUP) {
7380 		struct cgroup *cgrp;
7381 
7382 		/* protected by RCU */
7383 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7384 		data->cgroup = cgroup_id(cgrp);
7385 	}
7386 #endif
7387 
7388 	/*
7389 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7390 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7391 	 * but the value will not dump to the userspace.
7392 	 */
7393 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7394 		data->data_page_size = perf_get_page_size(data->addr);
7395 
7396 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7397 		data->code_page_size = perf_get_page_size(data->ip);
7398 
7399 	if (sample_type & PERF_SAMPLE_AUX) {
7400 		u64 size;
7401 
7402 		header->size += sizeof(u64); /* size */
7403 
7404 		/*
7405 		 * Given the 16bit nature of header::size, an AUX sample can
7406 		 * easily overflow it, what with all the preceding sample bits.
7407 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7408 		 * per sample in total (rounded down to 8 byte boundary).
7409 		 */
7410 		size = min_t(size_t, U16_MAX - header->size,
7411 			     event->attr.aux_sample_size);
7412 		size = rounddown(size, 8);
7413 		size = perf_prepare_sample_aux(event, data, size);
7414 
7415 		WARN_ON_ONCE(size + header->size > U16_MAX);
7416 		header->size += size;
7417 	}
7418 	/*
7419 	 * If you're adding more sample types here, you likely need to do
7420 	 * something about the overflowing header::size, like repurpose the
7421 	 * lowest 3 bits of size, which should be always zero at the moment.
7422 	 * This raises a more important question, do we really need 512k sized
7423 	 * samples and why, so good argumentation is in order for whatever you
7424 	 * do here next.
7425 	 */
7426 	WARN_ON_ONCE(header->size & 7);
7427 }
7428 
7429 static __always_inline int
7430 __perf_event_output(struct perf_event *event,
7431 		    struct perf_sample_data *data,
7432 		    struct pt_regs *regs,
7433 		    int (*output_begin)(struct perf_output_handle *,
7434 					struct perf_sample_data *,
7435 					struct perf_event *,
7436 					unsigned int))
7437 {
7438 	struct perf_output_handle handle;
7439 	struct perf_event_header header;
7440 	int err;
7441 
7442 	/* protect the callchain buffers */
7443 	rcu_read_lock();
7444 
7445 	perf_prepare_sample(&header, data, event, regs);
7446 
7447 	err = output_begin(&handle, data, event, header.size);
7448 	if (err)
7449 		goto exit;
7450 
7451 	perf_output_sample(&handle, &header, data, event);
7452 
7453 	perf_output_end(&handle);
7454 
7455 exit:
7456 	rcu_read_unlock();
7457 	return err;
7458 }
7459 
7460 void
7461 perf_event_output_forward(struct perf_event *event,
7462 			 struct perf_sample_data *data,
7463 			 struct pt_regs *regs)
7464 {
7465 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7466 }
7467 
7468 void
7469 perf_event_output_backward(struct perf_event *event,
7470 			   struct perf_sample_data *data,
7471 			   struct pt_regs *regs)
7472 {
7473 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7474 }
7475 
7476 int
7477 perf_event_output(struct perf_event *event,
7478 		  struct perf_sample_data *data,
7479 		  struct pt_regs *regs)
7480 {
7481 	return __perf_event_output(event, data, regs, perf_output_begin);
7482 }
7483 
7484 /*
7485  * read event_id
7486  */
7487 
7488 struct perf_read_event {
7489 	struct perf_event_header	header;
7490 
7491 	u32				pid;
7492 	u32				tid;
7493 };
7494 
7495 static void
7496 perf_event_read_event(struct perf_event *event,
7497 			struct task_struct *task)
7498 {
7499 	struct perf_output_handle handle;
7500 	struct perf_sample_data sample;
7501 	struct perf_read_event read_event = {
7502 		.header = {
7503 			.type = PERF_RECORD_READ,
7504 			.misc = 0,
7505 			.size = sizeof(read_event) + event->read_size,
7506 		},
7507 		.pid = perf_event_pid(event, task),
7508 		.tid = perf_event_tid(event, task),
7509 	};
7510 	int ret;
7511 
7512 	perf_event_header__init_id(&read_event.header, &sample, event);
7513 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7514 	if (ret)
7515 		return;
7516 
7517 	perf_output_put(&handle, read_event);
7518 	perf_output_read(&handle, event);
7519 	perf_event__output_id_sample(event, &handle, &sample);
7520 
7521 	perf_output_end(&handle);
7522 }
7523 
7524 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7525 
7526 static void
7527 perf_iterate_ctx(struct perf_event_context *ctx,
7528 		   perf_iterate_f output,
7529 		   void *data, bool all)
7530 {
7531 	struct perf_event *event;
7532 
7533 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7534 		if (!all) {
7535 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7536 				continue;
7537 			if (!event_filter_match(event))
7538 				continue;
7539 		}
7540 
7541 		output(event, data);
7542 	}
7543 }
7544 
7545 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7546 {
7547 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7548 	struct perf_event *event;
7549 
7550 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7551 		/*
7552 		 * Skip events that are not fully formed yet; ensure that
7553 		 * if we observe event->ctx, both event and ctx will be
7554 		 * complete enough. See perf_install_in_context().
7555 		 */
7556 		if (!smp_load_acquire(&event->ctx))
7557 			continue;
7558 
7559 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7560 			continue;
7561 		if (!event_filter_match(event))
7562 			continue;
7563 		output(event, data);
7564 	}
7565 }
7566 
7567 /*
7568  * Iterate all events that need to receive side-band events.
7569  *
7570  * For new callers; ensure that account_pmu_sb_event() includes
7571  * your event, otherwise it might not get delivered.
7572  */
7573 static void
7574 perf_iterate_sb(perf_iterate_f output, void *data,
7575 	       struct perf_event_context *task_ctx)
7576 {
7577 	struct perf_event_context *ctx;
7578 	int ctxn;
7579 
7580 	rcu_read_lock();
7581 	preempt_disable();
7582 
7583 	/*
7584 	 * If we have task_ctx != NULL we only notify the task context itself.
7585 	 * The task_ctx is set only for EXIT events before releasing task
7586 	 * context.
7587 	 */
7588 	if (task_ctx) {
7589 		perf_iterate_ctx(task_ctx, output, data, false);
7590 		goto done;
7591 	}
7592 
7593 	perf_iterate_sb_cpu(output, data);
7594 
7595 	for_each_task_context_nr(ctxn) {
7596 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7597 		if (ctx)
7598 			perf_iterate_ctx(ctx, output, data, false);
7599 	}
7600 done:
7601 	preempt_enable();
7602 	rcu_read_unlock();
7603 }
7604 
7605 /*
7606  * Clear all file-based filters at exec, they'll have to be
7607  * re-instated when/if these objects are mmapped again.
7608  */
7609 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7610 {
7611 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7612 	struct perf_addr_filter *filter;
7613 	unsigned int restart = 0, count = 0;
7614 	unsigned long flags;
7615 
7616 	if (!has_addr_filter(event))
7617 		return;
7618 
7619 	raw_spin_lock_irqsave(&ifh->lock, flags);
7620 	list_for_each_entry(filter, &ifh->list, entry) {
7621 		if (filter->path.dentry) {
7622 			event->addr_filter_ranges[count].start = 0;
7623 			event->addr_filter_ranges[count].size = 0;
7624 			restart++;
7625 		}
7626 
7627 		count++;
7628 	}
7629 
7630 	if (restart)
7631 		event->addr_filters_gen++;
7632 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7633 
7634 	if (restart)
7635 		perf_event_stop(event, 1);
7636 }
7637 
7638 void perf_event_exec(void)
7639 {
7640 	struct perf_event_context *ctx;
7641 	int ctxn;
7642 
7643 	for_each_task_context_nr(ctxn) {
7644 		perf_event_enable_on_exec(ctxn);
7645 		perf_event_remove_on_exec(ctxn);
7646 
7647 		rcu_read_lock();
7648 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7649 		if (ctx) {
7650 			perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7651 					 NULL, true);
7652 		}
7653 		rcu_read_unlock();
7654 	}
7655 }
7656 
7657 struct remote_output {
7658 	struct perf_buffer	*rb;
7659 	int			err;
7660 };
7661 
7662 static void __perf_event_output_stop(struct perf_event *event, void *data)
7663 {
7664 	struct perf_event *parent = event->parent;
7665 	struct remote_output *ro = data;
7666 	struct perf_buffer *rb = ro->rb;
7667 	struct stop_event_data sd = {
7668 		.event	= event,
7669 	};
7670 
7671 	if (!has_aux(event))
7672 		return;
7673 
7674 	if (!parent)
7675 		parent = event;
7676 
7677 	/*
7678 	 * In case of inheritance, it will be the parent that links to the
7679 	 * ring-buffer, but it will be the child that's actually using it.
7680 	 *
7681 	 * We are using event::rb to determine if the event should be stopped,
7682 	 * however this may race with ring_buffer_attach() (through set_output),
7683 	 * which will make us skip the event that actually needs to be stopped.
7684 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7685 	 * its rb pointer.
7686 	 */
7687 	if (rcu_dereference(parent->rb) == rb)
7688 		ro->err = __perf_event_stop(&sd);
7689 }
7690 
7691 static int __perf_pmu_output_stop(void *info)
7692 {
7693 	struct perf_event *event = info;
7694 	struct pmu *pmu = event->ctx->pmu;
7695 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7696 	struct remote_output ro = {
7697 		.rb	= event->rb,
7698 	};
7699 
7700 	rcu_read_lock();
7701 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7702 	if (cpuctx->task_ctx)
7703 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7704 				   &ro, false);
7705 	rcu_read_unlock();
7706 
7707 	return ro.err;
7708 }
7709 
7710 static void perf_pmu_output_stop(struct perf_event *event)
7711 {
7712 	struct perf_event *iter;
7713 	int err, cpu;
7714 
7715 restart:
7716 	rcu_read_lock();
7717 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7718 		/*
7719 		 * For per-CPU events, we need to make sure that neither they
7720 		 * nor their children are running; for cpu==-1 events it's
7721 		 * sufficient to stop the event itself if it's active, since
7722 		 * it can't have children.
7723 		 */
7724 		cpu = iter->cpu;
7725 		if (cpu == -1)
7726 			cpu = READ_ONCE(iter->oncpu);
7727 
7728 		if (cpu == -1)
7729 			continue;
7730 
7731 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7732 		if (err == -EAGAIN) {
7733 			rcu_read_unlock();
7734 			goto restart;
7735 		}
7736 	}
7737 	rcu_read_unlock();
7738 }
7739 
7740 /*
7741  * task tracking -- fork/exit
7742  *
7743  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7744  */
7745 
7746 struct perf_task_event {
7747 	struct task_struct		*task;
7748 	struct perf_event_context	*task_ctx;
7749 
7750 	struct {
7751 		struct perf_event_header	header;
7752 
7753 		u32				pid;
7754 		u32				ppid;
7755 		u32				tid;
7756 		u32				ptid;
7757 		u64				time;
7758 	} event_id;
7759 };
7760 
7761 static int perf_event_task_match(struct perf_event *event)
7762 {
7763 	return event->attr.comm  || event->attr.mmap ||
7764 	       event->attr.mmap2 || event->attr.mmap_data ||
7765 	       event->attr.task;
7766 }
7767 
7768 static void perf_event_task_output(struct perf_event *event,
7769 				   void *data)
7770 {
7771 	struct perf_task_event *task_event = data;
7772 	struct perf_output_handle handle;
7773 	struct perf_sample_data	sample;
7774 	struct task_struct *task = task_event->task;
7775 	int ret, size = task_event->event_id.header.size;
7776 
7777 	if (!perf_event_task_match(event))
7778 		return;
7779 
7780 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7781 
7782 	ret = perf_output_begin(&handle, &sample, event,
7783 				task_event->event_id.header.size);
7784 	if (ret)
7785 		goto out;
7786 
7787 	task_event->event_id.pid = perf_event_pid(event, task);
7788 	task_event->event_id.tid = perf_event_tid(event, task);
7789 
7790 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7791 		task_event->event_id.ppid = perf_event_pid(event,
7792 							task->real_parent);
7793 		task_event->event_id.ptid = perf_event_pid(event,
7794 							task->real_parent);
7795 	} else {  /* PERF_RECORD_FORK */
7796 		task_event->event_id.ppid = perf_event_pid(event, current);
7797 		task_event->event_id.ptid = perf_event_tid(event, current);
7798 	}
7799 
7800 	task_event->event_id.time = perf_event_clock(event);
7801 
7802 	perf_output_put(&handle, task_event->event_id);
7803 
7804 	perf_event__output_id_sample(event, &handle, &sample);
7805 
7806 	perf_output_end(&handle);
7807 out:
7808 	task_event->event_id.header.size = size;
7809 }
7810 
7811 static void perf_event_task(struct task_struct *task,
7812 			      struct perf_event_context *task_ctx,
7813 			      int new)
7814 {
7815 	struct perf_task_event task_event;
7816 
7817 	if (!atomic_read(&nr_comm_events) &&
7818 	    !atomic_read(&nr_mmap_events) &&
7819 	    !atomic_read(&nr_task_events))
7820 		return;
7821 
7822 	task_event = (struct perf_task_event){
7823 		.task	  = task,
7824 		.task_ctx = task_ctx,
7825 		.event_id    = {
7826 			.header = {
7827 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7828 				.misc = 0,
7829 				.size = sizeof(task_event.event_id),
7830 			},
7831 			/* .pid  */
7832 			/* .ppid */
7833 			/* .tid  */
7834 			/* .ptid */
7835 			/* .time */
7836 		},
7837 	};
7838 
7839 	perf_iterate_sb(perf_event_task_output,
7840 		       &task_event,
7841 		       task_ctx);
7842 }
7843 
7844 void perf_event_fork(struct task_struct *task)
7845 {
7846 	perf_event_task(task, NULL, 1);
7847 	perf_event_namespaces(task);
7848 }
7849 
7850 /*
7851  * comm tracking
7852  */
7853 
7854 struct perf_comm_event {
7855 	struct task_struct	*task;
7856 	char			*comm;
7857 	int			comm_size;
7858 
7859 	struct {
7860 		struct perf_event_header	header;
7861 
7862 		u32				pid;
7863 		u32				tid;
7864 	} event_id;
7865 };
7866 
7867 static int perf_event_comm_match(struct perf_event *event)
7868 {
7869 	return event->attr.comm;
7870 }
7871 
7872 static void perf_event_comm_output(struct perf_event *event,
7873 				   void *data)
7874 {
7875 	struct perf_comm_event *comm_event = data;
7876 	struct perf_output_handle handle;
7877 	struct perf_sample_data sample;
7878 	int size = comm_event->event_id.header.size;
7879 	int ret;
7880 
7881 	if (!perf_event_comm_match(event))
7882 		return;
7883 
7884 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7885 	ret = perf_output_begin(&handle, &sample, event,
7886 				comm_event->event_id.header.size);
7887 
7888 	if (ret)
7889 		goto out;
7890 
7891 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7892 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7893 
7894 	perf_output_put(&handle, comm_event->event_id);
7895 	__output_copy(&handle, comm_event->comm,
7896 				   comm_event->comm_size);
7897 
7898 	perf_event__output_id_sample(event, &handle, &sample);
7899 
7900 	perf_output_end(&handle);
7901 out:
7902 	comm_event->event_id.header.size = size;
7903 }
7904 
7905 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7906 {
7907 	char comm[TASK_COMM_LEN];
7908 	unsigned int size;
7909 
7910 	memset(comm, 0, sizeof(comm));
7911 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7912 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7913 
7914 	comm_event->comm = comm;
7915 	comm_event->comm_size = size;
7916 
7917 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7918 
7919 	perf_iterate_sb(perf_event_comm_output,
7920 		       comm_event,
7921 		       NULL);
7922 }
7923 
7924 void perf_event_comm(struct task_struct *task, bool exec)
7925 {
7926 	struct perf_comm_event comm_event;
7927 
7928 	if (!atomic_read(&nr_comm_events))
7929 		return;
7930 
7931 	comm_event = (struct perf_comm_event){
7932 		.task	= task,
7933 		/* .comm      */
7934 		/* .comm_size */
7935 		.event_id  = {
7936 			.header = {
7937 				.type = PERF_RECORD_COMM,
7938 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7939 				/* .size */
7940 			},
7941 			/* .pid */
7942 			/* .tid */
7943 		},
7944 	};
7945 
7946 	perf_event_comm_event(&comm_event);
7947 }
7948 
7949 /*
7950  * namespaces tracking
7951  */
7952 
7953 struct perf_namespaces_event {
7954 	struct task_struct		*task;
7955 
7956 	struct {
7957 		struct perf_event_header	header;
7958 
7959 		u32				pid;
7960 		u32				tid;
7961 		u64				nr_namespaces;
7962 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7963 	} event_id;
7964 };
7965 
7966 static int perf_event_namespaces_match(struct perf_event *event)
7967 {
7968 	return event->attr.namespaces;
7969 }
7970 
7971 static void perf_event_namespaces_output(struct perf_event *event,
7972 					 void *data)
7973 {
7974 	struct perf_namespaces_event *namespaces_event = data;
7975 	struct perf_output_handle handle;
7976 	struct perf_sample_data sample;
7977 	u16 header_size = namespaces_event->event_id.header.size;
7978 	int ret;
7979 
7980 	if (!perf_event_namespaces_match(event))
7981 		return;
7982 
7983 	perf_event_header__init_id(&namespaces_event->event_id.header,
7984 				   &sample, event);
7985 	ret = perf_output_begin(&handle, &sample, event,
7986 				namespaces_event->event_id.header.size);
7987 	if (ret)
7988 		goto out;
7989 
7990 	namespaces_event->event_id.pid = perf_event_pid(event,
7991 							namespaces_event->task);
7992 	namespaces_event->event_id.tid = perf_event_tid(event,
7993 							namespaces_event->task);
7994 
7995 	perf_output_put(&handle, namespaces_event->event_id);
7996 
7997 	perf_event__output_id_sample(event, &handle, &sample);
7998 
7999 	perf_output_end(&handle);
8000 out:
8001 	namespaces_event->event_id.header.size = header_size;
8002 }
8003 
8004 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8005 				   struct task_struct *task,
8006 				   const struct proc_ns_operations *ns_ops)
8007 {
8008 	struct path ns_path;
8009 	struct inode *ns_inode;
8010 	int error;
8011 
8012 	error = ns_get_path(&ns_path, task, ns_ops);
8013 	if (!error) {
8014 		ns_inode = ns_path.dentry->d_inode;
8015 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8016 		ns_link_info->ino = ns_inode->i_ino;
8017 		path_put(&ns_path);
8018 	}
8019 }
8020 
8021 void perf_event_namespaces(struct task_struct *task)
8022 {
8023 	struct perf_namespaces_event namespaces_event;
8024 	struct perf_ns_link_info *ns_link_info;
8025 
8026 	if (!atomic_read(&nr_namespaces_events))
8027 		return;
8028 
8029 	namespaces_event = (struct perf_namespaces_event){
8030 		.task	= task,
8031 		.event_id  = {
8032 			.header = {
8033 				.type = PERF_RECORD_NAMESPACES,
8034 				.misc = 0,
8035 				.size = sizeof(namespaces_event.event_id),
8036 			},
8037 			/* .pid */
8038 			/* .tid */
8039 			.nr_namespaces = NR_NAMESPACES,
8040 			/* .link_info[NR_NAMESPACES] */
8041 		},
8042 	};
8043 
8044 	ns_link_info = namespaces_event.event_id.link_info;
8045 
8046 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8047 			       task, &mntns_operations);
8048 
8049 #ifdef CONFIG_USER_NS
8050 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8051 			       task, &userns_operations);
8052 #endif
8053 #ifdef CONFIG_NET_NS
8054 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8055 			       task, &netns_operations);
8056 #endif
8057 #ifdef CONFIG_UTS_NS
8058 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8059 			       task, &utsns_operations);
8060 #endif
8061 #ifdef CONFIG_IPC_NS
8062 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8063 			       task, &ipcns_operations);
8064 #endif
8065 #ifdef CONFIG_PID_NS
8066 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8067 			       task, &pidns_operations);
8068 #endif
8069 #ifdef CONFIG_CGROUPS
8070 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8071 			       task, &cgroupns_operations);
8072 #endif
8073 
8074 	perf_iterate_sb(perf_event_namespaces_output,
8075 			&namespaces_event,
8076 			NULL);
8077 }
8078 
8079 /*
8080  * cgroup tracking
8081  */
8082 #ifdef CONFIG_CGROUP_PERF
8083 
8084 struct perf_cgroup_event {
8085 	char				*path;
8086 	int				path_size;
8087 	struct {
8088 		struct perf_event_header	header;
8089 		u64				id;
8090 		char				path[];
8091 	} event_id;
8092 };
8093 
8094 static int perf_event_cgroup_match(struct perf_event *event)
8095 {
8096 	return event->attr.cgroup;
8097 }
8098 
8099 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8100 {
8101 	struct perf_cgroup_event *cgroup_event = data;
8102 	struct perf_output_handle handle;
8103 	struct perf_sample_data sample;
8104 	u16 header_size = cgroup_event->event_id.header.size;
8105 	int ret;
8106 
8107 	if (!perf_event_cgroup_match(event))
8108 		return;
8109 
8110 	perf_event_header__init_id(&cgroup_event->event_id.header,
8111 				   &sample, event);
8112 	ret = perf_output_begin(&handle, &sample, event,
8113 				cgroup_event->event_id.header.size);
8114 	if (ret)
8115 		goto out;
8116 
8117 	perf_output_put(&handle, cgroup_event->event_id);
8118 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8119 
8120 	perf_event__output_id_sample(event, &handle, &sample);
8121 
8122 	perf_output_end(&handle);
8123 out:
8124 	cgroup_event->event_id.header.size = header_size;
8125 }
8126 
8127 static void perf_event_cgroup(struct cgroup *cgrp)
8128 {
8129 	struct perf_cgroup_event cgroup_event;
8130 	char path_enomem[16] = "//enomem";
8131 	char *pathname;
8132 	size_t size;
8133 
8134 	if (!atomic_read(&nr_cgroup_events))
8135 		return;
8136 
8137 	cgroup_event = (struct perf_cgroup_event){
8138 		.event_id  = {
8139 			.header = {
8140 				.type = PERF_RECORD_CGROUP,
8141 				.misc = 0,
8142 				.size = sizeof(cgroup_event.event_id),
8143 			},
8144 			.id = cgroup_id(cgrp),
8145 		},
8146 	};
8147 
8148 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8149 	if (pathname == NULL) {
8150 		cgroup_event.path = path_enomem;
8151 	} else {
8152 		/* just to be sure to have enough space for alignment */
8153 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8154 		cgroup_event.path = pathname;
8155 	}
8156 
8157 	/*
8158 	 * Since our buffer works in 8 byte units we need to align our string
8159 	 * size to a multiple of 8. However, we must guarantee the tail end is
8160 	 * zero'd out to avoid leaking random bits to userspace.
8161 	 */
8162 	size = strlen(cgroup_event.path) + 1;
8163 	while (!IS_ALIGNED(size, sizeof(u64)))
8164 		cgroup_event.path[size++] = '\0';
8165 
8166 	cgroup_event.event_id.header.size += size;
8167 	cgroup_event.path_size = size;
8168 
8169 	perf_iterate_sb(perf_event_cgroup_output,
8170 			&cgroup_event,
8171 			NULL);
8172 
8173 	kfree(pathname);
8174 }
8175 
8176 #endif
8177 
8178 /*
8179  * mmap tracking
8180  */
8181 
8182 struct perf_mmap_event {
8183 	struct vm_area_struct	*vma;
8184 
8185 	const char		*file_name;
8186 	int			file_size;
8187 	int			maj, min;
8188 	u64			ino;
8189 	u64			ino_generation;
8190 	u32			prot, flags;
8191 	u8			build_id[BUILD_ID_SIZE_MAX];
8192 	u32			build_id_size;
8193 
8194 	struct {
8195 		struct perf_event_header	header;
8196 
8197 		u32				pid;
8198 		u32				tid;
8199 		u64				start;
8200 		u64				len;
8201 		u64				pgoff;
8202 	} event_id;
8203 };
8204 
8205 static int perf_event_mmap_match(struct perf_event *event,
8206 				 void *data)
8207 {
8208 	struct perf_mmap_event *mmap_event = data;
8209 	struct vm_area_struct *vma = mmap_event->vma;
8210 	int executable = vma->vm_flags & VM_EXEC;
8211 
8212 	return (!executable && event->attr.mmap_data) ||
8213 	       (executable && (event->attr.mmap || event->attr.mmap2));
8214 }
8215 
8216 static void perf_event_mmap_output(struct perf_event *event,
8217 				   void *data)
8218 {
8219 	struct perf_mmap_event *mmap_event = data;
8220 	struct perf_output_handle handle;
8221 	struct perf_sample_data sample;
8222 	int size = mmap_event->event_id.header.size;
8223 	u32 type = mmap_event->event_id.header.type;
8224 	bool use_build_id;
8225 	int ret;
8226 
8227 	if (!perf_event_mmap_match(event, data))
8228 		return;
8229 
8230 	if (event->attr.mmap2) {
8231 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8232 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8233 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8234 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8235 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8236 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8237 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8238 	}
8239 
8240 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8241 	ret = perf_output_begin(&handle, &sample, event,
8242 				mmap_event->event_id.header.size);
8243 	if (ret)
8244 		goto out;
8245 
8246 	mmap_event->event_id.pid = perf_event_pid(event, current);
8247 	mmap_event->event_id.tid = perf_event_tid(event, current);
8248 
8249 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8250 
8251 	if (event->attr.mmap2 && use_build_id)
8252 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8253 
8254 	perf_output_put(&handle, mmap_event->event_id);
8255 
8256 	if (event->attr.mmap2) {
8257 		if (use_build_id) {
8258 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8259 
8260 			__output_copy(&handle, size, 4);
8261 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8262 		} else {
8263 			perf_output_put(&handle, mmap_event->maj);
8264 			perf_output_put(&handle, mmap_event->min);
8265 			perf_output_put(&handle, mmap_event->ino);
8266 			perf_output_put(&handle, mmap_event->ino_generation);
8267 		}
8268 		perf_output_put(&handle, mmap_event->prot);
8269 		perf_output_put(&handle, mmap_event->flags);
8270 	}
8271 
8272 	__output_copy(&handle, mmap_event->file_name,
8273 				   mmap_event->file_size);
8274 
8275 	perf_event__output_id_sample(event, &handle, &sample);
8276 
8277 	perf_output_end(&handle);
8278 out:
8279 	mmap_event->event_id.header.size = size;
8280 	mmap_event->event_id.header.type = type;
8281 }
8282 
8283 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8284 {
8285 	struct vm_area_struct *vma = mmap_event->vma;
8286 	struct file *file = vma->vm_file;
8287 	int maj = 0, min = 0;
8288 	u64 ino = 0, gen = 0;
8289 	u32 prot = 0, flags = 0;
8290 	unsigned int size;
8291 	char tmp[16];
8292 	char *buf = NULL;
8293 	char *name;
8294 
8295 	if (vma->vm_flags & VM_READ)
8296 		prot |= PROT_READ;
8297 	if (vma->vm_flags & VM_WRITE)
8298 		prot |= PROT_WRITE;
8299 	if (vma->vm_flags & VM_EXEC)
8300 		prot |= PROT_EXEC;
8301 
8302 	if (vma->vm_flags & VM_MAYSHARE)
8303 		flags = MAP_SHARED;
8304 	else
8305 		flags = MAP_PRIVATE;
8306 
8307 	if (vma->vm_flags & VM_DENYWRITE)
8308 		flags |= MAP_DENYWRITE;
8309 	if (vma->vm_flags & VM_MAYEXEC)
8310 		flags |= MAP_EXECUTABLE;
8311 	if (vma->vm_flags & VM_LOCKED)
8312 		flags |= MAP_LOCKED;
8313 	if (is_vm_hugetlb_page(vma))
8314 		flags |= MAP_HUGETLB;
8315 
8316 	if (file) {
8317 		struct inode *inode;
8318 		dev_t dev;
8319 
8320 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8321 		if (!buf) {
8322 			name = "//enomem";
8323 			goto cpy_name;
8324 		}
8325 		/*
8326 		 * d_path() works from the end of the rb backwards, so we
8327 		 * need to add enough zero bytes after the string to handle
8328 		 * the 64bit alignment we do later.
8329 		 */
8330 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8331 		if (IS_ERR(name)) {
8332 			name = "//toolong";
8333 			goto cpy_name;
8334 		}
8335 		inode = file_inode(vma->vm_file);
8336 		dev = inode->i_sb->s_dev;
8337 		ino = inode->i_ino;
8338 		gen = inode->i_generation;
8339 		maj = MAJOR(dev);
8340 		min = MINOR(dev);
8341 
8342 		goto got_name;
8343 	} else {
8344 		if (vma->vm_ops && vma->vm_ops->name) {
8345 			name = (char *) vma->vm_ops->name(vma);
8346 			if (name)
8347 				goto cpy_name;
8348 		}
8349 
8350 		name = (char *)arch_vma_name(vma);
8351 		if (name)
8352 			goto cpy_name;
8353 
8354 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8355 				vma->vm_end >= vma->vm_mm->brk) {
8356 			name = "[heap]";
8357 			goto cpy_name;
8358 		}
8359 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8360 				vma->vm_end >= vma->vm_mm->start_stack) {
8361 			name = "[stack]";
8362 			goto cpy_name;
8363 		}
8364 
8365 		name = "//anon";
8366 		goto cpy_name;
8367 	}
8368 
8369 cpy_name:
8370 	strlcpy(tmp, name, sizeof(tmp));
8371 	name = tmp;
8372 got_name:
8373 	/*
8374 	 * Since our buffer works in 8 byte units we need to align our string
8375 	 * size to a multiple of 8. However, we must guarantee the tail end is
8376 	 * zero'd out to avoid leaking random bits to userspace.
8377 	 */
8378 	size = strlen(name)+1;
8379 	while (!IS_ALIGNED(size, sizeof(u64)))
8380 		name[size++] = '\0';
8381 
8382 	mmap_event->file_name = name;
8383 	mmap_event->file_size = size;
8384 	mmap_event->maj = maj;
8385 	mmap_event->min = min;
8386 	mmap_event->ino = ino;
8387 	mmap_event->ino_generation = gen;
8388 	mmap_event->prot = prot;
8389 	mmap_event->flags = flags;
8390 
8391 	if (!(vma->vm_flags & VM_EXEC))
8392 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8393 
8394 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8395 
8396 	if (atomic_read(&nr_build_id_events))
8397 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8398 
8399 	perf_iterate_sb(perf_event_mmap_output,
8400 		       mmap_event,
8401 		       NULL);
8402 
8403 	kfree(buf);
8404 }
8405 
8406 /*
8407  * Check whether inode and address range match filter criteria.
8408  */
8409 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8410 				     struct file *file, unsigned long offset,
8411 				     unsigned long size)
8412 {
8413 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8414 	if (!filter->path.dentry)
8415 		return false;
8416 
8417 	if (d_inode(filter->path.dentry) != file_inode(file))
8418 		return false;
8419 
8420 	if (filter->offset > offset + size)
8421 		return false;
8422 
8423 	if (filter->offset + filter->size < offset)
8424 		return false;
8425 
8426 	return true;
8427 }
8428 
8429 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8430 					struct vm_area_struct *vma,
8431 					struct perf_addr_filter_range *fr)
8432 {
8433 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8434 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8435 	struct file *file = vma->vm_file;
8436 
8437 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8438 		return false;
8439 
8440 	if (filter->offset < off) {
8441 		fr->start = vma->vm_start;
8442 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8443 	} else {
8444 		fr->start = vma->vm_start + filter->offset - off;
8445 		fr->size = min(vma->vm_end - fr->start, filter->size);
8446 	}
8447 
8448 	return true;
8449 }
8450 
8451 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8452 {
8453 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8454 	struct vm_area_struct *vma = data;
8455 	struct perf_addr_filter *filter;
8456 	unsigned int restart = 0, count = 0;
8457 	unsigned long flags;
8458 
8459 	if (!has_addr_filter(event))
8460 		return;
8461 
8462 	if (!vma->vm_file)
8463 		return;
8464 
8465 	raw_spin_lock_irqsave(&ifh->lock, flags);
8466 	list_for_each_entry(filter, &ifh->list, entry) {
8467 		if (perf_addr_filter_vma_adjust(filter, vma,
8468 						&event->addr_filter_ranges[count]))
8469 			restart++;
8470 
8471 		count++;
8472 	}
8473 
8474 	if (restart)
8475 		event->addr_filters_gen++;
8476 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8477 
8478 	if (restart)
8479 		perf_event_stop(event, 1);
8480 }
8481 
8482 /*
8483  * Adjust all task's events' filters to the new vma
8484  */
8485 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8486 {
8487 	struct perf_event_context *ctx;
8488 	int ctxn;
8489 
8490 	/*
8491 	 * Data tracing isn't supported yet and as such there is no need
8492 	 * to keep track of anything that isn't related to executable code:
8493 	 */
8494 	if (!(vma->vm_flags & VM_EXEC))
8495 		return;
8496 
8497 	rcu_read_lock();
8498 	for_each_task_context_nr(ctxn) {
8499 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8500 		if (!ctx)
8501 			continue;
8502 
8503 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8504 	}
8505 	rcu_read_unlock();
8506 }
8507 
8508 void perf_event_mmap(struct vm_area_struct *vma)
8509 {
8510 	struct perf_mmap_event mmap_event;
8511 
8512 	if (!atomic_read(&nr_mmap_events))
8513 		return;
8514 
8515 	mmap_event = (struct perf_mmap_event){
8516 		.vma	= vma,
8517 		/* .file_name */
8518 		/* .file_size */
8519 		.event_id  = {
8520 			.header = {
8521 				.type = PERF_RECORD_MMAP,
8522 				.misc = PERF_RECORD_MISC_USER,
8523 				/* .size */
8524 			},
8525 			/* .pid */
8526 			/* .tid */
8527 			.start  = vma->vm_start,
8528 			.len    = vma->vm_end - vma->vm_start,
8529 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8530 		},
8531 		/* .maj (attr_mmap2 only) */
8532 		/* .min (attr_mmap2 only) */
8533 		/* .ino (attr_mmap2 only) */
8534 		/* .ino_generation (attr_mmap2 only) */
8535 		/* .prot (attr_mmap2 only) */
8536 		/* .flags (attr_mmap2 only) */
8537 	};
8538 
8539 	perf_addr_filters_adjust(vma);
8540 	perf_event_mmap_event(&mmap_event);
8541 }
8542 
8543 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8544 			  unsigned long size, u64 flags)
8545 {
8546 	struct perf_output_handle handle;
8547 	struct perf_sample_data sample;
8548 	struct perf_aux_event {
8549 		struct perf_event_header	header;
8550 		u64				offset;
8551 		u64				size;
8552 		u64				flags;
8553 	} rec = {
8554 		.header = {
8555 			.type = PERF_RECORD_AUX,
8556 			.misc = 0,
8557 			.size = sizeof(rec),
8558 		},
8559 		.offset		= head,
8560 		.size		= size,
8561 		.flags		= flags,
8562 	};
8563 	int ret;
8564 
8565 	perf_event_header__init_id(&rec.header, &sample, event);
8566 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8567 
8568 	if (ret)
8569 		return;
8570 
8571 	perf_output_put(&handle, rec);
8572 	perf_event__output_id_sample(event, &handle, &sample);
8573 
8574 	perf_output_end(&handle);
8575 }
8576 
8577 /*
8578  * Lost/dropped samples logging
8579  */
8580 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8581 {
8582 	struct perf_output_handle handle;
8583 	struct perf_sample_data sample;
8584 	int ret;
8585 
8586 	struct {
8587 		struct perf_event_header	header;
8588 		u64				lost;
8589 	} lost_samples_event = {
8590 		.header = {
8591 			.type = PERF_RECORD_LOST_SAMPLES,
8592 			.misc = 0,
8593 			.size = sizeof(lost_samples_event),
8594 		},
8595 		.lost		= lost,
8596 	};
8597 
8598 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8599 
8600 	ret = perf_output_begin(&handle, &sample, event,
8601 				lost_samples_event.header.size);
8602 	if (ret)
8603 		return;
8604 
8605 	perf_output_put(&handle, lost_samples_event);
8606 	perf_event__output_id_sample(event, &handle, &sample);
8607 	perf_output_end(&handle);
8608 }
8609 
8610 /*
8611  * context_switch tracking
8612  */
8613 
8614 struct perf_switch_event {
8615 	struct task_struct	*task;
8616 	struct task_struct	*next_prev;
8617 
8618 	struct {
8619 		struct perf_event_header	header;
8620 		u32				next_prev_pid;
8621 		u32				next_prev_tid;
8622 	} event_id;
8623 };
8624 
8625 static int perf_event_switch_match(struct perf_event *event)
8626 {
8627 	return event->attr.context_switch;
8628 }
8629 
8630 static void perf_event_switch_output(struct perf_event *event, void *data)
8631 {
8632 	struct perf_switch_event *se = data;
8633 	struct perf_output_handle handle;
8634 	struct perf_sample_data sample;
8635 	int ret;
8636 
8637 	if (!perf_event_switch_match(event))
8638 		return;
8639 
8640 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8641 	if (event->ctx->task) {
8642 		se->event_id.header.type = PERF_RECORD_SWITCH;
8643 		se->event_id.header.size = sizeof(se->event_id.header);
8644 	} else {
8645 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8646 		se->event_id.header.size = sizeof(se->event_id);
8647 		se->event_id.next_prev_pid =
8648 					perf_event_pid(event, se->next_prev);
8649 		se->event_id.next_prev_tid =
8650 					perf_event_tid(event, se->next_prev);
8651 	}
8652 
8653 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8654 
8655 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8656 	if (ret)
8657 		return;
8658 
8659 	if (event->ctx->task)
8660 		perf_output_put(&handle, se->event_id.header);
8661 	else
8662 		perf_output_put(&handle, se->event_id);
8663 
8664 	perf_event__output_id_sample(event, &handle, &sample);
8665 
8666 	perf_output_end(&handle);
8667 }
8668 
8669 static void perf_event_switch(struct task_struct *task,
8670 			      struct task_struct *next_prev, bool sched_in)
8671 {
8672 	struct perf_switch_event switch_event;
8673 
8674 	/* N.B. caller checks nr_switch_events != 0 */
8675 
8676 	switch_event = (struct perf_switch_event){
8677 		.task		= task,
8678 		.next_prev	= next_prev,
8679 		.event_id	= {
8680 			.header = {
8681 				/* .type */
8682 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8683 				/* .size */
8684 			},
8685 			/* .next_prev_pid */
8686 			/* .next_prev_tid */
8687 		},
8688 	};
8689 
8690 	if (!sched_in && task->state == TASK_RUNNING)
8691 		switch_event.event_id.header.misc |=
8692 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8693 
8694 	perf_iterate_sb(perf_event_switch_output,
8695 		       &switch_event,
8696 		       NULL);
8697 }
8698 
8699 /*
8700  * IRQ throttle logging
8701  */
8702 
8703 static void perf_log_throttle(struct perf_event *event, int enable)
8704 {
8705 	struct perf_output_handle handle;
8706 	struct perf_sample_data sample;
8707 	int ret;
8708 
8709 	struct {
8710 		struct perf_event_header	header;
8711 		u64				time;
8712 		u64				id;
8713 		u64				stream_id;
8714 	} throttle_event = {
8715 		.header = {
8716 			.type = PERF_RECORD_THROTTLE,
8717 			.misc = 0,
8718 			.size = sizeof(throttle_event),
8719 		},
8720 		.time		= perf_event_clock(event),
8721 		.id		= primary_event_id(event),
8722 		.stream_id	= event->id,
8723 	};
8724 
8725 	if (enable)
8726 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8727 
8728 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8729 
8730 	ret = perf_output_begin(&handle, &sample, event,
8731 				throttle_event.header.size);
8732 	if (ret)
8733 		return;
8734 
8735 	perf_output_put(&handle, throttle_event);
8736 	perf_event__output_id_sample(event, &handle, &sample);
8737 	perf_output_end(&handle);
8738 }
8739 
8740 /*
8741  * ksymbol register/unregister tracking
8742  */
8743 
8744 struct perf_ksymbol_event {
8745 	const char	*name;
8746 	int		name_len;
8747 	struct {
8748 		struct perf_event_header        header;
8749 		u64				addr;
8750 		u32				len;
8751 		u16				ksym_type;
8752 		u16				flags;
8753 	} event_id;
8754 };
8755 
8756 static int perf_event_ksymbol_match(struct perf_event *event)
8757 {
8758 	return event->attr.ksymbol;
8759 }
8760 
8761 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8762 {
8763 	struct perf_ksymbol_event *ksymbol_event = data;
8764 	struct perf_output_handle handle;
8765 	struct perf_sample_data sample;
8766 	int ret;
8767 
8768 	if (!perf_event_ksymbol_match(event))
8769 		return;
8770 
8771 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8772 				   &sample, event);
8773 	ret = perf_output_begin(&handle, &sample, event,
8774 				ksymbol_event->event_id.header.size);
8775 	if (ret)
8776 		return;
8777 
8778 	perf_output_put(&handle, ksymbol_event->event_id);
8779 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8780 	perf_event__output_id_sample(event, &handle, &sample);
8781 
8782 	perf_output_end(&handle);
8783 }
8784 
8785 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8786 			const char *sym)
8787 {
8788 	struct perf_ksymbol_event ksymbol_event;
8789 	char name[KSYM_NAME_LEN];
8790 	u16 flags = 0;
8791 	int name_len;
8792 
8793 	if (!atomic_read(&nr_ksymbol_events))
8794 		return;
8795 
8796 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8797 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8798 		goto err;
8799 
8800 	strlcpy(name, sym, KSYM_NAME_LEN);
8801 	name_len = strlen(name) + 1;
8802 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8803 		name[name_len++] = '\0';
8804 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8805 
8806 	if (unregister)
8807 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8808 
8809 	ksymbol_event = (struct perf_ksymbol_event){
8810 		.name = name,
8811 		.name_len = name_len,
8812 		.event_id = {
8813 			.header = {
8814 				.type = PERF_RECORD_KSYMBOL,
8815 				.size = sizeof(ksymbol_event.event_id) +
8816 					name_len,
8817 			},
8818 			.addr = addr,
8819 			.len = len,
8820 			.ksym_type = ksym_type,
8821 			.flags = flags,
8822 		},
8823 	};
8824 
8825 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8826 	return;
8827 err:
8828 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8829 }
8830 
8831 /*
8832  * bpf program load/unload tracking
8833  */
8834 
8835 struct perf_bpf_event {
8836 	struct bpf_prog	*prog;
8837 	struct {
8838 		struct perf_event_header        header;
8839 		u16				type;
8840 		u16				flags;
8841 		u32				id;
8842 		u8				tag[BPF_TAG_SIZE];
8843 	} event_id;
8844 };
8845 
8846 static int perf_event_bpf_match(struct perf_event *event)
8847 {
8848 	return event->attr.bpf_event;
8849 }
8850 
8851 static void perf_event_bpf_output(struct perf_event *event, void *data)
8852 {
8853 	struct perf_bpf_event *bpf_event = data;
8854 	struct perf_output_handle handle;
8855 	struct perf_sample_data sample;
8856 	int ret;
8857 
8858 	if (!perf_event_bpf_match(event))
8859 		return;
8860 
8861 	perf_event_header__init_id(&bpf_event->event_id.header,
8862 				   &sample, event);
8863 	ret = perf_output_begin(&handle, data, event,
8864 				bpf_event->event_id.header.size);
8865 	if (ret)
8866 		return;
8867 
8868 	perf_output_put(&handle, bpf_event->event_id);
8869 	perf_event__output_id_sample(event, &handle, &sample);
8870 
8871 	perf_output_end(&handle);
8872 }
8873 
8874 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8875 					 enum perf_bpf_event_type type)
8876 {
8877 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8878 	int i;
8879 
8880 	if (prog->aux->func_cnt == 0) {
8881 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8882 				   (u64)(unsigned long)prog->bpf_func,
8883 				   prog->jited_len, unregister,
8884 				   prog->aux->ksym.name);
8885 	} else {
8886 		for (i = 0; i < prog->aux->func_cnt; i++) {
8887 			struct bpf_prog *subprog = prog->aux->func[i];
8888 
8889 			perf_event_ksymbol(
8890 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8891 				(u64)(unsigned long)subprog->bpf_func,
8892 				subprog->jited_len, unregister,
8893 				prog->aux->ksym.name);
8894 		}
8895 	}
8896 }
8897 
8898 void perf_event_bpf_event(struct bpf_prog *prog,
8899 			  enum perf_bpf_event_type type,
8900 			  u16 flags)
8901 {
8902 	struct perf_bpf_event bpf_event;
8903 
8904 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8905 	    type >= PERF_BPF_EVENT_MAX)
8906 		return;
8907 
8908 	switch (type) {
8909 	case PERF_BPF_EVENT_PROG_LOAD:
8910 	case PERF_BPF_EVENT_PROG_UNLOAD:
8911 		if (atomic_read(&nr_ksymbol_events))
8912 			perf_event_bpf_emit_ksymbols(prog, type);
8913 		break;
8914 	default:
8915 		break;
8916 	}
8917 
8918 	if (!atomic_read(&nr_bpf_events))
8919 		return;
8920 
8921 	bpf_event = (struct perf_bpf_event){
8922 		.prog = prog,
8923 		.event_id = {
8924 			.header = {
8925 				.type = PERF_RECORD_BPF_EVENT,
8926 				.size = sizeof(bpf_event.event_id),
8927 			},
8928 			.type = type,
8929 			.flags = flags,
8930 			.id = prog->aux->id,
8931 		},
8932 	};
8933 
8934 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8935 
8936 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8937 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8938 }
8939 
8940 struct perf_text_poke_event {
8941 	const void		*old_bytes;
8942 	const void		*new_bytes;
8943 	size_t			pad;
8944 	u16			old_len;
8945 	u16			new_len;
8946 
8947 	struct {
8948 		struct perf_event_header	header;
8949 
8950 		u64				addr;
8951 	} event_id;
8952 };
8953 
8954 static int perf_event_text_poke_match(struct perf_event *event)
8955 {
8956 	return event->attr.text_poke;
8957 }
8958 
8959 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8960 {
8961 	struct perf_text_poke_event *text_poke_event = data;
8962 	struct perf_output_handle handle;
8963 	struct perf_sample_data sample;
8964 	u64 padding = 0;
8965 	int ret;
8966 
8967 	if (!perf_event_text_poke_match(event))
8968 		return;
8969 
8970 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8971 
8972 	ret = perf_output_begin(&handle, &sample, event,
8973 				text_poke_event->event_id.header.size);
8974 	if (ret)
8975 		return;
8976 
8977 	perf_output_put(&handle, text_poke_event->event_id);
8978 	perf_output_put(&handle, text_poke_event->old_len);
8979 	perf_output_put(&handle, text_poke_event->new_len);
8980 
8981 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8982 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8983 
8984 	if (text_poke_event->pad)
8985 		__output_copy(&handle, &padding, text_poke_event->pad);
8986 
8987 	perf_event__output_id_sample(event, &handle, &sample);
8988 
8989 	perf_output_end(&handle);
8990 }
8991 
8992 void perf_event_text_poke(const void *addr, const void *old_bytes,
8993 			  size_t old_len, const void *new_bytes, size_t new_len)
8994 {
8995 	struct perf_text_poke_event text_poke_event;
8996 	size_t tot, pad;
8997 
8998 	if (!atomic_read(&nr_text_poke_events))
8999 		return;
9000 
9001 	tot  = sizeof(text_poke_event.old_len) + old_len;
9002 	tot += sizeof(text_poke_event.new_len) + new_len;
9003 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9004 
9005 	text_poke_event = (struct perf_text_poke_event){
9006 		.old_bytes    = old_bytes,
9007 		.new_bytes    = new_bytes,
9008 		.pad          = pad,
9009 		.old_len      = old_len,
9010 		.new_len      = new_len,
9011 		.event_id  = {
9012 			.header = {
9013 				.type = PERF_RECORD_TEXT_POKE,
9014 				.misc = PERF_RECORD_MISC_KERNEL,
9015 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9016 			},
9017 			.addr = (unsigned long)addr,
9018 		},
9019 	};
9020 
9021 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9022 }
9023 
9024 void perf_event_itrace_started(struct perf_event *event)
9025 {
9026 	event->attach_state |= PERF_ATTACH_ITRACE;
9027 }
9028 
9029 static void perf_log_itrace_start(struct perf_event *event)
9030 {
9031 	struct perf_output_handle handle;
9032 	struct perf_sample_data sample;
9033 	struct perf_aux_event {
9034 		struct perf_event_header        header;
9035 		u32				pid;
9036 		u32				tid;
9037 	} rec;
9038 	int ret;
9039 
9040 	if (event->parent)
9041 		event = event->parent;
9042 
9043 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9044 	    event->attach_state & PERF_ATTACH_ITRACE)
9045 		return;
9046 
9047 	rec.header.type	= PERF_RECORD_ITRACE_START;
9048 	rec.header.misc	= 0;
9049 	rec.header.size	= sizeof(rec);
9050 	rec.pid	= perf_event_pid(event, current);
9051 	rec.tid	= perf_event_tid(event, current);
9052 
9053 	perf_event_header__init_id(&rec.header, &sample, event);
9054 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9055 
9056 	if (ret)
9057 		return;
9058 
9059 	perf_output_put(&handle, rec);
9060 	perf_event__output_id_sample(event, &handle, &sample);
9061 
9062 	perf_output_end(&handle);
9063 }
9064 
9065 static int
9066 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9067 {
9068 	struct hw_perf_event *hwc = &event->hw;
9069 	int ret = 0;
9070 	u64 seq;
9071 
9072 	seq = __this_cpu_read(perf_throttled_seq);
9073 	if (seq != hwc->interrupts_seq) {
9074 		hwc->interrupts_seq = seq;
9075 		hwc->interrupts = 1;
9076 	} else {
9077 		hwc->interrupts++;
9078 		if (unlikely(throttle
9079 			     && hwc->interrupts >= max_samples_per_tick)) {
9080 			__this_cpu_inc(perf_throttled_count);
9081 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9082 			hwc->interrupts = MAX_INTERRUPTS;
9083 			perf_log_throttle(event, 0);
9084 			ret = 1;
9085 		}
9086 	}
9087 
9088 	if (event->attr.freq) {
9089 		u64 now = perf_clock();
9090 		s64 delta = now - hwc->freq_time_stamp;
9091 
9092 		hwc->freq_time_stamp = now;
9093 
9094 		if (delta > 0 && delta < 2*TICK_NSEC)
9095 			perf_adjust_period(event, delta, hwc->last_period, true);
9096 	}
9097 
9098 	return ret;
9099 }
9100 
9101 int perf_event_account_interrupt(struct perf_event *event)
9102 {
9103 	return __perf_event_account_interrupt(event, 1);
9104 }
9105 
9106 /*
9107  * Generic event overflow handling, sampling.
9108  */
9109 
9110 static int __perf_event_overflow(struct perf_event *event,
9111 				   int throttle, struct perf_sample_data *data,
9112 				   struct pt_regs *regs)
9113 {
9114 	int events = atomic_read(&event->event_limit);
9115 	int ret = 0;
9116 
9117 	/*
9118 	 * Non-sampling counters might still use the PMI to fold short
9119 	 * hardware counters, ignore those.
9120 	 */
9121 	if (unlikely(!is_sampling_event(event)))
9122 		return 0;
9123 
9124 	ret = __perf_event_account_interrupt(event, throttle);
9125 
9126 	/*
9127 	 * XXX event_limit might not quite work as expected on inherited
9128 	 * events
9129 	 */
9130 
9131 	event->pending_kill = POLL_IN;
9132 	if (events && atomic_dec_and_test(&event->event_limit)) {
9133 		ret = 1;
9134 		event->pending_kill = POLL_HUP;
9135 		event->pending_addr = data->addr;
9136 
9137 		perf_event_disable_inatomic(event);
9138 	}
9139 
9140 	READ_ONCE(event->overflow_handler)(event, data, regs);
9141 
9142 	if (*perf_event_fasync(event) && event->pending_kill) {
9143 		event->pending_wakeup = 1;
9144 		irq_work_queue(&event->pending);
9145 	}
9146 
9147 	return ret;
9148 }
9149 
9150 int perf_event_overflow(struct perf_event *event,
9151 			  struct perf_sample_data *data,
9152 			  struct pt_regs *regs)
9153 {
9154 	return __perf_event_overflow(event, 1, data, regs);
9155 }
9156 
9157 /*
9158  * Generic software event infrastructure
9159  */
9160 
9161 struct swevent_htable {
9162 	struct swevent_hlist		*swevent_hlist;
9163 	struct mutex			hlist_mutex;
9164 	int				hlist_refcount;
9165 
9166 	/* Recursion avoidance in each contexts */
9167 	int				recursion[PERF_NR_CONTEXTS];
9168 };
9169 
9170 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9171 
9172 /*
9173  * We directly increment event->count and keep a second value in
9174  * event->hw.period_left to count intervals. This period event
9175  * is kept in the range [-sample_period, 0] so that we can use the
9176  * sign as trigger.
9177  */
9178 
9179 u64 perf_swevent_set_period(struct perf_event *event)
9180 {
9181 	struct hw_perf_event *hwc = &event->hw;
9182 	u64 period = hwc->last_period;
9183 	u64 nr, offset;
9184 	s64 old, val;
9185 
9186 	hwc->last_period = hwc->sample_period;
9187 
9188 again:
9189 	old = val = local64_read(&hwc->period_left);
9190 	if (val < 0)
9191 		return 0;
9192 
9193 	nr = div64_u64(period + val, period);
9194 	offset = nr * period;
9195 	val -= offset;
9196 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9197 		goto again;
9198 
9199 	return nr;
9200 }
9201 
9202 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9203 				    struct perf_sample_data *data,
9204 				    struct pt_regs *regs)
9205 {
9206 	struct hw_perf_event *hwc = &event->hw;
9207 	int throttle = 0;
9208 
9209 	if (!overflow)
9210 		overflow = perf_swevent_set_period(event);
9211 
9212 	if (hwc->interrupts == MAX_INTERRUPTS)
9213 		return;
9214 
9215 	for (; overflow; overflow--) {
9216 		if (__perf_event_overflow(event, throttle,
9217 					    data, regs)) {
9218 			/*
9219 			 * We inhibit the overflow from happening when
9220 			 * hwc->interrupts == MAX_INTERRUPTS.
9221 			 */
9222 			break;
9223 		}
9224 		throttle = 1;
9225 	}
9226 }
9227 
9228 static void perf_swevent_event(struct perf_event *event, u64 nr,
9229 			       struct perf_sample_data *data,
9230 			       struct pt_regs *regs)
9231 {
9232 	struct hw_perf_event *hwc = &event->hw;
9233 
9234 	local64_add(nr, &event->count);
9235 
9236 	if (!regs)
9237 		return;
9238 
9239 	if (!is_sampling_event(event))
9240 		return;
9241 
9242 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9243 		data->period = nr;
9244 		return perf_swevent_overflow(event, 1, data, regs);
9245 	} else
9246 		data->period = event->hw.last_period;
9247 
9248 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9249 		return perf_swevent_overflow(event, 1, data, regs);
9250 
9251 	if (local64_add_negative(nr, &hwc->period_left))
9252 		return;
9253 
9254 	perf_swevent_overflow(event, 0, data, regs);
9255 }
9256 
9257 static int perf_exclude_event(struct perf_event *event,
9258 			      struct pt_regs *regs)
9259 {
9260 	if (event->hw.state & PERF_HES_STOPPED)
9261 		return 1;
9262 
9263 	if (regs) {
9264 		if (event->attr.exclude_user && user_mode(regs))
9265 			return 1;
9266 
9267 		if (event->attr.exclude_kernel && !user_mode(regs))
9268 			return 1;
9269 	}
9270 
9271 	return 0;
9272 }
9273 
9274 static int perf_swevent_match(struct perf_event *event,
9275 				enum perf_type_id type,
9276 				u32 event_id,
9277 				struct perf_sample_data *data,
9278 				struct pt_regs *regs)
9279 {
9280 	if (event->attr.type != type)
9281 		return 0;
9282 
9283 	if (event->attr.config != event_id)
9284 		return 0;
9285 
9286 	if (perf_exclude_event(event, regs))
9287 		return 0;
9288 
9289 	return 1;
9290 }
9291 
9292 static inline u64 swevent_hash(u64 type, u32 event_id)
9293 {
9294 	u64 val = event_id | (type << 32);
9295 
9296 	return hash_64(val, SWEVENT_HLIST_BITS);
9297 }
9298 
9299 static inline struct hlist_head *
9300 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9301 {
9302 	u64 hash = swevent_hash(type, event_id);
9303 
9304 	return &hlist->heads[hash];
9305 }
9306 
9307 /* For the read side: events when they trigger */
9308 static inline struct hlist_head *
9309 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9310 {
9311 	struct swevent_hlist *hlist;
9312 
9313 	hlist = rcu_dereference(swhash->swevent_hlist);
9314 	if (!hlist)
9315 		return NULL;
9316 
9317 	return __find_swevent_head(hlist, type, event_id);
9318 }
9319 
9320 /* For the event head insertion and removal in the hlist */
9321 static inline struct hlist_head *
9322 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9323 {
9324 	struct swevent_hlist *hlist;
9325 	u32 event_id = event->attr.config;
9326 	u64 type = event->attr.type;
9327 
9328 	/*
9329 	 * Event scheduling is always serialized against hlist allocation
9330 	 * and release. Which makes the protected version suitable here.
9331 	 * The context lock guarantees that.
9332 	 */
9333 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9334 					  lockdep_is_held(&event->ctx->lock));
9335 	if (!hlist)
9336 		return NULL;
9337 
9338 	return __find_swevent_head(hlist, type, event_id);
9339 }
9340 
9341 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9342 				    u64 nr,
9343 				    struct perf_sample_data *data,
9344 				    struct pt_regs *regs)
9345 {
9346 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9347 	struct perf_event *event;
9348 	struct hlist_head *head;
9349 
9350 	rcu_read_lock();
9351 	head = find_swevent_head_rcu(swhash, type, event_id);
9352 	if (!head)
9353 		goto end;
9354 
9355 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9356 		if (perf_swevent_match(event, type, event_id, data, regs))
9357 			perf_swevent_event(event, nr, data, regs);
9358 	}
9359 end:
9360 	rcu_read_unlock();
9361 }
9362 
9363 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9364 
9365 int perf_swevent_get_recursion_context(void)
9366 {
9367 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9368 
9369 	return get_recursion_context(swhash->recursion);
9370 }
9371 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9372 
9373 void perf_swevent_put_recursion_context(int rctx)
9374 {
9375 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9376 
9377 	put_recursion_context(swhash->recursion, rctx);
9378 }
9379 
9380 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9381 {
9382 	struct perf_sample_data data;
9383 
9384 	if (WARN_ON_ONCE(!regs))
9385 		return;
9386 
9387 	perf_sample_data_init(&data, addr, 0);
9388 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9389 }
9390 
9391 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9392 {
9393 	int rctx;
9394 
9395 	preempt_disable_notrace();
9396 	rctx = perf_swevent_get_recursion_context();
9397 	if (unlikely(rctx < 0))
9398 		goto fail;
9399 
9400 	___perf_sw_event(event_id, nr, regs, addr);
9401 
9402 	perf_swevent_put_recursion_context(rctx);
9403 fail:
9404 	preempt_enable_notrace();
9405 }
9406 
9407 static void perf_swevent_read(struct perf_event *event)
9408 {
9409 }
9410 
9411 static int perf_swevent_add(struct perf_event *event, int flags)
9412 {
9413 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9414 	struct hw_perf_event *hwc = &event->hw;
9415 	struct hlist_head *head;
9416 
9417 	if (is_sampling_event(event)) {
9418 		hwc->last_period = hwc->sample_period;
9419 		perf_swevent_set_period(event);
9420 	}
9421 
9422 	hwc->state = !(flags & PERF_EF_START);
9423 
9424 	head = find_swevent_head(swhash, event);
9425 	if (WARN_ON_ONCE(!head))
9426 		return -EINVAL;
9427 
9428 	hlist_add_head_rcu(&event->hlist_entry, head);
9429 	perf_event_update_userpage(event);
9430 
9431 	return 0;
9432 }
9433 
9434 static void perf_swevent_del(struct perf_event *event, int flags)
9435 {
9436 	hlist_del_rcu(&event->hlist_entry);
9437 }
9438 
9439 static void perf_swevent_start(struct perf_event *event, int flags)
9440 {
9441 	event->hw.state = 0;
9442 }
9443 
9444 static void perf_swevent_stop(struct perf_event *event, int flags)
9445 {
9446 	event->hw.state = PERF_HES_STOPPED;
9447 }
9448 
9449 /* Deref the hlist from the update side */
9450 static inline struct swevent_hlist *
9451 swevent_hlist_deref(struct swevent_htable *swhash)
9452 {
9453 	return rcu_dereference_protected(swhash->swevent_hlist,
9454 					 lockdep_is_held(&swhash->hlist_mutex));
9455 }
9456 
9457 static void swevent_hlist_release(struct swevent_htable *swhash)
9458 {
9459 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9460 
9461 	if (!hlist)
9462 		return;
9463 
9464 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9465 	kfree_rcu(hlist, rcu_head);
9466 }
9467 
9468 static void swevent_hlist_put_cpu(int cpu)
9469 {
9470 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9471 
9472 	mutex_lock(&swhash->hlist_mutex);
9473 
9474 	if (!--swhash->hlist_refcount)
9475 		swevent_hlist_release(swhash);
9476 
9477 	mutex_unlock(&swhash->hlist_mutex);
9478 }
9479 
9480 static void swevent_hlist_put(void)
9481 {
9482 	int cpu;
9483 
9484 	for_each_possible_cpu(cpu)
9485 		swevent_hlist_put_cpu(cpu);
9486 }
9487 
9488 static int swevent_hlist_get_cpu(int cpu)
9489 {
9490 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9491 	int err = 0;
9492 
9493 	mutex_lock(&swhash->hlist_mutex);
9494 	if (!swevent_hlist_deref(swhash) &&
9495 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9496 		struct swevent_hlist *hlist;
9497 
9498 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9499 		if (!hlist) {
9500 			err = -ENOMEM;
9501 			goto exit;
9502 		}
9503 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9504 	}
9505 	swhash->hlist_refcount++;
9506 exit:
9507 	mutex_unlock(&swhash->hlist_mutex);
9508 
9509 	return err;
9510 }
9511 
9512 static int swevent_hlist_get(void)
9513 {
9514 	int err, cpu, failed_cpu;
9515 
9516 	mutex_lock(&pmus_lock);
9517 	for_each_possible_cpu(cpu) {
9518 		err = swevent_hlist_get_cpu(cpu);
9519 		if (err) {
9520 			failed_cpu = cpu;
9521 			goto fail;
9522 		}
9523 	}
9524 	mutex_unlock(&pmus_lock);
9525 	return 0;
9526 fail:
9527 	for_each_possible_cpu(cpu) {
9528 		if (cpu == failed_cpu)
9529 			break;
9530 		swevent_hlist_put_cpu(cpu);
9531 	}
9532 	mutex_unlock(&pmus_lock);
9533 	return err;
9534 }
9535 
9536 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9537 
9538 static void sw_perf_event_destroy(struct perf_event *event)
9539 {
9540 	u64 event_id = event->attr.config;
9541 
9542 	WARN_ON(event->parent);
9543 
9544 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9545 	swevent_hlist_put();
9546 }
9547 
9548 static int perf_swevent_init(struct perf_event *event)
9549 {
9550 	u64 event_id = event->attr.config;
9551 
9552 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9553 		return -ENOENT;
9554 
9555 	/*
9556 	 * no branch sampling for software events
9557 	 */
9558 	if (has_branch_stack(event))
9559 		return -EOPNOTSUPP;
9560 
9561 	switch (event_id) {
9562 	case PERF_COUNT_SW_CPU_CLOCK:
9563 	case PERF_COUNT_SW_TASK_CLOCK:
9564 		return -ENOENT;
9565 
9566 	default:
9567 		break;
9568 	}
9569 
9570 	if (event_id >= PERF_COUNT_SW_MAX)
9571 		return -ENOENT;
9572 
9573 	if (!event->parent) {
9574 		int err;
9575 
9576 		err = swevent_hlist_get();
9577 		if (err)
9578 			return err;
9579 
9580 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9581 		event->destroy = sw_perf_event_destroy;
9582 	}
9583 
9584 	return 0;
9585 }
9586 
9587 static struct pmu perf_swevent = {
9588 	.task_ctx_nr	= perf_sw_context,
9589 
9590 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9591 
9592 	.event_init	= perf_swevent_init,
9593 	.add		= perf_swevent_add,
9594 	.del		= perf_swevent_del,
9595 	.start		= perf_swevent_start,
9596 	.stop		= perf_swevent_stop,
9597 	.read		= perf_swevent_read,
9598 };
9599 
9600 #ifdef CONFIG_EVENT_TRACING
9601 
9602 static int perf_tp_filter_match(struct perf_event *event,
9603 				struct perf_sample_data *data)
9604 {
9605 	void *record = data->raw->frag.data;
9606 
9607 	/* only top level events have filters set */
9608 	if (event->parent)
9609 		event = event->parent;
9610 
9611 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9612 		return 1;
9613 	return 0;
9614 }
9615 
9616 static int perf_tp_event_match(struct perf_event *event,
9617 				struct perf_sample_data *data,
9618 				struct pt_regs *regs)
9619 {
9620 	if (event->hw.state & PERF_HES_STOPPED)
9621 		return 0;
9622 	/*
9623 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9624 	 */
9625 	if (event->attr.exclude_kernel && !user_mode(regs))
9626 		return 0;
9627 
9628 	if (!perf_tp_filter_match(event, data))
9629 		return 0;
9630 
9631 	return 1;
9632 }
9633 
9634 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9635 			       struct trace_event_call *call, u64 count,
9636 			       struct pt_regs *regs, struct hlist_head *head,
9637 			       struct task_struct *task)
9638 {
9639 	if (bpf_prog_array_valid(call)) {
9640 		*(struct pt_regs **)raw_data = regs;
9641 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9642 			perf_swevent_put_recursion_context(rctx);
9643 			return;
9644 		}
9645 	}
9646 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9647 		      rctx, task);
9648 }
9649 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9650 
9651 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9652 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9653 		   struct task_struct *task)
9654 {
9655 	struct perf_sample_data data;
9656 	struct perf_event *event;
9657 
9658 	struct perf_raw_record raw = {
9659 		.frag = {
9660 			.size = entry_size,
9661 			.data = record,
9662 		},
9663 	};
9664 
9665 	perf_sample_data_init(&data, 0, 0);
9666 	data.raw = &raw;
9667 
9668 	perf_trace_buf_update(record, event_type);
9669 
9670 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9671 		if (perf_tp_event_match(event, &data, regs))
9672 			perf_swevent_event(event, count, &data, regs);
9673 	}
9674 
9675 	/*
9676 	 * If we got specified a target task, also iterate its context and
9677 	 * deliver this event there too.
9678 	 */
9679 	if (task && task != current) {
9680 		struct perf_event_context *ctx;
9681 		struct trace_entry *entry = record;
9682 
9683 		rcu_read_lock();
9684 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9685 		if (!ctx)
9686 			goto unlock;
9687 
9688 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9689 			if (event->cpu != smp_processor_id())
9690 				continue;
9691 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9692 				continue;
9693 			if (event->attr.config != entry->type)
9694 				continue;
9695 			if (perf_tp_event_match(event, &data, regs))
9696 				perf_swevent_event(event, count, &data, regs);
9697 		}
9698 unlock:
9699 		rcu_read_unlock();
9700 	}
9701 
9702 	perf_swevent_put_recursion_context(rctx);
9703 }
9704 EXPORT_SYMBOL_GPL(perf_tp_event);
9705 
9706 static void tp_perf_event_destroy(struct perf_event *event)
9707 {
9708 	perf_trace_destroy(event);
9709 }
9710 
9711 static int perf_tp_event_init(struct perf_event *event)
9712 {
9713 	int err;
9714 
9715 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9716 		return -ENOENT;
9717 
9718 	/*
9719 	 * no branch sampling for tracepoint events
9720 	 */
9721 	if (has_branch_stack(event))
9722 		return -EOPNOTSUPP;
9723 
9724 	err = perf_trace_init(event);
9725 	if (err)
9726 		return err;
9727 
9728 	event->destroy = tp_perf_event_destroy;
9729 
9730 	return 0;
9731 }
9732 
9733 static struct pmu perf_tracepoint = {
9734 	.task_ctx_nr	= perf_sw_context,
9735 
9736 	.event_init	= perf_tp_event_init,
9737 	.add		= perf_trace_add,
9738 	.del		= perf_trace_del,
9739 	.start		= perf_swevent_start,
9740 	.stop		= perf_swevent_stop,
9741 	.read		= perf_swevent_read,
9742 };
9743 
9744 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9745 /*
9746  * Flags in config, used by dynamic PMU kprobe and uprobe
9747  * The flags should match following PMU_FORMAT_ATTR().
9748  *
9749  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9750  *                               if not set, create kprobe/uprobe
9751  *
9752  * The following values specify a reference counter (or semaphore in the
9753  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9754  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9755  *
9756  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9757  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9758  */
9759 enum perf_probe_config {
9760 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9761 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9762 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9763 };
9764 
9765 PMU_FORMAT_ATTR(retprobe, "config:0");
9766 #endif
9767 
9768 #ifdef CONFIG_KPROBE_EVENTS
9769 static struct attribute *kprobe_attrs[] = {
9770 	&format_attr_retprobe.attr,
9771 	NULL,
9772 };
9773 
9774 static struct attribute_group kprobe_format_group = {
9775 	.name = "format",
9776 	.attrs = kprobe_attrs,
9777 };
9778 
9779 static const struct attribute_group *kprobe_attr_groups[] = {
9780 	&kprobe_format_group,
9781 	NULL,
9782 };
9783 
9784 static int perf_kprobe_event_init(struct perf_event *event);
9785 static struct pmu perf_kprobe = {
9786 	.task_ctx_nr	= perf_sw_context,
9787 	.event_init	= perf_kprobe_event_init,
9788 	.add		= perf_trace_add,
9789 	.del		= perf_trace_del,
9790 	.start		= perf_swevent_start,
9791 	.stop		= perf_swevent_stop,
9792 	.read		= perf_swevent_read,
9793 	.attr_groups	= kprobe_attr_groups,
9794 };
9795 
9796 static int perf_kprobe_event_init(struct perf_event *event)
9797 {
9798 	int err;
9799 	bool is_retprobe;
9800 
9801 	if (event->attr.type != perf_kprobe.type)
9802 		return -ENOENT;
9803 
9804 	if (!perfmon_capable())
9805 		return -EACCES;
9806 
9807 	/*
9808 	 * no branch sampling for probe events
9809 	 */
9810 	if (has_branch_stack(event))
9811 		return -EOPNOTSUPP;
9812 
9813 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9814 	err = perf_kprobe_init(event, is_retprobe);
9815 	if (err)
9816 		return err;
9817 
9818 	event->destroy = perf_kprobe_destroy;
9819 
9820 	return 0;
9821 }
9822 #endif /* CONFIG_KPROBE_EVENTS */
9823 
9824 #ifdef CONFIG_UPROBE_EVENTS
9825 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9826 
9827 static struct attribute *uprobe_attrs[] = {
9828 	&format_attr_retprobe.attr,
9829 	&format_attr_ref_ctr_offset.attr,
9830 	NULL,
9831 };
9832 
9833 static struct attribute_group uprobe_format_group = {
9834 	.name = "format",
9835 	.attrs = uprobe_attrs,
9836 };
9837 
9838 static const struct attribute_group *uprobe_attr_groups[] = {
9839 	&uprobe_format_group,
9840 	NULL,
9841 };
9842 
9843 static int perf_uprobe_event_init(struct perf_event *event);
9844 static struct pmu perf_uprobe = {
9845 	.task_ctx_nr	= perf_sw_context,
9846 	.event_init	= perf_uprobe_event_init,
9847 	.add		= perf_trace_add,
9848 	.del		= perf_trace_del,
9849 	.start		= perf_swevent_start,
9850 	.stop		= perf_swevent_stop,
9851 	.read		= perf_swevent_read,
9852 	.attr_groups	= uprobe_attr_groups,
9853 };
9854 
9855 static int perf_uprobe_event_init(struct perf_event *event)
9856 {
9857 	int err;
9858 	unsigned long ref_ctr_offset;
9859 	bool is_retprobe;
9860 
9861 	if (event->attr.type != perf_uprobe.type)
9862 		return -ENOENT;
9863 
9864 	if (!perfmon_capable())
9865 		return -EACCES;
9866 
9867 	/*
9868 	 * no branch sampling for probe events
9869 	 */
9870 	if (has_branch_stack(event))
9871 		return -EOPNOTSUPP;
9872 
9873 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9874 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9875 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9876 	if (err)
9877 		return err;
9878 
9879 	event->destroy = perf_uprobe_destroy;
9880 
9881 	return 0;
9882 }
9883 #endif /* CONFIG_UPROBE_EVENTS */
9884 
9885 static inline void perf_tp_register(void)
9886 {
9887 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9888 #ifdef CONFIG_KPROBE_EVENTS
9889 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9890 #endif
9891 #ifdef CONFIG_UPROBE_EVENTS
9892 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9893 #endif
9894 }
9895 
9896 static void perf_event_free_filter(struct perf_event *event)
9897 {
9898 	ftrace_profile_free_filter(event);
9899 }
9900 
9901 #ifdef CONFIG_BPF_SYSCALL
9902 static void bpf_overflow_handler(struct perf_event *event,
9903 				 struct perf_sample_data *data,
9904 				 struct pt_regs *regs)
9905 {
9906 	struct bpf_perf_event_data_kern ctx = {
9907 		.data = data,
9908 		.event = event,
9909 	};
9910 	int ret = 0;
9911 
9912 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9913 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9914 		goto out;
9915 	rcu_read_lock();
9916 	ret = BPF_PROG_RUN(event->prog, &ctx);
9917 	rcu_read_unlock();
9918 out:
9919 	__this_cpu_dec(bpf_prog_active);
9920 	if (!ret)
9921 		return;
9922 
9923 	event->orig_overflow_handler(event, data, regs);
9924 }
9925 
9926 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9927 {
9928 	struct bpf_prog *prog;
9929 
9930 	if (event->overflow_handler_context)
9931 		/* hw breakpoint or kernel counter */
9932 		return -EINVAL;
9933 
9934 	if (event->prog)
9935 		return -EEXIST;
9936 
9937 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9938 	if (IS_ERR(prog))
9939 		return PTR_ERR(prog);
9940 
9941 	if (event->attr.precise_ip &&
9942 	    prog->call_get_stack &&
9943 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9944 	     event->attr.exclude_callchain_kernel ||
9945 	     event->attr.exclude_callchain_user)) {
9946 		/*
9947 		 * On perf_event with precise_ip, calling bpf_get_stack()
9948 		 * may trigger unwinder warnings and occasional crashes.
9949 		 * bpf_get_[stack|stackid] works around this issue by using
9950 		 * callchain attached to perf_sample_data. If the
9951 		 * perf_event does not full (kernel and user) callchain
9952 		 * attached to perf_sample_data, do not allow attaching BPF
9953 		 * program that calls bpf_get_[stack|stackid].
9954 		 */
9955 		bpf_prog_put(prog);
9956 		return -EPROTO;
9957 	}
9958 
9959 	event->prog = prog;
9960 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9961 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9962 	return 0;
9963 }
9964 
9965 static void perf_event_free_bpf_handler(struct perf_event *event)
9966 {
9967 	struct bpf_prog *prog = event->prog;
9968 
9969 	if (!prog)
9970 		return;
9971 
9972 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9973 	event->prog = NULL;
9974 	bpf_prog_put(prog);
9975 }
9976 #else
9977 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9978 {
9979 	return -EOPNOTSUPP;
9980 }
9981 static void perf_event_free_bpf_handler(struct perf_event *event)
9982 {
9983 }
9984 #endif
9985 
9986 /*
9987  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9988  * with perf_event_open()
9989  */
9990 static inline bool perf_event_is_tracing(struct perf_event *event)
9991 {
9992 	if (event->pmu == &perf_tracepoint)
9993 		return true;
9994 #ifdef CONFIG_KPROBE_EVENTS
9995 	if (event->pmu == &perf_kprobe)
9996 		return true;
9997 #endif
9998 #ifdef CONFIG_UPROBE_EVENTS
9999 	if (event->pmu == &perf_uprobe)
10000 		return true;
10001 #endif
10002 	return false;
10003 }
10004 
10005 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10006 {
10007 	bool is_kprobe, is_tracepoint, is_syscall_tp;
10008 	struct bpf_prog *prog;
10009 	int ret;
10010 
10011 	if (!perf_event_is_tracing(event))
10012 		return perf_event_set_bpf_handler(event, prog_fd);
10013 
10014 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10015 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10016 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10017 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10018 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10019 		return -EINVAL;
10020 
10021 	prog = bpf_prog_get(prog_fd);
10022 	if (IS_ERR(prog))
10023 		return PTR_ERR(prog);
10024 
10025 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10026 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10027 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
10028 		/* valid fd, but invalid bpf program type */
10029 		bpf_prog_put(prog);
10030 		return -EINVAL;
10031 	}
10032 
10033 	/* Kprobe override only works for kprobes, not uprobes. */
10034 	if (prog->kprobe_override &&
10035 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
10036 		bpf_prog_put(prog);
10037 		return -EINVAL;
10038 	}
10039 
10040 	if (is_tracepoint || is_syscall_tp) {
10041 		int off = trace_event_get_offsets(event->tp_event);
10042 
10043 		if (prog->aux->max_ctx_offset > off) {
10044 			bpf_prog_put(prog);
10045 			return -EACCES;
10046 		}
10047 	}
10048 
10049 	ret = perf_event_attach_bpf_prog(event, prog);
10050 	if (ret)
10051 		bpf_prog_put(prog);
10052 	return ret;
10053 }
10054 
10055 static void perf_event_free_bpf_prog(struct perf_event *event)
10056 {
10057 	if (!perf_event_is_tracing(event)) {
10058 		perf_event_free_bpf_handler(event);
10059 		return;
10060 	}
10061 	perf_event_detach_bpf_prog(event);
10062 }
10063 
10064 #else
10065 
10066 static inline void perf_tp_register(void)
10067 {
10068 }
10069 
10070 static void perf_event_free_filter(struct perf_event *event)
10071 {
10072 }
10073 
10074 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10075 {
10076 	return -ENOENT;
10077 }
10078 
10079 static void perf_event_free_bpf_prog(struct perf_event *event)
10080 {
10081 }
10082 #endif /* CONFIG_EVENT_TRACING */
10083 
10084 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10085 void perf_bp_event(struct perf_event *bp, void *data)
10086 {
10087 	struct perf_sample_data sample;
10088 	struct pt_regs *regs = data;
10089 
10090 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10091 
10092 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10093 		perf_swevent_event(bp, 1, &sample, regs);
10094 }
10095 #endif
10096 
10097 /*
10098  * Allocate a new address filter
10099  */
10100 static struct perf_addr_filter *
10101 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10102 {
10103 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10104 	struct perf_addr_filter *filter;
10105 
10106 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10107 	if (!filter)
10108 		return NULL;
10109 
10110 	INIT_LIST_HEAD(&filter->entry);
10111 	list_add_tail(&filter->entry, filters);
10112 
10113 	return filter;
10114 }
10115 
10116 static void free_filters_list(struct list_head *filters)
10117 {
10118 	struct perf_addr_filter *filter, *iter;
10119 
10120 	list_for_each_entry_safe(filter, iter, filters, entry) {
10121 		path_put(&filter->path);
10122 		list_del(&filter->entry);
10123 		kfree(filter);
10124 	}
10125 }
10126 
10127 /*
10128  * Free existing address filters and optionally install new ones
10129  */
10130 static void perf_addr_filters_splice(struct perf_event *event,
10131 				     struct list_head *head)
10132 {
10133 	unsigned long flags;
10134 	LIST_HEAD(list);
10135 
10136 	if (!has_addr_filter(event))
10137 		return;
10138 
10139 	/* don't bother with children, they don't have their own filters */
10140 	if (event->parent)
10141 		return;
10142 
10143 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10144 
10145 	list_splice_init(&event->addr_filters.list, &list);
10146 	if (head)
10147 		list_splice(head, &event->addr_filters.list);
10148 
10149 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10150 
10151 	free_filters_list(&list);
10152 }
10153 
10154 /*
10155  * Scan through mm's vmas and see if one of them matches the
10156  * @filter; if so, adjust filter's address range.
10157  * Called with mm::mmap_lock down for reading.
10158  */
10159 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10160 				   struct mm_struct *mm,
10161 				   struct perf_addr_filter_range *fr)
10162 {
10163 	struct vm_area_struct *vma;
10164 
10165 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10166 		if (!vma->vm_file)
10167 			continue;
10168 
10169 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10170 			return;
10171 	}
10172 }
10173 
10174 /*
10175  * Update event's address range filters based on the
10176  * task's existing mappings, if any.
10177  */
10178 static void perf_event_addr_filters_apply(struct perf_event *event)
10179 {
10180 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10181 	struct task_struct *task = READ_ONCE(event->ctx->task);
10182 	struct perf_addr_filter *filter;
10183 	struct mm_struct *mm = NULL;
10184 	unsigned int count = 0;
10185 	unsigned long flags;
10186 
10187 	/*
10188 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10189 	 * will stop on the parent's child_mutex that our caller is also holding
10190 	 */
10191 	if (task == TASK_TOMBSTONE)
10192 		return;
10193 
10194 	if (ifh->nr_file_filters) {
10195 		mm = get_task_mm(event->ctx->task);
10196 		if (!mm)
10197 			goto restart;
10198 
10199 		mmap_read_lock(mm);
10200 	}
10201 
10202 	raw_spin_lock_irqsave(&ifh->lock, flags);
10203 	list_for_each_entry(filter, &ifh->list, entry) {
10204 		if (filter->path.dentry) {
10205 			/*
10206 			 * Adjust base offset if the filter is associated to a
10207 			 * binary that needs to be mapped:
10208 			 */
10209 			event->addr_filter_ranges[count].start = 0;
10210 			event->addr_filter_ranges[count].size = 0;
10211 
10212 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10213 		} else {
10214 			event->addr_filter_ranges[count].start = filter->offset;
10215 			event->addr_filter_ranges[count].size  = filter->size;
10216 		}
10217 
10218 		count++;
10219 	}
10220 
10221 	event->addr_filters_gen++;
10222 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10223 
10224 	if (ifh->nr_file_filters) {
10225 		mmap_read_unlock(mm);
10226 
10227 		mmput(mm);
10228 	}
10229 
10230 restart:
10231 	perf_event_stop(event, 1);
10232 }
10233 
10234 /*
10235  * Address range filtering: limiting the data to certain
10236  * instruction address ranges. Filters are ioctl()ed to us from
10237  * userspace as ascii strings.
10238  *
10239  * Filter string format:
10240  *
10241  * ACTION RANGE_SPEC
10242  * where ACTION is one of the
10243  *  * "filter": limit the trace to this region
10244  *  * "start": start tracing from this address
10245  *  * "stop": stop tracing at this address/region;
10246  * RANGE_SPEC is
10247  *  * for kernel addresses: <start address>[/<size>]
10248  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10249  *
10250  * if <size> is not specified or is zero, the range is treated as a single
10251  * address; not valid for ACTION=="filter".
10252  */
10253 enum {
10254 	IF_ACT_NONE = -1,
10255 	IF_ACT_FILTER,
10256 	IF_ACT_START,
10257 	IF_ACT_STOP,
10258 	IF_SRC_FILE,
10259 	IF_SRC_KERNEL,
10260 	IF_SRC_FILEADDR,
10261 	IF_SRC_KERNELADDR,
10262 };
10263 
10264 enum {
10265 	IF_STATE_ACTION = 0,
10266 	IF_STATE_SOURCE,
10267 	IF_STATE_END,
10268 };
10269 
10270 static const match_table_t if_tokens = {
10271 	{ IF_ACT_FILTER,	"filter" },
10272 	{ IF_ACT_START,		"start" },
10273 	{ IF_ACT_STOP,		"stop" },
10274 	{ IF_SRC_FILE,		"%u/%u@%s" },
10275 	{ IF_SRC_KERNEL,	"%u/%u" },
10276 	{ IF_SRC_FILEADDR,	"%u@%s" },
10277 	{ IF_SRC_KERNELADDR,	"%u" },
10278 	{ IF_ACT_NONE,		NULL },
10279 };
10280 
10281 /*
10282  * Address filter string parser
10283  */
10284 static int
10285 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10286 			     struct list_head *filters)
10287 {
10288 	struct perf_addr_filter *filter = NULL;
10289 	char *start, *orig, *filename = NULL;
10290 	substring_t args[MAX_OPT_ARGS];
10291 	int state = IF_STATE_ACTION, token;
10292 	unsigned int kernel = 0;
10293 	int ret = -EINVAL;
10294 
10295 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10296 	if (!fstr)
10297 		return -ENOMEM;
10298 
10299 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10300 		static const enum perf_addr_filter_action_t actions[] = {
10301 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10302 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10303 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10304 		};
10305 		ret = -EINVAL;
10306 
10307 		if (!*start)
10308 			continue;
10309 
10310 		/* filter definition begins */
10311 		if (state == IF_STATE_ACTION) {
10312 			filter = perf_addr_filter_new(event, filters);
10313 			if (!filter)
10314 				goto fail;
10315 		}
10316 
10317 		token = match_token(start, if_tokens, args);
10318 		switch (token) {
10319 		case IF_ACT_FILTER:
10320 		case IF_ACT_START:
10321 		case IF_ACT_STOP:
10322 			if (state != IF_STATE_ACTION)
10323 				goto fail;
10324 
10325 			filter->action = actions[token];
10326 			state = IF_STATE_SOURCE;
10327 			break;
10328 
10329 		case IF_SRC_KERNELADDR:
10330 		case IF_SRC_KERNEL:
10331 			kernel = 1;
10332 			fallthrough;
10333 
10334 		case IF_SRC_FILEADDR:
10335 		case IF_SRC_FILE:
10336 			if (state != IF_STATE_SOURCE)
10337 				goto fail;
10338 
10339 			*args[0].to = 0;
10340 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10341 			if (ret)
10342 				goto fail;
10343 
10344 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10345 				*args[1].to = 0;
10346 				ret = kstrtoul(args[1].from, 0, &filter->size);
10347 				if (ret)
10348 					goto fail;
10349 			}
10350 
10351 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10352 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10353 
10354 				kfree(filename);
10355 				filename = match_strdup(&args[fpos]);
10356 				if (!filename) {
10357 					ret = -ENOMEM;
10358 					goto fail;
10359 				}
10360 			}
10361 
10362 			state = IF_STATE_END;
10363 			break;
10364 
10365 		default:
10366 			goto fail;
10367 		}
10368 
10369 		/*
10370 		 * Filter definition is fully parsed, validate and install it.
10371 		 * Make sure that it doesn't contradict itself or the event's
10372 		 * attribute.
10373 		 */
10374 		if (state == IF_STATE_END) {
10375 			ret = -EINVAL;
10376 			if (kernel && event->attr.exclude_kernel)
10377 				goto fail;
10378 
10379 			/*
10380 			 * ACTION "filter" must have a non-zero length region
10381 			 * specified.
10382 			 */
10383 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10384 			    !filter->size)
10385 				goto fail;
10386 
10387 			if (!kernel) {
10388 				if (!filename)
10389 					goto fail;
10390 
10391 				/*
10392 				 * For now, we only support file-based filters
10393 				 * in per-task events; doing so for CPU-wide
10394 				 * events requires additional context switching
10395 				 * trickery, since same object code will be
10396 				 * mapped at different virtual addresses in
10397 				 * different processes.
10398 				 */
10399 				ret = -EOPNOTSUPP;
10400 				if (!event->ctx->task)
10401 					goto fail;
10402 
10403 				/* look up the path and grab its inode */
10404 				ret = kern_path(filename, LOOKUP_FOLLOW,
10405 						&filter->path);
10406 				if (ret)
10407 					goto fail;
10408 
10409 				ret = -EINVAL;
10410 				if (!filter->path.dentry ||
10411 				    !S_ISREG(d_inode(filter->path.dentry)
10412 					     ->i_mode))
10413 					goto fail;
10414 
10415 				event->addr_filters.nr_file_filters++;
10416 			}
10417 
10418 			/* ready to consume more filters */
10419 			state = IF_STATE_ACTION;
10420 			filter = NULL;
10421 		}
10422 	}
10423 
10424 	if (state != IF_STATE_ACTION)
10425 		goto fail;
10426 
10427 	kfree(filename);
10428 	kfree(orig);
10429 
10430 	return 0;
10431 
10432 fail:
10433 	kfree(filename);
10434 	free_filters_list(filters);
10435 	kfree(orig);
10436 
10437 	return ret;
10438 }
10439 
10440 static int
10441 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10442 {
10443 	LIST_HEAD(filters);
10444 	int ret;
10445 
10446 	/*
10447 	 * Since this is called in perf_ioctl() path, we're already holding
10448 	 * ctx::mutex.
10449 	 */
10450 	lockdep_assert_held(&event->ctx->mutex);
10451 
10452 	if (WARN_ON_ONCE(event->parent))
10453 		return -EINVAL;
10454 
10455 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10456 	if (ret)
10457 		goto fail_clear_files;
10458 
10459 	ret = event->pmu->addr_filters_validate(&filters);
10460 	if (ret)
10461 		goto fail_free_filters;
10462 
10463 	/* remove existing filters, if any */
10464 	perf_addr_filters_splice(event, &filters);
10465 
10466 	/* install new filters */
10467 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10468 
10469 	return ret;
10470 
10471 fail_free_filters:
10472 	free_filters_list(&filters);
10473 
10474 fail_clear_files:
10475 	event->addr_filters.nr_file_filters = 0;
10476 
10477 	return ret;
10478 }
10479 
10480 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10481 {
10482 	int ret = -EINVAL;
10483 	char *filter_str;
10484 
10485 	filter_str = strndup_user(arg, PAGE_SIZE);
10486 	if (IS_ERR(filter_str))
10487 		return PTR_ERR(filter_str);
10488 
10489 #ifdef CONFIG_EVENT_TRACING
10490 	if (perf_event_is_tracing(event)) {
10491 		struct perf_event_context *ctx = event->ctx;
10492 
10493 		/*
10494 		 * Beware, here be dragons!!
10495 		 *
10496 		 * the tracepoint muck will deadlock against ctx->mutex, but
10497 		 * the tracepoint stuff does not actually need it. So
10498 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10499 		 * already have a reference on ctx.
10500 		 *
10501 		 * This can result in event getting moved to a different ctx,
10502 		 * but that does not affect the tracepoint state.
10503 		 */
10504 		mutex_unlock(&ctx->mutex);
10505 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10506 		mutex_lock(&ctx->mutex);
10507 	} else
10508 #endif
10509 	if (has_addr_filter(event))
10510 		ret = perf_event_set_addr_filter(event, filter_str);
10511 
10512 	kfree(filter_str);
10513 	return ret;
10514 }
10515 
10516 /*
10517  * hrtimer based swevent callback
10518  */
10519 
10520 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10521 {
10522 	enum hrtimer_restart ret = HRTIMER_RESTART;
10523 	struct perf_sample_data data;
10524 	struct pt_regs *regs;
10525 	struct perf_event *event;
10526 	u64 period;
10527 
10528 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10529 
10530 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10531 		return HRTIMER_NORESTART;
10532 
10533 	event->pmu->read(event);
10534 
10535 	perf_sample_data_init(&data, 0, event->hw.last_period);
10536 	regs = get_irq_regs();
10537 
10538 	if (regs && !perf_exclude_event(event, regs)) {
10539 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10540 			if (__perf_event_overflow(event, 1, &data, regs))
10541 				ret = HRTIMER_NORESTART;
10542 	}
10543 
10544 	period = max_t(u64, 10000, event->hw.sample_period);
10545 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10546 
10547 	return ret;
10548 }
10549 
10550 static void perf_swevent_start_hrtimer(struct perf_event *event)
10551 {
10552 	struct hw_perf_event *hwc = &event->hw;
10553 	s64 period;
10554 
10555 	if (!is_sampling_event(event))
10556 		return;
10557 
10558 	period = local64_read(&hwc->period_left);
10559 	if (period) {
10560 		if (period < 0)
10561 			period = 10000;
10562 
10563 		local64_set(&hwc->period_left, 0);
10564 	} else {
10565 		period = max_t(u64, 10000, hwc->sample_period);
10566 	}
10567 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10568 		      HRTIMER_MODE_REL_PINNED_HARD);
10569 }
10570 
10571 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10572 {
10573 	struct hw_perf_event *hwc = &event->hw;
10574 
10575 	if (is_sampling_event(event)) {
10576 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10577 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10578 
10579 		hrtimer_cancel(&hwc->hrtimer);
10580 	}
10581 }
10582 
10583 static void perf_swevent_init_hrtimer(struct perf_event *event)
10584 {
10585 	struct hw_perf_event *hwc = &event->hw;
10586 
10587 	if (!is_sampling_event(event))
10588 		return;
10589 
10590 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10591 	hwc->hrtimer.function = perf_swevent_hrtimer;
10592 
10593 	/*
10594 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10595 	 * mapping and avoid the whole period adjust feedback stuff.
10596 	 */
10597 	if (event->attr.freq) {
10598 		long freq = event->attr.sample_freq;
10599 
10600 		event->attr.sample_period = NSEC_PER_SEC / freq;
10601 		hwc->sample_period = event->attr.sample_period;
10602 		local64_set(&hwc->period_left, hwc->sample_period);
10603 		hwc->last_period = hwc->sample_period;
10604 		event->attr.freq = 0;
10605 	}
10606 }
10607 
10608 /*
10609  * Software event: cpu wall time clock
10610  */
10611 
10612 static void cpu_clock_event_update(struct perf_event *event)
10613 {
10614 	s64 prev;
10615 	u64 now;
10616 
10617 	now = local_clock();
10618 	prev = local64_xchg(&event->hw.prev_count, now);
10619 	local64_add(now - prev, &event->count);
10620 }
10621 
10622 static void cpu_clock_event_start(struct perf_event *event, int flags)
10623 {
10624 	local64_set(&event->hw.prev_count, local_clock());
10625 	perf_swevent_start_hrtimer(event);
10626 }
10627 
10628 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10629 {
10630 	perf_swevent_cancel_hrtimer(event);
10631 	cpu_clock_event_update(event);
10632 }
10633 
10634 static int cpu_clock_event_add(struct perf_event *event, int flags)
10635 {
10636 	if (flags & PERF_EF_START)
10637 		cpu_clock_event_start(event, flags);
10638 	perf_event_update_userpage(event);
10639 
10640 	return 0;
10641 }
10642 
10643 static void cpu_clock_event_del(struct perf_event *event, int flags)
10644 {
10645 	cpu_clock_event_stop(event, flags);
10646 }
10647 
10648 static void cpu_clock_event_read(struct perf_event *event)
10649 {
10650 	cpu_clock_event_update(event);
10651 }
10652 
10653 static int cpu_clock_event_init(struct perf_event *event)
10654 {
10655 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10656 		return -ENOENT;
10657 
10658 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10659 		return -ENOENT;
10660 
10661 	/*
10662 	 * no branch sampling for software events
10663 	 */
10664 	if (has_branch_stack(event))
10665 		return -EOPNOTSUPP;
10666 
10667 	perf_swevent_init_hrtimer(event);
10668 
10669 	return 0;
10670 }
10671 
10672 static struct pmu perf_cpu_clock = {
10673 	.task_ctx_nr	= perf_sw_context,
10674 
10675 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10676 
10677 	.event_init	= cpu_clock_event_init,
10678 	.add		= cpu_clock_event_add,
10679 	.del		= cpu_clock_event_del,
10680 	.start		= cpu_clock_event_start,
10681 	.stop		= cpu_clock_event_stop,
10682 	.read		= cpu_clock_event_read,
10683 };
10684 
10685 /*
10686  * Software event: task time clock
10687  */
10688 
10689 static void task_clock_event_update(struct perf_event *event, u64 now)
10690 {
10691 	u64 prev;
10692 	s64 delta;
10693 
10694 	prev = local64_xchg(&event->hw.prev_count, now);
10695 	delta = now - prev;
10696 	local64_add(delta, &event->count);
10697 }
10698 
10699 static void task_clock_event_start(struct perf_event *event, int flags)
10700 {
10701 	local64_set(&event->hw.prev_count, event->ctx->time);
10702 	perf_swevent_start_hrtimer(event);
10703 }
10704 
10705 static void task_clock_event_stop(struct perf_event *event, int flags)
10706 {
10707 	perf_swevent_cancel_hrtimer(event);
10708 	task_clock_event_update(event, event->ctx->time);
10709 }
10710 
10711 static int task_clock_event_add(struct perf_event *event, int flags)
10712 {
10713 	if (flags & PERF_EF_START)
10714 		task_clock_event_start(event, flags);
10715 	perf_event_update_userpage(event);
10716 
10717 	return 0;
10718 }
10719 
10720 static void task_clock_event_del(struct perf_event *event, int flags)
10721 {
10722 	task_clock_event_stop(event, PERF_EF_UPDATE);
10723 }
10724 
10725 static void task_clock_event_read(struct perf_event *event)
10726 {
10727 	u64 now = perf_clock();
10728 	u64 delta = now - event->ctx->timestamp;
10729 	u64 time = event->ctx->time + delta;
10730 
10731 	task_clock_event_update(event, time);
10732 }
10733 
10734 static int task_clock_event_init(struct perf_event *event)
10735 {
10736 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10737 		return -ENOENT;
10738 
10739 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10740 		return -ENOENT;
10741 
10742 	/*
10743 	 * no branch sampling for software events
10744 	 */
10745 	if (has_branch_stack(event))
10746 		return -EOPNOTSUPP;
10747 
10748 	perf_swevent_init_hrtimer(event);
10749 
10750 	return 0;
10751 }
10752 
10753 static struct pmu perf_task_clock = {
10754 	.task_ctx_nr	= perf_sw_context,
10755 
10756 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10757 
10758 	.event_init	= task_clock_event_init,
10759 	.add		= task_clock_event_add,
10760 	.del		= task_clock_event_del,
10761 	.start		= task_clock_event_start,
10762 	.stop		= task_clock_event_stop,
10763 	.read		= task_clock_event_read,
10764 };
10765 
10766 static void perf_pmu_nop_void(struct pmu *pmu)
10767 {
10768 }
10769 
10770 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10771 {
10772 }
10773 
10774 static int perf_pmu_nop_int(struct pmu *pmu)
10775 {
10776 	return 0;
10777 }
10778 
10779 static int perf_event_nop_int(struct perf_event *event, u64 value)
10780 {
10781 	return 0;
10782 }
10783 
10784 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10785 
10786 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10787 {
10788 	__this_cpu_write(nop_txn_flags, flags);
10789 
10790 	if (flags & ~PERF_PMU_TXN_ADD)
10791 		return;
10792 
10793 	perf_pmu_disable(pmu);
10794 }
10795 
10796 static int perf_pmu_commit_txn(struct pmu *pmu)
10797 {
10798 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10799 
10800 	__this_cpu_write(nop_txn_flags, 0);
10801 
10802 	if (flags & ~PERF_PMU_TXN_ADD)
10803 		return 0;
10804 
10805 	perf_pmu_enable(pmu);
10806 	return 0;
10807 }
10808 
10809 static void perf_pmu_cancel_txn(struct pmu *pmu)
10810 {
10811 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10812 
10813 	__this_cpu_write(nop_txn_flags, 0);
10814 
10815 	if (flags & ~PERF_PMU_TXN_ADD)
10816 		return;
10817 
10818 	perf_pmu_enable(pmu);
10819 }
10820 
10821 static int perf_event_idx_default(struct perf_event *event)
10822 {
10823 	return 0;
10824 }
10825 
10826 /*
10827  * Ensures all contexts with the same task_ctx_nr have the same
10828  * pmu_cpu_context too.
10829  */
10830 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10831 {
10832 	struct pmu *pmu;
10833 
10834 	if (ctxn < 0)
10835 		return NULL;
10836 
10837 	list_for_each_entry(pmu, &pmus, entry) {
10838 		if (pmu->task_ctx_nr == ctxn)
10839 			return pmu->pmu_cpu_context;
10840 	}
10841 
10842 	return NULL;
10843 }
10844 
10845 static void free_pmu_context(struct pmu *pmu)
10846 {
10847 	/*
10848 	 * Static contexts such as perf_sw_context have a global lifetime
10849 	 * and may be shared between different PMUs. Avoid freeing them
10850 	 * when a single PMU is going away.
10851 	 */
10852 	if (pmu->task_ctx_nr > perf_invalid_context)
10853 		return;
10854 
10855 	free_percpu(pmu->pmu_cpu_context);
10856 }
10857 
10858 /*
10859  * Let userspace know that this PMU supports address range filtering:
10860  */
10861 static ssize_t nr_addr_filters_show(struct device *dev,
10862 				    struct device_attribute *attr,
10863 				    char *page)
10864 {
10865 	struct pmu *pmu = dev_get_drvdata(dev);
10866 
10867 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10868 }
10869 DEVICE_ATTR_RO(nr_addr_filters);
10870 
10871 static struct idr pmu_idr;
10872 
10873 static ssize_t
10874 type_show(struct device *dev, struct device_attribute *attr, char *page)
10875 {
10876 	struct pmu *pmu = dev_get_drvdata(dev);
10877 
10878 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10879 }
10880 static DEVICE_ATTR_RO(type);
10881 
10882 static ssize_t
10883 perf_event_mux_interval_ms_show(struct device *dev,
10884 				struct device_attribute *attr,
10885 				char *page)
10886 {
10887 	struct pmu *pmu = dev_get_drvdata(dev);
10888 
10889 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10890 }
10891 
10892 static DEFINE_MUTEX(mux_interval_mutex);
10893 
10894 static ssize_t
10895 perf_event_mux_interval_ms_store(struct device *dev,
10896 				 struct device_attribute *attr,
10897 				 const char *buf, size_t count)
10898 {
10899 	struct pmu *pmu = dev_get_drvdata(dev);
10900 	int timer, cpu, ret;
10901 
10902 	ret = kstrtoint(buf, 0, &timer);
10903 	if (ret)
10904 		return ret;
10905 
10906 	if (timer < 1)
10907 		return -EINVAL;
10908 
10909 	/* same value, noting to do */
10910 	if (timer == pmu->hrtimer_interval_ms)
10911 		return count;
10912 
10913 	mutex_lock(&mux_interval_mutex);
10914 	pmu->hrtimer_interval_ms = timer;
10915 
10916 	/* update all cpuctx for this PMU */
10917 	cpus_read_lock();
10918 	for_each_online_cpu(cpu) {
10919 		struct perf_cpu_context *cpuctx;
10920 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10921 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10922 
10923 		cpu_function_call(cpu,
10924 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10925 	}
10926 	cpus_read_unlock();
10927 	mutex_unlock(&mux_interval_mutex);
10928 
10929 	return count;
10930 }
10931 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10932 
10933 static struct attribute *pmu_dev_attrs[] = {
10934 	&dev_attr_type.attr,
10935 	&dev_attr_perf_event_mux_interval_ms.attr,
10936 	NULL,
10937 };
10938 ATTRIBUTE_GROUPS(pmu_dev);
10939 
10940 static int pmu_bus_running;
10941 static struct bus_type pmu_bus = {
10942 	.name		= "event_source",
10943 	.dev_groups	= pmu_dev_groups,
10944 };
10945 
10946 static void pmu_dev_release(struct device *dev)
10947 {
10948 	kfree(dev);
10949 }
10950 
10951 static int pmu_dev_alloc(struct pmu *pmu)
10952 {
10953 	int ret = -ENOMEM;
10954 
10955 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10956 	if (!pmu->dev)
10957 		goto out;
10958 
10959 	pmu->dev->groups = pmu->attr_groups;
10960 	device_initialize(pmu->dev);
10961 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10962 	if (ret)
10963 		goto free_dev;
10964 
10965 	dev_set_drvdata(pmu->dev, pmu);
10966 	pmu->dev->bus = &pmu_bus;
10967 	pmu->dev->release = pmu_dev_release;
10968 	ret = device_add(pmu->dev);
10969 	if (ret)
10970 		goto free_dev;
10971 
10972 	/* For PMUs with address filters, throw in an extra attribute: */
10973 	if (pmu->nr_addr_filters)
10974 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10975 
10976 	if (ret)
10977 		goto del_dev;
10978 
10979 	if (pmu->attr_update)
10980 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10981 
10982 	if (ret)
10983 		goto del_dev;
10984 
10985 out:
10986 	return ret;
10987 
10988 del_dev:
10989 	device_del(pmu->dev);
10990 
10991 free_dev:
10992 	put_device(pmu->dev);
10993 	goto out;
10994 }
10995 
10996 static struct lock_class_key cpuctx_mutex;
10997 static struct lock_class_key cpuctx_lock;
10998 
10999 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11000 {
11001 	int cpu, ret, max = PERF_TYPE_MAX;
11002 
11003 	mutex_lock(&pmus_lock);
11004 	ret = -ENOMEM;
11005 	pmu->pmu_disable_count = alloc_percpu(int);
11006 	if (!pmu->pmu_disable_count)
11007 		goto unlock;
11008 
11009 	pmu->type = -1;
11010 	if (!name)
11011 		goto skip_type;
11012 	pmu->name = name;
11013 
11014 	if (type != PERF_TYPE_SOFTWARE) {
11015 		if (type >= 0)
11016 			max = type;
11017 
11018 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11019 		if (ret < 0)
11020 			goto free_pdc;
11021 
11022 		WARN_ON(type >= 0 && ret != type);
11023 
11024 		type = ret;
11025 	}
11026 	pmu->type = type;
11027 
11028 	if (pmu_bus_running) {
11029 		ret = pmu_dev_alloc(pmu);
11030 		if (ret)
11031 			goto free_idr;
11032 	}
11033 
11034 skip_type:
11035 	if (pmu->task_ctx_nr == perf_hw_context) {
11036 		static int hw_context_taken = 0;
11037 
11038 		/*
11039 		 * Other than systems with heterogeneous CPUs, it never makes
11040 		 * sense for two PMUs to share perf_hw_context. PMUs which are
11041 		 * uncore must use perf_invalid_context.
11042 		 */
11043 		if (WARN_ON_ONCE(hw_context_taken &&
11044 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11045 			pmu->task_ctx_nr = perf_invalid_context;
11046 
11047 		hw_context_taken = 1;
11048 	}
11049 
11050 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11051 	if (pmu->pmu_cpu_context)
11052 		goto got_cpu_context;
11053 
11054 	ret = -ENOMEM;
11055 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11056 	if (!pmu->pmu_cpu_context)
11057 		goto free_dev;
11058 
11059 	for_each_possible_cpu(cpu) {
11060 		struct perf_cpu_context *cpuctx;
11061 
11062 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11063 		__perf_event_init_context(&cpuctx->ctx);
11064 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11065 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11066 		cpuctx->ctx.pmu = pmu;
11067 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11068 
11069 		__perf_mux_hrtimer_init(cpuctx, cpu);
11070 
11071 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11072 		cpuctx->heap = cpuctx->heap_default;
11073 	}
11074 
11075 got_cpu_context:
11076 	if (!pmu->start_txn) {
11077 		if (pmu->pmu_enable) {
11078 			/*
11079 			 * If we have pmu_enable/pmu_disable calls, install
11080 			 * transaction stubs that use that to try and batch
11081 			 * hardware accesses.
11082 			 */
11083 			pmu->start_txn  = perf_pmu_start_txn;
11084 			pmu->commit_txn = perf_pmu_commit_txn;
11085 			pmu->cancel_txn = perf_pmu_cancel_txn;
11086 		} else {
11087 			pmu->start_txn  = perf_pmu_nop_txn;
11088 			pmu->commit_txn = perf_pmu_nop_int;
11089 			pmu->cancel_txn = perf_pmu_nop_void;
11090 		}
11091 	}
11092 
11093 	if (!pmu->pmu_enable) {
11094 		pmu->pmu_enable  = perf_pmu_nop_void;
11095 		pmu->pmu_disable = perf_pmu_nop_void;
11096 	}
11097 
11098 	if (!pmu->check_period)
11099 		pmu->check_period = perf_event_nop_int;
11100 
11101 	if (!pmu->event_idx)
11102 		pmu->event_idx = perf_event_idx_default;
11103 
11104 	/*
11105 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11106 	 * since these cannot be in the IDR. This way the linear search
11107 	 * is fast, provided a valid software event is provided.
11108 	 */
11109 	if (type == PERF_TYPE_SOFTWARE || !name)
11110 		list_add_rcu(&pmu->entry, &pmus);
11111 	else
11112 		list_add_tail_rcu(&pmu->entry, &pmus);
11113 
11114 	atomic_set(&pmu->exclusive_cnt, 0);
11115 	ret = 0;
11116 unlock:
11117 	mutex_unlock(&pmus_lock);
11118 
11119 	return ret;
11120 
11121 free_dev:
11122 	device_del(pmu->dev);
11123 	put_device(pmu->dev);
11124 
11125 free_idr:
11126 	if (pmu->type != PERF_TYPE_SOFTWARE)
11127 		idr_remove(&pmu_idr, pmu->type);
11128 
11129 free_pdc:
11130 	free_percpu(pmu->pmu_disable_count);
11131 	goto unlock;
11132 }
11133 EXPORT_SYMBOL_GPL(perf_pmu_register);
11134 
11135 void perf_pmu_unregister(struct pmu *pmu)
11136 {
11137 	mutex_lock(&pmus_lock);
11138 	list_del_rcu(&pmu->entry);
11139 
11140 	/*
11141 	 * We dereference the pmu list under both SRCU and regular RCU, so
11142 	 * synchronize against both of those.
11143 	 */
11144 	synchronize_srcu(&pmus_srcu);
11145 	synchronize_rcu();
11146 
11147 	free_percpu(pmu->pmu_disable_count);
11148 	if (pmu->type != PERF_TYPE_SOFTWARE)
11149 		idr_remove(&pmu_idr, pmu->type);
11150 	if (pmu_bus_running) {
11151 		if (pmu->nr_addr_filters)
11152 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11153 		device_del(pmu->dev);
11154 		put_device(pmu->dev);
11155 	}
11156 	free_pmu_context(pmu);
11157 	mutex_unlock(&pmus_lock);
11158 }
11159 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11160 
11161 static inline bool has_extended_regs(struct perf_event *event)
11162 {
11163 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11164 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11165 }
11166 
11167 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11168 {
11169 	struct perf_event_context *ctx = NULL;
11170 	int ret;
11171 
11172 	if (!try_module_get(pmu->module))
11173 		return -ENODEV;
11174 
11175 	/*
11176 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11177 	 * for example, validate if the group fits on the PMU. Therefore,
11178 	 * if this is a sibling event, acquire the ctx->mutex to protect
11179 	 * the sibling_list.
11180 	 */
11181 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11182 		/*
11183 		 * This ctx->mutex can nest when we're called through
11184 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11185 		 */
11186 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11187 						 SINGLE_DEPTH_NESTING);
11188 		BUG_ON(!ctx);
11189 	}
11190 
11191 	event->pmu = pmu;
11192 	ret = pmu->event_init(event);
11193 
11194 	if (ctx)
11195 		perf_event_ctx_unlock(event->group_leader, ctx);
11196 
11197 	if (!ret) {
11198 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11199 		    has_extended_regs(event))
11200 			ret = -EOPNOTSUPP;
11201 
11202 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11203 		    event_has_any_exclude_flag(event))
11204 			ret = -EINVAL;
11205 
11206 		if (ret && event->destroy)
11207 			event->destroy(event);
11208 	}
11209 
11210 	if (ret)
11211 		module_put(pmu->module);
11212 
11213 	return ret;
11214 }
11215 
11216 static struct pmu *perf_init_event(struct perf_event *event)
11217 {
11218 	bool extended_type = false;
11219 	int idx, type, ret;
11220 	struct pmu *pmu;
11221 
11222 	idx = srcu_read_lock(&pmus_srcu);
11223 
11224 	/* Try parent's PMU first: */
11225 	if (event->parent && event->parent->pmu) {
11226 		pmu = event->parent->pmu;
11227 		ret = perf_try_init_event(pmu, event);
11228 		if (!ret)
11229 			goto unlock;
11230 	}
11231 
11232 	/*
11233 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11234 	 * are often aliases for PERF_TYPE_RAW.
11235 	 */
11236 	type = event->attr.type;
11237 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11238 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11239 		if (!type) {
11240 			type = PERF_TYPE_RAW;
11241 		} else {
11242 			extended_type = true;
11243 			event->attr.config &= PERF_HW_EVENT_MASK;
11244 		}
11245 	}
11246 
11247 again:
11248 	rcu_read_lock();
11249 	pmu = idr_find(&pmu_idr, type);
11250 	rcu_read_unlock();
11251 	if (pmu) {
11252 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11253 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11254 			goto fail;
11255 
11256 		ret = perf_try_init_event(pmu, event);
11257 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11258 			type = event->attr.type;
11259 			goto again;
11260 		}
11261 
11262 		if (ret)
11263 			pmu = ERR_PTR(ret);
11264 
11265 		goto unlock;
11266 	}
11267 
11268 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11269 		ret = perf_try_init_event(pmu, event);
11270 		if (!ret)
11271 			goto unlock;
11272 
11273 		if (ret != -ENOENT) {
11274 			pmu = ERR_PTR(ret);
11275 			goto unlock;
11276 		}
11277 	}
11278 fail:
11279 	pmu = ERR_PTR(-ENOENT);
11280 unlock:
11281 	srcu_read_unlock(&pmus_srcu, idx);
11282 
11283 	return pmu;
11284 }
11285 
11286 static void attach_sb_event(struct perf_event *event)
11287 {
11288 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11289 
11290 	raw_spin_lock(&pel->lock);
11291 	list_add_rcu(&event->sb_list, &pel->list);
11292 	raw_spin_unlock(&pel->lock);
11293 }
11294 
11295 /*
11296  * We keep a list of all !task (and therefore per-cpu) events
11297  * that need to receive side-band records.
11298  *
11299  * This avoids having to scan all the various PMU per-cpu contexts
11300  * looking for them.
11301  */
11302 static void account_pmu_sb_event(struct perf_event *event)
11303 {
11304 	if (is_sb_event(event))
11305 		attach_sb_event(event);
11306 }
11307 
11308 static void account_event_cpu(struct perf_event *event, int cpu)
11309 {
11310 	if (event->parent)
11311 		return;
11312 
11313 	if (is_cgroup_event(event))
11314 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11315 }
11316 
11317 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11318 static void account_freq_event_nohz(void)
11319 {
11320 #ifdef CONFIG_NO_HZ_FULL
11321 	/* Lock so we don't race with concurrent unaccount */
11322 	spin_lock(&nr_freq_lock);
11323 	if (atomic_inc_return(&nr_freq_events) == 1)
11324 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11325 	spin_unlock(&nr_freq_lock);
11326 #endif
11327 }
11328 
11329 static void account_freq_event(void)
11330 {
11331 	if (tick_nohz_full_enabled())
11332 		account_freq_event_nohz();
11333 	else
11334 		atomic_inc(&nr_freq_events);
11335 }
11336 
11337 
11338 static void account_event(struct perf_event *event)
11339 {
11340 	bool inc = false;
11341 
11342 	if (event->parent)
11343 		return;
11344 
11345 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11346 		inc = true;
11347 	if (event->attr.mmap || event->attr.mmap_data)
11348 		atomic_inc(&nr_mmap_events);
11349 	if (event->attr.build_id)
11350 		atomic_inc(&nr_build_id_events);
11351 	if (event->attr.comm)
11352 		atomic_inc(&nr_comm_events);
11353 	if (event->attr.namespaces)
11354 		atomic_inc(&nr_namespaces_events);
11355 	if (event->attr.cgroup)
11356 		atomic_inc(&nr_cgroup_events);
11357 	if (event->attr.task)
11358 		atomic_inc(&nr_task_events);
11359 	if (event->attr.freq)
11360 		account_freq_event();
11361 	if (event->attr.context_switch) {
11362 		atomic_inc(&nr_switch_events);
11363 		inc = true;
11364 	}
11365 	if (has_branch_stack(event))
11366 		inc = true;
11367 	if (is_cgroup_event(event))
11368 		inc = true;
11369 	if (event->attr.ksymbol)
11370 		atomic_inc(&nr_ksymbol_events);
11371 	if (event->attr.bpf_event)
11372 		atomic_inc(&nr_bpf_events);
11373 	if (event->attr.text_poke)
11374 		atomic_inc(&nr_text_poke_events);
11375 
11376 	if (inc) {
11377 		/*
11378 		 * We need the mutex here because static_branch_enable()
11379 		 * must complete *before* the perf_sched_count increment
11380 		 * becomes visible.
11381 		 */
11382 		if (atomic_inc_not_zero(&perf_sched_count))
11383 			goto enabled;
11384 
11385 		mutex_lock(&perf_sched_mutex);
11386 		if (!atomic_read(&perf_sched_count)) {
11387 			static_branch_enable(&perf_sched_events);
11388 			/*
11389 			 * Guarantee that all CPUs observe they key change and
11390 			 * call the perf scheduling hooks before proceeding to
11391 			 * install events that need them.
11392 			 */
11393 			synchronize_rcu();
11394 		}
11395 		/*
11396 		 * Now that we have waited for the sync_sched(), allow further
11397 		 * increments to by-pass the mutex.
11398 		 */
11399 		atomic_inc(&perf_sched_count);
11400 		mutex_unlock(&perf_sched_mutex);
11401 	}
11402 enabled:
11403 
11404 	account_event_cpu(event, event->cpu);
11405 
11406 	account_pmu_sb_event(event);
11407 }
11408 
11409 /*
11410  * Allocate and initialize an event structure
11411  */
11412 static struct perf_event *
11413 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11414 		 struct task_struct *task,
11415 		 struct perf_event *group_leader,
11416 		 struct perf_event *parent_event,
11417 		 perf_overflow_handler_t overflow_handler,
11418 		 void *context, int cgroup_fd)
11419 {
11420 	struct pmu *pmu;
11421 	struct perf_event *event;
11422 	struct hw_perf_event *hwc;
11423 	long err = -EINVAL;
11424 	int node;
11425 
11426 	if ((unsigned)cpu >= nr_cpu_ids) {
11427 		if (!task || cpu != -1)
11428 			return ERR_PTR(-EINVAL);
11429 	}
11430 	if (attr->sigtrap && !task) {
11431 		/* Requires a task: avoid signalling random tasks. */
11432 		return ERR_PTR(-EINVAL);
11433 	}
11434 
11435 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11436 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11437 				      node);
11438 	if (!event)
11439 		return ERR_PTR(-ENOMEM);
11440 
11441 	/*
11442 	 * Single events are their own group leaders, with an
11443 	 * empty sibling list:
11444 	 */
11445 	if (!group_leader)
11446 		group_leader = event;
11447 
11448 	mutex_init(&event->child_mutex);
11449 	INIT_LIST_HEAD(&event->child_list);
11450 
11451 	INIT_LIST_HEAD(&event->event_entry);
11452 	INIT_LIST_HEAD(&event->sibling_list);
11453 	INIT_LIST_HEAD(&event->active_list);
11454 	init_event_group(event);
11455 	INIT_LIST_HEAD(&event->rb_entry);
11456 	INIT_LIST_HEAD(&event->active_entry);
11457 	INIT_LIST_HEAD(&event->addr_filters.list);
11458 	INIT_HLIST_NODE(&event->hlist_entry);
11459 
11460 
11461 	init_waitqueue_head(&event->waitq);
11462 	event->pending_disable = -1;
11463 	init_irq_work(&event->pending, perf_pending_event);
11464 
11465 	mutex_init(&event->mmap_mutex);
11466 	raw_spin_lock_init(&event->addr_filters.lock);
11467 
11468 	atomic_long_set(&event->refcount, 1);
11469 	event->cpu		= cpu;
11470 	event->attr		= *attr;
11471 	event->group_leader	= group_leader;
11472 	event->pmu		= NULL;
11473 	event->oncpu		= -1;
11474 
11475 	event->parent		= parent_event;
11476 
11477 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11478 	event->id		= atomic64_inc_return(&perf_event_id);
11479 
11480 	event->state		= PERF_EVENT_STATE_INACTIVE;
11481 
11482 	if (event->attr.sigtrap)
11483 		atomic_set(&event->event_limit, 1);
11484 
11485 	if (task) {
11486 		event->attach_state = PERF_ATTACH_TASK;
11487 		/*
11488 		 * XXX pmu::event_init needs to know what task to account to
11489 		 * and we cannot use the ctx information because we need the
11490 		 * pmu before we get a ctx.
11491 		 */
11492 		event->hw.target = get_task_struct(task);
11493 	}
11494 
11495 	event->clock = &local_clock;
11496 	if (parent_event)
11497 		event->clock = parent_event->clock;
11498 
11499 	if (!overflow_handler && parent_event) {
11500 		overflow_handler = parent_event->overflow_handler;
11501 		context = parent_event->overflow_handler_context;
11502 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11503 		if (overflow_handler == bpf_overflow_handler) {
11504 			struct bpf_prog *prog = parent_event->prog;
11505 
11506 			bpf_prog_inc(prog);
11507 			event->prog = prog;
11508 			event->orig_overflow_handler =
11509 				parent_event->orig_overflow_handler;
11510 		}
11511 #endif
11512 	}
11513 
11514 	if (overflow_handler) {
11515 		event->overflow_handler	= overflow_handler;
11516 		event->overflow_handler_context = context;
11517 	} else if (is_write_backward(event)){
11518 		event->overflow_handler = perf_event_output_backward;
11519 		event->overflow_handler_context = NULL;
11520 	} else {
11521 		event->overflow_handler = perf_event_output_forward;
11522 		event->overflow_handler_context = NULL;
11523 	}
11524 
11525 	perf_event__state_init(event);
11526 
11527 	pmu = NULL;
11528 
11529 	hwc = &event->hw;
11530 	hwc->sample_period = attr->sample_period;
11531 	if (attr->freq && attr->sample_freq)
11532 		hwc->sample_period = 1;
11533 	hwc->last_period = hwc->sample_period;
11534 
11535 	local64_set(&hwc->period_left, hwc->sample_period);
11536 
11537 	/*
11538 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11539 	 * See perf_output_read().
11540 	 */
11541 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11542 		goto err_ns;
11543 
11544 	if (!has_branch_stack(event))
11545 		event->attr.branch_sample_type = 0;
11546 
11547 	pmu = perf_init_event(event);
11548 	if (IS_ERR(pmu)) {
11549 		err = PTR_ERR(pmu);
11550 		goto err_ns;
11551 	}
11552 
11553 	/*
11554 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11555 	 * be different on other CPUs in the uncore mask.
11556 	 */
11557 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11558 		err = -EINVAL;
11559 		goto err_pmu;
11560 	}
11561 
11562 	if (event->attr.aux_output &&
11563 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11564 		err = -EOPNOTSUPP;
11565 		goto err_pmu;
11566 	}
11567 
11568 	if (cgroup_fd != -1) {
11569 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11570 		if (err)
11571 			goto err_pmu;
11572 	}
11573 
11574 	err = exclusive_event_init(event);
11575 	if (err)
11576 		goto err_pmu;
11577 
11578 	if (has_addr_filter(event)) {
11579 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11580 						    sizeof(struct perf_addr_filter_range),
11581 						    GFP_KERNEL);
11582 		if (!event->addr_filter_ranges) {
11583 			err = -ENOMEM;
11584 			goto err_per_task;
11585 		}
11586 
11587 		/*
11588 		 * Clone the parent's vma offsets: they are valid until exec()
11589 		 * even if the mm is not shared with the parent.
11590 		 */
11591 		if (event->parent) {
11592 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11593 
11594 			raw_spin_lock_irq(&ifh->lock);
11595 			memcpy(event->addr_filter_ranges,
11596 			       event->parent->addr_filter_ranges,
11597 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11598 			raw_spin_unlock_irq(&ifh->lock);
11599 		}
11600 
11601 		/* force hw sync on the address filters */
11602 		event->addr_filters_gen = 1;
11603 	}
11604 
11605 	if (!event->parent) {
11606 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11607 			err = get_callchain_buffers(attr->sample_max_stack);
11608 			if (err)
11609 				goto err_addr_filters;
11610 		}
11611 	}
11612 
11613 	err = security_perf_event_alloc(event);
11614 	if (err)
11615 		goto err_callchain_buffer;
11616 
11617 	/* symmetric to unaccount_event() in _free_event() */
11618 	account_event(event);
11619 
11620 	return event;
11621 
11622 err_callchain_buffer:
11623 	if (!event->parent) {
11624 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11625 			put_callchain_buffers();
11626 	}
11627 err_addr_filters:
11628 	kfree(event->addr_filter_ranges);
11629 
11630 err_per_task:
11631 	exclusive_event_destroy(event);
11632 
11633 err_pmu:
11634 	if (is_cgroup_event(event))
11635 		perf_detach_cgroup(event);
11636 	if (event->destroy)
11637 		event->destroy(event);
11638 	module_put(pmu->module);
11639 err_ns:
11640 	if (event->ns)
11641 		put_pid_ns(event->ns);
11642 	if (event->hw.target)
11643 		put_task_struct(event->hw.target);
11644 	kmem_cache_free(perf_event_cache, event);
11645 
11646 	return ERR_PTR(err);
11647 }
11648 
11649 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11650 			  struct perf_event_attr *attr)
11651 {
11652 	u32 size;
11653 	int ret;
11654 
11655 	/* Zero the full structure, so that a short copy will be nice. */
11656 	memset(attr, 0, sizeof(*attr));
11657 
11658 	ret = get_user(size, &uattr->size);
11659 	if (ret)
11660 		return ret;
11661 
11662 	/* ABI compatibility quirk: */
11663 	if (!size)
11664 		size = PERF_ATTR_SIZE_VER0;
11665 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11666 		goto err_size;
11667 
11668 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11669 	if (ret) {
11670 		if (ret == -E2BIG)
11671 			goto err_size;
11672 		return ret;
11673 	}
11674 
11675 	attr->size = size;
11676 
11677 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11678 		return -EINVAL;
11679 
11680 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11681 		return -EINVAL;
11682 
11683 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11684 		return -EINVAL;
11685 
11686 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11687 		u64 mask = attr->branch_sample_type;
11688 
11689 		/* only using defined bits */
11690 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11691 			return -EINVAL;
11692 
11693 		/* at least one branch bit must be set */
11694 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11695 			return -EINVAL;
11696 
11697 		/* propagate priv level, when not set for branch */
11698 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11699 
11700 			/* exclude_kernel checked on syscall entry */
11701 			if (!attr->exclude_kernel)
11702 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11703 
11704 			if (!attr->exclude_user)
11705 				mask |= PERF_SAMPLE_BRANCH_USER;
11706 
11707 			if (!attr->exclude_hv)
11708 				mask |= PERF_SAMPLE_BRANCH_HV;
11709 			/*
11710 			 * adjust user setting (for HW filter setup)
11711 			 */
11712 			attr->branch_sample_type = mask;
11713 		}
11714 		/* privileged levels capture (kernel, hv): check permissions */
11715 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11716 			ret = perf_allow_kernel(attr);
11717 			if (ret)
11718 				return ret;
11719 		}
11720 	}
11721 
11722 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11723 		ret = perf_reg_validate(attr->sample_regs_user);
11724 		if (ret)
11725 			return ret;
11726 	}
11727 
11728 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11729 		if (!arch_perf_have_user_stack_dump())
11730 			return -ENOSYS;
11731 
11732 		/*
11733 		 * We have __u32 type for the size, but so far
11734 		 * we can only use __u16 as maximum due to the
11735 		 * __u16 sample size limit.
11736 		 */
11737 		if (attr->sample_stack_user >= USHRT_MAX)
11738 			return -EINVAL;
11739 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11740 			return -EINVAL;
11741 	}
11742 
11743 	if (!attr->sample_max_stack)
11744 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11745 
11746 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11747 		ret = perf_reg_validate(attr->sample_regs_intr);
11748 
11749 #ifndef CONFIG_CGROUP_PERF
11750 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11751 		return -EINVAL;
11752 #endif
11753 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11754 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11755 		return -EINVAL;
11756 
11757 	if (!attr->inherit && attr->inherit_thread)
11758 		return -EINVAL;
11759 
11760 	if (attr->remove_on_exec && attr->enable_on_exec)
11761 		return -EINVAL;
11762 
11763 	if (attr->sigtrap && !attr->remove_on_exec)
11764 		return -EINVAL;
11765 
11766 out:
11767 	return ret;
11768 
11769 err_size:
11770 	put_user(sizeof(*attr), &uattr->size);
11771 	ret = -E2BIG;
11772 	goto out;
11773 }
11774 
11775 static int
11776 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11777 {
11778 	struct perf_buffer *rb = NULL;
11779 	int ret = -EINVAL;
11780 
11781 	if (!output_event)
11782 		goto set;
11783 
11784 	/* don't allow circular references */
11785 	if (event == output_event)
11786 		goto out;
11787 
11788 	/*
11789 	 * Don't allow cross-cpu buffers
11790 	 */
11791 	if (output_event->cpu != event->cpu)
11792 		goto out;
11793 
11794 	/*
11795 	 * If its not a per-cpu rb, it must be the same task.
11796 	 */
11797 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11798 		goto out;
11799 
11800 	/*
11801 	 * Mixing clocks in the same buffer is trouble you don't need.
11802 	 */
11803 	if (output_event->clock != event->clock)
11804 		goto out;
11805 
11806 	/*
11807 	 * Either writing ring buffer from beginning or from end.
11808 	 * Mixing is not allowed.
11809 	 */
11810 	if (is_write_backward(output_event) != is_write_backward(event))
11811 		goto out;
11812 
11813 	/*
11814 	 * If both events generate aux data, they must be on the same PMU
11815 	 */
11816 	if (has_aux(event) && has_aux(output_event) &&
11817 	    event->pmu != output_event->pmu)
11818 		goto out;
11819 
11820 set:
11821 	mutex_lock(&event->mmap_mutex);
11822 	/* Can't redirect output if we've got an active mmap() */
11823 	if (atomic_read(&event->mmap_count))
11824 		goto unlock;
11825 
11826 	if (output_event) {
11827 		/* get the rb we want to redirect to */
11828 		rb = ring_buffer_get(output_event);
11829 		if (!rb)
11830 			goto unlock;
11831 	}
11832 
11833 	ring_buffer_attach(event, rb);
11834 
11835 	ret = 0;
11836 unlock:
11837 	mutex_unlock(&event->mmap_mutex);
11838 
11839 out:
11840 	return ret;
11841 }
11842 
11843 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11844 {
11845 	if (b < a)
11846 		swap(a, b);
11847 
11848 	mutex_lock(a);
11849 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11850 }
11851 
11852 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11853 {
11854 	bool nmi_safe = false;
11855 
11856 	switch (clk_id) {
11857 	case CLOCK_MONOTONIC:
11858 		event->clock = &ktime_get_mono_fast_ns;
11859 		nmi_safe = true;
11860 		break;
11861 
11862 	case CLOCK_MONOTONIC_RAW:
11863 		event->clock = &ktime_get_raw_fast_ns;
11864 		nmi_safe = true;
11865 		break;
11866 
11867 	case CLOCK_REALTIME:
11868 		event->clock = &ktime_get_real_ns;
11869 		break;
11870 
11871 	case CLOCK_BOOTTIME:
11872 		event->clock = &ktime_get_boottime_ns;
11873 		break;
11874 
11875 	case CLOCK_TAI:
11876 		event->clock = &ktime_get_clocktai_ns;
11877 		break;
11878 
11879 	default:
11880 		return -EINVAL;
11881 	}
11882 
11883 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11884 		return -EINVAL;
11885 
11886 	return 0;
11887 }
11888 
11889 /*
11890  * Variation on perf_event_ctx_lock_nested(), except we take two context
11891  * mutexes.
11892  */
11893 static struct perf_event_context *
11894 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11895 			     struct perf_event_context *ctx)
11896 {
11897 	struct perf_event_context *gctx;
11898 
11899 again:
11900 	rcu_read_lock();
11901 	gctx = READ_ONCE(group_leader->ctx);
11902 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11903 		rcu_read_unlock();
11904 		goto again;
11905 	}
11906 	rcu_read_unlock();
11907 
11908 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11909 
11910 	if (group_leader->ctx != gctx) {
11911 		mutex_unlock(&ctx->mutex);
11912 		mutex_unlock(&gctx->mutex);
11913 		put_ctx(gctx);
11914 		goto again;
11915 	}
11916 
11917 	return gctx;
11918 }
11919 
11920 /**
11921  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11922  *
11923  * @attr_uptr:	event_id type attributes for monitoring/sampling
11924  * @pid:		target pid
11925  * @cpu:		target cpu
11926  * @group_fd:		group leader event fd
11927  */
11928 SYSCALL_DEFINE5(perf_event_open,
11929 		struct perf_event_attr __user *, attr_uptr,
11930 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11931 {
11932 	struct perf_event *group_leader = NULL, *output_event = NULL;
11933 	struct perf_event *event, *sibling;
11934 	struct perf_event_attr attr;
11935 	struct perf_event_context *ctx, *gctx;
11936 	struct file *event_file = NULL;
11937 	struct fd group = {NULL, 0};
11938 	struct task_struct *task = NULL;
11939 	struct pmu *pmu;
11940 	int event_fd;
11941 	int move_group = 0;
11942 	int err;
11943 	int f_flags = O_RDWR;
11944 	int cgroup_fd = -1;
11945 
11946 	/* for future expandability... */
11947 	if (flags & ~PERF_FLAG_ALL)
11948 		return -EINVAL;
11949 
11950 	/* Do we allow access to perf_event_open(2) ? */
11951 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11952 	if (err)
11953 		return err;
11954 
11955 	err = perf_copy_attr(attr_uptr, &attr);
11956 	if (err)
11957 		return err;
11958 
11959 	if (!attr.exclude_kernel) {
11960 		err = perf_allow_kernel(&attr);
11961 		if (err)
11962 			return err;
11963 	}
11964 
11965 	if (attr.namespaces) {
11966 		if (!perfmon_capable())
11967 			return -EACCES;
11968 	}
11969 
11970 	if (attr.freq) {
11971 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
11972 			return -EINVAL;
11973 	} else {
11974 		if (attr.sample_period & (1ULL << 63))
11975 			return -EINVAL;
11976 	}
11977 
11978 	/* Only privileged users can get physical addresses */
11979 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11980 		err = perf_allow_kernel(&attr);
11981 		if (err)
11982 			return err;
11983 	}
11984 
11985 	/* REGS_INTR can leak data, lockdown must prevent this */
11986 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
11987 		err = security_locked_down(LOCKDOWN_PERF);
11988 		if (err)
11989 			return err;
11990 	}
11991 
11992 	/*
11993 	 * In cgroup mode, the pid argument is used to pass the fd
11994 	 * opened to the cgroup directory in cgroupfs. The cpu argument
11995 	 * designates the cpu on which to monitor threads from that
11996 	 * cgroup.
11997 	 */
11998 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11999 		return -EINVAL;
12000 
12001 	if (flags & PERF_FLAG_FD_CLOEXEC)
12002 		f_flags |= O_CLOEXEC;
12003 
12004 	event_fd = get_unused_fd_flags(f_flags);
12005 	if (event_fd < 0)
12006 		return event_fd;
12007 
12008 	if (group_fd != -1) {
12009 		err = perf_fget_light(group_fd, &group);
12010 		if (err)
12011 			goto err_fd;
12012 		group_leader = group.file->private_data;
12013 		if (flags & PERF_FLAG_FD_OUTPUT)
12014 			output_event = group_leader;
12015 		if (flags & PERF_FLAG_FD_NO_GROUP)
12016 			group_leader = NULL;
12017 	}
12018 
12019 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12020 		task = find_lively_task_by_vpid(pid);
12021 		if (IS_ERR(task)) {
12022 			err = PTR_ERR(task);
12023 			goto err_group_fd;
12024 		}
12025 	}
12026 
12027 	if (task && group_leader &&
12028 	    group_leader->attr.inherit != attr.inherit) {
12029 		err = -EINVAL;
12030 		goto err_task;
12031 	}
12032 
12033 	if (flags & PERF_FLAG_PID_CGROUP)
12034 		cgroup_fd = pid;
12035 
12036 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12037 				 NULL, NULL, cgroup_fd);
12038 	if (IS_ERR(event)) {
12039 		err = PTR_ERR(event);
12040 		goto err_task;
12041 	}
12042 
12043 	if (is_sampling_event(event)) {
12044 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12045 			err = -EOPNOTSUPP;
12046 			goto err_alloc;
12047 		}
12048 	}
12049 
12050 	/*
12051 	 * Special case software events and allow them to be part of
12052 	 * any hardware group.
12053 	 */
12054 	pmu = event->pmu;
12055 
12056 	if (attr.use_clockid) {
12057 		err = perf_event_set_clock(event, attr.clockid);
12058 		if (err)
12059 			goto err_alloc;
12060 	}
12061 
12062 	if (pmu->task_ctx_nr == perf_sw_context)
12063 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12064 
12065 	if (group_leader) {
12066 		if (is_software_event(event) &&
12067 		    !in_software_context(group_leader)) {
12068 			/*
12069 			 * If the event is a sw event, but the group_leader
12070 			 * is on hw context.
12071 			 *
12072 			 * Allow the addition of software events to hw
12073 			 * groups, this is safe because software events
12074 			 * never fail to schedule.
12075 			 */
12076 			pmu = group_leader->ctx->pmu;
12077 		} else if (!is_software_event(event) &&
12078 			   is_software_event(group_leader) &&
12079 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12080 			/*
12081 			 * In case the group is a pure software group, and we
12082 			 * try to add a hardware event, move the whole group to
12083 			 * the hardware context.
12084 			 */
12085 			move_group = 1;
12086 		}
12087 	}
12088 
12089 	/*
12090 	 * Get the target context (task or percpu):
12091 	 */
12092 	ctx = find_get_context(pmu, task, event);
12093 	if (IS_ERR(ctx)) {
12094 		err = PTR_ERR(ctx);
12095 		goto err_alloc;
12096 	}
12097 
12098 	/*
12099 	 * Look up the group leader (we will attach this event to it):
12100 	 */
12101 	if (group_leader) {
12102 		err = -EINVAL;
12103 
12104 		/*
12105 		 * Do not allow a recursive hierarchy (this new sibling
12106 		 * becoming part of another group-sibling):
12107 		 */
12108 		if (group_leader->group_leader != group_leader)
12109 			goto err_context;
12110 
12111 		/* All events in a group should have the same clock */
12112 		if (group_leader->clock != event->clock)
12113 			goto err_context;
12114 
12115 		/*
12116 		 * Make sure we're both events for the same CPU;
12117 		 * grouping events for different CPUs is broken; since
12118 		 * you can never concurrently schedule them anyhow.
12119 		 */
12120 		if (group_leader->cpu != event->cpu)
12121 			goto err_context;
12122 
12123 		/*
12124 		 * Make sure we're both on the same task, or both
12125 		 * per-CPU events.
12126 		 */
12127 		if (group_leader->ctx->task != ctx->task)
12128 			goto err_context;
12129 
12130 		/*
12131 		 * Do not allow to attach to a group in a different task
12132 		 * or CPU context. If we're moving SW events, we'll fix
12133 		 * this up later, so allow that.
12134 		 */
12135 		if (!move_group && group_leader->ctx != ctx)
12136 			goto err_context;
12137 
12138 		/*
12139 		 * Only a group leader can be exclusive or pinned
12140 		 */
12141 		if (attr.exclusive || attr.pinned)
12142 			goto err_context;
12143 	}
12144 
12145 	if (output_event) {
12146 		err = perf_event_set_output(event, output_event);
12147 		if (err)
12148 			goto err_context;
12149 	}
12150 
12151 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12152 					f_flags);
12153 	if (IS_ERR(event_file)) {
12154 		err = PTR_ERR(event_file);
12155 		event_file = NULL;
12156 		goto err_context;
12157 	}
12158 
12159 	if (task) {
12160 		err = down_read_interruptible(&task->signal->exec_update_lock);
12161 		if (err)
12162 			goto err_file;
12163 
12164 		/*
12165 		 * Preserve ptrace permission check for backwards compatibility.
12166 		 *
12167 		 * We must hold exec_update_lock across this and any potential
12168 		 * perf_install_in_context() call for this new event to
12169 		 * serialize against exec() altering our credentials (and the
12170 		 * perf_event_exit_task() that could imply).
12171 		 */
12172 		err = -EACCES;
12173 		if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
12174 			goto err_cred;
12175 	}
12176 
12177 	if (move_group) {
12178 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12179 
12180 		if (gctx->task == TASK_TOMBSTONE) {
12181 			err = -ESRCH;
12182 			goto err_locked;
12183 		}
12184 
12185 		/*
12186 		 * Check if we raced against another sys_perf_event_open() call
12187 		 * moving the software group underneath us.
12188 		 */
12189 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12190 			/*
12191 			 * If someone moved the group out from under us, check
12192 			 * if this new event wound up on the same ctx, if so
12193 			 * its the regular !move_group case, otherwise fail.
12194 			 */
12195 			if (gctx != ctx) {
12196 				err = -EINVAL;
12197 				goto err_locked;
12198 			} else {
12199 				perf_event_ctx_unlock(group_leader, gctx);
12200 				move_group = 0;
12201 			}
12202 		}
12203 
12204 		/*
12205 		 * Failure to create exclusive events returns -EBUSY.
12206 		 */
12207 		err = -EBUSY;
12208 		if (!exclusive_event_installable(group_leader, ctx))
12209 			goto err_locked;
12210 
12211 		for_each_sibling_event(sibling, group_leader) {
12212 			if (!exclusive_event_installable(sibling, ctx))
12213 				goto err_locked;
12214 		}
12215 	} else {
12216 		mutex_lock(&ctx->mutex);
12217 	}
12218 
12219 	if (ctx->task == TASK_TOMBSTONE) {
12220 		err = -ESRCH;
12221 		goto err_locked;
12222 	}
12223 
12224 	if (!perf_event_validate_size(event)) {
12225 		err = -E2BIG;
12226 		goto err_locked;
12227 	}
12228 
12229 	if (!task) {
12230 		/*
12231 		 * Check if the @cpu we're creating an event for is online.
12232 		 *
12233 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12234 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12235 		 */
12236 		struct perf_cpu_context *cpuctx =
12237 			container_of(ctx, struct perf_cpu_context, ctx);
12238 
12239 		if (!cpuctx->online) {
12240 			err = -ENODEV;
12241 			goto err_locked;
12242 		}
12243 	}
12244 
12245 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12246 		err = -EINVAL;
12247 		goto err_locked;
12248 	}
12249 
12250 	/*
12251 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12252 	 * because we need to serialize with concurrent event creation.
12253 	 */
12254 	if (!exclusive_event_installable(event, ctx)) {
12255 		err = -EBUSY;
12256 		goto err_locked;
12257 	}
12258 
12259 	WARN_ON_ONCE(ctx->parent_ctx);
12260 
12261 	/*
12262 	 * This is the point on no return; we cannot fail hereafter. This is
12263 	 * where we start modifying current state.
12264 	 */
12265 
12266 	if (move_group) {
12267 		/*
12268 		 * See perf_event_ctx_lock() for comments on the details
12269 		 * of swizzling perf_event::ctx.
12270 		 */
12271 		perf_remove_from_context(group_leader, 0);
12272 		put_ctx(gctx);
12273 
12274 		for_each_sibling_event(sibling, group_leader) {
12275 			perf_remove_from_context(sibling, 0);
12276 			put_ctx(gctx);
12277 		}
12278 
12279 		/*
12280 		 * Wait for everybody to stop referencing the events through
12281 		 * the old lists, before installing it on new lists.
12282 		 */
12283 		synchronize_rcu();
12284 
12285 		/*
12286 		 * Install the group siblings before the group leader.
12287 		 *
12288 		 * Because a group leader will try and install the entire group
12289 		 * (through the sibling list, which is still in-tact), we can
12290 		 * end up with siblings installed in the wrong context.
12291 		 *
12292 		 * By installing siblings first we NO-OP because they're not
12293 		 * reachable through the group lists.
12294 		 */
12295 		for_each_sibling_event(sibling, group_leader) {
12296 			perf_event__state_init(sibling);
12297 			perf_install_in_context(ctx, sibling, sibling->cpu);
12298 			get_ctx(ctx);
12299 		}
12300 
12301 		/*
12302 		 * Removing from the context ends up with disabled
12303 		 * event. What we want here is event in the initial
12304 		 * startup state, ready to be add into new context.
12305 		 */
12306 		perf_event__state_init(group_leader);
12307 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12308 		get_ctx(ctx);
12309 	}
12310 
12311 	/*
12312 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12313 	 * that we're serialized against further additions and before
12314 	 * perf_install_in_context() which is the point the event is active and
12315 	 * can use these values.
12316 	 */
12317 	perf_event__header_size(event);
12318 	perf_event__id_header_size(event);
12319 
12320 	event->owner = current;
12321 
12322 	perf_install_in_context(ctx, event, event->cpu);
12323 	perf_unpin_context(ctx);
12324 
12325 	if (move_group)
12326 		perf_event_ctx_unlock(group_leader, gctx);
12327 	mutex_unlock(&ctx->mutex);
12328 
12329 	if (task) {
12330 		up_read(&task->signal->exec_update_lock);
12331 		put_task_struct(task);
12332 	}
12333 
12334 	mutex_lock(&current->perf_event_mutex);
12335 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12336 	mutex_unlock(&current->perf_event_mutex);
12337 
12338 	/*
12339 	 * Drop the reference on the group_event after placing the
12340 	 * new event on the sibling_list. This ensures destruction
12341 	 * of the group leader will find the pointer to itself in
12342 	 * perf_group_detach().
12343 	 */
12344 	fdput(group);
12345 	fd_install(event_fd, event_file);
12346 	return event_fd;
12347 
12348 err_locked:
12349 	if (move_group)
12350 		perf_event_ctx_unlock(group_leader, gctx);
12351 	mutex_unlock(&ctx->mutex);
12352 err_cred:
12353 	if (task)
12354 		up_read(&task->signal->exec_update_lock);
12355 err_file:
12356 	fput(event_file);
12357 err_context:
12358 	perf_unpin_context(ctx);
12359 	put_ctx(ctx);
12360 err_alloc:
12361 	/*
12362 	 * If event_file is set, the fput() above will have called ->release()
12363 	 * and that will take care of freeing the event.
12364 	 */
12365 	if (!event_file)
12366 		free_event(event);
12367 err_task:
12368 	if (task)
12369 		put_task_struct(task);
12370 err_group_fd:
12371 	fdput(group);
12372 err_fd:
12373 	put_unused_fd(event_fd);
12374 	return err;
12375 }
12376 
12377 /**
12378  * perf_event_create_kernel_counter
12379  *
12380  * @attr: attributes of the counter to create
12381  * @cpu: cpu in which the counter is bound
12382  * @task: task to profile (NULL for percpu)
12383  */
12384 struct perf_event *
12385 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12386 				 struct task_struct *task,
12387 				 perf_overflow_handler_t overflow_handler,
12388 				 void *context)
12389 {
12390 	struct perf_event_context *ctx;
12391 	struct perf_event *event;
12392 	int err;
12393 
12394 	/*
12395 	 * Grouping is not supported for kernel events, neither is 'AUX',
12396 	 * make sure the caller's intentions are adjusted.
12397 	 */
12398 	if (attr->aux_output)
12399 		return ERR_PTR(-EINVAL);
12400 
12401 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12402 				 overflow_handler, context, -1);
12403 	if (IS_ERR(event)) {
12404 		err = PTR_ERR(event);
12405 		goto err;
12406 	}
12407 
12408 	/* Mark owner so we could distinguish it from user events. */
12409 	event->owner = TASK_TOMBSTONE;
12410 
12411 	/*
12412 	 * Get the target context (task or percpu):
12413 	 */
12414 	ctx = find_get_context(event->pmu, task, event);
12415 	if (IS_ERR(ctx)) {
12416 		err = PTR_ERR(ctx);
12417 		goto err_free;
12418 	}
12419 
12420 	WARN_ON_ONCE(ctx->parent_ctx);
12421 	mutex_lock(&ctx->mutex);
12422 	if (ctx->task == TASK_TOMBSTONE) {
12423 		err = -ESRCH;
12424 		goto err_unlock;
12425 	}
12426 
12427 	if (!task) {
12428 		/*
12429 		 * Check if the @cpu we're creating an event for is online.
12430 		 *
12431 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12432 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12433 		 */
12434 		struct perf_cpu_context *cpuctx =
12435 			container_of(ctx, struct perf_cpu_context, ctx);
12436 		if (!cpuctx->online) {
12437 			err = -ENODEV;
12438 			goto err_unlock;
12439 		}
12440 	}
12441 
12442 	if (!exclusive_event_installable(event, ctx)) {
12443 		err = -EBUSY;
12444 		goto err_unlock;
12445 	}
12446 
12447 	perf_install_in_context(ctx, event, event->cpu);
12448 	perf_unpin_context(ctx);
12449 	mutex_unlock(&ctx->mutex);
12450 
12451 	return event;
12452 
12453 err_unlock:
12454 	mutex_unlock(&ctx->mutex);
12455 	perf_unpin_context(ctx);
12456 	put_ctx(ctx);
12457 err_free:
12458 	free_event(event);
12459 err:
12460 	return ERR_PTR(err);
12461 }
12462 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12463 
12464 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12465 {
12466 	struct perf_event_context *src_ctx;
12467 	struct perf_event_context *dst_ctx;
12468 	struct perf_event *event, *tmp;
12469 	LIST_HEAD(events);
12470 
12471 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12472 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12473 
12474 	/*
12475 	 * See perf_event_ctx_lock() for comments on the details
12476 	 * of swizzling perf_event::ctx.
12477 	 */
12478 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12479 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12480 				 event_entry) {
12481 		perf_remove_from_context(event, 0);
12482 		unaccount_event_cpu(event, src_cpu);
12483 		put_ctx(src_ctx);
12484 		list_add(&event->migrate_entry, &events);
12485 	}
12486 
12487 	/*
12488 	 * Wait for the events to quiesce before re-instating them.
12489 	 */
12490 	synchronize_rcu();
12491 
12492 	/*
12493 	 * Re-instate events in 2 passes.
12494 	 *
12495 	 * Skip over group leaders and only install siblings on this first
12496 	 * pass, siblings will not get enabled without a leader, however a
12497 	 * leader will enable its siblings, even if those are still on the old
12498 	 * context.
12499 	 */
12500 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12501 		if (event->group_leader == event)
12502 			continue;
12503 
12504 		list_del(&event->migrate_entry);
12505 		if (event->state >= PERF_EVENT_STATE_OFF)
12506 			event->state = PERF_EVENT_STATE_INACTIVE;
12507 		account_event_cpu(event, dst_cpu);
12508 		perf_install_in_context(dst_ctx, event, dst_cpu);
12509 		get_ctx(dst_ctx);
12510 	}
12511 
12512 	/*
12513 	 * Once all the siblings are setup properly, install the group leaders
12514 	 * to make it go.
12515 	 */
12516 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12517 		list_del(&event->migrate_entry);
12518 		if (event->state >= PERF_EVENT_STATE_OFF)
12519 			event->state = PERF_EVENT_STATE_INACTIVE;
12520 		account_event_cpu(event, dst_cpu);
12521 		perf_install_in_context(dst_ctx, event, dst_cpu);
12522 		get_ctx(dst_ctx);
12523 	}
12524 	mutex_unlock(&dst_ctx->mutex);
12525 	mutex_unlock(&src_ctx->mutex);
12526 }
12527 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12528 
12529 static void sync_child_event(struct perf_event *child_event)
12530 {
12531 	struct perf_event *parent_event = child_event->parent;
12532 	u64 child_val;
12533 
12534 	if (child_event->attr.inherit_stat) {
12535 		struct task_struct *task = child_event->ctx->task;
12536 
12537 		if (task && task != TASK_TOMBSTONE)
12538 			perf_event_read_event(child_event, task);
12539 	}
12540 
12541 	child_val = perf_event_count(child_event);
12542 
12543 	/*
12544 	 * Add back the child's count to the parent's count:
12545 	 */
12546 	atomic64_add(child_val, &parent_event->child_count);
12547 	atomic64_add(child_event->total_time_enabled,
12548 		     &parent_event->child_total_time_enabled);
12549 	atomic64_add(child_event->total_time_running,
12550 		     &parent_event->child_total_time_running);
12551 }
12552 
12553 static void
12554 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12555 {
12556 	struct perf_event *parent_event = event->parent;
12557 	unsigned long detach_flags = 0;
12558 
12559 	if (parent_event) {
12560 		/*
12561 		 * Do not destroy the 'original' grouping; because of the
12562 		 * context switch optimization the original events could've
12563 		 * ended up in a random child task.
12564 		 *
12565 		 * If we were to destroy the original group, all group related
12566 		 * operations would cease to function properly after this
12567 		 * random child dies.
12568 		 *
12569 		 * Do destroy all inherited groups, we don't care about those
12570 		 * and being thorough is better.
12571 		 */
12572 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12573 		mutex_lock(&parent_event->child_mutex);
12574 	}
12575 
12576 	perf_remove_from_context(event, detach_flags);
12577 
12578 	raw_spin_lock_irq(&ctx->lock);
12579 	if (event->state > PERF_EVENT_STATE_EXIT)
12580 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12581 	raw_spin_unlock_irq(&ctx->lock);
12582 
12583 	/*
12584 	 * Child events can be freed.
12585 	 */
12586 	if (parent_event) {
12587 		mutex_unlock(&parent_event->child_mutex);
12588 		/*
12589 		 * Kick perf_poll() for is_event_hup();
12590 		 */
12591 		perf_event_wakeup(parent_event);
12592 		free_event(event);
12593 		put_event(parent_event);
12594 		return;
12595 	}
12596 
12597 	/*
12598 	 * Parent events are governed by their filedesc, retain them.
12599 	 */
12600 	perf_event_wakeup(event);
12601 }
12602 
12603 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12604 {
12605 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12606 	struct perf_event *child_event, *next;
12607 
12608 	WARN_ON_ONCE(child != current);
12609 
12610 	child_ctx = perf_pin_task_context(child, ctxn);
12611 	if (!child_ctx)
12612 		return;
12613 
12614 	/*
12615 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12616 	 * ctx::mutex over the entire thing. This serializes against almost
12617 	 * everything that wants to access the ctx.
12618 	 *
12619 	 * The exception is sys_perf_event_open() /
12620 	 * perf_event_create_kernel_count() which does find_get_context()
12621 	 * without ctx::mutex (it cannot because of the move_group double mutex
12622 	 * lock thing). See the comments in perf_install_in_context().
12623 	 */
12624 	mutex_lock(&child_ctx->mutex);
12625 
12626 	/*
12627 	 * In a single ctx::lock section, de-schedule the events and detach the
12628 	 * context from the task such that we cannot ever get it scheduled back
12629 	 * in.
12630 	 */
12631 	raw_spin_lock_irq(&child_ctx->lock);
12632 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12633 
12634 	/*
12635 	 * Now that the context is inactive, destroy the task <-> ctx relation
12636 	 * and mark the context dead.
12637 	 */
12638 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12639 	put_ctx(child_ctx); /* cannot be last */
12640 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12641 	put_task_struct(current); /* cannot be last */
12642 
12643 	clone_ctx = unclone_ctx(child_ctx);
12644 	raw_spin_unlock_irq(&child_ctx->lock);
12645 
12646 	if (clone_ctx)
12647 		put_ctx(clone_ctx);
12648 
12649 	/*
12650 	 * Report the task dead after unscheduling the events so that we
12651 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12652 	 * get a few PERF_RECORD_READ events.
12653 	 */
12654 	perf_event_task(child, child_ctx, 0);
12655 
12656 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12657 		perf_event_exit_event(child_event, child_ctx);
12658 
12659 	mutex_unlock(&child_ctx->mutex);
12660 
12661 	put_ctx(child_ctx);
12662 }
12663 
12664 /*
12665  * When a child task exits, feed back event values to parent events.
12666  *
12667  * Can be called with exec_update_lock held when called from
12668  * setup_new_exec().
12669  */
12670 void perf_event_exit_task(struct task_struct *child)
12671 {
12672 	struct perf_event *event, *tmp;
12673 	int ctxn;
12674 
12675 	mutex_lock(&child->perf_event_mutex);
12676 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12677 				 owner_entry) {
12678 		list_del_init(&event->owner_entry);
12679 
12680 		/*
12681 		 * Ensure the list deletion is visible before we clear
12682 		 * the owner, closes a race against perf_release() where
12683 		 * we need to serialize on the owner->perf_event_mutex.
12684 		 */
12685 		smp_store_release(&event->owner, NULL);
12686 	}
12687 	mutex_unlock(&child->perf_event_mutex);
12688 
12689 	for_each_task_context_nr(ctxn)
12690 		perf_event_exit_task_context(child, ctxn);
12691 
12692 	/*
12693 	 * The perf_event_exit_task_context calls perf_event_task
12694 	 * with child's task_ctx, which generates EXIT events for
12695 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12696 	 * At this point we need to send EXIT events to cpu contexts.
12697 	 */
12698 	perf_event_task(child, NULL, 0);
12699 }
12700 
12701 static void perf_free_event(struct perf_event *event,
12702 			    struct perf_event_context *ctx)
12703 {
12704 	struct perf_event *parent = event->parent;
12705 
12706 	if (WARN_ON_ONCE(!parent))
12707 		return;
12708 
12709 	mutex_lock(&parent->child_mutex);
12710 	list_del_init(&event->child_list);
12711 	mutex_unlock(&parent->child_mutex);
12712 
12713 	put_event(parent);
12714 
12715 	raw_spin_lock_irq(&ctx->lock);
12716 	perf_group_detach(event);
12717 	list_del_event(event, ctx);
12718 	raw_spin_unlock_irq(&ctx->lock);
12719 	free_event(event);
12720 }
12721 
12722 /*
12723  * Free a context as created by inheritance by perf_event_init_task() below,
12724  * used by fork() in case of fail.
12725  *
12726  * Even though the task has never lived, the context and events have been
12727  * exposed through the child_list, so we must take care tearing it all down.
12728  */
12729 void perf_event_free_task(struct task_struct *task)
12730 {
12731 	struct perf_event_context *ctx;
12732 	struct perf_event *event, *tmp;
12733 	int ctxn;
12734 
12735 	for_each_task_context_nr(ctxn) {
12736 		ctx = task->perf_event_ctxp[ctxn];
12737 		if (!ctx)
12738 			continue;
12739 
12740 		mutex_lock(&ctx->mutex);
12741 		raw_spin_lock_irq(&ctx->lock);
12742 		/*
12743 		 * Destroy the task <-> ctx relation and mark the context dead.
12744 		 *
12745 		 * This is important because even though the task hasn't been
12746 		 * exposed yet the context has been (through child_list).
12747 		 */
12748 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12749 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12750 		put_task_struct(task); /* cannot be last */
12751 		raw_spin_unlock_irq(&ctx->lock);
12752 
12753 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12754 			perf_free_event(event, ctx);
12755 
12756 		mutex_unlock(&ctx->mutex);
12757 
12758 		/*
12759 		 * perf_event_release_kernel() could've stolen some of our
12760 		 * child events and still have them on its free_list. In that
12761 		 * case we must wait for these events to have been freed (in
12762 		 * particular all their references to this task must've been
12763 		 * dropped).
12764 		 *
12765 		 * Without this copy_process() will unconditionally free this
12766 		 * task (irrespective of its reference count) and
12767 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12768 		 * use-after-free.
12769 		 *
12770 		 * Wait for all events to drop their context reference.
12771 		 */
12772 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12773 		put_ctx(ctx); /* must be last */
12774 	}
12775 }
12776 
12777 void perf_event_delayed_put(struct task_struct *task)
12778 {
12779 	int ctxn;
12780 
12781 	for_each_task_context_nr(ctxn)
12782 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12783 }
12784 
12785 struct file *perf_event_get(unsigned int fd)
12786 {
12787 	struct file *file = fget(fd);
12788 	if (!file)
12789 		return ERR_PTR(-EBADF);
12790 
12791 	if (file->f_op != &perf_fops) {
12792 		fput(file);
12793 		return ERR_PTR(-EBADF);
12794 	}
12795 
12796 	return file;
12797 }
12798 
12799 const struct perf_event *perf_get_event(struct file *file)
12800 {
12801 	if (file->f_op != &perf_fops)
12802 		return ERR_PTR(-EINVAL);
12803 
12804 	return file->private_data;
12805 }
12806 
12807 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12808 {
12809 	if (!event)
12810 		return ERR_PTR(-EINVAL);
12811 
12812 	return &event->attr;
12813 }
12814 
12815 /*
12816  * Inherit an event from parent task to child task.
12817  *
12818  * Returns:
12819  *  - valid pointer on success
12820  *  - NULL for orphaned events
12821  *  - IS_ERR() on error
12822  */
12823 static struct perf_event *
12824 inherit_event(struct perf_event *parent_event,
12825 	      struct task_struct *parent,
12826 	      struct perf_event_context *parent_ctx,
12827 	      struct task_struct *child,
12828 	      struct perf_event *group_leader,
12829 	      struct perf_event_context *child_ctx)
12830 {
12831 	enum perf_event_state parent_state = parent_event->state;
12832 	struct perf_event *child_event;
12833 	unsigned long flags;
12834 
12835 	/*
12836 	 * Instead of creating recursive hierarchies of events,
12837 	 * we link inherited events back to the original parent,
12838 	 * which has a filp for sure, which we use as the reference
12839 	 * count:
12840 	 */
12841 	if (parent_event->parent)
12842 		parent_event = parent_event->parent;
12843 
12844 	child_event = perf_event_alloc(&parent_event->attr,
12845 					   parent_event->cpu,
12846 					   child,
12847 					   group_leader, parent_event,
12848 					   NULL, NULL, -1);
12849 	if (IS_ERR(child_event))
12850 		return child_event;
12851 
12852 
12853 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12854 	    !child_ctx->task_ctx_data) {
12855 		struct pmu *pmu = child_event->pmu;
12856 
12857 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12858 		if (!child_ctx->task_ctx_data) {
12859 			free_event(child_event);
12860 			return ERR_PTR(-ENOMEM);
12861 		}
12862 	}
12863 
12864 	/*
12865 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12866 	 * must be under the same lock in order to serialize against
12867 	 * perf_event_release_kernel(), such that either we must observe
12868 	 * is_orphaned_event() or they will observe us on the child_list.
12869 	 */
12870 	mutex_lock(&parent_event->child_mutex);
12871 	if (is_orphaned_event(parent_event) ||
12872 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12873 		mutex_unlock(&parent_event->child_mutex);
12874 		/* task_ctx_data is freed with child_ctx */
12875 		free_event(child_event);
12876 		return NULL;
12877 	}
12878 
12879 	get_ctx(child_ctx);
12880 
12881 	/*
12882 	 * Make the child state follow the state of the parent event,
12883 	 * not its attr.disabled bit.  We hold the parent's mutex,
12884 	 * so we won't race with perf_event_{en, dis}able_family.
12885 	 */
12886 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12887 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12888 	else
12889 		child_event->state = PERF_EVENT_STATE_OFF;
12890 
12891 	if (parent_event->attr.freq) {
12892 		u64 sample_period = parent_event->hw.sample_period;
12893 		struct hw_perf_event *hwc = &child_event->hw;
12894 
12895 		hwc->sample_period = sample_period;
12896 		hwc->last_period   = sample_period;
12897 
12898 		local64_set(&hwc->period_left, sample_period);
12899 	}
12900 
12901 	child_event->ctx = child_ctx;
12902 	child_event->overflow_handler = parent_event->overflow_handler;
12903 	child_event->overflow_handler_context
12904 		= parent_event->overflow_handler_context;
12905 
12906 	/*
12907 	 * Precalculate sample_data sizes
12908 	 */
12909 	perf_event__header_size(child_event);
12910 	perf_event__id_header_size(child_event);
12911 
12912 	/*
12913 	 * Link it up in the child's context:
12914 	 */
12915 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
12916 	add_event_to_ctx(child_event, child_ctx);
12917 	child_event->attach_state |= PERF_ATTACH_CHILD;
12918 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12919 
12920 	/*
12921 	 * Link this into the parent event's child list
12922 	 */
12923 	list_add_tail(&child_event->child_list, &parent_event->child_list);
12924 	mutex_unlock(&parent_event->child_mutex);
12925 
12926 	return child_event;
12927 }
12928 
12929 /*
12930  * Inherits an event group.
12931  *
12932  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12933  * This matches with perf_event_release_kernel() removing all child events.
12934  *
12935  * Returns:
12936  *  - 0 on success
12937  *  - <0 on error
12938  */
12939 static int inherit_group(struct perf_event *parent_event,
12940 	      struct task_struct *parent,
12941 	      struct perf_event_context *parent_ctx,
12942 	      struct task_struct *child,
12943 	      struct perf_event_context *child_ctx)
12944 {
12945 	struct perf_event *leader;
12946 	struct perf_event *sub;
12947 	struct perf_event *child_ctr;
12948 
12949 	leader = inherit_event(parent_event, parent, parent_ctx,
12950 				 child, NULL, child_ctx);
12951 	if (IS_ERR(leader))
12952 		return PTR_ERR(leader);
12953 	/*
12954 	 * @leader can be NULL here because of is_orphaned_event(). In this
12955 	 * case inherit_event() will create individual events, similar to what
12956 	 * perf_group_detach() would do anyway.
12957 	 */
12958 	for_each_sibling_event(sub, parent_event) {
12959 		child_ctr = inherit_event(sub, parent, parent_ctx,
12960 					    child, leader, child_ctx);
12961 		if (IS_ERR(child_ctr))
12962 			return PTR_ERR(child_ctr);
12963 
12964 		if (sub->aux_event == parent_event && child_ctr &&
12965 		    !perf_get_aux_event(child_ctr, leader))
12966 			return -EINVAL;
12967 	}
12968 	return 0;
12969 }
12970 
12971 /*
12972  * Creates the child task context and tries to inherit the event-group.
12973  *
12974  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12975  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12976  * consistent with perf_event_release_kernel() removing all child events.
12977  *
12978  * Returns:
12979  *  - 0 on success
12980  *  - <0 on error
12981  */
12982 static int
12983 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12984 		   struct perf_event_context *parent_ctx,
12985 		   struct task_struct *child, int ctxn,
12986 		   u64 clone_flags, int *inherited_all)
12987 {
12988 	int ret;
12989 	struct perf_event_context *child_ctx;
12990 
12991 	if (!event->attr.inherit ||
12992 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
12993 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
12994 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
12995 		*inherited_all = 0;
12996 		return 0;
12997 	}
12998 
12999 	child_ctx = child->perf_event_ctxp[ctxn];
13000 	if (!child_ctx) {
13001 		/*
13002 		 * This is executed from the parent task context, so
13003 		 * inherit events that have been marked for cloning.
13004 		 * First allocate and initialize a context for the
13005 		 * child.
13006 		 */
13007 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13008 		if (!child_ctx)
13009 			return -ENOMEM;
13010 
13011 		child->perf_event_ctxp[ctxn] = child_ctx;
13012 	}
13013 
13014 	ret = inherit_group(event, parent, parent_ctx,
13015 			    child, child_ctx);
13016 
13017 	if (ret)
13018 		*inherited_all = 0;
13019 
13020 	return ret;
13021 }
13022 
13023 /*
13024  * Initialize the perf_event context in task_struct
13025  */
13026 static int perf_event_init_context(struct task_struct *child, int ctxn,
13027 				   u64 clone_flags)
13028 {
13029 	struct perf_event_context *child_ctx, *parent_ctx;
13030 	struct perf_event_context *cloned_ctx;
13031 	struct perf_event *event;
13032 	struct task_struct *parent = current;
13033 	int inherited_all = 1;
13034 	unsigned long flags;
13035 	int ret = 0;
13036 
13037 	if (likely(!parent->perf_event_ctxp[ctxn]))
13038 		return 0;
13039 
13040 	/*
13041 	 * If the parent's context is a clone, pin it so it won't get
13042 	 * swapped under us.
13043 	 */
13044 	parent_ctx = perf_pin_task_context(parent, ctxn);
13045 	if (!parent_ctx)
13046 		return 0;
13047 
13048 	/*
13049 	 * No need to check if parent_ctx != NULL here; since we saw
13050 	 * it non-NULL earlier, the only reason for it to become NULL
13051 	 * is if we exit, and since we're currently in the middle of
13052 	 * a fork we can't be exiting at the same time.
13053 	 */
13054 
13055 	/*
13056 	 * Lock the parent list. No need to lock the child - not PID
13057 	 * hashed yet and not running, so nobody can access it.
13058 	 */
13059 	mutex_lock(&parent_ctx->mutex);
13060 
13061 	/*
13062 	 * We dont have to disable NMIs - we are only looking at
13063 	 * the list, not manipulating it:
13064 	 */
13065 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13066 		ret = inherit_task_group(event, parent, parent_ctx,
13067 					 child, ctxn, clone_flags,
13068 					 &inherited_all);
13069 		if (ret)
13070 			goto out_unlock;
13071 	}
13072 
13073 	/*
13074 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13075 	 * to allocations, but we need to prevent rotation because
13076 	 * rotate_ctx() will change the list from interrupt context.
13077 	 */
13078 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13079 	parent_ctx->rotate_disable = 1;
13080 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13081 
13082 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13083 		ret = inherit_task_group(event, parent, parent_ctx,
13084 					 child, ctxn, clone_flags,
13085 					 &inherited_all);
13086 		if (ret)
13087 			goto out_unlock;
13088 	}
13089 
13090 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13091 	parent_ctx->rotate_disable = 0;
13092 
13093 	child_ctx = child->perf_event_ctxp[ctxn];
13094 
13095 	if (child_ctx && inherited_all) {
13096 		/*
13097 		 * Mark the child context as a clone of the parent
13098 		 * context, or of whatever the parent is a clone of.
13099 		 *
13100 		 * Note that if the parent is a clone, the holding of
13101 		 * parent_ctx->lock avoids it from being uncloned.
13102 		 */
13103 		cloned_ctx = parent_ctx->parent_ctx;
13104 		if (cloned_ctx) {
13105 			child_ctx->parent_ctx = cloned_ctx;
13106 			child_ctx->parent_gen = parent_ctx->parent_gen;
13107 		} else {
13108 			child_ctx->parent_ctx = parent_ctx;
13109 			child_ctx->parent_gen = parent_ctx->generation;
13110 		}
13111 		get_ctx(child_ctx->parent_ctx);
13112 	}
13113 
13114 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13115 out_unlock:
13116 	mutex_unlock(&parent_ctx->mutex);
13117 
13118 	perf_unpin_context(parent_ctx);
13119 	put_ctx(parent_ctx);
13120 
13121 	return ret;
13122 }
13123 
13124 /*
13125  * Initialize the perf_event context in task_struct
13126  */
13127 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13128 {
13129 	int ctxn, ret;
13130 
13131 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13132 	mutex_init(&child->perf_event_mutex);
13133 	INIT_LIST_HEAD(&child->perf_event_list);
13134 
13135 	for_each_task_context_nr(ctxn) {
13136 		ret = perf_event_init_context(child, ctxn, clone_flags);
13137 		if (ret) {
13138 			perf_event_free_task(child);
13139 			return ret;
13140 		}
13141 	}
13142 
13143 	return 0;
13144 }
13145 
13146 static void __init perf_event_init_all_cpus(void)
13147 {
13148 	struct swevent_htable *swhash;
13149 	int cpu;
13150 
13151 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13152 
13153 	for_each_possible_cpu(cpu) {
13154 		swhash = &per_cpu(swevent_htable, cpu);
13155 		mutex_init(&swhash->hlist_mutex);
13156 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13157 
13158 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13159 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13160 
13161 #ifdef CONFIG_CGROUP_PERF
13162 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13163 #endif
13164 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13165 	}
13166 }
13167 
13168 static void perf_swevent_init_cpu(unsigned int cpu)
13169 {
13170 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13171 
13172 	mutex_lock(&swhash->hlist_mutex);
13173 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13174 		struct swevent_hlist *hlist;
13175 
13176 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13177 		WARN_ON(!hlist);
13178 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13179 	}
13180 	mutex_unlock(&swhash->hlist_mutex);
13181 }
13182 
13183 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13184 static void __perf_event_exit_context(void *__info)
13185 {
13186 	struct perf_event_context *ctx = __info;
13187 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13188 	struct perf_event *event;
13189 
13190 	raw_spin_lock(&ctx->lock);
13191 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13192 	list_for_each_entry(event, &ctx->event_list, event_entry)
13193 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13194 	raw_spin_unlock(&ctx->lock);
13195 }
13196 
13197 static void perf_event_exit_cpu_context(int cpu)
13198 {
13199 	struct perf_cpu_context *cpuctx;
13200 	struct perf_event_context *ctx;
13201 	struct pmu *pmu;
13202 
13203 	mutex_lock(&pmus_lock);
13204 	list_for_each_entry(pmu, &pmus, entry) {
13205 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13206 		ctx = &cpuctx->ctx;
13207 
13208 		mutex_lock(&ctx->mutex);
13209 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13210 		cpuctx->online = 0;
13211 		mutex_unlock(&ctx->mutex);
13212 	}
13213 	cpumask_clear_cpu(cpu, perf_online_mask);
13214 	mutex_unlock(&pmus_lock);
13215 }
13216 #else
13217 
13218 static void perf_event_exit_cpu_context(int cpu) { }
13219 
13220 #endif
13221 
13222 int perf_event_init_cpu(unsigned int cpu)
13223 {
13224 	struct perf_cpu_context *cpuctx;
13225 	struct perf_event_context *ctx;
13226 	struct pmu *pmu;
13227 
13228 	perf_swevent_init_cpu(cpu);
13229 
13230 	mutex_lock(&pmus_lock);
13231 	cpumask_set_cpu(cpu, perf_online_mask);
13232 	list_for_each_entry(pmu, &pmus, entry) {
13233 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13234 		ctx = &cpuctx->ctx;
13235 
13236 		mutex_lock(&ctx->mutex);
13237 		cpuctx->online = 1;
13238 		mutex_unlock(&ctx->mutex);
13239 	}
13240 	mutex_unlock(&pmus_lock);
13241 
13242 	return 0;
13243 }
13244 
13245 int perf_event_exit_cpu(unsigned int cpu)
13246 {
13247 	perf_event_exit_cpu_context(cpu);
13248 	return 0;
13249 }
13250 
13251 static int
13252 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13253 {
13254 	int cpu;
13255 
13256 	for_each_online_cpu(cpu)
13257 		perf_event_exit_cpu(cpu);
13258 
13259 	return NOTIFY_OK;
13260 }
13261 
13262 /*
13263  * Run the perf reboot notifier at the very last possible moment so that
13264  * the generic watchdog code runs as long as possible.
13265  */
13266 static struct notifier_block perf_reboot_notifier = {
13267 	.notifier_call = perf_reboot,
13268 	.priority = INT_MIN,
13269 };
13270 
13271 void __init perf_event_init(void)
13272 {
13273 	int ret;
13274 
13275 	idr_init(&pmu_idr);
13276 
13277 	perf_event_init_all_cpus();
13278 	init_srcu_struct(&pmus_srcu);
13279 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13280 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13281 	perf_pmu_register(&perf_task_clock, NULL, -1);
13282 	perf_tp_register();
13283 	perf_event_init_cpu(smp_processor_id());
13284 	register_reboot_notifier(&perf_reboot_notifier);
13285 
13286 	ret = init_hw_breakpoint();
13287 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13288 
13289 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13290 
13291 	/*
13292 	 * Build time assertion that we keep the data_head at the intended
13293 	 * location.  IOW, validation we got the __reserved[] size right.
13294 	 */
13295 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13296 		     != 1024);
13297 }
13298 
13299 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13300 			      char *page)
13301 {
13302 	struct perf_pmu_events_attr *pmu_attr =
13303 		container_of(attr, struct perf_pmu_events_attr, attr);
13304 
13305 	if (pmu_attr->event_str)
13306 		return sprintf(page, "%s\n", pmu_attr->event_str);
13307 
13308 	return 0;
13309 }
13310 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13311 
13312 static int __init perf_event_sysfs_init(void)
13313 {
13314 	struct pmu *pmu;
13315 	int ret;
13316 
13317 	mutex_lock(&pmus_lock);
13318 
13319 	ret = bus_register(&pmu_bus);
13320 	if (ret)
13321 		goto unlock;
13322 
13323 	list_for_each_entry(pmu, &pmus, entry) {
13324 		if (!pmu->name || pmu->type < 0)
13325 			continue;
13326 
13327 		ret = pmu_dev_alloc(pmu);
13328 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13329 	}
13330 	pmu_bus_running = 1;
13331 	ret = 0;
13332 
13333 unlock:
13334 	mutex_unlock(&pmus_lock);
13335 
13336 	return ret;
13337 }
13338 device_initcall(perf_event_sysfs_init);
13339 
13340 #ifdef CONFIG_CGROUP_PERF
13341 static struct cgroup_subsys_state *
13342 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13343 {
13344 	struct perf_cgroup *jc;
13345 
13346 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13347 	if (!jc)
13348 		return ERR_PTR(-ENOMEM);
13349 
13350 	jc->info = alloc_percpu(struct perf_cgroup_info);
13351 	if (!jc->info) {
13352 		kfree(jc);
13353 		return ERR_PTR(-ENOMEM);
13354 	}
13355 
13356 	return &jc->css;
13357 }
13358 
13359 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13360 {
13361 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13362 
13363 	free_percpu(jc->info);
13364 	kfree(jc);
13365 }
13366 
13367 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13368 {
13369 	perf_event_cgroup(css->cgroup);
13370 	return 0;
13371 }
13372 
13373 static int __perf_cgroup_move(void *info)
13374 {
13375 	struct task_struct *task = info;
13376 	rcu_read_lock();
13377 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13378 	rcu_read_unlock();
13379 	return 0;
13380 }
13381 
13382 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13383 {
13384 	struct task_struct *task;
13385 	struct cgroup_subsys_state *css;
13386 
13387 	cgroup_taskset_for_each(task, css, tset)
13388 		task_function_call(task, __perf_cgroup_move, task);
13389 }
13390 
13391 struct cgroup_subsys perf_event_cgrp_subsys = {
13392 	.css_alloc	= perf_cgroup_css_alloc,
13393 	.css_free	= perf_cgroup_css_free,
13394 	.css_online	= perf_cgroup_css_online,
13395 	.attach		= perf_cgroup_attach,
13396 	/*
13397 	 * Implicitly enable on dfl hierarchy so that perf events can
13398 	 * always be filtered by cgroup2 path as long as perf_event
13399 	 * controller is not mounted on a legacy hierarchy.
13400 	 */
13401 	.implicit_on_dfl = true,
13402 	.threaded	= true,
13403 };
13404 #endif /* CONFIG_CGROUP_PERF */
13405