xref: /openbmc/linux/kernel/events/core.c (revision d7c1814f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 
58 #include "internal.h"
59 
60 #include <asm/irq_regs.h>
61 
62 typedef int (*remote_function_f)(void *);
63 
64 struct remote_function_call {
65 	struct task_struct	*p;
66 	remote_function_f	func;
67 	void			*info;
68 	int			ret;
69 };
70 
71 static void remote_function(void *data)
72 {
73 	struct remote_function_call *tfc = data;
74 	struct task_struct *p = tfc->p;
75 
76 	if (p) {
77 		/* -EAGAIN */
78 		if (task_cpu(p) != smp_processor_id())
79 			return;
80 
81 		/*
82 		 * Now that we're on right CPU with IRQs disabled, we can test
83 		 * if we hit the right task without races.
84 		 */
85 
86 		tfc->ret = -ESRCH; /* No such (running) process */
87 		if (p != current)
88 			return;
89 	}
90 
91 	tfc->ret = tfc->func(tfc->info);
92 }
93 
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:		the task to evaluate
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110 	struct remote_function_call data = {
111 		.p	= p,
112 		.func	= func,
113 		.info	= info,
114 		.ret	= -EAGAIN,
115 	};
116 	int ret;
117 
118 	for (;;) {
119 		ret = smp_call_function_single(task_cpu(p), remote_function,
120 					       &data, 1);
121 		if (!ret)
122 			ret = data.ret;
123 
124 		if (ret != -EAGAIN)
125 			break;
126 
127 		cond_resched();
128 	}
129 
130 	return ret;
131 }
132 
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:	target cpu to queue this function
136  * @func:	the function to be called
137  * @info:	the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145 	struct remote_function_call data = {
146 		.p	= NULL,
147 		.func	= func,
148 		.info	= info,
149 		.ret	= -ENXIO, /* No such CPU */
150 	};
151 
152 	smp_call_function_single(cpu, remote_function, &data, 1);
153 
154 	return data.ret;
155 }
156 
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162 
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164 			  struct perf_event_context *ctx)
165 {
166 	raw_spin_lock(&cpuctx->ctx.lock);
167 	if (ctx)
168 		raw_spin_lock(&ctx->lock);
169 }
170 
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172 			    struct perf_event_context *ctx)
173 {
174 	if (ctx)
175 		raw_spin_unlock(&ctx->lock);
176 	raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178 
179 #define TASK_TOMBSTONE ((void *)-1L)
180 
181 static bool is_kernel_event(struct perf_event *event)
182 {
183 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185 
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204 
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206 			struct perf_event_context *, void *);
207 
208 struct event_function_struct {
209 	struct perf_event *event;
210 	event_f func;
211 	void *data;
212 };
213 
214 static int event_function(void *info)
215 {
216 	struct event_function_struct *efs = info;
217 	struct perf_event *event = efs->event;
218 	struct perf_event_context *ctx = event->ctx;
219 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
221 	int ret = 0;
222 
223 	lockdep_assert_irqs_disabled();
224 
225 	perf_ctx_lock(cpuctx, task_ctx);
226 	/*
227 	 * Since we do the IPI call without holding ctx->lock things can have
228 	 * changed, double check we hit the task we set out to hit.
229 	 */
230 	if (ctx->task) {
231 		if (ctx->task != current) {
232 			ret = -ESRCH;
233 			goto unlock;
234 		}
235 
236 		/*
237 		 * We only use event_function_call() on established contexts,
238 		 * and event_function() is only ever called when active (or
239 		 * rather, we'll have bailed in task_function_call() or the
240 		 * above ctx->task != current test), therefore we must have
241 		 * ctx->is_active here.
242 		 */
243 		WARN_ON_ONCE(!ctx->is_active);
244 		/*
245 		 * And since we have ctx->is_active, cpuctx->task_ctx must
246 		 * match.
247 		 */
248 		WARN_ON_ONCE(task_ctx != ctx);
249 	} else {
250 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
251 	}
252 
253 	efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255 	perf_ctx_unlock(cpuctx, task_ctx);
256 
257 	return ret;
258 }
259 
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262 	struct perf_event_context *ctx = event->ctx;
263 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264 	struct event_function_struct efs = {
265 		.event = event,
266 		.func = func,
267 		.data = data,
268 	};
269 
270 	if (!event->parent) {
271 		/*
272 		 * If this is a !child event, we must hold ctx::mutex to
273 		 * stabilize the event->ctx relation. See
274 		 * perf_event_ctx_lock().
275 		 */
276 		lockdep_assert_held(&ctx->mutex);
277 	}
278 
279 	if (!task) {
280 		cpu_function_call(event->cpu, event_function, &efs);
281 		return;
282 	}
283 
284 	if (task == TASK_TOMBSTONE)
285 		return;
286 
287 again:
288 	if (!task_function_call(task, event_function, &efs))
289 		return;
290 
291 	raw_spin_lock_irq(&ctx->lock);
292 	/*
293 	 * Reload the task pointer, it might have been changed by
294 	 * a concurrent perf_event_context_sched_out().
295 	 */
296 	task = ctx->task;
297 	if (task == TASK_TOMBSTONE) {
298 		raw_spin_unlock_irq(&ctx->lock);
299 		return;
300 	}
301 	if (ctx->is_active) {
302 		raw_spin_unlock_irq(&ctx->lock);
303 		goto again;
304 	}
305 	func(event, NULL, ctx, data);
306 	raw_spin_unlock_irq(&ctx->lock);
307 }
308 
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315 	struct perf_event_context *ctx = event->ctx;
316 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317 	struct task_struct *task = READ_ONCE(ctx->task);
318 	struct perf_event_context *task_ctx = NULL;
319 
320 	lockdep_assert_irqs_disabled();
321 
322 	if (task) {
323 		if (task == TASK_TOMBSTONE)
324 			return;
325 
326 		task_ctx = ctx;
327 	}
328 
329 	perf_ctx_lock(cpuctx, task_ctx);
330 
331 	task = ctx->task;
332 	if (task == TASK_TOMBSTONE)
333 		goto unlock;
334 
335 	if (task) {
336 		/*
337 		 * We must be either inactive or active and the right task,
338 		 * otherwise we're screwed, since we cannot IPI to somewhere
339 		 * else.
340 		 */
341 		if (ctx->is_active) {
342 			if (WARN_ON_ONCE(task != current))
343 				goto unlock;
344 
345 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346 				goto unlock;
347 		}
348 	} else {
349 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
350 	}
351 
352 	func(event, cpuctx, ctx, data);
353 unlock:
354 	perf_ctx_unlock(cpuctx, task_ctx);
355 }
356 
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358 		       PERF_FLAG_FD_OUTPUT  |\
359 		       PERF_FLAG_PID_CGROUP |\
360 		       PERF_FLAG_FD_CLOEXEC)
361 
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366 	(PERF_SAMPLE_BRANCH_KERNEL |\
367 	 PERF_SAMPLE_BRANCH_HV)
368 
369 enum event_type_t {
370 	EVENT_FLEXIBLE = 0x1,
371 	EVENT_PINNED = 0x2,
372 	EVENT_TIME = 0x4,
373 	/* see ctx_resched() for details */
374 	EVENT_CPU = 0x8,
375 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377 
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382 
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388 
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392 
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404 
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410 
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419 
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422 
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE		100000
427 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
429 
430 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
431 
432 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
434 
435 static int perf_sample_allowed_ns __read_mostly =
436 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437 
438 static void update_perf_cpu_limits(void)
439 {
440 	u64 tmp = perf_sample_period_ns;
441 
442 	tmp *= sysctl_perf_cpu_time_max_percent;
443 	tmp = div_u64(tmp, 100);
444 	if (!tmp)
445 		tmp = 1;
446 
447 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449 
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451 
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453 		void *buffer, size_t *lenp, loff_t *ppos)
454 {
455 	int ret;
456 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
457 	/*
458 	 * If throttling is disabled don't allow the write:
459 	 */
460 	if (write && (perf_cpu == 100 || perf_cpu == 0))
461 		return -EINVAL;
462 
463 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464 	if (ret || !write)
465 		return ret;
466 
467 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469 	update_perf_cpu_limits();
470 
471 	return 0;
472 }
473 
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475 
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477 		void *buffer, size_t *lenp, loff_t *ppos)
478 {
479 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480 
481 	if (ret || !write)
482 		return ret;
483 
484 	if (sysctl_perf_cpu_time_max_percent == 100 ||
485 	    sysctl_perf_cpu_time_max_percent == 0) {
486 		printk(KERN_WARNING
487 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488 		WRITE_ONCE(perf_sample_allowed_ns, 0);
489 	} else {
490 		update_perf_cpu_limits();
491 	}
492 
493 	return 0;
494 }
495 
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504 
505 static u64 __report_avg;
506 static u64 __report_allowed;
507 
508 static void perf_duration_warn(struct irq_work *w)
509 {
510 	printk_ratelimited(KERN_INFO
511 		"perf: interrupt took too long (%lld > %lld), lowering "
512 		"kernel.perf_event_max_sample_rate to %d\n",
513 		__report_avg, __report_allowed,
514 		sysctl_perf_event_sample_rate);
515 }
516 
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518 
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522 	u64 running_len;
523 	u64 avg_len;
524 	u32 max;
525 
526 	if (max_len == 0)
527 		return;
528 
529 	/* Decay the counter by 1 average sample. */
530 	running_len = __this_cpu_read(running_sample_length);
531 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532 	running_len += sample_len_ns;
533 	__this_cpu_write(running_sample_length, running_len);
534 
535 	/*
536 	 * Note: this will be biased artifically low until we have
537 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538 	 * from having to maintain a count.
539 	 */
540 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541 	if (avg_len <= max_len)
542 		return;
543 
544 	__report_avg = avg_len;
545 	__report_allowed = max_len;
546 
547 	/*
548 	 * Compute a throttle threshold 25% below the current duration.
549 	 */
550 	avg_len += avg_len / 4;
551 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552 	if (avg_len < max)
553 		max /= (u32)avg_len;
554 	else
555 		max = 1;
556 
557 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558 	WRITE_ONCE(max_samples_per_tick, max);
559 
560 	sysctl_perf_event_sample_rate = max * HZ;
561 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562 
563 	if (!irq_work_queue(&perf_duration_work)) {
564 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565 			     "kernel.perf_event_max_sample_rate to %d\n",
566 			     __report_avg, __report_allowed,
567 			     sysctl_perf_event_sample_rate);
568 	}
569 }
570 
571 static atomic64_t perf_event_id;
572 
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574 			      enum event_type_t event_type);
575 
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577 			     enum event_type_t event_type,
578 			     struct task_struct *task);
579 
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582 
583 void __weak perf_event_print_debug(void)	{ }
584 
585 static inline u64 perf_clock(void)
586 {
587 	return local_clock();
588 }
589 
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592 	return event->clock();
593 }
594 
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616 
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620 	struct perf_event *leader = event->group_leader;
621 
622 	if (leader->state <= PERF_EVENT_STATE_OFF)
623 		return leader->state;
624 
625 	return event->state;
626 }
627 
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631 	enum perf_event_state state = __perf_effective_state(event);
632 	u64 delta = now - event->tstamp;
633 
634 	*enabled = event->total_time_enabled;
635 	if (state >= PERF_EVENT_STATE_INACTIVE)
636 		*enabled += delta;
637 
638 	*running = event->total_time_running;
639 	if (state >= PERF_EVENT_STATE_ACTIVE)
640 		*running += delta;
641 }
642 
643 static void perf_event_update_time(struct perf_event *event)
644 {
645 	u64 now = perf_event_time(event);
646 
647 	__perf_update_times(event, now, &event->total_time_enabled,
648 					&event->total_time_running);
649 	event->tstamp = now;
650 }
651 
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654 	struct perf_event *sibling;
655 
656 	for_each_sibling_event(sibling, leader)
657 		perf_event_update_time(sibling);
658 }
659 
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663 	if (event->state == state)
664 		return;
665 
666 	perf_event_update_time(event);
667 	/*
668 	 * If a group leader gets enabled/disabled all its siblings
669 	 * are affected too.
670 	 */
671 	if ((event->state < 0) ^ (state < 0))
672 		perf_event_update_sibling_time(event);
673 
674 	WRITE_ONCE(event->state, state);
675 }
676 
677 #ifdef CONFIG_CGROUP_PERF
678 
679 static inline bool
680 perf_cgroup_match(struct perf_event *event)
681 {
682 	struct perf_event_context *ctx = event->ctx;
683 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
684 
685 	/* @event doesn't care about cgroup */
686 	if (!event->cgrp)
687 		return true;
688 
689 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
690 	if (!cpuctx->cgrp)
691 		return false;
692 
693 	/*
694 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
695 	 * also enabled for all its descendant cgroups.  If @cpuctx's
696 	 * cgroup is a descendant of @event's (the test covers identity
697 	 * case), it's a match.
698 	 */
699 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
700 				    event->cgrp->css.cgroup);
701 }
702 
703 static inline void perf_detach_cgroup(struct perf_event *event)
704 {
705 	css_put(&event->cgrp->css);
706 	event->cgrp = NULL;
707 }
708 
709 static inline int is_cgroup_event(struct perf_event *event)
710 {
711 	return event->cgrp != NULL;
712 }
713 
714 static inline u64 perf_cgroup_event_time(struct perf_event *event)
715 {
716 	struct perf_cgroup_info *t;
717 
718 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
719 	return t->time;
720 }
721 
722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
723 {
724 	struct perf_cgroup_info *info;
725 	u64 now;
726 
727 	now = perf_clock();
728 
729 	info = this_cpu_ptr(cgrp->info);
730 
731 	info->time += now - info->timestamp;
732 	info->timestamp = now;
733 }
734 
735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
736 {
737 	struct perf_cgroup *cgrp = cpuctx->cgrp;
738 	struct cgroup_subsys_state *css;
739 
740 	if (cgrp) {
741 		for (css = &cgrp->css; css; css = css->parent) {
742 			cgrp = container_of(css, struct perf_cgroup, css);
743 			__update_cgrp_time(cgrp);
744 		}
745 	}
746 }
747 
748 static inline void update_cgrp_time_from_event(struct perf_event *event)
749 {
750 	struct perf_cgroup *cgrp;
751 
752 	/*
753 	 * ensure we access cgroup data only when needed and
754 	 * when we know the cgroup is pinned (css_get)
755 	 */
756 	if (!is_cgroup_event(event))
757 		return;
758 
759 	cgrp = perf_cgroup_from_task(current, event->ctx);
760 	/*
761 	 * Do not update time when cgroup is not active
762 	 */
763 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
764 		__update_cgrp_time(event->cgrp);
765 }
766 
767 static inline void
768 perf_cgroup_set_timestamp(struct task_struct *task,
769 			  struct perf_event_context *ctx)
770 {
771 	struct perf_cgroup *cgrp;
772 	struct perf_cgroup_info *info;
773 	struct cgroup_subsys_state *css;
774 
775 	/*
776 	 * ctx->lock held by caller
777 	 * ensure we do not access cgroup data
778 	 * unless we have the cgroup pinned (css_get)
779 	 */
780 	if (!task || !ctx->nr_cgroups)
781 		return;
782 
783 	cgrp = perf_cgroup_from_task(task, ctx);
784 
785 	for (css = &cgrp->css; css; css = css->parent) {
786 		cgrp = container_of(css, struct perf_cgroup, css);
787 		info = this_cpu_ptr(cgrp->info);
788 		info->timestamp = ctx->timestamp;
789 	}
790 }
791 
792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
793 
794 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
795 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
796 
797 /*
798  * reschedule events based on the cgroup constraint of task.
799  *
800  * mode SWOUT : schedule out everything
801  * mode SWIN : schedule in based on cgroup for next
802  */
803 static void perf_cgroup_switch(struct task_struct *task, int mode)
804 {
805 	struct perf_cpu_context *cpuctx;
806 	struct list_head *list;
807 	unsigned long flags;
808 
809 	/*
810 	 * Disable interrupts and preemption to avoid this CPU's
811 	 * cgrp_cpuctx_entry to change under us.
812 	 */
813 	local_irq_save(flags);
814 
815 	list = this_cpu_ptr(&cgrp_cpuctx_list);
816 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
817 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
818 
819 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
820 		perf_pmu_disable(cpuctx->ctx.pmu);
821 
822 		if (mode & PERF_CGROUP_SWOUT) {
823 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
824 			/*
825 			 * must not be done before ctxswout due
826 			 * to event_filter_match() in event_sched_out()
827 			 */
828 			cpuctx->cgrp = NULL;
829 		}
830 
831 		if (mode & PERF_CGROUP_SWIN) {
832 			WARN_ON_ONCE(cpuctx->cgrp);
833 			/*
834 			 * set cgrp before ctxsw in to allow
835 			 * event_filter_match() to not have to pass
836 			 * task around
837 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
838 			 * because cgorup events are only per-cpu
839 			 */
840 			cpuctx->cgrp = perf_cgroup_from_task(task,
841 							     &cpuctx->ctx);
842 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
843 		}
844 		perf_pmu_enable(cpuctx->ctx.pmu);
845 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
846 	}
847 
848 	local_irq_restore(flags);
849 }
850 
851 static inline void perf_cgroup_sched_out(struct task_struct *task,
852 					 struct task_struct *next)
853 {
854 	struct perf_cgroup *cgrp1;
855 	struct perf_cgroup *cgrp2 = NULL;
856 
857 	rcu_read_lock();
858 	/*
859 	 * we come here when we know perf_cgroup_events > 0
860 	 * we do not need to pass the ctx here because we know
861 	 * we are holding the rcu lock
862 	 */
863 	cgrp1 = perf_cgroup_from_task(task, NULL);
864 	cgrp2 = perf_cgroup_from_task(next, NULL);
865 
866 	/*
867 	 * only schedule out current cgroup events if we know
868 	 * that we are switching to a different cgroup. Otherwise,
869 	 * do no touch the cgroup events.
870 	 */
871 	if (cgrp1 != cgrp2)
872 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
873 
874 	rcu_read_unlock();
875 }
876 
877 static inline void perf_cgroup_sched_in(struct task_struct *prev,
878 					struct task_struct *task)
879 {
880 	struct perf_cgroup *cgrp1;
881 	struct perf_cgroup *cgrp2 = NULL;
882 
883 	rcu_read_lock();
884 	/*
885 	 * we come here when we know perf_cgroup_events > 0
886 	 * we do not need to pass the ctx here because we know
887 	 * we are holding the rcu lock
888 	 */
889 	cgrp1 = perf_cgroup_from_task(task, NULL);
890 	cgrp2 = perf_cgroup_from_task(prev, NULL);
891 
892 	/*
893 	 * only need to schedule in cgroup events if we are changing
894 	 * cgroup during ctxsw. Cgroup events were not scheduled
895 	 * out of ctxsw out if that was not the case.
896 	 */
897 	if (cgrp1 != cgrp2)
898 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
899 
900 	rcu_read_unlock();
901 }
902 
903 static int perf_cgroup_ensure_storage(struct perf_event *event,
904 				struct cgroup_subsys_state *css)
905 {
906 	struct perf_cpu_context *cpuctx;
907 	struct perf_event **storage;
908 	int cpu, heap_size, ret = 0;
909 
910 	/*
911 	 * Allow storage to have sufficent space for an iterator for each
912 	 * possibly nested cgroup plus an iterator for events with no cgroup.
913 	 */
914 	for (heap_size = 1; css; css = css->parent)
915 		heap_size++;
916 
917 	for_each_possible_cpu(cpu) {
918 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
919 		if (heap_size <= cpuctx->heap_size)
920 			continue;
921 
922 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
923 				       GFP_KERNEL, cpu_to_node(cpu));
924 		if (!storage) {
925 			ret = -ENOMEM;
926 			break;
927 		}
928 
929 		raw_spin_lock_irq(&cpuctx->ctx.lock);
930 		if (cpuctx->heap_size < heap_size) {
931 			swap(cpuctx->heap, storage);
932 			if (storage == cpuctx->heap_default)
933 				storage = NULL;
934 			cpuctx->heap_size = heap_size;
935 		}
936 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
937 
938 		kfree(storage);
939 	}
940 
941 	return ret;
942 }
943 
944 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
945 				      struct perf_event_attr *attr,
946 				      struct perf_event *group_leader)
947 {
948 	struct perf_cgroup *cgrp;
949 	struct cgroup_subsys_state *css;
950 	struct fd f = fdget(fd);
951 	int ret = 0;
952 
953 	if (!f.file)
954 		return -EBADF;
955 
956 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
957 					 &perf_event_cgrp_subsys);
958 	if (IS_ERR(css)) {
959 		ret = PTR_ERR(css);
960 		goto out;
961 	}
962 
963 	ret = perf_cgroup_ensure_storage(event, css);
964 	if (ret)
965 		goto out;
966 
967 	cgrp = container_of(css, struct perf_cgroup, css);
968 	event->cgrp = cgrp;
969 
970 	/*
971 	 * all events in a group must monitor
972 	 * the same cgroup because a task belongs
973 	 * to only one perf cgroup at a time
974 	 */
975 	if (group_leader && group_leader->cgrp != cgrp) {
976 		perf_detach_cgroup(event);
977 		ret = -EINVAL;
978 	}
979 out:
980 	fdput(f);
981 	return ret;
982 }
983 
984 static inline void
985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
986 {
987 	struct perf_cgroup_info *t;
988 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
989 	event->shadow_ctx_time = now - t->timestamp;
990 }
991 
992 static inline void
993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
994 {
995 	struct perf_cpu_context *cpuctx;
996 
997 	if (!is_cgroup_event(event))
998 		return;
999 
1000 	/*
1001 	 * Because cgroup events are always per-cpu events,
1002 	 * @ctx == &cpuctx->ctx.
1003 	 */
1004 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005 
1006 	/*
1007 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008 	 * matching the event's cgroup, we must do this for every new event,
1009 	 * because if the first would mismatch, the second would not try again
1010 	 * and we would leave cpuctx->cgrp unset.
1011 	 */
1012 	if (ctx->is_active && !cpuctx->cgrp) {
1013 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014 
1015 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016 			cpuctx->cgrp = cgrp;
1017 	}
1018 
1019 	if (ctx->nr_cgroups++)
1020 		return;
1021 
1022 	list_add(&cpuctx->cgrp_cpuctx_entry,
1023 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1024 }
1025 
1026 static inline void
1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1028 {
1029 	struct perf_cpu_context *cpuctx;
1030 
1031 	if (!is_cgroup_event(event))
1032 		return;
1033 
1034 	/*
1035 	 * Because cgroup events are always per-cpu events,
1036 	 * @ctx == &cpuctx->ctx.
1037 	 */
1038 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1039 
1040 	if (--ctx->nr_cgroups)
1041 		return;
1042 
1043 	if (ctx->is_active && cpuctx->cgrp)
1044 		cpuctx->cgrp = NULL;
1045 
1046 	list_del(&cpuctx->cgrp_cpuctx_entry);
1047 }
1048 
1049 #else /* !CONFIG_CGROUP_PERF */
1050 
1051 static inline bool
1052 perf_cgroup_match(struct perf_event *event)
1053 {
1054 	return true;
1055 }
1056 
1057 static inline void perf_detach_cgroup(struct perf_event *event)
1058 {}
1059 
1060 static inline int is_cgroup_event(struct perf_event *event)
1061 {
1062 	return 0;
1063 }
1064 
1065 static inline void update_cgrp_time_from_event(struct perf_event *event)
1066 {
1067 }
1068 
1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1070 {
1071 }
1072 
1073 static inline void perf_cgroup_sched_out(struct task_struct *task,
1074 					 struct task_struct *next)
1075 {
1076 }
1077 
1078 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1079 					struct task_struct *task)
1080 {
1081 }
1082 
1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1084 				      struct perf_event_attr *attr,
1085 				      struct perf_event *group_leader)
1086 {
1087 	return -EINVAL;
1088 }
1089 
1090 static inline void
1091 perf_cgroup_set_timestamp(struct task_struct *task,
1092 			  struct perf_event_context *ctx)
1093 {
1094 }
1095 
1096 static inline void
1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1098 {
1099 }
1100 
1101 static inline void
1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1103 {
1104 }
1105 
1106 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1107 {
1108 	return 0;
1109 }
1110 
1111 static inline void
1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1113 {
1114 }
1115 
1116 static inline void
1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1118 {
1119 }
1120 #endif
1121 
1122 /*
1123  * set default to be dependent on timer tick just
1124  * like original code
1125  */
1126 #define PERF_CPU_HRTIMER (1000 / HZ)
1127 /*
1128  * function must be called with interrupts disabled
1129  */
1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1131 {
1132 	struct perf_cpu_context *cpuctx;
1133 	bool rotations;
1134 
1135 	lockdep_assert_irqs_disabled();
1136 
1137 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1138 	rotations = perf_rotate_context(cpuctx);
1139 
1140 	raw_spin_lock(&cpuctx->hrtimer_lock);
1141 	if (rotations)
1142 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1143 	else
1144 		cpuctx->hrtimer_active = 0;
1145 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1146 
1147 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1148 }
1149 
1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1151 {
1152 	struct hrtimer *timer = &cpuctx->hrtimer;
1153 	struct pmu *pmu = cpuctx->ctx.pmu;
1154 	u64 interval;
1155 
1156 	/* no multiplexing needed for SW PMU */
1157 	if (pmu->task_ctx_nr == perf_sw_context)
1158 		return;
1159 
1160 	/*
1161 	 * check default is sane, if not set then force to
1162 	 * default interval (1/tick)
1163 	 */
1164 	interval = pmu->hrtimer_interval_ms;
1165 	if (interval < 1)
1166 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1167 
1168 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1169 
1170 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1171 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1172 	timer->function = perf_mux_hrtimer_handler;
1173 }
1174 
1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1176 {
1177 	struct hrtimer *timer = &cpuctx->hrtimer;
1178 	struct pmu *pmu = cpuctx->ctx.pmu;
1179 	unsigned long flags;
1180 
1181 	/* not for SW PMU */
1182 	if (pmu->task_ctx_nr == perf_sw_context)
1183 		return 0;
1184 
1185 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1186 	if (!cpuctx->hrtimer_active) {
1187 		cpuctx->hrtimer_active = 1;
1188 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1189 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1190 	}
1191 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1192 
1193 	return 0;
1194 }
1195 
1196 void perf_pmu_disable(struct pmu *pmu)
1197 {
1198 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1199 	if (!(*count)++)
1200 		pmu->pmu_disable(pmu);
1201 }
1202 
1203 void perf_pmu_enable(struct pmu *pmu)
1204 {
1205 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1206 	if (!--(*count))
1207 		pmu->pmu_enable(pmu);
1208 }
1209 
1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1211 
1212 /*
1213  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1214  * perf_event_task_tick() are fully serialized because they're strictly cpu
1215  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1216  * disabled, while perf_event_task_tick is called from IRQ context.
1217  */
1218 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1219 {
1220 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1221 
1222 	lockdep_assert_irqs_disabled();
1223 
1224 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1225 
1226 	list_add(&ctx->active_ctx_list, head);
1227 }
1228 
1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1230 {
1231 	lockdep_assert_irqs_disabled();
1232 
1233 	WARN_ON(list_empty(&ctx->active_ctx_list));
1234 
1235 	list_del_init(&ctx->active_ctx_list);
1236 }
1237 
1238 static void get_ctx(struct perf_event_context *ctx)
1239 {
1240 	refcount_inc(&ctx->refcount);
1241 }
1242 
1243 static void *alloc_task_ctx_data(struct pmu *pmu)
1244 {
1245 	if (pmu->task_ctx_cache)
1246 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1247 
1248 	return NULL;
1249 }
1250 
1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1252 {
1253 	if (pmu->task_ctx_cache && task_ctx_data)
1254 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1255 }
1256 
1257 static void free_ctx(struct rcu_head *head)
1258 {
1259 	struct perf_event_context *ctx;
1260 
1261 	ctx = container_of(head, struct perf_event_context, rcu_head);
1262 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1263 	kfree(ctx);
1264 }
1265 
1266 static void put_ctx(struct perf_event_context *ctx)
1267 {
1268 	if (refcount_dec_and_test(&ctx->refcount)) {
1269 		if (ctx->parent_ctx)
1270 			put_ctx(ctx->parent_ctx);
1271 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1272 			put_task_struct(ctx->task);
1273 		call_rcu(&ctx->rcu_head, free_ctx);
1274 	}
1275 }
1276 
1277 /*
1278  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1279  * perf_pmu_migrate_context() we need some magic.
1280  *
1281  * Those places that change perf_event::ctx will hold both
1282  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1283  *
1284  * Lock ordering is by mutex address. There are two other sites where
1285  * perf_event_context::mutex nests and those are:
1286  *
1287  *  - perf_event_exit_task_context()	[ child , 0 ]
1288  *      perf_event_exit_event()
1289  *        put_event()			[ parent, 1 ]
1290  *
1291  *  - perf_event_init_context()		[ parent, 0 ]
1292  *      inherit_task_group()
1293  *        inherit_group()
1294  *          inherit_event()
1295  *            perf_event_alloc()
1296  *              perf_init_event()
1297  *                perf_try_init_event()	[ child , 1 ]
1298  *
1299  * While it appears there is an obvious deadlock here -- the parent and child
1300  * nesting levels are inverted between the two. This is in fact safe because
1301  * life-time rules separate them. That is an exiting task cannot fork, and a
1302  * spawning task cannot (yet) exit.
1303  *
1304  * But remember that these are parent<->child context relations, and
1305  * migration does not affect children, therefore these two orderings should not
1306  * interact.
1307  *
1308  * The change in perf_event::ctx does not affect children (as claimed above)
1309  * because the sys_perf_event_open() case will install a new event and break
1310  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1311  * concerned with cpuctx and that doesn't have children.
1312  *
1313  * The places that change perf_event::ctx will issue:
1314  *
1315  *   perf_remove_from_context();
1316  *   synchronize_rcu();
1317  *   perf_install_in_context();
1318  *
1319  * to affect the change. The remove_from_context() + synchronize_rcu() should
1320  * quiesce the event, after which we can install it in the new location. This
1321  * means that only external vectors (perf_fops, prctl) can perturb the event
1322  * while in transit. Therefore all such accessors should also acquire
1323  * perf_event_context::mutex to serialize against this.
1324  *
1325  * However; because event->ctx can change while we're waiting to acquire
1326  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1327  * function.
1328  *
1329  * Lock order:
1330  *    exec_update_lock
1331  *	task_struct::perf_event_mutex
1332  *	  perf_event_context::mutex
1333  *	    perf_event::child_mutex;
1334  *	      perf_event_context::lock
1335  *	    perf_event::mmap_mutex
1336  *	    mmap_lock
1337  *	      perf_addr_filters_head::lock
1338  *
1339  *    cpu_hotplug_lock
1340  *      pmus_lock
1341  *	  cpuctx->mutex / perf_event_context::mutex
1342  */
1343 static struct perf_event_context *
1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345 {
1346 	struct perf_event_context *ctx;
1347 
1348 again:
1349 	rcu_read_lock();
1350 	ctx = READ_ONCE(event->ctx);
1351 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1352 		rcu_read_unlock();
1353 		goto again;
1354 	}
1355 	rcu_read_unlock();
1356 
1357 	mutex_lock_nested(&ctx->mutex, nesting);
1358 	if (event->ctx != ctx) {
1359 		mutex_unlock(&ctx->mutex);
1360 		put_ctx(ctx);
1361 		goto again;
1362 	}
1363 
1364 	return ctx;
1365 }
1366 
1367 static inline struct perf_event_context *
1368 perf_event_ctx_lock(struct perf_event *event)
1369 {
1370 	return perf_event_ctx_lock_nested(event, 0);
1371 }
1372 
1373 static void perf_event_ctx_unlock(struct perf_event *event,
1374 				  struct perf_event_context *ctx)
1375 {
1376 	mutex_unlock(&ctx->mutex);
1377 	put_ctx(ctx);
1378 }
1379 
1380 /*
1381  * This must be done under the ctx->lock, such as to serialize against
1382  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383  * calling scheduler related locks and ctx->lock nests inside those.
1384  */
1385 static __must_check struct perf_event_context *
1386 unclone_ctx(struct perf_event_context *ctx)
1387 {
1388 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389 
1390 	lockdep_assert_held(&ctx->lock);
1391 
1392 	if (parent_ctx)
1393 		ctx->parent_ctx = NULL;
1394 	ctx->generation++;
1395 
1396 	return parent_ctx;
1397 }
1398 
1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400 				enum pid_type type)
1401 {
1402 	u32 nr;
1403 	/*
1404 	 * only top level events have the pid namespace they were created in
1405 	 */
1406 	if (event->parent)
1407 		event = event->parent;
1408 
1409 	nr = __task_pid_nr_ns(p, type, event->ns);
1410 	/* avoid -1 if it is idle thread or runs in another ns */
1411 	if (!nr && !pid_alive(p))
1412 		nr = -1;
1413 	return nr;
1414 }
1415 
1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417 {
1418 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419 }
1420 
1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422 {
1423 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1424 }
1425 
1426 /*
1427  * If we inherit events we want to return the parent event id
1428  * to userspace.
1429  */
1430 static u64 primary_event_id(struct perf_event *event)
1431 {
1432 	u64 id = event->id;
1433 
1434 	if (event->parent)
1435 		id = event->parent->id;
1436 
1437 	return id;
1438 }
1439 
1440 /*
1441  * Get the perf_event_context for a task and lock it.
1442  *
1443  * This has to cope with the fact that until it is locked,
1444  * the context could get moved to another task.
1445  */
1446 static struct perf_event_context *
1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1448 {
1449 	struct perf_event_context *ctx;
1450 
1451 retry:
1452 	/*
1453 	 * One of the few rules of preemptible RCU is that one cannot do
1454 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455 	 * part of the read side critical section was irqs-enabled -- see
1456 	 * rcu_read_unlock_special().
1457 	 *
1458 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1459 	 * side critical section has interrupts disabled.
1460 	 */
1461 	local_irq_save(*flags);
1462 	rcu_read_lock();
1463 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1464 	if (ctx) {
1465 		/*
1466 		 * If this context is a clone of another, it might
1467 		 * get swapped for another underneath us by
1468 		 * perf_event_task_sched_out, though the
1469 		 * rcu_read_lock() protects us from any context
1470 		 * getting freed.  Lock the context and check if it
1471 		 * got swapped before we could get the lock, and retry
1472 		 * if so.  If we locked the right context, then it
1473 		 * can't get swapped on us any more.
1474 		 */
1475 		raw_spin_lock(&ctx->lock);
1476 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1477 			raw_spin_unlock(&ctx->lock);
1478 			rcu_read_unlock();
1479 			local_irq_restore(*flags);
1480 			goto retry;
1481 		}
1482 
1483 		if (ctx->task == TASK_TOMBSTONE ||
1484 		    !refcount_inc_not_zero(&ctx->refcount)) {
1485 			raw_spin_unlock(&ctx->lock);
1486 			ctx = NULL;
1487 		} else {
1488 			WARN_ON_ONCE(ctx->task != task);
1489 		}
1490 	}
1491 	rcu_read_unlock();
1492 	if (!ctx)
1493 		local_irq_restore(*flags);
1494 	return ctx;
1495 }
1496 
1497 /*
1498  * Get the context for a task and increment its pin_count so it
1499  * can't get swapped to another task.  This also increments its
1500  * reference count so that the context can't get freed.
1501  */
1502 static struct perf_event_context *
1503 perf_pin_task_context(struct task_struct *task, int ctxn)
1504 {
1505 	struct perf_event_context *ctx;
1506 	unsigned long flags;
1507 
1508 	ctx = perf_lock_task_context(task, ctxn, &flags);
1509 	if (ctx) {
1510 		++ctx->pin_count;
1511 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512 	}
1513 	return ctx;
1514 }
1515 
1516 static void perf_unpin_context(struct perf_event_context *ctx)
1517 {
1518 	unsigned long flags;
1519 
1520 	raw_spin_lock_irqsave(&ctx->lock, flags);
1521 	--ctx->pin_count;
1522 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523 }
1524 
1525 /*
1526  * Update the record of the current time in a context.
1527  */
1528 static void update_context_time(struct perf_event_context *ctx)
1529 {
1530 	u64 now = perf_clock();
1531 
1532 	ctx->time += now - ctx->timestamp;
1533 	ctx->timestamp = now;
1534 }
1535 
1536 static u64 perf_event_time(struct perf_event *event)
1537 {
1538 	struct perf_event_context *ctx = event->ctx;
1539 
1540 	if (is_cgroup_event(event))
1541 		return perf_cgroup_event_time(event);
1542 
1543 	return ctx ? ctx->time : 0;
1544 }
1545 
1546 static enum event_type_t get_event_type(struct perf_event *event)
1547 {
1548 	struct perf_event_context *ctx = event->ctx;
1549 	enum event_type_t event_type;
1550 
1551 	lockdep_assert_held(&ctx->lock);
1552 
1553 	/*
1554 	 * It's 'group type', really, because if our group leader is
1555 	 * pinned, so are we.
1556 	 */
1557 	if (event->group_leader != event)
1558 		event = event->group_leader;
1559 
1560 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1561 	if (!ctx->task)
1562 		event_type |= EVENT_CPU;
1563 
1564 	return event_type;
1565 }
1566 
1567 /*
1568  * Helper function to initialize event group nodes.
1569  */
1570 static void init_event_group(struct perf_event *event)
1571 {
1572 	RB_CLEAR_NODE(&event->group_node);
1573 	event->group_index = 0;
1574 }
1575 
1576 /*
1577  * Extract pinned or flexible groups from the context
1578  * based on event attrs bits.
1579  */
1580 static struct perf_event_groups *
1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1582 {
1583 	if (event->attr.pinned)
1584 		return &ctx->pinned_groups;
1585 	else
1586 		return &ctx->flexible_groups;
1587 }
1588 
1589 /*
1590  * Helper function to initializes perf_event_group trees.
1591  */
1592 static void perf_event_groups_init(struct perf_event_groups *groups)
1593 {
1594 	groups->tree = RB_ROOT;
1595 	groups->index = 0;
1596 }
1597 
1598 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1599 {
1600 	struct cgroup *cgroup = NULL;
1601 
1602 #ifdef CONFIG_CGROUP_PERF
1603 	if (event->cgrp)
1604 		cgroup = event->cgrp->css.cgroup;
1605 #endif
1606 
1607 	return cgroup;
1608 }
1609 
1610 /*
1611  * Compare function for event groups;
1612  *
1613  * Implements complex key that first sorts by CPU and then by virtual index
1614  * which provides ordering when rotating groups for the same CPU.
1615  */
1616 static __always_inline int
1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1618 		      const u64 left_group_index, const struct perf_event *right)
1619 {
1620 	if (left_cpu < right->cpu)
1621 		return -1;
1622 	if (left_cpu > right->cpu)
1623 		return 1;
1624 
1625 #ifdef CONFIG_CGROUP_PERF
1626 	{
1627 		const struct cgroup *right_cgroup = event_cgroup(right);
1628 
1629 		if (left_cgroup != right_cgroup) {
1630 			if (!left_cgroup) {
1631 				/*
1632 				 * Left has no cgroup but right does, no
1633 				 * cgroups come first.
1634 				 */
1635 				return -1;
1636 			}
1637 			if (!right_cgroup) {
1638 				/*
1639 				 * Right has no cgroup but left does, no
1640 				 * cgroups come first.
1641 				 */
1642 				return 1;
1643 			}
1644 			/* Two dissimilar cgroups, order by id. */
1645 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1646 				return -1;
1647 
1648 			return 1;
1649 		}
1650 	}
1651 #endif
1652 
1653 	if (left_group_index < right->group_index)
1654 		return -1;
1655 	if (left_group_index > right->group_index)
1656 		return 1;
1657 
1658 	return 0;
1659 }
1660 
1661 #define __node_2_pe(node) \
1662 	rb_entry((node), struct perf_event, group_node)
1663 
1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1665 {
1666 	struct perf_event *e = __node_2_pe(a);
1667 	return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1668 				     __node_2_pe(b)) < 0;
1669 }
1670 
1671 struct __group_key {
1672 	int cpu;
1673 	struct cgroup *cgroup;
1674 };
1675 
1676 static inline int __group_cmp(const void *key, const struct rb_node *node)
1677 {
1678 	const struct __group_key *a = key;
1679 	const struct perf_event *b = __node_2_pe(node);
1680 
1681 	/* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1682 	return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1683 }
1684 
1685 /*
1686  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1687  * key (see perf_event_groups_less). This places it last inside the CPU
1688  * subtree.
1689  */
1690 static void
1691 perf_event_groups_insert(struct perf_event_groups *groups,
1692 			 struct perf_event *event)
1693 {
1694 	event->group_index = ++groups->index;
1695 
1696 	rb_add(&event->group_node, &groups->tree, __group_less);
1697 }
1698 
1699 /*
1700  * Helper function to insert event into the pinned or flexible groups.
1701  */
1702 static void
1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1704 {
1705 	struct perf_event_groups *groups;
1706 
1707 	groups = get_event_groups(event, ctx);
1708 	perf_event_groups_insert(groups, event);
1709 }
1710 
1711 /*
1712  * Delete a group from a tree.
1713  */
1714 static void
1715 perf_event_groups_delete(struct perf_event_groups *groups,
1716 			 struct perf_event *event)
1717 {
1718 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1719 		     RB_EMPTY_ROOT(&groups->tree));
1720 
1721 	rb_erase(&event->group_node, &groups->tree);
1722 	init_event_group(event);
1723 }
1724 
1725 /*
1726  * Helper function to delete event from its groups.
1727  */
1728 static void
1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1730 {
1731 	struct perf_event_groups *groups;
1732 
1733 	groups = get_event_groups(event, ctx);
1734 	perf_event_groups_delete(groups, event);
1735 }
1736 
1737 /*
1738  * Get the leftmost event in the cpu/cgroup subtree.
1739  */
1740 static struct perf_event *
1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1742 			struct cgroup *cgrp)
1743 {
1744 	struct __group_key key = {
1745 		.cpu = cpu,
1746 		.cgroup = cgrp,
1747 	};
1748 	struct rb_node *node;
1749 
1750 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1751 	if (node)
1752 		return __node_2_pe(node);
1753 
1754 	return NULL;
1755 }
1756 
1757 /*
1758  * Like rb_entry_next_safe() for the @cpu subtree.
1759  */
1760 static struct perf_event *
1761 perf_event_groups_next(struct perf_event *event)
1762 {
1763 	struct __group_key key = {
1764 		.cpu = event->cpu,
1765 		.cgroup = event_cgroup(event),
1766 	};
1767 	struct rb_node *next;
1768 
1769 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1770 	if (next)
1771 		return __node_2_pe(next);
1772 
1773 	return NULL;
1774 }
1775 
1776 /*
1777  * Iterate through the whole groups tree.
1778  */
1779 #define perf_event_groups_for_each(event, groups)			\
1780 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1781 				typeof(*event), group_node); event;	\
1782 		event = rb_entry_safe(rb_next(&event->group_node),	\
1783 				typeof(*event), group_node))
1784 
1785 /*
1786  * Add an event from the lists for its context.
1787  * Must be called with ctx->mutex and ctx->lock held.
1788  */
1789 static void
1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1791 {
1792 	lockdep_assert_held(&ctx->lock);
1793 
1794 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1795 	event->attach_state |= PERF_ATTACH_CONTEXT;
1796 
1797 	event->tstamp = perf_event_time(event);
1798 
1799 	/*
1800 	 * If we're a stand alone event or group leader, we go to the context
1801 	 * list, group events are kept attached to the group so that
1802 	 * perf_group_detach can, at all times, locate all siblings.
1803 	 */
1804 	if (event->group_leader == event) {
1805 		event->group_caps = event->event_caps;
1806 		add_event_to_groups(event, ctx);
1807 	}
1808 
1809 	list_add_rcu(&event->event_entry, &ctx->event_list);
1810 	ctx->nr_events++;
1811 	if (event->attr.inherit_stat)
1812 		ctx->nr_stat++;
1813 
1814 	if (event->state > PERF_EVENT_STATE_OFF)
1815 		perf_cgroup_event_enable(event, ctx);
1816 
1817 	ctx->generation++;
1818 }
1819 
1820 /*
1821  * Initialize event state based on the perf_event_attr::disabled.
1822  */
1823 static inline void perf_event__state_init(struct perf_event *event)
1824 {
1825 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1826 					      PERF_EVENT_STATE_INACTIVE;
1827 }
1828 
1829 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1830 {
1831 	int entry = sizeof(u64); /* value */
1832 	int size = 0;
1833 	int nr = 1;
1834 
1835 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1836 		size += sizeof(u64);
1837 
1838 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1839 		size += sizeof(u64);
1840 
1841 	if (event->attr.read_format & PERF_FORMAT_ID)
1842 		entry += sizeof(u64);
1843 
1844 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1845 		nr += nr_siblings;
1846 		size += sizeof(u64);
1847 	}
1848 
1849 	size += entry * nr;
1850 	event->read_size = size;
1851 }
1852 
1853 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1854 {
1855 	struct perf_sample_data *data;
1856 	u16 size = 0;
1857 
1858 	if (sample_type & PERF_SAMPLE_IP)
1859 		size += sizeof(data->ip);
1860 
1861 	if (sample_type & PERF_SAMPLE_ADDR)
1862 		size += sizeof(data->addr);
1863 
1864 	if (sample_type & PERF_SAMPLE_PERIOD)
1865 		size += sizeof(data->period);
1866 
1867 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1868 		size += sizeof(data->weight.full);
1869 
1870 	if (sample_type & PERF_SAMPLE_READ)
1871 		size += event->read_size;
1872 
1873 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1874 		size += sizeof(data->data_src.val);
1875 
1876 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1877 		size += sizeof(data->txn);
1878 
1879 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1880 		size += sizeof(data->phys_addr);
1881 
1882 	if (sample_type & PERF_SAMPLE_CGROUP)
1883 		size += sizeof(data->cgroup);
1884 
1885 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1886 		size += sizeof(data->data_page_size);
1887 
1888 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1889 		size += sizeof(data->code_page_size);
1890 
1891 	event->header_size = size;
1892 }
1893 
1894 /*
1895  * Called at perf_event creation and when events are attached/detached from a
1896  * group.
1897  */
1898 static void perf_event__header_size(struct perf_event *event)
1899 {
1900 	__perf_event_read_size(event,
1901 			       event->group_leader->nr_siblings);
1902 	__perf_event_header_size(event, event->attr.sample_type);
1903 }
1904 
1905 static void perf_event__id_header_size(struct perf_event *event)
1906 {
1907 	struct perf_sample_data *data;
1908 	u64 sample_type = event->attr.sample_type;
1909 	u16 size = 0;
1910 
1911 	if (sample_type & PERF_SAMPLE_TID)
1912 		size += sizeof(data->tid_entry);
1913 
1914 	if (sample_type & PERF_SAMPLE_TIME)
1915 		size += sizeof(data->time);
1916 
1917 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1918 		size += sizeof(data->id);
1919 
1920 	if (sample_type & PERF_SAMPLE_ID)
1921 		size += sizeof(data->id);
1922 
1923 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1924 		size += sizeof(data->stream_id);
1925 
1926 	if (sample_type & PERF_SAMPLE_CPU)
1927 		size += sizeof(data->cpu_entry);
1928 
1929 	event->id_header_size = size;
1930 }
1931 
1932 static bool perf_event_validate_size(struct perf_event *event)
1933 {
1934 	/*
1935 	 * The values computed here will be over-written when we actually
1936 	 * attach the event.
1937 	 */
1938 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1939 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1940 	perf_event__id_header_size(event);
1941 
1942 	/*
1943 	 * Sum the lot; should not exceed the 64k limit we have on records.
1944 	 * Conservative limit to allow for callchains and other variable fields.
1945 	 */
1946 	if (event->read_size + event->header_size +
1947 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1948 		return false;
1949 
1950 	return true;
1951 }
1952 
1953 static void perf_group_attach(struct perf_event *event)
1954 {
1955 	struct perf_event *group_leader = event->group_leader, *pos;
1956 
1957 	lockdep_assert_held(&event->ctx->lock);
1958 
1959 	/*
1960 	 * We can have double attach due to group movement in perf_event_open.
1961 	 */
1962 	if (event->attach_state & PERF_ATTACH_GROUP)
1963 		return;
1964 
1965 	event->attach_state |= PERF_ATTACH_GROUP;
1966 
1967 	if (group_leader == event)
1968 		return;
1969 
1970 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1971 
1972 	group_leader->group_caps &= event->event_caps;
1973 
1974 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1975 	group_leader->nr_siblings++;
1976 
1977 	perf_event__header_size(group_leader);
1978 
1979 	for_each_sibling_event(pos, group_leader)
1980 		perf_event__header_size(pos);
1981 }
1982 
1983 /*
1984  * Remove an event from the lists for its context.
1985  * Must be called with ctx->mutex and ctx->lock held.
1986  */
1987 static void
1988 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1989 {
1990 	WARN_ON_ONCE(event->ctx != ctx);
1991 	lockdep_assert_held(&ctx->lock);
1992 
1993 	/*
1994 	 * We can have double detach due to exit/hot-unplug + close.
1995 	 */
1996 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1997 		return;
1998 
1999 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2000 
2001 	ctx->nr_events--;
2002 	if (event->attr.inherit_stat)
2003 		ctx->nr_stat--;
2004 
2005 	list_del_rcu(&event->event_entry);
2006 
2007 	if (event->group_leader == event)
2008 		del_event_from_groups(event, ctx);
2009 
2010 	/*
2011 	 * If event was in error state, then keep it
2012 	 * that way, otherwise bogus counts will be
2013 	 * returned on read(). The only way to get out
2014 	 * of error state is by explicit re-enabling
2015 	 * of the event
2016 	 */
2017 	if (event->state > PERF_EVENT_STATE_OFF) {
2018 		perf_cgroup_event_disable(event, ctx);
2019 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2020 	}
2021 
2022 	ctx->generation++;
2023 }
2024 
2025 static int
2026 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2027 {
2028 	if (!has_aux(aux_event))
2029 		return 0;
2030 
2031 	if (!event->pmu->aux_output_match)
2032 		return 0;
2033 
2034 	return event->pmu->aux_output_match(aux_event);
2035 }
2036 
2037 static void put_event(struct perf_event *event);
2038 static void event_sched_out(struct perf_event *event,
2039 			    struct perf_cpu_context *cpuctx,
2040 			    struct perf_event_context *ctx);
2041 
2042 static void perf_put_aux_event(struct perf_event *event)
2043 {
2044 	struct perf_event_context *ctx = event->ctx;
2045 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2046 	struct perf_event *iter;
2047 
2048 	/*
2049 	 * If event uses aux_event tear down the link
2050 	 */
2051 	if (event->aux_event) {
2052 		iter = event->aux_event;
2053 		event->aux_event = NULL;
2054 		put_event(iter);
2055 		return;
2056 	}
2057 
2058 	/*
2059 	 * If the event is an aux_event, tear down all links to
2060 	 * it from other events.
2061 	 */
2062 	for_each_sibling_event(iter, event->group_leader) {
2063 		if (iter->aux_event != event)
2064 			continue;
2065 
2066 		iter->aux_event = NULL;
2067 		put_event(event);
2068 
2069 		/*
2070 		 * If it's ACTIVE, schedule it out and put it into ERROR
2071 		 * state so that we don't try to schedule it again. Note
2072 		 * that perf_event_enable() will clear the ERROR status.
2073 		 */
2074 		event_sched_out(iter, cpuctx, ctx);
2075 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2076 	}
2077 }
2078 
2079 static bool perf_need_aux_event(struct perf_event *event)
2080 {
2081 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2082 }
2083 
2084 static int perf_get_aux_event(struct perf_event *event,
2085 			      struct perf_event *group_leader)
2086 {
2087 	/*
2088 	 * Our group leader must be an aux event if we want to be
2089 	 * an aux_output. This way, the aux event will precede its
2090 	 * aux_output events in the group, and therefore will always
2091 	 * schedule first.
2092 	 */
2093 	if (!group_leader)
2094 		return 0;
2095 
2096 	/*
2097 	 * aux_output and aux_sample_size are mutually exclusive.
2098 	 */
2099 	if (event->attr.aux_output && event->attr.aux_sample_size)
2100 		return 0;
2101 
2102 	if (event->attr.aux_output &&
2103 	    !perf_aux_output_match(event, group_leader))
2104 		return 0;
2105 
2106 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2107 		return 0;
2108 
2109 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2110 		return 0;
2111 
2112 	/*
2113 	 * Link aux_outputs to their aux event; this is undone in
2114 	 * perf_group_detach() by perf_put_aux_event(). When the
2115 	 * group in torn down, the aux_output events loose their
2116 	 * link to the aux_event and can't schedule any more.
2117 	 */
2118 	event->aux_event = group_leader;
2119 
2120 	return 1;
2121 }
2122 
2123 static inline struct list_head *get_event_list(struct perf_event *event)
2124 {
2125 	struct perf_event_context *ctx = event->ctx;
2126 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2127 }
2128 
2129 /*
2130  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2131  * cannot exist on their own, schedule them out and move them into the ERROR
2132  * state. Also see _perf_event_enable(), it will not be able to recover
2133  * this ERROR state.
2134  */
2135 static inline void perf_remove_sibling_event(struct perf_event *event)
2136 {
2137 	struct perf_event_context *ctx = event->ctx;
2138 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2139 
2140 	event_sched_out(event, cpuctx, ctx);
2141 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2142 }
2143 
2144 static void perf_group_detach(struct perf_event *event)
2145 {
2146 	struct perf_event *leader = event->group_leader;
2147 	struct perf_event *sibling, *tmp;
2148 	struct perf_event_context *ctx = event->ctx;
2149 
2150 	lockdep_assert_held(&ctx->lock);
2151 
2152 	/*
2153 	 * We can have double detach due to exit/hot-unplug + close.
2154 	 */
2155 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2156 		return;
2157 
2158 	event->attach_state &= ~PERF_ATTACH_GROUP;
2159 
2160 	perf_put_aux_event(event);
2161 
2162 	/*
2163 	 * If this is a sibling, remove it from its group.
2164 	 */
2165 	if (leader != event) {
2166 		list_del_init(&event->sibling_list);
2167 		event->group_leader->nr_siblings--;
2168 		goto out;
2169 	}
2170 
2171 	/*
2172 	 * If this was a group event with sibling events then
2173 	 * upgrade the siblings to singleton events by adding them
2174 	 * to whatever list we are on.
2175 	 */
2176 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2177 
2178 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2179 			perf_remove_sibling_event(sibling);
2180 
2181 		sibling->group_leader = sibling;
2182 		list_del_init(&sibling->sibling_list);
2183 
2184 		/* Inherit group flags from the previous leader */
2185 		sibling->group_caps = event->group_caps;
2186 
2187 		if (!RB_EMPTY_NODE(&event->group_node)) {
2188 			add_event_to_groups(sibling, event->ctx);
2189 
2190 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2191 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2192 		}
2193 
2194 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2195 	}
2196 
2197 out:
2198 	for_each_sibling_event(tmp, leader)
2199 		perf_event__header_size(tmp);
2200 
2201 	perf_event__header_size(leader);
2202 }
2203 
2204 static void sync_child_event(struct perf_event *child_event);
2205 
2206 static void perf_child_detach(struct perf_event *event)
2207 {
2208 	struct perf_event *parent_event = event->parent;
2209 
2210 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2211 		return;
2212 
2213 	event->attach_state &= ~PERF_ATTACH_CHILD;
2214 
2215 	if (WARN_ON_ONCE(!parent_event))
2216 		return;
2217 
2218 	lockdep_assert_held(&parent_event->child_mutex);
2219 
2220 	sync_child_event(event);
2221 	list_del_init(&event->child_list);
2222 }
2223 
2224 static bool is_orphaned_event(struct perf_event *event)
2225 {
2226 	return event->state == PERF_EVENT_STATE_DEAD;
2227 }
2228 
2229 static inline int __pmu_filter_match(struct perf_event *event)
2230 {
2231 	struct pmu *pmu = event->pmu;
2232 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2233 }
2234 
2235 /*
2236  * Check whether we should attempt to schedule an event group based on
2237  * PMU-specific filtering. An event group can consist of HW and SW events,
2238  * potentially with a SW leader, so we must check all the filters, to
2239  * determine whether a group is schedulable:
2240  */
2241 static inline int pmu_filter_match(struct perf_event *event)
2242 {
2243 	struct perf_event *sibling;
2244 
2245 	if (!__pmu_filter_match(event))
2246 		return 0;
2247 
2248 	for_each_sibling_event(sibling, event) {
2249 		if (!__pmu_filter_match(sibling))
2250 			return 0;
2251 	}
2252 
2253 	return 1;
2254 }
2255 
2256 static inline int
2257 event_filter_match(struct perf_event *event)
2258 {
2259 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2260 	       perf_cgroup_match(event) && pmu_filter_match(event);
2261 }
2262 
2263 static void
2264 event_sched_out(struct perf_event *event,
2265 		  struct perf_cpu_context *cpuctx,
2266 		  struct perf_event_context *ctx)
2267 {
2268 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2269 
2270 	WARN_ON_ONCE(event->ctx != ctx);
2271 	lockdep_assert_held(&ctx->lock);
2272 
2273 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2274 		return;
2275 
2276 	/*
2277 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2278 	 * we can schedule events _OUT_ individually through things like
2279 	 * __perf_remove_from_context().
2280 	 */
2281 	list_del_init(&event->active_list);
2282 
2283 	perf_pmu_disable(event->pmu);
2284 
2285 	event->pmu->del(event, 0);
2286 	event->oncpu = -1;
2287 
2288 	if (READ_ONCE(event->pending_disable) >= 0) {
2289 		WRITE_ONCE(event->pending_disable, -1);
2290 		perf_cgroup_event_disable(event, ctx);
2291 		state = PERF_EVENT_STATE_OFF;
2292 	}
2293 	perf_event_set_state(event, state);
2294 
2295 	if (!is_software_event(event))
2296 		cpuctx->active_oncpu--;
2297 	if (!--ctx->nr_active)
2298 		perf_event_ctx_deactivate(ctx);
2299 	if (event->attr.freq && event->attr.sample_freq)
2300 		ctx->nr_freq--;
2301 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2302 		cpuctx->exclusive = 0;
2303 
2304 	perf_pmu_enable(event->pmu);
2305 }
2306 
2307 static void
2308 group_sched_out(struct perf_event *group_event,
2309 		struct perf_cpu_context *cpuctx,
2310 		struct perf_event_context *ctx)
2311 {
2312 	struct perf_event *event;
2313 
2314 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2315 		return;
2316 
2317 	perf_pmu_disable(ctx->pmu);
2318 
2319 	event_sched_out(group_event, cpuctx, ctx);
2320 
2321 	/*
2322 	 * Schedule out siblings (if any):
2323 	 */
2324 	for_each_sibling_event(event, group_event)
2325 		event_sched_out(event, cpuctx, ctx);
2326 
2327 	perf_pmu_enable(ctx->pmu);
2328 }
2329 
2330 #define DETACH_GROUP	0x01UL
2331 #define DETACH_CHILD	0x02UL
2332 
2333 /*
2334  * Cross CPU call to remove a performance event
2335  *
2336  * We disable the event on the hardware level first. After that we
2337  * remove it from the context list.
2338  */
2339 static void
2340 __perf_remove_from_context(struct perf_event *event,
2341 			   struct perf_cpu_context *cpuctx,
2342 			   struct perf_event_context *ctx,
2343 			   void *info)
2344 {
2345 	unsigned long flags = (unsigned long)info;
2346 
2347 	if (ctx->is_active & EVENT_TIME) {
2348 		update_context_time(ctx);
2349 		update_cgrp_time_from_cpuctx(cpuctx);
2350 	}
2351 
2352 	event_sched_out(event, cpuctx, ctx);
2353 	if (flags & DETACH_GROUP)
2354 		perf_group_detach(event);
2355 	if (flags & DETACH_CHILD)
2356 		perf_child_detach(event);
2357 	list_del_event(event, ctx);
2358 
2359 	if (!ctx->nr_events && ctx->is_active) {
2360 		ctx->is_active = 0;
2361 		ctx->rotate_necessary = 0;
2362 		if (ctx->task) {
2363 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2364 			cpuctx->task_ctx = NULL;
2365 		}
2366 	}
2367 }
2368 
2369 /*
2370  * Remove the event from a task's (or a CPU's) list of events.
2371  *
2372  * If event->ctx is a cloned context, callers must make sure that
2373  * every task struct that event->ctx->task could possibly point to
2374  * remains valid.  This is OK when called from perf_release since
2375  * that only calls us on the top-level context, which can't be a clone.
2376  * When called from perf_event_exit_task, it's OK because the
2377  * context has been detached from its task.
2378  */
2379 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2380 {
2381 	struct perf_event_context *ctx = event->ctx;
2382 
2383 	lockdep_assert_held(&ctx->mutex);
2384 
2385 	/*
2386 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2387 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2388 	 * event_function_call() user.
2389 	 */
2390 	raw_spin_lock_irq(&ctx->lock);
2391 	if (!ctx->is_active) {
2392 		__perf_remove_from_context(event, __get_cpu_context(ctx),
2393 					   ctx, (void *)flags);
2394 		raw_spin_unlock_irq(&ctx->lock);
2395 		return;
2396 	}
2397 	raw_spin_unlock_irq(&ctx->lock);
2398 
2399 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2400 }
2401 
2402 /*
2403  * Cross CPU call to disable a performance event
2404  */
2405 static void __perf_event_disable(struct perf_event *event,
2406 				 struct perf_cpu_context *cpuctx,
2407 				 struct perf_event_context *ctx,
2408 				 void *info)
2409 {
2410 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2411 		return;
2412 
2413 	if (ctx->is_active & EVENT_TIME) {
2414 		update_context_time(ctx);
2415 		update_cgrp_time_from_event(event);
2416 	}
2417 
2418 	if (event == event->group_leader)
2419 		group_sched_out(event, cpuctx, ctx);
2420 	else
2421 		event_sched_out(event, cpuctx, ctx);
2422 
2423 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2424 	perf_cgroup_event_disable(event, ctx);
2425 }
2426 
2427 /*
2428  * Disable an event.
2429  *
2430  * If event->ctx is a cloned context, callers must make sure that
2431  * every task struct that event->ctx->task could possibly point to
2432  * remains valid.  This condition is satisfied when called through
2433  * perf_event_for_each_child or perf_event_for_each because they
2434  * hold the top-level event's child_mutex, so any descendant that
2435  * goes to exit will block in perf_event_exit_event().
2436  *
2437  * When called from perf_pending_event it's OK because event->ctx
2438  * is the current context on this CPU and preemption is disabled,
2439  * hence we can't get into perf_event_task_sched_out for this context.
2440  */
2441 static void _perf_event_disable(struct perf_event *event)
2442 {
2443 	struct perf_event_context *ctx = event->ctx;
2444 
2445 	raw_spin_lock_irq(&ctx->lock);
2446 	if (event->state <= PERF_EVENT_STATE_OFF) {
2447 		raw_spin_unlock_irq(&ctx->lock);
2448 		return;
2449 	}
2450 	raw_spin_unlock_irq(&ctx->lock);
2451 
2452 	event_function_call(event, __perf_event_disable, NULL);
2453 }
2454 
2455 void perf_event_disable_local(struct perf_event *event)
2456 {
2457 	event_function_local(event, __perf_event_disable, NULL);
2458 }
2459 
2460 /*
2461  * Strictly speaking kernel users cannot create groups and therefore this
2462  * interface does not need the perf_event_ctx_lock() magic.
2463  */
2464 void perf_event_disable(struct perf_event *event)
2465 {
2466 	struct perf_event_context *ctx;
2467 
2468 	ctx = perf_event_ctx_lock(event);
2469 	_perf_event_disable(event);
2470 	perf_event_ctx_unlock(event, ctx);
2471 }
2472 EXPORT_SYMBOL_GPL(perf_event_disable);
2473 
2474 void perf_event_disable_inatomic(struct perf_event *event)
2475 {
2476 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2477 	/* can fail, see perf_pending_event_disable() */
2478 	irq_work_queue(&event->pending);
2479 }
2480 
2481 static void perf_set_shadow_time(struct perf_event *event,
2482 				 struct perf_event_context *ctx)
2483 {
2484 	/*
2485 	 * use the correct time source for the time snapshot
2486 	 *
2487 	 * We could get by without this by leveraging the
2488 	 * fact that to get to this function, the caller
2489 	 * has most likely already called update_context_time()
2490 	 * and update_cgrp_time_xx() and thus both timestamp
2491 	 * are identical (or very close). Given that tstamp is,
2492 	 * already adjusted for cgroup, we could say that:
2493 	 *    tstamp - ctx->timestamp
2494 	 * is equivalent to
2495 	 *    tstamp - cgrp->timestamp.
2496 	 *
2497 	 * Then, in perf_output_read(), the calculation would
2498 	 * work with no changes because:
2499 	 * - event is guaranteed scheduled in
2500 	 * - no scheduled out in between
2501 	 * - thus the timestamp would be the same
2502 	 *
2503 	 * But this is a bit hairy.
2504 	 *
2505 	 * So instead, we have an explicit cgroup call to remain
2506 	 * within the time source all along. We believe it
2507 	 * is cleaner and simpler to understand.
2508 	 */
2509 	if (is_cgroup_event(event))
2510 		perf_cgroup_set_shadow_time(event, event->tstamp);
2511 	else
2512 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2513 }
2514 
2515 #define MAX_INTERRUPTS (~0ULL)
2516 
2517 static void perf_log_throttle(struct perf_event *event, int enable);
2518 static void perf_log_itrace_start(struct perf_event *event);
2519 
2520 static int
2521 event_sched_in(struct perf_event *event,
2522 		 struct perf_cpu_context *cpuctx,
2523 		 struct perf_event_context *ctx)
2524 {
2525 	int ret = 0;
2526 
2527 	WARN_ON_ONCE(event->ctx != ctx);
2528 
2529 	lockdep_assert_held(&ctx->lock);
2530 
2531 	if (event->state <= PERF_EVENT_STATE_OFF)
2532 		return 0;
2533 
2534 	WRITE_ONCE(event->oncpu, smp_processor_id());
2535 	/*
2536 	 * Order event::oncpu write to happen before the ACTIVE state is
2537 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2538 	 * ->oncpu if it sees ACTIVE.
2539 	 */
2540 	smp_wmb();
2541 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2542 
2543 	/*
2544 	 * Unthrottle events, since we scheduled we might have missed several
2545 	 * ticks already, also for a heavily scheduling task there is little
2546 	 * guarantee it'll get a tick in a timely manner.
2547 	 */
2548 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2549 		perf_log_throttle(event, 1);
2550 		event->hw.interrupts = 0;
2551 	}
2552 
2553 	perf_pmu_disable(event->pmu);
2554 
2555 	perf_set_shadow_time(event, ctx);
2556 
2557 	perf_log_itrace_start(event);
2558 
2559 	if (event->pmu->add(event, PERF_EF_START)) {
2560 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2561 		event->oncpu = -1;
2562 		ret = -EAGAIN;
2563 		goto out;
2564 	}
2565 
2566 	if (!is_software_event(event))
2567 		cpuctx->active_oncpu++;
2568 	if (!ctx->nr_active++)
2569 		perf_event_ctx_activate(ctx);
2570 	if (event->attr.freq && event->attr.sample_freq)
2571 		ctx->nr_freq++;
2572 
2573 	if (event->attr.exclusive)
2574 		cpuctx->exclusive = 1;
2575 
2576 out:
2577 	perf_pmu_enable(event->pmu);
2578 
2579 	return ret;
2580 }
2581 
2582 static int
2583 group_sched_in(struct perf_event *group_event,
2584 	       struct perf_cpu_context *cpuctx,
2585 	       struct perf_event_context *ctx)
2586 {
2587 	struct perf_event *event, *partial_group = NULL;
2588 	struct pmu *pmu = ctx->pmu;
2589 
2590 	if (group_event->state == PERF_EVENT_STATE_OFF)
2591 		return 0;
2592 
2593 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2594 
2595 	if (event_sched_in(group_event, cpuctx, ctx))
2596 		goto error;
2597 
2598 	/*
2599 	 * Schedule in siblings as one group (if any):
2600 	 */
2601 	for_each_sibling_event(event, group_event) {
2602 		if (event_sched_in(event, cpuctx, ctx)) {
2603 			partial_group = event;
2604 			goto group_error;
2605 		}
2606 	}
2607 
2608 	if (!pmu->commit_txn(pmu))
2609 		return 0;
2610 
2611 group_error:
2612 	/*
2613 	 * Groups can be scheduled in as one unit only, so undo any
2614 	 * partial group before returning:
2615 	 * The events up to the failed event are scheduled out normally.
2616 	 */
2617 	for_each_sibling_event(event, group_event) {
2618 		if (event == partial_group)
2619 			break;
2620 
2621 		event_sched_out(event, cpuctx, ctx);
2622 	}
2623 	event_sched_out(group_event, cpuctx, ctx);
2624 
2625 error:
2626 	pmu->cancel_txn(pmu);
2627 	return -EAGAIN;
2628 }
2629 
2630 /*
2631  * Work out whether we can put this event group on the CPU now.
2632  */
2633 static int group_can_go_on(struct perf_event *event,
2634 			   struct perf_cpu_context *cpuctx,
2635 			   int can_add_hw)
2636 {
2637 	/*
2638 	 * Groups consisting entirely of software events can always go on.
2639 	 */
2640 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2641 		return 1;
2642 	/*
2643 	 * If an exclusive group is already on, no other hardware
2644 	 * events can go on.
2645 	 */
2646 	if (cpuctx->exclusive)
2647 		return 0;
2648 	/*
2649 	 * If this group is exclusive and there are already
2650 	 * events on the CPU, it can't go on.
2651 	 */
2652 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2653 		return 0;
2654 	/*
2655 	 * Otherwise, try to add it if all previous groups were able
2656 	 * to go on.
2657 	 */
2658 	return can_add_hw;
2659 }
2660 
2661 static void add_event_to_ctx(struct perf_event *event,
2662 			       struct perf_event_context *ctx)
2663 {
2664 	list_add_event(event, ctx);
2665 	perf_group_attach(event);
2666 }
2667 
2668 static void ctx_sched_out(struct perf_event_context *ctx,
2669 			  struct perf_cpu_context *cpuctx,
2670 			  enum event_type_t event_type);
2671 static void
2672 ctx_sched_in(struct perf_event_context *ctx,
2673 	     struct perf_cpu_context *cpuctx,
2674 	     enum event_type_t event_type,
2675 	     struct task_struct *task);
2676 
2677 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2678 			       struct perf_event_context *ctx,
2679 			       enum event_type_t event_type)
2680 {
2681 	if (!cpuctx->task_ctx)
2682 		return;
2683 
2684 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2685 		return;
2686 
2687 	ctx_sched_out(ctx, cpuctx, event_type);
2688 }
2689 
2690 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2691 				struct perf_event_context *ctx,
2692 				struct task_struct *task)
2693 {
2694 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2695 	if (ctx)
2696 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2697 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2698 	if (ctx)
2699 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2700 }
2701 
2702 /*
2703  * We want to maintain the following priority of scheduling:
2704  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2705  *  - task pinned (EVENT_PINNED)
2706  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2707  *  - task flexible (EVENT_FLEXIBLE).
2708  *
2709  * In order to avoid unscheduling and scheduling back in everything every
2710  * time an event is added, only do it for the groups of equal priority and
2711  * below.
2712  *
2713  * This can be called after a batch operation on task events, in which case
2714  * event_type is a bit mask of the types of events involved. For CPU events,
2715  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2716  */
2717 static void ctx_resched(struct perf_cpu_context *cpuctx,
2718 			struct perf_event_context *task_ctx,
2719 			enum event_type_t event_type)
2720 {
2721 	enum event_type_t ctx_event_type;
2722 	bool cpu_event = !!(event_type & EVENT_CPU);
2723 
2724 	/*
2725 	 * If pinned groups are involved, flexible groups also need to be
2726 	 * scheduled out.
2727 	 */
2728 	if (event_type & EVENT_PINNED)
2729 		event_type |= EVENT_FLEXIBLE;
2730 
2731 	ctx_event_type = event_type & EVENT_ALL;
2732 
2733 	perf_pmu_disable(cpuctx->ctx.pmu);
2734 	if (task_ctx)
2735 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2736 
2737 	/*
2738 	 * Decide which cpu ctx groups to schedule out based on the types
2739 	 * of events that caused rescheduling:
2740 	 *  - EVENT_CPU: schedule out corresponding groups;
2741 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2742 	 *  - otherwise, do nothing more.
2743 	 */
2744 	if (cpu_event)
2745 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2746 	else if (ctx_event_type & EVENT_PINNED)
2747 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2748 
2749 	perf_event_sched_in(cpuctx, task_ctx, current);
2750 	perf_pmu_enable(cpuctx->ctx.pmu);
2751 }
2752 
2753 void perf_pmu_resched(struct pmu *pmu)
2754 {
2755 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2756 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2757 
2758 	perf_ctx_lock(cpuctx, task_ctx);
2759 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2760 	perf_ctx_unlock(cpuctx, task_ctx);
2761 }
2762 
2763 /*
2764  * Cross CPU call to install and enable a performance event
2765  *
2766  * Very similar to remote_function() + event_function() but cannot assume that
2767  * things like ctx->is_active and cpuctx->task_ctx are set.
2768  */
2769 static int  __perf_install_in_context(void *info)
2770 {
2771 	struct perf_event *event = info;
2772 	struct perf_event_context *ctx = event->ctx;
2773 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2774 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2775 	bool reprogram = true;
2776 	int ret = 0;
2777 
2778 	raw_spin_lock(&cpuctx->ctx.lock);
2779 	if (ctx->task) {
2780 		raw_spin_lock(&ctx->lock);
2781 		task_ctx = ctx;
2782 
2783 		reprogram = (ctx->task == current);
2784 
2785 		/*
2786 		 * If the task is running, it must be running on this CPU,
2787 		 * otherwise we cannot reprogram things.
2788 		 *
2789 		 * If its not running, we don't care, ctx->lock will
2790 		 * serialize against it becoming runnable.
2791 		 */
2792 		if (task_curr(ctx->task) && !reprogram) {
2793 			ret = -ESRCH;
2794 			goto unlock;
2795 		}
2796 
2797 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2798 	} else if (task_ctx) {
2799 		raw_spin_lock(&task_ctx->lock);
2800 	}
2801 
2802 #ifdef CONFIG_CGROUP_PERF
2803 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2804 		/*
2805 		 * If the current cgroup doesn't match the event's
2806 		 * cgroup, we should not try to schedule it.
2807 		 */
2808 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2809 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2810 					event->cgrp->css.cgroup);
2811 	}
2812 #endif
2813 
2814 	if (reprogram) {
2815 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2816 		add_event_to_ctx(event, ctx);
2817 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2818 	} else {
2819 		add_event_to_ctx(event, ctx);
2820 	}
2821 
2822 unlock:
2823 	perf_ctx_unlock(cpuctx, task_ctx);
2824 
2825 	return ret;
2826 }
2827 
2828 static bool exclusive_event_installable(struct perf_event *event,
2829 					struct perf_event_context *ctx);
2830 
2831 /*
2832  * Attach a performance event to a context.
2833  *
2834  * Very similar to event_function_call, see comment there.
2835  */
2836 static void
2837 perf_install_in_context(struct perf_event_context *ctx,
2838 			struct perf_event *event,
2839 			int cpu)
2840 {
2841 	struct task_struct *task = READ_ONCE(ctx->task);
2842 
2843 	lockdep_assert_held(&ctx->mutex);
2844 
2845 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2846 
2847 	if (event->cpu != -1)
2848 		event->cpu = cpu;
2849 
2850 	/*
2851 	 * Ensures that if we can observe event->ctx, both the event and ctx
2852 	 * will be 'complete'. See perf_iterate_sb_cpu().
2853 	 */
2854 	smp_store_release(&event->ctx, ctx);
2855 
2856 	/*
2857 	 * perf_event_attr::disabled events will not run and can be initialized
2858 	 * without IPI. Except when this is the first event for the context, in
2859 	 * that case we need the magic of the IPI to set ctx->is_active.
2860 	 *
2861 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2862 	 * event will issue the IPI and reprogram the hardware.
2863 	 */
2864 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2865 		raw_spin_lock_irq(&ctx->lock);
2866 		if (ctx->task == TASK_TOMBSTONE) {
2867 			raw_spin_unlock_irq(&ctx->lock);
2868 			return;
2869 		}
2870 		add_event_to_ctx(event, ctx);
2871 		raw_spin_unlock_irq(&ctx->lock);
2872 		return;
2873 	}
2874 
2875 	if (!task) {
2876 		cpu_function_call(cpu, __perf_install_in_context, event);
2877 		return;
2878 	}
2879 
2880 	/*
2881 	 * Should not happen, we validate the ctx is still alive before calling.
2882 	 */
2883 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2884 		return;
2885 
2886 	/*
2887 	 * Installing events is tricky because we cannot rely on ctx->is_active
2888 	 * to be set in case this is the nr_events 0 -> 1 transition.
2889 	 *
2890 	 * Instead we use task_curr(), which tells us if the task is running.
2891 	 * However, since we use task_curr() outside of rq::lock, we can race
2892 	 * against the actual state. This means the result can be wrong.
2893 	 *
2894 	 * If we get a false positive, we retry, this is harmless.
2895 	 *
2896 	 * If we get a false negative, things are complicated. If we are after
2897 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2898 	 * value must be correct. If we're before, it doesn't matter since
2899 	 * perf_event_context_sched_in() will program the counter.
2900 	 *
2901 	 * However, this hinges on the remote context switch having observed
2902 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2903 	 * ctx::lock in perf_event_context_sched_in().
2904 	 *
2905 	 * We do this by task_function_call(), if the IPI fails to hit the task
2906 	 * we know any future context switch of task must see the
2907 	 * perf_event_ctpx[] store.
2908 	 */
2909 
2910 	/*
2911 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2912 	 * task_cpu() load, such that if the IPI then does not find the task
2913 	 * running, a future context switch of that task must observe the
2914 	 * store.
2915 	 */
2916 	smp_mb();
2917 again:
2918 	if (!task_function_call(task, __perf_install_in_context, event))
2919 		return;
2920 
2921 	raw_spin_lock_irq(&ctx->lock);
2922 	task = ctx->task;
2923 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2924 		/*
2925 		 * Cannot happen because we already checked above (which also
2926 		 * cannot happen), and we hold ctx->mutex, which serializes us
2927 		 * against perf_event_exit_task_context().
2928 		 */
2929 		raw_spin_unlock_irq(&ctx->lock);
2930 		return;
2931 	}
2932 	/*
2933 	 * If the task is not running, ctx->lock will avoid it becoming so,
2934 	 * thus we can safely install the event.
2935 	 */
2936 	if (task_curr(task)) {
2937 		raw_spin_unlock_irq(&ctx->lock);
2938 		goto again;
2939 	}
2940 	add_event_to_ctx(event, ctx);
2941 	raw_spin_unlock_irq(&ctx->lock);
2942 }
2943 
2944 /*
2945  * Cross CPU call to enable a performance event
2946  */
2947 static void __perf_event_enable(struct perf_event *event,
2948 				struct perf_cpu_context *cpuctx,
2949 				struct perf_event_context *ctx,
2950 				void *info)
2951 {
2952 	struct perf_event *leader = event->group_leader;
2953 	struct perf_event_context *task_ctx;
2954 
2955 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2956 	    event->state <= PERF_EVENT_STATE_ERROR)
2957 		return;
2958 
2959 	if (ctx->is_active)
2960 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2961 
2962 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2963 	perf_cgroup_event_enable(event, ctx);
2964 
2965 	if (!ctx->is_active)
2966 		return;
2967 
2968 	if (!event_filter_match(event)) {
2969 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2970 		return;
2971 	}
2972 
2973 	/*
2974 	 * If the event is in a group and isn't the group leader,
2975 	 * then don't put it on unless the group is on.
2976 	 */
2977 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2978 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2979 		return;
2980 	}
2981 
2982 	task_ctx = cpuctx->task_ctx;
2983 	if (ctx->task)
2984 		WARN_ON_ONCE(task_ctx != ctx);
2985 
2986 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2987 }
2988 
2989 /*
2990  * Enable an event.
2991  *
2992  * If event->ctx is a cloned context, callers must make sure that
2993  * every task struct that event->ctx->task could possibly point to
2994  * remains valid.  This condition is satisfied when called through
2995  * perf_event_for_each_child or perf_event_for_each as described
2996  * for perf_event_disable.
2997  */
2998 static void _perf_event_enable(struct perf_event *event)
2999 {
3000 	struct perf_event_context *ctx = event->ctx;
3001 
3002 	raw_spin_lock_irq(&ctx->lock);
3003 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3004 	    event->state <  PERF_EVENT_STATE_ERROR) {
3005 out:
3006 		raw_spin_unlock_irq(&ctx->lock);
3007 		return;
3008 	}
3009 
3010 	/*
3011 	 * If the event is in error state, clear that first.
3012 	 *
3013 	 * That way, if we see the event in error state below, we know that it
3014 	 * has gone back into error state, as distinct from the task having
3015 	 * been scheduled away before the cross-call arrived.
3016 	 */
3017 	if (event->state == PERF_EVENT_STATE_ERROR) {
3018 		/*
3019 		 * Detached SIBLING events cannot leave ERROR state.
3020 		 */
3021 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3022 		    event->group_leader == event)
3023 			goto out;
3024 
3025 		event->state = PERF_EVENT_STATE_OFF;
3026 	}
3027 	raw_spin_unlock_irq(&ctx->lock);
3028 
3029 	event_function_call(event, __perf_event_enable, NULL);
3030 }
3031 
3032 /*
3033  * See perf_event_disable();
3034  */
3035 void perf_event_enable(struct perf_event *event)
3036 {
3037 	struct perf_event_context *ctx;
3038 
3039 	ctx = perf_event_ctx_lock(event);
3040 	_perf_event_enable(event);
3041 	perf_event_ctx_unlock(event, ctx);
3042 }
3043 EXPORT_SYMBOL_GPL(perf_event_enable);
3044 
3045 struct stop_event_data {
3046 	struct perf_event	*event;
3047 	unsigned int		restart;
3048 };
3049 
3050 static int __perf_event_stop(void *info)
3051 {
3052 	struct stop_event_data *sd = info;
3053 	struct perf_event *event = sd->event;
3054 
3055 	/* if it's already INACTIVE, do nothing */
3056 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3057 		return 0;
3058 
3059 	/* matches smp_wmb() in event_sched_in() */
3060 	smp_rmb();
3061 
3062 	/*
3063 	 * There is a window with interrupts enabled before we get here,
3064 	 * so we need to check again lest we try to stop another CPU's event.
3065 	 */
3066 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3067 		return -EAGAIN;
3068 
3069 	event->pmu->stop(event, PERF_EF_UPDATE);
3070 
3071 	/*
3072 	 * May race with the actual stop (through perf_pmu_output_stop()),
3073 	 * but it is only used for events with AUX ring buffer, and such
3074 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3075 	 * see comments in perf_aux_output_begin().
3076 	 *
3077 	 * Since this is happening on an event-local CPU, no trace is lost
3078 	 * while restarting.
3079 	 */
3080 	if (sd->restart)
3081 		event->pmu->start(event, 0);
3082 
3083 	return 0;
3084 }
3085 
3086 static int perf_event_stop(struct perf_event *event, int restart)
3087 {
3088 	struct stop_event_data sd = {
3089 		.event		= event,
3090 		.restart	= restart,
3091 	};
3092 	int ret = 0;
3093 
3094 	do {
3095 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3096 			return 0;
3097 
3098 		/* matches smp_wmb() in event_sched_in() */
3099 		smp_rmb();
3100 
3101 		/*
3102 		 * We only want to restart ACTIVE events, so if the event goes
3103 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3104 		 * fall through with ret==-ENXIO.
3105 		 */
3106 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3107 					__perf_event_stop, &sd);
3108 	} while (ret == -EAGAIN);
3109 
3110 	return ret;
3111 }
3112 
3113 /*
3114  * In order to contain the amount of racy and tricky in the address filter
3115  * configuration management, it is a two part process:
3116  *
3117  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3118  *      we update the addresses of corresponding vmas in
3119  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3120  * (p2) when an event is scheduled in (pmu::add), it calls
3121  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3122  *      if the generation has changed since the previous call.
3123  *
3124  * If (p1) happens while the event is active, we restart it to force (p2).
3125  *
3126  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3127  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3128  *     ioctl;
3129  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3130  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3131  *     for reading;
3132  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3133  *     of exec.
3134  */
3135 void perf_event_addr_filters_sync(struct perf_event *event)
3136 {
3137 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3138 
3139 	if (!has_addr_filter(event))
3140 		return;
3141 
3142 	raw_spin_lock(&ifh->lock);
3143 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3144 		event->pmu->addr_filters_sync(event);
3145 		event->hw.addr_filters_gen = event->addr_filters_gen;
3146 	}
3147 	raw_spin_unlock(&ifh->lock);
3148 }
3149 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3150 
3151 static int _perf_event_refresh(struct perf_event *event, int refresh)
3152 {
3153 	/*
3154 	 * not supported on inherited events
3155 	 */
3156 	if (event->attr.inherit || !is_sampling_event(event))
3157 		return -EINVAL;
3158 
3159 	atomic_add(refresh, &event->event_limit);
3160 	_perf_event_enable(event);
3161 
3162 	return 0;
3163 }
3164 
3165 /*
3166  * See perf_event_disable()
3167  */
3168 int perf_event_refresh(struct perf_event *event, int refresh)
3169 {
3170 	struct perf_event_context *ctx;
3171 	int ret;
3172 
3173 	ctx = perf_event_ctx_lock(event);
3174 	ret = _perf_event_refresh(event, refresh);
3175 	perf_event_ctx_unlock(event, ctx);
3176 
3177 	return ret;
3178 }
3179 EXPORT_SYMBOL_GPL(perf_event_refresh);
3180 
3181 static int perf_event_modify_breakpoint(struct perf_event *bp,
3182 					 struct perf_event_attr *attr)
3183 {
3184 	int err;
3185 
3186 	_perf_event_disable(bp);
3187 
3188 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3189 
3190 	if (!bp->attr.disabled)
3191 		_perf_event_enable(bp);
3192 
3193 	return err;
3194 }
3195 
3196 static int perf_event_modify_attr(struct perf_event *event,
3197 				  struct perf_event_attr *attr)
3198 {
3199 	int (*func)(struct perf_event *, struct perf_event_attr *);
3200 	struct perf_event *child;
3201 	int err;
3202 
3203 	if (event->attr.type != attr->type)
3204 		return -EINVAL;
3205 
3206 	switch (event->attr.type) {
3207 	case PERF_TYPE_BREAKPOINT:
3208 		func = perf_event_modify_breakpoint;
3209 		break;
3210 	default:
3211 		/* Place holder for future additions. */
3212 		return -EOPNOTSUPP;
3213 	}
3214 
3215 	WARN_ON_ONCE(event->ctx->parent_ctx);
3216 
3217 	mutex_lock(&event->child_mutex);
3218 	err = func(event, attr);
3219 	if (err)
3220 		goto out;
3221 	list_for_each_entry(child, &event->child_list, child_list) {
3222 		err = func(child, attr);
3223 		if (err)
3224 			goto out;
3225 	}
3226 out:
3227 	mutex_unlock(&event->child_mutex);
3228 	return err;
3229 }
3230 
3231 static void ctx_sched_out(struct perf_event_context *ctx,
3232 			  struct perf_cpu_context *cpuctx,
3233 			  enum event_type_t event_type)
3234 {
3235 	struct perf_event *event, *tmp;
3236 	int is_active = ctx->is_active;
3237 
3238 	lockdep_assert_held(&ctx->lock);
3239 
3240 	if (likely(!ctx->nr_events)) {
3241 		/*
3242 		 * See __perf_remove_from_context().
3243 		 */
3244 		WARN_ON_ONCE(ctx->is_active);
3245 		if (ctx->task)
3246 			WARN_ON_ONCE(cpuctx->task_ctx);
3247 		return;
3248 	}
3249 
3250 	ctx->is_active &= ~event_type;
3251 	if (!(ctx->is_active & EVENT_ALL))
3252 		ctx->is_active = 0;
3253 
3254 	if (ctx->task) {
3255 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3256 		if (!ctx->is_active)
3257 			cpuctx->task_ctx = NULL;
3258 	}
3259 
3260 	/*
3261 	 * Always update time if it was set; not only when it changes.
3262 	 * Otherwise we can 'forget' to update time for any but the last
3263 	 * context we sched out. For example:
3264 	 *
3265 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3266 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3267 	 *
3268 	 * would only update time for the pinned events.
3269 	 */
3270 	if (is_active & EVENT_TIME) {
3271 		/* update (and stop) ctx time */
3272 		update_context_time(ctx);
3273 		update_cgrp_time_from_cpuctx(cpuctx);
3274 	}
3275 
3276 	is_active ^= ctx->is_active; /* changed bits */
3277 
3278 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3279 		return;
3280 
3281 	perf_pmu_disable(ctx->pmu);
3282 	if (is_active & EVENT_PINNED) {
3283 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3284 			group_sched_out(event, cpuctx, ctx);
3285 	}
3286 
3287 	if (is_active & EVENT_FLEXIBLE) {
3288 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3289 			group_sched_out(event, cpuctx, ctx);
3290 
3291 		/*
3292 		 * Since we cleared EVENT_FLEXIBLE, also clear
3293 		 * rotate_necessary, is will be reset by
3294 		 * ctx_flexible_sched_in() when needed.
3295 		 */
3296 		ctx->rotate_necessary = 0;
3297 	}
3298 	perf_pmu_enable(ctx->pmu);
3299 }
3300 
3301 /*
3302  * Test whether two contexts are equivalent, i.e. whether they have both been
3303  * cloned from the same version of the same context.
3304  *
3305  * Equivalence is measured using a generation number in the context that is
3306  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3307  * and list_del_event().
3308  */
3309 static int context_equiv(struct perf_event_context *ctx1,
3310 			 struct perf_event_context *ctx2)
3311 {
3312 	lockdep_assert_held(&ctx1->lock);
3313 	lockdep_assert_held(&ctx2->lock);
3314 
3315 	/* Pinning disables the swap optimization */
3316 	if (ctx1->pin_count || ctx2->pin_count)
3317 		return 0;
3318 
3319 	/* If ctx1 is the parent of ctx2 */
3320 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3321 		return 1;
3322 
3323 	/* If ctx2 is the parent of ctx1 */
3324 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3325 		return 1;
3326 
3327 	/*
3328 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3329 	 * hierarchy, see perf_event_init_context().
3330 	 */
3331 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3332 			ctx1->parent_gen == ctx2->parent_gen)
3333 		return 1;
3334 
3335 	/* Unmatched */
3336 	return 0;
3337 }
3338 
3339 static void __perf_event_sync_stat(struct perf_event *event,
3340 				     struct perf_event *next_event)
3341 {
3342 	u64 value;
3343 
3344 	if (!event->attr.inherit_stat)
3345 		return;
3346 
3347 	/*
3348 	 * Update the event value, we cannot use perf_event_read()
3349 	 * because we're in the middle of a context switch and have IRQs
3350 	 * disabled, which upsets smp_call_function_single(), however
3351 	 * we know the event must be on the current CPU, therefore we
3352 	 * don't need to use it.
3353 	 */
3354 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3355 		event->pmu->read(event);
3356 
3357 	perf_event_update_time(event);
3358 
3359 	/*
3360 	 * In order to keep per-task stats reliable we need to flip the event
3361 	 * values when we flip the contexts.
3362 	 */
3363 	value = local64_read(&next_event->count);
3364 	value = local64_xchg(&event->count, value);
3365 	local64_set(&next_event->count, value);
3366 
3367 	swap(event->total_time_enabled, next_event->total_time_enabled);
3368 	swap(event->total_time_running, next_event->total_time_running);
3369 
3370 	/*
3371 	 * Since we swizzled the values, update the user visible data too.
3372 	 */
3373 	perf_event_update_userpage(event);
3374 	perf_event_update_userpage(next_event);
3375 }
3376 
3377 static void perf_event_sync_stat(struct perf_event_context *ctx,
3378 				   struct perf_event_context *next_ctx)
3379 {
3380 	struct perf_event *event, *next_event;
3381 
3382 	if (!ctx->nr_stat)
3383 		return;
3384 
3385 	update_context_time(ctx);
3386 
3387 	event = list_first_entry(&ctx->event_list,
3388 				   struct perf_event, event_entry);
3389 
3390 	next_event = list_first_entry(&next_ctx->event_list,
3391 					struct perf_event, event_entry);
3392 
3393 	while (&event->event_entry != &ctx->event_list &&
3394 	       &next_event->event_entry != &next_ctx->event_list) {
3395 
3396 		__perf_event_sync_stat(event, next_event);
3397 
3398 		event = list_next_entry(event, event_entry);
3399 		next_event = list_next_entry(next_event, event_entry);
3400 	}
3401 }
3402 
3403 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3404 					 struct task_struct *next)
3405 {
3406 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3407 	struct perf_event_context *next_ctx;
3408 	struct perf_event_context *parent, *next_parent;
3409 	struct perf_cpu_context *cpuctx;
3410 	int do_switch = 1;
3411 	struct pmu *pmu;
3412 
3413 	if (likely(!ctx))
3414 		return;
3415 
3416 	pmu = ctx->pmu;
3417 	cpuctx = __get_cpu_context(ctx);
3418 	if (!cpuctx->task_ctx)
3419 		return;
3420 
3421 	rcu_read_lock();
3422 	next_ctx = next->perf_event_ctxp[ctxn];
3423 	if (!next_ctx)
3424 		goto unlock;
3425 
3426 	parent = rcu_dereference(ctx->parent_ctx);
3427 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3428 
3429 	/* If neither context have a parent context; they cannot be clones. */
3430 	if (!parent && !next_parent)
3431 		goto unlock;
3432 
3433 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3434 		/*
3435 		 * Looks like the two contexts are clones, so we might be
3436 		 * able to optimize the context switch.  We lock both
3437 		 * contexts and check that they are clones under the
3438 		 * lock (including re-checking that neither has been
3439 		 * uncloned in the meantime).  It doesn't matter which
3440 		 * order we take the locks because no other cpu could
3441 		 * be trying to lock both of these tasks.
3442 		 */
3443 		raw_spin_lock(&ctx->lock);
3444 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3445 		if (context_equiv(ctx, next_ctx)) {
3446 
3447 			WRITE_ONCE(ctx->task, next);
3448 			WRITE_ONCE(next_ctx->task, task);
3449 
3450 			perf_pmu_disable(pmu);
3451 
3452 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3453 				pmu->sched_task(ctx, false);
3454 
3455 			/*
3456 			 * PMU specific parts of task perf context can require
3457 			 * additional synchronization. As an example of such
3458 			 * synchronization see implementation details of Intel
3459 			 * LBR call stack data profiling;
3460 			 */
3461 			if (pmu->swap_task_ctx)
3462 				pmu->swap_task_ctx(ctx, next_ctx);
3463 			else
3464 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3465 
3466 			perf_pmu_enable(pmu);
3467 
3468 			/*
3469 			 * RCU_INIT_POINTER here is safe because we've not
3470 			 * modified the ctx and the above modification of
3471 			 * ctx->task and ctx->task_ctx_data are immaterial
3472 			 * since those values are always verified under
3473 			 * ctx->lock which we're now holding.
3474 			 */
3475 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3476 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3477 
3478 			do_switch = 0;
3479 
3480 			perf_event_sync_stat(ctx, next_ctx);
3481 		}
3482 		raw_spin_unlock(&next_ctx->lock);
3483 		raw_spin_unlock(&ctx->lock);
3484 	}
3485 unlock:
3486 	rcu_read_unlock();
3487 
3488 	if (do_switch) {
3489 		raw_spin_lock(&ctx->lock);
3490 		perf_pmu_disable(pmu);
3491 
3492 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3493 			pmu->sched_task(ctx, false);
3494 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3495 
3496 		perf_pmu_enable(pmu);
3497 		raw_spin_unlock(&ctx->lock);
3498 	}
3499 }
3500 
3501 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3502 
3503 void perf_sched_cb_dec(struct pmu *pmu)
3504 {
3505 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3506 
3507 	this_cpu_dec(perf_sched_cb_usages);
3508 
3509 	if (!--cpuctx->sched_cb_usage)
3510 		list_del(&cpuctx->sched_cb_entry);
3511 }
3512 
3513 
3514 void perf_sched_cb_inc(struct pmu *pmu)
3515 {
3516 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3517 
3518 	if (!cpuctx->sched_cb_usage++)
3519 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3520 
3521 	this_cpu_inc(perf_sched_cb_usages);
3522 }
3523 
3524 /*
3525  * This function provides the context switch callback to the lower code
3526  * layer. It is invoked ONLY when the context switch callback is enabled.
3527  *
3528  * This callback is relevant even to per-cpu events; for example multi event
3529  * PEBS requires this to provide PID/TID information. This requires we flush
3530  * all queued PEBS records before we context switch to a new task.
3531  */
3532 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3533 {
3534 	struct pmu *pmu;
3535 
3536 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3537 
3538 	if (WARN_ON_ONCE(!pmu->sched_task))
3539 		return;
3540 
3541 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3542 	perf_pmu_disable(pmu);
3543 
3544 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3545 
3546 	perf_pmu_enable(pmu);
3547 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3548 }
3549 
3550 static void perf_pmu_sched_task(struct task_struct *prev,
3551 				struct task_struct *next,
3552 				bool sched_in)
3553 {
3554 	struct perf_cpu_context *cpuctx;
3555 
3556 	if (prev == next)
3557 		return;
3558 
3559 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3560 		/* will be handled in perf_event_context_sched_in/out */
3561 		if (cpuctx->task_ctx)
3562 			continue;
3563 
3564 		__perf_pmu_sched_task(cpuctx, sched_in);
3565 	}
3566 }
3567 
3568 static void perf_event_switch(struct task_struct *task,
3569 			      struct task_struct *next_prev, bool sched_in);
3570 
3571 #define for_each_task_context_nr(ctxn)					\
3572 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3573 
3574 /*
3575  * Called from scheduler to remove the events of the current task,
3576  * with interrupts disabled.
3577  *
3578  * We stop each event and update the event value in event->count.
3579  *
3580  * This does not protect us against NMI, but disable()
3581  * sets the disabled bit in the control field of event _before_
3582  * accessing the event control register. If a NMI hits, then it will
3583  * not restart the event.
3584  */
3585 void __perf_event_task_sched_out(struct task_struct *task,
3586 				 struct task_struct *next)
3587 {
3588 	int ctxn;
3589 
3590 	if (__this_cpu_read(perf_sched_cb_usages))
3591 		perf_pmu_sched_task(task, next, false);
3592 
3593 	if (atomic_read(&nr_switch_events))
3594 		perf_event_switch(task, next, false);
3595 
3596 	for_each_task_context_nr(ctxn)
3597 		perf_event_context_sched_out(task, ctxn, next);
3598 
3599 	/*
3600 	 * if cgroup events exist on this CPU, then we need
3601 	 * to check if we have to switch out PMU state.
3602 	 * cgroup event are system-wide mode only
3603 	 */
3604 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3605 		perf_cgroup_sched_out(task, next);
3606 }
3607 
3608 /*
3609  * Called with IRQs disabled
3610  */
3611 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3612 			      enum event_type_t event_type)
3613 {
3614 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3615 }
3616 
3617 static bool perf_less_group_idx(const void *l, const void *r)
3618 {
3619 	const struct perf_event *le = *(const struct perf_event **)l;
3620 	const struct perf_event *re = *(const struct perf_event **)r;
3621 
3622 	return le->group_index < re->group_index;
3623 }
3624 
3625 static void swap_ptr(void *l, void *r)
3626 {
3627 	void **lp = l, **rp = r;
3628 
3629 	swap(*lp, *rp);
3630 }
3631 
3632 static const struct min_heap_callbacks perf_min_heap = {
3633 	.elem_size = sizeof(struct perf_event *),
3634 	.less = perf_less_group_idx,
3635 	.swp = swap_ptr,
3636 };
3637 
3638 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3639 {
3640 	struct perf_event **itrs = heap->data;
3641 
3642 	if (event) {
3643 		itrs[heap->nr] = event;
3644 		heap->nr++;
3645 	}
3646 }
3647 
3648 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3649 				struct perf_event_groups *groups, int cpu,
3650 				int (*func)(struct perf_event *, void *),
3651 				void *data)
3652 {
3653 #ifdef CONFIG_CGROUP_PERF
3654 	struct cgroup_subsys_state *css = NULL;
3655 #endif
3656 	/* Space for per CPU and/or any CPU event iterators. */
3657 	struct perf_event *itrs[2];
3658 	struct min_heap event_heap;
3659 	struct perf_event **evt;
3660 	int ret;
3661 
3662 	if (cpuctx) {
3663 		event_heap = (struct min_heap){
3664 			.data = cpuctx->heap,
3665 			.nr = 0,
3666 			.size = cpuctx->heap_size,
3667 		};
3668 
3669 		lockdep_assert_held(&cpuctx->ctx.lock);
3670 
3671 #ifdef CONFIG_CGROUP_PERF
3672 		if (cpuctx->cgrp)
3673 			css = &cpuctx->cgrp->css;
3674 #endif
3675 	} else {
3676 		event_heap = (struct min_heap){
3677 			.data = itrs,
3678 			.nr = 0,
3679 			.size = ARRAY_SIZE(itrs),
3680 		};
3681 		/* Events not within a CPU context may be on any CPU. */
3682 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3683 	}
3684 	evt = event_heap.data;
3685 
3686 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3687 
3688 #ifdef CONFIG_CGROUP_PERF
3689 	for (; css; css = css->parent)
3690 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3691 #endif
3692 
3693 	min_heapify_all(&event_heap, &perf_min_heap);
3694 
3695 	while (event_heap.nr) {
3696 		ret = func(*evt, data);
3697 		if (ret)
3698 			return ret;
3699 
3700 		*evt = perf_event_groups_next(*evt);
3701 		if (*evt)
3702 			min_heapify(&event_heap, 0, &perf_min_heap);
3703 		else
3704 			min_heap_pop(&event_heap, &perf_min_heap);
3705 	}
3706 
3707 	return 0;
3708 }
3709 
3710 static int merge_sched_in(struct perf_event *event, void *data)
3711 {
3712 	struct perf_event_context *ctx = event->ctx;
3713 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3714 	int *can_add_hw = data;
3715 
3716 	if (event->state <= PERF_EVENT_STATE_OFF)
3717 		return 0;
3718 
3719 	if (!event_filter_match(event))
3720 		return 0;
3721 
3722 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3723 		if (!group_sched_in(event, cpuctx, ctx))
3724 			list_add_tail(&event->active_list, get_event_list(event));
3725 	}
3726 
3727 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3728 		if (event->attr.pinned) {
3729 			perf_cgroup_event_disable(event, ctx);
3730 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3731 		}
3732 
3733 		*can_add_hw = 0;
3734 		ctx->rotate_necessary = 1;
3735 		perf_mux_hrtimer_restart(cpuctx);
3736 	}
3737 
3738 	return 0;
3739 }
3740 
3741 static void
3742 ctx_pinned_sched_in(struct perf_event_context *ctx,
3743 		    struct perf_cpu_context *cpuctx)
3744 {
3745 	int can_add_hw = 1;
3746 
3747 	if (ctx != &cpuctx->ctx)
3748 		cpuctx = NULL;
3749 
3750 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3751 			   smp_processor_id(),
3752 			   merge_sched_in, &can_add_hw);
3753 }
3754 
3755 static void
3756 ctx_flexible_sched_in(struct perf_event_context *ctx,
3757 		      struct perf_cpu_context *cpuctx)
3758 {
3759 	int can_add_hw = 1;
3760 
3761 	if (ctx != &cpuctx->ctx)
3762 		cpuctx = NULL;
3763 
3764 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3765 			   smp_processor_id(),
3766 			   merge_sched_in, &can_add_hw);
3767 }
3768 
3769 static void
3770 ctx_sched_in(struct perf_event_context *ctx,
3771 	     struct perf_cpu_context *cpuctx,
3772 	     enum event_type_t event_type,
3773 	     struct task_struct *task)
3774 {
3775 	int is_active = ctx->is_active;
3776 	u64 now;
3777 
3778 	lockdep_assert_held(&ctx->lock);
3779 
3780 	if (likely(!ctx->nr_events))
3781 		return;
3782 
3783 	ctx->is_active |= (event_type | EVENT_TIME);
3784 	if (ctx->task) {
3785 		if (!is_active)
3786 			cpuctx->task_ctx = ctx;
3787 		else
3788 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3789 	}
3790 
3791 	is_active ^= ctx->is_active; /* changed bits */
3792 
3793 	if (is_active & EVENT_TIME) {
3794 		/* start ctx time */
3795 		now = perf_clock();
3796 		ctx->timestamp = now;
3797 		perf_cgroup_set_timestamp(task, ctx);
3798 	}
3799 
3800 	/*
3801 	 * First go through the list and put on any pinned groups
3802 	 * in order to give them the best chance of going on.
3803 	 */
3804 	if (is_active & EVENT_PINNED)
3805 		ctx_pinned_sched_in(ctx, cpuctx);
3806 
3807 	/* Then walk through the lower prio flexible groups */
3808 	if (is_active & EVENT_FLEXIBLE)
3809 		ctx_flexible_sched_in(ctx, cpuctx);
3810 }
3811 
3812 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3813 			     enum event_type_t event_type,
3814 			     struct task_struct *task)
3815 {
3816 	struct perf_event_context *ctx = &cpuctx->ctx;
3817 
3818 	ctx_sched_in(ctx, cpuctx, event_type, task);
3819 }
3820 
3821 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3822 					struct task_struct *task)
3823 {
3824 	struct perf_cpu_context *cpuctx;
3825 	struct pmu *pmu;
3826 
3827 	cpuctx = __get_cpu_context(ctx);
3828 
3829 	/*
3830 	 * HACK: for HETEROGENEOUS the task context might have switched to a
3831 	 * different PMU, force (re)set the context,
3832 	 */
3833 	pmu = ctx->pmu = cpuctx->ctx.pmu;
3834 
3835 	if (cpuctx->task_ctx == ctx) {
3836 		if (cpuctx->sched_cb_usage)
3837 			__perf_pmu_sched_task(cpuctx, true);
3838 		return;
3839 	}
3840 
3841 	perf_ctx_lock(cpuctx, ctx);
3842 	/*
3843 	 * We must check ctx->nr_events while holding ctx->lock, such
3844 	 * that we serialize against perf_install_in_context().
3845 	 */
3846 	if (!ctx->nr_events)
3847 		goto unlock;
3848 
3849 	perf_pmu_disable(pmu);
3850 	/*
3851 	 * We want to keep the following priority order:
3852 	 * cpu pinned (that don't need to move), task pinned,
3853 	 * cpu flexible, task flexible.
3854 	 *
3855 	 * However, if task's ctx is not carrying any pinned
3856 	 * events, no need to flip the cpuctx's events around.
3857 	 */
3858 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3859 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3860 	perf_event_sched_in(cpuctx, ctx, task);
3861 
3862 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3863 		pmu->sched_task(cpuctx->task_ctx, true);
3864 
3865 	perf_pmu_enable(pmu);
3866 
3867 unlock:
3868 	perf_ctx_unlock(cpuctx, ctx);
3869 }
3870 
3871 /*
3872  * Called from scheduler to add the events of the current task
3873  * with interrupts disabled.
3874  *
3875  * We restore the event value and then enable it.
3876  *
3877  * This does not protect us against NMI, but enable()
3878  * sets the enabled bit in the control field of event _before_
3879  * accessing the event control register. If a NMI hits, then it will
3880  * keep the event running.
3881  */
3882 void __perf_event_task_sched_in(struct task_struct *prev,
3883 				struct task_struct *task)
3884 {
3885 	struct perf_event_context *ctx;
3886 	int ctxn;
3887 
3888 	/*
3889 	 * If cgroup events exist on this CPU, then we need to check if we have
3890 	 * to switch in PMU state; cgroup event are system-wide mode only.
3891 	 *
3892 	 * Since cgroup events are CPU events, we must schedule these in before
3893 	 * we schedule in the task events.
3894 	 */
3895 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3896 		perf_cgroup_sched_in(prev, task);
3897 
3898 	for_each_task_context_nr(ctxn) {
3899 		ctx = task->perf_event_ctxp[ctxn];
3900 		if (likely(!ctx))
3901 			continue;
3902 
3903 		perf_event_context_sched_in(ctx, task);
3904 	}
3905 
3906 	if (atomic_read(&nr_switch_events))
3907 		perf_event_switch(task, prev, true);
3908 
3909 	if (__this_cpu_read(perf_sched_cb_usages))
3910 		perf_pmu_sched_task(prev, task, true);
3911 }
3912 
3913 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3914 {
3915 	u64 frequency = event->attr.sample_freq;
3916 	u64 sec = NSEC_PER_SEC;
3917 	u64 divisor, dividend;
3918 
3919 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3920 
3921 	count_fls = fls64(count);
3922 	nsec_fls = fls64(nsec);
3923 	frequency_fls = fls64(frequency);
3924 	sec_fls = 30;
3925 
3926 	/*
3927 	 * We got @count in @nsec, with a target of sample_freq HZ
3928 	 * the target period becomes:
3929 	 *
3930 	 *             @count * 10^9
3931 	 * period = -------------------
3932 	 *          @nsec * sample_freq
3933 	 *
3934 	 */
3935 
3936 	/*
3937 	 * Reduce accuracy by one bit such that @a and @b converge
3938 	 * to a similar magnitude.
3939 	 */
3940 #define REDUCE_FLS(a, b)		\
3941 do {					\
3942 	if (a##_fls > b##_fls) {	\
3943 		a >>= 1;		\
3944 		a##_fls--;		\
3945 	} else {			\
3946 		b >>= 1;		\
3947 		b##_fls--;		\
3948 	}				\
3949 } while (0)
3950 
3951 	/*
3952 	 * Reduce accuracy until either term fits in a u64, then proceed with
3953 	 * the other, so that finally we can do a u64/u64 division.
3954 	 */
3955 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3956 		REDUCE_FLS(nsec, frequency);
3957 		REDUCE_FLS(sec, count);
3958 	}
3959 
3960 	if (count_fls + sec_fls > 64) {
3961 		divisor = nsec * frequency;
3962 
3963 		while (count_fls + sec_fls > 64) {
3964 			REDUCE_FLS(count, sec);
3965 			divisor >>= 1;
3966 		}
3967 
3968 		dividend = count * sec;
3969 	} else {
3970 		dividend = count * sec;
3971 
3972 		while (nsec_fls + frequency_fls > 64) {
3973 			REDUCE_FLS(nsec, frequency);
3974 			dividend >>= 1;
3975 		}
3976 
3977 		divisor = nsec * frequency;
3978 	}
3979 
3980 	if (!divisor)
3981 		return dividend;
3982 
3983 	return div64_u64(dividend, divisor);
3984 }
3985 
3986 static DEFINE_PER_CPU(int, perf_throttled_count);
3987 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3988 
3989 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3990 {
3991 	struct hw_perf_event *hwc = &event->hw;
3992 	s64 period, sample_period;
3993 	s64 delta;
3994 
3995 	period = perf_calculate_period(event, nsec, count);
3996 
3997 	delta = (s64)(period - hwc->sample_period);
3998 	delta = (delta + 7) / 8; /* low pass filter */
3999 
4000 	sample_period = hwc->sample_period + delta;
4001 
4002 	if (!sample_period)
4003 		sample_period = 1;
4004 
4005 	hwc->sample_period = sample_period;
4006 
4007 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4008 		if (disable)
4009 			event->pmu->stop(event, PERF_EF_UPDATE);
4010 
4011 		local64_set(&hwc->period_left, 0);
4012 
4013 		if (disable)
4014 			event->pmu->start(event, PERF_EF_RELOAD);
4015 	}
4016 }
4017 
4018 /*
4019  * combine freq adjustment with unthrottling to avoid two passes over the
4020  * events. At the same time, make sure, having freq events does not change
4021  * the rate of unthrottling as that would introduce bias.
4022  */
4023 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4024 					   int needs_unthr)
4025 {
4026 	struct perf_event *event;
4027 	struct hw_perf_event *hwc;
4028 	u64 now, period = TICK_NSEC;
4029 	s64 delta;
4030 
4031 	/*
4032 	 * only need to iterate over all events iff:
4033 	 * - context have events in frequency mode (needs freq adjust)
4034 	 * - there are events to unthrottle on this cpu
4035 	 */
4036 	if (!(ctx->nr_freq || needs_unthr))
4037 		return;
4038 
4039 	raw_spin_lock(&ctx->lock);
4040 	perf_pmu_disable(ctx->pmu);
4041 
4042 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4043 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4044 			continue;
4045 
4046 		if (!event_filter_match(event))
4047 			continue;
4048 
4049 		perf_pmu_disable(event->pmu);
4050 
4051 		hwc = &event->hw;
4052 
4053 		if (hwc->interrupts == MAX_INTERRUPTS) {
4054 			hwc->interrupts = 0;
4055 			perf_log_throttle(event, 1);
4056 			event->pmu->start(event, 0);
4057 		}
4058 
4059 		if (!event->attr.freq || !event->attr.sample_freq)
4060 			goto next;
4061 
4062 		/*
4063 		 * stop the event and update event->count
4064 		 */
4065 		event->pmu->stop(event, PERF_EF_UPDATE);
4066 
4067 		now = local64_read(&event->count);
4068 		delta = now - hwc->freq_count_stamp;
4069 		hwc->freq_count_stamp = now;
4070 
4071 		/*
4072 		 * restart the event
4073 		 * reload only if value has changed
4074 		 * we have stopped the event so tell that
4075 		 * to perf_adjust_period() to avoid stopping it
4076 		 * twice.
4077 		 */
4078 		if (delta > 0)
4079 			perf_adjust_period(event, period, delta, false);
4080 
4081 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4082 	next:
4083 		perf_pmu_enable(event->pmu);
4084 	}
4085 
4086 	perf_pmu_enable(ctx->pmu);
4087 	raw_spin_unlock(&ctx->lock);
4088 }
4089 
4090 /*
4091  * Move @event to the tail of the @ctx's elegible events.
4092  */
4093 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4094 {
4095 	/*
4096 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4097 	 * disabled by the inheritance code.
4098 	 */
4099 	if (ctx->rotate_disable)
4100 		return;
4101 
4102 	perf_event_groups_delete(&ctx->flexible_groups, event);
4103 	perf_event_groups_insert(&ctx->flexible_groups, event);
4104 }
4105 
4106 /* pick an event from the flexible_groups to rotate */
4107 static inline struct perf_event *
4108 ctx_event_to_rotate(struct perf_event_context *ctx)
4109 {
4110 	struct perf_event *event;
4111 
4112 	/* pick the first active flexible event */
4113 	event = list_first_entry_or_null(&ctx->flexible_active,
4114 					 struct perf_event, active_list);
4115 
4116 	/* if no active flexible event, pick the first event */
4117 	if (!event) {
4118 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4119 				      typeof(*event), group_node);
4120 	}
4121 
4122 	/*
4123 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4124 	 * finds there are unschedulable events, it will set it again.
4125 	 */
4126 	ctx->rotate_necessary = 0;
4127 
4128 	return event;
4129 }
4130 
4131 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4132 {
4133 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4134 	struct perf_event_context *task_ctx = NULL;
4135 	int cpu_rotate, task_rotate;
4136 
4137 	/*
4138 	 * Since we run this from IRQ context, nobody can install new
4139 	 * events, thus the event count values are stable.
4140 	 */
4141 
4142 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4143 	task_ctx = cpuctx->task_ctx;
4144 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4145 
4146 	if (!(cpu_rotate || task_rotate))
4147 		return false;
4148 
4149 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4150 	perf_pmu_disable(cpuctx->ctx.pmu);
4151 
4152 	if (task_rotate)
4153 		task_event = ctx_event_to_rotate(task_ctx);
4154 	if (cpu_rotate)
4155 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4156 
4157 	/*
4158 	 * As per the order given at ctx_resched() first 'pop' task flexible
4159 	 * and then, if needed CPU flexible.
4160 	 */
4161 	if (task_event || (task_ctx && cpu_event))
4162 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4163 	if (cpu_event)
4164 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4165 
4166 	if (task_event)
4167 		rotate_ctx(task_ctx, task_event);
4168 	if (cpu_event)
4169 		rotate_ctx(&cpuctx->ctx, cpu_event);
4170 
4171 	perf_event_sched_in(cpuctx, task_ctx, current);
4172 
4173 	perf_pmu_enable(cpuctx->ctx.pmu);
4174 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4175 
4176 	return true;
4177 }
4178 
4179 void perf_event_task_tick(void)
4180 {
4181 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4182 	struct perf_event_context *ctx, *tmp;
4183 	int throttled;
4184 
4185 	lockdep_assert_irqs_disabled();
4186 
4187 	__this_cpu_inc(perf_throttled_seq);
4188 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4189 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4190 
4191 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4192 		perf_adjust_freq_unthr_context(ctx, throttled);
4193 }
4194 
4195 static int event_enable_on_exec(struct perf_event *event,
4196 				struct perf_event_context *ctx)
4197 {
4198 	if (!event->attr.enable_on_exec)
4199 		return 0;
4200 
4201 	event->attr.enable_on_exec = 0;
4202 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4203 		return 0;
4204 
4205 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4206 
4207 	return 1;
4208 }
4209 
4210 /*
4211  * Enable all of a task's events that have been marked enable-on-exec.
4212  * This expects task == current.
4213  */
4214 static void perf_event_enable_on_exec(int ctxn)
4215 {
4216 	struct perf_event_context *ctx, *clone_ctx = NULL;
4217 	enum event_type_t event_type = 0;
4218 	struct perf_cpu_context *cpuctx;
4219 	struct perf_event *event;
4220 	unsigned long flags;
4221 	int enabled = 0;
4222 
4223 	local_irq_save(flags);
4224 	ctx = current->perf_event_ctxp[ctxn];
4225 	if (!ctx || !ctx->nr_events)
4226 		goto out;
4227 
4228 	cpuctx = __get_cpu_context(ctx);
4229 	perf_ctx_lock(cpuctx, ctx);
4230 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4231 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4232 		enabled |= event_enable_on_exec(event, ctx);
4233 		event_type |= get_event_type(event);
4234 	}
4235 
4236 	/*
4237 	 * Unclone and reschedule this context if we enabled any event.
4238 	 */
4239 	if (enabled) {
4240 		clone_ctx = unclone_ctx(ctx);
4241 		ctx_resched(cpuctx, ctx, event_type);
4242 	} else {
4243 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4244 	}
4245 	perf_ctx_unlock(cpuctx, ctx);
4246 
4247 out:
4248 	local_irq_restore(flags);
4249 
4250 	if (clone_ctx)
4251 		put_ctx(clone_ctx);
4252 }
4253 
4254 static void perf_remove_from_owner(struct perf_event *event);
4255 static void perf_event_exit_event(struct perf_event *event,
4256 				  struct perf_event_context *ctx);
4257 
4258 /*
4259  * Removes all events from the current task that have been marked
4260  * remove-on-exec, and feeds their values back to parent events.
4261  */
4262 static void perf_event_remove_on_exec(int ctxn)
4263 {
4264 	struct perf_event_context *ctx, *clone_ctx = NULL;
4265 	struct perf_event *event, *next;
4266 	LIST_HEAD(free_list);
4267 	unsigned long flags;
4268 	bool modified = false;
4269 
4270 	ctx = perf_pin_task_context(current, ctxn);
4271 	if (!ctx)
4272 		return;
4273 
4274 	mutex_lock(&ctx->mutex);
4275 
4276 	if (WARN_ON_ONCE(ctx->task != current))
4277 		goto unlock;
4278 
4279 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4280 		if (!event->attr.remove_on_exec)
4281 			continue;
4282 
4283 		if (!is_kernel_event(event))
4284 			perf_remove_from_owner(event);
4285 
4286 		modified = true;
4287 
4288 		perf_event_exit_event(event, ctx);
4289 	}
4290 
4291 	raw_spin_lock_irqsave(&ctx->lock, flags);
4292 	if (modified)
4293 		clone_ctx = unclone_ctx(ctx);
4294 	--ctx->pin_count;
4295 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4296 
4297 unlock:
4298 	mutex_unlock(&ctx->mutex);
4299 
4300 	put_ctx(ctx);
4301 	if (clone_ctx)
4302 		put_ctx(clone_ctx);
4303 }
4304 
4305 struct perf_read_data {
4306 	struct perf_event *event;
4307 	bool group;
4308 	int ret;
4309 };
4310 
4311 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4312 {
4313 	u16 local_pkg, event_pkg;
4314 
4315 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4316 		int local_cpu = smp_processor_id();
4317 
4318 		event_pkg = topology_physical_package_id(event_cpu);
4319 		local_pkg = topology_physical_package_id(local_cpu);
4320 
4321 		if (event_pkg == local_pkg)
4322 			return local_cpu;
4323 	}
4324 
4325 	return event_cpu;
4326 }
4327 
4328 /*
4329  * Cross CPU call to read the hardware event
4330  */
4331 static void __perf_event_read(void *info)
4332 {
4333 	struct perf_read_data *data = info;
4334 	struct perf_event *sub, *event = data->event;
4335 	struct perf_event_context *ctx = event->ctx;
4336 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4337 	struct pmu *pmu = event->pmu;
4338 
4339 	/*
4340 	 * If this is a task context, we need to check whether it is
4341 	 * the current task context of this cpu.  If not it has been
4342 	 * scheduled out before the smp call arrived.  In that case
4343 	 * event->count would have been updated to a recent sample
4344 	 * when the event was scheduled out.
4345 	 */
4346 	if (ctx->task && cpuctx->task_ctx != ctx)
4347 		return;
4348 
4349 	raw_spin_lock(&ctx->lock);
4350 	if (ctx->is_active & EVENT_TIME) {
4351 		update_context_time(ctx);
4352 		update_cgrp_time_from_event(event);
4353 	}
4354 
4355 	perf_event_update_time(event);
4356 	if (data->group)
4357 		perf_event_update_sibling_time(event);
4358 
4359 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4360 		goto unlock;
4361 
4362 	if (!data->group) {
4363 		pmu->read(event);
4364 		data->ret = 0;
4365 		goto unlock;
4366 	}
4367 
4368 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4369 
4370 	pmu->read(event);
4371 
4372 	for_each_sibling_event(sub, event) {
4373 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4374 			/*
4375 			 * Use sibling's PMU rather than @event's since
4376 			 * sibling could be on different (eg: software) PMU.
4377 			 */
4378 			sub->pmu->read(sub);
4379 		}
4380 	}
4381 
4382 	data->ret = pmu->commit_txn(pmu);
4383 
4384 unlock:
4385 	raw_spin_unlock(&ctx->lock);
4386 }
4387 
4388 static inline u64 perf_event_count(struct perf_event *event)
4389 {
4390 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4391 }
4392 
4393 /*
4394  * NMI-safe method to read a local event, that is an event that
4395  * is:
4396  *   - either for the current task, or for this CPU
4397  *   - does not have inherit set, for inherited task events
4398  *     will not be local and we cannot read them atomically
4399  *   - must not have a pmu::count method
4400  */
4401 int perf_event_read_local(struct perf_event *event, u64 *value,
4402 			  u64 *enabled, u64 *running)
4403 {
4404 	unsigned long flags;
4405 	int ret = 0;
4406 
4407 	/*
4408 	 * Disabling interrupts avoids all counter scheduling (context
4409 	 * switches, timer based rotation and IPIs).
4410 	 */
4411 	local_irq_save(flags);
4412 
4413 	/*
4414 	 * It must not be an event with inherit set, we cannot read
4415 	 * all child counters from atomic context.
4416 	 */
4417 	if (event->attr.inherit) {
4418 		ret = -EOPNOTSUPP;
4419 		goto out;
4420 	}
4421 
4422 	/* If this is a per-task event, it must be for current */
4423 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4424 	    event->hw.target != current) {
4425 		ret = -EINVAL;
4426 		goto out;
4427 	}
4428 
4429 	/* If this is a per-CPU event, it must be for this CPU */
4430 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4431 	    event->cpu != smp_processor_id()) {
4432 		ret = -EINVAL;
4433 		goto out;
4434 	}
4435 
4436 	/* If this is a pinned event it must be running on this CPU */
4437 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4438 		ret = -EBUSY;
4439 		goto out;
4440 	}
4441 
4442 	/*
4443 	 * If the event is currently on this CPU, its either a per-task event,
4444 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4445 	 * oncpu == -1).
4446 	 */
4447 	if (event->oncpu == smp_processor_id())
4448 		event->pmu->read(event);
4449 
4450 	*value = local64_read(&event->count);
4451 	if (enabled || running) {
4452 		u64 now = event->shadow_ctx_time + perf_clock();
4453 		u64 __enabled, __running;
4454 
4455 		__perf_update_times(event, now, &__enabled, &__running);
4456 		if (enabled)
4457 			*enabled = __enabled;
4458 		if (running)
4459 			*running = __running;
4460 	}
4461 out:
4462 	local_irq_restore(flags);
4463 
4464 	return ret;
4465 }
4466 
4467 static int perf_event_read(struct perf_event *event, bool group)
4468 {
4469 	enum perf_event_state state = READ_ONCE(event->state);
4470 	int event_cpu, ret = 0;
4471 
4472 	/*
4473 	 * If event is enabled and currently active on a CPU, update the
4474 	 * value in the event structure:
4475 	 */
4476 again:
4477 	if (state == PERF_EVENT_STATE_ACTIVE) {
4478 		struct perf_read_data data;
4479 
4480 		/*
4481 		 * Orders the ->state and ->oncpu loads such that if we see
4482 		 * ACTIVE we must also see the right ->oncpu.
4483 		 *
4484 		 * Matches the smp_wmb() from event_sched_in().
4485 		 */
4486 		smp_rmb();
4487 
4488 		event_cpu = READ_ONCE(event->oncpu);
4489 		if ((unsigned)event_cpu >= nr_cpu_ids)
4490 			return 0;
4491 
4492 		data = (struct perf_read_data){
4493 			.event = event,
4494 			.group = group,
4495 			.ret = 0,
4496 		};
4497 
4498 		preempt_disable();
4499 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4500 
4501 		/*
4502 		 * Purposely ignore the smp_call_function_single() return
4503 		 * value.
4504 		 *
4505 		 * If event_cpu isn't a valid CPU it means the event got
4506 		 * scheduled out and that will have updated the event count.
4507 		 *
4508 		 * Therefore, either way, we'll have an up-to-date event count
4509 		 * after this.
4510 		 */
4511 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4512 		preempt_enable();
4513 		ret = data.ret;
4514 
4515 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4516 		struct perf_event_context *ctx = event->ctx;
4517 		unsigned long flags;
4518 
4519 		raw_spin_lock_irqsave(&ctx->lock, flags);
4520 		state = event->state;
4521 		if (state != PERF_EVENT_STATE_INACTIVE) {
4522 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4523 			goto again;
4524 		}
4525 
4526 		/*
4527 		 * May read while context is not active (e.g., thread is
4528 		 * blocked), in that case we cannot update context time
4529 		 */
4530 		if (ctx->is_active & EVENT_TIME) {
4531 			update_context_time(ctx);
4532 			update_cgrp_time_from_event(event);
4533 		}
4534 
4535 		perf_event_update_time(event);
4536 		if (group)
4537 			perf_event_update_sibling_time(event);
4538 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4539 	}
4540 
4541 	return ret;
4542 }
4543 
4544 /*
4545  * Initialize the perf_event context in a task_struct:
4546  */
4547 static void __perf_event_init_context(struct perf_event_context *ctx)
4548 {
4549 	raw_spin_lock_init(&ctx->lock);
4550 	mutex_init(&ctx->mutex);
4551 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4552 	perf_event_groups_init(&ctx->pinned_groups);
4553 	perf_event_groups_init(&ctx->flexible_groups);
4554 	INIT_LIST_HEAD(&ctx->event_list);
4555 	INIT_LIST_HEAD(&ctx->pinned_active);
4556 	INIT_LIST_HEAD(&ctx->flexible_active);
4557 	refcount_set(&ctx->refcount, 1);
4558 }
4559 
4560 static struct perf_event_context *
4561 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4562 {
4563 	struct perf_event_context *ctx;
4564 
4565 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4566 	if (!ctx)
4567 		return NULL;
4568 
4569 	__perf_event_init_context(ctx);
4570 	if (task)
4571 		ctx->task = get_task_struct(task);
4572 	ctx->pmu = pmu;
4573 
4574 	return ctx;
4575 }
4576 
4577 static struct task_struct *
4578 find_lively_task_by_vpid(pid_t vpid)
4579 {
4580 	struct task_struct *task;
4581 
4582 	rcu_read_lock();
4583 	if (!vpid)
4584 		task = current;
4585 	else
4586 		task = find_task_by_vpid(vpid);
4587 	if (task)
4588 		get_task_struct(task);
4589 	rcu_read_unlock();
4590 
4591 	if (!task)
4592 		return ERR_PTR(-ESRCH);
4593 
4594 	return task;
4595 }
4596 
4597 /*
4598  * Returns a matching context with refcount and pincount.
4599  */
4600 static struct perf_event_context *
4601 find_get_context(struct pmu *pmu, struct task_struct *task,
4602 		struct perf_event *event)
4603 {
4604 	struct perf_event_context *ctx, *clone_ctx = NULL;
4605 	struct perf_cpu_context *cpuctx;
4606 	void *task_ctx_data = NULL;
4607 	unsigned long flags;
4608 	int ctxn, err;
4609 	int cpu = event->cpu;
4610 
4611 	if (!task) {
4612 		/* Must be root to operate on a CPU event: */
4613 		err = perf_allow_cpu(&event->attr);
4614 		if (err)
4615 			return ERR_PTR(err);
4616 
4617 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4618 		ctx = &cpuctx->ctx;
4619 		get_ctx(ctx);
4620 		raw_spin_lock_irqsave(&ctx->lock, flags);
4621 		++ctx->pin_count;
4622 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4623 
4624 		return ctx;
4625 	}
4626 
4627 	err = -EINVAL;
4628 	ctxn = pmu->task_ctx_nr;
4629 	if (ctxn < 0)
4630 		goto errout;
4631 
4632 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4633 		task_ctx_data = alloc_task_ctx_data(pmu);
4634 		if (!task_ctx_data) {
4635 			err = -ENOMEM;
4636 			goto errout;
4637 		}
4638 	}
4639 
4640 retry:
4641 	ctx = perf_lock_task_context(task, ctxn, &flags);
4642 	if (ctx) {
4643 		clone_ctx = unclone_ctx(ctx);
4644 		++ctx->pin_count;
4645 
4646 		if (task_ctx_data && !ctx->task_ctx_data) {
4647 			ctx->task_ctx_data = task_ctx_data;
4648 			task_ctx_data = NULL;
4649 		}
4650 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4651 
4652 		if (clone_ctx)
4653 			put_ctx(clone_ctx);
4654 	} else {
4655 		ctx = alloc_perf_context(pmu, task);
4656 		err = -ENOMEM;
4657 		if (!ctx)
4658 			goto errout;
4659 
4660 		if (task_ctx_data) {
4661 			ctx->task_ctx_data = task_ctx_data;
4662 			task_ctx_data = NULL;
4663 		}
4664 
4665 		err = 0;
4666 		mutex_lock(&task->perf_event_mutex);
4667 		/*
4668 		 * If it has already passed perf_event_exit_task().
4669 		 * we must see PF_EXITING, it takes this mutex too.
4670 		 */
4671 		if (task->flags & PF_EXITING)
4672 			err = -ESRCH;
4673 		else if (task->perf_event_ctxp[ctxn])
4674 			err = -EAGAIN;
4675 		else {
4676 			get_ctx(ctx);
4677 			++ctx->pin_count;
4678 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4679 		}
4680 		mutex_unlock(&task->perf_event_mutex);
4681 
4682 		if (unlikely(err)) {
4683 			put_ctx(ctx);
4684 
4685 			if (err == -EAGAIN)
4686 				goto retry;
4687 			goto errout;
4688 		}
4689 	}
4690 
4691 	free_task_ctx_data(pmu, task_ctx_data);
4692 	return ctx;
4693 
4694 errout:
4695 	free_task_ctx_data(pmu, task_ctx_data);
4696 	return ERR_PTR(err);
4697 }
4698 
4699 static void perf_event_free_filter(struct perf_event *event);
4700 static void perf_event_free_bpf_prog(struct perf_event *event);
4701 
4702 static void free_event_rcu(struct rcu_head *head)
4703 {
4704 	struct perf_event *event;
4705 
4706 	event = container_of(head, struct perf_event, rcu_head);
4707 	if (event->ns)
4708 		put_pid_ns(event->ns);
4709 	perf_event_free_filter(event);
4710 	kmem_cache_free(perf_event_cache, event);
4711 }
4712 
4713 static void ring_buffer_attach(struct perf_event *event,
4714 			       struct perf_buffer *rb);
4715 
4716 static void detach_sb_event(struct perf_event *event)
4717 {
4718 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4719 
4720 	raw_spin_lock(&pel->lock);
4721 	list_del_rcu(&event->sb_list);
4722 	raw_spin_unlock(&pel->lock);
4723 }
4724 
4725 static bool is_sb_event(struct perf_event *event)
4726 {
4727 	struct perf_event_attr *attr = &event->attr;
4728 
4729 	if (event->parent)
4730 		return false;
4731 
4732 	if (event->attach_state & PERF_ATTACH_TASK)
4733 		return false;
4734 
4735 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4736 	    attr->comm || attr->comm_exec ||
4737 	    attr->task || attr->ksymbol ||
4738 	    attr->context_switch || attr->text_poke ||
4739 	    attr->bpf_event)
4740 		return true;
4741 	return false;
4742 }
4743 
4744 static void unaccount_pmu_sb_event(struct perf_event *event)
4745 {
4746 	if (is_sb_event(event))
4747 		detach_sb_event(event);
4748 }
4749 
4750 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4751 {
4752 	if (event->parent)
4753 		return;
4754 
4755 	if (is_cgroup_event(event))
4756 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4757 }
4758 
4759 #ifdef CONFIG_NO_HZ_FULL
4760 static DEFINE_SPINLOCK(nr_freq_lock);
4761 #endif
4762 
4763 static void unaccount_freq_event_nohz(void)
4764 {
4765 #ifdef CONFIG_NO_HZ_FULL
4766 	spin_lock(&nr_freq_lock);
4767 	if (atomic_dec_and_test(&nr_freq_events))
4768 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4769 	spin_unlock(&nr_freq_lock);
4770 #endif
4771 }
4772 
4773 static void unaccount_freq_event(void)
4774 {
4775 	if (tick_nohz_full_enabled())
4776 		unaccount_freq_event_nohz();
4777 	else
4778 		atomic_dec(&nr_freq_events);
4779 }
4780 
4781 static void unaccount_event(struct perf_event *event)
4782 {
4783 	bool dec = false;
4784 
4785 	if (event->parent)
4786 		return;
4787 
4788 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4789 		dec = true;
4790 	if (event->attr.mmap || event->attr.mmap_data)
4791 		atomic_dec(&nr_mmap_events);
4792 	if (event->attr.build_id)
4793 		atomic_dec(&nr_build_id_events);
4794 	if (event->attr.comm)
4795 		atomic_dec(&nr_comm_events);
4796 	if (event->attr.namespaces)
4797 		atomic_dec(&nr_namespaces_events);
4798 	if (event->attr.cgroup)
4799 		atomic_dec(&nr_cgroup_events);
4800 	if (event->attr.task)
4801 		atomic_dec(&nr_task_events);
4802 	if (event->attr.freq)
4803 		unaccount_freq_event();
4804 	if (event->attr.context_switch) {
4805 		dec = true;
4806 		atomic_dec(&nr_switch_events);
4807 	}
4808 	if (is_cgroup_event(event))
4809 		dec = true;
4810 	if (has_branch_stack(event))
4811 		dec = true;
4812 	if (event->attr.ksymbol)
4813 		atomic_dec(&nr_ksymbol_events);
4814 	if (event->attr.bpf_event)
4815 		atomic_dec(&nr_bpf_events);
4816 	if (event->attr.text_poke)
4817 		atomic_dec(&nr_text_poke_events);
4818 
4819 	if (dec) {
4820 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4821 			schedule_delayed_work(&perf_sched_work, HZ);
4822 	}
4823 
4824 	unaccount_event_cpu(event, event->cpu);
4825 
4826 	unaccount_pmu_sb_event(event);
4827 }
4828 
4829 static void perf_sched_delayed(struct work_struct *work)
4830 {
4831 	mutex_lock(&perf_sched_mutex);
4832 	if (atomic_dec_and_test(&perf_sched_count))
4833 		static_branch_disable(&perf_sched_events);
4834 	mutex_unlock(&perf_sched_mutex);
4835 }
4836 
4837 /*
4838  * The following implement mutual exclusion of events on "exclusive" pmus
4839  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4840  * at a time, so we disallow creating events that might conflict, namely:
4841  *
4842  *  1) cpu-wide events in the presence of per-task events,
4843  *  2) per-task events in the presence of cpu-wide events,
4844  *  3) two matching events on the same context.
4845  *
4846  * The former two cases are handled in the allocation path (perf_event_alloc(),
4847  * _free_event()), the latter -- before the first perf_install_in_context().
4848  */
4849 static int exclusive_event_init(struct perf_event *event)
4850 {
4851 	struct pmu *pmu = event->pmu;
4852 
4853 	if (!is_exclusive_pmu(pmu))
4854 		return 0;
4855 
4856 	/*
4857 	 * Prevent co-existence of per-task and cpu-wide events on the
4858 	 * same exclusive pmu.
4859 	 *
4860 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4861 	 * events on this "exclusive" pmu, positive means there are
4862 	 * per-task events.
4863 	 *
4864 	 * Since this is called in perf_event_alloc() path, event::ctx
4865 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4866 	 * to mean "per-task event", because unlike other attach states it
4867 	 * never gets cleared.
4868 	 */
4869 	if (event->attach_state & PERF_ATTACH_TASK) {
4870 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4871 			return -EBUSY;
4872 	} else {
4873 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4874 			return -EBUSY;
4875 	}
4876 
4877 	return 0;
4878 }
4879 
4880 static void exclusive_event_destroy(struct perf_event *event)
4881 {
4882 	struct pmu *pmu = event->pmu;
4883 
4884 	if (!is_exclusive_pmu(pmu))
4885 		return;
4886 
4887 	/* see comment in exclusive_event_init() */
4888 	if (event->attach_state & PERF_ATTACH_TASK)
4889 		atomic_dec(&pmu->exclusive_cnt);
4890 	else
4891 		atomic_inc(&pmu->exclusive_cnt);
4892 }
4893 
4894 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4895 {
4896 	if ((e1->pmu == e2->pmu) &&
4897 	    (e1->cpu == e2->cpu ||
4898 	     e1->cpu == -1 ||
4899 	     e2->cpu == -1))
4900 		return true;
4901 	return false;
4902 }
4903 
4904 static bool exclusive_event_installable(struct perf_event *event,
4905 					struct perf_event_context *ctx)
4906 {
4907 	struct perf_event *iter_event;
4908 	struct pmu *pmu = event->pmu;
4909 
4910 	lockdep_assert_held(&ctx->mutex);
4911 
4912 	if (!is_exclusive_pmu(pmu))
4913 		return true;
4914 
4915 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4916 		if (exclusive_event_match(iter_event, event))
4917 			return false;
4918 	}
4919 
4920 	return true;
4921 }
4922 
4923 static void perf_addr_filters_splice(struct perf_event *event,
4924 				       struct list_head *head);
4925 
4926 static void _free_event(struct perf_event *event)
4927 {
4928 	irq_work_sync(&event->pending);
4929 
4930 	unaccount_event(event);
4931 
4932 	security_perf_event_free(event);
4933 
4934 	if (event->rb) {
4935 		/*
4936 		 * Can happen when we close an event with re-directed output.
4937 		 *
4938 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4939 		 * over us; possibly making our ring_buffer_put() the last.
4940 		 */
4941 		mutex_lock(&event->mmap_mutex);
4942 		ring_buffer_attach(event, NULL);
4943 		mutex_unlock(&event->mmap_mutex);
4944 	}
4945 
4946 	if (is_cgroup_event(event))
4947 		perf_detach_cgroup(event);
4948 
4949 	if (!event->parent) {
4950 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4951 			put_callchain_buffers();
4952 	}
4953 
4954 	perf_event_free_bpf_prog(event);
4955 	perf_addr_filters_splice(event, NULL);
4956 	kfree(event->addr_filter_ranges);
4957 
4958 	if (event->destroy)
4959 		event->destroy(event);
4960 
4961 	/*
4962 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4963 	 * hw.target.
4964 	 */
4965 	if (event->hw.target)
4966 		put_task_struct(event->hw.target);
4967 
4968 	/*
4969 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4970 	 * all task references must be cleaned up.
4971 	 */
4972 	if (event->ctx)
4973 		put_ctx(event->ctx);
4974 
4975 	exclusive_event_destroy(event);
4976 	module_put(event->pmu->module);
4977 
4978 	call_rcu(&event->rcu_head, free_event_rcu);
4979 }
4980 
4981 /*
4982  * Used to free events which have a known refcount of 1, such as in error paths
4983  * where the event isn't exposed yet and inherited events.
4984  */
4985 static void free_event(struct perf_event *event)
4986 {
4987 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4988 				"unexpected event refcount: %ld; ptr=%p\n",
4989 				atomic_long_read(&event->refcount), event)) {
4990 		/* leak to avoid use-after-free */
4991 		return;
4992 	}
4993 
4994 	_free_event(event);
4995 }
4996 
4997 /*
4998  * Remove user event from the owner task.
4999  */
5000 static void perf_remove_from_owner(struct perf_event *event)
5001 {
5002 	struct task_struct *owner;
5003 
5004 	rcu_read_lock();
5005 	/*
5006 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5007 	 * observe !owner it means the list deletion is complete and we can
5008 	 * indeed free this event, otherwise we need to serialize on
5009 	 * owner->perf_event_mutex.
5010 	 */
5011 	owner = READ_ONCE(event->owner);
5012 	if (owner) {
5013 		/*
5014 		 * Since delayed_put_task_struct() also drops the last
5015 		 * task reference we can safely take a new reference
5016 		 * while holding the rcu_read_lock().
5017 		 */
5018 		get_task_struct(owner);
5019 	}
5020 	rcu_read_unlock();
5021 
5022 	if (owner) {
5023 		/*
5024 		 * If we're here through perf_event_exit_task() we're already
5025 		 * holding ctx->mutex which would be an inversion wrt. the
5026 		 * normal lock order.
5027 		 *
5028 		 * However we can safely take this lock because its the child
5029 		 * ctx->mutex.
5030 		 */
5031 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5032 
5033 		/*
5034 		 * We have to re-check the event->owner field, if it is cleared
5035 		 * we raced with perf_event_exit_task(), acquiring the mutex
5036 		 * ensured they're done, and we can proceed with freeing the
5037 		 * event.
5038 		 */
5039 		if (event->owner) {
5040 			list_del_init(&event->owner_entry);
5041 			smp_store_release(&event->owner, NULL);
5042 		}
5043 		mutex_unlock(&owner->perf_event_mutex);
5044 		put_task_struct(owner);
5045 	}
5046 }
5047 
5048 static void put_event(struct perf_event *event)
5049 {
5050 	if (!atomic_long_dec_and_test(&event->refcount))
5051 		return;
5052 
5053 	_free_event(event);
5054 }
5055 
5056 /*
5057  * Kill an event dead; while event:refcount will preserve the event
5058  * object, it will not preserve its functionality. Once the last 'user'
5059  * gives up the object, we'll destroy the thing.
5060  */
5061 int perf_event_release_kernel(struct perf_event *event)
5062 {
5063 	struct perf_event_context *ctx = event->ctx;
5064 	struct perf_event *child, *tmp;
5065 	LIST_HEAD(free_list);
5066 
5067 	/*
5068 	 * If we got here through err_file: fput(event_file); we will not have
5069 	 * attached to a context yet.
5070 	 */
5071 	if (!ctx) {
5072 		WARN_ON_ONCE(event->attach_state &
5073 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5074 		goto no_ctx;
5075 	}
5076 
5077 	if (!is_kernel_event(event))
5078 		perf_remove_from_owner(event);
5079 
5080 	ctx = perf_event_ctx_lock(event);
5081 	WARN_ON_ONCE(ctx->parent_ctx);
5082 	perf_remove_from_context(event, DETACH_GROUP);
5083 
5084 	raw_spin_lock_irq(&ctx->lock);
5085 	/*
5086 	 * Mark this event as STATE_DEAD, there is no external reference to it
5087 	 * anymore.
5088 	 *
5089 	 * Anybody acquiring event->child_mutex after the below loop _must_
5090 	 * also see this, most importantly inherit_event() which will avoid
5091 	 * placing more children on the list.
5092 	 *
5093 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5094 	 * child events.
5095 	 */
5096 	event->state = PERF_EVENT_STATE_DEAD;
5097 	raw_spin_unlock_irq(&ctx->lock);
5098 
5099 	perf_event_ctx_unlock(event, ctx);
5100 
5101 again:
5102 	mutex_lock(&event->child_mutex);
5103 	list_for_each_entry(child, &event->child_list, child_list) {
5104 
5105 		/*
5106 		 * Cannot change, child events are not migrated, see the
5107 		 * comment with perf_event_ctx_lock_nested().
5108 		 */
5109 		ctx = READ_ONCE(child->ctx);
5110 		/*
5111 		 * Since child_mutex nests inside ctx::mutex, we must jump
5112 		 * through hoops. We start by grabbing a reference on the ctx.
5113 		 *
5114 		 * Since the event cannot get freed while we hold the
5115 		 * child_mutex, the context must also exist and have a !0
5116 		 * reference count.
5117 		 */
5118 		get_ctx(ctx);
5119 
5120 		/*
5121 		 * Now that we have a ctx ref, we can drop child_mutex, and
5122 		 * acquire ctx::mutex without fear of it going away. Then we
5123 		 * can re-acquire child_mutex.
5124 		 */
5125 		mutex_unlock(&event->child_mutex);
5126 		mutex_lock(&ctx->mutex);
5127 		mutex_lock(&event->child_mutex);
5128 
5129 		/*
5130 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5131 		 * state, if child is still the first entry, it didn't get freed
5132 		 * and we can continue doing so.
5133 		 */
5134 		tmp = list_first_entry_or_null(&event->child_list,
5135 					       struct perf_event, child_list);
5136 		if (tmp == child) {
5137 			perf_remove_from_context(child, DETACH_GROUP);
5138 			list_move(&child->child_list, &free_list);
5139 			/*
5140 			 * This matches the refcount bump in inherit_event();
5141 			 * this can't be the last reference.
5142 			 */
5143 			put_event(event);
5144 		}
5145 
5146 		mutex_unlock(&event->child_mutex);
5147 		mutex_unlock(&ctx->mutex);
5148 		put_ctx(ctx);
5149 		goto again;
5150 	}
5151 	mutex_unlock(&event->child_mutex);
5152 
5153 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5154 		void *var = &child->ctx->refcount;
5155 
5156 		list_del(&child->child_list);
5157 		free_event(child);
5158 
5159 		/*
5160 		 * Wake any perf_event_free_task() waiting for this event to be
5161 		 * freed.
5162 		 */
5163 		smp_mb(); /* pairs with wait_var_event() */
5164 		wake_up_var(var);
5165 	}
5166 
5167 no_ctx:
5168 	put_event(event); /* Must be the 'last' reference */
5169 	return 0;
5170 }
5171 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5172 
5173 /*
5174  * Called when the last reference to the file is gone.
5175  */
5176 static int perf_release(struct inode *inode, struct file *file)
5177 {
5178 	perf_event_release_kernel(file->private_data);
5179 	return 0;
5180 }
5181 
5182 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5183 {
5184 	struct perf_event *child;
5185 	u64 total = 0;
5186 
5187 	*enabled = 0;
5188 	*running = 0;
5189 
5190 	mutex_lock(&event->child_mutex);
5191 
5192 	(void)perf_event_read(event, false);
5193 	total += perf_event_count(event);
5194 
5195 	*enabled += event->total_time_enabled +
5196 			atomic64_read(&event->child_total_time_enabled);
5197 	*running += event->total_time_running +
5198 			atomic64_read(&event->child_total_time_running);
5199 
5200 	list_for_each_entry(child, &event->child_list, child_list) {
5201 		(void)perf_event_read(child, false);
5202 		total += perf_event_count(child);
5203 		*enabled += child->total_time_enabled;
5204 		*running += child->total_time_running;
5205 	}
5206 	mutex_unlock(&event->child_mutex);
5207 
5208 	return total;
5209 }
5210 
5211 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5212 {
5213 	struct perf_event_context *ctx;
5214 	u64 count;
5215 
5216 	ctx = perf_event_ctx_lock(event);
5217 	count = __perf_event_read_value(event, enabled, running);
5218 	perf_event_ctx_unlock(event, ctx);
5219 
5220 	return count;
5221 }
5222 EXPORT_SYMBOL_GPL(perf_event_read_value);
5223 
5224 static int __perf_read_group_add(struct perf_event *leader,
5225 					u64 read_format, u64 *values)
5226 {
5227 	struct perf_event_context *ctx = leader->ctx;
5228 	struct perf_event *sub;
5229 	unsigned long flags;
5230 	int n = 1; /* skip @nr */
5231 	int ret;
5232 
5233 	ret = perf_event_read(leader, true);
5234 	if (ret)
5235 		return ret;
5236 
5237 	raw_spin_lock_irqsave(&ctx->lock, flags);
5238 
5239 	/*
5240 	 * Since we co-schedule groups, {enabled,running} times of siblings
5241 	 * will be identical to those of the leader, so we only publish one
5242 	 * set.
5243 	 */
5244 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5245 		values[n++] += leader->total_time_enabled +
5246 			atomic64_read(&leader->child_total_time_enabled);
5247 	}
5248 
5249 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5250 		values[n++] += leader->total_time_running +
5251 			atomic64_read(&leader->child_total_time_running);
5252 	}
5253 
5254 	/*
5255 	 * Write {count,id} tuples for every sibling.
5256 	 */
5257 	values[n++] += perf_event_count(leader);
5258 	if (read_format & PERF_FORMAT_ID)
5259 		values[n++] = primary_event_id(leader);
5260 
5261 	for_each_sibling_event(sub, leader) {
5262 		values[n++] += perf_event_count(sub);
5263 		if (read_format & PERF_FORMAT_ID)
5264 			values[n++] = primary_event_id(sub);
5265 	}
5266 
5267 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5268 	return 0;
5269 }
5270 
5271 static int perf_read_group(struct perf_event *event,
5272 				   u64 read_format, char __user *buf)
5273 {
5274 	struct perf_event *leader = event->group_leader, *child;
5275 	struct perf_event_context *ctx = leader->ctx;
5276 	int ret;
5277 	u64 *values;
5278 
5279 	lockdep_assert_held(&ctx->mutex);
5280 
5281 	values = kzalloc(event->read_size, GFP_KERNEL);
5282 	if (!values)
5283 		return -ENOMEM;
5284 
5285 	values[0] = 1 + leader->nr_siblings;
5286 
5287 	/*
5288 	 * By locking the child_mutex of the leader we effectively
5289 	 * lock the child list of all siblings.. XXX explain how.
5290 	 */
5291 	mutex_lock(&leader->child_mutex);
5292 
5293 	ret = __perf_read_group_add(leader, read_format, values);
5294 	if (ret)
5295 		goto unlock;
5296 
5297 	list_for_each_entry(child, &leader->child_list, child_list) {
5298 		ret = __perf_read_group_add(child, read_format, values);
5299 		if (ret)
5300 			goto unlock;
5301 	}
5302 
5303 	mutex_unlock(&leader->child_mutex);
5304 
5305 	ret = event->read_size;
5306 	if (copy_to_user(buf, values, event->read_size))
5307 		ret = -EFAULT;
5308 	goto out;
5309 
5310 unlock:
5311 	mutex_unlock(&leader->child_mutex);
5312 out:
5313 	kfree(values);
5314 	return ret;
5315 }
5316 
5317 static int perf_read_one(struct perf_event *event,
5318 				 u64 read_format, char __user *buf)
5319 {
5320 	u64 enabled, running;
5321 	u64 values[4];
5322 	int n = 0;
5323 
5324 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5325 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5326 		values[n++] = enabled;
5327 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5328 		values[n++] = running;
5329 	if (read_format & PERF_FORMAT_ID)
5330 		values[n++] = primary_event_id(event);
5331 
5332 	if (copy_to_user(buf, values, n * sizeof(u64)))
5333 		return -EFAULT;
5334 
5335 	return n * sizeof(u64);
5336 }
5337 
5338 static bool is_event_hup(struct perf_event *event)
5339 {
5340 	bool no_children;
5341 
5342 	if (event->state > PERF_EVENT_STATE_EXIT)
5343 		return false;
5344 
5345 	mutex_lock(&event->child_mutex);
5346 	no_children = list_empty(&event->child_list);
5347 	mutex_unlock(&event->child_mutex);
5348 	return no_children;
5349 }
5350 
5351 /*
5352  * Read the performance event - simple non blocking version for now
5353  */
5354 static ssize_t
5355 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5356 {
5357 	u64 read_format = event->attr.read_format;
5358 	int ret;
5359 
5360 	/*
5361 	 * Return end-of-file for a read on an event that is in
5362 	 * error state (i.e. because it was pinned but it couldn't be
5363 	 * scheduled on to the CPU at some point).
5364 	 */
5365 	if (event->state == PERF_EVENT_STATE_ERROR)
5366 		return 0;
5367 
5368 	if (count < event->read_size)
5369 		return -ENOSPC;
5370 
5371 	WARN_ON_ONCE(event->ctx->parent_ctx);
5372 	if (read_format & PERF_FORMAT_GROUP)
5373 		ret = perf_read_group(event, read_format, buf);
5374 	else
5375 		ret = perf_read_one(event, read_format, buf);
5376 
5377 	return ret;
5378 }
5379 
5380 static ssize_t
5381 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5382 {
5383 	struct perf_event *event = file->private_data;
5384 	struct perf_event_context *ctx;
5385 	int ret;
5386 
5387 	ret = security_perf_event_read(event);
5388 	if (ret)
5389 		return ret;
5390 
5391 	ctx = perf_event_ctx_lock(event);
5392 	ret = __perf_read(event, buf, count);
5393 	perf_event_ctx_unlock(event, ctx);
5394 
5395 	return ret;
5396 }
5397 
5398 static __poll_t perf_poll(struct file *file, poll_table *wait)
5399 {
5400 	struct perf_event *event = file->private_data;
5401 	struct perf_buffer *rb;
5402 	__poll_t events = EPOLLHUP;
5403 
5404 	poll_wait(file, &event->waitq, wait);
5405 
5406 	if (is_event_hup(event))
5407 		return events;
5408 
5409 	/*
5410 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5411 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5412 	 */
5413 	mutex_lock(&event->mmap_mutex);
5414 	rb = event->rb;
5415 	if (rb)
5416 		events = atomic_xchg(&rb->poll, 0);
5417 	mutex_unlock(&event->mmap_mutex);
5418 	return events;
5419 }
5420 
5421 static void _perf_event_reset(struct perf_event *event)
5422 {
5423 	(void)perf_event_read(event, false);
5424 	local64_set(&event->count, 0);
5425 	perf_event_update_userpage(event);
5426 }
5427 
5428 /* Assume it's not an event with inherit set. */
5429 u64 perf_event_pause(struct perf_event *event, bool reset)
5430 {
5431 	struct perf_event_context *ctx;
5432 	u64 count;
5433 
5434 	ctx = perf_event_ctx_lock(event);
5435 	WARN_ON_ONCE(event->attr.inherit);
5436 	_perf_event_disable(event);
5437 	count = local64_read(&event->count);
5438 	if (reset)
5439 		local64_set(&event->count, 0);
5440 	perf_event_ctx_unlock(event, ctx);
5441 
5442 	return count;
5443 }
5444 EXPORT_SYMBOL_GPL(perf_event_pause);
5445 
5446 /*
5447  * Holding the top-level event's child_mutex means that any
5448  * descendant process that has inherited this event will block
5449  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5450  * task existence requirements of perf_event_enable/disable.
5451  */
5452 static void perf_event_for_each_child(struct perf_event *event,
5453 					void (*func)(struct perf_event *))
5454 {
5455 	struct perf_event *child;
5456 
5457 	WARN_ON_ONCE(event->ctx->parent_ctx);
5458 
5459 	mutex_lock(&event->child_mutex);
5460 	func(event);
5461 	list_for_each_entry(child, &event->child_list, child_list)
5462 		func(child);
5463 	mutex_unlock(&event->child_mutex);
5464 }
5465 
5466 static void perf_event_for_each(struct perf_event *event,
5467 				  void (*func)(struct perf_event *))
5468 {
5469 	struct perf_event_context *ctx = event->ctx;
5470 	struct perf_event *sibling;
5471 
5472 	lockdep_assert_held(&ctx->mutex);
5473 
5474 	event = event->group_leader;
5475 
5476 	perf_event_for_each_child(event, func);
5477 	for_each_sibling_event(sibling, event)
5478 		perf_event_for_each_child(sibling, func);
5479 }
5480 
5481 static void __perf_event_period(struct perf_event *event,
5482 				struct perf_cpu_context *cpuctx,
5483 				struct perf_event_context *ctx,
5484 				void *info)
5485 {
5486 	u64 value = *((u64 *)info);
5487 	bool active;
5488 
5489 	if (event->attr.freq) {
5490 		event->attr.sample_freq = value;
5491 	} else {
5492 		event->attr.sample_period = value;
5493 		event->hw.sample_period = value;
5494 	}
5495 
5496 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5497 	if (active) {
5498 		perf_pmu_disable(ctx->pmu);
5499 		/*
5500 		 * We could be throttled; unthrottle now to avoid the tick
5501 		 * trying to unthrottle while we already re-started the event.
5502 		 */
5503 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5504 			event->hw.interrupts = 0;
5505 			perf_log_throttle(event, 1);
5506 		}
5507 		event->pmu->stop(event, PERF_EF_UPDATE);
5508 	}
5509 
5510 	local64_set(&event->hw.period_left, 0);
5511 
5512 	if (active) {
5513 		event->pmu->start(event, PERF_EF_RELOAD);
5514 		perf_pmu_enable(ctx->pmu);
5515 	}
5516 }
5517 
5518 static int perf_event_check_period(struct perf_event *event, u64 value)
5519 {
5520 	return event->pmu->check_period(event, value);
5521 }
5522 
5523 static int _perf_event_period(struct perf_event *event, u64 value)
5524 {
5525 	if (!is_sampling_event(event))
5526 		return -EINVAL;
5527 
5528 	if (!value)
5529 		return -EINVAL;
5530 
5531 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5532 		return -EINVAL;
5533 
5534 	if (perf_event_check_period(event, value))
5535 		return -EINVAL;
5536 
5537 	if (!event->attr.freq && (value & (1ULL << 63)))
5538 		return -EINVAL;
5539 
5540 	event_function_call(event, __perf_event_period, &value);
5541 
5542 	return 0;
5543 }
5544 
5545 int perf_event_period(struct perf_event *event, u64 value)
5546 {
5547 	struct perf_event_context *ctx;
5548 	int ret;
5549 
5550 	ctx = perf_event_ctx_lock(event);
5551 	ret = _perf_event_period(event, value);
5552 	perf_event_ctx_unlock(event, ctx);
5553 
5554 	return ret;
5555 }
5556 EXPORT_SYMBOL_GPL(perf_event_period);
5557 
5558 static const struct file_operations perf_fops;
5559 
5560 static inline int perf_fget_light(int fd, struct fd *p)
5561 {
5562 	struct fd f = fdget(fd);
5563 	if (!f.file)
5564 		return -EBADF;
5565 
5566 	if (f.file->f_op != &perf_fops) {
5567 		fdput(f);
5568 		return -EBADF;
5569 	}
5570 	*p = f;
5571 	return 0;
5572 }
5573 
5574 static int perf_event_set_output(struct perf_event *event,
5575 				 struct perf_event *output_event);
5576 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5577 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5578 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5579 			  struct perf_event_attr *attr);
5580 
5581 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5582 {
5583 	void (*func)(struct perf_event *);
5584 	u32 flags = arg;
5585 
5586 	switch (cmd) {
5587 	case PERF_EVENT_IOC_ENABLE:
5588 		func = _perf_event_enable;
5589 		break;
5590 	case PERF_EVENT_IOC_DISABLE:
5591 		func = _perf_event_disable;
5592 		break;
5593 	case PERF_EVENT_IOC_RESET:
5594 		func = _perf_event_reset;
5595 		break;
5596 
5597 	case PERF_EVENT_IOC_REFRESH:
5598 		return _perf_event_refresh(event, arg);
5599 
5600 	case PERF_EVENT_IOC_PERIOD:
5601 	{
5602 		u64 value;
5603 
5604 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5605 			return -EFAULT;
5606 
5607 		return _perf_event_period(event, value);
5608 	}
5609 	case PERF_EVENT_IOC_ID:
5610 	{
5611 		u64 id = primary_event_id(event);
5612 
5613 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5614 			return -EFAULT;
5615 		return 0;
5616 	}
5617 
5618 	case PERF_EVENT_IOC_SET_OUTPUT:
5619 	{
5620 		int ret;
5621 		if (arg != -1) {
5622 			struct perf_event *output_event;
5623 			struct fd output;
5624 			ret = perf_fget_light(arg, &output);
5625 			if (ret)
5626 				return ret;
5627 			output_event = output.file->private_data;
5628 			ret = perf_event_set_output(event, output_event);
5629 			fdput(output);
5630 		} else {
5631 			ret = perf_event_set_output(event, NULL);
5632 		}
5633 		return ret;
5634 	}
5635 
5636 	case PERF_EVENT_IOC_SET_FILTER:
5637 		return perf_event_set_filter(event, (void __user *)arg);
5638 
5639 	case PERF_EVENT_IOC_SET_BPF:
5640 		return perf_event_set_bpf_prog(event, arg);
5641 
5642 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5643 		struct perf_buffer *rb;
5644 
5645 		rcu_read_lock();
5646 		rb = rcu_dereference(event->rb);
5647 		if (!rb || !rb->nr_pages) {
5648 			rcu_read_unlock();
5649 			return -EINVAL;
5650 		}
5651 		rb_toggle_paused(rb, !!arg);
5652 		rcu_read_unlock();
5653 		return 0;
5654 	}
5655 
5656 	case PERF_EVENT_IOC_QUERY_BPF:
5657 		return perf_event_query_prog_array(event, (void __user *)arg);
5658 
5659 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5660 		struct perf_event_attr new_attr;
5661 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5662 					 &new_attr);
5663 
5664 		if (err)
5665 			return err;
5666 
5667 		return perf_event_modify_attr(event,  &new_attr);
5668 	}
5669 	default:
5670 		return -ENOTTY;
5671 	}
5672 
5673 	if (flags & PERF_IOC_FLAG_GROUP)
5674 		perf_event_for_each(event, func);
5675 	else
5676 		perf_event_for_each_child(event, func);
5677 
5678 	return 0;
5679 }
5680 
5681 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5682 {
5683 	struct perf_event *event = file->private_data;
5684 	struct perf_event_context *ctx;
5685 	long ret;
5686 
5687 	/* Treat ioctl like writes as it is likely a mutating operation. */
5688 	ret = security_perf_event_write(event);
5689 	if (ret)
5690 		return ret;
5691 
5692 	ctx = perf_event_ctx_lock(event);
5693 	ret = _perf_ioctl(event, cmd, arg);
5694 	perf_event_ctx_unlock(event, ctx);
5695 
5696 	return ret;
5697 }
5698 
5699 #ifdef CONFIG_COMPAT
5700 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5701 				unsigned long arg)
5702 {
5703 	switch (_IOC_NR(cmd)) {
5704 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5705 	case _IOC_NR(PERF_EVENT_IOC_ID):
5706 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5707 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5708 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5709 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5710 			cmd &= ~IOCSIZE_MASK;
5711 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5712 		}
5713 		break;
5714 	}
5715 	return perf_ioctl(file, cmd, arg);
5716 }
5717 #else
5718 # define perf_compat_ioctl NULL
5719 #endif
5720 
5721 int perf_event_task_enable(void)
5722 {
5723 	struct perf_event_context *ctx;
5724 	struct perf_event *event;
5725 
5726 	mutex_lock(&current->perf_event_mutex);
5727 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5728 		ctx = perf_event_ctx_lock(event);
5729 		perf_event_for_each_child(event, _perf_event_enable);
5730 		perf_event_ctx_unlock(event, ctx);
5731 	}
5732 	mutex_unlock(&current->perf_event_mutex);
5733 
5734 	return 0;
5735 }
5736 
5737 int perf_event_task_disable(void)
5738 {
5739 	struct perf_event_context *ctx;
5740 	struct perf_event *event;
5741 
5742 	mutex_lock(&current->perf_event_mutex);
5743 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5744 		ctx = perf_event_ctx_lock(event);
5745 		perf_event_for_each_child(event, _perf_event_disable);
5746 		perf_event_ctx_unlock(event, ctx);
5747 	}
5748 	mutex_unlock(&current->perf_event_mutex);
5749 
5750 	return 0;
5751 }
5752 
5753 static int perf_event_index(struct perf_event *event)
5754 {
5755 	if (event->hw.state & PERF_HES_STOPPED)
5756 		return 0;
5757 
5758 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5759 		return 0;
5760 
5761 	return event->pmu->event_idx(event);
5762 }
5763 
5764 static void calc_timer_values(struct perf_event *event,
5765 				u64 *now,
5766 				u64 *enabled,
5767 				u64 *running)
5768 {
5769 	u64 ctx_time;
5770 
5771 	*now = perf_clock();
5772 	ctx_time = event->shadow_ctx_time + *now;
5773 	__perf_update_times(event, ctx_time, enabled, running);
5774 }
5775 
5776 static void perf_event_init_userpage(struct perf_event *event)
5777 {
5778 	struct perf_event_mmap_page *userpg;
5779 	struct perf_buffer *rb;
5780 
5781 	rcu_read_lock();
5782 	rb = rcu_dereference(event->rb);
5783 	if (!rb)
5784 		goto unlock;
5785 
5786 	userpg = rb->user_page;
5787 
5788 	/* Allow new userspace to detect that bit 0 is deprecated */
5789 	userpg->cap_bit0_is_deprecated = 1;
5790 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5791 	userpg->data_offset = PAGE_SIZE;
5792 	userpg->data_size = perf_data_size(rb);
5793 
5794 unlock:
5795 	rcu_read_unlock();
5796 }
5797 
5798 void __weak arch_perf_update_userpage(
5799 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5800 {
5801 }
5802 
5803 /*
5804  * Callers need to ensure there can be no nesting of this function, otherwise
5805  * the seqlock logic goes bad. We can not serialize this because the arch
5806  * code calls this from NMI context.
5807  */
5808 void perf_event_update_userpage(struct perf_event *event)
5809 {
5810 	struct perf_event_mmap_page *userpg;
5811 	struct perf_buffer *rb;
5812 	u64 enabled, running, now;
5813 
5814 	rcu_read_lock();
5815 	rb = rcu_dereference(event->rb);
5816 	if (!rb)
5817 		goto unlock;
5818 
5819 	/*
5820 	 * compute total_time_enabled, total_time_running
5821 	 * based on snapshot values taken when the event
5822 	 * was last scheduled in.
5823 	 *
5824 	 * we cannot simply called update_context_time()
5825 	 * because of locking issue as we can be called in
5826 	 * NMI context
5827 	 */
5828 	calc_timer_values(event, &now, &enabled, &running);
5829 
5830 	userpg = rb->user_page;
5831 	/*
5832 	 * Disable preemption to guarantee consistent time stamps are stored to
5833 	 * the user page.
5834 	 */
5835 	preempt_disable();
5836 	++userpg->lock;
5837 	barrier();
5838 	userpg->index = perf_event_index(event);
5839 	userpg->offset = perf_event_count(event);
5840 	if (userpg->index)
5841 		userpg->offset -= local64_read(&event->hw.prev_count);
5842 
5843 	userpg->time_enabled = enabled +
5844 			atomic64_read(&event->child_total_time_enabled);
5845 
5846 	userpg->time_running = running +
5847 			atomic64_read(&event->child_total_time_running);
5848 
5849 	arch_perf_update_userpage(event, userpg, now);
5850 
5851 	barrier();
5852 	++userpg->lock;
5853 	preempt_enable();
5854 unlock:
5855 	rcu_read_unlock();
5856 }
5857 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5858 
5859 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5860 {
5861 	struct perf_event *event = vmf->vma->vm_file->private_data;
5862 	struct perf_buffer *rb;
5863 	vm_fault_t ret = VM_FAULT_SIGBUS;
5864 
5865 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5866 		if (vmf->pgoff == 0)
5867 			ret = 0;
5868 		return ret;
5869 	}
5870 
5871 	rcu_read_lock();
5872 	rb = rcu_dereference(event->rb);
5873 	if (!rb)
5874 		goto unlock;
5875 
5876 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5877 		goto unlock;
5878 
5879 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5880 	if (!vmf->page)
5881 		goto unlock;
5882 
5883 	get_page(vmf->page);
5884 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5885 	vmf->page->index   = vmf->pgoff;
5886 
5887 	ret = 0;
5888 unlock:
5889 	rcu_read_unlock();
5890 
5891 	return ret;
5892 }
5893 
5894 static void ring_buffer_attach(struct perf_event *event,
5895 			       struct perf_buffer *rb)
5896 {
5897 	struct perf_buffer *old_rb = NULL;
5898 	unsigned long flags;
5899 
5900 	if (event->rb) {
5901 		/*
5902 		 * Should be impossible, we set this when removing
5903 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5904 		 */
5905 		WARN_ON_ONCE(event->rcu_pending);
5906 
5907 		old_rb = event->rb;
5908 		spin_lock_irqsave(&old_rb->event_lock, flags);
5909 		list_del_rcu(&event->rb_entry);
5910 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5911 
5912 		event->rcu_batches = get_state_synchronize_rcu();
5913 		event->rcu_pending = 1;
5914 	}
5915 
5916 	if (rb) {
5917 		if (event->rcu_pending) {
5918 			cond_synchronize_rcu(event->rcu_batches);
5919 			event->rcu_pending = 0;
5920 		}
5921 
5922 		spin_lock_irqsave(&rb->event_lock, flags);
5923 		list_add_rcu(&event->rb_entry, &rb->event_list);
5924 		spin_unlock_irqrestore(&rb->event_lock, flags);
5925 	}
5926 
5927 	/*
5928 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5929 	 * before swizzling the event::rb pointer; if it's getting
5930 	 * unmapped, its aux_mmap_count will be 0 and it won't
5931 	 * restart. See the comment in __perf_pmu_output_stop().
5932 	 *
5933 	 * Data will inevitably be lost when set_output is done in
5934 	 * mid-air, but then again, whoever does it like this is
5935 	 * not in for the data anyway.
5936 	 */
5937 	if (has_aux(event))
5938 		perf_event_stop(event, 0);
5939 
5940 	rcu_assign_pointer(event->rb, rb);
5941 
5942 	if (old_rb) {
5943 		ring_buffer_put(old_rb);
5944 		/*
5945 		 * Since we detached before setting the new rb, so that we
5946 		 * could attach the new rb, we could have missed a wakeup.
5947 		 * Provide it now.
5948 		 */
5949 		wake_up_all(&event->waitq);
5950 	}
5951 }
5952 
5953 static void ring_buffer_wakeup(struct perf_event *event)
5954 {
5955 	struct perf_buffer *rb;
5956 
5957 	rcu_read_lock();
5958 	rb = rcu_dereference(event->rb);
5959 	if (rb) {
5960 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5961 			wake_up_all(&event->waitq);
5962 	}
5963 	rcu_read_unlock();
5964 }
5965 
5966 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5967 {
5968 	struct perf_buffer *rb;
5969 
5970 	rcu_read_lock();
5971 	rb = rcu_dereference(event->rb);
5972 	if (rb) {
5973 		if (!refcount_inc_not_zero(&rb->refcount))
5974 			rb = NULL;
5975 	}
5976 	rcu_read_unlock();
5977 
5978 	return rb;
5979 }
5980 
5981 void ring_buffer_put(struct perf_buffer *rb)
5982 {
5983 	if (!refcount_dec_and_test(&rb->refcount))
5984 		return;
5985 
5986 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5987 
5988 	call_rcu(&rb->rcu_head, rb_free_rcu);
5989 }
5990 
5991 static void perf_mmap_open(struct vm_area_struct *vma)
5992 {
5993 	struct perf_event *event = vma->vm_file->private_data;
5994 
5995 	atomic_inc(&event->mmap_count);
5996 	atomic_inc(&event->rb->mmap_count);
5997 
5998 	if (vma->vm_pgoff)
5999 		atomic_inc(&event->rb->aux_mmap_count);
6000 
6001 	if (event->pmu->event_mapped)
6002 		event->pmu->event_mapped(event, vma->vm_mm);
6003 }
6004 
6005 static void perf_pmu_output_stop(struct perf_event *event);
6006 
6007 /*
6008  * A buffer can be mmap()ed multiple times; either directly through the same
6009  * event, or through other events by use of perf_event_set_output().
6010  *
6011  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6012  * the buffer here, where we still have a VM context. This means we need
6013  * to detach all events redirecting to us.
6014  */
6015 static void perf_mmap_close(struct vm_area_struct *vma)
6016 {
6017 	struct perf_event *event = vma->vm_file->private_data;
6018 	struct perf_buffer *rb = ring_buffer_get(event);
6019 	struct user_struct *mmap_user = rb->mmap_user;
6020 	int mmap_locked = rb->mmap_locked;
6021 	unsigned long size = perf_data_size(rb);
6022 	bool detach_rest = false;
6023 
6024 	if (event->pmu->event_unmapped)
6025 		event->pmu->event_unmapped(event, vma->vm_mm);
6026 
6027 	/*
6028 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6029 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6030 	 * serialize with perf_mmap here.
6031 	 */
6032 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6033 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6034 		/*
6035 		 * Stop all AUX events that are writing to this buffer,
6036 		 * so that we can free its AUX pages and corresponding PMU
6037 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6038 		 * they won't start any more (see perf_aux_output_begin()).
6039 		 */
6040 		perf_pmu_output_stop(event);
6041 
6042 		/* now it's safe to free the pages */
6043 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6044 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6045 
6046 		/* this has to be the last one */
6047 		rb_free_aux(rb);
6048 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6049 
6050 		mutex_unlock(&event->mmap_mutex);
6051 	}
6052 
6053 	if (atomic_dec_and_test(&rb->mmap_count))
6054 		detach_rest = true;
6055 
6056 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6057 		goto out_put;
6058 
6059 	ring_buffer_attach(event, NULL);
6060 	mutex_unlock(&event->mmap_mutex);
6061 
6062 	/* If there's still other mmap()s of this buffer, we're done. */
6063 	if (!detach_rest)
6064 		goto out_put;
6065 
6066 	/*
6067 	 * No other mmap()s, detach from all other events that might redirect
6068 	 * into the now unreachable buffer. Somewhat complicated by the
6069 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6070 	 */
6071 again:
6072 	rcu_read_lock();
6073 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6074 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6075 			/*
6076 			 * This event is en-route to free_event() which will
6077 			 * detach it and remove it from the list.
6078 			 */
6079 			continue;
6080 		}
6081 		rcu_read_unlock();
6082 
6083 		mutex_lock(&event->mmap_mutex);
6084 		/*
6085 		 * Check we didn't race with perf_event_set_output() which can
6086 		 * swizzle the rb from under us while we were waiting to
6087 		 * acquire mmap_mutex.
6088 		 *
6089 		 * If we find a different rb; ignore this event, a next
6090 		 * iteration will no longer find it on the list. We have to
6091 		 * still restart the iteration to make sure we're not now
6092 		 * iterating the wrong list.
6093 		 */
6094 		if (event->rb == rb)
6095 			ring_buffer_attach(event, NULL);
6096 
6097 		mutex_unlock(&event->mmap_mutex);
6098 		put_event(event);
6099 
6100 		/*
6101 		 * Restart the iteration; either we're on the wrong list or
6102 		 * destroyed its integrity by doing a deletion.
6103 		 */
6104 		goto again;
6105 	}
6106 	rcu_read_unlock();
6107 
6108 	/*
6109 	 * It could be there's still a few 0-ref events on the list; they'll
6110 	 * get cleaned up by free_event() -- they'll also still have their
6111 	 * ref on the rb and will free it whenever they are done with it.
6112 	 *
6113 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6114 	 * undo the VM accounting.
6115 	 */
6116 
6117 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6118 			&mmap_user->locked_vm);
6119 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6120 	free_uid(mmap_user);
6121 
6122 out_put:
6123 	ring_buffer_put(rb); /* could be last */
6124 }
6125 
6126 static const struct vm_operations_struct perf_mmap_vmops = {
6127 	.open		= perf_mmap_open,
6128 	.close		= perf_mmap_close, /* non mergeable */
6129 	.fault		= perf_mmap_fault,
6130 	.page_mkwrite	= perf_mmap_fault,
6131 };
6132 
6133 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6134 {
6135 	struct perf_event *event = file->private_data;
6136 	unsigned long user_locked, user_lock_limit;
6137 	struct user_struct *user = current_user();
6138 	struct perf_buffer *rb = NULL;
6139 	unsigned long locked, lock_limit;
6140 	unsigned long vma_size;
6141 	unsigned long nr_pages;
6142 	long user_extra = 0, extra = 0;
6143 	int ret = 0, flags = 0;
6144 
6145 	/*
6146 	 * Don't allow mmap() of inherited per-task counters. This would
6147 	 * create a performance issue due to all children writing to the
6148 	 * same rb.
6149 	 */
6150 	if (event->cpu == -1 && event->attr.inherit)
6151 		return -EINVAL;
6152 
6153 	if (!(vma->vm_flags & VM_SHARED))
6154 		return -EINVAL;
6155 
6156 	ret = security_perf_event_read(event);
6157 	if (ret)
6158 		return ret;
6159 
6160 	vma_size = vma->vm_end - vma->vm_start;
6161 
6162 	if (vma->vm_pgoff == 0) {
6163 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6164 	} else {
6165 		/*
6166 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6167 		 * mapped, all subsequent mappings should have the same size
6168 		 * and offset. Must be above the normal perf buffer.
6169 		 */
6170 		u64 aux_offset, aux_size;
6171 
6172 		if (!event->rb)
6173 			return -EINVAL;
6174 
6175 		nr_pages = vma_size / PAGE_SIZE;
6176 
6177 		mutex_lock(&event->mmap_mutex);
6178 		ret = -EINVAL;
6179 
6180 		rb = event->rb;
6181 		if (!rb)
6182 			goto aux_unlock;
6183 
6184 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6185 		aux_size = READ_ONCE(rb->user_page->aux_size);
6186 
6187 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6188 			goto aux_unlock;
6189 
6190 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6191 			goto aux_unlock;
6192 
6193 		/* already mapped with a different offset */
6194 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6195 			goto aux_unlock;
6196 
6197 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6198 			goto aux_unlock;
6199 
6200 		/* already mapped with a different size */
6201 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6202 			goto aux_unlock;
6203 
6204 		if (!is_power_of_2(nr_pages))
6205 			goto aux_unlock;
6206 
6207 		if (!atomic_inc_not_zero(&rb->mmap_count))
6208 			goto aux_unlock;
6209 
6210 		if (rb_has_aux(rb)) {
6211 			atomic_inc(&rb->aux_mmap_count);
6212 			ret = 0;
6213 			goto unlock;
6214 		}
6215 
6216 		atomic_set(&rb->aux_mmap_count, 1);
6217 		user_extra = nr_pages;
6218 
6219 		goto accounting;
6220 	}
6221 
6222 	/*
6223 	 * If we have rb pages ensure they're a power-of-two number, so we
6224 	 * can do bitmasks instead of modulo.
6225 	 */
6226 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6227 		return -EINVAL;
6228 
6229 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6230 		return -EINVAL;
6231 
6232 	WARN_ON_ONCE(event->ctx->parent_ctx);
6233 again:
6234 	mutex_lock(&event->mmap_mutex);
6235 	if (event->rb) {
6236 		if (event->rb->nr_pages != nr_pages) {
6237 			ret = -EINVAL;
6238 			goto unlock;
6239 		}
6240 
6241 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6242 			/*
6243 			 * Raced against perf_mmap_close() through
6244 			 * perf_event_set_output(). Try again, hope for better
6245 			 * luck.
6246 			 */
6247 			mutex_unlock(&event->mmap_mutex);
6248 			goto again;
6249 		}
6250 
6251 		goto unlock;
6252 	}
6253 
6254 	user_extra = nr_pages + 1;
6255 
6256 accounting:
6257 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6258 
6259 	/*
6260 	 * Increase the limit linearly with more CPUs:
6261 	 */
6262 	user_lock_limit *= num_online_cpus();
6263 
6264 	user_locked = atomic_long_read(&user->locked_vm);
6265 
6266 	/*
6267 	 * sysctl_perf_event_mlock may have changed, so that
6268 	 *     user->locked_vm > user_lock_limit
6269 	 */
6270 	if (user_locked > user_lock_limit)
6271 		user_locked = user_lock_limit;
6272 	user_locked += user_extra;
6273 
6274 	if (user_locked > user_lock_limit) {
6275 		/*
6276 		 * charge locked_vm until it hits user_lock_limit;
6277 		 * charge the rest from pinned_vm
6278 		 */
6279 		extra = user_locked - user_lock_limit;
6280 		user_extra -= extra;
6281 	}
6282 
6283 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6284 	lock_limit >>= PAGE_SHIFT;
6285 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6286 
6287 	if ((locked > lock_limit) && perf_is_paranoid() &&
6288 		!capable(CAP_IPC_LOCK)) {
6289 		ret = -EPERM;
6290 		goto unlock;
6291 	}
6292 
6293 	WARN_ON(!rb && event->rb);
6294 
6295 	if (vma->vm_flags & VM_WRITE)
6296 		flags |= RING_BUFFER_WRITABLE;
6297 
6298 	if (!rb) {
6299 		rb = rb_alloc(nr_pages,
6300 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6301 			      event->cpu, flags);
6302 
6303 		if (!rb) {
6304 			ret = -ENOMEM;
6305 			goto unlock;
6306 		}
6307 
6308 		atomic_set(&rb->mmap_count, 1);
6309 		rb->mmap_user = get_current_user();
6310 		rb->mmap_locked = extra;
6311 
6312 		ring_buffer_attach(event, rb);
6313 
6314 		perf_event_init_userpage(event);
6315 		perf_event_update_userpage(event);
6316 	} else {
6317 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6318 				   event->attr.aux_watermark, flags);
6319 		if (!ret)
6320 			rb->aux_mmap_locked = extra;
6321 	}
6322 
6323 unlock:
6324 	if (!ret) {
6325 		atomic_long_add(user_extra, &user->locked_vm);
6326 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6327 
6328 		atomic_inc(&event->mmap_count);
6329 	} else if (rb) {
6330 		atomic_dec(&rb->mmap_count);
6331 	}
6332 aux_unlock:
6333 	mutex_unlock(&event->mmap_mutex);
6334 
6335 	/*
6336 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6337 	 * vma.
6338 	 */
6339 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6340 	vma->vm_ops = &perf_mmap_vmops;
6341 
6342 	if (event->pmu->event_mapped)
6343 		event->pmu->event_mapped(event, vma->vm_mm);
6344 
6345 	return ret;
6346 }
6347 
6348 static int perf_fasync(int fd, struct file *filp, int on)
6349 {
6350 	struct inode *inode = file_inode(filp);
6351 	struct perf_event *event = filp->private_data;
6352 	int retval;
6353 
6354 	inode_lock(inode);
6355 	retval = fasync_helper(fd, filp, on, &event->fasync);
6356 	inode_unlock(inode);
6357 
6358 	if (retval < 0)
6359 		return retval;
6360 
6361 	return 0;
6362 }
6363 
6364 static const struct file_operations perf_fops = {
6365 	.llseek			= no_llseek,
6366 	.release		= perf_release,
6367 	.read			= perf_read,
6368 	.poll			= perf_poll,
6369 	.unlocked_ioctl		= perf_ioctl,
6370 	.compat_ioctl		= perf_compat_ioctl,
6371 	.mmap			= perf_mmap,
6372 	.fasync			= perf_fasync,
6373 };
6374 
6375 /*
6376  * Perf event wakeup
6377  *
6378  * If there's data, ensure we set the poll() state and publish everything
6379  * to user-space before waking everybody up.
6380  */
6381 
6382 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6383 {
6384 	/* only the parent has fasync state */
6385 	if (event->parent)
6386 		event = event->parent;
6387 	return &event->fasync;
6388 }
6389 
6390 void perf_event_wakeup(struct perf_event *event)
6391 {
6392 	ring_buffer_wakeup(event);
6393 
6394 	if (event->pending_kill) {
6395 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6396 		event->pending_kill = 0;
6397 	}
6398 }
6399 
6400 static void perf_sigtrap(struct perf_event *event)
6401 {
6402 	/*
6403 	 * We'd expect this to only occur if the irq_work is delayed and either
6404 	 * ctx->task or current has changed in the meantime. This can be the
6405 	 * case on architectures that do not implement arch_irq_work_raise().
6406 	 */
6407 	if (WARN_ON_ONCE(event->ctx->task != current))
6408 		return;
6409 
6410 	/*
6411 	 * perf_pending_event() can race with the task exiting.
6412 	 */
6413 	if (current->flags & PF_EXITING)
6414 		return;
6415 
6416 	force_sig_perf((void __user *)event->pending_addr,
6417 		       event->attr.type, event->attr.sig_data);
6418 }
6419 
6420 static void perf_pending_event_disable(struct perf_event *event)
6421 {
6422 	int cpu = READ_ONCE(event->pending_disable);
6423 
6424 	if (cpu < 0)
6425 		return;
6426 
6427 	if (cpu == smp_processor_id()) {
6428 		WRITE_ONCE(event->pending_disable, -1);
6429 
6430 		if (event->attr.sigtrap) {
6431 			perf_sigtrap(event);
6432 			atomic_set_release(&event->event_limit, 1); /* rearm event */
6433 			return;
6434 		}
6435 
6436 		perf_event_disable_local(event);
6437 		return;
6438 	}
6439 
6440 	/*
6441 	 *  CPU-A			CPU-B
6442 	 *
6443 	 *  perf_event_disable_inatomic()
6444 	 *    @pending_disable = CPU-A;
6445 	 *    irq_work_queue();
6446 	 *
6447 	 *  sched-out
6448 	 *    @pending_disable = -1;
6449 	 *
6450 	 *				sched-in
6451 	 *				perf_event_disable_inatomic()
6452 	 *				  @pending_disable = CPU-B;
6453 	 *				  irq_work_queue(); // FAILS
6454 	 *
6455 	 *  irq_work_run()
6456 	 *    perf_pending_event()
6457 	 *
6458 	 * But the event runs on CPU-B and wants disabling there.
6459 	 */
6460 	irq_work_queue_on(&event->pending, cpu);
6461 }
6462 
6463 static void perf_pending_event(struct irq_work *entry)
6464 {
6465 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6466 	int rctx;
6467 
6468 	rctx = perf_swevent_get_recursion_context();
6469 	/*
6470 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6471 	 * and we won't recurse 'further'.
6472 	 */
6473 
6474 	perf_pending_event_disable(event);
6475 
6476 	if (event->pending_wakeup) {
6477 		event->pending_wakeup = 0;
6478 		perf_event_wakeup(event);
6479 	}
6480 
6481 	if (rctx >= 0)
6482 		perf_swevent_put_recursion_context(rctx);
6483 }
6484 
6485 /*
6486  * We assume there is only KVM supporting the callbacks.
6487  * Later on, we might change it to a list if there is
6488  * another virtualization implementation supporting the callbacks.
6489  */
6490 struct perf_guest_info_callbacks *perf_guest_cbs;
6491 
6492 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6493 {
6494 	perf_guest_cbs = cbs;
6495 	return 0;
6496 }
6497 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6498 
6499 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6500 {
6501 	perf_guest_cbs = NULL;
6502 	return 0;
6503 }
6504 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6505 
6506 static void
6507 perf_output_sample_regs(struct perf_output_handle *handle,
6508 			struct pt_regs *regs, u64 mask)
6509 {
6510 	int bit;
6511 	DECLARE_BITMAP(_mask, 64);
6512 
6513 	bitmap_from_u64(_mask, mask);
6514 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6515 		u64 val;
6516 
6517 		val = perf_reg_value(regs, bit);
6518 		perf_output_put(handle, val);
6519 	}
6520 }
6521 
6522 static void perf_sample_regs_user(struct perf_regs *regs_user,
6523 				  struct pt_regs *regs)
6524 {
6525 	if (user_mode(regs)) {
6526 		regs_user->abi = perf_reg_abi(current);
6527 		regs_user->regs = regs;
6528 	} else if (!(current->flags & PF_KTHREAD)) {
6529 		perf_get_regs_user(regs_user, regs);
6530 	} else {
6531 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6532 		regs_user->regs = NULL;
6533 	}
6534 }
6535 
6536 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6537 				  struct pt_regs *regs)
6538 {
6539 	regs_intr->regs = regs;
6540 	regs_intr->abi  = perf_reg_abi(current);
6541 }
6542 
6543 
6544 /*
6545  * Get remaining task size from user stack pointer.
6546  *
6547  * It'd be better to take stack vma map and limit this more
6548  * precisely, but there's no way to get it safely under interrupt,
6549  * so using TASK_SIZE as limit.
6550  */
6551 static u64 perf_ustack_task_size(struct pt_regs *regs)
6552 {
6553 	unsigned long addr = perf_user_stack_pointer(regs);
6554 
6555 	if (!addr || addr >= TASK_SIZE)
6556 		return 0;
6557 
6558 	return TASK_SIZE - addr;
6559 }
6560 
6561 static u16
6562 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6563 			struct pt_regs *regs)
6564 {
6565 	u64 task_size;
6566 
6567 	/* No regs, no stack pointer, no dump. */
6568 	if (!regs)
6569 		return 0;
6570 
6571 	/*
6572 	 * Check if we fit in with the requested stack size into the:
6573 	 * - TASK_SIZE
6574 	 *   If we don't, we limit the size to the TASK_SIZE.
6575 	 *
6576 	 * - remaining sample size
6577 	 *   If we don't, we customize the stack size to
6578 	 *   fit in to the remaining sample size.
6579 	 */
6580 
6581 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6582 	stack_size = min(stack_size, (u16) task_size);
6583 
6584 	/* Current header size plus static size and dynamic size. */
6585 	header_size += 2 * sizeof(u64);
6586 
6587 	/* Do we fit in with the current stack dump size? */
6588 	if ((u16) (header_size + stack_size) < header_size) {
6589 		/*
6590 		 * If we overflow the maximum size for the sample,
6591 		 * we customize the stack dump size to fit in.
6592 		 */
6593 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6594 		stack_size = round_up(stack_size, sizeof(u64));
6595 	}
6596 
6597 	return stack_size;
6598 }
6599 
6600 static void
6601 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6602 			  struct pt_regs *regs)
6603 {
6604 	/* Case of a kernel thread, nothing to dump */
6605 	if (!regs) {
6606 		u64 size = 0;
6607 		perf_output_put(handle, size);
6608 	} else {
6609 		unsigned long sp;
6610 		unsigned int rem;
6611 		u64 dyn_size;
6612 		mm_segment_t fs;
6613 
6614 		/*
6615 		 * We dump:
6616 		 * static size
6617 		 *   - the size requested by user or the best one we can fit
6618 		 *     in to the sample max size
6619 		 * data
6620 		 *   - user stack dump data
6621 		 * dynamic size
6622 		 *   - the actual dumped size
6623 		 */
6624 
6625 		/* Static size. */
6626 		perf_output_put(handle, dump_size);
6627 
6628 		/* Data. */
6629 		sp = perf_user_stack_pointer(regs);
6630 		fs = force_uaccess_begin();
6631 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6632 		force_uaccess_end(fs);
6633 		dyn_size = dump_size - rem;
6634 
6635 		perf_output_skip(handle, rem);
6636 
6637 		/* Dynamic size. */
6638 		perf_output_put(handle, dyn_size);
6639 	}
6640 }
6641 
6642 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6643 					  struct perf_sample_data *data,
6644 					  size_t size)
6645 {
6646 	struct perf_event *sampler = event->aux_event;
6647 	struct perf_buffer *rb;
6648 
6649 	data->aux_size = 0;
6650 
6651 	if (!sampler)
6652 		goto out;
6653 
6654 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6655 		goto out;
6656 
6657 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6658 		goto out;
6659 
6660 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6661 	if (!rb)
6662 		goto out;
6663 
6664 	/*
6665 	 * If this is an NMI hit inside sampling code, don't take
6666 	 * the sample. See also perf_aux_sample_output().
6667 	 */
6668 	if (READ_ONCE(rb->aux_in_sampling)) {
6669 		data->aux_size = 0;
6670 	} else {
6671 		size = min_t(size_t, size, perf_aux_size(rb));
6672 		data->aux_size = ALIGN(size, sizeof(u64));
6673 	}
6674 	ring_buffer_put(rb);
6675 
6676 out:
6677 	return data->aux_size;
6678 }
6679 
6680 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6681                                  struct perf_event *event,
6682                                  struct perf_output_handle *handle,
6683                                  unsigned long size)
6684 {
6685 	unsigned long flags;
6686 	long ret;
6687 
6688 	/*
6689 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6690 	 * paths. If we start calling them in NMI context, they may race with
6691 	 * the IRQ ones, that is, for example, re-starting an event that's just
6692 	 * been stopped, which is why we're using a separate callback that
6693 	 * doesn't change the event state.
6694 	 *
6695 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6696 	 */
6697 	local_irq_save(flags);
6698 	/*
6699 	 * Guard against NMI hits inside the critical section;
6700 	 * see also perf_prepare_sample_aux().
6701 	 */
6702 	WRITE_ONCE(rb->aux_in_sampling, 1);
6703 	barrier();
6704 
6705 	ret = event->pmu->snapshot_aux(event, handle, size);
6706 
6707 	barrier();
6708 	WRITE_ONCE(rb->aux_in_sampling, 0);
6709 	local_irq_restore(flags);
6710 
6711 	return ret;
6712 }
6713 
6714 static void perf_aux_sample_output(struct perf_event *event,
6715 				   struct perf_output_handle *handle,
6716 				   struct perf_sample_data *data)
6717 {
6718 	struct perf_event *sampler = event->aux_event;
6719 	struct perf_buffer *rb;
6720 	unsigned long pad;
6721 	long size;
6722 
6723 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6724 		return;
6725 
6726 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6727 	if (!rb)
6728 		return;
6729 
6730 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6731 
6732 	/*
6733 	 * An error here means that perf_output_copy() failed (returned a
6734 	 * non-zero surplus that it didn't copy), which in its current
6735 	 * enlightened implementation is not possible. If that changes, we'd
6736 	 * like to know.
6737 	 */
6738 	if (WARN_ON_ONCE(size < 0))
6739 		goto out_put;
6740 
6741 	/*
6742 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6743 	 * perf_prepare_sample_aux(), so should not be more than that.
6744 	 */
6745 	pad = data->aux_size - size;
6746 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6747 		pad = 8;
6748 
6749 	if (pad) {
6750 		u64 zero = 0;
6751 		perf_output_copy(handle, &zero, pad);
6752 	}
6753 
6754 out_put:
6755 	ring_buffer_put(rb);
6756 }
6757 
6758 static void __perf_event_header__init_id(struct perf_event_header *header,
6759 					 struct perf_sample_data *data,
6760 					 struct perf_event *event)
6761 {
6762 	u64 sample_type = event->attr.sample_type;
6763 
6764 	data->type = sample_type;
6765 	header->size += event->id_header_size;
6766 
6767 	if (sample_type & PERF_SAMPLE_TID) {
6768 		/* namespace issues */
6769 		data->tid_entry.pid = perf_event_pid(event, current);
6770 		data->tid_entry.tid = perf_event_tid(event, current);
6771 	}
6772 
6773 	if (sample_type & PERF_SAMPLE_TIME)
6774 		data->time = perf_event_clock(event);
6775 
6776 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6777 		data->id = primary_event_id(event);
6778 
6779 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6780 		data->stream_id = event->id;
6781 
6782 	if (sample_type & PERF_SAMPLE_CPU) {
6783 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6784 		data->cpu_entry.reserved = 0;
6785 	}
6786 }
6787 
6788 void perf_event_header__init_id(struct perf_event_header *header,
6789 				struct perf_sample_data *data,
6790 				struct perf_event *event)
6791 {
6792 	if (event->attr.sample_id_all)
6793 		__perf_event_header__init_id(header, data, event);
6794 }
6795 
6796 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6797 					   struct perf_sample_data *data)
6798 {
6799 	u64 sample_type = data->type;
6800 
6801 	if (sample_type & PERF_SAMPLE_TID)
6802 		perf_output_put(handle, data->tid_entry);
6803 
6804 	if (sample_type & PERF_SAMPLE_TIME)
6805 		perf_output_put(handle, data->time);
6806 
6807 	if (sample_type & PERF_SAMPLE_ID)
6808 		perf_output_put(handle, data->id);
6809 
6810 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6811 		perf_output_put(handle, data->stream_id);
6812 
6813 	if (sample_type & PERF_SAMPLE_CPU)
6814 		perf_output_put(handle, data->cpu_entry);
6815 
6816 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6817 		perf_output_put(handle, data->id);
6818 }
6819 
6820 void perf_event__output_id_sample(struct perf_event *event,
6821 				  struct perf_output_handle *handle,
6822 				  struct perf_sample_data *sample)
6823 {
6824 	if (event->attr.sample_id_all)
6825 		__perf_event__output_id_sample(handle, sample);
6826 }
6827 
6828 static void perf_output_read_one(struct perf_output_handle *handle,
6829 				 struct perf_event *event,
6830 				 u64 enabled, u64 running)
6831 {
6832 	u64 read_format = event->attr.read_format;
6833 	u64 values[4];
6834 	int n = 0;
6835 
6836 	values[n++] = perf_event_count(event);
6837 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6838 		values[n++] = enabled +
6839 			atomic64_read(&event->child_total_time_enabled);
6840 	}
6841 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6842 		values[n++] = running +
6843 			atomic64_read(&event->child_total_time_running);
6844 	}
6845 	if (read_format & PERF_FORMAT_ID)
6846 		values[n++] = primary_event_id(event);
6847 
6848 	__output_copy(handle, values, n * sizeof(u64));
6849 }
6850 
6851 static void perf_output_read_group(struct perf_output_handle *handle,
6852 			    struct perf_event *event,
6853 			    u64 enabled, u64 running)
6854 {
6855 	struct perf_event *leader = event->group_leader, *sub;
6856 	u64 read_format = event->attr.read_format;
6857 	u64 values[5];
6858 	int n = 0;
6859 
6860 	values[n++] = 1 + leader->nr_siblings;
6861 
6862 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6863 		values[n++] = enabled;
6864 
6865 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6866 		values[n++] = running;
6867 
6868 	if ((leader != event) &&
6869 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6870 		leader->pmu->read(leader);
6871 
6872 	values[n++] = perf_event_count(leader);
6873 	if (read_format & PERF_FORMAT_ID)
6874 		values[n++] = primary_event_id(leader);
6875 
6876 	__output_copy(handle, values, n * sizeof(u64));
6877 
6878 	for_each_sibling_event(sub, leader) {
6879 		n = 0;
6880 
6881 		if ((sub != event) &&
6882 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6883 			sub->pmu->read(sub);
6884 
6885 		values[n++] = perf_event_count(sub);
6886 		if (read_format & PERF_FORMAT_ID)
6887 			values[n++] = primary_event_id(sub);
6888 
6889 		__output_copy(handle, values, n * sizeof(u64));
6890 	}
6891 }
6892 
6893 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6894 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6895 
6896 /*
6897  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6898  *
6899  * The problem is that its both hard and excessively expensive to iterate the
6900  * child list, not to mention that its impossible to IPI the children running
6901  * on another CPU, from interrupt/NMI context.
6902  */
6903 static void perf_output_read(struct perf_output_handle *handle,
6904 			     struct perf_event *event)
6905 {
6906 	u64 enabled = 0, running = 0, now;
6907 	u64 read_format = event->attr.read_format;
6908 
6909 	/*
6910 	 * compute total_time_enabled, total_time_running
6911 	 * based on snapshot values taken when the event
6912 	 * was last scheduled in.
6913 	 *
6914 	 * we cannot simply called update_context_time()
6915 	 * because of locking issue as we are called in
6916 	 * NMI context
6917 	 */
6918 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6919 		calc_timer_values(event, &now, &enabled, &running);
6920 
6921 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6922 		perf_output_read_group(handle, event, enabled, running);
6923 	else
6924 		perf_output_read_one(handle, event, enabled, running);
6925 }
6926 
6927 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6928 {
6929 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6930 }
6931 
6932 void perf_output_sample(struct perf_output_handle *handle,
6933 			struct perf_event_header *header,
6934 			struct perf_sample_data *data,
6935 			struct perf_event *event)
6936 {
6937 	u64 sample_type = data->type;
6938 
6939 	perf_output_put(handle, *header);
6940 
6941 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6942 		perf_output_put(handle, data->id);
6943 
6944 	if (sample_type & PERF_SAMPLE_IP)
6945 		perf_output_put(handle, data->ip);
6946 
6947 	if (sample_type & PERF_SAMPLE_TID)
6948 		perf_output_put(handle, data->tid_entry);
6949 
6950 	if (sample_type & PERF_SAMPLE_TIME)
6951 		perf_output_put(handle, data->time);
6952 
6953 	if (sample_type & PERF_SAMPLE_ADDR)
6954 		perf_output_put(handle, data->addr);
6955 
6956 	if (sample_type & PERF_SAMPLE_ID)
6957 		perf_output_put(handle, data->id);
6958 
6959 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6960 		perf_output_put(handle, data->stream_id);
6961 
6962 	if (sample_type & PERF_SAMPLE_CPU)
6963 		perf_output_put(handle, data->cpu_entry);
6964 
6965 	if (sample_type & PERF_SAMPLE_PERIOD)
6966 		perf_output_put(handle, data->period);
6967 
6968 	if (sample_type & PERF_SAMPLE_READ)
6969 		perf_output_read(handle, event);
6970 
6971 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6972 		int size = 1;
6973 
6974 		size += data->callchain->nr;
6975 		size *= sizeof(u64);
6976 		__output_copy(handle, data->callchain, size);
6977 	}
6978 
6979 	if (sample_type & PERF_SAMPLE_RAW) {
6980 		struct perf_raw_record *raw = data->raw;
6981 
6982 		if (raw) {
6983 			struct perf_raw_frag *frag = &raw->frag;
6984 
6985 			perf_output_put(handle, raw->size);
6986 			do {
6987 				if (frag->copy) {
6988 					__output_custom(handle, frag->copy,
6989 							frag->data, frag->size);
6990 				} else {
6991 					__output_copy(handle, frag->data,
6992 						      frag->size);
6993 				}
6994 				if (perf_raw_frag_last(frag))
6995 					break;
6996 				frag = frag->next;
6997 			} while (1);
6998 			if (frag->pad)
6999 				__output_skip(handle, NULL, frag->pad);
7000 		} else {
7001 			struct {
7002 				u32	size;
7003 				u32	data;
7004 			} raw = {
7005 				.size = sizeof(u32),
7006 				.data = 0,
7007 			};
7008 			perf_output_put(handle, raw);
7009 		}
7010 	}
7011 
7012 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7013 		if (data->br_stack) {
7014 			size_t size;
7015 
7016 			size = data->br_stack->nr
7017 			     * sizeof(struct perf_branch_entry);
7018 
7019 			perf_output_put(handle, data->br_stack->nr);
7020 			if (perf_sample_save_hw_index(event))
7021 				perf_output_put(handle, data->br_stack->hw_idx);
7022 			perf_output_copy(handle, data->br_stack->entries, size);
7023 		} else {
7024 			/*
7025 			 * we always store at least the value of nr
7026 			 */
7027 			u64 nr = 0;
7028 			perf_output_put(handle, nr);
7029 		}
7030 	}
7031 
7032 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7033 		u64 abi = data->regs_user.abi;
7034 
7035 		/*
7036 		 * If there are no regs to dump, notice it through
7037 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7038 		 */
7039 		perf_output_put(handle, abi);
7040 
7041 		if (abi) {
7042 			u64 mask = event->attr.sample_regs_user;
7043 			perf_output_sample_regs(handle,
7044 						data->regs_user.regs,
7045 						mask);
7046 		}
7047 	}
7048 
7049 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7050 		perf_output_sample_ustack(handle,
7051 					  data->stack_user_size,
7052 					  data->regs_user.regs);
7053 	}
7054 
7055 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7056 		perf_output_put(handle, data->weight.full);
7057 
7058 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7059 		perf_output_put(handle, data->data_src.val);
7060 
7061 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7062 		perf_output_put(handle, data->txn);
7063 
7064 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7065 		u64 abi = data->regs_intr.abi;
7066 		/*
7067 		 * If there are no regs to dump, notice it through
7068 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7069 		 */
7070 		perf_output_put(handle, abi);
7071 
7072 		if (abi) {
7073 			u64 mask = event->attr.sample_regs_intr;
7074 
7075 			perf_output_sample_regs(handle,
7076 						data->regs_intr.regs,
7077 						mask);
7078 		}
7079 	}
7080 
7081 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7082 		perf_output_put(handle, data->phys_addr);
7083 
7084 	if (sample_type & PERF_SAMPLE_CGROUP)
7085 		perf_output_put(handle, data->cgroup);
7086 
7087 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7088 		perf_output_put(handle, data->data_page_size);
7089 
7090 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7091 		perf_output_put(handle, data->code_page_size);
7092 
7093 	if (sample_type & PERF_SAMPLE_AUX) {
7094 		perf_output_put(handle, data->aux_size);
7095 
7096 		if (data->aux_size)
7097 			perf_aux_sample_output(event, handle, data);
7098 	}
7099 
7100 	if (!event->attr.watermark) {
7101 		int wakeup_events = event->attr.wakeup_events;
7102 
7103 		if (wakeup_events) {
7104 			struct perf_buffer *rb = handle->rb;
7105 			int events = local_inc_return(&rb->events);
7106 
7107 			if (events >= wakeup_events) {
7108 				local_sub(wakeup_events, &rb->events);
7109 				local_inc(&rb->wakeup);
7110 			}
7111 		}
7112 	}
7113 }
7114 
7115 static u64 perf_virt_to_phys(u64 virt)
7116 {
7117 	u64 phys_addr = 0;
7118 	struct page *p = NULL;
7119 
7120 	if (!virt)
7121 		return 0;
7122 
7123 	if (virt >= TASK_SIZE) {
7124 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7125 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7126 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7127 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7128 	} else {
7129 		/*
7130 		 * Walking the pages tables for user address.
7131 		 * Interrupts are disabled, so it prevents any tear down
7132 		 * of the page tables.
7133 		 * Try IRQ-safe get_user_page_fast_only first.
7134 		 * If failed, leave phys_addr as 0.
7135 		 */
7136 		if (current->mm != NULL) {
7137 			pagefault_disable();
7138 			if (get_user_page_fast_only(virt, 0, &p))
7139 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7140 			pagefault_enable();
7141 		}
7142 
7143 		if (p)
7144 			put_page(p);
7145 	}
7146 
7147 	return phys_addr;
7148 }
7149 
7150 /*
7151  * Return the pagetable size of a given virtual address.
7152  */
7153 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7154 {
7155 	u64 size = 0;
7156 
7157 #ifdef CONFIG_HAVE_FAST_GUP
7158 	pgd_t *pgdp, pgd;
7159 	p4d_t *p4dp, p4d;
7160 	pud_t *pudp, pud;
7161 	pmd_t *pmdp, pmd;
7162 	pte_t *ptep, pte;
7163 
7164 	pgdp = pgd_offset(mm, addr);
7165 	pgd = READ_ONCE(*pgdp);
7166 	if (pgd_none(pgd))
7167 		return 0;
7168 
7169 	if (pgd_leaf(pgd))
7170 		return pgd_leaf_size(pgd);
7171 
7172 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7173 	p4d = READ_ONCE(*p4dp);
7174 	if (!p4d_present(p4d))
7175 		return 0;
7176 
7177 	if (p4d_leaf(p4d))
7178 		return p4d_leaf_size(p4d);
7179 
7180 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7181 	pud = READ_ONCE(*pudp);
7182 	if (!pud_present(pud))
7183 		return 0;
7184 
7185 	if (pud_leaf(pud))
7186 		return pud_leaf_size(pud);
7187 
7188 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7189 	pmd = READ_ONCE(*pmdp);
7190 	if (!pmd_present(pmd))
7191 		return 0;
7192 
7193 	if (pmd_leaf(pmd))
7194 		return pmd_leaf_size(pmd);
7195 
7196 	ptep = pte_offset_map(&pmd, addr);
7197 	pte = ptep_get_lockless(ptep);
7198 	if (pte_present(pte))
7199 		size = pte_leaf_size(pte);
7200 	pte_unmap(ptep);
7201 #endif /* CONFIG_HAVE_FAST_GUP */
7202 
7203 	return size;
7204 }
7205 
7206 static u64 perf_get_page_size(unsigned long addr)
7207 {
7208 	struct mm_struct *mm;
7209 	unsigned long flags;
7210 	u64 size;
7211 
7212 	if (!addr)
7213 		return 0;
7214 
7215 	/*
7216 	 * Software page-table walkers must disable IRQs,
7217 	 * which prevents any tear down of the page tables.
7218 	 */
7219 	local_irq_save(flags);
7220 
7221 	mm = current->mm;
7222 	if (!mm) {
7223 		/*
7224 		 * For kernel threads and the like, use init_mm so that
7225 		 * we can find kernel memory.
7226 		 */
7227 		mm = &init_mm;
7228 	}
7229 
7230 	size = perf_get_pgtable_size(mm, addr);
7231 
7232 	local_irq_restore(flags);
7233 
7234 	return size;
7235 }
7236 
7237 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7238 
7239 struct perf_callchain_entry *
7240 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7241 {
7242 	bool kernel = !event->attr.exclude_callchain_kernel;
7243 	bool user   = !event->attr.exclude_callchain_user;
7244 	/* Disallow cross-task user callchains. */
7245 	bool crosstask = event->ctx->task && event->ctx->task != current;
7246 	const u32 max_stack = event->attr.sample_max_stack;
7247 	struct perf_callchain_entry *callchain;
7248 
7249 	if (!kernel && !user)
7250 		return &__empty_callchain;
7251 
7252 	callchain = get_perf_callchain(regs, 0, kernel, user,
7253 				       max_stack, crosstask, true);
7254 	return callchain ?: &__empty_callchain;
7255 }
7256 
7257 void perf_prepare_sample(struct perf_event_header *header,
7258 			 struct perf_sample_data *data,
7259 			 struct perf_event *event,
7260 			 struct pt_regs *regs)
7261 {
7262 	u64 sample_type = event->attr.sample_type;
7263 
7264 	header->type = PERF_RECORD_SAMPLE;
7265 	header->size = sizeof(*header) + event->header_size;
7266 
7267 	header->misc = 0;
7268 	header->misc |= perf_misc_flags(regs);
7269 
7270 	__perf_event_header__init_id(header, data, event);
7271 
7272 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7273 		data->ip = perf_instruction_pointer(regs);
7274 
7275 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7276 		int size = 1;
7277 
7278 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7279 			data->callchain = perf_callchain(event, regs);
7280 
7281 		size += data->callchain->nr;
7282 
7283 		header->size += size * sizeof(u64);
7284 	}
7285 
7286 	if (sample_type & PERF_SAMPLE_RAW) {
7287 		struct perf_raw_record *raw = data->raw;
7288 		int size;
7289 
7290 		if (raw) {
7291 			struct perf_raw_frag *frag = &raw->frag;
7292 			u32 sum = 0;
7293 
7294 			do {
7295 				sum += frag->size;
7296 				if (perf_raw_frag_last(frag))
7297 					break;
7298 				frag = frag->next;
7299 			} while (1);
7300 
7301 			size = round_up(sum + sizeof(u32), sizeof(u64));
7302 			raw->size = size - sizeof(u32);
7303 			frag->pad = raw->size - sum;
7304 		} else {
7305 			size = sizeof(u64);
7306 		}
7307 
7308 		header->size += size;
7309 	}
7310 
7311 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7312 		int size = sizeof(u64); /* nr */
7313 		if (data->br_stack) {
7314 			if (perf_sample_save_hw_index(event))
7315 				size += sizeof(u64);
7316 
7317 			size += data->br_stack->nr
7318 			      * sizeof(struct perf_branch_entry);
7319 		}
7320 		header->size += size;
7321 	}
7322 
7323 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7324 		perf_sample_regs_user(&data->regs_user, regs);
7325 
7326 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7327 		/* regs dump ABI info */
7328 		int size = sizeof(u64);
7329 
7330 		if (data->regs_user.regs) {
7331 			u64 mask = event->attr.sample_regs_user;
7332 			size += hweight64(mask) * sizeof(u64);
7333 		}
7334 
7335 		header->size += size;
7336 	}
7337 
7338 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7339 		/*
7340 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7341 		 * processed as the last one or have additional check added
7342 		 * in case new sample type is added, because we could eat
7343 		 * up the rest of the sample size.
7344 		 */
7345 		u16 stack_size = event->attr.sample_stack_user;
7346 		u16 size = sizeof(u64);
7347 
7348 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7349 						     data->regs_user.regs);
7350 
7351 		/*
7352 		 * If there is something to dump, add space for the dump
7353 		 * itself and for the field that tells the dynamic size,
7354 		 * which is how many have been actually dumped.
7355 		 */
7356 		if (stack_size)
7357 			size += sizeof(u64) + stack_size;
7358 
7359 		data->stack_user_size = stack_size;
7360 		header->size += size;
7361 	}
7362 
7363 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7364 		/* regs dump ABI info */
7365 		int size = sizeof(u64);
7366 
7367 		perf_sample_regs_intr(&data->regs_intr, regs);
7368 
7369 		if (data->regs_intr.regs) {
7370 			u64 mask = event->attr.sample_regs_intr;
7371 
7372 			size += hweight64(mask) * sizeof(u64);
7373 		}
7374 
7375 		header->size += size;
7376 	}
7377 
7378 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7379 		data->phys_addr = perf_virt_to_phys(data->addr);
7380 
7381 #ifdef CONFIG_CGROUP_PERF
7382 	if (sample_type & PERF_SAMPLE_CGROUP) {
7383 		struct cgroup *cgrp;
7384 
7385 		/* protected by RCU */
7386 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7387 		data->cgroup = cgroup_id(cgrp);
7388 	}
7389 #endif
7390 
7391 	/*
7392 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7393 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7394 	 * but the value will not dump to the userspace.
7395 	 */
7396 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7397 		data->data_page_size = perf_get_page_size(data->addr);
7398 
7399 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7400 		data->code_page_size = perf_get_page_size(data->ip);
7401 
7402 	if (sample_type & PERF_SAMPLE_AUX) {
7403 		u64 size;
7404 
7405 		header->size += sizeof(u64); /* size */
7406 
7407 		/*
7408 		 * Given the 16bit nature of header::size, an AUX sample can
7409 		 * easily overflow it, what with all the preceding sample bits.
7410 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7411 		 * per sample in total (rounded down to 8 byte boundary).
7412 		 */
7413 		size = min_t(size_t, U16_MAX - header->size,
7414 			     event->attr.aux_sample_size);
7415 		size = rounddown(size, 8);
7416 		size = perf_prepare_sample_aux(event, data, size);
7417 
7418 		WARN_ON_ONCE(size + header->size > U16_MAX);
7419 		header->size += size;
7420 	}
7421 	/*
7422 	 * If you're adding more sample types here, you likely need to do
7423 	 * something about the overflowing header::size, like repurpose the
7424 	 * lowest 3 bits of size, which should be always zero at the moment.
7425 	 * This raises a more important question, do we really need 512k sized
7426 	 * samples and why, so good argumentation is in order for whatever you
7427 	 * do here next.
7428 	 */
7429 	WARN_ON_ONCE(header->size & 7);
7430 }
7431 
7432 static __always_inline int
7433 __perf_event_output(struct perf_event *event,
7434 		    struct perf_sample_data *data,
7435 		    struct pt_regs *regs,
7436 		    int (*output_begin)(struct perf_output_handle *,
7437 					struct perf_sample_data *,
7438 					struct perf_event *,
7439 					unsigned int))
7440 {
7441 	struct perf_output_handle handle;
7442 	struct perf_event_header header;
7443 	int err;
7444 
7445 	/* protect the callchain buffers */
7446 	rcu_read_lock();
7447 
7448 	perf_prepare_sample(&header, data, event, regs);
7449 
7450 	err = output_begin(&handle, data, event, header.size);
7451 	if (err)
7452 		goto exit;
7453 
7454 	perf_output_sample(&handle, &header, data, event);
7455 
7456 	perf_output_end(&handle);
7457 
7458 exit:
7459 	rcu_read_unlock();
7460 	return err;
7461 }
7462 
7463 void
7464 perf_event_output_forward(struct perf_event *event,
7465 			 struct perf_sample_data *data,
7466 			 struct pt_regs *regs)
7467 {
7468 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7469 }
7470 
7471 void
7472 perf_event_output_backward(struct perf_event *event,
7473 			   struct perf_sample_data *data,
7474 			   struct pt_regs *regs)
7475 {
7476 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7477 }
7478 
7479 int
7480 perf_event_output(struct perf_event *event,
7481 		  struct perf_sample_data *data,
7482 		  struct pt_regs *regs)
7483 {
7484 	return __perf_event_output(event, data, regs, perf_output_begin);
7485 }
7486 
7487 /*
7488  * read event_id
7489  */
7490 
7491 struct perf_read_event {
7492 	struct perf_event_header	header;
7493 
7494 	u32				pid;
7495 	u32				tid;
7496 };
7497 
7498 static void
7499 perf_event_read_event(struct perf_event *event,
7500 			struct task_struct *task)
7501 {
7502 	struct perf_output_handle handle;
7503 	struct perf_sample_data sample;
7504 	struct perf_read_event read_event = {
7505 		.header = {
7506 			.type = PERF_RECORD_READ,
7507 			.misc = 0,
7508 			.size = sizeof(read_event) + event->read_size,
7509 		},
7510 		.pid = perf_event_pid(event, task),
7511 		.tid = perf_event_tid(event, task),
7512 	};
7513 	int ret;
7514 
7515 	perf_event_header__init_id(&read_event.header, &sample, event);
7516 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7517 	if (ret)
7518 		return;
7519 
7520 	perf_output_put(&handle, read_event);
7521 	perf_output_read(&handle, event);
7522 	perf_event__output_id_sample(event, &handle, &sample);
7523 
7524 	perf_output_end(&handle);
7525 }
7526 
7527 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7528 
7529 static void
7530 perf_iterate_ctx(struct perf_event_context *ctx,
7531 		   perf_iterate_f output,
7532 		   void *data, bool all)
7533 {
7534 	struct perf_event *event;
7535 
7536 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7537 		if (!all) {
7538 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7539 				continue;
7540 			if (!event_filter_match(event))
7541 				continue;
7542 		}
7543 
7544 		output(event, data);
7545 	}
7546 }
7547 
7548 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7549 {
7550 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7551 	struct perf_event *event;
7552 
7553 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7554 		/*
7555 		 * Skip events that are not fully formed yet; ensure that
7556 		 * if we observe event->ctx, both event and ctx will be
7557 		 * complete enough. See perf_install_in_context().
7558 		 */
7559 		if (!smp_load_acquire(&event->ctx))
7560 			continue;
7561 
7562 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7563 			continue;
7564 		if (!event_filter_match(event))
7565 			continue;
7566 		output(event, data);
7567 	}
7568 }
7569 
7570 /*
7571  * Iterate all events that need to receive side-band events.
7572  *
7573  * For new callers; ensure that account_pmu_sb_event() includes
7574  * your event, otherwise it might not get delivered.
7575  */
7576 static void
7577 perf_iterate_sb(perf_iterate_f output, void *data,
7578 	       struct perf_event_context *task_ctx)
7579 {
7580 	struct perf_event_context *ctx;
7581 	int ctxn;
7582 
7583 	rcu_read_lock();
7584 	preempt_disable();
7585 
7586 	/*
7587 	 * If we have task_ctx != NULL we only notify the task context itself.
7588 	 * The task_ctx is set only for EXIT events before releasing task
7589 	 * context.
7590 	 */
7591 	if (task_ctx) {
7592 		perf_iterate_ctx(task_ctx, output, data, false);
7593 		goto done;
7594 	}
7595 
7596 	perf_iterate_sb_cpu(output, data);
7597 
7598 	for_each_task_context_nr(ctxn) {
7599 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7600 		if (ctx)
7601 			perf_iterate_ctx(ctx, output, data, false);
7602 	}
7603 done:
7604 	preempt_enable();
7605 	rcu_read_unlock();
7606 }
7607 
7608 /*
7609  * Clear all file-based filters at exec, they'll have to be
7610  * re-instated when/if these objects are mmapped again.
7611  */
7612 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7613 {
7614 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7615 	struct perf_addr_filter *filter;
7616 	unsigned int restart = 0, count = 0;
7617 	unsigned long flags;
7618 
7619 	if (!has_addr_filter(event))
7620 		return;
7621 
7622 	raw_spin_lock_irqsave(&ifh->lock, flags);
7623 	list_for_each_entry(filter, &ifh->list, entry) {
7624 		if (filter->path.dentry) {
7625 			event->addr_filter_ranges[count].start = 0;
7626 			event->addr_filter_ranges[count].size = 0;
7627 			restart++;
7628 		}
7629 
7630 		count++;
7631 	}
7632 
7633 	if (restart)
7634 		event->addr_filters_gen++;
7635 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7636 
7637 	if (restart)
7638 		perf_event_stop(event, 1);
7639 }
7640 
7641 void perf_event_exec(void)
7642 {
7643 	struct perf_event_context *ctx;
7644 	int ctxn;
7645 
7646 	for_each_task_context_nr(ctxn) {
7647 		perf_event_enable_on_exec(ctxn);
7648 		perf_event_remove_on_exec(ctxn);
7649 
7650 		rcu_read_lock();
7651 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7652 		if (ctx) {
7653 			perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7654 					 NULL, true);
7655 		}
7656 		rcu_read_unlock();
7657 	}
7658 }
7659 
7660 struct remote_output {
7661 	struct perf_buffer	*rb;
7662 	int			err;
7663 };
7664 
7665 static void __perf_event_output_stop(struct perf_event *event, void *data)
7666 {
7667 	struct perf_event *parent = event->parent;
7668 	struct remote_output *ro = data;
7669 	struct perf_buffer *rb = ro->rb;
7670 	struct stop_event_data sd = {
7671 		.event	= event,
7672 	};
7673 
7674 	if (!has_aux(event))
7675 		return;
7676 
7677 	if (!parent)
7678 		parent = event;
7679 
7680 	/*
7681 	 * In case of inheritance, it will be the parent that links to the
7682 	 * ring-buffer, but it will be the child that's actually using it.
7683 	 *
7684 	 * We are using event::rb to determine if the event should be stopped,
7685 	 * however this may race with ring_buffer_attach() (through set_output),
7686 	 * which will make us skip the event that actually needs to be stopped.
7687 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7688 	 * its rb pointer.
7689 	 */
7690 	if (rcu_dereference(parent->rb) == rb)
7691 		ro->err = __perf_event_stop(&sd);
7692 }
7693 
7694 static int __perf_pmu_output_stop(void *info)
7695 {
7696 	struct perf_event *event = info;
7697 	struct pmu *pmu = event->ctx->pmu;
7698 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7699 	struct remote_output ro = {
7700 		.rb	= event->rb,
7701 	};
7702 
7703 	rcu_read_lock();
7704 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7705 	if (cpuctx->task_ctx)
7706 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7707 				   &ro, false);
7708 	rcu_read_unlock();
7709 
7710 	return ro.err;
7711 }
7712 
7713 static void perf_pmu_output_stop(struct perf_event *event)
7714 {
7715 	struct perf_event *iter;
7716 	int err, cpu;
7717 
7718 restart:
7719 	rcu_read_lock();
7720 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7721 		/*
7722 		 * For per-CPU events, we need to make sure that neither they
7723 		 * nor their children are running; for cpu==-1 events it's
7724 		 * sufficient to stop the event itself if it's active, since
7725 		 * it can't have children.
7726 		 */
7727 		cpu = iter->cpu;
7728 		if (cpu == -1)
7729 			cpu = READ_ONCE(iter->oncpu);
7730 
7731 		if (cpu == -1)
7732 			continue;
7733 
7734 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7735 		if (err == -EAGAIN) {
7736 			rcu_read_unlock();
7737 			goto restart;
7738 		}
7739 	}
7740 	rcu_read_unlock();
7741 }
7742 
7743 /*
7744  * task tracking -- fork/exit
7745  *
7746  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7747  */
7748 
7749 struct perf_task_event {
7750 	struct task_struct		*task;
7751 	struct perf_event_context	*task_ctx;
7752 
7753 	struct {
7754 		struct perf_event_header	header;
7755 
7756 		u32				pid;
7757 		u32				ppid;
7758 		u32				tid;
7759 		u32				ptid;
7760 		u64				time;
7761 	} event_id;
7762 };
7763 
7764 static int perf_event_task_match(struct perf_event *event)
7765 {
7766 	return event->attr.comm  || event->attr.mmap ||
7767 	       event->attr.mmap2 || event->attr.mmap_data ||
7768 	       event->attr.task;
7769 }
7770 
7771 static void perf_event_task_output(struct perf_event *event,
7772 				   void *data)
7773 {
7774 	struct perf_task_event *task_event = data;
7775 	struct perf_output_handle handle;
7776 	struct perf_sample_data	sample;
7777 	struct task_struct *task = task_event->task;
7778 	int ret, size = task_event->event_id.header.size;
7779 
7780 	if (!perf_event_task_match(event))
7781 		return;
7782 
7783 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7784 
7785 	ret = perf_output_begin(&handle, &sample, event,
7786 				task_event->event_id.header.size);
7787 	if (ret)
7788 		goto out;
7789 
7790 	task_event->event_id.pid = perf_event_pid(event, task);
7791 	task_event->event_id.tid = perf_event_tid(event, task);
7792 
7793 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7794 		task_event->event_id.ppid = perf_event_pid(event,
7795 							task->real_parent);
7796 		task_event->event_id.ptid = perf_event_pid(event,
7797 							task->real_parent);
7798 	} else {  /* PERF_RECORD_FORK */
7799 		task_event->event_id.ppid = perf_event_pid(event, current);
7800 		task_event->event_id.ptid = perf_event_tid(event, current);
7801 	}
7802 
7803 	task_event->event_id.time = perf_event_clock(event);
7804 
7805 	perf_output_put(&handle, task_event->event_id);
7806 
7807 	perf_event__output_id_sample(event, &handle, &sample);
7808 
7809 	perf_output_end(&handle);
7810 out:
7811 	task_event->event_id.header.size = size;
7812 }
7813 
7814 static void perf_event_task(struct task_struct *task,
7815 			      struct perf_event_context *task_ctx,
7816 			      int new)
7817 {
7818 	struct perf_task_event task_event;
7819 
7820 	if (!atomic_read(&nr_comm_events) &&
7821 	    !atomic_read(&nr_mmap_events) &&
7822 	    !atomic_read(&nr_task_events))
7823 		return;
7824 
7825 	task_event = (struct perf_task_event){
7826 		.task	  = task,
7827 		.task_ctx = task_ctx,
7828 		.event_id    = {
7829 			.header = {
7830 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7831 				.misc = 0,
7832 				.size = sizeof(task_event.event_id),
7833 			},
7834 			/* .pid  */
7835 			/* .ppid */
7836 			/* .tid  */
7837 			/* .ptid */
7838 			/* .time */
7839 		},
7840 	};
7841 
7842 	perf_iterate_sb(perf_event_task_output,
7843 		       &task_event,
7844 		       task_ctx);
7845 }
7846 
7847 void perf_event_fork(struct task_struct *task)
7848 {
7849 	perf_event_task(task, NULL, 1);
7850 	perf_event_namespaces(task);
7851 }
7852 
7853 /*
7854  * comm tracking
7855  */
7856 
7857 struct perf_comm_event {
7858 	struct task_struct	*task;
7859 	char			*comm;
7860 	int			comm_size;
7861 
7862 	struct {
7863 		struct perf_event_header	header;
7864 
7865 		u32				pid;
7866 		u32				tid;
7867 	} event_id;
7868 };
7869 
7870 static int perf_event_comm_match(struct perf_event *event)
7871 {
7872 	return event->attr.comm;
7873 }
7874 
7875 static void perf_event_comm_output(struct perf_event *event,
7876 				   void *data)
7877 {
7878 	struct perf_comm_event *comm_event = data;
7879 	struct perf_output_handle handle;
7880 	struct perf_sample_data sample;
7881 	int size = comm_event->event_id.header.size;
7882 	int ret;
7883 
7884 	if (!perf_event_comm_match(event))
7885 		return;
7886 
7887 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7888 	ret = perf_output_begin(&handle, &sample, event,
7889 				comm_event->event_id.header.size);
7890 
7891 	if (ret)
7892 		goto out;
7893 
7894 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7895 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7896 
7897 	perf_output_put(&handle, comm_event->event_id);
7898 	__output_copy(&handle, comm_event->comm,
7899 				   comm_event->comm_size);
7900 
7901 	perf_event__output_id_sample(event, &handle, &sample);
7902 
7903 	perf_output_end(&handle);
7904 out:
7905 	comm_event->event_id.header.size = size;
7906 }
7907 
7908 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7909 {
7910 	char comm[TASK_COMM_LEN];
7911 	unsigned int size;
7912 
7913 	memset(comm, 0, sizeof(comm));
7914 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7915 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7916 
7917 	comm_event->comm = comm;
7918 	comm_event->comm_size = size;
7919 
7920 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7921 
7922 	perf_iterate_sb(perf_event_comm_output,
7923 		       comm_event,
7924 		       NULL);
7925 }
7926 
7927 void perf_event_comm(struct task_struct *task, bool exec)
7928 {
7929 	struct perf_comm_event comm_event;
7930 
7931 	if (!atomic_read(&nr_comm_events))
7932 		return;
7933 
7934 	comm_event = (struct perf_comm_event){
7935 		.task	= task,
7936 		/* .comm      */
7937 		/* .comm_size */
7938 		.event_id  = {
7939 			.header = {
7940 				.type = PERF_RECORD_COMM,
7941 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7942 				/* .size */
7943 			},
7944 			/* .pid */
7945 			/* .tid */
7946 		},
7947 	};
7948 
7949 	perf_event_comm_event(&comm_event);
7950 }
7951 
7952 /*
7953  * namespaces tracking
7954  */
7955 
7956 struct perf_namespaces_event {
7957 	struct task_struct		*task;
7958 
7959 	struct {
7960 		struct perf_event_header	header;
7961 
7962 		u32				pid;
7963 		u32				tid;
7964 		u64				nr_namespaces;
7965 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7966 	} event_id;
7967 };
7968 
7969 static int perf_event_namespaces_match(struct perf_event *event)
7970 {
7971 	return event->attr.namespaces;
7972 }
7973 
7974 static void perf_event_namespaces_output(struct perf_event *event,
7975 					 void *data)
7976 {
7977 	struct perf_namespaces_event *namespaces_event = data;
7978 	struct perf_output_handle handle;
7979 	struct perf_sample_data sample;
7980 	u16 header_size = namespaces_event->event_id.header.size;
7981 	int ret;
7982 
7983 	if (!perf_event_namespaces_match(event))
7984 		return;
7985 
7986 	perf_event_header__init_id(&namespaces_event->event_id.header,
7987 				   &sample, event);
7988 	ret = perf_output_begin(&handle, &sample, event,
7989 				namespaces_event->event_id.header.size);
7990 	if (ret)
7991 		goto out;
7992 
7993 	namespaces_event->event_id.pid = perf_event_pid(event,
7994 							namespaces_event->task);
7995 	namespaces_event->event_id.tid = perf_event_tid(event,
7996 							namespaces_event->task);
7997 
7998 	perf_output_put(&handle, namespaces_event->event_id);
7999 
8000 	perf_event__output_id_sample(event, &handle, &sample);
8001 
8002 	perf_output_end(&handle);
8003 out:
8004 	namespaces_event->event_id.header.size = header_size;
8005 }
8006 
8007 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8008 				   struct task_struct *task,
8009 				   const struct proc_ns_operations *ns_ops)
8010 {
8011 	struct path ns_path;
8012 	struct inode *ns_inode;
8013 	int error;
8014 
8015 	error = ns_get_path(&ns_path, task, ns_ops);
8016 	if (!error) {
8017 		ns_inode = ns_path.dentry->d_inode;
8018 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8019 		ns_link_info->ino = ns_inode->i_ino;
8020 		path_put(&ns_path);
8021 	}
8022 }
8023 
8024 void perf_event_namespaces(struct task_struct *task)
8025 {
8026 	struct perf_namespaces_event namespaces_event;
8027 	struct perf_ns_link_info *ns_link_info;
8028 
8029 	if (!atomic_read(&nr_namespaces_events))
8030 		return;
8031 
8032 	namespaces_event = (struct perf_namespaces_event){
8033 		.task	= task,
8034 		.event_id  = {
8035 			.header = {
8036 				.type = PERF_RECORD_NAMESPACES,
8037 				.misc = 0,
8038 				.size = sizeof(namespaces_event.event_id),
8039 			},
8040 			/* .pid */
8041 			/* .tid */
8042 			.nr_namespaces = NR_NAMESPACES,
8043 			/* .link_info[NR_NAMESPACES] */
8044 		},
8045 	};
8046 
8047 	ns_link_info = namespaces_event.event_id.link_info;
8048 
8049 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8050 			       task, &mntns_operations);
8051 
8052 #ifdef CONFIG_USER_NS
8053 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8054 			       task, &userns_operations);
8055 #endif
8056 #ifdef CONFIG_NET_NS
8057 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8058 			       task, &netns_operations);
8059 #endif
8060 #ifdef CONFIG_UTS_NS
8061 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8062 			       task, &utsns_operations);
8063 #endif
8064 #ifdef CONFIG_IPC_NS
8065 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8066 			       task, &ipcns_operations);
8067 #endif
8068 #ifdef CONFIG_PID_NS
8069 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8070 			       task, &pidns_operations);
8071 #endif
8072 #ifdef CONFIG_CGROUPS
8073 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8074 			       task, &cgroupns_operations);
8075 #endif
8076 
8077 	perf_iterate_sb(perf_event_namespaces_output,
8078 			&namespaces_event,
8079 			NULL);
8080 }
8081 
8082 /*
8083  * cgroup tracking
8084  */
8085 #ifdef CONFIG_CGROUP_PERF
8086 
8087 struct perf_cgroup_event {
8088 	char				*path;
8089 	int				path_size;
8090 	struct {
8091 		struct perf_event_header	header;
8092 		u64				id;
8093 		char				path[];
8094 	} event_id;
8095 };
8096 
8097 static int perf_event_cgroup_match(struct perf_event *event)
8098 {
8099 	return event->attr.cgroup;
8100 }
8101 
8102 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8103 {
8104 	struct perf_cgroup_event *cgroup_event = data;
8105 	struct perf_output_handle handle;
8106 	struct perf_sample_data sample;
8107 	u16 header_size = cgroup_event->event_id.header.size;
8108 	int ret;
8109 
8110 	if (!perf_event_cgroup_match(event))
8111 		return;
8112 
8113 	perf_event_header__init_id(&cgroup_event->event_id.header,
8114 				   &sample, event);
8115 	ret = perf_output_begin(&handle, &sample, event,
8116 				cgroup_event->event_id.header.size);
8117 	if (ret)
8118 		goto out;
8119 
8120 	perf_output_put(&handle, cgroup_event->event_id);
8121 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8122 
8123 	perf_event__output_id_sample(event, &handle, &sample);
8124 
8125 	perf_output_end(&handle);
8126 out:
8127 	cgroup_event->event_id.header.size = header_size;
8128 }
8129 
8130 static void perf_event_cgroup(struct cgroup *cgrp)
8131 {
8132 	struct perf_cgroup_event cgroup_event;
8133 	char path_enomem[16] = "//enomem";
8134 	char *pathname;
8135 	size_t size;
8136 
8137 	if (!atomic_read(&nr_cgroup_events))
8138 		return;
8139 
8140 	cgroup_event = (struct perf_cgroup_event){
8141 		.event_id  = {
8142 			.header = {
8143 				.type = PERF_RECORD_CGROUP,
8144 				.misc = 0,
8145 				.size = sizeof(cgroup_event.event_id),
8146 			},
8147 			.id = cgroup_id(cgrp),
8148 		},
8149 	};
8150 
8151 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8152 	if (pathname == NULL) {
8153 		cgroup_event.path = path_enomem;
8154 	} else {
8155 		/* just to be sure to have enough space for alignment */
8156 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8157 		cgroup_event.path = pathname;
8158 	}
8159 
8160 	/*
8161 	 * Since our buffer works in 8 byte units we need to align our string
8162 	 * size to a multiple of 8. However, we must guarantee the tail end is
8163 	 * zero'd out to avoid leaking random bits to userspace.
8164 	 */
8165 	size = strlen(cgroup_event.path) + 1;
8166 	while (!IS_ALIGNED(size, sizeof(u64)))
8167 		cgroup_event.path[size++] = '\0';
8168 
8169 	cgroup_event.event_id.header.size += size;
8170 	cgroup_event.path_size = size;
8171 
8172 	perf_iterate_sb(perf_event_cgroup_output,
8173 			&cgroup_event,
8174 			NULL);
8175 
8176 	kfree(pathname);
8177 }
8178 
8179 #endif
8180 
8181 /*
8182  * mmap tracking
8183  */
8184 
8185 struct perf_mmap_event {
8186 	struct vm_area_struct	*vma;
8187 
8188 	const char		*file_name;
8189 	int			file_size;
8190 	int			maj, min;
8191 	u64			ino;
8192 	u64			ino_generation;
8193 	u32			prot, flags;
8194 	u8			build_id[BUILD_ID_SIZE_MAX];
8195 	u32			build_id_size;
8196 
8197 	struct {
8198 		struct perf_event_header	header;
8199 
8200 		u32				pid;
8201 		u32				tid;
8202 		u64				start;
8203 		u64				len;
8204 		u64				pgoff;
8205 	} event_id;
8206 };
8207 
8208 static int perf_event_mmap_match(struct perf_event *event,
8209 				 void *data)
8210 {
8211 	struct perf_mmap_event *mmap_event = data;
8212 	struct vm_area_struct *vma = mmap_event->vma;
8213 	int executable = vma->vm_flags & VM_EXEC;
8214 
8215 	return (!executable && event->attr.mmap_data) ||
8216 	       (executable && (event->attr.mmap || event->attr.mmap2));
8217 }
8218 
8219 static void perf_event_mmap_output(struct perf_event *event,
8220 				   void *data)
8221 {
8222 	struct perf_mmap_event *mmap_event = data;
8223 	struct perf_output_handle handle;
8224 	struct perf_sample_data sample;
8225 	int size = mmap_event->event_id.header.size;
8226 	u32 type = mmap_event->event_id.header.type;
8227 	bool use_build_id;
8228 	int ret;
8229 
8230 	if (!perf_event_mmap_match(event, data))
8231 		return;
8232 
8233 	if (event->attr.mmap2) {
8234 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8235 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8236 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8237 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8238 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8239 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8240 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8241 	}
8242 
8243 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8244 	ret = perf_output_begin(&handle, &sample, event,
8245 				mmap_event->event_id.header.size);
8246 	if (ret)
8247 		goto out;
8248 
8249 	mmap_event->event_id.pid = perf_event_pid(event, current);
8250 	mmap_event->event_id.tid = perf_event_tid(event, current);
8251 
8252 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8253 
8254 	if (event->attr.mmap2 && use_build_id)
8255 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8256 
8257 	perf_output_put(&handle, mmap_event->event_id);
8258 
8259 	if (event->attr.mmap2) {
8260 		if (use_build_id) {
8261 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8262 
8263 			__output_copy(&handle, size, 4);
8264 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8265 		} else {
8266 			perf_output_put(&handle, mmap_event->maj);
8267 			perf_output_put(&handle, mmap_event->min);
8268 			perf_output_put(&handle, mmap_event->ino);
8269 			perf_output_put(&handle, mmap_event->ino_generation);
8270 		}
8271 		perf_output_put(&handle, mmap_event->prot);
8272 		perf_output_put(&handle, mmap_event->flags);
8273 	}
8274 
8275 	__output_copy(&handle, mmap_event->file_name,
8276 				   mmap_event->file_size);
8277 
8278 	perf_event__output_id_sample(event, &handle, &sample);
8279 
8280 	perf_output_end(&handle);
8281 out:
8282 	mmap_event->event_id.header.size = size;
8283 	mmap_event->event_id.header.type = type;
8284 }
8285 
8286 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8287 {
8288 	struct vm_area_struct *vma = mmap_event->vma;
8289 	struct file *file = vma->vm_file;
8290 	int maj = 0, min = 0;
8291 	u64 ino = 0, gen = 0;
8292 	u32 prot = 0, flags = 0;
8293 	unsigned int size;
8294 	char tmp[16];
8295 	char *buf = NULL;
8296 	char *name;
8297 
8298 	if (vma->vm_flags & VM_READ)
8299 		prot |= PROT_READ;
8300 	if (vma->vm_flags & VM_WRITE)
8301 		prot |= PROT_WRITE;
8302 	if (vma->vm_flags & VM_EXEC)
8303 		prot |= PROT_EXEC;
8304 
8305 	if (vma->vm_flags & VM_MAYSHARE)
8306 		flags = MAP_SHARED;
8307 	else
8308 		flags = MAP_PRIVATE;
8309 
8310 	if (vma->vm_flags & VM_DENYWRITE)
8311 		flags |= MAP_DENYWRITE;
8312 	if (vma->vm_flags & VM_LOCKED)
8313 		flags |= MAP_LOCKED;
8314 	if (is_vm_hugetlb_page(vma))
8315 		flags |= MAP_HUGETLB;
8316 
8317 	if (file) {
8318 		struct inode *inode;
8319 		dev_t dev;
8320 
8321 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8322 		if (!buf) {
8323 			name = "//enomem";
8324 			goto cpy_name;
8325 		}
8326 		/*
8327 		 * d_path() works from the end of the rb backwards, so we
8328 		 * need to add enough zero bytes after the string to handle
8329 		 * the 64bit alignment we do later.
8330 		 */
8331 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8332 		if (IS_ERR(name)) {
8333 			name = "//toolong";
8334 			goto cpy_name;
8335 		}
8336 		inode = file_inode(vma->vm_file);
8337 		dev = inode->i_sb->s_dev;
8338 		ino = inode->i_ino;
8339 		gen = inode->i_generation;
8340 		maj = MAJOR(dev);
8341 		min = MINOR(dev);
8342 
8343 		goto got_name;
8344 	} else {
8345 		if (vma->vm_ops && vma->vm_ops->name) {
8346 			name = (char *) vma->vm_ops->name(vma);
8347 			if (name)
8348 				goto cpy_name;
8349 		}
8350 
8351 		name = (char *)arch_vma_name(vma);
8352 		if (name)
8353 			goto cpy_name;
8354 
8355 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8356 				vma->vm_end >= vma->vm_mm->brk) {
8357 			name = "[heap]";
8358 			goto cpy_name;
8359 		}
8360 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8361 				vma->vm_end >= vma->vm_mm->start_stack) {
8362 			name = "[stack]";
8363 			goto cpy_name;
8364 		}
8365 
8366 		name = "//anon";
8367 		goto cpy_name;
8368 	}
8369 
8370 cpy_name:
8371 	strlcpy(tmp, name, sizeof(tmp));
8372 	name = tmp;
8373 got_name:
8374 	/*
8375 	 * Since our buffer works in 8 byte units we need to align our string
8376 	 * size to a multiple of 8. However, we must guarantee the tail end is
8377 	 * zero'd out to avoid leaking random bits to userspace.
8378 	 */
8379 	size = strlen(name)+1;
8380 	while (!IS_ALIGNED(size, sizeof(u64)))
8381 		name[size++] = '\0';
8382 
8383 	mmap_event->file_name = name;
8384 	mmap_event->file_size = size;
8385 	mmap_event->maj = maj;
8386 	mmap_event->min = min;
8387 	mmap_event->ino = ino;
8388 	mmap_event->ino_generation = gen;
8389 	mmap_event->prot = prot;
8390 	mmap_event->flags = flags;
8391 
8392 	if (!(vma->vm_flags & VM_EXEC))
8393 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8394 
8395 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8396 
8397 	if (atomic_read(&nr_build_id_events))
8398 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8399 
8400 	perf_iterate_sb(perf_event_mmap_output,
8401 		       mmap_event,
8402 		       NULL);
8403 
8404 	kfree(buf);
8405 }
8406 
8407 /*
8408  * Check whether inode and address range match filter criteria.
8409  */
8410 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8411 				     struct file *file, unsigned long offset,
8412 				     unsigned long size)
8413 {
8414 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8415 	if (!filter->path.dentry)
8416 		return false;
8417 
8418 	if (d_inode(filter->path.dentry) != file_inode(file))
8419 		return false;
8420 
8421 	if (filter->offset > offset + size)
8422 		return false;
8423 
8424 	if (filter->offset + filter->size < offset)
8425 		return false;
8426 
8427 	return true;
8428 }
8429 
8430 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8431 					struct vm_area_struct *vma,
8432 					struct perf_addr_filter_range *fr)
8433 {
8434 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8435 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8436 	struct file *file = vma->vm_file;
8437 
8438 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8439 		return false;
8440 
8441 	if (filter->offset < off) {
8442 		fr->start = vma->vm_start;
8443 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8444 	} else {
8445 		fr->start = vma->vm_start + filter->offset - off;
8446 		fr->size = min(vma->vm_end - fr->start, filter->size);
8447 	}
8448 
8449 	return true;
8450 }
8451 
8452 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8453 {
8454 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8455 	struct vm_area_struct *vma = data;
8456 	struct perf_addr_filter *filter;
8457 	unsigned int restart = 0, count = 0;
8458 	unsigned long flags;
8459 
8460 	if (!has_addr_filter(event))
8461 		return;
8462 
8463 	if (!vma->vm_file)
8464 		return;
8465 
8466 	raw_spin_lock_irqsave(&ifh->lock, flags);
8467 	list_for_each_entry(filter, &ifh->list, entry) {
8468 		if (perf_addr_filter_vma_adjust(filter, vma,
8469 						&event->addr_filter_ranges[count]))
8470 			restart++;
8471 
8472 		count++;
8473 	}
8474 
8475 	if (restart)
8476 		event->addr_filters_gen++;
8477 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8478 
8479 	if (restart)
8480 		perf_event_stop(event, 1);
8481 }
8482 
8483 /*
8484  * Adjust all task's events' filters to the new vma
8485  */
8486 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8487 {
8488 	struct perf_event_context *ctx;
8489 	int ctxn;
8490 
8491 	/*
8492 	 * Data tracing isn't supported yet and as such there is no need
8493 	 * to keep track of anything that isn't related to executable code:
8494 	 */
8495 	if (!(vma->vm_flags & VM_EXEC))
8496 		return;
8497 
8498 	rcu_read_lock();
8499 	for_each_task_context_nr(ctxn) {
8500 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8501 		if (!ctx)
8502 			continue;
8503 
8504 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8505 	}
8506 	rcu_read_unlock();
8507 }
8508 
8509 void perf_event_mmap(struct vm_area_struct *vma)
8510 {
8511 	struct perf_mmap_event mmap_event;
8512 
8513 	if (!atomic_read(&nr_mmap_events))
8514 		return;
8515 
8516 	mmap_event = (struct perf_mmap_event){
8517 		.vma	= vma,
8518 		/* .file_name */
8519 		/* .file_size */
8520 		.event_id  = {
8521 			.header = {
8522 				.type = PERF_RECORD_MMAP,
8523 				.misc = PERF_RECORD_MISC_USER,
8524 				/* .size */
8525 			},
8526 			/* .pid */
8527 			/* .tid */
8528 			.start  = vma->vm_start,
8529 			.len    = vma->vm_end - vma->vm_start,
8530 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8531 		},
8532 		/* .maj (attr_mmap2 only) */
8533 		/* .min (attr_mmap2 only) */
8534 		/* .ino (attr_mmap2 only) */
8535 		/* .ino_generation (attr_mmap2 only) */
8536 		/* .prot (attr_mmap2 only) */
8537 		/* .flags (attr_mmap2 only) */
8538 	};
8539 
8540 	perf_addr_filters_adjust(vma);
8541 	perf_event_mmap_event(&mmap_event);
8542 }
8543 
8544 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8545 			  unsigned long size, u64 flags)
8546 {
8547 	struct perf_output_handle handle;
8548 	struct perf_sample_data sample;
8549 	struct perf_aux_event {
8550 		struct perf_event_header	header;
8551 		u64				offset;
8552 		u64				size;
8553 		u64				flags;
8554 	} rec = {
8555 		.header = {
8556 			.type = PERF_RECORD_AUX,
8557 			.misc = 0,
8558 			.size = sizeof(rec),
8559 		},
8560 		.offset		= head,
8561 		.size		= size,
8562 		.flags		= flags,
8563 	};
8564 	int ret;
8565 
8566 	perf_event_header__init_id(&rec.header, &sample, event);
8567 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8568 
8569 	if (ret)
8570 		return;
8571 
8572 	perf_output_put(&handle, rec);
8573 	perf_event__output_id_sample(event, &handle, &sample);
8574 
8575 	perf_output_end(&handle);
8576 }
8577 
8578 /*
8579  * Lost/dropped samples logging
8580  */
8581 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8582 {
8583 	struct perf_output_handle handle;
8584 	struct perf_sample_data sample;
8585 	int ret;
8586 
8587 	struct {
8588 		struct perf_event_header	header;
8589 		u64				lost;
8590 	} lost_samples_event = {
8591 		.header = {
8592 			.type = PERF_RECORD_LOST_SAMPLES,
8593 			.misc = 0,
8594 			.size = sizeof(lost_samples_event),
8595 		},
8596 		.lost		= lost,
8597 	};
8598 
8599 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8600 
8601 	ret = perf_output_begin(&handle, &sample, event,
8602 				lost_samples_event.header.size);
8603 	if (ret)
8604 		return;
8605 
8606 	perf_output_put(&handle, lost_samples_event);
8607 	perf_event__output_id_sample(event, &handle, &sample);
8608 	perf_output_end(&handle);
8609 }
8610 
8611 /*
8612  * context_switch tracking
8613  */
8614 
8615 struct perf_switch_event {
8616 	struct task_struct	*task;
8617 	struct task_struct	*next_prev;
8618 
8619 	struct {
8620 		struct perf_event_header	header;
8621 		u32				next_prev_pid;
8622 		u32				next_prev_tid;
8623 	} event_id;
8624 };
8625 
8626 static int perf_event_switch_match(struct perf_event *event)
8627 {
8628 	return event->attr.context_switch;
8629 }
8630 
8631 static void perf_event_switch_output(struct perf_event *event, void *data)
8632 {
8633 	struct perf_switch_event *se = data;
8634 	struct perf_output_handle handle;
8635 	struct perf_sample_data sample;
8636 	int ret;
8637 
8638 	if (!perf_event_switch_match(event))
8639 		return;
8640 
8641 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8642 	if (event->ctx->task) {
8643 		se->event_id.header.type = PERF_RECORD_SWITCH;
8644 		se->event_id.header.size = sizeof(se->event_id.header);
8645 	} else {
8646 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8647 		se->event_id.header.size = sizeof(se->event_id);
8648 		se->event_id.next_prev_pid =
8649 					perf_event_pid(event, se->next_prev);
8650 		se->event_id.next_prev_tid =
8651 					perf_event_tid(event, se->next_prev);
8652 	}
8653 
8654 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8655 
8656 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8657 	if (ret)
8658 		return;
8659 
8660 	if (event->ctx->task)
8661 		perf_output_put(&handle, se->event_id.header);
8662 	else
8663 		perf_output_put(&handle, se->event_id);
8664 
8665 	perf_event__output_id_sample(event, &handle, &sample);
8666 
8667 	perf_output_end(&handle);
8668 }
8669 
8670 static void perf_event_switch(struct task_struct *task,
8671 			      struct task_struct *next_prev, bool sched_in)
8672 {
8673 	struct perf_switch_event switch_event;
8674 
8675 	/* N.B. caller checks nr_switch_events != 0 */
8676 
8677 	switch_event = (struct perf_switch_event){
8678 		.task		= task,
8679 		.next_prev	= next_prev,
8680 		.event_id	= {
8681 			.header = {
8682 				/* .type */
8683 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8684 				/* .size */
8685 			},
8686 			/* .next_prev_pid */
8687 			/* .next_prev_tid */
8688 		},
8689 	};
8690 
8691 	if (!sched_in && task->on_rq) {
8692 		switch_event.event_id.header.misc |=
8693 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8694 	}
8695 
8696 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8697 }
8698 
8699 /*
8700  * IRQ throttle logging
8701  */
8702 
8703 static void perf_log_throttle(struct perf_event *event, int enable)
8704 {
8705 	struct perf_output_handle handle;
8706 	struct perf_sample_data sample;
8707 	int ret;
8708 
8709 	struct {
8710 		struct perf_event_header	header;
8711 		u64				time;
8712 		u64				id;
8713 		u64				stream_id;
8714 	} throttle_event = {
8715 		.header = {
8716 			.type = PERF_RECORD_THROTTLE,
8717 			.misc = 0,
8718 			.size = sizeof(throttle_event),
8719 		},
8720 		.time		= perf_event_clock(event),
8721 		.id		= primary_event_id(event),
8722 		.stream_id	= event->id,
8723 	};
8724 
8725 	if (enable)
8726 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8727 
8728 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8729 
8730 	ret = perf_output_begin(&handle, &sample, event,
8731 				throttle_event.header.size);
8732 	if (ret)
8733 		return;
8734 
8735 	perf_output_put(&handle, throttle_event);
8736 	perf_event__output_id_sample(event, &handle, &sample);
8737 	perf_output_end(&handle);
8738 }
8739 
8740 /*
8741  * ksymbol register/unregister tracking
8742  */
8743 
8744 struct perf_ksymbol_event {
8745 	const char	*name;
8746 	int		name_len;
8747 	struct {
8748 		struct perf_event_header        header;
8749 		u64				addr;
8750 		u32				len;
8751 		u16				ksym_type;
8752 		u16				flags;
8753 	} event_id;
8754 };
8755 
8756 static int perf_event_ksymbol_match(struct perf_event *event)
8757 {
8758 	return event->attr.ksymbol;
8759 }
8760 
8761 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8762 {
8763 	struct perf_ksymbol_event *ksymbol_event = data;
8764 	struct perf_output_handle handle;
8765 	struct perf_sample_data sample;
8766 	int ret;
8767 
8768 	if (!perf_event_ksymbol_match(event))
8769 		return;
8770 
8771 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8772 				   &sample, event);
8773 	ret = perf_output_begin(&handle, &sample, event,
8774 				ksymbol_event->event_id.header.size);
8775 	if (ret)
8776 		return;
8777 
8778 	perf_output_put(&handle, ksymbol_event->event_id);
8779 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8780 	perf_event__output_id_sample(event, &handle, &sample);
8781 
8782 	perf_output_end(&handle);
8783 }
8784 
8785 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8786 			const char *sym)
8787 {
8788 	struct perf_ksymbol_event ksymbol_event;
8789 	char name[KSYM_NAME_LEN];
8790 	u16 flags = 0;
8791 	int name_len;
8792 
8793 	if (!atomic_read(&nr_ksymbol_events))
8794 		return;
8795 
8796 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8797 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8798 		goto err;
8799 
8800 	strlcpy(name, sym, KSYM_NAME_LEN);
8801 	name_len = strlen(name) + 1;
8802 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8803 		name[name_len++] = '\0';
8804 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8805 
8806 	if (unregister)
8807 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8808 
8809 	ksymbol_event = (struct perf_ksymbol_event){
8810 		.name = name,
8811 		.name_len = name_len,
8812 		.event_id = {
8813 			.header = {
8814 				.type = PERF_RECORD_KSYMBOL,
8815 				.size = sizeof(ksymbol_event.event_id) +
8816 					name_len,
8817 			},
8818 			.addr = addr,
8819 			.len = len,
8820 			.ksym_type = ksym_type,
8821 			.flags = flags,
8822 		},
8823 	};
8824 
8825 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8826 	return;
8827 err:
8828 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8829 }
8830 
8831 /*
8832  * bpf program load/unload tracking
8833  */
8834 
8835 struct perf_bpf_event {
8836 	struct bpf_prog	*prog;
8837 	struct {
8838 		struct perf_event_header        header;
8839 		u16				type;
8840 		u16				flags;
8841 		u32				id;
8842 		u8				tag[BPF_TAG_SIZE];
8843 	} event_id;
8844 };
8845 
8846 static int perf_event_bpf_match(struct perf_event *event)
8847 {
8848 	return event->attr.bpf_event;
8849 }
8850 
8851 static void perf_event_bpf_output(struct perf_event *event, void *data)
8852 {
8853 	struct perf_bpf_event *bpf_event = data;
8854 	struct perf_output_handle handle;
8855 	struct perf_sample_data sample;
8856 	int ret;
8857 
8858 	if (!perf_event_bpf_match(event))
8859 		return;
8860 
8861 	perf_event_header__init_id(&bpf_event->event_id.header,
8862 				   &sample, event);
8863 	ret = perf_output_begin(&handle, data, event,
8864 				bpf_event->event_id.header.size);
8865 	if (ret)
8866 		return;
8867 
8868 	perf_output_put(&handle, bpf_event->event_id);
8869 	perf_event__output_id_sample(event, &handle, &sample);
8870 
8871 	perf_output_end(&handle);
8872 }
8873 
8874 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8875 					 enum perf_bpf_event_type type)
8876 {
8877 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8878 	int i;
8879 
8880 	if (prog->aux->func_cnt == 0) {
8881 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8882 				   (u64)(unsigned long)prog->bpf_func,
8883 				   prog->jited_len, unregister,
8884 				   prog->aux->ksym.name);
8885 	} else {
8886 		for (i = 0; i < prog->aux->func_cnt; i++) {
8887 			struct bpf_prog *subprog = prog->aux->func[i];
8888 
8889 			perf_event_ksymbol(
8890 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8891 				(u64)(unsigned long)subprog->bpf_func,
8892 				subprog->jited_len, unregister,
8893 				prog->aux->ksym.name);
8894 		}
8895 	}
8896 }
8897 
8898 void perf_event_bpf_event(struct bpf_prog *prog,
8899 			  enum perf_bpf_event_type type,
8900 			  u16 flags)
8901 {
8902 	struct perf_bpf_event bpf_event;
8903 
8904 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8905 	    type >= PERF_BPF_EVENT_MAX)
8906 		return;
8907 
8908 	switch (type) {
8909 	case PERF_BPF_EVENT_PROG_LOAD:
8910 	case PERF_BPF_EVENT_PROG_UNLOAD:
8911 		if (atomic_read(&nr_ksymbol_events))
8912 			perf_event_bpf_emit_ksymbols(prog, type);
8913 		break;
8914 	default:
8915 		break;
8916 	}
8917 
8918 	if (!atomic_read(&nr_bpf_events))
8919 		return;
8920 
8921 	bpf_event = (struct perf_bpf_event){
8922 		.prog = prog,
8923 		.event_id = {
8924 			.header = {
8925 				.type = PERF_RECORD_BPF_EVENT,
8926 				.size = sizeof(bpf_event.event_id),
8927 			},
8928 			.type = type,
8929 			.flags = flags,
8930 			.id = prog->aux->id,
8931 		},
8932 	};
8933 
8934 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8935 
8936 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8937 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8938 }
8939 
8940 struct perf_text_poke_event {
8941 	const void		*old_bytes;
8942 	const void		*new_bytes;
8943 	size_t			pad;
8944 	u16			old_len;
8945 	u16			new_len;
8946 
8947 	struct {
8948 		struct perf_event_header	header;
8949 
8950 		u64				addr;
8951 	} event_id;
8952 };
8953 
8954 static int perf_event_text_poke_match(struct perf_event *event)
8955 {
8956 	return event->attr.text_poke;
8957 }
8958 
8959 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8960 {
8961 	struct perf_text_poke_event *text_poke_event = data;
8962 	struct perf_output_handle handle;
8963 	struct perf_sample_data sample;
8964 	u64 padding = 0;
8965 	int ret;
8966 
8967 	if (!perf_event_text_poke_match(event))
8968 		return;
8969 
8970 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8971 
8972 	ret = perf_output_begin(&handle, &sample, event,
8973 				text_poke_event->event_id.header.size);
8974 	if (ret)
8975 		return;
8976 
8977 	perf_output_put(&handle, text_poke_event->event_id);
8978 	perf_output_put(&handle, text_poke_event->old_len);
8979 	perf_output_put(&handle, text_poke_event->new_len);
8980 
8981 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8982 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8983 
8984 	if (text_poke_event->pad)
8985 		__output_copy(&handle, &padding, text_poke_event->pad);
8986 
8987 	perf_event__output_id_sample(event, &handle, &sample);
8988 
8989 	perf_output_end(&handle);
8990 }
8991 
8992 void perf_event_text_poke(const void *addr, const void *old_bytes,
8993 			  size_t old_len, const void *new_bytes, size_t new_len)
8994 {
8995 	struct perf_text_poke_event text_poke_event;
8996 	size_t tot, pad;
8997 
8998 	if (!atomic_read(&nr_text_poke_events))
8999 		return;
9000 
9001 	tot  = sizeof(text_poke_event.old_len) + old_len;
9002 	tot += sizeof(text_poke_event.new_len) + new_len;
9003 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9004 
9005 	text_poke_event = (struct perf_text_poke_event){
9006 		.old_bytes    = old_bytes,
9007 		.new_bytes    = new_bytes,
9008 		.pad          = pad,
9009 		.old_len      = old_len,
9010 		.new_len      = new_len,
9011 		.event_id  = {
9012 			.header = {
9013 				.type = PERF_RECORD_TEXT_POKE,
9014 				.misc = PERF_RECORD_MISC_KERNEL,
9015 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9016 			},
9017 			.addr = (unsigned long)addr,
9018 		},
9019 	};
9020 
9021 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9022 }
9023 
9024 void perf_event_itrace_started(struct perf_event *event)
9025 {
9026 	event->attach_state |= PERF_ATTACH_ITRACE;
9027 }
9028 
9029 static void perf_log_itrace_start(struct perf_event *event)
9030 {
9031 	struct perf_output_handle handle;
9032 	struct perf_sample_data sample;
9033 	struct perf_aux_event {
9034 		struct perf_event_header        header;
9035 		u32				pid;
9036 		u32				tid;
9037 	} rec;
9038 	int ret;
9039 
9040 	if (event->parent)
9041 		event = event->parent;
9042 
9043 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9044 	    event->attach_state & PERF_ATTACH_ITRACE)
9045 		return;
9046 
9047 	rec.header.type	= PERF_RECORD_ITRACE_START;
9048 	rec.header.misc	= 0;
9049 	rec.header.size	= sizeof(rec);
9050 	rec.pid	= perf_event_pid(event, current);
9051 	rec.tid	= perf_event_tid(event, current);
9052 
9053 	perf_event_header__init_id(&rec.header, &sample, event);
9054 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9055 
9056 	if (ret)
9057 		return;
9058 
9059 	perf_output_put(&handle, rec);
9060 	perf_event__output_id_sample(event, &handle, &sample);
9061 
9062 	perf_output_end(&handle);
9063 }
9064 
9065 static int
9066 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9067 {
9068 	struct hw_perf_event *hwc = &event->hw;
9069 	int ret = 0;
9070 	u64 seq;
9071 
9072 	seq = __this_cpu_read(perf_throttled_seq);
9073 	if (seq != hwc->interrupts_seq) {
9074 		hwc->interrupts_seq = seq;
9075 		hwc->interrupts = 1;
9076 	} else {
9077 		hwc->interrupts++;
9078 		if (unlikely(throttle
9079 			     && hwc->interrupts >= max_samples_per_tick)) {
9080 			__this_cpu_inc(perf_throttled_count);
9081 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9082 			hwc->interrupts = MAX_INTERRUPTS;
9083 			perf_log_throttle(event, 0);
9084 			ret = 1;
9085 		}
9086 	}
9087 
9088 	if (event->attr.freq) {
9089 		u64 now = perf_clock();
9090 		s64 delta = now - hwc->freq_time_stamp;
9091 
9092 		hwc->freq_time_stamp = now;
9093 
9094 		if (delta > 0 && delta < 2*TICK_NSEC)
9095 			perf_adjust_period(event, delta, hwc->last_period, true);
9096 	}
9097 
9098 	return ret;
9099 }
9100 
9101 int perf_event_account_interrupt(struct perf_event *event)
9102 {
9103 	return __perf_event_account_interrupt(event, 1);
9104 }
9105 
9106 /*
9107  * Generic event overflow handling, sampling.
9108  */
9109 
9110 static int __perf_event_overflow(struct perf_event *event,
9111 				   int throttle, struct perf_sample_data *data,
9112 				   struct pt_regs *regs)
9113 {
9114 	int events = atomic_read(&event->event_limit);
9115 	int ret = 0;
9116 
9117 	/*
9118 	 * Non-sampling counters might still use the PMI to fold short
9119 	 * hardware counters, ignore those.
9120 	 */
9121 	if (unlikely(!is_sampling_event(event)))
9122 		return 0;
9123 
9124 	ret = __perf_event_account_interrupt(event, throttle);
9125 
9126 	/*
9127 	 * XXX event_limit might not quite work as expected on inherited
9128 	 * events
9129 	 */
9130 
9131 	event->pending_kill = POLL_IN;
9132 	if (events && atomic_dec_and_test(&event->event_limit)) {
9133 		ret = 1;
9134 		event->pending_kill = POLL_HUP;
9135 		event->pending_addr = data->addr;
9136 
9137 		perf_event_disable_inatomic(event);
9138 	}
9139 
9140 	READ_ONCE(event->overflow_handler)(event, data, regs);
9141 
9142 	if (*perf_event_fasync(event) && event->pending_kill) {
9143 		event->pending_wakeup = 1;
9144 		irq_work_queue(&event->pending);
9145 	}
9146 
9147 	return ret;
9148 }
9149 
9150 int perf_event_overflow(struct perf_event *event,
9151 			  struct perf_sample_data *data,
9152 			  struct pt_regs *regs)
9153 {
9154 	return __perf_event_overflow(event, 1, data, regs);
9155 }
9156 
9157 /*
9158  * Generic software event infrastructure
9159  */
9160 
9161 struct swevent_htable {
9162 	struct swevent_hlist		*swevent_hlist;
9163 	struct mutex			hlist_mutex;
9164 	int				hlist_refcount;
9165 
9166 	/* Recursion avoidance in each contexts */
9167 	int				recursion[PERF_NR_CONTEXTS];
9168 };
9169 
9170 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9171 
9172 /*
9173  * We directly increment event->count and keep a second value in
9174  * event->hw.period_left to count intervals. This period event
9175  * is kept in the range [-sample_period, 0] so that we can use the
9176  * sign as trigger.
9177  */
9178 
9179 u64 perf_swevent_set_period(struct perf_event *event)
9180 {
9181 	struct hw_perf_event *hwc = &event->hw;
9182 	u64 period = hwc->last_period;
9183 	u64 nr, offset;
9184 	s64 old, val;
9185 
9186 	hwc->last_period = hwc->sample_period;
9187 
9188 again:
9189 	old = val = local64_read(&hwc->period_left);
9190 	if (val < 0)
9191 		return 0;
9192 
9193 	nr = div64_u64(period + val, period);
9194 	offset = nr * period;
9195 	val -= offset;
9196 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9197 		goto again;
9198 
9199 	return nr;
9200 }
9201 
9202 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9203 				    struct perf_sample_data *data,
9204 				    struct pt_regs *regs)
9205 {
9206 	struct hw_perf_event *hwc = &event->hw;
9207 	int throttle = 0;
9208 
9209 	if (!overflow)
9210 		overflow = perf_swevent_set_period(event);
9211 
9212 	if (hwc->interrupts == MAX_INTERRUPTS)
9213 		return;
9214 
9215 	for (; overflow; overflow--) {
9216 		if (__perf_event_overflow(event, throttle,
9217 					    data, regs)) {
9218 			/*
9219 			 * We inhibit the overflow from happening when
9220 			 * hwc->interrupts == MAX_INTERRUPTS.
9221 			 */
9222 			break;
9223 		}
9224 		throttle = 1;
9225 	}
9226 }
9227 
9228 static void perf_swevent_event(struct perf_event *event, u64 nr,
9229 			       struct perf_sample_data *data,
9230 			       struct pt_regs *regs)
9231 {
9232 	struct hw_perf_event *hwc = &event->hw;
9233 
9234 	local64_add(nr, &event->count);
9235 
9236 	if (!regs)
9237 		return;
9238 
9239 	if (!is_sampling_event(event))
9240 		return;
9241 
9242 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9243 		data->period = nr;
9244 		return perf_swevent_overflow(event, 1, data, regs);
9245 	} else
9246 		data->period = event->hw.last_period;
9247 
9248 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9249 		return perf_swevent_overflow(event, 1, data, regs);
9250 
9251 	if (local64_add_negative(nr, &hwc->period_left))
9252 		return;
9253 
9254 	perf_swevent_overflow(event, 0, data, regs);
9255 }
9256 
9257 static int perf_exclude_event(struct perf_event *event,
9258 			      struct pt_regs *regs)
9259 {
9260 	if (event->hw.state & PERF_HES_STOPPED)
9261 		return 1;
9262 
9263 	if (regs) {
9264 		if (event->attr.exclude_user && user_mode(regs))
9265 			return 1;
9266 
9267 		if (event->attr.exclude_kernel && !user_mode(regs))
9268 			return 1;
9269 	}
9270 
9271 	return 0;
9272 }
9273 
9274 static int perf_swevent_match(struct perf_event *event,
9275 				enum perf_type_id type,
9276 				u32 event_id,
9277 				struct perf_sample_data *data,
9278 				struct pt_regs *regs)
9279 {
9280 	if (event->attr.type != type)
9281 		return 0;
9282 
9283 	if (event->attr.config != event_id)
9284 		return 0;
9285 
9286 	if (perf_exclude_event(event, regs))
9287 		return 0;
9288 
9289 	return 1;
9290 }
9291 
9292 static inline u64 swevent_hash(u64 type, u32 event_id)
9293 {
9294 	u64 val = event_id | (type << 32);
9295 
9296 	return hash_64(val, SWEVENT_HLIST_BITS);
9297 }
9298 
9299 static inline struct hlist_head *
9300 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9301 {
9302 	u64 hash = swevent_hash(type, event_id);
9303 
9304 	return &hlist->heads[hash];
9305 }
9306 
9307 /* For the read side: events when they trigger */
9308 static inline struct hlist_head *
9309 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9310 {
9311 	struct swevent_hlist *hlist;
9312 
9313 	hlist = rcu_dereference(swhash->swevent_hlist);
9314 	if (!hlist)
9315 		return NULL;
9316 
9317 	return __find_swevent_head(hlist, type, event_id);
9318 }
9319 
9320 /* For the event head insertion and removal in the hlist */
9321 static inline struct hlist_head *
9322 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9323 {
9324 	struct swevent_hlist *hlist;
9325 	u32 event_id = event->attr.config;
9326 	u64 type = event->attr.type;
9327 
9328 	/*
9329 	 * Event scheduling is always serialized against hlist allocation
9330 	 * and release. Which makes the protected version suitable here.
9331 	 * The context lock guarantees that.
9332 	 */
9333 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9334 					  lockdep_is_held(&event->ctx->lock));
9335 	if (!hlist)
9336 		return NULL;
9337 
9338 	return __find_swevent_head(hlist, type, event_id);
9339 }
9340 
9341 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9342 				    u64 nr,
9343 				    struct perf_sample_data *data,
9344 				    struct pt_regs *regs)
9345 {
9346 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9347 	struct perf_event *event;
9348 	struct hlist_head *head;
9349 
9350 	rcu_read_lock();
9351 	head = find_swevent_head_rcu(swhash, type, event_id);
9352 	if (!head)
9353 		goto end;
9354 
9355 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9356 		if (perf_swevent_match(event, type, event_id, data, regs))
9357 			perf_swevent_event(event, nr, data, regs);
9358 	}
9359 end:
9360 	rcu_read_unlock();
9361 }
9362 
9363 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9364 
9365 int perf_swevent_get_recursion_context(void)
9366 {
9367 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9368 
9369 	return get_recursion_context(swhash->recursion);
9370 }
9371 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9372 
9373 void perf_swevent_put_recursion_context(int rctx)
9374 {
9375 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9376 
9377 	put_recursion_context(swhash->recursion, rctx);
9378 }
9379 
9380 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9381 {
9382 	struct perf_sample_data data;
9383 
9384 	if (WARN_ON_ONCE(!regs))
9385 		return;
9386 
9387 	perf_sample_data_init(&data, addr, 0);
9388 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9389 }
9390 
9391 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9392 {
9393 	int rctx;
9394 
9395 	preempt_disable_notrace();
9396 	rctx = perf_swevent_get_recursion_context();
9397 	if (unlikely(rctx < 0))
9398 		goto fail;
9399 
9400 	___perf_sw_event(event_id, nr, regs, addr);
9401 
9402 	perf_swevent_put_recursion_context(rctx);
9403 fail:
9404 	preempt_enable_notrace();
9405 }
9406 
9407 static void perf_swevent_read(struct perf_event *event)
9408 {
9409 }
9410 
9411 static int perf_swevent_add(struct perf_event *event, int flags)
9412 {
9413 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9414 	struct hw_perf_event *hwc = &event->hw;
9415 	struct hlist_head *head;
9416 
9417 	if (is_sampling_event(event)) {
9418 		hwc->last_period = hwc->sample_period;
9419 		perf_swevent_set_period(event);
9420 	}
9421 
9422 	hwc->state = !(flags & PERF_EF_START);
9423 
9424 	head = find_swevent_head(swhash, event);
9425 	if (WARN_ON_ONCE(!head))
9426 		return -EINVAL;
9427 
9428 	hlist_add_head_rcu(&event->hlist_entry, head);
9429 	perf_event_update_userpage(event);
9430 
9431 	return 0;
9432 }
9433 
9434 static void perf_swevent_del(struct perf_event *event, int flags)
9435 {
9436 	hlist_del_rcu(&event->hlist_entry);
9437 }
9438 
9439 static void perf_swevent_start(struct perf_event *event, int flags)
9440 {
9441 	event->hw.state = 0;
9442 }
9443 
9444 static void perf_swevent_stop(struct perf_event *event, int flags)
9445 {
9446 	event->hw.state = PERF_HES_STOPPED;
9447 }
9448 
9449 /* Deref the hlist from the update side */
9450 static inline struct swevent_hlist *
9451 swevent_hlist_deref(struct swevent_htable *swhash)
9452 {
9453 	return rcu_dereference_protected(swhash->swevent_hlist,
9454 					 lockdep_is_held(&swhash->hlist_mutex));
9455 }
9456 
9457 static void swevent_hlist_release(struct swevent_htable *swhash)
9458 {
9459 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9460 
9461 	if (!hlist)
9462 		return;
9463 
9464 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9465 	kfree_rcu(hlist, rcu_head);
9466 }
9467 
9468 static void swevent_hlist_put_cpu(int cpu)
9469 {
9470 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9471 
9472 	mutex_lock(&swhash->hlist_mutex);
9473 
9474 	if (!--swhash->hlist_refcount)
9475 		swevent_hlist_release(swhash);
9476 
9477 	mutex_unlock(&swhash->hlist_mutex);
9478 }
9479 
9480 static void swevent_hlist_put(void)
9481 {
9482 	int cpu;
9483 
9484 	for_each_possible_cpu(cpu)
9485 		swevent_hlist_put_cpu(cpu);
9486 }
9487 
9488 static int swevent_hlist_get_cpu(int cpu)
9489 {
9490 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9491 	int err = 0;
9492 
9493 	mutex_lock(&swhash->hlist_mutex);
9494 	if (!swevent_hlist_deref(swhash) &&
9495 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9496 		struct swevent_hlist *hlist;
9497 
9498 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9499 		if (!hlist) {
9500 			err = -ENOMEM;
9501 			goto exit;
9502 		}
9503 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9504 	}
9505 	swhash->hlist_refcount++;
9506 exit:
9507 	mutex_unlock(&swhash->hlist_mutex);
9508 
9509 	return err;
9510 }
9511 
9512 static int swevent_hlist_get(void)
9513 {
9514 	int err, cpu, failed_cpu;
9515 
9516 	mutex_lock(&pmus_lock);
9517 	for_each_possible_cpu(cpu) {
9518 		err = swevent_hlist_get_cpu(cpu);
9519 		if (err) {
9520 			failed_cpu = cpu;
9521 			goto fail;
9522 		}
9523 	}
9524 	mutex_unlock(&pmus_lock);
9525 	return 0;
9526 fail:
9527 	for_each_possible_cpu(cpu) {
9528 		if (cpu == failed_cpu)
9529 			break;
9530 		swevent_hlist_put_cpu(cpu);
9531 	}
9532 	mutex_unlock(&pmus_lock);
9533 	return err;
9534 }
9535 
9536 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9537 
9538 static void sw_perf_event_destroy(struct perf_event *event)
9539 {
9540 	u64 event_id = event->attr.config;
9541 
9542 	WARN_ON(event->parent);
9543 
9544 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9545 	swevent_hlist_put();
9546 }
9547 
9548 static int perf_swevent_init(struct perf_event *event)
9549 {
9550 	u64 event_id = event->attr.config;
9551 
9552 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9553 		return -ENOENT;
9554 
9555 	/*
9556 	 * no branch sampling for software events
9557 	 */
9558 	if (has_branch_stack(event))
9559 		return -EOPNOTSUPP;
9560 
9561 	switch (event_id) {
9562 	case PERF_COUNT_SW_CPU_CLOCK:
9563 	case PERF_COUNT_SW_TASK_CLOCK:
9564 		return -ENOENT;
9565 
9566 	default:
9567 		break;
9568 	}
9569 
9570 	if (event_id >= PERF_COUNT_SW_MAX)
9571 		return -ENOENT;
9572 
9573 	if (!event->parent) {
9574 		int err;
9575 
9576 		err = swevent_hlist_get();
9577 		if (err)
9578 			return err;
9579 
9580 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9581 		event->destroy = sw_perf_event_destroy;
9582 	}
9583 
9584 	return 0;
9585 }
9586 
9587 static struct pmu perf_swevent = {
9588 	.task_ctx_nr	= perf_sw_context,
9589 
9590 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9591 
9592 	.event_init	= perf_swevent_init,
9593 	.add		= perf_swevent_add,
9594 	.del		= perf_swevent_del,
9595 	.start		= perf_swevent_start,
9596 	.stop		= perf_swevent_stop,
9597 	.read		= perf_swevent_read,
9598 };
9599 
9600 #ifdef CONFIG_EVENT_TRACING
9601 
9602 static int perf_tp_filter_match(struct perf_event *event,
9603 				struct perf_sample_data *data)
9604 {
9605 	void *record = data->raw->frag.data;
9606 
9607 	/* only top level events have filters set */
9608 	if (event->parent)
9609 		event = event->parent;
9610 
9611 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9612 		return 1;
9613 	return 0;
9614 }
9615 
9616 static int perf_tp_event_match(struct perf_event *event,
9617 				struct perf_sample_data *data,
9618 				struct pt_regs *regs)
9619 {
9620 	if (event->hw.state & PERF_HES_STOPPED)
9621 		return 0;
9622 	/*
9623 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9624 	 */
9625 	if (event->attr.exclude_kernel && !user_mode(regs))
9626 		return 0;
9627 
9628 	if (!perf_tp_filter_match(event, data))
9629 		return 0;
9630 
9631 	return 1;
9632 }
9633 
9634 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9635 			       struct trace_event_call *call, u64 count,
9636 			       struct pt_regs *regs, struct hlist_head *head,
9637 			       struct task_struct *task)
9638 {
9639 	if (bpf_prog_array_valid(call)) {
9640 		*(struct pt_regs **)raw_data = regs;
9641 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9642 			perf_swevent_put_recursion_context(rctx);
9643 			return;
9644 		}
9645 	}
9646 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9647 		      rctx, task);
9648 }
9649 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9650 
9651 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9652 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9653 		   struct task_struct *task)
9654 {
9655 	struct perf_sample_data data;
9656 	struct perf_event *event;
9657 
9658 	struct perf_raw_record raw = {
9659 		.frag = {
9660 			.size = entry_size,
9661 			.data = record,
9662 		},
9663 	};
9664 
9665 	perf_sample_data_init(&data, 0, 0);
9666 	data.raw = &raw;
9667 
9668 	perf_trace_buf_update(record, event_type);
9669 
9670 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9671 		if (perf_tp_event_match(event, &data, regs))
9672 			perf_swevent_event(event, count, &data, regs);
9673 	}
9674 
9675 	/*
9676 	 * If we got specified a target task, also iterate its context and
9677 	 * deliver this event there too.
9678 	 */
9679 	if (task && task != current) {
9680 		struct perf_event_context *ctx;
9681 		struct trace_entry *entry = record;
9682 
9683 		rcu_read_lock();
9684 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9685 		if (!ctx)
9686 			goto unlock;
9687 
9688 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9689 			if (event->cpu != smp_processor_id())
9690 				continue;
9691 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9692 				continue;
9693 			if (event->attr.config != entry->type)
9694 				continue;
9695 			if (perf_tp_event_match(event, &data, regs))
9696 				perf_swevent_event(event, count, &data, regs);
9697 		}
9698 unlock:
9699 		rcu_read_unlock();
9700 	}
9701 
9702 	perf_swevent_put_recursion_context(rctx);
9703 }
9704 EXPORT_SYMBOL_GPL(perf_tp_event);
9705 
9706 static void tp_perf_event_destroy(struct perf_event *event)
9707 {
9708 	perf_trace_destroy(event);
9709 }
9710 
9711 static int perf_tp_event_init(struct perf_event *event)
9712 {
9713 	int err;
9714 
9715 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9716 		return -ENOENT;
9717 
9718 	/*
9719 	 * no branch sampling for tracepoint events
9720 	 */
9721 	if (has_branch_stack(event))
9722 		return -EOPNOTSUPP;
9723 
9724 	err = perf_trace_init(event);
9725 	if (err)
9726 		return err;
9727 
9728 	event->destroy = tp_perf_event_destroy;
9729 
9730 	return 0;
9731 }
9732 
9733 static struct pmu perf_tracepoint = {
9734 	.task_ctx_nr	= perf_sw_context,
9735 
9736 	.event_init	= perf_tp_event_init,
9737 	.add		= perf_trace_add,
9738 	.del		= perf_trace_del,
9739 	.start		= perf_swevent_start,
9740 	.stop		= perf_swevent_stop,
9741 	.read		= perf_swevent_read,
9742 };
9743 
9744 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9745 /*
9746  * Flags in config, used by dynamic PMU kprobe and uprobe
9747  * The flags should match following PMU_FORMAT_ATTR().
9748  *
9749  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9750  *                               if not set, create kprobe/uprobe
9751  *
9752  * The following values specify a reference counter (or semaphore in the
9753  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9754  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9755  *
9756  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9757  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9758  */
9759 enum perf_probe_config {
9760 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9761 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9762 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9763 };
9764 
9765 PMU_FORMAT_ATTR(retprobe, "config:0");
9766 #endif
9767 
9768 #ifdef CONFIG_KPROBE_EVENTS
9769 static struct attribute *kprobe_attrs[] = {
9770 	&format_attr_retprobe.attr,
9771 	NULL,
9772 };
9773 
9774 static struct attribute_group kprobe_format_group = {
9775 	.name = "format",
9776 	.attrs = kprobe_attrs,
9777 };
9778 
9779 static const struct attribute_group *kprobe_attr_groups[] = {
9780 	&kprobe_format_group,
9781 	NULL,
9782 };
9783 
9784 static int perf_kprobe_event_init(struct perf_event *event);
9785 static struct pmu perf_kprobe = {
9786 	.task_ctx_nr	= perf_sw_context,
9787 	.event_init	= perf_kprobe_event_init,
9788 	.add		= perf_trace_add,
9789 	.del		= perf_trace_del,
9790 	.start		= perf_swevent_start,
9791 	.stop		= perf_swevent_stop,
9792 	.read		= perf_swevent_read,
9793 	.attr_groups	= kprobe_attr_groups,
9794 };
9795 
9796 static int perf_kprobe_event_init(struct perf_event *event)
9797 {
9798 	int err;
9799 	bool is_retprobe;
9800 
9801 	if (event->attr.type != perf_kprobe.type)
9802 		return -ENOENT;
9803 
9804 	if (!perfmon_capable())
9805 		return -EACCES;
9806 
9807 	/*
9808 	 * no branch sampling for probe events
9809 	 */
9810 	if (has_branch_stack(event))
9811 		return -EOPNOTSUPP;
9812 
9813 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9814 	err = perf_kprobe_init(event, is_retprobe);
9815 	if (err)
9816 		return err;
9817 
9818 	event->destroy = perf_kprobe_destroy;
9819 
9820 	return 0;
9821 }
9822 #endif /* CONFIG_KPROBE_EVENTS */
9823 
9824 #ifdef CONFIG_UPROBE_EVENTS
9825 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9826 
9827 static struct attribute *uprobe_attrs[] = {
9828 	&format_attr_retprobe.attr,
9829 	&format_attr_ref_ctr_offset.attr,
9830 	NULL,
9831 };
9832 
9833 static struct attribute_group uprobe_format_group = {
9834 	.name = "format",
9835 	.attrs = uprobe_attrs,
9836 };
9837 
9838 static const struct attribute_group *uprobe_attr_groups[] = {
9839 	&uprobe_format_group,
9840 	NULL,
9841 };
9842 
9843 static int perf_uprobe_event_init(struct perf_event *event);
9844 static struct pmu perf_uprobe = {
9845 	.task_ctx_nr	= perf_sw_context,
9846 	.event_init	= perf_uprobe_event_init,
9847 	.add		= perf_trace_add,
9848 	.del		= perf_trace_del,
9849 	.start		= perf_swevent_start,
9850 	.stop		= perf_swevent_stop,
9851 	.read		= perf_swevent_read,
9852 	.attr_groups	= uprobe_attr_groups,
9853 };
9854 
9855 static int perf_uprobe_event_init(struct perf_event *event)
9856 {
9857 	int err;
9858 	unsigned long ref_ctr_offset;
9859 	bool is_retprobe;
9860 
9861 	if (event->attr.type != perf_uprobe.type)
9862 		return -ENOENT;
9863 
9864 	if (!perfmon_capable())
9865 		return -EACCES;
9866 
9867 	/*
9868 	 * no branch sampling for probe events
9869 	 */
9870 	if (has_branch_stack(event))
9871 		return -EOPNOTSUPP;
9872 
9873 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9874 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9875 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9876 	if (err)
9877 		return err;
9878 
9879 	event->destroy = perf_uprobe_destroy;
9880 
9881 	return 0;
9882 }
9883 #endif /* CONFIG_UPROBE_EVENTS */
9884 
9885 static inline void perf_tp_register(void)
9886 {
9887 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9888 #ifdef CONFIG_KPROBE_EVENTS
9889 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9890 #endif
9891 #ifdef CONFIG_UPROBE_EVENTS
9892 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9893 #endif
9894 }
9895 
9896 static void perf_event_free_filter(struct perf_event *event)
9897 {
9898 	ftrace_profile_free_filter(event);
9899 }
9900 
9901 #ifdef CONFIG_BPF_SYSCALL
9902 static void bpf_overflow_handler(struct perf_event *event,
9903 				 struct perf_sample_data *data,
9904 				 struct pt_regs *regs)
9905 {
9906 	struct bpf_perf_event_data_kern ctx = {
9907 		.data = data,
9908 		.event = event,
9909 	};
9910 	int ret = 0;
9911 
9912 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9913 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9914 		goto out;
9915 	rcu_read_lock();
9916 	ret = BPF_PROG_RUN(event->prog, &ctx);
9917 	rcu_read_unlock();
9918 out:
9919 	__this_cpu_dec(bpf_prog_active);
9920 	if (!ret)
9921 		return;
9922 
9923 	event->orig_overflow_handler(event, data, regs);
9924 }
9925 
9926 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9927 {
9928 	struct bpf_prog *prog;
9929 
9930 	if (event->overflow_handler_context)
9931 		/* hw breakpoint or kernel counter */
9932 		return -EINVAL;
9933 
9934 	if (event->prog)
9935 		return -EEXIST;
9936 
9937 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9938 	if (IS_ERR(prog))
9939 		return PTR_ERR(prog);
9940 
9941 	if (event->attr.precise_ip &&
9942 	    prog->call_get_stack &&
9943 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9944 	     event->attr.exclude_callchain_kernel ||
9945 	     event->attr.exclude_callchain_user)) {
9946 		/*
9947 		 * On perf_event with precise_ip, calling bpf_get_stack()
9948 		 * may trigger unwinder warnings and occasional crashes.
9949 		 * bpf_get_[stack|stackid] works around this issue by using
9950 		 * callchain attached to perf_sample_data. If the
9951 		 * perf_event does not full (kernel and user) callchain
9952 		 * attached to perf_sample_data, do not allow attaching BPF
9953 		 * program that calls bpf_get_[stack|stackid].
9954 		 */
9955 		bpf_prog_put(prog);
9956 		return -EPROTO;
9957 	}
9958 
9959 	event->prog = prog;
9960 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9961 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9962 	return 0;
9963 }
9964 
9965 static void perf_event_free_bpf_handler(struct perf_event *event)
9966 {
9967 	struct bpf_prog *prog = event->prog;
9968 
9969 	if (!prog)
9970 		return;
9971 
9972 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9973 	event->prog = NULL;
9974 	bpf_prog_put(prog);
9975 }
9976 #else
9977 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9978 {
9979 	return -EOPNOTSUPP;
9980 }
9981 static void perf_event_free_bpf_handler(struct perf_event *event)
9982 {
9983 }
9984 #endif
9985 
9986 /*
9987  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9988  * with perf_event_open()
9989  */
9990 static inline bool perf_event_is_tracing(struct perf_event *event)
9991 {
9992 	if (event->pmu == &perf_tracepoint)
9993 		return true;
9994 #ifdef CONFIG_KPROBE_EVENTS
9995 	if (event->pmu == &perf_kprobe)
9996 		return true;
9997 #endif
9998 #ifdef CONFIG_UPROBE_EVENTS
9999 	if (event->pmu == &perf_uprobe)
10000 		return true;
10001 #endif
10002 	return false;
10003 }
10004 
10005 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10006 {
10007 	bool is_kprobe, is_tracepoint, is_syscall_tp;
10008 	struct bpf_prog *prog;
10009 	int ret;
10010 
10011 	if (!perf_event_is_tracing(event))
10012 		return perf_event_set_bpf_handler(event, prog_fd);
10013 
10014 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10015 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10016 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10017 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10018 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10019 		return -EINVAL;
10020 
10021 	prog = bpf_prog_get(prog_fd);
10022 	if (IS_ERR(prog))
10023 		return PTR_ERR(prog);
10024 
10025 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10026 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10027 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
10028 		/* valid fd, but invalid bpf program type */
10029 		bpf_prog_put(prog);
10030 		return -EINVAL;
10031 	}
10032 
10033 	/* Kprobe override only works for kprobes, not uprobes. */
10034 	if (prog->kprobe_override &&
10035 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
10036 		bpf_prog_put(prog);
10037 		return -EINVAL;
10038 	}
10039 
10040 	if (is_tracepoint || is_syscall_tp) {
10041 		int off = trace_event_get_offsets(event->tp_event);
10042 
10043 		if (prog->aux->max_ctx_offset > off) {
10044 			bpf_prog_put(prog);
10045 			return -EACCES;
10046 		}
10047 	}
10048 
10049 	ret = perf_event_attach_bpf_prog(event, prog);
10050 	if (ret)
10051 		bpf_prog_put(prog);
10052 	return ret;
10053 }
10054 
10055 static void perf_event_free_bpf_prog(struct perf_event *event)
10056 {
10057 	if (!perf_event_is_tracing(event)) {
10058 		perf_event_free_bpf_handler(event);
10059 		return;
10060 	}
10061 	perf_event_detach_bpf_prog(event);
10062 }
10063 
10064 #else
10065 
10066 static inline void perf_tp_register(void)
10067 {
10068 }
10069 
10070 static void perf_event_free_filter(struct perf_event *event)
10071 {
10072 }
10073 
10074 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10075 {
10076 	return -ENOENT;
10077 }
10078 
10079 static void perf_event_free_bpf_prog(struct perf_event *event)
10080 {
10081 }
10082 #endif /* CONFIG_EVENT_TRACING */
10083 
10084 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10085 void perf_bp_event(struct perf_event *bp, void *data)
10086 {
10087 	struct perf_sample_data sample;
10088 	struct pt_regs *regs = data;
10089 
10090 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10091 
10092 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10093 		perf_swevent_event(bp, 1, &sample, regs);
10094 }
10095 #endif
10096 
10097 /*
10098  * Allocate a new address filter
10099  */
10100 static struct perf_addr_filter *
10101 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10102 {
10103 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10104 	struct perf_addr_filter *filter;
10105 
10106 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10107 	if (!filter)
10108 		return NULL;
10109 
10110 	INIT_LIST_HEAD(&filter->entry);
10111 	list_add_tail(&filter->entry, filters);
10112 
10113 	return filter;
10114 }
10115 
10116 static void free_filters_list(struct list_head *filters)
10117 {
10118 	struct perf_addr_filter *filter, *iter;
10119 
10120 	list_for_each_entry_safe(filter, iter, filters, entry) {
10121 		path_put(&filter->path);
10122 		list_del(&filter->entry);
10123 		kfree(filter);
10124 	}
10125 }
10126 
10127 /*
10128  * Free existing address filters and optionally install new ones
10129  */
10130 static void perf_addr_filters_splice(struct perf_event *event,
10131 				     struct list_head *head)
10132 {
10133 	unsigned long flags;
10134 	LIST_HEAD(list);
10135 
10136 	if (!has_addr_filter(event))
10137 		return;
10138 
10139 	/* don't bother with children, they don't have their own filters */
10140 	if (event->parent)
10141 		return;
10142 
10143 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10144 
10145 	list_splice_init(&event->addr_filters.list, &list);
10146 	if (head)
10147 		list_splice(head, &event->addr_filters.list);
10148 
10149 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10150 
10151 	free_filters_list(&list);
10152 }
10153 
10154 /*
10155  * Scan through mm's vmas and see if one of them matches the
10156  * @filter; if so, adjust filter's address range.
10157  * Called with mm::mmap_lock down for reading.
10158  */
10159 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10160 				   struct mm_struct *mm,
10161 				   struct perf_addr_filter_range *fr)
10162 {
10163 	struct vm_area_struct *vma;
10164 
10165 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10166 		if (!vma->vm_file)
10167 			continue;
10168 
10169 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10170 			return;
10171 	}
10172 }
10173 
10174 /*
10175  * Update event's address range filters based on the
10176  * task's existing mappings, if any.
10177  */
10178 static void perf_event_addr_filters_apply(struct perf_event *event)
10179 {
10180 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10181 	struct task_struct *task = READ_ONCE(event->ctx->task);
10182 	struct perf_addr_filter *filter;
10183 	struct mm_struct *mm = NULL;
10184 	unsigned int count = 0;
10185 	unsigned long flags;
10186 
10187 	/*
10188 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10189 	 * will stop on the parent's child_mutex that our caller is also holding
10190 	 */
10191 	if (task == TASK_TOMBSTONE)
10192 		return;
10193 
10194 	if (ifh->nr_file_filters) {
10195 		mm = get_task_mm(event->ctx->task);
10196 		if (!mm)
10197 			goto restart;
10198 
10199 		mmap_read_lock(mm);
10200 	}
10201 
10202 	raw_spin_lock_irqsave(&ifh->lock, flags);
10203 	list_for_each_entry(filter, &ifh->list, entry) {
10204 		if (filter->path.dentry) {
10205 			/*
10206 			 * Adjust base offset if the filter is associated to a
10207 			 * binary that needs to be mapped:
10208 			 */
10209 			event->addr_filter_ranges[count].start = 0;
10210 			event->addr_filter_ranges[count].size = 0;
10211 
10212 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10213 		} else {
10214 			event->addr_filter_ranges[count].start = filter->offset;
10215 			event->addr_filter_ranges[count].size  = filter->size;
10216 		}
10217 
10218 		count++;
10219 	}
10220 
10221 	event->addr_filters_gen++;
10222 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10223 
10224 	if (ifh->nr_file_filters) {
10225 		mmap_read_unlock(mm);
10226 
10227 		mmput(mm);
10228 	}
10229 
10230 restart:
10231 	perf_event_stop(event, 1);
10232 }
10233 
10234 /*
10235  * Address range filtering: limiting the data to certain
10236  * instruction address ranges. Filters are ioctl()ed to us from
10237  * userspace as ascii strings.
10238  *
10239  * Filter string format:
10240  *
10241  * ACTION RANGE_SPEC
10242  * where ACTION is one of the
10243  *  * "filter": limit the trace to this region
10244  *  * "start": start tracing from this address
10245  *  * "stop": stop tracing at this address/region;
10246  * RANGE_SPEC is
10247  *  * for kernel addresses: <start address>[/<size>]
10248  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10249  *
10250  * if <size> is not specified or is zero, the range is treated as a single
10251  * address; not valid for ACTION=="filter".
10252  */
10253 enum {
10254 	IF_ACT_NONE = -1,
10255 	IF_ACT_FILTER,
10256 	IF_ACT_START,
10257 	IF_ACT_STOP,
10258 	IF_SRC_FILE,
10259 	IF_SRC_KERNEL,
10260 	IF_SRC_FILEADDR,
10261 	IF_SRC_KERNELADDR,
10262 };
10263 
10264 enum {
10265 	IF_STATE_ACTION = 0,
10266 	IF_STATE_SOURCE,
10267 	IF_STATE_END,
10268 };
10269 
10270 static const match_table_t if_tokens = {
10271 	{ IF_ACT_FILTER,	"filter" },
10272 	{ IF_ACT_START,		"start" },
10273 	{ IF_ACT_STOP,		"stop" },
10274 	{ IF_SRC_FILE,		"%u/%u@%s" },
10275 	{ IF_SRC_KERNEL,	"%u/%u" },
10276 	{ IF_SRC_FILEADDR,	"%u@%s" },
10277 	{ IF_SRC_KERNELADDR,	"%u" },
10278 	{ IF_ACT_NONE,		NULL },
10279 };
10280 
10281 /*
10282  * Address filter string parser
10283  */
10284 static int
10285 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10286 			     struct list_head *filters)
10287 {
10288 	struct perf_addr_filter *filter = NULL;
10289 	char *start, *orig, *filename = NULL;
10290 	substring_t args[MAX_OPT_ARGS];
10291 	int state = IF_STATE_ACTION, token;
10292 	unsigned int kernel = 0;
10293 	int ret = -EINVAL;
10294 
10295 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10296 	if (!fstr)
10297 		return -ENOMEM;
10298 
10299 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10300 		static const enum perf_addr_filter_action_t actions[] = {
10301 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10302 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10303 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10304 		};
10305 		ret = -EINVAL;
10306 
10307 		if (!*start)
10308 			continue;
10309 
10310 		/* filter definition begins */
10311 		if (state == IF_STATE_ACTION) {
10312 			filter = perf_addr_filter_new(event, filters);
10313 			if (!filter)
10314 				goto fail;
10315 		}
10316 
10317 		token = match_token(start, if_tokens, args);
10318 		switch (token) {
10319 		case IF_ACT_FILTER:
10320 		case IF_ACT_START:
10321 		case IF_ACT_STOP:
10322 			if (state != IF_STATE_ACTION)
10323 				goto fail;
10324 
10325 			filter->action = actions[token];
10326 			state = IF_STATE_SOURCE;
10327 			break;
10328 
10329 		case IF_SRC_KERNELADDR:
10330 		case IF_SRC_KERNEL:
10331 			kernel = 1;
10332 			fallthrough;
10333 
10334 		case IF_SRC_FILEADDR:
10335 		case IF_SRC_FILE:
10336 			if (state != IF_STATE_SOURCE)
10337 				goto fail;
10338 
10339 			*args[0].to = 0;
10340 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10341 			if (ret)
10342 				goto fail;
10343 
10344 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10345 				*args[1].to = 0;
10346 				ret = kstrtoul(args[1].from, 0, &filter->size);
10347 				if (ret)
10348 					goto fail;
10349 			}
10350 
10351 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10352 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10353 
10354 				kfree(filename);
10355 				filename = match_strdup(&args[fpos]);
10356 				if (!filename) {
10357 					ret = -ENOMEM;
10358 					goto fail;
10359 				}
10360 			}
10361 
10362 			state = IF_STATE_END;
10363 			break;
10364 
10365 		default:
10366 			goto fail;
10367 		}
10368 
10369 		/*
10370 		 * Filter definition is fully parsed, validate and install it.
10371 		 * Make sure that it doesn't contradict itself or the event's
10372 		 * attribute.
10373 		 */
10374 		if (state == IF_STATE_END) {
10375 			ret = -EINVAL;
10376 			if (kernel && event->attr.exclude_kernel)
10377 				goto fail;
10378 
10379 			/*
10380 			 * ACTION "filter" must have a non-zero length region
10381 			 * specified.
10382 			 */
10383 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10384 			    !filter->size)
10385 				goto fail;
10386 
10387 			if (!kernel) {
10388 				if (!filename)
10389 					goto fail;
10390 
10391 				/*
10392 				 * For now, we only support file-based filters
10393 				 * in per-task events; doing so for CPU-wide
10394 				 * events requires additional context switching
10395 				 * trickery, since same object code will be
10396 				 * mapped at different virtual addresses in
10397 				 * different processes.
10398 				 */
10399 				ret = -EOPNOTSUPP;
10400 				if (!event->ctx->task)
10401 					goto fail;
10402 
10403 				/* look up the path and grab its inode */
10404 				ret = kern_path(filename, LOOKUP_FOLLOW,
10405 						&filter->path);
10406 				if (ret)
10407 					goto fail;
10408 
10409 				ret = -EINVAL;
10410 				if (!filter->path.dentry ||
10411 				    !S_ISREG(d_inode(filter->path.dentry)
10412 					     ->i_mode))
10413 					goto fail;
10414 
10415 				event->addr_filters.nr_file_filters++;
10416 			}
10417 
10418 			/* ready to consume more filters */
10419 			state = IF_STATE_ACTION;
10420 			filter = NULL;
10421 		}
10422 	}
10423 
10424 	if (state != IF_STATE_ACTION)
10425 		goto fail;
10426 
10427 	kfree(filename);
10428 	kfree(orig);
10429 
10430 	return 0;
10431 
10432 fail:
10433 	kfree(filename);
10434 	free_filters_list(filters);
10435 	kfree(orig);
10436 
10437 	return ret;
10438 }
10439 
10440 static int
10441 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10442 {
10443 	LIST_HEAD(filters);
10444 	int ret;
10445 
10446 	/*
10447 	 * Since this is called in perf_ioctl() path, we're already holding
10448 	 * ctx::mutex.
10449 	 */
10450 	lockdep_assert_held(&event->ctx->mutex);
10451 
10452 	if (WARN_ON_ONCE(event->parent))
10453 		return -EINVAL;
10454 
10455 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10456 	if (ret)
10457 		goto fail_clear_files;
10458 
10459 	ret = event->pmu->addr_filters_validate(&filters);
10460 	if (ret)
10461 		goto fail_free_filters;
10462 
10463 	/* remove existing filters, if any */
10464 	perf_addr_filters_splice(event, &filters);
10465 
10466 	/* install new filters */
10467 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10468 
10469 	return ret;
10470 
10471 fail_free_filters:
10472 	free_filters_list(&filters);
10473 
10474 fail_clear_files:
10475 	event->addr_filters.nr_file_filters = 0;
10476 
10477 	return ret;
10478 }
10479 
10480 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10481 {
10482 	int ret = -EINVAL;
10483 	char *filter_str;
10484 
10485 	filter_str = strndup_user(arg, PAGE_SIZE);
10486 	if (IS_ERR(filter_str))
10487 		return PTR_ERR(filter_str);
10488 
10489 #ifdef CONFIG_EVENT_TRACING
10490 	if (perf_event_is_tracing(event)) {
10491 		struct perf_event_context *ctx = event->ctx;
10492 
10493 		/*
10494 		 * Beware, here be dragons!!
10495 		 *
10496 		 * the tracepoint muck will deadlock against ctx->mutex, but
10497 		 * the tracepoint stuff does not actually need it. So
10498 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10499 		 * already have a reference on ctx.
10500 		 *
10501 		 * This can result in event getting moved to a different ctx,
10502 		 * but that does not affect the tracepoint state.
10503 		 */
10504 		mutex_unlock(&ctx->mutex);
10505 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10506 		mutex_lock(&ctx->mutex);
10507 	} else
10508 #endif
10509 	if (has_addr_filter(event))
10510 		ret = perf_event_set_addr_filter(event, filter_str);
10511 
10512 	kfree(filter_str);
10513 	return ret;
10514 }
10515 
10516 /*
10517  * hrtimer based swevent callback
10518  */
10519 
10520 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10521 {
10522 	enum hrtimer_restart ret = HRTIMER_RESTART;
10523 	struct perf_sample_data data;
10524 	struct pt_regs *regs;
10525 	struct perf_event *event;
10526 	u64 period;
10527 
10528 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10529 
10530 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10531 		return HRTIMER_NORESTART;
10532 
10533 	event->pmu->read(event);
10534 
10535 	perf_sample_data_init(&data, 0, event->hw.last_period);
10536 	regs = get_irq_regs();
10537 
10538 	if (regs && !perf_exclude_event(event, regs)) {
10539 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10540 			if (__perf_event_overflow(event, 1, &data, regs))
10541 				ret = HRTIMER_NORESTART;
10542 	}
10543 
10544 	period = max_t(u64, 10000, event->hw.sample_period);
10545 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10546 
10547 	return ret;
10548 }
10549 
10550 static void perf_swevent_start_hrtimer(struct perf_event *event)
10551 {
10552 	struct hw_perf_event *hwc = &event->hw;
10553 	s64 period;
10554 
10555 	if (!is_sampling_event(event))
10556 		return;
10557 
10558 	period = local64_read(&hwc->period_left);
10559 	if (period) {
10560 		if (period < 0)
10561 			period = 10000;
10562 
10563 		local64_set(&hwc->period_left, 0);
10564 	} else {
10565 		period = max_t(u64, 10000, hwc->sample_period);
10566 	}
10567 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10568 		      HRTIMER_MODE_REL_PINNED_HARD);
10569 }
10570 
10571 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10572 {
10573 	struct hw_perf_event *hwc = &event->hw;
10574 
10575 	if (is_sampling_event(event)) {
10576 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10577 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10578 
10579 		hrtimer_cancel(&hwc->hrtimer);
10580 	}
10581 }
10582 
10583 static void perf_swevent_init_hrtimer(struct perf_event *event)
10584 {
10585 	struct hw_perf_event *hwc = &event->hw;
10586 
10587 	if (!is_sampling_event(event))
10588 		return;
10589 
10590 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10591 	hwc->hrtimer.function = perf_swevent_hrtimer;
10592 
10593 	/*
10594 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10595 	 * mapping and avoid the whole period adjust feedback stuff.
10596 	 */
10597 	if (event->attr.freq) {
10598 		long freq = event->attr.sample_freq;
10599 
10600 		event->attr.sample_period = NSEC_PER_SEC / freq;
10601 		hwc->sample_period = event->attr.sample_period;
10602 		local64_set(&hwc->period_left, hwc->sample_period);
10603 		hwc->last_period = hwc->sample_period;
10604 		event->attr.freq = 0;
10605 	}
10606 }
10607 
10608 /*
10609  * Software event: cpu wall time clock
10610  */
10611 
10612 static void cpu_clock_event_update(struct perf_event *event)
10613 {
10614 	s64 prev;
10615 	u64 now;
10616 
10617 	now = local_clock();
10618 	prev = local64_xchg(&event->hw.prev_count, now);
10619 	local64_add(now - prev, &event->count);
10620 }
10621 
10622 static void cpu_clock_event_start(struct perf_event *event, int flags)
10623 {
10624 	local64_set(&event->hw.prev_count, local_clock());
10625 	perf_swevent_start_hrtimer(event);
10626 }
10627 
10628 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10629 {
10630 	perf_swevent_cancel_hrtimer(event);
10631 	cpu_clock_event_update(event);
10632 }
10633 
10634 static int cpu_clock_event_add(struct perf_event *event, int flags)
10635 {
10636 	if (flags & PERF_EF_START)
10637 		cpu_clock_event_start(event, flags);
10638 	perf_event_update_userpage(event);
10639 
10640 	return 0;
10641 }
10642 
10643 static void cpu_clock_event_del(struct perf_event *event, int flags)
10644 {
10645 	cpu_clock_event_stop(event, flags);
10646 }
10647 
10648 static void cpu_clock_event_read(struct perf_event *event)
10649 {
10650 	cpu_clock_event_update(event);
10651 }
10652 
10653 static int cpu_clock_event_init(struct perf_event *event)
10654 {
10655 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10656 		return -ENOENT;
10657 
10658 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10659 		return -ENOENT;
10660 
10661 	/*
10662 	 * no branch sampling for software events
10663 	 */
10664 	if (has_branch_stack(event))
10665 		return -EOPNOTSUPP;
10666 
10667 	perf_swevent_init_hrtimer(event);
10668 
10669 	return 0;
10670 }
10671 
10672 static struct pmu perf_cpu_clock = {
10673 	.task_ctx_nr	= perf_sw_context,
10674 
10675 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10676 
10677 	.event_init	= cpu_clock_event_init,
10678 	.add		= cpu_clock_event_add,
10679 	.del		= cpu_clock_event_del,
10680 	.start		= cpu_clock_event_start,
10681 	.stop		= cpu_clock_event_stop,
10682 	.read		= cpu_clock_event_read,
10683 };
10684 
10685 /*
10686  * Software event: task time clock
10687  */
10688 
10689 static void task_clock_event_update(struct perf_event *event, u64 now)
10690 {
10691 	u64 prev;
10692 	s64 delta;
10693 
10694 	prev = local64_xchg(&event->hw.prev_count, now);
10695 	delta = now - prev;
10696 	local64_add(delta, &event->count);
10697 }
10698 
10699 static void task_clock_event_start(struct perf_event *event, int flags)
10700 {
10701 	local64_set(&event->hw.prev_count, event->ctx->time);
10702 	perf_swevent_start_hrtimer(event);
10703 }
10704 
10705 static void task_clock_event_stop(struct perf_event *event, int flags)
10706 {
10707 	perf_swevent_cancel_hrtimer(event);
10708 	task_clock_event_update(event, event->ctx->time);
10709 }
10710 
10711 static int task_clock_event_add(struct perf_event *event, int flags)
10712 {
10713 	if (flags & PERF_EF_START)
10714 		task_clock_event_start(event, flags);
10715 	perf_event_update_userpage(event);
10716 
10717 	return 0;
10718 }
10719 
10720 static void task_clock_event_del(struct perf_event *event, int flags)
10721 {
10722 	task_clock_event_stop(event, PERF_EF_UPDATE);
10723 }
10724 
10725 static void task_clock_event_read(struct perf_event *event)
10726 {
10727 	u64 now = perf_clock();
10728 	u64 delta = now - event->ctx->timestamp;
10729 	u64 time = event->ctx->time + delta;
10730 
10731 	task_clock_event_update(event, time);
10732 }
10733 
10734 static int task_clock_event_init(struct perf_event *event)
10735 {
10736 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10737 		return -ENOENT;
10738 
10739 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10740 		return -ENOENT;
10741 
10742 	/*
10743 	 * no branch sampling for software events
10744 	 */
10745 	if (has_branch_stack(event))
10746 		return -EOPNOTSUPP;
10747 
10748 	perf_swevent_init_hrtimer(event);
10749 
10750 	return 0;
10751 }
10752 
10753 static struct pmu perf_task_clock = {
10754 	.task_ctx_nr	= perf_sw_context,
10755 
10756 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10757 
10758 	.event_init	= task_clock_event_init,
10759 	.add		= task_clock_event_add,
10760 	.del		= task_clock_event_del,
10761 	.start		= task_clock_event_start,
10762 	.stop		= task_clock_event_stop,
10763 	.read		= task_clock_event_read,
10764 };
10765 
10766 static void perf_pmu_nop_void(struct pmu *pmu)
10767 {
10768 }
10769 
10770 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10771 {
10772 }
10773 
10774 static int perf_pmu_nop_int(struct pmu *pmu)
10775 {
10776 	return 0;
10777 }
10778 
10779 static int perf_event_nop_int(struct perf_event *event, u64 value)
10780 {
10781 	return 0;
10782 }
10783 
10784 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10785 
10786 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10787 {
10788 	__this_cpu_write(nop_txn_flags, flags);
10789 
10790 	if (flags & ~PERF_PMU_TXN_ADD)
10791 		return;
10792 
10793 	perf_pmu_disable(pmu);
10794 }
10795 
10796 static int perf_pmu_commit_txn(struct pmu *pmu)
10797 {
10798 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10799 
10800 	__this_cpu_write(nop_txn_flags, 0);
10801 
10802 	if (flags & ~PERF_PMU_TXN_ADD)
10803 		return 0;
10804 
10805 	perf_pmu_enable(pmu);
10806 	return 0;
10807 }
10808 
10809 static void perf_pmu_cancel_txn(struct pmu *pmu)
10810 {
10811 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10812 
10813 	__this_cpu_write(nop_txn_flags, 0);
10814 
10815 	if (flags & ~PERF_PMU_TXN_ADD)
10816 		return;
10817 
10818 	perf_pmu_enable(pmu);
10819 }
10820 
10821 static int perf_event_idx_default(struct perf_event *event)
10822 {
10823 	return 0;
10824 }
10825 
10826 /*
10827  * Ensures all contexts with the same task_ctx_nr have the same
10828  * pmu_cpu_context too.
10829  */
10830 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10831 {
10832 	struct pmu *pmu;
10833 
10834 	if (ctxn < 0)
10835 		return NULL;
10836 
10837 	list_for_each_entry(pmu, &pmus, entry) {
10838 		if (pmu->task_ctx_nr == ctxn)
10839 			return pmu->pmu_cpu_context;
10840 	}
10841 
10842 	return NULL;
10843 }
10844 
10845 static void free_pmu_context(struct pmu *pmu)
10846 {
10847 	/*
10848 	 * Static contexts such as perf_sw_context have a global lifetime
10849 	 * and may be shared between different PMUs. Avoid freeing them
10850 	 * when a single PMU is going away.
10851 	 */
10852 	if (pmu->task_ctx_nr > perf_invalid_context)
10853 		return;
10854 
10855 	free_percpu(pmu->pmu_cpu_context);
10856 }
10857 
10858 /*
10859  * Let userspace know that this PMU supports address range filtering:
10860  */
10861 static ssize_t nr_addr_filters_show(struct device *dev,
10862 				    struct device_attribute *attr,
10863 				    char *page)
10864 {
10865 	struct pmu *pmu = dev_get_drvdata(dev);
10866 
10867 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10868 }
10869 DEVICE_ATTR_RO(nr_addr_filters);
10870 
10871 static struct idr pmu_idr;
10872 
10873 static ssize_t
10874 type_show(struct device *dev, struct device_attribute *attr, char *page)
10875 {
10876 	struct pmu *pmu = dev_get_drvdata(dev);
10877 
10878 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10879 }
10880 static DEVICE_ATTR_RO(type);
10881 
10882 static ssize_t
10883 perf_event_mux_interval_ms_show(struct device *dev,
10884 				struct device_attribute *attr,
10885 				char *page)
10886 {
10887 	struct pmu *pmu = dev_get_drvdata(dev);
10888 
10889 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10890 }
10891 
10892 static DEFINE_MUTEX(mux_interval_mutex);
10893 
10894 static ssize_t
10895 perf_event_mux_interval_ms_store(struct device *dev,
10896 				 struct device_attribute *attr,
10897 				 const char *buf, size_t count)
10898 {
10899 	struct pmu *pmu = dev_get_drvdata(dev);
10900 	int timer, cpu, ret;
10901 
10902 	ret = kstrtoint(buf, 0, &timer);
10903 	if (ret)
10904 		return ret;
10905 
10906 	if (timer < 1)
10907 		return -EINVAL;
10908 
10909 	/* same value, noting to do */
10910 	if (timer == pmu->hrtimer_interval_ms)
10911 		return count;
10912 
10913 	mutex_lock(&mux_interval_mutex);
10914 	pmu->hrtimer_interval_ms = timer;
10915 
10916 	/* update all cpuctx for this PMU */
10917 	cpus_read_lock();
10918 	for_each_online_cpu(cpu) {
10919 		struct perf_cpu_context *cpuctx;
10920 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10921 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10922 
10923 		cpu_function_call(cpu,
10924 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10925 	}
10926 	cpus_read_unlock();
10927 	mutex_unlock(&mux_interval_mutex);
10928 
10929 	return count;
10930 }
10931 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10932 
10933 static struct attribute *pmu_dev_attrs[] = {
10934 	&dev_attr_type.attr,
10935 	&dev_attr_perf_event_mux_interval_ms.attr,
10936 	NULL,
10937 };
10938 ATTRIBUTE_GROUPS(pmu_dev);
10939 
10940 static int pmu_bus_running;
10941 static struct bus_type pmu_bus = {
10942 	.name		= "event_source",
10943 	.dev_groups	= pmu_dev_groups,
10944 };
10945 
10946 static void pmu_dev_release(struct device *dev)
10947 {
10948 	kfree(dev);
10949 }
10950 
10951 static int pmu_dev_alloc(struct pmu *pmu)
10952 {
10953 	int ret = -ENOMEM;
10954 
10955 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10956 	if (!pmu->dev)
10957 		goto out;
10958 
10959 	pmu->dev->groups = pmu->attr_groups;
10960 	device_initialize(pmu->dev);
10961 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10962 	if (ret)
10963 		goto free_dev;
10964 
10965 	dev_set_drvdata(pmu->dev, pmu);
10966 	pmu->dev->bus = &pmu_bus;
10967 	pmu->dev->release = pmu_dev_release;
10968 	ret = device_add(pmu->dev);
10969 	if (ret)
10970 		goto free_dev;
10971 
10972 	/* For PMUs with address filters, throw in an extra attribute: */
10973 	if (pmu->nr_addr_filters)
10974 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10975 
10976 	if (ret)
10977 		goto del_dev;
10978 
10979 	if (pmu->attr_update)
10980 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10981 
10982 	if (ret)
10983 		goto del_dev;
10984 
10985 out:
10986 	return ret;
10987 
10988 del_dev:
10989 	device_del(pmu->dev);
10990 
10991 free_dev:
10992 	put_device(pmu->dev);
10993 	goto out;
10994 }
10995 
10996 static struct lock_class_key cpuctx_mutex;
10997 static struct lock_class_key cpuctx_lock;
10998 
10999 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11000 {
11001 	int cpu, ret, max = PERF_TYPE_MAX;
11002 
11003 	mutex_lock(&pmus_lock);
11004 	ret = -ENOMEM;
11005 	pmu->pmu_disable_count = alloc_percpu(int);
11006 	if (!pmu->pmu_disable_count)
11007 		goto unlock;
11008 
11009 	pmu->type = -1;
11010 	if (!name)
11011 		goto skip_type;
11012 	pmu->name = name;
11013 
11014 	if (type != PERF_TYPE_SOFTWARE) {
11015 		if (type >= 0)
11016 			max = type;
11017 
11018 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11019 		if (ret < 0)
11020 			goto free_pdc;
11021 
11022 		WARN_ON(type >= 0 && ret != type);
11023 
11024 		type = ret;
11025 	}
11026 	pmu->type = type;
11027 
11028 	if (pmu_bus_running) {
11029 		ret = pmu_dev_alloc(pmu);
11030 		if (ret)
11031 			goto free_idr;
11032 	}
11033 
11034 skip_type:
11035 	if (pmu->task_ctx_nr == perf_hw_context) {
11036 		static int hw_context_taken = 0;
11037 
11038 		/*
11039 		 * Other than systems with heterogeneous CPUs, it never makes
11040 		 * sense for two PMUs to share perf_hw_context. PMUs which are
11041 		 * uncore must use perf_invalid_context.
11042 		 */
11043 		if (WARN_ON_ONCE(hw_context_taken &&
11044 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11045 			pmu->task_ctx_nr = perf_invalid_context;
11046 
11047 		hw_context_taken = 1;
11048 	}
11049 
11050 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11051 	if (pmu->pmu_cpu_context)
11052 		goto got_cpu_context;
11053 
11054 	ret = -ENOMEM;
11055 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11056 	if (!pmu->pmu_cpu_context)
11057 		goto free_dev;
11058 
11059 	for_each_possible_cpu(cpu) {
11060 		struct perf_cpu_context *cpuctx;
11061 
11062 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11063 		__perf_event_init_context(&cpuctx->ctx);
11064 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11065 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11066 		cpuctx->ctx.pmu = pmu;
11067 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11068 
11069 		__perf_mux_hrtimer_init(cpuctx, cpu);
11070 
11071 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11072 		cpuctx->heap = cpuctx->heap_default;
11073 	}
11074 
11075 got_cpu_context:
11076 	if (!pmu->start_txn) {
11077 		if (pmu->pmu_enable) {
11078 			/*
11079 			 * If we have pmu_enable/pmu_disable calls, install
11080 			 * transaction stubs that use that to try and batch
11081 			 * hardware accesses.
11082 			 */
11083 			pmu->start_txn  = perf_pmu_start_txn;
11084 			pmu->commit_txn = perf_pmu_commit_txn;
11085 			pmu->cancel_txn = perf_pmu_cancel_txn;
11086 		} else {
11087 			pmu->start_txn  = perf_pmu_nop_txn;
11088 			pmu->commit_txn = perf_pmu_nop_int;
11089 			pmu->cancel_txn = perf_pmu_nop_void;
11090 		}
11091 	}
11092 
11093 	if (!pmu->pmu_enable) {
11094 		pmu->pmu_enable  = perf_pmu_nop_void;
11095 		pmu->pmu_disable = perf_pmu_nop_void;
11096 	}
11097 
11098 	if (!pmu->check_period)
11099 		pmu->check_period = perf_event_nop_int;
11100 
11101 	if (!pmu->event_idx)
11102 		pmu->event_idx = perf_event_idx_default;
11103 
11104 	/*
11105 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11106 	 * since these cannot be in the IDR. This way the linear search
11107 	 * is fast, provided a valid software event is provided.
11108 	 */
11109 	if (type == PERF_TYPE_SOFTWARE || !name)
11110 		list_add_rcu(&pmu->entry, &pmus);
11111 	else
11112 		list_add_tail_rcu(&pmu->entry, &pmus);
11113 
11114 	atomic_set(&pmu->exclusive_cnt, 0);
11115 	ret = 0;
11116 unlock:
11117 	mutex_unlock(&pmus_lock);
11118 
11119 	return ret;
11120 
11121 free_dev:
11122 	device_del(pmu->dev);
11123 	put_device(pmu->dev);
11124 
11125 free_idr:
11126 	if (pmu->type != PERF_TYPE_SOFTWARE)
11127 		idr_remove(&pmu_idr, pmu->type);
11128 
11129 free_pdc:
11130 	free_percpu(pmu->pmu_disable_count);
11131 	goto unlock;
11132 }
11133 EXPORT_SYMBOL_GPL(perf_pmu_register);
11134 
11135 void perf_pmu_unregister(struct pmu *pmu)
11136 {
11137 	mutex_lock(&pmus_lock);
11138 	list_del_rcu(&pmu->entry);
11139 
11140 	/*
11141 	 * We dereference the pmu list under both SRCU and regular RCU, so
11142 	 * synchronize against both of those.
11143 	 */
11144 	synchronize_srcu(&pmus_srcu);
11145 	synchronize_rcu();
11146 
11147 	free_percpu(pmu->pmu_disable_count);
11148 	if (pmu->type != PERF_TYPE_SOFTWARE)
11149 		idr_remove(&pmu_idr, pmu->type);
11150 	if (pmu_bus_running) {
11151 		if (pmu->nr_addr_filters)
11152 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11153 		device_del(pmu->dev);
11154 		put_device(pmu->dev);
11155 	}
11156 	free_pmu_context(pmu);
11157 	mutex_unlock(&pmus_lock);
11158 }
11159 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11160 
11161 static inline bool has_extended_regs(struct perf_event *event)
11162 {
11163 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11164 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11165 }
11166 
11167 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11168 {
11169 	struct perf_event_context *ctx = NULL;
11170 	int ret;
11171 
11172 	if (!try_module_get(pmu->module))
11173 		return -ENODEV;
11174 
11175 	/*
11176 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11177 	 * for example, validate if the group fits on the PMU. Therefore,
11178 	 * if this is a sibling event, acquire the ctx->mutex to protect
11179 	 * the sibling_list.
11180 	 */
11181 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11182 		/*
11183 		 * This ctx->mutex can nest when we're called through
11184 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11185 		 */
11186 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11187 						 SINGLE_DEPTH_NESTING);
11188 		BUG_ON(!ctx);
11189 	}
11190 
11191 	event->pmu = pmu;
11192 	ret = pmu->event_init(event);
11193 
11194 	if (ctx)
11195 		perf_event_ctx_unlock(event->group_leader, ctx);
11196 
11197 	if (!ret) {
11198 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11199 		    has_extended_regs(event))
11200 			ret = -EOPNOTSUPP;
11201 
11202 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11203 		    event_has_any_exclude_flag(event))
11204 			ret = -EINVAL;
11205 
11206 		if (ret && event->destroy)
11207 			event->destroy(event);
11208 	}
11209 
11210 	if (ret)
11211 		module_put(pmu->module);
11212 
11213 	return ret;
11214 }
11215 
11216 static struct pmu *perf_init_event(struct perf_event *event)
11217 {
11218 	bool extended_type = false;
11219 	int idx, type, ret;
11220 	struct pmu *pmu;
11221 
11222 	idx = srcu_read_lock(&pmus_srcu);
11223 
11224 	/* Try parent's PMU first: */
11225 	if (event->parent && event->parent->pmu) {
11226 		pmu = event->parent->pmu;
11227 		ret = perf_try_init_event(pmu, event);
11228 		if (!ret)
11229 			goto unlock;
11230 	}
11231 
11232 	/*
11233 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11234 	 * are often aliases for PERF_TYPE_RAW.
11235 	 */
11236 	type = event->attr.type;
11237 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11238 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11239 		if (!type) {
11240 			type = PERF_TYPE_RAW;
11241 		} else {
11242 			extended_type = true;
11243 			event->attr.config &= PERF_HW_EVENT_MASK;
11244 		}
11245 	}
11246 
11247 again:
11248 	rcu_read_lock();
11249 	pmu = idr_find(&pmu_idr, type);
11250 	rcu_read_unlock();
11251 	if (pmu) {
11252 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11253 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11254 			goto fail;
11255 
11256 		ret = perf_try_init_event(pmu, event);
11257 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11258 			type = event->attr.type;
11259 			goto again;
11260 		}
11261 
11262 		if (ret)
11263 			pmu = ERR_PTR(ret);
11264 
11265 		goto unlock;
11266 	}
11267 
11268 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11269 		ret = perf_try_init_event(pmu, event);
11270 		if (!ret)
11271 			goto unlock;
11272 
11273 		if (ret != -ENOENT) {
11274 			pmu = ERR_PTR(ret);
11275 			goto unlock;
11276 		}
11277 	}
11278 fail:
11279 	pmu = ERR_PTR(-ENOENT);
11280 unlock:
11281 	srcu_read_unlock(&pmus_srcu, idx);
11282 
11283 	return pmu;
11284 }
11285 
11286 static void attach_sb_event(struct perf_event *event)
11287 {
11288 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11289 
11290 	raw_spin_lock(&pel->lock);
11291 	list_add_rcu(&event->sb_list, &pel->list);
11292 	raw_spin_unlock(&pel->lock);
11293 }
11294 
11295 /*
11296  * We keep a list of all !task (and therefore per-cpu) events
11297  * that need to receive side-band records.
11298  *
11299  * This avoids having to scan all the various PMU per-cpu contexts
11300  * looking for them.
11301  */
11302 static void account_pmu_sb_event(struct perf_event *event)
11303 {
11304 	if (is_sb_event(event))
11305 		attach_sb_event(event);
11306 }
11307 
11308 static void account_event_cpu(struct perf_event *event, int cpu)
11309 {
11310 	if (event->parent)
11311 		return;
11312 
11313 	if (is_cgroup_event(event))
11314 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11315 }
11316 
11317 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11318 static void account_freq_event_nohz(void)
11319 {
11320 #ifdef CONFIG_NO_HZ_FULL
11321 	/* Lock so we don't race with concurrent unaccount */
11322 	spin_lock(&nr_freq_lock);
11323 	if (atomic_inc_return(&nr_freq_events) == 1)
11324 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11325 	spin_unlock(&nr_freq_lock);
11326 #endif
11327 }
11328 
11329 static void account_freq_event(void)
11330 {
11331 	if (tick_nohz_full_enabled())
11332 		account_freq_event_nohz();
11333 	else
11334 		atomic_inc(&nr_freq_events);
11335 }
11336 
11337 
11338 static void account_event(struct perf_event *event)
11339 {
11340 	bool inc = false;
11341 
11342 	if (event->parent)
11343 		return;
11344 
11345 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11346 		inc = true;
11347 	if (event->attr.mmap || event->attr.mmap_data)
11348 		atomic_inc(&nr_mmap_events);
11349 	if (event->attr.build_id)
11350 		atomic_inc(&nr_build_id_events);
11351 	if (event->attr.comm)
11352 		atomic_inc(&nr_comm_events);
11353 	if (event->attr.namespaces)
11354 		atomic_inc(&nr_namespaces_events);
11355 	if (event->attr.cgroup)
11356 		atomic_inc(&nr_cgroup_events);
11357 	if (event->attr.task)
11358 		atomic_inc(&nr_task_events);
11359 	if (event->attr.freq)
11360 		account_freq_event();
11361 	if (event->attr.context_switch) {
11362 		atomic_inc(&nr_switch_events);
11363 		inc = true;
11364 	}
11365 	if (has_branch_stack(event))
11366 		inc = true;
11367 	if (is_cgroup_event(event))
11368 		inc = true;
11369 	if (event->attr.ksymbol)
11370 		atomic_inc(&nr_ksymbol_events);
11371 	if (event->attr.bpf_event)
11372 		atomic_inc(&nr_bpf_events);
11373 	if (event->attr.text_poke)
11374 		atomic_inc(&nr_text_poke_events);
11375 
11376 	if (inc) {
11377 		/*
11378 		 * We need the mutex here because static_branch_enable()
11379 		 * must complete *before* the perf_sched_count increment
11380 		 * becomes visible.
11381 		 */
11382 		if (atomic_inc_not_zero(&perf_sched_count))
11383 			goto enabled;
11384 
11385 		mutex_lock(&perf_sched_mutex);
11386 		if (!atomic_read(&perf_sched_count)) {
11387 			static_branch_enable(&perf_sched_events);
11388 			/*
11389 			 * Guarantee that all CPUs observe they key change and
11390 			 * call the perf scheduling hooks before proceeding to
11391 			 * install events that need them.
11392 			 */
11393 			synchronize_rcu();
11394 		}
11395 		/*
11396 		 * Now that we have waited for the sync_sched(), allow further
11397 		 * increments to by-pass the mutex.
11398 		 */
11399 		atomic_inc(&perf_sched_count);
11400 		mutex_unlock(&perf_sched_mutex);
11401 	}
11402 enabled:
11403 
11404 	account_event_cpu(event, event->cpu);
11405 
11406 	account_pmu_sb_event(event);
11407 }
11408 
11409 /*
11410  * Allocate and initialize an event structure
11411  */
11412 static struct perf_event *
11413 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11414 		 struct task_struct *task,
11415 		 struct perf_event *group_leader,
11416 		 struct perf_event *parent_event,
11417 		 perf_overflow_handler_t overflow_handler,
11418 		 void *context, int cgroup_fd)
11419 {
11420 	struct pmu *pmu;
11421 	struct perf_event *event;
11422 	struct hw_perf_event *hwc;
11423 	long err = -EINVAL;
11424 	int node;
11425 
11426 	if ((unsigned)cpu >= nr_cpu_ids) {
11427 		if (!task || cpu != -1)
11428 			return ERR_PTR(-EINVAL);
11429 	}
11430 	if (attr->sigtrap && !task) {
11431 		/* Requires a task: avoid signalling random tasks. */
11432 		return ERR_PTR(-EINVAL);
11433 	}
11434 
11435 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11436 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11437 				      node);
11438 	if (!event)
11439 		return ERR_PTR(-ENOMEM);
11440 
11441 	/*
11442 	 * Single events are their own group leaders, with an
11443 	 * empty sibling list:
11444 	 */
11445 	if (!group_leader)
11446 		group_leader = event;
11447 
11448 	mutex_init(&event->child_mutex);
11449 	INIT_LIST_HEAD(&event->child_list);
11450 
11451 	INIT_LIST_HEAD(&event->event_entry);
11452 	INIT_LIST_HEAD(&event->sibling_list);
11453 	INIT_LIST_HEAD(&event->active_list);
11454 	init_event_group(event);
11455 	INIT_LIST_HEAD(&event->rb_entry);
11456 	INIT_LIST_HEAD(&event->active_entry);
11457 	INIT_LIST_HEAD(&event->addr_filters.list);
11458 	INIT_HLIST_NODE(&event->hlist_entry);
11459 
11460 
11461 	init_waitqueue_head(&event->waitq);
11462 	event->pending_disable = -1;
11463 	init_irq_work(&event->pending, perf_pending_event);
11464 
11465 	mutex_init(&event->mmap_mutex);
11466 	raw_spin_lock_init(&event->addr_filters.lock);
11467 
11468 	atomic_long_set(&event->refcount, 1);
11469 	event->cpu		= cpu;
11470 	event->attr		= *attr;
11471 	event->group_leader	= group_leader;
11472 	event->pmu		= NULL;
11473 	event->oncpu		= -1;
11474 
11475 	event->parent		= parent_event;
11476 
11477 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11478 	event->id		= atomic64_inc_return(&perf_event_id);
11479 
11480 	event->state		= PERF_EVENT_STATE_INACTIVE;
11481 
11482 	if (event->attr.sigtrap)
11483 		atomic_set(&event->event_limit, 1);
11484 
11485 	if (task) {
11486 		event->attach_state = PERF_ATTACH_TASK;
11487 		/*
11488 		 * XXX pmu::event_init needs to know what task to account to
11489 		 * and we cannot use the ctx information because we need the
11490 		 * pmu before we get a ctx.
11491 		 */
11492 		event->hw.target = get_task_struct(task);
11493 	}
11494 
11495 	event->clock = &local_clock;
11496 	if (parent_event)
11497 		event->clock = parent_event->clock;
11498 
11499 	if (!overflow_handler && parent_event) {
11500 		overflow_handler = parent_event->overflow_handler;
11501 		context = parent_event->overflow_handler_context;
11502 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11503 		if (overflow_handler == bpf_overflow_handler) {
11504 			struct bpf_prog *prog = parent_event->prog;
11505 
11506 			bpf_prog_inc(prog);
11507 			event->prog = prog;
11508 			event->orig_overflow_handler =
11509 				parent_event->orig_overflow_handler;
11510 		}
11511 #endif
11512 	}
11513 
11514 	if (overflow_handler) {
11515 		event->overflow_handler	= overflow_handler;
11516 		event->overflow_handler_context = context;
11517 	} else if (is_write_backward(event)){
11518 		event->overflow_handler = perf_event_output_backward;
11519 		event->overflow_handler_context = NULL;
11520 	} else {
11521 		event->overflow_handler = perf_event_output_forward;
11522 		event->overflow_handler_context = NULL;
11523 	}
11524 
11525 	perf_event__state_init(event);
11526 
11527 	pmu = NULL;
11528 
11529 	hwc = &event->hw;
11530 	hwc->sample_period = attr->sample_period;
11531 	if (attr->freq && attr->sample_freq)
11532 		hwc->sample_period = 1;
11533 	hwc->last_period = hwc->sample_period;
11534 
11535 	local64_set(&hwc->period_left, hwc->sample_period);
11536 
11537 	/*
11538 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11539 	 * See perf_output_read().
11540 	 */
11541 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11542 		goto err_ns;
11543 
11544 	if (!has_branch_stack(event))
11545 		event->attr.branch_sample_type = 0;
11546 
11547 	pmu = perf_init_event(event);
11548 	if (IS_ERR(pmu)) {
11549 		err = PTR_ERR(pmu);
11550 		goto err_ns;
11551 	}
11552 
11553 	/*
11554 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11555 	 * be different on other CPUs in the uncore mask.
11556 	 */
11557 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11558 		err = -EINVAL;
11559 		goto err_pmu;
11560 	}
11561 
11562 	if (event->attr.aux_output &&
11563 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11564 		err = -EOPNOTSUPP;
11565 		goto err_pmu;
11566 	}
11567 
11568 	if (cgroup_fd != -1) {
11569 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11570 		if (err)
11571 			goto err_pmu;
11572 	}
11573 
11574 	err = exclusive_event_init(event);
11575 	if (err)
11576 		goto err_pmu;
11577 
11578 	if (has_addr_filter(event)) {
11579 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11580 						    sizeof(struct perf_addr_filter_range),
11581 						    GFP_KERNEL);
11582 		if (!event->addr_filter_ranges) {
11583 			err = -ENOMEM;
11584 			goto err_per_task;
11585 		}
11586 
11587 		/*
11588 		 * Clone the parent's vma offsets: they are valid until exec()
11589 		 * even if the mm is not shared with the parent.
11590 		 */
11591 		if (event->parent) {
11592 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11593 
11594 			raw_spin_lock_irq(&ifh->lock);
11595 			memcpy(event->addr_filter_ranges,
11596 			       event->parent->addr_filter_ranges,
11597 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11598 			raw_spin_unlock_irq(&ifh->lock);
11599 		}
11600 
11601 		/* force hw sync on the address filters */
11602 		event->addr_filters_gen = 1;
11603 	}
11604 
11605 	if (!event->parent) {
11606 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11607 			err = get_callchain_buffers(attr->sample_max_stack);
11608 			if (err)
11609 				goto err_addr_filters;
11610 		}
11611 	}
11612 
11613 	err = security_perf_event_alloc(event);
11614 	if (err)
11615 		goto err_callchain_buffer;
11616 
11617 	/* symmetric to unaccount_event() in _free_event() */
11618 	account_event(event);
11619 
11620 	return event;
11621 
11622 err_callchain_buffer:
11623 	if (!event->parent) {
11624 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11625 			put_callchain_buffers();
11626 	}
11627 err_addr_filters:
11628 	kfree(event->addr_filter_ranges);
11629 
11630 err_per_task:
11631 	exclusive_event_destroy(event);
11632 
11633 err_pmu:
11634 	if (is_cgroup_event(event))
11635 		perf_detach_cgroup(event);
11636 	if (event->destroy)
11637 		event->destroy(event);
11638 	module_put(pmu->module);
11639 err_ns:
11640 	if (event->ns)
11641 		put_pid_ns(event->ns);
11642 	if (event->hw.target)
11643 		put_task_struct(event->hw.target);
11644 	kmem_cache_free(perf_event_cache, event);
11645 
11646 	return ERR_PTR(err);
11647 }
11648 
11649 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11650 			  struct perf_event_attr *attr)
11651 {
11652 	u32 size;
11653 	int ret;
11654 
11655 	/* Zero the full structure, so that a short copy will be nice. */
11656 	memset(attr, 0, sizeof(*attr));
11657 
11658 	ret = get_user(size, &uattr->size);
11659 	if (ret)
11660 		return ret;
11661 
11662 	/* ABI compatibility quirk: */
11663 	if (!size)
11664 		size = PERF_ATTR_SIZE_VER0;
11665 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11666 		goto err_size;
11667 
11668 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11669 	if (ret) {
11670 		if (ret == -E2BIG)
11671 			goto err_size;
11672 		return ret;
11673 	}
11674 
11675 	attr->size = size;
11676 
11677 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11678 		return -EINVAL;
11679 
11680 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11681 		return -EINVAL;
11682 
11683 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11684 		return -EINVAL;
11685 
11686 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11687 		u64 mask = attr->branch_sample_type;
11688 
11689 		/* only using defined bits */
11690 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11691 			return -EINVAL;
11692 
11693 		/* at least one branch bit must be set */
11694 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11695 			return -EINVAL;
11696 
11697 		/* propagate priv level, when not set for branch */
11698 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11699 
11700 			/* exclude_kernel checked on syscall entry */
11701 			if (!attr->exclude_kernel)
11702 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11703 
11704 			if (!attr->exclude_user)
11705 				mask |= PERF_SAMPLE_BRANCH_USER;
11706 
11707 			if (!attr->exclude_hv)
11708 				mask |= PERF_SAMPLE_BRANCH_HV;
11709 			/*
11710 			 * adjust user setting (for HW filter setup)
11711 			 */
11712 			attr->branch_sample_type = mask;
11713 		}
11714 		/* privileged levels capture (kernel, hv): check permissions */
11715 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11716 			ret = perf_allow_kernel(attr);
11717 			if (ret)
11718 				return ret;
11719 		}
11720 	}
11721 
11722 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11723 		ret = perf_reg_validate(attr->sample_regs_user);
11724 		if (ret)
11725 			return ret;
11726 	}
11727 
11728 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11729 		if (!arch_perf_have_user_stack_dump())
11730 			return -ENOSYS;
11731 
11732 		/*
11733 		 * We have __u32 type for the size, but so far
11734 		 * we can only use __u16 as maximum due to the
11735 		 * __u16 sample size limit.
11736 		 */
11737 		if (attr->sample_stack_user >= USHRT_MAX)
11738 			return -EINVAL;
11739 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11740 			return -EINVAL;
11741 	}
11742 
11743 	if (!attr->sample_max_stack)
11744 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11745 
11746 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11747 		ret = perf_reg_validate(attr->sample_regs_intr);
11748 
11749 #ifndef CONFIG_CGROUP_PERF
11750 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11751 		return -EINVAL;
11752 #endif
11753 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11754 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11755 		return -EINVAL;
11756 
11757 	if (!attr->inherit && attr->inherit_thread)
11758 		return -EINVAL;
11759 
11760 	if (attr->remove_on_exec && attr->enable_on_exec)
11761 		return -EINVAL;
11762 
11763 	if (attr->sigtrap && !attr->remove_on_exec)
11764 		return -EINVAL;
11765 
11766 out:
11767 	return ret;
11768 
11769 err_size:
11770 	put_user(sizeof(*attr), &uattr->size);
11771 	ret = -E2BIG;
11772 	goto out;
11773 }
11774 
11775 static int
11776 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11777 {
11778 	struct perf_buffer *rb = NULL;
11779 	int ret = -EINVAL;
11780 
11781 	if (!output_event)
11782 		goto set;
11783 
11784 	/* don't allow circular references */
11785 	if (event == output_event)
11786 		goto out;
11787 
11788 	/*
11789 	 * Don't allow cross-cpu buffers
11790 	 */
11791 	if (output_event->cpu != event->cpu)
11792 		goto out;
11793 
11794 	/*
11795 	 * If its not a per-cpu rb, it must be the same task.
11796 	 */
11797 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11798 		goto out;
11799 
11800 	/*
11801 	 * Mixing clocks in the same buffer is trouble you don't need.
11802 	 */
11803 	if (output_event->clock != event->clock)
11804 		goto out;
11805 
11806 	/*
11807 	 * Either writing ring buffer from beginning or from end.
11808 	 * Mixing is not allowed.
11809 	 */
11810 	if (is_write_backward(output_event) != is_write_backward(event))
11811 		goto out;
11812 
11813 	/*
11814 	 * If both events generate aux data, they must be on the same PMU
11815 	 */
11816 	if (has_aux(event) && has_aux(output_event) &&
11817 	    event->pmu != output_event->pmu)
11818 		goto out;
11819 
11820 set:
11821 	mutex_lock(&event->mmap_mutex);
11822 	/* Can't redirect output if we've got an active mmap() */
11823 	if (atomic_read(&event->mmap_count))
11824 		goto unlock;
11825 
11826 	if (output_event) {
11827 		/* get the rb we want to redirect to */
11828 		rb = ring_buffer_get(output_event);
11829 		if (!rb)
11830 			goto unlock;
11831 	}
11832 
11833 	ring_buffer_attach(event, rb);
11834 
11835 	ret = 0;
11836 unlock:
11837 	mutex_unlock(&event->mmap_mutex);
11838 
11839 out:
11840 	return ret;
11841 }
11842 
11843 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11844 {
11845 	if (b < a)
11846 		swap(a, b);
11847 
11848 	mutex_lock(a);
11849 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11850 }
11851 
11852 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11853 {
11854 	bool nmi_safe = false;
11855 
11856 	switch (clk_id) {
11857 	case CLOCK_MONOTONIC:
11858 		event->clock = &ktime_get_mono_fast_ns;
11859 		nmi_safe = true;
11860 		break;
11861 
11862 	case CLOCK_MONOTONIC_RAW:
11863 		event->clock = &ktime_get_raw_fast_ns;
11864 		nmi_safe = true;
11865 		break;
11866 
11867 	case CLOCK_REALTIME:
11868 		event->clock = &ktime_get_real_ns;
11869 		break;
11870 
11871 	case CLOCK_BOOTTIME:
11872 		event->clock = &ktime_get_boottime_ns;
11873 		break;
11874 
11875 	case CLOCK_TAI:
11876 		event->clock = &ktime_get_clocktai_ns;
11877 		break;
11878 
11879 	default:
11880 		return -EINVAL;
11881 	}
11882 
11883 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11884 		return -EINVAL;
11885 
11886 	return 0;
11887 }
11888 
11889 /*
11890  * Variation on perf_event_ctx_lock_nested(), except we take two context
11891  * mutexes.
11892  */
11893 static struct perf_event_context *
11894 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11895 			     struct perf_event_context *ctx)
11896 {
11897 	struct perf_event_context *gctx;
11898 
11899 again:
11900 	rcu_read_lock();
11901 	gctx = READ_ONCE(group_leader->ctx);
11902 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11903 		rcu_read_unlock();
11904 		goto again;
11905 	}
11906 	rcu_read_unlock();
11907 
11908 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11909 
11910 	if (group_leader->ctx != gctx) {
11911 		mutex_unlock(&ctx->mutex);
11912 		mutex_unlock(&gctx->mutex);
11913 		put_ctx(gctx);
11914 		goto again;
11915 	}
11916 
11917 	return gctx;
11918 }
11919 
11920 /**
11921  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11922  *
11923  * @attr_uptr:	event_id type attributes for monitoring/sampling
11924  * @pid:		target pid
11925  * @cpu:		target cpu
11926  * @group_fd:		group leader event fd
11927  * @flags:		perf event open flags
11928  */
11929 SYSCALL_DEFINE5(perf_event_open,
11930 		struct perf_event_attr __user *, attr_uptr,
11931 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11932 {
11933 	struct perf_event *group_leader = NULL, *output_event = NULL;
11934 	struct perf_event *event, *sibling;
11935 	struct perf_event_attr attr;
11936 	struct perf_event_context *ctx, *gctx;
11937 	struct file *event_file = NULL;
11938 	struct fd group = {NULL, 0};
11939 	struct task_struct *task = NULL;
11940 	struct pmu *pmu;
11941 	int event_fd;
11942 	int move_group = 0;
11943 	int err;
11944 	int f_flags = O_RDWR;
11945 	int cgroup_fd = -1;
11946 
11947 	/* for future expandability... */
11948 	if (flags & ~PERF_FLAG_ALL)
11949 		return -EINVAL;
11950 
11951 	/* Do we allow access to perf_event_open(2) ? */
11952 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11953 	if (err)
11954 		return err;
11955 
11956 	err = perf_copy_attr(attr_uptr, &attr);
11957 	if (err)
11958 		return err;
11959 
11960 	if (!attr.exclude_kernel) {
11961 		err = perf_allow_kernel(&attr);
11962 		if (err)
11963 			return err;
11964 	}
11965 
11966 	if (attr.namespaces) {
11967 		if (!perfmon_capable())
11968 			return -EACCES;
11969 	}
11970 
11971 	if (attr.freq) {
11972 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
11973 			return -EINVAL;
11974 	} else {
11975 		if (attr.sample_period & (1ULL << 63))
11976 			return -EINVAL;
11977 	}
11978 
11979 	/* Only privileged users can get physical addresses */
11980 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11981 		err = perf_allow_kernel(&attr);
11982 		if (err)
11983 			return err;
11984 	}
11985 
11986 	/* REGS_INTR can leak data, lockdown must prevent this */
11987 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
11988 		err = security_locked_down(LOCKDOWN_PERF);
11989 		if (err)
11990 			return err;
11991 	}
11992 
11993 	/*
11994 	 * In cgroup mode, the pid argument is used to pass the fd
11995 	 * opened to the cgroup directory in cgroupfs. The cpu argument
11996 	 * designates the cpu on which to monitor threads from that
11997 	 * cgroup.
11998 	 */
11999 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12000 		return -EINVAL;
12001 
12002 	if (flags & PERF_FLAG_FD_CLOEXEC)
12003 		f_flags |= O_CLOEXEC;
12004 
12005 	event_fd = get_unused_fd_flags(f_flags);
12006 	if (event_fd < 0)
12007 		return event_fd;
12008 
12009 	if (group_fd != -1) {
12010 		err = perf_fget_light(group_fd, &group);
12011 		if (err)
12012 			goto err_fd;
12013 		group_leader = group.file->private_data;
12014 		if (flags & PERF_FLAG_FD_OUTPUT)
12015 			output_event = group_leader;
12016 		if (flags & PERF_FLAG_FD_NO_GROUP)
12017 			group_leader = NULL;
12018 	}
12019 
12020 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12021 		task = find_lively_task_by_vpid(pid);
12022 		if (IS_ERR(task)) {
12023 			err = PTR_ERR(task);
12024 			goto err_group_fd;
12025 		}
12026 	}
12027 
12028 	if (task && group_leader &&
12029 	    group_leader->attr.inherit != attr.inherit) {
12030 		err = -EINVAL;
12031 		goto err_task;
12032 	}
12033 
12034 	if (flags & PERF_FLAG_PID_CGROUP)
12035 		cgroup_fd = pid;
12036 
12037 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12038 				 NULL, NULL, cgroup_fd);
12039 	if (IS_ERR(event)) {
12040 		err = PTR_ERR(event);
12041 		goto err_task;
12042 	}
12043 
12044 	if (is_sampling_event(event)) {
12045 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12046 			err = -EOPNOTSUPP;
12047 			goto err_alloc;
12048 		}
12049 	}
12050 
12051 	/*
12052 	 * Special case software events and allow them to be part of
12053 	 * any hardware group.
12054 	 */
12055 	pmu = event->pmu;
12056 
12057 	if (attr.use_clockid) {
12058 		err = perf_event_set_clock(event, attr.clockid);
12059 		if (err)
12060 			goto err_alloc;
12061 	}
12062 
12063 	if (pmu->task_ctx_nr == perf_sw_context)
12064 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12065 
12066 	if (group_leader) {
12067 		if (is_software_event(event) &&
12068 		    !in_software_context(group_leader)) {
12069 			/*
12070 			 * If the event is a sw event, but the group_leader
12071 			 * is on hw context.
12072 			 *
12073 			 * Allow the addition of software events to hw
12074 			 * groups, this is safe because software events
12075 			 * never fail to schedule.
12076 			 */
12077 			pmu = group_leader->ctx->pmu;
12078 		} else if (!is_software_event(event) &&
12079 			   is_software_event(group_leader) &&
12080 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12081 			/*
12082 			 * In case the group is a pure software group, and we
12083 			 * try to add a hardware event, move the whole group to
12084 			 * the hardware context.
12085 			 */
12086 			move_group = 1;
12087 		}
12088 	}
12089 
12090 	/*
12091 	 * Get the target context (task or percpu):
12092 	 */
12093 	ctx = find_get_context(pmu, task, event);
12094 	if (IS_ERR(ctx)) {
12095 		err = PTR_ERR(ctx);
12096 		goto err_alloc;
12097 	}
12098 
12099 	/*
12100 	 * Look up the group leader (we will attach this event to it):
12101 	 */
12102 	if (group_leader) {
12103 		err = -EINVAL;
12104 
12105 		/*
12106 		 * Do not allow a recursive hierarchy (this new sibling
12107 		 * becoming part of another group-sibling):
12108 		 */
12109 		if (group_leader->group_leader != group_leader)
12110 			goto err_context;
12111 
12112 		/* All events in a group should have the same clock */
12113 		if (group_leader->clock != event->clock)
12114 			goto err_context;
12115 
12116 		/*
12117 		 * Make sure we're both events for the same CPU;
12118 		 * grouping events for different CPUs is broken; since
12119 		 * you can never concurrently schedule them anyhow.
12120 		 */
12121 		if (group_leader->cpu != event->cpu)
12122 			goto err_context;
12123 
12124 		/*
12125 		 * Make sure we're both on the same task, or both
12126 		 * per-CPU events.
12127 		 */
12128 		if (group_leader->ctx->task != ctx->task)
12129 			goto err_context;
12130 
12131 		/*
12132 		 * Do not allow to attach to a group in a different task
12133 		 * or CPU context. If we're moving SW events, we'll fix
12134 		 * this up later, so allow that.
12135 		 */
12136 		if (!move_group && group_leader->ctx != ctx)
12137 			goto err_context;
12138 
12139 		/*
12140 		 * Only a group leader can be exclusive or pinned
12141 		 */
12142 		if (attr.exclusive || attr.pinned)
12143 			goto err_context;
12144 	}
12145 
12146 	if (output_event) {
12147 		err = perf_event_set_output(event, output_event);
12148 		if (err)
12149 			goto err_context;
12150 	}
12151 
12152 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12153 					f_flags);
12154 	if (IS_ERR(event_file)) {
12155 		err = PTR_ERR(event_file);
12156 		event_file = NULL;
12157 		goto err_context;
12158 	}
12159 
12160 	if (task) {
12161 		err = down_read_interruptible(&task->signal->exec_update_lock);
12162 		if (err)
12163 			goto err_file;
12164 
12165 		/*
12166 		 * Preserve ptrace permission check for backwards compatibility.
12167 		 *
12168 		 * We must hold exec_update_lock across this and any potential
12169 		 * perf_install_in_context() call for this new event to
12170 		 * serialize against exec() altering our credentials (and the
12171 		 * perf_event_exit_task() that could imply).
12172 		 */
12173 		err = -EACCES;
12174 		if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
12175 			goto err_cred;
12176 	}
12177 
12178 	if (move_group) {
12179 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12180 
12181 		if (gctx->task == TASK_TOMBSTONE) {
12182 			err = -ESRCH;
12183 			goto err_locked;
12184 		}
12185 
12186 		/*
12187 		 * Check if we raced against another sys_perf_event_open() call
12188 		 * moving the software group underneath us.
12189 		 */
12190 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12191 			/*
12192 			 * If someone moved the group out from under us, check
12193 			 * if this new event wound up on the same ctx, if so
12194 			 * its the regular !move_group case, otherwise fail.
12195 			 */
12196 			if (gctx != ctx) {
12197 				err = -EINVAL;
12198 				goto err_locked;
12199 			} else {
12200 				perf_event_ctx_unlock(group_leader, gctx);
12201 				move_group = 0;
12202 			}
12203 		}
12204 
12205 		/*
12206 		 * Failure to create exclusive events returns -EBUSY.
12207 		 */
12208 		err = -EBUSY;
12209 		if (!exclusive_event_installable(group_leader, ctx))
12210 			goto err_locked;
12211 
12212 		for_each_sibling_event(sibling, group_leader) {
12213 			if (!exclusive_event_installable(sibling, ctx))
12214 				goto err_locked;
12215 		}
12216 	} else {
12217 		mutex_lock(&ctx->mutex);
12218 	}
12219 
12220 	if (ctx->task == TASK_TOMBSTONE) {
12221 		err = -ESRCH;
12222 		goto err_locked;
12223 	}
12224 
12225 	if (!perf_event_validate_size(event)) {
12226 		err = -E2BIG;
12227 		goto err_locked;
12228 	}
12229 
12230 	if (!task) {
12231 		/*
12232 		 * Check if the @cpu we're creating an event for is online.
12233 		 *
12234 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12235 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12236 		 */
12237 		struct perf_cpu_context *cpuctx =
12238 			container_of(ctx, struct perf_cpu_context, ctx);
12239 
12240 		if (!cpuctx->online) {
12241 			err = -ENODEV;
12242 			goto err_locked;
12243 		}
12244 	}
12245 
12246 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12247 		err = -EINVAL;
12248 		goto err_locked;
12249 	}
12250 
12251 	/*
12252 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12253 	 * because we need to serialize with concurrent event creation.
12254 	 */
12255 	if (!exclusive_event_installable(event, ctx)) {
12256 		err = -EBUSY;
12257 		goto err_locked;
12258 	}
12259 
12260 	WARN_ON_ONCE(ctx->parent_ctx);
12261 
12262 	/*
12263 	 * This is the point on no return; we cannot fail hereafter. This is
12264 	 * where we start modifying current state.
12265 	 */
12266 
12267 	if (move_group) {
12268 		/*
12269 		 * See perf_event_ctx_lock() for comments on the details
12270 		 * of swizzling perf_event::ctx.
12271 		 */
12272 		perf_remove_from_context(group_leader, 0);
12273 		put_ctx(gctx);
12274 
12275 		for_each_sibling_event(sibling, group_leader) {
12276 			perf_remove_from_context(sibling, 0);
12277 			put_ctx(gctx);
12278 		}
12279 
12280 		/*
12281 		 * Wait for everybody to stop referencing the events through
12282 		 * the old lists, before installing it on new lists.
12283 		 */
12284 		synchronize_rcu();
12285 
12286 		/*
12287 		 * Install the group siblings before the group leader.
12288 		 *
12289 		 * Because a group leader will try and install the entire group
12290 		 * (through the sibling list, which is still in-tact), we can
12291 		 * end up with siblings installed in the wrong context.
12292 		 *
12293 		 * By installing siblings first we NO-OP because they're not
12294 		 * reachable through the group lists.
12295 		 */
12296 		for_each_sibling_event(sibling, group_leader) {
12297 			perf_event__state_init(sibling);
12298 			perf_install_in_context(ctx, sibling, sibling->cpu);
12299 			get_ctx(ctx);
12300 		}
12301 
12302 		/*
12303 		 * Removing from the context ends up with disabled
12304 		 * event. What we want here is event in the initial
12305 		 * startup state, ready to be add into new context.
12306 		 */
12307 		perf_event__state_init(group_leader);
12308 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12309 		get_ctx(ctx);
12310 	}
12311 
12312 	/*
12313 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12314 	 * that we're serialized against further additions and before
12315 	 * perf_install_in_context() which is the point the event is active and
12316 	 * can use these values.
12317 	 */
12318 	perf_event__header_size(event);
12319 	perf_event__id_header_size(event);
12320 
12321 	event->owner = current;
12322 
12323 	perf_install_in_context(ctx, event, event->cpu);
12324 	perf_unpin_context(ctx);
12325 
12326 	if (move_group)
12327 		perf_event_ctx_unlock(group_leader, gctx);
12328 	mutex_unlock(&ctx->mutex);
12329 
12330 	if (task) {
12331 		up_read(&task->signal->exec_update_lock);
12332 		put_task_struct(task);
12333 	}
12334 
12335 	mutex_lock(&current->perf_event_mutex);
12336 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12337 	mutex_unlock(&current->perf_event_mutex);
12338 
12339 	/*
12340 	 * Drop the reference on the group_event after placing the
12341 	 * new event on the sibling_list. This ensures destruction
12342 	 * of the group leader will find the pointer to itself in
12343 	 * perf_group_detach().
12344 	 */
12345 	fdput(group);
12346 	fd_install(event_fd, event_file);
12347 	return event_fd;
12348 
12349 err_locked:
12350 	if (move_group)
12351 		perf_event_ctx_unlock(group_leader, gctx);
12352 	mutex_unlock(&ctx->mutex);
12353 err_cred:
12354 	if (task)
12355 		up_read(&task->signal->exec_update_lock);
12356 err_file:
12357 	fput(event_file);
12358 err_context:
12359 	perf_unpin_context(ctx);
12360 	put_ctx(ctx);
12361 err_alloc:
12362 	/*
12363 	 * If event_file is set, the fput() above will have called ->release()
12364 	 * and that will take care of freeing the event.
12365 	 */
12366 	if (!event_file)
12367 		free_event(event);
12368 err_task:
12369 	if (task)
12370 		put_task_struct(task);
12371 err_group_fd:
12372 	fdput(group);
12373 err_fd:
12374 	put_unused_fd(event_fd);
12375 	return err;
12376 }
12377 
12378 /**
12379  * perf_event_create_kernel_counter
12380  *
12381  * @attr: attributes of the counter to create
12382  * @cpu: cpu in which the counter is bound
12383  * @task: task to profile (NULL for percpu)
12384  * @overflow_handler: callback to trigger when we hit the event
12385  * @context: context data could be used in overflow_handler callback
12386  */
12387 struct perf_event *
12388 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12389 				 struct task_struct *task,
12390 				 perf_overflow_handler_t overflow_handler,
12391 				 void *context)
12392 {
12393 	struct perf_event_context *ctx;
12394 	struct perf_event *event;
12395 	int err;
12396 
12397 	/*
12398 	 * Grouping is not supported for kernel events, neither is 'AUX',
12399 	 * make sure the caller's intentions are adjusted.
12400 	 */
12401 	if (attr->aux_output)
12402 		return ERR_PTR(-EINVAL);
12403 
12404 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12405 				 overflow_handler, context, -1);
12406 	if (IS_ERR(event)) {
12407 		err = PTR_ERR(event);
12408 		goto err;
12409 	}
12410 
12411 	/* Mark owner so we could distinguish it from user events. */
12412 	event->owner = TASK_TOMBSTONE;
12413 
12414 	/*
12415 	 * Get the target context (task or percpu):
12416 	 */
12417 	ctx = find_get_context(event->pmu, task, event);
12418 	if (IS_ERR(ctx)) {
12419 		err = PTR_ERR(ctx);
12420 		goto err_free;
12421 	}
12422 
12423 	WARN_ON_ONCE(ctx->parent_ctx);
12424 	mutex_lock(&ctx->mutex);
12425 	if (ctx->task == TASK_TOMBSTONE) {
12426 		err = -ESRCH;
12427 		goto err_unlock;
12428 	}
12429 
12430 	if (!task) {
12431 		/*
12432 		 * Check if the @cpu we're creating an event for is online.
12433 		 *
12434 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12435 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12436 		 */
12437 		struct perf_cpu_context *cpuctx =
12438 			container_of(ctx, struct perf_cpu_context, ctx);
12439 		if (!cpuctx->online) {
12440 			err = -ENODEV;
12441 			goto err_unlock;
12442 		}
12443 	}
12444 
12445 	if (!exclusive_event_installable(event, ctx)) {
12446 		err = -EBUSY;
12447 		goto err_unlock;
12448 	}
12449 
12450 	perf_install_in_context(ctx, event, event->cpu);
12451 	perf_unpin_context(ctx);
12452 	mutex_unlock(&ctx->mutex);
12453 
12454 	return event;
12455 
12456 err_unlock:
12457 	mutex_unlock(&ctx->mutex);
12458 	perf_unpin_context(ctx);
12459 	put_ctx(ctx);
12460 err_free:
12461 	free_event(event);
12462 err:
12463 	return ERR_PTR(err);
12464 }
12465 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12466 
12467 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12468 {
12469 	struct perf_event_context *src_ctx;
12470 	struct perf_event_context *dst_ctx;
12471 	struct perf_event *event, *tmp;
12472 	LIST_HEAD(events);
12473 
12474 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12475 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12476 
12477 	/*
12478 	 * See perf_event_ctx_lock() for comments on the details
12479 	 * of swizzling perf_event::ctx.
12480 	 */
12481 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12482 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12483 				 event_entry) {
12484 		perf_remove_from_context(event, 0);
12485 		unaccount_event_cpu(event, src_cpu);
12486 		put_ctx(src_ctx);
12487 		list_add(&event->migrate_entry, &events);
12488 	}
12489 
12490 	/*
12491 	 * Wait for the events to quiesce before re-instating them.
12492 	 */
12493 	synchronize_rcu();
12494 
12495 	/*
12496 	 * Re-instate events in 2 passes.
12497 	 *
12498 	 * Skip over group leaders and only install siblings on this first
12499 	 * pass, siblings will not get enabled without a leader, however a
12500 	 * leader will enable its siblings, even if those are still on the old
12501 	 * context.
12502 	 */
12503 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12504 		if (event->group_leader == event)
12505 			continue;
12506 
12507 		list_del(&event->migrate_entry);
12508 		if (event->state >= PERF_EVENT_STATE_OFF)
12509 			event->state = PERF_EVENT_STATE_INACTIVE;
12510 		account_event_cpu(event, dst_cpu);
12511 		perf_install_in_context(dst_ctx, event, dst_cpu);
12512 		get_ctx(dst_ctx);
12513 	}
12514 
12515 	/*
12516 	 * Once all the siblings are setup properly, install the group leaders
12517 	 * to make it go.
12518 	 */
12519 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12520 		list_del(&event->migrate_entry);
12521 		if (event->state >= PERF_EVENT_STATE_OFF)
12522 			event->state = PERF_EVENT_STATE_INACTIVE;
12523 		account_event_cpu(event, dst_cpu);
12524 		perf_install_in_context(dst_ctx, event, dst_cpu);
12525 		get_ctx(dst_ctx);
12526 	}
12527 	mutex_unlock(&dst_ctx->mutex);
12528 	mutex_unlock(&src_ctx->mutex);
12529 }
12530 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12531 
12532 static void sync_child_event(struct perf_event *child_event)
12533 {
12534 	struct perf_event *parent_event = child_event->parent;
12535 	u64 child_val;
12536 
12537 	if (child_event->attr.inherit_stat) {
12538 		struct task_struct *task = child_event->ctx->task;
12539 
12540 		if (task && task != TASK_TOMBSTONE)
12541 			perf_event_read_event(child_event, task);
12542 	}
12543 
12544 	child_val = perf_event_count(child_event);
12545 
12546 	/*
12547 	 * Add back the child's count to the parent's count:
12548 	 */
12549 	atomic64_add(child_val, &parent_event->child_count);
12550 	atomic64_add(child_event->total_time_enabled,
12551 		     &parent_event->child_total_time_enabled);
12552 	atomic64_add(child_event->total_time_running,
12553 		     &parent_event->child_total_time_running);
12554 }
12555 
12556 static void
12557 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12558 {
12559 	struct perf_event *parent_event = event->parent;
12560 	unsigned long detach_flags = 0;
12561 
12562 	if (parent_event) {
12563 		/*
12564 		 * Do not destroy the 'original' grouping; because of the
12565 		 * context switch optimization the original events could've
12566 		 * ended up in a random child task.
12567 		 *
12568 		 * If we were to destroy the original group, all group related
12569 		 * operations would cease to function properly after this
12570 		 * random child dies.
12571 		 *
12572 		 * Do destroy all inherited groups, we don't care about those
12573 		 * and being thorough is better.
12574 		 */
12575 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12576 		mutex_lock(&parent_event->child_mutex);
12577 	}
12578 
12579 	perf_remove_from_context(event, detach_flags);
12580 
12581 	raw_spin_lock_irq(&ctx->lock);
12582 	if (event->state > PERF_EVENT_STATE_EXIT)
12583 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12584 	raw_spin_unlock_irq(&ctx->lock);
12585 
12586 	/*
12587 	 * Child events can be freed.
12588 	 */
12589 	if (parent_event) {
12590 		mutex_unlock(&parent_event->child_mutex);
12591 		/*
12592 		 * Kick perf_poll() for is_event_hup();
12593 		 */
12594 		perf_event_wakeup(parent_event);
12595 		free_event(event);
12596 		put_event(parent_event);
12597 		return;
12598 	}
12599 
12600 	/*
12601 	 * Parent events are governed by their filedesc, retain them.
12602 	 */
12603 	perf_event_wakeup(event);
12604 }
12605 
12606 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12607 {
12608 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12609 	struct perf_event *child_event, *next;
12610 
12611 	WARN_ON_ONCE(child != current);
12612 
12613 	child_ctx = perf_pin_task_context(child, ctxn);
12614 	if (!child_ctx)
12615 		return;
12616 
12617 	/*
12618 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12619 	 * ctx::mutex over the entire thing. This serializes against almost
12620 	 * everything that wants to access the ctx.
12621 	 *
12622 	 * The exception is sys_perf_event_open() /
12623 	 * perf_event_create_kernel_count() which does find_get_context()
12624 	 * without ctx::mutex (it cannot because of the move_group double mutex
12625 	 * lock thing). See the comments in perf_install_in_context().
12626 	 */
12627 	mutex_lock(&child_ctx->mutex);
12628 
12629 	/*
12630 	 * In a single ctx::lock section, de-schedule the events and detach the
12631 	 * context from the task such that we cannot ever get it scheduled back
12632 	 * in.
12633 	 */
12634 	raw_spin_lock_irq(&child_ctx->lock);
12635 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12636 
12637 	/*
12638 	 * Now that the context is inactive, destroy the task <-> ctx relation
12639 	 * and mark the context dead.
12640 	 */
12641 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12642 	put_ctx(child_ctx); /* cannot be last */
12643 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12644 	put_task_struct(current); /* cannot be last */
12645 
12646 	clone_ctx = unclone_ctx(child_ctx);
12647 	raw_spin_unlock_irq(&child_ctx->lock);
12648 
12649 	if (clone_ctx)
12650 		put_ctx(clone_ctx);
12651 
12652 	/*
12653 	 * Report the task dead after unscheduling the events so that we
12654 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12655 	 * get a few PERF_RECORD_READ events.
12656 	 */
12657 	perf_event_task(child, child_ctx, 0);
12658 
12659 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12660 		perf_event_exit_event(child_event, child_ctx);
12661 
12662 	mutex_unlock(&child_ctx->mutex);
12663 
12664 	put_ctx(child_ctx);
12665 }
12666 
12667 /*
12668  * When a child task exits, feed back event values to parent events.
12669  *
12670  * Can be called with exec_update_lock held when called from
12671  * setup_new_exec().
12672  */
12673 void perf_event_exit_task(struct task_struct *child)
12674 {
12675 	struct perf_event *event, *tmp;
12676 	int ctxn;
12677 
12678 	mutex_lock(&child->perf_event_mutex);
12679 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12680 				 owner_entry) {
12681 		list_del_init(&event->owner_entry);
12682 
12683 		/*
12684 		 * Ensure the list deletion is visible before we clear
12685 		 * the owner, closes a race against perf_release() where
12686 		 * we need to serialize on the owner->perf_event_mutex.
12687 		 */
12688 		smp_store_release(&event->owner, NULL);
12689 	}
12690 	mutex_unlock(&child->perf_event_mutex);
12691 
12692 	for_each_task_context_nr(ctxn)
12693 		perf_event_exit_task_context(child, ctxn);
12694 
12695 	/*
12696 	 * The perf_event_exit_task_context calls perf_event_task
12697 	 * with child's task_ctx, which generates EXIT events for
12698 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12699 	 * At this point we need to send EXIT events to cpu contexts.
12700 	 */
12701 	perf_event_task(child, NULL, 0);
12702 }
12703 
12704 static void perf_free_event(struct perf_event *event,
12705 			    struct perf_event_context *ctx)
12706 {
12707 	struct perf_event *parent = event->parent;
12708 
12709 	if (WARN_ON_ONCE(!parent))
12710 		return;
12711 
12712 	mutex_lock(&parent->child_mutex);
12713 	list_del_init(&event->child_list);
12714 	mutex_unlock(&parent->child_mutex);
12715 
12716 	put_event(parent);
12717 
12718 	raw_spin_lock_irq(&ctx->lock);
12719 	perf_group_detach(event);
12720 	list_del_event(event, ctx);
12721 	raw_spin_unlock_irq(&ctx->lock);
12722 	free_event(event);
12723 }
12724 
12725 /*
12726  * Free a context as created by inheritance by perf_event_init_task() below,
12727  * used by fork() in case of fail.
12728  *
12729  * Even though the task has never lived, the context and events have been
12730  * exposed through the child_list, so we must take care tearing it all down.
12731  */
12732 void perf_event_free_task(struct task_struct *task)
12733 {
12734 	struct perf_event_context *ctx;
12735 	struct perf_event *event, *tmp;
12736 	int ctxn;
12737 
12738 	for_each_task_context_nr(ctxn) {
12739 		ctx = task->perf_event_ctxp[ctxn];
12740 		if (!ctx)
12741 			continue;
12742 
12743 		mutex_lock(&ctx->mutex);
12744 		raw_spin_lock_irq(&ctx->lock);
12745 		/*
12746 		 * Destroy the task <-> ctx relation and mark the context dead.
12747 		 *
12748 		 * This is important because even though the task hasn't been
12749 		 * exposed yet the context has been (through child_list).
12750 		 */
12751 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12752 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12753 		put_task_struct(task); /* cannot be last */
12754 		raw_spin_unlock_irq(&ctx->lock);
12755 
12756 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12757 			perf_free_event(event, ctx);
12758 
12759 		mutex_unlock(&ctx->mutex);
12760 
12761 		/*
12762 		 * perf_event_release_kernel() could've stolen some of our
12763 		 * child events and still have them on its free_list. In that
12764 		 * case we must wait for these events to have been freed (in
12765 		 * particular all their references to this task must've been
12766 		 * dropped).
12767 		 *
12768 		 * Without this copy_process() will unconditionally free this
12769 		 * task (irrespective of its reference count) and
12770 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12771 		 * use-after-free.
12772 		 *
12773 		 * Wait for all events to drop their context reference.
12774 		 */
12775 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12776 		put_ctx(ctx); /* must be last */
12777 	}
12778 }
12779 
12780 void perf_event_delayed_put(struct task_struct *task)
12781 {
12782 	int ctxn;
12783 
12784 	for_each_task_context_nr(ctxn)
12785 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12786 }
12787 
12788 struct file *perf_event_get(unsigned int fd)
12789 {
12790 	struct file *file = fget(fd);
12791 	if (!file)
12792 		return ERR_PTR(-EBADF);
12793 
12794 	if (file->f_op != &perf_fops) {
12795 		fput(file);
12796 		return ERR_PTR(-EBADF);
12797 	}
12798 
12799 	return file;
12800 }
12801 
12802 const struct perf_event *perf_get_event(struct file *file)
12803 {
12804 	if (file->f_op != &perf_fops)
12805 		return ERR_PTR(-EINVAL);
12806 
12807 	return file->private_data;
12808 }
12809 
12810 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12811 {
12812 	if (!event)
12813 		return ERR_PTR(-EINVAL);
12814 
12815 	return &event->attr;
12816 }
12817 
12818 /*
12819  * Inherit an event from parent task to child task.
12820  *
12821  * Returns:
12822  *  - valid pointer on success
12823  *  - NULL for orphaned events
12824  *  - IS_ERR() on error
12825  */
12826 static struct perf_event *
12827 inherit_event(struct perf_event *parent_event,
12828 	      struct task_struct *parent,
12829 	      struct perf_event_context *parent_ctx,
12830 	      struct task_struct *child,
12831 	      struct perf_event *group_leader,
12832 	      struct perf_event_context *child_ctx)
12833 {
12834 	enum perf_event_state parent_state = parent_event->state;
12835 	struct perf_event *child_event;
12836 	unsigned long flags;
12837 
12838 	/*
12839 	 * Instead of creating recursive hierarchies of events,
12840 	 * we link inherited events back to the original parent,
12841 	 * which has a filp for sure, which we use as the reference
12842 	 * count:
12843 	 */
12844 	if (parent_event->parent)
12845 		parent_event = parent_event->parent;
12846 
12847 	child_event = perf_event_alloc(&parent_event->attr,
12848 					   parent_event->cpu,
12849 					   child,
12850 					   group_leader, parent_event,
12851 					   NULL, NULL, -1);
12852 	if (IS_ERR(child_event))
12853 		return child_event;
12854 
12855 
12856 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12857 	    !child_ctx->task_ctx_data) {
12858 		struct pmu *pmu = child_event->pmu;
12859 
12860 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12861 		if (!child_ctx->task_ctx_data) {
12862 			free_event(child_event);
12863 			return ERR_PTR(-ENOMEM);
12864 		}
12865 	}
12866 
12867 	/*
12868 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12869 	 * must be under the same lock in order to serialize against
12870 	 * perf_event_release_kernel(), such that either we must observe
12871 	 * is_orphaned_event() or they will observe us on the child_list.
12872 	 */
12873 	mutex_lock(&parent_event->child_mutex);
12874 	if (is_orphaned_event(parent_event) ||
12875 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12876 		mutex_unlock(&parent_event->child_mutex);
12877 		/* task_ctx_data is freed with child_ctx */
12878 		free_event(child_event);
12879 		return NULL;
12880 	}
12881 
12882 	get_ctx(child_ctx);
12883 
12884 	/*
12885 	 * Make the child state follow the state of the parent event,
12886 	 * not its attr.disabled bit.  We hold the parent's mutex,
12887 	 * so we won't race with perf_event_{en, dis}able_family.
12888 	 */
12889 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12890 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12891 	else
12892 		child_event->state = PERF_EVENT_STATE_OFF;
12893 
12894 	if (parent_event->attr.freq) {
12895 		u64 sample_period = parent_event->hw.sample_period;
12896 		struct hw_perf_event *hwc = &child_event->hw;
12897 
12898 		hwc->sample_period = sample_period;
12899 		hwc->last_period   = sample_period;
12900 
12901 		local64_set(&hwc->period_left, sample_period);
12902 	}
12903 
12904 	child_event->ctx = child_ctx;
12905 	child_event->overflow_handler = parent_event->overflow_handler;
12906 	child_event->overflow_handler_context
12907 		= parent_event->overflow_handler_context;
12908 
12909 	/*
12910 	 * Precalculate sample_data sizes
12911 	 */
12912 	perf_event__header_size(child_event);
12913 	perf_event__id_header_size(child_event);
12914 
12915 	/*
12916 	 * Link it up in the child's context:
12917 	 */
12918 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
12919 	add_event_to_ctx(child_event, child_ctx);
12920 	child_event->attach_state |= PERF_ATTACH_CHILD;
12921 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12922 
12923 	/*
12924 	 * Link this into the parent event's child list
12925 	 */
12926 	list_add_tail(&child_event->child_list, &parent_event->child_list);
12927 	mutex_unlock(&parent_event->child_mutex);
12928 
12929 	return child_event;
12930 }
12931 
12932 /*
12933  * Inherits an event group.
12934  *
12935  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12936  * This matches with perf_event_release_kernel() removing all child events.
12937  *
12938  * Returns:
12939  *  - 0 on success
12940  *  - <0 on error
12941  */
12942 static int inherit_group(struct perf_event *parent_event,
12943 	      struct task_struct *parent,
12944 	      struct perf_event_context *parent_ctx,
12945 	      struct task_struct *child,
12946 	      struct perf_event_context *child_ctx)
12947 {
12948 	struct perf_event *leader;
12949 	struct perf_event *sub;
12950 	struct perf_event *child_ctr;
12951 
12952 	leader = inherit_event(parent_event, parent, parent_ctx,
12953 				 child, NULL, child_ctx);
12954 	if (IS_ERR(leader))
12955 		return PTR_ERR(leader);
12956 	/*
12957 	 * @leader can be NULL here because of is_orphaned_event(). In this
12958 	 * case inherit_event() will create individual events, similar to what
12959 	 * perf_group_detach() would do anyway.
12960 	 */
12961 	for_each_sibling_event(sub, parent_event) {
12962 		child_ctr = inherit_event(sub, parent, parent_ctx,
12963 					    child, leader, child_ctx);
12964 		if (IS_ERR(child_ctr))
12965 			return PTR_ERR(child_ctr);
12966 
12967 		if (sub->aux_event == parent_event && child_ctr &&
12968 		    !perf_get_aux_event(child_ctr, leader))
12969 			return -EINVAL;
12970 	}
12971 	return 0;
12972 }
12973 
12974 /*
12975  * Creates the child task context and tries to inherit the event-group.
12976  *
12977  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12978  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12979  * consistent with perf_event_release_kernel() removing all child events.
12980  *
12981  * Returns:
12982  *  - 0 on success
12983  *  - <0 on error
12984  */
12985 static int
12986 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12987 		   struct perf_event_context *parent_ctx,
12988 		   struct task_struct *child, int ctxn,
12989 		   u64 clone_flags, int *inherited_all)
12990 {
12991 	int ret;
12992 	struct perf_event_context *child_ctx;
12993 
12994 	if (!event->attr.inherit ||
12995 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
12996 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
12997 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
12998 		*inherited_all = 0;
12999 		return 0;
13000 	}
13001 
13002 	child_ctx = child->perf_event_ctxp[ctxn];
13003 	if (!child_ctx) {
13004 		/*
13005 		 * This is executed from the parent task context, so
13006 		 * inherit events that have been marked for cloning.
13007 		 * First allocate and initialize a context for the
13008 		 * child.
13009 		 */
13010 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13011 		if (!child_ctx)
13012 			return -ENOMEM;
13013 
13014 		child->perf_event_ctxp[ctxn] = child_ctx;
13015 	}
13016 
13017 	ret = inherit_group(event, parent, parent_ctx,
13018 			    child, child_ctx);
13019 
13020 	if (ret)
13021 		*inherited_all = 0;
13022 
13023 	return ret;
13024 }
13025 
13026 /*
13027  * Initialize the perf_event context in task_struct
13028  */
13029 static int perf_event_init_context(struct task_struct *child, int ctxn,
13030 				   u64 clone_flags)
13031 {
13032 	struct perf_event_context *child_ctx, *parent_ctx;
13033 	struct perf_event_context *cloned_ctx;
13034 	struct perf_event *event;
13035 	struct task_struct *parent = current;
13036 	int inherited_all = 1;
13037 	unsigned long flags;
13038 	int ret = 0;
13039 
13040 	if (likely(!parent->perf_event_ctxp[ctxn]))
13041 		return 0;
13042 
13043 	/*
13044 	 * If the parent's context is a clone, pin it so it won't get
13045 	 * swapped under us.
13046 	 */
13047 	parent_ctx = perf_pin_task_context(parent, ctxn);
13048 	if (!parent_ctx)
13049 		return 0;
13050 
13051 	/*
13052 	 * No need to check if parent_ctx != NULL here; since we saw
13053 	 * it non-NULL earlier, the only reason for it to become NULL
13054 	 * is if we exit, and since we're currently in the middle of
13055 	 * a fork we can't be exiting at the same time.
13056 	 */
13057 
13058 	/*
13059 	 * Lock the parent list. No need to lock the child - not PID
13060 	 * hashed yet and not running, so nobody can access it.
13061 	 */
13062 	mutex_lock(&parent_ctx->mutex);
13063 
13064 	/*
13065 	 * We dont have to disable NMIs - we are only looking at
13066 	 * the list, not manipulating it:
13067 	 */
13068 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13069 		ret = inherit_task_group(event, parent, parent_ctx,
13070 					 child, ctxn, clone_flags,
13071 					 &inherited_all);
13072 		if (ret)
13073 			goto out_unlock;
13074 	}
13075 
13076 	/*
13077 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13078 	 * to allocations, but we need to prevent rotation because
13079 	 * rotate_ctx() will change the list from interrupt context.
13080 	 */
13081 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13082 	parent_ctx->rotate_disable = 1;
13083 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13084 
13085 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13086 		ret = inherit_task_group(event, parent, parent_ctx,
13087 					 child, ctxn, clone_flags,
13088 					 &inherited_all);
13089 		if (ret)
13090 			goto out_unlock;
13091 	}
13092 
13093 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13094 	parent_ctx->rotate_disable = 0;
13095 
13096 	child_ctx = child->perf_event_ctxp[ctxn];
13097 
13098 	if (child_ctx && inherited_all) {
13099 		/*
13100 		 * Mark the child context as a clone of the parent
13101 		 * context, or of whatever the parent is a clone of.
13102 		 *
13103 		 * Note that if the parent is a clone, the holding of
13104 		 * parent_ctx->lock avoids it from being uncloned.
13105 		 */
13106 		cloned_ctx = parent_ctx->parent_ctx;
13107 		if (cloned_ctx) {
13108 			child_ctx->parent_ctx = cloned_ctx;
13109 			child_ctx->parent_gen = parent_ctx->parent_gen;
13110 		} else {
13111 			child_ctx->parent_ctx = parent_ctx;
13112 			child_ctx->parent_gen = parent_ctx->generation;
13113 		}
13114 		get_ctx(child_ctx->parent_ctx);
13115 	}
13116 
13117 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13118 out_unlock:
13119 	mutex_unlock(&parent_ctx->mutex);
13120 
13121 	perf_unpin_context(parent_ctx);
13122 	put_ctx(parent_ctx);
13123 
13124 	return ret;
13125 }
13126 
13127 /*
13128  * Initialize the perf_event context in task_struct
13129  */
13130 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13131 {
13132 	int ctxn, ret;
13133 
13134 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13135 	mutex_init(&child->perf_event_mutex);
13136 	INIT_LIST_HEAD(&child->perf_event_list);
13137 
13138 	for_each_task_context_nr(ctxn) {
13139 		ret = perf_event_init_context(child, ctxn, clone_flags);
13140 		if (ret) {
13141 			perf_event_free_task(child);
13142 			return ret;
13143 		}
13144 	}
13145 
13146 	return 0;
13147 }
13148 
13149 static void __init perf_event_init_all_cpus(void)
13150 {
13151 	struct swevent_htable *swhash;
13152 	int cpu;
13153 
13154 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13155 
13156 	for_each_possible_cpu(cpu) {
13157 		swhash = &per_cpu(swevent_htable, cpu);
13158 		mutex_init(&swhash->hlist_mutex);
13159 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13160 
13161 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13162 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13163 
13164 #ifdef CONFIG_CGROUP_PERF
13165 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13166 #endif
13167 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13168 	}
13169 }
13170 
13171 static void perf_swevent_init_cpu(unsigned int cpu)
13172 {
13173 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13174 
13175 	mutex_lock(&swhash->hlist_mutex);
13176 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13177 		struct swevent_hlist *hlist;
13178 
13179 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13180 		WARN_ON(!hlist);
13181 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13182 	}
13183 	mutex_unlock(&swhash->hlist_mutex);
13184 }
13185 
13186 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13187 static void __perf_event_exit_context(void *__info)
13188 {
13189 	struct perf_event_context *ctx = __info;
13190 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13191 	struct perf_event *event;
13192 
13193 	raw_spin_lock(&ctx->lock);
13194 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13195 	list_for_each_entry(event, &ctx->event_list, event_entry)
13196 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13197 	raw_spin_unlock(&ctx->lock);
13198 }
13199 
13200 static void perf_event_exit_cpu_context(int cpu)
13201 {
13202 	struct perf_cpu_context *cpuctx;
13203 	struct perf_event_context *ctx;
13204 	struct pmu *pmu;
13205 
13206 	mutex_lock(&pmus_lock);
13207 	list_for_each_entry(pmu, &pmus, entry) {
13208 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13209 		ctx = &cpuctx->ctx;
13210 
13211 		mutex_lock(&ctx->mutex);
13212 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13213 		cpuctx->online = 0;
13214 		mutex_unlock(&ctx->mutex);
13215 	}
13216 	cpumask_clear_cpu(cpu, perf_online_mask);
13217 	mutex_unlock(&pmus_lock);
13218 }
13219 #else
13220 
13221 static void perf_event_exit_cpu_context(int cpu) { }
13222 
13223 #endif
13224 
13225 int perf_event_init_cpu(unsigned int cpu)
13226 {
13227 	struct perf_cpu_context *cpuctx;
13228 	struct perf_event_context *ctx;
13229 	struct pmu *pmu;
13230 
13231 	perf_swevent_init_cpu(cpu);
13232 
13233 	mutex_lock(&pmus_lock);
13234 	cpumask_set_cpu(cpu, perf_online_mask);
13235 	list_for_each_entry(pmu, &pmus, entry) {
13236 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13237 		ctx = &cpuctx->ctx;
13238 
13239 		mutex_lock(&ctx->mutex);
13240 		cpuctx->online = 1;
13241 		mutex_unlock(&ctx->mutex);
13242 	}
13243 	mutex_unlock(&pmus_lock);
13244 
13245 	return 0;
13246 }
13247 
13248 int perf_event_exit_cpu(unsigned int cpu)
13249 {
13250 	perf_event_exit_cpu_context(cpu);
13251 	return 0;
13252 }
13253 
13254 static int
13255 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13256 {
13257 	int cpu;
13258 
13259 	for_each_online_cpu(cpu)
13260 		perf_event_exit_cpu(cpu);
13261 
13262 	return NOTIFY_OK;
13263 }
13264 
13265 /*
13266  * Run the perf reboot notifier at the very last possible moment so that
13267  * the generic watchdog code runs as long as possible.
13268  */
13269 static struct notifier_block perf_reboot_notifier = {
13270 	.notifier_call = perf_reboot,
13271 	.priority = INT_MIN,
13272 };
13273 
13274 void __init perf_event_init(void)
13275 {
13276 	int ret;
13277 
13278 	idr_init(&pmu_idr);
13279 
13280 	perf_event_init_all_cpus();
13281 	init_srcu_struct(&pmus_srcu);
13282 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13283 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13284 	perf_pmu_register(&perf_task_clock, NULL, -1);
13285 	perf_tp_register();
13286 	perf_event_init_cpu(smp_processor_id());
13287 	register_reboot_notifier(&perf_reboot_notifier);
13288 
13289 	ret = init_hw_breakpoint();
13290 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13291 
13292 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13293 
13294 	/*
13295 	 * Build time assertion that we keep the data_head at the intended
13296 	 * location.  IOW, validation we got the __reserved[] size right.
13297 	 */
13298 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13299 		     != 1024);
13300 }
13301 
13302 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13303 			      char *page)
13304 {
13305 	struct perf_pmu_events_attr *pmu_attr =
13306 		container_of(attr, struct perf_pmu_events_attr, attr);
13307 
13308 	if (pmu_attr->event_str)
13309 		return sprintf(page, "%s\n", pmu_attr->event_str);
13310 
13311 	return 0;
13312 }
13313 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13314 
13315 static int __init perf_event_sysfs_init(void)
13316 {
13317 	struct pmu *pmu;
13318 	int ret;
13319 
13320 	mutex_lock(&pmus_lock);
13321 
13322 	ret = bus_register(&pmu_bus);
13323 	if (ret)
13324 		goto unlock;
13325 
13326 	list_for_each_entry(pmu, &pmus, entry) {
13327 		if (!pmu->name || pmu->type < 0)
13328 			continue;
13329 
13330 		ret = pmu_dev_alloc(pmu);
13331 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13332 	}
13333 	pmu_bus_running = 1;
13334 	ret = 0;
13335 
13336 unlock:
13337 	mutex_unlock(&pmus_lock);
13338 
13339 	return ret;
13340 }
13341 device_initcall(perf_event_sysfs_init);
13342 
13343 #ifdef CONFIG_CGROUP_PERF
13344 static struct cgroup_subsys_state *
13345 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13346 {
13347 	struct perf_cgroup *jc;
13348 
13349 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13350 	if (!jc)
13351 		return ERR_PTR(-ENOMEM);
13352 
13353 	jc->info = alloc_percpu(struct perf_cgroup_info);
13354 	if (!jc->info) {
13355 		kfree(jc);
13356 		return ERR_PTR(-ENOMEM);
13357 	}
13358 
13359 	return &jc->css;
13360 }
13361 
13362 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13363 {
13364 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13365 
13366 	free_percpu(jc->info);
13367 	kfree(jc);
13368 }
13369 
13370 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13371 {
13372 	perf_event_cgroup(css->cgroup);
13373 	return 0;
13374 }
13375 
13376 static int __perf_cgroup_move(void *info)
13377 {
13378 	struct task_struct *task = info;
13379 	rcu_read_lock();
13380 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13381 	rcu_read_unlock();
13382 	return 0;
13383 }
13384 
13385 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13386 {
13387 	struct task_struct *task;
13388 	struct cgroup_subsys_state *css;
13389 
13390 	cgroup_taskset_for_each(task, css, tset)
13391 		task_function_call(task, __perf_cgroup_move, task);
13392 }
13393 
13394 struct cgroup_subsys perf_event_cgrp_subsys = {
13395 	.css_alloc	= perf_cgroup_css_alloc,
13396 	.css_free	= perf_cgroup_css_free,
13397 	.css_online	= perf_cgroup_css_online,
13398 	.attach		= perf_cgroup_attach,
13399 	/*
13400 	 * Implicitly enable on dfl hierarchy so that perf events can
13401 	 * always be filtered by cgroup2 path as long as perf_event
13402 	 * controller is not mounted on a legacy hierarchy.
13403 	 */
13404 	.implicit_on_dfl = true,
13405 	.threaded	= true,
13406 };
13407 #endif /* CONFIG_CGROUP_PERF */
13408