1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/ftrace_event.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 48 #include "internal.h" 49 50 #include <asm/irq_regs.h> 51 52 static struct workqueue_struct *perf_wq; 53 54 struct remote_function_call { 55 struct task_struct *p; 56 int (*func)(void *info); 57 void *info; 58 int ret; 59 }; 60 61 static void remote_function(void *data) 62 { 63 struct remote_function_call *tfc = data; 64 struct task_struct *p = tfc->p; 65 66 if (p) { 67 tfc->ret = -EAGAIN; 68 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 69 return; 70 } 71 72 tfc->ret = tfc->func(tfc->info); 73 } 74 75 /** 76 * task_function_call - call a function on the cpu on which a task runs 77 * @p: the task to evaluate 78 * @func: the function to be called 79 * @info: the function call argument 80 * 81 * Calls the function @func when the task is currently running. This might 82 * be on the current CPU, which just calls the function directly 83 * 84 * returns: @func return value, or 85 * -ESRCH - when the process isn't running 86 * -EAGAIN - when the process moved away 87 */ 88 static int 89 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 90 { 91 struct remote_function_call data = { 92 .p = p, 93 .func = func, 94 .info = info, 95 .ret = -ESRCH, /* No such (running) process */ 96 }; 97 98 if (task_curr(p)) 99 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 100 101 return data.ret; 102 } 103 104 /** 105 * cpu_function_call - call a function on the cpu 106 * @func: the function to be called 107 * @info: the function call argument 108 * 109 * Calls the function @func on the remote cpu. 110 * 111 * returns: @func return value or -ENXIO when the cpu is offline 112 */ 113 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 114 { 115 struct remote_function_call data = { 116 .p = NULL, 117 .func = func, 118 .info = info, 119 .ret = -ENXIO, /* No such CPU */ 120 }; 121 122 smp_call_function_single(cpu, remote_function, &data, 1); 123 124 return data.ret; 125 } 126 127 #define EVENT_OWNER_KERNEL ((void *) -1) 128 129 static bool is_kernel_event(struct perf_event *event) 130 { 131 return event->owner == EVENT_OWNER_KERNEL; 132 } 133 134 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 135 PERF_FLAG_FD_OUTPUT |\ 136 PERF_FLAG_PID_CGROUP |\ 137 PERF_FLAG_FD_CLOEXEC) 138 139 /* 140 * branch priv levels that need permission checks 141 */ 142 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 143 (PERF_SAMPLE_BRANCH_KERNEL |\ 144 PERF_SAMPLE_BRANCH_HV) 145 146 enum event_type_t { 147 EVENT_FLEXIBLE = 0x1, 148 EVENT_PINNED = 0x2, 149 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 150 }; 151 152 /* 153 * perf_sched_events : >0 events exist 154 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 155 */ 156 struct static_key_deferred perf_sched_events __read_mostly; 157 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 158 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 159 160 static atomic_t nr_mmap_events __read_mostly; 161 static atomic_t nr_comm_events __read_mostly; 162 static atomic_t nr_task_events __read_mostly; 163 static atomic_t nr_freq_events __read_mostly; 164 165 static LIST_HEAD(pmus); 166 static DEFINE_MUTEX(pmus_lock); 167 static struct srcu_struct pmus_srcu; 168 169 /* 170 * perf event paranoia level: 171 * -1 - not paranoid at all 172 * 0 - disallow raw tracepoint access for unpriv 173 * 1 - disallow cpu events for unpriv 174 * 2 - disallow kernel profiling for unpriv 175 */ 176 int sysctl_perf_event_paranoid __read_mostly = 1; 177 178 /* Minimum for 512 kiB + 1 user control page */ 179 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 180 181 /* 182 * max perf event sample rate 183 */ 184 #define DEFAULT_MAX_SAMPLE_RATE 100000 185 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 186 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 187 188 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 189 190 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 191 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 192 193 static int perf_sample_allowed_ns __read_mostly = 194 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 195 196 void update_perf_cpu_limits(void) 197 { 198 u64 tmp = perf_sample_period_ns; 199 200 tmp *= sysctl_perf_cpu_time_max_percent; 201 do_div(tmp, 100); 202 ACCESS_ONCE(perf_sample_allowed_ns) = tmp; 203 } 204 205 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 206 207 int perf_proc_update_handler(struct ctl_table *table, int write, 208 void __user *buffer, size_t *lenp, 209 loff_t *ppos) 210 { 211 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 212 213 if (ret || !write) 214 return ret; 215 216 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 217 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 218 update_perf_cpu_limits(); 219 220 return 0; 221 } 222 223 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 224 225 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 226 void __user *buffer, size_t *lenp, 227 loff_t *ppos) 228 { 229 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 230 231 if (ret || !write) 232 return ret; 233 234 update_perf_cpu_limits(); 235 236 return 0; 237 } 238 239 /* 240 * perf samples are done in some very critical code paths (NMIs). 241 * If they take too much CPU time, the system can lock up and not 242 * get any real work done. This will drop the sample rate when 243 * we detect that events are taking too long. 244 */ 245 #define NR_ACCUMULATED_SAMPLES 128 246 static DEFINE_PER_CPU(u64, running_sample_length); 247 248 static void perf_duration_warn(struct irq_work *w) 249 { 250 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 251 u64 avg_local_sample_len; 252 u64 local_samples_len; 253 254 local_samples_len = __this_cpu_read(running_sample_length); 255 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 256 257 printk_ratelimited(KERN_WARNING 258 "perf interrupt took too long (%lld > %lld), lowering " 259 "kernel.perf_event_max_sample_rate to %d\n", 260 avg_local_sample_len, allowed_ns >> 1, 261 sysctl_perf_event_sample_rate); 262 } 263 264 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 265 266 void perf_sample_event_took(u64 sample_len_ns) 267 { 268 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 269 u64 avg_local_sample_len; 270 u64 local_samples_len; 271 272 if (allowed_ns == 0) 273 return; 274 275 /* decay the counter by 1 average sample */ 276 local_samples_len = __this_cpu_read(running_sample_length); 277 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 278 local_samples_len += sample_len_ns; 279 __this_cpu_write(running_sample_length, local_samples_len); 280 281 /* 282 * note: this will be biased artifically low until we have 283 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 284 * from having to maintain a count. 285 */ 286 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 287 288 if (avg_local_sample_len <= allowed_ns) 289 return; 290 291 if (max_samples_per_tick <= 1) 292 return; 293 294 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 295 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 296 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 297 298 update_perf_cpu_limits(); 299 300 if (!irq_work_queue(&perf_duration_work)) { 301 early_printk("perf interrupt took too long (%lld > %lld), lowering " 302 "kernel.perf_event_max_sample_rate to %d\n", 303 avg_local_sample_len, allowed_ns >> 1, 304 sysctl_perf_event_sample_rate); 305 } 306 } 307 308 static atomic64_t perf_event_id; 309 310 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 311 enum event_type_t event_type); 312 313 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 314 enum event_type_t event_type, 315 struct task_struct *task); 316 317 static void update_context_time(struct perf_event_context *ctx); 318 static u64 perf_event_time(struct perf_event *event); 319 320 void __weak perf_event_print_debug(void) { } 321 322 extern __weak const char *perf_pmu_name(void) 323 { 324 return "pmu"; 325 } 326 327 static inline u64 perf_clock(void) 328 { 329 return local_clock(); 330 } 331 332 static inline u64 perf_event_clock(struct perf_event *event) 333 { 334 return event->clock(); 335 } 336 337 static inline struct perf_cpu_context * 338 __get_cpu_context(struct perf_event_context *ctx) 339 { 340 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 341 } 342 343 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 344 struct perf_event_context *ctx) 345 { 346 raw_spin_lock(&cpuctx->ctx.lock); 347 if (ctx) 348 raw_spin_lock(&ctx->lock); 349 } 350 351 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 352 struct perf_event_context *ctx) 353 { 354 if (ctx) 355 raw_spin_unlock(&ctx->lock); 356 raw_spin_unlock(&cpuctx->ctx.lock); 357 } 358 359 #ifdef CONFIG_CGROUP_PERF 360 361 static inline bool 362 perf_cgroup_match(struct perf_event *event) 363 { 364 struct perf_event_context *ctx = event->ctx; 365 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 366 367 /* @event doesn't care about cgroup */ 368 if (!event->cgrp) 369 return true; 370 371 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 372 if (!cpuctx->cgrp) 373 return false; 374 375 /* 376 * Cgroup scoping is recursive. An event enabled for a cgroup is 377 * also enabled for all its descendant cgroups. If @cpuctx's 378 * cgroup is a descendant of @event's (the test covers identity 379 * case), it's a match. 380 */ 381 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 382 event->cgrp->css.cgroup); 383 } 384 385 static inline void perf_detach_cgroup(struct perf_event *event) 386 { 387 css_put(&event->cgrp->css); 388 event->cgrp = NULL; 389 } 390 391 static inline int is_cgroup_event(struct perf_event *event) 392 { 393 return event->cgrp != NULL; 394 } 395 396 static inline u64 perf_cgroup_event_time(struct perf_event *event) 397 { 398 struct perf_cgroup_info *t; 399 400 t = per_cpu_ptr(event->cgrp->info, event->cpu); 401 return t->time; 402 } 403 404 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 405 { 406 struct perf_cgroup_info *info; 407 u64 now; 408 409 now = perf_clock(); 410 411 info = this_cpu_ptr(cgrp->info); 412 413 info->time += now - info->timestamp; 414 info->timestamp = now; 415 } 416 417 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 418 { 419 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 420 if (cgrp_out) 421 __update_cgrp_time(cgrp_out); 422 } 423 424 static inline void update_cgrp_time_from_event(struct perf_event *event) 425 { 426 struct perf_cgroup *cgrp; 427 428 /* 429 * ensure we access cgroup data only when needed and 430 * when we know the cgroup is pinned (css_get) 431 */ 432 if (!is_cgroup_event(event)) 433 return; 434 435 cgrp = perf_cgroup_from_task(current); 436 /* 437 * Do not update time when cgroup is not active 438 */ 439 if (cgrp == event->cgrp) 440 __update_cgrp_time(event->cgrp); 441 } 442 443 static inline void 444 perf_cgroup_set_timestamp(struct task_struct *task, 445 struct perf_event_context *ctx) 446 { 447 struct perf_cgroup *cgrp; 448 struct perf_cgroup_info *info; 449 450 /* 451 * ctx->lock held by caller 452 * ensure we do not access cgroup data 453 * unless we have the cgroup pinned (css_get) 454 */ 455 if (!task || !ctx->nr_cgroups) 456 return; 457 458 cgrp = perf_cgroup_from_task(task); 459 info = this_cpu_ptr(cgrp->info); 460 info->timestamp = ctx->timestamp; 461 } 462 463 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 464 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 465 466 /* 467 * reschedule events based on the cgroup constraint of task. 468 * 469 * mode SWOUT : schedule out everything 470 * mode SWIN : schedule in based on cgroup for next 471 */ 472 void perf_cgroup_switch(struct task_struct *task, int mode) 473 { 474 struct perf_cpu_context *cpuctx; 475 struct pmu *pmu; 476 unsigned long flags; 477 478 /* 479 * disable interrupts to avoid geting nr_cgroup 480 * changes via __perf_event_disable(). Also 481 * avoids preemption. 482 */ 483 local_irq_save(flags); 484 485 /* 486 * we reschedule only in the presence of cgroup 487 * constrained events. 488 */ 489 rcu_read_lock(); 490 491 list_for_each_entry_rcu(pmu, &pmus, entry) { 492 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 493 if (cpuctx->unique_pmu != pmu) 494 continue; /* ensure we process each cpuctx once */ 495 496 /* 497 * perf_cgroup_events says at least one 498 * context on this CPU has cgroup events. 499 * 500 * ctx->nr_cgroups reports the number of cgroup 501 * events for a context. 502 */ 503 if (cpuctx->ctx.nr_cgroups > 0) { 504 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 505 perf_pmu_disable(cpuctx->ctx.pmu); 506 507 if (mode & PERF_CGROUP_SWOUT) { 508 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 509 /* 510 * must not be done before ctxswout due 511 * to event_filter_match() in event_sched_out() 512 */ 513 cpuctx->cgrp = NULL; 514 } 515 516 if (mode & PERF_CGROUP_SWIN) { 517 WARN_ON_ONCE(cpuctx->cgrp); 518 /* 519 * set cgrp before ctxsw in to allow 520 * event_filter_match() to not have to pass 521 * task around 522 */ 523 cpuctx->cgrp = perf_cgroup_from_task(task); 524 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 525 } 526 perf_pmu_enable(cpuctx->ctx.pmu); 527 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 528 } 529 } 530 531 rcu_read_unlock(); 532 533 local_irq_restore(flags); 534 } 535 536 static inline void perf_cgroup_sched_out(struct task_struct *task, 537 struct task_struct *next) 538 { 539 struct perf_cgroup *cgrp1; 540 struct perf_cgroup *cgrp2 = NULL; 541 542 /* 543 * we come here when we know perf_cgroup_events > 0 544 */ 545 cgrp1 = perf_cgroup_from_task(task); 546 547 /* 548 * next is NULL when called from perf_event_enable_on_exec() 549 * that will systematically cause a cgroup_switch() 550 */ 551 if (next) 552 cgrp2 = perf_cgroup_from_task(next); 553 554 /* 555 * only schedule out current cgroup events if we know 556 * that we are switching to a different cgroup. Otherwise, 557 * do no touch the cgroup events. 558 */ 559 if (cgrp1 != cgrp2) 560 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 561 } 562 563 static inline void perf_cgroup_sched_in(struct task_struct *prev, 564 struct task_struct *task) 565 { 566 struct perf_cgroup *cgrp1; 567 struct perf_cgroup *cgrp2 = NULL; 568 569 /* 570 * we come here when we know perf_cgroup_events > 0 571 */ 572 cgrp1 = perf_cgroup_from_task(task); 573 574 /* prev can never be NULL */ 575 cgrp2 = perf_cgroup_from_task(prev); 576 577 /* 578 * only need to schedule in cgroup events if we are changing 579 * cgroup during ctxsw. Cgroup events were not scheduled 580 * out of ctxsw out if that was not the case. 581 */ 582 if (cgrp1 != cgrp2) 583 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 584 } 585 586 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 587 struct perf_event_attr *attr, 588 struct perf_event *group_leader) 589 { 590 struct perf_cgroup *cgrp; 591 struct cgroup_subsys_state *css; 592 struct fd f = fdget(fd); 593 int ret = 0; 594 595 if (!f.file) 596 return -EBADF; 597 598 css = css_tryget_online_from_dir(f.file->f_path.dentry, 599 &perf_event_cgrp_subsys); 600 if (IS_ERR(css)) { 601 ret = PTR_ERR(css); 602 goto out; 603 } 604 605 cgrp = container_of(css, struct perf_cgroup, css); 606 event->cgrp = cgrp; 607 608 /* 609 * all events in a group must monitor 610 * the same cgroup because a task belongs 611 * to only one perf cgroup at a time 612 */ 613 if (group_leader && group_leader->cgrp != cgrp) { 614 perf_detach_cgroup(event); 615 ret = -EINVAL; 616 } 617 out: 618 fdput(f); 619 return ret; 620 } 621 622 static inline void 623 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 624 { 625 struct perf_cgroup_info *t; 626 t = per_cpu_ptr(event->cgrp->info, event->cpu); 627 event->shadow_ctx_time = now - t->timestamp; 628 } 629 630 static inline void 631 perf_cgroup_defer_enabled(struct perf_event *event) 632 { 633 /* 634 * when the current task's perf cgroup does not match 635 * the event's, we need to remember to call the 636 * perf_mark_enable() function the first time a task with 637 * a matching perf cgroup is scheduled in. 638 */ 639 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 640 event->cgrp_defer_enabled = 1; 641 } 642 643 static inline void 644 perf_cgroup_mark_enabled(struct perf_event *event, 645 struct perf_event_context *ctx) 646 { 647 struct perf_event *sub; 648 u64 tstamp = perf_event_time(event); 649 650 if (!event->cgrp_defer_enabled) 651 return; 652 653 event->cgrp_defer_enabled = 0; 654 655 event->tstamp_enabled = tstamp - event->total_time_enabled; 656 list_for_each_entry(sub, &event->sibling_list, group_entry) { 657 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 658 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 659 sub->cgrp_defer_enabled = 0; 660 } 661 } 662 } 663 #else /* !CONFIG_CGROUP_PERF */ 664 665 static inline bool 666 perf_cgroup_match(struct perf_event *event) 667 { 668 return true; 669 } 670 671 static inline void perf_detach_cgroup(struct perf_event *event) 672 {} 673 674 static inline int is_cgroup_event(struct perf_event *event) 675 { 676 return 0; 677 } 678 679 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 680 { 681 return 0; 682 } 683 684 static inline void update_cgrp_time_from_event(struct perf_event *event) 685 { 686 } 687 688 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 689 { 690 } 691 692 static inline void perf_cgroup_sched_out(struct task_struct *task, 693 struct task_struct *next) 694 { 695 } 696 697 static inline void perf_cgroup_sched_in(struct task_struct *prev, 698 struct task_struct *task) 699 { 700 } 701 702 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 703 struct perf_event_attr *attr, 704 struct perf_event *group_leader) 705 { 706 return -EINVAL; 707 } 708 709 static inline void 710 perf_cgroup_set_timestamp(struct task_struct *task, 711 struct perf_event_context *ctx) 712 { 713 } 714 715 void 716 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 717 { 718 } 719 720 static inline void 721 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 722 { 723 } 724 725 static inline u64 perf_cgroup_event_time(struct perf_event *event) 726 { 727 return 0; 728 } 729 730 static inline void 731 perf_cgroup_defer_enabled(struct perf_event *event) 732 { 733 } 734 735 static inline void 736 perf_cgroup_mark_enabled(struct perf_event *event, 737 struct perf_event_context *ctx) 738 { 739 } 740 #endif 741 742 /* 743 * set default to be dependent on timer tick just 744 * like original code 745 */ 746 #define PERF_CPU_HRTIMER (1000 / HZ) 747 /* 748 * function must be called with interrupts disbled 749 */ 750 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr) 751 { 752 struct perf_cpu_context *cpuctx; 753 enum hrtimer_restart ret = HRTIMER_NORESTART; 754 int rotations = 0; 755 756 WARN_ON(!irqs_disabled()); 757 758 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 759 760 rotations = perf_rotate_context(cpuctx); 761 762 /* 763 * arm timer if needed 764 */ 765 if (rotations) { 766 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 767 ret = HRTIMER_RESTART; 768 } 769 770 return ret; 771 } 772 773 /* CPU is going down */ 774 void perf_cpu_hrtimer_cancel(int cpu) 775 { 776 struct perf_cpu_context *cpuctx; 777 struct pmu *pmu; 778 unsigned long flags; 779 780 if (WARN_ON(cpu != smp_processor_id())) 781 return; 782 783 local_irq_save(flags); 784 785 rcu_read_lock(); 786 787 list_for_each_entry_rcu(pmu, &pmus, entry) { 788 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 789 790 if (pmu->task_ctx_nr == perf_sw_context) 791 continue; 792 793 hrtimer_cancel(&cpuctx->hrtimer); 794 } 795 796 rcu_read_unlock(); 797 798 local_irq_restore(flags); 799 } 800 801 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 802 { 803 struct hrtimer *hr = &cpuctx->hrtimer; 804 struct pmu *pmu = cpuctx->ctx.pmu; 805 int timer; 806 807 /* no multiplexing needed for SW PMU */ 808 if (pmu->task_ctx_nr == perf_sw_context) 809 return; 810 811 /* 812 * check default is sane, if not set then force to 813 * default interval (1/tick) 814 */ 815 timer = pmu->hrtimer_interval_ms; 816 if (timer < 1) 817 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 818 819 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 820 821 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 822 hr->function = perf_cpu_hrtimer_handler; 823 } 824 825 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx) 826 { 827 struct hrtimer *hr = &cpuctx->hrtimer; 828 struct pmu *pmu = cpuctx->ctx.pmu; 829 830 /* not for SW PMU */ 831 if (pmu->task_ctx_nr == perf_sw_context) 832 return; 833 834 if (hrtimer_active(hr)) 835 return; 836 837 if (!hrtimer_callback_running(hr)) 838 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval, 839 0, HRTIMER_MODE_REL_PINNED, 0); 840 } 841 842 void perf_pmu_disable(struct pmu *pmu) 843 { 844 int *count = this_cpu_ptr(pmu->pmu_disable_count); 845 if (!(*count)++) 846 pmu->pmu_disable(pmu); 847 } 848 849 void perf_pmu_enable(struct pmu *pmu) 850 { 851 int *count = this_cpu_ptr(pmu->pmu_disable_count); 852 if (!--(*count)) 853 pmu->pmu_enable(pmu); 854 } 855 856 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 857 858 /* 859 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 860 * perf_event_task_tick() are fully serialized because they're strictly cpu 861 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 862 * disabled, while perf_event_task_tick is called from IRQ context. 863 */ 864 static void perf_event_ctx_activate(struct perf_event_context *ctx) 865 { 866 struct list_head *head = this_cpu_ptr(&active_ctx_list); 867 868 WARN_ON(!irqs_disabled()); 869 870 WARN_ON(!list_empty(&ctx->active_ctx_list)); 871 872 list_add(&ctx->active_ctx_list, head); 873 } 874 875 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 876 { 877 WARN_ON(!irqs_disabled()); 878 879 WARN_ON(list_empty(&ctx->active_ctx_list)); 880 881 list_del_init(&ctx->active_ctx_list); 882 } 883 884 static void get_ctx(struct perf_event_context *ctx) 885 { 886 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 887 } 888 889 static void free_ctx(struct rcu_head *head) 890 { 891 struct perf_event_context *ctx; 892 893 ctx = container_of(head, struct perf_event_context, rcu_head); 894 kfree(ctx->task_ctx_data); 895 kfree(ctx); 896 } 897 898 static void put_ctx(struct perf_event_context *ctx) 899 { 900 if (atomic_dec_and_test(&ctx->refcount)) { 901 if (ctx->parent_ctx) 902 put_ctx(ctx->parent_ctx); 903 if (ctx->task) 904 put_task_struct(ctx->task); 905 call_rcu(&ctx->rcu_head, free_ctx); 906 } 907 } 908 909 /* 910 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 911 * perf_pmu_migrate_context() we need some magic. 912 * 913 * Those places that change perf_event::ctx will hold both 914 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 915 * 916 * Lock ordering is by mutex address. There are two other sites where 917 * perf_event_context::mutex nests and those are: 918 * 919 * - perf_event_exit_task_context() [ child , 0 ] 920 * __perf_event_exit_task() 921 * sync_child_event() 922 * put_event() [ parent, 1 ] 923 * 924 * - perf_event_init_context() [ parent, 0 ] 925 * inherit_task_group() 926 * inherit_group() 927 * inherit_event() 928 * perf_event_alloc() 929 * perf_init_event() 930 * perf_try_init_event() [ child , 1 ] 931 * 932 * While it appears there is an obvious deadlock here -- the parent and child 933 * nesting levels are inverted between the two. This is in fact safe because 934 * life-time rules separate them. That is an exiting task cannot fork, and a 935 * spawning task cannot (yet) exit. 936 * 937 * But remember that that these are parent<->child context relations, and 938 * migration does not affect children, therefore these two orderings should not 939 * interact. 940 * 941 * The change in perf_event::ctx does not affect children (as claimed above) 942 * because the sys_perf_event_open() case will install a new event and break 943 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 944 * concerned with cpuctx and that doesn't have children. 945 * 946 * The places that change perf_event::ctx will issue: 947 * 948 * perf_remove_from_context(); 949 * synchronize_rcu(); 950 * perf_install_in_context(); 951 * 952 * to affect the change. The remove_from_context() + synchronize_rcu() should 953 * quiesce the event, after which we can install it in the new location. This 954 * means that only external vectors (perf_fops, prctl) can perturb the event 955 * while in transit. Therefore all such accessors should also acquire 956 * perf_event_context::mutex to serialize against this. 957 * 958 * However; because event->ctx can change while we're waiting to acquire 959 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 960 * function. 961 * 962 * Lock order: 963 * task_struct::perf_event_mutex 964 * perf_event_context::mutex 965 * perf_event_context::lock 966 * perf_event::child_mutex; 967 * perf_event::mmap_mutex 968 * mmap_sem 969 */ 970 static struct perf_event_context * 971 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 972 { 973 struct perf_event_context *ctx; 974 975 again: 976 rcu_read_lock(); 977 ctx = ACCESS_ONCE(event->ctx); 978 if (!atomic_inc_not_zero(&ctx->refcount)) { 979 rcu_read_unlock(); 980 goto again; 981 } 982 rcu_read_unlock(); 983 984 mutex_lock_nested(&ctx->mutex, nesting); 985 if (event->ctx != ctx) { 986 mutex_unlock(&ctx->mutex); 987 put_ctx(ctx); 988 goto again; 989 } 990 991 return ctx; 992 } 993 994 static inline struct perf_event_context * 995 perf_event_ctx_lock(struct perf_event *event) 996 { 997 return perf_event_ctx_lock_nested(event, 0); 998 } 999 1000 static void perf_event_ctx_unlock(struct perf_event *event, 1001 struct perf_event_context *ctx) 1002 { 1003 mutex_unlock(&ctx->mutex); 1004 put_ctx(ctx); 1005 } 1006 1007 /* 1008 * This must be done under the ctx->lock, such as to serialize against 1009 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1010 * calling scheduler related locks and ctx->lock nests inside those. 1011 */ 1012 static __must_check struct perf_event_context * 1013 unclone_ctx(struct perf_event_context *ctx) 1014 { 1015 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1016 1017 lockdep_assert_held(&ctx->lock); 1018 1019 if (parent_ctx) 1020 ctx->parent_ctx = NULL; 1021 ctx->generation++; 1022 1023 return parent_ctx; 1024 } 1025 1026 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1027 { 1028 /* 1029 * only top level events have the pid namespace they were created in 1030 */ 1031 if (event->parent) 1032 event = event->parent; 1033 1034 return task_tgid_nr_ns(p, event->ns); 1035 } 1036 1037 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1038 { 1039 /* 1040 * only top level events have the pid namespace they were created in 1041 */ 1042 if (event->parent) 1043 event = event->parent; 1044 1045 return task_pid_nr_ns(p, event->ns); 1046 } 1047 1048 /* 1049 * If we inherit events we want to return the parent event id 1050 * to userspace. 1051 */ 1052 static u64 primary_event_id(struct perf_event *event) 1053 { 1054 u64 id = event->id; 1055 1056 if (event->parent) 1057 id = event->parent->id; 1058 1059 return id; 1060 } 1061 1062 /* 1063 * Get the perf_event_context for a task and lock it. 1064 * This has to cope with with the fact that until it is locked, 1065 * the context could get moved to another task. 1066 */ 1067 static struct perf_event_context * 1068 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1069 { 1070 struct perf_event_context *ctx; 1071 1072 retry: 1073 /* 1074 * One of the few rules of preemptible RCU is that one cannot do 1075 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1076 * part of the read side critical section was preemptible -- see 1077 * rcu_read_unlock_special(). 1078 * 1079 * Since ctx->lock nests under rq->lock we must ensure the entire read 1080 * side critical section is non-preemptible. 1081 */ 1082 preempt_disable(); 1083 rcu_read_lock(); 1084 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1085 if (ctx) { 1086 /* 1087 * If this context is a clone of another, it might 1088 * get swapped for another underneath us by 1089 * perf_event_task_sched_out, though the 1090 * rcu_read_lock() protects us from any context 1091 * getting freed. Lock the context and check if it 1092 * got swapped before we could get the lock, and retry 1093 * if so. If we locked the right context, then it 1094 * can't get swapped on us any more. 1095 */ 1096 raw_spin_lock_irqsave(&ctx->lock, *flags); 1097 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1098 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 1099 rcu_read_unlock(); 1100 preempt_enable(); 1101 goto retry; 1102 } 1103 1104 if (!atomic_inc_not_zero(&ctx->refcount)) { 1105 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 1106 ctx = NULL; 1107 } 1108 } 1109 rcu_read_unlock(); 1110 preempt_enable(); 1111 return ctx; 1112 } 1113 1114 /* 1115 * Get the context for a task and increment its pin_count so it 1116 * can't get swapped to another task. This also increments its 1117 * reference count so that the context can't get freed. 1118 */ 1119 static struct perf_event_context * 1120 perf_pin_task_context(struct task_struct *task, int ctxn) 1121 { 1122 struct perf_event_context *ctx; 1123 unsigned long flags; 1124 1125 ctx = perf_lock_task_context(task, ctxn, &flags); 1126 if (ctx) { 1127 ++ctx->pin_count; 1128 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1129 } 1130 return ctx; 1131 } 1132 1133 static void perf_unpin_context(struct perf_event_context *ctx) 1134 { 1135 unsigned long flags; 1136 1137 raw_spin_lock_irqsave(&ctx->lock, flags); 1138 --ctx->pin_count; 1139 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1140 } 1141 1142 /* 1143 * Update the record of the current time in a context. 1144 */ 1145 static void update_context_time(struct perf_event_context *ctx) 1146 { 1147 u64 now = perf_clock(); 1148 1149 ctx->time += now - ctx->timestamp; 1150 ctx->timestamp = now; 1151 } 1152 1153 static u64 perf_event_time(struct perf_event *event) 1154 { 1155 struct perf_event_context *ctx = event->ctx; 1156 1157 if (is_cgroup_event(event)) 1158 return perf_cgroup_event_time(event); 1159 1160 return ctx ? ctx->time : 0; 1161 } 1162 1163 /* 1164 * Update the total_time_enabled and total_time_running fields for a event. 1165 * The caller of this function needs to hold the ctx->lock. 1166 */ 1167 static void update_event_times(struct perf_event *event) 1168 { 1169 struct perf_event_context *ctx = event->ctx; 1170 u64 run_end; 1171 1172 if (event->state < PERF_EVENT_STATE_INACTIVE || 1173 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1174 return; 1175 /* 1176 * in cgroup mode, time_enabled represents 1177 * the time the event was enabled AND active 1178 * tasks were in the monitored cgroup. This is 1179 * independent of the activity of the context as 1180 * there may be a mix of cgroup and non-cgroup events. 1181 * 1182 * That is why we treat cgroup events differently 1183 * here. 1184 */ 1185 if (is_cgroup_event(event)) 1186 run_end = perf_cgroup_event_time(event); 1187 else if (ctx->is_active) 1188 run_end = ctx->time; 1189 else 1190 run_end = event->tstamp_stopped; 1191 1192 event->total_time_enabled = run_end - event->tstamp_enabled; 1193 1194 if (event->state == PERF_EVENT_STATE_INACTIVE) 1195 run_end = event->tstamp_stopped; 1196 else 1197 run_end = perf_event_time(event); 1198 1199 event->total_time_running = run_end - event->tstamp_running; 1200 1201 } 1202 1203 /* 1204 * Update total_time_enabled and total_time_running for all events in a group. 1205 */ 1206 static void update_group_times(struct perf_event *leader) 1207 { 1208 struct perf_event *event; 1209 1210 update_event_times(leader); 1211 list_for_each_entry(event, &leader->sibling_list, group_entry) 1212 update_event_times(event); 1213 } 1214 1215 static struct list_head * 1216 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1217 { 1218 if (event->attr.pinned) 1219 return &ctx->pinned_groups; 1220 else 1221 return &ctx->flexible_groups; 1222 } 1223 1224 /* 1225 * Add a event from the lists for its context. 1226 * Must be called with ctx->mutex and ctx->lock held. 1227 */ 1228 static void 1229 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1230 { 1231 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1232 event->attach_state |= PERF_ATTACH_CONTEXT; 1233 1234 /* 1235 * If we're a stand alone event or group leader, we go to the context 1236 * list, group events are kept attached to the group so that 1237 * perf_group_detach can, at all times, locate all siblings. 1238 */ 1239 if (event->group_leader == event) { 1240 struct list_head *list; 1241 1242 if (is_software_event(event)) 1243 event->group_flags |= PERF_GROUP_SOFTWARE; 1244 1245 list = ctx_group_list(event, ctx); 1246 list_add_tail(&event->group_entry, list); 1247 } 1248 1249 if (is_cgroup_event(event)) 1250 ctx->nr_cgroups++; 1251 1252 list_add_rcu(&event->event_entry, &ctx->event_list); 1253 ctx->nr_events++; 1254 if (event->attr.inherit_stat) 1255 ctx->nr_stat++; 1256 1257 ctx->generation++; 1258 } 1259 1260 /* 1261 * Initialize event state based on the perf_event_attr::disabled. 1262 */ 1263 static inline void perf_event__state_init(struct perf_event *event) 1264 { 1265 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1266 PERF_EVENT_STATE_INACTIVE; 1267 } 1268 1269 /* 1270 * Called at perf_event creation and when events are attached/detached from a 1271 * group. 1272 */ 1273 static void perf_event__read_size(struct perf_event *event) 1274 { 1275 int entry = sizeof(u64); /* value */ 1276 int size = 0; 1277 int nr = 1; 1278 1279 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1280 size += sizeof(u64); 1281 1282 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1283 size += sizeof(u64); 1284 1285 if (event->attr.read_format & PERF_FORMAT_ID) 1286 entry += sizeof(u64); 1287 1288 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1289 nr += event->group_leader->nr_siblings; 1290 size += sizeof(u64); 1291 } 1292 1293 size += entry * nr; 1294 event->read_size = size; 1295 } 1296 1297 static void perf_event__header_size(struct perf_event *event) 1298 { 1299 struct perf_sample_data *data; 1300 u64 sample_type = event->attr.sample_type; 1301 u16 size = 0; 1302 1303 perf_event__read_size(event); 1304 1305 if (sample_type & PERF_SAMPLE_IP) 1306 size += sizeof(data->ip); 1307 1308 if (sample_type & PERF_SAMPLE_ADDR) 1309 size += sizeof(data->addr); 1310 1311 if (sample_type & PERF_SAMPLE_PERIOD) 1312 size += sizeof(data->period); 1313 1314 if (sample_type & PERF_SAMPLE_WEIGHT) 1315 size += sizeof(data->weight); 1316 1317 if (sample_type & PERF_SAMPLE_READ) 1318 size += event->read_size; 1319 1320 if (sample_type & PERF_SAMPLE_DATA_SRC) 1321 size += sizeof(data->data_src.val); 1322 1323 if (sample_type & PERF_SAMPLE_TRANSACTION) 1324 size += sizeof(data->txn); 1325 1326 event->header_size = size; 1327 } 1328 1329 static void perf_event__id_header_size(struct perf_event *event) 1330 { 1331 struct perf_sample_data *data; 1332 u64 sample_type = event->attr.sample_type; 1333 u16 size = 0; 1334 1335 if (sample_type & PERF_SAMPLE_TID) 1336 size += sizeof(data->tid_entry); 1337 1338 if (sample_type & PERF_SAMPLE_TIME) 1339 size += sizeof(data->time); 1340 1341 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1342 size += sizeof(data->id); 1343 1344 if (sample_type & PERF_SAMPLE_ID) 1345 size += sizeof(data->id); 1346 1347 if (sample_type & PERF_SAMPLE_STREAM_ID) 1348 size += sizeof(data->stream_id); 1349 1350 if (sample_type & PERF_SAMPLE_CPU) 1351 size += sizeof(data->cpu_entry); 1352 1353 event->id_header_size = size; 1354 } 1355 1356 static void perf_group_attach(struct perf_event *event) 1357 { 1358 struct perf_event *group_leader = event->group_leader, *pos; 1359 1360 /* 1361 * We can have double attach due to group movement in perf_event_open. 1362 */ 1363 if (event->attach_state & PERF_ATTACH_GROUP) 1364 return; 1365 1366 event->attach_state |= PERF_ATTACH_GROUP; 1367 1368 if (group_leader == event) 1369 return; 1370 1371 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1372 1373 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1374 !is_software_event(event)) 1375 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1376 1377 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1378 group_leader->nr_siblings++; 1379 1380 perf_event__header_size(group_leader); 1381 1382 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1383 perf_event__header_size(pos); 1384 } 1385 1386 /* 1387 * Remove a event from the lists for its context. 1388 * Must be called with ctx->mutex and ctx->lock held. 1389 */ 1390 static void 1391 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1392 { 1393 struct perf_cpu_context *cpuctx; 1394 1395 WARN_ON_ONCE(event->ctx != ctx); 1396 lockdep_assert_held(&ctx->lock); 1397 1398 /* 1399 * We can have double detach due to exit/hot-unplug + close. 1400 */ 1401 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1402 return; 1403 1404 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1405 1406 if (is_cgroup_event(event)) { 1407 ctx->nr_cgroups--; 1408 cpuctx = __get_cpu_context(ctx); 1409 /* 1410 * if there are no more cgroup events 1411 * then cler cgrp to avoid stale pointer 1412 * in update_cgrp_time_from_cpuctx() 1413 */ 1414 if (!ctx->nr_cgroups) 1415 cpuctx->cgrp = NULL; 1416 } 1417 1418 ctx->nr_events--; 1419 if (event->attr.inherit_stat) 1420 ctx->nr_stat--; 1421 1422 list_del_rcu(&event->event_entry); 1423 1424 if (event->group_leader == event) 1425 list_del_init(&event->group_entry); 1426 1427 update_group_times(event); 1428 1429 /* 1430 * If event was in error state, then keep it 1431 * that way, otherwise bogus counts will be 1432 * returned on read(). The only way to get out 1433 * of error state is by explicit re-enabling 1434 * of the event 1435 */ 1436 if (event->state > PERF_EVENT_STATE_OFF) 1437 event->state = PERF_EVENT_STATE_OFF; 1438 1439 ctx->generation++; 1440 } 1441 1442 static void perf_group_detach(struct perf_event *event) 1443 { 1444 struct perf_event *sibling, *tmp; 1445 struct list_head *list = NULL; 1446 1447 /* 1448 * We can have double detach due to exit/hot-unplug + close. 1449 */ 1450 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1451 return; 1452 1453 event->attach_state &= ~PERF_ATTACH_GROUP; 1454 1455 /* 1456 * If this is a sibling, remove it from its group. 1457 */ 1458 if (event->group_leader != event) { 1459 list_del_init(&event->group_entry); 1460 event->group_leader->nr_siblings--; 1461 goto out; 1462 } 1463 1464 if (!list_empty(&event->group_entry)) 1465 list = &event->group_entry; 1466 1467 /* 1468 * If this was a group event with sibling events then 1469 * upgrade the siblings to singleton events by adding them 1470 * to whatever list we are on. 1471 */ 1472 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1473 if (list) 1474 list_move_tail(&sibling->group_entry, list); 1475 sibling->group_leader = sibling; 1476 1477 /* Inherit group flags from the previous leader */ 1478 sibling->group_flags = event->group_flags; 1479 1480 WARN_ON_ONCE(sibling->ctx != event->ctx); 1481 } 1482 1483 out: 1484 perf_event__header_size(event->group_leader); 1485 1486 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1487 perf_event__header_size(tmp); 1488 } 1489 1490 /* 1491 * User event without the task. 1492 */ 1493 static bool is_orphaned_event(struct perf_event *event) 1494 { 1495 return event && !is_kernel_event(event) && !event->owner; 1496 } 1497 1498 /* 1499 * Event has a parent but parent's task finished and it's 1500 * alive only because of children holding refference. 1501 */ 1502 static bool is_orphaned_child(struct perf_event *event) 1503 { 1504 return is_orphaned_event(event->parent); 1505 } 1506 1507 static void orphans_remove_work(struct work_struct *work); 1508 1509 static void schedule_orphans_remove(struct perf_event_context *ctx) 1510 { 1511 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq) 1512 return; 1513 1514 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) { 1515 get_ctx(ctx); 1516 ctx->orphans_remove_sched = true; 1517 } 1518 } 1519 1520 static int __init perf_workqueue_init(void) 1521 { 1522 perf_wq = create_singlethread_workqueue("perf"); 1523 WARN(!perf_wq, "failed to create perf workqueue\n"); 1524 return perf_wq ? 0 : -1; 1525 } 1526 1527 core_initcall(perf_workqueue_init); 1528 1529 static inline int 1530 event_filter_match(struct perf_event *event) 1531 { 1532 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1533 && perf_cgroup_match(event); 1534 } 1535 1536 static void 1537 event_sched_out(struct perf_event *event, 1538 struct perf_cpu_context *cpuctx, 1539 struct perf_event_context *ctx) 1540 { 1541 u64 tstamp = perf_event_time(event); 1542 u64 delta; 1543 1544 WARN_ON_ONCE(event->ctx != ctx); 1545 lockdep_assert_held(&ctx->lock); 1546 1547 /* 1548 * An event which could not be activated because of 1549 * filter mismatch still needs to have its timings 1550 * maintained, otherwise bogus information is return 1551 * via read() for time_enabled, time_running: 1552 */ 1553 if (event->state == PERF_EVENT_STATE_INACTIVE 1554 && !event_filter_match(event)) { 1555 delta = tstamp - event->tstamp_stopped; 1556 event->tstamp_running += delta; 1557 event->tstamp_stopped = tstamp; 1558 } 1559 1560 if (event->state != PERF_EVENT_STATE_ACTIVE) 1561 return; 1562 1563 perf_pmu_disable(event->pmu); 1564 1565 event->state = PERF_EVENT_STATE_INACTIVE; 1566 if (event->pending_disable) { 1567 event->pending_disable = 0; 1568 event->state = PERF_EVENT_STATE_OFF; 1569 } 1570 event->tstamp_stopped = tstamp; 1571 event->pmu->del(event, 0); 1572 event->oncpu = -1; 1573 1574 if (!is_software_event(event)) 1575 cpuctx->active_oncpu--; 1576 if (!--ctx->nr_active) 1577 perf_event_ctx_deactivate(ctx); 1578 if (event->attr.freq && event->attr.sample_freq) 1579 ctx->nr_freq--; 1580 if (event->attr.exclusive || !cpuctx->active_oncpu) 1581 cpuctx->exclusive = 0; 1582 1583 if (is_orphaned_child(event)) 1584 schedule_orphans_remove(ctx); 1585 1586 perf_pmu_enable(event->pmu); 1587 } 1588 1589 static void 1590 group_sched_out(struct perf_event *group_event, 1591 struct perf_cpu_context *cpuctx, 1592 struct perf_event_context *ctx) 1593 { 1594 struct perf_event *event; 1595 int state = group_event->state; 1596 1597 event_sched_out(group_event, cpuctx, ctx); 1598 1599 /* 1600 * Schedule out siblings (if any): 1601 */ 1602 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1603 event_sched_out(event, cpuctx, ctx); 1604 1605 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1606 cpuctx->exclusive = 0; 1607 } 1608 1609 struct remove_event { 1610 struct perf_event *event; 1611 bool detach_group; 1612 }; 1613 1614 /* 1615 * Cross CPU call to remove a performance event 1616 * 1617 * We disable the event on the hardware level first. After that we 1618 * remove it from the context list. 1619 */ 1620 static int __perf_remove_from_context(void *info) 1621 { 1622 struct remove_event *re = info; 1623 struct perf_event *event = re->event; 1624 struct perf_event_context *ctx = event->ctx; 1625 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1626 1627 raw_spin_lock(&ctx->lock); 1628 event_sched_out(event, cpuctx, ctx); 1629 if (re->detach_group) 1630 perf_group_detach(event); 1631 list_del_event(event, ctx); 1632 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1633 ctx->is_active = 0; 1634 cpuctx->task_ctx = NULL; 1635 } 1636 raw_spin_unlock(&ctx->lock); 1637 1638 return 0; 1639 } 1640 1641 1642 /* 1643 * Remove the event from a task's (or a CPU's) list of events. 1644 * 1645 * CPU events are removed with a smp call. For task events we only 1646 * call when the task is on a CPU. 1647 * 1648 * If event->ctx is a cloned context, callers must make sure that 1649 * every task struct that event->ctx->task could possibly point to 1650 * remains valid. This is OK when called from perf_release since 1651 * that only calls us on the top-level context, which can't be a clone. 1652 * When called from perf_event_exit_task, it's OK because the 1653 * context has been detached from its task. 1654 */ 1655 static void perf_remove_from_context(struct perf_event *event, bool detach_group) 1656 { 1657 struct perf_event_context *ctx = event->ctx; 1658 struct task_struct *task = ctx->task; 1659 struct remove_event re = { 1660 .event = event, 1661 .detach_group = detach_group, 1662 }; 1663 1664 lockdep_assert_held(&ctx->mutex); 1665 1666 if (!task) { 1667 /* 1668 * Per cpu events are removed via an smp call. The removal can 1669 * fail if the CPU is currently offline, but in that case we 1670 * already called __perf_remove_from_context from 1671 * perf_event_exit_cpu. 1672 */ 1673 cpu_function_call(event->cpu, __perf_remove_from_context, &re); 1674 return; 1675 } 1676 1677 retry: 1678 if (!task_function_call(task, __perf_remove_from_context, &re)) 1679 return; 1680 1681 raw_spin_lock_irq(&ctx->lock); 1682 /* 1683 * If we failed to find a running task, but find the context active now 1684 * that we've acquired the ctx->lock, retry. 1685 */ 1686 if (ctx->is_active) { 1687 raw_spin_unlock_irq(&ctx->lock); 1688 /* 1689 * Reload the task pointer, it might have been changed by 1690 * a concurrent perf_event_context_sched_out(). 1691 */ 1692 task = ctx->task; 1693 goto retry; 1694 } 1695 1696 /* 1697 * Since the task isn't running, its safe to remove the event, us 1698 * holding the ctx->lock ensures the task won't get scheduled in. 1699 */ 1700 if (detach_group) 1701 perf_group_detach(event); 1702 list_del_event(event, ctx); 1703 raw_spin_unlock_irq(&ctx->lock); 1704 } 1705 1706 /* 1707 * Cross CPU call to disable a performance event 1708 */ 1709 int __perf_event_disable(void *info) 1710 { 1711 struct perf_event *event = info; 1712 struct perf_event_context *ctx = event->ctx; 1713 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1714 1715 /* 1716 * If this is a per-task event, need to check whether this 1717 * event's task is the current task on this cpu. 1718 * 1719 * Can trigger due to concurrent perf_event_context_sched_out() 1720 * flipping contexts around. 1721 */ 1722 if (ctx->task && cpuctx->task_ctx != ctx) 1723 return -EINVAL; 1724 1725 raw_spin_lock(&ctx->lock); 1726 1727 /* 1728 * If the event is on, turn it off. 1729 * If it is in error state, leave it in error state. 1730 */ 1731 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1732 update_context_time(ctx); 1733 update_cgrp_time_from_event(event); 1734 update_group_times(event); 1735 if (event == event->group_leader) 1736 group_sched_out(event, cpuctx, ctx); 1737 else 1738 event_sched_out(event, cpuctx, ctx); 1739 event->state = PERF_EVENT_STATE_OFF; 1740 } 1741 1742 raw_spin_unlock(&ctx->lock); 1743 1744 return 0; 1745 } 1746 1747 /* 1748 * Disable a event. 1749 * 1750 * If event->ctx is a cloned context, callers must make sure that 1751 * every task struct that event->ctx->task could possibly point to 1752 * remains valid. This condition is satisifed when called through 1753 * perf_event_for_each_child or perf_event_for_each because they 1754 * hold the top-level event's child_mutex, so any descendant that 1755 * goes to exit will block in sync_child_event. 1756 * When called from perf_pending_event it's OK because event->ctx 1757 * is the current context on this CPU and preemption is disabled, 1758 * hence we can't get into perf_event_task_sched_out for this context. 1759 */ 1760 static void _perf_event_disable(struct perf_event *event) 1761 { 1762 struct perf_event_context *ctx = event->ctx; 1763 struct task_struct *task = ctx->task; 1764 1765 if (!task) { 1766 /* 1767 * Disable the event on the cpu that it's on 1768 */ 1769 cpu_function_call(event->cpu, __perf_event_disable, event); 1770 return; 1771 } 1772 1773 retry: 1774 if (!task_function_call(task, __perf_event_disable, event)) 1775 return; 1776 1777 raw_spin_lock_irq(&ctx->lock); 1778 /* 1779 * If the event is still active, we need to retry the cross-call. 1780 */ 1781 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1782 raw_spin_unlock_irq(&ctx->lock); 1783 /* 1784 * Reload the task pointer, it might have been changed by 1785 * a concurrent perf_event_context_sched_out(). 1786 */ 1787 task = ctx->task; 1788 goto retry; 1789 } 1790 1791 /* 1792 * Since we have the lock this context can't be scheduled 1793 * in, so we can change the state safely. 1794 */ 1795 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1796 update_group_times(event); 1797 event->state = PERF_EVENT_STATE_OFF; 1798 } 1799 raw_spin_unlock_irq(&ctx->lock); 1800 } 1801 1802 /* 1803 * Strictly speaking kernel users cannot create groups and therefore this 1804 * interface does not need the perf_event_ctx_lock() magic. 1805 */ 1806 void perf_event_disable(struct perf_event *event) 1807 { 1808 struct perf_event_context *ctx; 1809 1810 ctx = perf_event_ctx_lock(event); 1811 _perf_event_disable(event); 1812 perf_event_ctx_unlock(event, ctx); 1813 } 1814 EXPORT_SYMBOL_GPL(perf_event_disable); 1815 1816 static void perf_set_shadow_time(struct perf_event *event, 1817 struct perf_event_context *ctx, 1818 u64 tstamp) 1819 { 1820 /* 1821 * use the correct time source for the time snapshot 1822 * 1823 * We could get by without this by leveraging the 1824 * fact that to get to this function, the caller 1825 * has most likely already called update_context_time() 1826 * and update_cgrp_time_xx() and thus both timestamp 1827 * are identical (or very close). Given that tstamp is, 1828 * already adjusted for cgroup, we could say that: 1829 * tstamp - ctx->timestamp 1830 * is equivalent to 1831 * tstamp - cgrp->timestamp. 1832 * 1833 * Then, in perf_output_read(), the calculation would 1834 * work with no changes because: 1835 * - event is guaranteed scheduled in 1836 * - no scheduled out in between 1837 * - thus the timestamp would be the same 1838 * 1839 * But this is a bit hairy. 1840 * 1841 * So instead, we have an explicit cgroup call to remain 1842 * within the time time source all along. We believe it 1843 * is cleaner and simpler to understand. 1844 */ 1845 if (is_cgroup_event(event)) 1846 perf_cgroup_set_shadow_time(event, tstamp); 1847 else 1848 event->shadow_ctx_time = tstamp - ctx->timestamp; 1849 } 1850 1851 #define MAX_INTERRUPTS (~0ULL) 1852 1853 static void perf_log_throttle(struct perf_event *event, int enable); 1854 static void perf_log_itrace_start(struct perf_event *event); 1855 1856 static int 1857 event_sched_in(struct perf_event *event, 1858 struct perf_cpu_context *cpuctx, 1859 struct perf_event_context *ctx) 1860 { 1861 u64 tstamp = perf_event_time(event); 1862 int ret = 0; 1863 1864 lockdep_assert_held(&ctx->lock); 1865 1866 if (event->state <= PERF_EVENT_STATE_OFF) 1867 return 0; 1868 1869 event->state = PERF_EVENT_STATE_ACTIVE; 1870 event->oncpu = smp_processor_id(); 1871 1872 /* 1873 * Unthrottle events, since we scheduled we might have missed several 1874 * ticks already, also for a heavily scheduling task there is little 1875 * guarantee it'll get a tick in a timely manner. 1876 */ 1877 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1878 perf_log_throttle(event, 1); 1879 event->hw.interrupts = 0; 1880 } 1881 1882 /* 1883 * The new state must be visible before we turn it on in the hardware: 1884 */ 1885 smp_wmb(); 1886 1887 perf_pmu_disable(event->pmu); 1888 1889 event->tstamp_running += tstamp - event->tstamp_stopped; 1890 1891 perf_set_shadow_time(event, ctx, tstamp); 1892 1893 perf_log_itrace_start(event); 1894 1895 if (event->pmu->add(event, PERF_EF_START)) { 1896 event->state = PERF_EVENT_STATE_INACTIVE; 1897 event->oncpu = -1; 1898 ret = -EAGAIN; 1899 goto out; 1900 } 1901 1902 if (!is_software_event(event)) 1903 cpuctx->active_oncpu++; 1904 if (!ctx->nr_active++) 1905 perf_event_ctx_activate(ctx); 1906 if (event->attr.freq && event->attr.sample_freq) 1907 ctx->nr_freq++; 1908 1909 if (event->attr.exclusive) 1910 cpuctx->exclusive = 1; 1911 1912 if (is_orphaned_child(event)) 1913 schedule_orphans_remove(ctx); 1914 1915 out: 1916 perf_pmu_enable(event->pmu); 1917 1918 return ret; 1919 } 1920 1921 static int 1922 group_sched_in(struct perf_event *group_event, 1923 struct perf_cpu_context *cpuctx, 1924 struct perf_event_context *ctx) 1925 { 1926 struct perf_event *event, *partial_group = NULL; 1927 struct pmu *pmu = ctx->pmu; 1928 u64 now = ctx->time; 1929 bool simulate = false; 1930 1931 if (group_event->state == PERF_EVENT_STATE_OFF) 1932 return 0; 1933 1934 pmu->start_txn(pmu); 1935 1936 if (event_sched_in(group_event, cpuctx, ctx)) { 1937 pmu->cancel_txn(pmu); 1938 perf_cpu_hrtimer_restart(cpuctx); 1939 return -EAGAIN; 1940 } 1941 1942 /* 1943 * Schedule in siblings as one group (if any): 1944 */ 1945 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1946 if (event_sched_in(event, cpuctx, ctx)) { 1947 partial_group = event; 1948 goto group_error; 1949 } 1950 } 1951 1952 if (!pmu->commit_txn(pmu)) 1953 return 0; 1954 1955 group_error: 1956 /* 1957 * Groups can be scheduled in as one unit only, so undo any 1958 * partial group before returning: 1959 * The events up to the failed event are scheduled out normally, 1960 * tstamp_stopped will be updated. 1961 * 1962 * The failed events and the remaining siblings need to have 1963 * their timings updated as if they had gone thru event_sched_in() 1964 * and event_sched_out(). This is required to get consistent timings 1965 * across the group. This also takes care of the case where the group 1966 * could never be scheduled by ensuring tstamp_stopped is set to mark 1967 * the time the event was actually stopped, such that time delta 1968 * calculation in update_event_times() is correct. 1969 */ 1970 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1971 if (event == partial_group) 1972 simulate = true; 1973 1974 if (simulate) { 1975 event->tstamp_running += now - event->tstamp_stopped; 1976 event->tstamp_stopped = now; 1977 } else { 1978 event_sched_out(event, cpuctx, ctx); 1979 } 1980 } 1981 event_sched_out(group_event, cpuctx, ctx); 1982 1983 pmu->cancel_txn(pmu); 1984 1985 perf_cpu_hrtimer_restart(cpuctx); 1986 1987 return -EAGAIN; 1988 } 1989 1990 /* 1991 * Work out whether we can put this event group on the CPU now. 1992 */ 1993 static int group_can_go_on(struct perf_event *event, 1994 struct perf_cpu_context *cpuctx, 1995 int can_add_hw) 1996 { 1997 /* 1998 * Groups consisting entirely of software events can always go on. 1999 */ 2000 if (event->group_flags & PERF_GROUP_SOFTWARE) 2001 return 1; 2002 /* 2003 * If an exclusive group is already on, no other hardware 2004 * events can go on. 2005 */ 2006 if (cpuctx->exclusive) 2007 return 0; 2008 /* 2009 * If this group is exclusive and there are already 2010 * events on the CPU, it can't go on. 2011 */ 2012 if (event->attr.exclusive && cpuctx->active_oncpu) 2013 return 0; 2014 /* 2015 * Otherwise, try to add it if all previous groups were able 2016 * to go on. 2017 */ 2018 return can_add_hw; 2019 } 2020 2021 static void add_event_to_ctx(struct perf_event *event, 2022 struct perf_event_context *ctx) 2023 { 2024 u64 tstamp = perf_event_time(event); 2025 2026 list_add_event(event, ctx); 2027 perf_group_attach(event); 2028 event->tstamp_enabled = tstamp; 2029 event->tstamp_running = tstamp; 2030 event->tstamp_stopped = tstamp; 2031 } 2032 2033 static void task_ctx_sched_out(struct perf_event_context *ctx); 2034 static void 2035 ctx_sched_in(struct perf_event_context *ctx, 2036 struct perf_cpu_context *cpuctx, 2037 enum event_type_t event_type, 2038 struct task_struct *task); 2039 2040 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2041 struct perf_event_context *ctx, 2042 struct task_struct *task) 2043 { 2044 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2045 if (ctx) 2046 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2047 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2048 if (ctx) 2049 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2050 } 2051 2052 /* 2053 * Cross CPU call to install and enable a performance event 2054 * 2055 * Must be called with ctx->mutex held 2056 */ 2057 static int __perf_install_in_context(void *info) 2058 { 2059 struct perf_event *event = info; 2060 struct perf_event_context *ctx = event->ctx; 2061 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2062 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2063 struct task_struct *task = current; 2064 2065 perf_ctx_lock(cpuctx, task_ctx); 2066 perf_pmu_disable(cpuctx->ctx.pmu); 2067 2068 /* 2069 * If there was an active task_ctx schedule it out. 2070 */ 2071 if (task_ctx) 2072 task_ctx_sched_out(task_ctx); 2073 2074 /* 2075 * If the context we're installing events in is not the 2076 * active task_ctx, flip them. 2077 */ 2078 if (ctx->task && task_ctx != ctx) { 2079 if (task_ctx) 2080 raw_spin_unlock(&task_ctx->lock); 2081 raw_spin_lock(&ctx->lock); 2082 task_ctx = ctx; 2083 } 2084 2085 if (task_ctx) { 2086 cpuctx->task_ctx = task_ctx; 2087 task = task_ctx->task; 2088 } 2089 2090 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2091 2092 update_context_time(ctx); 2093 /* 2094 * update cgrp time only if current cgrp 2095 * matches event->cgrp. Must be done before 2096 * calling add_event_to_ctx() 2097 */ 2098 update_cgrp_time_from_event(event); 2099 2100 add_event_to_ctx(event, ctx); 2101 2102 /* 2103 * Schedule everything back in 2104 */ 2105 perf_event_sched_in(cpuctx, task_ctx, task); 2106 2107 perf_pmu_enable(cpuctx->ctx.pmu); 2108 perf_ctx_unlock(cpuctx, task_ctx); 2109 2110 return 0; 2111 } 2112 2113 /* 2114 * Attach a performance event to a context 2115 * 2116 * First we add the event to the list with the hardware enable bit 2117 * in event->hw_config cleared. 2118 * 2119 * If the event is attached to a task which is on a CPU we use a smp 2120 * call to enable it in the task context. The task might have been 2121 * scheduled away, but we check this in the smp call again. 2122 */ 2123 static void 2124 perf_install_in_context(struct perf_event_context *ctx, 2125 struct perf_event *event, 2126 int cpu) 2127 { 2128 struct task_struct *task = ctx->task; 2129 2130 lockdep_assert_held(&ctx->mutex); 2131 2132 event->ctx = ctx; 2133 if (event->cpu != -1) 2134 event->cpu = cpu; 2135 2136 if (!task) { 2137 /* 2138 * Per cpu events are installed via an smp call and 2139 * the install is always successful. 2140 */ 2141 cpu_function_call(cpu, __perf_install_in_context, event); 2142 return; 2143 } 2144 2145 retry: 2146 if (!task_function_call(task, __perf_install_in_context, event)) 2147 return; 2148 2149 raw_spin_lock_irq(&ctx->lock); 2150 /* 2151 * If we failed to find a running task, but find the context active now 2152 * that we've acquired the ctx->lock, retry. 2153 */ 2154 if (ctx->is_active) { 2155 raw_spin_unlock_irq(&ctx->lock); 2156 /* 2157 * Reload the task pointer, it might have been changed by 2158 * a concurrent perf_event_context_sched_out(). 2159 */ 2160 task = ctx->task; 2161 goto retry; 2162 } 2163 2164 /* 2165 * Since the task isn't running, its safe to add the event, us holding 2166 * the ctx->lock ensures the task won't get scheduled in. 2167 */ 2168 add_event_to_ctx(event, ctx); 2169 raw_spin_unlock_irq(&ctx->lock); 2170 } 2171 2172 /* 2173 * Put a event into inactive state and update time fields. 2174 * Enabling the leader of a group effectively enables all 2175 * the group members that aren't explicitly disabled, so we 2176 * have to update their ->tstamp_enabled also. 2177 * Note: this works for group members as well as group leaders 2178 * since the non-leader members' sibling_lists will be empty. 2179 */ 2180 static void __perf_event_mark_enabled(struct perf_event *event) 2181 { 2182 struct perf_event *sub; 2183 u64 tstamp = perf_event_time(event); 2184 2185 event->state = PERF_EVENT_STATE_INACTIVE; 2186 event->tstamp_enabled = tstamp - event->total_time_enabled; 2187 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2188 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2189 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2190 } 2191 } 2192 2193 /* 2194 * Cross CPU call to enable a performance event 2195 */ 2196 static int __perf_event_enable(void *info) 2197 { 2198 struct perf_event *event = info; 2199 struct perf_event_context *ctx = event->ctx; 2200 struct perf_event *leader = event->group_leader; 2201 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2202 int err; 2203 2204 /* 2205 * There's a time window between 'ctx->is_active' check 2206 * in perf_event_enable function and this place having: 2207 * - IRQs on 2208 * - ctx->lock unlocked 2209 * 2210 * where the task could be killed and 'ctx' deactivated 2211 * by perf_event_exit_task. 2212 */ 2213 if (!ctx->is_active) 2214 return -EINVAL; 2215 2216 raw_spin_lock(&ctx->lock); 2217 update_context_time(ctx); 2218 2219 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2220 goto unlock; 2221 2222 /* 2223 * set current task's cgroup time reference point 2224 */ 2225 perf_cgroup_set_timestamp(current, ctx); 2226 2227 __perf_event_mark_enabled(event); 2228 2229 if (!event_filter_match(event)) { 2230 if (is_cgroup_event(event)) 2231 perf_cgroup_defer_enabled(event); 2232 goto unlock; 2233 } 2234 2235 /* 2236 * If the event is in a group and isn't the group leader, 2237 * then don't put it on unless the group is on. 2238 */ 2239 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 2240 goto unlock; 2241 2242 if (!group_can_go_on(event, cpuctx, 1)) { 2243 err = -EEXIST; 2244 } else { 2245 if (event == leader) 2246 err = group_sched_in(event, cpuctx, ctx); 2247 else 2248 err = event_sched_in(event, cpuctx, ctx); 2249 } 2250 2251 if (err) { 2252 /* 2253 * If this event can't go on and it's part of a 2254 * group, then the whole group has to come off. 2255 */ 2256 if (leader != event) { 2257 group_sched_out(leader, cpuctx, ctx); 2258 perf_cpu_hrtimer_restart(cpuctx); 2259 } 2260 if (leader->attr.pinned) { 2261 update_group_times(leader); 2262 leader->state = PERF_EVENT_STATE_ERROR; 2263 } 2264 } 2265 2266 unlock: 2267 raw_spin_unlock(&ctx->lock); 2268 2269 return 0; 2270 } 2271 2272 /* 2273 * Enable a event. 2274 * 2275 * If event->ctx is a cloned context, callers must make sure that 2276 * every task struct that event->ctx->task could possibly point to 2277 * remains valid. This condition is satisfied when called through 2278 * perf_event_for_each_child or perf_event_for_each as described 2279 * for perf_event_disable. 2280 */ 2281 static void _perf_event_enable(struct perf_event *event) 2282 { 2283 struct perf_event_context *ctx = event->ctx; 2284 struct task_struct *task = ctx->task; 2285 2286 if (!task) { 2287 /* 2288 * Enable the event on the cpu that it's on 2289 */ 2290 cpu_function_call(event->cpu, __perf_event_enable, event); 2291 return; 2292 } 2293 2294 raw_spin_lock_irq(&ctx->lock); 2295 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2296 goto out; 2297 2298 /* 2299 * If the event is in error state, clear that first. 2300 * That way, if we see the event in error state below, we 2301 * know that it has gone back into error state, as distinct 2302 * from the task having been scheduled away before the 2303 * cross-call arrived. 2304 */ 2305 if (event->state == PERF_EVENT_STATE_ERROR) 2306 event->state = PERF_EVENT_STATE_OFF; 2307 2308 retry: 2309 if (!ctx->is_active) { 2310 __perf_event_mark_enabled(event); 2311 goto out; 2312 } 2313 2314 raw_spin_unlock_irq(&ctx->lock); 2315 2316 if (!task_function_call(task, __perf_event_enable, event)) 2317 return; 2318 2319 raw_spin_lock_irq(&ctx->lock); 2320 2321 /* 2322 * If the context is active and the event is still off, 2323 * we need to retry the cross-call. 2324 */ 2325 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 2326 /* 2327 * task could have been flipped by a concurrent 2328 * perf_event_context_sched_out() 2329 */ 2330 task = ctx->task; 2331 goto retry; 2332 } 2333 2334 out: 2335 raw_spin_unlock_irq(&ctx->lock); 2336 } 2337 2338 /* 2339 * See perf_event_disable(); 2340 */ 2341 void perf_event_enable(struct perf_event *event) 2342 { 2343 struct perf_event_context *ctx; 2344 2345 ctx = perf_event_ctx_lock(event); 2346 _perf_event_enable(event); 2347 perf_event_ctx_unlock(event, ctx); 2348 } 2349 EXPORT_SYMBOL_GPL(perf_event_enable); 2350 2351 static int _perf_event_refresh(struct perf_event *event, int refresh) 2352 { 2353 /* 2354 * not supported on inherited events 2355 */ 2356 if (event->attr.inherit || !is_sampling_event(event)) 2357 return -EINVAL; 2358 2359 atomic_add(refresh, &event->event_limit); 2360 _perf_event_enable(event); 2361 2362 return 0; 2363 } 2364 2365 /* 2366 * See perf_event_disable() 2367 */ 2368 int perf_event_refresh(struct perf_event *event, int refresh) 2369 { 2370 struct perf_event_context *ctx; 2371 int ret; 2372 2373 ctx = perf_event_ctx_lock(event); 2374 ret = _perf_event_refresh(event, refresh); 2375 perf_event_ctx_unlock(event, ctx); 2376 2377 return ret; 2378 } 2379 EXPORT_SYMBOL_GPL(perf_event_refresh); 2380 2381 static void ctx_sched_out(struct perf_event_context *ctx, 2382 struct perf_cpu_context *cpuctx, 2383 enum event_type_t event_type) 2384 { 2385 struct perf_event *event; 2386 int is_active = ctx->is_active; 2387 2388 ctx->is_active &= ~event_type; 2389 if (likely(!ctx->nr_events)) 2390 return; 2391 2392 update_context_time(ctx); 2393 update_cgrp_time_from_cpuctx(cpuctx); 2394 if (!ctx->nr_active) 2395 return; 2396 2397 perf_pmu_disable(ctx->pmu); 2398 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 2399 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2400 group_sched_out(event, cpuctx, ctx); 2401 } 2402 2403 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 2404 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2405 group_sched_out(event, cpuctx, ctx); 2406 } 2407 perf_pmu_enable(ctx->pmu); 2408 } 2409 2410 /* 2411 * Test whether two contexts are equivalent, i.e. whether they have both been 2412 * cloned from the same version of the same context. 2413 * 2414 * Equivalence is measured using a generation number in the context that is 2415 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2416 * and list_del_event(). 2417 */ 2418 static int context_equiv(struct perf_event_context *ctx1, 2419 struct perf_event_context *ctx2) 2420 { 2421 lockdep_assert_held(&ctx1->lock); 2422 lockdep_assert_held(&ctx2->lock); 2423 2424 /* Pinning disables the swap optimization */ 2425 if (ctx1->pin_count || ctx2->pin_count) 2426 return 0; 2427 2428 /* If ctx1 is the parent of ctx2 */ 2429 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2430 return 1; 2431 2432 /* If ctx2 is the parent of ctx1 */ 2433 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2434 return 1; 2435 2436 /* 2437 * If ctx1 and ctx2 have the same parent; we flatten the parent 2438 * hierarchy, see perf_event_init_context(). 2439 */ 2440 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2441 ctx1->parent_gen == ctx2->parent_gen) 2442 return 1; 2443 2444 /* Unmatched */ 2445 return 0; 2446 } 2447 2448 static void __perf_event_sync_stat(struct perf_event *event, 2449 struct perf_event *next_event) 2450 { 2451 u64 value; 2452 2453 if (!event->attr.inherit_stat) 2454 return; 2455 2456 /* 2457 * Update the event value, we cannot use perf_event_read() 2458 * because we're in the middle of a context switch and have IRQs 2459 * disabled, which upsets smp_call_function_single(), however 2460 * we know the event must be on the current CPU, therefore we 2461 * don't need to use it. 2462 */ 2463 switch (event->state) { 2464 case PERF_EVENT_STATE_ACTIVE: 2465 event->pmu->read(event); 2466 /* fall-through */ 2467 2468 case PERF_EVENT_STATE_INACTIVE: 2469 update_event_times(event); 2470 break; 2471 2472 default: 2473 break; 2474 } 2475 2476 /* 2477 * In order to keep per-task stats reliable we need to flip the event 2478 * values when we flip the contexts. 2479 */ 2480 value = local64_read(&next_event->count); 2481 value = local64_xchg(&event->count, value); 2482 local64_set(&next_event->count, value); 2483 2484 swap(event->total_time_enabled, next_event->total_time_enabled); 2485 swap(event->total_time_running, next_event->total_time_running); 2486 2487 /* 2488 * Since we swizzled the values, update the user visible data too. 2489 */ 2490 perf_event_update_userpage(event); 2491 perf_event_update_userpage(next_event); 2492 } 2493 2494 static void perf_event_sync_stat(struct perf_event_context *ctx, 2495 struct perf_event_context *next_ctx) 2496 { 2497 struct perf_event *event, *next_event; 2498 2499 if (!ctx->nr_stat) 2500 return; 2501 2502 update_context_time(ctx); 2503 2504 event = list_first_entry(&ctx->event_list, 2505 struct perf_event, event_entry); 2506 2507 next_event = list_first_entry(&next_ctx->event_list, 2508 struct perf_event, event_entry); 2509 2510 while (&event->event_entry != &ctx->event_list && 2511 &next_event->event_entry != &next_ctx->event_list) { 2512 2513 __perf_event_sync_stat(event, next_event); 2514 2515 event = list_next_entry(event, event_entry); 2516 next_event = list_next_entry(next_event, event_entry); 2517 } 2518 } 2519 2520 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2521 struct task_struct *next) 2522 { 2523 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2524 struct perf_event_context *next_ctx; 2525 struct perf_event_context *parent, *next_parent; 2526 struct perf_cpu_context *cpuctx; 2527 int do_switch = 1; 2528 2529 if (likely(!ctx)) 2530 return; 2531 2532 cpuctx = __get_cpu_context(ctx); 2533 if (!cpuctx->task_ctx) 2534 return; 2535 2536 rcu_read_lock(); 2537 next_ctx = next->perf_event_ctxp[ctxn]; 2538 if (!next_ctx) 2539 goto unlock; 2540 2541 parent = rcu_dereference(ctx->parent_ctx); 2542 next_parent = rcu_dereference(next_ctx->parent_ctx); 2543 2544 /* If neither context have a parent context; they cannot be clones. */ 2545 if (!parent && !next_parent) 2546 goto unlock; 2547 2548 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2549 /* 2550 * Looks like the two contexts are clones, so we might be 2551 * able to optimize the context switch. We lock both 2552 * contexts and check that they are clones under the 2553 * lock (including re-checking that neither has been 2554 * uncloned in the meantime). It doesn't matter which 2555 * order we take the locks because no other cpu could 2556 * be trying to lock both of these tasks. 2557 */ 2558 raw_spin_lock(&ctx->lock); 2559 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2560 if (context_equiv(ctx, next_ctx)) { 2561 /* 2562 * XXX do we need a memory barrier of sorts 2563 * wrt to rcu_dereference() of perf_event_ctxp 2564 */ 2565 task->perf_event_ctxp[ctxn] = next_ctx; 2566 next->perf_event_ctxp[ctxn] = ctx; 2567 ctx->task = next; 2568 next_ctx->task = task; 2569 2570 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2571 2572 do_switch = 0; 2573 2574 perf_event_sync_stat(ctx, next_ctx); 2575 } 2576 raw_spin_unlock(&next_ctx->lock); 2577 raw_spin_unlock(&ctx->lock); 2578 } 2579 unlock: 2580 rcu_read_unlock(); 2581 2582 if (do_switch) { 2583 raw_spin_lock(&ctx->lock); 2584 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2585 cpuctx->task_ctx = NULL; 2586 raw_spin_unlock(&ctx->lock); 2587 } 2588 } 2589 2590 void perf_sched_cb_dec(struct pmu *pmu) 2591 { 2592 this_cpu_dec(perf_sched_cb_usages); 2593 } 2594 2595 void perf_sched_cb_inc(struct pmu *pmu) 2596 { 2597 this_cpu_inc(perf_sched_cb_usages); 2598 } 2599 2600 /* 2601 * This function provides the context switch callback to the lower code 2602 * layer. It is invoked ONLY when the context switch callback is enabled. 2603 */ 2604 static void perf_pmu_sched_task(struct task_struct *prev, 2605 struct task_struct *next, 2606 bool sched_in) 2607 { 2608 struct perf_cpu_context *cpuctx; 2609 struct pmu *pmu; 2610 unsigned long flags; 2611 2612 if (prev == next) 2613 return; 2614 2615 local_irq_save(flags); 2616 2617 rcu_read_lock(); 2618 2619 list_for_each_entry_rcu(pmu, &pmus, entry) { 2620 if (pmu->sched_task) { 2621 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2622 2623 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2624 2625 perf_pmu_disable(pmu); 2626 2627 pmu->sched_task(cpuctx->task_ctx, sched_in); 2628 2629 perf_pmu_enable(pmu); 2630 2631 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2632 } 2633 } 2634 2635 rcu_read_unlock(); 2636 2637 local_irq_restore(flags); 2638 } 2639 2640 #define for_each_task_context_nr(ctxn) \ 2641 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2642 2643 /* 2644 * Called from scheduler to remove the events of the current task, 2645 * with interrupts disabled. 2646 * 2647 * We stop each event and update the event value in event->count. 2648 * 2649 * This does not protect us against NMI, but disable() 2650 * sets the disabled bit in the control field of event _before_ 2651 * accessing the event control register. If a NMI hits, then it will 2652 * not restart the event. 2653 */ 2654 void __perf_event_task_sched_out(struct task_struct *task, 2655 struct task_struct *next) 2656 { 2657 int ctxn; 2658 2659 if (__this_cpu_read(perf_sched_cb_usages)) 2660 perf_pmu_sched_task(task, next, false); 2661 2662 for_each_task_context_nr(ctxn) 2663 perf_event_context_sched_out(task, ctxn, next); 2664 2665 /* 2666 * if cgroup events exist on this CPU, then we need 2667 * to check if we have to switch out PMU state. 2668 * cgroup event are system-wide mode only 2669 */ 2670 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2671 perf_cgroup_sched_out(task, next); 2672 } 2673 2674 static void task_ctx_sched_out(struct perf_event_context *ctx) 2675 { 2676 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2677 2678 if (!cpuctx->task_ctx) 2679 return; 2680 2681 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2682 return; 2683 2684 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2685 cpuctx->task_ctx = NULL; 2686 } 2687 2688 /* 2689 * Called with IRQs disabled 2690 */ 2691 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2692 enum event_type_t event_type) 2693 { 2694 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2695 } 2696 2697 static void 2698 ctx_pinned_sched_in(struct perf_event_context *ctx, 2699 struct perf_cpu_context *cpuctx) 2700 { 2701 struct perf_event *event; 2702 2703 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2704 if (event->state <= PERF_EVENT_STATE_OFF) 2705 continue; 2706 if (!event_filter_match(event)) 2707 continue; 2708 2709 /* may need to reset tstamp_enabled */ 2710 if (is_cgroup_event(event)) 2711 perf_cgroup_mark_enabled(event, ctx); 2712 2713 if (group_can_go_on(event, cpuctx, 1)) 2714 group_sched_in(event, cpuctx, ctx); 2715 2716 /* 2717 * If this pinned group hasn't been scheduled, 2718 * put it in error state. 2719 */ 2720 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2721 update_group_times(event); 2722 event->state = PERF_EVENT_STATE_ERROR; 2723 } 2724 } 2725 } 2726 2727 static void 2728 ctx_flexible_sched_in(struct perf_event_context *ctx, 2729 struct perf_cpu_context *cpuctx) 2730 { 2731 struct perf_event *event; 2732 int can_add_hw = 1; 2733 2734 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2735 /* Ignore events in OFF or ERROR state */ 2736 if (event->state <= PERF_EVENT_STATE_OFF) 2737 continue; 2738 /* 2739 * Listen to the 'cpu' scheduling filter constraint 2740 * of events: 2741 */ 2742 if (!event_filter_match(event)) 2743 continue; 2744 2745 /* may need to reset tstamp_enabled */ 2746 if (is_cgroup_event(event)) 2747 perf_cgroup_mark_enabled(event, ctx); 2748 2749 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2750 if (group_sched_in(event, cpuctx, ctx)) 2751 can_add_hw = 0; 2752 } 2753 } 2754 } 2755 2756 static void 2757 ctx_sched_in(struct perf_event_context *ctx, 2758 struct perf_cpu_context *cpuctx, 2759 enum event_type_t event_type, 2760 struct task_struct *task) 2761 { 2762 u64 now; 2763 int is_active = ctx->is_active; 2764 2765 ctx->is_active |= event_type; 2766 if (likely(!ctx->nr_events)) 2767 return; 2768 2769 now = perf_clock(); 2770 ctx->timestamp = now; 2771 perf_cgroup_set_timestamp(task, ctx); 2772 /* 2773 * First go through the list and put on any pinned groups 2774 * in order to give them the best chance of going on. 2775 */ 2776 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2777 ctx_pinned_sched_in(ctx, cpuctx); 2778 2779 /* Then walk through the lower prio flexible groups */ 2780 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2781 ctx_flexible_sched_in(ctx, cpuctx); 2782 } 2783 2784 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2785 enum event_type_t event_type, 2786 struct task_struct *task) 2787 { 2788 struct perf_event_context *ctx = &cpuctx->ctx; 2789 2790 ctx_sched_in(ctx, cpuctx, event_type, task); 2791 } 2792 2793 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2794 struct task_struct *task) 2795 { 2796 struct perf_cpu_context *cpuctx; 2797 2798 cpuctx = __get_cpu_context(ctx); 2799 if (cpuctx->task_ctx == ctx) 2800 return; 2801 2802 perf_ctx_lock(cpuctx, ctx); 2803 perf_pmu_disable(ctx->pmu); 2804 /* 2805 * We want to keep the following priority order: 2806 * cpu pinned (that don't need to move), task pinned, 2807 * cpu flexible, task flexible. 2808 */ 2809 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2810 2811 if (ctx->nr_events) 2812 cpuctx->task_ctx = ctx; 2813 2814 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2815 2816 perf_pmu_enable(ctx->pmu); 2817 perf_ctx_unlock(cpuctx, ctx); 2818 } 2819 2820 /* 2821 * Called from scheduler to add the events of the current task 2822 * with interrupts disabled. 2823 * 2824 * We restore the event value and then enable it. 2825 * 2826 * This does not protect us against NMI, but enable() 2827 * sets the enabled bit in the control field of event _before_ 2828 * accessing the event control register. If a NMI hits, then it will 2829 * keep the event running. 2830 */ 2831 void __perf_event_task_sched_in(struct task_struct *prev, 2832 struct task_struct *task) 2833 { 2834 struct perf_event_context *ctx; 2835 int ctxn; 2836 2837 for_each_task_context_nr(ctxn) { 2838 ctx = task->perf_event_ctxp[ctxn]; 2839 if (likely(!ctx)) 2840 continue; 2841 2842 perf_event_context_sched_in(ctx, task); 2843 } 2844 /* 2845 * if cgroup events exist on this CPU, then we need 2846 * to check if we have to switch in PMU state. 2847 * cgroup event are system-wide mode only 2848 */ 2849 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2850 perf_cgroup_sched_in(prev, task); 2851 2852 if (__this_cpu_read(perf_sched_cb_usages)) 2853 perf_pmu_sched_task(prev, task, true); 2854 } 2855 2856 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2857 { 2858 u64 frequency = event->attr.sample_freq; 2859 u64 sec = NSEC_PER_SEC; 2860 u64 divisor, dividend; 2861 2862 int count_fls, nsec_fls, frequency_fls, sec_fls; 2863 2864 count_fls = fls64(count); 2865 nsec_fls = fls64(nsec); 2866 frequency_fls = fls64(frequency); 2867 sec_fls = 30; 2868 2869 /* 2870 * We got @count in @nsec, with a target of sample_freq HZ 2871 * the target period becomes: 2872 * 2873 * @count * 10^9 2874 * period = ------------------- 2875 * @nsec * sample_freq 2876 * 2877 */ 2878 2879 /* 2880 * Reduce accuracy by one bit such that @a and @b converge 2881 * to a similar magnitude. 2882 */ 2883 #define REDUCE_FLS(a, b) \ 2884 do { \ 2885 if (a##_fls > b##_fls) { \ 2886 a >>= 1; \ 2887 a##_fls--; \ 2888 } else { \ 2889 b >>= 1; \ 2890 b##_fls--; \ 2891 } \ 2892 } while (0) 2893 2894 /* 2895 * Reduce accuracy until either term fits in a u64, then proceed with 2896 * the other, so that finally we can do a u64/u64 division. 2897 */ 2898 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2899 REDUCE_FLS(nsec, frequency); 2900 REDUCE_FLS(sec, count); 2901 } 2902 2903 if (count_fls + sec_fls > 64) { 2904 divisor = nsec * frequency; 2905 2906 while (count_fls + sec_fls > 64) { 2907 REDUCE_FLS(count, sec); 2908 divisor >>= 1; 2909 } 2910 2911 dividend = count * sec; 2912 } else { 2913 dividend = count * sec; 2914 2915 while (nsec_fls + frequency_fls > 64) { 2916 REDUCE_FLS(nsec, frequency); 2917 dividend >>= 1; 2918 } 2919 2920 divisor = nsec * frequency; 2921 } 2922 2923 if (!divisor) 2924 return dividend; 2925 2926 return div64_u64(dividend, divisor); 2927 } 2928 2929 static DEFINE_PER_CPU(int, perf_throttled_count); 2930 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2931 2932 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2933 { 2934 struct hw_perf_event *hwc = &event->hw; 2935 s64 period, sample_period; 2936 s64 delta; 2937 2938 period = perf_calculate_period(event, nsec, count); 2939 2940 delta = (s64)(period - hwc->sample_period); 2941 delta = (delta + 7) / 8; /* low pass filter */ 2942 2943 sample_period = hwc->sample_period + delta; 2944 2945 if (!sample_period) 2946 sample_period = 1; 2947 2948 hwc->sample_period = sample_period; 2949 2950 if (local64_read(&hwc->period_left) > 8*sample_period) { 2951 if (disable) 2952 event->pmu->stop(event, PERF_EF_UPDATE); 2953 2954 local64_set(&hwc->period_left, 0); 2955 2956 if (disable) 2957 event->pmu->start(event, PERF_EF_RELOAD); 2958 } 2959 } 2960 2961 /* 2962 * combine freq adjustment with unthrottling to avoid two passes over the 2963 * events. At the same time, make sure, having freq events does not change 2964 * the rate of unthrottling as that would introduce bias. 2965 */ 2966 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2967 int needs_unthr) 2968 { 2969 struct perf_event *event; 2970 struct hw_perf_event *hwc; 2971 u64 now, period = TICK_NSEC; 2972 s64 delta; 2973 2974 /* 2975 * only need to iterate over all events iff: 2976 * - context have events in frequency mode (needs freq adjust) 2977 * - there are events to unthrottle on this cpu 2978 */ 2979 if (!(ctx->nr_freq || needs_unthr)) 2980 return; 2981 2982 raw_spin_lock(&ctx->lock); 2983 perf_pmu_disable(ctx->pmu); 2984 2985 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2986 if (event->state != PERF_EVENT_STATE_ACTIVE) 2987 continue; 2988 2989 if (!event_filter_match(event)) 2990 continue; 2991 2992 perf_pmu_disable(event->pmu); 2993 2994 hwc = &event->hw; 2995 2996 if (hwc->interrupts == MAX_INTERRUPTS) { 2997 hwc->interrupts = 0; 2998 perf_log_throttle(event, 1); 2999 event->pmu->start(event, 0); 3000 } 3001 3002 if (!event->attr.freq || !event->attr.sample_freq) 3003 goto next; 3004 3005 /* 3006 * stop the event and update event->count 3007 */ 3008 event->pmu->stop(event, PERF_EF_UPDATE); 3009 3010 now = local64_read(&event->count); 3011 delta = now - hwc->freq_count_stamp; 3012 hwc->freq_count_stamp = now; 3013 3014 /* 3015 * restart the event 3016 * reload only if value has changed 3017 * we have stopped the event so tell that 3018 * to perf_adjust_period() to avoid stopping it 3019 * twice. 3020 */ 3021 if (delta > 0) 3022 perf_adjust_period(event, period, delta, false); 3023 3024 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3025 next: 3026 perf_pmu_enable(event->pmu); 3027 } 3028 3029 perf_pmu_enable(ctx->pmu); 3030 raw_spin_unlock(&ctx->lock); 3031 } 3032 3033 /* 3034 * Round-robin a context's events: 3035 */ 3036 static void rotate_ctx(struct perf_event_context *ctx) 3037 { 3038 /* 3039 * Rotate the first entry last of non-pinned groups. Rotation might be 3040 * disabled by the inheritance code. 3041 */ 3042 if (!ctx->rotate_disable) 3043 list_rotate_left(&ctx->flexible_groups); 3044 } 3045 3046 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3047 { 3048 struct perf_event_context *ctx = NULL; 3049 int rotate = 0; 3050 3051 if (cpuctx->ctx.nr_events) { 3052 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3053 rotate = 1; 3054 } 3055 3056 ctx = cpuctx->task_ctx; 3057 if (ctx && ctx->nr_events) { 3058 if (ctx->nr_events != ctx->nr_active) 3059 rotate = 1; 3060 } 3061 3062 if (!rotate) 3063 goto done; 3064 3065 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3066 perf_pmu_disable(cpuctx->ctx.pmu); 3067 3068 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3069 if (ctx) 3070 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3071 3072 rotate_ctx(&cpuctx->ctx); 3073 if (ctx) 3074 rotate_ctx(ctx); 3075 3076 perf_event_sched_in(cpuctx, ctx, current); 3077 3078 perf_pmu_enable(cpuctx->ctx.pmu); 3079 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3080 done: 3081 3082 return rotate; 3083 } 3084 3085 #ifdef CONFIG_NO_HZ_FULL 3086 bool perf_event_can_stop_tick(void) 3087 { 3088 if (atomic_read(&nr_freq_events) || 3089 __this_cpu_read(perf_throttled_count)) 3090 return false; 3091 else 3092 return true; 3093 } 3094 #endif 3095 3096 void perf_event_task_tick(void) 3097 { 3098 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3099 struct perf_event_context *ctx, *tmp; 3100 int throttled; 3101 3102 WARN_ON(!irqs_disabled()); 3103 3104 __this_cpu_inc(perf_throttled_seq); 3105 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3106 3107 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3108 perf_adjust_freq_unthr_context(ctx, throttled); 3109 } 3110 3111 static int event_enable_on_exec(struct perf_event *event, 3112 struct perf_event_context *ctx) 3113 { 3114 if (!event->attr.enable_on_exec) 3115 return 0; 3116 3117 event->attr.enable_on_exec = 0; 3118 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3119 return 0; 3120 3121 __perf_event_mark_enabled(event); 3122 3123 return 1; 3124 } 3125 3126 /* 3127 * Enable all of a task's events that have been marked enable-on-exec. 3128 * This expects task == current. 3129 */ 3130 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 3131 { 3132 struct perf_event_context *clone_ctx = NULL; 3133 struct perf_event *event; 3134 unsigned long flags; 3135 int enabled = 0; 3136 int ret; 3137 3138 local_irq_save(flags); 3139 if (!ctx || !ctx->nr_events) 3140 goto out; 3141 3142 /* 3143 * We must ctxsw out cgroup events to avoid conflict 3144 * when invoking perf_task_event_sched_in() later on 3145 * in this function. Otherwise we end up trying to 3146 * ctxswin cgroup events which are already scheduled 3147 * in. 3148 */ 3149 perf_cgroup_sched_out(current, NULL); 3150 3151 raw_spin_lock(&ctx->lock); 3152 task_ctx_sched_out(ctx); 3153 3154 list_for_each_entry(event, &ctx->event_list, event_entry) { 3155 ret = event_enable_on_exec(event, ctx); 3156 if (ret) 3157 enabled = 1; 3158 } 3159 3160 /* 3161 * Unclone this context if we enabled any event. 3162 */ 3163 if (enabled) 3164 clone_ctx = unclone_ctx(ctx); 3165 3166 raw_spin_unlock(&ctx->lock); 3167 3168 /* 3169 * Also calls ctxswin for cgroup events, if any: 3170 */ 3171 perf_event_context_sched_in(ctx, ctx->task); 3172 out: 3173 local_irq_restore(flags); 3174 3175 if (clone_ctx) 3176 put_ctx(clone_ctx); 3177 } 3178 3179 void perf_event_exec(void) 3180 { 3181 struct perf_event_context *ctx; 3182 int ctxn; 3183 3184 rcu_read_lock(); 3185 for_each_task_context_nr(ctxn) { 3186 ctx = current->perf_event_ctxp[ctxn]; 3187 if (!ctx) 3188 continue; 3189 3190 perf_event_enable_on_exec(ctx); 3191 } 3192 rcu_read_unlock(); 3193 } 3194 3195 /* 3196 * Cross CPU call to read the hardware event 3197 */ 3198 static void __perf_event_read(void *info) 3199 { 3200 struct perf_event *event = info; 3201 struct perf_event_context *ctx = event->ctx; 3202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3203 3204 /* 3205 * If this is a task context, we need to check whether it is 3206 * the current task context of this cpu. If not it has been 3207 * scheduled out before the smp call arrived. In that case 3208 * event->count would have been updated to a recent sample 3209 * when the event was scheduled out. 3210 */ 3211 if (ctx->task && cpuctx->task_ctx != ctx) 3212 return; 3213 3214 raw_spin_lock(&ctx->lock); 3215 if (ctx->is_active) { 3216 update_context_time(ctx); 3217 update_cgrp_time_from_event(event); 3218 } 3219 update_event_times(event); 3220 if (event->state == PERF_EVENT_STATE_ACTIVE) 3221 event->pmu->read(event); 3222 raw_spin_unlock(&ctx->lock); 3223 } 3224 3225 static inline u64 perf_event_count(struct perf_event *event) 3226 { 3227 if (event->pmu->count) 3228 return event->pmu->count(event); 3229 3230 return __perf_event_count(event); 3231 } 3232 3233 static u64 perf_event_read(struct perf_event *event) 3234 { 3235 /* 3236 * If event is enabled and currently active on a CPU, update the 3237 * value in the event structure: 3238 */ 3239 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3240 smp_call_function_single(event->oncpu, 3241 __perf_event_read, event, 1); 3242 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3243 struct perf_event_context *ctx = event->ctx; 3244 unsigned long flags; 3245 3246 raw_spin_lock_irqsave(&ctx->lock, flags); 3247 /* 3248 * may read while context is not active 3249 * (e.g., thread is blocked), in that case 3250 * we cannot update context time 3251 */ 3252 if (ctx->is_active) { 3253 update_context_time(ctx); 3254 update_cgrp_time_from_event(event); 3255 } 3256 update_event_times(event); 3257 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3258 } 3259 3260 return perf_event_count(event); 3261 } 3262 3263 /* 3264 * Initialize the perf_event context in a task_struct: 3265 */ 3266 static void __perf_event_init_context(struct perf_event_context *ctx) 3267 { 3268 raw_spin_lock_init(&ctx->lock); 3269 mutex_init(&ctx->mutex); 3270 INIT_LIST_HEAD(&ctx->active_ctx_list); 3271 INIT_LIST_HEAD(&ctx->pinned_groups); 3272 INIT_LIST_HEAD(&ctx->flexible_groups); 3273 INIT_LIST_HEAD(&ctx->event_list); 3274 atomic_set(&ctx->refcount, 1); 3275 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work); 3276 } 3277 3278 static struct perf_event_context * 3279 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3280 { 3281 struct perf_event_context *ctx; 3282 3283 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3284 if (!ctx) 3285 return NULL; 3286 3287 __perf_event_init_context(ctx); 3288 if (task) { 3289 ctx->task = task; 3290 get_task_struct(task); 3291 } 3292 ctx->pmu = pmu; 3293 3294 return ctx; 3295 } 3296 3297 static struct task_struct * 3298 find_lively_task_by_vpid(pid_t vpid) 3299 { 3300 struct task_struct *task; 3301 int err; 3302 3303 rcu_read_lock(); 3304 if (!vpid) 3305 task = current; 3306 else 3307 task = find_task_by_vpid(vpid); 3308 if (task) 3309 get_task_struct(task); 3310 rcu_read_unlock(); 3311 3312 if (!task) 3313 return ERR_PTR(-ESRCH); 3314 3315 /* Reuse ptrace permission checks for now. */ 3316 err = -EACCES; 3317 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 3318 goto errout; 3319 3320 return task; 3321 errout: 3322 put_task_struct(task); 3323 return ERR_PTR(err); 3324 3325 } 3326 3327 /* 3328 * Returns a matching context with refcount and pincount. 3329 */ 3330 static struct perf_event_context * 3331 find_get_context(struct pmu *pmu, struct task_struct *task, 3332 struct perf_event *event) 3333 { 3334 struct perf_event_context *ctx, *clone_ctx = NULL; 3335 struct perf_cpu_context *cpuctx; 3336 void *task_ctx_data = NULL; 3337 unsigned long flags; 3338 int ctxn, err; 3339 int cpu = event->cpu; 3340 3341 if (!task) { 3342 /* Must be root to operate on a CPU event: */ 3343 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3344 return ERR_PTR(-EACCES); 3345 3346 /* 3347 * We could be clever and allow to attach a event to an 3348 * offline CPU and activate it when the CPU comes up, but 3349 * that's for later. 3350 */ 3351 if (!cpu_online(cpu)) 3352 return ERR_PTR(-ENODEV); 3353 3354 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3355 ctx = &cpuctx->ctx; 3356 get_ctx(ctx); 3357 ++ctx->pin_count; 3358 3359 return ctx; 3360 } 3361 3362 err = -EINVAL; 3363 ctxn = pmu->task_ctx_nr; 3364 if (ctxn < 0) 3365 goto errout; 3366 3367 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3368 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3369 if (!task_ctx_data) { 3370 err = -ENOMEM; 3371 goto errout; 3372 } 3373 } 3374 3375 retry: 3376 ctx = perf_lock_task_context(task, ctxn, &flags); 3377 if (ctx) { 3378 clone_ctx = unclone_ctx(ctx); 3379 ++ctx->pin_count; 3380 3381 if (task_ctx_data && !ctx->task_ctx_data) { 3382 ctx->task_ctx_data = task_ctx_data; 3383 task_ctx_data = NULL; 3384 } 3385 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3386 3387 if (clone_ctx) 3388 put_ctx(clone_ctx); 3389 } else { 3390 ctx = alloc_perf_context(pmu, task); 3391 err = -ENOMEM; 3392 if (!ctx) 3393 goto errout; 3394 3395 if (task_ctx_data) { 3396 ctx->task_ctx_data = task_ctx_data; 3397 task_ctx_data = NULL; 3398 } 3399 3400 err = 0; 3401 mutex_lock(&task->perf_event_mutex); 3402 /* 3403 * If it has already passed perf_event_exit_task(). 3404 * we must see PF_EXITING, it takes this mutex too. 3405 */ 3406 if (task->flags & PF_EXITING) 3407 err = -ESRCH; 3408 else if (task->perf_event_ctxp[ctxn]) 3409 err = -EAGAIN; 3410 else { 3411 get_ctx(ctx); 3412 ++ctx->pin_count; 3413 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3414 } 3415 mutex_unlock(&task->perf_event_mutex); 3416 3417 if (unlikely(err)) { 3418 put_ctx(ctx); 3419 3420 if (err == -EAGAIN) 3421 goto retry; 3422 goto errout; 3423 } 3424 } 3425 3426 kfree(task_ctx_data); 3427 return ctx; 3428 3429 errout: 3430 kfree(task_ctx_data); 3431 return ERR_PTR(err); 3432 } 3433 3434 static void perf_event_free_filter(struct perf_event *event); 3435 static void perf_event_free_bpf_prog(struct perf_event *event); 3436 3437 static void free_event_rcu(struct rcu_head *head) 3438 { 3439 struct perf_event *event; 3440 3441 event = container_of(head, struct perf_event, rcu_head); 3442 if (event->ns) 3443 put_pid_ns(event->ns); 3444 perf_event_free_filter(event); 3445 kfree(event); 3446 } 3447 3448 static void ring_buffer_attach(struct perf_event *event, 3449 struct ring_buffer *rb); 3450 3451 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3452 { 3453 if (event->parent) 3454 return; 3455 3456 if (is_cgroup_event(event)) 3457 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3458 } 3459 3460 static void unaccount_event(struct perf_event *event) 3461 { 3462 if (event->parent) 3463 return; 3464 3465 if (event->attach_state & PERF_ATTACH_TASK) 3466 static_key_slow_dec_deferred(&perf_sched_events); 3467 if (event->attr.mmap || event->attr.mmap_data) 3468 atomic_dec(&nr_mmap_events); 3469 if (event->attr.comm) 3470 atomic_dec(&nr_comm_events); 3471 if (event->attr.task) 3472 atomic_dec(&nr_task_events); 3473 if (event->attr.freq) 3474 atomic_dec(&nr_freq_events); 3475 if (is_cgroup_event(event)) 3476 static_key_slow_dec_deferred(&perf_sched_events); 3477 if (has_branch_stack(event)) 3478 static_key_slow_dec_deferred(&perf_sched_events); 3479 3480 unaccount_event_cpu(event, event->cpu); 3481 } 3482 3483 /* 3484 * The following implement mutual exclusion of events on "exclusive" pmus 3485 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3486 * at a time, so we disallow creating events that might conflict, namely: 3487 * 3488 * 1) cpu-wide events in the presence of per-task events, 3489 * 2) per-task events in the presence of cpu-wide events, 3490 * 3) two matching events on the same context. 3491 * 3492 * The former two cases are handled in the allocation path (perf_event_alloc(), 3493 * __free_event()), the latter -- before the first perf_install_in_context(). 3494 */ 3495 static int exclusive_event_init(struct perf_event *event) 3496 { 3497 struct pmu *pmu = event->pmu; 3498 3499 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3500 return 0; 3501 3502 /* 3503 * Prevent co-existence of per-task and cpu-wide events on the 3504 * same exclusive pmu. 3505 * 3506 * Negative pmu::exclusive_cnt means there are cpu-wide 3507 * events on this "exclusive" pmu, positive means there are 3508 * per-task events. 3509 * 3510 * Since this is called in perf_event_alloc() path, event::ctx 3511 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3512 * to mean "per-task event", because unlike other attach states it 3513 * never gets cleared. 3514 */ 3515 if (event->attach_state & PERF_ATTACH_TASK) { 3516 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3517 return -EBUSY; 3518 } else { 3519 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3520 return -EBUSY; 3521 } 3522 3523 return 0; 3524 } 3525 3526 static void exclusive_event_destroy(struct perf_event *event) 3527 { 3528 struct pmu *pmu = event->pmu; 3529 3530 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3531 return; 3532 3533 /* see comment in exclusive_event_init() */ 3534 if (event->attach_state & PERF_ATTACH_TASK) 3535 atomic_dec(&pmu->exclusive_cnt); 3536 else 3537 atomic_inc(&pmu->exclusive_cnt); 3538 } 3539 3540 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3541 { 3542 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3543 (e1->cpu == e2->cpu || 3544 e1->cpu == -1 || 3545 e2->cpu == -1)) 3546 return true; 3547 return false; 3548 } 3549 3550 /* Called under the same ctx::mutex as perf_install_in_context() */ 3551 static bool exclusive_event_installable(struct perf_event *event, 3552 struct perf_event_context *ctx) 3553 { 3554 struct perf_event *iter_event; 3555 struct pmu *pmu = event->pmu; 3556 3557 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3558 return true; 3559 3560 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3561 if (exclusive_event_match(iter_event, event)) 3562 return false; 3563 } 3564 3565 return true; 3566 } 3567 3568 static void __free_event(struct perf_event *event) 3569 { 3570 if (!event->parent) { 3571 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3572 put_callchain_buffers(); 3573 } 3574 3575 perf_event_free_bpf_prog(event); 3576 3577 if (event->destroy) 3578 event->destroy(event); 3579 3580 if (event->ctx) 3581 put_ctx(event->ctx); 3582 3583 if (event->pmu) { 3584 exclusive_event_destroy(event); 3585 module_put(event->pmu->module); 3586 } 3587 3588 call_rcu(&event->rcu_head, free_event_rcu); 3589 } 3590 3591 static void _free_event(struct perf_event *event) 3592 { 3593 irq_work_sync(&event->pending); 3594 3595 unaccount_event(event); 3596 3597 if (event->rb) { 3598 /* 3599 * Can happen when we close an event with re-directed output. 3600 * 3601 * Since we have a 0 refcount, perf_mmap_close() will skip 3602 * over us; possibly making our ring_buffer_put() the last. 3603 */ 3604 mutex_lock(&event->mmap_mutex); 3605 ring_buffer_attach(event, NULL); 3606 mutex_unlock(&event->mmap_mutex); 3607 } 3608 3609 if (is_cgroup_event(event)) 3610 perf_detach_cgroup(event); 3611 3612 __free_event(event); 3613 } 3614 3615 /* 3616 * Used to free events which have a known refcount of 1, such as in error paths 3617 * where the event isn't exposed yet and inherited events. 3618 */ 3619 static void free_event(struct perf_event *event) 3620 { 3621 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3622 "unexpected event refcount: %ld; ptr=%p\n", 3623 atomic_long_read(&event->refcount), event)) { 3624 /* leak to avoid use-after-free */ 3625 return; 3626 } 3627 3628 _free_event(event); 3629 } 3630 3631 /* 3632 * Remove user event from the owner task. 3633 */ 3634 static void perf_remove_from_owner(struct perf_event *event) 3635 { 3636 struct task_struct *owner; 3637 3638 rcu_read_lock(); 3639 owner = ACCESS_ONCE(event->owner); 3640 /* 3641 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3642 * !owner it means the list deletion is complete and we can indeed 3643 * free this event, otherwise we need to serialize on 3644 * owner->perf_event_mutex. 3645 */ 3646 smp_read_barrier_depends(); 3647 if (owner) { 3648 /* 3649 * Since delayed_put_task_struct() also drops the last 3650 * task reference we can safely take a new reference 3651 * while holding the rcu_read_lock(). 3652 */ 3653 get_task_struct(owner); 3654 } 3655 rcu_read_unlock(); 3656 3657 if (owner) { 3658 /* 3659 * If we're here through perf_event_exit_task() we're already 3660 * holding ctx->mutex which would be an inversion wrt. the 3661 * normal lock order. 3662 * 3663 * However we can safely take this lock because its the child 3664 * ctx->mutex. 3665 */ 3666 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 3667 3668 /* 3669 * We have to re-check the event->owner field, if it is cleared 3670 * we raced with perf_event_exit_task(), acquiring the mutex 3671 * ensured they're done, and we can proceed with freeing the 3672 * event. 3673 */ 3674 if (event->owner) 3675 list_del_init(&event->owner_entry); 3676 mutex_unlock(&owner->perf_event_mutex); 3677 put_task_struct(owner); 3678 } 3679 } 3680 3681 static void put_event(struct perf_event *event) 3682 { 3683 struct perf_event_context *ctx; 3684 3685 if (!atomic_long_dec_and_test(&event->refcount)) 3686 return; 3687 3688 if (!is_kernel_event(event)) 3689 perf_remove_from_owner(event); 3690 3691 /* 3692 * There are two ways this annotation is useful: 3693 * 3694 * 1) there is a lock recursion from perf_event_exit_task 3695 * see the comment there. 3696 * 3697 * 2) there is a lock-inversion with mmap_sem through 3698 * perf_event_read_group(), which takes faults while 3699 * holding ctx->mutex, however this is called after 3700 * the last filedesc died, so there is no possibility 3701 * to trigger the AB-BA case. 3702 */ 3703 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING); 3704 WARN_ON_ONCE(ctx->parent_ctx); 3705 perf_remove_from_context(event, true); 3706 perf_event_ctx_unlock(event, ctx); 3707 3708 _free_event(event); 3709 } 3710 3711 int perf_event_release_kernel(struct perf_event *event) 3712 { 3713 put_event(event); 3714 return 0; 3715 } 3716 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3717 3718 /* 3719 * Called when the last reference to the file is gone. 3720 */ 3721 static int perf_release(struct inode *inode, struct file *file) 3722 { 3723 put_event(file->private_data); 3724 return 0; 3725 } 3726 3727 /* 3728 * Remove all orphanes events from the context. 3729 */ 3730 static void orphans_remove_work(struct work_struct *work) 3731 { 3732 struct perf_event_context *ctx; 3733 struct perf_event *event, *tmp; 3734 3735 ctx = container_of(work, struct perf_event_context, 3736 orphans_remove.work); 3737 3738 mutex_lock(&ctx->mutex); 3739 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) { 3740 struct perf_event *parent_event = event->parent; 3741 3742 if (!is_orphaned_child(event)) 3743 continue; 3744 3745 perf_remove_from_context(event, true); 3746 3747 mutex_lock(&parent_event->child_mutex); 3748 list_del_init(&event->child_list); 3749 mutex_unlock(&parent_event->child_mutex); 3750 3751 free_event(event); 3752 put_event(parent_event); 3753 } 3754 3755 raw_spin_lock_irq(&ctx->lock); 3756 ctx->orphans_remove_sched = false; 3757 raw_spin_unlock_irq(&ctx->lock); 3758 mutex_unlock(&ctx->mutex); 3759 3760 put_ctx(ctx); 3761 } 3762 3763 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3764 { 3765 struct perf_event *child; 3766 u64 total = 0; 3767 3768 *enabled = 0; 3769 *running = 0; 3770 3771 mutex_lock(&event->child_mutex); 3772 total += perf_event_read(event); 3773 *enabled += event->total_time_enabled + 3774 atomic64_read(&event->child_total_time_enabled); 3775 *running += event->total_time_running + 3776 atomic64_read(&event->child_total_time_running); 3777 3778 list_for_each_entry(child, &event->child_list, child_list) { 3779 total += perf_event_read(child); 3780 *enabled += child->total_time_enabled; 3781 *running += child->total_time_running; 3782 } 3783 mutex_unlock(&event->child_mutex); 3784 3785 return total; 3786 } 3787 EXPORT_SYMBOL_GPL(perf_event_read_value); 3788 3789 static int perf_event_read_group(struct perf_event *event, 3790 u64 read_format, char __user *buf) 3791 { 3792 struct perf_event *leader = event->group_leader, *sub; 3793 struct perf_event_context *ctx = leader->ctx; 3794 int n = 0, size = 0, ret; 3795 u64 count, enabled, running; 3796 u64 values[5]; 3797 3798 lockdep_assert_held(&ctx->mutex); 3799 3800 count = perf_event_read_value(leader, &enabled, &running); 3801 3802 values[n++] = 1 + leader->nr_siblings; 3803 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3804 values[n++] = enabled; 3805 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3806 values[n++] = running; 3807 values[n++] = count; 3808 if (read_format & PERF_FORMAT_ID) 3809 values[n++] = primary_event_id(leader); 3810 3811 size = n * sizeof(u64); 3812 3813 if (copy_to_user(buf, values, size)) 3814 return -EFAULT; 3815 3816 ret = size; 3817 3818 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3819 n = 0; 3820 3821 values[n++] = perf_event_read_value(sub, &enabled, &running); 3822 if (read_format & PERF_FORMAT_ID) 3823 values[n++] = primary_event_id(sub); 3824 3825 size = n * sizeof(u64); 3826 3827 if (copy_to_user(buf + ret, values, size)) { 3828 return -EFAULT; 3829 } 3830 3831 ret += size; 3832 } 3833 3834 return ret; 3835 } 3836 3837 static int perf_event_read_one(struct perf_event *event, 3838 u64 read_format, char __user *buf) 3839 { 3840 u64 enabled, running; 3841 u64 values[4]; 3842 int n = 0; 3843 3844 values[n++] = perf_event_read_value(event, &enabled, &running); 3845 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3846 values[n++] = enabled; 3847 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3848 values[n++] = running; 3849 if (read_format & PERF_FORMAT_ID) 3850 values[n++] = primary_event_id(event); 3851 3852 if (copy_to_user(buf, values, n * sizeof(u64))) 3853 return -EFAULT; 3854 3855 return n * sizeof(u64); 3856 } 3857 3858 static bool is_event_hup(struct perf_event *event) 3859 { 3860 bool no_children; 3861 3862 if (event->state != PERF_EVENT_STATE_EXIT) 3863 return false; 3864 3865 mutex_lock(&event->child_mutex); 3866 no_children = list_empty(&event->child_list); 3867 mutex_unlock(&event->child_mutex); 3868 return no_children; 3869 } 3870 3871 /* 3872 * Read the performance event - simple non blocking version for now 3873 */ 3874 static ssize_t 3875 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3876 { 3877 u64 read_format = event->attr.read_format; 3878 int ret; 3879 3880 /* 3881 * Return end-of-file for a read on a event that is in 3882 * error state (i.e. because it was pinned but it couldn't be 3883 * scheduled on to the CPU at some point). 3884 */ 3885 if (event->state == PERF_EVENT_STATE_ERROR) 3886 return 0; 3887 3888 if (count < event->read_size) 3889 return -ENOSPC; 3890 3891 WARN_ON_ONCE(event->ctx->parent_ctx); 3892 if (read_format & PERF_FORMAT_GROUP) 3893 ret = perf_event_read_group(event, read_format, buf); 3894 else 3895 ret = perf_event_read_one(event, read_format, buf); 3896 3897 return ret; 3898 } 3899 3900 static ssize_t 3901 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3902 { 3903 struct perf_event *event = file->private_data; 3904 struct perf_event_context *ctx; 3905 int ret; 3906 3907 ctx = perf_event_ctx_lock(event); 3908 ret = perf_read_hw(event, buf, count); 3909 perf_event_ctx_unlock(event, ctx); 3910 3911 return ret; 3912 } 3913 3914 static unsigned int perf_poll(struct file *file, poll_table *wait) 3915 { 3916 struct perf_event *event = file->private_data; 3917 struct ring_buffer *rb; 3918 unsigned int events = POLLHUP; 3919 3920 poll_wait(file, &event->waitq, wait); 3921 3922 if (is_event_hup(event)) 3923 return events; 3924 3925 /* 3926 * Pin the event->rb by taking event->mmap_mutex; otherwise 3927 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 3928 */ 3929 mutex_lock(&event->mmap_mutex); 3930 rb = event->rb; 3931 if (rb) 3932 events = atomic_xchg(&rb->poll, 0); 3933 mutex_unlock(&event->mmap_mutex); 3934 return events; 3935 } 3936 3937 static void _perf_event_reset(struct perf_event *event) 3938 { 3939 (void)perf_event_read(event); 3940 local64_set(&event->count, 0); 3941 perf_event_update_userpage(event); 3942 } 3943 3944 /* 3945 * Holding the top-level event's child_mutex means that any 3946 * descendant process that has inherited this event will block 3947 * in sync_child_event if it goes to exit, thus satisfying the 3948 * task existence requirements of perf_event_enable/disable. 3949 */ 3950 static void perf_event_for_each_child(struct perf_event *event, 3951 void (*func)(struct perf_event *)) 3952 { 3953 struct perf_event *child; 3954 3955 WARN_ON_ONCE(event->ctx->parent_ctx); 3956 3957 mutex_lock(&event->child_mutex); 3958 func(event); 3959 list_for_each_entry(child, &event->child_list, child_list) 3960 func(child); 3961 mutex_unlock(&event->child_mutex); 3962 } 3963 3964 static void perf_event_for_each(struct perf_event *event, 3965 void (*func)(struct perf_event *)) 3966 { 3967 struct perf_event_context *ctx = event->ctx; 3968 struct perf_event *sibling; 3969 3970 lockdep_assert_held(&ctx->mutex); 3971 3972 event = event->group_leader; 3973 3974 perf_event_for_each_child(event, func); 3975 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3976 perf_event_for_each_child(sibling, func); 3977 } 3978 3979 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3980 { 3981 struct perf_event_context *ctx = event->ctx; 3982 int ret = 0, active; 3983 u64 value; 3984 3985 if (!is_sampling_event(event)) 3986 return -EINVAL; 3987 3988 if (copy_from_user(&value, arg, sizeof(value))) 3989 return -EFAULT; 3990 3991 if (!value) 3992 return -EINVAL; 3993 3994 raw_spin_lock_irq(&ctx->lock); 3995 if (event->attr.freq) { 3996 if (value > sysctl_perf_event_sample_rate) { 3997 ret = -EINVAL; 3998 goto unlock; 3999 } 4000 4001 event->attr.sample_freq = value; 4002 } else { 4003 event->attr.sample_period = value; 4004 event->hw.sample_period = value; 4005 } 4006 4007 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4008 if (active) { 4009 perf_pmu_disable(ctx->pmu); 4010 event->pmu->stop(event, PERF_EF_UPDATE); 4011 } 4012 4013 local64_set(&event->hw.period_left, 0); 4014 4015 if (active) { 4016 event->pmu->start(event, PERF_EF_RELOAD); 4017 perf_pmu_enable(ctx->pmu); 4018 } 4019 4020 unlock: 4021 raw_spin_unlock_irq(&ctx->lock); 4022 4023 return ret; 4024 } 4025 4026 static const struct file_operations perf_fops; 4027 4028 static inline int perf_fget_light(int fd, struct fd *p) 4029 { 4030 struct fd f = fdget(fd); 4031 if (!f.file) 4032 return -EBADF; 4033 4034 if (f.file->f_op != &perf_fops) { 4035 fdput(f); 4036 return -EBADF; 4037 } 4038 *p = f; 4039 return 0; 4040 } 4041 4042 static int perf_event_set_output(struct perf_event *event, 4043 struct perf_event *output_event); 4044 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4045 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4046 4047 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4048 { 4049 void (*func)(struct perf_event *); 4050 u32 flags = arg; 4051 4052 switch (cmd) { 4053 case PERF_EVENT_IOC_ENABLE: 4054 func = _perf_event_enable; 4055 break; 4056 case PERF_EVENT_IOC_DISABLE: 4057 func = _perf_event_disable; 4058 break; 4059 case PERF_EVENT_IOC_RESET: 4060 func = _perf_event_reset; 4061 break; 4062 4063 case PERF_EVENT_IOC_REFRESH: 4064 return _perf_event_refresh(event, arg); 4065 4066 case PERF_EVENT_IOC_PERIOD: 4067 return perf_event_period(event, (u64 __user *)arg); 4068 4069 case PERF_EVENT_IOC_ID: 4070 { 4071 u64 id = primary_event_id(event); 4072 4073 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4074 return -EFAULT; 4075 return 0; 4076 } 4077 4078 case PERF_EVENT_IOC_SET_OUTPUT: 4079 { 4080 int ret; 4081 if (arg != -1) { 4082 struct perf_event *output_event; 4083 struct fd output; 4084 ret = perf_fget_light(arg, &output); 4085 if (ret) 4086 return ret; 4087 output_event = output.file->private_data; 4088 ret = perf_event_set_output(event, output_event); 4089 fdput(output); 4090 } else { 4091 ret = perf_event_set_output(event, NULL); 4092 } 4093 return ret; 4094 } 4095 4096 case PERF_EVENT_IOC_SET_FILTER: 4097 return perf_event_set_filter(event, (void __user *)arg); 4098 4099 case PERF_EVENT_IOC_SET_BPF: 4100 return perf_event_set_bpf_prog(event, arg); 4101 4102 default: 4103 return -ENOTTY; 4104 } 4105 4106 if (flags & PERF_IOC_FLAG_GROUP) 4107 perf_event_for_each(event, func); 4108 else 4109 perf_event_for_each_child(event, func); 4110 4111 return 0; 4112 } 4113 4114 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4115 { 4116 struct perf_event *event = file->private_data; 4117 struct perf_event_context *ctx; 4118 long ret; 4119 4120 ctx = perf_event_ctx_lock(event); 4121 ret = _perf_ioctl(event, cmd, arg); 4122 perf_event_ctx_unlock(event, ctx); 4123 4124 return ret; 4125 } 4126 4127 #ifdef CONFIG_COMPAT 4128 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4129 unsigned long arg) 4130 { 4131 switch (_IOC_NR(cmd)) { 4132 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4133 case _IOC_NR(PERF_EVENT_IOC_ID): 4134 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4135 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4136 cmd &= ~IOCSIZE_MASK; 4137 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4138 } 4139 break; 4140 } 4141 return perf_ioctl(file, cmd, arg); 4142 } 4143 #else 4144 # define perf_compat_ioctl NULL 4145 #endif 4146 4147 int perf_event_task_enable(void) 4148 { 4149 struct perf_event_context *ctx; 4150 struct perf_event *event; 4151 4152 mutex_lock(¤t->perf_event_mutex); 4153 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4154 ctx = perf_event_ctx_lock(event); 4155 perf_event_for_each_child(event, _perf_event_enable); 4156 perf_event_ctx_unlock(event, ctx); 4157 } 4158 mutex_unlock(¤t->perf_event_mutex); 4159 4160 return 0; 4161 } 4162 4163 int perf_event_task_disable(void) 4164 { 4165 struct perf_event_context *ctx; 4166 struct perf_event *event; 4167 4168 mutex_lock(¤t->perf_event_mutex); 4169 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4170 ctx = perf_event_ctx_lock(event); 4171 perf_event_for_each_child(event, _perf_event_disable); 4172 perf_event_ctx_unlock(event, ctx); 4173 } 4174 mutex_unlock(¤t->perf_event_mutex); 4175 4176 return 0; 4177 } 4178 4179 static int perf_event_index(struct perf_event *event) 4180 { 4181 if (event->hw.state & PERF_HES_STOPPED) 4182 return 0; 4183 4184 if (event->state != PERF_EVENT_STATE_ACTIVE) 4185 return 0; 4186 4187 return event->pmu->event_idx(event); 4188 } 4189 4190 static void calc_timer_values(struct perf_event *event, 4191 u64 *now, 4192 u64 *enabled, 4193 u64 *running) 4194 { 4195 u64 ctx_time; 4196 4197 *now = perf_clock(); 4198 ctx_time = event->shadow_ctx_time + *now; 4199 *enabled = ctx_time - event->tstamp_enabled; 4200 *running = ctx_time - event->tstamp_running; 4201 } 4202 4203 static void perf_event_init_userpage(struct perf_event *event) 4204 { 4205 struct perf_event_mmap_page *userpg; 4206 struct ring_buffer *rb; 4207 4208 rcu_read_lock(); 4209 rb = rcu_dereference(event->rb); 4210 if (!rb) 4211 goto unlock; 4212 4213 userpg = rb->user_page; 4214 4215 /* Allow new userspace to detect that bit 0 is deprecated */ 4216 userpg->cap_bit0_is_deprecated = 1; 4217 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4218 userpg->data_offset = PAGE_SIZE; 4219 userpg->data_size = perf_data_size(rb); 4220 4221 unlock: 4222 rcu_read_unlock(); 4223 } 4224 4225 void __weak arch_perf_update_userpage( 4226 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4227 { 4228 } 4229 4230 /* 4231 * Callers need to ensure there can be no nesting of this function, otherwise 4232 * the seqlock logic goes bad. We can not serialize this because the arch 4233 * code calls this from NMI context. 4234 */ 4235 void perf_event_update_userpage(struct perf_event *event) 4236 { 4237 struct perf_event_mmap_page *userpg; 4238 struct ring_buffer *rb; 4239 u64 enabled, running, now; 4240 4241 rcu_read_lock(); 4242 rb = rcu_dereference(event->rb); 4243 if (!rb) 4244 goto unlock; 4245 4246 /* 4247 * compute total_time_enabled, total_time_running 4248 * based on snapshot values taken when the event 4249 * was last scheduled in. 4250 * 4251 * we cannot simply called update_context_time() 4252 * because of locking issue as we can be called in 4253 * NMI context 4254 */ 4255 calc_timer_values(event, &now, &enabled, &running); 4256 4257 userpg = rb->user_page; 4258 /* 4259 * Disable preemption so as to not let the corresponding user-space 4260 * spin too long if we get preempted. 4261 */ 4262 preempt_disable(); 4263 ++userpg->lock; 4264 barrier(); 4265 userpg->index = perf_event_index(event); 4266 userpg->offset = perf_event_count(event); 4267 if (userpg->index) 4268 userpg->offset -= local64_read(&event->hw.prev_count); 4269 4270 userpg->time_enabled = enabled + 4271 atomic64_read(&event->child_total_time_enabled); 4272 4273 userpg->time_running = running + 4274 atomic64_read(&event->child_total_time_running); 4275 4276 arch_perf_update_userpage(event, userpg, now); 4277 4278 barrier(); 4279 ++userpg->lock; 4280 preempt_enable(); 4281 unlock: 4282 rcu_read_unlock(); 4283 } 4284 4285 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4286 { 4287 struct perf_event *event = vma->vm_file->private_data; 4288 struct ring_buffer *rb; 4289 int ret = VM_FAULT_SIGBUS; 4290 4291 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4292 if (vmf->pgoff == 0) 4293 ret = 0; 4294 return ret; 4295 } 4296 4297 rcu_read_lock(); 4298 rb = rcu_dereference(event->rb); 4299 if (!rb) 4300 goto unlock; 4301 4302 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4303 goto unlock; 4304 4305 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4306 if (!vmf->page) 4307 goto unlock; 4308 4309 get_page(vmf->page); 4310 vmf->page->mapping = vma->vm_file->f_mapping; 4311 vmf->page->index = vmf->pgoff; 4312 4313 ret = 0; 4314 unlock: 4315 rcu_read_unlock(); 4316 4317 return ret; 4318 } 4319 4320 static void ring_buffer_attach(struct perf_event *event, 4321 struct ring_buffer *rb) 4322 { 4323 struct ring_buffer *old_rb = NULL; 4324 unsigned long flags; 4325 4326 if (event->rb) { 4327 /* 4328 * Should be impossible, we set this when removing 4329 * event->rb_entry and wait/clear when adding event->rb_entry. 4330 */ 4331 WARN_ON_ONCE(event->rcu_pending); 4332 4333 old_rb = event->rb; 4334 event->rcu_batches = get_state_synchronize_rcu(); 4335 event->rcu_pending = 1; 4336 4337 spin_lock_irqsave(&old_rb->event_lock, flags); 4338 list_del_rcu(&event->rb_entry); 4339 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4340 } 4341 4342 if (event->rcu_pending && rb) { 4343 cond_synchronize_rcu(event->rcu_batches); 4344 event->rcu_pending = 0; 4345 } 4346 4347 if (rb) { 4348 spin_lock_irqsave(&rb->event_lock, flags); 4349 list_add_rcu(&event->rb_entry, &rb->event_list); 4350 spin_unlock_irqrestore(&rb->event_lock, flags); 4351 } 4352 4353 rcu_assign_pointer(event->rb, rb); 4354 4355 if (old_rb) { 4356 ring_buffer_put(old_rb); 4357 /* 4358 * Since we detached before setting the new rb, so that we 4359 * could attach the new rb, we could have missed a wakeup. 4360 * Provide it now. 4361 */ 4362 wake_up_all(&event->waitq); 4363 } 4364 } 4365 4366 static void ring_buffer_wakeup(struct perf_event *event) 4367 { 4368 struct ring_buffer *rb; 4369 4370 rcu_read_lock(); 4371 rb = rcu_dereference(event->rb); 4372 if (rb) { 4373 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4374 wake_up_all(&event->waitq); 4375 } 4376 rcu_read_unlock(); 4377 } 4378 4379 static void rb_free_rcu(struct rcu_head *rcu_head) 4380 { 4381 struct ring_buffer *rb; 4382 4383 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 4384 rb_free(rb); 4385 } 4386 4387 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4388 { 4389 struct ring_buffer *rb; 4390 4391 rcu_read_lock(); 4392 rb = rcu_dereference(event->rb); 4393 if (rb) { 4394 if (!atomic_inc_not_zero(&rb->refcount)) 4395 rb = NULL; 4396 } 4397 rcu_read_unlock(); 4398 4399 return rb; 4400 } 4401 4402 void ring_buffer_put(struct ring_buffer *rb) 4403 { 4404 if (!atomic_dec_and_test(&rb->refcount)) 4405 return; 4406 4407 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4408 4409 call_rcu(&rb->rcu_head, rb_free_rcu); 4410 } 4411 4412 static void perf_mmap_open(struct vm_area_struct *vma) 4413 { 4414 struct perf_event *event = vma->vm_file->private_data; 4415 4416 atomic_inc(&event->mmap_count); 4417 atomic_inc(&event->rb->mmap_count); 4418 4419 if (vma->vm_pgoff) 4420 atomic_inc(&event->rb->aux_mmap_count); 4421 4422 if (event->pmu->event_mapped) 4423 event->pmu->event_mapped(event); 4424 } 4425 4426 /* 4427 * A buffer can be mmap()ed multiple times; either directly through the same 4428 * event, or through other events by use of perf_event_set_output(). 4429 * 4430 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4431 * the buffer here, where we still have a VM context. This means we need 4432 * to detach all events redirecting to us. 4433 */ 4434 static void perf_mmap_close(struct vm_area_struct *vma) 4435 { 4436 struct perf_event *event = vma->vm_file->private_data; 4437 4438 struct ring_buffer *rb = ring_buffer_get(event); 4439 struct user_struct *mmap_user = rb->mmap_user; 4440 int mmap_locked = rb->mmap_locked; 4441 unsigned long size = perf_data_size(rb); 4442 4443 if (event->pmu->event_unmapped) 4444 event->pmu->event_unmapped(event); 4445 4446 /* 4447 * rb->aux_mmap_count will always drop before rb->mmap_count and 4448 * event->mmap_count, so it is ok to use event->mmap_mutex to 4449 * serialize with perf_mmap here. 4450 */ 4451 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4452 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4453 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4454 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4455 4456 rb_free_aux(rb); 4457 mutex_unlock(&event->mmap_mutex); 4458 } 4459 4460 atomic_dec(&rb->mmap_count); 4461 4462 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4463 goto out_put; 4464 4465 ring_buffer_attach(event, NULL); 4466 mutex_unlock(&event->mmap_mutex); 4467 4468 /* If there's still other mmap()s of this buffer, we're done. */ 4469 if (atomic_read(&rb->mmap_count)) 4470 goto out_put; 4471 4472 /* 4473 * No other mmap()s, detach from all other events that might redirect 4474 * into the now unreachable buffer. Somewhat complicated by the 4475 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4476 */ 4477 again: 4478 rcu_read_lock(); 4479 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4480 if (!atomic_long_inc_not_zero(&event->refcount)) { 4481 /* 4482 * This event is en-route to free_event() which will 4483 * detach it and remove it from the list. 4484 */ 4485 continue; 4486 } 4487 rcu_read_unlock(); 4488 4489 mutex_lock(&event->mmap_mutex); 4490 /* 4491 * Check we didn't race with perf_event_set_output() which can 4492 * swizzle the rb from under us while we were waiting to 4493 * acquire mmap_mutex. 4494 * 4495 * If we find a different rb; ignore this event, a next 4496 * iteration will no longer find it on the list. We have to 4497 * still restart the iteration to make sure we're not now 4498 * iterating the wrong list. 4499 */ 4500 if (event->rb == rb) 4501 ring_buffer_attach(event, NULL); 4502 4503 mutex_unlock(&event->mmap_mutex); 4504 put_event(event); 4505 4506 /* 4507 * Restart the iteration; either we're on the wrong list or 4508 * destroyed its integrity by doing a deletion. 4509 */ 4510 goto again; 4511 } 4512 rcu_read_unlock(); 4513 4514 /* 4515 * It could be there's still a few 0-ref events on the list; they'll 4516 * get cleaned up by free_event() -- they'll also still have their 4517 * ref on the rb and will free it whenever they are done with it. 4518 * 4519 * Aside from that, this buffer is 'fully' detached and unmapped, 4520 * undo the VM accounting. 4521 */ 4522 4523 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4524 vma->vm_mm->pinned_vm -= mmap_locked; 4525 free_uid(mmap_user); 4526 4527 out_put: 4528 ring_buffer_put(rb); /* could be last */ 4529 } 4530 4531 static const struct vm_operations_struct perf_mmap_vmops = { 4532 .open = perf_mmap_open, 4533 .close = perf_mmap_close, /* non mergable */ 4534 .fault = perf_mmap_fault, 4535 .page_mkwrite = perf_mmap_fault, 4536 }; 4537 4538 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4539 { 4540 struct perf_event *event = file->private_data; 4541 unsigned long user_locked, user_lock_limit; 4542 struct user_struct *user = current_user(); 4543 unsigned long locked, lock_limit; 4544 struct ring_buffer *rb = NULL; 4545 unsigned long vma_size; 4546 unsigned long nr_pages; 4547 long user_extra = 0, extra = 0; 4548 int ret = 0, flags = 0; 4549 4550 /* 4551 * Don't allow mmap() of inherited per-task counters. This would 4552 * create a performance issue due to all children writing to the 4553 * same rb. 4554 */ 4555 if (event->cpu == -1 && event->attr.inherit) 4556 return -EINVAL; 4557 4558 if (!(vma->vm_flags & VM_SHARED)) 4559 return -EINVAL; 4560 4561 vma_size = vma->vm_end - vma->vm_start; 4562 4563 if (vma->vm_pgoff == 0) { 4564 nr_pages = (vma_size / PAGE_SIZE) - 1; 4565 } else { 4566 /* 4567 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 4568 * mapped, all subsequent mappings should have the same size 4569 * and offset. Must be above the normal perf buffer. 4570 */ 4571 u64 aux_offset, aux_size; 4572 4573 if (!event->rb) 4574 return -EINVAL; 4575 4576 nr_pages = vma_size / PAGE_SIZE; 4577 4578 mutex_lock(&event->mmap_mutex); 4579 ret = -EINVAL; 4580 4581 rb = event->rb; 4582 if (!rb) 4583 goto aux_unlock; 4584 4585 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 4586 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 4587 4588 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 4589 goto aux_unlock; 4590 4591 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 4592 goto aux_unlock; 4593 4594 /* already mapped with a different offset */ 4595 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 4596 goto aux_unlock; 4597 4598 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 4599 goto aux_unlock; 4600 4601 /* already mapped with a different size */ 4602 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 4603 goto aux_unlock; 4604 4605 if (!is_power_of_2(nr_pages)) 4606 goto aux_unlock; 4607 4608 if (!atomic_inc_not_zero(&rb->mmap_count)) 4609 goto aux_unlock; 4610 4611 if (rb_has_aux(rb)) { 4612 atomic_inc(&rb->aux_mmap_count); 4613 ret = 0; 4614 goto unlock; 4615 } 4616 4617 atomic_set(&rb->aux_mmap_count, 1); 4618 user_extra = nr_pages; 4619 4620 goto accounting; 4621 } 4622 4623 /* 4624 * If we have rb pages ensure they're a power-of-two number, so we 4625 * can do bitmasks instead of modulo. 4626 */ 4627 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4628 return -EINVAL; 4629 4630 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4631 return -EINVAL; 4632 4633 WARN_ON_ONCE(event->ctx->parent_ctx); 4634 again: 4635 mutex_lock(&event->mmap_mutex); 4636 if (event->rb) { 4637 if (event->rb->nr_pages != nr_pages) { 4638 ret = -EINVAL; 4639 goto unlock; 4640 } 4641 4642 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4643 /* 4644 * Raced against perf_mmap_close() through 4645 * perf_event_set_output(). Try again, hope for better 4646 * luck. 4647 */ 4648 mutex_unlock(&event->mmap_mutex); 4649 goto again; 4650 } 4651 4652 goto unlock; 4653 } 4654 4655 user_extra = nr_pages + 1; 4656 4657 accounting: 4658 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4659 4660 /* 4661 * Increase the limit linearly with more CPUs: 4662 */ 4663 user_lock_limit *= num_online_cpus(); 4664 4665 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4666 4667 if (user_locked > user_lock_limit) 4668 extra = user_locked - user_lock_limit; 4669 4670 lock_limit = rlimit(RLIMIT_MEMLOCK); 4671 lock_limit >>= PAGE_SHIFT; 4672 locked = vma->vm_mm->pinned_vm + extra; 4673 4674 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4675 !capable(CAP_IPC_LOCK)) { 4676 ret = -EPERM; 4677 goto unlock; 4678 } 4679 4680 WARN_ON(!rb && event->rb); 4681 4682 if (vma->vm_flags & VM_WRITE) 4683 flags |= RING_BUFFER_WRITABLE; 4684 4685 if (!rb) { 4686 rb = rb_alloc(nr_pages, 4687 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4688 event->cpu, flags); 4689 4690 if (!rb) { 4691 ret = -ENOMEM; 4692 goto unlock; 4693 } 4694 4695 atomic_set(&rb->mmap_count, 1); 4696 rb->mmap_user = get_current_user(); 4697 rb->mmap_locked = extra; 4698 4699 ring_buffer_attach(event, rb); 4700 4701 perf_event_init_userpage(event); 4702 perf_event_update_userpage(event); 4703 } else { 4704 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 4705 event->attr.aux_watermark, flags); 4706 if (!ret) 4707 rb->aux_mmap_locked = extra; 4708 } 4709 4710 unlock: 4711 if (!ret) { 4712 atomic_long_add(user_extra, &user->locked_vm); 4713 vma->vm_mm->pinned_vm += extra; 4714 4715 atomic_inc(&event->mmap_count); 4716 } else if (rb) { 4717 atomic_dec(&rb->mmap_count); 4718 } 4719 aux_unlock: 4720 mutex_unlock(&event->mmap_mutex); 4721 4722 /* 4723 * Since pinned accounting is per vm we cannot allow fork() to copy our 4724 * vma. 4725 */ 4726 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4727 vma->vm_ops = &perf_mmap_vmops; 4728 4729 if (event->pmu->event_mapped) 4730 event->pmu->event_mapped(event); 4731 4732 return ret; 4733 } 4734 4735 static int perf_fasync(int fd, struct file *filp, int on) 4736 { 4737 struct inode *inode = file_inode(filp); 4738 struct perf_event *event = filp->private_data; 4739 int retval; 4740 4741 mutex_lock(&inode->i_mutex); 4742 retval = fasync_helper(fd, filp, on, &event->fasync); 4743 mutex_unlock(&inode->i_mutex); 4744 4745 if (retval < 0) 4746 return retval; 4747 4748 return 0; 4749 } 4750 4751 static const struct file_operations perf_fops = { 4752 .llseek = no_llseek, 4753 .release = perf_release, 4754 .read = perf_read, 4755 .poll = perf_poll, 4756 .unlocked_ioctl = perf_ioctl, 4757 .compat_ioctl = perf_compat_ioctl, 4758 .mmap = perf_mmap, 4759 .fasync = perf_fasync, 4760 }; 4761 4762 /* 4763 * Perf event wakeup 4764 * 4765 * If there's data, ensure we set the poll() state and publish everything 4766 * to user-space before waking everybody up. 4767 */ 4768 4769 void perf_event_wakeup(struct perf_event *event) 4770 { 4771 ring_buffer_wakeup(event); 4772 4773 if (event->pending_kill) { 4774 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 4775 event->pending_kill = 0; 4776 } 4777 } 4778 4779 static void perf_pending_event(struct irq_work *entry) 4780 { 4781 struct perf_event *event = container_of(entry, 4782 struct perf_event, pending); 4783 int rctx; 4784 4785 rctx = perf_swevent_get_recursion_context(); 4786 /* 4787 * If we 'fail' here, that's OK, it means recursion is already disabled 4788 * and we won't recurse 'further'. 4789 */ 4790 4791 if (event->pending_disable) { 4792 event->pending_disable = 0; 4793 __perf_event_disable(event); 4794 } 4795 4796 if (event->pending_wakeup) { 4797 event->pending_wakeup = 0; 4798 perf_event_wakeup(event); 4799 } 4800 4801 if (rctx >= 0) 4802 perf_swevent_put_recursion_context(rctx); 4803 } 4804 4805 /* 4806 * We assume there is only KVM supporting the callbacks. 4807 * Later on, we might change it to a list if there is 4808 * another virtualization implementation supporting the callbacks. 4809 */ 4810 struct perf_guest_info_callbacks *perf_guest_cbs; 4811 4812 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4813 { 4814 perf_guest_cbs = cbs; 4815 return 0; 4816 } 4817 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 4818 4819 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4820 { 4821 perf_guest_cbs = NULL; 4822 return 0; 4823 } 4824 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 4825 4826 static void 4827 perf_output_sample_regs(struct perf_output_handle *handle, 4828 struct pt_regs *regs, u64 mask) 4829 { 4830 int bit; 4831 4832 for_each_set_bit(bit, (const unsigned long *) &mask, 4833 sizeof(mask) * BITS_PER_BYTE) { 4834 u64 val; 4835 4836 val = perf_reg_value(regs, bit); 4837 perf_output_put(handle, val); 4838 } 4839 } 4840 4841 static void perf_sample_regs_user(struct perf_regs *regs_user, 4842 struct pt_regs *regs, 4843 struct pt_regs *regs_user_copy) 4844 { 4845 if (user_mode(regs)) { 4846 regs_user->abi = perf_reg_abi(current); 4847 regs_user->regs = regs; 4848 } else if (current->mm) { 4849 perf_get_regs_user(regs_user, regs, regs_user_copy); 4850 } else { 4851 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 4852 regs_user->regs = NULL; 4853 } 4854 } 4855 4856 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 4857 struct pt_regs *regs) 4858 { 4859 regs_intr->regs = regs; 4860 regs_intr->abi = perf_reg_abi(current); 4861 } 4862 4863 4864 /* 4865 * Get remaining task size from user stack pointer. 4866 * 4867 * It'd be better to take stack vma map and limit this more 4868 * precisly, but there's no way to get it safely under interrupt, 4869 * so using TASK_SIZE as limit. 4870 */ 4871 static u64 perf_ustack_task_size(struct pt_regs *regs) 4872 { 4873 unsigned long addr = perf_user_stack_pointer(regs); 4874 4875 if (!addr || addr >= TASK_SIZE) 4876 return 0; 4877 4878 return TASK_SIZE - addr; 4879 } 4880 4881 static u16 4882 perf_sample_ustack_size(u16 stack_size, u16 header_size, 4883 struct pt_regs *regs) 4884 { 4885 u64 task_size; 4886 4887 /* No regs, no stack pointer, no dump. */ 4888 if (!regs) 4889 return 0; 4890 4891 /* 4892 * Check if we fit in with the requested stack size into the: 4893 * - TASK_SIZE 4894 * If we don't, we limit the size to the TASK_SIZE. 4895 * 4896 * - remaining sample size 4897 * If we don't, we customize the stack size to 4898 * fit in to the remaining sample size. 4899 */ 4900 4901 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 4902 stack_size = min(stack_size, (u16) task_size); 4903 4904 /* Current header size plus static size and dynamic size. */ 4905 header_size += 2 * sizeof(u64); 4906 4907 /* Do we fit in with the current stack dump size? */ 4908 if ((u16) (header_size + stack_size) < header_size) { 4909 /* 4910 * If we overflow the maximum size for the sample, 4911 * we customize the stack dump size to fit in. 4912 */ 4913 stack_size = USHRT_MAX - header_size - sizeof(u64); 4914 stack_size = round_up(stack_size, sizeof(u64)); 4915 } 4916 4917 return stack_size; 4918 } 4919 4920 static void 4921 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 4922 struct pt_regs *regs) 4923 { 4924 /* Case of a kernel thread, nothing to dump */ 4925 if (!regs) { 4926 u64 size = 0; 4927 perf_output_put(handle, size); 4928 } else { 4929 unsigned long sp; 4930 unsigned int rem; 4931 u64 dyn_size; 4932 4933 /* 4934 * We dump: 4935 * static size 4936 * - the size requested by user or the best one we can fit 4937 * in to the sample max size 4938 * data 4939 * - user stack dump data 4940 * dynamic size 4941 * - the actual dumped size 4942 */ 4943 4944 /* Static size. */ 4945 perf_output_put(handle, dump_size); 4946 4947 /* Data. */ 4948 sp = perf_user_stack_pointer(regs); 4949 rem = __output_copy_user(handle, (void *) sp, dump_size); 4950 dyn_size = dump_size - rem; 4951 4952 perf_output_skip(handle, rem); 4953 4954 /* Dynamic size. */ 4955 perf_output_put(handle, dyn_size); 4956 } 4957 } 4958 4959 static void __perf_event_header__init_id(struct perf_event_header *header, 4960 struct perf_sample_data *data, 4961 struct perf_event *event) 4962 { 4963 u64 sample_type = event->attr.sample_type; 4964 4965 data->type = sample_type; 4966 header->size += event->id_header_size; 4967 4968 if (sample_type & PERF_SAMPLE_TID) { 4969 /* namespace issues */ 4970 data->tid_entry.pid = perf_event_pid(event, current); 4971 data->tid_entry.tid = perf_event_tid(event, current); 4972 } 4973 4974 if (sample_type & PERF_SAMPLE_TIME) 4975 data->time = perf_event_clock(event); 4976 4977 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 4978 data->id = primary_event_id(event); 4979 4980 if (sample_type & PERF_SAMPLE_STREAM_ID) 4981 data->stream_id = event->id; 4982 4983 if (sample_type & PERF_SAMPLE_CPU) { 4984 data->cpu_entry.cpu = raw_smp_processor_id(); 4985 data->cpu_entry.reserved = 0; 4986 } 4987 } 4988 4989 void perf_event_header__init_id(struct perf_event_header *header, 4990 struct perf_sample_data *data, 4991 struct perf_event *event) 4992 { 4993 if (event->attr.sample_id_all) 4994 __perf_event_header__init_id(header, data, event); 4995 } 4996 4997 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 4998 struct perf_sample_data *data) 4999 { 5000 u64 sample_type = data->type; 5001 5002 if (sample_type & PERF_SAMPLE_TID) 5003 perf_output_put(handle, data->tid_entry); 5004 5005 if (sample_type & PERF_SAMPLE_TIME) 5006 perf_output_put(handle, data->time); 5007 5008 if (sample_type & PERF_SAMPLE_ID) 5009 perf_output_put(handle, data->id); 5010 5011 if (sample_type & PERF_SAMPLE_STREAM_ID) 5012 perf_output_put(handle, data->stream_id); 5013 5014 if (sample_type & PERF_SAMPLE_CPU) 5015 perf_output_put(handle, data->cpu_entry); 5016 5017 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5018 perf_output_put(handle, data->id); 5019 } 5020 5021 void perf_event__output_id_sample(struct perf_event *event, 5022 struct perf_output_handle *handle, 5023 struct perf_sample_data *sample) 5024 { 5025 if (event->attr.sample_id_all) 5026 __perf_event__output_id_sample(handle, sample); 5027 } 5028 5029 static void perf_output_read_one(struct perf_output_handle *handle, 5030 struct perf_event *event, 5031 u64 enabled, u64 running) 5032 { 5033 u64 read_format = event->attr.read_format; 5034 u64 values[4]; 5035 int n = 0; 5036 5037 values[n++] = perf_event_count(event); 5038 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5039 values[n++] = enabled + 5040 atomic64_read(&event->child_total_time_enabled); 5041 } 5042 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5043 values[n++] = running + 5044 atomic64_read(&event->child_total_time_running); 5045 } 5046 if (read_format & PERF_FORMAT_ID) 5047 values[n++] = primary_event_id(event); 5048 5049 __output_copy(handle, values, n * sizeof(u64)); 5050 } 5051 5052 /* 5053 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5054 */ 5055 static void perf_output_read_group(struct perf_output_handle *handle, 5056 struct perf_event *event, 5057 u64 enabled, u64 running) 5058 { 5059 struct perf_event *leader = event->group_leader, *sub; 5060 u64 read_format = event->attr.read_format; 5061 u64 values[5]; 5062 int n = 0; 5063 5064 values[n++] = 1 + leader->nr_siblings; 5065 5066 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5067 values[n++] = enabled; 5068 5069 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5070 values[n++] = running; 5071 5072 if (leader != event) 5073 leader->pmu->read(leader); 5074 5075 values[n++] = perf_event_count(leader); 5076 if (read_format & PERF_FORMAT_ID) 5077 values[n++] = primary_event_id(leader); 5078 5079 __output_copy(handle, values, n * sizeof(u64)); 5080 5081 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5082 n = 0; 5083 5084 if ((sub != event) && 5085 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5086 sub->pmu->read(sub); 5087 5088 values[n++] = perf_event_count(sub); 5089 if (read_format & PERF_FORMAT_ID) 5090 values[n++] = primary_event_id(sub); 5091 5092 __output_copy(handle, values, n * sizeof(u64)); 5093 } 5094 } 5095 5096 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5097 PERF_FORMAT_TOTAL_TIME_RUNNING) 5098 5099 static void perf_output_read(struct perf_output_handle *handle, 5100 struct perf_event *event) 5101 { 5102 u64 enabled = 0, running = 0, now; 5103 u64 read_format = event->attr.read_format; 5104 5105 /* 5106 * compute total_time_enabled, total_time_running 5107 * based on snapshot values taken when the event 5108 * was last scheduled in. 5109 * 5110 * we cannot simply called update_context_time() 5111 * because of locking issue as we are called in 5112 * NMI context 5113 */ 5114 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5115 calc_timer_values(event, &now, &enabled, &running); 5116 5117 if (event->attr.read_format & PERF_FORMAT_GROUP) 5118 perf_output_read_group(handle, event, enabled, running); 5119 else 5120 perf_output_read_one(handle, event, enabled, running); 5121 } 5122 5123 void perf_output_sample(struct perf_output_handle *handle, 5124 struct perf_event_header *header, 5125 struct perf_sample_data *data, 5126 struct perf_event *event) 5127 { 5128 u64 sample_type = data->type; 5129 5130 perf_output_put(handle, *header); 5131 5132 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5133 perf_output_put(handle, data->id); 5134 5135 if (sample_type & PERF_SAMPLE_IP) 5136 perf_output_put(handle, data->ip); 5137 5138 if (sample_type & PERF_SAMPLE_TID) 5139 perf_output_put(handle, data->tid_entry); 5140 5141 if (sample_type & PERF_SAMPLE_TIME) 5142 perf_output_put(handle, data->time); 5143 5144 if (sample_type & PERF_SAMPLE_ADDR) 5145 perf_output_put(handle, data->addr); 5146 5147 if (sample_type & PERF_SAMPLE_ID) 5148 perf_output_put(handle, data->id); 5149 5150 if (sample_type & PERF_SAMPLE_STREAM_ID) 5151 perf_output_put(handle, data->stream_id); 5152 5153 if (sample_type & PERF_SAMPLE_CPU) 5154 perf_output_put(handle, data->cpu_entry); 5155 5156 if (sample_type & PERF_SAMPLE_PERIOD) 5157 perf_output_put(handle, data->period); 5158 5159 if (sample_type & PERF_SAMPLE_READ) 5160 perf_output_read(handle, event); 5161 5162 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5163 if (data->callchain) { 5164 int size = 1; 5165 5166 if (data->callchain) 5167 size += data->callchain->nr; 5168 5169 size *= sizeof(u64); 5170 5171 __output_copy(handle, data->callchain, size); 5172 } else { 5173 u64 nr = 0; 5174 perf_output_put(handle, nr); 5175 } 5176 } 5177 5178 if (sample_type & PERF_SAMPLE_RAW) { 5179 if (data->raw) { 5180 perf_output_put(handle, data->raw->size); 5181 __output_copy(handle, data->raw->data, 5182 data->raw->size); 5183 } else { 5184 struct { 5185 u32 size; 5186 u32 data; 5187 } raw = { 5188 .size = sizeof(u32), 5189 .data = 0, 5190 }; 5191 perf_output_put(handle, raw); 5192 } 5193 } 5194 5195 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5196 if (data->br_stack) { 5197 size_t size; 5198 5199 size = data->br_stack->nr 5200 * sizeof(struct perf_branch_entry); 5201 5202 perf_output_put(handle, data->br_stack->nr); 5203 perf_output_copy(handle, data->br_stack->entries, size); 5204 } else { 5205 /* 5206 * we always store at least the value of nr 5207 */ 5208 u64 nr = 0; 5209 perf_output_put(handle, nr); 5210 } 5211 } 5212 5213 if (sample_type & PERF_SAMPLE_REGS_USER) { 5214 u64 abi = data->regs_user.abi; 5215 5216 /* 5217 * If there are no regs to dump, notice it through 5218 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5219 */ 5220 perf_output_put(handle, abi); 5221 5222 if (abi) { 5223 u64 mask = event->attr.sample_regs_user; 5224 perf_output_sample_regs(handle, 5225 data->regs_user.regs, 5226 mask); 5227 } 5228 } 5229 5230 if (sample_type & PERF_SAMPLE_STACK_USER) { 5231 perf_output_sample_ustack(handle, 5232 data->stack_user_size, 5233 data->regs_user.regs); 5234 } 5235 5236 if (sample_type & PERF_SAMPLE_WEIGHT) 5237 perf_output_put(handle, data->weight); 5238 5239 if (sample_type & PERF_SAMPLE_DATA_SRC) 5240 perf_output_put(handle, data->data_src.val); 5241 5242 if (sample_type & PERF_SAMPLE_TRANSACTION) 5243 perf_output_put(handle, data->txn); 5244 5245 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5246 u64 abi = data->regs_intr.abi; 5247 /* 5248 * If there are no regs to dump, notice it through 5249 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5250 */ 5251 perf_output_put(handle, abi); 5252 5253 if (abi) { 5254 u64 mask = event->attr.sample_regs_intr; 5255 5256 perf_output_sample_regs(handle, 5257 data->regs_intr.regs, 5258 mask); 5259 } 5260 } 5261 5262 if (!event->attr.watermark) { 5263 int wakeup_events = event->attr.wakeup_events; 5264 5265 if (wakeup_events) { 5266 struct ring_buffer *rb = handle->rb; 5267 int events = local_inc_return(&rb->events); 5268 5269 if (events >= wakeup_events) { 5270 local_sub(wakeup_events, &rb->events); 5271 local_inc(&rb->wakeup); 5272 } 5273 } 5274 } 5275 } 5276 5277 void perf_prepare_sample(struct perf_event_header *header, 5278 struct perf_sample_data *data, 5279 struct perf_event *event, 5280 struct pt_regs *regs) 5281 { 5282 u64 sample_type = event->attr.sample_type; 5283 5284 header->type = PERF_RECORD_SAMPLE; 5285 header->size = sizeof(*header) + event->header_size; 5286 5287 header->misc = 0; 5288 header->misc |= perf_misc_flags(regs); 5289 5290 __perf_event_header__init_id(header, data, event); 5291 5292 if (sample_type & PERF_SAMPLE_IP) 5293 data->ip = perf_instruction_pointer(regs); 5294 5295 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5296 int size = 1; 5297 5298 data->callchain = perf_callchain(event, regs); 5299 5300 if (data->callchain) 5301 size += data->callchain->nr; 5302 5303 header->size += size * sizeof(u64); 5304 } 5305 5306 if (sample_type & PERF_SAMPLE_RAW) { 5307 int size = sizeof(u32); 5308 5309 if (data->raw) 5310 size += data->raw->size; 5311 else 5312 size += sizeof(u32); 5313 5314 WARN_ON_ONCE(size & (sizeof(u64)-1)); 5315 header->size += size; 5316 } 5317 5318 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5319 int size = sizeof(u64); /* nr */ 5320 if (data->br_stack) { 5321 size += data->br_stack->nr 5322 * sizeof(struct perf_branch_entry); 5323 } 5324 header->size += size; 5325 } 5326 5327 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5328 perf_sample_regs_user(&data->regs_user, regs, 5329 &data->regs_user_copy); 5330 5331 if (sample_type & PERF_SAMPLE_REGS_USER) { 5332 /* regs dump ABI info */ 5333 int size = sizeof(u64); 5334 5335 if (data->regs_user.regs) { 5336 u64 mask = event->attr.sample_regs_user; 5337 size += hweight64(mask) * sizeof(u64); 5338 } 5339 5340 header->size += size; 5341 } 5342 5343 if (sample_type & PERF_SAMPLE_STACK_USER) { 5344 /* 5345 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5346 * processed as the last one or have additional check added 5347 * in case new sample type is added, because we could eat 5348 * up the rest of the sample size. 5349 */ 5350 u16 stack_size = event->attr.sample_stack_user; 5351 u16 size = sizeof(u64); 5352 5353 stack_size = perf_sample_ustack_size(stack_size, header->size, 5354 data->regs_user.regs); 5355 5356 /* 5357 * If there is something to dump, add space for the dump 5358 * itself and for the field that tells the dynamic size, 5359 * which is how many have been actually dumped. 5360 */ 5361 if (stack_size) 5362 size += sizeof(u64) + stack_size; 5363 5364 data->stack_user_size = stack_size; 5365 header->size += size; 5366 } 5367 5368 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5369 /* regs dump ABI info */ 5370 int size = sizeof(u64); 5371 5372 perf_sample_regs_intr(&data->regs_intr, regs); 5373 5374 if (data->regs_intr.regs) { 5375 u64 mask = event->attr.sample_regs_intr; 5376 5377 size += hweight64(mask) * sizeof(u64); 5378 } 5379 5380 header->size += size; 5381 } 5382 } 5383 5384 static void perf_event_output(struct perf_event *event, 5385 struct perf_sample_data *data, 5386 struct pt_regs *regs) 5387 { 5388 struct perf_output_handle handle; 5389 struct perf_event_header header; 5390 5391 /* protect the callchain buffers */ 5392 rcu_read_lock(); 5393 5394 perf_prepare_sample(&header, data, event, regs); 5395 5396 if (perf_output_begin(&handle, event, header.size)) 5397 goto exit; 5398 5399 perf_output_sample(&handle, &header, data, event); 5400 5401 perf_output_end(&handle); 5402 5403 exit: 5404 rcu_read_unlock(); 5405 } 5406 5407 /* 5408 * read event_id 5409 */ 5410 5411 struct perf_read_event { 5412 struct perf_event_header header; 5413 5414 u32 pid; 5415 u32 tid; 5416 }; 5417 5418 static void 5419 perf_event_read_event(struct perf_event *event, 5420 struct task_struct *task) 5421 { 5422 struct perf_output_handle handle; 5423 struct perf_sample_data sample; 5424 struct perf_read_event read_event = { 5425 .header = { 5426 .type = PERF_RECORD_READ, 5427 .misc = 0, 5428 .size = sizeof(read_event) + event->read_size, 5429 }, 5430 .pid = perf_event_pid(event, task), 5431 .tid = perf_event_tid(event, task), 5432 }; 5433 int ret; 5434 5435 perf_event_header__init_id(&read_event.header, &sample, event); 5436 ret = perf_output_begin(&handle, event, read_event.header.size); 5437 if (ret) 5438 return; 5439 5440 perf_output_put(&handle, read_event); 5441 perf_output_read(&handle, event); 5442 perf_event__output_id_sample(event, &handle, &sample); 5443 5444 perf_output_end(&handle); 5445 } 5446 5447 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 5448 5449 static void 5450 perf_event_aux_ctx(struct perf_event_context *ctx, 5451 perf_event_aux_output_cb output, 5452 void *data) 5453 { 5454 struct perf_event *event; 5455 5456 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5457 if (event->state < PERF_EVENT_STATE_INACTIVE) 5458 continue; 5459 if (!event_filter_match(event)) 5460 continue; 5461 output(event, data); 5462 } 5463 } 5464 5465 static void 5466 perf_event_aux(perf_event_aux_output_cb output, void *data, 5467 struct perf_event_context *task_ctx) 5468 { 5469 struct perf_cpu_context *cpuctx; 5470 struct perf_event_context *ctx; 5471 struct pmu *pmu; 5472 int ctxn; 5473 5474 rcu_read_lock(); 5475 list_for_each_entry_rcu(pmu, &pmus, entry) { 5476 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 5477 if (cpuctx->unique_pmu != pmu) 5478 goto next; 5479 perf_event_aux_ctx(&cpuctx->ctx, output, data); 5480 if (task_ctx) 5481 goto next; 5482 ctxn = pmu->task_ctx_nr; 5483 if (ctxn < 0) 5484 goto next; 5485 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 5486 if (ctx) 5487 perf_event_aux_ctx(ctx, output, data); 5488 next: 5489 put_cpu_ptr(pmu->pmu_cpu_context); 5490 } 5491 5492 if (task_ctx) { 5493 preempt_disable(); 5494 perf_event_aux_ctx(task_ctx, output, data); 5495 preempt_enable(); 5496 } 5497 rcu_read_unlock(); 5498 } 5499 5500 /* 5501 * task tracking -- fork/exit 5502 * 5503 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 5504 */ 5505 5506 struct perf_task_event { 5507 struct task_struct *task; 5508 struct perf_event_context *task_ctx; 5509 5510 struct { 5511 struct perf_event_header header; 5512 5513 u32 pid; 5514 u32 ppid; 5515 u32 tid; 5516 u32 ptid; 5517 u64 time; 5518 } event_id; 5519 }; 5520 5521 static int perf_event_task_match(struct perf_event *event) 5522 { 5523 return event->attr.comm || event->attr.mmap || 5524 event->attr.mmap2 || event->attr.mmap_data || 5525 event->attr.task; 5526 } 5527 5528 static void perf_event_task_output(struct perf_event *event, 5529 void *data) 5530 { 5531 struct perf_task_event *task_event = data; 5532 struct perf_output_handle handle; 5533 struct perf_sample_data sample; 5534 struct task_struct *task = task_event->task; 5535 int ret, size = task_event->event_id.header.size; 5536 5537 if (!perf_event_task_match(event)) 5538 return; 5539 5540 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 5541 5542 ret = perf_output_begin(&handle, event, 5543 task_event->event_id.header.size); 5544 if (ret) 5545 goto out; 5546 5547 task_event->event_id.pid = perf_event_pid(event, task); 5548 task_event->event_id.ppid = perf_event_pid(event, current); 5549 5550 task_event->event_id.tid = perf_event_tid(event, task); 5551 task_event->event_id.ptid = perf_event_tid(event, current); 5552 5553 task_event->event_id.time = perf_event_clock(event); 5554 5555 perf_output_put(&handle, task_event->event_id); 5556 5557 perf_event__output_id_sample(event, &handle, &sample); 5558 5559 perf_output_end(&handle); 5560 out: 5561 task_event->event_id.header.size = size; 5562 } 5563 5564 static void perf_event_task(struct task_struct *task, 5565 struct perf_event_context *task_ctx, 5566 int new) 5567 { 5568 struct perf_task_event task_event; 5569 5570 if (!atomic_read(&nr_comm_events) && 5571 !atomic_read(&nr_mmap_events) && 5572 !atomic_read(&nr_task_events)) 5573 return; 5574 5575 task_event = (struct perf_task_event){ 5576 .task = task, 5577 .task_ctx = task_ctx, 5578 .event_id = { 5579 .header = { 5580 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 5581 .misc = 0, 5582 .size = sizeof(task_event.event_id), 5583 }, 5584 /* .pid */ 5585 /* .ppid */ 5586 /* .tid */ 5587 /* .ptid */ 5588 /* .time */ 5589 }, 5590 }; 5591 5592 perf_event_aux(perf_event_task_output, 5593 &task_event, 5594 task_ctx); 5595 } 5596 5597 void perf_event_fork(struct task_struct *task) 5598 { 5599 perf_event_task(task, NULL, 1); 5600 } 5601 5602 /* 5603 * comm tracking 5604 */ 5605 5606 struct perf_comm_event { 5607 struct task_struct *task; 5608 char *comm; 5609 int comm_size; 5610 5611 struct { 5612 struct perf_event_header header; 5613 5614 u32 pid; 5615 u32 tid; 5616 } event_id; 5617 }; 5618 5619 static int perf_event_comm_match(struct perf_event *event) 5620 { 5621 return event->attr.comm; 5622 } 5623 5624 static void perf_event_comm_output(struct perf_event *event, 5625 void *data) 5626 { 5627 struct perf_comm_event *comm_event = data; 5628 struct perf_output_handle handle; 5629 struct perf_sample_data sample; 5630 int size = comm_event->event_id.header.size; 5631 int ret; 5632 5633 if (!perf_event_comm_match(event)) 5634 return; 5635 5636 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 5637 ret = perf_output_begin(&handle, event, 5638 comm_event->event_id.header.size); 5639 5640 if (ret) 5641 goto out; 5642 5643 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 5644 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 5645 5646 perf_output_put(&handle, comm_event->event_id); 5647 __output_copy(&handle, comm_event->comm, 5648 comm_event->comm_size); 5649 5650 perf_event__output_id_sample(event, &handle, &sample); 5651 5652 perf_output_end(&handle); 5653 out: 5654 comm_event->event_id.header.size = size; 5655 } 5656 5657 static void perf_event_comm_event(struct perf_comm_event *comm_event) 5658 { 5659 char comm[TASK_COMM_LEN]; 5660 unsigned int size; 5661 5662 memset(comm, 0, sizeof(comm)); 5663 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 5664 size = ALIGN(strlen(comm)+1, sizeof(u64)); 5665 5666 comm_event->comm = comm; 5667 comm_event->comm_size = size; 5668 5669 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5670 5671 perf_event_aux(perf_event_comm_output, 5672 comm_event, 5673 NULL); 5674 } 5675 5676 void perf_event_comm(struct task_struct *task, bool exec) 5677 { 5678 struct perf_comm_event comm_event; 5679 5680 if (!atomic_read(&nr_comm_events)) 5681 return; 5682 5683 comm_event = (struct perf_comm_event){ 5684 .task = task, 5685 /* .comm */ 5686 /* .comm_size */ 5687 .event_id = { 5688 .header = { 5689 .type = PERF_RECORD_COMM, 5690 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 5691 /* .size */ 5692 }, 5693 /* .pid */ 5694 /* .tid */ 5695 }, 5696 }; 5697 5698 perf_event_comm_event(&comm_event); 5699 } 5700 5701 /* 5702 * mmap tracking 5703 */ 5704 5705 struct perf_mmap_event { 5706 struct vm_area_struct *vma; 5707 5708 const char *file_name; 5709 int file_size; 5710 int maj, min; 5711 u64 ino; 5712 u64 ino_generation; 5713 u32 prot, flags; 5714 5715 struct { 5716 struct perf_event_header header; 5717 5718 u32 pid; 5719 u32 tid; 5720 u64 start; 5721 u64 len; 5722 u64 pgoff; 5723 } event_id; 5724 }; 5725 5726 static int perf_event_mmap_match(struct perf_event *event, 5727 void *data) 5728 { 5729 struct perf_mmap_event *mmap_event = data; 5730 struct vm_area_struct *vma = mmap_event->vma; 5731 int executable = vma->vm_flags & VM_EXEC; 5732 5733 return (!executable && event->attr.mmap_data) || 5734 (executable && (event->attr.mmap || event->attr.mmap2)); 5735 } 5736 5737 static void perf_event_mmap_output(struct perf_event *event, 5738 void *data) 5739 { 5740 struct perf_mmap_event *mmap_event = data; 5741 struct perf_output_handle handle; 5742 struct perf_sample_data sample; 5743 int size = mmap_event->event_id.header.size; 5744 int ret; 5745 5746 if (!perf_event_mmap_match(event, data)) 5747 return; 5748 5749 if (event->attr.mmap2) { 5750 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 5751 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 5752 mmap_event->event_id.header.size += sizeof(mmap_event->min); 5753 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 5754 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 5755 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 5756 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 5757 } 5758 5759 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 5760 ret = perf_output_begin(&handle, event, 5761 mmap_event->event_id.header.size); 5762 if (ret) 5763 goto out; 5764 5765 mmap_event->event_id.pid = perf_event_pid(event, current); 5766 mmap_event->event_id.tid = perf_event_tid(event, current); 5767 5768 perf_output_put(&handle, mmap_event->event_id); 5769 5770 if (event->attr.mmap2) { 5771 perf_output_put(&handle, mmap_event->maj); 5772 perf_output_put(&handle, mmap_event->min); 5773 perf_output_put(&handle, mmap_event->ino); 5774 perf_output_put(&handle, mmap_event->ino_generation); 5775 perf_output_put(&handle, mmap_event->prot); 5776 perf_output_put(&handle, mmap_event->flags); 5777 } 5778 5779 __output_copy(&handle, mmap_event->file_name, 5780 mmap_event->file_size); 5781 5782 perf_event__output_id_sample(event, &handle, &sample); 5783 5784 perf_output_end(&handle); 5785 out: 5786 mmap_event->event_id.header.size = size; 5787 } 5788 5789 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 5790 { 5791 struct vm_area_struct *vma = mmap_event->vma; 5792 struct file *file = vma->vm_file; 5793 int maj = 0, min = 0; 5794 u64 ino = 0, gen = 0; 5795 u32 prot = 0, flags = 0; 5796 unsigned int size; 5797 char tmp[16]; 5798 char *buf = NULL; 5799 char *name; 5800 5801 if (file) { 5802 struct inode *inode; 5803 dev_t dev; 5804 5805 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5806 if (!buf) { 5807 name = "//enomem"; 5808 goto cpy_name; 5809 } 5810 /* 5811 * d_path() works from the end of the rb backwards, so we 5812 * need to add enough zero bytes after the string to handle 5813 * the 64bit alignment we do later. 5814 */ 5815 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64)); 5816 if (IS_ERR(name)) { 5817 name = "//toolong"; 5818 goto cpy_name; 5819 } 5820 inode = file_inode(vma->vm_file); 5821 dev = inode->i_sb->s_dev; 5822 ino = inode->i_ino; 5823 gen = inode->i_generation; 5824 maj = MAJOR(dev); 5825 min = MINOR(dev); 5826 5827 if (vma->vm_flags & VM_READ) 5828 prot |= PROT_READ; 5829 if (vma->vm_flags & VM_WRITE) 5830 prot |= PROT_WRITE; 5831 if (vma->vm_flags & VM_EXEC) 5832 prot |= PROT_EXEC; 5833 5834 if (vma->vm_flags & VM_MAYSHARE) 5835 flags = MAP_SHARED; 5836 else 5837 flags = MAP_PRIVATE; 5838 5839 if (vma->vm_flags & VM_DENYWRITE) 5840 flags |= MAP_DENYWRITE; 5841 if (vma->vm_flags & VM_MAYEXEC) 5842 flags |= MAP_EXECUTABLE; 5843 if (vma->vm_flags & VM_LOCKED) 5844 flags |= MAP_LOCKED; 5845 if (vma->vm_flags & VM_HUGETLB) 5846 flags |= MAP_HUGETLB; 5847 5848 goto got_name; 5849 } else { 5850 if (vma->vm_ops && vma->vm_ops->name) { 5851 name = (char *) vma->vm_ops->name(vma); 5852 if (name) 5853 goto cpy_name; 5854 } 5855 5856 name = (char *)arch_vma_name(vma); 5857 if (name) 5858 goto cpy_name; 5859 5860 if (vma->vm_start <= vma->vm_mm->start_brk && 5861 vma->vm_end >= vma->vm_mm->brk) { 5862 name = "[heap]"; 5863 goto cpy_name; 5864 } 5865 if (vma->vm_start <= vma->vm_mm->start_stack && 5866 vma->vm_end >= vma->vm_mm->start_stack) { 5867 name = "[stack]"; 5868 goto cpy_name; 5869 } 5870 5871 name = "//anon"; 5872 goto cpy_name; 5873 } 5874 5875 cpy_name: 5876 strlcpy(tmp, name, sizeof(tmp)); 5877 name = tmp; 5878 got_name: 5879 /* 5880 * Since our buffer works in 8 byte units we need to align our string 5881 * size to a multiple of 8. However, we must guarantee the tail end is 5882 * zero'd out to avoid leaking random bits to userspace. 5883 */ 5884 size = strlen(name)+1; 5885 while (!IS_ALIGNED(size, sizeof(u64))) 5886 name[size++] = '\0'; 5887 5888 mmap_event->file_name = name; 5889 mmap_event->file_size = size; 5890 mmap_event->maj = maj; 5891 mmap_event->min = min; 5892 mmap_event->ino = ino; 5893 mmap_event->ino_generation = gen; 5894 mmap_event->prot = prot; 5895 mmap_event->flags = flags; 5896 5897 if (!(vma->vm_flags & VM_EXEC)) 5898 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 5899 5900 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 5901 5902 perf_event_aux(perf_event_mmap_output, 5903 mmap_event, 5904 NULL); 5905 5906 kfree(buf); 5907 } 5908 5909 void perf_event_mmap(struct vm_area_struct *vma) 5910 { 5911 struct perf_mmap_event mmap_event; 5912 5913 if (!atomic_read(&nr_mmap_events)) 5914 return; 5915 5916 mmap_event = (struct perf_mmap_event){ 5917 .vma = vma, 5918 /* .file_name */ 5919 /* .file_size */ 5920 .event_id = { 5921 .header = { 5922 .type = PERF_RECORD_MMAP, 5923 .misc = PERF_RECORD_MISC_USER, 5924 /* .size */ 5925 }, 5926 /* .pid */ 5927 /* .tid */ 5928 .start = vma->vm_start, 5929 .len = vma->vm_end - vma->vm_start, 5930 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 5931 }, 5932 /* .maj (attr_mmap2 only) */ 5933 /* .min (attr_mmap2 only) */ 5934 /* .ino (attr_mmap2 only) */ 5935 /* .ino_generation (attr_mmap2 only) */ 5936 /* .prot (attr_mmap2 only) */ 5937 /* .flags (attr_mmap2 only) */ 5938 }; 5939 5940 perf_event_mmap_event(&mmap_event); 5941 } 5942 5943 void perf_event_aux_event(struct perf_event *event, unsigned long head, 5944 unsigned long size, u64 flags) 5945 { 5946 struct perf_output_handle handle; 5947 struct perf_sample_data sample; 5948 struct perf_aux_event { 5949 struct perf_event_header header; 5950 u64 offset; 5951 u64 size; 5952 u64 flags; 5953 } rec = { 5954 .header = { 5955 .type = PERF_RECORD_AUX, 5956 .misc = 0, 5957 .size = sizeof(rec), 5958 }, 5959 .offset = head, 5960 .size = size, 5961 .flags = flags, 5962 }; 5963 int ret; 5964 5965 perf_event_header__init_id(&rec.header, &sample, event); 5966 ret = perf_output_begin(&handle, event, rec.header.size); 5967 5968 if (ret) 5969 return; 5970 5971 perf_output_put(&handle, rec); 5972 perf_event__output_id_sample(event, &handle, &sample); 5973 5974 perf_output_end(&handle); 5975 } 5976 5977 /* 5978 * IRQ throttle logging 5979 */ 5980 5981 static void perf_log_throttle(struct perf_event *event, int enable) 5982 { 5983 struct perf_output_handle handle; 5984 struct perf_sample_data sample; 5985 int ret; 5986 5987 struct { 5988 struct perf_event_header header; 5989 u64 time; 5990 u64 id; 5991 u64 stream_id; 5992 } throttle_event = { 5993 .header = { 5994 .type = PERF_RECORD_THROTTLE, 5995 .misc = 0, 5996 .size = sizeof(throttle_event), 5997 }, 5998 .time = perf_event_clock(event), 5999 .id = primary_event_id(event), 6000 .stream_id = event->id, 6001 }; 6002 6003 if (enable) 6004 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6005 6006 perf_event_header__init_id(&throttle_event.header, &sample, event); 6007 6008 ret = perf_output_begin(&handle, event, 6009 throttle_event.header.size); 6010 if (ret) 6011 return; 6012 6013 perf_output_put(&handle, throttle_event); 6014 perf_event__output_id_sample(event, &handle, &sample); 6015 perf_output_end(&handle); 6016 } 6017 6018 static void perf_log_itrace_start(struct perf_event *event) 6019 { 6020 struct perf_output_handle handle; 6021 struct perf_sample_data sample; 6022 struct perf_aux_event { 6023 struct perf_event_header header; 6024 u32 pid; 6025 u32 tid; 6026 } rec; 6027 int ret; 6028 6029 if (event->parent) 6030 event = event->parent; 6031 6032 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6033 event->hw.itrace_started) 6034 return; 6035 6036 event->hw.itrace_started = 1; 6037 6038 rec.header.type = PERF_RECORD_ITRACE_START; 6039 rec.header.misc = 0; 6040 rec.header.size = sizeof(rec); 6041 rec.pid = perf_event_pid(event, current); 6042 rec.tid = perf_event_tid(event, current); 6043 6044 perf_event_header__init_id(&rec.header, &sample, event); 6045 ret = perf_output_begin(&handle, event, rec.header.size); 6046 6047 if (ret) 6048 return; 6049 6050 perf_output_put(&handle, rec); 6051 perf_event__output_id_sample(event, &handle, &sample); 6052 6053 perf_output_end(&handle); 6054 } 6055 6056 /* 6057 * Generic event overflow handling, sampling. 6058 */ 6059 6060 static int __perf_event_overflow(struct perf_event *event, 6061 int throttle, struct perf_sample_data *data, 6062 struct pt_regs *regs) 6063 { 6064 int events = atomic_read(&event->event_limit); 6065 struct hw_perf_event *hwc = &event->hw; 6066 u64 seq; 6067 int ret = 0; 6068 6069 /* 6070 * Non-sampling counters might still use the PMI to fold short 6071 * hardware counters, ignore those. 6072 */ 6073 if (unlikely(!is_sampling_event(event))) 6074 return 0; 6075 6076 seq = __this_cpu_read(perf_throttled_seq); 6077 if (seq != hwc->interrupts_seq) { 6078 hwc->interrupts_seq = seq; 6079 hwc->interrupts = 1; 6080 } else { 6081 hwc->interrupts++; 6082 if (unlikely(throttle 6083 && hwc->interrupts >= max_samples_per_tick)) { 6084 __this_cpu_inc(perf_throttled_count); 6085 hwc->interrupts = MAX_INTERRUPTS; 6086 perf_log_throttle(event, 0); 6087 tick_nohz_full_kick(); 6088 ret = 1; 6089 } 6090 } 6091 6092 if (event->attr.freq) { 6093 u64 now = perf_clock(); 6094 s64 delta = now - hwc->freq_time_stamp; 6095 6096 hwc->freq_time_stamp = now; 6097 6098 if (delta > 0 && delta < 2*TICK_NSEC) 6099 perf_adjust_period(event, delta, hwc->last_period, true); 6100 } 6101 6102 /* 6103 * XXX event_limit might not quite work as expected on inherited 6104 * events 6105 */ 6106 6107 event->pending_kill = POLL_IN; 6108 if (events && atomic_dec_and_test(&event->event_limit)) { 6109 ret = 1; 6110 event->pending_kill = POLL_HUP; 6111 event->pending_disable = 1; 6112 irq_work_queue(&event->pending); 6113 } 6114 6115 if (event->overflow_handler) 6116 event->overflow_handler(event, data, regs); 6117 else 6118 perf_event_output(event, data, regs); 6119 6120 if (event->fasync && event->pending_kill) { 6121 event->pending_wakeup = 1; 6122 irq_work_queue(&event->pending); 6123 } 6124 6125 return ret; 6126 } 6127 6128 int perf_event_overflow(struct perf_event *event, 6129 struct perf_sample_data *data, 6130 struct pt_regs *regs) 6131 { 6132 return __perf_event_overflow(event, 1, data, regs); 6133 } 6134 6135 /* 6136 * Generic software event infrastructure 6137 */ 6138 6139 struct swevent_htable { 6140 struct swevent_hlist *swevent_hlist; 6141 struct mutex hlist_mutex; 6142 int hlist_refcount; 6143 6144 /* Recursion avoidance in each contexts */ 6145 int recursion[PERF_NR_CONTEXTS]; 6146 6147 /* Keeps track of cpu being initialized/exited */ 6148 bool online; 6149 }; 6150 6151 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 6152 6153 /* 6154 * We directly increment event->count and keep a second value in 6155 * event->hw.period_left to count intervals. This period event 6156 * is kept in the range [-sample_period, 0] so that we can use the 6157 * sign as trigger. 6158 */ 6159 6160 u64 perf_swevent_set_period(struct perf_event *event) 6161 { 6162 struct hw_perf_event *hwc = &event->hw; 6163 u64 period = hwc->last_period; 6164 u64 nr, offset; 6165 s64 old, val; 6166 6167 hwc->last_period = hwc->sample_period; 6168 6169 again: 6170 old = val = local64_read(&hwc->period_left); 6171 if (val < 0) 6172 return 0; 6173 6174 nr = div64_u64(period + val, period); 6175 offset = nr * period; 6176 val -= offset; 6177 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 6178 goto again; 6179 6180 return nr; 6181 } 6182 6183 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 6184 struct perf_sample_data *data, 6185 struct pt_regs *regs) 6186 { 6187 struct hw_perf_event *hwc = &event->hw; 6188 int throttle = 0; 6189 6190 if (!overflow) 6191 overflow = perf_swevent_set_period(event); 6192 6193 if (hwc->interrupts == MAX_INTERRUPTS) 6194 return; 6195 6196 for (; overflow; overflow--) { 6197 if (__perf_event_overflow(event, throttle, 6198 data, regs)) { 6199 /* 6200 * We inhibit the overflow from happening when 6201 * hwc->interrupts == MAX_INTERRUPTS. 6202 */ 6203 break; 6204 } 6205 throttle = 1; 6206 } 6207 } 6208 6209 static void perf_swevent_event(struct perf_event *event, u64 nr, 6210 struct perf_sample_data *data, 6211 struct pt_regs *regs) 6212 { 6213 struct hw_perf_event *hwc = &event->hw; 6214 6215 local64_add(nr, &event->count); 6216 6217 if (!regs) 6218 return; 6219 6220 if (!is_sampling_event(event)) 6221 return; 6222 6223 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 6224 data->period = nr; 6225 return perf_swevent_overflow(event, 1, data, regs); 6226 } else 6227 data->period = event->hw.last_period; 6228 6229 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 6230 return perf_swevent_overflow(event, 1, data, regs); 6231 6232 if (local64_add_negative(nr, &hwc->period_left)) 6233 return; 6234 6235 perf_swevent_overflow(event, 0, data, regs); 6236 } 6237 6238 static int perf_exclude_event(struct perf_event *event, 6239 struct pt_regs *regs) 6240 { 6241 if (event->hw.state & PERF_HES_STOPPED) 6242 return 1; 6243 6244 if (regs) { 6245 if (event->attr.exclude_user && user_mode(regs)) 6246 return 1; 6247 6248 if (event->attr.exclude_kernel && !user_mode(regs)) 6249 return 1; 6250 } 6251 6252 return 0; 6253 } 6254 6255 static int perf_swevent_match(struct perf_event *event, 6256 enum perf_type_id type, 6257 u32 event_id, 6258 struct perf_sample_data *data, 6259 struct pt_regs *regs) 6260 { 6261 if (event->attr.type != type) 6262 return 0; 6263 6264 if (event->attr.config != event_id) 6265 return 0; 6266 6267 if (perf_exclude_event(event, regs)) 6268 return 0; 6269 6270 return 1; 6271 } 6272 6273 static inline u64 swevent_hash(u64 type, u32 event_id) 6274 { 6275 u64 val = event_id | (type << 32); 6276 6277 return hash_64(val, SWEVENT_HLIST_BITS); 6278 } 6279 6280 static inline struct hlist_head * 6281 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 6282 { 6283 u64 hash = swevent_hash(type, event_id); 6284 6285 return &hlist->heads[hash]; 6286 } 6287 6288 /* For the read side: events when they trigger */ 6289 static inline struct hlist_head * 6290 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 6291 { 6292 struct swevent_hlist *hlist; 6293 6294 hlist = rcu_dereference(swhash->swevent_hlist); 6295 if (!hlist) 6296 return NULL; 6297 6298 return __find_swevent_head(hlist, type, event_id); 6299 } 6300 6301 /* For the event head insertion and removal in the hlist */ 6302 static inline struct hlist_head * 6303 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 6304 { 6305 struct swevent_hlist *hlist; 6306 u32 event_id = event->attr.config; 6307 u64 type = event->attr.type; 6308 6309 /* 6310 * Event scheduling is always serialized against hlist allocation 6311 * and release. Which makes the protected version suitable here. 6312 * The context lock guarantees that. 6313 */ 6314 hlist = rcu_dereference_protected(swhash->swevent_hlist, 6315 lockdep_is_held(&event->ctx->lock)); 6316 if (!hlist) 6317 return NULL; 6318 6319 return __find_swevent_head(hlist, type, event_id); 6320 } 6321 6322 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 6323 u64 nr, 6324 struct perf_sample_data *data, 6325 struct pt_regs *regs) 6326 { 6327 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6328 struct perf_event *event; 6329 struct hlist_head *head; 6330 6331 rcu_read_lock(); 6332 head = find_swevent_head_rcu(swhash, type, event_id); 6333 if (!head) 6334 goto end; 6335 6336 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6337 if (perf_swevent_match(event, type, event_id, data, regs)) 6338 perf_swevent_event(event, nr, data, regs); 6339 } 6340 end: 6341 rcu_read_unlock(); 6342 } 6343 6344 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 6345 6346 int perf_swevent_get_recursion_context(void) 6347 { 6348 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6349 6350 return get_recursion_context(swhash->recursion); 6351 } 6352 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 6353 6354 inline void perf_swevent_put_recursion_context(int rctx) 6355 { 6356 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6357 6358 put_recursion_context(swhash->recursion, rctx); 6359 } 6360 6361 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6362 { 6363 struct perf_sample_data data; 6364 6365 if (WARN_ON_ONCE(!regs)) 6366 return; 6367 6368 perf_sample_data_init(&data, addr, 0); 6369 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 6370 } 6371 6372 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6373 { 6374 int rctx; 6375 6376 preempt_disable_notrace(); 6377 rctx = perf_swevent_get_recursion_context(); 6378 if (unlikely(rctx < 0)) 6379 goto fail; 6380 6381 ___perf_sw_event(event_id, nr, regs, addr); 6382 6383 perf_swevent_put_recursion_context(rctx); 6384 fail: 6385 preempt_enable_notrace(); 6386 } 6387 6388 static void perf_swevent_read(struct perf_event *event) 6389 { 6390 } 6391 6392 static int perf_swevent_add(struct perf_event *event, int flags) 6393 { 6394 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6395 struct hw_perf_event *hwc = &event->hw; 6396 struct hlist_head *head; 6397 6398 if (is_sampling_event(event)) { 6399 hwc->last_period = hwc->sample_period; 6400 perf_swevent_set_period(event); 6401 } 6402 6403 hwc->state = !(flags & PERF_EF_START); 6404 6405 head = find_swevent_head(swhash, event); 6406 if (!head) { 6407 /* 6408 * We can race with cpu hotplug code. Do not 6409 * WARN if the cpu just got unplugged. 6410 */ 6411 WARN_ON_ONCE(swhash->online); 6412 return -EINVAL; 6413 } 6414 6415 hlist_add_head_rcu(&event->hlist_entry, head); 6416 perf_event_update_userpage(event); 6417 6418 return 0; 6419 } 6420 6421 static void perf_swevent_del(struct perf_event *event, int flags) 6422 { 6423 hlist_del_rcu(&event->hlist_entry); 6424 } 6425 6426 static void perf_swevent_start(struct perf_event *event, int flags) 6427 { 6428 event->hw.state = 0; 6429 } 6430 6431 static void perf_swevent_stop(struct perf_event *event, int flags) 6432 { 6433 event->hw.state = PERF_HES_STOPPED; 6434 } 6435 6436 /* Deref the hlist from the update side */ 6437 static inline struct swevent_hlist * 6438 swevent_hlist_deref(struct swevent_htable *swhash) 6439 { 6440 return rcu_dereference_protected(swhash->swevent_hlist, 6441 lockdep_is_held(&swhash->hlist_mutex)); 6442 } 6443 6444 static void swevent_hlist_release(struct swevent_htable *swhash) 6445 { 6446 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 6447 6448 if (!hlist) 6449 return; 6450 6451 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 6452 kfree_rcu(hlist, rcu_head); 6453 } 6454 6455 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 6456 { 6457 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6458 6459 mutex_lock(&swhash->hlist_mutex); 6460 6461 if (!--swhash->hlist_refcount) 6462 swevent_hlist_release(swhash); 6463 6464 mutex_unlock(&swhash->hlist_mutex); 6465 } 6466 6467 static void swevent_hlist_put(struct perf_event *event) 6468 { 6469 int cpu; 6470 6471 for_each_possible_cpu(cpu) 6472 swevent_hlist_put_cpu(event, cpu); 6473 } 6474 6475 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 6476 { 6477 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6478 int err = 0; 6479 6480 mutex_lock(&swhash->hlist_mutex); 6481 6482 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 6483 struct swevent_hlist *hlist; 6484 6485 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 6486 if (!hlist) { 6487 err = -ENOMEM; 6488 goto exit; 6489 } 6490 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6491 } 6492 swhash->hlist_refcount++; 6493 exit: 6494 mutex_unlock(&swhash->hlist_mutex); 6495 6496 return err; 6497 } 6498 6499 static int swevent_hlist_get(struct perf_event *event) 6500 { 6501 int err; 6502 int cpu, failed_cpu; 6503 6504 get_online_cpus(); 6505 for_each_possible_cpu(cpu) { 6506 err = swevent_hlist_get_cpu(event, cpu); 6507 if (err) { 6508 failed_cpu = cpu; 6509 goto fail; 6510 } 6511 } 6512 put_online_cpus(); 6513 6514 return 0; 6515 fail: 6516 for_each_possible_cpu(cpu) { 6517 if (cpu == failed_cpu) 6518 break; 6519 swevent_hlist_put_cpu(event, cpu); 6520 } 6521 6522 put_online_cpus(); 6523 return err; 6524 } 6525 6526 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 6527 6528 static void sw_perf_event_destroy(struct perf_event *event) 6529 { 6530 u64 event_id = event->attr.config; 6531 6532 WARN_ON(event->parent); 6533 6534 static_key_slow_dec(&perf_swevent_enabled[event_id]); 6535 swevent_hlist_put(event); 6536 } 6537 6538 static int perf_swevent_init(struct perf_event *event) 6539 { 6540 u64 event_id = event->attr.config; 6541 6542 if (event->attr.type != PERF_TYPE_SOFTWARE) 6543 return -ENOENT; 6544 6545 /* 6546 * no branch sampling for software events 6547 */ 6548 if (has_branch_stack(event)) 6549 return -EOPNOTSUPP; 6550 6551 switch (event_id) { 6552 case PERF_COUNT_SW_CPU_CLOCK: 6553 case PERF_COUNT_SW_TASK_CLOCK: 6554 return -ENOENT; 6555 6556 default: 6557 break; 6558 } 6559 6560 if (event_id >= PERF_COUNT_SW_MAX) 6561 return -ENOENT; 6562 6563 if (!event->parent) { 6564 int err; 6565 6566 err = swevent_hlist_get(event); 6567 if (err) 6568 return err; 6569 6570 static_key_slow_inc(&perf_swevent_enabled[event_id]); 6571 event->destroy = sw_perf_event_destroy; 6572 } 6573 6574 return 0; 6575 } 6576 6577 static struct pmu perf_swevent = { 6578 .task_ctx_nr = perf_sw_context, 6579 6580 .capabilities = PERF_PMU_CAP_NO_NMI, 6581 6582 .event_init = perf_swevent_init, 6583 .add = perf_swevent_add, 6584 .del = perf_swevent_del, 6585 .start = perf_swevent_start, 6586 .stop = perf_swevent_stop, 6587 .read = perf_swevent_read, 6588 }; 6589 6590 #ifdef CONFIG_EVENT_TRACING 6591 6592 static int perf_tp_filter_match(struct perf_event *event, 6593 struct perf_sample_data *data) 6594 { 6595 void *record = data->raw->data; 6596 6597 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 6598 return 1; 6599 return 0; 6600 } 6601 6602 static int perf_tp_event_match(struct perf_event *event, 6603 struct perf_sample_data *data, 6604 struct pt_regs *regs) 6605 { 6606 if (event->hw.state & PERF_HES_STOPPED) 6607 return 0; 6608 /* 6609 * All tracepoints are from kernel-space. 6610 */ 6611 if (event->attr.exclude_kernel) 6612 return 0; 6613 6614 if (!perf_tp_filter_match(event, data)) 6615 return 0; 6616 6617 return 1; 6618 } 6619 6620 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 6621 struct pt_regs *regs, struct hlist_head *head, int rctx, 6622 struct task_struct *task) 6623 { 6624 struct perf_sample_data data; 6625 struct perf_event *event; 6626 6627 struct perf_raw_record raw = { 6628 .size = entry_size, 6629 .data = record, 6630 }; 6631 6632 perf_sample_data_init(&data, addr, 0); 6633 data.raw = &raw; 6634 6635 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6636 if (perf_tp_event_match(event, &data, regs)) 6637 perf_swevent_event(event, count, &data, regs); 6638 } 6639 6640 /* 6641 * If we got specified a target task, also iterate its context and 6642 * deliver this event there too. 6643 */ 6644 if (task && task != current) { 6645 struct perf_event_context *ctx; 6646 struct trace_entry *entry = record; 6647 6648 rcu_read_lock(); 6649 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 6650 if (!ctx) 6651 goto unlock; 6652 6653 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6654 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6655 continue; 6656 if (event->attr.config != entry->type) 6657 continue; 6658 if (perf_tp_event_match(event, &data, regs)) 6659 perf_swevent_event(event, count, &data, regs); 6660 } 6661 unlock: 6662 rcu_read_unlock(); 6663 } 6664 6665 perf_swevent_put_recursion_context(rctx); 6666 } 6667 EXPORT_SYMBOL_GPL(perf_tp_event); 6668 6669 static void tp_perf_event_destroy(struct perf_event *event) 6670 { 6671 perf_trace_destroy(event); 6672 } 6673 6674 static int perf_tp_event_init(struct perf_event *event) 6675 { 6676 int err; 6677 6678 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6679 return -ENOENT; 6680 6681 /* 6682 * no branch sampling for tracepoint events 6683 */ 6684 if (has_branch_stack(event)) 6685 return -EOPNOTSUPP; 6686 6687 err = perf_trace_init(event); 6688 if (err) 6689 return err; 6690 6691 event->destroy = tp_perf_event_destroy; 6692 6693 return 0; 6694 } 6695 6696 static struct pmu perf_tracepoint = { 6697 .task_ctx_nr = perf_sw_context, 6698 6699 .event_init = perf_tp_event_init, 6700 .add = perf_trace_add, 6701 .del = perf_trace_del, 6702 .start = perf_swevent_start, 6703 .stop = perf_swevent_stop, 6704 .read = perf_swevent_read, 6705 }; 6706 6707 static inline void perf_tp_register(void) 6708 { 6709 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 6710 } 6711 6712 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6713 { 6714 char *filter_str; 6715 int ret; 6716 6717 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6718 return -EINVAL; 6719 6720 filter_str = strndup_user(arg, PAGE_SIZE); 6721 if (IS_ERR(filter_str)) 6722 return PTR_ERR(filter_str); 6723 6724 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 6725 6726 kfree(filter_str); 6727 return ret; 6728 } 6729 6730 static void perf_event_free_filter(struct perf_event *event) 6731 { 6732 ftrace_profile_free_filter(event); 6733 } 6734 6735 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 6736 { 6737 struct bpf_prog *prog; 6738 6739 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6740 return -EINVAL; 6741 6742 if (event->tp_event->prog) 6743 return -EEXIST; 6744 6745 if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) 6746 /* bpf programs can only be attached to kprobes */ 6747 return -EINVAL; 6748 6749 prog = bpf_prog_get(prog_fd); 6750 if (IS_ERR(prog)) 6751 return PTR_ERR(prog); 6752 6753 if (prog->type != BPF_PROG_TYPE_KPROBE) { 6754 /* valid fd, but invalid bpf program type */ 6755 bpf_prog_put(prog); 6756 return -EINVAL; 6757 } 6758 6759 event->tp_event->prog = prog; 6760 6761 return 0; 6762 } 6763 6764 static void perf_event_free_bpf_prog(struct perf_event *event) 6765 { 6766 struct bpf_prog *prog; 6767 6768 if (!event->tp_event) 6769 return; 6770 6771 prog = event->tp_event->prog; 6772 if (prog) { 6773 event->tp_event->prog = NULL; 6774 bpf_prog_put(prog); 6775 } 6776 } 6777 6778 #else 6779 6780 static inline void perf_tp_register(void) 6781 { 6782 } 6783 6784 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6785 { 6786 return -ENOENT; 6787 } 6788 6789 static void perf_event_free_filter(struct perf_event *event) 6790 { 6791 } 6792 6793 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 6794 { 6795 return -ENOENT; 6796 } 6797 6798 static void perf_event_free_bpf_prog(struct perf_event *event) 6799 { 6800 } 6801 #endif /* CONFIG_EVENT_TRACING */ 6802 6803 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6804 void perf_bp_event(struct perf_event *bp, void *data) 6805 { 6806 struct perf_sample_data sample; 6807 struct pt_regs *regs = data; 6808 6809 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 6810 6811 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 6812 perf_swevent_event(bp, 1, &sample, regs); 6813 } 6814 #endif 6815 6816 /* 6817 * hrtimer based swevent callback 6818 */ 6819 6820 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 6821 { 6822 enum hrtimer_restart ret = HRTIMER_RESTART; 6823 struct perf_sample_data data; 6824 struct pt_regs *regs; 6825 struct perf_event *event; 6826 u64 period; 6827 6828 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 6829 6830 if (event->state != PERF_EVENT_STATE_ACTIVE) 6831 return HRTIMER_NORESTART; 6832 6833 event->pmu->read(event); 6834 6835 perf_sample_data_init(&data, 0, event->hw.last_period); 6836 regs = get_irq_regs(); 6837 6838 if (regs && !perf_exclude_event(event, regs)) { 6839 if (!(event->attr.exclude_idle && is_idle_task(current))) 6840 if (__perf_event_overflow(event, 1, &data, regs)) 6841 ret = HRTIMER_NORESTART; 6842 } 6843 6844 period = max_t(u64, 10000, event->hw.sample_period); 6845 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 6846 6847 return ret; 6848 } 6849 6850 static void perf_swevent_start_hrtimer(struct perf_event *event) 6851 { 6852 struct hw_perf_event *hwc = &event->hw; 6853 s64 period; 6854 6855 if (!is_sampling_event(event)) 6856 return; 6857 6858 period = local64_read(&hwc->period_left); 6859 if (period) { 6860 if (period < 0) 6861 period = 10000; 6862 6863 local64_set(&hwc->period_left, 0); 6864 } else { 6865 period = max_t(u64, 10000, hwc->sample_period); 6866 } 6867 __hrtimer_start_range_ns(&hwc->hrtimer, 6868 ns_to_ktime(period), 0, 6869 HRTIMER_MODE_REL_PINNED, 0); 6870 } 6871 6872 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 6873 { 6874 struct hw_perf_event *hwc = &event->hw; 6875 6876 if (is_sampling_event(event)) { 6877 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 6878 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 6879 6880 hrtimer_cancel(&hwc->hrtimer); 6881 } 6882 } 6883 6884 static void perf_swevent_init_hrtimer(struct perf_event *event) 6885 { 6886 struct hw_perf_event *hwc = &event->hw; 6887 6888 if (!is_sampling_event(event)) 6889 return; 6890 6891 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6892 hwc->hrtimer.function = perf_swevent_hrtimer; 6893 6894 /* 6895 * Since hrtimers have a fixed rate, we can do a static freq->period 6896 * mapping and avoid the whole period adjust feedback stuff. 6897 */ 6898 if (event->attr.freq) { 6899 long freq = event->attr.sample_freq; 6900 6901 event->attr.sample_period = NSEC_PER_SEC / freq; 6902 hwc->sample_period = event->attr.sample_period; 6903 local64_set(&hwc->period_left, hwc->sample_period); 6904 hwc->last_period = hwc->sample_period; 6905 event->attr.freq = 0; 6906 } 6907 } 6908 6909 /* 6910 * Software event: cpu wall time clock 6911 */ 6912 6913 static void cpu_clock_event_update(struct perf_event *event) 6914 { 6915 s64 prev; 6916 u64 now; 6917 6918 now = local_clock(); 6919 prev = local64_xchg(&event->hw.prev_count, now); 6920 local64_add(now - prev, &event->count); 6921 } 6922 6923 static void cpu_clock_event_start(struct perf_event *event, int flags) 6924 { 6925 local64_set(&event->hw.prev_count, local_clock()); 6926 perf_swevent_start_hrtimer(event); 6927 } 6928 6929 static void cpu_clock_event_stop(struct perf_event *event, int flags) 6930 { 6931 perf_swevent_cancel_hrtimer(event); 6932 cpu_clock_event_update(event); 6933 } 6934 6935 static int cpu_clock_event_add(struct perf_event *event, int flags) 6936 { 6937 if (flags & PERF_EF_START) 6938 cpu_clock_event_start(event, flags); 6939 perf_event_update_userpage(event); 6940 6941 return 0; 6942 } 6943 6944 static void cpu_clock_event_del(struct perf_event *event, int flags) 6945 { 6946 cpu_clock_event_stop(event, flags); 6947 } 6948 6949 static void cpu_clock_event_read(struct perf_event *event) 6950 { 6951 cpu_clock_event_update(event); 6952 } 6953 6954 static int cpu_clock_event_init(struct perf_event *event) 6955 { 6956 if (event->attr.type != PERF_TYPE_SOFTWARE) 6957 return -ENOENT; 6958 6959 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 6960 return -ENOENT; 6961 6962 /* 6963 * no branch sampling for software events 6964 */ 6965 if (has_branch_stack(event)) 6966 return -EOPNOTSUPP; 6967 6968 perf_swevent_init_hrtimer(event); 6969 6970 return 0; 6971 } 6972 6973 static struct pmu perf_cpu_clock = { 6974 .task_ctx_nr = perf_sw_context, 6975 6976 .capabilities = PERF_PMU_CAP_NO_NMI, 6977 6978 .event_init = cpu_clock_event_init, 6979 .add = cpu_clock_event_add, 6980 .del = cpu_clock_event_del, 6981 .start = cpu_clock_event_start, 6982 .stop = cpu_clock_event_stop, 6983 .read = cpu_clock_event_read, 6984 }; 6985 6986 /* 6987 * Software event: task time clock 6988 */ 6989 6990 static void task_clock_event_update(struct perf_event *event, u64 now) 6991 { 6992 u64 prev; 6993 s64 delta; 6994 6995 prev = local64_xchg(&event->hw.prev_count, now); 6996 delta = now - prev; 6997 local64_add(delta, &event->count); 6998 } 6999 7000 static void task_clock_event_start(struct perf_event *event, int flags) 7001 { 7002 local64_set(&event->hw.prev_count, event->ctx->time); 7003 perf_swevent_start_hrtimer(event); 7004 } 7005 7006 static void task_clock_event_stop(struct perf_event *event, int flags) 7007 { 7008 perf_swevent_cancel_hrtimer(event); 7009 task_clock_event_update(event, event->ctx->time); 7010 } 7011 7012 static int task_clock_event_add(struct perf_event *event, int flags) 7013 { 7014 if (flags & PERF_EF_START) 7015 task_clock_event_start(event, flags); 7016 perf_event_update_userpage(event); 7017 7018 return 0; 7019 } 7020 7021 static void task_clock_event_del(struct perf_event *event, int flags) 7022 { 7023 task_clock_event_stop(event, PERF_EF_UPDATE); 7024 } 7025 7026 static void task_clock_event_read(struct perf_event *event) 7027 { 7028 u64 now = perf_clock(); 7029 u64 delta = now - event->ctx->timestamp; 7030 u64 time = event->ctx->time + delta; 7031 7032 task_clock_event_update(event, time); 7033 } 7034 7035 static int task_clock_event_init(struct perf_event *event) 7036 { 7037 if (event->attr.type != PERF_TYPE_SOFTWARE) 7038 return -ENOENT; 7039 7040 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 7041 return -ENOENT; 7042 7043 /* 7044 * no branch sampling for software events 7045 */ 7046 if (has_branch_stack(event)) 7047 return -EOPNOTSUPP; 7048 7049 perf_swevent_init_hrtimer(event); 7050 7051 return 0; 7052 } 7053 7054 static struct pmu perf_task_clock = { 7055 .task_ctx_nr = perf_sw_context, 7056 7057 .capabilities = PERF_PMU_CAP_NO_NMI, 7058 7059 .event_init = task_clock_event_init, 7060 .add = task_clock_event_add, 7061 .del = task_clock_event_del, 7062 .start = task_clock_event_start, 7063 .stop = task_clock_event_stop, 7064 .read = task_clock_event_read, 7065 }; 7066 7067 static void perf_pmu_nop_void(struct pmu *pmu) 7068 { 7069 } 7070 7071 static int perf_pmu_nop_int(struct pmu *pmu) 7072 { 7073 return 0; 7074 } 7075 7076 static void perf_pmu_start_txn(struct pmu *pmu) 7077 { 7078 perf_pmu_disable(pmu); 7079 } 7080 7081 static int perf_pmu_commit_txn(struct pmu *pmu) 7082 { 7083 perf_pmu_enable(pmu); 7084 return 0; 7085 } 7086 7087 static void perf_pmu_cancel_txn(struct pmu *pmu) 7088 { 7089 perf_pmu_enable(pmu); 7090 } 7091 7092 static int perf_event_idx_default(struct perf_event *event) 7093 { 7094 return 0; 7095 } 7096 7097 /* 7098 * Ensures all contexts with the same task_ctx_nr have the same 7099 * pmu_cpu_context too. 7100 */ 7101 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 7102 { 7103 struct pmu *pmu; 7104 7105 if (ctxn < 0) 7106 return NULL; 7107 7108 list_for_each_entry(pmu, &pmus, entry) { 7109 if (pmu->task_ctx_nr == ctxn) 7110 return pmu->pmu_cpu_context; 7111 } 7112 7113 return NULL; 7114 } 7115 7116 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 7117 { 7118 int cpu; 7119 7120 for_each_possible_cpu(cpu) { 7121 struct perf_cpu_context *cpuctx; 7122 7123 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7124 7125 if (cpuctx->unique_pmu == old_pmu) 7126 cpuctx->unique_pmu = pmu; 7127 } 7128 } 7129 7130 static void free_pmu_context(struct pmu *pmu) 7131 { 7132 struct pmu *i; 7133 7134 mutex_lock(&pmus_lock); 7135 /* 7136 * Like a real lame refcount. 7137 */ 7138 list_for_each_entry(i, &pmus, entry) { 7139 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 7140 update_pmu_context(i, pmu); 7141 goto out; 7142 } 7143 } 7144 7145 free_percpu(pmu->pmu_cpu_context); 7146 out: 7147 mutex_unlock(&pmus_lock); 7148 } 7149 static struct idr pmu_idr; 7150 7151 static ssize_t 7152 type_show(struct device *dev, struct device_attribute *attr, char *page) 7153 { 7154 struct pmu *pmu = dev_get_drvdata(dev); 7155 7156 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 7157 } 7158 static DEVICE_ATTR_RO(type); 7159 7160 static ssize_t 7161 perf_event_mux_interval_ms_show(struct device *dev, 7162 struct device_attribute *attr, 7163 char *page) 7164 { 7165 struct pmu *pmu = dev_get_drvdata(dev); 7166 7167 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 7168 } 7169 7170 static ssize_t 7171 perf_event_mux_interval_ms_store(struct device *dev, 7172 struct device_attribute *attr, 7173 const char *buf, size_t count) 7174 { 7175 struct pmu *pmu = dev_get_drvdata(dev); 7176 int timer, cpu, ret; 7177 7178 ret = kstrtoint(buf, 0, &timer); 7179 if (ret) 7180 return ret; 7181 7182 if (timer < 1) 7183 return -EINVAL; 7184 7185 /* same value, noting to do */ 7186 if (timer == pmu->hrtimer_interval_ms) 7187 return count; 7188 7189 pmu->hrtimer_interval_ms = timer; 7190 7191 /* update all cpuctx for this PMU */ 7192 for_each_possible_cpu(cpu) { 7193 struct perf_cpu_context *cpuctx; 7194 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7195 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 7196 7197 if (hrtimer_active(&cpuctx->hrtimer)) 7198 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval); 7199 } 7200 7201 return count; 7202 } 7203 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 7204 7205 static struct attribute *pmu_dev_attrs[] = { 7206 &dev_attr_type.attr, 7207 &dev_attr_perf_event_mux_interval_ms.attr, 7208 NULL, 7209 }; 7210 ATTRIBUTE_GROUPS(pmu_dev); 7211 7212 static int pmu_bus_running; 7213 static struct bus_type pmu_bus = { 7214 .name = "event_source", 7215 .dev_groups = pmu_dev_groups, 7216 }; 7217 7218 static void pmu_dev_release(struct device *dev) 7219 { 7220 kfree(dev); 7221 } 7222 7223 static int pmu_dev_alloc(struct pmu *pmu) 7224 { 7225 int ret = -ENOMEM; 7226 7227 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 7228 if (!pmu->dev) 7229 goto out; 7230 7231 pmu->dev->groups = pmu->attr_groups; 7232 device_initialize(pmu->dev); 7233 ret = dev_set_name(pmu->dev, "%s", pmu->name); 7234 if (ret) 7235 goto free_dev; 7236 7237 dev_set_drvdata(pmu->dev, pmu); 7238 pmu->dev->bus = &pmu_bus; 7239 pmu->dev->release = pmu_dev_release; 7240 ret = device_add(pmu->dev); 7241 if (ret) 7242 goto free_dev; 7243 7244 out: 7245 return ret; 7246 7247 free_dev: 7248 put_device(pmu->dev); 7249 goto out; 7250 } 7251 7252 static struct lock_class_key cpuctx_mutex; 7253 static struct lock_class_key cpuctx_lock; 7254 7255 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 7256 { 7257 int cpu, ret; 7258 7259 mutex_lock(&pmus_lock); 7260 ret = -ENOMEM; 7261 pmu->pmu_disable_count = alloc_percpu(int); 7262 if (!pmu->pmu_disable_count) 7263 goto unlock; 7264 7265 pmu->type = -1; 7266 if (!name) 7267 goto skip_type; 7268 pmu->name = name; 7269 7270 if (type < 0) { 7271 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 7272 if (type < 0) { 7273 ret = type; 7274 goto free_pdc; 7275 } 7276 } 7277 pmu->type = type; 7278 7279 if (pmu_bus_running) { 7280 ret = pmu_dev_alloc(pmu); 7281 if (ret) 7282 goto free_idr; 7283 } 7284 7285 skip_type: 7286 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 7287 if (pmu->pmu_cpu_context) 7288 goto got_cpu_context; 7289 7290 ret = -ENOMEM; 7291 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 7292 if (!pmu->pmu_cpu_context) 7293 goto free_dev; 7294 7295 for_each_possible_cpu(cpu) { 7296 struct perf_cpu_context *cpuctx; 7297 7298 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7299 __perf_event_init_context(&cpuctx->ctx); 7300 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 7301 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 7302 cpuctx->ctx.pmu = pmu; 7303 7304 __perf_cpu_hrtimer_init(cpuctx, cpu); 7305 7306 cpuctx->unique_pmu = pmu; 7307 } 7308 7309 got_cpu_context: 7310 if (!pmu->start_txn) { 7311 if (pmu->pmu_enable) { 7312 /* 7313 * If we have pmu_enable/pmu_disable calls, install 7314 * transaction stubs that use that to try and batch 7315 * hardware accesses. 7316 */ 7317 pmu->start_txn = perf_pmu_start_txn; 7318 pmu->commit_txn = perf_pmu_commit_txn; 7319 pmu->cancel_txn = perf_pmu_cancel_txn; 7320 } else { 7321 pmu->start_txn = perf_pmu_nop_void; 7322 pmu->commit_txn = perf_pmu_nop_int; 7323 pmu->cancel_txn = perf_pmu_nop_void; 7324 } 7325 } 7326 7327 if (!pmu->pmu_enable) { 7328 pmu->pmu_enable = perf_pmu_nop_void; 7329 pmu->pmu_disable = perf_pmu_nop_void; 7330 } 7331 7332 if (!pmu->event_idx) 7333 pmu->event_idx = perf_event_idx_default; 7334 7335 list_add_rcu(&pmu->entry, &pmus); 7336 atomic_set(&pmu->exclusive_cnt, 0); 7337 ret = 0; 7338 unlock: 7339 mutex_unlock(&pmus_lock); 7340 7341 return ret; 7342 7343 free_dev: 7344 device_del(pmu->dev); 7345 put_device(pmu->dev); 7346 7347 free_idr: 7348 if (pmu->type >= PERF_TYPE_MAX) 7349 idr_remove(&pmu_idr, pmu->type); 7350 7351 free_pdc: 7352 free_percpu(pmu->pmu_disable_count); 7353 goto unlock; 7354 } 7355 EXPORT_SYMBOL_GPL(perf_pmu_register); 7356 7357 void perf_pmu_unregister(struct pmu *pmu) 7358 { 7359 mutex_lock(&pmus_lock); 7360 list_del_rcu(&pmu->entry); 7361 mutex_unlock(&pmus_lock); 7362 7363 /* 7364 * We dereference the pmu list under both SRCU and regular RCU, so 7365 * synchronize against both of those. 7366 */ 7367 synchronize_srcu(&pmus_srcu); 7368 synchronize_rcu(); 7369 7370 free_percpu(pmu->pmu_disable_count); 7371 if (pmu->type >= PERF_TYPE_MAX) 7372 idr_remove(&pmu_idr, pmu->type); 7373 device_del(pmu->dev); 7374 put_device(pmu->dev); 7375 free_pmu_context(pmu); 7376 } 7377 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 7378 7379 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 7380 { 7381 struct perf_event_context *ctx = NULL; 7382 int ret; 7383 7384 if (!try_module_get(pmu->module)) 7385 return -ENODEV; 7386 7387 if (event->group_leader != event) { 7388 /* 7389 * This ctx->mutex can nest when we're called through 7390 * inheritance. See the perf_event_ctx_lock_nested() comment. 7391 */ 7392 ctx = perf_event_ctx_lock_nested(event->group_leader, 7393 SINGLE_DEPTH_NESTING); 7394 BUG_ON(!ctx); 7395 } 7396 7397 event->pmu = pmu; 7398 ret = pmu->event_init(event); 7399 7400 if (ctx) 7401 perf_event_ctx_unlock(event->group_leader, ctx); 7402 7403 if (ret) 7404 module_put(pmu->module); 7405 7406 return ret; 7407 } 7408 7409 struct pmu *perf_init_event(struct perf_event *event) 7410 { 7411 struct pmu *pmu = NULL; 7412 int idx; 7413 int ret; 7414 7415 idx = srcu_read_lock(&pmus_srcu); 7416 7417 rcu_read_lock(); 7418 pmu = idr_find(&pmu_idr, event->attr.type); 7419 rcu_read_unlock(); 7420 if (pmu) { 7421 ret = perf_try_init_event(pmu, event); 7422 if (ret) 7423 pmu = ERR_PTR(ret); 7424 goto unlock; 7425 } 7426 7427 list_for_each_entry_rcu(pmu, &pmus, entry) { 7428 ret = perf_try_init_event(pmu, event); 7429 if (!ret) 7430 goto unlock; 7431 7432 if (ret != -ENOENT) { 7433 pmu = ERR_PTR(ret); 7434 goto unlock; 7435 } 7436 } 7437 pmu = ERR_PTR(-ENOENT); 7438 unlock: 7439 srcu_read_unlock(&pmus_srcu, idx); 7440 7441 return pmu; 7442 } 7443 7444 static void account_event_cpu(struct perf_event *event, int cpu) 7445 { 7446 if (event->parent) 7447 return; 7448 7449 if (is_cgroup_event(event)) 7450 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 7451 } 7452 7453 static void account_event(struct perf_event *event) 7454 { 7455 if (event->parent) 7456 return; 7457 7458 if (event->attach_state & PERF_ATTACH_TASK) 7459 static_key_slow_inc(&perf_sched_events.key); 7460 if (event->attr.mmap || event->attr.mmap_data) 7461 atomic_inc(&nr_mmap_events); 7462 if (event->attr.comm) 7463 atomic_inc(&nr_comm_events); 7464 if (event->attr.task) 7465 atomic_inc(&nr_task_events); 7466 if (event->attr.freq) { 7467 if (atomic_inc_return(&nr_freq_events) == 1) 7468 tick_nohz_full_kick_all(); 7469 } 7470 if (has_branch_stack(event)) 7471 static_key_slow_inc(&perf_sched_events.key); 7472 if (is_cgroup_event(event)) 7473 static_key_slow_inc(&perf_sched_events.key); 7474 7475 account_event_cpu(event, event->cpu); 7476 } 7477 7478 /* 7479 * Allocate and initialize a event structure 7480 */ 7481 static struct perf_event * 7482 perf_event_alloc(struct perf_event_attr *attr, int cpu, 7483 struct task_struct *task, 7484 struct perf_event *group_leader, 7485 struct perf_event *parent_event, 7486 perf_overflow_handler_t overflow_handler, 7487 void *context, int cgroup_fd) 7488 { 7489 struct pmu *pmu; 7490 struct perf_event *event; 7491 struct hw_perf_event *hwc; 7492 long err = -EINVAL; 7493 7494 if ((unsigned)cpu >= nr_cpu_ids) { 7495 if (!task || cpu != -1) 7496 return ERR_PTR(-EINVAL); 7497 } 7498 7499 event = kzalloc(sizeof(*event), GFP_KERNEL); 7500 if (!event) 7501 return ERR_PTR(-ENOMEM); 7502 7503 /* 7504 * Single events are their own group leaders, with an 7505 * empty sibling list: 7506 */ 7507 if (!group_leader) 7508 group_leader = event; 7509 7510 mutex_init(&event->child_mutex); 7511 INIT_LIST_HEAD(&event->child_list); 7512 7513 INIT_LIST_HEAD(&event->group_entry); 7514 INIT_LIST_HEAD(&event->event_entry); 7515 INIT_LIST_HEAD(&event->sibling_list); 7516 INIT_LIST_HEAD(&event->rb_entry); 7517 INIT_LIST_HEAD(&event->active_entry); 7518 INIT_HLIST_NODE(&event->hlist_entry); 7519 7520 7521 init_waitqueue_head(&event->waitq); 7522 init_irq_work(&event->pending, perf_pending_event); 7523 7524 mutex_init(&event->mmap_mutex); 7525 7526 atomic_long_set(&event->refcount, 1); 7527 event->cpu = cpu; 7528 event->attr = *attr; 7529 event->group_leader = group_leader; 7530 event->pmu = NULL; 7531 event->oncpu = -1; 7532 7533 event->parent = parent_event; 7534 7535 event->ns = get_pid_ns(task_active_pid_ns(current)); 7536 event->id = atomic64_inc_return(&perf_event_id); 7537 7538 event->state = PERF_EVENT_STATE_INACTIVE; 7539 7540 if (task) { 7541 event->attach_state = PERF_ATTACH_TASK; 7542 /* 7543 * XXX pmu::event_init needs to know what task to account to 7544 * and we cannot use the ctx information because we need the 7545 * pmu before we get a ctx. 7546 */ 7547 event->hw.target = task; 7548 } 7549 7550 event->clock = &local_clock; 7551 if (parent_event) 7552 event->clock = parent_event->clock; 7553 7554 if (!overflow_handler && parent_event) { 7555 overflow_handler = parent_event->overflow_handler; 7556 context = parent_event->overflow_handler_context; 7557 } 7558 7559 event->overflow_handler = overflow_handler; 7560 event->overflow_handler_context = context; 7561 7562 perf_event__state_init(event); 7563 7564 pmu = NULL; 7565 7566 hwc = &event->hw; 7567 hwc->sample_period = attr->sample_period; 7568 if (attr->freq && attr->sample_freq) 7569 hwc->sample_period = 1; 7570 hwc->last_period = hwc->sample_period; 7571 7572 local64_set(&hwc->period_left, hwc->sample_period); 7573 7574 /* 7575 * we currently do not support PERF_FORMAT_GROUP on inherited events 7576 */ 7577 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 7578 goto err_ns; 7579 7580 if (!has_branch_stack(event)) 7581 event->attr.branch_sample_type = 0; 7582 7583 if (cgroup_fd != -1) { 7584 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 7585 if (err) 7586 goto err_ns; 7587 } 7588 7589 pmu = perf_init_event(event); 7590 if (!pmu) 7591 goto err_ns; 7592 else if (IS_ERR(pmu)) { 7593 err = PTR_ERR(pmu); 7594 goto err_ns; 7595 } 7596 7597 err = exclusive_event_init(event); 7598 if (err) 7599 goto err_pmu; 7600 7601 if (!event->parent) { 7602 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 7603 err = get_callchain_buffers(); 7604 if (err) 7605 goto err_per_task; 7606 } 7607 } 7608 7609 return event; 7610 7611 err_per_task: 7612 exclusive_event_destroy(event); 7613 7614 err_pmu: 7615 if (event->destroy) 7616 event->destroy(event); 7617 module_put(pmu->module); 7618 err_ns: 7619 if (is_cgroup_event(event)) 7620 perf_detach_cgroup(event); 7621 if (event->ns) 7622 put_pid_ns(event->ns); 7623 kfree(event); 7624 7625 return ERR_PTR(err); 7626 } 7627 7628 static int perf_copy_attr(struct perf_event_attr __user *uattr, 7629 struct perf_event_attr *attr) 7630 { 7631 u32 size; 7632 int ret; 7633 7634 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 7635 return -EFAULT; 7636 7637 /* 7638 * zero the full structure, so that a short copy will be nice. 7639 */ 7640 memset(attr, 0, sizeof(*attr)); 7641 7642 ret = get_user(size, &uattr->size); 7643 if (ret) 7644 return ret; 7645 7646 if (size > PAGE_SIZE) /* silly large */ 7647 goto err_size; 7648 7649 if (!size) /* abi compat */ 7650 size = PERF_ATTR_SIZE_VER0; 7651 7652 if (size < PERF_ATTR_SIZE_VER0) 7653 goto err_size; 7654 7655 /* 7656 * If we're handed a bigger struct than we know of, 7657 * ensure all the unknown bits are 0 - i.e. new 7658 * user-space does not rely on any kernel feature 7659 * extensions we dont know about yet. 7660 */ 7661 if (size > sizeof(*attr)) { 7662 unsigned char __user *addr; 7663 unsigned char __user *end; 7664 unsigned char val; 7665 7666 addr = (void __user *)uattr + sizeof(*attr); 7667 end = (void __user *)uattr + size; 7668 7669 for (; addr < end; addr++) { 7670 ret = get_user(val, addr); 7671 if (ret) 7672 return ret; 7673 if (val) 7674 goto err_size; 7675 } 7676 size = sizeof(*attr); 7677 } 7678 7679 ret = copy_from_user(attr, uattr, size); 7680 if (ret) 7681 return -EFAULT; 7682 7683 if (attr->__reserved_1) 7684 return -EINVAL; 7685 7686 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 7687 return -EINVAL; 7688 7689 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 7690 return -EINVAL; 7691 7692 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 7693 u64 mask = attr->branch_sample_type; 7694 7695 /* only using defined bits */ 7696 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 7697 return -EINVAL; 7698 7699 /* at least one branch bit must be set */ 7700 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 7701 return -EINVAL; 7702 7703 /* propagate priv level, when not set for branch */ 7704 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 7705 7706 /* exclude_kernel checked on syscall entry */ 7707 if (!attr->exclude_kernel) 7708 mask |= PERF_SAMPLE_BRANCH_KERNEL; 7709 7710 if (!attr->exclude_user) 7711 mask |= PERF_SAMPLE_BRANCH_USER; 7712 7713 if (!attr->exclude_hv) 7714 mask |= PERF_SAMPLE_BRANCH_HV; 7715 /* 7716 * adjust user setting (for HW filter setup) 7717 */ 7718 attr->branch_sample_type = mask; 7719 } 7720 /* privileged levels capture (kernel, hv): check permissions */ 7721 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 7722 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 7723 return -EACCES; 7724 } 7725 7726 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 7727 ret = perf_reg_validate(attr->sample_regs_user); 7728 if (ret) 7729 return ret; 7730 } 7731 7732 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 7733 if (!arch_perf_have_user_stack_dump()) 7734 return -ENOSYS; 7735 7736 /* 7737 * We have __u32 type for the size, but so far 7738 * we can only use __u16 as maximum due to the 7739 * __u16 sample size limit. 7740 */ 7741 if (attr->sample_stack_user >= USHRT_MAX) 7742 ret = -EINVAL; 7743 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 7744 ret = -EINVAL; 7745 } 7746 7747 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 7748 ret = perf_reg_validate(attr->sample_regs_intr); 7749 out: 7750 return ret; 7751 7752 err_size: 7753 put_user(sizeof(*attr), &uattr->size); 7754 ret = -E2BIG; 7755 goto out; 7756 } 7757 7758 static int 7759 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 7760 { 7761 struct ring_buffer *rb = NULL; 7762 int ret = -EINVAL; 7763 7764 if (!output_event) 7765 goto set; 7766 7767 /* don't allow circular references */ 7768 if (event == output_event) 7769 goto out; 7770 7771 /* 7772 * Don't allow cross-cpu buffers 7773 */ 7774 if (output_event->cpu != event->cpu) 7775 goto out; 7776 7777 /* 7778 * If its not a per-cpu rb, it must be the same task. 7779 */ 7780 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 7781 goto out; 7782 7783 /* 7784 * Mixing clocks in the same buffer is trouble you don't need. 7785 */ 7786 if (output_event->clock != event->clock) 7787 goto out; 7788 7789 /* 7790 * If both events generate aux data, they must be on the same PMU 7791 */ 7792 if (has_aux(event) && has_aux(output_event) && 7793 event->pmu != output_event->pmu) 7794 goto out; 7795 7796 set: 7797 mutex_lock(&event->mmap_mutex); 7798 /* Can't redirect output if we've got an active mmap() */ 7799 if (atomic_read(&event->mmap_count)) 7800 goto unlock; 7801 7802 if (output_event) { 7803 /* get the rb we want to redirect to */ 7804 rb = ring_buffer_get(output_event); 7805 if (!rb) 7806 goto unlock; 7807 } 7808 7809 ring_buffer_attach(event, rb); 7810 7811 ret = 0; 7812 unlock: 7813 mutex_unlock(&event->mmap_mutex); 7814 7815 out: 7816 return ret; 7817 } 7818 7819 static void mutex_lock_double(struct mutex *a, struct mutex *b) 7820 { 7821 if (b < a) 7822 swap(a, b); 7823 7824 mutex_lock(a); 7825 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 7826 } 7827 7828 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 7829 { 7830 bool nmi_safe = false; 7831 7832 switch (clk_id) { 7833 case CLOCK_MONOTONIC: 7834 event->clock = &ktime_get_mono_fast_ns; 7835 nmi_safe = true; 7836 break; 7837 7838 case CLOCK_MONOTONIC_RAW: 7839 event->clock = &ktime_get_raw_fast_ns; 7840 nmi_safe = true; 7841 break; 7842 7843 case CLOCK_REALTIME: 7844 event->clock = &ktime_get_real_ns; 7845 break; 7846 7847 case CLOCK_BOOTTIME: 7848 event->clock = &ktime_get_boot_ns; 7849 break; 7850 7851 case CLOCK_TAI: 7852 event->clock = &ktime_get_tai_ns; 7853 break; 7854 7855 default: 7856 return -EINVAL; 7857 } 7858 7859 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 7860 return -EINVAL; 7861 7862 return 0; 7863 } 7864 7865 /** 7866 * sys_perf_event_open - open a performance event, associate it to a task/cpu 7867 * 7868 * @attr_uptr: event_id type attributes for monitoring/sampling 7869 * @pid: target pid 7870 * @cpu: target cpu 7871 * @group_fd: group leader event fd 7872 */ 7873 SYSCALL_DEFINE5(perf_event_open, 7874 struct perf_event_attr __user *, attr_uptr, 7875 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 7876 { 7877 struct perf_event *group_leader = NULL, *output_event = NULL; 7878 struct perf_event *event, *sibling; 7879 struct perf_event_attr attr; 7880 struct perf_event_context *ctx, *uninitialized_var(gctx); 7881 struct file *event_file = NULL; 7882 struct fd group = {NULL, 0}; 7883 struct task_struct *task = NULL; 7884 struct pmu *pmu; 7885 int event_fd; 7886 int move_group = 0; 7887 int err; 7888 int f_flags = O_RDWR; 7889 int cgroup_fd = -1; 7890 7891 /* for future expandability... */ 7892 if (flags & ~PERF_FLAG_ALL) 7893 return -EINVAL; 7894 7895 err = perf_copy_attr(attr_uptr, &attr); 7896 if (err) 7897 return err; 7898 7899 if (!attr.exclude_kernel) { 7900 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 7901 return -EACCES; 7902 } 7903 7904 if (attr.freq) { 7905 if (attr.sample_freq > sysctl_perf_event_sample_rate) 7906 return -EINVAL; 7907 } else { 7908 if (attr.sample_period & (1ULL << 63)) 7909 return -EINVAL; 7910 } 7911 7912 /* 7913 * In cgroup mode, the pid argument is used to pass the fd 7914 * opened to the cgroup directory in cgroupfs. The cpu argument 7915 * designates the cpu on which to monitor threads from that 7916 * cgroup. 7917 */ 7918 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 7919 return -EINVAL; 7920 7921 if (flags & PERF_FLAG_FD_CLOEXEC) 7922 f_flags |= O_CLOEXEC; 7923 7924 event_fd = get_unused_fd_flags(f_flags); 7925 if (event_fd < 0) 7926 return event_fd; 7927 7928 if (group_fd != -1) { 7929 err = perf_fget_light(group_fd, &group); 7930 if (err) 7931 goto err_fd; 7932 group_leader = group.file->private_data; 7933 if (flags & PERF_FLAG_FD_OUTPUT) 7934 output_event = group_leader; 7935 if (flags & PERF_FLAG_FD_NO_GROUP) 7936 group_leader = NULL; 7937 } 7938 7939 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 7940 task = find_lively_task_by_vpid(pid); 7941 if (IS_ERR(task)) { 7942 err = PTR_ERR(task); 7943 goto err_group_fd; 7944 } 7945 } 7946 7947 if (task && group_leader && 7948 group_leader->attr.inherit != attr.inherit) { 7949 err = -EINVAL; 7950 goto err_task; 7951 } 7952 7953 get_online_cpus(); 7954 7955 if (flags & PERF_FLAG_PID_CGROUP) 7956 cgroup_fd = pid; 7957 7958 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 7959 NULL, NULL, cgroup_fd); 7960 if (IS_ERR(event)) { 7961 err = PTR_ERR(event); 7962 goto err_cpus; 7963 } 7964 7965 if (is_sampling_event(event)) { 7966 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 7967 err = -ENOTSUPP; 7968 goto err_alloc; 7969 } 7970 } 7971 7972 account_event(event); 7973 7974 /* 7975 * Special case software events and allow them to be part of 7976 * any hardware group. 7977 */ 7978 pmu = event->pmu; 7979 7980 if (attr.use_clockid) { 7981 err = perf_event_set_clock(event, attr.clockid); 7982 if (err) 7983 goto err_alloc; 7984 } 7985 7986 if (group_leader && 7987 (is_software_event(event) != is_software_event(group_leader))) { 7988 if (is_software_event(event)) { 7989 /* 7990 * If event and group_leader are not both a software 7991 * event, and event is, then group leader is not. 7992 * 7993 * Allow the addition of software events to !software 7994 * groups, this is safe because software events never 7995 * fail to schedule. 7996 */ 7997 pmu = group_leader->pmu; 7998 } else if (is_software_event(group_leader) && 7999 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 8000 /* 8001 * In case the group is a pure software group, and we 8002 * try to add a hardware event, move the whole group to 8003 * the hardware context. 8004 */ 8005 move_group = 1; 8006 } 8007 } 8008 8009 /* 8010 * Get the target context (task or percpu): 8011 */ 8012 ctx = find_get_context(pmu, task, event); 8013 if (IS_ERR(ctx)) { 8014 err = PTR_ERR(ctx); 8015 goto err_alloc; 8016 } 8017 8018 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 8019 err = -EBUSY; 8020 goto err_context; 8021 } 8022 8023 if (task) { 8024 put_task_struct(task); 8025 task = NULL; 8026 } 8027 8028 /* 8029 * Look up the group leader (we will attach this event to it): 8030 */ 8031 if (group_leader) { 8032 err = -EINVAL; 8033 8034 /* 8035 * Do not allow a recursive hierarchy (this new sibling 8036 * becoming part of another group-sibling): 8037 */ 8038 if (group_leader->group_leader != group_leader) 8039 goto err_context; 8040 8041 /* All events in a group should have the same clock */ 8042 if (group_leader->clock != event->clock) 8043 goto err_context; 8044 8045 /* 8046 * Do not allow to attach to a group in a different 8047 * task or CPU context: 8048 */ 8049 if (move_group) { 8050 /* 8051 * Make sure we're both on the same task, or both 8052 * per-cpu events. 8053 */ 8054 if (group_leader->ctx->task != ctx->task) 8055 goto err_context; 8056 8057 /* 8058 * Make sure we're both events for the same CPU; 8059 * grouping events for different CPUs is broken; since 8060 * you can never concurrently schedule them anyhow. 8061 */ 8062 if (group_leader->cpu != event->cpu) 8063 goto err_context; 8064 } else { 8065 if (group_leader->ctx != ctx) 8066 goto err_context; 8067 } 8068 8069 /* 8070 * Only a group leader can be exclusive or pinned 8071 */ 8072 if (attr.exclusive || attr.pinned) 8073 goto err_context; 8074 } 8075 8076 if (output_event) { 8077 err = perf_event_set_output(event, output_event); 8078 if (err) 8079 goto err_context; 8080 } 8081 8082 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 8083 f_flags); 8084 if (IS_ERR(event_file)) { 8085 err = PTR_ERR(event_file); 8086 goto err_context; 8087 } 8088 8089 if (move_group) { 8090 gctx = group_leader->ctx; 8091 8092 /* 8093 * See perf_event_ctx_lock() for comments on the details 8094 * of swizzling perf_event::ctx. 8095 */ 8096 mutex_lock_double(&gctx->mutex, &ctx->mutex); 8097 8098 perf_remove_from_context(group_leader, false); 8099 8100 list_for_each_entry(sibling, &group_leader->sibling_list, 8101 group_entry) { 8102 perf_remove_from_context(sibling, false); 8103 put_ctx(gctx); 8104 } 8105 } else { 8106 mutex_lock(&ctx->mutex); 8107 } 8108 8109 WARN_ON_ONCE(ctx->parent_ctx); 8110 8111 if (move_group) { 8112 /* 8113 * Wait for everybody to stop referencing the events through 8114 * the old lists, before installing it on new lists. 8115 */ 8116 synchronize_rcu(); 8117 8118 /* 8119 * Install the group siblings before the group leader. 8120 * 8121 * Because a group leader will try and install the entire group 8122 * (through the sibling list, which is still in-tact), we can 8123 * end up with siblings installed in the wrong context. 8124 * 8125 * By installing siblings first we NO-OP because they're not 8126 * reachable through the group lists. 8127 */ 8128 list_for_each_entry(sibling, &group_leader->sibling_list, 8129 group_entry) { 8130 perf_event__state_init(sibling); 8131 perf_install_in_context(ctx, sibling, sibling->cpu); 8132 get_ctx(ctx); 8133 } 8134 8135 /* 8136 * Removing from the context ends up with disabled 8137 * event. What we want here is event in the initial 8138 * startup state, ready to be add into new context. 8139 */ 8140 perf_event__state_init(group_leader); 8141 perf_install_in_context(ctx, group_leader, group_leader->cpu); 8142 get_ctx(ctx); 8143 } 8144 8145 if (!exclusive_event_installable(event, ctx)) { 8146 err = -EBUSY; 8147 mutex_unlock(&ctx->mutex); 8148 fput(event_file); 8149 goto err_context; 8150 } 8151 8152 perf_install_in_context(ctx, event, event->cpu); 8153 perf_unpin_context(ctx); 8154 8155 if (move_group) { 8156 mutex_unlock(&gctx->mutex); 8157 put_ctx(gctx); 8158 } 8159 mutex_unlock(&ctx->mutex); 8160 8161 put_online_cpus(); 8162 8163 event->owner = current; 8164 8165 mutex_lock(¤t->perf_event_mutex); 8166 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 8167 mutex_unlock(¤t->perf_event_mutex); 8168 8169 /* 8170 * Precalculate sample_data sizes 8171 */ 8172 perf_event__header_size(event); 8173 perf_event__id_header_size(event); 8174 8175 /* 8176 * Drop the reference on the group_event after placing the 8177 * new event on the sibling_list. This ensures destruction 8178 * of the group leader will find the pointer to itself in 8179 * perf_group_detach(). 8180 */ 8181 fdput(group); 8182 fd_install(event_fd, event_file); 8183 return event_fd; 8184 8185 err_context: 8186 perf_unpin_context(ctx); 8187 put_ctx(ctx); 8188 err_alloc: 8189 free_event(event); 8190 err_cpus: 8191 put_online_cpus(); 8192 err_task: 8193 if (task) 8194 put_task_struct(task); 8195 err_group_fd: 8196 fdput(group); 8197 err_fd: 8198 put_unused_fd(event_fd); 8199 return err; 8200 } 8201 8202 /** 8203 * perf_event_create_kernel_counter 8204 * 8205 * @attr: attributes of the counter to create 8206 * @cpu: cpu in which the counter is bound 8207 * @task: task to profile (NULL for percpu) 8208 */ 8209 struct perf_event * 8210 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 8211 struct task_struct *task, 8212 perf_overflow_handler_t overflow_handler, 8213 void *context) 8214 { 8215 struct perf_event_context *ctx; 8216 struct perf_event *event; 8217 int err; 8218 8219 /* 8220 * Get the target context (task or percpu): 8221 */ 8222 8223 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 8224 overflow_handler, context, -1); 8225 if (IS_ERR(event)) { 8226 err = PTR_ERR(event); 8227 goto err; 8228 } 8229 8230 /* Mark owner so we could distinguish it from user events. */ 8231 event->owner = EVENT_OWNER_KERNEL; 8232 8233 account_event(event); 8234 8235 ctx = find_get_context(event->pmu, task, event); 8236 if (IS_ERR(ctx)) { 8237 err = PTR_ERR(ctx); 8238 goto err_free; 8239 } 8240 8241 WARN_ON_ONCE(ctx->parent_ctx); 8242 mutex_lock(&ctx->mutex); 8243 if (!exclusive_event_installable(event, ctx)) { 8244 mutex_unlock(&ctx->mutex); 8245 perf_unpin_context(ctx); 8246 put_ctx(ctx); 8247 err = -EBUSY; 8248 goto err_free; 8249 } 8250 8251 perf_install_in_context(ctx, event, cpu); 8252 perf_unpin_context(ctx); 8253 mutex_unlock(&ctx->mutex); 8254 8255 return event; 8256 8257 err_free: 8258 free_event(event); 8259 err: 8260 return ERR_PTR(err); 8261 } 8262 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 8263 8264 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 8265 { 8266 struct perf_event_context *src_ctx; 8267 struct perf_event_context *dst_ctx; 8268 struct perf_event *event, *tmp; 8269 LIST_HEAD(events); 8270 8271 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 8272 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 8273 8274 /* 8275 * See perf_event_ctx_lock() for comments on the details 8276 * of swizzling perf_event::ctx. 8277 */ 8278 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 8279 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 8280 event_entry) { 8281 perf_remove_from_context(event, false); 8282 unaccount_event_cpu(event, src_cpu); 8283 put_ctx(src_ctx); 8284 list_add(&event->migrate_entry, &events); 8285 } 8286 8287 /* 8288 * Wait for the events to quiesce before re-instating them. 8289 */ 8290 synchronize_rcu(); 8291 8292 /* 8293 * Re-instate events in 2 passes. 8294 * 8295 * Skip over group leaders and only install siblings on this first 8296 * pass, siblings will not get enabled without a leader, however a 8297 * leader will enable its siblings, even if those are still on the old 8298 * context. 8299 */ 8300 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8301 if (event->group_leader == event) 8302 continue; 8303 8304 list_del(&event->migrate_entry); 8305 if (event->state >= PERF_EVENT_STATE_OFF) 8306 event->state = PERF_EVENT_STATE_INACTIVE; 8307 account_event_cpu(event, dst_cpu); 8308 perf_install_in_context(dst_ctx, event, dst_cpu); 8309 get_ctx(dst_ctx); 8310 } 8311 8312 /* 8313 * Once all the siblings are setup properly, install the group leaders 8314 * to make it go. 8315 */ 8316 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8317 list_del(&event->migrate_entry); 8318 if (event->state >= PERF_EVENT_STATE_OFF) 8319 event->state = PERF_EVENT_STATE_INACTIVE; 8320 account_event_cpu(event, dst_cpu); 8321 perf_install_in_context(dst_ctx, event, dst_cpu); 8322 get_ctx(dst_ctx); 8323 } 8324 mutex_unlock(&dst_ctx->mutex); 8325 mutex_unlock(&src_ctx->mutex); 8326 } 8327 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 8328 8329 static void sync_child_event(struct perf_event *child_event, 8330 struct task_struct *child) 8331 { 8332 struct perf_event *parent_event = child_event->parent; 8333 u64 child_val; 8334 8335 if (child_event->attr.inherit_stat) 8336 perf_event_read_event(child_event, child); 8337 8338 child_val = perf_event_count(child_event); 8339 8340 /* 8341 * Add back the child's count to the parent's count: 8342 */ 8343 atomic64_add(child_val, &parent_event->child_count); 8344 atomic64_add(child_event->total_time_enabled, 8345 &parent_event->child_total_time_enabled); 8346 atomic64_add(child_event->total_time_running, 8347 &parent_event->child_total_time_running); 8348 8349 /* 8350 * Remove this event from the parent's list 8351 */ 8352 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 8353 mutex_lock(&parent_event->child_mutex); 8354 list_del_init(&child_event->child_list); 8355 mutex_unlock(&parent_event->child_mutex); 8356 8357 /* 8358 * Make sure user/parent get notified, that we just 8359 * lost one event. 8360 */ 8361 perf_event_wakeup(parent_event); 8362 8363 /* 8364 * Release the parent event, if this was the last 8365 * reference to it. 8366 */ 8367 put_event(parent_event); 8368 } 8369 8370 static void 8371 __perf_event_exit_task(struct perf_event *child_event, 8372 struct perf_event_context *child_ctx, 8373 struct task_struct *child) 8374 { 8375 /* 8376 * Do not destroy the 'original' grouping; because of the context 8377 * switch optimization the original events could've ended up in a 8378 * random child task. 8379 * 8380 * If we were to destroy the original group, all group related 8381 * operations would cease to function properly after this random 8382 * child dies. 8383 * 8384 * Do destroy all inherited groups, we don't care about those 8385 * and being thorough is better. 8386 */ 8387 perf_remove_from_context(child_event, !!child_event->parent); 8388 8389 /* 8390 * It can happen that the parent exits first, and has events 8391 * that are still around due to the child reference. These 8392 * events need to be zapped. 8393 */ 8394 if (child_event->parent) { 8395 sync_child_event(child_event, child); 8396 free_event(child_event); 8397 } else { 8398 child_event->state = PERF_EVENT_STATE_EXIT; 8399 perf_event_wakeup(child_event); 8400 } 8401 } 8402 8403 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 8404 { 8405 struct perf_event *child_event, *next; 8406 struct perf_event_context *child_ctx, *clone_ctx = NULL; 8407 unsigned long flags; 8408 8409 if (likely(!child->perf_event_ctxp[ctxn])) { 8410 perf_event_task(child, NULL, 0); 8411 return; 8412 } 8413 8414 local_irq_save(flags); 8415 /* 8416 * We can't reschedule here because interrupts are disabled, 8417 * and either child is current or it is a task that can't be 8418 * scheduled, so we are now safe from rescheduling changing 8419 * our context. 8420 */ 8421 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 8422 8423 /* 8424 * Take the context lock here so that if find_get_context is 8425 * reading child->perf_event_ctxp, we wait until it has 8426 * incremented the context's refcount before we do put_ctx below. 8427 */ 8428 raw_spin_lock(&child_ctx->lock); 8429 task_ctx_sched_out(child_ctx); 8430 child->perf_event_ctxp[ctxn] = NULL; 8431 8432 /* 8433 * If this context is a clone; unclone it so it can't get 8434 * swapped to another process while we're removing all 8435 * the events from it. 8436 */ 8437 clone_ctx = unclone_ctx(child_ctx); 8438 update_context_time(child_ctx); 8439 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 8440 8441 if (clone_ctx) 8442 put_ctx(clone_ctx); 8443 8444 /* 8445 * Report the task dead after unscheduling the events so that we 8446 * won't get any samples after PERF_RECORD_EXIT. We can however still 8447 * get a few PERF_RECORD_READ events. 8448 */ 8449 perf_event_task(child, child_ctx, 0); 8450 8451 /* 8452 * We can recurse on the same lock type through: 8453 * 8454 * __perf_event_exit_task() 8455 * sync_child_event() 8456 * put_event() 8457 * mutex_lock(&ctx->mutex) 8458 * 8459 * But since its the parent context it won't be the same instance. 8460 */ 8461 mutex_lock(&child_ctx->mutex); 8462 8463 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 8464 __perf_event_exit_task(child_event, child_ctx, child); 8465 8466 mutex_unlock(&child_ctx->mutex); 8467 8468 put_ctx(child_ctx); 8469 } 8470 8471 /* 8472 * When a child task exits, feed back event values to parent events. 8473 */ 8474 void perf_event_exit_task(struct task_struct *child) 8475 { 8476 struct perf_event *event, *tmp; 8477 int ctxn; 8478 8479 mutex_lock(&child->perf_event_mutex); 8480 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 8481 owner_entry) { 8482 list_del_init(&event->owner_entry); 8483 8484 /* 8485 * Ensure the list deletion is visible before we clear 8486 * the owner, closes a race against perf_release() where 8487 * we need to serialize on the owner->perf_event_mutex. 8488 */ 8489 smp_wmb(); 8490 event->owner = NULL; 8491 } 8492 mutex_unlock(&child->perf_event_mutex); 8493 8494 for_each_task_context_nr(ctxn) 8495 perf_event_exit_task_context(child, ctxn); 8496 } 8497 8498 static void perf_free_event(struct perf_event *event, 8499 struct perf_event_context *ctx) 8500 { 8501 struct perf_event *parent = event->parent; 8502 8503 if (WARN_ON_ONCE(!parent)) 8504 return; 8505 8506 mutex_lock(&parent->child_mutex); 8507 list_del_init(&event->child_list); 8508 mutex_unlock(&parent->child_mutex); 8509 8510 put_event(parent); 8511 8512 raw_spin_lock_irq(&ctx->lock); 8513 perf_group_detach(event); 8514 list_del_event(event, ctx); 8515 raw_spin_unlock_irq(&ctx->lock); 8516 free_event(event); 8517 } 8518 8519 /* 8520 * Free an unexposed, unused context as created by inheritance by 8521 * perf_event_init_task below, used by fork() in case of fail. 8522 * 8523 * Not all locks are strictly required, but take them anyway to be nice and 8524 * help out with the lockdep assertions. 8525 */ 8526 void perf_event_free_task(struct task_struct *task) 8527 { 8528 struct perf_event_context *ctx; 8529 struct perf_event *event, *tmp; 8530 int ctxn; 8531 8532 for_each_task_context_nr(ctxn) { 8533 ctx = task->perf_event_ctxp[ctxn]; 8534 if (!ctx) 8535 continue; 8536 8537 mutex_lock(&ctx->mutex); 8538 again: 8539 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 8540 group_entry) 8541 perf_free_event(event, ctx); 8542 8543 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 8544 group_entry) 8545 perf_free_event(event, ctx); 8546 8547 if (!list_empty(&ctx->pinned_groups) || 8548 !list_empty(&ctx->flexible_groups)) 8549 goto again; 8550 8551 mutex_unlock(&ctx->mutex); 8552 8553 put_ctx(ctx); 8554 } 8555 } 8556 8557 void perf_event_delayed_put(struct task_struct *task) 8558 { 8559 int ctxn; 8560 8561 for_each_task_context_nr(ctxn) 8562 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 8563 } 8564 8565 /* 8566 * inherit a event from parent task to child task: 8567 */ 8568 static struct perf_event * 8569 inherit_event(struct perf_event *parent_event, 8570 struct task_struct *parent, 8571 struct perf_event_context *parent_ctx, 8572 struct task_struct *child, 8573 struct perf_event *group_leader, 8574 struct perf_event_context *child_ctx) 8575 { 8576 enum perf_event_active_state parent_state = parent_event->state; 8577 struct perf_event *child_event; 8578 unsigned long flags; 8579 8580 /* 8581 * Instead of creating recursive hierarchies of events, 8582 * we link inherited events back to the original parent, 8583 * which has a filp for sure, which we use as the reference 8584 * count: 8585 */ 8586 if (parent_event->parent) 8587 parent_event = parent_event->parent; 8588 8589 child_event = perf_event_alloc(&parent_event->attr, 8590 parent_event->cpu, 8591 child, 8592 group_leader, parent_event, 8593 NULL, NULL, -1); 8594 if (IS_ERR(child_event)) 8595 return child_event; 8596 8597 if (is_orphaned_event(parent_event) || 8598 !atomic_long_inc_not_zero(&parent_event->refcount)) { 8599 free_event(child_event); 8600 return NULL; 8601 } 8602 8603 get_ctx(child_ctx); 8604 8605 /* 8606 * Make the child state follow the state of the parent event, 8607 * not its attr.disabled bit. We hold the parent's mutex, 8608 * so we won't race with perf_event_{en, dis}able_family. 8609 */ 8610 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 8611 child_event->state = PERF_EVENT_STATE_INACTIVE; 8612 else 8613 child_event->state = PERF_EVENT_STATE_OFF; 8614 8615 if (parent_event->attr.freq) { 8616 u64 sample_period = parent_event->hw.sample_period; 8617 struct hw_perf_event *hwc = &child_event->hw; 8618 8619 hwc->sample_period = sample_period; 8620 hwc->last_period = sample_period; 8621 8622 local64_set(&hwc->period_left, sample_period); 8623 } 8624 8625 child_event->ctx = child_ctx; 8626 child_event->overflow_handler = parent_event->overflow_handler; 8627 child_event->overflow_handler_context 8628 = parent_event->overflow_handler_context; 8629 8630 /* 8631 * Precalculate sample_data sizes 8632 */ 8633 perf_event__header_size(child_event); 8634 perf_event__id_header_size(child_event); 8635 8636 /* 8637 * Link it up in the child's context: 8638 */ 8639 raw_spin_lock_irqsave(&child_ctx->lock, flags); 8640 add_event_to_ctx(child_event, child_ctx); 8641 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 8642 8643 /* 8644 * Link this into the parent event's child list 8645 */ 8646 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 8647 mutex_lock(&parent_event->child_mutex); 8648 list_add_tail(&child_event->child_list, &parent_event->child_list); 8649 mutex_unlock(&parent_event->child_mutex); 8650 8651 return child_event; 8652 } 8653 8654 static int inherit_group(struct perf_event *parent_event, 8655 struct task_struct *parent, 8656 struct perf_event_context *parent_ctx, 8657 struct task_struct *child, 8658 struct perf_event_context *child_ctx) 8659 { 8660 struct perf_event *leader; 8661 struct perf_event *sub; 8662 struct perf_event *child_ctr; 8663 8664 leader = inherit_event(parent_event, parent, parent_ctx, 8665 child, NULL, child_ctx); 8666 if (IS_ERR(leader)) 8667 return PTR_ERR(leader); 8668 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 8669 child_ctr = inherit_event(sub, parent, parent_ctx, 8670 child, leader, child_ctx); 8671 if (IS_ERR(child_ctr)) 8672 return PTR_ERR(child_ctr); 8673 } 8674 return 0; 8675 } 8676 8677 static int 8678 inherit_task_group(struct perf_event *event, struct task_struct *parent, 8679 struct perf_event_context *parent_ctx, 8680 struct task_struct *child, int ctxn, 8681 int *inherited_all) 8682 { 8683 int ret; 8684 struct perf_event_context *child_ctx; 8685 8686 if (!event->attr.inherit) { 8687 *inherited_all = 0; 8688 return 0; 8689 } 8690 8691 child_ctx = child->perf_event_ctxp[ctxn]; 8692 if (!child_ctx) { 8693 /* 8694 * This is executed from the parent task context, so 8695 * inherit events that have been marked for cloning. 8696 * First allocate and initialize a context for the 8697 * child. 8698 */ 8699 8700 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 8701 if (!child_ctx) 8702 return -ENOMEM; 8703 8704 child->perf_event_ctxp[ctxn] = child_ctx; 8705 } 8706 8707 ret = inherit_group(event, parent, parent_ctx, 8708 child, child_ctx); 8709 8710 if (ret) 8711 *inherited_all = 0; 8712 8713 return ret; 8714 } 8715 8716 /* 8717 * Initialize the perf_event context in task_struct 8718 */ 8719 static int perf_event_init_context(struct task_struct *child, int ctxn) 8720 { 8721 struct perf_event_context *child_ctx, *parent_ctx; 8722 struct perf_event_context *cloned_ctx; 8723 struct perf_event *event; 8724 struct task_struct *parent = current; 8725 int inherited_all = 1; 8726 unsigned long flags; 8727 int ret = 0; 8728 8729 if (likely(!parent->perf_event_ctxp[ctxn])) 8730 return 0; 8731 8732 /* 8733 * If the parent's context is a clone, pin it so it won't get 8734 * swapped under us. 8735 */ 8736 parent_ctx = perf_pin_task_context(parent, ctxn); 8737 if (!parent_ctx) 8738 return 0; 8739 8740 /* 8741 * No need to check if parent_ctx != NULL here; since we saw 8742 * it non-NULL earlier, the only reason for it to become NULL 8743 * is if we exit, and since we're currently in the middle of 8744 * a fork we can't be exiting at the same time. 8745 */ 8746 8747 /* 8748 * Lock the parent list. No need to lock the child - not PID 8749 * hashed yet and not running, so nobody can access it. 8750 */ 8751 mutex_lock(&parent_ctx->mutex); 8752 8753 /* 8754 * We dont have to disable NMIs - we are only looking at 8755 * the list, not manipulating it: 8756 */ 8757 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 8758 ret = inherit_task_group(event, parent, parent_ctx, 8759 child, ctxn, &inherited_all); 8760 if (ret) 8761 break; 8762 } 8763 8764 /* 8765 * We can't hold ctx->lock when iterating the ->flexible_group list due 8766 * to allocations, but we need to prevent rotation because 8767 * rotate_ctx() will change the list from interrupt context. 8768 */ 8769 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 8770 parent_ctx->rotate_disable = 1; 8771 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 8772 8773 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 8774 ret = inherit_task_group(event, parent, parent_ctx, 8775 child, ctxn, &inherited_all); 8776 if (ret) 8777 break; 8778 } 8779 8780 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 8781 parent_ctx->rotate_disable = 0; 8782 8783 child_ctx = child->perf_event_ctxp[ctxn]; 8784 8785 if (child_ctx && inherited_all) { 8786 /* 8787 * Mark the child context as a clone of the parent 8788 * context, or of whatever the parent is a clone of. 8789 * 8790 * Note that if the parent is a clone, the holding of 8791 * parent_ctx->lock avoids it from being uncloned. 8792 */ 8793 cloned_ctx = parent_ctx->parent_ctx; 8794 if (cloned_ctx) { 8795 child_ctx->parent_ctx = cloned_ctx; 8796 child_ctx->parent_gen = parent_ctx->parent_gen; 8797 } else { 8798 child_ctx->parent_ctx = parent_ctx; 8799 child_ctx->parent_gen = parent_ctx->generation; 8800 } 8801 get_ctx(child_ctx->parent_ctx); 8802 } 8803 8804 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 8805 mutex_unlock(&parent_ctx->mutex); 8806 8807 perf_unpin_context(parent_ctx); 8808 put_ctx(parent_ctx); 8809 8810 return ret; 8811 } 8812 8813 /* 8814 * Initialize the perf_event context in task_struct 8815 */ 8816 int perf_event_init_task(struct task_struct *child) 8817 { 8818 int ctxn, ret; 8819 8820 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 8821 mutex_init(&child->perf_event_mutex); 8822 INIT_LIST_HEAD(&child->perf_event_list); 8823 8824 for_each_task_context_nr(ctxn) { 8825 ret = perf_event_init_context(child, ctxn); 8826 if (ret) { 8827 perf_event_free_task(child); 8828 return ret; 8829 } 8830 } 8831 8832 return 0; 8833 } 8834 8835 static void __init perf_event_init_all_cpus(void) 8836 { 8837 struct swevent_htable *swhash; 8838 int cpu; 8839 8840 for_each_possible_cpu(cpu) { 8841 swhash = &per_cpu(swevent_htable, cpu); 8842 mutex_init(&swhash->hlist_mutex); 8843 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 8844 } 8845 } 8846 8847 static void perf_event_init_cpu(int cpu) 8848 { 8849 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8850 8851 mutex_lock(&swhash->hlist_mutex); 8852 swhash->online = true; 8853 if (swhash->hlist_refcount > 0) { 8854 struct swevent_hlist *hlist; 8855 8856 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 8857 WARN_ON(!hlist); 8858 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8859 } 8860 mutex_unlock(&swhash->hlist_mutex); 8861 } 8862 8863 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 8864 static void __perf_event_exit_context(void *__info) 8865 { 8866 struct remove_event re = { .detach_group = true }; 8867 struct perf_event_context *ctx = __info; 8868 8869 rcu_read_lock(); 8870 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry) 8871 __perf_remove_from_context(&re); 8872 rcu_read_unlock(); 8873 } 8874 8875 static void perf_event_exit_cpu_context(int cpu) 8876 { 8877 struct perf_event_context *ctx; 8878 struct pmu *pmu; 8879 int idx; 8880 8881 idx = srcu_read_lock(&pmus_srcu); 8882 list_for_each_entry_rcu(pmu, &pmus, entry) { 8883 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 8884 8885 mutex_lock(&ctx->mutex); 8886 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 8887 mutex_unlock(&ctx->mutex); 8888 } 8889 srcu_read_unlock(&pmus_srcu, idx); 8890 } 8891 8892 static void perf_event_exit_cpu(int cpu) 8893 { 8894 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8895 8896 perf_event_exit_cpu_context(cpu); 8897 8898 mutex_lock(&swhash->hlist_mutex); 8899 swhash->online = false; 8900 swevent_hlist_release(swhash); 8901 mutex_unlock(&swhash->hlist_mutex); 8902 } 8903 #else 8904 static inline void perf_event_exit_cpu(int cpu) { } 8905 #endif 8906 8907 static int 8908 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 8909 { 8910 int cpu; 8911 8912 for_each_online_cpu(cpu) 8913 perf_event_exit_cpu(cpu); 8914 8915 return NOTIFY_OK; 8916 } 8917 8918 /* 8919 * Run the perf reboot notifier at the very last possible moment so that 8920 * the generic watchdog code runs as long as possible. 8921 */ 8922 static struct notifier_block perf_reboot_notifier = { 8923 .notifier_call = perf_reboot, 8924 .priority = INT_MIN, 8925 }; 8926 8927 static int 8928 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 8929 { 8930 unsigned int cpu = (long)hcpu; 8931 8932 switch (action & ~CPU_TASKS_FROZEN) { 8933 8934 case CPU_UP_PREPARE: 8935 case CPU_DOWN_FAILED: 8936 perf_event_init_cpu(cpu); 8937 break; 8938 8939 case CPU_UP_CANCELED: 8940 case CPU_DOWN_PREPARE: 8941 perf_event_exit_cpu(cpu); 8942 break; 8943 default: 8944 break; 8945 } 8946 8947 return NOTIFY_OK; 8948 } 8949 8950 void __init perf_event_init(void) 8951 { 8952 int ret; 8953 8954 idr_init(&pmu_idr); 8955 8956 perf_event_init_all_cpus(); 8957 init_srcu_struct(&pmus_srcu); 8958 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 8959 perf_pmu_register(&perf_cpu_clock, NULL, -1); 8960 perf_pmu_register(&perf_task_clock, NULL, -1); 8961 perf_tp_register(); 8962 perf_cpu_notifier(perf_cpu_notify); 8963 register_reboot_notifier(&perf_reboot_notifier); 8964 8965 ret = init_hw_breakpoint(); 8966 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 8967 8968 /* do not patch jump label more than once per second */ 8969 jump_label_rate_limit(&perf_sched_events, HZ); 8970 8971 /* 8972 * Build time assertion that we keep the data_head at the intended 8973 * location. IOW, validation we got the __reserved[] size right. 8974 */ 8975 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 8976 != 1024); 8977 } 8978 8979 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 8980 char *page) 8981 { 8982 struct perf_pmu_events_attr *pmu_attr = 8983 container_of(attr, struct perf_pmu_events_attr, attr); 8984 8985 if (pmu_attr->event_str) 8986 return sprintf(page, "%s\n", pmu_attr->event_str); 8987 8988 return 0; 8989 } 8990 8991 static int __init perf_event_sysfs_init(void) 8992 { 8993 struct pmu *pmu; 8994 int ret; 8995 8996 mutex_lock(&pmus_lock); 8997 8998 ret = bus_register(&pmu_bus); 8999 if (ret) 9000 goto unlock; 9001 9002 list_for_each_entry(pmu, &pmus, entry) { 9003 if (!pmu->name || pmu->type < 0) 9004 continue; 9005 9006 ret = pmu_dev_alloc(pmu); 9007 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 9008 } 9009 pmu_bus_running = 1; 9010 ret = 0; 9011 9012 unlock: 9013 mutex_unlock(&pmus_lock); 9014 9015 return ret; 9016 } 9017 device_initcall(perf_event_sysfs_init); 9018 9019 #ifdef CONFIG_CGROUP_PERF 9020 static struct cgroup_subsys_state * 9021 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9022 { 9023 struct perf_cgroup *jc; 9024 9025 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 9026 if (!jc) 9027 return ERR_PTR(-ENOMEM); 9028 9029 jc->info = alloc_percpu(struct perf_cgroup_info); 9030 if (!jc->info) { 9031 kfree(jc); 9032 return ERR_PTR(-ENOMEM); 9033 } 9034 9035 return &jc->css; 9036 } 9037 9038 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 9039 { 9040 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 9041 9042 free_percpu(jc->info); 9043 kfree(jc); 9044 } 9045 9046 static int __perf_cgroup_move(void *info) 9047 { 9048 struct task_struct *task = info; 9049 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 9050 return 0; 9051 } 9052 9053 static void perf_cgroup_attach(struct cgroup_subsys_state *css, 9054 struct cgroup_taskset *tset) 9055 { 9056 struct task_struct *task; 9057 9058 cgroup_taskset_for_each(task, tset) 9059 task_function_call(task, __perf_cgroup_move, task); 9060 } 9061 9062 static void perf_cgroup_exit(struct cgroup_subsys_state *css, 9063 struct cgroup_subsys_state *old_css, 9064 struct task_struct *task) 9065 { 9066 /* 9067 * cgroup_exit() is called in the copy_process() failure path. 9068 * Ignore this case since the task hasn't ran yet, this avoids 9069 * trying to poke a half freed task state from generic code. 9070 */ 9071 if (!(task->flags & PF_EXITING)) 9072 return; 9073 9074 task_function_call(task, __perf_cgroup_move, task); 9075 } 9076 9077 struct cgroup_subsys perf_event_cgrp_subsys = { 9078 .css_alloc = perf_cgroup_css_alloc, 9079 .css_free = perf_cgroup_css_free, 9080 .exit = perf_cgroup_exit, 9081 .attach = perf_cgroup_attach, 9082 }; 9083 #endif /* CONFIG_CGROUP_PERF */ 9084