xref: /openbmc/linux/kernel/events/core.c (revision d7a3d85e)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/ftrace_event.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 static struct workqueue_struct *perf_wq;
53 
54 struct remote_function_call {
55 	struct task_struct	*p;
56 	int			(*func)(void *info);
57 	void			*info;
58 	int			ret;
59 };
60 
61 static void remote_function(void *data)
62 {
63 	struct remote_function_call *tfc = data;
64 	struct task_struct *p = tfc->p;
65 
66 	if (p) {
67 		tfc->ret = -EAGAIN;
68 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
69 			return;
70 	}
71 
72 	tfc->ret = tfc->func(tfc->info);
73 }
74 
75 /**
76  * task_function_call - call a function on the cpu on which a task runs
77  * @p:		the task to evaluate
78  * @func:	the function to be called
79  * @info:	the function call argument
80  *
81  * Calls the function @func when the task is currently running. This might
82  * be on the current CPU, which just calls the function directly
83  *
84  * returns: @func return value, or
85  *	    -ESRCH  - when the process isn't running
86  *	    -EAGAIN - when the process moved away
87  */
88 static int
89 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
90 {
91 	struct remote_function_call data = {
92 		.p	= p,
93 		.func	= func,
94 		.info	= info,
95 		.ret	= -ESRCH, /* No such (running) process */
96 	};
97 
98 	if (task_curr(p))
99 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
100 
101 	return data.ret;
102 }
103 
104 /**
105  * cpu_function_call - call a function on the cpu
106  * @func:	the function to be called
107  * @info:	the function call argument
108  *
109  * Calls the function @func on the remote cpu.
110  *
111  * returns: @func return value or -ENXIO when the cpu is offline
112  */
113 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
114 {
115 	struct remote_function_call data = {
116 		.p	= NULL,
117 		.func	= func,
118 		.info	= info,
119 		.ret	= -ENXIO, /* No such CPU */
120 	};
121 
122 	smp_call_function_single(cpu, remote_function, &data, 1);
123 
124 	return data.ret;
125 }
126 
127 #define EVENT_OWNER_KERNEL ((void *) -1)
128 
129 static bool is_kernel_event(struct perf_event *event)
130 {
131 	return event->owner == EVENT_OWNER_KERNEL;
132 }
133 
134 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
135 		       PERF_FLAG_FD_OUTPUT  |\
136 		       PERF_FLAG_PID_CGROUP |\
137 		       PERF_FLAG_FD_CLOEXEC)
138 
139 /*
140  * branch priv levels that need permission checks
141  */
142 #define PERF_SAMPLE_BRANCH_PERM_PLM \
143 	(PERF_SAMPLE_BRANCH_KERNEL |\
144 	 PERF_SAMPLE_BRANCH_HV)
145 
146 enum event_type_t {
147 	EVENT_FLEXIBLE = 0x1,
148 	EVENT_PINNED = 0x2,
149 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
150 };
151 
152 /*
153  * perf_sched_events : >0 events exist
154  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
155  */
156 struct static_key_deferred perf_sched_events __read_mostly;
157 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
158 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
159 
160 static atomic_t nr_mmap_events __read_mostly;
161 static atomic_t nr_comm_events __read_mostly;
162 static atomic_t nr_task_events __read_mostly;
163 static atomic_t nr_freq_events __read_mostly;
164 
165 static LIST_HEAD(pmus);
166 static DEFINE_MUTEX(pmus_lock);
167 static struct srcu_struct pmus_srcu;
168 
169 /*
170  * perf event paranoia level:
171  *  -1 - not paranoid at all
172  *   0 - disallow raw tracepoint access for unpriv
173  *   1 - disallow cpu events for unpriv
174  *   2 - disallow kernel profiling for unpriv
175  */
176 int sysctl_perf_event_paranoid __read_mostly = 1;
177 
178 /* Minimum for 512 kiB + 1 user control page */
179 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
180 
181 /*
182  * max perf event sample rate
183  */
184 #define DEFAULT_MAX_SAMPLE_RATE		100000
185 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
186 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
187 
188 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
189 
190 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
191 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
192 
193 static int perf_sample_allowed_ns __read_mostly =
194 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
195 
196 void update_perf_cpu_limits(void)
197 {
198 	u64 tmp = perf_sample_period_ns;
199 
200 	tmp *= sysctl_perf_cpu_time_max_percent;
201 	do_div(tmp, 100);
202 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
203 }
204 
205 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
206 
207 int perf_proc_update_handler(struct ctl_table *table, int write,
208 		void __user *buffer, size_t *lenp,
209 		loff_t *ppos)
210 {
211 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
212 
213 	if (ret || !write)
214 		return ret;
215 
216 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
217 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
218 	update_perf_cpu_limits();
219 
220 	return 0;
221 }
222 
223 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
224 
225 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
226 				void __user *buffer, size_t *lenp,
227 				loff_t *ppos)
228 {
229 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
230 
231 	if (ret || !write)
232 		return ret;
233 
234 	update_perf_cpu_limits();
235 
236 	return 0;
237 }
238 
239 /*
240  * perf samples are done in some very critical code paths (NMIs).
241  * If they take too much CPU time, the system can lock up and not
242  * get any real work done.  This will drop the sample rate when
243  * we detect that events are taking too long.
244  */
245 #define NR_ACCUMULATED_SAMPLES 128
246 static DEFINE_PER_CPU(u64, running_sample_length);
247 
248 static void perf_duration_warn(struct irq_work *w)
249 {
250 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
251 	u64 avg_local_sample_len;
252 	u64 local_samples_len;
253 
254 	local_samples_len = __this_cpu_read(running_sample_length);
255 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
256 
257 	printk_ratelimited(KERN_WARNING
258 			"perf interrupt took too long (%lld > %lld), lowering "
259 			"kernel.perf_event_max_sample_rate to %d\n",
260 			avg_local_sample_len, allowed_ns >> 1,
261 			sysctl_perf_event_sample_rate);
262 }
263 
264 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
265 
266 void perf_sample_event_took(u64 sample_len_ns)
267 {
268 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
269 	u64 avg_local_sample_len;
270 	u64 local_samples_len;
271 
272 	if (allowed_ns == 0)
273 		return;
274 
275 	/* decay the counter by 1 average sample */
276 	local_samples_len = __this_cpu_read(running_sample_length);
277 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
278 	local_samples_len += sample_len_ns;
279 	__this_cpu_write(running_sample_length, local_samples_len);
280 
281 	/*
282 	 * note: this will be biased artifically low until we have
283 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
284 	 * from having to maintain a count.
285 	 */
286 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
287 
288 	if (avg_local_sample_len <= allowed_ns)
289 		return;
290 
291 	if (max_samples_per_tick <= 1)
292 		return;
293 
294 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
295 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
296 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
297 
298 	update_perf_cpu_limits();
299 
300 	if (!irq_work_queue(&perf_duration_work)) {
301 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
302 			     "kernel.perf_event_max_sample_rate to %d\n",
303 			     avg_local_sample_len, allowed_ns >> 1,
304 			     sysctl_perf_event_sample_rate);
305 	}
306 }
307 
308 static atomic64_t perf_event_id;
309 
310 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
311 			      enum event_type_t event_type);
312 
313 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
314 			     enum event_type_t event_type,
315 			     struct task_struct *task);
316 
317 static void update_context_time(struct perf_event_context *ctx);
318 static u64 perf_event_time(struct perf_event *event);
319 
320 void __weak perf_event_print_debug(void)	{ }
321 
322 extern __weak const char *perf_pmu_name(void)
323 {
324 	return "pmu";
325 }
326 
327 static inline u64 perf_clock(void)
328 {
329 	return local_clock();
330 }
331 
332 static inline u64 perf_event_clock(struct perf_event *event)
333 {
334 	return event->clock();
335 }
336 
337 static inline struct perf_cpu_context *
338 __get_cpu_context(struct perf_event_context *ctx)
339 {
340 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
341 }
342 
343 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
344 			  struct perf_event_context *ctx)
345 {
346 	raw_spin_lock(&cpuctx->ctx.lock);
347 	if (ctx)
348 		raw_spin_lock(&ctx->lock);
349 }
350 
351 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
352 			    struct perf_event_context *ctx)
353 {
354 	if (ctx)
355 		raw_spin_unlock(&ctx->lock);
356 	raw_spin_unlock(&cpuctx->ctx.lock);
357 }
358 
359 #ifdef CONFIG_CGROUP_PERF
360 
361 static inline bool
362 perf_cgroup_match(struct perf_event *event)
363 {
364 	struct perf_event_context *ctx = event->ctx;
365 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
366 
367 	/* @event doesn't care about cgroup */
368 	if (!event->cgrp)
369 		return true;
370 
371 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
372 	if (!cpuctx->cgrp)
373 		return false;
374 
375 	/*
376 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
377 	 * also enabled for all its descendant cgroups.  If @cpuctx's
378 	 * cgroup is a descendant of @event's (the test covers identity
379 	 * case), it's a match.
380 	 */
381 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
382 				    event->cgrp->css.cgroup);
383 }
384 
385 static inline void perf_detach_cgroup(struct perf_event *event)
386 {
387 	css_put(&event->cgrp->css);
388 	event->cgrp = NULL;
389 }
390 
391 static inline int is_cgroup_event(struct perf_event *event)
392 {
393 	return event->cgrp != NULL;
394 }
395 
396 static inline u64 perf_cgroup_event_time(struct perf_event *event)
397 {
398 	struct perf_cgroup_info *t;
399 
400 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
401 	return t->time;
402 }
403 
404 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
405 {
406 	struct perf_cgroup_info *info;
407 	u64 now;
408 
409 	now = perf_clock();
410 
411 	info = this_cpu_ptr(cgrp->info);
412 
413 	info->time += now - info->timestamp;
414 	info->timestamp = now;
415 }
416 
417 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
418 {
419 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
420 	if (cgrp_out)
421 		__update_cgrp_time(cgrp_out);
422 }
423 
424 static inline void update_cgrp_time_from_event(struct perf_event *event)
425 {
426 	struct perf_cgroup *cgrp;
427 
428 	/*
429 	 * ensure we access cgroup data only when needed and
430 	 * when we know the cgroup is pinned (css_get)
431 	 */
432 	if (!is_cgroup_event(event))
433 		return;
434 
435 	cgrp = perf_cgroup_from_task(current);
436 	/*
437 	 * Do not update time when cgroup is not active
438 	 */
439 	if (cgrp == event->cgrp)
440 		__update_cgrp_time(event->cgrp);
441 }
442 
443 static inline void
444 perf_cgroup_set_timestamp(struct task_struct *task,
445 			  struct perf_event_context *ctx)
446 {
447 	struct perf_cgroup *cgrp;
448 	struct perf_cgroup_info *info;
449 
450 	/*
451 	 * ctx->lock held by caller
452 	 * ensure we do not access cgroup data
453 	 * unless we have the cgroup pinned (css_get)
454 	 */
455 	if (!task || !ctx->nr_cgroups)
456 		return;
457 
458 	cgrp = perf_cgroup_from_task(task);
459 	info = this_cpu_ptr(cgrp->info);
460 	info->timestamp = ctx->timestamp;
461 }
462 
463 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
464 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
465 
466 /*
467  * reschedule events based on the cgroup constraint of task.
468  *
469  * mode SWOUT : schedule out everything
470  * mode SWIN : schedule in based on cgroup for next
471  */
472 void perf_cgroup_switch(struct task_struct *task, int mode)
473 {
474 	struct perf_cpu_context *cpuctx;
475 	struct pmu *pmu;
476 	unsigned long flags;
477 
478 	/*
479 	 * disable interrupts to avoid geting nr_cgroup
480 	 * changes via __perf_event_disable(). Also
481 	 * avoids preemption.
482 	 */
483 	local_irq_save(flags);
484 
485 	/*
486 	 * we reschedule only in the presence of cgroup
487 	 * constrained events.
488 	 */
489 	rcu_read_lock();
490 
491 	list_for_each_entry_rcu(pmu, &pmus, entry) {
492 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
493 		if (cpuctx->unique_pmu != pmu)
494 			continue; /* ensure we process each cpuctx once */
495 
496 		/*
497 		 * perf_cgroup_events says at least one
498 		 * context on this CPU has cgroup events.
499 		 *
500 		 * ctx->nr_cgroups reports the number of cgroup
501 		 * events for a context.
502 		 */
503 		if (cpuctx->ctx.nr_cgroups > 0) {
504 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
505 			perf_pmu_disable(cpuctx->ctx.pmu);
506 
507 			if (mode & PERF_CGROUP_SWOUT) {
508 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
509 				/*
510 				 * must not be done before ctxswout due
511 				 * to event_filter_match() in event_sched_out()
512 				 */
513 				cpuctx->cgrp = NULL;
514 			}
515 
516 			if (mode & PERF_CGROUP_SWIN) {
517 				WARN_ON_ONCE(cpuctx->cgrp);
518 				/*
519 				 * set cgrp before ctxsw in to allow
520 				 * event_filter_match() to not have to pass
521 				 * task around
522 				 */
523 				cpuctx->cgrp = perf_cgroup_from_task(task);
524 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
525 			}
526 			perf_pmu_enable(cpuctx->ctx.pmu);
527 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
528 		}
529 	}
530 
531 	rcu_read_unlock();
532 
533 	local_irq_restore(flags);
534 }
535 
536 static inline void perf_cgroup_sched_out(struct task_struct *task,
537 					 struct task_struct *next)
538 {
539 	struct perf_cgroup *cgrp1;
540 	struct perf_cgroup *cgrp2 = NULL;
541 
542 	/*
543 	 * we come here when we know perf_cgroup_events > 0
544 	 */
545 	cgrp1 = perf_cgroup_from_task(task);
546 
547 	/*
548 	 * next is NULL when called from perf_event_enable_on_exec()
549 	 * that will systematically cause a cgroup_switch()
550 	 */
551 	if (next)
552 		cgrp2 = perf_cgroup_from_task(next);
553 
554 	/*
555 	 * only schedule out current cgroup events if we know
556 	 * that we are switching to a different cgroup. Otherwise,
557 	 * do no touch the cgroup events.
558 	 */
559 	if (cgrp1 != cgrp2)
560 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
561 }
562 
563 static inline void perf_cgroup_sched_in(struct task_struct *prev,
564 					struct task_struct *task)
565 {
566 	struct perf_cgroup *cgrp1;
567 	struct perf_cgroup *cgrp2 = NULL;
568 
569 	/*
570 	 * we come here when we know perf_cgroup_events > 0
571 	 */
572 	cgrp1 = perf_cgroup_from_task(task);
573 
574 	/* prev can never be NULL */
575 	cgrp2 = perf_cgroup_from_task(prev);
576 
577 	/*
578 	 * only need to schedule in cgroup events if we are changing
579 	 * cgroup during ctxsw. Cgroup events were not scheduled
580 	 * out of ctxsw out if that was not the case.
581 	 */
582 	if (cgrp1 != cgrp2)
583 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
584 }
585 
586 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
587 				      struct perf_event_attr *attr,
588 				      struct perf_event *group_leader)
589 {
590 	struct perf_cgroup *cgrp;
591 	struct cgroup_subsys_state *css;
592 	struct fd f = fdget(fd);
593 	int ret = 0;
594 
595 	if (!f.file)
596 		return -EBADF;
597 
598 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
599 					 &perf_event_cgrp_subsys);
600 	if (IS_ERR(css)) {
601 		ret = PTR_ERR(css);
602 		goto out;
603 	}
604 
605 	cgrp = container_of(css, struct perf_cgroup, css);
606 	event->cgrp = cgrp;
607 
608 	/*
609 	 * all events in a group must monitor
610 	 * the same cgroup because a task belongs
611 	 * to only one perf cgroup at a time
612 	 */
613 	if (group_leader && group_leader->cgrp != cgrp) {
614 		perf_detach_cgroup(event);
615 		ret = -EINVAL;
616 	}
617 out:
618 	fdput(f);
619 	return ret;
620 }
621 
622 static inline void
623 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
624 {
625 	struct perf_cgroup_info *t;
626 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 	event->shadow_ctx_time = now - t->timestamp;
628 }
629 
630 static inline void
631 perf_cgroup_defer_enabled(struct perf_event *event)
632 {
633 	/*
634 	 * when the current task's perf cgroup does not match
635 	 * the event's, we need to remember to call the
636 	 * perf_mark_enable() function the first time a task with
637 	 * a matching perf cgroup is scheduled in.
638 	 */
639 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
640 		event->cgrp_defer_enabled = 1;
641 }
642 
643 static inline void
644 perf_cgroup_mark_enabled(struct perf_event *event,
645 			 struct perf_event_context *ctx)
646 {
647 	struct perf_event *sub;
648 	u64 tstamp = perf_event_time(event);
649 
650 	if (!event->cgrp_defer_enabled)
651 		return;
652 
653 	event->cgrp_defer_enabled = 0;
654 
655 	event->tstamp_enabled = tstamp - event->total_time_enabled;
656 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
657 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
658 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
659 			sub->cgrp_defer_enabled = 0;
660 		}
661 	}
662 }
663 #else /* !CONFIG_CGROUP_PERF */
664 
665 static inline bool
666 perf_cgroup_match(struct perf_event *event)
667 {
668 	return true;
669 }
670 
671 static inline void perf_detach_cgroup(struct perf_event *event)
672 {}
673 
674 static inline int is_cgroup_event(struct perf_event *event)
675 {
676 	return 0;
677 }
678 
679 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
680 {
681 	return 0;
682 }
683 
684 static inline void update_cgrp_time_from_event(struct perf_event *event)
685 {
686 }
687 
688 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
689 {
690 }
691 
692 static inline void perf_cgroup_sched_out(struct task_struct *task,
693 					 struct task_struct *next)
694 {
695 }
696 
697 static inline void perf_cgroup_sched_in(struct task_struct *prev,
698 					struct task_struct *task)
699 {
700 }
701 
702 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
703 				      struct perf_event_attr *attr,
704 				      struct perf_event *group_leader)
705 {
706 	return -EINVAL;
707 }
708 
709 static inline void
710 perf_cgroup_set_timestamp(struct task_struct *task,
711 			  struct perf_event_context *ctx)
712 {
713 }
714 
715 void
716 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
717 {
718 }
719 
720 static inline void
721 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
722 {
723 }
724 
725 static inline u64 perf_cgroup_event_time(struct perf_event *event)
726 {
727 	return 0;
728 }
729 
730 static inline void
731 perf_cgroup_defer_enabled(struct perf_event *event)
732 {
733 }
734 
735 static inline void
736 perf_cgroup_mark_enabled(struct perf_event *event,
737 			 struct perf_event_context *ctx)
738 {
739 }
740 #endif
741 
742 /*
743  * set default to be dependent on timer tick just
744  * like original code
745  */
746 #define PERF_CPU_HRTIMER (1000 / HZ)
747 /*
748  * function must be called with interrupts disbled
749  */
750 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
751 {
752 	struct perf_cpu_context *cpuctx;
753 	enum hrtimer_restart ret = HRTIMER_NORESTART;
754 	int rotations = 0;
755 
756 	WARN_ON(!irqs_disabled());
757 
758 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
759 
760 	rotations = perf_rotate_context(cpuctx);
761 
762 	/*
763 	 * arm timer if needed
764 	 */
765 	if (rotations) {
766 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
767 		ret = HRTIMER_RESTART;
768 	}
769 
770 	return ret;
771 }
772 
773 /* CPU is going down */
774 void perf_cpu_hrtimer_cancel(int cpu)
775 {
776 	struct perf_cpu_context *cpuctx;
777 	struct pmu *pmu;
778 	unsigned long flags;
779 
780 	if (WARN_ON(cpu != smp_processor_id()))
781 		return;
782 
783 	local_irq_save(flags);
784 
785 	rcu_read_lock();
786 
787 	list_for_each_entry_rcu(pmu, &pmus, entry) {
788 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
789 
790 		if (pmu->task_ctx_nr == perf_sw_context)
791 			continue;
792 
793 		hrtimer_cancel(&cpuctx->hrtimer);
794 	}
795 
796 	rcu_read_unlock();
797 
798 	local_irq_restore(flags);
799 }
800 
801 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
802 {
803 	struct hrtimer *hr = &cpuctx->hrtimer;
804 	struct pmu *pmu = cpuctx->ctx.pmu;
805 	int timer;
806 
807 	/* no multiplexing needed for SW PMU */
808 	if (pmu->task_ctx_nr == perf_sw_context)
809 		return;
810 
811 	/*
812 	 * check default is sane, if not set then force to
813 	 * default interval (1/tick)
814 	 */
815 	timer = pmu->hrtimer_interval_ms;
816 	if (timer < 1)
817 		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
818 
819 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
820 
821 	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
822 	hr->function = perf_cpu_hrtimer_handler;
823 }
824 
825 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
826 {
827 	struct hrtimer *hr = &cpuctx->hrtimer;
828 	struct pmu *pmu = cpuctx->ctx.pmu;
829 
830 	/* not for SW PMU */
831 	if (pmu->task_ctx_nr == perf_sw_context)
832 		return;
833 
834 	if (hrtimer_active(hr))
835 		return;
836 
837 	if (!hrtimer_callback_running(hr))
838 		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
839 					 0, HRTIMER_MODE_REL_PINNED, 0);
840 }
841 
842 void perf_pmu_disable(struct pmu *pmu)
843 {
844 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
845 	if (!(*count)++)
846 		pmu->pmu_disable(pmu);
847 }
848 
849 void perf_pmu_enable(struct pmu *pmu)
850 {
851 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
852 	if (!--(*count))
853 		pmu->pmu_enable(pmu);
854 }
855 
856 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
857 
858 /*
859  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
860  * perf_event_task_tick() are fully serialized because they're strictly cpu
861  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
862  * disabled, while perf_event_task_tick is called from IRQ context.
863  */
864 static void perf_event_ctx_activate(struct perf_event_context *ctx)
865 {
866 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
867 
868 	WARN_ON(!irqs_disabled());
869 
870 	WARN_ON(!list_empty(&ctx->active_ctx_list));
871 
872 	list_add(&ctx->active_ctx_list, head);
873 }
874 
875 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
876 {
877 	WARN_ON(!irqs_disabled());
878 
879 	WARN_ON(list_empty(&ctx->active_ctx_list));
880 
881 	list_del_init(&ctx->active_ctx_list);
882 }
883 
884 static void get_ctx(struct perf_event_context *ctx)
885 {
886 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
887 }
888 
889 static void free_ctx(struct rcu_head *head)
890 {
891 	struct perf_event_context *ctx;
892 
893 	ctx = container_of(head, struct perf_event_context, rcu_head);
894 	kfree(ctx->task_ctx_data);
895 	kfree(ctx);
896 }
897 
898 static void put_ctx(struct perf_event_context *ctx)
899 {
900 	if (atomic_dec_and_test(&ctx->refcount)) {
901 		if (ctx->parent_ctx)
902 			put_ctx(ctx->parent_ctx);
903 		if (ctx->task)
904 			put_task_struct(ctx->task);
905 		call_rcu(&ctx->rcu_head, free_ctx);
906 	}
907 }
908 
909 /*
910  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
911  * perf_pmu_migrate_context() we need some magic.
912  *
913  * Those places that change perf_event::ctx will hold both
914  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
915  *
916  * Lock ordering is by mutex address. There are two other sites where
917  * perf_event_context::mutex nests and those are:
918  *
919  *  - perf_event_exit_task_context()	[ child , 0 ]
920  *      __perf_event_exit_task()
921  *        sync_child_event()
922  *          put_event()			[ parent, 1 ]
923  *
924  *  - perf_event_init_context()		[ parent, 0 ]
925  *      inherit_task_group()
926  *        inherit_group()
927  *          inherit_event()
928  *            perf_event_alloc()
929  *              perf_init_event()
930  *                perf_try_init_event()	[ child , 1 ]
931  *
932  * While it appears there is an obvious deadlock here -- the parent and child
933  * nesting levels are inverted between the two. This is in fact safe because
934  * life-time rules separate them. That is an exiting task cannot fork, and a
935  * spawning task cannot (yet) exit.
936  *
937  * But remember that that these are parent<->child context relations, and
938  * migration does not affect children, therefore these two orderings should not
939  * interact.
940  *
941  * The change in perf_event::ctx does not affect children (as claimed above)
942  * because the sys_perf_event_open() case will install a new event and break
943  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
944  * concerned with cpuctx and that doesn't have children.
945  *
946  * The places that change perf_event::ctx will issue:
947  *
948  *   perf_remove_from_context();
949  *   synchronize_rcu();
950  *   perf_install_in_context();
951  *
952  * to affect the change. The remove_from_context() + synchronize_rcu() should
953  * quiesce the event, after which we can install it in the new location. This
954  * means that only external vectors (perf_fops, prctl) can perturb the event
955  * while in transit. Therefore all such accessors should also acquire
956  * perf_event_context::mutex to serialize against this.
957  *
958  * However; because event->ctx can change while we're waiting to acquire
959  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
960  * function.
961  *
962  * Lock order:
963  *	task_struct::perf_event_mutex
964  *	  perf_event_context::mutex
965  *	    perf_event_context::lock
966  *	    perf_event::child_mutex;
967  *	    perf_event::mmap_mutex
968  *	    mmap_sem
969  */
970 static struct perf_event_context *
971 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
972 {
973 	struct perf_event_context *ctx;
974 
975 again:
976 	rcu_read_lock();
977 	ctx = ACCESS_ONCE(event->ctx);
978 	if (!atomic_inc_not_zero(&ctx->refcount)) {
979 		rcu_read_unlock();
980 		goto again;
981 	}
982 	rcu_read_unlock();
983 
984 	mutex_lock_nested(&ctx->mutex, nesting);
985 	if (event->ctx != ctx) {
986 		mutex_unlock(&ctx->mutex);
987 		put_ctx(ctx);
988 		goto again;
989 	}
990 
991 	return ctx;
992 }
993 
994 static inline struct perf_event_context *
995 perf_event_ctx_lock(struct perf_event *event)
996 {
997 	return perf_event_ctx_lock_nested(event, 0);
998 }
999 
1000 static void perf_event_ctx_unlock(struct perf_event *event,
1001 				  struct perf_event_context *ctx)
1002 {
1003 	mutex_unlock(&ctx->mutex);
1004 	put_ctx(ctx);
1005 }
1006 
1007 /*
1008  * This must be done under the ctx->lock, such as to serialize against
1009  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1010  * calling scheduler related locks and ctx->lock nests inside those.
1011  */
1012 static __must_check struct perf_event_context *
1013 unclone_ctx(struct perf_event_context *ctx)
1014 {
1015 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1016 
1017 	lockdep_assert_held(&ctx->lock);
1018 
1019 	if (parent_ctx)
1020 		ctx->parent_ctx = NULL;
1021 	ctx->generation++;
1022 
1023 	return parent_ctx;
1024 }
1025 
1026 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1027 {
1028 	/*
1029 	 * only top level events have the pid namespace they were created in
1030 	 */
1031 	if (event->parent)
1032 		event = event->parent;
1033 
1034 	return task_tgid_nr_ns(p, event->ns);
1035 }
1036 
1037 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1038 {
1039 	/*
1040 	 * only top level events have the pid namespace they were created in
1041 	 */
1042 	if (event->parent)
1043 		event = event->parent;
1044 
1045 	return task_pid_nr_ns(p, event->ns);
1046 }
1047 
1048 /*
1049  * If we inherit events we want to return the parent event id
1050  * to userspace.
1051  */
1052 static u64 primary_event_id(struct perf_event *event)
1053 {
1054 	u64 id = event->id;
1055 
1056 	if (event->parent)
1057 		id = event->parent->id;
1058 
1059 	return id;
1060 }
1061 
1062 /*
1063  * Get the perf_event_context for a task and lock it.
1064  * This has to cope with with the fact that until it is locked,
1065  * the context could get moved to another task.
1066  */
1067 static struct perf_event_context *
1068 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1069 {
1070 	struct perf_event_context *ctx;
1071 
1072 retry:
1073 	/*
1074 	 * One of the few rules of preemptible RCU is that one cannot do
1075 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1076 	 * part of the read side critical section was preemptible -- see
1077 	 * rcu_read_unlock_special().
1078 	 *
1079 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1080 	 * side critical section is non-preemptible.
1081 	 */
1082 	preempt_disable();
1083 	rcu_read_lock();
1084 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1085 	if (ctx) {
1086 		/*
1087 		 * If this context is a clone of another, it might
1088 		 * get swapped for another underneath us by
1089 		 * perf_event_task_sched_out, though the
1090 		 * rcu_read_lock() protects us from any context
1091 		 * getting freed.  Lock the context and check if it
1092 		 * got swapped before we could get the lock, and retry
1093 		 * if so.  If we locked the right context, then it
1094 		 * can't get swapped on us any more.
1095 		 */
1096 		raw_spin_lock_irqsave(&ctx->lock, *flags);
1097 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1098 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1099 			rcu_read_unlock();
1100 			preempt_enable();
1101 			goto retry;
1102 		}
1103 
1104 		if (!atomic_inc_not_zero(&ctx->refcount)) {
1105 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1106 			ctx = NULL;
1107 		}
1108 	}
1109 	rcu_read_unlock();
1110 	preempt_enable();
1111 	return ctx;
1112 }
1113 
1114 /*
1115  * Get the context for a task and increment its pin_count so it
1116  * can't get swapped to another task.  This also increments its
1117  * reference count so that the context can't get freed.
1118  */
1119 static struct perf_event_context *
1120 perf_pin_task_context(struct task_struct *task, int ctxn)
1121 {
1122 	struct perf_event_context *ctx;
1123 	unsigned long flags;
1124 
1125 	ctx = perf_lock_task_context(task, ctxn, &flags);
1126 	if (ctx) {
1127 		++ctx->pin_count;
1128 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1129 	}
1130 	return ctx;
1131 }
1132 
1133 static void perf_unpin_context(struct perf_event_context *ctx)
1134 {
1135 	unsigned long flags;
1136 
1137 	raw_spin_lock_irqsave(&ctx->lock, flags);
1138 	--ctx->pin_count;
1139 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1140 }
1141 
1142 /*
1143  * Update the record of the current time in a context.
1144  */
1145 static void update_context_time(struct perf_event_context *ctx)
1146 {
1147 	u64 now = perf_clock();
1148 
1149 	ctx->time += now - ctx->timestamp;
1150 	ctx->timestamp = now;
1151 }
1152 
1153 static u64 perf_event_time(struct perf_event *event)
1154 {
1155 	struct perf_event_context *ctx = event->ctx;
1156 
1157 	if (is_cgroup_event(event))
1158 		return perf_cgroup_event_time(event);
1159 
1160 	return ctx ? ctx->time : 0;
1161 }
1162 
1163 /*
1164  * Update the total_time_enabled and total_time_running fields for a event.
1165  * The caller of this function needs to hold the ctx->lock.
1166  */
1167 static void update_event_times(struct perf_event *event)
1168 {
1169 	struct perf_event_context *ctx = event->ctx;
1170 	u64 run_end;
1171 
1172 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1173 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1174 		return;
1175 	/*
1176 	 * in cgroup mode, time_enabled represents
1177 	 * the time the event was enabled AND active
1178 	 * tasks were in the monitored cgroup. This is
1179 	 * independent of the activity of the context as
1180 	 * there may be a mix of cgroup and non-cgroup events.
1181 	 *
1182 	 * That is why we treat cgroup events differently
1183 	 * here.
1184 	 */
1185 	if (is_cgroup_event(event))
1186 		run_end = perf_cgroup_event_time(event);
1187 	else if (ctx->is_active)
1188 		run_end = ctx->time;
1189 	else
1190 		run_end = event->tstamp_stopped;
1191 
1192 	event->total_time_enabled = run_end - event->tstamp_enabled;
1193 
1194 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1195 		run_end = event->tstamp_stopped;
1196 	else
1197 		run_end = perf_event_time(event);
1198 
1199 	event->total_time_running = run_end - event->tstamp_running;
1200 
1201 }
1202 
1203 /*
1204  * Update total_time_enabled and total_time_running for all events in a group.
1205  */
1206 static void update_group_times(struct perf_event *leader)
1207 {
1208 	struct perf_event *event;
1209 
1210 	update_event_times(leader);
1211 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1212 		update_event_times(event);
1213 }
1214 
1215 static struct list_head *
1216 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1217 {
1218 	if (event->attr.pinned)
1219 		return &ctx->pinned_groups;
1220 	else
1221 		return &ctx->flexible_groups;
1222 }
1223 
1224 /*
1225  * Add a event from the lists for its context.
1226  * Must be called with ctx->mutex and ctx->lock held.
1227  */
1228 static void
1229 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1230 {
1231 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1232 	event->attach_state |= PERF_ATTACH_CONTEXT;
1233 
1234 	/*
1235 	 * If we're a stand alone event or group leader, we go to the context
1236 	 * list, group events are kept attached to the group so that
1237 	 * perf_group_detach can, at all times, locate all siblings.
1238 	 */
1239 	if (event->group_leader == event) {
1240 		struct list_head *list;
1241 
1242 		if (is_software_event(event))
1243 			event->group_flags |= PERF_GROUP_SOFTWARE;
1244 
1245 		list = ctx_group_list(event, ctx);
1246 		list_add_tail(&event->group_entry, list);
1247 	}
1248 
1249 	if (is_cgroup_event(event))
1250 		ctx->nr_cgroups++;
1251 
1252 	list_add_rcu(&event->event_entry, &ctx->event_list);
1253 	ctx->nr_events++;
1254 	if (event->attr.inherit_stat)
1255 		ctx->nr_stat++;
1256 
1257 	ctx->generation++;
1258 }
1259 
1260 /*
1261  * Initialize event state based on the perf_event_attr::disabled.
1262  */
1263 static inline void perf_event__state_init(struct perf_event *event)
1264 {
1265 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1266 					      PERF_EVENT_STATE_INACTIVE;
1267 }
1268 
1269 /*
1270  * Called at perf_event creation and when events are attached/detached from a
1271  * group.
1272  */
1273 static void perf_event__read_size(struct perf_event *event)
1274 {
1275 	int entry = sizeof(u64); /* value */
1276 	int size = 0;
1277 	int nr = 1;
1278 
1279 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1280 		size += sizeof(u64);
1281 
1282 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1283 		size += sizeof(u64);
1284 
1285 	if (event->attr.read_format & PERF_FORMAT_ID)
1286 		entry += sizeof(u64);
1287 
1288 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1289 		nr += event->group_leader->nr_siblings;
1290 		size += sizeof(u64);
1291 	}
1292 
1293 	size += entry * nr;
1294 	event->read_size = size;
1295 }
1296 
1297 static void perf_event__header_size(struct perf_event *event)
1298 {
1299 	struct perf_sample_data *data;
1300 	u64 sample_type = event->attr.sample_type;
1301 	u16 size = 0;
1302 
1303 	perf_event__read_size(event);
1304 
1305 	if (sample_type & PERF_SAMPLE_IP)
1306 		size += sizeof(data->ip);
1307 
1308 	if (sample_type & PERF_SAMPLE_ADDR)
1309 		size += sizeof(data->addr);
1310 
1311 	if (sample_type & PERF_SAMPLE_PERIOD)
1312 		size += sizeof(data->period);
1313 
1314 	if (sample_type & PERF_SAMPLE_WEIGHT)
1315 		size += sizeof(data->weight);
1316 
1317 	if (sample_type & PERF_SAMPLE_READ)
1318 		size += event->read_size;
1319 
1320 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1321 		size += sizeof(data->data_src.val);
1322 
1323 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1324 		size += sizeof(data->txn);
1325 
1326 	event->header_size = size;
1327 }
1328 
1329 static void perf_event__id_header_size(struct perf_event *event)
1330 {
1331 	struct perf_sample_data *data;
1332 	u64 sample_type = event->attr.sample_type;
1333 	u16 size = 0;
1334 
1335 	if (sample_type & PERF_SAMPLE_TID)
1336 		size += sizeof(data->tid_entry);
1337 
1338 	if (sample_type & PERF_SAMPLE_TIME)
1339 		size += sizeof(data->time);
1340 
1341 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1342 		size += sizeof(data->id);
1343 
1344 	if (sample_type & PERF_SAMPLE_ID)
1345 		size += sizeof(data->id);
1346 
1347 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1348 		size += sizeof(data->stream_id);
1349 
1350 	if (sample_type & PERF_SAMPLE_CPU)
1351 		size += sizeof(data->cpu_entry);
1352 
1353 	event->id_header_size = size;
1354 }
1355 
1356 static void perf_group_attach(struct perf_event *event)
1357 {
1358 	struct perf_event *group_leader = event->group_leader, *pos;
1359 
1360 	/*
1361 	 * We can have double attach due to group movement in perf_event_open.
1362 	 */
1363 	if (event->attach_state & PERF_ATTACH_GROUP)
1364 		return;
1365 
1366 	event->attach_state |= PERF_ATTACH_GROUP;
1367 
1368 	if (group_leader == event)
1369 		return;
1370 
1371 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1372 
1373 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1374 			!is_software_event(event))
1375 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1376 
1377 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1378 	group_leader->nr_siblings++;
1379 
1380 	perf_event__header_size(group_leader);
1381 
1382 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1383 		perf_event__header_size(pos);
1384 }
1385 
1386 /*
1387  * Remove a event from the lists for its context.
1388  * Must be called with ctx->mutex and ctx->lock held.
1389  */
1390 static void
1391 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1392 {
1393 	struct perf_cpu_context *cpuctx;
1394 
1395 	WARN_ON_ONCE(event->ctx != ctx);
1396 	lockdep_assert_held(&ctx->lock);
1397 
1398 	/*
1399 	 * We can have double detach due to exit/hot-unplug + close.
1400 	 */
1401 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1402 		return;
1403 
1404 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1405 
1406 	if (is_cgroup_event(event)) {
1407 		ctx->nr_cgroups--;
1408 		cpuctx = __get_cpu_context(ctx);
1409 		/*
1410 		 * if there are no more cgroup events
1411 		 * then cler cgrp to avoid stale pointer
1412 		 * in update_cgrp_time_from_cpuctx()
1413 		 */
1414 		if (!ctx->nr_cgroups)
1415 			cpuctx->cgrp = NULL;
1416 	}
1417 
1418 	ctx->nr_events--;
1419 	if (event->attr.inherit_stat)
1420 		ctx->nr_stat--;
1421 
1422 	list_del_rcu(&event->event_entry);
1423 
1424 	if (event->group_leader == event)
1425 		list_del_init(&event->group_entry);
1426 
1427 	update_group_times(event);
1428 
1429 	/*
1430 	 * If event was in error state, then keep it
1431 	 * that way, otherwise bogus counts will be
1432 	 * returned on read(). The only way to get out
1433 	 * of error state is by explicit re-enabling
1434 	 * of the event
1435 	 */
1436 	if (event->state > PERF_EVENT_STATE_OFF)
1437 		event->state = PERF_EVENT_STATE_OFF;
1438 
1439 	ctx->generation++;
1440 }
1441 
1442 static void perf_group_detach(struct perf_event *event)
1443 {
1444 	struct perf_event *sibling, *tmp;
1445 	struct list_head *list = NULL;
1446 
1447 	/*
1448 	 * We can have double detach due to exit/hot-unplug + close.
1449 	 */
1450 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1451 		return;
1452 
1453 	event->attach_state &= ~PERF_ATTACH_GROUP;
1454 
1455 	/*
1456 	 * If this is a sibling, remove it from its group.
1457 	 */
1458 	if (event->group_leader != event) {
1459 		list_del_init(&event->group_entry);
1460 		event->group_leader->nr_siblings--;
1461 		goto out;
1462 	}
1463 
1464 	if (!list_empty(&event->group_entry))
1465 		list = &event->group_entry;
1466 
1467 	/*
1468 	 * If this was a group event with sibling events then
1469 	 * upgrade the siblings to singleton events by adding them
1470 	 * to whatever list we are on.
1471 	 */
1472 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1473 		if (list)
1474 			list_move_tail(&sibling->group_entry, list);
1475 		sibling->group_leader = sibling;
1476 
1477 		/* Inherit group flags from the previous leader */
1478 		sibling->group_flags = event->group_flags;
1479 
1480 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1481 	}
1482 
1483 out:
1484 	perf_event__header_size(event->group_leader);
1485 
1486 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1487 		perf_event__header_size(tmp);
1488 }
1489 
1490 /*
1491  * User event without the task.
1492  */
1493 static bool is_orphaned_event(struct perf_event *event)
1494 {
1495 	return event && !is_kernel_event(event) && !event->owner;
1496 }
1497 
1498 /*
1499  * Event has a parent but parent's task finished and it's
1500  * alive only because of children holding refference.
1501  */
1502 static bool is_orphaned_child(struct perf_event *event)
1503 {
1504 	return is_orphaned_event(event->parent);
1505 }
1506 
1507 static void orphans_remove_work(struct work_struct *work);
1508 
1509 static void schedule_orphans_remove(struct perf_event_context *ctx)
1510 {
1511 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1512 		return;
1513 
1514 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1515 		get_ctx(ctx);
1516 		ctx->orphans_remove_sched = true;
1517 	}
1518 }
1519 
1520 static int __init perf_workqueue_init(void)
1521 {
1522 	perf_wq = create_singlethread_workqueue("perf");
1523 	WARN(!perf_wq, "failed to create perf workqueue\n");
1524 	return perf_wq ? 0 : -1;
1525 }
1526 
1527 core_initcall(perf_workqueue_init);
1528 
1529 static inline int
1530 event_filter_match(struct perf_event *event)
1531 {
1532 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1533 	    && perf_cgroup_match(event);
1534 }
1535 
1536 static void
1537 event_sched_out(struct perf_event *event,
1538 		  struct perf_cpu_context *cpuctx,
1539 		  struct perf_event_context *ctx)
1540 {
1541 	u64 tstamp = perf_event_time(event);
1542 	u64 delta;
1543 
1544 	WARN_ON_ONCE(event->ctx != ctx);
1545 	lockdep_assert_held(&ctx->lock);
1546 
1547 	/*
1548 	 * An event which could not be activated because of
1549 	 * filter mismatch still needs to have its timings
1550 	 * maintained, otherwise bogus information is return
1551 	 * via read() for time_enabled, time_running:
1552 	 */
1553 	if (event->state == PERF_EVENT_STATE_INACTIVE
1554 	    && !event_filter_match(event)) {
1555 		delta = tstamp - event->tstamp_stopped;
1556 		event->tstamp_running += delta;
1557 		event->tstamp_stopped = tstamp;
1558 	}
1559 
1560 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1561 		return;
1562 
1563 	perf_pmu_disable(event->pmu);
1564 
1565 	event->state = PERF_EVENT_STATE_INACTIVE;
1566 	if (event->pending_disable) {
1567 		event->pending_disable = 0;
1568 		event->state = PERF_EVENT_STATE_OFF;
1569 	}
1570 	event->tstamp_stopped = tstamp;
1571 	event->pmu->del(event, 0);
1572 	event->oncpu = -1;
1573 
1574 	if (!is_software_event(event))
1575 		cpuctx->active_oncpu--;
1576 	if (!--ctx->nr_active)
1577 		perf_event_ctx_deactivate(ctx);
1578 	if (event->attr.freq && event->attr.sample_freq)
1579 		ctx->nr_freq--;
1580 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1581 		cpuctx->exclusive = 0;
1582 
1583 	if (is_orphaned_child(event))
1584 		schedule_orphans_remove(ctx);
1585 
1586 	perf_pmu_enable(event->pmu);
1587 }
1588 
1589 static void
1590 group_sched_out(struct perf_event *group_event,
1591 		struct perf_cpu_context *cpuctx,
1592 		struct perf_event_context *ctx)
1593 {
1594 	struct perf_event *event;
1595 	int state = group_event->state;
1596 
1597 	event_sched_out(group_event, cpuctx, ctx);
1598 
1599 	/*
1600 	 * Schedule out siblings (if any):
1601 	 */
1602 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1603 		event_sched_out(event, cpuctx, ctx);
1604 
1605 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1606 		cpuctx->exclusive = 0;
1607 }
1608 
1609 struct remove_event {
1610 	struct perf_event *event;
1611 	bool detach_group;
1612 };
1613 
1614 /*
1615  * Cross CPU call to remove a performance event
1616  *
1617  * We disable the event on the hardware level first. After that we
1618  * remove it from the context list.
1619  */
1620 static int __perf_remove_from_context(void *info)
1621 {
1622 	struct remove_event *re = info;
1623 	struct perf_event *event = re->event;
1624 	struct perf_event_context *ctx = event->ctx;
1625 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1626 
1627 	raw_spin_lock(&ctx->lock);
1628 	event_sched_out(event, cpuctx, ctx);
1629 	if (re->detach_group)
1630 		perf_group_detach(event);
1631 	list_del_event(event, ctx);
1632 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1633 		ctx->is_active = 0;
1634 		cpuctx->task_ctx = NULL;
1635 	}
1636 	raw_spin_unlock(&ctx->lock);
1637 
1638 	return 0;
1639 }
1640 
1641 
1642 /*
1643  * Remove the event from a task's (or a CPU's) list of events.
1644  *
1645  * CPU events are removed with a smp call. For task events we only
1646  * call when the task is on a CPU.
1647  *
1648  * If event->ctx is a cloned context, callers must make sure that
1649  * every task struct that event->ctx->task could possibly point to
1650  * remains valid.  This is OK when called from perf_release since
1651  * that only calls us on the top-level context, which can't be a clone.
1652  * When called from perf_event_exit_task, it's OK because the
1653  * context has been detached from its task.
1654  */
1655 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1656 {
1657 	struct perf_event_context *ctx = event->ctx;
1658 	struct task_struct *task = ctx->task;
1659 	struct remove_event re = {
1660 		.event = event,
1661 		.detach_group = detach_group,
1662 	};
1663 
1664 	lockdep_assert_held(&ctx->mutex);
1665 
1666 	if (!task) {
1667 		/*
1668 		 * Per cpu events are removed via an smp call. The removal can
1669 		 * fail if the CPU is currently offline, but in that case we
1670 		 * already called __perf_remove_from_context from
1671 		 * perf_event_exit_cpu.
1672 		 */
1673 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1674 		return;
1675 	}
1676 
1677 retry:
1678 	if (!task_function_call(task, __perf_remove_from_context, &re))
1679 		return;
1680 
1681 	raw_spin_lock_irq(&ctx->lock);
1682 	/*
1683 	 * If we failed to find a running task, but find the context active now
1684 	 * that we've acquired the ctx->lock, retry.
1685 	 */
1686 	if (ctx->is_active) {
1687 		raw_spin_unlock_irq(&ctx->lock);
1688 		/*
1689 		 * Reload the task pointer, it might have been changed by
1690 		 * a concurrent perf_event_context_sched_out().
1691 		 */
1692 		task = ctx->task;
1693 		goto retry;
1694 	}
1695 
1696 	/*
1697 	 * Since the task isn't running, its safe to remove the event, us
1698 	 * holding the ctx->lock ensures the task won't get scheduled in.
1699 	 */
1700 	if (detach_group)
1701 		perf_group_detach(event);
1702 	list_del_event(event, ctx);
1703 	raw_spin_unlock_irq(&ctx->lock);
1704 }
1705 
1706 /*
1707  * Cross CPU call to disable a performance event
1708  */
1709 int __perf_event_disable(void *info)
1710 {
1711 	struct perf_event *event = info;
1712 	struct perf_event_context *ctx = event->ctx;
1713 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1714 
1715 	/*
1716 	 * If this is a per-task event, need to check whether this
1717 	 * event's task is the current task on this cpu.
1718 	 *
1719 	 * Can trigger due to concurrent perf_event_context_sched_out()
1720 	 * flipping contexts around.
1721 	 */
1722 	if (ctx->task && cpuctx->task_ctx != ctx)
1723 		return -EINVAL;
1724 
1725 	raw_spin_lock(&ctx->lock);
1726 
1727 	/*
1728 	 * If the event is on, turn it off.
1729 	 * If it is in error state, leave it in error state.
1730 	 */
1731 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1732 		update_context_time(ctx);
1733 		update_cgrp_time_from_event(event);
1734 		update_group_times(event);
1735 		if (event == event->group_leader)
1736 			group_sched_out(event, cpuctx, ctx);
1737 		else
1738 			event_sched_out(event, cpuctx, ctx);
1739 		event->state = PERF_EVENT_STATE_OFF;
1740 	}
1741 
1742 	raw_spin_unlock(&ctx->lock);
1743 
1744 	return 0;
1745 }
1746 
1747 /*
1748  * Disable a event.
1749  *
1750  * If event->ctx is a cloned context, callers must make sure that
1751  * every task struct that event->ctx->task could possibly point to
1752  * remains valid.  This condition is satisifed when called through
1753  * perf_event_for_each_child or perf_event_for_each because they
1754  * hold the top-level event's child_mutex, so any descendant that
1755  * goes to exit will block in sync_child_event.
1756  * When called from perf_pending_event it's OK because event->ctx
1757  * is the current context on this CPU and preemption is disabled,
1758  * hence we can't get into perf_event_task_sched_out for this context.
1759  */
1760 static void _perf_event_disable(struct perf_event *event)
1761 {
1762 	struct perf_event_context *ctx = event->ctx;
1763 	struct task_struct *task = ctx->task;
1764 
1765 	if (!task) {
1766 		/*
1767 		 * Disable the event on the cpu that it's on
1768 		 */
1769 		cpu_function_call(event->cpu, __perf_event_disable, event);
1770 		return;
1771 	}
1772 
1773 retry:
1774 	if (!task_function_call(task, __perf_event_disable, event))
1775 		return;
1776 
1777 	raw_spin_lock_irq(&ctx->lock);
1778 	/*
1779 	 * If the event is still active, we need to retry the cross-call.
1780 	 */
1781 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1782 		raw_spin_unlock_irq(&ctx->lock);
1783 		/*
1784 		 * Reload the task pointer, it might have been changed by
1785 		 * a concurrent perf_event_context_sched_out().
1786 		 */
1787 		task = ctx->task;
1788 		goto retry;
1789 	}
1790 
1791 	/*
1792 	 * Since we have the lock this context can't be scheduled
1793 	 * in, so we can change the state safely.
1794 	 */
1795 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1796 		update_group_times(event);
1797 		event->state = PERF_EVENT_STATE_OFF;
1798 	}
1799 	raw_spin_unlock_irq(&ctx->lock);
1800 }
1801 
1802 /*
1803  * Strictly speaking kernel users cannot create groups and therefore this
1804  * interface does not need the perf_event_ctx_lock() magic.
1805  */
1806 void perf_event_disable(struct perf_event *event)
1807 {
1808 	struct perf_event_context *ctx;
1809 
1810 	ctx = perf_event_ctx_lock(event);
1811 	_perf_event_disable(event);
1812 	perf_event_ctx_unlock(event, ctx);
1813 }
1814 EXPORT_SYMBOL_GPL(perf_event_disable);
1815 
1816 static void perf_set_shadow_time(struct perf_event *event,
1817 				 struct perf_event_context *ctx,
1818 				 u64 tstamp)
1819 {
1820 	/*
1821 	 * use the correct time source for the time snapshot
1822 	 *
1823 	 * We could get by without this by leveraging the
1824 	 * fact that to get to this function, the caller
1825 	 * has most likely already called update_context_time()
1826 	 * and update_cgrp_time_xx() and thus both timestamp
1827 	 * are identical (or very close). Given that tstamp is,
1828 	 * already adjusted for cgroup, we could say that:
1829 	 *    tstamp - ctx->timestamp
1830 	 * is equivalent to
1831 	 *    tstamp - cgrp->timestamp.
1832 	 *
1833 	 * Then, in perf_output_read(), the calculation would
1834 	 * work with no changes because:
1835 	 * - event is guaranteed scheduled in
1836 	 * - no scheduled out in between
1837 	 * - thus the timestamp would be the same
1838 	 *
1839 	 * But this is a bit hairy.
1840 	 *
1841 	 * So instead, we have an explicit cgroup call to remain
1842 	 * within the time time source all along. We believe it
1843 	 * is cleaner and simpler to understand.
1844 	 */
1845 	if (is_cgroup_event(event))
1846 		perf_cgroup_set_shadow_time(event, tstamp);
1847 	else
1848 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1849 }
1850 
1851 #define MAX_INTERRUPTS (~0ULL)
1852 
1853 static void perf_log_throttle(struct perf_event *event, int enable);
1854 static void perf_log_itrace_start(struct perf_event *event);
1855 
1856 static int
1857 event_sched_in(struct perf_event *event,
1858 		 struct perf_cpu_context *cpuctx,
1859 		 struct perf_event_context *ctx)
1860 {
1861 	u64 tstamp = perf_event_time(event);
1862 	int ret = 0;
1863 
1864 	lockdep_assert_held(&ctx->lock);
1865 
1866 	if (event->state <= PERF_EVENT_STATE_OFF)
1867 		return 0;
1868 
1869 	event->state = PERF_EVENT_STATE_ACTIVE;
1870 	event->oncpu = smp_processor_id();
1871 
1872 	/*
1873 	 * Unthrottle events, since we scheduled we might have missed several
1874 	 * ticks already, also for a heavily scheduling task there is little
1875 	 * guarantee it'll get a tick in a timely manner.
1876 	 */
1877 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1878 		perf_log_throttle(event, 1);
1879 		event->hw.interrupts = 0;
1880 	}
1881 
1882 	/*
1883 	 * The new state must be visible before we turn it on in the hardware:
1884 	 */
1885 	smp_wmb();
1886 
1887 	perf_pmu_disable(event->pmu);
1888 
1889 	event->tstamp_running += tstamp - event->tstamp_stopped;
1890 
1891 	perf_set_shadow_time(event, ctx, tstamp);
1892 
1893 	perf_log_itrace_start(event);
1894 
1895 	if (event->pmu->add(event, PERF_EF_START)) {
1896 		event->state = PERF_EVENT_STATE_INACTIVE;
1897 		event->oncpu = -1;
1898 		ret = -EAGAIN;
1899 		goto out;
1900 	}
1901 
1902 	if (!is_software_event(event))
1903 		cpuctx->active_oncpu++;
1904 	if (!ctx->nr_active++)
1905 		perf_event_ctx_activate(ctx);
1906 	if (event->attr.freq && event->attr.sample_freq)
1907 		ctx->nr_freq++;
1908 
1909 	if (event->attr.exclusive)
1910 		cpuctx->exclusive = 1;
1911 
1912 	if (is_orphaned_child(event))
1913 		schedule_orphans_remove(ctx);
1914 
1915 out:
1916 	perf_pmu_enable(event->pmu);
1917 
1918 	return ret;
1919 }
1920 
1921 static int
1922 group_sched_in(struct perf_event *group_event,
1923 	       struct perf_cpu_context *cpuctx,
1924 	       struct perf_event_context *ctx)
1925 {
1926 	struct perf_event *event, *partial_group = NULL;
1927 	struct pmu *pmu = ctx->pmu;
1928 	u64 now = ctx->time;
1929 	bool simulate = false;
1930 
1931 	if (group_event->state == PERF_EVENT_STATE_OFF)
1932 		return 0;
1933 
1934 	pmu->start_txn(pmu);
1935 
1936 	if (event_sched_in(group_event, cpuctx, ctx)) {
1937 		pmu->cancel_txn(pmu);
1938 		perf_cpu_hrtimer_restart(cpuctx);
1939 		return -EAGAIN;
1940 	}
1941 
1942 	/*
1943 	 * Schedule in siblings as one group (if any):
1944 	 */
1945 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1946 		if (event_sched_in(event, cpuctx, ctx)) {
1947 			partial_group = event;
1948 			goto group_error;
1949 		}
1950 	}
1951 
1952 	if (!pmu->commit_txn(pmu))
1953 		return 0;
1954 
1955 group_error:
1956 	/*
1957 	 * Groups can be scheduled in as one unit only, so undo any
1958 	 * partial group before returning:
1959 	 * The events up to the failed event are scheduled out normally,
1960 	 * tstamp_stopped will be updated.
1961 	 *
1962 	 * The failed events and the remaining siblings need to have
1963 	 * their timings updated as if they had gone thru event_sched_in()
1964 	 * and event_sched_out(). This is required to get consistent timings
1965 	 * across the group. This also takes care of the case where the group
1966 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1967 	 * the time the event was actually stopped, such that time delta
1968 	 * calculation in update_event_times() is correct.
1969 	 */
1970 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1971 		if (event == partial_group)
1972 			simulate = true;
1973 
1974 		if (simulate) {
1975 			event->tstamp_running += now - event->tstamp_stopped;
1976 			event->tstamp_stopped = now;
1977 		} else {
1978 			event_sched_out(event, cpuctx, ctx);
1979 		}
1980 	}
1981 	event_sched_out(group_event, cpuctx, ctx);
1982 
1983 	pmu->cancel_txn(pmu);
1984 
1985 	perf_cpu_hrtimer_restart(cpuctx);
1986 
1987 	return -EAGAIN;
1988 }
1989 
1990 /*
1991  * Work out whether we can put this event group on the CPU now.
1992  */
1993 static int group_can_go_on(struct perf_event *event,
1994 			   struct perf_cpu_context *cpuctx,
1995 			   int can_add_hw)
1996 {
1997 	/*
1998 	 * Groups consisting entirely of software events can always go on.
1999 	 */
2000 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2001 		return 1;
2002 	/*
2003 	 * If an exclusive group is already on, no other hardware
2004 	 * events can go on.
2005 	 */
2006 	if (cpuctx->exclusive)
2007 		return 0;
2008 	/*
2009 	 * If this group is exclusive and there are already
2010 	 * events on the CPU, it can't go on.
2011 	 */
2012 	if (event->attr.exclusive && cpuctx->active_oncpu)
2013 		return 0;
2014 	/*
2015 	 * Otherwise, try to add it if all previous groups were able
2016 	 * to go on.
2017 	 */
2018 	return can_add_hw;
2019 }
2020 
2021 static void add_event_to_ctx(struct perf_event *event,
2022 			       struct perf_event_context *ctx)
2023 {
2024 	u64 tstamp = perf_event_time(event);
2025 
2026 	list_add_event(event, ctx);
2027 	perf_group_attach(event);
2028 	event->tstamp_enabled = tstamp;
2029 	event->tstamp_running = tstamp;
2030 	event->tstamp_stopped = tstamp;
2031 }
2032 
2033 static void task_ctx_sched_out(struct perf_event_context *ctx);
2034 static void
2035 ctx_sched_in(struct perf_event_context *ctx,
2036 	     struct perf_cpu_context *cpuctx,
2037 	     enum event_type_t event_type,
2038 	     struct task_struct *task);
2039 
2040 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2041 				struct perf_event_context *ctx,
2042 				struct task_struct *task)
2043 {
2044 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2045 	if (ctx)
2046 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2047 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2048 	if (ctx)
2049 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2050 }
2051 
2052 /*
2053  * Cross CPU call to install and enable a performance event
2054  *
2055  * Must be called with ctx->mutex held
2056  */
2057 static int  __perf_install_in_context(void *info)
2058 {
2059 	struct perf_event *event = info;
2060 	struct perf_event_context *ctx = event->ctx;
2061 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2062 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2063 	struct task_struct *task = current;
2064 
2065 	perf_ctx_lock(cpuctx, task_ctx);
2066 	perf_pmu_disable(cpuctx->ctx.pmu);
2067 
2068 	/*
2069 	 * If there was an active task_ctx schedule it out.
2070 	 */
2071 	if (task_ctx)
2072 		task_ctx_sched_out(task_ctx);
2073 
2074 	/*
2075 	 * If the context we're installing events in is not the
2076 	 * active task_ctx, flip them.
2077 	 */
2078 	if (ctx->task && task_ctx != ctx) {
2079 		if (task_ctx)
2080 			raw_spin_unlock(&task_ctx->lock);
2081 		raw_spin_lock(&ctx->lock);
2082 		task_ctx = ctx;
2083 	}
2084 
2085 	if (task_ctx) {
2086 		cpuctx->task_ctx = task_ctx;
2087 		task = task_ctx->task;
2088 	}
2089 
2090 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2091 
2092 	update_context_time(ctx);
2093 	/*
2094 	 * update cgrp time only if current cgrp
2095 	 * matches event->cgrp. Must be done before
2096 	 * calling add_event_to_ctx()
2097 	 */
2098 	update_cgrp_time_from_event(event);
2099 
2100 	add_event_to_ctx(event, ctx);
2101 
2102 	/*
2103 	 * Schedule everything back in
2104 	 */
2105 	perf_event_sched_in(cpuctx, task_ctx, task);
2106 
2107 	perf_pmu_enable(cpuctx->ctx.pmu);
2108 	perf_ctx_unlock(cpuctx, task_ctx);
2109 
2110 	return 0;
2111 }
2112 
2113 /*
2114  * Attach a performance event to a context
2115  *
2116  * First we add the event to the list with the hardware enable bit
2117  * in event->hw_config cleared.
2118  *
2119  * If the event is attached to a task which is on a CPU we use a smp
2120  * call to enable it in the task context. The task might have been
2121  * scheduled away, but we check this in the smp call again.
2122  */
2123 static void
2124 perf_install_in_context(struct perf_event_context *ctx,
2125 			struct perf_event *event,
2126 			int cpu)
2127 {
2128 	struct task_struct *task = ctx->task;
2129 
2130 	lockdep_assert_held(&ctx->mutex);
2131 
2132 	event->ctx = ctx;
2133 	if (event->cpu != -1)
2134 		event->cpu = cpu;
2135 
2136 	if (!task) {
2137 		/*
2138 		 * Per cpu events are installed via an smp call and
2139 		 * the install is always successful.
2140 		 */
2141 		cpu_function_call(cpu, __perf_install_in_context, event);
2142 		return;
2143 	}
2144 
2145 retry:
2146 	if (!task_function_call(task, __perf_install_in_context, event))
2147 		return;
2148 
2149 	raw_spin_lock_irq(&ctx->lock);
2150 	/*
2151 	 * If we failed to find a running task, but find the context active now
2152 	 * that we've acquired the ctx->lock, retry.
2153 	 */
2154 	if (ctx->is_active) {
2155 		raw_spin_unlock_irq(&ctx->lock);
2156 		/*
2157 		 * Reload the task pointer, it might have been changed by
2158 		 * a concurrent perf_event_context_sched_out().
2159 		 */
2160 		task = ctx->task;
2161 		goto retry;
2162 	}
2163 
2164 	/*
2165 	 * Since the task isn't running, its safe to add the event, us holding
2166 	 * the ctx->lock ensures the task won't get scheduled in.
2167 	 */
2168 	add_event_to_ctx(event, ctx);
2169 	raw_spin_unlock_irq(&ctx->lock);
2170 }
2171 
2172 /*
2173  * Put a event into inactive state and update time fields.
2174  * Enabling the leader of a group effectively enables all
2175  * the group members that aren't explicitly disabled, so we
2176  * have to update their ->tstamp_enabled also.
2177  * Note: this works for group members as well as group leaders
2178  * since the non-leader members' sibling_lists will be empty.
2179  */
2180 static void __perf_event_mark_enabled(struct perf_event *event)
2181 {
2182 	struct perf_event *sub;
2183 	u64 tstamp = perf_event_time(event);
2184 
2185 	event->state = PERF_EVENT_STATE_INACTIVE;
2186 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2187 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2188 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2189 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2190 	}
2191 }
2192 
2193 /*
2194  * Cross CPU call to enable a performance event
2195  */
2196 static int __perf_event_enable(void *info)
2197 {
2198 	struct perf_event *event = info;
2199 	struct perf_event_context *ctx = event->ctx;
2200 	struct perf_event *leader = event->group_leader;
2201 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2202 	int err;
2203 
2204 	/*
2205 	 * There's a time window between 'ctx->is_active' check
2206 	 * in perf_event_enable function and this place having:
2207 	 *   - IRQs on
2208 	 *   - ctx->lock unlocked
2209 	 *
2210 	 * where the task could be killed and 'ctx' deactivated
2211 	 * by perf_event_exit_task.
2212 	 */
2213 	if (!ctx->is_active)
2214 		return -EINVAL;
2215 
2216 	raw_spin_lock(&ctx->lock);
2217 	update_context_time(ctx);
2218 
2219 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2220 		goto unlock;
2221 
2222 	/*
2223 	 * set current task's cgroup time reference point
2224 	 */
2225 	perf_cgroup_set_timestamp(current, ctx);
2226 
2227 	__perf_event_mark_enabled(event);
2228 
2229 	if (!event_filter_match(event)) {
2230 		if (is_cgroup_event(event))
2231 			perf_cgroup_defer_enabled(event);
2232 		goto unlock;
2233 	}
2234 
2235 	/*
2236 	 * If the event is in a group and isn't the group leader,
2237 	 * then don't put it on unless the group is on.
2238 	 */
2239 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2240 		goto unlock;
2241 
2242 	if (!group_can_go_on(event, cpuctx, 1)) {
2243 		err = -EEXIST;
2244 	} else {
2245 		if (event == leader)
2246 			err = group_sched_in(event, cpuctx, ctx);
2247 		else
2248 			err = event_sched_in(event, cpuctx, ctx);
2249 	}
2250 
2251 	if (err) {
2252 		/*
2253 		 * If this event can't go on and it's part of a
2254 		 * group, then the whole group has to come off.
2255 		 */
2256 		if (leader != event) {
2257 			group_sched_out(leader, cpuctx, ctx);
2258 			perf_cpu_hrtimer_restart(cpuctx);
2259 		}
2260 		if (leader->attr.pinned) {
2261 			update_group_times(leader);
2262 			leader->state = PERF_EVENT_STATE_ERROR;
2263 		}
2264 	}
2265 
2266 unlock:
2267 	raw_spin_unlock(&ctx->lock);
2268 
2269 	return 0;
2270 }
2271 
2272 /*
2273  * Enable a event.
2274  *
2275  * If event->ctx is a cloned context, callers must make sure that
2276  * every task struct that event->ctx->task could possibly point to
2277  * remains valid.  This condition is satisfied when called through
2278  * perf_event_for_each_child or perf_event_for_each as described
2279  * for perf_event_disable.
2280  */
2281 static void _perf_event_enable(struct perf_event *event)
2282 {
2283 	struct perf_event_context *ctx = event->ctx;
2284 	struct task_struct *task = ctx->task;
2285 
2286 	if (!task) {
2287 		/*
2288 		 * Enable the event on the cpu that it's on
2289 		 */
2290 		cpu_function_call(event->cpu, __perf_event_enable, event);
2291 		return;
2292 	}
2293 
2294 	raw_spin_lock_irq(&ctx->lock);
2295 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2296 		goto out;
2297 
2298 	/*
2299 	 * If the event is in error state, clear that first.
2300 	 * That way, if we see the event in error state below, we
2301 	 * know that it has gone back into error state, as distinct
2302 	 * from the task having been scheduled away before the
2303 	 * cross-call arrived.
2304 	 */
2305 	if (event->state == PERF_EVENT_STATE_ERROR)
2306 		event->state = PERF_EVENT_STATE_OFF;
2307 
2308 retry:
2309 	if (!ctx->is_active) {
2310 		__perf_event_mark_enabled(event);
2311 		goto out;
2312 	}
2313 
2314 	raw_spin_unlock_irq(&ctx->lock);
2315 
2316 	if (!task_function_call(task, __perf_event_enable, event))
2317 		return;
2318 
2319 	raw_spin_lock_irq(&ctx->lock);
2320 
2321 	/*
2322 	 * If the context is active and the event is still off,
2323 	 * we need to retry the cross-call.
2324 	 */
2325 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2326 		/*
2327 		 * task could have been flipped by a concurrent
2328 		 * perf_event_context_sched_out()
2329 		 */
2330 		task = ctx->task;
2331 		goto retry;
2332 	}
2333 
2334 out:
2335 	raw_spin_unlock_irq(&ctx->lock);
2336 }
2337 
2338 /*
2339  * See perf_event_disable();
2340  */
2341 void perf_event_enable(struct perf_event *event)
2342 {
2343 	struct perf_event_context *ctx;
2344 
2345 	ctx = perf_event_ctx_lock(event);
2346 	_perf_event_enable(event);
2347 	perf_event_ctx_unlock(event, ctx);
2348 }
2349 EXPORT_SYMBOL_GPL(perf_event_enable);
2350 
2351 static int _perf_event_refresh(struct perf_event *event, int refresh)
2352 {
2353 	/*
2354 	 * not supported on inherited events
2355 	 */
2356 	if (event->attr.inherit || !is_sampling_event(event))
2357 		return -EINVAL;
2358 
2359 	atomic_add(refresh, &event->event_limit);
2360 	_perf_event_enable(event);
2361 
2362 	return 0;
2363 }
2364 
2365 /*
2366  * See perf_event_disable()
2367  */
2368 int perf_event_refresh(struct perf_event *event, int refresh)
2369 {
2370 	struct perf_event_context *ctx;
2371 	int ret;
2372 
2373 	ctx = perf_event_ctx_lock(event);
2374 	ret = _perf_event_refresh(event, refresh);
2375 	perf_event_ctx_unlock(event, ctx);
2376 
2377 	return ret;
2378 }
2379 EXPORT_SYMBOL_GPL(perf_event_refresh);
2380 
2381 static void ctx_sched_out(struct perf_event_context *ctx,
2382 			  struct perf_cpu_context *cpuctx,
2383 			  enum event_type_t event_type)
2384 {
2385 	struct perf_event *event;
2386 	int is_active = ctx->is_active;
2387 
2388 	ctx->is_active &= ~event_type;
2389 	if (likely(!ctx->nr_events))
2390 		return;
2391 
2392 	update_context_time(ctx);
2393 	update_cgrp_time_from_cpuctx(cpuctx);
2394 	if (!ctx->nr_active)
2395 		return;
2396 
2397 	perf_pmu_disable(ctx->pmu);
2398 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2399 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2400 			group_sched_out(event, cpuctx, ctx);
2401 	}
2402 
2403 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2404 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2405 			group_sched_out(event, cpuctx, ctx);
2406 	}
2407 	perf_pmu_enable(ctx->pmu);
2408 }
2409 
2410 /*
2411  * Test whether two contexts are equivalent, i.e. whether they have both been
2412  * cloned from the same version of the same context.
2413  *
2414  * Equivalence is measured using a generation number in the context that is
2415  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2416  * and list_del_event().
2417  */
2418 static int context_equiv(struct perf_event_context *ctx1,
2419 			 struct perf_event_context *ctx2)
2420 {
2421 	lockdep_assert_held(&ctx1->lock);
2422 	lockdep_assert_held(&ctx2->lock);
2423 
2424 	/* Pinning disables the swap optimization */
2425 	if (ctx1->pin_count || ctx2->pin_count)
2426 		return 0;
2427 
2428 	/* If ctx1 is the parent of ctx2 */
2429 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2430 		return 1;
2431 
2432 	/* If ctx2 is the parent of ctx1 */
2433 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2434 		return 1;
2435 
2436 	/*
2437 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2438 	 * hierarchy, see perf_event_init_context().
2439 	 */
2440 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2441 			ctx1->parent_gen == ctx2->parent_gen)
2442 		return 1;
2443 
2444 	/* Unmatched */
2445 	return 0;
2446 }
2447 
2448 static void __perf_event_sync_stat(struct perf_event *event,
2449 				     struct perf_event *next_event)
2450 {
2451 	u64 value;
2452 
2453 	if (!event->attr.inherit_stat)
2454 		return;
2455 
2456 	/*
2457 	 * Update the event value, we cannot use perf_event_read()
2458 	 * because we're in the middle of a context switch and have IRQs
2459 	 * disabled, which upsets smp_call_function_single(), however
2460 	 * we know the event must be on the current CPU, therefore we
2461 	 * don't need to use it.
2462 	 */
2463 	switch (event->state) {
2464 	case PERF_EVENT_STATE_ACTIVE:
2465 		event->pmu->read(event);
2466 		/* fall-through */
2467 
2468 	case PERF_EVENT_STATE_INACTIVE:
2469 		update_event_times(event);
2470 		break;
2471 
2472 	default:
2473 		break;
2474 	}
2475 
2476 	/*
2477 	 * In order to keep per-task stats reliable we need to flip the event
2478 	 * values when we flip the contexts.
2479 	 */
2480 	value = local64_read(&next_event->count);
2481 	value = local64_xchg(&event->count, value);
2482 	local64_set(&next_event->count, value);
2483 
2484 	swap(event->total_time_enabled, next_event->total_time_enabled);
2485 	swap(event->total_time_running, next_event->total_time_running);
2486 
2487 	/*
2488 	 * Since we swizzled the values, update the user visible data too.
2489 	 */
2490 	perf_event_update_userpage(event);
2491 	perf_event_update_userpage(next_event);
2492 }
2493 
2494 static void perf_event_sync_stat(struct perf_event_context *ctx,
2495 				   struct perf_event_context *next_ctx)
2496 {
2497 	struct perf_event *event, *next_event;
2498 
2499 	if (!ctx->nr_stat)
2500 		return;
2501 
2502 	update_context_time(ctx);
2503 
2504 	event = list_first_entry(&ctx->event_list,
2505 				   struct perf_event, event_entry);
2506 
2507 	next_event = list_first_entry(&next_ctx->event_list,
2508 					struct perf_event, event_entry);
2509 
2510 	while (&event->event_entry != &ctx->event_list &&
2511 	       &next_event->event_entry != &next_ctx->event_list) {
2512 
2513 		__perf_event_sync_stat(event, next_event);
2514 
2515 		event = list_next_entry(event, event_entry);
2516 		next_event = list_next_entry(next_event, event_entry);
2517 	}
2518 }
2519 
2520 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2521 					 struct task_struct *next)
2522 {
2523 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2524 	struct perf_event_context *next_ctx;
2525 	struct perf_event_context *parent, *next_parent;
2526 	struct perf_cpu_context *cpuctx;
2527 	int do_switch = 1;
2528 
2529 	if (likely(!ctx))
2530 		return;
2531 
2532 	cpuctx = __get_cpu_context(ctx);
2533 	if (!cpuctx->task_ctx)
2534 		return;
2535 
2536 	rcu_read_lock();
2537 	next_ctx = next->perf_event_ctxp[ctxn];
2538 	if (!next_ctx)
2539 		goto unlock;
2540 
2541 	parent = rcu_dereference(ctx->parent_ctx);
2542 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2543 
2544 	/* If neither context have a parent context; they cannot be clones. */
2545 	if (!parent && !next_parent)
2546 		goto unlock;
2547 
2548 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2549 		/*
2550 		 * Looks like the two contexts are clones, so we might be
2551 		 * able to optimize the context switch.  We lock both
2552 		 * contexts and check that they are clones under the
2553 		 * lock (including re-checking that neither has been
2554 		 * uncloned in the meantime).  It doesn't matter which
2555 		 * order we take the locks because no other cpu could
2556 		 * be trying to lock both of these tasks.
2557 		 */
2558 		raw_spin_lock(&ctx->lock);
2559 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2560 		if (context_equiv(ctx, next_ctx)) {
2561 			/*
2562 			 * XXX do we need a memory barrier of sorts
2563 			 * wrt to rcu_dereference() of perf_event_ctxp
2564 			 */
2565 			task->perf_event_ctxp[ctxn] = next_ctx;
2566 			next->perf_event_ctxp[ctxn] = ctx;
2567 			ctx->task = next;
2568 			next_ctx->task = task;
2569 
2570 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2571 
2572 			do_switch = 0;
2573 
2574 			perf_event_sync_stat(ctx, next_ctx);
2575 		}
2576 		raw_spin_unlock(&next_ctx->lock);
2577 		raw_spin_unlock(&ctx->lock);
2578 	}
2579 unlock:
2580 	rcu_read_unlock();
2581 
2582 	if (do_switch) {
2583 		raw_spin_lock(&ctx->lock);
2584 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2585 		cpuctx->task_ctx = NULL;
2586 		raw_spin_unlock(&ctx->lock);
2587 	}
2588 }
2589 
2590 void perf_sched_cb_dec(struct pmu *pmu)
2591 {
2592 	this_cpu_dec(perf_sched_cb_usages);
2593 }
2594 
2595 void perf_sched_cb_inc(struct pmu *pmu)
2596 {
2597 	this_cpu_inc(perf_sched_cb_usages);
2598 }
2599 
2600 /*
2601  * This function provides the context switch callback to the lower code
2602  * layer. It is invoked ONLY when the context switch callback is enabled.
2603  */
2604 static void perf_pmu_sched_task(struct task_struct *prev,
2605 				struct task_struct *next,
2606 				bool sched_in)
2607 {
2608 	struct perf_cpu_context *cpuctx;
2609 	struct pmu *pmu;
2610 	unsigned long flags;
2611 
2612 	if (prev == next)
2613 		return;
2614 
2615 	local_irq_save(flags);
2616 
2617 	rcu_read_lock();
2618 
2619 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2620 		if (pmu->sched_task) {
2621 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2622 
2623 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2624 
2625 			perf_pmu_disable(pmu);
2626 
2627 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2628 
2629 			perf_pmu_enable(pmu);
2630 
2631 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2632 		}
2633 	}
2634 
2635 	rcu_read_unlock();
2636 
2637 	local_irq_restore(flags);
2638 }
2639 
2640 #define for_each_task_context_nr(ctxn)					\
2641 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2642 
2643 /*
2644  * Called from scheduler to remove the events of the current task,
2645  * with interrupts disabled.
2646  *
2647  * We stop each event and update the event value in event->count.
2648  *
2649  * This does not protect us against NMI, but disable()
2650  * sets the disabled bit in the control field of event _before_
2651  * accessing the event control register. If a NMI hits, then it will
2652  * not restart the event.
2653  */
2654 void __perf_event_task_sched_out(struct task_struct *task,
2655 				 struct task_struct *next)
2656 {
2657 	int ctxn;
2658 
2659 	if (__this_cpu_read(perf_sched_cb_usages))
2660 		perf_pmu_sched_task(task, next, false);
2661 
2662 	for_each_task_context_nr(ctxn)
2663 		perf_event_context_sched_out(task, ctxn, next);
2664 
2665 	/*
2666 	 * if cgroup events exist on this CPU, then we need
2667 	 * to check if we have to switch out PMU state.
2668 	 * cgroup event are system-wide mode only
2669 	 */
2670 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2671 		perf_cgroup_sched_out(task, next);
2672 }
2673 
2674 static void task_ctx_sched_out(struct perf_event_context *ctx)
2675 {
2676 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2677 
2678 	if (!cpuctx->task_ctx)
2679 		return;
2680 
2681 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2682 		return;
2683 
2684 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2685 	cpuctx->task_ctx = NULL;
2686 }
2687 
2688 /*
2689  * Called with IRQs disabled
2690  */
2691 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2692 			      enum event_type_t event_type)
2693 {
2694 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2695 }
2696 
2697 static void
2698 ctx_pinned_sched_in(struct perf_event_context *ctx,
2699 		    struct perf_cpu_context *cpuctx)
2700 {
2701 	struct perf_event *event;
2702 
2703 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2704 		if (event->state <= PERF_EVENT_STATE_OFF)
2705 			continue;
2706 		if (!event_filter_match(event))
2707 			continue;
2708 
2709 		/* may need to reset tstamp_enabled */
2710 		if (is_cgroup_event(event))
2711 			perf_cgroup_mark_enabled(event, ctx);
2712 
2713 		if (group_can_go_on(event, cpuctx, 1))
2714 			group_sched_in(event, cpuctx, ctx);
2715 
2716 		/*
2717 		 * If this pinned group hasn't been scheduled,
2718 		 * put it in error state.
2719 		 */
2720 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2721 			update_group_times(event);
2722 			event->state = PERF_EVENT_STATE_ERROR;
2723 		}
2724 	}
2725 }
2726 
2727 static void
2728 ctx_flexible_sched_in(struct perf_event_context *ctx,
2729 		      struct perf_cpu_context *cpuctx)
2730 {
2731 	struct perf_event *event;
2732 	int can_add_hw = 1;
2733 
2734 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2735 		/* Ignore events in OFF or ERROR state */
2736 		if (event->state <= PERF_EVENT_STATE_OFF)
2737 			continue;
2738 		/*
2739 		 * Listen to the 'cpu' scheduling filter constraint
2740 		 * of events:
2741 		 */
2742 		if (!event_filter_match(event))
2743 			continue;
2744 
2745 		/* may need to reset tstamp_enabled */
2746 		if (is_cgroup_event(event))
2747 			perf_cgroup_mark_enabled(event, ctx);
2748 
2749 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2750 			if (group_sched_in(event, cpuctx, ctx))
2751 				can_add_hw = 0;
2752 		}
2753 	}
2754 }
2755 
2756 static void
2757 ctx_sched_in(struct perf_event_context *ctx,
2758 	     struct perf_cpu_context *cpuctx,
2759 	     enum event_type_t event_type,
2760 	     struct task_struct *task)
2761 {
2762 	u64 now;
2763 	int is_active = ctx->is_active;
2764 
2765 	ctx->is_active |= event_type;
2766 	if (likely(!ctx->nr_events))
2767 		return;
2768 
2769 	now = perf_clock();
2770 	ctx->timestamp = now;
2771 	perf_cgroup_set_timestamp(task, ctx);
2772 	/*
2773 	 * First go through the list and put on any pinned groups
2774 	 * in order to give them the best chance of going on.
2775 	 */
2776 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2777 		ctx_pinned_sched_in(ctx, cpuctx);
2778 
2779 	/* Then walk through the lower prio flexible groups */
2780 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2781 		ctx_flexible_sched_in(ctx, cpuctx);
2782 }
2783 
2784 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2785 			     enum event_type_t event_type,
2786 			     struct task_struct *task)
2787 {
2788 	struct perf_event_context *ctx = &cpuctx->ctx;
2789 
2790 	ctx_sched_in(ctx, cpuctx, event_type, task);
2791 }
2792 
2793 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2794 					struct task_struct *task)
2795 {
2796 	struct perf_cpu_context *cpuctx;
2797 
2798 	cpuctx = __get_cpu_context(ctx);
2799 	if (cpuctx->task_ctx == ctx)
2800 		return;
2801 
2802 	perf_ctx_lock(cpuctx, ctx);
2803 	perf_pmu_disable(ctx->pmu);
2804 	/*
2805 	 * We want to keep the following priority order:
2806 	 * cpu pinned (that don't need to move), task pinned,
2807 	 * cpu flexible, task flexible.
2808 	 */
2809 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2810 
2811 	if (ctx->nr_events)
2812 		cpuctx->task_ctx = ctx;
2813 
2814 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2815 
2816 	perf_pmu_enable(ctx->pmu);
2817 	perf_ctx_unlock(cpuctx, ctx);
2818 }
2819 
2820 /*
2821  * Called from scheduler to add the events of the current task
2822  * with interrupts disabled.
2823  *
2824  * We restore the event value and then enable it.
2825  *
2826  * This does not protect us against NMI, but enable()
2827  * sets the enabled bit in the control field of event _before_
2828  * accessing the event control register. If a NMI hits, then it will
2829  * keep the event running.
2830  */
2831 void __perf_event_task_sched_in(struct task_struct *prev,
2832 				struct task_struct *task)
2833 {
2834 	struct perf_event_context *ctx;
2835 	int ctxn;
2836 
2837 	for_each_task_context_nr(ctxn) {
2838 		ctx = task->perf_event_ctxp[ctxn];
2839 		if (likely(!ctx))
2840 			continue;
2841 
2842 		perf_event_context_sched_in(ctx, task);
2843 	}
2844 	/*
2845 	 * if cgroup events exist on this CPU, then we need
2846 	 * to check if we have to switch in PMU state.
2847 	 * cgroup event are system-wide mode only
2848 	 */
2849 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2850 		perf_cgroup_sched_in(prev, task);
2851 
2852 	if (__this_cpu_read(perf_sched_cb_usages))
2853 		perf_pmu_sched_task(prev, task, true);
2854 }
2855 
2856 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2857 {
2858 	u64 frequency = event->attr.sample_freq;
2859 	u64 sec = NSEC_PER_SEC;
2860 	u64 divisor, dividend;
2861 
2862 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2863 
2864 	count_fls = fls64(count);
2865 	nsec_fls = fls64(nsec);
2866 	frequency_fls = fls64(frequency);
2867 	sec_fls = 30;
2868 
2869 	/*
2870 	 * We got @count in @nsec, with a target of sample_freq HZ
2871 	 * the target period becomes:
2872 	 *
2873 	 *             @count * 10^9
2874 	 * period = -------------------
2875 	 *          @nsec * sample_freq
2876 	 *
2877 	 */
2878 
2879 	/*
2880 	 * Reduce accuracy by one bit such that @a and @b converge
2881 	 * to a similar magnitude.
2882 	 */
2883 #define REDUCE_FLS(a, b)		\
2884 do {					\
2885 	if (a##_fls > b##_fls) {	\
2886 		a >>= 1;		\
2887 		a##_fls--;		\
2888 	} else {			\
2889 		b >>= 1;		\
2890 		b##_fls--;		\
2891 	}				\
2892 } while (0)
2893 
2894 	/*
2895 	 * Reduce accuracy until either term fits in a u64, then proceed with
2896 	 * the other, so that finally we can do a u64/u64 division.
2897 	 */
2898 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2899 		REDUCE_FLS(nsec, frequency);
2900 		REDUCE_FLS(sec, count);
2901 	}
2902 
2903 	if (count_fls + sec_fls > 64) {
2904 		divisor = nsec * frequency;
2905 
2906 		while (count_fls + sec_fls > 64) {
2907 			REDUCE_FLS(count, sec);
2908 			divisor >>= 1;
2909 		}
2910 
2911 		dividend = count * sec;
2912 	} else {
2913 		dividend = count * sec;
2914 
2915 		while (nsec_fls + frequency_fls > 64) {
2916 			REDUCE_FLS(nsec, frequency);
2917 			dividend >>= 1;
2918 		}
2919 
2920 		divisor = nsec * frequency;
2921 	}
2922 
2923 	if (!divisor)
2924 		return dividend;
2925 
2926 	return div64_u64(dividend, divisor);
2927 }
2928 
2929 static DEFINE_PER_CPU(int, perf_throttled_count);
2930 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2931 
2932 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2933 {
2934 	struct hw_perf_event *hwc = &event->hw;
2935 	s64 period, sample_period;
2936 	s64 delta;
2937 
2938 	period = perf_calculate_period(event, nsec, count);
2939 
2940 	delta = (s64)(period - hwc->sample_period);
2941 	delta = (delta + 7) / 8; /* low pass filter */
2942 
2943 	sample_period = hwc->sample_period + delta;
2944 
2945 	if (!sample_period)
2946 		sample_period = 1;
2947 
2948 	hwc->sample_period = sample_period;
2949 
2950 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2951 		if (disable)
2952 			event->pmu->stop(event, PERF_EF_UPDATE);
2953 
2954 		local64_set(&hwc->period_left, 0);
2955 
2956 		if (disable)
2957 			event->pmu->start(event, PERF_EF_RELOAD);
2958 	}
2959 }
2960 
2961 /*
2962  * combine freq adjustment with unthrottling to avoid two passes over the
2963  * events. At the same time, make sure, having freq events does not change
2964  * the rate of unthrottling as that would introduce bias.
2965  */
2966 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2967 					   int needs_unthr)
2968 {
2969 	struct perf_event *event;
2970 	struct hw_perf_event *hwc;
2971 	u64 now, period = TICK_NSEC;
2972 	s64 delta;
2973 
2974 	/*
2975 	 * only need to iterate over all events iff:
2976 	 * - context have events in frequency mode (needs freq adjust)
2977 	 * - there are events to unthrottle on this cpu
2978 	 */
2979 	if (!(ctx->nr_freq || needs_unthr))
2980 		return;
2981 
2982 	raw_spin_lock(&ctx->lock);
2983 	perf_pmu_disable(ctx->pmu);
2984 
2985 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2986 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2987 			continue;
2988 
2989 		if (!event_filter_match(event))
2990 			continue;
2991 
2992 		perf_pmu_disable(event->pmu);
2993 
2994 		hwc = &event->hw;
2995 
2996 		if (hwc->interrupts == MAX_INTERRUPTS) {
2997 			hwc->interrupts = 0;
2998 			perf_log_throttle(event, 1);
2999 			event->pmu->start(event, 0);
3000 		}
3001 
3002 		if (!event->attr.freq || !event->attr.sample_freq)
3003 			goto next;
3004 
3005 		/*
3006 		 * stop the event and update event->count
3007 		 */
3008 		event->pmu->stop(event, PERF_EF_UPDATE);
3009 
3010 		now = local64_read(&event->count);
3011 		delta = now - hwc->freq_count_stamp;
3012 		hwc->freq_count_stamp = now;
3013 
3014 		/*
3015 		 * restart the event
3016 		 * reload only if value has changed
3017 		 * we have stopped the event so tell that
3018 		 * to perf_adjust_period() to avoid stopping it
3019 		 * twice.
3020 		 */
3021 		if (delta > 0)
3022 			perf_adjust_period(event, period, delta, false);
3023 
3024 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3025 	next:
3026 		perf_pmu_enable(event->pmu);
3027 	}
3028 
3029 	perf_pmu_enable(ctx->pmu);
3030 	raw_spin_unlock(&ctx->lock);
3031 }
3032 
3033 /*
3034  * Round-robin a context's events:
3035  */
3036 static void rotate_ctx(struct perf_event_context *ctx)
3037 {
3038 	/*
3039 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3040 	 * disabled by the inheritance code.
3041 	 */
3042 	if (!ctx->rotate_disable)
3043 		list_rotate_left(&ctx->flexible_groups);
3044 }
3045 
3046 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3047 {
3048 	struct perf_event_context *ctx = NULL;
3049 	int rotate = 0;
3050 
3051 	if (cpuctx->ctx.nr_events) {
3052 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3053 			rotate = 1;
3054 	}
3055 
3056 	ctx = cpuctx->task_ctx;
3057 	if (ctx && ctx->nr_events) {
3058 		if (ctx->nr_events != ctx->nr_active)
3059 			rotate = 1;
3060 	}
3061 
3062 	if (!rotate)
3063 		goto done;
3064 
3065 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3066 	perf_pmu_disable(cpuctx->ctx.pmu);
3067 
3068 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3069 	if (ctx)
3070 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3071 
3072 	rotate_ctx(&cpuctx->ctx);
3073 	if (ctx)
3074 		rotate_ctx(ctx);
3075 
3076 	perf_event_sched_in(cpuctx, ctx, current);
3077 
3078 	perf_pmu_enable(cpuctx->ctx.pmu);
3079 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3080 done:
3081 
3082 	return rotate;
3083 }
3084 
3085 #ifdef CONFIG_NO_HZ_FULL
3086 bool perf_event_can_stop_tick(void)
3087 {
3088 	if (atomic_read(&nr_freq_events) ||
3089 	    __this_cpu_read(perf_throttled_count))
3090 		return false;
3091 	else
3092 		return true;
3093 }
3094 #endif
3095 
3096 void perf_event_task_tick(void)
3097 {
3098 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3099 	struct perf_event_context *ctx, *tmp;
3100 	int throttled;
3101 
3102 	WARN_ON(!irqs_disabled());
3103 
3104 	__this_cpu_inc(perf_throttled_seq);
3105 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3106 
3107 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3108 		perf_adjust_freq_unthr_context(ctx, throttled);
3109 }
3110 
3111 static int event_enable_on_exec(struct perf_event *event,
3112 				struct perf_event_context *ctx)
3113 {
3114 	if (!event->attr.enable_on_exec)
3115 		return 0;
3116 
3117 	event->attr.enable_on_exec = 0;
3118 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3119 		return 0;
3120 
3121 	__perf_event_mark_enabled(event);
3122 
3123 	return 1;
3124 }
3125 
3126 /*
3127  * Enable all of a task's events that have been marked enable-on-exec.
3128  * This expects task == current.
3129  */
3130 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3131 {
3132 	struct perf_event_context *clone_ctx = NULL;
3133 	struct perf_event *event;
3134 	unsigned long flags;
3135 	int enabled = 0;
3136 	int ret;
3137 
3138 	local_irq_save(flags);
3139 	if (!ctx || !ctx->nr_events)
3140 		goto out;
3141 
3142 	/*
3143 	 * We must ctxsw out cgroup events to avoid conflict
3144 	 * when invoking perf_task_event_sched_in() later on
3145 	 * in this function. Otherwise we end up trying to
3146 	 * ctxswin cgroup events which are already scheduled
3147 	 * in.
3148 	 */
3149 	perf_cgroup_sched_out(current, NULL);
3150 
3151 	raw_spin_lock(&ctx->lock);
3152 	task_ctx_sched_out(ctx);
3153 
3154 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3155 		ret = event_enable_on_exec(event, ctx);
3156 		if (ret)
3157 			enabled = 1;
3158 	}
3159 
3160 	/*
3161 	 * Unclone this context if we enabled any event.
3162 	 */
3163 	if (enabled)
3164 		clone_ctx = unclone_ctx(ctx);
3165 
3166 	raw_spin_unlock(&ctx->lock);
3167 
3168 	/*
3169 	 * Also calls ctxswin for cgroup events, if any:
3170 	 */
3171 	perf_event_context_sched_in(ctx, ctx->task);
3172 out:
3173 	local_irq_restore(flags);
3174 
3175 	if (clone_ctx)
3176 		put_ctx(clone_ctx);
3177 }
3178 
3179 void perf_event_exec(void)
3180 {
3181 	struct perf_event_context *ctx;
3182 	int ctxn;
3183 
3184 	rcu_read_lock();
3185 	for_each_task_context_nr(ctxn) {
3186 		ctx = current->perf_event_ctxp[ctxn];
3187 		if (!ctx)
3188 			continue;
3189 
3190 		perf_event_enable_on_exec(ctx);
3191 	}
3192 	rcu_read_unlock();
3193 }
3194 
3195 /*
3196  * Cross CPU call to read the hardware event
3197  */
3198 static void __perf_event_read(void *info)
3199 {
3200 	struct perf_event *event = info;
3201 	struct perf_event_context *ctx = event->ctx;
3202 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3203 
3204 	/*
3205 	 * If this is a task context, we need to check whether it is
3206 	 * the current task context of this cpu.  If not it has been
3207 	 * scheduled out before the smp call arrived.  In that case
3208 	 * event->count would have been updated to a recent sample
3209 	 * when the event was scheduled out.
3210 	 */
3211 	if (ctx->task && cpuctx->task_ctx != ctx)
3212 		return;
3213 
3214 	raw_spin_lock(&ctx->lock);
3215 	if (ctx->is_active) {
3216 		update_context_time(ctx);
3217 		update_cgrp_time_from_event(event);
3218 	}
3219 	update_event_times(event);
3220 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3221 		event->pmu->read(event);
3222 	raw_spin_unlock(&ctx->lock);
3223 }
3224 
3225 static inline u64 perf_event_count(struct perf_event *event)
3226 {
3227 	if (event->pmu->count)
3228 		return event->pmu->count(event);
3229 
3230 	return __perf_event_count(event);
3231 }
3232 
3233 static u64 perf_event_read(struct perf_event *event)
3234 {
3235 	/*
3236 	 * If event is enabled and currently active on a CPU, update the
3237 	 * value in the event structure:
3238 	 */
3239 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3240 		smp_call_function_single(event->oncpu,
3241 					 __perf_event_read, event, 1);
3242 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3243 		struct perf_event_context *ctx = event->ctx;
3244 		unsigned long flags;
3245 
3246 		raw_spin_lock_irqsave(&ctx->lock, flags);
3247 		/*
3248 		 * may read while context is not active
3249 		 * (e.g., thread is blocked), in that case
3250 		 * we cannot update context time
3251 		 */
3252 		if (ctx->is_active) {
3253 			update_context_time(ctx);
3254 			update_cgrp_time_from_event(event);
3255 		}
3256 		update_event_times(event);
3257 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3258 	}
3259 
3260 	return perf_event_count(event);
3261 }
3262 
3263 /*
3264  * Initialize the perf_event context in a task_struct:
3265  */
3266 static void __perf_event_init_context(struct perf_event_context *ctx)
3267 {
3268 	raw_spin_lock_init(&ctx->lock);
3269 	mutex_init(&ctx->mutex);
3270 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3271 	INIT_LIST_HEAD(&ctx->pinned_groups);
3272 	INIT_LIST_HEAD(&ctx->flexible_groups);
3273 	INIT_LIST_HEAD(&ctx->event_list);
3274 	atomic_set(&ctx->refcount, 1);
3275 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3276 }
3277 
3278 static struct perf_event_context *
3279 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3280 {
3281 	struct perf_event_context *ctx;
3282 
3283 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3284 	if (!ctx)
3285 		return NULL;
3286 
3287 	__perf_event_init_context(ctx);
3288 	if (task) {
3289 		ctx->task = task;
3290 		get_task_struct(task);
3291 	}
3292 	ctx->pmu = pmu;
3293 
3294 	return ctx;
3295 }
3296 
3297 static struct task_struct *
3298 find_lively_task_by_vpid(pid_t vpid)
3299 {
3300 	struct task_struct *task;
3301 	int err;
3302 
3303 	rcu_read_lock();
3304 	if (!vpid)
3305 		task = current;
3306 	else
3307 		task = find_task_by_vpid(vpid);
3308 	if (task)
3309 		get_task_struct(task);
3310 	rcu_read_unlock();
3311 
3312 	if (!task)
3313 		return ERR_PTR(-ESRCH);
3314 
3315 	/* Reuse ptrace permission checks for now. */
3316 	err = -EACCES;
3317 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3318 		goto errout;
3319 
3320 	return task;
3321 errout:
3322 	put_task_struct(task);
3323 	return ERR_PTR(err);
3324 
3325 }
3326 
3327 /*
3328  * Returns a matching context with refcount and pincount.
3329  */
3330 static struct perf_event_context *
3331 find_get_context(struct pmu *pmu, struct task_struct *task,
3332 		struct perf_event *event)
3333 {
3334 	struct perf_event_context *ctx, *clone_ctx = NULL;
3335 	struct perf_cpu_context *cpuctx;
3336 	void *task_ctx_data = NULL;
3337 	unsigned long flags;
3338 	int ctxn, err;
3339 	int cpu = event->cpu;
3340 
3341 	if (!task) {
3342 		/* Must be root to operate on a CPU event: */
3343 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3344 			return ERR_PTR(-EACCES);
3345 
3346 		/*
3347 		 * We could be clever and allow to attach a event to an
3348 		 * offline CPU and activate it when the CPU comes up, but
3349 		 * that's for later.
3350 		 */
3351 		if (!cpu_online(cpu))
3352 			return ERR_PTR(-ENODEV);
3353 
3354 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3355 		ctx = &cpuctx->ctx;
3356 		get_ctx(ctx);
3357 		++ctx->pin_count;
3358 
3359 		return ctx;
3360 	}
3361 
3362 	err = -EINVAL;
3363 	ctxn = pmu->task_ctx_nr;
3364 	if (ctxn < 0)
3365 		goto errout;
3366 
3367 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3368 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3369 		if (!task_ctx_data) {
3370 			err = -ENOMEM;
3371 			goto errout;
3372 		}
3373 	}
3374 
3375 retry:
3376 	ctx = perf_lock_task_context(task, ctxn, &flags);
3377 	if (ctx) {
3378 		clone_ctx = unclone_ctx(ctx);
3379 		++ctx->pin_count;
3380 
3381 		if (task_ctx_data && !ctx->task_ctx_data) {
3382 			ctx->task_ctx_data = task_ctx_data;
3383 			task_ctx_data = NULL;
3384 		}
3385 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3386 
3387 		if (clone_ctx)
3388 			put_ctx(clone_ctx);
3389 	} else {
3390 		ctx = alloc_perf_context(pmu, task);
3391 		err = -ENOMEM;
3392 		if (!ctx)
3393 			goto errout;
3394 
3395 		if (task_ctx_data) {
3396 			ctx->task_ctx_data = task_ctx_data;
3397 			task_ctx_data = NULL;
3398 		}
3399 
3400 		err = 0;
3401 		mutex_lock(&task->perf_event_mutex);
3402 		/*
3403 		 * If it has already passed perf_event_exit_task().
3404 		 * we must see PF_EXITING, it takes this mutex too.
3405 		 */
3406 		if (task->flags & PF_EXITING)
3407 			err = -ESRCH;
3408 		else if (task->perf_event_ctxp[ctxn])
3409 			err = -EAGAIN;
3410 		else {
3411 			get_ctx(ctx);
3412 			++ctx->pin_count;
3413 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3414 		}
3415 		mutex_unlock(&task->perf_event_mutex);
3416 
3417 		if (unlikely(err)) {
3418 			put_ctx(ctx);
3419 
3420 			if (err == -EAGAIN)
3421 				goto retry;
3422 			goto errout;
3423 		}
3424 	}
3425 
3426 	kfree(task_ctx_data);
3427 	return ctx;
3428 
3429 errout:
3430 	kfree(task_ctx_data);
3431 	return ERR_PTR(err);
3432 }
3433 
3434 static void perf_event_free_filter(struct perf_event *event);
3435 static void perf_event_free_bpf_prog(struct perf_event *event);
3436 
3437 static void free_event_rcu(struct rcu_head *head)
3438 {
3439 	struct perf_event *event;
3440 
3441 	event = container_of(head, struct perf_event, rcu_head);
3442 	if (event->ns)
3443 		put_pid_ns(event->ns);
3444 	perf_event_free_filter(event);
3445 	kfree(event);
3446 }
3447 
3448 static void ring_buffer_attach(struct perf_event *event,
3449 			       struct ring_buffer *rb);
3450 
3451 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3452 {
3453 	if (event->parent)
3454 		return;
3455 
3456 	if (is_cgroup_event(event))
3457 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3458 }
3459 
3460 static void unaccount_event(struct perf_event *event)
3461 {
3462 	if (event->parent)
3463 		return;
3464 
3465 	if (event->attach_state & PERF_ATTACH_TASK)
3466 		static_key_slow_dec_deferred(&perf_sched_events);
3467 	if (event->attr.mmap || event->attr.mmap_data)
3468 		atomic_dec(&nr_mmap_events);
3469 	if (event->attr.comm)
3470 		atomic_dec(&nr_comm_events);
3471 	if (event->attr.task)
3472 		atomic_dec(&nr_task_events);
3473 	if (event->attr.freq)
3474 		atomic_dec(&nr_freq_events);
3475 	if (is_cgroup_event(event))
3476 		static_key_slow_dec_deferred(&perf_sched_events);
3477 	if (has_branch_stack(event))
3478 		static_key_slow_dec_deferred(&perf_sched_events);
3479 
3480 	unaccount_event_cpu(event, event->cpu);
3481 }
3482 
3483 /*
3484  * The following implement mutual exclusion of events on "exclusive" pmus
3485  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3486  * at a time, so we disallow creating events that might conflict, namely:
3487  *
3488  *  1) cpu-wide events in the presence of per-task events,
3489  *  2) per-task events in the presence of cpu-wide events,
3490  *  3) two matching events on the same context.
3491  *
3492  * The former two cases are handled in the allocation path (perf_event_alloc(),
3493  * __free_event()), the latter -- before the first perf_install_in_context().
3494  */
3495 static int exclusive_event_init(struct perf_event *event)
3496 {
3497 	struct pmu *pmu = event->pmu;
3498 
3499 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3500 		return 0;
3501 
3502 	/*
3503 	 * Prevent co-existence of per-task and cpu-wide events on the
3504 	 * same exclusive pmu.
3505 	 *
3506 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3507 	 * events on this "exclusive" pmu, positive means there are
3508 	 * per-task events.
3509 	 *
3510 	 * Since this is called in perf_event_alloc() path, event::ctx
3511 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3512 	 * to mean "per-task event", because unlike other attach states it
3513 	 * never gets cleared.
3514 	 */
3515 	if (event->attach_state & PERF_ATTACH_TASK) {
3516 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3517 			return -EBUSY;
3518 	} else {
3519 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3520 			return -EBUSY;
3521 	}
3522 
3523 	return 0;
3524 }
3525 
3526 static void exclusive_event_destroy(struct perf_event *event)
3527 {
3528 	struct pmu *pmu = event->pmu;
3529 
3530 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3531 		return;
3532 
3533 	/* see comment in exclusive_event_init() */
3534 	if (event->attach_state & PERF_ATTACH_TASK)
3535 		atomic_dec(&pmu->exclusive_cnt);
3536 	else
3537 		atomic_inc(&pmu->exclusive_cnt);
3538 }
3539 
3540 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3541 {
3542 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3543 	    (e1->cpu == e2->cpu ||
3544 	     e1->cpu == -1 ||
3545 	     e2->cpu == -1))
3546 		return true;
3547 	return false;
3548 }
3549 
3550 /* Called under the same ctx::mutex as perf_install_in_context() */
3551 static bool exclusive_event_installable(struct perf_event *event,
3552 					struct perf_event_context *ctx)
3553 {
3554 	struct perf_event *iter_event;
3555 	struct pmu *pmu = event->pmu;
3556 
3557 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3558 		return true;
3559 
3560 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3561 		if (exclusive_event_match(iter_event, event))
3562 			return false;
3563 	}
3564 
3565 	return true;
3566 }
3567 
3568 static void __free_event(struct perf_event *event)
3569 {
3570 	if (!event->parent) {
3571 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3572 			put_callchain_buffers();
3573 	}
3574 
3575 	perf_event_free_bpf_prog(event);
3576 
3577 	if (event->destroy)
3578 		event->destroy(event);
3579 
3580 	if (event->ctx)
3581 		put_ctx(event->ctx);
3582 
3583 	if (event->pmu) {
3584 		exclusive_event_destroy(event);
3585 		module_put(event->pmu->module);
3586 	}
3587 
3588 	call_rcu(&event->rcu_head, free_event_rcu);
3589 }
3590 
3591 static void _free_event(struct perf_event *event)
3592 {
3593 	irq_work_sync(&event->pending);
3594 
3595 	unaccount_event(event);
3596 
3597 	if (event->rb) {
3598 		/*
3599 		 * Can happen when we close an event with re-directed output.
3600 		 *
3601 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3602 		 * over us; possibly making our ring_buffer_put() the last.
3603 		 */
3604 		mutex_lock(&event->mmap_mutex);
3605 		ring_buffer_attach(event, NULL);
3606 		mutex_unlock(&event->mmap_mutex);
3607 	}
3608 
3609 	if (is_cgroup_event(event))
3610 		perf_detach_cgroup(event);
3611 
3612 	__free_event(event);
3613 }
3614 
3615 /*
3616  * Used to free events which have a known refcount of 1, such as in error paths
3617  * where the event isn't exposed yet and inherited events.
3618  */
3619 static void free_event(struct perf_event *event)
3620 {
3621 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3622 				"unexpected event refcount: %ld; ptr=%p\n",
3623 				atomic_long_read(&event->refcount), event)) {
3624 		/* leak to avoid use-after-free */
3625 		return;
3626 	}
3627 
3628 	_free_event(event);
3629 }
3630 
3631 /*
3632  * Remove user event from the owner task.
3633  */
3634 static void perf_remove_from_owner(struct perf_event *event)
3635 {
3636 	struct task_struct *owner;
3637 
3638 	rcu_read_lock();
3639 	owner = ACCESS_ONCE(event->owner);
3640 	/*
3641 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3642 	 * !owner it means the list deletion is complete and we can indeed
3643 	 * free this event, otherwise we need to serialize on
3644 	 * owner->perf_event_mutex.
3645 	 */
3646 	smp_read_barrier_depends();
3647 	if (owner) {
3648 		/*
3649 		 * Since delayed_put_task_struct() also drops the last
3650 		 * task reference we can safely take a new reference
3651 		 * while holding the rcu_read_lock().
3652 		 */
3653 		get_task_struct(owner);
3654 	}
3655 	rcu_read_unlock();
3656 
3657 	if (owner) {
3658 		/*
3659 		 * If we're here through perf_event_exit_task() we're already
3660 		 * holding ctx->mutex which would be an inversion wrt. the
3661 		 * normal lock order.
3662 		 *
3663 		 * However we can safely take this lock because its the child
3664 		 * ctx->mutex.
3665 		 */
3666 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3667 
3668 		/*
3669 		 * We have to re-check the event->owner field, if it is cleared
3670 		 * we raced with perf_event_exit_task(), acquiring the mutex
3671 		 * ensured they're done, and we can proceed with freeing the
3672 		 * event.
3673 		 */
3674 		if (event->owner)
3675 			list_del_init(&event->owner_entry);
3676 		mutex_unlock(&owner->perf_event_mutex);
3677 		put_task_struct(owner);
3678 	}
3679 }
3680 
3681 static void put_event(struct perf_event *event)
3682 {
3683 	struct perf_event_context *ctx;
3684 
3685 	if (!atomic_long_dec_and_test(&event->refcount))
3686 		return;
3687 
3688 	if (!is_kernel_event(event))
3689 		perf_remove_from_owner(event);
3690 
3691 	/*
3692 	 * There are two ways this annotation is useful:
3693 	 *
3694 	 *  1) there is a lock recursion from perf_event_exit_task
3695 	 *     see the comment there.
3696 	 *
3697 	 *  2) there is a lock-inversion with mmap_sem through
3698 	 *     perf_event_read_group(), which takes faults while
3699 	 *     holding ctx->mutex, however this is called after
3700 	 *     the last filedesc died, so there is no possibility
3701 	 *     to trigger the AB-BA case.
3702 	 */
3703 	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3704 	WARN_ON_ONCE(ctx->parent_ctx);
3705 	perf_remove_from_context(event, true);
3706 	perf_event_ctx_unlock(event, ctx);
3707 
3708 	_free_event(event);
3709 }
3710 
3711 int perf_event_release_kernel(struct perf_event *event)
3712 {
3713 	put_event(event);
3714 	return 0;
3715 }
3716 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3717 
3718 /*
3719  * Called when the last reference to the file is gone.
3720  */
3721 static int perf_release(struct inode *inode, struct file *file)
3722 {
3723 	put_event(file->private_data);
3724 	return 0;
3725 }
3726 
3727 /*
3728  * Remove all orphanes events from the context.
3729  */
3730 static void orphans_remove_work(struct work_struct *work)
3731 {
3732 	struct perf_event_context *ctx;
3733 	struct perf_event *event, *tmp;
3734 
3735 	ctx = container_of(work, struct perf_event_context,
3736 			   orphans_remove.work);
3737 
3738 	mutex_lock(&ctx->mutex);
3739 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3740 		struct perf_event *parent_event = event->parent;
3741 
3742 		if (!is_orphaned_child(event))
3743 			continue;
3744 
3745 		perf_remove_from_context(event, true);
3746 
3747 		mutex_lock(&parent_event->child_mutex);
3748 		list_del_init(&event->child_list);
3749 		mutex_unlock(&parent_event->child_mutex);
3750 
3751 		free_event(event);
3752 		put_event(parent_event);
3753 	}
3754 
3755 	raw_spin_lock_irq(&ctx->lock);
3756 	ctx->orphans_remove_sched = false;
3757 	raw_spin_unlock_irq(&ctx->lock);
3758 	mutex_unlock(&ctx->mutex);
3759 
3760 	put_ctx(ctx);
3761 }
3762 
3763 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3764 {
3765 	struct perf_event *child;
3766 	u64 total = 0;
3767 
3768 	*enabled = 0;
3769 	*running = 0;
3770 
3771 	mutex_lock(&event->child_mutex);
3772 	total += perf_event_read(event);
3773 	*enabled += event->total_time_enabled +
3774 			atomic64_read(&event->child_total_time_enabled);
3775 	*running += event->total_time_running +
3776 			atomic64_read(&event->child_total_time_running);
3777 
3778 	list_for_each_entry(child, &event->child_list, child_list) {
3779 		total += perf_event_read(child);
3780 		*enabled += child->total_time_enabled;
3781 		*running += child->total_time_running;
3782 	}
3783 	mutex_unlock(&event->child_mutex);
3784 
3785 	return total;
3786 }
3787 EXPORT_SYMBOL_GPL(perf_event_read_value);
3788 
3789 static int perf_event_read_group(struct perf_event *event,
3790 				   u64 read_format, char __user *buf)
3791 {
3792 	struct perf_event *leader = event->group_leader, *sub;
3793 	struct perf_event_context *ctx = leader->ctx;
3794 	int n = 0, size = 0, ret;
3795 	u64 count, enabled, running;
3796 	u64 values[5];
3797 
3798 	lockdep_assert_held(&ctx->mutex);
3799 
3800 	count = perf_event_read_value(leader, &enabled, &running);
3801 
3802 	values[n++] = 1 + leader->nr_siblings;
3803 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3804 		values[n++] = enabled;
3805 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3806 		values[n++] = running;
3807 	values[n++] = count;
3808 	if (read_format & PERF_FORMAT_ID)
3809 		values[n++] = primary_event_id(leader);
3810 
3811 	size = n * sizeof(u64);
3812 
3813 	if (copy_to_user(buf, values, size))
3814 		return -EFAULT;
3815 
3816 	ret = size;
3817 
3818 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3819 		n = 0;
3820 
3821 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3822 		if (read_format & PERF_FORMAT_ID)
3823 			values[n++] = primary_event_id(sub);
3824 
3825 		size = n * sizeof(u64);
3826 
3827 		if (copy_to_user(buf + ret, values, size)) {
3828 			return -EFAULT;
3829 		}
3830 
3831 		ret += size;
3832 	}
3833 
3834 	return ret;
3835 }
3836 
3837 static int perf_event_read_one(struct perf_event *event,
3838 				 u64 read_format, char __user *buf)
3839 {
3840 	u64 enabled, running;
3841 	u64 values[4];
3842 	int n = 0;
3843 
3844 	values[n++] = perf_event_read_value(event, &enabled, &running);
3845 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3846 		values[n++] = enabled;
3847 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3848 		values[n++] = running;
3849 	if (read_format & PERF_FORMAT_ID)
3850 		values[n++] = primary_event_id(event);
3851 
3852 	if (copy_to_user(buf, values, n * sizeof(u64)))
3853 		return -EFAULT;
3854 
3855 	return n * sizeof(u64);
3856 }
3857 
3858 static bool is_event_hup(struct perf_event *event)
3859 {
3860 	bool no_children;
3861 
3862 	if (event->state != PERF_EVENT_STATE_EXIT)
3863 		return false;
3864 
3865 	mutex_lock(&event->child_mutex);
3866 	no_children = list_empty(&event->child_list);
3867 	mutex_unlock(&event->child_mutex);
3868 	return no_children;
3869 }
3870 
3871 /*
3872  * Read the performance event - simple non blocking version for now
3873  */
3874 static ssize_t
3875 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3876 {
3877 	u64 read_format = event->attr.read_format;
3878 	int ret;
3879 
3880 	/*
3881 	 * Return end-of-file for a read on a event that is in
3882 	 * error state (i.e. because it was pinned but it couldn't be
3883 	 * scheduled on to the CPU at some point).
3884 	 */
3885 	if (event->state == PERF_EVENT_STATE_ERROR)
3886 		return 0;
3887 
3888 	if (count < event->read_size)
3889 		return -ENOSPC;
3890 
3891 	WARN_ON_ONCE(event->ctx->parent_ctx);
3892 	if (read_format & PERF_FORMAT_GROUP)
3893 		ret = perf_event_read_group(event, read_format, buf);
3894 	else
3895 		ret = perf_event_read_one(event, read_format, buf);
3896 
3897 	return ret;
3898 }
3899 
3900 static ssize_t
3901 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3902 {
3903 	struct perf_event *event = file->private_data;
3904 	struct perf_event_context *ctx;
3905 	int ret;
3906 
3907 	ctx = perf_event_ctx_lock(event);
3908 	ret = perf_read_hw(event, buf, count);
3909 	perf_event_ctx_unlock(event, ctx);
3910 
3911 	return ret;
3912 }
3913 
3914 static unsigned int perf_poll(struct file *file, poll_table *wait)
3915 {
3916 	struct perf_event *event = file->private_data;
3917 	struct ring_buffer *rb;
3918 	unsigned int events = POLLHUP;
3919 
3920 	poll_wait(file, &event->waitq, wait);
3921 
3922 	if (is_event_hup(event))
3923 		return events;
3924 
3925 	/*
3926 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3927 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3928 	 */
3929 	mutex_lock(&event->mmap_mutex);
3930 	rb = event->rb;
3931 	if (rb)
3932 		events = atomic_xchg(&rb->poll, 0);
3933 	mutex_unlock(&event->mmap_mutex);
3934 	return events;
3935 }
3936 
3937 static void _perf_event_reset(struct perf_event *event)
3938 {
3939 	(void)perf_event_read(event);
3940 	local64_set(&event->count, 0);
3941 	perf_event_update_userpage(event);
3942 }
3943 
3944 /*
3945  * Holding the top-level event's child_mutex means that any
3946  * descendant process that has inherited this event will block
3947  * in sync_child_event if it goes to exit, thus satisfying the
3948  * task existence requirements of perf_event_enable/disable.
3949  */
3950 static void perf_event_for_each_child(struct perf_event *event,
3951 					void (*func)(struct perf_event *))
3952 {
3953 	struct perf_event *child;
3954 
3955 	WARN_ON_ONCE(event->ctx->parent_ctx);
3956 
3957 	mutex_lock(&event->child_mutex);
3958 	func(event);
3959 	list_for_each_entry(child, &event->child_list, child_list)
3960 		func(child);
3961 	mutex_unlock(&event->child_mutex);
3962 }
3963 
3964 static void perf_event_for_each(struct perf_event *event,
3965 				  void (*func)(struct perf_event *))
3966 {
3967 	struct perf_event_context *ctx = event->ctx;
3968 	struct perf_event *sibling;
3969 
3970 	lockdep_assert_held(&ctx->mutex);
3971 
3972 	event = event->group_leader;
3973 
3974 	perf_event_for_each_child(event, func);
3975 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3976 		perf_event_for_each_child(sibling, func);
3977 }
3978 
3979 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3980 {
3981 	struct perf_event_context *ctx = event->ctx;
3982 	int ret = 0, active;
3983 	u64 value;
3984 
3985 	if (!is_sampling_event(event))
3986 		return -EINVAL;
3987 
3988 	if (copy_from_user(&value, arg, sizeof(value)))
3989 		return -EFAULT;
3990 
3991 	if (!value)
3992 		return -EINVAL;
3993 
3994 	raw_spin_lock_irq(&ctx->lock);
3995 	if (event->attr.freq) {
3996 		if (value > sysctl_perf_event_sample_rate) {
3997 			ret = -EINVAL;
3998 			goto unlock;
3999 		}
4000 
4001 		event->attr.sample_freq = value;
4002 	} else {
4003 		event->attr.sample_period = value;
4004 		event->hw.sample_period = value;
4005 	}
4006 
4007 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4008 	if (active) {
4009 		perf_pmu_disable(ctx->pmu);
4010 		event->pmu->stop(event, PERF_EF_UPDATE);
4011 	}
4012 
4013 	local64_set(&event->hw.period_left, 0);
4014 
4015 	if (active) {
4016 		event->pmu->start(event, PERF_EF_RELOAD);
4017 		perf_pmu_enable(ctx->pmu);
4018 	}
4019 
4020 unlock:
4021 	raw_spin_unlock_irq(&ctx->lock);
4022 
4023 	return ret;
4024 }
4025 
4026 static const struct file_operations perf_fops;
4027 
4028 static inline int perf_fget_light(int fd, struct fd *p)
4029 {
4030 	struct fd f = fdget(fd);
4031 	if (!f.file)
4032 		return -EBADF;
4033 
4034 	if (f.file->f_op != &perf_fops) {
4035 		fdput(f);
4036 		return -EBADF;
4037 	}
4038 	*p = f;
4039 	return 0;
4040 }
4041 
4042 static int perf_event_set_output(struct perf_event *event,
4043 				 struct perf_event *output_event);
4044 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4045 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4046 
4047 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4048 {
4049 	void (*func)(struct perf_event *);
4050 	u32 flags = arg;
4051 
4052 	switch (cmd) {
4053 	case PERF_EVENT_IOC_ENABLE:
4054 		func = _perf_event_enable;
4055 		break;
4056 	case PERF_EVENT_IOC_DISABLE:
4057 		func = _perf_event_disable;
4058 		break;
4059 	case PERF_EVENT_IOC_RESET:
4060 		func = _perf_event_reset;
4061 		break;
4062 
4063 	case PERF_EVENT_IOC_REFRESH:
4064 		return _perf_event_refresh(event, arg);
4065 
4066 	case PERF_EVENT_IOC_PERIOD:
4067 		return perf_event_period(event, (u64 __user *)arg);
4068 
4069 	case PERF_EVENT_IOC_ID:
4070 	{
4071 		u64 id = primary_event_id(event);
4072 
4073 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4074 			return -EFAULT;
4075 		return 0;
4076 	}
4077 
4078 	case PERF_EVENT_IOC_SET_OUTPUT:
4079 	{
4080 		int ret;
4081 		if (arg != -1) {
4082 			struct perf_event *output_event;
4083 			struct fd output;
4084 			ret = perf_fget_light(arg, &output);
4085 			if (ret)
4086 				return ret;
4087 			output_event = output.file->private_data;
4088 			ret = perf_event_set_output(event, output_event);
4089 			fdput(output);
4090 		} else {
4091 			ret = perf_event_set_output(event, NULL);
4092 		}
4093 		return ret;
4094 	}
4095 
4096 	case PERF_EVENT_IOC_SET_FILTER:
4097 		return perf_event_set_filter(event, (void __user *)arg);
4098 
4099 	case PERF_EVENT_IOC_SET_BPF:
4100 		return perf_event_set_bpf_prog(event, arg);
4101 
4102 	default:
4103 		return -ENOTTY;
4104 	}
4105 
4106 	if (flags & PERF_IOC_FLAG_GROUP)
4107 		perf_event_for_each(event, func);
4108 	else
4109 		perf_event_for_each_child(event, func);
4110 
4111 	return 0;
4112 }
4113 
4114 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4115 {
4116 	struct perf_event *event = file->private_data;
4117 	struct perf_event_context *ctx;
4118 	long ret;
4119 
4120 	ctx = perf_event_ctx_lock(event);
4121 	ret = _perf_ioctl(event, cmd, arg);
4122 	perf_event_ctx_unlock(event, ctx);
4123 
4124 	return ret;
4125 }
4126 
4127 #ifdef CONFIG_COMPAT
4128 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4129 				unsigned long arg)
4130 {
4131 	switch (_IOC_NR(cmd)) {
4132 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4133 	case _IOC_NR(PERF_EVENT_IOC_ID):
4134 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4135 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4136 			cmd &= ~IOCSIZE_MASK;
4137 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4138 		}
4139 		break;
4140 	}
4141 	return perf_ioctl(file, cmd, arg);
4142 }
4143 #else
4144 # define perf_compat_ioctl NULL
4145 #endif
4146 
4147 int perf_event_task_enable(void)
4148 {
4149 	struct perf_event_context *ctx;
4150 	struct perf_event *event;
4151 
4152 	mutex_lock(&current->perf_event_mutex);
4153 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4154 		ctx = perf_event_ctx_lock(event);
4155 		perf_event_for_each_child(event, _perf_event_enable);
4156 		perf_event_ctx_unlock(event, ctx);
4157 	}
4158 	mutex_unlock(&current->perf_event_mutex);
4159 
4160 	return 0;
4161 }
4162 
4163 int perf_event_task_disable(void)
4164 {
4165 	struct perf_event_context *ctx;
4166 	struct perf_event *event;
4167 
4168 	mutex_lock(&current->perf_event_mutex);
4169 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4170 		ctx = perf_event_ctx_lock(event);
4171 		perf_event_for_each_child(event, _perf_event_disable);
4172 		perf_event_ctx_unlock(event, ctx);
4173 	}
4174 	mutex_unlock(&current->perf_event_mutex);
4175 
4176 	return 0;
4177 }
4178 
4179 static int perf_event_index(struct perf_event *event)
4180 {
4181 	if (event->hw.state & PERF_HES_STOPPED)
4182 		return 0;
4183 
4184 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4185 		return 0;
4186 
4187 	return event->pmu->event_idx(event);
4188 }
4189 
4190 static void calc_timer_values(struct perf_event *event,
4191 				u64 *now,
4192 				u64 *enabled,
4193 				u64 *running)
4194 {
4195 	u64 ctx_time;
4196 
4197 	*now = perf_clock();
4198 	ctx_time = event->shadow_ctx_time + *now;
4199 	*enabled = ctx_time - event->tstamp_enabled;
4200 	*running = ctx_time - event->tstamp_running;
4201 }
4202 
4203 static void perf_event_init_userpage(struct perf_event *event)
4204 {
4205 	struct perf_event_mmap_page *userpg;
4206 	struct ring_buffer *rb;
4207 
4208 	rcu_read_lock();
4209 	rb = rcu_dereference(event->rb);
4210 	if (!rb)
4211 		goto unlock;
4212 
4213 	userpg = rb->user_page;
4214 
4215 	/* Allow new userspace to detect that bit 0 is deprecated */
4216 	userpg->cap_bit0_is_deprecated = 1;
4217 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4218 	userpg->data_offset = PAGE_SIZE;
4219 	userpg->data_size = perf_data_size(rb);
4220 
4221 unlock:
4222 	rcu_read_unlock();
4223 }
4224 
4225 void __weak arch_perf_update_userpage(
4226 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4227 {
4228 }
4229 
4230 /*
4231  * Callers need to ensure there can be no nesting of this function, otherwise
4232  * the seqlock logic goes bad. We can not serialize this because the arch
4233  * code calls this from NMI context.
4234  */
4235 void perf_event_update_userpage(struct perf_event *event)
4236 {
4237 	struct perf_event_mmap_page *userpg;
4238 	struct ring_buffer *rb;
4239 	u64 enabled, running, now;
4240 
4241 	rcu_read_lock();
4242 	rb = rcu_dereference(event->rb);
4243 	if (!rb)
4244 		goto unlock;
4245 
4246 	/*
4247 	 * compute total_time_enabled, total_time_running
4248 	 * based on snapshot values taken when the event
4249 	 * was last scheduled in.
4250 	 *
4251 	 * we cannot simply called update_context_time()
4252 	 * because of locking issue as we can be called in
4253 	 * NMI context
4254 	 */
4255 	calc_timer_values(event, &now, &enabled, &running);
4256 
4257 	userpg = rb->user_page;
4258 	/*
4259 	 * Disable preemption so as to not let the corresponding user-space
4260 	 * spin too long if we get preempted.
4261 	 */
4262 	preempt_disable();
4263 	++userpg->lock;
4264 	barrier();
4265 	userpg->index = perf_event_index(event);
4266 	userpg->offset = perf_event_count(event);
4267 	if (userpg->index)
4268 		userpg->offset -= local64_read(&event->hw.prev_count);
4269 
4270 	userpg->time_enabled = enabled +
4271 			atomic64_read(&event->child_total_time_enabled);
4272 
4273 	userpg->time_running = running +
4274 			atomic64_read(&event->child_total_time_running);
4275 
4276 	arch_perf_update_userpage(event, userpg, now);
4277 
4278 	barrier();
4279 	++userpg->lock;
4280 	preempt_enable();
4281 unlock:
4282 	rcu_read_unlock();
4283 }
4284 
4285 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4286 {
4287 	struct perf_event *event = vma->vm_file->private_data;
4288 	struct ring_buffer *rb;
4289 	int ret = VM_FAULT_SIGBUS;
4290 
4291 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4292 		if (vmf->pgoff == 0)
4293 			ret = 0;
4294 		return ret;
4295 	}
4296 
4297 	rcu_read_lock();
4298 	rb = rcu_dereference(event->rb);
4299 	if (!rb)
4300 		goto unlock;
4301 
4302 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4303 		goto unlock;
4304 
4305 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4306 	if (!vmf->page)
4307 		goto unlock;
4308 
4309 	get_page(vmf->page);
4310 	vmf->page->mapping = vma->vm_file->f_mapping;
4311 	vmf->page->index   = vmf->pgoff;
4312 
4313 	ret = 0;
4314 unlock:
4315 	rcu_read_unlock();
4316 
4317 	return ret;
4318 }
4319 
4320 static void ring_buffer_attach(struct perf_event *event,
4321 			       struct ring_buffer *rb)
4322 {
4323 	struct ring_buffer *old_rb = NULL;
4324 	unsigned long flags;
4325 
4326 	if (event->rb) {
4327 		/*
4328 		 * Should be impossible, we set this when removing
4329 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4330 		 */
4331 		WARN_ON_ONCE(event->rcu_pending);
4332 
4333 		old_rb = event->rb;
4334 		event->rcu_batches = get_state_synchronize_rcu();
4335 		event->rcu_pending = 1;
4336 
4337 		spin_lock_irqsave(&old_rb->event_lock, flags);
4338 		list_del_rcu(&event->rb_entry);
4339 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4340 	}
4341 
4342 	if (event->rcu_pending && rb) {
4343 		cond_synchronize_rcu(event->rcu_batches);
4344 		event->rcu_pending = 0;
4345 	}
4346 
4347 	if (rb) {
4348 		spin_lock_irqsave(&rb->event_lock, flags);
4349 		list_add_rcu(&event->rb_entry, &rb->event_list);
4350 		spin_unlock_irqrestore(&rb->event_lock, flags);
4351 	}
4352 
4353 	rcu_assign_pointer(event->rb, rb);
4354 
4355 	if (old_rb) {
4356 		ring_buffer_put(old_rb);
4357 		/*
4358 		 * Since we detached before setting the new rb, so that we
4359 		 * could attach the new rb, we could have missed a wakeup.
4360 		 * Provide it now.
4361 		 */
4362 		wake_up_all(&event->waitq);
4363 	}
4364 }
4365 
4366 static void ring_buffer_wakeup(struct perf_event *event)
4367 {
4368 	struct ring_buffer *rb;
4369 
4370 	rcu_read_lock();
4371 	rb = rcu_dereference(event->rb);
4372 	if (rb) {
4373 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4374 			wake_up_all(&event->waitq);
4375 	}
4376 	rcu_read_unlock();
4377 }
4378 
4379 static void rb_free_rcu(struct rcu_head *rcu_head)
4380 {
4381 	struct ring_buffer *rb;
4382 
4383 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4384 	rb_free(rb);
4385 }
4386 
4387 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4388 {
4389 	struct ring_buffer *rb;
4390 
4391 	rcu_read_lock();
4392 	rb = rcu_dereference(event->rb);
4393 	if (rb) {
4394 		if (!atomic_inc_not_zero(&rb->refcount))
4395 			rb = NULL;
4396 	}
4397 	rcu_read_unlock();
4398 
4399 	return rb;
4400 }
4401 
4402 void ring_buffer_put(struct ring_buffer *rb)
4403 {
4404 	if (!atomic_dec_and_test(&rb->refcount))
4405 		return;
4406 
4407 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4408 
4409 	call_rcu(&rb->rcu_head, rb_free_rcu);
4410 }
4411 
4412 static void perf_mmap_open(struct vm_area_struct *vma)
4413 {
4414 	struct perf_event *event = vma->vm_file->private_data;
4415 
4416 	atomic_inc(&event->mmap_count);
4417 	atomic_inc(&event->rb->mmap_count);
4418 
4419 	if (vma->vm_pgoff)
4420 		atomic_inc(&event->rb->aux_mmap_count);
4421 
4422 	if (event->pmu->event_mapped)
4423 		event->pmu->event_mapped(event);
4424 }
4425 
4426 /*
4427  * A buffer can be mmap()ed multiple times; either directly through the same
4428  * event, or through other events by use of perf_event_set_output().
4429  *
4430  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4431  * the buffer here, where we still have a VM context. This means we need
4432  * to detach all events redirecting to us.
4433  */
4434 static void perf_mmap_close(struct vm_area_struct *vma)
4435 {
4436 	struct perf_event *event = vma->vm_file->private_data;
4437 
4438 	struct ring_buffer *rb = ring_buffer_get(event);
4439 	struct user_struct *mmap_user = rb->mmap_user;
4440 	int mmap_locked = rb->mmap_locked;
4441 	unsigned long size = perf_data_size(rb);
4442 
4443 	if (event->pmu->event_unmapped)
4444 		event->pmu->event_unmapped(event);
4445 
4446 	/*
4447 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4448 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4449 	 * serialize with perf_mmap here.
4450 	 */
4451 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4452 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4453 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4454 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4455 
4456 		rb_free_aux(rb);
4457 		mutex_unlock(&event->mmap_mutex);
4458 	}
4459 
4460 	atomic_dec(&rb->mmap_count);
4461 
4462 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4463 		goto out_put;
4464 
4465 	ring_buffer_attach(event, NULL);
4466 	mutex_unlock(&event->mmap_mutex);
4467 
4468 	/* If there's still other mmap()s of this buffer, we're done. */
4469 	if (atomic_read(&rb->mmap_count))
4470 		goto out_put;
4471 
4472 	/*
4473 	 * No other mmap()s, detach from all other events that might redirect
4474 	 * into the now unreachable buffer. Somewhat complicated by the
4475 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4476 	 */
4477 again:
4478 	rcu_read_lock();
4479 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4480 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4481 			/*
4482 			 * This event is en-route to free_event() which will
4483 			 * detach it and remove it from the list.
4484 			 */
4485 			continue;
4486 		}
4487 		rcu_read_unlock();
4488 
4489 		mutex_lock(&event->mmap_mutex);
4490 		/*
4491 		 * Check we didn't race with perf_event_set_output() which can
4492 		 * swizzle the rb from under us while we were waiting to
4493 		 * acquire mmap_mutex.
4494 		 *
4495 		 * If we find a different rb; ignore this event, a next
4496 		 * iteration will no longer find it on the list. We have to
4497 		 * still restart the iteration to make sure we're not now
4498 		 * iterating the wrong list.
4499 		 */
4500 		if (event->rb == rb)
4501 			ring_buffer_attach(event, NULL);
4502 
4503 		mutex_unlock(&event->mmap_mutex);
4504 		put_event(event);
4505 
4506 		/*
4507 		 * Restart the iteration; either we're on the wrong list or
4508 		 * destroyed its integrity by doing a deletion.
4509 		 */
4510 		goto again;
4511 	}
4512 	rcu_read_unlock();
4513 
4514 	/*
4515 	 * It could be there's still a few 0-ref events on the list; they'll
4516 	 * get cleaned up by free_event() -- they'll also still have their
4517 	 * ref on the rb and will free it whenever they are done with it.
4518 	 *
4519 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4520 	 * undo the VM accounting.
4521 	 */
4522 
4523 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4524 	vma->vm_mm->pinned_vm -= mmap_locked;
4525 	free_uid(mmap_user);
4526 
4527 out_put:
4528 	ring_buffer_put(rb); /* could be last */
4529 }
4530 
4531 static const struct vm_operations_struct perf_mmap_vmops = {
4532 	.open		= perf_mmap_open,
4533 	.close		= perf_mmap_close, /* non mergable */
4534 	.fault		= perf_mmap_fault,
4535 	.page_mkwrite	= perf_mmap_fault,
4536 };
4537 
4538 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4539 {
4540 	struct perf_event *event = file->private_data;
4541 	unsigned long user_locked, user_lock_limit;
4542 	struct user_struct *user = current_user();
4543 	unsigned long locked, lock_limit;
4544 	struct ring_buffer *rb = NULL;
4545 	unsigned long vma_size;
4546 	unsigned long nr_pages;
4547 	long user_extra = 0, extra = 0;
4548 	int ret = 0, flags = 0;
4549 
4550 	/*
4551 	 * Don't allow mmap() of inherited per-task counters. This would
4552 	 * create a performance issue due to all children writing to the
4553 	 * same rb.
4554 	 */
4555 	if (event->cpu == -1 && event->attr.inherit)
4556 		return -EINVAL;
4557 
4558 	if (!(vma->vm_flags & VM_SHARED))
4559 		return -EINVAL;
4560 
4561 	vma_size = vma->vm_end - vma->vm_start;
4562 
4563 	if (vma->vm_pgoff == 0) {
4564 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4565 	} else {
4566 		/*
4567 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4568 		 * mapped, all subsequent mappings should have the same size
4569 		 * and offset. Must be above the normal perf buffer.
4570 		 */
4571 		u64 aux_offset, aux_size;
4572 
4573 		if (!event->rb)
4574 			return -EINVAL;
4575 
4576 		nr_pages = vma_size / PAGE_SIZE;
4577 
4578 		mutex_lock(&event->mmap_mutex);
4579 		ret = -EINVAL;
4580 
4581 		rb = event->rb;
4582 		if (!rb)
4583 			goto aux_unlock;
4584 
4585 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4586 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4587 
4588 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4589 			goto aux_unlock;
4590 
4591 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4592 			goto aux_unlock;
4593 
4594 		/* already mapped with a different offset */
4595 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4596 			goto aux_unlock;
4597 
4598 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4599 			goto aux_unlock;
4600 
4601 		/* already mapped with a different size */
4602 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4603 			goto aux_unlock;
4604 
4605 		if (!is_power_of_2(nr_pages))
4606 			goto aux_unlock;
4607 
4608 		if (!atomic_inc_not_zero(&rb->mmap_count))
4609 			goto aux_unlock;
4610 
4611 		if (rb_has_aux(rb)) {
4612 			atomic_inc(&rb->aux_mmap_count);
4613 			ret = 0;
4614 			goto unlock;
4615 		}
4616 
4617 		atomic_set(&rb->aux_mmap_count, 1);
4618 		user_extra = nr_pages;
4619 
4620 		goto accounting;
4621 	}
4622 
4623 	/*
4624 	 * If we have rb pages ensure they're a power-of-two number, so we
4625 	 * can do bitmasks instead of modulo.
4626 	 */
4627 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4628 		return -EINVAL;
4629 
4630 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4631 		return -EINVAL;
4632 
4633 	WARN_ON_ONCE(event->ctx->parent_ctx);
4634 again:
4635 	mutex_lock(&event->mmap_mutex);
4636 	if (event->rb) {
4637 		if (event->rb->nr_pages != nr_pages) {
4638 			ret = -EINVAL;
4639 			goto unlock;
4640 		}
4641 
4642 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4643 			/*
4644 			 * Raced against perf_mmap_close() through
4645 			 * perf_event_set_output(). Try again, hope for better
4646 			 * luck.
4647 			 */
4648 			mutex_unlock(&event->mmap_mutex);
4649 			goto again;
4650 		}
4651 
4652 		goto unlock;
4653 	}
4654 
4655 	user_extra = nr_pages + 1;
4656 
4657 accounting:
4658 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4659 
4660 	/*
4661 	 * Increase the limit linearly with more CPUs:
4662 	 */
4663 	user_lock_limit *= num_online_cpus();
4664 
4665 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4666 
4667 	if (user_locked > user_lock_limit)
4668 		extra = user_locked - user_lock_limit;
4669 
4670 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4671 	lock_limit >>= PAGE_SHIFT;
4672 	locked = vma->vm_mm->pinned_vm + extra;
4673 
4674 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4675 		!capable(CAP_IPC_LOCK)) {
4676 		ret = -EPERM;
4677 		goto unlock;
4678 	}
4679 
4680 	WARN_ON(!rb && event->rb);
4681 
4682 	if (vma->vm_flags & VM_WRITE)
4683 		flags |= RING_BUFFER_WRITABLE;
4684 
4685 	if (!rb) {
4686 		rb = rb_alloc(nr_pages,
4687 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4688 			      event->cpu, flags);
4689 
4690 		if (!rb) {
4691 			ret = -ENOMEM;
4692 			goto unlock;
4693 		}
4694 
4695 		atomic_set(&rb->mmap_count, 1);
4696 		rb->mmap_user = get_current_user();
4697 		rb->mmap_locked = extra;
4698 
4699 		ring_buffer_attach(event, rb);
4700 
4701 		perf_event_init_userpage(event);
4702 		perf_event_update_userpage(event);
4703 	} else {
4704 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4705 				   event->attr.aux_watermark, flags);
4706 		if (!ret)
4707 			rb->aux_mmap_locked = extra;
4708 	}
4709 
4710 unlock:
4711 	if (!ret) {
4712 		atomic_long_add(user_extra, &user->locked_vm);
4713 		vma->vm_mm->pinned_vm += extra;
4714 
4715 		atomic_inc(&event->mmap_count);
4716 	} else if (rb) {
4717 		atomic_dec(&rb->mmap_count);
4718 	}
4719 aux_unlock:
4720 	mutex_unlock(&event->mmap_mutex);
4721 
4722 	/*
4723 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4724 	 * vma.
4725 	 */
4726 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4727 	vma->vm_ops = &perf_mmap_vmops;
4728 
4729 	if (event->pmu->event_mapped)
4730 		event->pmu->event_mapped(event);
4731 
4732 	return ret;
4733 }
4734 
4735 static int perf_fasync(int fd, struct file *filp, int on)
4736 {
4737 	struct inode *inode = file_inode(filp);
4738 	struct perf_event *event = filp->private_data;
4739 	int retval;
4740 
4741 	mutex_lock(&inode->i_mutex);
4742 	retval = fasync_helper(fd, filp, on, &event->fasync);
4743 	mutex_unlock(&inode->i_mutex);
4744 
4745 	if (retval < 0)
4746 		return retval;
4747 
4748 	return 0;
4749 }
4750 
4751 static const struct file_operations perf_fops = {
4752 	.llseek			= no_llseek,
4753 	.release		= perf_release,
4754 	.read			= perf_read,
4755 	.poll			= perf_poll,
4756 	.unlocked_ioctl		= perf_ioctl,
4757 	.compat_ioctl		= perf_compat_ioctl,
4758 	.mmap			= perf_mmap,
4759 	.fasync			= perf_fasync,
4760 };
4761 
4762 /*
4763  * Perf event wakeup
4764  *
4765  * If there's data, ensure we set the poll() state and publish everything
4766  * to user-space before waking everybody up.
4767  */
4768 
4769 void perf_event_wakeup(struct perf_event *event)
4770 {
4771 	ring_buffer_wakeup(event);
4772 
4773 	if (event->pending_kill) {
4774 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4775 		event->pending_kill = 0;
4776 	}
4777 }
4778 
4779 static void perf_pending_event(struct irq_work *entry)
4780 {
4781 	struct perf_event *event = container_of(entry,
4782 			struct perf_event, pending);
4783 	int rctx;
4784 
4785 	rctx = perf_swevent_get_recursion_context();
4786 	/*
4787 	 * If we 'fail' here, that's OK, it means recursion is already disabled
4788 	 * and we won't recurse 'further'.
4789 	 */
4790 
4791 	if (event->pending_disable) {
4792 		event->pending_disable = 0;
4793 		__perf_event_disable(event);
4794 	}
4795 
4796 	if (event->pending_wakeup) {
4797 		event->pending_wakeup = 0;
4798 		perf_event_wakeup(event);
4799 	}
4800 
4801 	if (rctx >= 0)
4802 		perf_swevent_put_recursion_context(rctx);
4803 }
4804 
4805 /*
4806  * We assume there is only KVM supporting the callbacks.
4807  * Later on, we might change it to a list if there is
4808  * another virtualization implementation supporting the callbacks.
4809  */
4810 struct perf_guest_info_callbacks *perf_guest_cbs;
4811 
4812 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4813 {
4814 	perf_guest_cbs = cbs;
4815 	return 0;
4816 }
4817 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4818 
4819 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4820 {
4821 	perf_guest_cbs = NULL;
4822 	return 0;
4823 }
4824 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4825 
4826 static void
4827 perf_output_sample_regs(struct perf_output_handle *handle,
4828 			struct pt_regs *regs, u64 mask)
4829 {
4830 	int bit;
4831 
4832 	for_each_set_bit(bit, (const unsigned long *) &mask,
4833 			 sizeof(mask) * BITS_PER_BYTE) {
4834 		u64 val;
4835 
4836 		val = perf_reg_value(regs, bit);
4837 		perf_output_put(handle, val);
4838 	}
4839 }
4840 
4841 static void perf_sample_regs_user(struct perf_regs *regs_user,
4842 				  struct pt_regs *regs,
4843 				  struct pt_regs *regs_user_copy)
4844 {
4845 	if (user_mode(regs)) {
4846 		regs_user->abi = perf_reg_abi(current);
4847 		regs_user->regs = regs;
4848 	} else if (current->mm) {
4849 		perf_get_regs_user(regs_user, regs, regs_user_copy);
4850 	} else {
4851 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4852 		regs_user->regs = NULL;
4853 	}
4854 }
4855 
4856 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4857 				  struct pt_regs *regs)
4858 {
4859 	regs_intr->regs = regs;
4860 	regs_intr->abi  = perf_reg_abi(current);
4861 }
4862 
4863 
4864 /*
4865  * Get remaining task size from user stack pointer.
4866  *
4867  * It'd be better to take stack vma map and limit this more
4868  * precisly, but there's no way to get it safely under interrupt,
4869  * so using TASK_SIZE as limit.
4870  */
4871 static u64 perf_ustack_task_size(struct pt_regs *regs)
4872 {
4873 	unsigned long addr = perf_user_stack_pointer(regs);
4874 
4875 	if (!addr || addr >= TASK_SIZE)
4876 		return 0;
4877 
4878 	return TASK_SIZE - addr;
4879 }
4880 
4881 static u16
4882 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4883 			struct pt_regs *regs)
4884 {
4885 	u64 task_size;
4886 
4887 	/* No regs, no stack pointer, no dump. */
4888 	if (!regs)
4889 		return 0;
4890 
4891 	/*
4892 	 * Check if we fit in with the requested stack size into the:
4893 	 * - TASK_SIZE
4894 	 *   If we don't, we limit the size to the TASK_SIZE.
4895 	 *
4896 	 * - remaining sample size
4897 	 *   If we don't, we customize the stack size to
4898 	 *   fit in to the remaining sample size.
4899 	 */
4900 
4901 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4902 	stack_size = min(stack_size, (u16) task_size);
4903 
4904 	/* Current header size plus static size and dynamic size. */
4905 	header_size += 2 * sizeof(u64);
4906 
4907 	/* Do we fit in with the current stack dump size? */
4908 	if ((u16) (header_size + stack_size) < header_size) {
4909 		/*
4910 		 * If we overflow the maximum size for the sample,
4911 		 * we customize the stack dump size to fit in.
4912 		 */
4913 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4914 		stack_size = round_up(stack_size, sizeof(u64));
4915 	}
4916 
4917 	return stack_size;
4918 }
4919 
4920 static void
4921 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4922 			  struct pt_regs *regs)
4923 {
4924 	/* Case of a kernel thread, nothing to dump */
4925 	if (!regs) {
4926 		u64 size = 0;
4927 		perf_output_put(handle, size);
4928 	} else {
4929 		unsigned long sp;
4930 		unsigned int rem;
4931 		u64 dyn_size;
4932 
4933 		/*
4934 		 * We dump:
4935 		 * static size
4936 		 *   - the size requested by user or the best one we can fit
4937 		 *     in to the sample max size
4938 		 * data
4939 		 *   - user stack dump data
4940 		 * dynamic size
4941 		 *   - the actual dumped size
4942 		 */
4943 
4944 		/* Static size. */
4945 		perf_output_put(handle, dump_size);
4946 
4947 		/* Data. */
4948 		sp = perf_user_stack_pointer(regs);
4949 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4950 		dyn_size = dump_size - rem;
4951 
4952 		perf_output_skip(handle, rem);
4953 
4954 		/* Dynamic size. */
4955 		perf_output_put(handle, dyn_size);
4956 	}
4957 }
4958 
4959 static void __perf_event_header__init_id(struct perf_event_header *header,
4960 					 struct perf_sample_data *data,
4961 					 struct perf_event *event)
4962 {
4963 	u64 sample_type = event->attr.sample_type;
4964 
4965 	data->type = sample_type;
4966 	header->size += event->id_header_size;
4967 
4968 	if (sample_type & PERF_SAMPLE_TID) {
4969 		/* namespace issues */
4970 		data->tid_entry.pid = perf_event_pid(event, current);
4971 		data->tid_entry.tid = perf_event_tid(event, current);
4972 	}
4973 
4974 	if (sample_type & PERF_SAMPLE_TIME)
4975 		data->time = perf_event_clock(event);
4976 
4977 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4978 		data->id = primary_event_id(event);
4979 
4980 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4981 		data->stream_id = event->id;
4982 
4983 	if (sample_type & PERF_SAMPLE_CPU) {
4984 		data->cpu_entry.cpu	 = raw_smp_processor_id();
4985 		data->cpu_entry.reserved = 0;
4986 	}
4987 }
4988 
4989 void perf_event_header__init_id(struct perf_event_header *header,
4990 				struct perf_sample_data *data,
4991 				struct perf_event *event)
4992 {
4993 	if (event->attr.sample_id_all)
4994 		__perf_event_header__init_id(header, data, event);
4995 }
4996 
4997 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4998 					   struct perf_sample_data *data)
4999 {
5000 	u64 sample_type = data->type;
5001 
5002 	if (sample_type & PERF_SAMPLE_TID)
5003 		perf_output_put(handle, data->tid_entry);
5004 
5005 	if (sample_type & PERF_SAMPLE_TIME)
5006 		perf_output_put(handle, data->time);
5007 
5008 	if (sample_type & PERF_SAMPLE_ID)
5009 		perf_output_put(handle, data->id);
5010 
5011 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5012 		perf_output_put(handle, data->stream_id);
5013 
5014 	if (sample_type & PERF_SAMPLE_CPU)
5015 		perf_output_put(handle, data->cpu_entry);
5016 
5017 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5018 		perf_output_put(handle, data->id);
5019 }
5020 
5021 void perf_event__output_id_sample(struct perf_event *event,
5022 				  struct perf_output_handle *handle,
5023 				  struct perf_sample_data *sample)
5024 {
5025 	if (event->attr.sample_id_all)
5026 		__perf_event__output_id_sample(handle, sample);
5027 }
5028 
5029 static void perf_output_read_one(struct perf_output_handle *handle,
5030 				 struct perf_event *event,
5031 				 u64 enabled, u64 running)
5032 {
5033 	u64 read_format = event->attr.read_format;
5034 	u64 values[4];
5035 	int n = 0;
5036 
5037 	values[n++] = perf_event_count(event);
5038 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5039 		values[n++] = enabled +
5040 			atomic64_read(&event->child_total_time_enabled);
5041 	}
5042 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5043 		values[n++] = running +
5044 			atomic64_read(&event->child_total_time_running);
5045 	}
5046 	if (read_format & PERF_FORMAT_ID)
5047 		values[n++] = primary_event_id(event);
5048 
5049 	__output_copy(handle, values, n * sizeof(u64));
5050 }
5051 
5052 /*
5053  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5054  */
5055 static void perf_output_read_group(struct perf_output_handle *handle,
5056 			    struct perf_event *event,
5057 			    u64 enabled, u64 running)
5058 {
5059 	struct perf_event *leader = event->group_leader, *sub;
5060 	u64 read_format = event->attr.read_format;
5061 	u64 values[5];
5062 	int n = 0;
5063 
5064 	values[n++] = 1 + leader->nr_siblings;
5065 
5066 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5067 		values[n++] = enabled;
5068 
5069 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5070 		values[n++] = running;
5071 
5072 	if (leader != event)
5073 		leader->pmu->read(leader);
5074 
5075 	values[n++] = perf_event_count(leader);
5076 	if (read_format & PERF_FORMAT_ID)
5077 		values[n++] = primary_event_id(leader);
5078 
5079 	__output_copy(handle, values, n * sizeof(u64));
5080 
5081 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5082 		n = 0;
5083 
5084 		if ((sub != event) &&
5085 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5086 			sub->pmu->read(sub);
5087 
5088 		values[n++] = perf_event_count(sub);
5089 		if (read_format & PERF_FORMAT_ID)
5090 			values[n++] = primary_event_id(sub);
5091 
5092 		__output_copy(handle, values, n * sizeof(u64));
5093 	}
5094 }
5095 
5096 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5097 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5098 
5099 static void perf_output_read(struct perf_output_handle *handle,
5100 			     struct perf_event *event)
5101 {
5102 	u64 enabled = 0, running = 0, now;
5103 	u64 read_format = event->attr.read_format;
5104 
5105 	/*
5106 	 * compute total_time_enabled, total_time_running
5107 	 * based on snapshot values taken when the event
5108 	 * was last scheduled in.
5109 	 *
5110 	 * we cannot simply called update_context_time()
5111 	 * because of locking issue as we are called in
5112 	 * NMI context
5113 	 */
5114 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5115 		calc_timer_values(event, &now, &enabled, &running);
5116 
5117 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5118 		perf_output_read_group(handle, event, enabled, running);
5119 	else
5120 		perf_output_read_one(handle, event, enabled, running);
5121 }
5122 
5123 void perf_output_sample(struct perf_output_handle *handle,
5124 			struct perf_event_header *header,
5125 			struct perf_sample_data *data,
5126 			struct perf_event *event)
5127 {
5128 	u64 sample_type = data->type;
5129 
5130 	perf_output_put(handle, *header);
5131 
5132 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5133 		perf_output_put(handle, data->id);
5134 
5135 	if (sample_type & PERF_SAMPLE_IP)
5136 		perf_output_put(handle, data->ip);
5137 
5138 	if (sample_type & PERF_SAMPLE_TID)
5139 		perf_output_put(handle, data->tid_entry);
5140 
5141 	if (sample_type & PERF_SAMPLE_TIME)
5142 		perf_output_put(handle, data->time);
5143 
5144 	if (sample_type & PERF_SAMPLE_ADDR)
5145 		perf_output_put(handle, data->addr);
5146 
5147 	if (sample_type & PERF_SAMPLE_ID)
5148 		perf_output_put(handle, data->id);
5149 
5150 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5151 		perf_output_put(handle, data->stream_id);
5152 
5153 	if (sample_type & PERF_SAMPLE_CPU)
5154 		perf_output_put(handle, data->cpu_entry);
5155 
5156 	if (sample_type & PERF_SAMPLE_PERIOD)
5157 		perf_output_put(handle, data->period);
5158 
5159 	if (sample_type & PERF_SAMPLE_READ)
5160 		perf_output_read(handle, event);
5161 
5162 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5163 		if (data->callchain) {
5164 			int size = 1;
5165 
5166 			if (data->callchain)
5167 				size += data->callchain->nr;
5168 
5169 			size *= sizeof(u64);
5170 
5171 			__output_copy(handle, data->callchain, size);
5172 		} else {
5173 			u64 nr = 0;
5174 			perf_output_put(handle, nr);
5175 		}
5176 	}
5177 
5178 	if (sample_type & PERF_SAMPLE_RAW) {
5179 		if (data->raw) {
5180 			perf_output_put(handle, data->raw->size);
5181 			__output_copy(handle, data->raw->data,
5182 					   data->raw->size);
5183 		} else {
5184 			struct {
5185 				u32	size;
5186 				u32	data;
5187 			} raw = {
5188 				.size = sizeof(u32),
5189 				.data = 0,
5190 			};
5191 			perf_output_put(handle, raw);
5192 		}
5193 	}
5194 
5195 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5196 		if (data->br_stack) {
5197 			size_t size;
5198 
5199 			size = data->br_stack->nr
5200 			     * sizeof(struct perf_branch_entry);
5201 
5202 			perf_output_put(handle, data->br_stack->nr);
5203 			perf_output_copy(handle, data->br_stack->entries, size);
5204 		} else {
5205 			/*
5206 			 * we always store at least the value of nr
5207 			 */
5208 			u64 nr = 0;
5209 			perf_output_put(handle, nr);
5210 		}
5211 	}
5212 
5213 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5214 		u64 abi = data->regs_user.abi;
5215 
5216 		/*
5217 		 * If there are no regs to dump, notice it through
5218 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5219 		 */
5220 		perf_output_put(handle, abi);
5221 
5222 		if (abi) {
5223 			u64 mask = event->attr.sample_regs_user;
5224 			perf_output_sample_regs(handle,
5225 						data->regs_user.regs,
5226 						mask);
5227 		}
5228 	}
5229 
5230 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5231 		perf_output_sample_ustack(handle,
5232 					  data->stack_user_size,
5233 					  data->regs_user.regs);
5234 	}
5235 
5236 	if (sample_type & PERF_SAMPLE_WEIGHT)
5237 		perf_output_put(handle, data->weight);
5238 
5239 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5240 		perf_output_put(handle, data->data_src.val);
5241 
5242 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5243 		perf_output_put(handle, data->txn);
5244 
5245 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5246 		u64 abi = data->regs_intr.abi;
5247 		/*
5248 		 * If there are no regs to dump, notice it through
5249 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5250 		 */
5251 		perf_output_put(handle, abi);
5252 
5253 		if (abi) {
5254 			u64 mask = event->attr.sample_regs_intr;
5255 
5256 			perf_output_sample_regs(handle,
5257 						data->regs_intr.regs,
5258 						mask);
5259 		}
5260 	}
5261 
5262 	if (!event->attr.watermark) {
5263 		int wakeup_events = event->attr.wakeup_events;
5264 
5265 		if (wakeup_events) {
5266 			struct ring_buffer *rb = handle->rb;
5267 			int events = local_inc_return(&rb->events);
5268 
5269 			if (events >= wakeup_events) {
5270 				local_sub(wakeup_events, &rb->events);
5271 				local_inc(&rb->wakeup);
5272 			}
5273 		}
5274 	}
5275 }
5276 
5277 void perf_prepare_sample(struct perf_event_header *header,
5278 			 struct perf_sample_data *data,
5279 			 struct perf_event *event,
5280 			 struct pt_regs *regs)
5281 {
5282 	u64 sample_type = event->attr.sample_type;
5283 
5284 	header->type = PERF_RECORD_SAMPLE;
5285 	header->size = sizeof(*header) + event->header_size;
5286 
5287 	header->misc = 0;
5288 	header->misc |= perf_misc_flags(regs);
5289 
5290 	__perf_event_header__init_id(header, data, event);
5291 
5292 	if (sample_type & PERF_SAMPLE_IP)
5293 		data->ip = perf_instruction_pointer(regs);
5294 
5295 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5296 		int size = 1;
5297 
5298 		data->callchain = perf_callchain(event, regs);
5299 
5300 		if (data->callchain)
5301 			size += data->callchain->nr;
5302 
5303 		header->size += size * sizeof(u64);
5304 	}
5305 
5306 	if (sample_type & PERF_SAMPLE_RAW) {
5307 		int size = sizeof(u32);
5308 
5309 		if (data->raw)
5310 			size += data->raw->size;
5311 		else
5312 			size += sizeof(u32);
5313 
5314 		WARN_ON_ONCE(size & (sizeof(u64)-1));
5315 		header->size += size;
5316 	}
5317 
5318 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5319 		int size = sizeof(u64); /* nr */
5320 		if (data->br_stack) {
5321 			size += data->br_stack->nr
5322 			      * sizeof(struct perf_branch_entry);
5323 		}
5324 		header->size += size;
5325 	}
5326 
5327 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5328 		perf_sample_regs_user(&data->regs_user, regs,
5329 				      &data->regs_user_copy);
5330 
5331 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5332 		/* regs dump ABI info */
5333 		int size = sizeof(u64);
5334 
5335 		if (data->regs_user.regs) {
5336 			u64 mask = event->attr.sample_regs_user;
5337 			size += hweight64(mask) * sizeof(u64);
5338 		}
5339 
5340 		header->size += size;
5341 	}
5342 
5343 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5344 		/*
5345 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5346 		 * processed as the last one or have additional check added
5347 		 * in case new sample type is added, because we could eat
5348 		 * up the rest of the sample size.
5349 		 */
5350 		u16 stack_size = event->attr.sample_stack_user;
5351 		u16 size = sizeof(u64);
5352 
5353 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5354 						     data->regs_user.regs);
5355 
5356 		/*
5357 		 * If there is something to dump, add space for the dump
5358 		 * itself and for the field that tells the dynamic size,
5359 		 * which is how many have been actually dumped.
5360 		 */
5361 		if (stack_size)
5362 			size += sizeof(u64) + stack_size;
5363 
5364 		data->stack_user_size = stack_size;
5365 		header->size += size;
5366 	}
5367 
5368 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5369 		/* regs dump ABI info */
5370 		int size = sizeof(u64);
5371 
5372 		perf_sample_regs_intr(&data->regs_intr, regs);
5373 
5374 		if (data->regs_intr.regs) {
5375 			u64 mask = event->attr.sample_regs_intr;
5376 
5377 			size += hweight64(mask) * sizeof(u64);
5378 		}
5379 
5380 		header->size += size;
5381 	}
5382 }
5383 
5384 static void perf_event_output(struct perf_event *event,
5385 				struct perf_sample_data *data,
5386 				struct pt_regs *regs)
5387 {
5388 	struct perf_output_handle handle;
5389 	struct perf_event_header header;
5390 
5391 	/* protect the callchain buffers */
5392 	rcu_read_lock();
5393 
5394 	perf_prepare_sample(&header, data, event, regs);
5395 
5396 	if (perf_output_begin(&handle, event, header.size))
5397 		goto exit;
5398 
5399 	perf_output_sample(&handle, &header, data, event);
5400 
5401 	perf_output_end(&handle);
5402 
5403 exit:
5404 	rcu_read_unlock();
5405 }
5406 
5407 /*
5408  * read event_id
5409  */
5410 
5411 struct perf_read_event {
5412 	struct perf_event_header	header;
5413 
5414 	u32				pid;
5415 	u32				tid;
5416 };
5417 
5418 static void
5419 perf_event_read_event(struct perf_event *event,
5420 			struct task_struct *task)
5421 {
5422 	struct perf_output_handle handle;
5423 	struct perf_sample_data sample;
5424 	struct perf_read_event read_event = {
5425 		.header = {
5426 			.type = PERF_RECORD_READ,
5427 			.misc = 0,
5428 			.size = sizeof(read_event) + event->read_size,
5429 		},
5430 		.pid = perf_event_pid(event, task),
5431 		.tid = perf_event_tid(event, task),
5432 	};
5433 	int ret;
5434 
5435 	perf_event_header__init_id(&read_event.header, &sample, event);
5436 	ret = perf_output_begin(&handle, event, read_event.header.size);
5437 	if (ret)
5438 		return;
5439 
5440 	perf_output_put(&handle, read_event);
5441 	perf_output_read(&handle, event);
5442 	perf_event__output_id_sample(event, &handle, &sample);
5443 
5444 	perf_output_end(&handle);
5445 }
5446 
5447 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5448 
5449 static void
5450 perf_event_aux_ctx(struct perf_event_context *ctx,
5451 		   perf_event_aux_output_cb output,
5452 		   void *data)
5453 {
5454 	struct perf_event *event;
5455 
5456 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5457 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5458 			continue;
5459 		if (!event_filter_match(event))
5460 			continue;
5461 		output(event, data);
5462 	}
5463 }
5464 
5465 static void
5466 perf_event_aux(perf_event_aux_output_cb output, void *data,
5467 	       struct perf_event_context *task_ctx)
5468 {
5469 	struct perf_cpu_context *cpuctx;
5470 	struct perf_event_context *ctx;
5471 	struct pmu *pmu;
5472 	int ctxn;
5473 
5474 	rcu_read_lock();
5475 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5476 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5477 		if (cpuctx->unique_pmu != pmu)
5478 			goto next;
5479 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5480 		if (task_ctx)
5481 			goto next;
5482 		ctxn = pmu->task_ctx_nr;
5483 		if (ctxn < 0)
5484 			goto next;
5485 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5486 		if (ctx)
5487 			perf_event_aux_ctx(ctx, output, data);
5488 next:
5489 		put_cpu_ptr(pmu->pmu_cpu_context);
5490 	}
5491 
5492 	if (task_ctx) {
5493 		preempt_disable();
5494 		perf_event_aux_ctx(task_ctx, output, data);
5495 		preempt_enable();
5496 	}
5497 	rcu_read_unlock();
5498 }
5499 
5500 /*
5501  * task tracking -- fork/exit
5502  *
5503  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5504  */
5505 
5506 struct perf_task_event {
5507 	struct task_struct		*task;
5508 	struct perf_event_context	*task_ctx;
5509 
5510 	struct {
5511 		struct perf_event_header	header;
5512 
5513 		u32				pid;
5514 		u32				ppid;
5515 		u32				tid;
5516 		u32				ptid;
5517 		u64				time;
5518 	} event_id;
5519 };
5520 
5521 static int perf_event_task_match(struct perf_event *event)
5522 {
5523 	return event->attr.comm  || event->attr.mmap ||
5524 	       event->attr.mmap2 || event->attr.mmap_data ||
5525 	       event->attr.task;
5526 }
5527 
5528 static void perf_event_task_output(struct perf_event *event,
5529 				   void *data)
5530 {
5531 	struct perf_task_event *task_event = data;
5532 	struct perf_output_handle handle;
5533 	struct perf_sample_data	sample;
5534 	struct task_struct *task = task_event->task;
5535 	int ret, size = task_event->event_id.header.size;
5536 
5537 	if (!perf_event_task_match(event))
5538 		return;
5539 
5540 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5541 
5542 	ret = perf_output_begin(&handle, event,
5543 				task_event->event_id.header.size);
5544 	if (ret)
5545 		goto out;
5546 
5547 	task_event->event_id.pid = perf_event_pid(event, task);
5548 	task_event->event_id.ppid = perf_event_pid(event, current);
5549 
5550 	task_event->event_id.tid = perf_event_tid(event, task);
5551 	task_event->event_id.ptid = perf_event_tid(event, current);
5552 
5553 	task_event->event_id.time = perf_event_clock(event);
5554 
5555 	perf_output_put(&handle, task_event->event_id);
5556 
5557 	perf_event__output_id_sample(event, &handle, &sample);
5558 
5559 	perf_output_end(&handle);
5560 out:
5561 	task_event->event_id.header.size = size;
5562 }
5563 
5564 static void perf_event_task(struct task_struct *task,
5565 			      struct perf_event_context *task_ctx,
5566 			      int new)
5567 {
5568 	struct perf_task_event task_event;
5569 
5570 	if (!atomic_read(&nr_comm_events) &&
5571 	    !atomic_read(&nr_mmap_events) &&
5572 	    !atomic_read(&nr_task_events))
5573 		return;
5574 
5575 	task_event = (struct perf_task_event){
5576 		.task	  = task,
5577 		.task_ctx = task_ctx,
5578 		.event_id    = {
5579 			.header = {
5580 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5581 				.misc = 0,
5582 				.size = sizeof(task_event.event_id),
5583 			},
5584 			/* .pid  */
5585 			/* .ppid */
5586 			/* .tid  */
5587 			/* .ptid */
5588 			/* .time */
5589 		},
5590 	};
5591 
5592 	perf_event_aux(perf_event_task_output,
5593 		       &task_event,
5594 		       task_ctx);
5595 }
5596 
5597 void perf_event_fork(struct task_struct *task)
5598 {
5599 	perf_event_task(task, NULL, 1);
5600 }
5601 
5602 /*
5603  * comm tracking
5604  */
5605 
5606 struct perf_comm_event {
5607 	struct task_struct	*task;
5608 	char			*comm;
5609 	int			comm_size;
5610 
5611 	struct {
5612 		struct perf_event_header	header;
5613 
5614 		u32				pid;
5615 		u32				tid;
5616 	} event_id;
5617 };
5618 
5619 static int perf_event_comm_match(struct perf_event *event)
5620 {
5621 	return event->attr.comm;
5622 }
5623 
5624 static void perf_event_comm_output(struct perf_event *event,
5625 				   void *data)
5626 {
5627 	struct perf_comm_event *comm_event = data;
5628 	struct perf_output_handle handle;
5629 	struct perf_sample_data sample;
5630 	int size = comm_event->event_id.header.size;
5631 	int ret;
5632 
5633 	if (!perf_event_comm_match(event))
5634 		return;
5635 
5636 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5637 	ret = perf_output_begin(&handle, event,
5638 				comm_event->event_id.header.size);
5639 
5640 	if (ret)
5641 		goto out;
5642 
5643 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5644 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5645 
5646 	perf_output_put(&handle, comm_event->event_id);
5647 	__output_copy(&handle, comm_event->comm,
5648 				   comm_event->comm_size);
5649 
5650 	perf_event__output_id_sample(event, &handle, &sample);
5651 
5652 	perf_output_end(&handle);
5653 out:
5654 	comm_event->event_id.header.size = size;
5655 }
5656 
5657 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5658 {
5659 	char comm[TASK_COMM_LEN];
5660 	unsigned int size;
5661 
5662 	memset(comm, 0, sizeof(comm));
5663 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5664 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5665 
5666 	comm_event->comm = comm;
5667 	comm_event->comm_size = size;
5668 
5669 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5670 
5671 	perf_event_aux(perf_event_comm_output,
5672 		       comm_event,
5673 		       NULL);
5674 }
5675 
5676 void perf_event_comm(struct task_struct *task, bool exec)
5677 {
5678 	struct perf_comm_event comm_event;
5679 
5680 	if (!atomic_read(&nr_comm_events))
5681 		return;
5682 
5683 	comm_event = (struct perf_comm_event){
5684 		.task	= task,
5685 		/* .comm      */
5686 		/* .comm_size */
5687 		.event_id  = {
5688 			.header = {
5689 				.type = PERF_RECORD_COMM,
5690 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5691 				/* .size */
5692 			},
5693 			/* .pid */
5694 			/* .tid */
5695 		},
5696 	};
5697 
5698 	perf_event_comm_event(&comm_event);
5699 }
5700 
5701 /*
5702  * mmap tracking
5703  */
5704 
5705 struct perf_mmap_event {
5706 	struct vm_area_struct	*vma;
5707 
5708 	const char		*file_name;
5709 	int			file_size;
5710 	int			maj, min;
5711 	u64			ino;
5712 	u64			ino_generation;
5713 	u32			prot, flags;
5714 
5715 	struct {
5716 		struct perf_event_header	header;
5717 
5718 		u32				pid;
5719 		u32				tid;
5720 		u64				start;
5721 		u64				len;
5722 		u64				pgoff;
5723 	} event_id;
5724 };
5725 
5726 static int perf_event_mmap_match(struct perf_event *event,
5727 				 void *data)
5728 {
5729 	struct perf_mmap_event *mmap_event = data;
5730 	struct vm_area_struct *vma = mmap_event->vma;
5731 	int executable = vma->vm_flags & VM_EXEC;
5732 
5733 	return (!executable && event->attr.mmap_data) ||
5734 	       (executable && (event->attr.mmap || event->attr.mmap2));
5735 }
5736 
5737 static void perf_event_mmap_output(struct perf_event *event,
5738 				   void *data)
5739 {
5740 	struct perf_mmap_event *mmap_event = data;
5741 	struct perf_output_handle handle;
5742 	struct perf_sample_data sample;
5743 	int size = mmap_event->event_id.header.size;
5744 	int ret;
5745 
5746 	if (!perf_event_mmap_match(event, data))
5747 		return;
5748 
5749 	if (event->attr.mmap2) {
5750 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5751 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5752 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5753 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5754 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5755 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5756 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5757 	}
5758 
5759 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5760 	ret = perf_output_begin(&handle, event,
5761 				mmap_event->event_id.header.size);
5762 	if (ret)
5763 		goto out;
5764 
5765 	mmap_event->event_id.pid = perf_event_pid(event, current);
5766 	mmap_event->event_id.tid = perf_event_tid(event, current);
5767 
5768 	perf_output_put(&handle, mmap_event->event_id);
5769 
5770 	if (event->attr.mmap2) {
5771 		perf_output_put(&handle, mmap_event->maj);
5772 		perf_output_put(&handle, mmap_event->min);
5773 		perf_output_put(&handle, mmap_event->ino);
5774 		perf_output_put(&handle, mmap_event->ino_generation);
5775 		perf_output_put(&handle, mmap_event->prot);
5776 		perf_output_put(&handle, mmap_event->flags);
5777 	}
5778 
5779 	__output_copy(&handle, mmap_event->file_name,
5780 				   mmap_event->file_size);
5781 
5782 	perf_event__output_id_sample(event, &handle, &sample);
5783 
5784 	perf_output_end(&handle);
5785 out:
5786 	mmap_event->event_id.header.size = size;
5787 }
5788 
5789 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5790 {
5791 	struct vm_area_struct *vma = mmap_event->vma;
5792 	struct file *file = vma->vm_file;
5793 	int maj = 0, min = 0;
5794 	u64 ino = 0, gen = 0;
5795 	u32 prot = 0, flags = 0;
5796 	unsigned int size;
5797 	char tmp[16];
5798 	char *buf = NULL;
5799 	char *name;
5800 
5801 	if (file) {
5802 		struct inode *inode;
5803 		dev_t dev;
5804 
5805 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5806 		if (!buf) {
5807 			name = "//enomem";
5808 			goto cpy_name;
5809 		}
5810 		/*
5811 		 * d_path() works from the end of the rb backwards, so we
5812 		 * need to add enough zero bytes after the string to handle
5813 		 * the 64bit alignment we do later.
5814 		 */
5815 		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5816 		if (IS_ERR(name)) {
5817 			name = "//toolong";
5818 			goto cpy_name;
5819 		}
5820 		inode = file_inode(vma->vm_file);
5821 		dev = inode->i_sb->s_dev;
5822 		ino = inode->i_ino;
5823 		gen = inode->i_generation;
5824 		maj = MAJOR(dev);
5825 		min = MINOR(dev);
5826 
5827 		if (vma->vm_flags & VM_READ)
5828 			prot |= PROT_READ;
5829 		if (vma->vm_flags & VM_WRITE)
5830 			prot |= PROT_WRITE;
5831 		if (vma->vm_flags & VM_EXEC)
5832 			prot |= PROT_EXEC;
5833 
5834 		if (vma->vm_flags & VM_MAYSHARE)
5835 			flags = MAP_SHARED;
5836 		else
5837 			flags = MAP_PRIVATE;
5838 
5839 		if (vma->vm_flags & VM_DENYWRITE)
5840 			flags |= MAP_DENYWRITE;
5841 		if (vma->vm_flags & VM_MAYEXEC)
5842 			flags |= MAP_EXECUTABLE;
5843 		if (vma->vm_flags & VM_LOCKED)
5844 			flags |= MAP_LOCKED;
5845 		if (vma->vm_flags & VM_HUGETLB)
5846 			flags |= MAP_HUGETLB;
5847 
5848 		goto got_name;
5849 	} else {
5850 		if (vma->vm_ops && vma->vm_ops->name) {
5851 			name = (char *) vma->vm_ops->name(vma);
5852 			if (name)
5853 				goto cpy_name;
5854 		}
5855 
5856 		name = (char *)arch_vma_name(vma);
5857 		if (name)
5858 			goto cpy_name;
5859 
5860 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5861 				vma->vm_end >= vma->vm_mm->brk) {
5862 			name = "[heap]";
5863 			goto cpy_name;
5864 		}
5865 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5866 				vma->vm_end >= vma->vm_mm->start_stack) {
5867 			name = "[stack]";
5868 			goto cpy_name;
5869 		}
5870 
5871 		name = "//anon";
5872 		goto cpy_name;
5873 	}
5874 
5875 cpy_name:
5876 	strlcpy(tmp, name, sizeof(tmp));
5877 	name = tmp;
5878 got_name:
5879 	/*
5880 	 * Since our buffer works in 8 byte units we need to align our string
5881 	 * size to a multiple of 8. However, we must guarantee the tail end is
5882 	 * zero'd out to avoid leaking random bits to userspace.
5883 	 */
5884 	size = strlen(name)+1;
5885 	while (!IS_ALIGNED(size, sizeof(u64)))
5886 		name[size++] = '\0';
5887 
5888 	mmap_event->file_name = name;
5889 	mmap_event->file_size = size;
5890 	mmap_event->maj = maj;
5891 	mmap_event->min = min;
5892 	mmap_event->ino = ino;
5893 	mmap_event->ino_generation = gen;
5894 	mmap_event->prot = prot;
5895 	mmap_event->flags = flags;
5896 
5897 	if (!(vma->vm_flags & VM_EXEC))
5898 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5899 
5900 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5901 
5902 	perf_event_aux(perf_event_mmap_output,
5903 		       mmap_event,
5904 		       NULL);
5905 
5906 	kfree(buf);
5907 }
5908 
5909 void perf_event_mmap(struct vm_area_struct *vma)
5910 {
5911 	struct perf_mmap_event mmap_event;
5912 
5913 	if (!atomic_read(&nr_mmap_events))
5914 		return;
5915 
5916 	mmap_event = (struct perf_mmap_event){
5917 		.vma	= vma,
5918 		/* .file_name */
5919 		/* .file_size */
5920 		.event_id  = {
5921 			.header = {
5922 				.type = PERF_RECORD_MMAP,
5923 				.misc = PERF_RECORD_MISC_USER,
5924 				/* .size */
5925 			},
5926 			/* .pid */
5927 			/* .tid */
5928 			.start  = vma->vm_start,
5929 			.len    = vma->vm_end - vma->vm_start,
5930 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5931 		},
5932 		/* .maj (attr_mmap2 only) */
5933 		/* .min (attr_mmap2 only) */
5934 		/* .ino (attr_mmap2 only) */
5935 		/* .ino_generation (attr_mmap2 only) */
5936 		/* .prot (attr_mmap2 only) */
5937 		/* .flags (attr_mmap2 only) */
5938 	};
5939 
5940 	perf_event_mmap_event(&mmap_event);
5941 }
5942 
5943 void perf_event_aux_event(struct perf_event *event, unsigned long head,
5944 			  unsigned long size, u64 flags)
5945 {
5946 	struct perf_output_handle handle;
5947 	struct perf_sample_data sample;
5948 	struct perf_aux_event {
5949 		struct perf_event_header	header;
5950 		u64				offset;
5951 		u64				size;
5952 		u64				flags;
5953 	} rec = {
5954 		.header = {
5955 			.type = PERF_RECORD_AUX,
5956 			.misc = 0,
5957 			.size = sizeof(rec),
5958 		},
5959 		.offset		= head,
5960 		.size		= size,
5961 		.flags		= flags,
5962 	};
5963 	int ret;
5964 
5965 	perf_event_header__init_id(&rec.header, &sample, event);
5966 	ret = perf_output_begin(&handle, event, rec.header.size);
5967 
5968 	if (ret)
5969 		return;
5970 
5971 	perf_output_put(&handle, rec);
5972 	perf_event__output_id_sample(event, &handle, &sample);
5973 
5974 	perf_output_end(&handle);
5975 }
5976 
5977 /*
5978  * IRQ throttle logging
5979  */
5980 
5981 static void perf_log_throttle(struct perf_event *event, int enable)
5982 {
5983 	struct perf_output_handle handle;
5984 	struct perf_sample_data sample;
5985 	int ret;
5986 
5987 	struct {
5988 		struct perf_event_header	header;
5989 		u64				time;
5990 		u64				id;
5991 		u64				stream_id;
5992 	} throttle_event = {
5993 		.header = {
5994 			.type = PERF_RECORD_THROTTLE,
5995 			.misc = 0,
5996 			.size = sizeof(throttle_event),
5997 		},
5998 		.time		= perf_event_clock(event),
5999 		.id		= primary_event_id(event),
6000 		.stream_id	= event->id,
6001 	};
6002 
6003 	if (enable)
6004 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6005 
6006 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6007 
6008 	ret = perf_output_begin(&handle, event,
6009 				throttle_event.header.size);
6010 	if (ret)
6011 		return;
6012 
6013 	perf_output_put(&handle, throttle_event);
6014 	perf_event__output_id_sample(event, &handle, &sample);
6015 	perf_output_end(&handle);
6016 }
6017 
6018 static void perf_log_itrace_start(struct perf_event *event)
6019 {
6020 	struct perf_output_handle handle;
6021 	struct perf_sample_data sample;
6022 	struct perf_aux_event {
6023 		struct perf_event_header        header;
6024 		u32				pid;
6025 		u32				tid;
6026 	} rec;
6027 	int ret;
6028 
6029 	if (event->parent)
6030 		event = event->parent;
6031 
6032 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6033 	    event->hw.itrace_started)
6034 		return;
6035 
6036 	event->hw.itrace_started = 1;
6037 
6038 	rec.header.type	= PERF_RECORD_ITRACE_START;
6039 	rec.header.misc	= 0;
6040 	rec.header.size	= sizeof(rec);
6041 	rec.pid	= perf_event_pid(event, current);
6042 	rec.tid	= perf_event_tid(event, current);
6043 
6044 	perf_event_header__init_id(&rec.header, &sample, event);
6045 	ret = perf_output_begin(&handle, event, rec.header.size);
6046 
6047 	if (ret)
6048 		return;
6049 
6050 	perf_output_put(&handle, rec);
6051 	perf_event__output_id_sample(event, &handle, &sample);
6052 
6053 	perf_output_end(&handle);
6054 }
6055 
6056 /*
6057  * Generic event overflow handling, sampling.
6058  */
6059 
6060 static int __perf_event_overflow(struct perf_event *event,
6061 				   int throttle, struct perf_sample_data *data,
6062 				   struct pt_regs *regs)
6063 {
6064 	int events = atomic_read(&event->event_limit);
6065 	struct hw_perf_event *hwc = &event->hw;
6066 	u64 seq;
6067 	int ret = 0;
6068 
6069 	/*
6070 	 * Non-sampling counters might still use the PMI to fold short
6071 	 * hardware counters, ignore those.
6072 	 */
6073 	if (unlikely(!is_sampling_event(event)))
6074 		return 0;
6075 
6076 	seq = __this_cpu_read(perf_throttled_seq);
6077 	if (seq != hwc->interrupts_seq) {
6078 		hwc->interrupts_seq = seq;
6079 		hwc->interrupts = 1;
6080 	} else {
6081 		hwc->interrupts++;
6082 		if (unlikely(throttle
6083 			     && hwc->interrupts >= max_samples_per_tick)) {
6084 			__this_cpu_inc(perf_throttled_count);
6085 			hwc->interrupts = MAX_INTERRUPTS;
6086 			perf_log_throttle(event, 0);
6087 			tick_nohz_full_kick();
6088 			ret = 1;
6089 		}
6090 	}
6091 
6092 	if (event->attr.freq) {
6093 		u64 now = perf_clock();
6094 		s64 delta = now - hwc->freq_time_stamp;
6095 
6096 		hwc->freq_time_stamp = now;
6097 
6098 		if (delta > 0 && delta < 2*TICK_NSEC)
6099 			perf_adjust_period(event, delta, hwc->last_period, true);
6100 	}
6101 
6102 	/*
6103 	 * XXX event_limit might not quite work as expected on inherited
6104 	 * events
6105 	 */
6106 
6107 	event->pending_kill = POLL_IN;
6108 	if (events && atomic_dec_and_test(&event->event_limit)) {
6109 		ret = 1;
6110 		event->pending_kill = POLL_HUP;
6111 		event->pending_disable = 1;
6112 		irq_work_queue(&event->pending);
6113 	}
6114 
6115 	if (event->overflow_handler)
6116 		event->overflow_handler(event, data, regs);
6117 	else
6118 		perf_event_output(event, data, regs);
6119 
6120 	if (event->fasync && event->pending_kill) {
6121 		event->pending_wakeup = 1;
6122 		irq_work_queue(&event->pending);
6123 	}
6124 
6125 	return ret;
6126 }
6127 
6128 int perf_event_overflow(struct perf_event *event,
6129 			  struct perf_sample_data *data,
6130 			  struct pt_regs *regs)
6131 {
6132 	return __perf_event_overflow(event, 1, data, regs);
6133 }
6134 
6135 /*
6136  * Generic software event infrastructure
6137  */
6138 
6139 struct swevent_htable {
6140 	struct swevent_hlist		*swevent_hlist;
6141 	struct mutex			hlist_mutex;
6142 	int				hlist_refcount;
6143 
6144 	/* Recursion avoidance in each contexts */
6145 	int				recursion[PERF_NR_CONTEXTS];
6146 
6147 	/* Keeps track of cpu being initialized/exited */
6148 	bool				online;
6149 };
6150 
6151 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6152 
6153 /*
6154  * We directly increment event->count and keep a second value in
6155  * event->hw.period_left to count intervals. This period event
6156  * is kept in the range [-sample_period, 0] so that we can use the
6157  * sign as trigger.
6158  */
6159 
6160 u64 perf_swevent_set_period(struct perf_event *event)
6161 {
6162 	struct hw_perf_event *hwc = &event->hw;
6163 	u64 period = hwc->last_period;
6164 	u64 nr, offset;
6165 	s64 old, val;
6166 
6167 	hwc->last_period = hwc->sample_period;
6168 
6169 again:
6170 	old = val = local64_read(&hwc->period_left);
6171 	if (val < 0)
6172 		return 0;
6173 
6174 	nr = div64_u64(period + val, period);
6175 	offset = nr * period;
6176 	val -= offset;
6177 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6178 		goto again;
6179 
6180 	return nr;
6181 }
6182 
6183 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6184 				    struct perf_sample_data *data,
6185 				    struct pt_regs *regs)
6186 {
6187 	struct hw_perf_event *hwc = &event->hw;
6188 	int throttle = 0;
6189 
6190 	if (!overflow)
6191 		overflow = perf_swevent_set_period(event);
6192 
6193 	if (hwc->interrupts == MAX_INTERRUPTS)
6194 		return;
6195 
6196 	for (; overflow; overflow--) {
6197 		if (__perf_event_overflow(event, throttle,
6198 					    data, regs)) {
6199 			/*
6200 			 * We inhibit the overflow from happening when
6201 			 * hwc->interrupts == MAX_INTERRUPTS.
6202 			 */
6203 			break;
6204 		}
6205 		throttle = 1;
6206 	}
6207 }
6208 
6209 static void perf_swevent_event(struct perf_event *event, u64 nr,
6210 			       struct perf_sample_data *data,
6211 			       struct pt_regs *regs)
6212 {
6213 	struct hw_perf_event *hwc = &event->hw;
6214 
6215 	local64_add(nr, &event->count);
6216 
6217 	if (!regs)
6218 		return;
6219 
6220 	if (!is_sampling_event(event))
6221 		return;
6222 
6223 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6224 		data->period = nr;
6225 		return perf_swevent_overflow(event, 1, data, regs);
6226 	} else
6227 		data->period = event->hw.last_period;
6228 
6229 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6230 		return perf_swevent_overflow(event, 1, data, regs);
6231 
6232 	if (local64_add_negative(nr, &hwc->period_left))
6233 		return;
6234 
6235 	perf_swevent_overflow(event, 0, data, regs);
6236 }
6237 
6238 static int perf_exclude_event(struct perf_event *event,
6239 			      struct pt_regs *regs)
6240 {
6241 	if (event->hw.state & PERF_HES_STOPPED)
6242 		return 1;
6243 
6244 	if (regs) {
6245 		if (event->attr.exclude_user && user_mode(regs))
6246 			return 1;
6247 
6248 		if (event->attr.exclude_kernel && !user_mode(regs))
6249 			return 1;
6250 	}
6251 
6252 	return 0;
6253 }
6254 
6255 static int perf_swevent_match(struct perf_event *event,
6256 				enum perf_type_id type,
6257 				u32 event_id,
6258 				struct perf_sample_data *data,
6259 				struct pt_regs *regs)
6260 {
6261 	if (event->attr.type != type)
6262 		return 0;
6263 
6264 	if (event->attr.config != event_id)
6265 		return 0;
6266 
6267 	if (perf_exclude_event(event, regs))
6268 		return 0;
6269 
6270 	return 1;
6271 }
6272 
6273 static inline u64 swevent_hash(u64 type, u32 event_id)
6274 {
6275 	u64 val = event_id | (type << 32);
6276 
6277 	return hash_64(val, SWEVENT_HLIST_BITS);
6278 }
6279 
6280 static inline struct hlist_head *
6281 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6282 {
6283 	u64 hash = swevent_hash(type, event_id);
6284 
6285 	return &hlist->heads[hash];
6286 }
6287 
6288 /* For the read side: events when they trigger */
6289 static inline struct hlist_head *
6290 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6291 {
6292 	struct swevent_hlist *hlist;
6293 
6294 	hlist = rcu_dereference(swhash->swevent_hlist);
6295 	if (!hlist)
6296 		return NULL;
6297 
6298 	return __find_swevent_head(hlist, type, event_id);
6299 }
6300 
6301 /* For the event head insertion and removal in the hlist */
6302 static inline struct hlist_head *
6303 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6304 {
6305 	struct swevent_hlist *hlist;
6306 	u32 event_id = event->attr.config;
6307 	u64 type = event->attr.type;
6308 
6309 	/*
6310 	 * Event scheduling is always serialized against hlist allocation
6311 	 * and release. Which makes the protected version suitable here.
6312 	 * The context lock guarantees that.
6313 	 */
6314 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6315 					  lockdep_is_held(&event->ctx->lock));
6316 	if (!hlist)
6317 		return NULL;
6318 
6319 	return __find_swevent_head(hlist, type, event_id);
6320 }
6321 
6322 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6323 				    u64 nr,
6324 				    struct perf_sample_data *data,
6325 				    struct pt_regs *regs)
6326 {
6327 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6328 	struct perf_event *event;
6329 	struct hlist_head *head;
6330 
6331 	rcu_read_lock();
6332 	head = find_swevent_head_rcu(swhash, type, event_id);
6333 	if (!head)
6334 		goto end;
6335 
6336 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6337 		if (perf_swevent_match(event, type, event_id, data, regs))
6338 			perf_swevent_event(event, nr, data, regs);
6339 	}
6340 end:
6341 	rcu_read_unlock();
6342 }
6343 
6344 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6345 
6346 int perf_swevent_get_recursion_context(void)
6347 {
6348 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6349 
6350 	return get_recursion_context(swhash->recursion);
6351 }
6352 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6353 
6354 inline void perf_swevent_put_recursion_context(int rctx)
6355 {
6356 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6357 
6358 	put_recursion_context(swhash->recursion, rctx);
6359 }
6360 
6361 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6362 {
6363 	struct perf_sample_data data;
6364 
6365 	if (WARN_ON_ONCE(!regs))
6366 		return;
6367 
6368 	perf_sample_data_init(&data, addr, 0);
6369 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6370 }
6371 
6372 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6373 {
6374 	int rctx;
6375 
6376 	preempt_disable_notrace();
6377 	rctx = perf_swevent_get_recursion_context();
6378 	if (unlikely(rctx < 0))
6379 		goto fail;
6380 
6381 	___perf_sw_event(event_id, nr, regs, addr);
6382 
6383 	perf_swevent_put_recursion_context(rctx);
6384 fail:
6385 	preempt_enable_notrace();
6386 }
6387 
6388 static void perf_swevent_read(struct perf_event *event)
6389 {
6390 }
6391 
6392 static int perf_swevent_add(struct perf_event *event, int flags)
6393 {
6394 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6395 	struct hw_perf_event *hwc = &event->hw;
6396 	struct hlist_head *head;
6397 
6398 	if (is_sampling_event(event)) {
6399 		hwc->last_period = hwc->sample_period;
6400 		perf_swevent_set_period(event);
6401 	}
6402 
6403 	hwc->state = !(flags & PERF_EF_START);
6404 
6405 	head = find_swevent_head(swhash, event);
6406 	if (!head) {
6407 		/*
6408 		 * We can race with cpu hotplug code. Do not
6409 		 * WARN if the cpu just got unplugged.
6410 		 */
6411 		WARN_ON_ONCE(swhash->online);
6412 		return -EINVAL;
6413 	}
6414 
6415 	hlist_add_head_rcu(&event->hlist_entry, head);
6416 	perf_event_update_userpage(event);
6417 
6418 	return 0;
6419 }
6420 
6421 static void perf_swevent_del(struct perf_event *event, int flags)
6422 {
6423 	hlist_del_rcu(&event->hlist_entry);
6424 }
6425 
6426 static void perf_swevent_start(struct perf_event *event, int flags)
6427 {
6428 	event->hw.state = 0;
6429 }
6430 
6431 static void perf_swevent_stop(struct perf_event *event, int flags)
6432 {
6433 	event->hw.state = PERF_HES_STOPPED;
6434 }
6435 
6436 /* Deref the hlist from the update side */
6437 static inline struct swevent_hlist *
6438 swevent_hlist_deref(struct swevent_htable *swhash)
6439 {
6440 	return rcu_dereference_protected(swhash->swevent_hlist,
6441 					 lockdep_is_held(&swhash->hlist_mutex));
6442 }
6443 
6444 static void swevent_hlist_release(struct swevent_htable *swhash)
6445 {
6446 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6447 
6448 	if (!hlist)
6449 		return;
6450 
6451 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6452 	kfree_rcu(hlist, rcu_head);
6453 }
6454 
6455 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6456 {
6457 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6458 
6459 	mutex_lock(&swhash->hlist_mutex);
6460 
6461 	if (!--swhash->hlist_refcount)
6462 		swevent_hlist_release(swhash);
6463 
6464 	mutex_unlock(&swhash->hlist_mutex);
6465 }
6466 
6467 static void swevent_hlist_put(struct perf_event *event)
6468 {
6469 	int cpu;
6470 
6471 	for_each_possible_cpu(cpu)
6472 		swevent_hlist_put_cpu(event, cpu);
6473 }
6474 
6475 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6476 {
6477 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6478 	int err = 0;
6479 
6480 	mutex_lock(&swhash->hlist_mutex);
6481 
6482 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6483 		struct swevent_hlist *hlist;
6484 
6485 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6486 		if (!hlist) {
6487 			err = -ENOMEM;
6488 			goto exit;
6489 		}
6490 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6491 	}
6492 	swhash->hlist_refcount++;
6493 exit:
6494 	mutex_unlock(&swhash->hlist_mutex);
6495 
6496 	return err;
6497 }
6498 
6499 static int swevent_hlist_get(struct perf_event *event)
6500 {
6501 	int err;
6502 	int cpu, failed_cpu;
6503 
6504 	get_online_cpus();
6505 	for_each_possible_cpu(cpu) {
6506 		err = swevent_hlist_get_cpu(event, cpu);
6507 		if (err) {
6508 			failed_cpu = cpu;
6509 			goto fail;
6510 		}
6511 	}
6512 	put_online_cpus();
6513 
6514 	return 0;
6515 fail:
6516 	for_each_possible_cpu(cpu) {
6517 		if (cpu == failed_cpu)
6518 			break;
6519 		swevent_hlist_put_cpu(event, cpu);
6520 	}
6521 
6522 	put_online_cpus();
6523 	return err;
6524 }
6525 
6526 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6527 
6528 static void sw_perf_event_destroy(struct perf_event *event)
6529 {
6530 	u64 event_id = event->attr.config;
6531 
6532 	WARN_ON(event->parent);
6533 
6534 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6535 	swevent_hlist_put(event);
6536 }
6537 
6538 static int perf_swevent_init(struct perf_event *event)
6539 {
6540 	u64 event_id = event->attr.config;
6541 
6542 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6543 		return -ENOENT;
6544 
6545 	/*
6546 	 * no branch sampling for software events
6547 	 */
6548 	if (has_branch_stack(event))
6549 		return -EOPNOTSUPP;
6550 
6551 	switch (event_id) {
6552 	case PERF_COUNT_SW_CPU_CLOCK:
6553 	case PERF_COUNT_SW_TASK_CLOCK:
6554 		return -ENOENT;
6555 
6556 	default:
6557 		break;
6558 	}
6559 
6560 	if (event_id >= PERF_COUNT_SW_MAX)
6561 		return -ENOENT;
6562 
6563 	if (!event->parent) {
6564 		int err;
6565 
6566 		err = swevent_hlist_get(event);
6567 		if (err)
6568 			return err;
6569 
6570 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6571 		event->destroy = sw_perf_event_destroy;
6572 	}
6573 
6574 	return 0;
6575 }
6576 
6577 static struct pmu perf_swevent = {
6578 	.task_ctx_nr	= perf_sw_context,
6579 
6580 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6581 
6582 	.event_init	= perf_swevent_init,
6583 	.add		= perf_swevent_add,
6584 	.del		= perf_swevent_del,
6585 	.start		= perf_swevent_start,
6586 	.stop		= perf_swevent_stop,
6587 	.read		= perf_swevent_read,
6588 };
6589 
6590 #ifdef CONFIG_EVENT_TRACING
6591 
6592 static int perf_tp_filter_match(struct perf_event *event,
6593 				struct perf_sample_data *data)
6594 {
6595 	void *record = data->raw->data;
6596 
6597 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6598 		return 1;
6599 	return 0;
6600 }
6601 
6602 static int perf_tp_event_match(struct perf_event *event,
6603 				struct perf_sample_data *data,
6604 				struct pt_regs *regs)
6605 {
6606 	if (event->hw.state & PERF_HES_STOPPED)
6607 		return 0;
6608 	/*
6609 	 * All tracepoints are from kernel-space.
6610 	 */
6611 	if (event->attr.exclude_kernel)
6612 		return 0;
6613 
6614 	if (!perf_tp_filter_match(event, data))
6615 		return 0;
6616 
6617 	return 1;
6618 }
6619 
6620 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6621 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6622 		   struct task_struct *task)
6623 {
6624 	struct perf_sample_data data;
6625 	struct perf_event *event;
6626 
6627 	struct perf_raw_record raw = {
6628 		.size = entry_size,
6629 		.data = record,
6630 	};
6631 
6632 	perf_sample_data_init(&data, addr, 0);
6633 	data.raw = &raw;
6634 
6635 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6636 		if (perf_tp_event_match(event, &data, regs))
6637 			perf_swevent_event(event, count, &data, regs);
6638 	}
6639 
6640 	/*
6641 	 * If we got specified a target task, also iterate its context and
6642 	 * deliver this event there too.
6643 	 */
6644 	if (task && task != current) {
6645 		struct perf_event_context *ctx;
6646 		struct trace_entry *entry = record;
6647 
6648 		rcu_read_lock();
6649 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6650 		if (!ctx)
6651 			goto unlock;
6652 
6653 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6654 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6655 				continue;
6656 			if (event->attr.config != entry->type)
6657 				continue;
6658 			if (perf_tp_event_match(event, &data, regs))
6659 				perf_swevent_event(event, count, &data, regs);
6660 		}
6661 unlock:
6662 		rcu_read_unlock();
6663 	}
6664 
6665 	perf_swevent_put_recursion_context(rctx);
6666 }
6667 EXPORT_SYMBOL_GPL(perf_tp_event);
6668 
6669 static void tp_perf_event_destroy(struct perf_event *event)
6670 {
6671 	perf_trace_destroy(event);
6672 }
6673 
6674 static int perf_tp_event_init(struct perf_event *event)
6675 {
6676 	int err;
6677 
6678 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6679 		return -ENOENT;
6680 
6681 	/*
6682 	 * no branch sampling for tracepoint events
6683 	 */
6684 	if (has_branch_stack(event))
6685 		return -EOPNOTSUPP;
6686 
6687 	err = perf_trace_init(event);
6688 	if (err)
6689 		return err;
6690 
6691 	event->destroy = tp_perf_event_destroy;
6692 
6693 	return 0;
6694 }
6695 
6696 static struct pmu perf_tracepoint = {
6697 	.task_ctx_nr	= perf_sw_context,
6698 
6699 	.event_init	= perf_tp_event_init,
6700 	.add		= perf_trace_add,
6701 	.del		= perf_trace_del,
6702 	.start		= perf_swevent_start,
6703 	.stop		= perf_swevent_stop,
6704 	.read		= perf_swevent_read,
6705 };
6706 
6707 static inline void perf_tp_register(void)
6708 {
6709 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6710 }
6711 
6712 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6713 {
6714 	char *filter_str;
6715 	int ret;
6716 
6717 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6718 		return -EINVAL;
6719 
6720 	filter_str = strndup_user(arg, PAGE_SIZE);
6721 	if (IS_ERR(filter_str))
6722 		return PTR_ERR(filter_str);
6723 
6724 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6725 
6726 	kfree(filter_str);
6727 	return ret;
6728 }
6729 
6730 static void perf_event_free_filter(struct perf_event *event)
6731 {
6732 	ftrace_profile_free_filter(event);
6733 }
6734 
6735 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6736 {
6737 	struct bpf_prog *prog;
6738 
6739 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6740 		return -EINVAL;
6741 
6742 	if (event->tp_event->prog)
6743 		return -EEXIST;
6744 
6745 	if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
6746 		/* bpf programs can only be attached to kprobes */
6747 		return -EINVAL;
6748 
6749 	prog = bpf_prog_get(prog_fd);
6750 	if (IS_ERR(prog))
6751 		return PTR_ERR(prog);
6752 
6753 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6754 		/* valid fd, but invalid bpf program type */
6755 		bpf_prog_put(prog);
6756 		return -EINVAL;
6757 	}
6758 
6759 	event->tp_event->prog = prog;
6760 
6761 	return 0;
6762 }
6763 
6764 static void perf_event_free_bpf_prog(struct perf_event *event)
6765 {
6766 	struct bpf_prog *prog;
6767 
6768 	if (!event->tp_event)
6769 		return;
6770 
6771 	prog = event->tp_event->prog;
6772 	if (prog) {
6773 		event->tp_event->prog = NULL;
6774 		bpf_prog_put(prog);
6775 	}
6776 }
6777 
6778 #else
6779 
6780 static inline void perf_tp_register(void)
6781 {
6782 }
6783 
6784 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6785 {
6786 	return -ENOENT;
6787 }
6788 
6789 static void perf_event_free_filter(struct perf_event *event)
6790 {
6791 }
6792 
6793 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6794 {
6795 	return -ENOENT;
6796 }
6797 
6798 static void perf_event_free_bpf_prog(struct perf_event *event)
6799 {
6800 }
6801 #endif /* CONFIG_EVENT_TRACING */
6802 
6803 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6804 void perf_bp_event(struct perf_event *bp, void *data)
6805 {
6806 	struct perf_sample_data sample;
6807 	struct pt_regs *regs = data;
6808 
6809 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6810 
6811 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6812 		perf_swevent_event(bp, 1, &sample, regs);
6813 }
6814 #endif
6815 
6816 /*
6817  * hrtimer based swevent callback
6818  */
6819 
6820 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6821 {
6822 	enum hrtimer_restart ret = HRTIMER_RESTART;
6823 	struct perf_sample_data data;
6824 	struct pt_regs *regs;
6825 	struct perf_event *event;
6826 	u64 period;
6827 
6828 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6829 
6830 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6831 		return HRTIMER_NORESTART;
6832 
6833 	event->pmu->read(event);
6834 
6835 	perf_sample_data_init(&data, 0, event->hw.last_period);
6836 	regs = get_irq_regs();
6837 
6838 	if (regs && !perf_exclude_event(event, regs)) {
6839 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6840 			if (__perf_event_overflow(event, 1, &data, regs))
6841 				ret = HRTIMER_NORESTART;
6842 	}
6843 
6844 	period = max_t(u64, 10000, event->hw.sample_period);
6845 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6846 
6847 	return ret;
6848 }
6849 
6850 static void perf_swevent_start_hrtimer(struct perf_event *event)
6851 {
6852 	struct hw_perf_event *hwc = &event->hw;
6853 	s64 period;
6854 
6855 	if (!is_sampling_event(event))
6856 		return;
6857 
6858 	period = local64_read(&hwc->period_left);
6859 	if (period) {
6860 		if (period < 0)
6861 			period = 10000;
6862 
6863 		local64_set(&hwc->period_left, 0);
6864 	} else {
6865 		period = max_t(u64, 10000, hwc->sample_period);
6866 	}
6867 	__hrtimer_start_range_ns(&hwc->hrtimer,
6868 				ns_to_ktime(period), 0,
6869 				HRTIMER_MODE_REL_PINNED, 0);
6870 }
6871 
6872 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6873 {
6874 	struct hw_perf_event *hwc = &event->hw;
6875 
6876 	if (is_sampling_event(event)) {
6877 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6878 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6879 
6880 		hrtimer_cancel(&hwc->hrtimer);
6881 	}
6882 }
6883 
6884 static void perf_swevent_init_hrtimer(struct perf_event *event)
6885 {
6886 	struct hw_perf_event *hwc = &event->hw;
6887 
6888 	if (!is_sampling_event(event))
6889 		return;
6890 
6891 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6892 	hwc->hrtimer.function = perf_swevent_hrtimer;
6893 
6894 	/*
6895 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6896 	 * mapping and avoid the whole period adjust feedback stuff.
6897 	 */
6898 	if (event->attr.freq) {
6899 		long freq = event->attr.sample_freq;
6900 
6901 		event->attr.sample_period = NSEC_PER_SEC / freq;
6902 		hwc->sample_period = event->attr.sample_period;
6903 		local64_set(&hwc->period_left, hwc->sample_period);
6904 		hwc->last_period = hwc->sample_period;
6905 		event->attr.freq = 0;
6906 	}
6907 }
6908 
6909 /*
6910  * Software event: cpu wall time clock
6911  */
6912 
6913 static void cpu_clock_event_update(struct perf_event *event)
6914 {
6915 	s64 prev;
6916 	u64 now;
6917 
6918 	now = local_clock();
6919 	prev = local64_xchg(&event->hw.prev_count, now);
6920 	local64_add(now - prev, &event->count);
6921 }
6922 
6923 static void cpu_clock_event_start(struct perf_event *event, int flags)
6924 {
6925 	local64_set(&event->hw.prev_count, local_clock());
6926 	perf_swevent_start_hrtimer(event);
6927 }
6928 
6929 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6930 {
6931 	perf_swevent_cancel_hrtimer(event);
6932 	cpu_clock_event_update(event);
6933 }
6934 
6935 static int cpu_clock_event_add(struct perf_event *event, int flags)
6936 {
6937 	if (flags & PERF_EF_START)
6938 		cpu_clock_event_start(event, flags);
6939 	perf_event_update_userpage(event);
6940 
6941 	return 0;
6942 }
6943 
6944 static void cpu_clock_event_del(struct perf_event *event, int flags)
6945 {
6946 	cpu_clock_event_stop(event, flags);
6947 }
6948 
6949 static void cpu_clock_event_read(struct perf_event *event)
6950 {
6951 	cpu_clock_event_update(event);
6952 }
6953 
6954 static int cpu_clock_event_init(struct perf_event *event)
6955 {
6956 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6957 		return -ENOENT;
6958 
6959 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6960 		return -ENOENT;
6961 
6962 	/*
6963 	 * no branch sampling for software events
6964 	 */
6965 	if (has_branch_stack(event))
6966 		return -EOPNOTSUPP;
6967 
6968 	perf_swevent_init_hrtimer(event);
6969 
6970 	return 0;
6971 }
6972 
6973 static struct pmu perf_cpu_clock = {
6974 	.task_ctx_nr	= perf_sw_context,
6975 
6976 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6977 
6978 	.event_init	= cpu_clock_event_init,
6979 	.add		= cpu_clock_event_add,
6980 	.del		= cpu_clock_event_del,
6981 	.start		= cpu_clock_event_start,
6982 	.stop		= cpu_clock_event_stop,
6983 	.read		= cpu_clock_event_read,
6984 };
6985 
6986 /*
6987  * Software event: task time clock
6988  */
6989 
6990 static void task_clock_event_update(struct perf_event *event, u64 now)
6991 {
6992 	u64 prev;
6993 	s64 delta;
6994 
6995 	prev = local64_xchg(&event->hw.prev_count, now);
6996 	delta = now - prev;
6997 	local64_add(delta, &event->count);
6998 }
6999 
7000 static void task_clock_event_start(struct perf_event *event, int flags)
7001 {
7002 	local64_set(&event->hw.prev_count, event->ctx->time);
7003 	perf_swevent_start_hrtimer(event);
7004 }
7005 
7006 static void task_clock_event_stop(struct perf_event *event, int flags)
7007 {
7008 	perf_swevent_cancel_hrtimer(event);
7009 	task_clock_event_update(event, event->ctx->time);
7010 }
7011 
7012 static int task_clock_event_add(struct perf_event *event, int flags)
7013 {
7014 	if (flags & PERF_EF_START)
7015 		task_clock_event_start(event, flags);
7016 	perf_event_update_userpage(event);
7017 
7018 	return 0;
7019 }
7020 
7021 static void task_clock_event_del(struct perf_event *event, int flags)
7022 {
7023 	task_clock_event_stop(event, PERF_EF_UPDATE);
7024 }
7025 
7026 static void task_clock_event_read(struct perf_event *event)
7027 {
7028 	u64 now = perf_clock();
7029 	u64 delta = now - event->ctx->timestamp;
7030 	u64 time = event->ctx->time + delta;
7031 
7032 	task_clock_event_update(event, time);
7033 }
7034 
7035 static int task_clock_event_init(struct perf_event *event)
7036 {
7037 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7038 		return -ENOENT;
7039 
7040 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7041 		return -ENOENT;
7042 
7043 	/*
7044 	 * no branch sampling for software events
7045 	 */
7046 	if (has_branch_stack(event))
7047 		return -EOPNOTSUPP;
7048 
7049 	perf_swevent_init_hrtimer(event);
7050 
7051 	return 0;
7052 }
7053 
7054 static struct pmu perf_task_clock = {
7055 	.task_ctx_nr	= perf_sw_context,
7056 
7057 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7058 
7059 	.event_init	= task_clock_event_init,
7060 	.add		= task_clock_event_add,
7061 	.del		= task_clock_event_del,
7062 	.start		= task_clock_event_start,
7063 	.stop		= task_clock_event_stop,
7064 	.read		= task_clock_event_read,
7065 };
7066 
7067 static void perf_pmu_nop_void(struct pmu *pmu)
7068 {
7069 }
7070 
7071 static int perf_pmu_nop_int(struct pmu *pmu)
7072 {
7073 	return 0;
7074 }
7075 
7076 static void perf_pmu_start_txn(struct pmu *pmu)
7077 {
7078 	perf_pmu_disable(pmu);
7079 }
7080 
7081 static int perf_pmu_commit_txn(struct pmu *pmu)
7082 {
7083 	perf_pmu_enable(pmu);
7084 	return 0;
7085 }
7086 
7087 static void perf_pmu_cancel_txn(struct pmu *pmu)
7088 {
7089 	perf_pmu_enable(pmu);
7090 }
7091 
7092 static int perf_event_idx_default(struct perf_event *event)
7093 {
7094 	return 0;
7095 }
7096 
7097 /*
7098  * Ensures all contexts with the same task_ctx_nr have the same
7099  * pmu_cpu_context too.
7100  */
7101 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7102 {
7103 	struct pmu *pmu;
7104 
7105 	if (ctxn < 0)
7106 		return NULL;
7107 
7108 	list_for_each_entry(pmu, &pmus, entry) {
7109 		if (pmu->task_ctx_nr == ctxn)
7110 			return pmu->pmu_cpu_context;
7111 	}
7112 
7113 	return NULL;
7114 }
7115 
7116 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7117 {
7118 	int cpu;
7119 
7120 	for_each_possible_cpu(cpu) {
7121 		struct perf_cpu_context *cpuctx;
7122 
7123 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7124 
7125 		if (cpuctx->unique_pmu == old_pmu)
7126 			cpuctx->unique_pmu = pmu;
7127 	}
7128 }
7129 
7130 static void free_pmu_context(struct pmu *pmu)
7131 {
7132 	struct pmu *i;
7133 
7134 	mutex_lock(&pmus_lock);
7135 	/*
7136 	 * Like a real lame refcount.
7137 	 */
7138 	list_for_each_entry(i, &pmus, entry) {
7139 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7140 			update_pmu_context(i, pmu);
7141 			goto out;
7142 		}
7143 	}
7144 
7145 	free_percpu(pmu->pmu_cpu_context);
7146 out:
7147 	mutex_unlock(&pmus_lock);
7148 }
7149 static struct idr pmu_idr;
7150 
7151 static ssize_t
7152 type_show(struct device *dev, struct device_attribute *attr, char *page)
7153 {
7154 	struct pmu *pmu = dev_get_drvdata(dev);
7155 
7156 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7157 }
7158 static DEVICE_ATTR_RO(type);
7159 
7160 static ssize_t
7161 perf_event_mux_interval_ms_show(struct device *dev,
7162 				struct device_attribute *attr,
7163 				char *page)
7164 {
7165 	struct pmu *pmu = dev_get_drvdata(dev);
7166 
7167 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7168 }
7169 
7170 static ssize_t
7171 perf_event_mux_interval_ms_store(struct device *dev,
7172 				 struct device_attribute *attr,
7173 				 const char *buf, size_t count)
7174 {
7175 	struct pmu *pmu = dev_get_drvdata(dev);
7176 	int timer, cpu, ret;
7177 
7178 	ret = kstrtoint(buf, 0, &timer);
7179 	if (ret)
7180 		return ret;
7181 
7182 	if (timer < 1)
7183 		return -EINVAL;
7184 
7185 	/* same value, noting to do */
7186 	if (timer == pmu->hrtimer_interval_ms)
7187 		return count;
7188 
7189 	pmu->hrtimer_interval_ms = timer;
7190 
7191 	/* update all cpuctx for this PMU */
7192 	for_each_possible_cpu(cpu) {
7193 		struct perf_cpu_context *cpuctx;
7194 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7195 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7196 
7197 		if (hrtimer_active(&cpuctx->hrtimer))
7198 			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
7199 	}
7200 
7201 	return count;
7202 }
7203 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7204 
7205 static struct attribute *pmu_dev_attrs[] = {
7206 	&dev_attr_type.attr,
7207 	&dev_attr_perf_event_mux_interval_ms.attr,
7208 	NULL,
7209 };
7210 ATTRIBUTE_GROUPS(pmu_dev);
7211 
7212 static int pmu_bus_running;
7213 static struct bus_type pmu_bus = {
7214 	.name		= "event_source",
7215 	.dev_groups	= pmu_dev_groups,
7216 };
7217 
7218 static void pmu_dev_release(struct device *dev)
7219 {
7220 	kfree(dev);
7221 }
7222 
7223 static int pmu_dev_alloc(struct pmu *pmu)
7224 {
7225 	int ret = -ENOMEM;
7226 
7227 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7228 	if (!pmu->dev)
7229 		goto out;
7230 
7231 	pmu->dev->groups = pmu->attr_groups;
7232 	device_initialize(pmu->dev);
7233 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7234 	if (ret)
7235 		goto free_dev;
7236 
7237 	dev_set_drvdata(pmu->dev, pmu);
7238 	pmu->dev->bus = &pmu_bus;
7239 	pmu->dev->release = pmu_dev_release;
7240 	ret = device_add(pmu->dev);
7241 	if (ret)
7242 		goto free_dev;
7243 
7244 out:
7245 	return ret;
7246 
7247 free_dev:
7248 	put_device(pmu->dev);
7249 	goto out;
7250 }
7251 
7252 static struct lock_class_key cpuctx_mutex;
7253 static struct lock_class_key cpuctx_lock;
7254 
7255 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7256 {
7257 	int cpu, ret;
7258 
7259 	mutex_lock(&pmus_lock);
7260 	ret = -ENOMEM;
7261 	pmu->pmu_disable_count = alloc_percpu(int);
7262 	if (!pmu->pmu_disable_count)
7263 		goto unlock;
7264 
7265 	pmu->type = -1;
7266 	if (!name)
7267 		goto skip_type;
7268 	pmu->name = name;
7269 
7270 	if (type < 0) {
7271 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7272 		if (type < 0) {
7273 			ret = type;
7274 			goto free_pdc;
7275 		}
7276 	}
7277 	pmu->type = type;
7278 
7279 	if (pmu_bus_running) {
7280 		ret = pmu_dev_alloc(pmu);
7281 		if (ret)
7282 			goto free_idr;
7283 	}
7284 
7285 skip_type:
7286 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7287 	if (pmu->pmu_cpu_context)
7288 		goto got_cpu_context;
7289 
7290 	ret = -ENOMEM;
7291 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7292 	if (!pmu->pmu_cpu_context)
7293 		goto free_dev;
7294 
7295 	for_each_possible_cpu(cpu) {
7296 		struct perf_cpu_context *cpuctx;
7297 
7298 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7299 		__perf_event_init_context(&cpuctx->ctx);
7300 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7301 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7302 		cpuctx->ctx.pmu = pmu;
7303 
7304 		__perf_cpu_hrtimer_init(cpuctx, cpu);
7305 
7306 		cpuctx->unique_pmu = pmu;
7307 	}
7308 
7309 got_cpu_context:
7310 	if (!pmu->start_txn) {
7311 		if (pmu->pmu_enable) {
7312 			/*
7313 			 * If we have pmu_enable/pmu_disable calls, install
7314 			 * transaction stubs that use that to try and batch
7315 			 * hardware accesses.
7316 			 */
7317 			pmu->start_txn  = perf_pmu_start_txn;
7318 			pmu->commit_txn = perf_pmu_commit_txn;
7319 			pmu->cancel_txn = perf_pmu_cancel_txn;
7320 		} else {
7321 			pmu->start_txn  = perf_pmu_nop_void;
7322 			pmu->commit_txn = perf_pmu_nop_int;
7323 			pmu->cancel_txn = perf_pmu_nop_void;
7324 		}
7325 	}
7326 
7327 	if (!pmu->pmu_enable) {
7328 		pmu->pmu_enable  = perf_pmu_nop_void;
7329 		pmu->pmu_disable = perf_pmu_nop_void;
7330 	}
7331 
7332 	if (!pmu->event_idx)
7333 		pmu->event_idx = perf_event_idx_default;
7334 
7335 	list_add_rcu(&pmu->entry, &pmus);
7336 	atomic_set(&pmu->exclusive_cnt, 0);
7337 	ret = 0;
7338 unlock:
7339 	mutex_unlock(&pmus_lock);
7340 
7341 	return ret;
7342 
7343 free_dev:
7344 	device_del(pmu->dev);
7345 	put_device(pmu->dev);
7346 
7347 free_idr:
7348 	if (pmu->type >= PERF_TYPE_MAX)
7349 		idr_remove(&pmu_idr, pmu->type);
7350 
7351 free_pdc:
7352 	free_percpu(pmu->pmu_disable_count);
7353 	goto unlock;
7354 }
7355 EXPORT_SYMBOL_GPL(perf_pmu_register);
7356 
7357 void perf_pmu_unregister(struct pmu *pmu)
7358 {
7359 	mutex_lock(&pmus_lock);
7360 	list_del_rcu(&pmu->entry);
7361 	mutex_unlock(&pmus_lock);
7362 
7363 	/*
7364 	 * We dereference the pmu list under both SRCU and regular RCU, so
7365 	 * synchronize against both of those.
7366 	 */
7367 	synchronize_srcu(&pmus_srcu);
7368 	synchronize_rcu();
7369 
7370 	free_percpu(pmu->pmu_disable_count);
7371 	if (pmu->type >= PERF_TYPE_MAX)
7372 		idr_remove(&pmu_idr, pmu->type);
7373 	device_del(pmu->dev);
7374 	put_device(pmu->dev);
7375 	free_pmu_context(pmu);
7376 }
7377 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7378 
7379 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7380 {
7381 	struct perf_event_context *ctx = NULL;
7382 	int ret;
7383 
7384 	if (!try_module_get(pmu->module))
7385 		return -ENODEV;
7386 
7387 	if (event->group_leader != event) {
7388 		/*
7389 		 * This ctx->mutex can nest when we're called through
7390 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7391 		 */
7392 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7393 						 SINGLE_DEPTH_NESTING);
7394 		BUG_ON(!ctx);
7395 	}
7396 
7397 	event->pmu = pmu;
7398 	ret = pmu->event_init(event);
7399 
7400 	if (ctx)
7401 		perf_event_ctx_unlock(event->group_leader, ctx);
7402 
7403 	if (ret)
7404 		module_put(pmu->module);
7405 
7406 	return ret;
7407 }
7408 
7409 struct pmu *perf_init_event(struct perf_event *event)
7410 {
7411 	struct pmu *pmu = NULL;
7412 	int idx;
7413 	int ret;
7414 
7415 	idx = srcu_read_lock(&pmus_srcu);
7416 
7417 	rcu_read_lock();
7418 	pmu = idr_find(&pmu_idr, event->attr.type);
7419 	rcu_read_unlock();
7420 	if (pmu) {
7421 		ret = perf_try_init_event(pmu, event);
7422 		if (ret)
7423 			pmu = ERR_PTR(ret);
7424 		goto unlock;
7425 	}
7426 
7427 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7428 		ret = perf_try_init_event(pmu, event);
7429 		if (!ret)
7430 			goto unlock;
7431 
7432 		if (ret != -ENOENT) {
7433 			pmu = ERR_PTR(ret);
7434 			goto unlock;
7435 		}
7436 	}
7437 	pmu = ERR_PTR(-ENOENT);
7438 unlock:
7439 	srcu_read_unlock(&pmus_srcu, idx);
7440 
7441 	return pmu;
7442 }
7443 
7444 static void account_event_cpu(struct perf_event *event, int cpu)
7445 {
7446 	if (event->parent)
7447 		return;
7448 
7449 	if (is_cgroup_event(event))
7450 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7451 }
7452 
7453 static void account_event(struct perf_event *event)
7454 {
7455 	if (event->parent)
7456 		return;
7457 
7458 	if (event->attach_state & PERF_ATTACH_TASK)
7459 		static_key_slow_inc(&perf_sched_events.key);
7460 	if (event->attr.mmap || event->attr.mmap_data)
7461 		atomic_inc(&nr_mmap_events);
7462 	if (event->attr.comm)
7463 		atomic_inc(&nr_comm_events);
7464 	if (event->attr.task)
7465 		atomic_inc(&nr_task_events);
7466 	if (event->attr.freq) {
7467 		if (atomic_inc_return(&nr_freq_events) == 1)
7468 			tick_nohz_full_kick_all();
7469 	}
7470 	if (has_branch_stack(event))
7471 		static_key_slow_inc(&perf_sched_events.key);
7472 	if (is_cgroup_event(event))
7473 		static_key_slow_inc(&perf_sched_events.key);
7474 
7475 	account_event_cpu(event, event->cpu);
7476 }
7477 
7478 /*
7479  * Allocate and initialize a event structure
7480  */
7481 static struct perf_event *
7482 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7483 		 struct task_struct *task,
7484 		 struct perf_event *group_leader,
7485 		 struct perf_event *parent_event,
7486 		 perf_overflow_handler_t overflow_handler,
7487 		 void *context, int cgroup_fd)
7488 {
7489 	struct pmu *pmu;
7490 	struct perf_event *event;
7491 	struct hw_perf_event *hwc;
7492 	long err = -EINVAL;
7493 
7494 	if ((unsigned)cpu >= nr_cpu_ids) {
7495 		if (!task || cpu != -1)
7496 			return ERR_PTR(-EINVAL);
7497 	}
7498 
7499 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7500 	if (!event)
7501 		return ERR_PTR(-ENOMEM);
7502 
7503 	/*
7504 	 * Single events are their own group leaders, with an
7505 	 * empty sibling list:
7506 	 */
7507 	if (!group_leader)
7508 		group_leader = event;
7509 
7510 	mutex_init(&event->child_mutex);
7511 	INIT_LIST_HEAD(&event->child_list);
7512 
7513 	INIT_LIST_HEAD(&event->group_entry);
7514 	INIT_LIST_HEAD(&event->event_entry);
7515 	INIT_LIST_HEAD(&event->sibling_list);
7516 	INIT_LIST_HEAD(&event->rb_entry);
7517 	INIT_LIST_HEAD(&event->active_entry);
7518 	INIT_HLIST_NODE(&event->hlist_entry);
7519 
7520 
7521 	init_waitqueue_head(&event->waitq);
7522 	init_irq_work(&event->pending, perf_pending_event);
7523 
7524 	mutex_init(&event->mmap_mutex);
7525 
7526 	atomic_long_set(&event->refcount, 1);
7527 	event->cpu		= cpu;
7528 	event->attr		= *attr;
7529 	event->group_leader	= group_leader;
7530 	event->pmu		= NULL;
7531 	event->oncpu		= -1;
7532 
7533 	event->parent		= parent_event;
7534 
7535 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7536 	event->id		= atomic64_inc_return(&perf_event_id);
7537 
7538 	event->state		= PERF_EVENT_STATE_INACTIVE;
7539 
7540 	if (task) {
7541 		event->attach_state = PERF_ATTACH_TASK;
7542 		/*
7543 		 * XXX pmu::event_init needs to know what task to account to
7544 		 * and we cannot use the ctx information because we need the
7545 		 * pmu before we get a ctx.
7546 		 */
7547 		event->hw.target = task;
7548 	}
7549 
7550 	event->clock = &local_clock;
7551 	if (parent_event)
7552 		event->clock = parent_event->clock;
7553 
7554 	if (!overflow_handler && parent_event) {
7555 		overflow_handler = parent_event->overflow_handler;
7556 		context = parent_event->overflow_handler_context;
7557 	}
7558 
7559 	event->overflow_handler	= overflow_handler;
7560 	event->overflow_handler_context = context;
7561 
7562 	perf_event__state_init(event);
7563 
7564 	pmu = NULL;
7565 
7566 	hwc = &event->hw;
7567 	hwc->sample_period = attr->sample_period;
7568 	if (attr->freq && attr->sample_freq)
7569 		hwc->sample_period = 1;
7570 	hwc->last_period = hwc->sample_period;
7571 
7572 	local64_set(&hwc->period_left, hwc->sample_period);
7573 
7574 	/*
7575 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7576 	 */
7577 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7578 		goto err_ns;
7579 
7580 	if (!has_branch_stack(event))
7581 		event->attr.branch_sample_type = 0;
7582 
7583 	if (cgroup_fd != -1) {
7584 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7585 		if (err)
7586 			goto err_ns;
7587 	}
7588 
7589 	pmu = perf_init_event(event);
7590 	if (!pmu)
7591 		goto err_ns;
7592 	else if (IS_ERR(pmu)) {
7593 		err = PTR_ERR(pmu);
7594 		goto err_ns;
7595 	}
7596 
7597 	err = exclusive_event_init(event);
7598 	if (err)
7599 		goto err_pmu;
7600 
7601 	if (!event->parent) {
7602 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7603 			err = get_callchain_buffers();
7604 			if (err)
7605 				goto err_per_task;
7606 		}
7607 	}
7608 
7609 	return event;
7610 
7611 err_per_task:
7612 	exclusive_event_destroy(event);
7613 
7614 err_pmu:
7615 	if (event->destroy)
7616 		event->destroy(event);
7617 	module_put(pmu->module);
7618 err_ns:
7619 	if (is_cgroup_event(event))
7620 		perf_detach_cgroup(event);
7621 	if (event->ns)
7622 		put_pid_ns(event->ns);
7623 	kfree(event);
7624 
7625 	return ERR_PTR(err);
7626 }
7627 
7628 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7629 			  struct perf_event_attr *attr)
7630 {
7631 	u32 size;
7632 	int ret;
7633 
7634 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7635 		return -EFAULT;
7636 
7637 	/*
7638 	 * zero the full structure, so that a short copy will be nice.
7639 	 */
7640 	memset(attr, 0, sizeof(*attr));
7641 
7642 	ret = get_user(size, &uattr->size);
7643 	if (ret)
7644 		return ret;
7645 
7646 	if (size > PAGE_SIZE)	/* silly large */
7647 		goto err_size;
7648 
7649 	if (!size)		/* abi compat */
7650 		size = PERF_ATTR_SIZE_VER0;
7651 
7652 	if (size < PERF_ATTR_SIZE_VER0)
7653 		goto err_size;
7654 
7655 	/*
7656 	 * If we're handed a bigger struct than we know of,
7657 	 * ensure all the unknown bits are 0 - i.e. new
7658 	 * user-space does not rely on any kernel feature
7659 	 * extensions we dont know about yet.
7660 	 */
7661 	if (size > sizeof(*attr)) {
7662 		unsigned char __user *addr;
7663 		unsigned char __user *end;
7664 		unsigned char val;
7665 
7666 		addr = (void __user *)uattr + sizeof(*attr);
7667 		end  = (void __user *)uattr + size;
7668 
7669 		for (; addr < end; addr++) {
7670 			ret = get_user(val, addr);
7671 			if (ret)
7672 				return ret;
7673 			if (val)
7674 				goto err_size;
7675 		}
7676 		size = sizeof(*attr);
7677 	}
7678 
7679 	ret = copy_from_user(attr, uattr, size);
7680 	if (ret)
7681 		return -EFAULT;
7682 
7683 	if (attr->__reserved_1)
7684 		return -EINVAL;
7685 
7686 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7687 		return -EINVAL;
7688 
7689 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7690 		return -EINVAL;
7691 
7692 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7693 		u64 mask = attr->branch_sample_type;
7694 
7695 		/* only using defined bits */
7696 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7697 			return -EINVAL;
7698 
7699 		/* at least one branch bit must be set */
7700 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7701 			return -EINVAL;
7702 
7703 		/* propagate priv level, when not set for branch */
7704 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7705 
7706 			/* exclude_kernel checked on syscall entry */
7707 			if (!attr->exclude_kernel)
7708 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
7709 
7710 			if (!attr->exclude_user)
7711 				mask |= PERF_SAMPLE_BRANCH_USER;
7712 
7713 			if (!attr->exclude_hv)
7714 				mask |= PERF_SAMPLE_BRANCH_HV;
7715 			/*
7716 			 * adjust user setting (for HW filter setup)
7717 			 */
7718 			attr->branch_sample_type = mask;
7719 		}
7720 		/* privileged levels capture (kernel, hv): check permissions */
7721 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7722 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7723 			return -EACCES;
7724 	}
7725 
7726 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7727 		ret = perf_reg_validate(attr->sample_regs_user);
7728 		if (ret)
7729 			return ret;
7730 	}
7731 
7732 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7733 		if (!arch_perf_have_user_stack_dump())
7734 			return -ENOSYS;
7735 
7736 		/*
7737 		 * We have __u32 type for the size, but so far
7738 		 * we can only use __u16 as maximum due to the
7739 		 * __u16 sample size limit.
7740 		 */
7741 		if (attr->sample_stack_user >= USHRT_MAX)
7742 			ret = -EINVAL;
7743 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7744 			ret = -EINVAL;
7745 	}
7746 
7747 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7748 		ret = perf_reg_validate(attr->sample_regs_intr);
7749 out:
7750 	return ret;
7751 
7752 err_size:
7753 	put_user(sizeof(*attr), &uattr->size);
7754 	ret = -E2BIG;
7755 	goto out;
7756 }
7757 
7758 static int
7759 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7760 {
7761 	struct ring_buffer *rb = NULL;
7762 	int ret = -EINVAL;
7763 
7764 	if (!output_event)
7765 		goto set;
7766 
7767 	/* don't allow circular references */
7768 	if (event == output_event)
7769 		goto out;
7770 
7771 	/*
7772 	 * Don't allow cross-cpu buffers
7773 	 */
7774 	if (output_event->cpu != event->cpu)
7775 		goto out;
7776 
7777 	/*
7778 	 * If its not a per-cpu rb, it must be the same task.
7779 	 */
7780 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7781 		goto out;
7782 
7783 	/*
7784 	 * Mixing clocks in the same buffer is trouble you don't need.
7785 	 */
7786 	if (output_event->clock != event->clock)
7787 		goto out;
7788 
7789 	/*
7790 	 * If both events generate aux data, they must be on the same PMU
7791 	 */
7792 	if (has_aux(event) && has_aux(output_event) &&
7793 	    event->pmu != output_event->pmu)
7794 		goto out;
7795 
7796 set:
7797 	mutex_lock(&event->mmap_mutex);
7798 	/* Can't redirect output if we've got an active mmap() */
7799 	if (atomic_read(&event->mmap_count))
7800 		goto unlock;
7801 
7802 	if (output_event) {
7803 		/* get the rb we want to redirect to */
7804 		rb = ring_buffer_get(output_event);
7805 		if (!rb)
7806 			goto unlock;
7807 	}
7808 
7809 	ring_buffer_attach(event, rb);
7810 
7811 	ret = 0;
7812 unlock:
7813 	mutex_unlock(&event->mmap_mutex);
7814 
7815 out:
7816 	return ret;
7817 }
7818 
7819 static void mutex_lock_double(struct mutex *a, struct mutex *b)
7820 {
7821 	if (b < a)
7822 		swap(a, b);
7823 
7824 	mutex_lock(a);
7825 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7826 }
7827 
7828 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
7829 {
7830 	bool nmi_safe = false;
7831 
7832 	switch (clk_id) {
7833 	case CLOCK_MONOTONIC:
7834 		event->clock = &ktime_get_mono_fast_ns;
7835 		nmi_safe = true;
7836 		break;
7837 
7838 	case CLOCK_MONOTONIC_RAW:
7839 		event->clock = &ktime_get_raw_fast_ns;
7840 		nmi_safe = true;
7841 		break;
7842 
7843 	case CLOCK_REALTIME:
7844 		event->clock = &ktime_get_real_ns;
7845 		break;
7846 
7847 	case CLOCK_BOOTTIME:
7848 		event->clock = &ktime_get_boot_ns;
7849 		break;
7850 
7851 	case CLOCK_TAI:
7852 		event->clock = &ktime_get_tai_ns;
7853 		break;
7854 
7855 	default:
7856 		return -EINVAL;
7857 	}
7858 
7859 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
7860 		return -EINVAL;
7861 
7862 	return 0;
7863 }
7864 
7865 /**
7866  * sys_perf_event_open - open a performance event, associate it to a task/cpu
7867  *
7868  * @attr_uptr:	event_id type attributes for monitoring/sampling
7869  * @pid:		target pid
7870  * @cpu:		target cpu
7871  * @group_fd:		group leader event fd
7872  */
7873 SYSCALL_DEFINE5(perf_event_open,
7874 		struct perf_event_attr __user *, attr_uptr,
7875 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7876 {
7877 	struct perf_event *group_leader = NULL, *output_event = NULL;
7878 	struct perf_event *event, *sibling;
7879 	struct perf_event_attr attr;
7880 	struct perf_event_context *ctx, *uninitialized_var(gctx);
7881 	struct file *event_file = NULL;
7882 	struct fd group = {NULL, 0};
7883 	struct task_struct *task = NULL;
7884 	struct pmu *pmu;
7885 	int event_fd;
7886 	int move_group = 0;
7887 	int err;
7888 	int f_flags = O_RDWR;
7889 	int cgroup_fd = -1;
7890 
7891 	/* for future expandability... */
7892 	if (flags & ~PERF_FLAG_ALL)
7893 		return -EINVAL;
7894 
7895 	err = perf_copy_attr(attr_uptr, &attr);
7896 	if (err)
7897 		return err;
7898 
7899 	if (!attr.exclude_kernel) {
7900 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7901 			return -EACCES;
7902 	}
7903 
7904 	if (attr.freq) {
7905 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7906 			return -EINVAL;
7907 	} else {
7908 		if (attr.sample_period & (1ULL << 63))
7909 			return -EINVAL;
7910 	}
7911 
7912 	/*
7913 	 * In cgroup mode, the pid argument is used to pass the fd
7914 	 * opened to the cgroup directory in cgroupfs. The cpu argument
7915 	 * designates the cpu on which to monitor threads from that
7916 	 * cgroup.
7917 	 */
7918 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7919 		return -EINVAL;
7920 
7921 	if (flags & PERF_FLAG_FD_CLOEXEC)
7922 		f_flags |= O_CLOEXEC;
7923 
7924 	event_fd = get_unused_fd_flags(f_flags);
7925 	if (event_fd < 0)
7926 		return event_fd;
7927 
7928 	if (group_fd != -1) {
7929 		err = perf_fget_light(group_fd, &group);
7930 		if (err)
7931 			goto err_fd;
7932 		group_leader = group.file->private_data;
7933 		if (flags & PERF_FLAG_FD_OUTPUT)
7934 			output_event = group_leader;
7935 		if (flags & PERF_FLAG_FD_NO_GROUP)
7936 			group_leader = NULL;
7937 	}
7938 
7939 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7940 		task = find_lively_task_by_vpid(pid);
7941 		if (IS_ERR(task)) {
7942 			err = PTR_ERR(task);
7943 			goto err_group_fd;
7944 		}
7945 	}
7946 
7947 	if (task && group_leader &&
7948 	    group_leader->attr.inherit != attr.inherit) {
7949 		err = -EINVAL;
7950 		goto err_task;
7951 	}
7952 
7953 	get_online_cpus();
7954 
7955 	if (flags & PERF_FLAG_PID_CGROUP)
7956 		cgroup_fd = pid;
7957 
7958 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7959 				 NULL, NULL, cgroup_fd);
7960 	if (IS_ERR(event)) {
7961 		err = PTR_ERR(event);
7962 		goto err_cpus;
7963 	}
7964 
7965 	if (is_sampling_event(event)) {
7966 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7967 			err = -ENOTSUPP;
7968 			goto err_alloc;
7969 		}
7970 	}
7971 
7972 	account_event(event);
7973 
7974 	/*
7975 	 * Special case software events and allow them to be part of
7976 	 * any hardware group.
7977 	 */
7978 	pmu = event->pmu;
7979 
7980 	if (attr.use_clockid) {
7981 		err = perf_event_set_clock(event, attr.clockid);
7982 		if (err)
7983 			goto err_alloc;
7984 	}
7985 
7986 	if (group_leader &&
7987 	    (is_software_event(event) != is_software_event(group_leader))) {
7988 		if (is_software_event(event)) {
7989 			/*
7990 			 * If event and group_leader are not both a software
7991 			 * event, and event is, then group leader is not.
7992 			 *
7993 			 * Allow the addition of software events to !software
7994 			 * groups, this is safe because software events never
7995 			 * fail to schedule.
7996 			 */
7997 			pmu = group_leader->pmu;
7998 		} else if (is_software_event(group_leader) &&
7999 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8000 			/*
8001 			 * In case the group is a pure software group, and we
8002 			 * try to add a hardware event, move the whole group to
8003 			 * the hardware context.
8004 			 */
8005 			move_group = 1;
8006 		}
8007 	}
8008 
8009 	/*
8010 	 * Get the target context (task or percpu):
8011 	 */
8012 	ctx = find_get_context(pmu, task, event);
8013 	if (IS_ERR(ctx)) {
8014 		err = PTR_ERR(ctx);
8015 		goto err_alloc;
8016 	}
8017 
8018 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8019 		err = -EBUSY;
8020 		goto err_context;
8021 	}
8022 
8023 	if (task) {
8024 		put_task_struct(task);
8025 		task = NULL;
8026 	}
8027 
8028 	/*
8029 	 * Look up the group leader (we will attach this event to it):
8030 	 */
8031 	if (group_leader) {
8032 		err = -EINVAL;
8033 
8034 		/*
8035 		 * Do not allow a recursive hierarchy (this new sibling
8036 		 * becoming part of another group-sibling):
8037 		 */
8038 		if (group_leader->group_leader != group_leader)
8039 			goto err_context;
8040 
8041 		/* All events in a group should have the same clock */
8042 		if (group_leader->clock != event->clock)
8043 			goto err_context;
8044 
8045 		/*
8046 		 * Do not allow to attach to a group in a different
8047 		 * task or CPU context:
8048 		 */
8049 		if (move_group) {
8050 			/*
8051 			 * Make sure we're both on the same task, or both
8052 			 * per-cpu events.
8053 			 */
8054 			if (group_leader->ctx->task != ctx->task)
8055 				goto err_context;
8056 
8057 			/*
8058 			 * Make sure we're both events for the same CPU;
8059 			 * grouping events for different CPUs is broken; since
8060 			 * you can never concurrently schedule them anyhow.
8061 			 */
8062 			if (group_leader->cpu != event->cpu)
8063 				goto err_context;
8064 		} else {
8065 			if (group_leader->ctx != ctx)
8066 				goto err_context;
8067 		}
8068 
8069 		/*
8070 		 * Only a group leader can be exclusive or pinned
8071 		 */
8072 		if (attr.exclusive || attr.pinned)
8073 			goto err_context;
8074 	}
8075 
8076 	if (output_event) {
8077 		err = perf_event_set_output(event, output_event);
8078 		if (err)
8079 			goto err_context;
8080 	}
8081 
8082 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8083 					f_flags);
8084 	if (IS_ERR(event_file)) {
8085 		err = PTR_ERR(event_file);
8086 		goto err_context;
8087 	}
8088 
8089 	if (move_group) {
8090 		gctx = group_leader->ctx;
8091 
8092 		/*
8093 		 * See perf_event_ctx_lock() for comments on the details
8094 		 * of swizzling perf_event::ctx.
8095 		 */
8096 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8097 
8098 		perf_remove_from_context(group_leader, false);
8099 
8100 		list_for_each_entry(sibling, &group_leader->sibling_list,
8101 				    group_entry) {
8102 			perf_remove_from_context(sibling, false);
8103 			put_ctx(gctx);
8104 		}
8105 	} else {
8106 		mutex_lock(&ctx->mutex);
8107 	}
8108 
8109 	WARN_ON_ONCE(ctx->parent_ctx);
8110 
8111 	if (move_group) {
8112 		/*
8113 		 * Wait for everybody to stop referencing the events through
8114 		 * the old lists, before installing it on new lists.
8115 		 */
8116 		synchronize_rcu();
8117 
8118 		/*
8119 		 * Install the group siblings before the group leader.
8120 		 *
8121 		 * Because a group leader will try and install the entire group
8122 		 * (through the sibling list, which is still in-tact), we can
8123 		 * end up with siblings installed in the wrong context.
8124 		 *
8125 		 * By installing siblings first we NO-OP because they're not
8126 		 * reachable through the group lists.
8127 		 */
8128 		list_for_each_entry(sibling, &group_leader->sibling_list,
8129 				    group_entry) {
8130 			perf_event__state_init(sibling);
8131 			perf_install_in_context(ctx, sibling, sibling->cpu);
8132 			get_ctx(ctx);
8133 		}
8134 
8135 		/*
8136 		 * Removing from the context ends up with disabled
8137 		 * event. What we want here is event in the initial
8138 		 * startup state, ready to be add into new context.
8139 		 */
8140 		perf_event__state_init(group_leader);
8141 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8142 		get_ctx(ctx);
8143 	}
8144 
8145 	if (!exclusive_event_installable(event, ctx)) {
8146 		err = -EBUSY;
8147 		mutex_unlock(&ctx->mutex);
8148 		fput(event_file);
8149 		goto err_context;
8150 	}
8151 
8152 	perf_install_in_context(ctx, event, event->cpu);
8153 	perf_unpin_context(ctx);
8154 
8155 	if (move_group) {
8156 		mutex_unlock(&gctx->mutex);
8157 		put_ctx(gctx);
8158 	}
8159 	mutex_unlock(&ctx->mutex);
8160 
8161 	put_online_cpus();
8162 
8163 	event->owner = current;
8164 
8165 	mutex_lock(&current->perf_event_mutex);
8166 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8167 	mutex_unlock(&current->perf_event_mutex);
8168 
8169 	/*
8170 	 * Precalculate sample_data sizes
8171 	 */
8172 	perf_event__header_size(event);
8173 	perf_event__id_header_size(event);
8174 
8175 	/*
8176 	 * Drop the reference on the group_event after placing the
8177 	 * new event on the sibling_list. This ensures destruction
8178 	 * of the group leader will find the pointer to itself in
8179 	 * perf_group_detach().
8180 	 */
8181 	fdput(group);
8182 	fd_install(event_fd, event_file);
8183 	return event_fd;
8184 
8185 err_context:
8186 	perf_unpin_context(ctx);
8187 	put_ctx(ctx);
8188 err_alloc:
8189 	free_event(event);
8190 err_cpus:
8191 	put_online_cpus();
8192 err_task:
8193 	if (task)
8194 		put_task_struct(task);
8195 err_group_fd:
8196 	fdput(group);
8197 err_fd:
8198 	put_unused_fd(event_fd);
8199 	return err;
8200 }
8201 
8202 /**
8203  * perf_event_create_kernel_counter
8204  *
8205  * @attr: attributes of the counter to create
8206  * @cpu: cpu in which the counter is bound
8207  * @task: task to profile (NULL for percpu)
8208  */
8209 struct perf_event *
8210 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8211 				 struct task_struct *task,
8212 				 perf_overflow_handler_t overflow_handler,
8213 				 void *context)
8214 {
8215 	struct perf_event_context *ctx;
8216 	struct perf_event *event;
8217 	int err;
8218 
8219 	/*
8220 	 * Get the target context (task or percpu):
8221 	 */
8222 
8223 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8224 				 overflow_handler, context, -1);
8225 	if (IS_ERR(event)) {
8226 		err = PTR_ERR(event);
8227 		goto err;
8228 	}
8229 
8230 	/* Mark owner so we could distinguish it from user events. */
8231 	event->owner = EVENT_OWNER_KERNEL;
8232 
8233 	account_event(event);
8234 
8235 	ctx = find_get_context(event->pmu, task, event);
8236 	if (IS_ERR(ctx)) {
8237 		err = PTR_ERR(ctx);
8238 		goto err_free;
8239 	}
8240 
8241 	WARN_ON_ONCE(ctx->parent_ctx);
8242 	mutex_lock(&ctx->mutex);
8243 	if (!exclusive_event_installable(event, ctx)) {
8244 		mutex_unlock(&ctx->mutex);
8245 		perf_unpin_context(ctx);
8246 		put_ctx(ctx);
8247 		err = -EBUSY;
8248 		goto err_free;
8249 	}
8250 
8251 	perf_install_in_context(ctx, event, cpu);
8252 	perf_unpin_context(ctx);
8253 	mutex_unlock(&ctx->mutex);
8254 
8255 	return event;
8256 
8257 err_free:
8258 	free_event(event);
8259 err:
8260 	return ERR_PTR(err);
8261 }
8262 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8263 
8264 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8265 {
8266 	struct perf_event_context *src_ctx;
8267 	struct perf_event_context *dst_ctx;
8268 	struct perf_event *event, *tmp;
8269 	LIST_HEAD(events);
8270 
8271 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8272 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8273 
8274 	/*
8275 	 * See perf_event_ctx_lock() for comments on the details
8276 	 * of swizzling perf_event::ctx.
8277 	 */
8278 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8279 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8280 				 event_entry) {
8281 		perf_remove_from_context(event, false);
8282 		unaccount_event_cpu(event, src_cpu);
8283 		put_ctx(src_ctx);
8284 		list_add(&event->migrate_entry, &events);
8285 	}
8286 
8287 	/*
8288 	 * Wait for the events to quiesce before re-instating them.
8289 	 */
8290 	synchronize_rcu();
8291 
8292 	/*
8293 	 * Re-instate events in 2 passes.
8294 	 *
8295 	 * Skip over group leaders and only install siblings on this first
8296 	 * pass, siblings will not get enabled without a leader, however a
8297 	 * leader will enable its siblings, even if those are still on the old
8298 	 * context.
8299 	 */
8300 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8301 		if (event->group_leader == event)
8302 			continue;
8303 
8304 		list_del(&event->migrate_entry);
8305 		if (event->state >= PERF_EVENT_STATE_OFF)
8306 			event->state = PERF_EVENT_STATE_INACTIVE;
8307 		account_event_cpu(event, dst_cpu);
8308 		perf_install_in_context(dst_ctx, event, dst_cpu);
8309 		get_ctx(dst_ctx);
8310 	}
8311 
8312 	/*
8313 	 * Once all the siblings are setup properly, install the group leaders
8314 	 * to make it go.
8315 	 */
8316 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8317 		list_del(&event->migrate_entry);
8318 		if (event->state >= PERF_EVENT_STATE_OFF)
8319 			event->state = PERF_EVENT_STATE_INACTIVE;
8320 		account_event_cpu(event, dst_cpu);
8321 		perf_install_in_context(dst_ctx, event, dst_cpu);
8322 		get_ctx(dst_ctx);
8323 	}
8324 	mutex_unlock(&dst_ctx->mutex);
8325 	mutex_unlock(&src_ctx->mutex);
8326 }
8327 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8328 
8329 static void sync_child_event(struct perf_event *child_event,
8330 			       struct task_struct *child)
8331 {
8332 	struct perf_event *parent_event = child_event->parent;
8333 	u64 child_val;
8334 
8335 	if (child_event->attr.inherit_stat)
8336 		perf_event_read_event(child_event, child);
8337 
8338 	child_val = perf_event_count(child_event);
8339 
8340 	/*
8341 	 * Add back the child's count to the parent's count:
8342 	 */
8343 	atomic64_add(child_val, &parent_event->child_count);
8344 	atomic64_add(child_event->total_time_enabled,
8345 		     &parent_event->child_total_time_enabled);
8346 	atomic64_add(child_event->total_time_running,
8347 		     &parent_event->child_total_time_running);
8348 
8349 	/*
8350 	 * Remove this event from the parent's list
8351 	 */
8352 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8353 	mutex_lock(&parent_event->child_mutex);
8354 	list_del_init(&child_event->child_list);
8355 	mutex_unlock(&parent_event->child_mutex);
8356 
8357 	/*
8358 	 * Make sure user/parent get notified, that we just
8359 	 * lost one event.
8360 	 */
8361 	perf_event_wakeup(parent_event);
8362 
8363 	/*
8364 	 * Release the parent event, if this was the last
8365 	 * reference to it.
8366 	 */
8367 	put_event(parent_event);
8368 }
8369 
8370 static void
8371 __perf_event_exit_task(struct perf_event *child_event,
8372 			 struct perf_event_context *child_ctx,
8373 			 struct task_struct *child)
8374 {
8375 	/*
8376 	 * Do not destroy the 'original' grouping; because of the context
8377 	 * switch optimization the original events could've ended up in a
8378 	 * random child task.
8379 	 *
8380 	 * If we were to destroy the original group, all group related
8381 	 * operations would cease to function properly after this random
8382 	 * child dies.
8383 	 *
8384 	 * Do destroy all inherited groups, we don't care about those
8385 	 * and being thorough is better.
8386 	 */
8387 	perf_remove_from_context(child_event, !!child_event->parent);
8388 
8389 	/*
8390 	 * It can happen that the parent exits first, and has events
8391 	 * that are still around due to the child reference. These
8392 	 * events need to be zapped.
8393 	 */
8394 	if (child_event->parent) {
8395 		sync_child_event(child_event, child);
8396 		free_event(child_event);
8397 	} else {
8398 		child_event->state = PERF_EVENT_STATE_EXIT;
8399 		perf_event_wakeup(child_event);
8400 	}
8401 }
8402 
8403 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8404 {
8405 	struct perf_event *child_event, *next;
8406 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8407 	unsigned long flags;
8408 
8409 	if (likely(!child->perf_event_ctxp[ctxn])) {
8410 		perf_event_task(child, NULL, 0);
8411 		return;
8412 	}
8413 
8414 	local_irq_save(flags);
8415 	/*
8416 	 * We can't reschedule here because interrupts are disabled,
8417 	 * and either child is current or it is a task that can't be
8418 	 * scheduled, so we are now safe from rescheduling changing
8419 	 * our context.
8420 	 */
8421 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8422 
8423 	/*
8424 	 * Take the context lock here so that if find_get_context is
8425 	 * reading child->perf_event_ctxp, we wait until it has
8426 	 * incremented the context's refcount before we do put_ctx below.
8427 	 */
8428 	raw_spin_lock(&child_ctx->lock);
8429 	task_ctx_sched_out(child_ctx);
8430 	child->perf_event_ctxp[ctxn] = NULL;
8431 
8432 	/*
8433 	 * If this context is a clone; unclone it so it can't get
8434 	 * swapped to another process while we're removing all
8435 	 * the events from it.
8436 	 */
8437 	clone_ctx = unclone_ctx(child_ctx);
8438 	update_context_time(child_ctx);
8439 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8440 
8441 	if (clone_ctx)
8442 		put_ctx(clone_ctx);
8443 
8444 	/*
8445 	 * Report the task dead after unscheduling the events so that we
8446 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8447 	 * get a few PERF_RECORD_READ events.
8448 	 */
8449 	perf_event_task(child, child_ctx, 0);
8450 
8451 	/*
8452 	 * We can recurse on the same lock type through:
8453 	 *
8454 	 *   __perf_event_exit_task()
8455 	 *     sync_child_event()
8456 	 *       put_event()
8457 	 *         mutex_lock(&ctx->mutex)
8458 	 *
8459 	 * But since its the parent context it won't be the same instance.
8460 	 */
8461 	mutex_lock(&child_ctx->mutex);
8462 
8463 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8464 		__perf_event_exit_task(child_event, child_ctx, child);
8465 
8466 	mutex_unlock(&child_ctx->mutex);
8467 
8468 	put_ctx(child_ctx);
8469 }
8470 
8471 /*
8472  * When a child task exits, feed back event values to parent events.
8473  */
8474 void perf_event_exit_task(struct task_struct *child)
8475 {
8476 	struct perf_event *event, *tmp;
8477 	int ctxn;
8478 
8479 	mutex_lock(&child->perf_event_mutex);
8480 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8481 				 owner_entry) {
8482 		list_del_init(&event->owner_entry);
8483 
8484 		/*
8485 		 * Ensure the list deletion is visible before we clear
8486 		 * the owner, closes a race against perf_release() where
8487 		 * we need to serialize on the owner->perf_event_mutex.
8488 		 */
8489 		smp_wmb();
8490 		event->owner = NULL;
8491 	}
8492 	mutex_unlock(&child->perf_event_mutex);
8493 
8494 	for_each_task_context_nr(ctxn)
8495 		perf_event_exit_task_context(child, ctxn);
8496 }
8497 
8498 static void perf_free_event(struct perf_event *event,
8499 			    struct perf_event_context *ctx)
8500 {
8501 	struct perf_event *parent = event->parent;
8502 
8503 	if (WARN_ON_ONCE(!parent))
8504 		return;
8505 
8506 	mutex_lock(&parent->child_mutex);
8507 	list_del_init(&event->child_list);
8508 	mutex_unlock(&parent->child_mutex);
8509 
8510 	put_event(parent);
8511 
8512 	raw_spin_lock_irq(&ctx->lock);
8513 	perf_group_detach(event);
8514 	list_del_event(event, ctx);
8515 	raw_spin_unlock_irq(&ctx->lock);
8516 	free_event(event);
8517 }
8518 
8519 /*
8520  * Free an unexposed, unused context as created by inheritance by
8521  * perf_event_init_task below, used by fork() in case of fail.
8522  *
8523  * Not all locks are strictly required, but take them anyway to be nice and
8524  * help out with the lockdep assertions.
8525  */
8526 void perf_event_free_task(struct task_struct *task)
8527 {
8528 	struct perf_event_context *ctx;
8529 	struct perf_event *event, *tmp;
8530 	int ctxn;
8531 
8532 	for_each_task_context_nr(ctxn) {
8533 		ctx = task->perf_event_ctxp[ctxn];
8534 		if (!ctx)
8535 			continue;
8536 
8537 		mutex_lock(&ctx->mutex);
8538 again:
8539 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8540 				group_entry)
8541 			perf_free_event(event, ctx);
8542 
8543 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8544 				group_entry)
8545 			perf_free_event(event, ctx);
8546 
8547 		if (!list_empty(&ctx->pinned_groups) ||
8548 				!list_empty(&ctx->flexible_groups))
8549 			goto again;
8550 
8551 		mutex_unlock(&ctx->mutex);
8552 
8553 		put_ctx(ctx);
8554 	}
8555 }
8556 
8557 void perf_event_delayed_put(struct task_struct *task)
8558 {
8559 	int ctxn;
8560 
8561 	for_each_task_context_nr(ctxn)
8562 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8563 }
8564 
8565 /*
8566  * inherit a event from parent task to child task:
8567  */
8568 static struct perf_event *
8569 inherit_event(struct perf_event *parent_event,
8570 	      struct task_struct *parent,
8571 	      struct perf_event_context *parent_ctx,
8572 	      struct task_struct *child,
8573 	      struct perf_event *group_leader,
8574 	      struct perf_event_context *child_ctx)
8575 {
8576 	enum perf_event_active_state parent_state = parent_event->state;
8577 	struct perf_event *child_event;
8578 	unsigned long flags;
8579 
8580 	/*
8581 	 * Instead of creating recursive hierarchies of events,
8582 	 * we link inherited events back to the original parent,
8583 	 * which has a filp for sure, which we use as the reference
8584 	 * count:
8585 	 */
8586 	if (parent_event->parent)
8587 		parent_event = parent_event->parent;
8588 
8589 	child_event = perf_event_alloc(&parent_event->attr,
8590 					   parent_event->cpu,
8591 					   child,
8592 					   group_leader, parent_event,
8593 					   NULL, NULL, -1);
8594 	if (IS_ERR(child_event))
8595 		return child_event;
8596 
8597 	if (is_orphaned_event(parent_event) ||
8598 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8599 		free_event(child_event);
8600 		return NULL;
8601 	}
8602 
8603 	get_ctx(child_ctx);
8604 
8605 	/*
8606 	 * Make the child state follow the state of the parent event,
8607 	 * not its attr.disabled bit.  We hold the parent's mutex,
8608 	 * so we won't race with perf_event_{en, dis}able_family.
8609 	 */
8610 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8611 		child_event->state = PERF_EVENT_STATE_INACTIVE;
8612 	else
8613 		child_event->state = PERF_EVENT_STATE_OFF;
8614 
8615 	if (parent_event->attr.freq) {
8616 		u64 sample_period = parent_event->hw.sample_period;
8617 		struct hw_perf_event *hwc = &child_event->hw;
8618 
8619 		hwc->sample_period = sample_period;
8620 		hwc->last_period   = sample_period;
8621 
8622 		local64_set(&hwc->period_left, sample_period);
8623 	}
8624 
8625 	child_event->ctx = child_ctx;
8626 	child_event->overflow_handler = parent_event->overflow_handler;
8627 	child_event->overflow_handler_context
8628 		= parent_event->overflow_handler_context;
8629 
8630 	/*
8631 	 * Precalculate sample_data sizes
8632 	 */
8633 	perf_event__header_size(child_event);
8634 	perf_event__id_header_size(child_event);
8635 
8636 	/*
8637 	 * Link it up in the child's context:
8638 	 */
8639 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
8640 	add_event_to_ctx(child_event, child_ctx);
8641 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8642 
8643 	/*
8644 	 * Link this into the parent event's child list
8645 	 */
8646 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8647 	mutex_lock(&parent_event->child_mutex);
8648 	list_add_tail(&child_event->child_list, &parent_event->child_list);
8649 	mutex_unlock(&parent_event->child_mutex);
8650 
8651 	return child_event;
8652 }
8653 
8654 static int inherit_group(struct perf_event *parent_event,
8655 	      struct task_struct *parent,
8656 	      struct perf_event_context *parent_ctx,
8657 	      struct task_struct *child,
8658 	      struct perf_event_context *child_ctx)
8659 {
8660 	struct perf_event *leader;
8661 	struct perf_event *sub;
8662 	struct perf_event *child_ctr;
8663 
8664 	leader = inherit_event(parent_event, parent, parent_ctx,
8665 				 child, NULL, child_ctx);
8666 	if (IS_ERR(leader))
8667 		return PTR_ERR(leader);
8668 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8669 		child_ctr = inherit_event(sub, parent, parent_ctx,
8670 					    child, leader, child_ctx);
8671 		if (IS_ERR(child_ctr))
8672 			return PTR_ERR(child_ctr);
8673 	}
8674 	return 0;
8675 }
8676 
8677 static int
8678 inherit_task_group(struct perf_event *event, struct task_struct *parent,
8679 		   struct perf_event_context *parent_ctx,
8680 		   struct task_struct *child, int ctxn,
8681 		   int *inherited_all)
8682 {
8683 	int ret;
8684 	struct perf_event_context *child_ctx;
8685 
8686 	if (!event->attr.inherit) {
8687 		*inherited_all = 0;
8688 		return 0;
8689 	}
8690 
8691 	child_ctx = child->perf_event_ctxp[ctxn];
8692 	if (!child_ctx) {
8693 		/*
8694 		 * This is executed from the parent task context, so
8695 		 * inherit events that have been marked for cloning.
8696 		 * First allocate and initialize a context for the
8697 		 * child.
8698 		 */
8699 
8700 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8701 		if (!child_ctx)
8702 			return -ENOMEM;
8703 
8704 		child->perf_event_ctxp[ctxn] = child_ctx;
8705 	}
8706 
8707 	ret = inherit_group(event, parent, parent_ctx,
8708 			    child, child_ctx);
8709 
8710 	if (ret)
8711 		*inherited_all = 0;
8712 
8713 	return ret;
8714 }
8715 
8716 /*
8717  * Initialize the perf_event context in task_struct
8718  */
8719 static int perf_event_init_context(struct task_struct *child, int ctxn)
8720 {
8721 	struct perf_event_context *child_ctx, *parent_ctx;
8722 	struct perf_event_context *cloned_ctx;
8723 	struct perf_event *event;
8724 	struct task_struct *parent = current;
8725 	int inherited_all = 1;
8726 	unsigned long flags;
8727 	int ret = 0;
8728 
8729 	if (likely(!parent->perf_event_ctxp[ctxn]))
8730 		return 0;
8731 
8732 	/*
8733 	 * If the parent's context is a clone, pin it so it won't get
8734 	 * swapped under us.
8735 	 */
8736 	parent_ctx = perf_pin_task_context(parent, ctxn);
8737 	if (!parent_ctx)
8738 		return 0;
8739 
8740 	/*
8741 	 * No need to check if parent_ctx != NULL here; since we saw
8742 	 * it non-NULL earlier, the only reason for it to become NULL
8743 	 * is if we exit, and since we're currently in the middle of
8744 	 * a fork we can't be exiting at the same time.
8745 	 */
8746 
8747 	/*
8748 	 * Lock the parent list. No need to lock the child - not PID
8749 	 * hashed yet and not running, so nobody can access it.
8750 	 */
8751 	mutex_lock(&parent_ctx->mutex);
8752 
8753 	/*
8754 	 * We dont have to disable NMIs - we are only looking at
8755 	 * the list, not manipulating it:
8756 	 */
8757 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8758 		ret = inherit_task_group(event, parent, parent_ctx,
8759 					 child, ctxn, &inherited_all);
8760 		if (ret)
8761 			break;
8762 	}
8763 
8764 	/*
8765 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
8766 	 * to allocations, but we need to prevent rotation because
8767 	 * rotate_ctx() will change the list from interrupt context.
8768 	 */
8769 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8770 	parent_ctx->rotate_disable = 1;
8771 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8772 
8773 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8774 		ret = inherit_task_group(event, parent, parent_ctx,
8775 					 child, ctxn, &inherited_all);
8776 		if (ret)
8777 			break;
8778 	}
8779 
8780 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8781 	parent_ctx->rotate_disable = 0;
8782 
8783 	child_ctx = child->perf_event_ctxp[ctxn];
8784 
8785 	if (child_ctx && inherited_all) {
8786 		/*
8787 		 * Mark the child context as a clone of the parent
8788 		 * context, or of whatever the parent is a clone of.
8789 		 *
8790 		 * Note that if the parent is a clone, the holding of
8791 		 * parent_ctx->lock avoids it from being uncloned.
8792 		 */
8793 		cloned_ctx = parent_ctx->parent_ctx;
8794 		if (cloned_ctx) {
8795 			child_ctx->parent_ctx = cloned_ctx;
8796 			child_ctx->parent_gen = parent_ctx->parent_gen;
8797 		} else {
8798 			child_ctx->parent_ctx = parent_ctx;
8799 			child_ctx->parent_gen = parent_ctx->generation;
8800 		}
8801 		get_ctx(child_ctx->parent_ctx);
8802 	}
8803 
8804 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8805 	mutex_unlock(&parent_ctx->mutex);
8806 
8807 	perf_unpin_context(parent_ctx);
8808 	put_ctx(parent_ctx);
8809 
8810 	return ret;
8811 }
8812 
8813 /*
8814  * Initialize the perf_event context in task_struct
8815  */
8816 int perf_event_init_task(struct task_struct *child)
8817 {
8818 	int ctxn, ret;
8819 
8820 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8821 	mutex_init(&child->perf_event_mutex);
8822 	INIT_LIST_HEAD(&child->perf_event_list);
8823 
8824 	for_each_task_context_nr(ctxn) {
8825 		ret = perf_event_init_context(child, ctxn);
8826 		if (ret) {
8827 			perf_event_free_task(child);
8828 			return ret;
8829 		}
8830 	}
8831 
8832 	return 0;
8833 }
8834 
8835 static void __init perf_event_init_all_cpus(void)
8836 {
8837 	struct swevent_htable *swhash;
8838 	int cpu;
8839 
8840 	for_each_possible_cpu(cpu) {
8841 		swhash = &per_cpu(swevent_htable, cpu);
8842 		mutex_init(&swhash->hlist_mutex);
8843 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8844 	}
8845 }
8846 
8847 static void perf_event_init_cpu(int cpu)
8848 {
8849 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8850 
8851 	mutex_lock(&swhash->hlist_mutex);
8852 	swhash->online = true;
8853 	if (swhash->hlist_refcount > 0) {
8854 		struct swevent_hlist *hlist;
8855 
8856 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8857 		WARN_ON(!hlist);
8858 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8859 	}
8860 	mutex_unlock(&swhash->hlist_mutex);
8861 }
8862 
8863 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8864 static void __perf_event_exit_context(void *__info)
8865 {
8866 	struct remove_event re = { .detach_group = true };
8867 	struct perf_event_context *ctx = __info;
8868 
8869 	rcu_read_lock();
8870 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8871 		__perf_remove_from_context(&re);
8872 	rcu_read_unlock();
8873 }
8874 
8875 static void perf_event_exit_cpu_context(int cpu)
8876 {
8877 	struct perf_event_context *ctx;
8878 	struct pmu *pmu;
8879 	int idx;
8880 
8881 	idx = srcu_read_lock(&pmus_srcu);
8882 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8883 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8884 
8885 		mutex_lock(&ctx->mutex);
8886 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8887 		mutex_unlock(&ctx->mutex);
8888 	}
8889 	srcu_read_unlock(&pmus_srcu, idx);
8890 }
8891 
8892 static void perf_event_exit_cpu(int cpu)
8893 {
8894 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8895 
8896 	perf_event_exit_cpu_context(cpu);
8897 
8898 	mutex_lock(&swhash->hlist_mutex);
8899 	swhash->online = false;
8900 	swevent_hlist_release(swhash);
8901 	mutex_unlock(&swhash->hlist_mutex);
8902 }
8903 #else
8904 static inline void perf_event_exit_cpu(int cpu) { }
8905 #endif
8906 
8907 static int
8908 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8909 {
8910 	int cpu;
8911 
8912 	for_each_online_cpu(cpu)
8913 		perf_event_exit_cpu(cpu);
8914 
8915 	return NOTIFY_OK;
8916 }
8917 
8918 /*
8919  * Run the perf reboot notifier at the very last possible moment so that
8920  * the generic watchdog code runs as long as possible.
8921  */
8922 static struct notifier_block perf_reboot_notifier = {
8923 	.notifier_call = perf_reboot,
8924 	.priority = INT_MIN,
8925 };
8926 
8927 static int
8928 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8929 {
8930 	unsigned int cpu = (long)hcpu;
8931 
8932 	switch (action & ~CPU_TASKS_FROZEN) {
8933 
8934 	case CPU_UP_PREPARE:
8935 	case CPU_DOWN_FAILED:
8936 		perf_event_init_cpu(cpu);
8937 		break;
8938 
8939 	case CPU_UP_CANCELED:
8940 	case CPU_DOWN_PREPARE:
8941 		perf_event_exit_cpu(cpu);
8942 		break;
8943 	default:
8944 		break;
8945 	}
8946 
8947 	return NOTIFY_OK;
8948 }
8949 
8950 void __init perf_event_init(void)
8951 {
8952 	int ret;
8953 
8954 	idr_init(&pmu_idr);
8955 
8956 	perf_event_init_all_cpus();
8957 	init_srcu_struct(&pmus_srcu);
8958 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8959 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
8960 	perf_pmu_register(&perf_task_clock, NULL, -1);
8961 	perf_tp_register();
8962 	perf_cpu_notifier(perf_cpu_notify);
8963 	register_reboot_notifier(&perf_reboot_notifier);
8964 
8965 	ret = init_hw_breakpoint();
8966 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8967 
8968 	/* do not patch jump label more than once per second */
8969 	jump_label_rate_limit(&perf_sched_events, HZ);
8970 
8971 	/*
8972 	 * Build time assertion that we keep the data_head at the intended
8973 	 * location.  IOW, validation we got the __reserved[] size right.
8974 	 */
8975 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8976 		     != 1024);
8977 }
8978 
8979 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
8980 			      char *page)
8981 {
8982 	struct perf_pmu_events_attr *pmu_attr =
8983 		container_of(attr, struct perf_pmu_events_attr, attr);
8984 
8985 	if (pmu_attr->event_str)
8986 		return sprintf(page, "%s\n", pmu_attr->event_str);
8987 
8988 	return 0;
8989 }
8990 
8991 static int __init perf_event_sysfs_init(void)
8992 {
8993 	struct pmu *pmu;
8994 	int ret;
8995 
8996 	mutex_lock(&pmus_lock);
8997 
8998 	ret = bus_register(&pmu_bus);
8999 	if (ret)
9000 		goto unlock;
9001 
9002 	list_for_each_entry(pmu, &pmus, entry) {
9003 		if (!pmu->name || pmu->type < 0)
9004 			continue;
9005 
9006 		ret = pmu_dev_alloc(pmu);
9007 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9008 	}
9009 	pmu_bus_running = 1;
9010 	ret = 0;
9011 
9012 unlock:
9013 	mutex_unlock(&pmus_lock);
9014 
9015 	return ret;
9016 }
9017 device_initcall(perf_event_sysfs_init);
9018 
9019 #ifdef CONFIG_CGROUP_PERF
9020 static struct cgroup_subsys_state *
9021 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9022 {
9023 	struct perf_cgroup *jc;
9024 
9025 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9026 	if (!jc)
9027 		return ERR_PTR(-ENOMEM);
9028 
9029 	jc->info = alloc_percpu(struct perf_cgroup_info);
9030 	if (!jc->info) {
9031 		kfree(jc);
9032 		return ERR_PTR(-ENOMEM);
9033 	}
9034 
9035 	return &jc->css;
9036 }
9037 
9038 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9039 {
9040 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9041 
9042 	free_percpu(jc->info);
9043 	kfree(jc);
9044 }
9045 
9046 static int __perf_cgroup_move(void *info)
9047 {
9048 	struct task_struct *task = info;
9049 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9050 	return 0;
9051 }
9052 
9053 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9054 			       struct cgroup_taskset *tset)
9055 {
9056 	struct task_struct *task;
9057 
9058 	cgroup_taskset_for_each(task, tset)
9059 		task_function_call(task, __perf_cgroup_move, task);
9060 }
9061 
9062 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9063 			     struct cgroup_subsys_state *old_css,
9064 			     struct task_struct *task)
9065 {
9066 	/*
9067 	 * cgroup_exit() is called in the copy_process() failure path.
9068 	 * Ignore this case since the task hasn't ran yet, this avoids
9069 	 * trying to poke a half freed task state from generic code.
9070 	 */
9071 	if (!(task->flags & PF_EXITING))
9072 		return;
9073 
9074 	task_function_call(task, __perf_cgroup_move, task);
9075 }
9076 
9077 struct cgroup_subsys perf_event_cgrp_subsys = {
9078 	.css_alloc	= perf_cgroup_css_alloc,
9079 	.css_free	= perf_cgroup_css_free,
9080 	.exit		= perf_cgroup_exit,
9081 	.attach		= perf_cgroup_attach,
9082 };
9083 #endif /* CONFIG_CGROUP_PERF */
9084