xref: /openbmc/linux/kernel/events/core.c (revision d3597236)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 static struct workqueue_struct *perf_wq;
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		tfc->ret = -EAGAIN;
70 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 			return;
72 	}
73 
74 	tfc->ret = tfc->func(tfc->info);
75 }
76 
77 /**
78  * task_function_call - call a function on the cpu on which a task runs
79  * @p:		the task to evaluate
80  * @func:	the function to be called
81  * @info:	the function call argument
82  *
83  * Calls the function @func when the task is currently running. This might
84  * be on the current CPU, which just calls the function directly
85  *
86  * returns: @func return value, or
87  *	    -ESRCH  - when the process isn't running
88  *	    -EAGAIN - when the process moved away
89  */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 	struct remote_function_call data = {
94 		.p	= p,
95 		.func	= func,
96 		.info	= info,
97 		.ret	= -ESRCH, /* No such (running) process */
98 	};
99 
100 	if (task_curr(p))
101 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102 
103 	return data.ret;
104 }
105 
106 /**
107  * cpu_function_call - call a function on the cpu
108  * @func:	the function to be called
109  * @info:	the function call argument
110  *
111  * Calls the function @func on the remote cpu.
112  *
113  * returns: @func return value or -ENXIO when the cpu is offline
114  */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 	struct remote_function_call data = {
118 		.p	= NULL,
119 		.func	= func,
120 		.info	= info,
121 		.ret	= -ENXIO, /* No such CPU */
122 	};
123 
124 	smp_call_function_single(cpu, remote_function, &data, 1);
125 
126 	return data.ret;
127 }
128 
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130 
131 static bool is_kernel_event(struct perf_event *event)
132 {
133 	return event->owner == EVENT_OWNER_KERNEL;
134 }
135 
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 		       PERF_FLAG_FD_OUTPUT  |\
138 		       PERF_FLAG_PID_CGROUP |\
139 		       PERF_FLAG_FD_CLOEXEC)
140 
141 /*
142  * branch priv levels that need permission checks
143  */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 	(PERF_SAMPLE_BRANCH_KERNEL |\
146 	 PERF_SAMPLE_BRANCH_HV)
147 
148 enum event_type_t {
149 	EVENT_FLEXIBLE = 0x1,
150 	EVENT_PINNED = 0x2,
151 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153 
154 /*
155  * perf_sched_events : >0 events exist
156  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157  */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161 
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166 
167 static LIST_HEAD(pmus);
168 static DEFINE_MUTEX(pmus_lock);
169 static struct srcu_struct pmus_srcu;
170 
171 /*
172  * perf event paranoia level:
173  *  -1 - not paranoid at all
174  *   0 - disallow raw tracepoint access for unpriv
175  *   1 - disallow cpu events for unpriv
176  *   2 - disallow kernel profiling for unpriv
177  */
178 int sysctl_perf_event_paranoid __read_mostly = 1;
179 
180 /* Minimum for 512 kiB + 1 user control page */
181 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
182 
183 /*
184  * max perf event sample rate
185  */
186 #define DEFAULT_MAX_SAMPLE_RATE		100000
187 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
188 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
189 
190 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
191 
192 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
193 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
194 
195 static int perf_sample_allowed_ns __read_mostly =
196 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
197 
198 void update_perf_cpu_limits(void)
199 {
200 	u64 tmp = perf_sample_period_ns;
201 
202 	tmp *= sysctl_perf_cpu_time_max_percent;
203 	do_div(tmp, 100);
204 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
205 }
206 
207 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
208 
209 int perf_proc_update_handler(struct ctl_table *table, int write,
210 		void __user *buffer, size_t *lenp,
211 		loff_t *ppos)
212 {
213 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
214 
215 	if (ret || !write)
216 		return ret;
217 
218 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
219 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
220 	update_perf_cpu_limits();
221 
222 	return 0;
223 }
224 
225 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
226 
227 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
228 				void __user *buffer, size_t *lenp,
229 				loff_t *ppos)
230 {
231 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
232 
233 	if (ret || !write)
234 		return ret;
235 
236 	update_perf_cpu_limits();
237 
238 	return 0;
239 }
240 
241 /*
242  * perf samples are done in some very critical code paths (NMIs).
243  * If they take too much CPU time, the system can lock up and not
244  * get any real work done.  This will drop the sample rate when
245  * we detect that events are taking too long.
246  */
247 #define NR_ACCUMULATED_SAMPLES 128
248 static DEFINE_PER_CPU(u64, running_sample_length);
249 
250 static void perf_duration_warn(struct irq_work *w)
251 {
252 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
253 	u64 avg_local_sample_len;
254 	u64 local_samples_len;
255 
256 	local_samples_len = __this_cpu_read(running_sample_length);
257 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
258 
259 	printk_ratelimited(KERN_WARNING
260 			"perf interrupt took too long (%lld > %lld), lowering "
261 			"kernel.perf_event_max_sample_rate to %d\n",
262 			avg_local_sample_len, allowed_ns >> 1,
263 			sysctl_perf_event_sample_rate);
264 }
265 
266 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
267 
268 void perf_sample_event_took(u64 sample_len_ns)
269 {
270 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
271 	u64 avg_local_sample_len;
272 	u64 local_samples_len;
273 
274 	if (allowed_ns == 0)
275 		return;
276 
277 	/* decay the counter by 1 average sample */
278 	local_samples_len = __this_cpu_read(running_sample_length);
279 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
280 	local_samples_len += sample_len_ns;
281 	__this_cpu_write(running_sample_length, local_samples_len);
282 
283 	/*
284 	 * note: this will be biased artifically low until we have
285 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
286 	 * from having to maintain a count.
287 	 */
288 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
289 
290 	if (avg_local_sample_len <= allowed_ns)
291 		return;
292 
293 	if (max_samples_per_tick <= 1)
294 		return;
295 
296 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
297 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
298 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
299 
300 	update_perf_cpu_limits();
301 
302 	if (!irq_work_queue(&perf_duration_work)) {
303 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
304 			     "kernel.perf_event_max_sample_rate to %d\n",
305 			     avg_local_sample_len, allowed_ns >> 1,
306 			     sysctl_perf_event_sample_rate);
307 	}
308 }
309 
310 static atomic64_t perf_event_id;
311 
312 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
313 			      enum event_type_t event_type);
314 
315 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
316 			     enum event_type_t event_type,
317 			     struct task_struct *task);
318 
319 static void update_context_time(struct perf_event_context *ctx);
320 static u64 perf_event_time(struct perf_event *event);
321 
322 void __weak perf_event_print_debug(void)	{ }
323 
324 extern __weak const char *perf_pmu_name(void)
325 {
326 	return "pmu";
327 }
328 
329 static inline u64 perf_clock(void)
330 {
331 	return local_clock();
332 }
333 
334 static inline u64 perf_event_clock(struct perf_event *event)
335 {
336 	return event->clock();
337 }
338 
339 static inline struct perf_cpu_context *
340 __get_cpu_context(struct perf_event_context *ctx)
341 {
342 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
343 }
344 
345 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
346 			  struct perf_event_context *ctx)
347 {
348 	raw_spin_lock(&cpuctx->ctx.lock);
349 	if (ctx)
350 		raw_spin_lock(&ctx->lock);
351 }
352 
353 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
354 			    struct perf_event_context *ctx)
355 {
356 	if (ctx)
357 		raw_spin_unlock(&ctx->lock);
358 	raw_spin_unlock(&cpuctx->ctx.lock);
359 }
360 
361 #ifdef CONFIG_CGROUP_PERF
362 
363 static inline bool
364 perf_cgroup_match(struct perf_event *event)
365 {
366 	struct perf_event_context *ctx = event->ctx;
367 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
368 
369 	/* @event doesn't care about cgroup */
370 	if (!event->cgrp)
371 		return true;
372 
373 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
374 	if (!cpuctx->cgrp)
375 		return false;
376 
377 	/*
378 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
379 	 * also enabled for all its descendant cgroups.  If @cpuctx's
380 	 * cgroup is a descendant of @event's (the test covers identity
381 	 * case), it's a match.
382 	 */
383 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
384 				    event->cgrp->css.cgroup);
385 }
386 
387 static inline void perf_detach_cgroup(struct perf_event *event)
388 {
389 	css_put(&event->cgrp->css);
390 	event->cgrp = NULL;
391 }
392 
393 static inline int is_cgroup_event(struct perf_event *event)
394 {
395 	return event->cgrp != NULL;
396 }
397 
398 static inline u64 perf_cgroup_event_time(struct perf_event *event)
399 {
400 	struct perf_cgroup_info *t;
401 
402 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
403 	return t->time;
404 }
405 
406 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
407 {
408 	struct perf_cgroup_info *info;
409 	u64 now;
410 
411 	now = perf_clock();
412 
413 	info = this_cpu_ptr(cgrp->info);
414 
415 	info->time += now - info->timestamp;
416 	info->timestamp = now;
417 }
418 
419 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
420 {
421 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
422 	if (cgrp_out)
423 		__update_cgrp_time(cgrp_out);
424 }
425 
426 static inline void update_cgrp_time_from_event(struct perf_event *event)
427 {
428 	struct perf_cgroup *cgrp;
429 
430 	/*
431 	 * ensure we access cgroup data only when needed and
432 	 * when we know the cgroup is pinned (css_get)
433 	 */
434 	if (!is_cgroup_event(event))
435 		return;
436 
437 	cgrp = perf_cgroup_from_task(current);
438 	/*
439 	 * Do not update time when cgroup is not active
440 	 */
441 	if (cgrp == event->cgrp)
442 		__update_cgrp_time(event->cgrp);
443 }
444 
445 static inline void
446 perf_cgroup_set_timestamp(struct task_struct *task,
447 			  struct perf_event_context *ctx)
448 {
449 	struct perf_cgroup *cgrp;
450 	struct perf_cgroup_info *info;
451 
452 	/*
453 	 * ctx->lock held by caller
454 	 * ensure we do not access cgroup data
455 	 * unless we have the cgroup pinned (css_get)
456 	 */
457 	if (!task || !ctx->nr_cgroups)
458 		return;
459 
460 	cgrp = perf_cgroup_from_task(task);
461 	info = this_cpu_ptr(cgrp->info);
462 	info->timestamp = ctx->timestamp;
463 }
464 
465 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
466 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
467 
468 /*
469  * reschedule events based on the cgroup constraint of task.
470  *
471  * mode SWOUT : schedule out everything
472  * mode SWIN : schedule in based on cgroup for next
473  */
474 void perf_cgroup_switch(struct task_struct *task, int mode)
475 {
476 	struct perf_cpu_context *cpuctx;
477 	struct pmu *pmu;
478 	unsigned long flags;
479 
480 	/*
481 	 * disable interrupts to avoid geting nr_cgroup
482 	 * changes via __perf_event_disable(). Also
483 	 * avoids preemption.
484 	 */
485 	local_irq_save(flags);
486 
487 	/*
488 	 * we reschedule only in the presence of cgroup
489 	 * constrained events.
490 	 */
491 	rcu_read_lock();
492 
493 	list_for_each_entry_rcu(pmu, &pmus, entry) {
494 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
495 		if (cpuctx->unique_pmu != pmu)
496 			continue; /* ensure we process each cpuctx once */
497 
498 		/*
499 		 * perf_cgroup_events says at least one
500 		 * context on this CPU has cgroup events.
501 		 *
502 		 * ctx->nr_cgroups reports the number of cgroup
503 		 * events for a context.
504 		 */
505 		if (cpuctx->ctx.nr_cgroups > 0) {
506 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
507 			perf_pmu_disable(cpuctx->ctx.pmu);
508 
509 			if (mode & PERF_CGROUP_SWOUT) {
510 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
511 				/*
512 				 * must not be done before ctxswout due
513 				 * to event_filter_match() in event_sched_out()
514 				 */
515 				cpuctx->cgrp = NULL;
516 			}
517 
518 			if (mode & PERF_CGROUP_SWIN) {
519 				WARN_ON_ONCE(cpuctx->cgrp);
520 				/*
521 				 * set cgrp before ctxsw in to allow
522 				 * event_filter_match() to not have to pass
523 				 * task around
524 				 */
525 				cpuctx->cgrp = perf_cgroup_from_task(task);
526 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
527 			}
528 			perf_pmu_enable(cpuctx->ctx.pmu);
529 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
530 		}
531 	}
532 
533 	rcu_read_unlock();
534 
535 	local_irq_restore(flags);
536 }
537 
538 static inline void perf_cgroup_sched_out(struct task_struct *task,
539 					 struct task_struct *next)
540 {
541 	struct perf_cgroup *cgrp1;
542 	struct perf_cgroup *cgrp2 = NULL;
543 
544 	/*
545 	 * we come here when we know perf_cgroup_events > 0
546 	 */
547 	cgrp1 = perf_cgroup_from_task(task);
548 
549 	/*
550 	 * next is NULL when called from perf_event_enable_on_exec()
551 	 * that will systematically cause a cgroup_switch()
552 	 */
553 	if (next)
554 		cgrp2 = perf_cgroup_from_task(next);
555 
556 	/*
557 	 * only schedule out current cgroup events if we know
558 	 * that we are switching to a different cgroup. Otherwise,
559 	 * do no touch the cgroup events.
560 	 */
561 	if (cgrp1 != cgrp2)
562 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
563 }
564 
565 static inline void perf_cgroup_sched_in(struct task_struct *prev,
566 					struct task_struct *task)
567 {
568 	struct perf_cgroup *cgrp1;
569 	struct perf_cgroup *cgrp2 = NULL;
570 
571 	/*
572 	 * we come here when we know perf_cgroup_events > 0
573 	 */
574 	cgrp1 = perf_cgroup_from_task(task);
575 
576 	/* prev can never be NULL */
577 	cgrp2 = perf_cgroup_from_task(prev);
578 
579 	/*
580 	 * only need to schedule in cgroup events if we are changing
581 	 * cgroup during ctxsw. Cgroup events were not scheduled
582 	 * out of ctxsw out if that was not the case.
583 	 */
584 	if (cgrp1 != cgrp2)
585 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
586 }
587 
588 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
589 				      struct perf_event_attr *attr,
590 				      struct perf_event *group_leader)
591 {
592 	struct perf_cgroup *cgrp;
593 	struct cgroup_subsys_state *css;
594 	struct fd f = fdget(fd);
595 	int ret = 0;
596 
597 	if (!f.file)
598 		return -EBADF;
599 
600 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
601 					 &perf_event_cgrp_subsys);
602 	if (IS_ERR(css)) {
603 		ret = PTR_ERR(css);
604 		goto out;
605 	}
606 
607 	cgrp = container_of(css, struct perf_cgroup, css);
608 	event->cgrp = cgrp;
609 
610 	/*
611 	 * all events in a group must monitor
612 	 * the same cgroup because a task belongs
613 	 * to only one perf cgroup at a time
614 	 */
615 	if (group_leader && group_leader->cgrp != cgrp) {
616 		perf_detach_cgroup(event);
617 		ret = -EINVAL;
618 	}
619 out:
620 	fdput(f);
621 	return ret;
622 }
623 
624 static inline void
625 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
626 {
627 	struct perf_cgroup_info *t;
628 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
629 	event->shadow_ctx_time = now - t->timestamp;
630 }
631 
632 static inline void
633 perf_cgroup_defer_enabled(struct perf_event *event)
634 {
635 	/*
636 	 * when the current task's perf cgroup does not match
637 	 * the event's, we need to remember to call the
638 	 * perf_mark_enable() function the first time a task with
639 	 * a matching perf cgroup is scheduled in.
640 	 */
641 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
642 		event->cgrp_defer_enabled = 1;
643 }
644 
645 static inline void
646 perf_cgroup_mark_enabled(struct perf_event *event,
647 			 struct perf_event_context *ctx)
648 {
649 	struct perf_event *sub;
650 	u64 tstamp = perf_event_time(event);
651 
652 	if (!event->cgrp_defer_enabled)
653 		return;
654 
655 	event->cgrp_defer_enabled = 0;
656 
657 	event->tstamp_enabled = tstamp - event->total_time_enabled;
658 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
659 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
660 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
661 			sub->cgrp_defer_enabled = 0;
662 		}
663 	}
664 }
665 #else /* !CONFIG_CGROUP_PERF */
666 
667 static inline bool
668 perf_cgroup_match(struct perf_event *event)
669 {
670 	return true;
671 }
672 
673 static inline void perf_detach_cgroup(struct perf_event *event)
674 {}
675 
676 static inline int is_cgroup_event(struct perf_event *event)
677 {
678 	return 0;
679 }
680 
681 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
682 {
683 	return 0;
684 }
685 
686 static inline void update_cgrp_time_from_event(struct perf_event *event)
687 {
688 }
689 
690 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
691 {
692 }
693 
694 static inline void perf_cgroup_sched_out(struct task_struct *task,
695 					 struct task_struct *next)
696 {
697 }
698 
699 static inline void perf_cgroup_sched_in(struct task_struct *prev,
700 					struct task_struct *task)
701 {
702 }
703 
704 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
705 				      struct perf_event_attr *attr,
706 				      struct perf_event *group_leader)
707 {
708 	return -EINVAL;
709 }
710 
711 static inline void
712 perf_cgroup_set_timestamp(struct task_struct *task,
713 			  struct perf_event_context *ctx)
714 {
715 }
716 
717 void
718 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
719 {
720 }
721 
722 static inline void
723 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
724 {
725 }
726 
727 static inline u64 perf_cgroup_event_time(struct perf_event *event)
728 {
729 	return 0;
730 }
731 
732 static inline void
733 perf_cgroup_defer_enabled(struct perf_event *event)
734 {
735 }
736 
737 static inline void
738 perf_cgroup_mark_enabled(struct perf_event *event,
739 			 struct perf_event_context *ctx)
740 {
741 }
742 #endif
743 
744 /*
745  * set default to be dependent on timer tick just
746  * like original code
747  */
748 #define PERF_CPU_HRTIMER (1000 / HZ)
749 /*
750  * function must be called with interrupts disbled
751  */
752 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
753 {
754 	struct perf_cpu_context *cpuctx;
755 	int rotations = 0;
756 
757 	WARN_ON(!irqs_disabled());
758 
759 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
760 	rotations = perf_rotate_context(cpuctx);
761 
762 	raw_spin_lock(&cpuctx->hrtimer_lock);
763 	if (rotations)
764 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
765 	else
766 		cpuctx->hrtimer_active = 0;
767 	raw_spin_unlock(&cpuctx->hrtimer_lock);
768 
769 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
770 }
771 
772 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
773 {
774 	struct hrtimer *timer = &cpuctx->hrtimer;
775 	struct pmu *pmu = cpuctx->ctx.pmu;
776 	u64 interval;
777 
778 	/* no multiplexing needed for SW PMU */
779 	if (pmu->task_ctx_nr == perf_sw_context)
780 		return;
781 
782 	/*
783 	 * check default is sane, if not set then force to
784 	 * default interval (1/tick)
785 	 */
786 	interval = pmu->hrtimer_interval_ms;
787 	if (interval < 1)
788 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
789 
790 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
791 
792 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
793 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
794 	timer->function = perf_mux_hrtimer_handler;
795 }
796 
797 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
798 {
799 	struct hrtimer *timer = &cpuctx->hrtimer;
800 	struct pmu *pmu = cpuctx->ctx.pmu;
801 	unsigned long flags;
802 
803 	/* not for SW PMU */
804 	if (pmu->task_ctx_nr == perf_sw_context)
805 		return 0;
806 
807 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
808 	if (!cpuctx->hrtimer_active) {
809 		cpuctx->hrtimer_active = 1;
810 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
811 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
812 	}
813 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
814 
815 	return 0;
816 }
817 
818 void perf_pmu_disable(struct pmu *pmu)
819 {
820 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
821 	if (!(*count)++)
822 		pmu->pmu_disable(pmu);
823 }
824 
825 void perf_pmu_enable(struct pmu *pmu)
826 {
827 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
828 	if (!--(*count))
829 		pmu->pmu_enable(pmu);
830 }
831 
832 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
833 
834 /*
835  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
836  * perf_event_task_tick() are fully serialized because they're strictly cpu
837  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
838  * disabled, while perf_event_task_tick is called from IRQ context.
839  */
840 static void perf_event_ctx_activate(struct perf_event_context *ctx)
841 {
842 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
843 
844 	WARN_ON(!irqs_disabled());
845 
846 	WARN_ON(!list_empty(&ctx->active_ctx_list));
847 
848 	list_add(&ctx->active_ctx_list, head);
849 }
850 
851 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
852 {
853 	WARN_ON(!irqs_disabled());
854 
855 	WARN_ON(list_empty(&ctx->active_ctx_list));
856 
857 	list_del_init(&ctx->active_ctx_list);
858 }
859 
860 static void get_ctx(struct perf_event_context *ctx)
861 {
862 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
863 }
864 
865 static void free_ctx(struct rcu_head *head)
866 {
867 	struct perf_event_context *ctx;
868 
869 	ctx = container_of(head, struct perf_event_context, rcu_head);
870 	kfree(ctx->task_ctx_data);
871 	kfree(ctx);
872 }
873 
874 static void put_ctx(struct perf_event_context *ctx)
875 {
876 	if (atomic_dec_and_test(&ctx->refcount)) {
877 		if (ctx->parent_ctx)
878 			put_ctx(ctx->parent_ctx);
879 		if (ctx->task)
880 			put_task_struct(ctx->task);
881 		call_rcu(&ctx->rcu_head, free_ctx);
882 	}
883 }
884 
885 /*
886  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
887  * perf_pmu_migrate_context() we need some magic.
888  *
889  * Those places that change perf_event::ctx will hold both
890  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
891  *
892  * Lock ordering is by mutex address. There are two other sites where
893  * perf_event_context::mutex nests and those are:
894  *
895  *  - perf_event_exit_task_context()	[ child , 0 ]
896  *      __perf_event_exit_task()
897  *        sync_child_event()
898  *          put_event()			[ parent, 1 ]
899  *
900  *  - perf_event_init_context()		[ parent, 0 ]
901  *      inherit_task_group()
902  *        inherit_group()
903  *          inherit_event()
904  *            perf_event_alloc()
905  *              perf_init_event()
906  *                perf_try_init_event()	[ child , 1 ]
907  *
908  * While it appears there is an obvious deadlock here -- the parent and child
909  * nesting levels are inverted between the two. This is in fact safe because
910  * life-time rules separate them. That is an exiting task cannot fork, and a
911  * spawning task cannot (yet) exit.
912  *
913  * But remember that that these are parent<->child context relations, and
914  * migration does not affect children, therefore these two orderings should not
915  * interact.
916  *
917  * The change in perf_event::ctx does not affect children (as claimed above)
918  * because the sys_perf_event_open() case will install a new event and break
919  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
920  * concerned with cpuctx and that doesn't have children.
921  *
922  * The places that change perf_event::ctx will issue:
923  *
924  *   perf_remove_from_context();
925  *   synchronize_rcu();
926  *   perf_install_in_context();
927  *
928  * to affect the change. The remove_from_context() + synchronize_rcu() should
929  * quiesce the event, after which we can install it in the new location. This
930  * means that only external vectors (perf_fops, prctl) can perturb the event
931  * while in transit. Therefore all such accessors should also acquire
932  * perf_event_context::mutex to serialize against this.
933  *
934  * However; because event->ctx can change while we're waiting to acquire
935  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
936  * function.
937  *
938  * Lock order:
939  *	task_struct::perf_event_mutex
940  *	  perf_event_context::mutex
941  *	    perf_event_context::lock
942  *	    perf_event::child_mutex;
943  *	    perf_event::mmap_mutex
944  *	    mmap_sem
945  */
946 static struct perf_event_context *
947 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
948 {
949 	struct perf_event_context *ctx;
950 
951 again:
952 	rcu_read_lock();
953 	ctx = ACCESS_ONCE(event->ctx);
954 	if (!atomic_inc_not_zero(&ctx->refcount)) {
955 		rcu_read_unlock();
956 		goto again;
957 	}
958 	rcu_read_unlock();
959 
960 	mutex_lock_nested(&ctx->mutex, nesting);
961 	if (event->ctx != ctx) {
962 		mutex_unlock(&ctx->mutex);
963 		put_ctx(ctx);
964 		goto again;
965 	}
966 
967 	return ctx;
968 }
969 
970 static inline struct perf_event_context *
971 perf_event_ctx_lock(struct perf_event *event)
972 {
973 	return perf_event_ctx_lock_nested(event, 0);
974 }
975 
976 static void perf_event_ctx_unlock(struct perf_event *event,
977 				  struct perf_event_context *ctx)
978 {
979 	mutex_unlock(&ctx->mutex);
980 	put_ctx(ctx);
981 }
982 
983 /*
984  * This must be done under the ctx->lock, such as to serialize against
985  * context_equiv(), therefore we cannot call put_ctx() since that might end up
986  * calling scheduler related locks and ctx->lock nests inside those.
987  */
988 static __must_check struct perf_event_context *
989 unclone_ctx(struct perf_event_context *ctx)
990 {
991 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
992 
993 	lockdep_assert_held(&ctx->lock);
994 
995 	if (parent_ctx)
996 		ctx->parent_ctx = NULL;
997 	ctx->generation++;
998 
999 	return parent_ctx;
1000 }
1001 
1002 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1003 {
1004 	/*
1005 	 * only top level events have the pid namespace they were created in
1006 	 */
1007 	if (event->parent)
1008 		event = event->parent;
1009 
1010 	return task_tgid_nr_ns(p, event->ns);
1011 }
1012 
1013 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1014 {
1015 	/*
1016 	 * only top level events have the pid namespace they were created in
1017 	 */
1018 	if (event->parent)
1019 		event = event->parent;
1020 
1021 	return task_pid_nr_ns(p, event->ns);
1022 }
1023 
1024 /*
1025  * If we inherit events we want to return the parent event id
1026  * to userspace.
1027  */
1028 static u64 primary_event_id(struct perf_event *event)
1029 {
1030 	u64 id = event->id;
1031 
1032 	if (event->parent)
1033 		id = event->parent->id;
1034 
1035 	return id;
1036 }
1037 
1038 /*
1039  * Get the perf_event_context for a task and lock it.
1040  * This has to cope with with the fact that until it is locked,
1041  * the context could get moved to another task.
1042  */
1043 static struct perf_event_context *
1044 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1045 {
1046 	struct perf_event_context *ctx;
1047 
1048 retry:
1049 	/*
1050 	 * One of the few rules of preemptible RCU is that one cannot do
1051 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1052 	 * part of the read side critical section was preemptible -- see
1053 	 * rcu_read_unlock_special().
1054 	 *
1055 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1056 	 * side critical section is non-preemptible.
1057 	 */
1058 	preempt_disable();
1059 	rcu_read_lock();
1060 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1061 	if (ctx) {
1062 		/*
1063 		 * If this context is a clone of another, it might
1064 		 * get swapped for another underneath us by
1065 		 * perf_event_task_sched_out, though the
1066 		 * rcu_read_lock() protects us from any context
1067 		 * getting freed.  Lock the context and check if it
1068 		 * got swapped before we could get the lock, and retry
1069 		 * if so.  If we locked the right context, then it
1070 		 * can't get swapped on us any more.
1071 		 */
1072 		raw_spin_lock_irqsave(&ctx->lock, *flags);
1073 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1074 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1075 			rcu_read_unlock();
1076 			preempt_enable();
1077 			goto retry;
1078 		}
1079 
1080 		if (!atomic_inc_not_zero(&ctx->refcount)) {
1081 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1082 			ctx = NULL;
1083 		}
1084 	}
1085 	rcu_read_unlock();
1086 	preempt_enable();
1087 	return ctx;
1088 }
1089 
1090 /*
1091  * Get the context for a task and increment its pin_count so it
1092  * can't get swapped to another task.  This also increments its
1093  * reference count so that the context can't get freed.
1094  */
1095 static struct perf_event_context *
1096 perf_pin_task_context(struct task_struct *task, int ctxn)
1097 {
1098 	struct perf_event_context *ctx;
1099 	unsigned long flags;
1100 
1101 	ctx = perf_lock_task_context(task, ctxn, &flags);
1102 	if (ctx) {
1103 		++ctx->pin_count;
1104 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1105 	}
1106 	return ctx;
1107 }
1108 
1109 static void perf_unpin_context(struct perf_event_context *ctx)
1110 {
1111 	unsigned long flags;
1112 
1113 	raw_spin_lock_irqsave(&ctx->lock, flags);
1114 	--ctx->pin_count;
1115 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1116 }
1117 
1118 /*
1119  * Update the record of the current time in a context.
1120  */
1121 static void update_context_time(struct perf_event_context *ctx)
1122 {
1123 	u64 now = perf_clock();
1124 
1125 	ctx->time += now - ctx->timestamp;
1126 	ctx->timestamp = now;
1127 }
1128 
1129 static u64 perf_event_time(struct perf_event *event)
1130 {
1131 	struct perf_event_context *ctx = event->ctx;
1132 
1133 	if (is_cgroup_event(event))
1134 		return perf_cgroup_event_time(event);
1135 
1136 	return ctx ? ctx->time : 0;
1137 }
1138 
1139 /*
1140  * Update the total_time_enabled and total_time_running fields for a event.
1141  * The caller of this function needs to hold the ctx->lock.
1142  */
1143 static void update_event_times(struct perf_event *event)
1144 {
1145 	struct perf_event_context *ctx = event->ctx;
1146 	u64 run_end;
1147 
1148 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1149 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1150 		return;
1151 	/*
1152 	 * in cgroup mode, time_enabled represents
1153 	 * the time the event was enabled AND active
1154 	 * tasks were in the monitored cgroup. This is
1155 	 * independent of the activity of the context as
1156 	 * there may be a mix of cgroup and non-cgroup events.
1157 	 *
1158 	 * That is why we treat cgroup events differently
1159 	 * here.
1160 	 */
1161 	if (is_cgroup_event(event))
1162 		run_end = perf_cgroup_event_time(event);
1163 	else if (ctx->is_active)
1164 		run_end = ctx->time;
1165 	else
1166 		run_end = event->tstamp_stopped;
1167 
1168 	event->total_time_enabled = run_end - event->tstamp_enabled;
1169 
1170 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1171 		run_end = event->tstamp_stopped;
1172 	else
1173 		run_end = perf_event_time(event);
1174 
1175 	event->total_time_running = run_end - event->tstamp_running;
1176 
1177 }
1178 
1179 /*
1180  * Update total_time_enabled and total_time_running for all events in a group.
1181  */
1182 static void update_group_times(struct perf_event *leader)
1183 {
1184 	struct perf_event *event;
1185 
1186 	update_event_times(leader);
1187 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1188 		update_event_times(event);
1189 }
1190 
1191 static struct list_head *
1192 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1193 {
1194 	if (event->attr.pinned)
1195 		return &ctx->pinned_groups;
1196 	else
1197 		return &ctx->flexible_groups;
1198 }
1199 
1200 /*
1201  * Add a event from the lists for its context.
1202  * Must be called with ctx->mutex and ctx->lock held.
1203  */
1204 static void
1205 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1206 {
1207 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1208 	event->attach_state |= PERF_ATTACH_CONTEXT;
1209 
1210 	/*
1211 	 * If we're a stand alone event or group leader, we go to the context
1212 	 * list, group events are kept attached to the group so that
1213 	 * perf_group_detach can, at all times, locate all siblings.
1214 	 */
1215 	if (event->group_leader == event) {
1216 		struct list_head *list;
1217 
1218 		if (is_software_event(event))
1219 			event->group_flags |= PERF_GROUP_SOFTWARE;
1220 
1221 		list = ctx_group_list(event, ctx);
1222 		list_add_tail(&event->group_entry, list);
1223 	}
1224 
1225 	if (is_cgroup_event(event))
1226 		ctx->nr_cgroups++;
1227 
1228 	list_add_rcu(&event->event_entry, &ctx->event_list);
1229 	ctx->nr_events++;
1230 	if (event->attr.inherit_stat)
1231 		ctx->nr_stat++;
1232 
1233 	ctx->generation++;
1234 }
1235 
1236 /*
1237  * Initialize event state based on the perf_event_attr::disabled.
1238  */
1239 static inline void perf_event__state_init(struct perf_event *event)
1240 {
1241 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1242 					      PERF_EVENT_STATE_INACTIVE;
1243 }
1244 
1245 /*
1246  * Called at perf_event creation and when events are attached/detached from a
1247  * group.
1248  */
1249 static void perf_event__read_size(struct perf_event *event)
1250 {
1251 	int entry = sizeof(u64); /* value */
1252 	int size = 0;
1253 	int nr = 1;
1254 
1255 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1256 		size += sizeof(u64);
1257 
1258 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1259 		size += sizeof(u64);
1260 
1261 	if (event->attr.read_format & PERF_FORMAT_ID)
1262 		entry += sizeof(u64);
1263 
1264 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1265 		nr += event->group_leader->nr_siblings;
1266 		size += sizeof(u64);
1267 	}
1268 
1269 	size += entry * nr;
1270 	event->read_size = size;
1271 }
1272 
1273 static void perf_event__header_size(struct perf_event *event)
1274 {
1275 	struct perf_sample_data *data;
1276 	u64 sample_type = event->attr.sample_type;
1277 	u16 size = 0;
1278 
1279 	perf_event__read_size(event);
1280 
1281 	if (sample_type & PERF_SAMPLE_IP)
1282 		size += sizeof(data->ip);
1283 
1284 	if (sample_type & PERF_SAMPLE_ADDR)
1285 		size += sizeof(data->addr);
1286 
1287 	if (sample_type & PERF_SAMPLE_PERIOD)
1288 		size += sizeof(data->period);
1289 
1290 	if (sample_type & PERF_SAMPLE_WEIGHT)
1291 		size += sizeof(data->weight);
1292 
1293 	if (sample_type & PERF_SAMPLE_READ)
1294 		size += event->read_size;
1295 
1296 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1297 		size += sizeof(data->data_src.val);
1298 
1299 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1300 		size += sizeof(data->txn);
1301 
1302 	event->header_size = size;
1303 }
1304 
1305 static void perf_event__id_header_size(struct perf_event *event)
1306 {
1307 	struct perf_sample_data *data;
1308 	u64 sample_type = event->attr.sample_type;
1309 	u16 size = 0;
1310 
1311 	if (sample_type & PERF_SAMPLE_TID)
1312 		size += sizeof(data->tid_entry);
1313 
1314 	if (sample_type & PERF_SAMPLE_TIME)
1315 		size += sizeof(data->time);
1316 
1317 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1318 		size += sizeof(data->id);
1319 
1320 	if (sample_type & PERF_SAMPLE_ID)
1321 		size += sizeof(data->id);
1322 
1323 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1324 		size += sizeof(data->stream_id);
1325 
1326 	if (sample_type & PERF_SAMPLE_CPU)
1327 		size += sizeof(data->cpu_entry);
1328 
1329 	event->id_header_size = size;
1330 }
1331 
1332 static void perf_group_attach(struct perf_event *event)
1333 {
1334 	struct perf_event *group_leader = event->group_leader, *pos;
1335 
1336 	/*
1337 	 * We can have double attach due to group movement in perf_event_open.
1338 	 */
1339 	if (event->attach_state & PERF_ATTACH_GROUP)
1340 		return;
1341 
1342 	event->attach_state |= PERF_ATTACH_GROUP;
1343 
1344 	if (group_leader == event)
1345 		return;
1346 
1347 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1348 
1349 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1350 			!is_software_event(event))
1351 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1352 
1353 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1354 	group_leader->nr_siblings++;
1355 
1356 	perf_event__header_size(group_leader);
1357 
1358 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1359 		perf_event__header_size(pos);
1360 }
1361 
1362 /*
1363  * Remove a event from the lists for its context.
1364  * Must be called with ctx->mutex and ctx->lock held.
1365  */
1366 static void
1367 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1368 {
1369 	struct perf_cpu_context *cpuctx;
1370 
1371 	WARN_ON_ONCE(event->ctx != ctx);
1372 	lockdep_assert_held(&ctx->lock);
1373 
1374 	/*
1375 	 * We can have double detach due to exit/hot-unplug + close.
1376 	 */
1377 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1378 		return;
1379 
1380 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1381 
1382 	if (is_cgroup_event(event)) {
1383 		ctx->nr_cgroups--;
1384 		cpuctx = __get_cpu_context(ctx);
1385 		/*
1386 		 * if there are no more cgroup events
1387 		 * then cler cgrp to avoid stale pointer
1388 		 * in update_cgrp_time_from_cpuctx()
1389 		 */
1390 		if (!ctx->nr_cgroups)
1391 			cpuctx->cgrp = NULL;
1392 	}
1393 
1394 	ctx->nr_events--;
1395 	if (event->attr.inherit_stat)
1396 		ctx->nr_stat--;
1397 
1398 	list_del_rcu(&event->event_entry);
1399 
1400 	if (event->group_leader == event)
1401 		list_del_init(&event->group_entry);
1402 
1403 	update_group_times(event);
1404 
1405 	/*
1406 	 * If event was in error state, then keep it
1407 	 * that way, otherwise bogus counts will be
1408 	 * returned on read(). The only way to get out
1409 	 * of error state is by explicit re-enabling
1410 	 * of the event
1411 	 */
1412 	if (event->state > PERF_EVENT_STATE_OFF)
1413 		event->state = PERF_EVENT_STATE_OFF;
1414 
1415 	ctx->generation++;
1416 }
1417 
1418 static void perf_group_detach(struct perf_event *event)
1419 {
1420 	struct perf_event *sibling, *tmp;
1421 	struct list_head *list = NULL;
1422 
1423 	/*
1424 	 * We can have double detach due to exit/hot-unplug + close.
1425 	 */
1426 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1427 		return;
1428 
1429 	event->attach_state &= ~PERF_ATTACH_GROUP;
1430 
1431 	/*
1432 	 * If this is a sibling, remove it from its group.
1433 	 */
1434 	if (event->group_leader != event) {
1435 		list_del_init(&event->group_entry);
1436 		event->group_leader->nr_siblings--;
1437 		goto out;
1438 	}
1439 
1440 	if (!list_empty(&event->group_entry))
1441 		list = &event->group_entry;
1442 
1443 	/*
1444 	 * If this was a group event with sibling events then
1445 	 * upgrade the siblings to singleton events by adding them
1446 	 * to whatever list we are on.
1447 	 */
1448 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1449 		if (list)
1450 			list_move_tail(&sibling->group_entry, list);
1451 		sibling->group_leader = sibling;
1452 
1453 		/* Inherit group flags from the previous leader */
1454 		sibling->group_flags = event->group_flags;
1455 
1456 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1457 	}
1458 
1459 out:
1460 	perf_event__header_size(event->group_leader);
1461 
1462 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1463 		perf_event__header_size(tmp);
1464 }
1465 
1466 /*
1467  * User event without the task.
1468  */
1469 static bool is_orphaned_event(struct perf_event *event)
1470 {
1471 	return event && !is_kernel_event(event) && !event->owner;
1472 }
1473 
1474 /*
1475  * Event has a parent but parent's task finished and it's
1476  * alive only because of children holding refference.
1477  */
1478 static bool is_orphaned_child(struct perf_event *event)
1479 {
1480 	return is_orphaned_event(event->parent);
1481 }
1482 
1483 static void orphans_remove_work(struct work_struct *work);
1484 
1485 static void schedule_orphans_remove(struct perf_event_context *ctx)
1486 {
1487 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1488 		return;
1489 
1490 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1491 		get_ctx(ctx);
1492 		ctx->orphans_remove_sched = true;
1493 	}
1494 }
1495 
1496 static int __init perf_workqueue_init(void)
1497 {
1498 	perf_wq = create_singlethread_workqueue("perf");
1499 	WARN(!perf_wq, "failed to create perf workqueue\n");
1500 	return perf_wq ? 0 : -1;
1501 }
1502 
1503 core_initcall(perf_workqueue_init);
1504 
1505 static inline int pmu_filter_match(struct perf_event *event)
1506 {
1507 	struct pmu *pmu = event->pmu;
1508 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1509 }
1510 
1511 static inline int
1512 event_filter_match(struct perf_event *event)
1513 {
1514 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1515 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1516 }
1517 
1518 static void
1519 event_sched_out(struct perf_event *event,
1520 		  struct perf_cpu_context *cpuctx,
1521 		  struct perf_event_context *ctx)
1522 {
1523 	u64 tstamp = perf_event_time(event);
1524 	u64 delta;
1525 
1526 	WARN_ON_ONCE(event->ctx != ctx);
1527 	lockdep_assert_held(&ctx->lock);
1528 
1529 	/*
1530 	 * An event which could not be activated because of
1531 	 * filter mismatch still needs to have its timings
1532 	 * maintained, otherwise bogus information is return
1533 	 * via read() for time_enabled, time_running:
1534 	 */
1535 	if (event->state == PERF_EVENT_STATE_INACTIVE
1536 	    && !event_filter_match(event)) {
1537 		delta = tstamp - event->tstamp_stopped;
1538 		event->tstamp_running += delta;
1539 		event->tstamp_stopped = tstamp;
1540 	}
1541 
1542 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1543 		return;
1544 
1545 	perf_pmu_disable(event->pmu);
1546 
1547 	event->state = PERF_EVENT_STATE_INACTIVE;
1548 	if (event->pending_disable) {
1549 		event->pending_disable = 0;
1550 		event->state = PERF_EVENT_STATE_OFF;
1551 	}
1552 	event->tstamp_stopped = tstamp;
1553 	event->pmu->del(event, 0);
1554 	event->oncpu = -1;
1555 
1556 	if (!is_software_event(event))
1557 		cpuctx->active_oncpu--;
1558 	if (!--ctx->nr_active)
1559 		perf_event_ctx_deactivate(ctx);
1560 	if (event->attr.freq && event->attr.sample_freq)
1561 		ctx->nr_freq--;
1562 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1563 		cpuctx->exclusive = 0;
1564 
1565 	if (is_orphaned_child(event))
1566 		schedule_orphans_remove(ctx);
1567 
1568 	perf_pmu_enable(event->pmu);
1569 }
1570 
1571 static void
1572 group_sched_out(struct perf_event *group_event,
1573 		struct perf_cpu_context *cpuctx,
1574 		struct perf_event_context *ctx)
1575 {
1576 	struct perf_event *event;
1577 	int state = group_event->state;
1578 
1579 	event_sched_out(group_event, cpuctx, ctx);
1580 
1581 	/*
1582 	 * Schedule out siblings (if any):
1583 	 */
1584 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1585 		event_sched_out(event, cpuctx, ctx);
1586 
1587 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1588 		cpuctx->exclusive = 0;
1589 }
1590 
1591 struct remove_event {
1592 	struct perf_event *event;
1593 	bool detach_group;
1594 };
1595 
1596 /*
1597  * Cross CPU call to remove a performance event
1598  *
1599  * We disable the event on the hardware level first. After that we
1600  * remove it from the context list.
1601  */
1602 static int __perf_remove_from_context(void *info)
1603 {
1604 	struct remove_event *re = info;
1605 	struct perf_event *event = re->event;
1606 	struct perf_event_context *ctx = event->ctx;
1607 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1608 
1609 	raw_spin_lock(&ctx->lock);
1610 	event_sched_out(event, cpuctx, ctx);
1611 	if (re->detach_group)
1612 		perf_group_detach(event);
1613 	list_del_event(event, ctx);
1614 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1615 		ctx->is_active = 0;
1616 		cpuctx->task_ctx = NULL;
1617 	}
1618 	raw_spin_unlock(&ctx->lock);
1619 
1620 	return 0;
1621 }
1622 
1623 
1624 /*
1625  * Remove the event from a task's (or a CPU's) list of events.
1626  *
1627  * CPU events are removed with a smp call. For task events we only
1628  * call when the task is on a CPU.
1629  *
1630  * If event->ctx is a cloned context, callers must make sure that
1631  * every task struct that event->ctx->task could possibly point to
1632  * remains valid.  This is OK when called from perf_release since
1633  * that only calls us on the top-level context, which can't be a clone.
1634  * When called from perf_event_exit_task, it's OK because the
1635  * context has been detached from its task.
1636  */
1637 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1638 {
1639 	struct perf_event_context *ctx = event->ctx;
1640 	struct task_struct *task = ctx->task;
1641 	struct remove_event re = {
1642 		.event = event,
1643 		.detach_group = detach_group,
1644 	};
1645 
1646 	lockdep_assert_held(&ctx->mutex);
1647 
1648 	if (!task) {
1649 		/*
1650 		 * Per cpu events are removed via an smp call. The removal can
1651 		 * fail if the CPU is currently offline, but in that case we
1652 		 * already called __perf_remove_from_context from
1653 		 * perf_event_exit_cpu.
1654 		 */
1655 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1656 		return;
1657 	}
1658 
1659 retry:
1660 	if (!task_function_call(task, __perf_remove_from_context, &re))
1661 		return;
1662 
1663 	raw_spin_lock_irq(&ctx->lock);
1664 	/*
1665 	 * If we failed to find a running task, but find the context active now
1666 	 * that we've acquired the ctx->lock, retry.
1667 	 */
1668 	if (ctx->is_active) {
1669 		raw_spin_unlock_irq(&ctx->lock);
1670 		/*
1671 		 * Reload the task pointer, it might have been changed by
1672 		 * a concurrent perf_event_context_sched_out().
1673 		 */
1674 		task = ctx->task;
1675 		goto retry;
1676 	}
1677 
1678 	/*
1679 	 * Since the task isn't running, its safe to remove the event, us
1680 	 * holding the ctx->lock ensures the task won't get scheduled in.
1681 	 */
1682 	if (detach_group)
1683 		perf_group_detach(event);
1684 	list_del_event(event, ctx);
1685 	raw_spin_unlock_irq(&ctx->lock);
1686 }
1687 
1688 /*
1689  * Cross CPU call to disable a performance event
1690  */
1691 int __perf_event_disable(void *info)
1692 {
1693 	struct perf_event *event = info;
1694 	struct perf_event_context *ctx = event->ctx;
1695 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1696 
1697 	/*
1698 	 * If this is a per-task event, need to check whether this
1699 	 * event's task is the current task on this cpu.
1700 	 *
1701 	 * Can trigger due to concurrent perf_event_context_sched_out()
1702 	 * flipping contexts around.
1703 	 */
1704 	if (ctx->task && cpuctx->task_ctx != ctx)
1705 		return -EINVAL;
1706 
1707 	raw_spin_lock(&ctx->lock);
1708 
1709 	/*
1710 	 * If the event is on, turn it off.
1711 	 * If it is in error state, leave it in error state.
1712 	 */
1713 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1714 		update_context_time(ctx);
1715 		update_cgrp_time_from_event(event);
1716 		update_group_times(event);
1717 		if (event == event->group_leader)
1718 			group_sched_out(event, cpuctx, ctx);
1719 		else
1720 			event_sched_out(event, cpuctx, ctx);
1721 		event->state = PERF_EVENT_STATE_OFF;
1722 	}
1723 
1724 	raw_spin_unlock(&ctx->lock);
1725 
1726 	return 0;
1727 }
1728 
1729 /*
1730  * Disable a event.
1731  *
1732  * If event->ctx is a cloned context, callers must make sure that
1733  * every task struct that event->ctx->task could possibly point to
1734  * remains valid.  This condition is satisifed when called through
1735  * perf_event_for_each_child or perf_event_for_each because they
1736  * hold the top-level event's child_mutex, so any descendant that
1737  * goes to exit will block in sync_child_event.
1738  * When called from perf_pending_event it's OK because event->ctx
1739  * is the current context on this CPU and preemption is disabled,
1740  * hence we can't get into perf_event_task_sched_out for this context.
1741  */
1742 static void _perf_event_disable(struct perf_event *event)
1743 {
1744 	struct perf_event_context *ctx = event->ctx;
1745 	struct task_struct *task = ctx->task;
1746 
1747 	if (!task) {
1748 		/*
1749 		 * Disable the event on the cpu that it's on
1750 		 */
1751 		cpu_function_call(event->cpu, __perf_event_disable, event);
1752 		return;
1753 	}
1754 
1755 retry:
1756 	if (!task_function_call(task, __perf_event_disable, event))
1757 		return;
1758 
1759 	raw_spin_lock_irq(&ctx->lock);
1760 	/*
1761 	 * If the event is still active, we need to retry the cross-call.
1762 	 */
1763 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1764 		raw_spin_unlock_irq(&ctx->lock);
1765 		/*
1766 		 * Reload the task pointer, it might have been changed by
1767 		 * a concurrent perf_event_context_sched_out().
1768 		 */
1769 		task = ctx->task;
1770 		goto retry;
1771 	}
1772 
1773 	/*
1774 	 * Since we have the lock this context can't be scheduled
1775 	 * in, so we can change the state safely.
1776 	 */
1777 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1778 		update_group_times(event);
1779 		event->state = PERF_EVENT_STATE_OFF;
1780 	}
1781 	raw_spin_unlock_irq(&ctx->lock);
1782 }
1783 
1784 /*
1785  * Strictly speaking kernel users cannot create groups and therefore this
1786  * interface does not need the perf_event_ctx_lock() magic.
1787  */
1788 void perf_event_disable(struct perf_event *event)
1789 {
1790 	struct perf_event_context *ctx;
1791 
1792 	ctx = perf_event_ctx_lock(event);
1793 	_perf_event_disable(event);
1794 	perf_event_ctx_unlock(event, ctx);
1795 }
1796 EXPORT_SYMBOL_GPL(perf_event_disable);
1797 
1798 static void perf_set_shadow_time(struct perf_event *event,
1799 				 struct perf_event_context *ctx,
1800 				 u64 tstamp)
1801 {
1802 	/*
1803 	 * use the correct time source for the time snapshot
1804 	 *
1805 	 * We could get by without this by leveraging the
1806 	 * fact that to get to this function, the caller
1807 	 * has most likely already called update_context_time()
1808 	 * and update_cgrp_time_xx() and thus both timestamp
1809 	 * are identical (or very close). Given that tstamp is,
1810 	 * already adjusted for cgroup, we could say that:
1811 	 *    tstamp - ctx->timestamp
1812 	 * is equivalent to
1813 	 *    tstamp - cgrp->timestamp.
1814 	 *
1815 	 * Then, in perf_output_read(), the calculation would
1816 	 * work with no changes because:
1817 	 * - event is guaranteed scheduled in
1818 	 * - no scheduled out in between
1819 	 * - thus the timestamp would be the same
1820 	 *
1821 	 * But this is a bit hairy.
1822 	 *
1823 	 * So instead, we have an explicit cgroup call to remain
1824 	 * within the time time source all along. We believe it
1825 	 * is cleaner and simpler to understand.
1826 	 */
1827 	if (is_cgroup_event(event))
1828 		perf_cgroup_set_shadow_time(event, tstamp);
1829 	else
1830 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1831 }
1832 
1833 #define MAX_INTERRUPTS (~0ULL)
1834 
1835 static void perf_log_throttle(struct perf_event *event, int enable);
1836 static void perf_log_itrace_start(struct perf_event *event);
1837 
1838 static int
1839 event_sched_in(struct perf_event *event,
1840 		 struct perf_cpu_context *cpuctx,
1841 		 struct perf_event_context *ctx)
1842 {
1843 	u64 tstamp = perf_event_time(event);
1844 	int ret = 0;
1845 
1846 	lockdep_assert_held(&ctx->lock);
1847 
1848 	if (event->state <= PERF_EVENT_STATE_OFF)
1849 		return 0;
1850 
1851 	event->state = PERF_EVENT_STATE_ACTIVE;
1852 	event->oncpu = smp_processor_id();
1853 
1854 	/*
1855 	 * Unthrottle events, since we scheduled we might have missed several
1856 	 * ticks already, also for a heavily scheduling task there is little
1857 	 * guarantee it'll get a tick in a timely manner.
1858 	 */
1859 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1860 		perf_log_throttle(event, 1);
1861 		event->hw.interrupts = 0;
1862 	}
1863 
1864 	/*
1865 	 * The new state must be visible before we turn it on in the hardware:
1866 	 */
1867 	smp_wmb();
1868 
1869 	perf_pmu_disable(event->pmu);
1870 
1871 	event->tstamp_running += tstamp - event->tstamp_stopped;
1872 
1873 	perf_set_shadow_time(event, ctx, tstamp);
1874 
1875 	perf_log_itrace_start(event);
1876 
1877 	if (event->pmu->add(event, PERF_EF_START)) {
1878 		event->state = PERF_EVENT_STATE_INACTIVE;
1879 		event->oncpu = -1;
1880 		ret = -EAGAIN;
1881 		goto out;
1882 	}
1883 
1884 	if (!is_software_event(event))
1885 		cpuctx->active_oncpu++;
1886 	if (!ctx->nr_active++)
1887 		perf_event_ctx_activate(ctx);
1888 	if (event->attr.freq && event->attr.sample_freq)
1889 		ctx->nr_freq++;
1890 
1891 	if (event->attr.exclusive)
1892 		cpuctx->exclusive = 1;
1893 
1894 	if (is_orphaned_child(event))
1895 		schedule_orphans_remove(ctx);
1896 
1897 out:
1898 	perf_pmu_enable(event->pmu);
1899 
1900 	return ret;
1901 }
1902 
1903 static int
1904 group_sched_in(struct perf_event *group_event,
1905 	       struct perf_cpu_context *cpuctx,
1906 	       struct perf_event_context *ctx)
1907 {
1908 	struct perf_event *event, *partial_group = NULL;
1909 	struct pmu *pmu = ctx->pmu;
1910 	u64 now = ctx->time;
1911 	bool simulate = false;
1912 
1913 	if (group_event->state == PERF_EVENT_STATE_OFF)
1914 		return 0;
1915 
1916 	pmu->start_txn(pmu);
1917 
1918 	if (event_sched_in(group_event, cpuctx, ctx)) {
1919 		pmu->cancel_txn(pmu);
1920 		perf_mux_hrtimer_restart(cpuctx);
1921 		return -EAGAIN;
1922 	}
1923 
1924 	/*
1925 	 * Schedule in siblings as one group (if any):
1926 	 */
1927 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1928 		if (event_sched_in(event, cpuctx, ctx)) {
1929 			partial_group = event;
1930 			goto group_error;
1931 		}
1932 	}
1933 
1934 	if (!pmu->commit_txn(pmu))
1935 		return 0;
1936 
1937 group_error:
1938 	/*
1939 	 * Groups can be scheduled in as one unit only, so undo any
1940 	 * partial group before returning:
1941 	 * The events up to the failed event are scheduled out normally,
1942 	 * tstamp_stopped will be updated.
1943 	 *
1944 	 * The failed events and the remaining siblings need to have
1945 	 * their timings updated as if they had gone thru event_sched_in()
1946 	 * and event_sched_out(). This is required to get consistent timings
1947 	 * across the group. This also takes care of the case where the group
1948 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1949 	 * the time the event was actually stopped, such that time delta
1950 	 * calculation in update_event_times() is correct.
1951 	 */
1952 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1953 		if (event == partial_group)
1954 			simulate = true;
1955 
1956 		if (simulate) {
1957 			event->tstamp_running += now - event->tstamp_stopped;
1958 			event->tstamp_stopped = now;
1959 		} else {
1960 			event_sched_out(event, cpuctx, ctx);
1961 		}
1962 	}
1963 	event_sched_out(group_event, cpuctx, ctx);
1964 
1965 	pmu->cancel_txn(pmu);
1966 
1967 	perf_mux_hrtimer_restart(cpuctx);
1968 
1969 	return -EAGAIN;
1970 }
1971 
1972 /*
1973  * Work out whether we can put this event group on the CPU now.
1974  */
1975 static int group_can_go_on(struct perf_event *event,
1976 			   struct perf_cpu_context *cpuctx,
1977 			   int can_add_hw)
1978 {
1979 	/*
1980 	 * Groups consisting entirely of software events can always go on.
1981 	 */
1982 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1983 		return 1;
1984 	/*
1985 	 * If an exclusive group is already on, no other hardware
1986 	 * events can go on.
1987 	 */
1988 	if (cpuctx->exclusive)
1989 		return 0;
1990 	/*
1991 	 * If this group is exclusive and there are already
1992 	 * events on the CPU, it can't go on.
1993 	 */
1994 	if (event->attr.exclusive && cpuctx->active_oncpu)
1995 		return 0;
1996 	/*
1997 	 * Otherwise, try to add it if all previous groups were able
1998 	 * to go on.
1999 	 */
2000 	return can_add_hw;
2001 }
2002 
2003 static void add_event_to_ctx(struct perf_event *event,
2004 			       struct perf_event_context *ctx)
2005 {
2006 	u64 tstamp = perf_event_time(event);
2007 
2008 	list_add_event(event, ctx);
2009 	perf_group_attach(event);
2010 	event->tstamp_enabled = tstamp;
2011 	event->tstamp_running = tstamp;
2012 	event->tstamp_stopped = tstamp;
2013 }
2014 
2015 static void task_ctx_sched_out(struct perf_event_context *ctx);
2016 static void
2017 ctx_sched_in(struct perf_event_context *ctx,
2018 	     struct perf_cpu_context *cpuctx,
2019 	     enum event_type_t event_type,
2020 	     struct task_struct *task);
2021 
2022 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2023 				struct perf_event_context *ctx,
2024 				struct task_struct *task)
2025 {
2026 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2027 	if (ctx)
2028 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2029 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2030 	if (ctx)
2031 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2032 }
2033 
2034 /*
2035  * Cross CPU call to install and enable a performance event
2036  *
2037  * Must be called with ctx->mutex held
2038  */
2039 static int  __perf_install_in_context(void *info)
2040 {
2041 	struct perf_event *event = info;
2042 	struct perf_event_context *ctx = event->ctx;
2043 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2044 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2045 	struct task_struct *task = current;
2046 
2047 	perf_ctx_lock(cpuctx, task_ctx);
2048 	perf_pmu_disable(cpuctx->ctx.pmu);
2049 
2050 	/*
2051 	 * If there was an active task_ctx schedule it out.
2052 	 */
2053 	if (task_ctx)
2054 		task_ctx_sched_out(task_ctx);
2055 
2056 	/*
2057 	 * If the context we're installing events in is not the
2058 	 * active task_ctx, flip them.
2059 	 */
2060 	if (ctx->task && task_ctx != ctx) {
2061 		if (task_ctx)
2062 			raw_spin_unlock(&task_ctx->lock);
2063 		raw_spin_lock(&ctx->lock);
2064 		task_ctx = ctx;
2065 	}
2066 
2067 	if (task_ctx) {
2068 		cpuctx->task_ctx = task_ctx;
2069 		task = task_ctx->task;
2070 	}
2071 
2072 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2073 
2074 	update_context_time(ctx);
2075 	/*
2076 	 * update cgrp time only if current cgrp
2077 	 * matches event->cgrp. Must be done before
2078 	 * calling add_event_to_ctx()
2079 	 */
2080 	update_cgrp_time_from_event(event);
2081 
2082 	add_event_to_ctx(event, ctx);
2083 
2084 	/*
2085 	 * Schedule everything back in
2086 	 */
2087 	perf_event_sched_in(cpuctx, task_ctx, task);
2088 
2089 	perf_pmu_enable(cpuctx->ctx.pmu);
2090 	perf_ctx_unlock(cpuctx, task_ctx);
2091 
2092 	return 0;
2093 }
2094 
2095 /*
2096  * Attach a performance event to a context
2097  *
2098  * First we add the event to the list with the hardware enable bit
2099  * in event->hw_config cleared.
2100  *
2101  * If the event is attached to a task which is on a CPU we use a smp
2102  * call to enable it in the task context. The task might have been
2103  * scheduled away, but we check this in the smp call again.
2104  */
2105 static void
2106 perf_install_in_context(struct perf_event_context *ctx,
2107 			struct perf_event *event,
2108 			int cpu)
2109 {
2110 	struct task_struct *task = ctx->task;
2111 
2112 	lockdep_assert_held(&ctx->mutex);
2113 
2114 	event->ctx = ctx;
2115 	if (event->cpu != -1)
2116 		event->cpu = cpu;
2117 
2118 	if (!task) {
2119 		/*
2120 		 * Per cpu events are installed via an smp call and
2121 		 * the install is always successful.
2122 		 */
2123 		cpu_function_call(cpu, __perf_install_in_context, event);
2124 		return;
2125 	}
2126 
2127 retry:
2128 	if (!task_function_call(task, __perf_install_in_context, event))
2129 		return;
2130 
2131 	raw_spin_lock_irq(&ctx->lock);
2132 	/*
2133 	 * If we failed to find a running task, but find the context active now
2134 	 * that we've acquired the ctx->lock, retry.
2135 	 */
2136 	if (ctx->is_active) {
2137 		raw_spin_unlock_irq(&ctx->lock);
2138 		/*
2139 		 * Reload the task pointer, it might have been changed by
2140 		 * a concurrent perf_event_context_sched_out().
2141 		 */
2142 		task = ctx->task;
2143 		goto retry;
2144 	}
2145 
2146 	/*
2147 	 * Since the task isn't running, its safe to add the event, us holding
2148 	 * the ctx->lock ensures the task won't get scheduled in.
2149 	 */
2150 	add_event_to_ctx(event, ctx);
2151 	raw_spin_unlock_irq(&ctx->lock);
2152 }
2153 
2154 /*
2155  * Put a event into inactive state and update time fields.
2156  * Enabling the leader of a group effectively enables all
2157  * the group members that aren't explicitly disabled, so we
2158  * have to update their ->tstamp_enabled also.
2159  * Note: this works for group members as well as group leaders
2160  * since the non-leader members' sibling_lists will be empty.
2161  */
2162 static void __perf_event_mark_enabled(struct perf_event *event)
2163 {
2164 	struct perf_event *sub;
2165 	u64 tstamp = perf_event_time(event);
2166 
2167 	event->state = PERF_EVENT_STATE_INACTIVE;
2168 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2169 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2170 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2171 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2172 	}
2173 }
2174 
2175 /*
2176  * Cross CPU call to enable a performance event
2177  */
2178 static int __perf_event_enable(void *info)
2179 {
2180 	struct perf_event *event = info;
2181 	struct perf_event_context *ctx = event->ctx;
2182 	struct perf_event *leader = event->group_leader;
2183 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2184 	int err;
2185 
2186 	/*
2187 	 * There's a time window between 'ctx->is_active' check
2188 	 * in perf_event_enable function and this place having:
2189 	 *   - IRQs on
2190 	 *   - ctx->lock unlocked
2191 	 *
2192 	 * where the task could be killed and 'ctx' deactivated
2193 	 * by perf_event_exit_task.
2194 	 */
2195 	if (!ctx->is_active)
2196 		return -EINVAL;
2197 
2198 	raw_spin_lock(&ctx->lock);
2199 	update_context_time(ctx);
2200 
2201 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2202 		goto unlock;
2203 
2204 	/*
2205 	 * set current task's cgroup time reference point
2206 	 */
2207 	perf_cgroup_set_timestamp(current, ctx);
2208 
2209 	__perf_event_mark_enabled(event);
2210 
2211 	if (!event_filter_match(event)) {
2212 		if (is_cgroup_event(event))
2213 			perf_cgroup_defer_enabled(event);
2214 		goto unlock;
2215 	}
2216 
2217 	/*
2218 	 * If the event is in a group and isn't the group leader,
2219 	 * then don't put it on unless the group is on.
2220 	 */
2221 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2222 		goto unlock;
2223 
2224 	if (!group_can_go_on(event, cpuctx, 1)) {
2225 		err = -EEXIST;
2226 	} else {
2227 		if (event == leader)
2228 			err = group_sched_in(event, cpuctx, ctx);
2229 		else
2230 			err = event_sched_in(event, cpuctx, ctx);
2231 	}
2232 
2233 	if (err) {
2234 		/*
2235 		 * If this event can't go on and it's part of a
2236 		 * group, then the whole group has to come off.
2237 		 */
2238 		if (leader != event) {
2239 			group_sched_out(leader, cpuctx, ctx);
2240 			perf_mux_hrtimer_restart(cpuctx);
2241 		}
2242 		if (leader->attr.pinned) {
2243 			update_group_times(leader);
2244 			leader->state = PERF_EVENT_STATE_ERROR;
2245 		}
2246 	}
2247 
2248 unlock:
2249 	raw_spin_unlock(&ctx->lock);
2250 
2251 	return 0;
2252 }
2253 
2254 /*
2255  * Enable a event.
2256  *
2257  * If event->ctx is a cloned context, callers must make sure that
2258  * every task struct that event->ctx->task could possibly point to
2259  * remains valid.  This condition is satisfied when called through
2260  * perf_event_for_each_child or perf_event_for_each as described
2261  * for perf_event_disable.
2262  */
2263 static void _perf_event_enable(struct perf_event *event)
2264 {
2265 	struct perf_event_context *ctx = event->ctx;
2266 	struct task_struct *task = ctx->task;
2267 
2268 	if (!task) {
2269 		/*
2270 		 * Enable the event on the cpu that it's on
2271 		 */
2272 		cpu_function_call(event->cpu, __perf_event_enable, event);
2273 		return;
2274 	}
2275 
2276 	raw_spin_lock_irq(&ctx->lock);
2277 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2278 		goto out;
2279 
2280 	/*
2281 	 * If the event is in error state, clear that first.
2282 	 * That way, if we see the event in error state below, we
2283 	 * know that it has gone back into error state, as distinct
2284 	 * from the task having been scheduled away before the
2285 	 * cross-call arrived.
2286 	 */
2287 	if (event->state == PERF_EVENT_STATE_ERROR)
2288 		event->state = PERF_EVENT_STATE_OFF;
2289 
2290 retry:
2291 	if (!ctx->is_active) {
2292 		__perf_event_mark_enabled(event);
2293 		goto out;
2294 	}
2295 
2296 	raw_spin_unlock_irq(&ctx->lock);
2297 
2298 	if (!task_function_call(task, __perf_event_enable, event))
2299 		return;
2300 
2301 	raw_spin_lock_irq(&ctx->lock);
2302 
2303 	/*
2304 	 * If the context is active and the event is still off,
2305 	 * we need to retry the cross-call.
2306 	 */
2307 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2308 		/*
2309 		 * task could have been flipped by a concurrent
2310 		 * perf_event_context_sched_out()
2311 		 */
2312 		task = ctx->task;
2313 		goto retry;
2314 	}
2315 
2316 out:
2317 	raw_spin_unlock_irq(&ctx->lock);
2318 }
2319 
2320 /*
2321  * See perf_event_disable();
2322  */
2323 void perf_event_enable(struct perf_event *event)
2324 {
2325 	struct perf_event_context *ctx;
2326 
2327 	ctx = perf_event_ctx_lock(event);
2328 	_perf_event_enable(event);
2329 	perf_event_ctx_unlock(event, ctx);
2330 }
2331 EXPORT_SYMBOL_GPL(perf_event_enable);
2332 
2333 static int _perf_event_refresh(struct perf_event *event, int refresh)
2334 {
2335 	/*
2336 	 * not supported on inherited events
2337 	 */
2338 	if (event->attr.inherit || !is_sampling_event(event))
2339 		return -EINVAL;
2340 
2341 	atomic_add(refresh, &event->event_limit);
2342 	_perf_event_enable(event);
2343 
2344 	return 0;
2345 }
2346 
2347 /*
2348  * See perf_event_disable()
2349  */
2350 int perf_event_refresh(struct perf_event *event, int refresh)
2351 {
2352 	struct perf_event_context *ctx;
2353 	int ret;
2354 
2355 	ctx = perf_event_ctx_lock(event);
2356 	ret = _perf_event_refresh(event, refresh);
2357 	perf_event_ctx_unlock(event, ctx);
2358 
2359 	return ret;
2360 }
2361 EXPORT_SYMBOL_GPL(perf_event_refresh);
2362 
2363 static void ctx_sched_out(struct perf_event_context *ctx,
2364 			  struct perf_cpu_context *cpuctx,
2365 			  enum event_type_t event_type)
2366 {
2367 	struct perf_event *event;
2368 	int is_active = ctx->is_active;
2369 
2370 	ctx->is_active &= ~event_type;
2371 	if (likely(!ctx->nr_events))
2372 		return;
2373 
2374 	update_context_time(ctx);
2375 	update_cgrp_time_from_cpuctx(cpuctx);
2376 	if (!ctx->nr_active)
2377 		return;
2378 
2379 	perf_pmu_disable(ctx->pmu);
2380 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2381 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2382 			group_sched_out(event, cpuctx, ctx);
2383 	}
2384 
2385 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2386 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2387 			group_sched_out(event, cpuctx, ctx);
2388 	}
2389 	perf_pmu_enable(ctx->pmu);
2390 }
2391 
2392 /*
2393  * Test whether two contexts are equivalent, i.e. whether they have both been
2394  * cloned from the same version of the same context.
2395  *
2396  * Equivalence is measured using a generation number in the context that is
2397  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2398  * and list_del_event().
2399  */
2400 static int context_equiv(struct perf_event_context *ctx1,
2401 			 struct perf_event_context *ctx2)
2402 {
2403 	lockdep_assert_held(&ctx1->lock);
2404 	lockdep_assert_held(&ctx2->lock);
2405 
2406 	/* Pinning disables the swap optimization */
2407 	if (ctx1->pin_count || ctx2->pin_count)
2408 		return 0;
2409 
2410 	/* If ctx1 is the parent of ctx2 */
2411 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2412 		return 1;
2413 
2414 	/* If ctx2 is the parent of ctx1 */
2415 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2416 		return 1;
2417 
2418 	/*
2419 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2420 	 * hierarchy, see perf_event_init_context().
2421 	 */
2422 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2423 			ctx1->parent_gen == ctx2->parent_gen)
2424 		return 1;
2425 
2426 	/* Unmatched */
2427 	return 0;
2428 }
2429 
2430 static void __perf_event_sync_stat(struct perf_event *event,
2431 				     struct perf_event *next_event)
2432 {
2433 	u64 value;
2434 
2435 	if (!event->attr.inherit_stat)
2436 		return;
2437 
2438 	/*
2439 	 * Update the event value, we cannot use perf_event_read()
2440 	 * because we're in the middle of a context switch and have IRQs
2441 	 * disabled, which upsets smp_call_function_single(), however
2442 	 * we know the event must be on the current CPU, therefore we
2443 	 * don't need to use it.
2444 	 */
2445 	switch (event->state) {
2446 	case PERF_EVENT_STATE_ACTIVE:
2447 		event->pmu->read(event);
2448 		/* fall-through */
2449 
2450 	case PERF_EVENT_STATE_INACTIVE:
2451 		update_event_times(event);
2452 		break;
2453 
2454 	default:
2455 		break;
2456 	}
2457 
2458 	/*
2459 	 * In order to keep per-task stats reliable we need to flip the event
2460 	 * values when we flip the contexts.
2461 	 */
2462 	value = local64_read(&next_event->count);
2463 	value = local64_xchg(&event->count, value);
2464 	local64_set(&next_event->count, value);
2465 
2466 	swap(event->total_time_enabled, next_event->total_time_enabled);
2467 	swap(event->total_time_running, next_event->total_time_running);
2468 
2469 	/*
2470 	 * Since we swizzled the values, update the user visible data too.
2471 	 */
2472 	perf_event_update_userpage(event);
2473 	perf_event_update_userpage(next_event);
2474 }
2475 
2476 static void perf_event_sync_stat(struct perf_event_context *ctx,
2477 				   struct perf_event_context *next_ctx)
2478 {
2479 	struct perf_event *event, *next_event;
2480 
2481 	if (!ctx->nr_stat)
2482 		return;
2483 
2484 	update_context_time(ctx);
2485 
2486 	event = list_first_entry(&ctx->event_list,
2487 				   struct perf_event, event_entry);
2488 
2489 	next_event = list_first_entry(&next_ctx->event_list,
2490 					struct perf_event, event_entry);
2491 
2492 	while (&event->event_entry != &ctx->event_list &&
2493 	       &next_event->event_entry != &next_ctx->event_list) {
2494 
2495 		__perf_event_sync_stat(event, next_event);
2496 
2497 		event = list_next_entry(event, event_entry);
2498 		next_event = list_next_entry(next_event, event_entry);
2499 	}
2500 }
2501 
2502 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2503 					 struct task_struct *next)
2504 {
2505 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2506 	struct perf_event_context *next_ctx;
2507 	struct perf_event_context *parent, *next_parent;
2508 	struct perf_cpu_context *cpuctx;
2509 	int do_switch = 1;
2510 
2511 	if (likely(!ctx))
2512 		return;
2513 
2514 	cpuctx = __get_cpu_context(ctx);
2515 	if (!cpuctx->task_ctx)
2516 		return;
2517 
2518 	rcu_read_lock();
2519 	next_ctx = next->perf_event_ctxp[ctxn];
2520 	if (!next_ctx)
2521 		goto unlock;
2522 
2523 	parent = rcu_dereference(ctx->parent_ctx);
2524 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2525 
2526 	/* If neither context have a parent context; they cannot be clones. */
2527 	if (!parent && !next_parent)
2528 		goto unlock;
2529 
2530 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2531 		/*
2532 		 * Looks like the two contexts are clones, so we might be
2533 		 * able to optimize the context switch.  We lock both
2534 		 * contexts and check that they are clones under the
2535 		 * lock (including re-checking that neither has been
2536 		 * uncloned in the meantime).  It doesn't matter which
2537 		 * order we take the locks because no other cpu could
2538 		 * be trying to lock both of these tasks.
2539 		 */
2540 		raw_spin_lock(&ctx->lock);
2541 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2542 		if (context_equiv(ctx, next_ctx)) {
2543 			/*
2544 			 * XXX do we need a memory barrier of sorts
2545 			 * wrt to rcu_dereference() of perf_event_ctxp
2546 			 */
2547 			task->perf_event_ctxp[ctxn] = next_ctx;
2548 			next->perf_event_ctxp[ctxn] = ctx;
2549 			ctx->task = next;
2550 			next_ctx->task = task;
2551 
2552 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2553 
2554 			do_switch = 0;
2555 
2556 			perf_event_sync_stat(ctx, next_ctx);
2557 		}
2558 		raw_spin_unlock(&next_ctx->lock);
2559 		raw_spin_unlock(&ctx->lock);
2560 	}
2561 unlock:
2562 	rcu_read_unlock();
2563 
2564 	if (do_switch) {
2565 		raw_spin_lock(&ctx->lock);
2566 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2567 		cpuctx->task_ctx = NULL;
2568 		raw_spin_unlock(&ctx->lock);
2569 	}
2570 }
2571 
2572 void perf_sched_cb_dec(struct pmu *pmu)
2573 {
2574 	this_cpu_dec(perf_sched_cb_usages);
2575 }
2576 
2577 void perf_sched_cb_inc(struct pmu *pmu)
2578 {
2579 	this_cpu_inc(perf_sched_cb_usages);
2580 }
2581 
2582 /*
2583  * This function provides the context switch callback to the lower code
2584  * layer. It is invoked ONLY when the context switch callback is enabled.
2585  */
2586 static void perf_pmu_sched_task(struct task_struct *prev,
2587 				struct task_struct *next,
2588 				bool sched_in)
2589 {
2590 	struct perf_cpu_context *cpuctx;
2591 	struct pmu *pmu;
2592 	unsigned long flags;
2593 
2594 	if (prev == next)
2595 		return;
2596 
2597 	local_irq_save(flags);
2598 
2599 	rcu_read_lock();
2600 
2601 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2602 		if (pmu->sched_task) {
2603 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2604 
2605 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2606 
2607 			perf_pmu_disable(pmu);
2608 
2609 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2610 
2611 			perf_pmu_enable(pmu);
2612 
2613 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2614 		}
2615 	}
2616 
2617 	rcu_read_unlock();
2618 
2619 	local_irq_restore(flags);
2620 }
2621 
2622 #define for_each_task_context_nr(ctxn)					\
2623 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2624 
2625 /*
2626  * Called from scheduler to remove the events of the current task,
2627  * with interrupts disabled.
2628  *
2629  * We stop each event and update the event value in event->count.
2630  *
2631  * This does not protect us against NMI, but disable()
2632  * sets the disabled bit in the control field of event _before_
2633  * accessing the event control register. If a NMI hits, then it will
2634  * not restart the event.
2635  */
2636 void __perf_event_task_sched_out(struct task_struct *task,
2637 				 struct task_struct *next)
2638 {
2639 	int ctxn;
2640 
2641 	if (__this_cpu_read(perf_sched_cb_usages))
2642 		perf_pmu_sched_task(task, next, false);
2643 
2644 	for_each_task_context_nr(ctxn)
2645 		perf_event_context_sched_out(task, ctxn, next);
2646 
2647 	/*
2648 	 * if cgroup events exist on this CPU, then we need
2649 	 * to check if we have to switch out PMU state.
2650 	 * cgroup event are system-wide mode only
2651 	 */
2652 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2653 		perf_cgroup_sched_out(task, next);
2654 }
2655 
2656 static void task_ctx_sched_out(struct perf_event_context *ctx)
2657 {
2658 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2659 
2660 	if (!cpuctx->task_ctx)
2661 		return;
2662 
2663 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2664 		return;
2665 
2666 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2667 	cpuctx->task_ctx = NULL;
2668 }
2669 
2670 /*
2671  * Called with IRQs disabled
2672  */
2673 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2674 			      enum event_type_t event_type)
2675 {
2676 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2677 }
2678 
2679 static void
2680 ctx_pinned_sched_in(struct perf_event_context *ctx,
2681 		    struct perf_cpu_context *cpuctx)
2682 {
2683 	struct perf_event *event;
2684 
2685 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2686 		if (event->state <= PERF_EVENT_STATE_OFF)
2687 			continue;
2688 		if (!event_filter_match(event))
2689 			continue;
2690 
2691 		/* may need to reset tstamp_enabled */
2692 		if (is_cgroup_event(event))
2693 			perf_cgroup_mark_enabled(event, ctx);
2694 
2695 		if (group_can_go_on(event, cpuctx, 1))
2696 			group_sched_in(event, cpuctx, ctx);
2697 
2698 		/*
2699 		 * If this pinned group hasn't been scheduled,
2700 		 * put it in error state.
2701 		 */
2702 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2703 			update_group_times(event);
2704 			event->state = PERF_EVENT_STATE_ERROR;
2705 		}
2706 	}
2707 }
2708 
2709 static void
2710 ctx_flexible_sched_in(struct perf_event_context *ctx,
2711 		      struct perf_cpu_context *cpuctx)
2712 {
2713 	struct perf_event *event;
2714 	int can_add_hw = 1;
2715 
2716 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2717 		/* Ignore events in OFF or ERROR state */
2718 		if (event->state <= PERF_EVENT_STATE_OFF)
2719 			continue;
2720 		/*
2721 		 * Listen to the 'cpu' scheduling filter constraint
2722 		 * of events:
2723 		 */
2724 		if (!event_filter_match(event))
2725 			continue;
2726 
2727 		/* may need to reset tstamp_enabled */
2728 		if (is_cgroup_event(event))
2729 			perf_cgroup_mark_enabled(event, ctx);
2730 
2731 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2732 			if (group_sched_in(event, cpuctx, ctx))
2733 				can_add_hw = 0;
2734 		}
2735 	}
2736 }
2737 
2738 static void
2739 ctx_sched_in(struct perf_event_context *ctx,
2740 	     struct perf_cpu_context *cpuctx,
2741 	     enum event_type_t event_type,
2742 	     struct task_struct *task)
2743 {
2744 	u64 now;
2745 	int is_active = ctx->is_active;
2746 
2747 	ctx->is_active |= event_type;
2748 	if (likely(!ctx->nr_events))
2749 		return;
2750 
2751 	now = perf_clock();
2752 	ctx->timestamp = now;
2753 	perf_cgroup_set_timestamp(task, ctx);
2754 	/*
2755 	 * First go through the list and put on any pinned groups
2756 	 * in order to give them the best chance of going on.
2757 	 */
2758 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2759 		ctx_pinned_sched_in(ctx, cpuctx);
2760 
2761 	/* Then walk through the lower prio flexible groups */
2762 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2763 		ctx_flexible_sched_in(ctx, cpuctx);
2764 }
2765 
2766 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2767 			     enum event_type_t event_type,
2768 			     struct task_struct *task)
2769 {
2770 	struct perf_event_context *ctx = &cpuctx->ctx;
2771 
2772 	ctx_sched_in(ctx, cpuctx, event_type, task);
2773 }
2774 
2775 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2776 					struct task_struct *task)
2777 {
2778 	struct perf_cpu_context *cpuctx;
2779 
2780 	cpuctx = __get_cpu_context(ctx);
2781 	if (cpuctx->task_ctx == ctx)
2782 		return;
2783 
2784 	perf_ctx_lock(cpuctx, ctx);
2785 	perf_pmu_disable(ctx->pmu);
2786 	/*
2787 	 * We want to keep the following priority order:
2788 	 * cpu pinned (that don't need to move), task pinned,
2789 	 * cpu flexible, task flexible.
2790 	 */
2791 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2792 
2793 	if (ctx->nr_events)
2794 		cpuctx->task_ctx = ctx;
2795 
2796 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2797 
2798 	perf_pmu_enable(ctx->pmu);
2799 	perf_ctx_unlock(cpuctx, ctx);
2800 }
2801 
2802 /*
2803  * Called from scheduler to add the events of the current task
2804  * with interrupts disabled.
2805  *
2806  * We restore the event value and then enable it.
2807  *
2808  * This does not protect us against NMI, but enable()
2809  * sets the enabled bit in the control field of event _before_
2810  * accessing the event control register. If a NMI hits, then it will
2811  * keep the event running.
2812  */
2813 void __perf_event_task_sched_in(struct task_struct *prev,
2814 				struct task_struct *task)
2815 {
2816 	struct perf_event_context *ctx;
2817 	int ctxn;
2818 
2819 	for_each_task_context_nr(ctxn) {
2820 		ctx = task->perf_event_ctxp[ctxn];
2821 		if (likely(!ctx))
2822 			continue;
2823 
2824 		perf_event_context_sched_in(ctx, task);
2825 	}
2826 	/*
2827 	 * if cgroup events exist on this CPU, then we need
2828 	 * to check if we have to switch in PMU state.
2829 	 * cgroup event are system-wide mode only
2830 	 */
2831 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2832 		perf_cgroup_sched_in(prev, task);
2833 
2834 	if (__this_cpu_read(perf_sched_cb_usages))
2835 		perf_pmu_sched_task(prev, task, true);
2836 }
2837 
2838 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2839 {
2840 	u64 frequency = event->attr.sample_freq;
2841 	u64 sec = NSEC_PER_SEC;
2842 	u64 divisor, dividend;
2843 
2844 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2845 
2846 	count_fls = fls64(count);
2847 	nsec_fls = fls64(nsec);
2848 	frequency_fls = fls64(frequency);
2849 	sec_fls = 30;
2850 
2851 	/*
2852 	 * We got @count in @nsec, with a target of sample_freq HZ
2853 	 * the target period becomes:
2854 	 *
2855 	 *             @count * 10^9
2856 	 * period = -------------------
2857 	 *          @nsec * sample_freq
2858 	 *
2859 	 */
2860 
2861 	/*
2862 	 * Reduce accuracy by one bit such that @a and @b converge
2863 	 * to a similar magnitude.
2864 	 */
2865 #define REDUCE_FLS(a, b)		\
2866 do {					\
2867 	if (a##_fls > b##_fls) {	\
2868 		a >>= 1;		\
2869 		a##_fls--;		\
2870 	} else {			\
2871 		b >>= 1;		\
2872 		b##_fls--;		\
2873 	}				\
2874 } while (0)
2875 
2876 	/*
2877 	 * Reduce accuracy until either term fits in a u64, then proceed with
2878 	 * the other, so that finally we can do a u64/u64 division.
2879 	 */
2880 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2881 		REDUCE_FLS(nsec, frequency);
2882 		REDUCE_FLS(sec, count);
2883 	}
2884 
2885 	if (count_fls + sec_fls > 64) {
2886 		divisor = nsec * frequency;
2887 
2888 		while (count_fls + sec_fls > 64) {
2889 			REDUCE_FLS(count, sec);
2890 			divisor >>= 1;
2891 		}
2892 
2893 		dividend = count * sec;
2894 	} else {
2895 		dividend = count * sec;
2896 
2897 		while (nsec_fls + frequency_fls > 64) {
2898 			REDUCE_FLS(nsec, frequency);
2899 			dividend >>= 1;
2900 		}
2901 
2902 		divisor = nsec * frequency;
2903 	}
2904 
2905 	if (!divisor)
2906 		return dividend;
2907 
2908 	return div64_u64(dividend, divisor);
2909 }
2910 
2911 static DEFINE_PER_CPU(int, perf_throttled_count);
2912 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2913 
2914 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2915 {
2916 	struct hw_perf_event *hwc = &event->hw;
2917 	s64 period, sample_period;
2918 	s64 delta;
2919 
2920 	period = perf_calculate_period(event, nsec, count);
2921 
2922 	delta = (s64)(period - hwc->sample_period);
2923 	delta = (delta + 7) / 8; /* low pass filter */
2924 
2925 	sample_period = hwc->sample_period + delta;
2926 
2927 	if (!sample_period)
2928 		sample_period = 1;
2929 
2930 	hwc->sample_period = sample_period;
2931 
2932 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2933 		if (disable)
2934 			event->pmu->stop(event, PERF_EF_UPDATE);
2935 
2936 		local64_set(&hwc->period_left, 0);
2937 
2938 		if (disable)
2939 			event->pmu->start(event, PERF_EF_RELOAD);
2940 	}
2941 }
2942 
2943 /*
2944  * combine freq adjustment with unthrottling to avoid two passes over the
2945  * events. At the same time, make sure, having freq events does not change
2946  * the rate of unthrottling as that would introduce bias.
2947  */
2948 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2949 					   int needs_unthr)
2950 {
2951 	struct perf_event *event;
2952 	struct hw_perf_event *hwc;
2953 	u64 now, period = TICK_NSEC;
2954 	s64 delta;
2955 
2956 	/*
2957 	 * only need to iterate over all events iff:
2958 	 * - context have events in frequency mode (needs freq adjust)
2959 	 * - there are events to unthrottle on this cpu
2960 	 */
2961 	if (!(ctx->nr_freq || needs_unthr))
2962 		return;
2963 
2964 	raw_spin_lock(&ctx->lock);
2965 	perf_pmu_disable(ctx->pmu);
2966 
2967 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2968 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2969 			continue;
2970 
2971 		if (!event_filter_match(event))
2972 			continue;
2973 
2974 		perf_pmu_disable(event->pmu);
2975 
2976 		hwc = &event->hw;
2977 
2978 		if (hwc->interrupts == MAX_INTERRUPTS) {
2979 			hwc->interrupts = 0;
2980 			perf_log_throttle(event, 1);
2981 			event->pmu->start(event, 0);
2982 		}
2983 
2984 		if (!event->attr.freq || !event->attr.sample_freq)
2985 			goto next;
2986 
2987 		/*
2988 		 * stop the event and update event->count
2989 		 */
2990 		event->pmu->stop(event, PERF_EF_UPDATE);
2991 
2992 		now = local64_read(&event->count);
2993 		delta = now - hwc->freq_count_stamp;
2994 		hwc->freq_count_stamp = now;
2995 
2996 		/*
2997 		 * restart the event
2998 		 * reload only if value has changed
2999 		 * we have stopped the event so tell that
3000 		 * to perf_adjust_period() to avoid stopping it
3001 		 * twice.
3002 		 */
3003 		if (delta > 0)
3004 			perf_adjust_period(event, period, delta, false);
3005 
3006 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3007 	next:
3008 		perf_pmu_enable(event->pmu);
3009 	}
3010 
3011 	perf_pmu_enable(ctx->pmu);
3012 	raw_spin_unlock(&ctx->lock);
3013 }
3014 
3015 /*
3016  * Round-robin a context's events:
3017  */
3018 static void rotate_ctx(struct perf_event_context *ctx)
3019 {
3020 	/*
3021 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3022 	 * disabled by the inheritance code.
3023 	 */
3024 	if (!ctx->rotate_disable)
3025 		list_rotate_left(&ctx->flexible_groups);
3026 }
3027 
3028 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3029 {
3030 	struct perf_event_context *ctx = NULL;
3031 	int rotate = 0;
3032 
3033 	if (cpuctx->ctx.nr_events) {
3034 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3035 			rotate = 1;
3036 	}
3037 
3038 	ctx = cpuctx->task_ctx;
3039 	if (ctx && ctx->nr_events) {
3040 		if (ctx->nr_events != ctx->nr_active)
3041 			rotate = 1;
3042 	}
3043 
3044 	if (!rotate)
3045 		goto done;
3046 
3047 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3048 	perf_pmu_disable(cpuctx->ctx.pmu);
3049 
3050 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3051 	if (ctx)
3052 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3053 
3054 	rotate_ctx(&cpuctx->ctx);
3055 	if (ctx)
3056 		rotate_ctx(ctx);
3057 
3058 	perf_event_sched_in(cpuctx, ctx, current);
3059 
3060 	perf_pmu_enable(cpuctx->ctx.pmu);
3061 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3062 done:
3063 
3064 	return rotate;
3065 }
3066 
3067 #ifdef CONFIG_NO_HZ_FULL
3068 bool perf_event_can_stop_tick(void)
3069 {
3070 	if (atomic_read(&nr_freq_events) ||
3071 	    __this_cpu_read(perf_throttled_count))
3072 		return false;
3073 	else
3074 		return true;
3075 }
3076 #endif
3077 
3078 void perf_event_task_tick(void)
3079 {
3080 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3081 	struct perf_event_context *ctx, *tmp;
3082 	int throttled;
3083 
3084 	WARN_ON(!irqs_disabled());
3085 
3086 	__this_cpu_inc(perf_throttled_seq);
3087 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3088 
3089 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3090 		perf_adjust_freq_unthr_context(ctx, throttled);
3091 }
3092 
3093 static int event_enable_on_exec(struct perf_event *event,
3094 				struct perf_event_context *ctx)
3095 {
3096 	if (!event->attr.enable_on_exec)
3097 		return 0;
3098 
3099 	event->attr.enable_on_exec = 0;
3100 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3101 		return 0;
3102 
3103 	__perf_event_mark_enabled(event);
3104 
3105 	return 1;
3106 }
3107 
3108 /*
3109  * Enable all of a task's events that have been marked enable-on-exec.
3110  * This expects task == current.
3111  */
3112 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3113 {
3114 	struct perf_event_context *clone_ctx = NULL;
3115 	struct perf_event *event;
3116 	unsigned long flags;
3117 	int enabled = 0;
3118 	int ret;
3119 
3120 	local_irq_save(flags);
3121 	if (!ctx || !ctx->nr_events)
3122 		goto out;
3123 
3124 	/*
3125 	 * We must ctxsw out cgroup events to avoid conflict
3126 	 * when invoking perf_task_event_sched_in() later on
3127 	 * in this function. Otherwise we end up trying to
3128 	 * ctxswin cgroup events which are already scheduled
3129 	 * in.
3130 	 */
3131 	perf_cgroup_sched_out(current, NULL);
3132 
3133 	raw_spin_lock(&ctx->lock);
3134 	task_ctx_sched_out(ctx);
3135 
3136 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3137 		ret = event_enable_on_exec(event, ctx);
3138 		if (ret)
3139 			enabled = 1;
3140 	}
3141 
3142 	/*
3143 	 * Unclone this context if we enabled any event.
3144 	 */
3145 	if (enabled)
3146 		clone_ctx = unclone_ctx(ctx);
3147 
3148 	raw_spin_unlock(&ctx->lock);
3149 
3150 	/*
3151 	 * Also calls ctxswin for cgroup events, if any:
3152 	 */
3153 	perf_event_context_sched_in(ctx, ctx->task);
3154 out:
3155 	local_irq_restore(flags);
3156 
3157 	if (clone_ctx)
3158 		put_ctx(clone_ctx);
3159 }
3160 
3161 void perf_event_exec(void)
3162 {
3163 	struct perf_event_context *ctx;
3164 	int ctxn;
3165 
3166 	rcu_read_lock();
3167 	for_each_task_context_nr(ctxn) {
3168 		ctx = current->perf_event_ctxp[ctxn];
3169 		if (!ctx)
3170 			continue;
3171 
3172 		perf_event_enable_on_exec(ctx);
3173 	}
3174 	rcu_read_unlock();
3175 }
3176 
3177 /*
3178  * Cross CPU call to read the hardware event
3179  */
3180 static void __perf_event_read(void *info)
3181 {
3182 	struct perf_event *event = info;
3183 	struct perf_event_context *ctx = event->ctx;
3184 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3185 
3186 	/*
3187 	 * If this is a task context, we need to check whether it is
3188 	 * the current task context of this cpu.  If not it has been
3189 	 * scheduled out before the smp call arrived.  In that case
3190 	 * event->count would have been updated to a recent sample
3191 	 * when the event was scheduled out.
3192 	 */
3193 	if (ctx->task && cpuctx->task_ctx != ctx)
3194 		return;
3195 
3196 	raw_spin_lock(&ctx->lock);
3197 	if (ctx->is_active) {
3198 		update_context_time(ctx);
3199 		update_cgrp_time_from_event(event);
3200 	}
3201 	update_event_times(event);
3202 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3203 		event->pmu->read(event);
3204 	raw_spin_unlock(&ctx->lock);
3205 }
3206 
3207 static inline u64 perf_event_count(struct perf_event *event)
3208 {
3209 	if (event->pmu->count)
3210 		return event->pmu->count(event);
3211 
3212 	return __perf_event_count(event);
3213 }
3214 
3215 static u64 perf_event_read(struct perf_event *event)
3216 {
3217 	/*
3218 	 * If event is enabled and currently active on a CPU, update the
3219 	 * value in the event structure:
3220 	 */
3221 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3222 		smp_call_function_single(event->oncpu,
3223 					 __perf_event_read, event, 1);
3224 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3225 		struct perf_event_context *ctx = event->ctx;
3226 		unsigned long flags;
3227 
3228 		raw_spin_lock_irqsave(&ctx->lock, flags);
3229 		/*
3230 		 * may read while context is not active
3231 		 * (e.g., thread is blocked), in that case
3232 		 * we cannot update context time
3233 		 */
3234 		if (ctx->is_active) {
3235 			update_context_time(ctx);
3236 			update_cgrp_time_from_event(event);
3237 		}
3238 		update_event_times(event);
3239 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3240 	}
3241 
3242 	return perf_event_count(event);
3243 }
3244 
3245 /*
3246  * Initialize the perf_event context in a task_struct:
3247  */
3248 static void __perf_event_init_context(struct perf_event_context *ctx)
3249 {
3250 	raw_spin_lock_init(&ctx->lock);
3251 	mutex_init(&ctx->mutex);
3252 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3253 	INIT_LIST_HEAD(&ctx->pinned_groups);
3254 	INIT_LIST_HEAD(&ctx->flexible_groups);
3255 	INIT_LIST_HEAD(&ctx->event_list);
3256 	atomic_set(&ctx->refcount, 1);
3257 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3258 }
3259 
3260 static struct perf_event_context *
3261 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3262 {
3263 	struct perf_event_context *ctx;
3264 
3265 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3266 	if (!ctx)
3267 		return NULL;
3268 
3269 	__perf_event_init_context(ctx);
3270 	if (task) {
3271 		ctx->task = task;
3272 		get_task_struct(task);
3273 	}
3274 	ctx->pmu = pmu;
3275 
3276 	return ctx;
3277 }
3278 
3279 static struct task_struct *
3280 find_lively_task_by_vpid(pid_t vpid)
3281 {
3282 	struct task_struct *task;
3283 	int err;
3284 
3285 	rcu_read_lock();
3286 	if (!vpid)
3287 		task = current;
3288 	else
3289 		task = find_task_by_vpid(vpid);
3290 	if (task)
3291 		get_task_struct(task);
3292 	rcu_read_unlock();
3293 
3294 	if (!task)
3295 		return ERR_PTR(-ESRCH);
3296 
3297 	/* Reuse ptrace permission checks for now. */
3298 	err = -EACCES;
3299 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3300 		goto errout;
3301 
3302 	return task;
3303 errout:
3304 	put_task_struct(task);
3305 	return ERR_PTR(err);
3306 
3307 }
3308 
3309 /*
3310  * Returns a matching context with refcount and pincount.
3311  */
3312 static struct perf_event_context *
3313 find_get_context(struct pmu *pmu, struct task_struct *task,
3314 		struct perf_event *event)
3315 {
3316 	struct perf_event_context *ctx, *clone_ctx = NULL;
3317 	struct perf_cpu_context *cpuctx;
3318 	void *task_ctx_data = NULL;
3319 	unsigned long flags;
3320 	int ctxn, err;
3321 	int cpu = event->cpu;
3322 
3323 	if (!task) {
3324 		/* Must be root to operate on a CPU event: */
3325 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3326 			return ERR_PTR(-EACCES);
3327 
3328 		/*
3329 		 * We could be clever and allow to attach a event to an
3330 		 * offline CPU and activate it when the CPU comes up, but
3331 		 * that's for later.
3332 		 */
3333 		if (!cpu_online(cpu))
3334 			return ERR_PTR(-ENODEV);
3335 
3336 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3337 		ctx = &cpuctx->ctx;
3338 		get_ctx(ctx);
3339 		++ctx->pin_count;
3340 
3341 		return ctx;
3342 	}
3343 
3344 	err = -EINVAL;
3345 	ctxn = pmu->task_ctx_nr;
3346 	if (ctxn < 0)
3347 		goto errout;
3348 
3349 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3350 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3351 		if (!task_ctx_data) {
3352 			err = -ENOMEM;
3353 			goto errout;
3354 		}
3355 	}
3356 
3357 retry:
3358 	ctx = perf_lock_task_context(task, ctxn, &flags);
3359 	if (ctx) {
3360 		clone_ctx = unclone_ctx(ctx);
3361 		++ctx->pin_count;
3362 
3363 		if (task_ctx_data && !ctx->task_ctx_data) {
3364 			ctx->task_ctx_data = task_ctx_data;
3365 			task_ctx_data = NULL;
3366 		}
3367 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3368 
3369 		if (clone_ctx)
3370 			put_ctx(clone_ctx);
3371 	} else {
3372 		ctx = alloc_perf_context(pmu, task);
3373 		err = -ENOMEM;
3374 		if (!ctx)
3375 			goto errout;
3376 
3377 		if (task_ctx_data) {
3378 			ctx->task_ctx_data = task_ctx_data;
3379 			task_ctx_data = NULL;
3380 		}
3381 
3382 		err = 0;
3383 		mutex_lock(&task->perf_event_mutex);
3384 		/*
3385 		 * If it has already passed perf_event_exit_task().
3386 		 * we must see PF_EXITING, it takes this mutex too.
3387 		 */
3388 		if (task->flags & PF_EXITING)
3389 			err = -ESRCH;
3390 		else if (task->perf_event_ctxp[ctxn])
3391 			err = -EAGAIN;
3392 		else {
3393 			get_ctx(ctx);
3394 			++ctx->pin_count;
3395 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3396 		}
3397 		mutex_unlock(&task->perf_event_mutex);
3398 
3399 		if (unlikely(err)) {
3400 			put_ctx(ctx);
3401 
3402 			if (err == -EAGAIN)
3403 				goto retry;
3404 			goto errout;
3405 		}
3406 	}
3407 
3408 	kfree(task_ctx_data);
3409 	return ctx;
3410 
3411 errout:
3412 	kfree(task_ctx_data);
3413 	return ERR_PTR(err);
3414 }
3415 
3416 static void perf_event_free_filter(struct perf_event *event);
3417 static void perf_event_free_bpf_prog(struct perf_event *event);
3418 
3419 static void free_event_rcu(struct rcu_head *head)
3420 {
3421 	struct perf_event *event;
3422 
3423 	event = container_of(head, struct perf_event, rcu_head);
3424 	if (event->ns)
3425 		put_pid_ns(event->ns);
3426 	perf_event_free_filter(event);
3427 	kfree(event);
3428 }
3429 
3430 static void ring_buffer_attach(struct perf_event *event,
3431 			       struct ring_buffer *rb);
3432 
3433 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3434 {
3435 	if (event->parent)
3436 		return;
3437 
3438 	if (is_cgroup_event(event))
3439 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3440 }
3441 
3442 static void unaccount_event(struct perf_event *event)
3443 {
3444 	if (event->parent)
3445 		return;
3446 
3447 	if (event->attach_state & PERF_ATTACH_TASK)
3448 		static_key_slow_dec_deferred(&perf_sched_events);
3449 	if (event->attr.mmap || event->attr.mmap_data)
3450 		atomic_dec(&nr_mmap_events);
3451 	if (event->attr.comm)
3452 		atomic_dec(&nr_comm_events);
3453 	if (event->attr.task)
3454 		atomic_dec(&nr_task_events);
3455 	if (event->attr.freq)
3456 		atomic_dec(&nr_freq_events);
3457 	if (is_cgroup_event(event))
3458 		static_key_slow_dec_deferred(&perf_sched_events);
3459 	if (has_branch_stack(event))
3460 		static_key_slow_dec_deferred(&perf_sched_events);
3461 
3462 	unaccount_event_cpu(event, event->cpu);
3463 }
3464 
3465 /*
3466  * The following implement mutual exclusion of events on "exclusive" pmus
3467  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3468  * at a time, so we disallow creating events that might conflict, namely:
3469  *
3470  *  1) cpu-wide events in the presence of per-task events,
3471  *  2) per-task events in the presence of cpu-wide events,
3472  *  3) two matching events on the same context.
3473  *
3474  * The former two cases are handled in the allocation path (perf_event_alloc(),
3475  * __free_event()), the latter -- before the first perf_install_in_context().
3476  */
3477 static int exclusive_event_init(struct perf_event *event)
3478 {
3479 	struct pmu *pmu = event->pmu;
3480 
3481 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3482 		return 0;
3483 
3484 	/*
3485 	 * Prevent co-existence of per-task and cpu-wide events on the
3486 	 * same exclusive pmu.
3487 	 *
3488 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3489 	 * events on this "exclusive" pmu, positive means there are
3490 	 * per-task events.
3491 	 *
3492 	 * Since this is called in perf_event_alloc() path, event::ctx
3493 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3494 	 * to mean "per-task event", because unlike other attach states it
3495 	 * never gets cleared.
3496 	 */
3497 	if (event->attach_state & PERF_ATTACH_TASK) {
3498 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3499 			return -EBUSY;
3500 	} else {
3501 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3502 			return -EBUSY;
3503 	}
3504 
3505 	return 0;
3506 }
3507 
3508 static void exclusive_event_destroy(struct perf_event *event)
3509 {
3510 	struct pmu *pmu = event->pmu;
3511 
3512 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3513 		return;
3514 
3515 	/* see comment in exclusive_event_init() */
3516 	if (event->attach_state & PERF_ATTACH_TASK)
3517 		atomic_dec(&pmu->exclusive_cnt);
3518 	else
3519 		atomic_inc(&pmu->exclusive_cnt);
3520 }
3521 
3522 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3523 {
3524 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3525 	    (e1->cpu == e2->cpu ||
3526 	     e1->cpu == -1 ||
3527 	     e2->cpu == -1))
3528 		return true;
3529 	return false;
3530 }
3531 
3532 /* Called under the same ctx::mutex as perf_install_in_context() */
3533 static bool exclusive_event_installable(struct perf_event *event,
3534 					struct perf_event_context *ctx)
3535 {
3536 	struct perf_event *iter_event;
3537 	struct pmu *pmu = event->pmu;
3538 
3539 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3540 		return true;
3541 
3542 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3543 		if (exclusive_event_match(iter_event, event))
3544 			return false;
3545 	}
3546 
3547 	return true;
3548 }
3549 
3550 static void __free_event(struct perf_event *event)
3551 {
3552 	if (!event->parent) {
3553 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3554 			put_callchain_buffers();
3555 	}
3556 
3557 	perf_event_free_bpf_prog(event);
3558 
3559 	if (event->destroy)
3560 		event->destroy(event);
3561 
3562 	if (event->ctx)
3563 		put_ctx(event->ctx);
3564 
3565 	if (event->pmu) {
3566 		exclusive_event_destroy(event);
3567 		module_put(event->pmu->module);
3568 	}
3569 
3570 	call_rcu(&event->rcu_head, free_event_rcu);
3571 }
3572 
3573 static void _free_event(struct perf_event *event)
3574 {
3575 	irq_work_sync(&event->pending);
3576 
3577 	unaccount_event(event);
3578 
3579 	if (event->rb) {
3580 		/*
3581 		 * Can happen when we close an event with re-directed output.
3582 		 *
3583 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3584 		 * over us; possibly making our ring_buffer_put() the last.
3585 		 */
3586 		mutex_lock(&event->mmap_mutex);
3587 		ring_buffer_attach(event, NULL);
3588 		mutex_unlock(&event->mmap_mutex);
3589 	}
3590 
3591 	if (is_cgroup_event(event))
3592 		perf_detach_cgroup(event);
3593 
3594 	__free_event(event);
3595 }
3596 
3597 /*
3598  * Used to free events which have a known refcount of 1, such as in error paths
3599  * where the event isn't exposed yet and inherited events.
3600  */
3601 static void free_event(struct perf_event *event)
3602 {
3603 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3604 				"unexpected event refcount: %ld; ptr=%p\n",
3605 				atomic_long_read(&event->refcount), event)) {
3606 		/* leak to avoid use-after-free */
3607 		return;
3608 	}
3609 
3610 	_free_event(event);
3611 }
3612 
3613 /*
3614  * Remove user event from the owner task.
3615  */
3616 static void perf_remove_from_owner(struct perf_event *event)
3617 {
3618 	struct task_struct *owner;
3619 
3620 	rcu_read_lock();
3621 	owner = ACCESS_ONCE(event->owner);
3622 	/*
3623 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3624 	 * !owner it means the list deletion is complete and we can indeed
3625 	 * free this event, otherwise we need to serialize on
3626 	 * owner->perf_event_mutex.
3627 	 */
3628 	smp_read_barrier_depends();
3629 	if (owner) {
3630 		/*
3631 		 * Since delayed_put_task_struct() also drops the last
3632 		 * task reference we can safely take a new reference
3633 		 * while holding the rcu_read_lock().
3634 		 */
3635 		get_task_struct(owner);
3636 	}
3637 	rcu_read_unlock();
3638 
3639 	if (owner) {
3640 		/*
3641 		 * If we're here through perf_event_exit_task() we're already
3642 		 * holding ctx->mutex which would be an inversion wrt. the
3643 		 * normal lock order.
3644 		 *
3645 		 * However we can safely take this lock because its the child
3646 		 * ctx->mutex.
3647 		 */
3648 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3649 
3650 		/*
3651 		 * We have to re-check the event->owner field, if it is cleared
3652 		 * we raced with perf_event_exit_task(), acquiring the mutex
3653 		 * ensured they're done, and we can proceed with freeing the
3654 		 * event.
3655 		 */
3656 		if (event->owner)
3657 			list_del_init(&event->owner_entry);
3658 		mutex_unlock(&owner->perf_event_mutex);
3659 		put_task_struct(owner);
3660 	}
3661 }
3662 
3663 static void put_event(struct perf_event *event)
3664 {
3665 	struct perf_event_context *ctx;
3666 
3667 	if (!atomic_long_dec_and_test(&event->refcount))
3668 		return;
3669 
3670 	if (!is_kernel_event(event))
3671 		perf_remove_from_owner(event);
3672 
3673 	/*
3674 	 * There are two ways this annotation is useful:
3675 	 *
3676 	 *  1) there is a lock recursion from perf_event_exit_task
3677 	 *     see the comment there.
3678 	 *
3679 	 *  2) there is a lock-inversion with mmap_sem through
3680 	 *     perf_event_read_group(), which takes faults while
3681 	 *     holding ctx->mutex, however this is called after
3682 	 *     the last filedesc died, so there is no possibility
3683 	 *     to trigger the AB-BA case.
3684 	 */
3685 	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3686 	WARN_ON_ONCE(ctx->parent_ctx);
3687 	perf_remove_from_context(event, true);
3688 	perf_event_ctx_unlock(event, ctx);
3689 
3690 	_free_event(event);
3691 }
3692 
3693 int perf_event_release_kernel(struct perf_event *event)
3694 {
3695 	put_event(event);
3696 	return 0;
3697 }
3698 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3699 
3700 /*
3701  * Called when the last reference to the file is gone.
3702  */
3703 static int perf_release(struct inode *inode, struct file *file)
3704 {
3705 	put_event(file->private_data);
3706 	return 0;
3707 }
3708 
3709 /*
3710  * Remove all orphanes events from the context.
3711  */
3712 static void orphans_remove_work(struct work_struct *work)
3713 {
3714 	struct perf_event_context *ctx;
3715 	struct perf_event *event, *tmp;
3716 
3717 	ctx = container_of(work, struct perf_event_context,
3718 			   orphans_remove.work);
3719 
3720 	mutex_lock(&ctx->mutex);
3721 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3722 		struct perf_event *parent_event = event->parent;
3723 
3724 		if (!is_orphaned_child(event))
3725 			continue;
3726 
3727 		perf_remove_from_context(event, true);
3728 
3729 		mutex_lock(&parent_event->child_mutex);
3730 		list_del_init(&event->child_list);
3731 		mutex_unlock(&parent_event->child_mutex);
3732 
3733 		free_event(event);
3734 		put_event(parent_event);
3735 	}
3736 
3737 	raw_spin_lock_irq(&ctx->lock);
3738 	ctx->orphans_remove_sched = false;
3739 	raw_spin_unlock_irq(&ctx->lock);
3740 	mutex_unlock(&ctx->mutex);
3741 
3742 	put_ctx(ctx);
3743 }
3744 
3745 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3746 {
3747 	struct perf_event *child;
3748 	u64 total = 0;
3749 
3750 	*enabled = 0;
3751 	*running = 0;
3752 
3753 	mutex_lock(&event->child_mutex);
3754 	total += perf_event_read(event);
3755 	*enabled += event->total_time_enabled +
3756 			atomic64_read(&event->child_total_time_enabled);
3757 	*running += event->total_time_running +
3758 			atomic64_read(&event->child_total_time_running);
3759 
3760 	list_for_each_entry(child, &event->child_list, child_list) {
3761 		total += perf_event_read(child);
3762 		*enabled += child->total_time_enabled;
3763 		*running += child->total_time_running;
3764 	}
3765 	mutex_unlock(&event->child_mutex);
3766 
3767 	return total;
3768 }
3769 EXPORT_SYMBOL_GPL(perf_event_read_value);
3770 
3771 static int perf_event_read_group(struct perf_event *event,
3772 				   u64 read_format, char __user *buf)
3773 {
3774 	struct perf_event *leader = event->group_leader, *sub;
3775 	struct perf_event_context *ctx = leader->ctx;
3776 	int n = 0, size = 0, ret;
3777 	u64 count, enabled, running;
3778 	u64 values[5];
3779 
3780 	lockdep_assert_held(&ctx->mutex);
3781 
3782 	count = perf_event_read_value(leader, &enabled, &running);
3783 
3784 	values[n++] = 1 + leader->nr_siblings;
3785 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3786 		values[n++] = enabled;
3787 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3788 		values[n++] = running;
3789 	values[n++] = count;
3790 	if (read_format & PERF_FORMAT_ID)
3791 		values[n++] = primary_event_id(leader);
3792 
3793 	size = n * sizeof(u64);
3794 
3795 	if (copy_to_user(buf, values, size))
3796 		return -EFAULT;
3797 
3798 	ret = size;
3799 
3800 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3801 		n = 0;
3802 
3803 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3804 		if (read_format & PERF_FORMAT_ID)
3805 			values[n++] = primary_event_id(sub);
3806 
3807 		size = n * sizeof(u64);
3808 
3809 		if (copy_to_user(buf + ret, values, size)) {
3810 			return -EFAULT;
3811 		}
3812 
3813 		ret += size;
3814 	}
3815 
3816 	return ret;
3817 }
3818 
3819 static int perf_event_read_one(struct perf_event *event,
3820 				 u64 read_format, char __user *buf)
3821 {
3822 	u64 enabled, running;
3823 	u64 values[4];
3824 	int n = 0;
3825 
3826 	values[n++] = perf_event_read_value(event, &enabled, &running);
3827 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3828 		values[n++] = enabled;
3829 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3830 		values[n++] = running;
3831 	if (read_format & PERF_FORMAT_ID)
3832 		values[n++] = primary_event_id(event);
3833 
3834 	if (copy_to_user(buf, values, n * sizeof(u64)))
3835 		return -EFAULT;
3836 
3837 	return n * sizeof(u64);
3838 }
3839 
3840 static bool is_event_hup(struct perf_event *event)
3841 {
3842 	bool no_children;
3843 
3844 	if (event->state != PERF_EVENT_STATE_EXIT)
3845 		return false;
3846 
3847 	mutex_lock(&event->child_mutex);
3848 	no_children = list_empty(&event->child_list);
3849 	mutex_unlock(&event->child_mutex);
3850 	return no_children;
3851 }
3852 
3853 /*
3854  * Read the performance event - simple non blocking version for now
3855  */
3856 static ssize_t
3857 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3858 {
3859 	u64 read_format = event->attr.read_format;
3860 	int ret;
3861 
3862 	/*
3863 	 * Return end-of-file for a read on a event that is in
3864 	 * error state (i.e. because it was pinned but it couldn't be
3865 	 * scheduled on to the CPU at some point).
3866 	 */
3867 	if (event->state == PERF_EVENT_STATE_ERROR)
3868 		return 0;
3869 
3870 	if (count < event->read_size)
3871 		return -ENOSPC;
3872 
3873 	WARN_ON_ONCE(event->ctx->parent_ctx);
3874 	if (read_format & PERF_FORMAT_GROUP)
3875 		ret = perf_event_read_group(event, read_format, buf);
3876 	else
3877 		ret = perf_event_read_one(event, read_format, buf);
3878 
3879 	return ret;
3880 }
3881 
3882 static ssize_t
3883 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3884 {
3885 	struct perf_event *event = file->private_data;
3886 	struct perf_event_context *ctx;
3887 	int ret;
3888 
3889 	ctx = perf_event_ctx_lock(event);
3890 	ret = perf_read_hw(event, buf, count);
3891 	perf_event_ctx_unlock(event, ctx);
3892 
3893 	return ret;
3894 }
3895 
3896 static unsigned int perf_poll(struct file *file, poll_table *wait)
3897 {
3898 	struct perf_event *event = file->private_data;
3899 	struct ring_buffer *rb;
3900 	unsigned int events = POLLHUP;
3901 
3902 	poll_wait(file, &event->waitq, wait);
3903 
3904 	if (is_event_hup(event))
3905 		return events;
3906 
3907 	/*
3908 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3909 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3910 	 */
3911 	mutex_lock(&event->mmap_mutex);
3912 	rb = event->rb;
3913 	if (rb)
3914 		events = atomic_xchg(&rb->poll, 0);
3915 	mutex_unlock(&event->mmap_mutex);
3916 	return events;
3917 }
3918 
3919 static void _perf_event_reset(struct perf_event *event)
3920 {
3921 	(void)perf_event_read(event);
3922 	local64_set(&event->count, 0);
3923 	perf_event_update_userpage(event);
3924 }
3925 
3926 /*
3927  * Holding the top-level event's child_mutex means that any
3928  * descendant process that has inherited this event will block
3929  * in sync_child_event if it goes to exit, thus satisfying the
3930  * task existence requirements of perf_event_enable/disable.
3931  */
3932 static void perf_event_for_each_child(struct perf_event *event,
3933 					void (*func)(struct perf_event *))
3934 {
3935 	struct perf_event *child;
3936 
3937 	WARN_ON_ONCE(event->ctx->parent_ctx);
3938 
3939 	mutex_lock(&event->child_mutex);
3940 	func(event);
3941 	list_for_each_entry(child, &event->child_list, child_list)
3942 		func(child);
3943 	mutex_unlock(&event->child_mutex);
3944 }
3945 
3946 static void perf_event_for_each(struct perf_event *event,
3947 				  void (*func)(struct perf_event *))
3948 {
3949 	struct perf_event_context *ctx = event->ctx;
3950 	struct perf_event *sibling;
3951 
3952 	lockdep_assert_held(&ctx->mutex);
3953 
3954 	event = event->group_leader;
3955 
3956 	perf_event_for_each_child(event, func);
3957 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3958 		perf_event_for_each_child(sibling, func);
3959 }
3960 
3961 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3962 {
3963 	struct perf_event_context *ctx = event->ctx;
3964 	int ret = 0, active;
3965 	u64 value;
3966 
3967 	if (!is_sampling_event(event))
3968 		return -EINVAL;
3969 
3970 	if (copy_from_user(&value, arg, sizeof(value)))
3971 		return -EFAULT;
3972 
3973 	if (!value)
3974 		return -EINVAL;
3975 
3976 	raw_spin_lock_irq(&ctx->lock);
3977 	if (event->attr.freq) {
3978 		if (value > sysctl_perf_event_sample_rate) {
3979 			ret = -EINVAL;
3980 			goto unlock;
3981 		}
3982 
3983 		event->attr.sample_freq = value;
3984 	} else {
3985 		event->attr.sample_period = value;
3986 		event->hw.sample_period = value;
3987 	}
3988 
3989 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
3990 	if (active) {
3991 		perf_pmu_disable(ctx->pmu);
3992 		event->pmu->stop(event, PERF_EF_UPDATE);
3993 	}
3994 
3995 	local64_set(&event->hw.period_left, 0);
3996 
3997 	if (active) {
3998 		event->pmu->start(event, PERF_EF_RELOAD);
3999 		perf_pmu_enable(ctx->pmu);
4000 	}
4001 
4002 unlock:
4003 	raw_spin_unlock_irq(&ctx->lock);
4004 
4005 	return ret;
4006 }
4007 
4008 static const struct file_operations perf_fops;
4009 
4010 static inline int perf_fget_light(int fd, struct fd *p)
4011 {
4012 	struct fd f = fdget(fd);
4013 	if (!f.file)
4014 		return -EBADF;
4015 
4016 	if (f.file->f_op != &perf_fops) {
4017 		fdput(f);
4018 		return -EBADF;
4019 	}
4020 	*p = f;
4021 	return 0;
4022 }
4023 
4024 static int perf_event_set_output(struct perf_event *event,
4025 				 struct perf_event *output_event);
4026 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4027 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4028 
4029 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4030 {
4031 	void (*func)(struct perf_event *);
4032 	u32 flags = arg;
4033 
4034 	switch (cmd) {
4035 	case PERF_EVENT_IOC_ENABLE:
4036 		func = _perf_event_enable;
4037 		break;
4038 	case PERF_EVENT_IOC_DISABLE:
4039 		func = _perf_event_disable;
4040 		break;
4041 	case PERF_EVENT_IOC_RESET:
4042 		func = _perf_event_reset;
4043 		break;
4044 
4045 	case PERF_EVENT_IOC_REFRESH:
4046 		return _perf_event_refresh(event, arg);
4047 
4048 	case PERF_EVENT_IOC_PERIOD:
4049 		return perf_event_period(event, (u64 __user *)arg);
4050 
4051 	case PERF_EVENT_IOC_ID:
4052 	{
4053 		u64 id = primary_event_id(event);
4054 
4055 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4056 			return -EFAULT;
4057 		return 0;
4058 	}
4059 
4060 	case PERF_EVENT_IOC_SET_OUTPUT:
4061 	{
4062 		int ret;
4063 		if (arg != -1) {
4064 			struct perf_event *output_event;
4065 			struct fd output;
4066 			ret = perf_fget_light(arg, &output);
4067 			if (ret)
4068 				return ret;
4069 			output_event = output.file->private_data;
4070 			ret = perf_event_set_output(event, output_event);
4071 			fdput(output);
4072 		} else {
4073 			ret = perf_event_set_output(event, NULL);
4074 		}
4075 		return ret;
4076 	}
4077 
4078 	case PERF_EVENT_IOC_SET_FILTER:
4079 		return perf_event_set_filter(event, (void __user *)arg);
4080 
4081 	case PERF_EVENT_IOC_SET_BPF:
4082 		return perf_event_set_bpf_prog(event, arg);
4083 
4084 	default:
4085 		return -ENOTTY;
4086 	}
4087 
4088 	if (flags & PERF_IOC_FLAG_GROUP)
4089 		perf_event_for_each(event, func);
4090 	else
4091 		perf_event_for_each_child(event, func);
4092 
4093 	return 0;
4094 }
4095 
4096 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4097 {
4098 	struct perf_event *event = file->private_data;
4099 	struct perf_event_context *ctx;
4100 	long ret;
4101 
4102 	ctx = perf_event_ctx_lock(event);
4103 	ret = _perf_ioctl(event, cmd, arg);
4104 	perf_event_ctx_unlock(event, ctx);
4105 
4106 	return ret;
4107 }
4108 
4109 #ifdef CONFIG_COMPAT
4110 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4111 				unsigned long arg)
4112 {
4113 	switch (_IOC_NR(cmd)) {
4114 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4115 	case _IOC_NR(PERF_EVENT_IOC_ID):
4116 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4117 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4118 			cmd &= ~IOCSIZE_MASK;
4119 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4120 		}
4121 		break;
4122 	}
4123 	return perf_ioctl(file, cmd, arg);
4124 }
4125 #else
4126 # define perf_compat_ioctl NULL
4127 #endif
4128 
4129 int perf_event_task_enable(void)
4130 {
4131 	struct perf_event_context *ctx;
4132 	struct perf_event *event;
4133 
4134 	mutex_lock(&current->perf_event_mutex);
4135 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4136 		ctx = perf_event_ctx_lock(event);
4137 		perf_event_for_each_child(event, _perf_event_enable);
4138 		perf_event_ctx_unlock(event, ctx);
4139 	}
4140 	mutex_unlock(&current->perf_event_mutex);
4141 
4142 	return 0;
4143 }
4144 
4145 int perf_event_task_disable(void)
4146 {
4147 	struct perf_event_context *ctx;
4148 	struct perf_event *event;
4149 
4150 	mutex_lock(&current->perf_event_mutex);
4151 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4152 		ctx = perf_event_ctx_lock(event);
4153 		perf_event_for_each_child(event, _perf_event_disable);
4154 		perf_event_ctx_unlock(event, ctx);
4155 	}
4156 	mutex_unlock(&current->perf_event_mutex);
4157 
4158 	return 0;
4159 }
4160 
4161 static int perf_event_index(struct perf_event *event)
4162 {
4163 	if (event->hw.state & PERF_HES_STOPPED)
4164 		return 0;
4165 
4166 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4167 		return 0;
4168 
4169 	return event->pmu->event_idx(event);
4170 }
4171 
4172 static void calc_timer_values(struct perf_event *event,
4173 				u64 *now,
4174 				u64 *enabled,
4175 				u64 *running)
4176 {
4177 	u64 ctx_time;
4178 
4179 	*now = perf_clock();
4180 	ctx_time = event->shadow_ctx_time + *now;
4181 	*enabled = ctx_time - event->tstamp_enabled;
4182 	*running = ctx_time - event->tstamp_running;
4183 }
4184 
4185 static void perf_event_init_userpage(struct perf_event *event)
4186 {
4187 	struct perf_event_mmap_page *userpg;
4188 	struct ring_buffer *rb;
4189 
4190 	rcu_read_lock();
4191 	rb = rcu_dereference(event->rb);
4192 	if (!rb)
4193 		goto unlock;
4194 
4195 	userpg = rb->user_page;
4196 
4197 	/* Allow new userspace to detect that bit 0 is deprecated */
4198 	userpg->cap_bit0_is_deprecated = 1;
4199 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4200 	userpg->data_offset = PAGE_SIZE;
4201 	userpg->data_size = perf_data_size(rb);
4202 
4203 unlock:
4204 	rcu_read_unlock();
4205 }
4206 
4207 void __weak arch_perf_update_userpage(
4208 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4209 {
4210 }
4211 
4212 /*
4213  * Callers need to ensure there can be no nesting of this function, otherwise
4214  * the seqlock logic goes bad. We can not serialize this because the arch
4215  * code calls this from NMI context.
4216  */
4217 void perf_event_update_userpage(struct perf_event *event)
4218 {
4219 	struct perf_event_mmap_page *userpg;
4220 	struct ring_buffer *rb;
4221 	u64 enabled, running, now;
4222 
4223 	rcu_read_lock();
4224 	rb = rcu_dereference(event->rb);
4225 	if (!rb)
4226 		goto unlock;
4227 
4228 	/*
4229 	 * compute total_time_enabled, total_time_running
4230 	 * based on snapshot values taken when the event
4231 	 * was last scheduled in.
4232 	 *
4233 	 * we cannot simply called update_context_time()
4234 	 * because of locking issue as we can be called in
4235 	 * NMI context
4236 	 */
4237 	calc_timer_values(event, &now, &enabled, &running);
4238 
4239 	userpg = rb->user_page;
4240 	/*
4241 	 * Disable preemption so as to not let the corresponding user-space
4242 	 * spin too long if we get preempted.
4243 	 */
4244 	preempt_disable();
4245 	++userpg->lock;
4246 	barrier();
4247 	userpg->index = perf_event_index(event);
4248 	userpg->offset = perf_event_count(event);
4249 	if (userpg->index)
4250 		userpg->offset -= local64_read(&event->hw.prev_count);
4251 
4252 	userpg->time_enabled = enabled +
4253 			atomic64_read(&event->child_total_time_enabled);
4254 
4255 	userpg->time_running = running +
4256 			atomic64_read(&event->child_total_time_running);
4257 
4258 	arch_perf_update_userpage(event, userpg, now);
4259 
4260 	barrier();
4261 	++userpg->lock;
4262 	preempt_enable();
4263 unlock:
4264 	rcu_read_unlock();
4265 }
4266 
4267 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4268 {
4269 	struct perf_event *event = vma->vm_file->private_data;
4270 	struct ring_buffer *rb;
4271 	int ret = VM_FAULT_SIGBUS;
4272 
4273 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4274 		if (vmf->pgoff == 0)
4275 			ret = 0;
4276 		return ret;
4277 	}
4278 
4279 	rcu_read_lock();
4280 	rb = rcu_dereference(event->rb);
4281 	if (!rb)
4282 		goto unlock;
4283 
4284 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4285 		goto unlock;
4286 
4287 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4288 	if (!vmf->page)
4289 		goto unlock;
4290 
4291 	get_page(vmf->page);
4292 	vmf->page->mapping = vma->vm_file->f_mapping;
4293 	vmf->page->index   = vmf->pgoff;
4294 
4295 	ret = 0;
4296 unlock:
4297 	rcu_read_unlock();
4298 
4299 	return ret;
4300 }
4301 
4302 static void ring_buffer_attach(struct perf_event *event,
4303 			       struct ring_buffer *rb)
4304 {
4305 	struct ring_buffer *old_rb = NULL;
4306 	unsigned long flags;
4307 
4308 	if (event->rb) {
4309 		/*
4310 		 * Should be impossible, we set this when removing
4311 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4312 		 */
4313 		WARN_ON_ONCE(event->rcu_pending);
4314 
4315 		old_rb = event->rb;
4316 		spin_lock_irqsave(&old_rb->event_lock, flags);
4317 		list_del_rcu(&event->rb_entry);
4318 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4319 
4320 		event->rcu_batches = get_state_synchronize_rcu();
4321 		event->rcu_pending = 1;
4322 	}
4323 
4324 	if (rb) {
4325 		if (event->rcu_pending) {
4326 			cond_synchronize_rcu(event->rcu_batches);
4327 			event->rcu_pending = 0;
4328 		}
4329 
4330 		spin_lock_irqsave(&rb->event_lock, flags);
4331 		list_add_rcu(&event->rb_entry, &rb->event_list);
4332 		spin_unlock_irqrestore(&rb->event_lock, flags);
4333 	}
4334 
4335 	rcu_assign_pointer(event->rb, rb);
4336 
4337 	if (old_rb) {
4338 		ring_buffer_put(old_rb);
4339 		/*
4340 		 * Since we detached before setting the new rb, so that we
4341 		 * could attach the new rb, we could have missed a wakeup.
4342 		 * Provide it now.
4343 		 */
4344 		wake_up_all(&event->waitq);
4345 	}
4346 }
4347 
4348 static void ring_buffer_wakeup(struct perf_event *event)
4349 {
4350 	struct ring_buffer *rb;
4351 
4352 	rcu_read_lock();
4353 	rb = rcu_dereference(event->rb);
4354 	if (rb) {
4355 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4356 			wake_up_all(&event->waitq);
4357 	}
4358 	rcu_read_unlock();
4359 }
4360 
4361 static void rb_free_rcu(struct rcu_head *rcu_head)
4362 {
4363 	struct ring_buffer *rb;
4364 
4365 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4366 	rb_free(rb);
4367 }
4368 
4369 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4370 {
4371 	struct ring_buffer *rb;
4372 
4373 	rcu_read_lock();
4374 	rb = rcu_dereference(event->rb);
4375 	if (rb) {
4376 		if (!atomic_inc_not_zero(&rb->refcount))
4377 			rb = NULL;
4378 	}
4379 	rcu_read_unlock();
4380 
4381 	return rb;
4382 }
4383 
4384 void ring_buffer_put(struct ring_buffer *rb)
4385 {
4386 	if (!atomic_dec_and_test(&rb->refcount))
4387 		return;
4388 
4389 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4390 
4391 	call_rcu(&rb->rcu_head, rb_free_rcu);
4392 }
4393 
4394 static void perf_mmap_open(struct vm_area_struct *vma)
4395 {
4396 	struct perf_event *event = vma->vm_file->private_data;
4397 
4398 	atomic_inc(&event->mmap_count);
4399 	atomic_inc(&event->rb->mmap_count);
4400 
4401 	if (vma->vm_pgoff)
4402 		atomic_inc(&event->rb->aux_mmap_count);
4403 
4404 	if (event->pmu->event_mapped)
4405 		event->pmu->event_mapped(event);
4406 }
4407 
4408 /*
4409  * A buffer can be mmap()ed multiple times; either directly through the same
4410  * event, or through other events by use of perf_event_set_output().
4411  *
4412  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4413  * the buffer here, where we still have a VM context. This means we need
4414  * to detach all events redirecting to us.
4415  */
4416 static void perf_mmap_close(struct vm_area_struct *vma)
4417 {
4418 	struct perf_event *event = vma->vm_file->private_data;
4419 
4420 	struct ring_buffer *rb = ring_buffer_get(event);
4421 	struct user_struct *mmap_user = rb->mmap_user;
4422 	int mmap_locked = rb->mmap_locked;
4423 	unsigned long size = perf_data_size(rb);
4424 
4425 	if (event->pmu->event_unmapped)
4426 		event->pmu->event_unmapped(event);
4427 
4428 	/*
4429 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4430 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4431 	 * serialize with perf_mmap here.
4432 	 */
4433 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4434 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4435 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4436 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4437 
4438 		rb_free_aux(rb);
4439 		mutex_unlock(&event->mmap_mutex);
4440 	}
4441 
4442 	atomic_dec(&rb->mmap_count);
4443 
4444 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4445 		goto out_put;
4446 
4447 	ring_buffer_attach(event, NULL);
4448 	mutex_unlock(&event->mmap_mutex);
4449 
4450 	/* If there's still other mmap()s of this buffer, we're done. */
4451 	if (atomic_read(&rb->mmap_count))
4452 		goto out_put;
4453 
4454 	/*
4455 	 * No other mmap()s, detach from all other events that might redirect
4456 	 * into the now unreachable buffer. Somewhat complicated by the
4457 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4458 	 */
4459 again:
4460 	rcu_read_lock();
4461 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4462 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4463 			/*
4464 			 * This event is en-route to free_event() which will
4465 			 * detach it and remove it from the list.
4466 			 */
4467 			continue;
4468 		}
4469 		rcu_read_unlock();
4470 
4471 		mutex_lock(&event->mmap_mutex);
4472 		/*
4473 		 * Check we didn't race with perf_event_set_output() which can
4474 		 * swizzle the rb from under us while we were waiting to
4475 		 * acquire mmap_mutex.
4476 		 *
4477 		 * If we find a different rb; ignore this event, a next
4478 		 * iteration will no longer find it on the list. We have to
4479 		 * still restart the iteration to make sure we're not now
4480 		 * iterating the wrong list.
4481 		 */
4482 		if (event->rb == rb)
4483 			ring_buffer_attach(event, NULL);
4484 
4485 		mutex_unlock(&event->mmap_mutex);
4486 		put_event(event);
4487 
4488 		/*
4489 		 * Restart the iteration; either we're on the wrong list or
4490 		 * destroyed its integrity by doing a deletion.
4491 		 */
4492 		goto again;
4493 	}
4494 	rcu_read_unlock();
4495 
4496 	/*
4497 	 * It could be there's still a few 0-ref events on the list; they'll
4498 	 * get cleaned up by free_event() -- they'll also still have their
4499 	 * ref on the rb and will free it whenever they are done with it.
4500 	 *
4501 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4502 	 * undo the VM accounting.
4503 	 */
4504 
4505 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4506 	vma->vm_mm->pinned_vm -= mmap_locked;
4507 	free_uid(mmap_user);
4508 
4509 out_put:
4510 	ring_buffer_put(rb); /* could be last */
4511 }
4512 
4513 static const struct vm_operations_struct perf_mmap_vmops = {
4514 	.open		= perf_mmap_open,
4515 	.close		= perf_mmap_close, /* non mergable */
4516 	.fault		= perf_mmap_fault,
4517 	.page_mkwrite	= perf_mmap_fault,
4518 };
4519 
4520 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4521 {
4522 	struct perf_event *event = file->private_data;
4523 	unsigned long user_locked, user_lock_limit;
4524 	struct user_struct *user = current_user();
4525 	unsigned long locked, lock_limit;
4526 	struct ring_buffer *rb = NULL;
4527 	unsigned long vma_size;
4528 	unsigned long nr_pages;
4529 	long user_extra = 0, extra = 0;
4530 	int ret = 0, flags = 0;
4531 
4532 	/*
4533 	 * Don't allow mmap() of inherited per-task counters. This would
4534 	 * create a performance issue due to all children writing to the
4535 	 * same rb.
4536 	 */
4537 	if (event->cpu == -1 && event->attr.inherit)
4538 		return -EINVAL;
4539 
4540 	if (!(vma->vm_flags & VM_SHARED))
4541 		return -EINVAL;
4542 
4543 	vma_size = vma->vm_end - vma->vm_start;
4544 
4545 	if (vma->vm_pgoff == 0) {
4546 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4547 	} else {
4548 		/*
4549 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4550 		 * mapped, all subsequent mappings should have the same size
4551 		 * and offset. Must be above the normal perf buffer.
4552 		 */
4553 		u64 aux_offset, aux_size;
4554 
4555 		if (!event->rb)
4556 			return -EINVAL;
4557 
4558 		nr_pages = vma_size / PAGE_SIZE;
4559 
4560 		mutex_lock(&event->mmap_mutex);
4561 		ret = -EINVAL;
4562 
4563 		rb = event->rb;
4564 		if (!rb)
4565 			goto aux_unlock;
4566 
4567 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4568 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4569 
4570 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4571 			goto aux_unlock;
4572 
4573 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4574 			goto aux_unlock;
4575 
4576 		/* already mapped with a different offset */
4577 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4578 			goto aux_unlock;
4579 
4580 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4581 			goto aux_unlock;
4582 
4583 		/* already mapped with a different size */
4584 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4585 			goto aux_unlock;
4586 
4587 		if (!is_power_of_2(nr_pages))
4588 			goto aux_unlock;
4589 
4590 		if (!atomic_inc_not_zero(&rb->mmap_count))
4591 			goto aux_unlock;
4592 
4593 		if (rb_has_aux(rb)) {
4594 			atomic_inc(&rb->aux_mmap_count);
4595 			ret = 0;
4596 			goto unlock;
4597 		}
4598 
4599 		atomic_set(&rb->aux_mmap_count, 1);
4600 		user_extra = nr_pages;
4601 
4602 		goto accounting;
4603 	}
4604 
4605 	/*
4606 	 * If we have rb pages ensure they're a power-of-two number, so we
4607 	 * can do bitmasks instead of modulo.
4608 	 */
4609 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4610 		return -EINVAL;
4611 
4612 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4613 		return -EINVAL;
4614 
4615 	WARN_ON_ONCE(event->ctx->parent_ctx);
4616 again:
4617 	mutex_lock(&event->mmap_mutex);
4618 	if (event->rb) {
4619 		if (event->rb->nr_pages != nr_pages) {
4620 			ret = -EINVAL;
4621 			goto unlock;
4622 		}
4623 
4624 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4625 			/*
4626 			 * Raced against perf_mmap_close() through
4627 			 * perf_event_set_output(). Try again, hope for better
4628 			 * luck.
4629 			 */
4630 			mutex_unlock(&event->mmap_mutex);
4631 			goto again;
4632 		}
4633 
4634 		goto unlock;
4635 	}
4636 
4637 	user_extra = nr_pages + 1;
4638 
4639 accounting:
4640 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4641 
4642 	/*
4643 	 * Increase the limit linearly with more CPUs:
4644 	 */
4645 	user_lock_limit *= num_online_cpus();
4646 
4647 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4648 
4649 	if (user_locked > user_lock_limit)
4650 		extra = user_locked - user_lock_limit;
4651 
4652 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4653 	lock_limit >>= PAGE_SHIFT;
4654 	locked = vma->vm_mm->pinned_vm + extra;
4655 
4656 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4657 		!capable(CAP_IPC_LOCK)) {
4658 		ret = -EPERM;
4659 		goto unlock;
4660 	}
4661 
4662 	WARN_ON(!rb && event->rb);
4663 
4664 	if (vma->vm_flags & VM_WRITE)
4665 		flags |= RING_BUFFER_WRITABLE;
4666 
4667 	if (!rb) {
4668 		rb = rb_alloc(nr_pages,
4669 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4670 			      event->cpu, flags);
4671 
4672 		if (!rb) {
4673 			ret = -ENOMEM;
4674 			goto unlock;
4675 		}
4676 
4677 		atomic_set(&rb->mmap_count, 1);
4678 		rb->mmap_user = get_current_user();
4679 		rb->mmap_locked = extra;
4680 
4681 		ring_buffer_attach(event, rb);
4682 
4683 		perf_event_init_userpage(event);
4684 		perf_event_update_userpage(event);
4685 	} else {
4686 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4687 				   event->attr.aux_watermark, flags);
4688 		if (!ret)
4689 			rb->aux_mmap_locked = extra;
4690 	}
4691 
4692 unlock:
4693 	if (!ret) {
4694 		atomic_long_add(user_extra, &user->locked_vm);
4695 		vma->vm_mm->pinned_vm += extra;
4696 
4697 		atomic_inc(&event->mmap_count);
4698 	} else if (rb) {
4699 		atomic_dec(&rb->mmap_count);
4700 	}
4701 aux_unlock:
4702 	mutex_unlock(&event->mmap_mutex);
4703 
4704 	/*
4705 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4706 	 * vma.
4707 	 */
4708 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4709 	vma->vm_ops = &perf_mmap_vmops;
4710 
4711 	if (event->pmu->event_mapped)
4712 		event->pmu->event_mapped(event);
4713 
4714 	return ret;
4715 }
4716 
4717 static int perf_fasync(int fd, struct file *filp, int on)
4718 {
4719 	struct inode *inode = file_inode(filp);
4720 	struct perf_event *event = filp->private_data;
4721 	int retval;
4722 
4723 	mutex_lock(&inode->i_mutex);
4724 	retval = fasync_helper(fd, filp, on, &event->fasync);
4725 	mutex_unlock(&inode->i_mutex);
4726 
4727 	if (retval < 0)
4728 		return retval;
4729 
4730 	return 0;
4731 }
4732 
4733 static const struct file_operations perf_fops = {
4734 	.llseek			= no_llseek,
4735 	.release		= perf_release,
4736 	.read			= perf_read,
4737 	.poll			= perf_poll,
4738 	.unlocked_ioctl		= perf_ioctl,
4739 	.compat_ioctl		= perf_compat_ioctl,
4740 	.mmap			= perf_mmap,
4741 	.fasync			= perf_fasync,
4742 };
4743 
4744 /*
4745  * Perf event wakeup
4746  *
4747  * If there's data, ensure we set the poll() state and publish everything
4748  * to user-space before waking everybody up.
4749  */
4750 
4751 void perf_event_wakeup(struct perf_event *event)
4752 {
4753 	ring_buffer_wakeup(event);
4754 
4755 	if (event->pending_kill) {
4756 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4757 		event->pending_kill = 0;
4758 	}
4759 }
4760 
4761 static void perf_pending_event(struct irq_work *entry)
4762 {
4763 	struct perf_event *event = container_of(entry,
4764 			struct perf_event, pending);
4765 	int rctx;
4766 
4767 	rctx = perf_swevent_get_recursion_context();
4768 	/*
4769 	 * If we 'fail' here, that's OK, it means recursion is already disabled
4770 	 * and we won't recurse 'further'.
4771 	 */
4772 
4773 	if (event->pending_disable) {
4774 		event->pending_disable = 0;
4775 		__perf_event_disable(event);
4776 	}
4777 
4778 	if (event->pending_wakeup) {
4779 		event->pending_wakeup = 0;
4780 		perf_event_wakeup(event);
4781 	}
4782 
4783 	if (rctx >= 0)
4784 		perf_swevent_put_recursion_context(rctx);
4785 }
4786 
4787 /*
4788  * We assume there is only KVM supporting the callbacks.
4789  * Later on, we might change it to a list if there is
4790  * another virtualization implementation supporting the callbacks.
4791  */
4792 struct perf_guest_info_callbacks *perf_guest_cbs;
4793 
4794 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4795 {
4796 	perf_guest_cbs = cbs;
4797 	return 0;
4798 }
4799 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4800 
4801 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4802 {
4803 	perf_guest_cbs = NULL;
4804 	return 0;
4805 }
4806 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4807 
4808 static void
4809 perf_output_sample_regs(struct perf_output_handle *handle,
4810 			struct pt_regs *regs, u64 mask)
4811 {
4812 	int bit;
4813 
4814 	for_each_set_bit(bit, (const unsigned long *) &mask,
4815 			 sizeof(mask) * BITS_PER_BYTE) {
4816 		u64 val;
4817 
4818 		val = perf_reg_value(regs, bit);
4819 		perf_output_put(handle, val);
4820 	}
4821 }
4822 
4823 static void perf_sample_regs_user(struct perf_regs *regs_user,
4824 				  struct pt_regs *regs,
4825 				  struct pt_regs *regs_user_copy)
4826 {
4827 	if (user_mode(regs)) {
4828 		regs_user->abi = perf_reg_abi(current);
4829 		regs_user->regs = regs;
4830 	} else if (current->mm) {
4831 		perf_get_regs_user(regs_user, regs, regs_user_copy);
4832 	} else {
4833 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4834 		regs_user->regs = NULL;
4835 	}
4836 }
4837 
4838 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4839 				  struct pt_regs *regs)
4840 {
4841 	regs_intr->regs = regs;
4842 	regs_intr->abi  = perf_reg_abi(current);
4843 }
4844 
4845 
4846 /*
4847  * Get remaining task size from user stack pointer.
4848  *
4849  * It'd be better to take stack vma map and limit this more
4850  * precisly, but there's no way to get it safely under interrupt,
4851  * so using TASK_SIZE as limit.
4852  */
4853 static u64 perf_ustack_task_size(struct pt_regs *regs)
4854 {
4855 	unsigned long addr = perf_user_stack_pointer(regs);
4856 
4857 	if (!addr || addr >= TASK_SIZE)
4858 		return 0;
4859 
4860 	return TASK_SIZE - addr;
4861 }
4862 
4863 static u16
4864 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4865 			struct pt_regs *regs)
4866 {
4867 	u64 task_size;
4868 
4869 	/* No regs, no stack pointer, no dump. */
4870 	if (!regs)
4871 		return 0;
4872 
4873 	/*
4874 	 * Check if we fit in with the requested stack size into the:
4875 	 * - TASK_SIZE
4876 	 *   If we don't, we limit the size to the TASK_SIZE.
4877 	 *
4878 	 * - remaining sample size
4879 	 *   If we don't, we customize the stack size to
4880 	 *   fit in to the remaining sample size.
4881 	 */
4882 
4883 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4884 	stack_size = min(stack_size, (u16) task_size);
4885 
4886 	/* Current header size plus static size and dynamic size. */
4887 	header_size += 2 * sizeof(u64);
4888 
4889 	/* Do we fit in with the current stack dump size? */
4890 	if ((u16) (header_size + stack_size) < header_size) {
4891 		/*
4892 		 * If we overflow the maximum size for the sample,
4893 		 * we customize the stack dump size to fit in.
4894 		 */
4895 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4896 		stack_size = round_up(stack_size, sizeof(u64));
4897 	}
4898 
4899 	return stack_size;
4900 }
4901 
4902 static void
4903 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4904 			  struct pt_regs *regs)
4905 {
4906 	/* Case of a kernel thread, nothing to dump */
4907 	if (!regs) {
4908 		u64 size = 0;
4909 		perf_output_put(handle, size);
4910 	} else {
4911 		unsigned long sp;
4912 		unsigned int rem;
4913 		u64 dyn_size;
4914 
4915 		/*
4916 		 * We dump:
4917 		 * static size
4918 		 *   - the size requested by user or the best one we can fit
4919 		 *     in to the sample max size
4920 		 * data
4921 		 *   - user stack dump data
4922 		 * dynamic size
4923 		 *   - the actual dumped size
4924 		 */
4925 
4926 		/* Static size. */
4927 		perf_output_put(handle, dump_size);
4928 
4929 		/* Data. */
4930 		sp = perf_user_stack_pointer(regs);
4931 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4932 		dyn_size = dump_size - rem;
4933 
4934 		perf_output_skip(handle, rem);
4935 
4936 		/* Dynamic size. */
4937 		perf_output_put(handle, dyn_size);
4938 	}
4939 }
4940 
4941 static void __perf_event_header__init_id(struct perf_event_header *header,
4942 					 struct perf_sample_data *data,
4943 					 struct perf_event *event)
4944 {
4945 	u64 sample_type = event->attr.sample_type;
4946 
4947 	data->type = sample_type;
4948 	header->size += event->id_header_size;
4949 
4950 	if (sample_type & PERF_SAMPLE_TID) {
4951 		/* namespace issues */
4952 		data->tid_entry.pid = perf_event_pid(event, current);
4953 		data->tid_entry.tid = perf_event_tid(event, current);
4954 	}
4955 
4956 	if (sample_type & PERF_SAMPLE_TIME)
4957 		data->time = perf_event_clock(event);
4958 
4959 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4960 		data->id = primary_event_id(event);
4961 
4962 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4963 		data->stream_id = event->id;
4964 
4965 	if (sample_type & PERF_SAMPLE_CPU) {
4966 		data->cpu_entry.cpu	 = raw_smp_processor_id();
4967 		data->cpu_entry.reserved = 0;
4968 	}
4969 }
4970 
4971 void perf_event_header__init_id(struct perf_event_header *header,
4972 				struct perf_sample_data *data,
4973 				struct perf_event *event)
4974 {
4975 	if (event->attr.sample_id_all)
4976 		__perf_event_header__init_id(header, data, event);
4977 }
4978 
4979 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4980 					   struct perf_sample_data *data)
4981 {
4982 	u64 sample_type = data->type;
4983 
4984 	if (sample_type & PERF_SAMPLE_TID)
4985 		perf_output_put(handle, data->tid_entry);
4986 
4987 	if (sample_type & PERF_SAMPLE_TIME)
4988 		perf_output_put(handle, data->time);
4989 
4990 	if (sample_type & PERF_SAMPLE_ID)
4991 		perf_output_put(handle, data->id);
4992 
4993 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4994 		perf_output_put(handle, data->stream_id);
4995 
4996 	if (sample_type & PERF_SAMPLE_CPU)
4997 		perf_output_put(handle, data->cpu_entry);
4998 
4999 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5000 		perf_output_put(handle, data->id);
5001 }
5002 
5003 void perf_event__output_id_sample(struct perf_event *event,
5004 				  struct perf_output_handle *handle,
5005 				  struct perf_sample_data *sample)
5006 {
5007 	if (event->attr.sample_id_all)
5008 		__perf_event__output_id_sample(handle, sample);
5009 }
5010 
5011 static void perf_output_read_one(struct perf_output_handle *handle,
5012 				 struct perf_event *event,
5013 				 u64 enabled, u64 running)
5014 {
5015 	u64 read_format = event->attr.read_format;
5016 	u64 values[4];
5017 	int n = 0;
5018 
5019 	values[n++] = perf_event_count(event);
5020 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5021 		values[n++] = enabled +
5022 			atomic64_read(&event->child_total_time_enabled);
5023 	}
5024 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5025 		values[n++] = running +
5026 			atomic64_read(&event->child_total_time_running);
5027 	}
5028 	if (read_format & PERF_FORMAT_ID)
5029 		values[n++] = primary_event_id(event);
5030 
5031 	__output_copy(handle, values, n * sizeof(u64));
5032 }
5033 
5034 /*
5035  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5036  */
5037 static void perf_output_read_group(struct perf_output_handle *handle,
5038 			    struct perf_event *event,
5039 			    u64 enabled, u64 running)
5040 {
5041 	struct perf_event *leader = event->group_leader, *sub;
5042 	u64 read_format = event->attr.read_format;
5043 	u64 values[5];
5044 	int n = 0;
5045 
5046 	values[n++] = 1 + leader->nr_siblings;
5047 
5048 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5049 		values[n++] = enabled;
5050 
5051 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5052 		values[n++] = running;
5053 
5054 	if (leader != event)
5055 		leader->pmu->read(leader);
5056 
5057 	values[n++] = perf_event_count(leader);
5058 	if (read_format & PERF_FORMAT_ID)
5059 		values[n++] = primary_event_id(leader);
5060 
5061 	__output_copy(handle, values, n * sizeof(u64));
5062 
5063 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5064 		n = 0;
5065 
5066 		if ((sub != event) &&
5067 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5068 			sub->pmu->read(sub);
5069 
5070 		values[n++] = perf_event_count(sub);
5071 		if (read_format & PERF_FORMAT_ID)
5072 			values[n++] = primary_event_id(sub);
5073 
5074 		__output_copy(handle, values, n * sizeof(u64));
5075 	}
5076 }
5077 
5078 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5079 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5080 
5081 static void perf_output_read(struct perf_output_handle *handle,
5082 			     struct perf_event *event)
5083 {
5084 	u64 enabled = 0, running = 0, now;
5085 	u64 read_format = event->attr.read_format;
5086 
5087 	/*
5088 	 * compute total_time_enabled, total_time_running
5089 	 * based on snapshot values taken when the event
5090 	 * was last scheduled in.
5091 	 *
5092 	 * we cannot simply called update_context_time()
5093 	 * because of locking issue as we are called in
5094 	 * NMI context
5095 	 */
5096 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5097 		calc_timer_values(event, &now, &enabled, &running);
5098 
5099 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5100 		perf_output_read_group(handle, event, enabled, running);
5101 	else
5102 		perf_output_read_one(handle, event, enabled, running);
5103 }
5104 
5105 void perf_output_sample(struct perf_output_handle *handle,
5106 			struct perf_event_header *header,
5107 			struct perf_sample_data *data,
5108 			struct perf_event *event)
5109 {
5110 	u64 sample_type = data->type;
5111 
5112 	perf_output_put(handle, *header);
5113 
5114 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5115 		perf_output_put(handle, data->id);
5116 
5117 	if (sample_type & PERF_SAMPLE_IP)
5118 		perf_output_put(handle, data->ip);
5119 
5120 	if (sample_type & PERF_SAMPLE_TID)
5121 		perf_output_put(handle, data->tid_entry);
5122 
5123 	if (sample_type & PERF_SAMPLE_TIME)
5124 		perf_output_put(handle, data->time);
5125 
5126 	if (sample_type & PERF_SAMPLE_ADDR)
5127 		perf_output_put(handle, data->addr);
5128 
5129 	if (sample_type & PERF_SAMPLE_ID)
5130 		perf_output_put(handle, data->id);
5131 
5132 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5133 		perf_output_put(handle, data->stream_id);
5134 
5135 	if (sample_type & PERF_SAMPLE_CPU)
5136 		perf_output_put(handle, data->cpu_entry);
5137 
5138 	if (sample_type & PERF_SAMPLE_PERIOD)
5139 		perf_output_put(handle, data->period);
5140 
5141 	if (sample_type & PERF_SAMPLE_READ)
5142 		perf_output_read(handle, event);
5143 
5144 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5145 		if (data->callchain) {
5146 			int size = 1;
5147 
5148 			if (data->callchain)
5149 				size += data->callchain->nr;
5150 
5151 			size *= sizeof(u64);
5152 
5153 			__output_copy(handle, data->callchain, size);
5154 		} else {
5155 			u64 nr = 0;
5156 			perf_output_put(handle, nr);
5157 		}
5158 	}
5159 
5160 	if (sample_type & PERF_SAMPLE_RAW) {
5161 		if (data->raw) {
5162 			perf_output_put(handle, data->raw->size);
5163 			__output_copy(handle, data->raw->data,
5164 					   data->raw->size);
5165 		} else {
5166 			struct {
5167 				u32	size;
5168 				u32	data;
5169 			} raw = {
5170 				.size = sizeof(u32),
5171 				.data = 0,
5172 			};
5173 			perf_output_put(handle, raw);
5174 		}
5175 	}
5176 
5177 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5178 		if (data->br_stack) {
5179 			size_t size;
5180 
5181 			size = data->br_stack->nr
5182 			     * sizeof(struct perf_branch_entry);
5183 
5184 			perf_output_put(handle, data->br_stack->nr);
5185 			perf_output_copy(handle, data->br_stack->entries, size);
5186 		} else {
5187 			/*
5188 			 * we always store at least the value of nr
5189 			 */
5190 			u64 nr = 0;
5191 			perf_output_put(handle, nr);
5192 		}
5193 	}
5194 
5195 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5196 		u64 abi = data->regs_user.abi;
5197 
5198 		/*
5199 		 * If there are no regs to dump, notice it through
5200 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5201 		 */
5202 		perf_output_put(handle, abi);
5203 
5204 		if (abi) {
5205 			u64 mask = event->attr.sample_regs_user;
5206 			perf_output_sample_regs(handle,
5207 						data->regs_user.regs,
5208 						mask);
5209 		}
5210 	}
5211 
5212 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5213 		perf_output_sample_ustack(handle,
5214 					  data->stack_user_size,
5215 					  data->regs_user.regs);
5216 	}
5217 
5218 	if (sample_type & PERF_SAMPLE_WEIGHT)
5219 		perf_output_put(handle, data->weight);
5220 
5221 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5222 		perf_output_put(handle, data->data_src.val);
5223 
5224 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5225 		perf_output_put(handle, data->txn);
5226 
5227 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5228 		u64 abi = data->regs_intr.abi;
5229 		/*
5230 		 * If there are no regs to dump, notice it through
5231 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5232 		 */
5233 		perf_output_put(handle, abi);
5234 
5235 		if (abi) {
5236 			u64 mask = event->attr.sample_regs_intr;
5237 
5238 			perf_output_sample_regs(handle,
5239 						data->regs_intr.regs,
5240 						mask);
5241 		}
5242 	}
5243 
5244 	if (!event->attr.watermark) {
5245 		int wakeup_events = event->attr.wakeup_events;
5246 
5247 		if (wakeup_events) {
5248 			struct ring_buffer *rb = handle->rb;
5249 			int events = local_inc_return(&rb->events);
5250 
5251 			if (events >= wakeup_events) {
5252 				local_sub(wakeup_events, &rb->events);
5253 				local_inc(&rb->wakeup);
5254 			}
5255 		}
5256 	}
5257 }
5258 
5259 void perf_prepare_sample(struct perf_event_header *header,
5260 			 struct perf_sample_data *data,
5261 			 struct perf_event *event,
5262 			 struct pt_regs *regs)
5263 {
5264 	u64 sample_type = event->attr.sample_type;
5265 
5266 	header->type = PERF_RECORD_SAMPLE;
5267 	header->size = sizeof(*header) + event->header_size;
5268 
5269 	header->misc = 0;
5270 	header->misc |= perf_misc_flags(regs);
5271 
5272 	__perf_event_header__init_id(header, data, event);
5273 
5274 	if (sample_type & PERF_SAMPLE_IP)
5275 		data->ip = perf_instruction_pointer(regs);
5276 
5277 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5278 		int size = 1;
5279 
5280 		data->callchain = perf_callchain(event, regs);
5281 
5282 		if (data->callchain)
5283 			size += data->callchain->nr;
5284 
5285 		header->size += size * sizeof(u64);
5286 	}
5287 
5288 	if (sample_type & PERF_SAMPLE_RAW) {
5289 		int size = sizeof(u32);
5290 
5291 		if (data->raw)
5292 			size += data->raw->size;
5293 		else
5294 			size += sizeof(u32);
5295 
5296 		WARN_ON_ONCE(size & (sizeof(u64)-1));
5297 		header->size += size;
5298 	}
5299 
5300 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5301 		int size = sizeof(u64); /* nr */
5302 		if (data->br_stack) {
5303 			size += data->br_stack->nr
5304 			      * sizeof(struct perf_branch_entry);
5305 		}
5306 		header->size += size;
5307 	}
5308 
5309 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5310 		perf_sample_regs_user(&data->regs_user, regs,
5311 				      &data->regs_user_copy);
5312 
5313 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5314 		/* regs dump ABI info */
5315 		int size = sizeof(u64);
5316 
5317 		if (data->regs_user.regs) {
5318 			u64 mask = event->attr.sample_regs_user;
5319 			size += hweight64(mask) * sizeof(u64);
5320 		}
5321 
5322 		header->size += size;
5323 	}
5324 
5325 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5326 		/*
5327 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5328 		 * processed as the last one or have additional check added
5329 		 * in case new sample type is added, because we could eat
5330 		 * up the rest of the sample size.
5331 		 */
5332 		u16 stack_size = event->attr.sample_stack_user;
5333 		u16 size = sizeof(u64);
5334 
5335 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5336 						     data->regs_user.regs);
5337 
5338 		/*
5339 		 * If there is something to dump, add space for the dump
5340 		 * itself and for the field that tells the dynamic size,
5341 		 * which is how many have been actually dumped.
5342 		 */
5343 		if (stack_size)
5344 			size += sizeof(u64) + stack_size;
5345 
5346 		data->stack_user_size = stack_size;
5347 		header->size += size;
5348 	}
5349 
5350 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5351 		/* regs dump ABI info */
5352 		int size = sizeof(u64);
5353 
5354 		perf_sample_regs_intr(&data->regs_intr, regs);
5355 
5356 		if (data->regs_intr.regs) {
5357 			u64 mask = event->attr.sample_regs_intr;
5358 
5359 			size += hweight64(mask) * sizeof(u64);
5360 		}
5361 
5362 		header->size += size;
5363 	}
5364 }
5365 
5366 void perf_event_output(struct perf_event *event,
5367 			struct perf_sample_data *data,
5368 			struct pt_regs *regs)
5369 {
5370 	struct perf_output_handle handle;
5371 	struct perf_event_header header;
5372 
5373 	/* protect the callchain buffers */
5374 	rcu_read_lock();
5375 
5376 	perf_prepare_sample(&header, data, event, regs);
5377 
5378 	if (perf_output_begin(&handle, event, header.size))
5379 		goto exit;
5380 
5381 	perf_output_sample(&handle, &header, data, event);
5382 
5383 	perf_output_end(&handle);
5384 
5385 exit:
5386 	rcu_read_unlock();
5387 }
5388 
5389 /*
5390  * read event_id
5391  */
5392 
5393 struct perf_read_event {
5394 	struct perf_event_header	header;
5395 
5396 	u32				pid;
5397 	u32				tid;
5398 };
5399 
5400 static void
5401 perf_event_read_event(struct perf_event *event,
5402 			struct task_struct *task)
5403 {
5404 	struct perf_output_handle handle;
5405 	struct perf_sample_data sample;
5406 	struct perf_read_event read_event = {
5407 		.header = {
5408 			.type = PERF_RECORD_READ,
5409 			.misc = 0,
5410 			.size = sizeof(read_event) + event->read_size,
5411 		},
5412 		.pid = perf_event_pid(event, task),
5413 		.tid = perf_event_tid(event, task),
5414 	};
5415 	int ret;
5416 
5417 	perf_event_header__init_id(&read_event.header, &sample, event);
5418 	ret = perf_output_begin(&handle, event, read_event.header.size);
5419 	if (ret)
5420 		return;
5421 
5422 	perf_output_put(&handle, read_event);
5423 	perf_output_read(&handle, event);
5424 	perf_event__output_id_sample(event, &handle, &sample);
5425 
5426 	perf_output_end(&handle);
5427 }
5428 
5429 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5430 
5431 static void
5432 perf_event_aux_ctx(struct perf_event_context *ctx,
5433 		   perf_event_aux_output_cb output,
5434 		   void *data)
5435 {
5436 	struct perf_event *event;
5437 
5438 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5439 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5440 			continue;
5441 		if (!event_filter_match(event))
5442 			continue;
5443 		output(event, data);
5444 	}
5445 }
5446 
5447 static void
5448 perf_event_aux(perf_event_aux_output_cb output, void *data,
5449 	       struct perf_event_context *task_ctx)
5450 {
5451 	struct perf_cpu_context *cpuctx;
5452 	struct perf_event_context *ctx;
5453 	struct pmu *pmu;
5454 	int ctxn;
5455 
5456 	rcu_read_lock();
5457 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5458 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5459 		if (cpuctx->unique_pmu != pmu)
5460 			goto next;
5461 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5462 		if (task_ctx)
5463 			goto next;
5464 		ctxn = pmu->task_ctx_nr;
5465 		if (ctxn < 0)
5466 			goto next;
5467 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5468 		if (ctx)
5469 			perf_event_aux_ctx(ctx, output, data);
5470 next:
5471 		put_cpu_ptr(pmu->pmu_cpu_context);
5472 	}
5473 
5474 	if (task_ctx) {
5475 		preempt_disable();
5476 		perf_event_aux_ctx(task_ctx, output, data);
5477 		preempt_enable();
5478 	}
5479 	rcu_read_unlock();
5480 }
5481 
5482 /*
5483  * task tracking -- fork/exit
5484  *
5485  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5486  */
5487 
5488 struct perf_task_event {
5489 	struct task_struct		*task;
5490 	struct perf_event_context	*task_ctx;
5491 
5492 	struct {
5493 		struct perf_event_header	header;
5494 
5495 		u32				pid;
5496 		u32				ppid;
5497 		u32				tid;
5498 		u32				ptid;
5499 		u64				time;
5500 	} event_id;
5501 };
5502 
5503 static int perf_event_task_match(struct perf_event *event)
5504 {
5505 	return event->attr.comm  || event->attr.mmap ||
5506 	       event->attr.mmap2 || event->attr.mmap_data ||
5507 	       event->attr.task;
5508 }
5509 
5510 static void perf_event_task_output(struct perf_event *event,
5511 				   void *data)
5512 {
5513 	struct perf_task_event *task_event = data;
5514 	struct perf_output_handle handle;
5515 	struct perf_sample_data	sample;
5516 	struct task_struct *task = task_event->task;
5517 	int ret, size = task_event->event_id.header.size;
5518 
5519 	if (!perf_event_task_match(event))
5520 		return;
5521 
5522 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5523 
5524 	ret = perf_output_begin(&handle, event,
5525 				task_event->event_id.header.size);
5526 	if (ret)
5527 		goto out;
5528 
5529 	task_event->event_id.pid = perf_event_pid(event, task);
5530 	task_event->event_id.ppid = perf_event_pid(event, current);
5531 
5532 	task_event->event_id.tid = perf_event_tid(event, task);
5533 	task_event->event_id.ptid = perf_event_tid(event, current);
5534 
5535 	task_event->event_id.time = perf_event_clock(event);
5536 
5537 	perf_output_put(&handle, task_event->event_id);
5538 
5539 	perf_event__output_id_sample(event, &handle, &sample);
5540 
5541 	perf_output_end(&handle);
5542 out:
5543 	task_event->event_id.header.size = size;
5544 }
5545 
5546 static void perf_event_task(struct task_struct *task,
5547 			      struct perf_event_context *task_ctx,
5548 			      int new)
5549 {
5550 	struct perf_task_event task_event;
5551 
5552 	if (!atomic_read(&nr_comm_events) &&
5553 	    !atomic_read(&nr_mmap_events) &&
5554 	    !atomic_read(&nr_task_events))
5555 		return;
5556 
5557 	task_event = (struct perf_task_event){
5558 		.task	  = task,
5559 		.task_ctx = task_ctx,
5560 		.event_id    = {
5561 			.header = {
5562 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5563 				.misc = 0,
5564 				.size = sizeof(task_event.event_id),
5565 			},
5566 			/* .pid  */
5567 			/* .ppid */
5568 			/* .tid  */
5569 			/* .ptid */
5570 			/* .time */
5571 		},
5572 	};
5573 
5574 	perf_event_aux(perf_event_task_output,
5575 		       &task_event,
5576 		       task_ctx);
5577 }
5578 
5579 void perf_event_fork(struct task_struct *task)
5580 {
5581 	perf_event_task(task, NULL, 1);
5582 }
5583 
5584 /*
5585  * comm tracking
5586  */
5587 
5588 struct perf_comm_event {
5589 	struct task_struct	*task;
5590 	char			*comm;
5591 	int			comm_size;
5592 
5593 	struct {
5594 		struct perf_event_header	header;
5595 
5596 		u32				pid;
5597 		u32				tid;
5598 	} event_id;
5599 };
5600 
5601 static int perf_event_comm_match(struct perf_event *event)
5602 {
5603 	return event->attr.comm;
5604 }
5605 
5606 static void perf_event_comm_output(struct perf_event *event,
5607 				   void *data)
5608 {
5609 	struct perf_comm_event *comm_event = data;
5610 	struct perf_output_handle handle;
5611 	struct perf_sample_data sample;
5612 	int size = comm_event->event_id.header.size;
5613 	int ret;
5614 
5615 	if (!perf_event_comm_match(event))
5616 		return;
5617 
5618 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5619 	ret = perf_output_begin(&handle, event,
5620 				comm_event->event_id.header.size);
5621 
5622 	if (ret)
5623 		goto out;
5624 
5625 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5626 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5627 
5628 	perf_output_put(&handle, comm_event->event_id);
5629 	__output_copy(&handle, comm_event->comm,
5630 				   comm_event->comm_size);
5631 
5632 	perf_event__output_id_sample(event, &handle, &sample);
5633 
5634 	perf_output_end(&handle);
5635 out:
5636 	comm_event->event_id.header.size = size;
5637 }
5638 
5639 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5640 {
5641 	char comm[TASK_COMM_LEN];
5642 	unsigned int size;
5643 
5644 	memset(comm, 0, sizeof(comm));
5645 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5646 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5647 
5648 	comm_event->comm = comm;
5649 	comm_event->comm_size = size;
5650 
5651 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5652 
5653 	perf_event_aux(perf_event_comm_output,
5654 		       comm_event,
5655 		       NULL);
5656 }
5657 
5658 void perf_event_comm(struct task_struct *task, bool exec)
5659 {
5660 	struct perf_comm_event comm_event;
5661 
5662 	if (!atomic_read(&nr_comm_events))
5663 		return;
5664 
5665 	comm_event = (struct perf_comm_event){
5666 		.task	= task,
5667 		/* .comm      */
5668 		/* .comm_size */
5669 		.event_id  = {
5670 			.header = {
5671 				.type = PERF_RECORD_COMM,
5672 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5673 				/* .size */
5674 			},
5675 			/* .pid */
5676 			/* .tid */
5677 		},
5678 	};
5679 
5680 	perf_event_comm_event(&comm_event);
5681 }
5682 
5683 /*
5684  * mmap tracking
5685  */
5686 
5687 struct perf_mmap_event {
5688 	struct vm_area_struct	*vma;
5689 
5690 	const char		*file_name;
5691 	int			file_size;
5692 	int			maj, min;
5693 	u64			ino;
5694 	u64			ino_generation;
5695 	u32			prot, flags;
5696 
5697 	struct {
5698 		struct perf_event_header	header;
5699 
5700 		u32				pid;
5701 		u32				tid;
5702 		u64				start;
5703 		u64				len;
5704 		u64				pgoff;
5705 	} event_id;
5706 };
5707 
5708 static int perf_event_mmap_match(struct perf_event *event,
5709 				 void *data)
5710 {
5711 	struct perf_mmap_event *mmap_event = data;
5712 	struct vm_area_struct *vma = mmap_event->vma;
5713 	int executable = vma->vm_flags & VM_EXEC;
5714 
5715 	return (!executable && event->attr.mmap_data) ||
5716 	       (executable && (event->attr.mmap || event->attr.mmap2));
5717 }
5718 
5719 static void perf_event_mmap_output(struct perf_event *event,
5720 				   void *data)
5721 {
5722 	struct perf_mmap_event *mmap_event = data;
5723 	struct perf_output_handle handle;
5724 	struct perf_sample_data sample;
5725 	int size = mmap_event->event_id.header.size;
5726 	int ret;
5727 
5728 	if (!perf_event_mmap_match(event, data))
5729 		return;
5730 
5731 	if (event->attr.mmap2) {
5732 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5733 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5734 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5735 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5736 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5737 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5738 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5739 	}
5740 
5741 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5742 	ret = perf_output_begin(&handle, event,
5743 				mmap_event->event_id.header.size);
5744 	if (ret)
5745 		goto out;
5746 
5747 	mmap_event->event_id.pid = perf_event_pid(event, current);
5748 	mmap_event->event_id.tid = perf_event_tid(event, current);
5749 
5750 	perf_output_put(&handle, mmap_event->event_id);
5751 
5752 	if (event->attr.mmap2) {
5753 		perf_output_put(&handle, mmap_event->maj);
5754 		perf_output_put(&handle, mmap_event->min);
5755 		perf_output_put(&handle, mmap_event->ino);
5756 		perf_output_put(&handle, mmap_event->ino_generation);
5757 		perf_output_put(&handle, mmap_event->prot);
5758 		perf_output_put(&handle, mmap_event->flags);
5759 	}
5760 
5761 	__output_copy(&handle, mmap_event->file_name,
5762 				   mmap_event->file_size);
5763 
5764 	perf_event__output_id_sample(event, &handle, &sample);
5765 
5766 	perf_output_end(&handle);
5767 out:
5768 	mmap_event->event_id.header.size = size;
5769 }
5770 
5771 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5772 {
5773 	struct vm_area_struct *vma = mmap_event->vma;
5774 	struct file *file = vma->vm_file;
5775 	int maj = 0, min = 0;
5776 	u64 ino = 0, gen = 0;
5777 	u32 prot = 0, flags = 0;
5778 	unsigned int size;
5779 	char tmp[16];
5780 	char *buf = NULL;
5781 	char *name;
5782 
5783 	if (file) {
5784 		struct inode *inode;
5785 		dev_t dev;
5786 
5787 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5788 		if (!buf) {
5789 			name = "//enomem";
5790 			goto cpy_name;
5791 		}
5792 		/*
5793 		 * d_path() works from the end of the rb backwards, so we
5794 		 * need to add enough zero bytes after the string to handle
5795 		 * the 64bit alignment we do later.
5796 		 */
5797 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5798 		if (IS_ERR(name)) {
5799 			name = "//toolong";
5800 			goto cpy_name;
5801 		}
5802 		inode = file_inode(vma->vm_file);
5803 		dev = inode->i_sb->s_dev;
5804 		ino = inode->i_ino;
5805 		gen = inode->i_generation;
5806 		maj = MAJOR(dev);
5807 		min = MINOR(dev);
5808 
5809 		if (vma->vm_flags & VM_READ)
5810 			prot |= PROT_READ;
5811 		if (vma->vm_flags & VM_WRITE)
5812 			prot |= PROT_WRITE;
5813 		if (vma->vm_flags & VM_EXEC)
5814 			prot |= PROT_EXEC;
5815 
5816 		if (vma->vm_flags & VM_MAYSHARE)
5817 			flags = MAP_SHARED;
5818 		else
5819 			flags = MAP_PRIVATE;
5820 
5821 		if (vma->vm_flags & VM_DENYWRITE)
5822 			flags |= MAP_DENYWRITE;
5823 		if (vma->vm_flags & VM_MAYEXEC)
5824 			flags |= MAP_EXECUTABLE;
5825 		if (vma->vm_flags & VM_LOCKED)
5826 			flags |= MAP_LOCKED;
5827 		if (vma->vm_flags & VM_HUGETLB)
5828 			flags |= MAP_HUGETLB;
5829 
5830 		goto got_name;
5831 	} else {
5832 		if (vma->vm_ops && vma->vm_ops->name) {
5833 			name = (char *) vma->vm_ops->name(vma);
5834 			if (name)
5835 				goto cpy_name;
5836 		}
5837 
5838 		name = (char *)arch_vma_name(vma);
5839 		if (name)
5840 			goto cpy_name;
5841 
5842 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5843 				vma->vm_end >= vma->vm_mm->brk) {
5844 			name = "[heap]";
5845 			goto cpy_name;
5846 		}
5847 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5848 				vma->vm_end >= vma->vm_mm->start_stack) {
5849 			name = "[stack]";
5850 			goto cpy_name;
5851 		}
5852 
5853 		name = "//anon";
5854 		goto cpy_name;
5855 	}
5856 
5857 cpy_name:
5858 	strlcpy(tmp, name, sizeof(tmp));
5859 	name = tmp;
5860 got_name:
5861 	/*
5862 	 * Since our buffer works in 8 byte units we need to align our string
5863 	 * size to a multiple of 8. However, we must guarantee the tail end is
5864 	 * zero'd out to avoid leaking random bits to userspace.
5865 	 */
5866 	size = strlen(name)+1;
5867 	while (!IS_ALIGNED(size, sizeof(u64)))
5868 		name[size++] = '\0';
5869 
5870 	mmap_event->file_name = name;
5871 	mmap_event->file_size = size;
5872 	mmap_event->maj = maj;
5873 	mmap_event->min = min;
5874 	mmap_event->ino = ino;
5875 	mmap_event->ino_generation = gen;
5876 	mmap_event->prot = prot;
5877 	mmap_event->flags = flags;
5878 
5879 	if (!(vma->vm_flags & VM_EXEC))
5880 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5881 
5882 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5883 
5884 	perf_event_aux(perf_event_mmap_output,
5885 		       mmap_event,
5886 		       NULL);
5887 
5888 	kfree(buf);
5889 }
5890 
5891 void perf_event_mmap(struct vm_area_struct *vma)
5892 {
5893 	struct perf_mmap_event mmap_event;
5894 
5895 	if (!atomic_read(&nr_mmap_events))
5896 		return;
5897 
5898 	mmap_event = (struct perf_mmap_event){
5899 		.vma	= vma,
5900 		/* .file_name */
5901 		/* .file_size */
5902 		.event_id  = {
5903 			.header = {
5904 				.type = PERF_RECORD_MMAP,
5905 				.misc = PERF_RECORD_MISC_USER,
5906 				/* .size */
5907 			},
5908 			/* .pid */
5909 			/* .tid */
5910 			.start  = vma->vm_start,
5911 			.len    = vma->vm_end - vma->vm_start,
5912 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5913 		},
5914 		/* .maj (attr_mmap2 only) */
5915 		/* .min (attr_mmap2 only) */
5916 		/* .ino (attr_mmap2 only) */
5917 		/* .ino_generation (attr_mmap2 only) */
5918 		/* .prot (attr_mmap2 only) */
5919 		/* .flags (attr_mmap2 only) */
5920 	};
5921 
5922 	perf_event_mmap_event(&mmap_event);
5923 }
5924 
5925 void perf_event_aux_event(struct perf_event *event, unsigned long head,
5926 			  unsigned long size, u64 flags)
5927 {
5928 	struct perf_output_handle handle;
5929 	struct perf_sample_data sample;
5930 	struct perf_aux_event {
5931 		struct perf_event_header	header;
5932 		u64				offset;
5933 		u64				size;
5934 		u64				flags;
5935 	} rec = {
5936 		.header = {
5937 			.type = PERF_RECORD_AUX,
5938 			.misc = 0,
5939 			.size = sizeof(rec),
5940 		},
5941 		.offset		= head,
5942 		.size		= size,
5943 		.flags		= flags,
5944 	};
5945 	int ret;
5946 
5947 	perf_event_header__init_id(&rec.header, &sample, event);
5948 	ret = perf_output_begin(&handle, event, rec.header.size);
5949 
5950 	if (ret)
5951 		return;
5952 
5953 	perf_output_put(&handle, rec);
5954 	perf_event__output_id_sample(event, &handle, &sample);
5955 
5956 	perf_output_end(&handle);
5957 }
5958 
5959 /*
5960  * Lost/dropped samples logging
5961  */
5962 void perf_log_lost_samples(struct perf_event *event, u64 lost)
5963 {
5964 	struct perf_output_handle handle;
5965 	struct perf_sample_data sample;
5966 	int ret;
5967 
5968 	struct {
5969 		struct perf_event_header	header;
5970 		u64				lost;
5971 	} lost_samples_event = {
5972 		.header = {
5973 			.type = PERF_RECORD_LOST_SAMPLES,
5974 			.misc = 0,
5975 			.size = sizeof(lost_samples_event),
5976 		},
5977 		.lost		= lost,
5978 	};
5979 
5980 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
5981 
5982 	ret = perf_output_begin(&handle, event,
5983 				lost_samples_event.header.size);
5984 	if (ret)
5985 		return;
5986 
5987 	perf_output_put(&handle, lost_samples_event);
5988 	perf_event__output_id_sample(event, &handle, &sample);
5989 	perf_output_end(&handle);
5990 }
5991 
5992 /*
5993  * IRQ throttle logging
5994  */
5995 
5996 static void perf_log_throttle(struct perf_event *event, int enable)
5997 {
5998 	struct perf_output_handle handle;
5999 	struct perf_sample_data sample;
6000 	int ret;
6001 
6002 	struct {
6003 		struct perf_event_header	header;
6004 		u64				time;
6005 		u64				id;
6006 		u64				stream_id;
6007 	} throttle_event = {
6008 		.header = {
6009 			.type = PERF_RECORD_THROTTLE,
6010 			.misc = 0,
6011 			.size = sizeof(throttle_event),
6012 		},
6013 		.time		= perf_event_clock(event),
6014 		.id		= primary_event_id(event),
6015 		.stream_id	= event->id,
6016 	};
6017 
6018 	if (enable)
6019 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6020 
6021 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6022 
6023 	ret = perf_output_begin(&handle, event,
6024 				throttle_event.header.size);
6025 	if (ret)
6026 		return;
6027 
6028 	perf_output_put(&handle, throttle_event);
6029 	perf_event__output_id_sample(event, &handle, &sample);
6030 	perf_output_end(&handle);
6031 }
6032 
6033 static void perf_log_itrace_start(struct perf_event *event)
6034 {
6035 	struct perf_output_handle handle;
6036 	struct perf_sample_data sample;
6037 	struct perf_aux_event {
6038 		struct perf_event_header        header;
6039 		u32				pid;
6040 		u32				tid;
6041 	} rec;
6042 	int ret;
6043 
6044 	if (event->parent)
6045 		event = event->parent;
6046 
6047 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6048 	    event->hw.itrace_started)
6049 		return;
6050 
6051 	event->hw.itrace_started = 1;
6052 
6053 	rec.header.type	= PERF_RECORD_ITRACE_START;
6054 	rec.header.misc	= 0;
6055 	rec.header.size	= sizeof(rec);
6056 	rec.pid	= perf_event_pid(event, current);
6057 	rec.tid	= perf_event_tid(event, current);
6058 
6059 	perf_event_header__init_id(&rec.header, &sample, event);
6060 	ret = perf_output_begin(&handle, event, rec.header.size);
6061 
6062 	if (ret)
6063 		return;
6064 
6065 	perf_output_put(&handle, rec);
6066 	perf_event__output_id_sample(event, &handle, &sample);
6067 
6068 	perf_output_end(&handle);
6069 }
6070 
6071 /*
6072  * Generic event overflow handling, sampling.
6073  */
6074 
6075 static int __perf_event_overflow(struct perf_event *event,
6076 				   int throttle, struct perf_sample_data *data,
6077 				   struct pt_regs *regs)
6078 {
6079 	int events = atomic_read(&event->event_limit);
6080 	struct hw_perf_event *hwc = &event->hw;
6081 	u64 seq;
6082 	int ret = 0;
6083 
6084 	/*
6085 	 * Non-sampling counters might still use the PMI to fold short
6086 	 * hardware counters, ignore those.
6087 	 */
6088 	if (unlikely(!is_sampling_event(event)))
6089 		return 0;
6090 
6091 	seq = __this_cpu_read(perf_throttled_seq);
6092 	if (seq != hwc->interrupts_seq) {
6093 		hwc->interrupts_seq = seq;
6094 		hwc->interrupts = 1;
6095 	} else {
6096 		hwc->interrupts++;
6097 		if (unlikely(throttle
6098 			     && hwc->interrupts >= max_samples_per_tick)) {
6099 			__this_cpu_inc(perf_throttled_count);
6100 			hwc->interrupts = MAX_INTERRUPTS;
6101 			perf_log_throttle(event, 0);
6102 			tick_nohz_full_kick();
6103 			ret = 1;
6104 		}
6105 	}
6106 
6107 	if (event->attr.freq) {
6108 		u64 now = perf_clock();
6109 		s64 delta = now - hwc->freq_time_stamp;
6110 
6111 		hwc->freq_time_stamp = now;
6112 
6113 		if (delta > 0 && delta < 2*TICK_NSEC)
6114 			perf_adjust_period(event, delta, hwc->last_period, true);
6115 	}
6116 
6117 	/*
6118 	 * XXX event_limit might not quite work as expected on inherited
6119 	 * events
6120 	 */
6121 
6122 	event->pending_kill = POLL_IN;
6123 	if (events && atomic_dec_and_test(&event->event_limit)) {
6124 		ret = 1;
6125 		event->pending_kill = POLL_HUP;
6126 		event->pending_disable = 1;
6127 		irq_work_queue(&event->pending);
6128 	}
6129 
6130 	if (event->overflow_handler)
6131 		event->overflow_handler(event, data, regs);
6132 	else
6133 		perf_event_output(event, data, regs);
6134 
6135 	if (event->fasync && event->pending_kill) {
6136 		event->pending_wakeup = 1;
6137 		irq_work_queue(&event->pending);
6138 	}
6139 
6140 	return ret;
6141 }
6142 
6143 int perf_event_overflow(struct perf_event *event,
6144 			  struct perf_sample_data *data,
6145 			  struct pt_regs *regs)
6146 {
6147 	return __perf_event_overflow(event, 1, data, regs);
6148 }
6149 
6150 /*
6151  * Generic software event infrastructure
6152  */
6153 
6154 struct swevent_htable {
6155 	struct swevent_hlist		*swevent_hlist;
6156 	struct mutex			hlist_mutex;
6157 	int				hlist_refcount;
6158 
6159 	/* Recursion avoidance in each contexts */
6160 	int				recursion[PERF_NR_CONTEXTS];
6161 
6162 	/* Keeps track of cpu being initialized/exited */
6163 	bool				online;
6164 };
6165 
6166 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6167 
6168 /*
6169  * We directly increment event->count and keep a second value in
6170  * event->hw.period_left to count intervals. This period event
6171  * is kept in the range [-sample_period, 0] so that we can use the
6172  * sign as trigger.
6173  */
6174 
6175 u64 perf_swevent_set_period(struct perf_event *event)
6176 {
6177 	struct hw_perf_event *hwc = &event->hw;
6178 	u64 period = hwc->last_period;
6179 	u64 nr, offset;
6180 	s64 old, val;
6181 
6182 	hwc->last_period = hwc->sample_period;
6183 
6184 again:
6185 	old = val = local64_read(&hwc->period_left);
6186 	if (val < 0)
6187 		return 0;
6188 
6189 	nr = div64_u64(period + val, period);
6190 	offset = nr * period;
6191 	val -= offset;
6192 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6193 		goto again;
6194 
6195 	return nr;
6196 }
6197 
6198 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6199 				    struct perf_sample_data *data,
6200 				    struct pt_regs *regs)
6201 {
6202 	struct hw_perf_event *hwc = &event->hw;
6203 	int throttle = 0;
6204 
6205 	if (!overflow)
6206 		overflow = perf_swevent_set_period(event);
6207 
6208 	if (hwc->interrupts == MAX_INTERRUPTS)
6209 		return;
6210 
6211 	for (; overflow; overflow--) {
6212 		if (__perf_event_overflow(event, throttle,
6213 					    data, regs)) {
6214 			/*
6215 			 * We inhibit the overflow from happening when
6216 			 * hwc->interrupts == MAX_INTERRUPTS.
6217 			 */
6218 			break;
6219 		}
6220 		throttle = 1;
6221 	}
6222 }
6223 
6224 static void perf_swevent_event(struct perf_event *event, u64 nr,
6225 			       struct perf_sample_data *data,
6226 			       struct pt_regs *regs)
6227 {
6228 	struct hw_perf_event *hwc = &event->hw;
6229 
6230 	local64_add(nr, &event->count);
6231 
6232 	if (!regs)
6233 		return;
6234 
6235 	if (!is_sampling_event(event))
6236 		return;
6237 
6238 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6239 		data->period = nr;
6240 		return perf_swevent_overflow(event, 1, data, regs);
6241 	} else
6242 		data->period = event->hw.last_period;
6243 
6244 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6245 		return perf_swevent_overflow(event, 1, data, regs);
6246 
6247 	if (local64_add_negative(nr, &hwc->period_left))
6248 		return;
6249 
6250 	perf_swevent_overflow(event, 0, data, regs);
6251 }
6252 
6253 static int perf_exclude_event(struct perf_event *event,
6254 			      struct pt_regs *regs)
6255 {
6256 	if (event->hw.state & PERF_HES_STOPPED)
6257 		return 1;
6258 
6259 	if (regs) {
6260 		if (event->attr.exclude_user && user_mode(regs))
6261 			return 1;
6262 
6263 		if (event->attr.exclude_kernel && !user_mode(regs))
6264 			return 1;
6265 	}
6266 
6267 	return 0;
6268 }
6269 
6270 static int perf_swevent_match(struct perf_event *event,
6271 				enum perf_type_id type,
6272 				u32 event_id,
6273 				struct perf_sample_data *data,
6274 				struct pt_regs *regs)
6275 {
6276 	if (event->attr.type != type)
6277 		return 0;
6278 
6279 	if (event->attr.config != event_id)
6280 		return 0;
6281 
6282 	if (perf_exclude_event(event, regs))
6283 		return 0;
6284 
6285 	return 1;
6286 }
6287 
6288 static inline u64 swevent_hash(u64 type, u32 event_id)
6289 {
6290 	u64 val = event_id | (type << 32);
6291 
6292 	return hash_64(val, SWEVENT_HLIST_BITS);
6293 }
6294 
6295 static inline struct hlist_head *
6296 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6297 {
6298 	u64 hash = swevent_hash(type, event_id);
6299 
6300 	return &hlist->heads[hash];
6301 }
6302 
6303 /* For the read side: events when they trigger */
6304 static inline struct hlist_head *
6305 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6306 {
6307 	struct swevent_hlist *hlist;
6308 
6309 	hlist = rcu_dereference(swhash->swevent_hlist);
6310 	if (!hlist)
6311 		return NULL;
6312 
6313 	return __find_swevent_head(hlist, type, event_id);
6314 }
6315 
6316 /* For the event head insertion and removal in the hlist */
6317 static inline struct hlist_head *
6318 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6319 {
6320 	struct swevent_hlist *hlist;
6321 	u32 event_id = event->attr.config;
6322 	u64 type = event->attr.type;
6323 
6324 	/*
6325 	 * Event scheduling is always serialized against hlist allocation
6326 	 * and release. Which makes the protected version suitable here.
6327 	 * The context lock guarantees that.
6328 	 */
6329 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6330 					  lockdep_is_held(&event->ctx->lock));
6331 	if (!hlist)
6332 		return NULL;
6333 
6334 	return __find_swevent_head(hlist, type, event_id);
6335 }
6336 
6337 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6338 				    u64 nr,
6339 				    struct perf_sample_data *data,
6340 				    struct pt_regs *regs)
6341 {
6342 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6343 	struct perf_event *event;
6344 	struct hlist_head *head;
6345 
6346 	rcu_read_lock();
6347 	head = find_swevent_head_rcu(swhash, type, event_id);
6348 	if (!head)
6349 		goto end;
6350 
6351 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6352 		if (perf_swevent_match(event, type, event_id, data, regs))
6353 			perf_swevent_event(event, nr, data, regs);
6354 	}
6355 end:
6356 	rcu_read_unlock();
6357 }
6358 
6359 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6360 
6361 int perf_swevent_get_recursion_context(void)
6362 {
6363 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6364 
6365 	return get_recursion_context(swhash->recursion);
6366 }
6367 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6368 
6369 inline void perf_swevent_put_recursion_context(int rctx)
6370 {
6371 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6372 
6373 	put_recursion_context(swhash->recursion, rctx);
6374 }
6375 
6376 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6377 {
6378 	struct perf_sample_data data;
6379 
6380 	if (WARN_ON_ONCE(!regs))
6381 		return;
6382 
6383 	perf_sample_data_init(&data, addr, 0);
6384 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6385 }
6386 
6387 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6388 {
6389 	int rctx;
6390 
6391 	preempt_disable_notrace();
6392 	rctx = perf_swevent_get_recursion_context();
6393 	if (unlikely(rctx < 0))
6394 		goto fail;
6395 
6396 	___perf_sw_event(event_id, nr, regs, addr);
6397 
6398 	perf_swevent_put_recursion_context(rctx);
6399 fail:
6400 	preempt_enable_notrace();
6401 }
6402 
6403 static void perf_swevent_read(struct perf_event *event)
6404 {
6405 }
6406 
6407 static int perf_swevent_add(struct perf_event *event, int flags)
6408 {
6409 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6410 	struct hw_perf_event *hwc = &event->hw;
6411 	struct hlist_head *head;
6412 
6413 	if (is_sampling_event(event)) {
6414 		hwc->last_period = hwc->sample_period;
6415 		perf_swevent_set_period(event);
6416 	}
6417 
6418 	hwc->state = !(flags & PERF_EF_START);
6419 
6420 	head = find_swevent_head(swhash, event);
6421 	if (!head) {
6422 		/*
6423 		 * We can race with cpu hotplug code. Do not
6424 		 * WARN if the cpu just got unplugged.
6425 		 */
6426 		WARN_ON_ONCE(swhash->online);
6427 		return -EINVAL;
6428 	}
6429 
6430 	hlist_add_head_rcu(&event->hlist_entry, head);
6431 	perf_event_update_userpage(event);
6432 
6433 	return 0;
6434 }
6435 
6436 static void perf_swevent_del(struct perf_event *event, int flags)
6437 {
6438 	hlist_del_rcu(&event->hlist_entry);
6439 }
6440 
6441 static void perf_swevent_start(struct perf_event *event, int flags)
6442 {
6443 	event->hw.state = 0;
6444 }
6445 
6446 static void perf_swevent_stop(struct perf_event *event, int flags)
6447 {
6448 	event->hw.state = PERF_HES_STOPPED;
6449 }
6450 
6451 /* Deref the hlist from the update side */
6452 static inline struct swevent_hlist *
6453 swevent_hlist_deref(struct swevent_htable *swhash)
6454 {
6455 	return rcu_dereference_protected(swhash->swevent_hlist,
6456 					 lockdep_is_held(&swhash->hlist_mutex));
6457 }
6458 
6459 static void swevent_hlist_release(struct swevent_htable *swhash)
6460 {
6461 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6462 
6463 	if (!hlist)
6464 		return;
6465 
6466 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6467 	kfree_rcu(hlist, rcu_head);
6468 }
6469 
6470 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6471 {
6472 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6473 
6474 	mutex_lock(&swhash->hlist_mutex);
6475 
6476 	if (!--swhash->hlist_refcount)
6477 		swevent_hlist_release(swhash);
6478 
6479 	mutex_unlock(&swhash->hlist_mutex);
6480 }
6481 
6482 static void swevent_hlist_put(struct perf_event *event)
6483 {
6484 	int cpu;
6485 
6486 	for_each_possible_cpu(cpu)
6487 		swevent_hlist_put_cpu(event, cpu);
6488 }
6489 
6490 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6491 {
6492 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6493 	int err = 0;
6494 
6495 	mutex_lock(&swhash->hlist_mutex);
6496 
6497 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6498 		struct swevent_hlist *hlist;
6499 
6500 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6501 		if (!hlist) {
6502 			err = -ENOMEM;
6503 			goto exit;
6504 		}
6505 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6506 	}
6507 	swhash->hlist_refcount++;
6508 exit:
6509 	mutex_unlock(&swhash->hlist_mutex);
6510 
6511 	return err;
6512 }
6513 
6514 static int swevent_hlist_get(struct perf_event *event)
6515 {
6516 	int err;
6517 	int cpu, failed_cpu;
6518 
6519 	get_online_cpus();
6520 	for_each_possible_cpu(cpu) {
6521 		err = swevent_hlist_get_cpu(event, cpu);
6522 		if (err) {
6523 			failed_cpu = cpu;
6524 			goto fail;
6525 		}
6526 	}
6527 	put_online_cpus();
6528 
6529 	return 0;
6530 fail:
6531 	for_each_possible_cpu(cpu) {
6532 		if (cpu == failed_cpu)
6533 			break;
6534 		swevent_hlist_put_cpu(event, cpu);
6535 	}
6536 
6537 	put_online_cpus();
6538 	return err;
6539 }
6540 
6541 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6542 
6543 static void sw_perf_event_destroy(struct perf_event *event)
6544 {
6545 	u64 event_id = event->attr.config;
6546 
6547 	WARN_ON(event->parent);
6548 
6549 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6550 	swevent_hlist_put(event);
6551 }
6552 
6553 static int perf_swevent_init(struct perf_event *event)
6554 {
6555 	u64 event_id = event->attr.config;
6556 
6557 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6558 		return -ENOENT;
6559 
6560 	/*
6561 	 * no branch sampling for software events
6562 	 */
6563 	if (has_branch_stack(event))
6564 		return -EOPNOTSUPP;
6565 
6566 	switch (event_id) {
6567 	case PERF_COUNT_SW_CPU_CLOCK:
6568 	case PERF_COUNT_SW_TASK_CLOCK:
6569 		return -ENOENT;
6570 
6571 	default:
6572 		break;
6573 	}
6574 
6575 	if (event_id >= PERF_COUNT_SW_MAX)
6576 		return -ENOENT;
6577 
6578 	if (!event->parent) {
6579 		int err;
6580 
6581 		err = swevent_hlist_get(event);
6582 		if (err)
6583 			return err;
6584 
6585 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6586 		event->destroy = sw_perf_event_destroy;
6587 	}
6588 
6589 	return 0;
6590 }
6591 
6592 static struct pmu perf_swevent = {
6593 	.task_ctx_nr	= perf_sw_context,
6594 
6595 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6596 
6597 	.event_init	= perf_swevent_init,
6598 	.add		= perf_swevent_add,
6599 	.del		= perf_swevent_del,
6600 	.start		= perf_swevent_start,
6601 	.stop		= perf_swevent_stop,
6602 	.read		= perf_swevent_read,
6603 };
6604 
6605 #ifdef CONFIG_EVENT_TRACING
6606 
6607 static int perf_tp_filter_match(struct perf_event *event,
6608 				struct perf_sample_data *data)
6609 {
6610 	void *record = data->raw->data;
6611 
6612 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6613 		return 1;
6614 	return 0;
6615 }
6616 
6617 static int perf_tp_event_match(struct perf_event *event,
6618 				struct perf_sample_data *data,
6619 				struct pt_regs *regs)
6620 {
6621 	if (event->hw.state & PERF_HES_STOPPED)
6622 		return 0;
6623 	/*
6624 	 * All tracepoints are from kernel-space.
6625 	 */
6626 	if (event->attr.exclude_kernel)
6627 		return 0;
6628 
6629 	if (!perf_tp_filter_match(event, data))
6630 		return 0;
6631 
6632 	return 1;
6633 }
6634 
6635 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6636 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6637 		   struct task_struct *task)
6638 {
6639 	struct perf_sample_data data;
6640 	struct perf_event *event;
6641 
6642 	struct perf_raw_record raw = {
6643 		.size = entry_size,
6644 		.data = record,
6645 	};
6646 
6647 	perf_sample_data_init(&data, addr, 0);
6648 	data.raw = &raw;
6649 
6650 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6651 		if (perf_tp_event_match(event, &data, regs))
6652 			perf_swevent_event(event, count, &data, regs);
6653 	}
6654 
6655 	/*
6656 	 * If we got specified a target task, also iterate its context and
6657 	 * deliver this event there too.
6658 	 */
6659 	if (task && task != current) {
6660 		struct perf_event_context *ctx;
6661 		struct trace_entry *entry = record;
6662 
6663 		rcu_read_lock();
6664 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6665 		if (!ctx)
6666 			goto unlock;
6667 
6668 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6669 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6670 				continue;
6671 			if (event->attr.config != entry->type)
6672 				continue;
6673 			if (perf_tp_event_match(event, &data, regs))
6674 				perf_swevent_event(event, count, &data, regs);
6675 		}
6676 unlock:
6677 		rcu_read_unlock();
6678 	}
6679 
6680 	perf_swevent_put_recursion_context(rctx);
6681 }
6682 EXPORT_SYMBOL_GPL(perf_tp_event);
6683 
6684 static void tp_perf_event_destroy(struct perf_event *event)
6685 {
6686 	perf_trace_destroy(event);
6687 }
6688 
6689 static int perf_tp_event_init(struct perf_event *event)
6690 {
6691 	int err;
6692 
6693 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6694 		return -ENOENT;
6695 
6696 	/*
6697 	 * no branch sampling for tracepoint events
6698 	 */
6699 	if (has_branch_stack(event))
6700 		return -EOPNOTSUPP;
6701 
6702 	err = perf_trace_init(event);
6703 	if (err)
6704 		return err;
6705 
6706 	event->destroy = tp_perf_event_destroy;
6707 
6708 	return 0;
6709 }
6710 
6711 static struct pmu perf_tracepoint = {
6712 	.task_ctx_nr	= perf_sw_context,
6713 
6714 	.event_init	= perf_tp_event_init,
6715 	.add		= perf_trace_add,
6716 	.del		= perf_trace_del,
6717 	.start		= perf_swevent_start,
6718 	.stop		= perf_swevent_stop,
6719 	.read		= perf_swevent_read,
6720 };
6721 
6722 static inline void perf_tp_register(void)
6723 {
6724 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6725 }
6726 
6727 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6728 {
6729 	char *filter_str;
6730 	int ret;
6731 
6732 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6733 		return -EINVAL;
6734 
6735 	filter_str = strndup_user(arg, PAGE_SIZE);
6736 	if (IS_ERR(filter_str))
6737 		return PTR_ERR(filter_str);
6738 
6739 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6740 
6741 	kfree(filter_str);
6742 	return ret;
6743 }
6744 
6745 static void perf_event_free_filter(struct perf_event *event)
6746 {
6747 	ftrace_profile_free_filter(event);
6748 }
6749 
6750 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6751 {
6752 	struct bpf_prog *prog;
6753 
6754 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6755 		return -EINVAL;
6756 
6757 	if (event->tp_event->prog)
6758 		return -EEXIST;
6759 
6760 	if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
6761 		/* bpf programs can only be attached to kprobes */
6762 		return -EINVAL;
6763 
6764 	prog = bpf_prog_get(prog_fd);
6765 	if (IS_ERR(prog))
6766 		return PTR_ERR(prog);
6767 
6768 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6769 		/* valid fd, but invalid bpf program type */
6770 		bpf_prog_put(prog);
6771 		return -EINVAL;
6772 	}
6773 
6774 	event->tp_event->prog = prog;
6775 
6776 	return 0;
6777 }
6778 
6779 static void perf_event_free_bpf_prog(struct perf_event *event)
6780 {
6781 	struct bpf_prog *prog;
6782 
6783 	if (!event->tp_event)
6784 		return;
6785 
6786 	prog = event->tp_event->prog;
6787 	if (prog) {
6788 		event->tp_event->prog = NULL;
6789 		bpf_prog_put(prog);
6790 	}
6791 }
6792 
6793 #else
6794 
6795 static inline void perf_tp_register(void)
6796 {
6797 }
6798 
6799 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6800 {
6801 	return -ENOENT;
6802 }
6803 
6804 static void perf_event_free_filter(struct perf_event *event)
6805 {
6806 }
6807 
6808 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6809 {
6810 	return -ENOENT;
6811 }
6812 
6813 static void perf_event_free_bpf_prog(struct perf_event *event)
6814 {
6815 }
6816 #endif /* CONFIG_EVENT_TRACING */
6817 
6818 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6819 void perf_bp_event(struct perf_event *bp, void *data)
6820 {
6821 	struct perf_sample_data sample;
6822 	struct pt_regs *regs = data;
6823 
6824 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6825 
6826 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6827 		perf_swevent_event(bp, 1, &sample, regs);
6828 }
6829 #endif
6830 
6831 /*
6832  * hrtimer based swevent callback
6833  */
6834 
6835 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6836 {
6837 	enum hrtimer_restart ret = HRTIMER_RESTART;
6838 	struct perf_sample_data data;
6839 	struct pt_regs *regs;
6840 	struct perf_event *event;
6841 	u64 period;
6842 
6843 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6844 
6845 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6846 		return HRTIMER_NORESTART;
6847 
6848 	event->pmu->read(event);
6849 
6850 	perf_sample_data_init(&data, 0, event->hw.last_period);
6851 	regs = get_irq_regs();
6852 
6853 	if (regs && !perf_exclude_event(event, regs)) {
6854 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6855 			if (__perf_event_overflow(event, 1, &data, regs))
6856 				ret = HRTIMER_NORESTART;
6857 	}
6858 
6859 	period = max_t(u64, 10000, event->hw.sample_period);
6860 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6861 
6862 	return ret;
6863 }
6864 
6865 static void perf_swevent_start_hrtimer(struct perf_event *event)
6866 {
6867 	struct hw_perf_event *hwc = &event->hw;
6868 	s64 period;
6869 
6870 	if (!is_sampling_event(event))
6871 		return;
6872 
6873 	period = local64_read(&hwc->period_left);
6874 	if (period) {
6875 		if (period < 0)
6876 			period = 10000;
6877 
6878 		local64_set(&hwc->period_left, 0);
6879 	} else {
6880 		period = max_t(u64, 10000, hwc->sample_period);
6881 	}
6882 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
6883 		      HRTIMER_MODE_REL_PINNED);
6884 }
6885 
6886 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6887 {
6888 	struct hw_perf_event *hwc = &event->hw;
6889 
6890 	if (is_sampling_event(event)) {
6891 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6892 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6893 
6894 		hrtimer_cancel(&hwc->hrtimer);
6895 	}
6896 }
6897 
6898 static void perf_swevent_init_hrtimer(struct perf_event *event)
6899 {
6900 	struct hw_perf_event *hwc = &event->hw;
6901 
6902 	if (!is_sampling_event(event))
6903 		return;
6904 
6905 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6906 	hwc->hrtimer.function = perf_swevent_hrtimer;
6907 
6908 	/*
6909 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6910 	 * mapping and avoid the whole period adjust feedback stuff.
6911 	 */
6912 	if (event->attr.freq) {
6913 		long freq = event->attr.sample_freq;
6914 
6915 		event->attr.sample_period = NSEC_PER_SEC / freq;
6916 		hwc->sample_period = event->attr.sample_period;
6917 		local64_set(&hwc->period_left, hwc->sample_period);
6918 		hwc->last_period = hwc->sample_period;
6919 		event->attr.freq = 0;
6920 	}
6921 }
6922 
6923 /*
6924  * Software event: cpu wall time clock
6925  */
6926 
6927 static void cpu_clock_event_update(struct perf_event *event)
6928 {
6929 	s64 prev;
6930 	u64 now;
6931 
6932 	now = local_clock();
6933 	prev = local64_xchg(&event->hw.prev_count, now);
6934 	local64_add(now - prev, &event->count);
6935 }
6936 
6937 static void cpu_clock_event_start(struct perf_event *event, int flags)
6938 {
6939 	local64_set(&event->hw.prev_count, local_clock());
6940 	perf_swevent_start_hrtimer(event);
6941 }
6942 
6943 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6944 {
6945 	perf_swevent_cancel_hrtimer(event);
6946 	cpu_clock_event_update(event);
6947 }
6948 
6949 static int cpu_clock_event_add(struct perf_event *event, int flags)
6950 {
6951 	if (flags & PERF_EF_START)
6952 		cpu_clock_event_start(event, flags);
6953 	perf_event_update_userpage(event);
6954 
6955 	return 0;
6956 }
6957 
6958 static void cpu_clock_event_del(struct perf_event *event, int flags)
6959 {
6960 	cpu_clock_event_stop(event, flags);
6961 }
6962 
6963 static void cpu_clock_event_read(struct perf_event *event)
6964 {
6965 	cpu_clock_event_update(event);
6966 }
6967 
6968 static int cpu_clock_event_init(struct perf_event *event)
6969 {
6970 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6971 		return -ENOENT;
6972 
6973 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6974 		return -ENOENT;
6975 
6976 	/*
6977 	 * no branch sampling for software events
6978 	 */
6979 	if (has_branch_stack(event))
6980 		return -EOPNOTSUPP;
6981 
6982 	perf_swevent_init_hrtimer(event);
6983 
6984 	return 0;
6985 }
6986 
6987 static struct pmu perf_cpu_clock = {
6988 	.task_ctx_nr	= perf_sw_context,
6989 
6990 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6991 
6992 	.event_init	= cpu_clock_event_init,
6993 	.add		= cpu_clock_event_add,
6994 	.del		= cpu_clock_event_del,
6995 	.start		= cpu_clock_event_start,
6996 	.stop		= cpu_clock_event_stop,
6997 	.read		= cpu_clock_event_read,
6998 };
6999 
7000 /*
7001  * Software event: task time clock
7002  */
7003 
7004 static void task_clock_event_update(struct perf_event *event, u64 now)
7005 {
7006 	u64 prev;
7007 	s64 delta;
7008 
7009 	prev = local64_xchg(&event->hw.prev_count, now);
7010 	delta = now - prev;
7011 	local64_add(delta, &event->count);
7012 }
7013 
7014 static void task_clock_event_start(struct perf_event *event, int flags)
7015 {
7016 	local64_set(&event->hw.prev_count, event->ctx->time);
7017 	perf_swevent_start_hrtimer(event);
7018 }
7019 
7020 static void task_clock_event_stop(struct perf_event *event, int flags)
7021 {
7022 	perf_swevent_cancel_hrtimer(event);
7023 	task_clock_event_update(event, event->ctx->time);
7024 }
7025 
7026 static int task_clock_event_add(struct perf_event *event, int flags)
7027 {
7028 	if (flags & PERF_EF_START)
7029 		task_clock_event_start(event, flags);
7030 	perf_event_update_userpage(event);
7031 
7032 	return 0;
7033 }
7034 
7035 static void task_clock_event_del(struct perf_event *event, int flags)
7036 {
7037 	task_clock_event_stop(event, PERF_EF_UPDATE);
7038 }
7039 
7040 static void task_clock_event_read(struct perf_event *event)
7041 {
7042 	u64 now = perf_clock();
7043 	u64 delta = now - event->ctx->timestamp;
7044 	u64 time = event->ctx->time + delta;
7045 
7046 	task_clock_event_update(event, time);
7047 }
7048 
7049 static int task_clock_event_init(struct perf_event *event)
7050 {
7051 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7052 		return -ENOENT;
7053 
7054 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7055 		return -ENOENT;
7056 
7057 	/*
7058 	 * no branch sampling for software events
7059 	 */
7060 	if (has_branch_stack(event))
7061 		return -EOPNOTSUPP;
7062 
7063 	perf_swevent_init_hrtimer(event);
7064 
7065 	return 0;
7066 }
7067 
7068 static struct pmu perf_task_clock = {
7069 	.task_ctx_nr	= perf_sw_context,
7070 
7071 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7072 
7073 	.event_init	= task_clock_event_init,
7074 	.add		= task_clock_event_add,
7075 	.del		= task_clock_event_del,
7076 	.start		= task_clock_event_start,
7077 	.stop		= task_clock_event_stop,
7078 	.read		= task_clock_event_read,
7079 };
7080 
7081 static void perf_pmu_nop_void(struct pmu *pmu)
7082 {
7083 }
7084 
7085 static int perf_pmu_nop_int(struct pmu *pmu)
7086 {
7087 	return 0;
7088 }
7089 
7090 static void perf_pmu_start_txn(struct pmu *pmu)
7091 {
7092 	perf_pmu_disable(pmu);
7093 }
7094 
7095 static int perf_pmu_commit_txn(struct pmu *pmu)
7096 {
7097 	perf_pmu_enable(pmu);
7098 	return 0;
7099 }
7100 
7101 static void perf_pmu_cancel_txn(struct pmu *pmu)
7102 {
7103 	perf_pmu_enable(pmu);
7104 }
7105 
7106 static int perf_event_idx_default(struct perf_event *event)
7107 {
7108 	return 0;
7109 }
7110 
7111 /*
7112  * Ensures all contexts with the same task_ctx_nr have the same
7113  * pmu_cpu_context too.
7114  */
7115 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7116 {
7117 	struct pmu *pmu;
7118 
7119 	if (ctxn < 0)
7120 		return NULL;
7121 
7122 	list_for_each_entry(pmu, &pmus, entry) {
7123 		if (pmu->task_ctx_nr == ctxn)
7124 			return pmu->pmu_cpu_context;
7125 	}
7126 
7127 	return NULL;
7128 }
7129 
7130 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7131 {
7132 	int cpu;
7133 
7134 	for_each_possible_cpu(cpu) {
7135 		struct perf_cpu_context *cpuctx;
7136 
7137 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7138 
7139 		if (cpuctx->unique_pmu == old_pmu)
7140 			cpuctx->unique_pmu = pmu;
7141 	}
7142 }
7143 
7144 static void free_pmu_context(struct pmu *pmu)
7145 {
7146 	struct pmu *i;
7147 
7148 	mutex_lock(&pmus_lock);
7149 	/*
7150 	 * Like a real lame refcount.
7151 	 */
7152 	list_for_each_entry(i, &pmus, entry) {
7153 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7154 			update_pmu_context(i, pmu);
7155 			goto out;
7156 		}
7157 	}
7158 
7159 	free_percpu(pmu->pmu_cpu_context);
7160 out:
7161 	mutex_unlock(&pmus_lock);
7162 }
7163 static struct idr pmu_idr;
7164 
7165 static ssize_t
7166 type_show(struct device *dev, struct device_attribute *attr, char *page)
7167 {
7168 	struct pmu *pmu = dev_get_drvdata(dev);
7169 
7170 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7171 }
7172 static DEVICE_ATTR_RO(type);
7173 
7174 static ssize_t
7175 perf_event_mux_interval_ms_show(struct device *dev,
7176 				struct device_attribute *attr,
7177 				char *page)
7178 {
7179 	struct pmu *pmu = dev_get_drvdata(dev);
7180 
7181 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7182 }
7183 
7184 static DEFINE_MUTEX(mux_interval_mutex);
7185 
7186 static ssize_t
7187 perf_event_mux_interval_ms_store(struct device *dev,
7188 				 struct device_attribute *attr,
7189 				 const char *buf, size_t count)
7190 {
7191 	struct pmu *pmu = dev_get_drvdata(dev);
7192 	int timer, cpu, ret;
7193 
7194 	ret = kstrtoint(buf, 0, &timer);
7195 	if (ret)
7196 		return ret;
7197 
7198 	if (timer < 1)
7199 		return -EINVAL;
7200 
7201 	/* same value, noting to do */
7202 	if (timer == pmu->hrtimer_interval_ms)
7203 		return count;
7204 
7205 	mutex_lock(&mux_interval_mutex);
7206 	pmu->hrtimer_interval_ms = timer;
7207 
7208 	/* update all cpuctx for this PMU */
7209 	get_online_cpus();
7210 	for_each_online_cpu(cpu) {
7211 		struct perf_cpu_context *cpuctx;
7212 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7213 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7214 
7215 		cpu_function_call(cpu,
7216 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7217 	}
7218 	put_online_cpus();
7219 	mutex_unlock(&mux_interval_mutex);
7220 
7221 	return count;
7222 }
7223 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7224 
7225 static struct attribute *pmu_dev_attrs[] = {
7226 	&dev_attr_type.attr,
7227 	&dev_attr_perf_event_mux_interval_ms.attr,
7228 	NULL,
7229 };
7230 ATTRIBUTE_GROUPS(pmu_dev);
7231 
7232 static int pmu_bus_running;
7233 static struct bus_type pmu_bus = {
7234 	.name		= "event_source",
7235 	.dev_groups	= pmu_dev_groups,
7236 };
7237 
7238 static void pmu_dev_release(struct device *dev)
7239 {
7240 	kfree(dev);
7241 }
7242 
7243 static int pmu_dev_alloc(struct pmu *pmu)
7244 {
7245 	int ret = -ENOMEM;
7246 
7247 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7248 	if (!pmu->dev)
7249 		goto out;
7250 
7251 	pmu->dev->groups = pmu->attr_groups;
7252 	device_initialize(pmu->dev);
7253 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7254 	if (ret)
7255 		goto free_dev;
7256 
7257 	dev_set_drvdata(pmu->dev, pmu);
7258 	pmu->dev->bus = &pmu_bus;
7259 	pmu->dev->release = pmu_dev_release;
7260 	ret = device_add(pmu->dev);
7261 	if (ret)
7262 		goto free_dev;
7263 
7264 out:
7265 	return ret;
7266 
7267 free_dev:
7268 	put_device(pmu->dev);
7269 	goto out;
7270 }
7271 
7272 static struct lock_class_key cpuctx_mutex;
7273 static struct lock_class_key cpuctx_lock;
7274 
7275 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7276 {
7277 	int cpu, ret;
7278 
7279 	mutex_lock(&pmus_lock);
7280 	ret = -ENOMEM;
7281 	pmu->pmu_disable_count = alloc_percpu(int);
7282 	if (!pmu->pmu_disable_count)
7283 		goto unlock;
7284 
7285 	pmu->type = -1;
7286 	if (!name)
7287 		goto skip_type;
7288 	pmu->name = name;
7289 
7290 	if (type < 0) {
7291 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7292 		if (type < 0) {
7293 			ret = type;
7294 			goto free_pdc;
7295 		}
7296 	}
7297 	pmu->type = type;
7298 
7299 	if (pmu_bus_running) {
7300 		ret = pmu_dev_alloc(pmu);
7301 		if (ret)
7302 			goto free_idr;
7303 	}
7304 
7305 skip_type:
7306 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7307 	if (pmu->pmu_cpu_context)
7308 		goto got_cpu_context;
7309 
7310 	ret = -ENOMEM;
7311 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7312 	if (!pmu->pmu_cpu_context)
7313 		goto free_dev;
7314 
7315 	for_each_possible_cpu(cpu) {
7316 		struct perf_cpu_context *cpuctx;
7317 
7318 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7319 		__perf_event_init_context(&cpuctx->ctx);
7320 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7321 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7322 		cpuctx->ctx.pmu = pmu;
7323 
7324 		__perf_mux_hrtimer_init(cpuctx, cpu);
7325 
7326 		cpuctx->unique_pmu = pmu;
7327 	}
7328 
7329 got_cpu_context:
7330 	if (!pmu->start_txn) {
7331 		if (pmu->pmu_enable) {
7332 			/*
7333 			 * If we have pmu_enable/pmu_disable calls, install
7334 			 * transaction stubs that use that to try and batch
7335 			 * hardware accesses.
7336 			 */
7337 			pmu->start_txn  = perf_pmu_start_txn;
7338 			pmu->commit_txn = perf_pmu_commit_txn;
7339 			pmu->cancel_txn = perf_pmu_cancel_txn;
7340 		} else {
7341 			pmu->start_txn  = perf_pmu_nop_void;
7342 			pmu->commit_txn = perf_pmu_nop_int;
7343 			pmu->cancel_txn = perf_pmu_nop_void;
7344 		}
7345 	}
7346 
7347 	if (!pmu->pmu_enable) {
7348 		pmu->pmu_enable  = perf_pmu_nop_void;
7349 		pmu->pmu_disable = perf_pmu_nop_void;
7350 	}
7351 
7352 	if (!pmu->event_idx)
7353 		pmu->event_idx = perf_event_idx_default;
7354 
7355 	list_add_rcu(&pmu->entry, &pmus);
7356 	atomic_set(&pmu->exclusive_cnt, 0);
7357 	ret = 0;
7358 unlock:
7359 	mutex_unlock(&pmus_lock);
7360 
7361 	return ret;
7362 
7363 free_dev:
7364 	device_del(pmu->dev);
7365 	put_device(pmu->dev);
7366 
7367 free_idr:
7368 	if (pmu->type >= PERF_TYPE_MAX)
7369 		idr_remove(&pmu_idr, pmu->type);
7370 
7371 free_pdc:
7372 	free_percpu(pmu->pmu_disable_count);
7373 	goto unlock;
7374 }
7375 EXPORT_SYMBOL_GPL(perf_pmu_register);
7376 
7377 void perf_pmu_unregister(struct pmu *pmu)
7378 {
7379 	mutex_lock(&pmus_lock);
7380 	list_del_rcu(&pmu->entry);
7381 	mutex_unlock(&pmus_lock);
7382 
7383 	/*
7384 	 * We dereference the pmu list under both SRCU and regular RCU, so
7385 	 * synchronize against both of those.
7386 	 */
7387 	synchronize_srcu(&pmus_srcu);
7388 	synchronize_rcu();
7389 
7390 	free_percpu(pmu->pmu_disable_count);
7391 	if (pmu->type >= PERF_TYPE_MAX)
7392 		idr_remove(&pmu_idr, pmu->type);
7393 	device_del(pmu->dev);
7394 	put_device(pmu->dev);
7395 	free_pmu_context(pmu);
7396 }
7397 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7398 
7399 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7400 {
7401 	struct perf_event_context *ctx = NULL;
7402 	int ret;
7403 
7404 	if (!try_module_get(pmu->module))
7405 		return -ENODEV;
7406 
7407 	if (event->group_leader != event) {
7408 		/*
7409 		 * This ctx->mutex can nest when we're called through
7410 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7411 		 */
7412 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7413 						 SINGLE_DEPTH_NESTING);
7414 		BUG_ON(!ctx);
7415 	}
7416 
7417 	event->pmu = pmu;
7418 	ret = pmu->event_init(event);
7419 
7420 	if (ctx)
7421 		perf_event_ctx_unlock(event->group_leader, ctx);
7422 
7423 	if (ret)
7424 		module_put(pmu->module);
7425 
7426 	return ret;
7427 }
7428 
7429 struct pmu *perf_init_event(struct perf_event *event)
7430 {
7431 	struct pmu *pmu = NULL;
7432 	int idx;
7433 	int ret;
7434 
7435 	idx = srcu_read_lock(&pmus_srcu);
7436 
7437 	rcu_read_lock();
7438 	pmu = idr_find(&pmu_idr, event->attr.type);
7439 	rcu_read_unlock();
7440 	if (pmu) {
7441 		ret = perf_try_init_event(pmu, event);
7442 		if (ret)
7443 			pmu = ERR_PTR(ret);
7444 		goto unlock;
7445 	}
7446 
7447 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7448 		ret = perf_try_init_event(pmu, event);
7449 		if (!ret)
7450 			goto unlock;
7451 
7452 		if (ret != -ENOENT) {
7453 			pmu = ERR_PTR(ret);
7454 			goto unlock;
7455 		}
7456 	}
7457 	pmu = ERR_PTR(-ENOENT);
7458 unlock:
7459 	srcu_read_unlock(&pmus_srcu, idx);
7460 
7461 	return pmu;
7462 }
7463 
7464 static void account_event_cpu(struct perf_event *event, int cpu)
7465 {
7466 	if (event->parent)
7467 		return;
7468 
7469 	if (is_cgroup_event(event))
7470 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7471 }
7472 
7473 static void account_event(struct perf_event *event)
7474 {
7475 	if (event->parent)
7476 		return;
7477 
7478 	if (event->attach_state & PERF_ATTACH_TASK)
7479 		static_key_slow_inc(&perf_sched_events.key);
7480 	if (event->attr.mmap || event->attr.mmap_data)
7481 		atomic_inc(&nr_mmap_events);
7482 	if (event->attr.comm)
7483 		atomic_inc(&nr_comm_events);
7484 	if (event->attr.task)
7485 		atomic_inc(&nr_task_events);
7486 	if (event->attr.freq) {
7487 		if (atomic_inc_return(&nr_freq_events) == 1)
7488 			tick_nohz_full_kick_all();
7489 	}
7490 	if (has_branch_stack(event))
7491 		static_key_slow_inc(&perf_sched_events.key);
7492 	if (is_cgroup_event(event))
7493 		static_key_slow_inc(&perf_sched_events.key);
7494 
7495 	account_event_cpu(event, event->cpu);
7496 }
7497 
7498 /*
7499  * Allocate and initialize a event structure
7500  */
7501 static struct perf_event *
7502 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7503 		 struct task_struct *task,
7504 		 struct perf_event *group_leader,
7505 		 struct perf_event *parent_event,
7506 		 perf_overflow_handler_t overflow_handler,
7507 		 void *context, int cgroup_fd)
7508 {
7509 	struct pmu *pmu;
7510 	struct perf_event *event;
7511 	struct hw_perf_event *hwc;
7512 	long err = -EINVAL;
7513 
7514 	if ((unsigned)cpu >= nr_cpu_ids) {
7515 		if (!task || cpu != -1)
7516 			return ERR_PTR(-EINVAL);
7517 	}
7518 
7519 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7520 	if (!event)
7521 		return ERR_PTR(-ENOMEM);
7522 
7523 	/*
7524 	 * Single events are their own group leaders, with an
7525 	 * empty sibling list:
7526 	 */
7527 	if (!group_leader)
7528 		group_leader = event;
7529 
7530 	mutex_init(&event->child_mutex);
7531 	INIT_LIST_HEAD(&event->child_list);
7532 
7533 	INIT_LIST_HEAD(&event->group_entry);
7534 	INIT_LIST_HEAD(&event->event_entry);
7535 	INIT_LIST_HEAD(&event->sibling_list);
7536 	INIT_LIST_HEAD(&event->rb_entry);
7537 	INIT_LIST_HEAD(&event->active_entry);
7538 	INIT_HLIST_NODE(&event->hlist_entry);
7539 
7540 
7541 	init_waitqueue_head(&event->waitq);
7542 	init_irq_work(&event->pending, perf_pending_event);
7543 
7544 	mutex_init(&event->mmap_mutex);
7545 
7546 	atomic_long_set(&event->refcount, 1);
7547 	event->cpu		= cpu;
7548 	event->attr		= *attr;
7549 	event->group_leader	= group_leader;
7550 	event->pmu		= NULL;
7551 	event->oncpu		= -1;
7552 
7553 	event->parent		= parent_event;
7554 
7555 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7556 	event->id		= atomic64_inc_return(&perf_event_id);
7557 
7558 	event->state		= PERF_EVENT_STATE_INACTIVE;
7559 
7560 	if (task) {
7561 		event->attach_state = PERF_ATTACH_TASK;
7562 		/*
7563 		 * XXX pmu::event_init needs to know what task to account to
7564 		 * and we cannot use the ctx information because we need the
7565 		 * pmu before we get a ctx.
7566 		 */
7567 		event->hw.target = task;
7568 	}
7569 
7570 	event->clock = &local_clock;
7571 	if (parent_event)
7572 		event->clock = parent_event->clock;
7573 
7574 	if (!overflow_handler && parent_event) {
7575 		overflow_handler = parent_event->overflow_handler;
7576 		context = parent_event->overflow_handler_context;
7577 	}
7578 
7579 	event->overflow_handler	= overflow_handler;
7580 	event->overflow_handler_context = context;
7581 
7582 	perf_event__state_init(event);
7583 
7584 	pmu = NULL;
7585 
7586 	hwc = &event->hw;
7587 	hwc->sample_period = attr->sample_period;
7588 	if (attr->freq && attr->sample_freq)
7589 		hwc->sample_period = 1;
7590 	hwc->last_period = hwc->sample_period;
7591 
7592 	local64_set(&hwc->period_left, hwc->sample_period);
7593 
7594 	/*
7595 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7596 	 */
7597 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7598 		goto err_ns;
7599 
7600 	if (!has_branch_stack(event))
7601 		event->attr.branch_sample_type = 0;
7602 
7603 	if (cgroup_fd != -1) {
7604 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7605 		if (err)
7606 			goto err_ns;
7607 	}
7608 
7609 	pmu = perf_init_event(event);
7610 	if (!pmu)
7611 		goto err_ns;
7612 	else if (IS_ERR(pmu)) {
7613 		err = PTR_ERR(pmu);
7614 		goto err_ns;
7615 	}
7616 
7617 	err = exclusive_event_init(event);
7618 	if (err)
7619 		goto err_pmu;
7620 
7621 	if (!event->parent) {
7622 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7623 			err = get_callchain_buffers();
7624 			if (err)
7625 				goto err_per_task;
7626 		}
7627 	}
7628 
7629 	return event;
7630 
7631 err_per_task:
7632 	exclusive_event_destroy(event);
7633 
7634 err_pmu:
7635 	if (event->destroy)
7636 		event->destroy(event);
7637 	module_put(pmu->module);
7638 err_ns:
7639 	if (is_cgroup_event(event))
7640 		perf_detach_cgroup(event);
7641 	if (event->ns)
7642 		put_pid_ns(event->ns);
7643 	kfree(event);
7644 
7645 	return ERR_PTR(err);
7646 }
7647 
7648 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7649 			  struct perf_event_attr *attr)
7650 {
7651 	u32 size;
7652 	int ret;
7653 
7654 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7655 		return -EFAULT;
7656 
7657 	/*
7658 	 * zero the full structure, so that a short copy will be nice.
7659 	 */
7660 	memset(attr, 0, sizeof(*attr));
7661 
7662 	ret = get_user(size, &uattr->size);
7663 	if (ret)
7664 		return ret;
7665 
7666 	if (size > PAGE_SIZE)	/* silly large */
7667 		goto err_size;
7668 
7669 	if (!size)		/* abi compat */
7670 		size = PERF_ATTR_SIZE_VER0;
7671 
7672 	if (size < PERF_ATTR_SIZE_VER0)
7673 		goto err_size;
7674 
7675 	/*
7676 	 * If we're handed a bigger struct than we know of,
7677 	 * ensure all the unknown bits are 0 - i.e. new
7678 	 * user-space does not rely on any kernel feature
7679 	 * extensions we dont know about yet.
7680 	 */
7681 	if (size > sizeof(*attr)) {
7682 		unsigned char __user *addr;
7683 		unsigned char __user *end;
7684 		unsigned char val;
7685 
7686 		addr = (void __user *)uattr + sizeof(*attr);
7687 		end  = (void __user *)uattr + size;
7688 
7689 		for (; addr < end; addr++) {
7690 			ret = get_user(val, addr);
7691 			if (ret)
7692 				return ret;
7693 			if (val)
7694 				goto err_size;
7695 		}
7696 		size = sizeof(*attr);
7697 	}
7698 
7699 	ret = copy_from_user(attr, uattr, size);
7700 	if (ret)
7701 		return -EFAULT;
7702 
7703 	if (attr->__reserved_1)
7704 		return -EINVAL;
7705 
7706 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7707 		return -EINVAL;
7708 
7709 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7710 		return -EINVAL;
7711 
7712 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7713 		u64 mask = attr->branch_sample_type;
7714 
7715 		/* only using defined bits */
7716 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7717 			return -EINVAL;
7718 
7719 		/* at least one branch bit must be set */
7720 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7721 			return -EINVAL;
7722 
7723 		/* propagate priv level, when not set for branch */
7724 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7725 
7726 			/* exclude_kernel checked on syscall entry */
7727 			if (!attr->exclude_kernel)
7728 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
7729 
7730 			if (!attr->exclude_user)
7731 				mask |= PERF_SAMPLE_BRANCH_USER;
7732 
7733 			if (!attr->exclude_hv)
7734 				mask |= PERF_SAMPLE_BRANCH_HV;
7735 			/*
7736 			 * adjust user setting (for HW filter setup)
7737 			 */
7738 			attr->branch_sample_type = mask;
7739 		}
7740 		/* privileged levels capture (kernel, hv): check permissions */
7741 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7742 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7743 			return -EACCES;
7744 	}
7745 
7746 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7747 		ret = perf_reg_validate(attr->sample_regs_user);
7748 		if (ret)
7749 			return ret;
7750 	}
7751 
7752 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7753 		if (!arch_perf_have_user_stack_dump())
7754 			return -ENOSYS;
7755 
7756 		/*
7757 		 * We have __u32 type for the size, but so far
7758 		 * we can only use __u16 as maximum due to the
7759 		 * __u16 sample size limit.
7760 		 */
7761 		if (attr->sample_stack_user >= USHRT_MAX)
7762 			ret = -EINVAL;
7763 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7764 			ret = -EINVAL;
7765 	}
7766 
7767 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7768 		ret = perf_reg_validate(attr->sample_regs_intr);
7769 out:
7770 	return ret;
7771 
7772 err_size:
7773 	put_user(sizeof(*attr), &uattr->size);
7774 	ret = -E2BIG;
7775 	goto out;
7776 }
7777 
7778 static int
7779 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7780 {
7781 	struct ring_buffer *rb = NULL;
7782 	int ret = -EINVAL;
7783 
7784 	if (!output_event)
7785 		goto set;
7786 
7787 	/* don't allow circular references */
7788 	if (event == output_event)
7789 		goto out;
7790 
7791 	/*
7792 	 * Don't allow cross-cpu buffers
7793 	 */
7794 	if (output_event->cpu != event->cpu)
7795 		goto out;
7796 
7797 	/*
7798 	 * If its not a per-cpu rb, it must be the same task.
7799 	 */
7800 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7801 		goto out;
7802 
7803 	/*
7804 	 * Mixing clocks in the same buffer is trouble you don't need.
7805 	 */
7806 	if (output_event->clock != event->clock)
7807 		goto out;
7808 
7809 	/*
7810 	 * If both events generate aux data, they must be on the same PMU
7811 	 */
7812 	if (has_aux(event) && has_aux(output_event) &&
7813 	    event->pmu != output_event->pmu)
7814 		goto out;
7815 
7816 set:
7817 	mutex_lock(&event->mmap_mutex);
7818 	/* Can't redirect output if we've got an active mmap() */
7819 	if (atomic_read(&event->mmap_count))
7820 		goto unlock;
7821 
7822 	if (output_event) {
7823 		/* get the rb we want to redirect to */
7824 		rb = ring_buffer_get(output_event);
7825 		if (!rb)
7826 			goto unlock;
7827 	}
7828 
7829 	ring_buffer_attach(event, rb);
7830 
7831 	ret = 0;
7832 unlock:
7833 	mutex_unlock(&event->mmap_mutex);
7834 
7835 out:
7836 	return ret;
7837 }
7838 
7839 static void mutex_lock_double(struct mutex *a, struct mutex *b)
7840 {
7841 	if (b < a)
7842 		swap(a, b);
7843 
7844 	mutex_lock(a);
7845 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7846 }
7847 
7848 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
7849 {
7850 	bool nmi_safe = false;
7851 
7852 	switch (clk_id) {
7853 	case CLOCK_MONOTONIC:
7854 		event->clock = &ktime_get_mono_fast_ns;
7855 		nmi_safe = true;
7856 		break;
7857 
7858 	case CLOCK_MONOTONIC_RAW:
7859 		event->clock = &ktime_get_raw_fast_ns;
7860 		nmi_safe = true;
7861 		break;
7862 
7863 	case CLOCK_REALTIME:
7864 		event->clock = &ktime_get_real_ns;
7865 		break;
7866 
7867 	case CLOCK_BOOTTIME:
7868 		event->clock = &ktime_get_boot_ns;
7869 		break;
7870 
7871 	case CLOCK_TAI:
7872 		event->clock = &ktime_get_tai_ns;
7873 		break;
7874 
7875 	default:
7876 		return -EINVAL;
7877 	}
7878 
7879 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
7880 		return -EINVAL;
7881 
7882 	return 0;
7883 }
7884 
7885 /**
7886  * sys_perf_event_open - open a performance event, associate it to a task/cpu
7887  *
7888  * @attr_uptr:	event_id type attributes for monitoring/sampling
7889  * @pid:		target pid
7890  * @cpu:		target cpu
7891  * @group_fd:		group leader event fd
7892  */
7893 SYSCALL_DEFINE5(perf_event_open,
7894 		struct perf_event_attr __user *, attr_uptr,
7895 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7896 {
7897 	struct perf_event *group_leader = NULL, *output_event = NULL;
7898 	struct perf_event *event, *sibling;
7899 	struct perf_event_attr attr;
7900 	struct perf_event_context *ctx, *uninitialized_var(gctx);
7901 	struct file *event_file = NULL;
7902 	struct fd group = {NULL, 0};
7903 	struct task_struct *task = NULL;
7904 	struct pmu *pmu;
7905 	int event_fd;
7906 	int move_group = 0;
7907 	int err;
7908 	int f_flags = O_RDWR;
7909 	int cgroup_fd = -1;
7910 
7911 	/* for future expandability... */
7912 	if (flags & ~PERF_FLAG_ALL)
7913 		return -EINVAL;
7914 
7915 	err = perf_copy_attr(attr_uptr, &attr);
7916 	if (err)
7917 		return err;
7918 
7919 	if (!attr.exclude_kernel) {
7920 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7921 			return -EACCES;
7922 	}
7923 
7924 	if (attr.freq) {
7925 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7926 			return -EINVAL;
7927 	} else {
7928 		if (attr.sample_period & (1ULL << 63))
7929 			return -EINVAL;
7930 	}
7931 
7932 	/*
7933 	 * In cgroup mode, the pid argument is used to pass the fd
7934 	 * opened to the cgroup directory in cgroupfs. The cpu argument
7935 	 * designates the cpu on which to monitor threads from that
7936 	 * cgroup.
7937 	 */
7938 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7939 		return -EINVAL;
7940 
7941 	if (flags & PERF_FLAG_FD_CLOEXEC)
7942 		f_flags |= O_CLOEXEC;
7943 
7944 	event_fd = get_unused_fd_flags(f_flags);
7945 	if (event_fd < 0)
7946 		return event_fd;
7947 
7948 	if (group_fd != -1) {
7949 		err = perf_fget_light(group_fd, &group);
7950 		if (err)
7951 			goto err_fd;
7952 		group_leader = group.file->private_data;
7953 		if (flags & PERF_FLAG_FD_OUTPUT)
7954 			output_event = group_leader;
7955 		if (flags & PERF_FLAG_FD_NO_GROUP)
7956 			group_leader = NULL;
7957 	}
7958 
7959 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7960 		task = find_lively_task_by_vpid(pid);
7961 		if (IS_ERR(task)) {
7962 			err = PTR_ERR(task);
7963 			goto err_group_fd;
7964 		}
7965 	}
7966 
7967 	if (task && group_leader &&
7968 	    group_leader->attr.inherit != attr.inherit) {
7969 		err = -EINVAL;
7970 		goto err_task;
7971 	}
7972 
7973 	get_online_cpus();
7974 
7975 	if (flags & PERF_FLAG_PID_CGROUP)
7976 		cgroup_fd = pid;
7977 
7978 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7979 				 NULL, NULL, cgroup_fd);
7980 	if (IS_ERR(event)) {
7981 		err = PTR_ERR(event);
7982 		goto err_cpus;
7983 	}
7984 
7985 	if (is_sampling_event(event)) {
7986 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7987 			err = -ENOTSUPP;
7988 			goto err_alloc;
7989 		}
7990 	}
7991 
7992 	account_event(event);
7993 
7994 	/*
7995 	 * Special case software events and allow them to be part of
7996 	 * any hardware group.
7997 	 */
7998 	pmu = event->pmu;
7999 
8000 	if (attr.use_clockid) {
8001 		err = perf_event_set_clock(event, attr.clockid);
8002 		if (err)
8003 			goto err_alloc;
8004 	}
8005 
8006 	if (group_leader &&
8007 	    (is_software_event(event) != is_software_event(group_leader))) {
8008 		if (is_software_event(event)) {
8009 			/*
8010 			 * If event and group_leader are not both a software
8011 			 * event, and event is, then group leader is not.
8012 			 *
8013 			 * Allow the addition of software events to !software
8014 			 * groups, this is safe because software events never
8015 			 * fail to schedule.
8016 			 */
8017 			pmu = group_leader->pmu;
8018 		} else if (is_software_event(group_leader) &&
8019 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8020 			/*
8021 			 * In case the group is a pure software group, and we
8022 			 * try to add a hardware event, move the whole group to
8023 			 * the hardware context.
8024 			 */
8025 			move_group = 1;
8026 		}
8027 	}
8028 
8029 	/*
8030 	 * Get the target context (task or percpu):
8031 	 */
8032 	ctx = find_get_context(pmu, task, event);
8033 	if (IS_ERR(ctx)) {
8034 		err = PTR_ERR(ctx);
8035 		goto err_alloc;
8036 	}
8037 
8038 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8039 		err = -EBUSY;
8040 		goto err_context;
8041 	}
8042 
8043 	if (task) {
8044 		put_task_struct(task);
8045 		task = NULL;
8046 	}
8047 
8048 	/*
8049 	 * Look up the group leader (we will attach this event to it):
8050 	 */
8051 	if (group_leader) {
8052 		err = -EINVAL;
8053 
8054 		/*
8055 		 * Do not allow a recursive hierarchy (this new sibling
8056 		 * becoming part of another group-sibling):
8057 		 */
8058 		if (group_leader->group_leader != group_leader)
8059 			goto err_context;
8060 
8061 		/* All events in a group should have the same clock */
8062 		if (group_leader->clock != event->clock)
8063 			goto err_context;
8064 
8065 		/*
8066 		 * Do not allow to attach to a group in a different
8067 		 * task or CPU context:
8068 		 */
8069 		if (move_group) {
8070 			/*
8071 			 * Make sure we're both on the same task, or both
8072 			 * per-cpu events.
8073 			 */
8074 			if (group_leader->ctx->task != ctx->task)
8075 				goto err_context;
8076 
8077 			/*
8078 			 * Make sure we're both events for the same CPU;
8079 			 * grouping events for different CPUs is broken; since
8080 			 * you can never concurrently schedule them anyhow.
8081 			 */
8082 			if (group_leader->cpu != event->cpu)
8083 				goto err_context;
8084 		} else {
8085 			if (group_leader->ctx != ctx)
8086 				goto err_context;
8087 		}
8088 
8089 		/*
8090 		 * Only a group leader can be exclusive or pinned
8091 		 */
8092 		if (attr.exclusive || attr.pinned)
8093 			goto err_context;
8094 	}
8095 
8096 	if (output_event) {
8097 		err = perf_event_set_output(event, output_event);
8098 		if (err)
8099 			goto err_context;
8100 	}
8101 
8102 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8103 					f_flags);
8104 	if (IS_ERR(event_file)) {
8105 		err = PTR_ERR(event_file);
8106 		goto err_context;
8107 	}
8108 
8109 	if (move_group) {
8110 		gctx = group_leader->ctx;
8111 
8112 		/*
8113 		 * See perf_event_ctx_lock() for comments on the details
8114 		 * of swizzling perf_event::ctx.
8115 		 */
8116 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8117 
8118 		perf_remove_from_context(group_leader, false);
8119 
8120 		list_for_each_entry(sibling, &group_leader->sibling_list,
8121 				    group_entry) {
8122 			perf_remove_from_context(sibling, false);
8123 			put_ctx(gctx);
8124 		}
8125 	} else {
8126 		mutex_lock(&ctx->mutex);
8127 	}
8128 
8129 	WARN_ON_ONCE(ctx->parent_ctx);
8130 
8131 	if (move_group) {
8132 		/*
8133 		 * Wait for everybody to stop referencing the events through
8134 		 * the old lists, before installing it on new lists.
8135 		 */
8136 		synchronize_rcu();
8137 
8138 		/*
8139 		 * Install the group siblings before the group leader.
8140 		 *
8141 		 * Because a group leader will try and install the entire group
8142 		 * (through the sibling list, which is still in-tact), we can
8143 		 * end up with siblings installed in the wrong context.
8144 		 *
8145 		 * By installing siblings first we NO-OP because they're not
8146 		 * reachable through the group lists.
8147 		 */
8148 		list_for_each_entry(sibling, &group_leader->sibling_list,
8149 				    group_entry) {
8150 			perf_event__state_init(sibling);
8151 			perf_install_in_context(ctx, sibling, sibling->cpu);
8152 			get_ctx(ctx);
8153 		}
8154 
8155 		/*
8156 		 * Removing from the context ends up with disabled
8157 		 * event. What we want here is event in the initial
8158 		 * startup state, ready to be add into new context.
8159 		 */
8160 		perf_event__state_init(group_leader);
8161 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8162 		get_ctx(ctx);
8163 	}
8164 
8165 	if (!exclusive_event_installable(event, ctx)) {
8166 		err = -EBUSY;
8167 		mutex_unlock(&ctx->mutex);
8168 		fput(event_file);
8169 		goto err_context;
8170 	}
8171 
8172 	perf_install_in_context(ctx, event, event->cpu);
8173 	perf_unpin_context(ctx);
8174 
8175 	if (move_group) {
8176 		mutex_unlock(&gctx->mutex);
8177 		put_ctx(gctx);
8178 	}
8179 	mutex_unlock(&ctx->mutex);
8180 
8181 	put_online_cpus();
8182 
8183 	event->owner = current;
8184 
8185 	mutex_lock(&current->perf_event_mutex);
8186 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8187 	mutex_unlock(&current->perf_event_mutex);
8188 
8189 	/*
8190 	 * Precalculate sample_data sizes
8191 	 */
8192 	perf_event__header_size(event);
8193 	perf_event__id_header_size(event);
8194 
8195 	/*
8196 	 * Drop the reference on the group_event after placing the
8197 	 * new event on the sibling_list. This ensures destruction
8198 	 * of the group leader will find the pointer to itself in
8199 	 * perf_group_detach().
8200 	 */
8201 	fdput(group);
8202 	fd_install(event_fd, event_file);
8203 	return event_fd;
8204 
8205 err_context:
8206 	perf_unpin_context(ctx);
8207 	put_ctx(ctx);
8208 err_alloc:
8209 	free_event(event);
8210 err_cpus:
8211 	put_online_cpus();
8212 err_task:
8213 	if (task)
8214 		put_task_struct(task);
8215 err_group_fd:
8216 	fdput(group);
8217 err_fd:
8218 	put_unused_fd(event_fd);
8219 	return err;
8220 }
8221 
8222 /**
8223  * perf_event_create_kernel_counter
8224  *
8225  * @attr: attributes of the counter to create
8226  * @cpu: cpu in which the counter is bound
8227  * @task: task to profile (NULL for percpu)
8228  */
8229 struct perf_event *
8230 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8231 				 struct task_struct *task,
8232 				 perf_overflow_handler_t overflow_handler,
8233 				 void *context)
8234 {
8235 	struct perf_event_context *ctx;
8236 	struct perf_event *event;
8237 	int err;
8238 
8239 	/*
8240 	 * Get the target context (task or percpu):
8241 	 */
8242 
8243 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8244 				 overflow_handler, context, -1);
8245 	if (IS_ERR(event)) {
8246 		err = PTR_ERR(event);
8247 		goto err;
8248 	}
8249 
8250 	/* Mark owner so we could distinguish it from user events. */
8251 	event->owner = EVENT_OWNER_KERNEL;
8252 
8253 	account_event(event);
8254 
8255 	ctx = find_get_context(event->pmu, task, event);
8256 	if (IS_ERR(ctx)) {
8257 		err = PTR_ERR(ctx);
8258 		goto err_free;
8259 	}
8260 
8261 	WARN_ON_ONCE(ctx->parent_ctx);
8262 	mutex_lock(&ctx->mutex);
8263 	if (!exclusive_event_installable(event, ctx)) {
8264 		mutex_unlock(&ctx->mutex);
8265 		perf_unpin_context(ctx);
8266 		put_ctx(ctx);
8267 		err = -EBUSY;
8268 		goto err_free;
8269 	}
8270 
8271 	perf_install_in_context(ctx, event, cpu);
8272 	perf_unpin_context(ctx);
8273 	mutex_unlock(&ctx->mutex);
8274 
8275 	return event;
8276 
8277 err_free:
8278 	free_event(event);
8279 err:
8280 	return ERR_PTR(err);
8281 }
8282 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8283 
8284 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8285 {
8286 	struct perf_event_context *src_ctx;
8287 	struct perf_event_context *dst_ctx;
8288 	struct perf_event *event, *tmp;
8289 	LIST_HEAD(events);
8290 
8291 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8292 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8293 
8294 	/*
8295 	 * See perf_event_ctx_lock() for comments on the details
8296 	 * of swizzling perf_event::ctx.
8297 	 */
8298 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8299 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8300 				 event_entry) {
8301 		perf_remove_from_context(event, false);
8302 		unaccount_event_cpu(event, src_cpu);
8303 		put_ctx(src_ctx);
8304 		list_add(&event->migrate_entry, &events);
8305 	}
8306 
8307 	/*
8308 	 * Wait for the events to quiesce before re-instating them.
8309 	 */
8310 	synchronize_rcu();
8311 
8312 	/*
8313 	 * Re-instate events in 2 passes.
8314 	 *
8315 	 * Skip over group leaders and only install siblings on this first
8316 	 * pass, siblings will not get enabled without a leader, however a
8317 	 * leader will enable its siblings, even if those are still on the old
8318 	 * context.
8319 	 */
8320 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8321 		if (event->group_leader == event)
8322 			continue;
8323 
8324 		list_del(&event->migrate_entry);
8325 		if (event->state >= PERF_EVENT_STATE_OFF)
8326 			event->state = PERF_EVENT_STATE_INACTIVE;
8327 		account_event_cpu(event, dst_cpu);
8328 		perf_install_in_context(dst_ctx, event, dst_cpu);
8329 		get_ctx(dst_ctx);
8330 	}
8331 
8332 	/*
8333 	 * Once all the siblings are setup properly, install the group leaders
8334 	 * to make it go.
8335 	 */
8336 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8337 		list_del(&event->migrate_entry);
8338 		if (event->state >= PERF_EVENT_STATE_OFF)
8339 			event->state = PERF_EVENT_STATE_INACTIVE;
8340 		account_event_cpu(event, dst_cpu);
8341 		perf_install_in_context(dst_ctx, event, dst_cpu);
8342 		get_ctx(dst_ctx);
8343 	}
8344 	mutex_unlock(&dst_ctx->mutex);
8345 	mutex_unlock(&src_ctx->mutex);
8346 }
8347 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8348 
8349 static void sync_child_event(struct perf_event *child_event,
8350 			       struct task_struct *child)
8351 {
8352 	struct perf_event *parent_event = child_event->parent;
8353 	u64 child_val;
8354 
8355 	if (child_event->attr.inherit_stat)
8356 		perf_event_read_event(child_event, child);
8357 
8358 	child_val = perf_event_count(child_event);
8359 
8360 	/*
8361 	 * Add back the child's count to the parent's count:
8362 	 */
8363 	atomic64_add(child_val, &parent_event->child_count);
8364 	atomic64_add(child_event->total_time_enabled,
8365 		     &parent_event->child_total_time_enabled);
8366 	atomic64_add(child_event->total_time_running,
8367 		     &parent_event->child_total_time_running);
8368 
8369 	/*
8370 	 * Remove this event from the parent's list
8371 	 */
8372 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8373 	mutex_lock(&parent_event->child_mutex);
8374 	list_del_init(&child_event->child_list);
8375 	mutex_unlock(&parent_event->child_mutex);
8376 
8377 	/*
8378 	 * Make sure user/parent get notified, that we just
8379 	 * lost one event.
8380 	 */
8381 	perf_event_wakeup(parent_event);
8382 
8383 	/*
8384 	 * Release the parent event, if this was the last
8385 	 * reference to it.
8386 	 */
8387 	put_event(parent_event);
8388 }
8389 
8390 static void
8391 __perf_event_exit_task(struct perf_event *child_event,
8392 			 struct perf_event_context *child_ctx,
8393 			 struct task_struct *child)
8394 {
8395 	/*
8396 	 * Do not destroy the 'original' grouping; because of the context
8397 	 * switch optimization the original events could've ended up in a
8398 	 * random child task.
8399 	 *
8400 	 * If we were to destroy the original group, all group related
8401 	 * operations would cease to function properly after this random
8402 	 * child dies.
8403 	 *
8404 	 * Do destroy all inherited groups, we don't care about those
8405 	 * and being thorough is better.
8406 	 */
8407 	perf_remove_from_context(child_event, !!child_event->parent);
8408 
8409 	/*
8410 	 * It can happen that the parent exits first, and has events
8411 	 * that are still around due to the child reference. These
8412 	 * events need to be zapped.
8413 	 */
8414 	if (child_event->parent) {
8415 		sync_child_event(child_event, child);
8416 		free_event(child_event);
8417 	} else {
8418 		child_event->state = PERF_EVENT_STATE_EXIT;
8419 		perf_event_wakeup(child_event);
8420 	}
8421 }
8422 
8423 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8424 {
8425 	struct perf_event *child_event, *next;
8426 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8427 	unsigned long flags;
8428 
8429 	if (likely(!child->perf_event_ctxp[ctxn])) {
8430 		perf_event_task(child, NULL, 0);
8431 		return;
8432 	}
8433 
8434 	local_irq_save(flags);
8435 	/*
8436 	 * We can't reschedule here because interrupts are disabled,
8437 	 * and either child is current or it is a task that can't be
8438 	 * scheduled, so we are now safe from rescheduling changing
8439 	 * our context.
8440 	 */
8441 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8442 
8443 	/*
8444 	 * Take the context lock here so that if find_get_context is
8445 	 * reading child->perf_event_ctxp, we wait until it has
8446 	 * incremented the context's refcount before we do put_ctx below.
8447 	 */
8448 	raw_spin_lock(&child_ctx->lock);
8449 	task_ctx_sched_out(child_ctx);
8450 	child->perf_event_ctxp[ctxn] = NULL;
8451 
8452 	/*
8453 	 * If this context is a clone; unclone it so it can't get
8454 	 * swapped to another process while we're removing all
8455 	 * the events from it.
8456 	 */
8457 	clone_ctx = unclone_ctx(child_ctx);
8458 	update_context_time(child_ctx);
8459 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8460 
8461 	if (clone_ctx)
8462 		put_ctx(clone_ctx);
8463 
8464 	/*
8465 	 * Report the task dead after unscheduling the events so that we
8466 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8467 	 * get a few PERF_RECORD_READ events.
8468 	 */
8469 	perf_event_task(child, child_ctx, 0);
8470 
8471 	/*
8472 	 * We can recurse on the same lock type through:
8473 	 *
8474 	 *   __perf_event_exit_task()
8475 	 *     sync_child_event()
8476 	 *       put_event()
8477 	 *         mutex_lock(&ctx->mutex)
8478 	 *
8479 	 * But since its the parent context it won't be the same instance.
8480 	 */
8481 	mutex_lock(&child_ctx->mutex);
8482 
8483 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8484 		__perf_event_exit_task(child_event, child_ctx, child);
8485 
8486 	mutex_unlock(&child_ctx->mutex);
8487 
8488 	put_ctx(child_ctx);
8489 }
8490 
8491 /*
8492  * When a child task exits, feed back event values to parent events.
8493  */
8494 void perf_event_exit_task(struct task_struct *child)
8495 {
8496 	struct perf_event *event, *tmp;
8497 	int ctxn;
8498 
8499 	mutex_lock(&child->perf_event_mutex);
8500 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8501 				 owner_entry) {
8502 		list_del_init(&event->owner_entry);
8503 
8504 		/*
8505 		 * Ensure the list deletion is visible before we clear
8506 		 * the owner, closes a race against perf_release() where
8507 		 * we need to serialize on the owner->perf_event_mutex.
8508 		 */
8509 		smp_wmb();
8510 		event->owner = NULL;
8511 	}
8512 	mutex_unlock(&child->perf_event_mutex);
8513 
8514 	for_each_task_context_nr(ctxn)
8515 		perf_event_exit_task_context(child, ctxn);
8516 }
8517 
8518 static void perf_free_event(struct perf_event *event,
8519 			    struct perf_event_context *ctx)
8520 {
8521 	struct perf_event *parent = event->parent;
8522 
8523 	if (WARN_ON_ONCE(!parent))
8524 		return;
8525 
8526 	mutex_lock(&parent->child_mutex);
8527 	list_del_init(&event->child_list);
8528 	mutex_unlock(&parent->child_mutex);
8529 
8530 	put_event(parent);
8531 
8532 	raw_spin_lock_irq(&ctx->lock);
8533 	perf_group_detach(event);
8534 	list_del_event(event, ctx);
8535 	raw_spin_unlock_irq(&ctx->lock);
8536 	free_event(event);
8537 }
8538 
8539 /*
8540  * Free an unexposed, unused context as created by inheritance by
8541  * perf_event_init_task below, used by fork() in case of fail.
8542  *
8543  * Not all locks are strictly required, but take them anyway to be nice and
8544  * help out with the lockdep assertions.
8545  */
8546 void perf_event_free_task(struct task_struct *task)
8547 {
8548 	struct perf_event_context *ctx;
8549 	struct perf_event *event, *tmp;
8550 	int ctxn;
8551 
8552 	for_each_task_context_nr(ctxn) {
8553 		ctx = task->perf_event_ctxp[ctxn];
8554 		if (!ctx)
8555 			continue;
8556 
8557 		mutex_lock(&ctx->mutex);
8558 again:
8559 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8560 				group_entry)
8561 			perf_free_event(event, ctx);
8562 
8563 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8564 				group_entry)
8565 			perf_free_event(event, ctx);
8566 
8567 		if (!list_empty(&ctx->pinned_groups) ||
8568 				!list_empty(&ctx->flexible_groups))
8569 			goto again;
8570 
8571 		mutex_unlock(&ctx->mutex);
8572 
8573 		put_ctx(ctx);
8574 	}
8575 }
8576 
8577 void perf_event_delayed_put(struct task_struct *task)
8578 {
8579 	int ctxn;
8580 
8581 	for_each_task_context_nr(ctxn)
8582 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8583 }
8584 
8585 /*
8586  * inherit a event from parent task to child task:
8587  */
8588 static struct perf_event *
8589 inherit_event(struct perf_event *parent_event,
8590 	      struct task_struct *parent,
8591 	      struct perf_event_context *parent_ctx,
8592 	      struct task_struct *child,
8593 	      struct perf_event *group_leader,
8594 	      struct perf_event_context *child_ctx)
8595 {
8596 	enum perf_event_active_state parent_state = parent_event->state;
8597 	struct perf_event *child_event;
8598 	unsigned long flags;
8599 
8600 	/*
8601 	 * Instead of creating recursive hierarchies of events,
8602 	 * we link inherited events back to the original parent,
8603 	 * which has a filp for sure, which we use as the reference
8604 	 * count:
8605 	 */
8606 	if (parent_event->parent)
8607 		parent_event = parent_event->parent;
8608 
8609 	child_event = perf_event_alloc(&parent_event->attr,
8610 					   parent_event->cpu,
8611 					   child,
8612 					   group_leader, parent_event,
8613 					   NULL, NULL, -1);
8614 	if (IS_ERR(child_event))
8615 		return child_event;
8616 
8617 	if (is_orphaned_event(parent_event) ||
8618 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8619 		free_event(child_event);
8620 		return NULL;
8621 	}
8622 
8623 	get_ctx(child_ctx);
8624 
8625 	/*
8626 	 * Make the child state follow the state of the parent event,
8627 	 * not its attr.disabled bit.  We hold the parent's mutex,
8628 	 * so we won't race with perf_event_{en, dis}able_family.
8629 	 */
8630 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8631 		child_event->state = PERF_EVENT_STATE_INACTIVE;
8632 	else
8633 		child_event->state = PERF_EVENT_STATE_OFF;
8634 
8635 	if (parent_event->attr.freq) {
8636 		u64 sample_period = parent_event->hw.sample_period;
8637 		struct hw_perf_event *hwc = &child_event->hw;
8638 
8639 		hwc->sample_period = sample_period;
8640 		hwc->last_period   = sample_period;
8641 
8642 		local64_set(&hwc->period_left, sample_period);
8643 	}
8644 
8645 	child_event->ctx = child_ctx;
8646 	child_event->overflow_handler = parent_event->overflow_handler;
8647 	child_event->overflow_handler_context
8648 		= parent_event->overflow_handler_context;
8649 
8650 	/*
8651 	 * Precalculate sample_data sizes
8652 	 */
8653 	perf_event__header_size(child_event);
8654 	perf_event__id_header_size(child_event);
8655 
8656 	/*
8657 	 * Link it up in the child's context:
8658 	 */
8659 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
8660 	add_event_to_ctx(child_event, child_ctx);
8661 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8662 
8663 	/*
8664 	 * Link this into the parent event's child list
8665 	 */
8666 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8667 	mutex_lock(&parent_event->child_mutex);
8668 	list_add_tail(&child_event->child_list, &parent_event->child_list);
8669 	mutex_unlock(&parent_event->child_mutex);
8670 
8671 	return child_event;
8672 }
8673 
8674 static int inherit_group(struct perf_event *parent_event,
8675 	      struct task_struct *parent,
8676 	      struct perf_event_context *parent_ctx,
8677 	      struct task_struct *child,
8678 	      struct perf_event_context *child_ctx)
8679 {
8680 	struct perf_event *leader;
8681 	struct perf_event *sub;
8682 	struct perf_event *child_ctr;
8683 
8684 	leader = inherit_event(parent_event, parent, parent_ctx,
8685 				 child, NULL, child_ctx);
8686 	if (IS_ERR(leader))
8687 		return PTR_ERR(leader);
8688 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8689 		child_ctr = inherit_event(sub, parent, parent_ctx,
8690 					    child, leader, child_ctx);
8691 		if (IS_ERR(child_ctr))
8692 			return PTR_ERR(child_ctr);
8693 	}
8694 	return 0;
8695 }
8696 
8697 static int
8698 inherit_task_group(struct perf_event *event, struct task_struct *parent,
8699 		   struct perf_event_context *parent_ctx,
8700 		   struct task_struct *child, int ctxn,
8701 		   int *inherited_all)
8702 {
8703 	int ret;
8704 	struct perf_event_context *child_ctx;
8705 
8706 	if (!event->attr.inherit) {
8707 		*inherited_all = 0;
8708 		return 0;
8709 	}
8710 
8711 	child_ctx = child->perf_event_ctxp[ctxn];
8712 	if (!child_ctx) {
8713 		/*
8714 		 * This is executed from the parent task context, so
8715 		 * inherit events that have been marked for cloning.
8716 		 * First allocate and initialize a context for the
8717 		 * child.
8718 		 */
8719 
8720 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8721 		if (!child_ctx)
8722 			return -ENOMEM;
8723 
8724 		child->perf_event_ctxp[ctxn] = child_ctx;
8725 	}
8726 
8727 	ret = inherit_group(event, parent, parent_ctx,
8728 			    child, child_ctx);
8729 
8730 	if (ret)
8731 		*inherited_all = 0;
8732 
8733 	return ret;
8734 }
8735 
8736 /*
8737  * Initialize the perf_event context in task_struct
8738  */
8739 static int perf_event_init_context(struct task_struct *child, int ctxn)
8740 {
8741 	struct perf_event_context *child_ctx, *parent_ctx;
8742 	struct perf_event_context *cloned_ctx;
8743 	struct perf_event *event;
8744 	struct task_struct *parent = current;
8745 	int inherited_all = 1;
8746 	unsigned long flags;
8747 	int ret = 0;
8748 
8749 	if (likely(!parent->perf_event_ctxp[ctxn]))
8750 		return 0;
8751 
8752 	/*
8753 	 * If the parent's context is a clone, pin it so it won't get
8754 	 * swapped under us.
8755 	 */
8756 	parent_ctx = perf_pin_task_context(parent, ctxn);
8757 	if (!parent_ctx)
8758 		return 0;
8759 
8760 	/*
8761 	 * No need to check if parent_ctx != NULL here; since we saw
8762 	 * it non-NULL earlier, the only reason for it to become NULL
8763 	 * is if we exit, and since we're currently in the middle of
8764 	 * a fork we can't be exiting at the same time.
8765 	 */
8766 
8767 	/*
8768 	 * Lock the parent list. No need to lock the child - not PID
8769 	 * hashed yet and not running, so nobody can access it.
8770 	 */
8771 	mutex_lock(&parent_ctx->mutex);
8772 
8773 	/*
8774 	 * We dont have to disable NMIs - we are only looking at
8775 	 * the list, not manipulating it:
8776 	 */
8777 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8778 		ret = inherit_task_group(event, parent, parent_ctx,
8779 					 child, ctxn, &inherited_all);
8780 		if (ret)
8781 			break;
8782 	}
8783 
8784 	/*
8785 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
8786 	 * to allocations, but we need to prevent rotation because
8787 	 * rotate_ctx() will change the list from interrupt context.
8788 	 */
8789 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8790 	parent_ctx->rotate_disable = 1;
8791 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8792 
8793 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8794 		ret = inherit_task_group(event, parent, parent_ctx,
8795 					 child, ctxn, &inherited_all);
8796 		if (ret)
8797 			break;
8798 	}
8799 
8800 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8801 	parent_ctx->rotate_disable = 0;
8802 
8803 	child_ctx = child->perf_event_ctxp[ctxn];
8804 
8805 	if (child_ctx && inherited_all) {
8806 		/*
8807 		 * Mark the child context as a clone of the parent
8808 		 * context, or of whatever the parent is a clone of.
8809 		 *
8810 		 * Note that if the parent is a clone, the holding of
8811 		 * parent_ctx->lock avoids it from being uncloned.
8812 		 */
8813 		cloned_ctx = parent_ctx->parent_ctx;
8814 		if (cloned_ctx) {
8815 			child_ctx->parent_ctx = cloned_ctx;
8816 			child_ctx->parent_gen = parent_ctx->parent_gen;
8817 		} else {
8818 			child_ctx->parent_ctx = parent_ctx;
8819 			child_ctx->parent_gen = parent_ctx->generation;
8820 		}
8821 		get_ctx(child_ctx->parent_ctx);
8822 	}
8823 
8824 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8825 	mutex_unlock(&parent_ctx->mutex);
8826 
8827 	perf_unpin_context(parent_ctx);
8828 	put_ctx(parent_ctx);
8829 
8830 	return ret;
8831 }
8832 
8833 /*
8834  * Initialize the perf_event context in task_struct
8835  */
8836 int perf_event_init_task(struct task_struct *child)
8837 {
8838 	int ctxn, ret;
8839 
8840 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8841 	mutex_init(&child->perf_event_mutex);
8842 	INIT_LIST_HEAD(&child->perf_event_list);
8843 
8844 	for_each_task_context_nr(ctxn) {
8845 		ret = perf_event_init_context(child, ctxn);
8846 		if (ret) {
8847 			perf_event_free_task(child);
8848 			return ret;
8849 		}
8850 	}
8851 
8852 	return 0;
8853 }
8854 
8855 static void __init perf_event_init_all_cpus(void)
8856 {
8857 	struct swevent_htable *swhash;
8858 	int cpu;
8859 
8860 	for_each_possible_cpu(cpu) {
8861 		swhash = &per_cpu(swevent_htable, cpu);
8862 		mutex_init(&swhash->hlist_mutex);
8863 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8864 	}
8865 }
8866 
8867 static void perf_event_init_cpu(int cpu)
8868 {
8869 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8870 
8871 	mutex_lock(&swhash->hlist_mutex);
8872 	swhash->online = true;
8873 	if (swhash->hlist_refcount > 0) {
8874 		struct swevent_hlist *hlist;
8875 
8876 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8877 		WARN_ON(!hlist);
8878 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8879 	}
8880 	mutex_unlock(&swhash->hlist_mutex);
8881 }
8882 
8883 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8884 static void __perf_event_exit_context(void *__info)
8885 {
8886 	struct remove_event re = { .detach_group = true };
8887 	struct perf_event_context *ctx = __info;
8888 
8889 	rcu_read_lock();
8890 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8891 		__perf_remove_from_context(&re);
8892 	rcu_read_unlock();
8893 }
8894 
8895 static void perf_event_exit_cpu_context(int cpu)
8896 {
8897 	struct perf_event_context *ctx;
8898 	struct pmu *pmu;
8899 	int idx;
8900 
8901 	idx = srcu_read_lock(&pmus_srcu);
8902 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8903 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8904 
8905 		mutex_lock(&ctx->mutex);
8906 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8907 		mutex_unlock(&ctx->mutex);
8908 	}
8909 	srcu_read_unlock(&pmus_srcu, idx);
8910 }
8911 
8912 static void perf_event_exit_cpu(int cpu)
8913 {
8914 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8915 
8916 	perf_event_exit_cpu_context(cpu);
8917 
8918 	mutex_lock(&swhash->hlist_mutex);
8919 	swhash->online = false;
8920 	swevent_hlist_release(swhash);
8921 	mutex_unlock(&swhash->hlist_mutex);
8922 }
8923 #else
8924 static inline void perf_event_exit_cpu(int cpu) { }
8925 #endif
8926 
8927 static int
8928 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8929 {
8930 	int cpu;
8931 
8932 	for_each_online_cpu(cpu)
8933 		perf_event_exit_cpu(cpu);
8934 
8935 	return NOTIFY_OK;
8936 }
8937 
8938 /*
8939  * Run the perf reboot notifier at the very last possible moment so that
8940  * the generic watchdog code runs as long as possible.
8941  */
8942 static struct notifier_block perf_reboot_notifier = {
8943 	.notifier_call = perf_reboot,
8944 	.priority = INT_MIN,
8945 };
8946 
8947 static int
8948 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8949 {
8950 	unsigned int cpu = (long)hcpu;
8951 
8952 	switch (action & ~CPU_TASKS_FROZEN) {
8953 
8954 	case CPU_UP_PREPARE:
8955 	case CPU_DOWN_FAILED:
8956 		perf_event_init_cpu(cpu);
8957 		break;
8958 
8959 	case CPU_UP_CANCELED:
8960 	case CPU_DOWN_PREPARE:
8961 		perf_event_exit_cpu(cpu);
8962 		break;
8963 	default:
8964 		break;
8965 	}
8966 
8967 	return NOTIFY_OK;
8968 }
8969 
8970 void __init perf_event_init(void)
8971 {
8972 	int ret;
8973 
8974 	idr_init(&pmu_idr);
8975 
8976 	perf_event_init_all_cpus();
8977 	init_srcu_struct(&pmus_srcu);
8978 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8979 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
8980 	perf_pmu_register(&perf_task_clock, NULL, -1);
8981 	perf_tp_register();
8982 	perf_cpu_notifier(perf_cpu_notify);
8983 	register_reboot_notifier(&perf_reboot_notifier);
8984 
8985 	ret = init_hw_breakpoint();
8986 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8987 
8988 	/* do not patch jump label more than once per second */
8989 	jump_label_rate_limit(&perf_sched_events, HZ);
8990 
8991 	/*
8992 	 * Build time assertion that we keep the data_head at the intended
8993 	 * location.  IOW, validation we got the __reserved[] size right.
8994 	 */
8995 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8996 		     != 1024);
8997 }
8998 
8999 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9000 			      char *page)
9001 {
9002 	struct perf_pmu_events_attr *pmu_attr =
9003 		container_of(attr, struct perf_pmu_events_attr, attr);
9004 
9005 	if (pmu_attr->event_str)
9006 		return sprintf(page, "%s\n", pmu_attr->event_str);
9007 
9008 	return 0;
9009 }
9010 
9011 static int __init perf_event_sysfs_init(void)
9012 {
9013 	struct pmu *pmu;
9014 	int ret;
9015 
9016 	mutex_lock(&pmus_lock);
9017 
9018 	ret = bus_register(&pmu_bus);
9019 	if (ret)
9020 		goto unlock;
9021 
9022 	list_for_each_entry(pmu, &pmus, entry) {
9023 		if (!pmu->name || pmu->type < 0)
9024 			continue;
9025 
9026 		ret = pmu_dev_alloc(pmu);
9027 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9028 	}
9029 	pmu_bus_running = 1;
9030 	ret = 0;
9031 
9032 unlock:
9033 	mutex_unlock(&pmus_lock);
9034 
9035 	return ret;
9036 }
9037 device_initcall(perf_event_sysfs_init);
9038 
9039 #ifdef CONFIG_CGROUP_PERF
9040 static struct cgroup_subsys_state *
9041 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9042 {
9043 	struct perf_cgroup *jc;
9044 
9045 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9046 	if (!jc)
9047 		return ERR_PTR(-ENOMEM);
9048 
9049 	jc->info = alloc_percpu(struct perf_cgroup_info);
9050 	if (!jc->info) {
9051 		kfree(jc);
9052 		return ERR_PTR(-ENOMEM);
9053 	}
9054 
9055 	return &jc->css;
9056 }
9057 
9058 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9059 {
9060 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9061 
9062 	free_percpu(jc->info);
9063 	kfree(jc);
9064 }
9065 
9066 static int __perf_cgroup_move(void *info)
9067 {
9068 	struct task_struct *task = info;
9069 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9070 	return 0;
9071 }
9072 
9073 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9074 			       struct cgroup_taskset *tset)
9075 {
9076 	struct task_struct *task;
9077 
9078 	cgroup_taskset_for_each(task, tset)
9079 		task_function_call(task, __perf_cgroup_move, task);
9080 }
9081 
9082 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9083 			     struct cgroup_subsys_state *old_css,
9084 			     struct task_struct *task)
9085 {
9086 	/*
9087 	 * cgroup_exit() is called in the copy_process() failure path.
9088 	 * Ignore this case since the task hasn't ran yet, this avoids
9089 	 * trying to poke a half freed task state from generic code.
9090 	 */
9091 	if (!(task->flags & PF_EXITING))
9092 		return;
9093 
9094 	task_function_call(task, __perf_cgroup_move, task);
9095 }
9096 
9097 struct cgroup_subsys perf_event_cgrp_subsys = {
9098 	.css_alloc	= perf_cgroup_css_alloc,
9099 	.css_free	= perf_cgroup_css_free,
9100 	.exit		= perf_cgroup_exit,
9101 	.attach		= perf_cgroup_attach,
9102 };
9103 #endif /* CONFIG_CGROUP_PERF */
9104