1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/perf_event.h> 38 #include <linux/ftrace_event.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/cgroup.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 45 #include "internal.h" 46 47 #include <asm/irq_regs.h> 48 49 struct remote_function_call { 50 struct task_struct *p; 51 int (*func)(void *info); 52 void *info; 53 int ret; 54 }; 55 56 static void remote_function(void *data) 57 { 58 struct remote_function_call *tfc = data; 59 struct task_struct *p = tfc->p; 60 61 if (p) { 62 tfc->ret = -EAGAIN; 63 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 64 return; 65 } 66 67 tfc->ret = tfc->func(tfc->info); 68 } 69 70 /** 71 * task_function_call - call a function on the cpu on which a task runs 72 * @p: the task to evaluate 73 * @func: the function to be called 74 * @info: the function call argument 75 * 76 * Calls the function @func when the task is currently running. This might 77 * be on the current CPU, which just calls the function directly 78 * 79 * returns: @func return value, or 80 * -ESRCH - when the process isn't running 81 * -EAGAIN - when the process moved away 82 */ 83 static int 84 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 85 { 86 struct remote_function_call data = { 87 .p = p, 88 .func = func, 89 .info = info, 90 .ret = -ESRCH, /* No such (running) process */ 91 }; 92 93 if (task_curr(p)) 94 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 95 96 return data.ret; 97 } 98 99 /** 100 * cpu_function_call - call a function on the cpu 101 * @func: the function to be called 102 * @info: the function call argument 103 * 104 * Calls the function @func on the remote cpu. 105 * 106 * returns: @func return value or -ENXIO when the cpu is offline 107 */ 108 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 109 { 110 struct remote_function_call data = { 111 .p = NULL, 112 .func = func, 113 .info = info, 114 .ret = -ENXIO, /* No such CPU */ 115 }; 116 117 smp_call_function_single(cpu, remote_function, &data, 1); 118 119 return data.ret; 120 } 121 122 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 123 PERF_FLAG_FD_OUTPUT |\ 124 PERF_FLAG_PID_CGROUP |\ 125 PERF_FLAG_FD_CLOEXEC) 126 127 /* 128 * branch priv levels that need permission checks 129 */ 130 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 131 (PERF_SAMPLE_BRANCH_KERNEL |\ 132 PERF_SAMPLE_BRANCH_HV) 133 134 enum event_type_t { 135 EVENT_FLEXIBLE = 0x1, 136 EVENT_PINNED = 0x2, 137 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 138 }; 139 140 /* 141 * perf_sched_events : >0 events exist 142 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 143 */ 144 struct static_key_deferred perf_sched_events __read_mostly; 145 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 146 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); 147 148 static atomic_t nr_mmap_events __read_mostly; 149 static atomic_t nr_comm_events __read_mostly; 150 static atomic_t nr_task_events __read_mostly; 151 static atomic_t nr_freq_events __read_mostly; 152 153 static LIST_HEAD(pmus); 154 static DEFINE_MUTEX(pmus_lock); 155 static struct srcu_struct pmus_srcu; 156 157 /* 158 * perf event paranoia level: 159 * -1 - not paranoid at all 160 * 0 - disallow raw tracepoint access for unpriv 161 * 1 - disallow cpu events for unpriv 162 * 2 - disallow kernel profiling for unpriv 163 */ 164 int sysctl_perf_event_paranoid __read_mostly = 1; 165 166 /* Minimum for 512 kiB + 1 user control page */ 167 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 168 169 /* 170 * max perf event sample rate 171 */ 172 #define DEFAULT_MAX_SAMPLE_RATE 100000 173 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 174 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 175 176 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 177 178 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 179 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 180 181 static int perf_sample_allowed_ns __read_mostly = 182 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 183 184 void update_perf_cpu_limits(void) 185 { 186 u64 tmp = perf_sample_period_ns; 187 188 tmp *= sysctl_perf_cpu_time_max_percent; 189 do_div(tmp, 100); 190 ACCESS_ONCE(perf_sample_allowed_ns) = tmp; 191 } 192 193 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 194 195 int perf_proc_update_handler(struct ctl_table *table, int write, 196 void __user *buffer, size_t *lenp, 197 loff_t *ppos) 198 { 199 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 200 201 if (ret || !write) 202 return ret; 203 204 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 205 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 206 update_perf_cpu_limits(); 207 208 return 0; 209 } 210 211 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 212 213 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 214 void __user *buffer, size_t *lenp, 215 loff_t *ppos) 216 { 217 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 218 219 if (ret || !write) 220 return ret; 221 222 update_perf_cpu_limits(); 223 224 return 0; 225 } 226 227 /* 228 * perf samples are done in some very critical code paths (NMIs). 229 * If they take too much CPU time, the system can lock up and not 230 * get any real work done. This will drop the sample rate when 231 * we detect that events are taking too long. 232 */ 233 #define NR_ACCUMULATED_SAMPLES 128 234 static DEFINE_PER_CPU(u64, running_sample_length); 235 236 static void perf_duration_warn(struct irq_work *w) 237 { 238 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 239 u64 avg_local_sample_len; 240 u64 local_samples_len; 241 242 local_samples_len = __get_cpu_var(running_sample_length); 243 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 244 245 printk_ratelimited(KERN_WARNING 246 "perf interrupt took too long (%lld > %lld), lowering " 247 "kernel.perf_event_max_sample_rate to %d\n", 248 avg_local_sample_len, allowed_ns >> 1, 249 sysctl_perf_event_sample_rate); 250 } 251 252 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 253 254 void perf_sample_event_took(u64 sample_len_ns) 255 { 256 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 257 u64 avg_local_sample_len; 258 u64 local_samples_len; 259 260 if (allowed_ns == 0) 261 return; 262 263 /* decay the counter by 1 average sample */ 264 local_samples_len = __get_cpu_var(running_sample_length); 265 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 266 local_samples_len += sample_len_ns; 267 __get_cpu_var(running_sample_length) = local_samples_len; 268 269 /* 270 * note: this will be biased artifically low until we have 271 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 272 * from having to maintain a count. 273 */ 274 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 275 276 if (avg_local_sample_len <= allowed_ns) 277 return; 278 279 if (max_samples_per_tick <= 1) 280 return; 281 282 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 283 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 284 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 285 286 update_perf_cpu_limits(); 287 288 if (!irq_work_queue(&perf_duration_work)) { 289 early_printk("perf interrupt took too long (%lld > %lld), lowering " 290 "kernel.perf_event_max_sample_rate to %d\n", 291 avg_local_sample_len, allowed_ns >> 1, 292 sysctl_perf_event_sample_rate); 293 } 294 } 295 296 static atomic64_t perf_event_id; 297 298 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 299 enum event_type_t event_type); 300 301 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 302 enum event_type_t event_type, 303 struct task_struct *task); 304 305 static void update_context_time(struct perf_event_context *ctx); 306 static u64 perf_event_time(struct perf_event *event); 307 308 void __weak perf_event_print_debug(void) { } 309 310 extern __weak const char *perf_pmu_name(void) 311 { 312 return "pmu"; 313 } 314 315 static inline u64 perf_clock(void) 316 { 317 return local_clock(); 318 } 319 320 static inline struct perf_cpu_context * 321 __get_cpu_context(struct perf_event_context *ctx) 322 { 323 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 324 } 325 326 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 327 struct perf_event_context *ctx) 328 { 329 raw_spin_lock(&cpuctx->ctx.lock); 330 if (ctx) 331 raw_spin_lock(&ctx->lock); 332 } 333 334 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 335 struct perf_event_context *ctx) 336 { 337 if (ctx) 338 raw_spin_unlock(&ctx->lock); 339 raw_spin_unlock(&cpuctx->ctx.lock); 340 } 341 342 #ifdef CONFIG_CGROUP_PERF 343 344 /* 345 * perf_cgroup_info keeps track of time_enabled for a cgroup. 346 * This is a per-cpu dynamically allocated data structure. 347 */ 348 struct perf_cgroup_info { 349 u64 time; 350 u64 timestamp; 351 }; 352 353 struct perf_cgroup { 354 struct cgroup_subsys_state css; 355 struct perf_cgroup_info __percpu *info; 356 }; 357 358 /* 359 * Must ensure cgroup is pinned (css_get) before calling 360 * this function. In other words, we cannot call this function 361 * if there is no cgroup event for the current CPU context. 362 */ 363 static inline struct perf_cgroup * 364 perf_cgroup_from_task(struct task_struct *task) 365 { 366 return container_of(task_css(task, perf_event_cgrp_id), 367 struct perf_cgroup, css); 368 } 369 370 static inline bool 371 perf_cgroup_match(struct perf_event *event) 372 { 373 struct perf_event_context *ctx = event->ctx; 374 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 375 376 /* @event doesn't care about cgroup */ 377 if (!event->cgrp) 378 return true; 379 380 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 381 if (!cpuctx->cgrp) 382 return false; 383 384 /* 385 * Cgroup scoping is recursive. An event enabled for a cgroup is 386 * also enabled for all its descendant cgroups. If @cpuctx's 387 * cgroup is a descendant of @event's (the test covers identity 388 * case), it's a match. 389 */ 390 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 391 event->cgrp->css.cgroup); 392 } 393 394 static inline void perf_put_cgroup(struct perf_event *event) 395 { 396 css_put(&event->cgrp->css); 397 } 398 399 static inline void perf_detach_cgroup(struct perf_event *event) 400 { 401 perf_put_cgroup(event); 402 event->cgrp = NULL; 403 } 404 405 static inline int is_cgroup_event(struct perf_event *event) 406 { 407 return event->cgrp != NULL; 408 } 409 410 static inline u64 perf_cgroup_event_time(struct perf_event *event) 411 { 412 struct perf_cgroup_info *t; 413 414 t = per_cpu_ptr(event->cgrp->info, event->cpu); 415 return t->time; 416 } 417 418 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 419 { 420 struct perf_cgroup_info *info; 421 u64 now; 422 423 now = perf_clock(); 424 425 info = this_cpu_ptr(cgrp->info); 426 427 info->time += now - info->timestamp; 428 info->timestamp = now; 429 } 430 431 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 432 { 433 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 434 if (cgrp_out) 435 __update_cgrp_time(cgrp_out); 436 } 437 438 static inline void update_cgrp_time_from_event(struct perf_event *event) 439 { 440 struct perf_cgroup *cgrp; 441 442 /* 443 * ensure we access cgroup data only when needed and 444 * when we know the cgroup is pinned (css_get) 445 */ 446 if (!is_cgroup_event(event)) 447 return; 448 449 cgrp = perf_cgroup_from_task(current); 450 /* 451 * Do not update time when cgroup is not active 452 */ 453 if (cgrp == event->cgrp) 454 __update_cgrp_time(event->cgrp); 455 } 456 457 static inline void 458 perf_cgroup_set_timestamp(struct task_struct *task, 459 struct perf_event_context *ctx) 460 { 461 struct perf_cgroup *cgrp; 462 struct perf_cgroup_info *info; 463 464 /* 465 * ctx->lock held by caller 466 * ensure we do not access cgroup data 467 * unless we have the cgroup pinned (css_get) 468 */ 469 if (!task || !ctx->nr_cgroups) 470 return; 471 472 cgrp = perf_cgroup_from_task(task); 473 info = this_cpu_ptr(cgrp->info); 474 info->timestamp = ctx->timestamp; 475 } 476 477 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 478 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 479 480 /* 481 * reschedule events based on the cgroup constraint of task. 482 * 483 * mode SWOUT : schedule out everything 484 * mode SWIN : schedule in based on cgroup for next 485 */ 486 void perf_cgroup_switch(struct task_struct *task, int mode) 487 { 488 struct perf_cpu_context *cpuctx; 489 struct pmu *pmu; 490 unsigned long flags; 491 492 /* 493 * disable interrupts to avoid geting nr_cgroup 494 * changes via __perf_event_disable(). Also 495 * avoids preemption. 496 */ 497 local_irq_save(flags); 498 499 /* 500 * we reschedule only in the presence of cgroup 501 * constrained events. 502 */ 503 rcu_read_lock(); 504 505 list_for_each_entry_rcu(pmu, &pmus, entry) { 506 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 507 if (cpuctx->unique_pmu != pmu) 508 continue; /* ensure we process each cpuctx once */ 509 510 /* 511 * perf_cgroup_events says at least one 512 * context on this CPU has cgroup events. 513 * 514 * ctx->nr_cgroups reports the number of cgroup 515 * events for a context. 516 */ 517 if (cpuctx->ctx.nr_cgroups > 0) { 518 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 519 perf_pmu_disable(cpuctx->ctx.pmu); 520 521 if (mode & PERF_CGROUP_SWOUT) { 522 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 523 /* 524 * must not be done before ctxswout due 525 * to event_filter_match() in event_sched_out() 526 */ 527 cpuctx->cgrp = NULL; 528 } 529 530 if (mode & PERF_CGROUP_SWIN) { 531 WARN_ON_ONCE(cpuctx->cgrp); 532 /* 533 * set cgrp before ctxsw in to allow 534 * event_filter_match() to not have to pass 535 * task around 536 */ 537 cpuctx->cgrp = perf_cgroup_from_task(task); 538 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 539 } 540 perf_pmu_enable(cpuctx->ctx.pmu); 541 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 542 } 543 } 544 545 rcu_read_unlock(); 546 547 local_irq_restore(flags); 548 } 549 550 static inline void perf_cgroup_sched_out(struct task_struct *task, 551 struct task_struct *next) 552 { 553 struct perf_cgroup *cgrp1; 554 struct perf_cgroup *cgrp2 = NULL; 555 556 /* 557 * we come here when we know perf_cgroup_events > 0 558 */ 559 cgrp1 = perf_cgroup_from_task(task); 560 561 /* 562 * next is NULL when called from perf_event_enable_on_exec() 563 * that will systematically cause a cgroup_switch() 564 */ 565 if (next) 566 cgrp2 = perf_cgroup_from_task(next); 567 568 /* 569 * only schedule out current cgroup events if we know 570 * that we are switching to a different cgroup. Otherwise, 571 * do no touch the cgroup events. 572 */ 573 if (cgrp1 != cgrp2) 574 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 575 } 576 577 static inline void perf_cgroup_sched_in(struct task_struct *prev, 578 struct task_struct *task) 579 { 580 struct perf_cgroup *cgrp1; 581 struct perf_cgroup *cgrp2 = NULL; 582 583 /* 584 * we come here when we know perf_cgroup_events > 0 585 */ 586 cgrp1 = perf_cgroup_from_task(task); 587 588 /* prev can never be NULL */ 589 cgrp2 = perf_cgroup_from_task(prev); 590 591 /* 592 * only need to schedule in cgroup events if we are changing 593 * cgroup during ctxsw. Cgroup events were not scheduled 594 * out of ctxsw out if that was not the case. 595 */ 596 if (cgrp1 != cgrp2) 597 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 598 } 599 600 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 601 struct perf_event_attr *attr, 602 struct perf_event *group_leader) 603 { 604 struct perf_cgroup *cgrp; 605 struct cgroup_subsys_state *css; 606 struct fd f = fdget(fd); 607 int ret = 0; 608 609 if (!f.file) 610 return -EBADF; 611 612 css = css_tryget_online_from_dir(f.file->f_dentry, 613 &perf_event_cgrp_subsys); 614 if (IS_ERR(css)) { 615 ret = PTR_ERR(css); 616 goto out; 617 } 618 619 cgrp = container_of(css, struct perf_cgroup, css); 620 event->cgrp = cgrp; 621 622 /* 623 * all events in a group must monitor 624 * the same cgroup because a task belongs 625 * to only one perf cgroup at a time 626 */ 627 if (group_leader && group_leader->cgrp != cgrp) { 628 perf_detach_cgroup(event); 629 ret = -EINVAL; 630 } 631 out: 632 fdput(f); 633 return ret; 634 } 635 636 static inline void 637 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 638 { 639 struct perf_cgroup_info *t; 640 t = per_cpu_ptr(event->cgrp->info, event->cpu); 641 event->shadow_ctx_time = now - t->timestamp; 642 } 643 644 static inline void 645 perf_cgroup_defer_enabled(struct perf_event *event) 646 { 647 /* 648 * when the current task's perf cgroup does not match 649 * the event's, we need to remember to call the 650 * perf_mark_enable() function the first time a task with 651 * a matching perf cgroup is scheduled in. 652 */ 653 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 654 event->cgrp_defer_enabled = 1; 655 } 656 657 static inline void 658 perf_cgroup_mark_enabled(struct perf_event *event, 659 struct perf_event_context *ctx) 660 { 661 struct perf_event *sub; 662 u64 tstamp = perf_event_time(event); 663 664 if (!event->cgrp_defer_enabled) 665 return; 666 667 event->cgrp_defer_enabled = 0; 668 669 event->tstamp_enabled = tstamp - event->total_time_enabled; 670 list_for_each_entry(sub, &event->sibling_list, group_entry) { 671 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 672 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 673 sub->cgrp_defer_enabled = 0; 674 } 675 } 676 } 677 #else /* !CONFIG_CGROUP_PERF */ 678 679 static inline bool 680 perf_cgroup_match(struct perf_event *event) 681 { 682 return true; 683 } 684 685 static inline void perf_detach_cgroup(struct perf_event *event) 686 {} 687 688 static inline int is_cgroup_event(struct perf_event *event) 689 { 690 return 0; 691 } 692 693 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 694 { 695 return 0; 696 } 697 698 static inline void update_cgrp_time_from_event(struct perf_event *event) 699 { 700 } 701 702 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 703 { 704 } 705 706 static inline void perf_cgroup_sched_out(struct task_struct *task, 707 struct task_struct *next) 708 { 709 } 710 711 static inline void perf_cgroup_sched_in(struct task_struct *prev, 712 struct task_struct *task) 713 { 714 } 715 716 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 717 struct perf_event_attr *attr, 718 struct perf_event *group_leader) 719 { 720 return -EINVAL; 721 } 722 723 static inline void 724 perf_cgroup_set_timestamp(struct task_struct *task, 725 struct perf_event_context *ctx) 726 { 727 } 728 729 void 730 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 731 { 732 } 733 734 static inline void 735 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 736 { 737 } 738 739 static inline u64 perf_cgroup_event_time(struct perf_event *event) 740 { 741 return 0; 742 } 743 744 static inline void 745 perf_cgroup_defer_enabled(struct perf_event *event) 746 { 747 } 748 749 static inline void 750 perf_cgroup_mark_enabled(struct perf_event *event, 751 struct perf_event_context *ctx) 752 { 753 } 754 #endif 755 756 /* 757 * set default to be dependent on timer tick just 758 * like original code 759 */ 760 #define PERF_CPU_HRTIMER (1000 / HZ) 761 /* 762 * function must be called with interrupts disbled 763 */ 764 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr) 765 { 766 struct perf_cpu_context *cpuctx; 767 enum hrtimer_restart ret = HRTIMER_NORESTART; 768 int rotations = 0; 769 770 WARN_ON(!irqs_disabled()); 771 772 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 773 774 rotations = perf_rotate_context(cpuctx); 775 776 /* 777 * arm timer if needed 778 */ 779 if (rotations) { 780 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 781 ret = HRTIMER_RESTART; 782 } 783 784 return ret; 785 } 786 787 /* CPU is going down */ 788 void perf_cpu_hrtimer_cancel(int cpu) 789 { 790 struct perf_cpu_context *cpuctx; 791 struct pmu *pmu; 792 unsigned long flags; 793 794 if (WARN_ON(cpu != smp_processor_id())) 795 return; 796 797 local_irq_save(flags); 798 799 rcu_read_lock(); 800 801 list_for_each_entry_rcu(pmu, &pmus, entry) { 802 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 803 804 if (pmu->task_ctx_nr == perf_sw_context) 805 continue; 806 807 hrtimer_cancel(&cpuctx->hrtimer); 808 } 809 810 rcu_read_unlock(); 811 812 local_irq_restore(flags); 813 } 814 815 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 816 { 817 struct hrtimer *hr = &cpuctx->hrtimer; 818 struct pmu *pmu = cpuctx->ctx.pmu; 819 int timer; 820 821 /* no multiplexing needed for SW PMU */ 822 if (pmu->task_ctx_nr == perf_sw_context) 823 return; 824 825 /* 826 * check default is sane, if not set then force to 827 * default interval (1/tick) 828 */ 829 timer = pmu->hrtimer_interval_ms; 830 if (timer < 1) 831 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 832 833 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 834 835 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 836 hr->function = perf_cpu_hrtimer_handler; 837 } 838 839 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx) 840 { 841 struct hrtimer *hr = &cpuctx->hrtimer; 842 struct pmu *pmu = cpuctx->ctx.pmu; 843 844 /* not for SW PMU */ 845 if (pmu->task_ctx_nr == perf_sw_context) 846 return; 847 848 if (hrtimer_active(hr)) 849 return; 850 851 if (!hrtimer_callback_running(hr)) 852 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval, 853 0, HRTIMER_MODE_REL_PINNED, 0); 854 } 855 856 void perf_pmu_disable(struct pmu *pmu) 857 { 858 int *count = this_cpu_ptr(pmu->pmu_disable_count); 859 if (!(*count)++) 860 pmu->pmu_disable(pmu); 861 } 862 863 void perf_pmu_enable(struct pmu *pmu) 864 { 865 int *count = this_cpu_ptr(pmu->pmu_disable_count); 866 if (!--(*count)) 867 pmu->pmu_enable(pmu); 868 } 869 870 static DEFINE_PER_CPU(struct list_head, rotation_list); 871 872 /* 873 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 874 * because they're strictly cpu affine and rotate_start is called with IRQs 875 * disabled, while rotate_context is called from IRQ context. 876 */ 877 static void perf_pmu_rotate_start(struct pmu *pmu) 878 { 879 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 880 struct list_head *head = &__get_cpu_var(rotation_list); 881 882 WARN_ON(!irqs_disabled()); 883 884 if (list_empty(&cpuctx->rotation_list)) 885 list_add(&cpuctx->rotation_list, head); 886 } 887 888 static void get_ctx(struct perf_event_context *ctx) 889 { 890 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 891 } 892 893 static void put_ctx(struct perf_event_context *ctx) 894 { 895 if (atomic_dec_and_test(&ctx->refcount)) { 896 if (ctx->parent_ctx) 897 put_ctx(ctx->parent_ctx); 898 if (ctx->task) 899 put_task_struct(ctx->task); 900 kfree_rcu(ctx, rcu_head); 901 } 902 } 903 904 static void unclone_ctx(struct perf_event_context *ctx) 905 { 906 if (ctx->parent_ctx) { 907 put_ctx(ctx->parent_ctx); 908 ctx->parent_ctx = NULL; 909 } 910 ctx->generation++; 911 } 912 913 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 914 { 915 /* 916 * only top level events have the pid namespace they were created in 917 */ 918 if (event->parent) 919 event = event->parent; 920 921 return task_tgid_nr_ns(p, event->ns); 922 } 923 924 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 925 { 926 /* 927 * only top level events have the pid namespace they were created in 928 */ 929 if (event->parent) 930 event = event->parent; 931 932 return task_pid_nr_ns(p, event->ns); 933 } 934 935 /* 936 * If we inherit events we want to return the parent event id 937 * to userspace. 938 */ 939 static u64 primary_event_id(struct perf_event *event) 940 { 941 u64 id = event->id; 942 943 if (event->parent) 944 id = event->parent->id; 945 946 return id; 947 } 948 949 /* 950 * Get the perf_event_context for a task and lock it. 951 * This has to cope with with the fact that until it is locked, 952 * the context could get moved to another task. 953 */ 954 static struct perf_event_context * 955 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 956 { 957 struct perf_event_context *ctx; 958 959 retry: 960 /* 961 * One of the few rules of preemptible RCU is that one cannot do 962 * rcu_read_unlock() while holding a scheduler (or nested) lock when 963 * part of the read side critical section was preemptible -- see 964 * rcu_read_unlock_special(). 965 * 966 * Since ctx->lock nests under rq->lock we must ensure the entire read 967 * side critical section is non-preemptible. 968 */ 969 preempt_disable(); 970 rcu_read_lock(); 971 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 972 if (ctx) { 973 /* 974 * If this context is a clone of another, it might 975 * get swapped for another underneath us by 976 * perf_event_task_sched_out, though the 977 * rcu_read_lock() protects us from any context 978 * getting freed. Lock the context and check if it 979 * got swapped before we could get the lock, and retry 980 * if so. If we locked the right context, then it 981 * can't get swapped on us any more. 982 */ 983 raw_spin_lock_irqsave(&ctx->lock, *flags); 984 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 985 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 986 rcu_read_unlock(); 987 preempt_enable(); 988 goto retry; 989 } 990 991 if (!atomic_inc_not_zero(&ctx->refcount)) { 992 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 993 ctx = NULL; 994 } 995 } 996 rcu_read_unlock(); 997 preempt_enable(); 998 return ctx; 999 } 1000 1001 /* 1002 * Get the context for a task and increment its pin_count so it 1003 * can't get swapped to another task. This also increments its 1004 * reference count so that the context can't get freed. 1005 */ 1006 static struct perf_event_context * 1007 perf_pin_task_context(struct task_struct *task, int ctxn) 1008 { 1009 struct perf_event_context *ctx; 1010 unsigned long flags; 1011 1012 ctx = perf_lock_task_context(task, ctxn, &flags); 1013 if (ctx) { 1014 ++ctx->pin_count; 1015 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1016 } 1017 return ctx; 1018 } 1019 1020 static void perf_unpin_context(struct perf_event_context *ctx) 1021 { 1022 unsigned long flags; 1023 1024 raw_spin_lock_irqsave(&ctx->lock, flags); 1025 --ctx->pin_count; 1026 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1027 } 1028 1029 /* 1030 * Update the record of the current time in a context. 1031 */ 1032 static void update_context_time(struct perf_event_context *ctx) 1033 { 1034 u64 now = perf_clock(); 1035 1036 ctx->time += now - ctx->timestamp; 1037 ctx->timestamp = now; 1038 } 1039 1040 static u64 perf_event_time(struct perf_event *event) 1041 { 1042 struct perf_event_context *ctx = event->ctx; 1043 1044 if (is_cgroup_event(event)) 1045 return perf_cgroup_event_time(event); 1046 1047 return ctx ? ctx->time : 0; 1048 } 1049 1050 /* 1051 * Update the total_time_enabled and total_time_running fields for a event. 1052 * The caller of this function needs to hold the ctx->lock. 1053 */ 1054 static void update_event_times(struct perf_event *event) 1055 { 1056 struct perf_event_context *ctx = event->ctx; 1057 u64 run_end; 1058 1059 if (event->state < PERF_EVENT_STATE_INACTIVE || 1060 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1061 return; 1062 /* 1063 * in cgroup mode, time_enabled represents 1064 * the time the event was enabled AND active 1065 * tasks were in the monitored cgroup. This is 1066 * independent of the activity of the context as 1067 * there may be a mix of cgroup and non-cgroup events. 1068 * 1069 * That is why we treat cgroup events differently 1070 * here. 1071 */ 1072 if (is_cgroup_event(event)) 1073 run_end = perf_cgroup_event_time(event); 1074 else if (ctx->is_active) 1075 run_end = ctx->time; 1076 else 1077 run_end = event->tstamp_stopped; 1078 1079 event->total_time_enabled = run_end - event->tstamp_enabled; 1080 1081 if (event->state == PERF_EVENT_STATE_INACTIVE) 1082 run_end = event->tstamp_stopped; 1083 else 1084 run_end = perf_event_time(event); 1085 1086 event->total_time_running = run_end - event->tstamp_running; 1087 1088 } 1089 1090 /* 1091 * Update total_time_enabled and total_time_running for all events in a group. 1092 */ 1093 static void update_group_times(struct perf_event *leader) 1094 { 1095 struct perf_event *event; 1096 1097 update_event_times(leader); 1098 list_for_each_entry(event, &leader->sibling_list, group_entry) 1099 update_event_times(event); 1100 } 1101 1102 static struct list_head * 1103 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1104 { 1105 if (event->attr.pinned) 1106 return &ctx->pinned_groups; 1107 else 1108 return &ctx->flexible_groups; 1109 } 1110 1111 /* 1112 * Add a event from the lists for its context. 1113 * Must be called with ctx->mutex and ctx->lock held. 1114 */ 1115 static void 1116 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1117 { 1118 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1119 event->attach_state |= PERF_ATTACH_CONTEXT; 1120 1121 /* 1122 * If we're a stand alone event or group leader, we go to the context 1123 * list, group events are kept attached to the group so that 1124 * perf_group_detach can, at all times, locate all siblings. 1125 */ 1126 if (event->group_leader == event) { 1127 struct list_head *list; 1128 1129 if (is_software_event(event)) 1130 event->group_flags |= PERF_GROUP_SOFTWARE; 1131 1132 list = ctx_group_list(event, ctx); 1133 list_add_tail(&event->group_entry, list); 1134 } 1135 1136 if (is_cgroup_event(event)) 1137 ctx->nr_cgroups++; 1138 1139 if (has_branch_stack(event)) 1140 ctx->nr_branch_stack++; 1141 1142 list_add_rcu(&event->event_entry, &ctx->event_list); 1143 if (!ctx->nr_events) 1144 perf_pmu_rotate_start(ctx->pmu); 1145 ctx->nr_events++; 1146 if (event->attr.inherit_stat) 1147 ctx->nr_stat++; 1148 1149 ctx->generation++; 1150 } 1151 1152 /* 1153 * Initialize event state based on the perf_event_attr::disabled. 1154 */ 1155 static inline void perf_event__state_init(struct perf_event *event) 1156 { 1157 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1158 PERF_EVENT_STATE_INACTIVE; 1159 } 1160 1161 /* 1162 * Called at perf_event creation and when events are attached/detached from a 1163 * group. 1164 */ 1165 static void perf_event__read_size(struct perf_event *event) 1166 { 1167 int entry = sizeof(u64); /* value */ 1168 int size = 0; 1169 int nr = 1; 1170 1171 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1172 size += sizeof(u64); 1173 1174 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1175 size += sizeof(u64); 1176 1177 if (event->attr.read_format & PERF_FORMAT_ID) 1178 entry += sizeof(u64); 1179 1180 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1181 nr += event->group_leader->nr_siblings; 1182 size += sizeof(u64); 1183 } 1184 1185 size += entry * nr; 1186 event->read_size = size; 1187 } 1188 1189 static void perf_event__header_size(struct perf_event *event) 1190 { 1191 struct perf_sample_data *data; 1192 u64 sample_type = event->attr.sample_type; 1193 u16 size = 0; 1194 1195 perf_event__read_size(event); 1196 1197 if (sample_type & PERF_SAMPLE_IP) 1198 size += sizeof(data->ip); 1199 1200 if (sample_type & PERF_SAMPLE_ADDR) 1201 size += sizeof(data->addr); 1202 1203 if (sample_type & PERF_SAMPLE_PERIOD) 1204 size += sizeof(data->period); 1205 1206 if (sample_type & PERF_SAMPLE_WEIGHT) 1207 size += sizeof(data->weight); 1208 1209 if (sample_type & PERF_SAMPLE_READ) 1210 size += event->read_size; 1211 1212 if (sample_type & PERF_SAMPLE_DATA_SRC) 1213 size += sizeof(data->data_src.val); 1214 1215 if (sample_type & PERF_SAMPLE_TRANSACTION) 1216 size += sizeof(data->txn); 1217 1218 event->header_size = size; 1219 } 1220 1221 static void perf_event__id_header_size(struct perf_event *event) 1222 { 1223 struct perf_sample_data *data; 1224 u64 sample_type = event->attr.sample_type; 1225 u16 size = 0; 1226 1227 if (sample_type & PERF_SAMPLE_TID) 1228 size += sizeof(data->tid_entry); 1229 1230 if (sample_type & PERF_SAMPLE_TIME) 1231 size += sizeof(data->time); 1232 1233 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1234 size += sizeof(data->id); 1235 1236 if (sample_type & PERF_SAMPLE_ID) 1237 size += sizeof(data->id); 1238 1239 if (sample_type & PERF_SAMPLE_STREAM_ID) 1240 size += sizeof(data->stream_id); 1241 1242 if (sample_type & PERF_SAMPLE_CPU) 1243 size += sizeof(data->cpu_entry); 1244 1245 event->id_header_size = size; 1246 } 1247 1248 static void perf_group_attach(struct perf_event *event) 1249 { 1250 struct perf_event *group_leader = event->group_leader, *pos; 1251 1252 /* 1253 * We can have double attach due to group movement in perf_event_open. 1254 */ 1255 if (event->attach_state & PERF_ATTACH_GROUP) 1256 return; 1257 1258 event->attach_state |= PERF_ATTACH_GROUP; 1259 1260 if (group_leader == event) 1261 return; 1262 1263 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1264 !is_software_event(event)) 1265 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1266 1267 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1268 group_leader->nr_siblings++; 1269 1270 perf_event__header_size(group_leader); 1271 1272 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1273 perf_event__header_size(pos); 1274 } 1275 1276 /* 1277 * Remove a event from the lists for its context. 1278 * Must be called with ctx->mutex and ctx->lock held. 1279 */ 1280 static void 1281 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1282 { 1283 struct perf_cpu_context *cpuctx; 1284 /* 1285 * We can have double detach due to exit/hot-unplug + close. 1286 */ 1287 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1288 return; 1289 1290 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1291 1292 if (is_cgroup_event(event)) { 1293 ctx->nr_cgroups--; 1294 cpuctx = __get_cpu_context(ctx); 1295 /* 1296 * if there are no more cgroup events 1297 * then cler cgrp to avoid stale pointer 1298 * in update_cgrp_time_from_cpuctx() 1299 */ 1300 if (!ctx->nr_cgroups) 1301 cpuctx->cgrp = NULL; 1302 } 1303 1304 if (has_branch_stack(event)) 1305 ctx->nr_branch_stack--; 1306 1307 ctx->nr_events--; 1308 if (event->attr.inherit_stat) 1309 ctx->nr_stat--; 1310 1311 list_del_rcu(&event->event_entry); 1312 1313 if (event->group_leader == event) 1314 list_del_init(&event->group_entry); 1315 1316 update_group_times(event); 1317 1318 /* 1319 * If event was in error state, then keep it 1320 * that way, otherwise bogus counts will be 1321 * returned on read(). The only way to get out 1322 * of error state is by explicit re-enabling 1323 * of the event 1324 */ 1325 if (event->state > PERF_EVENT_STATE_OFF) 1326 event->state = PERF_EVENT_STATE_OFF; 1327 1328 ctx->generation++; 1329 } 1330 1331 static void perf_group_detach(struct perf_event *event) 1332 { 1333 struct perf_event *sibling, *tmp; 1334 struct list_head *list = NULL; 1335 1336 /* 1337 * We can have double detach due to exit/hot-unplug + close. 1338 */ 1339 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1340 return; 1341 1342 event->attach_state &= ~PERF_ATTACH_GROUP; 1343 1344 /* 1345 * If this is a sibling, remove it from its group. 1346 */ 1347 if (event->group_leader != event) { 1348 list_del_init(&event->group_entry); 1349 event->group_leader->nr_siblings--; 1350 goto out; 1351 } 1352 1353 if (!list_empty(&event->group_entry)) 1354 list = &event->group_entry; 1355 1356 /* 1357 * If this was a group event with sibling events then 1358 * upgrade the siblings to singleton events by adding them 1359 * to whatever list we are on. 1360 */ 1361 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1362 if (list) 1363 list_move_tail(&sibling->group_entry, list); 1364 sibling->group_leader = sibling; 1365 1366 /* Inherit group flags from the previous leader */ 1367 sibling->group_flags = event->group_flags; 1368 } 1369 1370 out: 1371 perf_event__header_size(event->group_leader); 1372 1373 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1374 perf_event__header_size(tmp); 1375 } 1376 1377 static inline int 1378 event_filter_match(struct perf_event *event) 1379 { 1380 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1381 && perf_cgroup_match(event); 1382 } 1383 1384 static void 1385 event_sched_out(struct perf_event *event, 1386 struct perf_cpu_context *cpuctx, 1387 struct perf_event_context *ctx) 1388 { 1389 u64 tstamp = perf_event_time(event); 1390 u64 delta; 1391 /* 1392 * An event which could not be activated because of 1393 * filter mismatch still needs to have its timings 1394 * maintained, otherwise bogus information is return 1395 * via read() for time_enabled, time_running: 1396 */ 1397 if (event->state == PERF_EVENT_STATE_INACTIVE 1398 && !event_filter_match(event)) { 1399 delta = tstamp - event->tstamp_stopped; 1400 event->tstamp_running += delta; 1401 event->tstamp_stopped = tstamp; 1402 } 1403 1404 if (event->state != PERF_EVENT_STATE_ACTIVE) 1405 return; 1406 1407 perf_pmu_disable(event->pmu); 1408 1409 event->state = PERF_EVENT_STATE_INACTIVE; 1410 if (event->pending_disable) { 1411 event->pending_disable = 0; 1412 event->state = PERF_EVENT_STATE_OFF; 1413 } 1414 event->tstamp_stopped = tstamp; 1415 event->pmu->del(event, 0); 1416 event->oncpu = -1; 1417 1418 if (!is_software_event(event)) 1419 cpuctx->active_oncpu--; 1420 ctx->nr_active--; 1421 if (event->attr.freq && event->attr.sample_freq) 1422 ctx->nr_freq--; 1423 if (event->attr.exclusive || !cpuctx->active_oncpu) 1424 cpuctx->exclusive = 0; 1425 1426 perf_pmu_enable(event->pmu); 1427 } 1428 1429 static void 1430 group_sched_out(struct perf_event *group_event, 1431 struct perf_cpu_context *cpuctx, 1432 struct perf_event_context *ctx) 1433 { 1434 struct perf_event *event; 1435 int state = group_event->state; 1436 1437 event_sched_out(group_event, cpuctx, ctx); 1438 1439 /* 1440 * Schedule out siblings (if any): 1441 */ 1442 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1443 event_sched_out(event, cpuctx, ctx); 1444 1445 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1446 cpuctx->exclusive = 0; 1447 } 1448 1449 struct remove_event { 1450 struct perf_event *event; 1451 bool detach_group; 1452 }; 1453 1454 /* 1455 * Cross CPU call to remove a performance event 1456 * 1457 * We disable the event on the hardware level first. After that we 1458 * remove it from the context list. 1459 */ 1460 static int __perf_remove_from_context(void *info) 1461 { 1462 struct remove_event *re = info; 1463 struct perf_event *event = re->event; 1464 struct perf_event_context *ctx = event->ctx; 1465 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1466 1467 raw_spin_lock(&ctx->lock); 1468 event_sched_out(event, cpuctx, ctx); 1469 if (re->detach_group) 1470 perf_group_detach(event); 1471 list_del_event(event, ctx); 1472 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1473 ctx->is_active = 0; 1474 cpuctx->task_ctx = NULL; 1475 } 1476 raw_spin_unlock(&ctx->lock); 1477 1478 return 0; 1479 } 1480 1481 1482 /* 1483 * Remove the event from a task's (or a CPU's) list of events. 1484 * 1485 * CPU events are removed with a smp call. For task events we only 1486 * call when the task is on a CPU. 1487 * 1488 * If event->ctx is a cloned context, callers must make sure that 1489 * every task struct that event->ctx->task could possibly point to 1490 * remains valid. This is OK when called from perf_release since 1491 * that only calls us on the top-level context, which can't be a clone. 1492 * When called from perf_event_exit_task, it's OK because the 1493 * context has been detached from its task. 1494 */ 1495 static void perf_remove_from_context(struct perf_event *event, bool detach_group) 1496 { 1497 struct perf_event_context *ctx = event->ctx; 1498 struct task_struct *task = ctx->task; 1499 struct remove_event re = { 1500 .event = event, 1501 .detach_group = detach_group, 1502 }; 1503 1504 lockdep_assert_held(&ctx->mutex); 1505 1506 if (!task) { 1507 /* 1508 * Per cpu events are removed via an smp call and 1509 * the removal is always successful. 1510 */ 1511 cpu_function_call(event->cpu, __perf_remove_from_context, &re); 1512 return; 1513 } 1514 1515 retry: 1516 if (!task_function_call(task, __perf_remove_from_context, &re)) 1517 return; 1518 1519 raw_spin_lock_irq(&ctx->lock); 1520 /* 1521 * If we failed to find a running task, but find the context active now 1522 * that we've acquired the ctx->lock, retry. 1523 */ 1524 if (ctx->is_active) { 1525 raw_spin_unlock_irq(&ctx->lock); 1526 goto retry; 1527 } 1528 1529 /* 1530 * Since the task isn't running, its safe to remove the event, us 1531 * holding the ctx->lock ensures the task won't get scheduled in. 1532 */ 1533 if (detach_group) 1534 perf_group_detach(event); 1535 list_del_event(event, ctx); 1536 raw_spin_unlock_irq(&ctx->lock); 1537 } 1538 1539 /* 1540 * Cross CPU call to disable a performance event 1541 */ 1542 int __perf_event_disable(void *info) 1543 { 1544 struct perf_event *event = info; 1545 struct perf_event_context *ctx = event->ctx; 1546 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1547 1548 /* 1549 * If this is a per-task event, need to check whether this 1550 * event's task is the current task on this cpu. 1551 * 1552 * Can trigger due to concurrent perf_event_context_sched_out() 1553 * flipping contexts around. 1554 */ 1555 if (ctx->task && cpuctx->task_ctx != ctx) 1556 return -EINVAL; 1557 1558 raw_spin_lock(&ctx->lock); 1559 1560 /* 1561 * If the event is on, turn it off. 1562 * If it is in error state, leave it in error state. 1563 */ 1564 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1565 update_context_time(ctx); 1566 update_cgrp_time_from_event(event); 1567 update_group_times(event); 1568 if (event == event->group_leader) 1569 group_sched_out(event, cpuctx, ctx); 1570 else 1571 event_sched_out(event, cpuctx, ctx); 1572 event->state = PERF_EVENT_STATE_OFF; 1573 } 1574 1575 raw_spin_unlock(&ctx->lock); 1576 1577 return 0; 1578 } 1579 1580 /* 1581 * Disable a event. 1582 * 1583 * If event->ctx is a cloned context, callers must make sure that 1584 * every task struct that event->ctx->task could possibly point to 1585 * remains valid. This condition is satisifed when called through 1586 * perf_event_for_each_child or perf_event_for_each because they 1587 * hold the top-level event's child_mutex, so any descendant that 1588 * goes to exit will block in sync_child_event. 1589 * When called from perf_pending_event it's OK because event->ctx 1590 * is the current context on this CPU and preemption is disabled, 1591 * hence we can't get into perf_event_task_sched_out for this context. 1592 */ 1593 void perf_event_disable(struct perf_event *event) 1594 { 1595 struct perf_event_context *ctx = event->ctx; 1596 struct task_struct *task = ctx->task; 1597 1598 if (!task) { 1599 /* 1600 * Disable the event on the cpu that it's on 1601 */ 1602 cpu_function_call(event->cpu, __perf_event_disable, event); 1603 return; 1604 } 1605 1606 retry: 1607 if (!task_function_call(task, __perf_event_disable, event)) 1608 return; 1609 1610 raw_spin_lock_irq(&ctx->lock); 1611 /* 1612 * If the event is still active, we need to retry the cross-call. 1613 */ 1614 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1615 raw_spin_unlock_irq(&ctx->lock); 1616 /* 1617 * Reload the task pointer, it might have been changed by 1618 * a concurrent perf_event_context_sched_out(). 1619 */ 1620 task = ctx->task; 1621 goto retry; 1622 } 1623 1624 /* 1625 * Since we have the lock this context can't be scheduled 1626 * in, so we can change the state safely. 1627 */ 1628 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1629 update_group_times(event); 1630 event->state = PERF_EVENT_STATE_OFF; 1631 } 1632 raw_spin_unlock_irq(&ctx->lock); 1633 } 1634 EXPORT_SYMBOL_GPL(perf_event_disable); 1635 1636 static void perf_set_shadow_time(struct perf_event *event, 1637 struct perf_event_context *ctx, 1638 u64 tstamp) 1639 { 1640 /* 1641 * use the correct time source for the time snapshot 1642 * 1643 * We could get by without this by leveraging the 1644 * fact that to get to this function, the caller 1645 * has most likely already called update_context_time() 1646 * and update_cgrp_time_xx() and thus both timestamp 1647 * are identical (or very close). Given that tstamp is, 1648 * already adjusted for cgroup, we could say that: 1649 * tstamp - ctx->timestamp 1650 * is equivalent to 1651 * tstamp - cgrp->timestamp. 1652 * 1653 * Then, in perf_output_read(), the calculation would 1654 * work with no changes because: 1655 * - event is guaranteed scheduled in 1656 * - no scheduled out in between 1657 * - thus the timestamp would be the same 1658 * 1659 * But this is a bit hairy. 1660 * 1661 * So instead, we have an explicit cgroup call to remain 1662 * within the time time source all along. We believe it 1663 * is cleaner and simpler to understand. 1664 */ 1665 if (is_cgroup_event(event)) 1666 perf_cgroup_set_shadow_time(event, tstamp); 1667 else 1668 event->shadow_ctx_time = tstamp - ctx->timestamp; 1669 } 1670 1671 #define MAX_INTERRUPTS (~0ULL) 1672 1673 static void perf_log_throttle(struct perf_event *event, int enable); 1674 1675 static int 1676 event_sched_in(struct perf_event *event, 1677 struct perf_cpu_context *cpuctx, 1678 struct perf_event_context *ctx) 1679 { 1680 u64 tstamp = perf_event_time(event); 1681 int ret = 0; 1682 1683 lockdep_assert_held(&ctx->lock); 1684 1685 if (event->state <= PERF_EVENT_STATE_OFF) 1686 return 0; 1687 1688 event->state = PERF_EVENT_STATE_ACTIVE; 1689 event->oncpu = smp_processor_id(); 1690 1691 /* 1692 * Unthrottle events, since we scheduled we might have missed several 1693 * ticks already, also for a heavily scheduling task there is little 1694 * guarantee it'll get a tick in a timely manner. 1695 */ 1696 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1697 perf_log_throttle(event, 1); 1698 event->hw.interrupts = 0; 1699 } 1700 1701 /* 1702 * The new state must be visible before we turn it on in the hardware: 1703 */ 1704 smp_wmb(); 1705 1706 perf_pmu_disable(event->pmu); 1707 1708 if (event->pmu->add(event, PERF_EF_START)) { 1709 event->state = PERF_EVENT_STATE_INACTIVE; 1710 event->oncpu = -1; 1711 ret = -EAGAIN; 1712 goto out; 1713 } 1714 1715 event->tstamp_running += tstamp - event->tstamp_stopped; 1716 1717 perf_set_shadow_time(event, ctx, tstamp); 1718 1719 if (!is_software_event(event)) 1720 cpuctx->active_oncpu++; 1721 ctx->nr_active++; 1722 if (event->attr.freq && event->attr.sample_freq) 1723 ctx->nr_freq++; 1724 1725 if (event->attr.exclusive) 1726 cpuctx->exclusive = 1; 1727 1728 out: 1729 perf_pmu_enable(event->pmu); 1730 1731 return ret; 1732 } 1733 1734 static int 1735 group_sched_in(struct perf_event *group_event, 1736 struct perf_cpu_context *cpuctx, 1737 struct perf_event_context *ctx) 1738 { 1739 struct perf_event *event, *partial_group = NULL; 1740 struct pmu *pmu = ctx->pmu; 1741 u64 now = ctx->time; 1742 bool simulate = false; 1743 1744 if (group_event->state == PERF_EVENT_STATE_OFF) 1745 return 0; 1746 1747 pmu->start_txn(pmu); 1748 1749 if (event_sched_in(group_event, cpuctx, ctx)) { 1750 pmu->cancel_txn(pmu); 1751 perf_cpu_hrtimer_restart(cpuctx); 1752 return -EAGAIN; 1753 } 1754 1755 /* 1756 * Schedule in siblings as one group (if any): 1757 */ 1758 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1759 if (event_sched_in(event, cpuctx, ctx)) { 1760 partial_group = event; 1761 goto group_error; 1762 } 1763 } 1764 1765 if (!pmu->commit_txn(pmu)) 1766 return 0; 1767 1768 group_error: 1769 /* 1770 * Groups can be scheduled in as one unit only, so undo any 1771 * partial group before returning: 1772 * The events up to the failed event are scheduled out normally, 1773 * tstamp_stopped will be updated. 1774 * 1775 * The failed events and the remaining siblings need to have 1776 * their timings updated as if they had gone thru event_sched_in() 1777 * and event_sched_out(). This is required to get consistent timings 1778 * across the group. This also takes care of the case where the group 1779 * could never be scheduled by ensuring tstamp_stopped is set to mark 1780 * the time the event was actually stopped, such that time delta 1781 * calculation in update_event_times() is correct. 1782 */ 1783 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1784 if (event == partial_group) 1785 simulate = true; 1786 1787 if (simulate) { 1788 event->tstamp_running += now - event->tstamp_stopped; 1789 event->tstamp_stopped = now; 1790 } else { 1791 event_sched_out(event, cpuctx, ctx); 1792 } 1793 } 1794 event_sched_out(group_event, cpuctx, ctx); 1795 1796 pmu->cancel_txn(pmu); 1797 1798 perf_cpu_hrtimer_restart(cpuctx); 1799 1800 return -EAGAIN; 1801 } 1802 1803 /* 1804 * Work out whether we can put this event group on the CPU now. 1805 */ 1806 static int group_can_go_on(struct perf_event *event, 1807 struct perf_cpu_context *cpuctx, 1808 int can_add_hw) 1809 { 1810 /* 1811 * Groups consisting entirely of software events can always go on. 1812 */ 1813 if (event->group_flags & PERF_GROUP_SOFTWARE) 1814 return 1; 1815 /* 1816 * If an exclusive group is already on, no other hardware 1817 * events can go on. 1818 */ 1819 if (cpuctx->exclusive) 1820 return 0; 1821 /* 1822 * If this group is exclusive and there are already 1823 * events on the CPU, it can't go on. 1824 */ 1825 if (event->attr.exclusive && cpuctx->active_oncpu) 1826 return 0; 1827 /* 1828 * Otherwise, try to add it if all previous groups were able 1829 * to go on. 1830 */ 1831 return can_add_hw; 1832 } 1833 1834 static void add_event_to_ctx(struct perf_event *event, 1835 struct perf_event_context *ctx) 1836 { 1837 u64 tstamp = perf_event_time(event); 1838 1839 list_add_event(event, ctx); 1840 perf_group_attach(event); 1841 event->tstamp_enabled = tstamp; 1842 event->tstamp_running = tstamp; 1843 event->tstamp_stopped = tstamp; 1844 } 1845 1846 static void task_ctx_sched_out(struct perf_event_context *ctx); 1847 static void 1848 ctx_sched_in(struct perf_event_context *ctx, 1849 struct perf_cpu_context *cpuctx, 1850 enum event_type_t event_type, 1851 struct task_struct *task); 1852 1853 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1854 struct perf_event_context *ctx, 1855 struct task_struct *task) 1856 { 1857 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1858 if (ctx) 1859 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1860 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1861 if (ctx) 1862 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1863 } 1864 1865 /* 1866 * Cross CPU call to install and enable a performance event 1867 * 1868 * Must be called with ctx->mutex held 1869 */ 1870 static int __perf_install_in_context(void *info) 1871 { 1872 struct perf_event *event = info; 1873 struct perf_event_context *ctx = event->ctx; 1874 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1875 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1876 struct task_struct *task = current; 1877 1878 perf_ctx_lock(cpuctx, task_ctx); 1879 perf_pmu_disable(cpuctx->ctx.pmu); 1880 1881 /* 1882 * If there was an active task_ctx schedule it out. 1883 */ 1884 if (task_ctx) 1885 task_ctx_sched_out(task_ctx); 1886 1887 /* 1888 * If the context we're installing events in is not the 1889 * active task_ctx, flip them. 1890 */ 1891 if (ctx->task && task_ctx != ctx) { 1892 if (task_ctx) 1893 raw_spin_unlock(&task_ctx->lock); 1894 raw_spin_lock(&ctx->lock); 1895 task_ctx = ctx; 1896 } 1897 1898 if (task_ctx) { 1899 cpuctx->task_ctx = task_ctx; 1900 task = task_ctx->task; 1901 } 1902 1903 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1904 1905 update_context_time(ctx); 1906 /* 1907 * update cgrp time only if current cgrp 1908 * matches event->cgrp. Must be done before 1909 * calling add_event_to_ctx() 1910 */ 1911 update_cgrp_time_from_event(event); 1912 1913 add_event_to_ctx(event, ctx); 1914 1915 /* 1916 * Schedule everything back in 1917 */ 1918 perf_event_sched_in(cpuctx, task_ctx, task); 1919 1920 perf_pmu_enable(cpuctx->ctx.pmu); 1921 perf_ctx_unlock(cpuctx, task_ctx); 1922 1923 return 0; 1924 } 1925 1926 /* 1927 * Attach a performance event to a context 1928 * 1929 * First we add the event to the list with the hardware enable bit 1930 * in event->hw_config cleared. 1931 * 1932 * If the event is attached to a task which is on a CPU we use a smp 1933 * call to enable it in the task context. The task might have been 1934 * scheduled away, but we check this in the smp call again. 1935 */ 1936 static void 1937 perf_install_in_context(struct perf_event_context *ctx, 1938 struct perf_event *event, 1939 int cpu) 1940 { 1941 struct task_struct *task = ctx->task; 1942 1943 lockdep_assert_held(&ctx->mutex); 1944 1945 event->ctx = ctx; 1946 if (event->cpu != -1) 1947 event->cpu = cpu; 1948 1949 if (!task) { 1950 /* 1951 * Per cpu events are installed via an smp call and 1952 * the install is always successful. 1953 */ 1954 cpu_function_call(cpu, __perf_install_in_context, event); 1955 return; 1956 } 1957 1958 retry: 1959 if (!task_function_call(task, __perf_install_in_context, event)) 1960 return; 1961 1962 raw_spin_lock_irq(&ctx->lock); 1963 /* 1964 * If we failed to find a running task, but find the context active now 1965 * that we've acquired the ctx->lock, retry. 1966 */ 1967 if (ctx->is_active) { 1968 raw_spin_unlock_irq(&ctx->lock); 1969 goto retry; 1970 } 1971 1972 /* 1973 * Since the task isn't running, its safe to add the event, us holding 1974 * the ctx->lock ensures the task won't get scheduled in. 1975 */ 1976 add_event_to_ctx(event, ctx); 1977 raw_spin_unlock_irq(&ctx->lock); 1978 } 1979 1980 /* 1981 * Put a event into inactive state and update time fields. 1982 * Enabling the leader of a group effectively enables all 1983 * the group members that aren't explicitly disabled, so we 1984 * have to update their ->tstamp_enabled also. 1985 * Note: this works for group members as well as group leaders 1986 * since the non-leader members' sibling_lists will be empty. 1987 */ 1988 static void __perf_event_mark_enabled(struct perf_event *event) 1989 { 1990 struct perf_event *sub; 1991 u64 tstamp = perf_event_time(event); 1992 1993 event->state = PERF_EVENT_STATE_INACTIVE; 1994 event->tstamp_enabled = tstamp - event->total_time_enabled; 1995 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1996 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1997 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1998 } 1999 } 2000 2001 /* 2002 * Cross CPU call to enable a performance event 2003 */ 2004 static int __perf_event_enable(void *info) 2005 { 2006 struct perf_event *event = info; 2007 struct perf_event_context *ctx = event->ctx; 2008 struct perf_event *leader = event->group_leader; 2009 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2010 int err; 2011 2012 /* 2013 * There's a time window between 'ctx->is_active' check 2014 * in perf_event_enable function and this place having: 2015 * - IRQs on 2016 * - ctx->lock unlocked 2017 * 2018 * where the task could be killed and 'ctx' deactivated 2019 * by perf_event_exit_task. 2020 */ 2021 if (!ctx->is_active) 2022 return -EINVAL; 2023 2024 raw_spin_lock(&ctx->lock); 2025 update_context_time(ctx); 2026 2027 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2028 goto unlock; 2029 2030 /* 2031 * set current task's cgroup time reference point 2032 */ 2033 perf_cgroup_set_timestamp(current, ctx); 2034 2035 __perf_event_mark_enabled(event); 2036 2037 if (!event_filter_match(event)) { 2038 if (is_cgroup_event(event)) 2039 perf_cgroup_defer_enabled(event); 2040 goto unlock; 2041 } 2042 2043 /* 2044 * If the event is in a group and isn't the group leader, 2045 * then don't put it on unless the group is on. 2046 */ 2047 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 2048 goto unlock; 2049 2050 if (!group_can_go_on(event, cpuctx, 1)) { 2051 err = -EEXIST; 2052 } else { 2053 if (event == leader) 2054 err = group_sched_in(event, cpuctx, ctx); 2055 else 2056 err = event_sched_in(event, cpuctx, ctx); 2057 } 2058 2059 if (err) { 2060 /* 2061 * If this event can't go on and it's part of a 2062 * group, then the whole group has to come off. 2063 */ 2064 if (leader != event) { 2065 group_sched_out(leader, cpuctx, ctx); 2066 perf_cpu_hrtimer_restart(cpuctx); 2067 } 2068 if (leader->attr.pinned) { 2069 update_group_times(leader); 2070 leader->state = PERF_EVENT_STATE_ERROR; 2071 } 2072 } 2073 2074 unlock: 2075 raw_spin_unlock(&ctx->lock); 2076 2077 return 0; 2078 } 2079 2080 /* 2081 * Enable a event. 2082 * 2083 * If event->ctx is a cloned context, callers must make sure that 2084 * every task struct that event->ctx->task could possibly point to 2085 * remains valid. This condition is satisfied when called through 2086 * perf_event_for_each_child or perf_event_for_each as described 2087 * for perf_event_disable. 2088 */ 2089 void perf_event_enable(struct perf_event *event) 2090 { 2091 struct perf_event_context *ctx = event->ctx; 2092 struct task_struct *task = ctx->task; 2093 2094 if (!task) { 2095 /* 2096 * Enable the event on the cpu that it's on 2097 */ 2098 cpu_function_call(event->cpu, __perf_event_enable, event); 2099 return; 2100 } 2101 2102 raw_spin_lock_irq(&ctx->lock); 2103 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2104 goto out; 2105 2106 /* 2107 * If the event is in error state, clear that first. 2108 * That way, if we see the event in error state below, we 2109 * know that it has gone back into error state, as distinct 2110 * from the task having been scheduled away before the 2111 * cross-call arrived. 2112 */ 2113 if (event->state == PERF_EVENT_STATE_ERROR) 2114 event->state = PERF_EVENT_STATE_OFF; 2115 2116 retry: 2117 if (!ctx->is_active) { 2118 __perf_event_mark_enabled(event); 2119 goto out; 2120 } 2121 2122 raw_spin_unlock_irq(&ctx->lock); 2123 2124 if (!task_function_call(task, __perf_event_enable, event)) 2125 return; 2126 2127 raw_spin_lock_irq(&ctx->lock); 2128 2129 /* 2130 * If the context is active and the event is still off, 2131 * we need to retry the cross-call. 2132 */ 2133 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 2134 /* 2135 * task could have been flipped by a concurrent 2136 * perf_event_context_sched_out() 2137 */ 2138 task = ctx->task; 2139 goto retry; 2140 } 2141 2142 out: 2143 raw_spin_unlock_irq(&ctx->lock); 2144 } 2145 EXPORT_SYMBOL_GPL(perf_event_enable); 2146 2147 int perf_event_refresh(struct perf_event *event, int refresh) 2148 { 2149 /* 2150 * not supported on inherited events 2151 */ 2152 if (event->attr.inherit || !is_sampling_event(event)) 2153 return -EINVAL; 2154 2155 atomic_add(refresh, &event->event_limit); 2156 perf_event_enable(event); 2157 2158 return 0; 2159 } 2160 EXPORT_SYMBOL_GPL(perf_event_refresh); 2161 2162 static void ctx_sched_out(struct perf_event_context *ctx, 2163 struct perf_cpu_context *cpuctx, 2164 enum event_type_t event_type) 2165 { 2166 struct perf_event *event; 2167 int is_active = ctx->is_active; 2168 2169 ctx->is_active &= ~event_type; 2170 if (likely(!ctx->nr_events)) 2171 return; 2172 2173 update_context_time(ctx); 2174 update_cgrp_time_from_cpuctx(cpuctx); 2175 if (!ctx->nr_active) 2176 return; 2177 2178 perf_pmu_disable(ctx->pmu); 2179 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 2180 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2181 group_sched_out(event, cpuctx, ctx); 2182 } 2183 2184 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 2185 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2186 group_sched_out(event, cpuctx, ctx); 2187 } 2188 perf_pmu_enable(ctx->pmu); 2189 } 2190 2191 /* 2192 * Test whether two contexts are equivalent, i.e. whether they have both been 2193 * cloned from the same version of the same context. 2194 * 2195 * Equivalence is measured using a generation number in the context that is 2196 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2197 * and list_del_event(). 2198 */ 2199 static int context_equiv(struct perf_event_context *ctx1, 2200 struct perf_event_context *ctx2) 2201 { 2202 /* Pinning disables the swap optimization */ 2203 if (ctx1->pin_count || ctx2->pin_count) 2204 return 0; 2205 2206 /* If ctx1 is the parent of ctx2 */ 2207 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2208 return 1; 2209 2210 /* If ctx2 is the parent of ctx1 */ 2211 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2212 return 1; 2213 2214 /* 2215 * If ctx1 and ctx2 have the same parent; we flatten the parent 2216 * hierarchy, see perf_event_init_context(). 2217 */ 2218 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2219 ctx1->parent_gen == ctx2->parent_gen) 2220 return 1; 2221 2222 /* Unmatched */ 2223 return 0; 2224 } 2225 2226 static void __perf_event_sync_stat(struct perf_event *event, 2227 struct perf_event *next_event) 2228 { 2229 u64 value; 2230 2231 if (!event->attr.inherit_stat) 2232 return; 2233 2234 /* 2235 * Update the event value, we cannot use perf_event_read() 2236 * because we're in the middle of a context switch and have IRQs 2237 * disabled, which upsets smp_call_function_single(), however 2238 * we know the event must be on the current CPU, therefore we 2239 * don't need to use it. 2240 */ 2241 switch (event->state) { 2242 case PERF_EVENT_STATE_ACTIVE: 2243 event->pmu->read(event); 2244 /* fall-through */ 2245 2246 case PERF_EVENT_STATE_INACTIVE: 2247 update_event_times(event); 2248 break; 2249 2250 default: 2251 break; 2252 } 2253 2254 /* 2255 * In order to keep per-task stats reliable we need to flip the event 2256 * values when we flip the contexts. 2257 */ 2258 value = local64_read(&next_event->count); 2259 value = local64_xchg(&event->count, value); 2260 local64_set(&next_event->count, value); 2261 2262 swap(event->total_time_enabled, next_event->total_time_enabled); 2263 swap(event->total_time_running, next_event->total_time_running); 2264 2265 /* 2266 * Since we swizzled the values, update the user visible data too. 2267 */ 2268 perf_event_update_userpage(event); 2269 perf_event_update_userpage(next_event); 2270 } 2271 2272 static void perf_event_sync_stat(struct perf_event_context *ctx, 2273 struct perf_event_context *next_ctx) 2274 { 2275 struct perf_event *event, *next_event; 2276 2277 if (!ctx->nr_stat) 2278 return; 2279 2280 update_context_time(ctx); 2281 2282 event = list_first_entry(&ctx->event_list, 2283 struct perf_event, event_entry); 2284 2285 next_event = list_first_entry(&next_ctx->event_list, 2286 struct perf_event, event_entry); 2287 2288 while (&event->event_entry != &ctx->event_list && 2289 &next_event->event_entry != &next_ctx->event_list) { 2290 2291 __perf_event_sync_stat(event, next_event); 2292 2293 event = list_next_entry(event, event_entry); 2294 next_event = list_next_entry(next_event, event_entry); 2295 } 2296 } 2297 2298 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2299 struct task_struct *next) 2300 { 2301 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2302 struct perf_event_context *next_ctx; 2303 struct perf_event_context *parent, *next_parent; 2304 struct perf_cpu_context *cpuctx; 2305 int do_switch = 1; 2306 2307 if (likely(!ctx)) 2308 return; 2309 2310 cpuctx = __get_cpu_context(ctx); 2311 if (!cpuctx->task_ctx) 2312 return; 2313 2314 rcu_read_lock(); 2315 next_ctx = next->perf_event_ctxp[ctxn]; 2316 if (!next_ctx) 2317 goto unlock; 2318 2319 parent = rcu_dereference(ctx->parent_ctx); 2320 next_parent = rcu_dereference(next_ctx->parent_ctx); 2321 2322 /* If neither context have a parent context; they cannot be clones. */ 2323 if (!parent && !next_parent) 2324 goto unlock; 2325 2326 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2327 /* 2328 * Looks like the two contexts are clones, so we might be 2329 * able to optimize the context switch. We lock both 2330 * contexts and check that they are clones under the 2331 * lock (including re-checking that neither has been 2332 * uncloned in the meantime). It doesn't matter which 2333 * order we take the locks because no other cpu could 2334 * be trying to lock both of these tasks. 2335 */ 2336 raw_spin_lock(&ctx->lock); 2337 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2338 if (context_equiv(ctx, next_ctx)) { 2339 /* 2340 * XXX do we need a memory barrier of sorts 2341 * wrt to rcu_dereference() of perf_event_ctxp 2342 */ 2343 task->perf_event_ctxp[ctxn] = next_ctx; 2344 next->perf_event_ctxp[ctxn] = ctx; 2345 ctx->task = next; 2346 next_ctx->task = task; 2347 do_switch = 0; 2348 2349 perf_event_sync_stat(ctx, next_ctx); 2350 } 2351 raw_spin_unlock(&next_ctx->lock); 2352 raw_spin_unlock(&ctx->lock); 2353 } 2354 unlock: 2355 rcu_read_unlock(); 2356 2357 if (do_switch) { 2358 raw_spin_lock(&ctx->lock); 2359 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2360 cpuctx->task_ctx = NULL; 2361 raw_spin_unlock(&ctx->lock); 2362 } 2363 } 2364 2365 #define for_each_task_context_nr(ctxn) \ 2366 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2367 2368 /* 2369 * Called from scheduler to remove the events of the current task, 2370 * with interrupts disabled. 2371 * 2372 * We stop each event and update the event value in event->count. 2373 * 2374 * This does not protect us against NMI, but disable() 2375 * sets the disabled bit in the control field of event _before_ 2376 * accessing the event control register. If a NMI hits, then it will 2377 * not restart the event. 2378 */ 2379 void __perf_event_task_sched_out(struct task_struct *task, 2380 struct task_struct *next) 2381 { 2382 int ctxn; 2383 2384 for_each_task_context_nr(ctxn) 2385 perf_event_context_sched_out(task, ctxn, next); 2386 2387 /* 2388 * if cgroup events exist on this CPU, then we need 2389 * to check if we have to switch out PMU state. 2390 * cgroup event are system-wide mode only 2391 */ 2392 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2393 perf_cgroup_sched_out(task, next); 2394 } 2395 2396 static void task_ctx_sched_out(struct perf_event_context *ctx) 2397 { 2398 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2399 2400 if (!cpuctx->task_ctx) 2401 return; 2402 2403 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2404 return; 2405 2406 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2407 cpuctx->task_ctx = NULL; 2408 } 2409 2410 /* 2411 * Called with IRQs disabled 2412 */ 2413 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2414 enum event_type_t event_type) 2415 { 2416 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2417 } 2418 2419 static void 2420 ctx_pinned_sched_in(struct perf_event_context *ctx, 2421 struct perf_cpu_context *cpuctx) 2422 { 2423 struct perf_event *event; 2424 2425 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2426 if (event->state <= PERF_EVENT_STATE_OFF) 2427 continue; 2428 if (!event_filter_match(event)) 2429 continue; 2430 2431 /* may need to reset tstamp_enabled */ 2432 if (is_cgroup_event(event)) 2433 perf_cgroup_mark_enabled(event, ctx); 2434 2435 if (group_can_go_on(event, cpuctx, 1)) 2436 group_sched_in(event, cpuctx, ctx); 2437 2438 /* 2439 * If this pinned group hasn't been scheduled, 2440 * put it in error state. 2441 */ 2442 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2443 update_group_times(event); 2444 event->state = PERF_EVENT_STATE_ERROR; 2445 } 2446 } 2447 } 2448 2449 static void 2450 ctx_flexible_sched_in(struct perf_event_context *ctx, 2451 struct perf_cpu_context *cpuctx) 2452 { 2453 struct perf_event *event; 2454 int can_add_hw = 1; 2455 2456 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2457 /* Ignore events in OFF or ERROR state */ 2458 if (event->state <= PERF_EVENT_STATE_OFF) 2459 continue; 2460 /* 2461 * Listen to the 'cpu' scheduling filter constraint 2462 * of events: 2463 */ 2464 if (!event_filter_match(event)) 2465 continue; 2466 2467 /* may need to reset tstamp_enabled */ 2468 if (is_cgroup_event(event)) 2469 perf_cgroup_mark_enabled(event, ctx); 2470 2471 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2472 if (group_sched_in(event, cpuctx, ctx)) 2473 can_add_hw = 0; 2474 } 2475 } 2476 } 2477 2478 static void 2479 ctx_sched_in(struct perf_event_context *ctx, 2480 struct perf_cpu_context *cpuctx, 2481 enum event_type_t event_type, 2482 struct task_struct *task) 2483 { 2484 u64 now; 2485 int is_active = ctx->is_active; 2486 2487 ctx->is_active |= event_type; 2488 if (likely(!ctx->nr_events)) 2489 return; 2490 2491 now = perf_clock(); 2492 ctx->timestamp = now; 2493 perf_cgroup_set_timestamp(task, ctx); 2494 /* 2495 * First go through the list and put on any pinned groups 2496 * in order to give them the best chance of going on. 2497 */ 2498 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2499 ctx_pinned_sched_in(ctx, cpuctx); 2500 2501 /* Then walk through the lower prio flexible groups */ 2502 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2503 ctx_flexible_sched_in(ctx, cpuctx); 2504 } 2505 2506 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2507 enum event_type_t event_type, 2508 struct task_struct *task) 2509 { 2510 struct perf_event_context *ctx = &cpuctx->ctx; 2511 2512 ctx_sched_in(ctx, cpuctx, event_type, task); 2513 } 2514 2515 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2516 struct task_struct *task) 2517 { 2518 struct perf_cpu_context *cpuctx; 2519 2520 cpuctx = __get_cpu_context(ctx); 2521 if (cpuctx->task_ctx == ctx) 2522 return; 2523 2524 perf_ctx_lock(cpuctx, ctx); 2525 perf_pmu_disable(ctx->pmu); 2526 /* 2527 * We want to keep the following priority order: 2528 * cpu pinned (that don't need to move), task pinned, 2529 * cpu flexible, task flexible. 2530 */ 2531 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2532 2533 if (ctx->nr_events) 2534 cpuctx->task_ctx = ctx; 2535 2536 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2537 2538 perf_pmu_enable(ctx->pmu); 2539 perf_ctx_unlock(cpuctx, ctx); 2540 2541 /* 2542 * Since these rotations are per-cpu, we need to ensure the 2543 * cpu-context we got scheduled on is actually rotating. 2544 */ 2545 perf_pmu_rotate_start(ctx->pmu); 2546 } 2547 2548 /* 2549 * When sampling the branck stack in system-wide, it may be necessary 2550 * to flush the stack on context switch. This happens when the branch 2551 * stack does not tag its entries with the pid of the current task. 2552 * Otherwise it becomes impossible to associate a branch entry with a 2553 * task. This ambiguity is more likely to appear when the branch stack 2554 * supports priv level filtering and the user sets it to monitor only 2555 * at the user level (which could be a useful measurement in system-wide 2556 * mode). In that case, the risk is high of having a branch stack with 2557 * branch from multiple tasks. Flushing may mean dropping the existing 2558 * entries or stashing them somewhere in the PMU specific code layer. 2559 * 2560 * This function provides the context switch callback to the lower code 2561 * layer. It is invoked ONLY when there is at least one system-wide context 2562 * with at least one active event using taken branch sampling. 2563 */ 2564 static void perf_branch_stack_sched_in(struct task_struct *prev, 2565 struct task_struct *task) 2566 { 2567 struct perf_cpu_context *cpuctx; 2568 struct pmu *pmu; 2569 unsigned long flags; 2570 2571 /* no need to flush branch stack if not changing task */ 2572 if (prev == task) 2573 return; 2574 2575 local_irq_save(flags); 2576 2577 rcu_read_lock(); 2578 2579 list_for_each_entry_rcu(pmu, &pmus, entry) { 2580 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2581 2582 /* 2583 * check if the context has at least one 2584 * event using PERF_SAMPLE_BRANCH_STACK 2585 */ 2586 if (cpuctx->ctx.nr_branch_stack > 0 2587 && pmu->flush_branch_stack) { 2588 2589 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2590 2591 perf_pmu_disable(pmu); 2592 2593 pmu->flush_branch_stack(); 2594 2595 perf_pmu_enable(pmu); 2596 2597 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2598 } 2599 } 2600 2601 rcu_read_unlock(); 2602 2603 local_irq_restore(flags); 2604 } 2605 2606 /* 2607 * Called from scheduler to add the events of the current task 2608 * with interrupts disabled. 2609 * 2610 * We restore the event value and then enable it. 2611 * 2612 * This does not protect us against NMI, but enable() 2613 * sets the enabled bit in the control field of event _before_ 2614 * accessing the event control register. If a NMI hits, then it will 2615 * keep the event running. 2616 */ 2617 void __perf_event_task_sched_in(struct task_struct *prev, 2618 struct task_struct *task) 2619 { 2620 struct perf_event_context *ctx; 2621 int ctxn; 2622 2623 for_each_task_context_nr(ctxn) { 2624 ctx = task->perf_event_ctxp[ctxn]; 2625 if (likely(!ctx)) 2626 continue; 2627 2628 perf_event_context_sched_in(ctx, task); 2629 } 2630 /* 2631 * if cgroup events exist on this CPU, then we need 2632 * to check if we have to switch in PMU state. 2633 * cgroup event are system-wide mode only 2634 */ 2635 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2636 perf_cgroup_sched_in(prev, task); 2637 2638 /* check for system-wide branch_stack events */ 2639 if (atomic_read(&__get_cpu_var(perf_branch_stack_events))) 2640 perf_branch_stack_sched_in(prev, task); 2641 } 2642 2643 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2644 { 2645 u64 frequency = event->attr.sample_freq; 2646 u64 sec = NSEC_PER_SEC; 2647 u64 divisor, dividend; 2648 2649 int count_fls, nsec_fls, frequency_fls, sec_fls; 2650 2651 count_fls = fls64(count); 2652 nsec_fls = fls64(nsec); 2653 frequency_fls = fls64(frequency); 2654 sec_fls = 30; 2655 2656 /* 2657 * We got @count in @nsec, with a target of sample_freq HZ 2658 * the target period becomes: 2659 * 2660 * @count * 10^9 2661 * period = ------------------- 2662 * @nsec * sample_freq 2663 * 2664 */ 2665 2666 /* 2667 * Reduce accuracy by one bit such that @a and @b converge 2668 * to a similar magnitude. 2669 */ 2670 #define REDUCE_FLS(a, b) \ 2671 do { \ 2672 if (a##_fls > b##_fls) { \ 2673 a >>= 1; \ 2674 a##_fls--; \ 2675 } else { \ 2676 b >>= 1; \ 2677 b##_fls--; \ 2678 } \ 2679 } while (0) 2680 2681 /* 2682 * Reduce accuracy until either term fits in a u64, then proceed with 2683 * the other, so that finally we can do a u64/u64 division. 2684 */ 2685 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2686 REDUCE_FLS(nsec, frequency); 2687 REDUCE_FLS(sec, count); 2688 } 2689 2690 if (count_fls + sec_fls > 64) { 2691 divisor = nsec * frequency; 2692 2693 while (count_fls + sec_fls > 64) { 2694 REDUCE_FLS(count, sec); 2695 divisor >>= 1; 2696 } 2697 2698 dividend = count * sec; 2699 } else { 2700 dividend = count * sec; 2701 2702 while (nsec_fls + frequency_fls > 64) { 2703 REDUCE_FLS(nsec, frequency); 2704 dividend >>= 1; 2705 } 2706 2707 divisor = nsec * frequency; 2708 } 2709 2710 if (!divisor) 2711 return dividend; 2712 2713 return div64_u64(dividend, divisor); 2714 } 2715 2716 static DEFINE_PER_CPU(int, perf_throttled_count); 2717 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2718 2719 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2720 { 2721 struct hw_perf_event *hwc = &event->hw; 2722 s64 period, sample_period; 2723 s64 delta; 2724 2725 period = perf_calculate_period(event, nsec, count); 2726 2727 delta = (s64)(period - hwc->sample_period); 2728 delta = (delta + 7) / 8; /* low pass filter */ 2729 2730 sample_period = hwc->sample_period + delta; 2731 2732 if (!sample_period) 2733 sample_period = 1; 2734 2735 hwc->sample_period = sample_period; 2736 2737 if (local64_read(&hwc->period_left) > 8*sample_period) { 2738 if (disable) 2739 event->pmu->stop(event, PERF_EF_UPDATE); 2740 2741 local64_set(&hwc->period_left, 0); 2742 2743 if (disable) 2744 event->pmu->start(event, PERF_EF_RELOAD); 2745 } 2746 } 2747 2748 /* 2749 * combine freq adjustment with unthrottling to avoid two passes over the 2750 * events. At the same time, make sure, having freq events does not change 2751 * the rate of unthrottling as that would introduce bias. 2752 */ 2753 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2754 int needs_unthr) 2755 { 2756 struct perf_event *event; 2757 struct hw_perf_event *hwc; 2758 u64 now, period = TICK_NSEC; 2759 s64 delta; 2760 2761 /* 2762 * only need to iterate over all events iff: 2763 * - context have events in frequency mode (needs freq adjust) 2764 * - there are events to unthrottle on this cpu 2765 */ 2766 if (!(ctx->nr_freq || needs_unthr)) 2767 return; 2768 2769 raw_spin_lock(&ctx->lock); 2770 perf_pmu_disable(ctx->pmu); 2771 2772 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2773 if (event->state != PERF_EVENT_STATE_ACTIVE) 2774 continue; 2775 2776 if (!event_filter_match(event)) 2777 continue; 2778 2779 perf_pmu_disable(event->pmu); 2780 2781 hwc = &event->hw; 2782 2783 if (hwc->interrupts == MAX_INTERRUPTS) { 2784 hwc->interrupts = 0; 2785 perf_log_throttle(event, 1); 2786 event->pmu->start(event, 0); 2787 } 2788 2789 if (!event->attr.freq || !event->attr.sample_freq) 2790 goto next; 2791 2792 /* 2793 * stop the event and update event->count 2794 */ 2795 event->pmu->stop(event, PERF_EF_UPDATE); 2796 2797 now = local64_read(&event->count); 2798 delta = now - hwc->freq_count_stamp; 2799 hwc->freq_count_stamp = now; 2800 2801 /* 2802 * restart the event 2803 * reload only if value has changed 2804 * we have stopped the event so tell that 2805 * to perf_adjust_period() to avoid stopping it 2806 * twice. 2807 */ 2808 if (delta > 0) 2809 perf_adjust_period(event, period, delta, false); 2810 2811 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2812 next: 2813 perf_pmu_enable(event->pmu); 2814 } 2815 2816 perf_pmu_enable(ctx->pmu); 2817 raw_spin_unlock(&ctx->lock); 2818 } 2819 2820 /* 2821 * Round-robin a context's events: 2822 */ 2823 static void rotate_ctx(struct perf_event_context *ctx) 2824 { 2825 /* 2826 * Rotate the first entry last of non-pinned groups. Rotation might be 2827 * disabled by the inheritance code. 2828 */ 2829 if (!ctx->rotate_disable) 2830 list_rotate_left(&ctx->flexible_groups); 2831 } 2832 2833 /* 2834 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2835 * because they're strictly cpu affine and rotate_start is called with IRQs 2836 * disabled, while rotate_context is called from IRQ context. 2837 */ 2838 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 2839 { 2840 struct perf_event_context *ctx = NULL; 2841 int rotate = 0, remove = 1; 2842 2843 if (cpuctx->ctx.nr_events) { 2844 remove = 0; 2845 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2846 rotate = 1; 2847 } 2848 2849 ctx = cpuctx->task_ctx; 2850 if (ctx && ctx->nr_events) { 2851 remove = 0; 2852 if (ctx->nr_events != ctx->nr_active) 2853 rotate = 1; 2854 } 2855 2856 if (!rotate) 2857 goto done; 2858 2859 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2860 perf_pmu_disable(cpuctx->ctx.pmu); 2861 2862 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2863 if (ctx) 2864 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2865 2866 rotate_ctx(&cpuctx->ctx); 2867 if (ctx) 2868 rotate_ctx(ctx); 2869 2870 perf_event_sched_in(cpuctx, ctx, current); 2871 2872 perf_pmu_enable(cpuctx->ctx.pmu); 2873 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2874 done: 2875 if (remove) 2876 list_del_init(&cpuctx->rotation_list); 2877 2878 return rotate; 2879 } 2880 2881 #ifdef CONFIG_NO_HZ_FULL 2882 bool perf_event_can_stop_tick(void) 2883 { 2884 if (atomic_read(&nr_freq_events) || 2885 __this_cpu_read(perf_throttled_count)) 2886 return false; 2887 else 2888 return true; 2889 } 2890 #endif 2891 2892 void perf_event_task_tick(void) 2893 { 2894 struct list_head *head = &__get_cpu_var(rotation_list); 2895 struct perf_cpu_context *cpuctx, *tmp; 2896 struct perf_event_context *ctx; 2897 int throttled; 2898 2899 WARN_ON(!irqs_disabled()); 2900 2901 __this_cpu_inc(perf_throttled_seq); 2902 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2903 2904 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2905 ctx = &cpuctx->ctx; 2906 perf_adjust_freq_unthr_context(ctx, throttled); 2907 2908 ctx = cpuctx->task_ctx; 2909 if (ctx) 2910 perf_adjust_freq_unthr_context(ctx, throttled); 2911 } 2912 } 2913 2914 static int event_enable_on_exec(struct perf_event *event, 2915 struct perf_event_context *ctx) 2916 { 2917 if (!event->attr.enable_on_exec) 2918 return 0; 2919 2920 event->attr.enable_on_exec = 0; 2921 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2922 return 0; 2923 2924 __perf_event_mark_enabled(event); 2925 2926 return 1; 2927 } 2928 2929 /* 2930 * Enable all of a task's events that have been marked enable-on-exec. 2931 * This expects task == current. 2932 */ 2933 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2934 { 2935 struct perf_event *event; 2936 unsigned long flags; 2937 int enabled = 0; 2938 int ret; 2939 2940 local_irq_save(flags); 2941 if (!ctx || !ctx->nr_events) 2942 goto out; 2943 2944 /* 2945 * We must ctxsw out cgroup events to avoid conflict 2946 * when invoking perf_task_event_sched_in() later on 2947 * in this function. Otherwise we end up trying to 2948 * ctxswin cgroup events which are already scheduled 2949 * in. 2950 */ 2951 perf_cgroup_sched_out(current, NULL); 2952 2953 raw_spin_lock(&ctx->lock); 2954 task_ctx_sched_out(ctx); 2955 2956 list_for_each_entry(event, &ctx->event_list, event_entry) { 2957 ret = event_enable_on_exec(event, ctx); 2958 if (ret) 2959 enabled = 1; 2960 } 2961 2962 /* 2963 * Unclone this context if we enabled any event. 2964 */ 2965 if (enabled) 2966 unclone_ctx(ctx); 2967 2968 raw_spin_unlock(&ctx->lock); 2969 2970 /* 2971 * Also calls ctxswin for cgroup events, if any: 2972 */ 2973 perf_event_context_sched_in(ctx, ctx->task); 2974 out: 2975 local_irq_restore(flags); 2976 } 2977 2978 void perf_event_exec(void) 2979 { 2980 struct perf_event_context *ctx; 2981 int ctxn; 2982 2983 rcu_read_lock(); 2984 for_each_task_context_nr(ctxn) { 2985 ctx = current->perf_event_ctxp[ctxn]; 2986 if (!ctx) 2987 continue; 2988 2989 perf_event_enable_on_exec(ctx); 2990 } 2991 rcu_read_unlock(); 2992 } 2993 2994 /* 2995 * Cross CPU call to read the hardware event 2996 */ 2997 static void __perf_event_read(void *info) 2998 { 2999 struct perf_event *event = info; 3000 struct perf_event_context *ctx = event->ctx; 3001 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3002 3003 /* 3004 * If this is a task context, we need to check whether it is 3005 * the current task context of this cpu. If not it has been 3006 * scheduled out before the smp call arrived. In that case 3007 * event->count would have been updated to a recent sample 3008 * when the event was scheduled out. 3009 */ 3010 if (ctx->task && cpuctx->task_ctx != ctx) 3011 return; 3012 3013 raw_spin_lock(&ctx->lock); 3014 if (ctx->is_active) { 3015 update_context_time(ctx); 3016 update_cgrp_time_from_event(event); 3017 } 3018 update_event_times(event); 3019 if (event->state == PERF_EVENT_STATE_ACTIVE) 3020 event->pmu->read(event); 3021 raw_spin_unlock(&ctx->lock); 3022 } 3023 3024 static inline u64 perf_event_count(struct perf_event *event) 3025 { 3026 return local64_read(&event->count) + atomic64_read(&event->child_count); 3027 } 3028 3029 static u64 perf_event_read(struct perf_event *event) 3030 { 3031 /* 3032 * If event is enabled and currently active on a CPU, update the 3033 * value in the event structure: 3034 */ 3035 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3036 smp_call_function_single(event->oncpu, 3037 __perf_event_read, event, 1); 3038 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3039 struct perf_event_context *ctx = event->ctx; 3040 unsigned long flags; 3041 3042 raw_spin_lock_irqsave(&ctx->lock, flags); 3043 /* 3044 * may read while context is not active 3045 * (e.g., thread is blocked), in that case 3046 * we cannot update context time 3047 */ 3048 if (ctx->is_active) { 3049 update_context_time(ctx); 3050 update_cgrp_time_from_event(event); 3051 } 3052 update_event_times(event); 3053 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3054 } 3055 3056 return perf_event_count(event); 3057 } 3058 3059 /* 3060 * Initialize the perf_event context in a task_struct: 3061 */ 3062 static void __perf_event_init_context(struct perf_event_context *ctx) 3063 { 3064 raw_spin_lock_init(&ctx->lock); 3065 mutex_init(&ctx->mutex); 3066 INIT_LIST_HEAD(&ctx->pinned_groups); 3067 INIT_LIST_HEAD(&ctx->flexible_groups); 3068 INIT_LIST_HEAD(&ctx->event_list); 3069 atomic_set(&ctx->refcount, 1); 3070 } 3071 3072 static struct perf_event_context * 3073 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3074 { 3075 struct perf_event_context *ctx; 3076 3077 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3078 if (!ctx) 3079 return NULL; 3080 3081 __perf_event_init_context(ctx); 3082 if (task) { 3083 ctx->task = task; 3084 get_task_struct(task); 3085 } 3086 ctx->pmu = pmu; 3087 3088 return ctx; 3089 } 3090 3091 static struct task_struct * 3092 find_lively_task_by_vpid(pid_t vpid) 3093 { 3094 struct task_struct *task; 3095 int err; 3096 3097 rcu_read_lock(); 3098 if (!vpid) 3099 task = current; 3100 else 3101 task = find_task_by_vpid(vpid); 3102 if (task) 3103 get_task_struct(task); 3104 rcu_read_unlock(); 3105 3106 if (!task) 3107 return ERR_PTR(-ESRCH); 3108 3109 /* Reuse ptrace permission checks for now. */ 3110 err = -EACCES; 3111 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 3112 goto errout; 3113 3114 return task; 3115 errout: 3116 put_task_struct(task); 3117 return ERR_PTR(err); 3118 3119 } 3120 3121 /* 3122 * Returns a matching context with refcount and pincount. 3123 */ 3124 static struct perf_event_context * 3125 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 3126 { 3127 struct perf_event_context *ctx; 3128 struct perf_cpu_context *cpuctx; 3129 unsigned long flags; 3130 int ctxn, err; 3131 3132 if (!task) { 3133 /* Must be root to operate on a CPU event: */ 3134 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3135 return ERR_PTR(-EACCES); 3136 3137 /* 3138 * We could be clever and allow to attach a event to an 3139 * offline CPU and activate it when the CPU comes up, but 3140 * that's for later. 3141 */ 3142 if (!cpu_online(cpu)) 3143 return ERR_PTR(-ENODEV); 3144 3145 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3146 ctx = &cpuctx->ctx; 3147 get_ctx(ctx); 3148 ++ctx->pin_count; 3149 3150 return ctx; 3151 } 3152 3153 err = -EINVAL; 3154 ctxn = pmu->task_ctx_nr; 3155 if (ctxn < 0) 3156 goto errout; 3157 3158 retry: 3159 ctx = perf_lock_task_context(task, ctxn, &flags); 3160 if (ctx) { 3161 unclone_ctx(ctx); 3162 ++ctx->pin_count; 3163 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3164 } else { 3165 ctx = alloc_perf_context(pmu, task); 3166 err = -ENOMEM; 3167 if (!ctx) 3168 goto errout; 3169 3170 err = 0; 3171 mutex_lock(&task->perf_event_mutex); 3172 /* 3173 * If it has already passed perf_event_exit_task(). 3174 * we must see PF_EXITING, it takes this mutex too. 3175 */ 3176 if (task->flags & PF_EXITING) 3177 err = -ESRCH; 3178 else if (task->perf_event_ctxp[ctxn]) 3179 err = -EAGAIN; 3180 else { 3181 get_ctx(ctx); 3182 ++ctx->pin_count; 3183 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3184 } 3185 mutex_unlock(&task->perf_event_mutex); 3186 3187 if (unlikely(err)) { 3188 put_ctx(ctx); 3189 3190 if (err == -EAGAIN) 3191 goto retry; 3192 goto errout; 3193 } 3194 } 3195 3196 return ctx; 3197 3198 errout: 3199 return ERR_PTR(err); 3200 } 3201 3202 static void perf_event_free_filter(struct perf_event *event); 3203 3204 static void free_event_rcu(struct rcu_head *head) 3205 { 3206 struct perf_event *event; 3207 3208 event = container_of(head, struct perf_event, rcu_head); 3209 if (event->ns) 3210 put_pid_ns(event->ns); 3211 perf_event_free_filter(event); 3212 kfree(event); 3213 } 3214 3215 static void ring_buffer_put(struct ring_buffer *rb); 3216 static void ring_buffer_attach(struct perf_event *event, 3217 struct ring_buffer *rb); 3218 3219 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3220 { 3221 if (event->parent) 3222 return; 3223 3224 if (has_branch_stack(event)) { 3225 if (!(event->attach_state & PERF_ATTACH_TASK)) 3226 atomic_dec(&per_cpu(perf_branch_stack_events, cpu)); 3227 } 3228 if (is_cgroup_event(event)) 3229 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3230 } 3231 3232 static void unaccount_event(struct perf_event *event) 3233 { 3234 if (event->parent) 3235 return; 3236 3237 if (event->attach_state & PERF_ATTACH_TASK) 3238 static_key_slow_dec_deferred(&perf_sched_events); 3239 if (event->attr.mmap || event->attr.mmap_data) 3240 atomic_dec(&nr_mmap_events); 3241 if (event->attr.comm) 3242 atomic_dec(&nr_comm_events); 3243 if (event->attr.task) 3244 atomic_dec(&nr_task_events); 3245 if (event->attr.freq) 3246 atomic_dec(&nr_freq_events); 3247 if (is_cgroup_event(event)) 3248 static_key_slow_dec_deferred(&perf_sched_events); 3249 if (has_branch_stack(event)) 3250 static_key_slow_dec_deferred(&perf_sched_events); 3251 3252 unaccount_event_cpu(event, event->cpu); 3253 } 3254 3255 static void __free_event(struct perf_event *event) 3256 { 3257 if (!event->parent) { 3258 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3259 put_callchain_buffers(); 3260 } 3261 3262 if (event->destroy) 3263 event->destroy(event); 3264 3265 if (event->ctx) 3266 put_ctx(event->ctx); 3267 3268 if (event->pmu) 3269 module_put(event->pmu->module); 3270 3271 call_rcu(&event->rcu_head, free_event_rcu); 3272 } 3273 3274 static void _free_event(struct perf_event *event) 3275 { 3276 irq_work_sync(&event->pending); 3277 3278 unaccount_event(event); 3279 3280 if (event->rb) { 3281 /* 3282 * Can happen when we close an event with re-directed output. 3283 * 3284 * Since we have a 0 refcount, perf_mmap_close() will skip 3285 * over us; possibly making our ring_buffer_put() the last. 3286 */ 3287 mutex_lock(&event->mmap_mutex); 3288 ring_buffer_attach(event, NULL); 3289 mutex_unlock(&event->mmap_mutex); 3290 } 3291 3292 if (is_cgroup_event(event)) 3293 perf_detach_cgroup(event); 3294 3295 __free_event(event); 3296 } 3297 3298 /* 3299 * Used to free events which have a known refcount of 1, such as in error paths 3300 * where the event isn't exposed yet and inherited events. 3301 */ 3302 static void free_event(struct perf_event *event) 3303 { 3304 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3305 "unexpected event refcount: %ld; ptr=%p\n", 3306 atomic_long_read(&event->refcount), event)) { 3307 /* leak to avoid use-after-free */ 3308 return; 3309 } 3310 3311 _free_event(event); 3312 } 3313 3314 /* 3315 * Called when the last reference to the file is gone. 3316 */ 3317 static void put_event(struct perf_event *event) 3318 { 3319 struct perf_event_context *ctx = event->ctx; 3320 struct task_struct *owner; 3321 3322 if (!atomic_long_dec_and_test(&event->refcount)) 3323 return; 3324 3325 rcu_read_lock(); 3326 owner = ACCESS_ONCE(event->owner); 3327 /* 3328 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3329 * !owner it means the list deletion is complete and we can indeed 3330 * free this event, otherwise we need to serialize on 3331 * owner->perf_event_mutex. 3332 */ 3333 smp_read_barrier_depends(); 3334 if (owner) { 3335 /* 3336 * Since delayed_put_task_struct() also drops the last 3337 * task reference we can safely take a new reference 3338 * while holding the rcu_read_lock(). 3339 */ 3340 get_task_struct(owner); 3341 } 3342 rcu_read_unlock(); 3343 3344 if (owner) { 3345 mutex_lock(&owner->perf_event_mutex); 3346 /* 3347 * We have to re-check the event->owner field, if it is cleared 3348 * we raced with perf_event_exit_task(), acquiring the mutex 3349 * ensured they're done, and we can proceed with freeing the 3350 * event. 3351 */ 3352 if (event->owner) 3353 list_del_init(&event->owner_entry); 3354 mutex_unlock(&owner->perf_event_mutex); 3355 put_task_struct(owner); 3356 } 3357 3358 WARN_ON_ONCE(ctx->parent_ctx); 3359 /* 3360 * There are two ways this annotation is useful: 3361 * 3362 * 1) there is a lock recursion from perf_event_exit_task 3363 * see the comment there. 3364 * 3365 * 2) there is a lock-inversion with mmap_sem through 3366 * perf_event_read_group(), which takes faults while 3367 * holding ctx->mutex, however this is called after 3368 * the last filedesc died, so there is no possibility 3369 * to trigger the AB-BA case. 3370 */ 3371 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 3372 perf_remove_from_context(event, true); 3373 mutex_unlock(&ctx->mutex); 3374 3375 _free_event(event); 3376 } 3377 3378 int perf_event_release_kernel(struct perf_event *event) 3379 { 3380 put_event(event); 3381 return 0; 3382 } 3383 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3384 3385 static int perf_release(struct inode *inode, struct file *file) 3386 { 3387 put_event(file->private_data); 3388 return 0; 3389 } 3390 3391 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3392 { 3393 struct perf_event *child; 3394 u64 total = 0; 3395 3396 *enabled = 0; 3397 *running = 0; 3398 3399 mutex_lock(&event->child_mutex); 3400 total += perf_event_read(event); 3401 *enabled += event->total_time_enabled + 3402 atomic64_read(&event->child_total_time_enabled); 3403 *running += event->total_time_running + 3404 atomic64_read(&event->child_total_time_running); 3405 3406 list_for_each_entry(child, &event->child_list, child_list) { 3407 total += perf_event_read(child); 3408 *enabled += child->total_time_enabled; 3409 *running += child->total_time_running; 3410 } 3411 mutex_unlock(&event->child_mutex); 3412 3413 return total; 3414 } 3415 EXPORT_SYMBOL_GPL(perf_event_read_value); 3416 3417 static int perf_event_read_group(struct perf_event *event, 3418 u64 read_format, char __user *buf) 3419 { 3420 struct perf_event *leader = event->group_leader, *sub; 3421 int n = 0, size = 0, ret = -EFAULT; 3422 struct perf_event_context *ctx = leader->ctx; 3423 u64 values[5]; 3424 u64 count, enabled, running; 3425 3426 mutex_lock(&ctx->mutex); 3427 count = perf_event_read_value(leader, &enabled, &running); 3428 3429 values[n++] = 1 + leader->nr_siblings; 3430 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3431 values[n++] = enabled; 3432 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3433 values[n++] = running; 3434 values[n++] = count; 3435 if (read_format & PERF_FORMAT_ID) 3436 values[n++] = primary_event_id(leader); 3437 3438 size = n * sizeof(u64); 3439 3440 if (copy_to_user(buf, values, size)) 3441 goto unlock; 3442 3443 ret = size; 3444 3445 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3446 n = 0; 3447 3448 values[n++] = perf_event_read_value(sub, &enabled, &running); 3449 if (read_format & PERF_FORMAT_ID) 3450 values[n++] = primary_event_id(sub); 3451 3452 size = n * sizeof(u64); 3453 3454 if (copy_to_user(buf + ret, values, size)) { 3455 ret = -EFAULT; 3456 goto unlock; 3457 } 3458 3459 ret += size; 3460 } 3461 unlock: 3462 mutex_unlock(&ctx->mutex); 3463 3464 return ret; 3465 } 3466 3467 static int perf_event_read_one(struct perf_event *event, 3468 u64 read_format, char __user *buf) 3469 { 3470 u64 enabled, running; 3471 u64 values[4]; 3472 int n = 0; 3473 3474 values[n++] = perf_event_read_value(event, &enabled, &running); 3475 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3476 values[n++] = enabled; 3477 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3478 values[n++] = running; 3479 if (read_format & PERF_FORMAT_ID) 3480 values[n++] = primary_event_id(event); 3481 3482 if (copy_to_user(buf, values, n * sizeof(u64))) 3483 return -EFAULT; 3484 3485 return n * sizeof(u64); 3486 } 3487 3488 /* 3489 * Read the performance event - simple non blocking version for now 3490 */ 3491 static ssize_t 3492 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3493 { 3494 u64 read_format = event->attr.read_format; 3495 int ret; 3496 3497 /* 3498 * Return end-of-file for a read on a event that is in 3499 * error state (i.e. because it was pinned but it couldn't be 3500 * scheduled on to the CPU at some point). 3501 */ 3502 if (event->state == PERF_EVENT_STATE_ERROR) 3503 return 0; 3504 3505 if (count < event->read_size) 3506 return -ENOSPC; 3507 3508 WARN_ON_ONCE(event->ctx->parent_ctx); 3509 if (read_format & PERF_FORMAT_GROUP) 3510 ret = perf_event_read_group(event, read_format, buf); 3511 else 3512 ret = perf_event_read_one(event, read_format, buf); 3513 3514 return ret; 3515 } 3516 3517 static ssize_t 3518 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3519 { 3520 struct perf_event *event = file->private_data; 3521 3522 return perf_read_hw(event, buf, count); 3523 } 3524 3525 static unsigned int perf_poll(struct file *file, poll_table *wait) 3526 { 3527 struct perf_event *event = file->private_data; 3528 struct ring_buffer *rb; 3529 unsigned int events = POLL_HUP; 3530 3531 /* 3532 * Pin the event->rb by taking event->mmap_mutex; otherwise 3533 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 3534 */ 3535 mutex_lock(&event->mmap_mutex); 3536 rb = event->rb; 3537 if (rb) 3538 events = atomic_xchg(&rb->poll, 0); 3539 mutex_unlock(&event->mmap_mutex); 3540 3541 poll_wait(file, &event->waitq, wait); 3542 3543 return events; 3544 } 3545 3546 static void perf_event_reset(struct perf_event *event) 3547 { 3548 (void)perf_event_read(event); 3549 local64_set(&event->count, 0); 3550 perf_event_update_userpage(event); 3551 } 3552 3553 /* 3554 * Holding the top-level event's child_mutex means that any 3555 * descendant process that has inherited this event will block 3556 * in sync_child_event if it goes to exit, thus satisfying the 3557 * task existence requirements of perf_event_enable/disable. 3558 */ 3559 static void perf_event_for_each_child(struct perf_event *event, 3560 void (*func)(struct perf_event *)) 3561 { 3562 struct perf_event *child; 3563 3564 WARN_ON_ONCE(event->ctx->parent_ctx); 3565 mutex_lock(&event->child_mutex); 3566 func(event); 3567 list_for_each_entry(child, &event->child_list, child_list) 3568 func(child); 3569 mutex_unlock(&event->child_mutex); 3570 } 3571 3572 static void perf_event_for_each(struct perf_event *event, 3573 void (*func)(struct perf_event *)) 3574 { 3575 struct perf_event_context *ctx = event->ctx; 3576 struct perf_event *sibling; 3577 3578 WARN_ON_ONCE(ctx->parent_ctx); 3579 mutex_lock(&ctx->mutex); 3580 event = event->group_leader; 3581 3582 perf_event_for_each_child(event, func); 3583 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3584 perf_event_for_each_child(sibling, func); 3585 mutex_unlock(&ctx->mutex); 3586 } 3587 3588 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3589 { 3590 struct perf_event_context *ctx = event->ctx; 3591 int ret = 0, active; 3592 u64 value; 3593 3594 if (!is_sampling_event(event)) 3595 return -EINVAL; 3596 3597 if (copy_from_user(&value, arg, sizeof(value))) 3598 return -EFAULT; 3599 3600 if (!value) 3601 return -EINVAL; 3602 3603 raw_spin_lock_irq(&ctx->lock); 3604 if (event->attr.freq) { 3605 if (value > sysctl_perf_event_sample_rate) { 3606 ret = -EINVAL; 3607 goto unlock; 3608 } 3609 3610 event->attr.sample_freq = value; 3611 } else { 3612 event->attr.sample_period = value; 3613 event->hw.sample_period = value; 3614 } 3615 3616 active = (event->state == PERF_EVENT_STATE_ACTIVE); 3617 if (active) { 3618 perf_pmu_disable(ctx->pmu); 3619 event->pmu->stop(event, PERF_EF_UPDATE); 3620 } 3621 3622 local64_set(&event->hw.period_left, 0); 3623 3624 if (active) { 3625 event->pmu->start(event, PERF_EF_RELOAD); 3626 perf_pmu_enable(ctx->pmu); 3627 } 3628 3629 unlock: 3630 raw_spin_unlock_irq(&ctx->lock); 3631 3632 return ret; 3633 } 3634 3635 static const struct file_operations perf_fops; 3636 3637 static inline int perf_fget_light(int fd, struct fd *p) 3638 { 3639 struct fd f = fdget(fd); 3640 if (!f.file) 3641 return -EBADF; 3642 3643 if (f.file->f_op != &perf_fops) { 3644 fdput(f); 3645 return -EBADF; 3646 } 3647 *p = f; 3648 return 0; 3649 } 3650 3651 static int perf_event_set_output(struct perf_event *event, 3652 struct perf_event *output_event); 3653 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3654 3655 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3656 { 3657 struct perf_event *event = file->private_data; 3658 void (*func)(struct perf_event *); 3659 u32 flags = arg; 3660 3661 switch (cmd) { 3662 case PERF_EVENT_IOC_ENABLE: 3663 func = perf_event_enable; 3664 break; 3665 case PERF_EVENT_IOC_DISABLE: 3666 func = perf_event_disable; 3667 break; 3668 case PERF_EVENT_IOC_RESET: 3669 func = perf_event_reset; 3670 break; 3671 3672 case PERF_EVENT_IOC_REFRESH: 3673 return perf_event_refresh(event, arg); 3674 3675 case PERF_EVENT_IOC_PERIOD: 3676 return perf_event_period(event, (u64 __user *)arg); 3677 3678 case PERF_EVENT_IOC_ID: 3679 { 3680 u64 id = primary_event_id(event); 3681 3682 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 3683 return -EFAULT; 3684 return 0; 3685 } 3686 3687 case PERF_EVENT_IOC_SET_OUTPUT: 3688 { 3689 int ret; 3690 if (arg != -1) { 3691 struct perf_event *output_event; 3692 struct fd output; 3693 ret = perf_fget_light(arg, &output); 3694 if (ret) 3695 return ret; 3696 output_event = output.file->private_data; 3697 ret = perf_event_set_output(event, output_event); 3698 fdput(output); 3699 } else { 3700 ret = perf_event_set_output(event, NULL); 3701 } 3702 return ret; 3703 } 3704 3705 case PERF_EVENT_IOC_SET_FILTER: 3706 return perf_event_set_filter(event, (void __user *)arg); 3707 3708 default: 3709 return -ENOTTY; 3710 } 3711 3712 if (flags & PERF_IOC_FLAG_GROUP) 3713 perf_event_for_each(event, func); 3714 else 3715 perf_event_for_each_child(event, func); 3716 3717 return 0; 3718 } 3719 3720 int perf_event_task_enable(void) 3721 { 3722 struct perf_event *event; 3723 3724 mutex_lock(¤t->perf_event_mutex); 3725 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3726 perf_event_for_each_child(event, perf_event_enable); 3727 mutex_unlock(¤t->perf_event_mutex); 3728 3729 return 0; 3730 } 3731 3732 int perf_event_task_disable(void) 3733 { 3734 struct perf_event *event; 3735 3736 mutex_lock(¤t->perf_event_mutex); 3737 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3738 perf_event_for_each_child(event, perf_event_disable); 3739 mutex_unlock(¤t->perf_event_mutex); 3740 3741 return 0; 3742 } 3743 3744 static int perf_event_index(struct perf_event *event) 3745 { 3746 if (event->hw.state & PERF_HES_STOPPED) 3747 return 0; 3748 3749 if (event->state != PERF_EVENT_STATE_ACTIVE) 3750 return 0; 3751 3752 return event->pmu->event_idx(event); 3753 } 3754 3755 static void calc_timer_values(struct perf_event *event, 3756 u64 *now, 3757 u64 *enabled, 3758 u64 *running) 3759 { 3760 u64 ctx_time; 3761 3762 *now = perf_clock(); 3763 ctx_time = event->shadow_ctx_time + *now; 3764 *enabled = ctx_time - event->tstamp_enabled; 3765 *running = ctx_time - event->tstamp_running; 3766 } 3767 3768 static void perf_event_init_userpage(struct perf_event *event) 3769 { 3770 struct perf_event_mmap_page *userpg; 3771 struct ring_buffer *rb; 3772 3773 rcu_read_lock(); 3774 rb = rcu_dereference(event->rb); 3775 if (!rb) 3776 goto unlock; 3777 3778 userpg = rb->user_page; 3779 3780 /* Allow new userspace to detect that bit 0 is deprecated */ 3781 userpg->cap_bit0_is_deprecated = 1; 3782 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 3783 3784 unlock: 3785 rcu_read_unlock(); 3786 } 3787 3788 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) 3789 { 3790 } 3791 3792 /* 3793 * Callers need to ensure there can be no nesting of this function, otherwise 3794 * the seqlock logic goes bad. We can not serialize this because the arch 3795 * code calls this from NMI context. 3796 */ 3797 void perf_event_update_userpage(struct perf_event *event) 3798 { 3799 struct perf_event_mmap_page *userpg; 3800 struct ring_buffer *rb; 3801 u64 enabled, running, now; 3802 3803 rcu_read_lock(); 3804 rb = rcu_dereference(event->rb); 3805 if (!rb) 3806 goto unlock; 3807 3808 /* 3809 * compute total_time_enabled, total_time_running 3810 * based on snapshot values taken when the event 3811 * was last scheduled in. 3812 * 3813 * we cannot simply called update_context_time() 3814 * because of locking issue as we can be called in 3815 * NMI context 3816 */ 3817 calc_timer_values(event, &now, &enabled, &running); 3818 3819 userpg = rb->user_page; 3820 /* 3821 * Disable preemption so as to not let the corresponding user-space 3822 * spin too long if we get preempted. 3823 */ 3824 preempt_disable(); 3825 ++userpg->lock; 3826 barrier(); 3827 userpg->index = perf_event_index(event); 3828 userpg->offset = perf_event_count(event); 3829 if (userpg->index) 3830 userpg->offset -= local64_read(&event->hw.prev_count); 3831 3832 userpg->time_enabled = enabled + 3833 atomic64_read(&event->child_total_time_enabled); 3834 3835 userpg->time_running = running + 3836 atomic64_read(&event->child_total_time_running); 3837 3838 arch_perf_update_userpage(userpg, now); 3839 3840 barrier(); 3841 ++userpg->lock; 3842 preempt_enable(); 3843 unlock: 3844 rcu_read_unlock(); 3845 } 3846 3847 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3848 { 3849 struct perf_event *event = vma->vm_file->private_data; 3850 struct ring_buffer *rb; 3851 int ret = VM_FAULT_SIGBUS; 3852 3853 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3854 if (vmf->pgoff == 0) 3855 ret = 0; 3856 return ret; 3857 } 3858 3859 rcu_read_lock(); 3860 rb = rcu_dereference(event->rb); 3861 if (!rb) 3862 goto unlock; 3863 3864 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3865 goto unlock; 3866 3867 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3868 if (!vmf->page) 3869 goto unlock; 3870 3871 get_page(vmf->page); 3872 vmf->page->mapping = vma->vm_file->f_mapping; 3873 vmf->page->index = vmf->pgoff; 3874 3875 ret = 0; 3876 unlock: 3877 rcu_read_unlock(); 3878 3879 return ret; 3880 } 3881 3882 static void ring_buffer_attach(struct perf_event *event, 3883 struct ring_buffer *rb) 3884 { 3885 struct ring_buffer *old_rb = NULL; 3886 unsigned long flags; 3887 3888 if (event->rb) { 3889 /* 3890 * Should be impossible, we set this when removing 3891 * event->rb_entry and wait/clear when adding event->rb_entry. 3892 */ 3893 WARN_ON_ONCE(event->rcu_pending); 3894 3895 old_rb = event->rb; 3896 event->rcu_batches = get_state_synchronize_rcu(); 3897 event->rcu_pending = 1; 3898 3899 spin_lock_irqsave(&old_rb->event_lock, flags); 3900 list_del_rcu(&event->rb_entry); 3901 spin_unlock_irqrestore(&old_rb->event_lock, flags); 3902 } 3903 3904 if (event->rcu_pending && rb) { 3905 cond_synchronize_rcu(event->rcu_batches); 3906 event->rcu_pending = 0; 3907 } 3908 3909 if (rb) { 3910 spin_lock_irqsave(&rb->event_lock, flags); 3911 list_add_rcu(&event->rb_entry, &rb->event_list); 3912 spin_unlock_irqrestore(&rb->event_lock, flags); 3913 } 3914 3915 rcu_assign_pointer(event->rb, rb); 3916 3917 if (old_rb) { 3918 ring_buffer_put(old_rb); 3919 /* 3920 * Since we detached before setting the new rb, so that we 3921 * could attach the new rb, we could have missed a wakeup. 3922 * Provide it now. 3923 */ 3924 wake_up_all(&event->waitq); 3925 } 3926 } 3927 3928 static void ring_buffer_wakeup(struct perf_event *event) 3929 { 3930 struct ring_buffer *rb; 3931 3932 rcu_read_lock(); 3933 rb = rcu_dereference(event->rb); 3934 if (rb) { 3935 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3936 wake_up_all(&event->waitq); 3937 } 3938 rcu_read_unlock(); 3939 } 3940 3941 static void rb_free_rcu(struct rcu_head *rcu_head) 3942 { 3943 struct ring_buffer *rb; 3944 3945 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3946 rb_free(rb); 3947 } 3948 3949 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3950 { 3951 struct ring_buffer *rb; 3952 3953 rcu_read_lock(); 3954 rb = rcu_dereference(event->rb); 3955 if (rb) { 3956 if (!atomic_inc_not_zero(&rb->refcount)) 3957 rb = NULL; 3958 } 3959 rcu_read_unlock(); 3960 3961 return rb; 3962 } 3963 3964 static void ring_buffer_put(struct ring_buffer *rb) 3965 { 3966 if (!atomic_dec_and_test(&rb->refcount)) 3967 return; 3968 3969 WARN_ON_ONCE(!list_empty(&rb->event_list)); 3970 3971 call_rcu(&rb->rcu_head, rb_free_rcu); 3972 } 3973 3974 static void perf_mmap_open(struct vm_area_struct *vma) 3975 { 3976 struct perf_event *event = vma->vm_file->private_data; 3977 3978 atomic_inc(&event->mmap_count); 3979 atomic_inc(&event->rb->mmap_count); 3980 } 3981 3982 /* 3983 * A buffer can be mmap()ed multiple times; either directly through the same 3984 * event, or through other events by use of perf_event_set_output(). 3985 * 3986 * In order to undo the VM accounting done by perf_mmap() we need to destroy 3987 * the buffer here, where we still have a VM context. This means we need 3988 * to detach all events redirecting to us. 3989 */ 3990 static void perf_mmap_close(struct vm_area_struct *vma) 3991 { 3992 struct perf_event *event = vma->vm_file->private_data; 3993 3994 struct ring_buffer *rb = ring_buffer_get(event); 3995 struct user_struct *mmap_user = rb->mmap_user; 3996 int mmap_locked = rb->mmap_locked; 3997 unsigned long size = perf_data_size(rb); 3998 3999 atomic_dec(&rb->mmap_count); 4000 4001 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4002 goto out_put; 4003 4004 ring_buffer_attach(event, NULL); 4005 mutex_unlock(&event->mmap_mutex); 4006 4007 /* If there's still other mmap()s of this buffer, we're done. */ 4008 if (atomic_read(&rb->mmap_count)) 4009 goto out_put; 4010 4011 /* 4012 * No other mmap()s, detach from all other events that might redirect 4013 * into the now unreachable buffer. Somewhat complicated by the 4014 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4015 */ 4016 again: 4017 rcu_read_lock(); 4018 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4019 if (!atomic_long_inc_not_zero(&event->refcount)) { 4020 /* 4021 * This event is en-route to free_event() which will 4022 * detach it and remove it from the list. 4023 */ 4024 continue; 4025 } 4026 rcu_read_unlock(); 4027 4028 mutex_lock(&event->mmap_mutex); 4029 /* 4030 * Check we didn't race with perf_event_set_output() which can 4031 * swizzle the rb from under us while we were waiting to 4032 * acquire mmap_mutex. 4033 * 4034 * If we find a different rb; ignore this event, a next 4035 * iteration will no longer find it on the list. We have to 4036 * still restart the iteration to make sure we're not now 4037 * iterating the wrong list. 4038 */ 4039 if (event->rb == rb) 4040 ring_buffer_attach(event, NULL); 4041 4042 mutex_unlock(&event->mmap_mutex); 4043 put_event(event); 4044 4045 /* 4046 * Restart the iteration; either we're on the wrong list or 4047 * destroyed its integrity by doing a deletion. 4048 */ 4049 goto again; 4050 } 4051 rcu_read_unlock(); 4052 4053 /* 4054 * It could be there's still a few 0-ref events on the list; they'll 4055 * get cleaned up by free_event() -- they'll also still have their 4056 * ref on the rb and will free it whenever they are done with it. 4057 * 4058 * Aside from that, this buffer is 'fully' detached and unmapped, 4059 * undo the VM accounting. 4060 */ 4061 4062 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4063 vma->vm_mm->pinned_vm -= mmap_locked; 4064 free_uid(mmap_user); 4065 4066 out_put: 4067 ring_buffer_put(rb); /* could be last */ 4068 } 4069 4070 static const struct vm_operations_struct perf_mmap_vmops = { 4071 .open = perf_mmap_open, 4072 .close = perf_mmap_close, 4073 .fault = perf_mmap_fault, 4074 .page_mkwrite = perf_mmap_fault, 4075 }; 4076 4077 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4078 { 4079 struct perf_event *event = file->private_data; 4080 unsigned long user_locked, user_lock_limit; 4081 struct user_struct *user = current_user(); 4082 unsigned long locked, lock_limit; 4083 struct ring_buffer *rb; 4084 unsigned long vma_size; 4085 unsigned long nr_pages; 4086 long user_extra, extra; 4087 int ret = 0, flags = 0; 4088 4089 /* 4090 * Don't allow mmap() of inherited per-task counters. This would 4091 * create a performance issue due to all children writing to the 4092 * same rb. 4093 */ 4094 if (event->cpu == -1 && event->attr.inherit) 4095 return -EINVAL; 4096 4097 if (!(vma->vm_flags & VM_SHARED)) 4098 return -EINVAL; 4099 4100 vma_size = vma->vm_end - vma->vm_start; 4101 nr_pages = (vma_size / PAGE_SIZE) - 1; 4102 4103 /* 4104 * If we have rb pages ensure they're a power-of-two number, so we 4105 * can do bitmasks instead of modulo. 4106 */ 4107 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4108 return -EINVAL; 4109 4110 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4111 return -EINVAL; 4112 4113 if (vma->vm_pgoff != 0) 4114 return -EINVAL; 4115 4116 WARN_ON_ONCE(event->ctx->parent_ctx); 4117 again: 4118 mutex_lock(&event->mmap_mutex); 4119 if (event->rb) { 4120 if (event->rb->nr_pages != nr_pages) { 4121 ret = -EINVAL; 4122 goto unlock; 4123 } 4124 4125 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4126 /* 4127 * Raced against perf_mmap_close() through 4128 * perf_event_set_output(). Try again, hope for better 4129 * luck. 4130 */ 4131 mutex_unlock(&event->mmap_mutex); 4132 goto again; 4133 } 4134 4135 goto unlock; 4136 } 4137 4138 user_extra = nr_pages + 1; 4139 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4140 4141 /* 4142 * Increase the limit linearly with more CPUs: 4143 */ 4144 user_lock_limit *= num_online_cpus(); 4145 4146 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4147 4148 extra = 0; 4149 if (user_locked > user_lock_limit) 4150 extra = user_locked - user_lock_limit; 4151 4152 lock_limit = rlimit(RLIMIT_MEMLOCK); 4153 lock_limit >>= PAGE_SHIFT; 4154 locked = vma->vm_mm->pinned_vm + extra; 4155 4156 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4157 !capable(CAP_IPC_LOCK)) { 4158 ret = -EPERM; 4159 goto unlock; 4160 } 4161 4162 WARN_ON(event->rb); 4163 4164 if (vma->vm_flags & VM_WRITE) 4165 flags |= RING_BUFFER_WRITABLE; 4166 4167 rb = rb_alloc(nr_pages, 4168 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4169 event->cpu, flags); 4170 4171 if (!rb) { 4172 ret = -ENOMEM; 4173 goto unlock; 4174 } 4175 4176 atomic_set(&rb->mmap_count, 1); 4177 rb->mmap_locked = extra; 4178 rb->mmap_user = get_current_user(); 4179 4180 atomic_long_add(user_extra, &user->locked_vm); 4181 vma->vm_mm->pinned_vm += extra; 4182 4183 ring_buffer_attach(event, rb); 4184 4185 perf_event_init_userpage(event); 4186 perf_event_update_userpage(event); 4187 4188 unlock: 4189 if (!ret) 4190 atomic_inc(&event->mmap_count); 4191 mutex_unlock(&event->mmap_mutex); 4192 4193 /* 4194 * Since pinned accounting is per vm we cannot allow fork() to copy our 4195 * vma. 4196 */ 4197 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4198 vma->vm_ops = &perf_mmap_vmops; 4199 4200 return ret; 4201 } 4202 4203 static int perf_fasync(int fd, struct file *filp, int on) 4204 { 4205 struct inode *inode = file_inode(filp); 4206 struct perf_event *event = filp->private_data; 4207 int retval; 4208 4209 mutex_lock(&inode->i_mutex); 4210 retval = fasync_helper(fd, filp, on, &event->fasync); 4211 mutex_unlock(&inode->i_mutex); 4212 4213 if (retval < 0) 4214 return retval; 4215 4216 return 0; 4217 } 4218 4219 static const struct file_operations perf_fops = { 4220 .llseek = no_llseek, 4221 .release = perf_release, 4222 .read = perf_read, 4223 .poll = perf_poll, 4224 .unlocked_ioctl = perf_ioctl, 4225 .compat_ioctl = perf_ioctl, 4226 .mmap = perf_mmap, 4227 .fasync = perf_fasync, 4228 }; 4229 4230 /* 4231 * Perf event wakeup 4232 * 4233 * If there's data, ensure we set the poll() state and publish everything 4234 * to user-space before waking everybody up. 4235 */ 4236 4237 void perf_event_wakeup(struct perf_event *event) 4238 { 4239 ring_buffer_wakeup(event); 4240 4241 if (event->pending_kill) { 4242 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 4243 event->pending_kill = 0; 4244 } 4245 } 4246 4247 static void perf_pending_event(struct irq_work *entry) 4248 { 4249 struct perf_event *event = container_of(entry, 4250 struct perf_event, pending); 4251 4252 if (event->pending_disable) { 4253 event->pending_disable = 0; 4254 __perf_event_disable(event); 4255 } 4256 4257 if (event->pending_wakeup) { 4258 event->pending_wakeup = 0; 4259 perf_event_wakeup(event); 4260 } 4261 } 4262 4263 /* 4264 * We assume there is only KVM supporting the callbacks. 4265 * Later on, we might change it to a list if there is 4266 * another virtualization implementation supporting the callbacks. 4267 */ 4268 struct perf_guest_info_callbacks *perf_guest_cbs; 4269 4270 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4271 { 4272 perf_guest_cbs = cbs; 4273 return 0; 4274 } 4275 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 4276 4277 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4278 { 4279 perf_guest_cbs = NULL; 4280 return 0; 4281 } 4282 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 4283 4284 static void 4285 perf_output_sample_regs(struct perf_output_handle *handle, 4286 struct pt_regs *regs, u64 mask) 4287 { 4288 int bit; 4289 4290 for_each_set_bit(bit, (const unsigned long *) &mask, 4291 sizeof(mask) * BITS_PER_BYTE) { 4292 u64 val; 4293 4294 val = perf_reg_value(regs, bit); 4295 perf_output_put(handle, val); 4296 } 4297 } 4298 4299 static void perf_sample_regs_user(struct perf_regs_user *regs_user, 4300 struct pt_regs *regs) 4301 { 4302 if (!user_mode(regs)) { 4303 if (current->mm) 4304 regs = task_pt_regs(current); 4305 else 4306 regs = NULL; 4307 } 4308 4309 if (regs) { 4310 regs_user->regs = regs; 4311 regs_user->abi = perf_reg_abi(current); 4312 } 4313 } 4314 4315 /* 4316 * Get remaining task size from user stack pointer. 4317 * 4318 * It'd be better to take stack vma map and limit this more 4319 * precisly, but there's no way to get it safely under interrupt, 4320 * so using TASK_SIZE as limit. 4321 */ 4322 static u64 perf_ustack_task_size(struct pt_regs *regs) 4323 { 4324 unsigned long addr = perf_user_stack_pointer(regs); 4325 4326 if (!addr || addr >= TASK_SIZE) 4327 return 0; 4328 4329 return TASK_SIZE - addr; 4330 } 4331 4332 static u16 4333 perf_sample_ustack_size(u16 stack_size, u16 header_size, 4334 struct pt_regs *regs) 4335 { 4336 u64 task_size; 4337 4338 /* No regs, no stack pointer, no dump. */ 4339 if (!regs) 4340 return 0; 4341 4342 /* 4343 * Check if we fit in with the requested stack size into the: 4344 * - TASK_SIZE 4345 * If we don't, we limit the size to the TASK_SIZE. 4346 * 4347 * - remaining sample size 4348 * If we don't, we customize the stack size to 4349 * fit in to the remaining sample size. 4350 */ 4351 4352 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 4353 stack_size = min(stack_size, (u16) task_size); 4354 4355 /* Current header size plus static size and dynamic size. */ 4356 header_size += 2 * sizeof(u64); 4357 4358 /* Do we fit in with the current stack dump size? */ 4359 if ((u16) (header_size + stack_size) < header_size) { 4360 /* 4361 * If we overflow the maximum size for the sample, 4362 * we customize the stack dump size to fit in. 4363 */ 4364 stack_size = USHRT_MAX - header_size - sizeof(u64); 4365 stack_size = round_up(stack_size, sizeof(u64)); 4366 } 4367 4368 return stack_size; 4369 } 4370 4371 static void 4372 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 4373 struct pt_regs *regs) 4374 { 4375 /* Case of a kernel thread, nothing to dump */ 4376 if (!regs) { 4377 u64 size = 0; 4378 perf_output_put(handle, size); 4379 } else { 4380 unsigned long sp; 4381 unsigned int rem; 4382 u64 dyn_size; 4383 4384 /* 4385 * We dump: 4386 * static size 4387 * - the size requested by user or the best one we can fit 4388 * in to the sample max size 4389 * data 4390 * - user stack dump data 4391 * dynamic size 4392 * - the actual dumped size 4393 */ 4394 4395 /* Static size. */ 4396 perf_output_put(handle, dump_size); 4397 4398 /* Data. */ 4399 sp = perf_user_stack_pointer(regs); 4400 rem = __output_copy_user(handle, (void *) sp, dump_size); 4401 dyn_size = dump_size - rem; 4402 4403 perf_output_skip(handle, rem); 4404 4405 /* Dynamic size. */ 4406 perf_output_put(handle, dyn_size); 4407 } 4408 } 4409 4410 static void __perf_event_header__init_id(struct perf_event_header *header, 4411 struct perf_sample_data *data, 4412 struct perf_event *event) 4413 { 4414 u64 sample_type = event->attr.sample_type; 4415 4416 data->type = sample_type; 4417 header->size += event->id_header_size; 4418 4419 if (sample_type & PERF_SAMPLE_TID) { 4420 /* namespace issues */ 4421 data->tid_entry.pid = perf_event_pid(event, current); 4422 data->tid_entry.tid = perf_event_tid(event, current); 4423 } 4424 4425 if (sample_type & PERF_SAMPLE_TIME) 4426 data->time = perf_clock(); 4427 4428 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 4429 data->id = primary_event_id(event); 4430 4431 if (sample_type & PERF_SAMPLE_STREAM_ID) 4432 data->stream_id = event->id; 4433 4434 if (sample_type & PERF_SAMPLE_CPU) { 4435 data->cpu_entry.cpu = raw_smp_processor_id(); 4436 data->cpu_entry.reserved = 0; 4437 } 4438 } 4439 4440 void perf_event_header__init_id(struct perf_event_header *header, 4441 struct perf_sample_data *data, 4442 struct perf_event *event) 4443 { 4444 if (event->attr.sample_id_all) 4445 __perf_event_header__init_id(header, data, event); 4446 } 4447 4448 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 4449 struct perf_sample_data *data) 4450 { 4451 u64 sample_type = data->type; 4452 4453 if (sample_type & PERF_SAMPLE_TID) 4454 perf_output_put(handle, data->tid_entry); 4455 4456 if (sample_type & PERF_SAMPLE_TIME) 4457 perf_output_put(handle, data->time); 4458 4459 if (sample_type & PERF_SAMPLE_ID) 4460 perf_output_put(handle, data->id); 4461 4462 if (sample_type & PERF_SAMPLE_STREAM_ID) 4463 perf_output_put(handle, data->stream_id); 4464 4465 if (sample_type & PERF_SAMPLE_CPU) 4466 perf_output_put(handle, data->cpu_entry); 4467 4468 if (sample_type & PERF_SAMPLE_IDENTIFIER) 4469 perf_output_put(handle, data->id); 4470 } 4471 4472 void perf_event__output_id_sample(struct perf_event *event, 4473 struct perf_output_handle *handle, 4474 struct perf_sample_data *sample) 4475 { 4476 if (event->attr.sample_id_all) 4477 __perf_event__output_id_sample(handle, sample); 4478 } 4479 4480 static void perf_output_read_one(struct perf_output_handle *handle, 4481 struct perf_event *event, 4482 u64 enabled, u64 running) 4483 { 4484 u64 read_format = event->attr.read_format; 4485 u64 values[4]; 4486 int n = 0; 4487 4488 values[n++] = perf_event_count(event); 4489 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4490 values[n++] = enabled + 4491 atomic64_read(&event->child_total_time_enabled); 4492 } 4493 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4494 values[n++] = running + 4495 atomic64_read(&event->child_total_time_running); 4496 } 4497 if (read_format & PERF_FORMAT_ID) 4498 values[n++] = primary_event_id(event); 4499 4500 __output_copy(handle, values, n * sizeof(u64)); 4501 } 4502 4503 /* 4504 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 4505 */ 4506 static void perf_output_read_group(struct perf_output_handle *handle, 4507 struct perf_event *event, 4508 u64 enabled, u64 running) 4509 { 4510 struct perf_event *leader = event->group_leader, *sub; 4511 u64 read_format = event->attr.read_format; 4512 u64 values[5]; 4513 int n = 0; 4514 4515 values[n++] = 1 + leader->nr_siblings; 4516 4517 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4518 values[n++] = enabled; 4519 4520 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4521 values[n++] = running; 4522 4523 if (leader != event) 4524 leader->pmu->read(leader); 4525 4526 values[n++] = perf_event_count(leader); 4527 if (read_format & PERF_FORMAT_ID) 4528 values[n++] = primary_event_id(leader); 4529 4530 __output_copy(handle, values, n * sizeof(u64)); 4531 4532 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4533 n = 0; 4534 4535 if ((sub != event) && 4536 (sub->state == PERF_EVENT_STATE_ACTIVE)) 4537 sub->pmu->read(sub); 4538 4539 values[n++] = perf_event_count(sub); 4540 if (read_format & PERF_FORMAT_ID) 4541 values[n++] = primary_event_id(sub); 4542 4543 __output_copy(handle, values, n * sizeof(u64)); 4544 } 4545 } 4546 4547 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 4548 PERF_FORMAT_TOTAL_TIME_RUNNING) 4549 4550 static void perf_output_read(struct perf_output_handle *handle, 4551 struct perf_event *event) 4552 { 4553 u64 enabled = 0, running = 0, now; 4554 u64 read_format = event->attr.read_format; 4555 4556 /* 4557 * compute total_time_enabled, total_time_running 4558 * based on snapshot values taken when the event 4559 * was last scheduled in. 4560 * 4561 * we cannot simply called update_context_time() 4562 * because of locking issue as we are called in 4563 * NMI context 4564 */ 4565 if (read_format & PERF_FORMAT_TOTAL_TIMES) 4566 calc_timer_values(event, &now, &enabled, &running); 4567 4568 if (event->attr.read_format & PERF_FORMAT_GROUP) 4569 perf_output_read_group(handle, event, enabled, running); 4570 else 4571 perf_output_read_one(handle, event, enabled, running); 4572 } 4573 4574 void perf_output_sample(struct perf_output_handle *handle, 4575 struct perf_event_header *header, 4576 struct perf_sample_data *data, 4577 struct perf_event *event) 4578 { 4579 u64 sample_type = data->type; 4580 4581 perf_output_put(handle, *header); 4582 4583 if (sample_type & PERF_SAMPLE_IDENTIFIER) 4584 perf_output_put(handle, data->id); 4585 4586 if (sample_type & PERF_SAMPLE_IP) 4587 perf_output_put(handle, data->ip); 4588 4589 if (sample_type & PERF_SAMPLE_TID) 4590 perf_output_put(handle, data->tid_entry); 4591 4592 if (sample_type & PERF_SAMPLE_TIME) 4593 perf_output_put(handle, data->time); 4594 4595 if (sample_type & PERF_SAMPLE_ADDR) 4596 perf_output_put(handle, data->addr); 4597 4598 if (sample_type & PERF_SAMPLE_ID) 4599 perf_output_put(handle, data->id); 4600 4601 if (sample_type & PERF_SAMPLE_STREAM_ID) 4602 perf_output_put(handle, data->stream_id); 4603 4604 if (sample_type & PERF_SAMPLE_CPU) 4605 perf_output_put(handle, data->cpu_entry); 4606 4607 if (sample_type & PERF_SAMPLE_PERIOD) 4608 perf_output_put(handle, data->period); 4609 4610 if (sample_type & PERF_SAMPLE_READ) 4611 perf_output_read(handle, event); 4612 4613 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4614 if (data->callchain) { 4615 int size = 1; 4616 4617 if (data->callchain) 4618 size += data->callchain->nr; 4619 4620 size *= sizeof(u64); 4621 4622 __output_copy(handle, data->callchain, size); 4623 } else { 4624 u64 nr = 0; 4625 perf_output_put(handle, nr); 4626 } 4627 } 4628 4629 if (sample_type & PERF_SAMPLE_RAW) { 4630 if (data->raw) { 4631 perf_output_put(handle, data->raw->size); 4632 __output_copy(handle, data->raw->data, 4633 data->raw->size); 4634 } else { 4635 struct { 4636 u32 size; 4637 u32 data; 4638 } raw = { 4639 .size = sizeof(u32), 4640 .data = 0, 4641 }; 4642 perf_output_put(handle, raw); 4643 } 4644 } 4645 4646 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4647 if (data->br_stack) { 4648 size_t size; 4649 4650 size = data->br_stack->nr 4651 * sizeof(struct perf_branch_entry); 4652 4653 perf_output_put(handle, data->br_stack->nr); 4654 perf_output_copy(handle, data->br_stack->entries, size); 4655 } else { 4656 /* 4657 * we always store at least the value of nr 4658 */ 4659 u64 nr = 0; 4660 perf_output_put(handle, nr); 4661 } 4662 } 4663 4664 if (sample_type & PERF_SAMPLE_REGS_USER) { 4665 u64 abi = data->regs_user.abi; 4666 4667 /* 4668 * If there are no regs to dump, notice it through 4669 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 4670 */ 4671 perf_output_put(handle, abi); 4672 4673 if (abi) { 4674 u64 mask = event->attr.sample_regs_user; 4675 perf_output_sample_regs(handle, 4676 data->regs_user.regs, 4677 mask); 4678 } 4679 } 4680 4681 if (sample_type & PERF_SAMPLE_STACK_USER) { 4682 perf_output_sample_ustack(handle, 4683 data->stack_user_size, 4684 data->regs_user.regs); 4685 } 4686 4687 if (sample_type & PERF_SAMPLE_WEIGHT) 4688 perf_output_put(handle, data->weight); 4689 4690 if (sample_type & PERF_SAMPLE_DATA_SRC) 4691 perf_output_put(handle, data->data_src.val); 4692 4693 if (sample_type & PERF_SAMPLE_TRANSACTION) 4694 perf_output_put(handle, data->txn); 4695 4696 if (!event->attr.watermark) { 4697 int wakeup_events = event->attr.wakeup_events; 4698 4699 if (wakeup_events) { 4700 struct ring_buffer *rb = handle->rb; 4701 int events = local_inc_return(&rb->events); 4702 4703 if (events >= wakeup_events) { 4704 local_sub(wakeup_events, &rb->events); 4705 local_inc(&rb->wakeup); 4706 } 4707 } 4708 } 4709 } 4710 4711 void perf_prepare_sample(struct perf_event_header *header, 4712 struct perf_sample_data *data, 4713 struct perf_event *event, 4714 struct pt_regs *regs) 4715 { 4716 u64 sample_type = event->attr.sample_type; 4717 4718 header->type = PERF_RECORD_SAMPLE; 4719 header->size = sizeof(*header) + event->header_size; 4720 4721 header->misc = 0; 4722 header->misc |= perf_misc_flags(regs); 4723 4724 __perf_event_header__init_id(header, data, event); 4725 4726 if (sample_type & PERF_SAMPLE_IP) 4727 data->ip = perf_instruction_pointer(regs); 4728 4729 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4730 int size = 1; 4731 4732 data->callchain = perf_callchain(event, regs); 4733 4734 if (data->callchain) 4735 size += data->callchain->nr; 4736 4737 header->size += size * sizeof(u64); 4738 } 4739 4740 if (sample_type & PERF_SAMPLE_RAW) { 4741 int size = sizeof(u32); 4742 4743 if (data->raw) 4744 size += data->raw->size; 4745 else 4746 size += sizeof(u32); 4747 4748 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4749 header->size += size; 4750 } 4751 4752 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4753 int size = sizeof(u64); /* nr */ 4754 if (data->br_stack) { 4755 size += data->br_stack->nr 4756 * sizeof(struct perf_branch_entry); 4757 } 4758 header->size += size; 4759 } 4760 4761 if (sample_type & PERF_SAMPLE_REGS_USER) { 4762 /* regs dump ABI info */ 4763 int size = sizeof(u64); 4764 4765 perf_sample_regs_user(&data->regs_user, regs); 4766 4767 if (data->regs_user.regs) { 4768 u64 mask = event->attr.sample_regs_user; 4769 size += hweight64(mask) * sizeof(u64); 4770 } 4771 4772 header->size += size; 4773 } 4774 4775 if (sample_type & PERF_SAMPLE_STACK_USER) { 4776 /* 4777 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 4778 * processed as the last one or have additional check added 4779 * in case new sample type is added, because we could eat 4780 * up the rest of the sample size. 4781 */ 4782 struct perf_regs_user *uregs = &data->regs_user; 4783 u16 stack_size = event->attr.sample_stack_user; 4784 u16 size = sizeof(u64); 4785 4786 if (!uregs->abi) 4787 perf_sample_regs_user(uregs, regs); 4788 4789 stack_size = perf_sample_ustack_size(stack_size, header->size, 4790 uregs->regs); 4791 4792 /* 4793 * If there is something to dump, add space for the dump 4794 * itself and for the field that tells the dynamic size, 4795 * which is how many have been actually dumped. 4796 */ 4797 if (stack_size) 4798 size += sizeof(u64) + stack_size; 4799 4800 data->stack_user_size = stack_size; 4801 header->size += size; 4802 } 4803 } 4804 4805 static void perf_event_output(struct perf_event *event, 4806 struct perf_sample_data *data, 4807 struct pt_regs *regs) 4808 { 4809 struct perf_output_handle handle; 4810 struct perf_event_header header; 4811 4812 /* protect the callchain buffers */ 4813 rcu_read_lock(); 4814 4815 perf_prepare_sample(&header, data, event, regs); 4816 4817 if (perf_output_begin(&handle, event, header.size)) 4818 goto exit; 4819 4820 perf_output_sample(&handle, &header, data, event); 4821 4822 perf_output_end(&handle); 4823 4824 exit: 4825 rcu_read_unlock(); 4826 } 4827 4828 /* 4829 * read event_id 4830 */ 4831 4832 struct perf_read_event { 4833 struct perf_event_header header; 4834 4835 u32 pid; 4836 u32 tid; 4837 }; 4838 4839 static void 4840 perf_event_read_event(struct perf_event *event, 4841 struct task_struct *task) 4842 { 4843 struct perf_output_handle handle; 4844 struct perf_sample_data sample; 4845 struct perf_read_event read_event = { 4846 .header = { 4847 .type = PERF_RECORD_READ, 4848 .misc = 0, 4849 .size = sizeof(read_event) + event->read_size, 4850 }, 4851 .pid = perf_event_pid(event, task), 4852 .tid = perf_event_tid(event, task), 4853 }; 4854 int ret; 4855 4856 perf_event_header__init_id(&read_event.header, &sample, event); 4857 ret = perf_output_begin(&handle, event, read_event.header.size); 4858 if (ret) 4859 return; 4860 4861 perf_output_put(&handle, read_event); 4862 perf_output_read(&handle, event); 4863 perf_event__output_id_sample(event, &handle, &sample); 4864 4865 perf_output_end(&handle); 4866 } 4867 4868 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 4869 4870 static void 4871 perf_event_aux_ctx(struct perf_event_context *ctx, 4872 perf_event_aux_output_cb output, 4873 void *data) 4874 { 4875 struct perf_event *event; 4876 4877 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4878 if (event->state < PERF_EVENT_STATE_INACTIVE) 4879 continue; 4880 if (!event_filter_match(event)) 4881 continue; 4882 output(event, data); 4883 } 4884 } 4885 4886 static void 4887 perf_event_aux(perf_event_aux_output_cb output, void *data, 4888 struct perf_event_context *task_ctx) 4889 { 4890 struct perf_cpu_context *cpuctx; 4891 struct perf_event_context *ctx; 4892 struct pmu *pmu; 4893 int ctxn; 4894 4895 rcu_read_lock(); 4896 list_for_each_entry_rcu(pmu, &pmus, entry) { 4897 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4898 if (cpuctx->unique_pmu != pmu) 4899 goto next; 4900 perf_event_aux_ctx(&cpuctx->ctx, output, data); 4901 if (task_ctx) 4902 goto next; 4903 ctxn = pmu->task_ctx_nr; 4904 if (ctxn < 0) 4905 goto next; 4906 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4907 if (ctx) 4908 perf_event_aux_ctx(ctx, output, data); 4909 next: 4910 put_cpu_ptr(pmu->pmu_cpu_context); 4911 } 4912 4913 if (task_ctx) { 4914 preempt_disable(); 4915 perf_event_aux_ctx(task_ctx, output, data); 4916 preempt_enable(); 4917 } 4918 rcu_read_unlock(); 4919 } 4920 4921 /* 4922 * task tracking -- fork/exit 4923 * 4924 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 4925 */ 4926 4927 struct perf_task_event { 4928 struct task_struct *task; 4929 struct perf_event_context *task_ctx; 4930 4931 struct { 4932 struct perf_event_header header; 4933 4934 u32 pid; 4935 u32 ppid; 4936 u32 tid; 4937 u32 ptid; 4938 u64 time; 4939 } event_id; 4940 }; 4941 4942 static int perf_event_task_match(struct perf_event *event) 4943 { 4944 return event->attr.comm || event->attr.mmap || 4945 event->attr.mmap2 || event->attr.mmap_data || 4946 event->attr.task; 4947 } 4948 4949 static void perf_event_task_output(struct perf_event *event, 4950 void *data) 4951 { 4952 struct perf_task_event *task_event = data; 4953 struct perf_output_handle handle; 4954 struct perf_sample_data sample; 4955 struct task_struct *task = task_event->task; 4956 int ret, size = task_event->event_id.header.size; 4957 4958 if (!perf_event_task_match(event)) 4959 return; 4960 4961 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4962 4963 ret = perf_output_begin(&handle, event, 4964 task_event->event_id.header.size); 4965 if (ret) 4966 goto out; 4967 4968 task_event->event_id.pid = perf_event_pid(event, task); 4969 task_event->event_id.ppid = perf_event_pid(event, current); 4970 4971 task_event->event_id.tid = perf_event_tid(event, task); 4972 task_event->event_id.ptid = perf_event_tid(event, current); 4973 4974 perf_output_put(&handle, task_event->event_id); 4975 4976 perf_event__output_id_sample(event, &handle, &sample); 4977 4978 perf_output_end(&handle); 4979 out: 4980 task_event->event_id.header.size = size; 4981 } 4982 4983 static void perf_event_task(struct task_struct *task, 4984 struct perf_event_context *task_ctx, 4985 int new) 4986 { 4987 struct perf_task_event task_event; 4988 4989 if (!atomic_read(&nr_comm_events) && 4990 !atomic_read(&nr_mmap_events) && 4991 !atomic_read(&nr_task_events)) 4992 return; 4993 4994 task_event = (struct perf_task_event){ 4995 .task = task, 4996 .task_ctx = task_ctx, 4997 .event_id = { 4998 .header = { 4999 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 5000 .misc = 0, 5001 .size = sizeof(task_event.event_id), 5002 }, 5003 /* .pid */ 5004 /* .ppid */ 5005 /* .tid */ 5006 /* .ptid */ 5007 .time = perf_clock(), 5008 }, 5009 }; 5010 5011 perf_event_aux(perf_event_task_output, 5012 &task_event, 5013 task_ctx); 5014 } 5015 5016 void perf_event_fork(struct task_struct *task) 5017 { 5018 perf_event_task(task, NULL, 1); 5019 } 5020 5021 /* 5022 * comm tracking 5023 */ 5024 5025 struct perf_comm_event { 5026 struct task_struct *task; 5027 char *comm; 5028 int comm_size; 5029 5030 struct { 5031 struct perf_event_header header; 5032 5033 u32 pid; 5034 u32 tid; 5035 } event_id; 5036 }; 5037 5038 static int perf_event_comm_match(struct perf_event *event) 5039 { 5040 return event->attr.comm; 5041 } 5042 5043 static void perf_event_comm_output(struct perf_event *event, 5044 void *data) 5045 { 5046 struct perf_comm_event *comm_event = data; 5047 struct perf_output_handle handle; 5048 struct perf_sample_data sample; 5049 int size = comm_event->event_id.header.size; 5050 int ret; 5051 5052 if (!perf_event_comm_match(event)) 5053 return; 5054 5055 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 5056 ret = perf_output_begin(&handle, event, 5057 comm_event->event_id.header.size); 5058 5059 if (ret) 5060 goto out; 5061 5062 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 5063 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 5064 5065 perf_output_put(&handle, comm_event->event_id); 5066 __output_copy(&handle, comm_event->comm, 5067 comm_event->comm_size); 5068 5069 perf_event__output_id_sample(event, &handle, &sample); 5070 5071 perf_output_end(&handle); 5072 out: 5073 comm_event->event_id.header.size = size; 5074 } 5075 5076 static void perf_event_comm_event(struct perf_comm_event *comm_event) 5077 { 5078 char comm[TASK_COMM_LEN]; 5079 unsigned int size; 5080 5081 memset(comm, 0, sizeof(comm)); 5082 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 5083 size = ALIGN(strlen(comm)+1, sizeof(u64)); 5084 5085 comm_event->comm = comm; 5086 comm_event->comm_size = size; 5087 5088 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5089 5090 perf_event_aux(perf_event_comm_output, 5091 comm_event, 5092 NULL); 5093 } 5094 5095 void perf_event_comm(struct task_struct *task, bool exec) 5096 { 5097 struct perf_comm_event comm_event; 5098 5099 if (!atomic_read(&nr_comm_events)) 5100 return; 5101 5102 comm_event = (struct perf_comm_event){ 5103 .task = task, 5104 /* .comm */ 5105 /* .comm_size */ 5106 .event_id = { 5107 .header = { 5108 .type = PERF_RECORD_COMM, 5109 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 5110 /* .size */ 5111 }, 5112 /* .pid */ 5113 /* .tid */ 5114 }, 5115 }; 5116 5117 perf_event_comm_event(&comm_event); 5118 } 5119 5120 /* 5121 * mmap tracking 5122 */ 5123 5124 struct perf_mmap_event { 5125 struct vm_area_struct *vma; 5126 5127 const char *file_name; 5128 int file_size; 5129 int maj, min; 5130 u64 ino; 5131 u64 ino_generation; 5132 u32 prot, flags; 5133 5134 struct { 5135 struct perf_event_header header; 5136 5137 u32 pid; 5138 u32 tid; 5139 u64 start; 5140 u64 len; 5141 u64 pgoff; 5142 } event_id; 5143 }; 5144 5145 static int perf_event_mmap_match(struct perf_event *event, 5146 void *data) 5147 { 5148 struct perf_mmap_event *mmap_event = data; 5149 struct vm_area_struct *vma = mmap_event->vma; 5150 int executable = vma->vm_flags & VM_EXEC; 5151 5152 return (!executable && event->attr.mmap_data) || 5153 (executable && (event->attr.mmap || event->attr.mmap2)); 5154 } 5155 5156 static void perf_event_mmap_output(struct perf_event *event, 5157 void *data) 5158 { 5159 struct perf_mmap_event *mmap_event = data; 5160 struct perf_output_handle handle; 5161 struct perf_sample_data sample; 5162 int size = mmap_event->event_id.header.size; 5163 int ret; 5164 5165 if (!perf_event_mmap_match(event, data)) 5166 return; 5167 5168 if (event->attr.mmap2) { 5169 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 5170 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 5171 mmap_event->event_id.header.size += sizeof(mmap_event->min); 5172 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 5173 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 5174 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 5175 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 5176 } 5177 5178 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 5179 ret = perf_output_begin(&handle, event, 5180 mmap_event->event_id.header.size); 5181 if (ret) 5182 goto out; 5183 5184 mmap_event->event_id.pid = perf_event_pid(event, current); 5185 mmap_event->event_id.tid = perf_event_tid(event, current); 5186 5187 perf_output_put(&handle, mmap_event->event_id); 5188 5189 if (event->attr.mmap2) { 5190 perf_output_put(&handle, mmap_event->maj); 5191 perf_output_put(&handle, mmap_event->min); 5192 perf_output_put(&handle, mmap_event->ino); 5193 perf_output_put(&handle, mmap_event->ino_generation); 5194 perf_output_put(&handle, mmap_event->prot); 5195 perf_output_put(&handle, mmap_event->flags); 5196 } 5197 5198 __output_copy(&handle, mmap_event->file_name, 5199 mmap_event->file_size); 5200 5201 perf_event__output_id_sample(event, &handle, &sample); 5202 5203 perf_output_end(&handle); 5204 out: 5205 mmap_event->event_id.header.size = size; 5206 } 5207 5208 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 5209 { 5210 struct vm_area_struct *vma = mmap_event->vma; 5211 struct file *file = vma->vm_file; 5212 int maj = 0, min = 0; 5213 u64 ino = 0, gen = 0; 5214 u32 prot = 0, flags = 0; 5215 unsigned int size; 5216 char tmp[16]; 5217 char *buf = NULL; 5218 char *name; 5219 5220 if (file) { 5221 struct inode *inode; 5222 dev_t dev; 5223 5224 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5225 if (!buf) { 5226 name = "//enomem"; 5227 goto cpy_name; 5228 } 5229 /* 5230 * d_path() works from the end of the rb backwards, so we 5231 * need to add enough zero bytes after the string to handle 5232 * the 64bit alignment we do later. 5233 */ 5234 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64)); 5235 if (IS_ERR(name)) { 5236 name = "//toolong"; 5237 goto cpy_name; 5238 } 5239 inode = file_inode(vma->vm_file); 5240 dev = inode->i_sb->s_dev; 5241 ino = inode->i_ino; 5242 gen = inode->i_generation; 5243 maj = MAJOR(dev); 5244 min = MINOR(dev); 5245 5246 if (vma->vm_flags & VM_READ) 5247 prot |= PROT_READ; 5248 if (vma->vm_flags & VM_WRITE) 5249 prot |= PROT_WRITE; 5250 if (vma->vm_flags & VM_EXEC) 5251 prot |= PROT_EXEC; 5252 5253 if (vma->vm_flags & VM_MAYSHARE) 5254 flags = MAP_SHARED; 5255 else 5256 flags = MAP_PRIVATE; 5257 5258 if (vma->vm_flags & VM_DENYWRITE) 5259 flags |= MAP_DENYWRITE; 5260 if (vma->vm_flags & VM_MAYEXEC) 5261 flags |= MAP_EXECUTABLE; 5262 if (vma->vm_flags & VM_LOCKED) 5263 flags |= MAP_LOCKED; 5264 if (vma->vm_flags & VM_HUGETLB) 5265 flags |= MAP_HUGETLB; 5266 5267 goto got_name; 5268 } else { 5269 name = (char *)arch_vma_name(vma); 5270 if (name) 5271 goto cpy_name; 5272 5273 if (vma->vm_start <= vma->vm_mm->start_brk && 5274 vma->vm_end >= vma->vm_mm->brk) { 5275 name = "[heap]"; 5276 goto cpy_name; 5277 } 5278 if (vma->vm_start <= vma->vm_mm->start_stack && 5279 vma->vm_end >= vma->vm_mm->start_stack) { 5280 name = "[stack]"; 5281 goto cpy_name; 5282 } 5283 5284 name = "//anon"; 5285 goto cpy_name; 5286 } 5287 5288 cpy_name: 5289 strlcpy(tmp, name, sizeof(tmp)); 5290 name = tmp; 5291 got_name: 5292 /* 5293 * Since our buffer works in 8 byte units we need to align our string 5294 * size to a multiple of 8. However, we must guarantee the tail end is 5295 * zero'd out to avoid leaking random bits to userspace. 5296 */ 5297 size = strlen(name)+1; 5298 while (!IS_ALIGNED(size, sizeof(u64))) 5299 name[size++] = '\0'; 5300 5301 mmap_event->file_name = name; 5302 mmap_event->file_size = size; 5303 mmap_event->maj = maj; 5304 mmap_event->min = min; 5305 mmap_event->ino = ino; 5306 mmap_event->ino_generation = gen; 5307 mmap_event->prot = prot; 5308 mmap_event->flags = flags; 5309 5310 if (!(vma->vm_flags & VM_EXEC)) 5311 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 5312 5313 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 5314 5315 perf_event_aux(perf_event_mmap_output, 5316 mmap_event, 5317 NULL); 5318 5319 kfree(buf); 5320 } 5321 5322 void perf_event_mmap(struct vm_area_struct *vma) 5323 { 5324 struct perf_mmap_event mmap_event; 5325 5326 if (!atomic_read(&nr_mmap_events)) 5327 return; 5328 5329 mmap_event = (struct perf_mmap_event){ 5330 .vma = vma, 5331 /* .file_name */ 5332 /* .file_size */ 5333 .event_id = { 5334 .header = { 5335 .type = PERF_RECORD_MMAP, 5336 .misc = PERF_RECORD_MISC_USER, 5337 /* .size */ 5338 }, 5339 /* .pid */ 5340 /* .tid */ 5341 .start = vma->vm_start, 5342 .len = vma->vm_end - vma->vm_start, 5343 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 5344 }, 5345 /* .maj (attr_mmap2 only) */ 5346 /* .min (attr_mmap2 only) */ 5347 /* .ino (attr_mmap2 only) */ 5348 /* .ino_generation (attr_mmap2 only) */ 5349 /* .prot (attr_mmap2 only) */ 5350 /* .flags (attr_mmap2 only) */ 5351 }; 5352 5353 perf_event_mmap_event(&mmap_event); 5354 } 5355 5356 /* 5357 * IRQ throttle logging 5358 */ 5359 5360 static void perf_log_throttle(struct perf_event *event, int enable) 5361 { 5362 struct perf_output_handle handle; 5363 struct perf_sample_data sample; 5364 int ret; 5365 5366 struct { 5367 struct perf_event_header header; 5368 u64 time; 5369 u64 id; 5370 u64 stream_id; 5371 } throttle_event = { 5372 .header = { 5373 .type = PERF_RECORD_THROTTLE, 5374 .misc = 0, 5375 .size = sizeof(throttle_event), 5376 }, 5377 .time = perf_clock(), 5378 .id = primary_event_id(event), 5379 .stream_id = event->id, 5380 }; 5381 5382 if (enable) 5383 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 5384 5385 perf_event_header__init_id(&throttle_event.header, &sample, event); 5386 5387 ret = perf_output_begin(&handle, event, 5388 throttle_event.header.size); 5389 if (ret) 5390 return; 5391 5392 perf_output_put(&handle, throttle_event); 5393 perf_event__output_id_sample(event, &handle, &sample); 5394 perf_output_end(&handle); 5395 } 5396 5397 /* 5398 * Generic event overflow handling, sampling. 5399 */ 5400 5401 static int __perf_event_overflow(struct perf_event *event, 5402 int throttle, struct perf_sample_data *data, 5403 struct pt_regs *regs) 5404 { 5405 int events = atomic_read(&event->event_limit); 5406 struct hw_perf_event *hwc = &event->hw; 5407 u64 seq; 5408 int ret = 0; 5409 5410 /* 5411 * Non-sampling counters might still use the PMI to fold short 5412 * hardware counters, ignore those. 5413 */ 5414 if (unlikely(!is_sampling_event(event))) 5415 return 0; 5416 5417 seq = __this_cpu_read(perf_throttled_seq); 5418 if (seq != hwc->interrupts_seq) { 5419 hwc->interrupts_seq = seq; 5420 hwc->interrupts = 1; 5421 } else { 5422 hwc->interrupts++; 5423 if (unlikely(throttle 5424 && hwc->interrupts >= max_samples_per_tick)) { 5425 __this_cpu_inc(perf_throttled_count); 5426 hwc->interrupts = MAX_INTERRUPTS; 5427 perf_log_throttle(event, 0); 5428 tick_nohz_full_kick(); 5429 ret = 1; 5430 } 5431 } 5432 5433 if (event->attr.freq) { 5434 u64 now = perf_clock(); 5435 s64 delta = now - hwc->freq_time_stamp; 5436 5437 hwc->freq_time_stamp = now; 5438 5439 if (delta > 0 && delta < 2*TICK_NSEC) 5440 perf_adjust_period(event, delta, hwc->last_period, true); 5441 } 5442 5443 /* 5444 * XXX event_limit might not quite work as expected on inherited 5445 * events 5446 */ 5447 5448 event->pending_kill = POLL_IN; 5449 if (events && atomic_dec_and_test(&event->event_limit)) { 5450 ret = 1; 5451 event->pending_kill = POLL_HUP; 5452 event->pending_disable = 1; 5453 irq_work_queue(&event->pending); 5454 } 5455 5456 if (event->overflow_handler) 5457 event->overflow_handler(event, data, regs); 5458 else 5459 perf_event_output(event, data, regs); 5460 5461 if (event->fasync && event->pending_kill) { 5462 event->pending_wakeup = 1; 5463 irq_work_queue(&event->pending); 5464 } 5465 5466 return ret; 5467 } 5468 5469 int perf_event_overflow(struct perf_event *event, 5470 struct perf_sample_data *data, 5471 struct pt_regs *regs) 5472 { 5473 return __perf_event_overflow(event, 1, data, regs); 5474 } 5475 5476 /* 5477 * Generic software event infrastructure 5478 */ 5479 5480 struct swevent_htable { 5481 struct swevent_hlist *swevent_hlist; 5482 struct mutex hlist_mutex; 5483 int hlist_refcount; 5484 5485 /* Recursion avoidance in each contexts */ 5486 int recursion[PERF_NR_CONTEXTS]; 5487 5488 /* Keeps track of cpu being initialized/exited */ 5489 bool online; 5490 }; 5491 5492 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 5493 5494 /* 5495 * We directly increment event->count and keep a second value in 5496 * event->hw.period_left to count intervals. This period event 5497 * is kept in the range [-sample_period, 0] so that we can use the 5498 * sign as trigger. 5499 */ 5500 5501 u64 perf_swevent_set_period(struct perf_event *event) 5502 { 5503 struct hw_perf_event *hwc = &event->hw; 5504 u64 period = hwc->last_period; 5505 u64 nr, offset; 5506 s64 old, val; 5507 5508 hwc->last_period = hwc->sample_period; 5509 5510 again: 5511 old = val = local64_read(&hwc->period_left); 5512 if (val < 0) 5513 return 0; 5514 5515 nr = div64_u64(period + val, period); 5516 offset = nr * period; 5517 val -= offset; 5518 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 5519 goto again; 5520 5521 return nr; 5522 } 5523 5524 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 5525 struct perf_sample_data *data, 5526 struct pt_regs *regs) 5527 { 5528 struct hw_perf_event *hwc = &event->hw; 5529 int throttle = 0; 5530 5531 if (!overflow) 5532 overflow = perf_swevent_set_period(event); 5533 5534 if (hwc->interrupts == MAX_INTERRUPTS) 5535 return; 5536 5537 for (; overflow; overflow--) { 5538 if (__perf_event_overflow(event, throttle, 5539 data, regs)) { 5540 /* 5541 * We inhibit the overflow from happening when 5542 * hwc->interrupts == MAX_INTERRUPTS. 5543 */ 5544 break; 5545 } 5546 throttle = 1; 5547 } 5548 } 5549 5550 static void perf_swevent_event(struct perf_event *event, u64 nr, 5551 struct perf_sample_data *data, 5552 struct pt_regs *regs) 5553 { 5554 struct hw_perf_event *hwc = &event->hw; 5555 5556 local64_add(nr, &event->count); 5557 5558 if (!regs) 5559 return; 5560 5561 if (!is_sampling_event(event)) 5562 return; 5563 5564 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 5565 data->period = nr; 5566 return perf_swevent_overflow(event, 1, data, regs); 5567 } else 5568 data->period = event->hw.last_period; 5569 5570 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 5571 return perf_swevent_overflow(event, 1, data, regs); 5572 5573 if (local64_add_negative(nr, &hwc->period_left)) 5574 return; 5575 5576 perf_swevent_overflow(event, 0, data, regs); 5577 } 5578 5579 static int perf_exclude_event(struct perf_event *event, 5580 struct pt_regs *regs) 5581 { 5582 if (event->hw.state & PERF_HES_STOPPED) 5583 return 1; 5584 5585 if (regs) { 5586 if (event->attr.exclude_user && user_mode(regs)) 5587 return 1; 5588 5589 if (event->attr.exclude_kernel && !user_mode(regs)) 5590 return 1; 5591 } 5592 5593 return 0; 5594 } 5595 5596 static int perf_swevent_match(struct perf_event *event, 5597 enum perf_type_id type, 5598 u32 event_id, 5599 struct perf_sample_data *data, 5600 struct pt_regs *regs) 5601 { 5602 if (event->attr.type != type) 5603 return 0; 5604 5605 if (event->attr.config != event_id) 5606 return 0; 5607 5608 if (perf_exclude_event(event, regs)) 5609 return 0; 5610 5611 return 1; 5612 } 5613 5614 static inline u64 swevent_hash(u64 type, u32 event_id) 5615 { 5616 u64 val = event_id | (type << 32); 5617 5618 return hash_64(val, SWEVENT_HLIST_BITS); 5619 } 5620 5621 static inline struct hlist_head * 5622 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 5623 { 5624 u64 hash = swevent_hash(type, event_id); 5625 5626 return &hlist->heads[hash]; 5627 } 5628 5629 /* For the read side: events when they trigger */ 5630 static inline struct hlist_head * 5631 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 5632 { 5633 struct swevent_hlist *hlist; 5634 5635 hlist = rcu_dereference(swhash->swevent_hlist); 5636 if (!hlist) 5637 return NULL; 5638 5639 return __find_swevent_head(hlist, type, event_id); 5640 } 5641 5642 /* For the event head insertion and removal in the hlist */ 5643 static inline struct hlist_head * 5644 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 5645 { 5646 struct swevent_hlist *hlist; 5647 u32 event_id = event->attr.config; 5648 u64 type = event->attr.type; 5649 5650 /* 5651 * Event scheduling is always serialized against hlist allocation 5652 * and release. Which makes the protected version suitable here. 5653 * The context lock guarantees that. 5654 */ 5655 hlist = rcu_dereference_protected(swhash->swevent_hlist, 5656 lockdep_is_held(&event->ctx->lock)); 5657 if (!hlist) 5658 return NULL; 5659 5660 return __find_swevent_head(hlist, type, event_id); 5661 } 5662 5663 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 5664 u64 nr, 5665 struct perf_sample_data *data, 5666 struct pt_regs *regs) 5667 { 5668 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5669 struct perf_event *event; 5670 struct hlist_head *head; 5671 5672 rcu_read_lock(); 5673 head = find_swevent_head_rcu(swhash, type, event_id); 5674 if (!head) 5675 goto end; 5676 5677 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5678 if (perf_swevent_match(event, type, event_id, data, regs)) 5679 perf_swevent_event(event, nr, data, regs); 5680 } 5681 end: 5682 rcu_read_unlock(); 5683 } 5684 5685 int perf_swevent_get_recursion_context(void) 5686 { 5687 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5688 5689 return get_recursion_context(swhash->recursion); 5690 } 5691 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 5692 5693 inline void perf_swevent_put_recursion_context(int rctx) 5694 { 5695 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5696 5697 put_recursion_context(swhash->recursion, rctx); 5698 } 5699 5700 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 5701 { 5702 struct perf_sample_data data; 5703 int rctx; 5704 5705 preempt_disable_notrace(); 5706 rctx = perf_swevent_get_recursion_context(); 5707 if (rctx < 0) 5708 return; 5709 5710 perf_sample_data_init(&data, addr, 0); 5711 5712 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 5713 5714 perf_swevent_put_recursion_context(rctx); 5715 preempt_enable_notrace(); 5716 } 5717 5718 static void perf_swevent_read(struct perf_event *event) 5719 { 5720 } 5721 5722 static int perf_swevent_add(struct perf_event *event, int flags) 5723 { 5724 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5725 struct hw_perf_event *hwc = &event->hw; 5726 struct hlist_head *head; 5727 5728 if (is_sampling_event(event)) { 5729 hwc->last_period = hwc->sample_period; 5730 perf_swevent_set_period(event); 5731 } 5732 5733 hwc->state = !(flags & PERF_EF_START); 5734 5735 head = find_swevent_head(swhash, event); 5736 if (!head) { 5737 /* 5738 * We can race with cpu hotplug code. Do not 5739 * WARN if the cpu just got unplugged. 5740 */ 5741 WARN_ON_ONCE(swhash->online); 5742 return -EINVAL; 5743 } 5744 5745 hlist_add_head_rcu(&event->hlist_entry, head); 5746 5747 return 0; 5748 } 5749 5750 static void perf_swevent_del(struct perf_event *event, int flags) 5751 { 5752 hlist_del_rcu(&event->hlist_entry); 5753 } 5754 5755 static void perf_swevent_start(struct perf_event *event, int flags) 5756 { 5757 event->hw.state = 0; 5758 } 5759 5760 static void perf_swevent_stop(struct perf_event *event, int flags) 5761 { 5762 event->hw.state = PERF_HES_STOPPED; 5763 } 5764 5765 /* Deref the hlist from the update side */ 5766 static inline struct swevent_hlist * 5767 swevent_hlist_deref(struct swevent_htable *swhash) 5768 { 5769 return rcu_dereference_protected(swhash->swevent_hlist, 5770 lockdep_is_held(&swhash->hlist_mutex)); 5771 } 5772 5773 static void swevent_hlist_release(struct swevent_htable *swhash) 5774 { 5775 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5776 5777 if (!hlist) 5778 return; 5779 5780 rcu_assign_pointer(swhash->swevent_hlist, NULL); 5781 kfree_rcu(hlist, rcu_head); 5782 } 5783 5784 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5785 { 5786 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5787 5788 mutex_lock(&swhash->hlist_mutex); 5789 5790 if (!--swhash->hlist_refcount) 5791 swevent_hlist_release(swhash); 5792 5793 mutex_unlock(&swhash->hlist_mutex); 5794 } 5795 5796 static void swevent_hlist_put(struct perf_event *event) 5797 { 5798 int cpu; 5799 5800 for_each_possible_cpu(cpu) 5801 swevent_hlist_put_cpu(event, cpu); 5802 } 5803 5804 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5805 { 5806 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5807 int err = 0; 5808 5809 mutex_lock(&swhash->hlist_mutex); 5810 5811 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5812 struct swevent_hlist *hlist; 5813 5814 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5815 if (!hlist) { 5816 err = -ENOMEM; 5817 goto exit; 5818 } 5819 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5820 } 5821 swhash->hlist_refcount++; 5822 exit: 5823 mutex_unlock(&swhash->hlist_mutex); 5824 5825 return err; 5826 } 5827 5828 static int swevent_hlist_get(struct perf_event *event) 5829 { 5830 int err; 5831 int cpu, failed_cpu; 5832 5833 get_online_cpus(); 5834 for_each_possible_cpu(cpu) { 5835 err = swevent_hlist_get_cpu(event, cpu); 5836 if (err) { 5837 failed_cpu = cpu; 5838 goto fail; 5839 } 5840 } 5841 put_online_cpus(); 5842 5843 return 0; 5844 fail: 5845 for_each_possible_cpu(cpu) { 5846 if (cpu == failed_cpu) 5847 break; 5848 swevent_hlist_put_cpu(event, cpu); 5849 } 5850 5851 put_online_cpus(); 5852 return err; 5853 } 5854 5855 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5856 5857 static void sw_perf_event_destroy(struct perf_event *event) 5858 { 5859 u64 event_id = event->attr.config; 5860 5861 WARN_ON(event->parent); 5862 5863 static_key_slow_dec(&perf_swevent_enabled[event_id]); 5864 swevent_hlist_put(event); 5865 } 5866 5867 static int perf_swevent_init(struct perf_event *event) 5868 { 5869 u64 event_id = event->attr.config; 5870 5871 if (event->attr.type != PERF_TYPE_SOFTWARE) 5872 return -ENOENT; 5873 5874 /* 5875 * no branch sampling for software events 5876 */ 5877 if (has_branch_stack(event)) 5878 return -EOPNOTSUPP; 5879 5880 switch (event_id) { 5881 case PERF_COUNT_SW_CPU_CLOCK: 5882 case PERF_COUNT_SW_TASK_CLOCK: 5883 return -ENOENT; 5884 5885 default: 5886 break; 5887 } 5888 5889 if (event_id >= PERF_COUNT_SW_MAX) 5890 return -ENOENT; 5891 5892 if (!event->parent) { 5893 int err; 5894 5895 err = swevent_hlist_get(event); 5896 if (err) 5897 return err; 5898 5899 static_key_slow_inc(&perf_swevent_enabled[event_id]); 5900 event->destroy = sw_perf_event_destroy; 5901 } 5902 5903 return 0; 5904 } 5905 5906 static int perf_swevent_event_idx(struct perf_event *event) 5907 { 5908 return 0; 5909 } 5910 5911 static struct pmu perf_swevent = { 5912 .task_ctx_nr = perf_sw_context, 5913 5914 .event_init = perf_swevent_init, 5915 .add = perf_swevent_add, 5916 .del = perf_swevent_del, 5917 .start = perf_swevent_start, 5918 .stop = perf_swevent_stop, 5919 .read = perf_swevent_read, 5920 5921 .event_idx = perf_swevent_event_idx, 5922 }; 5923 5924 #ifdef CONFIG_EVENT_TRACING 5925 5926 static int perf_tp_filter_match(struct perf_event *event, 5927 struct perf_sample_data *data) 5928 { 5929 void *record = data->raw->data; 5930 5931 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5932 return 1; 5933 return 0; 5934 } 5935 5936 static int perf_tp_event_match(struct perf_event *event, 5937 struct perf_sample_data *data, 5938 struct pt_regs *regs) 5939 { 5940 if (event->hw.state & PERF_HES_STOPPED) 5941 return 0; 5942 /* 5943 * All tracepoints are from kernel-space. 5944 */ 5945 if (event->attr.exclude_kernel) 5946 return 0; 5947 5948 if (!perf_tp_filter_match(event, data)) 5949 return 0; 5950 5951 return 1; 5952 } 5953 5954 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5955 struct pt_regs *regs, struct hlist_head *head, int rctx, 5956 struct task_struct *task) 5957 { 5958 struct perf_sample_data data; 5959 struct perf_event *event; 5960 5961 struct perf_raw_record raw = { 5962 .size = entry_size, 5963 .data = record, 5964 }; 5965 5966 perf_sample_data_init(&data, addr, 0); 5967 data.raw = &raw; 5968 5969 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5970 if (perf_tp_event_match(event, &data, regs)) 5971 perf_swevent_event(event, count, &data, regs); 5972 } 5973 5974 /* 5975 * If we got specified a target task, also iterate its context and 5976 * deliver this event there too. 5977 */ 5978 if (task && task != current) { 5979 struct perf_event_context *ctx; 5980 struct trace_entry *entry = record; 5981 5982 rcu_read_lock(); 5983 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 5984 if (!ctx) 5985 goto unlock; 5986 5987 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5988 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5989 continue; 5990 if (event->attr.config != entry->type) 5991 continue; 5992 if (perf_tp_event_match(event, &data, regs)) 5993 perf_swevent_event(event, count, &data, regs); 5994 } 5995 unlock: 5996 rcu_read_unlock(); 5997 } 5998 5999 perf_swevent_put_recursion_context(rctx); 6000 } 6001 EXPORT_SYMBOL_GPL(perf_tp_event); 6002 6003 static void tp_perf_event_destroy(struct perf_event *event) 6004 { 6005 perf_trace_destroy(event); 6006 } 6007 6008 static int perf_tp_event_init(struct perf_event *event) 6009 { 6010 int err; 6011 6012 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6013 return -ENOENT; 6014 6015 /* 6016 * no branch sampling for tracepoint events 6017 */ 6018 if (has_branch_stack(event)) 6019 return -EOPNOTSUPP; 6020 6021 err = perf_trace_init(event); 6022 if (err) 6023 return err; 6024 6025 event->destroy = tp_perf_event_destroy; 6026 6027 return 0; 6028 } 6029 6030 static struct pmu perf_tracepoint = { 6031 .task_ctx_nr = perf_sw_context, 6032 6033 .event_init = perf_tp_event_init, 6034 .add = perf_trace_add, 6035 .del = perf_trace_del, 6036 .start = perf_swevent_start, 6037 .stop = perf_swevent_stop, 6038 .read = perf_swevent_read, 6039 6040 .event_idx = perf_swevent_event_idx, 6041 }; 6042 6043 static inline void perf_tp_register(void) 6044 { 6045 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 6046 } 6047 6048 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6049 { 6050 char *filter_str; 6051 int ret; 6052 6053 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6054 return -EINVAL; 6055 6056 filter_str = strndup_user(arg, PAGE_SIZE); 6057 if (IS_ERR(filter_str)) 6058 return PTR_ERR(filter_str); 6059 6060 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 6061 6062 kfree(filter_str); 6063 return ret; 6064 } 6065 6066 static void perf_event_free_filter(struct perf_event *event) 6067 { 6068 ftrace_profile_free_filter(event); 6069 } 6070 6071 #else 6072 6073 static inline void perf_tp_register(void) 6074 { 6075 } 6076 6077 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6078 { 6079 return -ENOENT; 6080 } 6081 6082 static void perf_event_free_filter(struct perf_event *event) 6083 { 6084 } 6085 6086 #endif /* CONFIG_EVENT_TRACING */ 6087 6088 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6089 void perf_bp_event(struct perf_event *bp, void *data) 6090 { 6091 struct perf_sample_data sample; 6092 struct pt_regs *regs = data; 6093 6094 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 6095 6096 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 6097 perf_swevent_event(bp, 1, &sample, regs); 6098 } 6099 #endif 6100 6101 /* 6102 * hrtimer based swevent callback 6103 */ 6104 6105 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 6106 { 6107 enum hrtimer_restart ret = HRTIMER_RESTART; 6108 struct perf_sample_data data; 6109 struct pt_regs *regs; 6110 struct perf_event *event; 6111 u64 period; 6112 6113 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 6114 6115 if (event->state != PERF_EVENT_STATE_ACTIVE) 6116 return HRTIMER_NORESTART; 6117 6118 event->pmu->read(event); 6119 6120 perf_sample_data_init(&data, 0, event->hw.last_period); 6121 regs = get_irq_regs(); 6122 6123 if (regs && !perf_exclude_event(event, regs)) { 6124 if (!(event->attr.exclude_idle && is_idle_task(current))) 6125 if (__perf_event_overflow(event, 1, &data, regs)) 6126 ret = HRTIMER_NORESTART; 6127 } 6128 6129 period = max_t(u64, 10000, event->hw.sample_period); 6130 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 6131 6132 return ret; 6133 } 6134 6135 static void perf_swevent_start_hrtimer(struct perf_event *event) 6136 { 6137 struct hw_perf_event *hwc = &event->hw; 6138 s64 period; 6139 6140 if (!is_sampling_event(event)) 6141 return; 6142 6143 period = local64_read(&hwc->period_left); 6144 if (period) { 6145 if (period < 0) 6146 period = 10000; 6147 6148 local64_set(&hwc->period_left, 0); 6149 } else { 6150 period = max_t(u64, 10000, hwc->sample_period); 6151 } 6152 __hrtimer_start_range_ns(&hwc->hrtimer, 6153 ns_to_ktime(period), 0, 6154 HRTIMER_MODE_REL_PINNED, 0); 6155 } 6156 6157 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 6158 { 6159 struct hw_perf_event *hwc = &event->hw; 6160 6161 if (is_sampling_event(event)) { 6162 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 6163 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 6164 6165 hrtimer_cancel(&hwc->hrtimer); 6166 } 6167 } 6168 6169 static void perf_swevent_init_hrtimer(struct perf_event *event) 6170 { 6171 struct hw_perf_event *hwc = &event->hw; 6172 6173 if (!is_sampling_event(event)) 6174 return; 6175 6176 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6177 hwc->hrtimer.function = perf_swevent_hrtimer; 6178 6179 /* 6180 * Since hrtimers have a fixed rate, we can do a static freq->period 6181 * mapping and avoid the whole period adjust feedback stuff. 6182 */ 6183 if (event->attr.freq) { 6184 long freq = event->attr.sample_freq; 6185 6186 event->attr.sample_period = NSEC_PER_SEC / freq; 6187 hwc->sample_period = event->attr.sample_period; 6188 local64_set(&hwc->period_left, hwc->sample_period); 6189 hwc->last_period = hwc->sample_period; 6190 event->attr.freq = 0; 6191 } 6192 } 6193 6194 /* 6195 * Software event: cpu wall time clock 6196 */ 6197 6198 static void cpu_clock_event_update(struct perf_event *event) 6199 { 6200 s64 prev; 6201 u64 now; 6202 6203 now = local_clock(); 6204 prev = local64_xchg(&event->hw.prev_count, now); 6205 local64_add(now - prev, &event->count); 6206 } 6207 6208 static void cpu_clock_event_start(struct perf_event *event, int flags) 6209 { 6210 local64_set(&event->hw.prev_count, local_clock()); 6211 perf_swevent_start_hrtimer(event); 6212 } 6213 6214 static void cpu_clock_event_stop(struct perf_event *event, int flags) 6215 { 6216 perf_swevent_cancel_hrtimer(event); 6217 cpu_clock_event_update(event); 6218 } 6219 6220 static int cpu_clock_event_add(struct perf_event *event, int flags) 6221 { 6222 if (flags & PERF_EF_START) 6223 cpu_clock_event_start(event, flags); 6224 6225 return 0; 6226 } 6227 6228 static void cpu_clock_event_del(struct perf_event *event, int flags) 6229 { 6230 cpu_clock_event_stop(event, flags); 6231 } 6232 6233 static void cpu_clock_event_read(struct perf_event *event) 6234 { 6235 cpu_clock_event_update(event); 6236 } 6237 6238 static int cpu_clock_event_init(struct perf_event *event) 6239 { 6240 if (event->attr.type != PERF_TYPE_SOFTWARE) 6241 return -ENOENT; 6242 6243 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 6244 return -ENOENT; 6245 6246 /* 6247 * no branch sampling for software events 6248 */ 6249 if (has_branch_stack(event)) 6250 return -EOPNOTSUPP; 6251 6252 perf_swevent_init_hrtimer(event); 6253 6254 return 0; 6255 } 6256 6257 static struct pmu perf_cpu_clock = { 6258 .task_ctx_nr = perf_sw_context, 6259 6260 .event_init = cpu_clock_event_init, 6261 .add = cpu_clock_event_add, 6262 .del = cpu_clock_event_del, 6263 .start = cpu_clock_event_start, 6264 .stop = cpu_clock_event_stop, 6265 .read = cpu_clock_event_read, 6266 6267 .event_idx = perf_swevent_event_idx, 6268 }; 6269 6270 /* 6271 * Software event: task time clock 6272 */ 6273 6274 static void task_clock_event_update(struct perf_event *event, u64 now) 6275 { 6276 u64 prev; 6277 s64 delta; 6278 6279 prev = local64_xchg(&event->hw.prev_count, now); 6280 delta = now - prev; 6281 local64_add(delta, &event->count); 6282 } 6283 6284 static void task_clock_event_start(struct perf_event *event, int flags) 6285 { 6286 local64_set(&event->hw.prev_count, event->ctx->time); 6287 perf_swevent_start_hrtimer(event); 6288 } 6289 6290 static void task_clock_event_stop(struct perf_event *event, int flags) 6291 { 6292 perf_swevent_cancel_hrtimer(event); 6293 task_clock_event_update(event, event->ctx->time); 6294 } 6295 6296 static int task_clock_event_add(struct perf_event *event, int flags) 6297 { 6298 if (flags & PERF_EF_START) 6299 task_clock_event_start(event, flags); 6300 6301 return 0; 6302 } 6303 6304 static void task_clock_event_del(struct perf_event *event, int flags) 6305 { 6306 task_clock_event_stop(event, PERF_EF_UPDATE); 6307 } 6308 6309 static void task_clock_event_read(struct perf_event *event) 6310 { 6311 u64 now = perf_clock(); 6312 u64 delta = now - event->ctx->timestamp; 6313 u64 time = event->ctx->time + delta; 6314 6315 task_clock_event_update(event, time); 6316 } 6317 6318 static int task_clock_event_init(struct perf_event *event) 6319 { 6320 if (event->attr.type != PERF_TYPE_SOFTWARE) 6321 return -ENOENT; 6322 6323 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 6324 return -ENOENT; 6325 6326 /* 6327 * no branch sampling for software events 6328 */ 6329 if (has_branch_stack(event)) 6330 return -EOPNOTSUPP; 6331 6332 perf_swevent_init_hrtimer(event); 6333 6334 return 0; 6335 } 6336 6337 static struct pmu perf_task_clock = { 6338 .task_ctx_nr = perf_sw_context, 6339 6340 .event_init = task_clock_event_init, 6341 .add = task_clock_event_add, 6342 .del = task_clock_event_del, 6343 .start = task_clock_event_start, 6344 .stop = task_clock_event_stop, 6345 .read = task_clock_event_read, 6346 6347 .event_idx = perf_swevent_event_idx, 6348 }; 6349 6350 static void perf_pmu_nop_void(struct pmu *pmu) 6351 { 6352 } 6353 6354 static int perf_pmu_nop_int(struct pmu *pmu) 6355 { 6356 return 0; 6357 } 6358 6359 static void perf_pmu_start_txn(struct pmu *pmu) 6360 { 6361 perf_pmu_disable(pmu); 6362 } 6363 6364 static int perf_pmu_commit_txn(struct pmu *pmu) 6365 { 6366 perf_pmu_enable(pmu); 6367 return 0; 6368 } 6369 6370 static void perf_pmu_cancel_txn(struct pmu *pmu) 6371 { 6372 perf_pmu_enable(pmu); 6373 } 6374 6375 static int perf_event_idx_default(struct perf_event *event) 6376 { 6377 return event->hw.idx + 1; 6378 } 6379 6380 /* 6381 * Ensures all contexts with the same task_ctx_nr have the same 6382 * pmu_cpu_context too. 6383 */ 6384 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 6385 { 6386 struct pmu *pmu; 6387 6388 if (ctxn < 0) 6389 return NULL; 6390 6391 list_for_each_entry(pmu, &pmus, entry) { 6392 if (pmu->task_ctx_nr == ctxn) 6393 return pmu->pmu_cpu_context; 6394 } 6395 6396 return NULL; 6397 } 6398 6399 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 6400 { 6401 int cpu; 6402 6403 for_each_possible_cpu(cpu) { 6404 struct perf_cpu_context *cpuctx; 6405 6406 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6407 6408 if (cpuctx->unique_pmu == old_pmu) 6409 cpuctx->unique_pmu = pmu; 6410 } 6411 } 6412 6413 static void free_pmu_context(struct pmu *pmu) 6414 { 6415 struct pmu *i; 6416 6417 mutex_lock(&pmus_lock); 6418 /* 6419 * Like a real lame refcount. 6420 */ 6421 list_for_each_entry(i, &pmus, entry) { 6422 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 6423 update_pmu_context(i, pmu); 6424 goto out; 6425 } 6426 } 6427 6428 free_percpu(pmu->pmu_cpu_context); 6429 out: 6430 mutex_unlock(&pmus_lock); 6431 } 6432 static struct idr pmu_idr; 6433 6434 static ssize_t 6435 type_show(struct device *dev, struct device_attribute *attr, char *page) 6436 { 6437 struct pmu *pmu = dev_get_drvdata(dev); 6438 6439 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 6440 } 6441 static DEVICE_ATTR_RO(type); 6442 6443 static ssize_t 6444 perf_event_mux_interval_ms_show(struct device *dev, 6445 struct device_attribute *attr, 6446 char *page) 6447 { 6448 struct pmu *pmu = dev_get_drvdata(dev); 6449 6450 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 6451 } 6452 6453 static ssize_t 6454 perf_event_mux_interval_ms_store(struct device *dev, 6455 struct device_attribute *attr, 6456 const char *buf, size_t count) 6457 { 6458 struct pmu *pmu = dev_get_drvdata(dev); 6459 int timer, cpu, ret; 6460 6461 ret = kstrtoint(buf, 0, &timer); 6462 if (ret) 6463 return ret; 6464 6465 if (timer < 1) 6466 return -EINVAL; 6467 6468 /* same value, noting to do */ 6469 if (timer == pmu->hrtimer_interval_ms) 6470 return count; 6471 6472 pmu->hrtimer_interval_ms = timer; 6473 6474 /* update all cpuctx for this PMU */ 6475 for_each_possible_cpu(cpu) { 6476 struct perf_cpu_context *cpuctx; 6477 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6478 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 6479 6480 if (hrtimer_active(&cpuctx->hrtimer)) 6481 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval); 6482 } 6483 6484 return count; 6485 } 6486 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 6487 6488 static struct attribute *pmu_dev_attrs[] = { 6489 &dev_attr_type.attr, 6490 &dev_attr_perf_event_mux_interval_ms.attr, 6491 NULL, 6492 }; 6493 ATTRIBUTE_GROUPS(pmu_dev); 6494 6495 static int pmu_bus_running; 6496 static struct bus_type pmu_bus = { 6497 .name = "event_source", 6498 .dev_groups = pmu_dev_groups, 6499 }; 6500 6501 static void pmu_dev_release(struct device *dev) 6502 { 6503 kfree(dev); 6504 } 6505 6506 static int pmu_dev_alloc(struct pmu *pmu) 6507 { 6508 int ret = -ENOMEM; 6509 6510 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 6511 if (!pmu->dev) 6512 goto out; 6513 6514 pmu->dev->groups = pmu->attr_groups; 6515 device_initialize(pmu->dev); 6516 ret = dev_set_name(pmu->dev, "%s", pmu->name); 6517 if (ret) 6518 goto free_dev; 6519 6520 dev_set_drvdata(pmu->dev, pmu); 6521 pmu->dev->bus = &pmu_bus; 6522 pmu->dev->release = pmu_dev_release; 6523 ret = device_add(pmu->dev); 6524 if (ret) 6525 goto free_dev; 6526 6527 out: 6528 return ret; 6529 6530 free_dev: 6531 put_device(pmu->dev); 6532 goto out; 6533 } 6534 6535 static struct lock_class_key cpuctx_mutex; 6536 static struct lock_class_key cpuctx_lock; 6537 6538 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 6539 { 6540 int cpu, ret; 6541 6542 mutex_lock(&pmus_lock); 6543 ret = -ENOMEM; 6544 pmu->pmu_disable_count = alloc_percpu(int); 6545 if (!pmu->pmu_disable_count) 6546 goto unlock; 6547 6548 pmu->type = -1; 6549 if (!name) 6550 goto skip_type; 6551 pmu->name = name; 6552 6553 if (type < 0) { 6554 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 6555 if (type < 0) { 6556 ret = type; 6557 goto free_pdc; 6558 } 6559 } 6560 pmu->type = type; 6561 6562 if (pmu_bus_running) { 6563 ret = pmu_dev_alloc(pmu); 6564 if (ret) 6565 goto free_idr; 6566 } 6567 6568 skip_type: 6569 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 6570 if (pmu->pmu_cpu_context) 6571 goto got_cpu_context; 6572 6573 ret = -ENOMEM; 6574 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 6575 if (!pmu->pmu_cpu_context) 6576 goto free_dev; 6577 6578 for_each_possible_cpu(cpu) { 6579 struct perf_cpu_context *cpuctx; 6580 6581 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6582 __perf_event_init_context(&cpuctx->ctx); 6583 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 6584 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 6585 cpuctx->ctx.type = cpu_context; 6586 cpuctx->ctx.pmu = pmu; 6587 6588 __perf_cpu_hrtimer_init(cpuctx, cpu); 6589 6590 INIT_LIST_HEAD(&cpuctx->rotation_list); 6591 cpuctx->unique_pmu = pmu; 6592 } 6593 6594 got_cpu_context: 6595 if (!pmu->start_txn) { 6596 if (pmu->pmu_enable) { 6597 /* 6598 * If we have pmu_enable/pmu_disable calls, install 6599 * transaction stubs that use that to try and batch 6600 * hardware accesses. 6601 */ 6602 pmu->start_txn = perf_pmu_start_txn; 6603 pmu->commit_txn = perf_pmu_commit_txn; 6604 pmu->cancel_txn = perf_pmu_cancel_txn; 6605 } else { 6606 pmu->start_txn = perf_pmu_nop_void; 6607 pmu->commit_txn = perf_pmu_nop_int; 6608 pmu->cancel_txn = perf_pmu_nop_void; 6609 } 6610 } 6611 6612 if (!pmu->pmu_enable) { 6613 pmu->pmu_enable = perf_pmu_nop_void; 6614 pmu->pmu_disable = perf_pmu_nop_void; 6615 } 6616 6617 if (!pmu->event_idx) 6618 pmu->event_idx = perf_event_idx_default; 6619 6620 list_add_rcu(&pmu->entry, &pmus); 6621 ret = 0; 6622 unlock: 6623 mutex_unlock(&pmus_lock); 6624 6625 return ret; 6626 6627 free_dev: 6628 device_del(pmu->dev); 6629 put_device(pmu->dev); 6630 6631 free_idr: 6632 if (pmu->type >= PERF_TYPE_MAX) 6633 idr_remove(&pmu_idr, pmu->type); 6634 6635 free_pdc: 6636 free_percpu(pmu->pmu_disable_count); 6637 goto unlock; 6638 } 6639 EXPORT_SYMBOL_GPL(perf_pmu_register); 6640 6641 void perf_pmu_unregister(struct pmu *pmu) 6642 { 6643 mutex_lock(&pmus_lock); 6644 list_del_rcu(&pmu->entry); 6645 mutex_unlock(&pmus_lock); 6646 6647 /* 6648 * We dereference the pmu list under both SRCU and regular RCU, so 6649 * synchronize against both of those. 6650 */ 6651 synchronize_srcu(&pmus_srcu); 6652 synchronize_rcu(); 6653 6654 free_percpu(pmu->pmu_disable_count); 6655 if (pmu->type >= PERF_TYPE_MAX) 6656 idr_remove(&pmu_idr, pmu->type); 6657 device_del(pmu->dev); 6658 put_device(pmu->dev); 6659 free_pmu_context(pmu); 6660 } 6661 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 6662 6663 struct pmu *perf_init_event(struct perf_event *event) 6664 { 6665 struct pmu *pmu = NULL; 6666 int idx; 6667 int ret; 6668 6669 idx = srcu_read_lock(&pmus_srcu); 6670 6671 rcu_read_lock(); 6672 pmu = idr_find(&pmu_idr, event->attr.type); 6673 rcu_read_unlock(); 6674 if (pmu) { 6675 if (!try_module_get(pmu->module)) { 6676 pmu = ERR_PTR(-ENODEV); 6677 goto unlock; 6678 } 6679 event->pmu = pmu; 6680 ret = pmu->event_init(event); 6681 if (ret) 6682 pmu = ERR_PTR(ret); 6683 goto unlock; 6684 } 6685 6686 list_for_each_entry_rcu(pmu, &pmus, entry) { 6687 if (!try_module_get(pmu->module)) { 6688 pmu = ERR_PTR(-ENODEV); 6689 goto unlock; 6690 } 6691 event->pmu = pmu; 6692 ret = pmu->event_init(event); 6693 if (!ret) 6694 goto unlock; 6695 6696 if (ret != -ENOENT) { 6697 pmu = ERR_PTR(ret); 6698 goto unlock; 6699 } 6700 } 6701 pmu = ERR_PTR(-ENOENT); 6702 unlock: 6703 srcu_read_unlock(&pmus_srcu, idx); 6704 6705 return pmu; 6706 } 6707 6708 static void account_event_cpu(struct perf_event *event, int cpu) 6709 { 6710 if (event->parent) 6711 return; 6712 6713 if (has_branch_stack(event)) { 6714 if (!(event->attach_state & PERF_ATTACH_TASK)) 6715 atomic_inc(&per_cpu(perf_branch_stack_events, cpu)); 6716 } 6717 if (is_cgroup_event(event)) 6718 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 6719 } 6720 6721 static void account_event(struct perf_event *event) 6722 { 6723 if (event->parent) 6724 return; 6725 6726 if (event->attach_state & PERF_ATTACH_TASK) 6727 static_key_slow_inc(&perf_sched_events.key); 6728 if (event->attr.mmap || event->attr.mmap_data) 6729 atomic_inc(&nr_mmap_events); 6730 if (event->attr.comm) 6731 atomic_inc(&nr_comm_events); 6732 if (event->attr.task) 6733 atomic_inc(&nr_task_events); 6734 if (event->attr.freq) { 6735 if (atomic_inc_return(&nr_freq_events) == 1) 6736 tick_nohz_full_kick_all(); 6737 } 6738 if (has_branch_stack(event)) 6739 static_key_slow_inc(&perf_sched_events.key); 6740 if (is_cgroup_event(event)) 6741 static_key_slow_inc(&perf_sched_events.key); 6742 6743 account_event_cpu(event, event->cpu); 6744 } 6745 6746 /* 6747 * Allocate and initialize a event structure 6748 */ 6749 static struct perf_event * 6750 perf_event_alloc(struct perf_event_attr *attr, int cpu, 6751 struct task_struct *task, 6752 struct perf_event *group_leader, 6753 struct perf_event *parent_event, 6754 perf_overflow_handler_t overflow_handler, 6755 void *context) 6756 { 6757 struct pmu *pmu; 6758 struct perf_event *event; 6759 struct hw_perf_event *hwc; 6760 long err = -EINVAL; 6761 6762 if ((unsigned)cpu >= nr_cpu_ids) { 6763 if (!task || cpu != -1) 6764 return ERR_PTR(-EINVAL); 6765 } 6766 6767 event = kzalloc(sizeof(*event), GFP_KERNEL); 6768 if (!event) 6769 return ERR_PTR(-ENOMEM); 6770 6771 /* 6772 * Single events are their own group leaders, with an 6773 * empty sibling list: 6774 */ 6775 if (!group_leader) 6776 group_leader = event; 6777 6778 mutex_init(&event->child_mutex); 6779 INIT_LIST_HEAD(&event->child_list); 6780 6781 INIT_LIST_HEAD(&event->group_entry); 6782 INIT_LIST_HEAD(&event->event_entry); 6783 INIT_LIST_HEAD(&event->sibling_list); 6784 INIT_LIST_HEAD(&event->rb_entry); 6785 INIT_LIST_HEAD(&event->active_entry); 6786 INIT_HLIST_NODE(&event->hlist_entry); 6787 6788 6789 init_waitqueue_head(&event->waitq); 6790 init_irq_work(&event->pending, perf_pending_event); 6791 6792 mutex_init(&event->mmap_mutex); 6793 6794 atomic_long_set(&event->refcount, 1); 6795 event->cpu = cpu; 6796 event->attr = *attr; 6797 event->group_leader = group_leader; 6798 event->pmu = NULL; 6799 event->oncpu = -1; 6800 6801 event->parent = parent_event; 6802 6803 event->ns = get_pid_ns(task_active_pid_ns(current)); 6804 event->id = atomic64_inc_return(&perf_event_id); 6805 6806 event->state = PERF_EVENT_STATE_INACTIVE; 6807 6808 if (task) { 6809 event->attach_state = PERF_ATTACH_TASK; 6810 6811 if (attr->type == PERF_TYPE_TRACEPOINT) 6812 event->hw.tp_target = task; 6813 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6814 /* 6815 * hw_breakpoint is a bit difficult here.. 6816 */ 6817 else if (attr->type == PERF_TYPE_BREAKPOINT) 6818 event->hw.bp_target = task; 6819 #endif 6820 } 6821 6822 if (!overflow_handler && parent_event) { 6823 overflow_handler = parent_event->overflow_handler; 6824 context = parent_event->overflow_handler_context; 6825 } 6826 6827 event->overflow_handler = overflow_handler; 6828 event->overflow_handler_context = context; 6829 6830 perf_event__state_init(event); 6831 6832 pmu = NULL; 6833 6834 hwc = &event->hw; 6835 hwc->sample_period = attr->sample_period; 6836 if (attr->freq && attr->sample_freq) 6837 hwc->sample_period = 1; 6838 hwc->last_period = hwc->sample_period; 6839 6840 local64_set(&hwc->period_left, hwc->sample_period); 6841 6842 /* 6843 * we currently do not support PERF_FORMAT_GROUP on inherited events 6844 */ 6845 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 6846 goto err_ns; 6847 6848 pmu = perf_init_event(event); 6849 if (!pmu) 6850 goto err_ns; 6851 else if (IS_ERR(pmu)) { 6852 err = PTR_ERR(pmu); 6853 goto err_ns; 6854 } 6855 6856 if (!event->parent) { 6857 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 6858 err = get_callchain_buffers(); 6859 if (err) 6860 goto err_pmu; 6861 } 6862 } 6863 6864 return event; 6865 6866 err_pmu: 6867 if (event->destroy) 6868 event->destroy(event); 6869 module_put(pmu->module); 6870 err_ns: 6871 if (event->ns) 6872 put_pid_ns(event->ns); 6873 kfree(event); 6874 6875 return ERR_PTR(err); 6876 } 6877 6878 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6879 struct perf_event_attr *attr) 6880 { 6881 u32 size; 6882 int ret; 6883 6884 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 6885 return -EFAULT; 6886 6887 /* 6888 * zero the full structure, so that a short copy will be nice. 6889 */ 6890 memset(attr, 0, sizeof(*attr)); 6891 6892 ret = get_user(size, &uattr->size); 6893 if (ret) 6894 return ret; 6895 6896 if (size > PAGE_SIZE) /* silly large */ 6897 goto err_size; 6898 6899 if (!size) /* abi compat */ 6900 size = PERF_ATTR_SIZE_VER0; 6901 6902 if (size < PERF_ATTR_SIZE_VER0) 6903 goto err_size; 6904 6905 /* 6906 * If we're handed a bigger struct than we know of, 6907 * ensure all the unknown bits are 0 - i.e. new 6908 * user-space does not rely on any kernel feature 6909 * extensions we dont know about yet. 6910 */ 6911 if (size > sizeof(*attr)) { 6912 unsigned char __user *addr; 6913 unsigned char __user *end; 6914 unsigned char val; 6915 6916 addr = (void __user *)uattr + sizeof(*attr); 6917 end = (void __user *)uattr + size; 6918 6919 for (; addr < end; addr++) { 6920 ret = get_user(val, addr); 6921 if (ret) 6922 return ret; 6923 if (val) 6924 goto err_size; 6925 } 6926 size = sizeof(*attr); 6927 } 6928 6929 ret = copy_from_user(attr, uattr, size); 6930 if (ret) 6931 return -EFAULT; 6932 6933 if (attr->__reserved_1) 6934 return -EINVAL; 6935 6936 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 6937 return -EINVAL; 6938 6939 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 6940 return -EINVAL; 6941 6942 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 6943 u64 mask = attr->branch_sample_type; 6944 6945 /* only using defined bits */ 6946 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 6947 return -EINVAL; 6948 6949 /* at least one branch bit must be set */ 6950 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 6951 return -EINVAL; 6952 6953 /* propagate priv level, when not set for branch */ 6954 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 6955 6956 /* exclude_kernel checked on syscall entry */ 6957 if (!attr->exclude_kernel) 6958 mask |= PERF_SAMPLE_BRANCH_KERNEL; 6959 6960 if (!attr->exclude_user) 6961 mask |= PERF_SAMPLE_BRANCH_USER; 6962 6963 if (!attr->exclude_hv) 6964 mask |= PERF_SAMPLE_BRANCH_HV; 6965 /* 6966 * adjust user setting (for HW filter setup) 6967 */ 6968 attr->branch_sample_type = mask; 6969 } 6970 /* privileged levels capture (kernel, hv): check permissions */ 6971 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 6972 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6973 return -EACCES; 6974 } 6975 6976 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 6977 ret = perf_reg_validate(attr->sample_regs_user); 6978 if (ret) 6979 return ret; 6980 } 6981 6982 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 6983 if (!arch_perf_have_user_stack_dump()) 6984 return -ENOSYS; 6985 6986 /* 6987 * We have __u32 type for the size, but so far 6988 * we can only use __u16 as maximum due to the 6989 * __u16 sample size limit. 6990 */ 6991 if (attr->sample_stack_user >= USHRT_MAX) 6992 ret = -EINVAL; 6993 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 6994 ret = -EINVAL; 6995 } 6996 6997 out: 6998 return ret; 6999 7000 err_size: 7001 put_user(sizeof(*attr), &uattr->size); 7002 ret = -E2BIG; 7003 goto out; 7004 } 7005 7006 static int 7007 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 7008 { 7009 struct ring_buffer *rb = NULL; 7010 int ret = -EINVAL; 7011 7012 if (!output_event) 7013 goto set; 7014 7015 /* don't allow circular references */ 7016 if (event == output_event) 7017 goto out; 7018 7019 /* 7020 * Don't allow cross-cpu buffers 7021 */ 7022 if (output_event->cpu != event->cpu) 7023 goto out; 7024 7025 /* 7026 * If its not a per-cpu rb, it must be the same task. 7027 */ 7028 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 7029 goto out; 7030 7031 set: 7032 mutex_lock(&event->mmap_mutex); 7033 /* Can't redirect output if we've got an active mmap() */ 7034 if (atomic_read(&event->mmap_count)) 7035 goto unlock; 7036 7037 if (output_event) { 7038 /* get the rb we want to redirect to */ 7039 rb = ring_buffer_get(output_event); 7040 if (!rb) 7041 goto unlock; 7042 } 7043 7044 ring_buffer_attach(event, rb); 7045 7046 ret = 0; 7047 unlock: 7048 mutex_unlock(&event->mmap_mutex); 7049 7050 out: 7051 return ret; 7052 } 7053 7054 /** 7055 * sys_perf_event_open - open a performance event, associate it to a task/cpu 7056 * 7057 * @attr_uptr: event_id type attributes for monitoring/sampling 7058 * @pid: target pid 7059 * @cpu: target cpu 7060 * @group_fd: group leader event fd 7061 */ 7062 SYSCALL_DEFINE5(perf_event_open, 7063 struct perf_event_attr __user *, attr_uptr, 7064 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 7065 { 7066 struct perf_event *group_leader = NULL, *output_event = NULL; 7067 struct perf_event *event, *sibling; 7068 struct perf_event_attr attr; 7069 struct perf_event_context *ctx; 7070 struct file *event_file = NULL; 7071 struct fd group = {NULL, 0}; 7072 struct task_struct *task = NULL; 7073 struct pmu *pmu; 7074 int event_fd; 7075 int move_group = 0; 7076 int err; 7077 int f_flags = O_RDWR; 7078 7079 /* for future expandability... */ 7080 if (flags & ~PERF_FLAG_ALL) 7081 return -EINVAL; 7082 7083 err = perf_copy_attr(attr_uptr, &attr); 7084 if (err) 7085 return err; 7086 7087 if (!attr.exclude_kernel) { 7088 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 7089 return -EACCES; 7090 } 7091 7092 if (attr.freq) { 7093 if (attr.sample_freq > sysctl_perf_event_sample_rate) 7094 return -EINVAL; 7095 } else { 7096 if (attr.sample_period & (1ULL << 63)) 7097 return -EINVAL; 7098 } 7099 7100 /* 7101 * In cgroup mode, the pid argument is used to pass the fd 7102 * opened to the cgroup directory in cgroupfs. The cpu argument 7103 * designates the cpu on which to monitor threads from that 7104 * cgroup. 7105 */ 7106 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 7107 return -EINVAL; 7108 7109 if (flags & PERF_FLAG_FD_CLOEXEC) 7110 f_flags |= O_CLOEXEC; 7111 7112 event_fd = get_unused_fd_flags(f_flags); 7113 if (event_fd < 0) 7114 return event_fd; 7115 7116 if (group_fd != -1) { 7117 err = perf_fget_light(group_fd, &group); 7118 if (err) 7119 goto err_fd; 7120 group_leader = group.file->private_data; 7121 if (flags & PERF_FLAG_FD_OUTPUT) 7122 output_event = group_leader; 7123 if (flags & PERF_FLAG_FD_NO_GROUP) 7124 group_leader = NULL; 7125 } 7126 7127 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 7128 task = find_lively_task_by_vpid(pid); 7129 if (IS_ERR(task)) { 7130 err = PTR_ERR(task); 7131 goto err_group_fd; 7132 } 7133 } 7134 7135 if (task && group_leader && 7136 group_leader->attr.inherit != attr.inherit) { 7137 err = -EINVAL; 7138 goto err_task; 7139 } 7140 7141 get_online_cpus(); 7142 7143 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 7144 NULL, NULL); 7145 if (IS_ERR(event)) { 7146 err = PTR_ERR(event); 7147 goto err_cpus; 7148 } 7149 7150 if (flags & PERF_FLAG_PID_CGROUP) { 7151 err = perf_cgroup_connect(pid, event, &attr, group_leader); 7152 if (err) { 7153 __free_event(event); 7154 goto err_cpus; 7155 } 7156 } 7157 7158 if (is_sampling_event(event)) { 7159 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 7160 err = -ENOTSUPP; 7161 goto err_alloc; 7162 } 7163 } 7164 7165 account_event(event); 7166 7167 /* 7168 * Special case software events and allow them to be part of 7169 * any hardware group. 7170 */ 7171 pmu = event->pmu; 7172 7173 if (group_leader && 7174 (is_software_event(event) != is_software_event(group_leader))) { 7175 if (is_software_event(event)) { 7176 /* 7177 * If event and group_leader are not both a software 7178 * event, and event is, then group leader is not. 7179 * 7180 * Allow the addition of software events to !software 7181 * groups, this is safe because software events never 7182 * fail to schedule. 7183 */ 7184 pmu = group_leader->pmu; 7185 } else if (is_software_event(group_leader) && 7186 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 7187 /* 7188 * In case the group is a pure software group, and we 7189 * try to add a hardware event, move the whole group to 7190 * the hardware context. 7191 */ 7192 move_group = 1; 7193 } 7194 } 7195 7196 /* 7197 * Get the target context (task or percpu): 7198 */ 7199 ctx = find_get_context(pmu, task, event->cpu); 7200 if (IS_ERR(ctx)) { 7201 err = PTR_ERR(ctx); 7202 goto err_alloc; 7203 } 7204 7205 if (task) { 7206 put_task_struct(task); 7207 task = NULL; 7208 } 7209 7210 /* 7211 * Look up the group leader (we will attach this event to it): 7212 */ 7213 if (group_leader) { 7214 err = -EINVAL; 7215 7216 /* 7217 * Do not allow a recursive hierarchy (this new sibling 7218 * becoming part of another group-sibling): 7219 */ 7220 if (group_leader->group_leader != group_leader) 7221 goto err_context; 7222 /* 7223 * Do not allow to attach to a group in a different 7224 * task or CPU context: 7225 */ 7226 if (move_group) { 7227 if (group_leader->ctx->type != ctx->type) 7228 goto err_context; 7229 } else { 7230 if (group_leader->ctx != ctx) 7231 goto err_context; 7232 } 7233 7234 /* 7235 * Only a group leader can be exclusive or pinned 7236 */ 7237 if (attr.exclusive || attr.pinned) 7238 goto err_context; 7239 } 7240 7241 if (output_event) { 7242 err = perf_event_set_output(event, output_event); 7243 if (err) 7244 goto err_context; 7245 } 7246 7247 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 7248 f_flags); 7249 if (IS_ERR(event_file)) { 7250 err = PTR_ERR(event_file); 7251 goto err_context; 7252 } 7253 7254 if (move_group) { 7255 struct perf_event_context *gctx = group_leader->ctx; 7256 7257 mutex_lock(&gctx->mutex); 7258 perf_remove_from_context(group_leader, false); 7259 7260 /* 7261 * Removing from the context ends up with disabled 7262 * event. What we want here is event in the initial 7263 * startup state, ready to be add into new context. 7264 */ 7265 perf_event__state_init(group_leader); 7266 list_for_each_entry(sibling, &group_leader->sibling_list, 7267 group_entry) { 7268 perf_remove_from_context(sibling, false); 7269 perf_event__state_init(sibling); 7270 put_ctx(gctx); 7271 } 7272 mutex_unlock(&gctx->mutex); 7273 put_ctx(gctx); 7274 } 7275 7276 WARN_ON_ONCE(ctx->parent_ctx); 7277 mutex_lock(&ctx->mutex); 7278 7279 if (move_group) { 7280 synchronize_rcu(); 7281 perf_install_in_context(ctx, group_leader, event->cpu); 7282 get_ctx(ctx); 7283 list_for_each_entry(sibling, &group_leader->sibling_list, 7284 group_entry) { 7285 perf_install_in_context(ctx, sibling, event->cpu); 7286 get_ctx(ctx); 7287 } 7288 } 7289 7290 perf_install_in_context(ctx, event, event->cpu); 7291 perf_unpin_context(ctx); 7292 mutex_unlock(&ctx->mutex); 7293 7294 put_online_cpus(); 7295 7296 event->owner = current; 7297 7298 mutex_lock(¤t->perf_event_mutex); 7299 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 7300 mutex_unlock(¤t->perf_event_mutex); 7301 7302 /* 7303 * Precalculate sample_data sizes 7304 */ 7305 perf_event__header_size(event); 7306 perf_event__id_header_size(event); 7307 7308 /* 7309 * Drop the reference on the group_event after placing the 7310 * new event on the sibling_list. This ensures destruction 7311 * of the group leader will find the pointer to itself in 7312 * perf_group_detach(). 7313 */ 7314 fdput(group); 7315 fd_install(event_fd, event_file); 7316 return event_fd; 7317 7318 err_context: 7319 perf_unpin_context(ctx); 7320 put_ctx(ctx); 7321 err_alloc: 7322 free_event(event); 7323 err_cpus: 7324 put_online_cpus(); 7325 err_task: 7326 if (task) 7327 put_task_struct(task); 7328 err_group_fd: 7329 fdput(group); 7330 err_fd: 7331 put_unused_fd(event_fd); 7332 return err; 7333 } 7334 7335 /** 7336 * perf_event_create_kernel_counter 7337 * 7338 * @attr: attributes of the counter to create 7339 * @cpu: cpu in which the counter is bound 7340 * @task: task to profile (NULL for percpu) 7341 */ 7342 struct perf_event * 7343 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 7344 struct task_struct *task, 7345 perf_overflow_handler_t overflow_handler, 7346 void *context) 7347 { 7348 struct perf_event_context *ctx; 7349 struct perf_event *event; 7350 int err; 7351 7352 /* 7353 * Get the target context (task or percpu): 7354 */ 7355 7356 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 7357 overflow_handler, context); 7358 if (IS_ERR(event)) { 7359 err = PTR_ERR(event); 7360 goto err; 7361 } 7362 7363 account_event(event); 7364 7365 ctx = find_get_context(event->pmu, task, cpu); 7366 if (IS_ERR(ctx)) { 7367 err = PTR_ERR(ctx); 7368 goto err_free; 7369 } 7370 7371 WARN_ON_ONCE(ctx->parent_ctx); 7372 mutex_lock(&ctx->mutex); 7373 perf_install_in_context(ctx, event, cpu); 7374 perf_unpin_context(ctx); 7375 mutex_unlock(&ctx->mutex); 7376 7377 return event; 7378 7379 err_free: 7380 free_event(event); 7381 err: 7382 return ERR_PTR(err); 7383 } 7384 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 7385 7386 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 7387 { 7388 struct perf_event_context *src_ctx; 7389 struct perf_event_context *dst_ctx; 7390 struct perf_event *event, *tmp; 7391 LIST_HEAD(events); 7392 7393 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 7394 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 7395 7396 mutex_lock(&src_ctx->mutex); 7397 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 7398 event_entry) { 7399 perf_remove_from_context(event, false); 7400 unaccount_event_cpu(event, src_cpu); 7401 put_ctx(src_ctx); 7402 list_add(&event->migrate_entry, &events); 7403 } 7404 mutex_unlock(&src_ctx->mutex); 7405 7406 synchronize_rcu(); 7407 7408 mutex_lock(&dst_ctx->mutex); 7409 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 7410 list_del(&event->migrate_entry); 7411 if (event->state >= PERF_EVENT_STATE_OFF) 7412 event->state = PERF_EVENT_STATE_INACTIVE; 7413 account_event_cpu(event, dst_cpu); 7414 perf_install_in_context(dst_ctx, event, dst_cpu); 7415 get_ctx(dst_ctx); 7416 } 7417 mutex_unlock(&dst_ctx->mutex); 7418 } 7419 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 7420 7421 static void sync_child_event(struct perf_event *child_event, 7422 struct task_struct *child) 7423 { 7424 struct perf_event *parent_event = child_event->parent; 7425 u64 child_val; 7426 7427 if (child_event->attr.inherit_stat) 7428 perf_event_read_event(child_event, child); 7429 7430 child_val = perf_event_count(child_event); 7431 7432 /* 7433 * Add back the child's count to the parent's count: 7434 */ 7435 atomic64_add(child_val, &parent_event->child_count); 7436 atomic64_add(child_event->total_time_enabled, 7437 &parent_event->child_total_time_enabled); 7438 atomic64_add(child_event->total_time_running, 7439 &parent_event->child_total_time_running); 7440 7441 /* 7442 * Remove this event from the parent's list 7443 */ 7444 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7445 mutex_lock(&parent_event->child_mutex); 7446 list_del_init(&child_event->child_list); 7447 mutex_unlock(&parent_event->child_mutex); 7448 7449 /* 7450 * Release the parent event, if this was the last 7451 * reference to it. 7452 */ 7453 put_event(parent_event); 7454 } 7455 7456 static void 7457 __perf_event_exit_task(struct perf_event *child_event, 7458 struct perf_event_context *child_ctx, 7459 struct task_struct *child) 7460 { 7461 perf_remove_from_context(child_event, true); 7462 7463 /* 7464 * It can happen that the parent exits first, and has events 7465 * that are still around due to the child reference. These 7466 * events need to be zapped. 7467 */ 7468 if (child_event->parent) { 7469 sync_child_event(child_event, child); 7470 free_event(child_event); 7471 } 7472 } 7473 7474 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 7475 { 7476 struct perf_event *child_event, *next; 7477 struct perf_event_context *child_ctx; 7478 unsigned long flags; 7479 7480 if (likely(!child->perf_event_ctxp[ctxn])) { 7481 perf_event_task(child, NULL, 0); 7482 return; 7483 } 7484 7485 local_irq_save(flags); 7486 /* 7487 * We can't reschedule here because interrupts are disabled, 7488 * and either child is current or it is a task that can't be 7489 * scheduled, so we are now safe from rescheduling changing 7490 * our context. 7491 */ 7492 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 7493 7494 /* 7495 * Take the context lock here so that if find_get_context is 7496 * reading child->perf_event_ctxp, we wait until it has 7497 * incremented the context's refcount before we do put_ctx below. 7498 */ 7499 raw_spin_lock(&child_ctx->lock); 7500 task_ctx_sched_out(child_ctx); 7501 child->perf_event_ctxp[ctxn] = NULL; 7502 /* 7503 * If this context is a clone; unclone it so it can't get 7504 * swapped to another process while we're removing all 7505 * the events from it. 7506 */ 7507 unclone_ctx(child_ctx); 7508 update_context_time(child_ctx); 7509 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7510 7511 /* 7512 * Report the task dead after unscheduling the events so that we 7513 * won't get any samples after PERF_RECORD_EXIT. We can however still 7514 * get a few PERF_RECORD_READ events. 7515 */ 7516 perf_event_task(child, child_ctx, 0); 7517 7518 /* 7519 * We can recurse on the same lock type through: 7520 * 7521 * __perf_event_exit_task() 7522 * sync_child_event() 7523 * put_event() 7524 * mutex_lock(&ctx->mutex) 7525 * 7526 * But since its the parent context it won't be the same instance. 7527 */ 7528 mutex_lock(&child_ctx->mutex); 7529 7530 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 7531 __perf_event_exit_task(child_event, child_ctx, child); 7532 7533 mutex_unlock(&child_ctx->mutex); 7534 7535 put_ctx(child_ctx); 7536 } 7537 7538 /* 7539 * When a child task exits, feed back event values to parent events. 7540 */ 7541 void perf_event_exit_task(struct task_struct *child) 7542 { 7543 struct perf_event *event, *tmp; 7544 int ctxn; 7545 7546 mutex_lock(&child->perf_event_mutex); 7547 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 7548 owner_entry) { 7549 list_del_init(&event->owner_entry); 7550 7551 /* 7552 * Ensure the list deletion is visible before we clear 7553 * the owner, closes a race against perf_release() where 7554 * we need to serialize on the owner->perf_event_mutex. 7555 */ 7556 smp_wmb(); 7557 event->owner = NULL; 7558 } 7559 mutex_unlock(&child->perf_event_mutex); 7560 7561 for_each_task_context_nr(ctxn) 7562 perf_event_exit_task_context(child, ctxn); 7563 } 7564 7565 static void perf_free_event(struct perf_event *event, 7566 struct perf_event_context *ctx) 7567 { 7568 struct perf_event *parent = event->parent; 7569 7570 if (WARN_ON_ONCE(!parent)) 7571 return; 7572 7573 mutex_lock(&parent->child_mutex); 7574 list_del_init(&event->child_list); 7575 mutex_unlock(&parent->child_mutex); 7576 7577 put_event(parent); 7578 7579 perf_group_detach(event); 7580 list_del_event(event, ctx); 7581 free_event(event); 7582 } 7583 7584 /* 7585 * free an unexposed, unused context as created by inheritance by 7586 * perf_event_init_task below, used by fork() in case of fail. 7587 */ 7588 void perf_event_free_task(struct task_struct *task) 7589 { 7590 struct perf_event_context *ctx; 7591 struct perf_event *event, *tmp; 7592 int ctxn; 7593 7594 for_each_task_context_nr(ctxn) { 7595 ctx = task->perf_event_ctxp[ctxn]; 7596 if (!ctx) 7597 continue; 7598 7599 mutex_lock(&ctx->mutex); 7600 again: 7601 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 7602 group_entry) 7603 perf_free_event(event, ctx); 7604 7605 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 7606 group_entry) 7607 perf_free_event(event, ctx); 7608 7609 if (!list_empty(&ctx->pinned_groups) || 7610 !list_empty(&ctx->flexible_groups)) 7611 goto again; 7612 7613 mutex_unlock(&ctx->mutex); 7614 7615 put_ctx(ctx); 7616 } 7617 } 7618 7619 void perf_event_delayed_put(struct task_struct *task) 7620 { 7621 int ctxn; 7622 7623 for_each_task_context_nr(ctxn) 7624 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 7625 } 7626 7627 /* 7628 * inherit a event from parent task to child task: 7629 */ 7630 static struct perf_event * 7631 inherit_event(struct perf_event *parent_event, 7632 struct task_struct *parent, 7633 struct perf_event_context *parent_ctx, 7634 struct task_struct *child, 7635 struct perf_event *group_leader, 7636 struct perf_event_context *child_ctx) 7637 { 7638 struct perf_event *child_event; 7639 unsigned long flags; 7640 7641 /* 7642 * Instead of creating recursive hierarchies of events, 7643 * we link inherited events back to the original parent, 7644 * which has a filp for sure, which we use as the reference 7645 * count: 7646 */ 7647 if (parent_event->parent) 7648 parent_event = parent_event->parent; 7649 7650 child_event = perf_event_alloc(&parent_event->attr, 7651 parent_event->cpu, 7652 child, 7653 group_leader, parent_event, 7654 NULL, NULL); 7655 if (IS_ERR(child_event)) 7656 return child_event; 7657 7658 if (!atomic_long_inc_not_zero(&parent_event->refcount)) { 7659 free_event(child_event); 7660 return NULL; 7661 } 7662 7663 get_ctx(child_ctx); 7664 7665 /* 7666 * Make the child state follow the state of the parent event, 7667 * not its attr.disabled bit. We hold the parent's mutex, 7668 * so we won't race with perf_event_{en, dis}able_family. 7669 */ 7670 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 7671 child_event->state = PERF_EVENT_STATE_INACTIVE; 7672 else 7673 child_event->state = PERF_EVENT_STATE_OFF; 7674 7675 if (parent_event->attr.freq) { 7676 u64 sample_period = parent_event->hw.sample_period; 7677 struct hw_perf_event *hwc = &child_event->hw; 7678 7679 hwc->sample_period = sample_period; 7680 hwc->last_period = sample_period; 7681 7682 local64_set(&hwc->period_left, sample_period); 7683 } 7684 7685 child_event->ctx = child_ctx; 7686 child_event->overflow_handler = parent_event->overflow_handler; 7687 child_event->overflow_handler_context 7688 = parent_event->overflow_handler_context; 7689 7690 /* 7691 * Precalculate sample_data sizes 7692 */ 7693 perf_event__header_size(child_event); 7694 perf_event__id_header_size(child_event); 7695 7696 /* 7697 * Link it up in the child's context: 7698 */ 7699 raw_spin_lock_irqsave(&child_ctx->lock, flags); 7700 add_event_to_ctx(child_event, child_ctx); 7701 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7702 7703 /* 7704 * Link this into the parent event's child list 7705 */ 7706 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7707 mutex_lock(&parent_event->child_mutex); 7708 list_add_tail(&child_event->child_list, &parent_event->child_list); 7709 mutex_unlock(&parent_event->child_mutex); 7710 7711 return child_event; 7712 } 7713 7714 static int inherit_group(struct perf_event *parent_event, 7715 struct task_struct *parent, 7716 struct perf_event_context *parent_ctx, 7717 struct task_struct *child, 7718 struct perf_event_context *child_ctx) 7719 { 7720 struct perf_event *leader; 7721 struct perf_event *sub; 7722 struct perf_event *child_ctr; 7723 7724 leader = inherit_event(parent_event, parent, parent_ctx, 7725 child, NULL, child_ctx); 7726 if (IS_ERR(leader)) 7727 return PTR_ERR(leader); 7728 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 7729 child_ctr = inherit_event(sub, parent, parent_ctx, 7730 child, leader, child_ctx); 7731 if (IS_ERR(child_ctr)) 7732 return PTR_ERR(child_ctr); 7733 } 7734 return 0; 7735 } 7736 7737 static int 7738 inherit_task_group(struct perf_event *event, struct task_struct *parent, 7739 struct perf_event_context *parent_ctx, 7740 struct task_struct *child, int ctxn, 7741 int *inherited_all) 7742 { 7743 int ret; 7744 struct perf_event_context *child_ctx; 7745 7746 if (!event->attr.inherit) { 7747 *inherited_all = 0; 7748 return 0; 7749 } 7750 7751 child_ctx = child->perf_event_ctxp[ctxn]; 7752 if (!child_ctx) { 7753 /* 7754 * This is executed from the parent task context, so 7755 * inherit events that have been marked for cloning. 7756 * First allocate and initialize a context for the 7757 * child. 7758 */ 7759 7760 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 7761 if (!child_ctx) 7762 return -ENOMEM; 7763 7764 child->perf_event_ctxp[ctxn] = child_ctx; 7765 } 7766 7767 ret = inherit_group(event, parent, parent_ctx, 7768 child, child_ctx); 7769 7770 if (ret) 7771 *inherited_all = 0; 7772 7773 return ret; 7774 } 7775 7776 /* 7777 * Initialize the perf_event context in task_struct 7778 */ 7779 int perf_event_init_context(struct task_struct *child, int ctxn) 7780 { 7781 struct perf_event_context *child_ctx, *parent_ctx; 7782 struct perf_event_context *cloned_ctx; 7783 struct perf_event *event; 7784 struct task_struct *parent = current; 7785 int inherited_all = 1; 7786 unsigned long flags; 7787 int ret = 0; 7788 7789 if (likely(!parent->perf_event_ctxp[ctxn])) 7790 return 0; 7791 7792 /* 7793 * If the parent's context is a clone, pin it so it won't get 7794 * swapped under us. 7795 */ 7796 parent_ctx = perf_pin_task_context(parent, ctxn); 7797 if (!parent_ctx) 7798 return 0; 7799 7800 /* 7801 * No need to check if parent_ctx != NULL here; since we saw 7802 * it non-NULL earlier, the only reason for it to become NULL 7803 * is if we exit, and since we're currently in the middle of 7804 * a fork we can't be exiting at the same time. 7805 */ 7806 7807 /* 7808 * Lock the parent list. No need to lock the child - not PID 7809 * hashed yet and not running, so nobody can access it. 7810 */ 7811 mutex_lock(&parent_ctx->mutex); 7812 7813 /* 7814 * We dont have to disable NMIs - we are only looking at 7815 * the list, not manipulating it: 7816 */ 7817 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 7818 ret = inherit_task_group(event, parent, parent_ctx, 7819 child, ctxn, &inherited_all); 7820 if (ret) 7821 break; 7822 } 7823 7824 /* 7825 * We can't hold ctx->lock when iterating the ->flexible_group list due 7826 * to allocations, but we need to prevent rotation because 7827 * rotate_ctx() will change the list from interrupt context. 7828 */ 7829 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7830 parent_ctx->rotate_disable = 1; 7831 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7832 7833 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 7834 ret = inherit_task_group(event, parent, parent_ctx, 7835 child, ctxn, &inherited_all); 7836 if (ret) 7837 break; 7838 } 7839 7840 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7841 parent_ctx->rotate_disable = 0; 7842 7843 child_ctx = child->perf_event_ctxp[ctxn]; 7844 7845 if (child_ctx && inherited_all) { 7846 /* 7847 * Mark the child context as a clone of the parent 7848 * context, or of whatever the parent is a clone of. 7849 * 7850 * Note that if the parent is a clone, the holding of 7851 * parent_ctx->lock avoids it from being uncloned. 7852 */ 7853 cloned_ctx = parent_ctx->parent_ctx; 7854 if (cloned_ctx) { 7855 child_ctx->parent_ctx = cloned_ctx; 7856 child_ctx->parent_gen = parent_ctx->parent_gen; 7857 } else { 7858 child_ctx->parent_ctx = parent_ctx; 7859 child_ctx->parent_gen = parent_ctx->generation; 7860 } 7861 get_ctx(child_ctx->parent_ctx); 7862 } 7863 7864 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7865 mutex_unlock(&parent_ctx->mutex); 7866 7867 perf_unpin_context(parent_ctx); 7868 put_ctx(parent_ctx); 7869 7870 return ret; 7871 } 7872 7873 /* 7874 * Initialize the perf_event context in task_struct 7875 */ 7876 int perf_event_init_task(struct task_struct *child) 7877 { 7878 int ctxn, ret; 7879 7880 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 7881 mutex_init(&child->perf_event_mutex); 7882 INIT_LIST_HEAD(&child->perf_event_list); 7883 7884 for_each_task_context_nr(ctxn) { 7885 ret = perf_event_init_context(child, ctxn); 7886 if (ret) 7887 return ret; 7888 } 7889 7890 return 0; 7891 } 7892 7893 static void __init perf_event_init_all_cpus(void) 7894 { 7895 struct swevent_htable *swhash; 7896 int cpu; 7897 7898 for_each_possible_cpu(cpu) { 7899 swhash = &per_cpu(swevent_htable, cpu); 7900 mutex_init(&swhash->hlist_mutex); 7901 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 7902 } 7903 } 7904 7905 static void perf_event_init_cpu(int cpu) 7906 { 7907 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7908 7909 mutex_lock(&swhash->hlist_mutex); 7910 swhash->online = true; 7911 if (swhash->hlist_refcount > 0) { 7912 struct swevent_hlist *hlist; 7913 7914 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 7915 WARN_ON(!hlist); 7916 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7917 } 7918 mutex_unlock(&swhash->hlist_mutex); 7919 } 7920 7921 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 7922 static void perf_pmu_rotate_stop(struct pmu *pmu) 7923 { 7924 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7925 7926 WARN_ON(!irqs_disabled()); 7927 7928 list_del_init(&cpuctx->rotation_list); 7929 } 7930 7931 static void __perf_event_exit_context(void *__info) 7932 { 7933 struct remove_event re = { .detach_group = false }; 7934 struct perf_event_context *ctx = __info; 7935 7936 perf_pmu_rotate_stop(ctx->pmu); 7937 7938 rcu_read_lock(); 7939 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry) 7940 __perf_remove_from_context(&re); 7941 rcu_read_unlock(); 7942 } 7943 7944 static void perf_event_exit_cpu_context(int cpu) 7945 { 7946 struct perf_event_context *ctx; 7947 struct pmu *pmu; 7948 int idx; 7949 7950 idx = srcu_read_lock(&pmus_srcu); 7951 list_for_each_entry_rcu(pmu, &pmus, entry) { 7952 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 7953 7954 mutex_lock(&ctx->mutex); 7955 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 7956 mutex_unlock(&ctx->mutex); 7957 } 7958 srcu_read_unlock(&pmus_srcu, idx); 7959 } 7960 7961 static void perf_event_exit_cpu(int cpu) 7962 { 7963 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7964 7965 perf_event_exit_cpu_context(cpu); 7966 7967 mutex_lock(&swhash->hlist_mutex); 7968 swhash->online = false; 7969 swevent_hlist_release(swhash); 7970 mutex_unlock(&swhash->hlist_mutex); 7971 } 7972 #else 7973 static inline void perf_event_exit_cpu(int cpu) { } 7974 #endif 7975 7976 static int 7977 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 7978 { 7979 int cpu; 7980 7981 for_each_online_cpu(cpu) 7982 perf_event_exit_cpu(cpu); 7983 7984 return NOTIFY_OK; 7985 } 7986 7987 /* 7988 * Run the perf reboot notifier at the very last possible moment so that 7989 * the generic watchdog code runs as long as possible. 7990 */ 7991 static struct notifier_block perf_reboot_notifier = { 7992 .notifier_call = perf_reboot, 7993 .priority = INT_MIN, 7994 }; 7995 7996 static int 7997 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 7998 { 7999 unsigned int cpu = (long)hcpu; 8000 8001 switch (action & ~CPU_TASKS_FROZEN) { 8002 8003 case CPU_UP_PREPARE: 8004 case CPU_DOWN_FAILED: 8005 perf_event_init_cpu(cpu); 8006 break; 8007 8008 case CPU_UP_CANCELED: 8009 case CPU_DOWN_PREPARE: 8010 perf_event_exit_cpu(cpu); 8011 break; 8012 default: 8013 break; 8014 } 8015 8016 return NOTIFY_OK; 8017 } 8018 8019 void __init perf_event_init(void) 8020 { 8021 int ret; 8022 8023 idr_init(&pmu_idr); 8024 8025 perf_event_init_all_cpus(); 8026 init_srcu_struct(&pmus_srcu); 8027 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 8028 perf_pmu_register(&perf_cpu_clock, NULL, -1); 8029 perf_pmu_register(&perf_task_clock, NULL, -1); 8030 perf_tp_register(); 8031 perf_cpu_notifier(perf_cpu_notify); 8032 register_reboot_notifier(&perf_reboot_notifier); 8033 8034 ret = init_hw_breakpoint(); 8035 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 8036 8037 /* do not patch jump label more than once per second */ 8038 jump_label_rate_limit(&perf_sched_events, HZ); 8039 8040 /* 8041 * Build time assertion that we keep the data_head at the intended 8042 * location. IOW, validation we got the __reserved[] size right. 8043 */ 8044 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 8045 != 1024); 8046 } 8047 8048 static int __init perf_event_sysfs_init(void) 8049 { 8050 struct pmu *pmu; 8051 int ret; 8052 8053 mutex_lock(&pmus_lock); 8054 8055 ret = bus_register(&pmu_bus); 8056 if (ret) 8057 goto unlock; 8058 8059 list_for_each_entry(pmu, &pmus, entry) { 8060 if (!pmu->name || pmu->type < 0) 8061 continue; 8062 8063 ret = pmu_dev_alloc(pmu); 8064 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 8065 } 8066 pmu_bus_running = 1; 8067 ret = 0; 8068 8069 unlock: 8070 mutex_unlock(&pmus_lock); 8071 8072 return ret; 8073 } 8074 device_initcall(perf_event_sysfs_init); 8075 8076 #ifdef CONFIG_CGROUP_PERF 8077 static struct cgroup_subsys_state * 8078 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8079 { 8080 struct perf_cgroup *jc; 8081 8082 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 8083 if (!jc) 8084 return ERR_PTR(-ENOMEM); 8085 8086 jc->info = alloc_percpu(struct perf_cgroup_info); 8087 if (!jc->info) { 8088 kfree(jc); 8089 return ERR_PTR(-ENOMEM); 8090 } 8091 8092 return &jc->css; 8093 } 8094 8095 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 8096 { 8097 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 8098 8099 free_percpu(jc->info); 8100 kfree(jc); 8101 } 8102 8103 static int __perf_cgroup_move(void *info) 8104 { 8105 struct task_struct *task = info; 8106 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 8107 return 0; 8108 } 8109 8110 static void perf_cgroup_attach(struct cgroup_subsys_state *css, 8111 struct cgroup_taskset *tset) 8112 { 8113 struct task_struct *task; 8114 8115 cgroup_taskset_for_each(task, tset) 8116 task_function_call(task, __perf_cgroup_move, task); 8117 } 8118 8119 static void perf_cgroup_exit(struct cgroup_subsys_state *css, 8120 struct cgroup_subsys_state *old_css, 8121 struct task_struct *task) 8122 { 8123 /* 8124 * cgroup_exit() is called in the copy_process() failure path. 8125 * Ignore this case since the task hasn't ran yet, this avoids 8126 * trying to poke a half freed task state from generic code. 8127 */ 8128 if (!(task->flags & PF_EXITING)) 8129 return; 8130 8131 task_function_call(task, __perf_cgroup_move, task); 8132 } 8133 8134 struct cgroup_subsys perf_event_cgrp_subsys = { 8135 .css_alloc = perf_cgroup_css_alloc, 8136 .css_free = perf_cgroup_css_free, 8137 .exit = perf_cgroup_exit, 8138 .attach = perf_cgroup_attach, 8139 }; 8140 #endif /* CONFIG_CGROUP_PERF */ 8141