1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 58 #include "internal.h" 59 60 #include <asm/irq_regs.h> 61 62 typedef int (*remote_function_f)(void *); 63 64 struct remote_function_call { 65 struct task_struct *p; 66 remote_function_f func; 67 void *info; 68 int ret; 69 }; 70 71 static void remote_function(void *data) 72 { 73 struct remote_function_call *tfc = data; 74 struct task_struct *p = tfc->p; 75 76 if (p) { 77 /* -EAGAIN */ 78 if (task_cpu(p) != smp_processor_id()) 79 return; 80 81 /* 82 * Now that we're on right CPU with IRQs disabled, we can test 83 * if we hit the right task without races. 84 */ 85 86 tfc->ret = -ESRCH; /* No such (running) process */ 87 if (p != current) 88 return; 89 } 90 91 tfc->ret = tfc->func(tfc->info); 92 } 93 94 /** 95 * task_function_call - call a function on the cpu on which a task runs 96 * @p: the task to evaluate 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func when the task is currently running. This might 101 * be on the current CPU, which just calls the function directly. This will 102 * retry due to any failures in smp_call_function_single(), such as if the 103 * task_cpu() goes offline concurrently. 104 * 105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 106 */ 107 static int 108 task_function_call(struct task_struct *p, remote_function_f func, void *info) 109 { 110 struct remote_function_call data = { 111 .p = p, 112 .func = func, 113 .info = info, 114 .ret = -EAGAIN, 115 }; 116 int ret; 117 118 for (;;) { 119 ret = smp_call_function_single(task_cpu(p), remote_function, 120 &data, 1); 121 if (!ret) 122 ret = data.ret; 123 124 if (ret != -EAGAIN) 125 break; 126 127 cond_resched(); 128 } 129 130 return ret; 131 } 132 133 /** 134 * cpu_function_call - call a function on the cpu 135 * @cpu: target cpu to queue this function 136 * @func: the function to be called 137 * @info: the function call argument 138 * 139 * Calls the function @func on the remote cpu. 140 * 141 * returns: @func return value or -ENXIO when the cpu is offline 142 */ 143 static int cpu_function_call(int cpu, remote_function_f func, void *info) 144 { 145 struct remote_function_call data = { 146 .p = NULL, 147 .func = func, 148 .info = info, 149 .ret = -ENXIO, /* No such CPU */ 150 }; 151 152 smp_call_function_single(cpu, remote_function, &data, 1); 153 154 return data.ret; 155 } 156 157 static inline struct perf_cpu_context * 158 __get_cpu_context(struct perf_event_context *ctx) 159 { 160 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 161 } 162 163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 164 struct perf_event_context *ctx) 165 { 166 raw_spin_lock(&cpuctx->ctx.lock); 167 if (ctx) 168 raw_spin_lock(&ctx->lock); 169 } 170 171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 172 struct perf_event_context *ctx) 173 { 174 if (ctx) 175 raw_spin_unlock(&ctx->lock); 176 raw_spin_unlock(&cpuctx->ctx.lock); 177 } 178 179 #define TASK_TOMBSTONE ((void *)-1L) 180 181 static bool is_kernel_event(struct perf_event *event) 182 { 183 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 184 } 185 186 /* 187 * On task ctx scheduling... 188 * 189 * When !ctx->nr_events a task context will not be scheduled. This means 190 * we can disable the scheduler hooks (for performance) without leaving 191 * pending task ctx state. 192 * 193 * This however results in two special cases: 194 * 195 * - removing the last event from a task ctx; this is relatively straight 196 * forward and is done in __perf_remove_from_context. 197 * 198 * - adding the first event to a task ctx; this is tricky because we cannot 199 * rely on ctx->is_active and therefore cannot use event_function_call(). 200 * See perf_install_in_context(). 201 * 202 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 203 */ 204 205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 206 struct perf_event_context *, void *); 207 208 struct event_function_struct { 209 struct perf_event *event; 210 event_f func; 211 void *data; 212 }; 213 214 static int event_function(void *info) 215 { 216 struct event_function_struct *efs = info; 217 struct perf_event *event = efs->event; 218 struct perf_event_context *ctx = event->ctx; 219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 220 struct perf_event_context *task_ctx = cpuctx->task_ctx; 221 int ret = 0; 222 223 lockdep_assert_irqs_disabled(); 224 225 perf_ctx_lock(cpuctx, task_ctx); 226 /* 227 * Since we do the IPI call without holding ctx->lock things can have 228 * changed, double check we hit the task we set out to hit. 229 */ 230 if (ctx->task) { 231 if (ctx->task != current) { 232 ret = -ESRCH; 233 goto unlock; 234 } 235 236 /* 237 * We only use event_function_call() on established contexts, 238 * and event_function() is only ever called when active (or 239 * rather, we'll have bailed in task_function_call() or the 240 * above ctx->task != current test), therefore we must have 241 * ctx->is_active here. 242 */ 243 WARN_ON_ONCE(!ctx->is_active); 244 /* 245 * And since we have ctx->is_active, cpuctx->task_ctx must 246 * match. 247 */ 248 WARN_ON_ONCE(task_ctx != ctx); 249 } else { 250 WARN_ON_ONCE(&cpuctx->ctx != ctx); 251 } 252 253 efs->func(event, cpuctx, ctx, efs->data); 254 unlock: 255 perf_ctx_unlock(cpuctx, task_ctx); 256 257 return ret; 258 } 259 260 static void event_function_call(struct perf_event *event, event_f func, void *data) 261 { 262 struct perf_event_context *ctx = event->ctx; 263 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 264 struct event_function_struct efs = { 265 .event = event, 266 .func = func, 267 .data = data, 268 }; 269 270 if (!event->parent) { 271 /* 272 * If this is a !child event, we must hold ctx::mutex to 273 * stabilize the event->ctx relation. See 274 * perf_event_ctx_lock(). 275 */ 276 lockdep_assert_held(&ctx->mutex); 277 } 278 279 if (!task) { 280 cpu_function_call(event->cpu, event_function, &efs); 281 return; 282 } 283 284 if (task == TASK_TOMBSTONE) 285 return; 286 287 again: 288 if (!task_function_call(task, event_function, &efs)) 289 return; 290 291 raw_spin_lock_irq(&ctx->lock); 292 /* 293 * Reload the task pointer, it might have been changed by 294 * a concurrent perf_event_context_sched_out(). 295 */ 296 task = ctx->task; 297 if (task == TASK_TOMBSTONE) { 298 raw_spin_unlock_irq(&ctx->lock); 299 return; 300 } 301 if (ctx->is_active) { 302 raw_spin_unlock_irq(&ctx->lock); 303 goto again; 304 } 305 func(event, NULL, ctx, data); 306 raw_spin_unlock_irq(&ctx->lock); 307 } 308 309 /* 310 * Similar to event_function_call() + event_function(), but hard assumes IRQs 311 * are already disabled and we're on the right CPU. 312 */ 313 static void event_function_local(struct perf_event *event, event_f func, void *data) 314 { 315 struct perf_event_context *ctx = event->ctx; 316 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 317 struct task_struct *task = READ_ONCE(ctx->task); 318 struct perf_event_context *task_ctx = NULL; 319 320 lockdep_assert_irqs_disabled(); 321 322 if (task) { 323 if (task == TASK_TOMBSTONE) 324 return; 325 326 task_ctx = ctx; 327 } 328 329 perf_ctx_lock(cpuctx, task_ctx); 330 331 task = ctx->task; 332 if (task == TASK_TOMBSTONE) 333 goto unlock; 334 335 if (task) { 336 /* 337 * We must be either inactive or active and the right task, 338 * otherwise we're screwed, since we cannot IPI to somewhere 339 * else. 340 */ 341 if (ctx->is_active) { 342 if (WARN_ON_ONCE(task != current)) 343 goto unlock; 344 345 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 346 goto unlock; 347 } 348 } else { 349 WARN_ON_ONCE(&cpuctx->ctx != ctx); 350 } 351 352 func(event, cpuctx, ctx, data); 353 unlock: 354 perf_ctx_unlock(cpuctx, task_ctx); 355 } 356 357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 358 PERF_FLAG_FD_OUTPUT |\ 359 PERF_FLAG_PID_CGROUP |\ 360 PERF_FLAG_FD_CLOEXEC) 361 362 /* 363 * branch priv levels that need permission checks 364 */ 365 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 366 (PERF_SAMPLE_BRANCH_KERNEL |\ 367 PERF_SAMPLE_BRANCH_HV) 368 369 enum event_type_t { 370 EVENT_FLEXIBLE = 0x1, 371 EVENT_PINNED = 0x2, 372 EVENT_TIME = 0x4, 373 /* see ctx_resched() for details */ 374 EVENT_CPU = 0x8, 375 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 376 }; 377 378 /* 379 * perf_sched_events : >0 events exist 380 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 381 */ 382 383 static void perf_sched_delayed(struct work_struct *work); 384 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 386 static DEFINE_MUTEX(perf_sched_mutex); 387 static atomic_t perf_sched_count; 388 389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 390 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 392 393 static atomic_t nr_mmap_events __read_mostly; 394 static atomic_t nr_comm_events __read_mostly; 395 static atomic_t nr_namespaces_events __read_mostly; 396 static atomic_t nr_task_events __read_mostly; 397 static atomic_t nr_freq_events __read_mostly; 398 static atomic_t nr_switch_events __read_mostly; 399 static atomic_t nr_ksymbol_events __read_mostly; 400 static atomic_t nr_bpf_events __read_mostly; 401 static atomic_t nr_cgroup_events __read_mostly; 402 static atomic_t nr_text_poke_events __read_mostly; 403 static atomic_t nr_build_id_events __read_mostly; 404 405 static LIST_HEAD(pmus); 406 static DEFINE_MUTEX(pmus_lock); 407 static struct srcu_struct pmus_srcu; 408 static cpumask_var_t perf_online_mask; 409 static struct kmem_cache *perf_event_cache; 410 411 /* 412 * perf event paranoia level: 413 * -1 - not paranoid at all 414 * 0 - disallow raw tracepoint access for unpriv 415 * 1 - disallow cpu events for unpriv 416 * 2 - disallow kernel profiling for unpriv 417 */ 418 int sysctl_perf_event_paranoid __read_mostly = 2; 419 420 /* Minimum for 512 kiB + 1 user control page */ 421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 422 423 /* 424 * max perf event sample rate 425 */ 426 #define DEFAULT_MAX_SAMPLE_RATE 100000 427 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 428 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 429 430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 431 432 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 433 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 434 435 static int perf_sample_allowed_ns __read_mostly = 436 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 437 438 static void update_perf_cpu_limits(void) 439 { 440 u64 tmp = perf_sample_period_ns; 441 442 tmp *= sysctl_perf_cpu_time_max_percent; 443 tmp = div_u64(tmp, 100); 444 if (!tmp) 445 tmp = 1; 446 447 WRITE_ONCE(perf_sample_allowed_ns, tmp); 448 } 449 450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 451 452 int perf_proc_update_handler(struct ctl_table *table, int write, 453 void *buffer, size_t *lenp, loff_t *ppos) 454 { 455 int ret; 456 int perf_cpu = sysctl_perf_cpu_time_max_percent; 457 /* 458 * If throttling is disabled don't allow the write: 459 */ 460 if (write && (perf_cpu == 100 || perf_cpu == 0)) 461 return -EINVAL; 462 463 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 464 if (ret || !write) 465 return ret; 466 467 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 468 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 469 update_perf_cpu_limits(); 470 471 return 0; 472 } 473 474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 475 476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 477 void *buffer, size_t *lenp, loff_t *ppos) 478 { 479 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 480 481 if (ret || !write) 482 return ret; 483 484 if (sysctl_perf_cpu_time_max_percent == 100 || 485 sysctl_perf_cpu_time_max_percent == 0) { 486 printk(KERN_WARNING 487 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 488 WRITE_ONCE(perf_sample_allowed_ns, 0); 489 } else { 490 update_perf_cpu_limits(); 491 } 492 493 return 0; 494 } 495 496 /* 497 * perf samples are done in some very critical code paths (NMIs). 498 * If they take too much CPU time, the system can lock up and not 499 * get any real work done. This will drop the sample rate when 500 * we detect that events are taking too long. 501 */ 502 #define NR_ACCUMULATED_SAMPLES 128 503 static DEFINE_PER_CPU(u64, running_sample_length); 504 505 static u64 __report_avg; 506 static u64 __report_allowed; 507 508 static void perf_duration_warn(struct irq_work *w) 509 { 510 printk_ratelimited(KERN_INFO 511 "perf: interrupt took too long (%lld > %lld), lowering " 512 "kernel.perf_event_max_sample_rate to %d\n", 513 __report_avg, __report_allowed, 514 sysctl_perf_event_sample_rate); 515 } 516 517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 518 519 void perf_sample_event_took(u64 sample_len_ns) 520 { 521 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 522 u64 running_len; 523 u64 avg_len; 524 u32 max; 525 526 if (max_len == 0) 527 return; 528 529 /* Decay the counter by 1 average sample. */ 530 running_len = __this_cpu_read(running_sample_length); 531 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 532 running_len += sample_len_ns; 533 __this_cpu_write(running_sample_length, running_len); 534 535 /* 536 * Note: this will be biased artifically low until we have 537 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 538 * from having to maintain a count. 539 */ 540 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 541 if (avg_len <= max_len) 542 return; 543 544 __report_avg = avg_len; 545 __report_allowed = max_len; 546 547 /* 548 * Compute a throttle threshold 25% below the current duration. 549 */ 550 avg_len += avg_len / 4; 551 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 552 if (avg_len < max) 553 max /= (u32)avg_len; 554 else 555 max = 1; 556 557 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 558 WRITE_ONCE(max_samples_per_tick, max); 559 560 sysctl_perf_event_sample_rate = max * HZ; 561 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 562 563 if (!irq_work_queue(&perf_duration_work)) { 564 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 565 "kernel.perf_event_max_sample_rate to %d\n", 566 __report_avg, __report_allowed, 567 sysctl_perf_event_sample_rate); 568 } 569 } 570 571 static atomic64_t perf_event_id; 572 573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 574 enum event_type_t event_type); 575 576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 577 enum event_type_t event_type); 578 579 static void update_context_time(struct perf_event_context *ctx); 580 static u64 perf_event_time(struct perf_event *event); 581 582 void __weak perf_event_print_debug(void) { } 583 584 static inline u64 perf_clock(void) 585 { 586 return local_clock(); 587 } 588 589 static inline u64 perf_event_clock(struct perf_event *event) 590 { 591 return event->clock(); 592 } 593 594 /* 595 * State based event timekeeping... 596 * 597 * The basic idea is to use event->state to determine which (if any) time 598 * fields to increment with the current delta. This means we only need to 599 * update timestamps when we change state or when they are explicitly requested 600 * (read). 601 * 602 * Event groups make things a little more complicated, but not terribly so. The 603 * rules for a group are that if the group leader is OFF the entire group is 604 * OFF, irrespecive of what the group member states are. This results in 605 * __perf_effective_state(). 606 * 607 * A futher ramification is that when a group leader flips between OFF and 608 * !OFF, we need to update all group member times. 609 * 610 * 611 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 612 * need to make sure the relevant context time is updated before we try and 613 * update our timestamps. 614 */ 615 616 static __always_inline enum perf_event_state 617 __perf_effective_state(struct perf_event *event) 618 { 619 struct perf_event *leader = event->group_leader; 620 621 if (leader->state <= PERF_EVENT_STATE_OFF) 622 return leader->state; 623 624 return event->state; 625 } 626 627 static __always_inline void 628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 629 { 630 enum perf_event_state state = __perf_effective_state(event); 631 u64 delta = now - event->tstamp; 632 633 *enabled = event->total_time_enabled; 634 if (state >= PERF_EVENT_STATE_INACTIVE) 635 *enabled += delta; 636 637 *running = event->total_time_running; 638 if (state >= PERF_EVENT_STATE_ACTIVE) 639 *running += delta; 640 } 641 642 static void perf_event_update_time(struct perf_event *event) 643 { 644 u64 now = perf_event_time(event); 645 646 __perf_update_times(event, now, &event->total_time_enabled, 647 &event->total_time_running); 648 event->tstamp = now; 649 } 650 651 static void perf_event_update_sibling_time(struct perf_event *leader) 652 { 653 struct perf_event *sibling; 654 655 for_each_sibling_event(sibling, leader) 656 perf_event_update_time(sibling); 657 } 658 659 static void 660 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 661 { 662 if (event->state == state) 663 return; 664 665 perf_event_update_time(event); 666 /* 667 * If a group leader gets enabled/disabled all its siblings 668 * are affected too. 669 */ 670 if ((event->state < 0) ^ (state < 0)) 671 perf_event_update_sibling_time(event); 672 673 WRITE_ONCE(event->state, state); 674 } 675 676 /* 677 * UP store-release, load-acquire 678 */ 679 680 #define __store_release(ptr, val) \ 681 do { \ 682 barrier(); \ 683 WRITE_ONCE(*(ptr), (val)); \ 684 } while (0) 685 686 #define __load_acquire(ptr) \ 687 ({ \ 688 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 689 barrier(); \ 690 ___p; \ 691 }) 692 693 #ifdef CONFIG_CGROUP_PERF 694 695 static inline bool 696 perf_cgroup_match(struct perf_event *event) 697 { 698 struct perf_event_context *ctx = event->ctx; 699 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 700 701 /* @event doesn't care about cgroup */ 702 if (!event->cgrp) 703 return true; 704 705 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 706 if (!cpuctx->cgrp) 707 return false; 708 709 /* 710 * Cgroup scoping is recursive. An event enabled for a cgroup is 711 * also enabled for all its descendant cgroups. If @cpuctx's 712 * cgroup is a descendant of @event's (the test covers identity 713 * case), it's a match. 714 */ 715 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 716 event->cgrp->css.cgroup); 717 } 718 719 static inline void perf_detach_cgroup(struct perf_event *event) 720 { 721 css_put(&event->cgrp->css); 722 event->cgrp = NULL; 723 } 724 725 static inline int is_cgroup_event(struct perf_event *event) 726 { 727 return event->cgrp != NULL; 728 } 729 730 static inline u64 perf_cgroup_event_time(struct perf_event *event) 731 { 732 struct perf_cgroup_info *t; 733 734 t = per_cpu_ptr(event->cgrp->info, event->cpu); 735 return t->time; 736 } 737 738 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 739 { 740 struct perf_cgroup_info *t; 741 742 t = per_cpu_ptr(event->cgrp->info, event->cpu); 743 if (!__load_acquire(&t->active)) 744 return t->time; 745 now += READ_ONCE(t->timeoffset); 746 return now; 747 } 748 749 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 750 { 751 if (adv) 752 info->time += now - info->timestamp; 753 info->timestamp = now; 754 /* 755 * see update_context_time() 756 */ 757 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 758 } 759 760 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 761 { 762 struct perf_cgroup *cgrp = cpuctx->cgrp; 763 struct cgroup_subsys_state *css; 764 struct perf_cgroup_info *info; 765 766 if (cgrp) { 767 u64 now = perf_clock(); 768 769 for (css = &cgrp->css; css; css = css->parent) { 770 cgrp = container_of(css, struct perf_cgroup, css); 771 info = this_cpu_ptr(cgrp->info); 772 773 __update_cgrp_time(info, now, true); 774 if (final) 775 __store_release(&info->active, 0); 776 } 777 } 778 } 779 780 static inline void update_cgrp_time_from_event(struct perf_event *event) 781 { 782 struct perf_cgroup_info *info; 783 784 /* 785 * ensure we access cgroup data only when needed and 786 * when we know the cgroup is pinned (css_get) 787 */ 788 if (!is_cgroup_event(event)) 789 return; 790 791 info = this_cpu_ptr(event->cgrp->info); 792 /* 793 * Do not update time when cgroup is not active 794 */ 795 if (info->active) 796 __update_cgrp_time(info, perf_clock(), true); 797 } 798 799 static inline void 800 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 801 { 802 struct perf_event_context *ctx = &cpuctx->ctx; 803 struct perf_cgroup *cgrp = cpuctx->cgrp; 804 struct perf_cgroup_info *info; 805 struct cgroup_subsys_state *css; 806 807 /* 808 * ctx->lock held by caller 809 * ensure we do not access cgroup data 810 * unless we have the cgroup pinned (css_get) 811 */ 812 if (!cgrp) 813 return; 814 815 WARN_ON_ONCE(!ctx->nr_cgroups); 816 817 for (css = &cgrp->css; css; css = css->parent) { 818 cgrp = container_of(css, struct perf_cgroup, css); 819 info = this_cpu_ptr(cgrp->info); 820 __update_cgrp_time(info, ctx->timestamp, false); 821 __store_release(&info->active, 1); 822 } 823 } 824 825 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 826 827 /* 828 * reschedule events based on the cgroup constraint of task. 829 */ 830 static void perf_cgroup_switch(struct task_struct *task) 831 { 832 struct perf_cgroup *cgrp; 833 struct perf_cpu_context *cpuctx, *tmp; 834 struct list_head *list; 835 unsigned long flags; 836 837 /* 838 * Disable interrupts and preemption to avoid this CPU's 839 * cgrp_cpuctx_entry to change under us. 840 */ 841 local_irq_save(flags); 842 843 cgrp = perf_cgroup_from_task(task, NULL); 844 845 list = this_cpu_ptr(&cgrp_cpuctx_list); 846 list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) { 847 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 848 if (READ_ONCE(cpuctx->cgrp) == cgrp) 849 continue; 850 851 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 852 perf_pmu_disable(cpuctx->ctx.pmu); 853 854 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 855 /* 856 * must not be done before ctxswout due 857 * to update_cgrp_time_from_cpuctx() in 858 * ctx_sched_out() 859 */ 860 cpuctx->cgrp = cgrp; 861 /* 862 * set cgrp before ctxsw in to allow 863 * perf_cgroup_set_timestamp() in ctx_sched_in() 864 * to not have to pass task around 865 */ 866 cpu_ctx_sched_in(cpuctx, EVENT_ALL); 867 868 perf_pmu_enable(cpuctx->ctx.pmu); 869 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 870 } 871 872 local_irq_restore(flags); 873 } 874 875 static int perf_cgroup_ensure_storage(struct perf_event *event, 876 struct cgroup_subsys_state *css) 877 { 878 struct perf_cpu_context *cpuctx; 879 struct perf_event **storage; 880 int cpu, heap_size, ret = 0; 881 882 /* 883 * Allow storage to have sufficent space for an iterator for each 884 * possibly nested cgroup plus an iterator for events with no cgroup. 885 */ 886 for (heap_size = 1; css; css = css->parent) 887 heap_size++; 888 889 for_each_possible_cpu(cpu) { 890 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 891 if (heap_size <= cpuctx->heap_size) 892 continue; 893 894 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 895 GFP_KERNEL, cpu_to_node(cpu)); 896 if (!storage) { 897 ret = -ENOMEM; 898 break; 899 } 900 901 raw_spin_lock_irq(&cpuctx->ctx.lock); 902 if (cpuctx->heap_size < heap_size) { 903 swap(cpuctx->heap, storage); 904 if (storage == cpuctx->heap_default) 905 storage = NULL; 906 cpuctx->heap_size = heap_size; 907 } 908 raw_spin_unlock_irq(&cpuctx->ctx.lock); 909 910 kfree(storage); 911 } 912 913 return ret; 914 } 915 916 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 917 struct perf_event_attr *attr, 918 struct perf_event *group_leader) 919 { 920 struct perf_cgroup *cgrp; 921 struct cgroup_subsys_state *css; 922 struct fd f = fdget(fd); 923 int ret = 0; 924 925 if (!f.file) 926 return -EBADF; 927 928 css = css_tryget_online_from_dir(f.file->f_path.dentry, 929 &perf_event_cgrp_subsys); 930 if (IS_ERR(css)) { 931 ret = PTR_ERR(css); 932 goto out; 933 } 934 935 ret = perf_cgroup_ensure_storage(event, css); 936 if (ret) 937 goto out; 938 939 cgrp = container_of(css, struct perf_cgroup, css); 940 event->cgrp = cgrp; 941 942 /* 943 * all events in a group must monitor 944 * the same cgroup because a task belongs 945 * to only one perf cgroup at a time 946 */ 947 if (group_leader && group_leader->cgrp != cgrp) { 948 perf_detach_cgroup(event); 949 ret = -EINVAL; 950 } 951 out: 952 fdput(f); 953 return ret; 954 } 955 956 static inline void 957 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 958 { 959 struct perf_cpu_context *cpuctx; 960 961 if (!is_cgroup_event(event)) 962 return; 963 964 /* 965 * Because cgroup events are always per-cpu events, 966 * @ctx == &cpuctx->ctx. 967 */ 968 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 969 970 if (ctx->nr_cgroups++) 971 return; 972 973 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 974 list_add(&cpuctx->cgrp_cpuctx_entry, 975 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 976 } 977 978 static inline void 979 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 980 { 981 struct perf_cpu_context *cpuctx; 982 983 if (!is_cgroup_event(event)) 984 return; 985 986 /* 987 * Because cgroup events are always per-cpu events, 988 * @ctx == &cpuctx->ctx. 989 */ 990 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 991 992 if (--ctx->nr_cgroups) 993 return; 994 995 cpuctx->cgrp = NULL; 996 list_del(&cpuctx->cgrp_cpuctx_entry); 997 } 998 999 #else /* !CONFIG_CGROUP_PERF */ 1000 1001 static inline bool 1002 perf_cgroup_match(struct perf_event *event) 1003 { 1004 return true; 1005 } 1006 1007 static inline void perf_detach_cgroup(struct perf_event *event) 1008 {} 1009 1010 static inline int is_cgroup_event(struct perf_event *event) 1011 { 1012 return 0; 1013 } 1014 1015 static inline void update_cgrp_time_from_event(struct perf_event *event) 1016 { 1017 } 1018 1019 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1020 bool final) 1021 { 1022 } 1023 1024 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1025 struct perf_event_attr *attr, 1026 struct perf_event *group_leader) 1027 { 1028 return -EINVAL; 1029 } 1030 1031 static inline void 1032 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1033 { 1034 } 1035 1036 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1037 { 1038 return 0; 1039 } 1040 1041 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1042 { 1043 return 0; 1044 } 1045 1046 static inline void 1047 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1048 { 1049 } 1050 1051 static inline void 1052 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1053 { 1054 } 1055 1056 static void perf_cgroup_switch(struct task_struct *task) 1057 { 1058 } 1059 #endif 1060 1061 /* 1062 * set default to be dependent on timer tick just 1063 * like original code 1064 */ 1065 #define PERF_CPU_HRTIMER (1000 / HZ) 1066 /* 1067 * function must be called with interrupts disabled 1068 */ 1069 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1070 { 1071 struct perf_cpu_context *cpuctx; 1072 bool rotations; 1073 1074 lockdep_assert_irqs_disabled(); 1075 1076 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1077 rotations = perf_rotate_context(cpuctx); 1078 1079 raw_spin_lock(&cpuctx->hrtimer_lock); 1080 if (rotations) 1081 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1082 else 1083 cpuctx->hrtimer_active = 0; 1084 raw_spin_unlock(&cpuctx->hrtimer_lock); 1085 1086 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1087 } 1088 1089 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1090 { 1091 struct hrtimer *timer = &cpuctx->hrtimer; 1092 struct pmu *pmu = cpuctx->ctx.pmu; 1093 u64 interval; 1094 1095 /* no multiplexing needed for SW PMU */ 1096 if (pmu->task_ctx_nr == perf_sw_context) 1097 return; 1098 1099 /* 1100 * check default is sane, if not set then force to 1101 * default interval (1/tick) 1102 */ 1103 interval = pmu->hrtimer_interval_ms; 1104 if (interval < 1) 1105 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1106 1107 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1108 1109 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1110 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1111 timer->function = perf_mux_hrtimer_handler; 1112 } 1113 1114 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1115 { 1116 struct hrtimer *timer = &cpuctx->hrtimer; 1117 struct pmu *pmu = cpuctx->ctx.pmu; 1118 unsigned long flags; 1119 1120 /* not for SW PMU */ 1121 if (pmu->task_ctx_nr == perf_sw_context) 1122 return 0; 1123 1124 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1125 if (!cpuctx->hrtimer_active) { 1126 cpuctx->hrtimer_active = 1; 1127 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1128 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1129 } 1130 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1131 1132 return 0; 1133 } 1134 1135 void perf_pmu_disable(struct pmu *pmu) 1136 { 1137 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1138 if (!(*count)++) 1139 pmu->pmu_disable(pmu); 1140 } 1141 1142 void perf_pmu_enable(struct pmu *pmu) 1143 { 1144 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1145 if (!--(*count)) 1146 pmu->pmu_enable(pmu); 1147 } 1148 1149 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1150 1151 /* 1152 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1153 * perf_event_task_tick() are fully serialized because they're strictly cpu 1154 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1155 * disabled, while perf_event_task_tick is called from IRQ context. 1156 */ 1157 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1158 { 1159 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1160 1161 lockdep_assert_irqs_disabled(); 1162 1163 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1164 1165 list_add(&ctx->active_ctx_list, head); 1166 } 1167 1168 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1169 { 1170 lockdep_assert_irqs_disabled(); 1171 1172 WARN_ON(list_empty(&ctx->active_ctx_list)); 1173 1174 list_del_init(&ctx->active_ctx_list); 1175 } 1176 1177 static void get_ctx(struct perf_event_context *ctx) 1178 { 1179 refcount_inc(&ctx->refcount); 1180 } 1181 1182 static void *alloc_task_ctx_data(struct pmu *pmu) 1183 { 1184 if (pmu->task_ctx_cache) 1185 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1186 1187 return NULL; 1188 } 1189 1190 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1191 { 1192 if (pmu->task_ctx_cache && task_ctx_data) 1193 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1194 } 1195 1196 static void free_ctx(struct rcu_head *head) 1197 { 1198 struct perf_event_context *ctx; 1199 1200 ctx = container_of(head, struct perf_event_context, rcu_head); 1201 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1202 kfree(ctx); 1203 } 1204 1205 static void put_ctx(struct perf_event_context *ctx) 1206 { 1207 if (refcount_dec_and_test(&ctx->refcount)) { 1208 if (ctx->parent_ctx) 1209 put_ctx(ctx->parent_ctx); 1210 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1211 put_task_struct(ctx->task); 1212 call_rcu(&ctx->rcu_head, free_ctx); 1213 } 1214 } 1215 1216 /* 1217 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1218 * perf_pmu_migrate_context() we need some magic. 1219 * 1220 * Those places that change perf_event::ctx will hold both 1221 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1222 * 1223 * Lock ordering is by mutex address. There are two other sites where 1224 * perf_event_context::mutex nests and those are: 1225 * 1226 * - perf_event_exit_task_context() [ child , 0 ] 1227 * perf_event_exit_event() 1228 * put_event() [ parent, 1 ] 1229 * 1230 * - perf_event_init_context() [ parent, 0 ] 1231 * inherit_task_group() 1232 * inherit_group() 1233 * inherit_event() 1234 * perf_event_alloc() 1235 * perf_init_event() 1236 * perf_try_init_event() [ child , 1 ] 1237 * 1238 * While it appears there is an obvious deadlock here -- the parent and child 1239 * nesting levels are inverted between the two. This is in fact safe because 1240 * life-time rules separate them. That is an exiting task cannot fork, and a 1241 * spawning task cannot (yet) exit. 1242 * 1243 * But remember that these are parent<->child context relations, and 1244 * migration does not affect children, therefore these two orderings should not 1245 * interact. 1246 * 1247 * The change in perf_event::ctx does not affect children (as claimed above) 1248 * because the sys_perf_event_open() case will install a new event and break 1249 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1250 * concerned with cpuctx and that doesn't have children. 1251 * 1252 * The places that change perf_event::ctx will issue: 1253 * 1254 * perf_remove_from_context(); 1255 * synchronize_rcu(); 1256 * perf_install_in_context(); 1257 * 1258 * to affect the change. The remove_from_context() + synchronize_rcu() should 1259 * quiesce the event, after which we can install it in the new location. This 1260 * means that only external vectors (perf_fops, prctl) can perturb the event 1261 * while in transit. Therefore all such accessors should also acquire 1262 * perf_event_context::mutex to serialize against this. 1263 * 1264 * However; because event->ctx can change while we're waiting to acquire 1265 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1266 * function. 1267 * 1268 * Lock order: 1269 * exec_update_lock 1270 * task_struct::perf_event_mutex 1271 * perf_event_context::mutex 1272 * perf_event::child_mutex; 1273 * perf_event_context::lock 1274 * perf_event::mmap_mutex 1275 * mmap_lock 1276 * perf_addr_filters_head::lock 1277 * 1278 * cpu_hotplug_lock 1279 * pmus_lock 1280 * cpuctx->mutex / perf_event_context::mutex 1281 */ 1282 static struct perf_event_context * 1283 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1284 { 1285 struct perf_event_context *ctx; 1286 1287 again: 1288 rcu_read_lock(); 1289 ctx = READ_ONCE(event->ctx); 1290 if (!refcount_inc_not_zero(&ctx->refcount)) { 1291 rcu_read_unlock(); 1292 goto again; 1293 } 1294 rcu_read_unlock(); 1295 1296 mutex_lock_nested(&ctx->mutex, nesting); 1297 if (event->ctx != ctx) { 1298 mutex_unlock(&ctx->mutex); 1299 put_ctx(ctx); 1300 goto again; 1301 } 1302 1303 return ctx; 1304 } 1305 1306 static inline struct perf_event_context * 1307 perf_event_ctx_lock(struct perf_event *event) 1308 { 1309 return perf_event_ctx_lock_nested(event, 0); 1310 } 1311 1312 static void perf_event_ctx_unlock(struct perf_event *event, 1313 struct perf_event_context *ctx) 1314 { 1315 mutex_unlock(&ctx->mutex); 1316 put_ctx(ctx); 1317 } 1318 1319 /* 1320 * This must be done under the ctx->lock, such as to serialize against 1321 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1322 * calling scheduler related locks and ctx->lock nests inside those. 1323 */ 1324 static __must_check struct perf_event_context * 1325 unclone_ctx(struct perf_event_context *ctx) 1326 { 1327 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1328 1329 lockdep_assert_held(&ctx->lock); 1330 1331 if (parent_ctx) 1332 ctx->parent_ctx = NULL; 1333 ctx->generation++; 1334 1335 return parent_ctx; 1336 } 1337 1338 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1339 enum pid_type type) 1340 { 1341 u32 nr; 1342 /* 1343 * only top level events have the pid namespace they were created in 1344 */ 1345 if (event->parent) 1346 event = event->parent; 1347 1348 nr = __task_pid_nr_ns(p, type, event->ns); 1349 /* avoid -1 if it is idle thread or runs in another ns */ 1350 if (!nr && !pid_alive(p)) 1351 nr = -1; 1352 return nr; 1353 } 1354 1355 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1356 { 1357 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1358 } 1359 1360 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1361 { 1362 return perf_event_pid_type(event, p, PIDTYPE_PID); 1363 } 1364 1365 /* 1366 * If we inherit events we want to return the parent event id 1367 * to userspace. 1368 */ 1369 static u64 primary_event_id(struct perf_event *event) 1370 { 1371 u64 id = event->id; 1372 1373 if (event->parent) 1374 id = event->parent->id; 1375 1376 return id; 1377 } 1378 1379 /* 1380 * Get the perf_event_context for a task and lock it. 1381 * 1382 * This has to cope with the fact that until it is locked, 1383 * the context could get moved to another task. 1384 */ 1385 static struct perf_event_context * 1386 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1387 { 1388 struct perf_event_context *ctx; 1389 1390 retry: 1391 /* 1392 * One of the few rules of preemptible RCU is that one cannot do 1393 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1394 * part of the read side critical section was irqs-enabled -- see 1395 * rcu_read_unlock_special(). 1396 * 1397 * Since ctx->lock nests under rq->lock we must ensure the entire read 1398 * side critical section has interrupts disabled. 1399 */ 1400 local_irq_save(*flags); 1401 rcu_read_lock(); 1402 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1403 if (ctx) { 1404 /* 1405 * If this context is a clone of another, it might 1406 * get swapped for another underneath us by 1407 * perf_event_task_sched_out, though the 1408 * rcu_read_lock() protects us from any context 1409 * getting freed. Lock the context and check if it 1410 * got swapped before we could get the lock, and retry 1411 * if so. If we locked the right context, then it 1412 * can't get swapped on us any more. 1413 */ 1414 raw_spin_lock(&ctx->lock); 1415 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1416 raw_spin_unlock(&ctx->lock); 1417 rcu_read_unlock(); 1418 local_irq_restore(*flags); 1419 goto retry; 1420 } 1421 1422 if (ctx->task == TASK_TOMBSTONE || 1423 !refcount_inc_not_zero(&ctx->refcount)) { 1424 raw_spin_unlock(&ctx->lock); 1425 ctx = NULL; 1426 } else { 1427 WARN_ON_ONCE(ctx->task != task); 1428 } 1429 } 1430 rcu_read_unlock(); 1431 if (!ctx) 1432 local_irq_restore(*flags); 1433 return ctx; 1434 } 1435 1436 /* 1437 * Get the context for a task and increment its pin_count so it 1438 * can't get swapped to another task. This also increments its 1439 * reference count so that the context can't get freed. 1440 */ 1441 static struct perf_event_context * 1442 perf_pin_task_context(struct task_struct *task, int ctxn) 1443 { 1444 struct perf_event_context *ctx; 1445 unsigned long flags; 1446 1447 ctx = perf_lock_task_context(task, ctxn, &flags); 1448 if (ctx) { 1449 ++ctx->pin_count; 1450 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1451 } 1452 return ctx; 1453 } 1454 1455 static void perf_unpin_context(struct perf_event_context *ctx) 1456 { 1457 unsigned long flags; 1458 1459 raw_spin_lock_irqsave(&ctx->lock, flags); 1460 --ctx->pin_count; 1461 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1462 } 1463 1464 /* 1465 * Update the record of the current time in a context. 1466 */ 1467 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1468 { 1469 u64 now = perf_clock(); 1470 1471 if (adv) 1472 ctx->time += now - ctx->timestamp; 1473 ctx->timestamp = now; 1474 1475 /* 1476 * The above: time' = time + (now - timestamp), can be re-arranged 1477 * into: time` = now + (time - timestamp), which gives a single value 1478 * offset to compute future time without locks on. 1479 * 1480 * See perf_event_time_now(), which can be used from NMI context where 1481 * it's (obviously) not possible to acquire ctx->lock in order to read 1482 * both the above values in a consistent manner. 1483 */ 1484 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1485 } 1486 1487 static void update_context_time(struct perf_event_context *ctx) 1488 { 1489 __update_context_time(ctx, true); 1490 } 1491 1492 static u64 perf_event_time(struct perf_event *event) 1493 { 1494 struct perf_event_context *ctx = event->ctx; 1495 1496 if (unlikely(!ctx)) 1497 return 0; 1498 1499 if (is_cgroup_event(event)) 1500 return perf_cgroup_event_time(event); 1501 1502 return ctx->time; 1503 } 1504 1505 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1506 { 1507 struct perf_event_context *ctx = event->ctx; 1508 1509 if (unlikely(!ctx)) 1510 return 0; 1511 1512 if (is_cgroup_event(event)) 1513 return perf_cgroup_event_time_now(event, now); 1514 1515 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1516 return ctx->time; 1517 1518 now += READ_ONCE(ctx->timeoffset); 1519 return now; 1520 } 1521 1522 static enum event_type_t get_event_type(struct perf_event *event) 1523 { 1524 struct perf_event_context *ctx = event->ctx; 1525 enum event_type_t event_type; 1526 1527 lockdep_assert_held(&ctx->lock); 1528 1529 /* 1530 * It's 'group type', really, because if our group leader is 1531 * pinned, so are we. 1532 */ 1533 if (event->group_leader != event) 1534 event = event->group_leader; 1535 1536 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1537 if (!ctx->task) 1538 event_type |= EVENT_CPU; 1539 1540 return event_type; 1541 } 1542 1543 /* 1544 * Helper function to initialize event group nodes. 1545 */ 1546 static void init_event_group(struct perf_event *event) 1547 { 1548 RB_CLEAR_NODE(&event->group_node); 1549 event->group_index = 0; 1550 } 1551 1552 /* 1553 * Extract pinned or flexible groups from the context 1554 * based on event attrs bits. 1555 */ 1556 static struct perf_event_groups * 1557 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1558 { 1559 if (event->attr.pinned) 1560 return &ctx->pinned_groups; 1561 else 1562 return &ctx->flexible_groups; 1563 } 1564 1565 /* 1566 * Helper function to initializes perf_event_group trees. 1567 */ 1568 static void perf_event_groups_init(struct perf_event_groups *groups) 1569 { 1570 groups->tree = RB_ROOT; 1571 groups->index = 0; 1572 } 1573 1574 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1575 { 1576 struct cgroup *cgroup = NULL; 1577 1578 #ifdef CONFIG_CGROUP_PERF 1579 if (event->cgrp) 1580 cgroup = event->cgrp->css.cgroup; 1581 #endif 1582 1583 return cgroup; 1584 } 1585 1586 /* 1587 * Compare function for event groups; 1588 * 1589 * Implements complex key that first sorts by CPU and then by virtual index 1590 * which provides ordering when rotating groups for the same CPU. 1591 */ 1592 static __always_inline int 1593 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup, 1594 const u64 left_group_index, const struct perf_event *right) 1595 { 1596 if (left_cpu < right->cpu) 1597 return -1; 1598 if (left_cpu > right->cpu) 1599 return 1; 1600 1601 #ifdef CONFIG_CGROUP_PERF 1602 { 1603 const struct cgroup *right_cgroup = event_cgroup(right); 1604 1605 if (left_cgroup != right_cgroup) { 1606 if (!left_cgroup) { 1607 /* 1608 * Left has no cgroup but right does, no 1609 * cgroups come first. 1610 */ 1611 return -1; 1612 } 1613 if (!right_cgroup) { 1614 /* 1615 * Right has no cgroup but left does, no 1616 * cgroups come first. 1617 */ 1618 return 1; 1619 } 1620 /* Two dissimilar cgroups, order by id. */ 1621 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1622 return -1; 1623 1624 return 1; 1625 } 1626 } 1627 #endif 1628 1629 if (left_group_index < right->group_index) 1630 return -1; 1631 if (left_group_index > right->group_index) 1632 return 1; 1633 1634 return 0; 1635 } 1636 1637 #define __node_2_pe(node) \ 1638 rb_entry((node), struct perf_event, group_node) 1639 1640 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1641 { 1642 struct perf_event *e = __node_2_pe(a); 1643 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index, 1644 __node_2_pe(b)) < 0; 1645 } 1646 1647 struct __group_key { 1648 int cpu; 1649 struct cgroup *cgroup; 1650 }; 1651 1652 static inline int __group_cmp(const void *key, const struct rb_node *node) 1653 { 1654 const struct __group_key *a = key; 1655 const struct perf_event *b = __node_2_pe(node); 1656 1657 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */ 1658 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b); 1659 } 1660 1661 /* 1662 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1663 * key (see perf_event_groups_less). This places it last inside the CPU 1664 * subtree. 1665 */ 1666 static void 1667 perf_event_groups_insert(struct perf_event_groups *groups, 1668 struct perf_event *event) 1669 { 1670 event->group_index = ++groups->index; 1671 1672 rb_add(&event->group_node, &groups->tree, __group_less); 1673 } 1674 1675 /* 1676 * Helper function to insert event into the pinned or flexible groups. 1677 */ 1678 static void 1679 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1680 { 1681 struct perf_event_groups *groups; 1682 1683 groups = get_event_groups(event, ctx); 1684 perf_event_groups_insert(groups, event); 1685 } 1686 1687 /* 1688 * Delete a group from a tree. 1689 */ 1690 static void 1691 perf_event_groups_delete(struct perf_event_groups *groups, 1692 struct perf_event *event) 1693 { 1694 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1695 RB_EMPTY_ROOT(&groups->tree)); 1696 1697 rb_erase(&event->group_node, &groups->tree); 1698 init_event_group(event); 1699 } 1700 1701 /* 1702 * Helper function to delete event from its groups. 1703 */ 1704 static void 1705 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1706 { 1707 struct perf_event_groups *groups; 1708 1709 groups = get_event_groups(event, ctx); 1710 perf_event_groups_delete(groups, event); 1711 } 1712 1713 /* 1714 * Get the leftmost event in the cpu/cgroup subtree. 1715 */ 1716 static struct perf_event * 1717 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1718 struct cgroup *cgrp) 1719 { 1720 struct __group_key key = { 1721 .cpu = cpu, 1722 .cgroup = cgrp, 1723 }; 1724 struct rb_node *node; 1725 1726 node = rb_find_first(&key, &groups->tree, __group_cmp); 1727 if (node) 1728 return __node_2_pe(node); 1729 1730 return NULL; 1731 } 1732 1733 /* 1734 * Like rb_entry_next_safe() for the @cpu subtree. 1735 */ 1736 static struct perf_event * 1737 perf_event_groups_next(struct perf_event *event) 1738 { 1739 struct __group_key key = { 1740 .cpu = event->cpu, 1741 .cgroup = event_cgroup(event), 1742 }; 1743 struct rb_node *next; 1744 1745 next = rb_next_match(&key, &event->group_node, __group_cmp); 1746 if (next) 1747 return __node_2_pe(next); 1748 1749 return NULL; 1750 } 1751 1752 /* 1753 * Iterate through the whole groups tree. 1754 */ 1755 #define perf_event_groups_for_each(event, groups) \ 1756 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1757 typeof(*event), group_node); event; \ 1758 event = rb_entry_safe(rb_next(&event->group_node), \ 1759 typeof(*event), group_node)) 1760 1761 /* 1762 * Add an event from the lists for its context. 1763 * Must be called with ctx->mutex and ctx->lock held. 1764 */ 1765 static void 1766 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1767 { 1768 lockdep_assert_held(&ctx->lock); 1769 1770 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1771 event->attach_state |= PERF_ATTACH_CONTEXT; 1772 1773 event->tstamp = perf_event_time(event); 1774 1775 /* 1776 * If we're a stand alone event or group leader, we go to the context 1777 * list, group events are kept attached to the group so that 1778 * perf_group_detach can, at all times, locate all siblings. 1779 */ 1780 if (event->group_leader == event) { 1781 event->group_caps = event->event_caps; 1782 add_event_to_groups(event, ctx); 1783 } 1784 1785 list_add_rcu(&event->event_entry, &ctx->event_list); 1786 ctx->nr_events++; 1787 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1788 ctx->nr_user++; 1789 if (event->attr.inherit_stat) 1790 ctx->nr_stat++; 1791 1792 if (event->state > PERF_EVENT_STATE_OFF) 1793 perf_cgroup_event_enable(event, ctx); 1794 1795 ctx->generation++; 1796 } 1797 1798 /* 1799 * Initialize event state based on the perf_event_attr::disabled. 1800 */ 1801 static inline void perf_event__state_init(struct perf_event *event) 1802 { 1803 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1804 PERF_EVENT_STATE_INACTIVE; 1805 } 1806 1807 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1808 { 1809 int entry = sizeof(u64); /* value */ 1810 int size = 0; 1811 int nr = 1; 1812 1813 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1814 size += sizeof(u64); 1815 1816 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1817 size += sizeof(u64); 1818 1819 if (event->attr.read_format & PERF_FORMAT_ID) 1820 entry += sizeof(u64); 1821 1822 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1823 nr += nr_siblings; 1824 size += sizeof(u64); 1825 } 1826 1827 size += entry * nr; 1828 event->read_size = size; 1829 } 1830 1831 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1832 { 1833 struct perf_sample_data *data; 1834 u16 size = 0; 1835 1836 if (sample_type & PERF_SAMPLE_IP) 1837 size += sizeof(data->ip); 1838 1839 if (sample_type & PERF_SAMPLE_ADDR) 1840 size += sizeof(data->addr); 1841 1842 if (sample_type & PERF_SAMPLE_PERIOD) 1843 size += sizeof(data->period); 1844 1845 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1846 size += sizeof(data->weight.full); 1847 1848 if (sample_type & PERF_SAMPLE_READ) 1849 size += event->read_size; 1850 1851 if (sample_type & PERF_SAMPLE_DATA_SRC) 1852 size += sizeof(data->data_src.val); 1853 1854 if (sample_type & PERF_SAMPLE_TRANSACTION) 1855 size += sizeof(data->txn); 1856 1857 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1858 size += sizeof(data->phys_addr); 1859 1860 if (sample_type & PERF_SAMPLE_CGROUP) 1861 size += sizeof(data->cgroup); 1862 1863 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1864 size += sizeof(data->data_page_size); 1865 1866 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1867 size += sizeof(data->code_page_size); 1868 1869 event->header_size = size; 1870 } 1871 1872 /* 1873 * Called at perf_event creation and when events are attached/detached from a 1874 * group. 1875 */ 1876 static void perf_event__header_size(struct perf_event *event) 1877 { 1878 __perf_event_read_size(event, 1879 event->group_leader->nr_siblings); 1880 __perf_event_header_size(event, event->attr.sample_type); 1881 } 1882 1883 static void perf_event__id_header_size(struct perf_event *event) 1884 { 1885 struct perf_sample_data *data; 1886 u64 sample_type = event->attr.sample_type; 1887 u16 size = 0; 1888 1889 if (sample_type & PERF_SAMPLE_TID) 1890 size += sizeof(data->tid_entry); 1891 1892 if (sample_type & PERF_SAMPLE_TIME) 1893 size += sizeof(data->time); 1894 1895 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1896 size += sizeof(data->id); 1897 1898 if (sample_type & PERF_SAMPLE_ID) 1899 size += sizeof(data->id); 1900 1901 if (sample_type & PERF_SAMPLE_STREAM_ID) 1902 size += sizeof(data->stream_id); 1903 1904 if (sample_type & PERF_SAMPLE_CPU) 1905 size += sizeof(data->cpu_entry); 1906 1907 event->id_header_size = size; 1908 } 1909 1910 static bool perf_event_validate_size(struct perf_event *event) 1911 { 1912 /* 1913 * The values computed here will be over-written when we actually 1914 * attach the event. 1915 */ 1916 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1917 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1918 perf_event__id_header_size(event); 1919 1920 /* 1921 * Sum the lot; should not exceed the 64k limit we have on records. 1922 * Conservative limit to allow for callchains and other variable fields. 1923 */ 1924 if (event->read_size + event->header_size + 1925 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1926 return false; 1927 1928 return true; 1929 } 1930 1931 static void perf_group_attach(struct perf_event *event) 1932 { 1933 struct perf_event *group_leader = event->group_leader, *pos; 1934 1935 lockdep_assert_held(&event->ctx->lock); 1936 1937 /* 1938 * We can have double attach due to group movement in perf_event_open. 1939 */ 1940 if (event->attach_state & PERF_ATTACH_GROUP) 1941 return; 1942 1943 event->attach_state |= PERF_ATTACH_GROUP; 1944 1945 if (group_leader == event) 1946 return; 1947 1948 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1949 1950 group_leader->group_caps &= event->event_caps; 1951 1952 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1953 group_leader->nr_siblings++; 1954 1955 perf_event__header_size(group_leader); 1956 1957 for_each_sibling_event(pos, group_leader) 1958 perf_event__header_size(pos); 1959 } 1960 1961 /* 1962 * Remove an event from the lists for its context. 1963 * Must be called with ctx->mutex and ctx->lock held. 1964 */ 1965 static void 1966 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1967 { 1968 WARN_ON_ONCE(event->ctx != ctx); 1969 lockdep_assert_held(&ctx->lock); 1970 1971 /* 1972 * We can have double detach due to exit/hot-unplug + close. 1973 */ 1974 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1975 return; 1976 1977 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1978 1979 ctx->nr_events--; 1980 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1981 ctx->nr_user--; 1982 if (event->attr.inherit_stat) 1983 ctx->nr_stat--; 1984 1985 list_del_rcu(&event->event_entry); 1986 1987 if (event->group_leader == event) 1988 del_event_from_groups(event, ctx); 1989 1990 /* 1991 * If event was in error state, then keep it 1992 * that way, otherwise bogus counts will be 1993 * returned on read(). The only way to get out 1994 * of error state is by explicit re-enabling 1995 * of the event 1996 */ 1997 if (event->state > PERF_EVENT_STATE_OFF) { 1998 perf_cgroup_event_disable(event, ctx); 1999 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2000 } 2001 2002 ctx->generation++; 2003 } 2004 2005 static int 2006 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2007 { 2008 if (!has_aux(aux_event)) 2009 return 0; 2010 2011 if (!event->pmu->aux_output_match) 2012 return 0; 2013 2014 return event->pmu->aux_output_match(aux_event); 2015 } 2016 2017 static void put_event(struct perf_event *event); 2018 static void event_sched_out(struct perf_event *event, 2019 struct perf_cpu_context *cpuctx, 2020 struct perf_event_context *ctx); 2021 2022 static void perf_put_aux_event(struct perf_event *event) 2023 { 2024 struct perf_event_context *ctx = event->ctx; 2025 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2026 struct perf_event *iter; 2027 2028 /* 2029 * If event uses aux_event tear down the link 2030 */ 2031 if (event->aux_event) { 2032 iter = event->aux_event; 2033 event->aux_event = NULL; 2034 put_event(iter); 2035 return; 2036 } 2037 2038 /* 2039 * If the event is an aux_event, tear down all links to 2040 * it from other events. 2041 */ 2042 for_each_sibling_event(iter, event->group_leader) { 2043 if (iter->aux_event != event) 2044 continue; 2045 2046 iter->aux_event = NULL; 2047 put_event(event); 2048 2049 /* 2050 * If it's ACTIVE, schedule it out and put it into ERROR 2051 * state so that we don't try to schedule it again. Note 2052 * that perf_event_enable() will clear the ERROR status. 2053 */ 2054 event_sched_out(iter, cpuctx, ctx); 2055 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2056 } 2057 } 2058 2059 static bool perf_need_aux_event(struct perf_event *event) 2060 { 2061 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2062 } 2063 2064 static int perf_get_aux_event(struct perf_event *event, 2065 struct perf_event *group_leader) 2066 { 2067 /* 2068 * Our group leader must be an aux event if we want to be 2069 * an aux_output. This way, the aux event will precede its 2070 * aux_output events in the group, and therefore will always 2071 * schedule first. 2072 */ 2073 if (!group_leader) 2074 return 0; 2075 2076 /* 2077 * aux_output and aux_sample_size are mutually exclusive. 2078 */ 2079 if (event->attr.aux_output && event->attr.aux_sample_size) 2080 return 0; 2081 2082 if (event->attr.aux_output && 2083 !perf_aux_output_match(event, group_leader)) 2084 return 0; 2085 2086 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2087 return 0; 2088 2089 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2090 return 0; 2091 2092 /* 2093 * Link aux_outputs to their aux event; this is undone in 2094 * perf_group_detach() by perf_put_aux_event(). When the 2095 * group in torn down, the aux_output events loose their 2096 * link to the aux_event and can't schedule any more. 2097 */ 2098 event->aux_event = group_leader; 2099 2100 return 1; 2101 } 2102 2103 static inline struct list_head *get_event_list(struct perf_event *event) 2104 { 2105 struct perf_event_context *ctx = event->ctx; 2106 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2107 } 2108 2109 /* 2110 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2111 * cannot exist on their own, schedule them out and move them into the ERROR 2112 * state. Also see _perf_event_enable(), it will not be able to recover 2113 * this ERROR state. 2114 */ 2115 static inline void perf_remove_sibling_event(struct perf_event *event) 2116 { 2117 struct perf_event_context *ctx = event->ctx; 2118 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2119 2120 event_sched_out(event, cpuctx, ctx); 2121 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2122 } 2123 2124 static void perf_group_detach(struct perf_event *event) 2125 { 2126 struct perf_event *leader = event->group_leader; 2127 struct perf_event *sibling, *tmp; 2128 struct perf_event_context *ctx = event->ctx; 2129 2130 lockdep_assert_held(&ctx->lock); 2131 2132 /* 2133 * We can have double detach due to exit/hot-unplug + close. 2134 */ 2135 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2136 return; 2137 2138 event->attach_state &= ~PERF_ATTACH_GROUP; 2139 2140 perf_put_aux_event(event); 2141 2142 /* 2143 * If this is a sibling, remove it from its group. 2144 */ 2145 if (leader != event) { 2146 list_del_init(&event->sibling_list); 2147 event->group_leader->nr_siblings--; 2148 goto out; 2149 } 2150 2151 /* 2152 * If this was a group event with sibling events then 2153 * upgrade the siblings to singleton events by adding them 2154 * to whatever list we are on. 2155 */ 2156 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2157 2158 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2159 perf_remove_sibling_event(sibling); 2160 2161 sibling->group_leader = sibling; 2162 list_del_init(&sibling->sibling_list); 2163 2164 /* Inherit group flags from the previous leader */ 2165 sibling->group_caps = event->group_caps; 2166 2167 if (!RB_EMPTY_NODE(&event->group_node)) { 2168 add_event_to_groups(sibling, event->ctx); 2169 2170 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2171 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2172 } 2173 2174 WARN_ON_ONCE(sibling->ctx != event->ctx); 2175 } 2176 2177 out: 2178 for_each_sibling_event(tmp, leader) 2179 perf_event__header_size(tmp); 2180 2181 perf_event__header_size(leader); 2182 } 2183 2184 static void sync_child_event(struct perf_event *child_event); 2185 2186 static void perf_child_detach(struct perf_event *event) 2187 { 2188 struct perf_event *parent_event = event->parent; 2189 2190 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2191 return; 2192 2193 event->attach_state &= ~PERF_ATTACH_CHILD; 2194 2195 if (WARN_ON_ONCE(!parent_event)) 2196 return; 2197 2198 lockdep_assert_held(&parent_event->child_mutex); 2199 2200 sync_child_event(event); 2201 list_del_init(&event->child_list); 2202 } 2203 2204 static bool is_orphaned_event(struct perf_event *event) 2205 { 2206 return event->state == PERF_EVENT_STATE_DEAD; 2207 } 2208 2209 static inline int __pmu_filter_match(struct perf_event *event) 2210 { 2211 struct pmu *pmu = event->pmu; 2212 return pmu->filter_match ? pmu->filter_match(event) : 1; 2213 } 2214 2215 /* 2216 * Check whether we should attempt to schedule an event group based on 2217 * PMU-specific filtering. An event group can consist of HW and SW events, 2218 * potentially with a SW leader, so we must check all the filters, to 2219 * determine whether a group is schedulable: 2220 */ 2221 static inline int pmu_filter_match(struct perf_event *event) 2222 { 2223 struct perf_event *sibling; 2224 2225 if (!__pmu_filter_match(event)) 2226 return 0; 2227 2228 for_each_sibling_event(sibling, event) { 2229 if (!__pmu_filter_match(sibling)) 2230 return 0; 2231 } 2232 2233 return 1; 2234 } 2235 2236 static inline int 2237 event_filter_match(struct perf_event *event) 2238 { 2239 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2240 perf_cgroup_match(event) && pmu_filter_match(event); 2241 } 2242 2243 static void 2244 event_sched_out(struct perf_event *event, 2245 struct perf_cpu_context *cpuctx, 2246 struct perf_event_context *ctx) 2247 { 2248 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2249 2250 WARN_ON_ONCE(event->ctx != ctx); 2251 lockdep_assert_held(&ctx->lock); 2252 2253 if (event->state != PERF_EVENT_STATE_ACTIVE) 2254 return; 2255 2256 /* 2257 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2258 * we can schedule events _OUT_ individually through things like 2259 * __perf_remove_from_context(). 2260 */ 2261 list_del_init(&event->active_list); 2262 2263 perf_pmu_disable(event->pmu); 2264 2265 event->pmu->del(event, 0); 2266 event->oncpu = -1; 2267 2268 if (READ_ONCE(event->pending_disable) >= 0) { 2269 WRITE_ONCE(event->pending_disable, -1); 2270 perf_cgroup_event_disable(event, ctx); 2271 state = PERF_EVENT_STATE_OFF; 2272 } 2273 perf_event_set_state(event, state); 2274 2275 if (!is_software_event(event)) 2276 cpuctx->active_oncpu--; 2277 if (!--ctx->nr_active) 2278 perf_event_ctx_deactivate(ctx); 2279 if (event->attr.freq && event->attr.sample_freq) 2280 ctx->nr_freq--; 2281 if (event->attr.exclusive || !cpuctx->active_oncpu) 2282 cpuctx->exclusive = 0; 2283 2284 perf_pmu_enable(event->pmu); 2285 } 2286 2287 static void 2288 group_sched_out(struct perf_event *group_event, 2289 struct perf_cpu_context *cpuctx, 2290 struct perf_event_context *ctx) 2291 { 2292 struct perf_event *event; 2293 2294 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2295 return; 2296 2297 perf_pmu_disable(ctx->pmu); 2298 2299 event_sched_out(group_event, cpuctx, ctx); 2300 2301 /* 2302 * Schedule out siblings (if any): 2303 */ 2304 for_each_sibling_event(event, group_event) 2305 event_sched_out(event, cpuctx, ctx); 2306 2307 perf_pmu_enable(ctx->pmu); 2308 } 2309 2310 #define DETACH_GROUP 0x01UL 2311 #define DETACH_CHILD 0x02UL 2312 2313 /* 2314 * Cross CPU call to remove a performance event 2315 * 2316 * We disable the event on the hardware level first. After that we 2317 * remove it from the context list. 2318 */ 2319 static void 2320 __perf_remove_from_context(struct perf_event *event, 2321 struct perf_cpu_context *cpuctx, 2322 struct perf_event_context *ctx, 2323 void *info) 2324 { 2325 unsigned long flags = (unsigned long)info; 2326 2327 if (ctx->is_active & EVENT_TIME) { 2328 update_context_time(ctx); 2329 update_cgrp_time_from_cpuctx(cpuctx, false); 2330 } 2331 2332 event_sched_out(event, cpuctx, ctx); 2333 if (flags & DETACH_GROUP) 2334 perf_group_detach(event); 2335 if (flags & DETACH_CHILD) 2336 perf_child_detach(event); 2337 list_del_event(event, ctx); 2338 2339 if (!ctx->nr_events && ctx->is_active) { 2340 if (ctx == &cpuctx->ctx) 2341 update_cgrp_time_from_cpuctx(cpuctx, true); 2342 2343 ctx->is_active = 0; 2344 ctx->rotate_necessary = 0; 2345 if (ctx->task) { 2346 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2347 cpuctx->task_ctx = NULL; 2348 } 2349 } 2350 } 2351 2352 /* 2353 * Remove the event from a task's (or a CPU's) list of events. 2354 * 2355 * If event->ctx is a cloned context, callers must make sure that 2356 * every task struct that event->ctx->task could possibly point to 2357 * remains valid. This is OK when called from perf_release since 2358 * that only calls us on the top-level context, which can't be a clone. 2359 * When called from perf_event_exit_task, it's OK because the 2360 * context has been detached from its task. 2361 */ 2362 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2363 { 2364 struct perf_event_context *ctx = event->ctx; 2365 2366 lockdep_assert_held(&ctx->mutex); 2367 2368 /* 2369 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2370 * to work in the face of TASK_TOMBSTONE, unlike every other 2371 * event_function_call() user. 2372 */ 2373 raw_spin_lock_irq(&ctx->lock); 2374 /* 2375 * Cgroup events are per-cpu events, and must IPI because of 2376 * cgrp_cpuctx_list. 2377 */ 2378 if (!ctx->is_active && !is_cgroup_event(event)) { 2379 __perf_remove_from_context(event, __get_cpu_context(ctx), 2380 ctx, (void *)flags); 2381 raw_spin_unlock_irq(&ctx->lock); 2382 return; 2383 } 2384 raw_spin_unlock_irq(&ctx->lock); 2385 2386 event_function_call(event, __perf_remove_from_context, (void *)flags); 2387 } 2388 2389 /* 2390 * Cross CPU call to disable a performance event 2391 */ 2392 static void __perf_event_disable(struct perf_event *event, 2393 struct perf_cpu_context *cpuctx, 2394 struct perf_event_context *ctx, 2395 void *info) 2396 { 2397 if (event->state < PERF_EVENT_STATE_INACTIVE) 2398 return; 2399 2400 if (ctx->is_active & EVENT_TIME) { 2401 update_context_time(ctx); 2402 update_cgrp_time_from_event(event); 2403 } 2404 2405 if (event == event->group_leader) 2406 group_sched_out(event, cpuctx, ctx); 2407 else 2408 event_sched_out(event, cpuctx, ctx); 2409 2410 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2411 perf_cgroup_event_disable(event, ctx); 2412 } 2413 2414 /* 2415 * Disable an event. 2416 * 2417 * If event->ctx is a cloned context, callers must make sure that 2418 * every task struct that event->ctx->task could possibly point to 2419 * remains valid. This condition is satisfied when called through 2420 * perf_event_for_each_child or perf_event_for_each because they 2421 * hold the top-level event's child_mutex, so any descendant that 2422 * goes to exit will block in perf_event_exit_event(). 2423 * 2424 * When called from perf_pending_event it's OK because event->ctx 2425 * is the current context on this CPU and preemption is disabled, 2426 * hence we can't get into perf_event_task_sched_out for this context. 2427 */ 2428 static void _perf_event_disable(struct perf_event *event) 2429 { 2430 struct perf_event_context *ctx = event->ctx; 2431 2432 raw_spin_lock_irq(&ctx->lock); 2433 if (event->state <= PERF_EVENT_STATE_OFF) { 2434 raw_spin_unlock_irq(&ctx->lock); 2435 return; 2436 } 2437 raw_spin_unlock_irq(&ctx->lock); 2438 2439 event_function_call(event, __perf_event_disable, NULL); 2440 } 2441 2442 void perf_event_disable_local(struct perf_event *event) 2443 { 2444 event_function_local(event, __perf_event_disable, NULL); 2445 } 2446 2447 /* 2448 * Strictly speaking kernel users cannot create groups and therefore this 2449 * interface does not need the perf_event_ctx_lock() magic. 2450 */ 2451 void perf_event_disable(struct perf_event *event) 2452 { 2453 struct perf_event_context *ctx; 2454 2455 ctx = perf_event_ctx_lock(event); 2456 _perf_event_disable(event); 2457 perf_event_ctx_unlock(event, ctx); 2458 } 2459 EXPORT_SYMBOL_GPL(perf_event_disable); 2460 2461 void perf_event_disable_inatomic(struct perf_event *event) 2462 { 2463 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2464 /* can fail, see perf_pending_event_disable() */ 2465 irq_work_queue(&event->pending); 2466 } 2467 2468 #define MAX_INTERRUPTS (~0ULL) 2469 2470 static void perf_log_throttle(struct perf_event *event, int enable); 2471 static void perf_log_itrace_start(struct perf_event *event); 2472 2473 static int 2474 event_sched_in(struct perf_event *event, 2475 struct perf_cpu_context *cpuctx, 2476 struct perf_event_context *ctx) 2477 { 2478 int ret = 0; 2479 2480 WARN_ON_ONCE(event->ctx != ctx); 2481 2482 lockdep_assert_held(&ctx->lock); 2483 2484 if (event->state <= PERF_EVENT_STATE_OFF) 2485 return 0; 2486 2487 WRITE_ONCE(event->oncpu, smp_processor_id()); 2488 /* 2489 * Order event::oncpu write to happen before the ACTIVE state is 2490 * visible. This allows perf_event_{stop,read}() to observe the correct 2491 * ->oncpu if it sees ACTIVE. 2492 */ 2493 smp_wmb(); 2494 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2495 2496 /* 2497 * Unthrottle events, since we scheduled we might have missed several 2498 * ticks already, also for a heavily scheduling task there is little 2499 * guarantee it'll get a tick in a timely manner. 2500 */ 2501 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2502 perf_log_throttle(event, 1); 2503 event->hw.interrupts = 0; 2504 } 2505 2506 perf_pmu_disable(event->pmu); 2507 2508 perf_log_itrace_start(event); 2509 2510 if (event->pmu->add(event, PERF_EF_START)) { 2511 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2512 event->oncpu = -1; 2513 ret = -EAGAIN; 2514 goto out; 2515 } 2516 2517 if (!is_software_event(event)) 2518 cpuctx->active_oncpu++; 2519 if (!ctx->nr_active++) 2520 perf_event_ctx_activate(ctx); 2521 if (event->attr.freq && event->attr.sample_freq) 2522 ctx->nr_freq++; 2523 2524 if (event->attr.exclusive) 2525 cpuctx->exclusive = 1; 2526 2527 out: 2528 perf_pmu_enable(event->pmu); 2529 2530 return ret; 2531 } 2532 2533 static int 2534 group_sched_in(struct perf_event *group_event, 2535 struct perf_cpu_context *cpuctx, 2536 struct perf_event_context *ctx) 2537 { 2538 struct perf_event *event, *partial_group = NULL; 2539 struct pmu *pmu = ctx->pmu; 2540 2541 if (group_event->state == PERF_EVENT_STATE_OFF) 2542 return 0; 2543 2544 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2545 2546 if (event_sched_in(group_event, cpuctx, ctx)) 2547 goto error; 2548 2549 /* 2550 * Schedule in siblings as one group (if any): 2551 */ 2552 for_each_sibling_event(event, group_event) { 2553 if (event_sched_in(event, cpuctx, ctx)) { 2554 partial_group = event; 2555 goto group_error; 2556 } 2557 } 2558 2559 if (!pmu->commit_txn(pmu)) 2560 return 0; 2561 2562 group_error: 2563 /* 2564 * Groups can be scheduled in as one unit only, so undo any 2565 * partial group before returning: 2566 * The events up to the failed event are scheduled out normally. 2567 */ 2568 for_each_sibling_event(event, group_event) { 2569 if (event == partial_group) 2570 break; 2571 2572 event_sched_out(event, cpuctx, ctx); 2573 } 2574 event_sched_out(group_event, cpuctx, ctx); 2575 2576 error: 2577 pmu->cancel_txn(pmu); 2578 return -EAGAIN; 2579 } 2580 2581 /* 2582 * Work out whether we can put this event group on the CPU now. 2583 */ 2584 static int group_can_go_on(struct perf_event *event, 2585 struct perf_cpu_context *cpuctx, 2586 int can_add_hw) 2587 { 2588 /* 2589 * Groups consisting entirely of software events can always go on. 2590 */ 2591 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2592 return 1; 2593 /* 2594 * If an exclusive group is already on, no other hardware 2595 * events can go on. 2596 */ 2597 if (cpuctx->exclusive) 2598 return 0; 2599 /* 2600 * If this group is exclusive and there are already 2601 * events on the CPU, it can't go on. 2602 */ 2603 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2604 return 0; 2605 /* 2606 * Otherwise, try to add it if all previous groups were able 2607 * to go on. 2608 */ 2609 return can_add_hw; 2610 } 2611 2612 static void add_event_to_ctx(struct perf_event *event, 2613 struct perf_event_context *ctx) 2614 { 2615 list_add_event(event, ctx); 2616 perf_group_attach(event); 2617 } 2618 2619 static void ctx_sched_out(struct perf_event_context *ctx, 2620 struct perf_cpu_context *cpuctx, 2621 enum event_type_t event_type); 2622 static void 2623 ctx_sched_in(struct perf_event_context *ctx, 2624 struct perf_cpu_context *cpuctx, 2625 enum event_type_t event_type); 2626 2627 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2628 struct perf_event_context *ctx, 2629 enum event_type_t event_type) 2630 { 2631 if (!cpuctx->task_ctx) 2632 return; 2633 2634 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2635 return; 2636 2637 ctx_sched_out(ctx, cpuctx, event_type); 2638 } 2639 2640 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2641 struct perf_event_context *ctx) 2642 { 2643 cpu_ctx_sched_in(cpuctx, EVENT_PINNED); 2644 if (ctx) 2645 ctx_sched_in(ctx, cpuctx, EVENT_PINNED); 2646 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE); 2647 if (ctx) 2648 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE); 2649 } 2650 2651 /* 2652 * We want to maintain the following priority of scheduling: 2653 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2654 * - task pinned (EVENT_PINNED) 2655 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2656 * - task flexible (EVENT_FLEXIBLE). 2657 * 2658 * In order to avoid unscheduling and scheduling back in everything every 2659 * time an event is added, only do it for the groups of equal priority and 2660 * below. 2661 * 2662 * This can be called after a batch operation on task events, in which case 2663 * event_type is a bit mask of the types of events involved. For CPU events, 2664 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2665 */ 2666 static void ctx_resched(struct perf_cpu_context *cpuctx, 2667 struct perf_event_context *task_ctx, 2668 enum event_type_t event_type) 2669 { 2670 enum event_type_t ctx_event_type; 2671 bool cpu_event = !!(event_type & EVENT_CPU); 2672 2673 /* 2674 * If pinned groups are involved, flexible groups also need to be 2675 * scheduled out. 2676 */ 2677 if (event_type & EVENT_PINNED) 2678 event_type |= EVENT_FLEXIBLE; 2679 2680 ctx_event_type = event_type & EVENT_ALL; 2681 2682 perf_pmu_disable(cpuctx->ctx.pmu); 2683 if (task_ctx) 2684 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2685 2686 /* 2687 * Decide which cpu ctx groups to schedule out based on the types 2688 * of events that caused rescheduling: 2689 * - EVENT_CPU: schedule out corresponding groups; 2690 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2691 * - otherwise, do nothing more. 2692 */ 2693 if (cpu_event) 2694 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2695 else if (ctx_event_type & EVENT_PINNED) 2696 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2697 2698 perf_event_sched_in(cpuctx, task_ctx); 2699 perf_pmu_enable(cpuctx->ctx.pmu); 2700 } 2701 2702 void perf_pmu_resched(struct pmu *pmu) 2703 { 2704 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2705 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2706 2707 perf_ctx_lock(cpuctx, task_ctx); 2708 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2709 perf_ctx_unlock(cpuctx, task_ctx); 2710 } 2711 2712 /* 2713 * Cross CPU call to install and enable a performance event 2714 * 2715 * Very similar to remote_function() + event_function() but cannot assume that 2716 * things like ctx->is_active and cpuctx->task_ctx are set. 2717 */ 2718 static int __perf_install_in_context(void *info) 2719 { 2720 struct perf_event *event = info; 2721 struct perf_event_context *ctx = event->ctx; 2722 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2723 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2724 bool reprogram = true; 2725 int ret = 0; 2726 2727 raw_spin_lock(&cpuctx->ctx.lock); 2728 if (ctx->task) { 2729 raw_spin_lock(&ctx->lock); 2730 task_ctx = ctx; 2731 2732 reprogram = (ctx->task == current); 2733 2734 /* 2735 * If the task is running, it must be running on this CPU, 2736 * otherwise we cannot reprogram things. 2737 * 2738 * If its not running, we don't care, ctx->lock will 2739 * serialize against it becoming runnable. 2740 */ 2741 if (task_curr(ctx->task) && !reprogram) { 2742 ret = -ESRCH; 2743 goto unlock; 2744 } 2745 2746 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2747 } else if (task_ctx) { 2748 raw_spin_lock(&task_ctx->lock); 2749 } 2750 2751 #ifdef CONFIG_CGROUP_PERF 2752 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2753 /* 2754 * If the current cgroup doesn't match the event's 2755 * cgroup, we should not try to schedule it. 2756 */ 2757 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2758 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2759 event->cgrp->css.cgroup); 2760 } 2761 #endif 2762 2763 if (reprogram) { 2764 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2765 add_event_to_ctx(event, ctx); 2766 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2767 } else { 2768 add_event_to_ctx(event, ctx); 2769 } 2770 2771 unlock: 2772 perf_ctx_unlock(cpuctx, task_ctx); 2773 2774 return ret; 2775 } 2776 2777 static bool exclusive_event_installable(struct perf_event *event, 2778 struct perf_event_context *ctx); 2779 2780 /* 2781 * Attach a performance event to a context. 2782 * 2783 * Very similar to event_function_call, see comment there. 2784 */ 2785 static void 2786 perf_install_in_context(struct perf_event_context *ctx, 2787 struct perf_event *event, 2788 int cpu) 2789 { 2790 struct task_struct *task = READ_ONCE(ctx->task); 2791 2792 lockdep_assert_held(&ctx->mutex); 2793 2794 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2795 2796 if (event->cpu != -1) 2797 event->cpu = cpu; 2798 2799 /* 2800 * Ensures that if we can observe event->ctx, both the event and ctx 2801 * will be 'complete'. See perf_iterate_sb_cpu(). 2802 */ 2803 smp_store_release(&event->ctx, ctx); 2804 2805 /* 2806 * perf_event_attr::disabled events will not run and can be initialized 2807 * without IPI. Except when this is the first event for the context, in 2808 * that case we need the magic of the IPI to set ctx->is_active. 2809 * Similarly, cgroup events for the context also needs the IPI to 2810 * manipulate the cgrp_cpuctx_list. 2811 * 2812 * The IOC_ENABLE that is sure to follow the creation of a disabled 2813 * event will issue the IPI and reprogram the hardware. 2814 */ 2815 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2816 ctx->nr_events && !is_cgroup_event(event)) { 2817 raw_spin_lock_irq(&ctx->lock); 2818 if (ctx->task == TASK_TOMBSTONE) { 2819 raw_spin_unlock_irq(&ctx->lock); 2820 return; 2821 } 2822 add_event_to_ctx(event, ctx); 2823 raw_spin_unlock_irq(&ctx->lock); 2824 return; 2825 } 2826 2827 if (!task) { 2828 cpu_function_call(cpu, __perf_install_in_context, event); 2829 return; 2830 } 2831 2832 /* 2833 * Should not happen, we validate the ctx is still alive before calling. 2834 */ 2835 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2836 return; 2837 2838 /* 2839 * Installing events is tricky because we cannot rely on ctx->is_active 2840 * to be set in case this is the nr_events 0 -> 1 transition. 2841 * 2842 * Instead we use task_curr(), which tells us if the task is running. 2843 * However, since we use task_curr() outside of rq::lock, we can race 2844 * against the actual state. This means the result can be wrong. 2845 * 2846 * If we get a false positive, we retry, this is harmless. 2847 * 2848 * If we get a false negative, things are complicated. If we are after 2849 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2850 * value must be correct. If we're before, it doesn't matter since 2851 * perf_event_context_sched_in() will program the counter. 2852 * 2853 * However, this hinges on the remote context switch having observed 2854 * our task->perf_event_ctxp[] store, such that it will in fact take 2855 * ctx::lock in perf_event_context_sched_in(). 2856 * 2857 * We do this by task_function_call(), if the IPI fails to hit the task 2858 * we know any future context switch of task must see the 2859 * perf_event_ctpx[] store. 2860 */ 2861 2862 /* 2863 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2864 * task_cpu() load, such that if the IPI then does not find the task 2865 * running, a future context switch of that task must observe the 2866 * store. 2867 */ 2868 smp_mb(); 2869 again: 2870 if (!task_function_call(task, __perf_install_in_context, event)) 2871 return; 2872 2873 raw_spin_lock_irq(&ctx->lock); 2874 task = ctx->task; 2875 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2876 /* 2877 * Cannot happen because we already checked above (which also 2878 * cannot happen), and we hold ctx->mutex, which serializes us 2879 * against perf_event_exit_task_context(). 2880 */ 2881 raw_spin_unlock_irq(&ctx->lock); 2882 return; 2883 } 2884 /* 2885 * If the task is not running, ctx->lock will avoid it becoming so, 2886 * thus we can safely install the event. 2887 */ 2888 if (task_curr(task)) { 2889 raw_spin_unlock_irq(&ctx->lock); 2890 goto again; 2891 } 2892 add_event_to_ctx(event, ctx); 2893 raw_spin_unlock_irq(&ctx->lock); 2894 } 2895 2896 /* 2897 * Cross CPU call to enable a performance event 2898 */ 2899 static void __perf_event_enable(struct perf_event *event, 2900 struct perf_cpu_context *cpuctx, 2901 struct perf_event_context *ctx, 2902 void *info) 2903 { 2904 struct perf_event *leader = event->group_leader; 2905 struct perf_event_context *task_ctx; 2906 2907 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2908 event->state <= PERF_EVENT_STATE_ERROR) 2909 return; 2910 2911 if (ctx->is_active) 2912 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2913 2914 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2915 perf_cgroup_event_enable(event, ctx); 2916 2917 if (!ctx->is_active) 2918 return; 2919 2920 if (!event_filter_match(event)) { 2921 ctx_sched_in(ctx, cpuctx, EVENT_TIME); 2922 return; 2923 } 2924 2925 /* 2926 * If the event is in a group and isn't the group leader, 2927 * then don't put it on unless the group is on. 2928 */ 2929 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2930 ctx_sched_in(ctx, cpuctx, EVENT_TIME); 2931 return; 2932 } 2933 2934 task_ctx = cpuctx->task_ctx; 2935 if (ctx->task) 2936 WARN_ON_ONCE(task_ctx != ctx); 2937 2938 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2939 } 2940 2941 /* 2942 * Enable an event. 2943 * 2944 * If event->ctx is a cloned context, callers must make sure that 2945 * every task struct that event->ctx->task could possibly point to 2946 * remains valid. This condition is satisfied when called through 2947 * perf_event_for_each_child or perf_event_for_each as described 2948 * for perf_event_disable. 2949 */ 2950 static void _perf_event_enable(struct perf_event *event) 2951 { 2952 struct perf_event_context *ctx = event->ctx; 2953 2954 raw_spin_lock_irq(&ctx->lock); 2955 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2956 event->state < PERF_EVENT_STATE_ERROR) { 2957 out: 2958 raw_spin_unlock_irq(&ctx->lock); 2959 return; 2960 } 2961 2962 /* 2963 * If the event is in error state, clear that first. 2964 * 2965 * That way, if we see the event in error state below, we know that it 2966 * has gone back into error state, as distinct from the task having 2967 * been scheduled away before the cross-call arrived. 2968 */ 2969 if (event->state == PERF_EVENT_STATE_ERROR) { 2970 /* 2971 * Detached SIBLING events cannot leave ERROR state. 2972 */ 2973 if (event->event_caps & PERF_EV_CAP_SIBLING && 2974 event->group_leader == event) 2975 goto out; 2976 2977 event->state = PERF_EVENT_STATE_OFF; 2978 } 2979 raw_spin_unlock_irq(&ctx->lock); 2980 2981 event_function_call(event, __perf_event_enable, NULL); 2982 } 2983 2984 /* 2985 * See perf_event_disable(); 2986 */ 2987 void perf_event_enable(struct perf_event *event) 2988 { 2989 struct perf_event_context *ctx; 2990 2991 ctx = perf_event_ctx_lock(event); 2992 _perf_event_enable(event); 2993 perf_event_ctx_unlock(event, ctx); 2994 } 2995 EXPORT_SYMBOL_GPL(perf_event_enable); 2996 2997 struct stop_event_data { 2998 struct perf_event *event; 2999 unsigned int restart; 3000 }; 3001 3002 static int __perf_event_stop(void *info) 3003 { 3004 struct stop_event_data *sd = info; 3005 struct perf_event *event = sd->event; 3006 3007 /* if it's already INACTIVE, do nothing */ 3008 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3009 return 0; 3010 3011 /* matches smp_wmb() in event_sched_in() */ 3012 smp_rmb(); 3013 3014 /* 3015 * There is a window with interrupts enabled before we get here, 3016 * so we need to check again lest we try to stop another CPU's event. 3017 */ 3018 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3019 return -EAGAIN; 3020 3021 event->pmu->stop(event, PERF_EF_UPDATE); 3022 3023 /* 3024 * May race with the actual stop (through perf_pmu_output_stop()), 3025 * but it is only used for events with AUX ring buffer, and such 3026 * events will refuse to restart because of rb::aux_mmap_count==0, 3027 * see comments in perf_aux_output_begin(). 3028 * 3029 * Since this is happening on an event-local CPU, no trace is lost 3030 * while restarting. 3031 */ 3032 if (sd->restart) 3033 event->pmu->start(event, 0); 3034 3035 return 0; 3036 } 3037 3038 static int perf_event_stop(struct perf_event *event, int restart) 3039 { 3040 struct stop_event_data sd = { 3041 .event = event, 3042 .restart = restart, 3043 }; 3044 int ret = 0; 3045 3046 do { 3047 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3048 return 0; 3049 3050 /* matches smp_wmb() in event_sched_in() */ 3051 smp_rmb(); 3052 3053 /* 3054 * We only want to restart ACTIVE events, so if the event goes 3055 * inactive here (event->oncpu==-1), there's nothing more to do; 3056 * fall through with ret==-ENXIO. 3057 */ 3058 ret = cpu_function_call(READ_ONCE(event->oncpu), 3059 __perf_event_stop, &sd); 3060 } while (ret == -EAGAIN); 3061 3062 return ret; 3063 } 3064 3065 /* 3066 * In order to contain the amount of racy and tricky in the address filter 3067 * configuration management, it is a two part process: 3068 * 3069 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3070 * we update the addresses of corresponding vmas in 3071 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3072 * (p2) when an event is scheduled in (pmu::add), it calls 3073 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3074 * if the generation has changed since the previous call. 3075 * 3076 * If (p1) happens while the event is active, we restart it to force (p2). 3077 * 3078 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3079 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3080 * ioctl; 3081 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3082 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3083 * for reading; 3084 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3085 * of exec. 3086 */ 3087 void perf_event_addr_filters_sync(struct perf_event *event) 3088 { 3089 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3090 3091 if (!has_addr_filter(event)) 3092 return; 3093 3094 raw_spin_lock(&ifh->lock); 3095 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3096 event->pmu->addr_filters_sync(event); 3097 event->hw.addr_filters_gen = event->addr_filters_gen; 3098 } 3099 raw_spin_unlock(&ifh->lock); 3100 } 3101 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3102 3103 static int _perf_event_refresh(struct perf_event *event, int refresh) 3104 { 3105 /* 3106 * not supported on inherited events 3107 */ 3108 if (event->attr.inherit || !is_sampling_event(event)) 3109 return -EINVAL; 3110 3111 atomic_add(refresh, &event->event_limit); 3112 _perf_event_enable(event); 3113 3114 return 0; 3115 } 3116 3117 /* 3118 * See perf_event_disable() 3119 */ 3120 int perf_event_refresh(struct perf_event *event, int refresh) 3121 { 3122 struct perf_event_context *ctx; 3123 int ret; 3124 3125 ctx = perf_event_ctx_lock(event); 3126 ret = _perf_event_refresh(event, refresh); 3127 perf_event_ctx_unlock(event, ctx); 3128 3129 return ret; 3130 } 3131 EXPORT_SYMBOL_GPL(perf_event_refresh); 3132 3133 static int perf_event_modify_breakpoint(struct perf_event *bp, 3134 struct perf_event_attr *attr) 3135 { 3136 int err; 3137 3138 _perf_event_disable(bp); 3139 3140 err = modify_user_hw_breakpoint_check(bp, attr, true); 3141 3142 if (!bp->attr.disabled) 3143 _perf_event_enable(bp); 3144 3145 return err; 3146 } 3147 3148 /* 3149 * Copy event-type-independent attributes that may be modified. 3150 */ 3151 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3152 const struct perf_event_attr *from) 3153 { 3154 to->sig_data = from->sig_data; 3155 } 3156 3157 static int perf_event_modify_attr(struct perf_event *event, 3158 struct perf_event_attr *attr) 3159 { 3160 int (*func)(struct perf_event *, struct perf_event_attr *); 3161 struct perf_event *child; 3162 int err; 3163 3164 if (event->attr.type != attr->type) 3165 return -EINVAL; 3166 3167 switch (event->attr.type) { 3168 case PERF_TYPE_BREAKPOINT: 3169 func = perf_event_modify_breakpoint; 3170 break; 3171 default: 3172 /* Place holder for future additions. */ 3173 return -EOPNOTSUPP; 3174 } 3175 3176 WARN_ON_ONCE(event->ctx->parent_ctx); 3177 3178 mutex_lock(&event->child_mutex); 3179 /* 3180 * Event-type-independent attributes must be copied before event-type 3181 * modification, which will validate that final attributes match the 3182 * source attributes after all relevant attributes have been copied. 3183 */ 3184 perf_event_modify_copy_attr(&event->attr, attr); 3185 err = func(event, attr); 3186 if (err) 3187 goto out; 3188 list_for_each_entry(child, &event->child_list, child_list) { 3189 perf_event_modify_copy_attr(&child->attr, attr); 3190 err = func(child, attr); 3191 if (err) 3192 goto out; 3193 } 3194 out: 3195 mutex_unlock(&event->child_mutex); 3196 return err; 3197 } 3198 3199 static void ctx_sched_out(struct perf_event_context *ctx, 3200 struct perf_cpu_context *cpuctx, 3201 enum event_type_t event_type) 3202 { 3203 struct perf_event *event, *tmp; 3204 int is_active = ctx->is_active; 3205 3206 lockdep_assert_held(&ctx->lock); 3207 3208 if (likely(!ctx->nr_events)) { 3209 /* 3210 * See __perf_remove_from_context(). 3211 */ 3212 WARN_ON_ONCE(ctx->is_active); 3213 if (ctx->task) 3214 WARN_ON_ONCE(cpuctx->task_ctx); 3215 return; 3216 } 3217 3218 /* 3219 * Always update time if it was set; not only when it changes. 3220 * Otherwise we can 'forget' to update time for any but the last 3221 * context we sched out. For example: 3222 * 3223 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3224 * ctx_sched_out(.event_type = EVENT_PINNED) 3225 * 3226 * would only update time for the pinned events. 3227 */ 3228 if (is_active & EVENT_TIME) { 3229 /* update (and stop) ctx time */ 3230 update_context_time(ctx); 3231 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3232 /* 3233 * CPU-release for the below ->is_active store, 3234 * see __load_acquire() in perf_event_time_now() 3235 */ 3236 barrier(); 3237 } 3238 3239 ctx->is_active &= ~event_type; 3240 if (!(ctx->is_active & EVENT_ALL)) 3241 ctx->is_active = 0; 3242 3243 if (ctx->task) { 3244 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3245 if (!ctx->is_active) 3246 cpuctx->task_ctx = NULL; 3247 } 3248 3249 is_active ^= ctx->is_active; /* changed bits */ 3250 3251 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3252 return; 3253 3254 perf_pmu_disable(ctx->pmu); 3255 if (is_active & EVENT_PINNED) { 3256 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3257 group_sched_out(event, cpuctx, ctx); 3258 } 3259 3260 if (is_active & EVENT_FLEXIBLE) { 3261 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3262 group_sched_out(event, cpuctx, ctx); 3263 3264 /* 3265 * Since we cleared EVENT_FLEXIBLE, also clear 3266 * rotate_necessary, is will be reset by 3267 * ctx_flexible_sched_in() when needed. 3268 */ 3269 ctx->rotate_necessary = 0; 3270 } 3271 perf_pmu_enable(ctx->pmu); 3272 } 3273 3274 /* 3275 * Test whether two contexts are equivalent, i.e. whether they have both been 3276 * cloned from the same version of the same context. 3277 * 3278 * Equivalence is measured using a generation number in the context that is 3279 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3280 * and list_del_event(). 3281 */ 3282 static int context_equiv(struct perf_event_context *ctx1, 3283 struct perf_event_context *ctx2) 3284 { 3285 lockdep_assert_held(&ctx1->lock); 3286 lockdep_assert_held(&ctx2->lock); 3287 3288 /* Pinning disables the swap optimization */ 3289 if (ctx1->pin_count || ctx2->pin_count) 3290 return 0; 3291 3292 /* If ctx1 is the parent of ctx2 */ 3293 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3294 return 1; 3295 3296 /* If ctx2 is the parent of ctx1 */ 3297 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3298 return 1; 3299 3300 /* 3301 * If ctx1 and ctx2 have the same parent; we flatten the parent 3302 * hierarchy, see perf_event_init_context(). 3303 */ 3304 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3305 ctx1->parent_gen == ctx2->parent_gen) 3306 return 1; 3307 3308 /* Unmatched */ 3309 return 0; 3310 } 3311 3312 static void __perf_event_sync_stat(struct perf_event *event, 3313 struct perf_event *next_event) 3314 { 3315 u64 value; 3316 3317 if (!event->attr.inherit_stat) 3318 return; 3319 3320 /* 3321 * Update the event value, we cannot use perf_event_read() 3322 * because we're in the middle of a context switch and have IRQs 3323 * disabled, which upsets smp_call_function_single(), however 3324 * we know the event must be on the current CPU, therefore we 3325 * don't need to use it. 3326 */ 3327 if (event->state == PERF_EVENT_STATE_ACTIVE) 3328 event->pmu->read(event); 3329 3330 perf_event_update_time(event); 3331 3332 /* 3333 * In order to keep per-task stats reliable we need to flip the event 3334 * values when we flip the contexts. 3335 */ 3336 value = local64_read(&next_event->count); 3337 value = local64_xchg(&event->count, value); 3338 local64_set(&next_event->count, value); 3339 3340 swap(event->total_time_enabled, next_event->total_time_enabled); 3341 swap(event->total_time_running, next_event->total_time_running); 3342 3343 /* 3344 * Since we swizzled the values, update the user visible data too. 3345 */ 3346 perf_event_update_userpage(event); 3347 perf_event_update_userpage(next_event); 3348 } 3349 3350 static void perf_event_sync_stat(struct perf_event_context *ctx, 3351 struct perf_event_context *next_ctx) 3352 { 3353 struct perf_event *event, *next_event; 3354 3355 if (!ctx->nr_stat) 3356 return; 3357 3358 update_context_time(ctx); 3359 3360 event = list_first_entry(&ctx->event_list, 3361 struct perf_event, event_entry); 3362 3363 next_event = list_first_entry(&next_ctx->event_list, 3364 struct perf_event, event_entry); 3365 3366 while (&event->event_entry != &ctx->event_list && 3367 &next_event->event_entry != &next_ctx->event_list) { 3368 3369 __perf_event_sync_stat(event, next_event); 3370 3371 event = list_next_entry(event, event_entry); 3372 next_event = list_next_entry(next_event, event_entry); 3373 } 3374 } 3375 3376 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3377 struct task_struct *next) 3378 { 3379 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3380 struct perf_event_context *next_ctx; 3381 struct perf_event_context *parent, *next_parent; 3382 struct perf_cpu_context *cpuctx; 3383 int do_switch = 1; 3384 struct pmu *pmu; 3385 3386 if (likely(!ctx)) 3387 return; 3388 3389 pmu = ctx->pmu; 3390 cpuctx = __get_cpu_context(ctx); 3391 if (!cpuctx->task_ctx) 3392 return; 3393 3394 rcu_read_lock(); 3395 next_ctx = next->perf_event_ctxp[ctxn]; 3396 if (!next_ctx) 3397 goto unlock; 3398 3399 parent = rcu_dereference(ctx->parent_ctx); 3400 next_parent = rcu_dereference(next_ctx->parent_ctx); 3401 3402 /* If neither context have a parent context; they cannot be clones. */ 3403 if (!parent && !next_parent) 3404 goto unlock; 3405 3406 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3407 /* 3408 * Looks like the two contexts are clones, so we might be 3409 * able to optimize the context switch. We lock both 3410 * contexts and check that they are clones under the 3411 * lock (including re-checking that neither has been 3412 * uncloned in the meantime). It doesn't matter which 3413 * order we take the locks because no other cpu could 3414 * be trying to lock both of these tasks. 3415 */ 3416 raw_spin_lock(&ctx->lock); 3417 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3418 if (context_equiv(ctx, next_ctx)) { 3419 3420 WRITE_ONCE(ctx->task, next); 3421 WRITE_ONCE(next_ctx->task, task); 3422 3423 perf_pmu_disable(pmu); 3424 3425 if (cpuctx->sched_cb_usage && pmu->sched_task) 3426 pmu->sched_task(ctx, false); 3427 3428 /* 3429 * PMU specific parts of task perf context can require 3430 * additional synchronization. As an example of such 3431 * synchronization see implementation details of Intel 3432 * LBR call stack data profiling; 3433 */ 3434 if (pmu->swap_task_ctx) 3435 pmu->swap_task_ctx(ctx, next_ctx); 3436 else 3437 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3438 3439 perf_pmu_enable(pmu); 3440 3441 /* 3442 * RCU_INIT_POINTER here is safe because we've not 3443 * modified the ctx and the above modification of 3444 * ctx->task and ctx->task_ctx_data are immaterial 3445 * since those values are always verified under 3446 * ctx->lock which we're now holding. 3447 */ 3448 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3449 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3450 3451 do_switch = 0; 3452 3453 perf_event_sync_stat(ctx, next_ctx); 3454 } 3455 raw_spin_unlock(&next_ctx->lock); 3456 raw_spin_unlock(&ctx->lock); 3457 } 3458 unlock: 3459 rcu_read_unlock(); 3460 3461 if (do_switch) { 3462 raw_spin_lock(&ctx->lock); 3463 perf_pmu_disable(pmu); 3464 3465 if (cpuctx->sched_cb_usage && pmu->sched_task) 3466 pmu->sched_task(ctx, false); 3467 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3468 3469 perf_pmu_enable(pmu); 3470 raw_spin_unlock(&ctx->lock); 3471 } 3472 } 3473 3474 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3475 3476 void perf_sched_cb_dec(struct pmu *pmu) 3477 { 3478 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3479 3480 this_cpu_dec(perf_sched_cb_usages); 3481 3482 if (!--cpuctx->sched_cb_usage) 3483 list_del(&cpuctx->sched_cb_entry); 3484 } 3485 3486 3487 void perf_sched_cb_inc(struct pmu *pmu) 3488 { 3489 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3490 3491 if (!cpuctx->sched_cb_usage++) 3492 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3493 3494 this_cpu_inc(perf_sched_cb_usages); 3495 } 3496 3497 /* 3498 * This function provides the context switch callback to the lower code 3499 * layer. It is invoked ONLY when the context switch callback is enabled. 3500 * 3501 * This callback is relevant even to per-cpu events; for example multi event 3502 * PEBS requires this to provide PID/TID information. This requires we flush 3503 * all queued PEBS records before we context switch to a new task. 3504 */ 3505 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) 3506 { 3507 struct pmu *pmu; 3508 3509 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3510 3511 if (WARN_ON_ONCE(!pmu->sched_task)) 3512 return; 3513 3514 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3515 perf_pmu_disable(pmu); 3516 3517 pmu->sched_task(cpuctx->task_ctx, sched_in); 3518 3519 perf_pmu_enable(pmu); 3520 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3521 } 3522 3523 static void perf_pmu_sched_task(struct task_struct *prev, 3524 struct task_struct *next, 3525 bool sched_in) 3526 { 3527 struct perf_cpu_context *cpuctx; 3528 3529 if (prev == next) 3530 return; 3531 3532 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3533 /* will be handled in perf_event_context_sched_in/out */ 3534 if (cpuctx->task_ctx) 3535 continue; 3536 3537 __perf_pmu_sched_task(cpuctx, sched_in); 3538 } 3539 } 3540 3541 static void perf_event_switch(struct task_struct *task, 3542 struct task_struct *next_prev, bool sched_in); 3543 3544 #define for_each_task_context_nr(ctxn) \ 3545 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3546 3547 /* 3548 * Called from scheduler to remove the events of the current task, 3549 * with interrupts disabled. 3550 * 3551 * We stop each event and update the event value in event->count. 3552 * 3553 * This does not protect us against NMI, but disable() 3554 * sets the disabled bit in the control field of event _before_ 3555 * accessing the event control register. If a NMI hits, then it will 3556 * not restart the event. 3557 */ 3558 void __perf_event_task_sched_out(struct task_struct *task, 3559 struct task_struct *next) 3560 { 3561 int ctxn; 3562 3563 if (__this_cpu_read(perf_sched_cb_usages)) 3564 perf_pmu_sched_task(task, next, false); 3565 3566 if (atomic_read(&nr_switch_events)) 3567 perf_event_switch(task, next, false); 3568 3569 for_each_task_context_nr(ctxn) 3570 perf_event_context_sched_out(task, ctxn, next); 3571 3572 /* 3573 * if cgroup events exist on this CPU, then we need 3574 * to check if we have to switch out PMU state. 3575 * cgroup event are system-wide mode only 3576 */ 3577 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3578 perf_cgroup_switch(next); 3579 } 3580 3581 /* 3582 * Called with IRQs disabled 3583 */ 3584 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3585 enum event_type_t event_type) 3586 { 3587 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3588 } 3589 3590 static bool perf_less_group_idx(const void *l, const void *r) 3591 { 3592 const struct perf_event *le = *(const struct perf_event **)l; 3593 const struct perf_event *re = *(const struct perf_event **)r; 3594 3595 return le->group_index < re->group_index; 3596 } 3597 3598 static void swap_ptr(void *l, void *r) 3599 { 3600 void **lp = l, **rp = r; 3601 3602 swap(*lp, *rp); 3603 } 3604 3605 static const struct min_heap_callbacks perf_min_heap = { 3606 .elem_size = sizeof(struct perf_event *), 3607 .less = perf_less_group_idx, 3608 .swp = swap_ptr, 3609 }; 3610 3611 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3612 { 3613 struct perf_event **itrs = heap->data; 3614 3615 if (event) { 3616 itrs[heap->nr] = event; 3617 heap->nr++; 3618 } 3619 } 3620 3621 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3622 struct perf_event_groups *groups, int cpu, 3623 int (*func)(struct perf_event *, void *), 3624 void *data) 3625 { 3626 #ifdef CONFIG_CGROUP_PERF 3627 struct cgroup_subsys_state *css = NULL; 3628 #endif 3629 /* Space for per CPU and/or any CPU event iterators. */ 3630 struct perf_event *itrs[2]; 3631 struct min_heap event_heap; 3632 struct perf_event **evt; 3633 int ret; 3634 3635 if (cpuctx) { 3636 event_heap = (struct min_heap){ 3637 .data = cpuctx->heap, 3638 .nr = 0, 3639 .size = cpuctx->heap_size, 3640 }; 3641 3642 lockdep_assert_held(&cpuctx->ctx.lock); 3643 3644 #ifdef CONFIG_CGROUP_PERF 3645 if (cpuctx->cgrp) 3646 css = &cpuctx->cgrp->css; 3647 #endif 3648 } else { 3649 event_heap = (struct min_heap){ 3650 .data = itrs, 3651 .nr = 0, 3652 .size = ARRAY_SIZE(itrs), 3653 }; 3654 /* Events not within a CPU context may be on any CPU. */ 3655 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3656 } 3657 evt = event_heap.data; 3658 3659 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3660 3661 #ifdef CONFIG_CGROUP_PERF 3662 for (; css; css = css->parent) 3663 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3664 #endif 3665 3666 min_heapify_all(&event_heap, &perf_min_heap); 3667 3668 while (event_heap.nr) { 3669 ret = func(*evt, data); 3670 if (ret) 3671 return ret; 3672 3673 *evt = perf_event_groups_next(*evt); 3674 if (*evt) 3675 min_heapify(&event_heap, 0, &perf_min_heap); 3676 else 3677 min_heap_pop(&event_heap, &perf_min_heap); 3678 } 3679 3680 return 0; 3681 } 3682 3683 /* 3684 * Because the userpage is strictly per-event (there is no concept of context, 3685 * so there cannot be a context indirection), every userpage must be updated 3686 * when context time starts :-( 3687 * 3688 * IOW, we must not miss EVENT_TIME edges. 3689 */ 3690 static inline bool event_update_userpage(struct perf_event *event) 3691 { 3692 if (likely(!atomic_read(&event->mmap_count))) 3693 return false; 3694 3695 perf_event_update_time(event); 3696 perf_event_update_userpage(event); 3697 3698 return true; 3699 } 3700 3701 static inline void group_update_userpage(struct perf_event *group_event) 3702 { 3703 struct perf_event *event; 3704 3705 if (!event_update_userpage(group_event)) 3706 return; 3707 3708 for_each_sibling_event(event, group_event) 3709 event_update_userpage(event); 3710 } 3711 3712 static int merge_sched_in(struct perf_event *event, void *data) 3713 { 3714 struct perf_event_context *ctx = event->ctx; 3715 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3716 int *can_add_hw = data; 3717 3718 if (event->state <= PERF_EVENT_STATE_OFF) 3719 return 0; 3720 3721 if (!event_filter_match(event)) 3722 return 0; 3723 3724 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3725 if (!group_sched_in(event, cpuctx, ctx)) 3726 list_add_tail(&event->active_list, get_event_list(event)); 3727 } 3728 3729 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3730 *can_add_hw = 0; 3731 if (event->attr.pinned) { 3732 perf_cgroup_event_disable(event, ctx); 3733 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3734 } else { 3735 ctx->rotate_necessary = 1; 3736 perf_mux_hrtimer_restart(cpuctx); 3737 group_update_userpage(event); 3738 } 3739 } 3740 3741 return 0; 3742 } 3743 3744 static void 3745 ctx_pinned_sched_in(struct perf_event_context *ctx, 3746 struct perf_cpu_context *cpuctx) 3747 { 3748 int can_add_hw = 1; 3749 3750 if (ctx != &cpuctx->ctx) 3751 cpuctx = NULL; 3752 3753 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3754 smp_processor_id(), 3755 merge_sched_in, &can_add_hw); 3756 } 3757 3758 static void 3759 ctx_flexible_sched_in(struct perf_event_context *ctx, 3760 struct perf_cpu_context *cpuctx) 3761 { 3762 int can_add_hw = 1; 3763 3764 if (ctx != &cpuctx->ctx) 3765 cpuctx = NULL; 3766 3767 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3768 smp_processor_id(), 3769 merge_sched_in, &can_add_hw); 3770 } 3771 3772 static void 3773 ctx_sched_in(struct perf_event_context *ctx, 3774 struct perf_cpu_context *cpuctx, 3775 enum event_type_t event_type) 3776 { 3777 int is_active = ctx->is_active; 3778 3779 lockdep_assert_held(&ctx->lock); 3780 3781 if (likely(!ctx->nr_events)) 3782 return; 3783 3784 if (is_active ^ EVENT_TIME) { 3785 /* start ctx time */ 3786 __update_context_time(ctx, false); 3787 perf_cgroup_set_timestamp(cpuctx); 3788 /* 3789 * CPU-release for the below ->is_active store, 3790 * see __load_acquire() in perf_event_time_now() 3791 */ 3792 barrier(); 3793 } 3794 3795 ctx->is_active |= (event_type | EVENT_TIME); 3796 if (ctx->task) { 3797 if (!is_active) 3798 cpuctx->task_ctx = ctx; 3799 else 3800 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3801 } 3802 3803 is_active ^= ctx->is_active; /* changed bits */ 3804 3805 /* 3806 * First go through the list and put on any pinned groups 3807 * in order to give them the best chance of going on. 3808 */ 3809 if (is_active & EVENT_PINNED) 3810 ctx_pinned_sched_in(ctx, cpuctx); 3811 3812 /* Then walk through the lower prio flexible groups */ 3813 if (is_active & EVENT_FLEXIBLE) 3814 ctx_flexible_sched_in(ctx, cpuctx); 3815 } 3816 3817 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3818 enum event_type_t event_type) 3819 { 3820 struct perf_event_context *ctx = &cpuctx->ctx; 3821 3822 ctx_sched_in(ctx, cpuctx, event_type); 3823 } 3824 3825 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3826 struct task_struct *task) 3827 { 3828 struct perf_cpu_context *cpuctx; 3829 struct pmu *pmu; 3830 3831 cpuctx = __get_cpu_context(ctx); 3832 3833 /* 3834 * HACK: for HETEROGENEOUS the task context might have switched to a 3835 * different PMU, force (re)set the context, 3836 */ 3837 pmu = ctx->pmu = cpuctx->ctx.pmu; 3838 3839 if (cpuctx->task_ctx == ctx) { 3840 if (cpuctx->sched_cb_usage) 3841 __perf_pmu_sched_task(cpuctx, true); 3842 return; 3843 } 3844 3845 perf_ctx_lock(cpuctx, ctx); 3846 /* 3847 * We must check ctx->nr_events while holding ctx->lock, such 3848 * that we serialize against perf_install_in_context(). 3849 */ 3850 if (!ctx->nr_events) 3851 goto unlock; 3852 3853 perf_pmu_disable(pmu); 3854 /* 3855 * We want to keep the following priority order: 3856 * cpu pinned (that don't need to move), task pinned, 3857 * cpu flexible, task flexible. 3858 * 3859 * However, if task's ctx is not carrying any pinned 3860 * events, no need to flip the cpuctx's events around. 3861 */ 3862 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3863 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3864 perf_event_sched_in(cpuctx, ctx); 3865 3866 if (cpuctx->sched_cb_usage && pmu->sched_task) 3867 pmu->sched_task(cpuctx->task_ctx, true); 3868 3869 perf_pmu_enable(pmu); 3870 3871 unlock: 3872 perf_ctx_unlock(cpuctx, ctx); 3873 } 3874 3875 /* 3876 * Called from scheduler to add the events of the current task 3877 * with interrupts disabled. 3878 * 3879 * We restore the event value and then enable it. 3880 * 3881 * This does not protect us against NMI, but enable() 3882 * sets the enabled bit in the control field of event _before_ 3883 * accessing the event control register. If a NMI hits, then it will 3884 * keep the event running. 3885 */ 3886 void __perf_event_task_sched_in(struct task_struct *prev, 3887 struct task_struct *task) 3888 { 3889 struct perf_event_context *ctx; 3890 int ctxn; 3891 3892 for_each_task_context_nr(ctxn) { 3893 ctx = task->perf_event_ctxp[ctxn]; 3894 if (likely(!ctx)) 3895 continue; 3896 3897 perf_event_context_sched_in(ctx, task); 3898 } 3899 3900 if (atomic_read(&nr_switch_events)) 3901 perf_event_switch(task, prev, true); 3902 3903 if (__this_cpu_read(perf_sched_cb_usages)) 3904 perf_pmu_sched_task(prev, task, true); 3905 } 3906 3907 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3908 { 3909 u64 frequency = event->attr.sample_freq; 3910 u64 sec = NSEC_PER_SEC; 3911 u64 divisor, dividend; 3912 3913 int count_fls, nsec_fls, frequency_fls, sec_fls; 3914 3915 count_fls = fls64(count); 3916 nsec_fls = fls64(nsec); 3917 frequency_fls = fls64(frequency); 3918 sec_fls = 30; 3919 3920 /* 3921 * We got @count in @nsec, with a target of sample_freq HZ 3922 * the target period becomes: 3923 * 3924 * @count * 10^9 3925 * period = ------------------- 3926 * @nsec * sample_freq 3927 * 3928 */ 3929 3930 /* 3931 * Reduce accuracy by one bit such that @a and @b converge 3932 * to a similar magnitude. 3933 */ 3934 #define REDUCE_FLS(a, b) \ 3935 do { \ 3936 if (a##_fls > b##_fls) { \ 3937 a >>= 1; \ 3938 a##_fls--; \ 3939 } else { \ 3940 b >>= 1; \ 3941 b##_fls--; \ 3942 } \ 3943 } while (0) 3944 3945 /* 3946 * Reduce accuracy until either term fits in a u64, then proceed with 3947 * the other, so that finally we can do a u64/u64 division. 3948 */ 3949 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3950 REDUCE_FLS(nsec, frequency); 3951 REDUCE_FLS(sec, count); 3952 } 3953 3954 if (count_fls + sec_fls > 64) { 3955 divisor = nsec * frequency; 3956 3957 while (count_fls + sec_fls > 64) { 3958 REDUCE_FLS(count, sec); 3959 divisor >>= 1; 3960 } 3961 3962 dividend = count * sec; 3963 } else { 3964 dividend = count * sec; 3965 3966 while (nsec_fls + frequency_fls > 64) { 3967 REDUCE_FLS(nsec, frequency); 3968 dividend >>= 1; 3969 } 3970 3971 divisor = nsec * frequency; 3972 } 3973 3974 if (!divisor) 3975 return dividend; 3976 3977 return div64_u64(dividend, divisor); 3978 } 3979 3980 static DEFINE_PER_CPU(int, perf_throttled_count); 3981 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3982 3983 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3984 { 3985 struct hw_perf_event *hwc = &event->hw; 3986 s64 period, sample_period; 3987 s64 delta; 3988 3989 period = perf_calculate_period(event, nsec, count); 3990 3991 delta = (s64)(period - hwc->sample_period); 3992 delta = (delta + 7) / 8; /* low pass filter */ 3993 3994 sample_period = hwc->sample_period + delta; 3995 3996 if (!sample_period) 3997 sample_period = 1; 3998 3999 hwc->sample_period = sample_period; 4000 4001 if (local64_read(&hwc->period_left) > 8*sample_period) { 4002 if (disable) 4003 event->pmu->stop(event, PERF_EF_UPDATE); 4004 4005 local64_set(&hwc->period_left, 0); 4006 4007 if (disable) 4008 event->pmu->start(event, PERF_EF_RELOAD); 4009 } 4010 } 4011 4012 /* 4013 * combine freq adjustment with unthrottling to avoid two passes over the 4014 * events. At the same time, make sure, having freq events does not change 4015 * the rate of unthrottling as that would introduce bias. 4016 */ 4017 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 4018 int needs_unthr) 4019 { 4020 struct perf_event *event; 4021 struct hw_perf_event *hwc; 4022 u64 now, period = TICK_NSEC; 4023 s64 delta; 4024 4025 /* 4026 * only need to iterate over all events iff: 4027 * - context have events in frequency mode (needs freq adjust) 4028 * - there are events to unthrottle on this cpu 4029 */ 4030 if (!(ctx->nr_freq || needs_unthr)) 4031 return; 4032 4033 raw_spin_lock(&ctx->lock); 4034 perf_pmu_disable(ctx->pmu); 4035 4036 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4037 if (event->state != PERF_EVENT_STATE_ACTIVE) 4038 continue; 4039 4040 if (!event_filter_match(event)) 4041 continue; 4042 4043 perf_pmu_disable(event->pmu); 4044 4045 hwc = &event->hw; 4046 4047 if (hwc->interrupts == MAX_INTERRUPTS) { 4048 hwc->interrupts = 0; 4049 perf_log_throttle(event, 1); 4050 event->pmu->start(event, 0); 4051 } 4052 4053 if (!event->attr.freq || !event->attr.sample_freq) 4054 goto next; 4055 4056 /* 4057 * stop the event and update event->count 4058 */ 4059 event->pmu->stop(event, PERF_EF_UPDATE); 4060 4061 now = local64_read(&event->count); 4062 delta = now - hwc->freq_count_stamp; 4063 hwc->freq_count_stamp = now; 4064 4065 /* 4066 * restart the event 4067 * reload only if value has changed 4068 * we have stopped the event so tell that 4069 * to perf_adjust_period() to avoid stopping it 4070 * twice. 4071 */ 4072 if (delta > 0) 4073 perf_adjust_period(event, period, delta, false); 4074 4075 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4076 next: 4077 perf_pmu_enable(event->pmu); 4078 } 4079 4080 perf_pmu_enable(ctx->pmu); 4081 raw_spin_unlock(&ctx->lock); 4082 } 4083 4084 /* 4085 * Move @event to the tail of the @ctx's elegible events. 4086 */ 4087 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4088 { 4089 /* 4090 * Rotate the first entry last of non-pinned groups. Rotation might be 4091 * disabled by the inheritance code. 4092 */ 4093 if (ctx->rotate_disable) 4094 return; 4095 4096 perf_event_groups_delete(&ctx->flexible_groups, event); 4097 perf_event_groups_insert(&ctx->flexible_groups, event); 4098 } 4099 4100 /* pick an event from the flexible_groups to rotate */ 4101 static inline struct perf_event * 4102 ctx_event_to_rotate(struct perf_event_context *ctx) 4103 { 4104 struct perf_event *event; 4105 4106 /* pick the first active flexible event */ 4107 event = list_first_entry_or_null(&ctx->flexible_active, 4108 struct perf_event, active_list); 4109 4110 /* if no active flexible event, pick the first event */ 4111 if (!event) { 4112 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4113 typeof(*event), group_node); 4114 } 4115 4116 /* 4117 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4118 * finds there are unschedulable events, it will set it again. 4119 */ 4120 ctx->rotate_necessary = 0; 4121 4122 return event; 4123 } 4124 4125 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4126 { 4127 struct perf_event *cpu_event = NULL, *task_event = NULL; 4128 struct perf_event_context *task_ctx = NULL; 4129 int cpu_rotate, task_rotate; 4130 4131 /* 4132 * Since we run this from IRQ context, nobody can install new 4133 * events, thus the event count values are stable. 4134 */ 4135 4136 cpu_rotate = cpuctx->ctx.rotate_necessary; 4137 task_ctx = cpuctx->task_ctx; 4138 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4139 4140 if (!(cpu_rotate || task_rotate)) 4141 return false; 4142 4143 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4144 perf_pmu_disable(cpuctx->ctx.pmu); 4145 4146 if (task_rotate) 4147 task_event = ctx_event_to_rotate(task_ctx); 4148 if (cpu_rotate) 4149 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4150 4151 /* 4152 * As per the order given at ctx_resched() first 'pop' task flexible 4153 * and then, if needed CPU flexible. 4154 */ 4155 if (task_event || (task_ctx && cpu_event)) 4156 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4157 if (cpu_event) 4158 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4159 4160 if (task_event) 4161 rotate_ctx(task_ctx, task_event); 4162 if (cpu_event) 4163 rotate_ctx(&cpuctx->ctx, cpu_event); 4164 4165 perf_event_sched_in(cpuctx, task_ctx); 4166 4167 perf_pmu_enable(cpuctx->ctx.pmu); 4168 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4169 4170 return true; 4171 } 4172 4173 void perf_event_task_tick(void) 4174 { 4175 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4176 struct perf_event_context *ctx, *tmp; 4177 int throttled; 4178 4179 lockdep_assert_irqs_disabled(); 4180 4181 __this_cpu_inc(perf_throttled_seq); 4182 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4183 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4184 4185 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4186 perf_adjust_freq_unthr_context(ctx, throttled); 4187 } 4188 4189 static int event_enable_on_exec(struct perf_event *event, 4190 struct perf_event_context *ctx) 4191 { 4192 if (!event->attr.enable_on_exec) 4193 return 0; 4194 4195 event->attr.enable_on_exec = 0; 4196 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4197 return 0; 4198 4199 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4200 4201 return 1; 4202 } 4203 4204 /* 4205 * Enable all of a task's events that have been marked enable-on-exec. 4206 * This expects task == current. 4207 */ 4208 static void perf_event_enable_on_exec(int ctxn) 4209 { 4210 struct perf_event_context *ctx, *clone_ctx = NULL; 4211 enum event_type_t event_type = 0; 4212 struct perf_cpu_context *cpuctx; 4213 struct perf_event *event; 4214 unsigned long flags; 4215 int enabled = 0; 4216 4217 local_irq_save(flags); 4218 ctx = current->perf_event_ctxp[ctxn]; 4219 if (!ctx || !ctx->nr_events) 4220 goto out; 4221 4222 cpuctx = __get_cpu_context(ctx); 4223 perf_ctx_lock(cpuctx, ctx); 4224 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4225 list_for_each_entry(event, &ctx->event_list, event_entry) { 4226 enabled |= event_enable_on_exec(event, ctx); 4227 event_type |= get_event_type(event); 4228 } 4229 4230 /* 4231 * Unclone and reschedule this context if we enabled any event. 4232 */ 4233 if (enabled) { 4234 clone_ctx = unclone_ctx(ctx); 4235 ctx_resched(cpuctx, ctx, event_type); 4236 } else { 4237 ctx_sched_in(ctx, cpuctx, EVENT_TIME); 4238 } 4239 perf_ctx_unlock(cpuctx, ctx); 4240 4241 out: 4242 local_irq_restore(flags); 4243 4244 if (clone_ctx) 4245 put_ctx(clone_ctx); 4246 } 4247 4248 static void perf_remove_from_owner(struct perf_event *event); 4249 static void perf_event_exit_event(struct perf_event *event, 4250 struct perf_event_context *ctx); 4251 4252 /* 4253 * Removes all events from the current task that have been marked 4254 * remove-on-exec, and feeds their values back to parent events. 4255 */ 4256 static void perf_event_remove_on_exec(int ctxn) 4257 { 4258 struct perf_event_context *ctx, *clone_ctx = NULL; 4259 struct perf_event *event, *next; 4260 LIST_HEAD(free_list); 4261 unsigned long flags; 4262 bool modified = false; 4263 4264 ctx = perf_pin_task_context(current, ctxn); 4265 if (!ctx) 4266 return; 4267 4268 mutex_lock(&ctx->mutex); 4269 4270 if (WARN_ON_ONCE(ctx->task != current)) 4271 goto unlock; 4272 4273 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4274 if (!event->attr.remove_on_exec) 4275 continue; 4276 4277 if (!is_kernel_event(event)) 4278 perf_remove_from_owner(event); 4279 4280 modified = true; 4281 4282 perf_event_exit_event(event, ctx); 4283 } 4284 4285 raw_spin_lock_irqsave(&ctx->lock, flags); 4286 if (modified) 4287 clone_ctx = unclone_ctx(ctx); 4288 --ctx->pin_count; 4289 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4290 4291 unlock: 4292 mutex_unlock(&ctx->mutex); 4293 4294 put_ctx(ctx); 4295 if (clone_ctx) 4296 put_ctx(clone_ctx); 4297 } 4298 4299 struct perf_read_data { 4300 struct perf_event *event; 4301 bool group; 4302 int ret; 4303 }; 4304 4305 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4306 { 4307 u16 local_pkg, event_pkg; 4308 4309 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4310 int local_cpu = smp_processor_id(); 4311 4312 event_pkg = topology_physical_package_id(event_cpu); 4313 local_pkg = topology_physical_package_id(local_cpu); 4314 4315 if (event_pkg == local_pkg) 4316 return local_cpu; 4317 } 4318 4319 return event_cpu; 4320 } 4321 4322 /* 4323 * Cross CPU call to read the hardware event 4324 */ 4325 static void __perf_event_read(void *info) 4326 { 4327 struct perf_read_data *data = info; 4328 struct perf_event *sub, *event = data->event; 4329 struct perf_event_context *ctx = event->ctx; 4330 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4331 struct pmu *pmu = event->pmu; 4332 4333 /* 4334 * If this is a task context, we need to check whether it is 4335 * the current task context of this cpu. If not it has been 4336 * scheduled out before the smp call arrived. In that case 4337 * event->count would have been updated to a recent sample 4338 * when the event was scheduled out. 4339 */ 4340 if (ctx->task && cpuctx->task_ctx != ctx) 4341 return; 4342 4343 raw_spin_lock(&ctx->lock); 4344 if (ctx->is_active & EVENT_TIME) { 4345 update_context_time(ctx); 4346 update_cgrp_time_from_event(event); 4347 } 4348 4349 perf_event_update_time(event); 4350 if (data->group) 4351 perf_event_update_sibling_time(event); 4352 4353 if (event->state != PERF_EVENT_STATE_ACTIVE) 4354 goto unlock; 4355 4356 if (!data->group) { 4357 pmu->read(event); 4358 data->ret = 0; 4359 goto unlock; 4360 } 4361 4362 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4363 4364 pmu->read(event); 4365 4366 for_each_sibling_event(sub, event) { 4367 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4368 /* 4369 * Use sibling's PMU rather than @event's since 4370 * sibling could be on different (eg: software) PMU. 4371 */ 4372 sub->pmu->read(sub); 4373 } 4374 } 4375 4376 data->ret = pmu->commit_txn(pmu); 4377 4378 unlock: 4379 raw_spin_unlock(&ctx->lock); 4380 } 4381 4382 static inline u64 perf_event_count(struct perf_event *event) 4383 { 4384 return local64_read(&event->count) + atomic64_read(&event->child_count); 4385 } 4386 4387 static void calc_timer_values(struct perf_event *event, 4388 u64 *now, 4389 u64 *enabled, 4390 u64 *running) 4391 { 4392 u64 ctx_time; 4393 4394 *now = perf_clock(); 4395 ctx_time = perf_event_time_now(event, *now); 4396 __perf_update_times(event, ctx_time, enabled, running); 4397 } 4398 4399 /* 4400 * NMI-safe method to read a local event, that is an event that 4401 * is: 4402 * - either for the current task, or for this CPU 4403 * - does not have inherit set, for inherited task events 4404 * will not be local and we cannot read them atomically 4405 * - must not have a pmu::count method 4406 */ 4407 int perf_event_read_local(struct perf_event *event, u64 *value, 4408 u64 *enabled, u64 *running) 4409 { 4410 unsigned long flags; 4411 int ret = 0; 4412 4413 /* 4414 * Disabling interrupts avoids all counter scheduling (context 4415 * switches, timer based rotation and IPIs). 4416 */ 4417 local_irq_save(flags); 4418 4419 /* 4420 * It must not be an event with inherit set, we cannot read 4421 * all child counters from atomic context. 4422 */ 4423 if (event->attr.inherit) { 4424 ret = -EOPNOTSUPP; 4425 goto out; 4426 } 4427 4428 /* If this is a per-task event, it must be for current */ 4429 if ((event->attach_state & PERF_ATTACH_TASK) && 4430 event->hw.target != current) { 4431 ret = -EINVAL; 4432 goto out; 4433 } 4434 4435 /* If this is a per-CPU event, it must be for this CPU */ 4436 if (!(event->attach_state & PERF_ATTACH_TASK) && 4437 event->cpu != smp_processor_id()) { 4438 ret = -EINVAL; 4439 goto out; 4440 } 4441 4442 /* If this is a pinned event it must be running on this CPU */ 4443 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4444 ret = -EBUSY; 4445 goto out; 4446 } 4447 4448 /* 4449 * If the event is currently on this CPU, its either a per-task event, 4450 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4451 * oncpu == -1). 4452 */ 4453 if (event->oncpu == smp_processor_id()) 4454 event->pmu->read(event); 4455 4456 *value = local64_read(&event->count); 4457 if (enabled || running) { 4458 u64 __enabled, __running, __now;; 4459 4460 calc_timer_values(event, &__now, &__enabled, &__running); 4461 if (enabled) 4462 *enabled = __enabled; 4463 if (running) 4464 *running = __running; 4465 } 4466 out: 4467 local_irq_restore(flags); 4468 4469 return ret; 4470 } 4471 4472 static int perf_event_read(struct perf_event *event, bool group) 4473 { 4474 enum perf_event_state state = READ_ONCE(event->state); 4475 int event_cpu, ret = 0; 4476 4477 /* 4478 * If event is enabled and currently active on a CPU, update the 4479 * value in the event structure: 4480 */ 4481 again: 4482 if (state == PERF_EVENT_STATE_ACTIVE) { 4483 struct perf_read_data data; 4484 4485 /* 4486 * Orders the ->state and ->oncpu loads such that if we see 4487 * ACTIVE we must also see the right ->oncpu. 4488 * 4489 * Matches the smp_wmb() from event_sched_in(). 4490 */ 4491 smp_rmb(); 4492 4493 event_cpu = READ_ONCE(event->oncpu); 4494 if ((unsigned)event_cpu >= nr_cpu_ids) 4495 return 0; 4496 4497 data = (struct perf_read_data){ 4498 .event = event, 4499 .group = group, 4500 .ret = 0, 4501 }; 4502 4503 preempt_disable(); 4504 event_cpu = __perf_event_read_cpu(event, event_cpu); 4505 4506 /* 4507 * Purposely ignore the smp_call_function_single() return 4508 * value. 4509 * 4510 * If event_cpu isn't a valid CPU it means the event got 4511 * scheduled out and that will have updated the event count. 4512 * 4513 * Therefore, either way, we'll have an up-to-date event count 4514 * after this. 4515 */ 4516 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4517 preempt_enable(); 4518 ret = data.ret; 4519 4520 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4521 struct perf_event_context *ctx = event->ctx; 4522 unsigned long flags; 4523 4524 raw_spin_lock_irqsave(&ctx->lock, flags); 4525 state = event->state; 4526 if (state != PERF_EVENT_STATE_INACTIVE) { 4527 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4528 goto again; 4529 } 4530 4531 /* 4532 * May read while context is not active (e.g., thread is 4533 * blocked), in that case we cannot update context time 4534 */ 4535 if (ctx->is_active & EVENT_TIME) { 4536 update_context_time(ctx); 4537 update_cgrp_time_from_event(event); 4538 } 4539 4540 perf_event_update_time(event); 4541 if (group) 4542 perf_event_update_sibling_time(event); 4543 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4544 } 4545 4546 return ret; 4547 } 4548 4549 /* 4550 * Initialize the perf_event context in a task_struct: 4551 */ 4552 static void __perf_event_init_context(struct perf_event_context *ctx) 4553 { 4554 raw_spin_lock_init(&ctx->lock); 4555 mutex_init(&ctx->mutex); 4556 INIT_LIST_HEAD(&ctx->active_ctx_list); 4557 perf_event_groups_init(&ctx->pinned_groups); 4558 perf_event_groups_init(&ctx->flexible_groups); 4559 INIT_LIST_HEAD(&ctx->event_list); 4560 INIT_LIST_HEAD(&ctx->pinned_active); 4561 INIT_LIST_HEAD(&ctx->flexible_active); 4562 refcount_set(&ctx->refcount, 1); 4563 } 4564 4565 static struct perf_event_context * 4566 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4567 { 4568 struct perf_event_context *ctx; 4569 4570 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4571 if (!ctx) 4572 return NULL; 4573 4574 __perf_event_init_context(ctx); 4575 if (task) 4576 ctx->task = get_task_struct(task); 4577 ctx->pmu = pmu; 4578 4579 return ctx; 4580 } 4581 4582 static struct task_struct * 4583 find_lively_task_by_vpid(pid_t vpid) 4584 { 4585 struct task_struct *task; 4586 4587 rcu_read_lock(); 4588 if (!vpid) 4589 task = current; 4590 else 4591 task = find_task_by_vpid(vpid); 4592 if (task) 4593 get_task_struct(task); 4594 rcu_read_unlock(); 4595 4596 if (!task) 4597 return ERR_PTR(-ESRCH); 4598 4599 return task; 4600 } 4601 4602 /* 4603 * Returns a matching context with refcount and pincount. 4604 */ 4605 static struct perf_event_context * 4606 find_get_context(struct pmu *pmu, struct task_struct *task, 4607 struct perf_event *event) 4608 { 4609 struct perf_event_context *ctx, *clone_ctx = NULL; 4610 struct perf_cpu_context *cpuctx; 4611 void *task_ctx_data = NULL; 4612 unsigned long flags; 4613 int ctxn, err; 4614 int cpu = event->cpu; 4615 4616 if (!task) { 4617 /* Must be root to operate on a CPU event: */ 4618 err = perf_allow_cpu(&event->attr); 4619 if (err) 4620 return ERR_PTR(err); 4621 4622 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4623 ctx = &cpuctx->ctx; 4624 get_ctx(ctx); 4625 raw_spin_lock_irqsave(&ctx->lock, flags); 4626 ++ctx->pin_count; 4627 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4628 4629 return ctx; 4630 } 4631 4632 err = -EINVAL; 4633 ctxn = pmu->task_ctx_nr; 4634 if (ctxn < 0) 4635 goto errout; 4636 4637 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4638 task_ctx_data = alloc_task_ctx_data(pmu); 4639 if (!task_ctx_data) { 4640 err = -ENOMEM; 4641 goto errout; 4642 } 4643 } 4644 4645 retry: 4646 ctx = perf_lock_task_context(task, ctxn, &flags); 4647 if (ctx) { 4648 clone_ctx = unclone_ctx(ctx); 4649 ++ctx->pin_count; 4650 4651 if (task_ctx_data && !ctx->task_ctx_data) { 4652 ctx->task_ctx_data = task_ctx_data; 4653 task_ctx_data = NULL; 4654 } 4655 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4656 4657 if (clone_ctx) 4658 put_ctx(clone_ctx); 4659 } else { 4660 ctx = alloc_perf_context(pmu, task); 4661 err = -ENOMEM; 4662 if (!ctx) 4663 goto errout; 4664 4665 if (task_ctx_data) { 4666 ctx->task_ctx_data = task_ctx_data; 4667 task_ctx_data = NULL; 4668 } 4669 4670 err = 0; 4671 mutex_lock(&task->perf_event_mutex); 4672 /* 4673 * If it has already passed perf_event_exit_task(). 4674 * we must see PF_EXITING, it takes this mutex too. 4675 */ 4676 if (task->flags & PF_EXITING) 4677 err = -ESRCH; 4678 else if (task->perf_event_ctxp[ctxn]) 4679 err = -EAGAIN; 4680 else { 4681 get_ctx(ctx); 4682 ++ctx->pin_count; 4683 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4684 } 4685 mutex_unlock(&task->perf_event_mutex); 4686 4687 if (unlikely(err)) { 4688 put_ctx(ctx); 4689 4690 if (err == -EAGAIN) 4691 goto retry; 4692 goto errout; 4693 } 4694 } 4695 4696 free_task_ctx_data(pmu, task_ctx_data); 4697 return ctx; 4698 4699 errout: 4700 free_task_ctx_data(pmu, task_ctx_data); 4701 return ERR_PTR(err); 4702 } 4703 4704 static void perf_event_free_filter(struct perf_event *event); 4705 4706 static void free_event_rcu(struct rcu_head *head) 4707 { 4708 struct perf_event *event; 4709 4710 event = container_of(head, struct perf_event, rcu_head); 4711 if (event->ns) 4712 put_pid_ns(event->ns); 4713 perf_event_free_filter(event); 4714 kmem_cache_free(perf_event_cache, event); 4715 } 4716 4717 static void ring_buffer_attach(struct perf_event *event, 4718 struct perf_buffer *rb); 4719 4720 static void detach_sb_event(struct perf_event *event) 4721 { 4722 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4723 4724 raw_spin_lock(&pel->lock); 4725 list_del_rcu(&event->sb_list); 4726 raw_spin_unlock(&pel->lock); 4727 } 4728 4729 static bool is_sb_event(struct perf_event *event) 4730 { 4731 struct perf_event_attr *attr = &event->attr; 4732 4733 if (event->parent) 4734 return false; 4735 4736 if (event->attach_state & PERF_ATTACH_TASK) 4737 return false; 4738 4739 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4740 attr->comm || attr->comm_exec || 4741 attr->task || attr->ksymbol || 4742 attr->context_switch || attr->text_poke || 4743 attr->bpf_event) 4744 return true; 4745 return false; 4746 } 4747 4748 static void unaccount_pmu_sb_event(struct perf_event *event) 4749 { 4750 if (is_sb_event(event)) 4751 detach_sb_event(event); 4752 } 4753 4754 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4755 { 4756 if (event->parent) 4757 return; 4758 4759 if (is_cgroup_event(event)) 4760 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4761 } 4762 4763 #ifdef CONFIG_NO_HZ_FULL 4764 static DEFINE_SPINLOCK(nr_freq_lock); 4765 #endif 4766 4767 static void unaccount_freq_event_nohz(void) 4768 { 4769 #ifdef CONFIG_NO_HZ_FULL 4770 spin_lock(&nr_freq_lock); 4771 if (atomic_dec_and_test(&nr_freq_events)) 4772 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4773 spin_unlock(&nr_freq_lock); 4774 #endif 4775 } 4776 4777 static void unaccount_freq_event(void) 4778 { 4779 if (tick_nohz_full_enabled()) 4780 unaccount_freq_event_nohz(); 4781 else 4782 atomic_dec(&nr_freq_events); 4783 } 4784 4785 static void unaccount_event(struct perf_event *event) 4786 { 4787 bool dec = false; 4788 4789 if (event->parent) 4790 return; 4791 4792 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 4793 dec = true; 4794 if (event->attr.mmap || event->attr.mmap_data) 4795 atomic_dec(&nr_mmap_events); 4796 if (event->attr.build_id) 4797 atomic_dec(&nr_build_id_events); 4798 if (event->attr.comm) 4799 atomic_dec(&nr_comm_events); 4800 if (event->attr.namespaces) 4801 atomic_dec(&nr_namespaces_events); 4802 if (event->attr.cgroup) 4803 atomic_dec(&nr_cgroup_events); 4804 if (event->attr.task) 4805 atomic_dec(&nr_task_events); 4806 if (event->attr.freq) 4807 unaccount_freq_event(); 4808 if (event->attr.context_switch) { 4809 dec = true; 4810 atomic_dec(&nr_switch_events); 4811 } 4812 if (is_cgroup_event(event)) 4813 dec = true; 4814 if (has_branch_stack(event)) 4815 dec = true; 4816 if (event->attr.ksymbol) 4817 atomic_dec(&nr_ksymbol_events); 4818 if (event->attr.bpf_event) 4819 atomic_dec(&nr_bpf_events); 4820 if (event->attr.text_poke) 4821 atomic_dec(&nr_text_poke_events); 4822 4823 if (dec) { 4824 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4825 schedule_delayed_work(&perf_sched_work, HZ); 4826 } 4827 4828 unaccount_event_cpu(event, event->cpu); 4829 4830 unaccount_pmu_sb_event(event); 4831 } 4832 4833 static void perf_sched_delayed(struct work_struct *work) 4834 { 4835 mutex_lock(&perf_sched_mutex); 4836 if (atomic_dec_and_test(&perf_sched_count)) 4837 static_branch_disable(&perf_sched_events); 4838 mutex_unlock(&perf_sched_mutex); 4839 } 4840 4841 /* 4842 * The following implement mutual exclusion of events on "exclusive" pmus 4843 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4844 * at a time, so we disallow creating events that might conflict, namely: 4845 * 4846 * 1) cpu-wide events in the presence of per-task events, 4847 * 2) per-task events in the presence of cpu-wide events, 4848 * 3) two matching events on the same context. 4849 * 4850 * The former two cases are handled in the allocation path (perf_event_alloc(), 4851 * _free_event()), the latter -- before the first perf_install_in_context(). 4852 */ 4853 static int exclusive_event_init(struct perf_event *event) 4854 { 4855 struct pmu *pmu = event->pmu; 4856 4857 if (!is_exclusive_pmu(pmu)) 4858 return 0; 4859 4860 /* 4861 * Prevent co-existence of per-task and cpu-wide events on the 4862 * same exclusive pmu. 4863 * 4864 * Negative pmu::exclusive_cnt means there are cpu-wide 4865 * events on this "exclusive" pmu, positive means there are 4866 * per-task events. 4867 * 4868 * Since this is called in perf_event_alloc() path, event::ctx 4869 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4870 * to mean "per-task event", because unlike other attach states it 4871 * never gets cleared. 4872 */ 4873 if (event->attach_state & PERF_ATTACH_TASK) { 4874 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4875 return -EBUSY; 4876 } else { 4877 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4878 return -EBUSY; 4879 } 4880 4881 return 0; 4882 } 4883 4884 static void exclusive_event_destroy(struct perf_event *event) 4885 { 4886 struct pmu *pmu = event->pmu; 4887 4888 if (!is_exclusive_pmu(pmu)) 4889 return; 4890 4891 /* see comment in exclusive_event_init() */ 4892 if (event->attach_state & PERF_ATTACH_TASK) 4893 atomic_dec(&pmu->exclusive_cnt); 4894 else 4895 atomic_inc(&pmu->exclusive_cnt); 4896 } 4897 4898 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4899 { 4900 if ((e1->pmu == e2->pmu) && 4901 (e1->cpu == e2->cpu || 4902 e1->cpu == -1 || 4903 e2->cpu == -1)) 4904 return true; 4905 return false; 4906 } 4907 4908 static bool exclusive_event_installable(struct perf_event *event, 4909 struct perf_event_context *ctx) 4910 { 4911 struct perf_event *iter_event; 4912 struct pmu *pmu = event->pmu; 4913 4914 lockdep_assert_held(&ctx->mutex); 4915 4916 if (!is_exclusive_pmu(pmu)) 4917 return true; 4918 4919 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4920 if (exclusive_event_match(iter_event, event)) 4921 return false; 4922 } 4923 4924 return true; 4925 } 4926 4927 static void perf_addr_filters_splice(struct perf_event *event, 4928 struct list_head *head); 4929 4930 static void _free_event(struct perf_event *event) 4931 { 4932 irq_work_sync(&event->pending); 4933 4934 unaccount_event(event); 4935 4936 security_perf_event_free(event); 4937 4938 if (event->rb) { 4939 /* 4940 * Can happen when we close an event with re-directed output. 4941 * 4942 * Since we have a 0 refcount, perf_mmap_close() will skip 4943 * over us; possibly making our ring_buffer_put() the last. 4944 */ 4945 mutex_lock(&event->mmap_mutex); 4946 ring_buffer_attach(event, NULL); 4947 mutex_unlock(&event->mmap_mutex); 4948 } 4949 4950 if (is_cgroup_event(event)) 4951 perf_detach_cgroup(event); 4952 4953 if (!event->parent) { 4954 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4955 put_callchain_buffers(); 4956 } 4957 4958 perf_event_free_bpf_prog(event); 4959 perf_addr_filters_splice(event, NULL); 4960 kfree(event->addr_filter_ranges); 4961 4962 if (event->destroy) 4963 event->destroy(event); 4964 4965 /* 4966 * Must be after ->destroy(), due to uprobe_perf_close() using 4967 * hw.target. 4968 */ 4969 if (event->hw.target) 4970 put_task_struct(event->hw.target); 4971 4972 /* 4973 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4974 * all task references must be cleaned up. 4975 */ 4976 if (event->ctx) 4977 put_ctx(event->ctx); 4978 4979 exclusive_event_destroy(event); 4980 module_put(event->pmu->module); 4981 4982 call_rcu(&event->rcu_head, free_event_rcu); 4983 } 4984 4985 /* 4986 * Used to free events which have a known refcount of 1, such as in error paths 4987 * where the event isn't exposed yet and inherited events. 4988 */ 4989 static void free_event(struct perf_event *event) 4990 { 4991 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4992 "unexpected event refcount: %ld; ptr=%p\n", 4993 atomic_long_read(&event->refcount), event)) { 4994 /* leak to avoid use-after-free */ 4995 return; 4996 } 4997 4998 _free_event(event); 4999 } 5000 5001 /* 5002 * Remove user event from the owner task. 5003 */ 5004 static void perf_remove_from_owner(struct perf_event *event) 5005 { 5006 struct task_struct *owner; 5007 5008 rcu_read_lock(); 5009 /* 5010 * Matches the smp_store_release() in perf_event_exit_task(). If we 5011 * observe !owner it means the list deletion is complete and we can 5012 * indeed free this event, otherwise we need to serialize on 5013 * owner->perf_event_mutex. 5014 */ 5015 owner = READ_ONCE(event->owner); 5016 if (owner) { 5017 /* 5018 * Since delayed_put_task_struct() also drops the last 5019 * task reference we can safely take a new reference 5020 * while holding the rcu_read_lock(). 5021 */ 5022 get_task_struct(owner); 5023 } 5024 rcu_read_unlock(); 5025 5026 if (owner) { 5027 /* 5028 * If we're here through perf_event_exit_task() we're already 5029 * holding ctx->mutex which would be an inversion wrt. the 5030 * normal lock order. 5031 * 5032 * However we can safely take this lock because its the child 5033 * ctx->mutex. 5034 */ 5035 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5036 5037 /* 5038 * We have to re-check the event->owner field, if it is cleared 5039 * we raced with perf_event_exit_task(), acquiring the mutex 5040 * ensured they're done, and we can proceed with freeing the 5041 * event. 5042 */ 5043 if (event->owner) { 5044 list_del_init(&event->owner_entry); 5045 smp_store_release(&event->owner, NULL); 5046 } 5047 mutex_unlock(&owner->perf_event_mutex); 5048 put_task_struct(owner); 5049 } 5050 } 5051 5052 static void put_event(struct perf_event *event) 5053 { 5054 if (!atomic_long_dec_and_test(&event->refcount)) 5055 return; 5056 5057 _free_event(event); 5058 } 5059 5060 /* 5061 * Kill an event dead; while event:refcount will preserve the event 5062 * object, it will not preserve its functionality. Once the last 'user' 5063 * gives up the object, we'll destroy the thing. 5064 */ 5065 int perf_event_release_kernel(struct perf_event *event) 5066 { 5067 struct perf_event_context *ctx = event->ctx; 5068 struct perf_event *child, *tmp; 5069 LIST_HEAD(free_list); 5070 5071 /* 5072 * If we got here through err_file: fput(event_file); we will not have 5073 * attached to a context yet. 5074 */ 5075 if (!ctx) { 5076 WARN_ON_ONCE(event->attach_state & 5077 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5078 goto no_ctx; 5079 } 5080 5081 if (!is_kernel_event(event)) 5082 perf_remove_from_owner(event); 5083 5084 ctx = perf_event_ctx_lock(event); 5085 WARN_ON_ONCE(ctx->parent_ctx); 5086 perf_remove_from_context(event, DETACH_GROUP); 5087 5088 raw_spin_lock_irq(&ctx->lock); 5089 /* 5090 * Mark this event as STATE_DEAD, there is no external reference to it 5091 * anymore. 5092 * 5093 * Anybody acquiring event->child_mutex after the below loop _must_ 5094 * also see this, most importantly inherit_event() which will avoid 5095 * placing more children on the list. 5096 * 5097 * Thus this guarantees that we will in fact observe and kill _ALL_ 5098 * child events. 5099 */ 5100 event->state = PERF_EVENT_STATE_DEAD; 5101 raw_spin_unlock_irq(&ctx->lock); 5102 5103 perf_event_ctx_unlock(event, ctx); 5104 5105 again: 5106 mutex_lock(&event->child_mutex); 5107 list_for_each_entry(child, &event->child_list, child_list) { 5108 5109 /* 5110 * Cannot change, child events are not migrated, see the 5111 * comment with perf_event_ctx_lock_nested(). 5112 */ 5113 ctx = READ_ONCE(child->ctx); 5114 /* 5115 * Since child_mutex nests inside ctx::mutex, we must jump 5116 * through hoops. We start by grabbing a reference on the ctx. 5117 * 5118 * Since the event cannot get freed while we hold the 5119 * child_mutex, the context must also exist and have a !0 5120 * reference count. 5121 */ 5122 get_ctx(ctx); 5123 5124 /* 5125 * Now that we have a ctx ref, we can drop child_mutex, and 5126 * acquire ctx::mutex without fear of it going away. Then we 5127 * can re-acquire child_mutex. 5128 */ 5129 mutex_unlock(&event->child_mutex); 5130 mutex_lock(&ctx->mutex); 5131 mutex_lock(&event->child_mutex); 5132 5133 /* 5134 * Now that we hold ctx::mutex and child_mutex, revalidate our 5135 * state, if child is still the first entry, it didn't get freed 5136 * and we can continue doing so. 5137 */ 5138 tmp = list_first_entry_or_null(&event->child_list, 5139 struct perf_event, child_list); 5140 if (tmp == child) { 5141 perf_remove_from_context(child, DETACH_GROUP); 5142 list_move(&child->child_list, &free_list); 5143 /* 5144 * This matches the refcount bump in inherit_event(); 5145 * this can't be the last reference. 5146 */ 5147 put_event(event); 5148 } 5149 5150 mutex_unlock(&event->child_mutex); 5151 mutex_unlock(&ctx->mutex); 5152 put_ctx(ctx); 5153 goto again; 5154 } 5155 mutex_unlock(&event->child_mutex); 5156 5157 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5158 void *var = &child->ctx->refcount; 5159 5160 list_del(&child->child_list); 5161 free_event(child); 5162 5163 /* 5164 * Wake any perf_event_free_task() waiting for this event to be 5165 * freed. 5166 */ 5167 smp_mb(); /* pairs with wait_var_event() */ 5168 wake_up_var(var); 5169 } 5170 5171 no_ctx: 5172 put_event(event); /* Must be the 'last' reference */ 5173 return 0; 5174 } 5175 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5176 5177 /* 5178 * Called when the last reference to the file is gone. 5179 */ 5180 static int perf_release(struct inode *inode, struct file *file) 5181 { 5182 perf_event_release_kernel(file->private_data); 5183 return 0; 5184 } 5185 5186 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5187 { 5188 struct perf_event *child; 5189 u64 total = 0; 5190 5191 *enabled = 0; 5192 *running = 0; 5193 5194 mutex_lock(&event->child_mutex); 5195 5196 (void)perf_event_read(event, false); 5197 total += perf_event_count(event); 5198 5199 *enabled += event->total_time_enabled + 5200 atomic64_read(&event->child_total_time_enabled); 5201 *running += event->total_time_running + 5202 atomic64_read(&event->child_total_time_running); 5203 5204 list_for_each_entry(child, &event->child_list, child_list) { 5205 (void)perf_event_read(child, false); 5206 total += perf_event_count(child); 5207 *enabled += child->total_time_enabled; 5208 *running += child->total_time_running; 5209 } 5210 mutex_unlock(&event->child_mutex); 5211 5212 return total; 5213 } 5214 5215 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5216 { 5217 struct perf_event_context *ctx; 5218 u64 count; 5219 5220 ctx = perf_event_ctx_lock(event); 5221 count = __perf_event_read_value(event, enabled, running); 5222 perf_event_ctx_unlock(event, ctx); 5223 5224 return count; 5225 } 5226 EXPORT_SYMBOL_GPL(perf_event_read_value); 5227 5228 static int __perf_read_group_add(struct perf_event *leader, 5229 u64 read_format, u64 *values) 5230 { 5231 struct perf_event_context *ctx = leader->ctx; 5232 struct perf_event *sub; 5233 unsigned long flags; 5234 int n = 1; /* skip @nr */ 5235 int ret; 5236 5237 ret = perf_event_read(leader, true); 5238 if (ret) 5239 return ret; 5240 5241 raw_spin_lock_irqsave(&ctx->lock, flags); 5242 5243 /* 5244 * Since we co-schedule groups, {enabled,running} times of siblings 5245 * will be identical to those of the leader, so we only publish one 5246 * set. 5247 */ 5248 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5249 values[n++] += leader->total_time_enabled + 5250 atomic64_read(&leader->child_total_time_enabled); 5251 } 5252 5253 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5254 values[n++] += leader->total_time_running + 5255 atomic64_read(&leader->child_total_time_running); 5256 } 5257 5258 /* 5259 * Write {count,id} tuples for every sibling. 5260 */ 5261 values[n++] += perf_event_count(leader); 5262 if (read_format & PERF_FORMAT_ID) 5263 values[n++] = primary_event_id(leader); 5264 5265 for_each_sibling_event(sub, leader) { 5266 values[n++] += perf_event_count(sub); 5267 if (read_format & PERF_FORMAT_ID) 5268 values[n++] = primary_event_id(sub); 5269 } 5270 5271 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5272 return 0; 5273 } 5274 5275 static int perf_read_group(struct perf_event *event, 5276 u64 read_format, char __user *buf) 5277 { 5278 struct perf_event *leader = event->group_leader, *child; 5279 struct perf_event_context *ctx = leader->ctx; 5280 int ret; 5281 u64 *values; 5282 5283 lockdep_assert_held(&ctx->mutex); 5284 5285 values = kzalloc(event->read_size, GFP_KERNEL); 5286 if (!values) 5287 return -ENOMEM; 5288 5289 values[0] = 1 + leader->nr_siblings; 5290 5291 /* 5292 * By locking the child_mutex of the leader we effectively 5293 * lock the child list of all siblings.. XXX explain how. 5294 */ 5295 mutex_lock(&leader->child_mutex); 5296 5297 ret = __perf_read_group_add(leader, read_format, values); 5298 if (ret) 5299 goto unlock; 5300 5301 list_for_each_entry(child, &leader->child_list, child_list) { 5302 ret = __perf_read_group_add(child, read_format, values); 5303 if (ret) 5304 goto unlock; 5305 } 5306 5307 mutex_unlock(&leader->child_mutex); 5308 5309 ret = event->read_size; 5310 if (copy_to_user(buf, values, event->read_size)) 5311 ret = -EFAULT; 5312 goto out; 5313 5314 unlock: 5315 mutex_unlock(&leader->child_mutex); 5316 out: 5317 kfree(values); 5318 return ret; 5319 } 5320 5321 static int perf_read_one(struct perf_event *event, 5322 u64 read_format, char __user *buf) 5323 { 5324 u64 enabled, running; 5325 u64 values[4]; 5326 int n = 0; 5327 5328 values[n++] = __perf_event_read_value(event, &enabled, &running); 5329 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5330 values[n++] = enabled; 5331 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5332 values[n++] = running; 5333 if (read_format & PERF_FORMAT_ID) 5334 values[n++] = primary_event_id(event); 5335 5336 if (copy_to_user(buf, values, n * sizeof(u64))) 5337 return -EFAULT; 5338 5339 return n * sizeof(u64); 5340 } 5341 5342 static bool is_event_hup(struct perf_event *event) 5343 { 5344 bool no_children; 5345 5346 if (event->state > PERF_EVENT_STATE_EXIT) 5347 return false; 5348 5349 mutex_lock(&event->child_mutex); 5350 no_children = list_empty(&event->child_list); 5351 mutex_unlock(&event->child_mutex); 5352 return no_children; 5353 } 5354 5355 /* 5356 * Read the performance event - simple non blocking version for now 5357 */ 5358 static ssize_t 5359 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5360 { 5361 u64 read_format = event->attr.read_format; 5362 int ret; 5363 5364 /* 5365 * Return end-of-file for a read on an event that is in 5366 * error state (i.e. because it was pinned but it couldn't be 5367 * scheduled on to the CPU at some point). 5368 */ 5369 if (event->state == PERF_EVENT_STATE_ERROR) 5370 return 0; 5371 5372 if (count < event->read_size) 5373 return -ENOSPC; 5374 5375 WARN_ON_ONCE(event->ctx->parent_ctx); 5376 if (read_format & PERF_FORMAT_GROUP) 5377 ret = perf_read_group(event, read_format, buf); 5378 else 5379 ret = perf_read_one(event, read_format, buf); 5380 5381 return ret; 5382 } 5383 5384 static ssize_t 5385 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5386 { 5387 struct perf_event *event = file->private_data; 5388 struct perf_event_context *ctx; 5389 int ret; 5390 5391 ret = security_perf_event_read(event); 5392 if (ret) 5393 return ret; 5394 5395 ctx = perf_event_ctx_lock(event); 5396 ret = __perf_read(event, buf, count); 5397 perf_event_ctx_unlock(event, ctx); 5398 5399 return ret; 5400 } 5401 5402 static __poll_t perf_poll(struct file *file, poll_table *wait) 5403 { 5404 struct perf_event *event = file->private_data; 5405 struct perf_buffer *rb; 5406 __poll_t events = EPOLLHUP; 5407 5408 poll_wait(file, &event->waitq, wait); 5409 5410 if (is_event_hup(event)) 5411 return events; 5412 5413 /* 5414 * Pin the event->rb by taking event->mmap_mutex; otherwise 5415 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5416 */ 5417 mutex_lock(&event->mmap_mutex); 5418 rb = event->rb; 5419 if (rb) 5420 events = atomic_xchg(&rb->poll, 0); 5421 mutex_unlock(&event->mmap_mutex); 5422 return events; 5423 } 5424 5425 static void _perf_event_reset(struct perf_event *event) 5426 { 5427 (void)perf_event_read(event, false); 5428 local64_set(&event->count, 0); 5429 perf_event_update_userpage(event); 5430 } 5431 5432 /* Assume it's not an event with inherit set. */ 5433 u64 perf_event_pause(struct perf_event *event, bool reset) 5434 { 5435 struct perf_event_context *ctx; 5436 u64 count; 5437 5438 ctx = perf_event_ctx_lock(event); 5439 WARN_ON_ONCE(event->attr.inherit); 5440 _perf_event_disable(event); 5441 count = local64_read(&event->count); 5442 if (reset) 5443 local64_set(&event->count, 0); 5444 perf_event_ctx_unlock(event, ctx); 5445 5446 return count; 5447 } 5448 EXPORT_SYMBOL_GPL(perf_event_pause); 5449 5450 /* 5451 * Holding the top-level event's child_mutex means that any 5452 * descendant process that has inherited this event will block 5453 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5454 * task existence requirements of perf_event_enable/disable. 5455 */ 5456 static void perf_event_for_each_child(struct perf_event *event, 5457 void (*func)(struct perf_event *)) 5458 { 5459 struct perf_event *child; 5460 5461 WARN_ON_ONCE(event->ctx->parent_ctx); 5462 5463 mutex_lock(&event->child_mutex); 5464 func(event); 5465 list_for_each_entry(child, &event->child_list, child_list) 5466 func(child); 5467 mutex_unlock(&event->child_mutex); 5468 } 5469 5470 static void perf_event_for_each(struct perf_event *event, 5471 void (*func)(struct perf_event *)) 5472 { 5473 struct perf_event_context *ctx = event->ctx; 5474 struct perf_event *sibling; 5475 5476 lockdep_assert_held(&ctx->mutex); 5477 5478 event = event->group_leader; 5479 5480 perf_event_for_each_child(event, func); 5481 for_each_sibling_event(sibling, event) 5482 perf_event_for_each_child(sibling, func); 5483 } 5484 5485 static void __perf_event_period(struct perf_event *event, 5486 struct perf_cpu_context *cpuctx, 5487 struct perf_event_context *ctx, 5488 void *info) 5489 { 5490 u64 value = *((u64 *)info); 5491 bool active; 5492 5493 if (event->attr.freq) { 5494 event->attr.sample_freq = value; 5495 } else { 5496 event->attr.sample_period = value; 5497 event->hw.sample_period = value; 5498 } 5499 5500 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5501 if (active) { 5502 perf_pmu_disable(ctx->pmu); 5503 /* 5504 * We could be throttled; unthrottle now to avoid the tick 5505 * trying to unthrottle while we already re-started the event. 5506 */ 5507 if (event->hw.interrupts == MAX_INTERRUPTS) { 5508 event->hw.interrupts = 0; 5509 perf_log_throttle(event, 1); 5510 } 5511 event->pmu->stop(event, PERF_EF_UPDATE); 5512 } 5513 5514 local64_set(&event->hw.period_left, 0); 5515 5516 if (active) { 5517 event->pmu->start(event, PERF_EF_RELOAD); 5518 perf_pmu_enable(ctx->pmu); 5519 } 5520 } 5521 5522 static int perf_event_check_period(struct perf_event *event, u64 value) 5523 { 5524 return event->pmu->check_period(event, value); 5525 } 5526 5527 static int _perf_event_period(struct perf_event *event, u64 value) 5528 { 5529 if (!is_sampling_event(event)) 5530 return -EINVAL; 5531 5532 if (!value) 5533 return -EINVAL; 5534 5535 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5536 return -EINVAL; 5537 5538 if (perf_event_check_period(event, value)) 5539 return -EINVAL; 5540 5541 if (!event->attr.freq && (value & (1ULL << 63))) 5542 return -EINVAL; 5543 5544 event_function_call(event, __perf_event_period, &value); 5545 5546 return 0; 5547 } 5548 5549 int perf_event_period(struct perf_event *event, u64 value) 5550 { 5551 struct perf_event_context *ctx; 5552 int ret; 5553 5554 ctx = perf_event_ctx_lock(event); 5555 ret = _perf_event_period(event, value); 5556 perf_event_ctx_unlock(event, ctx); 5557 5558 return ret; 5559 } 5560 EXPORT_SYMBOL_GPL(perf_event_period); 5561 5562 static const struct file_operations perf_fops; 5563 5564 static inline int perf_fget_light(int fd, struct fd *p) 5565 { 5566 struct fd f = fdget(fd); 5567 if (!f.file) 5568 return -EBADF; 5569 5570 if (f.file->f_op != &perf_fops) { 5571 fdput(f); 5572 return -EBADF; 5573 } 5574 *p = f; 5575 return 0; 5576 } 5577 5578 static int perf_event_set_output(struct perf_event *event, 5579 struct perf_event *output_event); 5580 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5581 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5582 struct perf_event_attr *attr); 5583 5584 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5585 { 5586 void (*func)(struct perf_event *); 5587 u32 flags = arg; 5588 5589 switch (cmd) { 5590 case PERF_EVENT_IOC_ENABLE: 5591 func = _perf_event_enable; 5592 break; 5593 case PERF_EVENT_IOC_DISABLE: 5594 func = _perf_event_disable; 5595 break; 5596 case PERF_EVENT_IOC_RESET: 5597 func = _perf_event_reset; 5598 break; 5599 5600 case PERF_EVENT_IOC_REFRESH: 5601 return _perf_event_refresh(event, arg); 5602 5603 case PERF_EVENT_IOC_PERIOD: 5604 { 5605 u64 value; 5606 5607 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5608 return -EFAULT; 5609 5610 return _perf_event_period(event, value); 5611 } 5612 case PERF_EVENT_IOC_ID: 5613 { 5614 u64 id = primary_event_id(event); 5615 5616 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5617 return -EFAULT; 5618 return 0; 5619 } 5620 5621 case PERF_EVENT_IOC_SET_OUTPUT: 5622 { 5623 int ret; 5624 if (arg != -1) { 5625 struct perf_event *output_event; 5626 struct fd output; 5627 ret = perf_fget_light(arg, &output); 5628 if (ret) 5629 return ret; 5630 output_event = output.file->private_data; 5631 ret = perf_event_set_output(event, output_event); 5632 fdput(output); 5633 } else { 5634 ret = perf_event_set_output(event, NULL); 5635 } 5636 return ret; 5637 } 5638 5639 case PERF_EVENT_IOC_SET_FILTER: 5640 return perf_event_set_filter(event, (void __user *)arg); 5641 5642 case PERF_EVENT_IOC_SET_BPF: 5643 { 5644 struct bpf_prog *prog; 5645 int err; 5646 5647 prog = bpf_prog_get(arg); 5648 if (IS_ERR(prog)) 5649 return PTR_ERR(prog); 5650 5651 err = perf_event_set_bpf_prog(event, prog, 0); 5652 if (err) { 5653 bpf_prog_put(prog); 5654 return err; 5655 } 5656 5657 return 0; 5658 } 5659 5660 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5661 struct perf_buffer *rb; 5662 5663 rcu_read_lock(); 5664 rb = rcu_dereference(event->rb); 5665 if (!rb || !rb->nr_pages) { 5666 rcu_read_unlock(); 5667 return -EINVAL; 5668 } 5669 rb_toggle_paused(rb, !!arg); 5670 rcu_read_unlock(); 5671 return 0; 5672 } 5673 5674 case PERF_EVENT_IOC_QUERY_BPF: 5675 return perf_event_query_prog_array(event, (void __user *)arg); 5676 5677 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5678 struct perf_event_attr new_attr; 5679 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5680 &new_attr); 5681 5682 if (err) 5683 return err; 5684 5685 return perf_event_modify_attr(event, &new_attr); 5686 } 5687 default: 5688 return -ENOTTY; 5689 } 5690 5691 if (flags & PERF_IOC_FLAG_GROUP) 5692 perf_event_for_each(event, func); 5693 else 5694 perf_event_for_each_child(event, func); 5695 5696 return 0; 5697 } 5698 5699 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5700 { 5701 struct perf_event *event = file->private_data; 5702 struct perf_event_context *ctx; 5703 long ret; 5704 5705 /* Treat ioctl like writes as it is likely a mutating operation. */ 5706 ret = security_perf_event_write(event); 5707 if (ret) 5708 return ret; 5709 5710 ctx = perf_event_ctx_lock(event); 5711 ret = _perf_ioctl(event, cmd, arg); 5712 perf_event_ctx_unlock(event, ctx); 5713 5714 return ret; 5715 } 5716 5717 #ifdef CONFIG_COMPAT 5718 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5719 unsigned long arg) 5720 { 5721 switch (_IOC_NR(cmd)) { 5722 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5723 case _IOC_NR(PERF_EVENT_IOC_ID): 5724 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5725 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5726 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5727 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5728 cmd &= ~IOCSIZE_MASK; 5729 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5730 } 5731 break; 5732 } 5733 return perf_ioctl(file, cmd, arg); 5734 } 5735 #else 5736 # define perf_compat_ioctl NULL 5737 #endif 5738 5739 int perf_event_task_enable(void) 5740 { 5741 struct perf_event_context *ctx; 5742 struct perf_event *event; 5743 5744 mutex_lock(¤t->perf_event_mutex); 5745 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5746 ctx = perf_event_ctx_lock(event); 5747 perf_event_for_each_child(event, _perf_event_enable); 5748 perf_event_ctx_unlock(event, ctx); 5749 } 5750 mutex_unlock(¤t->perf_event_mutex); 5751 5752 return 0; 5753 } 5754 5755 int perf_event_task_disable(void) 5756 { 5757 struct perf_event_context *ctx; 5758 struct perf_event *event; 5759 5760 mutex_lock(¤t->perf_event_mutex); 5761 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5762 ctx = perf_event_ctx_lock(event); 5763 perf_event_for_each_child(event, _perf_event_disable); 5764 perf_event_ctx_unlock(event, ctx); 5765 } 5766 mutex_unlock(¤t->perf_event_mutex); 5767 5768 return 0; 5769 } 5770 5771 static int perf_event_index(struct perf_event *event) 5772 { 5773 if (event->hw.state & PERF_HES_STOPPED) 5774 return 0; 5775 5776 if (event->state != PERF_EVENT_STATE_ACTIVE) 5777 return 0; 5778 5779 return event->pmu->event_idx(event); 5780 } 5781 5782 static void perf_event_init_userpage(struct perf_event *event) 5783 { 5784 struct perf_event_mmap_page *userpg; 5785 struct perf_buffer *rb; 5786 5787 rcu_read_lock(); 5788 rb = rcu_dereference(event->rb); 5789 if (!rb) 5790 goto unlock; 5791 5792 userpg = rb->user_page; 5793 5794 /* Allow new userspace to detect that bit 0 is deprecated */ 5795 userpg->cap_bit0_is_deprecated = 1; 5796 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5797 userpg->data_offset = PAGE_SIZE; 5798 userpg->data_size = perf_data_size(rb); 5799 5800 unlock: 5801 rcu_read_unlock(); 5802 } 5803 5804 void __weak arch_perf_update_userpage( 5805 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5806 { 5807 } 5808 5809 /* 5810 * Callers need to ensure there can be no nesting of this function, otherwise 5811 * the seqlock logic goes bad. We can not serialize this because the arch 5812 * code calls this from NMI context. 5813 */ 5814 void perf_event_update_userpage(struct perf_event *event) 5815 { 5816 struct perf_event_mmap_page *userpg; 5817 struct perf_buffer *rb; 5818 u64 enabled, running, now; 5819 5820 rcu_read_lock(); 5821 rb = rcu_dereference(event->rb); 5822 if (!rb) 5823 goto unlock; 5824 5825 /* 5826 * compute total_time_enabled, total_time_running 5827 * based on snapshot values taken when the event 5828 * was last scheduled in. 5829 * 5830 * we cannot simply called update_context_time() 5831 * because of locking issue as we can be called in 5832 * NMI context 5833 */ 5834 calc_timer_values(event, &now, &enabled, &running); 5835 5836 userpg = rb->user_page; 5837 /* 5838 * Disable preemption to guarantee consistent time stamps are stored to 5839 * the user page. 5840 */ 5841 preempt_disable(); 5842 ++userpg->lock; 5843 barrier(); 5844 userpg->index = perf_event_index(event); 5845 userpg->offset = perf_event_count(event); 5846 if (userpg->index) 5847 userpg->offset -= local64_read(&event->hw.prev_count); 5848 5849 userpg->time_enabled = enabled + 5850 atomic64_read(&event->child_total_time_enabled); 5851 5852 userpg->time_running = running + 5853 atomic64_read(&event->child_total_time_running); 5854 5855 arch_perf_update_userpage(event, userpg, now); 5856 5857 barrier(); 5858 ++userpg->lock; 5859 preempt_enable(); 5860 unlock: 5861 rcu_read_unlock(); 5862 } 5863 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5864 5865 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5866 { 5867 struct perf_event *event = vmf->vma->vm_file->private_data; 5868 struct perf_buffer *rb; 5869 vm_fault_t ret = VM_FAULT_SIGBUS; 5870 5871 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5872 if (vmf->pgoff == 0) 5873 ret = 0; 5874 return ret; 5875 } 5876 5877 rcu_read_lock(); 5878 rb = rcu_dereference(event->rb); 5879 if (!rb) 5880 goto unlock; 5881 5882 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5883 goto unlock; 5884 5885 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5886 if (!vmf->page) 5887 goto unlock; 5888 5889 get_page(vmf->page); 5890 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5891 vmf->page->index = vmf->pgoff; 5892 5893 ret = 0; 5894 unlock: 5895 rcu_read_unlock(); 5896 5897 return ret; 5898 } 5899 5900 static void ring_buffer_attach(struct perf_event *event, 5901 struct perf_buffer *rb) 5902 { 5903 struct perf_buffer *old_rb = NULL; 5904 unsigned long flags; 5905 5906 WARN_ON_ONCE(event->parent); 5907 5908 if (event->rb) { 5909 /* 5910 * Should be impossible, we set this when removing 5911 * event->rb_entry and wait/clear when adding event->rb_entry. 5912 */ 5913 WARN_ON_ONCE(event->rcu_pending); 5914 5915 old_rb = event->rb; 5916 spin_lock_irqsave(&old_rb->event_lock, flags); 5917 list_del_rcu(&event->rb_entry); 5918 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5919 5920 event->rcu_batches = get_state_synchronize_rcu(); 5921 event->rcu_pending = 1; 5922 } 5923 5924 if (rb) { 5925 if (event->rcu_pending) { 5926 cond_synchronize_rcu(event->rcu_batches); 5927 event->rcu_pending = 0; 5928 } 5929 5930 spin_lock_irqsave(&rb->event_lock, flags); 5931 list_add_rcu(&event->rb_entry, &rb->event_list); 5932 spin_unlock_irqrestore(&rb->event_lock, flags); 5933 } 5934 5935 /* 5936 * Avoid racing with perf_mmap_close(AUX): stop the event 5937 * before swizzling the event::rb pointer; if it's getting 5938 * unmapped, its aux_mmap_count will be 0 and it won't 5939 * restart. See the comment in __perf_pmu_output_stop(). 5940 * 5941 * Data will inevitably be lost when set_output is done in 5942 * mid-air, but then again, whoever does it like this is 5943 * not in for the data anyway. 5944 */ 5945 if (has_aux(event)) 5946 perf_event_stop(event, 0); 5947 5948 rcu_assign_pointer(event->rb, rb); 5949 5950 if (old_rb) { 5951 ring_buffer_put(old_rb); 5952 /* 5953 * Since we detached before setting the new rb, so that we 5954 * could attach the new rb, we could have missed a wakeup. 5955 * Provide it now. 5956 */ 5957 wake_up_all(&event->waitq); 5958 } 5959 } 5960 5961 static void ring_buffer_wakeup(struct perf_event *event) 5962 { 5963 struct perf_buffer *rb; 5964 5965 if (event->parent) 5966 event = event->parent; 5967 5968 rcu_read_lock(); 5969 rb = rcu_dereference(event->rb); 5970 if (rb) { 5971 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5972 wake_up_all(&event->waitq); 5973 } 5974 rcu_read_unlock(); 5975 } 5976 5977 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5978 { 5979 struct perf_buffer *rb; 5980 5981 if (event->parent) 5982 event = event->parent; 5983 5984 rcu_read_lock(); 5985 rb = rcu_dereference(event->rb); 5986 if (rb) { 5987 if (!refcount_inc_not_zero(&rb->refcount)) 5988 rb = NULL; 5989 } 5990 rcu_read_unlock(); 5991 5992 return rb; 5993 } 5994 5995 void ring_buffer_put(struct perf_buffer *rb) 5996 { 5997 if (!refcount_dec_and_test(&rb->refcount)) 5998 return; 5999 6000 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6001 6002 call_rcu(&rb->rcu_head, rb_free_rcu); 6003 } 6004 6005 static void perf_mmap_open(struct vm_area_struct *vma) 6006 { 6007 struct perf_event *event = vma->vm_file->private_data; 6008 6009 atomic_inc(&event->mmap_count); 6010 atomic_inc(&event->rb->mmap_count); 6011 6012 if (vma->vm_pgoff) 6013 atomic_inc(&event->rb->aux_mmap_count); 6014 6015 if (event->pmu->event_mapped) 6016 event->pmu->event_mapped(event, vma->vm_mm); 6017 } 6018 6019 static void perf_pmu_output_stop(struct perf_event *event); 6020 6021 /* 6022 * A buffer can be mmap()ed multiple times; either directly through the same 6023 * event, or through other events by use of perf_event_set_output(). 6024 * 6025 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6026 * the buffer here, where we still have a VM context. This means we need 6027 * to detach all events redirecting to us. 6028 */ 6029 static void perf_mmap_close(struct vm_area_struct *vma) 6030 { 6031 struct perf_event *event = vma->vm_file->private_data; 6032 struct perf_buffer *rb = ring_buffer_get(event); 6033 struct user_struct *mmap_user = rb->mmap_user; 6034 int mmap_locked = rb->mmap_locked; 6035 unsigned long size = perf_data_size(rb); 6036 bool detach_rest = false; 6037 6038 if (event->pmu->event_unmapped) 6039 event->pmu->event_unmapped(event, vma->vm_mm); 6040 6041 /* 6042 * rb->aux_mmap_count will always drop before rb->mmap_count and 6043 * event->mmap_count, so it is ok to use event->mmap_mutex to 6044 * serialize with perf_mmap here. 6045 */ 6046 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6047 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6048 /* 6049 * Stop all AUX events that are writing to this buffer, 6050 * so that we can free its AUX pages and corresponding PMU 6051 * data. Note that after rb::aux_mmap_count dropped to zero, 6052 * they won't start any more (see perf_aux_output_begin()). 6053 */ 6054 perf_pmu_output_stop(event); 6055 6056 /* now it's safe to free the pages */ 6057 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6058 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6059 6060 /* this has to be the last one */ 6061 rb_free_aux(rb); 6062 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6063 6064 mutex_unlock(&event->mmap_mutex); 6065 } 6066 6067 if (atomic_dec_and_test(&rb->mmap_count)) 6068 detach_rest = true; 6069 6070 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6071 goto out_put; 6072 6073 ring_buffer_attach(event, NULL); 6074 mutex_unlock(&event->mmap_mutex); 6075 6076 /* If there's still other mmap()s of this buffer, we're done. */ 6077 if (!detach_rest) 6078 goto out_put; 6079 6080 /* 6081 * No other mmap()s, detach from all other events that might redirect 6082 * into the now unreachable buffer. Somewhat complicated by the 6083 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6084 */ 6085 again: 6086 rcu_read_lock(); 6087 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6088 if (!atomic_long_inc_not_zero(&event->refcount)) { 6089 /* 6090 * This event is en-route to free_event() which will 6091 * detach it and remove it from the list. 6092 */ 6093 continue; 6094 } 6095 rcu_read_unlock(); 6096 6097 mutex_lock(&event->mmap_mutex); 6098 /* 6099 * Check we didn't race with perf_event_set_output() which can 6100 * swizzle the rb from under us while we were waiting to 6101 * acquire mmap_mutex. 6102 * 6103 * If we find a different rb; ignore this event, a next 6104 * iteration will no longer find it on the list. We have to 6105 * still restart the iteration to make sure we're not now 6106 * iterating the wrong list. 6107 */ 6108 if (event->rb == rb) 6109 ring_buffer_attach(event, NULL); 6110 6111 mutex_unlock(&event->mmap_mutex); 6112 put_event(event); 6113 6114 /* 6115 * Restart the iteration; either we're on the wrong list or 6116 * destroyed its integrity by doing a deletion. 6117 */ 6118 goto again; 6119 } 6120 rcu_read_unlock(); 6121 6122 /* 6123 * It could be there's still a few 0-ref events on the list; they'll 6124 * get cleaned up by free_event() -- they'll also still have their 6125 * ref on the rb and will free it whenever they are done with it. 6126 * 6127 * Aside from that, this buffer is 'fully' detached and unmapped, 6128 * undo the VM accounting. 6129 */ 6130 6131 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6132 &mmap_user->locked_vm); 6133 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6134 free_uid(mmap_user); 6135 6136 out_put: 6137 ring_buffer_put(rb); /* could be last */ 6138 } 6139 6140 static const struct vm_operations_struct perf_mmap_vmops = { 6141 .open = perf_mmap_open, 6142 .close = perf_mmap_close, /* non mergeable */ 6143 .fault = perf_mmap_fault, 6144 .page_mkwrite = perf_mmap_fault, 6145 }; 6146 6147 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6148 { 6149 struct perf_event *event = file->private_data; 6150 unsigned long user_locked, user_lock_limit; 6151 struct user_struct *user = current_user(); 6152 struct perf_buffer *rb = NULL; 6153 unsigned long locked, lock_limit; 6154 unsigned long vma_size; 6155 unsigned long nr_pages; 6156 long user_extra = 0, extra = 0; 6157 int ret = 0, flags = 0; 6158 6159 /* 6160 * Don't allow mmap() of inherited per-task counters. This would 6161 * create a performance issue due to all children writing to the 6162 * same rb. 6163 */ 6164 if (event->cpu == -1 && event->attr.inherit) 6165 return -EINVAL; 6166 6167 if (!(vma->vm_flags & VM_SHARED)) 6168 return -EINVAL; 6169 6170 ret = security_perf_event_read(event); 6171 if (ret) 6172 return ret; 6173 6174 vma_size = vma->vm_end - vma->vm_start; 6175 6176 if (vma->vm_pgoff == 0) { 6177 nr_pages = (vma_size / PAGE_SIZE) - 1; 6178 } else { 6179 /* 6180 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6181 * mapped, all subsequent mappings should have the same size 6182 * and offset. Must be above the normal perf buffer. 6183 */ 6184 u64 aux_offset, aux_size; 6185 6186 if (!event->rb) 6187 return -EINVAL; 6188 6189 nr_pages = vma_size / PAGE_SIZE; 6190 6191 mutex_lock(&event->mmap_mutex); 6192 ret = -EINVAL; 6193 6194 rb = event->rb; 6195 if (!rb) 6196 goto aux_unlock; 6197 6198 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6199 aux_size = READ_ONCE(rb->user_page->aux_size); 6200 6201 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6202 goto aux_unlock; 6203 6204 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6205 goto aux_unlock; 6206 6207 /* already mapped with a different offset */ 6208 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6209 goto aux_unlock; 6210 6211 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6212 goto aux_unlock; 6213 6214 /* already mapped with a different size */ 6215 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6216 goto aux_unlock; 6217 6218 if (!is_power_of_2(nr_pages)) 6219 goto aux_unlock; 6220 6221 if (!atomic_inc_not_zero(&rb->mmap_count)) 6222 goto aux_unlock; 6223 6224 if (rb_has_aux(rb)) { 6225 atomic_inc(&rb->aux_mmap_count); 6226 ret = 0; 6227 goto unlock; 6228 } 6229 6230 atomic_set(&rb->aux_mmap_count, 1); 6231 user_extra = nr_pages; 6232 6233 goto accounting; 6234 } 6235 6236 /* 6237 * If we have rb pages ensure they're a power-of-two number, so we 6238 * can do bitmasks instead of modulo. 6239 */ 6240 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6241 return -EINVAL; 6242 6243 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6244 return -EINVAL; 6245 6246 WARN_ON_ONCE(event->ctx->parent_ctx); 6247 again: 6248 mutex_lock(&event->mmap_mutex); 6249 if (event->rb) { 6250 if (event->rb->nr_pages != nr_pages) { 6251 ret = -EINVAL; 6252 goto unlock; 6253 } 6254 6255 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6256 /* 6257 * Raced against perf_mmap_close() through 6258 * perf_event_set_output(). Try again, hope for better 6259 * luck. 6260 */ 6261 mutex_unlock(&event->mmap_mutex); 6262 goto again; 6263 } 6264 6265 goto unlock; 6266 } 6267 6268 user_extra = nr_pages + 1; 6269 6270 accounting: 6271 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6272 6273 /* 6274 * Increase the limit linearly with more CPUs: 6275 */ 6276 user_lock_limit *= num_online_cpus(); 6277 6278 user_locked = atomic_long_read(&user->locked_vm); 6279 6280 /* 6281 * sysctl_perf_event_mlock may have changed, so that 6282 * user->locked_vm > user_lock_limit 6283 */ 6284 if (user_locked > user_lock_limit) 6285 user_locked = user_lock_limit; 6286 user_locked += user_extra; 6287 6288 if (user_locked > user_lock_limit) { 6289 /* 6290 * charge locked_vm until it hits user_lock_limit; 6291 * charge the rest from pinned_vm 6292 */ 6293 extra = user_locked - user_lock_limit; 6294 user_extra -= extra; 6295 } 6296 6297 lock_limit = rlimit(RLIMIT_MEMLOCK); 6298 lock_limit >>= PAGE_SHIFT; 6299 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6300 6301 if ((locked > lock_limit) && perf_is_paranoid() && 6302 !capable(CAP_IPC_LOCK)) { 6303 ret = -EPERM; 6304 goto unlock; 6305 } 6306 6307 WARN_ON(!rb && event->rb); 6308 6309 if (vma->vm_flags & VM_WRITE) 6310 flags |= RING_BUFFER_WRITABLE; 6311 6312 if (!rb) { 6313 rb = rb_alloc(nr_pages, 6314 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6315 event->cpu, flags); 6316 6317 if (!rb) { 6318 ret = -ENOMEM; 6319 goto unlock; 6320 } 6321 6322 atomic_set(&rb->mmap_count, 1); 6323 rb->mmap_user = get_current_user(); 6324 rb->mmap_locked = extra; 6325 6326 ring_buffer_attach(event, rb); 6327 6328 perf_event_update_time(event); 6329 perf_event_init_userpage(event); 6330 perf_event_update_userpage(event); 6331 } else { 6332 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6333 event->attr.aux_watermark, flags); 6334 if (!ret) 6335 rb->aux_mmap_locked = extra; 6336 } 6337 6338 unlock: 6339 if (!ret) { 6340 atomic_long_add(user_extra, &user->locked_vm); 6341 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6342 6343 atomic_inc(&event->mmap_count); 6344 } else if (rb) { 6345 atomic_dec(&rb->mmap_count); 6346 } 6347 aux_unlock: 6348 mutex_unlock(&event->mmap_mutex); 6349 6350 /* 6351 * Since pinned accounting is per vm we cannot allow fork() to copy our 6352 * vma. 6353 */ 6354 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6355 vma->vm_ops = &perf_mmap_vmops; 6356 6357 if (event->pmu->event_mapped) 6358 event->pmu->event_mapped(event, vma->vm_mm); 6359 6360 return ret; 6361 } 6362 6363 static int perf_fasync(int fd, struct file *filp, int on) 6364 { 6365 struct inode *inode = file_inode(filp); 6366 struct perf_event *event = filp->private_data; 6367 int retval; 6368 6369 inode_lock(inode); 6370 retval = fasync_helper(fd, filp, on, &event->fasync); 6371 inode_unlock(inode); 6372 6373 if (retval < 0) 6374 return retval; 6375 6376 return 0; 6377 } 6378 6379 static const struct file_operations perf_fops = { 6380 .llseek = no_llseek, 6381 .release = perf_release, 6382 .read = perf_read, 6383 .poll = perf_poll, 6384 .unlocked_ioctl = perf_ioctl, 6385 .compat_ioctl = perf_compat_ioctl, 6386 .mmap = perf_mmap, 6387 .fasync = perf_fasync, 6388 }; 6389 6390 /* 6391 * Perf event wakeup 6392 * 6393 * If there's data, ensure we set the poll() state and publish everything 6394 * to user-space before waking everybody up. 6395 */ 6396 6397 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6398 { 6399 /* only the parent has fasync state */ 6400 if (event->parent) 6401 event = event->parent; 6402 return &event->fasync; 6403 } 6404 6405 void perf_event_wakeup(struct perf_event *event) 6406 { 6407 ring_buffer_wakeup(event); 6408 6409 if (event->pending_kill) { 6410 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6411 event->pending_kill = 0; 6412 } 6413 } 6414 6415 static void perf_sigtrap(struct perf_event *event) 6416 { 6417 /* 6418 * We'd expect this to only occur if the irq_work is delayed and either 6419 * ctx->task or current has changed in the meantime. This can be the 6420 * case on architectures that do not implement arch_irq_work_raise(). 6421 */ 6422 if (WARN_ON_ONCE(event->ctx->task != current)) 6423 return; 6424 6425 /* 6426 * perf_pending_event() can race with the task exiting. 6427 */ 6428 if (current->flags & PF_EXITING) 6429 return; 6430 6431 force_sig_perf((void __user *)event->pending_addr, 6432 event->attr.type, event->attr.sig_data); 6433 } 6434 6435 static void perf_pending_event_disable(struct perf_event *event) 6436 { 6437 int cpu = READ_ONCE(event->pending_disable); 6438 6439 if (cpu < 0) 6440 return; 6441 6442 if (cpu == smp_processor_id()) { 6443 WRITE_ONCE(event->pending_disable, -1); 6444 6445 if (event->attr.sigtrap) { 6446 perf_sigtrap(event); 6447 atomic_set_release(&event->event_limit, 1); /* rearm event */ 6448 return; 6449 } 6450 6451 perf_event_disable_local(event); 6452 return; 6453 } 6454 6455 /* 6456 * CPU-A CPU-B 6457 * 6458 * perf_event_disable_inatomic() 6459 * @pending_disable = CPU-A; 6460 * irq_work_queue(); 6461 * 6462 * sched-out 6463 * @pending_disable = -1; 6464 * 6465 * sched-in 6466 * perf_event_disable_inatomic() 6467 * @pending_disable = CPU-B; 6468 * irq_work_queue(); // FAILS 6469 * 6470 * irq_work_run() 6471 * perf_pending_event() 6472 * 6473 * But the event runs on CPU-B and wants disabling there. 6474 */ 6475 irq_work_queue_on(&event->pending, cpu); 6476 } 6477 6478 static void perf_pending_event(struct irq_work *entry) 6479 { 6480 struct perf_event *event = container_of(entry, struct perf_event, pending); 6481 int rctx; 6482 6483 rctx = perf_swevent_get_recursion_context(); 6484 /* 6485 * If we 'fail' here, that's OK, it means recursion is already disabled 6486 * and we won't recurse 'further'. 6487 */ 6488 6489 perf_pending_event_disable(event); 6490 6491 if (event->pending_wakeup) { 6492 event->pending_wakeup = 0; 6493 perf_event_wakeup(event); 6494 } 6495 6496 if (rctx >= 0) 6497 perf_swevent_put_recursion_context(rctx); 6498 } 6499 6500 #ifdef CONFIG_GUEST_PERF_EVENTS 6501 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6502 6503 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6504 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6505 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6506 6507 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6508 { 6509 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6510 return; 6511 6512 rcu_assign_pointer(perf_guest_cbs, cbs); 6513 static_call_update(__perf_guest_state, cbs->state); 6514 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6515 6516 /* Implementing ->handle_intel_pt_intr is optional. */ 6517 if (cbs->handle_intel_pt_intr) 6518 static_call_update(__perf_guest_handle_intel_pt_intr, 6519 cbs->handle_intel_pt_intr); 6520 } 6521 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6522 6523 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6524 { 6525 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6526 return; 6527 6528 rcu_assign_pointer(perf_guest_cbs, NULL); 6529 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6530 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6531 static_call_update(__perf_guest_handle_intel_pt_intr, 6532 (void *)&__static_call_return0); 6533 synchronize_rcu(); 6534 } 6535 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6536 #endif 6537 6538 static void 6539 perf_output_sample_regs(struct perf_output_handle *handle, 6540 struct pt_regs *regs, u64 mask) 6541 { 6542 int bit; 6543 DECLARE_BITMAP(_mask, 64); 6544 6545 bitmap_from_u64(_mask, mask); 6546 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6547 u64 val; 6548 6549 val = perf_reg_value(regs, bit); 6550 perf_output_put(handle, val); 6551 } 6552 } 6553 6554 static void perf_sample_regs_user(struct perf_regs *regs_user, 6555 struct pt_regs *regs) 6556 { 6557 if (user_mode(regs)) { 6558 regs_user->abi = perf_reg_abi(current); 6559 regs_user->regs = regs; 6560 } else if (!(current->flags & PF_KTHREAD)) { 6561 perf_get_regs_user(regs_user, regs); 6562 } else { 6563 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6564 regs_user->regs = NULL; 6565 } 6566 } 6567 6568 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6569 struct pt_regs *regs) 6570 { 6571 regs_intr->regs = regs; 6572 regs_intr->abi = perf_reg_abi(current); 6573 } 6574 6575 6576 /* 6577 * Get remaining task size from user stack pointer. 6578 * 6579 * It'd be better to take stack vma map and limit this more 6580 * precisely, but there's no way to get it safely under interrupt, 6581 * so using TASK_SIZE as limit. 6582 */ 6583 static u64 perf_ustack_task_size(struct pt_regs *regs) 6584 { 6585 unsigned long addr = perf_user_stack_pointer(regs); 6586 6587 if (!addr || addr >= TASK_SIZE) 6588 return 0; 6589 6590 return TASK_SIZE - addr; 6591 } 6592 6593 static u16 6594 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6595 struct pt_regs *regs) 6596 { 6597 u64 task_size; 6598 6599 /* No regs, no stack pointer, no dump. */ 6600 if (!regs) 6601 return 0; 6602 6603 /* 6604 * Check if we fit in with the requested stack size into the: 6605 * - TASK_SIZE 6606 * If we don't, we limit the size to the TASK_SIZE. 6607 * 6608 * - remaining sample size 6609 * If we don't, we customize the stack size to 6610 * fit in to the remaining sample size. 6611 */ 6612 6613 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6614 stack_size = min(stack_size, (u16) task_size); 6615 6616 /* Current header size plus static size and dynamic size. */ 6617 header_size += 2 * sizeof(u64); 6618 6619 /* Do we fit in with the current stack dump size? */ 6620 if ((u16) (header_size + stack_size) < header_size) { 6621 /* 6622 * If we overflow the maximum size for the sample, 6623 * we customize the stack dump size to fit in. 6624 */ 6625 stack_size = USHRT_MAX - header_size - sizeof(u64); 6626 stack_size = round_up(stack_size, sizeof(u64)); 6627 } 6628 6629 return stack_size; 6630 } 6631 6632 static void 6633 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6634 struct pt_regs *regs) 6635 { 6636 /* Case of a kernel thread, nothing to dump */ 6637 if (!regs) { 6638 u64 size = 0; 6639 perf_output_put(handle, size); 6640 } else { 6641 unsigned long sp; 6642 unsigned int rem; 6643 u64 dyn_size; 6644 6645 /* 6646 * We dump: 6647 * static size 6648 * - the size requested by user or the best one we can fit 6649 * in to the sample max size 6650 * data 6651 * - user stack dump data 6652 * dynamic size 6653 * - the actual dumped size 6654 */ 6655 6656 /* Static size. */ 6657 perf_output_put(handle, dump_size); 6658 6659 /* Data. */ 6660 sp = perf_user_stack_pointer(regs); 6661 rem = __output_copy_user(handle, (void *) sp, dump_size); 6662 dyn_size = dump_size - rem; 6663 6664 perf_output_skip(handle, rem); 6665 6666 /* Dynamic size. */ 6667 perf_output_put(handle, dyn_size); 6668 } 6669 } 6670 6671 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6672 struct perf_sample_data *data, 6673 size_t size) 6674 { 6675 struct perf_event *sampler = event->aux_event; 6676 struct perf_buffer *rb; 6677 6678 data->aux_size = 0; 6679 6680 if (!sampler) 6681 goto out; 6682 6683 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6684 goto out; 6685 6686 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6687 goto out; 6688 6689 rb = ring_buffer_get(sampler); 6690 if (!rb) 6691 goto out; 6692 6693 /* 6694 * If this is an NMI hit inside sampling code, don't take 6695 * the sample. See also perf_aux_sample_output(). 6696 */ 6697 if (READ_ONCE(rb->aux_in_sampling)) { 6698 data->aux_size = 0; 6699 } else { 6700 size = min_t(size_t, size, perf_aux_size(rb)); 6701 data->aux_size = ALIGN(size, sizeof(u64)); 6702 } 6703 ring_buffer_put(rb); 6704 6705 out: 6706 return data->aux_size; 6707 } 6708 6709 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6710 struct perf_event *event, 6711 struct perf_output_handle *handle, 6712 unsigned long size) 6713 { 6714 unsigned long flags; 6715 long ret; 6716 6717 /* 6718 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6719 * paths. If we start calling them in NMI context, they may race with 6720 * the IRQ ones, that is, for example, re-starting an event that's just 6721 * been stopped, which is why we're using a separate callback that 6722 * doesn't change the event state. 6723 * 6724 * IRQs need to be disabled to prevent IPIs from racing with us. 6725 */ 6726 local_irq_save(flags); 6727 /* 6728 * Guard against NMI hits inside the critical section; 6729 * see also perf_prepare_sample_aux(). 6730 */ 6731 WRITE_ONCE(rb->aux_in_sampling, 1); 6732 barrier(); 6733 6734 ret = event->pmu->snapshot_aux(event, handle, size); 6735 6736 barrier(); 6737 WRITE_ONCE(rb->aux_in_sampling, 0); 6738 local_irq_restore(flags); 6739 6740 return ret; 6741 } 6742 6743 static void perf_aux_sample_output(struct perf_event *event, 6744 struct perf_output_handle *handle, 6745 struct perf_sample_data *data) 6746 { 6747 struct perf_event *sampler = event->aux_event; 6748 struct perf_buffer *rb; 6749 unsigned long pad; 6750 long size; 6751 6752 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6753 return; 6754 6755 rb = ring_buffer_get(sampler); 6756 if (!rb) 6757 return; 6758 6759 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6760 6761 /* 6762 * An error here means that perf_output_copy() failed (returned a 6763 * non-zero surplus that it didn't copy), which in its current 6764 * enlightened implementation is not possible. If that changes, we'd 6765 * like to know. 6766 */ 6767 if (WARN_ON_ONCE(size < 0)) 6768 goto out_put; 6769 6770 /* 6771 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6772 * perf_prepare_sample_aux(), so should not be more than that. 6773 */ 6774 pad = data->aux_size - size; 6775 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6776 pad = 8; 6777 6778 if (pad) { 6779 u64 zero = 0; 6780 perf_output_copy(handle, &zero, pad); 6781 } 6782 6783 out_put: 6784 ring_buffer_put(rb); 6785 } 6786 6787 static void __perf_event_header__init_id(struct perf_event_header *header, 6788 struct perf_sample_data *data, 6789 struct perf_event *event) 6790 { 6791 u64 sample_type = event->attr.sample_type; 6792 6793 data->type = sample_type; 6794 header->size += event->id_header_size; 6795 6796 if (sample_type & PERF_SAMPLE_TID) { 6797 /* namespace issues */ 6798 data->tid_entry.pid = perf_event_pid(event, current); 6799 data->tid_entry.tid = perf_event_tid(event, current); 6800 } 6801 6802 if (sample_type & PERF_SAMPLE_TIME) 6803 data->time = perf_event_clock(event); 6804 6805 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6806 data->id = primary_event_id(event); 6807 6808 if (sample_type & PERF_SAMPLE_STREAM_ID) 6809 data->stream_id = event->id; 6810 6811 if (sample_type & PERF_SAMPLE_CPU) { 6812 data->cpu_entry.cpu = raw_smp_processor_id(); 6813 data->cpu_entry.reserved = 0; 6814 } 6815 } 6816 6817 void perf_event_header__init_id(struct perf_event_header *header, 6818 struct perf_sample_data *data, 6819 struct perf_event *event) 6820 { 6821 if (event->attr.sample_id_all) 6822 __perf_event_header__init_id(header, data, event); 6823 } 6824 6825 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6826 struct perf_sample_data *data) 6827 { 6828 u64 sample_type = data->type; 6829 6830 if (sample_type & PERF_SAMPLE_TID) 6831 perf_output_put(handle, data->tid_entry); 6832 6833 if (sample_type & PERF_SAMPLE_TIME) 6834 perf_output_put(handle, data->time); 6835 6836 if (sample_type & PERF_SAMPLE_ID) 6837 perf_output_put(handle, data->id); 6838 6839 if (sample_type & PERF_SAMPLE_STREAM_ID) 6840 perf_output_put(handle, data->stream_id); 6841 6842 if (sample_type & PERF_SAMPLE_CPU) 6843 perf_output_put(handle, data->cpu_entry); 6844 6845 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6846 perf_output_put(handle, data->id); 6847 } 6848 6849 void perf_event__output_id_sample(struct perf_event *event, 6850 struct perf_output_handle *handle, 6851 struct perf_sample_data *sample) 6852 { 6853 if (event->attr.sample_id_all) 6854 __perf_event__output_id_sample(handle, sample); 6855 } 6856 6857 static void perf_output_read_one(struct perf_output_handle *handle, 6858 struct perf_event *event, 6859 u64 enabled, u64 running) 6860 { 6861 u64 read_format = event->attr.read_format; 6862 u64 values[4]; 6863 int n = 0; 6864 6865 values[n++] = perf_event_count(event); 6866 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6867 values[n++] = enabled + 6868 atomic64_read(&event->child_total_time_enabled); 6869 } 6870 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6871 values[n++] = running + 6872 atomic64_read(&event->child_total_time_running); 6873 } 6874 if (read_format & PERF_FORMAT_ID) 6875 values[n++] = primary_event_id(event); 6876 6877 __output_copy(handle, values, n * sizeof(u64)); 6878 } 6879 6880 static void perf_output_read_group(struct perf_output_handle *handle, 6881 struct perf_event *event, 6882 u64 enabled, u64 running) 6883 { 6884 struct perf_event *leader = event->group_leader, *sub; 6885 u64 read_format = event->attr.read_format; 6886 u64 values[5]; 6887 int n = 0; 6888 6889 values[n++] = 1 + leader->nr_siblings; 6890 6891 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6892 values[n++] = enabled; 6893 6894 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6895 values[n++] = running; 6896 6897 if ((leader != event) && 6898 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6899 leader->pmu->read(leader); 6900 6901 values[n++] = perf_event_count(leader); 6902 if (read_format & PERF_FORMAT_ID) 6903 values[n++] = primary_event_id(leader); 6904 6905 __output_copy(handle, values, n * sizeof(u64)); 6906 6907 for_each_sibling_event(sub, leader) { 6908 n = 0; 6909 6910 if ((sub != event) && 6911 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6912 sub->pmu->read(sub); 6913 6914 values[n++] = perf_event_count(sub); 6915 if (read_format & PERF_FORMAT_ID) 6916 values[n++] = primary_event_id(sub); 6917 6918 __output_copy(handle, values, n * sizeof(u64)); 6919 } 6920 } 6921 6922 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6923 PERF_FORMAT_TOTAL_TIME_RUNNING) 6924 6925 /* 6926 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6927 * 6928 * The problem is that its both hard and excessively expensive to iterate the 6929 * child list, not to mention that its impossible to IPI the children running 6930 * on another CPU, from interrupt/NMI context. 6931 */ 6932 static void perf_output_read(struct perf_output_handle *handle, 6933 struct perf_event *event) 6934 { 6935 u64 enabled = 0, running = 0, now; 6936 u64 read_format = event->attr.read_format; 6937 6938 /* 6939 * compute total_time_enabled, total_time_running 6940 * based on snapshot values taken when the event 6941 * was last scheduled in. 6942 * 6943 * we cannot simply called update_context_time() 6944 * because of locking issue as we are called in 6945 * NMI context 6946 */ 6947 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6948 calc_timer_values(event, &now, &enabled, &running); 6949 6950 if (event->attr.read_format & PERF_FORMAT_GROUP) 6951 perf_output_read_group(handle, event, enabled, running); 6952 else 6953 perf_output_read_one(handle, event, enabled, running); 6954 } 6955 6956 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6957 { 6958 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6959 } 6960 6961 void perf_output_sample(struct perf_output_handle *handle, 6962 struct perf_event_header *header, 6963 struct perf_sample_data *data, 6964 struct perf_event *event) 6965 { 6966 u64 sample_type = data->type; 6967 6968 perf_output_put(handle, *header); 6969 6970 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6971 perf_output_put(handle, data->id); 6972 6973 if (sample_type & PERF_SAMPLE_IP) 6974 perf_output_put(handle, data->ip); 6975 6976 if (sample_type & PERF_SAMPLE_TID) 6977 perf_output_put(handle, data->tid_entry); 6978 6979 if (sample_type & PERF_SAMPLE_TIME) 6980 perf_output_put(handle, data->time); 6981 6982 if (sample_type & PERF_SAMPLE_ADDR) 6983 perf_output_put(handle, data->addr); 6984 6985 if (sample_type & PERF_SAMPLE_ID) 6986 perf_output_put(handle, data->id); 6987 6988 if (sample_type & PERF_SAMPLE_STREAM_ID) 6989 perf_output_put(handle, data->stream_id); 6990 6991 if (sample_type & PERF_SAMPLE_CPU) 6992 perf_output_put(handle, data->cpu_entry); 6993 6994 if (sample_type & PERF_SAMPLE_PERIOD) 6995 perf_output_put(handle, data->period); 6996 6997 if (sample_type & PERF_SAMPLE_READ) 6998 perf_output_read(handle, event); 6999 7000 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7001 int size = 1; 7002 7003 size += data->callchain->nr; 7004 size *= sizeof(u64); 7005 __output_copy(handle, data->callchain, size); 7006 } 7007 7008 if (sample_type & PERF_SAMPLE_RAW) { 7009 struct perf_raw_record *raw = data->raw; 7010 7011 if (raw) { 7012 struct perf_raw_frag *frag = &raw->frag; 7013 7014 perf_output_put(handle, raw->size); 7015 do { 7016 if (frag->copy) { 7017 __output_custom(handle, frag->copy, 7018 frag->data, frag->size); 7019 } else { 7020 __output_copy(handle, frag->data, 7021 frag->size); 7022 } 7023 if (perf_raw_frag_last(frag)) 7024 break; 7025 frag = frag->next; 7026 } while (1); 7027 if (frag->pad) 7028 __output_skip(handle, NULL, frag->pad); 7029 } else { 7030 struct { 7031 u32 size; 7032 u32 data; 7033 } raw = { 7034 .size = sizeof(u32), 7035 .data = 0, 7036 }; 7037 perf_output_put(handle, raw); 7038 } 7039 } 7040 7041 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7042 if (data->br_stack) { 7043 size_t size; 7044 7045 size = data->br_stack->nr 7046 * sizeof(struct perf_branch_entry); 7047 7048 perf_output_put(handle, data->br_stack->nr); 7049 if (perf_sample_save_hw_index(event)) 7050 perf_output_put(handle, data->br_stack->hw_idx); 7051 perf_output_copy(handle, data->br_stack->entries, size); 7052 } else { 7053 /* 7054 * we always store at least the value of nr 7055 */ 7056 u64 nr = 0; 7057 perf_output_put(handle, nr); 7058 } 7059 } 7060 7061 if (sample_type & PERF_SAMPLE_REGS_USER) { 7062 u64 abi = data->regs_user.abi; 7063 7064 /* 7065 * If there are no regs to dump, notice it through 7066 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7067 */ 7068 perf_output_put(handle, abi); 7069 7070 if (abi) { 7071 u64 mask = event->attr.sample_regs_user; 7072 perf_output_sample_regs(handle, 7073 data->regs_user.regs, 7074 mask); 7075 } 7076 } 7077 7078 if (sample_type & PERF_SAMPLE_STACK_USER) { 7079 perf_output_sample_ustack(handle, 7080 data->stack_user_size, 7081 data->regs_user.regs); 7082 } 7083 7084 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7085 perf_output_put(handle, data->weight.full); 7086 7087 if (sample_type & PERF_SAMPLE_DATA_SRC) 7088 perf_output_put(handle, data->data_src.val); 7089 7090 if (sample_type & PERF_SAMPLE_TRANSACTION) 7091 perf_output_put(handle, data->txn); 7092 7093 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7094 u64 abi = data->regs_intr.abi; 7095 /* 7096 * If there are no regs to dump, notice it through 7097 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7098 */ 7099 perf_output_put(handle, abi); 7100 7101 if (abi) { 7102 u64 mask = event->attr.sample_regs_intr; 7103 7104 perf_output_sample_regs(handle, 7105 data->regs_intr.regs, 7106 mask); 7107 } 7108 } 7109 7110 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7111 perf_output_put(handle, data->phys_addr); 7112 7113 if (sample_type & PERF_SAMPLE_CGROUP) 7114 perf_output_put(handle, data->cgroup); 7115 7116 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7117 perf_output_put(handle, data->data_page_size); 7118 7119 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7120 perf_output_put(handle, data->code_page_size); 7121 7122 if (sample_type & PERF_SAMPLE_AUX) { 7123 perf_output_put(handle, data->aux_size); 7124 7125 if (data->aux_size) 7126 perf_aux_sample_output(event, handle, data); 7127 } 7128 7129 if (!event->attr.watermark) { 7130 int wakeup_events = event->attr.wakeup_events; 7131 7132 if (wakeup_events) { 7133 struct perf_buffer *rb = handle->rb; 7134 int events = local_inc_return(&rb->events); 7135 7136 if (events >= wakeup_events) { 7137 local_sub(wakeup_events, &rb->events); 7138 local_inc(&rb->wakeup); 7139 } 7140 } 7141 } 7142 } 7143 7144 static u64 perf_virt_to_phys(u64 virt) 7145 { 7146 u64 phys_addr = 0; 7147 7148 if (!virt) 7149 return 0; 7150 7151 if (virt >= TASK_SIZE) { 7152 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7153 if (virt_addr_valid((void *)(uintptr_t)virt) && 7154 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7155 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7156 } else { 7157 /* 7158 * Walking the pages tables for user address. 7159 * Interrupts are disabled, so it prevents any tear down 7160 * of the page tables. 7161 * Try IRQ-safe get_user_page_fast_only first. 7162 * If failed, leave phys_addr as 0. 7163 */ 7164 if (current->mm != NULL) { 7165 struct page *p; 7166 7167 pagefault_disable(); 7168 if (get_user_page_fast_only(virt, 0, &p)) { 7169 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7170 put_page(p); 7171 } 7172 pagefault_enable(); 7173 } 7174 } 7175 7176 return phys_addr; 7177 } 7178 7179 /* 7180 * Return the pagetable size of a given virtual address. 7181 */ 7182 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7183 { 7184 u64 size = 0; 7185 7186 #ifdef CONFIG_HAVE_FAST_GUP 7187 pgd_t *pgdp, pgd; 7188 p4d_t *p4dp, p4d; 7189 pud_t *pudp, pud; 7190 pmd_t *pmdp, pmd; 7191 pte_t *ptep, pte; 7192 7193 pgdp = pgd_offset(mm, addr); 7194 pgd = READ_ONCE(*pgdp); 7195 if (pgd_none(pgd)) 7196 return 0; 7197 7198 if (pgd_leaf(pgd)) 7199 return pgd_leaf_size(pgd); 7200 7201 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7202 p4d = READ_ONCE(*p4dp); 7203 if (!p4d_present(p4d)) 7204 return 0; 7205 7206 if (p4d_leaf(p4d)) 7207 return p4d_leaf_size(p4d); 7208 7209 pudp = pud_offset_lockless(p4dp, p4d, addr); 7210 pud = READ_ONCE(*pudp); 7211 if (!pud_present(pud)) 7212 return 0; 7213 7214 if (pud_leaf(pud)) 7215 return pud_leaf_size(pud); 7216 7217 pmdp = pmd_offset_lockless(pudp, pud, addr); 7218 pmd = READ_ONCE(*pmdp); 7219 if (!pmd_present(pmd)) 7220 return 0; 7221 7222 if (pmd_leaf(pmd)) 7223 return pmd_leaf_size(pmd); 7224 7225 ptep = pte_offset_map(&pmd, addr); 7226 pte = ptep_get_lockless(ptep); 7227 if (pte_present(pte)) 7228 size = pte_leaf_size(pte); 7229 pte_unmap(ptep); 7230 #endif /* CONFIG_HAVE_FAST_GUP */ 7231 7232 return size; 7233 } 7234 7235 static u64 perf_get_page_size(unsigned long addr) 7236 { 7237 struct mm_struct *mm; 7238 unsigned long flags; 7239 u64 size; 7240 7241 if (!addr) 7242 return 0; 7243 7244 /* 7245 * Software page-table walkers must disable IRQs, 7246 * which prevents any tear down of the page tables. 7247 */ 7248 local_irq_save(flags); 7249 7250 mm = current->mm; 7251 if (!mm) { 7252 /* 7253 * For kernel threads and the like, use init_mm so that 7254 * we can find kernel memory. 7255 */ 7256 mm = &init_mm; 7257 } 7258 7259 size = perf_get_pgtable_size(mm, addr); 7260 7261 local_irq_restore(flags); 7262 7263 return size; 7264 } 7265 7266 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7267 7268 struct perf_callchain_entry * 7269 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7270 { 7271 bool kernel = !event->attr.exclude_callchain_kernel; 7272 bool user = !event->attr.exclude_callchain_user; 7273 /* Disallow cross-task user callchains. */ 7274 bool crosstask = event->ctx->task && event->ctx->task != current; 7275 const u32 max_stack = event->attr.sample_max_stack; 7276 struct perf_callchain_entry *callchain; 7277 7278 if (!kernel && !user) 7279 return &__empty_callchain; 7280 7281 callchain = get_perf_callchain(regs, 0, kernel, user, 7282 max_stack, crosstask, true); 7283 return callchain ?: &__empty_callchain; 7284 } 7285 7286 void perf_prepare_sample(struct perf_event_header *header, 7287 struct perf_sample_data *data, 7288 struct perf_event *event, 7289 struct pt_regs *regs) 7290 { 7291 u64 sample_type = event->attr.sample_type; 7292 7293 header->type = PERF_RECORD_SAMPLE; 7294 header->size = sizeof(*header) + event->header_size; 7295 7296 header->misc = 0; 7297 header->misc |= perf_misc_flags(regs); 7298 7299 __perf_event_header__init_id(header, data, event); 7300 7301 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7302 data->ip = perf_instruction_pointer(regs); 7303 7304 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7305 int size = 1; 7306 7307 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 7308 data->callchain = perf_callchain(event, regs); 7309 7310 size += data->callchain->nr; 7311 7312 header->size += size * sizeof(u64); 7313 } 7314 7315 if (sample_type & PERF_SAMPLE_RAW) { 7316 struct perf_raw_record *raw = data->raw; 7317 int size; 7318 7319 if (raw) { 7320 struct perf_raw_frag *frag = &raw->frag; 7321 u32 sum = 0; 7322 7323 do { 7324 sum += frag->size; 7325 if (perf_raw_frag_last(frag)) 7326 break; 7327 frag = frag->next; 7328 } while (1); 7329 7330 size = round_up(sum + sizeof(u32), sizeof(u64)); 7331 raw->size = size - sizeof(u32); 7332 frag->pad = raw->size - sum; 7333 } else { 7334 size = sizeof(u64); 7335 } 7336 7337 header->size += size; 7338 } 7339 7340 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7341 int size = sizeof(u64); /* nr */ 7342 if (data->br_stack) { 7343 if (perf_sample_save_hw_index(event)) 7344 size += sizeof(u64); 7345 7346 size += data->br_stack->nr 7347 * sizeof(struct perf_branch_entry); 7348 } 7349 header->size += size; 7350 } 7351 7352 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7353 perf_sample_regs_user(&data->regs_user, regs); 7354 7355 if (sample_type & PERF_SAMPLE_REGS_USER) { 7356 /* regs dump ABI info */ 7357 int size = sizeof(u64); 7358 7359 if (data->regs_user.regs) { 7360 u64 mask = event->attr.sample_regs_user; 7361 size += hweight64(mask) * sizeof(u64); 7362 } 7363 7364 header->size += size; 7365 } 7366 7367 if (sample_type & PERF_SAMPLE_STACK_USER) { 7368 /* 7369 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7370 * processed as the last one or have additional check added 7371 * in case new sample type is added, because we could eat 7372 * up the rest of the sample size. 7373 */ 7374 u16 stack_size = event->attr.sample_stack_user; 7375 u16 size = sizeof(u64); 7376 7377 stack_size = perf_sample_ustack_size(stack_size, header->size, 7378 data->regs_user.regs); 7379 7380 /* 7381 * If there is something to dump, add space for the dump 7382 * itself and for the field that tells the dynamic size, 7383 * which is how many have been actually dumped. 7384 */ 7385 if (stack_size) 7386 size += sizeof(u64) + stack_size; 7387 7388 data->stack_user_size = stack_size; 7389 header->size += size; 7390 } 7391 7392 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7393 /* regs dump ABI info */ 7394 int size = sizeof(u64); 7395 7396 perf_sample_regs_intr(&data->regs_intr, regs); 7397 7398 if (data->regs_intr.regs) { 7399 u64 mask = event->attr.sample_regs_intr; 7400 7401 size += hweight64(mask) * sizeof(u64); 7402 } 7403 7404 header->size += size; 7405 } 7406 7407 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7408 data->phys_addr = perf_virt_to_phys(data->addr); 7409 7410 #ifdef CONFIG_CGROUP_PERF 7411 if (sample_type & PERF_SAMPLE_CGROUP) { 7412 struct cgroup *cgrp; 7413 7414 /* protected by RCU */ 7415 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7416 data->cgroup = cgroup_id(cgrp); 7417 } 7418 #endif 7419 7420 /* 7421 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7422 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7423 * but the value will not dump to the userspace. 7424 */ 7425 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7426 data->data_page_size = perf_get_page_size(data->addr); 7427 7428 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7429 data->code_page_size = perf_get_page_size(data->ip); 7430 7431 if (sample_type & PERF_SAMPLE_AUX) { 7432 u64 size; 7433 7434 header->size += sizeof(u64); /* size */ 7435 7436 /* 7437 * Given the 16bit nature of header::size, an AUX sample can 7438 * easily overflow it, what with all the preceding sample bits. 7439 * Make sure this doesn't happen by using up to U16_MAX bytes 7440 * per sample in total (rounded down to 8 byte boundary). 7441 */ 7442 size = min_t(size_t, U16_MAX - header->size, 7443 event->attr.aux_sample_size); 7444 size = rounddown(size, 8); 7445 size = perf_prepare_sample_aux(event, data, size); 7446 7447 WARN_ON_ONCE(size + header->size > U16_MAX); 7448 header->size += size; 7449 } 7450 /* 7451 * If you're adding more sample types here, you likely need to do 7452 * something about the overflowing header::size, like repurpose the 7453 * lowest 3 bits of size, which should be always zero at the moment. 7454 * This raises a more important question, do we really need 512k sized 7455 * samples and why, so good argumentation is in order for whatever you 7456 * do here next. 7457 */ 7458 WARN_ON_ONCE(header->size & 7); 7459 } 7460 7461 static __always_inline int 7462 __perf_event_output(struct perf_event *event, 7463 struct perf_sample_data *data, 7464 struct pt_regs *regs, 7465 int (*output_begin)(struct perf_output_handle *, 7466 struct perf_sample_data *, 7467 struct perf_event *, 7468 unsigned int)) 7469 { 7470 struct perf_output_handle handle; 7471 struct perf_event_header header; 7472 int err; 7473 7474 /* protect the callchain buffers */ 7475 rcu_read_lock(); 7476 7477 perf_prepare_sample(&header, data, event, regs); 7478 7479 err = output_begin(&handle, data, event, header.size); 7480 if (err) 7481 goto exit; 7482 7483 perf_output_sample(&handle, &header, data, event); 7484 7485 perf_output_end(&handle); 7486 7487 exit: 7488 rcu_read_unlock(); 7489 return err; 7490 } 7491 7492 void 7493 perf_event_output_forward(struct perf_event *event, 7494 struct perf_sample_data *data, 7495 struct pt_regs *regs) 7496 { 7497 __perf_event_output(event, data, regs, perf_output_begin_forward); 7498 } 7499 7500 void 7501 perf_event_output_backward(struct perf_event *event, 7502 struct perf_sample_data *data, 7503 struct pt_regs *regs) 7504 { 7505 __perf_event_output(event, data, regs, perf_output_begin_backward); 7506 } 7507 7508 int 7509 perf_event_output(struct perf_event *event, 7510 struct perf_sample_data *data, 7511 struct pt_regs *regs) 7512 { 7513 return __perf_event_output(event, data, regs, perf_output_begin); 7514 } 7515 7516 /* 7517 * read event_id 7518 */ 7519 7520 struct perf_read_event { 7521 struct perf_event_header header; 7522 7523 u32 pid; 7524 u32 tid; 7525 }; 7526 7527 static void 7528 perf_event_read_event(struct perf_event *event, 7529 struct task_struct *task) 7530 { 7531 struct perf_output_handle handle; 7532 struct perf_sample_data sample; 7533 struct perf_read_event read_event = { 7534 .header = { 7535 .type = PERF_RECORD_READ, 7536 .misc = 0, 7537 .size = sizeof(read_event) + event->read_size, 7538 }, 7539 .pid = perf_event_pid(event, task), 7540 .tid = perf_event_tid(event, task), 7541 }; 7542 int ret; 7543 7544 perf_event_header__init_id(&read_event.header, &sample, event); 7545 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7546 if (ret) 7547 return; 7548 7549 perf_output_put(&handle, read_event); 7550 perf_output_read(&handle, event); 7551 perf_event__output_id_sample(event, &handle, &sample); 7552 7553 perf_output_end(&handle); 7554 } 7555 7556 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7557 7558 static void 7559 perf_iterate_ctx(struct perf_event_context *ctx, 7560 perf_iterate_f output, 7561 void *data, bool all) 7562 { 7563 struct perf_event *event; 7564 7565 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7566 if (!all) { 7567 if (event->state < PERF_EVENT_STATE_INACTIVE) 7568 continue; 7569 if (!event_filter_match(event)) 7570 continue; 7571 } 7572 7573 output(event, data); 7574 } 7575 } 7576 7577 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7578 { 7579 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7580 struct perf_event *event; 7581 7582 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7583 /* 7584 * Skip events that are not fully formed yet; ensure that 7585 * if we observe event->ctx, both event and ctx will be 7586 * complete enough. See perf_install_in_context(). 7587 */ 7588 if (!smp_load_acquire(&event->ctx)) 7589 continue; 7590 7591 if (event->state < PERF_EVENT_STATE_INACTIVE) 7592 continue; 7593 if (!event_filter_match(event)) 7594 continue; 7595 output(event, data); 7596 } 7597 } 7598 7599 /* 7600 * Iterate all events that need to receive side-band events. 7601 * 7602 * For new callers; ensure that account_pmu_sb_event() includes 7603 * your event, otherwise it might not get delivered. 7604 */ 7605 static void 7606 perf_iterate_sb(perf_iterate_f output, void *data, 7607 struct perf_event_context *task_ctx) 7608 { 7609 struct perf_event_context *ctx; 7610 int ctxn; 7611 7612 rcu_read_lock(); 7613 preempt_disable(); 7614 7615 /* 7616 * If we have task_ctx != NULL we only notify the task context itself. 7617 * The task_ctx is set only for EXIT events before releasing task 7618 * context. 7619 */ 7620 if (task_ctx) { 7621 perf_iterate_ctx(task_ctx, output, data, false); 7622 goto done; 7623 } 7624 7625 perf_iterate_sb_cpu(output, data); 7626 7627 for_each_task_context_nr(ctxn) { 7628 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7629 if (ctx) 7630 perf_iterate_ctx(ctx, output, data, false); 7631 } 7632 done: 7633 preempt_enable(); 7634 rcu_read_unlock(); 7635 } 7636 7637 /* 7638 * Clear all file-based filters at exec, they'll have to be 7639 * re-instated when/if these objects are mmapped again. 7640 */ 7641 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7642 { 7643 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7644 struct perf_addr_filter *filter; 7645 unsigned int restart = 0, count = 0; 7646 unsigned long flags; 7647 7648 if (!has_addr_filter(event)) 7649 return; 7650 7651 raw_spin_lock_irqsave(&ifh->lock, flags); 7652 list_for_each_entry(filter, &ifh->list, entry) { 7653 if (filter->path.dentry) { 7654 event->addr_filter_ranges[count].start = 0; 7655 event->addr_filter_ranges[count].size = 0; 7656 restart++; 7657 } 7658 7659 count++; 7660 } 7661 7662 if (restart) 7663 event->addr_filters_gen++; 7664 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7665 7666 if (restart) 7667 perf_event_stop(event, 1); 7668 } 7669 7670 void perf_event_exec(void) 7671 { 7672 struct perf_event_context *ctx; 7673 int ctxn; 7674 7675 for_each_task_context_nr(ctxn) { 7676 perf_event_enable_on_exec(ctxn); 7677 perf_event_remove_on_exec(ctxn); 7678 7679 rcu_read_lock(); 7680 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7681 if (ctx) { 7682 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, 7683 NULL, true); 7684 } 7685 rcu_read_unlock(); 7686 } 7687 } 7688 7689 struct remote_output { 7690 struct perf_buffer *rb; 7691 int err; 7692 }; 7693 7694 static void __perf_event_output_stop(struct perf_event *event, void *data) 7695 { 7696 struct perf_event *parent = event->parent; 7697 struct remote_output *ro = data; 7698 struct perf_buffer *rb = ro->rb; 7699 struct stop_event_data sd = { 7700 .event = event, 7701 }; 7702 7703 if (!has_aux(event)) 7704 return; 7705 7706 if (!parent) 7707 parent = event; 7708 7709 /* 7710 * In case of inheritance, it will be the parent that links to the 7711 * ring-buffer, but it will be the child that's actually using it. 7712 * 7713 * We are using event::rb to determine if the event should be stopped, 7714 * however this may race with ring_buffer_attach() (through set_output), 7715 * which will make us skip the event that actually needs to be stopped. 7716 * So ring_buffer_attach() has to stop an aux event before re-assigning 7717 * its rb pointer. 7718 */ 7719 if (rcu_dereference(parent->rb) == rb) 7720 ro->err = __perf_event_stop(&sd); 7721 } 7722 7723 static int __perf_pmu_output_stop(void *info) 7724 { 7725 struct perf_event *event = info; 7726 struct pmu *pmu = event->ctx->pmu; 7727 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7728 struct remote_output ro = { 7729 .rb = event->rb, 7730 }; 7731 7732 rcu_read_lock(); 7733 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7734 if (cpuctx->task_ctx) 7735 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7736 &ro, false); 7737 rcu_read_unlock(); 7738 7739 return ro.err; 7740 } 7741 7742 static void perf_pmu_output_stop(struct perf_event *event) 7743 { 7744 struct perf_event *iter; 7745 int err, cpu; 7746 7747 restart: 7748 rcu_read_lock(); 7749 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7750 /* 7751 * For per-CPU events, we need to make sure that neither they 7752 * nor their children are running; for cpu==-1 events it's 7753 * sufficient to stop the event itself if it's active, since 7754 * it can't have children. 7755 */ 7756 cpu = iter->cpu; 7757 if (cpu == -1) 7758 cpu = READ_ONCE(iter->oncpu); 7759 7760 if (cpu == -1) 7761 continue; 7762 7763 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7764 if (err == -EAGAIN) { 7765 rcu_read_unlock(); 7766 goto restart; 7767 } 7768 } 7769 rcu_read_unlock(); 7770 } 7771 7772 /* 7773 * task tracking -- fork/exit 7774 * 7775 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7776 */ 7777 7778 struct perf_task_event { 7779 struct task_struct *task; 7780 struct perf_event_context *task_ctx; 7781 7782 struct { 7783 struct perf_event_header header; 7784 7785 u32 pid; 7786 u32 ppid; 7787 u32 tid; 7788 u32 ptid; 7789 u64 time; 7790 } event_id; 7791 }; 7792 7793 static int perf_event_task_match(struct perf_event *event) 7794 { 7795 return event->attr.comm || event->attr.mmap || 7796 event->attr.mmap2 || event->attr.mmap_data || 7797 event->attr.task; 7798 } 7799 7800 static void perf_event_task_output(struct perf_event *event, 7801 void *data) 7802 { 7803 struct perf_task_event *task_event = data; 7804 struct perf_output_handle handle; 7805 struct perf_sample_data sample; 7806 struct task_struct *task = task_event->task; 7807 int ret, size = task_event->event_id.header.size; 7808 7809 if (!perf_event_task_match(event)) 7810 return; 7811 7812 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7813 7814 ret = perf_output_begin(&handle, &sample, event, 7815 task_event->event_id.header.size); 7816 if (ret) 7817 goto out; 7818 7819 task_event->event_id.pid = perf_event_pid(event, task); 7820 task_event->event_id.tid = perf_event_tid(event, task); 7821 7822 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7823 task_event->event_id.ppid = perf_event_pid(event, 7824 task->real_parent); 7825 task_event->event_id.ptid = perf_event_pid(event, 7826 task->real_parent); 7827 } else { /* PERF_RECORD_FORK */ 7828 task_event->event_id.ppid = perf_event_pid(event, current); 7829 task_event->event_id.ptid = perf_event_tid(event, current); 7830 } 7831 7832 task_event->event_id.time = perf_event_clock(event); 7833 7834 perf_output_put(&handle, task_event->event_id); 7835 7836 perf_event__output_id_sample(event, &handle, &sample); 7837 7838 perf_output_end(&handle); 7839 out: 7840 task_event->event_id.header.size = size; 7841 } 7842 7843 static void perf_event_task(struct task_struct *task, 7844 struct perf_event_context *task_ctx, 7845 int new) 7846 { 7847 struct perf_task_event task_event; 7848 7849 if (!atomic_read(&nr_comm_events) && 7850 !atomic_read(&nr_mmap_events) && 7851 !atomic_read(&nr_task_events)) 7852 return; 7853 7854 task_event = (struct perf_task_event){ 7855 .task = task, 7856 .task_ctx = task_ctx, 7857 .event_id = { 7858 .header = { 7859 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7860 .misc = 0, 7861 .size = sizeof(task_event.event_id), 7862 }, 7863 /* .pid */ 7864 /* .ppid */ 7865 /* .tid */ 7866 /* .ptid */ 7867 /* .time */ 7868 }, 7869 }; 7870 7871 perf_iterate_sb(perf_event_task_output, 7872 &task_event, 7873 task_ctx); 7874 } 7875 7876 void perf_event_fork(struct task_struct *task) 7877 { 7878 perf_event_task(task, NULL, 1); 7879 perf_event_namespaces(task); 7880 } 7881 7882 /* 7883 * comm tracking 7884 */ 7885 7886 struct perf_comm_event { 7887 struct task_struct *task; 7888 char *comm; 7889 int comm_size; 7890 7891 struct { 7892 struct perf_event_header header; 7893 7894 u32 pid; 7895 u32 tid; 7896 } event_id; 7897 }; 7898 7899 static int perf_event_comm_match(struct perf_event *event) 7900 { 7901 return event->attr.comm; 7902 } 7903 7904 static void perf_event_comm_output(struct perf_event *event, 7905 void *data) 7906 { 7907 struct perf_comm_event *comm_event = data; 7908 struct perf_output_handle handle; 7909 struct perf_sample_data sample; 7910 int size = comm_event->event_id.header.size; 7911 int ret; 7912 7913 if (!perf_event_comm_match(event)) 7914 return; 7915 7916 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7917 ret = perf_output_begin(&handle, &sample, event, 7918 comm_event->event_id.header.size); 7919 7920 if (ret) 7921 goto out; 7922 7923 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7924 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7925 7926 perf_output_put(&handle, comm_event->event_id); 7927 __output_copy(&handle, comm_event->comm, 7928 comm_event->comm_size); 7929 7930 perf_event__output_id_sample(event, &handle, &sample); 7931 7932 perf_output_end(&handle); 7933 out: 7934 comm_event->event_id.header.size = size; 7935 } 7936 7937 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7938 { 7939 char comm[TASK_COMM_LEN]; 7940 unsigned int size; 7941 7942 memset(comm, 0, sizeof(comm)); 7943 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7944 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7945 7946 comm_event->comm = comm; 7947 comm_event->comm_size = size; 7948 7949 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7950 7951 perf_iterate_sb(perf_event_comm_output, 7952 comm_event, 7953 NULL); 7954 } 7955 7956 void perf_event_comm(struct task_struct *task, bool exec) 7957 { 7958 struct perf_comm_event comm_event; 7959 7960 if (!atomic_read(&nr_comm_events)) 7961 return; 7962 7963 comm_event = (struct perf_comm_event){ 7964 .task = task, 7965 /* .comm */ 7966 /* .comm_size */ 7967 .event_id = { 7968 .header = { 7969 .type = PERF_RECORD_COMM, 7970 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7971 /* .size */ 7972 }, 7973 /* .pid */ 7974 /* .tid */ 7975 }, 7976 }; 7977 7978 perf_event_comm_event(&comm_event); 7979 } 7980 7981 /* 7982 * namespaces tracking 7983 */ 7984 7985 struct perf_namespaces_event { 7986 struct task_struct *task; 7987 7988 struct { 7989 struct perf_event_header header; 7990 7991 u32 pid; 7992 u32 tid; 7993 u64 nr_namespaces; 7994 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7995 } event_id; 7996 }; 7997 7998 static int perf_event_namespaces_match(struct perf_event *event) 7999 { 8000 return event->attr.namespaces; 8001 } 8002 8003 static void perf_event_namespaces_output(struct perf_event *event, 8004 void *data) 8005 { 8006 struct perf_namespaces_event *namespaces_event = data; 8007 struct perf_output_handle handle; 8008 struct perf_sample_data sample; 8009 u16 header_size = namespaces_event->event_id.header.size; 8010 int ret; 8011 8012 if (!perf_event_namespaces_match(event)) 8013 return; 8014 8015 perf_event_header__init_id(&namespaces_event->event_id.header, 8016 &sample, event); 8017 ret = perf_output_begin(&handle, &sample, event, 8018 namespaces_event->event_id.header.size); 8019 if (ret) 8020 goto out; 8021 8022 namespaces_event->event_id.pid = perf_event_pid(event, 8023 namespaces_event->task); 8024 namespaces_event->event_id.tid = perf_event_tid(event, 8025 namespaces_event->task); 8026 8027 perf_output_put(&handle, namespaces_event->event_id); 8028 8029 perf_event__output_id_sample(event, &handle, &sample); 8030 8031 perf_output_end(&handle); 8032 out: 8033 namespaces_event->event_id.header.size = header_size; 8034 } 8035 8036 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8037 struct task_struct *task, 8038 const struct proc_ns_operations *ns_ops) 8039 { 8040 struct path ns_path; 8041 struct inode *ns_inode; 8042 int error; 8043 8044 error = ns_get_path(&ns_path, task, ns_ops); 8045 if (!error) { 8046 ns_inode = ns_path.dentry->d_inode; 8047 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8048 ns_link_info->ino = ns_inode->i_ino; 8049 path_put(&ns_path); 8050 } 8051 } 8052 8053 void perf_event_namespaces(struct task_struct *task) 8054 { 8055 struct perf_namespaces_event namespaces_event; 8056 struct perf_ns_link_info *ns_link_info; 8057 8058 if (!atomic_read(&nr_namespaces_events)) 8059 return; 8060 8061 namespaces_event = (struct perf_namespaces_event){ 8062 .task = task, 8063 .event_id = { 8064 .header = { 8065 .type = PERF_RECORD_NAMESPACES, 8066 .misc = 0, 8067 .size = sizeof(namespaces_event.event_id), 8068 }, 8069 /* .pid */ 8070 /* .tid */ 8071 .nr_namespaces = NR_NAMESPACES, 8072 /* .link_info[NR_NAMESPACES] */ 8073 }, 8074 }; 8075 8076 ns_link_info = namespaces_event.event_id.link_info; 8077 8078 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8079 task, &mntns_operations); 8080 8081 #ifdef CONFIG_USER_NS 8082 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8083 task, &userns_operations); 8084 #endif 8085 #ifdef CONFIG_NET_NS 8086 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8087 task, &netns_operations); 8088 #endif 8089 #ifdef CONFIG_UTS_NS 8090 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8091 task, &utsns_operations); 8092 #endif 8093 #ifdef CONFIG_IPC_NS 8094 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8095 task, &ipcns_operations); 8096 #endif 8097 #ifdef CONFIG_PID_NS 8098 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8099 task, &pidns_operations); 8100 #endif 8101 #ifdef CONFIG_CGROUPS 8102 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8103 task, &cgroupns_operations); 8104 #endif 8105 8106 perf_iterate_sb(perf_event_namespaces_output, 8107 &namespaces_event, 8108 NULL); 8109 } 8110 8111 /* 8112 * cgroup tracking 8113 */ 8114 #ifdef CONFIG_CGROUP_PERF 8115 8116 struct perf_cgroup_event { 8117 char *path; 8118 int path_size; 8119 struct { 8120 struct perf_event_header header; 8121 u64 id; 8122 char path[]; 8123 } event_id; 8124 }; 8125 8126 static int perf_event_cgroup_match(struct perf_event *event) 8127 { 8128 return event->attr.cgroup; 8129 } 8130 8131 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8132 { 8133 struct perf_cgroup_event *cgroup_event = data; 8134 struct perf_output_handle handle; 8135 struct perf_sample_data sample; 8136 u16 header_size = cgroup_event->event_id.header.size; 8137 int ret; 8138 8139 if (!perf_event_cgroup_match(event)) 8140 return; 8141 8142 perf_event_header__init_id(&cgroup_event->event_id.header, 8143 &sample, event); 8144 ret = perf_output_begin(&handle, &sample, event, 8145 cgroup_event->event_id.header.size); 8146 if (ret) 8147 goto out; 8148 8149 perf_output_put(&handle, cgroup_event->event_id); 8150 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8151 8152 perf_event__output_id_sample(event, &handle, &sample); 8153 8154 perf_output_end(&handle); 8155 out: 8156 cgroup_event->event_id.header.size = header_size; 8157 } 8158 8159 static void perf_event_cgroup(struct cgroup *cgrp) 8160 { 8161 struct perf_cgroup_event cgroup_event; 8162 char path_enomem[16] = "//enomem"; 8163 char *pathname; 8164 size_t size; 8165 8166 if (!atomic_read(&nr_cgroup_events)) 8167 return; 8168 8169 cgroup_event = (struct perf_cgroup_event){ 8170 .event_id = { 8171 .header = { 8172 .type = PERF_RECORD_CGROUP, 8173 .misc = 0, 8174 .size = sizeof(cgroup_event.event_id), 8175 }, 8176 .id = cgroup_id(cgrp), 8177 }, 8178 }; 8179 8180 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8181 if (pathname == NULL) { 8182 cgroup_event.path = path_enomem; 8183 } else { 8184 /* just to be sure to have enough space for alignment */ 8185 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8186 cgroup_event.path = pathname; 8187 } 8188 8189 /* 8190 * Since our buffer works in 8 byte units we need to align our string 8191 * size to a multiple of 8. However, we must guarantee the tail end is 8192 * zero'd out to avoid leaking random bits to userspace. 8193 */ 8194 size = strlen(cgroup_event.path) + 1; 8195 while (!IS_ALIGNED(size, sizeof(u64))) 8196 cgroup_event.path[size++] = '\0'; 8197 8198 cgroup_event.event_id.header.size += size; 8199 cgroup_event.path_size = size; 8200 8201 perf_iterate_sb(perf_event_cgroup_output, 8202 &cgroup_event, 8203 NULL); 8204 8205 kfree(pathname); 8206 } 8207 8208 #endif 8209 8210 /* 8211 * mmap tracking 8212 */ 8213 8214 struct perf_mmap_event { 8215 struct vm_area_struct *vma; 8216 8217 const char *file_name; 8218 int file_size; 8219 int maj, min; 8220 u64 ino; 8221 u64 ino_generation; 8222 u32 prot, flags; 8223 u8 build_id[BUILD_ID_SIZE_MAX]; 8224 u32 build_id_size; 8225 8226 struct { 8227 struct perf_event_header header; 8228 8229 u32 pid; 8230 u32 tid; 8231 u64 start; 8232 u64 len; 8233 u64 pgoff; 8234 } event_id; 8235 }; 8236 8237 static int perf_event_mmap_match(struct perf_event *event, 8238 void *data) 8239 { 8240 struct perf_mmap_event *mmap_event = data; 8241 struct vm_area_struct *vma = mmap_event->vma; 8242 int executable = vma->vm_flags & VM_EXEC; 8243 8244 return (!executable && event->attr.mmap_data) || 8245 (executable && (event->attr.mmap || event->attr.mmap2)); 8246 } 8247 8248 static void perf_event_mmap_output(struct perf_event *event, 8249 void *data) 8250 { 8251 struct perf_mmap_event *mmap_event = data; 8252 struct perf_output_handle handle; 8253 struct perf_sample_data sample; 8254 int size = mmap_event->event_id.header.size; 8255 u32 type = mmap_event->event_id.header.type; 8256 bool use_build_id; 8257 int ret; 8258 8259 if (!perf_event_mmap_match(event, data)) 8260 return; 8261 8262 if (event->attr.mmap2) { 8263 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8264 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8265 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8266 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8267 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8268 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8269 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8270 } 8271 8272 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8273 ret = perf_output_begin(&handle, &sample, event, 8274 mmap_event->event_id.header.size); 8275 if (ret) 8276 goto out; 8277 8278 mmap_event->event_id.pid = perf_event_pid(event, current); 8279 mmap_event->event_id.tid = perf_event_tid(event, current); 8280 8281 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8282 8283 if (event->attr.mmap2 && use_build_id) 8284 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8285 8286 perf_output_put(&handle, mmap_event->event_id); 8287 8288 if (event->attr.mmap2) { 8289 if (use_build_id) { 8290 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8291 8292 __output_copy(&handle, size, 4); 8293 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8294 } else { 8295 perf_output_put(&handle, mmap_event->maj); 8296 perf_output_put(&handle, mmap_event->min); 8297 perf_output_put(&handle, mmap_event->ino); 8298 perf_output_put(&handle, mmap_event->ino_generation); 8299 } 8300 perf_output_put(&handle, mmap_event->prot); 8301 perf_output_put(&handle, mmap_event->flags); 8302 } 8303 8304 __output_copy(&handle, mmap_event->file_name, 8305 mmap_event->file_size); 8306 8307 perf_event__output_id_sample(event, &handle, &sample); 8308 8309 perf_output_end(&handle); 8310 out: 8311 mmap_event->event_id.header.size = size; 8312 mmap_event->event_id.header.type = type; 8313 } 8314 8315 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8316 { 8317 struct vm_area_struct *vma = mmap_event->vma; 8318 struct file *file = vma->vm_file; 8319 int maj = 0, min = 0; 8320 u64 ino = 0, gen = 0; 8321 u32 prot = 0, flags = 0; 8322 unsigned int size; 8323 char tmp[16]; 8324 char *buf = NULL; 8325 char *name; 8326 8327 if (vma->vm_flags & VM_READ) 8328 prot |= PROT_READ; 8329 if (vma->vm_flags & VM_WRITE) 8330 prot |= PROT_WRITE; 8331 if (vma->vm_flags & VM_EXEC) 8332 prot |= PROT_EXEC; 8333 8334 if (vma->vm_flags & VM_MAYSHARE) 8335 flags = MAP_SHARED; 8336 else 8337 flags = MAP_PRIVATE; 8338 8339 if (vma->vm_flags & VM_LOCKED) 8340 flags |= MAP_LOCKED; 8341 if (is_vm_hugetlb_page(vma)) 8342 flags |= MAP_HUGETLB; 8343 8344 if (file) { 8345 struct inode *inode; 8346 dev_t dev; 8347 8348 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8349 if (!buf) { 8350 name = "//enomem"; 8351 goto cpy_name; 8352 } 8353 /* 8354 * d_path() works from the end of the rb backwards, so we 8355 * need to add enough zero bytes after the string to handle 8356 * the 64bit alignment we do later. 8357 */ 8358 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8359 if (IS_ERR(name)) { 8360 name = "//toolong"; 8361 goto cpy_name; 8362 } 8363 inode = file_inode(vma->vm_file); 8364 dev = inode->i_sb->s_dev; 8365 ino = inode->i_ino; 8366 gen = inode->i_generation; 8367 maj = MAJOR(dev); 8368 min = MINOR(dev); 8369 8370 goto got_name; 8371 } else { 8372 if (vma->vm_ops && vma->vm_ops->name) { 8373 name = (char *) vma->vm_ops->name(vma); 8374 if (name) 8375 goto cpy_name; 8376 } 8377 8378 name = (char *)arch_vma_name(vma); 8379 if (name) 8380 goto cpy_name; 8381 8382 if (vma->vm_start <= vma->vm_mm->start_brk && 8383 vma->vm_end >= vma->vm_mm->brk) { 8384 name = "[heap]"; 8385 goto cpy_name; 8386 } 8387 if (vma->vm_start <= vma->vm_mm->start_stack && 8388 vma->vm_end >= vma->vm_mm->start_stack) { 8389 name = "[stack]"; 8390 goto cpy_name; 8391 } 8392 8393 name = "//anon"; 8394 goto cpy_name; 8395 } 8396 8397 cpy_name: 8398 strlcpy(tmp, name, sizeof(tmp)); 8399 name = tmp; 8400 got_name: 8401 /* 8402 * Since our buffer works in 8 byte units we need to align our string 8403 * size to a multiple of 8. However, we must guarantee the tail end is 8404 * zero'd out to avoid leaking random bits to userspace. 8405 */ 8406 size = strlen(name)+1; 8407 while (!IS_ALIGNED(size, sizeof(u64))) 8408 name[size++] = '\0'; 8409 8410 mmap_event->file_name = name; 8411 mmap_event->file_size = size; 8412 mmap_event->maj = maj; 8413 mmap_event->min = min; 8414 mmap_event->ino = ino; 8415 mmap_event->ino_generation = gen; 8416 mmap_event->prot = prot; 8417 mmap_event->flags = flags; 8418 8419 if (!(vma->vm_flags & VM_EXEC)) 8420 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8421 8422 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8423 8424 if (atomic_read(&nr_build_id_events)) 8425 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8426 8427 perf_iterate_sb(perf_event_mmap_output, 8428 mmap_event, 8429 NULL); 8430 8431 kfree(buf); 8432 } 8433 8434 /* 8435 * Check whether inode and address range match filter criteria. 8436 */ 8437 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8438 struct file *file, unsigned long offset, 8439 unsigned long size) 8440 { 8441 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8442 if (!filter->path.dentry) 8443 return false; 8444 8445 if (d_inode(filter->path.dentry) != file_inode(file)) 8446 return false; 8447 8448 if (filter->offset > offset + size) 8449 return false; 8450 8451 if (filter->offset + filter->size < offset) 8452 return false; 8453 8454 return true; 8455 } 8456 8457 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8458 struct vm_area_struct *vma, 8459 struct perf_addr_filter_range *fr) 8460 { 8461 unsigned long vma_size = vma->vm_end - vma->vm_start; 8462 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8463 struct file *file = vma->vm_file; 8464 8465 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8466 return false; 8467 8468 if (filter->offset < off) { 8469 fr->start = vma->vm_start; 8470 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8471 } else { 8472 fr->start = vma->vm_start + filter->offset - off; 8473 fr->size = min(vma->vm_end - fr->start, filter->size); 8474 } 8475 8476 return true; 8477 } 8478 8479 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8480 { 8481 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8482 struct vm_area_struct *vma = data; 8483 struct perf_addr_filter *filter; 8484 unsigned int restart = 0, count = 0; 8485 unsigned long flags; 8486 8487 if (!has_addr_filter(event)) 8488 return; 8489 8490 if (!vma->vm_file) 8491 return; 8492 8493 raw_spin_lock_irqsave(&ifh->lock, flags); 8494 list_for_each_entry(filter, &ifh->list, entry) { 8495 if (perf_addr_filter_vma_adjust(filter, vma, 8496 &event->addr_filter_ranges[count])) 8497 restart++; 8498 8499 count++; 8500 } 8501 8502 if (restart) 8503 event->addr_filters_gen++; 8504 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8505 8506 if (restart) 8507 perf_event_stop(event, 1); 8508 } 8509 8510 /* 8511 * Adjust all task's events' filters to the new vma 8512 */ 8513 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8514 { 8515 struct perf_event_context *ctx; 8516 int ctxn; 8517 8518 /* 8519 * Data tracing isn't supported yet and as such there is no need 8520 * to keep track of anything that isn't related to executable code: 8521 */ 8522 if (!(vma->vm_flags & VM_EXEC)) 8523 return; 8524 8525 rcu_read_lock(); 8526 for_each_task_context_nr(ctxn) { 8527 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8528 if (!ctx) 8529 continue; 8530 8531 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8532 } 8533 rcu_read_unlock(); 8534 } 8535 8536 void perf_event_mmap(struct vm_area_struct *vma) 8537 { 8538 struct perf_mmap_event mmap_event; 8539 8540 if (!atomic_read(&nr_mmap_events)) 8541 return; 8542 8543 mmap_event = (struct perf_mmap_event){ 8544 .vma = vma, 8545 /* .file_name */ 8546 /* .file_size */ 8547 .event_id = { 8548 .header = { 8549 .type = PERF_RECORD_MMAP, 8550 .misc = PERF_RECORD_MISC_USER, 8551 /* .size */ 8552 }, 8553 /* .pid */ 8554 /* .tid */ 8555 .start = vma->vm_start, 8556 .len = vma->vm_end - vma->vm_start, 8557 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8558 }, 8559 /* .maj (attr_mmap2 only) */ 8560 /* .min (attr_mmap2 only) */ 8561 /* .ino (attr_mmap2 only) */ 8562 /* .ino_generation (attr_mmap2 only) */ 8563 /* .prot (attr_mmap2 only) */ 8564 /* .flags (attr_mmap2 only) */ 8565 }; 8566 8567 perf_addr_filters_adjust(vma); 8568 perf_event_mmap_event(&mmap_event); 8569 } 8570 8571 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8572 unsigned long size, u64 flags) 8573 { 8574 struct perf_output_handle handle; 8575 struct perf_sample_data sample; 8576 struct perf_aux_event { 8577 struct perf_event_header header; 8578 u64 offset; 8579 u64 size; 8580 u64 flags; 8581 } rec = { 8582 .header = { 8583 .type = PERF_RECORD_AUX, 8584 .misc = 0, 8585 .size = sizeof(rec), 8586 }, 8587 .offset = head, 8588 .size = size, 8589 .flags = flags, 8590 }; 8591 int ret; 8592 8593 perf_event_header__init_id(&rec.header, &sample, event); 8594 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8595 8596 if (ret) 8597 return; 8598 8599 perf_output_put(&handle, rec); 8600 perf_event__output_id_sample(event, &handle, &sample); 8601 8602 perf_output_end(&handle); 8603 } 8604 8605 /* 8606 * Lost/dropped samples logging 8607 */ 8608 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8609 { 8610 struct perf_output_handle handle; 8611 struct perf_sample_data sample; 8612 int ret; 8613 8614 struct { 8615 struct perf_event_header header; 8616 u64 lost; 8617 } lost_samples_event = { 8618 .header = { 8619 .type = PERF_RECORD_LOST_SAMPLES, 8620 .misc = 0, 8621 .size = sizeof(lost_samples_event), 8622 }, 8623 .lost = lost, 8624 }; 8625 8626 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8627 8628 ret = perf_output_begin(&handle, &sample, event, 8629 lost_samples_event.header.size); 8630 if (ret) 8631 return; 8632 8633 perf_output_put(&handle, lost_samples_event); 8634 perf_event__output_id_sample(event, &handle, &sample); 8635 perf_output_end(&handle); 8636 } 8637 8638 /* 8639 * context_switch tracking 8640 */ 8641 8642 struct perf_switch_event { 8643 struct task_struct *task; 8644 struct task_struct *next_prev; 8645 8646 struct { 8647 struct perf_event_header header; 8648 u32 next_prev_pid; 8649 u32 next_prev_tid; 8650 } event_id; 8651 }; 8652 8653 static int perf_event_switch_match(struct perf_event *event) 8654 { 8655 return event->attr.context_switch; 8656 } 8657 8658 static void perf_event_switch_output(struct perf_event *event, void *data) 8659 { 8660 struct perf_switch_event *se = data; 8661 struct perf_output_handle handle; 8662 struct perf_sample_data sample; 8663 int ret; 8664 8665 if (!perf_event_switch_match(event)) 8666 return; 8667 8668 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8669 if (event->ctx->task) { 8670 se->event_id.header.type = PERF_RECORD_SWITCH; 8671 se->event_id.header.size = sizeof(se->event_id.header); 8672 } else { 8673 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8674 se->event_id.header.size = sizeof(se->event_id); 8675 se->event_id.next_prev_pid = 8676 perf_event_pid(event, se->next_prev); 8677 se->event_id.next_prev_tid = 8678 perf_event_tid(event, se->next_prev); 8679 } 8680 8681 perf_event_header__init_id(&se->event_id.header, &sample, event); 8682 8683 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8684 if (ret) 8685 return; 8686 8687 if (event->ctx->task) 8688 perf_output_put(&handle, se->event_id.header); 8689 else 8690 perf_output_put(&handle, se->event_id); 8691 8692 perf_event__output_id_sample(event, &handle, &sample); 8693 8694 perf_output_end(&handle); 8695 } 8696 8697 static void perf_event_switch(struct task_struct *task, 8698 struct task_struct *next_prev, bool sched_in) 8699 { 8700 struct perf_switch_event switch_event; 8701 8702 /* N.B. caller checks nr_switch_events != 0 */ 8703 8704 switch_event = (struct perf_switch_event){ 8705 .task = task, 8706 .next_prev = next_prev, 8707 .event_id = { 8708 .header = { 8709 /* .type */ 8710 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8711 /* .size */ 8712 }, 8713 /* .next_prev_pid */ 8714 /* .next_prev_tid */ 8715 }, 8716 }; 8717 8718 if (!sched_in && task->on_rq) { 8719 switch_event.event_id.header.misc |= 8720 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8721 } 8722 8723 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 8724 } 8725 8726 /* 8727 * IRQ throttle logging 8728 */ 8729 8730 static void perf_log_throttle(struct perf_event *event, int enable) 8731 { 8732 struct perf_output_handle handle; 8733 struct perf_sample_data sample; 8734 int ret; 8735 8736 struct { 8737 struct perf_event_header header; 8738 u64 time; 8739 u64 id; 8740 u64 stream_id; 8741 } throttle_event = { 8742 .header = { 8743 .type = PERF_RECORD_THROTTLE, 8744 .misc = 0, 8745 .size = sizeof(throttle_event), 8746 }, 8747 .time = perf_event_clock(event), 8748 .id = primary_event_id(event), 8749 .stream_id = event->id, 8750 }; 8751 8752 if (enable) 8753 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8754 8755 perf_event_header__init_id(&throttle_event.header, &sample, event); 8756 8757 ret = perf_output_begin(&handle, &sample, event, 8758 throttle_event.header.size); 8759 if (ret) 8760 return; 8761 8762 perf_output_put(&handle, throttle_event); 8763 perf_event__output_id_sample(event, &handle, &sample); 8764 perf_output_end(&handle); 8765 } 8766 8767 /* 8768 * ksymbol register/unregister tracking 8769 */ 8770 8771 struct perf_ksymbol_event { 8772 const char *name; 8773 int name_len; 8774 struct { 8775 struct perf_event_header header; 8776 u64 addr; 8777 u32 len; 8778 u16 ksym_type; 8779 u16 flags; 8780 } event_id; 8781 }; 8782 8783 static int perf_event_ksymbol_match(struct perf_event *event) 8784 { 8785 return event->attr.ksymbol; 8786 } 8787 8788 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8789 { 8790 struct perf_ksymbol_event *ksymbol_event = data; 8791 struct perf_output_handle handle; 8792 struct perf_sample_data sample; 8793 int ret; 8794 8795 if (!perf_event_ksymbol_match(event)) 8796 return; 8797 8798 perf_event_header__init_id(&ksymbol_event->event_id.header, 8799 &sample, event); 8800 ret = perf_output_begin(&handle, &sample, event, 8801 ksymbol_event->event_id.header.size); 8802 if (ret) 8803 return; 8804 8805 perf_output_put(&handle, ksymbol_event->event_id); 8806 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8807 perf_event__output_id_sample(event, &handle, &sample); 8808 8809 perf_output_end(&handle); 8810 } 8811 8812 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8813 const char *sym) 8814 { 8815 struct perf_ksymbol_event ksymbol_event; 8816 char name[KSYM_NAME_LEN]; 8817 u16 flags = 0; 8818 int name_len; 8819 8820 if (!atomic_read(&nr_ksymbol_events)) 8821 return; 8822 8823 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8824 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8825 goto err; 8826 8827 strlcpy(name, sym, KSYM_NAME_LEN); 8828 name_len = strlen(name) + 1; 8829 while (!IS_ALIGNED(name_len, sizeof(u64))) 8830 name[name_len++] = '\0'; 8831 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8832 8833 if (unregister) 8834 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8835 8836 ksymbol_event = (struct perf_ksymbol_event){ 8837 .name = name, 8838 .name_len = name_len, 8839 .event_id = { 8840 .header = { 8841 .type = PERF_RECORD_KSYMBOL, 8842 .size = sizeof(ksymbol_event.event_id) + 8843 name_len, 8844 }, 8845 .addr = addr, 8846 .len = len, 8847 .ksym_type = ksym_type, 8848 .flags = flags, 8849 }, 8850 }; 8851 8852 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8853 return; 8854 err: 8855 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8856 } 8857 8858 /* 8859 * bpf program load/unload tracking 8860 */ 8861 8862 struct perf_bpf_event { 8863 struct bpf_prog *prog; 8864 struct { 8865 struct perf_event_header header; 8866 u16 type; 8867 u16 flags; 8868 u32 id; 8869 u8 tag[BPF_TAG_SIZE]; 8870 } event_id; 8871 }; 8872 8873 static int perf_event_bpf_match(struct perf_event *event) 8874 { 8875 return event->attr.bpf_event; 8876 } 8877 8878 static void perf_event_bpf_output(struct perf_event *event, void *data) 8879 { 8880 struct perf_bpf_event *bpf_event = data; 8881 struct perf_output_handle handle; 8882 struct perf_sample_data sample; 8883 int ret; 8884 8885 if (!perf_event_bpf_match(event)) 8886 return; 8887 8888 perf_event_header__init_id(&bpf_event->event_id.header, 8889 &sample, event); 8890 ret = perf_output_begin(&handle, data, event, 8891 bpf_event->event_id.header.size); 8892 if (ret) 8893 return; 8894 8895 perf_output_put(&handle, bpf_event->event_id); 8896 perf_event__output_id_sample(event, &handle, &sample); 8897 8898 perf_output_end(&handle); 8899 } 8900 8901 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8902 enum perf_bpf_event_type type) 8903 { 8904 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8905 int i; 8906 8907 if (prog->aux->func_cnt == 0) { 8908 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8909 (u64)(unsigned long)prog->bpf_func, 8910 prog->jited_len, unregister, 8911 prog->aux->ksym.name); 8912 } else { 8913 for (i = 0; i < prog->aux->func_cnt; i++) { 8914 struct bpf_prog *subprog = prog->aux->func[i]; 8915 8916 perf_event_ksymbol( 8917 PERF_RECORD_KSYMBOL_TYPE_BPF, 8918 (u64)(unsigned long)subprog->bpf_func, 8919 subprog->jited_len, unregister, 8920 prog->aux->ksym.name); 8921 } 8922 } 8923 } 8924 8925 void perf_event_bpf_event(struct bpf_prog *prog, 8926 enum perf_bpf_event_type type, 8927 u16 flags) 8928 { 8929 struct perf_bpf_event bpf_event; 8930 8931 if (type <= PERF_BPF_EVENT_UNKNOWN || 8932 type >= PERF_BPF_EVENT_MAX) 8933 return; 8934 8935 switch (type) { 8936 case PERF_BPF_EVENT_PROG_LOAD: 8937 case PERF_BPF_EVENT_PROG_UNLOAD: 8938 if (atomic_read(&nr_ksymbol_events)) 8939 perf_event_bpf_emit_ksymbols(prog, type); 8940 break; 8941 default: 8942 break; 8943 } 8944 8945 if (!atomic_read(&nr_bpf_events)) 8946 return; 8947 8948 bpf_event = (struct perf_bpf_event){ 8949 .prog = prog, 8950 .event_id = { 8951 .header = { 8952 .type = PERF_RECORD_BPF_EVENT, 8953 .size = sizeof(bpf_event.event_id), 8954 }, 8955 .type = type, 8956 .flags = flags, 8957 .id = prog->aux->id, 8958 }, 8959 }; 8960 8961 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8962 8963 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8964 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8965 } 8966 8967 struct perf_text_poke_event { 8968 const void *old_bytes; 8969 const void *new_bytes; 8970 size_t pad; 8971 u16 old_len; 8972 u16 new_len; 8973 8974 struct { 8975 struct perf_event_header header; 8976 8977 u64 addr; 8978 } event_id; 8979 }; 8980 8981 static int perf_event_text_poke_match(struct perf_event *event) 8982 { 8983 return event->attr.text_poke; 8984 } 8985 8986 static void perf_event_text_poke_output(struct perf_event *event, void *data) 8987 { 8988 struct perf_text_poke_event *text_poke_event = data; 8989 struct perf_output_handle handle; 8990 struct perf_sample_data sample; 8991 u64 padding = 0; 8992 int ret; 8993 8994 if (!perf_event_text_poke_match(event)) 8995 return; 8996 8997 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 8998 8999 ret = perf_output_begin(&handle, &sample, event, 9000 text_poke_event->event_id.header.size); 9001 if (ret) 9002 return; 9003 9004 perf_output_put(&handle, text_poke_event->event_id); 9005 perf_output_put(&handle, text_poke_event->old_len); 9006 perf_output_put(&handle, text_poke_event->new_len); 9007 9008 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9009 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9010 9011 if (text_poke_event->pad) 9012 __output_copy(&handle, &padding, text_poke_event->pad); 9013 9014 perf_event__output_id_sample(event, &handle, &sample); 9015 9016 perf_output_end(&handle); 9017 } 9018 9019 void perf_event_text_poke(const void *addr, const void *old_bytes, 9020 size_t old_len, const void *new_bytes, size_t new_len) 9021 { 9022 struct perf_text_poke_event text_poke_event; 9023 size_t tot, pad; 9024 9025 if (!atomic_read(&nr_text_poke_events)) 9026 return; 9027 9028 tot = sizeof(text_poke_event.old_len) + old_len; 9029 tot += sizeof(text_poke_event.new_len) + new_len; 9030 pad = ALIGN(tot, sizeof(u64)) - tot; 9031 9032 text_poke_event = (struct perf_text_poke_event){ 9033 .old_bytes = old_bytes, 9034 .new_bytes = new_bytes, 9035 .pad = pad, 9036 .old_len = old_len, 9037 .new_len = new_len, 9038 .event_id = { 9039 .header = { 9040 .type = PERF_RECORD_TEXT_POKE, 9041 .misc = PERF_RECORD_MISC_KERNEL, 9042 .size = sizeof(text_poke_event.event_id) + tot + pad, 9043 }, 9044 .addr = (unsigned long)addr, 9045 }, 9046 }; 9047 9048 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9049 } 9050 9051 void perf_event_itrace_started(struct perf_event *event) 9052 { 9053 event->attach_state |= PERF_ATTACH_ITRACE; 9054 } 9055 9056 static void perf_log_itrace_start(struct perf_event *event) 9057 { 9058 struct perf_output_handle handle; 9059 struct perf_sample_data sample; 9060 struct perf_aux_event { 9061 struct perf_event_header header; 9062 u32 pid; 9063 u32 tid; 9064 } rec; 9065 int ret; 9066 9067 if (event->parent) 9068 event = event->parent; 9069 9070 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9071 event->attach_state & PERF_ATTACH_ITRACE) 9072 return; 9073 9074 rec.header.type = PERF_RECORD_ITRACE_START; 9075 rec.header.misc = 0; 9076 rec.header.size = sizeof(rec); 9077 rec.pid = perf_event_pid(event, current); 9078 rec.tid = perf_event_tid(event, current); 9079 9080 perf_event_header__init_id(&rec.header, &sample, event); 9081 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9082 9083 if (ret) 9084 return; 9085 9086 perf_output_put(&handle, rec); 9087 perf_event__output_id_sample(event, &handle, &sample); 9088 9089 perf_output_end(&handle); 9090 } 9091 9092 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9093 { 9094 struct perf_output_handle handle; 9095 struct perf_sample_data sample; 9096 struct perf_aux_event { 9097 struct perf_event_header header; 9098 u64 hw_id; 9099 } rec; 9100 int ret; 9101 9102 if (event->parent) 9103 event = event->parent; 9104 9105 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9106 rec.header.misc = 0; 9107 rec.header.size = sizeof(rec); 9108 rec.hw_id = hw_id; 9109 9110 perf_event_header__init_id(&rec.header, &sample, event); 9111 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9112 9113 if (ret) 9114 return; 9115 9116 perf_output_put(&handle, rec); 9117 perf_event__output_id_sample(event, &handle, &sample); 9118 9119 perf_output_end(&handle); 9120 } 9121 9122 static int 9123 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9124 { 9125 struct hw_perf_event *hwc = &event->hw; 9126 int ret = 0; 9127 u64 seq; 9128 9129 seq = __this_cpu_read(perf_throttled_seq); 9130 if (seq != hwc->interrupts_seq) { 9131 hwc->interrupts_seq = seq; 9132 hwc->interrupts = 1; 9133 } else { 9134 hwc->interrupts++; 9135 if (unlikely(throttle 9136 && hwc->interrupts >= max_samples_per_tick)) { 9137 __this_cpu_inc(perf_throttled_count); 9138 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9139 hwc->interrupts = MAX_INTERRUPTS; 9140 perf_log_throttle(event, 0); 9141 ret = 1; 9142 } 9143 } 9144 9145 if (event->attr.freq) { 9146 u64 now = perf_clock(); 9147 s64 delta = now - hwc->freq_time_stamp; 9148 9149 hwc->freq_time_stamp = now; 9150 9151 if (delta > 0 && delta < 2*TICK_NSEC) 9152 perf_adjust_period(event, delta, hwc->last_period, true); 9153 } 9154 9155 return ret; 9156 } 9157 9158 int perf_event_account_interrupt(struct perf_event *event) 9159 { 9160 return __perf_event_account_interrupt(event, 1); 9161 } 9162 9163 /* 9164 * Generic event overflow handling, sampling. 9165 */ 9166 9167 static int __perf_event_overflow(struct perf_event *event, 9168 int throttle, struct perf_sample_data *data, 9169 struct pt_regs *regs) 9170 { 9171 int events = atomic_read(&event->event_limit); 9172 int ret = 0; 9173 9174 /* 9175 * Non-sampling counters might still use the PMI to fold short 9176 * hardware counters, ignore those. 9177 */ 9178 if (unlikely(!is_sampling_event(event))) 9179 return 0; 9180 9181 ret = __perf_event_account_interrupt(event, throttle); 9182 9183 /* 9184 * XXX event_limit might not quite work as expected on inherited 9185 * events 9186 */ 9187 9188 event->pending_kill = POLL_IN; 9189 if (events && atomic_dec_and_test(&event->event_limit)) { 9190 ret = 1; 9191 event->pending_kill = POLL_HUP; 9192 event->pending_addr = data->addr; 9193 9194 perf_event_disable_inatomic(event); 9195 } 9196 9197 READ_ONCE(event->overflow_handler)(event, data, regs); 9198 9199 if (*perf_event_fasync(event) && event->pending_kill) { 9200 event->pending_wakeup = 1; 9201 irq_work_queue(&event->pending); 9202 } 9203 9204 return ret; 9205 } 9206 9207 int perf_event_overflow(struct perf_event *event, 9208 struct perf_sample_data *data, 9209 struct pt_regs *regs) 9210 { 9211 return __perf_event_overflow(event, 1, data, regs); 9212 } 9213 9214 /* 9215 * Generic software event infrastructure 9216 */ 9217 9218 struct swevent_htable { 9219 struct swevent_hlist *swevent_hlist; 9220 struct mutex hlist_mutex; 9221 int hlist_refcount; 9222 9223 /* Recursion avoidance in each contexts */ 9224 int recursion[PERF_NR_CONTEXTS]; 9225 }; 9226 9227 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9228 9229 /* 9230 * We directly increment event->count and keep a second value in 9231 * event->hw.period_left to count intervals. This period event 9232 * is kept in the range [-sample_period, 0] so that we can use the 9233 * sign as trigger. 9234 */ 9235 9236 u64 perf_swevent_set_period(struct perf_event *event) 9237 { 9238 struct hw_perf_event *hwc = &event->hw; 9239 u64 period = hwc->last_period; 9240 u64 nr, offset; 9241 s64 old, val; 9242 9243 hwc->last_period = hwc->sample_period; 9244 9245 again: 9246 old = val = local64_read(&hwc->period_left); 9247 if (val < 0) 9248 return 0; 9249 9250 nr = div64_u64(period + val, period); 9251 offset = nr * period; 9252 val -= offset; 9253 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9254 goto again; 9255 9256 return nr; 9257 } 9258 9259 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9260 struct perf_sample_data *data, 9261 struct pt_regs *regs) 9262 { 9263 struct hw_perf_event *hwc = &event->hw; 9264 int throttle = 0; 9265 9266 if (!overflow) 9267 overflow = perf_swevent_set_period(event); 9268 9269 if (hwc->interrupts == MAX_INTERRUPTS) 9270 return; 9271 9272 for (; overflow; overflow--) { 9273 if (__perf_event_overflow(event, throttle, 9274 data, regs)) { 9275 /* 9276 * We inhibit the overflow from happening when 9277 * hwc->interrupts == MAX_INTERRUPTS. 9278 */ 9279 break; 9280 } 9281 throttle = 1; 9282 } 9283 } 9284 9285 static void perf_swevent_event(struct perf_event *event, u64 nr, 9286 struct perf_sample_data *data, 9287 struct pt_regs *regs) 9288 { 9289 struct hw_perf_event *hwc = &event->hw; 9290 9291 local64_add(nr, &event->count); 9292 9293 if (!regs) 9294 return; 9295 9296 if (!is_sampling_event(event)) 9297 return; 9298 9299 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9300 data->period = nr; 9301 return perf_swevent_overflow(event, 1, data, regs); 9302 } else 9303 data->period = event->hw.last_period; 9304 9305 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9306 return perf_swevent_overflow(event, 1, data, regs); 9307 9308 if (local64_add_negative(nr, &hwc->period_left)) 9309 return; 9310 9311 perf_swevent_overflow(event, 0, data, regs); 9312 } 9313 9314 static int perf_exclude_event(struct perf_event *event, 9315 struct pt_regs *regs) 9316 { 9317 if (event->hw.state & PERF_HES_STOPPED) 9318 return 1; 9319 9320 if (regs) { 9321 if (event->attr.exclude_user && user_mode(regs)) 9322 return 1; 9323 9324 if (event->attr.exclude_kernel && !user_mode(regs)) 9325 return 1; 9326 } 9327 9328 return 0; 9329 } 9330 9331 static int perf_swevent_match(struct perf_event *event, 9332 enum perf_type_id type, 9333 u32 event_id, 9334 struct perf_sample_data *data, 9335 struct pt_regs *regs) 9336 { 9337 if (event->attr.type != type) 9338 return 0; 9339 9340 if (event->attr.config != event_id) 9341 return 0; 9342 9343 if (perf_exclude_event(event, regs)) 9344 return 0; 9345 9346 return 1; 9347 } 9348 9349 static inline u64 swevent_hash(u64 type, u32 event_id) 9350 { 9351 u64 val = event_id | (type << 32); 9352 9353 return hash_64(val, SWEVENT_HLIST_BITS); 9354 } 9355 9356 static inline struct hlist_head * 9357 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9358 { 9359 u64 hash = swevent_hash(type, event_id); 9360 9361 return &hlist->heads[hash]; 9362 } 9363 9364 /* For the read side: events when they trigger */ 9365 static inline struct hlist_head * 9366 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9367 { 9368 struct swevent_hlist *hlist; 9369 9370 hlist = rcu_dereference(swhash->swevent_hlist); 9371 if (!hlist) 9372 return NULL; 9373 9374 return __find_swevent_head(hlist, type, event_id); 9375 } 9376 9377 /* For the event head insertion and removal in the hlist */ 9378 static inline struct hlist_head * 9379 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9380 { 9381 struct swevent_hlist *hlist; 9382 u32 event_id = event->attr.config; 9383 u64 type = event->attr.type; 9384 9385 /* 9386 * Event scheduling is always serialized against hlist allocation 9387 * and release. Which makes the protected version suitable here. 9388 * The context lock guarantees that. 9389 */ 9390 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9391 lockdep_is_held(&event->ctx->lock)); 9392 if (!hlist) 9393 return NULL; 9394 9395 return __find_swevent_head(hlist, type, event_id); 9396 } 9397 9398 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9399 u64 nr, 9400 struct perf_sample_data *data, 9401 struct pt_regs *regs) 9402 { 9403 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9404 struct perf_event *event; 9405 struct hlist_head *head; 9406 9407 rcu_read_lock(); 9408 head = find_swevent_head_rcu(swhash, type, event_id); 9409 if (!head) 9410 goto end; 9411 9412 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9413 if (perf_swevent_match(event, type, event_id, data, regs)) 9414 perf_swevent_event(event, nr, data, regs); 9415 } 9416 end: 9417 rcu_read_unlock(); 9418 } 9419 9420 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9421 9422 int perf_swevent_get_recursion_context(void) 9423 { 9424 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9425 9426 return get_recursion_context(swhash->recursion); 9427 } 9428 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9429 9430 void perf_swevent_put_recursion_context(int rctx) 9431 { 9432 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9433 9434 put_recursion_context(swhash->recursion, rctx); 9435 } 9436 9437 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9438 { 9439 struct perf_sample_data data; 9440 9441 if (WARN_ON_ONCE(!regs)) 9442 return; 9443 9444 perf_sample_data_init(&data, addr, 0); 9445 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9446 } 9447 9448 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9449 { 9450 int rctx; 9451 9452 preempt_disable_notrace(); 9453 rctx = perf_swevent_get_recursion_context(); 9454 if (unlikely(rctx < 0)) 9455 goto fail; 9456 9457 ___perf_sw_event(event_id, nr, regs, addr); 9458 9459 perf_swevent_put_recursion_context(rctx); 9460 fail: 9461 preempt_enable_notrace(); 9462 } 9463 9464 static void perf_swevent_read(struct perf_event *event) 9465 { 9466 } 9467 9468 static int perf_swevent_add(struct perf_event *event, int flags) 9469 { 9470 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9471 struct hw_perf_event *hwc = &event->hw; 9472 struct hlist_head *head; 9473 9474 if (is_sampling_event(event)) { 9475 hwc->last_period = hwc->sample_period; 9476 perf_swevent_set_period(event); 9477 } 9478 9479 hwc->state = !(flags & PERF_EF_START); 9480 9481 head = find_swevent_head(swhash, event); 9482 if (WARN_ON_ONCE(!head)) 9483 return -EINVAL; 9484 9485 hlist_add_head_rcu(&event->hlist_entry, head); 9486 perf_event_update_userpage(event); 9487 9488 return 0; 9489 } 9490 9491 static void perf_swevent_del(struct perf_event *event, int flags) 9492 { 9493 hlist_del_rcu(&event->hlist_entry); 9494 } 9495 9496 static void perf_swevent_start(struct perf_event *event, int flags) 9497 { 9498 event->hw.state = 0; 9499 } 9500 9501 static void perf_swevent_stop(struct perf_event *event, int flags) 9502 { 9503 event->hw.state = PERF_HES_STOPPED; 9504 } 9505 9506 /* Deref the hlist from the update side */ 9507 static inline struct swevent_hlist * 9508 swevent_hlist_deref(struct swevent_htable *swhash) 9509 { 9510 return rcu_dereference_protected(swhash->swevent_hlist, 9511 lockdep_is_held(&swhash->hlist_mutex)); 9512 } 9513 9514 static void swevent_hlist_release(struct swevent_htable *swhash) 9515 { 9516 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9517 9518 if (!hlist) 9519 return; 9520 9521 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9522 kfree_rcu(hlist, rcu_head); 9523 } 9524 9525 static void swevent_hlist_put_cpu(int cpu) 9526 { 9527 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9528 9529 mutex_lock(&swhash->hlist_mutex); 9530 9531 if (!--swhash->hlist_refcount) 9532 swevent_hlist_release(swhash); 9533 9534 mutex_unlock(&swhash->hlist_mutex); 9535 } 9536 9537 static void swevent_hlist_put(void) 9538 { 9539 int cpu; 9540 9541 for_each_possible_cpu(cpu) 9542 swevent_hlist_put_cpu(cpu); 9543 } 9544 9545 static int swevent_hlist_get_cpu(int cpu) 9546 { 9547 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9548 int err = 0; 9549 9550 mutex_lock(&swhash->hlist_mutex); 9551 if (!swevent_hlist_deref(swhash) && 9552 cpumask_test_cpu(cpu, perf_online_mask)) { 9553 struct swevent_hlist *hlist; 9554 9555 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9556 if (!hlist) { 9557 err = -ENOMEM; 9558 goto exit; 9559 } 9560 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9561 } 9562 swhash->hlist_refcount++; 9563 exit: 9564 mutex_unlock(&swhash->hlist_mutex); 9565 9566 return err; 9567 } 9568 9569 static int swevent_hlist_get(void) 9570 { 9571 int err, cpu, failed_cpu; 9572 9573 mutex_lock(&pmus_lock); 9574 for_each_possible_cpu(cpu) { 9575 err = swevent_hlist_get_cpu(cpu); 9576 if (err) { 9577 failed_cpu = cpu; 9578 goto fail; 9579 } 9580 } 9581 mutex_unlock(&pmus_lock); 9582 return 0; 9583 fail: 9584 for_each_possible_cpu(cpu) { 9585 if (cpu == failed_cpu) 9586 break; 9587 swevent_hlist_put_cpu(cpu); 9588 } 9589 mutex_unlock(&pmus_lock); 9590 return err; 9591 } 9592 9593 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9594 9595 static void sw_perf_event_destroy(struct perf_event *event) 9596 { 9597 u64 event_id = event->attr.config; 9598 9599 WARN_ON(event->parent); 9600 9601 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9602 swevent_hlist_put(); 9603 } 9604 9605 static int perf_swevent_init(struct perf_event *event) 9606 { 9607 u64 event_id = event->attr.config; 9608 9609 if (event->attr.type != PERF_TYPE_SOFTWARE) 9610 return -ENOENT; 9611 9612 /* 9613 * no branch sampling for software events 9614 */ 9615 if (has_branch_stack(event)) 9616 return -EOPNOTSUPP; 9617 9618 switch (event_id) { 9619 case PERF_COUNT_SW_CPU_CLOCK: 9620 case PERF_COUNT_SW_TASK_CLOCK: 9621 return -ENOENT; 9622 9623 default: 9624 break; 9625 } 9626 9627 if (event_id >= PERF_COUNT_SW_MAX) 9628 return -ENOENT; 9629 9630 if (!event->parent) { 9631 int err; 9632 9633 err = swevent_hlist_get(); 9634 if (err) 9635 return err; 9636 9637 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9638 event->destroy = sw_perf_event_destroy; 9639 } 9640 9641 return 0; 9642 } 9643 9644 static struct pmu perf_swevent = { 9645 .task_ctx_nr = perf_sw_context, 9646 9647 .capabilities = PERF_PMU_CAP_NO_NMI, 9648 9649 .event_init = perf_swevent_init, 9650 .add = perf_swevent_add, 9651 .del = perf_swevent_del, 9652 .start = perf_swevent_start, 9653 .stop = perf_swevent_stop, 9654 .read = perf_swevent_read, 9655 }; 9656 9657 #ifdef CONFIG_EVENT_TRACING 9658 9659 static int perf_tp_filter_match(struct perf_event *event, 9660 struct perf_sample_data *data) 9661 { 9662 void *record = data->raw->frag.data; 9663 9664 /* only top level events have filters set */ 9665 if (event->parent) 9666 event = event->parent; 9667 9668 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9669 return 1; 9670 return 0; 9671 } 9672 9673 static int perf_tp_event_match(struct perf_event *event, 9674 struct perf_sample_data *data, 9675 struct pt_regs *regs) 9676 { 9677 if (event->hw.state & PERF_HES_STOPPED) 9678 return 0; 9679 /* 9680 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9681 */ 9682 if (event->attr.exclude_kernel && !user_mode(regs)) 9683 return 0; 9684 9685 if (!perf_tp_filter_match(event, data)) 9686 return 0; 9687 9688 return 1; 9689 } 9690 9691 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9692 struct trace_event_call *call, u64 count, 9693 struct pt_regs *regs, struct hlist_head *head, 9694 struct task_struct *task) 9695 { 9696 if (bpf_prog_array_valid(call)) { 9697 *(struct pt_regs **)raw_data = regs; 9698 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9699 perf_swevent_put_recursion_context(rctx); 9700 return; 9701 } 9702 } 9703 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9704 rctx, task); 9705 } 9706 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9707 9708 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9709 struct pt_regs *regs, struct hlist_head *head, int rctx, 9710 struct task_struct *task) 9711 { 9712 struct perf_sample_data data; 9713 struct perf_event *event; 9714 9715 struct perf_raw_record raw = { 9716 .frag = { 9717 .size = entry_size, 9718 .data = record, 9719 }, 9720 }; 9721 9722 perf_sample_data_init(&data, 0, 0); 9723 data.raw = &raw; 9724 9725 perf_trace_buf_update(record, event_type); 9726 9727 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9728 if (perf_tp_event_match(event, &data, regs)) 9729 perf_swevent_event(event, count, &data, regs); 9730 } 9731 9732 /* 9733 * If we got specified a target task, also iterate its context and 9734 * deliver this event there too. 9735 */ 9736 if (task && task != current) { 9737 struct perf_event_context *ctx; 9738 struct trace_entry *entry = record; 9739 9740 rcu_read_lock(); 9741 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9742 if (!ctx) 9743 goto unlock; 9744 9745 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9746 if (event->cpu != smp_processor_id()) 9747 continue; 9748 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9749 continue; 9750 if (event->attr.config != entry->type) 9751 continue; 9752 /* Cannot deliver synchronous signal to other task. */ 9753 if (event->attr.sigtrap) 9754 continue; 9755 if (perf_tp_event_match(event, &data, regs)) 9756 perf_swevent_event(event, count, &data, regs); 9757 } 9758 unlock: 9759 rcu_read_unlock(); 9760 } 9761 9762 perf_swevent_put_recursion_context(rctx); 9763 } 9764 EXPORT_SYMBOL_GPL(perf_tp_event); 9765 9766 static void tp_perf_event_destroy(struct perf_event *event) 9767 { 9768 perf_trace_destroy(event); 9769 } 9770 9771 static int perf_tp_event_init(struct perf_event *event) 9772 { 9773 int err; 9774 9775 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9776 return -ENOENT; 9777 9778 /* 9779 * no branch sampling for tracepoint events 9780 */ 9781 if (has_branch_stack(event)) 9782 return -EOPNOTSUPP; 9783 9784 err = perf_trace_init(event); 9785 if (err) 9786 return err; 9787 9788 event->destroy = tp_perf_event_destroy; 9789 9790 return 0; 9791 } 9792 9793 static struct pmu perf_tracepoint = { 9794 .task_ctx_nr = perf_sw_context, 9795 9796 .event_init = perf_tp_event_init, 9797 .add = perf_trace_add, 9798 .del = perf_trace_del, 9799 .start = perf_swevent_start, 9800 .stop = perf_swevent_stop, 9801 .read = perf_swevent_read, 9802 }; 9803 9804 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9805 /* 9806 * Flags in config, used by dynamic PMU kprobe and uprobe 9807 * The flags should match following PMU_FORMAT_ATTR(). 9808 * 9809 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9810 * if not set, create kprobe/uprobe 9811 * 9812 * The following values specify a reference counter (or semaphore in the 9813 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9814 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9815 * 9816 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9817 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9818 */ 9819 enum perf_probe_config { 9820 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9821 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9822 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9823 }; 9824 9825 PMU_FORMAT_ATTR(retprobe, "config:0"); 9826 #endif 9827 9828 #ifdef CONFIG_KPROBE_EVENTS 9829 static struct attribute *kprobe_attrs[] = { 9830 &format_attr_retprobe.attr, 9831 NULL, 9832 }; 9833 9834 static struct attribute_group kprobe_format_group = { 9835 .name = "format", 9836 .attrs = kprobe_attrs, 9837 }; 9838 9839 static const struct attribute_group *kprobe_attr_groups[] = { 9840 &kprobe_format_group, 9841 NULL, 9842 }; 9843 9844 static int perf_kprobe_event_init(struct perf_event *event); 9845 static struct pmu perf_kprobe = { 9846 .task_ctx_nr = perf_sw_context, 9847 .event_init = perf_kprobe_event_init, 9848 .add = perf_trace_add, 9849 .del = perf_trace_del, 9850 .start = perf_swevent_start, 9851 .stop = perf_swevent_stop, 9852 .read = perf_swevent_read, 9853 .attr_groups = kprobe_attr_groups, 9854 }; 9855 9856 static int perf_kprobe_event_init(struct perf_event *event) 9857 { 9858 int err; 9859 bool is_retprobe; 9860 9861 if (event->attr.type != perf_kprobe.type) 9862 return -ENOENT; 9863 9864 if (!perfmon_capable()) 9865 return -EACCES; 9866 9867 /* 9868 * no branch sampling for probe events 9869 */ 9870 if (has_branch_stack(event)) 9871 return -EOPNOTSUPP; 9872 9873 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9874 err = perf_kprobe_init(event, is_retprobe); 9875 if (err) 9876 return err; 9877 9878 event->destroy = perf_kprobe_destroy; 9879 9880 return 0; 9881 } 9882 #endif /* CONFIG_KPROBE_EVENTS */ 9883 9884 #ifdef CONFIG_UPROBE_EVENTS 9885 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9886 9887 static struct attribute *uprobe_attrs[] = { 9888 &format_attr_retprobe.attr, 9889 &format_attr_ref_ctr_offset.attr, 9890 NULL, 9891 }; 9892 9893 static struct attribute_group uprobe_format_group = { 9894 .name = "format", 9895 .attrs = uprobe_attrs, 9896 }; 9897 9898 static const struct attribute_group *uprobe_attr_groups[] = { 9899 &uprobe_format_group, 9900 NULL, 9901 }; 9902 9903 static int perf_uprobe_event_init(struct perf_event *event); 9904 static struct pmu perf_uprobe = { 9905 .task_ctx_nr = perf_sw_context, 9906 .event_init = perf_uprobe_event_init, 9907 .add = perf_trace_add, 9908 .del = perf_trace_del, 9909 .start = perf_swevent_start, 9910 .stop = perf_swevent_stop, 9911 .read = perf_swevent_read, 9912 .attr_groups = uprobe_attr_groups, 9913 }; 9914 9915 static int perf_uprobe_event_init(struct perf_event *event) 9916 { 9917 int err; 9918 unsigned long ref_ctr_offset; 9919 bool is_retprobe; 9920 9921 if (event->attr.type != perf_uprobe.type) 9922 return -ENOENT; 9923 9924 if (!perfmon_capable()) 9925 return -EACCES; 9926 9927 /* 9928 * no branch sampling for probe events 9929 */ 9930 if (has_branch_stack(event)) 9931 return -EOPNOTSUPP; 9932 9933 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9934 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9935 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9936 if (err) 9937 return err; 9938 9939 event->destroy = perf_uprobe_destroy; 9940 9941 return 0; 9942 } 9943 #endif /* CONFIG_UPROBE_EVENTS */ 9944 9945 static inline void perf_tp_register(void) 9946 { 9947 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9948 #ifdef CONFIG_KPROBE_EVENTS 9949 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9950 #endif 9951 #ifdef CONFIG_UPROBE_EVENTS 9952 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9953 #endif 9954 } 9955 9956 static void perf_event_free_filter(struct perf_event *event) 9957 { 9958 ftrace_profile_free_filter(event); 9959 } 9960 9961 #ifdef CONFIG_BPF_SYSCALL 9962 static void bpf_overflow_handler(struct perf_event *event, 9963 struct perf_sample_data *data, 9964 struct pt_regs *regs) 9965 { 9966 struct bpf_perf_event_data_kern ctx = { 9967 .data = data, 9968 .event = event, 9969 }; 9970 struct bpf_prog *prog; 9971 int ret = 0; 9972 9973 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9974 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9975 goto out; 9976 rcu_read_lock(); 9977 prog = READ_ONCE(event->prog); 9978 if (prog) 9979 ret = bpf_prog_run(prog, &ctx); 9980 rcu_read_unlock(); 9981 out: 9982 __this_cpu_dec(bpf_prog_active); 9983 if (!ret) 9984 return; 9985 9986 event->orig_overflow_handler(event, data, regs); 9987 } 9988 9989 static int perf_event_set_bpf_handler(struct perf_event *event, 9990 struct bpf_prog *prog, 9991 u64 bpf_cookie) 9992 { 9993 if (event->overflow_handler_context) 9994 /* hw breakpoint or kernel counter */ 9995 return -EINVAL; 9996 9997 if (event->prog) 9998 return -EEXIST; 9999 10000 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10001 return -EINVAL; 10002 10003 if (event->attr.precise_ip && 10004 prog->call_get_stack && 10005 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) || 10006 event->attr.exclude_callchain_kernel || 10007 event->attr.exclude_callchain_user)) { 10008 /* 10009 * On perf_event with precise_ip, calling bpf_get_stack() 10010 * may trigger unwinder warnings and occasional crashes. 10011 * bpf_get_[stack|stackid] works around this issue by using 10012 * callchain attached to perf_sample_data. If the 10013 * perf_event does not full (kernel and user) callchain 10014 * attached to perf_sample_data, do not allow attaching BPF 10015 * program that calls bpf_get_[stack|stackid]. 10016 */ 10017 return -EPROTO; 10018 } 10019 10020 event->prog = prog; 10021 event->bpf_cookie = bpf_cookie; 10022 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10023 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10024 return 0; 10025 } 10026 10027 static void perf_event_free_bpf_handler(struct perf_event *event) 10028 { 10029 struct bpf_prog *prog = event->prog; 10030 10031 if (!prog) 10032 return; 10033 10034 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10035 event->prog = NULL; 10036 bpf_prog_put(prog); 10037 } 10038 #else 10039 static int perf_event_set_bpf_handler(struct perf_event *event, 10040 struct bpf_prog *prog, 10041 u64 bpf_cookie) 10042 { 10043 return -EOPNOTSUPP; 10044 } 10045 static void perf_event_free_bpf_handler(struct perf_event *event) 10046 { 10047 } 10048 #endif 10049 10050 /* 10051 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10052 * with perf_event_open() 10053 */ 10054 static inline bool perf_event_is_tracing(struct perf_event *event) 10055 { 10056 if (event->pmu == &perf_tracepoint) 10057 return true; 10058 #ifdef CONFIG_KPROBE_EVENTS 10059 if (event->pmu == &perf_kprobe) 10060 return true; 10061 #endif 10062 #ifdef CONFIG_UPROBE_EVENTS 10063 if (event->pmu == &perf_uprobe) 10064 return true; 10065 #endif 10066 return false; 10067 } 10068 10069 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10070 u64 bpf_cookie) 10071 { 10072 bool is_kprobe, is_tracepoint, is_syscall_tp; 10073 10074 if (!perf_event_is_tracing(event)) 10075 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10076 10077 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 10078 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10079 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10080 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 10081 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10082 return -EINVAL; 10083 10084 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 10085 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10086 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10087 return -EINVAL; 10088 10089 /* Kprobe override only works for kprobes, not uprobes. */ 10090 if (prog->kprobe_override && 10091 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) 10092 return -EINVAL; 10093 10094 if (is_tracepoint || is_syscall_tp) { 10095 int off = trace_event_get_offsets(event->tp_event); 10096 10097 if (prog->aux->max_ctx_offset > off) 10098 return -EACCES; 10099 } 10100 10101 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10102 } 10103 10104 void perf_event_free_bpf_prog(struct perf_event *event) 10105 { 10106 if (!perf_event_is_tracing(event)) { 10107 perf_event_free_bpf_handler(event); 10108 return; 10109 } 10110 perf_event_detach_bpf_prog(event); 10111 } 10112 10113 #else 10114 10115 static inline void perf_tp_register(void) 10116 { 10117 } 10118 10119 static void perf_event_free_filter(struct perf_event *event) 10120 { 10121 } 10122 10123 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10124 u64 bpf_cookie) 10125 { 10126 return -ENOENT; 10127 } 10128 10129 void perf_event_free_bpf_prog(struct perf_event *event) 10130 { 10131 } 10132 #endif /* CONFIG_EVENT_TRACING */ 10133 10134 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10135 void perf_bp_event(struct perf_event *bp, void *data) 10136 { 10137 struct perf_sample_data sample; 10138 struct pt_regs *regs = data; 10139 10140 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10141 10142 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10143 perf_swevent_event(bp, 1, &sample, regs); 10144 } 10145 #endif 10146 10147 /* 10148 * Allocate a new address filter 10149 */ 10150 static struct perf_addr_filter * 10151 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10152 { 10153 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10154 struct perf_addr_filter *filter; 10155 10156 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10157 if (!filter) 10158 return NULL; 10159 10160 INIT_LIST_HEAD(&filter->entry); 10161 list_add_tail(&filter->entry, filters); 10162 10163 return filter; 10164 } 10165 10166 static void free_filters_list(struct list_head *filters) 10167 { 10168 struct perf_addr_filter *filter, *iter; 10169 10170 list_for_each_entry_safe(filter, iter, filters, entry) { 10171 path_put(&filter->path); 10172 list_del(&filter->entry); 10173 kfree(filter); 10174 } 10175 } 10176 10177 /* 10178 * Free existing address filters and optionally install new ones 10179 */ 10180 static void perf_addr_filters_splice(struct perf_event *event, 10181 struct list_head *head) 10182 { 10183 unsigned long flags; 10184 LIST_HEAD(list); 10185 10186 if (!has_addr_filter(event)) 10187 return; 10188 10189 /* don't bother with children, they don't have their own filters */ 10190 if (event->parent) 10191 return; 10192 10193 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10194 10195 list_splice_init(&event->addr_filters.list, &list); 10196 if (head) 10197 list_splice(head, &event->addr_filters.list); 10198 10199 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10200 10201 free_filters_list(&list); 10202 } 10203 10204 /* 10205 * Scan through mm's vmas and see if one of them matches the 10206 * @filter; if so, adjust filter's address range. 10207 * Called with mm::mmap_lock down for reading. 10208 */ 10209 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10210 struct mm_struct *mm, 10211 struct perf_addr_filter_range *fr) 10212 { 10213 struct vm_area_struct *vma; 10214 10215 for (vma = mm->mmap; vma; vma = vma->vm_next) { 10216 if (!vma->vm_file) 10217 continue; 10218 10219 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10220 return; 10221 } 10222 } 10223 10224 /* 10225 * Update event's address range filters based on the 10226 * task's existing mappings, if any. 10227 */ 10228 static void perf_event_addr_filters_apply(struct perf_event *event) 10229 { 10230 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10231 struct task_struct *task = READ_ONCE(event->ctx->task); 10232 struct perf_addr_filter *filter; 10233 struct mm_struct *mm = NULL; 10234 unsigned int count = 0; 10235 unsigned long flags; 10236 10237 /* 10238 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10239 * will stop on the parent's child_mutex that our caller is also holding 10240 */ 10241 if (task == TASK_TOMBSTONE) 10242 return; 10243 10244 if (ifh->nr_file_filters) { 10245 mm = get_task_mm(task); 10246 if (!mm) 10247 goto restart; 10248 10249 mmap_read_lock(mm); 10250 } 10251 10252 raw_spin_lock_irqsave(&ifh->lock, flags); 10253 list_for_each_entry(filter, &ifh->list, entry) { 10254 if (filter->path.dentry) { 10255 /* 10256 * Adjust base offset if the filter is associated to a 10257 * binary that needs to be mapped: 10258 */ 10259 event->addr_filter_ranges[count].start = 0; 10260 event->addr_filter_ranges[count].size = 0; 10261 10262 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10263 } else { 10264 event->addr_filter_ranges[count].start = filter->offset; 10265 event->addr_filter_ranges[count].size = filter->size; 10266 } 10267 10268 count++; 10269 } 10270 10271 event->addr_filters_gen++; 10272 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10273 10274 if (ifh->nr_file_filters) { 10275 mmap_read_unlock(mm); 10276 10277 mmput(mm); 10278 } 10279 10280 restart: 10281 perf_event_stop(event, 1); 10282 } 10283 10284 /* 10285 * Address range filtering: limiting the data to certain 10286 * instruction address ranges. Filters are ioctl()ed to us from 10287 * userspace as ascii strings. 10288 * 10289 * Filter string format: 10290 * 10291 * ACTION RANGE_SPEC 10292 * where ACTION is one of the 10293 * * "filter": limit the trace to this region 10294 * * "start": start tracing from this address 10295 * * "stop": stop tracing at this address/region; 10296 * RANGE_SPEC is 10297 * * for kernel addresses: <start address>[/<size>] 10298 * * for object files: <start address>[/<size>]@</path/to/object/file> 10299 * 10300 * if <size> is not specified or is zero, the range is treated as a single 10301 * address; not valid for ACTION=="filter". 10302 */ 10303 enum { 10304 IF_ACT_NONE = -1, 10305 IF_ACT_FILTER, 10306 IF_ACT_START, 10307 IF_ACT_STOP, 10308 IF_SRC_FILE, 10309 IF_SRC_KERNEL, 10310 IF_SRC_FILEADDR, 10311 IF_SRC_KERNELADDR, 10312 }; 10313 10314 enum { 10315 IF_STATE_ACTION = 0, 10316 IF_STATE_SOURCE, 10317 IF_STATE_END, 10318 }; 10319 10320 static const match_table_t if_tokens = { 10321 { IF_ACT_FILTER, "filter" }, 10322 { IF_ACT_START, "start" }, 10323 { IF_ACT_STOP, "stop" }, 10324 { IF_SRC_FILE, "%u/%u@%s" }, 10325 { IF_SRC_KERNEL, "%u/%u" }, 10326 { IF_SRC_FILEADDR, "%u@%s" }, 10327 { IF_SRC_KERNELADDR, "%u" }, 10328 { IF_ACT_NONE, NULL }, 10329 }; 10330 10331 /* 10332 * Address filter string parser 10333 */ 10334 static int 10335 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10336 struct list_head *filters) 10337 { 10338 struct perf_addr_filter *filter = NULL; 10339 char *start, *orig, *filename = NULL; 10340 substring_t args[MAX_OPT_ARGS]; 10341 int state = IF_STATE_ACTION, token; 10342 unsigned int kernel = 0; 10343 int ret = -EINVAL; 10344 10345 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10346 if (!fstr) 10347 return -ENOMEM; 10348 10349 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10350 static const enum perf_addr_filter_action_t actions[] = { 10351 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10352 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10353 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10354 }; 10355 ret = -EINVAL; 10356 10357 if (!*start) 10358 continue; 10359 10360 /* filter definition begins */ 10361 if (state == IF_STATE_ACTION) { 10362 filter = perf_addr_filter_new(event, filters); 10363 if (!filter) 10364 goto fail; 10365 } 10366 10367 token = match_token(start, if_tokens, args); 10368 switch (token) { 10369 case IF_ACT_FILTER: 10370 case IF_ACT_START: 10371 case IF_ACT_STOP: 10372 if (state != IF_STATE_ACTION) 10373 goto fail; 10374 10375 filter->action = actions[token]; 10376 state = IF_STATE_SOURCE; 10377 break; 10378 10379 case IF_SRC_KERNELADDR: 10380 case IF_SRC_KERNEL: 10381 kernel = 1; 10382 fallthrough; 10383 10384 case IF_SRC_FILEADDR: 10385 case IF_SRC_FILE: 10386 if (state != IF_STATE_SOURCE) 10387 goto fail; 10388 10389 *args[0].to = 0; 10390 ret = kstrtoul(args[0].from, 0, &filter->offset); 10391 if (ret) 10392 goto fail; 10393 10394 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10395 *args[1].to = 0; 10396 ret = kstrtoul(args[1].from, 0, &filter->size); 10397 if (ret) 10398 goto fail; 10399 } 10400 10401 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10402 int fpos = token == IF_SRC_FILE ? 2 : 1; 10403 10404 kfree(filename); 10405 filename = match_strdup(&args[fpos]); 10406 if (!filename) { 10407 ret = -ENOMEM; 10408 goto fail; 10409 } 10410 } 10411 10412 state = IF_STATE_END; 10413 break; 10414 10415 default: 10416 goto fail; 10417 } 10418 10419 /* 10420 * Filter definition is fully parsed, validate and install it. 10421 * Make sure that it doesn't contradict itself or the event's 10422 * attribute. 10423 */ 10424 if (state == IF_STATE_END) { 10425 ret = -EINVAL; 10426 10427 /* 10428 * ACTION "filter" must have a non-zero length region 10429 * specified. 10430 */ 10431 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10432 !filter->size) 10433 goto fail; 10434 10435 if (!kernel) { 10436 if (!filename) 10437 goto fail; 10438 10439 /* 10440 * For now, we only support file-based filters 10441 * in per-task events; doing so for CPU-wide 10442 * events requires additional context switching 10443 * trickery, since same object code will be 10444 * mapped at different virtual addresses in 10445 * different processes. 10446 */ 10447 ret = -EOPNOTSUPP; 10448 if (!event->ctx->task) 10449 goto fail; 10450 10451 /* look up the path and grab its inode */ 10452 ret = kern_path(filename, LOOKUP_FOLLOW, 10453 &filter->path); 10454 if (ret) 10455 goto fail; 10456 10457 ret = -EINVAL; 10458 if (!filter->path.dentry || 10459 !S_ISREG(d_inode(filter->path.dentry) 10460 ->i_mode)) 10461 goto fail; 10462 10463 event->addr_filters.nr_file_filters++; 10464 } 10465 10466 /* ready to consume more filters */ 10467 kfree(filename); 10468 filename = NULL; 10469 state = IF_STATE_ACTION; 10470 filter = NULL; 10471 kernel = 0; 10472 } 10473 } 10474 10475 if (state != IF_STATE_ACTION) 10476 goto fail; 10477 10478 kfree(filename); 10479 kfree(orig); 10480 10481 return 0; 10482 10483 fail: 10484 kfree(filename); 10485 free_filters_list(filters); 10486 kfree(orig); 10487 10488 return ret; 10489 } 10490 10491 static int 10492 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10493 { 10494 LIST_HEAD(filters); 10495 int ret; 10496 10497 /* 10498 * Since this is called in perf_ioctl() path, we're already holding 10499 * ctx::mutex. 10500 */ 10501 lockdep_assert_held(&event->ctx->mutex); 10502 10503 if (WARN_ON_ONCE(event->parent)) 10504 return -EINVAL; 10505 10506 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10507 if (ret) 10508 goto fail_clear_files; 10509 10510 ret = event->pmu->addr_filters_validate(&filters); 10511 if (ret) 10512 goto fail_free_filters; 10513 10514 /* remove existing filters, if any */ 10515 perf_addr_filters_splice(event, &filters); 10516 10517 /* install new filters */ 10518 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10519 10520 return ret; 10521 10522 fail_free_filters: 10523 free_filters_list(&filters); 10524 10525 fail_clear_files: 10526 event->addr_filters.nr_file_filters = 0; 10527 10528 return ret; 10529 } 10530 10531 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10532 { 10533 int ret = -EINVAL; 10534 char *filter_str; 10535 10536 filter_str = strndup_user(arg, PAGE_SIZE); 10537 if (IS_ERR(filter_str)) 10538 return PTR_ERR(filter_str); 10539 10540 #ifdef CONFIG_EVENT_TRACING 10541 if (perf_event_is_tracing(event)) { 10542 struct perf_event_context *ctx = event->ctx; 10543 10544 /* 10545 * Beware, here be dragons!! 10546 * 10547 * the tracepoint muck will deadlock against ctx->mutex, but 10548 * the tracepoint stuff does not actually need it. So 10549 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10550 * already have a reference on ctx. 10551 * 10552 * This can result in event getting moved to a different ctx, 10553 * but that does not affect the tracepoint state. 10554 */ 10555 mutex_unlock(&ctx->mutex); 10556 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10557 mutex_lock(&ctx->mutex); 10558 } else 10559 #endif 10560 if (has_addr_filter(event)) 10561 ret = perf_event_set_addr_filter(event, filter_str); 10562 10563 kfree(filter_str); 10564 return ret; 10565 } 10566 10567 /* 10568 * hrtimer based swevent callback 10569 */ 10570 10571 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10572 { 10573 enum hrtimer_restart ret = HRTIMER_RESTART; 10574 struct perf_sample_data data; 10575 struct pt_regs *regs; 10576 struct perf_event *event; 10577 u64 period; 10578 10579 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10580 10581 if (event->state != PERF_EVENT_STATE_ACTIVE) 10582 return HRTIMER_NORESTART; 10583 10584 event->pmu->read(event); 10585 10586 perf_sample_data_init(&data, 0, event->hw.last_period); 10587 regs = get_irq_regs(); 10588 10589 if (regs && !perf_exclude_event(event, regs)) { 10590 if (!(event->attr.exclude_idle && is_idle_task(current))) 10591 if (__perf_event_overflow(event, 1, &data, regs)) 10592 ret = HRTIMER_NORESTART; 10593 } 10594 10595 period = max_t(u64, 10000, event->hw.sample_period); 10596 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10597 10598 return ret; 10599 } 10600 10601 static void perf_swevent_start_hrtimer(struct perf_event *event) 10602 { 10603 struct hw_perf_event *hwc = &event->hw; 10604 s64 period; 10605 10606 if (!is_sampling_event(event)) 10607 return; 10608 10609 period = local64_read(&hwc->period_left); 10610 if (period) { 10611 if (period < 0) 10612 period = 10000; 10613 10614 local64_set(&hwc->period_left, 0); 10615 } else { 10616 period = max_t(u64, 10000, hwc->sample_period); 10617 } 10618 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10619 HRTIMER_MODE_REL_PINNED_HARD); 10620 } 10621 10622 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10623 { 10624 struct hw_perf_event *hwc = &event->hw; 10625 10626 if (is_sampling_event(event)) { 10627 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10628 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10629 10630 hrtimer_cancel(&hwc->hrtimer); 10631 } 10632 } 10633 10634 static void perf_swevent_init_hrtimer(struct perf_event *event) 10635 { 10636 struct hw_perf_event *hwc = &event->hw; 10637 10638 if (!is_sampling_event(event)) 10639 return; 10640 10641 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10642 hwc->hrtimer.function = perf_swevent_hrtimer; 10643 10644 /* 10645 * Since hrtimers have a fixed rate, we can do a static freq->period 10646 * mapping and avoid the whole period adjust feedback stuff. 10647 */ 10648 if (event->attr.freq) { 10649 long freq = event->attr.sample_freq; 10650 10651 event->attr.sample_period = NSEC_PER_SEC / freq; 10652 hwc->sample_period = event->attr.sample_period; 10653 local64_set(&hwc->period_left, hwc->sample_period); 10654 hwc->last_period = hwc->sample_period; 10655 event->attr.freq = 0; 10656 } 10657 } 10658 10659 /* 10660 * Software event: cpu wall time clock 10661 */ 10662 10663 static void cpu_clock_event_update(struct perf_event *event) 10664 { 10665 s64 prev; 10666 u64 now; 10667 10668 now = local_clock(); 10669 prev = local64_xchg(&event->hw.prev_count, now); 10670 local64_add(now - prev, &event->count); 10671 } 10672 10673 static void cpu_clock_event_start(struct perf_event *event, int flags) 10674 { 10675 local64_set(&event->hw.prev_count, local_clock()); 10676 perf_swevent_start_hrtimer(event); 10677 } 10678 10679 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10680 { 10681 perf_swevent_cancel_hrtimer(event); 10682 cpu_clock_event_update(event); 10683 } 10684 10685 static int cpu_clock_event_add(struct perf_event *event, int flags) 10686 { 10687 if (flags & PERF_EF_START) 10688 cpu_clock_event_start(event, flags); 10689 perf_event_update_userpage(event); 10690 10691 return 0; 10692 } 10693 10694 static void cpu_clock_event_del(struct perf_event *event, int flags) 10695 { 10696 cpu_clock_event_stop(event, flags); 10697 } 10698 10699 static void cpu_clock_event_read(struct perf_event *event) 10700 { 10701 cpu_clock_event_update(event); 10702 } 10703 10704 static int cpu_clock_event_init(struct perf_event *event) 10705 { 10706 if (event->attr.type != PERF_TYPE_SOFTWARE) 10707 return -ENOENT; 10708 10709 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10710 return -ENOENT; 10711 10712 /* 10713 * no branch sampling for software events 10714 */ 10715 if (has_branch_stack(event)) 10716 return -EOPNOTSUPP; 10717 10718 perf_swevent_init_hrtimer(event); 10719 10720 return 0; 10721 } 10722 10723 static struct pmu perf_cpu_clock = { 10724 .task_ctx_nr = perf_sw_context, 10725 10726 .capabilities = PERF_PMU_CAP_NO_NMI, 10727 10728 .event_init = cpu_clock_event_init, 10729 .add = cpu_clock_event_add, 10730 .del = cpu_clock_event_del, 10731 .start = cpu_clock_event_start, 10732 .stop = cpu_clock_event_stop, 10733 .read = cpu_clock_event_read, 10734 }; 10735 10736 /* 10737 * Software event: task time clock 10738 */ 10739 10740 static void task_clock_event_update(struct perf_event *event, u64 now) 10741 { 10742 u64 prev; 10743 s64 delta; 10744 10745 prev = local64_xchg(&event->hw.prev_count, now); 10746 delta = now - prev; 10747 local64_add(delta, &event->count); 10748 } 10749 10750 static void task_clock_event_start(struct perf_event *event, int flags) 10751 { 10752 local64_set(&event->hw.prev_count, event->ctx->time); 10753 perf_swevent_start_hrtimer(event); 10754 } 10755 10756 static void task_clock_event_stop(struct perf_event *event, int flags) 10757 { 10758 perf_swevent_cancel_hrtimer(event); 10759 task_clock_event_update(event, event->ctx->time); 10760 } 10761 10762 static int task_clock_event_add(struct perf_event *event, int flags) 10763 { 10764 if (flags & PERF_EF_START) 10765 task_clock_event_start(event, flags); 10766 perf_event_update_userpage(event); 10767 10768 return 0; 10769 } 10770 10771 static void task_clock_event_del(struct perf_event *event, int flags) 10772 { 10773 task_clock_event_stop(event, PERF_EF_UPDATE); 10774 } 10775 10776 static void task_clock_event_read(struct perf_event *event) 10777 { 10778 u64 now = perf_clock(); 10779 u64 delta = now - event->ctx->timestamp; 10780 u64 time = event->ctx->time + delta; 10781 10782 task_clock_event_update(event, time); 10783 } 10784 10785 static int task_clock_event_init(struct perf_event *event) 10786 { 10787 if (event->attr.type != PERF_TYPE_SOFTWARE) 10788 return -ENOENT; 10789 10790 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10791 return -ENOENT; 10792 10793 /* 10794 * no branch sampling for software events 10795 */ 10796 if (has_branch_stack(event)) 10797 return -EOPNOTSUPP; 10798 10799 perf_swevent_init_hrtimer(event); 10800 10801 return 0; 10802 } 10803 10804 static struct pmu perf_task_clock = { 10805 .task_ctx_nr = perf_sw_context, 10806 10807 .capabilities = PERF_PMU_CAP_NO_NMI, 10808 10809 .event_init = task_clock_event_init, 10810 .add = task_clock_event_add, 10811 .del = task_clock_event_del, 10812 .start = task_clock_event_start, 10813 .stop = task_clock_event_stop, 10814 .read = task_clock_event_read, 10815 }; 10816 10817 static void perf_pmu_nop_void(struct pmu *pmu) 10818 { 10819 } 10820 10821 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10822 { 10823 } 10824 10825 static int perf_pmu_nop_int(struct pmu *pmu) 10826 { 10827 return 0; 10828 } 10829 10830 static int perf_event_nop_int(struct perf_event *event, u64 value) 10831 { 10832 return 0; 10833 } 10834 10835 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10836 10837 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10838 { 10839 __this_cpu_write(nop_txn_flags, flags); 10840 10841 if (flags & ~PERF_PMU_TXN_ADD) 10842 return; 10843 10844 perf_pmu_disable(pmu); 10845 } 10846 10847 static int perf_pmu_commit_txn(struct pmu *pmu) 10848 { 10849 unsigned int flags = __this_cpu_read(nop_txn_flags); 10850 10851 __this_cpu_write(nop_txn_flags, 0); 10852 10853 if (flags & ~PERF_PMU_TXN_ADD) 10854 return 0; 10855 10856 perf_pmu_enable(pmu); 10857 return 0; 10858 } 10859 10860 static void perf_pmu_cancel_txn(struct pmu *pmu) 10861 { 10862 unsigned int flags = __this_cpu_read(nop_txn_flags); 10863 10864 __this_cpu_write(nop_txn_flags, 0); 10865 10866 if (flags & ~PERF_PMU_TXN_ADD) 10867 return; 10868 10869 perf_pmu_enable(pmu); 10870 } 10871 10872 static int perf_event_idx_default(struct perf_event *event) 10873 { 10874 return 0; 10875 } 10876 10877 /* 10878 * Ensures all contexts with the same task_ctx_nr have the same 10879 * pmu_cpu_context too. 10880 */ 10881 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10882 { 10883 struct pmu *pmu; 10884 10885 if (ctxn < 0) 10886 return NULL; 10887 10888 list_for_each_entry(pmu, &pmus, entry) { 10889 if (pmu->task_ctx_nr == ctxn) 10890 return pmu->pmu_cpu_context; 10891 } 10892 10893 return NULL; 10894 } 10895 10896 static void free_pmu_context(struct pmu *pmu) 10897 { 10898 /* 10899 * Static contexts such as perf_sw_context have a global lifetime 10900 * and may be shared between different PMUs. Avoid freeing them 10901 * when a single PMU is going away. 10902 */ 10903 if (pmu->task_ctx_nr > perf_invalid_context) 10904 return; 10905 10906 free_percpu(pmu->pmu_cpu_context); 10907 } 10908 10909 /* 10910 * Let userspace know that this PMU supports address range filtering: 10911 */ 10912 static ssize_t nr_addr_filters_show(struct device *dev, 10913 struct device_attribute *attr, 10914 char *page) 10915 { 10916 struct pmu *pmu = dev_get_drvdata(dev); 10917 10918 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10919 } 10920 DEVICE_ATTR_RO(nr_addr_filters); 10921 10922 static struct idr pmu_idr; 10923 10924 static ssize_t 10925 type_show(struct device *dev, struct device_attribute *attr, char *page) 10926 { 10927 struct pmu *pmu = dev_get_drvdata(dev); 10928 10929 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10930 } 10931 static DEVICE_ATTR_RO(type); 10932 10933 static ssize_t 10934 perf_event_mux_interval_ms_show(struct device *dev, 10935 struct device_attribute *attr, 10936 char *page) 10937 { 10938 struct pmu *pmu = dev_get_drvdata(dev); 10939 10940 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10941 } 10942 10943 static DEFINE_MUTEX(mux_interval_mutex); 10944 10945 static ssize_t 10946 perf_event_mux_interval_ms_store(struct device *dev, 10947 struct device_attribute *attr, 10948 const char *buf, size_t count) 10949 { 10950 struct pmu *pmu = dev_get_drvdata(dev); 10951 int timer, cpu, ret; 10952 10953 ret = kstrtoint(buf, 0, &timer); 10954 if (ret) 10955 return ret; 10956 10957 if (timer < 1) 10958 return -EINVAL; 10959 10960 /* same value, noting to do */ 10961 if (timer == pmu->hrtimer_interval_ms) 10962 return count; 10963 10964 mutex_lock(&mux_interval_mutex); 10965 pmu->hrtimer_interval_ms = timer; 10966 10967 /* update all cpuctx for this PMU */ 10968 cpus_read_lock(); 10969 for_each_online_cpu(cpu) { 10970 struct perf_cpu_context *cpuctx; 10971 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10972 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10973 10974 cpu_function_call(cpu, 10975 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10976 } 10977 cpus_read_unlock(); 10978 mutex_unlock(&mux_interval_mutex); 10979 10980 return count; 10981 } 10982 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10983 10984 static struct attribute *pmu_dev_attrs[] = { 10985 &dev_attr_type.attr, 10986 &dev_attr_perf_event_mux_interval_ms.attr, 10987 NULL, 10988 }; 10989 ATTRIBUTE_GROUPS(pmu_dev); 10990 10991 static int pmu_bus_running; 10992 static struct bus_type pmu_bus = { 10993 .name = "event_source", 10994 .dev_groups = pmu_dev_groups, 10995 }; 10996 10997 static void pmu_dev_release(struct device *dev) 10998 { 10999 kfree(dev); 11000 } 11001 11002 static int pmu_dev_alloc(struct pmu *pmu) 11003 { 11004 int ret = -ENOMEM; 11005 11006 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11007 if (!pmu->dev) 11008 goto out; 11009 11010 pmu->dev->groups = pmu->attr_groups; 11011 device_initialize(pmu->dev); 11012 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11013 if (ret) 11014 goto free_dev; 11015 11016 dev_set_drvdata(pmu->dev, pmu); 11017 pmu->dev->bus = &pmu_bus; 11018 pmu->dev->release = pmu_dev_release; 11019 ret = device_add(pmu->dev); 11020 if (ret) 11021 goto free_dev; 11022 11023 /* For PMUs with address filters, throw in an extra attribute: */ 11024 if (pmu->nr_addr_filters) 11025 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 11026 11027 if (ret) 11028 goto del_dev; 11029 11030 if (pmu->attr_update) 11031 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11032 11033 if (ret) 11034 goto del_dev; 11035 11036 out: 11037 return ret; 11038 11039 del_dev: 11040 device_del(pmu->dev); 11041 11042 free_dev: 11043 put_device(pmu->dev); 11044 goto out; 11045 } 11046 11047 static struct lock_class_key cpuctx_mutex; 11048 static struct lock_class_key cpuctx_lock; 11049 11050 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11051 { 11052 int cpu, ret, max = PERF_TYPE_MAX; 11053 11054 mutex_lock(&pmus_lock); 11055 ret = -ENOMEM; 11056 pmu->pmu_disable_count = alloc_percpu(int); 11057 if (!pmu->pmu_disable_count) 11058 goto unlock; 11059 11060 pmu->type = -1; 11061 if (!name) 11062 goto skip_type; 11063 pmu->name = name; 11064 11065 if (type != PERF_TYPE_SOFTWARE) { 11066 if (type >= 0) 11067 max = type; 11068 11069 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11070 if (ret < 0) 11071 goto free_pdc; 11072 11073 WARN_ON(type >= 0 && ret != type); 11074 11075 type = ret; 11076 } 11077 pmu->type = type; 11078 11079 if (pmu_bus_running) { 11080 ret = pmu_dev_alloc(pmu); 11081 if (ret) 11082 goto free_idr; 11083 } 11084 11085 skip_type: 11086 if (pmu->task_ctx_nr == perf_hw_context) { 11087 static int hw_context_taken = 0; 11088 11089 /* 11090 * Other than systems with heterogeneous CPUs, it never makes 11091 * sense for two PMUs to share perf_hw_context. PMUs which are 11092 * uncore must use perf_invalid_context. 11093 */ 11094 if (WARN_ON_ONCE(hw_context_taken && 11095 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 11096 pmu->task_ctx_nr = perf_invalid_context; 11097 11098 hw_context_taken = 1; 11099 } 11100 11101 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 11102 if (pmu->pmu_cpu_context) 11103 goto got_cpu_context; 11104 11105 ret = -ENOMEM; 11106 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 11107 if (!pmu->pmu_cpu_context) 11108 goto free_dev; 11109 11110 for_each_possible_cpu(cpu) { 11111 struct perf_cpu_context *cpuctx; 11112 11113 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11114 __perf_event_init_context(&cpuctx->ctx); 11115 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 11116 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 11117 cpuctx->ctx.pmu = pmu; 11118 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 11119 11120 __perf_mux_hrtimer_init(cpuctx, cpu); 11121 11122 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 11123 cpuctx->heap = cpuctx->heap_default; 11124 } 11125 11126 got_cpu_context: 11127 if (!pmu->start_txn) { 11128 if (pmu->pmu_enable) { 11129 /* 11130 * If we have pmu_enable/pmu_disable calls, install 11131 * transaction stubs that use that to try and batch 11132 * hardware accesses. 11133 */ 11134 pmu->start_txn = perf_pmu_start_txn; 11135 pmu->commit_txn = perf_pmu_commit_txn; 11136 pmu->cancel_txn = perf_pmu_cancel_txn; 11137 } else { 11138 pmu->start_txn = perf_pmu_nop_txn; 11139 pmu->commit_txn = perf_pmu_nop_int; 11140 pmu->cancel_txn = perf_pmu_nop_void; 11141 } 11142 } 11143 11144 if (!pmu->pmu_enable) { 11145 pmu->pmu_enable = perf_pmu_nop_void; 11146 pmu->pmu_disable = perf_pmu_nop_void; 11147 } 11148 11149 if (!pmu->check_period) 11150 pmu->check_period = perf_event_nop_int; 11151 11152 if (!pmu->event_idx) 11153 pmu->event_idx = perf_event_idx_default; 11154 11155 /* 11156 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 11157 * since these cannot be in the IDR. This way the linear search 11158 * is fast, provided a valid software event is provided. 11159 */ 11160 if (type == PERF_TYPE_SOFTWARE || !name) 11161 list_add_rcu(&pmu->entry, &pmus); 11162 else 11163 list_add_tail_rcu(&pmu->entry, &pmus); 11164 11165 atomic_set(&pmu->exclusive_cnt, 0); 11166 ret = 0; 11167 unlock: 11168 mutex_unlock(&pmus_lock); 11169 11170 return ret; 11171 11172 free_dev: 11173 device_del(pmu->dev); 11174 put_device(pmu->dev); 11175 11176 free_idr: 11177 if (pmu->type != PERF_TYPE_SOFTWARE) 11178 idr_remove(&pmu_idr, pmu->type); 11179 11180 free_pdc: 11181 free_percpu(pmu->pmu_disable_count); 11182 goto unlock; 11183 } 11184 EXPORT_SYMBOL_GPL(perf_pmu_register); 11185 11186 void perf_pmu_unregister(struct pmu *pmu) 11187 { 11188 mutex_lock(&pmus_lock); 11189 list_del_rcu(&pmu->entry); 11190 11191 /* 11192 * We dereference the pmu list under both SRCU and regular RCU, so 11193 * synchronize against both of those. 11194 */ 11195 synchronize_srcu(&pmus_srcu); 11196 synchronize_rcu(); 11197 11198 free_percpu(pmu->pmu_disable_count); 11199 if (pmu->type != PERF_TYPE_SOFTWARE) 11200 idr_remove(&pmu_idr, pmu->type); 11201 if (pmu_bus_running) { 11202 if (pmu->nr_addr_filters) 11203 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11204 device_del(pmu->dev); 11205 put_device(pmu->dev); 11206 } 11207 free_pmu_context(pmu); 11208 mutex_unlock(&pmus_lock); 11209 } 11210 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11211 11212 static inline bool has_extended_regs(struct perf_event *event) 11213 { 11214 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11215 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11216 } 11217 11218 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11219 { 11220 struct perf_event_context *ctx = NULL; 11221 int ret; 11222 11223 if (!try_module_get(pmu->module)) 11224 return -ENODEV; 11225 11226 /* 11227 * A number of pmu->event_init() methods iterate the sibling_list to, 11228 * for example, validate if the group fits on the PMU. Therefore, 11229 * if this is a sibling event, acquire the ctx->mutex to protect 11230 * the sibling_list. 11231 */ 11232 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11233 /* 11234 * This ctx->mutex can nest when we're called through 11235 * inheritance. See the perf_event_ctx_lock_nested() comment. 11236 */ 11237 ctx = perf_event_ctx_lock_nested(event->group_leader, 11238 SINGLE_DEPTH_NESTING); 11239 BUG_ON(!ctx); 11240 } 11241 11242 event->pmu = pmu; 11243 ret = pmu->event_init(event); 11244 11245 if (ctx) 11246 perf_event_ctx_unlock(event->group_leader, ctx); 11247 11248 if (!ret) { 11249 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11250 has_extended_regs(event)) 11251 ret = -EOPNOTSUPP; 11252 11253 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11254 event_has_any_exclude_flag(event)) 11255 ret = -EINVAL; 11256 11257 if (ret && event->destroy) 11258 event->destroy(event); 11259 } 11260 11261 if (ret) 11262 module_put(pmu->module); 11263 11264 return ret; 11265 } 11266 11267 static struct pmu *perf_init_event(struct perf_event *event) 11268 { 11269 bool extended_type = false; 11270 int idx, type, ret; 11271 struct pmu *pmu; 11272 11273 idx = srcu_read_lock(&pmus_srcu); 11274 11275 /* Try parent's PMU first: */ 11276 if (event->parent && event->parent->pmu) { 11277 pmu = event->parent->pmu; 11278 ret = perf_try_init_event(pmu, event); 11279 if (!ret) 11280 goto unlock; 11281 } 11282 11283 /* 11284 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11285 * are often aliases for PERF_TYPE_RAW. 11286 */ 11287 type = event->attr.type; 11288 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11289 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11290 if (!type) { 11291 type = PERF_TYPE_RAW; 11292 } else { 11293 extended_type = true; 11294 event->attr.config &= PERF_HW_EVENT_MASK; 11295 } 11296 } 11297 11298 again: 11299 rcu_read_lock(); 11300 pmu = idr_find(&pmu_idr, type); 11301 rcu_read_unlock(); 11302 if (pmu) { 11303 if (event->attr.type != type && type != PERF_TYPE_RAW && 11304 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11305 goto fail; 11306 11307 ret = perf_try_init_event(pmu, event); 11308 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11309 type = event->attr.type; 11310 goto again; 11311 } 11312 11313 if (ret) 11314 pmu = ERR_PTR(ret); 11315 11316 goto unlock; 11317 } 11318 11319 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11320 ret = perf_try_init_event(pmu, event); 11321 if (!ret) 11322 goto unlock; 11323 11324 if (ret != -ENOENT) { 11325 pmu = ERR_PTR(ret); 11326 goto unlock; 11327 } 11328 } 11329 fail: 11330 pmu = ERR_PTR(-ENOENT); 11331 unlock: 11332 srcu_read_unlock(&pmus_srcu, idx); 11333 11334 return pmu; 11335 } 11336 11337 static void attach_sb_event(struct perf_event *event) 11338 { 11339 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11340 11341 raw_spin_lock(&pel->lock); 11342 list_add_rcu(&event->sb_list, &pel->list); 11343 raw_spin_unlock(&pel->lock); 11344 } 11345 11346 /* 11347 * We keep a list of all !task (and therefore per-cpu) events 11348 * that need to receive side-band records. 11349 * 11350 * This avoids having to scan all the various PMU per-cpu contexts 11351 * looking for them. 11352 */ 11353 static void account_pmu_sb_event(struct perf_event *event) 11354 { 11355 if (is_sb_event(event)) 11356 attach_sb_event(event); 11357 } 11358 11359 static void account_event_cpu(struct perf_event *event, int cpu) 11360 { 11361 if (event->parent) 11362 return; 11363 11364 if (is_cgroup_event(event)) 11365 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11366 } 11367 11368 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11369 static void account_freq_event_nohz(void) 11370 { 11371 #ifdef CONFIG_NO_HZ_FULL 11372 /* Lock so we don't race with concurrent unaccount */ 11373 spin_lock(&nr_freq_lock); 11374 if (atomic_inc_return(&nr_freq_events) == 1) 11375 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11376 spin_unlock(&nr_freq_lock); 11377 #endif 11378 } 11379 11380 static void account_freq_event(void) 11381 { 11382 if (tick_nohz_full_enabled()) 11383 account_freq_event_nohz(); 11384 else 11385 atomic_inc(&nr_freq_events); 11386 } 11387 11388 11389 static void account_event(struct perf_event *event) 11390 { 11391 bool inc = false; 11392 11393 if (event->parent) 11394 return; 11395 11396 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11397 inc = true; 11398 if (event->attr.mmap || event->attr.mmap_data) 11399 atomic_inc(&nr_mmap_events); 11400 if (event->attr.build_id) 11401 atomic_inc(&nr_build_id_events); 11402 if (event->attr.comm) 11403 atomic_inc(&nr_comm_events); 11404 if (event->attr.namespaces) 11405 atomic_inc(&nr_namespaces_events); 11406 if (event->attr.cgroup) 11407 atomic_inc(&nr_cgroup_events); 11408 if (event->attr.task) 11409 atomic_inc(&nr_task_events); 11410 if (event->attr.freq) 11411 account_freq_event(); 11412 if (event->attr.context_switch) { 11413 atomic_inc(&nr_switch_events); 11414 inc = true; 11415 } 11416 if (has_branch_stack(event)) 11417 inc = true; 11418 if (is_cgroup_event(event)) 11419 inc = true; 11420 if (event->attr.ksymbol) 11421 atomic_inc(&nr_ksymbol_events); 11422 if (event->attr.bpf_event) 11423 atomic_inc(&nr_bpf_events); 11424 if (event->attr.text_poke) 11425 atomic_inc(&nr_text_poke_events); 11426 11427 if (inc) { 11428 /* 11429 * We need the mutex here because static_branch_enable() 11430 * must complete *before* the perf_sched_count increment 11431 * becomes visible. 11432 */ 11433 if (atomic_inc_not_zero(&perf_sched_count)) 11434 goto enabled; 11435 11436 mutex_lock(&perf_sched_mutex); 11437 if (!atomic_read(&perf_sched_count)) { 11438 static_branch_enable(&perf_sched_events); 11439 /* 11440 * Guarantee that all CPUs observe they key change and 11441 * call the perf scheduling hooks before proceeding to 11442 * install events that need them. 11443 */ 11444 synchronize_rcu(); 11445 } 11446 /* 11447 * Now that we have waited for the sync_sched(), allow further 11448 * increments to by-pass the mutex. 11449 */ 11450 atomic_inc(&perf_sched_count); 11451 mutex_unlock(&perf_sched_mutex); 11452 } 11453 enabled: 11454 11455 account_event_cpu(event, event->cpu); 11456 11457 account_pmu_sb_event(event); 11458 } 11459 11460 /* 11461 * Allocate and initialize an event structure 11462 */ 11463 static struct perf_event * 11464 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11465 struct task_struct *task, 11466 struct perf_event *group_leader, 11467 struct perf_event *parent_event, 11468 perf_overflow_handler_t overflow_handler, 11469 void *context, int cgroup_fd) 11470 { 11471 struct pmu *pmu; 11472 struct perf_event *event; 11473 struct hw_perf_event *hwc; 11474 long err = -EINVAL; 11475 int node; 11476 11477 if ((unsigned)cpu >= nr_cpu_ids) { 11478 if (!task || cpu != -1) 11479 return ERR_PTR(-EINVAL); 11480 } 11481 if (attr->sigtrap && !task) { 11482 /* Requires a task: avoid signalling random tasks. */ 11483 return ERR_PTR(-EINVAL); 11484 } 11485 11486 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11487 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11488 node); 11489 if (!event) 11490 return ERR_PTR(-ENOMEM); 11491 11492 /* 11493 * Single events are their own group leaders, with an 11494 * empty sibling list: 11495 */ 11496 if (!group_leader) 11497 group_leader = event; 11498 11499 mutex_init(&event->child_mutex); 11500 INIT_LIST_HEAD(&event->child_list); 11501 11502 INIT_LIST_HEAD(&event->event_entry); 11503 INIT_LIST_HEAD(&event->sibling_list); 11504 INIT_LIST_HEAD(&event->active_list); 11505 init_event_group(event); 11506 INIT_LIST_HEAD(&event->rb_entry); 11507 INIT_LIST_HEAD(&event->active_entry); 11508 INIT_LIST_HEAD(&event->addr_filters.list); 11509 INIT_HLIST_NODE(&event->hlist_entry); 11510 11511 11512 init_waitqueue_head(&event->waitq); 11513 event->pending_disable = -1; 11514 init_irq_work(&event->pending, perf_pending_event); 11515 11516 mutex_init(&event->mmap_mutex); 11517 raw_spin_lock_init(&event->addr_filters.lock); 11518 11519 atomic_long_set(&event->refcount, 1); 11520 event->cpu = cpu; 11521 event->attr = *attr; 11522 event->group_leader = group_leader; 11523 event->pmu = NULL; 11524 event->oncpu = -1; 11525 11526 event->parent = parent_event; 11527 11528 event->ns = get_pid_ns(task_active_pid_ns(current)); 11529 event->id = atomic64_inc_return(&perf_event_id); 11530 11531 event->state = PERF_EVENT_STATE_INACTIVE; 11532 11533 if (parent_event) 11534 event->event_caps = parent_event->event_caps; 11535 11536 if (event->attr.sigtrap) 11537 atomic_set(&event->event_limit, 1); 11538 11539 if (task) { 11540 event->attach_state = PERF_ATTACH_TASK; 11541 /* 11542 * XXX pmu::event_init needs to know what task to account to 11543 * and we cannot use the ctx information because we need the 11544 * pmu before we get a ctx. 11545 */ 11546 event->hw.target = get_task_struct(task); 11547 } 11548 11549 event->clock = &local_clock; 11550 if (parent_event) 11551 event->clock = parent_event->clock; 11552 11553 if (!overflow_handler && parent_event) { 11554 overflow_handler = parent_event->overflow_handler; 11555 context = parent_event->overflow_handler_context; 11556 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11557 if (overflow_handler == bpf_overflow_handler) { 11558 struct bpf_prog *prog = parent_event->prog; 11559 11560 bpf_prog_inc(prog); 11561 event->prog = prog; 11562 event->orig_overflow_handler = 11563 parent_event->orig_overflow_handler; 11564 } 11565 #endif 11566 } 11567 11568 if (overflow_handler) { 11569 event->overflow_handler = overflow_handler; 11570 event->overflow_handler_context = context; 11571 } else if (is_write_backward(event)){ 11572 event->overflow_handler = perf_event_output_backward; 11573 event->overflow_handler_context = NULL; 11574 } else { 11575 event->overflow_handler = perf_event_output_forward; 11576 event->overflow_handler_context = NULL; 11577 } 11578 11579 perf_event__state_init(event); 11580 11581 pmu = NULL; 11582 11583 hwc = &event->hw; 11584 hwc->sample_period = attr->sample_period; 11585 if (attr->freq && attr->sample_freq) 11586 hwc->sample_period = 1; 11587 hwc->last_period = hwc->sample_period; 11588 11589 local64_set(&hwc->period_left, hwc->sample_period); 11590 11591 /* 11592 * We currently do not support PERF_SAMPLE_READ on inherited events. 11593 * See perf_output_read(). 11594 */ 11595 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11596 goto err_ns; 11597 11598 if (!has_branch_stack(event)) 11599 event->attr.branch_sample_type = 0; 11600 11601 pmu = perf_init_event(event); 11602 if (IS_ERR(pmu)) { 11603 err = PTR_ERR(pmu); 11604 goto err_ns; 11605 } 11606 11607 /* 11608 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11609 * be different on other CPUs in the uncore mask. 11610 */ 11611 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11612 err = -EINVAL; 11613 goto err_pmu; 11614 } 11615 11616 if (event->attr.aux_output && 11617 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11618 err = -EOPNOTSUPP; 11619 goto err_pmu; 11620 } 11621 11622 if (cgroup_fd != -1) { 11623 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11624 if (err) 11625 goto err_pmu; 11626 } 11627 11628 err = exclusive_event_init(event); 11629 if (err) 11630 goto err_pmu; 11631 11632 if (has_addr_filter(event)) { 11633 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11634 sizeof(struct perf_addr_filter_range), 11635 GFP_KERNEL); 11636 if (!event->addr_filter_ranges) { 11637 err = -ENOMEM; 11638 goto err_per_task; 11639 } 11640 11641 /* 11642 * Clone the parent's vma offsets: they are valid until exec() 11643 * even if the mm is not shared with the parent. 11644 */ 11645 if (event->parent) { 11646 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11647 11648 raw_spin_lock_irq(&ifh->lock); 11649 memcpy(event->addr_filter_ranges, 11650 event->parent->addr_filter_ranges, 11651 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11652 raw_spin_unlock_irq(&ifh->lock); 11653 } 11654 11655 /* force hw sync on the address filters */ 11656 event->addr_filters_gen = 1; 11657 } 11658 11659 if (!event->parent) { 11660 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11661 err = get_callchain_buffers(attr->sample_max_stack); 11662 if (err) 11663 goto err_addr_filters; 11664 } 11665 } 11666 11667 err = security_perf_event_alloc(event); 11668 if (err) 11669 goto err_callchain_buffer; 11670 11671 /* symmetric to unaccount_event() in _free_event() */ 11672 account_event(event); 11673 11674 return event; 11675 11676 err_callchain_buffer: 11677 if (!event->parent) { 11678 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11679 put_callchain_buffers(); 11680 } 11681 err_addr_filters: 11682 kfree(event->addr_filter_ranges); 11683 11684 err_per_task: 11685 exclusive_event_destroy(event); 11686 11687 err_pmu: 11688 if (is_cgroup_event(event)) 11689 perf_detach_cgroup(event); 11690 if (event->destroy) 11691 event->destroy(event); 11692 module_put(pmu->module); 11693 err_ns: 11694 if (event->ns) 11695 put_pid_ns(event->ns); 11696 if (event->hw.target) 11697 put_task_struct(event->hw.target); 11698 kmem_cache_free(perf_event_cache, event); 11699 11700 return ERR_PTR(err); 11701 } 11702 11703 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11704 struct perf_event_attr *attr) 11705 { 11706 u32 size; 11707 int ret; 11708 11709 /* Zero the full structure, so that a short copy will be nice. */ 11710 memset(attr, 0, sizeof(*attr)); 11711 11712 ret = get_user(size, &uattr->size); 11713 if (ret) 11714 return ret; 11715 11716 /* ABI compatibility quirk: */ 11717 if (!size) 11718 size = PERF_ATTR_SIZE_VER0; 11719 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11720 goto err_size; 11721 11722 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11723 if (ret) { 11724 if (ret == -E2BIG) 11725 goto err_size; 11726 return ret; 11727 } 11728 11729 attr->size = size; 11730 11731 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11732 return -EINVAL; 11733 11734 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11735 return -EINVAL; 11736 11737 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11738 return -EINVAL; 11739 11740 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11741 u64 mask = attr->branch_sample_type; 11742 11743 /* only using defined bits */ 11744 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11745 return -EINVAL; 11746 11747 /* at least one branch bit must be set */ 11748 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11749 return -EINVAL; 11750 11751 /* propagate priv level, when not set for branch */ 11752 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11753 11754 /* exclude_kernel checked on syscall entry */ 11755 if (!attr->exclude_kernel) 11756 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11757 11758 if (!attr->exclude_user) 11759 mask |= PERF_SAMPLE_BRANCH_USER; 11760 11761 if (!attr->exclude_hv) 11762 mask |= PERF_SAMPLE_BRANCH_HV; 11763 /* 11764 * adjust user setting (for HW filter setup) 11765 */ 11766 attr->branch_sample_type = mask; 11767 } 11768 /* privileged levels capture (kernel, hv): check permissions */ 11769 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11770 ret = perf_allow_kernel(attr); 11771 if (ret) 11772 return ret; 11773 } 11774 } 11775 11776 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11777 ret = perf_reg_validate(attr->sample_regs_user); 11778 if (ret) 11779 return ret; 11780 } 11781 11782 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11783 if (!arch_perf_have_user_stack_dump()) 11784 return -ENOSYS; 11785 11786 /* 11787 * We have __u32 type for the size, but so far 11788 * we can only use __u16 as maximum due to the 11789 * __u16 sample size limit. 11790 */ 11791 if (attr->sample_stack_user >= USHRT_MAX) 11792 return -EINVAL; 11793 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11794 return -EINVAL; 11795 } 11796 11797 if (!attr->sample_max_stack) 11798 attr->sample_max_stack = sysctl_perf_event_max_stack; 11799 11800 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11801 ret = perf_reg_validate(attr->sample_regs_intr); 11802 11803 #ifndef CONFIG_CGROUP_PERF 11804 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11805 return -EINVAL; 11806 #endif 11807 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 11808 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 11809 return -EINVAL; 11810 11811 if (!attr->inherit && attr->inherit_thread) 11812 return -EINVAL; 11813 11814 if (attr->remove_on_exec && attr->enable_on_exec) 11815 return -EINVAL; 11816 11817 if (attr->sigtrap && !attr->remove_on_exec) 11818 return -EINVAL; 11819 11820 out: 11821 return ret; 11822 11823 err_size: 11824 put_user(sizeof(*attr), &uattr->size); 11825 ret = -E2BIG; 11826 goto out; 11827 } 11828 11829 static int 11830 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11831 { 11832 struct perf_buffer *rb = NULL; 11833 int ret = -EINVAL; 11834 11835 if (!output_event) 11836 goto set; 11837 11838 /* don't allow circular references */ 11839 if (event == output_event) 11840 goto out; 11841 11842 /* 11843 * Don't allow cross-cpu buffers 11844 */ 11845 if (output_event->cpu != event->cpu) 11846 goto out; 11847 11848 /* 11849 * If its not a per-cpu rb, it must be the same task. 11850 */ 11851 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11852 goto out; 11853 11854 /* 11855 * Mixing clocks in the same buffer is trouble you don't need. 11856 */ 11857 if (output_event->clock != event->clock) 11858 goto out; 11859 11860 /* 11861 * Either writing ring buffer from beginning or from end. 11862 * Mixing is not allowed. 11863 */ 11864 if (is_write_backward(output_event) != is_write_backward(event)) 11865 goto out; 11866 11867 /* 11868 * If both events generate aux data, they must be on the same PMU 11869 */ 11870 if (has_aux(event) && has_aux(output_event) && 11871 event->pmu != output_event->pmu) 11872 goto out; 11873 11874 set: 11875 mutex_lock(&event->mmap_mutex); 11876 /* Can't redirect output if we've got an active mmap() */ 11877 if (atomic_read(&event->mmap_count)) 11878 goto unlock; 11879 11880 if (output_event) { 11881 /* get the rb we want to redirect to */ 11882 rb = ring_buffer_get(output_event); 11883 if (!rb) 11884 goto unlock; 11885 } 11886 11887 ring_buffer_attach(event, rb); 11888 11889 ret = 0; 11890 unlock: 11891 mutex_unlock(&event->mmap_mutex); 11892 11893 out: 11894 return ret; 11895 } 11896 11897 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11898 { 11899 if (b < a) 11900 swap(a, b); 11901 11902 mutex_lock(a); 11903 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11904 } 11905 11906 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11907 { 11908 bool nmi_safe = false; 11909 11910 switch (clk_id) { 11911 case CLOCK_MONOTONIC: 11912 event->clock = &ktime_get_mono_fast_ns; 11913 nmi_safe = true; 11914 break; 11915 11916 case CLOCK_MONOTONIC_RAW: 11917 event->clock = &ktime_get_raw_fast_ns; 11918 nmi_safe = true; 11919 break; 11920 11921 case CLOCK_REALTIME: 11922 event->clock = &ktime_get_real_ns; 11923 break; 11924 11925 case CLOCK_BOOTTIME: 11926 event->clock = &ktime_get_boottime_ns; 11927 break; 11928 11929 case CLOCK_TAI: 11930 event->clock = &ktime_get_clocktai_ns; 11931 break; 11932 11933 default: 11934 return -EINVAL; 11935 } 11936 11937 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11938 return -EINVAL; 11939 11940 return 0; 11941 } 11942 11943 /* 11944 * Variation on perf_event_ctx_lock_nested(), except we take two context 11945 * mutexes. 11946 */ 11947 static struct perf_event_context * 11948 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11949 struct perf_event_context *ctx) 11950 { 11951 struct perf_event_context *gctx; 11952 11953 again: 11954 rcu_read_lock(); 11955 gctx = READ_ONCE(group_leader->ctx); 11956 if (!refcount_inc_not_zero(&gctx->refcount)) { 11957 rcu_read_unlock(); 11958 goto again; 11959 } 11960 rcu_read_unlock(); 11961 11962 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11963 11964 if (group_leader->ctx != gctx) { 11965 mutex_unlock(&ctx->mutex); 11966 mutex_unlock(&gctx->mutex); 11967 put_ctx(gctx); 11968 goto again; 11969 } 11970 11971 return gctx; 11972 } 11973 11974 static bool 11975 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 11976 { 11977 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 11978 bool is_capable = perfmon_capable(); 11979 11980 if (attr->sigtrap) { 11981 /* 11982 * perf_event_attr::sigtrap sends signals to the other task. 11983 * Require the current task to also have CAP_KILL. 11984 */ 11985 rcu_read_lock(); 11986 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 11987 rcu_read_unlock(); 11988 11989 /* 11990 * If the required capabilities aren't available, checks for 11991 * ptrace permissions: upgrade to ATTACH, since sending signals 11992 * can effectively change the target task. 11993 */ 11994 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 11995 } 11996 11997 /* 11998 * Preserve ptrace permission check for backwards compatibility. The 11999 * ptrace check also includes checks that the current task and other 12000 * task have matching uids, and is therefore not done here explicitly. 12001 */ 12002 return is_capable || ptrace_may_access(task, ptrace_mode); 12003 } 12004 12005 /** 12006 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12007 * 12008 * @attr_uptr: event_id type attributes for monitoring/sampling 12009 * @pid: target pid 12010 * @cpu: target cpu 12011 * @group_fd: group leader event fd 12012 * @flags: perf event open flags 12013 */ 12014 SYSCALL_DEFINE5(perf_event_open, 12015 struct perf_event_attr __user *, attr_uptr, 12016 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12017 { 12018 struct perf_event *group_leader = NULL, *output_event = NULL; 12019 struct perf_event *event, *sibling; 12020 struct perf_event_attr attr; 12021 struct perf_event_context *ctx, *gctx; 12022 struct file *event_file = NULL; 12023 struct fd group = {NULL, 0}; 12024 struct task_struct *task = NULL; 12025 struct pmu *pmu; 12026 int event_fd; 12027 int move_group = 0; 12028 int err; 12029 int f_flags = O_RDWR; 12030 int cgroup_fd = -1; 12031 12032 /* for future expandability... */ 12033 if (flags & ~PERF_FLAG_ALL) 12034 return -EINVAL; 12035 12036 /* Do we allow access to perf_event_open(2) ? */ 12037 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12038 if (err) 12039 return err; 12040 12041 err = perf_copy_attr(attr_uptr, &attr); 12042 if (err) 12043 return err; 12044 12045 if (!attr.exclude_kernel) { 12046 err = perf_allow_kernel(&attr); 12047 if (err) 12048 return err; 12049 } 12050 12051 if (attr.namespaces) { 12052 if (!perfmon_capable()) 12053 return -EACCES; 12054 } 12055 12056 if (attr.freq) { 12057 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12058 return -EINVAL; 12059 } else { 12060 if (attr.sample_period & (1ULL << 63)) 12061 return -EINVAL; 12062 } 12063 12064 /* Only privileged users can get physical addresses */ 12065 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12066 err = perf_allow_kernel(&attr); 12067 if (err) 12068 return err; 12069 } 12070 12071 /* REGS_INTR can leak data, lockdown must prevent this */ 12072 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12073 err = security_locked_down(LOCKDOWN_PERF); 12074 if (err) 12075 return err; 12076 } 12077 12078 /* 12079 * In cgroup mode, the pid argument is used to pass the fd 12080 * opened to the cgroup directory in cgroupfs. The cpu argument 12081 * designates the cpu on which to monitor threads from that 12082 * cgroup. 12083 */ 12084 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12085 return -EINVAL; 12086 12087 if (flags & PERF_FLAG_FD_CLOEXEC) 12088 f_flags |= O_CLOEXEC; 12089 12090 event_fd = get_unused_fd_flags(f_flags); 12091 if (event_fd < 0) 12092 return event_fd; 12093 12094 if (group_fd != -1) { 12095 err = perf_fget_light(group_fd, &group); 12096 if (err) 12097 goto err_fd; 12098 group_leader = group.file->private_data; 12099 if (flags & PERF_FLAG_FD_OUTPUT) 12100 output_event = group_leader; 12101 if (flags & PERF_FLAG_FD_NO_GROUP) 12102 group_leader = NULL; 12103 } 12104 12105 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12106 task = find_lively_task_by_vpid(pid); 12107 if (IS_ERR(task)) { 12108 err = PTR_ERR(task); 12109 goto err_group_fd; 12110 } 12111 } 12112 12113 if (task && group_leader && 12114 group_leader->attr.inherit != attr.inherit) { 12115 err = -EINVAL; 12116 goto err_task; 12117 } 12118 12119 if (flags & PERF_FLAG_PID_CGROUP) 12120 cgroup_fd = pid; 12121 12122 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12123 NULL, NULL, cgroup_fd); 12124 if (IS_ERR(event)) { 12125 err = PTR_ERR(event); 12126 goto err_task; 12127 } 12128 12129 if (is_sampling_event(event)) { 12130 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12131 err = -EOPNOTSUPP; 12132 goto err_alloc; 12133 } 12134 } 12135 12136 /* 12137 * Special case software events and allow them to be part of 12138 * any hardware group. 12139 */ 12140 pmu = event->pmu; 12141 12142 if (attr.use_clockid) { 12143 err = perf_event_set_clock(event, attr.clockid); 12144 if (err) 12145 goto err_alloc; 12146 } 12147 12148 if (pmu->task_ctx_nr == perf_sw_context) 12149 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12150 12151 if (group_leader) { 12152 if (is_software_event(event) && 12153 !in_software_context(group_leader)) { 12154 /* 12155 * If the event is a sw event, but the group_leader 12156 * is on hw context. 12157 * 12158 * Allow the addition of software events to hw 12159 * groups, this is safe because software events 12160 * never fail to schedule. 12161 */ 12162 pmu = group_leader->ctx->pmu; 12163 } else if (!is_software_event(event) && 12164 is_software_event(group_leader) && 12165 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12166 /* 12167 * In case the group is a pure software group, and we 12168 * try to add a hardware event, move the whole group to 12169 * the hardware context. 12170 */ 12171 move_group = 1; 12172 } 12173 } 12174 12175 /* 12176 * Get the target context (task or percpu): 12177 */ 12178 ctx = find_get_context(pmu, task, event); 12179 if (IS_ERR(ctx)) { 12180 err = PTR_ERR(ctx); 12181 goto err_alloc; 12182 } 12183 12184 /* 12185 * Look up the group leader (we will attach this event to it): 12186 */ 12187 if (group_leader) { 12188 err = -EINVAL; 12189 12190 /* 12191 * Do not allow a recursive hierarchy (this new sibling 12192 * becoming part of another group-sibling): 12193 */ 12194 if (group_leader->group_leader != group_leader) 12195 goto err_context; 12196 12197 /* All events in a group should have the same clock */ 12198 if (group_leader->clock != event->clock) 12199 goto err_context; 12200 12201 /* 12202 * Make sure we're both events for the same CPU; 12203 * grouping events for different CPUs is broken; since 12204 * you can never concurrently schedule them anyhow. 12205 */ 12206 if (group_leader->cpu != event->cpu) 12207 goto err_context; 12208 12209 /* 12210 * Make sure we're both on the same task, or both 12211 * per-CPU events. 12212 */ 12213 if (group_leader->ctx->task != ctx->task) 12214 goto err_context; 12215 12216 /* 12217 * Do not allow to attach to a group in a different task 12218 * or CPU context. If we're moving SW events, we'll fix 12219 * this up later, so allow that. 12220 */ 12221 if (!move_group && group_leader->ctx != ctx) 12222 goto err_context; 12223 12224 /* 12225 * Only a group leader can be exclusive or pinned 12226 */ 12227 if (attr.exclusive || attr.pinned) 12228 goto err_context; 12229 } 12230 12231 if (output_event) { 12232 err = perf_event_set_output(event, output_event); 12233 if (err) 12234 goto err_context; 12235 } 12236 12237 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 12238 f_flags); 12239 if (IS_ERR(event_file)) { 12240 err = PTR_ERR(event_file); 12241 event_file = NULL; 12242 goto err_context; 12243 } 12244 12245 if (task) { 12246 err = down_read_interruptible(&task->signal->exec_update_lock); 12247 if (err) 12248 goto err_file; 12249 12250 /* 12251 * We must hold exec_update_lock across this and any potential 12252 * perf_install_in_context() call for this new event to 12253 * serialize against exec() altering our credentials (and the 12254 * perf_event_exit_task() that could imply). 12255 */ 12256 err = -EACCES; 12257 if (!perf_check_permission(&attr, task)) 12258 goto err_cred; 12259 } 12260 12261 if (move_group) { 12262 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 12263 12264 if (gctx->task == TASK_TOMBSTONE) { 12265 err = -ESRCH; 12266 goto err_locked; 12267 } 12268 12269 /* 12270 * Check if we raced against another sys_perf_event_open() call 12271 * moving the software group underneath us. 12272 */ 12273 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12274 /* 12275 * If someone moved the group out from under us, check 12276 * if this new event wound up on the same ctx, if so 12277 * its the regular !move_group case, otherwise fail. 12278 */ 12279 if (gctx != ctx) { 12280 err = -EINVAL; 12281 goto err_locked; 12282 } else { 12283 perf_event_ctx_unlock(group_leader, gctx); 12284 move_group = 0; 12285 } 12286 } 12287 12288 /* 12289 * Failure to create exclusive events returns -EBUSY. 12290 */ 12291 err = -EBUSY; 12292 if (!exclusive_event_installable(group_leader, ctx)) 12293 goto err_locked; 12294 12295 for_each_sibling_event(sibling, group_leader) { 12296 if (!exclusive_event_installable(sibling, ctx)) 12297 goto err_locked; 12298 } 12299 } else { 12300 mutex_lock(&ctx->mutex); 12301 } 12302 12303 if (ctx->task == TASK_TOMBSTONE) { 12304 err = -ESRCH; 12305 goto err_locked; 12306 } 12307 12308 if (!perf_event_validate_size(event)) { 12309 err = -E2BIG; 12310 goto err_locked; 12311 } 12312 12313 if (!task) { 12314 /* 12315 * Check if the @cpu we're creating an event for is online. 12316 * 12317 * We use the perf_cpu_context::ctx::mutex to serialize against 12318 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12319 */ 12320 struct perf_cpu_context *cpuctx = 12321 container_of(ctx, struct perf_cpu_context, ctx); 12322 12323 if (!cpuctx->online) { 12324 err = -ENODEV; 12325 goto err_locked; 12326 } 12327 } 12328 12329 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12330 err = -EINVAL; 12331 goto err_locked; 12332 } 12333 12334 /* 12335 * Must be under the same ctx::mutex as perf_install_in_context(), 12336 * because we need to serialize with concurrent event creation. 12337 */ 12338 if (!exclusive_event_installable(event, ctx)) { 12339 err = -EBUSY; 12340 goto err_locked; 12341 } 12342 12343 WARN_ON_ONCE(ctx->parent_ctx); 12344 12345 /* 12346 * This is the point on no return; we cannot fail hereafter. This is 12347 * where we start modifying current state. 12348 */ 12349 12350 if (move_group) { 12351 /* 12352 * See perf_event_ctx_lock() for comments on the details 12353 * of swizzling perf_event::ctx. 12354 */ 12355 perf_remove_from_context(group_leader, 0); 12356 put_ctx(gctx); 12357 12358 for_each_sibling_event(sibling, group_leader) { 12359 perf_remove_from_context(sibling, 0); 12360 put_ctx(gctx); 12361 } 12362 12363 /* 12364 * Wait for everybody to stop referencing the events through 12365 * the old lists, before installing it on new lists. 12366 */ 12367 synchronize_rcu(); 12368 12369 /* 12370 * Install the group siblings before the group leader. 12371 * 12372 * Because a group leader will try and install the entire group 12373 * (through the sibling list, which is still in-tact), we can 12374 * end up with siblings installed in the wrong context. 12375 * 12376 * By installing siblings first we NO-OP because they're not 12377 * reachable through the group lists. 12378 */ 12379 for_each_sibling_event(sibling, group_leader) { 12380 perf_event__state_init(sibling); 12381 perf_install_in_context(ctx, sibling, sibling->cpu); 12382 get_ctx(ctx); 12383 } 12384 12385 /* 12386 * Removing from the context ends up with disabled 12387 * event. What we want here is event in the initial 12388 * startup state, ready to be add into new context. 12389 */ 12390 perf_event__state_init(group_leader); 12391 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12392 get_ctx(ctx); 12393 } 12394 12395 /* 12396 * Precalculate sample_data sizes; do while holding ctx::mutex such 12397 * that we're serialized against further additions and before 12398 * perf_install_in_context() which is the point the event is active and 12399 * can use these values. 12400 */ 12401 perf_event__header_size(event); 12402 perf_event__id_header_size(event); 12403 12404 event->owner = current; 12405 12406 perf_install_in_context(ctx, event, event->cpu); 12407 perf_unpin_context(ctx); 12408 12409 if (move_group) 12410 perf_event_ctx_unlock(group_leader, gctx); 12411 mutex_unlock(&ctx->mutex); 12412 12413 if (task) { 12414 up_read(&task->signal->exec_update_lock); 12415 put_task_struct(task); 12416 } 12417 12418 mutex_lock(¤t->perf_event_mutex); 12419 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12420 mutex_unlock(¤t->perf_event_mutex); 12421 12422 /* 12423 * Drop the reference on the group_event after placing the 12424 * new event on the sibling_list. This ensures destruction 12425 * of the group leader will find the pointer to itself in 12426 * perf_group_detach(). 12427 */ 12428 fdput(group); 12429 fd_install(event_fd, event_file); 12430 return event_fd; 12431 12432 err_locked: 12433 if (move_group) 12434 perf_event_ctx_unlock(group_leader, gctx); 12435 mutex_unlock(&ctx->mutex); 12436 err_cred: 12437 if (task) 12438 up_read(&task->signal->exec_update_lock); 12439 err_file: 12440 fput(event_file); 12441 err_context: 12442 perf_unpin_context(ctx); 12443 put_ctx(ctx); 12444 err_alloc: 12445 /* 12446 * If event_file is set, the fput() above will have called ->release() 12447 * and that will take care of freeing the event. 12448 */ 12449 if (!event_file) 12450 free_event(event); 12451 err_task: 12452 if (task) 12453 put_task_struct(task); 12454 err_group_fd: 12455 fdput(group); 12456 err_fd: 12457 put_unused_fd(event_fd); 12458 return err; 12459 } 12460 12461 /** 12462 * perf_event_create_kernel_counter 12463 * 12464 * @attr: attributes of the counter to create 12465 * @cpu: cpu in which the counter is bound 12466 * @task: task to profile (NULL for percpu) 12467 * @overflow_handler: callback to trigger when we hit the event 12468 * @context: context data could be used in overflow_handler callback 12469 */ 12470 struct perf_event * 12471 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12472 struct task_struct *task, 12473 perf_overflow_handler_t overflow_handler, 12474 void *context) 12475 { 12476 struct perf_event_context *ctx; 12477 struct perf_event *event; 12478 int err; 12479 12480 /* 12481 * Grouping is not supported for kernel events, neither is 'AUX', 12482 * make sure the caller's intentions are adjusted. 12483 */ 12484 if (attr->aux_output) 12485 return ERR_PTR(-EINVAL); 12486 12487 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12488 overflow_handler, context, -1); 12489 if (IS_ERR(event)) { 12490 err = PTR_ERR(event); 12491 goto err; 12492 } 12493 12494 /* Mark owner so we could distinguish it from user events. */ 12495 event->owner = TASK_TOMBSTONE; 12496 12497 /* 12498 * Get the target context (task or percpu): 12499 */ 12500 ctx = find_get_context(event->pmu, task, event); 12501 if (IS_ERR(ctx)) { 12502 err = PTR_ERR(ctx); 12503 goto err_free; 12504 } 12505 12506 WARN_ON_ONCE(ctx->parent_ctx); 12507 mutex_lock(&ctx->mutex); 12508 if (ctx->task == TASK_TOMBSTONE) { 12509 err = -ESRCH; 12510 goto err_unlock; 12511 } 12512 12513 if (!task) { 12514 /* 12515 * Check if the @cpu we're creating an event for is online. 12516 * 12517 * We use the perf_cpu_context::ctx::mutex to serialize against 12518 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12519 */ 12520 struct perf_cpu_context *cpuctx = 12521 container_of(ctx, struct perf_cpu_context, ctx); 12522 if (!cpuctx->online) { 12523 err = -ENODEV; 12524 goto err_unlock; 12525 } 12526 } 12527 12528 if (!exclusive_event_installable(event, ctx)) { 12529 err = -EBUSY; 12530 goto err_unlock; 12531 } 12532 12533 perf_install_in_context(ctx, event, event->cpu); 12534 perf_unpin_context(ctx); 12535 mutex_unlock(&ctx->mutex); 12536 12537 return event; 12538 12539 err_unlock: 12540 mutex_unlock(&ctx->mutex); 12541 perf_unpin_context(ctx); 12542 put_ctx(ctx); 12543 err_free: 12544 free_event(event); 12545 err: 12546 return ERR_PTR(err); 12547 } 12548 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12549 12550 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12551 { 12552 struct perf_event_context *src_ctx; 12553 struct perf_event_context *dst_ctx; 12554 struct perf_event *event, *tmp; 12555 LIST_HEAD(events); 12556 12557 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12558 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12559 12560 /* 12561 * See perf_event_ctx_lock() for comments on the details 12562 * of swizzling perf_event::ctx. 12563 */ 12564 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12565 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12566 event_entry) { 12567 perf_remove_from_context(event, 0); 12568 unaccount_event_cpu(event, src_cpu); 12569 put_ctx(src_ctx); 12570 list_add(&event->migrate_entry, &events); 12571 } 12572 12573 /* 12574 * Wait for the events to quiesce before re-instating them. 12575 */ 12576 synchronize_rcu(); 12577 12578 /* 12579 * Re-instate events in 2 passes. 12580 * 12581 * Skip over group leaders and only install siblings on this first 12582 * pass, siblings will not get enabled without a leader, however a 12583 * leader will enable its siblings, even if those are still on the old 12584 * context. 12585 */ 12586 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12587 if (event->group_leader == event) 12588 continue; 12589 12590 list_del(&event->migrate_entry); 12591 if (event->state >= PERF_EVENT_STATE_OFF) 12592 event->state = PERF_EVENT_STATE_INACTIVE; 12593 account_event_cpu(event, dst_cpu); 12594 perf_install_in_context(dst_ctx, event, dst_cpu); 12595 get_ctx(dst_ctx); 12596 } 12597 12598 /* 12599 * Once all the siblings are setup properly, install the group leaders 12600 * to make it go. 12601 */ 12602 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12603 list_del(&event->migrate_entry); 12604 if (event->state >= PERF_EVENT_STATE_OFF) 12605 event->state = PERF_EVENT_STATE_INACTIVE; 12606 account_event_cpu(event, dst_cpu); 12607 perf_install_in_context(dst_ctx, event, dst_cpu); 12608 get_ctx(dst_ctx); 12609 } 12610 mutex_unlock(&dst_ctx->mutex); 12611 mutex_unlock(&src_ctx->mutex); 12612 } 12613 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12614 12615 static void sync_child_event(struct perf_event *child_event) 12616 { 12617 struct perf_event *parent_event = child_event->parent; 12618 u64 child_val; 12619 12620 if (child_event->attr.inherit_stat) { 12621 struct task_struct *task = child_event->ctx->task; 12622 12623 if (task && task != TASK_TOMBSTONE) 12624 perf_event_read_event(child_event, task); 12625 } 12626 12627 child_val = perf_event_count(child_event); 12628 12629 /* 12630 * Add back the child's count to the parent's count: 12631 */ 12632 atomic64_add(child_val, &parent_event->child_count); 12633 atomic64_add(child_event->total_time_enabled, 12634 &parent_event->child_total_time_enabled); 12635 atomic64_add(child_event->total_time_running, 12636 &parent_event->child_total_time_running); 12637 } 12638 12639 static void 12640 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12641 { 12642 struct perf_event *parent_event = event->parent; 12643 unsigned long detach_flags = 0; 12644 12645 if (parent_event) { 12646 /* 12647 * Do not destroy the 'original' grouping; because of the 12648 * context switch optimization the original events could've 12649 * ended up in a random child task. 12650 * 12651 * If we were to destroy the original group, all group related 12652 * operations would cease to function properly after this 12653 * random child dies. 12654 * 12655 * Do destroy all inherited groups, we don't care about those 12656 * and being thorough is better. 12657 */ 12658 detach_flags = DETACH_GROUP | DETACH_CHILD; 12659 mutex_lock(&parent_event->child_mutex); 12660 } 12661 12662 perf_remove_from_context(event, detach_flags); 12663 12664 raw_spin_lock_irq(&ctx->lock); 12665 if (event->state > PERF_EVENT_STATE_EXIT) 12666 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 12667 raw_spin_unlock_irq(&ctx->lock); 12668 12669 /* 12670 * Child events can be freed. 12671 */ 12672 if (parent_event) { 12673 mutex_unlock(&parent_event->child_mutex); 12674 /* 12675 * Kick perf_poll() for is_event_hup(); 12676 */ 12677 perf_event_wakeup(parent_event); 12678 free_event(event); 12679 put_event(parent_event); 12680 return; 12681 } 12682 12683 /* 12684 * Parent events are governed by their filedesc, retain them. 12685 */ 12686 perf_event_wakeup(event); 12687 } 12688 12689 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12690 { 12691 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12692 struct perf_event *child_event, *next; 12693 12694 WARN_ON_ONCE(child != current); 12695 12696 child_ctx = perf_pin_task_context(child, ctxn); 12697 if (!child_ctx) 12698 return; 12699 12700 /* 12701 * In order to reduce the amount of tricky in ctx tear-down, we hold 12702 * ctx::mutex over the entire thing. This serializes against almost 12703 * everything that wants to access the ctx. 12704 * 12705 * The exception is sys_perf_event_open() / 12706 * perf_event_create_kernel_count() which does find_get_context() 12707 * without ctx::mutex (it cannot because of the move_group double mutex 12708 * lock thing). See the comments in perf_install_in_context(). 12709 */ 12710 mutex_lock(&child_ctx->mutex); 12711 12712 /* 12713 * In a single ctx::lock section, de-schedule the events and detach the 12714 * context from the task such that we cannot ever get it scheduled back 12715 * in. 12716 */ 12717 raw_spin_lock_irq(&child_ctx->lock); 12718 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12719 12720 /* 12721 * Now that the context is inactive, destroy the task <-> ctx relation 12722 * and mark the context dead. 12723 */ 12724 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12725 put_ctx(child_ctx); /* cannot be last */ 12726 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12727 put_task_struct(current); /* cannot be last */ 12728 12729 clone_ctx = unclone_ctx(child_ctx); 12730 raw_spin_unlock_irq(&child_ctx->lock); 12731 12732 if (clone_ctx) 12733 put_ctx(clone_ctx); 12734 12735 /* 12736 * Report the task dead after unscheduling the events so that we 12737 * won't get any samples after PERF_RECORD_EXIT. We can however still 12738 * get a few PERF_RECORD_READ events. 12739 */ 12740 perf_event_task(child, child_ctx, 0); 12741 12742 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12743 perf_event_exit_event(child_event, child_ctx); 12744 12745 mutex_unlock(&child_ctx->mutex); 12746 12747 put_ctx(child_ctx); 12748 } 12749 12750 /* 12751 * When a child task exits, feed back event values to parent events. 12752 * 12753 * Can be called with exec_update_lock held when called from 12754 * setup_new_exec(). 12755 */ 12756 void perf_event_exit_task(struct task_struct *child) 12757 { 12758 struct perf_event *event, *tmp; 12759 int ctxn; 12760 12761 mutex_lock(&child->perf_event_mutex); 12762 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12763 owner_entry) { 12764 list_del_init(&event->owner_entry); 12765 12766 /* 12767 * Ensure the list deletion is visible before we clear 12768 * the owner, closes a race against perf_release() where 12769 * we need to serialize on the owner->perf_event_mutex. 12770 */ 12771 smp_store_release(&event->owner, NULL); 12772 } 12773 mutex_unlock(&child->perf_event_mutex); 12774 12775 for_each_task_context_nr(ctxn) 12776 perf_event_exit_task_context(child, ctxn); 12777 12778 /* 12779 * The perf_event_exit_task_context calls perf_event_task 12780 * with child's task_ctx, which generates EXIT events for 12781 * child contexts and sets child->perf_event_ctxp[] to NULL. 12782 * At this point we need to send EXIT events to cpu contexts. 12783 */ 12784 perf_event_task(child, NULL, 0); 12785 } 12786 12787 static void perf_free_event(struct perf_event *event, 12788 struct perf_event_context *ctx) 12789 { 12790 struct perf_event *parent = event->parent; 12791 12792 if (WARN_ON_ONCE(!parent)) 12793 return; 12794 12795 mutex_lock(&parent->child_mutex); 12796 list_del_init(&event->child_list); 12797 mutex_unlock(&parent->child_mutex); 12798 12799 put_event(parent); 12800 12801 raw_spin_lock_irq(&ctx->lock); 12802 perf_group_detach(event); 12803 list_del_event(event, ctx); 12804 raw_spin_unlock_irq(&ctx->lock); 12805 free_event(event); 12806 } 12807 12808 /* 12809 * Free a context as created by inheritance by perf_event_init_task() below, 12810 * used by fork() in case of fail. 12811 * 12812 * Even though the task has never lived, the context and events have been 12813 * exposed through the child_list, so we must take care tearing it all down. 12814 */ 12815 void perf_event_free_task(struct task_struct *task) 12816 { 12817 struct perf_event_context *ctx; 12818 struct perf_event *event, *tmp; 12819 int ctxn; 12820 12821 for_each_task_context_nr(ctxn) { 12822 ctx = task->perf_event_ctxp[ctxn]; 12823 if (!ctx) 12824 continue; 12825 12826 mutex_lock(&ctx->mutex); 12827 raw_spin_lock_irq(&ctx->lock); 12828 /* 12829 * Destroy the task <-> ctx relation and mark the context dead. 12830 * 12831 * This is important because even though the task hasn't been 12832 * exposed yet the context has been (through child_list). 12833 */ 12834 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12835 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12836 put_task_struct(task); /* cannot be last */ 12837 raw_spin_unlock_irq(&ctx->lock); 12838 12839 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12840 perf_free_event(event, ctx); 12841 12842 mutex_unlock(&ctx->mutex); 12843 12844 /* 12845 * perf_event_release_kernel() could've stolen some of our 12846 * child events and still have them on its free_list. In that 12847 * case we must wait for these events to have been freed (in 12848 * particular all their references to this task must've been 12849 * dropped). 12850 * 12851 * Without this copy_process() will unconditionally free this 12852 * task (irrespective of its reference count) and 12853 * _free_event()'s put_task_struct(event->hw.target) will be a 12854 * use-after-free. 12855 * 12856 * Wait for all events to drop their context reference. 12857 */ 12858 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12859 put_ctx(ctx); /* must be last */ 12860 } 12861 } 12862 12863 void perf_event_delayed_put(struct task_struct *task) 12864 { 12865 int ctxn; 12866 12867 for_each_task_context_nr(ctxn) 12868 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12869 } 12870 12871 struct file *perf_event_get(unsigned int fd) 12872 { 12873 struct file *file = fget(fd); 12874 if (!file) 12875 return ERR_PTR(-EBADF); 12876 12877 if (file->f_op != &perf_fops) { 12878 fput(file); 12879 return ERR_PTR(-EBADF); 12880 } 12881 12882 return file; 12883 } 12884 12885 const struct perf_event *perf_get_event(struct file *file) 12886 { 12887 if (file->f_op != &perf_fops) 12888 return ERR_PTR(-EINVAL); 12889 12890 return file->private_data; 12891 } 12892 12893 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12894 { 12895 if (!event) 12896 return ERR_PTR(-EINVAL); 12897 12898 return &event->attr; 12899 } 12900 12901 /* 12902 * Inherit an event from parent task to child task. 12903 * 12904 * Returns: 12905 * - valid pointer on success 12906 * - NULL for orphaned events 12907 * - IS_ERR() on error 12908 */ 12909 static struct perf_event * 12910 inherit_event(struct perf_event *parent_event, 12911 struct task_struct *parent, 12912 struct perf_event_context *parent_ctx, 12913 struct task_struct *child, 12914 struct perf_event *group_leader, 12915 struct perf_event_context *child_ctx) 12916 { 12917 enum perf_event_state parent_state = parent_event->state; 12918 struct perf_event *child_event; 12919 unsigned long flags; 12920 12921 /* 12922 * Instead of creating recursive hierarchies of events, 12923 * we link inherited events back to the original parent, 12924 * which has a filp for sure, which we use as the reference 12925 * count: 12926 */ 12927 if (parent_event->parent) 12928 parent_event = parent_event->parent; 12929 12930 child_event = perf_event_alloc(&parent_event->attr, 12931 parent_event->cpu, 12932 child, 12933 group_leader, parent_event, 12934 NULL, NULL, -1); 12935 if (IS_ERR(child_event)) 12936 return child_event; 12937 12938 12939 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12940 !child_ctx->task_ctx_data) { 12941 struct pmu *pmu = child_event->pmu; 12942 12943 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu); 12944 if (!child_ctx->task_ctx_data) { 12945 free_event(child_event); 12946 return ERR_PTR(-ENOMEM); 12947 } 12948 } 12949 12950 /* 12951 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12952 * must be under the same lock in order to serialize against 12953 * perf_event_release_kernel(), such that either we must observe 12954 * is_orphaned_event() or they will observe us on the child_list. 12955 */ 12956 mutex_lock(&parent_event->child_mutex); 12957 if (is_orphaned_event(parent_event) || 12958 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12959 mutex_unlock(&parent_event->child_mutex); 12960 /* task_ctx_data is freed with child_ctx */ 12961 free_event(child_event); 12962 return NULL; 12963 } 12964 12965 get_ctx(child_ctx); 12966 12967 /* 12968 * Make the child state follow the state of the parent event, 12969 * not its attr.disabled bit. We hold the parent's mutex, 12970 * so we won't race with perf_event_{en, dis}able_family. 12971 */ 12972 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12973 child_event->state = PERF_EVENT_STATE_INACTIVE; 12974 else 12975 child_event->state = PERF_EVENT_STATE_OFF; 12976 12977 if (parent_event->attr.freq) { 12978 u64 sample_period = parent_event->hw.sample_period; 12979 struct hw_perf_event *hwc = &child_event->hw; 12980 12981 hwc->sample_period = sample_period; 12982 hwc->last_period = sample_period; 12983 12984 local64_set(&hwc->period_left, sample_period); 12985 } 12986 12987 child_event->ctx = child_ctx; 12988 child_event->overflow_handler = parent_event->overflow_handler; 12989 child_event->overflow_handler_context 12990 = parent_event->overflow_handler_context; 12991 12992 /* 12993 * Precalculate sample_data sizes 12994 */ 12995 perf_event__header_size(child_event); 12996 perf_event__id_header_size(child_event); 12997 12998 /* 12999 * Link it up in the child's context: 13000 */ 13001 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13002 add_event_to_ctx(child_event, child_ctx); 13003 child_event->attach_state |= PERF_ATTACH_CHILD; 13004 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13005 13006 /* 13007 * Link this into the parent event's child list 13008 */ 13009 list_add_tail(&child_event->child_list, &parent_event->child_list); 13010 mutex_unlock(&parent_event->child_mutex); 13011 13012 return child_event; 13013 } 13014 13015 /* 13016 * Inherits an event group. 13017 * 13018 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13019 * This matches with perf_event_release_kernel() removing all child events. 13020 * 13021 * Returns: 13022 * - 0 on success 13023 * - <0 on error 13024 */ 13025 static int inherit_group(struct perf_event *parent_event, 13026 struct task_struct *parent, 13027 struct perf_event_context *parent_ctx, 13028 struct task_struct *child, 13029 struct perf_event_context *child_ctx) 13030 { 13031 struct perf_event *leader; 13032 struct perf_event *sub; 13033 struct perf_event *child_ctr; 13034 13035 leader = inherit_event(parent_event, parent, parent_ctx, 13036 child, NULL, child_ctx); 13037 if (IS_ERR(leader)) 13038 return PTR_ERR(leader); 13039 /* 13040 * @leader can be NULL here because of is_orphaned_event(). In this 13041 * case inherit_event() will create individual events, similar to what 13042 * perf_group_detach() would do anyway. 13043 */ 13044 for_each_sibling_event(sub, parent_event) { 13045 child_ctr = inherit_event(sub, parent, parent_ctx, 13046 child, leader, child_ctx); 13047 if (IS_ERR(child_ctr)) 13048 return PTR_ERR(child_ctr); 13049 13050 if (sub->aux_event == parent_event && child_ctr && 13051 !perf_get_aux_event(child_ctr, leader)) 13052 return -EINVAL; 13053 } 13054 return 0; 13055 } 13056 13057 /* 13058 * Creates the child task context and tries to inherit the event-group. 13059 * 13060 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13061 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13062 * consistent with perf_event_release_kernel() removing all child events. 13063 * 13064 * Returns: 13065 * - 0 on success 13066 * - <0 on error 13067 */ 13068 static int 13069 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13070 struct perf_event_context *parent_ctx, 13071 struct task_struct *child, int ctxn, 13072 u64 clone_flags, int *inherited_all) 13073 { 13074 int ret; 13075 struct perf_event_context *child_ctx; 13076 13077 if (!event->attr.inherit || 13078 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13079 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13080 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13081 *inherited_all = 0; 13082 return 0; 13083 } 13084 13085 child_ctx = child->perf_event_ctxp[ctxn]; 13086 if (!child_ctx) { 13087 /* 13088 * This is executed from the parent task context, so 13089 * inherit events that have been marked for cloning. 13090 * First allocate and initialize a context for the 13091 * child. 13092 */ 13093 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 13094 if (!child_ctx) 13095 return -ENOMEM; 13096 13097 child->perf_event_ctxp[ctxn] = child_ctx; 13098 } 13099 13100 ret = inherit_group(event, parent, parent_ctx, 13101 child, child_ctx); 13102 13103 if (ret) 13104 *inherited_all = 0; 13105 13106 return ret; 13107 } 13108 13109 /* 13110 * Initialize the perf_event context in task_struct 13111 */ 13112 static int perf_event_init_context(struct task_struct *child, int ctxn, 13113 u64 clone_flags) 13114 { 13115 struct perf_event_context *child_ctx, *parent_ctx; 13116 struct perf_event_context *cloned_ctx; 13117 struct perf_event *event; 13118 struct task_struct *parent = current; 13119 int inherited_all = 1; 13120 unsigned long flags; 13121 int ret = 0; 13122 13123 if (likely(!parent->perf_event_ctxp[ctxn])) 13124 return 0; 13125 13126 /* 13127 * If the parent's context is a clone, pin it so it won't get 13128 * swapped under us. 13129 */ 13130 parent_ctx = perf_pin_task_context(parent, ctxn); 13131 if (!parent_ctx) 13132 return 0; 13133 13134 /* 13135 * No need to check if parent_ctx != NULL here; since we saw 13136 * it non-NULL earlier, the only reason for it to become NULL 13137 * is if we exit, and since we're currently in the middle of 13138 * a fork we can't be exiting at the same time. 13139 */ 13140 13141 /* 13142 * Lock the parent list. No need to lock the child - not PID 13143 * hashed yet and not running, so nobody can access it. 13144 */ 13145 mutex_lock(&parent_ctx->mutex); 13146 13147 /* 13148 * We dont have to disable NMIs - we are only looking at 13149 * the list, not manipulating it: 13150 */ 13151 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13152 ret = inherit_task_group(event, parent, parent_ctx, 13153 child, ctxn, clone_flags, 13154 &inherited_all); 13155 if (ret) 13156 goto out_unlock; 13157 } 13158 13159 /* 13160 * We can't hold ctx->lock when iterating the ->flexible_group list due 13161 * to allocations, but we need to prevent rotation because 13162 * rotate_ctx() will change the list from interrupt context. 13163 */ 13164 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13165 parent_ctx->rotate_disable = 1; 13166 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13167 13168 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13169 ret = inherit_task_group(event, parent, parent_ctx, 13170 child, ctxn, clone_flags, 13171 &inherited_all); 13172 if (ret) 13173 goto out_unlock; 13174 } 13175 13176 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13177 parent_ctx->rotate_disable = 0; 13178 13179 child_ctx = child->perf_event_ctxp[ctxn]; 13180 13181 if (child_ctx && inherited_all) { 13182 /* 13183 * Mark the child context as a clone of the parent 13184 * context, or of whatever the parent is a clone of. 13185 * 13186 * Note that if the parent is a clone, the holding of 13187 * parent_ctx->lock avoids it from being uncloned. 13188 */ 13189 cloned_ctx = parent_ctx->parent_ctx; 13190 if (cloned_ctx) { 13191 child_ctx->parent_ctx = cloned_ctx; 13192 child_ctx->parent_gen = parent_ctx->parent_gen; 13193 } else { 13194 child_ctx->parent_ctx = parent_ctx; 13195 child_ctx->parent_gen = parent_ctx->generation; 13196 } 13197 get_ctx(child_ctx->parent_ctx); 13198 } 13199 13200 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13201 out_unlock: 13202 mutex_unlock(&parent_ctx->mutex); 13203 13204 perf_unpin_context(parent_ctx); 13205 put_ctx(parent_ctx); 13206 13207 return ret; 13208 } 13209 13210 /* 13211 * Initialize the perf_event context in task_struct 13212 */ 13213 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13214 { 13215 int ctxn, ret; 13216 13217 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 13218 mutex_init(&child->perf_event_mutex); 13219 INIT_LIST_HEAD(&child->perf_event_list); 13220 13221 for_each_task_context_nr(ctxn) { 13222 ret = perf_event_init_context(child, ctxn, clone_flags); 13223 if (ret) { 13224 perf_event_free_task(child); 13225 return ret; 13226 } 13227 } 13228 13229 return 0; 13230 } 13231 13232 static void __init perf_event_init_all_cpus(void) 13233 { 13234 struct swevent_htable *swhash; 13235 int cpu; 13236 13237 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13238 13239 for_each_possible_cpu(cpu) { 13240 swhash = &per_cpu(swevent_htable, cpu); 13241 mutex_init(&swhash->hlist_mutex); 13242 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 13243 13244 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13245 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13246 13247 #ifdef CONFIG_CGROUP_PERF 13248 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 13249 #endif 13250 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13251 } 13252 } 13253 13254 static void perf_swevent_init_cpu(unsigned int cpu) 13255 { 13256 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13257 13258 mutex_lock(&swhash->hlist_mutex); 13259 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13260 struct swevent_hlist *hlist; 13261 13262 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13263 WARN_ON(!hlist); 13264 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13265 } 13266 mutex_unlock(&swhash->hlist_mutex); 13267 } 13268 13269 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13270 static void __perf_event_exit_context(void *__info) 13271 { 13272 struct perf_event_context *ctx = __info; 13273 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 13274 struct perf_event *event; 13275 13276 raw_spin_lock(&ctx->lock); 13277 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 13278 list_for_each_entry(event, &ctx->event_list, event_entry) 13279 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13280 raw_spin_unlock(&ctx->lock); 13281 } 13282 13283 static void perf_event_exit_cpu_context(int cpu) 13284 { 13285 struct perf_cpu_context *cpuctx; 13286 struct perf_event_context *ctx; 13287 struct pmu *pmu; 13288 13289 mutex_lock(&pmus_lock); 13290 list_for_each_entry(pmu, &pmus, entry) { 13291 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13292 ctx = &cpuctx->ctx; 13293 13294 mutex_lock(&ctx->mutex); 13295 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13296 cpuctx->online = 0; 13297 mutex_unlock(&ctx->mutex); 13298 } 13299 cpumask_clear_cpu(cpu, perf_online_mask); 13300 mutex_unlock(&pmus_lock); 13301 } 13302 #else 13303 13304 static void perf_event_exit_cpu_context(int cpu) { } 13305 13306 #endif 13307 13308 int perf_event_init_cpu(unsigned int cpu) 13309 { 13310 struct perf_cpu_context *cpuctx; 13311 struct perf_event_context *ctx; 13312 struct pmu *pmu; 13313 13314 perf_swevent_init_cpu(cpu); 13315 13316 mutex_lock(&pmus_lock); 13317 cpumask_set_cpu(cpu, perf_online_mask); 13318 list_for_each_entry(pmu, &pmus, entry) { 13319 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13320 ctx = &cpuctx->ctx; 13321 13322 mutex_lock(&ctx->mutex); 13323 cpuctx->online = 1; 13324 mutex_unlock(&ctx->mutex); 13325 } 13326 mutex_unlock(&pmus_lock); 13327 13328 return 0; 13329 } 13330 13331 int perf_event_exit_cpu(unsigned int cpu) 13332 { 13333 perf_event_exit_cpu_context(cpu); 13334 return 0; 13335 } 13336 13337 static int 13338 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13339 { 13340 int cpu; 13341 13342 for_each_online_cpu(cpu) 13343 perf_event_exit_cpu(cpu); 13344 13345 return NOTIFY_OK; 13346 } 13347 13348 /* 13349 * Run the perf reboot notifier at the very last possible moment so that 13350 * the generic watchdog code runs as long as possible. 13351 */ 13352 static struct notifier_block perf_reboot_notifier = { 13353 .notifier_call = perf_reboot, 13354 .priority = INT_MIN, 13355 }; 13356 13357 void __init perf_event_init(void) 13358 { 13359 int ret; 13360 13361 idr_init(&pmu_idr); 13362 13363 perf_event_init_all_cpus(); 13364 init_srcu_struct(&pmus_srcu); 13365 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13366 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13367 perf_pmu_register(&perf_task_clock, NULL, -1); 13368 perf_tp_register(); 13369 perf_event_init_cpu(smp_processor_id()); 13370 register_reboot_notifier(&perf_reboot_notifier); 13371 13372 ret = init_hw_breakpoint(); 13373 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13374 13375 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13376 13377 /* 13378 * Build time assertion that we keep the data_head at the intended 13379 * location. IOW, validation we got the __reserved[] size right. 13380 */ 13381 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13382 != 1024); 13383 } 13384 13385 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13386 char *page) 13387 { 13388 struct perf_pmu_events_attr *pmu_attr = 13389 container_of(attr, struct perf_pmu_events_attr, attr); 13390 13391 if (pmu_attr->event_str) 13392 return sprintf(page, "%s\n", pmu_attr->event_str); 13393 13394 return 0; 13395 } 13396 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13397 13398 static int __init perf_event_sysfs_init(void) 13399 { 13400 struct pmu *pmu; 13401 int ret; 13402 13403 mutex_lock(&pmus_lock); 13404 13405 ret = bus_register(&pmu_bus); 13406 if (ret) 13407 goto unlock; 13408 13409 list_for_each_entry(pmu, &pmus, entry) { 13410 if (!pmu->name || pmu->type < 0) 13411 continue; 13412 13413 ret = pmu_dev_alloc(pmu); 13414 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13415 } 13416 pmu_bus_running = 1; 13417 ret = 0; 13418 13419 unlock: 13420 mutex_unlock(&pmus_lock); 13421 13422 return ret; 13423 } 13424 device_initcall(perf_event_sysfs_init); 13425 13426 #ifdef CONFIG_CGROUP_PERF 13427 static struct cgroup_subsys_state * 13428 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13429 { 13430 struct perf_cgroup *jc; 13431 13432 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13433 if (!jc) 13434 return ERR_PTR(-ENOMEM); 13435 13436 jc->info = alloc_percpu(struct perf_cgroup_info); 13437 if (!jc->info) { 13438 kfree(jc); 13439 return ERR_PTR(-ENOMEM); 13440 } 13441 13442 return &jc->css; 13443 } 13444 13445 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13446 { 13447 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13448 13449 free_percpu(jc->info); 13450 kfree(jc); 13451 } 13452 13453 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13454 { 13455 perf_event_cgroup(css->cgroup); 13456 return 0; 13457 } 13458 13459 static int __perf_cgroup_move(void *info) 13460 { 13461 struct task_struct *task = info; 13462 rcu_read_lock(); 13463 perf_cgroup_switch(task); 13464 rcu_read_unlock(); 13465 return 0; 13466 } 13467 13468 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13469 { 13470 struct task_struct *task; 13471 struct cgroup_subsys_state *css; 13472 13473 cgroup_taskset_for_each(task, css, tset) 13474 task_function_call(task, __perf_cgroup_move, task); 13475 } 13476 13477 struct cgroup_subsys perf_event_cgrp_subsys = { 13478 .css_alloc = perf_cgroup_css_alloc, 13479 .css_free = perf_cgroup_css_free, 13480 .css_online = perf_cgroup_css_online, 13481 .attach = perf_cgroup_attach, 13482 /* 13483 * Implicitly enable on dfl hierarchy so that perf events can 13484 * always be filtered by cgroup2 path as long as perf_event 13485 * controller is not mounted on a legacy hierarchy. 13486 */ 13487 .implicit_on_dfl = true, 13488 .threaded = true, 13489 }; 13490 #endif /* CONFIG_CGROUP_PERF */ 13491 13492 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13493