xref: /openbmc/linux/kernel/events/core.c (revision cef69974)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 
58 #include "internal.h"
59 
60 #include <asm/irq_regs.h>
61 
62 typedef int (*remote_function_f)(void *);
63 
64 struct remote_function_call {
65 	struct task_struct	*p;
66 	remote_function_f	func;
67 	void			*info;
68 	int			ret;
69 };
70 
71 static void remote_function(void *data)
72 {
73 	struct remote_function_call *tfc = data;
74 	struct task_struct *p = tfc->p;
75 
76 	if (p) {
77 		/* -EAGAIN */
78 		if (task_cpu(p) != smp_processor_id())
79 			return;
80 
81 		/*
82 		 * Now that we're on right CPU with IRQs disabled, we can test
83 		 * if we hit the right task without races.
84 		 */
85 
86 		tfc->ret = -ESRCH; /* No such (running) process */
87 		if (p != current)
88 			return;
89 	}
90 
91 	tfc->ret = tfc->func(tfc->info);
92 }
93 
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:		the task to evaluate
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110 	struct remote_function_call data = {
111 		.p	= p,
112 		.func	= func,
113 		.info	= info,
114 		.ret	= -EAGAIN,
115 	};
116 	int ret;
117 
118 	for (;;) {
119 		ret = smp_call_function_single(task_cpu(p), remote_function,
120 					       &data, 1);
121 		if (!ret)
122 			ret = data.ret;
123 
124 		if (ret != -EAGAIN)
125 			break;
126 
127 		cond_resched();
128 	}
129 
130 	return ret;
131 }
132 
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:	target cpu to queue this function
136  * @func:	the function to be called
137  * @info:	the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145 	struct remote_function_call data = {
146 		.p	= NULL,
147 		.func	= func,
148 		.info	= info,
149 		.ret	= -ENXIO, /* No such CPU */
150 	};
151 
152 	smp_call_function_single(cpu, remote_function, &data, 1);
153 
154 	return data.ret;
155 }
156 
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162 
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164 			  struct perf_event_context *ctx)
165 {
166 	raw_spin_lock(&cpuctx->ctx.lock);
167 	if (ctx)
168 		raw_spin_lock(&ctx->lock);
169 }
170 
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172 			    struct perf_event_context *ctx)
173 {
174 	if (ctx)
175 		raw_spin_unlock(&ctx->lock);
176 	raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178 
179 #define TASK_TOMBSTONE ((void *)-1L)
180 
181 static bool is_kernel_event(struct perf_event *event)
182 {
183 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185 
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204 
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206 			struct perf_event_context *, void *);
207 
208 struct event_function_struct {
209 	struct perf_event *event;
210 	event_f func;
211 	void *data;
212 };
213 
214 static int event_function(void *info)
215 {
216 	struct event_function_struct *efs = info;
217 	struct perf_event *event = efs->event;
218 	struct perf_event_context *ctx = event->ctx;
219 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
221 	int ret = 0;
222 
223 	lockdep_assert_irqs_disabled();
224 
225 	perf_ctx_lock(cpuctx, task_ctx);
226 	/*
227 	 * Since we do the IPI call without holding ctx->lock things can have
228 	 * changed, double check we hit the task we set out to hit.
229 	 */
230 	if (ctx->task) {
231 		if (ctx->task != current) {
232 			ret = -ESRCH;
233 			goto unlock;
234 		}
235 
236 		/*
237 		 * We only use event_function_call() on established contexts,
238 		 * and event_function() is only ever called when active (or
239 		 * rather, we'll have bailed in task_function_call() or the
240 		 * above ctx->task != current test), therefore we must have
241 		 * ctx->is_active here.
242 		 */
243 		WARN_ON_ONCE(!ctx->is_active);
244 		/*
245 		 * And since we have ctx->is_active, cpuctx->task_ctx must
246 		 * match.
247 		 */
248 		WARN_ON_ONCE(task_ctx != ctx);
249 	} else {
250 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
251 	}
252 
253 	efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255 	perf_ctx_unlock(cpuctx, task_ctx);
256 
257 	return ret;
258 }
259 
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262 	struct perf_event_context *ctx = event->ctx;
263 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264 	struct event_function_struct efs = {
265 		.event = event,
266 		.func = func,
267 		.data = data,
268 	};
269 
270 	if (!event->parent) {
271 		/*
272 		 * If this is a !child event, we must hold ctx::mutex to
273 		 * stabilize the event->ctx relation. See
274 		 * perf_event_ctx_lock().
275 		 */
276 		lockdep_assert_held(&ctx->mutex);
277 	}
278 
279 	if (!task) {
280 		cpu_function_call(event->cpu, event_function, &efs);
281 		return;
282 	}
283 
284 	if (task == TASK_TOMBSTONE)
285 		return;
286 
287 again:
288 	if (!task_function_call(task, event_function, &efs))
289 		return;
290 
291 	raw_spin_lock_irq(&ctx->lock);
292 	/*
293 	 * Reload the task pointer, it might have been changed by
294 	 * a concurrent perf_event_context_sched_out().
295 	 */
296 	task = ctx->task;
297 	if (task == TASK_TOMBSTONE) {
298 		raw_spin_unlock_irq(&ctx->lock);
299 		return;
300 	}
301 	if (ctx->is_active) {
302 		raw_spin_unlock_irq(&ctx->lock);
303 		goto again;
304 	}
305 	func(event, NULL, ctx, data);
306 	raw_spin_unlock_irq(&ctx->lock);
307 }
308 
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315 	struct perf_event_context *ctx = event->ctx;
316 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317 	struct task_struct *task = READ_ONCE(ctx->task);
318 	struct perf_event_context *task_ctx = NULL;
319 
320 	lockdep_assert_irqs_disabled();
321 
322 	if (task) {
323 		if (task == TASK_TOMBSTONE)
324 			return;
325 
326 		task_ctx = ctx;
327 	}
328 
329 	perf_ctx_lock(cpuctx, task_ctx);
330 
331 	task = ctx->task;
332 	if (task == TASK_TOMBSTONE)
333 		goto unlock;
334 
335 	if (task) {
336 		/*
337 		 * We must be either inactive or active and the right task,
338 		 * otherwise we're screwed, since we cannot IPI to somewhere
339 		 * else.
340 		 */
341 		if (ctx->is_active) {
342 			if (WARN_ON_ONCE(task != current))
343 				goto unlock;
344 
345 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346 				goto unlock;
347 		}
348 	} else {
349 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
350 	}
351 
352 	func(event, cpuctx, ctx, data);
353 unlock:
354 	perf_ctx_unlock(cpuctx, task_ctx);
355 }
356 
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358 		       PERF_FLAG_FD_OUTPUT  |\
359 		       PERF_FLAG_PID_CGROUP |\
360 		       PERF_FLAG_FD_CLOEXEC)
361 
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366 	(PERF_SAMPLE_BRANCH_KERNEL |\
367 	 PERF_SAMPLE_BRANCH_HV)
368 
369 enum event_type_t {
370 	EVENT_FLEXIBLE = 0x1,
371 	EVENT_PINNED = 0x2,
372 	EVENT_TIME = 0x4,
373 	/* see ctx_resched() for details */
374 	EVENT_CPU = 0x8,
375 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377 
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382 
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388 
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392 
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404 
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410 
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419 
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422 
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE		100000
427 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
429 
430 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
431 
432 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
434 
435 static int perf_sample_allowed_ns __read_mostly =
436 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437 
438 static void update_perf_cpu_limits(void)
439 {
440 	u64 tmp = perf_sample_period_ns;
441 
442 	tmp *= sysctl_perf_cpu_time_max_percent;
443 	tmp = div_u64(tmp, 100);
444 	if (!tmp)
445 		tmp = 1;
446 
447 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449 
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451 
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453 		void *buffer, size_t *lenp, loff_t *ppos)
454 {
455 	int ret;
456 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
457 	/*
458 	 * If throttling is disabled don't allow the write:
459 	 */
460 	if (write && (perf_cpu == 100 || perf_cpu == 0))
461 		return -EINVAL;
462 
463 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464 	if (ret || !write)
465 		return ret;
466 
467 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469 	update_perf_cpu_limits();
470 
471 	return 0;
472 }
473 
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475 
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477 		void *buffer, size_t *lenp, loff_t *ppos)
478 {
479 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480 
481 	if (ret || !write)
482 		return ret;
483 
484 	if (sysctl_perf_cpu_time_max_percent == 100 ||
485 	    sysctl_perf_cpu_time_max_percent == 0) {
486 		printk(KERN_WARNING
487 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488 		WRITE_ONCE(perf_sample_allowed_ns, 0);
489 	} else {
490 		update_perf_cpu_limits();
491 	}
492 
493 	return 0;
494 }
495 
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504 
505 static u64 __report_avg;
506 static u64 __report_allowed;
507 
508 static void perf_duration_warn(struct irq_work *w)
509 {
510 	printk_ratelimited(KERN_INFO
511 		"perf: interrupt took too long (%lld > %lld), lowering "
512 		"kernel.perf_event_max_sample_rate to %d\n",
513 		__report_avg, __report_allowed,
514 		sysctl_perf_event_sample_rate);
515 }
516 
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518 
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522 	u64 running_len;
523 	u64 avg_len;
524 	u32 max;
525 
526 	if (max_len == 0)
527 		return;
528 
529 	/* Decay the counter by 1 average sample. */
530 	running_len = __this_cpu_read(running_sample_length);
531 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532 	running_len += sample_len_ns;
533 	__this_cpu_write(running_sample_length, running_len);
534 
535 	/*
536 	 * Note: this will be biased artifically low until we have
537 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538 	 * from having to maintain a count.
539 	 */
540 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541 	if (avg_len <= max_len)
542 		return;
543 
544 	__report_avg = avg_len;
545 	__report_allowed = max_len;
546 
547 	/*
548 	 * Compute a throttle threshold 25% below the current duration.
549 	 */
550 	avg_len += avg_len / 4;
551 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552 	if (avg_len < max)
553 		max /= (u32)avg_len;
554 	else
555 		max = 1;
556 
557 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558 	WRITE_ONCE(max_samples_per_tick, max);
559 
560 	sysctl_perf_event_sample_rate = max * HZ;
561 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562 
563 	if (!irq_work_queue(&perf_duration_work)) {
564 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565 			     "kernel.perf_event_max_sample_rate to %d\n",
566 			     __report_avg, __report_allowed,
567 			     sysctl_perf_event_sample_rate);
568 	}
569 }
570 
571 static atomic64_t perf_event_id;
572 
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574 			      enum event_type_t event_type);
575 
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577 			     enum event_type_t event_type);
578 
579 static void update_context_time(struct perf_event_context *ctx);
580 static u64 perf_event_time(struct perf_event *event);
581 
582 void __weak perf_event_print_debug(void)	{ }
583 
584 static inline u64 perf_clock(void)
585 {
586 	return local_clock();
587 }
588 
589 static inline u64 perf_event_clock(struct perf_event *event)
590 {
591 	return event->clock();
592 }
593 
594 /*
595  * State based event timekeeping...
596  *
597  * The basic idea is to use event->state to determine which (if any) time
598  * fields to increment with the current delta. This means we only need to
599  * update timestamps when we change state or when they are explicitly requested
600  * (read).
601  *
602  * Event groups make things a little more complicated, but not terribly so. The
603  * rules for a group are that if the group leader is OFF the entire group is
604  * OFF, irrespecive of what the group member states are. This results in
605  * __perf_effective_state().
606  *
607  * A futher ramification is that when a group leader flips between OFF and
608  * !OFF, we need to update all group member times.
609  *
610  *
611  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
612  * need to make sure the relevant context time is updated before we try and
613  * update our timestamps.
614  */
615 
616 static __always_inline enum perf_event_state
617 __perf_effective_state(struct perf_event *event)
618 {
619 	struct perf_event *leader = event->group_leader;
620 
621 	if (leader->state <= PERF_EVENT_STATE_OFF)
622 		return leader->state;
623 
624 	return event->state;
625 }
626 
627 static __always_inline void
628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
629 {
630 	enum perf_event_state state = __perf_effective_state(event);
631 	u64 delta = now - event->tstamp;
632 
633 	*enabled = event->total_time_enabled;
634 	if (state >= PERF_EVENT_STATE_INACTIVE)
635 		*enabled += delta;
636 
637 	*running = event->total_time_running;
638 	if (state >= PERF_EVENT_STATE_ACTIVE)
639 		*running += delta;
640 }
641 
642 static void perf_event_update_time(struct perf_event *event)
643 {
644 	u64 now = perf_event_time(event);
645 
646 	__perf_update_times(event, now, &event->total_time_enabled,
647 					&event->total_time_running);
648 	event->tstamp = now;
649 }
650 
651 static void perf_event_update_sibling_time(struct perf_event *leader)
652 {
653 	struct perf_event *sibling;
654 
655 	for_each_sibling_event(sibling, leader)
656 		perf_event_update_time(sibling);
657 }
658 
659 static void
660 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
661 {
662 	if (event->state == state)
663 		return;
664 
665 	perf_event_update_time(event);
666 	/*
667 	 * If a group leader gets enabled/disabled all its siblings
668 	 * are affected too.
669 	 */
670 	if ((event->state < 0) ^ (state < 0))
671 		perf_event_update_sibling_time(event);
672 
673 	WRITE_ONCE(event->state, state);
674 }
675 
676 /*
677  * UP store-release, load-acquire
678  */
679 
680 #define __store_release(ptr, val)					\
681 do {									\
682 	barrier();							\
683 	WRITE_ONCE(*(ptr), (val));					\
684 } while (0)
685 
686 #define __load_acquire(ptr)						\
687 ({									\
688 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
689 	barrier();							\
690 	___p;								\
691 })
692 
693 #ifdef CONFIG_CGROUP_PERF
694 
695 static inline bool
696 perf_cgroup_match(struct perf_event *event)
697 {
698 	struct perf_event_context *ctx = event->ctx;
699 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
700 
701 	/* @event doesn't care about cgroup */
702 	if (!event->cgrp)
703 		return true;
704 
705 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
706 	if (!cpuctx->cgrp)
707 		return false;
708 
709 	/*
710 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
711 	 * also enabled for all its descendant cgroups.  If @cpuctx's
712 	 * cgroup is a descendant of @event's (the test covers identity
713 	 * case), it's a match.
714 	 */
715 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
716 				    event->cgrp->css.cgroup);
717 }
718 
719 static inline void perf_detach_cgroup(struct perf_event *event)
720 {
721 	css_put(&event->cgrp->css);
722 	event->cgrp = NULL;
723 }
724 
725 static inline int is_cgroup_event(struct perf_event *event)
726 {
727 	return event->cgrp != NULL;
728 }
729 
730 static inline u64 perf_cgroup_event_time(struct perf_event *event)
731 {
732 	struct perf_cgroup_info *t;
733 
734 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
735 	return t->time;
736 }
737 
738 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
739 {
740 	struct perf_cgroup_info *t;
741 
742 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
743 	if (!__load_acquire(&t->active))
744 		return t->time;
745 	now += READ_ONCE(t->timeoffset);
746 	return now;
747 }
748 
749 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
750 {
751 	if (adv)
752 		info->time += now - info->timestamp;
753 	info->timestamp = now;
754 	/*
755 	 * see update_context_time()
756 	 */
757 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
758 }
759 
760 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
761 {
762 	struct perf_cgroup *cgrp = cpuctx->cgrp;
763 	struct cgroup_subsys_state *css;
764 	struct perf_cgroup_info *info;
765 
766 	if (cgrp) {
767 		u64 now = perf_clock();
768 
769 		for (css = &cgrp->css; css; css = css->parent) {
770 			cgrp = container_of(css, struct perf_cgroup, css);
771 			info = this_cpu_ptr(cgrp->info);
772 
773 			__update_cgrp_time(info, now, true);
774 			if (final)
775 				__store_release(&info->active, 0);
776 		}
777 	}
778 }
779 
780 static inline void update_cgrp_time_from_event(struct perf_event *event)
781 {
782 	struct perf_cgroup_info *info;
783 
784 	/*
785 	 * ensure we access cgroup data only when needed and
786 	 * when we know the cgroup is pinned (css_get)
787 	 */
788 	if (!is_cgroup_event(event))
789 		return;
790 
791 	info = this_cpu_ptr(event->cgrp->info);
792 	/*
793 	 * Do not update time when cgroup is not active
794 	 */
795 	if (info->active)
796 		__update_cgrp_time(info, perf_clock(), true);
797 }
798 
799 static inline void
800 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
801 {
802 	struct perf_event_context *ctx = &cpuctx->ctx;
803 	struct perf_cgroup *cgrp = cpuctx->cgrp;
804 	struct perf_cgroup_info *info;
805 	struct cgroup_subsys_state *css;
806 
807 	/*
808 	 * ctx->lock held by caller
809 	 * ensure we do not access cgroup data
810 	 * unless we have the cgroup pinned (css_get)
811 	 */
812 	if (!cgrp)
813 		return;
814 
815 	WARN_ON_ONCE(!ctx->nr_cgroups);
816 
817 	for (css = &cgrp->css; css; css = css->parent) {
818 		cgrp = container_of(css, struct perf_cgroup, css);
819 		info = this_cpu_ptr(cgrp->info);
820 		__update_cgrp_time(info, ctx->timestamp, false);
821 		__store_release(&info->active, 1);
822 	}
823 }
824 
825 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
826 
827 /*
828  * reschedule events based on the cgroup constraint of task.
829  */
830 static void perf_cgroup_switch(struct task_struct *task)
831 {
832 	struct perf_cgroup *cgrp;
833 	struct perf_cpu_context *cpuctx, *tmp;
834 	struct list_head *list;
835 	unsigned long flags;
836 
837 	/*
838 	 * Disable interrupts and preemption to avoid this CPU's
839 	 * cgrp_cpuctx_entry to change under us.
840 	 */
841 	local_irq_save(flags);
842 
843 	cgrp = perf_cgroup_from_task(task, NULL);
844 
845 	list = this_cpu_ptr(&cgrp_cpuctx_list);
846 	list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
847 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
848 		if (READ_ONCE(cpuctx->cgrp) == cgrp)
849 			continue;
850 
851 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
852 		perf_pmu_disable(cpuctx->ctx.pmu);
853 
854 		cpu_ctx_sched_out(cpuctx, EVENT_ALL);
855 		/*
856 		 * must not be done before ctxswout due
857 		 * to update_cgrp_time_from_cpuctx() in
858 		 * ctx_sched_out()
859 		 */
860 		cpuctx->cgrp = cgrp;
861 		/*
862 		 * set cgrp before ctxsw in to allow
863 		 * perf_cgroup_set_timestamp() in ctx_sched_in()
864 		 * to not have to pass task around
865 		 */
866 		cpu_ctx_sched_in(cpuctx, EVENT_ALL);
867 
868 		perf_pmu_enable(cpuctx->ctx.pmu);
869 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
870 	}
871 
872 	local_irq_restore(flags);
873 }
874 
875 static int perf_cgroup_ensure_storage(struct perf_event *event,
876 				struct cgroup_subsys_state *css)
877 {
878 	struct perf_cpu_context *cpuctx;
879 	struct perf_event **storage;
880 	int cpu, heap_size, ret = 0;
881 
882 	/*
883 	 * Allow storage to have sufficent space for an iterator for each
884 	 * possibly nested cgroup plus an iterator for events with no cgroup.
885 	 */
886 	for (heap_size = 1; css; css = css->parent)
887 		heap_size++;
888 
889 	for_each_possible_cpu(cpu) {
890 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
891 		if (heap_size <= cpuctx->heap_size)
892 			continue;
893 
894 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
895 				       GFP_KERNEL, cpu_to_node(cpu));
896 		if (!storage) {
897 			ret = -ENOMEM;
898 			break;
899 		}
900 
901 		raw_spin_lock_irq(&cpuctx->ctx.lock);
902 		if (cpuctx->heap_size < heap_size) {
903 			swap(cpuctx->heap, storage);
904 			if (storage == cpuctx->heap_default)
905 				storage = NULL;
906 			cpuctx->heap_size = heap_size;
907 		}
908 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
909 
910 		kfree(storage);
911 	}
912 
913 	return ret;
914 }
915 
916 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
917 				      struct perf_event_attr *attr,
918 				      struct perf_event *group_leader)
919 {
920 	struct perf_cgroup *cgrp;
921 	struct cgroup_subsys_state *css;
922 	struct fd f = fdget(fd);
923 	int ret = 0;
924 
925 	if (!f.file)
926 		return -EBADF;
927 
928 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
929 					 &perf_event_cgrp_subsys);
930 	if (IS_ERR(css)) {
931 		ret = PTR_ERR(css);
932 		goto out;
933 	}
934 
935 	ret = perf_cgroup_ensure_storage(event, css);
936 	if (ret)
937 		goto out;
938 
939 	cgrp = container_of(css, struct perf_cgroup, css);
940 	event->cgrp = cgrp;
941 
942 	/*
943 	 * all events in a group must monitor
944 	 * the same cgroup because a task belongs
945 	 * to only one perf cgroup at a time
946 	 */
947 	if (group_leader && group_leader->cgrp != cgrp) {
948 		perf_detach_cgroup(event);
949 		ret = -EINVAL;
950 	}
951 out:
952 	fdput(f);
953 	return ret;
954 }
955 
956 static inline void
957 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
958 {
959 	struct perf_cpu_context *cpuctx;
960 
961 	if (!is_cgroup_event(event))
962 		return;
963 
964 	/*
965 	 * Because cgroup events are always per-cpu events,
966 	 * @ctx == &cpuctx->ctx.
967 	 */
968 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
969 
970 	if (ctx->nr_cgroups++)
971 		return;
972 
973 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
974 	list_add(&cpuctx->cgrp_cpuctx_entry,
975 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
976 }
977 
978 static inline void
979 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
980 {
981 	struct perf_cpu_context *cpuctx;
982 
983 	if (!is_cgroup_event(event))
984 		return;
985 
986 	/*
987 	 * Because cgroup events are always per-cpu events,
988 	 * @ctx == &cpuctx->ctx.
989 	 */
990 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
991 
992 	if (--ctx->nr_cgroups)
993 		return;
994 
995 	cpuctx->cgrp = NULL;
996 	list_del(&cpuctx->cgrp_cpuctx_entry);
997 }
998 
999 #else /* !CONFIG_CGROUP_PERF */
1000 
1001 static inline bool
1002 perf_cgroup_match(struct perf_event *event)
1003 {
1004 	return true;
1005 }
1006 
1007 static inline void perf_detach_cgroup(struct perf_event *event)
1008 {}
1009 
1010 static inline int is_cgroup_event(struct perf_event *event)
1011 {
1012 	return 0;
1013 }
1014 
1015 static inline void update_cgrp_time_from_event(struct perf_event *event)
1016 {
1017 }
1018 
1019 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1020 						bool final)
1021 {
1022 }
1023 
1024 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1025 				      struct perf_event_attr *attr,
1026 				      struct perf_event *group_leader)
1027 {
1028 	return -EINVAL;
1029 }
1030 
1031 static inline void
1032 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1033 {
1034 }
1035 
1036 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1037 {
1038 	return 0;
1039 }
1040 
1041 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1042 {
1043 	return 0;
1044 }
1045 
1046 static inline void
1047 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1048 {
1049 }
1050 
1051 static inline void
1052 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1053 {
1054 }
1055 
1056 static void perf_cgroup_switch(struct task_struct *task)
1057 {
1058 }
1059 #endif
1060 
1061 /*
1062  * set default to be dependent on timer tick just
1063  * like original code
1064  */
1065 #define PERF_CPU_HRTIMER (1000 / HZ)
1066 /*
1067  * function must be called with interrupts disabled
1068  */
1069 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1070 {
1071 	struct perf_cpu_context *cpuctx;
1072 	bool rotations;
1073 
1074 	lockdep_assert_irqs_disabled();
1075 
1076 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1077 	rotations = perf_rotate_context(cpuctx);
1078 
1079 	raw_spin_lock(&cpuctx->hrtimer_lock);
1080 	if (rotations)
1081 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1082 	else
1083 		cpuctx->hrtimer_active = 0;
1084 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1085 
1086 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1087 }
1088 
1089 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1090 {
1091 	struct hrtimer *timer = &cpuctx->hrtimer;
1092 	struct pmu *pmu = cpuctx->ctx.pmu;
1093 	u64 interval;
1094 
1095 	/* no multiplexing needed for SW PMU */
1096 	if (pmu->task_ctx_nr == perf_sw_context)
1097 		return;
1098 
1099 	/*
1100 	 * check default is sane, if not set then force to
1101 	 * default interval (1/tick)
1102 	 */
1103 	interval = pmu->hrtimer_interval_ms;
1104 	if (interval < 1)
1105 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1106 
1107 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1108 
1109 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1110 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1111 	timer->function = perf_mux_hrtimer_handler;
1112 }
1113 
1114 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1115 {
1116 	struct hrtimer *timer = &cpuctx->hrtimer;
1117 	struct pmu *pmu = cpuctx->ctx.pmu;
1118 	unsigned long flags;
1119 
1120 	/* not for SW PMU */
1121 	if (pmu->task_ctx_nr == perf_sw_context)
1122 		return 0;
1123 
1124 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1125 	if (!cpuctx->hrtimer_active) {
1126 		cpuctx->hrtimer_active = 1;
1127 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1128 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1129 	}
1130 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1131 
1132 	return 0;
1133 }
1134 
1135 void perf_pmu_disable(struct pmu *pmu)
1136 {
1137 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1138 	if (!(*count)++)
1139 		pmu->pmu_disable(pmu);
1140 }
1141 
1142 void perf_pmu_enable(struct pmu *pmu)
1143 {
1144 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1145 	if (!--(*count))
1146 		pmu->pmu_enable(pmu);
1147 }
1148 
1149 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1150 
1151 /*
1152  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1153  * perf_event_task_tick() are fully serialized because they're strictly cpu
1154  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1155  * disabled, while perf_event_task_tick is called from IRQ context.
1156  */
1157 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1158 {
1159 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1160 
1161 	lockdep_assert_irqs_disabled();
1162 
1163 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1164 
1165 	list_add(&ctx->active_ctx_list, head);
1166 }
1167 
1168 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1169 {
1170 	lockdep_assert_irqs_disabled();
1171 
1172 	WARN_ON(list_empty(&ctx->active_ctx_list));
1173 
1174 	list_del_init(&ctx->active_ctx_list);
1175 }
1176 
1177 static void get_ctx(struct perf_event_context *ctx)
1178 {
1179 	refcount_inc(&ctx->refcount);
1180 }
1181 
1182 static void *alloc_task_ctx_data(struct pmu *pmu)
1183 {
1184 	if (pmu->task_ctx_cache)
1185 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1186 
1187 	return NULL;
1188 }
1189 
1190 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1191 {
1192 	if (pmu->task_ctx_cache && task_ctx_data)
1193 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1194 }
1195 
1196 static void free_ctx(struct rcu_head *head)
1197 {
1198 	struct perf_event_context *ctx;
1199 
1200 	ctx = container_of(head, struct perf_event_context, rcu_head);
1201 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1202 	kfree(ctx);
1203 }
1204 
1205 static void put_ctx(struct perf_event_context *ctx)
1206 {
1207 	if (refcount_dec_and_test(&ctx->refcount)) {
1208 		if (ctx->parent_ctx)
1209 			put_ctx(ctx->parent_ctx);
1210 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1211 			put_task_struct(ctx->task);
1212 		call_rcu(&ctx->rcu_head, free_ctx);
1213 	}
1214 }
1215 
1216 /*
1217  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1218  * perf_pmu_migrate_context() we need some magic.
1219  *
1220  * Those places that change perf_event::ctx will hold both
1221  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1222  *
1223  * Lock ordering is by mutex address. There are two other sites where
1224  * perf_event_context::mutex nests and those are:
1225  *
1226  *  - perf_event_exit_task_context()	[ child , 0 ]
1227  *      perf_event_exit_event()
1228  *        put_event()			[ parent, 1 ]
1229  *
1230  *  - perf_event_init_context()		[ parent, 0 ]
1231  *      inherit_task_group()
1232  *        inherit_group()
1233  *          inherit_event()
1234  *            perf_event_alloc()
1235  *              perf_init_event()
1236  *                perf_try_init_event()	[ child , 1 ]
1237  *
1238  * While it appears there is an obvious deadlock here -- the parent and child
1239  * nesting levels are inverted between the two. This is in fact safe because
1240  * life-time rules separate them. That is an exiting task cannot fork, and a
1241  * spawning task cannot (yet) exit.
1242  *
1243  * But remember that these are parent<->child context relations, and
1244  * migration does not affect children, therefore these two orderings should not
1245  * interact.
1246  *
1247  * The change in perf_event::ctx does not affect children (as claimed above)
1248  * because the sys_perf_event_open() case will install a new event and break
1249  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1250  * concerned with cpuctx and that doesn't have children.
1251  *
1252  * The places that change perf_event::ctx will issue:
1253  *
1254  *   perf_remove_from_context();
1255  *   synchronize_rcu();
1256  *   perf_install_in_context();
1257  *
1258  * to affect the change. The remove_from_context() + synchronize_rcu() should
1259  * quiesce the event, after which we can install it in the new location. This
1260  * means that only external vectors (perf_fops, prctl) can perturb the event
1261  * while in transit. Therefore all such accessors should also acquire
1262  * perf_event_context::mutex to serialize against this.
1263  *
1264  * However; because event->ctx can change while we're waiting to acquire
1265  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1266  * function.
1267  *
1268  * Lock order:
1269  *    exec_update_lock
1270  *	task_struct::perf_event_mutex
1271  *	  perf_event_context::mutex
1272  *	    perf_event::child_mutex;
1273  *	      perf_event_context::lock
1274  *	    perf_event::mmap_mutex
1275  *	    mmap_lock
1276  *	      perf_addr_filters_head::lock
1277  *
1278  *    cpu_hotplug_lock
1279  *      pmus_lock
1280  *	  cpuctx->mutex / perf_event_context::mutex
1281  */
1282 static struct perf_event_context *
1283 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1284 {
1285 	struct perf_event_context *ctx;
1286 
1287 again:
1288 	rcu_read_lock();
1289 	ctx = READ_ONCE(event->ctx);
1290 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1291 		rcu_read_unlock();
1292 		goto again;
1293 	}
1294 	rcu_read_unlock();
1295 
1296 	mutex_lock_nested(&ctx->mutex, nesting);
1297 	if (event->ctx != ctx) {
1298 		mutex_unlock(&ctx->mutex);
1299 		put_ctx(ctx);
1300 		goto again;
1301 	}
1302 
1303 	return ctx;
1304 }
1305 
1306 static inline struct perf_event_context *
1307 perf_event_ctx_lock(struct perf_event *event)
1308 {
1309 	return perf_event_ctx_lock_nested(event, 0);
1310 }
1311 
1312 static void perf_event_ctx_unlock(struct perf_event *event,
1313 				  struct perf_event_context *ctx)
1314 {
1315 	mutex_unlock(&ctx->mutex);
1316 	put_ctx(ctx);
1317 }
1318 
1319 /*
1320  * This must be done under the ctx->lock, such as to serialize against
1321  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1322  * calling scheduler related locks and ctx->lock nests inside those.
1323  */
1324 static __must_check struct perf_event_context *
1325 unclone_ctx(struct perf_event_context *ctx)
1326 {
1327 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1328 
1329 	lockdep_assert_held(&ctx->lock);
1330 
1331 	if (parent_ctx)
1332 		ctx->parent_ctx = NULL;
1333 	ctx->generation++;
1334 
1335 	return parent_ctx;
1336 }
1337 
1338 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1339 				enum pid_type type)
1340 {
1341 	u32 nr;
1342 	/*
1343 	 * only top level events have the pid namespace they were created in
1344 	 */
1345 	if (event->parent)
1346 		event = event->parent;
1347 
1348 	nr = __task_pid_nr_ns(p, type, event->ns);
1349 	/* avoid -1 if it is idle thread or runs in another ns */
1350 	if (!nr && !pid_alive(p))
1351 		nr = -1;
1352 	return nr;
1353 }
1354 
1355 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1356 {
1357 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1358 }
1359 
1360 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1361 {
1362 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1363 }
1364 
1365 /*
1366  * If we inherit events we want to return the parent event id
1367  * to userspace.
1368  */
1369 static u64 primary_event_id(struct perf_event *event)
1370 {
1371 	u64 id = event->id;
1372 
1373 	if (event->parent)
1374 		id = event->parent->id;
1375 
1376 	return id;
1377 }
1378 
1379 /*
1380  * Get the perf_event_context for a task and lock it.
1381  *
1382  * This has to cope with the fact that until it is locked,
1383  * the context could get moved to another task.
1384  */
1385 static struct perf_event_context *
1386 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1387 {
1388 	struct perf_event_context *ctx;
1389 
1390 retry:
1391 	/*
1392 	 * One of the few rules of preemptible RCU is that one cannot do
1393 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1394 	 * part of the read side critical section was irqs-enabled -- see
1395 	 * rcu_read_unlock_special().
1396 	 *
1397 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1398 	 * side critical section has interrupts disabled.
1399 	 */
1400 	local_irq_save(*flags);
1401 	rcu_read_lock();
1402 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1403 	if (ctx) {
1404 		/*
1405 		 * If this context is a clone of another, it might
1406 		 * get swapped for another underneath us by
1407 		 * perf_event_task_sched_out, though the
1408 		 * rcu_read_lock() protects us from any context
1409 		 * getting freed.  Lock the context and check if it
1410 		 * got swapped before we could get the lock, and retry
1411 		 * if so.  If we locked the right context, then it
1412 		 * can't get swapped on us any more.
1413 		 */
1414 		raw_spin_lock(&ctx->lock);
1415 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1416 			raw_spin_unlock(&ctx->lock);
1417 			rcu_read_unlock();
1418 			local_irq_restore(*flags);
1419 			goto retry;
1420 		}
1421 
1422 		if (ctx->task == TASK_TOMBSTONE ||
1423 		    !refcount_inc_not_zero(&ctx->refcount)) {
1424 			raw_spin_unlock(&ctx->lock);
1425 			ctx = NULL;
1426 		} else {
1427 			WARN_ON_ONCE(ctx->task != task);
1428 		}
1429 	}
1430 	rcu_read_unlock();
1431 	if (!ctx)
1432 		local_irq_restore(*flags);
1433 	return ctx;
1434 }
1435 
1436 /*
1437  * Get the context for a task and increment its pin_count so it
1438  * can't get swapped to another task.  This also increments its
1439  * reference count so that the context can't get freed.
1440  */
1441 static struct perf_event_context *
1442 perf_pin_task_context(struct task_struct *task, int ctxn)
1443 {
1444 	struct perf_event_context *ctx;
1445 	unsigned long flags;
1446 
1447 	ctx = perf_lock_task_context(task, ctxn, &flags);
1448 	if (ctx) {
1449 		++ctx->pin_count;
1450 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1451 	}
1452 	return ctx;
1453 }
1454 
1455 static void perf_unpin_context(struct perf_event_context *ctx)
1456 {
1457 	unsigned long flags;
1458 
1459 	raw_spin_lock_irqsave(&ctx->lock, flags);
1460 	--ctx->pin_count;
1461 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1462 }
1463 
1464 /*
1465  * Update the record of the current time in a context.
1466  */
1467 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1468 {
1469 	u64 now = perf_clock();
1470 
1471 	if (adv)
1472 		ctx->time += now - ctx->timestamp;
1473 	ctx->timestamp = now;
1474 
1475 	/*
1476 	 * The above: time' = time + (now - timestamp), can be re-arranged
1477 	 * into: time` = now + (time - timestamp), which gives a single value
1478 	 * offset to compute future time without locks on.
1479 	 *
1480 	 * See perf_event_time_now(), which can be used from NMI context where
1481 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1482 	 * both the above values in a consistent manner.
1483 	 */
1484 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1485 }
1486 
1487 static void update_context_time(struct perf_event_context *ctx)
1488 {
1489 	__update_context_time(ctx, true);
1490 }
1491 
1492 static u64 perf_event_time(struct perf_event *event)
1493 {
1494 	struct perf_event_context *ctx = event->ctx;
1495 
1496 	if (unlikely(!ctx))
1497 		return 0;
1498 
1499 	if (is_cgroup_event(event))
1500 		return perf_cgroup_event_time(event);
1501 
1502 	return ctx->time;
1503 }
1504 
1505 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1506 {
1507 	struct perf_event_context *ctx = event->ctx;
1508 
1509 	if (unlikely(!ctx))
1510 		return 0;
1511 
1512 	if (is_cgroup_event(event))
1513 		return perf_cgroup_event_time_now(event, now);
1514 
1515 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1516 		return ctx->time;
1517 
1518 	now += READ_ONCE(ctx->timeoffset);
1519 	return now;
1520 }
1521 
1522 static enum event_type_t get_event_type(struct perf_event *event)
1523 {
1524 	struct perf_event_context *ctx = event->ctx;
1525 	enum event_type_t event_type;
1526 
1527 	lockdep_assert_held(&ctx->lock);
1528 
1529 	/*
1530 	 * It's 'group type', really, because if our group leader is
1531 	 * pinned, so are we.
1532 	 */
1533 	if (event->group_leader != event)
1534 		event = event->group_leader;
1535 
1536 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1537 	if (!ctx->task)
1538 		event_type |= EVENT_CPU;
1539 
1540 	return event_type;
1541 }
1542 
1543 /*
1544  * Helper function to initialize event group nodes.
1545  */
1546 static void init_event_group(struct perf_event *event)
1547 {
1548 	RB_CLEAR_NODE(&event->group_node);
1549 	event->group_index = 0;
1550 }
1551 
1552 /*
1553  * Extract pinned or flexible groups from the context
1554  * based on event attrs bits.
1555  */
1556 static struct perf_event_groups *
1557 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1558 {
1559 	if (event->attr.pinned)
1560 		return &ctx->pinned_groups;
1561 	else
1562 		return &ctx->flexible_groups;
1563 }
1564 
1565 /*
1566  * Helper function to initializes perf_event_group trees.
1567  */
1568 static void perf_event_groups_init(struct perf_event_groups *groups)
1569 {
1570 	groups->tree = RB_ROOT;
1571 	groups->index = 0;
1572 }
1573 
1574 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1575 {
1576 	struct cgroup *cgroup = NULL;
1577 
1578 #ifdef CONFIG_CGROUP_PERF
1579 	if (event->cgrp)
1580 		cgroup = event->cgrp->css.cgroup;
1581 #endif
1582 
1583 	return cgroup;
1584 }
1585 
1586 /*
1587  * Compare function for event groups;
1588  *
1589  * Implements complex key that first sorts by CPU and then by virtual index
1590  * which provides ordering when rotating groups for the same CPU.
1591  */
1592 static __always_inline int
1593 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1594 		      const u64 left_group_index, const struct perf_event *right)
1595 {
1596 	if (left_cpu < right->cpu)
1597 		return -1;
1598 	if (left_cpu > right->cpu)
1599 		return 1;
1600 
1601 #ifdef CONFIG_CGROUP_PERF
1602 	{
1603 		const struct cgroup *right_cgroup = event_cgroup(right);
1604 
1605 		if (left_cgroup != right_cgroup) {
1606 			if (!left_cgroup) {
1607 				/*
1608 				 * Left has no cgroup but right does, no
1609 				 * cgroups come first.
1610 				 */
1611 				return -1;
1612 			}
1613 			if (!right_cgroup) {
1614 				/*
1615 				 * Right has no cgroup but left does, no
1616 				 * cgroups come first.
1617 				 */
1618 				return 1;
1619 			}
1620 			/* Two dissimilar cgroups, order by id. */
1621 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1622 				return -1;
1623 
1624 			return 1;
1625 		}
1626 	}
1627 #endif
1628 
1629 	if (left_group_index < right->group_index)
1630 		return -1;
1631 	if (left_group_index > right->group_index)
1632 		return 1;
1633 
1634 	return 0;
1635 }
1636 
1637 #define __node_2_pe(node) \
1638 	rb_entry((node), struct perf_event, group_node)
1639 
1640 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1641 {
1642 	struct perf_event *e = __node_2_pe(a);
1643 	return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1644 				     __node_2_pe(b)) < 0;
1645 }
1646 
1647 struct __group_key {
1648 	int cpu;
1649 	struct cgroup *cgroup;
1650 };
1651 
1652 static inline int __group_cmp(const void *key, const struct rb_node *node)
1653 {
1654 	const struct __group_key *a = key;
1655 	const struct perf_event *b = __node_2_pe(node);
1656 
1657 	/* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1658 	return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1659 }
1660 
1661 /*
1662  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1663  * key (see perf_event_groups_less). This places it last inside the CPU
1664  * subtree.
1665  */
1666 static void
1667 perf_event_groups_insert(struct perf_event_groups *groups,
1668 			 struct perf_event *event)
1669 {
1670 	event->group_index = ++groups->index;
1671 
1672 	rb_add(&event->group_node, &groups->tree, __group_less);
1673 }
1674 
1675 /*
1676  * Helper function to insert event into the pinned or flexible groups.
1677  */
1678 static void
1679 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1680 {
1681 	struct perf_event_groups *groups;
1682 
1683 	groups = get_event_groups(event, ctx);
1684 	perf_event_groups_insert(groups, event);
1685 }
1686 
1687 /*
1688  * Delete a group from a tree.
1689  */
1690 static void
1691 perf_event_groups_delete(struct perf_event_groups *groups,
1692 			 struct perf_event *event)
1693 {
1694 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1695 		     RB_EMPTY_ROOT(&groups->tree));
1696 
1697 	rb_erase(&event->group_node, &groups->tree);
1698 	init_event_group(event);
1699 }
1700 
1701 /*
1702  * Helper function to delete event from its groups.
1703  */
1704 static void
1705 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1706 {
1707 	struct perf_event_groups *groups;
1708 
1709 	groups = get_event_groups(event, ctx);
1710 	perf_event_groups_delete(groups, event);
1711 }
1712 
1713 /*
1714  * Get the leftmost event in the cpu/cgroup subtree.
1715  */
1716 static struct perf_event *
1717 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1718 			struct cgroup *cgrp)
1719 {
1720 	struct __group_key key = {
1721 		.cpu = cpu,
1722 		.cgroup = cgrp,
1723 	};
1724 	struct rb_node *node;
1725 
1726 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1727 	if (node)
1728 		return __node_2_pe(node);
1729 
1730 	return NULL;
1731 }
1732 
1733 /*
1734  * Like rb_entry_next_safe() for the @cpu subtree.
1735  */
1736 static struct perf_event *
1737 perf_event_groups_next(struct perf_event *event)
1738 {
1739 	struct __group_key key = {
1740 		.cpu = event->cpu,
1741 		.cgroup = event_cgroup(event),
1742 	};
1743 	struct rb_node *next;
1744 
1745 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1746 	if (next)
1747 		return __node_2_pe(next);
1748 
1749 	return NULL;
1750 }
1751 
1752 /*
1753  * Iterate through the whole groups tree.
1754  */
1755 #define perf_event_groups_for_each(event, groups)			\
1756 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1757 				typeof(*event), group_node); event;	\
1758 		event = rb_entry_safe(rb_next(&event->group_node),	\
1759 				typeof(*event), group_node))
1760 
1761 /*
1762  * Add an event from the lists for its context.
1763  * Must be called with ctx->mutex and ctx->lock held.
1764  */
1765 static void
1766 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1767 {
1768 	lockdep_assert_held(&ctx->lock);
1769 
1770 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1771 	event->attach_state |= PERF_ATTACH_CONTEXT;
1772 
1773 	event->tstamp = perf_event_time(event);
1774 
1775 	/*
1776 	 * If we're a stand alone event or group leader, we go to the context
1777 	 * list, group events are kept attached to the group so that
1778 	 * perf_group_detach can, at all times, locate all siblings.
1779 	 */
1780 	if (event->group_leader == event) {
1781 		event->group_caps = event->event_caps;
1782 		add_event_to_groups(event, ctx);
1783 	}
1784 
1785 	list_add_rcu(&event->event_entry, &ctx->event_list);
1786 	ctx->nr_events++;
1787 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1788 		ctx->nr_user++;
1789 	if (event->attr.inherit_stat)
1790 		ctx->nr_stat++;
1791 
1792 	if (event->state > PERF_EVENT_STATE_OFF)
1793 		perf_cgroup_event_enable(event, ctx);
1794 
1795 	ctx->generation++;
1796 }
1797 
1798 /*
1799  * Initialize event state based on the perf_event_attr::disabled.
1800  */
1801 static inline void perf_event__state_init(struct perf_event *event)
1802 {
1803 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1804 					      PERF_EVENT_STATE_INACTIVE;
1805 }
1806 
1807 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1808 {
1809 	int entry = sizeof(u64); /* value */
1810 	int size = 0;
1811 	int nr = 1;
1812 
1813 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1814 		size += sizeof(u64);
1815 
1816 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1817 		size += sizeof(u64);
1818 
1819 	if (event->attr.read_format & PERF_FORMAT_ID)
1820 		entry += sizeof(u64);
1821 
1822 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1823 		nr += nr_siblings;
1824 		size += sizeof(u64);
1825 	}
1826 
1827 	size += entry * nr;
1828 	event->read_size = size;
1829 }
1830 
1831 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1832 {
1833 	struct perf_sample_data *data;
1834 	u16 size = 0;
1835 
1836 	if (sample_type & PERF_SAMPLE_IP)
1837 		size += sizeof(data->ip);
1838 
1839 	if (sample_type & PERF_SAMPLE_ADDR)
1840 		size += sizeof(data->addr);
1841 
1842 	if (sample_type & PERF_SAMPLE_PERIOD)
1843 		size += sizeof(data->period);
1844 
1845 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1846 		size += sizeof(data->weight.full);
1847 
1848 	if (sample_type & PERF_SAMPLE_READ)
1849 		size += event->read_size;
1850 
1851 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1852 		size += sizeof(data->data_src.val);
1853 
1854 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1855 		size += sizeof(data->txn);
1856 
1857 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1858 		size += sizeof(data->phys_addr);
1859 
1860 	if (sample_type & PERF_SAMPLE_CGROUP)
1861 		size += sizeof(data->cgroup);
1862 
1863 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1864 		size += sizeof(data->data_page_size);
1865 
1866 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1867 		size += sizeof(data->code_page_size);
1868 
1869 	event->header_size = size;
1870 }
1871 
1872 /*
1873  * Called at perf_event creation and when events are attached/detached from a
1874  * group.
1875  */
1876 static void perf_event__header_size(struct perf_event *event)
1877 {
1878 	__perf_event_read_size(event,
1879 			       event->group_leader->nr_siblings);
1880 	__perf_event_header_size(event, event->attr.sample_type);
1881 }
1882 
1883 static void perf_event__id_header_size(struct perf_event *event)
1884 {
1885 	struct perf_sample_data *data;
1886 	u64 sample_type = event->attr.sample_type;
1887 	u16 size = 0;
1888 
1889 	if (sample_type & PERF_SAMPLE_TID)
1890 		size += sizeof(data->tid_entry);
1891 
1892 	if (sample_type & PERF_SAMPLE_TIME)
1893 		size += sizeof(data->time);
1894 
1895 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1896 		size += sizeof(data->id);
1897 
1898 	if (sample_type & PERF_SAMPLE_ID)
1899 		size += sizeof(data->id);
1900 
1901 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1902 		size += sizeof(data->stream_id);
1903 
1904 	if (sample_type & PERF_SAMPLE_CPU)
1905 		size += sizeof(data->cpu_entry);
1906 
1907 	event->id_header_size = size;
1908 }
1909 
1910 static bool perf_event_validate_size(struct perf_event *event)
1911 {
1912 	/*
1913 	 * The values computed here will be over-written when we actually
1914 	 * attach the event.
1915 	 */
1916 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1917 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1918 	perf_event__id_header_size(event);
1919 
1920 	/*
1921 	 * Sum the lot; should not exceed the 64k limit we have on records.
1922 	 * Conservative limit to allow for callchains and other variable fields.
1923 	 */
1924 	if (event->read_size + event->header_size +
1925 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1926 		return false;
1927 
1928 	return true;
1929 }
1930 
1931 static void perf_group_attach(struct perf_event *event)
1932 {
1933 	struct perf_event *group_leader = event->group_leader, *pos;
1934 
1935 	lockdep_assert_held(&event->ctx->lock);
1936 
1937 	/*
1938 	 * We can have double attach due to group movement in perf_event_open.
1939 	 */
1940 	if (event->attach_state & PERF_ATTACH_GROUP)
1941 		return;
1942 
1943 	event->attach_state |= PERF_ATTACH_GROUP;
1944 
1945 	if (group_leader == event)
1946 		return;
1947 
1948 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1949 
1950 	group_leader->group_caps &= event->event_caps;
1951 
1952 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1953 	group_leader->nr_siblings++;
1954 
1955 	perf_event__header_size(group_leader);
1956 
1957 	for_each_sibling_event(pos, group_leader)
1958 		perf_event__header_size(pos);
1959 }
1960 
1961 /*
1962  * Remove an event from the lists for its context.
1963  * Must be called with ctx->mutex and ctx->lock held.
1964  */
1965 static void
1966 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1967 {
1968 	WARN_ON_ONCE(event->ctx != ctx);
1969 	lockdep_assert_held(&ctx->lock);
1970 
1971 	/*
1972 	 * We can have double detach due to exit/hot-unplug + close.
1973 	 */
1974 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1975 		return;
1976 
1977 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1978 
1979 	ctx->nr_events--;
1980 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1981 		ctx->nr_user--;
1982 	if (event->attr.inherit_stat)
1983 		ctx->nr_stat--;
1984 
1985 	list_del_rcu(&event->event_entry);
1986 
1987 	if (event->group_leader == event)
1988 		del_event_from_groups(event, ctx);
1989 
1990 	/*
1991 	 * If event was in error state, then keep it
1992 	 * that way, otherwise bogus counts will be
1993 	 * returned on read(). The only way to get out
1994 	 * of error state is by explicit re-enabling
1995 	 * of the event
1996 	 */
1997 	if (event->state > PERF_EVENT_STATE_OFF) {
1998 		perf_cgroup_event_disable(event, ctx);
1999 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2000 	}
2001 
2002 	ctx->generation++;
2003 }
2004 
2005 static int
2006 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2007 {
2008 	if (!has_aux(aux_event))
2009 		return 0;
2010 
2011 	if (!event->pmu->aux_output_match)
2012 		return 0;
2013 
2014 	return event->pmu->aux_output_match(aux_event);
2015 }
2016 
2017 static void put_event(struct perf_event *event);
2018 static void event_sched_out(struct perf_event *event,
2019 			    struct perf_cpu_context *cpuctx,
2020 			    struct perf_event_context *ctx);
2021 
2022 static void perf_put_aux_event(struct perf_event *event)
2023 {
2024 	struct perf_event_context *ctx = event->ctx;
2025 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2026 	struct perf_event *iter;
2027 
2028 	/*
2029 	 * If event uses aux_event tear down the link
2030 	 */
2031 	if (event->aux_event) {
2032 		iter = event->aux_event;
2033 		event->aux_event = NULL;
2034 		put_event(iter);
2035 		return;
2036 	}
2037 
2038 	/*
2039 	 * If the event is an aux_event, tear down all links to
2040 	 * it from other events.
2041 	 */
2042 	for_each_sibling_event(iter, event->group_leader) {
2043 		if (iter->aux_event != event)
2044 			continue;
2045 
2046 		iter->aux_event = NULL;
2047 		put_event(event);
2048 
2049 		/*
2050 		 * If it's ACTIVE, schedule it out and put it into ERROR
2051 		 * state so that we don't try to schedule it again. Note
2052 		 * that perf_event_enable() will clear the ERROR status.
2053 		 */
2054 		event_sched_out(iter, cpuctx, ctx);
2055 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2056 	}
2057 }
2058 
2059 static bool perf_need_aux_event(struct perf_event *event)
2060 {
2061 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2062 }
2063 
2064 static int perf_get_aux_event(struct perf_event *event,
2065 			      struct perf_event *group_leader)
2066 {
2067 	/*
2068 	 * Our group leader must be an aux event if we want to be
2069 	 * an aux_output. This way, the aux event will precede its
2070 	 * aux_output events in the group, and therefore will always
2071 	 * schedule first.
2072 	 */
2073 	if (!group_leader)
2074 		return 0;
2075 
2076 	/*
2077 	 * aux_output and aux_sample_size are mutually exclusive.
2078 	 */
2079 	if (event->attr.aux_output && event->attr.aux_sample_size)
2080 		return 0;
2081 
2082 	if (event->attr.aux_output &&
2083 	    !perf_aux_output_match(event, group_leader))
2084 		return 0;
2085 
2086 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2087 		return 0;
2088 
2089 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2090 		return 0;
2091 
2092 	/*
2093 	 * Link aux_outputs to their aux event; this is undone in
2094 	 * perf_group_detach() by perf_put_aux_event(). When the
2095 	 * group in torn down, the aux_output events loose their
2096 	 * link to the aux_event and can't schedule any more.
2097 	 */
2098 	event->aux_event = group_leader;
2099 
2100 	return 1;
2101 }
2102 
2103 static inline struct list_head *get_event_list(struct perf_event *event)
2104 {
2105 	struct perf_event_context *ctx = event->ctx;
2106 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2107 }
2108 
2109 /*
2110  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2111  * cannot exist on their own, schedule them out and move them into the ERROR
2112  * state. Also see _perf_event_enable(), it will not be able to recover
2113  * this ERROR state.
2114  */
2115 static inline void perf_remove_sibling_event(struct perf_event *event)
2116 {
2117 	struct perf_event_context *ctx = event->ctx;
2118 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2119 
2120 	event_sched_out(event, cpuctx, ctx);
2121 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2122 }
2123 
2124 static void perf_group_detach(struct perf_event *event)
2125 {
2126 	struct perf_event *leader = event->group_leader;
2127 	struct perf_event *sibling, *tmp;
2128 	struct perf_event_context *ctx = event->ctx;
2129 
2130 	lockdep_assert_held(&ctx->lock);
2131 
2132 	/*
2133 	 * We can have double detach due to exit/hot-unplug + close.
2134 	 */
2135 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2136 		return;
2137 
2138 	event->attach_state &= ~PERF_ATTACH_GROUP;
2139 
2140 	perf_put_aux_event(event);
2141 
2142 	/*
2143 	 * If this is a sibling, remove it from its group.
2144 	 */
2145 	if (leader != event) {
2146 		list_del_init(&event->sibling_list);
2147 		event->group_leader->nr_siblings--;
2148 		goto out;
2149 	}
2150 
2151 	/*
2152 	 * If this was a group event with sibling events then
2153 	 * upgrade the siblings to singleton events by adding them
2154 	 * to whatever list we are on.
2155 	 */
2156 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2157 
2158 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2159 			perf_remove_sibling_event(sibling);
2160 
2161 		sibling->group_leader = sibling;
2162 		list_del_init(&sibling->sibling_list);
2163 
2164 		/* Inherit group flags from the previous leader */
2165 		sibling->group_caps = event->group_caps;
2166 
2167 		if (!RB_EMPTY_NODE(&event->group_node)) {
2168 			add_event_to_groups(sibling, event->ctx);
2169 
2170 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2171 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2172 		}
2173 
2174 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2175 	}
2176 
2177 out:
2178 	for_each_sibling_event(tmp, leader)
2179 		perf_event__header_size(tmp);
2180 
2181 	perf_event__header_size(leader);
2182 }
2183 
2184 static void sync_child_event(struct perf_event *child_event);
2185 
2186 static void perf_child_detach(struct perf_event *event)
2187 {
2188 	struct perf_event *parent_event = event->parent;
2189 
2190 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2191 		return;
2192 
2193 	event->attach_state &= ~PERF_ATTACH_CHILD;
2194 
2195 	if (WARN_ON_ONCE(!parent_event))
2196 		return;
2197 
2198 	lockdep_assert_held(&parent_event->child_mutex);
2199 
2200 	sync_child_event(event);
2201 	list_del_init(&event->child_list);
2202 }
2203 
2204 static bool is_orphaned_event(struct perf_event *event)
2205 {
2206 	return event->state == PERF_EVENT_STATE_DEAD;
2207 }
2208 
2209 static inline int __pmu_filter_match(struct perf_event *event)
2210 {
2211 	struct pmu *pmu = event->pmu;
2212 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2213 }
2214 
2215 /*
2216  * Check whether we should attempt to schedule an event group based on
2217  * PMU-specific filtering. An event group can consist of HW and SW events,
2218  * potentially with a SW leader, so we must check all the filters, to
2219  * determine whether a group is schedulable:
2220  */
2221 static inline int pmu_filter_match(struct perf_event *event)
2222 {
2223 	struct perf_event *sibling;
2224 
2225 	if (!__pmu_filter_match(event))
2226 		return 0;
2227 
2228 	for_each_sibling_event(sibling, event) {
2229 		if (!__pmu_filter_match(sibling))
2230 			return 0;
2231 	}
2232 
2233 	return 1;
2234 }
2235 
2236 static inline int
2237 event_filter_match(struct perf_event *event)
2238 {
2239 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2240 	       perf_cgroup_match(event) && pmu_filter_match(event);
2241 }
2242 
2243 static void
2244 event_sched_out(struct perf_event *event,
2245 		  struct perf_cpu_context *cpuctx,
2246 		  struct perf_event_context *ctx)
2247 {
2248 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2249 
2250 	WARN_ON_ONCE(event->ctx != ctx);
2251 	lockdep_assert_held(&ctx->lock);
2252 
2253 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2254 		return;
2255 
2256 	/*
2257 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2258 	 * we can schedule events _OUT_ individually through things like
2259 	 * __perf_remove_from_context().
2260 	 */
2261 	list_del_init(&event->active_list);
2262 
2263 	perf_pmu_disable(event->pmu);
2264 
2265 	event->pmu->del(event, 0);
2266 	event->oncpu = -1;
2267 
2268 	if (READ_ONCE(event->pending_disable) >= 0) {
2269 		WRITE_ONCE(event->pending_disable, -1);
2270 		perf_cgroup_event_disable(event, ctx);
2271 		state = PERF_EVENT_STATE_OFF;
2272 	}
2273 	perf_event_set_state(event, state);
2274 
2275 	if (!is_software_event(event))
2276 		cpuctx->active_oncpu--;
2277 	if (!--ctx->nr_active)
2278 		perf_event_ctx_deactivate(ctx);
2279 	if (event->attr.freq && event->attr.sample_freq)
2280 		ctx->nr_freq--;
2281 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2282 		cpuctx->exclusive = 0;
2283 
2284 	perf_pmu_enable(event->pmu);
2285 }
2286 
2287 static void
2288 group_sched_out(struct perf_event *group_event,
2289 		struct perf_cpu_context *cpuctx,
2290 		struct perf_event_context *ctx)
2291 {
2292 	struct perf_event *event;
2293 
2294 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2295 		return;
2296 
2297 	perf_pmu_disable(ctx->pmu);
2298 
2299 	event_sched_out(group_event, cpuctx, ctx);
2300 
2301 	/*
2302 	 * Schedule out siblings (if any):
2303 	 */
2304 	for_each_sibling_event(event, group_event)
2305 		event_sched_out(event, cpuctx, ctx);
2306 
2307 	perf_pmu_enable(ctx->pmu);
2308 }
2309 
2310 #define DETACH_GROUP	0x01UL
2311 #define DETACH_CHILD	0x02UL
2312 
2313 /*
2314  * Cross CPU call to remove a performance event
2315  *
2316  * We disable the event on the hardware level first. After that we
2317  * remove it from the context list.
2318  */
2319 static void
2320 __perf_remove_from_context(struct perf_event *event,
2321 			   struct perf_cpu_context *cpuctx,
2322 			   struct perf_event_context *ctx,
2323 			   void *info)
2324 {
2325 	unsigned long flags = (unsigned long)info;
2326 
2327 	if (ctx->is_active & EVENT_TIME) {
2328 		update_context_time(ctx);
2329 		update_cgrp_time_from_cpuctx(cpuctx, false);
2330 	}
2331 
2332 	event_sched_out(event, cpuctx, ctx);
2333 	if (flags & DETACH_GROUP)
2334 		perf_group_detach(event);
2335 	if (flags & DETACH_CHILD)
2336 		perf_child_detach(event);
2337 	list_del_event(event, ctx);
2338 
2339 	if (!ctx->nr_events && ctx->is_active) {
2340 		if (ctx == &cpuctx->ctx)
2341 			update_cgrp_time_from_cpuctx(cpuctx, true);
2342 
2343 		ctx->is_active = 0;
2344 		ctx->rotate_necessary = 0;
2345 		if (ctx->task) {
2346 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2347 			cpuctx->task_ctx = NULL;
2348 		}
2349 	}
2350 }
2351 
2352 /*
2353  * Remove the event from a task's (or a CPU's) list of events.
2354  *
2355  * If event->ctx is a cloned context, callers must make sure that
2356  * every task struct that event->ctx->task could possibly point to
2357  * remains valid.  This is OK when called from perf_release since
2358  * that only calls us on the top-level context, which can't be a clone.
2359  * When called from perf_event_exit_task, it's OK because the
2360  * context has been detached from its task.
2361  */
2362 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2363 {
2364 	struct perf_event_context *ctx = event->ctx;
2365 
2366 	lockdep_assert_held(&ctx->mutex);
2367 
2368 	/*
2369 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2370 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2371 	 * event_function_call() user.
2372 	 */
2373 	raw_spin_lock_irq(&ctx->lock);
2374 	/*
2375 	 * Cgroup events are per-cpu events, and must IPI because of
2376 	 * cgrp_cpuctx_list.
2377 	 */
2378 	if (!ctx->is_active && !is_cgroup_event(event)) {
2379 		__perf_remove_from_context(event, __get_cpu_context(ctx),
2380 					   ctx, (void *)flags);
2381 		raw_spin_unlock_irq(&ctx->lock);
2382 		return;
2383 	}
2384 	raw_spin_unlock_irq(&ctx->lock);
2385 
2386 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2387 }
2388 
2389 /*
2390  * Cross CPU call to disable a performance event
2391  */
2392 static void __perf_event_disable(struct perf_event *event,
2393 				 struct perf_cpu_context *cpuctx,
2394 				 struct perf_event_context *ctx,
2395 				 void *info)
2396 {
2397 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2398 		return;
2399 
2400 	if (ctx->is_active & EVENT_TIME) {
2401 		update_context_time(ctx);
2402 		update_cgrp_time_from_event(event);
2403 	}
2404 
2405 	if (event == event->group_leader)
2406 		group_sched_out(event, cpuctx, ctx);
2407 	else
2408 		event_sched_out(event, cpuctx, ctx);
2409 
2410 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2411 	perf_cgroup_event_disable(event, ctx);
2412 }
2413 
2414 /*
2415  * Disable an event.
2416  *
2417  * If event->ctx is a cloned context, callers must make sure that
2418  * every task struct that event->ctx->task could possibly point to
2419  * remains valid.  This condition is satisfied when called through
2420  * perf_event_for_each_child or perf_event_for_each because they
2421  * hold the top-level event's child_mutex, so any descendant that
2422  * goes to exit will block in perf_event_exit_event().
2423  *
2424  * When called from perf_pending_event it's OK because event->ctx
2425  * is the current context on this CPU and preemption is disabled,
2426  * hence we can't get into perf_event_task_sched_out for this context.
2427  */
2428 static void _perf_event_disable(struct perf_event *event)
2429 {
2430 	struct perf_event_context *ctx = event->ctx;
2431 
2432 	raw_spin_lock_irq(&ctx->lock);
2433 	if (event->state <= PERF_EVENT_STATE_OFF) {
2434 		raw_spin_unlock_irq(&ctx->lock);
2435 		return;
2436 	}
2437 	raw_spin_unlock_irq(&ctx->lock);
2438 
2439 	event_function_call(event, __perf_event_disable, NULL);
2440 }
2441 
2442 void perf_event_disable_local(struct perf_event *event)
2443 {
2444 	event_function_local(event, __perf_event_disable, NULL);
2445 }
2446 
2447 /*
2448  * Strictly speaking kernel users cannot create groups and therefore this
2449  * interface does not need the perf_event_ctx_lock() magic.
2450  */
2451 void perf_event_disable(struct perf_event *event)
2452 {
2453 	struct perf_event_context *ctx;
2454 
2455 	ctx = perf_event_ctx_lock(event);
2456 	_perf_event_disable(event);
2457 	perf_event_ctx_unlock(event, ctx);
2458 }
2459 EXPORT_SYMBOL_GPL(perf_event_disable);
2460 
2461 void perf_event_disable_inatomic(struct perf_event *event)
2462 {
2463 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2464 	/* can fail, see perf_pending_event_disable() */
2465 	irq_work_queue(&event->pending);
2466 }
2467 
2468 #define MAX_INTERRUPTS (~0ULL)
2469 
2470 static void perf_log_throttle(struct perf_event *event, int enable);
2471 static void perf_log_itrace_start(struct perf_event *event);
2472 
2473 static int
2474 event_sched_in(struct perf_event *event,
2475 		 struct perf_cpu_context *cpuctx,
2476 		 struct perf_event_context *ctx)
2477 {
2478 	int ret = 0;
2479 
2480 	WARN_ON_ONCE(event->ctx != ctx);
2481 
2482 	lockdep_assert_held(&ctx->lock);
2483 
2484 	if (event->state <= PERF_EVENT_STATE_OFF)
2485 		return 0;
2486 
2487 	WRITE_ONCE(event->oncpu, smp_processor_id());
2488 	/*
2489 	 * Order event::oncpu write to happen before the ACTIVE state is
2490 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2491 	 * ->oncpu if it sees ACTIVE.
2492 	 */
2493 	smp_wmb();
2494 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2495 
2496 	/*
2497 	 * Unthrottle events, since we scheduled we might have missed several
2498 	 * ticks already, also for a heavily scheduling task there is little
2499 	 * guarantee it'll get a tick in a timely manner.
2500 	 */
2501 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2502 		perf_log_throttle(event, 1);
2503 		event->hw.interrupts = 0;
2504 	}
2505 
2506 	perf_pmu_disable(event->pmu);
2507 
2508 	perf_log_itrace_start(event);
2509 
2510 	if (event->pmu->add(event, PERF_EF_START)) {
2511 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2512 		event->oncpu = -1;
2513 		ret = -EAGAIN;
2514 		goto out;
2515 	}
2516 
2517 	if (!is_software_event(event))
2518 		cpuctx->active_oncpu++;
2519 	if (!ctx->nr_active++)
2520 		perf_event_ctx_activate(ctx);
2521 	if (event->attr.freq && event->attr.sample_freq)
2522 		ctx->nr_freq++;
2523 
2524 	if (event->attr.exclusive)
2525 		cpuctx->exclusive = 1;
2526 
2527 out:
2528 	perf_pmu_enable(event->pmu);
2529 
2530 	return ret;
2531 }
2532 
2533 static int
2534 group_sched_in(struct perf_event *group_event,
2535 	       struct perf_cpu_context *cpuctx,
2536 	       struct perf_event_context *ctx)
2537 {
2538 	struct perf_event *event, *partial_group = NULL;
2539 	struct pmu *pmu = ctx->pmu;
2540 
2541 	if (group_event->state == PERF_EVENT_STATE_OFF)
2542 		return 0;
2543 
2544 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2545 
2546 	if (event_sched_in(group_event, cpuctx, ctx))
2547 		goto error;
2548 
2549 	/*
2550 	 * Schedule in siblings as one group (if any):
2551 	 */
2552 	for_each_sibling_event(event, group_event) {
2553 		if (event_sched_in(event, cpuctx, ctx)) {
2554 			partial_group = event;
2555 			goto group_error;
2556 		}
2557 	}
2558 
2559 	if (!pmu->commit_txn(pmu))
2560 		return 0;
2561 
2562 group_error:
2563 	/*
2564 	 * Groups can be scheduled in as one unit only, so undo any
2565 	 * partial group before returning:
2566 	 * The events up to the failed event are scheduled out normally.
2567 	 */
2568 	for_each_sibling_event(event, group_event) {
2569 		if (event == partial_group)
2570 			break;
2571 
2572 		event_sched_out(event, cpuctx, ctx);
2573 	}
2574 	event_sched_out(group_event, cpuctx, ctx);
2575 
2576 error:
2577 	pmu->cancel_txn(pmu);
2578 	return -EAGAIN;
2579 }
2580 
2581 /*
2582  * Work out whether we can put this event group on the CPU now.
2583  */
2584 static int group_can_go_on(struct perf_event *event,
2585 			   struct perf_cpu_context *cpuctx,
2586 			   int can_add_hw)
2587 {
2588 	/*
2589 	 * Groups consisting entirely of software events can always go on.
2590 	 */
2591 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2592 		return 1;
2593 	/*
2594 	 * If an exclusive group is already on, no other hardware
2595 	 * events can go on.
2596 	 */
2597 	if (cpuctx->exclusive)
2598 		return 0;
2599 	/*
2600 	 * If this group is exclusive and there are already
2601 	 * events on the CPU, it can't go on.
2602 	 */
2603 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2604 		return 0;
2605 	/*
2606 	 * Otherwise, try to add it if all previous groups were able
2607 	 * to go on.
2608 	 */
2609 	return can_add_hw;
2610 }
2611 
2612 static void add_event_to_ctx(struct perf_event *event,
2613 			       struct perf_event_context *ctx)
2614 {
2615 	list_add_event(event, ctx);
2616 	perf_group_attach(event);
2617 }
2618 
2619 static void ctx_sched_out(struct perf_event_context *ctx,
2620 			  struct perf_cpu_context *cpuctx,
2621 			  enum event_type_t event_type);
2622 static void
2623 ctx_sched_in(struct perf_event_context *ctx,
2624 	     struct perf_cpu_context *cpuctx,
2625 	     enum event_type_t event_type);
2626 
2627 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2628 			       struct perf_event_context *ctx,
2629 			       enum event_type_t event_type)
2630 {
2631 	if (!cpuctx->task_ctx)
2632 		return;
2633 
2634 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2635 		return;
2636 
2637 	ctx_sched_out(ctx, cpuctx, event_type);
2638 }
2639 
2640 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2641 				struct perf_event_context *ctx)
2642 {
2643 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED);
2644 	if (ctx)
2645 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
2646 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
2647 	if (ctx)
2648 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
2649 }
2650 
2651 /*
2652  * We want to maintain the following priority of scheduling:
2653  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2654  *  - task pinned (EVENT_PINNED)
2655  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2656  *  - task flexible (EVENT_FLEXIBLE).
2657  *
2658  * In order to avoid unscheduling and scheduling back in everything every
2659  * time an event is added, only do it for the groups of equal priority and
2660  * below.
2661  *
2662  * This can be called after a batch operation on task events, in which case
2663  * event_type is a bit mask of the types of events involved. For CPU events,
2664  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2665  */
2666 static void ctx_resched(struct perf_cpu_context *cpuctx,
2667 			struct perf_event_context *task_ctx,
2668 			enum event_type_t event_type)
2669 {
2670 	enum event_type_t ctx_event_type;
2671 	bool cpu_event = !!(event_type & EVENT_CPU);
2672 
2673 	/*
2674 	 * If pinned groups are involved, flexible groups also need to be
2675 	 * scheduled out.
2676 	 */
2677 	if (event_type & EVENT_PINNED)
2678 		event_type |= EVENT_FLEXIBLE;
2679 
2680 	ctx_event_type = event_type & EVENT_ALL;
2681 
2682 	perf_pmu_disable(cpuctx->ctx.pmu);
2683 	if (task_ctx)
2684 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2685 
2686 	/*
2687 	 * Decide which cpu ctx groups to schedule out based on the types
2688 	 * of events that caused rescheduling:
2689 	 *  - EVENT_CPU: schedule out corresponding groups;
2690 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2691 	 *  - otherwise, do nothing more.
2692 	 */
2693 	if (cpu_event)
2694 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2695 	else if (ctx_event_type & EVENT_PINNED)
2696 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2697 
2698 	perf_event_sched_in(cpuctx, task_ctx);
2699 	perf_pmu_enable(cpuctx->ctx.pmu);
2700 }
2701 
2702 void perf_pmu_resched(struct pmu *pmu)
2703 {
2704 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2705 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2706 
2707 	perf_ctx_lock(cpuctx, task_ctx);
2708 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2709 	perf_ctx_unlock(cpuctx, task_ctx);
2710 }
2711 
2712 /*
2713  * Cross CPU call to install and enable a performance event
2714  *
2715  * Very similar to remote_function() + event_function() but cannot assume that
2716  * things like ctx->is_active and cpuctx->task_ctx are set.
2717  */
2718 static int  __perf_install_in_context(void *info)
2719 {
2720 	struct perf_event *event = info;
2721 	struct perf_event_context *ctx = event->ctx;
2722 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2723 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2724 	bool reprogram = true;
2725 	int ret = 0;
2726 
2727 	raw_spin_lock(&cpuctx->ctx.lock);
2728 	if (ctx->task) {
2729 		raw_spin_lock(&ctx->lock);
2730 		task_ctx = ctx;
2731 
2732 		reprogram = (ctx->task == current);
2733 
2734 		/*
2735 		 * If the task is running, it must be running on this CPU,
2736 		 * otherwise we cannot reprogram things.
2737 		 *
2738 		 * If its not running, we don't care, ctx->lock will
2739 		 * serialize against it becoming runnable.
2740 		 */
2741 		if (task_curr(ctx->task) && !reprogram) {
2742 			ret = -ESRCH;
2743 			goto unlock;
2744 		}
2745 
2746 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2747 	} else if (task_ctx) {
2748 		raw_spin_lock(&task_ctx->lock);
2749 	}
2750 
2751 #ifdef CONFIG_CGROUP_PERF
2752 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2753 		/*
2754 		 * If the current cgroup doesn't match the event's
2755 		 * cgroup, we should not try to schedule it.
2756 		 */
2757 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2758 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2759 					event->cgrp->css.cgroup);
2760 	}
2761 #endif
2762 
2763 	if (reprogram) {
2764 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2765 		add_event_to_ctx(event, ctx);
2766 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2767 	} else {
2768 		add_event_to_ctx(event, ctx);
2769 	}
2770 
2771 unlock:
2772 	perf_ctx_unlock(cpuctx, task_ctx);
2773 
2774 	return ret;
2775 }
2776 
2777 static bool exclusive_event_installable(struct perf_event *event,
2778 					struct perf_event_context *ctx);
2779 
2780 /*
2781  * Attach a performance event to a context.
2782  *
2783  * Very similar to event_function_call, see comment there.
2784  */
2785 static void
2786 perf_install_in_context(struct perf_event_context *ctx,
2787 			struct perf_event *event,
2788 			int cpu)
2789 {
2790 	struct task_struct *task = READ_ONCE(ctx->task);
2791 
2792 	lockdep_assert_held(&ctx->mutex);
2793 
2794 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2795 
2796 	if (event->cpu != -1)
2797 		event->cpu = cpu;
2798 
2799 	/*
2800 	 * Ensures that if we can observe event->ctx, both the event and ctx
2801 	 * will be 'complete'. See perf_iterate_sb_cpu().
2802 	 */
2803 	smp_store_release(&event->ctx, ctx);
2804 
2805 	/*
2806 	 * perf_event_attr::disabled events will not run and can be initialized
2807 	 * without IPI. Except when this is the first event for the context, in
2808 	 * that case we need the magic of the IPI to set ctx->is_active.
2809 	 * Similarly, cgroup events for the context also needs the IPI to
2810 	 * manipulate the cgrp_cpuctx_list.
2811 	 *
2812 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2813 	 * event will issue the IPI and reprogram the hardware.
2814 	 */
2815 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2816 	    ctx->nr_events && !is_cgroup_event(event)) {
2817 		raw_spin_lock_irq(&ctx->lock);
2818 		if (ctx->task == TASK_TOMBSTONE) {
2819 			raw_spin_unlock_irq(&ctx->lock);
2820 			return;
2821 		}
2822 		add_event_to_ctx(event, ctx);
2823 		raw_spin_unlock_irq(&ctx->lock);
2824 		return;
2825 	}
2826 
2827 	if (!task) {
2828 		cpu_function_call(cpu, __perf_install_in_context, event);
2829 		return;
2830 	}
2831 
2832 	/*
2833 	 * Should not happen, we validate the ctx is still alive before calling.
2834 	 */
2835 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2836 		return;
2837 
2838 	/*
2839 	 * Installing events is tricky because we cannot rely on ctx->is_active
2840 	 * to be set in case this is the nr_events 0 -> 1 transition.
2841 	 *
2842 	 * Instead we use task_curr(), which tells us if the task is running.
2843 	 * However, since we use task_curr() outside of rq::lock, we can race
2844 	 * against the actual state. This means the result can be wrong.
2845 	 *
2846 	 * If we get a false positive, we retry, this is harmless.
2847 	 *
2848 	 * If we get a false negative, things are complicated. If we are after
2849 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2850 	 * value must be correct. If we're before, it doesn't matter since
2851 	 * perf_event_context_sched_in() will program the counter.
2852 	 *
2853 	 * However, this hinges on the remote context switch having observed
2854 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2855 	 * ctx::lock in perf_event_context_sched_in().
2856 	 *
2857 	 * We do this by task_function_call(), if the IPI fails to hit the task
2858 	 * we know any future context switch of task must see the
2859 	 * perf_event_ctpx[] store.
2860 	 */
2861 
2862 	/*
2863 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2864 	 * task_cpu() load, such that if the IPI then does not find the task
2865 	 * running, a future context switch of that task must observe the
2866 	 * store.
2867 	 */
2868 	smp_mb();
2869 again:
2870 	if (!task_function_call(task, __perf_install_in_context, event))
2871 		return;
2872 
2873 	raw_spin_lock_irq(&ctx->lock);
2874 	task = ctx->task;
2875 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2876 		/*
2877 		 * Cannot happen because we already checked above (which also
2878 		 * cannot happen), and we hold ctx->mutex, which serializes us
2879 		 * against perf_event_exit_task_context().
2880 		 */
2881 		raw_spin_unlock_irq(&ctx->lock);
2882 		return;
2883 	}
2884 	/*
2885 	 * If the task is not running, ctx->lock will avoid it becoming so,
2886 	 * thus we can safely install the event.
2887 	 */
2888 	if (task_curr(task)) {
2889 		raw_spin_unlock_irq(&ctx->lock);
2890 		goto again;
2891 	}
2892 	add_event_to_ctx(event, ctx);
2893 	raw_spin_unlock_irq(&ctx->lock);
2894 }
2895 
2896 /*
2897  * Cross CPU call to enable a performance event
2898  */
2899 static void __perf_event_enable(struct perf_event *event,
2900 				struct perf_cpu_context *cpuctx,
2901 				struct perf_event_context *ctx,
2902 				void *info)
2903 {
2904 	struct perf_event *leader = event->group_leader;
2905 	struct perf_event_context *task_ctx;
2906 
2907 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2908 	    event->state <= PERF_EVENT_STATE_ERROR)
2909 		return;
2910 
2911 	if (ctx->is_active)
2912 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2913 
2914 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2915 	perf_cgroup_event_enable(event, ctx);
2916 
2917 	if (!ctx->is_active)
2918 		return;
2919 
2920 	if (!event_filter_match(event)) {
2921 		ctx_sched_in(ctx, cpuctx, EVENT_TIME);
2922 		return;
2923 	}
2924 
2925 	/*
2926 	 * If the event is in a group and isn't the group leader,
2927 	 * then don't put it on unless the group is on.
2928 	 */
2929 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2930 		ctx_sched_in(ctx, cpuctx, EVENT_TIME);
2931 		return;
2932 	}
2933 
2934 	task_ctx = cpuctx->task_ctx;
2935 	if (ctx->task)
2936 		WARN_ON_ONCE(task_ctx != ctx);
2937 
2938 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2939 }
2940 
2941 /*
2942  * Enable an event.
2943  *
2944  * If event->ctx is a cloned context, callers must make sure that
2945  * every task struct that event->ctx->task could possibly point to
2946  * remains valid.  This condition is satisfied when called through
2947  * perf_event_for_each_child or perf_event_for_each as described
2948  * for perf_event_disable.
2949  */
2950 static void _perf_event_enable(struct perf_event *event)
2951 {
2952 	struct perf_event_context *ctx = event->ctx;
2953 
2954 	raw_spin_lock_irq(&ctx->lock);
2955 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2956 	    event->state <  PERF_EVENT_STATE_ERROR) {
2957 out:
2958 		raw_spin_unlock_irq(&ctx->lock);
2959 		return;
2960 	}
2961 
2962 	/*
2963 	 * If the event is in error state, clear that first.
2964 	 *
2965 	 * That way, if we see the event in error state below, we know that it
2966 	 * has gone back into error state, as distinct from the task having
2967 	 * been scheduled away before the cross-call arrived.
2968 	 */
2969 	if (event->state == PERF_EVENT_STATE_ERROR) {
2970 		/*
2971 		 * Detached SIBLING events cannot leave ERROR state.
2972 		 */
2973 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
2974 		    event->group_leader == event)
2975 			goto out;
2976 
2977 		event->state = PERF_EVENT_STATE_OFF;
2978 	}
2979 	raw_spin_unlock_irq(&ctx->lock);
2980 
2981 	event_function_call(event, __perf_event_enable, NULL);
2982 }
2983 
2984 /*
2985  * See perf_event_disable();
2986  */
2987 void perf_event_enable(struct perf_event *event)
2988 {
2989 	struct perf_event_context *ctx;
2990 
2991 	ctx = perf_event_ctx_lock(event);
2992 	_perf_event_enable(event);
2993 	perf_event_ctx_unlock(event, ctx);
2994 }
2995 EXPORT_SYMBOL_GPL(perf_event_enable);
2996 
2997 struct stop_event_data {
2998 	struct perf_event	*event;
2999 	unsigned int		restart;
3000 };
3001 
3002 static int __perf_event_stop(void *info)
3003 {
3004 	struct stop_event_data *sd = info;
3005 	struct perf_event *event = sd->event;
3006 
3007 	/* if it's already INACTIVE, do nothing */
3008 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3009 		return 0;
3010 
3011 	/* matches smp_wmb() in event_sched_in() */
3012 	smp_rmb();
3013 
3014 	/*
3015 	 * There is a window with interrupts enabled before we get here,
3016 	 * so we need to check again lest we try to stop another CPU's event.
3017 	 */
3018 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3019 		return -EAGAIN;
3020 
3021 	event->pmu->stop(event, PERF_EF_UPDATE);
3022 
3023 	/*
3024 	 * May race with the actual stop (through perf_pmu_output_stop()),
3025 	 * but it is only used for events with AUX ring buffer, and such
3026 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3027 	 * see comments in perf_aux_output_begin().
3028 	 *
3029 	 * Since this is happening on an event-local CPU, no trace is lost
3030 	 * while restarting.
3031 	 */
3032 	if (sd->restart)
3033 		event->pmu->start(event, 0);
3034 
3035 	return 0;
3036 }
3037 
3038 static int perf_event_stop(struct perf_event *event, int restart)
3039 {
3040 	struct stop_event_data sd = {
3041 		.event		= event,
3042 		.restart	= restart,
3043 	};
3044 	int ret = 0;
3045 
3046 	do {
3047 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3048 			return 0;
3049 
3050 		/* matches smp_wmb() in event_sched_in() */
3051 		smp_rmb();
3052 
3053 		/*
3054 		 * We only want to restart ACTIVE events, so if the event goes
3055 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3056 		 * fall through with ret==-ENXIO.
3057 		 */
3058 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3059 					__perf_event_stop, &sd);
3060 	} while (ret == -EAGAIN);
3061 
3062 	return ret;
3063 }
3064 
3065 /*
3066  * In order to contain the amount of racy and tricky in the address filter
3067  * configuration management, it is a two part process:
3068  *
3069  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3070  *      we update the addresses of corresponding vmas in
3071  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3072  * (p2) when an event is scheduled in (pmu::add), it calls
3073  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3074  *      if the generation has changed since the previous call.
3075  *
3076  * If (p1) happens while the event is active, we restart it to force (p2).
3077  *
3078  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3079  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3080  *     ioctl;
3081  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3082  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3083  *     for reading;
3084  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3085  *     of exec.
3086  */
3087 void perf_event_addr_filters_sync(struct perf_event *event)
3088 {
3089 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3090 
3091 	if (!has_addr_filter(event))
3092 		return;
3093 
3094 	raw_spin_lock(&ifh->lock);
3095 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3096 		event->pmu->addr_filters_sync(event);
3097 		event->hw.addr_filters_gen = event->addr_filters_gen;
3098 	}
3099 	raw_spin_unlock(&ifh->lock);
3100 }
3101 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3102 
3103 static int _perf_event_refresh(struct perf_event *event, int refresh)
3104 {
3105 	/*
3106 	 * not supported on inherited events
3107 	 */
3108 	if (event->attr.inherit || !is_sampling_event(event))
3109 		return -EINVAL;
3110 
3111 	atomic_add(refresh, &event->event_limit);
3112 	_perf_event_enable(event);
3113 
3114 	return 0;
3115 }
3116 
3117 /*
3118  * See perf_event_disable()
3119  */
3120 int perf_event_refresh(struct perf_event *event, int refresh)
3121 {
3122 	struct perf_event_context *ctx;
3123 	int ret;
3124 
3125 	ctx = perf_event_ctx_lock(event);
3126 	ret = _perf_event_refresh(event, refresh);
3127 	perf_event_ctx_unlock(event, ctx);
3128 
3129 	return ret;
3130 }
3131 EXPORT_SYMBOL_GPL(perf_event_refresh);
3132 
3133 static int perf_event_modify_breakpoint(struct perf_event *bp,
3134 					 struct perf_event_attr *attr)
3135 {
3136 	int err;
3137 
3138 	_perf_event_disable(bp);
3139 
3140 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3141 
3142 	if (!bp->attr.disabled)
3143 		_perf_event_enable(bp);
3144 
3145 	return err;
3146 }
3147 
3148 /*
3149  * Copy event-type-independent attributes that may be modified.
3150  */
3151 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3152 					const struct perf_event_attr *from)
3153 {
3154 	to->sig_data = from->sig_data;
3155 }
3156 
3157 static int perf_event_modify_attr(struct perf_event *event,
3158 				  struct perf_event_attr *attr)
3159 {
3160 	int (*func)(struct perf_event *, struct perf_event_attr *);
3161 	struct perf_event *child;
3162 	int err;
3163 
3164 	if (event->attr.type != attr->type)
3165 		return -EINVAL;
3166 
3167 	switch (event->attr.type) {
3168 	case PERF_TYPE_BREAKPOINT:
3169 		func = perf_event_modify_breakpoint;
3170 		break;
3171 	default:
3172 		/* Place holder for future additions. */
3173 		return -EOPNOTSUPP;
3174 	}
3175 
3176 	WARN_ON_ONCE(event->ctx->parent_ctx);
3177 
3178 	mutex_lock(&event->child_mutex);
3179 	/*
3180 	 * Event-type-independent attributes must be copied before event-type
3181 	 * modification, which will validate that final attributes match the
3182 	 * source attributes after all relevant attributes have been copied.
3183 	 */
3184 	perf_event_modify_copy_attr(&event->attr, attr);
3185 	err = func(event, attr);
3186 	if (err)
3187 		goto out;
3188 	list_for_each_entry(child, &event->child_list, child_list) {
3189 		perf_event_modify_copy_attr(&child->attr, attr);
3190 		err = func(child, attr);
3191 		if (err)
3192 			goto out;
3193 	}
3194 out:
3195 	mutex_unlock(&event->child_mutex);
3196 	return err;
3197 }
3198 
3199 static void ctx_sched_out(struct perf_event_context *ctx,
3200 			  struct perf_cpu_context *cpuctx,
3201 			  enum event_type_t event_type)
3202 {
3203 	struct perf_event *event, *tmp;
3204 	int is_active = ctx->is_active;
3205 
3206 	lockdep_assert_held(&ctx->lock);
3207 
3208 	if (likely(!ctx->nr_events)) {
3209 		/*
3210 		 * See __perf_remove_from_context().
3211 		 */
3212 		WARN_ON_ONCE(ctx->is_active);
3213 		if (ctx->task)
3214 			WARN_ON_ONCE(cpuctx->task_ctx);
3215 		return;
3216 	}
3217 
3218 	/*
3219 	 * Always update time if it was set; not only when it changes.
3220 	 * Otherwise we can 'forget' to update time for any but the last
3221 	 * context we sched out. For example:
3222 	 *
3223 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3224 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3225 	 *
3226 	 * would only update time for the pinned events.
3227 	 */
3228 	if (is_active & EVENT_TIME) {
3229 		/* update (and stop) ctx time */
3230 		update_context_time(ctx);
3231 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3232 		/*
3233 		 * CPU-release for the below ->is_active store,
3234 		 * see __load_acquire() in perf_event_time_now()
3235 		 */
3236 		barrier();
3237 	}
3238 
3239 	ctx->is_active &= ~event_type;
3240 	if (!(ctx->is_active & EVENT_ALL))
3241 		ctx->is_active = 0;
3242 
3243 	if (ctx->task) {
3244 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3245 		if (!ctx->is_active)
3246 			cpuctx->task_ctx = NULL;
3247 	}
3248 
3249 	is_active ^= ctx->is_active; /* changed bits */
3250 
3251 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3252 		return;
3253 
3254 	perf_pmu_disable(ctx->pmu);
3255 	if (is_active & EVENT_PINNED) {
3256 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3257 			group_sched_out(event, cpuctx, ctx);
3258 	}
3259 
3260 	if (is_active & EVENT_FLEXIBLE) {
3261 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3262 			group_sched_out(event, cpuctx, ctx);
3263 
3264 		/*
3265 		 * Since we cleared EVENT_FLEXIBLE, also clear
3266 		 * rotate_necessary, is will be reset by
3267 		 * ctx_flexible_sched_in() when needed.
3268 		 */
3269 		ctx->rotate_necessary = 0;
3270 	}
3271 	perf_pmu_enable(ctx->pmu);
3272 }
3273 
3274 /*
3275  * Test whether two contexts are equivalent, i.e. whether they have both been
3276  * cloned from the same version of the same context.
3277  *
3278  * Equivalence is measured using a generation number in the context that is
3279  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3280  * and list_del_event().
3281  */
3282 static int context_equiv(struct perf_event_context *ctx1,
3283 			 struct perf_event_context *ctx2)
3284 {
3285 	lockdep_assert_held(&ctx1->lock);
3286 	lockdep_assert_held(&ctx2->lock);
3287 
3288 	/* Pinning disables the swap optimization */
3289 	if (ctx1->pin_count || ctx2->pin_count)
3290 		return 0;
3291 
3292 	/* If ctx1 is the parent of ctx2 */
3293 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3294 		return 1;
3295 
3296 	/* If ctx2 is the parent of ctx1 */
3297 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3298 		return 1;
3299 
3300 	/*
3301 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3302 	 * hierarchy, see perf_event_init_context().
3303 	 */
3304 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3305 			ctx1->parent_gen == ctx2->parent_gen)
3306 		return 1;
3307 
3308 	/* Unmatched */
3309 	return 0;
3310 }
3311 
3312 static void __perf_event_sync_stat(struct perf_event *event,
3313 				     struct perf_event *next_event)
3314 {
3315 	u64 value;
3316 
3317 	if (!event->attr.inherit_stat)
3318 		return;
3319 
3320 	/*
3321 	 * Update the event value, we cannot use perf_event_read()
3322 	 * because we're in the middle of a context switch and have IRQs
3323 	 * disabled, which upsets smp_call_function_single(), however
3324 	 * we know the event must be on the current CPU, therefore we
3325 	 * don't need to use it.
3326 	 */
3327 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3328 		event->pmu->read(event);
3329 
3330 	perf_event_update_time(event);
3331 
3332 	/*
3333 	 * In order to keep per-task stats reliable we need to flip the event
3334 	 * values when we flip the contexts.
3335 	 */
3336 	value = local64_read(&next_event->count);
3337 	value = local64_xchg(&event->count, value);
3338 	local64_set(&next_event->count, value);
3339 
3340 	swap(event->total_time_enabled, next_event->total_time_enabled);
3341 	swap(event->total_time_running, next_event->total_time_running);
3342 
3343 	/*
3344 	 * Since we swizzled the values, update the user visible data too.
3345 	 */
3346 	perf_event_update_userpage(event);
3347 	perf_event_update_userpage(next_event);
3348 }
3349 
3350 static void perf_event_sync_stat(struct perf_event_context *ctx,
3351 				   struct perf_event_context *next_ctx)
3352 {
3353 	struct perf_event *event, *next_event;
3354 
3355 	if (!ctx->nr_stat)
3356 		return;
3357 
3358 	update_context_time(ctx);
3359 
3360 	event = list_first_entry(&ctx->event_list,
3361 				   struct perf_event, event_entry);
3362 
3363 	next_event = list_first_entry(&next_ctx->event_list,
3364 					struct perf_event, event_entry);
3365 
3366 	while (&event->event_entry != &ctx->event_list &&
3367 	       &next_event->event_entry != &next_ctx->event_list) {
3368 
3369 		__perf_event_sync_stat(event, next_event);
3370 
3371 		event = list_next_entry(event, event_entry);
3372 		next_event = list_next_entry(next_event, event_entry);
3373 	}
3374 }
3375 
3376 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3377 					 struct task_struct *next)
3378 {
3379 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3380 	struct perf_event_context *next_ctx;
3381 	struct perf_event_context *parent, *next_parent;
3382 	struct perf_cpu_context *cpuctx;
3383 	int do_switch = 1;
3384 	struct pmu *pmu;
3385 
3386 	if (likely(!ctx))
3387 		return;
3388 
3389 	pmu = ctx->pmu;
3390 	cpuctx = __get_cpu_context(ctx);
3391 	if (!cpuctx->task_ctx)
3392 		return;
3393 
3394 	rcu_read_lock();
3395 	next_ctx = next->perf_event_ctxp[ctxn];
3396 	if (!next_ctx)
3397 		goto unlock;
3398 
3399 	parent = rcu_dereference(ctx->parent_ctx);
3400 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3401 
3402 	/* If neither context have a parent context; they cannot be clones. */
3403 	if (!parent && !next_parent)
3404 		goto unlock;
3405 
3406 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3407 		/*
3408 		 * Looks like the two contexts are clones, so we might be
3409 		 * able to optimize the context switch.  We lock both
3410 		 * contexts and check that they are clones under the
3411 		 * lock (including re-checking that neither has been
3412 		 * uncloned in the meantime).  It doesn't matter which
3413 		 * order we take the locks because no other cpu could
3414 		 * be trying to lock both of these tasks.
3415 		 */
3416 		raw_spin_lock(&ctx->lock);
3417 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3418 		if (context_equiv(ctx, next_ctx)) {
3419 
3420 			WRITE_ONCE(ctx->task, next);
3421 			WRITE_ONCE(next_ctx->task, task);
3422 
3423 			perf_pmu_disable(pmu);
3424 
3425 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3426 				pmu->sched_task(ctx, false);
3427 
3428 			/*
3429 			 * PMU specific parts of task perf context can require
3430 			 * additional synchronization. As an example of such
3431 			 * synchronization see implementation details of Intel
3432 			 * LBR call stack data profiling;
3433 			 */
3434 			if (pmu->swap_task_ctx)
3435 				pmu->swap_task_ctx(ctx, next_ctx);
3436 			else
3437 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3438 
3439 			perf_pmu_enable(pmu);
3440 
3441 			/*
3442 			 * RCU_INIT_POINTER here is safe because we've not
3443 			 * modified the ctx and the above modification of
3444 			 * ctx->task and ctx->task_ctx_data are immaterial
3445 			 * since those values are always verified under
3446 			 * ctx->lock which we're now holding.
3447 			 */
3448 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3449 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3450 
3451 			do_switch = 0;
3452 
3453 			perf_event_sync_stat(ctx, next_ctx);
3454 		}
3455 		raw_spin_unlock(&next_ctx->lock);
3456 		raw_spin_unlock(&ctx->lock);
3457 	}
3458 unlock:
3459 	rcu_read_unlock();
3460 
3461 	if (do_switch) {
3462 		raw_spin_lock(&ctx->lock);
3463 		perf_pmu_disable(pmu);
3464 
3465 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3466 			pmu->sched_task(ctx, false);
3467 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3468 
3469 		perf_pmu_enable(pmu);
3470 		raw_spin_unlock(&ctx->lock);
3471 	}
3472 }
3473 
3474 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3475 
3476 void perf_sched_cb_dec(struct pmu *pmu)
3477 {
3478 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3479 
3480 	this_cpu_dec(perf_sched_cb_usages);
3481 
3482 	if (!--cpuctx->sched_cb_usage)
3483 		list_del(&cpuctx->sched_cb_entry);
3484 }
3485 
3486 
3487 void perf_sched_cb_inc(struct pmu *pmu)
3488 {
3489 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3490 
3491 	if (!cpuctx->sched_cb_usage++)
3492 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3493 
3494 	this_cpu_inc(perf_sched_cb_usages);
3495 }
3496 
3497 /*
3498  * This function provides the context switch callback to the lower code
3499  * layer. It is invoked ONLY when the context switch callback is enabled.
3500  *
3501  * This callback is relevant even to per-cpu events; for example multi event
3502  * PEBS requires this to provide PID/TID information. This requires we flush
3503  * all queued PEBS records before we context switch to a new task.
3504  */
3505 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3506 {
3507 	struct pmu *pmu;
3508 
3509 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3510 
3511 	if (WARN_ON_ONCE(!pmu->sched_task))
3512 		return;
3513 
3514 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3515 	perf_pmu_disable(pmu);
3516 
3517 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3518 
3519 	perf_pmu_enable(pmu);
3520 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3521 }
3522 
3523 static void perf_pmu_sched_task(struct task_struct *prev,
3524 				struct task_struct *next,
3525 				bool sched_in)
3526 {
3527 	struct perf_cpu_context *cpuctx;
3528 
3529 	if (prev == next)
3530 		return;
3531 
3532 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3533 		/* will be handled in perf_event_context_sched_in/out */
3534 		if (cpuctx->task_ctx)
3535 			continue;
3536 
3537 		__perf_pmu_sched_task(cpuctx, sched_in);
3538 	}
3539 }
3540 
3541 static void perf_event_switch(struct task_struct *task,
3542 			      struct task_struct *next_prev, bool sched_in);
3543 
3544 #define for_each_task_context_nr(ctxn)					\
3545 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3546 
3547 /*
3548  * Called from scheduler to remove the events of the current task,
3549  * with interrupts disabled.
3550  *
3551  * We stop each event and update the event value in event->count.
3552  *
3553  * This does not protect us against NMI, but disable()
3554  * sets the disabled bit in the control field of event _before_
3555  * accessing the event control register. If a NMI hits, then it will
3556  * not restart the event.
3557  */
3558 void __perf_event_task_sched_out(struct task_struct *task,
3559 				 struct task_struct *next)
3560 {
3561 	int ctxn;
3562 
3563 	if (__this_cpu_read(perf_sched_cb_usages))
3564 		perf_pmu_sched_task(task, next, false);
3565 
3566 	if (atomic_read(&nr_switch_events))
3567 		perf_event_switch(task, next, false);
3568 
3569 	for_each_task_context_nr(ctxn)
3570 		perf_event_context_sched_out(task, ctxn, next);
3571 
3572 	/*
3573 	 * if cgroup events exist on this CPU, then we need
3574 	 * to check if we have to switch out PMU state.
3575 	 * cgroup event are system-wide mode only
3576 	 */
3577 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3578 		perf_cgroup_switch(next);
3579 }
3580 
3581 /*
3582  * Called with IRQs disabled
3583  */
3584 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3585 			      enum event_type_t event_type)
3586 {
3587 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3588 }
3589 
3590 static bool perf_less_group_idx(const void *l, const void *r)
3591 {
3592 	const struct perf_event *le = *(const struct perf_event **)l;
3593 	const struct perf_event *re = *(const struct perf_event **)r;
3594 
3595 	return le->group_index < re->group_index;
3596 }
3597 
3598 static void swap_ptr(void *l, void *r)
3599 {
3600 	void **lp = l, **rp = r;
3601 
3602 	swap(*lp, *rp);
3603 }
3604 
3605 static const struct min_heap_callbacks perf_min_heap = {
3606 	.elem_size = sizeof(struct perf_event *),
3607 	.less = perf_less_group_idx,
3608 	.swp = swap_ptr,
3609 };
3610 
3611 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3612 {
3613 	struct perf_event **itrs = heap->data;
3614 
3615 	if (event) {
3616 		itrs[heap->nr] = event;
3617 		heap->nr++;
3618 	}
3619 }
3620 
3621 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3622 				struct perf_event_groups *groups, int cpu,
3623 				int (*func)(struct perf_event *, void *),
3624 				void *data)
3625 {
3626 #ifdef CONFIG_CGROUP_PERF
3627 	struct cgroup_subsys_state *css = NULL;
3628 #endif
3629 	/* Space for per CPU and/or any CPU event iterators. */
3630 	struct perf_event *itrs[2];
3631 	struct min_heap event_heap;
3632 	struct perf_event **evt;
3633 	int ret;
3634 
3635 	if (cpuctx) {
3636 		event_heap = (struct min_heap){
3637 			.data = cpuctx->heap,
3638 			.nr = 0,
3639 			.size = cpuctx->heap_size,
3640 		};
3641 
3642 		lockdep_assert_held(&cpuctx->ctx.lock);
3643 
3644 #ifdef CONFIG_CGROUP_PERF
3645 		if (cpuctx->cgrp)
3646 			css = &cpuctx->cgrp->css;
3647 #endif
3648 	} else {
3649 		event_heap = (struct min_heap){
3650 			.data = itrs,
3651 			.nr = 0,
3652 			.size = ARRAY_SIZE(itrs),
3653 		};
3654 		/* Events not within a CPU context may be on any CPU. */
3655 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3656 	}
3657 	evt = event_heap.data;
3658 
3659 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3660 
3661 #ifdef CONFIG_CGROUP_PERF
3662 	for (; css; css = css->parent)
3663 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3664 #endif
3665 
3666 	min_heapify_all(&event_heap, &perf_min_heap);
3667 
3668 	while (event_heap.nr) {
3669 		ret = func(*evt, data);
3670 		if (ret)
3671 			return ret;
3672 
3673 		*evt = perf_event_groups_next(*evt);
3674 		if (*evt)
3675 			min_heapify(&event_heap, 0, &perf_min_heap);
3676 		else
3677 			min_heap_pop(&event_heap, &perf_min_heap);
3678 	}
3679 
3680 	return 0;
3681 }
3682 
3683 /*
3684  * Because the userpage is strictly per-event (there is no concept of context,
3685  * so there cannot be a context indirection), every userpage must be updated
3686  * when context time starts :-(
3687  *
3688  * IOW, we must not miss EVENT_TIME edges.
3689  */
3690 static inline bool event_update_userpage(struct perf_event *event)
3691 {
3692 	if (likely(!atomic_read(&event->mmap_count)))
3693 		return false;
3694 
3695 	perf_event_update_time(event);
3696 	perf_event_update_userpage(event);
3697 
3698 	return true;
3699 }
3700 
3701 static inline void group_update_userpage(struct perf_event *group_event)
3702 {
3703 	struct perf_event *event;
3704 
3705 	if (!event_update_userpage(group_event))
3706 		return;
3707 
3708 	for_each_sibling_event(event, group_event)
3709 		event_update_userpage(event);
3710 }
3711 
3712 static int merge_sched_in(struct perf_event *event, void *data)
3713 {
3714 	struct perf_event_context *ctx = event->ctx;
3715 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3716 	int *can_add_hw = data;
3717 
3718 	if (event->state <= PERF_EVENT_STATE_OFF)
3719 		return 0;
3720 
3721 	if (!event_filter_match(event))
3722 		return 0;
3723 
3724 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3725 		if (!group_sched_in(event, cpuctx, ctx))
3726 			list_add_tail(&event->active_list, get_event_list(event));
3727 	}
3728 
3729 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3730 		*can_add_hw = 0;
3731 		if (event->attr.pinned) {
3732 			perf_cgroup_event_disable(event, ctx);
3733 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3734 		} else {
3735 			ctx->rotate_necessary = 1;
3736 			perf_mux_hrtimer_restart(cpuctx);
3737 			group_update_userpage(event);
3738 		}
3739 	}
3740 
3741 	return 0;
3742 }
3743 
3744 static void
3745 ctx_pinned_sched_in(struct perf_event_context *ctx,
3746 		    struct perf_cpu_context *cpuctx)
3747 {
3748 	int can_add_hw = 1;
3749 
3750 	if (ctx != &cpuctx->ctx)
3751 		cpuctx = NULL;
3752 
3753 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3754 			   smp_processor_id(),
3755 			   merge_sched_in, &can_add_hw);
3756 }
3757 
3758 static void
3759 ctx_flexible_sched_in(struct perf_event_context *ctx,
3760 		      struct perf_cpu_context *cpuctx)
3761 {
3762 	int can_add_hw = 1;
3763 
3764 	if (ctx != &cpuctx->ctx)
3765 		cpuctx = NULL;
3766 
3767 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3768 			   smp_processor_id(),
3769 			   merge_sched_in, &can_add_hw);
3770 }
3771 
3772 static void
3773 ctx_sched_in(struct perf_event_context *ctx,
3774 	     struct perf_cpu_context *cpuctx,
3775 	     enum event_type_t event_type)
3776 {
3777 	int is_active = ctx->is_active;
3778 
3779 	lockdep_assert_held(&ctx->lock);
3780 
3781 	if (likely(!ctx->nr_events))
3782 		return;
3783 
3784 	if (is_active ^ EVENT_TIME) {
3785 		/* start ctx time */
3786 		__update_context_time(ctx, false);
3787 		perf_cgroup_set_timestamp(cpuctx);
3788 		/*
3789 		 * CPU-release for the below ->is_active store,
3790 		 * see __load_acquire() in perf_event_time_now()
3791 		 */
3792 		barrier();
3793 	}
3794 
3795 	ctx->is_active |= (event_type | EVENT_TIME);
3796 	if (ctx->task) {
3797 		if (!is_active)
3798 			cpuctx->task_ctx = ctx;
3799 		else
3800 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3801 	}
3802 
3803 	is_active ^= ctx->is_active; /* changed bits */
3804 
3805 	/*
3806 	 * First go through the list and put on any pinned groups
3807 	 * in order to give them the best chance of going on.
3808 	 */
3809 	if (is_active & EVENT_PINNED)
3810 		ctx_pinned_sched_in(ctx, cpuctx);
3811 
3812 	/* Then walk through the lower prio flexible groups */
3813 	if (is_active & EVENT_FLEXIBLE)
3814 		ctx_flexible_sched_in(ctx, cpuctx);
3815 }
3816 
3817 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3818 			     enum event_type_t event_type)
3819 {
3820 	struct perf_event_context *ctx = &cpuctx->ctx;
3821 
3822 	ctx_sched_in(ctx, cpuctx, event_type);
3823 }
3824 
3825 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3826 					struct task_struct *task)
3827 {
3828 	struct perf_cpu_context *cpuctx;
3829 	struct pmu *pmu;
3830 
3831 	cpuctx = __get_cpu_context(ctx);
3832 
3833 	/*
3834 	 * HACK: for HETEROGENEOUS the task context might have switched to a
3835 	 * different PMU, force (re)set the context,
3836 	 */
3837 	pmu = ctx->pmu = cpuctx->ctx.pmu;
3838 
3839 	if (cpuctx->task_ctx == ctx) {
3840 		if (cpuctx->sched_cb_usage)
3841 			__perf_pmu_sched_task(cpuctx, true);
3842 		return;
3843 	}
3844 
3845 	perf_ctx_lock(cpuctx, ctx);
3846 	/*
3847 	 * We must check ctx->nr_events while holding ctx->lock, such
3848 	 * that we serialize against perf_install_in_context().
3849 	 */
3850 	if (!ctx->nr_events)
3851 		goto unlock;
3852 
3853 	perf_pmu_disable(pmu);
3854 	/*
3855 	 * We want to keep the following priority order:
3856 	 * cpu pinned (that don't need to move), task pinned,
3857 	 * cpu flexible, task flexible.
3858 	 *
3859 	 * However, if task's ctx is not carrying any pinned
3860 	 * events, no need to flip the cpuctx's events around.
3861 	 */
3862 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3863 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3864 	perf_event_sched_in(cpuctx, ctx);
3865 
3866 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3867 		pmu->sched_task(cpuctx->task_ctx, true);
3868 
3869 	perf_pmu_enable(pmu);
3870 
3871 unlock:
3872 	perf_ctx_unlock(cpuctx, ctx);
3873 }
3874 
3875 /*
3876  * Called from scheduler to add the events of the current task
3877  * with interrupts disabled.
3878  *
3879  * We restore the event value and then enable it.
3880  *
3881  * This does not protect us against NMI, but enable()
3882  * sets the enabled bit in the control field of event _before_
3883  * accessing the event control register. If a NMI hits, then it will
3884  * keep the event running.
3885  */
3886 void __perf_event_task_sched_in(struct task_struct *prev,
3887 				struct task_struct *task)
3888 {
3889 	struct perf_event_context *ctx;
3890 	int ctxn;
3891 
3892 	for_each_task_context_nr(ctxn) {
3893 		ctx = task->perf_event_ctxp[ctxn];
3894 		if (likely(!ctx))
3895 			continue;
3896 
3897 		perf_event_context_sched_in(ctx, task);
3898 	}
3899 
3900 	if (atomic_read(&nr_switch_events))
3901 		perf_event_switch(task, prev, true);
3902 
3903 	if (__this_cpu_read(perf_sched_cb_usages))
3904 		perf_pmu_sched_task(prev, task, true);
3905 }
3906 
3907 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3908 {
3909 	u64 frequency = event->attr.sample_freq;
3910 	u64 sec = NSEC_PER_SEC;
3911 	u64 divisor, dividend;
3912 
3913 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3914 
3915 	count_fls = fls64(count);
3916 	nsec_fls = fls64(nsec);
3917 	frequency_fls = fls64(frequency);
3918 	sec_fls = 30;
3919 
3920 	/*
3921 	 * We got @count in @nsec, with a target of sample_freq HZ
3922 	 * the target period becomes:
3923 	 *
3924 	 *             @count * 10^9
3925 	 * period = -------------------
3926 	 *          @nsec * sample_freq
3927 	 *
3928 	 */
3929 
3930 	/*
3931 	 * Reduce accuracy by one bit such that @a and @b converge
3932 	 * to a similar magnitude.
3933 	 */
3934 #define REDUCE_FLS(a, b)		\
3935 do {					\
3936 	if (a##_fls > b##_fls) {	\
3937 		a >>= 1;		\
3938 		a##_fls--;		\
3939 	} else {			\
3940 		b >>= 1;		\
3941 		b##_fls--;		\
3942 	}				\
3943 } while (0)
3944 
3945 	/*
3946 	 * Reduce accuracy until either term fits in a u64, then proceed with
3947 	 * the other, so that finally we can do a u64/u64 division.
3948 	 */
3949 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3950 		REDUCE_FLS(nsec, frequency);
3951 		REDUCE_FLS(sec, count);
3952 	}
3953 
3954 	if (count_fls + sec_fls > 64) {
3955 		divisor = nsec * frequency;
3956 
3957 		while (count_fls + sec_fls > 64) {
3958 			REDUCE_FLS(count, sec);
3959 			divisor >>= 1;
3960 		}
3961 
3962 		dividend = count * sec;
3963 	} else {
3964 		dividend = count * sec;
3965 
3966 		while (nsec_fls + frequency_fls > 64) {
3967 			REDUCE_FLS(nsec, frequency);
3968 			dividend >>= 1;
3969 		}
3970 
3971 		divisor = nsec * frequency;
3972 	}
3973 
3974 	if (!divisor)
3975 		return dividend;
3976 
3977 	return div64_u64(dividend, divisor);
3978 }
3979 
3980 static DEFINE_PER_CPU(int, perf_throttled_count);
3981 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3982 
3983 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3984 {
3985 	struct hw_perf_event *hwc = &event->hw;
3986 	s64 period, sample_period;
3987 	s64 delta;
3988 
3989 	period = perf_calculate_period(event, nsec, count);
3990 
3991 	delta = (s64)(period - hwc->sample_period);
3992 	delta = (delta + 7) / 8; /* low pass filter */
3993 
3994 	sample_period = hwc->sample_period + delta;
3995 
3996 	if (!sample_period)
3997 		sample_period = 1;
3998 
3999 	hwc->sample_period = sample_period;
4000 
4001 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4002 		if (disable)
4003 			event->pmu->stop(event, PERF_EF_UPDATE);
4004 
4005 		local64_set(&hwc->period_left, 0);
4006 
4007 		if (disable)
4008 			event->pmu->start(event, PERF_EF_RELOAD);
4009 	}
4010 }
4011 
4012 /*
4013  * combine freq adjustment with unthrottling to avoid two passes over the
4014  * events. At the same time, make sure, having freq events does not change
4015  * the rate of unthrottling as that would introduce bias.
4016  */
4017 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4018 					   int needs_unthr)
4019 {
4020 	struct perf_event *event;
4021 	struct hw_perf_event *hwc;
4022 	u64 now, period = TICK_NSEC;
4023 	s64 delta;
4024 
4025 	/*
4026 	 * only need to iterate over all events iff:
4027 	 * - context have events in frequency mode (needs freq adjust)
4028 	 * - there are events to unthrottle on this cpu
4029 	 */
4030 	if (!(ctx->nr_freq || needs_unthr))
4031 		return;
4032 
4033 	raw_spin_lock(&ctx->lock);
4034 	perf_pmu_disable(ctx->pmu);
4035 
4036 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4037 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4038 			continue;
4039 
4040 		if (!event_filter_match(event))
4041 			continue;
4042 
4043 		perf_pmu_disable(event->pmu);
4044 
4045 		hwc = &event->hw;
4046 
4047 		if (hwc->interrupts == MAX_INTERRUPTS) {
4048 			hwc->interrupts = 0;
4049 			perf_log_throttle(event, 1);
4050 			event->pmu->start(event, 0);
4051 		}
4052 
4053 		if (!event->attr.freq || !event->attr.sample_freq)
4054 			goto next;
4055 
4056 		/*
4057 		 * stop the event and update event->count
4058 		 */
4059 		event->pmu->stop(event, PERF_EF_UPDATE);
4060 
4061 		now = local64_read(&event->count);
4062 		delta = now - hwc->freq_count_stamp;
4063 		hwc->freq_count_stamp = now;
4064 
4065 		/*
4066 		 * restart the event
4067 		 * reload only if value has changed
4068 		 * we have stopped the event so tell that
4069 		 * to perf_adjust_period() to avoid stopping it
4070 		 * twice.
4071 		 */
4072 		if (delta > 0)
4073 			perf_adjust_period(event, period, delta, false);
4074 
4075 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4076 	next:
4077 		perf_pmu_enable(event->pmu);
4078 	}
4079 
4080 	perf_pmu_enable(ctx->pmu);
4081 	raw_spin_unlock(&ctx->lock);
4082 }
4083 
4084 /*
4085  * Move @event to the tail of the @ctx's elegible events.
4086  */
4087 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4088 {
4089 	/*
4090 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4091 	 * disabled by the inheritance code.
4092 	 */
4093 	if (ctx->rotate_disable)
4094 		return;
4095 
4096 	perf_event_groups_delete(&ctx->flexible_groups, event);
4097 	perf_event_groups_insert(&ctx->flexible_groups, event);
4098 }
4099 
4100 /* pick an event from the flexible_groups to rotate */
4101 static inline struct perf_event *
4102 ctx_event_to_rotate(struct perf_event_context *ctx)
4103 {
4104 	struct perf_event *event;
4105 
4106 	/* pick the first active flexible event */
4107 	event = list_first_entry_or_null(&ctx->flexible_active,
4108 					 struct perf_event, active_list);
4109 
4110 	/* if no active flexible event, pick the first event */
4111 	if (!event) {
4112 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4113 				      typeof(*event), group_node);
4114 	}
4115 
4116 	/*
4117 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4118 	 * finds there are unschedulable events, it will set it again.
4119 	 */
4120 	ctx->rotate_necessary = 0;
4121 
4122 	return event;
4123 }
4124 
4125 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4126 {
4127 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4128 	struct perf_event_context *task_ctx = NULL;
4129 	int cpu_rotate, task_rotate;
4130 
4131 	/*
4132 	 * Since we run this from IRQ context, nobody can install new
4133 	 * events, thus the event count values are stable.
4134 	 */
4135 
4136 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4137 	task_ctx = cpuctx->task_ctx;
4138 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4139 
4140 	if (!(cpu_rotate || task_rotate))
4141 		return false;
4142 
4143 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4144 	perf_pmu_disable(cpuctx->ctx.pmu);
4145 
4146 	if (task_rotate)
4147 		task_event = ctx_event_to_rotate(task_ctx);
4148 	if (cpu_rotate)
4149 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4150 
4151 	/*
4152 	 * As per the order given at ctx_resched() first 'pop' task flexible
4153 	 * and then, if needed CPU flexible.
4154 	 */
4155 	if (task_event || (task_ctx && cpu_event))
4156 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4157 	if (cpu_event)
4158 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4159 
4160 	if (task_event)
4161 		rotate_ctx(task_ctx, task_event);
4162 	if (cpu_event)
4163 		rotate_ctx(&cpuctx->ctx, cpu_event);
4164 
4165 	perf_event_sched_in(cpuctx, task_ctx);
4166 
4167 	perf_pmu_enable(cpuctx->ctx.pmu);
4168 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4169 
4170 	return true;
4171 }
4172 
4173 void perf_event_task_tick(void)
4174 {
4175 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4176 	struct perf_event_context *ctx, *tmp;
4177 	int throttled;
4178 
4179 	lockdep_assert_irqs_disabled();
4180 
4181 	__this_cpu_inc(perf_throttled_seq);
4182 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4183 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4184 
4185 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4186 		perf_adjust_freq_unthr_context(ctx, throttled);
4187 }
4188 
4189 static int event_enable_on_exec(struct perf_event *event,
4190 				struct perf_event_context *ctx)
4191 {
4192 	if (!event->attr.enable_on_exec)
4193 		return 0;
4194 
4195 	event->attr.enable_on_exec = 0;
4196 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4197 		return 0;
4198 
4199 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4200 
4201 	return 1;
4202 }
4203 
4204 /*
4205  * Enable all of a task's events that have been marked enable-on-exec.
4206  * This expects task == current.
4207  */
4208 static void perf_event_enable_on_exec(int ctxn)
4209 {
4210 	struct perf_event_context *ctx, *clone_ctx = NULL;
4211 	enum event_type_t event_type = 0;
4212 	struct perf_cpu_context *cpuctx;
4213 	struct perf_event *event;
4214 	unsigned long flags;
4215 	int enabled = 0;
4216 
4217 	local_irq_save(flags);
4218 	ctx = current->perf_event_ctxp[ctxn];
4219 	if (!ctx || !ctx->nr_events)
4220 		goto out;
4221 
4222 	cpuctx = __get_cpu_context(ctx);
4223 	perf_ctx_lock(cpuctx, ctx);
4224 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4225 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4226 		enabled |= event_enable_on_exec(event, ctx);
4227 		event_type |= get_event_type(event);
4228 	}
4229 
4230 	/*
4231 	 * Unclone and reschedule this context if we enabled any event.
4232 	 */
4233 	if (enabled) {
4234 		clone_ctx = unclone_ctx(ctx);
4235 		ctx_resched(cpuctx, ctx, event_type);
4236 	} else {
4237 		ctx_sched_in(ctx, cpuctx, EVENT_TIME);
4238 	}
4239 	perf_ctx_unlock(cpuctx, ctx);
4240 
4241 out:
4242 	local_irq_restore(flags);
4243 
4244 	if (clone_ctx)
4245 		put_ctx(clone_ctx);
4246 }
4247 
4248 static void perf_remove_from_owner(struct perf_event *event);
4249 static void perf_event_exit_event(struct perf_event *event,
4250 				  struct perf_event_context *ctx);
4251 
4252 /*
4253  * Removes all events from the current task that have been marked
4254  * remove-on-exec, and feeds their values back to parent events.
4255  */
4256 static void perf_event_remove_on_exec(int ctxn)
4257 {
4258 	struct perf_event_context *ctx, *clone_ctx = NULL;
4259 	struct perf_event *event, *next;
4260 	LIST_HEAD(free_list);
4261 	unsigned long flags;
4262 	bool modified = false;
4263 
4264 	ctx = perf_pin_task_context(current, ctxn);
4265 	if (!ctx)
4266 		return;
4267 
4268 	mutex_lock(&ctx->mutex);
4269 
4270 	if (WARN_ON_ONCE(ctx->task != current))
4271 		goto unlock;
4272 
4273 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4274 		if (!event->attr.remove_on_exec)
4275 			continue;
4276 
4277 		if (!is_kernel_event(event))
4278 			perf_remove_from_owner(event);
4279 
4280 		modified = true;
4281 
4282 		perf_event_exit_event(event, ctx);
4283 	}
4284 
4285 	raw_spin_lock_irqsave(&ctx->lock, flags);
4286 	if (modified)
4287 		clone_ctx = unclone_ctx(ctx);
4288 	--ctx->pin_count;
4289 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4290 
4291 unlock:
4292 	mutex_unlock(&ctx->mutex);
4293 
4294 	put_ctx(ctx);
4295 	if (clone_ctx)
4296 		put_ctx(clone_ctx);
4297 }
4298 
4299 struct perf_read_data {
4300 	struct perf_event *event;
4301 	bool group;
4302 	int ret;
4303 };
4304 
4305 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4306 {
4307 	u16 local_pkg, event_pkg;
4308 
4309 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4310 		int local_cpu = smp_processor_id();
4311 
4312 		event_pkg = topology_physical_package_id(event_cpu);
4313 		local_pkg = topology_physical_package_id(local_cpu);
4314 
4315 		if (event_pkg == local_pkg)
4316 			return local_cpu;
4317 	}
4318 
4319 	return event_cpu;
4320 }
4321 
4322 /*
4323  * Cross CPU call to read the hardware event
4324  */
4325 static void __perf_event_read(void *info)
4326 {
4327 	struct perf_read_data *data = info;
4328 	struct perf_event *sub, *event = data->event;
4329 	struct perf_event_context *ctx = event->ctx;
4330 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4331 	struct pmu *pmu = event->pmu;
4332 
4333 	/*
4334 	 * If this is a task context, we need to check whether it is
4335 	 * the current task context of this cpu.  If not it has been
4336 	 * scheduled out before the smp call arrived.  In that case
4337 	 * event->count would have been updated to a recent sample
4338 	 * when the event was scheduled out.
4339 	 */
4340 	if (ctx->task && cpuctx->task_ctx != ctx)
4341 		return;
4342 
4343 	raw_spin_lock(&ctx->lock);
4344 	if (ctx->is_active & EVENT_TIME) {
4345 		update_context_time(ctx);
4346 		update_cgrp_time_from_event(event);
4347 	}
4348 
4349 	perf_event_update_time(event);
4350 	if (data->group)
4351 		perf_event_update_sibling_time(event);
4352 
4353 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4354 		goto unlock;
4355 
4356 	if (!data->group) {
4357 		pmu->read(event);
4358 		data->ret = 0;
4359 		goto unlock;
4360 	}
4361 
4362 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4363 
4364 	pmu->read(event);
4365 
4366 	for_each_sibling_event(sub, event) {
4367 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4368 			/*
4369 			 * Use sibling's PMU rather than @event's since
4370 			 * sibling could be on different (eg: software) PMU.
4371 			 */
4372 			sub->pmu->read(sub);
4373 		}
4374 	}
4375 
4376 	data->ret = pmu->commit_txn(pmu);
4377 
4378 unlock:
4379 	raw_spin_unlock(&ctx->lock);
4380 }
4381 
4382 static inline u64 perf_event_count(struct perf_event *event)
4383 {
4384 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4385 }
4386 
4387 static void calc_timer_values(struct perf_event *event,
4388 				u64 *now,
4389 				u64 *enabled,
4390 				u64 *running)
4391 {
4392 	u64 ctx_time;
4393 
4394 	*now = perf_clock();
4395 	ctx_time = perf_event_time_now(event, *now);
4396 	__perf_update_times(event, ctx_time, enabled, running);
4397 }
4398 
4399 /*
4400  * NMI-safe method to read a local event, that is an event that
4401  * is:
4402  *   - either for the current task, or for this CPU
4403  *   - does not have inherit set, for inherited task events
4404  *     will not be local and we cannot read them atomically
4405  *   - must not have a pmu::count method
4406  */
4407 int perf_event_read_local(struct perf_event *event, u64 *value,
4408 			  u64 *enabled, u64 *running)
4409 {
4410 	unsigned long flags;
4411 	int ret = 0;
4412 
4413 	/*
4414 	 * Disabling interrupts avoids all counter scheduling (context
4415 	 * switches, timer based rotation and IPIs).
4416 	 */
4417 	local_irq_save(flags);
4418 
4419 	/*
4420 	 * It must not be an event with inherit set, we cannot read
4421 	 * all child counters from atomic context.
4422 	 */
4423 	if (event->attr.inherit) {
4424 		ret = -EOPNOTSUPP;
4425 		goto out;
4426 	}
4427 
4428 	/* If this is a per-task event, it must be for current */
4429 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4430 	    event->hw.target != current) {
4431 		ret = -EINVAL;
4432 		goto out;
4433 	}
4434 
4435 	/* If this is a per-CPU event, it must be for this CPU */
4436 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4437 	    event->cpu != smp_processor_id()) {
4438 		ret = -EINVAL;
4439 		goto out;
4440 	}
4441 
4442 	/* If this is a pinned event it must be running on this CPU */
4443 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4444 		ret = -EBUSY;
4445 		goto out;
4446 	}
4447 
4448 	/*
4449 	 * If the event is currently on this CPU, its either a per-task event,
4450 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4451 	 * oncpu == -1).
4452 	 */
4453 	if (event->oncpu == smp_processor_id())
4454 		event->pmu->read(event);
4455 
4456 	*value = local64_read(&event->count);
4457 	if (enabled || running) {
4458 		u64 __enabled, __running, __now;;
4459 
4460 		calc_timer_values(event, &__now, &__enabled, &__running);
4461 		if (enabled)
4462 			*enabled = __enabled;
4463 		if (running)
4464 			*running = __running;
4465 	}
4466 out:
4467 	local_irq_restore(flags);
4468 
4469 	return ret;
4470 }
4471 
4472 static int perf_event_read(struct perf_event *event, bool group)
4473 {
4474 	enum perf_event_state state = READ_ONCE(event->state);
4475 	int event_cpu, ret = 0;
4476 
4477 	/*
4478 	 * If event is enabled and currently active on a CPU, update the
4479 	 * value in the event structure:
4480 	 */
4481 again:
4482 	if (state == PERF_EVENT_STATE_ACTIVE) {
4483 		struct perf_read_data data;
4484 
4485 		/*
4486 		 * Orders the ->state and ->oncpu loads such that if we see
4487 		 * ACTIVE we must also see the right ->oncpu.
4488 		 *
4489 		 * Matches the smp_wmb() from event_sched_in().
4490 		 */
4491 		smp_rmb();
4492 
4493 		event_cpu = READ_ONCE(event->oncpu);
4494 		if ((unsigned)event_cpu >= nr_cpu_ids)
4495 			return 0;
4496 
4497 		data = (struct perf_read_data){
4498 			.event = event,
4499 			.group = group,
4500 			.ret = 0,
4501 		};
4502 
4503 		preempt_disable();
4504 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4505 
4506 		/*
4507 		 * Purposely ignore the smp_call_function_single() return
4508 		 * value.
4509 		 *
4510 		 * If event_cpu isn't a valid CPU it means the event got
4511 		 * scheduled out and that will have updated the event count.
4512 		 *
4513 		 * Therefore, either way, we'll have an up-to-date event count
4514 		 * after this.
4515 		 */
4516 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4517 		preempt_enable();
4518 		ret = data.ret;
4519 
4520 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4521 		struct perf_event_context *ctx = event->ctx;
4522 		unsigned long flags;
4523 
4524 		raw_spin_lock_irqsave(&ctx->lock, flags);
4525 		state = event->state;
4526 		if (state != PERF_EVENT_STATE_INACTIVE) {
4527 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4528 			goto again;
4529 		}
4530 
4531 		/*
4532 		 * May read while context is not active (e.g., thread is
4533 		 * blocked), in that case we cannot update context time
4534 		 */
4535 		if (ctx->is_active & EVENT_TIME) {
4536 			update_context_time(ctx);
4537 			update_cgrp_time_from_event(event);
4538 		}
4539 
4540 		perf_event_update_time(event);
4541 		if (group)
4542 			perf_event_update_sibling_time(event);
4543 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4544 	}
4545 
4546 	return ret;
4547 }
4548 
4549 /*
4550  * Initialize the perf_event context in a task_struct:
4551  */
4552 static void __perf_event_init_context(struct perf_event_context *ctx)
4553 {
4554 	raw_spin_lock_init(&ctx->lock);
4555 	mutex_init(&ctx->mutex);
4556 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4557 	perf_event_groups_init(&ctx->pinned_groups);
4558 	perf_event_groups_init(&ctx->flexible_groups);
4559 	INIT_LIST_HEAD(&ctx->event_list);
4560 	INIT_LIST_HEAD(&ctx->pinned_active);
4561 	INIT_LIST_HEAD(&ctx->flexible_active);
4562 	refcount_set(&ctx->refcount, 1);
4563 }
4564 
4565 static struct perf_event_context *
4566 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4567 {
4568 	struct perf_event_context *ctx;
4569 
4570 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4571 	if (!ctx)
4572 		return NULL;
4573 
4574 	__perf_event_init_context(ctx);
4575 	if (task)
4576 		ctx->task = get_task_struct(task);
4577 	ctx->pmu = pmu;
4578 
4579 	return ctx;
4580 }
4581 
4582 static struct task_struct *
4583 find_lively_task_by_vpid(pid_t vpid)
4584 {
4585 	struct task_struct *task;
4586 
4587 	rcu_read_lock();
4588 	if (!vpid)
4589 		task = current;
4590 	else
4591 		task = find_task_by_vpid(vpid);
4592 	if (task)
4593 		get_task_struct(task);
4594 	rcu_read_unlock();
4595 
4596 	if (!task)
4597 		return ERR_PTR(-ESRCH);
4598 
4599 	return task;
4600 }
4601 
4602 /*
4603  * Returns a matching context with refcount and pincount.
4604  */
4605 static struct perf_event_context *
4606 find_get_context(struct pmu *pmu, struct task_struct *task,
4607 		struct perf_event *event)
4608 {
4609 	struct perf_event_context *ctx, *clone_ctx = NULL;
4610 	struct perf_cpu_context *cpuctx;
4611 	void *task_ctx_data = NULL;
4612 	unsigned long flags;
4613 	int ctxn, err;
4614 	int cpu = event->cpu;
4615 
4616 	if (!task) {
4617 		/* Must be root to operate on a CPU event: */
4618 		err = perf_allow_cpu(&event->attr);
4619 		if (err)
4620 			return ERR_PTR(err);
4621 
4622 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4623 		ctx = &cpuctx->ctx;
4624 		get_ctx(ctx);
4625 		raw_spin_lock_irqsave(&ctx->lock, flags);
4626 		++ctx->pin_count;
4627 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4628 
4629 		return ctx;
4630 	}
4631 
4632 	err = -EINVAL;
4633 	ctxn = pmu->task_ctx_nr;
4634 	if (ctxn < 0)
4635 		goto errout;
4636 
4637 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4638 		task_ctx_data = alloc_task_ctx_data(pmu);
4639 		if (!task_ctx_data) {
4640 			err = -ENOMEM;
4641 			goto errout;
4642 		}
4643 	}
4644 
4645 retry:
4646 	ctx = perf_lock_task_context(task, ctxn, &flags);
4647 	if (ctx) {
4648 		clone_ctx = unclone_ctx(ctx);
4649 		++ctx->pin_count;
4650 
4651 		if (task_ctx_data && !ctx->task_ctx_data) {
4652 			ctx->task_ctx_data = task_ctx_data;
4653 			task_ctx_data = NULL;
4654 		}
4655 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4656 
4657 		if (clone_ctx)
4658 			put_ctx(clone_ctx);
4659 	} else {
4660 		ctx = alloc_perf_context(pmu, task);
4661 		err = -ENOMEM;
4662 		if (!ctx)
4663 			goto errout;
4664 
4665 		if (task_ctx_data) {
4666 			ctx->task_ctx_data = task_ctx_data;
4667 			task_ctx_data = NULL;
4668 		}
4669 
4670 		err = 0;
4671 		mutex_lock(&task->perf_event_mutex);
4672 		/*
4673 		 * If it has already passed perf_event_exit_task().
4674 		 * we must see PF_EXITING, it takes this mutex too.
4675 		 */
4676 		if (task->flags & PF_EXITING)
4677 			err = -ESRCH;
4678 		else if (task->perf_event_ctxp[ctxn])
4679 			err = -EAGAIN;
4680 		else {
4681 			get_ctx(ctx);
4682 			++ctx->pin_count;
4683 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4684 		}
4685 		mutex_unlock(&task->perf_event_mutex);
4686 
4687 		if (unlikely(err)) {
4688 			put_ctx(ctx);
4689 
4690 			if (err == -EAGAIN)
4691 				goto retry;
4692 			goto errout;
4693 		}
4694 	}
4695 
4696 	free_task_ctx_data(pmu, task_ctx_data);
4697 	return ctx;
4698 
4699 errout:
4700 	free_task_ctx_data(pmu, task_ctx_data);
4701 	return ERR_PTR(err);
4702 }
4703 
4704 static void perf_event_free_filter(struct perf_event *event);
4705 
4706 static void free_event_rcu(struct rcu_head *head)
4707 {
4708 	struct perf_event *event;
4709 
4710 	event = container_of(head, struct perf_event, rcu_head);
4711 	if (event->ns)
4712 		put_pid_ns(event->ns);
4713 	perf_event_free_filter(event);
4714 	kmem_cache_free(perf_event_cache, event);
4715 }
4716 
4717 static void ring_buffer_attach(struct perf_event *event,
4718 			       struct perf_buffer *rb);
4719 
4720 static void detach_sb_event(struct perf_event *event)
4721 {
4722 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4723 
4724 	raw_spin_lock(&pel->lock);
4725 	list_del_rcu(&event->sb_list);
4726 	raw_spin_unlock(&pel->lock);
4727 }
4728 
4729 static bool is_sb_event(struct perf_event *event)
4730 {
4731 	struct perf_event_attr *attr = &event->attr;
4732 
4733 	if (event->parent)
4734 		return false;
4735 
4736 	if (event->attach_state & PERF_ATTACH_TASK)
4737 		return false;
4738 
4739 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4740 	    attr->comm || attr->comm_exec ||
4741 	    attr->task || attr->ksymbol ||
4742 	    attr->context_switch || attr->text_poke ||
4743 	    attr->bpf_event)
4744 		return true;
4745 	return false;
4746 }
4747 
4748 static void unaccount_pmu_sb_event(struct perf_event *event)
4749 {
4750 	if (is_sb_event(event))
4751 		detach_sb_event(event);
4752 }
4753 
4754 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4755 {
4756 	if (event->parent)
4757 		return;
4758 
4759 	if (is_cgroup_event(event))
4760 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4761 }
4762 
4763 #ifdef CONFIG_NO_HZ_FULL
4764 static DEFINE_SPINLOCK(nr_freq_lock);
4765 #endif
4766 
4767 static void unaccount_freq_event_nohz(void)
4768 {
4769 #ifdef CONFIG_NO_HZ_FULL
4770 	spin_lock(&nr_freq_lock);
4771 	if (atomic_dec_and_test(&nr_freq_events))
4772 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4773 	spin_unlock(&nr_freq_lock);
4774 #endif
4775 }
4776 
4777 static void unaccount_freq_event(void)
4778 {
4779 	if (tick_nohz_full_enabled())
4780 		unaccount_freq_event_nohz();
4781 	else
4782 		atomic_dec(&nr_freq_events);
4783 }
4784 
4785 static void unaccount_event(struct perf_event *event)
4786 {
4787 	bool dec = false;
4788 
4789 	if (event->parent)
4790 		return;
4791 
4792 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4793 		dec = true;
4794 	if (event->attr.mmap || event->attr.mmap_data)
4795 		atomic_dec(&nr_mmap_events);
4796 	if (event->attr.build_id)
4797 		atomic_dec(&nr_build_id_events);
4798 	if (event->attr.comm)
4799 		atomic_dec(&nr_comm_events);
4800 	if (event->attr.namespaces)
4801 		atomic_dec(&nr_namespaces_events);
4802 	if (event->attr.cgroup)
4803 		atomic_dec(&nr_cgroup_events);
4804 	if (event->attr.task)
4805 		atomic_dec(&nr_task_events);
4806 	if (event->attr.freq)
4807 		unaccount_freq_event();
4808 	if (event->attr.context_switch) {
4809 		dec = true;
4810 		atomic_dec(&nr_switch_events);
4811 	}
4812 	if (is_cgroup_event(event))
4813 		dec = true;
4814 	if (has_branch_stack(event))
4815 		dec = true;
4816 	if (event->attr.ksymbol)
4817 		atomic_dec(&nr_ksymbol_events);
4818 	if (event->attr.bpf_event)
4819 		atomic_dec(&nr_bpf_events);
4820 	if (event->attr.text_poke)
4821 		atomic_dec(&nr_text_poke_events);
4822 
4823 	if (dec) {
4824 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4825 			schedule_delayed_work(&perf_sched_work, HZ);
4826 	}
4827 
4828 	unaccount_event_cpu(event, event->cpu);
4829 
4830 	unaccount_pmu_sb_event(event);
4831 }
4832 
4833 static void perf_sched_delayed(struct work_struct *work)
4834 {
4835 	mutex_lock(&perf_sched_mutex);
4836 	if (atomic_dec_and_test(&perf_sched_count))
4837 		static_branch_disable(&perf_sched_events);
4838 	mutex_unlock(&perf_sched_mutex);
4839 }
4840 
4841 /*
4842  * The following implement mutual exclusion of events on "exclusive" pmus
4843  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4844  * at a time, so we disallow creating events that might conflict, namely:
4845  *
4846  *  1) cpu-wide events in the presence of per-task events,
4847  *  2) per-task events in the presence of cpu-wide events,
4848  *  3) two matching events on the same context.
4849  *
4850  * The former two cases are handled in the allocation path (perf_event_alloc(),
4851  * _free_event()), the latter -- before the first perf_install_in_context().
4852  */
4853 static int exclusive_event_init(struct perf_event *event)
4854 {
4855 	struct pmu *pmu = event->pmu;
4856 
4857 	if (!is_exclusive_pmu(pmu))
4858 		return 0;
4859 
4860 	/*
4861 	 * Prevent co-existence of per-task and cpu-wide events on the
4862 	 * same exclusive pmu.
4863 	 *
4864 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4865 	 * events on this "exclusive" pmu, positive means there are
4866 	 * per-task events.
4867 	 *
4868 	 * Since this is called in perf_event_alloc() path, event::ctx
4869 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4870 	 * to mean "per-task event", because unlike other attach states it
4871 	 * never gets cleared.
4872 	 */
4873 	if (event->attach_state & PERF_ATTACH_TASK) {
4874 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4875 			return -EBUSY;
4876 	} else {
4877 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4878 			return -EBUSY;
4879 	}
4880 
4881 	return 0;
4882 }
4883 
4884 static void exclusive_event_destroy(struct perf_event *event)
4885 {
4886 	struct pmu *pmu = event->pmu;
4887 
4888 	if (!is_exclusive_pmu(pmu))
4889 		return;
4890 
4891 	/* see comment in exclusive_event_init() */
4892 	if (event->attach_state & PERF_ATTACH_TASK)
4893 		atomic_dec(&pmu->exclusive_cnt);
4894 	else
4895 		atomic_inc(&pmu->exclusive_cnt);
4896 }
4897 
4898 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4899 {
4900 	if ((e1->pmu == e2->pmu) &&
4901 	    (e1->cpu == e2->cpu ||
4902 	     e1->cpu == -1 ||
4903 	     e2->cpu == -1))
4904 		return true;
4905 	return false;
4906 }
4907 
4908 static bool exclusive_event_installable(struct perf_event *event,
4909 					struct perf_event_context *ctx)
4910 {
4911 	struct perf_event *iter_event;
4912 	struct pmu *pmu = event->pmu;
4913 
4914 	lockdep_assert_held(&ctx->mutex);
4915 
4916 	if (!is_exclusive_pmu(pmu))
4917 		return true;
4918 
4919 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4920 		if (exclusive_event_match(iter_event, event))
4921 			return false;
4922 	}
4923 
4924 	return true;
4925 }
4926 
4927 static void perf_addr_filters_splice(struct perf_event *event,
4928 				       struct list_head *head);
4929 
4930 static void _free_event(struct perf_event *event)
4931 {
4932 	irq_work_sync(&event->pending);
4933 
4934 	unaccount_event(event);
4935 
4936 	security_perf_event_free(event);
4937 
4938 	if (event->rb) {
4939 		/*
4940 		 * Can happen when we close an event with re-directed output.
4941 		 *
4942 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4943 		 * over us; possibly making our ring_buffer_put() the last.
4944 		 */
4945 		mutex_lock(&event->mmap_mutex);
4946 		ring_buffer_attach(event, NULL);
4947 		mutex_unlock(&event->mmap_mutex);
4948 	}
4949 
4950 	if (is_cgroup_event(event))
4951 		perf_detach_cgroup(event);
4952 
4953 	if (!event->parent) {
4954 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4955 			put_callchain_buffers();
4956 	}
4957 
4958 	perf_event_free_bpf_prog(event);
4959 	perf_addr_filters_splice(event, NULL);
4960 	kfree(event->addr_filter_ranges);
4961 
4962 	if (event->destroy)
4963 		event->destroy(event);
4964 
4965 	/*
4966 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4967 	 * hw.target.
4968 	 */
4969 	if (event->hw.target)
4970 		put_task_struct(event->hw.target);
4971 
4972 	/*
4973 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4974 	 * all task references must be cleaned up.
4975 	 */
4976 	if (event->ctx)
4977 		put_ctx(event->ctx);
4978 
4979 	exclusive_event_destroy(event);
4980 	module_put(event->pmu->module);
4981 
4982 	call_rcu(&event->rcu_head, free_event_rcu);
4983 }
4984 
4985 /*
4986  * Used to free events which have a known refcount of 1, such as in error paths
4987  * where the event isn't exposed yet and inherited events.
4988  */
4989 static void free_event(struct perf_event *event)
4990 {
4991 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4992 				"unexpected event refcount: %ld; ptr=%p\n",
4993 				atomic_long_read(&event->refcount), event)) {
4994 		/* leak to avoid use-after-free */
4995 		return;
4996 	}
4997 
4998 	_free_event(event);
4999 }
5000 
5001 /*
5002  * Remove user event from the owner task.
5003  */
5004 static void perf_remove_from_owner(struct perf_event *event)
5005 {
5006 	struct task_struct *owner;
5007 
5008 	rcu_read_lock();
5009 	/*
5010 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5011 	 * observe !owner it means the list deletion is complete and we can
5012 	 * indeed free this event, otherwise we need to serialize on
5013 	 * owner->perf_event_mutex.
5014 	 */
5015 	owner = READ_ONCE(event->owner);
5016 	if (owner) {
5017 		/*
5018 		 * Since delayed_put_task_struct() also drops the last
5019 		 * task reference we can safely take a new reference
5020 		 * while holding the rcu_read_lock().
5021 		 */
5022 		get_task_struct(owner);
5023 	}
5024 	rcu_read_unlock();
5025 
5026 	if (owner) {
5027 		/*
5028 		 * If we're here through perf_event_exit_task() we're already
5029 		 * holding ctx->mutex which would be an inversion wrt. the
5030 		 * normal lock order.
5031 		 *
5032 		 * However we can safely take this lock because its the child
5033 		 * ctx->mutex.
5034 		 */
5035 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5036 
5037 		/*
5038 		 * We have to re-check the event->owner field, if it is cleared
5039 		 * we raced with perf_event_exit_task(), acquiring the mutex
5040 		 * ensured they're done, and we can proceed with freeing the
5041 		 * event.
5042 		 */
5043 		if (event->owner) {
5044 			list_del_init(&event->owner_entry);
5045 			smp_store_release(&event->owner, NULL);
5046 		}
5047 		mutex_unlock(&owner->perf_event_mutex);
5048 		put_task_struct(owner);
5049 	}
5050 }
5051 
5052 static void put_event(struct perf_event *event)
5053 {
5054 	if (!atomic_long_dec_and_test(&event->refcount))
5055 		return;
5056 
5057 	_free_event(event);
5058 }
5059 
5060 /*
5061  * Kill an event dead; while event:refcount will preserve the event
5062  * object, it will not preserve its functionality. Once the last 'user'
5063  * gives up the object, we'll destroy the thing.
5064  */
5065 int perf_event_release_kernel(struct perf_event *event)
5066 {
5067 	struct perf_event_context *ctx = event->ctx;
5068 	struct perf_event *child, *tmp;
5069 	LIST_HEAD(free_list);
5070 
5071 	/*
5072 	 * If we got here through err_file: fput(event_file); we will not have
5073 	 * attached to a context yet.
5074 	 */
5075 	if (!ctx) {
5076 		WARN_ON_ONCE(event->attach_state &
5077 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5078 		goto no_ctx;
5079 	}
5080 
5081 	if (!is_kernel_event(event))
5082 		perf_remove_from_owner(event);
5083 
5084 	ctx = perf_event_ctx_lock(event);
5085 	WARN_ON_ONCE(ctx->parent_ctx);
5086 	perf_remove_from_context(event, DETACH_GROUP);
5087 
5088 	raw_spin_lock_irq(&ctx->lock);
5089 	/*
5090 	 * Mark this event as STATE_DEAD, there is no external reference to it
5091 	 * anymore.
5092 	 *
5093 	 * Anybody acquiring event->child_mutex after the below loop _must_
5094 	 * also see this, most importantly inherit_event() which will avoid
5095 	 * placing more children on the list.
5096 	 *
5097 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5098 	 * child events.
5099 	 */
5100 	event->state = PERF_EVENT_STATE_DEAD;
5101 	raw_spin_unlock_irq(&ctx->lock);
5102 
5103 	perf_event_ctx_unlock(event, ctx);
5104 
5105 again:
5106 	mutex_lock(&event->child_mutex);
5107 	list_for_each_entry(child, &event->child_list, child_list) {
5108 
5109 		/*
5110 		 * Cannot change, child events are not migrated, see the
5111 		 * comment with perf_event_ctx_lock_nested().
5112 		 */
5113 		ctx = READ_ONCE(child->ctx);
5114 		/*
5115 		 * Since child_mutex nests inside ctx::mutex, we must jump
5116 		 * through hoops. We start by grabbing a reference on the ctx.
5117 		 *
5118 		 * Since the event cannot get freed while we hold the
5119 		 * child_mutex, the context must also exist and have a !0
5120 		 * reference count.
5121 		 */
5122 		get_ctx(ctx);
5123 
5124 		/*
5125 		 * Now that we have a ctx ref, we can drop child_mutex, and
5126 		 * acquire ctx::mutex without fear of it going away. Then we
5127 		 * can re-acquire child_mutex.
5128 		 */
5129 		mutex_unlock(&event->child_mutex);
5130 		mutex_lock(&ctx->mutex);
5131 		mutex_lock(&event->child_mutex);
5132 
5133 		/*
5134 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5135 		 * state, if child is still the first entry, it didn't get freed
5136 		 * and we can continue doing so.
5137 		 */
5138 		tmp = list_first_entry_or_null(&event->child_list,
5139 					       struct perf_event, child_list);
5140 		if (tmp == child) {
5141 			perf_remove_from_context(child, DETACH_GROUP);
5142 			list_move(&child->child_list, &free_list);
5143 			/*
5144 			 * This matches the refcount bump in inherit_event();
5145 			 * this can't be the last reference.
5146 			 */
5147 			put_event(event);
5148 		}
5149 
5150 		mutex_unlock(&event->child_mutex);
5151 		mutex_unlock(&ctx->mutex);
5152 		put_ctx(ctx);
5153 		goto again;
5154 	}
5155 	mutex_unlock(&event->child_mutex);
5156 
5157 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5158 		void *var = &child->ctx->refcount;
5159 
5160 		list_del(&child->child_list);
5161 		free_event(child);
5162 
5163 		/*
5164 		 * Wake any perf_event_free_task() waiting for this event to be
5165 		 * freed.
5166 		 */
5167 		smp_mb(); /* pairs with wait_var_event() */
5168 		wake_up_var(var);
5169 	}
5170 
5171 no_ctx:
5172 	put_event(event); /* Must be the 'last' reference */
5173 	return 0;
5174 }
5175 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5176 
5177 /*
5178  * Called when the last reference to the file is gone.
5179  */
5180 static int perf_release(struct inode *inode, struct file *file)
5181 {
5182 	perf_event_release_kernel(file->private_data);
5183 	return 0;
5184 }
5185 
5186 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5187 {
5188 	struct perf_event *child;
5189 	u64 total = 0;
5190 
5191 	*enabled = 0;
5192 	*running = 0;
5193 
5194 	mutex_lock(&event->child_mutex);
5195 
5196 	(void)perf_event_read(event, false);
5197 	total += perf_event_count(event);
5198 
5199 	*enabled += event->total_time_enabled +
5200 			atomic64_read(&event->child_total_time_enabled);
5201 	*running += event->total_time_running +
5202 			atomic64_read(&event->child_total_time_running);
5203 
5204 	list_for_each_entry(child, &event->child_list, child_list) {
5205 		(void)perf_event_read(child, false);
5206 		total += perf_event_count(child);
5207 		*enabled += child->total_time_enabled;
5208 		*running += child->total_time_running;
5209 	}
5210 	mutex_unlock(&event->child_mutex);
5211 
5212 	return total;
5213 }
5214 
5215 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5216 {
5217 	struct perf_event_context *ctx;
5218 	u64 count;
5219 
5220 	ctx = perf_event_ctx_lock(event);
5221 	count = __perf_event_read_value(event, enabled, running);
5222 	perf_event_ctx_unlock(event, ctx);
5223 
5224 	return count;
5225 }
5226 EXPORT_SYMBOL_GPL(perf_event_read_value);
5227 
5228 static int __perf_read_group_add(struct perf_event *leader,
5229 					u64 read_format, u64 *values)
5230 {
5231 	struct perf_event_context *ctx = leader->ctx;
5232 	struct perf_event *sub;
5233 	unsigned long flags;
5234 	int n = 1; /* skip @nr */
5235 	int ret;
5236 
5237 	ret = perf_event_read(leader, true);
5238 	if (ret)
5239 		return ret;
5240 
5241 	raw_spin_lock_irqsave(&ctx->lock, flags);
5242 
5243 	/*
5244 	 * Since we co-schedule groups, {enabled,running} times of siblings
5245 	 * will be identical to those of the leader, so we only publish one
5246 	 * set.
5247 	 */
5248 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5249 		values[n++] += leader->total_time_enabled +
5250 			atomic64_read(&leader->child_total_time_enabled);
5251 	}
5252 
5253 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5254 		values[n++] += leader->total_time_running +
5255 			atomic64_read(&leader->child_total_time_running);
5256 	}
5257 
5258 	/*
5259 	 * Write {count,id} tuples for every sibling.
5260 	 */
5261 	values[n++] += perf_event_count(leader);
5262 	if (read_format & PERF_FORMAT_ID)
5263 		values[n++] = primary_event_id(leader);
5264 
5265 	for_each_sibling_event(sub, leader) {
5266 		values[n++] += perf_event_count(sub);
5267 		if (read_format & PERF_FORMAT_ID)
5268 			values[n++] = primary_event_id(sub);
5269 	}
5270 
5271 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5272 	return 0;
5273 }
5274 
5275 static int perf_read_group(struct perf_event *event,
5276 				   u64 read_format, char __user *buf)
5277 {
5278 	struct perf_event *leader = event->group_leader, *child;
5279 	struct perf_event_context *ctx = leader->ctx;
5280 	int ret;
5281 	u64 *values;
5282 
5283 	lockdep_assert_held(&ctx->mutex);
5284 
5285 	values = kzalloc(event->read_size, GFP_KERNEL);
5286 	if (!values)
5287 		return -ENOMEM;
5288 
5289 	values[0] = 1 + leader->nr_siblings;
5290 
5291 	/*
5292 	 * By locking the child_mutex of the leader we effectively
5293 	 * lock the child list of all siblings.. XXX explain how.
5294 	 */
5295 	mutex_lock(&leader->child_mutex);
5296 
5297 	ret = __perf_read_group_add(leader, read_format, values);
5298 	if (ret)
5299 		goto unlock;
5300 
5301 	list_for_each_entry(child, &leader->child_list, child_list) {
5302 		ret = __perf_read_group_add(child, read_format, values);
5303 		if (ret)
5304 			goto unlock;
5305 	}
5306 
5307 	mutex_unlock(&leader->child_mutex);
5308 
5309 	ret = event->read_size;
5310 	if (copy_to_user(buf, values, event->read_size))
5311 		ret = -EFAULT;
5312 	goto out;
5313 
5314 unlock:
5315 	mutex_unlock(&leader->child_mutex);
5316 out:
5317 	kfree(values);
5318 	return ret;
5319 }
5320 
5321 static int perf_read_one(struct perf_event *event,
5322 				 u64 read_format, char __user *buf)
5323 {
5324 	u64 enabled, running;
5325 	u64 values[4];
5326 	int n = 0;
5327 
5328 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5329 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5330 		values[n++] = enabled;
5331 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5332 		values[n++] = running;
5333 	if (read_format & PERF_FORMAT_ID)
5334 		values[n++] = primary_event_id(event);
5335 
5336 	if (copy_to_user(buf, values, n * sizeof(u64)))
5337 		return -EFAULT;
5338 
5339 	return n * sizeof(u64);
5340 }
5341 
5342 static bool is_event_hup(struct perf_event *event)
5343 {
5344 	bool no_children;
5345 
5346 	if (event->state > PERF_EVENT_STATE_EXIT)
5347 		return false;
5348 
5349 	mutex_lock(&event->child_mutex);
5350 	no_children = list_empty(&event->child_list);
5351 	mutex_unlock(&event->child_mutex);
5352 	return no_children;
5353 }
5354 
5355 /*
5356  * Read the performance event - simple non blocking version for now
5357  */
5358 static ssize_t
5359 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5360 {
5361 	u64 read_format = event->attr.read_format;
5362 	int ret;
5363 
5364 	/*
5365 	 * Return end-of-file for a read on an event that is in
5366 	 * error state (i.e. because it was pinned but it couldn't be
5367 	 * scheduled on to the CPU at some point).
5368 	 */
5369 	if (event->state == PERF_EVENT_STATE_ERROR)
5370 		return 0;
5371 
5372 	if (count < event->read_size)
5373 		return -ENOSPC;
5374 
5375 	WARN_ON_ONCE(event->ctx->parent_ctx);
5376 	if (read_format & PERF_FORMAT_GROUP)
5377 		ret = perf_read_group(event, read_format, buf);
5378 	else
5379 		ret = perf_read_one(event, read_format, buf);
5380 
5381 	return ret;
5382 }
5383 
5384 static ssize_t
5385 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5386 {
5387 	struct perf_event *event = file->private_data;
5388 	struct perf_event_context *ctx;
5389 	int ret;
5390 
5391 	ret = security_perf_event_read(event);
5392 	if (ret)
5393 		return ret;
5394 
5395 	ctx = perf_event_ctx_lock(event);
5396 	ret = __perf_read(event, buf, count);
5397 	perf_event_ctx_unlock(event, ctx);
5398 
5399 	return ret;
5400 }
5401 
5402 static __poll_t perf_poll(struct file *file, poll_table *wait)
5403 {
5404 	struct perf_event *event = file->private_data;
5405 	struct perf_buffer *rb;
5406 	__poll_t events = EPOLLHUP;
5407 
5408 	poll_wait(file, &event->waitq, wait);
5409 
5410 	if (is_event_hup(event))
5411 		return events;
5412 
5413 	/*
5414 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5415 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5416 	 */
5417 	mutex_lock(&event->mmap_mutex);
5418 	rb = event->rb;
5419 	if (rb)
5420 		events = atomic_xchg(&rb->poll, 0);
5421 	mutex_unlock(&event->mmap_mutex);
5422 	return events;
5423 }
5424 
5425 static void _perf_event_reset(struct perf_event *event)
5426 {
5427 	(void)perf_event_read(event, false);
5428 	local64_set(&event->count, 0);
5429 	perf_event_update_userpage(event);
5430 }
5431 
5432 /* Assume it's not an event with inherit set. */
5433 u64 perf_event_pause(struct perf_event *event, bool reset)
5434 {
5435 	struct perf_event_context *ctx;
5436 	u64 count;
5437 
5438 	ctx = perf_event_ctx_lock(event);
5439 	WARN_ON_ONCE(event->attr.inherit);
5440 	_perf_event_disable(event);
5441 	count = local64_read(&event->count);
5442 	if (reset)
5443 		local64_set(&event->count, 0);
5444 	perf_event_ctx_unlock(event, ctx);
5445 
5446 	return count;
5447 }
5448 EXPORT_SYMBOL_GPL(perf_event_pause);
5449 
5450 /*
5451  * Holding the top-level event's child_mutex means that any
5452  * descendant process that has inherited this event will block
5453  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5454  * task existence requirements of perf_event_enable/disable.
5455  */
5456 static void perf_event_for_each_child(struct perf_event *event,
5457 					void (*func)(struct perf_event *))
5458 {
5459 	struct perf_event *child;
5460 
5461 	WARN_ON_ONCE(event->ctx->parent_ctx);
5462 
5463 	mutex_lock(&event->child_mutex);
5464 	func(event);
5465 	list_for_each_entry(child, &event->child_list, child_list)
5466 		func(child);
5467 	mutex_unlock(&event->child_mutex);
5468 }
5469 
5470 static void perf_event_for_each(struct perf_event *event,
5471 				  void (*func)(struct perf_event *))
5472 {
5473 	struct perf_event_context *ctx = event->ctx;
5474 	struct perf_event *sibling;
5475 
5476 	lockdep_assert_held(&ctx->mutex);
5477 
5478 	event = event->group_leader;
5479 
5480 	perf_event_for_each_child(event, func);
5481 	for_each_sibling_event(sibling, event)
5482 		perf_event_for_each_child(sibling, func);
5483 }
5484 
5485 static void __perf_event_period(struct perf_event *event,
5486 				struct perf_cpu_context *cpuctx,
5487 				struct perf_event_context *ctx,
5488 				void *info)
5489 {
5490 	u64 value = *((u64 *)info);
5491 	bool active;
5492 
5493 	if (event->attr.freq) {
5494 		event->attr.sample_freq = value;
5495 	} else {
5496 		event->attr.sample_period = value;
5497 		event->hw.sample_period = value;
5498 	}
5499 
5500 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5501 	if (active) {
5502 		perf_pmu_disable(ctx->pmu);
5503 		/*
5504 		 * We could be throttled; unthrottle now to avoid the tick
5505 		 * trying to unthrottle while we already re-started the event.
5506 		 */
5507 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5508 			event->hw.interrupts = 0;
5509 			perf_log_throttle(event, 1);
5510 		}
5511 		event->pmu->stop(event, PERF_EF_UPDATE);
5512 	}
5513 
5514 	local64_set(&event->hw.period_left, 0);
5515 
5516 	if (active) {
5517 		event->pmu->start(event, PERF_EF_RELOAD);
5518 		perf_pmu_enable(ctx->pmu);
5519 	}
5520 }
5521 
5522 static int perf_event_check_period(struct perf_event *event, u64 value)
5523 {
5524 	return event->pmu->check_period(event, value);
5525 }
5526 
5527 static int _perf_event_period(struct perf_event *event, u64 value)
5528 {
5529 	if (!is_sampling_event(event))
5530 		return -EINVAL;
5531 
5532 	if (!value)
5533 		return -EINVAL;
5534 
5535 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5536 		return -EINVAL;
5537 
5538 	if (perf_event_check_period(event, value))
5539 		return -EINVAL;
5540 
5541 	if (!event->attr.freq && (value & (1ULL << 63)))
5542 		return -EINVAL;
5543 
5544 	event_function_call(event, __perf_event_period, &value);
5545 
5546 	return 0;
5547 }
5548 
5549 int perf_event_period(struct perf_event *event, u64 value)
5550 {
5551 	struct perf_event_context *ctx;
5552 	int ret;
5553 
5554 	ctx = perf_event_ctx_lock(event);
5555 	ret = _perf_event_period(event, value);
5556 	perf_event_ctx_unlock(event, ctx);
5557 
5558 	return ret;
5559 }
5560 EXPORT_SYMBOL_GPL(perf_event_period);
5561 
5562 static const struct file_operations perf_fops;
5563 
5564 static inline int perf_fget_light(int fd, struct fd *p)
5565 {
5566 	struct fd f = fdget(fd);
5567 	if (!f.file)
5568 		return -EBADF;
5569 
5570 	if (f.file->f_op != &perf_fops) {
5571 		fdput(f);
5572 		return -EBADF;
5573 	}
5574 	*p = f;
5575 	return 0;
5576 }
5577 
5578 static int perf_event_set_output(struct perf_event *event,
5579 				 struct perf_event *output_event);
5580 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5581 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5582 			  struct perf_event_attr *attr);
5583 
5584 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5585 {
5586 	void (*func)(struct perf_event *);
5587 	u32 flags = arg;
5588 
5589 	switch (cmd) {
5590 	case PERF_EVENT_IOC_ENABLE:
5591 		func = _perf_event_enable;
5592 		break;
5593 	case PERF_EVENT_IOC_DISABLE:
5594 		func = _perf_event_disable;
5595 		break;
5596 	case PERF_EVENT_IOC_RESET:
5597 		func = _perf_event_reset;
5598 		break;
5599 
5600 	case PERF_EVENT_IOC_REFRESH:
5601 		return _perf_event_refresh(event, arg);
5602 
5603 	case PERF_EVENT_IOC_PERIOD:
5604 	{
5605 		u64 value;
5606 
5607 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5608 			return -EFAULT;
5609 
5610 		return _perf_event_period(event, value);
5611 	}
5612 	case PERF_EVENT_IOC_ID:
5613 	{
5614 		u64 id = primary_event_id(event);
5615 
5616 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5617 			return -EFAULT;
5618 		return 0;
5619 	}
5620 
5621 	case PERF_EVENT_IOC_SET_OUTPUT:
5622 	{
5623 		int ret;
5624 		if (arg != -1) {
5625 			struct perf_event *output_event;
5626 			struct fd output;
5627 			ret = perf_fget_light(arg, &output);
5628 			if (ret)
5629 				return ret;
5630 			output_event = output.file->private_data;
5631 			ret = perf_event_set_output(event, output_event);
5632 			fdput(output);
5633 		} else {
5634 			ret = perf_event_set_output(event, NULL);
5635 		}
5636 		return ret;
5637 	}
5638 
5639 	case PERF_EVENT_IOC_SET_FILTER:
5640 		return perf_event_set_filter(event, (void __user *)arg);
5641 
5642 	case PERF_EVENT_IOC_SET_BPF:
5643 	{
5644 		struct bpf_prog *prog;
5645 		int err;
5646 
5647 		prog = bpf_prog_get(arg);
5648 		if (IS_ERR(prog))
5649 			return PTR_ERR(prog);
5650 
5651 		err = perf_event_set_bpf_prog(event, prog, 0);
5652 		if (err) {
5653 			bpf_prog_put(prog);
5654 			return err;
5655 		}
5656 
5657 		return 0;
5658 	}
5659 
5660 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5661 		struct perf_buffer *rb;
5662 
5663 		rcu_read_lock();
5664 		rb = rcu_dereference(event->rb);
5665 		if (!rb || !rb->nr_pages) {
5666 			rcu_read_unlock();
5667 			return -EINVAL;
5668 		}
5669 		rb_toggle_paused(rb, !!arg);
5670 		rcu_read_unlock();
5671 		return 0;
5672 	}
5673 
5674 	case PERF_EVENT_IOC_QUERY_BPF:
5675 		return perf_event_query_prog_array(event, (void __user *)arg);
5676 
5677 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5678 		struct perf_event_attr new_attr;
5679 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5680 					 &new_attr);
5681 
5682 		if (err)
5683 			return err;
5684 
5685 		return perf_event_modify_attr(event,  &new_attr);
5686 	}
5687 	default:
5688 		return -ENOTTY;
5689 	}
5690 
5691 	if (flags & PERF_IOC_FLAG_GROUP)
5692 		perf_event_for_each(event, func);
5693 	else
5694 		perf_event_for_each_child(event, func);
5695 
5696 	return 0;
5697 }
5698 
5699 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5700 {
5701 	struct perf_event *event = file->private_data;
5702 	struct perf_event_context *ctx;
5703 	long ret;
5704 
5705 	/* Treat ioctl like writes as it is likely a mutating operation. */
5706 	ret = security_perf_event_write(event);
5707 	if (ret)
5708 		return ret;
5709 
5710 	ctx = perf_event_ctx_lock(event);
5711 	ret = _perf_ioctl(event, cmd, arg);
5712 	perf_event_ctx_unlock(event, ctx);
5713 
5714 	return ret;
5715 }
5716 
5717 #ifdef CONFIG_COMPAT
5718 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5719 				unsigned long arg)
5720 {
5721 	switch (_IOC_NR(cmd)) {
5722 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5723 	case _IOC_NR(PERF_EVENT_IOC_ID):
5724 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5725 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5726 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5727 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5728 			cmd &= ~IOCSIZE_MASK;
5729 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5730 		}
5731 		break;
5732 	}
5733 	return perf_ioctl(file, cmd, arg);
5734 }
5735 #else
5736 # define perf_compat_ioctl NULL
5737 #endif
5738 
5739 int perf_event_task_enable(void)
5740 {
5741 	struct perf_event_context *ctx;
5742 	struct perf_event *event;
5743 
5744 	mutex_lock(&current->perf_event_mutex);
5745 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5746 		ctx = perf_event_ctx_lock(event);
5747 		perf_event_for_each_child(event, _perf_event_enable);
5748 		perf_event_ctx_unlock(event, ctx);
5749 	}
5750 	mutex_unlock(&current->perf_event_mutex);
5751 
5752 	return 0;
5753 }
5754 
5755 int perf_event_task_disable(void)
5756 {
5757 	struct perf_event_context *ctx;
5758 	struct perf_event *event;
5759 
5760 	mutex_lock(&current->perf_event_mutex);
5761 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5762 		ctx = perf_event_ctx_lock(event);
5763 		perf_event_for_each_child(event, _perf_event_disable);
5764 		perf_event_ctx_unlock(event, ctx);
5765 	}
5766 	mutex_unlock(&current->perf_event_mutex);
5767 
5768 	return 0;
5769 }
5770 
5771 static int perf_event_index(struct perf_event *event)
5772 {
5773 	if (event->hw.state & PERF_HES_STOPPED)
5774 		return 0;
5775 
5776 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5777 		return 0;
5778 
5779 	return event->pmu->event_idx(event);
5780 }
5781 
5782 static void perf_event_init_userpage(struct perf_event *event)
5783 {
5784 	struct perf_event_mmap_page *userpg;
5785 	struct perf_buffer *rb;
5786 
5787 	rcu_read_lock();
5788 	rb = rcu_dereference(event->rb);
5789 	if (!rb)
5790 		goto unlock;
5791 
5792 	userpg = rb->user_page;
5793 
5794 	/* Allow new userspace to detect that bit 0 is deprecated */
5795 	userpg->cap_bit0_is_deprecated = 1;
5796 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5797 	userpg->data_offset = PAGE_SIZE;
5798 	userpg->data_size = perf_data_size(rb);
5799 
5800 unlock:
5801 	rcu_read_unlock();
5802 }
5803 
5804 void __weak arch_perf_update_userpage(
5805 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5806 {
5807 }
5808 
5809 /*
5810  * Callers need to ensure there can be no nesting of this function, otherwise
5811  * the seqlock logic goes bad. We can not serialize this because the arch
5812  * code calls this from NMI context.
5813  */
5814 void perf_event_update_userpage(struct perf_event *event)
5815 {
5816 	struct perf_event_mmap_page *userpg;
5817 	struct perf_buffer *rb;
5818 	u64 enabled, running, now;
5819 
5820 	rcu_read_lock();
5821 	rb = rcu_dereference(event->rb);
5822 	if (!rb)
5823 		goto unlock;
5824 
5825 	/*
5826 	 * compute total_time_enabled, total_time_running
5827 	 * based on snapshot values taken when the event
5828 	 * was last scheduled in.
5829 	 *
5830 	 * we cannot simply called update_context_time()
5831 	 * because of locking issue as we can be called in
5832 	 * NMI context
5833 	 */
5834 	calc_timer_values(event, &now, &enabled, &running);
5835 
5836 	userpg = rb->user_page;
5837 	/*
5838 	 * Disable preemption to guarantee consistent time stamps are stored to
5839 	 * the user page.
5840 	 */
5841 	preempt_disable();
5842 	++userpg->lock;
5843 	barrier();
5844 	userpg->index = perf_event_index(event);
5845 	userpg->offset = perf_event_count(event);
5846 	if (userpg->index)
5847 		userpg->offset -= local64_read(&event->hw.prev_count);
5848 
5849 	userpg->time_enabled = enabled +
5850 			atomic64_read(&event->child_total_time_enabled);
5851 
5852 	userpg->time_running = running +
5853 			atomic64_read(&event->child_total_time_running);
5854 
5855 	arch_perf_update_userpage(event, userpg, now);
5856 
5857 	barrier();
5858 	++userpg->lock;
5859 	preempt_enable();
5860 unlock:
5861 	rcu_read_unlock();
5862 }
5863 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5864 
5865 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5866 {
5867 	struct perf_event *event = vmf->vma->vm_file->private_data;
5868 	struct perf_buffer *rb;
5869 	vm_fault_t ret = VM_FAULT_SIGBUS;
5870 
5871 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5872 		if (vmf->pgoff == 0)
5873 			ret = 0;
5874 		return ret;
5875 	}
5876 
5877 	rcu_read_lock();
5878 	rb = rcu_dereference(event->rb);
5879 	if (!rb)
5880 		goto unlock;
5881 
5882 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5883 		goto unlock;
5884 
5885 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5886 	if (!vmf->page)
5887 		goto unlock;
5888 
5889 	get_page(vmf->page);
5890 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5891 	vmf->page->index   = vmf->pgoff;
5892 
5893 	ret = 0;
5894 unlock:
5895 	rcu_read_unlock();
5896 
5897 	return ret;
5898 }
5899 
5900 static void ring_buffer_attach(struct perf_event *event,
5901 			       struct perf_buffer *rb)
5902 {
5903 	struct perf_buffer *old_rb = NULL;
5904 	unsigned long flags;
5905 
5906 	WARN_ON_ONCE(event->parent);
5907 
5908 	if (event->rb) {
5909 		/*
5910 		 * Should be impossible, we set this when removing
5911 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5912 		 */
5913 		WARN_ON_ONCE(event->rcu_pending);
5914 
5915 		old_rb = event->rb;
5916 		spin_lock_irqsave(&old_rb->event_lock, flags);
5917 		list_del_rcu(&event->rb_entry);
5918 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5919 
5920 		event->rcu_batches = get_state_synchronize_rcu();
5921 		event->rcu_pending = 1;
5922 	}
5923 
5924 	if (rb) {
5925 		if (event->rcu_pending) {
5926 			cond_synchronize_rcu(event->rcu_batches);
5927 			event->rcu_pending = 0;
5928 		}
5929 
5930 		spin_lock_irqsave(&rb->event_lock, flags);
5931 		list_add_rcu(&event->rb_entry, &rb->event_list);
5932 		spin_unlock_irqrestore(&rb->event_lock, flags);
5933 	}
5934 
5935 	/*
5936 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5937 	 * before swizzling the event::rb pointer; if it's getting
5938 	 * unmapped, its aux_mmap_count will be 0 and it won't
5939 	 * restart. See the comment in __perf_pmu_output_stop().
5940 	 *
5941 	 * Data will inevitably be lost when set_output is done in
5942 	 * mid-air, but then again, whoever does it like this is
5943 	 * not in for the data anyway.
5944 	 */
5945 	if (has_aux(event))
5946 		perf_event_stop(event, 0);
5947 
5948 	rcu_assign_pointer(event->rb, rb);
5949 
5950 	if (old_rb) {
5951 		ring_buffer_put(old_rb);
5952 		/*
5953 		 * Since we detached before setting the new rb, so that we
5954 		 * could attach the new rb, we could have missed a wakeup.
5955 		 * Provide it now.
5956 		 */
5957 		wake_up_all(&event->waitq);
5958 	}
5959 }
5960 
5961 static void ring_buffer_wakeup(struct perf_event *event)
5962 {
5963 	struct perf_buffer *rb;
5964 
5965 	if (event->parent)
5966 		event = event->parent;
5967 
5968 	rcu_read_lock();
5969 	rb = rcu_dereference(event->rb);
5970 	if (rb) {
5971 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5972 			wake_up_all(&event->waitq);
5973 	}
5974 	rcu_read_unlock();
5975 }
5976 
5977 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5978 {
5979 	struct perf_buffer *rb;
5980 
5981 	if (event->parent)
5982 		event = event->parent;
5983 
5984 	rcu_read_lock();
5985 	rb = rcu_dereference(event->rb);
5986 	if (rb) {
5987 		if (!refcount_inc_not_zero(&rb->refcount))
5988 			rb = NULL;
5989 	}
5990 	rcu_read_unlock();
5991 
5992 	return rb;
5993 }
5994 
5995 void ring_buffer_put(struct perf_buffer *rb)
5996 {
5997 	if (!refcount_dec_and_test(&rb->refcount))
5998 		return;
5999 
6000 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6001 
6002 	call_rcu(&rb->rcu_head, rb_free_rcu);
6003 }
6004 
6005 static void perf_mmap_open(struct vm_area_struct *vma)
6006 {
6007 	struct perf_event *event = vma->vm_file->private_data;
6008 
6009 	atomic_inc(&event->mmap_count);
6010 	atomic_inc(&event->rb->mmap_count);
6011 
6012 	if (vma->vm_pgoff)
6013 		atomic_inc(&event->rb->aux_mmap_count);
6014 
6015 	if (event->pmu->event_mapped)
6016 		event->pmu->event_mapped(event, vma->vm_mm);
6017 }
6018 
6019 static void perf_pmu_output_stop(struct perf_event *event);
6020 
6021 /*
6022  * A buffer can be mmap()ed multiple times; either directly through the same
6023  * event, or through other events by use of perf_event_set_output().
6024  *
6025  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6026  * the buffer here, where we still have a VM context. This means we need
6027  * to detach all events redirecting to us.
6028  */
6029 static void perf_mmap_close(struct vm_area_struct *vma)
6030 {
6031 	struct perf_event *event = vma->vm_file->private_data;
6032 	struct perf_buffer *rb = ring_buffer_get(event);
6033 	struct user_struct *mmap_user = rb->mmap_user;
6034 	int mmap_locked = rb->mmap_locked;
6035 	unsigned long size = perf_data_size(rb);
6036 	bool detach_rest = false;
6037 
6038 	if (event->pmu->event_unmapped)
6039 		event->pmu->event_unmapped(event, vma->vm_mm);
6040 
6041 	/*
6042 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6043 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6044 	 * serialize with perf_mmap here.
6045 	 */
6046 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6047 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6048 		/*
6049 		 * Stop all AUX events that are writing to this buffer,
6050 		 * so that we can free its AUX pages and corresponding PMU
6051 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6052 		 * they won't start any more (see perf_aux_output_begin()).
6053 		 */
6054 		perf_pmu_output_stop(event);
6055 
6056 		/* now it's safe to free the pages */
6057 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6058 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6059 
6060 		/* this has to be the last one */
6061 		rb_free_aux(rb);
6062 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6063 
6064 		mutex_unlock(&event->mmap_mutex);
6065 	}
6066 
6067 	if (atomic_dec_and_test(&rb->mmap_count))
6068 		detach_rest = true;
6069 
6070 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6071 		goto out_put;
6072 
6073 	ring_buffer_attach(event, NULL);
6074 	mutex_unlock(&event->mmap_mutex);
6075 
6076 	/* If there's still other mmap()s of this buffer, we're done. */
6077 	if (!detach_rest)
6078 		goto out_put;
6079 
6080 	/*
6081 	 * No other mmap()s, detach from all other events that might redirect
6082 	 * into the now unreachable buffer. Somewhat complicated by the
6083 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6084 	 */
6085 again:
6086 	rcu_read_lock();
6087 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6088 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6089 			/*
6090 			 * This event is en-route to free_event() which will
6091 			 * detach it and remove it from the list.
6092 			 */
6093 			continue;
6094 		}
6095 		rcu_read_unlock();
6096 
6097 		mutex_lock(&event->mmap_mutex);
6098 		/*
6099 		 * Check we didn't race with perf_event_set_output() which can
6100 		 * swizzle the rb from under us while we were waiting to
6101 		 * acquire mmap_mutex.
6102 		 *
6103 		 * If we find a different rb; ignore this event, a next
6104 		 * iteration will no longer find it on the list. We have to
6105 		 * still restart the iteration to make sure we're not now
6106 		 * iterating the wrong list.
6107 		 */
6108 		if (event->rb == rb)
6109 			ring_buffer_attach(event, NULL);
6110 
6111 		mutex_unlock(&event->mmap_mutex);
6112 		put_event(event);
6113 
6114 		/*
6115 		 * Restart the iteration; either we're on the wrong list or
6116 		 * destroyed its integrity by doing a deletion.
6117 		 */
6118 		goto again;
6119 	}
6120 	rcu_read_unlock();
6121 
6122 	/*
6123 	 * It could be there's still a few 0-ref events on the list; they'll
6124 	 * get cleaned up by free_event() -- they'll also still have their
6125 	 * ref on the rb and will free it whenever they are done with it.
6126 	 *
6127 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6128 	 * undo the VM accounting.
6129 	 */
6130 
6131 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6132 			&mmap_user->locked_vm);
6133 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6134 	free_uid(mmap_user);
6135 
6136 out_put:
6137 	ring_buffer_put(rb); /* could be last */
6138 }
6139 
6140 static const struct vm_operations_struct perf_mmap_vmops = {
6141 	.open		= perf_mmap_open,
6142 	.close		= perf_mmap_close, /* non mergeable */
6143 	.fault		= perf_mmap_fault,
6144 	.page_mkwrite	= perf_mmap_fault,
6145 };
6146 
6147 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6148 {
6149 	struct perf_event *event = file->private_data;
6150 	unsigned long user_locked, user_lock_limit;
6151 	struct user_struct *user = current_user();
6152 	struct perf_buffer *rb = NULL;
6153 	unsigned long locked, lock_limit;
6154 	unsigned long vma_size;
6155 	unsigned long nr_pages;
6156 	long user_extra = 0, extra = 0;
6157 	int ret = 0, flags = 0;
6158 
6159 	/*
6160 	 * Don't allow mmap() of inherited per-task counters. This would
6161 	 * create a performance issue due to all children writing to the
6162 	 * same rb.
6163 	 */
6164 	if (event->cpu == -1 && event->attr.inherit)
6165 		return -EINVAL;
6166 
6167 	if (!(vma->vm_flags & VM_SHARED))
6168 		return -EINVAL;
6169 
6170 	ret = security_perf_event_read(event);
6171 	if (ret)
6172 		return ret;
6173 
6174 	vma_size = vma->vm_end - vma->vm_start;
6175 
6176 	if (vma->vm_pgoff == 0) {
6177 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6178 	} else {
6179 		/*
6180 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6181 		 * mapped, all subsequent mappings should have the same size
6182 		 * and offset. Must be above the normal perf buffer.
6183 		 */
6184 		u64 aux_offset, aux_size;
6185 
6186 		if (!event->rb)
6187 			return -EINVAL;
6188 
6189 		nr_pages = vma_size / PAGE_SIZE;
6190 
6191 		mutex_lock(&event->mmap_mutex);
6192 		ret = -EINVAL;
6193 
6194 		rb = event->rb;
6195 		if (!rb)
6196 			goto aux_unlock;
6197 
6198 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6199 		aux_size = READ_ONCE(rb->user_page->aux_size);
6200 
6201 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6202 			goto aux_unlock;
6203 
6204 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6205 			goto aux_unlock;
6206 
6207 		/* already mapped with a different offset */
6208 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6209 			goto aux_unlock;
6210 
6211 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6212 			goto aux_unlock;
6213 
6214 		/* already mapped with a different size */
6215 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6216 			goto aux_unlock;
6217 
6218 		if (!is_power_of_2(nr_pages))
6219 			goto aux_unlock;
6220 
6221 		if (!atomic_inc_not_zero(&rb->mmap_count))
6222 			goto aux_unlock;
6223 
6224 		if (rb_has_aux(rb)) {
6225 			atomic_inc(&rb->aux_mmap_count);
6226 			ret = 0;
6227 			goto unlock;
6228 		}
6229 
6230 		atomic_set(&rb->aux_mmap_count, 1);
6231 		user_extra = nr_pages;
6232 
6233 		goto accounting;
6234 	}
6235 
6236 	/*
6237 	 * If we have rb pages ensure they're a power-of-two number, so we
6238 	 * can do bitmasks instead of modulo.
6239 	 */
6240 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6241 		return -EINVAL;
6242 
6243 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6244 		return -EINVAL;
6245 
6246 	WARN_ON_ONCE(event->ctx->parent_ctx);
6247 again:
6248 	mutex_lock(&event->mmap_mutex);
6249 	if (event->rb) {
6250 		if (event->rb->nr_pages != nr_pages) {
6251 			ret = -EINVAL;
6252 			goto unlock;
6253 		}
6254 
6255 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6256 			/*
6257 			 * Raced against perf_mmap_close() through
6258 			 * perf_event_set_output(). Try again, hope for better
6259 			 * luck.
6260 			 */
6261 			mutex_unlock(&event->mmap_mutex);
6262 			goto again;
6263 		}
6264 
6265 		goto unlock;
6266 	}
6267 
6268 	user_extra = nr_pages + 1;
6269 
6270 accounting:
6271 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6272 
6273 	/*
6274 	 * Increase the limit linearly with more CPUs:
6275 	 */
6276 	user_lock_limit *= num_online_cpus();
6277 
6278 	user_locked = atomic_long_read(&user->locked_vm);
6279 
6280 	/*
6281 	 * sysctl_perf_event_mlock may have changed, so that
6282 	 *     user->locked_vm > user_lock_limit
6283 	 */
6284 	if (user_locked > user_lock_limit)
6285 		user_locked = user_lock_limit;
6286 	user_locked += user_extra;
6287 
6288 	if (user_locked > user_lock_limit) {
6289 		/*
6290 		 * charge locked_vm until it hits user_lock_limit;
6291 		 * charge the rest from pinned_vm
6292 		 */
6293 		extra = user_locked - user_lock_limit;
6294 		user_extra -= extra;
6295 	}
6296 
6297 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6298 	lock_limit >>= PAGE_SHIFT;
6299 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6300 
6301 	if ((locked > lock_limit) && perf_is_paranoid() &&
6302 		!capable(CAP_IPC_LOCK)) {
6303 		ret = -EPERM;
6304 		goto unlock;
6305 	}
6306 
6307 	WARN_ON(!rb && event->rb);
6308 
6309 	if (vma->vm_flags & VM_WRITE)
6310 		flags |= RING_BUFFER_WRITABLE;
6311 
6312 	if (!rb) {
6313 		rb = rb_alloc(nr_pages,
6314 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6315 			      event->cpu, flags);
6316 
6317 		if (!rb) {
6318 			ret = -ENOMEM;
6319 			goto unlock;
6320 		}
6321 
6322 		atomic_set(&rb->mmap_count, 1);
6323 		rb->mmap_user = get_current_user();
6324 		rb->mmap_locked = extra;
6325 
6326 		ring_buffer_attach(event, rb);
6327 
6328 		perf_event_update_time(event);
6329 		perf_event_init_userpage(event);
6330 		perf_event_update_userpage(event);
6331 	} else {
6332 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6333 				   event->attr.aux_watermark, flags);
6334 		if (!ret)
6335 			rb->aux_mmap_locked = extra;
6336 	}
6337 
6338 unlock:
6339 	if (!ret) {
6340 		atomic_long_add(user_extra, &user->locked_vm);
6341 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6342 
6343 		atomic_inc(&event->mmap_count);
6344 	} else if (rb) {
6345 		atomic_dec(&rb->mmap_count);
6346 	}
6347 aux_unlock:
6348 	mutex_unlock(&event->mmap_mutex);
6349 
6350 	/*
6351 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6352 	 * vma.
6353 	 */
6354 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6355 	vma->vm_ops = &perf_mmap_vmops;
6356 
6357 	if (event->pmu->event_mapped)
6358 		event->pmu->event_mapped(event, vma->vm_mm);
6359 
6360 	return ret;
6361 }
6362 
6363 static int perf_fasync(int fd, struct file *filp, int on)
6364 {
6365 	struct inode *inode = file_inode(filp);
6366 	struct perf_event *event = filp->private_data;
6367 	int retval;
6368 
6369 	inode_lock(inode);
6370 	retval = fasync_helper(fd, filp, on, &event->fasync);
6371 	inode_unlock(inode);
6372 
6373 	if (retval < 0)
6374 		return retval;
6375 
6376 	return 0;
6377 }
6378 
6379 static const struct file_operations perf_fops = {
6380 	.llseek			= no_llseek,
6381 	.release		= perf_release,
6382 	.read			= perf_read,
6383 	.poll			= perf_poll,
6384 	.unlocked_ioctl		= perf_ioctl,
6385 	.compat_ioctl		= perf_compat_ioctl,
6386 	.mmap			= perf_mmap,
6387 	.fasync			= perf_fasync,
6388 };
6389 
6390 /*
6391  * Perf event wakeup
6392  *
6393  * If there's data, ensure we set the poll() state and publish everything
6394  * to user-space before waking everybody up.
6395  */
6396 
6397 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6398 {
6399 	/* only the parent has fasync state */
6400 	if (event->parent)
6401 		event = event->parent;
6402 	return &event->fasync;
6403 }
6404 
6405 void perf_event_wakeup(struct perf_event *event)
6406 {
6407 	ring_buffer_wakeup(event);
6408 
6409 	if (event->pending_kill) {
6410 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6411 		event->pending_kill = 0;
6412 	}
6413 }
6414 
6415 static void perf_sigtrap(struct perf_event *event)
6416 {
6417 	/*
6418 	 * We'd expect this to only occur if the irq_work is delayed and either
6419 	 * ctx->task or current has changed in the meantime. This can be the
6420 	 * case on architectures that do not implement arch_irq_work_raise().
6421 	 */
6422 	if (WARN_ON_ONCE(event->ctx->task != current))
6423 		return;
6424 
6425 	/*
6426 	 * perf_pending_event() can race with the task exiting.
6427 	 */
6428 	if (current->flags & PF_EXITING)
6429 		return;
6430 
6431 	force_sig_perf((void __user *)event->pending_addr,
6432 		       event->attr.type, event->attr.sig_data);
6433 }
6434 
6435 static void perf_pending_event_disable(struct perf_event *event)
6436 {
6437 	int cpu = READ_ONCE(event->pending_disable);
6438 
6439 	if (cpu < 0)
6440 		return;
6441 
6442 	if (cpu == smp_processor_id()) {
6443 		WRITE_ONCE(event->pending_disable, -1);
6444 
6445 		if (event->attr.sigtrap) {
6446 			perf_sigtrap(event);
6447 			atomic_set_release(&event->event_limit, 1); /* rearm event */
6448 			return;
6449 		}
6450 
6451 		perf_event_disable_local(event);
6452 		return;
6453 	}
6454 
6455 	/*
6456 	 *  CPU-A			CPU-B
6457 	 *
6458 	 *  perf_event_disable_inatomic()
6459 	 *    @pending_disable = CPU-A;
6460 	 *    irq_work_queue();
6461 	 *
6462 	 *  sched-out
6463 	 *    @pending_disable = -1;
6464 	 *
6465 	 *				sched-in
6466 	 *				perf_event_disable_inatomic()
6467 	 *				  @pending_disable = CPU-B;
6468 	 *				  irq_work_queue(); // FAILS
6469 	 *
6470 	 *  irq_work_run()
6471 	 *    perf_pending_event()
6472 	 *
6473 	 * But the event runs on CPU-B and wants disabling there.
6474 	 */
6475 	irq_work_queue_on(&event->pending, cpu);
6476 }
6477 
6478 static void perf_pending_event(struct irq_work *entry)
6479 {
6480 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6481 	int rctx;
6482 
6483 	rctx = perf_swevent_get_recursion_context();
6484 	/*
6485 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6486 	 * and we won't recurse 'further'.
6487 	 */
6488 
6489 	perf_pending_event_disable(event);
6490 
6491 	if (event->pending_wakeup) {
6492 		event->pending_wakeup = 0;
6493 		perf_event_wakeup(event);
6494 	}
6495 
6496 	if (rctx >= 0)
6497 		perf_swevent_put_recursion_context(rctx);
6498 }
6499 
6500 #ifdef CONFIG_GUEST_PERF_EVENTS
6501 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6502 
6503 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6504 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6505 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6506 
6507 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6508 {
6509 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6510 		return;
6511 
6512 	rcu_assign_pointer(perf_guest_cbs, cbs);
6513 	static_call_update(__perf_guest_state, cbs->state);
6514 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6515 
6516 	/* Implementing ->handle_intel_pt_intr is optional. */
6517 	if (cbs->handle_intel_pt_intr)
6518 		static_call_update(__perf_guest_handle_intel_pt_intr,
6519 				   cbs->handle_intel_pt_intr);
6520 }
6521 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6522 
6523 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6524 {
6525 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6526 		return;
6527 
6528 	rcu_assign_pointer(perf_guest_cbs, NULL);
6529 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6530 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6531 	static_call_update(__perf_guest_handle_intel_pt_intr,
6532 			   (void *)&__static_call_return0);
6533 	synchronize_rcu();
6534 }
6535 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6536 #endif
6537 
6538 static void
6539 perf_output_sample_regs(struct perf_output_handle *handle,
6540 			struct pt_regs *regs, u64 mask)
6541 {
6542 	int bit;
6543 	DECLARE_BITMAP(_mask, 64);
6544 
6545 	bitmap_from_u64(_mask, mask);
6546 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6547 		u64 val;
6548 
6549 		val = perf_reg_value(regs, bit);
6550 		perf_output_put(handle, val);
6551 	}
6552 }
6553 
6554 static void perf_sample_regs_user(struct perf_regs *regs_user,
6555 				  struct pt_regs *regs)
6556 {
6557 	if (user_mode(regs)) {
6558 		regs_user->abi = perf_reg_abi(current);
6559 		regs_user->regs = regs;
6560 	} else if (!(current->flags & PF_KTHREAD)) {
6561 		perf_get_regs_user(regs_user, regs);
6562 	} else {
6563 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6564 		regs_user->regs = NULL;
6565 	}
6566 }
6567 
6568 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6569 				  struct pt_regs *regs)
6570 {
6571 	regs_intr->regs = regs;
6572 	regs_intr->abi  = perf_reg_abi(current);
6573 }
6574 
6575 
6576 /*
6577  * Get remaining task size from user stack pointer.
6578  *
6579  * It'd be better to take stack vma map and limit this more
6580  * precisely, but there's no way to get it safely under interrupt,
6581  * so using TASK_SIZE as limit.
6582  */
6583 static u64 perf_ustack_task_size(struct pt_regs *regs)
6584 {
6585 	unsigned long addr = perf_user_stack_pointer(regs);
6586 
6587 	if (!addr || addr >= TASK_SIZE)
6588 		return 0;
6589 
6590 	return TASK_SIZE - addr;
6591 }
6592 
6593 static u16
6594 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6595 			struct pt_regs *regs)
6596 {
6597 	u64 task_size;
6598 
6599 	/* No regs, no stack pointer, no dump. */
6600 	if (!regs)
6601 		return 0;
6602 
6603 	/*
6604 	 * Check if we fit in with the requested stack size into the:
6605 	 * - TASK_SIZE
6606 	 *   If we don't, we limit the size to the TASK_SIZE.
6607 	 *
6608 	 * - remaining sample size
6609 	 *   If we don't, we customize the stack size to
6610 	 *   fit in to the remaining sample size.
6611 	 */
6612 
6613 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6614 	stack_size = min(stack_size, (u16) task_size);
6615 
6616 	/* Current header size plus static size and dynamic size. */
6617 	header_size += 2 * sizeof(u64);
6618 
6619 	/* Do we fit in with the current stack dump size? */
6620 	if ((u16) (header_size + stack_size) < header_size) {
6621 		/*
6622 		 * If we overflow the maximum size for the sample,
6623 		 * we customize the stack dump size to fit in.
6624 		 */
6625 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6626 		stack_size = round_up(stack_size, sizeof(u64));
6627 	}
6628 
6629 	return stack_size;
6630 }
6631 
6632 static void
6633 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6634 			  struct pt_regs *regs)
6635 {
6636 	/* Case of a kernel thread, nothing to dump */
6637 	if (!regs) {
6638 		u64 size = 0;
6639 		perf_output_put(handle, size);
6640 	} else {
6641 		unsigned long sp;
6642 		unsigned int rem;
6643 		u64 dyn_size;
6644 
6645 		/*
6646 		 * We dump:
6647 		 * static size
6648 		 *   - the size requested by user or the best one we can fit
6649 		 *     in to the sample max size
6650 		 * data
6651 		 *   - user stack dump data
6652 		 * dynamic size
6653 		 *   - the actual dumped size
6654 		 */
6655 
6656 		/* Static size. */
6657 		perf_output_put(handle, dump_size);
6658 
6659 		/* Data. */
6660 		sp = perf_user_stack_pointer(regs);
6661 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6662 		dyn_size = dump_size - rem;
6663 
6664 		perf_output_skip(handle, rem);
6665 
6666 		/* Dynamic size. */
6667 		perf_output_put(handle, dyn_size);
6668 	}
6669 }
6670 
6671 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6672 					  struct perf_sample_data *data,
6673 					  size_t size)
6674 {
6675 	struct perf_event *sampler = event->aux_event;
6676 	struct perf_buffer *rb;
6677 
6678 	data->aux_size = 0;
6679 
6680 	if (!sampler)
6681 		goto out;
6682 
6683 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6684 		goto out;
6685 
6686 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6687 		goto out;
6688 
6689 	rb = ring_buffer_get(sampler);
6690 	if (!rb)
6691 		goto out;
6692 
6693 	/*
6694 	 * If this is an NMI hit inside sampling code, don't take
6695 	 * the sample. See also perf_aux_sample_output().
6696 	 */
6697 	if (READ_ONCE(rb->aux_in_sampling)) {
6698 		data->aux_size = 0;
6699 	} else {
6700 		size = min_t(size_t, size, perf_aux_size(rb));
6701 		data->aux_size = ALIGN(size, sizeof(u64));
6702 	}
6703 	ring_buffer_put(rb);
6704 
6705 out:
6706 	return data->aux_size;
6707 }
6708 
6709 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6710                                  struct perf_event *event,
6711                                  struct perf_output_handle *handle,
6712                                  unsigned long size)
6713 {
6714 	unsigned long flags;
6715 	long ret;
6716 
6717 	/*
6718 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6719 	 * paths. If we start calling them in NMI context, they may race with
6720 	 * the IRQ ones, that is, for example, re-starting an event that's just
6721 	 * been stopped, which is why we're using a separate callback that
6722 	 * doesn't change the event state.
6723 	 *
6724 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6725 	 */
6726 	local_irq_save(flags);
6727 	/*
6728 	 * Guard against NMI hits inside the critical section;
6729 	 * see also perf_prepare_sample_aux().
6730 	 */
6731 	WRITE_ONCE(rb->aux_in_sampling, 1);
6732 	barrier();
6733 
6734 	ret = event->pmu->snapshot_aux(event, handle, size);
6735 
6736 	barrier();
6737 	WRITE_ONCE(rb->aux_in_sampling, 0);
6738 	local_irq_restore(flags);
6739 
6740 	return ret;
6741 }
6742 
6743 static void perf_aux_sample_output(struct perf_event *event,
6744 				   struct perf_output_handle *handle,
6745 				   struct perf_sample_data *data)
6746 {
6747 	struct perf_event *sampler = event->aux_event;
6748 	struct perf_buffer *rb;
6749 	unsigned long pad;
6750 	long size;
6751 
6752 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6753 		return;
6754 
6755 	rb = ring_buffer_get(sampler);
6756 	if (!rb)
6757 		return;
6758 
6759 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6760 
6761 	/*
6762 	 * An error here means that perf_output_copy() failed (returned a
6763 	 * non-zero surplus that it didn't copy), which in its current
6764 	 * enlightened implementation is not possible. If that changes, we'd
6765 	 * like to know.
6766 	 */
6767 	if (WARN_ON_ONCE(size < 0))
6768 		goto out_put;
6769 
6770 	/*
6771 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6772 	 * perf_prepare_sample_aux(), so should not be more than that.
6773 	 */
6774 	pad = data->aux_size - size;
6775 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6776 		pad = 8;
6777 
6778 	if (pad) {
6779 		u64 zero = 0;
6780 		perf_output_copy(handle, &zero, pad);
6781 	}
6782 
6783 out_put:
6784 	ring_buffer_put(rb);
6785 }
6786 
6787 static void __perf_event_header__init_id(struct perf_event_header *header,
6788 					 struct perf_sample_data *data,
6789 					 struct perf_event *event)
6790 {
6791 	u64 sample_type = event->attr.sample_type;
6792 
6793 	data->type = sample_type;
6794 	header->size += event->id_header_size;
6795 
6796 	if (sample_type & PERF_SAMPLE_TID) {
6797 		/* namespace issues */
6798 		data->tid_entry.pid = perf_event_pid(event, current);
6799 		data->tid_entry.tid = perf_event_tid(event, current);
6800 	}
6801 
6802 	if (sample_type & PERF_SAMPLE_TIME)
6803 		data->time = perf_event_clock(event);
6804 
6805 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6806 		data->id = primary_event_id(event);
6807 
6808 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6809 		data->stream_id = event->id;
6810 
6811 	if (sample_type & PERF_SAMPLE_CPU) {
6812 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6813 		data->cpu_entry.reserved = 0;
6814 	}
6815 }
6816 
6817 void perf_event_header__init_id(struct perf_event_header *header,
6818 				struct perf_sample_data *data,
6819 				struct perf_event *event)
6820 {
6821 	if (event->attr.sample_id_all)
6822 		__perf_event_header__init_id(header, data, event);
6823 }
6824 
6825 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6826 					   struct perf_sample_data *data)
6827 {
6828 	u64 sample_type = data->type;
6829 
6830 	if (sample_type & PERF_SAMPLE_TID)
6831 		perf_output_put(handle, data->tid_entry);
6832 
6833 	if (sample_type & PERF_SAMPLE_TIME)
6834 		perf_output_put(handle, data->time);
6835 
6836 	if (sample_type & PERF_SAMPLE_ID)
6837 		perf_output_put(handle, data->id);
6838 
6839 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6840 		perf_output_put(handle, data->stream_id);
6841 
6842 	if (sample_type & PERF_SAMPLE_CPU)
6843 		perf_output_put(handle, data->cpu_entry);
6844 
6845 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6846 		perf_output_put(handle, data->id);
6847 }
6848 
6849 void perf_event__output_id_sample(struct perf_event *event,
6850 				  struct perf_output_handle *handle,
6851 				  struct perf_sample_data *sample)
6852 {
6853 	if (event->attr.sample_id_all)
6854 		__perf_event__output_id_sample(handle, sample);
6855 }
6856 
6857 static void perf_output_read_one(struct perf_output_handle *handle,
6858 				 struct perf_event *event,
6859 				 u64 enabled, u64 running)
6860 {
6861 	u64 read_format = event->attr.read_format;
6862 	u64 values[4];
6863 	int n = 0;
6864 
6865 	values[n++] = perf_event_count(event);
6866 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6867 		values[n++] = enabled +
6868 			atomic64_read(&event->child_total_time_enabled);
6869 	}
6870 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6871 		values[n++] = running +
6872 			atomic64_read(&event->child_total_time_running);
6873 	}
6874 	if (read_format & PERF_FORMAT_ID)
6875 		values[n++] = primary_event_id(event);
6876 
6877 	__output_copy(handle, values, n * sizeof(u64));
6878 }
6879 
6880 static void perf_output_read_group(struct perf_output_handle *handle,
6881 			    struct perf_event *event,
6882 			    u64 enabled, u64 running)
6883 {
6884 	struct perf_event *leader = event->group_leader, *sub;
6885 	u64 read_format = event->attr.read_format;
6886 	u64 values[5];
6887 	int n = 0;
6888 
6889 	values[n++] = 1 + leader->nr_siblings;
6890 
6891 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6892 		values[n++] = enabled;
6893 
6894 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6895 		values[n++] = running;
6896 
6897 	if ((leader != event) &&
6898 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6899 		leader->pmu->read(leader);
6900 
6901 	values[n++] = perf_event_count(leader);
6902 	if (read_format & PERF_FORMAT_ID)
6903 		values[n++] = primary_event_id(leader);
6904 
6905 	__output_copy(handle, values, n * sizeof(u64));
6906 
6907 	for_each_sibling_event(sub, leader) {
6908 		n = 0;
6909 
6910 		if ((sub != event) &&
6911 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6912 			sub->pmu->read(sub);
6913 
6914 		values[n++] = perf_event_count(sub);
6915 		if (read_format & PERF_FORMAT_ID)
6916 			values[n++] = primary_event_id(sub);
6917 
6918 		__output_copy(handle, values, n * sizeof(u64));
6919 	}
6920 }
6921 
6922 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6923 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6924 
6925 /*
6926  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6927  *
6928  * The problem is that its both hard and excessively expensive to iterate the
6929  * child list, not to mention that its impossible to IPI the children running
6930  * on another CPU, from interrupt/NMI context.
6931  */
6932 static void perf_output_read(struct perf_output_handle *handle,
6933 			     struct perf_event *event)
6934 {
6935 	u64 enabled = 0, running = 0, now;
6936 	u64 read_format = event->attr.read_format;
6937 
6938 	/*
6939 	 * compute total_time_enabled, total_time_running
6940 	 * based on snapshot values taken when the event
6941 	 * was last scheduled in.
6942 	 *
6943 	 * we cannot simply called update_context_time()
6944 	 * because of locking issue as we are called in
6945 	 * NMI context
6946 	 */
6947 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6948 		calc_timer_values(event, &now, &enabled, &running);
6949 
6950 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6951 		perf_output_read_group(handle, event, enabled, running);
6952 	else
6953 		perf_output_read_one(handle, event, enabled, running);
6954 }
6955 
6956 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6957 {
6958 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6959 }
6960 
6961 void perf_output_sample(struct perf_output_handle *handle,
6962 			struct perf_event_header *header,
6963 			struct perf_sample_data *data,
6964 			struct perf_event *event)
6965 {
6966 	u64 sample_type = data->type;
6967 
6968 	perf_output_put(handle, *header);
6969 
6970 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6971 		perf_output_put(handle, data->id);
6972 
6973 	if (sample_type & PERF_SAMPLE_IP)
6974 		perf_output_put(handle, data->ip);
6975 
6976 	if (sample_type & PERF_SAMPLE_TID)
6977 		perf_output_put(handle, data->tid_entry);
6978 
6979 	if (sample_type & PERF_SAMPLE_TIME)
6980 		perf_output_put(handle, data->time);
6981 
6982 	if (sample_type & PERF_SAMPLE_ADDR)
6983 		perf_output_put(handle, data->addr);
6984 
6985 	if (sample_type & PERF_SAMPLE_ID)
6986 		perf_output_put(handle, data->id);
6987 
6988 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6989 		perf_output_put(handle, data->stream_id);
6990 
6991 	if (sample_type & PERF_SAMPLE_CPU)
6992 		perf_output_put(handle, data->cpu_entry);
6993 
6994 	if (sample_type & PERF_SAMPLE_PERIOD)
6995 		perf_output_put(handle, data->period);
6996 
6997 	if (sample_type & PERF_SAMPLE_READ)
6998 		perf_output_read(handle, event);
6999 
7000 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7001 		int size = 1;
7002 
7003 		size += data->callchain->nr;
7004 		size *= sizeof(u64);
7005 		__output_copy(handle, data->callchain, size);
7006 	}
7007 
7008 	if (sample_type & PERF_SAMPLE_RAW) {
7009 		struct perf_raw_record *raw = data->raw;
7010 
7011 		if (raw) {
7012 			struct perf_raw_frag *frag = &raw->frag;
7013 
7014 			perf_output_put(handle, raw->size);
7015 			do {
7016 				if (frag->copy) {
7017 					__output_custom(handle, frag->copy,
7018 							frag->data, frag->size);
7019 				} else {
7020 					__output_copy(handle, frag->data,
7021 						      frag->size);
7022 				}
7023 				if (perf_raw_frag_last(frag))
7024 					break;
7025 				frag = frag->next;
7026 			} while (1);
7027 			if (frag->pad)
7028 				__output_skip(handle, NULL, frag->pad);
7029 		} else {
7030 			struct {
7031 				u32	size;
7032 				u32	data;
7033 			} raw = {
7034 				.size = sizeof(u32),
7035 				.data = 0,
7036 			};
7037 			perf_output_put(handle, raw);
7038 		}
7039 	}
7040 
7041 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7042 		if (data->br_stack) {
7043 			size_t size;
7044 
7045 			size = data->br_stack->nr
7046 			     * sizeof(struct perf_branch_entry);
7047 
7048 			perf_output_put(handle, data->br_stack->nr);
7049 			if (perf_sample_save_hw_index(event))
7050 				perf_output_put(handle, data->br_stack->hw_idx);
7051 			perf_output_copy(handle, data->br_stack->entries, size);
7052 		} else {
7053 			/*
7054 			 * we always store at least the value of nr
7055 			 */
7056 			u64 nr = 0;
7057 			perf_output_put(handle, nr);
7058 		}
7059 	}
7060 
7061 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7062 		u64 abi = data->regs_user.abi;
7063 
7064 		/*
7065 		 * If there are no regs to dump, notice it through
7066 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7067 		 */
7068 		perf_output_put(handle, abi);
7069 
7070 		if (abi) {
7071 			u64 mask = event->attr.sample_regs_user;
7072 			perf_output_sample_regs(handle,
7073 						data->regs_user.regs,
7074 						mask);
7075 		}
7076 	}
7077 
7078 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7079 		perf_output_sample_ustack(handle,
7080 					  data->stack_user_size,
7081 					  data->regs_user.regs);
7082 	}
7083 
7084 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7085 		perf_output_put(handle, data->weight.full);
7086 
7087 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7088 		perf_output_put(handle, data->data_src.val);
7089 
7090 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7091 		perf_output_put(handle, data->txn);
7092 
7093 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7094 		u64 abi = data->regs_intr.abi;
7095 		/*
7096 		 * If there are no regs to dump, notice it through
7097 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7098 		 */
7099 		perf_output_put(handle, abi);
7100 
7101 		if (abi) {
7102 			u64 mask = event->attr.sample_regs_intr;
7103 
7104 			perf_output_sample_regs(handle,
7105 						data->regs_intr.regs,
7106 						mask);
7107 		}
7108 	}
7109 
7110 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7111 		perf_output_put(handle, data->phys_addr);
7112 
7113 	if (sample_type & PERF_SAMPLE_CGROUP)
7114 		perf_output_put(handle, data->cgroup);
7115 
7116 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7117 		perf_output_put(handle, data->data_page_size);
7118 
7119 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7120 		perf_output_put(handle, data->code_page_size);
7121 
7122 	if (sample_type & PERF_SAMPLE_AUX) {
7123 		perf_output_put(handle, data->aux_size);
7124 
7125 		if (data->aux_size)
7126 			perf_aux_sample_output(event, handle, data);
7127 	}
7128 
7129 	if (!event->attr.watermark) {
7130 		int wakeup_events = event->attr.wakeup_events;
7131 
7132 		if (wakeup_events) {
7133 			struct perf_buffer *rb = handle->rb;
7134 			int events = local_inc_return(&rb->events);
7135 
7136 			if (events >= wakeup_events) {
7137 				local_sub(wakeup_events, &rb->events);
7138 				local_inc(&rb->wakeup);
7139 			}
7140 		}
7141 	}
7142 }
7143 
7144 static u64 perf_virt_to_phys(u64 virt)
7145 {
7146 	u64 phys_addr = 0;
7147 
7148 	if (!virt)
7149 		return 0;
7150 
7151 	if (virt >= TASK_SIZE) {
7152 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7153 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7154 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7155 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7156 	} else {
7157 		/*
7158 		 * Walking the pages tables for user address.
7159 		 * Interrupts are disabled, so it prevents any tear down
7160 		 * of the page tables.
7161 		 * Try IRQ-safe get_user_page_fast_only first.
7162 		 * If failed, leave phys_addr as 0.
7163 		 */
7164 		if (current->mm != NULL) {
7165 			struct page *p;
7166 
7167 			pagefault_disable();
7168 			if (get_user_page_fast_only(virt, 0, &p)) {
7169 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7170 				put_page(p);
7171 			}
7172 			pagefault_enable();
7173 		}
7174 	}
7175 
7176 	return phys_addr;
7177 }
7178 
7179 /*
7180  * Return the pagetable size of a given virtual address.
7181  */
7182 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7183 {
7184 	u64 size = 0;
7185 
7186 #ifdef CONFIG_HAVE_FAST_GUP
7187 	pgd_t *pgdp, pgd;
7188 	p4d_t *p4dp, p4d;
7189 	pud_t *pudp, pud;
7190 	pmd_t *pmdp, pmd;
7191 	pte_t *ptep, pte;
7192 
7193 	pgdp = pgd_offset(mm, addr);
7194 	pgd = READ_ONCE(*pgdp);
7195 	if (pgd_none(pgd))
7196 		return 0;
7197 
7198 	if (pgd_leaf(pgd))
7199 		return pgd_leaf_size(pgd);
7200 
7201 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7202 	p4d = READ_ONCE(*p4dp);
7203 	if (!p4d_present(p4d))
7204 		return 0;
7205 
7206 	if (p4d_leaf(p4d))
7207 		return p4d_leaf_size(p4d);
7208 
7209 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7210 	pud = READ_ONCE(*pudp);
7211 	if (!pud_present(pud))
7212 		return 0;
7213 
7214 	if (pud_leaf(pud))
7215 		return pud_leaf_size(pud);
7216 
7217 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7218 	pmd = READ_ONCE(*pmdp);
7219 	if (!pmd_present(pmd))
7220 		return 0;
7221 
7222 	if (pmd_leaf(pmd))
7223 		return pmd_leaf_size(pmd);
7224 
7225 	ptep = pte_offset_map(&pmd, addr);
7226 	pte = ptep_get_lockless(ptep);
7227 	if (pte_present(pte))
7228 		size = pte_leaf_size(pte);
7229 	pte_unmap(ptep);
7230 #endif /* CONFIG_HAVE_FAST_GUP */
7231 
7232 	return size;
7233 }
7234 
7235 static u64 perf_get_page_size(unsigned long addr)
7236 {
7237 	struct mm_struct *mm;
7238 	unsigned long flags;
7239 	u64 size;
7240 
7241 	if (!addr)
7242 		return 0;
7243 
7244 	/*
7245 	 * Software page-table walkers must disable IRQs,
7246 	 * which prevents any tear down of the page tables.
7247 	 */
7248 	local_irq_save(flags);
7249 
7250 	mm = current->mm;
7251 	if (!mm) {
7252 		/*
7253 		 * For kernel threads and the like, use init_mm so that
7254 		 * we can find kernel memory.
7255 		 */
7256 		mm = &init_mm;
7257 	}
7258 
7259 	size = perf_get_pgtable_size(mm, addr);
7260 
7261 	local_irq_restore(flags);
7262 
7263 	return size;
7264 }
7265 
7266 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7267 
7268 struct perf_callchain_entry *
7269 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7270 {
7271 	bool kernel = !event->attr.exclude_callchain_kernel;
7272 	bool user   = !event->attr.exclude_callchain_user;
7273 	/* Disallow cross-task user callchains. */
7274 	bool crosstask = event->ctx->task && event->ctx->task != current;
7275 	const u32 max_stack = event->attr.sample_max_stack;
7276 	struct perf_callchain_entry *callchain;
7277 
7278 	if (!kernel && !user)
7279 		return &__empty_callchain;
7280 
7281 	callchain = get_perf_callchain(regs, 0, kernel, user,
7282 				       max_stack, crosstask, true);
7283 	return callchain ?: &__empty_callchain;
7284 }
7285 
7286 void perf_prepare_sample(struct perf_event_header *header,
7287 			 struct perf_sample_data *data,
7288 			 struct perf_event *event,
7289 			 struct pt_regs *regs)
7290 {
7291 	u64 sample_type = event->attr.sample_type;
7292 
7293 	header->type = PERF_RECORD_SAMPLE;
7294 	header->size = sizeof(*header) + event->header_size;
7295 
7296 	header->misc = 0;
7297 	header->misc |= perf_misc_flags(regs);
7298 
7299 	__perf_event_header__init_id(header, data, event);
7300 
7301 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7302 		data->ip = perf_instruction_pointer(regs);
7303 
7304 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7305 		int size = 1;
7306 
7307 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7308 			data->callchain = perf_callchain(event, regs);
7309 
7310 		size += data->callchain->nr;
7311 
7312 		header->size += size * sizeof(u64);
7313 	}
7314 
7315 	if (sample_type & PERF_SAMPLE_RAW) {
7316 		struct perf_raw_record *raw = data->raw;
7317 		int size;
7318 
7319 		if (raw) {
7320 			struct perf_raw_frag *frag = &raw->frag;
7321 			u32 sum = 0;
7322 
7323 			do {
7324 				sum += frag->size;
7325 				if (perf_raw_frag_last(frag))
7326 					break;
7327 				frag = frag->next;
7328 			} while (1);
7329 
7330 			size = round_up(sum + sizeof(u32), sizeof(u64));
7331 			raw->size = size - sizeof(u32);
7332 			frag->pad = raw->size - sum;
7333 		} else {
7334 			size = sizeof(u64);
7335 		}
7336 
7337 		header->size += size;
7338 	}
7339 
7340 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7341 		int size = sizeof(u64); /* nr */
7342 		if (data->br_stack) {
7343 			if (perf_sample_save_hw_index(event))
7344 				size += sizeof(u64);
7345 
7346 			size += data->br_stack->nr
7347 			      * sizeof(struct perf_branch_entry);
7348 		}
7349 		header->size += size;
7350 	}
7351 
7352 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7353 		perf_sample_regs_user(&data->regs_user, regs);
7354 
7355 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7356 		/* regs dump ABI info */
7357 		int size = sizeof(u64);
7358 
7359 		if (data->regs_user.regs) {
7360 			u64 mask = event->attr.sample_regs_user;
7361 			size += hweight64(mask) * sizeof(u64);
7362 		}
7363 
7364 		header->size += size;
7365 	}
7366 
7367 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7368 		/*
7369 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7370 		 * processed as the last one or have additional check added
7371 		 * in case new sample type is added, because we could eat
7372 		 * up the rest of the sample size.
7373 		 */
7374 		u16 stack_size = event->attr.sample_stack_user;
7375 		u16 size = sizeof(u64);
7376 
7377 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7378 						     data->regs_user.regs);
7379 
7380 		/*
7381 		 * If there is something to dump, add space for the dump
7382 		 * itself and for the field that tells the dynamic size,
7383 		 * which is how many have been actually dumped.
7384 		 */
7385 		if (stack_size)
7386 			size += sizeof(u64) + stack_size;
7387 
7388 		data->stack_user_size = stack_size;
7389 		header->size += size;
7390 	}
7391 
7392 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7393 		/* regs dump ABI info */
7394 		int size = sizeof(u64);
7395 
7396 		perf_sample_regs_intr(&data->regs_intr, regs);
7397 
7398 		if (data->regs_intr.regs) {
7399 			u64 mask = event->attr.sample_regs_intr;
7400 
7401 			size += hweight64(mask) * sizeof(u64);
7402 		}
7403 
7404 		header->size += size;
7405 	}
7406 
7407 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7408 		data->phys_addr = perf_virt_to_phys(data->addr);
7409 
7410 #ifdef CONFIG_CGROUP_PERF
7411 	if (sample_type & PERF_SAMPLE_CGROUP) {
7412 		struct cgroup *cgrp;
7413 
7414 		/* protected by RCU */
7415 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7416 		data->cgroup = cgroup_id(cgrp);
7417 	}
7418 #endif
7419 
7420 	/*
7421 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7422 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7423 	 * but the value will not dump to the userspace.
7424 	 */
7425 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7426 		data->data_page_size = perf_get_page_size(data->addr);
7427 
7428 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7429 		data->code_page_size = perf_get_page_size(data->ip);
7430 
7431 	if (sample_type & PERF_SAMPLE_AUX) {
7432 		u64 size;
7433 
7434 		header->size += sizeof(u64); /* size */
7435 
7436 		/*
7437 		 * Given the 16bit nature of header::size, an AUX sample can
7438 		 * easily overflow it, what with all the preceding sample bits.
7439 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7440 		 * per sample in total (rounded down to 8 byte boundary).
7441 		 */
7442 		size = min_t(size_t, U16_MAX - header->size,
7443 			     event->attr.aux_sample_size);
7444 		size = rounddown(size, 8);
7445 		size = perf_prepare_sample_aux(event, data, size);
7446 
7447 		WARN_ON_ONCE(size + header->size > U16_MAX);
7448 		header->size += size;
7449 	}
7450 	/*
7451 	 * If you're adding more sample types here, you likely need to do
7452 	 * something about the overflowing header::size, like repurpose the
7453 	 * lowest 3 bits of size, which should be always zero at the moment.
7454 	 * This raises a more important question, do we really need 512k sized
7455 	 * samples and why, so good argumentation is in order for whatever you
7456 	 * do here next.
7457 	 */
7458 	WARN_ON_ONCE(header->size & 7);
7459 }
7460 
7461 static __always_inline int
7462 __perf_event_output(struct perf_event *event,
7463 		    struct perf_sample_data *data,
7464 		    struct pt_regs *regs,
7465 		    int (*output_begin)(struct perf_output_handle *,
7466 					struct perf_sample_data *,
7467 					struct perf_event *,
7468 					unsigned int))
7469 {
7470 	struct perf_output_handle handle;
7471 	struct perf_event_header header;
7472 	int err;
7473 
7474 	/* protect the callchain buffers */
7475 	rcu_read_lock();
7476 
7477 	perf_prepare_sample(&header, data, event, regs);
7478 
7479 	err = output_begin(&handle, data, event, header.size);
7480 	if (err)
7481 		goto exit;
7482 
7483 	perf_output_sample(&handle, &header, data, event);
7484 
7485 	perf_output_end(&handle);
7486 
7487 exit:
7488 	rcu_read_unlock();
7489 	return err;
7490 }
7491 
7492 void
7493 perf_event_output_forward(struct perf_event *event,
7494 			 struct perf_sample_data *data,
7495 			 struct pt_regs *regs)
7496 {
7497 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7498 }
7499 
7500 void
7501 perf_event_output_backward(struct perf_event *event,
7502 			   struct perf_sample_data *data,
7503 			   struct pt_regs *regs)
7504 {
7505 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7506 }
7507 
7508 int
7509 perf_event_output(struct perf_event *event,
7510 		  struct perf_sample_data *data,
7511 		  struct pt_regs *regs)
7512 {
7513 	return __perf_event_output(event, data, regs, perf_output_begin);
7514 }
7515 
7516 /*
7517  * read event_id
7518  */
7519 
7520 struct perf_read_event {
7521 	struct perf_event_header	header;
7522 
7523 	u32				pid;
7524 	u32				tid;
7525 };
7526 
7527 static void
7528 perf_event_read_event(struct perf_event *event,
7529 			struct task_struct *task)
7530 {
7531 	struct perf_output_handle handle;
7532 	struct perf_sample_data sample;
7533 	struct perf_read_event read_event = {
7534 		.header = {
7535 			.type = PERF_RECORD_READ,
7536 			.misc = 0,
7537 			.size = sizeof(read_event) + event->read_size,
7538 		},
7539 		.pid = perf_event_pid(event, task),
7540 		.tid = perf_event_tid(event, task),
7541 	};
7542 	int ret;
7543 
7544 	perf_event_header__init_id(&read_event.header, &sample, event);
7545 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7546 	if (ret)
7547 		return;
7548 
7549 	perf_output_put(&handle, read_event);
7550 	perf_output_read(&handle, event);
7551 	perf_event__output_id_sample(event, &handle, &sample);
7552 
7553 	perf_output_end(&handle);
7554 }
7555 
7556 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7557 
7558 static void
7559 perf_iterate_ctx(struct perf_event_context *ctx,
7560 		   perf_iterate_f output,
7561 		   void *data, bool all)
7562 {
7563 	struct perf_event *event;
7564 
7565 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7566 		if (!all) {
7567 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7568 				continue;
7569 			if (!event_filter_match(event))
7570 				continue;
7571 		}
7572 
7573 		output(event, data);
7574 	}
7575 }
7576 
7577 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7578 {
7579 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7580 	struct perf_event *event;
7581 
7582 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7583 		/*
7584 		 * Skip events that are not fully formed yet; ensure that
7585 		 * if we observe event->ctx, both event and ctx will be
7586 		 * complete enough. See perf_install_in_context().
7587 		 */
7588 		if (!smp_load_acquire(&event->ctx))
7589 			continue;
7590 
7591 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7592 			continue;
7593 		if (!event_filter_match(event))
7594 			continue;
7595 		output(event, data);
7596 	}
7597 }
7598 
7599 /*
7600  * Iterate all events that need to receive side-band events.
7601  *
7602  * For new callers; ensure that account_pmu_sb_event() includes
7603  * your event, otherwise it might not get delivered.
7604  */
7605 static void
7606 perf_iterate_sb(perf_iterate_f output, void *data,
7607 	       struct perf_event_context *task_ctx)
7608 {
7609 	struct perf_event_context *ctx;
7610 	int ctxn;
7611 
7612 	rcu_read_lock();
7613 	preempt_disable();
7614 
7615 	/*
7616 	 * If we have task_ctx != NULL we only notify the task context itself.
7617 	 * The task_ctx is set only for EXIT events before releasing task
7618 	 * context.
7619 	 */
7620 	if (task_ctx) {
7621 		perf_iterate_ctx(task_ctx, output, data, false);
7622 		goto done;
7623 	}
7624 
7625 	perf_iterate_sb_cpu(output, data);
7626 
7627 	for_each_task_context_nr(ctxn) {
7628 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7629 		if (ctx)
7630 			perf_iterate_ctx(ctx, output, data, false);
7631 	}
7632 done:
7633 	preempt_enable();
7634 	rcu_read_unlock();
7635 }
7636 
7637 /*
7638  * Clear all file-based filters at exec, they'll have to be
7639  * re-instated when/if these objects are mmapped again.
7640  */
7641 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7642 {
7643 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7644 	struct perf_addr_filter *filter;
7645 	unsigned int restart = 0, count = 0;
7646 	unsigned long flags;
7647 
7648 	if (!has_addr_filter(event))
7649 		return;
7650 
7651 	raw_spin_lock_irqsave(&ifh->lock, flags);
7652 	list_for_each_entry(filter, &ifh->list, entry) {
7653 		if (filter->path.dentry) {
7654 			event->addr_filter_ranges[count].start = 0;
7655 			event->addr_filter_ranges[count].size = 0;
7656 			restart++;
7657 		}
7658 
7659 		count++;
7660 	}
7661 
7662 	if (restart)
7663 		event->addr_filters_gen++;
7664 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7665 
7666 	if (restart)
7667 		perf_event_stop(event, 1);
7668 }
7669 
7670 void perf_event_exec(void)
7671 {
7672 	struct perf_event_context *ctx;
7673 	int ctxn;
7674 
7675 	for_each_task_context_nr(ctxn) {
7676 		perf_event_enable_on_exec(ctxn);
7677 		perf_event_remove_on_exec(ctxn);
7678 
7679 		rcu_read_lock();
7680 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7681 		if (ctx) {
7682 			perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7683 					 NULL, true);
7684 		}
7685 		rcu_read_unlock();
7686 	}
7687 }
7688 
7689 struct remote_output {
7690 	struct perf_buffer	*rb;
7691 	int			err;
7692 };
7693 
7694 static void __perf_event_output_stop(struct perf_event *event, void *data)
7695 {
7696 	struct perf_event *parent = event->parent;
7697 	struct remote_output *ro = data;
7698 	struct perf_buffer *rb = ro->rb;
7699 	struct stop_event_data sd = {
7700 		.event	= event,
7701 	};
7702 
7703 	if (!has_aux(event))
7704 		return;
7705 
7706 	if (!parent)
7707 		parent = event;
7708 
7709 	/*
7710 	 * In case of inheritance, it will be the parent that links to the
7711 	 * ring-buffer, but it will be the child that's actually using it.
7712 	 *
7713 	 * We are using event::rb to determine if the event should be stopped,
7714 	 * however this may race with ring_buffer_attach() (through set_output),
7715 	 * which will make us skip the event that actually needs to be stopped.
7716 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7717 	 * its rb pointer.
7718 	 */
7719 	if (rcu_dereference(parent->rb) == rb)
7720 		ro->err = __perf_event_stop(&sd);
7721 }
7722 
7723 static int __perf_pmu_output_stop(void *info)
7724 {
7725 	struct perf_event *event = info;
7726 	struct pmu *pmu = event->ctx->pmu;
7727 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7728 	struct remote_output ro = {
7729 		.rb	= event->rb,
7730 	};
7731 
7732 	rcu_read_lock();
7733 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7734 	if (cpuctx->task_ctx)
7735 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7736 				   &ro, false);
7737 	rcu_read_unlock();
7738 
7739 	return ro.err;
7740 }
7741 
7742 static void perf_pmu_output_stop(struct perf_event *event)
7743 {
7744 	struct perf_event *iter;
7745 	int err, cpu;
7746 
7747 restart:
7748 	rcu_read_lock();
7749 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7750 		/*
7751 		 * For per-CPU events, we need to make sure that neither they
7752 		 * nor their children are running; for cpu==-1 events it's
7753 		 * sufficient to stop the event itself if it's active, since
7754 		 * it can't have children.
7755 		 */
7756 		cpu = iter->cpu;
7757 		if (cpu == -1)
7758 			cpu = READ_ONCE(iter->oncpu);
7759 
7760 		if (cpu == -1)
7761 			continue;
7762 
7763 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7764 		if (err == -EAGAIN) {
7765 			rcu_read_unlock();
7766 			goto restart;
7767 		}
7768 	}
7769 	rcu_read_unlock();
7770 }
7771 
7772 /*
7773  * task tracking -- fork/exit
7774  *
7775  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7776  */
7777 
7778 struct perf_task_event {
7779 	struct task_struct		*task;
7780 	struct perf_event_context	*task_ctx;
7781 
7782 	struct {
7783 		struct perf_event_header	header;
7784 
7785 		u32				pid;
7786 		u32				ppid;
7787 		u32				tid;
7788 		u32				ptid;
7789 		u64				time;
7790 	} event_id;
7791 };
7792 
7793 static int perf_event_task_match(struct perf_event *event)
7794 {
7795 	return event->attr.comm  || event->attr.mmap ||
7796 	       event->attr.mmap2 || event->attr.mmap_data ||
7797 	       event->attr.task;
7798 }
7799 
7800 static void perf_event_task_output(struct perf_event *event,
7801 				   void *data)
7802 {
7803 	struct perf_task_event *task_event = data;
7804 	struct perf_output_handle handle;
7805 	struct perf_sample_data	sample;
7806 	struct task_struct *task = task_event->task;
7807 	int ret, size = task_event->event_id.header.size;
7808 
7809 	if (!perf_event_task_match(event))
7810 		return;
7811 
7812 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7813 
7814 	ret = perf_output_begin(&handle, &sample, event,
7815 				task_event->event_id.header.size);
7816 	if (ret)
7817 		goto out;
7818 
7819 	task_event->event_id.pid = perf_event_pid(event, task);
7820 	task_event->event_id.tid = perf_event_tid(event, task);
7821 
7822 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7823 		task_event->event_id.ppid = perf_event_pid(event,
7824 							task->real_parent);
7825 		task_event->event_id.ptid = perf_event_pid(event,
7826 							task->real_parent);
7827 	} else {  /* PERF_RECORD_FORK */
7828 		task_event->event_id.ppid = perf_event_pid(event, current);
7829 		task_event->event_id.ptid = perf_event_tid(event, current);
7830 	}
7831 
7832 	task_event->event_id.time = perf_event_clock(event);
7833 
7834 	perf_output_put(&handle, task_event->event_id);
7835 
7836 	perf_event__output_id_sample(event, &handle, &sample);
7837 
7838 	perf_output_end(&handle);
7839 out:
7840 	task_event->event_id.header.size = size;
7841 }
7842 
7843 static void perf_event_task(struct task_struct *task,
7844 			      struct perf_event_context *task_ctx,
7845 			      int new)
7846 {
7847 	struct perf_task_event task_event;
7848 
7849 	if (!atomic_read(&nr_comm_events) &&
7850 	    !atomic_read(&nr_mmap_events) &&
7851 	    !atomic_read(&nr_task_events))
7852 		return;
7853 
7854 	task_event = (struct perf_task_event){
7855 		.task	  = task,
7856 		.task_ctx = task_ctx,
7857 		.event_id    = {
7858 			.header = {
7859 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7860 				.misc = 0,
7861 				.size = sizeof(task_event.event_id),
7862 			},
7863 			/* .pid  */
7864 			/* .ppid */
7865 			/* .tid  */
7866 			/* .ptid */
7867 			/* .time */
7868 		},
7869 	};
7870 
7871 	perf_iterate_sb(perf_event_task_output,
7872 		       &task_event,
7873 		       task_ctx);
7874 }
7875 
7876 void perf_event_fork(struct task_struct *task)
7877 {
7878 	perf_event_task(task, NULL, 1);
7879 	perf_event_namespaces(task);
7880 }
7881 
7882 /*
7883  * comm tracking
7884  */
7885 
7886 struct perf_comm_event {
7887 	struct task_struct	*task;
7888 	char			*comm;
7889 	int			comm_size;
7890 
7891 	struct {
7892 		struct perf_event_header	header;
7893 
7894 		u32				pid;
7895 		u32				tid;
7896 	} event_id;
7897 };
7898 
7899 static int perf_event_comm_match(struct perf_event *event)
7900 {
7901 	return event->attr.comm;
7902 }
7903 
7904 static void perf_event_comm_output(struct perf_event *event,
7905 				   void *data)
7906 {
7907 	struct perf_comm_event *comm_event = data;
7908 	struct perf_output_handle handle;
7909 	struct perf_sample_data sample;
7910 	int size = comm_event->event_id.header.size;
7911 	int ret;
7912 
7913 	if (!perf_event_comm_match(event))
7914 		return;
7915 
7916 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7917 	ret = perf_output_begin(&handle, &sample, event,
7918 				comm_event->event_id.header.size);
7919 
7920 	if (ret)
7921 		goto out;
7922 
7923 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7924 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7925 
7926 	perf_output_put(&handle, comm_event->event_id);
7927 	__output_copy(&handle, comm_event->comm,
7928 				   comm_event->comm_size);
7929 
7930 	perf_event__output_id_sample(event, &handle, &sample);
7931 
7932 	perf_output_end(&handle);
7933 out:
7934 	comm_event->event_id.header.size = size;
7935 }
7936 
7937 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7938 {
7939 	char comm[TASK_COMM_LEN];
7940 	unsigned int size;
7941 
7942 	memset(comm, 0, sizeof(comm));
7943 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7944 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7945 
7946 	comm_event->comm = comm;
7947 	comm_event->comm_size = size;
7948 
7949 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7950 
7951 	perf_iterate_sb(perf_event_comm_output,
7952 		       comm_event,
7953 		       NULL);
7954 }
7955 
7956 void perf_event_comm(struct task_struct *task, bool exec)
7957 {
7958 	struct perf_comm_event comm_event;
7959 
7960 	if (!atomic_read(&nr_comm_events))
7961 		return;
7962 
7963 	comm_event = (struct perf_comm_event){
7964 		.task	= task,
7965 		/* .comm      */
7966 		/* .comm_size */
7967 		.event_id  = {
7968 			.header = {
7969 				.type = PERF_RECORD_COMM,
7970 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7971 				/* .size */
7972 			},
7973 			/* .pid */
7974 			/* .tid */
7975 		},
7976 	};
7977 
7978 	perf_event_comm_event(&comm_event);
7979 }
7980 
7981 /*
7982  * namespaces tracking
7983  */
7984 
7985 struct perf_namespaces_event {
7986 	struct task_struct		*task;
7987 
7988 	struct {
7989 		struct perf_event_header	header;
7990 
7991 		u32				pid;
7992 		u32				tid;
7993 		u64				nr_namespaces;
7994 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7995 	} event_id;
7996 };
7997 
7998 static int perf_event_namespaces_match(struct perf_event *event)
7999 {
8000 	return event->attr.namespaces;
8001 }
8002 
8003 static void perf_event_namespaces_output(struct perf_event *event,
8004 					 void *data)
8005 {
8006 	struct perf_namespaces_event *namespaces_event = data;
8007 	struct perf_output_handle handle;
8008 	struct perf_sample_data sample;
8009 	u16 header_size = namespaces_event->event_id.header.size;
8010 	int ret;
8011 
8012 	if (!perf_event_namespaces_match(event))
8013 		return;
8014 
8015 	perf_event_header__init_id(&namespaces_event->event_id.header,
8016 				   &sample, event);
8017 	ret = perf_output_begin(&handle, &sample, event,
8018 				namespaces_event->event_id.header.size);
8019 	if (ret)
8020 		goto out;
8021 
8022 	namespaces_event->event_id.pid = perf_event_pid(event,
8023 							namespaces_event->task);
8024 	namespaces_event->event_id.tid = perf_event_tid(event,
8025 							namespaces_event->task);
8026 
8027 	perf_output_put(&handle, namespaces_event->event_id);
8028 
8029 	perf_event__output_id_sample(event, &handle, &sample);
8030 
8031 	perf_output_end(&handle);
8032 out:
8033 	namespaces_event->event_id.header.size = header_size;
8034 }
8035 
8036 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8037 				   struct task_struct *task,
8038 				   const struct proc_ns_operations *ns_ops)
8039 {
8040 	struct path ns_path;
8041 	struct inode *ns_inode;
8042 	int error;
8043 
8044 	error = ns_get_path(&ns_path, task, ns_ops);
8045 	if (!error) {
8046 		ns_inode = ns_path.dentry->d_inode;
8047 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8048 		ns_link_info->ino = ns_inode->i_ino;
8049 		path_put(&ns_path);
8050 	}
8051 }
8052 
8053 void perf_event_namespaces(struct task_struct *task)
8054 {
8055 	struct perf_namespaces_event namespaces_event;
8056 	struct perf_ns_link_info *ns_link_info;
8057 
8058 	if (!atomic_read(&nr_namespaces_events))
8059 		return;
8060 
8061 	namespaces_event = (struct perf_namespaces_event){
8062 		.task	= task,
8063 		.event_id  = {
8064 			.header = {
8065 				.type = PERF_RECORD_NAMESPACES,
8066 				.misc = 0,
8067 				.size = sizeof(namespaces_event.event_id),
8068 			},
8069 			/* .pid */
8070 			/* .tid */
8071 			.nr_namespaces = NR_NAMESPACES,
8072 			/* .link_info[NR_NAMESPACES] */
8073 		},
8074 	};
8075 
8076 	ns_link_info = namespaces_event.event_id.link_info;
8077 
8078 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8079 			       task, &mntns_operations);
8080 
8081 #ifdef CONFIG_USER_NS
8082 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8083 			       task, &userns_operations);
8084 #endif
8085 #ifdef CONFIG_NET_NS
8086 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8087 			       task, &netns_operations);
8088 #endif
8089 #ifdef CONFIG_UTS_NS
8090 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8091 			       task, &utsns_operations);
8092 #endif
8093 #ifdef CONFIG_IPC_NS
8094 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8095 			       task, &ipcns_operations);
8096 #endif
8097 #ifdef CONFIG_PID_NS
8098 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8099 			       task, &pidns_operations);
8100 #endif
8101 #ifdef CONFIG_CGROUPS
8102 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8103 			       task, &cgroupns_operations);
8104 #endif
8105 
8106 	perf_iterate_sb(perf_event_namespaces_output,
8107 			&namespaces_event,
8108 			NULL);
8109 }
8110 
8111 /*
8112  * cgroup tracking
8113  */
8114 #ifdef CONFIG_CGROUP_PERF
8115 
8116 struct perf_cgroup_event {
8117 	char				*path;
8118 	int				path_size;
8119 	struct {
8120 		struct perf_event_header	header;
8121 		u64				id;
8122 		char				path[];
8123 	} event_id;
8124 };
8125 
8126 static int perf_event_cgroup_match(struct perf_event *event)
8127 {
8128 	return event->attr.cgroup;
8129 }
8130 
8131 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8132 {
8133 	struct perf_cgroup_event *cgroup_event = data;
8134 	struct perf_output_handle handle;
8135 	struct perf_sample_data sample;
8136 	u16 header_size = cgroup_event->event_id.header.size;
8137 	int ret;
8138 
8139 	if (!perf_event_cgroup_match(event))
8140 		return;
8141 
8142 	perf_event_header__init_id(&cgroup_event->event_id.header,
8143 				   &sample, event);
8144 	ret = perf_output_begin(&handle, &sample, event,
8145 				cgroup_event->event_id.header.size);
8146 	if (ret)
8147 		goto out;
8148 
8149 	perf_output_put(&handle, cgroup_event->event_id);
8150 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8151 
8152 	perf_event__output_id_sample(event, &handle, &sample);
8153 
8154 	perf_output_end(&handle);
8155 out:
8156 	cgroup_event->event_id.header.size = header_size;
8157 }
8158 
8159 static void perf_event_cgroup(struct cgroup *cgrp)
8160 {
8161 	struct perf_cgroup_event cgroup_event;
8162 	char path_enomem[16] = "//enomem";
8163 	char *pathname;
8164 	size_t size;
8165 
8166 	if (!atomic_read(&nr_cgroup_events))
8167 		return;
8168 
8169 	cgroup_event = (struct perf_cgroup_event){
8170 		.event_id  = {
8171 			.header = {
8172 				.type = PERF_RECORD_CGROUP,
8173 				.misc = 0,
8174 				.size = sizeof(cgroup_event.event_id),
8175 			},
8176 			.id = cgroup_id(cgrp),
8177 		},
8178 	};
8179 
8180 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8181 	if (pathname == NULL) {
8182 		cgroup_event.path = path_enomem;
8183 	} else {
8184 		/* just to be sure to have enough space for alignment */
8185 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8186 		cgroup_event.path = pathname;
8187 	}
8188 
8189 	/*
8190 	 * Since our buffer works in 8 byte units we need to align our string
8191 	 * size to a multiple of 8. However, we must guarantee the tail end is
8192 	 * zero'd out to avoid leaking random bits to userspace.
8193 	 */
8194 	size = strlen(cgroup_event.path) + 1;
8195 	while (!IS_ALIGNED(size, sizeof(u64)))
8196 		cgroup_event.path[size++] = '\0';
8197 
8198 	cgroup_event.event_id.header.size += size;
8199 	cgroup_event.path_size = size;
8200 
8201 	perf_iterate_sb(perf_event_cgroup_output,
8202 			&cgroup_event,
8203 			NULL);
8204 
8205 	kfree(pathname);
8206 }
8207 
8208 #endif
8209 
8210 /*
8211  * mmap tracking
8212  */
8213 
8214 struct perf_mmap_event {
8215 	struct vm_area_struct	*vma;
8216 
8217 	const char		*file_name;
8218 	int			file_size;
8219 	int			maj, min;
8220 	u64			ino;
8221 	u64			ino_generation;
8222 	u32			prot, flags;
8223 	u8			build_id[BUILD_ID_SIZE_MAX];
8224 	u32			build_id_size;
8225 
8226 	struct {
8227 		struct perf_event_header	header;
8228 
8229 		u32				pid;
8230 		u32				tid;
8231 		u64				start;
8232 		u64				len;
8233 		u64				pgoff;
8234 	} event_id;
8235 };
8236 
8237 static int perf_event_mmap_match(struct perf_event *event,
8238 				 void *data)
8239 {
8240 	struct perf_mmap_event *mmap_event = data;
8241 	struct vm_area_struct *vma = mmap_event->vma;
8242 	int executable = vma->vm_flags & VM_EXEC;
8243 
8244 	return (!executable && event->attr.mmap_data) ||
8245 	       (executable && (event->attr.mmap || event->attr.mmap2));
8246 }
8247 
8248 static void perf_event_mmap_output(struct perf_event *event,
8249 				   void *data)
8250 {
8251 	struct perf_mmap_event *mmap_event = data;
8252 	struct perf_output_handle handle;
8253 	struct perf_sample_data sample;
8254 	int size = mmap_event->event_id.header.size;
8255 	u32 type = mmap_event->event_id.header.type;
8256 	bool use_build_id;
8257 	int ret;
8258 
8259 	if (!perf_event_mmap_match(event, data))
8260 		return;
8261 
8262 	if (event->attr.mmap2) {
8263 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8264 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8265 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8266 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8267 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8268 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8269 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8270 	}
8271 
8272 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8273 	ret = perf_output_begin(&handle, &sample, event,
8274 				mmap_event->event_id.header.size);
8275 	if (ret)
8276 		goto out;
8277 
8278 	mmap_event->event_id.pid = perf_event_pid(event, current);
8279 	mmap_event->event_id.tid = perf_event_tid(event, current);
8280 
8281 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8282 
8283 	if (event->attr.mmap2 && use_build_id)
8284 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8285 
8286 	perf_output_put(&handle, mmap_event->event_id);
8287 
8288 	if (event->attr.mmap2) {
8289 		if (use_build_id) {
8290 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8291 
8292 			__output_copy(&handle, size, 4);
8293 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8294 		} else {
8295 			perf_output_put(&handle, mmap_event->maj);
8296 			perf_output_put(&handle, mmap_event->min);
8297 			perf_output_put(&handle, mmap_event->ino);
8298 			perf_output_put(&handle, mmap_event->ino_generation);
8299 		}
8300 		perf_output_put(&handle, mmap_event->prot);
8301 		perf_output_put(&handle, mmap_event->flags);
8302 	}
8303 
8304 	__output_copy(&handle, mmap_event->file_name,
8305 				   mmap_event->file_size);
8306 
8307 	perf_event__output_id_sample(event, &handle, &sample);
8308 
8309 	perf_output_end(&handle);
8310 out:
8311 	mmap_event->event_id.header.size = size;
8312 	mmap_event->event_id.header.type = type;
8313 }
8314 
8315 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8316 {
8317 	struct vm_area_struct *vma = mmap_event->vma;
8318 	struct file *file = vma->vm_file;
8319 	int maj = 0, min = 0;
8320 	u64 ino = 0, gen = 0;
8321 	u32 prot = 0, flags = 0;
8322 	unsigned int size;
8323 	char tmp[16];
8324 	char *buf = NULL;
8325 	char *name;
8326 
8327 	if (vma->vm_flags & VM_READ)
8328 		prot |= PROT_READ;
8329 	if (vma->vm_flags & VM_WRITE)
8330 		prot |= PROT_WRITE;
8331 	if (vma->vm_flags & VM_EXEC)
8332 		prot |= PROT_EXEC;
8333 
8334 	if (vma->vm_flags & VM_MAYSHARE)
8335 		flags = MAP_SHARED;
8336 	else
8337 		flags = MAP_PRIVATE;
8338 
8339 	if (vma->vm_flags & VM_LOCKED)
8340 		flags |= MAP_LOCKED;
8341 	if (is_vm_hugetlb_page(vma))
8342 		flags |= MAP_HUGETLB;
8343 
8344 	if (file) {
8345 		struct inode *inode;
8346 		dev_t dev;
8347 
8348 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8349 		if (!buf) {
8350 			name = "//enomem";
8351 			goto cpy_name;
8352 		}
8353 		/*
8354 		 * d_path() works from the end of the rb backwards, so we
8355 		 * need to add enough zero bytes after the string to handle
8356 		 * the 64bit alignment we do later.
8357 		 */
8358 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8359 		if (IS_ERR(name)) {
8360 			name = "//toolong";
8361 			goto cpy_name;
8362 		}
8363 		inode = file_inode(vma->vm_file);
8364 		dev = inode->i_sb->s_dev;
8365 		ino = inode->i_ino;
8366 		gen = inode->i_generation;
8367 		maj = MAJOR(dev);
8368 		min = MINOR(dev);
8369 
8370 		goto got_name;
8371 	} else {
8372 		if (vma->vm_ops && vma->vm_ops->name) {
8373 			name = (char *) vma->vm_ops->name(vma);
8374 			if (name)
8375 				goto cpy_name;
8376 		}
8377 
8378 		name = (char *)arch_vma_name(vma);
8379 		if (name)
8380 			goto cpy_name;
8381 
8382 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8383 				vma->vm_end >= vma->vm_mm->brk) {
8384 			name = "[heap]";
8385 			goto cpy_name;
8386 		}
8387 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8388 				vma->vm_end >= vma->vm_mm->start_stack) {
8389 			name = "[stack]";
8390 			goto cpy_name;
8391 		}
8392 
8393 		name = "//anon";
8394 		goto cpy_name;
8395 	}
8396 
8397 cpy_name:
8398 	strlcpy(tmp, name, sizeof(tmp));
8399 	name = tmp;
8400 got_name:
8401 	/*
8402 	 * Since our buffer works in 8 byte units we need to align our string
8403 	 * size to a multiple of 8. However, we must guarantee the tail end is
8404 	 * zero'd out to avoid leaking random bits to userspace.
8405 	 */
8406 	size = strlen(name)+1;
8407 	while (!IS_ALIGNED(size, sizeof(u64)))
8408 		name[size++] = '\0';
8409 
8410 	mmap_event->file_name = name;
8411 	mmap_event->file_size = size;
8412 	mmap_event->maj = maj;
8413 	mmap_event->min = min;
8414 	mmap_event->ino = ino;
8415 	mmap_event->ino_generation = gen;
8416 	mmap_event->prot = prot;
8417 	mmap_event->flags = flags;
8418 
8419 	if (!(vma->vm_flags & VM_EXEC))
8420 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8421 
8422 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8423 
8424 	if (atomic_read(&nr_build_id_events))
8425 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8426 
8427 	perf_iterate_sb(perf_event_mmap_output,
8428 		       mmap_event,
8429 		       NULL);
8430 
8431 	kfree(buf);
8432 }
8433 
8434 /*
8435  * Check whether inode and address range match filter criteria.
8436  */
8437 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8438 				     struct file *file, unsigned long offset,
8439 				     unsigned long size)
8440 {
8441 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8442 	if (!filter->path.dentry)
8443 		return false;
8444 
8445 	if (d_inode(filter->path.dentry) != file_inode(file))
8446 		return false;
8447 
8448 	if (filter->offset > offset + size)
8449 		return false;
8450 
8451 	if (filter->offset + filter->size < offset)
8452 		return false;
8453 
8454 	return true;
8455 }
8456 
8457 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8458 					struct vm_area_struct *vma,
8459 					struct perf_addr_filter_range *fr)
8460 {
8461 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8462 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8463 	struct file *file = vma->vm_file;
8464 
8465 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8466 		return false;
8467 
8468 	if (filter->offset < off) {
8469 		fr->start = vma->vm_start;
8470 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8471 	} else {
8472 		fr->start = vma->vm_start + filter->offset - off;
8473 		fr->size = min(vma->vm_end - fr->start, filter->size);
8474 	}
8475 
8476 	return true;
8477 }
8478 
8479 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8480 {
8481 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8482 	struct vm_area_struct *vma = data;
8483 	struct perf_addr_filter *filter;
8484 	unsigned int restart = 0, count = 0;
8485 	unsigned long flags;
8486 
8487 	if (!has_addr_filter(event))
8488 		return;
8489 
8490 	if (!vma->vm_file)
8491 		return;
8492 
8493 	raw_spin_lock_irqsave(&ifh->lock, flags);
8494 	list_for_each_entry(filter, &ifh->list, entry) {
8495 		if (perf_addr_filter_vma_adjust(filter, vma,
8496 						&event->addr_filter_ranges[count]))
8497 			restart++;
8498 
8499 		count++;
8500 	}
8501 
8502 	if (restart)
8503 		event->addr_filters_gen++;
8504 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8505 
8506 	if (restart)
8507 		perf_event_stop(event, 1);
8508 }
8509 
8510 /*
8511  * Adjust all task's events' filters to the new vma
8512  */
8513 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8514 {
8515 	struct perf_event_context *ctx;
8516 	int ctxn;
8517 
8518 	/*
8519 	 * Data tracing isn't supported yet and as such there is no need
8520 	 * to keep track of anything that isn't related to executable code:
8521 	 */
8522 	if (!(vma->vm_flags & VM_EXEC))
8523 		return;
8524 
8525 	rcu_read_lock();
8526 	for_each_task_context_nr(ctxn) {
8527 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8528 		if (!ctx)
8529 			continue;
8530 
8531 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8532 	}
8533 	rcu_read_unlock();
8534 }
8535 
8536 void perf_event_mmap(struct vm_area_struct *vma)
8537 {
8538 	struct perf_mmap_event mmap_event;
8539 
8540 	if (!atomic_read(&nr_mmap_events))
8541 		return;
8542 
8543 	mmap_event = (struct perf_mmap_event){
8544 		.vma	= vma,
8545 		/* .file_name */
8546 		/* .file_size */
8547 		.event_id  = {
8548 			.header = {
8549 				.type = PERF_RECORD_MMAP,
8550 				.misc = PERF_RECORD_MISC_USER,
8551 				/* .size */
8552 			},
8553 			/* .pid */
8554 			/* .tid */
8555 			.start  = vma->vm_start,
8556 			.len    = vma->vm_end - vma->vm_start,
8557 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8558 		},
8559 		/* .maj (attr_mmap2 only) */
8560 		/* .min (attr_mmap2 only) */
8561 		/* .ino (attr_mmap2 only) */
8562 		/* .ino_generation (attr_mmap2 only) */
8563 		/* .prot (attr_mmap2 only) */
8564 		/* .flags (attr_mmap2 only) */
8565 	};
8566 
8567 	perf_addr_filters_adjust(vma);
8568 	perf_event_mmap_event(&mmap_event);
8569 }
8570 
8571 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8572 			  unsigned long size, u64 flags)
8573 {
8574 	struct perf_output_handle handle;
8575 	struct perf_sample_data sample;
8576 	struct perf_aux_event {
8577 		struct perf_event_header	header;
8578 		u64				offset;
8579 		u64				size;
8580 		u64				flags;
8581 	} rec = {
8582 		.header = {
8583 			.type = PERF_RECORD_AUX,
8584 			.misc = 0,
8585 			.size = sizeof(rec),
8586 		},
8587 		.offset		= head,
8588 		.size		= size,
8589 		.flags		= flags,
8590 	};
8591 	int ret;
8592 
8593 	perf_event_header__init_id(&rec.header, &sample, event);
8594 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8595 
8596 	if (ret)
8597 		return;
8598 
8599 	perf_output_put(&handle, rec);
8600 	perf_event__output_id_sample(event, &handle, &sample);
8601 
8602 	perf_output_end(&handle);
8603 }
8604 
8605 /*
8606  * Lost/dropped samples logging
8607  */
8608 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8609 {
8610 	struct perf_output_handle handle;
8611 	struct perf_sample_data sample;
8612 	int ret;
8613 
8614 	struct {
8615 		struct perf_event_header	header;
8616 		u64				lost;
8617 	} lost_samples_event = {
8618 		.header = {
8619 			.type = PERF_RECORD_LOST_SAMPLES,
8620 			.misc = 0,
8621 			.size = sizeof(lost_samples_event),
8622 		},
8623 		.lost		= lost,
8624 	};
8625 
8626 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8627 
8628 	ret = perf_output_begin(&handle, &sample, event,
8629 				lost_samples_event.header.size);
8630 	if (ret)
8631 		return;
8632 
8633 	perf_output_put(&handle, lost_samples_event);
8634 	perf_event__output_id_sample(event, &handle, &sample);
8635 	perf_output_end(&handle);
8636 }
8637 
8638 /*
8639  * context_switch tracking
8640  */
8641 
8642 struct perf_switch_event {
8643 	struct task_struct	*task;
8644 	struct task_struct	*next_prev;
8645 
8646 	struct {
8647 		struct perf_event_header	header;
8648 		u32				next_prev_pid;
8649 		u32				next_prev_tid;
8650 	} event_id;
8651 };
8652 
8653 static int perf_event_switch_match(struct perf_event *event)
8654 {
8655 	return event->attr.context_switch;
8656 }
8657 
8658 static void perf_event_switch_output(struct perf_event *event, void *data)
8659 {
8660 	struct perf_switch_event *se = data;
8661 	struct perf_output_handle handle;
8662 	struct perf_sample_data sample;
8663 	int ret;
8664 
8665 	if (!perf_event_switch_match(event))
8666 		return;
8667 
8668 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8669 	if (event->ctx->task) {
8670 		se->event_id.header.type = PERF_RECORD_SWITCH;
8671 		se->event_id.header.size = sizeof(se->event_id.header);
8672 	} else {
8673 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8674 		se->event_id.header.size = sizeof(se->event_id);
8675 		se->event_id.next_prev_pid =
8676 					perf_event_pid(event, se->next_prev);
8677 		se->event_id.next_prev_tid =
8678 					perf_event_tid(event, se->next_prev);
8679 	}
8680 
8681 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8682 
8683 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8684 	if (ret)
8685 		return;
8686 
8687 	if (event->ctx->task)
8688 		perf_output_put(&handle, se->event_id.header);
8689 	else
8690 		perf_output_put(&handle, se->event_id);
8691 
8692 	perf_event__output_id_sample(event, &handle, &sample);
8693 
8694 	perf_output_end(&handle);
8695 }
8696 
8697 static void perf_event_switch(struct task_struct *task,
8698 			      struct task_struct *next_prev, bool sched_in)
8699 {
8700 	struct perf_switch_event switch_event;
8701 
8702 	/* N.B. caller checks nr_switch_events != 0 */
8703 
8704 	switch_event = (struct perf_switch_event){
8705 		.task		= task,
8706 		.next_prev	= next_prev,
8707 		.event_id	= {
8708 			.header = {
8709 				/* .type */
8710 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8711 				/* .size */
8712 			},
8713 			/* .next_prev_pid */
8714 			/* .next_prev_tid */
8715 		},
8716 	};
8717 
8718 	if (!sched_in && task->on_rq) {
8719 		switch_event.event_id.header.misc |=
8720 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8721 	}
8722 
8723 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8724 }
8725 
8726 /*
8727  * IRQ throttle logging
8728  */
8729 
8730 static void perf_log_throttle(struct perf_event *event, int enable)
8731 {
8732 	struct perf_output_handle handle;
8733 	struct perf_sample_data sample;
8734 	int ret;
8735 
8736 	struct {
8737 		struct perf_event_header	header;
8738 		u64				time;
8739 		u64				id;
8740 		u64				stream_id;
8741 	} throttle_event = {
8742 		.header = {
8743 			.type = PERF_RECORD_THROTTLE,
8744 			.misc = 0,
8745 			.size = sizeof(throttle_event),
8746 		},
8747 		.time		= perf_event_clock(event),
8748 		.id		= primary_event_id(event),
8749 		.stream_id	= event->id,
8750 	};
8751 
8752 	if (enable)
8753 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8754 
8755 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8756 
8757 	ret = perf_output_begin(&handle, &sample, event,
8758 				throttle_event.header.size);
8759 	if (ret)
8760 		return;
8761 
8762 	perf_output_put(&handle, throttle_event);
8763 	perf_event__output_id_sample(event, &handle, &sample);
8764 	perf_output_end(&handle);
8765 }
8766 
8767 /*
8768  * ksymbol register/unregister tracking
8769  */
8770 
8771 struct perf_ksymbol_event {
8772 	const char	*name;
8773 	int		name_len;
8774 	struct {
8775 		struct perf_event_header        header;
8776 		u64				addr;
8777 		u32				len;
8778 		u16				ksym_type;
8779 		u16				flags;
8780 	} event_id;
8781 };
8782 
8783 static int perf_event_ksymbol_match(struct perf_event *event)
8784 {
8785 	return event->attr.ksymbol;
8786 }
8787 
8788 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8789 {
8790 	struct perf_ksymbol_event *ksymbol_event = data;
8791 	struct perf_output_handle handle;
8792 	struct perf_sample_data sample;
8793 	int ret;
8794 
8795 	if (!perf_event_ksymbol_match(event))
8796 		return;
8797 
8798 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8799 				   &sample, event);
8800 	ret = perf_output_begin(&handle, &sample, event,
8801 				ksymbol_event->event_id.header.size);
8802 	if (ret)
8803 		return;
8804 
8805 	perf_output_put(&handle, ksymbol_event->event_id);
8806 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8807 	perf_event__output_id_sample(event, &handle, &sample);
8808 
8809 	perf_output_end(&handle);
8810 }
8811 
8812 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8813 			const char *sym)
8814 {
8815 	struct perf_ksymbol_event ksymbol_event;
8816 	char name[KSYM_NAME_LEN];
8817 	u16 flags = 0;
8818 	int name_len;
8819 
8820 	if (!atomic_read(&nr_ksymbol_events))
8821 		return;
8822 
8823 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8824 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8825 		goto err;
8826 
8827 	strlcpy(name, sym, KSYM_NAME_LEN);
8828 	name_len = strlen(name) + 1;
8829 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8830 		name[name_len++] = '\0';
8831 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8832 
8833 	if (unregister)
8834 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8835 
8836 	ksymbol_event = (struct perf_ksymbol_event){
8837 		.name = name,
8838 		.name_len = name_len,
8839 		.event_id = {
8840 			.header = {
8841 				.type = PERF_RECORD_KSYMBOL,
8842 				.size = sizeof(ksymbol_event.event_id) +
8843 					name_len,
8844 			},
8845 			.addr = addr,
8846 			.len = len,
8847 			.ksym_type = ksym_type,
8848 			.flags = flags,
8849 		},
8850 	};
8851 
8852 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8853 	return;
8854 err:
8855 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8856 }
8857 
8858 /*
8859  * bpf program load/unload tracking
8860  */
8861 
8862 struct perf_bpf_event {
8863 	struct bpf_prog	*prog;
8864 	struct {
8865 		struct perf_event_header        header;
8866 		u16				type;
8867 		u16				flags;
8868 		u32				id;
8869 		u8				tag[BPF_TAG_SIZE];
8870 	} event_id;
8871 };
8872 
8873 static int perf_event_bpf_match(struct perf_event *event)
8874 {
8875 	return event->attr.bpf_event;
8876 }
8877 
8878 static void perf_event_bpf_output(struct perf_event *event, void *data)
8879 {
8880 	struct perf_bpf_event *bpf_event = data;
8881 	struct perf_output_handle handle;
8882 	struct perf_sample_data sample;
8883 	int ret;
8884 
8885 	if (!perf_event_bpf_match(event))
8886 		return;
8887 
8888 	perf_event_header__init_id(&bpf_event->event_id.header,
8889 				   &sample, event);
8890 	ret = perf_output_begin(&handle, data, event,
8891 				bpf_event->event_id.header.size);
8892 	if (ret)
8893 		return;
8894 
8895 	perf_output_put(&handle, bpf_event->event_id);
8896 	perf_event__output_id_sample(event, &handle, &sample);
8897 
8898 	perf_output_end(&handle);
8899 }
8900 
8901 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8902 					 enum perf_bpf_event_type type)
8903 {
8904 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8905 	int i;
8906 
8907 	if (prog->aux->func_cnt == 0) {
8908 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8909 				   (u64)(unsigned long)prog->bpf_func,
8910 				   prog->jited_len, unregister,
8911 				   prog->aux->ksym.name);
8912 	} else {
8913 		for (i = 0; i < prog->aux->func_cnt; i++) {
8914 			struct bpf_prog *subprog = prog->aux->func[i];
8915 
8916 			perf_event_ksymbol(
8917 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8918 				(u64)(unsigned long)subprog->bpf_func,
8919 				subprog->jited_len, unregister,
8920 				prog->aux->ksym.name);
8921 		}
8922 	}
8923 }
8924 
8925 void perf_event_bpf_event(struct bpf_prog *prog,
8926 			  enum perf_bpf_event_type type,
8927 			  u16 flags)
8928 {
8929 	struct perf_bpf_event bpf_event;
8930 
8931 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8932 	    type >= PERF_BPF_EVENT_MAX)
8933 		return;
8934 
8935 	switch (type) {
8936 	case PERF_BPF_EVENT_PROG_LOAD:
8937 	case PERF_BPF_EVENT_PROG_UNLOAD:
8938 		if (atomic_read(&nr_ksymbol_events))
8939 			perf_event_bpf_emit_ksymbols(prog, type);
8940 		break;
8941 	default:
8942 		break;
8943 	}
8944 
8945 	if (!atomic_read(&nr_bpf_events))
8946 		return;
8947 
8948 	bpf_event = (struct perf_bpf_event){
8949 		.prog = prog,
8950 		.event_id = {
8951 			.header = {
8952 				.type = PERF_RECORD_BPF_EVENT,
8953 				.size = sizeof(bpf_event.event_id),
8954 			},
8955 			.type = type,
8956 			.flags = flags,
8957 			.id = prog->aux->id,
8958 		},
8959 	};
8960 
8961 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8962 
8963 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8964 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8965 }
8966 
8967 struct perf_text_poke_event {
8968 	const void		*old_bytes;
8969 	const void		*new_bytes;
8970 	size_t			pad;
8971 	u16			old_len;
8972 	u16			new_len;
8973 
8974 	struct {
8975 		struct perf_event_header	header;
8976 
8977 		u64				addr;
8978 	} event_id;
8979 };
8980 
8981 static int perf_event_text_poke_match(struct perf_event *event)
8982 {
8983 	return event->attr.text_poke;
8984 }
8985 
8986 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8987 {
8988 	struct perf_text_poke_event *text_poke_event = data;
8989 	struct perf_output_handle handle;
8990 	struct perf_sample_data sample;
8991 	u64 padding = 0;
8992 	int ret;
8993 
8994 	if (!perf_event_text_poke_match(event))
8995 		return;
8996 
8997 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8998 
8999 	ret = perf_output_begin(&handle, &sample, event,
9000 				text_poke_event->event_id.header.size);
9001 	if (ret)
9002 		return;
9003 
9004 	perf_output_put(&handle, text_poke_event->event_id);
9005 	perf_output_put(&handle, text_poke_event->old_len);
9006 	perf_output_put(&handle, text_poke_event->new_len);
9007 
9008 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9009 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9010 
9011 	if (text_poke_event->pad)
9012 		__output_copy(&handle, &padding, text_poke_event->pad);
9013 
9014 	perf_event__output_id_sample(event, &handle, &sample);
9015 
9016 	perf_output_end(&handle);
9017 }
9018 
9019 void perf_event_text_poke(const void *addr, const void *old_bytes,
9020 			  size_t old_len, const void *new_bytes, size_t new_len)
9021 {
9022 	struct perf_text_poke_event text_poke_event;
9023 	size_t tot, pad;
9024 
9025 	if (!atomic_read(&nr_text_poke_events))
9026 		return;
9027 
9028 	tot  = sizeof(text_poke_event.old_len) + old_len;
9029 	tot += sizeof(text_poke_event.new_len) + new_len;
9030 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9031 
9032 	text_poke_event = (struct perf_text_poke_event){
9033 		.old_bytes    = old_bytes,
9034 		.new_bytes    = new_bytes,
9035 		.pad          = pad,
9036 		.old_len      = old_len,
9037 		.new_len      = new_len,
9038 		.event_id  = {
9039 			.header = {
9040 				.type = PERF_RECORD_TEXT_POKE,
9041 				.misc = PERF_RECORD_MISC_KERNEL,
9042 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9043 			},
9044 			.addr = (unsigned long)addr,
9045 		},
9046 	};
9047 
9048 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9049 }
9050 
9051 void perf_event_itrace_started(struct perf_event *event)
9052 {
9053 	event->attach_state |= PERF_ATTACH_ITRACE;
9054 }
9055 
9056 static void perf_log_itrace_start(struct perf_event *event)
9057 {
9058 	struct perf_output_handle handle;
9059 	struct perf_sample_data sample;
9060 	struct perf_aux_event {
9061 		struct perf_event_header        header;
9062 		u32				pid;
9063 		u32				tid;
9064 	} rec;
9065 	int ret;
9066 
9067 	if (event->parent)
9068 		event = event->parent;
9069 
9070 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9071 	    event->attach_state & PERF_ATTACH_ITRACE)
9072 		return;
9073 
9074 	rec.header.type	= PERF_RECORD_ITRACE_START;
9075 	rec.header.misc	= 0;
9076 	rec.header.size	= sizeof(rec);
9077 	rec.pid	= perf_event_pid(event, current);
9078 	rec.tid	= perf_event_tid(event, current);
9079 
9080 	perf_event_header__init_id(&rec.header, &sample, event);
9081 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9082 
9083 	if (ret)
9084 		return;
9085 
9086 	perf_output_put(&handle, rec);
9087 	perf_event__output_id_sample(event, &handle, &sample);
9088 
9089 	perf_output_end(&handle);
9090 }
9091 
9092 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9093 {
9094 	struct perf_output_handle handle;
9095 	struct perf_sample_data sample;
9096 	struct perf_aux_event {
9097 		struct perf_event_header        header;
9098 		u64				hw_id;
9099 	} rec;
9100 	int ret;
9101 
9102 	if (event->parent)
9103 		event = event->parent;
9104 
9105 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9106 	rec.header.misc	= 0;
9107 	rec.header.size	= sizeof(rec);
9108 	rec.hw_id	= hw_id;
9109 
9110 	perf_event_header__init_id(&rec.header, &sample, event);
9111 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9112 
9113 	if (ret)
9114 		return;
9115 
9116 	perf_output_put(&handle, rec);
9117 	perf_event__output_id_sample(event, &handle, &sample);
9118 
9119 	perf_output_end(&handle);
9120 }
9121 
9122 static int
9123 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9124 {
9125 	struct hw_perf_event *hwc = &event->hw;
9126 	int ret = 0;
9127 	u64 seq;
9128 
9129 	seq = __this_cpu_read(perf_throttled_seq);
9130 	if (seq != hwc->interrupts_seq) {
9131 		hwc->interrupts_seq = seq;
9132 		hwc->interrupts = 1;
9133 	} else {
9134 		hwc->interrupts++;
9135 		if (unlikely(throttle
9136 			     && hwc->interrupts >= max_samples_per_tick)) {
9137 			__this_cpu_inc(perf_throttled_count);
9138 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9139 			hwc->interrupts = MAX_INTERRUPTS;
9140 			perf_log_throttle(event, 0);
9141 			ret = 1;
9142 		}
9143 	}
9144 
9145 	if (event->attr.freq) {
9146 		u64 now = perf_clock();
9147 		s64 delta = now - hwc->freq_time_stamp;
9148 
9149 		hwc->freq_time_stamp = now;
9150 
9151 		if (delta > 0 && delta < 2*TICK_NSEC)
9152 			perf_adjust_period(event, delta, hwc->last_period, true);
9153 	}
9154 
9155 	return ret;
9156 }
9157 
9158 int perf_event_account_interrupt(struct perf_event *event)
9159 {
9160 	return __perf_event_account_interrupt(event, 1);
9161 }
9162 
9163 /*
9164  * Generic event overflow handling, sampling.
9165  */
9166 
9167 static int __perf_event_overflow(struct perf_event *event,
9168 				   int throttle, struct perf_sample_data *data,
9169 				   struct pt_regs *regs)
9170 {
9171 	int events = atomic_read(&event->event_limit);
9172 	int ret = 0;
9173 
9174 	/*
9175 	 * Non-sampling counters might still use the PMI to fold short
9176 	 * hardware counters, ignore those.
9177 	 */
9178 	if (unlikely(!is_sampling_event(event)))
9179 		return 0;
9180 
9181 	ret = __perf_event_account_interrupt(event, throttle);
9182 
9183 	/*
9184 	 * XXX event_limit might not quite work as expected on inherited
9185 	 * events
9186 	 */
9187 
9188 	event->pending_kill = POLL_IN;
9189 	if (events && atomic_dec_and_test(&event->event_limit)) {
9190 		ret = 1;
9191 		event->pending_kill = POLL_HUP;
9192 		event->pending_addr = data->addr;
9193 
9194 		perf_event_disable_inatomic(event);
9195 	}
9196 
9197 	READ_ONCE(event->overflow_handler)(event, data, regs);
9198 
9199 	if (*perf_event_fasync(event) && event->pending_kill) {
9200 		event->pending_wakeup = 1;
9201 		irq_work_queue(&event->pending);
9202 	}
9203 
9204 	return ret;
9205 }
9206 
9207 int perf_event_overflow(struct perf_event *event,
9208 			  struct perf_sample_data *data,
9209 			  struct pt_regs *regs)
9210 {
9211 	return __perf_event_overflow(event, 1, data, regs);
9212 }
9213 
9214 /*
9215  * Generic software event infrastructure
9216  */
9217 
9218 struct swevent_htable {
9219 	struct swevent_hlist		*swevent_hlist;
9220 	struct mutex			hlist_mutex;
9221 	int				hlist_refcount;
9222 
9223 	/* Recursion avoidance in each contexts */
9224 	int				recursion[PERF_NR_CONTEXTS];
9225 };
9226 
9227 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9228 
9229 /*
9230  * We directly increment event->count and keep a second value in
9231  * event->hw.period_left to count intervals. This period event
9232  * is kept in the range [-sample_period, 0] so that we can use the
9233  * sign as trigger.
9234  */
9235 
9236 u64 perf_swevent_set_period(struct perf_event *event)
9237 {
9238 	struct hw_perf_event *hwc = &event->hw;
9239 	u64 period = hwc->last_period;
9240 	u64 nr, offset;
9241 	s64 old, val;
9242 
9243 	hwc->last_period = hwc->sample_period;
9244 
9245 again:
9246 	old = val = local64_read(&hwc->period_left);
9247 	if (val < 0)
9248 		return 0;
9249 
9250 	nr = div64_u64(period + val, period);
9251 	offset = nr * period;
9252 	val -= offset;
9253 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9254 		goto again;
9255 
9256 	return nr;
9257 }
9258 
9259 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9260 				    struct perf_sample_data *data,
9261 				    struct pt_regs *regs)
9262 {
9263 	struct hw_perf_event *hwc = &event->hw;
9264 	int throttle = 0;
9265 
9266 	if (!overflow)
9267 		overflow = perf_swevent_set_period(event);
9268 
9269 	if (hwc->interrupts == MAX_INTERRUPTS)
9270 		return;
9271 
9272 	for (; overflow; overflow--) {
9273 		if (__perf_event_overflow(event, throttle,
9274 					    data, regs)) {
9275 			/*
9276 			 * We inhibit the overflow from happening when
9277 			 * hwc->interrupts == MAX_INTERRUPTS.
9278 			 */
9279 			break;
9280 		}
9281 		throttle = 1;
9282 	}
9283 }
9284 
9285 static void perf_swevent_event(struct perf_event *event, u64 nr,
9286 			       struct perf_sample_data *data,
9287 			       struct pt_regs *regs)
9288 {
9289 	struct hw_perf_event *hwc = &event->hw;
9290 
9291 	local64_add(nr, &event->count);
9292 
9293 	if (!regs)
9294 		return;
9295 
9296 	if (!is_sampling_event(event))
9297 		return;
9298 
9299 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9300 		data->period = nr;
9301 		return perf_swevent_overflow(event, 1, data, regs);
9302 	} else
9303 		data->period = event->hw.last_period;
9304 
9305 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9306 		return perf_swevent_overflow(event, 1, data, regs);
9307 
9308 	if (local64_add_negative(nr, &hwc->period_left))
9309 		return;
9310 
9311 	perf_swevent_overflow(event, 0, data, regs);
9312 }
9313 
9314 static int perf_exclude_event(struct perf_event *event,
9315 			      struct pt_regs *regs)
9316 {
9317 	if (event->hw.state & PERF_HES_STOPPED)
9318 		return 1;
9319 
9320 	if (regs) {
9321 		if (event->attr.exclude_user && user_mode(regs))
9322 			return 1;
9323 
9324 		if (event->attr.exclude_kernel && !user_mode(regs))
9325 			return 1;
9326 	}
9327 
9328 	return 0;
9329 }
9330 
9331 static int perf_swevent_match(struct perf_event *event,
9332 				enum perf_type_id type,
9333 				u32 event_id,
9334 				struct perf_sample_data *data,
9335 				struct pt_regs *regs)
9336 {
9337 	if (event->attr.type != type)
9338 		return 0;
9339 
9340 	if (event->attr.config != event_id)
9341 		return 0;
9342 
9343 	if (perf_exclude_event(event, regs))
9344 		return 0;
9345 
9346 	return 1;
9347 }
9348 
9349 static inline u64 swevent_hash(u64 type, u32 event_id)
9350 {
9351 	u64 val = event_id | (type << 32);
9352 
9353 	return hash_64(val, SWEVENT_HLIST_BITS);
9354 }
9355 
9356 static inline struct hlist_head *
9357 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9358 {
9359 	u64 hash = swevent_hash(type, event_id);
9360 
9361 	return &hlist->heads[hash];
9362 }
9363 
9364 /* For the read side: events when they trigger */
9365 static inline struct hlist_head *
9366 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9367 {
9368 	struct swevent_hlist *hlist;
9369 
9370 	hlist = rcu_dereference(swhash->swevent_hlist);
9371 	if (!hlist)
9372 		return NULL;
9373 
9374 	return __find_swevent_head(hlist, type, event_id);
9375 }
9376 
9377 /* For the event head insertion and removal in the hlist */
9378 static inline struct hlist_head *
9379 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9380 {
9381 	struct swevent_hlist *hlist;
9382 	u32 event_id = event->attr.config;
9383 	u64 type = event->attr.type;
9384 
9385 	/*
9386 	 * Event scheduling is always serialized against hlist allocation
9387 	 * and release. Which makes the protected version suitable here.
9388 	 * The context lock guarantees that.
9389 	 */
9390 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9391 					  lockdep_is_held(&event->ctx->lock));
9392 	if (!hlist)
9393 		return NULL;
9394 
9395 	return __find_swevent_head(hlist, type, event_id);
9396 }
9397 
9398 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9399 				    u64 nr,
9400 				    struct perf_sample_data *data,
9401 				    struct pt_regs *regs)
9402 {
9403 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9404 	struct perf_event *event;
9405 	struct hlist_head *head;
9406 
9407 	rcu_read_lock();
9408 	head = find_swevent_head_rcu(swhash, type, event_id);
9409 	if (!head)
9410 		goto end;
9411 
9412 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9413 		if (perf_swevent_match(event, type, event_id, data, regs))
9414 			perf_swevent_event(event, nr, data, regs);
9415 	}
9416 end:
9417 	rcu_read_unlock();
9418 }
9419 
9420 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9421 
9422 int perf_swevent_get_recursion_context(void)
9423 {
9424 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9425 
9426 	return get_recursion_context(swhash->recursion);
9427 }
9428 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9429 
9430 void perf_swevent_put_recursion_context(int rctx)
9431 {
9432 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9433 
9434 	put_recursion_context(swhash->recursion, rctx);
9435 }
9436 
9437 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9438 {
9439 	struct perf_sample_data data;
9440 
9441 	if (WARN_ON_ONCE(!regs))
9442 		return;
9443 
9444 	perf_sample_data_init(&data, addr, 0);
9445 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9446 }
9447 
9448 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9449 {
9450 	int rctx;
9451 
9452 	preempt_disable_notrace();
9453 	rctx = perf_swevent_get_recursion_context();
9454 	if (unlikely(rctx < 0))
9455 		goto fail;
9456 
9457 	___perf_sw_event(event_id, nr, regs, addr);
9458 
9459 	perf_swevent_put_recursion_context(rctx);
9460 fail:
9461 	preempt_enable_notrace();
9462 }
9463 
9464 static void perf_swevent_read(struct perf_event *event)
9465 {
9466 }
9467 
9468 static int perf_swevent_add(struct perf_event *event, int flags)
9469 {
9470 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9471 	struct hw_perf_event *hwc = &event->hw;
9472 	struct hlist_head *head;
9473 
9474 	if (is_sampling_event(event)) {
9475 		hwc->last_period = hwc->sample_period;
9476 		perf_swevent_set_period(event);
9477 	}
9478 
9479 	hwc->state = !(flags & PERF_EF_START);
9480 
9481 	head = find_swevent_head(swhash, event);
9482 	if (WARN_ON_ONCE(!head))
9483 		return -EINVAL;
9484 
9485 	hlist_add_head_rcu(&event->hlist_entry, head);
9486 	perf_event_update_userpage(event);
9487 
9488 	return 0;
9489 }
9490 
9491 static void perf_swevent_del(struct perf_event *event, int flags)
9492 {
9493 	hlist_del_rcu(&event->hlist_entry);
9494 }
9495 
9496 static void perf_swevent_start(struct perf_event *event, int flags)
9497 {
9498 	event->hw.state = 0;
9499 }
9500 
9501 static void perf_swevent_stop(struct perf_event *event, int flags)
9502 {
9503 	event->hw.state = PERF_HES_STOPPED;
9504 }
9505 
9506 /* Deref the hlist from the update side */
9507 static inline struct swevent_hlist *
9508 swevent_hlist_deref(struct swevent_htable *swhash)
9509 {
9510 	return rcu_dereference_protected(swhash->swevent_hlist,
9511 					 lockdep_is_held(&swhash->hlist_mutex));
9512 }
9513 
9514 static void swevent_hlist_release(struct swevent_htable *swhash)
9515 {
9516 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9517 
9518 	if (!hlist)
9519 		return;
9520 
9521 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9522 	kfree_rcu(hlist, rcu_head);
9523 }
9524 
9525 static void swevent_hlist_put_cpu(int cpu)
9526 {
9527 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9528 
9529 	mutex_lock(&swhash->hlist_mutex);
9530 
9531 	if (!--swhash->hlist_refcount)
9532 		swevent_hlist_release(swhash);
9533 
9534 	mutex_unlock(&swhash->hlist_mutex);
9535 }
9536 
9537 static void swevent_hlist_put(void)
9538 {
9539 	int cpu;
9540 
9541 	for_each_possible_cpu(cpu)
9542 		swevent_hlist_put_cpu(cpu);
9543 }
9544 
9545 static int swevent_hlist_get_cpu(int cpu)
9546 {
9547 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9548 	int err = 0;
9549 
9550 	mutex_lock(&swhash->hlist_mutex);
9551 	if (!swevent_hlist_deref(swhash) &&
9552 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9553 		struct swevent_hlist *hlist;
9554 
9555 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9556 		if (!hlist) {
9557 			err = -ENOMEM;
9558 			goto exit;
9559 		}
9560 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9561 	}
9562 	swhash->hlist_refcount++;
9563 exit:
9564 	mutex_unlock(&swhash->hlist_mutex);
9565 
9566 	return err;
9567 }
9568 
9569 static int swevent_hlist_get(void)
9570 {
9571 	int err, cpu, failed_cpu;
9572 
9573 	mutex_lock(&pmus_lock);
9574 	for_each_possible_cpu(cpu) {
9575 		err = swevent_hlist_get_cpu(cpu);
9576 		if (err) {
9577 			failed_cpu = cpu;
9578 			goto fail;
9579 		}
9580 	}
9581 	mutex_unlock(&pmus_lock);
9582 	return 0;
9583 fail:
9584 	for_each_possible_cpu(cpu) {
9585 		if (cpu == failed_cpu)
9586 			break;
9587 		swevent_hlist_put_cpu(cpu);
9588 	}
9589 	mutex_unlock(&pmus_lock);
9590 	return err;
9591 }
9592 
9593 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9594 
9595 static void sw_perf_event_destroy(struct perf_event *event)
9596 {
9597 	u64 event_id = event->attr.config;
9598 
9599 	WARN_ON(event->parent);
9600 
9601 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9602 	swevent_hlist_put();
9603 }
9604 
9605 static int perf_swevent_init(struct perf_event *event)
9606 {
9607 	u64 event_id = event->attr.config;
9608 
9609 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9610 		return -ENOENT;
9611 
9612 	/*
9613 	 * no branch sampling for software events
9614 	 */
9615 	if (has_branch_stack(event))
9616 		return -EOPNOTSUPP;
9617 
9618 	switch (event_id) {
9619 	case PERF_COUNT_SW_CPU_CLOCK:
9620 	case PERF_COUNT_SW_TASK_CLOCK:
9621 		return -ENOENT;
9622 
9623 	default:
9624 		break;
9625 	}
9626 
9627 	if (event_id >= PERF_COUNT_SW_MAX)
9628 		return -ENOENT;
9629 
9630 	if (!event->parent) {
9631 		int err;
9632 
9633 		err = swevent_hlist_get();
9634 		if (err)
9635 			return err;
9636 
9637 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9638 		event->destroy = sw_perf_event_destroy;
9639 	}
9640 
9641 	return 0;
9642 }
9643 
9644 static struct pmu perf_swevent = {
9645 	.task_ctx_nr	= perf_sw_context,
9646 
9647 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9648 
9649 	.event_init	= perf_swevent_init,
9650 	.add		= perf_swevent_add,
9651 	.del		= perf_swevent_del,
9652 	.start		= perf_swevent_start,
9653 	.stop		= perf_swevent_stop,
9654 	.read		= perf_swevent_read,
9655 };
9656 
9657 #ifdef CONFIG_EVENT_TRACING
9658 
9659 static int perf_tp_filter_match(struct perf_event *event,
9660 				struct perf_sample_data *data)
9661 {
9662 	void *record = data->raw->frag.data;
9663 
9664 	/* only top level events have filters set */
9665 	if (event->parent)
9666 		event = event->parent;
9667 
9668 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9669 		return 1;
9670 	return 0;
9671 }
9672 
9673 static int perf_tp_event_match(struct perf_event *event,
9674 				struct perf_sample_data *data,
9675 				struct pt_regs *regs)
9676 {
9677 	if (event->hw.state & PERF_HES_STOPPED)
9678 		return 0;
9679 	/*
9680 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9681 	 */
9682 	if (event->attr.exclude_kernel && !user_mode(regs))
9683 		return 0;
9684 
9685 	if (!perf_tp_filter_match(event, data))
9686 		return 0;
9687 
9688 	return 1;
9689 }
9690 
9691 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9692 			       struct trace_event_call *call, u64 count,
9693 			       struct pt_regs *regs, struct hlist_head *head,
9694 			       struct task_struct *task)
9695 {
9696 	if (bpf_prog_array_valid(call)) {
9697 		*(struct pt_regs **)raw_data = regs;
9698 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9699 			perf_swevent_put_recursion_context(rctx);
9700 			return;
9701 		}
9702 	}
9703 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9704 		      rctx, task);
9705 }
9706 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9707 
9708 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9709 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9710 		   struct task_struct *task)
9711 {
9712 	struct perf_sample_data data;
9713 	struct perf_event *event;
9714 
9715 	struct perf_raw_record raw = {
9716 		.frag = {
9717 			.size = entry_size,
9718 			.data = record,
9719 		},
9720 	};
9721 
9722 	perf_sample_data_init(&data, 0, 0);
9723 	data.raw = &raw;
9724 
9725 	perf_trace_buf_update(record, event_type);
9726 
9727 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9728 		if (perf_tp_event_match(event, &data, regs))
9729 			perf_swevent_event(event, count, &data, regs);
9730 	}
9731 
9732 	/*
9733 	 * If we got specified a target task, also iterate its context and
9734 	 * deliver this event there too.
9735 	 */
9736 	if (task && task != current) {
9737 		struct perf_event_context *ctx;
9738 		struct trace_entry *entry = record;
9739 
9740 		rcu_read_lock();
9741 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9742 		if (!ctx)
9743 			goto unlock;
9744 
9745 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9746 			if (event->cpu != smp_processor_id())
9747 				continue;
9748 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9749 				continue;
9750 			if (event->attr.config != entry->type)
9751 				continue;
9752 			/* Cannot deliver synchronous signal to other task. */
9753 			if (event->attr.sigtrap)
9754 				continue;
9755 			if (perf_tp_event_match(event, &data, regs))
9756 				perf_swevent_event(event, count, &data, regs);
9757 		}
9758 unlock:
9759 		rcu_read_unlock();
9760 	}
9761 
9762 	perf_swevent_put_recursion_context(rctx);
9763 }
9764 EXPORT_SYMBOL_GPL(perf_tp_event);
9765 
9766 static void tp_perf_event_destroy(struct perf_event *event)
9767 {
9768 	perf_trace_destroy(event);
9769 }
9770 
9771 static int perf_tp_event_init(struct perf_event *event)
9772 {
9773 	int err;
9774 
9775 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9776 		return -ENOENT;
9777 
9778 	/*
9779 	 * no branch sampling for tracepoint events
9780 	 */
9781 	if (has_branch_stack(event))
9782 		return -EOPNOTSUPP;
9783 
9784 	err = perf_trace_init(event);
9785 	if (err)
9786 		return err;
9787 
9788 	event->destroy = tp_perf_event_destroy;
9789 
9790 	return 0;
9791 }
9792 
9793 static struct pmu perf_tracepoint = {
9794 	.task_ctx_nr	= perf_sw_context,
9795 
9796 	.event_init	= perf_tp_event_init,
9797 	.add		= perf_trace_add,
9798 	.del		= perf_trace_del,
9799 	.start		= perf_swevent_start,
9800 	.stop		= perf_swevent_stop,
9801 	.read		= perf_swevent_read,
9802 };
9803 
9804 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9805 /*
9806  * Flags in config, used by dynamic PMU kprobe and uprobe
9807  * The flags should match following PMU_FORMAT_ATTR().
9808  *
9809  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9810  *                               if not set, create kprobe/uprobe
9811  *
9812  * The following values specify a reference counter (or semaphore in the
9813  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9814  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9815  *
9816  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9817  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9818  */
9819 enum perf_probe_config {
9820 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9821 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9822 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9823 };
9824 
9825 PMU_FORMAT_ATTR(retprobe, "config:0");
9826 #endif
9827 
9828 #ifdef CONFIG_KPROBE_EVENTS
9829 static struct attribute *kprobe_attrs[] = {
9830 	&format_attr_retprobe.attr,
9831 	NULL,
9832 };
9833 
9834 static struct attribute_group kprobe_format_group = {
9835 	.name = "format",
9836 	.attrs = kprobe_attrs,
9837 };
9838 
9839 static const struct attribute_group *kprobe_attr_groups[] = {
9840 	&kprobe_format_group,
9841 	NULL,
9842 };
9843 
9844 static int perf_kprobe_event_init(struct perf_event *event);
9845 static struct pmu perf_kprobe = {
9846 	.task_ctx_nr	= perf_sw_context,
9847 	.event_init	= perf_kprobe_event_init,
9848 	.add		= perf_trace_add,
9849 	.del		= perf_trace_del,
9850 	.start		= perf_swevent_start,
9851 	.stop		= perf_swevent_stop,
9852 	.read		= perf_swevent_read,
9853 	.attr_groups	= kprobe_attr_groups,
9854 };
9855 
9856 static int perf_kprobe_event_init(struct perf_event *event)
9857 {
9858 	int err;
9859 	bool is_retprobe;
9860 
9861 	if (event->attr.type != perf_kprobe.type)
9862 		return -ENOENT;
9863 
9864 	if (!perfmon_capable())
9865 		return -EACCES;
9866 
9867 	/*
9868 	 * no branch sampling for probe events
9869 	 */
9870 	if (has_branch_stack(event))
9871 		return -EOPNOTSUPP;
9872 
9873 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9874 	err = perf_kprobe_init(event, is_retprobe);
9875 	if (err)
9876 		return err;
9877 
9878 	event->destroy = perf_kprobe_destroy;
9879 
9880 	return 0;
9881 }
9882 #endif /* CONFIG_KPROBE_EVENTS */
9883 
9884 #ifdef CONFIG_UPROBE_EVENTS
9885 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9886 
9887 static struct attribute *uprobe_attrs[] = {
9888 	&format_attr_retprobe.attr,
9889 	&format_attr_ref_ctr_offset.attr,
9890 	NULL,
9891 };
9892 
9893 static struct attribute_group uprobe_format_group = {
9894 	.name = "format",
9895 	.attrs = uprobe_attrs,
9896 };
9897 
9898 static const struct attribute_group *uprobe_attr_groups[] = {
9899 	&uprobe_format_group,
9900 	NULL,
9901 };
9902 
9903 static int perf_uprobe_event_init(struct perf_event *event);
9904 static struct pmu perf_uprobe = {
9905 	.task_ctx_nr	= perf_sw_context,
9906 	.event_init	= perf_uprobe_event_init,
9907 	.add		= perf_trace_add,
9908 	.del		= perf_trace_del,
9909 	.start		= perf_swevent_start,
9910 	.stop		= perf_swevent_stop,
9911 	.read		= perf_swevent_read,
9912 	.attr_groups	= uprobe_attr_groups,
9913 };
9914 
9915 static int perf_uprobe_event_init(struct perf_event *event)
9916 {
9917 	int err;
9918 	unsigned long ref_ctr_offset;
9919 	bool is_retprobe;
9920 
9921 	if (event->attr.type != perf_uprobe.type)
9922 		return -ENOENT;
9923 
9924 	if (!perfmon_capable())
9925 		return -EACCES;
9926 
9927 	/*
9928 	 * no branch sampling for probe events
9929 	 */
9930 	if (has_branch_stack(event))
9931 		return -EOPNOTSUPP;
9932 
9933 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9934 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9935 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9936 	if (err)
9937 		return err;
9938 
9939 	event->destroy = perf_uprobe_destroy;
9940 
9941 	return 0;
9942 }
9943 #endif /* CONFIG_UPROBE_EVENTS */
9944 
9945 static inline void perf_tp_register(void)
9946 {
9947 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9948 #ifdef CONFIG_KPROBE_EVENTS
9949 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9950 #endif
9951 #ifdef CONFIG_UPROBE_EVENTS
9952 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9953 #endif
9954 }
9955 
9956 static void perf_event_free_filter(struct perf_event *event)
9957 {
9958 	ftrace_profile_free_filter(event);
9959 }
9960 
9961 #ifdef CONFIG_BPF_SYSCALL
9962 static void bpf_overflow_handler(struct perf_event *event,
9963 				 struct perf_sample_data *data,
9964 				 struct pt_regs *regs)
9965 {
9966 	struct bpf_perf_event_data_kern ctx = {
9967 		.data = data,
9968 		.event = event,
9969 	};
9970 	struct bpf_prog *prog;
9971 	int ret = 0;
9972 
9973 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9974 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9975 		goto out;
9976 	rcu_read_lock();
9977 	prog = READ_ONCE(event->prog);
9978 	if (prog)
9979 		ret = bpf_prog_run(prog, &ctx);
9980 	rcu_read_unlock();
9981 out:
9982 	__this_cpu_dec(bpf_prog_active);
9983 	if (!ret)
9984 		return;
9985 
9986 	event->orig_overflow_handler(event, data, regs);
9987 }
9988 
9989 static int perf_event_set_bpf_handler(struct perf_event *event,
9990 				      struct bpf_prog *prog,
9991 				      u64 bpf_cookie)
9992 {
9993 	if (event->overflow_handler_context)
9994 		/* hw breakpoint or kernel counter */
9995 		return -EINVAL;
9996 
9997 	if (event->prog)
9998 		return -EEXIST;
9999 
10000 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10001 		return -EINVAL;
10002 
10003 	if (event->attr.precise_ip &&
10004 	    prog->call_get_stack &&
10005 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10006 	     event->attr.exclude_callchain_kernel ||
10007 	     event->attr.exclude_callchain_user)) {
10008 		/*
10009 		 * On perf_event with precise_ip, calling bpf_get_stack()
10010 		 * may trigger unwinder warnings and occasional crashes.
10011 		 * bpf_get_[stack|stackid] works around this issue by using
10012 		 * callchain attached to perf_sample_data. If the
10013 		 * perf_event does not full (kernel and user) callchain
10014 		 * attached to perf_sample_data, do not allow attaching BPF
10015 		 * program that calls bpf_get_[stack|stackid].
10016 		 */
10017 		return -EPROTO;
10018 	}
10019 
10020 	event->prog = prog;
10021 	event->bpf_cookie = bpf_cookie;
10022 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10023 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10024 	return 0;
10025 }
10026 
10027 static void perf_event_free_bpf_handler(struct perf_event *event)
10028 {
10029 	struct bpf_prog *prog = event->prog;
10030 
10031 	if (!prog)
10032 		return;
10033 
10034 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10035 	event->prog = NULL;
10036 	bpf_prog_put(prog);
10037 }
10038 #else
10039 static int perf_event_set_bpf_handler(struct perf_event *event,
10040 				      struct bpf_prog *prog,
10041 				      u64 bpf_cookie)
10042 {
10043 	return -EOPNOTSUPP;
10044 }
10045 static void perf_event_free_bpf_handler(struct perf_event *event)
10046 {
10047 }
10048 #endif
10049 
10050 /*
10051  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10052  * with perf_event_open()
10053  */
10054 static inline bool perf_event_is_tracing(struct perf_event *event)
10055 {
10056 	if (event->pmu == &perf_tracepoint)
10057 		return true;
10058 #ifdef CONFIG_KPROBE_EVENTS
10059 	if (event->pmu == &perf_kprobe)
10060 		return true;
10061 #endif
10062 #ifdef CONFIG_UPROBE_EVENTS
10063 	if (event->pmu == &perf_uprobe)
10064 		return true;
10065 #endif
10066 	return false;
10067 }
10068 
10069 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10070 			    u64 bpf_cookie)
10071 {
10072 	bool is_kprobe, is_tracepoint, is_syscall_tp;
10073 
10074 	if (!perf_event_is_tracing(event))
10075 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10076 
10077 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10078 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10079 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10080 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10081 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10082 		return -EINVAL;
10083 
10084 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10085 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10086 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10087 		return -EINVAL;
10088 
10089 	/* Kprobe override only works for kprobes, not uprobes. */
10090 	if (prog->kprobe_override &&
10091 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10092 		return -EINVAL;
10093 
10094 	if (is_tracepoint || is_syscall_tp) {
10095 		int off = trace_event_get_offsets(event->tp_event);
10096 
10097 		if (prog->aux->max_ctx_offset > off)
10098 			return -EACCES;
10099 	}
10100 
10101 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10102 }
10103 
10104 void perf_event_free_bpf_prog(struct perf_event *event)
10105 {
10106 	if (!perf_event_is_tracing(event)) {
10107 		perf_event_free_bpf_handler(event);
10108 		return;
10109 	}
10110 	perf_event_detach_bpf_prog(event);
10111 }
10112 
10113 #else
10114 
10115 static inline void perf_tp_register(void)
10116 {
10117 }
10118 
10119 static void perf_event_free_filter(struct perf_event *event)
10120 {
10121 }
10122 
10123 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10124 			    u64 bpf_cookie)
10125 {
10126 	return -ENOENT;
10127 }
10128 
10129 void perf_event_free_bpf_prog(struct perf_event *event)
10130 {
10131 }
10132 #endif /* CONFIG_EVENT_TRACING */
10133 
10134 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10135 void perf_bp_event(struct perf_event *bp, void *data)
10136 {
10137 	struct perf_sample_data sample;
10138 	struct pt_regs *regs = data;
10139 
10140 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10141 
10142 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10143 		perf_swevent_event(bp, 1, &sample, regs);
10144 }
10145 #endif
10146 
10147 /*
10148  * Allocate a new address filter
10149  */
10150 static struct perf_addr_filter *
10151 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10152 {
10153 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10154 	struct perf_addr_filter *filter;
10155 
10156 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10157 	if (!filter)
10158 		return NULL;
10159 
10160 	INIT_LIST_HEAD(&filter->entry);
10161 	list_add_tail(&filter->entry, filters);
10162 
10163 	return filter;
10164 }
10165 
10166 static void free_filters_list(struct list_head *filters)
10167 {
10168 	struct perf_addr_filter *filter, *iter;
10169 
10170 	list_for_each_entry_safe(filter, iter, filters, entry) {
10171 		path_put(&filter->path);
10172 		list_del(&filter->entry);
10173 		kfree(filter);
10174 	}
10175 }
10176 
10177 /*
10178  * Free existing address filters and optionally install new ones
10179  */
10180 static void perf_addr_filters_splice(struct perf_event *event,
10181 				     struct list_head *head)
10182 {
10183 	unsigned long flags;
10184 	LIST_HEAD(list);
10185 
10186 	if (!has_addr_filter(event))
10187 		return;
10188 
10189 	/* don't bother with children, they don't have their own filters */
10190 	if (event->parent)
10191 		return;
10192 
10193 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10194 
10195 	list_splice_init(&event->addr_filters.list, &list);
10196 	if (head)
10197 		list_splice(head, &event->addr_filters.list);
10198 
10199 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10200 
10201 	free_filters_list(&list);
10202 }
10203 
10204 /*
10205  * Scan through mm's vmas and see if one of them matches the
10206  * @filter; if so, adjust filter's address range.
10207  * Called with mm::mmap_lock down for reading.
10208  */
10209 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10210 				   struct mm_struct *mm,
10211 				   struct perf_addr_filter_range *fr)
10212 {
10213 	struct vm_area_struct *vma;
10214 
10215 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10216 		if (!vma->vm_file)
10217 			continue;
10218 
10219 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10220 			return;
10221 	}
10222 }
10223 
10224 /*
10225  * Update event's address range filters based on the
10226  * task's existing mappings, if any.
10227  */
10228 static void perf_event_addr_filters_apply(struct perf_event *event)
10229 {
10230 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10231 	struct task_struct *task = READ_ONCE(event->ctx->task);
10232 	struct perf_addr_filter *filter;
10233 	struct mm_struct *mm = NULL;
10234 	unsigned int count = 0;
10235 	unsigned long flags;
10236 
10237 	/*
10238 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10239 	 * will stop on the parent's child_mutex that our caller is also holding
10240 	 */
10241 	if (task == TASK_TOMBSTONE)
10242 		return;
10243 
10244 	if (ifh->nr_file_filters) {
10245 		mm = get_task_mm(task);
10246 		if (!mm)
10247 			goto restart;
10248 
10249 		mmap_read_lock(mm);
10250 	}
10251 
10252 	raw_spin_lock_irqsave(&ifh->lock, flags);
10253 	list_for_each_entry(filter, &ifh->list, entry) {
10254 		if (filter->path.dentry) {
10255 			/*
10256 			 * Adjust base offset if the filter is associated to a
10257 			 * binary that needs to be mapped:
10258 			 */
10259 			event->addr_filter_ranges[count].start = 0;
10260 			event->addr_filter_ranges[count].size = 0;
10261 
10262 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10263 		} else {
10264 			event->addr_filter_ranges[count].start = filter->offset;
10265 			event->addr_filter_ranges[count].size  = filter->size;
10266 		}
10267 
10268 		count++;
10269 	}
10270 
10271 	event->addr_filters_gen++;
10272 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10273 
10274 	if (ifh->nr_file_filters) {
10275 		mmap_read_unlock(mm);
10276 
10277 		mmput(mm);
10278 	}
10279 
10280 restart:
10281 	perf_event_stop(event, 1);
10282 }
10283 
10284 /*
10285  * Address range filtering: limiting the data to certain
10286  * instruction address ranges. Filters are ioctl()ed to us from
10287  * userspace as ascii strings.
10288  *
10289  * Filter string format:
10290  *
10291  * ACTION RANGE_SPEC
10292  * where ACTION is one of the
10293  *  * "filter": limit the trace to this region
10294  *  * "start": start tracing from this address
10295  *  * "stop": stop tracing at this address/region;
10296  * RANGE_SPEC is
10297  *  * for kernel addresses: <start address>[/<size>]
10298  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10299  *
10300  * if <size> is not specified or is zero, the range is treated as a single
10301  * address; not valid for ACTION=="filter".
10302  */
10303 enum {
10304 	IF_ACT_NONE = -1,
10305 	IF_ACT_FILTER,
10306 	IF_ACT_START,
10307 	IF_ACT_STOP,
10308 	IF_SRC_FILE,
10309 	IF_SRC_KERNEL,
10310 	IF_SRC_FILEADDR,
10311 	IF_SRC_KERNELADDR,
10312 };
10313 
10314 enum {
10315 	IF_STATE_ACTION = 0,
10316 	IF_STATE_SOURCE,
10317 	IF_STATE_END,
10318 };
10319 
10320 static const match_table_t if_tokens = {
10321 	{ IF_ACT_FILTER,	"filter" },
10322 	{ IF_ACT_START,		"start" },
10323 	{ IF_ACT_STOP,		"stop" },
10324 	{ IF_SRC_FILE,		"%u/%u@%s" },
10325 	{ IF_SRC_KERNEL,	"%u/%u" },
10326 	{ IF_SRC_FILEADDR,	"%u@%s" },
10327 	{ IF_SRC_KERNELADDR,	"%u" },
10328 	{ IF_ACT_NONE,		NULL },
10329 };
10330 
10331 /*
10332  * Address filter string parser
10333  */
10334 static int
10335 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10336 			     struct list_head *filters)
10337 {
10338 	struct perf_addr_filter *filter = NULL;
10339 	char *start, *orig, *filename = NULL;
10340 	substring_t args[MAX_OPT_ARGS];
10341 	int state = IF_STATE_ACTION, token;
10342 	unsigned int kernel = 0;
10343 	int ret = -EINVAL;
10344 
10345 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10346 	if (!fstr)
10347 		return -ENOMEM;
10348 
10349 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10350 		static const enum perf_addr_filter_action_t actions[] = {
10351 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10352 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10353 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10354 		};
10355 		ret = -EINVAL;
10356 
10357 		if (!*start)
10358 			continue;
10359 
10360 		/* filter definition begins */
10361 		if (state == IF_STATE_ACTION) {
10362 			filter = perf_addr_filter_new(event, filters);
10363 			if (!filter)
10364 				goto fail;
10365 		}
10366 
10367 		token = match_token(start, if_tokens, args);
10368 		switch (token) {
10369 		case IF_ACT_FILTER:
10370 		case IF_ACT_START:
10371 		case IF_ACT_STOP:
10372 			if (state != IF_STATE_ACTION)
10373 				goto fail;
10374 
10375 			filter->action = actions[token];
10376 			state = IF_STATE_SOURCE;
10377 			break;
10378 
10379 		case IF_SRC_KERNELADDR:
10380 		case IF_SRC_KERNEL:
10381 			kernel = 1;
10382 			fallthrough;
10383 
10384 		case IF_SRC_FILEADDR:
10385 		case IF_SRC_FILE:
10386 			if (state != IF_STATE_SOURCE)
10387 				goto fail;
10388 
10389 			*args[0].to = 0;
10390 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10391 			if (ret)
10392 				goto fail;
10393 
10394 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10395 				*args[1].to = 0;
10396 				ret = kstrtoul(args[1].from, 0, &filter->size);
10397 				if (ret)
10398 					goto fail;
10399 			}
10400 
10401 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10402 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10403 
10404 				kfree(filename);
10405 				filename = match_strdup(&args[fpos]);
10406 				if (!filename) {
10407 					ret = -ENOMEM;
10408 					goto fail;
10409 				}
10410 			}
10411 
10412 			state = IF_STATE_END;
10413 			break;
10414 
10415 		default:
10416 			goto fail;
10417 		}
10418 
10419 		/*
10420 		 * Filter definition is fully parsed, validate and install it.
10421 		 * Make sure that it doesn't contradict itself or the event's
10422 		 * attribute.
10423 		 */
10424 		if (state == IF_STATE_END) {
10425 			ret = -EINVAL;
10426 
10427 			/*
10428 			 * ACTION "filter" must have a non-zero length region
10429 			 * specified.
10430 			 */
10431 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10432 			    !filter->size)
10433 				goto fail;
10434 
10435 			if (!kernel) {
10436 				if (!filename)
10437 					goto fail;
10438 
10439 				/*
10440 				 * For now, we only support file-based filters
10441 				 * in per-task events; doing so for CPU-wide
10442 				 * events requires additional context switching
10443 				 * trickery, since same object code will be
10444 				 * mapped at different virtual addresses in
10445 				 * different processes.
10446 				 */
10447 				ret = -EOPNOTSUPP;
10448 				if (!event->ctx->task)
10449 					goto fail;
10450 
10451 				/* look up the path and grab its inode */
10452 				ret = kern_path(filename, LOOKUP_FOLLOW,
10453 						&filter->path);
10454 				if (ret)
10455 					goto fail;
10456 
10457 				ret = -EINVAL;
10458 				if (!filter->path.dentry ||
10459 				    !S_ISREG(d_inode(filter->path.dentry)
10460 					     ->i_mode))
10461 					goto fail;
10462 
10463 				event->addr_filters.nr_file_filters++;
10464 			}
10465 
10466 			/* ready to consume more filters */
10467 			kfree(filename);
10468 			filename = NULL;
10469 			state = IF_STATE_ACTION;
10470 			filter = NULL;
10471 			kernel = 0;
10472 		}
10473 	}
10474 
10475 	if (state != IF_STATE_ACTION)
10476 		goto fail;
10477 
10478 	kfree(filename);
10479 	kfree(orig);
10480 
10481 	return 0;
10482 
10483 fail:
10484 	kfree(filename);
10485 	free_filters_list(filters);
10486 	kfree(orig);
10487 
10488 	return ret;
10489 }
10490 
10491 static int
10492 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10493 {
10494 	LIST_HEAD(filters);
10495 	int ret;
10496 
10497 	/*
10498 	 * Since this is called in perf_ioctl() path, we're already holding
10499 	 * ctx::mutex.
10500 	 */
10501 	lockdep_assert_held(&event->ctx->mutex);
10502 
10503 	if (WARN_ON_ONCE(event->parent))
10504 		return -EINVAL;
10505 
10506 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10507 	if (ret)
10508 		goto fail_clear_files;
10509 
10510 	ret = event->pmu->addr_filters_validate(&filters);
10511 	if (ret)
10512 		goto fail_free_filters;
10513 
10514 	/* remove existing filters, if any */
10515 	perf_addr_filters_splice(event, &filters);
10516 
10517 	/* install new filters */
10518 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10519 
10520 	return ret;
10521 
10522 fail_free_filters:
10523 	free_filters_list(&filters);
10524 
10525 fail_clear_files:
10526 	event->addr_filters.nr_file_filters = 0;
10527 
10528 	return ret;
10529 }
10530 
10531 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10532 {
10533 	int ret = -EINVAL;
10534 	char *filter_str;
10535 
10536 	filter_str = strndup_user(arg, PAGE_SIZE);
10537 	if (IS_ERR(filter_str))
10538 		return PTR_ERR(filter_str);
10539 
10540 #ifdef CONFIG_EVENT_TRACING
10541 	if (perf_event_is_tracing(event)) {
10542 		struct perf_event_context *ctx = event->ctx;
10543 
10544 		/*
10545 		 * Beware, here be dragons!!
10546 		 *
10547 		 * the tracepoint muck will deadlock against ctx->mutex, but
10548 		 * the tracepoint stuff does not actually need it. So
10549 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10550 		 * already have a reference on ctx.
10551 		 *
10552 		 * This can result in event getting moved to a different ctx,
10553 		 * but that does not affect the tracepoint state.
10554 		 */
10555 		mutex_unlock(&ctx->mutex);
10556 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10557 		mutex_lock(&ctx->mutex);
10558 	} else
10559 #endif
10560 	if (has_addr_filter(event))
10561 		ret = perf_event_set_addr_filter(event, filter_str);
10562 
10563 	kfree(filter_str);
10564 	return ret;
10565 }
10566 
10567 /*
10568  * hrtimer based swevent callback
10569  */
10570 
10571 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10572 {
10573 	enum hrtimer_restart ret = HRTIMER_RESTART;
10574 	struct perf_sample_data data;
10575 	struct pt_regs *regs;
10576 	struct perf_event *event;
10577 	u64 period;
10578 
10579 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10580 
10581 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10582 		return HRTIMER_NORESTART;
10583 
10584 	event->pmu->read(event);
10585 
10586 	perf_sample_data_init(&data, 0, event->hw.last_period);
10587 	regs = get_irq_regs();
10588 
10589 	if (regs && !perf_exclude_event(event, regs)) {
10590 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10591 			if (__perf_event_overflow(event, 1, &data, regs))
10592 				ret = HRTIMER_NORESTART;
10593 	}
10594 
10595 	period = max_t(u64, 10000, event->hw.sample_period);
10596 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10597 
10598 	return ret;
10599 }
10600 
10601 static void perf_swevent_start_hrtimer(struct perf_event *event)
10602 {
10603 	struct hw_perf_event *hwc = &event->hw;
10604 	s64 period;
10605 
10606 	if (!is_sampling_event(event))
10607 		return;
10608 
10609 	period = local64_read(&hwc->period_left);
10610 	if (period) {
10611 		if (period < 0)
10612 			period = 10000;
10613 
10614 		local64_set(&hwc->period_left, 0);
10615 	} else {
10616 		period = max_t(u64, 10000, hwc->sample_period);
10617 	}
10618 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10619 		      HRTIMER_MODE_REL_PINNED_HARD);
10620 }
10621 
10622 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10623 {
10624 	struct hw_perf_event *hwc = &event->hw;
10625 
10626 	if (is_sampling_event(event)) {
10627 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10628 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10629 
10630 		hrtimer_cancel(&hwc->hrtimer);
10631 	}
10632 }
10633 
10634 static void perf_swevent_init_hrtimer(struct perf_event *event)
10635 {
10636 	struct hw_perf_event *hwc = &event->hw;
10637 
10638 	if (!is_sampling_event(event))
10639 		return;
10640 
10641 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10642 	hwc->hrtimer.function = perf_swevent_hrtimer;
10643 
10644 	/*
10645 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10646 	 * mapping and avoid the whole period adjust feedback stuff.
10647 	 */
10648 	if (event->attr.freq) {
10649 		long freq = event->attr.sample_freq;
10650 
10651 		event->attr.sample_period = NSEC_PER_SEC / freq;
10652 		hwc->sample_period = event->attr.sample_period;
10653 		local64_set(&hwc->period_left, hwc->sample_period);
10654 		hwc->last_period = hwc->sample_period;
10655 		event->attr.freq = 0;
10656 	}
10657 }
10658 
10659 /*
10660  * Software event: cpu wall time clock
10661  */
10662 
10663 static void cpu_clock_event_update(struct perf_event *event)
10664 {
10665 	s64 prev;
10666 	u64 now;
10667 
10668 	now = local_clock();
10669 	prev = local64_xchg(&event->hw.prev_count, now);
10670 	local64_add(now - prev, &event->count);
10671 }
10672 
10673 static void cpu_clock_event_start(struct perf_event *event, int flags)
10674 {
10675 	local64_set(&event->hw.prev_count, local_clock());
10676 	perf_swevent_start_hrtimer(event);
10677 }
10678 
10679 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10680 {
10681 	perf_swevent_cancel_hrtimer(event);
10682 	cpu_clock_event_update(event);
10683 }
10684 
10685 static int cpu_clock_event_add(struct perf_event *event, int flags)
10686 {
10687 	if (flags & PERF_EF_START)
10688 		cpu_clock_event_start(event, flags);
10689 	perf_event_update_userpage(event);
10690 
10691 	return 0;
10692 }
10693 
10694 static void cpu_clock_event_del(struct perf_event *event, int flags)
10695 {
10696 	cpu_clock_event_stop(event, flags);
10697 }
10698 
10699 static void cpu_clock_event_read(struct perf_event *event)
10700 {
10701 	cpu_clock_event_update(event);
10702 }
10703 
10704 static int cpu_clock_event_init(struct perf_event *event)
10705 {
10706 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10707 		return -ENOENT;
10708 
10709 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10710 		return -ENOENT;
10711 
10712 	/*
10713 	 * no branch sampling for software events
10714 	 */
10715 	if (has_branch_stack(event))
10716 		return -EOPNOTSUPP;
10717 
10718 	perf_swevent_init_hrtimer(event);
10719 
10720 	return 0;
10721 }
10722 
10723 static struct pmu perf_cpu_clock = {
10724 	.task_ctx_nr	= perf_sw_context,
10725 
10726 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10727 
10728 	.event_init	= cpu_clock_event_init,
10729 	.add		= cpu_clock_event_add,
10730 	.del		= cpu_clock_event_del,
10731 	.start		= cpu_clock_event_start,
10732 	.stop		= cpu_clock_event_stop,
10733 	.read		= cpu_clock_event_read,
10734 };
10735 
10736 /*
10737  * Software event: task time clock
10738  */
10739 
10740 static void task_clock_event_update(struct perf_event *event, u64 now)
10741 {
10742 	u64 prev;
10743 	s64 delta;
10744 
10745 	prev = local64_xchg(&event->hw.prev_count, now);
10746 	delta = now - prev;
10747 	local64_add(delta, &event->count);
10748 }
10749 
10750 static void task_clock_event_start(struct perf_event *event, int flags)
10751 {
10752 	local64_set(&event->hw.prev_count, event->ctx->time);
10753 	perf_swevent_start_hrtimer(event);
10754 }
10755 
10756 static void task_clock_event_stop(struct perf_event *event, int flags)
10757 {
10758 	perf_swevent_cancel_hrtimer(event);
10759 	task_clock_event_update(event, event->ctx->time);
10760 }
10761 
10762 static int task_clock_event_add(struct perf_event *event, int flags)
10763 {
10764 	if (flags & PERF_EF_START)
10765 		task_clock_event_start(event, flags);
10766 	perf_event_update_userpage(event);
10767 
10768 	return 0;
10769 }
10770 
10771 static void task_clock_event_del(struct perf_event *event, int flags)
10772 {
10773 	task_clock_event_stop(event, PERF_EF_UPDATE);
10774 }
10775 
10776 static void task_clock_event_read(struct perf_event *event)
10777 {
10778 	u64 now = perf_clock();
10779 	u64 delta = now - event->ctx->timestamp;
10780 	u64 time = event->ctx->time + delta;
10781 
10782 	task_clock_event_update(event, time);
10783 }
10784 
10785 static int task_clock_event_init(struct perf_event *event)
10786 {
10787 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10788 		return -ENOENT;
10789 
10790 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10791 		return -ENOENT;
10792 
10793 	/*
10794 	 * no branch sampling for software events
10795 	 */
10796 	if (has_branch_stack(event))
10797 		return -EOPNOTSUPP;
10798 
10799 	perf_swevent_init_hrtimer(event);
10800 
10801 	return 0;
10802 }
10803 
10804 static struct pmu perf_task_clock = {
10805 	.task_ctx_nr	= perf_sw_context,
10806 
10807 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10808 
10809 	.event_init	= task_clock_event_init,
10810 	.add		= task_clock_event_add,
10811 	.del		= task_clock_event_del,
10812 	.start		= task_clock_event_start,
10813 	.stop		= task_clock_event_stop,
10814 	.read		= task_clock_event_read,
10815 };
10816 
10817 static void perf_pmu_nop_void(struct pmu *pmu)
10818 {
10819 }
10820 
10821 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10822 {
10823 }
10824 
10825 static int perf_pmu_nop_int(struct pmu *pmu)
10826 {
10827 	return 0;
10828 }
10829 
10830 static int perf_event_nop_int(struct perf_event *event, u64 value)
10831 {
10832 	return 0;
10833 }
10834 
10835 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10836 
10837 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10838 {
10839 	__this_cpu_write(nop_txn_flags, flags);
10840 
10841 	if (flags & ~PERF_PMU_TXN_ADD)
10842 		return;
10843 
10844 	perf_pmu_disable(pmu);
10845 }
10846 
10847 static int perf_pmu_commit_txn(struct pmu *pmu)
10848 {
10849 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10850 
10851 	__this_cpu_write(nop_txn_flags, 0);
10852 
10853 	if (flags & ~PERF_PMU_TXN_ADD)
10854 		return 0;
10855 
10856 	perf_pmu_enable(pmu);
10857 	return 0;
10858 }
10859 
10860 static void perf_pmu_cancel_txn(struct pmu *pmu)
10861 {
10862 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10863 
10864 	__this_cpu_write(nop_txn_flags, 0);
10865 
10866 	if (flags & ~PERF_PMU_TXN_ADD)
10867 		return;
10868 
10869 	perf_pmu_enable(pmu);
10870 }
10871 
10872 static int perf_event_idx_default(struct perf_event *event)
10873 {
10874 	return 0;
10875 }
10876 
10877 /*
10878  * Ensures all contexts with the same task_ctx_nr have the same
10879  * pmu_cpu_context too.
10880  */
10881 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10882 {
10883 	struct pmu *pmu;
10884 
10885 	if (ctxn < 0)
10886 		return NULL;
10887 
10888 	list_for_each_entry(pmu, &pmus, entry) {
10889 		if (pmu->task_ctx_nr == ctxn)
10890 			return pmu->pmu_cpu_context;
10891 	}
10892 
10893 	return NULL;
10894 }
10895 
10896 static void free_pmu_context(struct pmu *pmu)
10897 {
10898 	/*
10899 	 * Static contexts such as perf_sw_context have a global lifetime
10900 	 * and may be shared between different PMUs. Avoid freeing them
10901 	 * when a single PMU is going away.
10902 	 */
10903 	if (pmu->task_ctx_nr > perf_invalid_context)
10904 		return;
10905 
10906 	free_percpu(pmu->pmu_cpu_context);
10907 }
10908 
10909 /*
10910  * Let userspace know that this PMU supports address range filtering:
10911  */
10912 static ssize_t nr_addr_filters_show(struct device *dev,
10913 				    struct device_attribute *attr,
10914 				    char *page)
10915 {
10916 	struct pmu *pmu = dev_get_drvdata(dev);
10917 
10918 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10919 }
10920 DEVICE_ATTR_RO(nr_addr_filters);
10921 
10922 static struct idr pmu_idr;
10923 
10924 static ssize_t
10925 type_show(struct device *dev, struct device_attribute *attr, char *page)
10926 {
10927 	struct pmu *pmu = dev_get_drvdata(dev);
10928 
10929 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10930 }
10931 static DEVICE_ATTR_RO(type);
10932 
10933 static ssize_t
10934 perf_event_mux_interval_ms_show(struct device *dev,
10935 				struct device_attribute *attr,
10936 				char *page)
10937 {
10938 	struct pmu *pmu = dev_get_drvdata(dev);
10939 
10940 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10941 }
10942 
10943 static DEFINE_MUTEX(mux_interval_mutex);
10944 
10945 static ssize_t
10946 perf_event_mux_interval_ms_store(struct device *dev,
10947 				 struct device_attribute *attr,
10948 				 const char *buf, size_t count)
10949 {
10950 	struct pmu *pmu = dev_get_drvdata(dev);
10951 	int timer, cpu, ret;
10952 
10953 	ret = kstrtoint(buf, 0, &timer);
10954 	if (ret)
10955 		return ret;
10956 
10957 	if (timer < 1)
10958 		return -EINVAL;
10959 
10960 	/* same value, noting to do */
10961 	if (timer == pmu->hrtimer_interval_ms)
10962 		return count;
10963 
10964 	mutex_lock(&mux_interval_mutex);
10965 	pmu->hrtimer_interval_ms = timer;
10966 
10967 	/* update all cpuctx for this PMU */
10968 	cpus_read_lock();
10969 	for_each_online_cpu(cpu) {
10970 		struct perf_cpu_context *cpuctx;
10971 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10972 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10973 
10974 		cpu_function_call(cpu,
10975 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10976 	}
10977 	cpus_read_unlock();
10978 	mutex_unlock(&mux_interval_mutex);
10979 
10980 	return count;
10981 }
10982 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10983 
10984 static struct attribute *pmu_dev_attrs[] = {
10985 	&dev_attr_type.attr,
10986 	&dev_attr_perf_event_mux_interval_ms.attr,
10987 	NULL,
10988 };
10989 ATTRIBUTE_GROUPS(pmu_dev);
10990 
10991 static int pmu_bus_running;
10992 static struct bus_type pmu_bus = {
10993 	.name		= "event_source",
10994 	.dev_groups	= pmu_dev_groups,
10995 };
10996 
10997 static void pmu_dev_release(struct device *dev)
10998 {
10999 	kfree(dev);
11000 }
11001 
11002 static int pmu_dev_alloc(struct pmu *pmu)
11003 {
11004 	int ret = -ENOMEM;
11005 
11006 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11007 	if (!pmu->dev)
11008 		goto out;
11009 
11010 	pmu->dev->groups = pmu->attr_groups;
11011 	device_initialize(pmu->dev);
11012 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11013 	if (ret)
11014 		goto free_dev;
11015 
11016 	dev_set_drvdata(pmu->dev, pmu);
11017 	pmu->dev->bus = &pmu_bus;
11018 	pmu->dev->release = pmu_dev_release;
11019 	ret = device_add(pmu->dev);
11020 	if (ret)
11021 		goto free_dev;
11022 
11023 	/* For PMUs with address filters, throw in an extra attribute: */
11024 	if (pmu->nr_addr_filters)
11025 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11026 
11027 	if (ret)
11028 		goto del_dev;
11029 
11030 	if (pmu->attr_update)
11031 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11032 
11033 	if (ret)
11034 		goto del_dev;
11035 
11036 out:
11037 	return ret;
11038 
11039 del_dev:
11040 	device_del(pmu->dev);
11041 
11042 free_dev:
11043 	put_device(pmu->dev);
11044 	goto out;
11045 }
11046 
11047 static struct lock_class_key cpuctx_mutex;
11048 static struct lock_class_key cpuctx_lock;
11049 
11050 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11051 {
11052 	int cpu, ret, max = PERF_TYPE_MAX;
11053 
11054 	mutex_lock(&pmus_lock);
11055 	ret = -ENOMEM;
11056 	pmu->pmu_disable_count = alloc_percpu(int);
11057 	if (!pmu->pmu_disable_count)
11058 		goto unlock;
11059 
11060 	pmu->type = -1;
11061 	if (!name)
11062 		goto skip_type;
11063 	pmu->name = name;
11064 
11065 	if (type != PERF_TYPE_SOFTWARE) {
11066 		if (type >= 0)
11067 			max = type;
11068 
11069 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11070 		if (ret < 0)
11071 			goto free_pdc;
11072 
11073 		WARN_ON(type >= 0 && ret != type);
11074 
11075 		type = ret;
11076 	}
11077 	pmu->type = type;
11078 
11079 	if (pmu_bus_running) {
11080 		ret = pmu_dev_alloc(pmu);
11081 		if (ret)
11082 			goto free_idr;
11083 	}
11084 
11085 skip_type:
11086 	if (pmu->task_ctx_nr == perf_hw_context) {
11087 		static int hw_context_taken = 0;
11088 
11089 		/*
11090 		 * Other than systems with heterogeneous CPUs, it never makes
11091 		 * sense for two PMUs to share perf_hw_context. PMUs which are
11092 		 * uncore must use perf_invalid_context.
11093 		 */
11094 		if (WARN_ON_ONCE(hw_context_taken &&
11095 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11096 			pmu->task_ctx_nr = perf_invalid_context;
11097 
11098 		hw_context_taken = 1;
11099 	}
11100 
11101 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11102 	if (pmu->pmu_cpu_context)
11103 		goto got_cpu_context;
11104 
11105 	ret = -ENOMEM;
11106 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11107 	if (!pmu->pmu_cpu_context)
11108 		goto free_dev;
11109 
11110 	for_each_possible_cpu(cpu) {
11111 		struct perf_cpu_context *cpuctx;
11112 
11113 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11114 		__perf_event_init_context(&cpuctx->ctx);
11115 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11116 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11117 		cpuctx->ctx.pmu = pmu;
11118 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11119 
11120 		__perf_mux_hrtimer_init(cpuctx, cpu);
11121 
11122 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11123 		cpuctx->heap = cpuctx->heap_default;
11124 	}
11125 
11126 got_cpu_context:
11127 	if (!pmu->start_txn) {
11128 		if (pmu->pmu_enable) {
11129 			/*
11130 			 * If we have pmu_enable/pmu_disable calls, install
11131 			 * transaction stubs that use that to try and batch
11132 			 * hardware accesses.
11133 			 */
11134 			pmu->start_txn  = perf_pmu_start_txn;
11135 			pmu->commit_txn = perf_pmu_commit_txn;
11136 			pmu->cancel_txn = perf_pmu_cancel_txn;
11137 		} else {
11138 			pmu->start_txn  = perf_pmu_nop_txn;
11139 			pmu->commit_txn = perf_pmu_nop_int;
11140 			pmu->cancel_txn = perf_pmu_nop_void;
11141 		}
11142 	}
11143 
11144 	if (!pmu->pmu_enable) {
11145 		pmu->pmu_enable  = perf_pmu_nop_void;
11146 		pmu->pmu_disable = perf_pmu_nop_void;
11147 	}
11148 
11149 	if (!pmu->check_period)
11150 		pmu->check_period = perf_event_nop_int;
11151 
11152 	if (!pmu->event_idx)
11153 		pmu->event_idx = perf_event_idx_default;
11154 
11155 	/*
11156 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11157 	 * since these cannot be in the IDR. This way the linear search
11158 	 * is fast, provided a valid software event is provided.
11159 	 */
11160 	if (type == PERF_TYPE_SOFTWARE || !name)
11161 		list_add_rcu(&pmu->entry, &pmus);
11162 	else
11163 		list_add_tail_rcu(&pmu->entry, &pmus);
11164 
11165 	atomic_set(&pmu->exclusive_cnt, 0);
11166 	ret = 0;
11167 unlock:
11168 	mutex_unlock(&pmus_lock);
11169 
11170 	return ret;
11171 
11172 free_dev:
11173 	device_del(pmu->dev);
11174 	put_device(pmu->dev);
11175 
11176 free_idr:
11177 	if (pmu->type != PERF_TYPE_SOFTWARE)
11178 		idr_remove(&pmu_idr, pmu->type);
11179 
11180 free_pdc:
11181 	free_percpu(pmu->pmu_disable_count);
11182 	goto unlock;
11183 }
11184 EXPORT_SYMBOL_GPL(perf_pmu_register);
11185 
11186 void perf_pmu_unregister(struct pmu *pmu)
11187 {
11188 	mutex_lock(&pmus_lock);
11189 	list_del_rcu(&pmu->entry);
11190 
11191 	/*
11192 	 * We dereference the pmu list under both SRCU and regular RCU, so
11193 	 * synchronize against both of those.
11194 	 */
11195 	synchronize_srcu(&pmus_srcu);
11196 	synchronize_rcu();
11197 
11198 	free_percpu(pmu->pmu_disable_count);
11199 	if (pmu->type != PERF_TYPE_SOFTWARE)
11200 		idr_remove(&pmu_idr, pmu->type);
11201 	if (pmu_bus_running) {
11202 		if (pmu->nr_addr_filters)
11203 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11204 		device_del(pmu->dev);
11205 		put_device(pmu->dev);
11206 	}
11207 	free_pmu_context(pmu);
11208 	mutex_unlock(&pmus_lock);
11209 }
11210 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11211 
11212 static inline bool has_extended_regs(struct perf_event *event)
11213 {
11214 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11215 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11216 }
11217 
11218 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11219 {
11220 	struct perf_event_context *ctx = NULL;
11221 	int ret;
11222 
11223 	if (!try_module_get(pmu->module))
11224 		return -ENODEV;
11225 
11226 	/*
11227 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11228 	 * for example, validate if the group fits on the PMU. Therefore,
11229 	 * if this is a sibling event, acquire the ctx->mutex to protect
11230 	 * the sibling_list.
11231 	 */
11232 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11233 		/*
11234 		 * This ctx->mutex can nest when we're called through
11235 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11236 		 */
11237 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11238 						 SINGLE_DEPTH_NESTING);
11239 		BUG_ON(!ctx);
11240 	}
11241 
11242 	event->pmu = pmu;
11243 	ret = pmu->event_init(event);
11244 
11245 	if (ctx)
11246 		perf_event_ctx_unlock(event->group_leader, ctx);
11247 
11248 	if (!ret) {
11249 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11250 		    has_extended_regs(event))
11251 			ret = -EOPNOTSUPP;
11252 
11253 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11254 		    event_has_any_exclude_flag(event))
11255 			ret = -EINVAL;
11256 
11257 		if (ret && event->destroy)
11258 			event->destroy(event);
11259 	}
11260 
11261 	if (ret)
11262 		module_put(pmu->module);
11263 
11264 	return ret;
11265 }
11266 
11267 static struct pmu *perf_init_event(struct perf_event *event)
11268 {
11269 	bool extended_type = false;
11270 	int idx, type, ret;
11271 	struct pmu *pmu;
11272 
11273 	idx = srcu_read_lock(&pmus_srcu);
11274 
11275 	/* Try parent's PMU first: */
11276 	if (event->parent && event->parent->pmu) {
11277 		pmu = event->parent->pmu;
11278 		ret = perf_try_init_event(pmu, event);
11279 		if (!ret)
11280 			goto unlock;
11281 	}
11282 
11283 	/*
11284 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11285 	 * are often aliases for PERF_TYPE_RAW.
11286 	 */
11287 	type = event->attr.type;
11288 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11289 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11290 		if (!type) {
11291 			type = PERF_TYPE_RAW;
11292 		} else {
11293 			extended_type = true;
11294 			event->attr.config &= PERF_HW_EVENT_MASK;
11295 		}
11296 	}
11297 
11298 again:
11299 	rcu_read_lock();
11300 	pmu = idr_find(&pmu_idr, type);
11301 	rcu_read_unlock();
11302 	if (pmu) {
11303 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11304 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11305 			goto fail;
11306 
11307 		ret = perf_try_init_event(pmu, event);
11308 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11309 			type = event->attr.type;
11310 			goto again;
11311 		}
11312 
11313 		if (ret)
11314 			pmu = ERR_PTR(ret);
11315 
11316 		goto unlock;
11317 	}
11318 
11319 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11320 		ret = perf_try_init_event(pmu, event);
11321 		if (!ret)
11322 			goto unlock;
11323 
11324 		if (ret != -ENOENT) {
11325 			pmu = ERR_PTR(ret);
11326 			goto unlock;
11327 		}
11328 	}
11329 fail:
11330 	pmu = ERR_PTR(-ENOENT);
11331 unlock:
11332 	srcu_read_unlock(&pmus_srcu, idx);
11333 
11334 	return pmu;
11335 }
11336 
11337 static void attach_sb_event(struct perf_event *event)
11338 {
11339 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11340 
11341 	raw_spin_lock(&pel->lock);
11342 	list_add_rcu(&event->sb_list, &pel->list);
11343 	raw_spin_unlock(&pel->lock);
11344 }
11345 
11346 /*
11347  * We keep a list of all !task (and therefore per-cpu) events
11348  * that need to receive side-band records.
11349  *
11350  * This avoids having to scan all the various PMU per-cpu contexts
11351  * looking for them.
11352  */
11353 static void account_pmu_sb_event(struct perf_event *event)
11354 {
11355 	if (is_sb_event(event))
11356 		attach_sb_event(event);
11357 }
11358 
11359 static void account_event_cpu(struct perf_event *event, int cpu)
11360 {
11361 	if (event->parent)
11362 		return;
11363 
11364 	if (is_cgroup_event(event))
11365 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11366 }
11367 
11368 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11369 static void account_freq_event_nohz(void)
11370 {
11371 #ifdef CONFIG_NO_HZ_FULL
11372 	/* Lock so we don't race with concurrent unaccount */
11373 	spin_lock(&nr_freq_lock);
11374 	if (atomic_inc_return(&nr_freq_events) == 1)
11375 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11376 	spin_unlock(&nr_freq_lock);
11377 #endif
11378 }
11379 
11380 static void account_freq_event(void)
11381 {
11382 	if (tick_nohz_full_enabled())
11383 		account_freq_event_nohz();
11384 	else
11385 		atomic_inc(&nr_freq_events);
11386 }
11387 
11388 
11389 static void account_event(struct perf_event *event)
11390 {
11391 	bool inc = false;
11392 
11393 	if (event->parent)
11394 		return;
11395 
11396 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11397 		inc = true;
11398 	if (event->attr.mmap || event->attr.mmap_data)
11399 		atomic_inc(&nr_mmap_events);
11400 	if (event->attr.build_id)
11401 		atomic_inc(&nr_build_id_events);
11402 	if (event->attr.comm)
11403 		atomic_inc(&nr_comm_events);
11404 	if (event->attr.namespaces)
11405 		atomic_inc(&nr_namespaces_events);
11406 	if (event->attr.cgroup)
11407 		atomic_inc(&nr_cgroup_events);
11408 	if (event->attr.task)
11409 		atomic_inc(&nr_task_events);
11410 	if (event->attr.freq)
11411 		account_freq_event();
11412 	if (event->attr.context_switch) {
11413 		atomic_inc(&nr_switch_events);
11414 		inc = true;
11415 	}
11416 	if (has_branch_stack(event))
11417 		inc = true;
11418 	if (is_cgroup_event(event))
11419 		inc = true;
11420 	if (event->attr.ksymbol)
11421 		atomic_inc(&nr_ksymbol_events);
11422 	if (event->attr.bpf_event)
11423 		atomic_inc(&nr_bpf_events);
11424 	if (event->attr.text_poke)
11425 		atomic_inc(&nr_text_poke_events);
11426 
11427 	if (inc) {
11428 		/*
11429 		 * We need the mutex here because static_branch_enable()
11430 		 * must complete *before* the perf_sched_count increment
11431 		 * becomes visible.
11432 		 */
11433 		if (atomic_inc_not_zero(&perf_sched_count))
11434 			goto enabled;
11435 
11436 		mutex_lock(&perf_sched_mutex);
11437 		if (!atomic_read(&perf_sched_count)) {
11438 			static_branch_enable(&perf_sched_events);
11439 			/*
11440 			 * Guarantee that all CPUs observe they key change and
11441 			 * call the perf scheduling hooks before proceeding to
11442 			 * install events that need them.
11443 			 */
11444 			synchronize_rcu();
11445 		}
11446 		/*
11447 		 * Now that we have waited for the sync_sched(), allow further
11448 		 * increments to by-pass the mutex.
11449 		 */
11450 		atomic_inc(&perf_sched_count);
11451 		mutex_unlock(&perf_sched_mutex);
11452 	}
11453 enabled:
11454 
11455 	account_event_cpu(event, event->cpu);
11456 
11457 	account_pmu_sb_event(event);
11458 }
11459 
11460 /*
11461  * Allocate and initialize an event structure
11462  */
11463 static struct perf_event *
11464 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11465 		 struct task_struct *task,
11466 		 struct perf_event *group_leader,
11467 		 struct perf_event *parent_event,
11468 		 perf_overflow_handler_t overflow_handler,
11469 		 void *context, int cgroup_fd)
11470 {
11471 	struct pmu *pmu;
11472 	struct perf_event *event;
11473 	struct hw_perf_event *hwc;
11474 	long err = -EINVAL;
11475 	int node;
11476 
11477 	if ((unsigned)cpu >= nr_cpu_ids) {
11478 		if (!task || cpu != -1)
11479 			return ERR_PTR(-EINVAL);
11480 	}
11481 	if (attr->sigtrap && !task) {
11482 		/* Requires a task: avoid signalling random tasks. */
11483 		return ERR_PTR(-EINVAL);
11484 	}
11485 
11486 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11487 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11488 				      node);
11489 	if (!event)
11490 		return ERR_PTR(-ENOMEM);
11491 
11492 	/*
11493 	 * Single events are their own group leaders, with an
11494 	 * empty sibling list:
11495 	 */
11496 	if (!group_leader)
11497 		group_leader = event;
11498 
11499 	mutex_init(&event->child_mutex);
11500 	INIT_LIST_HEAD(&event->child_list);
11501 
11502 	INIT_LIST_HEAD(&event->event_entry);
11503 	INIT_LIST_HEAD(&event->sibling_list);
11504 	INIT_LIST_HEAD(&event->active_list);
11505 	init_event_group(event);
11506 	INIT_LIST_HEAD(&event->rb_entry);
11507 	INIT_LIST_HEAD(&event->active_entry);
11508 	INIT_LIST_HEAD(&event->addr_filters.list);
11509 	INIT_HLIST_NODE(&event->hlist_entry);
11510 
11511 
11512 	init_waitqueue_head(&event->waitq);
11513 	event->pending_disable = -1;
11514 	init_irq_work(&event->pending, perf_pending_event);
11515 
11516 	mutex_init(&event->mmap_mutex);
11517 	raw_spin_lock_init(&event->addr_filters.lock);
11518 
11519 	atomic_long_set(&event->refcount, 1);
11520 	event->cpu		= cpu;
11521 	event->attr		= *attr;
11522 	event->group_leader	= group_leader;
11523 	event->pmu		= NULL;
11524 	event->oncpu		= -1;
11525 
11526 	event->parent		= parent_event;
11527 
11528 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11529 	event->id		= atomic64_inc_return(&perf_event_id);
11530 
11531 	event->state		= PERF_EVENT_STATE_INACTIVE;
11532 
11533 	if (parent_event)
11534 		event->event_caps = parent_event->event_caps;
11535 
11536 	if (event->attr.sigtrap)
11537 		atomic_set(&event->event_limit, 1);
11538 
11539 	if (task) {
11540 		event->attach_state = PERF_ATTACH_TASK;
11541 		/*
11542 		 * XXX pmu::event_init needs to know what task to account to
11543 		 * and we cannot use the ctx information because we need the
11544 		 * pmu before we get a ctx.
11545 		 */
11546 		event->hw.target = get_task_struct(task);
11547 	}
11548 
11549 	event->clock = &local_clock;
11550 	if (parent_event)
11551 		event->clock = parent_event->clock;
11552 
11553 	if (!overflow_handler && parent_event) {
11554 		overflow_handler = parent_event->overflow_handler;
11555 		context = parent_event->overflow_handler_context;
11556 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11557 		if (overflow_handler == bpf_overflow_handler) {
11558 			struct bpf_prog *prog = parent_event->prog;
11559 
11560 			bpf_prog_inc(prog);
11561 			event->prog = prog;
11562 			event->orig_overflow_handler =
11563 				parent_event->orig_overflow_handler;
11564 		}
11565 #endif
11566 	}
11567 
11568 	if (overflow_handler) {
11569 		event->overflow_handler	= overflow_handler;
11570 		event->overflow_handler_context = context;
11571 	} else if (is_write_backward(event)){
11572 		event->overflow_handler = perf_event_output_backward;
11573 		event->overflow_handler_context = NULL;
11574 	} else {
11575 		event->overflow_handler = perf_event_output_forward;
11576 		event->overflow_handler_context = NULL;
11577 	}
11578 
11579 	perf_event__state_init(event);
11580 
11581 	pmu = NULL;
11582 
11583 	hwc = &event->hw;
11584 	hwc->sample_period = attr->sample_period;
11585 	if (attr->freq && attr->sample_freq)
11586 		hwc->sample_period = 1;
11587 	hwc->last_period = hwc->sample_period;
11588 
11589 	local64_set(&hwc->period_left, hwc->sample_period);
11590 
11591 	/*
11592 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11593 	 * See perf_output_read().
11594 	 */
11595 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11596 		goto err_ns;
11597 
11598 	if (!has_branch_stack(event))
11599 		event->attr.branch_sample_type = 0;
11600 
11601 	pmu = perf_init_event(event);
11602 	if (IS_ERR(pmu)) {
11603 		err = PTR_ERR(pmu);
11604 		goto err_ns;
11605 	}
11606 
11607 	/*
11608 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11609 	 * be different on other CPUs in the uncore mask.
11610 	 */
11611 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11612 		err = -EINVAL;
11613 		goto err_pmu;
11614 	}
11615 
11616 	if (event->attr.aux_output &&
11617 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11618 		err = -EOPNOTSUPP;
11619 		goto err_pmu;
11620 	}
11621 
11622 	if (cgroup_fd != -1) {
11623 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11624 		if (err)
11625 			goto err_pmu;
11626 	}
11627 
11628 	err = exclusive_event_init(event);
11629 	if (err)
11630 		goto err_pmu;
11631 
11632 	if (has_addr_filter(event)) {
11633 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11634 						    sizeof(struct perf_addr_filter_range),
11635 						    GFP_KERNEL);
11636 		if (!event->addr_filter_ranges) {
11637 			err = -ENOMEM;
11638 			goto err_per_task;
11639 		}
11640 
11641 		/*
11642 		 * Clone the parent's vma offsets: they are valid until exec()
11643 		 * even if the mm is not shared with the parent.
11644 		 */
11645 		if (event->parent) {
11646 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11647 
11648 			raw_spin_lock_irq(&ifh->lock);
11649 			memcpy(event->addr_filter_ranges,
11650 			       event->parent->addr_filter_ranges,
11651 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11652 			raw_spin_unlock_irq(&ifh->lock);
11653 		}
11654 
11655 		/* force hw sync on the address filters */
11656 		event->addr_filters_gen = 1;
11657 	}
11658 
11659 	if (!event->parent) {
11660 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11661 			err = get_callchain_buffers(attr->sample_max_stack);
11662 			if (err)
11663 				goto err_addr_filters;
11664 		}
11665 	}
11666 
11667 	err = security_perf_event_alloc(event);
11668 	if (err)
11669 		goto err_callchain_buffer;
11670 
11671 	/* symmetric to unaccount_event() in _free_event() */
11672 	account_event(event);
11673 
11674 	return event;
11675 
11676 err_callchain_buffer:
11677 	if (!event->parent) {
11678 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11679 			put_callchain_buffers();
11680 	}
11681 err_addr_filters:
11682 	kfree(event->addr_filter_ranges);
11683 
11684 err_per_task:
11685 	exclusive_event_destroy(event);
11686 
11687 err_pmu:
11688 	if (is_cgroup_event(event))
11689 		perf_detach_cgroup(event);
11690 	if (event->destroy)
11691 		event->destroy(event);
11692 	module_put(pmu->module);
11693 err_ns:
11694 	if (event->ns)
11695 		put_pid_ns(event->ns);
11696 	if (event->hw.target)
11697 		put_task_struct(event->hw.target);
11698 	kmem_cache_free(perf_event_cache, event);
11699 
11700 	return ERR_PTR(err);
11701 }
11702 
11703 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11704 			  struct perf_event_attr *attr)
11705 {
11706 	u32 size;
11707 	int ret;
11708 
11709 	/* Zero the full structure, so that a short copy will be nice. */
11710 	memset(attr, 0, sizeof(*attr));
11711 
11712 	ret = get_user(size, &uattr->size);
11713 	if (ret)
11714 		return ret;
11715 
11716 	/* ABI compatibility quirk: */
11717 	if (!size)
11718 		size = PERF_ATTR_SIZE_VER0;
11719 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11720 		goto err_size;
11721 
11722 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11723 	if (ret) {
11724 		if (ret == -E2BIG)
11725 			goto err_size;
11726 		return ret;
11727 	}
11728 
11729 	attr->size = size;
11730 
11731 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11732 		return -EINVAL;
11733 
11734 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11735 		return -EINVAL;
11736 
11737 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11738 		return -EINVAL;
11739 
11740 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11741 		u64 mask = attr->branch_sample_type;
11742 
11743 		/* only using defined bits */
11744 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11745 			return -EINVAL;
11746 
11747 		/* at least one branch bit must be set */
11748 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11749 			return -EINVAL;
11750 
11751 		/* propagate priv level, when not set for branch */
11752 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11753 
11754 			/* exclude_kernel checked on syscall entry */
11755 			if (!attr->exclude_kernel)
11756 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11757 
11758 			if (!attr->exclude_user)
11759 				mask |= PERF_SAMPLE_BRANCH_USER;
11760 
11761 			if (!attr->exclude_hv)
11762 				mask |= PERF_SAMPLE_BRANCH_HV;
11763 			/*
11764 			 * adjust user setting (for HW filter setup)
11765 			 */
11766 			attr->branch_sample_type = mask;
11767 		}
11768 		/* privileged levels capture (kernel, hv): check permissions */
11769 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11770 			ret = perf_allow_kernel(attr);
11771 			if (ret)
11772 				return ret;
11773 		}
11774 	}
11775 
11776 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11777 		ret = perf_reg_validate(attr->sample_regs_user);
11778 		if (ret)
11779 			return ret;
11780 	}
11781 
11782 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11783 		if (!arch_perf_have_user_stack_dump())
11784 			return -ENOSYS;
11785 
11786 		/*
11787 		 * We have __u32 type for the size, but so far
11788 		 * we can only use __u16 as maximum due to the
11789 		 * __u16 sample size limit.
11790 		 */
11791 		if (attr->sample_stack_user >= USHRT_MAX)
11792 			return -EINVAL;
11793 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11794 			return -EINVAL;
11795 	}
11796 
11797 	if (!attr->sample_max_stack)
11798 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11799 
11800 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11801 		ret = perf_reg_validate(attr->sample_regs_intr);
11802 
11803 #ifndef CONFIG_CGROUP_PERF
11804 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11805 		return -EINVAL;
11806 #endif
11807 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11808 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11809 		return -EINVAL;
11810 
11811 	if (!attr->inherit && attr->inherit_thread)
11812 		return -EINVAL;
11813 
11814 	if (attr->remove_on_exec && attr->enable_on_exec)
11815 		return -EINVAL;
11816 
11817 	if (attr->sigtrap && !attr->remove_on_exec)
11818 		return -EINVAL;
11819 
11820 out:
11821 	return ret;
11822 
11823 err_size:
11824 	put_user(sizeof(*attr), &uattr->size);
11825 	ret = -E2BIG;
11826 	goto out;
11827 }
11828 
11829 static int
11830 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11831 {
11832 	struct perf_buffer *rb = NULL;
11833 	int ret = -EINVAL;
11834 
11835 	if (!output_event)
11836 		goto set;
11837 
11838 	/* don't allow circular references */
11839 	if (event == output_event)
11840 		goto out;
11841 
11842 	/*
11843 	 * Don't allow cross-cpu buffers
11844 	 */
11845 	if (output_event->cpu != event->cpu)
11846 		goto out;
11847 
11848 	/*
11849 	 * If its not a per-cpu rb, it must be the same task.
11850 	 */
11851 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11852 		goto out;
11853 
11854 	/*
11855 	 * Mixing clocks in the same buffer is trouble you don't need.
11856 	 */
11857 	if (output_event->clock != event->clock)
11858 		goto out;
11859 
11860 	/*
11861 	 * Either writing ring buffer from beginning or from end.
11862 	 * Mixing is not allowed.
11863 	 */
11864 	if (is_write_backward(output_event) != is_write_backward(event))
11865 		goto out;
11866 
11867 	/*
11868 	 * If both events generate aux data, they must be on the same PMU
11869 	 */
11870 	if (has_aux(event) && has_aux(output_event) &&
11871 	    event->pmu != output_event->pmu)
11872 		goto out;
11873 
11874 set:
11875 	mutex_lock(&event->mmap_mutex);
11876 	/* Can't redirect output if we've got an active mmap() */
11877 	if (atomic_read(&event->mmap_count))
11878 		goto unlock;
11879 
11880 	if (output_event) {
11881 		/* get the rb we want to redirect to */
11882 		rb = ring_buffer_get(output_event);
11883 		if (!rb)
11884 			goto unlock;
11885 	}
11886 
11887 	ring_buffer_attach(event, rb);
11888 
11889 	ret = 0;
11890 unlock:
11891 	mutex_unlock(&event->mmap_mutex);
11892 
11893 out:
11894 	return ret;
11895 }
11896 
11897 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11898 {
11899 	if (b < a)
11900 		swap(a, b);
11901 
11902 	mutex_lock(a);
11903 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11904 }
11905 
11906 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11907 {
11908 	bool nmi_safe = false;
11909 
11910 	switch (clk_id) {
11911 	case CLOCK_MONOTONIC:
11912 		event->clock = &ktime_get_mono_fast_ns;
11913 		nmi_safe = true;
11914 		break;
11915 
11916 	case CLOCK_MONOTONIC_RAW:
11917 		event->clock = &ktime_get_raw_fast_ns;
11918 		nmi_safe = true;
11919 		break;
11920 
11921 	case CLOCK_REALTIME:
11922 		event->clock = &ktime_get_real_ns;
11923 		break;
11924 
11925 	case CLOCK_BOOTTIME:
11926 		event->clock = &ktime_get_boottime_ns;
11927 		break;
11928 
11929 	case CLOCK_TAI:
11930 		event->clock = &ktime_get_clocktai_ns;
11931 		break;
11932 
11933 	default:
11934 		return -EINVAL;
11935 	}
11936 
11937 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11938 		return -EINVAL;
11939 
11940 	return 0;
11941 }
11942 
11943 /*
11944  * Variation on perf_event_ctx_lock_nested(), except we take two context
11945  * mutexes.
11946  */
11947 static struct perf_event_context *
11948 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11949 			     struct perf_event_context *ctx)
11950 {
11951 	struct perf_event_context *gctx;
11952 
11953 again:
11954 	rcu_read_lock();
11955 	gctx = READ_ONCE(group_leader->ctx);
11956 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11957 		rcu_read_unlock();
11958 		goto again;
11959 	}
11960 	rcu_read_unlock();
11961 
11962 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11963 
11964 	if (group_leader->ctx != gctx) {
11965 		mutex_unlock(&ctx->mutex);
11966 		mutex_unlock(&gctx->mutex);
11967 		put_ctx(gctx);
11968 		goto again;
11969 	}
11970 
11971 	return gctx;
11972 }
11973 
11974 static bool
11975 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
11976 {
11977 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
11978 	bool is_capable = perfmon_capable();
11979 
11980 	if (attr->sigtrap) {
11981 		/*
11982 		 * perf_event_attr::sigtrap sends signals to the other task.
11983 		 * Require the current task to also have CAP_KILL.
11984 		 */
11985 		rcu_read_lock();
11986 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
11987 		rcu_read_unlock();
11988 
11989 		/*
11990 		 * If the required capabilities aren't available, checks for
11991 		 * ptrace permissions: upgrade to ATTACH, since sending signals
11992 		 * can effectively change the target task.
11993 		 */
11994 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
11995 	}
11996 
11997 	/*
11998 	 * Preserve ptrace permission check for backwards compatibility. The
11999 	 * ptrace check also includes checks that the current task and other
12000 	 * task have matching uids, and is therefore not done here explicitly.
12001 	 */
12002 	return is_capable || ptrace_may_access(task, ptrace_mode);
12003 }
12004 
12005 /**
12006  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12007  *
12008  * @attr_uptr:	event_id type attributes for monitoring/sampling
12009  * @pid:		target pid
12010  * @cpu:		target cpu
12011  * @group_fd:		group leader event fd
12012  * @flags:		perf event open flags
12013  */
12014 SYSCALL_DEFINE5(perf_event_open,
12015 		struct perf_event_attr __user *, attr_uptr,
12016 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12017 {
12018 	struct perf_event *group_leader = NULL, *output_event = NULL;
12019 	struct perf_event *event, *sibling;
12020 	struct perf_event_attr attr;
12021 	struct perf_event_context *ctx, *gctx;
12022 	struct file *event_file = NULL;
12023 	struct fd group = {NULL, 0};
12024 	struct task_struct *task = NULL;
12025 	struct pmu *pmu;
12026 	int event_fd;
12027 	int move_group = 0;
12028 	int err;
12029 	int f_flags = O_RDWR;
12030 	int cgroup_fd = -1;
12031 
12032 	/* for future expandability... */
12033 	if (flags & ~PERF_FLAG_ALL)
12034 		return -EINVAL;
12035 
12036 	/* Do we allow access to perf_event_open(2) ? */
12037 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12038 	if (err)
12039 		return err;
12040 
12041 	err = perf_copy_attr(attr_uptr, &attr);
12042 	if (err)
12043 		return err;
12044 
12045 	if (!attr.exclude_kernel) {
12046 		err = perf_allow_kernel(&attr);
12047 		if (err)
12048 			return err;
12049 	}
12050 
12051 	if (attr.namespaces) {
12052 		if (!perfmon_capable())
12053 			return -EACCES;
12054 	}
12055 
12056 	if (attr.freq) {
12057 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12058 			return -EINVAL;
12059 	} else {
12060 		if (attr.sample_period & (1ULL << 63))
12061 			return -EINVAL;
12062 	}
12063 
12064 	/* Only privileged users can get physical addresses */
12065 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12066 		err = perf_allow_kernel(&attr);
12067 		if (err)
12068 			return err;
12069 	}
12070 
12071 	/* REGS_INTR can leak data, lockdown must prevent this */
12072 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12073 		err = security_locked_down(LOCKDOWN_PERF);
12074 		if (err)
12075 			return err;
12076 	}
12077 
12078 	/*
12079 	 * In cgroup mode, the pid argument is used to pass the fd
12080 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12081 	 * designates the cpu on which to monitor threads from that
12082 	 * cgroup.
12083 	 */
12084 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12085 		return -EINVAL;
12086 
12087 	if (flags & PERF_FLAG_FD_CLOEXEC)
12088 		f_flags |= O_CLOEXEC;
12089 
12090 	event_fd = get_unused_fd_flags(f_flags);
12091 	if (event_fd < 0)
12092 		return event_fd;
12093 
12094 	if (group_fd != -1) {
12095 		err = perf_fget_light(group_fd, &group);
12096 		if (err)
12097 			goto err_fd;
12098 		group_leader = group.file->private_data;
12099 		if (flags & PERF_FLAG_FD_OUTPUT)
12100 			output_event = group_leader;
12101 		if (flags & PERF_FLAG_FD_NO_GROUP)
12102 			group_leader = NULL;
12103 	}
12104 
12105 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12106 		task = find_lively_task_by_vpid(pid);
12107 		if (IS_ERR(task)) {
12108 			err = PTR_ERR(task);
12109 			goto err_group_fd;
12110 		}
12111 	}
12112 
12113 	if (task && group_leader &&
12114 	    group_leader->attr.inherit != attr.inherit) {
12115 		err = -EINVAL;
12116 		goto err_task;
12117 	}
12118 
12119 	if (flags & PERF_FLAG_PID_CGROUP)
12120 		cgroup_fd = pid;
12121 
12122 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12123 				 NULL, NULL, cgroup_fd);
12124 	if (IS_ERR(event)) {
12125 		err = PTR_ERR(event);
12126 		goto err_task;
12127 	}
12128 
12129 	if (is_sampling_event(event)) {
12130 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12131 			err = -EOPNOTSUPP;
12132 			goto err_alloc;
12133 		}
12134 	}
12135 
12136 	/*
12137 	 * Special case software events and allow them to be part of
12138 	 * any hardware group.
12139 	 */
12140 	pmu = event->pmu;
12141 
12142 	if (attr.use_clockid) {
12143 		err = perf_event_set_clock(event, attr.clockid);
12144 		if (err)
12145 			goto err_alloc;
12146 	}
12147 
12148 	if (pmu->task_ctx_nr == perf_sw_context)
12149 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12150 
12151 	if (group_leader) {
12152 		if (is_software_event(event) &&
12153 		    !in_software_context(group_leader)) {
12154 			/*
12155 			 * If the event is a sw event, but the group_leader
12156 			 * is on hw context.
12157 			 *
12158 			 * Allow the addition of software events to hw
12159 			 * groups, this is safe because software events
12160 			 * never fail to schedule.
12161 			 */
12162 			pmu = group_leader->ctx->pmu;
12163 		} else if (!is_software_event(event) &&
12164 			   is_software_event(group_leader) &&
12165 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12166 			/*
12167 			 * In case the group is a pure software group, and we
12168 			 * try to add a hardware event, move the whole group to
12169 			 * the hardware context.
12170 			 */
12171 			move_group = 1;
12172 		}
12173 	}
12174 
12175 	/*
12176 	 * Get the target context (task or percpu):
12177 	 */
12178 	ctx = find_get_context(pmu, task, event);
12179 	if (IS_ERR(ctx)) {
12180 		err = PTR_ERR(ctx);
12181 		goto err_alloc;
12182 	}
12183 
12184 	/*
12185 	 * Look up the group leader (we will attach this event to it):
12186 	 */
12187 	if (group_leader) {
12188 		err = -EINVAL;
12189 
12190 		/*
12191 		 * Do not allow a recursive hierarchy (this new sibling
12192 		 * becoming part of another group-sibling):
12193 		 */
12194 		if (group_leader->group_leader != group_leader)
12195 			goto err_context;
12196 
12197 		/* All events in a group should have the same clock */
12198 		if (group_leader->clock != event->clock)
12199 			goto err_context;
12200 
12201 		/*
12202 		 * Make sure we're both events for the same CPU;
12203 		 * grouping events for different CPUs is broken; since
12204 		 * you can never concurrently schedule them anyhow.
12205 		 */
12206 		if (group_leader->cpu != event->cpu)
12207 			goto err_context;
12208 
12209 		/*
12210 		 * Make sure we're both on the same task, or both
12211 		 * per-CPU events.
12212 		 */
12213 		if (group_leader->ctx->task != ctx->task)
12214 			goto err_context;
12215 
12216 		/*
12217 		 * Do not allow to attach to a group in a different task
12218 		 * or CPU context. If we're moving SW events, we'll fix
12219 		 * this up later, so allow that.
12220 		 */
12221 		if (!move_group && group_leader->ctx != ctx)
12222 			goto err_context;
12223 
12224 		/*
12225 		 * Only a group leader can be exclusive or pinned
12226 		 */
12227 		if (attr.exclusive || attr.pinned)
12228 			goto err_context;
12229 	}
12230 
12231 	if (output_event) {
12232 		err = perf_event_set_output(event, output_event);
12233 		if (err)
12234 			goto err_context;
12235 	}
12236 
12237 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12238 					f_flags);
12239 	if (IS_ERR(event_file)) {
12240 		err = PTR_ERR(event_file);
12241 		event_file = NULL;
12242 		goto err_context;
12243 	}
12244 
12245 	if (task) {
12246 		err = down_read_interruptible(&task->signal->exec_update_lock);
12247 		if (err)
12248 			goto err_file;
12249 
12250 		/*
12251 		 * We must hold exec_update_lock across this and any potential
12252 		 * perf_install_in_context() call for this new event to
12253 		 * serialize against exec() altering our credentials (and the
12254 		 * perf_event_exit_task() that could imply).
12255 		 */
12256 		err = -EACCES;
12257 		if (!perf_check_permission(&attr, task))
12258 			goto err_cred;
12259 	}
12260 
12261 	if (move_group) {
12262 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12263 
12264 		if (gctx->task == TASK_TOMBSTONE) {
12265 			err = -ESRCH;
12266 			goto err_locked;
12267 		}
12268 
12269 		/*
12270 		 * Check if we raced against another sys_perf_event_open() call
12271 		 * moving the software group underneath us.
12272 		 */
12273 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12274 			/*
12275 			 * If someone moved the group out from under us, check
12276 			 * if this new event wound up on the same ctx, if so
12277 			 * its the regular !move_group case, otherwise fail.
12278 			 */
12279 			if (gctx != ctx) {
12280 				err = -EINVAL;
12281 				goto err_locked;
12282 			} else {
12283 				perf_event_ctx_unlock(group_leader, gctx);
12284 				move_group = 0;
12285 			}
12286 		}
12287 
12288 		/*
12289 		 * Failure to create exclusive events returns -EBUSY.
12290 		 */
12291 		err = -EBUSY;
12292 		if (!exclusive_event_installable(group_leader, ctx))
12293 			goto err_locked;
12294 
12295 		for_each_sibling_event(sibling, group_leader) {
12296 			if (!exclusive_event_installable(sibling, ctx))
12297 				goto err_locked;
12298 		}
12299 	} else {
12300 		mutex_lock(&ctx->mutex);
12301 	}
12302 
12303 	if (ctx->task == TASK_TOMBSTONE) {
12304 		err = -ESRCH;
12305 		goto err_locked;
12306 	}
12307 
12308 	if (!perf_event_validate_size(event)) {
12309 		err = -E2BIG;
12310 		goto err_locked;
12311 	}
12312 
12313 	if (!task) {
12314 		/*
12315 		 * Check if the @cpu we're creating an event for is online.
12316 		 *
12317 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12318 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12319 		 */
12320 		struct perf_cpu_context *cpuctx =
12321 			container_of(ctx, struct perf_cpu_context, ctx);
12322 
12323 		if (!cpuctx->online) {
12324 			err = -ENODEV;
12325 			goto err_locked;
12326 		}
12327 	}
12328 
12329 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12330 		err = -EINVAL;
12331 		goto err_locked;
12332 	}
12333 
12334 	/*
12335 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12336 	 * because we need to serialize with concurrent event creation.
12337 	 */
12338 	if (!exclusive_event_installable(event, ctx)) {
12339 		err = -EBUSY;
12340 		goto err_locked;
12341 	}
12342 
12343 	WARN_ON_ONCE(ctx->parent_ctx);
12344 
12345 	/*
12346 	 * This is the point on no return; we cannot fail hereafter. This is
12347 	 * where we start modifying current state.
12348 	 */
12349 
12350 	if (move_group) {
12351 		/*
12352 		 * See perf_event_ctx_lock() for comments on the details
12353 		 * of swizzling perf_event::ctx.
12354 		 */
12355 		perf_remove_from_context(group_leader, 0);
12356 		put_ctx(gctx);
12357 
12358 		for_each_sibling_event(sibling, group_leader) {
12359 			perf_remove_from_context(sibling, 0);
12360 			put_ctx(gctx);
12361 		}
12362 
12363 		/*
12364 		 * Wait for everybody to stop referencing the events through
12365 		 * the old lists, before installing it on new lists.
12366 		 */
12367 		synchronize_rcu();
12368 
12369 		/*
12370 		 * Install the group siblings before the group leader.
12371 		 *
12372 		 * Because a group leader will try and install the entire group
12373 		 * (through the sibling list, which is still in-tact), we can
12374 		 * end up with siblings installed in the wrong context.
12375 		 *
12376 		 * By installing siblings first we NO-OP because they're not
12377 		 * reachable through the group lists.
12378 		 */
12379 		for_each_sibling_event(sibling, group_leader) {
12380 			perf_event__state_init(sibling);
12381 			perf_install_in_context(ctx, sibling, sibling->cpu);
12382 			get_ctx(ctx);
12383 		}
12384 
12385 		/*
12386 		 * Removing from the context ends up with disabled
12387 		 * event. What we want here is event in the initial
12388 		 * startup state, ready to be add into new context.
12389 		 */
12390 		perf_event__state_init(group_leader);
12391 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12392 		get_ctx(ctx);
12393 	}
12394 
12395 	/*
12396 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12397 	 * that we're serialized against further additions and before
12398 	 * perf_install_in_context() which is the point the event is active and
12399 	 * can use these values.
12400 	 */
12401 	perf_event__header_size(event);
12402 	perf_event__id_header_size(event);
12403 
12404 	event->owner = current;
12405 
12406 	perf_install_in_context(ctx, event, event->cpu);
12407 	perf_unpin_context(ctx);
12408 
12409 	if (move_group)
12410 		perf_event_ctx_unlock(group_leader, gctx);
12411 	mutex_unlock(&ctx->mutex);
12412 
12413 	if (task) {
12414 		up_read(&task->signal->exec_update_lock);
12415 		put_task_struct(task);
12416 	}
12417 
12418 	mutex_lock(&current->perf_event_mutex);
12419 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12420 	mutex_unlock(&current->perf_event_mutex);
12421 
12422 	/*
12423 	 * Drop the reference on the group_event after placing the
12424 	 * new event on the sibling_list. This ensures destruction
12425 	 * of the group leader will find the pointer to itself in
12426 	 * perf_group_detach().
12427 	 */
12428 	fdput(group);
12429 	fd_install(event_fd, event_file);
12430 	return event_fd;
12431 
12432 err_locked:
12433 	if (move_group)
12434 		perf_event_ctx_unlock(group_leader, gctx);
12435 	mutex_unlock(&ctx->mutex);
12436 err_cred:
12437 	if (task)
12438 		up_read(&task->signal->exec_update_lock);
12439 err_file:
12440 	fput(event_file);
12441 err_context:
12442 	perf_unpin_context(ctx);
12443 	put_ctx(ctx);
12444 err_alloc:
12445 	/*
12446 	 * If event_file is set, the fput() above will have called ->release()
12447 	 * and that will take care of freeing the event.
12448 	 */
12449 	if (!event_file)
12450 		free_event(event);
12451 err_task:
12452 	if (task)
12453 		put_task_struct(task);
12454 err_group_fd:
12455 	fdput(group);
12456 err_fd:
12457 	put_unused_fd(event_fd);
12458 	return err;
12459 }
12460 
12461 /**
12462  * perf_event_create_kernel_counter
12463  *
12464  * @attr: attributes of the counter to create
12465  * @cpu: cpu in which the counter is bound
12466  * @task: task to profile (NULL for percpu)
12467  * @overflow_handler: callback to trigger when we hit the event
12468  * @context: context data could be used in overflow_handler callback
12469  */
12470 struct perf_event *
12471 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12472 				 struct task_struct *task,
12473 				 perf_overflow_handler_t overflow_handler,
12474 				 void *context)
12475 {
12476 	struct perf_event_context *ctx;
12477 	struct perf_event *event;
12478 	int err;
12479 
12480 	/*
12481 	 * Grouping is not supported for kernel events, neither is 'AUX',
12482 	 * make sure the caller's intentions are adjusted.
12483 	 */
12484 	if (attr->aux_output)
12485 		return ERR_PTR(-EINVAL);
12486 
12487 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12488 				 overflow_handler, context, -1);
12489 	if (IS_ERR(event)) {
12490 		err = PTR_ERR(event);
12491 		goto err;
12492 	}
12493 
12494 	/* Mark owner so we could distinguish it from user events. */
12495 	event->owner = TASK_TOMBSTONE;
12496 
12497 	/*
12498 	 * Get the target context (task or percpu):
12499 	 */
12500 	ctx = find_get_context(event->pmu, task, event);
12501 	if (IS_ERR(ctx)) {
12502 		err = PTR_ERR(ctx);
12503 		goto err_free;
12504 	}
12505 
12506 	WARN_ON_ONCE(ctx->parent_ctx);
12507 	mutex_lock(&ctx->mutex);
12508 	if (ctx->task == TASK_TOMBSTONE) {
12509 		err = -ESRCH;
12510 		goto err_unlock;
12511 	}
12512 
12513 	if (!task) {
12514 		/*
12515 		 * Check if the @cpu we're creating an event for is online.
12516 		 *
12517 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12518 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12519 		 */
12520 		struct perf_cpu_context *cpuctx =
12521 			container_of(ctx, struct perf_cpu_context, ctx);
12522 		if (!cpuctx->online) {
12523 			err = -ENODEV;
12524 			goto err_unlock;
12525 		}
12526 	}
12527 
12528 	if (!exclusive_event_installable(event, ctx)) {
12529 		err = -EBUSY;
12530 		goto err_unlock;
12531 	}
12532 
12533 	perf_install_in_context(ctx, event, event->cpu);
12534 	perf_unpin_context(ctx);
12535 	mutex_unlock(&ctx->mutex);
12536 
12537 	return event;
12538 
12539 err_unlock:
12540 	mutex_unlock(&ctx->mutex);
12541 	perf_unpin_context(ctx);
12542 	put_ctx(ctx);
12543 err_free:
12544 	free_event(event);
12545 err:
12546 	return ERR_PTR(err);
12547 }
12548 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12549 
12550 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12551 {
12552 	struct perf_event_context *src_ctx;
12553 	struct perf_event_context *dst_ctx;
12554 	struct perf_event *event, *tmp;
12555 	LIST_HEAD(events);
12556 
12557 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12558 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12559 
12560 	/*
12561 	 * See perf_event_ctx_lock() for comments on the details
12562 	 * of swizzling perf_event::ctx.
12563 	 */
12564 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12565 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12566 				 event_entry) {
12567 		perf_remove_from_context(event, 0);
12568 		unaccount_event_cpu(event, src_cpu);
12569 		put_ctx(src_ctx);
12570 		list_add(&event->migrate_entry, &events);
12571 	}
12572 
12573 	/*
12574 	 * Wait for the events to quiesce before re-instating them.
12575 	 */
12576 	synchronize_rcu();
12577 
12578 	/*
12579 	 * Re-instate events in 2 passes.
12580 	 *
12581 	 * Skip over group leaders and only install siblings on this first
12582 	 * pass, siblings will not get enabled without a leader, however a
12583 	 * leader will enable its siblings, even if those are still on the old
12584 	 * context.
12585 	 */
12586 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12587 		if (event->group_leader == event)
12588 			continue;
12589 
12590 		list_del(&event->migrate_entry);
12591 		if (event->state >= PERF_EVENT_STATE_OFF)
12592 			event->state = PERF_EVENT_STATE_INACTIVE;
12593 		account_event_cpu(event, dst_cpu);
12594 		perf_install_in_context(dst_ctx, event, dst_cpu);
12595 		get_ctx(dst_ctx);
12596 	}
12597 
12598 	/*
12599 	 * Once all the siblings are setup properly, install the group leaders
12600 	 * to make it go.
12601 	 */
12602 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12603 		list_del(&event->migrate_entry);
12604 		if (event->state >= PERF_EVENT_STATE_OFF)
12605 			event->state = PERF_EVENT_STATE_INACTIVE;
12606 		account_event_cpu(event, dst_cpu);
12607 		perf_install_in_context(dst_ctx, event, dst_cpu);
12608 		get_ctx(dst_ctx);
12609 	}
12610 	mutex_unlock(&dst_ctx->mutex);
12611 	mutex_unlock(&src_ctx->mutex);
12612 }
12613 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12614 
12615 static void sync_child_event(struct perf_event *child_event)
12616 {
12617 	struct perf_event *parent_event = child_event->parent;
12618 	u64 child_val;
12619 
12620 	if (child_event->attr.inherit_stat) {
12621 		struct task_struct *task = child_event->ctx->task;
12622 
12623 		if (task && task != TASK_TOMBSTONE)
12624 			perf_event_read_event(child_event, task);
12625 	}
12626 
12627 	child_val = perf_event_count(child_event);
12628 
12629 	/*
12630 	 * Add back the child's count to the parent's count:
12631 	 */
12632 	atomic64_add(child_val, &parent_event->child_count);
12633 	atomic64_add(child_event->total_time_enabled,
12634 		     &parent_event->child_total_time_enabled);
12635 	atomic64_add(child_event->total_time_running,
12636 		     &parent_event->child_total_time_running);
12637 }
12638 
12639 static void
12640 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12641 {
12642 	struct perf_event *parent_event = event->parent;
12643 	unsigned long detach_flags = 0;
12644 
12645 	if (parent_event) {
12646 		/*
12647 		 * Do not destroy the 'original' grouping; because of the
12648 		 * context switch optimization the original events could've
12649 		 * ended up in a random child task.
12650 		 *
12651 		 * If we were to destroy the original group, all group related
12652 		 * operations would cease to function properly after this
12653 		 * random child dies.
12654 		 *
12655 		 * Do destroy all inherited groups, we don't care about those
12656 		 * and being thorough is better.
12657 		 */
12658 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12659 		mutex_lock(&parent_event->child_mutex);
12660 	}
12661 
12662 	perf_remove_from_context(event, detach_flags);
12663 
12664 	raw_spin_lock_irq(&ctx->lock);
12665 	if (event->state > PERF_EVENT_STATE_EXIT)
12666 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12667 	raw_spin_unlock_irq(&ctx->lock);
12668 
12669 	/*
12670 	 * Child events can be freed.
12671 	 */
12672 	if (parent_event) {
12673 		mutex_unlock(&parent_event->child_mutex);
12674 		/*
12675 		 * Kick perf_poll() for is_event_hup();
12676 		 */
12677 		perf_event_wakeup(parent_event);
12678 		free_event(event);
12679 		put_event(parent_event);
12680 		return;
12681 	}
12682 
12683 	/*
12684 	 * Parent events are governed by their filedesc, retain them.
12685 	 */
12686 	perf_event_wakeup(event);
12687 }
12688 
12689 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12690 {
12691 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12692 	struct perf_event *child_event, *next;
12693 
12694 	WARN_ON_ONCE(child != current);
12695 
12696 	child_ctx = perf_pin_task_context(child, ctxn);
12697 	if (!child_ctx)
12698 		return;
12699 
12700 	/*
12701 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12702 	 * ctx::mutex over the entire thing. This serializes against almost
12703 	 * everything that wants to access the ctx.
12704 	 *
12705 	 * The exception is sys_perf_event_open() /
12706 	 * perf_event_create_kernel_count() which does find_get_context()
12707 	 * without ctx::mutex (it cannot because of the move_group double mutex
12708 	 * lock thing). See the comments in perf_install_in_context().
12709 	 */
12710 	mutex_lock(&child_ctx->mutex);
12711 
12712 	/*
12713 	 * In a single ctx::lock section, de-schedule the events and detach the
12714 	 * context from the task such that we cannot ever get it scheduled back
12715 	 * in.
12716 	 */
12717 	raw_spin_lock_irq(&child_ctx->lock);
12718 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12719 
12720 	/*
12721 	 * Now that the context is inactive, destroy the task <-> ctx relation
12722 	 * and mark the context dead.
12723 	 */
12724 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12725 	put_ctx(child_ctx); /* cannot be last */
12726 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12727 	put_task_struct(current); /* cannot be last */
12728 
12729 	clone_ctx = unclone_ctx(child_ctx);
12730 	raw_spin_unlock_irq(&child_ctx->lock);
12731 
12732 	if (clone_ctx)
12733 		put_ctx(clone_ctx);
12734 
12735 	/*
12736 	 * Report the task dead after unscheduling the events so that we
12737 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12738 	 * get a few PERF_RECORD_READ events.
12739 	 */
12740 	perf_event_task(child, child_ctx, 0);
12741 
12742 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12743 		perf_event_exit_event(child_event, child_ctx);
12744 
12745 	mutex_unlock(&child_ctx->mutex);
12746 
12747 	put_ctx(child_ctx);
12748 }
12749 
12750 /*
12751  * When a child task exits, feed back event values to parent events.
12752  *
12753  * Can be called with exec_update_lock held when called from
12754  * setup_new_exec().
12755  */
12756 void perf_event_exit_task(struct task_struct *child)
12757 {
12758 	struct perf_event *event, *tmp;
12759 	int ctxn;
12760 
12761 	mutex_lock(&child->perf_event_mutex);
12762 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12763 				 owner_entry) {
12764 		list_del_init(&event->owner_entry);
12765 
12766 		/*
12767 		 * Ensure the list deletion is visible before we clear
12768 		 * the owner, closes a race against perf_release() where
12769 		 * we need to serialize on the owner->perf_event_mutex.
12770 		 */
12771 		smp_store_release(&event->owner, NULL);
12772 	}
12773 	mutex_unlock(&child->perf_event_mutex);
12774 
12775 	for_each_task_context_nr(ctxn)
12776 		perf_event_exit_task_context(child, ctxn);
12777 
12778 	/*
12779 	 * The perf_event_exit_task_context calls perf_event_task
12780 	 * with child's task_ctx, which generates EXIT events for
12781 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12782 	 * At this point we need to send EXIT events to cpu contexts.
12783 	 */
12784 	perf_event_task(child, NULL, 0);
12785 }
12786 
12787 static void perf_free_event(struct perf_event *event,
12788 			    struct perf_event_context *ctx)
12789 {
12790 	struct perf_event *parent = event->parent;
12791 
12792 	if (WARN_ON_ONCE(!parent))
12793 		return;
12794 
12795 	mutex_lock(&parent->child_mutex);
12796 	list_del_init(&event->child_list);
12797 	mutex_unlock(&parent->child_mutex);
12798 
12799 	put_event(parent);
12800 
12801 	raw_spin_lock_irq(&ctx->lock);
12802 	perf_group_detach(event);
12803 	list_del_event(event, ctx);
12804 	raw_spin_unlock_irq(&ctx->lock);
12805 	free_event(event);
12806 }
12807 
12808 /*
12809  * Free a context as created by inheritance by perf_event_init_task() below,
12810  * used by fork() in case of fail.
12811  *
12812  * Even though the task has never lived, the context and events have been
12813  * exposed through the child_list, so we must take care tearing it all down.
12814  */
12815 void perf_event_free_task(struct task_struct *task)
12816 {
12817 	struct perf_event_context *ctx;
12818 	struct perf_event *event, *tmp;
12819 	int ctxn;
12820 
12821 	for_each_task_context_nr(ctxn) {
12822 		ctx = task->perf_event_ctxp[ctxn];
12823 		if (!ctx)
12824 			continue;
12825 
12826 		mutex_lock(&ctx->mutex);
12827 		raw_spin_lock_irq(&ctx->lock);
12828 		/*
12829 		 * Destroy the task <-> ctx relation and mark the context dead.
12830 		 *
12831 		 * This is important because even though the task hasn't been
12832 		 * exposed yet the context has been (through child_list).
12833 		 */
12834 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12835 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12836 		put_task_struct(task); /* cannot be last */
12837 		raw_spin_unlock_irq(&ctx->lock);
12838 
12839 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12840 			perf_free_event(event, ctx);
12841 
12842 		mutex_unlock(&ctx->mutex);
12843 
12844 		/*
12845 		 * perf_event_release_kernel() could've stolen some of our
12846 		 * child events and still have them on its free_list. In that
12847 		 * case we must wait for these events to have been freed (in
12848 		 * particular all their references to this task must've been
12849 		 * dropped).
12850 		 *
12851 		 * Without this copy_process() will unconditionally free this
12852 		 * task (irrespective of its reference count) and
12853 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12854 		 * use-after-free.
12855 		 *
12856 		 * Wait for all events to drop their context reference.
12857 		 */
12858 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12859 		put_ctx(ctx); /* must be last */
12860 	}
12861 }
12862 
12863 void perf_event_delayed_put(struct task_struct *task)
12864 {
12865 	int ctxn;
12866 
12867 	for_each_task_context_nr(ctxn)
12868 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12869 }
12870 
12871 struct file *perf_event_get(unsigned int fd)
12872 {
12873 	struct file *file = fget(fd);
12874 	if (!file)
12875 		return ERR_PTR(-EBADF);
12876 
12877 	if (file->f_op != &perf_fops) {
12878 		fput(file);
12879 		return ERR_PTR(-EBADF);
12880 	}
12881 
12882 	return file;
12883 }
12884 
12885 const struct perf_event *perf_get_event(struct file *file)
12886 {
12887 	if (file->f_op != &perf_fops)
12888 		return ERR_PTR(-EINVAL);
12889 
12890 	return file->private_data;
12891 }
12892 
12893 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12894 {
12895 	if (!event)
12896 		return ERR_PTR(-EINVAL);
12897 
12898 	return &event->attr;
12899 }
12900 
12901 /*
12902  * Inherit an event from parent task to child task.
12903  *
12904  * Returns:
12905  *  - valid pointer on success
12906  *  - NULL for orphaned events
12907  *  - IS_ERR() on error
12908  */
12909 static struct perf_event *
12910 inherit_event(struct perf_event *parent_event,
12911 	      struct task_struct *parent,
12912 	      struct perf_event_context *parent_ctx,
12913 	      struct task_struct *child,
12914 	      struct perf_event *group_leader,
12915 	      struct perf_event_context *child_ctx)
12916 {
12917 	enum perf_event_state parent_state = parent_event->state;
12918 	struct perf_event *child_event;
12919 	unsigned long flags;
12920 
12921 	/*
12922 	 * Instead of creating recursive hierarchies of events,
12923 	 * we link inherited events back to the original parent,
12924 	 * which has a filp for sure, which we use as the reference
12925 	 * count:
12926 	 */
12927 	if (parent_event->parent)
12928 		parent_event = parent_event->parent;
12929 
12930 	child_event = perf_event_alloc(&parent_event->attr,
12931 					   parent_event->cpu,
12932 					   child,
12933 					   group_leader, parent_event,
12934 					   NULL, NULL, -1);
12935 	if (IS_ERR(child_event))
12936 		return child_event;
12937 
12938 
12939 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12940 	    !child_ctx->task_ctx_data) {
12941 		struct pmu *pmu = child_event->pmu;
12942 
12943 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12944 		if (!child_ctx->task_ctx_data) {
12945 			free_event(child_event);
12946 			return ERR_PTR(-ENOMEM);
12947 		}
12948 	}
12949 
12950 	/*
12951 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12952 	 * must be under the same lock in order to serialize against
12953 	 * perf_event_release_kernel(), such that either we must observe
12954 	 * is_orphaned_event() or they will observe us on the child_list.
12955 	 */
12956 	mutex_lock(&parent_event->child_mutex);
12957 	if (is_orphaned_event(parent_event) ||
12958 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12959 		mutex_unlock(&parent_event->child_mutex);
12960 		/* task_ctx_data is freed with child_ctx */
12961 		free_event(child_event);
12962 		return NULL;
12963 	}
12964 
12965 	get_ctx(child_ctx);
12966 
12967 	/*
12968 	 * Make the child state follow the state of the parent event,
12969 	 * not its attr.disabled bit.  We hold the parent's mutex,
12970 	 * so we won't race with perf_event_{en, dis}able_family.
12971 	 */
12972 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12973 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12974 	else
12975 		child_event->state = PERF_EVENT_STATE_OFF;
12976 
12977 	if (parent_event->attr.freq) {
12978 		u64 sample_period = parent_event->hw.sample_period;
12979 		struct hw_perf_event *hwc = &child_event->hw;
12980 
12981 		hwc->sample_period = sample_period;
12982 		hwc->last_period   = sample_period;
12983 
12984 		local64_set(&hwc->period_left, sample_period);
12985 	}
12986 
12987 	child_event->ctx = child_ctx;
12988 	child_event->overflow_handler = parent_event->overflow_handler;
12989 	child_event->overflow_handler_context
12990 		= parent_event->overflow_handler_context;
12991 
12992 	/*
12993 	 * Precalculate sample_data sizes
12994 	 */
12995 	perf_event__header_size(child_event);
12996 	perf_event__id_header_size(child_event);
12997 
12998 	/*
12999 	 * Link it up in the child's context:
13000 	 */
13001 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13002 	add_event_to_ctx(child_event, child_ctx);
13003 	child_event->attach_state |= PERF_ATTACH_CHILD;
13004 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13005 
13006 	/*
13007 	 * Link this into the parent event's child list
13008 	 */
13009 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13010 	mutex_unlock(&parent_event->child_mutex);
13011 
13012 	return child_event;
13013 }
13014 
13015 /*
13016  * Inherits an event group.
13017  *
13018  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13019  * This matches with perf_event_release_kernel() removing all child events.
13020  *
13021  * Returns:
13022  *  - 0 on success
13023  *  - <0 on error
13024  */
13025 static int inherit_group(struct perf_event *parent_event,
13026 	      struct task_struct *parent,
13027 	      struct perf_event_context *parent_ctx,
13028 	      struct task_struct *child,
13029 	      struct perf_event_context *child_ctx)
13030 {
13031 	struct perf_event *leader;
13032 	struct perf_event *sub;
13033 	struct perf_event *child_ctr;
13034 
13035 	leader = inherit_event(parent_event, parent, parent_ctx,
13036 				 child, NULL, child_ctx);
13037 	if (IS_ERR(leader))
13038 		return PTR_ERR(leader);
13039 	/*
13040 	 * @leader can be NULL here because of is_orphaned_event(). In this
13041 	 * case inherit_event() will create individual events, similar to what
13042 	 * perf_group_detach() would do anyway.
13043 	 */
13044 	for_each_sibling_event(sub, parent_event) {
13045 		child_ctr = inherit_event(sub, parent, parent_ctx,
13046 					    child, leader, child_ctx);
13047 		if (IS_ERR(child_ctr))
13048 			return PTR_ERR(child_ctr);
13049 
13050 		if (sub->aux_event == parent_event && child_ctr &&
13051 		    !perf_get_aux_event(child_ctr, leader))
13052 			return -EINVAL;
13053 	}
13054 	return 0;
13055 }
13056 
13057 /*
13058  * Creates the child task context and tries to inherit the event-group.
13059  *
13060  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13061  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13062  * consistent with perf_event_release_kernel() removing all child events.
13063  *
13064  * Returns:
13065  *  - 0 on success
13066  *  - <0 on error
13067  */
13068 static int
13069 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13070 		   struct perf_event_context *parent_ctx,
13071 		   struct task_struct *child, int ctxn,
13072 		   u64 clone_flags, int *inherited_all)
13073 {
13074 	int ret;
13075 	struct perf_event_context *child_ctx;
13076 
13077 	if (!event->attr.inherit ||
13078 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13079 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13080 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13081 		*inherited_all = 0;
13082 		return 0;
13083 	}
13084 
13085 	child_ctx = child->perf_event_ctxp[ctxn];
13086 	if (!child_ctx) {
13087 		/*
13088 		 * This is executed from the parent task context, so
13089 		 * inherit events that have been marked for cloning.
13090 		 * First allocate and initialize a context for the
13091 		 * child.
13092 		 */
13093 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13094 		if (!child_ctx)
13095 			return -ENOMEM;
13096 
13097 		child->perf_event_ctxp[ctxn] = child_ctx;
13098 	}
13099 
13100 	ret = inherit_group(event, parent, parent_ctx,
13101 			    child, child_ctx);
13102 
13103 	if (ret)
13104 		*inherited_all = 0;
13105 
13106 	return ret;
13107 }
13108 
13109 /*
13110  * Initialize the perf_event context in task_struct
13111  */
13112 static int perf_event_init_context(struct task_struct *child, int ctxn,
13113 				   u64 clone_flags)
13114 {
13115 	struct perf_event_context *child_ctx, *parent_ctx;
13116 	struct perf_event_context *cloned_ctx;
13117 	struct perf_event *event;
13118 	struct task_struct *parent = current;
13119 	int inherited_all = 1;
13120 	unsigned long flags;
13121 	int ret = 0;
13122 
13123 	if (likely(!parent->perf_event_ctxp[ctxn]))
13124 		return 0;
13125 
13126 	/*
13127 	 * If the parent's context is a clone, pin it so it won't get
13128 	 * swapped under us.
13129 	 */
13130 	parent_ctx = perf_pin_task_context(parent, ctxn);
13131 	if (!parent_ctx)
13132 		return 0;
13133 
13134 	/*
13135 	 * No need to check if parent_ctx != NULL here; since we saw
13136 	 * it non-NULL earlier, the only reason for it to become NULL
13137 	 * is if we exit, and since we're currently in the middle of
13138 	 * a fork we can't be exiting at the same time.
13139 	 */
13140 
13141 	/*
13142 	 * Lock the parent list. No need to lock the child - not PID
13143 	 * hashed yet and not running, so nobody can access it.
13144 	 */
13145 	mutex_lock(&parent_ctx->mutex);
13146 
13147 	/*
13148 	 * We dont have to disable NMIs - we are only looking at
13149 	 * the list, not manipulating it:
13150 	 */
13151 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13152 		ret = inherit_task_group(event, parent, parent_ctx,
13153 					 child, ctxn, clone_flags,
13154 					 &inherited_all);
13155 		if (ret)
13156 			goto out_unlock;
13157 	}
13158 
13159 	/*
13160 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13161 	 * to allocations, but we need to prevent rotation because
13162 	 * rotate_ctx() will change the list from interrupt context.
13163 	 */
13164 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13165 	parent_ctx->rotate_disable = 1;
13166 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13167 
13168 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13169 		ret = inherit_task_group(event, parent, parent_ctx,
13170 					 child, ctxn, clone_flags,
13171 					 &inherited_all);
13172 		if (ret)
13173 			goto out_unlock;
13174 	}
13175 
13176 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13177 	parent_ctx->rotate_disable = 0;
13178 
13179 	child_ctx = child->perf_event_ctxp[ctxn];
13180 
13181 	if (child_ctx && inherited_all) {
13182 		/*
13183 		 * Mark the child context as a clone of the parent
13184 		 * context, or of whatever the parent is a clone of.
13185 		 *
13186 		 * Note that if the parent is a clone, the holding of
13187 		 * parent_ctx->lock avoids it from being uncloned.
13188 		 */
13189 		cloned_ctx = parent_ctx->parent_ctx;
13190 		if (cloned_ctx) {
13191 			child_ctx->parent_ctx = cloned_ctx;
13192 			child_ctx->parent_gen = parent_ctx->parent_gen;
13193 		} else {
13194 			child_ctx->parent_ctx = parent_ctx;
13195 			child_ctx->parent_gen = parent_ctx->generation;
13196 		}
13197 		get_ctx(child_ctx->parent_ctx);
13198 	}
13199 
13200 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13201 out_unlock:
13202 	mutex_unlock(&parent_ctx->mutex);
13203 
13204 	perf_unpin_context(parent_ctx);
13205 	put_ctx(parent_ctx);
13206 
13207 	return ret;
13208 }
13209 
13210 /*
13211  * Initialize the perf_event context in task_struct
13212  */
13213 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13214 {
13215 	int ctxn, ret;
13216 
13217 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13218 	mutex_init(&child->perf_event_mutex);
13219 	INIT_LIST_HEAD(&child->perf_event_list);
13220 
13221 	for_each_task_context_nr(ctxn) {
13222 		ret = perf_event_init_context(child, ctxn, clone_flags);
13223 		if (ret) {
13224 			perf_event_free_task(child);
13225 			return ret;
13226 		}
13227 	}
13228 
13229 	return 0;
13230 }
13231 
13232 static void __init perf_event_init_all_cpus(void)
13233 {
13234 	struct swevent_htable *swhash;
13235 	int cpu;
13236 
13237 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13238 
13239 	for_each_possible_cpu(cpu) {
13240 		swhash = &per_cpu(swevent_htable, cpu);
13241 		mutex_init(&swhash->hlist_mutex);
13242 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13243 
13244 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13245 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13246 
13247 #ifdef CONFIG_CGROUP_PERF
13248 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13249 #endif
13250 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13251 	}
13252 }
13253 
13254 static void perf_swevent_init_cpu(unsigned int cpu)
13255 {
13256 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13257 
13258 	mutex_lock(&swhash->hlist_mutex);
13259 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13260 		struct swevent_hlist *hlist;
13261 
13262 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13263 		WARN_ON(!hlist);
13264 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13265 	}
13266 	mutex_unlock(&swhash->hlist_mutex);
13267 }
13268 
13269 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13270 static void __perf_event_exit_context(void *__info)
13271 {
13272 	struct perf_event_context *ctx = __info;
13273 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13274 	struct perf_event *event;
13275 
13276 	raw_spin_lock(&ctx->lock);
13277 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13278 	list_for_each_entry(event, &ctx->event_list, event_entry)
13279 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13280 	raw_spin_unlock(&ctx->lock);
13281 }
13282 
13283 static void perf_event_exit_cpu_context(int cpu)
13284 {
13285 	struct perf_cpu_context *cpuctx;
13286 	struct perf_event_context *ctx;
13287 	struct pmu *pmu;
13288 
13289 	mutex_lock(&pmus_lock);
13290 	list_for_each_entry(pmu, &pmus, entry) {
13291 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13292 		ctx = &cpuctx->ctx;
13293 
13294 		mutex_lock(&ctx->mutex);
13295 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13296 		cpuctx->online = 0;
13297 		mutex_unlock(&ctx->mutex);
13298 	}
13299 	cpumask_clear_cpu(cpu, perf_online_mask);
13300 	mutex_unlock(&pmus_lock);
13301 }
13302 #else
13303 
13304 static void perf_event_exit_cpu_context(int cpu) { }
13305 
13306 #endif
13307 
13308 int perf_event_init_cpu(unsigned int cpu)
13309 {
13310 	struct perf_cpu_context *cpuctx;
13311 	struct perf_event_context *ctx;
13312 	struct pmu *pmu;
13313 
13314 	perf_swevent_init_cpu(cpu);
13315 
13316 	mutex_lock(&pmus_lock);
13317 	cpumask_set_cpu(cpu, perf_online_mask);
13318 	list_for_each_entry(pmu, &pmus, entry) {
13319 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13320 		ctx = &cpuctx->ctx;
13321 
13322 		mutex_lock(&ctx->mutex);
13323 		cpuctx->online = 1;
13324 		mutex_unlock(&ctx->mutex);
13325 	}
13326 	mutex_unlock(&pmus_lock);
13327 
13328 	return 0;
13329 }
13330 
13331 int perf_event_exit_cpu(unsigned int cpu)
13332 {
13333 	perf_event_exit_cpu_context(cpu);
13334 	return 0;
13335 }
13336 
13337 static int
13338 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13339 {
13340 	int cpu;
13341 
13342 	for_each_online_cpu(cpu)
13343 		perf_event_exit_cpu(cpu);
13344 
13345 	return NOTIFY_OK;
13346 }
13347 
13348 /*
13349  * Run the perf reboot notifier at the very last possible moment so that
13350  * the generic watchdog code runs as long as possible.
13351  */
13352 static struct notifier_block perf_reboot_notifier = {
13353 	.notifier_call = perf_reboot,
13354 	.priority = INT_MIN,
13355 };
13356 
13357 void __init perf_event_init(void)
13358 {
13359 	int ret;
13360 
13361 	idr_init(&pmu_idr);
13362 
13363 	perf_event_init_all_cpus();
13364 	init_srcu_struct(&pmus_srcu);
13365 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13366 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13367 	perf_pmu_register(&perf_task_clock, NULL, -1);
13368 	perf_tp_register();
13369 	perf_event_init_cpu(smp_processor_id());
13370 	register_reboot_notifier(&perf_reboot_notifier);
13371 
13372 	ret = init_hw_breakpoint();
13373 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13374 
13375 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13376 
13377 	/*
13378 	 * Build time assertion that we keep the data_head at the intended
13379 	 * location.  IOW, validation we got the __reserved[] size right.
13380 	 */
13381 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13382 		     != 1024);
13383 }
13384 
13385 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13386 			      char *page)
13387 {
13388 	struct perf_pmu_events_attr *pmu_attr =
13389 		container_of(attr, struct perf_pmu_events_attr, attr);
13390 
13391 	if (pmu_attr->event_str)
13392 		return sprintf(page, "%s\n", pmu_attr->event_str);
13393 
13394 	return 0;
13395 }
13396 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13397 
13398 static int __init perf_event_sysfs_init(void)
13399 {
13400 	struct pmu *pmu;
13401 	int ret;
13402 
13403 	mutex_lock(&pmus_lock);
13404 
13405 	ret = bus_register(&pmu_bus);
13406 	if (ret)
13407 		goto unlock;
13408 
13409 	list_for_each_entry(pmu, &pmus, entry) {
13410 		if (!pmu->name || pmu->type < 0)
13411 			continue;
13412 
13413 		ret = pmu_dev_alloc(pmu);
13414 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13415 	}
13416 	pmu_bus_running = 1;
13417 	ret = 0;
13418 
13419 unlock:
13420 	mutex_unlock(&pmus_lock);
13421 
13422 	return ret;
13423 }
13424 device_initcall(perf_event_sysfs_init);
13425 
13426 #ifdef CONFIG_CGROUP_PERF
13427 static struct cgroup_subsys_state *
13428 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13429 {
13430 	struct perf_cgroup *jc;
13431 
13432 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13433 	if (!jc)
13434 		return ERR_PTR(-ENOMEM);
13435 
13436 	jc->info = alloc_percpu(struct perf_cgroup_info);
13437 	if (!jc->info) {
13438 		kfree(jc);
13439 		return ERR_PTR(-ENOMEM);
13440 	}
13441 
13442 	return &jc->css;
13443 }
13444 
13445 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13446 {
13447 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13448 
13449 	free_percpu(jc->info);
13450 	kfree(jc);
13451 }
13452 
13453 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13454 {
13455 	perf_event_cgroup(css->cgroup);
13456 	return 0;
13457 }
13458 
13459 static int __perf_cgroup_move(void *info)
13460 {
13461 	struct task_struct *task = info;
13462 	rcu_read_lock();
13463 	perf_cgroup_switch(task);
13464 	rcu_read_unlock();
13465 	return 0;
13466 }
13467 
13468 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13469 {
13470 	struct task_struct *task;
13471 	struct cgroup_subsys_state *css;
13472 
13473 	cgroup_taskset_for_each(task, css, tset)
13474 		task_function_call(task, __perf_cgroup_move, task);
13475 }
13476 
13477 struct cgroup_subsys perf_event_cgrp_subsys = {
13478 	.css_alloc	= perf_cgroup_css_alloc,
13479 	.css_free	= perf_cgroup_css_free,
13480 	.css_online	= perf_cgroup_css_online,
13481 	.attach		= perf_cgroup_attach,
13482 	/*
13483 	 * Implicitly enable on dfl hierarchy so that perf events can
13484 	 * always be filtered by cgroup2 path as long as perf_event
13485 	 * controller is not mounted on a legacy hierarchy.
13486 	 */
13487 	.implicit_on_dfl = true,
13488 	.threaded	= true,
13489 };
13490 #endif /* CONFIG_CGROUP_PERF */
13491 
13492 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13493