xref: /openbmc/linux/kernel/events/core.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39 
40 #include "internal.h"
41 
42 #include <asm/irq_regs.h>
43 
44 struct remote_function_call {
45 	struct task_struct	*p;
46 	int			(*func)(void *info);
47 	void			*info;
48 	int			ret;
49 };
50 
51 static void remote_function(void *data)
52 {
53 	struct remote_function_call *tfc = data;
54 	struct task_struct *p = tfc->p;
55 
56 	if (p) {
57 		tfc->ret = -EAGAIN;
58 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 			return;
60 	}
61 
62 	tfc->ret = tfc->func(tfc->info);
63 }
64 
65 /**
66  * task_function_call - call a function on the cpu on which a task runs
67  * @p:		the task to evaluate
68  * @func:	the function to be called
69  * @info:	the function call argument
70  *
71  * Calls the function @func when the task is currently running. This might
72  * be on the current CPU, which just calls the function directly
73  *
74  * returns: @func return value, or
75  *	    -ESRCH  - when the process isn't running
76  *	    -EAGAIN - when the process moved away
77  */
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80 {
81 	struct remote_function_call data = {
82 		.p	= p,
83 		.func	= func,
84 		.info	= info,
85 		.ret	= -ESRCH, /* No such (running) process */
86 	};
87 
88 	if (task_curr(p))
89 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90 
91 	return data.ret;
92 }
93 
94 /**
95  * cpu_function_call - call a function on the cpu
96  * @func:	the function to be called
97  * @info:	the function call argument
98  *
99  * Calls the function @func on the remote cpu.
100  *
101  * returns: @func return value or -ENXIO when the cpu is offline
102  */
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= NULL,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -ENXIO, /* No such CPU */
110 	};
111 
112 	smp_call_function_single(cpu, remote_function, &data, 1);
113 
114 	return data.ret;
115 }
116 
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 		       PERF_FLAG_FD_OUTPUT  |\
119 		       PERF_FLAG_PID_CGROUP)
120 
121 /*
122  * branch priv levels that need permission checks
123  */
124 #define PERF_SAMPLE_BRANCH_PERM_PLM \
125 	(PERF_SAMPLE_BRANCH_KERNEL |\
126 	 PERF_SAMPLE_BRANCH_HV)
127 
128 enum event_type_t {
129 	EVENT_FLEXIBLE = 0x1,
130 	EVENT_PINNED = 0x2,
131 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
132 };
133 
134 /*
135  * perf_sched_events : >0 events exist
136  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
137  */
138 struct static_key_deferred perf_sched_events __read_mostly;
139 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
140 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
141 
142 static atomic_t nr_mmap_events __read_mostly;
143 static atomic_t nr_comm_events __read_mostly;
144 static atomic_t nr_task_events __read_mostly;
145 
146 static LIST_HEAD(pmus);
147 static DEFINE_MUTEX(pmus_lock);
148 static struct srcu_struct pmus_srcu;
149 
150 /*
151  * perf event paranoia level:
152  *  -1 - not paranoid at all
153  *   0 - disallow raw tracepoint access for unpriv
154  *   1 - disallow cpu events for unpriv
155  *   2 - disallow kernel profiling for unpriv
156  */
157 int sysctl_perf_event_paranoid __read_mostly = 1;
158 
159 /* Minimum for 512 kiB + 1 user control page */
160 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
161 
162 /*
163  * max perf event sample rate
164  */
165 #define DEFAULT_MAX_SAMPLE_RATE 100000
166 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
167 static int max_samples_per_tick __read_mostly =
168 	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
169 
170 int perf_proc_update_handler(struct ctl_table *table, int write,
171 		void __user *buffer, size_t *lenp,
172 		loff_t *ppos)
173 {
174 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
175 
176 	if (ret || !write)
177 		return ret;
178 
179 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
180 
181 	return 0;
182 }
183 
184 static atomic64_t perf_event_id;
185 
186 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
187 			      enum event_type_t event_type);
188 
189 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
190 			     enum event_type_t event_type,
191 			     struct task_struct *task);
192 
193 static void update_context_time(struct perf_event_context *ctx);
194 static u64 perf_event_time(struct perf_event *event);
195 
196 static void ring_buffer_attach(struct perf_event *event,
197 			       struct ring_buffer *rb);
198 
199 void __weak perf_event_print_debug(void)	{ }
200 
201 extern __weak const char *perf_pmu_name(void)
202 {
203 	return "pmu";
204 }
205 
206 static inline u64 perf_clock(void)
207 {
208 	return local_clock();
209 }
210 
211 static inline struct perf_cpu_context *
212 __get_cpu_context(struct perf_event_context *ctx)
213 {
214 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
215 }
216 
217 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
218 			  struct perf_event_context *ctx)
219 {
220 	raw_spin_lock(&cpuctx->ctx.lock);
221 	if (ctx)
222 		raw_spin_lock(&ctx->lock);
223 }
224 
225 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
226 			    struct perf_event_context *ctx)
227 {
228 	if (ctx)
229 		raw_spin_unlock(&ctx->lock);
230 	raw_spin_unlock(&cpuctx->ctx.lock);
231 }
232 
233 #ifdef CONFIG_CGROUP_PERF
234 
235 /*
236  * Must ensure cgroup is pinned (css_get) before calling
237  * this function. In other words, we cannot call this function
238  * if there is no cgroup event for the current CPU context.
239  */
240 static inline struct perf_cgroup *
241 perf_cgroup_from_task(struct task_struct *task)
242 {
243 	return container_of(task_subsys_state(task, perf_subsys_id),
244 			struct perf_cgroup, css);
245 }
246 
247 static inline bool
248 perf_cgroup_match(struct perf_event *event)
249 {
250 	struct perf_event_context *ctx = event->ctx;
251 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
252 
253 	return !event->cgrp || event->cgrp == cpuctx->cgrp;
254 }
255 
256 static inline void perf_get_cgroup(struct perf_event *event)
257 {
258 	css_get(&event->cgrp->css);
259 }
260 
261 static inline void perf_put_cgroup(struct perf_event *event)
262 {
263 	css_put(&event->cgrp->css);
264 }
265 
266 static inline void perf_detach_cgroup(struct perf_event *event)
267 {
268 	perf_put_cgroup(event);
269 	event->cgrp = NULL;
270 }
271 
272 static inline int is_cgroup_event(struct perf_event *event)
273 {
274 	return event->cgrp != NULL;
275 }
276 
277 static inline u64 perf_cgroup_event_time(struct perf_event *event)
278 {
279 	struct perf_cgroup_info *t;
280 
281 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
282 	return t->time;
283 }
284 
285 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
286 {
287 	struct perf_cgroup_info *info;
288 	u64 now;
289 
290 	now = perf_clock();
291 
292 	info = this_cpu_ptr(cgrp->info);
293 
294 	info->time += now - info->timestamp;
295 	info->timestamp = now;
296 }
297 
298 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
299 {
300 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
301 	if (cgrp_out)
302 		__update_cgrp_time(cgrp_out);
303 }
304 
305 static inline void update_cgrp_time_from_event(struct perf_event *event)
306 {
307 	struct perf_cgroup *cgrp;
308 
309 	/*
310 	 * ensure we access cgroup data only when needed and
311 	 * when we know the cgroup is pinned (css_get)
312 	 */
313 	if (!is_cgroup_event(event))
314 		return;
315 
316 	cgrp = perf_cgroup_from_task(current);
317 	/*
318 	 * Do not update time when cgroup is not active
319 	 */
320 	if (cgrp == event->cgrp)
321 		__update_cgrp_time(event->cgrp);
322 }
323 
324 static inline void
325 perf_cgroup_set_timestamp(struct task_struct *task,
326 			  struct perf_event_context *ctx)
327 {
328 	struct perf_cgroup *cgrp;
329 	struct perf_cgroup_info *info;
330 
331 	/*
332 	 * ctx->lock held by caller
333 	 * ensure we do not access cgroup data
334 	 * unless we have the cgroup pinned (css_get)
335 	 */
336 	if (!task || !ctx->nr_cgroups)
337 		return;
338 
339 	cgrp = perf_cgroup_from_task(task);
340 	info = this_cpu_ptr(cgrp->info);
341 	info->timestamp = ctx->timestamp;
342 }
343 
344 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
345 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
346 
347 /*
348  * reschedule events based on the cgroup constraint of task.
349  *
350  * mode SWOUT : schedule out everything
351  * mode SWIN : schedule in based on cgroup for next
352  */
353 void perf_cgroup_switch(struct task_struct *task, int mode)
354 {
355 	struct perf_cpu_context *cpuctx;
356 	struct pmu *pmu;
357 	unsigned long flags;
358 
359 	/*
360 	 * disable interrupts to avoid geting nr_cgroup
361 	 * changes via __perf_event_disable(). Also
362 	 * avoids preemption.
363 	 */
364 	local_irq_save(flags);
365 
366 	/*
367 	 * we reschedule only in the presence of cgroup
368 	 * constrained events.
369 	 */
370 	rcu_read_lock();
371 
372 	list_for_each_entry_rcu(pmu, &pmus, entry) {
373 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
374 
375 		/*
376 		 * perf_cgroup_events says at least one
377 		 * context on this CPU has cgroup events.
378 		 *
379 		 * ctx->nr_cgroups reports the number of cgroup
380 		 * events for a context.
381 		 */
382 		if (cpuctx->ctx.nr_cgroups > 0) {
383 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
384 			perf_pmu_disable(cpuctx->ctx.pmu);
385 
386 			if (mode & PERF_CGROUP_SWOUT) {
387 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
388 				/*
389 				 * must not be done before ctxswout due
390 				 * to event_filter_match() in event_sched_out()
391 				 */
392 				cpuctx->cgrp = NULL;
393 			}
394 
395 			if (mode & PERF_CGROUP_SWIN) {
396 				WARN_ON_ONCE(cpuctx->cgrp);
397 				/* set cgrp before ctxsw in to
398 				 * allow event_filter_match() to not
399 				 * have to pass task around
400 				 */
401 				cpuctx->cgrp = perf_cgroup_from_task(task);
402 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
403 			}
404 			perf_pmu_enable(cpuctx->ctx.pmu);
405 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
406 		}
407 	}
408 
409 	rcu_read_unlock();
410 
411 	local_irq_restore(flags);
412 }
413 
414 static inline void perf_cgroup_sched_out(struct task_struct *task,
415 					 struct task_struct *next)
416 {
417 	struct perf_cgroup *cgrp1;
418 	struct perf_cgroup *cgrp2 = NULL;
419 
420 	/*
421 	 * we come here when we know perf_cgroup_events > 0
422 	 */
423 	cgrp1 = perf_cgroup_from_task(task);
424 
425 	/*
426 	 * next is NULL when called from perf_event_enable_on_exec()
427 	 * that will systematically cause a cgroup_switch()
428 	 */
429 	if (next)
430 		cgrp2 = perf_cgroup_from_task(next);
431 
432 	/*
433 	 * only schedule out current cgroup events if we know
434 	 * that we are switching to a different cgroup. Otherwise,
435 	 * do no touch the cgroup events.
436 	 */
437 	if (cgrp1 != cgrp2)
438 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
439 }
440 
441 static inline void perf_cgroup_sched_in(struct task_struct *prev,
442 					struct task_struct *task)
443 {
444 	struct perf_cgroup *cgrp1;
445 	struct perf_cgroup *cgrp2 = NULL;
446 
447 	/*
448 	 * we come here when we know perf_cgroup_events > 0
449 	 */
450 	cgrp1 = perf_cgroup_from_task(task);
451 
452 	/* prev can never be NULL */
453 	cgrp2 = perf_cgroup_from_task(prev);
454 
455 	/*
456 	 * only need to schedule in cgroup events if we are changing
457 	 * cgroup during ctxsw. Cgroup events were not scheduled
458 	 * out of ctxsw out if that was not the case.
459 	 */
460 	if (cgrp1 != cgrp2)
461 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
462 }
463 
464 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
465 				      struct perf_event_attr *attr,
466 				      struct perf_event *group_leader)
467 {
468 	struct perf_cgroup *cgrp;
469 	struct cgroup_subsys_state *css;
470 	struct file *file;
471 	int ret = 0, fput_needed;
472 
473 	file = fget_light(fd, &fput_needed);
474 	if (!file)
475 		return -EBADF;
476 
477 	css = cgroup_css_from_dir(file, perf_subsys_id);
478 	if (IS_ERR(css)) {
479 		ret = PTR_ERR(css);
480 		goto out;
481 	}
482 
483 	cgrp = container_of(css, struct perf_cgroup, css);
484 	event->cgrp = cgrp;
485 
486 	/* must be done before we fput() the file */
487 	perf_get_cgroup(event);
488 
489 	/*
490 	 * all events in a group must monitor
491 	 * the same cgroup because a task belongs
492 	 * to only one perf cgroup at a time
493 	 */
494 	if (group_leader && group_leader->cgrp != cgrp) {
495 		perf_detach_cgroup(event);
496 		ret = -EINVAL;
497 	}
498 out:
499 	fput_light(file, fput_needed);
500 	return ret;
501 }
502 
503 static inline void
504 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
505 {
506 	struct perf_cgroup_info *t;
507 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
508 	event->shadow_ctx_time = now - t->timestamp;
509 }
510 
511 static inline void
512 perf_cgroup_defer_enabled(struct perf_event *event)
513 {
514 	/*
515 	 * when the current task's perf cgroup does not match
516 	 * the event's, we need to remember to call the
517 	 * perf_mark_enable() function the first time a task with
518 	 * a matching perf cgroup is scheduled in.
519 	 */
520 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
521 		event->cgrp_defer_enabled = 1;
522 }
523 
524 static inline void
525 perf_cgroup_mark_enabled(struct perf_event *event,
526 			 struct perf_event_context *ctx)
527 {
528 	struct perf_event *sub;
529 	u64 tstamp = perf_event_time(event);
530 
531 	if (!event->cgrp_defer_enabled)
532 		return;
533 
534 	event->cgrp_defer_enabled = 0;
535 
536 	event->tstamp_enabled = tstamp - event->total_time_enabled;
537 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
538 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
539 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
540 			sub->cgrp_defer_enabled = 0;
541 		}
542 	}
543 }
544 #else /* !CONFIG_CGROUP_PERF */
545 
546 static inline bool
547 perf_cgroup_match(struct perf_event *event)
548 {
549 	return true;
550 }
551 
552 static inline void perf_detach_cgroup(struct perf_event *event)
553 {}
554 
555 static inline int is_cgroup_event(struct perf_event *event)
556 {
557 	return 0;
558 }
559 
560 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
561 {
562 	return 0;
563 }
564 
565 static inline void update_cgrp_time_from_event(struct perf_event *event)
566 {
567 }
568 
569 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
570 {
571 }
572 
573 static inline void perf_cgroup_sched_out(struct task_struct *task,
574 					 struct task_struct *next)
575 {
576 }
577 
578 static inline void perf_cgroup_sched_in(struct task_struct *prev,
579 					struct task_struct *task)
580 {
581 }
582 
583 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
584 				      struct perf_event_attr *attr,
585 				      struct perf_event *group_leader)
586 {
587 	return -EINVAL;
588 }
589 
590 static inline void
591 perf_cgroup_set_timestamp(struct task_struct *task,
592 			  struct perf_event_context *ctx)
593 {
594 }
595 
596 void
597 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
598 {
599 }
600 
601 static inline void
602 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
603 {
604 }
605 
606 static inline u64 perf_cgroup_event_time(struct perf_event *event)
607 {
608 	return 0;
609 }
610 
611 static inline void
612 perf_cgroup_defer_enabled(struct perf_event *event)
613 {
614 }
615 
616 static inline void
617 perf_cgroup_mark_enabled(struct perf_event *event,
618 			 struct perf_event_context *ctx)
619 {
620 }
621 #endif
622 
623 void perf_pmu_disable(struct pmu *pmu)
624 {
625 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
626 	if (!(*count)++)
627 		pmu->pmu_disable(pmu);
628 }
629 
630 void perf_pmu_enable(struct pmu *pmu)
631 {
632 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
633 	if (!--(*count))
634 		pmu->pmu_enable(pmu);
635 }
636 
637 static DEFINE_PER_CPU(struct list_head, rotation_list);
638 
639 /*
640  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
641  * because they're strictly cpu affine and rotate_start is called with IRQs
642  * disabled, while rotate_context is called from IRQ context.
643  */
644 static void perf_pmu_rotate_start(struct pmu *pmu)
645 {
646 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
647 	struct list_head *head = &__get_cpu_var(rotation_list);
648 
649 	WARN_ON(!irqs_disabled());
650 
651 	if (list_empty(&cpuctx->rotation_list))
652 		list_add(&cpuctx->rotation_list, head);
653 }
654 
655 static void get_ctx(struct perf_event_context *ctx)
656 {
657 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
658 }
659 
660 static void put_ctx(struct perf_event_context *ctx)
661 {
662 	if (atomic_dec_and_test(&ctx->refcount)) {
663 		if (ctx->parent_ctx)
664 			put_ctx(ctx->parent_ctx);
665 		if (ctx->task)
666 			put_task_struct(ctx->task);
667 		kfree_rcu(ctx, rcu_head);
668 	}
669 }
670 
671 static void unclone_ctx(struct perf_event_context *ctx)
672 {
673 	if (ctx->parent_ctx) {
674 		put_ctx(ctx->parent_ctx);
675 		ctx->parent_ctx = NULL;
676 	}
677 }
678 
679 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
680 {
681 	/*
682 	 * only top level events have the pid namespace they were created in
683 	 */
684 	if (event->parent)
685 		event = event->parent;
686 
687 	return task_tgid_nr_ns(p, event->ns);
688 }
689 
690 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
691 {
692 	/*
693 	 * only top level events have the pid namespace they were created in
694 	 */
695 	if (event->parent)
696 		event = event->parent;
697 
698 	return task_pid_nr_ns(p, event->ns);
699 }
700 
701 /*
702  * If we inherit events we want to return the parent event id
703  * to userspace.
704  */
705 static u64 primary_event_id(struct perf_event *event)
706 {
707 	u64 id = event->id;
708 
709 	if (event->parent)
710 		id = event->parent->id;
711 
712 	return id;
713 }
714 
715 /*
716  * Get the perf_event_context for a task and lock it.
717  * This has to cope with with the fact that until it is locked,
718  * the context could get moved to another task.
719  */
720 static struct perf_event_context *
721 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
722 {
723 	struct perf_event_context *ctx;
724 
725 	rcu_read_lock();
726 retry:
727 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
728 	if (ctx) {
729 		/*
730 		 * If this context is a clone of another, it might
731 		 * get swapped for another underneath us by
732 		 * perf_event_task_sched_out, though the
733 		 * rcu_read_lock() protects us from any context
734 		 * getting freed.  Lock the context and check if it
735 		 * got swapped before we could get the lock, and retry
736 		 * if so.  If we locked the right context, then it
737 		 * can't get swapped on us any more.
738 		 */
739 		raw_spin_lock_irqsave(&ctx->lock, *flags);
740 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
741 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
742 			goto retry;
743 		}
744 
745 		if (!atomic_inc_not_zero(&ctx->refcount)) {
746 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
747 			ctx = NULL;
748 		}
749 	}
750 	rcu_read_unlock();
751 	return ctx;
752 }
753 
754 /*
755  * Get the context for a task and increment its pin_count so it
756  * can't get swapped to another task.  This also increments its
757  * reference count so that the context can't get freed.
758  */
759 static struct perf_event_context *
760 perf_pin_task_context(struct task_struct *task, int ctxn)
761 {
762 	struct perf_event_context *ctx;
763 	unsigned long flags;
764 
765 	ctx = perf_lock_task_context(task, ctxn, &flags);
766 	if (ctx) {
767 		++ctx->pin_count;
768 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
769 	}
770 	return ctx;
771 }
772 
773 static void perf_unpin_context(struct perf_event_context *ctx)
774 {
775 	unsigned long flags;
776 
777 	raw_spin_lock_irqsave(&ctx->lock, flags);
778 	--ctx->pin_count;
779 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
780 }
781 
782 /*
783  * Update the record of the current time in a context.
784  */
785 static void update_context_time(struct perf_event_context *ctx)
786 {
787 	u64 now = perf_clock();
788 
789 	ctx->time += now - ctx->timestamp;
790 	ctx->timestamp = now;
791 }
792 
793 static u64 perf_event_time(struct perf_event *event)
794 {
795 	struct perf_event_context *ctx = event->ctx;
796 
797 	if (is_cgroup_event(event))
798 		return perf_cgroup_event_time(event);
799 
800 	return ctx ? ctx->time : 0;
801 }
802 
803 /*
804  * Update the total_time_enabled and total_time_running fields for a event.
805  * The caller of this function needs to hold the ctx->lock.
806  */
807 static void update_event_times(struct perf_event *event)
808 {
809 	struct perf_event_context *ctx = event->ctx;
810 	u64 run_end;
811 
812 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
813 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
814 		return;
815 	/*
816 	 * in cgroup mode, time_enabled represents
817 	 * the time the event was enabled AND active
818 	 * tasks were in the monitored cgroup. This is
819 	 * independent of the activity of the context as
820 	 * there may be a mix of cgroup and non-cgroup events.
821 	 *
822 	 * That is why we treat cgroup events differently
823 	 * here.
824 	 */
825 	if (is_cgroup_event(event))
826 		run_end = perf_cgroup_event_time(event);
827 	else if (ctx->is_active)
828 		run_end = ctx->time;
829 	else
830 		run_end = event->tstamp_stopped;
831 
832 	event->total_time_enabled = run_end - event->tstamp_enabled;
833 
834 	if (event->state == PERF_EVENT_STATE_INACTIVE)
835 		run_end = event->tstamp_stopped;
836 	else
837 		run_end = perf_event_time(event);
838 
839 	event->total_time_running = run_end - event->tstamp_running;
840 
841 }
842 
843 /*
844  * Update total_time_enabled and total_time_running for all events in a group.
845  */
846 static void update_group_times(struct perf_event *leader)
847 {
848 	struct perf_event *event;
849 
850 	update_event_times(leader);
851 	list_for_each_entry(event, &leader->sibling_list, group_entry)
852 		update_event_times(event);
853 }
854 
855 static struct list_head *
856 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
857 {
858 	if (event->attr.pinned)
859 		return &ctx->pinned_groups;
860 	else
861 		return &ctx->flexible_groups;
862 }
863 
864 /*
865  * Add a event from the lists for its context.
866  * Must be called with ctx->mutex and ctx->lock held.
867  */
868 static void
869 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
870 {
871 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
872 	event->attach_state |= PERF_ATTACH_CONTEXT;
873 
874 	/*
875 	 * If we're a stand alone event or group leader, we go to the context
876 	 * list, group events are kept attached to the group so that
877 	 * perf_group_detach can, at all times, locate all siblings.
878 	 */
879 	if (event->group_leader == event) {
880 		struct list_head *list;
881 
882 		if (is_software_event(event))
883 			event->group_flags |= PERF_GROUP_SOFTWARE;
884 
885 		list = ctx_group_list(event, ctx);
886 		list_add_tail(&event->group_entry, list);
887 	}
888 
889 	if (is_cgroup_event(event))
890 		ctx->nr_cgroups++;
891 
892 	if (has_branch_stack(event))
893 		ctx->nr_branch_stack++;
894 
895 	list_add_rcu(&event->event_entry, &ctx->event_list);
896 	if (!ctx->nr_events)
897 		perf_pmu_rotate_start(ctx->pmu);
898 	ctx->nr_events++;
899 	if (event->attr.inherit_stat)
900 		ctx->nr_stat++;
901 }
902 
903 /*
904  * Called at perf_event creation and when events are attached/detached from a
905  * group.
906  */
907 static void perf_event__read_size(struct perf_event *event)
908 {
909 	int entry = sizeof(u64); /* value */
910 	int size = 0;
911 	int nr = 1;
912 
913 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
914 		size += sizeof(u64);
915 
916 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
917 		size += sizeof(u64);
918 
919 	if (event->attr.read_format & PERF_FORMAT_ID)
920 		entry += sizeof(u64);
921 
922 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
923 		nr += event->group_leader->nr_siblings;
924 		size += sizeof(u64);
925 	}
926 
927 	size += entry * nr;
928 	event->read_size = size;
929 }
930 
931 static void perf_event__header_size(struct perf_event *event)
932 {
933 	struct perf_sample_data *data;
934 	u64 sample_type = event->attr.sample_type;
935 	u16 size = 0;
936 
937 	perf_event__read_size(event);
938 
939 	if (sample_type & PERF_SAMPLE_IP)
940 		size += sizeof(data->ip);
941 
942 	if (sample_type & PERF_SAMPLE_ADDR)
943 		size += sizeof(data->addr);
944 
945 	if (sample_type & PERF_SAMPLE_PERIOD)
946 		size += sizeof(data->period);
947 
948 	if (sample_type & PERF_SAMPLE_READ)
949 		size += event->read_size;
950 
951 	event->header_size = size;
952 }
953 
954 static void perf_event__id_header_size(struct perf_event *event)
955 {
956 	struct perf_sample_data *data;
957 	u64 sample_type = event->attr.sample_type;
958 	u16 size = 0;
959 
960 	if (sample_type & PERF_SAMPLE_TID)
961 		size += sizeof(data->tid_entry);
962 
963 	if (sample_type & PERF_SAMPLE_TIME)
964 		size += sizeof(data->time);
965 
966 	if (sample_type & PERF_SAMPLE_ID)
967 		size += sizeof(data->id);
968 
969 	if (sample_type & PERF_SAMPLE_STREAM_ID)
970 		size += sizeof(data->stream_id);
971 
972 	if (sample_type & PERF_SAMPLE_CPU)
973 		size += sizeof(data->cpu_entry);
974 
975 	event->id_header_size = size;
976 }
977 
978 static void perf_group_attach(struct perf_event *event)
979 {
980 	struct perf_event *group_leader = event->group_leader, *pos;
981 
982 	/*
983 	 * We can have double attach due to group movement in perf_event_open.
984 	 */
985 	if (event->attach_state & PERF_ATTACH_GROUP)
986 		return;
987 
988 	event->attach_state |= PERF_ATTACH_GROUP;
989 
990 	if (group_leader == event)
991 		return;
992 
993 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
994 			!is_software_event(event))
995 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
996 
997 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
998 	group_leader->nr_siblings++;
999 
1000 	perf_event__header_size(group_leader);
1001 
1002 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1003 		perf_event__header_size(pos);
1004 }
1005 
1006 /*
1007  * Remove a event from the lists for its context.
1008  * Must be called with ctx->mutex and ctx->lock held.
1009  */
1010 static void
1011 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1012 {
1013 	struct perf_cpu_context *cpuctx;
1014 	/*
1015 	 * We can have double detach due to exit/hot-unplug + close.
1016 	 */
1017 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1018 		return;
1019 
1020 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1021 
1022 	if (is_cgroup_event(event)) {
1023 		ctx->nr_cgroups--;
1024 		cpuctx = __get_cpu_context(ctx);
1025 		/*
1026 		 * if there are no more cgroup events
1027 		 * then cler cgrp to avoid stale pointer
1028 		 * in update_cgrp_time_from_cpuctx()
1029 		 */
1030 		if (!ctx->nr_cgroups)
1031 			cpuctx->cgrp = NULL;
1032 	}
1033 
1034 	if (has_branch_stack(event))
1035 		ctx->nr_branch_stack--;
1036 
1037 	ctx->nr_events--;
1038 	if (event->attr.inherit_stat)
1039 		ctx->nr_stat--;
1040 
1041 	list_del_rcu(&event->event_entry);
1042 
1043 	if (event->group_leader == event)
1044 		list_del_init(&event->group_entry);
1045 
1046 	update_group_times(event);
1047 
1048 	/*
1049 	 * If event was in error state, then keep it
1050 	 * that way, otherwise bogus counts will be
1051 	 * returned on read(). The only way to get out
1052 	 * of error state is by explicit re-enabling
1053 	 * of the event
1054 	 */
1055 	if (event->state > PERF_EVENT_STATE_OFF)
1056 		event->state = PERF_EVENT_STATE_OFF;
1057 }
1058 
1059 static void perf_group_detach(struct perf_event *event)
1060 {
1061 	struct perf_event *sibling, *tmp;
1062 	struct list_head *list = NULL;
1063 
1064 	/*
1065 	 * We can have double detach due to exit/hot-unplug + close.
1066 	 */
1067 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1068 		return;
1069 
1070 	event->attach_state &= ~PERF_ATTACH_GROUP;
1071 
1072 	/*
1073 	 * If this is a sibling, remove it from its group.
1074 	 */
1075 	if (event->group_leader != event) {
1076 		list_del_init(&event->group_entry);
1077 		event->group_leader->nr_siblings--;
1078 		goto out;
1079 	}
1080 
1081 	if (!list_empty(&event->group_entry))
1082 		list = &event->group_entry;
1083 
1084 	/*
1085 	 * If this was a group event with sibling events then
1086 	 * upgrade the siblings to singleton events by adding them
1087 	 * to whatever list we are on.
1088 	 */
1089 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1090 		if (list)
1091 			list_move_tail(&sibling->group_entry, list);
1092 		sibling->group_leader = sibling;
1093 
1094 		/* Inherit group flags from the previous leader */
1095 		sibling->group_flags = event->group_flags;
1096 	}
1097 
1098 out:
1099 	perf_event__header_size(event->group_leader);
1100 
1101 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1102 		perf_event__header_size(tmp);
1103 }
1104 
1105 static inline int
1106 event_filter_match(struct perf_event *event)
1107 {
1108 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1109 	    && perf_cgroup_match(event);
1110 }
1111 
1112 static void
1113 event_sched_out(struct perf_event *event,
1114 		  struct perf_cpu_context *cpuctx,
1115 		  struct perf_event_context *ctx)
1116 {
1117 	u64 tstamp = perf_event_time(event);
1118 	u64 delta;
1119 	/*
1120 	 * An event which could not be activated because of
1121 	 * filter mismatch still needs to have its timings
1122 	 * maintained, otherwise bogus information is return
1123 	 * via read() for time_enabled, time_running:
1124 	 */
1125 	if (event->state == PERF_EVENT_STATE_INACTIVE
1126 	    && !event_filter_match(event)) {
1127 		delta = tstamp - event->tstamp_stopped;
1128 		event->tstamp_running += delta;
1129 		event->tstamp_stopped = tstamp;
1130 	}
1131 
1132 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1133 		return;
1134 
1135 	event->state = PERF_EVENT_STATE_INACTIVE;
1136 	if (event->pending_disable) {
1137 		event->pending_disable = 0;
1138 		event->state = PERF_EVENT_STATE_OFF;
1139 	}
1140 	event->tstamp_stopped = tstamp;
1141 	event->pmu->del(event, 0);
1142 	event->oncpu = -1;
1143 
1144 	if (!is_software_event(event))
1145 		cpuctx->active_oncpu--;
1146 	ctx->nr_active--;
1147 	if (event->attr.freq && event->attr.sample_freq)
1148 		ctx->nr_freq--;
1149 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1150 		cpuctx->exclusive = 0;
1151 }
1152 
1153 static void
1154 group_sched_out(struct perf_event *group_event,
1155 		struct perf_cpu_context *cpuctx,
1156 		struct perf_event_context *ctx)
1157 {
1158 	struct perf_event *event;
1159 	int state = group_event->state;
1160 
1161 	event_sched_out(group_event, cpuctx, ctx);
1162 
1163 	/*
1164 	 * Schedule out siblings (if any):
1165 	 */
1166 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1167 		event_sched_out(event, cpuctx, ctx);
1168 
1169 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1170 		cpuctx->exclusive = 0;
1171 }
1172 
1173 /*
1174  * Cross CPU call to remove a performance event
1175  *
1176  * We disable the event on the hardware level first. After that we
1177  * remove it from the context list.
1178  */
1179 static int __perf_remove_from_context(void *info)
1180 {
1181 	struct perf_event *event = info;
1182 	struct perf_event_context *ctx = event->ctx;
1183 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1184 
1185 	raw_spin_lock(&ctx->lock);
1186 	event_sched_out(event, cpuctx, ctx);
1187 	list_del_event(event, ctx);
1188 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1189 		ctx->is_active = 0;
1190 		cpuctx->task_ctx = NULL;
1191 	}
1192 	raw_spin_unlock(&ctx->lock);
1193 
1194 	return 0;
1195 }
1196 
1197 
1198 /*
1199  * Remove the event from a task's (or a CPU's) list of events.
1200  *
1201  * CPU events are removed with a smp call. For task events we only
1202  * call when the task is on a CPU.
1203  *
1204  * If event->ctx is a cloned context, callers must make sure that
1205  * every task struct that event->ctx->task could possibly point to
1206  * remains valid.  This is OK when called from perf_release since
1207  * that only calls us on the top-level context, which can't be a clone.
1208  * When called from perf_event_exit_task, it's OK because the
1209  * context has been detached from its task.
1210  */
1211 static void perf_remove_from_context(struct perf_event *event)
1212 {
1213 	struct perf_event_context *ctx = event->ctx;
1214 	struct task_struct *task = ctx->task;
1215 
1216 	lockdep_assert_held(&ctx->mutex);
1217 
1218 	if (!task) {
1219 		/*
1220 		 * Per cpu events are removed via an smp call and
1221 		 * the removal is always successful.
1222 		 */
1223 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1224 		return;
1225 	}
1226 
1227 retry:
1228 	if (!task_function_call(task, __perf_remove_from_context, event))
1229 		return;
1230 
1231 	raw_spin_lock_irq(&ctx->lock);
1232 	/*
1233 	 * If we failed to find a running task, but find the context active now
1234 	 * that we've acquired the ctx->lock, retry.
1235 	 */
1236 	if (ctx->is_active) {
1237 		raw_spin_unlock_irq(&ctx->lock);
1238 		goto retry;
1239 	}
1240 
1241 	/*
1242 	 * Since the task isn't running, its safe to remove the event, us
1243 	 * holding the ctx->lock ensures the task won't get scheduled in.
1244 	 */
1245 	list_del_event(event, ctx);
1246 	raw_spin_unlock_irq(&ctx->lock);
1247 }
1248 
1249 /*
1250  * Cross CPU call to disable a performance event
1251  */
1252 static int __perf_event_disable(void *info)
1253 {
1254 	struct perf_event *event = info;
1255 	struct perf_event_context *ctx = event->ctx;
1256 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1257 
1258 	/*
1259 	 * If this is a per-task event, need to check whether this
1260 	 * event's task is the current task on this cpu.
1261 	 *
1262 	 * Can trigger due to concurrent perf_event_context_sched_out()
1263 	 * flipping contexts around.
1264 	 */
1265 	if (ctx->task && cpuctx->task_ctx != ctx)
1266 		return -EINVAL;
1267 
1268 	raw_spin_lock(&ctx->lock);
1269 
1270 	/*
1271 	 * If the event is on, turn it off.
1272 	 * If it is in error state, leave it in error state.
1273 	 */
1274 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1275 		update_context_time(ctx);
1276 		update_cgrp_time_from_event(event);
1277 		update_group_times(event);
1278 		if (event == event->group_leader)
1279 			group_sched_out(event, cpuctx, ctx);
1280 		else
1281 			event_sched_out(event, cpuctx, ctx);
1282 		event->state = PERF_EVENT_STATE_OFF;
1283 	}
1284 
1285 	raw_spin_unlock(&ctx->lock);
1286 
1287 	return 0;
1288 }
1289 
1290 /*
1291  * Disable a event.
1292  *
1293  * If event->ctx is a cloned context, callers must make sure that
1294  * every task struct that event->ctx->task could possibly point to
1295  * remains valid.  This condition is satisifed when called through
1296  * perf_event_for_each_child or perf_event_for_each because they
1297  * hold the top-level event's child_mutex, so any descendant that
1298  * goes to exit will block in sync_child_event.
1299  * When called from perf_pending_event it's OK because event->ctx
1300  * is the current context on this CPU and preemption is disabled,
1301  * hence we can't get into perf_event_task_sched_out for this context.
1302  */
1303 void perf_event_disable(struct perf_event *event)
1304 {
1305 	struct perf_event_context *ctx = event->ctx;
1306 	struct task_struct *task = ctx->task;
1307 
1308 	if (!task) {
1309 		/*
1310 		 * Disable the event on the cpu that it's on
1311 		 */
1312 		cpu_function_call(event->cpu, __perf_event_disable, event);
1313 		return;
1314 	}
1315 
1316 retry:
1317 	if (!task_function_call(task, __perf_event_disable, event))
1318 		return;
1319 
1320 	raw_spin_lock_irq(&ctx->lock);
1321 	/*
1322 	 * If the event is still active, we need to retry the cross-call.
1323 	 */
1324 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1325 		raw_spin_unlock_irq(&ctx->lock);
1326 		/*
1327 		 * Reload the task pointer, it might have been changed by
1328 		 * a concurrent perf_event_context_sched_out().
1329 		 */
1330 		task = ctx->task;
1331 		goto retry;
1332 	}
1333 
1334 	/*
1335 	 * Since we have the lock this context can't be scheduled
1336 	 * in, so we can change the state safely.
1337 	 */
1338 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1339 		update_group_times(event);
1340 		event->state = PERF_EVENT_STATE_OFF;
1341 	}
1342 	raw_spin_unlock_irq(&ctx->lock);
1343 }
1344 EXPORT_SYMBOL_GPL(perf_event_disable);
1345 
1346 static void perf_set_shadow_time(struct perf_event *event,
1347 				 struct perf_event_context *ctx,
1348 				 u64 tstamp)
1349 {
1350 	/*
1351 	 * use the correct time source for the time snapshot
1352 	 *
1353 	 * We could get by without this by leveraging the
1354 	 * fact that to get to this function, the caller
1355 	 * has most likely already called update_context_time()
1356 	 * and update_cgrp_time_xx() and thus both timestamp
1357 	 * are identical (or very close). Given that tstamp is,
1358 	 * already adjusted for cgroup, we could say that:
1359 	 *    tstamp - ctx->timestamp
1360 	 * is equivalent to
1361 	 *    tstamp - cgrp->timestamp.
1362 	 *
1363 	 * Then, in perf_output_read(), the calculation would
1364 	 * work with no changes because:
1365 	 * - event is guaranteed scheduled in
1366 	 * - no scheduled out in between
1367 	 * - thus the timestamp would be the same
1368 	 *
1369 	 * But this is a bit hairy.
1370 	 *
1371 	 * So instead, we have an explicit cgroup call to remain
1372 	 * within the time time source all along. We believe it
1373 	 * is cleaner and simpler to understand.
1374 	 */
1375 	if (is_cgroup_event(event))
1376 		perf_cgroup_set_shadow_time(event, tstamp);
1377 	else
1378 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1379 }
1380 
1381 #define MAX_INTERRUPTS (~0ULL)
1382 
1383 static void perf_log_throttle(struct perf_event *event, int enable);
1384 
1385 static int
1386 event_sched_in(struct perf_event *event,
1387 		 struct perf_cpu_context *cpuctx,
1388 		 struct perf_event_context *ctx)
1389 {
1390 	u64 tstamp = perf_event_time(event);
1391 
1392 	if (event->state <= PERF_EVENT_STATE_OFF)
1393 		return 0;
1394 
1395 	event->state = PERF_EVENT_STATE_ACTIVE;
1396 	event->oncpu = smp_processor_id();
1397 
1398 	/*
1399 	 * Unthrottle events, since we scheduled we might have missed several
1400 	 * ticks already, also for a heavily scheduling task there is little
1401 	 * guarantee it'll get a tick in a timely manner.
1402 	 */
1403 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1404 		perf_log_throttle(event, 1);
1405 		event->hw.interrupts = 0;
1406 	}
1407 
1408 	/*
1409 	 * The new state must be visible before we turn it on in the hardware:
1410 	 */
1411 	smp_wmb();
1412 
1413 	if (event->pmu->add(event, PERF_EF_START)) {
1414 		event->state = PERF_EVENT_STATE_INACTIVE;
1415 		event->oncpu = -1;
1416 		return -EAGAIN;
1417 	}
1418 
1419 	event->tstamp_running += tstamp - event->tstamp_stopped;
1420 
1421 	perf_set_shadow_time(event, ctx, tstamp);
1422 
1423 	if (!is_software_event(event))
1424 		cpuctx->active_oncpu++;
1425 	ctx->nr_active++;
1426 	if (event->attr.freq && event->attr.sample_freq)
1427 		ctx->nr_freq++;
1428 
1429 	if (event->attr.exclusive)
1430 		cpuctx->exclusive = 1;
1431 
1432 	return 0;
1433 }
1434 
1435 static int
1436 group_sched_in(struct perf_event *group_event,
1437 	       struct perf_cpu_context *cpuctx,
1438 	       struct perf_event_context *ctx)
1439 {
1440 	struct perf_event *event, *partial_group = NULL;
1441 	struct pmu *pmu = group_event->pmu;
1442 	u64 now = ctx->time;
1443 	bool simulate = false;
1444 
1445 	if (group_event->state == PERF_EVENT_STATE_OFF)
1446 		return 0;
1447 
1448 	pmu->start_txn(pmu);
1449 
1450 	if (event_sched_in(group_event, cpuctx, ctx)) {
1451 		pmu->cancel_txn(pmu);
1452 		return -EAGAIN;
1453 	}
1454 
1455 	/*
1456 	 * Schedule in siblings as one group (if any):
1457 	 */
1458 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1459 		if (event_sched_in(event, cpuctx, ctx)) {
1460 			partial_group = event;
1461 			goto group_error;
1462 		}
1463 	}
1464 
1465 	if (!pmu->commit_txn(pmu))
1466 		return 0;
1467 
1468 group_error:
1469 	/*
1470 	 * Groups can be scheduled in as one unit only, so undo any
1471 	 * partial group before returning:
1472 	 * The events up to the failed event are scheduled out normally,
1473 	 * tstamp_stopped will be updated.
1474 	 *
1475 	 * The failed events and the remaining siblings need to have
1476 	 * their timings updated as if they had gone thru event_sched_in()
1477 	 * and event_sched_out(). This is required to get consistent timings
1478 	 * across the group. This also takes care of the case where the group
1479 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1480 	 * the time the event was actually stopped, such that time delta
1481 	 * calculation in update_event_times() is correct.
1482 	 */
1483 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1484 		if (event == partial_group)
1485 			simulate = true;
1486 
1487 		if (simulate) {
1488 			event->tstamp_running += now - event->tstamp_stopped;
1489 			event->tstamp_stopped = now;
1490 		} else {
1491 			event_sched_out(event, cpuctx, ctx);
1492 		}
1493 	}
1494 	event_sched_out(group_event, cpuctx, ctx);
1495 
1496 	pmu->cancel_txn(pmu);
1497 
1498 	return -EAGAIN;
1499 }
1500 
1501 /*
1502  * Work out whether we can put this event group on the CPU now.
1503  */
1504 static int group_can_go_on(struct perf_event *event,
1505 			   struct perf_cpu_context *cpuctx,
1506 			   int can_add_hw)
1507 {
1508 	/*
1509 	 * Groups consisting entirely of software events can always go on.
1510 	 */
1511 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1512 		return 1;
1513 	/*
1514 	 * If an exclusive group is already on, no other hardware
1515 	 * events can go on.
1516 	 */
1517 	if (cpuctx->exclusive)
1518 		return 0;
1519 	/*
1520 	 * If this group is exclusive and there are already
1521 	 * events on the CPU, it can't go on.
1522 	 */
1523 	if (event->attr.exclusive && cpuctx->active_oncpu)
1524 		return 0;
1525 	/*
1526 	 * Otherwise, try to add it if all previous groups were able
1527 	 * to go on.
1528 	 */
1529 	return can_add_hw;
1530 }
1531 
1532 static void add_event_to_ctx(struct perf_event *event,
1533 			       struct perf_event_context *ctx)
1534 {
1535 	u64 tstamp = perf_event_time(event);
1536 
1537 	list_add_event(event, ctx);
1538 	perf_group_attach(event);
1539 	event->tstamp_enabled = tstamp;
1540 	event->tstamp_running = tstamp;
1541 	event->tstamp_stopped = tstamp;
1542 }
1543 
1544 static void task_ctx_sched_out(struct perf_event_context *ctx);
1545 static void
1546 ctx_sched_in(struct perf_event_context *ctx,
1547 	     struct perf_cpu_context *cpuctx,
1548 	     enum event_type_t event_type,
1549 	     struct task_struct *task);
1550 
1551 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1552 				struct perf_event_context *ctx,
1553 				struct task_struct *task)
1554 {
1555 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1556 	if (ctx)
1557 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1558 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1559 	if (ctx)
1560 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1561 }
1562 
1563 /*
1564  * Cross CPU call to install and enable a performance event
1565  *
1566  * Must be called with ctx->mutex held
1567  */
1568 static int  __perf_install_in_context(void *info)
1569 {
1570 	struct perf_event *event = info;
1571 	struct perf_event_context *ctx = event->ctx;
1572 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1573 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1574 	struct task_struct *task = current;
1575 
1576 	perf_ctx_lock(cpuctx, task_ctx);
1577 	perf_pmu_disable(cpuctx->ctx.pmu);
1578 
1579 	/*
1580 	 * If there was an active task_ctx schedule it out.
1581 	 */
1582 	if (task_ctx)
1583 		task_ctx_sched_out(task_ctx);
1584 
1585 	/*
1586 	 * If the context we're installing events in is not the
1587 	 * active task_ctx, flip them.
1588 	 */
1589 	if (ctx->task && task_ctx != ctx) {
1590 		if (task_ctx)
1591 			raw_spin_unlock(&task_ctx->lock);
1592 		raw_spin_lock(&ctx->lock);
1593 		task_ctx = ctx;
1594 	}
1595 
1596 	if (task_ctx) {
1597 		cpuctx->task_ctx = task_ctx;
1598 		task = task_ctx->task;
1599 	}
1600 
1601 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1602 
1603 	update_context_time(ctx);
1604 	/*
1605 	 * update cgrp time only if current cgrp
1606 	 * matches event->cgrp. Must be done before
1607 	 * calling add_event_to_ctx()
1608 	 */
1609 	update_cgrp_time_from_event(event);
1610 
1611 	add_event_to_ctx(event, ctx);
1612 
1613 	/*
1614 	 * Schedule everything back in
1615 	 */
1616 	perf_event_sched_in(cpuctx, task_ctx, task);
1617 
1618 	perf_pmu_enable(cpuctx->ctx.pmu);
1619 	perf_ctx_unlock(cpuctx, task_ctx);
1620 
1621 	return 0;
1622 }
1623 
1624 /*
1625  * Attach a performance event to a context
1626  *
1627  * First we add the event to the list with the hardware enable bit
1628  * in event->hw_config cleared.
1629  *
1630  * If the event is attached to a task which is on a CPU we use a smp
1631  * call to enable it in the task context. The task might have been
1632  * scheduled away, but we check this in the smp call again.
1633  */
1634 static void
1635 perf_install_in_context(struct perf_event_context *ctx,
1636 			struct perf_event *event,
1637 			int cpu)
1638 {
1639 	struct task_struct *task = ctx->task;
1640 
1641 	lockdep_assert_held(&ctx->mutex);
1642 
1643 	event->ctx = ctx;
1644 
1645 	if (!task) {
1646 		/*
1647 		 * Per cpu events are installed via an smp call and
1648 		 * the install is always successful.
1649 		 */
1650 		cpu_function_call(cpu, __perf_install_in_context, event);
1651 		return;
1652 	}
1653 
1654 retry:
1655 	if (!task_function_call(task, __perf_install_in_context, event))
1656 		return;
1657 
1658 	raw_spin_lock_irq(&ctx->lock);
1659 	/*
1660 	 * If we failed to find a running task, but find the context active now
1661 	 * that we've acquired the ctx->lock, retry.
1662 	 */
1663 	if (ctx->is_active) {
1664 		raw_spin_unlock_irq(&ctx->lock);
1665 		goto retry;
1666 	}
1667 
1668 	/*
1669 	 * Since the task isn't running, its safe to add the event, us holding
1670 	 * the ctx->lock ensures the task won't get scheduled in.
1671 	 */
1672 	add_event_to_ctx(event, ctx);
1673 	raw_spin_unlock_irq(&ctx->lock);
1674 }
1675 
1676 /*
1677  * Put a event into inactive state and update time fields.
1678  * Enabling the leader of a group effectively enables all
1679  * the group members that aren't explicitly disabled, so we
1680  * have to update their ->tstamp_enabled also.
1681  * Note: this works for group members as well as group leaders
1682  * since the non-leader members' sibling_lists will be empty.
1683  */
1684 static void __perf_event_mark_enabled(struct perf_event *event)
1685 {
1686 	struct perf_event *sub;
1687 	u64 tstamp = perf_event_time(event);
1688 
1689 	event->state = PERF_EVENT_STATE_INACTIVE;
1690 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1691 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1692 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1693 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1694 	}
1695 }
1696 
1697 /*
1698  * Cross CPU call to enable a performance event
1699  */
1700 static int __perf_event_enable(void *info)
1701 {
1702 	struct perf_event *event = info;
1703 	struct perf_event_context *ctx = event->ctx;
1704 	struct perf_event *leader = event->group_leader;
1705 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1706 	int err;
1707 
1708 	if (WARN_ON_ONCE(!ctx->is_active))
1709 		return -EINVAL;
1710 
1711 	raw_spin_lock(&ctx->lock);
1712 	update_context_time(ctx);
1713 
1714 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1715 		goto unlock;
1716 
1717 	/*
1718 	 * set current task's cgroup time reference point
1719 	 */
1720 	perf_cgroup_set_timestamp(current, ctx);
1721 
1722 	__perf_event_mark_enabled(event);
1723 
1724 	if (!event_filter_match(event)) {
1725 		if (is_cgroup_event(event))
1726 			perf_cgroup_defer_enabled(event);
1727 		goto unlock;
1728 	}
1729 
1730 	/*
1731 	 * If the event is in a group and isn't the group leader,
1732 	 * then don't put it on unless the group is on.
1733 	 */
1734 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1735 		goto unlock;
1736 
1737 	if (!group_can_go_on(event, cpuctx, 1)) {
1738 		err = -EEXIST;
1739 	} else {
1740 		if (event == leader)
1741 			err = group_sched_in(event, cpuctx, ctx);
1742 		else
1743 			err = event_sched_in(event, cpuctx, ctx);
1744 	}
1745 
1746 	if (err) {
1747 		/*
1748 		 * If this event can't go on and it's part of a
1749 		 * group, then the whole group has to come off.
1750 		 */
1751 		if (leader != event)
1752 			group_sched_out(leader, cpuctx, ctx);
1753 		if (leader->attr.pinned) {
1754 			update_group_times(leader);
1755 			leader->state = PERF_EVENT_STATE_ERROR;
1756 		}
1757 	}
1758 
1759 unlock:
1760 	raw_spin_unlock(&ctx->lock);
1761 
1762 	return 0;
1763 }
1764 
1765 /*
1766  * Enable a event.
1767  *
1768  * If event->ctx is a cloned context, callers must make sure that
1769  * every task struct that event->ctx->task could possibly point to
1770  * remains valid.  This condition is satisfied when called through
1771  * perf_event_for_each_child or perf_event_for_each as described
1772  * for perf_event_disable.
1773  */
1774 void perf_event_enable(struct perf_event *event)
1775 {
1776 	struct perf_event_context *ctx = event->ctx;
1777 	struct task_struct *task = ctx->task;
1778 
1779 	if (!task) {
1780 		/*
1781 		 * Enable the event on the cpu that it's on
1782 		 */
1783 		cpu_function_call(event->cpu, __perf_event_enable, event);
1784 		return;
1785 	}
1786 
1787 	raw_spin_lock_irq(&ctx->lock);
1788 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1789 		goto out;
1790 
1791 	/*
1792 	 * If the event is in error state, clear that first.
1793 	 * That way, if we see the event in error state below, we
1794 	 * know that it has gone back into error state, as distinct
1795 	 * from the task having been scheduled away before the
1796 	 * cross-call arrived.
1797 	 */
1798 	if (event->state == PERF_EVENT_STATE_ERROR)
1799 		event->state = PERF_EVENT_STATE_OFF;
1800 
1801 retry:
1802 	if (!ctx->is_active) {
1803 		__perf_event_mark_enabled(event);
1804 		goto out;
1805 	}
1806 
1807 	raw_spin_unlock_irq(&ctx->lock);
1808 
1809 	if (!task_function_call(task, __perf_event_enable, event))
1810 		return;
1811 
1812 	raw_spin_lock_irq(&ctx->lock);
1813 
1814 	/*
1815 	 * If the context is active and the event is still off,
1816 	 * we need to retry the cross-call.
1817 	 */
1818 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1819 		/*
1820 		 * task could have been flipped by a concurrent
1821 		 * perf_event_context_sched_out()
1822 		 */
1823 		task = ctx->task;
1824 		goto retry;
1825 	}
1826 
1827 out:
1828 	raw_spin_unlock_irq(&ctx->lock);
1829 }
1830 EXPORT_SYMBOL_GPL(perf_event_enable);
1831 
1832 int perf_event_refresh(struct perf_event *event, int refresh)
1833 {
1834 	/*
1835 	 * not supported on inherited events
1836 	 */
1837 	if (event->attr.inherit || !is_sampling_event(event))
1838 		return -EINVAL;
1839 
1840 	atomic_add(refresh, &event->event_limit);
1841 	perf_event_enable(event);
1842 
1843 	return 0;
1844 }
1845 EXPORT_SYMBOL_GPL(perf_event_refresh);
1846 
1847 static void ctx_sched_out(struct perf_event_context *ctx,
1848 			  struct perf_cpu_context *cpuctx,
1849 			  enum event_type_t event_type)
1850 {
1851 	struct perf_event *event;
1852 	int is_active = ctx->is_active;
1853 
1854 	ctx->is_active &= ~event_type;
1855 	if (likely(!ctx->nr_events))
1856 		return;
1857 
1858 	update_context_time(ctx);
1859 	update_cgrp_time_from_cpuctx(cpuctx);
1860 	if (!ctx->nr_active)
1861 		return;
1862 
1863 	perf_pmu_disable(ctx->pmu);
1864 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1865 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1866 			group_sched_out(event, cpuctx, ctx);
1867 	}
1868 
1869 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1870 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1871 			group_sched_out(event, cpuctx, ctx);
1872 	}
1873 	perf_pmu_enable(ctx->pmu);
1874 }
1875 
1876 /*
1877  * Test whether two contexts are equivalent, i.e. whether they
1878  * have both been cloned from the same version of the same context
1879  * and they both have the same number of enabled events.
1880  * If the number of enabled events is the same, then the set
1881  * of enabled events should be the same, because these are both
1882  * inherited contexts, therefore we can't access individual events
1883  * in them directly with an fd; we can only enable/disable all
1884  * events via prctl, or enable/disable all events in a family
1885  * via ioctl, which will have the same effect on both contexts.
1886  */
1887 static int context_equiv(struct perf_event_context *ctx1,
1888 			 struct perf_event_context *ctx2)
1889 {
1890 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1891 		&& ctx1->parent_gen == ctx2->parent_gen
1892 		&& !ctx1->pin_count && !ctx2->pin_count;
1893 }
1894 
1895 static void __perf_event_sync_stat(struct perf_event *event,
1896 				     struct perf_event *next_event)
1897 {
1898 	u64 value;
1899 
1900 	if (!event->attr.inherit_stat)
1901 		return;
1902 
1903 	/*
1904 	 * Update the event value, we cannot use perf_event_read()
1905 	 * because we're in the middle of a context switch and have IRQs
1906 	 * disabled, which upsets smp_call_function_single(), however
1907 	 * we know the event must be on the current CPU, therefore we
1908 	 * don't need to use it.
1909 	 */
1910 	switch (event->state) {
1911 	case PERF_EVENT_STATE_ACTIVE:
1912 		event->pmu->read(event);
1913 		/* fall-through */
1914 
1915 	case PERF_EVENT_STATE_INACTIVE:
1916 		update_event_times(event);
1917 		break;
1918 
1919 	default:
1920 		break;
1921 	}
1922 
1923 	/*
1924 	 * In order to keep per-task stats reliable we need to flip the event
1925 	 * values when we flip the contexts.
1926 	 */
1927 	value = local64_read(&next_event->count);
1928 	value = local64_xchg(&event->count, value);
1929 	local64_set(&next_event->count, value);
1930 
1931 	swap(event->total_time_enabled, next_event->total_time_enabled);
1932 	swap(event->total_time_running, next_event->total_time_running);
1933 
1934 	/*
1935 	 * Since we swizzled the values, update the user visible data too.
1936 	 */
1937 	perf_event_update_userpage(event);
1938 	perf_event_update_userpage(next_event);
1939 }
1940 
1941 #define list_next_entry(pos, member) \
1942 	list_entry(pos->member.next, typeof(*pos), member)
1943 
1944 static void perf_event_sync_stat(struct perf_event_context *ctx,
1945 				   struct perf_event_context *next_ctx)
1946 {
1947 	struct perf_event *event, *next_event;
1948 
1949 	if (!ctx->nr_stat)
1950 		return;
1951 
1952 	update_context_time(ctx);
1953 
1954 	event = list_first_entry(&ctx->event_list,
1955 				   struct perf_event, event_entry);
1956 
1957 	next_event = list_first_entry(&next_ctx->event_list,
1958 					struct perf_event, event_entry);
1959 
1960 	while (&event->event_entry != &ctx->event_list &&
1961 	       &next_event->event_entry != &next_ctx->event_list) {
1962 
1963 		__perf_event_sync_stat(event, next_event);
1964 
1965 		event = list_next_entry(event, event_entry);
1966 		next_event = list_next_entry(next_event, event_entry);
1967 	}
1968 }
1969 
1970 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1971 					 struct task_struct *next)
1972 {
1973 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1974 	struct perf_event_context *next_ctx;
1975 	struct perf_event_context *parent;
1976 	struct perf_cpu_context *cpuctx;
1977 	int do_switch = 1;
1978 
1979 	if (likely(!ctx))
1980 		return;
1981 
1982 	cpuctx = __get_cpu_context(ctx);
1983 	if (!cpuctx->task_ctx)
1984 		return;
1985 
1986 	rcu_read_lock();
1987 	parent = rcu_dereference(ctx->parent_ctx);
1988 	next_ctx = next->perf_event_ctxp[ctxn];
1989 	if (parent && next_ctx &&
1990 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
1991 		/*
1992 		 * Looks like the two contexts are clones, so we might be
1993 		 * able to optimize the context switch.  We lock both
1994 		 * contexts and check that they are clones under the
1995 		 * lock (including re-checking that neither has been
1996 		 * uncloned in the meantime).  It doesn't matter which
1997 		 * order we take the locks because no other cpu could
1998 		 * be trying to lock both of these tasks.
1999 		 */
2000 		raw_spin_lock(&ctx->lock);
2001 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2002 		if (context_equiv(ctx, next_ctx)) {
2003 			/*
2004 			 * XXX do we need a memory barrier of sorts
2005 			 * wrt to rcu_dereference() of perf_event_ctxp
2006 			 */
2007 			task->perf_event_ctxp[ctxn] = next_ctx;
2008 			next->perf_event_ctxp[ctxn] = ctx;
2009 			ctx->task = next;
2010 			next_ctx->task = task;
2011 			do_switch = 0;
2012 
2013 			perf_event_sync_stat(ctx, next_ctx);
2014 		}
2015 		raw_spin_unlock(&next_ctx->lock);
2016 		raw_spin_unlock(&ctx->lock);
2017 	}
2018 	rcu_read_unlock();
2019 
2020 	if (do_switch) {
2021 		raw_spin_lock(&ctx->lock);
2022 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2023 		cpuctx->task_ctx = NULL;
2024 		raw_spin_unlock(&ctx->lock);
2025 	}
2026 }
2027 
2028 #define for_each_task_context_nr(ctxn)					\
2029 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2030 
2031 /*
2032  * Called from scheduler to remove the events of the current task,
2033  * with interrupts disabled.
2034  *
2035  * We stop each event and update the event value in event->count.
2036  *
2037  * This does not protect us against NMI, but disable()
2038  * sets the disabled bit in the control field of event _before_
2039  * accessing the event control register. If a NMI hits, then it will
2040  * not restart the event.
2041  */
2042 void __perf_event_task_sched_out(struct task_struct *task,
2043 				 struct task_struct *next)
2044 {
2045 	int ctxn;
2046 
2047 	for_each_task_context_nr(ctxn)
2048 		perf_event_context_sched_out(task, ctxn, next);
2049 
2050 	/*
2051 	 * if cgroup events exist on this CPU, then we need
2052 	 * to check if we have to switch out PMU state.
2053 	 * cgroup event are system-wide mode only
2054 	 */
2055 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2056 		perf_cgroup_sched_out(task, next);
2057 }
2058 
2059 static void task_ctx_sched_out(struct perf_event_context *ctx)
2060 {
2061 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2062 
2063 	if (!cpuctx->task_ctx)
2064 		return;
2065 
2066 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2067 		return;
2068 
2069 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2070 	cpuctx->task_ctx = NULL;
2071 }
2072 
2073 /*
2074  * Called with IRQs disabled
2075  */
2076 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2077 			      enum event_type_t event_type)
2078 {
2079 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2080 }
2081 
2082 static void
2083 ctx_pinned_sched_in(struct perf_event_context *ctx,
2084 		    struct perf_cpu_context *cpuctx)
2085 {
2086 	struct perf_event *event;
2087 
2088 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2089 		if (event->state <= PERF_EVENT_STATE_OFF)
2090 			continue;
2091 		if (!event_filter_match(event))
2092 			continue;
2093 
2094 		/* may need to reset tstamp_enabled */
2095 		if (is_cgroup_event(event))
2096 			perf_cgroup_mark_enabled(event, ctx);
2097 
2098 		if (group_can_go_on(event, cpuctx, 1))
2099 			group_sched_in(event, cpuctx, ctx);
2100 
2101 		/*
2102 		 * If this pinned group hasn't been scheduled,
2103 		 * put it in error state.
2104 		 */
2105 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2106 			update_group_times(event);
2107 			event->state = PERF_EVENT_STATE_ERROR;
2108 		}
2109 	}
2110 }
2111 
2112 static void
2113 ctx_flexible_sched_in(struct perf_event_context *ctx,
2114 		      struct perf_cpu_context *cpuctx)
2115 {
2116 	struct perf_event *event;
2117 	int can_add_hw = 1;
2118 
2119 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2120 		/* Ignore events in OFF or ERROR state */
2121 		if (event->state <= PERF_EVENT_STATE_OFF)
2122 			continue;
2123 		/*
2124 		 * Listen to the 'cpu' scheduling filter constraint
2125 		 * of events:
2126 		 */
2127 		if (!event_filter_match(event))
2128 			continue;
2129 
2130 		/* may need to reset tstamp_enabled */
2131 		if (is_cgroup_event(event))
2132 			perf_cgroup_mark_enabled(event, ctx);
2133 
2134 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2135 			if (group_sched_in(event, cpuctx, ctx))
2136 				can_add_hw = 0;
2137 		}
2138 	}
2139 }
2140 
2141 static void
2142 ctx_sched_in(struct perf_event_context *ctx,
2143 	     struct perf_cpu_context *cpuctx,
2144 	     enum event_type_t event_type,
2145 	     struct task_struct *task)
2146 {
2147 	u64 now;
2148 	int is_active = ctx->is_active;
2149 
2150 	ctx->is_active |= event_type;
2151 	if (likely(!ctx->nr_events))
2152 		return;
2153 
2154 	now = perf_clock();
2155 	ctx->timestamp = now;
2156 	perf_cgroup_set_timestamp(task, ctx);
2157 	/*
2158 	 * First go through the list and put on any pinned groups
2159 	 * in order to give them the best chance of going on.
2160 	 */
2161 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2162 		ctx_pinned_sched_in(ctx, cpuctx);
2163 
2164 	/* Then walk through the lower prio flexible groups */
2165 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2166 		ctx_flexible_sched_in(ctx, cpuctx);
2167 }
2168 
2169 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2170 			     enum event_type_t event_type,
2171 			     struct task_struct *task)
2172 {
2173 	struct perf_event_context *ctx = &cpuctx->ctx;
2174 
2175 	ctx_sched_in(ctx, cpuctx, event_type, task);
2176 }
2177 
2178 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2179 					struct task_struct *task)
2180 {
2181 	struct perf_cpu_context *cpuctx;
2182 
2183 	cpuctx = __get_cpu_context(ctx);
2184 	if (cpuctx->task_ctx == ctx)
2185 		return;
2186 
2187 	perf_ctx_lock(cpuctx, ctx);
2188 	perf_pmu_disable(ctx->pmu);
2189 	/*
2190 	 * We want to keep the following priority order:
2191 	 * cpu pinned (that don't need to move), task pinned,
2192 	 * cpu flexible, task flexible.
2193 	 */
2194 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2195 
2196 	if (ctx->nr_events)
2197 		cpuctx->task_ctx = ctx;
2198 
2199 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2200 
2201 	perf_pmu_enable(ctx->pmu);
2202 	perf_ctx_unlock(cpuctx, ctx);
2203 
2204 	/*
2205 	 * Since these rotations are per-cpu, we need to ensure the
2206 	 * cpu-context we got scheduled on is actually rotating.
2207 	 */
2208 	perf_pmu_rotate_start(ctx->pmu);
2209 }
2210 
2211 /*
2212  * When sampling the branck stack in system-wide, it may be necessary
2213  * to flush the stack on context switch. This happens when the branch
2214  * stack does not tag its entries with the pid of the current task.
2215  * Otherwise it becomes impossible to associate a branch entry with a
2216  * task. This ambiguity is more likely to appear when the branch stack
2217  * supports priv level filtering and the user sets it to monitor only
2218  * at the user level (which could be a useful measurement in system-wide
2219  * mode). In that case, the risk is high of having a branch stack with
2220  * branch from multiple tasks. Flushing may mean dropping the existing
2221  * entries or stashing them somewhere in the PMU specific code layer.
2222  *
2223  * This function provides the context switch callback to the lower code
2224  * layer. It is invoked ONLY when there is at least one system-wide context
2225  * with at least one active event using taken branch sampling.
2226  */
2227 static void perf_branch_stack_sched_in(struct task_struct *prev,
2228 				       struct task_struct *task)
2229 {
2230 	struct perf_cpu_context *cpuctx;
2231 	struct pmu *pmu;
2232 	unsigned long flags;
2233 
2234 	/* no need to flush branch stack if not changing task */
2235 	if (prev == task)
2236 		return;
2237 
2238 	local_irq_save(flags);
2239 
2240 	rcu_read_lock();
2241 
2242 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2243 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2244 
2245 		/*
2246 		 * check if the context has at least one
2247 		 * event using PERF_SAMPLE_BRANCH_STACK
2248 		 */
2249 		if (cpuctx->ctx.nr_branch_stack > 0
2250 		    && pmu->flush_branch_stack) {
2251 
2252 			pmu = cpuctx->ctx.pmu;
2253 
2254 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2255 
2256 			perf_pmu_disable(pmu);
2257 
2258 			pmu->flush_branch_stack();
2259 
2260 			perf_pmu_enable(pmu);
2261 
2262 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2263 		}
2264 	}
2265 
2266 	rcu_read_unlock();
2267 
2268 	local_irq_restore(flags);
2269 }
2270 
2271 /*
2272  * Called from scheduler to add the events of the current task
2273  * with interrupts disabled.
2274  *
2275  * We restore the event value and then enable it.
2276  *
2277  * This does not protect us against NMI, but enable()
2278  * sets the enabled bit in the control field of event _before_
2279  * accessing the event control register. If a NMI hits, then it will
2280  * keep the event running.
2281  */
2282 void __perf_event_task_sched_in(struct task_struct *prev,
2283 				struct task_struct *task)
2284 {
2285 	struct perf_event_context *ctx;
2286 	int ctxn;
2287 
2288 	for_each_task_context_nr(ctxn) {
2289 		ctx = task->perf_event_ctxp[ctxn];
2290 		if (likely(!ctx))
2291 			continue;
2292 
2293 		perf_event_context_sched_in(ctx, task);
2294 	}
2295 	/*
2296 	 * if cgroup events exist on this CPU, then we need
2297 	 * to check if we have to switch in PMU state.
2298 	 * cgroup event are system-wide mode only
2299 	 */
2300 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2301 		perf_cgroup_sched_in(prev, task);
2302 
2303 	/* check for system-wide branch_stack events */
2304 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2305 		perf_branch_stack_sched_in(prev, task);
2306 }
2307 
2308 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2309 {
2310 	u64 frequency = event->attr.sample_freq;
2311 	u64 sec = NSEC_PER_SEC;
2312 	u64 divisor, dividend;
2313 
2314 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2315 
2316 	count_fls = fls64(count);
2317 	nsec_fls = fls64(nsec);
2318 	frequency_fls = fls64(frequency);
2319 	sec_fls = 30;
2320 
2321 	/*
2322 	 * We got @count in @nsec, with a target of sample_freq HZ
2323 	 * the target period becomes:
2324 	 *
2325 	 *             @count * 10^9
2326 	 * period = -------------------
2327 	 *          @nsec * sample_freq
2328 	 *
2329 	 */
2330 
2331 	/*
2332 	 * Reduce accuracy by one bit such that @a and @b converge
2333 	 * to a similar magnitude.
2334 	 */
2335 #define REDUCE_FLS(a, b)		\
2336 do {					\
2337 	if (a##_fls > b##_fls) {	\
2338 		a >>= 1;		\
2339 		a##_fls--;		\
2340 	} else {			\
2341 		b >>= 1;		\
2342 		b##_fls--;		\
2343 	}				\
2344 } while (0)
2345 
2346 	/*
2347 	 * Reduce accuracy until either term fits in a u64, then proceed with
2348 	 * the other, so that finally we can do a u64/u64 division.
2349 	 */
2350 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2351 		REDUCE_FLS(nsec, frequency);
2352 		REDUCE_FLS(sec, count);
2353 	}
2354 
2355 	if (count_fls + sec_fls > 64) {
2356 		divisor = nsec * frequency;
2357 
2358 		while (count_fls + sec_fls > 64) {
2359 			REDUCE_FLS(count, sec);
2360 			divisor >>= 1;
2361 		}
2362 
2363 		dividend = count * sec;
2364 	} else {
2365 		dividend = count * sec;
2366 
2367 		while (nsec_fls + frequency_fls > 64) {
2368 			REDUCE_FLS(nsec, frequency);
2369 			dividend >>= 1;
2370 		}
2371 
2372 		divisor = nsec * frequency;
2373 	}
2374 
2375 	if (!divisor)
2376 		return dividend;
2377 
2378 	return div64_u64(dividend, divisor);
2379 }
2380 
2381 static DEFINE_PER_CPU(int, perf_throttled_count);
2382 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2383 
2384 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2385 {
2386 	struct hw_perf_event *hwc = &event->hw;
2387 	s64 period, sample_period;
2388 	s64 delta;
2389 
2390 	period = perf_calculate_period(event, nsec, count);
2391 
2392 	delta = (s64)(period - hwc->sample_period);
2393 	delta = (delta + 7) / 8; /* low pass filter */
2394 
2395 	sample_period = hwc->sample_period + delta;
2396 
2397 	if (!sample_period)
2398 		sample_period = 1;
2399 
2400 	hwc->sample_period = sample_period;
2401 
2402 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2403 		if (disable)
2404 			event->pmu->stop(event, PERF_EF_UPDATE);
2405 
2406 		local64_set(&hwc->period_left, 0);
2407 
2408 		if (disable)
2409 			event->pmu->start(event, PERF_EF_RELOAD);
2410 	}
2411 }
2412 
2413 /*
2414  * combine freq adjustment with unthrottling to avoid two passes over the
2415  * events. At the same time, make sure, having freq events does not change
2416  * the rate of unthrottling as that would introduce bias.
2417  */
2418 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2419 					   int needs_unthr)
2420 {
2421 	struct perf_event *event;
2422 	struct hw_perf_event *hwc;
2423 	u64 now, period = TICK_NSEC;
2424 	s64 delta;
2425 
2426 	/*
2427 	 * only need to iterate over all events iff:
2428 	 * - context have events in frequency mode (needs freq adjust)
2429 	 * - there are events to unthrottle on this cpu
2430 	 */
2431 	if (!(ctx->nr_freq || needs_unthr))
2432 		return;
2433 
2434 	raw_spin_lock(&ctx->lock);
2435 	perf_pmu_disable(ctx->pmu);
2436 
2437 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2438 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2439 			continue;
2440 
2441 		if (!event_filter_match(event))
2442 			continue;
2443 
2444 		hwc = &event->hw;
2445 
2446 		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2447 			hwc->interrupts = 0;
2448 			perf_log_throttle(event, 1);
2449 			event->pmu->start(event, 0);
2450 		}
2451 
2452 		if (!event->attr.freq || !event->attr.sample_freq)
2453 			continue;
2454 
2455 		/*
2456 		 * stop the event and update event->count
2457 		 */
2458 		event->pmu->stop(event, PERF_EF_UPDATE);
2459 
2460 		now = local64_read(&event->count);
2461 		delta = now - hwc->freq_count_stamp;
2462 		hwc->freq_count_stamp = now;
2463 
2464 		/*
2465 		 * restart the event
2466 		 * reload only if value has changed
2467 		 * we have stopped the event so tell that
2468 		 * to perf_adjust_period() to avoid stopping it
2469 		 * twice.
2470 		 */
2471 		if (delta > 0)
2472 			perf_adjust_period(event, period, delta, false);
2473 
2474 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2475 	}
2476 
2477 	perf_pmu_enable(ctx->pmu);
2478 	raw_spin_unlock(&ctx->lock);
2479 }
2480 
2481 /*
2482  * Round-robin a context's events:
2483  */
2484 static void rotate_ctx(struct perf_event_context *ctx)
2485 {
2486 	/*
2487 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2488 	 * disabled by the inheritance code.
2489 	 */
2490 	if (!ctx->rotate_disable)
2491 		list_rotate_left(&ctx->flexible_groups);
2492 }
2493 
2494 /*
2495  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2496  * because they're strictly cpu affine and rotate_start is called with IRQs
2497  * disabled, while rotate_context is called from IRQ context.
2498  */
2499 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2500 {
2501 	struct perf_event_context *ctx = NULL;
2502 	int rotate = 0, remove = 1;
2503 
2504 	if (cpuctx->ctx.nr_events) {
2505 		remove = 0;
2506 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2507 			rotate = 1;
2508 	}
2509 
2510 	ctx = cpuctx->task_ctx;
2511 	if (ctx && ctx->nr_events) {
2512 		remove = 0;
2513 		if (ctx->nr_events != ctx->nr_active)
2514 			rotate = 1;
2515 	}
2516 
2517 	if (!rotate)
2518 		goto done;
2519 
2520 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2521 	perf_pmu_disable(cpuctx->ctx.pmu);
2522 
2523 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2524 	if (ctx)
2525 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2526 
2527 	rotate_ctx(&cpuctx->ctx);
2528 	if (ctx)
2529 		rotate_ctx(ctx);
2530 
2531 	perf_event_sched_in(cpuctx, ctx, current);
2532 
2533 	perf_pmu_enable(cpuctx->ctx.pmu);
2534 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2535 done:
2536 	if (remove)
2537 		list_del_init(&cpuctx->rotation_list);
2538 }
2539 
2540 void perf_event_task_tick(void)
2541 {
2542 	struct list_head *head = &__get_cpu_var(rotation_list);
2543 	struct perf_cpu_context *cpuctx, *tmp;
2544 	struct perf_event_context *ctx;
2545 	int throttled;
2546 
2547 	WARN_ON(!irqs_disabled());
2548 
2549 	__this_cpu_inc(perf_throttled_seq);
2550 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2551 
2552 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2553 		ctx = &cpuctx->ctx;
2554 		perf_adjust_freq_unthr_context(ctx, throttled);
2555 
2556 		ctx = cpuctx->task_ctx;
2557 		if (ctx)
2558 			perf_adjust_freq_unthr_context(ctx, throttled);
2559 
2560 		if (cpuctx->jiffies_interval == 1 ||
2561 				!(jiffies % cpuctx->jiffies_interval))
2562 			perf_rotate_context(cpuctx);
2563 	}
2564 }
2565 
2566 static int event_enable_on_exec(struct perf_event *event,
2567 				struct perf_event_context *ctx)
2568 {
2569 	if (!event->attr.enable_on_exec)
2570 		return 0;
2571 
2572 	event->attr.enable_on_exec = 0;
2573 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2574 		return 0;
2575 
2576 	__perf_event_mark_enabled(event);
2577 
2578 	return 1;
2579 }
2580 
2581 /*
2582  * Enable all of a task's events that have been marked enable-on-exec.
2583  * This expects task == current.
2584  */
2585 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2586 {
2587 	struct perf_event *event;
2588 	unsigned long flags;
2589 	int enabled = 0;
2590 	int ret;
2591 
2592 	local_irq_save(flags);
2593 	if (!ctx || !ctx->nr_events)
2594 		goto out;
2595 
2596 	/*
2597 	 * We must ctxsw out cgroup events to avoid conflict
2598 	 * when invoking perf_task_event_sched_in() later on
2599 	 * in this function. Otherwise we end up trying to
2600 	 * ctxswin cgroup events which are already scheduled
2601 	 * in.
2602 	 */
2603 	perf_cgroup_sched_out(current, NULL);
2604 
2605 	raw_spin_lock(&ctx->lock);
2606 	task_ctx_sched_out(ctx);
2607 
2608 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2609 		ret = event_enable_on_exec(event, ctx);
2610 		if (ret)
2611 			enabled = 1;
2612 	}
2613 
2614 	/*
2615 	 * Unclone this context if we enabled any event.
2616 	 */
2617 	if (enabled)
2618 		unclone_ctx(ctx);
2619 
2620 	raw_spin_unlock(&ctx->lock);
2621 
2622 	/*
2623 	 * Also calls ctxswin for cgroup events, if any:
2624 	 */
2625 	perf_event_context_sched_in(ctx, ctx->task);
2626 out:
2627 	local_irq_restore(flags);
2628 }
2629 
2630 /*
2631  * Cross CPU call to read the hardware event
2632  */
2633 static void __perf_event_read(void *info)
2634 {
2635 	struct perf_event *event = info;
2636 	struct perf_event_context *ctx = event->ctx;
2637 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2638 
2639 	/*
2640 	 * If this is a task context, we need to check whether it is
2641 	 * the current task context of this cpu.  If not it has been
2642 	 * scheduled out before the smp call arrived.  In that case
2643 	 * event->count would have been updated to a recent sample
2644 	 * when the event was scheduled out.
2645 	 */
2646 	if (ctx->task && cpuctx->task_ctx != ctx)
2647 		return;
2648 
2649 	raw_spin_lock(&ctx->lock);
2650 	if (ctx->is_active) {
2651 		update_context_time(ctx);
2652 		update_cgrp_time_from_event(event);
2653 	}
2654 	update_event_times(event);
2655 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2656 		event->pmu->read(event);
2657 	raw_spin_unlock(&ctx->lock);
2658 }
2659 
2660 static inline u64 perf_event_count(struct perf_event *event)
2661 {
2662 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2663 }
2664 
2665 static u64 perf_event_read(struct perf_event *event)
2666 {
2667 	/*
2668 	 * If event is enabled and currently active on a CPU, update the
2669 	 * value in the event structure:
2670 	 */
2671 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2672 		smp_call_function_single(event->oncpu,
2673 					 __perf_event_read, event, 1);
2674 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2675 		struct perf_event_context *ctx = event->ctx;
2676 		unsigned long flags;
2677 
2678 		raw_spin_lock_irqsave(&ctx->lock, flags);
2679 		/*
2680 		 * may read while context is not active
2681 		 * (e.g., thread is blocked), in that case
2682 		 * we cannot update context time
2683 		 */
2684 		if (ctx->is_active) {
2685 			update_context_time(ctx);
2686 			update_cgrp_time_from_event(event);
2687 		}
2688 		update_event_times(event);
2689 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2690 	}
2691 
2692 	return perf_event_count(event);
2693 }
2694 
2695 /*
2696  * Initialize the perf_event context in a task_struct:
2697  */
2698 static void __perf_event_init_context(struct perf_event_context *ctx)
2699 {
2700 	raw_spin_lock_init(&ctx->lock);
2701 	mutex_init(&ctx->mutex);
2702 	INIT_LIST_HEAD(&ctx->pinned_groups);
2703 	INIT_LIST_HEAD(&ctx->flexible_groups);
2704 	INIT_LIST_HEAD(&ctx->event_list);
2705 	atomic_set(&ctx->refcount, 1);
2706 }
2707 
2708 static struct perf_event_context *
2709 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2710 {
2711 	struct perf_event_context *ctx;
2712 
2713 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2714 	if (!ctx)
2715 		return NULL;
2716 
2717 	__perf_event_init_context(ctx);
2718 	if (task) {
2719 		ctx->task = task;
2720 		get_task_struct(task);
2721 	}
2722 	ctx->pmu = pmu;
2723 
2724 	return ctx;
2725 }
2726 
2727 static struct task_struct *
2728 find_lively_task_by_vpid(pid_t vpid)
2729 {
2730 	struct task_struct *task;
2731 	int err;
2732 
2733 	rcu_read_lock();
2734 	if (!vpid)
2735 		task = current;
2736 	else
2737 		task = find_task_by_vpid(vpid);
2738 	if (task)
2739 		get_task_struct(task);
2740 	rcu_read_unlock();
2741 
2742 	if (!task)
2743 		return ERR_PTR(-ESRCH);
2744 
2745 	/* Reuse ptrace permission checks for now. */
2746 	err = -EACCES;
2747 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2748 		goto errout;
2749 
2750 	return task;
2751 errout:
2752 	put_task_struct(task);
2753 	return ERR_PTR(err);
2754 
2755 }
2756 
2757 /*
2758  * Returns a matching context with refcount and pincount.
2759  */
2760 static struct perf_event_context *
2761 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2762 {
2763 	struct perf_event_context *ctx;
2764 	struct perf_cpu_context *cpuctx;
2765 	unsigned long flags;
2766 	int ctxn, err;
2767 
2768 	if (!task) {
2769 		/* Must be root to operate on a CPU event: */
2770 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2771 			return ERR_PTR(-EACCES);
2772 
2773 		/*
2774 		 * We could be clever and allow to attach a event to an
2775 		 * offline CPU and activate it when the CPU comes up, but
2776 		 * that's for later.
2777 		 */
2778 		if (!cpu_online(cpu))
2779 			return ERR_PTR(-ENODEV);
2780 
2781 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2782 		ctx = &cpuctx->ctx;
2783 		get_ctx(ctx);
2784 		++ctx->pin_count;
2785 
2786 		return ctx;
2787 	}
2788 
2789 	err = -EINVAL;
2790 	ctxn = pmu->task_ctx_nr;
2791 	if (ctxn < 0)
2792 		goto errout;
2793 
2794 retry:
2795 	ctx = perf_lock_task_context(task, ctxn, &flags);
2796 	if (ctx) {
2797 		unclone_ctx(ctx);
2798 		++ctx->pin_count;
2799 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2800 	} else {
2801 		ctx = alloc_perf_context(pmu, task);
2802 		err = -ENOMEM;
2803 		if (!ctx)
2804 			goto errout;
2805 
2806 		err = 0;
2807 		mutex_lock(&task->perf_event_mutex);
2808 		/*
2809 		 * If it has already passed perf_event_exit_task().
2810 		 * we must see PF_EXITING, it takes this mutex too.
2811 		 */
2812 		if (task->flags & PF_EXITING)
2813 			err = -ESRCH;
2814 		else if (task->perf_event_ctxp[ctxn])
2815 			err = -EAGAIN;
2816 		else {
2817 			get_ctx(ctx);
2818 			++ctx->pin_count;
2819 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2820 		}
2821 		mutex_unlock(&task->perf_event_mutex);
2822 
2823 		if (unlikely(err)) {
2824 			put_ctx(ctx);
2825 
2826 			if (err == -EAGAIN)
2827 				goto retry;
2828 			goto errout;
2829 		}
2830 	}
2831 
2832 	return ctx;
2833 
2834 errout:
2835 	return ERR_PTR(err);
2836 }
2837 
2838 static void perf_event_free_filter(struct perf_event *event);
2839 
2840 static void free_event_rcu(struct rcu_head *head)
2841 {
2842 	struct perf_event *event;
2843 
2844 	event = container_of(head, struct perf_event, rcu_head);
2845 	if (event->ns)
2846 		put_pid_ns(event->ns);
2847 	perf_event_free_filter(event);
2848 	kfree(event);
2849 }
2850 
2851 static void ring_buffer_put(struct ring_buffer *rb);
2852 
2853 static void free_event(struct perf_event *event)
2854 {
2855 	irq_work_sync(&event->pending);
2856 
2857 	if (!event->parent) {
2858 		if (event->attach_state & PERF_ATTACH_TASK)
2859 			static_key_slow_dec_deferred(&perf_sched_events);
2860 		if (event->attr.mmap || event->attr.mmap_data)
2861 			atomic_dec(&nr_mmap_events);
2862 		if (event->attr.comm)
2863 			atomic_dec(&nr_comm_events);
2864 		if (event->attr.task)
2865 			atomic_dec(&nr_task_events);
2866 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2867 			put_callchain_buffers();
2868 		if (is_cgroup_event(event)) {
2869 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2870 			static_key_slow_dec_deferred(&perf_sched_events);
2871 		}
2872 
2873 		if (has_branch_stack(event)) {
2874 			static_key_slow_dec_deferred(&perf_sched_events);
2875 			/* is system-wide event */
2876 			if (!(event->attach_state & PERF_ATTACH_TASK))
2877 				atomic_dec(&per_cpu(perf_branch_stack_events,
2878 						    event->cpu));
2879 		}
2880 	}
2881 
2882 	if (event->rb) {
2883 		ring_buffer_put(event->rb);
2884 		event->rb = NULL;
2885 	}
2886 
2887 	if (is_cgroup_event(event))
2888 		perf_detach_cgroup(event);
2889 
2890 	if (event->destroy)
2891 		event->destroy(event);
2892 
2893 	if (event->ctx)
2894 		put_ctx(event->ctx);
2895 
2896 	call_rcu(&event->rcu_head, free_event_rcu);
2897 }
2898 
2899 int perf_event_release_kernel(struct perf_event *event)
2900 {
2901 	struct perf_event_context *ctx = event->ctx;
2902 
2903 	WARN_ON_ONCE(ctx->parent_ctx);
2904 	/*
2905 	 * There are two ways this annotation is useful:
2906 	 *
2907 	 *  1) there is a lock recursion from perf_event_exit_task
2908 	 *     see the comment there.
2909 	 *
2910 	 *  2) there is a lock-inversion with mmap_sem through
2911 	 *     perf_event_read_group(), which takes faults while
2912 	 *     holding ctx->mutex, however this is called after
2913 	 *     the last filedesc died, so there is no possibility
2914 	 *     to trigger the AB-BA case.
2915 	 */
2916 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2917 	raw_spin_lock_irq(&ctx->lock);
2918 	perf_group_detach(event);
2919 	raw_spin_unlock_irq(&ctx->lock);
2920 	perf_remove_from_context(event);
2921 	mutex_unlock(&ctx->mutex);
2922 
2923 	free_event(event);
2924 
2925 	return 0;
2926 }
2927 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2928 
2929 /*
2930  * Called when the last reference to the file is gone.
2931  */
2932 static int perf_release(struct inode *inode, struct file *file)
2933 {
2934 	struct perf_event *event = file->private_data;
2935 	struct task_struct *owner;
2936 
2937 	file->private_data = NULL;
2938 
2939 	rcu_read_lock();
2940 	owner = ACCESS_ONCE(event->owner);
2941 	/*
2942 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2943 	 * !owner it means the list deletion is complete and we can indeed
2944 	 * free this event, otherwise we need to serialize on
2945 	 * owner->perf_event_mutex.
2946 	 */
2947 	smp_read_barrier_depends();
2948 	if (owner) {
2949 		/*
2950 		 * Since delayed_put_task_struct() also drops the last
2951 		 * task reference we can safely take a new reference
2952 		 * while holding the rcu_read_lock().
2953 		 */
2954 		get_task_struct(owner);
2955 	}
2956 	rcu_read_unlock();
2957 
2958 	if (owner) {
2959 		mutex_lock(&owner->perf_event_mutex);
2960 		/*
2961 		 * We have to re-check the event->owner field, if it is cleared
2962 		 * we raced with perf_event_exit_task(), acquiring the mutex
2963 		 * ensured they're done, and we can proceed with freeing the
2964 		 * event.
2965 		 */
2966 		if (event->owner)
2967 			list_del_init(&event->owner_entry);
2968 		mutex_unlock(&owner->perf_event_mutex);
2969 		put_task_struct(owner);
2970 	}
2971 
2972 	return perf_event_release_kernel(event);
2973 }
2974 
2975 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2976 {
2977 	struct perf_event *child;
2978 	u64 total = 0;
2979 
2980 	*enabled = 0;
2981 	*running = 0;
2982 
2983 	mutex_lock(&event->child_mutex);
2984 	total += perf_event_read(event);
2985 	*enabled += event->total_time_enabled +
2986 			atomic64_read(&event->child_total_time_enabled);
2987 	*running += event->total_time_running +
2988 			atomic64_read(&event->child_total_time_running);
2989 
2990 	list_for_each_entry(child, &event->child_list, child_list) {
2991 		total += perf_event_read(child);
2992 		*enabled += child->total_time_enabled;
2993 		*running += child->total_time_running;
2994 	}
2995 	mutex_unlock(&event->child_mutex);
2996 
2997 	return total;
2998 }
2999 EXPORT_SYMBOL_GPL(perf_event_read_value);
3000 
3001 static int perf_event_read_group(struct perf_event *event,
3002 				   u64 read_format, char __user *buf)
3003 {
3004 	struct perf_event *leader = event->group_leader, *sub;
3005 	int n = 0, size = 0, ret = -EFAULT;
3006 	struct perf_event_context *ctx = leader->ctx;
3007 	u64 values[5];
3008 	u64 count, enabled, running;
3009 
3010 	mutex_lock(&ctx->mutex);
3011 	count = perf_event_read_value(leader, &enabled, &running);
3012 
3013 	values[n++] = 1 + leader->nr_siblings;
3014 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3015 		values[n++] = enabled;
3016 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3017 		values[n++] = running;
3018 	values[n++] = count;
3019 	if (read_format & PERF_FORMAT_ID)
3020 		values[n++] = primary_event_id(leader);
3021 
3022 	size = n * sizeof(u64);
3023 
3024 	if (copy_to_user(buf, values, size))
3025 		goto unlock;
3026 
3027 	ret = size;
3028 
3029 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3030 		n = 0;
3031 
3032 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3033 		if (read_format & PERF_FORMAT_ID)
3034 			values[n++] = primary_event_id(sub);
3035 
3036 		size = n * sizeof(u64);
3037 
3038 		if (copy_to_user(buf + ret, values, size)) {
3039 			ret = -EFAULT;
3040 			goto unlock;
3041 		}
3042 
3043 		ret += size;
3044 	}
3045 unlock:
3046 	mutex_unlock(&ctx->mutex);
3047 
3048 	return ret;
3049 }
3050 
3051 static int perf_event_read_one(struct perf_event *event,
3052 				 u64 read_format, char __user *buf)
3053 {
3054 	u64 enabled, running;
3055 	u64 values[4];
3056 	int n = 0;
3057 
3058 	values[n++] = perf_event_read_value(event, &enabled, &running);
3059 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3060 		values[n++] = enabled;
3061 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3062 		values[n++] = running;
3063 	if (read_format & PERF_FORMAT_ID)
3064 		values[n++] = primary_event_id(event);
3065 
3066 	if (copy_to_user(buf, values, n * sizeof(u64)))
3067 		return -EFAULT;
3068 
3069 	return n * sizeof(u64);
3070 }
3071 
3072 /*
3073  * Read the performance event - simple non blocking version for now
3074  */
3075 static ssize_t
3076 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3077 {
3078 	u64 read_format = event->attr.read_format;
3079 	int ret;
3080 
3081 	/*
3082 	 * Return end-of-file for a read on a event that is in
3083 	 * error state (i.e. because it was pinned but it couldn't be
3084 	 * scheduled on to the CPU at some point).
3085 	 */
3086 	if (event->state == PERF_EVENT_STATE_ERROR)
3087 		return 0;
3088 
3089 	if (count < event->read_size)
3090 		return -ENOSPC;
3091 
3092 	WARN_ON_ONCE(event->ctx->parent_ctx);
3093 	if (read_format & PERF_FORMAT_GROUP)
3094 		ret = perf_event_read_group(event, read_format, buf);
3095 	else
3096 		ret = perf_event_read_one(event, read_format, buf);
3097 
3098 	return ret;
3099 }
3100 
3101 static ssize_t
3102 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3103 {
3104 	struct perf_event *event = file->private_data;
3105 
3106 	return perf_read_hw(event, buf, count);
3107 }
3108 
3109 static unsigned int perf_poll(struct file *file, poll_table *wait)
3110 {
3111 	struct perf_event *event = file->private_data;
3112 	struct ring_buffer *rb;
3113 	unsigned int events = POLL_HUP;
3114 
3115 	/*
3116 	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3117 	 * grabs the rb reference but perf_event_set_output() overrides it.
3118 	 * Here is the timeline for two threads T1, T2:
3119 	 * t0: T1, rb = rcu_dereference(event->rb)
3120 	 * t1: T2, old_rb = event->rb
3121 	 * t2: T2, event->rb = new rb
3122 	 * t3: T2, ring_buffer_detach(old_rb)
3123 	 * t4: T1, ring_buffer_attach(rb1)
3124 	 * t5: T1, poll_wait(event->waitq)
3125 	 *
3126 	 * To avoid this problem, we grab mmap_mutex in perf_poll()
3127 	 * thereby ensuring that the assignment of the new ring buffer
3128 	 * and the detachment of the old buffer appear atomic to perf_poll()
3129 	 */
3130 	mutex_lock(&event->mmap_mutex);
3131 
3132 	rcu_read_lock();
3133 	rb = rcu_dereference(event->rb);
3134 	if (rb) {
3135 		ring_buffer_attach(event, rb);
3136 		events = atomic_xchg(&rb->poll, 0);
3137 	}
3138 	rcu_read_unlock();
3139 
3140 	mutex_unlock(&event->mmap_mutex);
3141 
3142 	poll_wait(file, &event->waitq, wait);
3143 
3144 	return events;
3145 }
3146 
3147 static void perf_event_reset(struct perf_event *event)
3148 {
3149 	(void)perf_event_read(event);
3150 	local64_set(&event->count, 0);
3151 	perf_event_update_userpage(event);
3152 }
3153 
3154 /*
3155  * Holding the top-level event's child_mutex means that any
3156  * descendant process that has inherited this event will block
3157  * in sync_child_event if it goes to exit, thus satisfying the
3158  * task existence requirements of perf_event_enable/disable.
3159  */
3160 static void perf_event_for_each_child(struct perf_event *event,
3161 					void (*func)(struct perf_event *))
3162 {
3163 	struct perf_event *child;
3164 
3165 	WARN_ON_ONCE(event->ctx->parent_ctx);
3166 	mutex_lock(&event->child_mutex);
3167 	func(event);
3168 	list_for_each_entry(child, &event->child_list, child_list)
3169 		func(child);
3170 	mutex_unlock(&event->child_mutex);
3171 }
3172 
3173 static void perf_event_for_each(struct perf_event *event,
3174 				  void (*func)(struct perf_event *))
3175 {
3176 	struct perf_event_context *ctx = event->ctx;
3177 	struct perf_event *sibling;
3178 
3179 	WARN_ON_ONCE(ctx->parent_ctx);
3180 	mutex_lock(&ctx->mutex);
3181 	event = event->group_leader;
3182 
3183 	perf_event_for_each_child(event, func);
3184 	func(event);
3185 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3186 		perf_event_for_each_child(sibling, func);
3187 	mutex_unlock(&ctx->mutex);
3188 }
3189 
3190 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3191 {
3192 	struct perf_event_context *ctx = event->ctx;
3193 	int ret = 0;
3194 	u64 value;
3195 
3196 	if (!is_sampling_event(event))
3197 		return -EINVAL;
3198 
3199 	if (copy_from_user(&value, arg, sizeof(value)))
3200 		return -EFAULT;
3201 
3202 	if (!value)
3203 		return -EINVAL;
3204 
3205 	raw_spin_lock_irq(&ctx->lock);
3206 	if (event->attr.freq) {
3207 		if (value > sysctl_perf_event_sample_rate) {
3208 			ret = -EINVAL;
3209 			goto unlock;
3210 		}
3211 
3212 		event->attr.sample_freq = value;
3213 	} else {
3214 		event->attr.sample_period = value;
3215 		event->hw.sample_period = value;
3216 	}
3217 unlock:
3218 	raw_spin_unlock_irq(&ctx->lock);
3219 
3220 	return ret;
3221 }
3222 
3223 static const struct file_operations perf_fops;
3224 
3225 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3226 {
3227 	struct file *file;
3228 
3229 	file = fget_light(fd, fput_needed);
3230 	if (!file)
3231 		return ERR_PTR(-EBADF);
3232 
3233 	if (file->f_op != &perf_fops) {
3234 		fput_light(file, *fput_needed);
3235 		*fput_needed = 0;
3236 		return ERR_PTR(-EBADF);
3237 	}
3238 
3239 	return file->private_data;
3240 }
3241 
3242 static int perf_event_set_output(struct perf_event *event,
3243 				 struct perf_event *output_event);
3244 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3245 
3246 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3247 {
3248 	struct perf_event *event = file->private_data;
3249 	void (*func)(struct perf_event *);
3250 	u32 flags = arg;
3251 
3252 	switch (cmd) {
3253 	case PERF_EVENT_IOC_ENABLE:
3254 		func = perf_event_enable;
3255 		break;
3256 	case PERF_EVENT_IOC_DISABLE:
3257 		func = perf_event_disable;
3258 		break;
3259 	case PERF_EVENT_IOC_RESET:
3260 		func = perf_event_reset;
3261 		break;
3262 
3263 	case PERF_EVENT_IOC_REFRESH:
3264 		return perf_event_refresh(event, arg);
3265 
3266 	case PERF_EVENT_IOC_PERIOD:
3267 		return perf_event_period(event, (u64 __user *)arg);
3268 
3269 	case PERF_EVENT_IOC_SET_OUTPUT:
3270 	{
3271 		struct perf_event *output_event = NULL;
3272 		int fput_needed = 0;
3273 		int ret;
3274 
3275 		if (arg != -1) {
3276 			output_event = perf_fget_light(arg, &fput_needed);
3277 			if (IS_ERR(output_event))
3278 				return PTR_ERR(output_event);
3279 		}
3280 
3281 		ret = perf_event_set_output(event, output_event);
3282 		if (output_event)
3283 			fput_light(output_event->filp, fput_needed);
3284 
3285 		return ret;
3286 	}
3287 
3288 	case PERF_EVENT_IOC_SET_FILTER:
3289 		return perf_event_set_filter(event, (void __user *)arg);
3290 
3291 	default:
3292 		return -ENOTTY;
3293 	}
3294 
3295 	if (flags & PERF_IOC_FLAG_GROUP)
3296 		perf_event_for_each(event, func);
3297 	else
3298 		perf_event_for_each_child(event, func);
3299 
3300 	return 0;
3301 }
3302 
3303 int perf_event_task_enable(void)
3304 {
3305 	struct perf_event *event;
3306 
3307 	mutex_lock(&current->perf_event_mutex);
3308 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3309 		perf_event_for_each_child(event, perf_event_enable);
3310 	mutex_unlock(&current->perf_event_mutex);
3311 
3312 	return 0;
3313 }
3314 
3315 int perf_event_task_disable(void)
3316 {
3317 	struct perf_event *event;
3318 
3319 	mutex_lock(&current->perf_event_mutex);
3320 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3321 		perf_event_for_each_child(event, perf_event_disable);
3322 	mutex_unlock(&current->perf_event_mutex);
3323 
3324 	return 0;
3325 }
3326 
3327 static int perf_event_index(struct perf_event *event)
3328 {
3329 	if (event->hw.state & PERF_HES_STOPPED)
3330 		return 0;
3331 
3332 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3333 		return 0;
3334 
3335 	return event->pmu->event_idx(event);
3336 }
3337 
3338 static void calc_timer_values(struct perf_event *event,
3339 				u64 *now,
3340 				u64 *enabled,
3341 				u64 *running)
3342 {
3343 	u64 ctx_time;
3344 
3345 	*now = perf_clock();
3346 	ctx_time = event->shadow_ctx_time + *now;
3347 	*enabled = ctx_time - event->tstamp_enabled;
3348 	*running = ctx_time - event->tstamp_running;
3349 }
3350 
3351 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3352 {
3353 }
3354 
3355 /*
3356  * Callers need to ensure there can be no nesting of this function, otherwise
3357  * the seqlock logic goes bad. We can not serialize this because the arch
3358  * code calls this from NMI context.
3359  */
3360 void perf_event_update_userpage(struct perf_event *event)
3361 {
3362 	struct perf_event_mmap_page *userpg;
3363 	struct ring_buffer *rb;
3364 	u64 enabled, running, now;
3365 
3366 	rcu_read_lock();
3367 	/*
3368 	 * compute total_time_enabled, total_time_running
3369 	 * based on snapshot values taken when the event
3370 	 * was last scheduled in.
3371 	 *
3372 	 * we cannot simply called update_context_time()
3373 	 * because of locking issue as we can be called in
3374 	 * NMI context
3375 	 */
3376 	calc_timer_values(event, &now, &enabled, &running);
3377 	rb = rcu_dereference(event->rb);
3378 	if (!rb)
3379 		goto unlock;
3380 
3381 	userpg = rb->user_page;
3382 
3383 	/*
3384 	 * Disable preemption so as to not let the corresponding user-space
3385 	 * spin too long if we get preempted.
3386 	 */
3387 	preempt_disable();
3388 	++userpg->lock;
3389 	barrier();
3390 	userpg->index = perf_event_index(event);
3391 	userpg->offset = perf_event_count(event);
3392 	if (userpg->index)
3393 		userpg->offset -= local64_read(&event->hw.prev_count);
3394 
3395 	userpg->time_enabled = enabled +
3396 			atomic64_read(&event->child_total_time_enabled);
3397 
3398 	userpg->time_running = running +
3399 			atomic64_read(&event->child_total_time_running);
3400 
3401 	arch_perf_update_userpage(userpg, now);
3402 
3403 	barrier();
3404 	++userpg->lock;
3405 	preempt_enable();
3406 unlock:
3407 	rcu_read_unlock();
3408 }
3409 
3410 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3411 {
3412 	struct perf_event *event = vma->vm_file->private_data;
3413 	struct ring_buffer *rb;
3414 	int ret = VM_FAULT_SIGBUS;
3415 
3416 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3417 		if (vmf->pgoff == 0)
3418 			ret = 0;
3419 		return ret;
3420 	}
3421 
3422 	rcu_read_lock();
3423 	rb = rcu_dereference(event->rb);
3424 	if (!rb)
3425 		goto unlock;
3426 
3427 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3428 		goto unlock;
3429 
3430 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3431 	if (!vmf->page)
3432 		goto unlock;
3433 
3434 	get_page(vmf->page);
3435 	vmf->page->mapping = vma->vm_file->f_mapping;
3436 	vmf->page->index   = vmf->pgoff;
3437 
3438 	ret = 0;
3439 unlock:
3440 	rcu_read_unlock();
3441 
3442 	return ret;
3443 }
3444 
3445 static void ring_buffer_attach(struct perf_event *event,
3446 			       struct ring_buffer *rb)
3447 {
3448 	unsigned long flags;
3449 
3450 	if (!list_empty(&event->rb_entry))
3451 		return;
3452 
3453 	spin_lock_irqsave(&rb->event_lock, flags);
3454 	if (!list_empty(&event->rb_entry))
3455 		goto unlock;
3456 
3457 	list_add(&event->rb_entry, &rb->event_list);
3458 unlock:
3459 	spin_unlock_irqrestore(&rb->event_lock, flags);
3460 }
3461 
3462 static void ring_buffer_detach(struct perf_event *event,
3463 			       struct ring_buffer *rb)
3464 {
3465 	unsigned long flags;
3466 
3467 	if (list_empty(&event->rb_entry))
3468 		return;
3469 
3470 	spin_lock_irqsave(&rb->event_lock, flags);
3471 	list_del_init(&event->rb_entry);
3472 	wake_up_all(&event->waitq);
3473 	spin_unlock_irqrestore(&rb->event_lock, flags);
3474 }
3475 
3476 static void ring_buffer_wakeup(struct perf_event *event)
3477 {
3478 	struct ring_buffer *rb;
3479 
3480 	rcu_read_lock();
3481 	rb = rcu_dereference(event->rb);
3482 	if (!rb)
3483 		goto unlock;
3484 
3485 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3486 		wake_up_all(&event->waitq);
3487 
3488 unlock:
3489 	rcu_read_unlock();
3490 }
3491 
3492 static void rb_free_rcu(struct rcu_head *rcu_head)
3493 {
3494 	struct ring_buffer *rb;
3495 
3496 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3497 	rb_free(rb);
3498 }
3499 
3500 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3501 {
3502 	struct ring_buffer *rb;
3503 
3504 	rcu_read_lock();
3505 	rb = rcu_dereference(event->rb);
3506 	if (rb) {
3507 		if (!atomic_inc_not_zero(&rb->refcount))
3508 			rb = NULL;
3509 	}
3510 	rcu_read_unlock();
3511 
3512 	return rb;
3513 }
3514 
3515 static void ring_buffer_put(struct ring_buffer *rb)
3516 {
3517 	struct perf_event *event, *n;
3518 	unsigned long flags;
3519 
3520 	if (!atomic_dec_and_test(&rb->refcount))
3521 		return;
3522 
3523 	spin_lock_irqsave(&rb->event_lock, flags);
3524 	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3525 		list_del_init(&event->rb_entry);
3526 		wake_up_all(&event->waitq);
3527 	}
3528 	spin_unlock_irqrestore(&rb->event_lock, flags);
3529 
3530 	call_rcu(&rb->rcu_head, rb_free_rcu);
3531 }
3532 
3533 static void perf_mmap_open(struct vm_area_struct *vma)
3534 {
3535 	struct perf_event *event = vma->vm_file->private_data;
3536 
3537 	atomic_inc(&event->mmap_count);
3538 }
3539 
3540 static void perf_mmap_close(struct vm_area_struct *vma)
3541 {
3542 	struct perf_event *event = vma->vm_file->private_data;
3543 
3544 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3545 		unsigned long size = perf_data_size(event->rb);
3546 		struct user_struct *user = event->mmap_user;
3547 		struct ring_buffer *rb = event->rb;
3548 
3549 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3550 		vma->vm_mm->pinned_vm -= event->mmap_locked;
3551 		rcu_assign_pointer(event->rb, NULL);
3552 		ring_buffer_detach(event, rb);
3553 		mutex_unlock(&event->mmap_mutex);
3554 
3555 		ring_buffer_put(rb);
3556 		free_uid(user);
3557 	}
3558 }
3559 
3560 static const struct vm_operations_struct perf_mmap_vmops = {
3561 	.open		= perf_mmap_open,
3562 	.close		= perf_mmap_close,
3563 	.fault		= perf_mmap_fault,
3564 	.page_mkwrite	= perf_mmap_fault,
3565 };
3566 
3567 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3568 {
3569 	struct perf_event *event = file->private_data;
3570 	unsigned long user_locked, user_lock_limit;
3571 	struct user_struct *user = current_user();
3572 	unsigned long locked, lock_limit;
3573 	struct ring_buffer *rb;
3574 	unsigned long vma_size;
3575 	unsigned long nr_pages;
3576 	long user_extra, extra;
3577 	int ret = 0, flags = 0;
3578 
3579 	/*
3580 	 * Don't allow mmap() of inherited per-task counters. This would
3581 	 * create a performance issue due to all children writing to the
3582 	 * same rb.
3583 	 */
3584 	if (event->cpu == -1 && event->attr.inherit)
3585 		return -EINVAL;
3586 
3587 	if (!(vma->vm_flags & VM_SHARED))
3588 		return -EINVAL;
3589 
3590 	vma_size = vma->vm_end - vma->vm_start;
3591 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3592 
3593 	/*
3594 	 * If we have rb pages ensure they're a power-of-two number, so we
3595 	 * can do bitmasks instead of modulo.
3596 	 */
3597 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3598 		return -EINVAL;
3599 
3600 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3601 		return -EINVAL;
3602 
3603 	if (vma->vm_pgoff != 0)
3604 		return -EINVAL;
3605 
3606 	WARN_ON_ONCE(event->ctx->parent_ctx);
3607 	mutex_lock(&event->mmap_mutex);
3608 	if (event->rb) {
3609 		if (event->rb->nr_pages == nr_pages)
3610 			atomic_inc(&event->rb->refcount);
3611 		else
3612 			ret = -EINVAL;
3613 		goto unlock;
3614 	}
3615 
3616 	user_extra = nr_pages + 1;
3617 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3618 
3619 	/*
3620 	 * Increase the limit linearly with more CPUs:
3621 	 */
3622 	user_lock_limit *= num_online_cpus();
3623 
3624 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3625 
3626 	extra = 0;
3627 	if (user_locked > user_lock_limit)
3628 		extra = user_locked - user_lock_limit;
3629 
3630 	lock_limit = rlimit(RLIMIT_MEMLOCK);
3631 	lock_limit >>= PAGE_SHIFT;
3632 	locked = vma->vm_mm->pinned_vm + extra;
3633 
3634 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3635 		!capable(CAP_IPC_LOCK)) {
3636 		ret = -EPERM;
3637 		goto unlock;
3638 	}
3639 
3640 	WARN_ON(event->rb);
3641 
3642 	if (vma->vm_flags & VM_WRITE)
3643 		flags |= RING_BUFFER_WRITABLE;
3644 
3645 	rb = rb_alloc(nr_pages,
3646 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3647 		event->cpu, flags);
3648 
3649 	if (!rb) {
3650 		ret = -ENOMEM;
3651 		goto unlock;
3652 	}
3653 	rcu_assign_pointer(event->rb, rb);
3654 
3655 	atomic_long_add(user_extra, &user->locked_vm);
3656 	event->mmap_locked = extra;
3657 	event->mmap_user = get_current_user();
3658 	vma->vm_mm->pinned_vm += event->mmap_locked;
3659 
3660 	perf_event_update_userpage(event);
3661 
3662 unlock:
3663 	if (!ret)
3664 		atomic_inc(&event->mmap_count);
3665 	mutex_unlock(&event->mmap_mutex);
3666 
3667 	vma->vm_flags |= VM_RESERVED;
3668 	vma->vm_ops = &perf_mmap_vmops;
3669 
3670 	return ret;
3671 }
3672 
3673 static int perf_fasync(int fd, struct file *filp, int on)
3674 {
3675 	struct inode *inode = filp->f_path.dentry->d_inode;
3676 	struct perf_event *event = filp->private_data;
3677 	int retval;
3678 
3679 	mutex_lock(&inode->i_mutex);
3680 	retval = fasync_helper(fd, filp, on, &event->fasync);
3681 	mutex_unlock(&inode->i_mutex);
3682 
3683 	if (retval < 0)
3684 		return retval;
3685 
3686 	return 0;
3687 }
3688 
3689 static const struct file_operations perf_fops = {
3690 	.llseek			= no_llseek,
3691 	.release		= perf_release,
3692 	.read			= perf_read,
3693 	.poll			= perf_poll,
3694 	.unlocked_ioctl		= perf_ioctl,
3695 	.compat_ioctl		= perf_ioctl,
3696 	.mmap			= perf_mmap,
3697 	.fasync			= perf_fasync,
3698 };
3699 
3700 /*
3701  * Perf event wakeup
3702  *
3703  * If there's data, ensure we set the poll() state and publish everything
3704  * to user-space before waking everybody up.
3705  */
3706 
3707 void perf_event_wakeup(struct perf_event *event)
3708 {
3709 	ring_buffer_wakeup(event);
3710 
3711 	if (event->pending_kill) {
3712 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3713 		event->pending_kill = 0;
3714 	}
3715 }
3716 
3717 static void perf_pending_event(struct irq_work *entry)
3718 {
3719 	struct perf_event *event = container_of(entry,
3720 			struct perf_event, pending);
3721 
3722 	if (event->pending_disable) {
3723 		event->pending_disable = 0;
3724 		__perf_event_disable(event);
3725 	}
3726 
3727 	if (event->pending_wakeup) {
3728 		event->pending_wakeup = 0;
3729 		perf_event_wakeup(event);
3730 	}
3731 }
3732 
3733 /*
3734  * We assume there is only KVM supporting the callbacks.
3735  * Later on, we might change it to a list if there is
3736  * another virtualization implementation supporting the callbacks.
3737  */
3738 struct perf_guest_info_callbacks *perf_guest_cbs;
3739 
3740 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3741 {
3742 	perf_guest_cbs = cbs;
3743 	return 0;
3744 }
3745 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3746 
3747 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3748 {
3749 	perf_guest_cbs = NULL;
3750 	return 0;
3751 }
3752 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3753 
3754 static void __perf_event_header__init_id(struct perf_event_header *header,
3755 					 struct perf_sample_data *data,
3756 					 struct perf_event *event)
3757 {
3758 	u64 sample_type = event->attr.sample_type;
3759 
3760 	data->type = sample_type;
3761 	header->size += event->id_header_size;
3762 
3763 	if (sample_type & PERF_SAMPLE_TID) {
3764 		/* namespace issues */
3765 		data->tid_entry.pid = perf_event_pid(event, current);
3766 		data->tid_entry.tid = perf_event_tid(event, current);
3767 	}
3768 
3769 	if (sample_type & PERF_SAMPLE_TIME)
3770 		data->time = perf_clock();
3771 
3772 	if (sample_type & PERF_SAMPLE_ID)
3773 		data->id = primary_event_id(event);
3774 
3775 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3776 		data->stream_id = event->id;
3777 
3778 	if (sample_type & PERF_SAMPLE_CPU) {
3779 		data->cpu_entry.cpu	 = raw_smp_processor_id();
3780 		data->cpu_entry.reserved = 0;
3781 	}
3782 }
3783 
3784 void perf_event_header__init_id(struct perf_event_header *header,
3785 				struct perf_sample_data *data,
3786 				struct perf_event *event)
3787 {
3788 	if (event->attr.sample_id_all)
3789 		__perf_event_header__init_id(header, data, event);
3790 }
3791 
3792 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3793 					   struct perf_sample_data *data)
3794 {
3795 	u64 sample_type = data->type;
3796 
3797 	if (sample_type & PERF_SAMPLE_TID)
3798 		perf_output_put(handle, data->tid_entry);
3799 
3800 	if (sample_type & PERF_SAMPLE_TIME)
3801 		perf_output_put(handle, data->time);
3802 
3803 	if (sample_type & PERF_SAMPLE_ID)
3804 		perf_output_put(handle, data->id);
3805 
3806 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3807 		perf_output_put(handle, data->stream_id);
3808 
3809 	if (sample_type & PERF_SAMPLE_CPU)
3810 		perf_output_put(handle, data->cpu_entry);
3811 }
3812 
3813 void perf_event__output_id_sample(struct perf_event *event,
3814 				  struct perf_output_handle *handle,
3815 				  struct perf_sample_data *sample)
3816 {
3817 	if (event->attr.sample_id_all)
3818 		__perf_event__output_id_sample(handle, sample);
3819 }
3820 
3821 static void perf_output_read_one(struct perf_output_handle *handle,
3822 				 struct perf_event *event,
3823 				 u64 enabled, u64 running)
3824 {
3825 	u64 read_format = event->attr.read_format;
3826 	u64 values[4];
3827 	int n = 0;
3828 
3829 	values[n++] = perf_event_count(event);
3830 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3831 		values[n++] = enabled +
3832 			atomic64_read(&event->child_total_time_enabled);
3833 	}
3834 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3835 		values[n++] = running +
3836 			atomic64_read(&event->child_total_time_running);
3837 	}
3838 	if (read_format & PERF_FORMAT_ID)
3839 		values[n++] = primary_event_id(event);
3840 
3841 	__output_copy(handle, values, n * sizeof(u64));
3842 }
3843 
3844 /*
3845  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3846  */
3847 static void perf_output_read_group(struct perf_output_handle *handle,
3848 			    struct perf_event *event,
3849 			    u64 enabled, u64 running)
3850 {
3851 	struct perf_event *leader = event->group_leader, *sub;
3852 	u64 read_format = event->attr.read_format;
3853 	u64 values[5];
3854 	int n = 0;
3855 
3856 	values[n++] = 1 + leader->nr_siblings;
3857 
3858 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3859 		values[n++] = enabled;
3860 
3861 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3862 		values[n++] = running;
3863 
3864 	if (leader != event)
3865 		leader->pmu->read(leader);
3866 
3867 	values[n++] = perf_event_count(leader);
3868 	if (read_format & PERF_FORMAT_ID)
3869 		values[n++] = primary_event_id(leader);
3870 
3871 	__output_copy(handle, values, n * sizeof(u64));
3872 
3873 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3874 		n = 0;
3875 
3876 		if (sub != event)
3877 			sub->pmu->read(sub);
3878 
3879 		values[n++] = perf_event_count(sub);
3880 		if (read_format & PERF_FORMAT_ID)
3881 			values[n++] = primary_event_id(sub);
3882 
3883 		__output_copy(handle, values, n * sizeof(u64));
3884 	}
3885 }
3886 
3887 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3888 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
3889 
3890 static void perf_output_read(struct perf_output_handle *handle,
3891 			     struct perf_event *event)
3892 {
3893 	u64 enabled = 0, running = 0, now;
3894 	u64 read_format = event->attr.read_format;
3895 
3896 	/*
3897 	 * compute total_time_enabled, total_time_running
3898 	 * based on snapshot values taken when the event
3899 	 * was last scheduled in.
3900 	 *
3901 	 * we cannot simply called update_context_time()
3902 	 * because of locking issue as we are called in
3903 	 * NMI context
3904 	 */
3905 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
3906 		calc_timer_values(event, &now, &enabled, &running);
3907 
3908 	if (event->attr.read_format & PERF_FORMAT_GROUP)
3909 		perf_output_read_group(handle, event, enabled, running);
3910 	else
3911 		perf_output_read_one(handle, event, enabled, running);
3912 }
3913 
3914 void perf_output_sample(struct perf_output_handle *handle,
3915 			struct perf_event_header *header,
3916 			struct perf_sample_data *data,
3917 			struct perf_event *event)
3918 {
3919 	u64 sample_type = data->type;
3920 
3921 	perf_output_put(handle, *header);
3922 
3923 	if (sample_type & PERF_SAMPLE_IP)
3924 		perf_output_put(handle, data->ip);
3925 
3926 	if (sample_type & PERF_SAMPLE_TID)
3927 		perf_output_put(handle, data->tid_entry);
3928 
3929 	if (sample_type & PERF_SAMPLE_TIME)
3930 		perf_output_put(handle, data->time);
3931 
3932 	if (sample_type & PERF_SAMPLE_ADDR)
3933 		perf_output_put(handle, data->addr);
3934 
3935 	if (sample_type & PERF_SAMPLE_ID)
3936 		perf_output_put(handle, data->id);
3937 
3938 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3939 		perf_output_put(handle, data->stream_id);
3940 
3941 	if (sample_type & PERF_SAMPLE_CPU)
3942 		perf_output_put(handle, data->cpu_entry);
3943 
3944 	if (sample_type & PERF_SAMPLE_PERIOD)
3945 		perf_output_put(handle, data->period);
3946 
3947 	if (sample_type & PERF_SAMPLE_READ)
3948 		perf_output_read(handle, event);
3949 
3950 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3951 		if (data->callchain) {
3952 			int size = 1;
3953 
3954 			if (data->callchain)
3955 				size += data->callchain->nr;
3956 
3957 			size *= sizeof(u64);
3958 
3959 			__output_copy(handle, data->callchain, size);
3960 		} else {
3961 			u64 nr = 0;
3962 			perf_output_put(handle, nr);
3963 		}
3964 	}
3965 
3966 	if (sample_type & PERF_SAMPLE_RAW) {
3967 		if (data->raw) {
3968 			perf_output_put(handle, data->raw->size);
3969 			__output_copy(handle, data->raw->data,
3970 					   data->raw->size);
3971 		} else {
3972 			struct {
3973 				u32	size;
3974 				u32	data;
3975 			} raw = {
3976 				.size = sizeof(u32),
3977 				.data = 0,
3978 			};
3979 			perf_output_put(handle, raw);
3980 		}
3981 	}
3982 
3983 	if (!event->attr.watermark) {
3984 		int wakeup_events = event->attr.wakeup_events;
3985 
3986 		if (wakeup_events) {
3987 			struct ring_buffer *rb = handle->rb;
3988 			int events = local_inc_return(&rb->events);
3989 
3990 			if (events >= wakeup_events) {
3991 				local_sub(wakeup_events, &rb->events);
3992 				local_inc(&rb->wakeup);
3993 			}
3994 		}
3995 	}
3996 
3997 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
3998 		if (data->br_stack) {
3999 			size_t size;
4000 
4001 			size = data->br_stack->nr
4002 			     * sizeof(struct perf_branch_entry);
4003 
4004 			perf_output_put(handle, data->br_stack->nr);
4005 			perf_output_copy(handle, data->br_stack->entries, size);
4006 		} else {
4007 			/*
4008 			 * we always store at least the value of nr
4009 			 */
4010 			u64 nr = 0;
4011 			perf_output_put(handle, nr);
4012 		}
4013 	}
4014 }
4015 
4016 void perf_prepare_sample(struct perf_event_header *header,
4017 			 struct perf_sample_data *data,
4018 			 struct perf_event *event,
4019 			 struct pt_regs *regs)
4020 {
4021 	u64 sample_type = event->attr.sample_type;
4022 
4023 	header->type = PERF_RECORD_SAMPLE;
4024 	header->size = sizeof(*header) + event->header_size;
4025 
4026 	header->misc = 0;
4027 	header->misc |= perf_misc_flags(regs);
4028 
4029 	__perf_event_header__init_id(header, data, event);
4030 
4031 	if (sample_type & PERF_SAMPLE_IP)
4032 		data->ip = perf_instruction_pointer(regs);
4033 
4034 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4035 		int size = 1;
4036 
4037 		data->callchain = perf_callchain(regs);
4038 
4039 		if (data->callchain)
4040 			size += data->callchain->nr;
4041 
4042 		header->size += size * sizeof(u64);
4043 	}
4044 
4045 	if (sample_type & PERF_SAMPLE_RAW) {
4046 		int size = sizeof(u32);
4047 
4048 		if (data->raw)
4049 			size += data->raw->size;
4050 		else
4051 			size += sizeof(u32);
4052 
4053 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4054 		header->size += size;
4055 	}
4056 
4057 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4058 		int size = sizeof(u64); /* nr */
4059 		if (data->br_stack) {
4060 			size += data->br_stack->nr
4061 			      * sizeof(struct perf_branch_entry);
4062 		}
4063 		header->size += size;
4064 	}
4065 }
4066 
4067 static void perf_event_output(struct perf_event *event,
4068 				struct perf_sample_data *data,
4069 				struct pt_regs *regs)
4070 {
4071 	struct perf_output_handle handle;
4072 	struct perf_event_header header;
4073 
4074 	/* protect the callchain buffers */
4075 	rcu_read_lock();
4076 
4077 	perf_prepare_sample(&header, data, event, regs);
4078 
4079 	if (perf_output_begin(&handle, event, header.size))
4080 		goto exit;
4081 
4082 	perf_output_sample(&handle, &header, data, event);
4083 
4084 	perf_output_end(&handle);
4085 
4086 exit:
4087 	rcu_read_unlock();
4088 }
4089 
4090 /*
4091  * read event_id
4092  */
4093 
4094 struct perf_read_event {
4095 	struct perf_event_header	header;
4096 
4097 	u32				pid;
4098 	u32				tid;
4099 };
4100 
4101 static void
4102 perf_event_read_event(struct perf_event *event,
4103 			struct task_struct *task)
4104 {
4105 	struct perf_output_handle handle;
4106 	struct perf_sample_data sample;
4107 	struct perf_read_event read_event = {
4108 		.header = {
4109 			.type = PERF_RECORD_READ,
4110 			.misc = 0,
4111 			.size = sizeof(read_event) + event->read_size,
4112 		},
4113 		.pid = perf_event_pid(event, task),
4114 		.tid = perf_event_tid(event, task),
4115 	};
4116 	int ret;
4117 
4118 	perf_event_header__init_id(&read_event.header, &sample, event);
4119 	ret = perf_output_begin(&handle, event, read_event.header.size);
4120 	if (ret)
4121 		return;
4122 
4123 	perf_output_put(&handle, read_event);
4124 	perf_output_read(&handle, event);
4125 	perf_event__output_id_sample(event, &handle, &sample);
4126 
4127 	perf_output_end(&handle);
4128 }
4129 
4130 /*
4131  * task tracking -- fork/exit
4132  *
4133  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4134  */
4135 
4136 struct perf_task_event {
4137 	struct task_struct		*task;
4138 	struct perf_event_context	*task_ctx;
4139 
4140 	struct {
4141 		struct perf_event_header	header;
4142 
4143 		u32				pid;
4144 		u32				ppid;
4145 		u32				tid;
4146 		u32				ptid;
4147 		u64				time;
4148 	} event_id;
4149 };
4150 
4151 static void perf_event_task_output(struct perf_event *event,
4152 				     struct perf_task_event *task_event)
4153 {
4154 	struct perf_output_handle handle;
4155 	struct perf_sample_data	sample;
4156 	struct task_struct *task = task_event->task;
4157 	int ret, size = task_event->event_id.header.size;
4158 
4159 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4160 
4161 	ret = perf_output_begin(&handle, event,
4162 				task_event->event_id.header.size);
4163 	if (ret)
4164 		goto out;
4165 
4166 	task_event->event_id.pid = perf_event_pid(event, task);
4167 	task_event->event_id.ppid = perf_event_pid(event, current);
4168 
4169 	task_event->event_id.tid = perf_event_tid(event, task);
4170 	task_event->event_id.ptid = perf_event_tid(event, current);
4171 
4172 	perf_output_put(&handle, task_event->event_id);
4173 
4174 	perf_event__output_id_sample(event, &handle, &sample);
4175 
4176 	perf_output_end(&handle);
4177 out:
4178 	task_event->event_id.header.size = size;
4179 }
4180 
4181 static int perf_event_task_match(struct perf_event *event)
4182 {
4183 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4184 		return 0;
4185 
4186 	if (!event_filter_match(event))
4187 		return 0;
4188 
4189 	if (event->attr.comm || event->attr.mmap ||
4190 	    event->attr.mmap_data || event->attr.task)
4191 		return 1;
4192 
4193 	return 0;
4194 }
4195 
4196 static void perf_event_task_ctx(struct perf_event_context *ctx,
4197 				  struct perf_task_event *task_event)
4198 {
4199 	struct perf_event *event;
4200 
4201 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4202 		if (perf_event_task_match(event))
4203 			perf_event_task_output(event, task_event);
4204 	}
4205 }
4206 
4207 static void perf_event_task_event(struct perf_task_event *task_event)
4208 {
4209 	struct perf_cpu_context *cpuctx;
4210 	struct perf_event_context *ctx;
4211 	struct pmu *pmu;
4212 	int ctxn;
4213 
4214 	rcu_read_lock();
4215 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4216 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4217 		if (cpuctx->active_pmu != pmu)
4218 			goto next;
4219 		perf_event_task_ctx(&cpuctx->ctx, task_event);
4220 
4221 		ctx = task_event->task_ctx;
4222 		if (!ctx) {
4223 			ctxn = pmu->task_ctx_nr;
4224 			if (ctxn < 0)
4225 				goto next;
4226 			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4227 		}
4228 		if (ctx)
4229 			perf_event_task_ctx(ctx, task_event);
4230 next:
4231 		put_cpu_ptr(pmu->pmu_cpu_context);
4232 	}
4233 	rcu_read_unlock();
4234 }
4235 
4236 static void perf_event_task(struct task_struct *task,
4237 			      struct perf_event_context *task_ctx,
4238 			      int new)
4239 {
4240 	struct perf_task_event task_event;
4241 
4242 	if (!atomic_read(&nr_comm_events) &&
4243 	    !atomic_read(&nr_mmap_events) &&
4244 	    !atomic_read(&nr_task_events))
4245 		return;
4246 
4247 	task_event = (struct perf_task_event){
4248 		.task	  = task,
4249 		.task_ctx = task_ctx,
4250 		.event_id    = {
4251 			.header = {
4252 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4253 				.misc = 0,
4254 				.size = sizeof(task_event.event_id),
4255 			},
4256 			/* .pid  */
4257 			/* .ppid */
4258 			/* .tid  */
4259 			/* .ptid */
4260 			.time = perf_clock(),
4261 		},
4262 	};
4263 
4264 	perf_event_task_event(&task_event);
4265 }
4266 
4267 void perf_event_fork(struct task_struct *task)
4268 {
4269 	perf_event_task(task, NULL, 1);
4270 }
4271 
4272 /*
4273  * comm tracking
4274  */
4275 
4276 struct perf_comm_event {
4277 	struct task_struct	*task;
4278 	char			*comm;
4279 	int			comm_size;
4280 
4281 	struct {
4282 		struct perf_event_header	header;
4283 
4284 		u32				pid;
4285 		u32				tid;
4286 	} event_id;
4287 };
4288 
4289 static void perf_event_comm_output(struct perf_event *event,
4290 				     struct perf_comm_event *comm_event)
4291 {
4292 	struct perf_output_handle handle;
4293 	struct perf_sample_data sample;
4294 	int size = comm_event->event_id.header.size;
4295 	int ret;
4296 
4297 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4298 	ret = perf_output_begin(&handle, event,
4299 				comm_event->event_id.header.size);
4300 
4301 	if (ret)
4302 		goto out;
4303 
4304 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4305 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4306 
4307 	perf_output_put(&handle, comm_event->event_id);
4308 	__output_copy(&handle, comm_event->comm,
4309 				   comm_event->comm_size);
4310 
4311 	perf_event__output_id_sample(event, &handle, &sample);
4312 
4313 	perf_output_end(&handle);
4314 out:
4315 	comm_event->event_id.header.size = size;
4316 }
4317 
4318 static int perf_event_comm_match(struct perf_event *event)
4319 {
4320 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4321 		return 0;
4322 
4323 	if (!event_filter_match(event))
4324 		return 0;
4325 
4326 	if (event->attr.comm)
4327 		return 1;
4328 
4329 	return 0;
4330 }
4331 
4332 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4333 				  struct perf_comm_event *comm_event)
4334 {
4335 	struct perf_event *event;
4336 
4337 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4338 		if (perf_event_comm_match(event))
4339 			perf_event_comm_output(event, comm_event);
4340 	}
4341 }
4342 
4343 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4344 {
4345 	struct perf_cpu_context *cpuctx;
4346 	struct perf_event_context *ctx;
4347 	char comm[TASK_COMM_LEN];
4348 	unsigned int size;
4349 	struct pmu *pmu;
4350 	int ctxn;
4351 
4352 	memset(comm, 0, sizeof(comm));
4353 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4354 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4355 
4356 	comm_event->comm = comm;
4357 	comm_event->comm_size = size;
4358 
4359 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4360 	rcu_read_lock();
4361 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4362 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4363 		if (cpuctx->active_pmu != pmu)
4364 			goto next;
4365 		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4366 
4367 		ctxn = pmu->task_ctx_nr;
4368 		if (ctxn < 0)
4369 			goto next;
4370 
4371 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4372 		if (ctx)
4373 			perf_event_comm_ctx(ctx, comm_event);
4374 next:
4375 		put_cpu_ptr(pmu->pmu_cpu_context);
4376 	}
4377 	rcu_read_unlock();
4378 }
4379 
4380 void perf_event_comm(struct task_struct *task)
4381 {
4382 	struct perf_comm_event comm_event;
4383 	struct perf_event_context *ctx;
4384 	int ctxn;
4385 
4386 	for_each_task_context_nr(ctxn) {
4387 		ctx = task->perf_event_ctxp[ctxn];
4388 		if (!ctx)
4389 			continue;
4390 
4391 		perf_event_enable_on_exec(ctx);
4392 	}
4393 
4394 	if (!atomic_read(&nr_comm_events))
4395 		return;
4396 
4397 	comm_event = (struct perf_comm_event){
4398 		.task	= task,
4399 		/* .comm      */
4400 		/* .comm_size */
4401 		.event_id  = {
4402 			.header = {
4403 				.type = PERF_RECORD_COMM,
4404 				.misc = 0,
4405 				/* .size */
4406 			},
4407 			/* .pid */
4408 			/* .tid */
4409 		},
4410 	};
4411 
4412 	perf_event_comm_event(&comm_event);
4413 }
4414 
4415 /*
4416  * mmap tracking
4417  */
4418 
4419 struct perf_mmap_event {
4420 	struct vm_area_struct	*vma;
4421 
4422 	const char		*file_name;
4423 	int			file_size;
4424 
4425 	struct {
4426 		struct perf_event_header	header;
4427 
4428 		u32				pid;
4429 		u32				tid;
4430 		u64				start;
4431 		u64				len;
4432 		u64				pgoff;
4433 	} event_id;
4434 };
4435 
4436 static void perf_event_mmap_output(struct perf_event *event,
4437 				     struct perf_mmap_event *mmap_event)
4438 {
4439 	struct perf_output_handle handle;
4440 	struct perf_sample_data sample;
4441 	int size = mmap_event->event_id.header.size;
4442 	int ret;
4443 
4444 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4445 	ret = perf_output_begin(&handle, event,
4446 				mmap_event->event_id.header.size);
4447 	if (ret)
4448 		goto out;
4449 
4450 	mmap_event->event_id.pid = perf_event_pid(event, current);
4451 	mmap_event->event_id.tid = perf_event_tid(event, current);
4452 
4453 	perf_output_put(&handle, mmap_event->event_id);
4454 	__output_copy(&handle, mmap_event->file_name,
4455 				   mmap_event->file_size);
4456 
4457 	perf_event__output_id_sample(event, &handle, &sample);
4458 
4459 	perf_output_end(&handle);
4460 out:
4461 	mmap_event->event_id.header.size = size;
4462 }
4463 
4464 static int perf_event_mmap_match(struct perf_event *event,
4465 				   struct perf_mmap_event *mmap_event,
4466 				   int executable)
4467 {
4468 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4469 		return 0;
4470 
4471 	if (!event_filter_match(event))
4472 		return 0;
4473 
4474 	if ((!executable && event->attr.mmap_data) ||
4475 	    (executable && event->attr.mmap))
4476 		return 1;
4477 
4478 	return 0;
4479 }
4480 
4481 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4482 				  struct perf_mmap_event *mmap_event,
4483 				  int executable)
4484 {
4485 	struct perf_event *event;
4486 
4487 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4488 		if (perf_event_mmap_match(event, mmap_event, executable))
4489 			perf_event_mmap_output(event, mmap_event);
4490 	}
4491 }
4492 
4493 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4494 {
4495 	struct perf_cpu_context *cpuctx;
4496 	struct perf_event_context *ctx;
4497 	struct vm_area_struct *vma = mmap_event->vma;
4498 	struct file *file = vma->vm_file;
4499 	unsigned int size;
4500 	char tmp[16];
4501 	char *buf = NULL;
4502 	const char *name;
4503 	struct pmu *pmu;
4504 	int ctxn;
4505 
4506 	memset(tmp, 0, sizeof(tmp));
4507 
4508 	if (file) {
4509 		/*
4510 		 * d_path works from the end of the rb backwards, so we
4511 		 * need to add enough zero bytes after the string to handle
4512 		 * the 64bit alignment we do later.
4513 		 */
4514 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4515 		if (!buf) {
4516 			name = strncpy(tmp, "//enomem", sizeof(tmp));
4517 			goto got_name;
4518 		}
4519 		name = d_path(&file->f_path, buf, PATH_MAX);
4520 		if (IS_ERR(name)) {
4521 			name = strncpy(tmp, "//toolong", sizeof(tmp));
4522 			goto got_name;
4523 		}
4524 	} else {
4525 		if (arch_vma_name(mmap_event->vma)) {
4526 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4527 				       sizeof(tmp));
4528 			goto got_name;
4529 		}
4530 
4531 		if (!vma->vm_mm) {
4532 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
4533 			goto got_name;
4534 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
4535 				vma->vm_end >= vma->vm_mm->brk) {
4536 			name = strncpy(tmp, "[heap]", sizeof(tmp));
4537 			goto got_name;
4538 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
4539 				vma->vm_end >= vma->vm_mm->start_stack) {
4540 			name = strncpy(tmp, "[stack]", sizeof(tmp));
4541 			goto got_name;
4542 		}
4543 
4544 		name = strncpy(tmp, "//anon", sizeof(tmp));
4545 		goto got_name;
4546 	}
4547 
4548 got_name:
4549 	size = ALIGN(strlen(name)+1, sizeof(u64));
4550 
4551 	mmap_event->file_name = name;
4552 	mmap_event->file_size = size;
4553 
4554 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4555 
4556 	rcu_read_lock();
4557 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4558 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4559 		if (cpuctx->active_pmu != pmu)
4560 			goto next;
4561 		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4562 					vma->vm_flags & VM_EXEC);
4563 
4564 		ctxn = pmu->task_ctx_nr;
4565 		if (ctxn < 0)
4566 			goto next;
4567 
4568 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4569 		if (ctx) {
4570 			perf_event_mmap_ctx(ctx, mmap_event,
4571 					vma->vm_flags & VM_EXEC);
4572 		}
4573 next:
4574 		put_cpu_ptr(pmu->pmu_cpu_context);
4575 	}
4576 	rcu_read_unlock();
4577 
4578 	kfree(buf);
4579 }
4580 
4581 void perf_event_mmap(struct vm_area_struct *vma)
4582 {
4583 	struct perf_mmap_event mmap_event;
4584 
4585 	if (!atomic_read(&nr_mmap_events))
4586 		return;
4587 
4588 	mmap_event = (struct perf_mmap_event){
4589 		.vma	= vma,
4590 		/* .file_name */
4591 		/* .file_size */
4592 		.event_id  = {
4593 			.header = {
4594 				.type = PERF_RECORD_MMAP,
4595 				.misc = PERF_RECORD_MISC_USER,
4596 				/* .size */
4597 			},
4598 			/* .pid */
4599 			/* .tid */
4600 			.start  = vma->vm_start,
4601 			.len    = vma->vm_end - vma->vm_start,
4602 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4603 		},
4604 	};
4605 
4606 	perf_event_mmap_event(&mmap_event);
4607 }
4608 
4609 /*
4610  * IRQ throttle logging
4611  */
4612 
4613 static void perf_log_throttle(struct perf_event *event, int enable)
4614 {
4615 	struct perf_output_handle handle;
4616 	struct perf_sample_data sample;
4617 	int ret;
4618 
4619 	struct {
4620 		struct perf_event_header	header;
4621 		u64				time;
4622 		u64				id;
4623 		u64				stream_id;
4624 	} throttle_event = {
4625 		.header = {
4626 			.type = PERF_RECORD_THROTTLE,
4627 			.misc = 0,
4628 			.size = sizeof(throttle_event),
4629 		},
4630 		.time		= perf_clock(),
4631 		.id		= primary_event_id(event),
4632 		.stream_id	= event->id,
4633 	};
4634 
4635 	if (enable)
4636 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4637 
4638 	perf_event_header__init_id(&throttle_event.header, &sample, event);
4639 
4640 	ret = perf_output_begin(&handle, event,
4641 				throttle_event.header.size);
4642 	if (ret)
4643 		return;
4644 
4645 	perf_output_put(&handle, throttle_event);
4646 	perf_event__output_id_sample(event, &handle, &sample);
4647 	perf_output_end(&handle);
4648 }
4649 
4650 /*
4651  * Generic event overflow handling, sampling.
4652  */
4653 
4654 static int __perf_event_overflow(struct perf_event *event,
4655 				   int throttle, struct perf_sample_data *data,
4656 				   struct pt_regs *regs)
4657 {
4658 	int events = atomic_read(&event->event_limit);
4659 	struct hw_perf_event *hwc = &event->hw;
4660 	u64 seq;
4661 	int ret = 0;
4662 
4663 	/*
4664 	 * Non-sampling counters might still use the PMI to fold short
4665 	 * hardware counters, ignore those.
4666 	 */
4667 	if (unlikely(!is_sampling_event(event)))
4668 		return 0;
4669 
4670 	seq = __this_cpu_read(perf_throttled_seq);
4671 	if (seq != hwc->interrupts_seq) {
4672 		hwc->interrupts_seq = seq;
4673 		hwc->interrupts = 1;
4674 	} else {
4675 		hwc->interrupts++;
4676 		if (unlikely(throttle
4677 			     && hwc->interrupts >= max_samples_per_tick)) {
4678 			__this_cpu_inc(perf_throttled_count);
4679 			hwc->interrupts = MAX_INTERRUPTS;
4680 			perf_log_throttle(event, 0);
4681 			ret = 1;
4682 		}
4683 	}
4684 
4685 	if (event->attr.freq) {
4686 		u64 now = perf_clock();
4687 		s64 delta = now - hwc->freq_time_stamp;
4688 
4689 		hwc->freq_time_stamp = now;
4690 
4691 		if (delta > 0 && delta < 2*TICK_NSEC)
4692 			perf_adjust_period(event, delta, hwc->last_period, true);
4693 	}
4694 
4695 	/*
4696 	 * XXX event_limit might not quite work as expected on inherited
4697 	 * events
4698 	 */
4699 
4700 	event->pending_kill = POLL_IN;
4701 	if (events && atomic_dec_and_test(&event->event_limit)) {
4702 		ret = 1;
4703 		event->pending_kill = POLL_HUP;
4704 		event->pending_disable = 1;
4705 		irq_work_queue(&event->pending);
4706 	}
4707 
4708 	if (event->overflow_handler)
4709 		event->overflow_handler(event, data, regs);
4710 	else
4711 		perf_event_output(event, data, regs);
4712 
4713 	if (event->fasync && event->pending_kill) {
4714 		event->pending_wakeup = 1;
4715 		irq_work_queue(&event->pending);
4716 	}
4717 
4718 	return ret;
4719 }
4720 
4721 int perf_event_overflow(struct perf_event *event,
4722 			  struct perf_sample_data *data,
4723 			  struct pt_regs *regs)
4724 {
4725 	return __perf_event_overflow(event, 1, data, regs);
4726 }
4727 
4728 /*
4729  * Generic software event infrastructure
4730  */
4731 
4732 struct swevent_htable {
4733 	struct swevent_hlist		*swevent_hlist;
4734 	struct mutex			hlist_mutex;
4735 	int				hlist_refcount;
4736 
4737 	/* Recursion avoidance in each contexts */
4738 	int				recursion[PERF_NR_CONTEXTS];
4739 };
4740 
4741 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4742 
4743 /*
4744  * We directly increment event->count and keep a second value in
4745  * event->hw.period_left to count intervals. This period event
4746  * is kept in the range [-sample_period, 0] so that we can use the
4747  * sign as trigger.
4748  */
4749 
4750 static u64 perf_swevent_set_period(struct perf_event *event)
4751 {
4752 	struct hw_perf_event *hwc = &event->hw;
4753 	u64 period = hwc->last_period;
4754 	u64 nr, offset;
4755 	s64 old, val;
4756 
4757 	hwc->last_period = hwc->sample_period;
4758 
4759 again:
4760 	old = val = local64_read(&hwc->period_left);
4761 	if (val < 0)
4762 		return 0;
4763 
4764 	nr = div64_u64(period + val, period);
4765 	offset = nr * period;
4766 	val -= offset;
4767 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4768 		goto again;
4769 
4770 	return nr;
4771 }
4772 
4773 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4774 				    struct perf_sample_data *data,
4775 				    struct pt_regs *regs)
4776 {
4777 	struct hw_perf_event *hwc = &event->hw;
4778 	int throttle = 0;
4779 
4780 	if (!overflow)
4781 		overflow = perf_swevent_set_period(event);
4782 
4783 	if (hwc->interrupts == MAX_INTERRUPTS)
4784 		return;
4785 
4786 	for (; overflow; overflow--) {
4787 		if (__perf_event_overflow(event, throttle,
4788 					    data, regs)) {
4789 			/*
4790 			 * We inhibit the overflow from happening when
4791 			 * hwc->interrupts == MAX_INTERRUPTS.
4792 			 */
4793 			break;
4794 		}
4795 		throttle = 1;
4796 	}
4797 }
4798 
4799 static void perf_swevent_event(struct perf_event *event, u64 nr,
4800 			       struct perf_sample_data *data,
4801 			       struct pt_regs *regs)
4802 {
4803 	struct hw_perf_event *hwc = &event->hw;
4804 
4805 	local64_add(nr, &event->count);
4806 
4807 	if (!regs)
4808 		return;
4809 
4810 	if (!is_sampling_event(event))
4811 		return;
4812 
4813 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4814 		data->period = nr;
4815 		return perf_swevent_overflow(event, 1, data, regs);
4816 	} else
4817 		data->period = event->hw.last_period;
4818 
4819 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4820 		return perf_swevent_overflow(event, 1, data, regs);
4821 
4822 	if (local64_add_negative(nr, &hwc->period_left))
4823 		return;
4824 
4825 	perf_swevent_overflow(event, 0, data, regs);
4826 }
4827 
4828 static int perf_exclude_event(struct perf_event *event,
4829 			      struct pt_regs *regs)
4830 {
4831 	if (event->hw.state & PERF_HES_STOPPED)
4832 		return 1;
4833 
4834 	if (regs) {
4835 		if (event->attr.exclude_user && user_mode(regs))
4836 			return 1;
4837 
4838 		if (event->attr.exclude_kernel && !user_mode(regs))
4839 			return 1;
4840 	}
4841 
4842 	return 0;
4843 }
4844 
4845 static int perf_swevent_match(struct perf_event *event,
4846 				enum perf_type_id type,
4847 				u32 event_id,
4848 				struct perf_sample_data *data,
4849 				struct pt_regs *regs)
4850 {
4851 	if (event->attr.type != type)
4852 		return 0;
4853 
4854 	if (event->attr.config != event_id)
4855 		return 0;
4856 
4857 	if (perf_exclude_event(event, regs))
4858 		return 0;
4859 
4860 	return 1;
4861 }
4862 
4863 static inline u64 swevent_hash(u64 type, u32 event_id)
4864 {
4865 	u64 val = event_id | (type << 32);
4866 
4867 	return hash_64(val, SWEVENT_HLIST_BITS);
4868 }
4869 
4870 static inline struct hlist_head *
4871 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4872 {
4873 	u64 hash = swevent_hash(type, event_id);
4874 
4875 	return &hlist->heads[hash];
4876 }
4877 
4878 /* For the read side: events when they trigger */
4879 static inline struct hlist_head *
4880 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4881 {
4882 	struct swevent_hlist *hlist;
4883 
4884 	hlist = rcu_dereference(swhash->swevent_hlist);
4885 	if (!hlist)
4886 		return NULL;
4887 
4888 	return __find_swevent_head(hlist, type, event_id);
4889 }
4890 
4891 /* For the event head insertion and removal in the hlist */
4892 static inline struct hlist_head *
4893 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4894 {
4895 	struct swevent_hlist *hlist;
4896 	u32 event_id = event->attr.config;
4897 	u64 type = event->attr.type;
4898 
4899 	/*
4900 	 * Event scheduling is always serialized against hlist allocation
4901 	 * and release. Which makes the protected version suitable here.
4902 	 * The context lock guarantees that.
4903 	 */
4904 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4905 					  lockdep_is_held(&event->ctx->lock));
4906 	if (!hlist)
4907 		return NULL;
4908 
4909 	return __find_swevent_head(hlist, type, event_id);
4910 }
4911 
4912 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4913 				    u64 nr,
4914 				    struct perf_sample_data *data,
4915 				    struct pt_regs *regs)
4916 {
4917 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4918 	struct perf_event *event;
4919 	struct hlist_node *node;
4920 	struct hlist_head *head;
4921 
4922 	rcu_read_lock();
4923 	head = find_swevent_head_rcu(swhash, type, event_id);
4924 	if (!head)
4925 		goto end;
4926 
4927 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4928 		if (perf_swevent_match(event, type, event_id, data, regs))
4929 			perf_swevent_event(event, nr, data, regs);
4930 	}
4931 end:
4932 	rcu_read_unlock();
4933 }
4934 
4935 int perf_swevent_get_recursion_context(void)
4936 {
4937 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4938 
4939 	return get_recursion_context(swhash->recursion);
4940 }
4941 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4942 
4943 inline void perf_swevent_put_recursion_context(int rctx)
4944 {
4945 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4946 
4947 	put_recursion_context(swhash->recursion, rctx);
4948 }
4949 
4950 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4951 {
4952 	struct perf_sample_data data;
4953 	int rctx;
4954 
4955 	preempt_disable_notrace();
4956 	rctx = perf_swevent_get_recursion_context();
4957 	if (rctx < 0)
4958 		return;
4959 
4960 	perf_sample_data_init(&data, addr);
4961 
4962 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4963 
4964 	perf_swevent_put_recursion_context(rctx);
4965 	preempt_enable_notrace();
4966 }
4967 
4968 static void perf_swevent_read(struct perf_event *event)
4969 {
4970 }
4971 
4972 static int perf_swevent_add(struct perf_event *event, int flags)
4973 {
4974 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4975 	struct hw_perf_event *hwc = &event->hw;
4976 	struct hlist_head *head;
4977 
4978 	if (is_sampling_event(event)) {
4979 		hwc->last_period = hwc->sample_period;
4980 		perf_swevent_set_period(event);
4981 	}
4982 
4983 	hwc->state = !(flags & PERF_EF_START);
4984 
4985 	head = find_swevent_head(swhash, event);
4986 	if (WARN_ON_ONCE(!head))
4987 		return -EINVAL;
4988 
4989 	hlist_add_head_rcu(&event->hlist_entry, head);
4990 
4991 	return 0;
4992 }
4993 
4994 static void perf_swevent_del(struct perf_event *event, int flags)
4995 {
4996 	hlist_del_rcu(&event->hlist_entry);
4997 }
4998 
4999 static void perf_swevent_start(struct perf_event *event, int flags)
5000 {
5001 	event->hw.state = 0;
5002 }
5003 
5004 static void perf_swevent_stop(struct perf_event *event, int flags)
5005 {
5006 	event->hw.state = PERF_HES_STOPPED;
5007 }
5008 
5009 /* Deref the hlist from the update side */
5010 static inline struct swevent_hlist *
5011 swevent_hlist_deref(struct swevent_htable *swhash)
5012 {
5013 	return rcu_dereference_protected(swhash->swevent_hlist,
5014 					 lockdep_is_held(&swhash->hlist_mutex));
5015 }
5016 
5017 static void swevent_hlist_release(struct swevent_htable *swhash)
5018 {
5019 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5020 
5021 	if (!hlist)
5022 		return;
5023 
5024 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5025 	kfree_rcu(hlist, rcu_head);
5026 }
5027 
5028 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5029 {
5030 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5031 
5032 	mutex_lock(&swhash->hlist_mutex);
5033 
5034 	if (!--swhash->hlist_refcount)
5035 		swevent_hlist_release(swhash);
5036 
5037 	mutex_unlock(&swhash->hlist_mutex);
5038 }
5039 
5040 static void swevent_hlist_put(struct perf_event *event)
5041 {
5042 	int cpu;
5043 
5044 	if (event->cpu != -1) {
5045 		swevent_hlist_put_cpu(event, event->cpu);
5046 		return;
5047 	}
5048 
5049 	for_each_possible_cpu(cpu)
5050 		swevent_hlist_put_cpu(event, cpu);
5051 }
5052 
5053 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5054 {
5055 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5056 	int err = 0;
5057 
5058 	mutex_lock(&swhash->hlist_mutex);
5059 
5060 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5061 		struct swevent_hlist *hlist;
5062 
5063 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5064 		if (!hlist) {
5065 			err = -ENOMEM;
5066 			goto exit;
5067 		}
5068 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5069 	}
5070 	swhash->hlist_refcount++;
5071 exit:
5072 	mutex_unlock(&swhash->hlist_mutex);
5073 
5074 	return err;
5075 }
5076 
5077 static int swevent_hlist_get(struct perf_event *event)
5078 {
5079 	int err;
5080 	int cpu, failed_cpu;
5081 
5082 	if (event->cpu != -1)
5083 		return swevent_hlist_get_cpu(event, event->cpu);
5084 
5085 	get_online_cpus();
5086 	for_each_possible_cpu(cpu) {
5087 		err = swevent_hlist_get_cpu(event, cpu);
5088 		if (err) {
5089 			failed_cpu = cpu;
5090 			goto fail;
5091 		}
5092 	}
5093 	put_online_cpus();
5094 
5095 	return 0;
5096 fail:
5097 	for_each_possible_cpu(cpu) {
5098 		if (cpu == failed_cpu)
5099 			break;
5100 		swevent_hlist_put_cpu(event, cpu);
5101 	}
5102 
5103 	put_online_cpus();
5104 	return err;
5105 }
5106 
5107 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5108 
5109 static void sw_perf_event_destroy(struct perf_event *event)
5110 {
5111 	u64 event_id = event->attr.config;
5112 
5113 	WARN_ON(event->parent);
5114 
5115 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5116 	swevent_hlist_put(event);
5117 }
5118 
5119 static int perf_swevent_init(struct perf_event *event)
5120 {
5121 	int event_id = event->attr.config;
5122 
5123 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5124 		return -ENOENT;
5125 
5126 	/*
5127 	 * no branch sampling for software events
5128 	 */
5129 	if (has_branch_stack(event))
5130 		return -EOPNOTSUPP;
5131 
5132 	switch (event_id) {
5133 	case PERF_COUNT_SW_CPU_CLOCK:
5134 	case PERF_COUNT_SW_TASK_CLOCK:
5135 		return -ENOENT;
5136 
5137 	default:
5138 		break;
5139 	}
5140 
5141 	if (event_id >= PERF_COUNT_SW_MAX)
5142 		return -ENOENT;
5143 
5144 	if (!event->parent) {
5145 		int err;
5146 
5147 		err = swevent_hlist_get(event);
5148 		if (err)
5149 			return err;
5150 
5151 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5152 		event->destroy = sw_perf_event_destroy;
5153 	}
5154 
5155 	return 0;
5156 }
5157 
5158 static int perf_swevent_event_idx(struct perf_event *event)
5159 {
5160 	return 0;
5161 }
5162 
5163 static struct pmu perf_swevent = {
5164 	.task_ctx_nr	= perf_sw_context,
5165 
5166 	.event_init	= perf_swevent_init,
5167 	.add		= perf_swevent_add,
5168 	.del		= perf_swevent_del,
5169 	.start		= perf_swevent_start,
5170 	.stop		= perf_swevent_stop,
5171 	.read		= perf_swevent_read,
5172 
5173 	.event_idx	= perf_swevent_event_idx,
5174 };
5175 
5176 #ifdef CONFIG_EVENT_TRACING
5177 
5178 static int perf_tp_filter_match(struct perf_event *event,
5179 				struct perf_sample_data *data)
5180 {
5181 	void *record = data->raw->data;
5182 
5183 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5184 		return 1;
5185 	return 0;
5186 }
5187 
5188 static int perf_tp_event_match(struct perf_event *event,
5189 				struct perf_sample_data *data,
5190 				struct pt_regs *regs)
5191 {
5192 	if (event->hw.state & PERF_HES_STOPPED)
5193 		return 0;
5194 	/*
5195 	 * All tracepoints are from kernel-space.
5196 	 */
5197 	if (event->attr.exclude_kernel)
5198 		return 0;
5199 
5200 	if (!perf_tp_filter_match(event, data))
5201 		return 0;
5202 
5203 	return 1;
5204 }
5205 
5206 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5207 		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5208 {
5209 	struct perf_sample_data data;
5210 	struct perf_event *event;
5211 	struct hlist_node *node;
5212 
5213 	struct perf_raw_record raw = {
5214 		.size = entry_size,
5215 		.data = record,
5216 	};
5217 
5218 	perf_sample_data_init(&data, addr);
5219 	data.raw = &raw;
5220 
5221 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5222 		if (perf_tp_event_match(event, &data, regs))
5223 			perf_swevent_event(event, count, &data, regs);
5224 	}
5225 
5226 	perf_swevent_put_recursion_context(rctx);
5227 }
5228 EXPORT_SYMBOL_GPL(perf_tp_event);
5229 
5230 static void tp_perf_event_destroy(struct perf_event *event)
5231 {
5232 	perf_trace_destroy(event);
5233 }
5234 
5235 static int perf_tp_event_init(struct perf_event *event)
5236 {
5237 	int err;
5238 
5239 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5240 		return -ENOENT;
5241 
5242 	/*
5243 	 * no branch sampling for tracepoint events
5244 	 */
5245 	if (has_branch_stack(event))
5246 		return -EOPNOTSUPP;
5247 
5248 	err = perf_trace_init(event);
5249 	if (err)
5250 		return err;
5251 
5252 	event->destroy = tp_perf_event_destroy;
5253 
5254 	return 0;
5255 }
5256 
5257 static struct pmu perf_tracepoint = {
5258 	.task_ctx_nr	= perf_sw_context,
5259 
5260 	.event_init	= perf_tp_event_init,
5261 	.add		= perf_trace_add,
5262 	.del		= perf_trace_del,
5263 	.start		= perf_swevent_start,
5264 	.stop		= perf_swevent_stop,
5265 	.read		= perf_swevent_read,
5266 
5267 	.event_idx	= perf_swevent_event_idx,
5268 };
5269 
5270 static inline void perf_tp_register(void)
5271 {
5272 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5273 }
5274 
5275 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5276 {
5277 	char *filter_str;
5278 	int ret;
5279 
5280 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5281 		return -EINVAL;
5282 
5283 	filter_str = strndup_user(arg, PAGE_SIZE);
5284 	if (IS_ERR(filter_str))
5285 		return PTR_ERR(filter_str);
5286 
5287 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5288 
5289 	kfree(filter_str);
5290 	return ret;
5291 }
5292 
5293 static void perf_event_free_filter(struct perf_event *event)
5294 {
5295 	ftrace_profile_free_filter(event);
5296 }
5297 
5298 #else
5299 
5300 static inline void perf_tp_register(void)
5301 {
5302 }
5303 
5304 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5305 {
5306 	return -ENOENT;
5307 }
5308 
5309 static void perf_event_free_filter(struct perf_event *event)
5310 {
5311 }
5312 
5313 #endif /* CONFIG_EVENT_TRACING */
5314 
5315 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5316 void perf_bp_event(struct perf_event *bp, void *data)
5317 {
5318 	struct perf_sample_data sample;
5319 	struct pt_regs *regs = data;
5320 
5321 	perf_sample_data_init(&sample, bp->attr.bp_addr);
5322 
5323 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5324 		perf_swevent_event(bp, 1, &sample, regs);
5325 }
5326 #endif
5327 
5328 /*
5329  * hrtimer based swevent callback
5330  */
5331 
5332 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5333 {
5334 	enum hrtimer_restart ret = HRTIMER_RESTART;
5335 	struct perf_sample_data data;
5336 	struct pt_regs *regs;
5337 	struct perf_event *event;
5338 	u64 period;
5339 
5340 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5341 
5342 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5343 		return HRTIMER_NORESTART;
5344 
5345 	event->pmu->read(event);
5346 
5347 	perf_sample_data_init(&data, 0);
5348 	data.period = event->hw.last_period;
5349 	regs = get_irq_regs();
5350 
5351 	if (regs && !perf_exclude_event(event, regs)) {
5352 		if (!(event->attr.exclude_idle && is_idle_task(current)))
5353 			if (perf_event_overflow(event, &data, regs))
5354 				ret = HRTIMER_NORESTART;
5355 	}
5356 
5357 	period = max_t(u64, 10000, event->hw.sample_period);
5358 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5359 
5360 	return ret;
5361 }
5362 
5363 static void perf_swevent_start_hrtimer(struct perf_event *event)
5364 {
5365 	struct hw_perf_event *hwc = &event->hw;
5366 	s64 period;
5367 
5368 	if (!is_sampling_event(event))
5369 		return;
5370 
5371 	period = local64_read(&hwc->period_left);
5372 	if (period) {
5373 		if (period < 0)
5374 			period = 10000;
5375 
5376 		local64_set(&hwc->period_left, 0);
5377 	} else {
5378 		period = max_t(u64, 10000, hwc->sample_period);
5379 	}
5380 	__hrtimer_start_range_ns(&hwc->hrtimer,
5381 				ns_to_ktime(period), 0,
5382 				HRTIMER_MODE_REL_PINNED, 0);
5383 }
5384 
5385 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5386 {
5387 	struct hw_perf_event *hwc = &event->hw;
5388 
5389 	if (is_sampling_event(event)) {
5390 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5391 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5392 
5393 		hrtimer_cancel(&hwc->hrtimer);
5394 	}
5395 }
5396 
5397 static void perf_swevent_init_hrtimer(struct perf_event *event)
5398 {
5399 	struct hw_perf_event *hwc = &event->hw;
5400 
5401 	if (!is_sampling_event(event))
5402 		return;
5403 
5404 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5405 	hwc->hrtimer.function = perf_swevent_hrtimer;
5406 
5407 	/*
5408 	 * Since hrtimers have a fixed rate, we can do a static freq->period
5409 	 * mapping and avoid the whole period adjust feedback stuff.
5410 	 */
5411 	if (event->attr.freq) {
5412 		long freq = event->attr.sample_freq;
5413 
5414 		event->attr.sample_period = NSEC_PER_SEC / freq;
5415 		hwc->sample_period = event->attr.sample_period;
5416 		local64_set(&hwc->period_left, hwc->sample_period);
5417 		event->attr.freq = 0;
5418 	}
5419 }
5420 
5421 /*
5422  * Software event: cpu wall time clock
5423  */
5424 
5425 static void cpu_clock_event_update(struct perf_event *event)
5426 {
5427 	s64 prev;
5428 	u64 now;
5429 
5430 	now = local_clock();
5431 	prev = local64_xchg(&event->hw.prev_count, now);
5432 	local64_add(now - prev, &event->count);
5433 }
5434 
5435 static void cpu_clock_event_start(struct perf_event *event, int flags)
5436 {
5437 	local64_set(&event->hw.prev_count, local_clock());
5438 	perf_swevent_start_hrtimer(event);
5439 }
5440 
5441 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5442 {
5443 	perf_swevent_cancel_hrtimer(event);
5444 	cpu_clock_event_update(event);
5445 }
5446 
5447 static int cpu_clock_event_add(struct perf_event *event, int flags)
5448 {
5449 	if (flags & PERF_EF_START)
5450 		cpu_clock_event_start(event, flags);
5451 
5452 	return 0;
5453 }
5454 
5455 static void cpu_clock_event_del(struct perf_event *event, int flags)
5456 {
5457 	cpu_clock_event_stop(event, flags);
5458 }
5459 
5460 static void cpu_clock_event_read(struct perf_event *event)
5461 {
5462 	cpu_clock_event_update(event);
5463 }
5464 
5465 static int cpu_clock_event_init(struct perf_event *event)
5466 {
5467 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5468 		return -ENOENT;
5469 
5470 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5471 		return -ENOENT;
5472 
5473 	/*
5474 	 * no branch sampling for software events
5475 	 */
5476 	if (has_branch_stack(event))
5477 		return -EOPNOTSUPP;
5478 
5479 	perf_swevent_init_hrtimer(event);
5480 
5481 	return 0;
5482 }
5483 
5484 static struct pmu perf_cpu_clock = {
5485 	.task_ctx_nr	= perf_sw_context,
5486 
5487 	.event_init	= cpu_clock_event_init,
5488 	.add		= cpu_clock_event_add,
5489 	.del		= cpu_clock_event_del,
5490 	.start		= cpu_clock_event_start,
5491 	.stop		= cpu_clock_event_stop,
5492 	.read		= cpu_clock_event_read,
5493 
5494 	.event_idx	= perf_swevent_event_idx,
5495 };
5496 
5497 /*
5498  * Software event: task time clock
5499  */
5500 
5501 static void task_clock_event_update(struct perf_event *event, u64 now)
5502 {
5503 	u64 prev;
5504 	s64 delta;
5505 
5506 	prev = local64_xchg(&event->hw.prev_count, now);
5507 	delta = now - prev;
5508 	local64_add(delta, &event->count);
5509 }
5510 
5511 static void task_clock_event_start(struct perf_event *event, int flags)
5512 {
5513 	local64_set(&event->hw.prev_count, event->ctx->time);
5514 	perf_swevent_start_hrtimer(event);
5515 }
5516 
5517 static void task_clock_event_stop(struct perf_event *event, int flags)
5518 {
5519 	perf_swevent_cancel_hrtimer(event);
5520 	task_clock_event_update(event, event->ctx->time);
5521 }
5522 
5523 static int task_clock_event_add(struct perf_event *event, int flags)
5524 {
5525 	if (flags & PERF_EF_START)
5526 		task_clock_event_start(event, flags);
5527 
5528 	return 0;
5529 }
5530 
5531 static void task_clock_event_del(struct perf_event *event, int flags)
5532 {
5533 	task_clock_event_stop(event, PERF_EF_UPDATE);
5534 }
5535 
5536 static void task_clock_event_read(struct perf_event *event)
5537 {
5538 	u64 now = perf_clock();
5539 	u64 delta = now - event->ctx->timestamp;
5540 	u64 time = event->ctx->time + delta;
5541 
5542 	task_clock_event_update(event, time);
5543 }
5544 
5545 static int task_clock_event_init(struct perf_event *event)
5546 {
5547 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5548 		return -ENOENT;
5549 
5550 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5551 		return -ENOENT;
5552 
5553 	/*
5554 	 * no branch sampling for software events
5555 	 */
5556 	if (has_branch_stack(event))
5557 		return -EOPNOTSUPP;
5558 
5559 	perf_swevent_init_hrtimer(event);
5560 
5561 	return 0;
5562 }
5563 
5564 static struct pmu perf_task_clock = {
5565 	.task_ctx_nr	= perf_sw_context,
5566 
5567 	.event_init	= task_clock_event_init,
5568 	.add		= task_clock_event_add,
5569 	.del		= task_clock_event_del,
5570 	.start		= task_clock_event_start,
5571 	.stop		= task_clock_event_stop,
5572 	.read		= task_clock_event_read,
5573 
5574 	.event_idx	= perf_swevent_event_idx,
5575 };
5576 
5577 static void perf_pmu_nop_void(struct pmu *pmu)
5578 {
5579 }
5580 
5581 static int perf_pmu_nop_int(struct pmu *pmu)
5582 {
5583 	return 0;
5584 }
5585 
5586 static void perf_pmu_start_txn(struct pmu *pmu)
5587 {
5588 	perf_pmu_disable(pmu);
5589 }
5590 
5591 static int perf_pmu_commit_txn(struct pmu *pmu)
5592 {
5593 	perf_pmu_enable(pmu);
5594 	return 0;
5595 }
5596 
5597 static void perf_pmu_cancel_txn(struct pmu *pmu)
5598 {
5599 	perf_pmu_enable(pmu);
5600 }
5601 
5602 static int perf_event_idx_default(struct perf_event *event)
5603 {
5604 	return event->hw.idx + 1;
5605 }
5606 
5607 /*
5608  * Ensures all contexts with the same task_ctx_nr have the same
5609  * pmu_cpu_context too.
5610  */
5611 static void *find_pmu_context(int ctxn)
5612 {
5613 	struct pmu *pmu;
5614 
5615 	if (ctxn < 0)
5616 		return NULL;
5617 
5618 	list_for_each_entry(pmu, &pmus, entry) {
5619 		if (pmu->task_ctx_nr == ctxn)
5620 			return pmu->pmu_cpu_context;
5621 	}
5622 
5623 	return NULL;
5624 }
5625 
5626 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5627 {
5628 	int cpu;
5629 
5630 	for_each_possible_cpu(cpu) {
5631 		struct perf_cpu_context *cpuctx;
5632 
5633 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5634 
5635 		if (cpuctx->active_pmu == old_pmu)
5636 			cpuctx->active_pmu = pmu;
5637 	}
5638 }
5639 
5640 static void free_pmu_context(struct pmu *pmu)
5641 {
5642 	struct pmu *i;
5643 
5644 	mutex_lock(&pmus_lock);
5645 	/*
5646 	 * Like a real lame refcount.
5647 	 */
5648 	list_for_each_entry(i, &pmus, entry) {
5649 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5650 			update_pmu_context(i, pmu);
5651 			goto out;
5652 		}
5653 	}
5654 
5655 	free_percpu(pmu->pmu_cpu_context);
5656 out:
5657 	mutex_unlock(&pmus_lock);
5658 }
5659 static struct idr pmu_idr;
5660 
5661 static ssize_t
5662 type_show(struct device *dev, struct device_attribute *attr, char *page)
5663 {
5664 	struct pmu *pmu = dev_get_drvdata(dev);
5665 
5666 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5667 }
5668 
5669 static struct device_attribute pmu_dev_attrs[] = {
5670        __ATTR_RO(type),
5671        __ATTR_NULL,
5672 };
5673 
5674 static int pmu_bus_running;
5675 static struct bus_type pmu_bus = {
5676 	.name		= "event_source",
5677 	.dev_attrs	= pmu_dev_attrs,
5678 };
5679 
5680 static void pmu_dev_release(struct device *dev)
5681 {
5682 	kfree(dev);
5683 }
5684 
5685 static int pmu_dev_alloc(struct pmu *pmu)
5686 {
5687 	int ret = -ENOMEM;
5688 
5689 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5690 	if (!pmu->dev)
5691 		goto out;
5692 
5693 	pmu->dev->groups = pmu->attr_groups;
5694 	device_initialize(pmu->dev);
5695 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
5696 	if (ret)
5697 		goto free_dev;
5698 
5699 	dev_set_drvdata(pmu->dev, pmu);
5700 	pmu->dev->bus = &pmu_bus;
5701 	pmu->dev->release = pmu_dev_release;
5702 	ret = device_add(pmu->dev);
5703 	if (ret)
5704 		goto free_dev;
5705 
5706 out:
5707 	return ret;
5708 
5709 free_dev:
5710 	put_device(pmu->dev);
5711 	goto out;
5712 }
5713 
5714 static struct lock_class_key cpuctx_mutex;
5715 static struct lock_class_key cpuctx_lock;
5716 
5717 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5718 {
5719 	int cpu, ret;
5720 
5721 	mutex_lock(&pmus_lock);
5722 	ret = -ENOMEM;
5723 	pmu->pmu_disable_count = alloc_percpu(int);
5724 	if (!pmu->pmu_disable_count)
5725 		goto unlock;
5726 
5727 	pmu->type = -1;
5728 	if (!name)
5729 		goto skip_type;
5730 	pmu->name = name;
5731 
5732 	if (type < 0) {
5733 		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5734 		if (!err)
5735 			goto free_pdc;
5736 
5737 		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5738 		if (err) {
5739 			ret = err;
5740 			goto free_pdc;
5741 		}
5742 	}
5743 	pmu->type = type;
5744 
5745 	if (pmu_bus_running) {
5746 		ret = pmu_dev_alloc(pmu);
5747 		if (ret)
5748 			goto free_idr;
5749 	}
5750 
5751 skip_type:
5752 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5753 	if (pmu->pmu_cpu_context)
5754 		goto got_cpu_context;
5755 
5756 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5757 	if (!pmu->pmu_cpu_context)
5758 		goto free_dev;
5759 
5760 	for_each_possible_cpu(cpu) {
5761 		struct perf_cpu_context *cpuctx;
5762 
5763 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5764 		__perf_event_init_context(&cpuctx->ctx);
5765 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5766 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5767 		cpuctx->ctx.type = cpu_context;
5768 		cpuctx->ctx.pmu = pmu;
5769 		cpuctx->jiffies_interval = 1;
5770 		INIT_LIST_HEAD(&cpuctx->rotation_list);
5771 		cpuctx->active_pmu = pmu;
5772 	}
5773 
5774 got_cpu_context:
5775 	if (!pmu->start_txn) {
5776 		if (pmu->pmu_enable) {
5777 			/*
5778 			 * If we have pmu_enable/pmu_disable calls, install
5779 			 * transaction stubs that use that to try and batch
5780 			 * hardware accesses.
5781 			 */
5782 			pmu->start_txn  = perf_pmu_start_txn;
5783 			pmu->commit_txn = perf_pmu_commit_txn;
5784 			pmu->cancel_txn = perf_pmu_cancel_txn;
5785 		} else {
5786 			pmu->start_txn  = perf_pmu_nop_void;
5787 			pmu->commit_txn = perf_pmu_nop_int;
5788 			pmu->cancel_txn = perf_pmu_nop_void;
5789 		}
5790 	}
5791 
5792 	if (!pmu->pmu_enable) {
5793 		pmu->pmu_enable  = perf_pmu_nop_void;
5794 		pmu->pmu_disable = perf_pmu_nop_void;
5795 	}
5796 
5797 	if (!pmu->event_idx)
5798 		pmu->event_idx = perf_event_idx_default;
5799 
5800 	list_add_rcu(&pmu->entry, &pmus);
5801 	ret = 0;
5802 unlock:
5803 	mutex_unlock(&pmus_lock);
5804 
5805 	return ret;
5806 
5807 free_dev:
5808 	device_del(pmu->dev);
5809 	put_device(pmu->dev);
5810 
5811 free_idr:
5812 	if (pmu->type >= PERF_TYPE_MAX)
5813 		idr_remove(&pmu_idr, pmu->type);
5814 
5815 free_pdc:
5816 	free_percpu(pmu->pmu_disable_count);
5817 	goto unlock;
5818 }
5819 
5820 void perf_pmu_unregister(struct pmu *pmu)
5821 {
5822 	mutex_lock(&pmus_lock);
5823 	list_del_rcu(&pmu->entry);
5824 	mutex_unlock(&pmus_lock);
5825 
5826 	/*
5827 	 * We dereference the pmu list under both SRCU and regular RCU, so
5828 	 * synchronize against both of those.
5829 	 */
5830 	synchronize_srcu(&pmus_srcu);
5831 	synchronize_rcu();
5832 
5833 	free_percpu(pmu->pmu_disable_count);
5834 	if (pmu->type >= PERF_TYPE_MAX)
5835 		idr_remove(&pmu_idr, pmu->type);
5836 	device_del(pmu->dev);
5837 	put_device(pmu->dev);
5838 	free_pmu_context(pmu);
5839 }
5840 
5841 struct pmu *perf_init_event(struct perf_event *event)
5842 {
5843 	struct pmu *pmu = NULL;
5844 	int idx;
5845 	int ret;
5846 
5847 	idx = srcu_read_lock(&pmus_srcu);
5848 
5849 	rcu_read_lock();
5850 	pmu = idr_find(&pmu_idr, event->attr.type);
5851 	rcu_read_unlock();
5852 	if (pmu) {
5853 		event->pmu = pmu;
5854 		ret = pmu->event_init(event);
5855 		if (ret)
5856 			pmu = ERR_PTR(ret);
5857 		goto unlock;
5858 	}
5859 
5860 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5861 		event->pmu = pmu;
5862 		ret = pmu->event_init(event);
5863 		if (!ret)
5864 			goto unlock;
5865 
5866 		if (ret != -ENOENT) {
5867 			pmu = ERR_PTR(ret);
5868 			goto unlock;
5869 		}
5870 	}
5871 	pmu = ERR_PTR(-ENOENT);
5872 unlock:
5873 	srcu_read_unlock(&pmus_srcu, idx);
5874 
5875 	return pmu;
5876 }
5877 
5878 /*
5879  * Allocate and initialize a event structure
5880  */
5881 static struct perf_event *
5882 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5883 		 struct task_struct *task,
5884 		 struct perf_event *group_leader,
5885 		 struct perf_event *parent_event,
5886 		 perf_overflow_handler_t overflow_handler,
5887 		 void *context)
5888 {
5889 	struct pmu *pmu;
5890 	struct perf_event *event;
5891 	struct hw_perf_event *hwc;
5892 	long err;
5893 
5894 	if ((unsigned)cpu >= nr_cpu_ids) {
5895 		if (!task || cpu != -1)
5896 			return ERR_PTR(-EINVAL);
5897 	}
5898 
5899 	event = kzalloc(sizeof(*event), GFP_KERNEL);
5900 	if (!event)
5901 		return ERR_PTR(-ENOMEM);
5902 
5903 	/*
5904 	 * Single events are their own group leaders, with an
5905 	 * empty sibling list:
5906 	 */
5907 	if (!group_leader)
5908 		group_leader = event;
5909 
5910 	mutex_init(&event->child_mutex);
5911 	INIT_LIST_HEAD(&event->child_list);
5912 
5913 	INIT_LIST_HEAD(&event->group_entry);
5914 	INIT_LIST_HEAD(&event->event_entry);
5915 	INIT_LIST_HEAD(&event->sibling_list);
5916 	INIT_LIST_HEAD(&event->rb_entry);
5917 
5918 	init_waitqueue_head(&event->waitq);
5919 	init_irq_work(&event->pending, perf_pending_event);
5920 
5921 	mutex_init(&event->mmap_mutex);
5922 
5923 	event->cpu		= cpu;
5924 	event->attr		= *attr;
5925 	event->group_leader	= group_leader;
5926 	event->pmu		= NULL;
5927 	event->oncpu		= -1;
5928 
5929 	event->parent		= parent_event;
5930 
5931 	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
5932 	event->id		= atomic64_inc_return(&perf_event_id);
5933 
5934 	event->state		= PERF_EVENT_STATE_INACTIVE;
5935 
5936 	if (task) {
5937 		event->attach_state = PERF_ATTACH_TASK;
5938 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5939 		/*
5940 		 * hw_breakpoint is a bit difficult here..
5941 		 */
5942 		if (attr->type == PERF_TYPE_BREAKPOINT)
5943 			event->hw.bp_target = task;
5944 #endif
5945 	}
5946 
5947 	if (!overflow_handler && parent_event) {
5948 		overflow_handler = parent_event->overflow_handler;
5949 		context = parent_event->overflow_handler_context;
5950 	}
5951 
5952 	event->overflow_handler	= overflow_handler;
5953 	event->overflow_handler_context = context;
5954 
5955 	if (attr->disabled)
5956 		event->state = PERF_EVENT_STATE_OFF;
5957 
5958 	pmu = NULL;
5959 
5960 	hwc = &event->hw;
5961 	hwc->sample_period = attr->sample_period;
5962 	if (attr->freq && attr->sample_freq)
5963 		hwc->sample_period = 1;
5964 	hwc->last_period = hwc->sample_period;
5965 
5966 	local64_set(&hwc->period_left, hwc->sample_period);
5967 
5968 	/*
5969 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5970 	 */
5971 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5972 		goto done;
5973 
5974 	pmu = perf_init_event(event);
5975 
5976 done:
5977 	err = 0;
5978 	if (!pmu)
5979 		err = -EINVAL;
5980 	else if (IS_ERR(pmu))
5981 		err = PTR_ERR(pmu);
5982 
5983 	if (err) {
5984 		if (event->ns)
5985 			put_pid_ns(event->ns);
5986 		kfree(event);
5987 		return ERR_PTR(err);
5988 	}
5989 
5990 	if (!event->parent) {
5991 		if (event->attach_state & PERF_ATTACH_TASK)
5992 			static_key_slow_inc(&perf_sched_events.key);
5993 		if (event->attr.mmap || event->attr.mmap_data)
5994 			atomic_inc(&nr_mmap_events);
5995 		if (event->attr.comm)
5996 			atomic_inc(&nr_comm_events);
5997 		if (event->attr.task)
5998 			atomic_inc(&nr_task_events);
5999 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6000 			err = get_callchain_buffers();
6001 			if (err) {
6002 				free_event(event);
6003 				return ERR_PTR(err);
6004 			}
6005 		}
6006 		if (has_branch_stack(event)) {
6007 			static_key_slow_inc(&perf_sched_events.key);
6008 			if (!(event->attach_state & PERF_ATTACH_TASK))
6009 				atomic_inc(&per_cpu(perf_branch_stack_events,
6010 						    event->cpu));
6011 		}
6012 	}
6013 
6014 	return event;
6015 }
6016 
6017 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6018 			  struct perf_event_attr *attr)
6019 {
6020 	u32 size;
6021 	int ret;
6022 
6023 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6024 		return -EFAULT;
6025 
6026 	/*
6027 	 * zero the full structure, so that a short copy will be nice.
6028 	 */
6029 	memset(attr, 0, sizeof(*attr));
6030 
6031 	ret = get_user(size, &uattr->size);
6032 	if (ret)
6033 		return ret;
6034 
6035 	if (size > PAGE_SIZE)	/* silly large */
6036 		goto err_size;
6037 
6038 	if (!size)		/* abi compat */
6039 		size = PERF_ATTR_SIZE_VER0;
6040 
6041 	if (size < PERF_ATTR_SIZE_VER0)
6042 		goto err_size;
6043 
6044 	/*
6045 	 * If we're handed a bigger struct than we know of,
6046 	 * ensure all the unknown bits are 0 - i.e. new
6047 	 * user-space does not rely on any kernel feature
6048 	 * extensions we dont know about yet.
6049 	 */
6050 	if (size > sizeof(*attr)) {
6051 		unsigned char __user *addr;
6052 		unsigned char __user *end;
6053 		unsigned char val;
6054 
6055 		addr = (void __user *)uattr + sizeof(*attr);
6056 		end  = (void __user *)uattr + size;
6057 
6058 		for (; addr < end; addr++) {
6059 			ret = get_user(val, addr);
6060 			if (ret)
6061 				return ret;
6062 			if (val)
6063 				goto err_size;
6064 		}
6065 		size = sizeof(*attr);
6066 	}
6067 
6068 	ret = copy_from_user(attr, uattr, size);
6069 	if (ret)
6070 		return -EFAULT;
6071 
6072 	if (attr->__reserved_1)
6073 		return -EINVAL;
6074 
6075 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6076 		return -EINVAL;
6077 
6078 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6079 		return -EINVAL;
6080 
6081 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6082 		u64 mask = attr->branch_sample_type;
6083 
6084 		/* only using defined bits */
6085 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6086 			return -EINVAL;
6087 
6088 		/* at least one branch bit must be set */
6089 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6090 			return -EINVAL;
6091 
6092 		/* kernel level capture: check permissions */
6093 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6094 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6095 			return -EACCES;
6096 
6097 		/* propagate priv level, when not set for branch */
6098 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6099 
6100 			/* exclude_kernel checked on syscall entry */
6101 			if (!attr->exclude_kernel)
6102 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6103 
6104 			if (!attr->exclude_user)
6105 				mask |= PERF_SAMPLE_BRANCH_USER;
6106 
6107 			if (!attr->exclude_hv)
6108 				mask |= PERF_SAMPLE_BRANCH_HV;
6109 			/*
6110 			 * adjust user setting (for HW filter setup)
6111 			 */
6112 			attr->branch_sample_type = mask;
6113 		}
6114 	}
6115 out:
6116 	return ret;
6117 
6118 err_size:
6119 	put_user(sizeof(*attr), &uattr->size);
6120 	ret = -E2BIG;
6121 	goto out;
6122 }
6123 
6124 static int
6125 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6126 {
6127 	struct ring_buffer *rb = NULL, *old_rb = NULL;
6128 	int ret = -EINVAL;
6129 
6130 	if (!output_event)
6131 		goto set;
6132 
6133 	/* don't allow circular references */
6134 	if (event == output_event)
6135 		goto out;
6136 
6137 	/*
6138 	 * Don't allow cross-cpu buffers
6139 	 */
6140 	if (output_event->cpu != event->cpu)
6141 		goto out;
6142 
6143 	/*
6144 	 * If its not a per-cpu rb, it must be the same task.
6145 	 */
6146 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6147 		goto out;
6148 
6149 set:
6150 	mutex_lock(&event->mmap_mutex);
6151 	/* Can't redirect output if we've got an active mmap() */
6152 	if (atomic_read(&event->mmap_count))
6153 		goto unlock;
6154 
6155 	if (output_event) {
6156 		/* get the rb we want to redirect to */
6157 		rb = ring_buffer_get(output_event);
6158 		if (!rb)
6159 			goto unlock;
6160 	}
6161 
6162 	old_rb = event->rb;
6163 	rcu_assign_pointer(event->rb, rb);
6164 	if (old_rb)
6165 		ring_buffer_detach(event, old_rb);
6166 	ret = 0;
6167 unlock:
6168 	mutex_unlock(&event->mmap_mutex);
6169 
6170 	if (old_rb)
6171 		ring_buffer_put(old_rb);
6172 out:
6173 	return ret;
6174 }
6175 
6176 /**
6177  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6178  *
6179  * @attr_uptr:	event_id type attributes for monitoring/sampling
6180  * @pid:		target pid
6181  * @cpu:		target cpu
6182  * @group_fd:		group leader event fd
6183  */
6184 SYSCALL_DEFINE5(perf_event_open,
6185 		struct perf_event_attr __user *, attr_uptr,
6186 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6187 {
6188 	struct perf_event *group_leader = NULL, *output_event = NULL;
6189 	struct perf_event *event, *sibling;
6190 	struct perf_event_attr attr;
6191 	struct perf_event_context *ctx;
6192 	struct file *event_file = NULL;
6193 	struct file *group_file = NULL;
6194 	struct task_struct *task = NULL;
6195 	struct pmu *pmu;
6196 	int event_fd;
6197 	int move_group = 0;
6198 	int fput_needed = 0;
6199 	int err;
6200 
6201 	/* for future expandability... */
6202 	if (flags & ~PERF_FLAG_ALL)
6203 		return -EINVAL;
6204 
6205 	err = perf_copy_attr(attr_uptr, &attr);
6206 	if (err)
6207 		return err;
6208 
6209 	if (!attr.exclude_kernel) {
6210 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6211 			return -EACCES;
6212 	}
6213 
6214 	if (attr.freq) {
6215 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6216 			return -EINVAL;
6217 	}
6218 
6219 	/*
6220 	 * In cgroup mode, the pid argument is used to pass the fd
6221 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6222 	 * designates the cpu on which to monitor threads from that
6223 	 * cgroup.
6224 	 */
6225 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6226 		return -EINVAL;
6227 
6228 	event_fd = get_unused_fd_flags(O_RDWR);
6229 	if (event_fd < 0)
6230 		return event_fd;
6231 
6232 	if (group_fd != -1) {
6233 		group_leader = perf_fget_light(group_fd, &fput_needed);
6234 		if (IS_ERR(group_leader)) {
6235 			err = PTR_ERR(group_leader);
6236 			goto err_fd;
6237 		}
6238 		group_file = group_leader->filp;
6239 		if (flags & PERF_FLAG_FD_OUTPUT)
6240 			output_event = group_leader;
6241 		if (flags & PERF_FLAG_FD_NO_GROUP)
6242 			group_leader = NULL;
6243 	}
6244 
6245 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6246 		task = find_lively_task_by_vpid(pid);
6247 		if (IS_ERR(task)) {
6248 			err = PTR_ERR(task);
6249 			goto err_group_fd;
6250 		}
6251 	}
6252 
6253 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6254 				 NULL, NULL);
6255 	if (IS_ERR(event)) {
6256 		err = PTR_ERR(event);
6257 		goto err_task;
6258 	}
6259 
6260 	if (flags & PERF_FLAG_PID_CGROUP) {
6261 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6262 		if (err)
6263 			goto err_alloc;
6264 		/*
6265 		 * one more event:
6266 		 * - that has cgroup constraint on event->cpu
6267 		 * - that may need work on context switch
6268 		 */
6269 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6270 		static_key_slow_inc(&perf_sched_events.key);
6271 	}
6272 
6273 	/*
6274 	 * Special case software events and allow them to be part of
6275 	 * any hardware group.
6276 	 */
6277 	pmu = event->pmu;
6278 
6279 	if (group_leader &&
6280 	    (is_software_event(event) != is_software_event(group_leader))) {
6281 		if (is_software_event(event)) {
6282 			/*
6283 			 * If event and group_leader are not both a software
6284 			 * event, and event is, then group leader is not.
6285 			 *
6286 			 * Allow the addition of software events to !software
6287 			 * groups, this is safe because software events never
6288 			 * fail to schedule.
6289 			 */
6290 			pmu = group_leader->pmu;
6291 		} else if (is_software_event(group_leader) &&
6292 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6293 			/*
6294 			 * In case the group is a pure software group, and we
6295 			 * try to add a hardware event, move the whole group to
6296 			 * the hardware context.
6297 			 */
6298 			move_group = 1;
6299 		}
6300 	}
6301 
6302 	/*
6303 	 * Get the target context (task or percpu):
6304 	 */
6305 	ctx = find_get_context(pmu, task, cpu);
6306 	if (IS_ERR(ctx)) {
6307 		err = PTR_ERR(ctx);
6308 		goto err_alloc;
6309 	}
6310 
6311 	if (task) {
6312 		put_task_struct(task);
6313 		task = NULL;
6314 	}
6315 
6316 	/*
6317 	 * Look up the group leader (we will attach this event to it):
6318 	 */
6319 	if (group_leader) {
6320 		err = -EINVAL;
6321 
6322 		/*
6323 		 * Do not allow a recursive hierarchy (this new sibling
6324 		 * becoming part of another group-sibling):
6325 		 */
6326 		if (group_leader->group_leader != group_leader)
6327 			goto err_context;
6328 		/*
6329 		 * Do not allow to attach to a group in a different
6330 		 * task or CPU context:
6331 		 */
6332 		if (move_group) {
6333 			if (group_leader->ctx->type != ctx->type)
6334 				goto err_context;
6335 		} else {
6336 			if (group_leader->ctx != ctx)
6337 				goto err_context;
6338 		}
6339 
6340 		/*
6341 		 * Only a group leader can be exclusive or pinned
6342 		 */
6343 		if (attr.exclusive || attr.pinned)
6344 			goto err_context;
6345 	}
6346 
6347 	if (output_event) {
6348 		err = perf_event_set_output(event, output_event);
6349 		if (err)
6350 			goto err_context;
6351 	}
6352 
6353 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6354 	if (IS_ERR(event_file)) {
6355 		err = PTR_ERR(event_file);
6356 		goto err_context;
6357 	}
6358 
6359 	if (move_group) {
6360 		struct perf_event_context *gctx = group_leader->ctx;
6361 
6362 		mutex_lock(&gctx->mutex);
6363 		perf_remove_from_context(group_leader);
6364 		list_for_each_entry(sibling, &group_leader->sibling_list,
6365 				    group_entry) {
6366 			perf_remove_from_context(sibling);
6367 			put_ctx(gctx);
6368 		}
6369 		mutex_unlock(&gctx->mutex);
6370 		put_ctx(gctx);
6371 	}
6372 
6373 	event->filp = event_file;
6374 	WARN_ON_ONCE(ctx->parent_ctx);
6375 	mutex_lock(&ctx->mutex);
6376 
6377 	if (move_group) {
6378 		perf_install_in_context(ctx, group_leader, cpu);
6379 		get_ctx(ctx);
6380 		list_for_each_entry(sibling, &group_leader->sibling_list,
6381 				    group_entry) {
6382 			perf_install_in_context(ctx, sibling, cpu);
6383 			get_ctx(ctx);
6384 		}
6385 	}
6386 
6387 	perf_install_in_context(ctx, event, cpu);
6388 	++ctx->generation;
6389 	perf_unpin_context(ctx);
6390 	mutex_unlock(&ctx->mutex);
6391 
6392 	event->owner = current;
6393 
6394 	mutex_lock(&current->perf_event_mutex);
6395 	list_add_tail(&event->owner_entry, &current->perf_event_list);
6396 	mutex_unlock(&current->perf_event_mutex);
6397 
6398 	/*
6399 	 * Precalculate sample_data sizes
6400 	 */
6401 	perf_event__header_size(event);
6402 	perf_event__id_header_size(event);
6403 
6404 	/*
6405 	 * Drop the reference on the group_event after placing the
6406 	 * new event on the sibling_list. This ensures destruction
6407 	 * of the group leader will find the pointer to itself in
6408 	 * perf_group_detach().
6409 	 */
6410 	fput_light(group_file, fput_needed);
6411 	fd_install(event_fd, event_file);
6412 	return event_fd;
6413 
6414 err_context:
6415 	perf_unpin_context(ctx);
6416 	put_ctx(ctx);
6417 err_alloc:
6418 	free_event(event);
6419 err_task:
6420 	if (task)
6421 		put_task_struct(task);
6422 err_group_fd:
6423 	fput_light(group_file, fput_needed);
6424 err_fd:
6425 	put_unused_fd(event_fd);
6426 	return err;
6427 }
6428 
6429 /**
6430  * perf_event_create_kernel_counter
6431  *
6432  * @attr: attributes of the counter to create
6433  * @cpu: cpu in which the counter is bound
6434  * @task: task to profile (NULL for percpu)
6435  */
6436 struct perf_event *
6437 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6438 				 struct task_struct *task,
6439 				 perf_overflow_handler_t overflow_handler,
6440 				 void *context)
6441 {
6442 	struct perf_event_context *ctx;
6443 	struct perf_event *event;
6444 	int err;
6445 
6446 	/*
6447 	 * Get the target context (task or percpu):
6448 	 */
6449 
6450 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6451 				 overflow_handler, context);
6452 	if (IS_ERR(event)) {
6453 		err = PTR_ERR(event);
6454 		goto err;
6455 	}
6456 
6457 	ctx = find_get_context(event->pmu, task, cpu);
6458 	if (IS_ERR(ctx)) {
6459 		err = PTR_ERR(ctx);
6460 		goto err_free;
6461 	}
6462 
6463 	event->filp = NULL;
6464 	WARN_ON_ONCE(ctx->parent_ctx);
6465 	mutex_lock(&ctx->mutex);
6466 	perf_install_in_context(ctx, event, cpu);
6467 	++ctx->generation;
6468 	perf_unpin_context(ctx);
6469 	mutex_unlock(&ctx->mutex);
6470 
6471 	return event;
6472 
6473 err_free:
6474 	free_event(event);
6475 err:
6476 	return ERR_PTR(err);
6477 }
6478 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6479 
6480 static void sync_child_event(struct perf_event *child_event,
6481 			       struct task_struct *child)
6482 {
6483 	struct perf_event *parent_event = child_event->parent;
6484 	u64 child_val;
6485 
6486 	if (child_event->attr.inherit_stat)
6487 		perf_event_read_event(child_event, child);
6488 
6489 	child_val = perf_event_count(child_event);
6490 
6491 	/*
6492 	 * Add back the child's count to the parent's count:
6493 	 */
6494 	atomic64_add(child_val, &parent_event->child_count);
6495 	atomic64_add(child_event->total_time_enabled,
6496 		     &parent_event->child_total_time_enabled);
6497 	atomic64_add(child_event->total_time_running,
6498 		     &parent_event->child_total_time_running);
6499 
6500 	/*
6501 	 * Remove this event from the parent's list
6502 	 */
6503 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6504 	mutex_lock(&parent_event->child_mutex);
6505 	list_del_init(&child_event->child_list);
6506 	mutex_unlock(&parent_event->child_mutex);
6507 
6508 	/*
6509 	 * Release the parent event, if this was the last
6510 	 * reference to it.
6511 	 */
6512 	fput(parent_event->filp);
6513 }
6514 
6515 static void
6516 __perf_event_exit_task(struct perf_event *child_event,
6517 			 struct perf_event_context *child_ctx,
6518 			 struct task_struct *child)
6519 {
6520 	if (child_event->parent) {
6521 		raw_spin_lock_irq(&child_ctx->lock);
6522 		perf_group_detach(child_event);
6523 		raw_spin_unlock_irq(&child_ctx->lock);
6524 	}
6525 
6526 	perf_remove_from_context(child_event);
6527 
6528 	/*
6529 	 * It can happen that the parent exits first, and has events
6530 	 * that are still around due to the child reference. These
6531 	 * events need to be zapped.
6532 	 */
6533 	if (child_event->parent) {
6534 		sync_child_event(child_event, child);
6535 		free_event(child_event);
6536 	}
6537 }
6538 
6539 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6540 {
6541 	struct perf_event *child_event, *tmp;
6542 	struct perf_event_context *child_ctx;
6543 	unsigned long flags;
6544 
6545 	if (likely(!child->perf_event_ctxp[ctxn])) {
6546 		perf_event_task(child, NULL, 0);
6547 		return;
6548 	}
6549 
6550 	local_irq_save(flags);
6551 	/*
6552 	 * We can't reschedule here because interrupts are disabled,
6553 	 * and either child is current or it is a task that can't be
6554 	 * scheduled, so we are now safe from rescheduling changing
6555 	 * our context.
6556 	 */
6557 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6558 
6559 	/*
6560 	 * Take the context lock here so that if find_get_context is
6561 	 * reading child->perf_event_ctxp, we wait until it has
6562 	 * incremented the context's refcount before we do put_ctx below.
6563 	 */
6564 	raw_spin_lock(&child_ctx->lock);
6565 	task_ctx_sched_out(child_ctx);
6566 	child->perf_event_ctxp[ctxn] = NULL;
6567 	/*
6568 	 * If this context is a clone; unclone it so it can't get
6569 	 * swapped to another process while we're removing all
6570 	 * the events from it.
6571 	 */
6572 	unclone_ctx(child_ctx);
6573 	update_context_time(child_ctx);
6574 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6575 
6576 	/*
6577 	 * Report the task dead after unscheduling the events so that we
6578 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
6579 	 * get a few PERF_RECORD_READ events.
6580 	 */
6581 	perf_event_task(child, child_ctx, 0);
6582 
6583 	/*
6584 	 * We can recurse on the same lock type through:
6585 	 *
6586 	 *   __perf_event_exit_task()
6587 	 *     sync_child_event()
6588 	 *       fput(parent_event->filp)
6589 	 *         perf_release()
6590 	 *           mutex_lock(&ctx->mutex)
6591 	 *
6592 	 * But since its the parent context it won't be the same instance.
6593 	 */
6594 	mutex_lock(&child_ctx->mutex);
6595 
6596 again:
6597 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6598 				 group_entry)
6599 		__perf_event_exit_task(child_event, child_ctx, child);
6600 
6601 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6602 				 group_entry)
6603 		__perf_event_exit_task(child_event, child_ctx, child);
6604 
6605 	/*
6606 	 * If the last event was a group event, it will have appended all
6607 	 * its siblings to the list, but we obtained 'tmp' before that which
6608 	 * will still point to the list head terminating the iteration.
6609 	 */
6610 	if (!list_empty(&child_ctx->pinned_groups) ||
6611 	    !list_empty(&child_ctx->flexible_groups))
6612 		goto again;
6613 
6614 	mutex_unlock(&child_ctx->mutex);
6615 
6616 	put_ctx(child_ctx);
6617 }
6618 
6619 /*
6620  * When a child task exits, feed back event values to parent events.
6621  */
6622 void perf_event_exit_task(struct task_struct *child)
6623 {
6624 	struct perf_event *event, *tmp;
6625 	int ctxn;
6626 
6627 	mutex_lock(&child->perf_event_mutex);
6628 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6629 				 owner_entry) {
6630 		list_del_init(&event->owner_entry);
6631 
6632 		/*
6633 		 * Ensure the list deletion is visible before we clear
6634 		 * the owner, closes a race against perf_release() where
6635 		 * we need to serialize on the owner->perf_event_mutex.
6636 		 */
6637 		smp_wmb();
6638 		event->owner = NULL;
6639 	}
6640 	mutex_unlock(&child->perf_event_mutex);
6641 
6642 	for_each_task_context_nr(ctxn)
6643 		perf_event_exit_task_context(child, ctxn);
6644 }
6645 
6646 static void perf_free_event(struct perf_event *event,
6647 			    struct perf_event_context *ctx)
6648 {
6649 	struct perf_event *parent = event->parent;
6650 
6651 	if (WARN_ON_ONCE(!parent))
6652 		return;
6653 
6654 	mutex_lock(&parent->child_mutex);
6655 	list_del_init(&event->child_list);
6656 	mutex_unlock(&parent->child_mutex);
6657 
6658 	fput(parent->filp);
6659 
6660 	perf_group_detach(event);
6661 	list_del_event(event, ctx);
6662 	free_event(event);
6663 }
6664 
6665 /*
6666  * free an unexposed, unused context as created by inheritance by
6667  * perf_event_init_task below, used by fork() in case of fail.
6668  */
6669 void perf_event_free_task(struct task_struct *task)
6670 {
6671 	struct perf_event_context *ctx;
6672 	struct perf_event *event, *tmp;
6673 	int ctxn;
6674 
6675 	for_each_task_context_nr(ctxn) {
6676 		ctx = task->perf_event_ctxp[ctxn];
6677 		if (!ctx)
6678 			continue;
6679 
6680 		mutex_lock(&ctx->mutex);
6681 again:
6682 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6683 				group_entry)
6684 			perf_free_event(event, ctx);
6685 
6686 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6687 				group_entry)
6688 			perf_free_event(event, ctx);
6689 
6690 		if (!list_empty(&ctx->pinned_groups) ||
6691 				!list_empty(&ctx->flexible_groups))
6692 			goto again;
6693 
6694 		mutex_unlock(&ctx->mutex);
6695 
6696 		put_ctx(ctx);
6697 	}
6698 }
6699 
6700 void perf_event_delayed_put(struct task_struct *task)
6701 {
6702 	int ctxn;
6703 
6704 	for_each_task_context_nr(ctxn)
6705 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6706 }
6707 
6708 /*
6709  * inherit a event from parent task to child task:
6710  */
6711 static struct perf_event *
6712 inherit_event(struct perf_event *parent_event,
6713 	      struct task_struct *parent,
6714 	      struct perf_event_context *parent_ctx,
6715 	      struct task_struct *child,
6716 	      struct perf_event *group_leader,
6717 	      struct perf_event_context *child_ctx)
6718 {
6719 	struct perf_event *child_event;
6720 	unsigned long flags;
6721 
6722 	/*
6723 	 * Instead of creating recursive hierarchies of events,
6724 	 * we link inherited events back to the original parent,
6725 	 * which has a filp for sure, which we use as the reference
6726 	 * count:
6727 	 */
6728 	if (parent_event->parent)
6729 		parent_event = parent_event->parent;
6730 
6731 	child_event = perf_event_alloc(&parent_event->attr,
6732 					   parent_event->cpu,
6733 					   child,
6734 					   group_leader, parent_event,
6735 				           NULL, NULL);
6736 	if (IS_ERR(child_event))
6737 		return child_event;
6738 	get_ctx(child_ctx);
6739 
6740 	/*
6741 	 * Make the child state follow the state of the parent event,
6742 	 * not its attr.disabled bit.  We hold the parent's mutex,
6743 	 * so we won't race with perf_event_{en, dis}able_family.
6744 	 */
6745 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6746 		child_event->state = PERF_EVENT_STATE_INACTIVE;
6747 	else
6748 		child_event->state = PERF_EVENT_STATE_OFF;
6749 
6750 	if (parent_event->attr.freq) {
6751 		u64 sample_period = parent_event->hw.sample_period;
6752 		struct hw_perf_event *hwc = &child_event->hw;
6753 
6754 		hwc->sample_period = sample_period;
6755 		hwc->last_period   = sample_period;
6756 
6757 		local64_set(&hwc->period_left, sample_period);
6758 	}
6759 
6760 	child_event->ctx = child_ctx;
6761 	child_event->overflow_handler = parent_event->overflow_handler;
6762 	child_event->overflow_handler_context
6763 		= parent_event->overflow_handler_context;
6764 
6765 	/*
6766 	 * Precalculate sample_data sizes
6767 	 */
6768 	perf_event__header_size(child_event);
6769 	perf_event__id_header_size(child_event);
6770 
6771 	/*
6772 	 * Link it up in the child's context:
6773 	 */
6774 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
6775 	add_event_to_ctx(child_event, child_ctx);
6776 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6777 
6778 	/*
6779 	 * Get a reference to the parent filp - we will fput it
6780 	 * when the child event exits. This is safe to do because
6781 	 * we are in the parent and we know that the filp still
6782 	 * exists and has a nonzero count:
6783 	 */
6784 	atomic_long_inc(&parent_event->filp->f_count);
6785 
6786 	/*
6787 	 * Link this into the parent event's child list
6788 	 */
6789 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6790 	mutex_lock(&parent_event->child_mutex);
6791 	list_add_tail(&child_event->child_list, &parent_event->child_list);
6792 	mutex_unlock(&parent_event->child_mutex);
6793 
6794 	return child_event;
6795 }
6796 
6797 static int inherit_group(struct perf_event *parent_event,
6798 	      struct task_struct *parent,
6799 	      struct perf_event_context *parent_ctx,
6800 	      struct task_struct *child,
6801 	      struct perf_event_context *child_ctx)
6802 {
6803 	struct perf_event *leader;
6804 	struct perf_event *sub;
6805 	struct perf_event *child_ctr;
6806 
6807 	leader = inherit_event(parent_event, parent, parent_ctx,
6808 				 child, NULL, child_ctx);
6809 	if (IS_ERR(leader))
6810 		return PTR_ERR(leader);
6811 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6812 		child_ctr = inherit_event(sub, parent, parent_ctx,
6813 					    child, leader, child_ctx);
6814 		if (IS_ERR(child_ctr))
6815 			return PTR_ERR(child_ctr);
6816 	}
6817 	return 0;
6818 }
6819 
6820 static int
6821 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6822 		   struct perf_event_context *parent_ctx,
6823 		   struct task_struct *child, int ctxn,
6824 		   int *inherited_all)
6825 {
6826 	int ret;
6827 	struct perf_event_context *child_ctx;
6828 
6829 	if (!event->attr.inherit) {
6830 		*inherited_all = 0;
6831 		return 0;
6832 	}
6833 
6834 	child_ctx = child->perf_event_ctxp[ctxn];
6835 	if (!child_ctx) {
6836 		/*
6837 		 * This is executed from the parent task context, so
6838 		 * inherit events that have been marked for cloning.
6839 		 * First allocate and initialize a context for the
6840 		 * child.
6841 		 */
6842 
6843 		child_ctx = alloc_perf_context(event->pmu, child);
6844 		if (!child_ctx)
6845 			return -ENOMEM;
6846 
6847 		child->perf_event_ctxp[ctxn] = child_ctx;
6848 	}
6849 
6850 	ret = inherit_group(event, parent, parent_ctx,
6851 			    child, child_ctx);
6852 
6853 	if (ret)
6854 		*inherited_all = 0;
6855 
6856 	return ret;
6857 }
6858 
6859 /*
6860  * Initialize the perf_event context in task_struct
6861  */
6862 int perf_event_init_context(struct task_struct *child, int ctxn)
6863 {
6864 	struct perf_event_context *child_ctx, *parent_ctx;
6865 	struct perf_event_context *cloned_ctx;
6866 	struct perf_event *event;
6867 	struct task_struct *parent = current;
6868 	int inherited_all = 1;
6869 	unsigned long flags;
6870 	int ret = 0;
6871 
6872 	if (likely(!parent->perf_event_ctxp[ctxn]))
6873 		return 0;
6874 
6875 	/*
6876 	 * If the parent's context is a clone, pin it so it won't get
6877 	 * swapped under us.
6878 	 */
6879 	parent_ctx = perf_pin_task_context(parent, ctxn);
6880 
6881 	/*
6882 	 * No need to check if parent_ctx != NULL here; since we saw
6883 	 * it non-NULL earlier, the only reason for it to become NULL
6884 	 * is if we exit, and since we're currently in the middle of
6885 	 * a fork we can't be exiting at the same time.
6886 	 */
6887 
6888 	/*
6889 	 * Lock the parent list. No need to lock the child - not PID
6890 	 * hashed yet and not running, so nobody can access it.
6891 	 */
6892 	mutex_lock(&parent_ctx->mutex);
6893 
6894 	/*
6895 	 * We dont have to disable NMIs - we are only looking at
6896 	 * the list, not manipulating it:
6897 	 */
6898 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6899 		ret = inherit_task_group(event, parent, parent_ctx,
6900 					 child, ctxn, &inherited_all);
6901 		if (ret)
6902 			break;
6903 	}
6904 
6905 	/*
6906 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
6907 	 * to allocations, but we need to prevent rotation because
6908 	 * rotate_ctx() will change the list from interrupt context.
6909 	 */
6910 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6911 	parent_ctx->rotate_disable = 1;
6912 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6913 
6914 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6915 		ret = inherit_task_group(event, parent, parent_ctx,
6916 					 child, ctxn, &inherited_all);
6917 		if (ret)
6918 			break;
6919 	}
6920 
6921 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6922 	parent_ctx->rotate_disable = 0;
6923 
6924 	child_ctx = child->perf_event_ctxp[ctxn];
6925 
6926 	if (child_ctx && inherited_all) {
6927 		/*
6928 		 * Mark the child context as a clone of the parent
6929 		 * context, or of whatever the parent is a clone of.
6930 		 *
6931 		 * Note that if the parent is a clone, the holding of
6932 		 * parent_ctx->lock avoids it from being uncloned.
6933 		 */
6934 		cloned_ctx = parent_ctx->parent_ctx;
6935 		if (cloned_ctx) {
6936 			child_ctx->parent_ctx = cloned_ctx;
6937 			child_ctx->parent_gen = parent_ctx->parent_gen;
6938 		} else {
6939 			child_ctx->parent_ctx = parent_ctx;
6940 			child_ctx->parent_gen = parent_ctx->generation;
6941 		}
6942 		get_ctx(child_ctx->parent_ctx);
6943 	}
6944 
6945 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6946 	mutex_unlock(&parent_ctx->mutex);
6947 
6948 	perf_unpin_context(parent_ctx);
6949 	put_ctx(parent_ctx);
6950 
6951 	return ret;
6952 }
6953 
6954 /*
6955  * Initialize the perf_event context in task_struct
6956  */
6957 int perf_event_init_task(struct task_struct *child)
6958 {
6959 	int ctxn, ret;
6960 
6961 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6962 	mutex_init(&child->perf_event_mutex);
6963 	INIT_LIST_HEAD(&child->perf_event_list);
6964 
6965 	for_each_task_context_nr(ctxn) {
6966 		ret = perf_event_init_context(child, ctxn);
6967 		if (ret)
6968 			return ret;
6969 	}
6970 
6971 	return 0;
6972 }
6973 
6974 static void __init perf_event_init_all_cpus(void)
6975 {
6976 	struct swevent_htable *swhash;
6977 	int cpu;
6978 
6979 	for_each_possible_cpu(cpu) {
6980 		swhash = &per_cpu(swevent_htable, cpu);
6981 		mutex_init(&swhash->hlist_mutex);
6982 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6983 	}
6984 }
6985 
6986 static void __cpuinit perf_event_init_cpu(int cpu)
6987 {
6988 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6989 
6990 	mutex_lock(&swhash->hlist_mutex);
6991 	if (swhash->hlist_refcount > 0) {
6992 		struct swevent_hlist *hlist;
6993 
6994 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6995 		WARN_ON(!hlist);
6996 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6997 	}
6998 	mutex_unlock(&swhash->hlist_mutex);
6999 }
7000 
7001 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7002 static void perf_pmu_rotate_stop(struct pmu *pmu)
7003 {
7004 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7005 
7006 	WARN_ON(!irqs_disabled());
7007 
7008 	list_del_init(&cpuctx->rotation_list);
7009 }
7010 
7011 static void __perf_event_exit_context(void *__info)
7012 {
7013 	struct perf_event_context *ctx = __info;
7014 	struct perf_event *event, *tmp;
7015 
7016 	perf_pmu_rotate_stop(ctx->pmu);
7017 
7018 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7019 		__perf_remove_from_context(event);
7020 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7021 		__perf_remove_from_context(event);
7022 }
7023 
7024 static void perf_event_exit_cpu_context(int cpu)
7025 {
7026 	struct perf_event_context *ctx;
7027 	struct pmu *pmu;
7028 	int idx;
7029 
7030 	idx = srcu_read_lock(&pmus_srcu);
7031 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7032 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7033 
7034 		mutex_lock(&ctx->mutex);
7035 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7036 		mutex_unlock(&ctx->mutex);
7037 	}
7038 	srcu_read_unlock(&pmus_srcu, idx);
7039 }
7040 
7041 static void perf_event_exit_cpu(int cpu)
7042 {
7043 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7044 
7045 	mutex_lock(&swhash->hlist_mutex);
7046 	swevent_hlist_release(swhash);
7047 	mutex_unlock(&swhash->hlist_mutex);
7048 
7049 	perf_event_exit_cpu_context(cpu);
7050 }
7051 #else
7052 static inline void perf_event_exit_cpu(int cpu) { }
7053 #endif
7054 
7055 static int
7056 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7057 {
7058 	int cpu;
7059 
7060 	for_each_online_cpu(cpu)
7061 		perf_event_exit_cpu(cpu);
7062 
7063 	return NOTIFY_OK;
7064 }
7065 
7066 /*
7067  * Run the perf reboot notifier at the very last possible moment so that
7068  * the generic watchdog code runs as long as possible.
7069  */
7070 static struct notifier_block perf_reboot_notifier = {
7071 	.notifier_call = perf_reboot,
7072 	.priority = INT_MIN,
7073 };
7074 
7075 static int __cpuinit
7076 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7077 {
7078 	unsigned int cpu = (long)hcpu;
7079 
7080 	switch (action & ~CPU_TASKS_FROZEN) {
7081 
7082 	case CPU_UP_PREPARE:
7083 	case CPU_DOWN_FAILED:
7084 		perf_event_init_cpu(cpu);
7085 		break;
7086 
7087 	case CPU_UP_CANCELED:
7088 	case CPU_DOWN_PREPARE:
7089 		perf_event_exit_cpu(cpu);
7090 		break;
7091 
7092 	default:
7093 		break;
7094 	}
7095 
7096 	return NOTIFY_OK;
7097 }
7098 
7099 void __init perf_event_init(void)
7100 {
7101 	int ret;
7102 
7103 	idr_init(&pmu_idr);
7104 
7105 	perf_event_init_all_cpus();
7106 	init_srcu_struct(&pmus_srcu);
7107 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7108 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7109 	perf_pmu_register(&perf_task_clock, NULL, -1);
7110 	perf_tp_register();
7111 	perf_cpu_notifier(perf_cpu_notify);
7112 	register_reboot_notifier(&perf_reboot_notifier);
7113 
7114 	ret = init_hw_breakpoint();
7115 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7116 
7117 	/* do not patch jump label more than once per second */
7118 	jump_label_rate_limit(&perf_sched_events, HZ);
7119 
7120 	/*
7121 	 * Build time assertion that we keep the data_head at the intended
7122 	 * location.  IOW, validation we got the __reserved[] size right.
7123 	 */
7124 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7125 		     != 1024);
7126 }
7127 
7128 static int __init perf_event_sysfs_init(void)
7129 {
7130 	struct pmu *pmu;
7131 	int ret;
7132 
7133 	mutex_lock(&pmus_lock);
7134 
7135 	ret = bus_register(&pmu_bus);
7136 	if (ret)
7137 		goto unlock;
7138 
7139 	list_for_each_entry(pmu, &pmus, entry) {
7140 		if (!pmu->name || pmu->type < 0)
7141 			continue;
7142 
7143 		ret = pmu_dev_alloc(pmu);
7144 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7145 	}
7146 	pmu_bus_running = 1;
7147 	ret = 0;
7148 
7149 unlock:
7150 	mutex_unlock(&pmus_lock);
7151 
7152 	return ret;
7153 }
7154 device_initcall(perf_event_sysfs_init);
7155 
7156 #ifdef CONFIG_CGROUP_PERF
7157 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
7158 {
7159 	struct perf_cgroup *jc;
7160 
7161 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7162 	if (!jc)
7163 		return ERR_PTR(-ENOMEM);
7164 
7165 	jc->info = alloc_percpu(struct perf_cgroup_info);
7166 	if (!jc->info) {
7167 		kfree(jc);
7168 		return ERR_PTR(-ENOMEM);
7169 	}
7170 
7171 	return &jc->css;
7172 }
7173 
7174 static void perf_cgroup_destroy(struct cgroup *cont)
7175 {
7176 	struct perf_cgroup *jc;
7177 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7178 			  struct perf_cgroup, css);
7179 	free_percpu(jc->info);
7180 	kfree(jc);
7181 }
7182 
7183 static int __perf_cgroup_move(void *info)
7184 {
7185 	struct task_struct *task = info;
7186 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7187 	return 0;
7188 }
7189 
7190 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7191 {
7192 	struct task_struct *task;
7193 
7194 	cgroup_taskset_for_each(task, cgrp, tset)
7195 		task_function_call(task, __perf_cgroup_move, task);
7196 }
7197 
7198 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7199 			     struct task_struct *task)
7200 {
7201 	/*
7202 	 * cgroup_exit() is called in the copy_process() failure path.
7203 	 * Ignore this case since the task hasn't ran yet, this avoids
7204 	 * trying to poke a half freed task state from generic code.
7205 	 */
7206 	if (!(task->flags & PF_EXITING))
7207 		return;
7208 
7209 	task_function_call(task, __perf_cgroup_move, task);
7210 }
7211 
7212 struct cgroup_subsys perf_subsys = {
7213 	.name		= "perf_event",
7214 	.subsys_id	= perf_subsys_id,
7215 	.create		= perf_cgroup_create,
7216 	.destroy	= perf_cgroup_destroy,
7217 	.exit		= perf_cgroup_exit,
7218 	.attach		= perf_cgroup_attach,
7219 };
7220 #endif /* CONFIG_CGROUP_PERF */
7221