1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 54 #include "internal.h" 55 56 #include <asm/irq_regs.h> 57 58 typedef int (*remote_function_f)(void *); 59 60 struct remote_function_call { 61 struct task_struct *p; 62 remote_function_f func; 63 void *info; 64 int ret; 65 }; 66 67 static void remote_function(void *data) 68 { 69 struct remote_function_call *tfc = data; 70 struct task_struct *p = tfc->p; 71 72 if (p) { 73 /* -EAGAIN */ 74 if (task_cpu(p) != smp_processor_id()) 75 return; 76 77 /* 78 * Now that we're on right CPU with IRQs disabled, we can test 79 * if we hit the right task without races. 80 */ 81 82 tfc->ret = -ESRCH; /* No such (running) process */ 83 if (p != current) 84 return; 85 } 86 87 tfc->ret = tfc->func(tfc->info); 88 } 89 90 /** 91 * task_function_call - call a function on the cpu on which a task runs 92 * @p: the task to evaluate 93 * @func: the function to be called 94 * @info: the function call argument 95 * 96 * Calls the function @func when the task is currently running. This might 97 * be on the current CPU, which just calls the function directly 98 * 99 * returns: @func return value, or 100 * -ESRCH - when the process isn't running 101 * -EAGAIN - when the process moved away 102 */ 103 static int 104 task_function_call(struct task_struct *p, remote_function_f func, void *info) 105 { 106 struct remote_function_call data = { 107 .p = p, 108 .func = func, 109 .info = info, 110 .ret = -EAGAIN, 111 }; 112 int ret; 113 114 do { 115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 116 if (!ret) 117 ret = data.ret; 118 } while (ret == -EAGAIN); 119 120 return ret; 121 } 122 123 /** 124 * cpu_function_call - call a function on the cpu 125 * @func: the function to be called 126 * @info: the function call argument 127 * 128 * Calls the function @func on the remote cpu. 129 * 130 * returns: @func return value or -ENXIO when the cpu is offline 131 */ 132 static int cpu_function_call(int cpu, remote_function_f func, void *info) 133 { 134 struct remote_function_call data = { 135 .p = NULL, 136 .func = func, 137 .info = info, 138 .ret = -ENXIO, /* No such CPU */ 139 }; 140 141 smp_call_function_single(cpu, remote_function, &data, 1); 142 143 return data.ret; 144 } 145 146 static inline struct perf_cpu_context * 147 __get_cpu_context(struct perf_event_context *ctx) 148 { 149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 150 } 151 152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 153 struct perf_event_context *ctx) 154 { 155 raw_spin_lock(&cpuctx->ctx.lock); 156 if (ctx) 157 raw_spin_lock(&ctx->lock); 158 } 159 160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 161 struct perf_event_context *ctx) 162 { 163 if (ctx) 164 raw_spin_unlock(&ctx->lock); 165 raw_spin_unlock(&cpuctx->ctx.lock); 166 } 167 168 #define TASK_TOMBSTONE ((void *)-1L) 169 170 static bool is_kernel_event(struct perf_event *event) 171 { 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 173 } 174 175 /* 176 * On task ctx scheduling... 177 * 178 * When !ctx->nr_events a task context will not be scheduled. This means 179 * we can disable the scheduler hooks (for performance) without leaving 180 * pending task ctx state. 181 * 182 * This however results in two special cases: 183 * 184 * - removing the last event from a task ctx; this is relatively straight 185 * forward and is done in __perf_remove_from_context. 186 * 187 * - adding the first event to a task ctx; this is tricky because we cannot 188 * rely on ctx->is_active and therefore cannot use event_function_call(). 189 * See perf_install_in_context(). 190 * 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 192 */ 193 194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 195 struct perf_event_context *, void *); 196 197 struct event_function_struct { 198 struct perf_event *event; 199 event_f func; 200 void *data; 201 }; 202 203 static int event_function(void *info) 204 { 205 struct event_function_struct *efs = info; 206 struct perf_event *event = efs->event; 207 struct perf_event_context *ctx = event->ctx; 208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 209 struct perf_event_context *task_ctx = cpuctx->task_ctx; 210 int ret = 0; 211 212 lockdep_assert_irqs_disabled(); 213 214 perf_ctx_lock(cpuctx, task_ctx); 215 /* 216 * Since we do the IPI call without holding ctx->lock things can have 217 * changed, double check we hit the task we set out to hit. 218 */ 219 if (ctx->task) { 220 if (ctx->task != current) { 221 ret = -ESRCH; 222 goto unlock; 223 } 224 225 /* 226 * We only use event_function_call() on established contexts, 227 * and event_function() is only ever called when active (or 228 * rather, we'll have bailed in task_function_call() or the 229 * above ctx->task != current test), therefore we must have 230 * ctx->is_active here. 231 */ 232 WARN_ON_ONCE(!ctx->is_active); 233 /* 234 * And since we have ctx->is_active, cpuctx->task_ctx must 235 * match. 236 */ 237 WARN_ON_ONCE(task_ctx != ctx); 238 } else { 239 WARN_ON_ONCE(&cpuctx->ctx != ctx); 240 } 241 242 efs->func(event, cpuctx, ctx, efs->data); 243 unlock: 244 perf_ctx_unlock(cpuctx, task_ctx); 245 246 return ret; 247 } 248 249 static void event_function_call(struct perf_event *event, event_f func, void *data) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 253 struct event_function_struct efs = { 254 .event = event, 255 .func = func, 256 .data = data, 257 }; 258 259 if (!event->parent) { 260 /* 261 * If this is a !child event, we must hold ctx::mutex to 262 * stabilize the the event->ctx relation. See 263 * perf_event_ctx_lock(). 264 */ 265 lockdep_assert_held(&ctx->mutex); 266 } 267 268 if (!task) { 269 cpu_function_call(event->cpu, event_function, &efs); 270 return; 271 } 272 273 if (task == TASK_TOMBSTONE) 274 return; 275 276 again: 277 if (!task_function_call(task, event_function, &efs)) 278 return; 279 280 raw_spin_lock_irq(&ctx->lock); 281 /* 282 * Reload the task pointer, it might have been changed by 283 * a concurrent perf_event_context_sched_out(). 284 */ 285 task = ctx->task; 286 if (task == TASK_TOMBSTONE) { 287 raw_spin_unlock_irq(&ctx->lock); 288 return; 289 } 290 if (ctx->is_active) { 291 raw_spin_unlock_irq(&ctx->lock); 292 goto again; 293 } 294 func(event, NULL, ctx, data); 295 raw_spin_unlock_irq(&ctx->lock); 296 } 297 298 /* 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs 300 * are already disabled and we're on the right CPU. 301 */ 302 static void event_function_local(struct perf_event *event, event_f func, void *data) 303 { 304 struct perf_event_context *ctx = event->ctx; 305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 306 struct task_struct *task = READ_ONCE(ctx->task); 307 struct perf_event_context *task_ctx = NULL; 308 309 lockdep_assert_irqs_disabled(); 310 311 if (task) { 312 if (task == TASK_TOMBSTONE) 313 return; 314 315 task_ctx = ctx; 316 } 317 318 perf_ctx_lock(cpuctx, task_ctx); 319 320 task = ctx->task; 321 if (task == TASK_TOMBSTONE) 322 goto unlock; 323 324 if (task) { 325 /* 326 * We must be either inactive or active and the right task, 327 * otherwise we're screwed, since we cannot IPI to somewhere 328 * else. 329 */ 330 if (ctx->is_active) { 331 if (WARN_ON_ONCE(task != current)) 332 goto unlock; 333 334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 335 goto unlock; 336 } 337 } else { 338 WARN_ON_ONCE(&cpuctx->ctx != ctx); 339 } 340 341 func(event, cpuctx, ctx, data); 342 unlock: 343 perf_ctx_unlock(cpuctx, task_ctx); 344 } 345 346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 347 PERF_FLAG_FD_OUTPUT |\ 348 PERF_FLAG_PID_CGROUP |\ 349 PERF_FLAG_FD_CLOEXEC) 350 351 /* 352 * branch priv levels that need permission checks 353 */ 354 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 355 (PERF_SAMPLE_BRANCH_KERNEL |\ 356 PERF_SAMPLE_BRANCH_HV) 357 358 enum event_type_t { 359 EVENT_FLEXIBLE = 0x1, 360 EVENT_PINNED = 0x2, 361 EVENT_TIME = 0x4, 362 /* see ctx_resched() for details */ 363 EVENT_CPU = 0x8, 364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 365 }; 366 367 /* 368 * perf_sched_events : >0 events exist 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 370 */ 371 372 static void perf_sched_delayed(struct work_struct *work); 373 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 375 static DEFINE_MUTEX(perf_sched_mutex); 376 static atomic_t perf_sched_count; 377 378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 379 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 381 382 static atomic_t nr_mmap_events __read_mostly; 383 static atomic_t nr_comm_events __read_mostly; 384 static atomic_t nr_namespaces_events __read_mostly; 385 static atomic_t nr_task_events __read_mostly; 386 static atomic_t nr_freq_events __read_mostly; 387 static atomic_t nr_switch_events __read_mostly; 388 389 static LIST_HEAD(pmus); 390 static DEFINE_MUTEX(pmus_lock); 391 static struct srcu_struct pmus_srcu; 392 static cpumask_var_t perf_online_mask; 393 394 /* 395 * perf event paranoia level: 396 * -1 - not paranoid at all 397 * 0 - disallow raw tracepoint access for unpriv 398 * 1 - disallow cpu events for unpriv 399 * 2 - disallow kernel profiling for unpriv 400 */ 401 int sysctl_perf_event_paranoid __read_mostly = 2; 402 403 /* Minimum for 512 kiB + 1 user control page */ 404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 405 406 /* 407 * max perf event sample rate 408 */ 409 #define DEFAULT_MAX_SAMPLE_RATE 100000 410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 412 413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 414 415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 417 418 static int perf_sample_allowed_ns __read_mostly = 419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 420 421 static void update_perf_cpu_limits(void) 422 { 423 u64 tmp = perf_sample_period_ns; 424 425 tmp *= sysctl_perf_cpu_time_max_percent; 426 tmp = div_u64(tmp, 100); 427 if (!tmp) 428 tmp = 1; 429 430 WRITE_ONCE(perf_sample_allowed_ns, tmp); 431 } 432 433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 434 435 int perf_proc_update_handler(struct ctl_table *table, int write, 436 void __user *buffer, size_t *lenp, 437 loff_t *ppos) 438 { 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 440 441 if (ret || !write) 442 return ret; 443 444 /* 445 * If throttling is disabled don't allow the write: 446 */ 447 if (sysctl_perf_cpu_time_max_percent == 100 || 448 sysctl_perf_cpu_time_max_percent == 0) 449 return -EINVAL; 450 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 453 update_perf_cpu_limits(); 454 455 return 0; 456 } 457 458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 459 460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 461 void __user *buffer, size_t *lenp, 462 loff_t *ppos) 463 { 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 466 if (ret || !write) 467 return ret; 468 469 if (sysctl_perf_cpu_time_max_percent == 100 || 470 sysctl_perf_cpu_time_max_percent == 0) { 471 printk(KERN_WARNING 472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 473 WRITE_ONCE(perf_sample_allowed_ns, 0); 474 } else { 475 update_perf_cpu_limits(); 476 } 477 478 return 0; 479 } 480 481 /* 482 * perf samples are done in some very critical code paths (NMIs). 483 * If they take too much CPU time, the system can lock up and not 484 * get any real work done. This will drop the sample rate when 485 * we detect that events are taking too long. 486 */ 487 #define NR_ACCUMULATED_SAMPLES 128 488 static DEFINE_PER_CPU(u64, running_sample_length); 489 490 static u64 __report_avg; 491 static u64 __report_allowed; 492 493 static void perf_duration_warn(struct irq_work *w) 494 { 495 printk_ratelimited(KERN_INFO 496 "perf: interrupt took too long (%lld > %lld), lowering " 497 "kernel.perf_event_max_sample_rate to %d\n", 498 __report_avg, __report_allowed, 499 sysctl_perf_event_sample_rate); 500 } 501 502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 503 504 void perf_sample_event_took(u64 sample_len_ns) 505 { 506 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 507 u64 running_len; 508 u64 avg_len; 509 u32 max; 510 511 if (max_len == 0) 512 return; 513 514 /* Decay the counter by 1 average sample. */ 515 running_len = __this_cpu_read(running_sample_length); 516 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 517 running_len += sample_len_ns; 518 __this_cpu_write(running_sample_length, running_len); 519 520 /* 521 * Note: this will be biased artifically low until we have 522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 523 * from having to maintain a count. 524 */ 525 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 526 if (avg_len <= max_len) 527 return; 528 529 __report_avg = avg_len; 530 __report_allowed = max_len; 531 532 /* 533 * Compute a throttle threshold 25% below the current duration. 534 */ 535 avg_len += avg_len / 4; 536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 537 if (avg_len < max) 538 max /= (u32)avg_len; 539 else 540 max = 1; 541 542 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 543 WRITE_ONCE(max_samples_per_tick, max); 544 545 sysctl_perf_event_sample_rate = max * HZ; 546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 547 548 if (!irq_work_queue(&perf_duration_work)) { 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 550 "kernel.perf_event_max_sample_rate to %d\n", 551 __report_avg, __report_allowed, 552 sysctl_perf_event_sample_rate); 553 } 554 } 555 556 static atomic64_t perf_event_id; 557 558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 559 enum event_type_t event_type); 560 561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 562 enum event_type_t event_type, 563 struct task_struct *task); 564 565 static void update_context_time(struct perf_event_context *ctx); 566 static u64 perf_event_time(struct perf_event *event); 567 568 void __weak perf_event_print_debug(void) { } 569 570 extern __weak const char *perf_pmu_name(void) 571 { 572 return "pmu"; 573 } 574 575 static inline u64 perf_clock(void) 576 { 577 return local_clock(); 578 } 579 580 static inline u64 perf_event_clock(struct perf_event *event) 581 { 582 return event->clock(); 583 } 584 585 /* 586 * State based event timekeeping... 587 * 588 * The basic idea is to use event->state to determine which (if any) time 589 * fields to increment with the current delta. This means we only need to 590 * update timestamps when we change state or when they are explicitly requested 591 * (read). 592 * 593 * Event groups make things a little more complicated, but not terribly so. The 594 * rules for a group are that if the group leader is OFF the entire group is 595 * OFF, irrespecive of what the group member states are. This results in 596 * __perf_effective_state(). 597 * 598 * A futher ramification is that when a group leader flips between OFF and 599 * !OFF, we need to update all group member times. 600 * 601 * 602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 603 * need to make sure the relevant context time is updated before we try and 604 * update our timestamps. 605 */ 606 607 static __always_inline enum perf_event_state 608 __perf_effective_state(struct perf_event *event) 609 { 610 struct perf_event *leader = event->group_leader; 611 612 if (leader->state <= PERF_EVENT_STATE_OFF) 613 return leader->state; 614 615 return event->state; 616 } 617 618 static __always_inline void 619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 620 { 621 enum perf_event_state state = __perf_effective_state(event); 622 u64 delta = now - event->tstamp; 623 624 *enabled = event->total_time_enabled; 625 if (state >= PERF_EVENT_STATE_INACTIVE) 626 *enabled += delta; 627 628 *running = event->total_time_running; 629 if (state >= PERF_EVENT_STATE_ACTIVE) 630 *running += delta; 631 } 632 633 static void perf_event_update_time(struct perf_event *event) 634 { 635 u64 now = perf_event_time(event); 636 637 __perf_update_times(event, now, &event->total_time_enabled, 638 &event->total_time_running); 639 event->tstamp = now; 640 } 641 642 static void perf_event_update_sibling_time(struct perf_event *leader) 643 { 644 struct perf_event *sibling; 645 646 for_each_sibling_event(sibling, leader) 647 perf_event_update_time(sibling); 648 } 649 650 static void 651 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 652 { 653 if (event->state == state) 654 return; 655 656 perf_event_update_time(event); 657 /* 658 * If a group leader gets enabled/disabled all its siblings 659 * are affected too. 660 */ 661 if ((event->state < 0) ^ (state < 0)) 662 perf_event_update_sibling_time(event); 663 664 WRITE_ONCE(event->state, state); 665 } 666 667 #ifdef CONFIG_CGROUP_PERF 668 669 static inline bool 670 perf_cgroup_match(struct perf_event *event) 671 { 672 struct perf_event_context *ctx = event->ctx; 673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 674 675 /* @event doesn't care about cgroup */ 676 if (!event->cgrp) 677 return true; 678 679 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 680 if (!cpuctx->cgrp) 681 return false; 682 683 /* 684 * Cgroup scoping is recursive. An event enabled for a cgroup is 685 * also enabled for all its descendant cgroups. If @cpuctx's 686 * cgroup is a descendant of @event's (the test covers identity 687 * case), it's a match. 688 */ 689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 690 event->cgrp->css.cgroup); 691 } 692 693 static inline void perf_detach_cgroup(struct perf_event *event) 694 { 695 css_put(&event->cgrp->css); 696 event->cgrp = NULL; 697 } 698 699 static inline int is_cgroup_event(struct perf_event *event) 700 { 701 return event->cgrp != NULL; 702 } 703 704 static inline u64 perf_cgroup_event_time(struct perf_event *event) 705 { 706 struct perf_cgroup_info *t; 707 708 t = per_cpu_ptr(event->cgrp->info, event->cpu); 709 return t->time; 710 } 711 712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 713 { 714 struct perf_cgroup_info *info; 715 u64 now; 716 717 now = perf_clock(); 718 719 info = this_cpu_ptr(cgrp->info); 720 721 info->time += now - info->timestamp; 722 info->timestamp = now; 723 } 724 725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 726 { 727 struct perf_cgroup *cgrp = cpuctx->cgrp; 728 struct cgroup_subsys_state *css; 729 730 if (cgrp) { 731 for (css = &cgrp->css; css; css = css->parent) { 732 cgrp = container_of(css, struct perf_cgroup, css); 733 __update_cgrp_time(cgrp); 734 } 735 } 736 } 737 738 static inline void update_cgrp_time_from_event(struct perf_event *event) 739 { 740 struct perf_cgroup *cgrp; 741 742 /* 743 * ensure we access cgroup data only when needed and 744 * when we know the cgroup is pinned (css_get) 745 */ 746 if (!is_cgroup_event(event)) 747 return; 748 749 cgrp = perf_cgroup_from_task(current, event->ctx); 750 /* 751 * Do not update time when cgroup is not active 752 */ 753 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 754 __update_cgrp_time(event->cgrp); 755 } 756 757 static inline void 758 perf_cgroup_set_timestamp(struct task_struct *task, 759 struct perf_event_context *ctx) 760 { 761 struct perf_cgroup *cgrp; 762 struct perf_cgroup_info *info; 763 struct cgroup_subsys_state *css; 764 765 /* 766 * ctx->lock held by caller 767 * ensure we do not access cgroup data 768 * unless we have the cgroup pinned (css_get) 769 */ 770 if (!task || !ctx->nr_cgroups) 771 return; 772 773 cgrp = perf_cgroup_from_task(task, ctx); 774 775 for (css = &cgrp->css; css; css = css->parent) { 776 cgrp = container_of(css, struct perf_cgroup, css); 777 info = this_cpu_ptr(cgrp->info); 778 info->timestamp = ctx->timestamp; 779 } 780 } 781 782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 783 784 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 785 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 786 787 /* 788 * reschedule events based on the cgroup constraint of task. 789 * 790 * mode SWOUT : schedule out everything 791 * mode SWIN : schedule in based on cgroup for next 792 */ 793 static void perf_cgroup_switch(struct task_struct *task, int mode) 794 { 795 struct perf_cpu_context *cpuctx; 796 struct list_head *list; 797 unsigned long flags; 798 799 /* 800 * Disable interrupts and preemption to avoid this CPU's 801 * cgrp_cpuctx_entry to change under us. 802 */ 803 local_irq_save(flags); 804 805 list = this_cpu_ptr(&cgrp_cpuctx_list); 806 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 807 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 808 809 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 810 perf_pmu_disable(cpuctx->ctx.pmu); 811 812 if (mode & PERF_CGROUP_SWOUT) { 813 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 814 /* 815 * must not be done before ctxswout due 816 * to event_filter_match() in event_sched_out() 817 */ 818 cpuctx->cgrp = NULL; 819 } 820 821 if (mode & PERF_CGROUP_SWIN) { 822 WARN_ON_ONCE(cpuctx->cgrp); 823 /* 824 * set cgrp before ctxsw in to allow 825 * event_filter_match() to not have to pass 826 * task around 827 * we pass the cpuctx->ctx to perf_cgroup_from_task() 828 * because cgorup events are only per-cpu 829 */ 830 cpuctx->cgrp = perf_cgroup_from_task(task, 831 &cpuctx->ctx); 832 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 833 } 834 perf_pmu_enable(cpuctx->ctx.pmu); 835 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 836 } 837 838 local_irq_restore(flags); 839 } 840 841 static inline void perf_cgroup_sched_out(struct task_struct *task, 842 struct task_struct *next) 843 { 844 struct perf_cgroup *cgrp1; 845 struct perf_cgroup *cgrp2 = NULL; 846 847 rcu_read_lock(); 848 /* 849 * we come here when we know perf_cgroup_events > 0 850 * we do not need to pass the ctx here because we know 851 * we are holding the rcu lock 852 */ 853 cgrp1 = perf_cgroup_from_task(task, NULL); 854 cgrp2 = perf_cgroup_from_task(next, NULL); 855 856 /* 857 * only schedule out current cgroup events if we know 858 * that we are switching to a different cgroup. Otherwise, 859 * do no touch the cgroup events. 860 */ 861 if (cgrp1 != cgrp2) 862 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 863 864 rcu_read_unlock(); 865 } 866 867 static inline void perf_cgroup_sched_in(struct task_struct *prev, 868 struct task_struct *task) 869 { 870 struct perf_cgroup *cgrp1; 871 struct perf_cgroup *cgrp2 = NULL; 872 873 rcu_read_lock(); 874 /* 875 * we come here when we know perf_cgroup_events > 0 876 * we do not need to pass the ctx here because we know 877 * we are holding the rcu lock 878 */ 879 cgrp1 = perf_cgroup_from_task(task, NULL); 880 cgrp2 = perf_cgroup_from_task(prev, NULL); 881 882 /* 883 * only need to schedule in cgroup events if we are changing 884 * cgroup during ctxsw. Cgroup events were not scheduled 885 * out of ctxsw out if that was not the case. 886 */ 887 if (cgrp1 != cgrp2) 888 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 889 890 rcu_read_unlock(); 891 } 892 893 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 894 struct perf_event_attr *attr, 895 struct perf_event *group_leader) 896 { 897 struct perf_cgroup *cgrp; 898 struct cgroup_subsys_state *css; 899 struct fd f = fdget(fd); 900 int ret = 0; 901 902 if (!f.file) 903 return -EBADF; 904 905 css = css_tryget_online_from_dir(f.file->f_path.dentry, 906 &perf_event_cgrp_subsys); 907 if (IS_ERR(css)) { 908 ret = PTR_ERR(css); 909 goto out; 910 } 911 912 cgrp = container_of(css, struct perf_cgroup, css); 913 event->cgrp = cgrp; 914 915 /* 916 * all events in a group must monitor 917 * the same cgroup because a task belongs 918 * to only one perf cgroup at a time 919 */ 920 if (group_leader && group_leader->cgrp != cgrp) { 921 perf_detach_cgroup(event); 922 ret = -EINVAL; 923 } 924 out: 925 fdput(f); 926 return ret; 927 } 928 929 static inline void 930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 931 { 932 struct perf_cgroup_info *t; 933 t = per_cpu_ptr(event->cgrp->info, event->cpu); 934 event->shadow_ctx_time = now - t->timestamp; 935 } 936 937 /* 938 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 939 * cleared when last cgroup event is removed. 940 */ 941 static inline void 942 list_update_cgroup_event(struct perf_event *event, 943 struct perf_event_context *ctx, bool add) 944 { 945 struct perf_cpu_context *cpuctx; 946 struct list_head *cpuctx_entry; 947 948 if (!is_cgroup_event(event)) 949 return; 950 951 /* 952 * Because cgroup events are always per-cpu events, 953 * this will always be called from the right CPU. 954 */ 955 cpuctx = __get_cpu_context(ctx); 956 957 /* 958 * Since setting cpuctx->cgrp is conditional on the current @cgrp 959 * matching the event's cgroup, we must do this for every new event, 960 * because if the first would mismatch, the second would not try again 961 * and we would leave cpuctx->cgrp unset. 962 */ 963 if (add && !cpuctx->cgrp) { 964 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 965 966 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 967 cpuctx->cgrp = cgrp; 968 } 969 970 if (add && ctx->nr_cgroups++) 971 return; 972 else if (!add && --ctx->nr_cgroups) 973 return; 974 975 /* no cgroup running */ 976 if (!add) 977 cpuctx->cgrp = NULL; 978 979 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 980 if (add) 981 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 982 else 983 list_del(cpuctx_entry); 984 } 985 986 #else /* !CONFIG_CGROUP_PERF */ 987 988 static inline bool 989 perf_cgroup_match(struct perf_event *event) 990 { 991 return true; 992 } 993 994 static inline void perf_detach_cgroup(struct perf_event *event) 995 {} 996 997 static inline int is_cgroup_event(struct perf_event *event) 998 { 999 return 0; 1000 } 1001 1002 static inline void update_cgrp_time_from_event(struct perf_event *event) 1003 { 1004 } 1005 1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1007 { 1008 } 1009 1010 static inline void perf_cgroup_sched_out(struct task_struct *task, 1011 struct task_struct *next) 1012 { 1013 } 1014 1015 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1016 struct task_struct *task) 1017 { 1018 } 1019 1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1021 struct perf_event_attr *attr, 1022 struct perf_event *group_leader) 1023 { 1024 return -EINVAL; 1025 } 1026 1027 static inline void 1028 perf_cgroup_set_timestamp(struct task_struct *task, 1029 struct perf_event_context *ctx) 1030 { 1031 } 1032 1033 void 1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1035 { 1036 } 1037 1038 static inline void 1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1040 { 1041 } 1042 1043 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1044 { 1045 return 0; 1046 } 1047 1048 static inline void 1049 list_update_cgroup_event(struct perf_event *event, 1050 struct perf_event_context *ctx, bool add) 1051 { 1052 } 1053 1054 #endif 1055 1056 /* 1057 * set default to be dependent on timer tick just 1058 * like original code 1059 */ 1060 #define PERF_CPU_HRTIMER (1000 / HZ) 1061 /* 1062 * function must be called with interrupts disabled 1063 */ 1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1065 { 1066 struct perf_cpu_context *cpuctx; 1067 bool rotations; 1068 1069 lockdep_assert_irqs_disabled(); 1070 1071 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1072 rotations = perf_rotate_context(cpuctx); 1073 1074 raw_spin_lock(&cpuctx->hrtimer_lock); 1075 if (rotations) 1076 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1077 else 1078 cpuctx->hrtimer_active = 0; 1079 raw_spin_unlock(&cpuctx->hrtimer_lock); 1080 1081 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1082 } 1083 1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1085 { 1086 struct hrtimer *timer = &cpuctx->hrtimer; 1087 struct pmu *pmu = cpuctx->ctx.pmu; 1088 u64 interval; 1089 1090 /* no multiplexing needed for SW PMU */ 1091 if (pmu->task_ctx_nr == perf_sw_context) 1092 return; 1093 1094 /* 1095 * check default is sane, if not set then force to 1096 * default interval (1/tick) 1097 */ 1098 interval = pmu->hrtimer_interval_ms; 1099 if (interval < 1) 1100 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1101 1102 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1103 1104 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1105 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1106 timer->function = perf_mux_hrtimer_handler; 1107 } 1108 1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1110 { 1111 struct hrtimer *timer = &cpuctx->hrtimer; 1112 struct pmu *pmu = cpuctx->ctx.pmu; 1113 unsigned long flags; 1114 1115 /* not for SW PMU */ 1116 if (pmu->task_ctx_nr == perf_sw_context) 1117 return 0; 1118 1119 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1120 if (!cpuctx->hrtimer_active) { 1121 cpuctx->hrtimer_active = 1; 1122 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1123 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1124 } 1125 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1126 1127 return 0; 1128 } 1129 1130 void perf_pmu_disable(struct pmu *pmu) 1131 { 1132 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1133 if (!(*count)++) 1134 pmu->pmu_disable(pmu); 1135 } 1136 1137 void perf_pmu_enable(struct pmu *pmu) 1138 { 1139 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1140 if (!--(*count)) 1141 pmu->pmu_enable(pmu); 1142 } 1143 1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1145 1146 /* 1147 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1148 * perf_event_task_tick() are fully serialized because they're strictly cpu 1149 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1150 * disabled, while perf_event_task_tick is called from IRQ context. 1151 */ 1152 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1153 { 1154 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1155 1156 lockdep_assert_irqs_disabled(); 1157 1158 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1159 1160 list_add(&ctx->active_ctx_list, head); 1161 } 1162 1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1164 { 1165 lockdep_assert_irqs_disabled(); 1166 1167 WARN_ON(list_empty(&ctx->active_ctx_list)); 1168 1169 list_del_init(&ctx->active_ctx_list); 1170 } 1171 1172 static void get_ctx(struct perf_event_context *ctx) 1173 { 1174 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1175 } 1176 1177 static void free_ctx(struct rcu_head *head) 1178 { 1179 struct perf_event_context *ctx; 1180 1181 ctx = container_of(head, struct perf_event_context, rcu_head); 1182 kfree(ctx->task_ctx_data); 1183 kfree(ctx); 1184 } 1185 1186 static void put_ctx(struct perf_event_context *ctx) 1187 { 1188 if (atomic_dec_and_test(&ctx->refcount)) { 1189 if (ctx->parent_ctx) 1190 put_ctx(ctx->parent_ctx); 1191 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1192 put_task_struct(ctx->task); 1193 call_rcu(&ctx->rcu_head, free_ctx); 1194 } 1195 } 1196 1197 /* 1198 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1199 * perf_pmu_migrate_context() we need some magic. 1200 * 1201 * Those places that change perf_event::ctx will hold both 1202 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1203 * 1204 * Lock ordering is by mutex address. There are two other sites where 1205 * perf_event_context::mutex nests and those are: 1206 * 1207 * - perf_event_exit_task_context() [ child , 0 ] 1208 * perf_event_exit_event() 1209 * put_event() [ parent, 1 ] 1210 * 1211 * - perf_event_init_context() [ parent, 0 ] 1212 * inherit_task_group() 1213 * inherit_group() 1214 * inherit_event() 1215 * perf_event_alloc() 1216 * perf_init_event() 1217 * perf_try_init_event() [ child , 1 ] 1218 * 1219 * While it appears there is an obvious deadlock here -- the parent and child 1220 * nesting levels are inverted between the two. This is in fact safe because 1221 * life-time rules separate them. That is an exiting task cannot fork, and a 1222 * spawning task cannot (yet) exit. 1223 * 1224 * But remember that that these are parent<->child context relations, and 1225 * migration does not affect children, therefore these two orderings should not 1226 * interact. 1227 * 1228 * The change in perf_event::ctx does not affect children (as claimed above) 1229 * because the sys_perf_event_open() case will install a new event and break 1230 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1231 * concerned with cpuctx and that doesn't have children. 1232 * 1233 * The places that change perf_event::ctx will issue: 1234 * 1235 * perf_remove_from_context(); 1236 * synchronize_rcu(); 1237 * perf_install_in_context(); 1238 * 1239 * to affect the change. The remove_from_context() + synchronize_rcu() should 1240 * quiesce the event, after which we can install it in the new location. This 1241 * means that only external vectors (perf_fops, prctl) can perturb the event 1242 * while in transit. Therefore all such accessors should also acquire 1243 * perf_event_context::mutex to serialize against this. 1244 * 1245 * However; because event->ctx can change while we're waiting to acquire 1246 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1247 * function. 1248 * 1249 * Lock order: 1250 * cred_guard_mutex 1251 * task_struct::perf_event_mutex 1252 * perf_event_context::mutex 1253 * perf_event::child_mutex; 1254 * perf_event_context::lock 1255 * perf_event::mmap_mutex 1256 * mmap_sem 1257 * 1258 * cpu_hotplug_lock 1259 * pmus_lock 1260 * cpuctx->mutex / perf_event_context::mutex 1261 */ 1262 static struct perf_event_context * 1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1264 { 1265 struct perf_event_context *ctx; 1266 1267 again: 1268 rcu_read_lock(); 1269 ctx = READ_ONCE(event->ctx); 1270 if (!atomic_inc_not_zero(&ctx->refcount)) { 1271 rcu_read_unlock(); 1272 goto again; 1273 } 1274 rcu_read_unlock(); 1275 1276 mutex_lock_nested(&ctx->mutex, nesting); 1277 if (event->ctx != ctx) { 1278 mutex_unlock(&ctx->mutex); 1279 put_ctx(ctx); 1280 goto again; 1281 } 1282 1283 return ctx; 1284 } 1285 1286 static inline struct perf_event_context * 1287 perf_event_ctx_lock(struct perf_event *event) 1288 { 1289 return perf_event_ctx_lock_nested(event, 0); 1290 } 1291 1292 static void perf_event_ctx_unlock(struct perf_event *event, 1293 struct perf_event_context *ctx) 1294 { 1295 mutex_unlock(&ctx->mutex); 1296 put_ctx(ctx); 1297 } 1298 1299 /* 1300 * This must be done under the ctx->lock, such as to serialize against 1301 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1302 * calling scheduler related locks and ctx->lock nests inside those. 1303 */ 1304 static __must_check struct perf_event_context * 1305 unclone_ctx(struct perf_event_context *ctx) 1306 { 1307 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1308 1309 lockdep_assert_held(&ctx->lock); 1310 1311 if (parent_ctx) 1312 ctx->parent_ctx = NULL; 1313 ctx->generation++; 1314 1315 return parent_ctx; 1316 } 1317 1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1319 enum pid_type type) 1320 { 1321 u32 nr; 1322 /* 1323 * only top level events have the pid namespace they were created in 1324 */ 1325 if (event->parent) 1326 event = event->parent; 1327 1328 nr = __task_pid_nr_ns(p, type, event->ns); 1329 /* avoid -1 if it is idle thread or runs in another ns */ 1330 if (!nr && !pid_alive(p)) 1331 nr = -1; 1332 return nr; 1333 } 1334 1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1336 { 1337 return perf_event_pid_type(event, p, __PIDTYPE_TGID); 1338 } 1339 1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1341 { 1342 return perf_event_pid_type(event, p, PIDTYPE_PID); 1343 } 1344 1345 /* 1346 * If we inherit events we want to return the parent event id 1347 * to userspace. 1348 */ 1349 static u64 primary_event_id(struct perf_event *event) 1350 { 1351 u64 id = event->id; 1352 1353 if (event->parent) 1354 id = event->parent->id; 1355 1356 return id; 1357 } 1358 1359 /* 1360 * Get the perf_event_context for a task and lock it. 1361 * 1362 * This has to cope with with the fact that until it is locked, 1363 * the context could get moved to another task. 1364 */ 1365 static struct perf_event_context * 1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1367 { 1368 struct perf_event_context *ctx; 1369 1370 retry: 1371 /* 1372 * One of the few rules of preemptible RCU is that one cannot do 1373 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1374 * part of the read side critical section was irqs-enabled -- see 1375 * rcu_read_unlock_special(). 1376 * 1377 * Since ctx->lock nests under rq->lock we must ensure the entire read 1378 * side critical section has interrupts disabled. 1379 */ 1380 local_irq_save(*flags); 1381 rcu_read_lock(); 1382 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1383 if (ctx) { 1384 /* 1385 * If this context is a clone of another, it might 1386 * get swapped for another underneath us by 1387 * perf_event_task_sched_out, though the 1388 * rcu_read_lock() protects us from any context 1389 * getting freed. Lock the context and check if it 1390 * got swapped before we could get the lock, and retry 1391 * if so. If we locked the right context, then it 1392 * can't get swapped on us any more. 1393 */ 1394 raw_spin_lock(&ctx->lock); 1395 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1396 raw_spin_unlock(&ctx->lock); 1397 rcu_read_unlock(); 1398 local_irq_restore(*flags); 1399 goto retry; 1400 } 1401 1402 if (ctx->task == TASK_TOMBSTONE || 1403 !atomic_inc_not_zero(&ctx->refcount)) { 1404 raw_spin_unlock(&ctx->lock); 1405 ctx = NULL; 1406 } else { 1407 WARN_ON_ONCE(ctx->task != task); 1408 } 1409 } 1410 rcu_read_unlock(); 1411 if (!ctx) 1412 local_irq_restore(*flags); 1413 return ctx; 1414 } 1415 1416 /* 1417 * Get the context for a task and increment its pin_count so it 1418 * can't get swapped to another task. This also increments its 1419 * reference count so that the context can't get freed. 1420 */ 1421 static struct perf_event_context * 1422 perf_pin_task_context(struct task_struct *task, int ctxn) 1423 { 1424 struct perf_event_context *ctx; 1425 unsigned long flags; 1426 1427 ctx = perf_lock_task_context(task, ctxn, &flags); 1428 if (ctx) { 1429 ++ctx->pin_count; 1430 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1431 } 1432 return ctx; 1433 } 1434 1435 static void perf_unpin_context(struct perf_event_context *ctx) 1436 { 1437 unsigned long flags; 1438 1439 raw_spin_lock_irqsave(&ctx->lock, flags); 1440 --ctx->pin_count; 1441 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1442 } 1443 1444 /* 1445 * Update the record of the current time in a context. 1446 */ 1447 static void update_context_time(struct perf_event_context *ctx) 1448 { 1449 u64 now = perf_clock(); 1450 1451 ctx->time += now - ctx->timestamp; 1452 ctx->timestamp = now; 1453 } 1454 1455 static u64 perf_event_time(struct perf_event *event) 1456 { 1457 struct perf_event_context *ctx = event->ctx; 1458 1459 if (is_cgroup_event(event)) 1460 return perf_cgroup_event_time(event); 1461 1462 return ctx ? ctx->time : 0; 1463 } 1464 1465 static enum event_type_t get_event_type(struct perf_event *event) 1466 { 1467 struct perf_event_context *ctx = event->ctx; 1468 enum event_type_t event_type; 1469 1470 lockdep_assert_held(&ctx->lock); 1471 1472 /* 1473 * It's 'group type', really, because if our group leader is 1474 * pinned, so are we. 1475 */ 1476 if (event->group_leader != event) 1477 event = event->group_leader; 1478 1479 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1480 if (!ctx->task) 1481 event_type |= EVENT_CPU; 1482 1483 return event_type; 1484 } 1485 1486 /* 1487 * Helper function to initialize event group nodes. 1488 */ 1489 static void init_event_group(struct perf_event *event) 1490 { 1491 RB_CLEAR_NODE(&event->group_node); 1492 event->group_index = 0; 1493 } 1494 1495 /* 1496 * Extract pinned or flexible groups from the context 1497 * based on event attrs bits. 1498 */ 1499 static struct perf_event_groups * 1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1501 { 1502 if (event->attr.pinned) 1503 return &ctx->pinned_groups; 1504 else 1505 return &ctx->flexible_groups; 1506 } 1507 1508 /* 1509 * Helper function to initializes perf_event_group trees. 1510 */ 1511 static void perf_event_groups_init(struct perf_event_groups *groups) 1512 { 1513 groups->tree = RB_ROOT; 1514 groups->index = 0; 1515 } 1516 1517 /* 1518 * Compare function for event groups; 1519 * 1520 * Implements complex key that first sorts by CPU and then by virtual index 1521 * which provides ordering when rotating groups for the same CPU. 1522 */ 1523 static bool 1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1525 { 1526 if (left->cpu < right->cpu) 1527 return true; 1528 if (left->cpu > right->cpu) 1529 return false; 1530 1531 if (left->group_index < right->group_index) 1532 return true; 1533 if (left->group_index > right->group_index) 1534 return false; 1535 1536 return false; 1537 } 1538 1539 /* 1540 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1541 * key (see perf_event_groups_less). This places it last inside the CPU 1542 * subtree. 1543 */ 1544 static void 1545 perf_event_groups_insert(struct perf_event_groups *groups, 1546 struct perf_event *event) 1547 { 1548 struct perf_event *node_event; 1549 struct rb_node *parent; 1550 struct rb_node **node; 1551 1552 event->group_index = ++groups->index; 1553 1554 node = &groups->tree.rb_node; 1555 parent = *node; 1556 1557 while (*node) { 1558 parent = *node; 1559 node_event = container_of(*node, struct perf_event, group_node); 1560 1561 if (perf_event_groups_less(event, node_event)) 1562 node = &parent->rb_left; 1563 else 1564 node = &parent->rb_right; 1565 } 1566 1567 rb_link_node(&event->group_node, parent, node); 1568 rb_insert_color(&event->group_node, &groups->tree); 1569 } 1570 1571 /* 1572 * Helper function to insert event into the pinned or flexible groups. 1573 */ 1574 static void 1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1576 { 1577 struct perf_event_groups *groups; 1578 1579 groups = get_event_groups(event, ctx); 1580 perf_event_groups_insert(groups, event); 1581 } 1582 1583 /* 1584 * Delete a group from a tree. 1585 */ 1586 static void 1587 perf_event_groups_delete(struct perf_event_groups *groups, 1588 struct perf_event *event) 1589 { 1590 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1591 RB_EMPTY_ROOT(&groups->tree)); 1592 1593 rb_erase(&event->group_node, &groups->tree); 1594 init_event_group(event); 1595 } 1596 1597 /* 1598 * Helper function to delete event from its groups. 1599 */ 1600 static void 1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1602 { 1603 struct perf_event_groups *groups; 1604 1605 groups = get_event_groups(event, ctx); 1606 perf_event_groups_delete(groups, event); 1607 } 1608 1609 /* 1610 * Get the leftmost event in the @cpu subtree. 1611 */ 1612 static struct perf_event * 1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu) 1614 { 1615 struct perf_event *node_event = NULL, *match = NULL; 1616 struct rb_node *node = groups->tree.rb_node; 1617 1618 while (node) { 1619 node_event = container_of(node, struct perf_event, group_node); 1620 1621 if (cpu < node_event->cpu) { 1622 node = node->rb_left; 1623 } else if (cpu > node_event->cpu) { 1624 node = node->rb_right; 1625 } else { 1626 match = node_event; 1627 node = node->rb_left; 1628 } 1629 } 1630 1631 return match; 1632 } 1633 1634 /* 1635 * Like rb_entry_next_safe() for the @cpu subtree. 1636 */ 1637 static struct perf_event * 1638 perf_event_groups_next(struct perf_event *event) 1639 { 1640 struct perf_event *next; 1641 1642 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1643 if (next && next->cpu == event->cpu) 1644 return next; 1645 1646 return NULL; 1647 } 1648 1649 /* 1650 * Iterate through the whole groups tree. 1651 */ 1652 #define perf_event_groups_for_each(event, groups) \ 1653 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1654 typeof(*event), group_node); event; \ 1655 event = rb_entry_safe(rb_next(&event->group_node), \ 1656 typeof(*event), group_node)) 1657 1658 /* 1659 * Add a event from the lists for its context. 1660 * Must be called with ctx->mutex and ctx->lock held. 1661 */ 1662 static void 1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1664 { 1665 lockdep_assert_held(&ctx->lock); 1666 1667 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1668 event->attach_state |= PERF_ATTACH_CONTEXT; 1669 1670 event->tstamp = perf_event_time(event); 1671 1672 /* 1673 * If we're a stand alone event or group leader, we go to the context 1674 * list, group events are kept attached to the group so that 1675 * perf_group_detach can, at all times, locate all siblings. 1676 */ 1677 if (event->group_leader == event) { 1678 event->group_caps = event->event_caps; 1679 add_event_to_groups(event, ctx); 1680 } 1681 1682 list_update_cgroup_event(event, ctx, true); 1683 1684 list_add_rcu(&event->event_entry, &ctx->event_list); 1685 ctx->nr_events++; 1686 if (event->attr.inherit_stat) 1687 ctx->nr_stat++; 1688 1689 ctx->generation++; 1690 } 1691 1692 /* 1693 * Initialize event state based on the perf_event_attr::disabled. 1694 */ 1695 static inline void perf_event__state_init(struct perf_event *event) 1696 { 1697 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1698 PERF_EVENT_STATE_INACTIVE; 1699 } 1700 1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1702 { 1703 int entry = sizeof(u64); /* value */ 1704 int size = 0; 1705 int nr = 1; 1706 1707 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1708 size += sizeof(u64); 1709 1710 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1711 size += sizeof(u64); 1712 1713 if (event->attr.read_format & PERF_FORMAT_ID) 1714 entry += sizeof(u64); 1715 1716 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1717 nr += nr_siblings; 1718 size += sizeof(u64); 1719 } 1720 1721 size += entry * nr; 1722 event->read_size = size; 1723 } 1724 1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1726 { 1727 struct perf_sample_data *data; 1728 u16 size = 0; 1729 1730 if (sample_type & PERF_SAMPLE_IP) 1731 size += sizeof(data->ip); 1732 1733 if (sample_type & PERF_SAMPLE_ADDR) 1734 size += sizeof(data->addr); 1735 1736 if (sample_type & PERF_SAMPLE_PERIOD) 1737 size += sizeof(data->period); 1738 1739 if (sample_type & PERF_SAMPLE_WEIGHT) 1740 size += sizeof(data->weight); 1741 1742 if (sample_type & PERF_SAMPLE_READ) 1743 size += event->read_size; 1744 1745 if (sample_type & PERF_SAMPLE_DATA_SRC) 1746 size += sizeof(data->data_src.val); 1747 1748 if (sample_type & PERF_SAMPLE_TRANSACTION) 1749 size += sizeof(data->txn); 1750 1751 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1752 size += sizeof(data->phys_addr); 1753 1754 event->header_size = size; 1755 } 1756 1757 /* 1758 * Called at perf_event creation and when events are attached/detached from a 1759 * group. 1760 */ 1761 static void perf_event__header_size(struct perf_event *event) 1762 { 1763 __perf_event_read_size(event, 1764 event->group_leader->nr_siblings); 1765 __perf_event_header_size(event, event->attr.sample_type); 1766 } 1767 1768 static void perf_event__id_header_size(struct perf_event *event) 1769 { 1770 struct perf_sample_data *data; 1771 u64 sample_type = event->attr.sample_type; 1772 u16 size = 0; 1773 1774 if (sample_type & PERF_SAMPLE_TID) 1775 size += sizeof(data->tid_entry); 1776 1777 if (sample_type & PERF_SAMPLE_TIME) 1778 size += sizeof(data->time); 1779 1780 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1781 size += sizeof(data->id); 1782 1783 if (sample_type & PERF_SAMPLE_ID) 1784 size += sizeof(data->id); 1785 1786 if (sample_type & PERF_SAMPLE_STREAM_ID) 1787 size += sizeof(data->stream_id); 1788 1789 if (sample_type & PERF_SAMPLE_CPU) 1790 size += sizeof(data->cpu_entry); 1791 1792 event->id_header_size = size; 1793 } 1794 1795 static bool perf_event_validate_size(struct perf_event *event) 1796 { 1797 /* 1798 * The values computed here will be over-written when we actually 1799 * attach the event. 1800 */ 1801 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1802 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1803 perf_event__id_header_size(event); 1804 1805 /* 1806 * Sum the lot; should not exceed the 64k limit we have on records. 1807 * Conservative limit to allow for callchains and other variable fields. 1808 */ 1809 if (event->read_size + event->header_size + 1810 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1811 return false; 1812 1813 return true; 1814 } 1815 1816 static void perf_group_attach(struct perf_event *event) 1817 { 1818 struct perf_event *group_leader = event->group_leader, *pos; 1819 1820 lockdep_assert_held(&event->ctx->lock); 1821 1822 /* 1823 * We can have double attach due to group movement in perf_event_open. 1824 */ 1825 if (event->attach_state & PERF_ATTACH_GROUP) 1826 return; 1827 1828 event->attach_state |= PERF_ATTACH_GROUP; 1829 1830 if (group_leader == event) 1831 return; 1832 1833 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1834 1835 group_leader->group_caps &= event->event_caps; 1836 1837 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1838 group_leader->nr_siblings++; 1839 1840 perf_event__header_size(group_leader); 1841 1842 for_each_sibling_event(pos, group_leader) 1843 perf_event__header_size(pos); 1844 } 1845 1846 /* 1847 * Remove a event from the lists for its context. 1848 * Must be called with ctx->mutex and ctx->lock held. 1849 */ 1850 static void 1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1852 { 1853 WARN_ON_ONCE(event->ctx != ctx); 1854 lockdep_assert_held(&ctx->lock); 1855 1856 /* 1857 * We can have double detach due to exit/hot-unplug + close. 1858 */ 1859 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1860 return; 1861 1862 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1863 1864 list_update_cgroup_event(event, ctx, false); 1865 1866 ctx->nr_events--; 1867 if (event->attr.inherit_stat) 1868 ctx->nr_stat--; 1869 1870 list_del_rcu(&event->event_entry); 1871 1872 if (event->group_leader == event) 1873 del_event_from_groups(event, ctx); 1874 1875 /* 1876 * If event was in error state, then keep it 1877 * that way, otherwise bogus counts will be 1878 * returned on read(). The only way to get out 1879 * of error state is by explicit re-enabling 1880 * of the event 1881 */ 1882 if (event->state > PERF_EVENT_STATE_OFF) 1883 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1884 1885 ctx->generation++; 1886 } 1887 1888 static void perf_group_detach(struct perf_event *event) 1889 { 1890 struct perf_event *sibling, *tmp; 1891 struct perf_event_context *ctx = event->ctx; 1892 1893 lockdep_assert_held(&ctx->lock); 1894 1895 /* 1896 * We can have double detach due to exit/hot-unplug + close. 1897 */ 1898 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1899 return; 1900 1901 event->attach_state &= ~PERF_ATTACH_GROUP; 1902 1903 /* 1904 * If this is a sibling, remove it from its group. 1905 */ 1906 if (event->group_leader != event) { 1907 list_del_init(&event->sibling_list); 1908 event->group_leader->nr_siblings--; 1909 goto out; 1910 } 1911 1912 /* 1913 * If this was a group event with sibling events then 1914 * upgrade the siblings to singleton events by adding them 1915 * to whatever list we are on. 1916 */ 1917 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 1918 1919 sibling->group_leader = sibling; 1920 list_del_init(&sibling->sibling_list); 1921 1922 /* Inherit group flags from the previous leader */ 1923 sibling->group_caps = event->group_caps; 1924 1925 if (!RB_EMPTY_NODE(&event->group_node)) { 1926 add_event_to_groups(sibling, event->ctx); 1927 1928 if (sibling->state == PERF_EVENT_STATE_ACTIVE) { 1929 struct list_head *list = sibling->attr.pinned ? 1930 &ctx->pinned_active : &ctx->flexible_active; 1931 1932 list_add_tail(&sibling->active_list, list); 1933 } 1934 } 1935 1936 WARN_ON_ONCE(sibling->ctx != event->ctx); 1937 } 1938 1939 out: 1940 perf_event__header_size(event->group_leader); 1941 1942 for_each_sibling_event(tmp, event->group_leader) 1943 perf_event__header_size(tmp); 1944 } 1945 1946 static bool is_orphaned_event(struct perf_event *event) 1947 { 1948 return event->state == PERF_EVENT_STATE_DEAD; 1949 } 1950 1951 static inline int __pmu_filter_match(struct perf_event *event) 1952 { 1953 struct pmu *pmu = event->pmu; 1954 return pmu->filter_match ? pmu->filter_match(event) : 1; 1955 } 1956 1957 /* 1958 * Check whether we should attempt to schedule an event group based on 1959 * PMU-specific filtering. An event group can consist of HW and SW events, 1960 * potentially with a SW leader, so we must check all the filters, to 1961 * determine whether a group is schedulable: 1962 */ 1963 static inline int pmu_filter_match(struct perf_event *event) 1964 { 1965 struct perf_event *sibling; 1966 1967 if (!__pmu_filter_match(event)) 1968 return 0; 1969 1970 for_each_sibling_event(sibling, event) { 1971 if (!__pmu_filter_match(sibling)) 1972 return 0; 1973 } 1974 1975 return 1; 1976 } 1977 1978 static inline int 1979 event_filter_match(struct perf_event *event) 1980 { 1981 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1982 perf_cgroup_match(event) && pmu_filter_match(event); 1983 } 1984 1985 static void 1986 event_sched_out(struct perf_event *event, 1987 struct perf_cpu_context *cpuctx, 1988 struct perf_event_context *ctx) 1989 { 1990 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 1991 1992 WARN_ON_ONCE(event->ctx != ctx); 1993 lockdep_assert_held(&ctx->lock); 1994 1995 if (event->state != PERF_EVENT_STATE_ACTIVE) 1996 return; 1997 1998 /* 1999 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2000 * we can schedule events _OUT_ individually through things like 2001 * __perf_remove_from_context(). 2002 */ 2003 list_del_init(&event->active_list); 2004 2005 perf_pmu_disable(event->pmu); 2006 2007 event->pmu->del(event, 0); 2008 event->oncpu = -1; 2009 2010 if (event->pending_disable) { 2011 event->pending_disable = 0; 2012 state = PERF_EVENT_STATE_OFF; 2013 } 2014 perf_event_set_state(event, state); 2015 2016 if (!is_software_event(event)) 2017 cpuctx->active_oncpu--; 2018 if (!--ctx->nr_active) 2019 perf_event_ctx_deactivate(ctx); 2020 if (event->attr.freq && event->attr.sample_freq) 2021 ctx->nr_freq--; 2022 if (event->attr.exclusive || !cpuctx->active_oncpu) 2023 cpuctx->exclusive = 0; 2024 2025 perf_pmu_enable(event->pmu); 2026 } 2027 2028 static void 2029 group_sched_out(struct perf_event *group_event, 2030 struct perf_cpu_context *cpuctx, 2031 struct perf_event_context *ctx) 2032 { 2033 struct perf_event *event; 2034 2035 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2036 return; 2037 2038 perf_pmu_disable(ctx->pmu); 2039 2040 event_sched_out(group_event, cpuctx, ctx); 2041 2042 /* 2043 * Schedule out siblings (if any): 2044 */ 2045 for_each_sibling_event(event, group_event) 2046 event_sched_out(event, cpuctx, ctx); 2047 2048 perf_pmu_enable(ctx->pmu); 2049 2050 if (group_event->attr.exclusive) 2051 cpuctx->exclusive = 0; 2052 } 2053 2054 #define DETACH_GROUP 0x01UL 2055 2056 /* 2057 * Cross CPU call to remove a performance event 2058 * 2059 * We disable the event on the hardware level first. After that we 2060 * remove it from the context list. 2061 */ 2062 static void 2063 __perf_remove_from_context(struct perf_event *event, 2064 struct perf_cpu_context *cpuctx, 2065 struct perf_event_context *ctx, 2066 void *info) 2067 { 2068 unsigned long flags = (unsigned long)info; 2069 2070 if (ctx->is_active & EVENT_TIME) { 2071 update_context_time(ctx); 2072 update_cgrp_time_from_cpuctx(cpuctx); 2073 } 2074 2075 event_sched_out(event, cpuctx, ctx); 2076 if (flags & DETACH_GROUP) 2077 perf_group_detach(event); 2078 list_del_event(event, ctx); 2079 2080 if (!ctx->nr_events && ctx->is_active) { 2081 ctx->is_active = 0; 2082 if (ctx->task) { 2083 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2084 cpuctx->task_ctx = NULL; 2085 } 2086 } 2087 } 2088 2089 /* 2090 * Remove the event from a task's (or a CPU's) list of events. 2091 * 2092 * If event->ctx is a cloned context, callers must make sure that 2093 * every task struct that event->ctx->task could possibly point to 2094 * remains valid. This is OK when called from perf_release since 2095 * that only calls us on the top-level context, which can't be a clone. 2096 * When called from perf_event_exit_task, it's OK because the 2097 * context has been detached from its task. 2098 */ 2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2100 { 2101 struct perf_event_context *ctx = event->ctx; 2102 2103 lockdep_assert_held(&ctx->mutex); 2104 2105 event_function_call(event, __perf_remove_from_context, (void *)flags); 2106 2107 /* 2108 * The above event_function_call() can NO-OP when it hits 2109 * TASK_TOMBSTONE. In that case we must already have been detached 2110 * from the context (by perf_event_exit_event()) but the grouping 2111 * might still be in-tact. 2112 */ 2113 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2114 if ((flags & DETACH_GROUP) && 2115 (event->attach_state & PERF_ATTACH_GROUP)) { 2116 /* 2117 * Since in that case we cannot possibly be scheduled, simply 2118 * detach now. 2119 */ 2120 raw_spin_lock_irq(&ctx->lock); 2121 perf_group_detach(event); 2122 raw_spin_unlock_irq(&ctx->lock); 2123 } 2124 } 2125 2126 /* 2127 * Cross CPU call to disable a performance event 2128 */ 2129 static void __perf_event_disable(struct perf_event *event, 2130 struct perf_cpu_context *cpuctx, 2131 struct perf_event_context *ctx, 2132 void *info) 2133 { 2134 if (event->state < PERF_EVENT_STATE_INACTIVE) 2135 return; 2136 2137 if (ctx->is_active & EVENT_TIME) { 2138 update_context_time(ctx); 2139 update_cgrp_time_from_event(event); 2140 } 2141 2142 if (event == event->group_leader) 2143 group_sched_out(event, cpuctx, ctx); 2144 else 2145 event_sched_out(event, cpuctx, ctx); 2146 2147 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2148 } 2149 2150 /* 2151 * Disable a event. 2152 * 2153 * If event->ctx is a cloned context, callers must make sure that 2154 * every task struct that event->ctx->task could possibly point to 2155 * remains valid. This condition is satisifed when called through 2156 * perf_event_for_each_child or perf_event_for_each because they 2157 * hold the top-level event's child_mutex, so any descendant that 2158 * goes to exit will block in perf_event_exit_event(). 2159 * 2160 * When called from perf_pending_event it's OK because event->ctx 2161 * is the current context on this CPU and preemption is disabled, 2162 * hence we can't get into perf_event_task_sched_out for this context. 2163 */ 2164 static void _perf_event_disable(struct perf_event *event) 2165 { 2166 struct perf_event_context *ctx = event->ctx; 2167 2168 raw_spin_lock_irq(&ctx->lock); 2169 if (event->state <= PERF_EVENT_STATE_OFF) { 2170 raw_spin_unlock_irq(&ctx->lock); 2171 return; 2172 } 2173 raw_spin_unlock_irq(&ctx->lock); 2174 2175 event_function_call(event, __perf_event_disable, NULL); 2176 } 2177 2178 void perf_event_disable_local(struct perf_event *event) 2179 { 2180 event_function_local(event, __perf_event_disable, NULL); 2181 } 2182 2183 /* 2184 * Strictly speaking kernel users cannot create groups and therefore this 2185 * interface does not need the perf_event_ctx_lock() magic. 2186 */ 2187 void perf_event_disable(struct perf_event *event) 2188 { 2189 struct perf_event_context *ctx; 2190 2191 ctx = perf_event_ctx_lock(event); 2192 _perf_event_disable(event); 2193 perf_event_ctx_unlock(event, ctx); 2194 } 2195 EXPORT_SYMBOL_GPL(perf_event_disable); 2196 2197 void perf_event_disable_inatomic(struct perf_event *event) 2198 { 2199 event->pending_disable = 1; 2200 irq_work_queue(&event->pending); 2201 } 2202 2203 static void perf_set_shadow_time(struct perf_event *event, 2204 struct perf_event_context *ctx) 2205 { 2206 /* 2207 * use the correct time source for the time snapshot 2208 * 2209 * We could get by without this by leveraging the 2210 * fact that to get to this function, the caller 2211 * has most likely already called update_context_time() 2212 * and update_cgrp_time_xx() and thus both timestamp 2213 * are identical (or very close). Given that tstamp is, 2214 * already adjusted for cgroup, we could say that: 2215 * tstamp - ctx->timestamp 2216 * is equivalent to 2217 * tstamp - cgrp->timestamp. 2218 * 2219 * Then, in perf_output_read(), the calculation would 2220 * work with no changes because: 2221 * - event is guaranteed scheduled in 2222 * - no scheduled out in between 2223 * - thus the timestamp would be the same 2224 * 2225 * But this is a bit hairy. 2226 * 2227 * So instead, we have an explicit cgroup call to remain 2228 * within the time time source all along. We believe it 2229 * is cleaner and simpler to understand. 2230 */ 2231 if (is_cgroup_event(event)) 2232 perf_cgroup_set_shadow_time(event, event->tstamp); 2233 else 2234 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2235 } 2236 2237 #define MAX_INTERRUPTS (~0ULL) 2238 2239 static void perf_log_throttle(struct perf_event *event, int enable); 2240 static void perf_log_itrace_start(struct perf_event *event); 2241 2242 static int 2243 event_sched_in(struct perf_event *event, 2244 struct perf_cpu_context *cpuctx, 2245 struct perf_event_context *ctx) 2246 { 2247 int ret = 0; 2248 2249 lockdep_assert_held(&ctx->lock); 2250 2251 if (event->state <= PERF_EVENT_STATE_OFF) 2252 return 0; 2253 2254 WRITE_ONCE(event->oncpu, smp_processor_id()); 2255 /* 2256 * Order event::oncpu write to happen before the ACTIVE state is 2257 * visible. This allows perf_event_{stop,read}() to observe the correct 2258 * ->oncpu if it sees ACTIVE. 2259 */ 2260 smp_wmb(); 2261 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2262 2263 /* 2264 * Unthrottle events, since we scheduled we might have missed several 2265 * ticks already, also for a heavily scheduling task there is little 2266 * guarantee it'll get a tick in a timely manner. 2267 */ 2268 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2269 perf_log_throttle(event, 1); 2270 event->hw.interrupts = 0; 2271 } 2272 2273 perf_pmu_disable(event->pmu); 2274 2275 perf_set_shadow_time(event, ctx); 2276 2277 perf_log_itrace_start(event); 2278 2279 if (event->pmu->add(event, PERF_EF_START)) { 2280 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2281 event->oncpu = -1; 2282 ret = -EAGAIN; 2283 goto out; 2284 } 2285 2286 if (!is_software_event(event)) 2287 cpuctx->active_oncpu++; 2288 if (!ctx->nr_active++) 2289 perf_event_ctx_activate(ctx); 2290 if (event->attr.freq && event->attr.sample_freq) 2291 ctx->nr_freq++; 2292 2293 if (event->attr.exclusive) 2294 cpuctx->exclusive = 1; 2295 2296 out: 2297 perf_pmu_enable(event->pmu); 2298 2299 return ret; 2300 } 2301 2302 static int 2303 group_sched_in(struct perf_event *group_event, 2304 struct perf_cpu_context *cpuctx, 2305 struct perf_event_context *ctx) 2306 { 2307 struct perf_event *event, *partial_group = NULL; 2308 struct pmu *pmu = ctx->pmu; 2309 2310 if (group_event->state == PERF_EVENT_STATE_OFF) 2311 return 0; 2312 2313 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2314 2315 if (event_sched_in(group_event, cpuctx, ctx)) { 2316 pmu->cancel_txn(pmu); 2317 perf_mux_hrtimer_restart(cpuctx); 2318 return -EAGAIN; 2319 } 2320 2321 /* 2322 * Schedule in siblings as one group (if any): 2323 */ 2324 for_each_sibling_event(event, group_event) { 2325 if (event_sched_in(event, cpuctx, ctx)) { 2326 partial_group = event; 2327 goto group_error; 2328 } 2329 } 2330 2331 if (!pmu->commit_txn(pmu)) 2332 return 0; 2333 2334 group_error: 2335 /* 2336 * Groups can be scheduled in as one unit only, so undo any 2337 * partial group before returning: 2338 * The events up to the failed event are scheduled out normally. 2339 */ 2340 for_each_sibling_event(event, group_event) { 2341 if (event == partial_group) 2342 break; 2343 2344 event_sched_out(event, cpuctx, ctx); 2345 } 2346 event_sched_out(group_event, cpuctx, ctx); 2347 2348 pmu->cancel_txn(pmu); 2349 2350 perf_mux_hrtimer_restart(cpuctx); 2351 2352 return -EAGAIN; 2353 } 2354 2355 /* 2356 * Work out whether we can put this event group on the CPU now. 2357 */ 2358 static int group_can_go_on(struct perf_event *event, 2359 struct perf_cpu_context *cpuctx, 2360 int can_add_hw) 2361 { 2362 /* 2363 * Groups consisting entirely of software events can always go on. 2364 */ 2365 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2366 return 1; 2367 /* 2368 * If an exclusive group is already on, no other hardware 2369 * events can go on. 2370 */ 2371 if (cpuctx->exclusive) 2372 return 0; 2373 /* 2374 * If this group is exclusive and there are already 2375 * events on the CPU, it can't go on. 2376 */ 2377 if (event->attr.exclusive && cpuctx->active_oncpu) 2378 return 0; 2379 /* 2380 * Otherwise, try to add it if all previous groups were able 2381 * to go on. 2382 */ 2383 return can_add_hw; 2384 } 2385 2386 static void add_event_to_ctx(struct perf_event *event, 2387 struct perf_event_context *ctx) 2388 { 2389 list_add_event(event, ctx); 2390 perf_group_attach(event); 2391 } 2392 2393 static void ctx_sched_out(struct perf_event_context *ctx, 2394 struct perf_cpu_context *cpuctx, 2395 enum event_type_t event_type); 2396 static void 2397 ctx_sched_in(struct perf_event_context *ctx, 2398 struct perf_cpu_context *cpuctx, 2399 enum event_type_t event_type, 2400 struct task_struct *task); 2401 2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2403 struct perf_event_context *ctx, 2404 enum event_type_t event_type) 2405 { 2406 if (!cpuctx->task_ctx) 2407 return; 2408 2409 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2410 return; 2411 2412 ctx_sched_out(ctx, cpuctx, event_type); 2413 } 2414 2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2416 struct perf_event_context *ctx, 2417 struct task_struct *task) 2418 { 2419 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2420 if (ctx) 2421 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2422 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2423 if (ctx) 2424 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2425 } 2426 2427 /* 2428 * We want to maintain the following priority of scheduling: 2429 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2430 * - task pinned (EVENT_PINNED) 2431 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2432 * - task flexible (EVENT_FLEXIBLE). 2433 * 2434 * In order to avoid unscheduling and scheduling back in everything every 2435 * time an event is added, only do it for the groups of equal priority and 2436 * below. 2437 * 2438 * This can be called after a batch operation on task events, in which case 2439 * event_type is a bit mask of the types of events involved. For CPU events, 2440 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2441 */ 2442 static void ctx_resched(struct perf_cpu_context *cpuctx, 2443 struct perf_event_context *task_ctx, 2444 enum event_type_t event_type) 2445 { 2446 enum event_type_t ctx_event_type; 2447 bool cpu_event = !!(event_type & EVENT_CPU); 2448 2449 /* 2450 * If pinned groups are involved, flexible groups also need to be 2451 * scheduled out. 2452 */ 2453 if (event_type & EVENT_PINNED) 2454 event_type |= EVENT_FLEXIBLE; 2455 2456 ctx_event_type = event_type & EVENT_ALL; 2457 2458 perf_pmu_disable(cpuctx->ctx.pmu); 2459 if (task_ctx) 2460 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2461 2462 /* 2463 * Decide which cpu ctx groups to schedule out based on the types 2464 * of events that caused rescheduling: 2465 * - EVENT_CPU: schedule out corresponding groups; 2466 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2467 * - otherwise, do nothing more. 2468 */ 2469 if (cpu_event) 2470 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2471 else if (ctx_event_type & EVENT_PINNED) 2472 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2473 2474 perf_event_sched_in(cpuctx, task_ctx, current); 2475 perf_pmu_enable(cpuctx->ctx.pmu); 2476 } 2477 2478 /* 2479 * Cross CPU call to install and enable a performance event 2480 * 2481 * Very similar to remote_function() + event_function() but cannot assume that 2482 * things like ctx->is_active and cpuctx->task_ctx are set. 2483 */ 2484 static int __perf_install_in_context(void *info) 2485 { 2486 struct perf_event *event = info; 2487 struct perf_event_context *ctx = event->ctx; 2488 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2489 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2490 bool reprogram = true; 2491 int ret = 0; 2492 2493 raw_spin_lock(&cpuctx->ctx.lock); 2494 if (ctx->task) { 2495 raw_spin_lock(&ctx->lock); 2496 task_ctx = ctx; 2497 2498 reprogram = (ctx->task == current); 2499 2500 /* 2501 * If the task is running, it must be running on this CPU, 2502 * otherwise we cannot reprogram things. 2503 * 2504 * If its not running, we don't care, ctx->lock will 2505 * serialize against it becoming runnable. 2506 */ 2507 if (task_curr(ctx->task) && !reprogram) { 2508 ret = -ESRCH; 2509 goto unlock; 2510 } 2511 2512 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2513 } else if (task_ctx) { 2514 raw_spin_lock(&task_ctx->lock); 2515 } 2516 2517 #ifdef CONFIG_CGROUP_PERF 2518 if (is_cgroup_event(event)) { 2519 /* 2520 * If the current cgroup doesn't match the event's 2521 * cgroup, we should not try to schedule it. 2522 */ 2523 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2524 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2525 event->cgrp->css.cgroup); 2526 } 2527 #endif 2528 2529 if (reprogram) { 2530 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2531 add_event_to_ctx(event, ctx); 2532 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2533 } else { 2534 add_event_to_ctx(event, ctx); 2535 } 2536 2537 unlock: 2538 perf_ctx_unlock(cpuctx, task_ctx); 2539 2540 return ret; 2541 } 2542 2543 /* 2544 * Attach a performance event to a context. 2545 * 2546 * Very similar to event_function_call, see comment there. 2547 */ 2548 static void 2549 perf_install_in_context(struct perf_event_context *ctx, 2550 struct perf_event *event, 2551 int cpu) 2552 { 2553 struct task_struct *task = READ_ONCE(ctx->task); 2554 2555 lockdep_assert_held(&ctx->mutex); 2556 2557 if (event->cpu != -1) 2558 event->cpu = cpu; 2559 2560 /* 2561 * Ensures that if we can observe event->ctx, both the event and ctx 2562 * will be 'complete'. See perf_iterate_sb_cpu(). 2563 */ 2564 smp_store_release(&event->ctx, ctx); 2565 2566 if (!task) { 2567 cpu_function_call(cpu, __perf_install_in_context, event); 2568 return; 2569 } 2570 2571 /* 2572 * Should not happen, we validate the ctx is still alive before calling. 2573 */ 2574 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2575 return; 2576 2577 /* 2578 * Installing events is tricky because we cannot rely on ctx->is_active 2579 * to be set in case this is the nr_events 0 -> 1 transition. 2580 * 2581 * Instead we use task_curr(), which tells us if the task is running. 2582 * However, since we use task_curr() outside of rq::lock, we can race 2583 * against the actual state. This means the result can be wrong. 2584 * 2585 * If we get a false positive, we retry, this is harmless. 2586 * 2587 * If we get a false negative, things are complicated. If we are after 2588 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2589 * value must be correct. If we're before, it doesn't matter since 2590 * perf_event_context_sched_in() will program the counter. 2591 * 2592 * However, this hinges on the remote context switch having observed 2593 * our task->perf_event_ctxp[] store, such that it will in fact take 2594 * ctx::lock in perf_event_context_sched_in(). 2595 * 2596 * We do this by task_function_call(), if the IPI fails to hit the task 2597 * we know any future context switch of task must see the 2598 * perf_event_ctpx[] store. 2599 */ 2600 2601 /* 2602 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2603 * task_cpu() load, such that if the IPI then does not find the task 2604 * running, a future context switch of that task must observe the 2605 * store. 2606 */ 2607 smp_mb(); 2608 again: 2609 if (!task_function_call(task, __perf_install_in_context, event)) 2610 return; 2611 2612 raw_spin_lock_irq(&ctx->lock); 2613 task = ctx->task; 2614 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2615 /* 2616 * Cannot happen because we already checked above (which also 2617 * cannot happen), and we hold ctx->mutex, which serializes us 2618 * against perf_event_exit_task_context(). 2619 */ 2620 raw_spin_unlock_irq(&ctx->lock); 2621 return; 2622 } 2623 /* 2624 * If the task is not running, ctx->lock will avoid it becoming so, 2625 * thus we can safely install the event. 2626 */ 2627 if (task_curr(task)) { 2628 raw_spin_unlock_irq(&ctx->lock); 2629 goto again; 2630 } 2631 add_event_to_ctx(event, ctx); 2632 raw_spin_unlock_irq(&ctx->lock); 2633 } 2634 2635 /* 2636 * Cross CPU call to enable a performance event 2637 */ 2638 static void __perf_event_enable(struct perf_event *event, 2639 struct perf_cpu_context *cpuctx, 2640 struct perf_event_context *ctx, 2641 void *info) 2642 { 2643 struct perf_event *leader = event->group_leader; 2644 struct perf_event_context *task_ctx; 2645 2646 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2647 event->state <= PERF_EVENT_STATE_ERROR) 2648 return; 2649 2650 if (ctx->is_active) 2651 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2652 2653 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2654 2655 if (!ctx->is_active) 2656 return; 2657 2658 if (!event_filter_match(event)) { 2659 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2660 return; 2661 } 2662 2663 /* 2664 * If the event is in a group and isn't the group leader, 2665 * then don't put it on unless the group is on. 2666 */ 2667 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2668 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2669 return; 2670 } 2671 2672 task_ctx = cpuctx->task_ctx; 2673 if (ctx->task) 2674 WARN_ON_ONCE(task_ctx != ctx); 2675 2676 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2677 } 2678 2679 /* 2680 * Enable a event. 2681 * 2682 * If event->ctx is a cloned context, callers must make sure that 2683 * every task struct that event->ctx->task could possibly point to 2684 * remains valid. This condition is satisfied when called through 2685 * perf_event_for_each_child or perf_event_for_each as described 2686 * for perf_event_disable. 2687 */ 2688 static void _perf_event_enable(struct perf_event *event) 2689 { 2690 struct perf_event_context *ctx = event->ctx; 2691 2692 raw_spin_lock_irq(&ctx->lock); 2693 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2694 event->state < PERF_EVENT_STATE_ERROR) { 2695 raw_spin_unlock_irq(&ctx->lock); 2696 return; 2697 } 2698 2699 /* 2700 * If the event is in error state, clear that first. 2701 * 2702 * That way, if we see the event in error state below, we know that it 2703 * has gone back into error state, as distinct from the task having 2704 * been scheduled away before the cross-call arrived. 2705 */ 2706 if (event->state == PERF_EVENT_STATE_ERROR) 2707 event->state = PERF_EVENT_STATE_OFF; 2708 raw_spin_unlock_irq(&ctx->lock); 2709 2710 event_function_call(event, __perf_event_enable, NULL); 2711 } 2712 2713 /* 2714 * See perf_event_disable(); 2715 */ 2716 void perf_event_enable(struct perf_event *event) 2717 { 2718 struct perf_event_context *ctx; 2719 2720 ctx = perf_event_ctx_lock(event); 2721 _perf_event_enable(event); 2722 perf_event_ctx_unlock(event, ctx); 2723 } 2724 EXPORT_SYMBOL_GPL(perf_event_enable); 2725 2726 struct stop_event_data { 2727 struct perf_event *event; 2728 unsigned int restart; 2729 }; 2730 2731 static int __perf_event_stop(void *info) 2732 { 2733 struct stop_event_data *sd = info; 2734 struct perf_event *event = sd->event; 2735 2736 /* if it's already INACTIVE, do nothing */ 2737 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2738 return 0; 2739 2740 /* matches smp_wmb() in event_sched_in() */ 2741 smp_rmb(); 2742 2743 /* 2744 * There is a window with interrupts enabled before we get here, 2745 * so we need to check again lest we try to stop another CPU's event. 2746 */ 2747 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2748 return -EAGAIN; 2749 2750 event->pmu->stop(event, PERF_EF_UPDATE); 2751 2752 /* 2753 * May race with the actual stop (through perf_pmu_output_stop()), 2754 * but it is only used for events with AUX ring buffer, and such 2755 * events will refuse to restart because of rb::aux_mmap_count==0, 2756 * see comments in perf_aux_output_begin(). 2757 * 2758 * Since this is happening on a event-local CPU, no trace is lost 2759 * while restarting. 2760 */ 2761 if (sd->restart) 2762 event->pmu->start(event, 0); 2763 2764 return 0; 2765 } 2766 2767 static int perf_event_stop(struct perf_event *event, int restart) 2768 { 2769 struct stop_event_data sd = { 2770 .event = event, 2771 .restart = restart, 2772 }; 2773 int ret = 0; 2774 2775 do { 2776 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2777 return 0; 2778 2779 /* matches smp_wmb() in event_sched_in() */ 2780 smp_rmb(); 2781 2782 /* 2783 * We only want to restart ACTIVE events, so if the event goes 2784 * inactive here (event->oncpu==-1), there's nothing more to do; 2785 * fall through with ret==-ENXIO. 2786 */ 2787 ret = cpu_function_call(READ_ONCE(event->oncpu), 2788 __perf_event_stop, &sd); 2789 } while (ret == -EAGAIN); 2790 2791 return ret; 2792 } 2793 2794 /* 2795 * In order to contain the amount of racy and tricky in the address filter 2796 * configuration management, it is a two part process: 2797 * 2798 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2799 * we update the addresses of corresponding vmas in 2800 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2801 * (p2) when an event is scheduled in (pmu::add), it calls 2802 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2803 * if the generation has changed since the previous call. 2804 * 2805 * If (p1) happens while the event is active, we restart it to force (p2). 2806 * 2807 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2808 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2809 * ioctl; 2810 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2811 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2812 * for reading; 2813 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2814 * of exec. 2815 */ 2816 void perf_event_addr_filters_sync(struct perf_event *event) 2817 { 2818 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2819 2820 if (!has_addr_filter(event)) 2821 return; 2822 2823 raw_spin_lock(&ifh->lock); 2824 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2825 event->pmu->addr_filters_sync(event); 2826 event->hw.addr_filters_gen = event->addr_filters_gen; 2827 } 2828 raw_spin_unlock(&ifh->lock); 2829 } 2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2831 2832 static int _perf_event_refresh(struct perf_event *event, int refresh) 2833 { 2834 /* 2835 * not supported on inherited events 2836 */ 2837 if (event->attr.inherit || !is_sampling_event(event)) 2838 return -EINVAL; 2839 2840 atomic_add(refresh, &event->event_limit); 2841 _perf_event_enable(event); 2842 2843 return 0; 2844 } 2845 2846 /* 2847 * See perf_event_disable() 2848 */ 2849 int perf_event_refresh(struct perf_event *event, int refresh) 2850 { 2851 struct perf_event_context *ctx; 2852 int ret; 2853 2854 ctx = perf_event_ctx_lock(event); 2855 ret = _perf_event_refresh(event, refresh); 2856 perf_event_ctx_unlock(event, ctx); 2857 2858 return ret; 2859 } 2860 EXPORT_SYMBOL_GPL(perf_event_refresh); 2861 2862 static int perf_event_modify_breakpoint(struct perf_event *bp, 2863 struct perf_event_attr *attr) 2864 { 2865 int err; 2866 2867 _perf_event_disable(bp); 2868 2869 err = modify_user_hw_breakpoint_check(bp, attr, true); 2870 if (err) { 2871 if (!bp->attr.disabled) 2872 _perf_event_enable(bp); 2873 2874 return err; 2875 } 2876 2877 if (!attr->disabled) 2878 _perf_event_enable(bp); 2879 return 0; 2880 } 2881 2882 static int perf_event_modify_attr(struct perf_event *event, 2883 struct perf_event_attr *attr) 2884 { 2885 if (event->attr.type != attr->type) 2886 return -EINVAL; 2887 2888 switch (event->attr.type) { 2889 case PERF_TYPE_BREAKPOINT: 2890 return perf_event_modify_breakpoint(event, attr); 2891 default: 2892 /* Place holder for future additions. */ 2893 return -EOPNOTSUPP; 2894 } 2895 } 2896 2897 static void ctx_sched_out(struct perf_event_context *ctx, 2898 struct perf_cpu_context *cpuctx, 2899 enum event_type_t event_type) 2900 { 2901 struct perf_event *event, *tmp; 2902 int is_active = ctx->is_active; 2903 2904 lockdep_assert_held(&ctx->lock); 2905 2906 if (likely(!ctx->nr_events)) { 2907 /* 2908 * See __perf_remove_from_context(). 2909 */ 2910 WARN_ON_ONCE(ctx->is_active); 2911 if (ctx->task) 2912 WARN_ON_ONCE(cpuctx->task_ctx); 2913 return; 2914 } 2915 2916 ctx->is_active &= ~event_type; 2917 if (!(ctx->is_active & EVENT_ALL)) 2918 ctx->is_active = 0; 2919 2920 if (ctx->task) { 2921 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2922 if (!ctx->is_active) 2923 cpuctx->task_ctx = NULL; 2924 } 2925 2926 /* 2927 * Always update time if it was set; not only when it changes. 2928 * Otherwise we can 'forget' to update time for any but the last 2929 * context we sched out. For example: 2930 * 2931 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2932 * ctx_sched_out(.event_type = EVENT_PINNED) 2933 * 2934 * would only update time for the pinned events. 2935 */ 2936 if (is_active & EVENT_TIME) { 2937 /* update (and stop) ctx time */ 2938 update_context_time(ctx); 2939 update_cgrp_time_from_cpuctx(cpuctx); 2940 } 2941 2942 is_active ^= ctx->is_active; /* changed bits */ 2943 2944 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2945 return; 2946 2947 perf_pmu_disable(ctx->pmu); 2948 if (is_active & EVENT_PINNED) { 2949 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 2950 group_sched_out(event, cpuctx, ctx); 2951 } 2952 2953 if (is_active & EVENT_FLEXIBLE) { 2954 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 2955 group_sched_out(event, cpuctx, ctx); 2956 } 2957 perf_pmu_enable(ctx->pmu); 2958 } 2959 2960 /* 2961 * Test whether two contexts are equivalent, i.e. whether they have both been 2962 * cloned from the same version of the same context. 2963 * 2964 * Equivalence is measured using a generation number in the context that is 2965 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2966 * and list_del_event(). 2967 */ 2968 static int context_equiv(struct perf_event_context *ctx1, 2969 struct perf_event_context *ctx2) 2970 { 2971 lockdep_assert_held(&ctx1->lock); 2972 lockdep_assert_held(&ctx2->lock); 2973 2974 /* Pinning disables the swap optimization */ 2975 if (ctx1->pin_count || ctx2->pin_count) 2976 return 0; 2977 2978 /* If ctx1 is the parent of ctx2 */ 2979 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2980 return 1; 2981 2982 /* If ctx2 is the parent of ctx1 */ 2983 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2984 return 1; 2985 2986 /* 2987 * If ctx1 and ctx2 have the same parent; we flatten the parent 2988 * hierarchy, see perf_event_init_context(). 2989 */ 2990 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2991 ctx1->parent_gen == ctx2->parent_gen) 2992 return 1; 2993 2994 /* Unmatched */ 2995 return 0; 2996 } 2997 2998 static void __perf_event_sync_stat(struct perf_event *event, 2999 struct perf_event *next_event) 3000 { 3001 u64 value; 3002 3003 if (!event->attr.inherit_stat) 3004 return; 3005 3006 /* 3007 * Update the event value, we cannot use perf_event_read() 3008 * because we're in the middle of a context switch and have IRQs 3009 * disabled, which upsets smp_call_function_single(), however 3010 * we know the event must be on the current CPU, therefore we 3011 * don't need to use it. 3012 */ 3013 if (event->state == PERF_EVENT_STATE_ACTIVE) 3014 event->pmu->read(event); 3015 3016 perf_event_update_time(event); 3017 3018 /* 3019 * In order to keep per-task stats reliable we need to flip the event 3020 * values when we flip the contexts. 3021 */ 3022 value = local64_read(&next_event->count); 3023 value = local64_xchg(&event->count, value); 3024 local64_set(&next_event->count, value); 3025 3026 swap(event->total_time_enabled, next_event->total_time_enabled); 3027 swap(event->total_time_running, next_event->total_time_running); 3028 3029 /* 3030 * Since we swizzled the values, update the user visible data too. 3031 */ 3032 perf_event_update_userpage(event); 3033 perf_event_update_userpage(next_event); 3034 } 3035 3036 static void perf_event_sync_stat(struct perf_event_context *ctx, 3037 struct perf_event_context *next_ctx) 3038 { 3039 struct perf_event *event, *next_event; 3040 3041 if (!ctx->nr_stat) 3042 return; 3043 3044 update_context_time(ctx); 3045 3046 event = list_first_entry(&ctx->event_list, 3047 struct perf_event, event_entry); 3048 3049 next_event = list_first_entry(&next_ctx->event_list, 3050 struct perf_event, event_entry); 3051 3052 while (&event->event_entry != &ctx->event_list && 3053 &next_event->event_entry != &next_ctx->event_list) { 3054 3055 __perf_event_sync_stat(event, next_event); 3056 3057 event = list_next_entry(event, event_entry); 3058 next_event = list_next_entry(next_event, event_entry); 3059 } 3060 } 3061 3062 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3063 struct task_struct *next) 3064 { 3065 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3066 struct perf_event_context *next_ctx; 3067 struct perf_event_context *parent, *next_parent; 3068 struct perf_cpu_context *cpuctx; 3069 int do_switch = 1; 3070 3071 if (likely(!ctx)) 3072 return; 3073 3074 cpuctx = __get_cpu_context(ctx); 3075 if (!cpuctx->task_ctx) 3076 return; 3077 3078 rcu_read_lock(); 3079 next_ctx = next->perf_event_ctxp[ctxn]; 3080 if (!next_ctx) 3081 goto unlock; 3082 3083 parent = rcu_dereference(ctx->parent_ctx); 3084 next_parent = rcu_dereference(next_ctx->parent_ctx); 3085 3086 /* If neither context have a parent context; they cannot be clones. */ 3087 if (!parent && !next_parent) 3088 goto unlock; 3089 3090 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3091 /* 3092 * Looks like the two contexts are clones, so we might be 3093 * able to optimize the context switch. We lock both 3094 * contexts and check that they are clones under the 3095 * lock (including re-checking that neither has been 3096 * uncloned in the meantime). It doesn't matter which 3097 * order we take the locks because no other cpu could 3098 * be trying to lock both of these tasks. 3099 */ 3100 raw_spin_lock(&ctx->lock); 3101 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3102 if (context_equiv(ctx, next_ctx)) { 3103 WRITE_ONCE(ctx->task, next); 3104 WRITE_ONCE(next_ctx->task, task); 3105 3106 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3107 3108 /* 3109 * RCU_INIT_POINTER here is safe because we've not 3110 * modified the ctx and the above modification of 3111 * ctx->task and ctx->task_ctx_data are immaterial 3112 * since those values are always verified under 3113 * ctx->lock which we're now holding. 3114 */ 3115 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3116 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3117 3118 do_switch = 0; 3119 3120 perf_event_sync_stat(ctx, next_ctx); 3121 } 3122 raw_spin_unlock(&next_ctx->lock); 3123 raw_spin_unlock(&ctx->lock); 3124 } 3125 unlock: 3126 rcu_read_unlock(); 3127 3128 if (do_switch) { 3129 raw_spin_lock(&ctx->lock); 3130 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3131 raw_spin_unlock(&ctx->lock); 3132 } 3133 } 3134 3135 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3136 3137 void perf_sched_cb_dec(struct pmu *pmu) 3138 { 3139 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3140 3141 this_cpu_dec(perf_sched_cb_usages); 3142 3143 if (!--cpuctx->sched_cb_usage) 3144 list_del(&cpuctx->sched_cb_entry); 3145 } 3146 3147 3148 void perf_sched_cb_inc(struct pmu *pmu) 3149 { 3150 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3151 3152 if (!cpuctx->sched_cb_usage++) 3153 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3154 3155 this_cpu_inc(perf_sched_cb_usages); 3156 } 3157 3158 /* 3159 * This function provides the context switch callback to the lower code 3160 * layer. It is invoked ONLY when the context switch callback is enabled. 3161 * 3162 * This callback is relevant even to per-cpu events; for example multi event 3163 * PEBS requires this to provide PID/TID information. This requires we flush 3164 * all queued PEBS records before we context switch to a new task. 3165 */ 3166 static void perf_pmu_sched_task(struct task_struct *prev, 3167 struct task_struct *next, 3168 bool sched_in) 3169 { 3170 struct perf_cpu_context *cpuctx; 3171 struct pmu *pmu; 3172 3173 if (prev == next) 3174 return; 3175 3176 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3177 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3178 3179 if (WARN_ON_ONCE(!pmu->sched_task)) 3180 continue; 3181 3182 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3183 perf_pmu_disable(pmu); 3184 3185 pmu->sched_task(cpuctx->task_ctx, sched_in); 3186 3187 perf_pmu_enable(pmu); 3188 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3189 } 3190 } 3191 3192 static void perf_event_switch(struct task_struct *task, 3193 struct task_struct *next_prev, bool sched_in); 3194 3195 #define for_each_task_context_nr(ctxn) \ 3196 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3197 3198 /* 3199 * Called from scheduler to remove the events of the current task, 3200 * with interrupts disabled. 3201 * 3202 * We stop each event and update the event value in event->count. 3203 * 3204 * This does not protect us against NMI, but disable() 3205 * sets the disabled bit in the control field of event _before_ 3206 * accessing the event control register. If a NMI hits, then it will 3207 * not restart the event. 3208 */ 3209 void __perf_event_task_sched_out(struct task_struct *task, 3210 struct task_struct *next) 3211 { 3212 int ctxn; 3213 3214 if (__this_cpu_read(perf_sched_cb_usages)) 3215 perf_pmu_sched_task(task, next, false); 3216 3217 if (atomic_read(&nr_switch_events)) 3218 perf_event_switch(task, next, false); 3219 3220 for_each_task_context_nr(ctxn) 3221 perf_event_context_sched_out(task, ctxn, next); 3222 3223 /* 3224 * if cgroup events exist on this CPU, then we need 3225 * to check if we have to switch out PMU state. 3226 * cgroup event are system-wide mode only 3227 */ 3228 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3229 perf_cgroup_sched_out(task, next); 3230 } 3231 3232 /* 3233 * Called with IRQs disabled 3234 */ 3235 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3236 enum event_type_t event_type) 3237 { 3238 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3239 } 3240 3241 static int visit_groups_merge(struct perf_event_groups *groups, int cpu, 3242 int (*func)(struct perf_event *, void *), void *data) 3243 { 3244 struct perf_event **evt, *evt1, *evt2; 3245 int ret; 3246 3247 evt1 = perf_event_groups_first(groups, -1); 3248 evt2 = perf_event_groups_first(groups, cpu); 3249 3250 while (evt1 || evt2) { 3251 if (evt1 && evt2) { 3252 if (evt1->group_index < evt2->group_index) 3253 evt = &evt1; 3254 else 3255 evt = &evt2; 3256 } else if (evt1) { 3257 evt = &evt1; 3258 } else { 3259 evt = &evt2; 3260 } 3261 3262 ret = func(*evt, data); 3263 if (ret) 3264 return ret; 3265 3266 *evt = perf_event_groups_next(*evt); 3267 } 3268 3269 return 0; 3270 } 3271 3272 struct sched_in_data { 3273 struct perf_event_context *ctx; 3274 struct perf_cpu_context *cpuctx; 3275 int can_add_hw; 3276 }; 3277 3278 static int pinned_sched_in(struct perf_event *event, void *data) 3279 { 3280 struct sched_in_data *sid = data; 3281 3282 if (event->state <= PERF_EVENT_STATE_OFF) 3283 return 0; 3284 3285 if (!event_filter_match(event)) 3286 return 0; 3287 3288 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3289 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3290 list_add_tail(&event->active_list, &sid->ctx->pinned_active); 3291 } 3292 3293 /* 3294 * If this pinned group hasn't been scheduled, 3295 * put it in error state. 3296 */ 3297 if (event->state == PERF_EVENT_STATE_INACTIVE) 3298 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3299 3300 return 0; 3301 } 3302 3303 static int flexible_sched_in(struct perf_event *event, void *data) 3304 { 3305 struct sched_in_data *sid = data; 3306 3307 if (event->state <= PERF_EVENT_STATE_OFF) 3308 return 0; 3309 3310 if (!event_filter_match(event)) 3311 return 0; 3312 3313 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3314 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3315 list_add_tail(&event->active_list, &sid->ctx->flexible_active); 3316 else 3317 sid->can_add_hw = 0; 3318 } 3319 3320 return 0; 3321 } 3322 3323 static void 3324 ctx_pinned_sched_in(struct perf_event_context *ctx, 3325 struct perf_cpu_context *cpuctx) 3326 { 3327 struct sched_in_data sid = { 3328 .ctx = ctx, 3329 .cpuctx = cpuctx, 3330 .can_add_hw = 1, 3331 }; 3332 3333 visit_groups_merge(&ctx->pinned_groups, 3334 smp_processor_id(), 3335 pinned_sched_in, &sid); 3336 } 3337 3338 static void 3339 ctx_flexible_sched_in(struct perf_event_context *ctx, 3340 struct perf_cpu_context *cpuctx) 3341 { 3342 struct sched_in_data sid = { 3343 .ctx = ctx, 3344 .cpuctx = cpuctx, 3345 .can_add_hw = 1, 3346 }; 3347 3348 visit_groups_merge(&ctx->flexible_groups, 3349 smp_processor_id(), 3350 flexible_sched_in, &sid); 3351 } 3352 3353 static void 3354 ctx_sched_in(struct perf_event_context *ctx, 3355 struct perf_cpu_context *cpuctx, 3356 enum event_type_t event_type, 3357 struct task_struct *task) 3358 { 3359 int is_active = ctx->is_active; 3360 u64 now; 3361 3362 lockdep_assert_held(&ctx->lock); 3363 3364 if (likely(!ctx->nr_events)) 3365 return; 3366 3367 ctx->is_active |= (event_type | EVENT_TIME); 3368 if (ctx->task) { 3369 if (!is_active) 3370 cpuctx->task_ctx = ctx; 3371 else 3372 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3373 } 3374 3375 is_active ^= ctx->is_active; /* changed bits */ 3376 3377 if (is_active & EVENT_TIME) { 3378 /* start ctx time */ 3379 now = perf_clock(); 3380 ctx->timestamp = now; 3381 perf_cgroup_set_timestamp(task, ctx); 3382 } 3383 3384 /* 3385 * First go through the list and put on any pinned groups 3386 * in order to give them the best chance of going on. 3387 */ 3388 if (is_active & EVENT_PINNED) 3389 ctx_pinned_sched_in(ctx, cpuctx); 3390 3391 /* Then walk through the lower prio flexible groups */ 3392 if (is_active & EVENT_FLEXIBLE) 3393 ctx_flexible_sched_in(ctx, cpuctx); 3394 } 3395 3396 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3397 enum event_type_t event_type, 3398 struct task_struct *task) 3399 { 3400 struct perf_event_context *ctx = &cpuctx->ctx; 3401 3402 ctx_sched_in(ctx, cpuctx, event_type, task); 3403 } 3404 3405 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3406 struct task_struct *task) 3407 { 3408 struct perf_cpu_context *cpuctx; 3409 3410 cpuctx = __get_cpu_context(ctx); 3411 if (cpuctx->task_ctx == ctx) 3412 return; 3413 3414 perf_ctx_lock(cpuctx, ctx); 3415 /* 3416 * We must check ctx->nr_events while holding ctx->lock, such 3417 * that we serialize against perf_install_in_context(). 3418 */ 3419 if (!ctx->nr_events) 3420 goto unlock; 3421 3422 perf_pmu_disable(ctx->pmu); 3423 /* 3424 * We want to keep the following priority order: 3425 * cpu pinned (that don't need to move), task pinned, 3426 * cpu flexible, task flexible. 3427 * 3428 * However, if task's ctx is not carrying any pinned 3429 * events, no need to flip the cpuctx's events around. 3430 */ 3431 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3432 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3433 perf_event_sched_in(cpuctx, ctx, task); 3434 perf_pmu_enable(ctx->pmu); 3435 3436 unlock: 3437 perf_ctx_unlock(cpuctx, ctx); 3438 } 3439 3440 /* 3441 * Called from scheduler to add the events of the current task 3442 * with interrupts disabled. 3443 * 3444 * We restore the event value and then enable it. 3445 * 3446 * This does not protect us against NMI, but enable() 3447 * sets the enabled bit in the control field of event _before_ 3448 * accessing the event control register. If a NMI hits, then it will 3449 * keep the event running. 3450 */ 3451 void __perf_event_task_sched_in(struct task_struct *prev, 3452 struct task_struct *task) 3453 { 3454 struct perf_event_context *ctx; 3455 int ctxn; 3456 3457 /* 3458 * If cgroup events exist on this CPU, then we need to check if we have 3459 * to switch in PMU state; cgroup event are system-wide mode only. 3460 * 3461 * Since cgroup events are CPU events, we must schedule these in before 3462 * we schedule in the task events. 3463 */ 3464 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3465 perf_cgroup_sched_in(prev, task); 3466 3467 for_each_task_context_nr(ctxn) { 3468 ctx = task->perf_event_ctxp[ctxn]; 3469 if (likely(!ctx)) 3470 continue; 3471 3472 perf_event_context_sched_in(ctx, task); 3473 } 3474 3475 if (atomic_read(&nr_switch_events)) 3476 perf_event_switch(task, prev, true); 3477 3478 if (__this_cpu_read(perf_sched_cb_usages)) 3479 perf_pmu_sched_task(prev, task, true); 3480 } 3481 3482 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3483 { 3484 u64 frequency = event->attr.sample_freq; 3485 u64 sec = NSEC_PER_SEC; 3486 u64 divisor, dividend; 3487 3488 int count_fls, nsec_fls, frequency_fls, sec_fls; 3489 3490 count_fls = fls64(count); 3491 nsec_fls = fls64(nsec); 3492 frequency_fls = fls64(frequency); 3493 sec_fls = 30; 3494 3495 /* 3496 * We got @count in @nsec, with a target of sample_freq HZ 3497 * the target period becomes: 3498 * 3499 * @count * 10^9 3500 * period = ------------------- 3501 * @nsec * sample_freq 3502 * 3503 */ 3504 3505 /* 3506 * Reduce accuracy by one bit such that @a and @b converge 3507 * to a similar magnitude. 3508 */ 3509 #define REDUCE_FLS(a, b) \ 3510 do { \ 3511 if (a##_fls > b##_fls) { \ 3512 a >>= 1; \ 3513 a##_fls--; \ 3514 } else { \ 3515 b >>= 1; \ 3516 b##_fls--; \ 3517 } \ 3518 } while (0) 3519 3520 /* 3521 * Reduce accuracy until either term fits in a u64, then proceed with 3522 * the other, so that finally we can do a u64/u64 division. 3523 */ 3524 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3525 REDUCE_FLS(nsec, frequency); 3526 REDUCE_FLS(sec, count); 3527 } 3528 3529 if (count_fls + sec_fls > 64) { 3530 divisor = nsec * frequency; 3531 3532 while (count_fls + sec_fls > 64) { 3533 REDUCE_FLS(count, sec); 3534 divisor >>= 1; 3535 } 3536 3537 dividend = count * sec; 3538 } else { 3539 dividend = count * sec; 3540 3541 while (nsec_fls + frequency_fls > 64) { 3542 REDUCE_FLS(nsec, frequency); 3543 dividend >>= 1; 3544 } 3545 3546 divisor = nsec * frequency; 3547 } 3548 3549 if (!divisor) 3550 return dividend; 3551 3552 return div64_u64(dividend, divisor); 3553 } 3554 3555 static DEFINE_PER_CPU(int, perf_throttled_count); 3556 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3557 3558 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3559 { 3560 struct hw_perf_event *hwc = &event->hw; 3561 s64 period, sample_period; 3562 s64 delta; 3563 3564 period = perf_calculate_period(event, nsec, count); 3565 3566 delta = (s64)(period - hwc->sample_period); 3567 delta = (delta + 7) / 8; /* low pass filter */ 3568 3569 sample_period = hwc->sample_period + delta; 3570 3571 if (!sample_period) 3572 sample_period = 1; 3573 3574 hwc->sample_period = sample_period; 3575 3576 if (local64_read(&hwc->period_left) > 8*sample_period) { 3577 if (disable) 3578 event->pmu->stop(event, PERF_EF_UPDATE); 3579 3580 local64_set(&hwc->period_left, 0); 3581 3582 if (disable) 3583 event->pmu->start(event, PERF_EF_RELOAD); 3584 } 3585 } 3586 3587 /* 3588 * combine freq adjustment with unthrottling to avoid two passes over the 3589 * events. At the same time, make sure, having freq events does not change 3590 * the rate of unthrottling as that would introduce bias. 3591 */ 3592 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3593 int needs_unthr) 3594 { 3595 struct perf_event *event; 3596 struct hw_perf_event *hwc; 3597 u64 now, period = TICK_NSEC; 3598 s64 delta; 3599 3600 /* 3601 * only need to iterate over all events iff: 3602 * - context have events in frequency mode (needs freq adjust) 3603 * - there are events to unthrottle on this cpu 3604 */ 3605 if (!(ctx->nr_freq || needs_unthr)) 3606 return; 3607 3608 raw_spin_lock(&ctx->lock); 3609 perf_pmu_disable(ctx->pmu); 3610 3611 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3612 if (event->state != PERF_EVENT_STATE_ACTIVE) 3613 continue; 3614 3615 if (!event_filter_match(event)) 3616 continue; 3617 3618 perf_pmu_disable(event->pmu); 3619 3620 hwc = &event->hw; 3621 3622 if (hwc->interrupts == MAX_INTERRUPTS) { 3623 hwc->interrupts = 0; 3624 perf_log_throttle(event, 1); 3625 event->pmu->start(event, 0); 3626 } 3627 3628 if (!event->attr.freq || !event->attr.sample_freq) 3629 goto next; 3630 3631 /* 3632 * stop the event and update event->count 3633 */ 3634 event->pmu->stop(event, PERF_EF_UPDATE); 3635 3636 now = local64_read(&event->count); 3637 delta = now - hwc->freq_count_stamp; 3638 hwc->freq_count_stamp = now; 3639 3640 /* 3641 * restart the event 3642 * reload only if value has changed 3643 * we have stopped the event so tell that 3644 * to perf_adjust_period() to avoid stopping it 3645 * twice. 3646 */ 3647 if (delta > 0) 3648 perf_adjust_period(event, period, delta, false); 3649 3650 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3651 next: 3652 perf_pmu_enable(event->pmu); 3653 } 3654 3655 perf_pmu_enable(ctx->pmu); 3656 raw_spin_unlock(&ctx->lock); 3657 } 3658 3659 /* 3660 * Move @event to the tail of the @ctx's elegible events. 3661 */ 3662 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3663 { 3664 /* 3665 * Rotate the first entry last of non-pinned groups. Rotation might be 3666 * disabled by the inheritance code. 3667 */ 3668 if (ctx->rotate_disable) 3669 return; 3670 3671 perf_event_groups_delete(&ctx->flexible_groups, event); 3672 perf_event_groups_insert(&ctx->flexible_groups, event); 3673 } 3674 3675 static inline struct perf_event * 3676 ctx_first_active(struct perf_event_context *ctx) 3677 { 3678 return list_first_entry_or_null(&ctx->flexible_active, 3679 struct perf_event, active_list); 3680 } 3681 3682 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 3683 { 3684 struct perf_event *cpu_event = NULL, *task_event = NULL; 3685 bool cpu_rotate = false, task_rotate = false; 3686 struct perf_event_context *ctx = NULL; 3687 3688 /* 3689 * Since we run this from IRQ context, nobody can install new 3690 * events, thus the event count values are stable. 3691 */ 3692 3693 if (cpuctx->ctx.nr_events) { 3694 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3695 cpu_rotate = true; 3696 } 3697 3698 ctx = cpuctx->task_ctx; 3699 if (ctx && ctx->nr_events) { 3700 if (ctx->nr_events != ctx->nr_active) 3701 task_rotate = true; 3702 } 3703 3704 if (!(cpu_rotate || task_rotate)) 3705 return false; 3706 3707 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3708 perf_pmu_disable(cpuctx->ctx.pmu); 3709 3710 if (task_rotate) 3711 task_event = ctx_first_active(ctx); 3712 if (cpu_rotate) 3713 cpu_event = ctx_first_active(&cpuctx->ctx); 3714 3715 /* 3716 * As per the order given at ctx_resched() first 'pop' task flexible 3717 * and then, if needed CPU flexible. 3718 */ 3719 if (task_event || (ctx && cpu_event)) 3720 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3721 if (cpu_event) 3722 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3723 3724 if (task_event) 3725 rotate_ctx(ctx, task_event); 3726 if (cpu_event) 3727 rotate_ctx(&cpuctx->ctx, cpu_event); 3728 3729 perf_event_sched_in(cpuctx, ctx, current); 3730 3731 perf_pmu_enable(cpuctx->ctx.pmu); 3732 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3733 3734 return true; 3735 } 3736 3737 void perf_event_task_tick(void) 3738 { 3739 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3740 struct perf_event_context *ctx, *tmp; 3741 int throttled; 3742 3743 lockdep_assert_irqs_disabled(); 3744 3745 __this_cpu_inc(perf_throttled_seq); 3746 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3747 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3748 3749 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3750 perf_adjust_freq_unthr_context(ctx, throttled); 3751 } 3752 3753 static int event_enable_on_exec(struct perf_event *event, 3754 struct perf_event_context *ctx) 3755 { 3756 if (!event->attr.enable_on_exec) 3757 return 0; 3758 3759 event->attr.enable_on_exec = 0; 3760 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3761 return 0; 3762 3763 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3764 3765 return 1; 3766 } 3767 3768 /* 3769 * Enable all of a task's events that have been marked enable-on-exec. 3770 * This expects task == current. 3771 */ 3772 static void perf_event_enable_on_exec(int ctxn) 3773 { 3774 struct perf_event_context *ctx, *clone_ctx = NULL; 3775 enum event_type_t event_type = 0; 3776 struct perf_cpu_context *cpuctx; 3777 struct perf_event *event; 3778 unsigned long flags; 3779 int enabled = 0; 3780 3781 local_irq_save(flags); 3782 ctx = current->perf_event_ctxp[ctxn]; 3783 if (!ctx || !ctx->nr_events) 3784 goto out; 3785 3786 cpuctx = __get_cpu_context(ctx); 3787 perf_ctx_lock(cpuctx, ctx); 3788 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3789 list_for_each_entry(event, &ctx->event_list, event_entry) { 3790 enabled |= event_enable_on_exec(event, ctx); 3791 event_type |= get_event_type(event); 3792 } 3793 3794 /* 3795 * Unclone and reschedule this context if we enabled any event. 3796 */ 3797 if (enabled) { 3798 clone_ctx = unclone_ctx(ctx); 3799 ctx_resched(cpuctx, ctx, event_type); 3800 } else { 3801 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3802 } 3803 perf_ctx_unlock(cpuctx, ctx); 3804 3805 out: 3806 local_irq_restore(flags); 3807 3808 if (clone_ctx) 3809 put_ctx(clone_ctx); 3810 } 3811 3812 struct perf_read_data { 3813 struct perf_event *event; 3814 bool group; 3815 int ret; 3816 }; 3817 3818 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3819 { 3820 u16 local_pkg, event_pkg; 3821 3822 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3823 int local_cpu = smp_processor_id(); 3824 3825 event_pkg = topology_physical_package_id(event_cpu); 3826 local_pkg = topology_physical_package_id(local_cpu); 3827 3828 if (event_pkg == local_pkg) 3829 return local_cpu; 3830 } 3831 3832 return event_cpu; 3833 } 3834 3835 /* 3836 * Cross CPU call to read the hardware event 3837 */ 3838 static void __perf_event_read(void *info) 3839 { 3840 struct perf_read_data *data = info; 3841 struct perf_event *sub, *event = data->event; 3842 struct perf_event_context *ctx = event->ctx; 3843 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3844 struct pmu *pmu = event->pmu; 3845 3846 /* 3847 * If this is a task context, we need to check whether it is 3848 * the current task context of this cpu. If not it has been 3849 * scheduled out before the smp call arrived. In that case 3850 * event->count would have been updated to a recent sample 3851 * when the event was scheduled out. 3852 */ 3853 if (ctx->task && cpuctx->task_ctx != ctx) 3854 return; 3855 3856 raw_spin_lock(&ctx->lock); 3857 if (ctx->is_active & EVENT_TIME) { 3858 update_context_time(ctx); 3859 update_cgrp_time_from_event(event); 3860 } 3861 3862 perf_event_update_time(event); 3863 if (data->group) 3864 perf_event_update_sibling_time(event); 3865 3866 if (event->state != PERF_EVENT_STATE_ACTIVE) 3867 goto unlock; 3868 3869 if (!data->group) { 3870 pmu->read(event); 3871 data->ret = 0; 3872 goto unlock; 3873 } 3874 3875 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3876 3877 pmu->read(event); 3878 3879 for_each_sibling_event(sub, event) { 3880 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3881 /* 3882 * Use sibling's PMU rather than @event's since 3883 * sibling could be on different (eg: software) PMU. 3884 */ 3885 sub->pmu->read(sub); 3886 } 3887 } 3888 3889 data->ret = pmu->commit_txn(pmu); 3890 3891 unlock: 3892 raw_spin_unlock(&ctx->lock); 3893 } 3894 3895 static inline u64 perf_event_count(struct perf_event *event) 3896 { 3897 return local64_read(&event->count) + atomic64_read(&event->child_count); 3898 } 3899 3900 /* 3901 * NMI-safe method to read a local event, that is an event that 3902 * is: 3903 * - either for the current task, or for this CPU 3904 * - does not have inherit set, for inherited task events 3905 * will not be local and we cannot read them atomically 3906 * - must not have a pmu::count method 3907 */ 3908 int perf_event_read_local(struct perf_event *event, u64 *value, 3909 u64 *enabled, u64 *running) 3910 { 3911 unsigned long flags; 3912 int ret = 0; 3913 3914 /* 3915 * Disabling interrupts avoids all counter scheduling (context 3916 * switches, timer based rotation and IPIs). 3917 */ 3918 local_irq_save(flags); 3919 3920 /* 3921 * It must not be an event with inherit set, we cannot read 3922 * all child counters from atomic context. 3923 */ 3924 if (event->attr.inherit) { 3925 ret = -EOPNOTSUPP; 3926 goto out; 3927 } 3928 3929 /* If this is a per-task event, it must be for current */ 3930 if ((event->attach_state & PERF_ATTACH_TASK) && 3931 event->hw.target != current) { 3932 ret = -EINVAL; 3933 goto out; 3934 } 3935 3936 /* If this is a per-CPU event, it must be for this CPU */ 3937 if (!(event->attach_state & PERF_ATTACH_TASK) && 3938 event->cpu != smp_processor_id()) { 3939 ret = -EINVAL; 3940 goto out; 3941 } 3942 3943 /* 3944 * If the event is currently on this CPU, its either a per-task event, 3945 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3946 * oncpu == -1). 3947 */ 3948 if (event->oncpu == smp_processor_id()) 3949 event->pmu->read(event); 3950 3951 *value = local64_read(&event->count); 3952 if (enabled || running) { 3953 u64 now = event->shadow_ctx_time + perf_clock(); 3954 u64 __enabled, __running; 3955 3956 __perf_update_times(event, now, &__enabled, &__running); 3957 if (enabled) 3958 *enabled = __enabled; 3959 if (running) 3960 *running = __running; 3961 } 3962 out: 3963 local_irq_restore(flags); 3964 3965 return ret; 3966 } 3967 3968 static int perf_event_read(struct perf_event *event, bool group) 3969 { 3970 enum perf_event_state state = READ_ONCE(event->state); 3971 int event_cpu, ret = 0; 3972 3973 /* 3974 * If event is enabled and currently active on a CPU, update the 3975 * value in the event structure: 3976 */ 3977 again: 3978 if (state == PERF_EVENT_STATE_ACTIVE) { 3979 struct perf_read_data data; 3980 3981 /* 3982 * Orders the ->state and ->oncpu loads such that if we see 3983 * ACTIVE we must also see the right ->oncpu. 3984 * 3985 * Matches the smp_wmb() from event_sched_in(). 3986 */ 3987 smp_rmb(); 3988 3989 event_cpu = READ_ONCE(event->oncpu); 3990 if ((unsigned)event_cpu >= nr_cpu_ids) 3991 return 0; 3992 3993 data = (struct perf_read_data){ 3994 .event = event, 3995 .group = group, 3996 .ret = 0, 3997 }; 3998 3999 preempt_disable(); 4000 event_cpu = __perf_event_read_cpu(event, event_cpu); 4001 4002 /* 4003 * Purposely ignore the smp_call_function_single() return 4004 * value. 4005 * 4006 * If event_cpu isn't a valid CPU it means the event got 4007 * scheduled out and that will have updated the event count. 4008 * 4009 * Therefore, either way, we'll have an up-to-date event count 4010 * after this. 4011 */ 4012 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4013 preempt_enable(); 4014 ret = data.ret; 4015 4016 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4017 struct perf_event_context *ctx = event->ctx; 4018 unsigned long flags; 4019 4020 raw_spin_lock_irqsave(&ctx->lock, flags); 4021 state = event->state; 4022 if (state != PERF_EVENT_STATE_INACTIVE) { 4023 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4024 goto again; 4025 } 4026 4027 /* 4028 * May read while context is not active (e.g., thread is 4029 * blocked), in that case we cannot update context time 4030 */ 4031 if (ctx->is_active & EVENT_TIME) { 4032 update_context_time(ctx); 4033 update_cgrp_time_from_event(event); 4034 } 4035 4036 perf_event_update_time(event); 4037 if (group) 4038 perf_event_update_sibling_time(event); 4039 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4040 } 4041 4042 return ret; 4043 } 4044 4045 /* 4046 * Initialize the perf_event context in a task_struct: 4047 */ 4048 static void __perf_event_init_context(struct perf_event_context *ctx) 4049 { 4050 raw_spin_lock_init(&ctx->lock); 4051 mutex_init(&ctx->mutex); 4052 INIT_LIST_HEAD(&ctx->active_ctx_list); 4053 perf_event_groups_init(&ctx->pinned_groups); 4054 perf_event_groups_init(&ctx->flexible_groups); 4055 INIT_LIST_HEAD(&ctx->event_list); 4056 INIT_LIST_HEAD(&ctx->pinned_active); 4057 INIT_LIST_HEAD(&ctx->flexible_active); 4058 atomic_set(&ctx->refcount, 1); 4059 } 4060 4061 static struct perf_event_context * 4062 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4063 { 4064 struct perf_event_context *ctx; 4065 4066 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4067 if (!ctx) 4068 return NULL; 4069 4070 __perf_event_init_context(ctx); 4071 if (task) { 4072 ctx->task = task; 4073 get_task_struct(task); 4074 } 4075 ctx->pmu = pmu; 4076 4077 return ctx; 4078 } 4079 4080 static struct task_struct * 4081 find_lively_task_by_vpid(pid_t vpid) 4082 { 4083 struct task_struct *task; 4084 4085 rcu_read_lock(); 4086 if (!vpid) 4087 task = current; 4088 else 4089 task = find_task_by_vpid(vpid); 4090 if (task) 4091 get_task_struct(task); 4092 rcu_read_unlock(); 4093 4094 if (!task) 4095 return ERR_PTR(-ESRCH); 4096 4097 return task; 4098 } 4099 4100 /* 4101 * Returns a matching context with refcount and pincount. 4102 */ 4103 static struct perf_event_context * 4104 find_get_context(struct pmu *pmu, struct task_struct *task, 4105 struct perf_event *event) 4106 { 4107 struct perf_event_context *ctx, *clone_ctx = NULL; 4108 struct perf_cpu_context *cpuctx; 4109 void *task_ctx_data = NULL; 4110 unsigned long flags; 4111 int ctxn, err; 4112 int cpu = event->cpu; 4113 4114 if (!task) { 4115 /* Must be root to operate on a CPU event: */ 4116 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 4117 return ERR_PTR(-EACCES); 4118 4119 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4120 ctx = &cpuctx->ctx; 4121 get_ctx(ctx); 4122 ++ctx->pin_count; 4123 4124 return ctx; 4125 } 4126 4127 err = -EINVAL; 4128 ctxn = pmu->task_ctx_nr; 4129 if (ctxn < 0) 4130 goto errout; 4131 4132 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4133 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4134 if (!task_ctx_data) { 4135 err = -ENOMEM; 4136 goto errout; 4137 } 4138 } 4139 4140 retry: 4141 ctx = perf_lock_task_context(task, ctxn, &flags); 4142 if (ctx) { 4143 clone_ctx = unclone_ctx(ctx); 4144 ++ctx->pin_count; 4145 4146 if (task_ctx_data && !ctx->task_ctx_data) { 4147 ctx->task_ctx_data = task_ctx_data; 4148 task_ctx_data = NULL; 4149 } 4150 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4151 4152 if (clone_ctx) 4153 put_ctx(clone_ctx); 4154 } else { 4155 ctx = alloc_perf_context(pmu, task); 4156 err = -ENOMEM; 4157 if (!ctx) 4158 goto errout; 4159 4160 if (task_ctx_data) { 4161 ctx->task_ctx_data = task_ctx_data; 4162 task_ctx_data = NULL; 4163 } 4164 4165 err = 0; 4166 mutex_lock(&task->perf_event_mutex); 4167 /* 4168 * If it has already passed perf_event_exit_task(). 4169 * we must see PF_EXITING, it takes this mutex too. 4170 */ 4171 if (task->flags & PF_EXITING) 4172 err = -ESRCH; 4173 else if (task->perf_event_ctxp[ctxn]) 4174 err = -EAGAIN; 4175 else { 4176 get_ctx(ctx); 4177 ++ctx->pin_count; 4178 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4179 } 4180 mutex_unlock(&task->perf_event_mutex); 4181 4182 if (unlikely(err)) { 4183 put_ctx(ctx); 4184 4185 if (err == -EAGAIN) 4186 goto retry; 4187 goto errout; 4188 } 4189 } 4190 4191 kfree(task_ctx_data); 4192 return ctx; 4193 4194 errout: 4195 kfree(task_ctx_data); 4196 return ERR_PTR(err); 4197 } 4198 4199 static void perf_event_free_filter(struct perf_event *event); 4200 static void perf_event_free_bpf_prog(struct perf_event *event); 4201 4202 static void free_event_rcu(struct rcu_head *head) 4203 { 4204 struct perf_event *event; 4205 4206 event = container_of(head, struct perf_event, rcu_head); 4207 if (event->ns) 4208 put_pid_ns(event->ns); 4209 perf_event_free_filter(event); 4210 kfree(event); 4211 } 4212 4213 static void ring_buffer_attach(struct perf_event *event, 4214 struct ring_buffer *rb); 4215 4216 static void detach_sb_event(struct perf_event *event) 4217 { 4218 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4219 4220 raw_spin_lock(&pel->lock); 4221 list_del_rcu(&event->sb_list); 4222 raw_spin_unlock(&pel->lock); 4223 } 4224 4225 static bool is_sb_event(struct perf_event *event) 4226 { 4227 struct perf_event_attr *attr = &event->attr; 4228 4229 if (event->parent) 4230 return false; 4231 4232 if (event->attach_state & PERF_ATTACH_TASK) 4233 return false; 4234 4235 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4236 attr->comm || attr->comm_exec || 4237 attr->task || 4238 attr->context_switch) 4239 return true; 4240 return false; 4241 } 4242 4243 static void unaccount_pmu_sb_event(struct perf_event *event) 4244 { 4245 if (is_sb_event(event)) 4246 detach_sb_event(event); 4247 } 4248 4249 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4250 { 4251 if (event->parent) 4252 return; 4253 4254 if (is_cgroup_event(event)) 4255 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4256 } 4257 4258 #ifdef CONFIG_NO_HZ_FULL 4259 static DEFINE_SPINLOCK(nr_freq_lock); 4260 #endif 4261 4262 static void unaccount_freq_event_nohz(void) 4263 { 4264 #ifdef CONFIG_NO_HZ_FULL 4265 spin_lock(&nr_freq_lock); 4266 if (atomic_dec_and_test(&nr_freq_events)) 4267 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4268 spin_unlock(&nr_freq_lock); 4269 #endif 4270 } 4271 4272 static void unaccount_freq_event(void) 4273 { 4274 if (tick_nohz_full_enabled()) 4275 unaccount_freq_event_nohz(); 4276 else 4277 atomic_dec(&nr_freq_events); 4278 } 4279 4280 static void unaccount_event(struct perf_event *event) 4281 { 4282 bool dec = false; 4283 4284 if (event->parent) 4285 return; 4286 4287 if (event->attach_state & PERF_ATTACH_TASK) 4288 dec = true; 4289 if (event->attr.mmap || event->attr.mmap_data) 4290 atomic_dec(&nr_mmap_events); 4291 if (event->attr.comm) 4292 atomic_dec(&nr_comm_events); 4293 if (event->attr.namespaces) 4294 atomic_dec(&nr_namespaces_events); 4295 if (event->attr.task) 4296 atomic_dec(&nr_task_events); 4297 if (event->attr.freq) 4298 unaccount_freq_event(); 4299 if (event->attr.context_switch) { 4300 dec = true; 4301 atomic_dec(&nr_switch_events); 4302 } 4303 if (is_cgroup_event(event)) 4304 dec = true; 4305 if (has_branch_stack(event)) 4306 dec = true; 4307 4308 if (dec) { 4309 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4310 schedule_delayed_work(&perf_sched_work, HZ); 4311 } 4312 4313 unaccount_event_cpu(event, event->cpu); 4314 4315 unaccount_pmu_sb_event(event); 4316 } 4317 4318 static void perf_sched_delayed(struct work_struct *work) 4319 { 4320 mutex_lock(&perf_sched_mutex); 4321 if (atomic_dec_and_test(&perf_sched_count)) 4322 static_branch_disable(&perf_sched_events); 4323 mutex_unlock(&perf_sched_mutex); 4324 } 4325 4326 /* 4327 * The following implement mutual exclusion of events on "exclusive" pmus 4328 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4329 * at a time, so we disallow creating events that might conflict, namely: 4330 * 4331 * 1) cpu-wide events in the presence of per-task events, 4332 * 2) per-task events in the presence of cpu-wide events, 4333 * 3) two matching events on the same context. 4334 * 4335 * The former two cases are handled in the allocation path (perf_event_alloc(), 4336 * _free_event()), the latter -- before the first perf_install_in_context(). 4337 */ 4338 static int exclusive_event_init(struct perf_event *event) 4339 { 4340 struct pmu *pmu = event->pmu; 4341 4342 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4343 return 0; 4344 4345 /* 4346 * Prevent co-existence of per-task and cpu-wide events on the 4347 * same exclusive pmu. 4348 * 4349 * Negative pmu::exclusive_cnt means there are cpu-wide 4350 * events on this "exclusive" pmu, positive means there are 4351 * per-task events. 4352 * 4353 * Since this is called in perf_event_alloc() path, event::ctx 4354 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4355 * to mean "per-task event", because unlike other attach states it 4356 * never gets cleared. 4357 */ 4358 if (event->attach_state & PERF_ATTACH_TASK) { 4359 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4360 return -EBUSY; 4361 } else { 4362 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4363 return -EBUSY; 4364 } 4365 4366 return 0; 4367 } 4368 4369 static void exclusive_event_destroy(struct perf_event *event) 4370 { 4371 struct pmu *pmu = event->pmu; 4372 4373 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4374 return; 4375 4376 /* see comment in exclusive_event_init() */ 4377 if (event->attach_state & PERF_ATTACH_TASK) 4378 atomic_dec(&pmu->exclusive_cnt); 4379 else 4380 atomic_inc(&pmu->exclusive_cnt); 4381 } 4382 4383 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4384 { 4385 if ((e1->pmu == e2->pmu) && 4386 (e1->cpu == e2->cpu || 4387 e1->cpu == -1 || 4388 e2->cpu == -1)) 4389 return true; 4390 return false; 4391 } 4392 4393 /* Called under the same ctx::mutex as perf_install_in_context() */ 4394 static bool exclusive_event_installable(struct perf_event *event, 4395 struct perf_event_context *ctx) 4396 { 4397 struct perf_event *iter_event; 4398 struct pmu *pmu = event->pmu; 4399 4400 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4401 return true; 4402 4403 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4404 if (exclusive_event_match(iter_event, event)) 4405 return false; 4406 } 4407 4408 return true; 4409 } 4410 4411 static void perf_addr_filters_splice(struct perf_event *event, 4412 struct list_head *head); 4413 4414 static void _free_event(struct perf_event *event) 4415 { 4416 irq_work_sync(&event->pending); 4417 4418 unaccount_event(event); 4419 4420 if (event->rb) { 4421 /* 4422 * Can happen when we close an event with re-directed output. 4423 * 4424 * Since we have a 0 refcount, perf_mmap_close() will skip 4425 * over us; possibly making our ring_buffer_put() the last. 4426 */ 4427 mutex_lock(&event->mmap_mutex); 4428 ring_buffer_attach(event, NULL); 4429 mutex_unlock(&event->mmap_mutex); 4430 } 4431 4432 if (is_cgroup_event(event)) 4433 perf_detach_cgroup(event); 4434 4435 if (!event->parent) { 4436 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4437 put_callchain_buffers(); 4438 } 4439 4440 perf_event_free_bpf_prog(event); 4441 perf_addr_filters_splice(event, NULL); 4442 kfree(event->addr_filters_offs); 4443 4444 if (event->destroy) 4445 event->destroy(event); 4446 4447 if (event->ctx) 4448 put_ctx(event->ctx); 4449 4450 if (event->hw.target) 4451 put_task_struct(event->hw.target); 4452 4453 exclusive_event_destroy(event); 4454 module_put(event->pmu->module); 4455 4456 call_rcu(&event->rcu_head, free_event_rcu); 4457 } 4458 4459 /* 4460 * Used to free events which have a known refcount of 1, such as in error paths 4461 * where the event isn't exposed yet and inherited events. 4462 */ 4463 static void free_event(struct perf_event *event) 4464 { 4465 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4466 "unexpected event refcount: %ld; ptr=%p\n", 4467 atomic_long_read(&event->refcount), event)) { 4468 /* leak to avoid use-after-free */ 4469 return; 4470 } 4471 4472 _free_event(event); 4473 } 4474 4475 /* 4476 * Remove user event from the owner task. 4477 */ 4478 static void perf_remove_from_owner(struct perf_event *event) 4479 { 4480 struct task_struct *owner; 4481 4482 rcu_read_lock(); 4483 /* 4484 * Matches the smp_store_release() in perf_event_exit_task(). If we 4485 * observe !owner it means the list deletion is complete and we can 4486 * indeed free this event, otherwise we need to serialize on 4487 * owner->perf_event_mutex. 4488 */ 4489 owner = READ_ONCE(event->owner); 4490 if (owner) { 4491 /* 4492 * Since delayed_put_task_struct() also drops the last 4493 * task reference we can safely take a new reference 4494 * while holding the rcu_read_lock(). 4495 */ 4496 get_task_struct(owner); 4497 } 4498 rcu_read_unlock(); 4499 4500 if (owner) { 4501 /* 4502 * If we're here through perf_event_exit_task() we're already 4503 * holding ctx->mutex which would be an inversion wrt. the 4504 * normal lock order. 4505 * 4506 * However we can safely take this lock because its the child 4507 * ctx->mutex. 4508 */ 4509 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4510 4511 /* 4512 * We have to re-check the event->owner field, if it is cleared 4513 * we raced with perf_event_exit_task(), acquiring the mutex 4514 * ensured they're done, and we can proceed with freeing the 4515 * event. 4516 */ 4517 if (event->owner) { 4518 list_del_init(&event->owner_entry); 4519 smp_store_release(&event->owner, NULL); 4520 } 4521 mutex_unlock(&owner->perf_event_mutex); 4522 put_task_struct(owner); 4523 } 4524 } 4525 4526 static void put_event(struct perf_event *event) 4527 { 4528 if (!atomic_long_dec_and_test(&event->refcount)) 4529 return; 4530 4531 _free_event(event); 4532 } 4533 4534 /* 4535 * Kill an event dead; while event:refcount will preserve the event 4536 * object, it will not preserve its functionality. Once the last 'user' 4537 * gives up the object, we'll destroy the thing. 4538 */ 4539 int perf_event_release_kernel(struct perf_event *event) 4540 { 4541 struct perf_event_context *ctx = event->ctx; 4542 struct perf_event *child, *tmp; 4543 LIST_HEAD(free_list); 4544 4545 /* 4546 * If we got here through err_file: fput(event_file); we will not have 4547 * attached to a context yet. 4548 */ 4549 if (!ctx) { 4550 WARN_ON_ONCE(event->attach_state & 4551 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4552 goto no_ctx; 4553 } 4554 4555 if (!is_kernel_event(event)) 4556 perf_remove_from_owner(event); 4557 4558 ctx = perf_event_ctx_lock(event); 4559 WARN_ON_ONCE(ctx->parent_ctx); 4560 perf_remove_from_context(event, DETACH_GROUP); 4561 4562 raw_spin_lock_irq(&ctx->lock); 4563 /* 4564 * Mark this event as STATE_DEAD, there is no external reference to it 4565 * anymore. 4566 * 4567 * Anybody acquiring event->child_mutex after the below loop _must_ 4568 * also see this, most importantly inherit_event() which will avoid 4569 * placing more children on the list. 4570 * 4571 * Thus this guarantees that we will in fact observe and kill _ALL_ 4572 * child events. 4573 */ 4574 event->state = PERF_EVENT_STATE_DEAD; 4575 raw_spin_unlock_irq(&ctx->lock); 4576 4577 perf_event_ctx_unlock(event, ctx); 4578 4579 again: 4580 mutex_lock(&event->child_mutex); 4581 list_for_each_entry(child, &event->child_list, child_list) { 4582 4583 /* 4584 * Cannot change, child events are not migrated, see the 4585 * comment with perf_event_ctx_lock_nested(). 4586 */ 4587 ctx = READ_ONCE(child->ctx); 4588 /* 4589 * Since child_mutex nests inside ctx::mutex, we must jump 4590 * through hoops. We start by grabbing a reference on the ctx. 4591 * 4592 * Since the event cannot get freed while we hold the 4593 * child_mutex, the context must also exist and have a !0 4594 * reference count. 4595 */ 4596 get_ctx(ctx); 4597 4598 /* 4599 * Now that we have a ctx ref, we can drop child_mutex, and 4600 * acquire ctx::mutex without fear of it going away. Then we 4601 * can re-acquire child_mutex. 4602 */ 4603 mutex_unlock(&event->child_mutex); 4604 mutex_lock(&ctx->mutex); 4605 mutex_lock(&event->child_mutex); 4606 4607 /* 4608 * Now that we hold ctx::mutex and child_mutex, revalidate our 4609 * state, if child is still the first entry, it didn't get freed 4610 * and we can continue doing so. 4611 */ 4612 tmp = list_first_entry_or_null(&event->child_list, 4613 struct perf_event, child_list); 4614 if (tmp == child) { 4615 perf_remove_from_context(child, DETACH_GROUP); 4616 list_move(&child->child_list, &free_list); 4617 /* 4618 * This matches the refcount bump in inherit_event(); 4619 * this can't be the last reference. 4620 */ 4621 put_event(event); 4622 } 4623 4624 mutex_unlock(&event->child_mutex); 4625 mutex_unlock(&ctx->mutex); 4626 put_ctx(ctx); 4627 goto again; 4628 } 4629 mutex_unlock(&event->child_mutex); 4630 4631 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4632 list_del(&child->child_list); 4633 free_event(child); 4634 } 4635 4636 no_ctx: 4637 put_event(event); /* Must be the 'last' reference */ 4638 return 0; 4639 } 4640 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4641 4642 /* 4643 * Called when the last reference to the file is gone. 4644 */ 4645 static int perf_release(struct inode *inode, struct file *file) 4646 { 4647 perf_event_release_kernel(file->private_data); 4648 return 0; 4649 } 4650 4651 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4652 { 4653 struct perf_event *child; 4654 u64 total = 0; 4655 4656 *enabled = 0; 4657 *running = 0; 4658 4659 mutex_lock(&event->child_mutex); 4660 4661 (void)perf_event_read(event, false); 4662 total += perf_event_count(event); 4663 4664 *enabled += event->total_time_enabled + 4665 atomic64_read(&event->child_total_time_enabled); 4666 *running += event->total_time_running + 4667 atomic64_read(&event->child_total_time_running); 4668 4669 list_for_each_entry(child, &event->child_list, child_list) { 4670 (void)perf_event_read(child, false); 4671 total += perf_event_count(child); 4672 *enabled += child->total_time_enabled; 4673 *running += child->total_time_running; 4674 } 4675 mutex_unlock(&event->child_mutex); 4676 4677 return total; 4678 } 4679 4680 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4681 { 4682 struct perf_event_context *ctx; 4683 u64 count; 4684 4685 ctx = perf_event_ctx_lock(event); 4686 count = __perf_event_read_value(event, enabled, running); 4687 perf_event_ctx_unlock(event, ctx); 4688 4689 return count; 4690 } 4691 EXPORT_SYMBOL_GPL(perf_event_read_value); 4692 4693 static int __perf_read_group_add(struct perf_event *leader, 4694 u64 read_format, u64 *values) 4695 { 4696 struct perf_event_context *ctx = leader->ctx; 4697 struct perf_event *sub; 4698 unsigned long flags; 4699 int n = 1; /* skip @nr */ 4700 int ret; 4701 4702 ret = perf_event_read(leader, true); 4703 if (ret) 4704 return ret; 4705 4706 raw_spin_lock_irqsave(&ctx->lock, flags); 4707 4708 /* 4709 * Since we co-schedule groups, {enabled,running} times of siblings 4710 * will be identical to those of the leader, so we only publish one 4711 * set. 4712 */ 4713 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4714 values[n++] += leader->total_time_enabled + 4715 atomic64_read(&leader->child_total_time_enabled); 4716 } 4717 4718 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4719 values[n++] += leader->total_time_running + 4720 atomic64_read(&leader->child_total_time_running); 4721 } 4722 4723 /* 4724 * Write {count,id} tuples for every sibling. 4725 */ 4726 values[n++] += perf_event_count(leader); 4727 if (read_format & PERF_FORMAT_ID) 4728 values[n++] = primary_event_id(leader); 4729 4730 for_each_sibling_event(sub, leader) { 4731 values[n++] += perf_event_count(sub); 4732 if (read_format & PERF_FORMAT_ID) 4733 values[n++] = primary_event_id(sub); 4734 } 4735 4736 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4737 return 0; 4738 } 4739 4740 static int perf_read_group(struct perf_event *event, 4741 u64 read_format, char __user *buf) 4742 { 4743 struct perf_event *leader = event->group_leader, *child; 4744 struct perf_event_context *ctx = leader->ctx; 4745 int ret; 4746 u64 *values; 4747 4748 lockdep_assert_held(&ctx->mutex); 4749 4750 values = kzalloc(event->read_size, GFP_KERNEL); 4751 if (!values) 4752 return -ENOMEM; 4753 4754 values[0] = 1 + leader->nr_siblings; 4755 4756 /* 4757 * By locking the child_mutex of the leader we effectively 4758 * lock the child list of all siblings.. XXX explain how. 4759 */ 4760 mutex_lock(&leader->child_mutex); 4761 4762 ret = __perf_read_group_add(leader, read_format, values); 4763 if (ret) 4764 goto unlock; 4765 4766 list_for_each_entry(child, &leader->child_list, child_list) { 4767 ret = __perf_read_group_add(child, read_format, values); 4768 if (ret) 4769 goto unlock; 4770 } 4771 4772 mutex_unlock(&leader->child_mutex); 4773 4774 ret = event->read_size; 4775 if (copy_to_user(buf, values, event->read_size)) 4776 ret = -EFAULT; 4777 goto out; 4778 4779 unlock: 4780 mutex_unlock(&leader->child_mutex); 4781 out: 4782 kfree(values); 4783 return ret; 4784 } 4785 4786 static int perf_read_one(struct perf_event *event, 4787 u64 read_format, char __user *buf) 4788 { 4789 u64 enabled, running; 4790 u64 values[4]; 4791 int n = 0; 4792 4793 values[n++] = __perf_event_read_value(event, &enabled, &running); 4794 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4795 values[n++] = enabled; 4796 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4797 values[n++] = running; 4798 if (read_format & PERF_FORMAT_ID) 4799 values[n++] = primary_event_id(event); 4800 4801 if (copy_to_user(buf, values, n * sizeof(u64))) 4802 return -EFAULT; 4803 4804 return n * sizeof(u64); 4805 } 4806 4807 static bool is_event_hup(struct perf_event *event) 4808 { 4809 bool no_children; 4810 4811 if (event->state > PERF_EVENT_STATE_EXIT) 4812 return false; 4813 4814 mutex_lock(&event->child_mutex); 4815 no_children = list_empty(&event->child_list); 4816 mutex_unlock(&event->child_mutex); 4817 return no_children; 4818 } 4819 4820 /* 4821 * Read the performance event - simple non blocking version for now 4822 */ 4823 static ssize_t 4824 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4825 { 4826 u64 read_format = event->attr.read_format; 4827 int ret; 4828 4829 /* 4830 * Return end-of-file for a read on a event that is in 4831 * error state (i.e. because it was pinned but it couldn't be 4832 * scheduled on to the CPU at some point). 4833 */ 4834 if (event->state == PERF_EVENT_STATE_ERROR) 4835 return 0; 4836 4837 if (count < event->read_size) 4838 return -ENOSPC; 4839 4840 WARN_ON_ONCE(event->ctx->parent_ctx); 4841 if (read_format & PERF_FORMAT_GROUP) 4842 ret = perf_read_group(event, read_format, buf); 4843 else 4844 ret = perf_read_one(event, read_format, buf); 4845 4846 return ret; 4847 } 4848 4849 static ssize_t 4850 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4851 { 4852 struct perf_event *event = file->private_data; 4853 struct perf_event_context *ctx; 4854 int ret; 4855 4856 ctx = perf_event_ctx_lock(event); 4857 ret = __perf_read(event, buf, count); 4858 perf_event_ctx_unlock(event, ctx); 4859 4860 return ret; 4861 } 4862 4863 static __poll_t perf_poll(struct file *file, poll_table *wait) 4864 { 4865 struct perf_event *event = file->private_data; 4866 struct ring_buffer *rb; 4867 __poll_t events = EPOLLHUP; 4868 4869 poll_wait(file, &event->waitq, wait); 4870 4871 if (is_event_hup(event)) 4872 return events; 4873 4874 /* 4875 * Pin the event->rb by taking event->mmap_mutex; otherwise 4876 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4877 */ 4878 mutex_lock(&event->mmap_mutex); 4879 rb = event->rb; 4880 if (rb) 4881 events = atomic_xchg(&rb->poll, 0); 4882 mutex_unlock(&event->mmap_mutex); 4883 return events; 4884 } 4885 4886 static void _perf_event_reset(struct perf_event *event) 4887 { 4888 (void)perf_event_read(event, false); 4889 local64_set(&event->count, 0); 4890 perf_event_update_userpage(event); 4891 } 4892 4893 /* 4894 * Holding the top-level event's child_mutex means that any 4895 * descendant process that has inherited this event will block 4896 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4897 * task existence requirements of perf_event_enable/disable. 4898 */ 4899 static void perf_event_for_each_child(struct perf_event *event, 4900 void (*func)(struct perf_event *)) 4901 { 4902 struct perf_event *child; 4903 4904 WARN_ON_ONCE(event->ctx->parent_ctx); 4905 4906 mutex_lock(&event->child_mutex); 4907 func(event); 4908 list_for_each_entry(child, &event->child_list, child_list) 4909 func(child); 4910 mutex_unlock(&event->child_mutex); 4911 } 4912 4913 static void perf_event_for_each(struct perf_event *event, 4914 void (*func)(struct perf_event *)) 4915 { 4916 struct perf_event_context *ctx = event->ctx; 4917 struct perf_event *sibling; 4918 4919 lockdep_assert_held(&ctx->mutex); 4920 4921 event = event->group_leader; 4922 4923 perf_event_for_each_child(event, func); 4924 for_each_sibling_event(sibling, event) 4925 perf_event_for_each_child(sibling, func); 4926 } 4927 4928 static void __perf_event_period(struct perf_event *event, 4929 struct perf_cpu_context *cpuctx, 4930 struct perf_event_context *ctx, 4931 void *info) 4932 { 4933 u64 value = *((u64 *)info); 4934 bool active; 4935 4936 if (event->attr.freq) { 4937 event->attr.sample_freq = value; 4938 } else { 4939 event->attr.sample_period = value; 4940 event->hw.sample_period = value; 4941 } 4942 4943 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4944 if (active) { 4945 perf_pmu_disable(ctx->pmu); 4946 /* 4947 * We could be throttled; unthrottle now to avoid the tick 4948 * trying to unthrottle while we already re-started the event. 4949 */ 4950 if (event->hw.interrupts == MAX_INTERRUPTS) { 4951 event->hw.interrupts = 0; 4952 perf_log_throttle(event, 1); 4953 } 4954 event->pmu->stop(event, PERF_EF_UPDATE); 4955 } 4956 4957 local64_set(&event->hw.period_left, 0); 4958 4959 if (active) { 4960 event->pmu->start(event, PERF_EF_RELOAD); 4961 perf_pmu_enable(ctx->pmu); 4962 } 4963 } 4964 4965 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4966 { 4967 u64 value; 4968 4969 if (!is_sampling_event(event)) 4970 return -EINVAL; 4971 4972 if (copy_from_user(&value, arg, sizeof(value))) 4973 return -EFAULT; 4974 4975 if (!value) 4976 return -EINVAL; 4977 4978 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4979 return -EINVAL; 4980 4981 event_function_call(event, __perf_event_period, &value); 4982 4983 return 0; 4984 } 4985 4986 static const struct file_operations perf_fops; 4987 4988 static inline int perf_fget_light(int fd, struct fd *p) 4989 { 4990 struct fd f = fdget(fd); 4991 if (!f.file) 4992 return -EBADF; 4993 4994 if (f.file->f_op != &perf_fops) { 4995 fdput(f); 4996 return -EBADF; 4997 } 4998 *p = f; 4999 return 0; 5000 } 5001 5002 static int perf_event_set_output(struct perf_event *event, 5003 struct perf_event *output_event); 5004 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5005 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5006 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5007 struct perf_event_attr *attr); 5008 5009 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5010 { 5011 void (*func)(struct perf_event *); 5012 u32 flags = arg; 5013 5014 switch (cmd) { 5015 case PERF_EVENT_IOC_ENABLE: 5016 func = _perf_event_enable; 5017 break; 5018 case PERF_EVENT_IOC_DISABLE: 5019 func = _perf_event_disable; 5020 break; 5021 case PERF_EVENT_IOC_RESET: 5022 func = _perf_event_reset; 5023 break; 5024 5025 case PERF_EVENT_IOC_REFRESH: 5026 return _perf_event_refresh(event, arg); 5027 5028 case PERF_EVENT_IOC_PERIOD: 5029 return perf_event_period(event, (u64 __user *)arg); 5030 5031 case PERF_EVENT_IOC_ID: 5032 { 5033 u64 id = primary_event_id(event); 5034 5035 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5036 return -EFAULT; 5037 return 0; 5038 } 5039 5040 case PERF_EVENT_IOC_SET_OUTPUT: 5041 { 5042 int ret; 5043 if (arg != -1) { 5044 struct perf_event *output_event; 5045 struct fd output; 5046 ret = perf_fget_light(arg, &output); 5047 if (ret) 5048 return ret; 5049 output_event = output.file->private_data; 5050 ret = perf_event_set_output(event, output_event); 5051 fdput(output); 5052 } else { 5053 ret = perf_event_set_output(event, NULL); 5054 } 5055 return ret; 5056 } 5057 5058 case PERF_EVENT_IOC_SET_FILTER: 5059 return perf_event_set_filter(event, (void __user *)arg); 5060 5061 case PERF_EVENT_IOC_SET_BPF: 5062 return perf_event_set_bpf_prog(event, arg); 5063 5064 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5065 struct ring_buffer *rb; 5066 5067 rcu_read_lock(); 5068 rb = rcu_dereference(event->rb); 5069 if (!rb || !rb->nr_pages) { 5070 rcu_read_unlock(); 5071 return -EINVAL; 5072 } 5073 rb_toggle_paused(rb, !!arg); 5074 rcu_read_unlock(); 5075 return 0; 5076 } 5077 5078 case PERF_EVENT_IOC_QUERY_BPF: 5079 return perf_event_query_prog_array(event, (void __user *)arg); 5080 5081 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5082 struct perf_event_attr new_attr; 5083 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5084 &new_attr); 5085 5086 if (err) 5087 return err; 5088 5089 return perf_event_modify_attr(event, &new_attr); 5090 } 5091 default: 5092 return -ENOTTY; 5093 } 5094 5095 if (flags & PERF_IOC_FLAG_GROUP) 5096 perf_event_for_each(event, func); 5097 else 5098 perf_event_for_each_child(event, func); 5099 5100 return 0; 5101 } 5102 5103 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5104 { 5105 struct perf_event *event = file->private_data; 5106 struct perf_event_context *ctx; 5107 long ret; 5108 5109 ctx = perf_event_ctx_lock(event); 5110 ret = _perf_ioctl(event, cmd, arg); 5111 perf_event_ctx_unlock(event, ctx); 5112 5113 return ret; 5114 } 5115 5116 #ifdef CONFIG_COMPAT 5117 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5118 unsigned long arg) 5119 { 5120 switch (_IOC_NR(cmd)) { 5121 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5122 case _IOC_NR(PERF_EVENT_IOC_ID): 5123 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5124 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5125 cmd &= ~IOCSIZE_MASK; 5126 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5127 } 5128 break; 5129 } 5130 return perf_ioctl(file, cmd, arg); 5131 } 5132 #else 5133 # define perf_compat_ioctl NULL 5134 #endif 5135 5136 int perf_event_task_enable(void) 5137 { 5138 struct perf_event_context *ctx; 5139 struct perf_event *event; 5140 5141 mutex_lock(¤t->perf_event_mutex); 5142 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5143 ctx = perf_event_ctx_lock(event); 5144 perf_event_for_each_child(event, _perf_event_enable); 5145 perf_event_ctx_unlock(event, ctx); 5146 } 5147 mutex_unlock(¤t->perf_event_mutex); 5148 5149 return 0; 5150 } 5151 5152 int perf_event_task_disable(void) 5153 { 5154 struct perf_event_context *ctx; 5155 struct perf_event *event; 5156 5157 mutex_lock(¤t->perf_event_mutex); 5158 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5159 ctx = perf_event_ctx_lock(event); 5160 perf_event_for_each_child(event, _perf_event_disable); 5161 perf_event_ctx_unlock(event, ctx); 5162 } 5163 mutex_unlock(¤t->perf_event_mutex); 5164 5165 return 0; 5166 } 5167 5168 static int perf_event_index(struct perf_event *event) 5169 { 5170 if (event->hw.state & PERF_HES_STOPPED) 5171 return 0; 5172 5173 if (event->state != PERF_EVENT_STATE_ACTIVE) 5174 return 0; 5175 5176 return event->pmu->event_idx(event); 5177 } 5178 5179 static void calc_timer_values(struct perf_event *event, 5180 u64 *now, 5181 u64 *enabled, 5182 u64 *running) 5183 { 5184 u64 ctx_time; 5185 5186 *now = perf_clock(); 5187 ctx_time = event->shadow_ctx_time + *now; 5188 __perf_update_times(event, ctx_time, enabled, running); 5189 } 5190 5191 static void perf_event_init_userpage(struct perf_event *event) 5192 { 5193 struct perf_event_mmap_page *userpg; 5194 struct ring_buffer *rb; 5195 5196 rcu_read_lock(); 5197 rb = rcu_dereference(event->rb); 5198 if (!rb) 5199 goto unlock; 5200 5201 userpg = rb->user_page; 5202 5203 /* Allow new userspace to detect that bit 0 is deprecated */ 5204 userpg->cap_bit0_is_deprecated = 1; 5205 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5206 userpg->data_offset = PAGE_SIZE; 5207 userpg->data_size = perf_data_size(rb); 5208 5209 unlock: 5210 rcu_read_unlock(); 5211 } 5212 5213 void __weak arch_perf_update_userpage( 5214 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5215 { 5216 } 5217 5218 /* 5219 * Callers need to ensure there can be no nesting of this function, otherwise 5220 * the seqlock logic goes bad. We can not serialize this because the arch 5221 * code calls this from NMI context. 5222 */ 5223 void perf_event_update_userpage(struct perf_event *event) 5224 { 5225 struct perf_event_mmap_page *userpg; 5226 struct ring_buffer *rb; 5227 u64 enabled, running, now; 5228 5229 rcu_read_lock(); 5230 rb = rcu_dereference(event->rb); 5231 if (!rb) 5232 goto unlock; 5233 5234 /* 5235 * compute total_time_enabled, total_time_running 5236 * based on snapshot values taken when the event 5237 * was last scheduled in. 5238 * 5239 * we cannot simply called update_context_time() 5240 * because of locking issue as we can be called in 5241 * NMI context 5242 */ 5243 calc_timer_values(event, &now, &enabled, &running); 5244 5245 userpg = rb->user_page; 5246 /* 5247 * Disable preemption so as to not let the corresponding user-space 5248 * spin too long if we get preempted. 5249 */ 5250 preempt_disable(); 5251 ++userpg->lock; 5252 barrier(); 5253 userpg->index = perf_event_index(event); 5254 userpg->offset = perf_event_count(event); 5255 if (userpg->index) 5256 userpg->offset -= local64_read(&event->hw.prev_count); 5257 5258 userpg->time_enabled = enabled + 5259 atomic64_read(&event->child_total_time_enabled); 5260 5261 userpg->time_running = running + 5262 atomic64_read(&event->child_total_time_running); 5263 5264 arch_perf_update_userpage(event, userpg, now); 5265 5266 barrier(); 5267 ++userpg->lock; 5268 preempt_enable(); 5269 unlock: 5270 rcu_read_unlock(); 5271 } 5272 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5273 5274 static int perf_mmap_fault(struct vm_fault *vmf) 5275 { 5276 struct perf_event *event = vmf->vma->vm_file->private_data; 5277 struct ring_buffer *rb; 5278 int ret = VM_FAULT_SIGBUS; 5279 5280 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5281 if (vmf->pgoff == 0) 5282 ret = 0; 5283 return ret; 5284 } 5285 5286 rcu_read_lock(); 5287 rb = rcu_dereference(event->rb); 5288 if (!rb) 5289 goto unlock; 5290 5291 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5292 goto unlock; 5293 5294 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5295 if (!vmf->page) 5296 goto unlock; 5297 5298 get_page(vmf->page); 5299 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5300 vmf->page->index = vmf->pgoff; 5301 5302 ret = 0; 5303 unlock: 5304 rcu_read_unlock(); 5305 5306 return ret; 5307 } 5308 5309 static void ring_buffer_attach(struct perf_event *event, 5310 struct ring_buffer *rb) 5311 { 5312 struct ring_buffer *old_rb = NULL; 5313 unsigned long flags; 5314 5315 if (event->rb) { 5316 /* 5317 * Should be impossible, we set this when removing 5318 * event->rb_entry and wait/clear when adding event->rb_entry. 5319 */ 5320 WARN_ON_ONCE(event->rcu_pending); 5321 5322 old_rb = event->rb; 5323 spin_lock_irqsave(&old_rb->event_lock, flags); 5324 list_del_rcu(&event->rb_entry); 5325 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5326 5327 event->rcu_batches = get_state_synchronize_rcu(); 5328 event->rcu_pending = 1; 5329 } 5330 5331 if (rb) { 5332 if (event->rcu_pending) { 5333 cond_synchronize_rcu(event->rcu_batches); 5334 event->rcu_pending = 0; 5335 } 5336 5337 spin_lock_irqsave(&rb->event_lock, flags); 5338 list_add_rcu(&event->rb_entry, &rb->event_list); 5339 spin_unlock_irqrestore(&rb->event_lock, flags); 5340 } 5341 5342 /* 5343 * Avoid racing with perf_mmap_close(AUX): stop the event 5344 * before swizzling the event::rb pointer; if it's getting 5345 * unmapped, its aux_mmap_count will be 0 and it won't 5346 * restart. See the comment in __perf_pmu_output_stop(). 5347 * 5348 * Data will inevitably be lost when set_output is done in 5349 * mid-air, but then again, whoever does it like this is 5350 * not in for the data anyway. 5351 */ 5352 if (has_aux(event)) 5353 perf_event_stop(event, 0); 5354 5355 rcu_assign_pointer(event->rb, rb); 5356 5357 if (old_rb) { 5358 ring_buffer_put(old_rb); 5359 /* 5360 * Since we detached before setting the new rb, so that we 5361 * could attach the new rb, we could have missed a wakeup. 5362 * Provide it now. 5363 */ 5364 wake_up_all(&event->waitq); 5365 } 5366 } 5367 5368 static void ring_buffer_wakeup(struct perf_event *event) 5369 { 5370 struct ring_buffer *rb; 5371 5372 rcu_read_lock(); 5373 rb = rcu_dereference(event->rb); 5374 if (rb) { 5375 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5376 wake_up_all(&event->waitq); 5377 } 5378 rcu_read_unlock(); 5379 } 5380 5381 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5382 { 5383 struct ring_buffer *rb; 5384 5385 rcu_read_lock(); 5386 rb = rcu_dereference(event->rb); 5387 if (rb) { 5388 if (!atomic_inc_not_zero(&rb->refcount)) 5389 rb = NULL; 5390 } 5391 rcu_read_unlock(); 5392 5393 return rb; 5394 } 5395 5396 void ring_buffer_put(struct ring_buffer *rb) 5397 { 5398 if (!atomic_dec_and_test(&rb->refcount)) 5399 return; 5400 5401 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5402 5403 call_rcu(&rb->rcu_head, rb_free_rcu); 5404 } 5405 5406 static void perf_mmap_open(struct vm_area_struct *vma) 5407 { 5408 struct perf_event *event = vma->vm_file->private_data; 5409 5410 atomic_inc(&event->mmap_count); 5411 atomic_inc(&event->rb->mmap_count); 5412 5413 if (vma->vm_pgoff) 5414 atomic_inc(&event->rb->aux_mmap_count); 5415 5416 if (event->pmu->event_mapped) 5417 event->pmu->event_mapped(event, vma->vm_mm); 5418 } 5419 5420 static void perf_pmu_output_stop(struct perf_event *event); 5421 5422 /* 5423 * A buffer can be mmap()ed multiple times; either directly through the same 5424 * event, or through other events by use of perf_event_set_output(). 5425 * 5426 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5427 * the buffer here, where we still have a VM context. This means we need 5428 * to detach all events redirecting to us. 5429 */ 5430 static void perf_mmap_close(struct vm_area_struct *vma) 5431 { 5432 struct perf_event *event = vma->vm_file->private_data; 5433 5434 struct ring_buffer *rb = ring_buffer_get(event); 5435 struct user_struct *mmap_user = rb->mmap_user; 5436 int mmap_locked = rb->mmap_locked; 5437 unsigned long size = perf_data_size(rb); 5438 5439 if (event->pmu->event_unmapped) 5440 event->pmu->event_unmapped(event, vma->vm_mm); 5441 5442 /* 5443 * rb->aux_mmap_count will always drop before rb->mmap_count and 5444 * event->mmap_count, so it is ok to use event->mmap_mutex to 5445 * serialize with perf_mmap here. 5446 */ 5447 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5448 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5449 /* 5450 * Stop all AUX events that are writing to this buffer, 5451 * so that we can free its AUX pages and corresponding PMU 5452 * data. Note that after rb::aux_mmap_count dropped to zero, 5453 * they won't start any more (see perf_aux_output_begin()). 5454 */ 5455 perf_pmu_output_stop(event); 5456 5457 /* now it's safe to free the pages */ 5458 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5459 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5460 5461 /* this has to be the last one */ 5462 rb_free_aux(rb); 5463 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5464 5465 mutex_unlock(&event->mmap_mutex); 5466 } 5467 5468 atomic_dec(&rb->mmap_count); 5469 5470 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5471 goto out_put; 5472 5473 ring_buffer_attach(event, NULL); 5474 mutex_unlock(&event->mmap_mutex); 5475 5476 /* If there's still other mmap()s of this buffer, we're done. */ 5477 if (atomic_read(&rb->mmap_count)) 5478 goto out_put; 5479 5480 /* 5481 * No other mmap()s, detach from all other events that might redirect 5482 * into the now unreachable buffer. Somewhat complicated by the 5483 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5484 */ 5485 again: 5486 rcu_read_lock(); 5487 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5488 if (!atomic_long_inc_not_zero(&event->refcount)) { 5489 /* 5490 * This event is en-route to free_event() which will 5491 * detach it and remove it from the list. 5492 */ 5493 continue; 5494 } 5495 rcu_read_unlock(); 5496 5497 mutex_lock(&event->mmap_mutex); 5498 /* 5499 * Check we didn't race with perf_event_set_output() which can 5500 * swizzle the rb from under us while we were waiting to 5501 * acquire mmap_mutex. 5502 * 5503 * If we find a different rb; ignore this event, a next 5504 * iteration will no longer find it on the list. We have to 5505 * still restart the iteration to make sure we're not now 5506 * iterating the wrong list. 5507 */ 5508 if (event->rb == rb) 5509 ring_buffer_attach(event, NULL); 5510 5511 mutex_unlock(&event->mmap_mutex); 5512 put_event(event); 5513 5514 /* 5515 * Restart the iteration; either we're on the wrong list or 5516 * destroyed its integrity by doing a deletion. 5517 */ 5518 goto again; 5519 } 5520 rcu_read_unlock(); 5521 5522 /* 5523 * It could be there's still a few 0-ref events on the list; they'll 5524 * get cleaned up by free_event() -- they'll also still have their 5525 * ref on the rb and will free it whenever they are done with it. 5526 * 5527 * Aside from that, this buffer is 'fully' detached and unmapped, 5528 * undo the VM accounting. 5529 */ 5530 5531 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5532 vma->vm_mm->pinned_vm -= mmap_locked; 5533 free_uid(mmap_user); 5534 5535 out_put: 5536 ring_buffer_put(rb); /* could be last */ 5537 } 5538 5539 static const struct vm_operations_struct perf_mmap_vmops = { 5540 .open = perf_mmap_open, 5541 .close = perf_mmap_close, /* non mergable */ 5542 .fault = perf_mmap_fault, 5543 .page_mkwrite = perf_mmap_fault, 5544 }; 5545 5546 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5547 { 5548 struct perf_event *event = file->private_data; 5549 unsigned long user_locked, user_lock_limit; 5550 struct user_struct *user = current_user(); 5551 unsigned long locked, lock_limit; 5552 struct ring_buffer *rb = NULL; 5553 unsigned long vma_size; 5554 unsigned long nr_pages; 5555 long user_extra = 0, extra = 0; 5556 int ret = 0, flags = 0; 5557 5558 /* 5559 * Don't allow mmap() of inherited per-task counters. This would 5560 * create a performance issue due to all children writing to the 5561 * same rb. 5562 */ 5563 if (event->cpu == -1 && event->attr.inherit) 5564 return -EINVAL; 5565 5566 if (!(vma->vm_flags & VM_SHARED)) 5567 return -EINVAL; 5568 5569 vma_size = vma->vm_end - vma->vm_start; 5570 5571 if (vma->vm_pgoff == 0) { 5572 nr_pages = (vma_size / PAGE_SIZE) - 1; 5573 } else { 5574 /* 5575 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5576 * mapped, all subsequent mappings should have the same size 5577 * and offset. Must be above the normal perf buffer. 5578 */ 5579 u64 aux_offset, aux_size; 5580 5581 if (!event->rb) 5582 return -EINVAL; 5583 5584 nr_pages = vma_size / PAGE_SIZE; 5585 5586 mutex_lock(&event->mmap_mutex); 5587 ret = -EINVAL; 5588 5589 rb = event->rb; 5590 if (!rb) 5591 goto aux_unlock; 5592 5593 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5594 aux_size = READ_ONCE(rb->user_page->aux_size); 5595 5596 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5597 goto aux_unlock; 5598 5599 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5600 goto aux_unlock; 5601 5602 /* already mapped with a different offset */ 5603 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5604 goto aux_unlock; 5605 5606 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5607 goto aux_unlock; 5608 5609 /* already mapped with a different size */ 5610 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5611 goto aux_unlock; 5612 5613 if (!is_power_of_2(nr_pages)) 5614 goto aux_unlock; 5615 5616 if (!atomic_inc_not_zero(&rb->mmap_count)) 5617 goto aux_unlock; 5618 5619 if (rb_has_aux(rb)) { 5620 atomic_inc(&rb->aux_mmap_count); 5621 ret = 0; 5622 goto unlock; 5623 } 5624 5625 atomic_set(&rb->aux_mmap_count, 1); 5626 user_extra = nr_pages; 5627 5628 goto accounting; 5629 } 5630 5631 /* 5632 * If we have rb pages ensure they're a power-of-two number, so we 5633 * can do bitmasks instead of modulo. 5634 */ 5635 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5636 return -EINVAL; 5637 5638 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5639 return -EINVAL; 5640 5641 WARN_ON_ONCE(event->ctx->parent_ctx); 5642 again: 5643 mutex_lock(&event->mmap_mutex); 5644 if (event->rb) { 5645 if (event->rb->nr_pages != nr_pages) { 5646 ret = -EINVAL; 5647 goto unlock; 5648 } 5649 5650 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5651 /* 5652 * Raced against perf_mmap_close() through 5653 * perf_event_set_output(). Try again, hope for better 5654 * luck. 5655 */ 5656 mutex_unlock(&event->mmap_mutex); 5657 goto again; 5658 } 5659 5660 goto unlock; 5661 } 5662 5663 user_extra = nr_pages + 1; 5664 5665 accounting: 5666 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5667 5668 /* 5669 * Increase the limit linearly with more CPUs: 5670 */ 5671 user_lock_limit *= num_online_cpus(); 5672 5673 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5674 5675 if (user_locked > user_lock_limit) 5676 extra = user_locked - user_lock_limit; 5677 5678 lock_limit = rlimit(RLIMIT_MEMLOCK); 5679 lock_limit >>= PAGE_SHIFT; 5680 locked = vma->vm_mm->pinned_vm + extra; 5681 5682 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5683 !capable(CAP_IPC_LOCK)) { 5684 ret = -EPERM; 5685 goto unlock; 5686 } 5687 5688 WARN_ON(!rb && event->rb); 5689 5690 if (vma->vm_flags & VM_WRITE) 5691 flags |= RING_BUFFER_WRITABLE; 5692 5693 if (!rb) { 5694 rb = rb_alloc(nr_pages, 5695 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5696 event->cpu, flags); 5697 5698 if (!rb) { 5699 ret = -ENOMEM; 5700 goto unlock; 5701 } 5702 5703 atomic_set(&rb->mmap_count, 1); 5704 rb->mmap_user = get_current_user(); 5705 rb->mmap_locked = extra; 5706 5707 ring_buffer_attach(event, rb); 5708 5709 perf_event_init_userpage(event); 5710 perf_event_update_userpage(event); 5711 } else { 5712 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5713 event->attr.aux_watermark, flags); 5714 if (!ret) 5715 rb->aux_mmap_locked = extra; 5716 } 5717 5718 unlock: 5719 if (!ret) { 5720 atomic_long_add(user_extra, &user->locked_vm); 5721 vma->vm_mm->pinned_vm += extra; 5722 5723 atomic_inc(&event->mmap_count); 5724 } else if (rb) { 5725 atomic_dec(&rb->mmap_count); 5726 } 5727 aux_unlock: 5728 mutex_unlock(&event->mmap_mutex); 5729 5730 /* 5731 * Since pinned accounting is per vm we cannot allow fork() to copy our 5732 * vma. 5733 */ 5734 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5735 vma->vm_ops = &perf_mmap_vmops; 5736 5737 if (event->pmu->event_mapped) 5738 event->pmu->event_mapped(event, vma->vm_mm); 5739 5740 return ret; 5741 } 5742 5743 static int perf_fasync(int fd, struct file *filp, int on) 5744 { 5745 struct inode *inode = file_inode(filp); 5746 struct perf_event *event = filp->private_data; 5747 int retval; 5748 5749 inode_lock(inode); 5750 retval = fasync_helper(fd, filp, on, &event->fasync); 5751 inode_unlock(inode); 5752 5753 if (retval < 0) 5754 return retval; 5755 5756 return 0; 5757 } 5758 5759 static const struct file_operations perf_fops = { 5760 .llseek = no_llseek, 5761 .release = perf_release, 5762 .read = perf_read, 5763 .poll = perf_poll, 5764 .unlocked_ioctl = perf_ioctl, 5765 .compat_ioctl = perf_compat_ioctl, 5766 .mmap = perf_mmap, 5767 .fasync = perf_fasync, 5768 }; 5769 5770 /* 5771 * Perf event wakeup 5772 * 5773 * If there's data, ensure we set the poll() state and publish everything 5774 * to user-space before waking everybody up. 5775 */ 5776 5777 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5778 { 5779 /* only the parent has fasync state */ 5780 if (event->parent) 5781 event = event->parent; 5782 return &event->fasync; 5783 } 5784 5785 void perf_event_wakeup(struct perf_event *event) 5786 { 5787 ring_buffer_wakeup(event); 5788 5789 if (event->pending_kill) { 5790 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5791 event->pending_kill = 0; 5792 } 5793 } 5794 5795 static void perf_pending_event(struct irq_work *entry) 5796 { 5797 struct perf_event *event = container_of(entry, 5798 struct perf_event, pending); 5799 int rctx; 5800 5801 rctx = perf_swevent_get_recursion_context(); 5802 /* 5803 * If we 'fail' here, that's OK, it means recursion is already disabled 5804 * and we won't recurse 'further'. 5805 */ 5806 5807 if (event->pending_disable) { 5808 event->pending_disable = 0; 5809 perf_event_disable_local(event); 5810 } 5811 5812 if (event->pending_wakeup) { 5813 event->pending_wakeup = 0; 5814 perf_event_wakeup(event); 5815 } 5816 5817 if (rctx >= 0) 5818 perf_swevent_put_recursion_context(rctx); 5819 } 5820 5821 /* 5822 * We assume there is only KVM supporting the callbacks. 5823 * Later on, we might change it to a list if there is 5824 * another virtualization implementation supporting the callbacks. 5825 */ 5826 struct perf_guest_info_callbacks *perf_guest_cbs; 5827 5828 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5829 { 5830 perf_guest_cbs = cbs; 5831 return 0; 5832 } 5833 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5834 5835 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5836 { 5837 perf_guest_cbs = NULL; 5838 return 0; 5839 } 5840 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5841 5842 static void 5843 perf_output_sample_regs(struct perf_output_handle *handle, 5844 struct pt_regs *regs, u64 mask) 5845 { 5846 int bit; 5847 DECLARE_BITMAP(_mask, 64); 5848 5849 bitmap_from_u64(_mask, mask); 5850 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5851 u64 val; 5852 5853 val = perf_reg_value(regs, bit); 5854 perf_output_put(handle, val); 5855 } 5856 } 5857 5858 static void perf_sample_regs_user(struct perf_regs *regs_user, 5859 struct pt_regs *regs, 5860 struct pt_regs *regs_user_copy) 5861 { 5862 if (user_mode(regs)) { 5863 regs_user->abi = perf_reg_abi(current); 5864 regs_user->regs = regs; 5865 } else if (current->mm) { 5866 perf_get_regs_user(regs_user, regs, regs_user_copy); 5867 } else { 5868 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5869 regs_user->regs = NULL; 5870 } 5871 } 5872 5873 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5874 struct pt_regs *regs) 5875 { 5876 regs_intr->regs = regs; 5877 regs_intr->abi = perf_reg_abi(current); 5878 } 5879 5880 5881 /* 5882 * Get remaining task size from user stack pointer. 5883 * 5884 * It'd be better to take stack vma map and limit this more 5885 * precisly, but there's no way to get it safely under interrupt, 5886 * so using TASK_SIZE as limit. 5887 */ 5888 static u64 perf_ustack_task_size(struct pt_regs *regs) 5889 { 5890 unsigned long addr = perf_user_stack_pointer(regs); 5891 5892 if (!addr || addr >= TASK_SIZE) 5893 return 0; 5894 5895 return TASK_SIZE - addr; 5896 } 5897 5898 static u16 5899 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5900 struct pt_regs *regs) 5901 { 5902 u64 task_size; 5903 5904 /* No regs, no stack pointer, no dump. */ 5905 if (!regs) 5906 return 0; 5907 5908 /* 5909 * Check if we fit in with the requested stack size into the: 5910 * - TASK_SIZE 5911 * If we don't, we limit the size to the TASK_SIZE. 5912 * 5913 * - remaining sample size 5914 * If we don't, we customize the stack size to 5915 * fit in to the remaining sample size. 5916 */ 5917 5918 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5919 stack_size = min(stack_size, (u16) task_size); 5920 5921 /* Current header size plus static size and dynamic size. */ 5922 header_size += 2 * sizeof(u64); 5923 5924 /* Do we fit in with the current stack dump size? */ 5925 if ((u16) (header_size + stack_size) < header_size) { 5926 /* 5927 * If we overflow the maximum size for the sample, 5928 * we customize the stack dump size to fit in. 5929 */ 5930 stack_size = USHRT_MAX - header_size - sizeof(u64); 5931 stack_size = round_up(stack_size, sizeof(u64)); 5932 } 5933 5934 return stack_size; 5935 } 5936 5937 static void 5938 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5939 struct pt_regs *regs) 5940 { 5941 /* Case of a kernel thread, nothing to dump */ 5942 if (!regs) { 5943 u64 size = 0; 5944 perf_output_put(handle, size); 5945 } else { 5946 unsigned long sp; 5947 unsigned int rem; 5948 u64 dyn_size; 5949 5950 /* 5951 * We dump: 5952 * static size 5953 * - the size requested by user or the best one we can fit 5954 * in to the sample max size 5955 * data 5956 * - user stack dump data 5957 * dynamic size 5958 * - the actual dumped size 5959 */ 5960 5961 /* Static size. */ 5962 perf_output_put(handle, dump_size); 5963 5964 /* Data. */ 5965 sp = perf_user_stack_pointer(regs); 5966 rem = __output_copy_user(handle, (void *) sp, dump_size); 5967 dyn_size = dump_size - rem; 5968 5969 perf_output_skip(handle, rem); 5970 5971 /* Dynamic size. */ 5972 perf_output_put(handle, dyn_size); 5973 } 5974 } 5975 5976 static void __perf_event_header__init_id(struct perf_event_header *header, 5977 struct perf_sample_data *data, 5978 struct perf_event *event) 5979 { 5980 u64 sample_type = event->attr.sample_type; 5981 5982 data->type = sample_type; 5983 header->size += event->id_header_size; 5984 5985 if (sample_type & PERF_SAMPLE_TID) { 5986 /* namespace issues */ 5987 data->tid_entry.pid = perf_event_pid(event, current); 5988 data->tid_entry.tid = perf_event_tid(event, current); 5989 } 5990 5991 if (sample_type & PERF_SAMPLE_TIME) 5992 data->time = perf_event_clock(event); 5993 5994 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5995 data->id = primary_event_id(event); 5996 5997 if (sample_type & PERF_SAMPLE_STREAM_ID) 5998 data->stream_id = event->id; 5999 6000 if (sample_type & PERF_SAMPLE_CPU) { 6001 data->cpu_entry.cpu = raw_smp_processor_id(); 6002 data->cpu_entry.reserved = 0; 6003 } 6004 } 6005 6006 void perf_event_header__init_id(struct perf_event_header *header, 6007 struct perf_sample_data *data, 6008 struct perf_event *event) 6009 { 6010 if (event->attr.sample_id_all) 6011 __perf_event_header__init_id(header, data, event); 6012 } 6013 6014 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6015 struct perf_sample_data *data) 6016 { 6017 u64 sample_type = data->type; 6018 6019 if (sample_type & PERF_SAMPLE_TID) 6020 perf_output_put(handle, data->tid_entry); 6021 6022 if (sample_type & PERF_SAMPLE_TIME) 6023 perf_output_put(handle, data->time); 6024 6025 if (sample_type & PERF_SAMPLE_ID) 6026 perf_output_put(handle, data->id); 6027 6028 if (sample_type & PERF_SAMPLE_STREAM_ID) 6029 perf_output_put(handle, data->stream_id); 6030 6031 if (sample_type & PERF_SAMPLE_CPU) 6032 perf_output_put(handle, data->cpu_entry); 6033 6034 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6035 perf_output_put(handle, data->id); 6036 } 6037 6038 void perf_event__output_id_sample(struct perf_event *event, 6039 struct perf_output_handle *handle, 6040 struct perf_sample_data *sample) 6041 { 6042 if (event->attr.sample_id_all) 6043 __perf_event__output_id_sample(handle, sample); 6044 } 6045 6046 static void perf_output_read_one(struct perf_output_handle *handle, 6047 struct perf_event *event, 6048 u64 enabled, u64 running) 6049 { 6050 u64 read_format = event->attr.read_format; 6051 u64 values[4]; 6052 int n = 0; 6053 6054 values[n++] = perf_event_count(event); 6055 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6056 values[n++] = enabled + 6057 atomic64_read(&event->child_total_time_enabled); 6058 } 6059 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6060 values[n++] = running + 6061 atomic64_read(&event->child_total_time_running); 6062 } 6063 if (read_format & PERF_FORMAT_ID) 6064 values[n++] = primary_event_id(event); 6065 6066 __output_copy(handle, values, n * sizeof(u64)); 6067 } 6068 6069 static void perf_output_read_group(struct perf_output_handle *handle, 6070 struct perf_event *event, 6071 u64 enabled, u64 running) 6072 { 6073 struct perf_event *leader = event->group_leader, *sub; 6074 u64 read_format = event->attr.read_format; 6075 u64 values[5]; 6076 int n = 0; 6077 6078 values[n++] = 1 + leader->nr_siblings; 6079 6080 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6081 values[n++] = enabled; 6082 6083 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6084 values[n++] = running; 6085 6086 if ((leader != event) && 6087 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6088 leader->pmu->read(leader); 6089 6090 values[n++] = perf_event_count(leader); 6091 if (read_format & PERF_FORMAT_ID) 6092 values[n++] = primary_event_id(leader); 6093 6094 __output_copy(handle, values, n * sizeof(u64)); 6095 6096 for_each_sibling_event(sub, leader) { 6097 n = 0; 6098 6099 if ((sub != event) && 6100 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6101 sub->pmu->read(sub); 6102 6103 values[n++] = perf_event_count(sub); 6104 if (read_format & PERF_FORMAT_ID) 6105 values[n++] = primary_event_id(sub); 6106 6107 __output_copy(handle, values, n * sizeof(u64)); 6108 } 6109 } 6110 6111 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6112 PERF_FORMAT_TOTAL_TIME_RUNNING) 6113 6114 /* 6115 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6116 * 6117 * The problem is that its both hard and excessively expensive to iterate the 6118 * child list, not to mention that its impossible to IPI the children running 6119 * on another CPU, from interrupt/NMI context. 6120 */ 6121 static void perf_output_read(struct perf_output_handle *handle, 6122 struct perf_event *event) 6123 { 6124 u64 enabled = 0, running = 0, now; 6125 u64 read_format = event->attr.read_format; 6126 6127 /* 6128 * compute total_time_enabled, total_time_running 6129 * based on snapshot values taken when the event 6130 * was last scheduled in. 6131 * 6132 * we cannot simply called update_context_time() 6133 * because of locking issue as we are called in 6134 * NMI context 6135 */ 6136 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6137 calc_timer_values(event, &now, &enabled, &running); 6138 6139 if (event->attr.read_format & PERF_FORMAT_GROUP) 6140 perf_output_read_group(handle, event, enabled, running); 6141 else 6142 perf_output_read_one(handle, event, enabled, running); 6143 } 6144 6145 void perf_output_sample(struct perf_output_handle *handle, 6146 struct perf_event_header *header, 6147 struct perf_sample_data *data, 6148 struct perf_event *event) 6149 { 6150 u64 sample_type = data->type; 6151 6152 perf_output_put(handle, *header); 6153 6154 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6155 perf_output_put(handle, data->id); 6156 6157 if (sample_type & PERF_SAMPLE_IP) 6158 perf_output_put(handle, data->ip); 6159 6160 if (sample_type & PERF_SAMPLE_TID) 6161 perf_output_put(handle, data->tid_entry); 6162 6163 if (sample_type & PERF_SAMPLE_TIME) 6164 perf_output_put(handle, data->time); 6165 6166 if (sample_type & PERF_SAMPLE_ADDR) 6167 perf_output_put(handle, data->addr); 6168 6169 if (sample_type & PERF_SAMPLE_ID) 6170 perf_output_put(handle, data->id); 6171 6172 if (sample_type & PERF_SAMPLE_STREAM_ID) 6173 perf_output_put(handle, data->stream_id); 6174 6175 if (sample_type & PERF_SAMPLE_CPU) 6176 perf_output_put(handle, data->cpu_entry); 6177 6178 if (sample_type & PERF_SAMPLE_PERIOD) 6179 perf_output_put(handle, data->period); 6180 6181 if (sample_type & PERF_SAMPLE_READ) 6182 perf_output_read(handle, event); 6183 6184 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6185 int size = 1; 6186 6187 size += data->callchain->nr; 6188 size *= sizeof(u64); 6189 __output_copy(handle, data->callchain, size); 6190 } 6191 6192 if (sample_type & PERF_SAMPLE_RAW) { 6193 struct perf_raw_record *raw = data->raw; 6194 6195 if (raw) { 6196 struct perf_raw_frag *frag = &raw->frag; 6197 6198 perf_output_put(handle, raw->size); 6199 do { 6200 if (frag->copy) { 6201 __output_custom(handle, frag->copy, 6202 frag->data, frag->size); 6203 } else { 6204 __output_copy(handle, frag->data, 6205 frag->size); 6206 } 6207 if (perf_raw_frag_last(frag)) 6208 break; 6209 frag = frag->next; 6210 } while (1); 6211 if (frag->pad) 6212 __output_skip(handle, NULL, frag->pad); 6213 } else { 6214 struct { 6215 u32 size; 6216 u32 data; 6217 } raw = { 6218 .size = sizeof(u32), 6219 .data = 0, 6220 }; 6221 perf_output_put(handle, raw); 6222 } 6223 } 6224 6225 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6226 if (data->br_stack) { 6227 size_t size; 6228 6229 size = data->br_stack->nr 6230 * sizeof(struct perf_branch_entry); 6231 6232 perf_output_put(handle, data->br_stack->nr); 6233 perf_output_copy(handle, data->br_stack->entries, size); 6234 } else { 6235 /* 6236 * we always store at least the value of nr 6237 */ 6238 u64 nr = 0; 6239 perf_output_put(handle, nr); 6240 } 6241 } 6242 6243 if (sample_type & PERF_SAMPLE_REGS_USER) { 6244 u64 abi = data->regs_user.abi; 6245 6246 /* 6247 * If there are no regs to dump, notice it through 6248 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6249 */ 6250 perf_output_put(handle, abi); 6251 6252 if (abi) { 6253 u64 mask = event->attr.sample_regs_user; 6254 perf_output_sample_regs(handle, 6255 data->regs_user.regs, 6256 mask); 6257 } 6258 } 6259 6260 if (sample_type & PERF_SAMPLE_STACK_USER) { 6261 perf_output_sample_ustack(handle, 6262 data->stack_user_size, 6263 data->regs_user.regs); 6264 } 6265 6266 if (sample_type & PERF_SAMPLE_WEIGHT) 6267 perf_output_put(handle, data->weight); 6268 6269 if (sample_type & PERF_SAMPLE_DATA_SRC) 6270 perf_output_put(handle, data->data_src.val); 6271 6272 if (sample_type & PERF_SAMPLE_TRANSACTION) 6273 perf_output_put(handle, data->txn); 6274 6275 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6276 u64 abi = data->regs_intr.abi; 6277 /* 6278 * If there are no regs to dump, notice it through 6279 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6280 */ 6281 perf_output_put(handle, abi); 6282 6283 if (abi) { 6284 u64 mask = event->attr.sample_regs_intr; 6285 6286 perf_output_sample_regs(handle, 6287 data->regs_intr.regs, 6288 mask); 6289 } 6290 } 6291 6292 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6293 perf_output_put(handle, data->phys_addr); 6294 6295 if (!event->attr.watermark) { 6296 int wakeup_events = event->attr.wakeup_events; 6297 6298 if (wakeup_events) { 6299 struct ring_buffer *rb = handle->rb; 6300 int events = local_inc_return(&rb->events); 6301 6302 if (events >= wakeup_events) { 6303 local_sub(wakeup_events, &rb->events); 6304 local_inc(&rb->wakeup); 6305 } 6306 } 6307 } 6308 } 6309 6310 static u64 perf_virt_to_phys(u64 virt) 6311 { 6312 u64 phys_addr = 0; 6313 struct page *p = NULL; 6314 6315 if (!virt) 6316 return 0; 6317 6318 if (virt >= TASK_SIZE) { 6319 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6320 if (virt_addr_valid((void *)(uintptr_t)virt) && 6321 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6322 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6323 } else { 6324 /* 6325 * Walking the pages tables for user address. 6326 * Interrupts are disabled, so it prevents any tear down 6327 * of the page tables. 6328 * Try IRQ-safe __get_user_pages_fast first. 6329 * If failed, leave phys_addr as 0. 6330 */ 6331 if ((current->mm != NULL) && 6332 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6333 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6334 6335 if (p) 6336 put_page(p); 6337 } 6338 6339 return phys_addr; 6340 } 6341 6342 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6343 6344 static struct perf_callchain_entry * 6345 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6346 { 6347 bool kernel = !event->attr.exclude_callchain_kernel; 6348 bool user = !event->attr.exclude_callchain_user; 6349 /* Disallow cross-task user callchains. */ 6350 bool crosstask = event->ctx->task && event->ctx->task != current; 6351 const u32 max_stack = event->attr.sample_max_stack; 6352 struct perf_callchain_entry *callchain; 6353 6354 if (!kernel && !user) 6355 return &__empty_callchain; 6356 6357 callchain = get_perf_callchain(regs, 0, kernel, user, 6358 max_stack, crosstask, true); 6359 return callchain ?: &__empty_callchain; 6360 } 6361 6362 void perf_prepare_sample(struct perf_event_header *header, 6363 struct perf_sample_data *data, 6364 struct perf_event *event, 6365 struct pt_regs *regs) 6366 { 6367 u64 sample_type = event->attr.sample_type; 6368 6369 header->type = PERF_RECORD_SAMPLE; 6370 header->size = sizeof(*header) + event->header_size; 6371 6372 header->misc = 0; 6373 header->misc |= perf_misc_flags(regs); 6374 6375 __perf_event_header__init_id(header, data, event); 6376 6377 if (sample_type & PERF_SAMPLE_IP) 6378 data->ip = perf_instruction_pointer(regs); 6379 6380 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6381 int size = 1; 6382 6383 data->callchain = perf_callchain(event, regs); 6384 size += data->callchain->nr; 6385 6386 header->size += size * sizeof(u64); 6387 } 6388 6389 if (sample_type & PERF_SAMPLE_RAW) { 6390 struct perf_raw_record *raw = data->raw; 6391 int size; 6392 6393 if (raw) { 6394 struct perf_raw_frag *frag = &raw->frag; 6395 u32 sum = 0; 6396 6397 do { 6398 sum += frag->size; 6399 if (perf_raw_frag_last(frag)) 6400 break; 6401 frag = frag->next; 6402 } while (1); 6403 6404 size = round_up(sum + sizeof(u32), sizeof(u64)); 6405 raw->size = size - sizeof(u32); 6406 frag->pad = raw->size - sum; 6407 } else { 6408 size = sizeof(u64); 6409 } 6410 6411 header->size += size; 6412 } 6413 6414 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6415 int size = sizeof(u64); /* nr */ 6416 if (data->br_stack) { 6417 size += data->br_stack->nr 6418 * sizeof(struct perf_branch_entry); 6419 } 6420 header->size += size; 6421 } 6422 6423 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6424 perf_sample_regs_user(&data->regs_user, regs, 6425 &data->regs_user_copy); 6426 6427 if (sample_type & PERF_SAMPLE_REGS_USER) { 6428 /* regs dump ABI info */ 6429 int size = sizeof(u64); 6430 6431 if (data->regs_user.regs) { 6432 u64 mask = event->attr.sample_regs_user; 6433 size += hweight64(mask) * sizeof(u64); 6434 } 6435 6436 header->size += size; 6437 } 6438 6439 if (sample_type & PERF_SAMPLE_STACK_USER) { 6440 /* 6441 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6442 * processed as the last one or have additional check added 6443 * in case new sample type is added, because we could eat 6444 * up the rest of the sample size. 6445 */ 6446 u16 stack_size = event->attr.sample_stack_user; 6447 u16 size = sizeof(u64); 6448 6449 stack_size = perf_sample_ustack_size(stack_size, header->size, 6450 data->regs_user.regs); 6451 6452 /* 6453 * If there is something to dump, add space for the dump 6454 * itself and for the field that tells the dynamic size, 6455 * which is how many have been actually dumped. 6456 */ 6457 if (stack_size) 6458 size += sizeof(u64) + stack_size; 6459 6460 data->stack_user_size = stack_size; 6461 header->size += size; 6462 } 6463 6464 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6465 /* regs dump ABI info */ 6466 int size = sizeof(u64); 6467 6468 perf_sample_regs_intr(&data->regs_intr, regs); 6469 6470 if (data->regs_intr.regs) { 6471 u64 mask = event->attr.sample_regs_intr; 6472 6473 size += hweight64(mask) * sizeof(u64); 6474 } 6475 6476 header->size += size; 6477 } 6478 6479 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6480 data->phys_addr = perf_virt_to_phys(data->addr); 6481 } 6482 6483 static void __always_inline 6484 __perf_event_output(struct perf_event *event, 6485 struct perf_sample_data *data, 6486 struct pt_regs *regs, 6487 int (*output_begin)(struct perf_output_handle *, 6488 struct perf_event *, 6489 unsigned int)) 6490 { 6491 struct perf_output_handle handle; 6492 struct perf_event_header header; 6493 6494 /* protect the callchain buffers */ 6495 rcu_read_lock(); 6496 6497 perf_prepare_sample(&header, data, event, regs); 6498 6499 if (output_begin(&handle, event, header.size)) 6500 goto exit; 6501 6502 perf_output_sample(&handle, &header, data, event); 6503 6504 perf_output_end(&handle); 6505 6506 exit: 6507 rcu_read_unlock(); 6508 } 6509 6510 void 6511 perf_event_output_forward(struct perf_event *event, 6512 struct perf_sample_data *data, 6513 struct pt_regs *regs) 6514 { 6515 __perf_event_output(event, data, regs, perf_output_begin_forward); 6516 } 6517 6518 void 6519 perf_event_output_backward(struct perf_event *event, 6520 struct perf_sample_data *data, 6521 struct pt_regs *regs) 6522 { 6523 __perf_event_output(event, data, regs, perf_output_begin_backward); 6524 } 6525 6526 void 6527 perf_event_output(struct perf_event *event, 6528 struct perf_sample_data *data, 6529 struct pt_regs *regs) 6530 { 6531 __perf_event_output(event, data, regs, perf_output_begin); 6532 } 6533 6534 /* 6535 * read event_id 6536 */ 6537 6538 struct perf_read_event { 6539 struct perf_event_header header; 6540 6541 u32 pid; 6542 u32 tid; 6543 }; 6544 6545 static void 6546 perf_event_read_event(struct perf_event *event, 6547 struct task_struct *task) 6548 { 6549 struct perf_output_handle handle; 6550 struct perf_sample_data sample; 6551 struct perf_read_event read_event = { 6552 .header = { 6553 .type = PERF_RECORD_READ, 6554 .misc = 0, 6555 .size = sizeof(read_event) + event->read_size, 6556 }, 6557 .pid = perf_event_pid(event, task), 6558 .tid = perf_event_tid(event, task), 6559 }; 6560 int ret; 6561 6562 perf_event_header__init_id(&read_event.header, &sample, event); 6563 ret = perf_output_begin(&handle, event, read_event.header.size); 6564 if (ret) 6565 return; 6566 6567 perf_output_put(&handle, read_event); 6568 perf_output_read(&handle, event); 6569 perf_event__output_id_sample(event, &handle, &sample); 6570 6571 perf_output_end(&handle); 6572 } 6573 6574 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6575 6576 static void 6577 perf_iterate_ctx(struct perf_event_context *ctx, 6578 perf_iterate_f output, 6579 void *data, bool all) 6580 { 6581 struct perf_event *event; 6582 6583 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6584 if (!all) { 6585 if (event->state < PERF_EVENT_STATE_INACTIVE) 6586 continue; 6587 if (!event_filter_match(event)) 6588 continue; 6589 } 6590 6591 output(event, data); 6592 } 6593 } 6594 6595 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6596 { 6597 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6598 struct perf_event *event; 6599 6600 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6601 /* 6602 * Skip events that are not fully formed yet; ensure that 6603 * if we observe event->ctx, both event and ctx will be 6604 * complete enough. See perf_install_in_context(). 6605 */ 6606 if (!smp_load_acquire(&event->ctx)) 6607 continue; 6608 6609 if (event->state < PERF_EVENT_STATE_INACTIVE) 6610 continue; 6611 if (!event_filter_match(event)) 6612 continue; 6613 output(event, data); 6614 } 6615 } 6616 6617 /* 6618 * Iterate all events that need to receive side-band events. 6619 * 6620 * For new callers; ensure that account_pmu_sb_event() includes 6621 * your event, otherwise it might not get delivered. 6622 */ 6623 static void 6624 perf_iterate_sb(perf_iterate_f output, void *data, 6625 struct perf_event_context *task_ctx) 6626 { 6627 struct perf_event_context *ctx; 6628 int ctxn; 6629 6630 rcu_read_lock(); 6631 preempt_disable(); 6632 6633 /* 6634 * If we have task_ctx != NULL we only notify the task context itself. 6635 * The task_ctx is set only for EXIT events before releasing task 6636 * context. 6637 */ 6638 if (task_ctx) { 6639 perf_iterate_ctx(task_ctx, output, data, false); 6640 goto done; 6641 } 6642 6643 perf_iterate_sb_cpu(output, data); 6644 6645 for_each_task_context_nr(ctxn) { 6646 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6647 if (ctx) 6648 perf_iterate_ctx(ctx, output, data, false); 6649 } 6650 done: 6651 preempt_enable(); 6652 rcu_read_unlock(); 6653 } 6654 6655 /* 6656 * Clear all file-based filters at exec, they'll have to be 6657 * re-instated when/if these objects are mmapped again. 6658 */ 6659 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6660 { 6661 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6662 struct perf_addr_filter *filter; 6663 unsigned int restart = 0, count = 0; 6664 unsigned long flags; 6665 6666 if (!has_addr_filter(event)) 6667 return; 6668 6669 raw_spin_lock_irqsave(&ifh->lock, flags); 6670 list_for_each_entry(filter, &ifh->list, entry) { 6671 if (filter->inode) { 6672 event->addr_filters_offs[count] = 0; 6673 restart++; 6674 } 6675 6676 count++; 6677 } 6678 6679 if (restart) 6680 event->addr_filters_gen++; 6681 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6682 6683 if (restart) 6684 perf_event_stop(event, 1); 6685 } 6686 6687 void perf_event_exec(void) 6688 { 6689 struct perf_event_context *ctx; 6690 int ctxn; 6691 6692 rcu_read_lock(); 6693 for_each_task_context_nr(ctxn) { 6694 ctx = current->perf_event_ctxp[ctxn]; 6695 if (!ctx) 6696 continue; 6697 6698 perf_event_enable_on_exec(ctxn); 6699 6700 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6701 true); 6702 } 6703 rcu_read_unlock(); 6704 } 6705 6706 struct remote_output { 6707 struct ring_buffer *rb; 6708 int err; 6709 }; 6710 6711 static void __perf_event_output_stop(struct perf_event *event, void *data) 6712 { 6713 struct perf_event *parent = event->parent; 6714 struct remote_output *ro = data; 6715 struct ring_buffer *rb = ro->rb; 6716 struct stop_event_data sd = { 6717 .event = event, 6718 }; 6719 6720 if (!has_aux(event)) 6721 return; 6722 6723 if (!parent) 6724 parent = event; 6725 6726 /* 6727 * In case of inheritance, it will be the parent that links to the 6728 * ring-buffer, but it will be the child that's actually using it. 6729 * 6730 * We are using event::rb to determine if the event should be stopped, 6731 * however this may race with ring_buffer_attach() (through set_output), 6732 * which will make us skip the event that actually needs to be stopped. 6733 * So ring_buffer_attach() has to stop an aux event before re-assigning 6734 * its rb pointer. 6735 */ 6736 if (rcu_dereference(parent->rb) == rb) 6737 ro->err = __perf_event_stop(&sd); 6738 } 6739 6740 static int __perf_pmu_output_stop(void *info) 6741 { 6742 struct perf_event *event = info; 6743 struct pmu *pmu = event->pmu; 6744 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6745 struct remote_output ro = { 6746 .rb = event->rb, 6747 }; 6748 6749 rcu_read_lock(); 6750 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6751 if (cpuctx->task_ctx) 6752 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6753 &ro, false); 6754 rcu_read_unlock(); 6755 6756 return ro.err; 6757 } 6758 6759 static void perf_pmu_output_stop(struct perf_event *event) 6760 { 6761 struct perf_event *iter; 6762 int err, cpu; 6763 6764 restart: 6765 rcu_read_lock(); 6766 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6767 /* 6768 * For per-CPU events, we need to make sure that neither they 6769 * nor their children are running; for cpu==-1 events it's 6770 * sufficient to stop the event itself if it's active, since 6771 * it can't have children. 6772 */ 6773 cpu = iter->cpu; 6774 if (cpu == -1) 6775 cpu = READ_ONCE(iter->oncpu); 6776 6777 if (cpu == -1) 6778 continue; 6779 6780 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6781 if (err == -EAGAIN) { 6782 rcu_read_unlock(); 6783 goto restart; 6784 } 6785 } 6786 rcu_read_unlock(); 6787 } 6788 6789 /* 6790 * task tracking -- fork/exit 6791 * 6792 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6793 */ 6794 6795 struct perf_task_event { 6796 struct task_struct *task; 6797 struct perf_event_context *task_ctx; 6798 6799 struct { 6800 struct perf_event_header header; 6801 6802 u32 pid; 6803 u32 ppid; 6804 u32 tid; 6805 u32 ptid; 6806 u64 time; 6807 } event_id; 6808 }; 6809 6810 static int perf_event_task_match(struct perf_event *event) 6811 { 6812 return event->attr.comm || event->attr.mmap || 6813 event->attr.mmap2 || event->attr.mmap_data || 6814 event->attr.task; 6815 } 6816 6817 static void perf_event_task_output(struct perf_event *event, 6818 void *data) 6819 { 6820 struct perf_task_event *task_event = data; 6821 struct perf_output_handle handle; 6822 struct perf_sample_data sample; 6823 struct task_struct *task = task_event->task; 6824 int ret, size = task_event->event_id.header.size; 6825 6826 if (!perf_event_task_match(event)) 6827 return; 6828 6829 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6830 6831 ret = perf_output_begin(&handle, event, 6832 task_event->event_id.header.size); 6833 if (ret) 6834 goto out; 6835 6836 task_event->event_id.pid = perf_event_pid(event, task); 6837 task_event->event_id.ppid = perf_event_pid(event, current); 6838 6839 task_event->event_id.tid = perf_event_tid(event, task); 6840 task_event->event_id.ptid = perf_event_tid(event, current); 6841 6842 task_event->event_id.time = perf_event_clock(event); 6843 6844 perf_output_put(&handle, task_event->event_id); 6845 6846 perf_event__output_id_sample(event, &handle, &sample); 6847 6848 perf_output_end(&handle); 6849 out: 6850 task_event->event_id.header.size = size; 6851 } 6852 6853 static void perf_event_task(struct task_struct *task, 6854 struct perf_event_context *task_ctx, 6855 int new) 6856 { 6857 struct perf_task_event task_event; 6858 6859 if (!atomic_read(&nr_comm_events) && 6860 !atomic_read(&nr_mmap_events) && 6861 !atomic_read(&nr_task_events)) 6862 return; 6863 6864 task_event = (struct perf_task_event){ 6865 .task = task, 6866 .task_ctx = task_ctx, 6867 .event_id = { 6868 .header = { 6869 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6870 .misc = 0, 6871 .size = sizeof(task_event.event_id), 6872 }, 6873 /* .pid */ 6874 /* .ppid */ 6875 /* .tid */ 6876 /* .ptid */ 6877 /* .time */ 6878 }, 6879 }; 6880 6881 perf_iterate_sb(perf_event_task_output, 6882 &task_event, 6883 task_ctx); 6884 } 6885 6886 void perf_event_fork(struct task_struct *task) 6887 { 6888 perf_event_task(task, NULL, 1); 6889 perf_event_namespaces(task); 6890 } 6891 6892 /* 6893 * comm tracking 6894 */ 6895 6896 struct perf_comm_event { 6897 struct task_struct *task; 6898 char *comm; 6899 int comm_size; 6900 6901 struct { 6902 struct perf_event_header header; 6903 6904 u32 pid; 6905 u32 tid; 6906 } event_id; 6907 }; 6908 6909 static int perf_event_comm_match(struct perf_event *event) 6910 { 6911 return event->attr.comm; 6912 } 6913 6914 static void perf_event_comm_output(struct perf_event *event, 6915 void *data) 6916 { 6917 struct perf_comm_event *comm_event = data; 6918 struct perf_output_handle handle; 6919 struct perf_sample_data sample; 6920 int size = comm_event->event_id.header.size; 6921 int ret; 6922 6923 if (!perf_event_comm_match(event)) 6924 return; 6925 6926 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6927 ret = perf_output_begin(&handle, event, 6928 comm_event->event_id.header.size); 6929 6930 if (ret) 6931 goto out; 6932 6933 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6934 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6935 6936 perf_output_put(&handle, comm_event->event_id); 6937 __output_copy(&handle, comm_event->comm, 6938 comm_event->comm_size); 6939 6940 perf_event__output_id_sample(event, &handle, &sample); 6941 6942 perf_output_end(&handle); 6943 out: 6944 comm_event->event_id.header.size = size; 6945 } 6946 6947 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6948 { 6949 char comm[TASK_COMM_LEN]; 6950 unsigned int size; 6951 6952 memset(comm, 0, sizeof(comm)); 6953 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6954 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6955 6956 comm_event->comm = comm; 6957 comm_event->comm_size = size; 6958 6959 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6960 6961 perf_iterate_sb(perf_event_comm_output, 6962 comm_event, 6963 NULL); 6964 } 6965 6966 void perf_event_comm(struct task_struct *task, bool exec) 6967 { 6968 struct perf_comm_event comm_event; 6969 6970 if (!atomic_read(&nr_comm_events)) 6971 return; 6972 6973 comm_event = (struct perf_comm_event){ 6974 .task = task, 6975 /* .comm */ 6976 /* .comm_size */ 6977 .event_id = { 6978 .header = { 6979 .type = PERF_RECORD_COMM, 6980 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6981 /* .size */ 6982 }, 6983 /* .pid */ 6984 /* .tid */ 6985 }, 6986 }; 6987 6988 perf_event_comm_event(&comm_event); 6989 } 6990 6991 /* 6992 * namespaces tracking 6993 */ 6994 6995 struct perf_namespaces_event { 6996 struct task_struct *task; 6997 6998 struct { 6999 struct perf_event_header header; 7000 7001 u32 pid; 7002 u32 tid; 7003 u64 nr_namespaces; 7004 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7005 } event_id; 7006 }; 7007 7008 static int perf_event_namespaces_match(struct perf_event *event) 7009 { 7010 return event->attr.namespaces; 7011 } 7012 7013 static void perf_event_namespaces_output(struct perf_event *event, 7014 void *data) 7015 { 7016 struct perf_namespaces_event *namespaces_event = data; 7017 struct perf_output_handle handle; 7018 struct perf_sample_data sample; 7019 u16 header_size = namespaces_event->event_id.header.size; 7020 int ret; 7021 7022 if (!perf_event_namespaces_match(event)) 7023 return; 7024 7025 perf_event_header__init_id(&namespaces_event->event_id.header, 7026 &sample, event); 7027 ret = perf_output_begin(&handle, event, 7028 namespaces_event->event_id.header.size); 7029 if (ret) 7030 goto out; 7031 7032 namespaces_event->event_id.pid = perf_event_pid(event, 7033 namespaces_event->task); 7034 namespaces_event->event_id.tid = perf_event_tid(event, 7035 namespaces_event->task); 7036 7037 perf_output_put(&handle, namespaces_event->event_id); 7038 7039 perf_event__output_id_sample(event, &handle, &sample); 7040 7041 perf_output_end(&handle); 7042 out: 7043 namespaces_event->event_id.header.size = header_size; 7044 } 7045 7046 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7047 struct task_struct *task, 7048 const struct proc_ns_operations *ns_ops) 7049 { 7050 struct path ns_path; 7051 struct inode *ns_inode; 7052 void *error; 7053 7054 error = ns_get_path(&ns_path, task, ns_ops); 7055 if (!error) { 7056 ns_inode = ns_path.dentry->d_inode; 7057 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7058 ns_link_info->ino = ns_inode->i_ino; 7059 path_put(&ns_path); 7060 } 7061 } 7062 7063 void perf_event_namespaces(struct task_struct *task) 7064 { 7065 struct perf_namespaces_event namespaces_event; 7066 struct perf_ns_link_info *ns_link_info; 7067 7068 if (!atomic_read(&nr_namespaces_events)) 7069 return; 7070 7071 namespaces_event = (struct perf_namespaces_event){ 7072 .task = task, 7073 .event_id = { 7074 .header = { 7075 .type = PERF_RECORD_NAMESPACES, 7076 .misc = 0, 7077 .size = sizeof(namespaces_event.event_id), 7078 }, 7079 /* .pid */ 7080 /* .tid */ 7081 .nr_namespaces = NR_NAMESPACES, 7082 /* .link_info[NR_NAMESPACES] */ 7083 }, 7084 }; 7085 7086 ns_link_info = namespaces_event.event_id.link_info; 7087 7088 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7089 task, &mntns_operations); 7090 7091 #ifdef CONFIG_USER_NS 7092 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7093 task, &userns_operations); 7094 #endif 7095 #ifdef CONFIG_NET_NS 7096 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7097 task, &netns_operations); 7098 #endif 7099 #ifdef CONFIG_UTS_NS 7100 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7101 task, &utsns_operations); 7102 #endif 7103 #ifdef CONFIG_IPC_NS 7104 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7105 task, &ipcns_operations); 7106 #endif 7107 #ifdef CONFIG_PID_NS 7108 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7109 task, &pidns_operations); 7110 #endif 7111 #ifdef CONFIG_CGROUPS 7112 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7113 task, &cgroupns_operations); 7114 #endif 7115 7116 perf_iterate_sb(perf_event_namespaces_output, 7117 &namespaces_event, 7118 NULL); 7119 } 7120 7121 /* 7122 * mmap tracking 7123 */ 7124 7125 struct perf_mmap_event { 7126 struct vm_area_struct *vma; 7127 7128 const char *file_name; 7129 int file_size; 7130 int maj, min; 7131 u64 ino; 7132 u64 ino_generation; 7133 u32 prot, flags; 7134 7135 struct { 7136 struct perf_event_header header; 7137 7138 u32 pid; 7139 u32 tid; 7140 u64 start; 7141 u64 len; 7142 u64 pgoff; 7143 } event_id; 7144 }; 7145 7146 static int perf_event_mmap_match(struct perf_event *event, 7147 void *data) 7148 { 7149 struct perf_mmap_event *mmap_event = data; 7150 struct vm_area_struct *vma = mmap_event->vma; 7151 int executable = vma->vm_flags & VM_EXEC; 7152 7153 return (!executable && event->attr.mmap_data) || 7154 (executable && (event->attr.mmap || event->attr.mmap2)); 7155 } 7156 7157 static void perf_event_mmap_output(struct perf_event *event, 7158 void *data) 7159 { 7160 struct perf_mmap_event *mmap_event = data; 7161 struct perf_output_handle handle; 7162 struct perf_sample_data sample; 7163 int size = mmap_event->event_id.header.size; 7164 int ret; 7165 7166 if (!perf_event_mmap_match(event, data)) 7167 return; 7168 7169 if (event->attr.mmap2) { 7170 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7171 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7172 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7173 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7174 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7175 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7176 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7177 } 7178 7179 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7180 ret = perf_output_begin(&handle, event, 7181 mmap_event->event_id.header.size); 7182 if (ret) 7183 goto out; 7184 7185 mmap_event->event_id.pid = perf_event_pid(event, current); 7186 mmap_event->event_id.tid = perf_event_tid(event, current); 7187 7188 perf_output_put(&handle, mmap_event->event_id); 7189 7190 if (event->attr.mmap2) { 7191 perf_output_put(&handle, mmap_event->maj); 7192 perf_output_put(&handle, mmap_event->min); 7193 perf_output_put(&handle, mmap_event->ino); 7194 perf_output_put(&handle, mmap_event->ino_generation); 7195 perf_output_put(&handle, mmap_event->prot); 7196 perf_output_put(&handle, mmap_event->flags); 7197 } 7198 7199 __output_copy(&handle, mmap_event->file_name, 7200 mmap_event->file_size); 7201 7202 perf_event__output_id_sample(event, &handle, &sample); 7203 7204 perf_output_end(&handle); 7205 out: 7206 mmap_event->event_id.header.size = size; 7207 } 7208 7209 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7210 { 7211 struct vm_area_struct *vma = mmap_event->vma; 7212 struct file *file = vma->vm_file; 7213 int maj = 0, min = 0; 7214 u64 ino = 0, gen = 0; 7215 u32 prot = 0, flags = 0; 7216 unsigned int size; 7217 char tmp[16]; 7218 char *buf = NULL; 7219 char *name; 7220 7221 if (vma->vm_flags & VM_READ) 7222 prot |= PROT_READ; 7223 if (vma->vm_flags & VM_WRITE) 7224 prot |= PROT_WRITE; 7225 if (vma->vm_flags & VM_EXEC) 7226 prot |= PROT_EXEC; 7227 7228 if (vma->vm_flags & VM_MAYSHARE) 7229 flags = MAP_SHARED; 7230 else 7231 flags = MAP_PRIVATE; 7232 7233 if (vma->vm_flags & VM_DENYWRITE) 7234 flags |= MAP_DENYWRITE; 7235 if (vma->vm_flags & VM_MAYEXEC) 7236 flags |= MAP_EXECUTABLE; 7237 if (vma->vm_flags & VM_LOCKED) 7238 flags |= MAP_LOCKED; 7239 if (vma->vm_flags & VM_HUGETLB) 7240 flags |= MAP_HUGETLB; 7241 7242 if (file) { 7243 struct inode *inode; 7244 dev_t dev; 7245 7246 buf = kmalloc(PATH_MAX, GFP_KERNEL); 7247 if (!buf) { 7248 name = "//enomem"; 7249 goto cpy_name; 7250 } 7251 /* 7252 * d_path() works from the end of the rb backwards, so we 7253 * need to add enough zero bytes after the string to handle 7254 * the 64bit alignment we do later. 7255 */ 7256 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 7257 if (IS_ERR(name)) { 7258 name = "//toolong"; 7259 goto cpy_name; 7260 } 7261 inode = file_inode(vma->vm_file); 7262 dev = inode->i_sb->s_dev; 7263 ino = inode->i_ino; 7264 gen = inode->i_generation; 7265 maj = MAJOR(dev); 7266 min = MINOR(dev); 7267 7268 goto got_name; 7269 } else { 7270 if (vma->vm_ops && vma->vm_ops->name) { 7271 name = (char *) vma->vm_ops->name(vma); 7272 if (name) 7273 goto cpy_name; 7274 } 7275 7276 name = (char *)arch_vma_name(vma); 7277 if (name) 7278 goto cpy_name; 7279 7280 if (vma->vm_start <= vma->vm_mm->start_brk && 7281 vma->vm_end >= vma->vm_mm->brk) { 7282 name = "[heap]"; 7283 goto cpy_name; 7284 } 7285 if (vma->vm_start <= vma->vm_mm->start_stack && 7286 vma->vm_end >= vma->vm_mm->start_stack) { 7287 name = "[stack]"; 7288 goto cpy_name; 7289 } 7290 7291 name = "//anon"; 7292 goto cpy_name; 7293 } 7294 7295 cpy_name: 7296 strlcpy(tmp, name, sizeof(tmp)); 7297 name = tmp; 7298 got_name: 7299 /* 7300 * Since our buffer works in 8 byte units we need to align our string 7301 * size to a multiple of 8. However, we must guarantee the tail end is 7302 * zero'd out to avoid leaking random bits to userspace. 7303 */ 7304 size = strlen(name)+1; 7305 while (!IS_ALIGNED(size, sizeof(u64))) 7306 name[size++] = '\0'; 7307 7308 mmap_event->file_name = name; 7309 mmap_event->file_size = size; 7310 mmap_event->maj = maj; 7311 mmap_event->min = min; 7312 mmap_event->ino = ino; 7313 mmap_event->ino_generation = gen; 7314 mmap_event->prot = prot; 7315 mmap_event->flags = flags; 7316 7317 if (!(vma->vm_flags & VM_EXEC)) 7318 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7319 7320 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7321 7322 perf_iterate_sb(perf_event_mmap_output, 7323 mmap_event, 7324 NULL); 7325 7326 kfree(buf); 7327 } 7328 7329 /* 7330 * Check whether inode and address range match filter criteria. 7331 */ 7332 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7333 struct file *file, unsigned long offset, 7334 unsigned long size) 7335 { 7336 if (filter->inode != file_inode(file)) 7337 return false; 7338 7339 if (filter->offset > offset + size) 7340 return false; 7341 7342 if (filter->offset + filter->size < offset) 7343 return false; 7344 7345 return true; 7346 } 7347 7348 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7349 { 7350 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7351 struct vm_area_struct *vma = data; 7352 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 7353 struct file *file = vma->vm_file; 7354 struct perf_addr_filter *filter; 7355 unsigned int restart = 0, count = 0; 7356 7357 if (!has_addr_filter(event)) 7358 return; 7359 7360 if (!file) 7361 return; 7362 7363 raw_spin_lock_irqsave(&ifh->lock, flags); 7364 list_for_each_entry(filter, &ifh->list, entry) { 7365 if (perf_addr_filter_match(filter, file, off, 7366 vma->vm_end - vma->vm_start)) { 7367 event->addr_filters_offs[count] = vma->vm_start; 7368 restart++; 7369 } 7370 7371 count++; 7372 } 7373 7374 if (restart) 7375 event->addr_filters_gen++; 7376 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7377 7378 if (restart) 7379 perf_event_stop(event, 1); 7380 } 7381 7382 /* 7383 * Adjust all task's events' filters to the new vma 7384 */ 7385 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7386 { 7387 struct perf_event_context *ctx; 7388 int ctxn; 7389 7390 /* 7391 * Data tracing isn't supported yet and as such there is no need 7392 * to keep track of anything that isn't related to executable code: 7393 */ 7394 if (!(vma->vm_flags & VM_EXEC)) 7395 return; 7396 7397 rcu_read_lock(); 7398 for_each_task_context_nr(ctxn) { 7399 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7400 if (!ctx) 7401 continue; 7402 7403 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7404 } 7405 rcu_read_unlock(); 7406 } 7407 7408 void perf_event_mmap(struct vm_area_struct *vma) 7409 { 7410 struct perf_mmap_event mmap_event; 7411 7412 if (!atomic_read(&nr_mmap_events)) 7413 return; 7414 7415 mmap_event = (struct perf_mmap_event){ 7416 .vma = vma, 7417 /* .file_name */ 7418 /* .file_size */ 7419 .event_id = { 7420 .header = { 7421 .type = PERF_RECORD_MMAP, 7422 .misc = PERF_RECORD_MISC_USER, 7423 /* .size */ 7424 }, 7425 /* .pid */ 7426 /* .tid */ 7427 .start = vma->vm_start, 7428 .len = vma->vm_end - vma->vm_start, 7429 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7430 }, 7431 /* .maj (attr_mmap2 only) */ 7432 /* .min (attr_mmap2 only) */ 7433 /* .ino (attr_mmap2 only) */ 7434 /* .ino_generation (attr_mmap2 only) */ 7435 /* .prot (attr_mmap2 only) */ 7436 /* .flags (attr_mmap2 only) */ 7437 }; 7438 7439 perf_addr_filters_adjust(vma); 7440 perf_event_mmap_event(&mmap_event); 7441 } 7442 7443 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7444 unsigned long size, u64 flags) 7445 { 7446 struct perf_output_handle handle; 7447 struct perf_sample_data sample; 7448 struct perf_aux_event { 7449 struct perf_event_header header; 7450 u64 offset; 7451 u64 size; 7452 u64 flags; 7453 } rec = { 7454 .header = { 7455 .type = PERF_RECORD_AUX, 7456 .misc = 0, 7457 .size = sizeof(rec), 7458 }, 7459 .offset = head, 7460 .size = size, 7461 .flags = flags, 7462 }; 7463 int ret; 7464 7465 perf_event_header__init_id(&rec.header, &sample, event); 7466 ret = perf_output_begin(&handle, event, rec.header.size); 7467 7468 if (ret) 7469 return; 7470 7471 perf_output_put(&handle, rec); 7472 perf_event__output_id_sample(event, &handle, &sample); 7473 7474 perf_output_end(&handle); 7475 } 7476 7477 /* 7478 * Lost/dropped samples logging 7479 */ 7480 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7481 { 7482 struct perf_output_handle handle; 7483 struct perf_sample_data sample; 7484 int ret; 7485 7486 struct { 7487 struct perf_event_header header; 7488 u64 lost; 7489 } lost_samples_event = { 7490 .header = { 7491 .type = PERF_RECORD_LOST_SAMPLES, 7492 .misc = 0, 7493 .size = sizeof(lost_samples_event), 7494 }, 7495 .lost = lost, 7496 }; 7497 7498 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7499 7500 ret = perf_output_begin(&handle, event, 7501 lost_samples_event.header.size); 7502 if (ret) 7503 return; 7504 7505 perf_output_put(&handle, lost_samples_event); 7506 perf_event__output_id_sample(event, &handle, &sample); 7507 perf_output_end(&handle); 7508 } 7509 7510 /* 7511 * context_switch tracking 7512 */ 7513 7514 struct perf_switch_event { 7515 struct task_struct *task; 7516 struct task_struct *next_prev; 7517 7518 struct { 7519 struct perf_event_header header; 7520 u32 next_prev_pid; 7521 u32 next_prev_tid; 7522 } event_id; 7523 }; 7524 7525 static int perf_event_switch_match(struct perf_event *event) 7526 { 7527 return event->attr.context_switch; 7528 } 7529 7530 static void perf_event_switch_output(struct perf_event *event, void *data) 7531 { 7532 struct perf_switch_event *se = data; 7533 struct perf_output_handle handle; 7534 struct perf_sample_data sample; 7535 int ret; 7536 7537 if (!perf_event_switch_match(event)) 7538 return; 7539 7540 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7541 if (event->ctx->task) { 7542 se->event_id.header.type = PERF_RECORD_SWITCH; 7543 se->event_id.header.size = sizeof(se->event_id.header); 7544 } else { 7545 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7546 se->event_id.header.size = sizeof(se->event_id); 7547 se->event_id.next_prev_pid = 7548 perf_event_pid(event, se->next_prev); 7549 se->event_id.next_prev_tid = 7550 perf_event_tid(event, se->next_prev); 7551 } 7552 7553 perf_event_header__init_id(&se->event_id.header, &sample, event); 7554 7555 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7556 if (ret) 7557 return; 7558 7559 if (event->ctx->task) 7560 perf_output_put(&handle, se->event_id.header); 7561 else 7562 perf_output_put(&handle, se->event_id); 7563 7564 perf_event__output_id_sample(event, &handle, &sample); 7565 7566 perf_output_end(&handle); 7567 } 7568 7569 static void perf_event_switch(struct task_struct *task, 7570 struct task_struct *next_prev, bool sched_in) 7571 { 7572 struct perf_switch_event switch_event; 7573 7574 /* N.B. caller checks nr_switch_events != 0 */ 7575 7576 switch_event = (struct perf_switch_event){ 7577 .task = task, 7578 .next_prev = next_prev, 7579 .event_id = { 7580 .header = { 7581 /* .type */ 7582 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7583 /* .size */ 7584 }, 7585 /* .next_prev_pid */ 7586 /* .next_prev_tid */ 7587 }, 7588 }; 7589 7590 perf_iterate_sb(perf_event_switch_output, 7591 &switch_event, 7592 NULL); 7593 } 7594 7595 /* 7596 * IRQ throttle logging 7597 */ 7598 7599 static void perf_log_throttle(struct perf_event *event, int enable) 7600 { 7601 struct perf_output_handle handle; 7602 struct perf_sample_data sample; 7603 int ret; 7604 7605 struct { 7606 struct perf_event_header header; 7607 u64 time; 7608 u64 id; 7609 u64 stream_id; 7610 } throttle_event = { 7611 .header = { 7612 .type = PERF_RECORD_THROTTLE, 7613 .misc = 0, 7614 .size = sizeof(throttle_event), 7615 }, 7616 .time = perf_event_clock(event), 7617 .id = primary_event_id(event), 7618 .stream_id = event->id, 7619 }; 7620 7621 if (enable) 7622 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7623 7624 perf_event_header__init_id(&throttle_event.header, &sample, event); 7625 7626 ret = perf_output_begin(&handle, event, 7627 throttle_event.header.size); 7628 if (ret) 7629 return; 7630 7631 perf_output_put(&handle, throttle_event); 7632 perf_event__output_id_sample(event, &handle, &sample); 7633 perf_output_end(&handle); 7634 } 7635 7636 void perf_event_itrace_started(struct perf_event *event) 7637 { 7638 event->attach_state |= PERF_ATTACH_ITRACE; 7639 } 7640 7641 static void perf_log_itrace_start(struct perf_event *event) 7642 { 7643 struct perf_output_handle handle; 7644 struct perf_sample_data sample; 7645 struct perf_aux_event { 7646 struct perf_event_header header; 7647 u32 pid; 7648 u32 tid; 7649 } rec; 7650 int ret; 7651 7652 if (event->parent) 7653 event = event->parent; 7654 7655 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7656 event->attach_state & PERF_ATTACH_ITRACE) 7657 return; 7658 7659 rec.header.type = PERF_RECORD_ITRACE_START; 7660 rec.header.misc = 0; 7661 rec.header.size = sizeof(rec); 7662 rec.pid = perf_event_pid(event, current); 7663 rec.tid = perf_event_tid(event, current); 7664 7665 perf_event_header__init_id(&rec.header, &sample, event); 7666 ret = perf_output_begin(&handle, event, rec.header.size); 7667 7668 if (ret) 7669 return; 7670 7671 perf_output_put(&handle, rec); 7672 perf_event__output_id_sample(event, &handle, &sample); 7673 7674 perf_output_end(&handle); 7675 } 7676 7677 static int 7678 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7679 { 7680 struct hw_perf_event *hwc = &event->hw; 7681 int ret = 0; 7682 u64 seq; 7683 7684 seq = __this_cpu_read(perf_throttled_seq); 7685 if (seq != hwc->interrupts_seq) { 7686 hwc->interrupts_seq = seq; 7687 hwc->interrupts = 1; 7688 } else { 7689 hwc->interrupts++; 7690 if (unlikely(throttle 7691 && hwc->interrupts >= max_samples_per_tick)) { 7692 __this_cpu_inc(perf_throttled_count); 7693 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7694 hwc->interrupts = MAX_INTERRUPTS; 7695 perf_log_throttle(event, 0); 7696 ret = 1; 7697 } 7698 } 7699 7700 if (event->attr.freq) { 7701 u64 now = perf_clock(); 7702 s64 delta = now - hwc->freq_time_stamp; 7703 7704 hwc->freq_time_stamp = now; 7705 7706 if (delta > 0 && delta < 2*TICK_NSEC) 7707 perf_adjust_period(event, delta, hwc->last_period, true); 7708 } 7709 7710 return ret; 7711 } 7712 7713 int perf_event_account_interrupt(struct perf_event *event) 7714 { 7715 return __perf_event_account_interrupt(event, 1); 7716 } 7717 7718 /* 7719 * Generic event overflow handling, sampling. 7720 */ 7721 7722 static int __perf_event_overflow(struct perf_event *event, 7723 int throttle, struct perf_sample_data *data, 7724 struct pt_regs *regs) 7725 { 7726 int events = atomic_read(&event->event_limit); 7727 int ret = 0; 7728 7729 /* 7730 * Non-sampling counters might still use the PMI to fold short 7731 * hardware counters, ignore those. 7732 */ 7733 if (unlikely(!is_sampling_event(event))) 7734 return 0; 7735 7736 ret = __perf_event_account_interrupt(event, throttle); 7737 7738 /* 7739 * XXX event_limit might not quite work as expected on inherited 7740 * events 7741 */ 7742 7743 event->pending_kill = POLL_IN; 7744 if (events && atomic_dec_and_test(&event->event_limit)) { 7745 ret = 1; 7746 event->pending_kill = POLL_HUP; 7747 7748 perf_event_disable_inatomic(event); 7749 } 7750 7751 READ_ONCE(event->overflow_handler)(event, data, regs); 7752 7753 if (*perf_event_fasync(event) && event->pending_kill) { 7754 event->pending_wakeup = 1; 7755 irq_work_queue(&event->pending); 7756 } 7757 7758 return ret; 7759 } 7760 7761 int perf_event_overflow(struct perf_event *event, 7762 struct perf_sample_data *data, 7763 struct pt_regs *regs) 7764 { 7765 return __perf_event_overflow(event, 1, data, regs); 7766 } 7767 7768 /* 7769 * Generic software event infrastructure 7770 */ 7771 7772 struct swevent_htable { 7773 struct swevent_hlist *swevent_hlist; 7774 struct mutex hlist_mutex; 7775 int hlist_refcount; 7776 7777 /* Recursion avoidance in each contexts */ 7778 int recursion[PERF_NR_CONTEXTS]; 7779 }; 7780 7781 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7782 7783 /* 7784 * We directly increment event->count and keep a second value in 7785 * event->hw.period_left to count intervals. This period event 7786 * is kept in the range [-sample_period, 0] so that we can use the 7787 * sign as trigger. 7788 */ 7789 7790 u64 perf_swevent_set_period(struct perf_event *event) 7791 { 7792 struct hw_perf_event *hwc = &event->hw; 7793 u64 period = hwc->last_period; 7794 u64 nr, offset; 7795 s64 old, val; 7796 7797 hwc->last_period = hwc->sample_period; 7798 7799 again: 7800 old = val = local64_read(&hwc->period_left); 7801 if (val < 0) 7802 return 0; 7803 7804 nr = div64_u64(period + val, period); 7805 offset = nr * period; 7806 val -= offset; 7807 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7808 goto again; 7809 7810 return nr; 7811 } 7812 7813 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7814 struct perf_sample_data *data, 7815 struct pt_regs *regs) 7816 { 7817 struct hw_perf_event *hwc = &event->hw; 7818 int throttle = 0; 7819 7820 if (!overflow) 7821 overflow = perf_swevent_set_period(event); 7822 7823 if (hwc->interrupts == MAX_INTERRUPTS) 7824 return; 7825 7826 for (; overflow; overflow--) { 7827 if (__perf_event_overflow(event, throttle, 7828 data, regs)) { 7829 /* 7830 * We inhibit the overflow from happening when 7831 * hwc->interrupts == MAX_INTERRUPTS. 7832 */ 7833 break; 7834 } 7835 throttle = 1; 7836 } 7837 } 7838 7839 static void perf_swevent_event(struct perf_event *event, u64 nr, 7840 struct perf_sample_data *data, 7841 struct pt_regs *regs) 7842 { 7843 struct hw_perf_event *hwc = &event->hw; 7844 7845 local64_add(nr, &event->count); 7846 7847 if (!regs) 7848 return; 7849 7850 if (!is_sampling_event(event)) 7851 return; 7852 7853 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7854 data->period = nr; 7855 return perf_swevent_overflow(event, 1, data, regs); 7856 } else 7857 data->period = event->hw.last_period; 7858 7859 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7860 return perf_swevent_overflow(event, 1, data, regs); 7861 7862 if (local64_add_negative(nr, &hwc->period_left)) 7863 return; 7864 7865 perf_swevent_overflow(event, 0, data, regs); 7866 } 7867 7868 static int perf_exclude_event(struct perf_event *event, 7869 struct pt_regs *regs) 7870 { 7871 if (event->hw.state & PERF_HES_STOPPED) 7872 return 1; 7873 7874 if (regs) { 7875 if (event->attr.exclude_user && user_mode(regs)) 7876 return 1; 7877 7878 if (event->attr.exclude_kernel && !user_mode(regs)) 7879 return 1; 7880 } 7881 7882 return 0; 7883 } 7884 7885 static int perf_swevent_match(struct perf_event *event, 7886 enum perf_type_id type, 7887 u32 event_id, 7888 struct perf_sample_data *data, 7889 struct pt_regs *regs) 7890 { 7891 if (event->attr.type != type) 7892 return 0; 7893 7894 if (event->attr.config != event_id) 7895 return 0; 7896 7897 if (perf_exclude_event(event, regs)) 7898 return 0; 7899 7900 return 1; 7901 } 7902 7903 static inline u64 swevent_hash(u64 type, u32 event_id) 7904 { 7905 u64 val = event_id | (type << 32); 7906 7907 return hash_64(val, SWEVENT_HLIST_BITS); 7908 } 7909 7910 static inline struct hlist_head * 7911 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7912 { 7913 u64 hash = swevent_hash(type, event_id); 7914 7915 return &hlist->heads[hash]; 7916 } 7917 7918 /* For the read side: events when they trigger */ 7919 static inline struct hlist_head * 7920 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7921 { 7922 struct swevent_hlist *hlist; 7923 7924 hlist = rcu_dereference(swhash->swevent_hlist); 7925 if (!hlist) 7926 return NULL; 7927 7928 return __find_swevent_head(hlist, type, event_id); 7929 } 7930 7931 /* For the event head insertion and removal in the hlist */ 7932 static inline struct hlist_head * 7933 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7934 { 7935 struct swevent_hlist *hlist; 7936 u32 event_id = event->attr.config; 7937 u64 type = event->attr.type; 7938 7939 /* 7940 * Event scheduling is always serialized against hlist allocation 7941 * and release. Which makes the protected version suitable here. 7942 * The context lock guarantees that. 7943 */ 7944 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7945 lockdep_is_held(&event->ctx->lock)); 7946 if (!hlist) 7947 return NULL; 7948 7949 return __find_swevent_head(hlist, type, event_id); 7950 } 7951 7952 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7953 u64 nr, 7954 struct perf_sample_data *data, 7955 struct pt_regs *regs) 7956 { 7957 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7958 struct perf_event *event; 7959 struct hlist_head *head; 7960 7961 rcu_read_lock(); 7962 head = find_swevent_head_rcu(swhash, type, event_id); 7963 if (!head) 7964 goto end; 7965 7966 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7967 if (perf_swevent_match(event, type, event_id, data, regs)) 7968 perf_swevent_event(event, nr, data, regs); 7969 } 7970 end: 7971 rcu_read_unlock(); 7972 } 7973 7974 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7975 7976 int perf_swevent_get_recursion_context(void) 7977 { 7978 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7979 7980 return get_recursion_context(swhash->recursion); 7981 } 7982 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7983 7984 void perf_swevent_put_recursion_context(int rctx) 7985 { 7986 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7987 7988 put_recursion_context(swhash->recursion, rctx); 7989 } 7990 7991 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7992 { 7993 struct perf_sample_data data; 7994 7995 if (WARN_ON_ONCE(!regs)) 7996 return; 7997 7998 perf_sample_data_init(&data, addr, 0); 7999 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8000 } 8001 8002 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8003 { 8004 int rctx; 8005 8006 preempt_disable_notrace(); 8007 rctx = perf_swevent_get_recursion_context(); 8008 if (unlikely(rctx < 0)) 8009 goto fail; 8010 8011 ___perf_sw_event(event_id, nr, regs, addr); 8012 8013 perf_swevent_put_recursion_context(rctx); 8014 fail: 8015 preempt_enable_notrace(); 8016 } 8017 8018 static void perf_swevent_read(struct perf_event *event) 8019 { 8020 } 8021 8022 static int perf_swevent_add(struct perf_event *event, int flags) 8023 { 8024 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8025 struct hw_perf_event *hwc = &event->hw; 8026 struct hlist_head *head; 8027 8028 if (is_sampling_event(event)) { 8029 hwc->last_period = hwc->sample_period; 8030 perf_swevent_set_period(event); 8031 } 8032 8033 hwc->state = !(flags & PERF_EF_START); 8034 8035 head = find_swevent_head(swhash, event); 8036 if (WARN_ON_ONCE(!head)) 8037 return -EINVAL; 8038 8039 hlist_add_head_rcu(&event->hlist_entry, head); 8040 perf_event_update_userpage(event); 8041 8042 return 0; 8043 } 8044 8045 static void perf_swevent_del(struct perf_event *event, int flags) 8046 { 8047 hlist_del_rcu(&event->hlist_entry); 8048 } 8049 8050 static void perf_swevent_start(struct perf_event *event, int flags) 8051 { 8052 event->hw.state = 0; 8053 } 8054 8055 static void perf_swevent_stop(struct perf_event *event, int flags) 8056 { 8057 event->hw.state = PERF_HES_STOPPED; 8058 } 8059 8060 /* Deref the hlist from the update side */ 8061 static inline struct swevent_hlist * 8062 swevent_hlist_deref(struct swevent_htable *swhash) 8063 { 8064 return rcu_dereference_protected(swhash->swevent_hlist, 8065 lockdep_is_held(&swhash->hlist_mutex)); 8066 } 8067 8068 static void swevent_hlist_release(struct swevent_htable *swhash) 8069 { 8070 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 8071 8072 if (!hlist) 8073 return; 8074 8075 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 8076 kfree_rcu(hlist, rcu_head); 8077 } 8078 8079 static void swevent_hlist_put_cpu(int cpu) 8080 { 8081 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8082 8083 mutex_lock(&swhash->hlist_mutex); 8084 8085 if (!--swhash->hlist_refcount) 8086 swevent_hlist_release(swhash); 8087 8088 mutex_unlock(&swhash->hlist_mutex); 8089 } 8090 8091 static void swevent_hlist_put(void) 8092 { 8093 int cpu; 8094 8095 for_each_possible_cpu(cpu) 8096 swevent_hlist_put_cpu(cpu); 8097 } 8098 8099 static int swevent_hlist_get_cpu(int cpu) 8100 { 8101 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8102 int err = 0; 8103 8104 mutex_lock(&swhash->hlist_mutex); 8105 if (!swevent_hlist_deref(swhash) && 8106 cpumask_test_cpu(cpu, perf_online_mask)) { 8107 struct swevent_hlist *hlist; 8108 8109 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 8110 if (!hlist) { 8111 err = -ENOMEM; 8112 goto exit; 8113 } 8114 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8115 } 8116 swhash->hlist_refcount++; 8117 exit: 8118 mutex_unlock(&swhash->hlist_mutex); 8119 8120 return err; 8121 } 8122 8123 static int swevent_hlist_get(void) 8124 { 8125 int err, cpu, failed_cpu; 8126 8127 mutex_lock(&pmus_lock); 8128 for_each_possible_cpu(cpu) { 8129 err = swevent_hlist_get_cpu(cpu); 8130 if (err) { 8131 failed_cpu = cpu; 8132 goto fail; 8133 } 8134 } 8135 mutex_unlock(&pmus_lock); 8136 return 0; 8137 fail: 8138 for_each_possible_cpu(cpu) { 8139 if (cpu == failed_cpu) 8140 break; 8141 swevent_hlist_put_cpu(cpu); 8142 } 8143 mutex_unlock(&pmus_lock); 8144 return err; 8145 } 8146 8147 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 8148 8149 static void sw_perf_event_destroy(struct perf_event *event) 8150 { 8151 u64 event_id = event->attr.config; 8152 8153 WARN_ON(event->parent); 8154 8155 static_key_slow_dec(&perf_swevent_enabled[event_id]); 8156 swevent_hlist_put(); 8157 } 8158 8159 static int perf_swevent_init(struct perf_event *event) 8160 { 8161 u64 event_id = event->attr.config; 8162 8163 if (event->attr.type != PERF_TYPE_SOFTWARE) 8164 return -ENOENT; 8165 8166 /* 8167 * no branch sampling for software events 8168 */ 8169 if (has_branch_stack(event)) 8170 return -EOPNOTSUPP; 8171 8172 switch (event_id) { 8173 case PERF_COUNT_SW_CPU_CLOCK: 8174 case PERF_COUNT_SW_TASK_CLOCK: 8175 return -ENOENT; 8176 8177 default: 8178 break; 8179 } 8180 8181 if (event_id >= PERF_COUNT_SW_MAX) 8182 return -ENOENT; 8183 8184 if (!event->parent) { 8185 int err; 8186 8187 err = swevent_hlist_get(); 8188 if (err) 8189 return err; 8190 8191 static_key_slow_inc(&perf_swevent_enabled[event_id]); 8192 event->destroy = sw_perf_event_destroy; 8193 } 8194 8195 return 0; 8196 } 8197 8198 static struct pmu perf_swevent = { 8199 .task_ctx_nr = perf_sw_context, 8200 8201 .capabilities = PERF_PMU_CAP_NO_NMI, 8202 8203 .event_init = perf_swevent_init, 8204 .add = perf_swevent_add, 8205 .del = perf_swevent_del, 8206 .start = perf_swevent_start, 8207 .stop = perf_swevent_stop, 8208 .read = perf_swevent_read, 8209 }; 8210 8211 #ifdef CONFIG_EVENT_TRACING 8212 8213 static int perf_tp_filter_match(struct perf_event *event, 8214 struct perf_sample_data *data) 8215 { 8216 void *record = data->raw->frag.data; 8217 8218 /* only top level events have filters set */ 8219 if (event->parent) 8220 event = event->parent; 8221 8222 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 8223 return 1; 8224 return 0; 8225 } 8226 8227 static int perf_tp_event_match(struct perf_event *event, 8228 struct perf_sample_data *data, 8229 struct pt_regs *regs) 8230 { 8231 if (event->hw.state & PERF_HES_STOPPED) 8232 return 0; 8233 /* 8234 * All tracepoints are from kernel-space. 8235 */ 8236 if (event->attr.exclude_kernel) 8237 return 0; 8238 8239 if (!perf_tp_filter_match(event, data)) 8240 return 0; 8241 8242 return 1; 8243 } 8244 8245 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 8246 struct trace_event_call *call, u64 count, 8247 struct pt_regs *regs, struct hlist_head *head, 8248 struct task_struct *task) 8249 { 8250 if (bpf_prog_array_valid(call)) { 8251 *(struct pt_regs **)raw_data = regs; 8252 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 8253 perf_swevent_put_recursion_context(rctx); 8254 return; 8255 } 8256 } 8257 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 8258 rctx, task); 8259 } 8260 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 8261 8262 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 8263 struct pt_regs *regs, struct hlist_head *head, int rctx, 8264 struct task_struct *task) 8265 { 8266 struct perf_sample_data data; 8267 struct perf_event *event; 8268 8269 struct perf_raw_record raw = { 8270 .frag = { 8271 .size = entry_size, 8272 .data = record, 8273 }, 8274 }; 8275 8276 perf_sample_data_init(&data, 0, 0); 8277 data.raw = &raw; 8278 8279 perf_trace_buf_update(record, event_type); 8280 8281 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8282 if (perf_tp_event_match(event, &data, regs)) 8283 perf_swevent_event(event, count, &data, regs); 8284 } 8285 8286 /* 8287 * If we got specified a target task, also iterate its context and 8288 * deliver this event there too. 8289 */ 8290 if (task && task != current) { 8291 struct perf_event_context *ctx; 8292 struct trace_entry *entry = record; 8293 8294 rcu_read_lock(); 8295 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8296 if (!ctx) 8297 goto unlock; 8298 8299 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8300 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8301 continue; 8302 if (event->attr.config != entry->type) 8303 continue; 8304 if (perf_tp_event_match(event, &data, regs)) 8305 perf_swevent_event(event, count, &data, regs); 8306 } 8307 unlock: 8308 rcu_read_unlock(); 8309 } 8310 8311 perf_swevent_put_recursion_context(rctx); 8312 } 8313 EXPORT_SYMBOL_GPL(perf_tp_event); 8314 8315 static void tp_perf_event_destroy(struct perf_event *event) 8316 { 8317 perf_trace_destroy(event); 8318 } 8319 8320 static int perf_tp_event_init(struct perf_event *event) 8321 { 8322 int err; 8323 8324 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8325 return -ENOENT; 8326 8327 /* 8328 * no branch sampling for tracepoint events 8329 */ 8330 if (has_branch_stack(event)) 8331 return -EOPNOTSUPP; 8332 8333 err = perf_trace_init(event); 8334 if (err) 8335 return err; 8336 8337 event->destroy = tp_perf_event_destroy; 8338 8339 return 0; 8340 } 8341 8342 static struct pmu perf_tracepoint = { 8343 .task_ctx_nr = perf_sw_context, 8344 8345 .event_init = perf_tp_event_init, 8346 .add = perf_trace_add, 8347 .del = perf_trace_del, 8348 .start = perf_swevent_start, 8349 .stop = perf_swevent_stop, 8350 .read = perf_swevent_read, 8351 }; 8352 8353 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 8354 /* 8355 * Flags in config, used by dynamic PMU kprobe and uprobe 8356 * The flags should match following PMU_FORMAT_ATTR(). 8357 * 8358 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 8359 * if not set, create kprobe/uprobe 8360 */ 8361 enum perf_probe_config { 8362 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 8363 }; 8364 8365 PMU_FORMAT_ATTR(retprobe, "config:0"); 8366 8367 static struct attribute *probe_attrs[] = { 8368 &format_attr_retprobe.attr, 8369 NULL, 8370 }; 8371 8372 static struct attribute_group probe_format_group = { 8373 .name = "format", 8374 .attrs = probe_attrs, 8375 }; 8376 8377 static const struct attribute_group *probe_attr_groups[] = { 8378 &probe_format_group, 8379 NULL, 8380 }; 8381 #endif 8382 8383 #ifdef CONFIG_KPROBE_EVENTS 8384 static int perf_kprobe_event_init(struct perf_event *event); 8385 static struct pmu perf_kprobe = { 8386 .task_ctx_nr = perf_sw_context, 8387 .event_init = perf_kprobe_event_init, 8388 .add = perf_trace_add, 8389 .del = perf_trace_del, 8390 .start = perf_swevent_start, 8391 .stop = perf_swevent_stop, 8392 .read = perf_swevent_read, 8393 .attr_groups = probe_attr_groups, 8394 }; 8395 8396 static int perf_kprobe_event_init(struct perf_event *event) 8397 { 8398 int err; 8399 bool is_retprobe; 8400 8401 if (event->attr.type != perf_kprobe.type) 8402 return -ENOENT; 8403 8404 if (!capable(CAP_SYS_ADMIN)) 8405 return -EACCES; 8406 8407 /* 8408 * no branch sampling for probe events 8409 */ 8410 if (has_branch_stack(event)) 8411 return -EOPNOTSUPP; 8412 8413 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8414 err = perf_kprobe_init(event, is_retprobe); 8415 if (err) 8416 return err; 8417 8418 event->destroy = perf_kprobe_destroy; 8419 8420 return 0; 8421 } 8422 #endif /* CONFIG_KPROBE_EVENTS */ 8423 8424 #ifdef CONFIG_UPROBE_EVENTS 8425 static int perf_uprobe_event_init(struct perf_event *event); 8426 static struct pmu perf_uprobe = { 8427 .task_ctx_nr = perf_sw_context, 8428 .event_init = perf_uprobe_event_init, 8429 .add = perf_trace_add, 8430 .del = perf_trace_del, 8431 .start = perf_swevent_start, 8432 .stop = perf_swevent_stop, 8433 .read = perf_swevent_read, 8434 .attr_groups = probe_attr_groups, 8435 }; 8436 8437 static int perf_uprobe_event_init(struct perf_event *event) 8438 { 8439 int err; 8440 bool is_retprobe; 8441 8442 if (event->attr.type != perf_uprobe.type) 8443 return -ENOENT; 8444 8445 if (!capable(CAP_SYS_ADMIN)) 8446 return -EACCES; 8447 8448 /* 8449 * no branch sampling for probe events 8450 */ 8451 if (has_branch_stack(event)) 8452 return -EOPNOTSUPP; 8453 8454 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8455 err = perf_uprobe_init(event, is_retprobe); 8456 if (err) 8457 return err; 8458 8459 event->destroy = perf_uprobe_destroy; 8460 8461 return 0; 8462 } 8463 #endif /* CONFIG_UPROBE_EVENTS */ 8464 8465 static inline void perf_tp_register(void) 8466 { 8467 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8468 #ifdef CONFIG_KPROBE_EVENTS 8469 perf_pmu_register(&perf_kprobe, "kprobe", -1); 8470 #endif 8471 #ifdef CONFIG_UPROBE_EVENTS 8472 perf_pmu_register(&perf_uprobe, "uprobe", -1); 8473 #endif 8474 } 8475 8476 static void perf_event_free_filter(struct perf_event *event) 8477 { 8478 ftrace_profile_free_filter(event); 8479 } 8480 8481 #ifdef CONFIG_BPF_SYSCALL 8482 static void bpf_overflow_handler(struct perf_event *event, 8483 struct perf_sample_data *data, 8484 struct pt_regs *regs) 8485 { 8486 struct bpf_perf_event_data_kern ctx = { 8487 .data = data, 8488 .event = event, 8489 }; 8490 int ret = 0; 8491 8492 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 8493 preempt_disable(); 8494 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8495 goto out; 8496 rcu_read_lock(); 8497 ret = BPF_PROG_RUN(event->prog, &ctx); 8498 rcu_read_unlock(); 8499 out: 8500 __this_cpu_dec(bpf_prog_active); 8501 preempt_enable(); 8502 if (!ret) 8503 return; 8504 8505 event->orig_overflow_handler(event, data, regs); 8506 } 8507 8508 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8509 { 8510 struct bpf_prog *prog; 8511 8512 if (event->overflow_handler_context) 8513 /* hw breakpoint or kernel counter */ 8514 return -EINVAL; 8515 8516 if (event->prog) 8517 return -EEXIST; 8518 8519 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8520 if (IS_ERR(prog)) 8521 return PTR_ERR(prog); 8522 8523 event->prog = prog; 8524 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8525 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8526 return 0; 8527 } 8528 8529 static void perf_event_free_bpf_handler(struct perf_event *event) 8530 { 8531 struct bpf_prog *prog = event->prog; 8532 8533 if (!prog) 8534 return; 8535 8536 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8537 event->prog = NULL; 8538 bpf_prog_put(prog); 8539 } 8540 #else 8541 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8542 { 8543 return -EOPNOTSUPP; 8544 } 8545 static void perf_event_free_bpf_handler(struct perf_event *event) 8546 { 8547 } 8548 #endif 8549 8550 /* 8551 * returns true if the event is a tracepoint, or a kprobe/upprobe created 8552 * with perf_event_open() 8553 */ 8554 static inline bool perf_event_is_tracing(struct perf_event *event) 8555 { 8556 if (event->pmu == &perf_tracepoint) 8557 return true; 8558 #ifdef CONFIG_KPROBE_EVENTS 8559 if (event->pmu == &perf_kprobe) 8560 return true; 8561 #endif 8562 #ifdef CONFIG_UPROBE_EVENTS 8563 if (event->pmu == &perf_uprobe) 8564 return true; 8565 #endif 8566 return false; 8567 } 8568 8569 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8570 { 8571 bool is_kprobe, is_tracepoint, is_syscall_tp; 8572 struct bpf_prog *prog; 8573 int ret; 8574 8575 if (!perf_event_is_tracing(event)) 8576 return perf_event_set_bpf_handler(event, prog_fd); 8577 8578 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8579 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8580 is_syscall_tp = is_syscall_trace_event(event->tp_event); 8581 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 8582 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8583 return -EINVAL; 8584 8585 prog = bpf_prog_get(prog_fd); 8586 if (IS_ERR(prog)) 8587 return PTR_ERR(prog); 8588 8589 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8590 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 8591 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8592 /* valid fd, but invalid bpf program type */ 8593 bpf_prog_put(prog); 8594 return -EINVAL; 8595 } 8596 8597 /* Kprobe override only works for kprobes, not uprobes. */ 8598 if (prog->kprobe_override && 8599 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 8600 bpf_prog_put(prog); 8601 return -EINVAL; 8602 } 8603 8604 if (is_tracepoint || is_syscall_tp) { 8605 int off = trace_event_get_offsets(event->tp_event); 8606 8607 if (prog->aux->max_ctx_offset > off) { 8608 bpf_prog_put(prog); 8609 return -EACCES; 8610 } 8611 } 8612 8613 ret = perf_event_attach_bpf_prog(event, prog); 8614 if (ret) 8615 bpf_prog_put(prog); 8616 return ret; 8617 } 8618 8619 static void perf_event_free_bpf_prog(struct perf_event *event) 8620 { 8621 if (!perf_event_is_tracing(event)) { 8622 perf_event_free_bpf_handler(event); 8623 return; 8624 } 8625 perf_event_detach_bpf_prog(event); 8626 } 8627 8628 #else 8629 8630 static inline void perf_tp_register(void) 8631 { 8632 } 8633 8634 static void perf_event_free_filter(struct perf_event *event) 8635 { 8636 } 8637 8638 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8639 { 8640 return -ENOENT; 8641 } 8642 8643 static void perf_event_free_bpf_prog(struct perf_event *event) 8644 { 8645 } 8646 #endif /* CONFIG_EVENT_TRACING */ 8647 8648 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8649 void perf_bp_event(struct perf_event *bp, void *data) 8650 { 8651 struct perf_sample_data sample; 8652 struct pt_regs *regs = data; 8653 8654 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8655 8656 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8657 perf_swevent_event(bp, 1, &sample, regs); 8658 } 8659 #endif 8660 8661 /* 8662 * Allocate a new address filter 8663 */ 8664 static struct perf_addr_filter * 8665 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8666 { 8667 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 8668 struct perf_addr_filter *filter; 8669 8670 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 8671 if (!filter) 8672 return NULL; 8673 8674 INIT_LIST_HEAD(&filter->entry); 8675 list_add_tail(&filter->entry, filters); 8676 8677 return filter; 8678 } 8679 8680 static void free_filters_list(struct list_head *filters) 8681 { 8682 struct perf_addr_filter *filter, *iter; 8683 8684 list_for_each_entry_safe(filter, iter, filters, entry) { 8685 if (filter->inode) 8686 iput(filter->inode); 8687 list_del(&filter->entry); 8688 kfree(filter); 8689 } 8690 } 8691 8692 /* 8693 * Free existing address filters and optionally install new ones 8694 */ 8695 static void perf_addr_filters_splice(struct perf_event *event, 8696 struct list_head *head) 8697 { 8698 unsigned long flags; 8699 LIST_HEAD(list); 8700 8701 if (!has_addr_filter(event)) 8702 return; 8703 8704 /* don't bother with children, they don't have their own filters */ 8705 if (event->parent) 8706 return; 8707 8708 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 8709 8710 list_splice_init(&event->addr_filters.list, &list); 8711 if (head) 8712 list_splice(head, &event->addr_filters.list); 8713 8714 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 8715 8716 free_filters_list(&list); 8717 } 8718 8719 /* 8720 * Scan through mm's vmas and see if one of them matches the 8721 * @filter; if so, adjust filter's address range. 8722 * Called with mm::mmap_sem down for reading. 8723 */ 8724 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 8725 struct mm_struct *mm) 8726 { 8727 struct vm_area_struct *vma; 8728 8729 for (vma = mm->mmap; vma; vma = vma->vm_next) { 8730 struct file *file = vma->vm_file; 8731 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8732 unsigned long vma_size = vma->vm_end - vma->vm_start; 8733 8734 if (!file) 8735 continue; 8736 8737 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8738 continue; 8739 8740 return vma->vm_start; 8741 } 8742 8743 return 0; 8744 } 8745 8746 /* 8747 * Update event's address range filters based on the 8748 * task's existing mappings, if any. 8749 */ 8750 static void perf_event_addr_filters_apply(struct perf_event *event) 8751 { 8752 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8753 struct task_struct *task = READ_ONCE(event->ctx->task); 8754 struct perf_addr_filter *filter; 8755 struct mm_struct *mm = NULL; 8756 unsigned int count = 0; 8757 unsigned long flags; 8758 8759 /* 8760 * We may observe TASK_TOMBSTONE, which means that the event tear-down 8761 * will stop on the parent's child_mutex that our caller is also holding 8762 */ 8763 if (task == TASK_TOMBSTONE) 8764 return; 8765 8766 if (!ifh->nr_file_filters) 8767 return; 8768 8769 mm = get_task_mm(event->ctx->task); 8770 if (!mm) 8771 goto restart; 8772 8773 down_read(&mm->mmap_sem); 8774 8775 raw_spin_lock_irqsave(&ifh->lock, flags); 8776 list_for_each_entry(filter, &ifh->list, entry) { 8777 event->addr_filters_offs[count] = 0; 8778 8779 /* 8780 * Adjust base offset if the filter is associated to a binary 8781 * that needs to be mapped: 8782 */ 8783 if (filter->inode) 8784 event->addr_filters_offs[count] = 8785 perf_addr_filter_apply(filter, mm); 8786 8787 count++; 8788 } 8789 8790 event->addr_filters_gen++; 8791 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8792 8793 up_read(&mm->mmap_sem); 8794 8795 mmput(mm); 8796 8797 restart: 8798 perf_event_stop(event, 1); 8799 } 8800 8801 /* 8802 * Address range filtering: limiting the data to certain 8803 * instruction address ranges. Filters are ioctl()ed to us from 8804 * userspace as ascii strings. 8805 * 8806 * Filter string format: 8807 * 8808 * ACTION RANGE_SPEC 8809 * where ACTION is one of the 8810 * * "filter": limit the trace to this region 8811 * * "start": start tracing from this address 8812 * * "stop": stop tracing at this address/region; 8813 * RANGE_SPEC is 8814 * * for kernel addresses: <start address>[/<size>] 8815 * * for object files: <start address>[/<size>]@</path/to/object/file> 8816 * 8817 * if <size> is not specified or is zero, the range is treated as a single 8818 * address; not valid for ACTION=="filter". 8819 */ 8820 enum { 8821 IF_ACT_NONE = -1, 8822 IF_ACT_FILTER, 8823 IF_ACT_START, 8824 IF_ACT_STOP, 8825 IF_SRC_FILE, 8826 IF_SRC_KERNEL, 8827 IF_SRC_FILEADDR, 8828 IF_SRC_KERNELADDR, 8829 }; 8830 8831 enum { 8832 IF_STATE_ACTION = 0, 8833 IF_STATE_SOURCE, 8834 IF_STATE_END, 8835 }; 8836 8837 static const match_table_t if_tokens = { 8838 { IF_ACT_FILTER, "filter" }, 8839 { IF_ACT_START, "start" }, 8840 { IF_ACT_STOP, "stop" }, 8841 { IF_SRC_FILE, "%u/%u@%s" }, 8842 { IF_SRC_KERNEL, "%u/%u" }, 8843 { IF_SRC_FILEADDR, "%u@%s" }, 8844 { IF_SRC_KERNELADDR, "%u" }, 8845 { IF_ACT_NONE, NULL }, 8846 }; 8847 8848 /* 8849 * Address filter string parser 8850 */ 8851 static int 8852 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8853 struct list_head *filters) 8854 { 8855 struct perf_addr_filter *filter = NULL; 8856 char *start, *orig, *filename = NULL; 8857 struct path path; 8858 substring_t args[MAX_OPT_ARGS]; 8859 int state = IF_STATE_ACTION, token; 8860 unsigned int kernel = 0; 8861 int ret = -EINVAL; 8862 8863 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8864 if (!fstr) 8865 return -ENOMEM; 8866 8867 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8868 static const enum perf_addr_filter_action_t actions[] = { 8869 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 8870 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 8871 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 8872 }; 8873 ret = -EINVAL; 8874 8875 if (!*start) 8876 continue; 8877 8878 /* filter definition begins */ 8879 if (state == IF_STATE_ACTION) { 8880 filter = perf_addr_filter_new(event, filters); 8881 if (!filter) 8882 goto fail; 8883 } 8884 8885 token = match_token(start, if_tokens, args); 8886 switch (token) { 8887 case IF_ACT_FILTER: 8888 case IF_ACT_START: 8889 case IF_ACT_STOP: 8890 if (state != IF_STATE_ACTION) 8891 goto fail; 8892 8893 filter->action = actions[token]; 8894 state = IF_STATE_SOURCE; 8895 break; 8896 8897 case IF_SRC_KERNELADDR: 8898 case IF_SRC_KERNEL: 8899 kernel = 1; 8900 8901 case IF_SRC_FILEADDR: 8902 case IF_SRC_FILE: 8903 if (state != IF_STATE_SOURCE) 8904 goto fail; 8905 8906 *args[0].to = 0; 8907 ret = kstrtoul(args[0].from, 0, &filter->offset); 8908 if (ret) 8909 goto fail; 8910 8911 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 8912 *args[1].to = 0; 8913 ret = kstrtoul(args[1].from, 0, &filter->size); 8914 if (ret) 8915 goto fail; 8916 } 8917 8918 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8919 int fpos = token == IF_SRC_FILE ? 2 : 1; 8920 8921 filename = match_strdup(&args[fpos]); 8922 if (!filename) { 8923 ret = -ENOMEM; 8924 goto fail; 8925 } 8926 } 8927 8928 state = IF_STATE_END; 8929 break; 8930 8931 default: 8932 goto fail; 8933 } 8934 8935 /* 8936 * Filter definition is fully parsed, validate and install it. 8937 * Make sure that it doesn't contradict itself or the event's 8938 * attribute. 8939 */ 8940 if (state == IF_STATE_END) { 8941 ret = -EINVAL; 8942 if (kernel && event->attr.exclude_kernel) 8943 goto fail; 8944 8945 /* 8946 * ACTION "filter" must have a non-zero length region 8947 * specified. 8948 */ 8949 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 8950 !filter->size) 8951 goto fail; 8952 8953 if (!kernel) { 8954 if (!filename) 8955 goto fail; 8956 8957 /* 8958 * For now, we only support file-based filters 8959 * in per-task events; doing so for CPU-wide 8960 * events requires additional context switching 8961 * trickery, since same object code will be 8962 * mapped at different virtual addresses in 8963 * different processes. 8964 */ 8965 ret = -EOPNOTSUPP; 8966 if (!event->ctx->task) 8967 goto fail_free_name; 8968 8969 /* look up the path and grab its inode */ 8970 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8971 if (ret) 8972 goto fail_free_name; 8973 8974 filter->inode = igrab(d_inode(path.dentry)); 8975 path_put(&path); 8976 kfree(filename); 8977 filename = NULL; 8978 8979 ret = -EINVAL; 8980 if (!filter->inode || 8981 !S_ISREG(filter->inode->i_mode)) 8982 /* free_filters_list() will iput() */ 8983 goto fail; 8984 8985 event->addr_filters.nr_file_filters++; 8986 } 8987 8988 /* ready to consume more filters */ 8989 state = IF_STATE_ACTION; 8990 filter = NULL; 8991 } 8992 } 8993 8994 if (state != IF_STATE_ACTION) 8995 goto fail; 8996 8997 kfree(orig); 8998 8999 return 0; 9000 9001 fail_free_name: 9002 kfree(filename); 9003 fail: 9004 free_filters_list(filters); 9005 kfree(orig); 9006 9007 return ret; 9008 } 9009 9010 static int 9011 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 9012 { 9013 LIST_HEAD(filters); 9014 int ret; 9015 9016 /* 9017 * Since this is called in perf_ioctl() path, we're already holding 9018 * ctx::mutex. 9019 */ 9020 lockdep_assert_held(&event->ctx->mutex); 9021 9022 if (WARN_ON_ONCE(event->parent)) 9023 return -EINVAL; 9024 9025 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 9026 if (ret) 9027 goto fail_clear_files; 9028 9029 ret = event->pmu->addr_filters_validate(&filters); 9030 if (ret) 9031 goto fail_free_filters; 9032 9033 /* remove existing filters, if any */ 9034 perf_addr_filters_splice(event, &filters); 9035 9036 /* install new filters */ 9037 perf_event_for_each_child(event, perf_event_addr_filters_apply); 9038 9039 return ret; 9040 9041 fail_free_filters: 9042 free_filters_list(&filters); 9043 9044 fail_clear_files: 9045 event->addr_filters.nr_file_filters = 0; 9046 9047 return ret; 9048 } 9049 9050 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 9051 { 9052 int ret = -EINVAL; 9053 char *filter_str; 9054 9055 filter_str = strndup_user(arg, PAGE_SIZE); 9056 if (IS_ERR(filter_str)) 9057 return PTR_ERR(filter_str); 9058 9059 #ifdef CONFIG_EVENT_TRACING 9060 if (perf_event_is_tracing(event)) { 9061 struct perf_event_context *ctx = event->ctx; 9062 9063 /* 9064 * Beware, here be dragons!! 9065 * 9066 * the tracepoint muck will deadlock against ctx->mutex, but 9067 * the tracepoint stuff does not actually need it. So 9068 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 9069 * already have a reference on ctx. 9070 * 9071 * This can result in event getting moved to a different ctx, 9072 * but that does not affect the tracepoint state. 9073 */ 9074 mutex_unlock(&ctx->mutex); 9075 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 9076 mutex_lock(&ctx->mutex); 9077 } else 9078 #endif 9079 if (has_addr_filter(event)) 9080 ret = perf_event_set_addr_filter(event, filter_str); 9081 9082 kfree(filter_str); 9083 return ret; 9084 } 9085 9086 /* 9087 * hrtimer based swevent callback 9088 */ 9089 9090 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 9091 { 9092 enum hrtimer_restart ret = HRTIMER_RESTART; 9093 struct perf_sample_data data; 9094 struct pt_regs *regs; 9095 struct perf_event *event; 9096 u64 period; 9097 9098 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 9099 9100 if (event->state != PERF_EVENT_STATE_ACTIVE) 9101 return HRTIMER_NORESTART; 9102 9103 event->pmu->read(event); 9104 9105 perf_sample_data_init(&data, 0, event->hw.last_period); 9106 regs = get_irq_regs(); 9107 9108 if (regs && !perf_exclude_event(event, regs)) { 9109 if (!(event->attr.exclude_idle && is_idle_task(current))) 9110 if (__perf_event_overflow(event, 1, &data, regs)) 9111 ret = HRTIMER_NORESTART; 9112 } 9113 9114 period = max_t(u64, 10000, event->hw.sample_period); 9115 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 9116 9117 return ret; 9118 } 9119 9120 static void perf_swevent_start_hrtimer(struct perf_event *event) 9121 { 9122 struct hw_perf_event *hwc = &event->hw; 9123 s64 period; 9124 9125 if (!is_sampling_event(event)) 9126 return; 9127 9128 period = local64_read(&hwc->period_left); 9129 if (period) { 9130 if (period < 0) 9131 period = 10000; 9132 9133 local64_set(&hwc->period_left, 0); 9134 } else { 9135 period = max_t(u64, 10000, hwc->sample_period); 9136 } 9137 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 9138 HRTIMER_MODE_REL_PINNED); 9139 } 9140 9141 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 9142 { 9143 struct hw_perf_event *hwc = &event->hw; 9144 9145 if (is_sampling_event(event)) { 9146 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 9147 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 9148 9149 hrtimer_cancel(&hwc->hrtimer); 9150 } 9151 } 9152 9153 static void perf_swevent_init_hrtimer(struct perf_event *event) 9154 { 9155 struct hw_perf_event *hwc = &event->hw; 9156 9157 if (!is_sampling_event(event)) 9158 return; 9159 9160 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 9161 hwc->hrtimer.function = perf_swevent_hrtimer; 9162 9163 /* 9164 * Since hrtimers have a fixed rate, we can do a static freq->period 9165 * mapping and avoid the whole period adjust feedback stuff. 9166 */ 9167 if (event->attr.freq) { 9168 long freq = event->attr.sample_freq; 9169 9170 event->attr.sample_period = NSEC_PER_SEC / freq; 9171 hwc->sample_period = event->attr.sample_period; 9172 local64_set(&hwc->period_left, hwc->sample_period); 9173 hwc->last_period = hwc->sample_period; 9174 event->attr.freq = 0; 9175 } 9176 } 9177 9178 /* 9179 * Software event: cpu wall time clock 9180 */ 9181 9182 static void cpu_clock_event_update(struct perf_event *event) 9183 { 9184 s64 prev; 9185 u64 now; 9186 9187 now = local_clock(); 9188 prev = local64_xchg(&event->hw.prev_count, now); 9189 local64_add(now - prev, &event->count); 9190 } 9191 9192 static void cpu_clock_event_start(struct perf_event *event, int flags) 9193 { 9194 local64_set(&event->hw.prev_count, local_clock()); 9195 perf_swevent_start_hrtimer(event); 9196 } 9197 9198 static void cpu_clock_event_stop(struct perf_event *event, int flags) 9199 { 9200 perf_swevent_cancel_hrtimer(event); 9201 cpu_clock_event_update(event); 9202 } 9203 9204 static int cpu_clock_event_add(struct perf_event *event, int flags) 9205 { 9206 if (flags & PERF_EF_START) 9207 cpu_clock_event_start(event, flags); 9208 perf_event_update_userpage(event); 9209 9210 return 0; 9211 } 9212 9213 static void cpu_clock_event_del(struct perf_event *event, int flags) 9214 { 9215 cpu_clock_event_stop(event, flags); 9216 } 9217 9218 static void cpu_clock_event_read(struct perf_event *event) 9219 { 9220 cpu_clock_event_update(event); 9221 } 9222 9223 static int cpu_clock_event_init(struct perf_event *event) 9224 { 9225 if (event->attr.type != PERF_TYPE_SOFTWARE) 9226 return -ENOENT; 9227 9228 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 9229 return -ENOENT; 9230 9231 /* 9232 * no branch sampling for software events 9233 */ 9234 if (has_branch_stack(event)) 9235 return -EOPNOTSUPP; 9236 9237 perf_swevent_init_hrtimer(event); 9238 9239 return 0; 9240 } 9241 9242 static struct pmu perf_cpu_clock = { 9243 .task_ctx_nr = perf_sw_context, 9244 9245 .capabilities = PERF_PMU_CAP_NO_NMI, 9246 9247 .event_init = cpu_clock_event_init, 9248 .add = cpu_clock_event_add, 9249 .del = cpu_clock_event_del, 9250 .start = cpu_clock_event_start, 9251 .stop = cpu_clock_event_stop, 9252 .read = cpu_clock_event_read, 9253 }; 9254 9255 /* 9256 * Software event: task time clock 9257 */ 9258 9259 static void task_clock_event_update(struct perf_event *event, u64 now) 9260 { 9261 u64 prev; 9262 s64 delta; 9263 9264 prev = local64_xchg(&event->hw.prev_count, now); 9265 delta = now - prev; 9266 local64_add(delta, &event->count); 9267 } 9268 9269 static void task_clock_event_start(struct perf_event *event, int flags) 9270 { 9271 local64_set(&event->hw.prev_count, event->ctx->time); 9272 perf_swevent_start_hrtimer(event); 9273 } 9274 9275 static void task_clock_event_stop(struct perf_event *event, int flags) 9276 { 9277 perf_swevent_cancel_hrtimer(event); 9278 task_clock_event_update(event, event->ctx->time); 9279 } 9280 9281 static int task_clock_event_add(struct perf_event *event, int flags) 9282 { 9283 if (flags & PERF_EF_START) 9284 task_clock_event_start(event, flags); 9285 perf_event_update_userpage(event); 9286 9287 return 0; 9288 } 9289 9290 static void task_clock_event_del(struct perf_event *event, int flags) 9291 { 9292 task_clock_event_stop(event, PERF_EF_UPDATE); 9293 } 9294 9295 static void task_clock_event_read(struct perf_event *event) 9296 { 9297 u64 now = perf_clock(); 9298 u64 delta = now - event->ctx->timestamp; 9299 u64 time = event->ctx->time + delta; 9300 9301 task_clock_event_update(event, time); 9302 } 9303 9304 static int task_clock_event_init(struct perf_event *event) 9305 { 9306 if (event->attr.type != PERF_TYPE_SOFTWARE) 9307 return -ENOENT; 9308 9309 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 9310 return -ENOENT; 9311 9312 /* 9313 * no branch sampling for software events 9314 */ 9315 if (has_branch_stack(event)) 9316 return -EOPNOTSUPP; 9317 9318 perf_swevent_init_hrtimer(event); 9319 9320 return 0; 9321 } 9322 9323 static struct pmu perf_task_clock = { 9324 .task_ctx_nr = perf_sw_context, 9325 9326 .capabilities = PERF_PMU_CAP_NO_NMI, 9327 9328 .event_init = task_clock_event_init, 9329 .add = task_clock_event_add, 9330 .del = task_clock_event_del, 9331 .start = task_clock_event_start, 9332 .stop = task_clock_event_stop, 9333 .read = task_clock_event_read, 9334 }; 9335 9336 static void perf_pmu_nop_void(struct pmu *pmu) 9337 { 9338 } 9339 9340 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 9341 { 9342 } 9343 9344 static int perf_pmu_nop_int(struct pmu *pmu) 9345 { 9346 return 0; 9347 } 9348 9349 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 9350 9351 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 9352 { 9353 __this_cpu_write(nop_txn_flags, flags); 9354 9355 if (flags & ~PERF_PMU_TXN_ADD) 9356 return; 9357 9358 perf_pmu_disable(pmu); 9359 } 9360 9361 static int perf_pmu_commit_txn(struct pmu *pmu) 9362 { 9363 unsigned int flags = __this_cpu_read(nop_txn_flags); 9364 9365 __this_cpu_write(nop_txn_flags, 0); 9366 9367 if (flags & ~PERF_PMU_TXN_ADD) 9368 return 0; 9369 9370 perf_pmu_enable(pmu); 9371 return 0; 9372 } 9373 9374 static void perf_pmu_cancel_txn(struct pmu *pmu) 9375 { 9376 unsigned int flags = __this_cpu_read(nop_txn_flags); 9377 9378 __this_cpu_write(nop_txn_flags, 0); 9379 9380 if (flags & ~PERF_PMU_TXN_ADD) 9381 return; 9382 9383 perf_pmu_enable(pmu); 9384 } 9385 9386 static int perf_event_idx_default(struct perf_event *event) 9387 { 9388 return 0; 9389 } 9390 9391 /* 9392 * Ensures all contexts with the same task_ctx_nr have the same 9393 * pmu_cpu_context too. 9394 */ 9395 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 9396 { 9397 struct pmu *pmu; 9398 9399 if (ctxn < 0) 9400 return NULL; 9401 9402 list_for_each_entry(pmu, &pmus, entry) { 9403 if (pmu->task_ctx_nr == ctxn) 9404 return pmu->pmu_cpu_context; 9405 } 9406 9407 return NULL; 9408 } 9409 9410 static void free_pmu_context(struct pmu *pmu) 9411 { 9412 /* 9413 * Static contexts such as perf_sw_context have a global lifetime 9414 * and may be shared between different PMUs. Avoid freeing them 9415 * when a single PMU is going away. 9416 */ 9417 if (pmu->task_ctx_nr > perf_invalid_context) 9418 return; 9419 9420 mutex_lock(&pmus_lock); 9421 free_percpu(pmu->pmu_cpu_context); 9422 mutex_unlock(&pmus_lock); 9423 } 9424 9425 /* 9426 * Let userspace know that this PMU supports address range filtering: 9427 */ 9428 static ssize_t nr_addr_filters_show(struct device *dev, 9429 struct device_attribute *attr, 9430 char *page) 9431 { 9432 struct pmu *pmu = dev_get_drvdata(dev); 9433 9434 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 9435 } 9436 DEVICE_ATTR_RO(nr_addr_filters); 9437 9438 static struct idr pmu_idr; 9439 9440 static ssize_t 9441 type_show(struct device *dev, struct device_attribute *attr, char *page) 9442 { 9443 struct pmu *pmu = dev_get_drvdata(dev); 9444 9445 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 9446 } 9447 static DEVICE_ATTR_RO(type); 9448 9449 static ssize_t 9450 perf_event_mux_interval_ms_show(struct device *dev, 9451 struct device_attribute *attr, 9452 char *page) 9453 { 9454 struct pmu *pmu = dev_get_drvdata(dev); 9455 9456 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 9457 } 9458 9459 static DEFINE_MUTEX(mux_interval_mutex); 9460 9461 static ssize_t 9462 perf_event_mux_interval_ms_store(struct device *dev, 9463 struct device_attribute *attr, 9464 const char *buf, size_t count) 9465 { 9466 struct pmu *pmu = dev_get_drvdata(dev); 9467 int timer, cpu, ret; 9468 9469 ret = kstrtoint(buf, 0, &timer); 9470 if (ret) 9471 return ret; 9472 9473 if (timer < 1) 9474 return -EINVAL; 9475 9476 /* same value, noting to do */ 9477 if (timer == pmu->hrtimer_interval_ms) 9478 return count; 9479 9480 mutex_lock(&mux_interval_mutex); 9481 pmu->hrtimer_interval_ms = timer; 9482 9483 /* update all cpuctx for this PMU */ 9484 cpus_read_lock(); 9485 for_each_online_cpu(cpu) { 9486 struct perf_cpu_context *cpuctx; 9487 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9488 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 9489 9490 cpu_function_call(cpu, 9491 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 9492 } 9493 cpus_read_unlock(); 9494 mutex_unlock(&mux_interval_mutex); 9495 9496 return count; 9497 } 9498 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 9499 9500 static struct attribute *pmu_dev_attrs[] = { 9501 &dev_attr_type.attr, 9502 &dev_attr_perf_event_mux_interval_ms.attr, 9503 NULL, 9504 }; 9505 ATTRIBUTE_GROUPS(pmu_dev); 9506 9507 static int pmu_bus_running; 9508 static struct bus_type pmu_bus = { 9509 .name = "event_source", 9510 .dev_groups = pmu_dev_groups, 9511 }; 9512 9513 static void pmu_dev_release(struct device *dev) 9514 { 9515 kfree(dev); 9516 } 9517 9518 static int pmu_dev_alloc(struct pmu *pmu) 9519 { 9520 int ret = -ENOMEM; 9521 9522 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9523 if (!pmu->dev) 9524 goto out; 9525 9526 pmu->dev->groups = pmu->attr_groups; 9527 device_initialize(pmu->dev); 9528 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9529 if (ret) 9530 goto free_dev; 9531 9532 dev_set_drvdata(pmu->dev, pmu); 9533 pmu->dev->bus = &pmu_bus; 9534 pmu->dev->release = pmu_dev_release; 9535 ret = device_add(pmu->dev); 9536 if (ret) 9537 goto free_dev; 9538 9539 /* For PMUs with address filters, throw in an extra attribute: */ 9540 if (pmu->nr_addr_filters) 9541 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9542 9543 if (ret) 9544 goto del_dev; 9545 9546 out: 9547 return ret; 9548 9549 del_dev: 9550 device_del(pmu->dev); 9551 9552 free_dev: 9553 put_device(pmu->dev); 9554 goto out; 9555 } 9556 9557 static struct lock_class_key cpuctx_mutex; 9558 static struct lock_class_key cpuctx_lock; 9559 9560 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9561 { 9562 int cpu, ret; 9563 9564 mutex_lock(&pmus_lock); 9565 ret = -ENOMEM; 9566 pmu->pmu_disable_count = alloc_percpu(int); 9567 if (!pmu->pmu_disable_count) 9568 goto unlock; 9569 9570 pmu->type = -1; 9571 if (!name) 9572 goto skip_type; 9573 pmu->name = name; 9574 9575 if (type < 0) { 9576 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9577 if (type < 0) { 9578 ret = type; 9579 goto free_pdc; 9580 } 9581 } 9582 pmu->type = type; 9583 9584 if (pmu_bus_running) { 9585 ret = pmu_dev_alloc(pmu); 9586 if (ret) 9587 goto free_idr; 9588 } 9589 9590 skip_type: 9591 if (pmu->task_ctx_nr == perf_hw_context) { 9592 static int hw_context_taken = 0; 9593 9594 /* 9595 * Other than systems with heterogeneous CPUs, it never makes 9596 * sense for two PMUs to share perf_hw_context. PMUs which are 9597 * uncore must use perf_invalid_context. 9598 */ 9599 if (WARN_ON_ONCE(hw_context_taken && 9600 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9601 pmu->task_ctx_nr = perf_invalid_context; 9602 9603 hw_context_taken = 1; 9604 } 9605 9606 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9607 if (pmu->pmu_cpu_context) 9608 goto got_cpu_context; 9609 9610 ret = -ENOMEM; 9611 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9612 if (!pmu->pmu_cpu_context) 9613 goto free_dev; 9614 9615 for_each_possible_cpu(cpu) { 9616 struct perf_cpu_context *cpuctx; 9617 9618 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9619 __perf_event_init_context(&cpuctx->ctx); 9620 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9621 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9622 cpuctx->ctx.pmu = pmu; 9623 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9624 9625 __perf_mux_hrtimer_init(cpuctx, cpu); 9626 } 9627 9628 got_cpu_context: 9629 if (!pmu->start_txn) { 9630 if (pmu->pmu_enable) { 9631 /* 9632 * If we have pmu_enable/pmu_disable calls, install 9633 * transaction stubs that use that to try and batch 9634 * hardware accesses. 9635 */ 9636 pmu->start_txn = perf_pmu_start_txn; 9637 pmu->commit_txn = perf_pmu_commit_txn; 9638 pmu->cancel_txn = perf_pmu_cancel_txn; 9639 } else { 9640 pmu->start_txn = perf_pmu_nop_txn; 9641 pmu->commit_txn = perf_pmu_nop_int; 9642 pmu->cancel_txn = perf_pmu_nop_void; 9643 } 9644 } 9645 9646 if (!pmu->pmu_enable) { 9647 pmu->pmu_enable = perf_pmu_nop_void; 9648 pmu->pmu_disable = perf_pmu_nop_void; 9649 } 9650 9651 if (!pmu->event_idx) 9652 pmu->event_idx = perf_event_idx_default; 9653 9654 list_add_rcu(&pmu->entry, &pmus); 9655 atomic_set(&pmu->exclusive_cnt, 0); 9656 ret = 0; 9657 unlock: 9658 mutex_unlock(&pmus_lock); 9659 9660 return ret; 9661 9662 free_dev: 9663 device_del(pmu->dev); 9664 put_device(pmu->dev); 9665 9666 free_idr: 9667 if (pmu->type >= PERF_TYPE_MAX) 9668 idr_remove(&pmu_idr, pmu->type); 9669 9670 free_pdc: 9671 free_percpu(pmu->pmu_disable_count); 9672 goto unlock; 9673 } 9674 EXPORT_SYMBOL_GPL(perf_pmu_register); 9675 9676 void perf_pmu_unregister(struct pmu *pmu) 9677 { 9678 int remove_device; 9679 9680 mutex_lock(&pmus_lock); 9681 remove_device = pmu_bus_running; 9682 list_del_rcu(&pmu->entry); 9683 mutex_unlock(&pmus_lock); 9684 9685 /* 9686 * We dereference the pmu list under both SRCU and regular RCU, so 9687 * synchronize against both of those. 9688 */ 9689 synchronize_srcu(&pmus_srcu); 9690 synchronize_rcu(); 9691 9692 free_percpu(pmu->pmu_disable_count); 9693 if (pmu->type >= PERF_TYPE_MAX) 9694 idr_remove(&pmu_idr, pmu->type); 9695 if (remove_device) { 9696 if (pmu->nr_addr_filters) 9697 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 9698 device_del(pmu->dev); 9699 put_device(pmu->dev); 9700 } 9701 free_pmu_context(pmu); 9702 } 9703 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 9704 9705 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 9706 { 9707 struct perf_event_context *ctx = NULL; 9708 int ret; 9709 9710 if (!try_module_get(pmu->module)) 9711 return -ENODEV; 9712 9713 /* 9714 * A number of pmu->event_init() methods iterate the sibling_list to, 9715 * for example, validate if the group fits on the PMU. Therefore, 9716 * if this is a sibling event, acquire the ctx->mutex to protect 9717 * the sibling_list. 9718 */ 9719 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 9720 /* 9721 * This ctx->mutex can nest when we're called through 9722 * inheritance. See the perf_event_ctx_lock_nested() comment. 9723 */ 9724 ctx = perf_event_ctx_lock_nested(event->group_leader, 9725 SINGLE_DEPTH_NESTING); 9726 BUG_ON(!ctx); 9727 } 9728 9729 event->pmu = pmu; 9730 ret = pmu->event_init(event); 9731 9732 if (ctx) 9733 perf_event_ctx_unlock(event->group_leader, ctx); 9734 9735 if (ret) 9736 module_put(pmu->module); 9737 9738 return ret; 9739 } 9740 9741 static struct pmu *perf_init_event(struct perf_event *event) 9742 { 9743 struct pmu *pmu; 9744 int idx; 9745 int ret; 9746 9747 idx = srcu_read_lock(&pmus_srcu); 9748 9749 /* Try parent's PMU first: */ 9750 if (event->parent && event->parent->pmu) { 9751 pmu = event->parent->pmu; 9752 ret = perf_try_init_event(pmu, event); 9753 if (!ret) 9754 goto unlock; 9755 } 9756 9757 rcu_read_lock(); 9758 pmu = idr_find(&pmu_idr, event->attr.type); 9759 rcu_read_unlock(); 9760 if (pmu) { 9761 ret = perf_try_init_event(pmu, event); 9762 if (ret) 9763 pmu = ERR_PTR(ret); 9764 goto unlock; 9765 } 9766 9767 list_for_each_entry_rcu(pmu, &pmus, entry) { 9768 ret = perf_try_init_event(pmu, event); 9769 if (!ret) 9770 goto unlock; 9771 9772 if (ret != -ENOENT) { 9773 pmu = ERR_PTR(ret); 9774 goto unlock; 9775 } 9776 } 9777 pmu = ERR_PTR(-ENOENT); 9778 unlock: 9779 srcu_read_unlock(&pmus_srcu, idx); 9780 9781 return pmu; 9782 } 9783 9784 static void attach_sb_event(struct perf_event *event) 9785 { 9786 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 9787 9788 raw_spin_lock(&pel->lock); 9789 list_add_rcu(&event->sb_list, &pel->list); 9790 raw_spin_unlock(&pel->lock); 9791 } 9792 9793 /* 9794 * We keep a list of all !task (and therefore per-cpu) events 9795 * that need to receive side-band records. 9796 * 9797 * This avoids having to scan all the various PMU per-cpu contexts 9798 * looking for them. 9799 */ 9800 static void account_pmu_sb_event(struct perf_event *event) 9801 { 9802 if (is_sb_event(event)) 9803 attach_sb_event(event); 9804 } 9805 9806 static void account_event_cpu(struct perf_event *event, int cpu) 9807 { 9808 if (event->parent) 9809 return; 9810 9811 if (is_cgroup_event(event)) 9812 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 9813 } 9814 9815 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9816 static void account_freq_event_nohz(void) 9817 { 9818 #ifdef CONFIG_NO_HZ_FULL 9819 /* Lock so we don't race with concurrent unaccount */ 9820 spin_lock(&nr_freq_lock); 9821 if (atomic_inc_return(&nr_freq_events) == 1) 9822 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9823 spin_unlock(&nr_freq_lock); 9824 #endif 9825 } 9826 9827 static void account_freq_event(void) 9828 { 9829 if (tick_nohz_full_enabled()) 9830 account_freq_event_nohz(); 9831 else 9832 atomic_inc(&nr_freq_events); 9833 } 9834 9835 9836 static void account_event(struct perf_event *event) 9837 { 9838 bool inc = false; 9839 9840 if (event->parent) 9841 return; 9842 9843 if (event->attach_state & PERF_ATTACH_TASK) 9844 inc = true; 9845 if (event->attr.mmap || event->attr.mmap_data) 9846 atomic_inc(&nr_mmap_events); 9847 if (event->attr.comm) 9848 atomic_inc(&nr_comm_events); 9849 if (event->attr.namespaces) 9850 atomic_inc(&nr_namespaces_events); 9851 if (event->attr.task) 9852 atomic_inc(&nr_task_events); 9853 if (event->attr.freq) 9854 account_freq_event(); 9855 if (event->attr.context_switch) { 9856 atomic_inc(&nr_switch_events); 9857 inc = true; 9858 } 9859 if (has_branch_stack(event)) 9860 inc = true; 9861 if (is_cgroup_event(event)) 9862 inc = true; 9863 9864 if (inc) { 9865 /* 9866 * We need the mutex here because static_branch_enable() 9867 * must complete *before* the perf_sched_count increment 9868 * becomes visible. 9869 */ 9870 if (atomic_inc_not_zero(&perf_sched_count)) 9871 goto enabled; 9872 9873 mutex_lock(&perf_sched_mutex); 9874 if (!atomic_read(&perf_sched_count)) { 9875 static_branch_enable(&perf_sched_events); 9876 /* 9877 * Guarantee that all CPUs observe they key change and 9878 * call the perf scheduling hooks before proceeding to 9879 * install events that need them. 9880 */ 9881 synchronize_sched(); 9882 } 9883 /* 9884 * Now that we have waited for the sync_sched(), allow further 9885 * increments to by-pass the mutex. 9886 */ 9887 atomic_inc(&perf_sched_count); 9888 mutex_unlock(&perf_sched_mutex); 9889 } 9890 enabled: 9891 9892 account_event_cpu(event, event->cpu); 9893 9894 account_pmu_sb_event(event); 9895 } 9896 9897 /* 9898 * Allocate and initialize a event structure 9899 */ 9900 static struct perf_event * 9901 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9902 struct task_struct *task, 9903 struct perf_event *group_leader, 9904 struct perf_event *parent_event, 9905 perf_overflow_handler_t overflow_handler, 9906 void *context, int cgroup_fd) 9907 { 9908 struct pmu *pmu; 9909 struct perf_event *event; 9910 struct hw_perf_event *hwc; 9911 long err = -EINVAL; 9912 9913 if ((unsigned)cpu >= nr_cpu_ids) { 9914 if (!task || cpu != -1) 9915 return ERR_PTR(-EINVAL); 9916 } 9917 9918 event = kzalloc(sizeof(*event), GFP_KERNEL); 9919 if (!event) 9920 return ERR_PTR(-ENOMEM); 9921 9922 /* 9923 * Single events are their own group leaders, with an 9924 * empty sibling list: 9925 */ 9926 if (!group_leader) 9927 group_leader = event; 9928 9929 mutex_init(&event->child_mutex); 9930 INIT_LIST_HEAD(&event->child_list); 9931 9932 INIT_LIST_HEAD(&event->event_entry); 9933 INIT_LIST_HEAD(&event->sibling_list); 9934 INIT_LIST_HEAD(&event->active_list); 9935 init_event_group(event); 9936 INIT_LIST_HEAD(&event->rb_entry); 9937 INIT_LIST_HEAD(&event->active_entry); 9938 INIT_LIST_HEAD(&event->addr_filters.list); 9939 INIT_HLIST_NODE(&event->hlist_entry); 9940 9941 9942 init_waitqueue_head(&event->waitq); 9943 init_irq_work(&event->pending, perf_pending_event); 9944 9945 mutex_init(&event->mmap_mutex); 9946 raw_spin_lock_init(&event->addr_filters.lock); 9947 9948 atomic_long_set(&event->refcount, 1); 9949 event->cpu = cpu; 9950 event->attr = *attr; 9951 event->group_leader = group_leader; 9952 event->pmu = NULL; 9953 event->oncpu = -1; 9954 9955 event->parent = parent_event; 9956 9957 event->ns = get_pid_ns(task_active_pid_ns(current)); 9958 event->id = atomic64_inc_return(&perf_event_id); 9959 9960 event->state = PERF_EVENT_STATE_INACTIVE; 9961 9962 if (task) { 9963 event->attach_state = PERF_ATTACH_TASK; 9964 /* 9965 * XXX pmu::event_init needs to know what task to account to 9966 * and we cannot use the ctx information because we need the 9967 * pmu before we get a ctx. 9968 */ 9969 get_task_struct(task); 9970 event->hw.target = task; 9971 } 9972 9973 event->clock = &local_clock; 9974 if (parent_event) 9975 event->clock = parent_event->clock; 9976 9977 if (!overflow_handler && parent_event) { 9978 overflow_handler = parent_event->overflow_handler; 9979 context = parent_event->overflow_handler_context; 9980 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9981 if (overflow_handler == bpf_overflow_handler) { 9982 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9983 9984 if (IS_ERR(prog)) { 9985 err = PTR_ERR(prog); 9986 goto err_ns; 9987 } 9988 event->prog = prog; 9989 event->orig_overflow_handler = 9990 parent_event->orig_overflow_handler; 9991 } 9992 #endif 9993 } 9994 9995 if (overflow_handler) { 9996 event->overflow_handler = overflow_handler; 9997 event->overflow_handler_context = context; 9998 } else if (is_write_backward(event)){ 9999 event->overflow_handler = perf_event_output_backward; 10000 event->overflow_handler_context = NULL; 10001 } else { 10002 event->overflow_handler = perf_event_output_forward; 10003 event->overflow_handler_context = NULL; 10004 } 10005 10006 perf_event__state_init(event); 10007 10008 pmu = NULL; 10009 10010 hwc = &event->hw; 10011 hwc->sample_period = attr->sample_period; 10012 if (attr->freq && attr->sample_freq) 10013 hwc->sample_period = 1; 10014 hwc->last_period = hwc->sample_period; 10015 10016 local64_set(&hwc->period_left, hwc->sample_period); 10017 10018 /* 10019 * We currently do not support PERF_SAMPLE_READ on inherited events. 10020 * See perf_output_read(). 10021 */ 10022 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 10023 goto err_ns; 10024 10025 if (!has_branch_stack(event)) 10026 event->attr.branch_sample_type = 0; 10027 10028 if (cgroup_fd != -1) { 10029 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 10030 if (err) 10031 goto err_ns; 10032 } 10033 10034 pmu = perf_init_event(event); 10035 if (IS_ERR(pmu)) { 10036 err = PTR_ERR(pmu); 10037 goto err_ns; 10038 } 10039 10040 err = exclusive_event_init(event); 10041 if (err) 10042 goto err_pmu; 10043 10044 if (has_addr_filter(event)) { 10045 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 10046 sizeof(unsigned long), 10047 GFP_KERNEL); 10048 if (!event->addr_filters_offs) { 10049 err = -ENOMEM; 10050 goto err_per_task; 10051 } 10052 10053 /* force hw sync on the address filters */ 10054 event->addr_filters_gen = 1; 10055 } 10056 10057 if (!event->parent) { 10058 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 10059 err = get_callchain_buffers(attr->sample_max_stack); 10060 if (err) 10061 goto err_addr_filters; 10062 } 10063 } 10064 10065 /* symmetric to unaccount_event() in _free_event() */ 10066 account_event(event); 10067 10068 return event; 10069 10070 err_addr_filters: 10071 kfree(event->addr_filters_offs); 10072 10073 err_per_task: 10074 exclusive_event_destroy(event); 10075 10076 err_pmu: 10077 if (event->destroy) 10078 event->destroy(event); 10079 module_put(pmu->module); 10080 err_ns: 10081 if (is_cgroup_event(event)) 10082 perf_detach_cgroup(event); 10083 if (event->ns) 10084 put_pid_ns(event->ns); 10085 if (event->hw.target) 10086 put_task_struct(event->hw.target); 10087 kfree(event); 10088 10089 return ERR_PTR(err); 10090 } 10091 10092 static int perf_copy_attr(struct perf_event_attr __user *uattr, 10093 struct perf_event_attr *attr) 10094 { 10095 u32 size; 10096 int ret; 10097 10098 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 10099 return -EFAULT; 10100 10101 /* 10102 * zero the full structure, so that a short copy will be nice. 10103 */ 10104 memset(attr, 0, sizeof(*attr)); 10105 10106 ret = get_user(size, &uattr->size); 10107 if (ret) 10108 return ret; 10109 10110 if (size > PAGE_SIZE) /* silly large */ 10111 goto err_size; 10112 10113 if (!size) /* abi compat */ 10114 size = PERF_ATTR_SIZE_VER0; 10115 10116 if (size < PERF_ATTR_SIZE_VER0) 10117 goto err_size; 10118 10119 /* 10120 * If we're handed a bigger struct than we know of, 10121 * ensure all the unknown bits are 0 - i.e. new 10122 * user-space does not rely on any kernel feature 10123 * extensions we dont know about yet. 10124 */ 10125 if (size > sizeof(*attr)) { 10126 unsigned char __user *addr; 10127 unsigned char __user *end; 10128 unsigned char val; 10129 10130 addr = (void __user *)uattr + sizeof(*attr); 10131 end = (void __user *)uattr + size; 10132 10133 for (; addr < end; addr++) { 10134 ret = get_user(val, addr); 10135 if (ret) 10136 return ret; 10137 if (val) 10138 goto err_size; 10139 } 10140 size = sizeof(*attr); 10141 } 10142 10143 ret = copy_from_user(attr, uattr, size); 10144 if (ret) 10145 return -EFAULT; 10146 10147 attr->size = size; 10148 10149 if (attr->__reserved_1) 10150 return -EINVAL; 10151 10152 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 10153 return -EINVAL; 10154 10155 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 10156 return -EINVAL; 10157 10158 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 10159 u64 mask = attr->branch_sample_type; 10160 10161 /* only using defined bits */ 10162 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 10163 return -EINVAL; 10164 10165 /* at least one branch bit must be set */ 10166 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 10167 return -EINVAL; 10168 10169 /* propagate priv level, when not set for branch */ 10170 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 10171 10172 /* exclude_kernel checked on syscall entry */ 10173 if (!attr->exclude_kernel) 10174 mask |= PERF_SAMPLE_BRANCH_KERNEL; 10175 10176 if (!attr->exclude_user) 10177 mask |= PERF_SAMPLE_BRANCH_USER; 10178 10179 if (!attr->exclude_hv) 10180 mask |= PERF_SAMPLE_BRANCH_HV; 10181 /* 10182 * adjust user setting (for HW filter setup) 10183 */ 10184 attr->branch_sample_type = mask; 10185 } 10186 /* privileged levels capture (kernel, hv): check permissions */ 10187 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 10188 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10189 return -EACCES; 10190 } 10191 10192 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 10193 ret = perf_reg_validate(attr->sample_regs_user); 10194 if (ret) 10195 return ret; 10196 } 10197 10198 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 10199 if (!arch_perf_have_user_stack_dump()) 10200 return -ENOSYS; 10201 10202 /* 10203 * We have __u32 type for the size, but so far 10204 * we can only use __u16 as maximum due to the 10205 * __u16 sample size limit. 10206 */ 10207 if (attr->sample_stack_user >= USHRT_MAX) 10208 ret = -EINVAL; 10209 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 10210 ret = -EINVAL; 10211 } 10212 10213 if (!attr->sample_max_stack) 10214 attr->sample_max_stack = sysctl_perf_event_max_stack; 10215 10216 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 10217 ret = perf_reg_validate(attr->sample_regs_intr); 10218 out: 10219 return ret; 10220 10221 err_size: 10222 put_user(sizeof(*attr), &uattr->size); 10223 ret = -E2BIG; 10224 goto out; 10225 } 10226 10227 static int 10228 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 10229 { 10230 struct ring_buffer *rb = NULL; 10231 int ret = -EINVAL; 10232 10233 if (!output_event) 10234 goto set; 10235 10236 /* don't allow circular references */ 10237 if (event == output_event) 10238 goto out; 10239 10240 /* 10241 * Don't allow cross-cpu buffers 10242 */ 10243 if (output_event->cpu != event->cpu) 10244 goto out; 10245 10246 /* 10247 * If its not a per-cpu rb, it must be the same task. 10248 */ 10249 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 10250 goto out; 10251 10252 /* 10253 * Mixing clocks in the same buffer is trouble you don't need. 10254 */ 10255 if (output_event->clock != event->clock) 10256 goto out; 10257 10258 /* 10259 * Either writing ring buffer from beginning or from end. 10260 * Mixing is not allowed. 10261 */ 10262 if (is_write_backward(output_event) != is_write_backward(event)) 10263 goto out; 10264 10265 /* 10266 * If both events generate aux data, they must be on the same PMU 10267 */ 10268 if (has_aux(event) && has_aux(output_event) && 10269 event->pmu != output_event->pmu) 10270 goto out; 10271 10272 set: 10273 mutex_lock(&event->mmap_mutex); 10274 /* Can't redirect output if we've got an active mmap() */ 10275 if (atomic_read(&event->mmap_count)) 10276 goto unlock; 10277 10278 if (output_event) { 10279 /* get the rb we want to redirect to */ 10280 rb = ring_buffer_get(output_event); 10281 if (!rb) 10282 goto unlock; 10283 } 10284 10285 ring_buffer_attach(event, rb); 10286 10287 ret = 0; 10288 unlock: 10289 mutex_unlock(&event->mmap_mutex); 10290 10291 out: 10292 return ret; 10293 } 10294 10295 static void mutex_lock_double(struct mutex *a, struct mutex *b) 10296 { 10297 if (b < a) 10298 swap(a, b); 10299 10300 mutex_lock(a); 10301 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 10302 } 10303 10304 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 10305 { 10306 bool nmi_safe = false; 10307 10308 switch (clk_id) { 10309 case CLOCK_MONOTONIC: 10310 event->clock = &ktime_get_mono_fast_ns; 10311 nmi_safe = true; 10312 break; 10313 10314 case CLOCK_MONOTONIC_RAW: 10315 event->clock = &ktime_get_raw_fast_ns; 10316 nmi_safe = true; 10317 break; 10318 10319 case CLOCK_REALTIME: 10320 event->clock = &ktime_get_real_ns; 10321 break; 10322 10323 case CLOCK_BOOTTIME: 10324 event->clock = &ktime_get_boot_ns; 10325 break; 10326 10327 case CLOCK_TAI: 10328 event->clock = &ktime_get_tai_ns; 10329 break; 10330 10331 default: 10332 return -EINVAL; 10333 } 10334 10335 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 10336 return -EINVAL; 10337 10338 return 0; 10339 } 10340 10341 /* 10342 * Variation on perf_event_ctx_lock_nested(), except we take two context 10343 * mutexes. 10344 */ 10345 static struct perf_event_context * 10346 __perf_event_ctx_lock_double(struct perf_event *group_leader, 10347 struct perf_event_context *ctx) 10348 { 10349 struct perf_event_context *gctx; 10350 10351 again: 10352 rcu_read_lock(); 10353 gctx = READ_ONCE(group_leader->ctx); 10354 if (!atomic_inc_not_zero(&gctx->refcount)) { 10355 rcu_read_unlock(); 10356 goto again; 10357 } 10358 rcu_read_unlock(); 10359 10360 mutex_lock_double(&gctx->mutex, &ctx->mutex); 10361 10362 if (group_leader->ctx != gctx) { 10363 mutex_unlock(&ctx->mutex); 10364 mutex_unlock(&gctx->mutex); 10365 put_ctx(gctx); 10366 goto again; 10367 } 10368 10369 return gctx; 10370 } 10371 10372 /** 10373 * sys_perf_event_open - open a performance event, associate it to a task/cpu 10374 * 10375 * @attr_uptr: event_id type attributes for monitoring/sampling 10376 * @pid: target pid 10377 * @cpu: target cpu 10378 * @group_fd: group leader event fd 10379 */ 10380 SYSCALL_DEFINE5(perf_event_open, 10381 struct perf_event_attr __user *, attr_uptr, 10382 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 10383 { 10384 struct perf_event *group_leader = NULL, *output_event = NULL; 10385 struct perf_event *event, *sibling; 10386 struct perf_event_attr attr; 10387 struct perf_event_context *ctx, *uninitialized_var(gctx); 10388 struct file *event_file = NULL; 10389 struct fd group = {NULL, 0}; 10390 struct task_struct *task = NULL; 10391 struct pmu *pmu; 10392 int event_fd; 10393 int move_group = 0; 10394 int err; 10395 int f_flags = O_RDWR; 10396 int cgroup_fd = -1; 10397 10398 /* for future expandability... */ 10399 if (flags & ~PERF_FLAG_ALL) 10400 return -EINVAL; 10401 10402 err = perf_copy_attr(attr_uptr, &attr); 10403 if (err) 10404 return err; 10405 10406 if (!attr.exclude_kernel) { 10407 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10408 return -EACCES; 10409 } 10410 10411 if (attr.namespaces) { 10412 if (!capable(CAP_SYS_ADMIN)) 10413 return -EACCES; 10414 } 10415 10416 if (attr.freq) { 10417 if (attr.sample_freq > sysctl_perf_event_sample_rate) 10418 return -EINVAL; 10419 } else { 10420 if (attr.sample_period & (1ULL << 63)) 10421 return -EINVAL; 10422 } 10423 10424 /* Only privileged users can get physical addresses */ 10425 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 10426 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10427 return -EACCES; 10428 10429 /* 10430 * In cgroup mode, the pid argument is used to pass the fd 10431 * opened to the cgroup directory in cgroupfs. The cpu argument 10432 * designates the cpu on which to monitor threads from that 10433 * cgroup. 10434 */ 10435 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 10436 return -EINVAL; 10437 10438 if (flags & PERF_FLAG_FD_CLOEXEC) 10439 f_flags |= O_CLOEXEC; 10440 10441 event_fd = get_unused_fd_flags(f_flags); 10442 if (event_fd < 0) 10443 return event_fd; 10444 10445 if (group_fd != -1) { 10446 err = perf_fget_light(group_fd, &group); 10447 if (err) 10448 goto err_fd; 10449 group_leader = group.file->private_data; 10450 if (flags & PERF_FLAG_FD_OUTPUT) 10451 output_event = group_leader; 10452 if (flags & PERF_FLAG_FD_NO_GROUP) 10453 group_leader = NULL; 10454 } 10455 10456 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 10457 task = find_lively_task_by_vpid(pid); 10458 if (IS_ERR(task)) { 10459 err = PTR_ERR(task); 10460 goto err_group_fd; 10461 } 10462 } 10463 10464 if (task && group_leader && 10465 group_leader->attr.inherit != attr.inherit) { 10466 err = -EINVAL; 10467 goto err_task; 10468 } 10469 10470 if (task) { 10471 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 10472 if (err) 10473 goto err_task; 10474 10475 /* 10476 * Reuse ptrace permission checks for now. 10477 * 10478 * We must hold cred_guard_mutex across this and any potential 10479 * perf_install_in_context() call for this new event to 10480 * serialize against exec() altering our credentials (and the 10481 * perf_event_exit_task() that could imply). 10482 */ 10483 err = -EACCES; 10484 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 10485 goto err_cred; 10486 } 10487 10488 if (flags & PERF_FLAG_PID_CGROUP) 10489 cgroup_fd = pid; 10490 10491 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 10492 NULL, NULL, cgroup_fd); 10493 if (IS_ERR(event)) { 10494 err = PTR_ERR(event); 10495 goto err_cred; 10496 } 10497 10498 if (is_sampling_event(event)) { 10499 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 10500 err = -EOPNOTSUPP; 10501 goto err_alloc; 10502 } 10503 } 10504 10505 /* 10506 * Special case software events and allow them to be part of 10507 * any hardware group. 10508 */ 10509 pmu = event->pmu; 10510 10511 if (attr.use_clockid) { 10512 err = perf_event_set_clock(event, attr.clockid); 10513 if (err) 10514 goto err_alloc; 10515 } 10516 10517 if (pmu->task_ctx_nr == perf_sw_context) 10518 event->event_caps |= PERF_EV_CAP_SOFTWARE; 10519 10520 if (group_leader && 10521 (is_software_event(event) != is_software_event(group_leader))) { 10522 if (is_software_event(event)) { 10523 /* 10524 * If event and group_leader are not both a software 10525 * event, and event is, then group leader is not. 10526 * 10527 * Allow the addition of software events to !software 10528 * groups, this is safe because software events never 10529 * fail to schedule. 10530 */ 10531 pmu = group_leader->pmu; 10532 } else if (is_software_event(group_leader) && 10533 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10534 /* 10535 * In case the group is a pure software group, and we 10536 * try to add a hardware event, move the whole group to 10537 * the hardware context. 10538 */ 10539 move_group = 1; 10540 } 10541 } 10542 10543 /* 10544 * Get the target context (task or percpu): 10545 */ 10546 ctx = find_get_context(pmu, task, event); 10547 if (IS_ERR(ctx)) { 10548 err = PTR_ERR(ctx); 10549 goto err_alloc; 10550 } 10551 10552 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 10553 err = -EBUSY; 10554 goto err_context; 10555 } 10556 10557 /* 10558 * Look up the group leader (we will attach this event to it): 10559 */ 10560 if (group_leader) { 10561 err = -EINVAL; 10562 10563 /* 10564 * Do not allow a recursive hierarchy (this new sibling 10565 * becoming part of another group-sibling): 10566 */ 10567 if (group_leader->group_leader != group_leader) 10568 goto err_context; 10569 10570 /* All events in a group should have the same clock */ 10571 if (group_leader->clock != event->clock) 10572 goto err_context; 10573 10574 /* 10575 * Make sure we're both events for the same CPU; 10576 * grouping events for different CPUs is broken; since 10577 * you can never concurrently schedule them anyhow. 10578 */ 10579 if (group_leader->cpu != event->cpu) 10580 goto err_context; 10581 10582 /* 10583 * Make sure we're both on the same task, or both 10584 * per-CPU events. 10585 */ 10586 if (group_leader->ctx->task != ctx->task) 10587 goto err_context; 10588 10589 /* 10590 * Do not allow to attach to a group in a different task 10591 * or CPU context. If we're moving SW events, we'll fix 10592 * this up later, so allow that. 10593 */ 10594 if (!move_group && group_leader->ctx != ctx) 10595 goto err_context; 10596 10597 /* 10598 * Only a group leader can be exclusive or pinned 10599 */ 10600 if (attr.exclusive || attr.pinned) 10601 goto err_context; 10602 } 10603 10604 if (output_event) { 10605 err = perf_event_set_output(event, output_event); 10606 if (err) 10607 goto err_context; 10608 } 10609 10610 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10611 f_flags); 10612 if (IS_ERR(event_file)) { 10613 err = PTR_ERR(event_file); 10614 event_file = NULL; 10615 goto err_context; 10616 } 10617 10618 if (move_group) { 10619 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10620 10621 if (gctx->task == TASK_TOMBSTONE) { 10622 err = -ESRCH; 10623 goto err_locked; 10624 } 10625 10626 /* 10627 * Check if we raced against another sys_perf_event_open() call 10628 * moving the software group underneath us. 10629 */ 10630 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10631 /* 10632 * If someone moved the group out from under us, check 10633 * if this new event wound up on the same ctx, if so 10634 * its the regular !move_group case, otherwise fail. 10635 */ 10636 if (gctx != ctx) { 10637 err = -EINVAL; 10638 goto err_locked; 10639 } else { 10640 perf_event_ctx_unlock(group_leader, gctx); 10641 move_group = 0; 10642 } 10643 } 10644 } else { 10645 mutex_lock(&ctx->mutex); 10646 } 10647 10648 if (ctx->task == TASK_TOMBSTONE) { 10649 err = -ESRCH; 10650 goto err_locked; 10651 } 10652 10653 if (!perf_event_validate_size(event)) { 10654 err = -E2BIG; 10655 goto err_locked; 10656 } 10657 10658 if (!task) { 10659 /* 10660 * Check if the @cpu we're creating an event for is online. 10661 * 10662 * We use the perf_cpu_context::ctx::mutex to serialize against 10663 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10664 */ 10665 struct perf_cpu_context *cpuctx = 10666 container_of(ctx, struct perf_cpu_context, ctx); 10667 10668 if (!cpuctx->online) { 10669 err = -ENODEV; 10670 goto err_locked; 10671 } 10672 } 10673 10674 10675 /* 10676 * Must be under the same ctx::mutex as perf_install_in_context(), 10677 * because we need to serialize with concurrent event creation. 10678 */ 10679 if (!exclusive_event_installable(event, ctx)) { 10680 /* exclusive and group stuff are assumed mutually exclusive */ 10681 WARN_ON_ONCE(move_group); 10682 10683 err = -EBUSY; 10684 goto err_locked; 10685 } 10686 10687 WARN_ON_ONCE(ctx->parent_ctx); 10688 10689 /* 10690 * This is the point on no return; we cannot fail hereafter. This is 10691 * where we start modifying current state. 10692 */ 10693 10694 if (move_group) { 10695 /* 10696 * See perf_event_ctx_lock() for comments on the details 10697 * of swizzling perf_event::ctx. 10698 */ 10699 perf_remove_from_context(group_leader, 0); 10700 put_ctx(gctx); 10701 10702 for_each_sibling_event(sibling, group_leader) { 10703 perf_remove_from_context(sibling, 0); 10704 put_ctx(gctx); 10705 } 10706 10707 /* 10708 * Wait for everybody to stop referencing the events through 10709 * the old lists, before installing it on new lists. 10710 */ 10711 synchronize_rcu(); 10712 10713 /* 10714 * Install the group siblings before the group leader. 10715 * 10716 * Because a group leader will try and install the entire group 10717 * (through the sibling list, which is still in-tact), we can 10718 * end up with siblings installed in the wrong context. 10719 * 10720 * By installing siblings first we NO-OP because they're not 10721 * reachable through the group lists. 10722 */ 10723 for_each_sibling_event(sibling, group_leader) { 10724 perf_event__state_init(sibling); 10725 perf_install_in_context(ctx, sibling, sibling->cpu); 10726 get_ctx(ctx); 10727 } 10728 10729 /* 10730 * Removing from the context ends up with disabled 10731 * event. What we want here is event in the initial 10732 * startup state, ready to be add into new context. 10733 */ 10734 perf_event__state_init(group_leader); 10735 perf_install_in_context(ctx, group_leader, group_leader->cpu); 10736 get_ctx(ctx); 10737 } 10738 10739 /* 10740 * Precalculate sample_data sizes; do while holding ctx::mutex such 10741 * that we're serialized against further additions and before 10742 * perf_install_in_context() which is the point the event is active and 10743 * can use these values. 10744 */ 10745 perf_event__header_size(event); 10746 perf_event__id_header_size(event); 10747 10748 event->owner = current; 10749 10750 perf_install_in_context(ctx, event, event->cpu); 10751 perf_unpin_context(ctx); 10752 10753 if (move_group) 10754 perf_event_ctx_unlock(group_leader, gctx); 10755 mutex_unlock(&ctx->mutex); 10756 10757 if (task) { 10758 mutex_unlock(&task->signal->cred_guard_mutex); 10759 put_task_struct(task); 10760 } 10761 10762 mutex_lock(¤t->perf_event_mutex); 10763 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 10764 mutex_unlock(¤t->perf_event_mutex); 10765 10766 /* 10767 * Drop the reference on the group_event after placing the 10768 * new event on the sibling_list. This ensures destruction 10769 * of the group leader will find the pointer to itself in 10770 * perf_group_detach(). 10771 */ 10772 fdput(group); 10773 fd_install(event_fd, event_file); 10774 return event_fd; 10775 10776 err_locked: 10777 if (move_group) 10778 perf_event_ctx_unlock(group_leader, gctx); 10779 mutex_unlock(&ctx->mutex); 10780 /* err_file: */ 10781 fput(event_file); 10782 err_context: 10783 perf_unpin_context(ctx); 10784 put_ctx(ctx); 10785 err_alloc: 10786 /* 10787 * If event_file is set, the fput() above will have called ->release() 10788 * and that will take care of freeing the event. 10789 */ 10790 if (!event_file) 10791 free_event(event); 10792 err_cred: 10793 if (task) 10794 mutex_unlock(&task->signal->cred_guard_mutex); 10795 err_task: 10796 if (task) 10797 put_task_struct(task); 10798 err_group_fd: 10799 fdput(group); 10800 err_fd: 10801 put_unused_fd(event_fd); 10802 return err; 10803 } 10804 10805 /** 10806 * perf_event_create_kernel_counter 10807 * 10808 * @attr: attributes of the counter to create 10809 * @cpu: cpu in which the counter is bound 10810 * @task: task to profile (NULL for percpu) 10811 */ 10812 struct perf_event * 10813 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 10814 struct task_struct *task, 10815 perf_overflow_handler_t overflow_handler, 10816 void *context) 10817 { 10818 struct perf_event_context *ctx; 10819 struct perf_event *event; 10820 int err; 10821 10822 /* 10823 * Get the target context (task or percpu): 10824 */ 10825 10826 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 10827 overflow_handler, context, -1); 10828 if (IS_ERR(event)) { 10829 err = PTR_ERR(event); 10830 goto err; 10831 } 10832 10833 /* Mark owner so we could distinguish it from user events. */ 10834 event->owner = TASK_TOMBSTONE; 10835 10836 ctx = find_get_context(event->pmu, task, event); 10837 if (IS_ERR(ctx)) { 10838 err = PTR_ERR(ctx); 10839 goto err_free; 10840 } 10841 10842 WARN_ON_ONCE(ctx->parent_ctx); 10843 mutex_lock(&ctx->mutex); 10844 if (ctx->task == TASK_TOMBSTONE) { 10845 err = -ESRCH; 10846 goto err_unlock; 10847 } 10848 10849 if (!task) { 10850 /* 10851 * Check if the @cpu we're creating an event for is online. 10852 * 10853 * We use the perf_cpu_context::ctx::mutex to serialize against 10854 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10855 */ 10856 struct perf_cpu_context *cpuctx = 10857 container_of(ctx, struct perf_cpu_context, ctx); 10858 if (!cpuctx->online) { 10859 err = -ENODEV; 10860 goto err_unlock; 10861 } 10862 } 10863 10864 if (!exclusive_event_installable(event, ctx)) { 10865 err = -EBUSY; 10866 goto err_unlock; 10867 } 10868 10869 perf_install_in_context(ctx, event, cpu); 10870 perf_unpin_context(ctx); 10871 mutex_unlock(&ctx->mutex); 10872 10873 return event; 10874 10875 err_unlock: 10876 mutex_unlock(&ctx->mutex); 10877 perf_unpin_context(ctx); 10878 put_ctx(ctx); 10879 err_free: 10880 free_event(event); 10881 err: 10882 return ERR_PTR(err); 10883 } 10884 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 10885 10886 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 10887 { 10888 struct perf_event_context *src_ctx; 10889 struct perf_event_context *dst_ctx; 10890 struct perf_event *event, *tmp; 10891 LIST_HEAD(events); 10892 10893 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 10894 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 10895 10896 /* 10897 * See perf_event_ctx_lock() for comments on the details 10898 * of swizzling perf_event::ctx. 10899 */ 10900 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 10901 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 10902 event_entry) { 10903 perf_remove_from_context(event, 0); 10904 unaccount_event_cpu(event, src_cpu); 10905 put_ctx(src_ctx); 10906 list_add(&event->migrate_entry, &events); 10907 } 10908 10909 /* 10910 * Wait for the events to quiesce before re-instating them. 10911 */ 10912 synchronize_rcu(); 10913 10914 /* 10915 * Re-instate events in 2 passes. 10916 * 10917 * Skip over group leaders and only install siblings on this first 10918 * pass, siblings will not get enabled without a leader, however a 10919 * leader will enable its siblings, even if those are still on the old 10920 * context. 10921 */ 10922 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10923 if (event->group_leader == event) 10924 continue; 10925 10926 list_del(&event->migrate_entry); 10927 if (event->state >= PERF_EVENT_STATE_OFF) 10928 event->state = PERF_EVENT_STATE_INACTIVE; 10929 account_event_cpu(event, dst_cpu); 10930 perf_install_in_context(dst_ctx, event, dst_cpu); 10931 get_ctx(dst_ctx); 10932 } 10933 10934 /* 10935 * Once all the siblings are setup properly, install the group leaders 10936 * to make it go. 10937 */ 10938 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10939 list_del(&event->migrate_entry); 10940 if (event->state >= PERF_EVENT_STATE_OFF) 10941 event->state = PERF_EVENT_STATE_INACTIVE; 10942 account_event_cpu(event, dst_cpu); 10943 perf_install_in_context(dst_ctx, event, dst_cpu); 10944 get_ctx(dst_ctx); 10945 } 10946 mutex_unlock(&dst_ctx->mutex); 10947 mutex_unlock(&src_ctx->mutex); 10948 } 10949 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10950 10951 static void sync_child_event(struct perf_event *child_event, 10952 struct task_struct *child) 10953 { 10954 struct perf_event *parent_event = child_event->parent; 10955 u64 child_val; 10956 10957 if (child_event->attr.inherit_stat) 10958 perf_event_read_event(child_event, child); 10959 10960 child_val = perf_event_count(child_event); 10961 10962 /* 10963 * Add back the child's count to the parent's count: 10964 */ 10965 atomic64_add(child_val, &parent_event->child_count); 10966 atomic64_add(child_event->total_time_enabled, 10967 &parent_event->child_total_time_enabled); 10968 atomic64_add(child_event->total_time_running, 10969 &parent_event->child_total_time_running); 10970 } 10971 10972 static void 10973 perf_event_exit_event(struct perf_event *child_event, 10974 struct perf_event_context *child_ctx, 10975 struct task_struct *child) 10976 { 10977 struct perf_event *parent_event = child_event->parent; 10978 10979 /* 10980 * Do not destroy the 'original' grouping; because of the context 10981 * switch optimization the original events could've ended up in a 10982 * random child task. 10983 * 10984 * If we were to destroy the original group, all group related 10985 * operations would cease to function properly after this random 10986 * child dies. 10987 * 10988 * Do destroy all inherited groups, we don't care about those 10989 * and being thorough is better. 10990 */ 10991 raw_spin_lock_irq(&child_ctx->lock); 10992 WARN_ON_ONCE(child_ctx->is_active); 10993 10994 if (parent_event) 10995 perf_group_detach(child_event); 10996 list_del_event(child_event, child_ctx); 10997 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 10998 raw_spin_unlock_irq(&child_ctx->lock); 10999 11000 /* 11001 * Parent events are governed by their filedesc, retain them. 11002 */ 11003 if (!parent_event) { 11004 perf_event_wakeup(child_event); 11005 return; 11006 } 11007 /* 11008 * Child events can be cleaned up. 11009 */ 11010 11011 sync_child_event(child_event, child); 11012 11013 /* 11014 * Remove this event from the parent's list 11015 */ 11016 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 11017 mutex_lock(&parent_event->child_mutex); 11018 list_del_init(&child_event->child_list); 11019 mutex_unlock(&parent_event->child_mutex); 11020 11021 /* 11022 * Kick perf_poll() for is_event_hup(). 11023 */ 11024 perf_event_wakeup(parent_event); 11025 free_event(child_event); 11026 put_event(parent_event); 11027 } 11028 11029 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 11030 { 11031 struct perf_event_context *child_ctx, *clone_ctx = NULL; 11032 struct perf_event *child_event, *next; 11033 11034 WARN_ON_ONCE(child != current); 11035 11036 child_ctx = perf_pin_task_context(child, ctxn); 11037 if (!child_ctx) 11038 return; 11039 11040 /* 11041 * In order to reduce the amount of tricky in ctx tear-down, we hold 11042 * ctx::mutex over the entire thing. This serializes against almost 11043 * everything that wants to access the ctx. 11044 * 11045 * The exception is sys_perf_event_open() / 11046 * perf_event_create_kernel_count() which does find_get_context() 11047 * without ctx::mutex (it cannot because of the move_group double mutex 11048 * lock thing). See the comments in perf_install_in_context(). 11049 */ 11050 mutex_lock(&child_ctx->mutex); 11051 11052 /* 11053 * In a single ctx::lock section, de-schedule the events and detach the 11054 * context from the task such that we cannot ever get it scheduled back 11055 * in. 11056 */ 11057 raw_spin_lock_irq(&child_ctx->lock); 11058 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 11059 11060 /* 11061 * Now that the context is inactive, destroy the task <-> ctx relation 11062 * and mark the context dead. 11063 */ 11064 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 11065 put_ctx(child_ctx); /* cannot be last */ 11066 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 11067 put_task_struct(current); /* cannot be last */ 11068 11069 clone_ctx = unclone_ctx(child_ctx); 11070 raw_spin_unlock_irq(&child_ctx->lock); 11071 11072 if (clone_ctx) 11073 put_ctx(clone_ctx); 11074 11075 /* 11076 * Report the task dead after unscheduling the events so that we 11077 * won't get any samples after PERF_RECORD_EXIT. We can however still 11078 * get a few PERF_RECORD_READ events. 11079 */ 11080 perf_event_task(child, child_ctx, 0); 11081 11082 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 11083 perf_event_exit_event(child_event, child_ctx, child); 11084 11085 mutex_unlock(&child_ctx->mutex); 11086 11087 put_ctx(child_ctx); 11088 } 11089 11090 /* 11091 * When a child task exits, feed back event values to parent events. 11092 * 11093 * Can be called with cred_guard_mutex held when called from 11094 * install_exec_creds(). 11095 */ 11096 void perf_event_exit_task(struct task_struct *child) 11097 { 11098 struct perf_event *event, *tmp; 11099 int ctxn; 11100 11101 mutex_lock(&child->perf_event_mutex); 11102 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 11103 owner_entry) { 11104 list_del_init(&event->owner_entry); 11105 11106 /* 11107 * Ensure the list deletion is visible before we clear 11108 * the owner, closes a race against perf_release() where 11109 * we need to serialize on the owner->perf_event_mutex. 11110 */ 11111 smp_store_release(&event->owner, NULL); 11112 } 11113 mutex_unlock(&child->perf_event_mutex); 11114 11115 for_each_task_context_nr(ctxn) 11116 perf_event_exit_task_context(child, ctxn); 11117 11118 /* 11119 * The perf_event_exit_task_context calls perf_event_task 11120 * with child's task_ctx, which generates EXIT events for 11121 * child contexts and sets child->perf_event_ctxp[] to NULL. 11122 * At this point we need to send EXIT events to cpu contexts. 11123 */ 11124 perf_event_task(child, NULL, 0); 11125 } 11126 11127 static void perf_free_event(struct perf_event *event, 11128 struct perf_event_context *ctx) 11129 { 11130 struct perf_event *parent = event->parent; 11131 11132 if (WARN_ON_ONCE(!parent)) 11133 return; 11134 11135 mutex_lock(&parent->child_mutex); 11136 list_del_init(&event->child_list); 11137 mutex_unlock(&parent->child_mutex); 11138 11139 put_event(parent); 11140 11141 raw_spin_lock_irq(&ctx->lock); 11142 perf_group_detach(event); 11143 list_del_event(event, ctx); 11144 raw_spin_unlock_irq(&ctx->lock); 11145 free_event(event); 11146 } 11147 11148 /* 11149 * Free an unexposed, unused context as created by inheritance by 11150 * perf_event_init_task below, used by fork() in case of fail. 11151 * 11152 * Not all locks are strictly required, but take them anyway to be nice and 11153 * help out with the lockdep assertions. 11154 */ 11155 void perf_event_free_task(struct task_struct *task) 11156 { 11157 struct perf_event_context *ctx; 11158 struct perf_event *event, *tmp; 11159 int ctxn; 11160 11161 for_each_task_context_nr(ctxn) { 11162 ctx = task->perf_event_ctxp[ctxn]; 11163 if (!ctx) 11164 continue; 11165 11166 mutex_lock(&ctx->mutex); 11167 raw_spin_lock_irq(&ctx->lock); 11168 /* 11169 * Destroy the task <-> ctx relation and mark the context dead. 11170 * 11171 * This is important because even though the task hasn't been 11172 * exposed yet the context has been (through child_list). 11173 */ 11174 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 11175 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 11176 put_task_struct(task); /* cannot be last */ 11177 raw_spin_unlock_irq(&ctx->lock); 11178 11179 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 11180 perf_free_event(event, ctx); 11181 11182 mutex_unlock(&ctx->mutex); 11183 put_ctx(ctx); 11184 } 11185 } 11186 11187 void perf_event_delayed_put(struct task_struct *task) 11188 { 11189 int ctxn; 11190 11191 for_each_task_context_nr(ctxn) 11192 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 11193 } 11194 11195 struct file *perf_event_get(unsigned int fd) 11196 { 11197 struct file *file; 11198 11199 file = fget_raw(fd); 11200 if (!file) 11201 return ERR_PTR(-EBADF); 11202 11203 if (file->f_op != &perf_fops) { 11204 fput(file); 11205 return ERR_PTR(-EBADF); 11206 } 11207 11208 return file; 11209 } 11210 11211 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 11212 { 11213 if (!event) 11214 return ERR_PTR(-EINVAL); 11215 11216 return &event->attr; 11217 } 11218 11219 /* 11220 * Inherit a event from parent task to child task. 11221 * 11222 * Returns: 11223 * - valid pointer on success 11224 * - NULL for orphaned events 11225 * - IS_ERR() on error 11226 */ 11227 static struct perf_event * 11228 inherit_event(struct perf_event *parent_event, 11229 struct task_struct *parent, 11230 struct perf_event_context *parent_ctx, 11231 struct task_struct *child, 11232 struct perf_event *group_leader, 11233 struct perf_event_context *child_ctx) 11234 { 11235 enum perf_event_state parent_state = parent_event->state; 11236 struct perf_event *child_event; 11237 unsigned long flags; 11238 11239 /* 11240 * Instead of creating recursive hierarchies of events, 11241 * we link inherited events back to the original parent, 11242 * which has a filp for sure, which we use as the reference 11243 * count: 11244 */ 11245 if (parent_event->parent) 11246 parent_event = parent_event->parent; 11247 11248 child_event = perf_event_alloc(&parent_event->attr, 11249 parent_event->cpu, 11250 child, 11251 group_leader, parent_event, 11252 NULL, NULL, -1); 11253 if (IS_ERR(child_event)) 11254 return child_event; 11255 11256 11257 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 11258 !child_ctx->task_ctx_data) { 11259 struct pmu *pmu = child_event->pmu; 11260 11261 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 11262 GFP_KERNEL); 11263 if (!child_ctx->task_ctx_data) { 11264 free_event(child_event); 11265 return NULL; 11266 } 11267 } 11268 11269 /* 11270 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 11271 * must be under the same lock in order to serialize against 11272 * perf_event_release_kernel(), such that either we must observe 11273 * is_orphaned_event() or they will observe us on the child_list. 11274 */ 11275 mutex_lock(&parent_event->child_mutex); 11276 if (is_orphaned_event(parent_event) || 11277 !atomic_long_inc_not_zero(&parent_event->refcount)) { 11278 mutex_unlock(&parent_event->child_mutex); 11279 /* task_ctx_data is freed with child_ctx */ 11280 free_event(child_event); 11281 return NULL; 11282 } 11283 11284 get_ctx(child_ctx); 11285 11286 /* 11287 * Make the child state follow the state of the parent event, 11288 * not its attr.disabled bit. We hold the parent's mutex, 11289 * so we won't race with perf_event_{en, dis}able_family. 11290 */ 11291 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 11292 child_event->state = PERF_EVENT_STATE_INACTIVE; 11293 else 11294 child_event->state = PERF_EVENT_STATE_OFF; 11295 11296 if (parent_event->attr.freq) { 11297 u64 sample_period = parent_event->hw.sample_period; 11298 struct hw_perf_event *hwc = &child_event->hw; 11299 11300 hwc->sample_period = sample_period; 11301 hwc->last_period = sample_period; 11302 11303 local64_set(&hwc->period_left, sample_period); 11304 } 11305 11306 child_event->ctx = child_ctx; 11307 child_event->overflow_handler = parent_event->overflow_handler; 11308 child_event->overflow_handler_context 11309 = parent_event->overflow_handler_context; 11310 11311 /* 11312 * Precalculate sample_data sizes 11313 */ 11314 perf_event__header_size(child_event); 11315 perf_event__id_header_size(child_event); 11316 11317 /* 11318 * Link it up in the child's context: 11319 */ 11320 raw_spin_lock_irqsave(&child_ctx->lock, flags); 11321 add_event_to_ctx(child_event, child_ctx); 11322 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 11323 11324 /* 11325 * Link this into the parent event's child list 11326 */ 11327 list_add_tail(&child_event->child_list, &parent_event->child_list); 11328 mutex_unlock(&parent_event->child_mutex); 11329 11330 return child_event; 11331 } 11332 11333 /* 11334 * Inherits an event group. 11335 * 11336 * This will quietly suppress orphaned events; !inherit_event() is not an error. 11337 * This matches with perf_event_release_kernel() removing all child events. 11338 * 11339 * Returns: 11340 * - 0 on success 11341 * - <0 on error 11342 */ 11343 static int inherit_group(struct perf_event *parent_event, 11344 struct task_struct *parent, 11345 struct perf_event_context *parent_ctx, 11346 struct task_struct *child, 11347 struct perf_event_context *child_ctx) 11348 { 11349 struct perf_event *leader; 11350 struct perf_event *sub; 11351 struct perf_event *child_ctr; 11352 11353 leader = inherit_event(parent_event, parent, parent_ctx, 11354 child, NULL, child_ctx); 11355 if (IS_ERR(leader)) 11356 return PTR_ERR(leader); 11357 /* 11358 * @leader can be NULL here because of is_orphaned_event(). In this 11359 * case inherit_event() will create individual events, similar to what 11360 * perf_group_detach() would do anyway. 11361 */ 11362 for_each_sibling_event(sub, parent_event) { 11363 child_ctr = inherit_event(sub, parent, parent_ctx, 11364 child, leader, child_ctx); 11365 if (IS_ERR(child_ctr)) 11366 return PTR_ERR(child_ctr); 11367 } 11368 return 0; 11369 } 11370 11371 /* 11372 * Creates the child task context and tries to inherit the event-group. 11373 * 11374 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 11375 * inherited_all set when we 'fail' to inherit an orphaned event; this is 11376 * consistent with perf_event_release_kernel() removing all child events. 11377 * 11378 * Returns: 11379 * - 0 on success 11380 * - <0 on error 11381 */ 11382 static int 11383 inherit_task_group(struct perf_event *event, struct task_struct *parent, 11384 struct perf_event_context *parent_ctx, 11385 struct task_struct *child, int ctxn, 11386 int *inherited_all) 11387 { 11388 int ret; 11389 struct perf_event_context *child_ctx; 11390 11391 if (!event->attr.inherit) { 11392 *inherited_all = 0; 11393 return 0; 11394 } 11395 11396 child_ctx = child->perf_event_ctxp[ctxn]; 11397 if (!child_ctx) { 11398 /* 11399 * This is executed from the parent task context, so 11400 * inherit events that have been marked for cloning. 11401 * First allocate and initialize a context for the 11402 * child. 11403 */ 11404 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 11405 if (!child_ctx) 11406 return -ENOMEM; 11407 11408 child->perf_event_ctxp[ctxn] = child_ctx; 11409 } 11410 11411 ret = inherit_group(event, parent, parent_ctx, 11412 child, child_ctx); 11413 11414 if (ret) 11415 *inherited_all = 0; 11416 11417 return ret; 11418 } 11419 11420 /* 11421 * Initialize the perf_event context in task_struct 11422 */ 11423 static int perf_event_init_context(struct task_struct *child, int ctxn) 11424 { 11425 struct perf_event_context *child_ctx, *parent_ctx; 11426 struct perf_event_context *cloned_ctx; 11427 struct perf_event *event; 11428 struct task_struct *parent = current; 11429 int inherited_all = 1; 11430 unsigned long flags; 11431 int ret = 0; 11432 11433 if (likely(!parent->perf_event_ctxp[ctxn])) 11434 return 0; 11435 11436 /* 11437 * If the parent's context is a clone, pin it so it won't get 11438 * swapped under us. 11439 */ 11440 parent_ctx = perf_pin_task_context(parent, ctxn); 11441 if (!parent_ctx) 11442 return 0; 11443 11444 /* 11445 * No need to check if parent_ctx != NULL here; since we saw 11446 * it non-NULL earlier, the only reason for it to become NULL 11447 * is if we exit, and since we're currently in the middle of 11448 * a fork we can't be exiting at the same time. 11449 */ 11450 11451 /* 11452 * Lock the parent list. No need to lock the child - not PID 11453 * hashed yet and not running, so nobody can access it. 11454 */ 11455 mutex_lock(&parent_ctx->mutex); 11456 11457 /* 11458 * We dont have to disable NMIs - we are only looking at 11459 * the list, not manipulating it: 11460 */ 11461 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 11462 ret = inherit_task_group(event, parent, parent_ctx, 11463 child, ctxn, &inherited_all); 11464 if (ret) 11465 goto out_unlock; 11466 } 11467 11468 /* 11469 * We can't hold ctx->lock when iterating the ->flexible_group list due 11470 * to allocations, but we need to prevent rotation because 11471 * rotate_ctx() will change the list from interrupt context. 11472 */ 11473 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11474 parent_ctx->rotate_disable = 1; 11475 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11476 11477 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 11478 ret = inherit_task_group(event, parent, parent_ctx, 11479 child, ctxn, &inherited_all); 11480 if (ret) 11481 goto out_unlock; 11482 } 11483 11484 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11485 parent_ctx->rotate_disable = 0; 11486 11487 child_ctx = child->perf_event_ctxp[ctxn]; 11488 11489 if (child_ctx && inherited_all) { 11490 /* 11491 * Mark the child context as a clone of the parent 11492 * context, or of whatever the parent is a clone of. 11493 * 11494 * Note that if the parent is a clone, the holding of 11495 * parent_ctx->lock avoids it from being uncloned. 11496 */ 11497 cloned_ctx = parent_ctx->parent_ctx; 11498 if (cloned_ctx) { 11499 child_ctx->parent_ctx = cloned_ctx; 11500 child_ctx->parent_gen = parent_ctx->parent_gen; 11501 } else { 11502 child_ctx->parent_ctx = parent_ctx; 11503 child_ctx->parent_gen = parent_ctx->generation; 11504 } 11505 get_ctx(child_ctx->parent_ctx); 11506 } 11507 11508 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11509 out_unlock: 11510 mutex_unlock(&parent_ctx->mutex); 11511 11512 perf_unpin_context(parent_ctx); 11513 put_ctx(parent_ctx); 11514 11515 return ret; 11516 } 11517 11518 /* 11519 * Initialize the perf_event context in task_struct 11520 */ 11521 int perf_event_init_task(struct task_struct *child) 11522 { 11523 int ctxn, ret; 11524 11525 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 11526 mutex_init(&child->perf_event_mutex); 11527 INIT_LIST_HEAD(&child->perf_event_list); 11528 11529 for_each_task_context_nr(ctxn) { 11530 ret = perf_event_init_context(child, ctxn); 11531 if (ret) { 11532 perf_event_free_task(child); 11533 return ret; 11534 } 11535 } 11536 11537 return 0; 11538 } 11539 11540 static void __init perf_event_init_all_cpus(void) 11541 { 11542 struct swevent_htable *swhash; 11543 int cpu; 11544 11545 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 11546 11547 for_each_possible_cpu(cpu) { 11548 swhash = &per_cpu(swevent_htable, cpu); 11549 mutex_init(&swhash->hlist_mutex); 11550 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 11551 11552 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 11553 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 11554 11555 #ifdef CONFIG_CGROUP_PERF 11556 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 11557 #endif 11558 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 11559 } 11560 } 11561 11562 void perf_swevent_init_cpu(unsigned int cpu) 11563 { 11564 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11565 11566 mutex_lock(&swhash->hlist_mutex); 11567 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 11568 struct swevent_hlist *hlist; 11569 11570 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 11571 WARN_ON(!hlist); 11572 rcu_assign_pointer(swhash->swevent_hlist, hlist); 11573 } 11574 mutex_unlock(&swhash->hlist_mutex); 11575 } 11576 11577 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 11578 static void __perf_event_exit_context(void *__info) 11579 { 11580 struct perf_event_context *ctx = __info; 11581 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11582 struct perf_event *event; 11583 11584 raw_spin_lock(&ctx->lock); 11585 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 11586 list_for_each_entry(event, &ctx->event_list, event_entry) 11587 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11588 raw_spin_unlock(&ctx->lock); 11589 } 11590 11591 static void perf_event_exit_cpu_context(int cpu) 11592 { 11593 struct perf_cpu_context *cpuctx; 11594 struct perf_event_context *ctx; 11595 struct pmu *pmu; 11596 11597 mutex_lock(&pmus_lock); 11598 list_for_each_entry(pmu, &pmus, entry) { 11599 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11600 ctx = &cpuctx->ctx; 11601 11602 mutex_lock(&ctx->mutex); 11603 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11604 cpuctx->online = 0; 11605 mutex_unlock(&ctx->mutex); 11606 } 11607 cpumask_clear_cpu(cpu, perf_online_mask); 11608 mutex_unlock(&pmus_lock); 11609 } 11610 #else 11611 11612 static void perf_event_exit_cpu_context(int cpu) { } 11613 11614 #endif 11615 11616 int perf_event_init_cpu(unsigned int cpu) 11617 { 11618 struct perf_cpu_context *cpuctx; 11619 struct perf_event_context *ctx; 11620 struct pmu *pmu; 11621 11622 perf_swevent_init_cpu(cpu); 11623 11624 mutex_lock(&pmus_lock); 11625 cpumask_set_cpu(cpu, perf_online_mask); 11626 list_for_each_entry(pmu, &pmus, entry) { 11627 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11628 ctx = &cpuctx->ctx; 11629 11630 mutex_lock(&ctx->mutex); 11631 cpuctx->online = 1; 11632 mutex_unlock(&ctx->mutex); 11633 } 11634 mutex_unlock(&pmus_lock); 11635 11636 return 0; 11637 } 11638 11639 int perf_event_exit_cpu(unsigned int cpu) 11640 { 11641 perf_event_exit_cpu_context(cpu); 11642 return 0; 11643 } 11644 11645 static int 11646 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 11647 { 11648 int cpu; 11649 11650 for_each_online_cpu(cpu) 11651 perf_event_exit_cpu(cpu); 11652 11653 return NOTIFY_OK; 11654 } 11655 11656 /* 11657 * Run the perf reboot notifier at the very last possible moment so that 11658 * the generic watchdog code runs as long as possible. 11659 */ 11660 static struct notifier_block perf_reboot_notifier = { 11661 .notifier_call = perf_reboot, 11662 .priority = INT_MIN, 11663 }; 11664 11665 void __init perf_event_init(void) 11666 { 11667 int ret; 11668 11669 idr_init(&pmu_idr); 11670 11671 perf_event_init_all_cpus(); 11672 init_srcu_struct(&pmus_srcu); 11673 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 11674 perf_pmu_register(&perf_cpu_clock, NULL, -1); 11675 perf_pmu_register(&perf_task_clock, NULL, -1); 11676 perf_tp_register(); 11677 perf_event_init_cpu(smp_processor_id()); 11678 register_reboot_notifier(&perf_reboot_notifier); 11679 11680 ret = init_hw_breakpoint(); 11681 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 11682 11683 /* 11684 * Build time assertion that we keep the data_head at the intended 11685 * location. IOW, validation we got the __reserved[] size right. 11686 */ 11687 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 11688 != 1024); 11689 } 11690 11691 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 11692 char *page) 11693 { 11694 struct perf_pmu_events_attr *pmu_attr = 11695 container_of(attr, struct perf_pmu_events_attr, attr); 11696 11697 if (pmu_attr->event_str) 11698 return sprintf(page, "%s\n", pmu_attr->event_str); 11699 11700 return 0; 11701 } 11702 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 11703 11704 static int __init perf_event_sysfs_init(void) 11705 { 11706 struct pmu *pmu; 11707 int ret; 11708 11709 mutex_lock(&pmus_lock); 11710 11711 ret = bus_register(&pmu_bus); 11712 if (ret) 11713 goto unlock; 11714 11715 list_for_each_entry(pmu, &pmus, entry) { 11716 if (!pmu->name || pmu->type < 0) 11717 continue; 11718 11719 ret = pmu_dev_alloc(pmu); 11720 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 11721 } 11722 pmu_bus_running = 1; 11723 ret = 0; 11724 11725 unlock: 11726 mutex_unlock(&pmus_lock); 11727 11728 return ret; 11729 } 11730 device_initcall(perf_event_sysfs_init); 11731 11732 #ifdef CONFIG_CGROUP_PERF 11733 static struct cgroup_subsys_state * 11734 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 11735 { 11736 struct perf_cgroup *jc; 11737 11738 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 11739 if (!jc) 11740 return ERR_PTR(-ENOMEM); 11741 11742 jc->info = alloc_percpu(struct perf_cgroup_info); 11743 if (!jc->info) { 11744 kfree(jc); 11745 return ERR_PTR(-ENOMEM); 11746 } 11747 11748 return &jc->css; 11749 } 11750 11751 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 11752 { 11753 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 11754 11755 free_percpu(jc->info); 11756 kfree(jc); 11757 } 11758 11759 static int __perf_cgroup_move(void *info) 11760 { 11761 struct task_struct *task = info; 11762 rcu_read_lock(); 11763 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 11764 rcu_read_unlock(); 11765 return 0; 11766 } 11767 11768 static void perf_cgroup_attach(struct cgroup_taskset *tset) 11769 { 11770 struct task_struct *task; 11771 struct cgroup_subsys_state *css; 11772 11773 cgroup_taskset_for_each(task, css, tset) 11774 task_function_call(task, __perf_cgroup_move, task); 11775 } 11776 11777 struct cgroup_subsys perf_event_cgrp_subsys = { 11778 .css_alloc = perf_cgroup_css_alloc, 11779 .css_free = perf_cgroup_css_free, 11780 .attach = perf_cgroup_attach, 11781 /* 11782 * Implicitly enable on dfl hierarchy so that perf events can 11783 * always be filtered by cgroup2 path as long as perf_event 11784 * controller is not mounted on a legacy hierarchy. 11785 */ 11786 .implicit_on_dfl = true, 11787 .threaded = true, 11788 }; 11789 #endif /* CONFIG_CGROUP_PERF */ 11790