xref: /openbmc/linux/kernel/events/core.c (revision ca90578000afb0d8f177ea36f7259a9c3640cf49)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	lockdep_assert_irqs_disabled();
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	lockdep_assert_irqs_disabled();
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393 
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402 
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE		100000
410 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
412 
413 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
414 
415 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
417 
418 static int perf_sample_allowed_ns __read_mostly =
419 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420 
421 static void update_perf_cpu_limits(void)
422 {
423 	u64 tmp = perf_sample_period_ns;
424 
425 	tmp *= sysctl_perf_cpu_time_max_percent;
426 	tmp = div_u64(tmp, 100);
427 	if (!tmp)
428 		tmp = 1;
429 
430 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432 
433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
434 
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 		void __user *buffer, size_t *lenp,
437 		loff_t *ppos)
438 {
439 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440 
441 	if (ret || !write)
442 		return ret;
443 
444 	/*
445 	 * If throttling is disabled don't allow the write:
446 	 */
447 	if (sysctl_perf_cpu_time_max_percent == 100 ||
448 	    sysctl_perf_cpu_time_max_percent == 0)
449 		return -EINVAL;
450 
451 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 	update_perf_cpu_limits();
454 
455 	return 0;
456 }
457 
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459 
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 				void __user *buffer, size_t *lenp,
462 				loff_t *ppos)
463 {
464 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 
466 	if (ret || !write)
467 		return ret;
468 
469 	if (sysctl_perf_cpu_time_max_percent == 100 ||
470 	    sysctl_perf_cpu_time_max_percent == 0) {
471 		printk(KERN_WARNING
472 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 		WRITE_ONCE(perf_sample_allowed_ns, 0);
474 	} else {
475 		update_perf_cpu_limits();
476 	}
477 
478 	return 0;
479 }
480 
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489 
490 static u64 __report_avg;
491 static u64 __report_allowed;
492 
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 	printk_ratelimited(KERN_INFO
496 		"perf: interrupt took too long (%lld > %lld), lowering "
497 		"kernel.perf_event_max_sample_rate to %d\n",
498 		__report_avg, __report_allowed,
499 		sysctl_perf_event_sample_rate);
500 }
501 
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503 
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 	u64 running_len;
508 	u64 avg_len;
509 	u32 max;
510 
511 	if (max_len == 0)
512 		return;
513 
514 	/* Decay the counter by 1 average sample. */
515 	running_len = __this_cpu_read(running_sample_length);
516 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 	running_len += sample_len_ns;
518 	__this_cpu_write(running_sample_length, running_len);
519 
520 	/*
521 	 * Note: this will be biased artifically low until we have
522 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 	 * from having to maintain a count.
524 	 */
525 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 	if (avg_len <= max_len)
527 		return;
528 
529 	__report_avg = avg_len;
530 	__report_allowed = max_len;
531 
532 	/*
533 	 * Compute a throttle threshold 25% below the current duration.
534 	 */
535 	avg_len += avg_len / 4;
536 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 	if (avg_len < max)
538 		max /= (u32)avg_len;
539 	else
540 		max = 1;
541 
542 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 	WRITE_ONCE(max_samples_per_tick, max);
544 
545 	sysctl_perf_event_sample_rate = max * HZ;
546 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547 
548 	if (!irq_work_queue(&perf_duration_work)) {
549 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 			     "kernel.perf_event_max_sample_rate to %d\n",
551 			     __report_avg, __report_allowed,
552 			     sysctl_perf_event_sample_rate);
553 	}
554 }
555 
556 static atomic64_t perf_event_id;
557 
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 			      enum event_type_t event_type);
560 
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 			     enum event_type_t event_type,
563 			     struct task_struct *task);
564 
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567 
568 void __weak perf_event_print_debug(void)	{ }
569 
570 extern __weak const char *perf_pmu_name(void)
571 {
572 	return "pmu";
573 }
574 
575 static inline u64 perf_clock(void)
576 {
577 	return local_clock();
578 }
579 
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 	return event->clock();
583 }
584 
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606 
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610 	struct perf_event *leader = event->group_leader;
611 
612 	if (leader->state <= PERF_EVENT_STATE_OFF)
613 		return leader->state;
614 
615 	return event->state;
616 }
617 
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621 	enum perf_event_state state = __perf_effective_state(event);
622 	u64 delta = now - event->tstamp;
623 
624 	*enabled = event->total_time_enabled;
625 	if (state >= PERF_EVENT_STATE_INACTIVE)
626 		*enabled += delta;
627 
628 	*running = event->total_time_running;
629 	if (state >= PERF_EVENT_STATE_ACTIVE)
630 		*running += delta;
631 }
632 
633 static void perf_event_update_time(struct perf_event *event)
634 {
635 	u64 now = perf_event_time(event);
636 
637 	__perf_update_times(event, now, &event->total_time_enabled,
638 					&event->total_time_running);
639 	event->tstamp = now;
640 }
641 
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644 	struct perf_event *sibling;
645 
646 	for_each_sibling_event(sibling, leader)
647 		perf_event_update_time(sibling);
648 }
649 
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653 	if (event->state == state)
654 		return;
655 
656 	perf_event_update_time(event);
657 	/*
658 	 * If a group leader gets enabled/disabled all its siblings
659 	 * are affected too.
660 	 */
661 	if ((event->state < 0) ^ (state < 0))
662 		perf_event_update_sibling_time(event);
663 
664 	WRITE_ONCE(event->state, state);
665 }
666 
667 #ifdef CONFIG_CGROUP_PERF
668 
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672 	struct perf_event_context *ctx = event->ctx;
673 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674 
675 	/* @event doesn't care about cgroup */
676 	if (!event->cgrp)
677 		return true;
678 
679 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
680 	if (!cpuctx->cgrp)
681 		return false;
682 
683 	/*
684 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
685 	 * also enabled for all its descendant cgroups.  If @cpuctx's
686 	 * cgroup is a descendant of @event's (the test covers identity
687 	 * case), it's a match.
688 	 */
689 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 				    event->cgrp->css.cgroup);
691 }
692 
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695 	css_put(&event->cgrp->css);
696 	event->cgrp = NULL;
697 }
698 
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701 	return event->cgrp != NULL;
702 }
703 
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706 	struct perf_cgroup_info *t;
707 
708 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 	return t->time;
710 }
711 
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714 	struct perf_cgroup_info *info;
715 	u64 now;
716 
717 	now = perf_clock();
718 
719 	info = this_cpu_ptr(cgrp->info);
720 
721 	info->time += now - info->timestamp;
722 	info->timestamp = now;
723 }
724 
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727 	struct perf_cgroup *cgrp = cpuctx->cgrp;
728 	struct cgroup_subsys_state *css;
729 
730 	if (cgrp) {
731 		for (css = &cgrp->css; css; css = css->parent) {
732 			cgrp = container_of(css, struct perf_cgroup, css);
733 			__update_cgrp_time(cgrp);
734 		}
735 	}
736 }
737 
738 static inline void update_cgrp_time_from_event(struct perf_event *event)
739 {
740 	struct perf_cgroup *cgrp;
741 
742 	/*
743 	 * ensure we access cgroup data only when needed and
744 	 * when we know the cgroup is pinned (css_get)
745 	 */
746 	if (!is_cgroup_event(event))
747 		return;
748 
749 	cgrp = perf_cgroup_from_task(current, event->ctx);
750 	/*
751 	 * Do not update time when cgroup is not active
752 	 */
753        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754 		__update_cgrp_time(event->cgrp);
755 }
756 
757 static inline void
758 perf_cgroup_set_timestamp(struct task_struct *task,
759 			  struct perf_event_context *ctx)
760 {
761 	struct perf_cgroup *cgrp;
762 	struct perf_cgroup_info *info;
763 	struct cgroup_subsys_state *css;
764 
765 	/*
766 	 * ctx->lock held by caller
767 	 * ensure we do not access cgroup data
768 	 * unless we have the cgroup pinned (css_get)
769 	 */
770 	if (!task || !ctx->nr_cgroups)
771 		return;
772 
773 	cgrp = perf_cgroup_from_task(task, ctx);
774 
775 	for (css = &cgrp->css; css; css = css->parent) {
776 		cgrp = container_of(css, struct perf_cgroup, css);
777 		info = this_cpu_ptr(cgrp->info);
778 		info->timestamp = ctx->timestamp;
779 	}
780 }
781 
782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
783 
784 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
785 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
786 
787 /*
788  * reschedule events based on the cgroup constraint of task.
789  *
790  * mode SWOUT : schedule out everything
791  * mode SWIN : schedule in based on cgroup for next
792  */
793 static void perf_cgroup_switch(struct task_struct *task, int mode)
794 {
795 	struct perf_cpu_context *cpuctx;
796 	struct list_head *list;
797 	unsigned long flags;
798 
799 	/*
800 	 * Disable interrupts and preemption to avoid this CPU's
801 	 * cgrp_cpuctx_entry to change under us.
802 	 */
803 	local_irq_save(flags);
804 
805 	list = this_cpu_ptr(&cgrp_cpuctx_list);
806 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
808 
809 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810 		perf_pmu_disable(cpuctx->ctx.pmu);
811 
812 		if (mode & PERF_CGROUP_SWOUT) {
813 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
814 			/*
815 			 * must not be done before ctxswout due
816 			 * to event_filter_match() in event_sched_out()
817 			 */
818 			cpuctx->cgrp = NULL;
819 		}
820 
821 		if (mode & PERF_CGROUP_SWIN) {
822 			WARN_ON_ONCE(cpuctx->cgrp);
823 			/*
824 			 * set cgrp before ctxsw in to allow
825 			 * event_filter_match() to not have to pass
826 			 * task around
827 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
828 			 * because cgorup events are only per-cpu
829 			 */
830 			cpuctx->cgrp = perf_cgroup_from_task(task,
831 							     &cpuctx->ctx);
832 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
833 		}
834 		perf_pmu_enable(cpuctx->ctx.pmu);
835 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
836 	}
837 
838 	local_irq_restore(flags);
839 }
840 
841 static inline void perf_cgroup_sched_out(struct task_struct *task,
842 					 struct task_struct *next)
843 {
844 	struct perf_cgroup *cgrp1;
845 	struct perf_cgroup *cgrp2 = NULL;
846 
847 	rcu_read_lock();
848 	/*
849 	 * we come here when we know perf_cgroup_events > 0
850 	 * we do not need to pass the ctx here because we know
851 	 * we are holding the rcu lock
852 	 */
853 	cgrp1 = perf_cgroup_from_task(task, NULL);
854 	cgrp2 = perf_cgroup_from_task(next, NULL);
855 
856 	/*
857 	 * only schedule out current cgroup events if we know
858 	 * that we are switching to a different cgroup. Otherwise,
859 	 * do no touch the cgroup events.
860 	 */
861 	if (cgrp1 != cgrp2)
862 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
863 
864 	rcu_read_unlock();
865 }
866 
867 static inline void perf_cgroup_sched_in(struct task_struct *prev,
868 					struct task_struct *task)
869 {
870 	struct perf_cgroup *cgrp1;
871 	struct perf_cgroup *cgrp2 = NULL;
872 
873 	rcu_read_lock();
874 	/*
875 	 * we come here when we know perf_cgroup_events > 0
876 	 * we do not need to pass the ctx here because we know
877 	 * we are holding the rcu lock
878 	 */
879 	cgrp1 = perf_cgroup_from_task(task, NULL);
880 	cgrp2 = perf_cgroup_from_task(prev, NULL);
881 
882 	/*
883 	 * only need to schedule in cgroup events if we are changing
884 	 * cgroup during ctxsw. Cgroup events were not scheduled
885 	 * out of ctxsw out if that was not the case.
886 	 */
887 	if (cgrp1 != cgrp2)
888 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
889 
890 	rcu_read_unlock();
891 }
892 
893 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894 				      struct perf_event_attr *attr,
895 				      struct perf_event *group_leader)
896 {
897 	struct perf_cgroup *cgrp;
898 	struct cgroup_subsys_state *css;
899 	struct fd f = fdget(fd);
900 	int ret = 0;
901 
902 	if (!f.file)
903 		return -EBADF;
904 
905 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
906 					 &perf_event_cgrp_subsys);
907 	if (IS_ERR(css)) {
908 		ret = PTR_ERR(css);
909 		goto out;
910 	}
911 
912 	cgrp = container_of(css, struct perf_cgroup, css);
913 	event->cgrp = cgrp;
914 
915 	/*
916 	 * all events in a group must monitor
917 	 * the same cgroup because a task belongs
918 	 * to only one perf cgroup at a time
919 	 */
920 	if (group_leader && group_leader->cgrp != cgrp) {
921 		perf_detach_cgroup(event);
922 		ret = -EINVAL;
923 	}
924 out:
925 	fdput(f);
926 	return ret;
927 }
928 
929 static inline void
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931 {
932 	struct perf_cgroup_info *t;
933 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
934 	event->shadow_ctx_time = now - t->timestamp;
935 }
936 
937 /*
938  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939  * cleared when last cgroup event is removed.
940  */
941 static inline void
942 list_update_cgroup_event(struct perf_event *event,
943 			 struct perf_event_context *ctx, bool add)
944 {
945 	struct perf_cpu_context *cpuctx;
946 	struct list_head *cpuctx_entry;
947 
948 	if (!is_cgroup_event(event))
949 		return;
950 
951 	/*
952 	 * Because cgroup events are always per-cpu events,
953 	 * this will always be called from the right CPU.
954 	 */
955 	cpuctx = __get_cpu_context(ctx);
956 
957 	/*
958 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
959 	 * matching the event's cgroup, we must do this for every new event,
960 	 * because if the first would mismatch, the second would not try again
961 	 * and we would leave cpuctx->cgrp unset.
962 	 */
963 	if (add && !cpuctx->cgrp) {
964 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
965 
966 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967 			cpuctx->cgrp = cgrp;
968 	}
969 
970 	if (add && ctx->nr_cgroups++)
971 		return;
972 	else if (!add && --ctx->nr_cgroups)
973 		return;
974 
975 	/* no cgroup running */
976 	if (!add)
977 		cpuctx->cgrp = NULL;
978 
979 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
980 	if (add)
981 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
982 	else
983 		list_del(cpuctx_entry);
984 }
985 
986 #else /* !CONFIG_CGROUP_PERF */
987 
988 static inline bool
989 perf_cgroup_match(struct perf_event *event)
990 {
991 	return true;
992 }
993 
994 static inline void perf_detach_cgroup(struct perf_event *event)
995 {}
996 
997 static inline int is_cgroup_event(struct perf_event *event)
998 {
999 	return 0;
1000 }
1001 
1002 static inline void update_cgrp_time_from_event(struct perf_event *event)
1003 {
1004 }
1005 
1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1007 {
1008 }
1009 
1010 static inline void perf_cgroup_sched_out(struct task_struct *task,
1011 					 struct task_struct *next)
1012 {
1013 }
1014 
1015 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016 					struct task_struct *task)
1017 {
1018 }
1019 
1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021 				      struct perf_event_attr *attr,
1022 				      struct perf_event *group_leader)
1023 {
1024 	return -EINVAL;
1025 }
1026 
1027 static inline void
1028 perf_cgroup_set_timestamp(struct task_struct *task,
1029 			  struct perf_event_context *ctx)
1030 {
1031 }
1032 
1033 void
1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1035 {
1036 }
1037 
1038 static inline void
1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1040 {
1041 }
1042 
1043 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1044 {
1045 	return 0;
1046 }
1047 
1048 static inline void
1049 list_update_cgroup_event(struct perf_event *event,
1050 			 struct perf_event_context *ctx, bool add)
1051 {
1052 }
1053 
1054 #endif
1055 
1056 /*
1057  * set default to be dependent on timer tick just
1058  * like original code
1059  */
1060 #define PERF_CPU_HRTIMER (1000 / HZ)
1061 /*
1062  * function must be called with interrupts disabled
1063  */
1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1065 {
1066 	struct perf_cpu_context *cpuctx;
1067 	bool rotations;
1068 
1069 	lockdep_assert_irqs_disabled();
1070 
1071 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1072 	rotations = perf_rotate_context(cpuctx);
1073 
1074 	raw_spin_lock(&cpuctx->hrtimer_lock);
1075 	if (rotations)
1076 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1077 	else
1078 		cpuctx->hrtimer_active = 0;
1079 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1080 
1081 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1082 }
1083 
1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1085 {
1086 	struct hrtimer *timer = &cpuctx->hrtimer;
1087 	struct pmu *pmu = cpuctx->ctx.pmu;
1088 	u64 interval;
1089 
1090 	/* no multiplexing needed for SW PMU */
1091 	if (pmu->task_ctx_nr == perf_sw_context)
1092 		return;
1093 
1094 	/*
1095 	 * check default is sane, if not set then force to
1096 	 * default interval (1/tick)
1097 	 */
1098 	interval = pmu->hrtimer_interval_ms;
1099 	if (interval < 1)
1100 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1101 
1102 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1103 
1104 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106 	timer->function = perf_mux_hrtimer_handler;
1107 }
1108 
1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1110 {
1111 	struct hrtimer *timer = &cpuctx->hrtimer;
1112 	struct pmu *pmu = cpuctx->ctx.pmu;
1113 	unsigned long flags;
1114 
1115 	/* not for SW PMU */
1116 	if (pmu->task_ctx_nr == perf_sw_context)
1117 		return 0;
1118 
1119 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120 	if (!cpuctx->hrtimer_active) {
1121 		cpuctx->hrtimer_active = 1;
1122 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1124 	}
1125 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1126 
1127 	return 0;
1128 }
1129 
1130 void perf_pmu_disable(struct pmu *pmu)
1131 {
1132 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133 	if (!(*count)++)
1134 		pmu->pmu_disable(pmu);
1135 }
1136 
1137 void perf_pmu_enable(struct pmu *pmu)
1138 {
1139 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140 	if (!--(*count))
1141 		pmu->pmu_enable(pmu);
1142 }
1143 
1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1145 
1146 /*
1147  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148  * perf_event_task_tick() are fully serialized because they're strictly cpu
1149  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150  * disabled, while perf_event_task_tick is called from IRQ context.
1151  */
1152 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1153 {
1154 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1155 
1156 	lockdep_assert_irqs_disabled();
1157 
1158 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1159 
1160 	list_add(&ctx->active_ctx_list, head);
1161 }
1162 
1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1164 {
1165 	lockdep_assert_irqs_disabled();
1166 
1167 	WARN_ON(list_empty(&ctx->active_ctx_list));
1168 
1169 	list_del_init(&ctx->active_ctx_list);
1170 }
1171 
1172 static void get_ctx(struct perf_event_context *ctx)
1173 {
1174 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1175 }
1176 
1177 static void free_ctx(struct rcu_head *head)
1178 {
1179 	struct perf_event_context *ctx;
1180 
1181 	ctx = container_of(head, struct perf_event_context, rcu_head);
1182 	kfree(ctx->task_ctx_data);
1183 	kfree(ctx);
1184 }
1185 
1186 static void put_ctx(struct perf_event_context *ctx)
1187 {
1188 	if (atomic_dec_and_test(&ctx->refcount)) {
1189 		if (ctx->parent_ctx)
1190 			put_ctx(ctx->parent_ctx);
1191 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192 			put_task_struct(ctx->task);
1193 		call_rcu(&ctx->rcu_head, free_ctx);
1194 	}
1195 }
1196 
1197 /*
1198  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199  * perf_pmu_migrate_context() we need some magic.
1200  *
1201  * Those places that change perf_event::ctx will hold both
1202  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1203  *
1204  * Lock ordering is by mutex address. There are two other sites where
1205  * perf_event_context::mutex nests and those are:
1206  *
1207  *  - perf_event_exit_task_context()	[ child , 0 ]
1208  *      perf_event_exit_event()
1209  *        put_event()			[ parent, 1 ]
1210  *
1211  *  - perf_event_init_context()		[ parent, 0 ]
1212  *      inherit_task_group()
1213  *        inherit_group()
1214  *          inherit_event()
1215  *            perf_event_alloc()
1216  *              perf_init_event()
1217  *                perf_try_init_event()	[ child , 1 ]
1218  *
1219  * While it appears there is an obvious deadlock here -- the parent and child
1220  * nesting levels are inverted between the two. This is in fact safe because
1221  * life-time rules separate them. That is an exiting task cannot fork, and a
1222  * spawning task cannot (yet) exit.
1223  *
1224  * But remember that that these are parent<->child context relations, and
1225  * migration does not affect children, therefore these two orderings should not
1226  * interact.
1227  *
1228  * The change in perf_event::ctx does not affect children (as claimed above)
1229  * because the sys_perf_event_open() case will install a new event and break
1230  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231  * concerned with cpuctx and that doesn't have children.
1232  *
1233  * The places that change perf_event::ctx will issue:
1234  *
1235  *   perf_remove_from_context();
1236  *   synchronize_rcu();
1237  *   perf_install_in_context();
1238  *
1239  * to affect the change. The remove_from_context() + synchronize_rcu() should
1240  * quiesce the event, after which we can install it in the new location. This
1241  * means that only external vectors (perf_fops, prctl) can perturb the event
1242  * while in transit. Therefore all such accessors should also acquire
1243  * perf_event_context::mutex to serialize against this.
1244  *
1245  * However; because event->ctx can change while we're waiting to acquire
1246  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247  * function.
1248  *
1249  * Lock order:
1250  *    cred_guard_mutex
1251  *	task_struct::perf_event_mutex
1252  *	  perf_event_context::mutex
1253  *	    perf_event::child_mutex;
1254  *	      perf_event_context::lock
1255  *	    perf_event::mmap_mutex
1256  *	    mmap_sem
1257  *
1258  *    cpu_hotplug_lock
1259  *      pmus_lock
1260  *	  cpuctx->mutex / perf_event_context::mutex
1261  */
1262 static struct perf_event_context *
1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1264 {
1265 	struct perf_event_context *ctx;
1266 
1267 again:
1268 	rcu_read_lock();
1269 	ctx = READ_ONCE(event->ctx);
1270 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1271 		rcu_read_unlock();
1272 		goto again;
1273 	}
1274 	rcu_read_unlock();
1275 
1276 	mutex_lock_nested(&ctx->mutex, nesting);
1277 	if (event->ctx != ctx) {
1278 		mutex_unlock(&ctx->mutex);
1279 		put_ctx(ctx);
1280 		goto again;
1281 	}
1282 
1283 	return ctx;
1284 }
1285 
1286 static inline struct perf_event_context *
1287 perf_event_ctx_lock(struct perf_event *event)
1288 {
1289 	return perf_event_ctx_lock_nested(event, 0);
1290 }
1291 
1292 static void perf_event_ctx_unlock(struct perf_event *event,
1293 				  struct perf_event_context *ctx)
1294 {
1295 	mutex_unlock(&ctx->mutex);
1296 	put_ctx(ctx);
1297 }
1298 
1299 /*
1300  * This must be done under the ctx->lock, such as to serialize against
1301  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302  * calling scheduler related locks and ctx->lock nests inside those.
1303  */
1304 static __must_check struct perf_event_context *
1305 unclone_ctx(struct perf_event_context *ctx)
1306 {
1307 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1308 
1309 	lockdep_assert_held(&ctx->lock);
1310 
1311 	if (parent_ctx)
1312 		ctx->parent_ctx = NULL;
1313 	ctx->generation++;
1314 
1315 	return parent_ctx;
1316 }
1317 
1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1319 				enum pid_type type)
1320 {
1321 	u32 nr;
1322 	/*
1323 	 * only top level events have the pid namespace they were created in
1324 	 */
1325 	if (event->parent)
1326 		event = event->parent;
1327 
1328 	nr = __task_pid_nr_ns(p, type, event->ns);
1329 	/* avoid -1 if it is idle thread or runs in another ns */
1330 	if (!nr && !pid_alive(p))
1331 		nr = -1;
1332 	return nr;
1333 }
1334 
1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1336 {
1337 	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1338 }
1339 
1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1341 {
1342 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1343 }
1344 
1345 /*
1346  * If we inherit events we want to return the parent event id
1347  * to userspace.
1348  */
1349 static u64 primary_event_id(struct perf_event *event)
1350 {
1351 	u64 id = event->id;
1352 
1353 	if (event->parent)
1354 		id = event->parent->id;
1355 
1356 	return id;
1357 }
1358 
1359 /*
1360  * Get the perf_event_context for a task and lock it.
1361  *
1362  * This has to cope with with the fact that until it is locked,
1363  * the context could get moved to another task.
1364  */
1365 static struct perf_event_context *
1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1367 {
1368 	struct perf_event_context *ctx;
1369 
1370 retry:
1371 	/*
1372 	 * One of the few rules of preemptible RCU is that one cannot do
1373 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374 	 * part of the read side critical section was irqs-enabled -- see
1375 	 * rcu_read_unlock_special().
1376 	 *
1377 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1378 	 * side critical section has interrupts disabled.
1379 	 */
1380 	local_irq_save(*flags);
1381 	rcu_read_lock();
1382 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1383 	if (ctx) {
1384 		/*
1385 		 * If this context is a clone of another, it might
1386 		 * get swapped for another underneath us by
1387 		 * perf_event_task_sched_out, though the
1388 		 * rcu_read_lock() protects us from any context
1389 		 * getting freed.  Lock the context and check if it
1390 		 * got swapped before we could get the lock, and retry
1391 		 * if so.  If we locked the right context, then it
1392 		 * can't get swapped on us any more.
1393 		 */
1394 		raw_spin_lock(&ctx->lock);
1395 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1396 			raw_spin_unlock(&ctx->lock);
1397 			rcu_read_unlock();
1398 			local_irq_restore(*flags);
1399 			goto retry;
1400 		}
1401 
1402 		if (ctx->task == TASK_TOMBSTONE ||
1403 		    !atomic_inc_not_zero(&ctx->refcount)) {
1404 			raw_spin_unlock(&ctx->lock);
1405 			ctx = NULL;
1406 		} else {
1407 			WARN_ON_ONCE(ctx->task != task);
1408 		}
1409 	}
1410 	rcu_read_unlock();
1411 	if (!ctx)
1412 		local_irq_restore(*flags);
1413 	return ctx;
1414 }
1415 
1416 /*
1417  * Get the context for a task and increment its pin_count so it
1418  * can't get swapped to another task.  This also increments its
1419  * reference count so that the context can't get freed.
1420  */
1421 static struct perf_event_context *
1422 perf_pin_task_context(struct task_struct *task, int ctxn)
1423 {
1424 	struct perf_event_context *ctx;
1425 	unsigned long flags;
1426 
1427 	ctx = perf_lock_task_context(task, ctxn, &flags);
1428 	if (ctx) {
1429 		++ctx->pin_count;
1430 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1431 	}
1432 	return ctx;
1433 }
1434 
1435 static void perf_unpin_context(struct perf_event_context *ctx)
1436 {
1437 	unsigned long flags;
1438 
1439 	raw_spin_lock_irqsave(&ctx->lock, flags);
1440 	--ctx->pin_count;
1441 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1442 }
1443 
1444 /*
1445  * Update the record of the current time in a context.
1446  */
1447 static void update_context_time(struct perf_event_context *ctx)
1448 {
1449 	u64 now = perf_clock();
1450 
1451 	ctx->time += now - ctx->timestamp;
1452 	ctx->timestamp = now;
1453 }
1454 
1455 static u64 perf_event_time(struct perf_event *event)
1456 {
1457 	struct perf_event_context *ctx = event->ctx;
1458 
1459 	if (is_cgroup_event(event))
1460 		return perf_cgroup_event_time(event);
1461 
1462 	return ctx ? ctx->time : 0;
1463 }
1464 
1465 static enum event_type_t get_event_type(struct perf_event *event)
1466 {
1467 	struct perf_event_context *ctx = event->ctx;
1468 	enum event_type_t event_type;
1469 
1470 	lockdep_assert_held(&ctx->lock);
1471 
1472 	/*
1473 	 * It's 'group type', really, because if our group leader is
1474 	 * pinned, so are we.
1475 	 */
1476 	if (event->group_leader != event)
1477 		event = event->group_leader;
1478 
1479 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1480 	if (!ctx->task)
1481 		event_type |= EVENT_CPU;
1482 
1483 	return event_type;
1484 }
1485 
1486 /*
1487  * Helper function to initialize event group nodes.
1488  */
1489 static void init_event_group(struct perf_event *event)
1490 {
1491 	RB_CLEAR_NODE(&event->group_node);
1492 	event->group_index = 0;
1493 }
1494 
1495 /*
1496  * Extract pinned or flexible groups from the context
1497  * based on event attrs bits.
1498  */
1499 static struct perf_event_groups *
1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1501 {
1502 	if (event->attr.pinned)
1503 		return &ctx->pinned_groups;
1504 	else
1505 		return &ctx->flexible_groups;
1506 }
1507 
1508 /*
1509  * Helper function to initializes perf_event_group trees.
1510  */
1511 static void perf_event_groups_init(struct perf_event_groups *groups)
1512 {
1513 	groups->tree = RB_ROOT;
1514 	groups->index = 0;
1515 }
1516 
1517 /*
1518  * Compare function for event groups;
1519  *
1520  * Implements complex key that first sorts by CPU and then by virtual index
1521  * which provides ordering when rotating groups for the same CPU.
1522  */
1523 static bool
1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1525 {
1526 	if (left->cpu < right->cpu)
1527 		return true;
1528 	if (left->cpu > right->cpu)
1529 		return false;
1530 
1531 	if (left->group_index < right->group_index)
1532 		return true;
1533 	if (left->group_index > right->group_index)
1534 		return false;
1535 
1536 	return false;
1537 }
1538 
1539 /*
1540  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541  * key (see perf_event_groups_less). This places it last inside the CPU
1542  * subtree.
1543  */
1544 static void
1545 perf_event_groups_insert(struct perf_event_groups *groups,
1546 			 struct perf_event *event)
1547 {
1548 	struct perf_event *node_event;
1549 	struct rb_node *parent;
1550 	struct rb_node **node;
1551 
1552 	event->group_index = ++groups->index;
1553 
1554 	node = &groups->tree.rb_node;
1555 	parent = *node;
1556 
1557 	while (*node) {
1558 		parent = *node;
1559 		node_event = container_of(*node, struct perf_event, group_node);
1560 
1561 		if (perf_event_groups_less(event, node_event))
1562 			node = &parent->rb_left;
1563 		else
1564 			node = &parent->rb_right;
1565 	}
1566 
1567 	rb_link_node(&event->group_node, parent, node);
1568 	rb_insert_color(&event->group_node, &groups->tree);
1569 }
1570 
1571 /*
1572  * Helper function to insert event into the pinned or flexible groups.
1573  */
1574 static void
1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1576 {
1577 	struct perf_event_groups *groups;
1578 
1579 	groups = get_event_groups(event, ctx);
1580 	perf_event_groups_insert(groups, event);
1581 }
1582 
1583 /*
1584  * Delete a group from a tree.
1585  */
1586 static void
1587 perf_event_groups_delete(struct perf_event_groups *groups,
1588 			 struct perf_event *event)
1589 {
1590 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591 		     RB_EMPTY_ROOT(&groups->tree));
1592 
1593 	rb_erase(&event->group_node, &groups->tree);
1594 	init_event_group(event);
1595 }
1596 
1597 /*
1598  * Helper function to delete event from its groups.
1599  */
1600 static void
1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1602 {
1603 	struct perf_event_groups *groups;
1604 
1605 	groups = get_event_groups(event, ctx);
1606 	perf_event_groups_delete(groups, event);
1607 }
1608 
1609 /*
1610  * Get the leftmost event in the @cpu subtree.
1611  */
1612 static struct perf_event *
1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1614 {
1615 	struct perf_event *node_event = NULL, *match = NULL;
1616 	struct rb_node *node = groups->tree.rb_node;
1617 
1618 	while (node) {
1619 		node_event = container_of(node, struct perf_event, group_node);
1620 
1621 		if (cpu < node_event->cpu) {
1622 			node = node->rb_left;
1623 		} else if (cpu > node_event->cpu) {
1624 			node = node->rb_right;
1625 		} else {
1626 			match = node_event;
1627 			node = node->rb_left;
1628 		}
1629 	}
1630 
1631 	return match;
1632 }
1633 
1634 /*
1635  * Like rb_entry_next_safe() for the @cpu subtree.
1636  */
1637 static struct perf_event *
1638 perf_event_groups_next(struct perf_event *event)
1639 {
1640 	struct perf_event *next;
1641 
1642 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643 	if (next && next->cpu == event->cpu)
1644 		return next;
1645 
1646 	return NULL;
1647 }
1648 
1649 /*
1650  * Iterate through the whole groups tree.
1651  */
1652 #define perf_event_groups_for_each(event, groups)			\
1653 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1654 				typeof(*event), group_node); event;	\
1655 		event = rb_entry_safe(rb_next(&event->group_node),	\
1656 				typeof(*event), group_node))
1657 
1658 /*
1659  * Add a event from the lists for its context.
1660  * Must be called with ctx->mutex and ctx->lock held.
1661  */
1662 static void
1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1664 {
1665 	lockdep_assert_held(&ctx->lock);
1666 
1667 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668 	event->attach_state |= PERF_ATTACH_CONTEXT;
1669 
1670 	event->tstamp = perf_event_time(event);
1671 
1672 	/*
1673 	 * If we're a stand alone event or group leader, we go to the context
1674 	 * list, group events are kept attached to the group so that
1675 	 * perf_group_detach can, at all times, locate all siblings.
1676 	 */
1677 	if (event->group_leader == event) {
1678 		event->group_caps = event->event_caps;
1679 		add_event_to_groups(event, ctx);
1680 	}
1681 
1682 	list_update_cgroup_event(event, ctx, true);
1683 
1684 	list_add_rcu(&event->event_entry, &ctx->event_list);
1685 	ctx->nr_events++;
1686 	if (event->attr.inherit_stat)
1687 		ctx->nr_stat++;
1688 
1689 	ctx->generation++;
1690 }
1691 
1692 /*
1693  * Initialize event state based on the perf_event_attr::disabled.
1694  */
1695 static inline void perf_event__state_init(struct perf_event *event)
1696 {
1697 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698 					      PERF_EVENT_STATE_INACTIVE;
1699 }
1700 
1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1702 {
1703 	int entry = sizeof(u64); /* value */
1704 	int size = 0;
1705 	int nr = 1;
1706 
1707 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708 		size += sizeof(u64);
1709 
1710 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711 		size += sizeof(u64);
1712 
1713 	if (event->attr.read_format & PERF_FORMAT_ID)
1714 		entry += sizeof(u64);
1715 
1716 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1717 		nr += nr_siblings;
1718 		size += sizeof(u64);
1719 	}
1720 
1721 	size += entry * nr;
1722 	event->read_size = size;
1723 }
1724 
1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1726 {
1727 	struct perf_sample_data *data;
1728 	u16 size = 0;
1729 
1730 	if (sample_type & PERF_SAMPLE_IP)
1731 		size += sizeof(data->ip);
1732 
1733 	if (sample_type & PERF_SAMPLE_ADDR)
1734 		size += sizeof(data->addr);
1735 
1736 	if (sample_type & PERF_SAMPLE_PERIOD)
1737 		size += sizeof(data->period);
1738 
1739 	if (sample_type & PERF_SAMPLE_WEIGHT)
1740 		size += sizeof(data->weight);
1741 
1742 	if (sample_type & PERF_SAMPLE_READ)
1743 		size += event->read_size;
1744 
1745 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1746 		size += sizeof(data->data_src.val);
1747 
1748 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1749 		size += sizeof(data->txn);
1750 
1751 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752 		size += sizeof(data->phys_addr);
1753 
1754 	event->header_size = size;
1755 }
1756 
1757 /*
1758  * Called at perf_event creation and when events are attached/detached from a
1759  * group.
1760  */
1761 static void perf_event__header_size(struct perf_event *event)
1762 {
1763 	__perf_event_read_size(event,
1764 			       event->group_leader->nr_siblings);
1765 	__perf_event_header_size(event, event->attr.sample_type);
1766 }
1767 
1768 static void perf_event__id_header_size(struct perf_event *event)
1769 {
1770 	struct perf_sample_data *data;
1771 	u64 sample_type = event->attr.sample_type;
1772 	u16 size = 0;
1773 
1774 	if (sample_type & PERF_SAMPLE_TID)
1775 		size += sizeof(data->tid_entry);
1776 
1777 	if (sample_type & PERF_SAMPLE_TIME)
1778 		size += sizeof(data->time);
1779 
1780 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781 		size += sizeof(data->id);
1782 
1783 	if (sample_type & PERF_SAMPLE_ID)
1784 		size += sizeof(data->id);
1785 
1786 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1787 		size += sizeof(data->stream_id);
1788 
1789 	if (sample_type & PERF_SAMPLE_CPU)
1790 		size += sizeof(data->cpu_entry);
1791 
1792 	event->id_header_size = size;
1793 }
1794 
1795 static bool perf_event_validate_size(struct perf_event *event)
1796 {
1797 	/*
1798 	 * The values computed here will be over-written when we actually
1799 	 * attach the event.
1800 	 */
1801 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803 	perf_event__id_header_size(event);
1804 
1805 	/*
1806 	 * Sum the lot; should not exceed the 64k limit we have on records.
1807 	 * Conservative limit to allow for callchains and other variable fields.
1808 	 */
1809 	if (event->read_size + event->header_size +
1810 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1811 		return false;
1812 
1813 	return true;
1814 }
1815 
1816 static void perf_group_attach(struct perf_event *event)
1817 {
1818 	struct perf_event *group_leader = event->group_leader, *pos;
1819 
1820 	lockdep_assert_held(&event->ctx->lock);
1821 
1822 	/*
1823 	 * We can have double attach due to group movement in perf_event_open.
1824 	 */
1825 	if (event->attach_state & PERF_ATTACH_GROUP)
1826 		return;
1827 
1828 	event->attach_state |= PERF_ATTACH_GROUP;
1829 
1830 	if (group_leader == event)
1831 		return;
1832 
1833 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1834 
1835 	group_leader->group_caps &= event->event_caps;
1836 
1837 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1838 	group_leader->nr_siblings++;
1839 
1840 	perf_event__header_size(group_leader);
1841 
1842 	for_each_sibling_event(pos, group_leader)
1843 		perf_event__header_size(pos);
1844 }
1845 
1846 /*
1847  * Remove a event from the lists for its context.
1848  * Must be called with ctx->mutex and ctx->lock held.
1849  */
1850 static void
1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1852 {
1853 	WARN_ON_ONCE(event->ctx != ctx);
1854 	lockdep_assert_held(&ctx->lock);
1855 
1856 	/*
1857 	 * We can have double detach due to exit/hot-unplug + close.
1858 	 */
1859 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1860 		return;
1861 
1862 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1863 
1864 	list_update_cgroup_event(event, ctx, false);
1865 
1866 	ctx->nr_events--;
1867 	if (event->attr.inherit_stat)
1868 		ctx->nr_stat--;
1869 
1870 	list_del_rcu(&event->event_entry);
1871 
1872 	if (event->group_leader == event)
1873 		del_event_from_groups(event, ctx);
1874 
1875 	/*
1876 	 * If event was in error state, then keep it
1877 	 * that way, otherwise bogus counts will be
1878 	 * returned on read(). The only way to get out
1879 	 * of error state is by explicit re-enabling
1880 	 * of the event
1881 	 */
1882 	if (event->state > PERF_EVENT_STATE_OFF)
1883 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1884 
1885 	ctx->generation++;
1886 }
1887 
1888 static void perf_group_detach(struct perf_event *event)
1889 {
1890 	struct perf_event *sibling, *tmp;
1891 	struct perf_event_context *ctx = event->ctx;
1892 
1893 	lockdep_assert_held(&ctx->lock);
1894 
1895 	/*
1896 	 * We can have double detach due to exit/hot-unplug + close.
1897 	 */
1898 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1899 		return;
1900 
1901 	event->attach_state &= ~PERF_ATTACH_GROUP;
1902 
1903 	/*
1904 	 * If this is a sibling, remove it from its group.
1905 	 */
1906 	if (event->group_leader != event) {
1907 		list_del_init(&event->sibling_list);
1908 		event->group_leader->nr_siblings--;
1909 		goto out;
1910 	}
1911 
1912 	/*
1913 	 * If this was a group event with sibling events then
1914 	 * upgrade the siblings to singleton events by adding them
1915 	 * to whatever list we are on.
1916 	 */
1917 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1918 
1919 		sibling->group_leader = sibling;
1920 		list_del_init(&sibling->sibling_list);
1921 
1922 		/* Inherit group flags from the previous leader */
1923 		sibling->group_caps = event->group_caps;
1924 
1925 		if (!RB_EMPTY_NODE(&event->group_node)) {
1926 			add_event_to_groups(sibling, event->ctx);
1927 
1928 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929 				struct list_head *list = sibling->attr.pinned ?
1930 					&ctx->pinned_active : &ctx->flexible_active;
1931 
1932 				list_add_tail(&sibling->active_list, list);
1933 			}
1934 		}
1935 
1936 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1937 	}
1938 
1939 out:
1940 	perf_event__header_size(event->group_leader);
1941 
1942 	for_each_sibling_event(tmp, event->group_leader)
1943 		perf_event__header_size(tmp);
1944 }
1945 
1946 static bool is_orphaned_event(struct perf_event *event)
1947 {
1948 	return event->state == PERF_EVENT_STATE_DEAD;
1949 }
1950 
1951 static inline int __pmu_filter_match(struct perf_event *event)
1952 {
1953 	struct pmu *pmu = event->pmu;
1954 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1955 }
1956 
1957 /*
1958  * Check whether we should attempt to schedule an event group based on
1959  * PMU-specific filtering. An event group can consist of HW and SW events,
1960  * potentially with a SW leader, so we must check all the filters, to
1961  * determine whether a group is schedulable:
1962  */
1963 static inline int pmu_filter_match(struct perf_event *event)
1964 {
1965 	struct perf_event *sibling;
1966 
1967 	if (!__pmu_filter_match(event))
1968 		return 0;
1969 
1970 	for_each_sibling_event(sibling, event) {
1971 		if (!__pmu_filter_match(sibling))
1972 			return 0;
1973 	}
1974 
1975 	return 1;
1976 }
1977 
1978 static inline int
1979 event_filter_match(struct perf_event *event)
1980 {
1981 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982 	       perf_cgroup_match(event) && pmu_filter_match(event);
1983 }
1984 
1985 static void
1986 event_sched_out(struct perf_event *event,
1987 		  struct perf_cpu_context *cpuctx,
1988 		  struct perf_event_context *ctx)
1989 {
1990 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1991 
1992 	WARN_ON_ONCE(event->ctx != ctx);
1993 	lockdep_assert_held(&ctx->lock);
1994 
1995 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1996 		return;
1997 
1998 	/*
1999 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000 	 * we can schedule events _OUT_ individually through things like
2001 	 * __perf_remove_from_context().
2002 	 */
2003 	list_del_init(&event->active_list);
2004 
2005 	perf_pmu_disable(event->pmu);
2006 
2007 	event->pmu->del(event, 0);
2008 	event->oncpu = -1;
2009 
2010 	if (event->pending_disable) {
2011 		event->pending_disable = 0;
2012 		state = PERF_EVENT_STATE_OFF;
2013 	}
2014 	perf_event_set_state(event, state);
2015 
2016 	if (!is_software_event(event))
2017 		cpuctx->active_oncpu--;
2018 	if (!--ctx->nr_active)
2019 		perf_event_ctx_deactivate(ctx);
2020 	if (event->attr.freq && event->attr.sample_freq)
2021 		ctx->nr_freq--;
2022 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2023 		cpuctx->exclusive = 0;
2024 
2025 	perf_pmu_enable(event->pmu);
2026 }
2027 
2028 static void
2029 group_sched_out(struct perf_event *group_event,
2030 		struct perf_cpu_context *cpuctx,
2031 		struct perf_event_context *ctx)
2032 {
2033 	struct perf_event *event;
2034 
2035 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2036 		return;
2037 
2038 	perf_pmu_disable(ctx->pmu);
2039 
2040 	event_sched_out(group_event, cpuctx, ctx);
2041 
2042 	/*
2043 	 * Schedule out siblings (if any):
2044 	 */
2045 	for_each_sibling_event(event, group_event)
2046 		event_sched_out(event, cpuctx, ctx);
2047 
2048 	perf_pmu_enable(ctx->pmu);
2049 
2050 	if (group_event->attr.exclusive)
2051 		cpuctx->exclusive = 0;
2052 }
2053 
2054 #define DETACH_GROUP	0x01UL
2055 
2056 /*
2057  * Cross CPU call to remove a performance event
2058  *
2059  * We disable the event on the hardware level first. After that we
2060  * remove it from the context list.
2061  */
2062 static void
2063 __perf_remove_from_context(struct perf_event *event,
2064 			   struct perf_cpu_context *cpuctx,
2065 			   struct perf_event_context *ctx,
2066 			   void *info)
2067 {
2068 	unsigned long flags = (unsigned long)info;
2069 
2070 	if (ctx->is_active & EVENT_TIME) {
2071 		update_context_time(ctx);
2072 		update_cgrp_time_from_cpuctx(cpuctx);
2073 	}
2074 
2075 	event_sched_out(event, cpuctx, ctx);
2076 	if (flags & DETACH_GROUP)
2077 		perf_group_detach(event);
2078 	list_del_event(event, ctx);
2079 
2080 	if (!ctx->nr_events && ctx->is_active) {
2081 		ctx->is_active = 0;
2082 		if (ctx->task) {
2083 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084 			cpuctx->task_ctx = NULL;
2085 		}
2086 	}
2087 }
2088 
2089 /*
2090  * Remove the event from a task's (or a CPU's) list of events.
2091  *
2092  * If event->ctx is a cloned context, callers must make sure that
2093  * every task struct that event->ctx->task could possibly point to
2094  * remains valid.  This is OK when called from perf_release since
2095  * that only calls us on the top-level context, which can't be a clone.
2096  * When called from perf_event_exit_task, it's OK because the
2097  * context has been detached from its task.
2098  */
2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2100 {
2101 	struct perf_event_context *ctx = event->ctx;
2102 
2103 	lockdep_assert_held(&ctx->mutex);
2104 
2105 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2106 
2107 	/*
2108 	 * The above event_function_call() can NO-OP when it hits
2109 	 * TASK_TOMBSTONE. In that case we must already have been detached
2110 	 * from the context (by perf_event_exit_event()) but the grouping
2111 	 * might still be in-tact.
2112 	 */
2113 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114 	if ((flags & DETACH_GROUP) &&
2115 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2116 		/*
2117 		 * Since in that case we cannot possibly be scheduled, simply
2118 		 * detach now.
2119 		 */
2120 		raw_spin_lock_irq(&ctx->lock);
2121 		perf_group_detach(event);
2122 		raw_spin_unlock_irq(&ctx->lock);
2123 	}
2124 }
2125 
2126 /*
2127  * Cross CPU call to disable a performance event
2128  */
2129 static void __perf_event_disable(struct perf_event *event,
2130 				 struct perf_cpu_context *cpuctx,
2131 				 struct perf_event_context *ctx,
2132 				 void *info)
2133 {
2134 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2135 		return;
2136 
2137 	if (ctx->is_active & EVENT_TIME) {
2138 		update_context_time(ctx);
2139 		update_cgrp_time_from_event(event);
2140 	}
2141 
2142 	if (event == event->group_leader)
2143 		group_sched_out(event, cpuctx, ctx);
2144 	else
2145 		event_sched_out(event, cpuctx, ctx);
2146 
2147 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2148 }
2149 
2150 /*
2151  * Disable a event.
2152  *
2153  * If event->ctx is a cloned context, callers must make sure that
2154  * every task struct that event->ctx->task could possibly point to
2155  * remains valid.  This condition is satisifed when called through
2156  * perf_event_for_each_child or perf_event_for_each because they
2157  * hold the top-level event's child_mutex, so any descendant that
2158  * goes to exit will block in perf_event_exit_event().
2159  *
2160  * When called from perf_pending_event it's OK because event->ctx
2161  * is the current context on this CPU and preemption is disabled,
2162  * hence we can't get into perf_event_task_sched_out for this context.
2163  */
2164 static void _perf_event_disable(struct perf_event *event)
2165 {
2166 	struct perf_event_context *ctx = event->ctx;
2167 
2168 	raw_spin_lock_irq(&ctx->lock);
2169 	if (event->state <= PERF_EVENT_STATE_OFF) {
2170 		raw_spin_unlock_irq(&ctx->lock);
2171 		return;
2172 	}
2173 	raw_spin_unlock_irq(&ctx->lock);
2174 
2175 	event_function_call(event, __perf_event_disable, NULL);
2176 }
2177 
2178 void perf_event_disable_local(struct perf_event *event)
2179 {
2180 	event_function_local(event, __perf_event_disable, NULL);
2181 }
2182 
2183 /*
2184  * Strictly speaking kernel users cannot create groups and therefore this
2185  * interface does not need the perf_event_ctx_lock() magic.
2186  */
2187 void perf_event_disable(struct perf_event *event)
2188 {
2189 	struct perf_event_context *ctx;
2190 
2191 	ctx = perf_event_ctx_lock(event);
2192 	_perf_event_disable(event);
2193 	perf_event_ctx_unlock(event, ctx);
2194 }
2195 EXPORT_SYMBOL_GPL(perf_event_disable);
2196 
2197 void perf_event_disable_inatomic(struct perf_event *event)
2198 {
2199 	event->pending_disable = 1;
2200 	irq_work_queue(&event->pending);
2201 }
2202 
2203 static void perf_set_shadow_time(struct perf_event *event,
2204 				 struct perf_event_context *ctx)
2205 {
2206 	/*
2207 	 * use the correct time source for the time snapshot
2208 	 *
2209 	 * We could get by without this by leveraging the
2210 	 * fact that to get to this function, the caller
2211 	 * has most likely already called update_context_time()
2212 	 * and update_cgrp_time_xx() and thus both timestamp
2213 	 * are identical (or very close). Given that tstamp is,
2214 	 * already adjusted for cgroup, we could say that:
2215 	 *    tstamp - ctx->timestamp
2216 	 * is equivalent to
2217 	 *    tstamp - cgrp->timestamp.
2218 	 *
2219 	 * Then, in perf_output_read(), the calculation would
2220 	 * work with no changes because:
2221 	 * - event is guaranteed scheduled in
2222 	 * - no scheduled out in between
2223 	 * - thus the timestamp would be the same
2224 	 *
2225 	 * But this is a bit hairy.
2226 	 *
2227 	 * So instead, we have an explicit cgroup call to remain
2228 	 * within the time time source all along. We believe it
2229 	 * is cleaner and simpler to understand.
2230 	 */
2231 	if (is_cgroup_event(event))
2232 		perf_cgroup_set_shadow_time(event, event->tstamp);
2233 	else
2234 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2235 }
2236 
2237 #define MAX_INTERRUPTS (~0ULL)
2238 
2239 static void perf_log_throttle(struct perf_event *event, int enable);
2240 static void perf_log_itrace_start(struct perf_event *event);
2241 
2242 static int
2243 event_sched_in(struct perf_event *event,
2244 		 struct perf_cpu_context *cpuctx,
2245 		 struct perf_event_context *ctx)
2246 {
2247 	int ret = 0;
2248 
2249 	lockdep_assert_held(&ctx->lock);
2250 
2251 	if (event->state <= PERF_EVENT_STATE_OFF)
2252 		return 0;
2253 
2254 	WRITE_ONCE(event->oncpu, smp_processor_id());
2255 	/*
2256 	 * Order event::oncpu write to happen before the ACTIVE state is
2257 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2258 	 * ->oncpu if it sees ACTIVE.
2259 	 */
2260 	smp_wmb();
2261 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2262 
2263 	/*
2264 	 * Unthrottle events, since we scheduled we might have missed several
2265 	 * ticks already, also for a heavily scheduling task there is little
2266 	 * guarantee it'll get a tick in a timely manner.
2267 	 */
2268 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2269 		perf_log_throttle(event, 1);
2270 		event->hw.interrupts = 0;
2271 	}
2272 
2273 	perf_pmu_disable(event->pmu);
2274 
2275 	perf_set_shadow_time(event, ctx);
2276 
2277 	perf_log_itrace_start(event);
2278 
2279 	if (event->pmu->add(event, PERF_EF_START)) {
2280 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2281 		event->oncpu = -1;
2282 		ret = -EAGAIN;
2283 		goto out;
2284 	}
2285 
2286 	if (!is_software_event(event))
2287 		cpuctx->active_oncpu++;
2288 	if (!ctx->nr_active++)
2289 		perf_event_ctx_activate(ctx);
2290 	if (event->attr.freq && event->attr.sample_freq)
2291 		ctx->nr_freq++;
2292 
2293 	if (event->attr.exclusive)
2294 		cpuctx->exclusive = 1;
2295 
2296 out:
2297 	perf_pmu_enable(event->pmu);
2298 
2299 	return ret;
2300 }
2301 
2302 static int
2303 group_sched_in(struct perf_event *group_event,
2304 	       struct perf_cpu_context *cpuctx,
2305 	       struct perf_event_context *ctx)
2306 {
2307 	struct perf_event *event, *partial_group = NULL;
2308 	struct pmu *pmu = ctx->pmu;
2309 
2310 	if (group_event->state == PERF_EVENT_STATE_OFF)
2311 		return 0;
2312 
2313 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2314 
2315 	if (event_sched_in(group_event, cpuctx, ctx)) {
2316 		pmu->cancel_txn(pmu);
2317 		perf_mux_hrtimer_restart(cpuctx);
2318 		return -EAGAIN;
2319 	}
2320 
2321 	/*
2322 	 * Schedule in siblings as one group (if any):
2323 	 */
2324 	for_each_sibling_event(event, group_event) {
2325 		if (event_sched_in(event, cpuctx, ctx)) {
2326 			partial_group = event;
2327 			goto group_error;
2328 		}
2329 	}
2330 
2331 	if (!pmu->commit_txn(pmu))
2332 		return 0;
2333 
2334 group_error:
2335 	/*
2336 	 * Groups can be scheduled in as one unit only, so undo any
2337 	 * partial group before returning:
2338 	 * The events up to the failed event are scheduled out normally.
2339 	 */
2340 	for_each_sibling_event(event, group_event) {
2341 		if (event == partial_group)
2342 			break;
2343 
2344 		event_sched_out(event, cpuctx, ctx);
2345 	}
2346 	event_sched_out(group_event, cpuctx, ctx);
2347 
2348 	pmu->cancel_txn(pmu);
2349 
2350 	perf_mux_hrtimer_restart(cpuctx);
2351 
2352 	return -EAGAIN;
2353 }
2354 
2355 /*
2356  * Work out whether we can put this event group on the CPU now.
2357  */
2358 static int group_can_go_on(struct perf_event *event,
2359 			   struct perf_cpu_context *cpuctx,
2360 			   int can_add_hw)
2361 {
2362 	/*
2363 	 * Groups consisting entirely of software events can always go on.
2364 	 */
2365 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2366 		return 1;
2367 	/*
2368 	 * If an exclusive group is already on, no other hardware
2369 	 * events can go on.
2370 	 */
2371 	if (cpuctx->exclusive)
2372 		return 0;
2373 	/*
2374 	 * If this group is exclusive and there are already
2375 	 * events on the CPU, it can't go on.
2376 	 */
2377 	if (event->attr.exclusive && cpuctx->active_oncpu)
2378 		return 0;
2379 	/*
2380 	 * Otherwise, try to add it if all previous groups were able
2381 	 * to go on.
2382 	 */
2383 	return can_add_hw;
2384 }
2385 
2386 static void add_event_to_ctx(struct perf_event *event,
2387 			       struct perf_event_context *ctx)
2388 {
2389 	list_add_event(event, ctx);
2390 	perf_group_attach(event);
2391 }
2392 
2393 static void ctx_sched_out(struct perf_event_context *ctx,
2394 			  struct perf_cpu_context *cpuctx,
2395 			  enum event_type_t event_type);
2396 static void
2397 ctx_sched_in(struct perf_event_context *ctx,
2398 	     struct perf_cpu_context *cpuctx,
2399 	     enum event_type_t event_type,
2400 	     struct task_struct *task);
2401 
2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2403 			       struct perf_event_context *ctx,
2404 			       enum event_type_t event_type)
2405 {
2406 	if (!cpuctx->task_ctx)
2407 		return;
2408 
2409 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2410 		return;
2411 
2412 	ctx_sched_out(ctx, cpuctx, event_type);
2413 }
2414 
2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2416 				struct perf_event_context *ctx,
2417 				struct task_struct *task)
2418 {
2419 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2420 	if (ctx)
2421 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2422 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2423 	if (ctx)
2424 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2425 }
2426 
2427 /*
2428  * We want to maintain the following priority of scheduling:
2429  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430  *  - task pinned (EVENT_PINNED)
2431  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432  *  - task flexible (EVENT_FLEXIBLE).
2433  *
2434  * In order to avoid unscheduling and scheduling back in everything every
2435  * time an event is added, only do it for the groups of equal priority and
2436  * below.
2437  *
2438  * This can be called after a batch operation on task events, in which case
2439  * event_type is a bit mask of the types of events involved. For CPU events,
2440  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2441  */
2442 static void ctx_resched(struct perf_cpu_context *cpuctx,
2443 			struct perf_event_context *task_ctx,
2444 			enum event_type_t event_type)
2445 {
2446 	enum event_type_t ctx_event_type;
2447 	bool cpu_event = !!(event_type & EVENT_CPU);
2448 
2449 	/*
2450 	 * If pinned groups are involved, flexible groups also need to be
2451 	 * scheduled out.
2452 	 */
2453 	if (event_type & EVENT_PINNED)
2454 		event_type |= EVENT_FLEXIBLE;
2455 
2456 	ctx_event_type = event_type & EVENT_ALL;
2457 
2458 	perf_pmu_disable(cpuctx->ctx.pmu);
2459 	if (task_ctx)
2460 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2461 
2462 	/*
2463 	 * Decide which cpu ctx groups to schedule out based on the types
2464 	 * of events that caused rescheduling:
2465 	 *  - EVENT_CPU: schedule out corresponding groups;
2466 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467 	 *  - otherwise, do nothing more.
2468 	 */
2469 	if (cpu_event)
2470 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2471 	else if (ctx_event_type & EVENT_PINNED)
2472 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2473 
2474 	perf_event_sched_in(cpuctx, task_ctx, current);
2475 	perf_pmu_enable(cpuctx->ctx.pmu);
2476 }
2477 
2478 /*
2479  * Cross CPU call to install and enable a performance event
2480  *
2481  * Very similar to remote_function() + event_function() but cannot assume that
2482  * things like ctx->is_active and cpuctx->task_ctx are set.
2483  */
2484 static int  __perf_install_in_context(void *info)
2485 {
2486 	struct perf_event *event = info;
2487 	struct perf_event_context *ctx = event->ctx;
2488 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2489 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2490 	bool reprogram = true;
2491 	int ret = 0;
2492 
2493 	raw_spin_lock(&cpuctx->ctx.lock);
2494 	if (ctx->task) {
2495 		raw_spin_lock(&ctx->lock);
2496 		task_ctx = ctx;
2497 
2498 		reprogram = (ctx->task == current);
2499 
2500 		/*
2501 		 * If the task is running, it must be running on this CPU,
2502 		 * otherwise we cannot reprogram things.
2503 		 *
2504 		 * If its not running, we don't care, ctx->lock will
2505 		 * serialize against it becoming runnable.
2506 		 */
2507 		if (task_curr(ctx->task) && !reprogram) {
2508 			ret = -ESRCH;
2509 			goto unlock;
2510 		}
2511 
2512 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2513 	} else if (task_ctx) {
2514 		raw_spin_lock(&task_ctx->lock);
2515 	}
2516 
2517 #ifdef CONFIG_CGROUP_PERF
2518 	if (is_cgroup_event(event)) {
2519 		/*
2520 		 * If the current cgroup doesn't match the event's
2521 		 * cgroup, we should not try to schedule it.
2522 		 */
2523 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2524 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2525 					event->cgrp->css.cgroup);
2526 	}
2527 #endif
2528 
2529 	if (reprogram) {
2530 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2531 		add_event_to_ctx(event, ctx);
2532 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2533 	} else {
2534 		add_event_to_ctx(event, ctx);
2535 	}
2536 
2537 unlock:
2538 	perf_ctx_unlock(cpuctx, task_ctx);
2539 
2540 	return ret;
2541 }
2542 
2543 /*
2544  * Attach a performance event to a context.
2545  *
2546  * Very similar to event_function_call, see comment there.
2547  */
2548 static void
2549 perf_install_in_context(struct perf_event_context *ctx,
2550 			struct perf_event *event,
2551 			int cpu)
2552 {
2553 	struct task_struct *task = READ_ONCE(ctx->task);
2554 
2555 	lockdep_assert_held(&ctx->mutex);
2556 
2557 	if (event->cpu != -1)
2558 		event->cpu = cpu;
2559 
2560 	/*
2561 	 * Ensures that if we can observe event->ctx, both the event and ctx
2562 	 * will be 'complete'. See perf_iterate_sb_cpu().
2563 	 */
2564 	smp_store_release(&event->ctx, ctx);
2565 
2566 	if (!task) {
2567 		cpu_function_call(cpu, __perf_install_in_context, event);
2568 		return;
2569 	}
2570 
2571 	/*
2572 	 * Should not happen, we validate the ctx is still alive before calling.
2573 	 */
2574 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2575 		return;
2576 
2577 	/*
2578 	 * Installing events is tricky because we cannot rely on ctx->is_active
2579 	 * to be set in case this is the nr_events 0 -> 1 transition.
2580 	 *
2581 	 * Instead we use task_curr(), which tells us if the task is running.
2582 	 * However, since we use task_curr() outside of rq::lock, we can race
2583 	 * against the actual state. This means the result can be wrong.
2584 	 *
2585 	 * If we get a false positive, we retry, this is harmless.
2586 	 *
2587 	 * If we get a false negative, things are complicated. If we are after
2588 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589 	 * value must be correct. If we're before, it doesn't matter since
2590 	 * perf_event_context_sched_in() will program the counter.
2591 	 *
2592 	 * However, this hinges on the remote context switch having observed
2593 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2594 	 * ctx::lock in perf_event_context_sched_in().
2595 	 *
2596 	 * We do this by task_function_call(), if the IPI fails to hit the task
2597 	 * we know any future context switch of task must see the
2598 	 * perf_event_ctpx[] store.
2599 	 */
2600 
2601 	/*
2602 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603 	 * task_cpu() load, such that if the IPI then does not find the task
2604 	 * running, a future context switch of that task must observe the
2605 	 * store.
2606 	 */
2607 	smp_mb();
2608 again:
2609 	if (!task_function_call(task, __perf_install_in_context, event))
2610 		return;
2611 
2612 	raw_spin_lock_irq(&ctx->lock);
2613 	task = ctx->task;
2614 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2615 		/*
2616 		 * Cannot happen because we already checked above (which also
2617 		 * cannot happen), and we hold ctx->mutex, which serializes us
2618 		 * against perf_event_exit_task_context().
2619 		 */
2620 		raw_spin_unlock_irq(&ctx->lock);
2621 		return;
2622 	}
2623 	/*
2624 	 * If the task is not running, ctx->lock will avoid it becoming so,
2625 	 * thus we can safely install the event.
2626 	 */
2627 	if (task_curr(task)) {
2628 		raw_spin_unlock_irq(&ctx->lock);
2629 		goto again;
2630 	}
2631 	add_event_to_ctx(event, ctx);
2632 	raw_spin_unlock_irq(&ctx->lock);
2633 }
2634 
2635 /*
2636  * Cross CPU call to enable a performance event
2637  */
2638 static void __perf_event_enable(struct perf_event *event,
2639 				struct perf_cpu_context *cpuctx,
2640 				struct perf_event_context *ctx,
2641 				void *info)
2642 {
2643 	struct perf_event *leader = event->group_leader;
2644 	struct perf_event_context *task_ctx;
2645 
2646 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2647 	    event->state <= PERF_EVENT_STATE_ERROR)
2648 		return;
2649 
2650 	if (ctx->is_active)
2651 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2652 
2653 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2654 
2655 	if (!ctx->is_active)
2656 		return;
2657 
2658 	if (!event_filter_match(event)) {
2659 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2660 		return;
2661 	}
2662 
2663 	/*
2664 	 * If the event is in a group and isn't the group leader,
2665 	 * then don't put it on unless the group is on.
2666 	 */
2667 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2668 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2669 		return;
2670 	}
2671 
2672 	task_ctx = cpuctx->task_ctx;
2673 	if (ctx->task)
2674 		WARN_ON_ONCE(task_ctx != ctx);
2675 
2676 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2677 }
2678 
2679 /*
2680  * Enable a event.
2681  *
2682  * If event->ctx is a cloned context, callers must make sure that
2683  * every task struct that event->ctx->task could possibly point to
2684  * remains valid.  This condition is satisfied when called through
2685  * perf_event_for_each_child or perf_event_for_each as described
2686  * for perf_event_disable.
2687  */
2688 static void _perf_event_enable(struct perf_event *event)
2689 {
2690 	struct perf_event_context *ctx = event->ctx;
2691 
2692 	raw_spin_lock_irq(&ctx->lock);
2693 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2694 	    event->state <  PERF_EVENT_STATE_ERROR) {
2695 		raw_spin_unlock_irq(&ctx->lock);
2696 		return;
2697 	}
2698 
2699 	/*
2700 	 * If the event is in error state, clear that first.
2701 	 *
2702 	 * That way, if we see the event in error state below, we know that it
2703 	 * has gone back into error state, as distinct from the task having
2704 	 * been scheduled away before the cross-call arrived.
2705 	 */
2706 	if (event->state == PERF_EVENT_STATE_ERROR)
2707 		event->state = PERF_EVENT_STATE_OFF;
2708 	raw_spin_unlock_irq(&ctx->lock);
2709 
2710 	event_function_call(event, __perf_event_enable, NULL);
2711 }
2712 
2713 /*
2714  * See perf_event_disable();
2715  */
2716 void perf_event_enable(struct perf_event *event)
2717 {
2718 	struct perf_event_context *ctx;
2719 
2720 	ctx = perf_event_ctx_lock(event);
2721 	_perf_event_enable(event);
2722 	perf_event_ctx_unlock(event, ctx);
2723 }
2724 EXPORT_SYMBOL_GPL(perf_event_enable);
2725 
2726 struct stop_event_data {
2727 	struct perf_event	*event;
2728 	unsigned int		restart;
2729 };
2730 
2731 static int __perf_event_stop(void *info)
2732 {
2733 	struct stop_event_data *sd = info;
2734 	struct perf_event *event = sd->event;
2735 
2736 	/* if it's already INACTIVE, do nothing */
2737 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2738 		return 0;
2739 
2740 	/* matches smp_wmb() in event_sched_in() */
2741 	smp_rmb();
2742 
2743 	/*
2744 	 * There is a window with interrupts enabled before we get here,
2745 	 * so we need to check again lest we try to stop another CPU's event.
2746 	 */
2747 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2748 		return -EAGAIN;
2749 
2750 	event->pmu->stop(event, PERF_EF_UPDATE);
2751 
2752 	/*
2753 	 * May race with the actual stop (through perf_pmu_output_stop()),
2754 	 * but it is only used for events with AUX ring buffer, and such
2755 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2756 	 * see comments in perf_aux_output_begin().
2757 	 *
2758 	 * Since this is happening on a event-local CPU, no trace is lost
2759 	 * while restarting.
2760 	 */
2761 	if (sd->restart)
2762 		event->pmu->start(event, 0);
2763 
2764 	return 0;
2765 }
2766 
2767 static int perf_event_stop(struct perf_event *event, int restart)
2768 {
2769 	struct stop_event_data sd = {
2770 		.event		= event,
2771 		.restart	= restart,
2772 	};
2773 	int ret = 0;
2774 
2775 	do {
2776 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2777 			return 0;
2778 
2779 		/* matches smp_wmb() in event_sched_in() */
2780 		smp_rmb();
2781 
2782 		/*
2783 		 * We only want to restart ACTIVE events, so if the event goes
2784 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2785 		 * fall through with ret==-ENXIO.
2786 		 */
2787 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2788 					__perf_event_stop, &sd);
2789 	} while (ret == -EAGAIN);
2790 
2791 	return ret;
2792 }
2793 
2794 /*
2795  * In order to contain the amount of racy and tricky in the address filter
2796  * configuration management, it is a two part process:
2797  *
2798  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799  *      we update the addresses of corresponding vmas in
2800  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2801  * (p2) when an event is scheduled in (pmu::add), it calls
2802  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803  *      if the generation has changed since the previous call.
2804  *
2805  * If (p1) happens while the event is active, we restart it to force (p2).
2806  *
2807  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2809  *     ioctl;
2810  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2812  *     for reading;
2813  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2814  *     of exec.
2815  */
2816 void perf_event_addr_filters_sync(struct perf_event *event)
2817 {
2818 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2819 
2820 	if (!has_addr_filter(event))
2821 		return;
2822 
2823 	raw_spin_lock(&ifh->lock);
2824 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2825 		event->pmu->addr_filters_sync(event);
2826 		event->hw.addr_filters_gen = event->addr_filters_gen;
2827 	}
2828 	raw_spin_unlock(&ifh->lock);
2829 }
2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2831 
2832 static int _perf_event_refresh(struct perf_event *event, int refresh)
2833 {
2834 	/*
2835 	 * not supported on inherited events
2836 	 */
2837 	if (event->attr.inherit || !is_sampling_event(event))
2838 		return -EINVAL;
2839 
2840 	atomic_add(refresh, &event->event_limit);
2841 	_perf_event_enable(event);
2842 
2843 	return 0;
2844 }
2845 
2846 /*
2847  * See perf_event_disable()
2848  */
2849 int perf_event_refresh(struct perf_event *event, int refresh)
2850 {
2851 	struct perf_event_context *ctx;
2852 	int ret;
2853 
2854 	ctx = perf_event_ctx_lock(event);
2855 	ret = _perf_event_refresh(event, refresh);
2856 	perf_event_ctx_unlock(event, ctx);
2857 
2858 	return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(perf_event_refresh);
2861 
2862 static int perf_event_modify_breakpoint(struct perf_event *bp,
2863 					 struct perf_event_attr *attr)
2864 {
2865 	int err;
2866 
2867 	_perf_event_disable(bp);
2868 
2869 	err = modify_user_hw_breakpoint_check(bp, attr, true);
2870 	if (err) {
2871 		if (!bp->attr.disabled)
2872 			_perf_event_enable(bp);
2873 
2874 		return err;
2875 	}
2876 
2877 	if (!attr->disabled)
2878 		_perf_event_enable(bp);
2879 	return 0;
2880 }
2881 
2882 static int perf_event_modify_attr(struct perf_event *event,
2883 				  struct perf_event_attr *attr)
2884 {
2885 	if (event->attr.type != attr->type)
2886 		return -EINVAL;
2887 
2888 	switch (event->attr.type) {
2889 	case PERF_TYPE_BREAKPOINT:
2890 		return perf_event_modify_breakpoint(event, attr);
2891 	default:
2892 		/* Place holder for future additions. */
2893 		return -EOPNOTSUPP;
2894 	}
2895 }
2896 
2897 static void ctx_sched_out(struct perf_event_context *ctx,
2898 			  struct perf_cpu_context *cpuctx,
2899 			  enum event_type_t event_type)
2900 {
2901 	struct perf_event *event, *tmp;
2902 	int is_active = ctx->is_active;
2903 
2904 	lockdep_assert_held(&ctx->lock);
2905 
2906 	if (likely(!ctx->nr_events)) {
2907 		/*
2908 		 * See __perf_remove_from_context().
2909 		 */
2910 		WARN_ON_ONCE(ctx->is_active);
2911 		if (ctx->task)
2912 			WARN_ON_ONCE(cpuctx->task_ctx);
2913 		return;
2914 	}
2915 
2916 	ctx->is_active &= ~event_type;
2917 	if (!(ctx->is_active & EVENT_ALL))
2918 		ctx->is_active = 0;
2919 
2920 	if (ctx->task) {
2921 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2922 		if (!ctx->is_active)
2923 			cpuctx->task_ctx = NULL;
2924 	}
2925 
2926 	/*
2927 	 * Always update time if it was set; not only when it changes.
2928 	 * Otherwise we can 'forget' to update time for any but the last
2929 	 * context we sched out. For example:
2930 	 *
2931 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2932 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2933 	 *
2934 	 * would only update time for the pinned events.
2935 	 */
2936 	if (is_active & EVENT_TIME) {
2937 		/* update (and stop) ctx time */
2938 		update_context_time(ctx);
2939 		update_cgrp_time_from_cpuctx(cpuctx);
2940 	}
2941 
2942 	is_active ^= ctx->is_active; /* changed bits */
2943 
2944 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2945 		return;
2946 
2947 	perf_pmu_disable(ctx->pmu);
2948 	if (is_active & EVENT_PINNED) {
2949 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2950 			group_sched_out(event, cpuctx, ctx);
2951 	}
2952 
2953 	if (is_active & EVENT_FLEXIBLE) {
2954 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2955 			group_sched_out(event, cpuctx, ctx);
2956 	}
2957 	perf_pmu_enable(ctx->pmu);
2958 }
2959 
2960 /*
2961  * Test whether two contexts are equivalent, i.e. whether they have both been
2962  * cloned from the same version of the same context.
2963  *
2964  * Equivalence is measured using a generation number in the context that is
2965  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2966  * and list_del_event().
2967  */
2968 static int context_equiv(struct perf_event_context *ctx1,
2969 			 struct perf_event_context *ctx2)
2970 {
2971 	lockdep_assert_held(&ctx1->lock);
2972 	lockdep_assert_held(&ctx2->lock);
2973 
2974 	/* Pinning disables the swap optimization */
2975 	if (ctx1->pin_count || ctx2->pin_count)
2976 		return 0;
2977 
2978 	/* If ctx1 is the parent of ctx2 */
2979 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2980 		return 1;
2981 
2982 	/* If ctx2 is the parent of ctx1 */
2983 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2984 		return 1;
2985 
2986 	/*
2987 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2988 	 * hierarchy, see perf_event_init_context().
2989 	 */
2990 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2991 			ctx1->parent_gen == ctx2->parent_gen)
2992 		return 1;
2993 
2994 	/* Unmatched */
2995 	return 0;
2996 }
2997 
2998 static void __perf_event_sync_stat(struct perf_event *event,
2999 				     struct perf_event *next_event)
3000 {
3001 	u64 value;
3002 
3003 	if (!event->attr.inherit_stat)
3004 		return;
3005 
3006 	/*
3007 	 * Update the event value, we cannot use perf_event_read()
3008 	 * because we're in the middle of a context switch and have IRQs
3009 	 * disabled, which upsets smp_call_function_single(), however
3010 	 * we know the event must be on the current CPU, therefore we
3011 	 * don't need to use it.
3012 	 */
3013 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3014 		event->pmu->read(event);
3015 
3016 	perf_event_update_time(event);
3017 
3018 	/*
3019 	 * In order to keep per-task stats reliable we need to flip the event
3020 	 * values when we flip the contexts.
3021 	 */
3022 	value = local64_read(&next_event->count);
3023 	value = local64_xchg(&event->count, value);
3024 	local64_set(&next_event->count, value);
3025 
3026 	swap(event->total_time_enabled, next_event->total_time_enabled);
3027 	swap(event->total_time_running, next_event->total_time_running);
3028 
3029 	/*
3030 	 * Since we swizzled the values, update the user visible data too.
3031 	 */
3032 	perf_event_update_userpage(event);
3033 	perf_event_update_userpage(next_event);
3034 }
3035 
3036 static void perf_event_sync_stat(struct perf_event_context *ctx,
3037 				   struct perf_event_context *next_ctx)
3038 {
3039 	struct perf_event *event, *next_event;
3040 
3041 	if (!ctx->nr_stat)
3042 		return;
3043 
3044 	update_context_time(ctx);
3045 
3046 	event = list_first_entry(&ctx->event_list,
3047 				   struct perf_event, event_entry);
3048 
3049 	next_event = list_first_entry(&next_ctx->event_list,
3050 					struct perf_event, event_entry);
3051 
3052 	while (&event->event_entry != &ctx->event_list &&
3053 	       &next_event->event_entry != &next_ctx->event_list) {
3054 
3055 		__perf_event_sync_stat(event, next_event);
3056 
3057 		event = list_next_entry(event, event_entry);
3058 		next_event = list_next_entry(next_event, event_entry);
3059 	}
3060 }
3061 
3062 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3063 					 struct task_struct *next)
3064 {
3065 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3066 	struct perf_event_context *next_ctx;
3067 	struct perf_event_context *parent, *next_parent;
3068 	struct perf_cpu_context *cpuctx;
3069 	int do_switch = 1;
3070 
3071 	if (likely(!ctx))
3072 		return;
3073 
3074 	cpuctx = __get_cpu_context(ctx);
3075 	if (!cpuctx->task_ctx)
3076 		return;
3077 
3078 	rcu_read_lock();
3079 	next_ctx = next->perf_event_ctxp[ctxn];
3080 	if (!next_ctx)
3081 		goto unlock;
3082 
3083 	parent = rcu_dereference(ctx->parent_ctx);
3084 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3085 
3086 	/* If neither context have a parent context; they cannot be clones. */
3087 	if (!parent && !next_parent)
3088 		goto unlock;
3089 
3090 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3091 		/*
3092 		 * Looks like the two contexts are clones, so we might be
3093 		 * able to optimize the context switch.  We lock both
3094 		 * contexts and check that they are clones under the
3095 		 * lock (including re-checking that neither has been
3096 		 * uncloned in the meantime).  It doesn't matter which
3097 		 * order we take the locks because no other cpu could
3098 		 * be trying to lock both of these tasks.
3099 		 */
3100 		raw_spin_lock(&ctx->lock);
3101 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3102 		if (context_equiv(ctx, next_ctx)) {
3103 			WRITE_ONCE(ctx->task, next);
3104 			WRITE_ONCE(next_ctx->task, task);
3105 
3106 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3107 
3108 			/*
3109 			 * RCU_INIT_POINTER here is safe because we've not
3110 			 * modified the ctx and the above modification of
3111 			 * ctx->task and ctx->task_ctx_data are immaterial
3112 			 * since those values are always verified under
3113 			 * ctx->lock which we're now holding.
3114 			 */
3115 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3116 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3117 
3118 			do_switch = 0;
3119 
3120 			perf_event_sync_stat(ctx, next_ctx);
3121 		}
3122 		raw_spin_unlock(&next_ctx->lock);
3123 		raw_spin_unlock(&ctx->lock);
3124 	}
3125 unlock:
3126 	rcu_read_unlock();
3127 
3128 	if (do_switch) {
3129 		raw_spin_lock(&ctx->lock);
3130 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3131 		raw_spin_unlock(&ctx->lock);
3132 	}
3133 }
3134 
3135 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3136 
3137 void perf_sched_cb_dec(struct pmu *pmu)
3138 {
3139 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3140 
3141 	this_cpu_dec(perf_sched_cb_usages);
3142 
3143 	if (!--cpuctx->sched_cb_usage)
3144 		list_del(&cpuctx->sched_cb_entry);
3145 }
3146 
3147 
3148 void perf_sched_cb_inc(struct pmu *pmu)
3149 {
3150 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3151 
3152 	if (!cpuctx->sched_cb_usage++)
3153 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3154 
3155 	this_cpu_inc(perf_sched_cb_usages);
3156 }
3157 
3158 /*
3159  * This function provides the context switch callback to the lower code
3160  * layer. It is invoked ONLY when the context switch callback is enabled.
3161  *
3162  * This callback is relevant even to per-cpu events; for example multi event
3163  * PEBS requires this to provide PID/TID information. This requires we flush
3164  * all queued PEBS records before we context switch to a new task.
3165  */
3166 static void perf_pmu_sched_task(struct task_struct *prev,
3167 				struct task_struct *next,
3168 				bool sched_in)
3169 {
3170 	struct perf_cpu_context *cpuctx;
3171 	struct pmu *pmu;
3172 
3173 	if (prev == next)
3174 		return;
3175 
3176 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3177 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3178 
3179 		if (WARN_ON_ONCE(!pmu->sched_task))
3180 			continue;
3181 
3182 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3183 		perf_pmu_disable(pmu);
3184 
3185 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3186 
3187 		perf_pmu_enable(pmu);
3188 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3189 	}
3190 }
3191 
3192 static void perf_event_switch(struct task_struct *task,
3193 			      struct task_struct *next_prev, bool sched_in);
3194 
3195 #define for_each_task_context_nr(ctxn)					\
3196 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3197 
3198 /*
3199  * Called from scheduler to remove the events of the current task,
3200  * with interrupts disabled.
3201  *
3202  * We stop each event and update the event value in event->count.
3203  *
3204  * This does not protect us against NMI, but disable()
3205  * sets the disabled bit in the control field of event _before_
3206  * accessing the event control register. If a NMI hits, then it will
3207  * not restart the event.
3208  */
3209 void __perf_event_task_sched_out(struct task_struct *task,
3210 				 struct task_struct *next)
3211 {
3212 	int ctxn;
3213 
3214 	if (__this_cpu_read(perf_sched_cb_usages))
3215 		perf_pmu_sched_task(task, next, false);
3216 
3217 	if (atomic_read(&nr_switch_events))
3218 		perf_event_switch(task, next, false);
3219 
3220 	for_each_task_context_nr(ctxn)
3221 		perf_event_context_sched_out(task, ctxn, next);
3222 
3223 	/*
3224 	 * if cgroup events exist on this CPU, then we need
3225 	 * to check if we have to switch out PMU state.
3226 	 * cgroup event are system-wide mode only
3227 	 */
3228 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3229 		perf_cgroup_sched_out(task, next);
3230 }
3231 
3232 /*
3233  * Called with IRQs disabled
3234  */
3235 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3236 			      enum event_type_t event_type)
3237 {
3238 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3239 }
3240 
3241 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3242 			      int (*func)(struct perf_event *, void *), void *data)
3243 {
3244 	struct perf_event **evt, *evt1, *evt2;
3245 	int ret;
3246 
3247 	evt1 = perf_event_groups_first(groups, -1);
3248 	evt2 = perf_event_groups_first(groups, cpu);
3249 
3250 	while (evt1 || evt2) {
3251 		if (evt1 && evt2) {
3252 			if (evt1->group_index < evt2->group_index)
3253 				evt = &evt1;
3254 			else
3255 				evt = &evt2;
3256 		} else if (evt1) {
3257 			evt = &evt1;
3258 		} else {
3259 			evt = &evt2;
3260 		}
3261 
3262 		ret = func(*evt, data);
3263 		if (ret)
3264 			return ret;
3265 
3266 		*evt = perf_event_groups_next(*evt);
3267 	}
3268 
3269 	return 0;
3270 }
3271 
3272 struct sched_in_data {
3273 	struct perf_event_context *ctx;
3274 	struct perf_cpu_context *cpuctx;
3275 	int can_add_hw;
3276 };
3277 
3278 static int pinned_sched_in(struct perf_event *event, void *data)
3279 {
3280 	struct sched_in_data *sid = data;
3281 
3282 	if (event->state <= PERF_EVENT_STATE_OFF)
3283 		return 0;
3284 
3285 	if (!event_filter_match(event))
3286 		return 0;
3287 
3288 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3289 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3290 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3291 	}
3292 
3293 	/*
3294 	 * If this pinned group hasn't been scheduled,
3295 	 * put it in error state.
3296 	 */
3297 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3298 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3299 
3300 	return 0;
3301 }
3302 
3303 static int flexible_sched_in(struct perf_event *event, void *data)
3304 {
3305 	struct sched_in_data *sid = data;
3306 
3307 	if (event->state <= PERF_EVENT_STATE_OFF)
3308 		return 0;
3309 
3310 	if (!event_filter_match(event))
3311 		return 0;
3312 
3313 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3314 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3315 			list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3316 		else
3317 			sid->can_add_hw = 0;
3318 	}
3319 
3320 	return 0;
3321 }
3322 
3323 static void
3324 ctx_pinned_sched_in(struct perf_event_context *ctx,
3325 		    struct perf_cpu_context *cpuctx)
3326 {
3327 	struct sched_in_data sid = {
3328 		.ctx = ctx,
3329 		.cpuctx = cpuctx,
3330 		.can_add_hw = 1,
3331 	};
3332 
3333 	visit_groups_merge(&ctx->pinned_groups,
3334 			   smp_processor_id(),
3335 			   pinned_sched_in, &sid);
3336 }
3337 
3338 static void
3339 ctx_flexible_sched_in(struct perf_event_context *ctx,
3340 		      struct perf_cpu_context *cpuctx)
3341 {
3342 	struct sched_in_data sid = {
3343 		.ctx = ctx,
3344 		.cpuctx = cpuctx,
3345 		.can_add_hw = 1,
3346 	};
3347 
3348 	visit_groups_merge(&ctx->flexible_groups,
3349 			   smp_processor_id(),
3350 			   flexible_sched_in, &sid);
3351 }
3352 
3353 static void
3354 ctx_sched_in(struct perf_event_context *ctx,
3355 	     struct perf_cpu_context *cpuctx,
3356 	     enum event_type_t event_type,
3357 	     struct task_struct *task)
3358 {
3359 	int is_active = ctx->is_active;
3360 	u64 now;
3361 
3362 	lockdep_assert_held(&ctx->lock);
3363 
3364 	if (likely(!ctx->nr_events))
3365 		return;
3366 
3367 	ctx->is_active |= (event_type | EVENT_TIME);
3368 	if (ctx->task) {
3369 		if (!is_active)
3370 			cpuctx->task_ctx = ctx;
3371 		else
3372 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3373 	}
3374 
3375 	is_active ^= ctx->is_active; /* changed bits */
3376 
3377 	if (is_active & EVENT_TIME) {
3378 		/* start ctx time */
3379 		now = perf_clock();
3380 		ctx->timestamp = now;
3381 		perf_cgroup_set_timestamp(task, ctx);
3382 	}
3383 
3384 	/*
3385 	 * First go through the list and put on any pinned groups
3386 	 * in order to give them the best chance of going on.
3387 	 */
3388 	if (is_active & EVENT_PINNED)
3389 		ctx_pinned_sched_in(ctx, cpuctx);
3390 
3391 	/* Then walk through the lower prio flexible groups */
3392 	if (is_active & EVENT_FLEXIBLE)
3393 		ctx_flexible_sched_in(ctx, cpuctx);
3394 }
3395 
3396 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3397 			     enum event_type_t event_type,
3398 			     struct task_struct *task)
3399 {
3400 	struct perf_event_context *ctx = &cpuctx->ctx;
3401 
3402 	ctx_sched_in(ctx, cpuctx, event_type, task);
3403 }
3404 
3405 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3406 					struct task_struct *task)
3407 {
3408 	struct perf_cpu_context *cpuctx;
3409 
3410 	cpuctx = __get_cpu_context(ctx);
3411 	if (cpuctx->task_ctx == ctx)
3412 		return;
3413 
3414 	perf_ctx_lock(cpuctx, ctx);
3415 	/*
3416 	 * We must check ctx->nr_events while holding ctx->lock, such
3417 	 * that we serialize against perf_install_in_context().
3418 	 */
3419 	if (!ctx->nr_events)
3420 		goto unlock;
3421 
3422 	perf_pmu_disable(ctx->pmu);
3423 	/*
3424 	 * We want to keep the following priority order:
3425 	 * cpu pinned (that don't need to move), task pinned,
3426 	 * cpu flexible, task flexible.
3427 	 *
3428 	 * However, if task's ctx is not carrying any pinned
3429 	 * events, no need to flip the cpuctx's events around.
3430 	 */
3431 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3432 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3433 	perf_event_sched_in(cpuctx, ctx, task);
3434 	perf_pmu_enable(ctx->pmu);
3435 
3436 unlock:
3437 	perf_ctx_unlock(cpuctx, ctx);
3438 }
3439 
3440 /*
3441  * Called from scheduler to add the events of the current task
3442  * with interrupts disabled.
3443  *
3444  * We restore the event value and then enable it.
3445  *
3446  * This does not protect us against NMI, but enable()
3447  * sets the enabled bit in the control field of event _before_
3448  * accessing the event control register. If a NMI hits, then it will
3449  * keep the event running.
3450  */
3451 void __perf_event_task_sched_in(struct task_struct *prev,
3452 				struct task_struct *task)
3453 {
3454 	struct perf_event_context *ctx;
3455 	int ctxn;
3456 
3457 	/*
3458 	 * If cgroup events exist on this CPU, then we need to check if we have
3459 	 * to switch in PMU state; cgroup event are system-wide mode only.
3460 	 *
3461 	 * Since cgroup events are CPU events, we must schedule these in before
3462 	 * we schedule in the task events.
3463 	 */
3464 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3465 		perf_cgroup_sched_in(prev, task);
3466 
3467 	for_each_task_context_nr(ctxn) {
3468 		ctx = task->perf_event_ctxp[ctxn];
3469 		if (likely(!ctx))
3470 			continue;
3471 
3472 		perf_event_context_sched_in(ctx, task);
3473 	}
3474 
3475 	if (atomic_read(&nr_switch_events))
3476 		perf_event_switch(task, prev, true);
3477 
3478 	if (__this_cpu_read(perf_sched_cb_usages))
3479 		perf_pmu_sched_task(prev, task, true);
3480 }
3481 
3482 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3483 {
3484 	u64 frequency = event->attr.sample_freq;
3485 	u64 sec = NSEC_PER_SEC;
3486 	u64 divisor, dividend;
3487 
3488 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3489 
3490 	count_fls = fls64(count);
3491 	nsec_fls = fls64(nsec);
3492 	frequency_fls = fls64(frequency);
3493 	sec_fls = 30;
3494 
3495 	/*
3496 	 * We got @count in @nsec, with a target of sample_freq HZ
3497 	 * the target period becomes:
3498 	 *
3499 	 *             @count * 10^9
3500 	 * period = -------------------
3501 	 *          @nsec * sample_freq
3502 	 *
3503 	 */
3504 
3505 	/*
3506 	 * Reduce accuracy by one bit such that @a and @b converge
3507 	 * to a similar magnitude.
3508 	 */
3509 #define REDUCE_FLS(a, b)		\
3510 do {					\
3511 	if (a##_fls > b##_fls) {	\
3512 		a >>= 1;		\
3513 		a##_fls--;		\
3514 	} else {			\
3515 		b >>= 1;		\
3516 		b##_fls--;		\
3517 	}				\
3518 } while (0)
3519 
3520 	/*
3521 	 * Reduce accuracy until either term fits in a u64, then proceed with
3522 	 * the other, so that finally we can do a u64/u64 division.
3523 	 */
3524 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3525 		REDUCE_FLS(nsec, frequency);
3526 		REDUCE_FLS(sec, count);
3527 	}
3528 
3529 	if (count_fls + sec_fls > 64) {
3530 		divisor = nsec * frequency;
3531 
3532 		while (count_fls + sec_fls > 64) {
3533 			REDUCE_FLS(count, sec);
3534 			divisor >>= 1;
3535 		}
3536 
3537 		dividend = count * sec;
3538 	} else {
3539 		dividend = count * sec;
3540 
3541 		while (nsec_fls + frequency_fls > 64) {
3542 			REDUCE_FLS(nsec, frequency);
3543 			dividend >>= 1;
3544 		}
3545 
3546 		divisor = nsec * frequency;
3547 	}
3548 
3549 	if (!divisor)
3550 		return dividend;
3551 
3552 	return div64_u64(dividend, divisor);
3553 }
3554 
3555 static DEFINE_PER_CPU(int, perf_throttled_count);
3556 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3557 
3558 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3559 {
3560 	struct hw_perf_event *hwc = &event->hw;
3561 	s64 period, sample_period;
3562 	s64 delta;
3563 
3564 	period = perf_calculate_period(event, nsec, count);
3565 
3566 	delta = (s64)(period - hwc->sample_period);
3567 	delta = (delta + 7) / 8; /* low pass filter */
3568 
3569 	sample_period = hwc->sample_period + delta;
3570 
3571 	if (!sample_period)
3572 		sample_period = 1;
3573 
3574 	hwc->sample_period = sample_period;
3575 
3576 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3577 		if (disable)
3578 			event->pmu->stop(event, PERF_EF_UPDATE);
3579 
3580 		local64_set(&hwc->period_left, 0);
3581 
3582 		if (disable)
3583 			event->pmu->start(event, PERF_EF_RELOAD);
3584 	}
3585 }
3586 
3587 /*
3588  * combine freq adjustment with unthrottling to avoid two passes over the
3589  * events. At the same time, make sure, having freq events does not change
3590  * the rate of unthrottling as that would introduce bias.
3591  */
3592 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3593 					   int needs_unthr)
3594 {
3595 	struct perf_event *event;
3596 	struct hw_perf_event *hwc;
3597 	u64 now, period = TICK_NSEC;
3598 	s64 delta;
3599 
3600 	/*
3601 	 * only need to iterate over all events iff:
3602 	 * - context have events in frequency mode (needs freq adjust)
3603 	 * - there are events to unthrottle on this cpu
3604 	 */
3605 	if (!(ctx->nr_freq || needs_unthr))
3606 		return;
3607 
3608 	raw_spin_lock(&ctx->lock);
3609 	perf_pmu_disable(ctx->pmu);
3610 
3611 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3612 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3613 			continue;
3614 
3615 		if (!event_filter_match(event))
3616 			continue;
3617 
3618 		perf_pmu_disable(event->pmu);
3619 
3620 		hwc = &event->hw;
3621 
3622 		if (hwc->interrupts == MAX_INTERRUPTS) {
3623 			hwc->interrupts = 0;
3624 			perf_log_throttle(event, 1);
3625 			event->pmu->start(event, 0);
3626 		}
3627 
3628 		if (!event->attr.freq || !event->attr.sample_freq)
3629 			goto next;
3630 
3631 		/*
3632 		 * stop the event and update event->count
3633 		 */
3634 		event->pmu->stop(event, PERF_EF_UPDATE);
3635 
3636 		now = local64_read(&event->count);
3637 		delta = now - hwc->freq_count_stamp;
3638 		hwc->freq_count_stamp = now;
3639 
3640 		/*
3641 		 * restart the event
3642 		 * reload only if value has changed
3643 		 * we have stopped the event so tell that
3644 		 * to perf_adjust_period() to avoid stopping it
3645 		 * twice.
3646 		 */
3647 		if (delta > 0)
3648 			perf_adjust_period(event, period, delta, false);
3649 
3650 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3651 	next:
3652 		perf_pmu_enable(event->pmu);
3653 	}
3654 
3655 	perf_pmu_enable(ctx->pmu);
3656 	raw_spin_unlock(&ctx->lock);
3657 }
3658 
3659 /*
3660  * Move @event to the tail of the @ctx's elegible events.
3661  */
3662 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3663 {
3664 	/*
3665 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3666 	 * disabled by the inheritance code.
3667 	 */
3668 	if (ctx->rotate_disable)
3669 		return;
3670 
3671 	perf_event_groups_delete(&ctx->flexible_groups, event);
3672 	perf_event_groups_insert(&ctx->flexible_groups, event);
3673 }
3674 
3675 static inline struct perf_event *
3676 ctx_first_active(struct perf_event_context *ctx)
3677 {
3678 	return list_first_entry_or_null(&ctx->flexible_active,
3679 					struct perf_event, active_list);
3680 }
3681 
3682 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3683 {
3684 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3685 	bool cpu_rotate = false, task_rotate = false;
3686 	struct perf_event_context *ctx = NULL;
3687 
3688 	/*
3689 	 * Since we run this from IRQ context, nobody can install new
3690 	 * events, thus the event count values are stable.
3691 	 */
3692 
3693 	if (cpuctx->ctx.nr_events) {
3694 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3695 			cpu_rotate = true;
3696 	}
3697 
3698 	ctx = cpuctx->task_ctx;
3699 	if (ctx && ctx->nr_events) {
3700 		if (ctx->nr_events != ctx->nr_active)
3701 			task_rotate = true;
3702 	}
3703 
3704 	if (!(cpu_rotate || task_rotate))
3705 		return false;
3706 
3707 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3708 	perf_pmu_disable(cpuctx->ctx.pmu);
3709 
3710 	if (task_rotate)
3711 		task_event = ctx_first_active(ctx);
3712 	if (cpu_rotate)
3713 		cpu_event = ctx_first_active(&cpuctx->ctx);
3714 
3715 	/*
3716 	 * As per the order given at ctx_resched() first 'pop' task flexible
3717 	 * and then, if needed CPU flexible.
3718 	 */
3719 	if (task_event || (ctx && cpu_event))
3720 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3721 	if (cpu_event)
3722 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3723 
3724 	if (task_event)
3725 		rotate_ctx(ctx, task_event);
3726 	if (cpu_event)
3727 		rotate_ctx(&cpuctx->ctx, cpu_event);
3728 
3729 	perf_event_sched_in(cpuctx, ctx, current);
3730 
3731 	perf_pmu_enable(cpuctx->ctx.pmu);
3732 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3733 
3734 	return true;
3735 }
3736 
3737 void perf_event_task_tick(void)
3738 {
3739 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3740 	struct perf_event_context *ctx, *tmp;
3741 	int throttled;
3742 
3743 	lockdep_assert_irqs_disabled();
3744 
3745 	__this_cpu_inc(perf_throttled_seq);
3746 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3747 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3748 
3749 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3750 		perf_adjust_freq_unthr_context(ctx, throttled);
3751 }
3752 
3753 static int event_enable_on_exec(struct perf_event *event,
3754 				struct perf_event_context *ctx)
3755 {
3756 	if (!event->attr.enable_on_exec)
3757 		return 0;
3758 
3759 	event->attr.enable_on_exec = 0;
3760 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3761 		return 0;
3762 
3763 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3764 
3765 	return 1;
3766 }
3767 
3768 /*
3769  * Enable all of a task's events that have been marked enable-on-exec.
3770  * This expects task == current.
3771  */
3772 static void perf_event_enable_on_exec(int ctxn)
3773 {
3774 	struct perf_event_context *ctx, *clone_ctx = NULL;
3775 	enum event_type_t event_type = 0;
3776 	struct perf_cpu_context *cpuctx;
3777 	struct perf_event *event;
3778 	unsigned long flags;
3779 	int enabled = 0;
3780 
3781 	local_irq_save(flags);
3782 	ctx = current->perf_event_ctxp[ctxn];
3783 	if (!ctx || !ctx->nr_events)
3784 		goto out;
3785 
3786 	cpuctx = __get_cpu_context(ctx);
3787 	perf_ctx_lock(cpuctx, ctx);
3788 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3789 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3790 		enabled |= event_enable_on_exec(event, ctx);
3791 		event_type |= get_event_type(event);
3792 	}
3793 
3794 	/*
3795 	 * Unclone and reschedule this context if we enabled any event.
3796 	 */
3797 	if (enabled) {
3798 		clone_ctx = unclone_ctx(ctx);
3799 		ctx_resched(cpuctx, ctx, event_type);
3800 	} else {
3801 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3802 	}
3803 	perf_ctx_unlock(cpuctx, ctx);
3804 
3805 out:
3806 	local_irq_restore(flags);
3807 
3808 	if (clone_ctx)
3809 		put_ctx(clone_ctx);
3810 }
3811 
3812 struct perf_read_data {
3813 	struct perf_event *event;
3814 	bool group;
3815 	int ret;
3816 };
3817 
3818 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3819 {
3820 	u16 local_pkg, event_pkg;
3821 
3822 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3823 		int local_cpu = smp_processor_id();
3824 
3825 		event_pkg = topology_physical_package_id(event_cpu);
3826 		local_pkg = topology_physical_package_id(local_cpu);
3827 
3828 		if (event_pkg == local_pkg)
3829 			return local_cpu;
3830 	}
3831 
3832 	return event_cpu;
3833 }
3834 
3835 /*
3836  * Cross CPU call to read the hardware event
3837  */
3838 static void __perf_event_read(void *info)
3839 {
3840 	struct perf_read_data *data = info;
3841 	struct perf_event *sub, *event = data->event;
3842 	struct perf_event_context *ctx = event->ctx;
3843 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3844 	struct pmu *pmu = event->pmu;
3845 
3846 	/*
3847 	 * If this is a task context, we need to check whether it is
3848 	 * the current task context of this cpu.  If not it has been
3849 	 * scheduled out before the smp call arrived.  In that case
3850 	 * event->count would have been updated to a recent sample
3851 	 * when the event was scheduled out.
3852 	 */
3853 	if (ctx->task && cpuctx->task_ctx != ctx)
3854 		return;
3855 
3856 	raw_spin_lock(&ctx->lock);
3857 	if (ctx->is_active & EVENT_TIME) {
3858 		update_context_time(ctx);
3859 		update_cgrp_time_from_event(event);
3860 	}
3861 
3862 	perf_event_update_time(event);
3863 	if (data->group)
3864 		perf_event_update_sibling_time(event);
3865 
3866 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3867 		goto unlock;
3868 
3869 	if (!data->group) {
3870 		pmu->read(event);
3871 		data->ret = 0;
3872 		goto unlock;
3873 	}
3874 
3875 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3876 
3877 	pmu->read(event);
3878 
3879 	for_each_sibling_event(sub, event) {
3880 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3881 			/*
3882 			 * Use sibling's PMU rather than @event's since
3883 			 * sibling could be on different (eg: software) PMU.
3884 			 */
3885 			sub->pmu->read(sub);
3886 		}
3887 	}
3888 
3889 	data->ret = pmu->commit_txn(pmu);
3890 
3891 unlock:
3892 	raw_spin_unlock(&ctx->lock);
3893 }
3894 
3895 static inline u64 perf_event_count(struct perf_event *event)
3896 {
3897 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3898 }
3899 
3900 /*
3901  * NMI-safe method to read a local event, that is an event that
3902  * is:
3903  *   - either for the current task, or for this CPU
3904  *   - does not have inherit set, for inherited task events
3905  *     will not be local and we cannot read them atomically
3906  *   - must not have a pmu::count method
3907  */
3908 int perf_event_read_local(struct perf_event *event, u64 *value,
3909 			  u64 *enabled, u64 *running)
3910 {
3911 	unsigned long flags;
3912 	int ret = 0;
3913 
3914 	/*
3915 	 * Disabling interrupts avoids all counter scheduling (context
3916 	 * switches, timer based rotation and IPIs).
3917 	 */
3918 	local_irq_save(flags);
3919 
3920 	/*
3921 	 * It must not be an event with inherit set, we cannot read
3922 	 * all child counters from atomic context.
3923 	 */
3924 	if (event->attr.inherit) {
3925 		ret = -EOPNOTSUPP;
3926 		goto out;
3927 	}
3928 
3929 	/* If this is a per-task event, it must be for current */
3930 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3931 	    event->hw.target != current) {
3932 		ret = -EINVAL;
3933 		goto out;
3934 	}
3935 
3936 	/* If this is a per-CPU event, it must be for this CPU */
3937 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3938 	    event->cpu != smp_processor_id()) {
3939 		ret = -EINVAL;
3940 		goto out;
3941 	}
3942 
3943 	/*
3944 	 * If the event is currently on this CPU, its either a per-task event,
3945 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3946 	 * oncpu == -1).
3947 	 */
3948 	if (event->oncpu == smp_processor_id())
3949 		event->pmu->read(event);
3950 
3951 	*value = local64_read(&event->count);
3952 	if (enabled || running) {
3953 		u64 now = event->shadow_ctx_time + perf_clock();
3954 		u64 __enabled, __running;
3955 
3956 		__perf_update_times(event, now, &__enabled, &__running);
3957 		if (enabled)
3958 			*enabled = __enabled;
3959 		if (running)
3960 			*running = __running;
3961 	}
3962 out:
3963 	local_irq_restore(flags);
3964 
3965 	return ret;
3966 }
3967 
3968 static int perf_event_read(struct perf_event *event, bool group)
3969 {
3970 	enum perf_event_state state = READ_ONCE(event->state);
3971 	int event_cpu, ret = 0;
3972 
3973 	/*
3974 	 * If event is enabled and currently active on a CPU, update the
3975 	 * value in the event structure:
3976 	 */
3977 again:
3978 	if (state == PERF_EVENT_STATE_ACTIVE) {
3979 		struct perf_read_data data;
3980 
3981 		/*
3982 		 * Orders the ->state and ->oncpu loads such that if we see
3983 		 * ACTIVE we must also see the right ->oncpu.
3984 		 *
3985 		 * Matches the smp_wmb() from event_sched_in().
3986 		 */
3987 		smp_rmb();
3988 
3989 		event_cpu = READ_ONCE(event->oncpu);
3990 		if ((unsigned)event_cpu >= nr_cpu_ids)
3991 			return 0;
3992 
3993 		data = (struct perf_read_data){
3994 			.event = event,
3995 			.group = group,
3996 			.ret = 0,
3997 		};
3998 
3999 		preempt_disable();
4000 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4001 
4002 		/*
4003 		 * Purposely ignore the smp_call_function_single() return
4004 		 * value.
4005 		 *
4006 		 * If event_cpu isn't a valid CPU it means the event got
4007 		 * scheduled out and that will have updated the event count.
4008 		 *
4009 		 * Therefore, either way, we'll have an up-to-date event count
4010 		 * after this.
4011 		 */
4012 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4013 		preempt_enable();
4014 		ret = data.ret;
4015 
4016 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4017 		struct perf_event_context *ctx = event->ctx;
4018 		unsigned long flags;
4019 
4020 		raw_spin_lock_irqsave(&ctx->lock, flags);
4021 		state = event->state;
4022 		if (state != PERF_EVENT_STATE_INACTIVE) {
4023 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4024 			goto again;
4025 		}
4026 
4027 		/*
4028 		 * May read while context is not active (e.g., thread is
4029 		 * blocked), in that case we cannot update context time
4030 		 */
4031 		if (ctx->is_active & EVENT_TIME) {
4032 			update_context_time(ctx);
4033 			update_cgrp_time_from_event(event);
4034 		}
4035 
4036 		perf_event_update_time(event);
4037 		if (group)
4038 			perf_event_update_sibling_time(event);
4039 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4040 	}
4041 
4042 	return ret;
4043 }
4044 
4045 /*
4046  * Initialize the perf_event context in a task_struct:
4047  */
4048 static void __perf_event_init_context(struct perf_event_context *ctx)
4049 {
4050 	raw_spin_lock_init(&ctx->lock);
4051 	mutex_init(&ctx->mutex);
4052 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4053 	perf_event_groups_init(&ctx->pinned_groups);
4054 	perf_event_groups_init(&ctx->flexible_groups);
4055 	INIT_LIST_HEAD(&ctx->event_list);
4056 	INIT_LIST_HEAD(&ctx->pinned_active);
4057 	INIT_LIST_HEAD(&ctx->flexible_active);
4058 	atomic_set(&ctx->refcount, 1);
4059 }
4060 
4061 static struct perf_event_context *
4062 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4063 {
4064 	struct perf_event_context *ctx;
4065 
4066 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4067 	if (!ctx)
4068 		return NULL;
4069 
4070 	__perf_event_init_context(ctx);
4071 	if (task) {
4072 		ctx->task = task;
4073 		get_task_struct(task);
4074 	}
4075 	ctx->pmu = pmu;
4076 
4077 	return ctx;
4078 }
4079 
4080 static struct task_struct *
4081 find_lively_task_by_vpid(pid_t vpid)
4082 {
4083 	struct task_struct *task;
4084 
4085 	rcu_read_lock();
4086 	if (!vpid)
4087 		task = current;
4088 	else
4089 		task = find_task_by_vpid(vpid);
4090 	if (task)
4091 		get_task_struct(task);
4092 	rcu_read_unlock();
4093 
4094 	if (!task)
4095 		return ERR_PTR(-ESRCH);
4096 
4097 	return task;
4098 }
4099 
4100 /*
4101  * Returns a matching context with refcount and pincount.
4102  */
4103 static struct perf_event_context *
4104 find_get_context(struct pmu *pmu, struct task_struct *task,
4105 		struct perf_event *event)
4106 {
4107 	struct perf_event_context *ctx, *clone_ctx = NULL;
4108 	struct perf_cpu_context *cpuctx;
4109 	void *task_ctx_data = NULL;
4110 	unsigned long flags;
4111 	int ctxn, err;
4112 	int cpu = event->cpu;
4113 
4114 	if (!task) {
4115 		/* Must be root to operate on a CPU event: */
4116 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4117 			return ERR_PTR(-EACCES);
4118 
4119 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4120 		ctx = &cpuctx->ctx;
4121 		get_ctx(ctx);
4122 		++ctx->pin_count;
4123 
4124 		return ctx;
4125 	}
4126 
4127 	err = -EINVAL;
4128 	ctxn = pmu->task_ctx_nr;
4129 	if (ctxn < 0)
4130 		goto errout;
4131 
4132 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4133 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4134 		if (!task_ctx_data) {
4135 			err = -ENOMEM;
4136 			goto errout;
4137 		}
4138 	}
4139 
4140 retry:
4141 	ctx = perf_lock_task_context(task, ctxn, &flags);
4142 	if (ctx) {
4143 		clone_ctx = unclone_ctx(ctx);
4144 		++ctx->pin_count;
4145 
4146 		if (task_ctx_data && !ctx->task_ctx_data) {
4147 			ctx->task_ctx_data = task_ctx_data;
4148 			task_ctx_data = NULL;
4149 		}
4150 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4151 
4152 		if (clone_ctx)
4153 			put_ctx(clone_ctx);
4154 	} else {
4155 		ctx = alloc_perf_context(pmu, task);
4156 		err = -ENOMEM;
4157 		if (!ctx)
4158 			goto errout;
4159 
4160 		if (task_ctx_data) {
4161 			ctx->task_ctx_data = task_ctx_data;
4162 			task_ctx_data = NULL;
4163 		}
4164 
4165 		err = 0;
4166 		mutex_lock(&task->perf_event_mutex);
4167 		/*
4168 		 * If it has already passed perf_event_exit_task().
4169 		 * we must see PF_EXITING, it takes this mutex too.
4170 		 */
4171 		if (task->flags & PF_EXITING)
4172 			err = -ESRCH;
4173 		else if (task->perf_event_ctxp[ctxn])
4174 			err = -EAGAIN;
4175 		else {
4176 			get_ctx(ctx);
4177 			++ctx->pin_count;
4178 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4179 		}
4180 		mutex_unlock(&task->perf_event_mutex);
4181 
4182 		if (unlikely(err)) {
4183 			put_ctx(ctx);
4184 
4185 			if (err == -EAGAIN)
4186 				goto retry;
4187 			goto errout;
4188 		}
4189 	}
4190 
4191 	kfree(task_ctx_data);
4192 	return ctx;
4193 
4194 errout:
4195 	kfree(task_ctx_data);
4196 	return ERR_PTR(err);
4197 }
4198 
4199 static void perf_event_free_filter(struct perf_event *event);
4200 static void perf_event_free_bpf_prog(struct perf_event *event);
4201 
4202 static void free_event_rcu(struct rcu_head *head)
4203 {
4204 	struct perf_event *event;
4205 
4206 	event = container_of(head, struct perf_event, rcu_head);
4207 	if (event->ns)
4208 		put_pid_ns(event->ns);
4209 	perf_event_free_filter(event);
4210 	kfree(event);
4211 }
4212 
4213 static void ring_buffer_attach(struct perf_event *event,
4214 			       struct ring_buffer *rb);
4215 
4216 static void detach_sb_event(struct perf_event *event)
4217 {
4218 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4219 
4220 	raw_spin_lock(&pel->lock);
4221 	list_del_rcu(&event->sb_list);
4222 	raw_spin_unlock(&pel->lock);
4223 }
4224 
4225 static bool is_sb_event(struct perf_event *event)
4226 {
4227 	struct perf_event_attr *attr = &event->attr;
4228 
4229 	if (event->parent)
4230 		return false;
4231 
4232 	if (event->attach_state & PERF_ATTACH_TASK)
4233 		return false;
4234 
4235 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4236 	    attr->comm || attr->comm_exec ||
4237 	    attr->task ||
4238 	    attr->context_switch)
4239 		return true;
4240 	return false;
4241 }
4242 
4243 static void unaccount_pmu_sb_event(struct perf_event *event)
4244 {
4245 	if (is_sb_event(event))
4246 		detach_sb_event(event);
4247 }
4248 
4249 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4250 {
4251 	if (event->parent)
4252 		return;
4253 
4254 	if (is_cgroup_event(event))
4255 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4256 }
4257 
4258 #ifdef CONFIG_NO_HZ_FULL
4259 static DEFINE_SPINLOCK(nr_freq_lock);
4260 #endif
4261 
4262 static void unaccount_freq_event_nohz(void)
4263 {
4264 #ifdef CONFIG_NO_HZ_FULL
4265 	spin_lock(&nr_freq_lock);
4266 	if (atomic_dec_and_test(&nr_freq_events))
4267 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4268 	spin_unlock(&nr_freq_lock);
4269 #endif
4270 }
4271 
4272 static void unaccount_freq_event(void)
4273 {
4274 	if (tick_nohz_full_enabled())
4275 		unaccount_freq_event_nohz();
4276 	else
4277 		atomic_dec(&nr_freq_events);
4278 }
4279 
4280 static void unaccount_event(struct perf_event *event)
4281 {
4282 	bool dec = false;
4283 
4284 	if (event->parent)
4285 		return;
4286 
4287 	if (event->attach_state & PERF_ATTACH_TASK)
4288 		dec = true;
4289 	if (event->attr.mmap || event->attr.mmap_data)
4290 		atomic_dec(&nr_mmap_events);
4291 	if (event->attr.comm)
4292 		atomic_dec(&nr_comm_events);
4293 	if (event->attr.namespaces)
4294 		atomic_dec(&nr_namespaces_events);
4295 	if (event->attr.task)
4296 		atomic_dec(&nr_task_events);
4297 	if (event->attr.freq)
4298 		unaccount_freq_event();
4299 	if (event->attr.context_switch) {
4300 		dec = true;
4301 		atomic_dec(&nr_switch_events);
4302 	}
4303 	if (is_cgroup_event(event))
4304 		dec = true;
4305 	if (has_branch_stack(event))
4306 		dec = true;
4307 
4308 	if (dec) {
4309 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4310 			schedule_delayed_work(&perf_sched_work, HZ);
4311 	}
4312 
4313 	unaccount_event_cpu(event, event->cpu);
4314 
4315 	unaccount_pmu_sb_event(event);
4316 }
4317 
4318 static void perf_sched_delayed(struct work_struct *work)
4319 {
4320 	mutex_lock(&perf_sched_mutex);
4321 	if (atomic_dec_and_test(&perf_sched_count))
4322 		static_branch_disable(&perf_sched_events);
4323 	mutex_unlock(&perf_sched_mutex);
4324 }
4325 
4326 /*
4327  * The following implement mutual exclusion of events on "exclusive" pmus
4328  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4329  * at a time, so we disallow creating events that might conflict, namely:
4330  *
4331  *  1) cpu-wide events in the presence of per-task events,
4332  *  2) per-task events in the presence of cpu-wide events,
4333  *  3) two matching events on the same context.
4334  *
4335  * The former two cases are handled in the allocation path (perf_event_alloc(),
4336  * _free_event()), the latter -- before the first perf_install_in_context().
4337  */
4338 static int exclusive_event_init(struct perf_event *event)
4339 {
4340 	struct pmu *pmu = event->pmu;
4341 
4342 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4343 		return 0;
4344 
4345 	/*
4346 	 * Prevent co-existence of per-task and cpu-wide events on the
4347 	 * same exclusive pmu.
4348 	 *
4349 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4350 	 * events on this "exclusive" pmu, positive means there are
4351 	 * per-task events.
4352 	 *
4353 	 * Since this is called in perf_event_alloc() path, event::ctx
4354 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4355 	 * to mean "per-task event", because unlike other attach states it
4356 	 * never gets cleared.
4357 	 */
4358 	if (event->attach_state & PERF_ATTACH_TASK) {
4359 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4360 			return -EBUSY;
4361 	} else {
4362 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4363 			return -EBUSY;
4364 	}
4365 
4366 	return 0;
4367 }
4368 
4369 static void exclusive_event_destroy(struct perf_event *event)
4370 {
4371 	struct pmu *pmu = event->pmu;
4372 
4373 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4374 		return;
4375 
4376 	/* see comment in exclusive_event_init() */
4377 	if (event->attach_state & PERF_ATTACH_TASK)
4378 		atomic_dec(&pmu->exclusive_cnt);
4379 	else
4380 		atomic_inc(&pmu->exclusive_cnt);
4381 }
4382 
4383 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4384 {
4385 	if ((e1->pmu == e2->pmu) &&
4386 	    (e1->cpu == e2->cpu ||
4387 	     e1->cpu == -1 ||
4388 	     e2->cpu == -1))
4389 		return true;
4390 	return false;
4391 }
4392 
4393 /* Called under the same ctx::mutex as perf_install_in_context() */
4394 static bool exclusive_event_installable(struct perf_event *event,
4395 					struct perf_event_context *ctx)
4396 {
4397 	struct perf_event *iter_event;
4398 	struct pmu *pmu = event->pmu;
4399 
4400 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4401 		return true;
4402 
4403 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4404 		if (exclusive_event_match(iter_event, event))
4405 			return false;
4406 	}
4407 
4408 	return true;
4409 }
4410 
4411 static void perf_addr_filters_splice(struct perf_event *event,
4412 				       struct list_head *head);
4413 
4414 static void _free_event(struct perf_event *event)
4415 {
4416 	irq_work_sync(&event->pending);
4417 
4418 	unaccount_event(event);
4419 
4420 	if (event->rb) {
4421 		/*
4422 		 * Can happen when we close an event with re-directed output.
4423 		 *
4424 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4425 		 * over us; possibly making our ring_buffer_put() the last.
4426 		 */
4427 		mutex_lock(&event->mmap_mutex);
4428 		ring_buffer_attach(event, NULL);
4429 		mutex_unlock(&event->mmap_mutex);
4430 	}
4431 
4432 	if (is_cgroup_event(event))
4433 		perf_detach_cgroup(event);
4434 
4435 	if (!event->parent) {
4436 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4437 			put_callchain_buffers();
4438 	}
4439 
4440 	perf_event_free_bpf_prog(event);
4441 	perf_addr_filters_splice(event, NULL);
4442 	kfree(event->addr_filters_offs);
4443 
4444 	if (event->destroy)
4445 		event->destroy(event);
4446 
4447 	if (event->ctx)
4448 		put_ctx(event->ctx);
4449 
4450 	if (event->hw.target)
4451 		put_task_struct(event->hw.target);
4452 
4453 	exclusive_event_destroy(event);
4454 	module_put(event->pmu->module);
4455 
4456 	call_rcu(&event->rcu_head, free_event_rcu);
4457 }
4458 
4459 /*
4460  * Used to free events which have a known refcount of 1, such as in error paths
4461  * where the event isn't exposed yet and inherited events.
4462  */
4463 static void free_event(struct perf_event *event)
4464 {
4465 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4466 				"unexpected event refcount: %ld; ptr=%p\n",
4467 				atomic_long_read(&event->refcount), event)) {
4468 		/* leak to avoid use-after-free */
4469 		return;
4470 	}
4471 
4472 	_free_event(event);
4473 }
4474 
4475 /*
4476  * Remove user event from the owner task.
4477  */
4478 static void perf_remove_from_owner(struct perf_event *event)
4479 {
4480 	struct task_struct *owner;
4481 
4482 	rcu_read_lock();
4483 	/*
4484 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4485 	 * observe !owner it means the list deletion is complete and we can
4486 	 * indeed free this event, otherwise we need to serialize on
4487 	 * owner->perf_event_mutex.
4488 	 */
4489 	owner = READ_ONCE(event->owner);
4490 	if (owner) {
4491 		/*
4492 		 * Since delayed_put_task_struct() also drops the last
4493 		 * task reference we can safely take a new reference
4494 		 * while holding the rcu_read_lock().
4495 		 */
4496 		get_task_struct(owner);
4497 	}
4498 	rcu_read_unlock();
4499 
4500 	if (owner) {
4501 		/*
4502 		 * If we're here through perf_event_exit_task() we're already
4503 		 * holding ctx->mutex which would be an inversion wrt. the
4504 		 * normal lock order.
4505 		 *
4506 		 * However we can safely take this lock because its the child
4507 		 * ctx->mutex.
4508 		 */
4509 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4510 
4511 		/*
4512 		 * We have to re-check the event->owner field, if it is cleared
4513 		 * we raced with perf_event_exit_task(), acquiring the mutex
4514 		 * ensured they're done, and we can proceed with freeing the
4515 		 * event.
4516 		 */
4517 		if (event->owner) {
4518 			list_del_init(&event->owner_entry);
4519 			smp_store_release(&event->owner, NULL);
4520 		}
4521 		mutex_unlock(&owner->perf_event_mutex);
4522 		put_task_struct(owner);
4523 	}
4524 }
4525 
4526 static void put_event(struct perf_event *event)
4527 {
4528 	if (!atomic_long_dec_and_test(&event->refcount))
4529 		return;
4530 
4531 	_free_event(event);
4532 }
4533 
4534 /*
4535  * Kill an event dead; while event:refcount will preserve the event
4536  * object, it will not preserve its functionality. Once the last 'user'
4537  * gives up the object, we'll destroy the thing.
4538  */
4539 int perf_event_release_kernel(struct perf_event *event)
4540 {
4541 	struct perf_event_context *ctx = event->ctx;
4542 	struct perf_event *child, *tmp;
4543 	LIST_HEAD(free_list);
4544 
4545 	/*
4546 	 * If we got here through err_file: fput(event_file); we will not have
4547 	 * attached to a context yet.
4548 	 */
4549 	if (!ctx) {
4550 		WARN_ON_ONCE(event->attach_state &
4551 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4552 		goto no_ctx;
4553 	}
4554 
4555 	if (!is_kernel_event(event))
4556 		perf_remove_from_owner(event);
4557 
4558 	ctx = perf_event_ctx_lock(event);
4559 	WARN_ON_ONCE(ctx->parent_ctx);
4560 	perf_remove_from_context(event, DETACH_GROUP);
4561 
4562 	raw_spin_lock_irq(&ctx->lock);
4563 	/*
4564 	 * Mark this event as STATE_DEAD, there is no external reference to it
4565 	 * anymore.
4566 	 *
4567 	 * Anybody acquiring event->child_mutex after the below loop _must_
4568 	 * also see this, most importantly inherit_event() which will avoid
4569 	 * placing more children on the list.
4570 	 *
4571 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4572 	 * child events.
4573 	 */
4574 	event->state = PERF_EVENT_STATE_DEAD;
4575 	raw_spin_unlock_irq(&ctx->lock);
4576 
4577 	perf_event_ctx_unlock(event, ctx);
4578 
4579 again:
4580 	mutex_lock(&event->child_mutex);
4581 	list_for_each_entry(child, &event->child_list, child_list) {
4582 
4583 		/*
4584 		 * Cannot change, child events are not migrated, see the
4585 		 * comment with perf_event_ctx_lock_nested().
4586 		 */
4587 		ctx = READ_ONCE(child->ctx);
4588 		/*
4589 		 * Since child_mutex nests inside ctx::mutex, we must jump
4590 		 * through hoops. We start by grabbing a reference on the ctx.
4591 		 *
4592 		 * Since the event cannot get freed while we hold the
4593 		 * child_mutex, the context must also exist and have a !0
4594 		 * reference count.
4595 		 */
4596 		get_ctx(ctx);
4597 
4598 		/*
4599 		 * Now that we have a ctx ref, we can drop child_mutex, and
4600 		 * acquire ctx::mutex without fear of it going away. Then we
4601 		 * can re-acquire child_mutex.
4602 		 */
4603 		mutex_unlock(&event->child_mutex);
4604 		mutex_lock(&ctx->mutex);
4605 		mutex_lock(&event->child_mutex);
4606 
4607 		/*
4608 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4609 		 * state, if child is still the first entry, it didn't get freed
4610 		 * and we can continue doing so.
4611 		 */
4612 		tmp = list_first_entry_or_null(&event->child_list,
4613 					       struct perf_event, child_list);
4614 		if (tmp == child) {
4615 			perf_remove_from_context(child, DETACH_GROUP);
4616 			list_move(&child->child_list, &free_list);
4617 			/*
4618 			 * This matches the refcount bump in inherit_event();
4619 			 * this can't be the last reference.
4620 			 */
4621 			put_event(event);
4622 		}
4623 
4624 		mutex_unlock(&event->child_mutex);
4625 		mutex_unlock(&ctx->mutex);
4626 		put_ctx(ctx);
4627 		goto again;
4628 	}
4629 	mutex_unlock(&event->child_mutex);
4630 
4631 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4632 		list_del(&child->child_list);
4633 		free_event(child);
4634 	}
4635 
4636 no_ctx:
4637 	put_event(event); /* Must be the 'last' reference */
4638 	return 0;
4639 }
4640 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4641 
4642 /*
4643  * Called when the last reference to the file is gone.
4644  */
4645 static int perf_release(struct inode *inode, struct file *file)
4646 {
4647 	perf_event_release_kernel(file->private_data);
4648 	return 0;
4649 }
4650 
4651 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4652 {
4653 	struct perf_event *child;
4654 	u64 total = 0;
4655 
4656 	*enabled = 0;
4657 	*running = 0;
4658 
4659 	mutex_lock(&event->child_mutex);
4660 
4661 	(void)perf_event_read(event, false);
4662 	total += perf_event_count(event);
4663 
4664 	*enabled += event->total_time_enabled +
4665 			atomic64_read(&event->child_total_time_enabled);
4666 	*running += event->total_time_running +
4667 			atomic64_read(&event->child_total_time_running);
4668 
4669 	list_for_each_entry(child, &event->child_list, child_list) {
4670 		(void)perf_event_read(child, false);
4671 		total += perf_event_count(child);
4672 		*enabled += child->total_time_enabled;
4673 		*running += child->total_time_running;
4674 	}
4675 	mutex_unlock(&event->child_mutex);
4676 
4677 	return total;
4678 }
4679 
4680 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4681 {
4682 	struct perf_event_context *ctx;
4683 	u64 count;
4684 
4685 	ctx = perf_event_ctx_lock(event);
4686 	count = __perf_event_read_value(event, enabled, running);
4687 	perf_event_ctx_unlock(event, ctx);
4688 
4689 	return count;
4690 }
4691 EXPORT_SYMBOL_GPL(perf_event_read_value);
4692 
4693 static int __perf_read_group_add(struct perf_event *leader,
4694 					u64 read_format, u64 *values)
4695 {
4696 	struct perf_event_context *ctx = leader->ctx;
4697 	struct perf_event *sub;
4698 	unsigned long flags;
4699 	int n = 1; /* skip @nr */
4700 	int ret;
4701 
4702 	ret = perf_event_read(leader, true);
4703 	if (ret)
4704 		return ret;
4705 
4706 	raw_spin_lock_irqsave(&ctx->lock, flags);
4707 
4708 	/*
4709 	 * Since we co-schedule groups, {enabled,running} times of siblings
4710 	 * will be identical to those of the leader, so we only publish one
4711 	 * set.
4712 	 */
4713 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4714 		values[n++] += leader->total_time_enabled +
4715 			atomic64_read(&leader->child_total_time_enabled);
4716 	}
4717 
4718 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4719 		values[n++] += leader->total_time_running +
4720 			atomic64_read(&leader->child_total_time_running);
4721 	}
4722 
4723 	/*
4724 	 * Write {count,id} tuples for every sibling.
4725 	 */
4726 	values[n++] += perf_event_count(leader);
4727 	if (read_format & PERF_FORMAT_ID)
4728 		values[n++] = primary_event_id(leader);
4729 
4730 	for_each_sibling_event(sub, leader) {
4731 		values[n++] += perf_event_count(sub);
4732 		if (read_format & PERF_FORMAT_ID)
4733 			values[n++] = primary_event_id(sub);
4734 	}
4735 
4736 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4737 	return 0;
4738 }
4739 
4740 static int perf_read_group(struct perf_event *event,
4741 				   u64 read_format, char __user *buf)
4742 {
4743 	struct perf_event *leader = event->group_leader, *child;
4744 	struct perf_event_context *ctx = leader->ctx;
4745 	int ret;
4746 	u64 *values;
4747 
4748 	lockdep_assert_held(&ctx->mutex);
4749 
4750 	values = kzalloc(event->read_size, GFP_KERNEL);
4751 	if (!values)
4752 		return -ENOMEM;
4753 
4754 	values[0] = 1 + leader->nr_siblings;
4755 
4756 	/*
4757 	 * By locking the child_mutex of the leader we effectively
4758 	 * lock the child list of all siblings.. XXX explain how.
4759 	 */
4760 	mutex_lock(&leader->child_mutex);
4761 
4762 	ret = __perf_read_group_add(leader, read_format, values);
4763 	if (ret)
4764 		goto unlock;
4765 
4766 	list_for_each_entry(child, &leader->child_list, child_list) {
4767 		ret = __perf_read_group_add(child, read_format, values);
4768 		if (ret)
4769 			goto unlock;
4770 	}
4771 
4772 	mutex_unlock(&leader->child_mutex);
4773 
4774 	ret = event->read_size;
4775 	if (copy_to_user(buf, values, event->read_size))
4776 		ret = -EFAULT;
4777 	goto out;
4778 
4779 unlock:
4780 	mutex_unlock(&leader->child_mutex);
4781 out:
4782 	kfree(values);
4783 	return ret;
4784 }
4785 
4786 static int perf_read_one(struct perf_event *event,
4787 				 u64 read_format, char __user *buf)
4788 {
4789 	u64 enabled, running;
4790 	u64 values[4];
4791 	int n = 0;
4792 
4793 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4794 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4795 		values[n++] = enabled;
4796 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4797 		values[n++] = running;
4798 	if (read_format & PERF_FORMAT_ID)
4799 		values[n++] = primary_event_id(event);
4800 
4801 	if (copy_to_user(buf, values, n * sizeof(u64)))
4802 		return -EFAULT;
4803 
4804 	return n * sizeof(u64);
4805 }
4806 
4807 static bool is_event_hup(struct perf_event *event)
4808 {
4809 	bool no_children;
4810 
4811 	if (event->state > PERF_EVENT_STATE_EXIT)
4812 		return false;
4813 
4814 	mutex_lock(&event->child_mutex);
4815 	no_children = list_empty(&event->child_list);
4816 	mutex_unlock(&event->child_mutex);
4817 	return no_children;
4818 }
4819 
4820 /*
4821  * Read the performance event - simple non blocking version for now
4822  */
4823 static ssize_t
4824 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4825 {
4826 	u64 read_format = event->attr.read_format;
4827 	int ret;
4828 
4829 	/*
4830 	 * Return end-of-file for a read on a event that is in
4831 	 * error state (i.e. because it was pinned but it couldn't be
4832 	 * scheduled on to the CPU at some point).
4833 	 */
4834 	if (event->state == PERF_EVENT_STATE_ERROR)
4835 		return 0;
4836 
4837 	if (count < event->read_size)
4838 		return -ENOSPC;
4839 
4840 	WARN_ON_ONCE(event->ctx->parent_ctx);
4841 	if (read_format & PERF_FORMAT_GROUP)
4842 		ret = perf_read_group(event, read_format, buf);
4843 	else
4844 		ret = perf_read_one(event, read_format, buf);
4845 
4846 	return ret;
4847 }
4848 
4849 static ssize_t
4850 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4851 {
4852 	struct perf_event *event = file->private_data;
4853 	struct perf_event_context *ctx;
4854 	int ret;
4855 
4856 	ctx = perf_event_ctx_lock(event);
4857 	ret = __perf_read(event, buf, count);
4858 	perf_event_ctx_unlock(event, ctx);
4859 
4860 	return ret;
4861 }
4862 
4863 static __poll_t perf_poll(struct file *file, poll_table *wait)
4864 {
4865 	struct perf_event *event = file->private_data;
4866 	struct ring_buffer *rb;
4867 	__poll_t events = EPOLLHUP;
4868 
4869 	poll_wait(file, &event->waitq, wait);
4870 
4871 	if (is_event_hup(event))
4872 		return events;
4873 
4874 	/*
4875 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4876 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4877 	 */
4878 	mutex_lock(&event->mmap_mutex);
4879 	rb = event->rb;
4880 	if (rb)
4881 		events = atomic_xchg(&rb->poll, 0);
4882 	mutex_unlock(&event->mmap_mutex);
4883 	return events;
4884 }
4885 
4886 static void _perf_event_reset(struct perf_event *event)
4887 {
4888 	(void)perf_event_read(event, false);
4889 	local64_set(&event->count, 0);
4890 	perf_event_update_userpage(event);
4891 }
4892 
4893 /*
4894  * Holding the top-level event's child_mutex means that any
4895  * descendant process that has inherited this event will block
4896  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4897  * task existence requirements of perf_event_enable/disable.
4898  */
4899 static void perf_event_for_each_child(struct perf_event *event,
4900 					void (*func)(struct perf_event *))
4901 {
4902 	struct perf_event *child;
4903 
4904 	WARN_ON_ONCE(event->ctx->parent_ctx);
4905 
4906 	mutex_lock(&event->child_mutex);
4907 	func(event);
4908 	list_for_each_entry(child, &event->child_list, child_list)
4909 		func(child);
4910 	mutex_unlock(&event->child_mutex);
4911 }
4912 
4913 static void perf_event_for_each(struct perf_event *event,
4914 				  void (*func)(struct perf_event *))
4915 {
4916 	struct perf_event_context *ctx = event->ctx;
4917 	struct perf_event *sibling;
4918 
4919 	lockdep_assert_held(&ctx->mutex);
4920 
4921 	event = event->group_leader;
4922 
4923 	perf_event_for_each_child(event, func);
4924 	for_each_sibling_event(sibling, event)
4925 		perf_event_for_each_child(sibling, func);
4926 }
4927 
4928 static void __perf_event_period(struct perf_event *event,
4929 				struct perf_cpu_context *cpuctx,
4930 				struct perf_event_context *ctx,
4931 				void *info)
4932 {
4933 	u64 value = *((u64 *)info);
4934 	bool active;
4935 
4936 	if (event->attr.freq) {
4937 		event->attr.sample_freq = value;
4938 	} else {
4939 		event->attr.sample_period = value;
4940 		event->hw.sample_period = value;
4941 	}
4942 
4943 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4944 	if (active) {
4945 		perf_pmu_disable(ctx->pmu);
4946 		/*
4947 		 * We could be throttled; unthrottle now to avoid the tick
4948 		 * trying to unthrottle while we already re-started the event.
4949 		 */
4950 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4951 			event->hw.interrupts = 0;
4952 			perf_log_throttle(event, 1);
4953 		}
4954 		event->pmu->stop(event, PERF_EF_UPDATE);
4955 	}
4956 
4957 	local64_set(&event->hw.period_left, 0);
4958 
4959 	if (active) {
4960 		event->pmu->start(event, PERF_EF_RELOAD);
4961 		perf_pmu_enable(ctx->pmu);
4962 	}
4963 }
4964 
4965 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4966 {
4967 	u64 value;
4968 
4969 	if (!is_sampling_event(event))
4970 		return -EINVAL;
4971 
4972 	if (copy_from_user(&value, arg, sizeof(value)))
4973 		return -EFAULT;
4974 
4975 	if (!value)
4976 		return -EINVAL;
4977 
4978 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4979 		return -EINVAL;
4980 
4981 	event_function_call(event, __perf_event_period, &value);
4982 
4983 	return 0;
4984 }
4985 
4986 static const struct file_operations perf_fops;
4987 
4988 static inline int perf_fget_light(int fd, struct fd *p)
4989 {
4990 	struct fd f = fdget(fd);
4991 	if (!f.file)
4992 		return -EBADF;
4993 
4994 	if (f.file->f_op != &perf_fops) {
4995 		fdput(f);
4996 		return -EBADF;
4997 	}
4998 	*p = f;
4999 	return 0;
5000 }
5001 
5002 static int perf_event_set_output(struct perf_event *event,
5003 				 struct perf_event *output_event);
5004 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5005 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5006 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5007 			  struct perf_event_attr *attr);
5008 
5009 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5010 {
5011 	void (*func)(struct perf_event *);
5012 	u32 flags = arg;
5013 
5014 	switch (cmd) {
5015 	case PERF_EVENT_IOC_ENABLE:
5016 		func = _perf_event_enable;
5017 		break;
5018 	case PERF_EVENT_IOC_DISABLE:
5019 		func = _perf_event_disable;
5020 		break;
5021 	case PERF_EVENT_IOC_RESET:
5022 		func = _perf_event_reset;
5023 		break;
5024 
5025 	case PERF_EVENT_IOC_REFRESH:
5026 		return _perf_event_refresh(event, arg);
5027 
5028 	case PERF_EVENT_IOC_PERIOD:
5029 		return perf_event_period(event, (u64 __user *)arg);
5030 
5031 	case PERF_EVENT_IOC_ID:
5032 	{
5033 		u64 id = primary_event_id(event);
5034 
5035 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5036 			return -EFAULT;
5037 		return 0;
5038 	}
5039 
5040 	case PERF_EVENT_IOC_SET_OUTPUT:
5041 	{
5042 		int ret;
5043 		if (arg != -1) {
5044 			struct perf_event *output_event;
5045 			struct fd output;
5046 			ret = perf_fget_light(arg, &output);
5047 			if (ret)
5048 				return ret;
5049 			output_event = output.file->private_data;
5050 			ret = perf_event_set_output(event, output_event);
5051 			fdput(output);
5052 		} else {
5053 			ret = perf_event_set_output(event, NULL);
5054 		}
5055 		return ret;
5056 	}
5057 
5058 	case PERF_EVENT_IOC_SET_FILTER:
5059 		return perf_event_set_filter(event, (void __user *)arg);
5060 
5061 	case PERF_EVENT_IOC_SET_BPF:
5062 		return perf_event_set_bpf_prog(event, arg);
5063 
5064 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5065 		struct ring_buffer *rb;
5066 
5067 		rcu_read_lock();
5068 		rb = rcu_dereference(event->rb);
5069 		if (!rb || !rb->nr_pages) {
5070 			rcu_read_unlock();
5071 			return -EINVAL;
5072 		}
5073 		rb_toggle_paused(rb, !!arg);
5074 		rcu_read_unlock();
5075 		return 0;
5076 	}
5077 
5078 	case PERF_EVENT_IOC_QUERY_BPF:
5079 		return perf_event_query_prog_array(event, (void __user *)arg);
5080 
5081 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5082 		struct perf_event_attr new_attr;
5083 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5084 					 &new_attr);
5085 
5086 		if (err)
5087 			return err;
5088 
5089 		return perf_event_modify_attr(event,  &new_attr);
5090 	}
5091 	default:
5092 		return -ENOTTY;
5093 	}
5094 
5095 	if (flags & PERF_IOC_FLAG_GROUP)
5096 		perf_event_for_each(event, func);
5097 	else
5098 		perf_event_for_each_child(event, func);
5099 
5100 	return 0;
5101 }
5102 
5103 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5104 {
5105 	struct perf_event *event = file->private_data;
5106 	struct perf_event_context *ctx;
5107 	long ret;
5108 
5109 	ctx = perf_event_ctx_lock(event);
5110 	ret = _perf_ioctl(event, cmd, arg);
5111 	perf_event_ctx_unlock(event, ctx);
5112 
5113 	return ret;
5114 }
5115 
5116 #ifdef CONFIG_COMPAT
5117 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5118 				unsigned long arg)
5119 {
5120 	switch (_IOC_NR(cmd)) {
5121 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5122 	case _IOC_NR(PERF_EVENT_IOC_ID):
5123 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5124 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5125 			cmd &= ~IOCSIZE_MASK;
5126 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5127 		}
5128 		break;
5129 	}
5130 	return perf_ioctl(file, cmd, arg);
5131 }
5132 #else
5133 # define perf_compat_ioctl NULL
5134 #endif
5135 
5136 int perf_event_task_enable(void)
5137 {
5138 	struct perf_event_context *ctx;
5139 	struct perf_event *event;
5140 
5141 	mutex_lock(&current->perf_event_mutex);
5142 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5143 		ctx = perf_event_ctx_lock(event);
5144 		perf_event_for_each_child(event, _perf_event_enable);
5145 		perf_event_ctx_unlock(event, ctx);
5146 	}
5147 	mutex_unlock(&current->perf_event_mutex);
5148 
5149 	return 0;
5150 }
5151 
5152 int perf_event_task_disable(void)
5153 {
5154 	struct perf_event_context *ctx;
5155 	struct perf_event *event;
5156 
5157 	mutex_lock(&current->perf_event_mutex);
5158 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5159 		ctx = perf_event_ctx_lock(event);
5160 		perf_event_for_each_child(event, _perf_event_disable);
5161 		perf_event_ctx_unlock(event, ctx);
5162 	}
5163 	mutex_unlock(&current->perf_event_mutex);
5164 
5165 	return 0;
5166 }
5167 
5168 static int perf_event_index(struct perf_event *event)
5169 {
5170 	if (event->hw.state & PERF_HES_STOPPED)
5171 		return 0;
5172 
5173 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5174 		return 0;
5175 
5176 	return event->pmu->event_idx(event);
5177 }
5178 
5179 static void calc_timer_values(struct perf_event *event,
5180 				u64 *now,
5181 				u64 *enabled,
5182 				u64 *running)
5183 {
5184 	u64 ctx_time;
5185 
5186 	*now = perf_clock();
5187 	ctx_time = event->shadow_ctx_time + *now;
5188 	__perf_update_times(event, ctx_time, enabled, running);
5189 }
5190 
5191 static void perf_event_init_userpage(struct perf_event *event)
5192 {
5193 	struct perf_event_mmap_page *userpg;
5194 	struct ring_buffer *rb;
5195 
5196 	rcu_read_lock();
5197 	rb = rcu_dereference(event->rb);
5198 	if (!rb)
5199 		goto unlock;
5200 
5201 	userpg = rb->user_page;
5202 
5203 	/* Allow new userspace to detect that bit 0 is deprecated */
5204 	userpg->cap_bit0_is_deprecated = 1;
5205 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5206 	userpg->data_offset = PAGE_SIZE;
5207 	userpg->data_size = perf_data_size(rb);
5208 
5209 unlock:
5210 	rcu_read_unlock();
5211 }
5212 
5213 void __weak arch_perf_update_userpage(
5214 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5215 {
5216 }
5217 
5218 /*
5219  * Callers need to ensure there can be no nesting of this function, otherwise
5220  * the seqlock logic goes bad. We can not serialize this because the arch
5221  * code calls this from NMI context.
5222  */
5223 void perf_event_update_userpage(struct perf_event *event)
5224 {
5225 	struct perf_event_mmap_page *userpg;
5226 	struct ring_buffer *rb;
5227 	u64 enabled, running, now;
5228 
5229 	rcu_read_lock();
5230 	rb = rcu_dereference(event->rb);
5231 	if (!rb)
5232 		goto unlock;
5233 
5234 	/*
5235 	 * compute total_time_enabled, total_time_running
5236 	 * based on snapshot values taken when the event
5237 	 * was last scheduled in.
5238 	 *
5239 	 * we cannot simply called update_context_time()
5240 	 * because of locking issue as we can be called in
5241 	 * NMI context
5242 	 */
5243 	calc_timer_values(event, &now, &enabled, &running);
5244 
5245 	userpg = rb->user_page;
5246 	/*
5247 	 * Disable preemption so as to not let the corresponding user-space
5248 	 * spin too long if we get preempted.
5249 	 */
5250 	preempt_disable();
5251 	++userpg->lock;
5252 	barrier();
5253 	userpg->index = perf_event_index(event);
5254 	userpg->offset = perf_event_count(event);
5255 	if (userpg->index)
5256 		userpg->offset -= local64_read(&event->hw.prev_count);
5257 
5258 	userpg->time_enabled = enabled +
5259 			atomic64_read(&event->child_total_time_enabled);
5260 
5261 	userpg->time_running = running +
5262 			atomic64_read(&event->child_total_time_running);
5263 
5264 	arch_perf_update_userpage(event, userpg, now);
5265 
5266 	barrier();
5267 	++userpg->lock;
5268 	preempt_enable();
5269 unlock:
5270 	rcu_read_unlock();
5271 }
5272 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5273 
5274 static int perf_mmap_fault(struct vm_fault *vmf)
5275 {
5276 	struct perf_event *event = vmf->vma->vm_file->private_data;
5277 	struct ring_buffer *rb;
5278 	int ret = VM_FAULT_SIGBUS;
5279 
5280 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5281 		if (vmf->pgoff == 0)
5282 			ret = 0;
5283 		return ret;
5284 	}
5285 
5286 	rcu_read_lock();
5287 	rb = rcu_dereference(event->rb);
5288 	if (!rb)
5289 		goto unlock;
5290 
5291 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5292 		goto unlock;
5293 
5294 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5295 	if (!vmf->page)
5296 		goto unlock;
5297 
5298 	get_page(vmf->page);
5299 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5300 	vmf->page->index   = vmf->pgoff;
5301 
5302 	ret = 0;
5303 unlock:
5304 	rcu_read_unlock();
5305 
5306 	return ret;
5307 }
5308 
5309 static void ring_buffer_attach(struct perf_event *event,
5310 			       struct ring_buffer *rb)
5311 {
5312 	struct ring_buffer *old_rb = NULL;
5313 	unsigned long flags;
5314 
5315 	if (event->rb) {
5316 		/*
5317 		 * Should be impossible, we set this when removing
5318 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5319 		 */
5320 		WARN_ON_ONCE(event->rcu_pending);
5321 
5322 		old_rb = event->rb;
5323 		spin_lock_irqsave(&old_rb->event_lock, flags);
5324 		list_del_rcu(&event->rb_entry);
5325 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5326 
5327 		event->rcu_batches = get_state_synchronize_rcu();
5328 		event->rcu_pending = 1;
5329 	}
5330 
5331 	if (rb) {
5332 		if (event->rcu_pending) {
5333 			cond_synchronize_rcu(event->rcu_batches);
5334 			event->rcu_pending = 0;
5335 		}
5336 
5337 		spin_lock_irqsave(&rb->event_lock, flags);
5338 		list_add_rcu(&event->rb_entry, &rb->event_list);
5339 		spin_unlock_irqrestore(&rb->event_lock, flags);
5340 	}
5341 
5342 	/*
5343 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5344 	 * before swizzling the event::rb pointer; if it's getting
5345 	 * unmapped, its aux_mmap_count will be 0 and it won't
5346 	 * restart. See the comment in __perf_pmu_output_stop().
5347 	 *
5348 	 * Data will inevitably be lost when set_output is done in
5349 	 * mid-air, but then again, whoever does it like this is
5350 	 * not in for the data anyway.
5351 	 */
5352 	if (has_aux(event))
5353 		perf_event_stop(event, 0);
5354 
5355 	rcu_assign_pointer(event->rb, rb);
5356 
5357 	if (old_rb) {
5358 		ring_buffer_put(old_rb);
5359 		/*
5360 		 * Since we detached before setting the new rb, so that we
5361 		 * could attach the new rb, we could have missed a wakeup.
5362 		 * Provide it now.
5363 		 */
5364 		wake_up_all(&event->waitq);
5365 	}
5366 }
5367 
5368 static void ring_buffer_wakeup(struct perf_event *event)
5369 {
5370 	struct ring_buffer *rb;
5371 
5372 	rcu_read_lock();
5373 	rb = rcu_dereference(event->rb);
5374 	if (rb) {
5375 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5376 			wake_up_all(&event->waitq);
5377 	}
5378 	rcu_read_unlock();
5379 }
5380 
5381 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5382 {
5383 	struct ring_buffer *rb;
5384 
5385 	rcu_read_lock();
5386 	rb = rcu_dereference(event->rb);
5387 	if (rb) {
5388 		if (!atomic_inc_not_zero(&rb->refcount))
5389 			rb = NULL;
5390 	}
5391 	rcu_read_unlock();
5392 
5393 	return rb;
5394 }
5395 
5396 void ring_buffer_put(struct ring_buffer *rb)
5397 {
5398 	if (!atomic_dec_and_test(&rb->refcount))
5399 		return;
5400 
5401 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5402 
5403 	call_rcu(&rb->rcu_head, rb_free_rcu);
5404 }
5405 
5406 static void perf_mmap_open(struct vm_area_struct *vma)
5407 {
5408 	struct perf_event *event = vma->vm_file->private_data;
5409 
5410 	atomic_inc(&event->mmap_count);
5411 	atomic_inc(&event->rb->mmap_count);
5412 
5413 	if (vma->vm_pgoff)
5414 		atomic_inc(&event->rb->aux_mmap_count);
5415 
5416 	if (event->pmu->event_mapped)
5417 		event->pmu->event_mapped(event, vma->vm_mm);
5418 }
5419 
5420 static void perf_pmu_output_stop(struct perf_event *event);
5421 
5422 /*
5423  * A buffer can be mmap()ed multiple times; either directly through the same
5424  * event, or through other events by use of perf_event_set_output().
5425  *
5426  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5427  * the buffer here, where we still have a VM context. This means we need
5428  * to detach all events redirecting to us.
5429  */
5430 static void perf_mmap_close(struct vm_area_struct *vma)
5431 {
5432 	struct perf_event *event = vma->vm_file->private_data;
5433 
5434 	struct ring_buffer *rb = ring_buffer_get(event);
5435 	struct user_struct *mmap_user = rb->mmap_user;
5436 	int mmap_locked = rb->mmap_locked;
5437 	unsigned long size = perf_data_size(rb);
5438 
5439 	if (event->pmu->event_unmapped)
5440 		event->pmu->event_unmapped(event, vma->vm_mm);
5441 
5442 	/*
5443 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5444 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5445 	 * serialize with perf_mmap here.
5446 	 */
5447 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5448 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5449 		/*
5450 		 * Stop all AUX events that are writing to this buffer,
5451 		 * so that we can free its AUX pages and corresponding PMU
5452 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5453 		 * they won't start any more (see perf_aux_output_begin()).
5454 		 */
5455 		perf_pmu_output_stop(event);
5456 
5457 		/* now it's safe to free the pages */
5458 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5459 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5460 
5461 		/* this has to be the last one */
5462 		rb_free_aux(rb);
5463 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5464 
5465 		mutex_unlock(&event->mmap_mutex);
5466 	}
5467 
5468 	atomic_dec(&rb->mmap_count);
5469 
5470 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5471 		goto out_put;
5472 
5473 	ring_buffer_attach(event, NULL);
5474 	mutex_unlock(&event->mmap_mutex);
5475 
5476 	/* If there's still other mmap()s of this buffer, we're done. */
5477 	if (atomic_read(&rb->mmap_count))
5478 		goto out_put;
5479 
5480 	/*
5481 	 * No other mmap()s, detach from all other events that might redirect
5482 	 * into the now unreachable buffer. Somewhat complicated by the
5483 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5484 	 */
5485 again:
5486 	rcu_read_lock();
5487 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5488 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5489 			/*
5490 			 * This event is en-route to free_event() which will
5491 			 * detach it and remove it from the list.
5492 			 */
5493 			continue;
5494 		}
5495 		rcu_read_unlock();
5496 
5497 		mutex_lock(&event->mmap_mutex);
5498 		/*
5499 		 * Check we didn't race with perf_event_set_output() which can
5500 		 * swizzle the rb from under us while we were waiting to
5501 		 * acquire mmap_mutex.
5502 		 *
5503 		 * If we find a different rb; ignore this event, a next
5504 		 * iteration will no longer find it on the list. We have to
5505 		 * still restart the iteration to make sure we're not now
5506 		 * iterating the wrong list.
5507 		 */
5508 		if (event->rb == rb)
5509 			ring_buffer_attach(event, NULL);
5510 
5511 		mutex_unlock(&event->mmap_mutex);
5512 		put_event(event);
5513 
5514 		/*
5515 		 * Restart the iteration; either we're on the wrong list or
5516 		 * destroyed its integrity by doing a deletion.
5517 		 */
5518 		goto again;
5519 	}
5520 	rcu_read_unlock();
5521 
5522 	/*
5523 	 * It could be there's still a few 0-ref events on the list; they'll
5524 	 * get cleaned up by free_event() -- they'll also still have their
5525 	 * ref on the rb and will free it whenever they are done with it.
5526 	 *
5527 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5528 	 * undo the VM accounting.
5529 	 */
5530 
5531 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5532 	vma->vm_mm->pinned_vm -= mmap_locked;
5533 	free_uid(mmap_user);
5534 
5535 out_put:
5536 	ring_buffer_put(rb); /* could be last */
5537 }
5538 
5539 static const struct vm_operations_struct perf_mmap_vmops = {
5540 	.open		= perf_mmap_open,
5541 	.close		= perf_mmap_close, /* non mergable */
5542 	.fault		= perf_mmap_fault,
5543 	.page_mkwrite	= perf_mmap_fault,
5544 };
5545 
5546 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5547 {
5548 	struct perf_event *event = file->private_data;
5549 	unsigned long user_locked, user_lock_limit;
5550 	struct user_struct *user = current_user();
5551 	unsigned long locked, lock_limit;
5552 	struct ring_buffer *rb = NULL;
5553 	unsigned long vma_size;
5554 	unsigned long nr_pages;
5555 	long user_extra = 0, extra = 0;
5556 	int ret = 0, flags = 0;
5557 
5558 	/*
5559 	 * Don't allow mmap() of inherited per-task counters. This would
5560 	 * create a performance issue due to all children writing to the
5561 	 * same rb.
5562 	 */
5563 	if (event->cpu == -1 && event->attr.inherit)
5564 		return -EINVAL;
5565 
5566 	if (!(vma->vm_flags & VM_SHARED))
5567 		return -EINVAL;
5568 
5569 	vma_size = vma->vm_end - vma->vm_start;
5570 
5571 	if (vma->vm_pgoff == 0) {
5572 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5573 	} else {
5574 		/*
5575 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5576 		 * mapped, all subsequent mappings should have the same size
5577 		 * and offset. Must be above the normal perf buffer.
5578 		 */
5579 		u64 aux_offset, aux_size;
5580 
5581 		if (!event->rb)
5582 			return -EINVAL;
5583 
5584 		nr_pages = vma_size / PAGE_SIZE;
5585 
5586 		mutex_lock(&event->mmap_mutex);
5587 		ret = -EINVAL;
5588 
5589 		rb = event->rb;
5590 		if (!rb)
5591 			goto aux_unlock;
5592 
5593 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5594 		aux_size = READ_ONCE(rb->user_page->aux_size);
5595 
5596 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5597 			goto aux_unlock;
5598 
5599 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5600 			goto aux_unlock;
5601 
5602 		/* already mapped with a different offset */
5603 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5604 			goto aux_unlock;
5605 
5606 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5607 			goto aux_unlock;
5608 
5609 		/* already mapped with a different size */
5610 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5611 			goto aux_unlock;
5612 
5613 		if (!is_power_of_2(nr_pages))
5614 			goto aux_unlock;
5615 
5616 		if (!atomic_inc_not_zero(&rb->mmap_count))
5617 			goto aux_unlock;
5618 
5619 		if (rb_has_aux(rb)) {
5620 			atomic_inc(&rb->aux_mmap_count);
5621 			ret = 0;
5622 			goto unlock;
5623 		}
5624 
5625 		atomic_set(&rb->aux_mmap_count, 1);
5626 		user_extra = nr_pages;
5627 
5628 		goto accounting;
5629 	}
5630 
5631 	/*
5632 	 * If we have rb pages ensure they're a power-of-two number, so we
5633 	 * can do bitmasks instead of modulo.
5634 	 */
5635 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5636 		return -EINVAL;
5637 
5638 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5639 		return -EINVAL;
5640 
5641 	WARN_ON_ONCE(event->ctx->parent_ctx);
5642 again:
5643 	mutex_lock(&event->mmap_mutex);
5644 	if (event->rb) {
5645 		if (event->rb->nr_pages != nr_pages) {
5646 			ret = -EINVAL;
5647 			goto unlock;
5648 		}
5649 
5650 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5651 			/*
5652 			 * Raced against perf_mmap_close() through
5653 			 * perf_event_set_output(). Try again, hope for better
5654 			 * luck.
5655 			 */
5656 			mutex_unlock(&event->mmap_mutex);
5657 			goto again;
5658 		}
5659 
5660 		goto unlock;
5661 	}
5662 
5663 	user_extra = nr_pages + 1;
5664 
5665 accounting:
5666 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5667 
5668 	/*
5669 	 * Increase the limit linearly with more CPUs:
5670 	 */
5671 	user_lock_limit *= num_online_cpus();
5672 
5673 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5674 
5675 	if (user_locked > user_lock_limit)
5676 		extra = user_locked - user_lock_limit;
5677 
5678 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5679 	lock_limit >>= PAGE_SHIFT;
5680 	locked = vma->vm_mm->pinned_vm + extra;
5681 
5682 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5683 		!capable(CAP_IPC_LOCK)) {
5684 		ret = -EPERM;
5685 		goto unlock;
5686 	}
5687 
5688 	WARN_ON(!rb && event->rb);
5689 
5690 	if (vma->vm_flags & VM_WRITE)
5691 		flags |= RING_BUFFER_WRITABLE;
5692 
5693 	if (!rb) {
5694 		rb = rb_alloc(nr_pages,
5695 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5696 			      event->cpu, flags);
5697 
5698 		if (!rb) {
5699 			ret = -ENOMEM;
5700 			goto unlock;
5701 		}
5702 
5703 		atomic_set(&rb->mmap_count, 1);
5704 		rb->mmap_user = get_current_user();
5705 		rb->mmap_locked = extra;
5706 
5707 		ring_buffer_attach(event, rb);
5708 
5709 		perf_event_init_userpage(event);
5710 		perf_event_update_userpage(event);
5711 	} else {
5712 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5713 				   event->attr.aux_watermark, flags);
5714 		if (!ret)
5715 			rb->aux_mmap_locked = extra;
5716 	}
5717 
5718 unlock:
5719 	if (!ret) {
5720 		atomic_long_add(user_extra, &user->locked_vm);
5721 		vma->vm_mm->pinned_vm += extra;
5722 
5723 		atomic_inc(&event->mmap_count);
5724 	} else if (rb) {
5725 		atomic_dec(&rb->mmap_count);
5726 	}
5727 aux_unlock:
5728 	mutex_unlock(&event->mmap_mutex);
5729 
5730 	/*
5731 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5732 	 * vma.
5733 	 */
5734 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5735 	vma->vm_ops = &perf_mmap_vmops;
5736 
5737 	if (event->pmu->event_mapped)
5738 		event->pmu->event_mapped(event, vma->vm_mm);
5739 
5740 	return ret;
5741 }
5742 
5743 static int perf_fasync(int fd, struct file *filp, int on)
5744 {
5745 	struct inode *inode = file_inode(filp);
5746 	struct perf_event *event = filp->private_data;
5747 	int retval;
5748 
5749 	inode_lock(inode);
5750 	retval = fasync_helper(fd, filp, on, &event->fasync);
5751 	inode_unlock(inode);
5752 
5753 	if (retval < 0)
5754 		return retval;
5755 
5756 	return 0;
5757 }
5758 
5759 static const struct file_operations perf_fops = {
5760 	.llseek			= no_llseek,
5761 	.release		= perf_release,
5762 	.read			= perf_read,
5763 	.poll			= perf_poll,
5764 	.unlocked_ioctl		= perf_ioctl,
5765 	.compat_ioctl		= perf_compat_ioctl,
5766 	.mmap			= perf_mmap,
5767 	.fasync			= perf_fasync,
5768 };
5769 
5770 /*
5771  * Perf event wakeup
5772  *
5773  * If there's data, ensure we set the poll() state and publish everything
5774  * to user-space before waking everybody up.
5775  */
5776 
5777 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5778 {
5779 	/* only the parent has fasync state */
5780 	if (event->parent)
5781 		event = event->parent;
5782 	return &event->fasync;
5783 }
5784 
5785 void perf_event_wakeup(struct perf_event *event)
5786 {
5787 	ring_buffer_wakeup(event);
5788 
5789 	if (event->pending_kill) {
5790 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5791 		event->pending_kill = 0;
5792 	}
5793 }
5794 
5795 static void perf_pending_event(struct irq_work *entry)
5796 {
5797 	struct perf_event *event = container_of(entry,
5798 			struct perf_event, pending);
5799 	int rctx;
5800 
5801 	rctx = perf_swevent_get_recursion_context();
5802 	/*
5803 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5804 	 * and we won't recurse 'further'.
5805 	 */
5806 
5807 	if (event->pending_disable) {
5808 		event->pending_disable = 0;
5809 		perf_event_disable_local(event);
5810 	}
5811 
5812 	if (event->pending_wakeup) {
5813 		event->pending_wakeup = 0;
5814 		perf_event_wakeup(event);
5815 	}
5816 
5817 	if (rctx >= 0)
5818 		perf_swevent_put_recursion_context(rctx);
5819 }
5820 
5821 /*
5822  * We assume there is only KVM supporting the callbacks.
5823  * Later on, we might change it to a list if there is
5824  * another virtualization implementation supporting the callbacks.
5825  */
5826 struct perf_guest_info_callbacks *perf_guest_cbs;
5827 
5828 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5829 {
5830 	perf_guest_cbs = cbs;
5831 	return 0;
5832 }
5833 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5834 
5835 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5836 {
5837 	perf_guest_cbs = NULL;
5838 	return 0;
5839 }
5840 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5841 
5842 static void
5843 perf_output_sample_regs(struct perf_output_handle *handle,
5844 			struct pt_regs *regs, u64 mask)
5845 {
5846 	int bit;
5847 	DECLARE_BITMAP(_mask, 64);
5848 
5849 	bitmap_from_u64(_mask, mask);
5850 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5851 		u64 val;
5852 
5853 		val = perf_reg_value(regs, bit);
5854 		perf_output_put(handle, val);
5855 	}
5856 }
5857 
5858 static void perf_sample_regs_user(struct perf_regs *regs_user,
5859 				  struct pt_regs *regs,
5860 				  struct pt_regs *regs_user_copy)
5861 {
5862 	if (user_mode(regs)) {
5863 		regs_user->abi = perf_reg_abi(current);
5864 		regs_user->regs = regs;
5865 	} else if (current->mm) {
5866 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5867 	} else {
5868 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5869 		regs_user->regs = NULL;
5870 	}
5871 }
5872 
5873 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5874 				  struct pt_regs *regs)
5875 {
5876 	regs_intr->regs = regs;
5877 	regs_intr->abi  = perf_reg_abi(current);
5878 }
5879 
5880 
5881 /*
5882  * Get remaining task size from user stack pointer.
5883  *
5884  * It'd be better to take stack vma map and limit this more
5885  * precisly, but there's no way to get it safely under interrupt,
5886  * so using TASK_SIZE as limit.
5887  */
5888 static u64 perf_ustack_task_size(struct pt_regs *regs)
5889 {
5890 	unsigned long addr = perf_user_stack_pointer(regs);
5891 
5892 	if (!addr || addr >= TASK_SIZE)
5893 		return 0;
5894 
5895 	return TASK_SIZE - addr;
5896 }
5897 
5898 static u16
5899 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5900 			struct pt_regs *regs)
5901 {
5902 	u64 task_size;
5903 
5904 	/* No regs, no stack pointer, no dump. */
5905 	if (!regs)
5906 		return 0;
5907 
5908 	/*
5909 	 * Check if we fit in with the requested stack size into the:
5910 	 * - TASK_SIZE
5911 	 *   If we don't, we limit the size to the TASK_SIZE.
5912 	 *
5913 	 * - remaining sample size
5914 	 *   If we don't, we customize the stack size to
5915 	 *   fit in to the remaining sample size.
5916 	 */
5917 
5918 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5919 	stack_size = min(stack_size, (u16) task_size);
5920 
5921 	/* Current header size plus static size and dynamic size. */
5922 	header_size += 2 * sizeof(u64);
5923 
5924 	/* Do we fit in with the current stack dump size? */
5925 	if ((u16) (header_size + stack_size) < header_size) {
5926 		/*
5927 		 * If we overflow the maximum size for the sample,
5928 		 * we customize the stack dump size to fit in.
5929 		 */
5930 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5931 		stack_size = round_up(stack_size, sizeof(u64));
5932 	}
5933 
5934 	return stack_size;
5935 }
5936 
5937 static void
5938 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5939 			  struct pt_regs *regs)
5940 {
5941 	/* Case of a kernel thread, nothing to dump */
5942 	if (!regs) {
5943 		u64 size = 0;
5944 		perf_output_put(handle, size);
5945 	} else {
5946 		unsigned long sp;
5947 		unsigned int rem;
5948 		u64 dyn_size;
5949 
5950 		/*
5951 		 * We dump:
5952 		 * static size
5953 		 *   - the size requested by user or the best one we can fit
5954 		 *     in to the sample max size
5955 		 * data
5956 		 *   - user stack dump data
5957 		 * dynamic size
5958 		 *   - the actual dumped size
5959 		 */
5960 
5961 		/* Static size. */
5962 		perf_output_put(handle, dump_size);
5963 
5964 		/* Data. */
5965 		sp = perf_user_stack_pointer(regs);
5966 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5967 		dyn_size = dump_size - rem;
5968 
5969 		perf_output_skip(handle, rem);
5970 
5971 		/* Dynamic size. */
5972 		perf_output_put(handle, dyn_size);
5973 	}
5974 }
5975 
5976 static void __perf_event_header__init_id(struct perf_event_header *header,
5977 					 struct perf_sample_data *data,
5978 					 struct perf_event *event)
5979 {
5980 	u64 sample_type = event->attr.sample_type;
5981 
5982 	data->type = sample_type;
5983 	header->size += event->id_header_size;
5984 
5985 	if (sample_type & PERF_SAMPLE_TID) {
5986 		/* namespace issues */
5987 		data->tid_entry.pid = perf_event_pid(event, current);
5988 		data->tid_entry.tid = perf_event_tid(event, current);
5989 	}
5990 
5991 	if (sample_type & PERF_SAMPLE_TIME)
5992 		data->time = perf_event_clock(event);
5993 
5994 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5995 		data->id = primary_event_id(event);
5996 
5997 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5998 		data->stream_id = event->id;
5999 
6000 	if (sample_type & PERF_SAMPLE_CPU) {
6001 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6002 		data->cpu_entry.reserved = 0;
6003 	}
6004 }
6005 
6006 void perf_event_header__init_id(struct perf_event_header *header,
6007 				struct perf_sample_data *data,
6008 				struct perf_event *event)
6009 {
6010 	if (event->attr.sample_id_all)
6011 		__perf_event_header__init_id(header, data, event);
6012 }
6013 
6014 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6015 					   struct perf_sample_data *data)
6016 {
6017 	u64 sample_type = data->type;
6018 
6019 	if (sample_type & PERF_SAMPLE_TID)
6020 		perf_output_put(handle, data->tid_entry);
6021 
6022 	if (sample_type & PERF_SAMPLE_TIME)
6023 		perf_output_put(handle, data->time);
6024 
6025 	if (sample_type & PERF_SAMPLE_ID)
6026 		perf_output_put(handle, data->id);
6027 
6028 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6029 		perf_output_put(handle, data->stream_id);
6030 
6031 	if (sample_type & PERF_SAMPLE_CPU)
6032 		perf_output_put(handle, data->cpu_entry);
6033 
6034 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6035 		perf_output_put(handle, data->id);
6036 }
6037 
6038 void perf_event__output_id_sample(struct perf_event *event,
6039 				  struct perf_output_handle *handle,
6040 				  struct perf_sample_data *sample)
6041 {
6042 	if (event->attr.sample_id_all)
6043 		__perf_event__output_id_sample(handle, sample);
6044 }
6045 
6046 static void perf_output_read_one(struct perf_output_handle *handle,
6047 				 struct perf_event *event,
6048 				 u64 enabled, u64 running)
6049 {
6050 	u64 read_format = event->attr.read_format;
6051 	u64 values[4];
6052 	int n = 0;
6053 
6054 	values[n++] = perf_event_count(event);
6055 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6056 		values[n++] = enabled +
6057 			atomic64_read(&event->child_total_time_enabled);
6058 	}
6059 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6060 		values[n++] = running +
6061 			atomic64_read(&event->child_total_time_running);
6062 	}
6063 	if (read_format & PERF_FORMAT_ID)
6064 		values[n++] = primary_event_id(event);
6065 
6066 	__output_copy(handle, values, n * sizeof(u64));
6067 }
6068 
6069 static void perf_output_read_group(struct perf_output_handle *handle,
6070 			    struct perf_event *event,
6071 			    u64 enabled, u64 running)
6072 {
6073 	struct perf_event *leader = event->group_leader, *sub;
6074 	u64 read_format = event->attr.read_format;
6075 	u64 values[5];
6076 	int n = 0;
6077 
6078 	values[n++] = 1 + leader->nr_siblings;
6079 
6080 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6081 		values[n++] = enabled;
6082 
6083 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6084 		values[n++] = running;
6085 
6086 	if ((leader != event) &&
6087 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6088 		leader->pmu->read(leader);
6089 
6090 	values[n++] = perf_event_count(leader);
6091 	if (read_format & PERF_FORMAT_ID)
6092 		values[n++] = primary_event_id(leader);
6093 
6094 	__output_copy(handle, values, n * sizeof(u64));
6095 
6096 	for_each_sibling_event(sub, leader) {
6097 		n = 0;
6098 
6099 		if ((sub != event) &&
6100 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6101 			sub->pmu->read(sub);
6102 
6103 		values[n++] = perf_event_count(sub);
6104 		if (read_format & PERF_FORMAT_ID)
6105 			values[n++] = primary_event_id(sub);
6106 
6107 		__output_copy(handle, values, n * sizeof(u64));
6108 	}
6109 }
6110 
6111 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6112 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6113 
6114 /*
6115  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6116  *
6117  * The problem is that its both hard and excessively expensive to iterate the
6118  * child list, not to mention that its impossible to IPI the children running
6119  * on another CPU, from interrupt/NMI context.
6120  */
6121 static void perf_output_read(struct perf_output_handle *handle,
6122 			     struct perf_event *event)
6123 {
6124 	u64 enabled = 0, running = 0, now;
6125 	u64 read_format = event->attr.read_format;
6126 
6127 	/*
6128 	 * compute total_time_enabled, total_time_running
6129 	 * based on snapshot values taken when the event
6130 	 * was last scheduled in.
6131 	 *
6132 	 * we cannot simply called update_context_time()
6133 	 * because of locking issue as we are called in
6134 	 * NMI context
6135 	 */
6136 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6137 		calc_timer_values(event, &now, &enabled, &running);
6138 
6139 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6140 		perf_output_read_group(handle, event, enabled, running);
6141 	else
6142 		perf_output_read_one(handle, event, enabled, running);
6143 }
6144 
6145 void perf_output_sample(struct perf_output_handle *handle,
6146 			struct perf_event_header *header,
6147 			struct perf_sample_data *data,
6148 			struct perf_event *event)
6149 {
6150 	u64 sample_type = data->type;
6151 
6152 	perf_output_put(handle, *header);
6153 
6154 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6155 		perf_output_put(handle, data->id);
6156 
6157 	if (sample_type & PERF_SAMPLE_IP)
6158 		perf_output_put(handle, data->ip);
6159 
6160 	if (sample_type & PERF_SAMPLE_TID)
6161 		perf_output_put(handle, data->tid_entry);
6162 
6163 	if (sample_type & PERF_SAMPLE_TIME)
6164 		perf_output_put(handle, data->time);
6165 
6166 	if (sample_type & PERF_SAMPLE_ADDR)
6167 		perf_output_put(handle, data->addr);
6168 
6169 	if (sample_type & PERF_SAMPLE_ID)
6170 		perf_output_put(handle, data->id);
6171 
6172 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6173 		perf_output_put(handle, data->stream_id);
6174 
6175 	if (sample_type & PERF_SAMPLE_CPU)
6176 		perf_output_put(handle, data->cpu_entry);
6177 
6178 	if (sample_type & PERF_SAMPLE_PERIOD)
6179 		perf_output_put(handle, data->period);
6180 
6181 	if (sample_type & PERF_SAMPLE_READ)
6182 		perf_output_read(handle, event);
6183 
6184 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6185 		int size = 1;
6186 
6187 		size += data->callchain->nr;
6188 		size *= sizeof(u64);
6189 		__output_copy(handle, data->callchain, size);
6190 	}
6191 
6192 	if (sample_type & PERF_SAMPLE_RAW) {
6193 		struct perf_raw_record *raw = data->raw;
6194 
6195 		if (raw) {
6196 			struct perf_raw_frag *frag = &raw->frag;
6197 
6198 			perf_output_put(handle, raw->size);
6199 			do {
6200 				if (frag->copy) {
6201 					__output_custom(handle, frag->copy,
6202 							frag->data, frag->size);
6203 				} else {
6204 					__output_copy(handle, frag->data,
6205 						      frag->size);
6206 				}
6207 				if (perf_raw_frag_last(frag))
6208 					break;
6209 				frag = frag->next;
6210 			} while (1);
6211 			if (frag->pad)
6212 				__output_skip(handle, NULL, frag->pad);
6213 		} else {
6214 			struct {
6215 				u32	size;
6216 				u32	data;
6217 			} raw = {
6218 				.size = sizeof(u32),
6219 				.data = 0,
6220 			};
6221 			perf_output_put(handle, raw);
6222 		}
6223 	}
6224 
6225 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6226 		if (data->br_stack) {
6227 			size_t size;
6228 
6229 			size = data->br_stack->nr
6230 			     * sizeof(struct perf_branch_entry);
6231 
6232 			perf_output_put(handle, data->br_stack->nr);
6233 			perf_output_copy(handle, data->br_stack->entries, size);
6234 		} else {
6235 			/*
6236 			 * we always store at least the value of nr
6237 			 */
6238 			u64 nr = 0;
6239 			perf_output_put(handle, nr);
6240 		}
6241 	}
6242 
6243 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6244 		u64 abi = data->regs_user.abi;
6245 
6246 		/*
6247 		 * If there are no regs to dump, notice it through
6248 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6249 		 */
6250 		perf_output_put(handle, abi);
6251 
6252 		if (abi) {
6253 			u64 mask = event->attr.sample_regs_user;
6254 			perf_output_sample_regs(handle,
6255 						data->regs_user.regs,
6256 						mask);
6257 		}
6258 	}
6259 
6260 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6261 		perf_output_sample_ustack(handle,
6262 					  data->stack_user_size,
6263 					  data->regs_user.regs);
6264 	}
6265 
6266 	if (sample_type & PERF_SAMPLE_WEIGHT)
6267 		perf_output_put(handle, data->weight);
6268 
6269 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6270 		perf_output_put(handle, data->data_src.val);
6271 
6272 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6273 		perf_output_put(handle, data->txn);
6274 
6275 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6276 		u64 abi = data->regs_intr.abi;
6277 		/*
6278 		 * If there are no regs to dump, notice it through
6279 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6280 		 */
6281 		perf_output_put(handle, abi);
6282 
6283 		if (abi) {
6284 			u64 mask = event->attr.sample_regs_intr;
6285 
6286 			perf_output_sample_regs(handle,
6287 						data->regs_intr.regs,
6288 						mask);
6289 		}
6290 	}
6291 
6292 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6293 		perf_output_put(handle, data->phys_addr);
6294 
6295 	if (!event->attr.watermark) {
6296 		int wakeup_events = event->attr.wakeup_events;
6297 
6298 		if (wakeup_events) {
6299 			struct ring_buffer *rb = handle->rb;
6300 			int events = local_inc_return(&rb->events);
6301 
6302 			if (events >= wakeup_events) {
6303 				local_sub(wakeup_events, &rb->events);
6304 				local_inc(&rb->wakeup);
6305 			}
6306 		}
6307 	}
6308 }
6309 
6310 static u64 perf_virt_to_phys(u64 virt)
6311 {
6312 	u64 phys_addr = 0;
6313 	struct page *p = NULL;
6314 
6315 	if (!virt)
6316 		return 0;
6317 
6318 	if (virt >= TASK_SIZE) {
6319 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6320 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6321 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6322 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6323 	} else {
6324 		/*
6325 		 * Walking the pages tables for user address.
6326 		 * Interrupts are disabled, so it prevents any tear down
6327 		 * of the page tables.
6328 		 * Try IRQ-safe __get_user_pages_fast first.
6329 		 * If failed, leave phys_addr as 0.
6330 		 */
6331 		if ((current->mm != NULL) &&
6332 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6333 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6334 
6335 		if (p)
6336 			put_page(p);
6337 	}
6338 
6339 	return phys_addr;
6340 }
6341 
6342 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6343 
6344 static struct perf_callchain_entry *
6345 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6346 {
6347 	bool kernel = !event->attr.exclude_callchain_kernel;
6348 	bool user   = !event->attr.exclude_callchain_user;
6349 	/* Disallow cross-task user callchains. */
6350 	bool crosstask = event->ctx->task && event->ctx->task != current;
6351 	const u32 max_stack = event->attr.sample_max_stack;
6352 	struct perf_callchain_entry *callchain;
6353 
6354 	if (!kernel && !user)
6355 		return &__empty_callchain;
6356 
6357 	callchain = get_perf_callchain(regs, 0, kernel, user,
6358 				       max_stack, crosstask, true);
6359 	return callchain ?: &__empty_callchain;
6360 }
6361 
6362 void perf_prepare_sample(struct perf_event_header *header,
6363 			 struct perf_sample_data *data,
6364 			 struct perf_event *event,
6365 			 struct pt_regs *regs)
6366 {
6367 	u64 sample_type = event->attr.sample_type;
6368 
6369 	header->type = PERF_RECORD_SAMPLE;
6370 	header->size = sizeof(*header) + event->header_size;
6371 
6372 	header->misc = 0;
6373 	header->misc |= perf_misc_flags(regs);
6374 
6375 	__perf_event_header__init_id(header, data, event);
6376 
6377 	if (sample_type & PERF_SAMPLE_IP)
6378 		data->ip = perf_instruction_pointer(regs);
6379 
6380 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6381 		int size = 1;
6382 
6383 		data->callchain = perf_callchain(event, regs);
6384 		size += data->callchain->nr;
6385 
6386 		header->size += size * sizeof(u64);
6387 	}
6388 
6389 	if (sample_type & PERF_SAMPLE_RAW) {
6390 		struct perf_raw_record *raw = data->raw;
6391 		int size;
6392 
6393 		if (raw) {
6394 			struct perf_raw_frag *frag = &raw->frag;
6395 			u32 sum = 0;
6396 
6397 			do {
6398 				sum += frag->size;
6399 				if (perf_raw_frag_last(frag))
6400 					break;
6401 				frag = frag->next;
6402 			} while (1);
6403 
6404 			size = round_up(sum + sizeof(u32), sizeof(u64));
6405 			raw->size = size - sizeof(u32);
6406 			frag->pad = raw->size - sum;
6407 		} else {
6408 			size = sizeof(u64);
6409 		}
6410 
6411 		header->size += size;
6412 	}
6413 
6414 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6415 		int size = sizeof(u64); /* nr */
6416 		if (data->br_stack) {
6417 			size += data->br_stack->nr
6418 			      * sizeof(struct perf_branch_entry);
6419 		}
6420 		header->size += size;
6421 	}
6422 
6423 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6424 		perf_sample_regs_user(&data->regs_user, regs,
6425 				      &data->regs_user_copy);
6426 
6427 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6428 		/* regs dump ABI info */
6429 		int size = sizeof(u64);
6430 
6431 		if (data->regs_user.regs) {
6432 			u64 mask = event->attr.sample_regs_user;
6433 			size += hweight64(mask) * sizeof(u64);
6434 		}
6435 
6436 		header->size += size;
6437 	}
6438 
6439 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6440 		/*
6441 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6442 		 * processed as the last one or have additional check added
6443 		 * in case new sample type is added, because we could eat
6444 		 * up the rest of the sample size.
6445 		 */
6446 		u16 stack_size = event->attr.sample_stack_user;
6447 		u16 size = sizeof(u64);
6448 
6449 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6450 						     data->regs_user.regs);
6451 
6452 		/*
6453 		 * If there is something to dump, add space for the dump
6454 		 * itself and for the field that tells the dynamic size,
6455 		 * which is how many have been actually dumped.
6456 		 */
6457 		if (stack_size)
6458 			size += sizeof(u64) + stack_size;
6459 
6460 		data->stack_user_size = stack_size;
6461 		header->size += size;
6462 	}
6463 
6464 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6465 		/* regs dump ABI info */
6466 		int size = sizeof(u64);
6467 
6468 		perf_sample_regs_intr(&data->regs_intr, regs);
6469 
6470 		if (data->regs_intr.regs) {
6471 			u64 mask = event->attr.sample_regs_intr;
6472 
6473 			size += hweight64(mask) * sizeof(u64);
6474 		}
6475 
6476 		header->size += size;
6477 	}
6478 
6479 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6480 		data->phys_addr = perf_virt_to_phys(data->addr);
6481 }
6482 
6483 static void __always_inline
6484 __perf_event_output(struct perf_event *event,
6485 		    struct perf_sample_data *data,
6486 		    struct pt_regs *regs,
6487 		    int (*output_begin)(struct perf_output_handle *,
6488 					struct perf_event *,
6489 					unsigned int))
6490 {
6491 	struct perf_output_handle handle;
6492 	struct perf_event_header header;
6493 
6494 	/* protect the callchain buffers */
6495 	rcu_read_lock();
6496 
6497 	perf_prepare_sample(&header, data, event, regs);
6498 
6499 	if (output_begin(&handle, event, header.size))
6500 		goto exit;
6501 
6502 	perf_output_sample(&handle, &header, data, event);
6503 
6504 	perf_output_end(&handle);
6505 
6506 exit:
6507 	rcu_read_unlock();
6508 }
6509 
6510 void
6511 perf_event_output_forward(struct perf_event *event,
6512 			 struct perf_sample_data *data,
6513 			 struct pt_regs *regs)
6514 {
6515 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6516 }
6517 
6518 void
6519 perf_event_output_backward(struct perf_event *event,
6520 			   struct perf_sample_data *data,
6521 			   struct pt_regs *regs)
6522 {
6523 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6524 }
6525 
6526 void
6527 perf_event_output(struct perf_event *event,
6528 		  struct perf_sample_data *data,
6529 		  struct pt_regs *regs)
6530 {
6531 	__perf_event_output(event, data, regs, perf_output_begin);
6532 }
6533 
6534 /*
6535  * read event_id
6536  */
6537 
6538 struct perf_read_event {
6539 	struct perf_event_header	header;
6540 
6541 	u32				pid;
6542 	u32				tid;
6543 };
6544 
6545 static void
6546 perf_event_read_event(struct perf_event *event,
6547 			struct task_struct *task)
6548 {
6549 	struct perf_output_handle handle;
6550 	struct perf_sample_data sample;
6551 	struct perf_read_event read_event = {
6552 		.header = {
6553 			.type = PERF_RECORD_READ,
6554 			.misc = 0,
6555 			.size = sizeof(read_event) + event->read_size,
6556 		},
6557 		.pid = perf_event_pid(event, task),
6558 		.tid = perf_event_tid(event, task),
6559 	};
6560 	int ret;
6561 
6562 	perf_event_header__init_id(&read_event.header, &sample, event);
6563 	ret = perf_output_begin(&handle, event, read_event.header.size);
6564 	if (ret)
6565 		return;
6566 
6567 	perf_output_put(&handle, read_event);
6568 	perf_output_read(&handle, event);
6569 	perf_event__output_id_sample(event, &handle, &sample);
6570 
6571 	perf_output_end(&handle);
6572 }
6573 
6574 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6575 
6576 static void
6577 perf_iterate_ctx(struct perf_event_context *ctx,
6578 		   perf_iterate_f output,
6579 		   void *data, bool all)
6580 {
6581 	struct perf_event *event;
6582 
6583 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6584 		if (!all) {
6585 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6586 				continue;
6587 			if (!event_filter_match(event))
6588 				continue;
6589 		}
6590 
6591 		output(event, data);
6592 	}
6593 }
6594 
6595 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6596 {
6597 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6598 	struct perf_event *event;
6599 
6600 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6601 		/*
6602 		 * Skip events that are not fully formed yet; ensure that
6603 		 * if we observe event->ctx, both event and ctx will be
6604 		 * complete enough. See perf_install_in_context().
6605 		 */
6606 		if (!smp_load_acquire(&event->ctx))
6607 			continue;
6608 
6609 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6610 			continue;
6611 		if (!event_filter_match(event))
6612 			continue;
6613 		output(event, data);
6614 	}
6615 }
6616 
6617 /*
6618  * Iterate all events that need to receive side-band events.
6619  *
6620  * For new callers; ensure that account_pmu_sb_event() includes
6621  * your event, otherwise it might not get delivered.
6622  */
6623 static void
6624 perf_iterate_sb(perf_iterate_f output, void *data,
6625 	       struct perf_event_context *task_ctx)
6626 {
6627 	struct perf_event_context *ctx;
6628 	int ctxn;
6629 
6630 	rcu_read_lock();
6631 	preempt_disable();
6632 
6633 	/*
6634 	 * If we have task_ctx != NULL we only notify the task context itself.
6635 	 * The task_ctx is set only for EXIT events before releasing task
6636 	 * context.
6637 	 */
6638 	if (task_ctx) {
6639 		perf_iterate_ctx(task_ctx, output, data, false);
6640 		goto done;
6641 	}
6642 
6643 	perf_iterate_sb_cpu(output, data);
6644 
6645 	for_each_task_context_nr(ctxn) {
6646 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6647 		if (ctx)
6648 			perf_iterate_ctx(ctx, output, data, false);
6649 	}
6650 done:
6651 	preempt_enable();
6652 	rcu_read_unlock();
6653 }
6654 
6655 /*
6656  * Clear all file-based filters at exec, they'll have to be
6657  * re-instated when/if these objects are mmapped again.
6658  */
6659 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6660 {
6661 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6662 	struct perf_addr_filter *filter;
6663 	unsigned int restart = 0, count = 0;
6664 	unsigned long flags;
6665 
6666 	if (!has_addr_filter(event))
6667 		return;
6668 
6669 	raw_spin_lock_irqsave(&ifh->lock, flags);
6670 	list_for_each_entry(filter, &ifh->list, entry) {
6671 		if (filter->inode) {
6672 			event->addr_filters_offs[count] = 0;
6673 			restart++;
6674 		}
6675 
6676 		count++;
6677 	}
6678 
6679 	if (restart)
6680 		event->addr_filters_gen++;
6681 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6682 
6683 	if (restart)
6684 		perf_event_stop(event, 1);
6685 }
6686 
6687 void perf_event_exec(void)
6688 {
6689 	struct perf_event_context *ctx;
6690 	int ctxn;
6691 
6692 	rcu_read_lock();
6693 	for_each_task_context_nr(ctxn) {
6694 		ctx = current->perf_event_ctxp[ctxn];
6695 		if (!ctx)
6696 			continue;
6697 
6698 		perf_event_enable_on_exec(ctxn);
6699 
6700 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6701 				   true);
6702 	}
6703 	rcu_read_unlock();
6704 }
6705 
6706 struct remote_output {
6707 	struct ring_buffer	*rb;
6708 	int			err;
6709 };
6710 
6711 static void __perf_event_output_stop(struct perf_event *event, void *data)
6712 {
6713 	struct perf_event *parent = event->parent;
6714 	struct remote_output *ro = data;
6715 	struct ring_buffer *rb = ro->rb;
6716 	struct stop_event_data sd = {
6717 		.event	= event,
6718 	};
6719 
6720 	if (!has_aux(event))
6721 		return;
6722 
6723 	if (!parent)
6724 		parent = event;
6725 
6726 	/*
6727 	 * In case of inheritance, it will be the parent that links to the
6728 	 * ring-buffer, but it will be the child that's actually using it.
6729 	 *
6730 	 * We are using event::rb to determine if the event should be stopped,
6731 	 * however this may race with ring_buffer_attach() (through set_output),
6732 	 * which will make us skip the event that actually needs to be stopped.
6733 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6734 	 * its rb pointer.
6735 	 */
6736 	if (rcu_dereference(parent->rb) == rb)
6737 		ro->err = __perf_event_stop(&sd);
6738 }
6739 
6740 static int __perf_pmu_output_stop(void *info)
6741 {
6742 	struct perf_event *event = info;
6743 	struct pmu *pmu = event->pmu;
6744 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6745 	struct remote_output ro = {
6746 		.rb	= event->rb,
6747 	};
6748 
6749 	rcu_read_lock();
6750 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6751 	if (cpuctx->task_ctx)
6752 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6753 				   &ro, false);
6754 	rcu_read_unlock();
6755 
6756 	return ro.err;
6757 }
6758 
6759 static void perf_pmu_output_stop(struct perf_event *event)
6760 {
6761 	struct perf_event *iter;
6762 	int err, cpu;
6763 
6764 restart:
6765 	rcu_read_lock();
6766 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6767 		/*
6768 		 * For per-CPU events, we need to make sure that neither they
6769 		 * nor their children are running; for cpu==-1 events it's
6770 		 * sufficient to stop the event itself if it's active, since
6771 		 * it can't have children.
6772 		 */
6773 		cpu = iter->cpu;
6774 		if (cpu == -1)
6775 			cpu = READ_ONCE(iter->oncpu);
6776 
6777 		if (cpu == -1)
6778 			continue;
6779 
6780 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6781 		if (err == -EAGAIN) {
6782 			rcu_read_unlock();
6783 			goto restart;
6784 		}
6785 	}
6786 	rcu_read_unlock();
6787 }
6788 
6789 /*
6790  * task tracking -- fork/exit
6791  *
6792  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6793  */
6794 
6795 struct perf_task_event {
6796 	struct task_struct		*task;
6797 	struct perf_event_context	*task_ctx;
6798 
6799 	struct {
6800 		struct perf_event_header	header;
6801 
6802 		u32				pid;
6803 		u32				ppid;
6804 		u32				tid;
6805 		u32				ptid;
6806 		u64				time;
6807 	} event_id;
6808 };
6809 
6810 static int perf_event_task_match(struct perf_event *event)
6811 {
6812 	return event->attr.comm  || event->attr.mmap ||
6813 	       event->attr.mmap2 || event->attr.mmap_data ||
6814 	       event->attr.task;
6815 }
6816 
6817 static void perf_event_task_output(struct perf_event *event,
6818 				   void *data)
6819 {
6820 	struct perf_task_event *task_event = data;
6821 	struct perf_output_handle handle;
6822 	struct perf_sample_data	sample;
6823 	struct task_struct *task = task_event->task;
6824 	int ret, size = task_event->event_id.header.size;
6825 
6826 	if (!perf_event_task_match(event))
6827 		return;
6828 
6829 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6830 
6831 	ret = perf_output_begin(&handle, event,
6832 				task_event->event_id.header.size);
6833 	if (ret)
6834 		goto out;
6835 
6836 	task_event->event_id.pid = perf_event_pid(event, task);
6837 	task_event->event_id.ppid = perf_event_pid(event, current);
6838 
6839 	task_event->event_id.tid = perf_event_tid(event, task);
6840 	task_event->event_id.ptid = perf_event_tid(event, current);
6841 
6842 	task_event->event_id.time = perf_event_clock(event);
6843 
6844 	perf_output_put(&handle, task_event->event_id);
6845 
6846 	perf_event__output_id_sample(event, &handle, &sample);
6847 
6848 	perf_output_end(&handle);
6849 out:
6850 	task_event->event_id.header.size = size;
6851 }
6852 
6853 static void perf_event_task(struct task_struct *task,
6854 			      struct perf_event_context *task_ctx,
6855 			      int new)
6856 {
6857 	struct perf_task_event task_event;
6858 
6859 	if (!atomic_read(&nr_comm_events) &&
6860 	    !atomic_read(&nr_mmap_events) &&
6861 	    !atomic_read(&nr_task_events))
6862 		return;
6863 
6864 	task_event = (struct perf_task_event){
6865 		.task	  = task,
6866 		.task_ctx = task_ctx,
6867 		.event_id    = {
6868 			.header = {
6869 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6870 				.misc = 0,
6871 				.size = sizeof(task_event.event_id),
6872 			},
6873 			/* .pid  */
6874 			/* .ppid */
6875 			/* .tid  */
6876 			/* .ptid */
6877 			/* .time */
6878 		},
6879 	};
6880 
6881 	perf_iterate_sb(perf_event_task_output,
6882 		       &task_event,
6883 		       task_ctx);
6884 }
6885 
6886 void perf_event_fork(struct task_struct *task)
6887 {
6888 	perf_event_task(task, NULL, 1);
6889 	perf_event_namespaces(task);
6890 }
6891 
6892 /*
6893  * comm tracking
6894  */
6895 
6896 struct perf_comm_event {
6897 	struct task_struct	*task;
6898 	char			*comm;
6899 	int			comm_size;
6900 
6901 	struct {
6902 		struct perf_event_header	header;
6903 
6904 		u32				pid;
6905 		u32				tid;
6906 	} event_id;
6907 };
6908 
6909 static int perf_event_comm_match(struct perf_event *event)
6910 {
6911 	return event->attr.comm;
6912 }
6913 
6914 static void perf_event_comm_output(struct perf_event *event,
6915 				   void *data)
6916 {
6917 	struct perf_comm_event *comm_event = data;
6918 	struct perf_output_handle handle;
6919 	struct perf_sample_data sample;
6920 	int size = comm_event->event_id.header.size;
6921 	int ret;
6922 
6923 	if (!perf_event_comm_match(event))
6924 		return;
6925 
6926 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6927 	ret = perf_output_begin(&handle, event,
6928 				comm_event->event_id.header.size);
6929 
6930 	if (ret)
6931 		goto out;
6932 
6933 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6934 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6935 
6936 	perf_output_put(&handle, comm_event->event_id);
6937 	__output_copy(&handle, comm_event->comm,
6938 				   comm_event->comm_size);
6939 
6940 	perf_event__output_id_sample(event, &handle, &sample);
6941 
6942 	perf_output_end(&handle);
6943 out:
6944 	comm_event->event_id.header.size = size;
6945 }
6946 
6947 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6948 {
6949 	char comm[TASK_COMM_LEN];
6950 	unsigned int size;
6951 
6952 	memset(comm, 0, sizeof(comm));
6953 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6954 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6955 
6956 	comm_event->comm = comm;
6957 	comm_event->comm_size = size;
6958 
6959 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6960 
6961 	perf_iterate_sb(perf_event_comm_output,
6962 		       comm_event,
6963 		       NULL);
6964 }
6965 
6966 void perf_event_comm(struct task_struct *task, bool exec)
6967 {
6968 	struct perf_comm_event comm_event;
6969 
6970 	if (!atomic_read(&nr_comm_events))
6971 		return;
6972 
6973 	comm_event = (struct perf_comm_event){
6974 		.task	= task,
6975 		/* .comm      */
6976 		/* .comm_size */
6977 		.event_id  = {
6978 			.header = {
6979 				.type = PERF_RECORD_COMM,
6980 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6981 				/* .size */
6982 			},
6983 			/* .pid */
6984 			/* .tid */
6985 		},
6986 	};
6987 
6988 	perf_event_comm_event(&comm_event);
6989 }
6990 
6991 /*
6992  * namespaces tracking
6993  */
6994 
6995 struct perf_namespaces_event {
6996 	struct task_struct		*task;
6997 
6998 	struct {
6999 		struct perf_event_header	header;
7000 
7001 		u32				pid;
7002 		u32				tid;
7003 		u64				nr_namespaces;
7004 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7005 	} event_id;
7006 };
7007 
7008 static int perf_event_namespaces_match(struct perf_event *event)
7009 {
7010 	return event->attr.namespaces;
7011 }
7012 
7013 static void perf_event_namespaces_output(struct perf_event *event,
7014 					 void *data)
7015 {
7016 	struct perf_namespaces_event *namespaces_event = data;
7017 	struct perf_output_handle handle;
7018 	struct perf_sample_data sample;
7019 	u16 header_size = namespaces_event->event_id.header.size;
7020 	int ret;
7021 
7022 	if (!perf_event_namespaces_match(event))
7023 		return;
7024 
7025 	perf_event_header__init_id(&namespaces_event->event_id.header,
7026 				   &sample, event);
7027 	ret = perf_output_begin(&handle, event,
7028 				namespaces_event->event_id.header.size);
7029 	if (ret)
7030 		goto out;
7031 
7032 	namespaces_event->event_id.pid = perf_event_pid(event,
7033 							namespaces_event->task);
7034 	namespaces_event->event_id.tid = perf_event_tid(event,
7035 							namespaces_event->task);
7036 
7037 	perf_output_put(&handle, namespaces_event->event_id);
7038 
7039 	perf_event__output_id_sample(event, &handle, &sample);
7040 
7041 	perf_output_end(&handle);
7042 out:
7043 	namespaces_event->event_id.header.size = header_size;
7044 }
7045 
7046 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7047 				   struct task_struct *task,
7048 				   const struct proc_ns_operations *ns_ops)
7049 {
7050 	struct path ns_path;
7051 	struct inode *ns_inode;
7052 	void *error;
7053 
7054 	error = ns_get_path(&ns_path, task, ns_ops);
7055 	if (!error) {
7056 		ns_inode = ns_path.dentry->d_inode;
7057 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7058 		ns_link_info->ino = ns_inode->i_ino;
7059 		path_put(&ns_path);
7060 	}
7061 }
7062 
7063 void perf_event_namespaces(struct task_struct *task)
7064 {
7065 	struct perf_namespaces_event namespaces_event;
7066 	struct perf_ns_link_info *ns_link_info;
7067 
7068 	if (!atomic_read(&nr_namespaces_events))
7069 		return;
7070 
7071 	namespaces_event = (struct perf_namespaces_event){
7072 		.task	= task,
7073 		.event_id  = {
7074 			.header = {
7075 				.type = PERF_RECORD_NAMESPACES,
7076 				.misc = 0,
7077 				.size = sizeof(namespaces_event.event_id),
7078 			},
7079 			/* .pid */
7080 			/* .tid */
7081 			.nr_namespaces = NR_NAMESPACES,
7082 			/* .link_info[NR_NAMESPACES] */
7083 		},
7084 	};
7085 
7086 	ns_link_info = namespaces_event.event_id.link_info;
7087 
7088 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7089 			       task, &mntns_operations);
7090 
7091 #ifdef CONFIG_USER_NS
7092 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7093 			       task, &userns_operations);
7094 #endif
7095 #ifdef CONFIG_NET_NS
7096 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7097 			       task, &netns_operations);
7098 #endif
7099 #ifdef CONFIG_UTS_NS
7100 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7101 			       task, &utsns_operations);
7102 #endif
7103 #ifdef CONFIG_IPC_NS
7104 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7105 			       task, &ipcns_operations);
7106 #endif
7107 #ifdef CONFIG_PID_NS
7108 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7109 			       task, &pidns_operations);
7110 #endif
7111 #ifdef CONFIG_CGROUPS
7112 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7113 			       task, &cgroupns_operations);
7114 #endif
7115 
7116 	perf_iterate_sb(perf_event_namespaces_output,
7117 			&namespaces_event,
7118 			NULL);
7119 }
7120 
7121 /*
7122  * mmap tracking
7123  */
7124 
7125 struct perf_mmap_event {
7126 	struct vm_area_struct	*vma;
7127 
7128 	const char		*file_name;
7129 	int			file_size;
7130 	int			maj, min;
7131 	u64			ino;
7132 	u64			ino_generation;
7133 	u32			prot, flags;
7134 
7135 	struct {
7136 		struct perf_event_header	header;
7137 
7138 		u32				pid;
7139 		u32				tid;
7140 		u64				start;
7141 		u64				len;
7142 		u64				pgoff;
7143 	} event_id;
7144 };
7145 
7146 static int perf_event_mmap_match(struct perf_event *event,
7147 				 void *data)
7148 {
7149 	struct perf_mmap_event *mmap_event = data;
7150 	struct vm_area_struct *vma = mmap_event->vma;
7151 	int executable = vma->vm_flags & VM_EXEC;
7152 
7153 	return (!executable && event->attr.mmap_data) ||
7154 	       (executable && (event->attr.mmap || event->attr.mmap2));
7155 }
7156 
7157 static void perf_event_mmap_output(struct perf_event *event,
7158 				   void *data)
7159 {
7160 	struct perf_mmap_event *mmap_event = data;
7161 	struct perf_output_handle handle;
7162 	struct perf_sample_data sample;
7163 	int size = mmap_event->event_id.header.size;
7164 	int ret;
7165 
7166 	if (!perf_event_mmap_match(event, data))
7167 		return;
7168 
7169 	if (event->attr.mmap2) {
7170 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7171 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7172 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7173 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7174 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7175 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7176 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7177 	}
7178 
7179 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7180 	ret = perf_output_begin(&handle, event,
7181 				mmap_event->event_id.header.size);
7182 	if (ret)
7183 		goto out;
7184 
7185 	mmap_event->event_id.pid = perf_event_pid(event, current);
7186 	mmap_event->event_id.tid = perf_event_tid(event, current);
7187 
7188 	perf_output_put(&handle, mmap_event->event_id);
7189 
7190 	if (event->attr.mmap2) {
7191 		perf_output_put(&handle, mmap_event->maj);
7192 		perf_output_put(&handle, mmap_event->min);
7193 		perf_output_put(&handle, mmap_event->ino);
7194 		perf_output_put(&handle, mmap_event->ino_generation);
7195 		perf_output_put(&handle, mmap_event->prot);
7196 		perf_output_put(&handle, mmap_event->flags);
7197 	}
7198 
7199 	__output_copy(&handle, mmap_event->file_name,
7200 				   mmap_event->file_size);
7201 
7202 	perf_event__output_id_sample(event, &handle, &sample);
7203 
7204 	perf_output_end(&handle);
7205 out:
7206 	mmap_event->event_id.header.size = size;
7207 }
7208 
7209 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7210 {
7211 	struct vm_area_struct *vma = mmap_event->vma;
7212 	struct file *file = vma->vm_file;
7213 	int maj = 0, min = 0;
7214 	u64 ino = 0, gen = 0;
7215 	u32 prot = 0, flags = 0;
7216 	unsigned int size;
7217 	char tmp[16];
7218 	char *buf = NULL;
7219 	char *name;
7220 
7221 	if (vma->vm_flags & VM_READ)
7222 		prot |= PROT_READ;
7223 	if (vma->vm_flags & VM_WRITE)
7224 		prot |= PROT_WRITE;
7225 	if (vma->vm_flags & VM_EXEC)
7226 		prot |= PROT_EXEC;
7227 
7228 	if (vma->vm_flags & VM_MAYSHARE)
7229 		flags = MAP_SHARED;
7230 	else
7231 		flags = MAP_PRIVATE;
7232 
7233 	if (vma->vm_flags & VM_DENYWRITE)
7234 		flags |= MAP_DENYWRITE;
7235 	if (vma->vm_flags & VM_MAYEXEC)
7236 		flags |= MAP_EXECUTABLE;
7237 	if (vma->vm_flags & VM_LOCKED)
7238 		flags |= MAP_LOCKED;
7239 	if (vma->vm_flags & VM_HUGETLB)
7240 		flags |= MAP_HUGETLB;
7241 
7242 	if (file) {
7243 		struct inode *inode;
7244 		dev_t dev;
7245 
7246 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7247 		if (!buf) {
7248 			name = "//enomem";
7249 			goto cpy_name;
7250 		}
7251 		/*
7252 		 * d_path() works from the end of the rb backwards, so we
7253 		 * need to add enough zero bytes after the string to handle
7254 		 * the 64bit alignment we do later.
7255 		 */
7256 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7257 		if (IS_ERR(name)) {
7258 			name = "//toolong";
7259 			goto cpy_name;
7260 		}
7261 		inode = file_inode(vma->vm_file);
7262 		dev = inode->i_sb->s_dev;
7263 		ino = inode->i_ino;
7264 		gen = inode->i_generation;
7265 		maj = MAJOR(dev);
7266 		min = MINOR(dev);
7267 
7268 		goto got_name;
7269 	} else {
7270 		if (vma->vm_ops && vma->vm_ops->name) {
7271 			name = (char *) vma->vm_ops->name(vma);
7272 			if (name)
7273 				goto cpy_name;
7274 		}
7275 
7276 		name = (char *)arch_vma_name(vma);
7277 		if (name)
7278 			goto cpy_name;
7279 
7280 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7281 				vma->vm_end >= vma->vm_mm->brk) {
7282 			name = "[heap]";
7283 			goto cpy_name;
7284 		}
7285 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7286 				vma->vm_end >= vma->vm_mm->start_stack) {
7287 			name = "[stack]";
7288 			goto cpy_name;
7289 		}
7290 
7291 		name = "//anon";
7292 		goto cpy_name;
7293 	}
7294 
7295 cpy_name:
7296 	strlcpy(tmp, name, sizeof(tmp));
7297 	name = tmp;
7298 got_name:
7299 	/*
7300 	 * Since our buffer works in 8 byte units we need to align our string
7301 	 * size to a multiple of 8. However, we must guarantee the tail end is
7302 	 * zero'd out to avoid leaking random bits to userspace.
7303 	 */
7304 	size = strlen(name)+1;
7305 	while (!IS_ALIGNED(size, sizeof(u64)))
7306 		name[size++] = '\0';
7307 
7308 	mmap_event->file_name = name;
7309 	mmap_event->file_size = size;
7310 	mmap_event->maj = maj;
7311 	mmap_event->min = min;
7312 	mmap_event->ino = ino;
7313 	mmap_event->ino_generation = gen;
7314 	mmap_event->prot = prot;
7315 	mmap_event->flags = flags;
7316 
7317 	if (!(vma->vm_flags & VM_EXEC))
7318 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7319 
7320 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7321 
7322 	perf_iterate_sb(perf_event_mmap_output,
7323 		       mmap_event,
7324 		       NULL);
7325 
7326 	kfree(buf);
7327 }
7328 
7329 /*
7330  * Check whether inode and address range match filter criteria.
7331  */
7332 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7333 				     struct file *file, unsigned long offset,
7334 				     unsigned long size)
7335 {
7336 	if (filter->inode != file_inode(file))
7337 		return false;
7338 
7339 	if (filter->offset > offset + size)
7340 		return false;
7341 
7342 	if (filter->offset + filter->size < offset)
7343 		return false;
7344 
7345 	return true;
7346 }
7347 
7348 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7349 {
7350 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7351 	struct vm_area_struct *vma = data;
7352 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7353 	struct file *file = vma->vm_file;
7354 	struct perf_addr_filter *filter;
7355 	unsigned int restart = 0, count = 0;
7356 
7357 	if (!has_addr_filter(event))
7358 		return;
7359 
7360 	if (!file)
7361 		return;
7362 
7363 	raw_spin_lock_irqsave(&ifh->lock, flags);
7364 	list_for_each_entry(filter, &ifh->list, entry) {
7365 		if (perf_addr_filter_match(filter, file, off,
7366 					     vma->vm_end - vma->vm_start)) {
7367 			event->addr_filters_offs[count] = vma->vm_start;
7368 			restart++;
7369 		}
7370 
7371 		count++;
7372 	}
7373 
7374 	if (restart)
7375 		event->addr_filters_gen++;
7376 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7377 
7378 	if (restart)
7379 		perf_event_stop(event, 1);
7380 }
7381 
7382 /*
7383  * Adjust all task's events' filters to the new vma
7384  */
7385 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7386 {
7387 	struct perf_event_context *ctx;
7388 	int ctxn;
7389 
7390 	/*
7391 	 * Data tracing isn't supported yet and as such there is no need
7392 	 * to keep track of anything that isn't related to executable code:
7393 	 */
7394 	if (!(vma->vm_flags & VM_EXEC))
7395 		return;
7396 
7397 	rcu_read_lock();
7398 	for_each_task_context_nr(ctxn) {
7399 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7400 		if (!ctx)
7401 			continue;
7402 
7403 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7404 	}
7405 	rcu_read_unlock();
7406 }
7407 
7408 void perf_event_mmap(struct vm_area_struct *vma)
7409 {
7410 	struct perf_mmap_event mmap_event;
7411 
7412 	if (!atomic_read(&nr_mmap_events))
7413 		return;
7414 
7415 	mmap_event = (struct perf_mmap_event){
7416 		.vma	= vma,
7417 		/* .file_name */
7418 		/* .file_size */
7419 		.event_id  = {
7420 			.header = {
7421 				.type = PERF_RECORD_MMAP,
7422 				.misc = PERF_RECORD_MISC_USER,
7423 				/* .size */
7424 			},
7425 			/* .pid */
7426 			/* .tid */
7427 			.start  = vma->vm_start,
7428 			.len    = vma->vm_end - vma->vm_start,
7429 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7430 		},
7431 		/* .maj (attr_mmap2 only) */
7432 		/* .min (attr_mmap2 only) */
7433 		/* .ino (attr_mmap2 only) */
7434 		/* .ino_generation (attr_mmap2 only) */
7435 		/* .prot (attr_mmap2 only) */
7436 		/* .flags (attr_mmap2 only) */
7437 	};
7438 
7439 	perf_addr_filters_adjust(vma);
7440 	perf_event_mmap_event(&mmap_event);
7441 }
7442 
7443 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7444 			  unsigned long size, u64 flags)
7445 {
7446 	struct perf_output_handle handle;
7447 	struct perf_sample_data sample;
7448 	struct perf_aux_event {
7449 		struct perf_event_header	header;
7450 		u64				offset;
7451 		u64				size;
7452 		u64				flags;
7453 	} rec = {
7454 		.header = {
7455 			.type = PERF_RECORD_AUX,
7456 			.misc = 0,
7457 			.size = sizeof(rec),
7458 		},
7459 		.offset		= head,
7460 		.size		= size,
7461 		.flags		= flags,
7462 	};
7463 	int ret;
7464 
7465 	perf_event_header__init_id(&rec.header, &sample, event);
7466 	ret = perf_output_begin(&handle, event, rec.header.size);
7467 
7468 	if (ret)
7469 		return;
7470 
7471 	perf_output_put(&handle, rec);
7472 	perf_event__output_id_sample(event, &handle, &sample);
7473 
7474 	perf_output_end(&handle);
7475 }
7476 
7477 /*
7478  * Lost/dropped samples logging
7479  */
7480 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7481 {
7482 	struct perf_output_handle handle;
7483 	struct perf_sample_data sample;
7484 	int ret;
7485 
7486 	struct {
7487 		struct perf_event_header	header;
7488 		u64				lost;
7489 	} lost_samples_event = {
7490 		.header = {
7491 			.type = PERF_RECORD_LOST_SAMPLES,
7492 			.misc = 0,
7493 			.size = sizeof(lost_samples_event),
7494 		},
7495 		.lost		= lost,
7496 	};
7497 
7498 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7499 
7500 	ret = perf_output_begin(&handle, event,
7501 				lost_samples_event.header.size);
7502 	if (ret)
7503 		return;
7504 
7505 	perf_output_put(&handle, lost_samples_event);
7506 	perf_event__output_id_sample(event, &handle, &sample);
7507 	perf_output_end(&handle);
7508 }
7509 
7510 /*
7511  * context_switch tracking
7512  */
7513 
7514 struct perf_switch_event {
7515 	struct task_struct	*task;
7516 	struct task_struct	*next_prev;
7517 
7518 	struct {
7519 		struct perf_event_header	header;
7520 		u32				next_prev_pid;
7521 		u32				next_prev_tid;
7522 	} event_id;
7523 };
7524 
7525 static int perf_event_switch_match(struct perf_event *event)
7526 {
7527 	return event->attr.context_switch;
7528 }
7529 
7530 static void perf_event_switch_output(struct perf_event *event, void *data)
7531 {
7532 	struct perf_switch_event *se = data;
7533 	struct perf_output_handle handle;
7534 	struct perf_sample_data sample;
7535 	int ret;
7536 
7537 	if (!perf_event_switch_match(event))
7538 		return;
7539 
7540 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7541 	if (event->ctx->task) {
7542 		se->event_id.header.type = PERF_RECORD_SWITCH;
7543 		se->event_id.header.size = sizeof(se->event_id.header);
7544 	} else {
7545 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7546 		se->event_id.header.size = sizeof(se->event_id);
7547 		se->event_id.next_prev_pid =
7548 					perf_event_pid(event, se->next_prev);
7549 		se->event_id.next_prev_tid =
7550 					perf_event_tid(event, se->next_prev);
7551 	}
7552 
7553 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7554 
7555 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7556 	if (ret)
7557 		return;
7558 
7559 	if (event->ctx->task)
7560 		perf_output_put(&handle, se->event_id.header);
7561 	else
7562 		perf_output_put(&handle, se->event_id);
7563 
7564 	perf_event__output_id_sample(event, &handle, &sample);
7565 
7566 	perf_output_end(&handle);
7567 }
7568 
7569 static void perf_event_switch(struct task_struct *task,
7570 			      struct task_struct *next_prev, bool sched_in)
7571 {
7572 	struct perf_switch_event switch_event;
7573 
7574 	/* N.B. caller checks nr_switch_events != 0 */
7575 
7576 	switch_event = (struct perf_switch_event){
7577 		.task		= task,
7578 		.next_prev	= next_prev,
7579 		.event_id	= {
7580 			.header = {
7581 				/* .type */
7582 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7583 				/* .size */
7584 			},
7585 			/* .next_prev_pid */
7586 			/* .next_prev_tid */
7587 		},
7588 	};
7589 
7590 	perf_iterate_sb(perf_event_switch_output,
7591 		       &switch_event,
7592 		       NULL);
7593 }
7594 
7595 /*
7596  * IRQ throttle logging
7597  */
7598 
7599 static void perf_log_throttle(struct perf_event *event, int enable)
7600 {
7601 	struct perf_output_handle handle;
7602 	struct perf_sample_data sample;
7603 	int ret;
7604 
7605 	struct {
7606 		struct perf_event_header	header;
7607 		u64				time;
7608 		u64				id;
7609 		u64				stream_id;
7610 	} throttle_event = {
7611 		.header = {
7612 			.type = PERF_RECORD_THROTTLE,
7613 			.misc = 0,
7614 			.size = sizeof(throttle_event),
7615 		},
7616 		.time		= perf_event_clock(event),
7617 		.id		= primary_event_id(event),
7618 		.stream_id	= event->id,
7619 	};
7620 
7621 	if (enable)
7622 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7623 
7624 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7625 
7626 	ret = perf_output_begin(&handle, event,
7627 				throttle_event.header.size);
7628 	if (ret)
7629 		return;
7630 
7631 	perf_output_put(&handle, throttle_event);
7632 	perf_event__output_id_sample(event, &handle, &sample);
7633 	perf_output_end(&handle);
7634 }
7635 
7636 void perf_event_itrace_started(struct perf_event *event)
7637 {
7638 	event->attach_state |= PERF_ATTACH_ITRACE;
7639 }
7640 
7641 static void perf_log_itrace_start(struct perf_event *event)
7642 {
7643 	struct perf_output_handle handle;
7644 	struct perf_sample_data sample;
7645 	struct perf_aux_event {
7646 		struct perf_event_header        header;
7647 		u32				pid;
7648 		u32				tid;
7649 	} rec;
7650 	int ret;
7651 
7652 	if (event->parent)
7653 		event = event->parent;
7654 
7655 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7656 	    event->attach_state & PERF_ATTACH_ITRACE)
7657 		return;
7658 
7659 	rec.header.type	= PERF_RECORD_ITRACE_START;
7660 	rec.header.misc	= 0;
7661 	rec.header.size	= sizeof(rec);
7662 	rec.pid	= perf_event_pid(event, current);
7663 	rec.tid	= perf_event_tid(event, current);
7664 
7665 	perf_event_header__init_id(&rec.header, &sample, event);
7666 	ret = perf_output_begin(&handle, event, rec.header.size);
7667 
7668 	if (ret)
7669 		return;
7670 
7671 	perf_output_put(&handle, rec);
7672 	perf_event__output_id_sample(event, &handle, &sample);
7673 
7674 	perf_output_end(&handle);
7675 }
7676 
7677 static int
7678 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7679 {
7680 	struct hw_perf_event *hwc = &event->hw;
7681 	int ret = 0;
7682 	u64 seq;
7683 
7684 	seq = __this_cpu_read(perf_throttled_seq);
7685 	if (seq != hwc->interrupts_seq) {
7686 		hwc->interrupts_seq = seq;
7687 		hwc->interrupts = 1;
7688 	} else {
7689 		hwc->interrupts++;
7690 		if (unlikely(throttle
7691 			     && hwc->interrupts >= max_samples_per_tick)) {
7692 			__this_cpu_inc(perf_throttled_count);
7693 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7694 			hwc->interrupts = MAX_INTERRUPTS;
7695 			perf_log_throttle(event, 0);
7696 			ret = 1;
7697 		}
7698 	}
7699 
7700 	if (event->attr.freq) {
7701 		u64 now = perf_clock();
7702 		s64 delta = now - hwc->freq_time_stamp;
7703 
7704 		hwc->freq_time_stamp = now;
7705 
7706 		if (delta > 0 && delta < 2*TICK_NSEC)
7707 			perf_adjust_period(event, delta, hwc->last_period, true);
7708 	}
7709 
7710 	return ret;
7711 }
7712 
7713 int perf_event_account_interrupt(struct perf_event *event)
7714 {
7715 	return __perf_event_account_interrupt(event, 1);
7716 }
7717 
7718 /*
7719  * Generic event overflow handling, sampling.
7720  */
7721 
7722 static int __perf_event_overflow(struct perf_event *event,
7723 				   int throttle, struct perf_sample_data *data,
7724 				   struct pt_regs *regs)
7725 {
7726 	int events = atomic_read(&event->event_limit);
7727 	int ret = 0;
7728 
7729 	/*
7730 	 * Non-sampling counters might still use the PMI to fold short
7731 	 * hardware counters, ignore those.
7732 	 */
7733 	if (unlikely(!is_sampling_event(event)))
7734 		return 0;
7735 
7736 	ret = __perf_event_account_interrupt(event, throttle);
7737 
7738 	/*
7739 	 * XXX event_limit might not quite work as expected on inherited
7740 	 * events
7741 	 */
7742 
7743 	event->pending_kill = POLL_IN;
7744 	if (events && atomic_dec_and_test(&event->event_limit)) {
7745 		ret = 1;
7746 		event->pending_kill = POLL_HUP;
7747 
7748 		perf_event_disable_inatomic(event);
7749 	}
7750 
7751 	READ_ONCE(event->overflow_handler)(event, data, regs);
7752 
7753 	if (*perf_event_fasync(event) && event->pending_kill) {
7754 		event->pending_wakeup = 1;
7755 		irq_work_queue(&event->pending);
7756 	}
7757 
7758 	return ret;
7759 }
7760 
7761 int perf_event_overflow(struct perf_event *event,
7762 			  struct perf_sample_data *data,
7763 			  struct pt_regs *regs)
7764 {
7765 	return __perf_event_overflow(event, 1, data, regs);
7766 }
7767 
7768 /*
7769  * Generic software event infrastructure
7770  */
7771 
7772 struct swevent_htable {
7773 	struct swevent_hlist		*swevent_hlist;
7774 	struct mutex			hlist_mutex;
7775 	int				hlist_refcount;
7776 
7777 	/* Recursion avoidance in each contexts */
7778 	int				recursion[PERF_NR_CONTEXTS];
7779 };
7780 
7781 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7782 
7783 /*
7784  * We directly increment event->count and keep a second value in
7785  * event->hw.period_left to count intervals. This period event
7786  * is kept in the range [-sample_period, 0] so that we can use the
7787  * sign as trigger.
7788  */
7789 
7790 u64 perf_swevent_set_period(struct perf_event *event)
7791 {
7792 	struct hw_perf_event *hwc = &event->hw;
7793 	u64 period = hwc->last_period;
7794 	u64 nr, offset;
7795 	s64 old, val;
7796 
7797 	hwc->last_period = hwc->sample_period;
7798 
7799 again:
7800 	old = val = local64_read(&hwc->period_left);
7801 	if (val < 0)
7802 		return 0;
7803 
7804 	nr = div64_u64(period + val, period);
7805 	offset = nr * period;
7806 	val -= offset;
7807 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7808 		goto again;
7809 
7810 	return nr;
7811 }
7812 
7813 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7814 				    struct perf_sample_data *data,
7815 				    struct pt_regs *regs)
7816 {
7817 	struct hw_perf_event *hwc = &event->hw;
7818 	int throttle = 0;
7819 
7820 	if (!overflow)
7821 		overflow = perf_swevent_set_period(event);
7822 
7823 	if (hwc->interrupts == MAX_INTERRUPTS)
7824 		return;
7825 
7826 	for (; overflow; overflow--) {
7827 		if (__perf_event_overflow(event, throttle,
7828 					    data, regs)) {
7829 			/*
7830 			 * We inhibit the overflow from happening when
7831 			 * hwc->interrupts == MAX_INTERRUPTS.
7832 			 */
7833 			break;
7834 		}
7835 		throttle = 1;
7836 	}
7837 }
7838 
7839 static void perf_swevent_event(struct perf_event *event, u64 nr,
7840 			       struct perf_sample_data *data,
7841 			       struct pt_regs *regs)
7842 {
7843 	struct hw_perf_event *hwc = &event->hw;
7844 
7845 	local64_add(nr, &event->count);
7846 
7847 	if (!regs)
7848 		return;
7849 
7850 	if (!is_sampling_event(event))
7851 		return;
7852 
7853 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7854 		data->period = nr;
7855 		return perf_swevent_overflow(event, 1, data, regs);
7856 	} else
7857 		data->period = event->hw.last_period;
7858 
7859 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7860 		return perf_swevent_overflow(event, 1, data, regs);
7861 
7862 	if (local64_add_negative(nr, &hwc->period_left))
7863 		return;
7864 
7865 	perf_swevent_overflow(event, 0, data, regs);
7866 }
7867 
7868 static int perf_exclude_event(struct perf_event *event,
7869 			      struct pt_regs *regs)
7870 {
7871 	if (event->hw.state & PERF_HES_STOPPED)
7872 		return 1;
7873 
7874 	if (regs) {
7875 		if (event->attr.exclude_user && user_mode(regs))
7876 			return 1;
7877 
7878 		if (event->attr.exclude_kernel && !user_mode(regs))
7879 			return 1;
7880 	}
7881 
7882 	return 0;
7883 }
7884 
7885 static int perf_swevent_match(struct perf_event *event,
7886 				enum perf_type_id type,
7887 				u32 event_id,
7888 				struct perf_sample_data *data,
7889 				struct pt_regs *regs)
7890 {
7891 	if (event->attr.type != type)
7892 		return 0;
7893 
7894 	if (event->attr.config != event_id)
7895 		return 0;
7896 
7897 	if (perf_exclude_event(event, regs))
7898 		return 0;
7899 
7900 	return 1;
7901 }
7902 
7903 static inline u64 swevent_hash(u64 type, u32 event_id)
7904 {
7905 	u64 val = event_id | (type << 32);
7906 
7907 	return hash_64(val, SWEVENT_HLIST_BITS);
7908 }
7909 
7910 static inline struct hlist_head *
7911 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7912 {
7913 	u64 hash = swevent_hash(type, event_id);
7914 
7915 	return &hlist->heads[hash];
7916 }
7917 
7918 /* For the read side: events when they trigger */
7919 static inline struct hlist_head *
7920 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7921 {
7922 	struct swevent_hlist *hlist;
7923 
7924 	hlist = rcu_dereference(swhash->swevent_hlist);
7925 	if (!hlist)
7926 		return NULL;
7927 
7928 	return __find_swevent_head(hlist, type, event_id);
7929 }
7930 
7931 /* For the event head insertion and removal in the hlist */
7932 static inline struct hlist_head *
7933 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7934 {
7935 	struct swevent_hlist *hlist;
7936 	u32 event_id = event->attr.config;
7937 	u64 type = event->attr.type;
7938 
7939 	/*
7940 	 * Event scheduling is always serialized against hlist allocation
7941 	 * and release. Which makes the protected version suitable here.
7942 	 * The context lock guarantees that.
7943 	 */
7944 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7945 					  lockdep_is_held(&event->ctx->lock));
7946 	if (!hlist)
7947 		return NULL;
7948 
7949 	return __find_swevent_head(hlist, type, event_id);
7950 }
7951 
7952 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7953 				    u64 nr,
7954 				    struct perf_sample_data *data,
7955 				    struct pt_regs *regs)
7956 {
7957 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7958 	struct perf_event *event;
7959 	struct hlist_head *head;
7960 
7961 	rcu_read_lock();
7962 	head = find_swevent_head_rcu(swhash, type, event_id);
7963 	if (!head)
7964 		goto end;
7965 
7966 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7967 		if (perf_swevent_match(event, type, event_id, data, regs))
7968 			perf_swevent_event(event, nr, data, regs);
7969 	}
7970 end:
7971 	rcu_read_unlock();
7972 }
7973 
7974 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7975 
7976 int perf_swevent_get_recursion_context(void)
7977 {
7978 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7979 
7980 	return get_recursion_context(swhash->recursion);
7981 }
7982 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7983 
7984 void perf_swevent_put_recursion_context(int rctx)
7985 {
7986 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7987 
7988 	put_recursion_context(swhash->recursion, rctx);
7989 }
7990 
7991 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7992 {
7993 	struct perf_sample_data data;
7994 
7995 	if (WARN_ON_ONCE(!regs))
7996 		return;
7997 
7998 	perf_sample_data_init(&data, addr, 0);
7999 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8000 }
8001 
8002 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8003 {
8004 	int rctx;
8005 
8006 	preempt_disable_notrace();
8007 	rctx = perf_swevent_get_recursion_context();
8008 	if (unlikely(rctx < 0))
8009 		goto fail;
8010 
8011 	___perf_sw_event(event_id, nr, regs, addr);
8012 
8013 	perf_swevent_put_recursion_context(rctx);
8014 fail:
8015 	preempt_enable_notrace();
8016 }
8017 
8018 static void perf_swevent_read(struct perf_event *event)
8019 {
8020 }
8021 
8022 static int perf_swevent_add(struct perf_event *event, int flags)
8023 {
8024 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8025 	struct hw_perf_event *hwc = &event->hw;
8026 	struct hlist_head *head;
8027 
8028 	if (is_sampling_event(event)) {
8029 		hwc->last_period = hwc->sample_period;
8030 		perf_swevent_set_period(event);
8031 	}
8032 
8033 	hwc->state = !(flags & PERF_EF_START);
8034 
8035 	head = find_swevent_head(swhash, event);
8036 	if (WARN_ON_ONCE(!head))
8037 		return -EINVAL;
8038 
8039 	hlist_add_head_rcu(&event->hlist_entry, head);
8040 	perf_event_update_userpage(event);
8041 
8042 	return 0;
8043 }
8044 
8045 static void perf_swevent_del(struct perf_event *event, int flags)
8046 {
8047 	hlist_del_rcu(&event->hlist_entry);
8048 }
8049 
8050 static void perf_swevent_start(struct perf_event *event, int flags)
8051 {
8052 	event->hw.state = 0;
8053 }
8054 
8055 static void perf_swevent_stop(struct perf_event *event, int flags)
8056 {
8057 	event->hw.state = PERF_HES_STOPPED;
8058 }
8059 
8060 /* Deref the hlist from the update side */
8061 static inline struct swevent_hlist *
8062 swevent_hlist_deref(struct swevent_htable *swhash)
8063 {
8064 	return rcu_dereference_protected(swhash->swevent_hlist,
8065 					 lockdep_is_held(&swhash->hlist_mutex));
8066 }
8067 
8068 static void swevent_hlist_release(struct swevent_htable *swhash)
8069 {
8070 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8071 
8072 	if (!hlist)
8073 		return;
8074 
8075 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8076 	kfree_rcu(hlist, rcu_head);
8077 }
8078 
8079 static void swevent_hlist_put_cpu(int cpu)
8080 {
8081 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8082 
8083 	mutex_lock(&swhash->hlist_mutex);
8084 
8085 	if (!--swhash->hlist_refcount)
8086 		swevent_hlist_release(swhash);
8087 
8088 	mutex_unlock(&swhash->hlist_mutex);
8089 }
8090 
8091 static void swevent_hlist_put(void)
8092 {
8093 	int cpu;
8094 
8095 	for_each_possible_cpu(cpu)
8096 		swevent_hlist_put_cpu(cpu);
8097 }
8098 
8099 static int swevent_hlist_get_cpu(int cpu)
8100 {
8101 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8102 	int err = 0;
8103 
8104 	mutex_lock(&swhash->hlist_mutex);
8105 	if (!swevent_hlist_deref(swhash) &&
8106 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8107 		struct swevent_hlist *hlist;
8108 
8109 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8110 		if (!hlist) {
8111 			err = -ENOMEM;
8112 			goto exit;
8113 		}
8114 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8115 	}
8116 	swhash->hlist_refcount++;
8117 exit:
8118 	mutex_unlock(&swhash->hlist_mutex);
8119 
8120 	return err;
8121 }
8122 
8123 static int swevent_hlist_get(void)
8124 {
8125 	int err, cpu, failed_cpu;
8126 
8127 	mutex_lock(&pmus_lock);
8128 	for_each_possible_cpu(cpu) {
8129 		err = swevent_hlist_get_cpu(cpu);
8130 		if (err) {
8131 			failed_cpu = cpu;
8132 			goto fail;
8133 		}
8134 	}
8135 	mutex_unlock(&pmus_lock);
8136 	return 0;
8137 fail:
8138 	for_each_possible_cpu(cpu) {
8139 		if (cpu == failed_cpu)
8140 			break;
8141 		swevent_hlist_put_cpu(cpu);
8142 	}
8143 	mutex_unlock(&pmus_lock);
8144 	return err;
8145 }
8146 
8147 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8148 
8149 static void sw_perf_event_destroy(struct perf_event *event)
8150 {
8151 	u64 event_id = event->attr.config;
8152 
8153 	WARN_ON(event->parent);
8154 
8155 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8156 	swevent_hlist_put();
8157 }
8158 
8159 static int perf_swevent_init(struct perf_event *event)
8160 {
8161 	u64 event_id = event->attr.config;
8162 
8163 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8164 		return -ENOENT;
8165 
8166 	/*
8167 	 * no branch sampling for software events
8168 	 */
8169 	if (has_branch_stack(event))
8170 		return -EOPNOTSUPP;
8171 
8172 	switch (event_id) {
8173 	case PERF_COUNT_SW_CPU_CLOCK:
8174 	case PERF_COUNT_SW_TASK_CLOCK:
8175 		return -ENOENT;
8176 
8177 	default:
8178 		break;
8179 	}
8180 
8181 	if (event_id >= PERF_COUNT_SW_MAX)
8182 		return -ENOENT;
8183 
8184 	if (!event->parent) {
8185 		int err;
8186 
8187 		err = swevent_hlist_get();
8188 		if (err)
8189 			return err;
8190 
8191 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8192 		event->destroy = sw_perf_event_destroy;
8193 	}
8194 
8195 	return 0;
8196 }
8197 
8198 static struct pmu perf_swevent = {
8199 	.task_ctx_nr	= perf_sw_context,
8200 
8201 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8202 
8203 	.event_init	= perf_swevent_init,
8204 	.add		= perf_swevent_add,
8205 	.del		= perf_swevent_del,
8206 	.start		= perf_swevent_start,
8207 	.stop		= perf_swevent_stop,
8208 	.read		= perf_swevent_read,
8209 };
8210 
8211 #ifdef CONFIG_EVENT_TRACING
8212 
8213 static int perf_tp_filter_match(struct perf_event *event,
8214 				struct perf_sample_data *data)
8215 {
8216 	void *record = data->raw->frag.data;
8217 
8218 	/* only top level events have filters set */
8219 	if (event->parent)
8220 		event = event->parent;
8221 
8222 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8223 		return 1;
8224 	return 0;
8225 }
8226 
8227 static int perf_tp_event_match(struct perf_event *event,
8228 				struct perf_sample_data *data,
8229 				struct pt_regs *regs)
8230 {
8231 	if (event->hw.state & PERF_HES_STOPPED)
8232 		return 0;
8233 	/*
8234 	 * All tracepoints are from kernel-space.
8235 	 */
8236 	if (event->attr.exclude_kernel)
8237 		return 0;
8238 
8239 	if (!perf_tp_filter_match(event, data))
8240 		return 0;
8241 
8242 	return 1;
8243 }
8244 
8245 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8246 			       struct trace_event_call *call, u64 count,
8247 			       struct pt_regs *regs, struct hlist_head *head,
8248 			       struct task_struct *task)
8249 {
8250 	if (bpf_prog_array_valid(call)) {
8251 		*(struct pt_regs **)raw_data = regs;
8252 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8253 			perf_swevent_put_recursion_context(rctx);
8254 			return;
8255 		}
8256 	}
8257 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8258 		      rctx, task);
8259 }
8260 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8261 
8262 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8263 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8264 		   struct task_struct *task)
8265 {
8266 	struct perf_sample_data data;
8267 	struct perf_event *event;
8268 
8269 	struct perf_raw_record raw = {
8270 		.frag = {
8271 			.size = entry_size,
8272 			.data = record,
8273 		},
8274 	};
8275 
8276 	perf_sample_data_init(&data, 0, 0);
8277 	data.raw = &raw;
8278 
8279 	perf_trace_buf_update(record, event_type);
8280 
8281 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8282 		if (perf_tp_event_match(event, &data, regs))
8283 			perf_swevent_event(event, count, &data, regs);
8284 	}
8285 
8286 	/*
8287 	 * If we got specified a target task, also iterate its context and
8288 	 * deliver this event there too.
8289 	 */
8290 	if (task && task != current) {
8291 		struct perf_event_context *ctx;
8292 		struct trace_entry *entry = record;
8293 
8294 		rcu_read_lock();
8295 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8296 		if (!ctx)
8297 			goto unlock;
8298 
8299 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8300 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8301 				continue;
8302 			if (event->attr.config != entry->type)
8303 				continue;
8304 			if (perf_tp_event_match(event, &data, regs))
8305 				perf_swevent_event(event, count, &data, regs);
8306 		}
8307 unlock:
8308 		rcu_read_unlock();
8309 	}
8310 
8311 	perf_swevent_put_recursion_context(rctx);
8312 }
8313 EXPORT_SYMBOL_GPL(perf_tp_event);
8314 
8315 static void tp_perf_event_destroy(struct perf_event *event)
8316 {
8317 	perf_trace_destroy(event);
8318 }
8319 
8320 static int perf_tp_event_init(struct perf_event *event)
8321 {
8322 	int err;
8323 
8324 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8325 		return -ENOENT;
8326 
8327 	/*
8328 	 * no branch sampling for tracepoint events
8329 	 */
8330 	if (has_branch_stack(event))
8331 		return -EOPNOTSUPP;
8332 
8333 	err = perf_trace_init(event);
8334 	if (err)
8335 		return err;
8336 
8337 	event->destroy = tp_perf_event_destroy;
8338 
8339 	return 0;
8340 }
8341 
8342 static struct pmu perf_tracepoint = {
8343 	.task_ctx_nr	= perf_sw_context,
8344 
8345 	.event_init	= perf_tp_event_init,
8346 	.add		= perf_trace_add,
8347 	.del		= perf_trace_del,
8348 	.start		= perf_swevent_start,
8349 	.stop		= perf_swevent_stop,
8350 	.read		= perf_swevent_read,
8351 };
8352 
8353 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8354 /*
8355  * Flags in config, used by dynamic PMU kprobe and uprobe
8356  * The flags should match following PMU_FORMAT_ATTR().
8357  *
8358  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8359  *                               if not set, create kprobe/uprobe
8360  */
8361 enum perf_probe_config {
8362 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8363 };
8364 
8365 PMU_FORMAT_ATTR(retprobe, "config:0");
8366 
8367 static struct attribute *probe_attrs[] = {
8368 	&format_attr_retprobe.attr,
8369 	NULL,
8370 };
8371 
8372 static struct attribute_group probe_format_group = {
8373 	.name = "format",
8374 	.attrs = probe_attrs,
8375 };
8376 
8377 static const struct attribute_group *probe_attr_groups[] = {
8378 	&probe_format_group,
8379 	NULL,
8380 };
8381 #endif
8382 
8383 #ifdef CONFIG_KPROBE_EVENTS
8384 static int perf_kprobe_event_init(struct perf_event *event);
8385 static struct pmu perf_kprobe = {
8386 	.task_ctx_nr	= perf_sw_context,
8387 	.event_init	= perf_kprobe_event_init,
8388 	.add		= perf_trace_add,
8389 	.del		= perf_trace_del,
8390 	.start		= perf_swevent_start,
8391 	.stop		= perf_swevent_stop,
8392 	.read		= perf_swevent_read,
8393 	.attr_groups	= probe_attr_groups,
8394 };
8395 
8396 static int perf_kprobe_event_init(struct perf_event *event)
8397 {
8398 	int err;
8399 	bool is_retprobe;
8400 
8401 	if (event->attr.type != perf_kprobe.type)
8402 		return -ENOENT;
8403 
8404 	if (!capable(CAP_SYS_ADMIN))
8405 		return -EACCES;
8406 
8407 	/*
8408 	 * no branch sampling for probe events
8409 	 */
8410 	if (has_branch_stack(event))
8411 		return -EOPNOTSUPP;
8412 
8413 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8414 	err = perf_kprobe_init(event, is_retprobe);
8415 	if (err)
8416 		return err;
8417 
8418 	event->destroy = perf_kprobe_destroy;
8419 
8420 	return 0;
8421 }
8422 #endif /* CONFIG_KPROBE_EVENTS */
8423 
8424 #ifdef CONFIG_UPROBE_EVENTS
8425 static int perf_uprobe_event_init(struct perf_event *event);
8426 static struct pmu perf_uprobe = {
8427 	.task_ctx_nr	= perf_sw_context,
8428 	.event_init	= perf_uprobe_event_init,
8429 	.add		= perf_trace_add,
8430 	.del		= perf_trace_del,
8431 	.start		= perf_swevent_start,
8432 	.stop		= perf_swevent_stop,
8433 	.read		= perf_swevent_read,
8434 	.attr_groups	= probe_attr_groups,
8435 };
8436 
8437 static int perf_uprobe_event_init(struct perf_event *event)
8438 {
8439 	int err;
8440 	bool is_retprobe;
8441 
8442 	if (event->attr.type != perf_uprobe.type)
8443 		return -ENOENT;
8444 
8445 	if (!capable(CAP_SYS_ADMIN))
8446 		return -EACCES;
8447 
8448 	/*
8449 	 * no branch sampling for probe events
8450 	 */
8451 	if (has_branch_stack(event))
8452 		return -EOPNOTSUPP;
8453 
8454 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8455 	err = perf_uprobe_init(event, is_retprobe);
8456 	if (err)
8457 		return err;
8458 
8459 	event->destroy = perf_uprobe_destroy;
8460 
8461 	return 0;
8462 }
8463 #endif /* CONFIG_UPROBE_EVENTS */
8464 
8465 static inline void perf_tp_register(void)
8466 {
8467 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8468 #ifdef CONFIG_KPROBE_EVENTS
8469 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
8470 #endif
8471 #ifdef CONFIG_UPROBE_EVENTS
8472 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
8473 #endif
8474 }
8475 
8476 static void perf_event_free_filter(struct perf_event *event)
8477 {
8478 	ftrace_profile_free_filter(event);
8479 }
8480 
8481 #ifdef CONFIG_BPF_SYSCALL
8482 static void bpf_overflow_handler(struct perf_event *event,
8483 				 struct perf_sample_data *data,
8484 				 struct pt_regs *regs)
8485 {
8486 	struct bpf_perf_event_data_kern ctx = {
8487 		.data = data,
8488 		.event = event,
8489 	};
8490 	int ret = 0;
8491 
8492 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8493 	preempt_disable();
8494 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8495 		goto out;
8496 	rcu_read_lock();
8497 	ret = BPF_PROG_RUN(event->prog, &ctx);
8498 	rcu_read_unlock();
8499 out:
8500 	__this_cpu_dec(bpf_prog_active);
8501 	preempt_enable();
8502 	if (!ret)
8503 		return;
8504 
8505 	event->orig_overflow_handler(event, data, regs);
8506 }
8507 
8508 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8509 {
8510 	struct bpf_prog *prog;
8511 
8512 	if (event->overflow_handler_context)
8513 		/* hw breakpoint or kernel counter */
8514 		return -EINVAL;
8515 
8516 	if (event->prog)
8517 		return -EEXIST;
8518 
8519 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8520 	if (IS_ERR(prog))
8521 		return PTR_ERR(prog);
8522 
8523 	event->prog = prog;
8524 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8525 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8526 	return 0;
8527 }
8528 
8529 static void perf_event_free_bpf_handler(struct perf_event *event)
8530 {
8531 	struct bpf_prog *prog = event->prog;
8532 
8533 	if (!prog)
8534 		return;
8535 
8536 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8537 	event->prog = NULL;
8538 	bpf_prog_put(prog);
8539 }
8540 #else
8541 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8542 {
8543 	return -EOPNOTSUPP;
8544 }
8545 static void perf_event_free_bpf_handler(struct perf_event *event)
8546 {
8547 }
8548 #endif
8549 
8550 /*
8551  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8552  * with perf_event_open()
8553  */
8554 static inline bool perf_event_is_tracing(struct perf_event *event)
8555 {
8556 	if (event->pmu == &perf_tracepoint)
8557 		return true;
8558 #ifdef CONFIG_KPROBE_EVENTS
8559 	if (event->pmu == &perf_kprobe)
8560 		return true;
8561 #endif
8562 #ifdef CONFIG_UPROBE_EVENTS
8563 	if (event->pmu == &perf_uprobe)
8564 		return true;
8565 #endif
8566 	return false;
8567 }
8568 
8569 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8570 {
8571 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8572 	struct bpf_prog *prog;
8573 	int ret;
8574 
8575 	if (!perf_event_is_tracing(event))
8576 		return perf_event_set_bpf_handler(event, prog_fd);
8577 
8578 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8579 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8580 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8581 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8582 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8583 		return -EINVAL;
8584 
8585 	prog = bpf_prog_get(prog_fd);
8586 	if (IS_ERR(prog))
8587 		return PTR_ERR(prog);
8588 
8589 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8590 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8591 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8592 		/* valid fd, but invalid bpf program type */
8593 		bpf_prog_put(prog);
8594 		return -EINVAL;
8595 	}
8596 
8597 	/* Kprobe override only works for kprobes, not uprobes. */
8598 	if (prog->kprobe_override &&
8599 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8600 		bpf_prog_put(prog);
8601 		return -EINVAL;
8602 	}
8603 
8604 	if (is_tracepoint || is_syscall_tp) {
8605 		int off = trace_event_get_offsets(event->tp_event);
8606 
8607 		if (prog->aux->max_ctx_offset > off) {
8608 			bpf_prog_put(prog);
8609 			return -EACCES;
8610 		}
8611 	}
8612 
8613 	ret = perf_event_attach_bpf_prog(event, prog);
8614 	if (ret)
8615 		bpf_prog_put(prog);
8616 	return ret;
8617 }
8618 
8619 static void perf_event_free_bpf_prog(struct perf_event *event)
8620 {
8621 	if (!perf_event_is_tracing(event)) {
8622 		perf_event_free_bpf_handler(event);
8623 		return;
8624 	}
8625 	perf_event_detach_bpf_prog(event);
8626 }
8627 
8628 #else
8629 
8630 static inline void perf_tp_register(void)
8631 {
8632 }
8633 
8634 static void perf_event_free_filter(struct perf_event *event)
8635 {
8636 }
8637 
8638 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8639 {
8640 	return -ENOENT;
8641 }
8642 
8643 static void perf_event_free_bpf_prog(struct perf_event *event)
8644 {
8645 }
8646 #endif /* CONFIG_EVENT_TRACING */
8647 
8648 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8649 void perf_bp_event(struct perf_event *bp, void *data)
8650 {
8651 	struct perf_sample_data sample;
8652 	struct pt_regs *regs = data;
8653 
8654 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8655 
8656 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8657 		perf_swevent_event(bp, 1, &sample, regs);
8658 }
8659 #endif
8660 
8661 /*
8662  * Allocate a new address filter
8663  */
8664 static struct perf_addr_filter *
8665 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8666 {
8667 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8668 	struct perf_addr_filter *filter;
8669 
8670 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8671 	if (!filter)
8672 		return NULL;
8673 
8674 	INIT_LIST_HEAD(&filter->entry);
8675 	list_add_tail(&filter->entry, filters);
8676 
8677 	return filter;
8678 }
8679 
8680 static void free_filters_list(struct list_head *filters)
8681 {
8682 	struct perf_addr_filter *filter, *iter;
8683 
8684 	list_for_each_entry_safe(filter, iter, filters, entry) {
8685 		if (filter->inode)
8686 			iput(filter->inode);
8687 		list_del(&filter->entry);
8688 		kfree(filter);
8689 	}
8690 }
8691 
8692 /*
8693  * Free existing address filters and optionally install new ones
8694  */
8695 static void perf_addr_filters_splice(struct perf_event *event,
8696 				     struct list_head *head)
8697 {
8698 	unsigned long flags;
8699 	LIST_HEAD(list);
8700 
8701 	if (!has_addr_filter(event))
8702 		return;
8703 
8704 	/* don't bother with children, they don't have their own filters */
8705 	if (event->parent)
8706 		return;
8707 
8708 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8709 
8710 	list_splice_init(&event->addr_filters.list, &list);
8711 	if (head)
8712 		list_splice(head, &event->addr_filters.list);
8713 
8714 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8715 
8716 	free_filters_list(&list);
8717 }
8718 
8719 /*
8720  * Scan through mm's vmas and see if one of them matches the
8721  * @filter; if so, adjust filter's address range.
8722  * Called with mm::mmap_sem down for reading.
8723  */
8724 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8725 					    struct mm_struct *mm)
8726 {
8727 	struct vm_area_struct *vma;
8728 
8729 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8730 		struct file *file = vma->vm_file;
8731 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8732 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8733 
8734 		if (!file)
8735 			continue;
8736 
8737 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8738 			continue;
8739 
8740 		return vma->vm_start;
8741 	}
8742 
8743 	return 0;
8744 }
8745 
8746 /*
8747  * Update event's address range filters based on the
8748  * task's existing mappings, if any.
8749  */
8750 static void perf_event_addr_filters_apply(struct perf_event *event)
8751 {
8752 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8753 	struct task_struct *task = READ_ONCE(event->ctx->task);
8754 	struct perf_addr_filter *filter;
8755 	struct mm_struct *mm = NULL;
8756 	unsigned int count = 0;
8757 	unsigned long flags;
8758 
8759 	/*
8760 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8761 	 * will stop on the parent's child_mutex that our caller is also holding
8762 	 */
8763 	if (task == TASK_TOMBSTONE)
8764 		return;
8765 
8766 	if (!ifh->nr_file_filters)
8767 		return;
8768 
8769 	mm = get_task_mm(event->ctx->task);
8770 	if (!mm)
8771 		goto restart;
8772 
8773 	down_read(&mm->mmap_sem);
8774 
8775 	raw_spin_lock_irqsave(&ifh->lock, flags);
8776 	list_for_each_entry(filter, &ifh->list, entry) {
8777 		event->addr_filters_offs[count] = 0;
8778 
8779 		/*
8780 		 * Adjust base offset if the filter is associated to a binary
8781 		 * that needs to be mapped:
8782 		 */
8783 		if (filter->inode)
8784 			event->addr_filters_offs[count] =
8785 				perf_addr_filter_apply(filter, mm);
8786 
8787 		count++;
8788 	}
8789 
8790 	event->addr_filters_gen++;
8791 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8792 
8793 	up_read(&mm->mmap_sem);
8794 
8795 	mmput(mm);
8796 
8797 restart:
8798 	perf_event_stop(event, 1);
8799 }
8800 
8801 /*
8802  * Address range filtering: limiting the data to certain
8803  * instruction address ranges. Filters are ioctl()ed to us from
8804  * userspace as ascii strings.
8805  *
8806  * Filter string format:
8807  *
8808  * ACTION RANGE_SPEC
8809  * where ACTION is one of the
8810  *  * "filter": limit the trace to this region
8811  *  * "start": start tracing from this address
8812  *  * "stop": stop tracing at this address/region;
8813  * RANGE_SPEC is
8814  *  * for kernel addresses: <start address>[/<size>]
8815  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8816  *
8817  * if <size> is not specified or is zero, the range is treated as a single
8818  * address; not valid for ACTION=="filter".
8819  */
8820 enum {
8821 	IF_ACT_NONE = -1,
8822 	IF_ACT_FILTER,
8823 	IF_ACT_START,
8824 	IF_ACT_STOP,
8825 	IF_SRC_FILE,
8826 	IF_SRC_KERNEL,
8827 	IF_SRC_FILEADDR,
8828 	IF_SRC_KERNELADDR,
8829 };
8830 
8831 enum {
8832 	IF_STATE_ACTION = 0,
8833 	IF_STATE_SOURCE,
8834 	IF_STATE_END,
8835 };
8836 
8837 static const match_table_t if_tokens = {
8838 	{ IF_ACT_FILTER,	"filter" },
8839 	{ IF_ACT_START,		"start" },
8840 	{ IF_ACT_STOP,		"stop" },
8841 	{ IF_SRC_FILE,		"%u/%u@%s" },
8842 	{ IF_SRC_KERNEL,	"%u/%u" },
8843 	{ IF_SRC_FILEADDR,	"%u@%s" },
8844 	{ IF_SRC_KERNELADDR,	"%u" },
8845 	{ IF_ACT_NONE,		NULL },
8846 };
8847 
8848 /*
8849  * Address filter string parser
8850  */
8851 static int
8852 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8853 			     struct list_head *filters)
8854 {
8855 	struct perf_addr_filter *filter = NULL;
8856 	char *start, *orig, *filename = NULL;
8857 	struct path path;
8858 	substring_t args[MAX_OPT_ARGS];
8859 	int state = IF_STATE_ACTION, token;
8860 	unsigned int kernel = 0;
8861 	int ret = -EINVAL;
8862 
8863 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8864 	if (!fstr)
8865 		return -ENOMEM;
8866 
8867 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8868 		static const enum perf_addr_filter_action_t actions[] = {
8869 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
8870 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
8871 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
8872 		};
8873 		ret = -EINVAL;
8874 
8875 		if (!*start)
8876 			continue;
8877 
8878 		/* filter definition begins */
8879 		if (state == IF_STATE_ACTION) {
8880 			filter = perf_addr_filter_new(event, filters);
8881 			if (!filter)
8882 				goto fail;
8883 		}
8884 
8885 		token = match_token(start, if_tokens, args);
8886 		switch (token) {
8887 		case IF_ACT_FILTER:
8888 		case IF_ACT_START:
8889 		case IF_ACT_STOP:
8890 			if (state != IF_STATE_ACTION)
8891 				goto fail;
8892 
8893 			filter->action = actions[token];
8894 			state = IF_STATE_SOURCE;
8895 			break;
8896 
8897 		case IF_SRC_KERNELADDR:
8898 		case IF_SRC_KERNEL:
8899 			kernel = 1;
8900 
8901 		case IF_SRC_FILEADDR:
8902 		case IF_SRC_FILE:
8903 			if (state != IF_STATE_SOURCE)
8904 				goto fail;
8905 
8906 			*args[0].to = 0;
8907 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8908 			if (ret)
8909 				goto fail;
8910 
8911 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
8912 				*args[1].to = 0;
8913 				ret = kstrtoul(args[1].from, 0, &filter->size);
8914 				if (ret)
8915 					goto fail;
8916 			}
8917 
8918 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8919 				int fpos = token == IF_SRC_FILE ? 2 : 1;
8920 
8921 				filename = match_strdup(&args[fpos]);
8922 				if (!filename) {
8923 					ret = -ENOMEM;
8924 					goto fail;
8925 				}
8926 			}
8927 
8928 			state = IF_STATE_END;
8929 			break;
8930 
8931 		default:
8932 			goto fail;
8933 		}
8934 
8935 		/*
8936 		 * Filter definition is fully parsed, validate and install it.
8937 		 * Make sure that it doesn't contradict itself or the event's
8938 		 * attribute.
8939 		 */
8940 		if (state == IF_STATE_END) {
8941 			ret = -EINVAL;
8942 			if (kernel && event->attr.exclude_kernel)
8943 				goto fail;
8944 
8945 			/*
8946 			 * ACTION "filter" must have a non-zero length region
8947 			 * specified.
8948 			 */
8949 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
8950 			    !filter->size)
8951 				goto fail;
8952 
8953 			if (!kernel) {
8954 				if (!filename)
8955 					goto fail;
8956 
8957 				/*
8958 				 * For now, we only support file-based filters
8959 				 * in per-task events; doing so for CPU-wide
8960 				 * events requires additional context switching
8961 				 * trickery, since same object code will be
8962 				 * mapped at different virtual addresses in
8963 				 * different processes.
8964 				 */
8965 				ret = -EOPNOTSUPP;
8966 				if (!event->ctx->task)
8967 					goto fail_free_name;
8968 
8969 				/* look up the path and grab its inode */
8970 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8971 				if (ret)
8972 					goto fail_free_name;
8973 
8974 				filter->inode = igrab(d_inode(path.dentry));
8975 				path_put(&path);
8976 				kfree(filename);
8977 				filename = NULL;
8978 
8979 				ret = -EINVAL;
8980 				if (!filter->inode ||
8981 				    !S_ISREG(filter->inode->i_mode))
8982 					/* free_filters_list() will iput() */
8983 					goto fail;
8984 
8985 				event->addr_filters.nr_file_filters++;
8986 			}
8987 
8988 			/* ready to consume more filters */
8989 			state = IF_STATE_ACTION;
8990 			filter = NULL;
8991 		}
8992 	}
8993 
8994 	if (state != IF_STATE_ACTION)
8995 		goto fail;
8996 
8997 	kfree(orig);
8998 
8999 	return 0;
9000 
9001 fail_free_name:
9002 	kfree(filename);
9003 fail:
9004 	free_filters_list(filters);
9005 	kfree(orig);
9006 
9007 	return ret;
9008 }
9009 
9010 static int
9011 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9012 {
9013 	LIST_HEAD(filters);
9014 	int ret;
9015 
9016 	/*
9017 	 * Since this is called in perf_ioctl() path, we're already holding
9018 	 * ctx::mutex.
9019 	 */
9020 	lockdep_assert_held(&event->ctx->mutex);
9021 
9022 	if (WARN_ON_ONCE(event->parent))
9023 		return -EINVAL;
9024 
9025 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9026 	if (ret)
9027 		goto fail_clear_files;
9028 
9029 	ret = event->pmu->addr_filters_validate(&filters);
9030 	if (ret)
9031 		goto fail_free_filters;
9032 
9033 	/* remove existing filters, if any */
9034 	perf_addr_filters_splice(event, &filters);
9035 
9036 	/* install new filters */
9037 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9038 
9039 	return ret;
9040 
9041 fail_free_filters:
9042 	free_filters_list(&filters);
9043 
9044 fail_clear_files:
9045 	event->addr_filters.nr_file_filters = 0;
9046 
9047 	return ret;
9048 }
9049 
9050 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9051 {
9052 	int ret = -EINVAL;
9053 	char *filter_str;
9054 
9055 	filter_str = strndup_user(arg, PAGE_SIZE);
9056 	if (IS_ERR(filter_str))
9057 		return PTR_ERR(filter_str);
9058 
9059 #ifdef CONFIG_EVENT_TRACING
9060 	if (perf_event_is_tracing(event)) {
9061 		struct perf_event_context *ctx = event->ctx;
9062 
9063 		/*
9064 		 * Beware, here be dragons!!
9065 		 *
9066 		 * the tracepoint muck will deadlock against ctx->mutex, but
9067 		 * the tracepoint stuff does not actually need it. So
9068 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9069 		 * already have a reference on ctx.
9070 		 *
9071 		 * This can result in event getting moved to a different ctx,
9072 		 * but that does not affect the tracepoint state.
9073 		 */
9074 		mutex_unlock(&ctx->mutex);
9075 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9076 		mutex_lock(&ctx->mutex);
9077 	} else
9078 #endif
9079 	if (has_addr_filter(event))
9080 		ret = perf_event_set_addr_filter(event, filter_str);
9081 
9082 	kfree(filter_str);
9083 	return ret;
9084 }
9085 
9086 /*
9087  * hrtimer based swevent callback
9088  */
9089 
9090 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9091 {
9092 	enum hrtimer_restart ret = HRTIMER_RESTART;
9093 	struct perf_sample_data data;
9094 	struct pt_regs *regs;
9095 	struct perf_event *event;
9096 	u64 period;
9097 
9098 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9099 
9100 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9101 		return HRTIMER_NORESTART;
9102 
9103 	event->pmu->read(event);
9104 
9105 	perf_sample_data_init(&data, 0, event->hw.last_period);
9106 	regs = get_irq_regs();
9107 
9108 	if (regs && !perf_exclude_event(event, regs)) {
9109 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9110 			if (__perf_event_overflow(event, 1, &data, regs))
9111 				ret = HRTIMER_NORESTART;
9112 	}
9113 
9114 	period = max_t(u64, 10000, event->hw.sample_period);
9115 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9116 
9117 	return ret;
9118 }
9119 
9120 static void perf_swevent_start_hrtimer(struct perf_event *event)
9121 {
9122 	struct hw_perf_event *hwc = &event->hw;
9123 	s64 period;
9124 
9125 	if (!is_sampling_event(event))
9126 		return;
9127 
9128 	period = local64_read(&hwc->period_left);
9129 	if (period) {
9130 		if (period < 0)
9131 			period = 10000;
9132 
9133 		local64_set(&hwc->period_left, 0);
9134 	} else {
9135 		period = max_t(u64, 10000, hwc->sample_period);
9136 	}
9137 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9138 		      HRTIMER_MODE_REL_PINNED);
9139 }
9140 
9141 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9142 {
9143 	struct hw_perf_event *hwc = &event->hw;
9144 
9145 	if (is_sampling_event(event)) {
9146 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9147 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9148 
9149 		hrtimer_cancel(&hwc->hrtimer);
9150 	}
9151 }
9152 
9153 static void perf_swevent_init_hrtimer(struct perf_event *event)
9154 {
9155 	struct hw_perf_event *hwc = &event->hw;
9156 
9157 	if (!is_sampling_event(event))
9158 		return;
9159 
9160 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9161 	hwc->hrtimer.function = perf_swevent_hrtimer;
9162 
9163 	/*
9164 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9165 	 * mapping and avoid the whole period adjust feedback stuff.
9166 	 */
9167 	if (event->attr.freq) {
9168 		long freq = event->attr.sample_freq;
9169 
9170 		event->attr.sample_period = NSEC_PER_SEC / freq;
9171 		hwc->sample_period = event->attr.sample_period;
9172 		local64_set(&hwc->period_left, hwc->sample_period);
9173 		hwc->last_period = hwc->sample_period;
9174 		event->attr.freq = 0;
9175 	}
9176 }
9177 
9178 /*
9179  * Software event: cpu wall time clock
9180  */
9181 
9182 static void cpu_clock_event_update(struct perf_event *event)
9183 {
9184 	s64 prev;
9185 	u64 now;
9186 
9187 	now = local_clock();
9188 	prev = local64_xchg(&event->hw.prev_count, now);
9189 	local64_add(now - prev, &event->count);
9190 }
9191 
9192 static void cpu_clock_event_start(struct perf_event *event, int flags)
9193 {
9194 	local64_set(&event->hw.prev_count, local_clock());
9195 	perf_swevent_start_hrtimer(event);
9196 }
9197 
9198 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9199 {
9200 	perf_swevent_cancel_hrtimer(event);
9201 	cpu_clock_event_update(event);
9202 }
9203 
9204 static int cpu_clock_event_add(struct perf_event *event, int flags)
9205 {
9206 	if (flags & PERF_EF_START)
9207 		cpu_clock_event_start(event, flags);
9208 	perf_event_update_userpage(event);
9209 
9210 	return 0;
9211 }
9212 
9213 static void cpu_clock_event_del(struct perf_event *event, int flags)
9214 {
9215 	cpu_clock_event_stop(event, flags);
9216 }
9217 
9218 static void cpu_clock_event_read(struct perf_event *event)
9219 {
9220 	cpu_clock_event_update(event);
9221 }
9222 
9223 static int cpu_clock_event_init(struct perf_event *event)
9224 {
9225 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9226 		return -ENOENT;
9227 
9228 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9229 		return -ENOENT;
9230 
9231 	/*
9232 	 * no branch sampling for software events
9233 	 */
9234 	if (has_branch_stack(event))
9235 		return -EOPNOTSUPP;
9236 
9237 	perf_swevent_init_hrtimer(event);
9238 
9239 	return 0;
9240 }
9241 
9242 static struct pmu perf_cpu_clock = {
9243 	.task_ctx_nr	= perf_sw_context,
9244 
9245 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9246 
9247 	.event_init	= cpu_clock_event_init,
9248 	.add		= cpu_clock_event_add,
9249 	.del		= cpu_clock_event_del,
9250 	.start		= cpu_clock_event_start,
9251 	.stop		= cpu_clock_event_stop,
9252 	.read		= cpu_clock_event_read,
9253 };
9254 
9255 /*
9256  * Software event: task time clock
9257  */
9258 
9259 static void task_clock_event_update(struct perf_event *event, u64 now)
9260 {
9261 	u64 prev;
9262 	s64 delta;
9263 
9264 	prev = local64_xchg(&event->hw.prev_count, now);
9265 	delta = now - prev;
9266 	local64_add(delta, &event->count);
9267 }
9268 
9269 static void task_clock_event_start(struct perf_event *event, int flags)
9270 {
9271 	local64_set(&event->hw.prev_count, event->ctx->time);
9272 	perf_swevent_start_hrtimer(event);
9273 }
9274 
9275 static void task_clock_event_stop(struct perf_event *event, int flags)
9276 {
9277 	perf_swevent_cancel_hrtimer(event);
9278 	task_clock_event_update(event, event->ctx->time);
9279 }
9280 
9281 static int task_clock_event_add(struct perf_event *event, int flags)
9282 {
9283 	if (flags & PERF_EF_START)
9284 		task_clock_event_start(event, flags);
9285 	perf_event_update_userpage(event);
9286 
9287 	return 0;
9288 }
9289 
9290 static void task_clock_event_del(struct perf_event *event, int flags)
9291 {
9292 	task_clock_event_stop(event, PERF_EF_UPDATE);
9293 }
9294 
9295 static void task_clock_event_read(struct perf_event *event)
9296 {
9297 	u64 now = perf_clock();
9298 	u64 delta = now - event->ctx->timestamp;
9299 	u64 time = event->ctx->time + delta;
9300 
9301 	task_clock_event_update(event, time);
9302 }
9303 
9304 static int task_clock_event_init(struct perf_event *event)
9305 {
9306 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9307 		return -ENOENT;
9308 
9309 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9310 		return -ENOENT;
9311 
9312 	/*
9313 	 * no branch sampling for software events
9314 	 */
9315 	if (has_branch_stack(event))
9316 		return -EOPNOTSUPP;
9317 
9318 	perf_swevent_init_hrtimer(event);
9319 
9320 	return 0;
9321 }
9322 
9323 static struct pmu perf_task_clock = {
9324 	.task_ctx_nr	= perf_sw_context,
9325 
9326 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9327 
9328 	.event_init	= task_clock_event_init,
9329 	.add		= task_clock_event_add,
9330 	.del		= task_clock_event_del,
9331 	.start		= task_clock_event_start,
9332 	.stop		= task_clock_event_stop,
9333 	.read		= task_clock_event_read,
9334 };
9335 
9336 static void perf_pmu_nop_void(struct pmu *pmu)
9337 {
9338 }
9339 
9340 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9341 {
9342 }
9343 
9344 static int perf_pmu_nop_int(struct pmu *pmu)
9345 {
9346 	return 0;
9347 }
9348 
9349 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9350 
9351 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9352 {
9353 	__this_cpu_write(nop_txn_flags, flags);
9354 
9355 	if (flags & ~PERF_PMU_TXN_ADD)
9356 		return;
9357 
9358 	perf_pmu_disable(pmu);
9359 }
9360 
9361 static int perf_pmu_commit_txn(struct pmu *pmu)
9362 {
9363 	unsigned int flags = __this_cpu_read(nop_txn_flags);
9364 
9365 	__this_cpu_write(nop_txn_flags, 0);
9366 
9367 	if (flags & ~PERF_PMU_TXN_ADD)
9368 		return 0;
9369 
9370 	perf_pmu_enable(pmu);
9371 	return 0;
9372 }
9373 
9374 static void perf_pmu_cancel_txn(struct pmu *pmu)
9375 {
9376 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
9377 
9378 	__this_cpu_write(nop_txn_flags, 0);
9379 
9380 	if (flags & ~PERF_PMU_TXN_ADD)
9381 		return;
9382 
9383 	perf_pmu_enable(pmu);
9384 }
9385 
9386 static int perf_event_idx_default(struct perf_event *event)
9387 {
9388 	return 0;
9389 }
9390 
9391 /*
9392  * Ensures all contexts with the same task_ctx_nr have the same
9393  * pmu_cpu_context too.
9394  */
9395 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9396 {
9397 	struct pmu *pmu;
9398 
9399 	if (ctxn < 0)
9400 		return NULL;
9401 
9402 	list_for_each_entry(pmu, &pmus, entry) {
9403 		if (pmu->task_ctx_nr == ctxn)
9404 			return pmu->pmu_cpu_context;
9405 	}
9406 
9407 	return NULL;
9408 }
9409 
9410 static void free_pmu_context(struct pmu *pmu)
9411 {
9412 	/*
9413 	 * Static contexts such as perf_sw_context have a global lifetime
9414 	 * and may be shared between different PMUs. Avoid freeing them
9415 	 * when a single PMU is going away.
9416 	 */
9417 	if (pmu->task_ctx_nr > perf_invalid_context)
9418 		return;
9419 
9420 	mutex_lock(&pmus_lock);
9421 	free_percpu(pmu->pmu_cpu_context);
9422 	mutex_unlock(&pmus_lock);
9423 }
9424 
9425 /*
9426  * Let userspace know that this PMU supports address range filtering:
9427  */
9428 static ssize_t nr_addr_filters_show(struct device *dev,
9429 				    struct device_attribute *attr,
9430 				    char *page)
9431 {
9432 	struct pmu *pmu = dev_get_drvdata(dev);
9433 
9434 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9435 }
9436 DEVICE_ATTR_RO(nr_addr_filters);
9437 
9438 static struct idr pmu_idr;
9439 
9440 static ssize_t
9441 type_show(struct device *dev, struct device_attribute *attr, char *page)
9442 {
9443 	struct pmu *pmu = dev_get_drvdata(dev);
9444 
9445 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9446 }
9447 static DEVICE_ATTR_RO(type);
9448 
9449 static ssize_t
9450 perf_event_mux_interval_ms_show(struct device *dev,
9451 				struct device_attribute *attr,
9452 				char *page)
9453 {
9454 	struct pmu *pmu = dev_get_drvdata(dev);
9455 
9456 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9457 }
9458 
9459 static DEFINE_MUTEX(mux_interval_mutex);
9460 
9461 static ssize_t
9462 perf_event_mux_interval_ms_store(struct device *dev,
9463 				 struct device_attribute *attr,
9464 				 const char *buf, size_t count)
9465 {
9466 	struct pmu *pmu = dev_get_drvdata(dev);
9467 	int timer, cpu, ret;
9468 
9469 	ret = kstrtoint(buf, 0, &timer);
9470 	if (ret)
9471 		return ret;
9472 
9473 	if (timer < 1)
9474 		return -EINVAL;
9475 
9476 	/* same value, noting to do */
9477 	if (timer == pmu->hrtimer_interval_ms)
9478 		return count;
9479 
9480 	mutex_lock(&mux_interval_mutex);
9481 	pmu->hrtimer_interval_ms = timer;
9482 
9483 	/* update all cpuctx for this PMU */
9484 	cpus_read_lock();
9485 	for_each_online_cpu(cpu) {
9486 		struct perf_cpu_context *cpuctx;
9487 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9488 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9489 
9490 		cpu_function_call(cpu,
9491 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9492 	}
9493 	cpus_read_unlock();
9494 	mutex_unlock(&mux_interval_mutex);
9495 
9496 	return count;
9497 }
9498 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9499 
9500 static struct attribute *pmu_dev_attrs[] = {
9501 	&dev_attr_type.attr,
9502 	&dev_attr_perf_event_mux_interval_ms.attr,
9503 	NULL,
9504 };
9505 ATTRIBUTE_GROUPS(pmu_dev);
9506 
9507 static int pmu_bus_running;
9508 static struct bus_type pmu_bus = {
9509 	.name		= "event_source",
9510 	.dev_groups	= pmu_dev_groups,
9511 };
9512 
9513 static void pmu_dev_release(struct device *dev)
9514 {
9515 	kfree(dev);
9516 }
9517 
9518 static int pmu_dev_alloc(struct pmu *pmu)
9519 {
9520 	int ret = -ENOMEM;
9521 
9522 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9523 	if (!pmu->dev)
9524 		goto out;
9525 
9526 	pmu->dev->groups = pmu->attr_groups;
9527 	device_initialize(pmu->dev);
9528 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9529 	if (ret)
9530 		goto free_dev;
9531 
9532 	dev_set_drvdata(pmu->dev, pmu);
9533 	pmu->dev->bus = &pmu_bus;
9534 	pmu->dev->release = pmu_dev_release;
9535 	ret = device_add(pmu->dev);
9536 	if (ret)
9537 		goto free_dev;
9538 
9539 	/* For PMUs with address filters, throw in an extra attribute: */
9540 	if (pmu->nr_addr_filters)
9541 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9542 
9543 	if (ret)
9544 		goto del_dev;
9545 
9546 out:
9547 	return ret;
9548 
9549 del_dev:
9550 	device_del(pmu->dev);
9551 
9552 free_dev:
9553 	put_device(pmu->dev);
9554 	goto out;
9555 }
9556 
9557 static struct lock_class_key cpuctx_mutex;
9558 static struct lock_class_key cpuctx_lock;
9559 
9560 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9561 {
9562 	int cpu, ret;
9563 
9564 	mutex_lock(&pmus_lock);
9565 	ret = -ENOMEM;
9566 	pmu->pmu_disable_count = alloc_percpu(int);
9567 	if (!pmu->pmu_disable_count)
9568 		goto unlock;
9569 
9570 	pmu->type = -1;
9571 	if (!name)
9572 		goto skip_type;
9573 	pmu->name = name;
9574 
9575 	if (type < 0) {
9576 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9577 		if (type < 0) {
9578 			ret = type;
9579 			goto free_pdc;
9580 		}
9581 	}
9582 	pmu->type = type;
9583 
9584 	if (pmu_bus_running) {
9585 		ret = pmu_dev_alloc(pmu);
9586 		if (ret)
9587 			goto free_idr;
9588 	}
9589 
9590 skip_type:
9591 	if (pmu->task_ctx_nr == perf_hw_context) {
9592 		static int hw_context_taken = 0;
9593 
9594 		/*
9595 		 * Other than systems with heterogeneous CPUs, it never makes
9596 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9597 		 * uncore must use perf_invalid_context.
9598 		 */
9599 		if (WARN_ON_ONCE(hw_context_taken &&
9600 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9601 			pmu->task_ctx_nr = perf_invalid_context;
9602 
9603 		hw_context_taken = 1;
9604 	}
9605 
9606 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9607 	if (pmu->pmu_cpu_context)
9608 		goto got_cpu_context;
9609 
9610 	ret = -ENOMEM;
9611 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9612 	if (!pmu->pmu_cpu_context)
9613 		goto free_dev;
9614 
9615 	for_each_possible_cpu(cpu) {
9616 		struct perf_cpu_context *cpuctx;
9617 
9618 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9619 		__perf_event_init_context(&cpuctx->ctx);
9620 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9621 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9622 		cpuctx->ctx.pmu = pmu;
9623 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9624 
9625 		__perf_mux_hrtimer_init(cpuctx, cpu);
9626 	}
9627 
9628 got_cpu_context:
9629 	if (!pmu->start_txn) {
9630 		if (pmu->pmu_enable) {
9631 			/*
9632 			 * If we have pmu_enable/pmu_disable calls, install
9633 			 * transaction stubs that use that to try and batch
9634 			 * hardware accesses.
9635 			 */
9636 			pmu->start_txn  = perf_pmu_start_txn;
9637 			pmu->commit_txn = perf_pmu_commit_txn;
9638 			pmu->cancel_txn = perf_pmu_cancel_txn;
9639 		} else {
9640 			pmu->start_txn  = perf_pmu_nop_txn;
9641 			pmu->commit_txn = perf_pmu_nop_int;
9642 			pmu->cancel_txn = perf_pmu_nop_void;
9643 		}
9644 	}
9645 
9646 	if (!pmu->pmu_enable) {
9647 		pmu->pmu_enable  = perf_pmu_nop_void;
9648 		pmu->pmu_disable = perf_pmu_nop_void;
9649 	}
9650 
9651 	if (!pmu->event_idx)
9652 		pmu->event_idx = perf_event_idx_default;
9653 
9654 	list_add_rcu(&pmu->entry, &pmus);
9655 	atomic_set(&pmu->exclusive_cnt, 0);
9656 	ret = 0;
9657 unlock:
9658 	mutex_unlock(&pmus_lock);
9659 
9660 	return ret;
9661 
9662 free_dev:
9663 	device_del(pmu->dev);
9664 	put_device(pmu->dev);
9665 
9666 free_idr:
9667 	if (pmu->type >= PERF_TYPE_MAX)
9668 		idr_remove(&pmu_idr, pmu->type);
9669 
9670 free_pdc:
9671 	free_percpu(pmu->pmu_disable_count);
9672 	goto unlock;
9673 }
9674 EXPORT_SYMBOL_GPL(perf_pmu_register);
9675 
9676 void perf_pmu_unregister(struct pmu *pmu)
9677 {
9678 	int remove_device;
9679 
9680 	mutex_lock(&pmus_lock);
9681 	remove_device = pmu_bus_running;
9682 	list_del_rcu(&pmu->entry);
9683 	mutex_unlock(&pmus_lock);
9684 
9685 	/*
9686 	 * We dereference the pmu list under both SRCU and regular RCU, so
9687 	 * synchronize against both of those.
9688 	 */
9689 	synchronize_srcu(&pmus_srcu);
9690 	synchronize_rcu();
9691 
9692 	free_percpu(pmu->pmu_disable_count);
9693 	if (pmu->type >= PERF_TYPE_MAX)
9694 		idr_remove(&pmu_idr, pmu->type);
9695 	if (remove_device) {
9696 		if (pmu->nr_addr_filters)
9697 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9698 		device_del(pmu->dev);
9699 		put_device(pmu->dev);
9700 	}
9701 	free_pmu_context(pmu);
9702 }
9703 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9704 
9705 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9706 {
9707 	struct perf_event_context *ctx = NULL;
9708 	int ret;
9709 
9710 	if (!try_module_get(pmu->module))
9711 		return -ENODEV;
9712 
9713 	/*
9714 	 * A number of pmu->event_init() methods iterate the sibling_list to,
9715 	 * for example, validate if the group fits on the PMU. Therefore,
9716 	 * if this is a sibling event, acquire the ctx->mutex to protect
9717 	 * the sibling_list.
9718 	 */
9719 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9720 		/*
9721 		 * This ctx->mutex can nest when we're called through
9722 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9723 		 */
9724 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9725 						 SINGLE_DEPTH_NESTING);
9726 		BUG_ON(!ctx);
9727 	}
9728 
9729 	event->pmu = pmu;
9730 	ret = pmu->event_init(event);
9731 
9732 	if (ctx)
9733 		perf_event_ctx_unlock(event->group_leader, ctx);
9734 
9735 	if (ret)
9736 		module_put(pmu->module);
9737 
9738 	return ret;
9739 }
9740 
9741 static struct pmu *perf_init_event(struct perf_event *event)
9742 {
9743 	struct pmu *pmu;
9744 	int idx;
9745 	int ret;
9746 
9747 	idx = srcu_read_lock(&pmus_srcu);
9748 
9749 	/* Try parent's PMU first: */
9750 	if (event->parent && event->parent->pmu) {
9751 		pmu = event->parent->pmu;
9752 		ret = perf_try_init_event(pmu, event);
9753 		if (!ret)
9754 			goto unlock;
9755 	}
9756 
9757 	rcu_read_lock();
9758 	pmu = idr_find(&pmu_idr, event->attr.type);
9759 	rcu_read_unlock();
9760 	if (pmu) {
9761 		ret = perf_try_init_event(pmu, event);
9762 		if (ret)
9763 			pmu = ERR_PTR(ret);
9764 		goto unlock;
9765 	}
9766 
9767 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9768 		ret = perf_try_init_event(pmu, event);
9769 		if (!ret)
9770 			goto unlock;
9771 
9772 		if (ret != -ENOENT) {
9773 			pmu = ERR_PTR(ret);
9774 			goto unlock;
9775 		}
9776 	}
9777 	pmu = ERR_PTR(-ENOENT);
9778 unlock:
9779 	srcu_read_unlock(&pmus_srcu, idx);
9780 
9781 	return pmu;
9782 }
9783 
9784 static void attach_sb_event(struct perf_event *event)
9785 {
9786 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9787 
9788 	raw_spin_lock(&pel->lock);
9789 	list_add_rcu(&event->sb_list, &pel->list);
9790 	raw_spin_unlock(&pel->lock);
9791 }
9792 
9793 /*
9794  * We keep a list of all !task (and therefore per-cpu) events
9795  * that need to receive side-band records.
9796  *
9797  * This avoids having to scan all the various PMU per-cpu contexts
9798  * looking for them.
9799  */
9800 static void account_pmu_sb_event(struct perf_event *event)
9801 {
9802 	if (is_sb_event(event))
9803 		attach_sb_event(event);
9804 }
9805 
9806 static void account_event_cpu(struct perf_event *event, int cpu)
9807 {
9808 	if (event->parent)
9809 		return;
9810 
9811 	if (is_cgroup_event(event))
9812 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9813 }
9814 
9815 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9816 static void account_freq_event_nohz(void)
9817 {
9818 #ifdef CONFIG_NO_HZ_FULL
9819 	/* Lock so we don't race with concurrent unaccount */
9820 	spin_lock(&nr_freq_lock);
9821 	if (atomic_inc_return(&nr_freq_events) == 1)
9822 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9823 	spin_unlock(&nr_freq_lock);
9824 #endif
9825 }
9826 
9827 static void account_freq_event(void)
9828 {
9829 	if (tick_nohz_full_enabled())
9830 		account_freq_event_nohz();
9831 	else
9832 		atomic_inc(&nr_freq_events);
9833 }
9834 
9835 
9836 static void account_event(struct perf_event *event)
9837 {
9838 	bool inc = false;
9839 
9840 	if (event->parent)
9841 		return;
9842 
9843 	if (event->attach_state & PERF_ATTACH_TASK)
9844 		inc = true;
9845 	if (event->attr.mmap || event->attr.mmap_data)
9846 		atomic_inc(&nr_mmap_events);
9847 	if (event->attr.comm)
9848 		atomic_inc(&nr_comm_events);
9849 	if (event->attr.namespaces)
9850 		atomic_inc(&nr_namespaces_events);
9851 	if (event->attr.task)
9852 		atomic_inc(&nr_task_events);
9853 	if (event->attr.freq)
9854 		account_freq_event();
9855 	if (event->attr.context_switch) {
9856 		atomic_inc(&nr_switch_events);
9857 		inc = true;
9858 	}
9859 	if (has_branch_stack(event))
9860 		inc = true;
9861 	if (is_cgroup_event(event))
9862 		inc = true;
9863 
9864 	if (inc) {
9865 		/*
9866 		 * We need the mutex here because static_branch_enable()
9867 		 * must complete *before* the perf_sched_count increment
9868 		 * becomes visible.
9869 		 */
9870 		if (atomic_inc_not_zero(&perf_sched_count))
9871 			goto enabled;
9872 
9873 		mutex_lock(&perf_sched_mutex);
9874 		if (!atomic_read(&perf_sched_count)) {
9875 			static_branch_enable(&perf_sched_events);
9876 			/*
9877 			 * Guarantee that all CPUs observe they key change and
9878 			 * call the perf scheduling hooks before proceeding to
9879 			 * install events that need them.
9880 			 */
9881 			synchronize_sched();
9882 		}
9883 		/*
9884 		 * Now that we have waited for the sync_sched(), allow further
9885 		 * increments to by-pass the mutex.
9886 		 */
9887 		atomic_inc(&perf_sched_count);
9888 		mutex_unlock(&perf_sched_mutex);
9889 	}
9890 enabled:
9891 
9892 	account_event_cpu(event, event->cpu);
9893 
9894 	account_pmu_sb_event(event);
9895 }
9896 
9897 /*
9898  * Allocate and initialize a event structure
9899  */
9900 static struct perf_event *
9901 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9902 		 struct task_struct *task,
9903 		 struct perf_event *group_leader,
9904 		 struct perf_event *parent_event,
9905 		 perf_overflow_handler_t overflow_handler,
9906 		 void *context, int cgroup_fd)
9907 {
9908 	struct pmu *pmu;
9909 	struct perf_event *event;
9910 	struct hw_perf_event *hwc;
9911 	long err = -EINVAL;
9912 
9913 	if ((unsigned)cpu >= nr_cpu_ids) {
9914 		if (!task || cpu != -1)
9915 			return ERR_PTR(-EINVAL);
9916 	}
9917 
9918 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9919 	if (!event)
9920 		return ERR_PTR(-ENOMEM);
9921 
9922 	/*
9923 	 * Single events are their own group leaders, with an
9924 	 * empty sibling list:
9925 	 */
9926 	if (!group_leader)
9927 		group_leader = event;
9928 
9929 	mutex_init(&event->child_mutex);
9930 	INIT_LIST_HEAD(&event->child_list);
9931 
9932 	INIT_LIST_HEAD(&event->event_entry);
9933 	INIT_LIST_HEAD(&event->sibling_list);
9934 	INIT_LIST_HEAD(&event->active_list);
9935 	init_event_group(event);
9936 	INIT_LIST_HEAD(&event->rb_entry);
9937 	INIT_LIST_HEAD(&event->active_entry);
9938 	INIT_LIST_HEAD(&event->addr_filters.list);
9939 	INIT_HLIST_NODE(&event->hlist_entry);
9940 
9941 
9942 	init_waitqueue_head(&event->waitq);
9943 	init_irq_work(&event->pending, perf_pending_event);
9944 
9945 	mutex_init(&event->mmap_mutex);
9946 	raw_spin_lock_init(&event->addr_filters.lock);
9947 
9948 	atomic_long_set(&event->refcount, 1);
9949 	event->cpu		= cpu;
9950 	event->attr		= *attr;
9951 	event->group_leader	= group_leader;
9952 	event->pmu		= NULL;
9953 	event->oncpu		= -1;
9954 
9955 	event->parent		= parent_event;
9956 
9957 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9958 	event->id		= atomic64_inc_return(&perf_event_id);
9959 
9960 	event->state		= PERF_EVENT_STATE_INACTIVE;
9961 
9962 	if (task) {
9963 		event->attach_state = PERF_ATTACH_TASK;
9964 		/*
9965 		 * XXX pmu::event_init needs to know what task to account to
9966 		 * and we cannot use the ctx information because we need the
9967 		 * pmu before we get a ctx.
9968 		 */
9969 		get_task_struct(task);
9970 		event->hw.target = task;
9971 	}
9972 
9973 	event->clock = &local_clock;
9974 	if (parent_event)
9975 		event->clock = parent_event->clock;
9976 
9977 	if (!overflow_handler && parent_event) {
9978 		overflow_handler = parent_event->overflow_handler;
9979 		context = parent_event->overflow_handler_context;
9980 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9981 		if (overflow_handler == bpf_overflow_handler) {
9982 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9983 
9984 			if (IS_ERR(prog)) {
9985 				err = PTR_ERR(prog);
9986 				goto err_ns;
9987 			}
9988 			event->prog = prog;
9989 			event->orig_overflow_handler =
9990 				parent_event->orig_overflow_handler;
9991 		}
9992 #endif
9993 	}
9994 
9995 	if (overflow_handler) {
9996 		event->overflow_handler	= overflow_handler;
9997 		event->overflow_handler_context = context;
9998 	} else if (is_write_backward(event)){
9999 		event->overflow_handler = perf_event_output_backward;
10000 		event->overflow_handler_context = NULL;
10001 	} else {
10002 		event->overflow_handler = perf_event_output_forward;
10003 		event->overflow_handler_context = NULL;
10004 	}
10005 
10006 	perf_event__state_init(event);
10007 
10008 	pmu = NULL;
10009 
10010 	hwc = &event->hw;
10011 	hwc->sample_period = attr->sample_period;
10012 	if (attr->freq && attr->sample_freq)
10013 		hwc->sample_period = 1;
10014 	hwc->last_period = hwc->sample_period;
10015 
10016 	local64_set(&hwc->period_left, hwc->sample_period);
10017 
10018 	/*
10019 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10020 	 * See perf_output_read().
10021 	 */
10022 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10023 		goto err_ns;
10024 
10025 	if (!has_branch_stack(event))
10026 		event->attr.branch_sample_type = 0;
10027 
10028 	if (cgroup_fd != -1) {
10029 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10030 		if (err)
10031 			goto err_ns;
10032 	}
10033 
10034 	pmu = perf_init_event(event);
10035 	if (IS_ERR(pmu)) {
10036 		err = PTR_ERR(pmu);
10037 		goto err_ns;
10038 	}
10039 
10040 	err = exclusive_event_init(event);
10041 	if (err)
10042 		goto err_pmu;
10043 
10044 	if (has_addr_filter(event)) {
10045 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10046 						   sizeof(unsigned long),
10047 						   GFP_KERNEL);
10048 		if (!event->addr_filters_offs) {
10049 			err = -ENOMEM;
10050 			goto err_per_task;
10051 		}
10052 
10053 		/* force hw sync on the address filters */
10054 		event->addr_filters_gen = 1;
10055 	}
10056 
10057 	if (!event->parent) {
10058 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10059 			err = get_callchain_buffers(attr->sample_max_stack);
10060 			if (err)
10061 				goto err_addr_filters;
10062 		}
10063 	}
10064 
10065 	/* symmetric to unaccount_event() in _free_event() */
10066 	account_event(event);
10067 
10068 	return event;
10069 
10070 err_addr_filters:
10071 	kfree(event->addr_filters_offs);
10072 
10073 err_per_task:
10074 	exclusive_event_destroy(event);
10075 
10076 err_pmu:
10077 	if (event->destroy)
10078 		event->destroy(event);
10079 	module_put(pmu->module);
10080 err_ns:
10081 	if (is_cgroup_event(event))
10082 		perf_detach_cgroup(event);
10083 	if (event->ns)
10084 		put_pid_ns(event->ns);
10085 	if (event->hw.target)
10086 		put_task_struct(event->hw.target);
10087 	kfree(event);
10088 
10089 	return ERR_PTR(err);
10090 }
10091 
10092 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10093 			  struct perf_event_attr *attr)
10094 {
10095 	u32 size;
10096 	int ret;
10097 
10098 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10099 		return -EFAULT;
10100 
10101 	/*
10102 	 * zero the full structure, so that a short copy will be nice.
10103 	 */
10104 	memset(attr, 0, sizeof(*attr));
10105 
10106 	ret = get_user(size, &uattr->size);
10107 	if (ret)
10108 		return ret;
10109 
10110 	if (size > PAGE_SIZE)	/* silly large */
10111 		goto err_size;
10112 
10113 	if (!size)		/* abi compat */
10114 		size = PERF_ATTR_SIZE_VER0;
10115 
10116 	if (size < PERF_ATTR_SIZE_VER0)
10117 		goto err_size;
10118 
10119 	/*
10120 	 * If we're handed a bigger struct than we know of,
10121 	 * ensure all the unknown bits are 0 - i.e. new
10122 	 * user-space does not rely on any kernel feature
10123 	 * extensions we dont know about yet.
10124 	 */
10125 	if (size > sizeof(*attr)) {
10126 		unsigned char __user *addr;
10127 		unsigned char __user *end;
10128 		unsigned char val;
10129 
10130 		addr = (void __user *)uattr + sizeof(*attr);
10131 		end  = (void __user *)uattr + size;
10132 
10133 		for (; addr < end; addr++) {
10134 			ret = get_user(val, addr);
10135 			if (ret)
10136 				return ret;
10137 			if (val)
10138 				goto err_size;
10139 		}
10140 		size = sizeof(*attr);
10141 	}
10142 
10143 	ret = copy_from_user(attr, uattr, size);
10144 	if (ret)
10145 		return -EFAULT;
10146 
10147 	attr->size = size;
10148 
10149 	if (attr->__reserved_1)
10150 		return -EINVAL;
10151 
10152 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10153 		return -EINVAL;
10154 
10155 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10156 		return -EINVAL;
10157 
10158 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10159 		u64 mask = attr->branch_sample_type;
10160 
10161 		/* only using defined bits */
10162 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10163 			return -EINVAL;
10164 
10165 		/* at least one branch bit must be set */
10166 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10167 			return -EINVAL;
10168 
10169 		/* propagate priv level, when not set for branch */
10170 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10171 
10172 			/* exclude_kernel checked on syscall entry */
10173 			if (!attr->exclude_kernel)
10174 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10175 
10176 			if (!attr->exclude_user)
10177 				mask |= PERF_SAMPLE_BRANCH_USER;
10178 
10179 			if (!attr->exclude_hv)
10180 				mask |= PERF_SAMPLE_BRANCH_HV;
10181 			/*
10182 			 * adjust user setting (for HW filter setup)
10183 			 */
10184 			attr->branch_sample_type = mask;
10185 		}
10186 		/* privileged levels capture (kernel, hv): check permissions */
10187 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10188 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10189 			return -EACCES;
10190 	}
10191 
10192 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10193 		ret = perf_reg_validate(attr->sample_regs_user);
10194 		if (ret)
10195 			return ret;
10196 	}
10197 
10198 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10199 		if (!arch_perf_have_user_stack_dump())
10200 			return -ENOSYS;
10201 
10202 		/*
10203 		 * We have __u32 type for the size, but so far
10204 		 * we can only use __u16 as maximum due to the
10205 		 * __u16 sample size limit.
10206 		 */
10207 		if (attr->sample_stack_user >= USHRT_MAX)
10208 			ret = -EINVAL;
10209 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10210 			ret = -EINVAL;
10211 	}
10212 
10213 	if (!attr->sample_max_stack)
10214 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10215 
10216 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10217 		ret = perf_reg_validate(attr->sample_regs_intr);
10218 out:
10219 	return ret;
10220 
10221 err_size:
10222 	put_user(sizeof(*attr), &uattr->size);
10223 	ret = -E2BIG;
10224 	goto out;
10225 }
10226 
10227 static int
10228 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10229 {
10230 	struct ring_buffer *rb = NULL;
10231 	int ret = -EINVAL;
10232 
10233 	if (!output_event)
10234 		goto set;
10235 
10236 	/* don't allow circular references */
10237 	if (event == output_event)
10238 		goto out;
10239 
10240 	/*
10241 	 * Don't allow cross-cpu buffers
10242 	 */
10243 	if (output_event->cpu != event->cpu)
10244 		goto out;
10245 
10246 	/*
10247 	 * If its not a per-cpu rb, it must be the same task.
10248 	 */
10249 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10250 		goto out;
10251 
10252 	/*
10253 	 * Mixing clocks in the same buffer is trouble you don't need.
10254 	 */
10255 	if (output_event->clock != event->clock)
10256 		goto out;
10257 
10258 	/*
10259 	 * Either writing ring buffer from beginning or from end.
10260 	 * Mixing is not allowed.
10261 	 */
10262 	if (is_write_backward(output_event) != is_write_backward(event))
10263 		goto out;
10264 
10265 	/*
10266 	 * If both events generate aux data, they must be on the same PMU
10267 	 */
10268 	if (has_aux(event) && has_aux(output_event) &&
10269 	    event->pmu != output_event->pmu)
10270 		goto out;
10271 
10272 set:
10273 	mutex_lock(&event->mmap_mutex);
10274 	/* Can't redirect output if we've got an active mmap() */
10275 	if (atomic_read(&event->mmap_count))
10276 		goto unlock;
10277 
10278 	if (output_event) {
10279 		/* get the rb we want to redirect to */
10280 		rb = ring_buffer_get(output_event);
10281 		if (!rb)
10282 			goto unlock;
10283 	}
10284 
10285 	ring_buffer_attach(event, rb);
10286 
10287 	ret = 0;
10288 unlock:
10289 	mutex_unlock(&event->mmap_mutex);
10290 
10291 out:
10292 	return ret;
10293 }
10294 
10295 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10296 {
10297 	if (b < a)
10298 		swap(a, b);
10299 
10300 	mutex_lock(a);
10301 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10302 }
10303 
10304 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10305 {
10306 	bool nmi_safe = false;
10307 
10308 	switch (clk_id) {
10309 	case CLOCK_MONOTONIC:
10310 		event->clock = &ktime_get_mono_fast_ns;
10311 		nmi_safe = true;
10312 		break;
10313 
10314 	case CLOCK_MONOTONIC_RAW:
10315 		event->clock = &ktime_get_raw_fast_ns;
10316 		nmi_safe = true;
10317 		break;
10318 
10319 	case CLOCK_REALTIME:
10320 		event->clock = &ktime_get_real_ns;
10321 		break;
10322 
10323 	case CLOCK_BOOTTIME:
10324 		event->clock = &ktime_get_boot_ns;
10325 		break;
10326 
10327 	case CLOCK_TAI:
10328 		event->clock = &ktime_get_tai_ns;
10329 		break;
10330 
10331 	default:
10332 		return -EINVAL;
10333 	}
10334 
10335 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10336 		return -EINVAL;
10337 
10338 	return 0;
10339 }
10340 
10341 /*
10342  * Variation on perf_event_ctx_lock_nested(), except we take two context
10343  * mutexes.
10344  */
10345 static struct perf_event_context *
10346 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10347 			     struct perf_event_context *ctx)
10348 {
10349 	struct perf_event_context *gctx;
10350 
10351 again:
10352 	rcu_read_lock();
10353 	gctx = READ_ONCE(group_leader->ctx);
10354 	if (!atomic_inc_not_zero(&gctx->refcount)) {
10355 		rcu_read_unlock();
10356 		goto again;
10357 	}
10358 	rcu_read_unlock();
10359 
10360 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
10361 
10362 	if (group_leader->ctx != gctx) {
10363 		mutex_unlock(&ctx->mutex);
10364 		mutex_unlock(&gctx->mutex);
10365 		put_ctx(gctx);
10366 		goto again;
10367 	}
10368 
10369 	return gctx;
10370 }
10371 
10372 /**
10373  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10374  *
10375  * @attr_uptr:	event_id type attributes for monitoring/sampling
10376  * @pid:		target pid
10377  * @cpu:		target cpu
10378  * @group_fd:		group leader event fd
10379  */
10380 SYSCALL_DEFINE5(perf_event_open,
10381 		struct perf_event_attr __user *, attr_uptr,
10382 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10383 {
10384 	struct perf_event *group_leader = NULL, *output_event = NULL;
10385 	struct perf_event *event, *sibling;
10386 	struct perf_event_attr attr;
10387 	struct perf_event_context *ctx, *uninitialized_var(gctx);
10388 	struct file *event_file = NULL;
10389 	struct fd group = {NULL, 0};
10390 	struct task_struct *task = NULL;
10391 	struct pmu *pmu;
10392 	int event_fd;
10393 	int move_group = 0;
10394 	int err;
10395 	int f_flags = O_RDWR;
10396 	int cgroup_fd = -1;
10397 
10398 	/* for future expandability... */
10399 	if (flags & ~PERF_FLAG_ALL)
10400 		return -EINVAL;
10401 
10402 	err = perf_copy_attr(attr_uptr, &attr);
10403 	if (err)
10404 		return err;
10405 
10406 	if (!attr.exclude_kernel) {
10407 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10408 			return -EACCES;
10409 	}
10410 
10411 	if (attr.namespaces) {
10412 		if (!capable(CAP_SYS_ADMIN))
10413 			return -EACCES;
10414 	}
10415 
10416 	if (attr.freq) {
10417 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10418 			return -EINVAL;
10419 	} else {
10420 		if (attr.sample_period & (1ULL << 63))
10421 			return -EINVAL;
10422 	}
10423 
10424 	/* Only privileged users can get physical addresses */
10425 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10426 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10427 		return -EACCES;
10428 
10429 	/*
10430 	 * In cgroup mode, the pid argument is used to pass the fd
10431 	 * opened to the cgroup directory in cgroupfs. The cpu argument
10432 	 * designates the cpu on which to monitor threads from that
10433 	 * cgroup.
10434 	 */
10435 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10436 		return -EINVAL;
10437 
10438 	if (flags & PERF_FLAG_FD_CLOEXEC)
10439 		f_flags |= O_CLOEXEC;
10440 
10441 	event_fd = get_unused_fd_flags(f_flags);
10442 	if (event_fd < 0)
10443 		return event_fd;
10444 
10445 	if (group_fd != -1) {
10446 		err = perf_fget_light(group_fd, &group);
10447 		if (err)
10448 			goto err_fd;
10449 		group_leader = group.file->private_data;
10450 		if (flags & PERF_FLAG_FD_OUTPUT)
10451 			output_event = group_leader;
10452 		if (flags & PERF_FLAG_FD_NO_GROUP)
10453 			group_leader = NULL;
10454 	}
10455 
10456 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10457 		task = find_lively_task_by_vpid(pid);
10458 		if (IS_ERR(task)) {
10459 			err = PTR_ERR(task);
10460 			goto err_group_fd;
10461 		}
10462 	}
10463 
10464 	if (task && group_leader &&
10465 	    group_leader->attr.inherit != attr.inherit) {
10466 		err = -EINVAL;
10467 		goto err_task;
10468 	}
10469 
10470 	if (task) {
10471 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10472 		if (err)
10473 			goto err_task;
10474 
10475 		/*
10476 		 * Reuse ptrace permission checks for now.
10477 		 *
10478 		 * We must hold cred_guard_mutex across this and any potential
10479 		 * perf_install_in_context() call for this new event to
10480 		 * serialize against exec() altering our credentials (and the
10481 		 * perf_event_exit_task() that could imply).
10482 		 */
10483 		err = -EACCES;
10484 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10485 			goto err_cred;
10486 	}
10487 
10488 	if (flags & PERF_FLAG_PID_CGROUP)
10489 		cgroup_fd = pid;
10490 
10491 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10492 				 NULL, NULL, cgroup_fd);
10493 	if (IS_ERR(event)) {
10494 		err = PTR_ERR(event);
10495 		goto err_cred;
10496 	}
10497 
10498 	if (is_sampling_event(event)) {
10499 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10500 			err = -EOPNOTSUPP;
10501 			goto err_alloc;
10502 		}
10503 	}
10504 
10505 	/*
10506 	 * Special case software events and allow them to be part of
10507 	 * any hardware group.
10508 	 */
10509 	pmu = event->pmu;
10510 
10511 	if (attr.use_clockid) {
10512 		err = perf_event_set_clock(event, attr.clockid);
10513 		if (err)
10514 			goto err_alloc;
10515 	}
10516 
10517 	if (pmu->task_ctx_nr == perf_sw_context)
10518 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
10519 
10520 	if (group_leader &&
10521 	    (is_software_event(event) != is_software_event(group_leader))) {
10522 		if (is_software_event(event)) {
10523 			/*
10524 			 * If event and group_leader are not both a software
10525 			 * event, and event is, then group leader is not.
10526 			 *
10527 			 * Allow the addition of software events to !software
10528 			 * groups, this is safe because software events never
10529 			 * fail to schedule.
10530 			 */
10531 			pmu = group_leader->pmu;
10532 		} else if (is_software_event(group_leader) &&
10533 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10534 			/*
10535 			 * In case the group is a pure software group, and we
10536 			 * try to add a hardware event, move the whole group to
10537 			 * the hardware context.
10538 			 */
10539 			move_group = 1;
10540 		}
10541 	}
10542 
10543 	/*
10544 	 * Get the target context (task or percpu):
10545 	 */
10546 	ctx = find_get_context(pmu, task, event);
10547 	if (IS_ERR(ctx)) {
10548 		err = PTR_ERR(ctx);
10549 		goto err_alloc;
10550 	}
10551 
10552 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10553 		err = -EBUSY;
10554 		goto err_context;
10555 	}
10556 
10557 	/*
10558 	 * Look up the group leader (we will attach this event to it):
10559 	 */
10560 	if (group_leader) {
10561 		err = -EINVAL;
10562 
10563 		/*
10564 		 * Do not allow a recursive hierarchy (this new sibling
10565 		 * becoming part of another group-sibling):
10566 		 */
10567 		if (group_leader->group_leader != group_leader)
10568 			goto err_context;
10569 
10570 		/* All events in a group should have the same clock */
10571 		if (group_leader->clock != event->clock)
10572 			goto err_context;
10573 
10574 		/*
10575 		 * Make sure we're both events for the same CPU;
10576 		 * grouping events for different CPUs is broken; since
10577 		 * you can never concurrently schedule them anyhow.
10578 		 */
10579 		if (group_leader->cpu != event->cpu)
10580 			goto err_context;
10581 
10582 		/*
10583 		 * Make sure we're both on the same task, or both
10584 		 * per-CPU events.
10585 		 */
10586 		if (group_leader->ctx->task != ctx->task)
10587 			goto err_context;
10588 
10589 		/*
10590 		 * Do not allow to attach to a group in a different task
10591 		 * or CPU context. If we're moving SW events, we'll fix
10592 		 * this up later, so allow that.
10593 		 */
10594 		if (!move_group && group_leader->ctx != ctx)
10595 			goto err_context;
10596 
10597 		/*
10598 		 * Only a group leader can be exclusive or pinned
10599 		 */
10600 		if (attr.exclusive || attr.pinned)
10601 			goto err_context;
10602 	}
10603 
10604 	if (output_event) {
10605 		err = perf_event_set_output(event, output_event);
10606 		if (err)
10607 			goto err_context;
10608 	}
10609 
10610 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10611 					f_flags);
10612 	if (IS_ERR(event_file)) {
10613 		err = PTR_ERR(event_file);
10614 		event_file = NULL;
10615 		goto err_context;
10616 	}
10617 
10618 	if (move_group) {
10619 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10620 
10621 		if (gctx->task == TASK_TOMBSTONE) {
10622 			err = -ESRCH;
10623 			goto err_locked;
10624 		}
10625 
10626 		/*
10627 		 * Check if we raced against another sys_perf_event_open() call
10628 		 * moving the software group underneath us.
10629 		 */
10630 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10631 			/*
10632 			 * If someone moved the group out from under us, check
10633 			 * if this new event wound up on the same ctx, if so
10634 			 * its the regular !move_group case, otherwise fail.
10635 			 */
10636 			if (gctx != ctx) {
10637 				err = -EINVAL;
10638 				goto err_locked;
10639 			} else {
10640 				perf_event_ctx_unlock(group_leader, gctx);
10641 				move_group = 0;
10642 			}
10643 		}
10644 	} else {
10645 		mutex_lock(&ctx->mutex);
10646 	}
10647 
10648 	if (ctx->task == TASK_TOMBSTONE) {
10649 		err = -ESRCH;
10650 		goto err_locked;
10651 	}
10652 
10653 	if (!perf_event_validate_size(event)) {
10654 		err = -E2BIG;
10655 		goto err_locked;
10656 	}
10657 
10658 	if (!task) {
10659 		/*
10660 		 * Check if the @cpu we're creating an event for is online.
10661 		 *
10662 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10663 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10664 		 */
10665 		struct perf_cpu_context *cpuctx =
10666 			container_of(ctx, struct perf_cpu_context, ctx);
10667 
10668 		if (!cpuctx->online) {
10669 			err = -ENODEV;
10670 			goto err_locked;
10671 		}
10672 	}
10673 
10674 
10675 	/*
10676 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10677 	 * because we need to serialize with concurrent event creation.
10678 	 */
10679 	if (!exclusive_event_installable(event, ctx)) {
10680 		/* exclusive and group stuff are assumed mutually exclusive */
10681 		WARN_ON_ONCE(move_group);
10682 
10683 		err = -EBUSY;
10684 		goto err_locked;
10685 	}
10686 
10687 	WARN_ON_ONCE(ctx->parent_ctx);
10688 
10689 	/*
10690 	 * This is the point on no return; we cannot fail hereafter. This is
10691 	 * where we start modifying current state.
10692 	 */
10693 
10694 	if (move_group) {
10695 		/*
10696 		 * See perf_event_ctx_lock() for comments on the details
10697 		 * of swizzling perf_event::ctx.
10698 		 */
10699 		perf_remove_from_context(group_leader, 0);
10700 		put_ctx(gctx);
10701 
10702 		for_each_sibling_event(sibling, group_leader) {
10703 			perf_remove_from_context(sibling, 0);
10704 			put_ctx(gctx);
10705 		}
10706 
10707 		/*
10708 		 * Wait for everybody to stop referencing the events through
10709 		 * the old lists, before installing it on new lists.
10710 		 */
10711 		synchronize_rcu();
10712 
10713 		/*
10714 		 * Install the group siblings before the group leader.
10715 		 *
10716 		 * Because a group leader will try and install the entire group
10717 		 * (through the sibling list, which is still in-tact), we can
10718 		 * end up with siblings installed in the wrong context.
10719 		 *
10720 		 * By installing siblings first we NO-OP because they're not
10721 		 * reachable through the group lists.
10722 		 */
10723 		for_each_sibling_event(sibling, group_leader) {
10724 			perf_event__state_init(sibling);
10725 			perf_install_in_context(ctx, sibling, sibling->cpu);
10726 			get_ctx(ctx);
10727 		}
10728 
10729 		/*
10730 		 * Removing from the context ends up with disabled
10731 		 * event. What we want here is event in the initial
10732 		 * startup state, ready to be add into new context.
10733 		 */
10734 		perf_event__state_init(group_leader);
10735 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10736 		get_ctx(ctx);
10737 	}
10738 
10739 	/*
10740 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10741 	 * that we're serialized against further additions and before
10742 	 * perf_install_in_context() which is the point the event is active and
10743 	 * can use these values.
10744 	 */
10745 	perf_event__header_size(event);
10746 	perf_event__id_header_size(event);
10747 
10748 	event->owner = current;
10749 
10750 	perf_install_in_context(ctx, event, event->cpu);
10751 	perf_unpin_context(ctx);
10752 
10753 	if (move_group)
10754 		perf_event_ctx_unlock(group_leader, gctx);
10755 	mutex_unlock(&ctx->mutex);
10756 
10757 	if (task) {
10758 		mutex_unlock(&task->signal->cred_guard_mutex);
10759 		put_task_struct(task);
10760 	}
10761 
10762 	mutex_lock(&current->perf_event_mutex);
10763 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10764 	mutex_unlock(&current->perf_event_mutex);
10765 
10766 	/*
10767 	 * Drop the reference on the group_event after placing the
10768 	 * new event on the sibling_list. This ensures destruction
10769 	 * of the group leader will find the pointer to itself in
10770 	 * perf_group_detach().
10771 	 */
10772 	fdput(group);
10773 	fd_install(event_fd, event_file);
10774 	return event_fd;
10775 
10776 err_locked:
10777 	if (move_group)
10778 		perf_event_ctx_unlock(group_leader, gctx);
10779 	mutex_unlock(&ctx->mutex);
10780 /* err_file: */
10781 	fput(event_file);
10782 err_context:
10783 	perf_unpin_context(ctx);
10784 	put_ctx(ctx);
10785 err_alloc:
10786 	/*
10787 	 * If event_file is set, the fput() above will have called ->release()
10788 	 * and that will take care of freeing the event.
10789 	 */
10790 	if (!event_file)
10791 		free_event(event);
10792 err_cred:
10793 	if (task)
10794 		mutex_unlock(&task->signal->cred_guard_mutex);
10795 err_task:
10796 	if (task)
10797 		put_task_struct(task);
10798 err_group_fd:
10799 	fdput(group);
10800 err_fd:
10801 	put_unused_fd(event_fd);
10802 	return err;
10803 }
10804 
10805 /**
10806  * perf_event_create_kernel_counter
10807  *
10808  * @attr: attributes of the counter to create
10809  * @cpu: cpu in which the counter is bound
10810  * @task: task to profile (NULL for percpu)
10811  */
10812 struct perf_event *
10813 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10814 				 struct task_struct *task,
10815 				 perf_overflow_handler_t overflow_handler,
10816 				 void *context)
10817 {
10818 	struct perf_event_context *ctx;
10819 	struct perf_event *event;
10820 	int err;
10821 
10822 	/*
10823 	 * Get the target context (task or percpu):
10824 	 */
10825 
10826 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10827 				 overflow_handler, context, -1);
10828 	if (IS_ERR(event)) {
10829 		err = PTR_ERR(event);
10830 		goto err;
10831 	}
10832 
10833 	/* Mark owner so we could distinguish it from user events. */
10834 	event->owner = TASK_TOMBSTONE;
10835 
10836 	ctx = find_get_context(event->pmu, task, event);
10837 	if (IS_ERR(ctx)) {
10838 		err = PTR_ERR(ctx);
10839 		goto err_free;
10840 	}
10841 
10842 	WARN_ON_ONCE(ctx->parent_ctx);
10843 	mutex_lock(&ctx->mutex);
10844 	if (ctx->task == TASK_TOMBSTONE) {
10845 		err = -ESRCH;
10846 		goto err_unlock;
10847 	}
10848 
10849 	if (!task) {
10850 		/*
10851 		 * Check if the @cpu we're creating an event for is online.
10852 		 *
10853 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10854 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10855 		 */
10856 		struct perf_cpu_context *cpuctx =
10857 			container_of(ctx, struct perf_cpu_context, ctx);
10858 		if (!cpuctx->online) {
10859 			err = -ENODEV;
10860 			goto err_unlock;
10861 		}
10862 	}
10863 
10864 	if (!exclusive_event_installable(event, ctx)) {
10865 		err = -EBUSY;
10866 		goto err_unlock;
10867 	}
10868 
10869 	perf_install_in_context(ctx, event, cpu);
10870 	perf_unpin_context(ctx);
10871 	mutex_unlock(&ctx->mutex);
10872 
10873 	return event;
10874 
10875 err_unlock:
10876 	mutex_unlock(&ctx->mutex);
10877 	perf_unpin_context(ctx);
10878 	put_ctx(ctx);
10879 err_free:
10880 	free_event(event);
10881 err:
10882 	return ERR_PTR(err);
10883 }
10884 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10885 
10886 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10887 {
10888 	struct perf_event_context *src_ctx;
10889 	struct perf_event_context *dst_ctx;
10890 	struct perf_event *event, *tmp;
10891 	LIST_HEAD(events);
10892 
10893 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10894 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10895 
10896 	/*
10897 	 * See perf_event_ctx_lock() for comments on the details
10898 	 * of swizzling perf_event::ctx.
10899 	 */
10900 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10901 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10902 				 event_entry) {
10903 		perf_remove_from_context(event, 0);
10904 		unaccount_event_cpu(event, src_cpu);
10905 		put_ctx(src_ctx);
10906 		list_add(&event->migrate_entry, &events);
10907 	}
10908 
10909 	/*
10910 	 * Wait for the events to quiesce before re-instating them.
10911 	 */
10912 	synchronize_rcu();
10913 
10914 	/*
10915 	 * Re-instate events in 2 passes.
10916 	 *
10917 	 * Skip over group leaders and only install siblings on this first
10918 	 * pass, siblings will not get enabled without a leader, however a
10919 	 * leader will enable its siblings, even if those are still on the old
10920 	 * context.
10921 	 */
10922 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10923 		if (event->group_leader == event)
10924 			continue;
10925 
10926 		list_del(&event->migrate_entry);
10927 		if (event->state >= PERF_EVENT_STATE_OFF)
10928 			event->state = PERF_EVENT_STATE_INACTIVE;
10929 		account_event_cpu(event, dst_cpu);
10930 		perf_install_in_context(dst_ctx, event, dst_cpu);
10931 		get_ctx(dst_ctx);
10932 	}
10933 
10934 	/*
10935 	 * Once all the siblings are setup properly, install the group leaders
10936 	 * to make it go.
10937 	 */
10938 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10939 		list_del(&event->migrate_entry);
10940 		if (event->state >= PERF_EVENT_STATE_OFF)
10941 			event->state = PERF_EVENT_STATE_INACTIVE;
10942 		account_event_cpu(event, dst_cpu);
10943 		perf_install_in_context(dst_ctx, event, dst_cpu);
10944 		get_ctx(dst_ctx);
10945 	}
10946 	mutex_unlock(&dst_ctx->mutex);
10947 	mutex_unlock(&src_ctx->mutex);
10948 }
10949 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10950 
10951 static void sync_child_event(struct perf_event *child_event,
10952 			       struct task_struct *child)
10953 {
10954 	struct perf_event *parent_event = child_event->parent;
10955 	u64 child_val;
10956 
10957 	if (child_event->attr.inherit_stat)
10958 		perf_event_read_event(child_event, child);
10959 
10960 	child_val = perf_event_count(child_event);
10961 
10962 	/*
10963 	 * Add back the child's count to the parent's count:
10964 	 */
10965 	atomic64_add(child_val, &parent_event->child_count);
10966 	atomic64_add(child_event->total_time_enabled,
10967 		     &parent_event->child_total_time_enabled);
10968 	atomic64_add(child_event->total_time_running,
10969 		     &parent_event->child_total_time_running);
10970 }
10971 
10972 static void
10973 perf_event_exit_event(struct perf_event *child_event,
10974 		      struct perf_event_context *child_ctx,
10975 		      struct task_struct *child)
10976 {
10977 	struct perf_event *parent_event = child_event->parent;
10978 
10979 	/*
10980 	 * Do not destroy the 'original' grouping; because of the context
10981 	 * switch optimization the original events could've ended up in a
10982 	 * random child task.
10983 	 *
10984 	 * If we were to destroy the original group, all group related
10985 	 * operations would cease to function properly after this random
10986 	 * child dies.
10987 	 *
10988 	 * Do destroy all inherited groups, we don't care about those
10989 	 * and being thorough is better.
10990 	 */
10991 	raw_spin_lock_irq(&child_ctx->lock);
10992 	WARN_ON_ONCE(child_ctx->is_active);
10993 
10994 	if (parent_event)
10995 		perf_group_detach(child_event);
10996 	list_del_event(child_event, child_ctx);
10997 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10998 	raw_spin_unlock_irq(&child_ctx->lock);
10999 
11000 	/*
11001 	 * Parent events are governed by their filedesc, retain them.
11002 	 */
11003 	if (!parent_event) {
11004 		perf_event_wakeup(child_event);
11005 		return;
11006 	}
11007 	/*
11008 	 * Child events can be cleaned up.
11009 	 */
11010 
11011 	sync_child_event(child_event, child);
11012 
11013 	/*
11014 	 * Remove this event from the parent's list
11015 	 */
11016 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11017 	mutex_lock(&parent_event->child_mutex);
11018 	list_del_init(&child_event->child_list);
11019 	mutex_unlock(&parent_event->child_mutex);
11020 
11021 	/*
11022 	 * Kick perf_poll() for is_event_hup().
11023 	 */
11024 	perf_event_wakeup(parent_event);
11025 	free_event(child_event);
11026 	put_event(parent_event);
11027 }
11028 
11029 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11030 {
11031 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11032 	struct perf_event *child_event, *next;
11033 
11034 	WARN_ON_ONCE(child != current);
11035 
11036 	child_ctx = perf_pin_task_context(child, ctxn);
11037 	if (!child_ctx)
11038 		return;
11039 
11040 	/*
11041 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11042 	 * ctx::mutex over the entire thing. This serializes against almost
11043 	 * everything that wants to access the ctx.
11044 	 *
11045 	 * The exception is sys_perf_event_open() /
11046 	 * perf_event_create_kernel_count() which does find_get_context()
11047 	 * without ctx::mutex (it cannot because of the move_group double mutex
11048 	 * lock thing). See the comments in perf_install_in_context().
11049 	 */
11050 	mutex_lock(&child_ctx->mutex);
11051 
11052 	/*
11053 	 * In a single ctx::lock section, de-schedule the events and detach the
11054 	 * context from the task such that we cannot ever get it scheduled back
11055 	 * in.
11056 	 */
11057 	raw_spin_lock_irq(&child_ctx->lock);
11058 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11059 
11060 	/*
11061 	 * Now that the context is inactive, destroy the task <-> ctx relation
11062 	 * and mark the context dead.
11063 	 */
11064 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11065 	put_ctx(child_ctx); /* cannot be last */
11066 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11067 	put_task_struct(current); /* cannot be last */
11068 
11069 	clone_ctx = unclone_ctx(child_ctx);
11070 	raw_spin_unlock_irq(&child_ctx->lock);
11071 
11072 	if (clone_ctx)
11073 		put_ctx(clone_ctx);
11074 
11075 	/*
11076 	 * Report the task dead after unscheduling the events so that we
11077 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11078 	 * get a few PERF_RECORD_READ events.
11079 	 */
11080 	perf_event_task(child, child_ctx, 0);
11081 
11082 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11083 		perf_event_exit_event(child_event, child_ctx, child);
11084 
11085 	mutex_unlock(&child_ctx->mutex);
11086 
11087 	put_ctx(child_ctx);
11088 }
11089 
11090 /*
11091  * When a child task exits, feed back event values to parent events.
11092  *
11093  * Can be called with cred_guard_mutex held when called from
11094  * install_exec_creds().
11095  */
11096 void perf_event_exit_task(struct task_struct *child)
11097 {
11098 	struct perf_event *event, *tmp;
11099 	int ctxn;
11100 
11101 	mutex_lock(&child->perf_event_mutex);
11102 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11103 				 owner_entry) {
11104 		list_del_init(&event->owner_entry);
11105 
11106 		/*
11107 		 * Ensure the list deletion is visible before we clear
11108 		 * the owner, closes a race against perf_release() where
11109 		 * we need to serialize on the owner->perf_event_mutex.
11110 		 */
11111 		smp_store_release(&event->owner, NULL);
11112 	}
11113 	mutex_unlock(&child->perf_event_mutex);
11114 
11115 	for_each_task_context_nr(ctxn)
11116 		perf_event_exit_task_context(child, ctxn);
11117 
11118 	/*
11119 	 * The perf_event_exit_task_context calls perf_event_task
11120 	 * with child's task_ctx, which generates EXIT events for
11121 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11122 	 * At this point we need to send EXIT events to cpu contexts.
11123 	 */
11124 	perf_event_task(child, NULL, 0);
11125 }
11126 
11127 static void perf_free_event(struct perf_event *event,
11128 			    struct perf_event_context *ctx)
11129 {
11130 	struct perf_event *parent = event->parent;
11131 
11132 	if (WARN_ON_ONCE(!parent))
11133 		return;
11134 
11135 	mutex_lock(&parent->child_mutex);
11136 	list_del_init(&event->child_list);
11137 	mutex_unlock(&parent->child_mutex);
11138 
11139 	put_event(parent);
11140 
11141 	raw_spin_lock_irq(&ctx->lock);
11142 	perf_group_detach(event);
11143 	list_del_event(event, ctx);
11144 	raw_spin_unlock_irq(&ctx->lock);
11145 	free_event(event);
11146 }
11147 
11148 /*
11149  * Free an unexposed, unused context as created by inheritance by
11150  * perf_event_init_task below, used by fork() in case of fail.
11151  *
11152  * Not all locks are strictly required, but take them anyway to be nice and
11153  * help out with the lockdep assertions.
11154  */
11155 void perf_event_free_task(struct task_struct *task)
11156 {
11157 	struct perf_event_context *ctx;
11158 	struct perf_event *event, *tmp;
11159 	int ctxn;
11160 
11161 	for_each_task_context_nr(ctxn) {
11162 		ctx = task->perf_event_ctxp[ctxn];
11163 		if (!ctx)
11164 			continue;
11165 
11166 		mutex_lock(&ctx->mutex);
11167 		raw_spin_lock_irq(&ctx->lock);
11168 		/*
11169 		 * Destroy the task <-> ctx relation and mark the context dead.
11170 		 *
11171 		 * This is important because even though the task hasn't been
11172 		 * exposed yet the context has been (through child_list).
11173 		 */
11174 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11175 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11176 		put_task_struct(task); /* cannot be last */
11177 		raw_spin_unlock_irq(&ctx->lock);
11178 
11179 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11180 			perf_free_event(event, ctx);
11181 
11182 		mutex_unlock(&ctx->mutex);
11183 		put_ctx(ctx);
11184 	}
11185 }
11186 
11187 void perf_event_delayed_put(struct task_struct *task)
11188 {
11189 	int ctxn;
11190 
11191 	for_each_task_context_nr(ctxn)
11192 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11193 }
11194 
11195 struct file *perf_event_get(unsigned int fd)
11196 {
11197 	struct file *file;
11198 
11199 	file = fget_raw(fd);
11200 	if (!file)
11201 		return ERR_PTR(-EBADF);
11202 
11203 	if (file->f_op != &perf_fops) {
11204 		fput(file);
11205 		return ERR_PTR(-EBADF);
11206 	}
11207 
11208 	return file;
11209 }
11210 
11211 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11212 {
11213 	if (!event)
11214 		return ERR_PTR(-EINVAL);
11215 
11216 	return &event->attr;
11217 }
11218 
11219 /*
11220  * Inherit a event from parent task to child task.
11221  *
11222  * Returns:
11223  *  - valid pointer on success
11224  *  - NULL for orphaned events
11225  *  - IS_ERR() on error
11226  */
11227 static struct perf_event *
11228 inherit_event(struct perf_event *parent_event,
11229 	      struct task_struct *parent,
11230 	      struct perf_event_context *parent_ctx,
11231 	      struct task_struct *child,
11232 	      struct perf_event *group_leader,
11233 	      struct perf_event_context *child_ctx)
11234 {
11235 	enum perf_event_state parent_state = parent_event->state;
11236 	struct perf_event *child_event;
11237 	unsigned long flags;
11238 
11239 	/*
11240 	 * Instead of creating recursive hierarchies of events,
11241 	 * we link inherited events back to the original parent,
11242 	 * which has a filp for sure, which we use as the reference
11243 	 * count:
11244 	 */
11245 	if (parent_event->parent)
11246 		parent_event = parent_event->parent;
11247 
11248 	child_event = perf_event_alloc(&parent_event->attr,
11249 					   parent_event->cpu,
11250 					   child,
11251 					   group_leader, parent_event,
11252 					   NULL, NULL, -1);
11253 	if (IS_ERR(child_event))
11254 		return child_event;
11255 
11256 
11257 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11258 	    !child_ctx->task_ctx_data) {
11259 		struct pmu *pmu = child_event->pmu;
11260 
11261 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11262 						   GFP_KERNEL);
11263 		if (!child_ctx->task_ctx_data) {
11264 			free_event(child_event);
11265 			return NULL;
11266 		}
11267 	}
11268 
11269 	/*
11270 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11271 	 * must be under the same lock in order to serialize against
11272 	 * perf_event_release_kernel(), such that either we must observe
11273 	 * is_orphaned_event() or they will observe us on the child_list.
11274 	 */
11275 	mutex_lock(&parent_event->child_mutex);
11276 	if (is_orphaned_event(parent_event) ||
11277 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11278 		mutex_unlock(&parent_event->child_mutex);
11279 		/* task_ctx_data is freed with child_ctx */
11280 		free_event(child_event);
11281 		return NULL;
11282 	}
11283 
11284 	get_ctx(child_ctx);
11285 
11286 	/*
11287 	 * Make the child state follow the state of the parent event,
11288 	 * not its attr.disabled bit.  We hold the parent's mutex,
11289 	 * so we won't race with perf_event_{en, dis}able_family.
11290 	 */
11291 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11292 		child_event->state = PERF_EVENT_STATE_INACTIVE;
11293 	else
11294 		child_event->state = PERF_EVENT_STATE_OFF;
11295 
11296 	if (parent_event->attr.freq) {
11297 		u64 sample_period = parent_event->hw.sample_period;
11298 		struct hw_perf_event *hwc = &child_event->hw;
11299 
11300 		hwc->sample_period = sample_period;
11301 		hwc->last_period   = sample_period;
11302 
11303 		local64_set(&hwc->period_left, sample_period);
11304 	}
11305 
11306 	child_event->ctx = child_ctx;
11307 	child_event->overflow_handler = parent_event->overflow_handler;
11308 	child_event->overflow_handler_context
11309 		= parent_event->overflow_handler_context;
11310 
11311 	/*
11312 	 * Precalculate sample_data sizes
11313 	 */
11314 	perf_event__header_size(child_event);
11315 	perf_event__id_header_size(child_event);
11316 
11317 	/*
11318 	 * Link it up in the child's context:
11319 	 */
11320 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
11321 	add_event_to_ctx(child_event, child_ctx);
11322 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11323 
11324 	/*
11325 	 * Link this into the parent event's child list
11326 	 */
11327 	list_add_tail(&child_event->child_list, &parent_event->child_list);
11328 	mutex_unlock(&parent_event->child_mutex);
11329 
11330 	return child_event;
11331 }
11332 
11333 /*
11334  * Inherits an event group.
11335  *
11336  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11337  * This matches with perf_event_release_kernel() removing all child events.
11338  *
11339  * Returns:
11340  *  - 0 on success
11341  *  - <0 on error
11342  */
11343 static int inherit_group(struct perf_event *parent_event,
11344 	      struct task_struct *parent,
11345 	      struct perf_event_context *parent_ctx,
11346 	      struct task_struct *child,
11347 	      struct perf_event_context *child_ctx)
11348 {
11349 	struct perf_event *leader;
11350 	struct perf_event *sub;
11351 	struct perf_event *child_ctr;
11352 
11353 	leader = inherit_event(parent_event, parent, parent_ctx,
11354 				 child, NULL, child_ctx);
11355 	if (IS_ERR(leader))
11356 		return PTR_ERR(leader);
11357 	/*
11358 	 * @leader can be NULL here because of is_orphaned_event(). In this
11359 	 * case inherit_event() will create individual events, similar to what
11360 	 * perf_group_detach() would do anyway.
11361 	 */
11362 	for_each_sibling_event(sub, parent_event) {
11363 		child_ctr = inherit_event(sub, parent, parent_ctx,
11364 					    child, leader, child_ctx);
11365 		if (IS_ERR(child_ctr))
11366 			return PTR_ERR(child_ctr);
11367 	}
11368 	return 0;
11369 }
11370 
11371 /*
11372  * Creates the child task context and tries to inherit the event-group.
11373  *
11374  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11375  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11376  * consistent with perf_event_release_kernel() removing all child events.
11377  *
11378  * Returns:
11379  *  - 0 on success
11380  *  - <0 on error
11381  */
11382 static int
11383 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11384 		   struct perf_event_context *parent_ctx,
11385 		   struct task_struct *child, int ctxn,
11386 		   int *inherited_all)
11387 {
11388 	int ret;
11389 	struct perf_event_context *child_ctx;
11390 
11391 	if (!event->attr.inherit) {
11392 		*inherited_all = 0;
11393 		return 0;
11394 	}
11395 
11396 	child_ctx = child->perf_event_ctxp[ctxn];
11397 	if (!child_ctx) {
11398 		/*
11399 		 * This is executed from the parent task context, so
11400 		 * inherit events that have been marked for cloning.
11401 		 * First allocate and initialize a context for the
11402 		 * child.
11403 		 */
11404 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11405 		if (!child_ctx)
11406 			return -ENOMEM;
11407 
11408 		child->perf_event_ctxp[ctxn] = child_ctx;
11409 	}
11410 
11411 	ret = inherit_group(event, parent, parent_ctx,
11412 			    child, child_ctx);
11413 
11414 	if (ret)
11415 		*inherited_all = 0;
11416 
11417 	return ret;
11418 }
11419 
11420 /*
11421  * Initialize the perf_event context in task_struct
11422  */
11423 static int perf_event_init_context(struct task_struct *child, int ctxn)
11424 {
11425 	struct perf_event_context *child_ctx, *parent_ctx;
11426 	struct perf_event_context *cloned_ctx;
11427 	struct perf_event *event;
11428 	struct task_struct *parent = current;
11429 	int inherited_all = 1;
11430 	unsigned long flags;
11431 	int ret = 0;
11432 
11433 	if (likely(!parent->perf_event_ctxp[ctxn]))
11434 		return 0;
11435 
11436 	/*
11437 	 * If the parent's context is a clone, pin it so it won't get
11438 	 * swapped under us.
11439 	 */
11440 	parent_ctx = perf_pin_task_context(parent, ctxn);
11441 	if (!parent_ctx)
11442 		return 0;
11443 
11444 	/*
11445 	 * No need to check if parent_ctx != NULL here; since we saw
11446 	 * it non-NULL earlier, the only reason for it to become NULL
11447 	 * is if we exit, and since we're currently in the middle of
11448 	 * a fork we can't be exiting at the same time.
11449 	 */
11450 
11451 	/*
11452 	 * Lock the parent list. No need to lock the child - not PID
11453 	 * hashed yet and not running, so nobody can access it.
11454 	 */
11455 	mutex_lock(&parent_ctx->mutex);
11456 
11457 	/*
11458 	 * We dont have to disable NMIs - we are only looking at
11459 	 * the list, not manipulating it:
11460 	 */
11461 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11462 		ret = inherit_task_group(event, parent, parent_ctx,
11463 					 child, ctxn, &inherited_all);
11464 		if (ret)
11465 			goto out_unlock;
11466 	}
11467 
11468 	/*
11469 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
11470 	 * to allocations, but we need to prevent rotation because
11471 	 * rotate_ctx() will change the list from interrupt context.
11472 	 */
11473 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11474 	parent_ctx->rotate_disable = 1;
11475 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11476 
11477 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11478 		ret = inherit_task_group(event, parent, parent_ctx,
11479 					 child, ctxn, &inherited_all);
11480 		if (ret)
11481 			goto out_unlock;
11482 	}
11483 
11484 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11485 	parent_ctx->rotate_disable = 0;
11486 
11487 	child_ctx = child->perf_event_ctxp[ctxn];
11488 
11489 	if (child_ctx && inherited_all) {
11490 		/*
11491 		 * Mark the child context as a clone of the parent
11492 		 * context, or of whatever the parent is a clone of.
11493 		 *
11494 		 * Note that if the parent is a clone, the holding of
11495 		 * parent_ctx->lock avoids it from being uncloned.
11496 		 */
11497 		cloned_ctx = parent_ctx->parent_ctx;
11498 		if (cloned_ctx) {
11499 			child_ctx->parent_ctx = cloned_ctx;
11500 			child_ctx->parent_gen = parent_ctx->parent_gen;
11501 		} else {
11502 			child_ctx->parent_ctx = parent_ctx;
11503 			child_ctx->parent_gen = parent_ctx->generation;
11504 		}
11505 		get_ctx(child_ctx->parent_ctx);
11506 	}
11507 
11508 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11509 out_unlock:
11510 	mutex_unlock(&parent_ctx->mutex);
11511 
11512 	perf_unpin_context(parent_ctx);
11513 	put_ctx(parent_ctx);
11514 
11515 	return ret;
11516 }
11517 
11518 /*
11519  * Initialize the perf_event context in task_struct
11520  */
11521 int perf_event_init_task(struct task_struct *child)
11522 {
11523 	int ctxn, ret;
11524 
11525 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11526 	mutex_init(&child->perf_event_mutex);
11527 	INIT_LIST_HEAD(&child->perf_event_list);
11528 
11529 	for_each_task_context_nr(ctxn) {
11530 		ret = perf_event_init_context(child, ctxn);
11531 		if (ret) {
11532 			perf_event_free_task(child);
11533 			return ret;
11534 		}
11535 	}
11536 
11537 	return 0;
11538 }
11539 
11540 static void __init perf_event_init_all_cpus(void)
11541 {
11542 	struct swevent_htable *swhash;
11543 	int cpu;
11544 
11545 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11546 
11547 	for_each_possible_cpu(cpu) {
11548 		swhash = &per_cpu(swevent_htable, cpu);
11549 		mutex_init(&swhash->hlist_mutex);
11550 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11551 
11552 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11553 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11554 
11555 #ifdef CONFIG_CGROUP_PERF
11556 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11557 #endif
11558 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11559 	}
11560 }
11561 
11562 void perf_swevent_init_cpu(unsigned int cpu)
11563 {
11564 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11565 
11566 	mutex_lock(&swhash->hlist_mutex);
11567 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11568 		struct swevent_hlist *hlist;
11569 
11570 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11571 		WARN_ON(!hlist);
11572 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11573 	}
11574 	mutex_unlock(&swhash->hlist_mutex);
11575 }
11576 
11577 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11578 static void __perf_event_exit_context(void *__info)
11579 {
11580 	struct perf_event_context *ctx = __info;
11581 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11582 	struct perf_event *event;
11583 
11584 	raw_spin_lock(&ctx->lock);
11585 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11586 	list_for_each_entry(event, &ctx->event_list, event_entry)
11587 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11588 	raw_spin_unlock(&ctx->lock);
11589 }
11590 
11591 static void perf_event_exit_cpu_context(int cpu)
11592 {
11593 	struct perf_cpu_context *cpuctx;
11594 	struct perf_event_context *ctx;
11595 	struct pmu *pmu;
11596 
11597 	mutex_lock(&pmus_lock);
11598 	list_for_each_entry(pmu, &pmus, entry) {
11599 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11600 		ctx = &cpuctx->ctx;
11601 
11602 		mutex_lock(&ctx->mutex);
11603 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11604 		cpuctx->online = 0;
11605 		mutex_unlock(&ctx->mutex);
11606 	}
11607 	cpumask_clear_cpu(cpu, perf_online_mask);
11608 	mutex_unlock(&pmus_lock);
11609 }
11610 #else
11611 
11612 static void perf_event_exit_cpu_context(int cpu) { }
11613 
11614 #endif
11615 
11616 int perf_event_init_cpu(unsigned int cpu)
11617 {
11618 	struct perf_cpu_context *cpuctx;
11619 	struct perf_event_context *ctx;
11620 	struct pmu *pmu;
11621 
11622 	perf_swevent_init_cpu(cpu);
11623 
11624 	mutex_lock(&pmus_lock);
11625 	cpumask_set_cpu(cpu, perf_online_mask);
11626 	list_for_each_entry(pmu, &pmus, entry) {
11627 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11628 		ctx = &cpuctx->ctx;
11629 
11630 		mutex_lock(&ctx->mutex);
11631 		cpuctx->online = 1;
11632 		mutex_unlock(&ctx->mutex);
11633 	}
11634 	mutex_unlock(&pmus_lock);
11635 
11636 	return 0;
11637 }
11638 
11639 int perf_event_exit_cpu(unsigned int cpu)
11640 {
11641 	perf_event_exit_cpu_context(cpu);
11642 	return 0;
11643 }
11644 
11645 static int
11646 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11647 {
11648 	int cpu;
11649 
11650 	for_each_online_cpu(cpu)
11651 		perf_event_exit_cpu(cpu);
11652 
11653 	return NOTIFY_OK;
11654 }
11655 
11656 /*
11657  * Run the perf reboot notifier at the very last possible moment so that
11658  * the generic watchdog code runs as long as possible.
11659  */
11660 static struct notifier_block perf_reboot_notifier = {
11661 	.notifier_call = perf_reboot,
11662 	.priority = INT_MIN,
11663 };
11664 
11665 void __init perf_event_init(void)
11666 {
11667 	int ret;
11668 
11669 	idr_init(&pmu_idr);
11670 
11671 	perf_event_init_all_cpus();
11672 	init_srcu_struct(&pmus_srcu);
11673 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11674 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11675 	perf_pmu_register(&perf_task_clock, NULL, -1);
11676 	perf_tp_register();
11677 	perf_event_init_cpu(smp_processor_id());
11678 	register_reboot_notifier(&perf_reboot_notifier);
11679 
11680 	ret = init_hw_breakpoint();
11681 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11682 
11683 	/*
11684 	 * Build time assertion that we keep the data_head at the intended
11685 	 * location.  IOW, validation we got the __reserved[] size right.
11686 	 */
11687 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11688 		     != 1024);
11689 }
11690 
11691 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11692 			      char *page)
11693 {
11694 	struct perf_pmu_events_attr *pmu_attr =
11695 		container_of(attr, struct perf_pmu_events_attr, attr);
11696 
11697 	if (pmu_attr->event_str)
11698 		return sprintf(page, "%s\n", pmu_attr->event_str);
11699 
11700 	return 0;
11701 }
11702 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11703 
11704 static int __init perf_event_sysfs_init(void)
11705 {
11706 	struct pmu *pmu;
11707 	int ret;
11708 
11709 	mutex_lock(&pmus_lock);
11710 
11711 	ret = bus_register(&pmu_bus);
11712 	if (ret)
11713 		goto unlock;
11714 
11715 	list_for_each_entry(pmu, &pmus, entry) {
11716 		if (!pmu->name || pmu->type < 0)
11717 			continue;
11718 
11719 		ret = pmu_dev_alloc(pmu);
11720 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11721 	}
11722 	pmu_bus_running = 1;
11723 	ret = 0;
11724 
11725 unlock:
11726 	mutex_unlock(&pmus_lock);
11727 
11728 	return ret;
11729 }
11730 device_initcall(perf_event_sysfs_init);
11731 
11732 #ifdef CONFIG_CGROUP_PERF
11733 static struct cgroup_subsys_state *
11734 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11735 {
11736 	struct perf_cgroup *jc;
11737 
11738 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11739 	if (!jc)
11740 		return ERR_PTR(-ENOMEM);
11741 
11742 	jc->info = alloc_percpu(struct perf_cgroup_info);
11743 	if (!jc->info) {
11744 		kfree(jc);
11745 		return ERR_PTR(-ENOMEM);
11746 	}
11747 
11748 	return &jc->css;
11749 }
11750 
11751 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11752 {
11753 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11754 
11755 	free_percpu(jc->info);
11756 	kfree(jc);
11757 }
11758 
11759 static int __perf_cgroup_move(void *info)
11760 {
11761 	struct task_struct *task = info;
11762 	rcu_read_lock();
11763 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11764 	rcu_read_unlock();
11765 	return 0;
11766 }
11767 
11768 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11769 {
11770 	struct task_struct *task;
11771 	struct cgroup_subsys_state *css;
11772 
11773 	cgroup_taskset_for_each(task, css, tset)
11774 		task_function_call(task, __perf_cgroup_move, task);
11775 }
11776 
11777 struct cgroup_subsys perf_event_cgrp_subsys = {
11778 	.css_alloc	= perf_cgroup_css_alloc,
11779 	.css_free	= perf_cgroup_css_free,
11780 	.attach		= perf_cgroup_attach,
11781 	/*
11782 	 * Implicitly enable on dfl hierarchy so that perf events can
11783 	 * always be filtered by cgroup2 path as long as perf_event
11784 	 * controller is not mounted on a legacy hierarchy.
11785 	 */
11786 	.implicit_on_dfl = true,
11787 	.threaded	= true,
11788 };
11789 #endif /* CONFIG_CGROUP_PERF */
11790