1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 58 #include "internal.h" 59 60 #include <asm/irq_regs.h> 61 62 typedef int (*remote_function_f)(void *); 63 64 struct remote_function_call { 65 struct task_struct *p; 66 remote_function_f func; 67 void *info; 68 int ret; 69 }; 70 71 static void remote_function(void *data) 72 { 73 struct remote_function_call *tfc = data; 74 struct task_struct *p = tfc->p; 75 76 if (p) { 77 /* -EAGAIN */ 78 if (task_cpu(p) != smp_processor_id()) 79 return; 80 81 /* 82 * Now that we're on right CPU with IRQs disabled, we can test 83 * if we hit the right task without races. 84 */ 85 86 tfc->ret = -ESRCH; /* No such (running) process */ 87 if (p != current) 88 return; 89 } 90 91 tfc->ret = tfc->func(tfc->info); 92 } 93 94 /** 95 * task_function_call - call a function on the cpu on which a task runs 96 * @p: the task to evaluate 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func when the task is currently running. This might 101 * be on the current CPU, which just calls the function directly. This will 102 * retry due to any failures in smp_call_function_single(), such as if the 103 * task_cpu() goes offline concurrently. 104 * 105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 106 */ 107 static int 108 task_function_call(struct task_struct *p, remote_function_f func, void *info) 109 { 110 struct remote_function_call data = { 111 .p = p, 112 .func = func, 113 .info = info, 114 .ret = -EAGAIN, 115 }; 116 int ret; 117 118 for (;;) { 119 ret = smp_call_function_single(task_cpu(p), remote_function, 120 &data, 1); 121 if (!ret) 122 ret = data.ret; 123 124 if (ret != -EAGAIN) 125 break; 126 127 cond_resched(); 128 } 129 130 return ret; 131 } 132 133 /** 134 * cpu_function_call - call a function on the cpu 135 * @cpu: target cpu to queue this function 136 * @func: the function to be called 137 * @info: the function call argument 138 * 139 * Calls the function @func on the remote cpu. 140 * 141 * returns: @func return value or -ENXIO when the cpu is offline 142 */ 143 static int cpu_function_call(int cpu, remote_function_f func, void *info) 144 { 145 struct remote_function_call data = { 146 .p = NULL, 147 .func = func, 148 .info = info, 149 .ret = -ENXIO, /* No such CPU */ 150 }; 151 152 smp_call_function_single(cpu, remote_function, &data, 1); 153 154 return data.ret; 155 } 156 157 static inline struct perf_cpu_context * 158 __get_cpu_context(struct perf_event_context *ctx) 159 { 160 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 161 } 162 163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 164 struct perf_event_context *ctx) 165 { 166 raw_spin_lock(&cpuctx->ctx.lock); 167 if (ctx) 168 raw_spin_lock(&ctx->lock); 169 } 170 171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 172 struct perf_event_context *ctx) 173 { 174 if (ctx) 175 raw_spin_unlock(&ctx->lock); 176 raw_spin_unlock(&cpuctx->ctx.lock); 177 } 178 179 #define TASK_TOMBSTONE ((void *)-1L) 180 181 static bool is_kernel_event(struct perf_event *event) 182 { 183 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 184 } 185 186 /* 187 * On task ctx scheduling... 188 * 189 * When !ctx->nr_events a task context will not be scheduled. This means 190 * we can disable the scheduler hooks (for performance) without leaving 191 * pending task ctx state. 192 * 193 * This however results in two special cases: 194 * 195 * - removing the last event from a task ctx; this is relatively straight 196 * forward and is done in __perf_remove_from_context. 197 * 198 * - adding the first event to a task ctx; this is tricky because we cannot 199 * rely on ctx->is_active and therefore cannot use event_function_call(). 200 * See perf_install_in_context(). 201 * 202 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 203 */ 204 205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 206 struct perf_event_context *, void *); 207 208 struct event_function_struct { 209 struct perf_event *event; 210 event_f func; 211 void *data; 212 }; 213 214 static int event_function(void *info) 215 { 216 struct event_function_struct *efs = info; 217 struct perf_event *event = efs->event; 218 struct perf_event_context *ctx = event->ctx; 219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 220 struct perf_event_context *task_ctx = cpuctx->task_ctx; 221 int ret = 0; 222 223 lockdep_assert_irqs_disabled(); 224 225 perf_ctx_lock(cpuctx, task_ctx); 226 /* 227 * Since we do the IPI call without holding ctx->lock things can have 228 * changed, double check we hit the task we set out to hit. 229 */ 230 if (ctx->task) { 231 if (ctx->task != current) { 232 ret = -ESRCH; 233 goto unlock; 234 } 235 236 /* 237 * We only use event_function_call() on established contexts, 238 * and event_function() is only ever called when active (or 239 * rather, we'll have bailed in task_function_call() or the 240 * above ctx->task != current test), therefore we must have 241 * ctx->is_active here. 242 */ 243 WARN_ON_ONCE(!ctx->is_active); 244 /* 245 * And since we have ctx->is_active, cpuctx->task_ctx must 246 * match. 247 */ 248 WARN_ON_ONCE(task_ctx != ctx); 249 } else { 250 WARN_ON_ONCE(&cpuctx->ctx != ctx); 251 } 252 253 efs->func(event, cpuctx, ctx, efs->data); 254 unlock: 255 perf_ctx_unlock(cpuctx, task_ctx); 256 257 return ret; 258 } 259 260 static void event_function_call(struct perf_event *event, event_f func, void *data) 261 { 262 struct perf_event_context *ctx = event->ctx; 263 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 264 struct event_function_struct efs = { 265 .event = event, 266 .func = func, 267 .data = data, 268 }; 269 270 if (!event->parent) { 271 /* 272 * If this is a !child event, we must hold ctx::mutex to 273 * stabilize the event->ctx relation. See 274 * perf_event_ctx_lock(). 275 */ 276 lockdep_assert_held(&ctx->mutex); 277 } 278 279 if (!task) { 280 cpu_function_call(event->cpu, event_function, &efs); 281 return; 282 } 283 284 if (task == TASK_TOMBSTONE) 285 return; 286 287 again: 288 if (!task_function_call(task, event_function, &efs)) 289 return; 290 291 raw_spin_lock_irq(&ctx->lock); 292 /* 293 * Reload the task pointer, it might have been changed by 294 * a concurrent perf_event_context_sched_out(). 295 */ 296 task = ctx->task; 297 if (task == TASK_TOMBSTONE) { 298 raw_spin_unlock_irq(&ctx->lock); 299 return; 300 } 301 if (ctx->is_active) { 302 raw_spin_unlock_irq(&ctx->lock); 303 goto again; 304 } 305 func(event, NULL, ctx, data); 306 raw_spin_unlock_irq(&ctx->lock); 307 } 308 309 /* 310 * Similar to event_function_call() + event_function(), but hard assumes IRQs 311 * are already disabled and we're on the right CPU. 312 */ 313 static void event_function_local(struct perf_event *event, event_f func, void *data) 314 { 315 struct perf_event_context *ctx = event->ctx; 316 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 317 struct task_struct *task = READ_ONCE(ctx->task); 318 struct perf_event_context *task_ctx = NULL; 319 320 lockdep_assert_irqs_disabled(); 321 322 if (task) { 323 if (task == TASK_TOMBSTONE) 324 return; 325 326 task_ctx = ctx; 327 } 328 329 perf_ctx_lock(cpuctx, task_ctx); 330 331 task = ctx->task; 332 if (task == TASK_TOMBSTONE) 333 goto unlock; 334 335 if (task) { 336 /* 337 * We must be either inactive or active and the right task, 338 * otherwise we're screwed, since we cannot IPI to somewhere 339 * else. 340 */ 341 if (ctx->is_active) { 342 if (WARN_ON_ONCE(task != current)) 343 goto unlock; 344 345 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 346 goto unlock; 347 } 348 } else { 349 WARN_ON_ONCE(&cpuctx->ctx != ctx); 350 } 351 352 func(event, cpuctx, ctx, data); 353 unlock: 354 perf_ctx_unlock(cpuctx, task_ctx); 355 } 356 357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 358 PERF_FLAG_FD_OUTPUT |\ 359 PERF_FLAG_PID_CGROUP |\ 360 PERF_FLAG_FD_CLOEXEC) 361 362 /* 363 * branch priv levels that need permission checks 364 */ 365 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 366 (PERF_SAMPLE_BRANCH_KERNEL |\ 367 PERF_SAMPLE_BRANCH_HV) 368 369 enum event_type_t { 370 EVENT_FLEXIBLE = 0x1, 371 EVENT_PINNED = 0x2, 372 EVENT_TIME = 0x4, 373 /* see ctx_resched() for details */ 374 EVENT_CPU = 0x8, 375 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 376 }; 377 378 /* 379 * perf_sched_events : >0 events exist 380 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 381 */ 382 383 static void perf_sched_delayed(struct work_struct *work); 384 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 386 static DEFINE_MUTEX(perf_sched_mutex); 387 static atomic_t perf_sched_count; 388 389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 390 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 392 393 static atomic_t nr_mmap_events __read_mostly; 394 static atomic_t nr_comm_events __read_mostly; 395 static atomic_t nr_namespaces_events __read_mostly; 396 static atomic_t nr_task_events __read_mostly; 397 static atomic_t nr_freq_events __read_mostly; 398 static atomic_t nr_switch_events __read_mostly; 399 static atomic_t nr_ksymbol_events __read_mostly; 400 static atomic_t nr_bpf_events __read_mostly; 401 static atomic_t nr_cgroup_events __read_mostly; 402 static atomic_t nr_text_poke_events __read_mostly; 403 static atomic_t nr_build_id_events __read_mostly; 404 405 static LIST_HEAD(pmus); 406 static DEFINE_MUTEX(pmus_lock); 407 static struct srcu_struct pmus_srcu; 408 static cpumask_var_t perf_online_mask; 409 static struct kmem_cache *perf_event_cache; 410 411 /* 412 * perf event paranoia level: 413 * -1 - not paranoid at all 414 * 0 - disallow raw tracepoint access for unpriv 415 * 1 - disallow cpu events for unpriv 416 * 2 - disallow kernel profiling for unpriv 417 */ 418 int sysctl_perf_event_paranoid __read_mostly = 2; 419 420 /* Minimum for 512 kiB + 1 user control page */ 421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 422 423 /* 424 * max perf event sample rate 425 */ 426 #define DEFAULT_MAX_SAMPLE_RATE 100000 427 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 428 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 429 430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 431 432 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 433 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 434 435 static int perf_sample_allowed_ns __read_mostly = 436 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 437 438 static void update_perf_cpu_limits(void) 439 { 440 u64 tmp = perf_sample_period_ns; 441 442 tmp *= sysctl_perf_cpu_time_max_percent; 443 tmp = div_u64(tmp, 100); 444 if (!tmp) 445 tmp = 1; 446 447 WRITE_ONCE(perf_sample_allowed_ns, tmp); 448 } 449 450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 451 452 int perf_proc_update_handler(struct ctl_table *table, int write, 453 void *buffer, size_t *lenp, loff_t *ppos) 454 { 455 int ret; 456 int perf_cpu = sysctl_perf_cpu_time_max_percent; 457 /* 458 * If throttling is disabled don't allow the write: 459 */ 460 if (write && (perf_cpu == 100 || perf_cpu == 0)) 461 return -EINVAL; 462 463 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 464 if (ret || !write) 465 return ret; 466 467 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 468 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 469 update_perf_cpu_limits(); 470 471 return 0; 472 } 473 474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 475 476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 477 void *buffer, size_t *lenp, loff_t *ppos) 478 { 479 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 480 481 if (ret || !write) 482 return ret; 483 484 if (sysctl_perf_cpu_time_max_percent == 100 || 485 sysctl_perf_cpu_time_max_percent == 0) { 486 printk(KERN_WARNING 487 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 488 WRITE_ONCE(perf_sample_allowed_ns, 0); 489 } else { 490 update_perf_cpu_limits(); 491 } 492 493 return 0; 494 } 495 496 /* 497 * perf samples are done in some very critical code paths (NMIs). 498 * If they take too much CPU time, the system can lock up and not 499 * get any real work done. This will drop the sample rate when 500 * we detect that events are taking too long. 501 */ 502 #define NR_ACCUMULATED_SAMPLES 128 503 static DEFINE_PER_CPU(u64, running_sample_length); 504 505 static u64 __report_avg; 506 static u64 __report_allowed; 507 508 static void perf_duration_warn(struct irq_work *w) 509 { 510 printk_ratelimited(KERN_INFO 511 "perf: interrupt took too long (%lld > %lld), lowering " 512 "kernel.perf_event_max_sample_rate to %d\n", 513 __report_avg, __report_allowed, 514 sysctl_perf_event_sample_rate); 515 } 516 517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 518 519 void perf_sample_event_took(u64 sample_len_ns) 520 { 521 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 522 u64 running_len; 523 u64 avg_len; 524 u32 max; 525 526 if (max_len == 0) 527 return; 528 529 /* Decay the counter by 1 average sample. */ 530 running_len = __this_cpu_read(running_sample_length); 531 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 532 running_len += sample_len_ns; 533 __this_cpu_write(running_sample_length, running_len); 534 535 /* 536 * Note: this will be biased artifically low until we have 537 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 538 * from having to maintain a count. 539 */ 540 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 541 if (avg_len <= max_len) 542 return; 543 544 __report_avg = avg_len; 545 __report_allowed = max_len; 546 547 /* 548 * Compute a throttle threshold 25% below the current duration. 549 */ 550 avg_len += avg_len / 4; 551 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 552 if (avg_len < max) 553 max /= (u32)avg_len; 554 else 555 max = 1; 556 557 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 558 WRITE_ONCE(max_samples_per_tick, max); 559 560 sysctl_perf_event_sample_rate = max * HZ; 561 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 562 563 if (!irq_work_queue(&perf_duration_work)) { 564 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 565 "kernel.perf_event_max_sample_rate to %d\n", 566 __report_avg, __report_allowed, 567 sysctl_perf_event_sample_rate); 568 } 569 } 570 571 static atomic64_t perf_event_id; 572 573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 574 enum event_type_t event_type); 575 576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 577 enum event_type_t event_type, 578 struct task_struct *task); 579 580 static void update_context_time(struct perf_event_context *ctx); 581 static u64 perf_event_time(struct perf_event *event); 582 583 void __weak perf_event_print_debug(void) { } 584 585 static inline u64 perf_clock(void) 586 { 587 return local_clock(); 588 } 589 590 static inline u64 perf_event_clock(struct perf_event *event) 591 { 592 return event->clock(); 593 } 594 595 /* 596 * State based event timekeeping... 597 * 598 * The basic idea is to use event->state to determine which (if any) time 599 * fields to increment with the current delta. This means we only need to 600 * update timestamps when we change state or when they are explicitly requested 601 * (read). 602 * 603 * Event groups make things a little more complicated, but not terribly so. The 604 * rules for a group are that if the group leader is OFF the entire group is 605 * OFF, irrespecive of what the group member states are. This results in 606 * __perf_effective_state(). 607 * 608 * A futher ramification is that when a group leader flips between OFF and 609 * !OFF, we need to update all group member times. 610 * 611 * 612 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 613 * need to make sure the relevant context time is updated before we try and 614 * update our timestamps. 615 */ 616 617 static __always_inline enum perf_event_state 618 __perf_effective_state(struct perf_event *event) 619 { 620 struct perf_event *leader = event->group_leader; 621 622 if (leader->state <= PERF_EVENT_STATE_OFF) 623 return leader->state; 624 625 return event->state; 626 } 627 628 static __always_inline void 629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 630 { 631 enum perf_event_state state = __perf_effective_state(event); 632 u64 delta = now - event->tstamp; 633 634 *enabled = event->total_time_enabled; 635 if (state >= PERF_EVENT_STATE_INACTIVE) 636 *enabled += delta; 637 638 *running = event->total_time_running; 639 if (state >= PERF_EVENT_STATE_ACTIVE) 640 *running += delta; 641 } 642 643 static void perf_event_update_time(struct perf_event *event) 644 { 645 u64 now = perf_event_time(event); 646 647 __perf_update_times(event, now, &event->total_time_enabled, 648 &event->total_time_running); 649 event->tstamp = now; 650 } 651 652 static void perf_event_update_sibling_time(struct perf_event *leader) 653 { 654 struct perf_event *sibling; 655 656 for_each_sibling_event(sibling, leader) 657 perf_event_update_time(sibling); 658 } 659 660 static void 661 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 662 { 663 if (event->state == state) 664 return; 665 666 perf_event_update_time(event); 667 /* 668 * If a group leader gets enabled/disabled all its siblings 669 * are affected too. 670 */ 671 if ((event->state < 0) ^ (state < 0)) 672 perf_event_update_sibling_time(event); 673 674 WRITE_ONCE(event->state, state); 675 } 676 677 /* 678 * UP store-release, load-acquire 679 */ 680 681 #define __store_release(ptr, val) \ 682 do { \ 683 barrier(); \ 684 WRITE_ONCE(*(ptr), (val)); \ 685 } while (0) 686 687 #define __load_acquire(ptr) \ 688 ({ \ 689 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 690 barrier(); \ 691 ___p; \ 692 }) 693 694 #ifdef CONFIG_CGROUP_PERF 695 696 static inline bool 697 perf_cgroup_match(struct perf_event *event) 698 { 699 struct perf_event_context *ctx = event->ctx; 700 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 701 702 /* @event doesn't care about cgroup */ 703 if (!event->cgrp) 704 return true; 705 706 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 707 if (!cpuctx->cgrp) 708 return false; 709 710 /* 711 * Cgroup scoping is recursive. An event enabled for a cgroup is 712 * also enabled for all its descendant cgroups. If @cpuctx's 713 * cgroup is a descendant of @event's (the test covers identity 714 * case), it's a match. 715 */ 716 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 717 event->cgrp->css.cgroup); 718 } 719 720 static inline void perf_detach_cgroup(struct perf_event *event) 721 { 722 css_put(&event->cgrp->css); 723 event->cgrp = NULL; 724 } 725 726 static inline int is_cgroup_event(struct perf_event *event) 727 { 728 return event->cgrp != NULL; 729 } 730 731 static inline u64 perf_cgroup_event_time(struct perf_event *event) 732 { 733 struct perf_cgroup_info *t; 734 735 t = per_cpu_ptr(event->cgrp->info, event->cpu); 736 return t->time; 737 } 738 739 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 740 { 741 struct perf_cgroup_info *t; 742 743 t = per_cpu_ptr(event->cgrp->info, event->cpu); 744 if (!__load_acquire(&t->active)) 745 return t->time; 746 now += READ_ONCE(t->timeoffset); 747 return now; 748 } 749 750 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 751 { 752 if (adv) 753 info->time += now - info->timestamp; 754 info->timestamp = now; 755 /* 756 * see update_context_time() 757 */ 758 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 759 } 760 761 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 762 { 763 struct perf_cgroup *cgrp = cpuctx->cgrp; 764 struct cgroup_subsys_state *css; 765 struct perf_cgroup_info *info; 766 767 if (cgrp) { 768 u64 now = perf_clock(); 769 770 for (css = &cgrp->css; css; css = css->parent) { 771 cgrp = container_of(css, struct perf_cgroup, css); 772 info = this_cpu_ptr(cgrp->info); 773 774 __update_cgrp_time(info, now, true); 775 if (final) 776 __store_release(&info->active, 0); 777 } 778 } 779 } 780 781 static inline void update_cgrp_time_from_event(struct perf_event *event) 782 { 783 struct perf_cgroup_info *info; 784 struct perf_cgroup *cgrp; 785 786 /* 787 * ensure we access cgroup data only when needed and 788 * when we know the cgroup is pinned (css_get) 789 */ 790 if (!is_cgroup_event(event)) 791 return; 792 793 cgrp = perf_cgroup_from_task(current, event->ctx); 794 /* 795 * Do not update time when cgroup is not active 796 */ 797 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) { 798 info = this_cpu_ptr(event->cgrp->info); 799 __update_cgrp_time(info, perf_clock(), true); 800 } 801 } 802 803 static inline void 804 perf_cgroup_set_timestamp(struct task_struct *task, 805 struct perf_event_context *ctx) 806 { 807 struct perf_cgroup *cgrp; 808 struct perf_cgroup_info *info; 809 struct cgroup_subsys_state *css; 810 811 /* 812 * ctx->lock held by caller 813 * ensure we do not access cgroup data 814 * unless we have the cgroup pinned (css_get) 815 */ 816 if (!task || !ctx->nr_cgroups) 817 return; 818 819 cgrp = perf_cgroup_from_task(task, ctx); 820 821 for (css = &cgrp->css; css; css = css->parent) { 822 cgrp = container_of(css, struct perf_cgroup, css); 823 info = this_cpu_ptr(cgrp->info); 824 __update_cgrp_time(info, ctx->timestamp, false); 825 __store_release(&info->active, 1); 826 } 827 } 828 829 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 830 831 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 832 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 833 834 /* 835 * reschedule events based on the cgroup constraint of task. 836 * 837 * mode SWOUT : schedule out everything 838 * mode SWIN : schedule in based on cgroup for next 839 */ 840 static void perf_cgroup_switch(struct task_struct *task, int mode) 841 { 842 struct perf_cpu_context *cpuctx, *tmp; 843 struct list_head *list; 844 unsigned long flags; 845 846 /* 847 * Disable interrupts and preemption to avoid this CPU's 848 * cgrp_cpuctx_entry to change under us. 849 */ 850 local_irq_save(flags); 851 852 list = this_cpu_ptr(&cgrp_cpuctx_list); 853 list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) { 854 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 855 856 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 857 perf_pmu_disable(cpuctx->ctx.pmu); 858 859 if (mode & PERF_CGROUP_SWOUT) { 860 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 861 /* 862 * must not be done before ctxswout due 863 * to event_filter_match() in event_sched_out() 864 */ 865 cpuctx->cgrp = NULL; 866 } 867 868 if (mode & PERF_CGROUP_SWIN) { 869 WARN_ON_ONCE(cpuctx->cgrp); 870 /* 871 * set cgrp before ctxsw in to allow 872 * event_filter_match() to not have to pass 873 * task around 874 * we pass the cpuctx->ctx to perf_cgroup_from_task() 875 * because cgorup events are only per-cpu 876 */ 877 cpuctx->cgrp = perf_cgroup_from_task(task, 878 &cpuctx->ctx); 879 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 880 } 881 perf_pmu_enable(cpuctx->ctx.pmu); 882 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 883 } 884 885 local_irq_restore(flags); 886 } 887 888 static inline void perf_cgroup_sched_out(struct task_struct *task, 889 struct task_struct *next) 890 { 891 struct perf_cgroup *cgrp1; 892 struct perf_cgroup *cgrp2 = NULL; 893 894 rcu_read_lock(); 895 /* 896 * we come here when we know perf_cgroup_events > 0 897 * we do not need to pass the ctx here because we know 898 * we are holding the rcu lock 899 */ 900 cgrp1 = perf_cgroup_from_task(task, NULL); 901 cgrp2 = perf_cgroup_from_task(next, NULL); 902 903 /* 904 * only schedule out current cgroup events if we know 905 * that we are switching to a different cgroup. Otherwise, 906 * do no touch the cgroup events. 907 */ 908 if (cgrp1 != cgrp2) 909 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 910 911 rcu_read_unlock(); 912 } 913 914 static inline void perf_cgroup_sched_in(struct task_struct *prev, 915 struct task_struct *task) 916 { 917 struct perf_cgroup *cgrp1; 918 struct perf_cgroup *cgrp2 = NULL; 919 920 rcu_read_lock(); 921 /* 922 * we come here when we know perf_cgroup_events > 0 923 * we do not need to pass the ctx here because we know 924 * we are holding the rcu lock 925 */ 926 cgrp1 = perf_cgroup_from_task(task, NULL); 927 cgrp2 = perf_cgroup_from_task(prev, NULL); 928 929 /* 930 * only need to schedule in cgroup events if we are changing 931 * cgroup during ctxsw. Cgroup events were not scheduled 932 * out of ctxsw out if that was not the case. 933 */ 934 if (cgrp1 != cgrp2) 935 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 936 937 rcu_read_unlock(); 938 } 939 940 static int perf_cgroup_ensure_storage(struct perf_event *event, 941 struct cgroup_subsys_state *css) 942 { 943 struct perf_cpu_context *cpuctx; 944 struct perf_event **storage; 945 int cpu, heap_size, ret = 0; 946 947 /* 948 * Allow storage to have sufficent space for an iterator for each 949 * possibly nested cgroup plus an iterator for events with no cgroup. 950 */ 951 for (heap_size = 1; css; css = css->parent) 952 heap_size++; 953 954 for_each_possible_cpu(cpu) { 955 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 956 if (heap_size <= cpuctx->heap_size) 957 continue; 958 959 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 960 GFP_KERNEL, cpu_to_node(cpu)); 961 if (!storage) { 962 ret = -ENOMEM; 963 break; 964 } 965 966 raw_spin_lock_irq(&cpuctx->ctx.lock); 967 if (cpuctx->heap_size < heap_size) { 968 swap(cpuctx->heap, storage); 969 if (storage == cpuctx->heap_default) 970 storage = NULL; 971 cpuctx->heap_size = heap_size; 972 } 973 raw_spin_unlock_irq(&cpuctx->ctx.lock); 974 975 kfree(storage); 976 } 977 978 return ret; 979 } 980 981 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 982 struct perf_event_attr *attr, 983 struct perf_event *group_leader) 984 { 985 struct perf_cgroup *cgrp; 986 struct cgroup_subsys_state *css; 987 struct fd f = fdget(fd); 988 int ret = 0; 989 990 if (!f.file) 991 return -EBADF; 992 993 css = css_tryget_online_from_dir(f.file->f_path.dentry, 994 &perf_event_cgrp_subsys); 995 if (IS_ERR(css)) { 996 ret = PTR_ERR(css); 997 goto out; 998 } 999 1000 ret = perf_cgroup_ensure_storage(event, css); 1001 if (ret) 1002 goto out; 1003 1004 cgrp = container_of(css, struct perf_cgroup, css); 1005 event->cgrp = cgrp; 1006 1007 /* 1008 * all events in a group must monitor 1009 * the same cgroup because a task belongs 1010 * to only one perf cgroup at a time 1011 */ 1012 if (group_leader && group_leader->cgrp != cgrp) { 1013 perf_detach_cgroup(event); 1014 ret = -EINVAL; 1015 } 1016 out: 1017 fdput(f); 1018 return ret; 1019 } 1020 1021 static inline void 1022 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1023 { 1024 struct perf_cpu_context *cpuctx; 1025 1026 if (!is_cgroup_event(event)) 1027 return; 1028 1029 /* 1030 * Because cgroup events are always per-cpu events, 1031 * @ctx == &cpuctx->ctx. 1032 */ 1033 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1034 1035 /* 1036 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1037 * matching the event's cgroup, we must do this for every new event, 1038 * because if the first would mismatch, the second would not try again 1039 * and we would leave cpuctx->cgrp unset. 1040 */ 1041 if (ctx->is_active && !cpuctx->cgrp) { 1042 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1043 1044 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1045 cpuctx->cgrp = cgrp; 1046 } 1047 1048 if (ctx->nr_cgroups++) 1049 return; 1050 1051 list_add(&cpuctx->cgrp_cpuctx_entry, 1052 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1053 } 1054 1055 static inline void 1056 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1057 { 1058 struct perf_cpu_context *cpuctx; 1059 1060 if (!is_cgroup_event(event)) 1061 return; 1062 1063 /* 1064 * Because cgroup events are always per-cpu events, 1065 * @ctx == &cpuctx->ctx. 1066 */ 1067 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1068 1069 if (--ctx->nr_cgroups) 1070 return; 1071 1072 if (ctx->is_active && cpuctx->cgrp) 1073 cpuctx->cgrp = NULL; 1074 1075 list_del(&cpuctx->cgrp_cpuctx_entry); 1076 } 1077 1078 #else /* !CONFIG_CGROUP_PERF */ 1079 1080 static inline bool 1081 perf_cgroup_match(struct perf_event *event) 1082 { 1083 return true; 1084 } 1085 1086 static inline void perf_detach_cgroup(struct perf_event *event) 1087 {} 1088 1089 static inline int is_cgroup_event(struct perf_event *event) 1090 { 1091 return 0; 1092 } 1093 1094 static inline void update_cgrp_time_from_event(struct perf_event *event) 1095 { 1096 } 1097 1098 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1099 bool final) 1100 { 1101 } 1102 1103 static inline void perf_cgroup_sched_out(struct task_struct *task, 1104 struct task_struct *next) 1105 { 1106 } 1107 1108 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1109 struct task_struct *task) 1110 { 1111 } 1112 1113 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1114 struct perf_event_attr *attr, 1115 struct perf_event *group_leader) 1116 { 1117 return -EINVAL; 1118 } 1119 1120 static inline void 1121 perf_cgroup_set_timestamp(struct task_struct *task, 1122 struct perf_event_context *ctx) 1123 { 1124 } 1125 1126 static inline void 1127 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1128 { 1129 } 1130 1131 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1132 { 1133 return 0; 1134 } 1135 1136 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1137 { 1138 return 0; 1139 } 1140 1141 static inline void 1142 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1143 { 1144 } 1145 1146 static inline void 1147 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1148 { 1149 } 1150 #endif 1151 1152 /* 1153 * set default to be dependent on timer tick just 1154 * like original code 1155 */ 1156 #define PERF_CPU_HRTIMER (1000 / HZ) 1157 /* 1158 * function must be called with interrupts disabled 1159 */ 1160 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1161 { 1162 struct perf_cpu_context *cpuctx; 1163 bool rotations; 1164 1165 lockdep_assert_irqs_disabled(); 1166 1167 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1168 rotations = perf_rotate_context(cpuctx); 1169 1170 raw_spin_lock(&cpuctx->hrtimer_lock); 1171 if (rotations) 1172 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1173 else 1174 cpuctx->hrtimer_active = 0; 1175 raw_spin_unlock(&cpuctx->hrtimer_lock); 1176 1177 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1178 } 1179 1180 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1181 { 1182 struct hrtimer *timer = &cpuctx->hrtimer; 1183 struct pmu *pmu = cpuctx->ctx.pmu; 1184 u64 interval; 1185 1186 /* no multiplexing needed for SW PMU */ 1187 if (pmu->task_ctx_nr == perf_sw_context) 1188 return; 1189 1190 /* 1191 * check default is sane, if not set then force to 1192 * default interval (1/tick) 1193 */ 1194 interval = pmu->hrtimer_interval_ms; 1195 if (interval < 1) 1196 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1197 1198 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1199 1200 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1201 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1202 timer->function = perf_mux_hrtimer_handler; 1203 } 1204 1205 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1206 { 1207 struct hrtimer *timer = &cpuctx->hrtimer; 1208 struct pmu *pmu = cpuctx->ctx.pmu; 1209 unsigned long flags; 1210 1211 /* not for SW PMU */ 1212 if (pmu->task_ctx_nr == perf_sw_context) 1213 return 0; 1214 1215 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1216 if (!cpuctx->hrtimer_active) { 1217 cpuctx->hrtimer_active = 1; 1218 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1219 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1220 } 1221 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1222 1223 return 0; 1224 } 1225 1226 void perf_pmu_disable(struct pmu *pmu) 1227 { 1228 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1229 if (!(*count)++) 1230 pmu->pmu_disable(pmu); 1231 } 1232 1233 void perf_pmu_enable(struct pmu *pmu) 1234 { 1235 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1236 if (!--(*count)) 1237 pmu->pmu_enable(pmu); 1238 } 1239 1240 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1241 1242 /* 1243 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1244 * perf_event_task_tick() are fully serialized because they're strictly cpu 1245 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1246 * disabled, while perf_event_task_tick is called from IRQ context. 1247 */ 1248 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1249 { 1250 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1251 1252 lockdep_assert_irqs_disabled(); 1253 1254 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1255 1256 list_add(&ctx->active_ctx_list, head); 1257 } 1258 1259 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1260 { 1261 lockdep_assert_irqs_disabled(); 1262 1263 WARN_ON(list_empty(&ctx->active_ctx_list)); 1264 1265 list_del_init(&ctx->active_ctx_list); 1266 } 1267 1268 static void get_ctx(struct perf_event_context *ctx) 1269 { 1270 refcount_inc(&ctx->refcount); 1271 } 1272 1273 static void *alloc_task_ctx_data(struct pmu *pmu) 1274 { 1275 if (pmu->task_ctx_cache) 1276 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1277 1278 return NULL; 1279 } 1280 1281 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1282 { 1283 if (pmu->task_ctx_cache && task_ctx_data) 1284 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1285 } 1286 1287 static void free_ctx(struct rcu_head *head) 1288 { 1289 struct perf_event_context *ctx; 1290 1291 ctx = container_of(head, struct perf_event_context, rcu_head); 1292 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1293 kfree(ctx); 1294 } 1295 1296 static void put_ctx(struct perf_event_context *ctx) 1297 { 1298 if (refcount_dec_and_test(&ctx->refcount)) { 1299 if (ctx->parent_ctx) 1300 put_ctx(ctx->parent_ctx); 1301 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1302 put_task_struct(ctx->task); 1303 call_rcu(&ctx->rcu_head, free_ctx); 1304 } 1305 } 1306 1307 /* 1308 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1309 * perf_pmu_migrate_context() we need some magic. 1310 * 1311 * Those places that change perf_event::ctx will hold both 1312 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1313 * 1314 * Lock ordering is by mutex address. There are two other sites where 1315 * perf_event_context::mutex nests and those are: 1316 * 1317 * - perf_event_exit_task_context() [ child , 0 ] 1318 * perf_event_exit_event() 1319 * put_event() [ parent, 1 ] 1320 * 1321 * - perf_event_init_context() [ parent, 0 ] 1322 * inherit_task_group() 1323 * inherit_group() 1324 * inherit_event() 1325 * perf_event_alloc() 1326 * perf_init_event() 1327 * perf_try_init_event() [ child , 1 ] 1328 * 1329 * While it appears there is an obvious deadlock here -- the parent and child 1330 * nesting levels are inverted between the two. This is in fact safe because 1331 * life-time rules separate them. That is an exiting task cannot fork, and a 1332 * spawning task cannot (yet) exit. 1333 * 1334 * But remember that these are parent<->child context relations, and 1335 * migration does not affect children, therefore these two orderings should not 1336 * interact. 1337 * 1338 * The change in perf_event::ctx does not affect children (as claimed above) 1339 * because the sys_perf_event_open() case will install a new event and break 1340 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1341 * concerned with cpuctx and that doesn't have children. 1342 * 1343 * The places that change perf_event::ctx will issue: 1344 * 1345 * perf_remove_from_context(); 1346 * synchronize_rcu(); 1347 * perf_install_in_context(); 1348 * 1349 * to affect the change. The remove_from_context() + synchronize_rcu() should 1350 * quiesce the event, after which we can install it in the new location. This 1351 * means that only external vectors (perf_fops, prctl) can perturb the event 1352 * while in transit. Therefore all such accessors should also acquire 1353 * perf_event_context::mutex to serialize against this. 1354 * 1355 * However; because event->ctx can change while we're waiting to acquire 1356 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1357 * function. 1358 * 1359 * Lock order: 1360 * exec_update_lock 1361 * task_struct::perf_event_mutex 1362 * perf_event_context::mutex 1363 * perf_event::child_mutex; 1364 * perf_event_context::lock 1365 * perf_event::mmap_mutex 1366 * mmap_lock 1367 * perf_addr_filters_head::lock 1368 * 1369 * cpu_hotplug_lock 1370 * pmus_lock 1371 * cpuctx->mutex / perf_event_context::mutex 1372 */ 1373 static struct perf_event_context * 1374 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1375 { 1376 struct perf_event_context *ctx; 1377 1378 again: 1379 rcu_read_lock(); 1380 ctx = READ_ONCE(event->ctx); 1381 if (!refcount_inc_not_zero(&ctx->refcount)) { 1382 rcu_read_unlock(); 1383 goto again; 1384 } 1385 rcu_read_unlock(); 1386 1387 mutex_lock_nested(&ctx->mutex, nesting); 1388 if (event->ctx != ctx) { 1389 mutex_unlock(&ctx->mutex); 1390 put_ctx(ctx); 1391 goto again; 1392 } 1393 1394 return ctx; 1395 } 1396 1397 static inline struct perf_event_context * 1398 perf_event_ctx_lock(struct perf_event *event) 1399 { 1400 return perf_event_ctx_lock_nested(event, 0); 1401 } 1402 1403 static void perf_event_ctx_unlock(struct perf_event *event, 1404 struct perf_event_context *ctx) 1405 { 1406 mutex_unlock(&ctx->mutex); 1407 put_ctx(ctx); 1408 } 1409 1410 /* 1411 * This must be done under the ctx->lock, such as to serialize against 1412 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1413 * calling scheduler related locks and ctx->lock nests inside those. 1414 */ 1415 static __must_check struct perf_event_context * 1416 unclone_ctx(struct perf_event_context *ctx) 1417 { 1418 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1419 1420 lockdep_assert_held(&ctx->lock); 1421 1422 if (parent_ctx) 1423 ctx->parent_ctx = NULL; 1424 ctx->generation++; 1425 1426 return parent_ctx; 1427 } 1428 1429 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1430 enum pid_type type) 1431 { 1432 u32 nr; 1433 /* 1434 * only top level events have the pid namespace they were created in 1435 */ 1436 if (event->parent) 1437 event = event->parent; 1438 1439 nr = __task_pid_nr_ns(p, type, event->ns); 1440 /* avoid -1 if it is idle thread or runs in another ns */ 1441 if (!nr && !pid_alive(p)) 1442 nr = -1; 1443 return nr; 1444 } 1445 1446 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1447 { 1448 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1449 } 1450 1451 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1452 { 1453 return perf_event_pid_type(event, p, PIDTYPE_PID); 1454 } 1455 1456 /* 1457 * If we inherit events we want to return the parent event id 1458 * to userspace. 1459 */ 1460 static u64 primary_event_id(struct perf_event *event) 1461 { 1462 u64 id = event->id; 1463 1464 if (event->parent) 1465 id = event->parent->id; 1466 1467 return id; 1468 } 1469 1470 /* 1471 * Get the perf_event_context for a task and lock it. 1472 * 1473 * This has to cope with the fact that until it is locked, 1474 * the context could get moved to another task. 1475 */ 1476 static struct perf_event_context * 1477 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1478 { 1479 struct perf_event_context *ctx; 1480 1481 retry: 1482 /* 1483 * One of the few rules of preemptible RCU is that one cannot do 1484 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1485 * part of the read side critical section was irqs-enabled -- see 1486 * rcu_read_unlock_special(). 1487 * 1488 * Since ctx->lock nests under rq->lock we must ensure the entire read 1489 * side critical section has interrupts disabled. 1490 */ 1491 local_irq_save(*flags); 1492 rcu_read_lock(); 1493 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1494 if (ctx) { 1495 /* 1496 * If this context is a clone of another, it might 1497 * get swapped for another underneath us by 1498 * perf_event_task_sched_out, though the 1499 * rcu_read_lock() protects us from any context 1500 * getting freed. Lock the context and check if it 1501 * got swapped before we could get the lock, and retry 1502 * if so. If we locked the right context, then it 1503 * can't get swapped on us any more. 1504 */ 1505 raw_spin_lock(&ctx->lock); 1506 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1507 raw_spin_unlock(&ctx->lock); 1508 rcu_read_unlock(); 1509 local_irq_restore(*flags); 1510 goto retry; 1511 } 1512 1513 if (ctx->task == TASK_TOMBSTONE || 1514 !refcount_inc_not_zero(&ctx->refcount)) { 1515 raw_spin_unlock(&ctx->lock); 1516 ctx = NULL; 1517 } else { 1518 WARN_ON_ONCE(ctx->task != task); 1519 } 1520 } 1521 rcu_read_unlock(); 1522 if (!ctx) 1523 local_irq_restore(*flags); 1524 return ctx; 1525 } 1526 1527 /* 1528 * Get the context for a task and increment its pin_count so it 1529 * can't get swapped to another task. This also increments its 1530 * reference count so that the context can't get freed. 1531 */ 1532 static struct perf_event_context * 1533 perf_pin_task_context(struct task_struct *task, int ctxn) 1534 { 1535 struct perf_event_context *ctx; 1536 unsigned long flags; 1537 1538 ctx = perf_lock_task_context(task, ctxn, &flags); 1539 if (ctx) { 1540 ++ctx->pin_count; 1541 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1542 } 1543 return ctx; 1544 } 1545 1546 static void perf_unpin_context(struct perf_event_context *ctx) 1547 { 1548 unsigned long flags; 1549 1550 raw_spin_lock_irqsave(&ctx->lock, flags); 1551 --ctx->pin_count; 1552 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1553 } 1554 1555 /* 1556 * Update the record of the current time in a context. 1557 */ 1558 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1559 { 1560 u64 now = perf_clock(); 1561 1562 if (adv) 1563 ctx->time += now - ctx->timestamp; 1564 ctx->timestamp = now; 1565 1566 /* 1567 * The above: time' = time + (now - timestamp), can be re-arranged 1568 * into: time` = now + (time - timestamp), which gives a single value 1569 * offset to compute future time without locks on. 1570 * 1571 * See perf_event_time_now(), which can be used from NMI context where 1572 * it's (obviously) not possible to acquire ctx->lock in order to read 1573 * both the above values in a consistent manner. 1574 */ 1575 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1576 } 1577 1578 static void update_context_time(struct perf_event_context *ctx) 1579 { 1580 __update_context_time(ctx, true); 1581 } 1582 1583 static u64 perf_event_time(struct perf_event *event) 1584 { 1585 struct perf_event_context *ctx = event->ctx; 1586 1587 if (unlikely(!ctx)) 1588 return 0; 1589 1590 if (is_cgroup_event(event)) 1591 return perf_cgroup_event_time(event); 1592 1593 return ctx->time; 1594 } 1595 1596 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1597 { 1598 struct perf_event_context *ctx = event->ctx; 1599 1600 if (unlikely(!ctx)) 1601 return 0; 1602 1603 if (is_cgroup_event(event)) 1604 return perf_cgroup_event_time_now(event, now); 1605 1606 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1607 return ctx->time; 1608 1609 now += READ_ONCE(ctx->timeoffset); 1610 return now; 1611 } 1612 1613 static enum event_type_t get_event_type(struct perf_event *event) 1614 { 1615 struct perf_event_context *ctx = event->ctx; 1616 enum event_type_t event_type; 1617 1618 lockdep_assert_held(&ctx->lock); 1619 1620 /* 1621 * It's 'group type', really, because if our group leader is 1622 * pinned, so are we. 1623 */ 1624 if (event->group_leader != event) 1625 event = event->group_leader; 1626 1627 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1628 if (!ctx->task) 1629 event_type |= EVENT_CPU; 1630 1631 return event_type; 1632 } 1633 1634 /* 1635 * Helper function to initialize event group nodes. 1636 */ 1637 static void init_event_group(struct perf_event *event) 1638 { 1639 RB_CLEAR_NODE(&event->group_node); 1640 event->group_index = 0; 1641 } 1642 1643 /* 1644 * Extract pinned or flexible groups from the context 1645 * based on event attrs bits. 1646 */ 1647 static struct perf_event_groups * 1648 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1649 { 1650 if (event->attr.pinned) 1651 return &ctx->pinned_groups; 1652 else 1653 return &ctx->flexible_groups; 1654 } 1655 1656 /* 1657 * Helper function to initializes perf_event_group trees. 1658 */ 1659 static void perf_event_groups_init(struct perf_event_groups *groups) 1660 { 1661 groups->tree = RB_ROOT; 1662 groups->index = 0; 1663 } 1664 1665 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1666 { 1667 struct cgroup *cgroup = NULL; 1668 1669 #ifdef CONFIG_CGROUP_PERF 1670 if (event->cgrp) 1671 cgroup = event->cgrp->css.cgroup; 1672 #endif 1673 1674 return cgroup; 1675 } 1676 1677 /* 1678 * Compare function for event groups; 1679 * 1680 * Implements complex key that first sorts by CPU and then by virtual index 1681 * which provides ordering when rotating groups for the same CPU. 1682 */ 1683 static __always_inline int 1684 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup, 1685 const u64 left_group_index, const struct perf_event *right) 1686 { 1687 if (left_cpu < right->cpu) 1688 return -1; 1689 if (left_cpu > right->cpu) 1690 return 1; 1691 1692 #ifdef CONFIG_CGROUP_PERF 1693 { 1694 const struct cgroup *right_cgroup = event_cgroup(right); 1695 1696 if (left_cgroup != right_cgroup) { 1697 if (!left_cgroup) { 1698 /* 1699 * Left has no cgroup but right does, no 1700 * cgroups come first. 1701 */ 1702 return -1; 1703 } 1704 if (!right_cgroup) { 1705 /* 1706 * Right has no cgroup but left does, no 1707 * cgroups come first. 1708 */ 1709 return 1; 1710 } 1711 /* Two dissimilar cgroups, order by id. */ 1712 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1713 return -1; 1714 1715 return 1; 1716 } 1717 } 1718 #endif 1719 1720 if (left_group_index < right->group_index) 1721 return -1; 1722 if (left_group_index > right->group_index) 1723 return 1; 1724 1725 return 0; 1726 } 1727 1728 #define __node_2_pe(node) \ 1729 rb_entry((node), struct perf_event, group_node) 1730 1731 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1732 { 1733 struct perf_event *e = __node_2_pe(a); 1734 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index, 1735 __node_2_pe(b)) < 0; 1736 } 1737 1738 struct __group_key { 1739 int cpu; 1740 struct cgroup *cgroup; 1741 }; 1742 1743 static inline int __group_cmp(const void *key, const struct rb_node *node) 1744 { 1745 const struct __group_key *a = key; 1746 const struct perf_event *b = __node_2_pe(node); 1747 1748 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */ 1749 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b); 1750 } 1751 1752 /* 1753 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1754 * key (see perf_event_groups_less). This places it last inside the CPU 1755 * subtree. 1756 */ 1757 static void 1758 perf_event_groups_insert(struct perf_event_groups *groups, 1759 struct perf_event *event) 1760 { 1761 event->group_index = ++groups->index; 1762 1763 rb_add(&event->group_node, &groups->tree, __group_less); 1764 } 1765 1766 /* 1767 * Helper function to insert event into the pinned or flexible groups. 1768 */ 1769 static void 1770 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1771 { 1772 struct perf_event_groups *groups; 1773 1774 groups = get_event_groups(event, ctx); 1775 perf_event_groups_insert(groups, event); 1776 } 1777 1778 /* 1779 * Delete a group from a tree. 1780 */ 1781 static void 1782 perf_event_groups_delete(struct perf_event_groups *groups, 1783 struct perf_event *event) 1784 { 1785 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1786 RB_EMPTY_ROOT(&groups->tree)); 1787 1788 rb_erase(&event->group_node, &groups->tree); 1789 init_event_group(event); 1790 } 1791 1792 /* 1793 * Helper function to delete event from its groups. 1794 */ 1795 static void 1796 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1797 { 1798 struct perf_event_groups *groups; 1799 1800 groups = get_event_groups(event, ctx); 1801 perf_event_groups_delete(groups, event); 1802 } 1803 1804 /* 1805 * Get the leftmost event in the cpu/cgroup subtree. 1806 */ 1807 static struct perf_event * 1808 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1809 struct cgroup *cgrp) 1810 { 1811 struct __group_key key = { 1812 .cpu = cpu, 1813 .cgroup = cgrp, 1814 }; 1815 struct rb_node *node; 1816 1817 node = rb_find_first(&key, &groups->tree, __group_cmp); 1818 if (node) 1819 return __node_2_pe(node); 1820 1821 return NULL; 1822 } 1823 1824 /* 1825 * Like rb_entry_next_safe() for the @cpu subtree. 1826 */ 1827 static struct perf_event * 1828 perf_event_groups_next(struct perf_event *event) 1829 { 1830 struct __group_key key = { 1831 .cpu = event->cpu, 1832 .cgroup = event_cgroup(event), 1833 }; 1834 struct rb_node *next; 1835 1836 next = rb_next_match(&key, &event->group_node, __group_cmp); 1837 if (next) 1838 return __node_2_pe(next); 1839 1840 return NULL; 1841 } 1842 1843 /* 1844 * Iterate through the whole groups tree. 1845 */ 1846 #define perf_event_groups_for_each(event, groups) \ 1847 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1848 typeof(*event), group_node); event; \ 1849 event = rb_entry_safe(rb_next(&event->group_node), \ 1850 typeof(*event), group_node)) 1851 1852 /* 1853 * Add an event from the lists for its context. 1854 * Must be called with ctx->mutex and ctx->lock held. 1855 */ 1856 static void 1857 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1858 { 1859 lockdep_assert_held(&ctx->lock); 1860 1861 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1862 event->attach_state |= PERF_ATTACH_CONTEXT; 1863 1864 event->tstamp = perf_event_time(event); 1865 1866 /* 1867 * If we're a stand alone event or group leader, we go to the context 1868 * list, group events are kept attached to the group so that 1869 * perf_group_detach can, at all times, locate all siblings. 1870 */ 1871 if (event->group_leader == event) { 1872 event->group_caps = event->event_caps; 1873 add_event_to_groups(event, ctx); 1874 } 1875 1876 list_add_rcu(&event->event_entry, &ctx->event_list); 1877 ctx->nr_events++; 1878 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1879 ctx->nr_user++; 1880 if (event->attr.inherit_stat) 1881 ctx->nr_stat++; 1882 1883 if (event->state > PERF_EVENT_STATE_OFF) 1884 perf_cgroup_event_enable(event, ctx); 1885 1886 ctx->generation++; 1887 } 1888 1889 /* 1890 * Initialize event state based on the perf_event_attr::disabled. 1891 */ 1892 static inline void perf_event__state_init(struct perf_event *event) 1893 { 1894 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1895 PERF_EVENT_STATE_INACTIVE; 1896 } 1897 1898 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1899 { 1900 int entry = sizeof(u64); /* value */ 1901 int size = 0; 1902 int nr = 1; 1903 1904 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1905 size += sizeof(u64); 1906 1907 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1908 size += sizeof(u64); 1909 1910 if (event->attr.read_format & PERF_FORMAT_ID) 1911 entry += sizeof(u64); 1912 1913 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1914 nr += nr_siblings; 1915 size += sizeof(u64); 1916 } 1917 1918 size += entry * nr; 1919 event->read_size = size; 1920 } 1921 1922 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1923 { 1924 struct perf_sample_data *data; 1925 u16 size = 0; 1926 1927 if (sample_type & PERF_SAMPLE_IP) 1928 size += sizeof(data->ip); 1929 1930 if (sample_type & PERF_SAMPLE_ADDR) 1931 size += sizeof(data->addr); 1932 1933 if (sample_type & PERF_SAMPLE_PERIOD) 1934 size += sizeof(data->period); 1935 1936 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1937 size += sizeof(data->weight.full); 1938 1939 if (sample_type & PERF_SAMPLE_READ) 1940 size += event->read_size; 1941 1942 if (sample_type & PERF_SAMPLE_DATA_SRC) 1943 size += sizeof(data->data_src.val); 1944 1945 if (sample_type & PERF_SAMPLE_TRANSACTION) 1946 size += sizeof(data->txn); 1947 1948 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1949 size += sizeof(data->phys_addr); 1950 1951 if (sample_type & PERF_SAMPLE_CGROUP) 1952 size += sizeof(data->cgroup); 1953 1954 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1955 size += sizeof(data->data_page_size); 1956 1957 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1958 size += sizeof(data->code_page_size); 1959 1960 event->header_size = size; 1961 } 1962 1963 /* 1964 * Called at perf_event creation and when events are attached/detached from a 1965 * group. 1966 */ 1967 static void perf_event__header_size(struct perf_event *event) 1968 { 1969 __perf_event_read_size(event, 1970 event->group_leader->nr_siblings); 1971 __perf_event_header_size(event, event->attr.sample_type); 1972 } 1973 1974 static void perf_event__id_header_size(struct perf_event *event) 1975 { 1976 struct perf_sample_data *data; 1977 u64 sample_type = event->attr.sample_type; 1978 u16 size = 0; 1979 1980 if (sample_type & PERF_SAMPLE_TID) 1981 size += sizeof(data->tid_entry); 1982 1983 if (sample_type & PERF_SAMPLE_TIME) 1984 size += sizeof(data->time); 1985 1986 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1987 size += sizeof(data->id); 1988 1989 if (sample_type & PERF_SAMPLE_ID) 1990 size += sizeof(data->id); 1991 1992 if (sample_type & PERF_SAMPLE_STREAM_ID) 1993 size += sizeof(data->stream_id); 1994 1995 if (sample_type & PERF_SAMPLE_CPU) 1996 size += sizeof(data->cpu_entry); 1997 1998 event->id_header_size = size; 1999 } 2000 2001 static bool perf_event_validate_size(struct perf_event *event) 2002 { 2003 /* 2004 * The values computed here will be over-written when we actually 2005 * attach the event. 2006 */ 2007 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 2008 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 2009 perf_event__id_header_size(event); 2010 2011 /* 2012 * Sum the lot; should not exceed the 64k limit we have on records. 2013 * Conservative limit to allow for callchains and other variable fields. 2014 */ 2015 if (event->read_size + event->header_size + 2016 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 2017 return false; 2018 2019 return true; 2020 } 2021 2022 static void perf_group_attach(struct perf_event *event) 2023 { 2024 struct perf_event *group_leader = event->group_leader, *pos; 2025 2026 lockdep_assert_held(&event->ctx->lock); 2027 2028 /* 2029 * We can have double attach due to group movement in perf_event_open. 2030 */ 2031 if (event->attach_state & PERF_ATTACH_GROUP) 2032 return; 2033 2034 event->attach_state |= PERF_ATTACH_GROUP; 2035 2036 if (group_leader == event) 2037 return; 2038 2039 WARN_ON_ONCE(group_leader->ctx != event->ctx); 2040 2041 group_leader->group_caps &= event->event_caps; 2042 2043 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 2044 group_leader->nr_siblings++; 2045 2046 perf_event__header_size(group_leader); 2047 2048 for_each_sibling_event(pos, group_leader) 2049 perf_event__header_size(pos); 2050 } 2051 2052 /* 2053 * Remove an event from the lists for its context. 2054 * Must be called with ctx->mutex and ctx->lock held. 2055 */ 2056 static void 2057 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2058 { 2059 WARN_ON_ONCE(event->ctx != ctx); 2060 lockdep_assert_held(&ctx->lock); 2061 2062 /* 2063 * We can have double detach due to exit/hot-unplug + close. 2064 */ 2065 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2066 return; 2067 2068 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2069 2070 ctx->nr_events--; 2071 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2072 ctx->nr_user--; 2073 if (event->attr.inherit_stat) 2074 ctx->nr_stat--; 2075 2076 list_del_rcu(&event->event_entry); 2077 2078 if (event->group_leader == event) 2079 del_event_from_groups(event, ctx); 2080 2081 /* 2082 * If event was in error state, then keep it 2083 * that way, otherwise bogus counts will be 2084 * returned on read(). The only way to get out 2085 * of error state is by explicit re-enabling 2086 * of the event 2087 */ 2088 if (event->state > PERF_EVENT_STATE_OFF) { 2089 perf_cgroup_event_disable(event, ctx); 2090 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2091 } 2092 2093 ctx->generation++; 2094 } 2095 2096 static int 2097 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2098 { 2099 if (!has_aux(aux_event)) 2100 return 0; 2101 2102 if (!event->pmu->aux_output_match) 2103 return 0; 2104 2105 return event->pmu->aux_output_match(aux_event); 2106 } 2107 2108 static void put_event(struct perf_event *event); 2109 static void event_sched_out(struct perf_event *event, 2110 struct perf_cpu_context *cpuctx, 2111 struct perf_event_context *ctx); 2112 2113 static void perf_put_aux_event(struct perf_event *event) 2114 { 2115 struct perf_event_context *ctx = event->ctx; 2116 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2117 struct perf_event *iter; 2118 2119 /* 2120 * If event uses aux_event tear down the link 2121 */ 2122 if (event->aux_event) { 2123 iter = event->aux_event; 2124 event->aux_event = NULL; 2125 put_event(iter); 2126 return; 2127 } 2128 2129 /* 2130 * If the event is an aux_event, tear down all links to 2131 * it from other events. 2132 */ 2133 for_each_sibling_event(iter, event->group_leader) { 2134 if (iter->aux_event != event) 2135 continue; 2136 2137 iter->aux_event = NULL; 2138 put_event(event); 2139 2140 /* 2141 * If it's ACTIVE, schedule it out and put it into ERROR 2142 * state so that we don't try to schedule it again. Note 2143 * that perf_event_enable() will clear the ERROR status. 2144 */ 2145 event_sched_out(iter, cpuctx, ctx); 2146 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2147 } 2148 } 2149 2150 static bool perf_need_aux_event(struct perf_event *event) 2151 { 2152 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2153 } 2154 2155 static int perf_get_aux_event(struct perf_event *event, 2156 struct perf_event *group_leader) 2157 { 2158 /* 2159 * Our group leader must be an aux event if we want to be 2160 * an aux_output. This way, the aux event will precede its 2161 * aux_output events in the group, and therefore will always 2162 * schedule first. 2163 */ 2164 if (!group_leader) 2165 return 0; 2166 2167 /* 2168 * aux_output and aux_sample_size are mutually exclusive. 2169 */ 2170 if (event->attr.aux_output && event->attr.aux_sample_size) 2171 return 0; 2172 2173 if (event->attr.aux_output && 2174 !perf_aux_output_match(event, group_leader)) 2175 return 0; 2176 2177 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2178 return 0; 2179 2180 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2181 return 0; 2182 2183 /* 2184 * Link aux_outputs to their aux event; this is undone in 2185 * perf_group_detach() by perf_put_aux_event(). When the 2186 * group in torn down, the aux_output events loose their 2187 * link to the aux_event and can't schedule any more. 2188 */ 2189 event->aux_event = group_leader; 2190 2191 return 1; 2192 } 2193 2194 static inline struct list_head *get_event_list(struct perf_event *event) 2195 { 2196 struct perf_event_context *ctx = event->ctx; 2197 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2198 } 2199 2200 /* 2201 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2202 * cannot exist on their own, schedule them out and move them into the ERROR 2203 * state. Also see _perf_event_enable(), it will not be able to recover 2204 * this ERROR state. 2205 */ 2206 static inline void perf_remove_sibling_event(struct perf_event *event) 2207 { 2208 struct perf_event_context *ctx = event->ctx; 2209 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2210 2211 event_sched_out(event, cpuctx, ctx); 2212 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2213 } 2214 2215 static void perf_group_detach(struct perf_event *event) 2216 { 2217 struct perf_event *leader = event->group_leader; 2218 struct perf_event *sibling, *tmp; 2219 struct perf_event_context *ctx = event->ctx; 2220 2221 lockdep_assert_held(&ctx->lock); 2222 2223 /* 2224 * We can have double detach due to exit/hot-unplug + close. 2225 */ 2226 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2227 return; 2228 2229 event->attach_state &= ~PERF_ATTACH_GROUP; 2230 2231 perf_put_aux_event(event); 2232 2233 /* 2234 * If this is a sibling, remove it from its group. 2235 */ 2236 if (leader != event) { 2237 list_del_init(&event->sibling_list); 2238 event->group_leader->nr_siblings--; 2239 goto out; 2240 } 2241 2242 /* 2243 * If this was a group event with sibling events then 2244 * upgrade the siblings to singleton events by adding them 2245 * to whatever list we are on. 2246 */ 2247 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2248 2249 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2250 perf_remove_sibling_event(sibling); 2251 2252 sibling->group_leader = sibling; 2253 list_del_init(&sibling->sibling_list); 2254 2255 /* Inherit group flags from the previous leader */ 2256 sibling->group_caps = event->group_caps; 2257 2258 if (!RB_EMPTY_NODE(&event->group_node)) { 2259 add_event_to_groups(sibling, event->ctx); 2260 2261 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2262 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2263 } 2264 2265 WARN_ON_ONCE(sibling->ctx != event->ctx); 2266 } 2267 2268 out: 2269 for_each_sibling_event(tmp, leader) 2270 perf_event__header_size(tmp); 2271 2272 perf_event__header_size(leader); 2273 } 2274 2275 static void sync_child_event(struct perf_event *child_event); 2276 2277 static void perf_child_detach(struct perf_event *event) 2278 { 2279 struct perf_event *parent_event = event->parent; 2280 2281 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2282 return; 2283 2284 event->attach_state &= ~PERF_ATTACH_CHILD; 2285 2286 if (WARN_ON_ONCE(!parent_event)) 2287 return; 2288 2289 lockdep_assert_held(&parent_event->child_mutex); 2290 2291 sync_child_event(event); 2292 list_del_init(&event->child_list); 2293 } 2294 2295 static bool is_orphaned_event(struct perf_event *event) 2296 { 2297 return event->state == PERF_EVENT_STATE_DEAD; 2298 } 2299 2300 static inline int __pmu_filter_match(struct perf_event *event) 2301 { 2302 struct pmu *pmu = event->pmu; 2303 return pmu->filter_match ? pmu->filter_match(event) : 1; 2304 } 2305 2306 /* 2307 * Check whether we should attempt to schedule an event group based on 2308 * PMU-specific filtering. An event group can consist of HW and SW events, 2309 * potentially with a SW leader, so we must check all the filters, to 2310 * determine whether a group is schedulable: 2311 */ 2312 static inline int pmu_filter_match(struct perf_event *event) 2313 { 2314 struct perf_event *sibling; 2315 2316 if (!__pmu_filter_match(event)) 2317 return 0; 2318 2319 for_each_sibling_event(sibling, event) { 2320 if (!__pmu_filter_match(sibling)) 2321 return 0; 2322 } 2323 2324 return 1; 2325 } 2326 2327 static inline int 2328 event_filter_match(struct perf_event *event) 2329 { 2330 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2331 perf_cgroup_match(event) && pmu_filter_match(event); 2332 } 2333 2334 static void 2335 event_sched_out(struct perf_event *event, 2336 struct perf_cpu_context *cpuctx, 2337 struct perf_event_context *ctx) 2338 { 2339 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2340 2341 WARN_ON_ONCE(event->ctx != ctx); 2342 lockdep_assert_held(&ctx->lock); 2343 2344 if (event->state != PERF_EVENT_STATE_ACTIVE) 2345 return; 2346 2347 /* 2348 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2349 * we can schedule events _OUT_ individually through things like 2350 * __perf_remove_from_context(). 2351 */ 2352 list_del_init(&event->active_list); 2353 2354 perf_pmu_disable(event->pmu); 2355 2356 event->pmu->del(event, 0); 2357 event->oncpu = -1; 2358 2359 if (READ_ONCE(event->pending_disable) >= 0) { 2360 WRITE_ONCE(event->pending_disable, -1); 2361 perf_cgroup_event_disable(event, ctx); 2362 state = PERF_EVENT_STATE_OFF; 2363 } 2364 perf_event_set_state(event, state); 2365 2366 if (!is_software_event(event)) 2367 cpuctx->active_oncpu--; 2368 if (!--ctx->nr_active) 2369 perf_event_ctx_deactivate(ctx); 2370 if (event->attr.freq && event->attr.sample_freq) 2371 ctx->nr_freq--; 2372 if (event->attr.exclusive || !cpuctx->active_oncpu) 2373 cpuctx->exclusive = 0; 2374 2375 perf_pmu_enable(event->pmu); 2376 } 2377 2378 static void 2379 group_sched_out(struct perf_event *group_event, 2380 struct perf_cpu_context *cpuctx, 2381 struct perf_event_context *ctx) 2382 { 2383 struct perf_event *event; 2384 2385 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2386 return; 2387 2388 perf_pmu_disable(ctx->pmu); 2389 2390 event_sched_out(group_event, cpuctx, ctx); 2391 2392 /* 2393 * Schedule out siblings (if any): 2394 */ 2395 for_each_sibling_event(event, group_event) 2396 event_sched_out(event, cpuctx, ctx); 2397 2398 perf_pmu_enable(ctx->pmu); 2399 } 2400 2401 #define DETACH_GROUP 0x01UL 2402 #define DETACH_CHILD 0x02UL 2403 2404 /* 2405 * Cross CPU call to remove a performance event 2406 * 2407 * We disable the event on the hardware level first. After that we 2408 * remove it from the context list. 2409 */ 2410 static void 2411 __perf_remove_from_context(struct perf_event *event, 2412 struct perf_cpu_context *cpuctx, 2413 struct perf_event_context *ctx, 2414 void *info) 2415 { 2416 unsigned long flags = (unsigned long)info; 2417 2418 if (ctx->is_active & EVENT_TIME) { 2419 update_context_time(ctx); 2420 update_cgrp_time_from_cpuctx(cpuctx, false); 2421 } 2422 2423 event_sched_out(event, cpuctx, ctx); 2424 if (flags & DETACH_GROUP) 2425 perf_group_detach(event); 2426 if (flags & DETACH_CHILD) 2427 perf_child_detach(event); 2428 list_del_event(event, ctx); 2429 2430 if (!ctx->nr_events && ctx->is_active) { 2431 if (ctx == &cpuctx->ctx) 2432 update_cgrp_time_from_cpuctx(cpuctx, true); 2433 2434 ctx->is_active = 0; 2435 ctx->rotate_necessary = 0; 2436 if (ctx->task) { 2437 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2438 cpuctx->task_ctx = NULL; 2439 } 2440 } 2441 } 2442 2443 /* 2444 * Remove the event from a task's (or a CPU's) list of events. 2445 * 2446 * If event->ctx is a cloned context, callers must make sure that 2447 * every task struct that event->ctx->task could possibly point to 2448 * remains valid. This is OK when called from perf_release since 2449 * that only calls us on the top-level context, which can't be a clone. 2450 * When called from perf_event_exit_task, it's OK because the 2451 * context has been detached from its task. 2452 */ 2453 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2454 { 2455 struct perf_event_context *ctx = event->ctx; 2456 2457 lockdep_assert_held(&ctx->mutex); 2458 2459 /* 2460 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2461 * to work in the face of TASK_TOMBSTONE, unlike every other 2462 * event_function_call() user. 2463 */ 2464 raw_spin_lock_irq(&ctx->lock); 2465 /* 2466 * Cgroup events are per-cpu events, and must IPI because of 2467 * cgrp_cpuctx_list. 2468 */ 2469 if (!ctx->is_active && !is_cgroup_event(event)) { 2470 __perf_remove_from_context(event, __get_cpu_context(ctx), 2471 ctx, (void *)flags); 2472 raw_spin_unlock_irq(&ctx->lock); 2473 return; 2474 } 2475 raw_spin_unlock_irq(&ctx->lock); 2476 2477 event_function_call(event, __perf_remove_from_context, (void *)flags); 2478 } 2479 2480 /* 2481 * Cross CPU call to disable a performance event 2482 */ 2483 static void __perf_event_disable(struct perf_event *event, 2484 struct perf_cpu_context *cpuctx, 2485 struct perf_event_context *ctx, 2486 void *info) 2487 { 2488 if (event->state < PERF_EVENT_STATE_INACTIVE) 2489 return; 2490 2491 if (ctx->is_active & EVENT_TIME) { 2492 update_context_time(ctx); 2493 update_cgrp_time_from_event(event); 2494 } 2495 2496 if (event == event->group_leader) 2497 group_sched_out(event, cpuctx, ctx); 2498 else 2499 event_sched_out(event, cpuctx, ctx); 2500 2501 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2502 perf_cgroup_event_disable(event, ctx); 2503 } 2504 2505 /* 2506 * Disable an event. 2507 * 2508 * If event->ctx is a cloned context, callers must make sure that 2509 * every task struct that event->ctx->task could possibly point to 2510 * remains valid. This condition is satisfied when called through 2511 * perf_event_for_each_child or perf_event_for_each because they 2512 * hold the top-level event's child_mutex, so any descendant that 2513 * goes to exit will block in perf_event_exit_event(). 2514 * 2515 * When called from perf_pending_event it's OK because event->ctx 2516 * is the current context on this CPU and preemption is disabled, 2517 * hence we can't get into perf_event_task_sched_out for this context. 2518 */ 2519 static void _perf_event_disable(struct perf_event *event) 2520 { 2521 struct perf_event_context *ctx = event->ctx; 2522 2523 raw_spin_lock_irq(&ctx->lock); 2524 if (event->state <= PERF_EVENT_STATE_OFF) { 2525 raw_spin_unlock_irq(&ctx->lock); 2526 return; 2527 } 2528 raw_spin_unlock_irq(&ctx->lock); 2529 2530 event_function_call(event, __perf_event_disable, NULL); 2531 } 2532 2533 void perf_event_disable_local(struct perf_event *event) 2534 { 2535 event_function_local(event, __perf_event_disable, NULL); 2536 } 2537 2538 /* 2539 * Strictly speaking kernel users cannot create groups and therefore this 2540 * interface does not need the perf_event_ctx_lock() magic. 2541 */ 2542 void perf_event_disable(struct perf_event *event) 2543 { 2544 struct perf_event_context *ctx; 2545 2546 ctx = perf_event_ctx_lock(event); 2547 _perf_event_disable(event); 2548 perf_event_ctx_unlock(event, ctx); 2549 } 2550 EXPORT_SYMBOL_GPL(perf_event_disable); 2551 2552 void perf_event_disable_inatomic(struct perf_event *event) 2553 { 2554 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2555 /* can fail, see perf_pending_event_disable() */ 2556 irq_work_queue(&event->pending); 2557 } 2558 2559 #define MAX_INTERRUPTS (~0ULL) 2560 2561 static void perf_log_throttle(struct perf_event *event, int enable); 2562 static void perf_log_itrace_start(struct perf_event *event); 2563 2564 static int 2565 event_sched_in(struct perf_event *event, 2566 struct perf_cpu_context *cpuctx, 2567 struct perf_event_context *ctx) 2568 { 2569 int ret = 0; 2570 2571 WARN_ON_ONCE(event->ctx != ctx); 2572 2573 lockdep_assert_held(&ctx->lock); 2574 2575 if (event->state <= PERF_EVENT_STATE_OFF) 2576 return 0; 2577 2578 WRITE_ONCE(event->oncpu, smp_processor_id()); 2579 /* 2580 * Order event::oncpu write to happen before the ACTIVE state is 2581 * visible. This allows perf_event_{stop,read}() to observe the correct 2582 * ->oncpu if it sees ACTIVE. 2583 */ 2584 smp_wmb(); 2585 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2586 2587 /* 2588 * Unthrottle events, since we scheduled we might have missed several 2589 * ticks already, also for a heavily scheduling task there is little 2590 * guarantee it'll get a tick in a timely manner. 2591 */ 2592 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2593 perf_log_throttle(event, 1); 2594 event->hw.interrupts = 0; 2595 } 2596 2597 perf_pmu_disable(event->pmu); 2598 2599 perf_log_itrace_start(event); 2600 2601 if (event->pmu->add(event, PERF_EF_START)) { 2602 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2603 event->oncpu = -1; 2604 ret = -EAGAIN; 2605 goto out; 2606 } 2607 2608 if (!is_software_event(event)) 2609 cpuctx->active_oncpu++; 2610 if (!ctx->nr_active++) 2611 perf_event_ctx_activate(ctx); 2612 if (event->attr.freq && event->attr.sample_freq) 2613 ctx->nr_freq++; 2614 2615 if (event->attr.exclusive) 2616 cpuctx->exclusive = 1; 2617 2618 out: 2619 perf_pmu_enable(event->pmu); 2620 2621 return ret; 2622 } 2623 2624 static int 2625 group_sched_in(struct perf_event *group_event, 2626 struct perf_cpu_context *cpuctx, 2627 struct perf_event_context *ctx) 2628 { 2629 struct perf_event *event, *partial_group = NULL; 2630 struct pmu *pmu = ctx->pmu; 2631 2632 if (group_event->state == PERF_EVENT_STATE_OFF) 2633 return 0; 2634 2635 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2636 2637 if (event_sched_in(group_event, cpuctx, ctx)) 2638 goto error; 2639 2640 /* 2641 * Schedule in siblings as one group (if any): 2642 */ 2643 for_each_sibling_event(event, group_event) { 2644 if (event_sched_in(event, cpuctx, ctx)) { 2645 partial_group = event; 2646 goto group_error; 2647 } 2648 } 2649 2650 if (!pmu->commit_txn(pmu)) 2651 return 0; 2652 2653 group_error: 2654 /* 2655 * Groups can be scheduled in as one unit only, so undo any 2656 * partial group before returning: 2657 * The events up to the failed event are scheduled out normally. 2658 */ 2659 for_each_sibling_event(event, group_event) { 2660 if (event == partial_group) 2661 break; 2662 2663 event_sched_out(event, cpuctx, ctx); 2664 } 2665 event_sched_out(group_event, cpuctx, ctx); 2666 2667 error: 2668 pmu->cancel_txn(pmu); 2669 return -EAGAIN; 2670 } 2671 2672 /* 2673 * Work out whether we can put this event group on the CPU now. 2674 */ 2675 static int group_can_go_on(struct perf_event *event, 2676 struct perf_cpu_context *cpuctx, 2677 int can_add_hw) 2678 { 2679 /* 2680 * Groups consisting entirely of software events can always go on. 2681 */ 2682 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2683 return 1; 2684 /* 2685 * If an exclusive group is already on, no other hardware 2686 * events can go on. 2687 */ 2688 if (cpuctx->exclusive) 2689 return 0; 2690 /* 2691 * If this group is exclusive and there are already 2692 * events on the CPU, it can't go on. 2693 */ 2694 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2695 return 0; 2696 /* 2697 * Otherwise, try to add it if all previous groups were able 2698 * to go on. 2699 */ 2700 return can_add_hw; 2701 } 2702 2703 static void add_event_to_ctx(struct perf_event *event, 2704 struct perf_event_context *ctx) 2705 { 2706 list_add_event(event, ctx); 2707 perf_group_attach(event); 2708 } 2709 2710 static void ctx_sched_out(struct perf_event_context *ctx, 2711 struct perf_cpu_context *cpuctx, 2712 enum event_type_t event_type); 2713 static void 2714 ctx_sched_in(struct perf_event_context *ctx, 2715 struct perf_cpu_context *cpuctx, 2716 enum event_type_t event_type, 2717 struct task_struct *task); 2718 2719 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2720 struct perf_event_context *ctx, 2721 enum event_type_t event_type) 2722 { 2723 if (!cpuctx->task_ctx) 2724 return; 2725 2726 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2727 return; 2728 2729 ctx_sched_out(ctx, cpuctx, event_type); 2730 } 2731 2732 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2733 struct perf_event_context *ctx, 2734 struct task_struct *task) 2735 { 2736 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2737 if (ctx) 2738 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2739 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2740 if (ctx) 2741 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2742 } 2743 2744 /* 2745 * We want to maintain the following priority of scheduling: 2746 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2747 * - task pinned (EVENT_PINNED) 2748 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2749 * - task flexible (EVENT_FLEXIBLE). 2750 * 2751 * In order to avoid unscheduling and scheduling back in everything every 2752 * time an event is added, only do it for the groups of equal priority and 2753 * below. 2754 * 2755 * This can be called after a batch operation on task events, in which case 2756 * event_type is a bit mask of the types of events involved. For CPU events, 2757 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2758 */ 2759 static void ctx_resched(struct perf_cpu_context *cpuctx, 2760 struct perf_event_context *task_ctx, 2761 enum event_type_t event_type) 2762 { 2763 enum event_type_t ctx_event_type; 2764 bool cpu_event = !!(event_type & EVENT_CPU); 2765 2766 /* 2767 * If pinned groups are involved, flexible groups also need to be 2768 * scheduled out. 2769 */ 2770 if (event_type & EVENT_PINNED) 2771 event_type |= EVENT_FLEXIBLE; 2772 2773 ctx_event_type = event_type & EVENT_ALL; 2774 2775 perf_pmu_disable(cpuctx->ctx.pmu); 2776 if (task_ctx) 2777 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2778 2779 /* 2780 * Decide which cpu ctx groups to schedule out based on the types 2781 * of events that caused rescheduling: 2782 * - EVENT_CPU: schedule out corresponding groups; 2783 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2784 * - otherwise, do nothing more. 2785 */ 2786 if (cpu_event) 2787 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2788 else if (ctx_event_type & EVENT_PINNED) 2789 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2790 2791 perf_event_sched_in(cpuctx, task_ctx, current); 2792 perf_pmu_enable(cpuctx->ctx.pmu); 2793 } 2794 2795 void perf_pmu_resched(struct pmu *pmu) 2796 { 2797 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2798 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2799 2800 perf_ctx_lock(cpuctx, task_ctx); 2801 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2802 perf_ctx_unlock(cpuctx, task_ctx); 2803 } 2804 2805 /* 2806 * Cross CPU call to install and enable a performance event 2807 * 2808 * Very similar to remote_function() + event_function() but cannot assume that 2809 * things like ctx->is_active and cpuctx->task_ctx are set. 2810 */ 2811 static int __perf_install_in_context(void *info) 2812 { 2813 struct perf_event *event = info; 2814 struct perf_event_context *ctx = event->ctx; 2815 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2816 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2817 bool reprogram = true; 2818 int ret = 0; 2819 2820 raw_spin_lock(&cpuctx->ctx.lock); 2821 if (ctx->task) { 2822 raw_spin_lock(&ctx->lock); 2823 task_ctx = ctx; 2824 2825 reprogram = (ctx->task == current); 2826 2827 /* 2828 * If the task is running, it must be running on this CPU, 2829 * otherwise we cannot reprogram things. 2830 * 2831 * If its not running, we don't care, ctx->lock will 2832 * serialize against it becoming runnable. 2833 */ 2834 if (task_curr(ctx->task) && !reprogram) { 2835 ret = -ESRCH; 2836 goto unlock; 2837 } 2838 2839 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2840 } else if (task_ctx) { 2841 raw_spin_lock(&task_ctx->lock); 2842 } 2843 2844 #ifdef CONFIG_CGROUP_PERF 2845 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2846 /* 2847 * If the current cgroup doesn't match the event's 2848 * cgroup, we should not try to schedule it. 2849 */ 2850 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2851 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2852 event->cgrp->css.cgroup); 2853 } 2854 #endif 2855 2856 if (reprogram) { 2857 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2858 add_event_to_ctx(event, ctx); 2859 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2860 } else { 2861 add_event_to_ctx(event, ctx); 2862 } 2863 2864 unlock: 2865 perf_ctx_unlock(cpuctx, task_ctx); 2866 2867 return ret; 2868 } 2869 2870 static bool exclusive_event_installable(struct perf_event *event, 2871 struct perf_event_context *ctx); 2872 2873 /* 2874 * Attach a performance event to a context. 2875 * 2876 * Very similar to event_function_call, see comment there. 2877 */ 2878 static void 2879 perf_install_in_context(struct perf_event_context *ctx, 2880 struct perf_event *event, 2881 int cpu) 2882 { 2883 struct task_struct *task = READ_ONCE(ctx->task); 2884 2885 lockdep_assert_held(&ctx->mutex); 2886 2887 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2888 2889 if (event->cpu != -1) 2890 event->cpu = cpu; 2891 2892 /* 2893 * Ensures that if we can observe event->ctx, both the event and ctx 2894 * will be 'complete'. See perf_iterate_sb_cpu(). 2895 */ 2896 smp_store_release(&event->ctx, ctx); 2897 2898 /* 2899 * perf_event_attr::disabled events will not run and can be initialized 2900 * without IPI. Except when this is the first event for the context, in 2901 * that case we need the magic of the IPI to set ctx->is_active. 2902 * Similarly, cgroup events for the context also needs the IPI to 2903 * manipulate the cgrp_cpuctx_list. 2904 * 2905 * The IOC_ENABLE that is sure to follow the creation of a disabled 2906 * event will issue the IPI and reprogram the hardware. 2907 */ 2908 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2909 ctx->nr_events && !is_cgroup_event(event)) { 2910 raw_spin_lock_irq(&ctx->lock); 2911 if (ctx->task == TASK_TOMBSTONE) { 2912 raw_spin_unlock_irq(&ctx->lock); 2913 return; 2914 } 2915 add_event_to_ctx(event, ctx); 2916 raw_spin_unlock_irq(&ctx->lock); 2917 return; 2918 } 2919 2920 if (!task) { 2921 cpu_function_call(cpu, __perf_install_in_context, event); 2922 return; 2923 } 2924 2925 /* 2926 * Should not happen, we validate the ctx is still alive before calling. 2927 */ 2928 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2929 return; 2930 2931 /* 2932 * Installing events is tricky because we cannot rely on ctx->is_active 2933 * to be set in case this is the nr_events 0 -> 1 transition. 2934 * 2935 * Instead we use task_curr(), which tells us if the task is running. 2936 * However, since we use task_curr() outside of rq::lock, we can race 2937 * against the actual state. This means the result can be wrong. 2938 * 2939 * If we get a false positive, we retry, this is harmless. 2940 * 2941 * If we get a false negative, things are complicated. If we are after 2942 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2943 * value must be correct. If we're before, it doesn't matter since 2944 * perf_event_context_sched_in() will program the counter. 2945 * 2946 * However, this hinges on the remote context switch having observed 2947 * our task->perf_event_ctxp[] store, such that it will in fact take 2948 * ctx::lock in perf_event_context_sched_in(). 2949 * 2950 * We do this by task_function_call(), if the IPI fails to hit the task 2951 * we know any future context switch of task must see the 2952 * perf_event_ctpx[] store. 2953 */ 2954 2955 /* 2956 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2957 * task_cpu() load, such that if the IPI then does not find the task 2958 * running, a future context switch of that task must observe the 2959 * store. 2960 */ 2961 smp_mb(); 2962 again: 2963 if (!task_function_call(task, __perf_install_in_context, event)) 2964 return; 2965 2966 raw_spin_lock_irq(&ctx->lock); 2967 task = ctx->task; 2968 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2969 /* 2970 * Cannot happen because we already checked above (which also 2971 * cannot happen), and we hold ctx->mutex, which serializes us 2972 * against perf_event_exit_task_context(). 2973 */ 2974 raw_spin_unlock_irq(&ctx->lock); 2975 return; 2976 } 2977 /* 2978 * If the task is not running, ctx->lock will avoid it becoming so, 2979 * thus we can safely install the event. 2980 */ 2981 if (task_curr(task)) { 2982 raw_spin_unlock_irq(&ctx->lock); 2983 goto again; 2984 } 2985 add_event_to_ctx(event, ctx); 2986 raw_spin_unlock_irq(&ctx->lock); 2987 } 2988 2989 /* 2990 * Cross CPU call to enable a performance event 2991 */ 2992 static void __perf_event_enable(struct perf_event *event, 2993 struct perf_cpu_context *cpuctx, 2994 struct perf_event_context *ctx, 2995 void *info) 2996 { 2997 struct perf_event *leader = event->group_leader; 2998 struct perf_event_context *task_ctx; 2999 3000 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3001 event->state <= PERF_EVENT_STATE_ERROR) 3002 return; 3003 3004 if (ctx->is_active) 3005 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3006 3007 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3008 perf_cgroup_event_enable(event, ctx); 3009 3010 if (!ctx->is_active) 3011 return; 3012 3013 if (!event_filter_match(event)) { 3014 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3015 return; 3016 } 3017 3018 /* 3019 * If the event is in a group and isn't the group leader, 3020 * then don't put it on unless the group is on. 3021 */ 3022 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 3023 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3024 return; 3025 } 3026 3027 task_ctx = cpuctx->task_ctx; 3028 if (ctx->task) 3029 WARN_ON_ONCE(task_ctx != ctx); 3030 3031 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 3032 } 3033 3034 /* 3035 * Enable an event. 3036 * 3037 * If event->ctx is a cloned context, callers must make sure that 3038 * every task struct that event->ctx->task could possibly point to 3039 * remains valid. This condition is satisfied when called through 3040 * perf_event_for_each_child or perf_event_for_each as described 3041 * for perf_event_disable. 3042 */ 3043 static void _perf_event_enable(struct perf_event *event) 3044 { 3045 struct perf_event_context *ctx = event->ctx; 3046 3047 raw_spin_lock_irq(&ctx->lock); 3048 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3049 event->state < PERF_EVENT_STATE_ERROR) { 3050 out: 3051 raw_spin_unlock_irq(&ctx->lock); 3052 return; 3053 } 3054 3055 /* 3056 * If the event is in error state, clear that first. 3057 * 3058 * That way, if we see the event in error state below, we know that it 3059 * has gone back into error state, as distinct from the task having 3060 * been scheduled away before the cross-call arrived. 3061 */ 3062 if (event->state == PERF_EVENT_STATE_ERROR) { 3063 /* 3064 * Detached SIBLING events cannot leave ERROR state. 3065 */ 3066 if (event->event_caps & PERF_EV_CAP_SIBLING && 3067 event->group_leader == event) 3068 goto out; 3069 3070 event->state = PERF_EVENT_STATE_OFF; 3071 } 3072 raw_spin_unlock_irq(&ctx->lock); 3073 3074 event_function_call(event, __perf_event_enable, NULL); 3075 } 3076 3077 /* 3078 * See perf_event_disable(); 3079 */ 3080 void perf_event_enable(struct perf_event *event) 3081 { 3082 struct perf_event_context *ctx; 3083 3084 ctx = perf_event_ctx_lock(event); 3085 _perf_event_enable(event); 3086 perf_event_ctx_unlock(event, ctx); 3087 } 3088 EXPORT_SYMBOL_GPL(perf_event_enable); 3089 3090 struct stop_event_data { 3091 struct perf_event *event; 3092 unsigned int restart; 3093 }; 3094 3095 static int __perf_event_stop(void *info) 3096 { 3097 struct stop_event_data *sd = info; 3098 struct perf_event *event = sd->event; 3099 3100 /* if it's already INACTIVE, do nothing */ 3101 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3102 return 0; 3103 3104 /* matches smp_wmb() in event_sched_in() */ 3105 smp_rmb(); 3106 3107 /* 3108 * There is a window with interrupts enabled before we get here, 3109 * so we need to check again lest we try to stop another CPU's event. 3110 */ 3111 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3112 return -EAGAIN; 3113 3114 event->pmu->stop(event, PERF_EF_UPDATE); 3115 3116 /* 3117 * May race with the actual stop (through perf_pmu_output_stop()), 3118 * but it is only used for events with AUX ring buffer, and such 3119 * events will refuse to restart because of rb::aux_mmap_count==0, 3120 * see comments in perf_aux_output_begin(). 3121 * 3122 * Since this is happening on an event-local CPU, no trace is lost 3123 * while restarting. 3124 */ 3125 if (sd->restart) 3126 event->pmu->start(event, 0); 3127 3128 return 0; 3129 } 3130 3131 static int perf_event_stop(struct perf_event *event, int restart) 3132 { 3133 struct stop_event_data sd = { 3134 .event = event, 3135 .restart = restart, 3136 }; 3137 int ret = 0; 3138 3139 do { 3140 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3141 return 0; 3142 3143 /* matches smp_wmb() in event_sched_in() */ 3144 smp_rmb(); 3145 3146 /* 3147 * We only want to restart ACTIVE events, so if the event goes 3148 * inactive here (event->oncpu==-1), there's nothing more to do; 3149 * fall through with ret==-ENXIO. 3150 */ 3151 ret = cpu_function_call(READ_ONCE(event->oncpu), 3152 __perf_event_stop, &sd); 3153 } while (ret == -EAGAIN); 3154 3155 return ret; 3156 } 3157 3158 /* 3159 * In order to contain the amount of racy and tricky in the address filter 3160 * configuration management, it is a two part process: 3161 * 3162 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3163 * we update the addresses of corresponding vmas in 3164 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3165 * (p2) when an event is scheduled in (pmu::add), it calls 3166 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3167 * if the generation has changed since the previous call. 3168 * 3169 * If (p1) happens while the event is active, we restart it to force (p2). 3170 * 3171 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3172 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3173 * ioctl; 3174 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3175 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3176 * for reading; 3177 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3178 * of exec. 3179 */ 3180 void perf_event_addr_filters_sync(struct perf_event *event) 3181 { 3182 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3183 3184 if (!has_addr_filter(event)) 3185 return; 3186 3187 raw_spin_lock(&ifh->lock); 3188 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3189 event->pmu->addr_filters_sync(event); 3190 event->hw.addr_filters_gen = event->addr_filters_gen; 3191 } 3192 raw_spin_unlock(&ifh->lock); 3193 } 3194 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3195 3196 static int _perf_event_refresh(struct perf_event *event, int refresh) 3197 { 3198 /* 3199 * not supported on inherited events 3200 */ 3201 if (event->attr.inherit || !is_sampling_event(event)) 3202 return -EINVAL; 3203 3204 atomic_add(refresh, &event->event_limit); 3205 _perf_event_enable(event); 3206 3207 return 0; 3208 } 3209 3210 /* 3211 * See perf_event_disable() 3212 */ 3213 int perf_event_refresh(struct perf_event *event, int refresh) 3214 { 3215 struct perf_event_context *ctx; 3216 int ret; 3217 3218 ctx = perf_event_ctx_lock(event); 3219 ret = _perf_event_refresh(event, refresh); 3220 perf_event_ctx_unlock(event, ctx); 3221 3222 return ret; 3223 } 3224 EXPORT_SYMBOL_GPL(perf_event_refresh); 3225 3226 static int perf_event_modify_breakpoint(struct perf_event *bp, 3227 struct perf_event_attr *attr) 3228 { 3229 int err; 3230 3231 _perf_event_disable(bp); 3232 3233 err = modify_user_hw_breakpoint_check(bp, attr, true); 3234 3235 if (!bp->attr.disabled) 3236 _perf_event_enable(bp); 3237 3238 return err; 3239 } 3240 3241 /* 3242 * Copy event-type-independent attributes that may be modified. 3243 */ 3244 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3245 const struct perf_event_attr *from) 3246 { 3247 to->sig_data = from->sig_data; 3248 } 3249 3250 static int perf_event_modify_attr(struct perf_event *event, 3251 struct perf_event_attr *attr) 3252 { 3253 int (*func)(struct perf_event *, struct perf_event_attr *); 3254 struct perf_event *child; 3255 int err; 3256 3257 if (event->attr.type != attr->type) 3258 return -EINVAL; 3259 3260 switch (event->attr.type) { 3261 case PERF_TYPE_BREAKPOINT: 3262 func = perf_event_modify_breakpoint; 3263 break; 3264 default: 3265 /* Place holder for future additions. */ 3266 return -EOPNOTSUPP; 3267 } 3268 3269 WARN_ON_ONCE(event->ctx->parent_ctx); 3270 3271 mutex_lock(&event->child_mutex); 3272 /* 3273 * Event-type-independent attributes must be copied before event-type 3274 * modification, which will validate that final attributes match the 3275 * source attributes after all relevant attributes have been copied. 3276 */ 3277 perf_event_modify_copy_attr(&event->attr, attr); 3278 err = func(event, attr); 3279 if (err) 3280 goto out; 3281 list_for_each_entry(child, &event->child_list, child_list) { 3282 perf_event_modify_copy_attr(&child->attr, attr); 3283 err = func(child, attr); 3284 if (err) 3285 goto out; 3286 } 3287 out: 3288 mutex_unlock(&event->child_mutex); 3289 return err; 3290 } 3291 3292 static void ctx_sched_out(struct perf_event_context *ctx, 3293 struct perf_cpu_context *cpuctx, 3294 enum event_type_t event_type) 3295 { 3296 struct perf_event *event, *tmp; 3297 int is_active = ctx->is_active; 3298 3299 lockdep_assert_held(&ctx->lock); 3300 3301 if (likely(!ctx->nr_events)) { 3302 /* 3303 * See __perf_remove_from_context(). 3304 */ 3305 WARN_ON_ONCE(ctx->is_active); 3306 if (ctx->task) 3307 WARN_ON_ONCE(cpuctx->task_ctx); 3308 return; 3309 } 3310 3311 /* 3312 * Always update time if it was set; not only when it changes. 3313 * Otherwise we can 'forget' to update time for any but the last 3314 * context we sched out. For example: 3315 * 3316 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3317 * ctx_sched_out(.event_type = EVENT_PINNED) 3318 * 3319 * would only update time for the pinned events. 3320 */ 3321 if (is_active & EVENT_TIME) { 3322 /* update (and stop) ctx time */ 3323 update_context_time(ctx); 3324 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3325 /* 3326 * CPU-release for the below ->is_active store, 3327 * see __load_acquire() in perf_event_time_now() 3328 */ 3329 barrier(); 3330 } 3331 3332 ctx->is_active &= ~event_type; 3333 if (!(ctx->is_active & EVENT_ALL)) 3334 ctx->is_active = 0; 3335 3336 if (ctx->task) { 3337 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3338 if (!ctx->is_active) 3339 cpuctx->task_ctx = NULL; 3340 } 3341 3342 is_active ^= ctx->is_active; /* changed bits */ 3343 3344 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3345 return; 3346 3347 perf_pmu_disable(ctx->pmu); 3348 if (is_active & EVENT_PINNED) { 3349 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3350 group_sched_out(event, cpuctx, ctx); 3351 } 3352 3353 if (is_active & EVENT_FLEXIBLE) { 3354 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3355 group_sched_out(event, cpuctx, ctx); 3356 3357 /* 3358 * Since we cleared EVENT_FLEXIBLE, also clear 3359 * rotate_necessary, is will be reset by 3360 * ctx_flexible_sched_in() when needed. 3361 */ 3362 ctx->rotate_necessary = 0; 3363 } 3364 perf_pmu_enable(ctx->pmu); 3365 } 3366 3367 /* 3368 * Test whether two contexts are equivalent, i.e. whether they have both been 3369 * cloned from the same version of the same context. 3370 * 3371 * Equivalence is measured using a generation number in the context that is 3372 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3373 * and list_del_event(). 3374 */ 3375 static int context_equiv(struct perf_event_context *ctx1, 3376 struct perf_event_context *ctx2) 3377 { 3378 lockdep_assert_held(&ctx1->lock); 3379 lockdep_assert_held(&ctx2->lock); 3380 3381 /* Pinning disables the swap optimization */ 3382 if (ctx1->pin_count || ctx2->pin_count) 3383 return 0; 3384 3385 /* If ctx1 is the parent of ctx2 */ 3386 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3387 return 1; 3388 3389 /* If ctx2 is the parent of ctx1 */ 3390 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3391 return 1; 3392 3393 /* 3394 * If ctx1 and ctx2 have the same parent; we flatten the parent 3395 * hierarchy, see perf_event_init_context(). 3396 */ 3397 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3398 ctx1->parent_gen == ctx2->parent_gen) 3399 return 1; 3400 3401 /* Unmatched */ 3402 return 0; 3403 } 3404 3405 static void __perf_event_sync_stat(struct perf_event *event, 3406 struct perf_event *next_event) 3407 { 3408 u64 value; 3409 3410 if (!event->attr.inherit_stat) 3411 return; 3412 3413 /* 3414 * Update the event value, we cannot use perf_event_read() 3415 * because we're in the middle of a context switch and have IRQs 3416 * disabled, which upsets smp_call_function_single(), however 3417 * we know the event must be on the current CPU, therefore we 3418 * don't need to use it. 3419 */ 3420 if (event->state == PERF_EVENT_STATE_ACTIVE) 3421 event->pmu->read(event); 3422 3423 perf_event_update_time(event); 3424 3425 /* 3426 * In order to keep per-task stats reliable we need to flip the event 3427 * values when we flip the contexts. 3428 */ 3429 value = local64_read(&next_event->count); 3430 value = local64_xchg(&event->count, value); 3431 local64_set(&next_event->count, value); 3432 3433 swap(event->total_time_enabled, next_event->total_time_enabled); 3434 swap(event->total_time_running, next_event->total_time_running); 3435 3436 /* 3437 * Since we swizzled the values, update the user visible data too. 3438 */ 3439 perf_event_update_userpage(event); 3440 perf_event_update_userpage(next_event); 3441 } 3442 3443 static void perf_event_sync_stat(struct perf_event_context *ctx, 3444 struct perf_event_context *next_ctx) 3445 { 3446 struct perf_event *event, *next_event; 3447 3448 if (!ctx->nr_stat) 3449 return; 3450 3451 update_context_time(ctx); 3452 3453 event = list_first_entry(&ctx->event_list, 3454 struct perf_event, event_entry); 3455 3456 next_event = list_first_entry(&next_ctx->event_list, 3457 struct perf_event, event_entry); 3458 3459 while (&event->event_entry != &ctx->event_list && 3460 &next_event->event_entry != &next_ctx->event_list) { 3461 3462 __perf_event_sync_stat(event, next_event); 3463 3464 event = list_next_entry(event, event_entry); 3465 next_event = list_next_entry(next_event, event_entry); 3466 } 3467 } 3468 3469 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3470 struct task_struct *next) 3471 { 3472 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3473 struct perf_event_context *next_ctx; 3474 struct perf_event_context *parent, *next_parent; 3475 struct perf_cpu_context *cpuctx; 3476 int do_switch = 1; 3477 struct pmu *pmu; 3478 3479 if (likely(!ctx)) 3480 return; 3481 3482 pmu = ctx->pmu; 3483 cpuctx = __get_cpu_context(ctx); 3484 if (!cpuctx->task_ctx) 3485 return; 3486 3487 rcu_read_lock(); 3488 next_ctx = next->perf_event_ctxp[ctxn]; 3489 if (!next_ctx) 3490 goto unlock; 3491 3492 parent = rcu_dereference(ctx->parent_ctx); 3493 next_parent = rcu_dereference(next_ctx->parent_ctx); 3494 3495 /* If neither context have a parent context; they cannot be clones. */ 3496 if (!parent && !next_parent) 3497 goto unlock; 3498 3499 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3500 /* 3501 * Looks like the two contexts are clones, so we might be 3502 * able to optimize the context switch. We lock both 3503 * contexts and check that they are clones under the 3504 * lock (including re-checking that neither has been 3505 * uncloned in the meantime). It doesn't matter which 3506 * order we take the locks because no other cpu could 3507 * be trying to lock both of these tasks. 3508 */ 3509 raw_spin_lock(&ctx->lock); 3510 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3511 if (context_equiv(ctx, next_ctx)) { 3512 3513 WRITE_ONCE(ctx->task, next); 3514 WRITE_ONCE(next_ctx->task, task); 3515 3516 perf_pmu_disable(pmu); 3517 3518 if (cpuctx->sched_cb_usage && pmu->sched_task) 3519 pmu->sched_task(ctx, false); 3520 3521 /* 3522 * PMU specific parts of task perf context can require 3523 * additional synchronization. As an example of such 3524 * synchronization see implementation details of Intel 3525 * LBR call stack data profiling; 3526 */ 3527 if (pmu->swap_task_ctx) 3528 pmu->swap_task_ctx(ctx, next_ctx); 3529 else 3530 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3531 3532 perf_pmu_enable(pmu); 3533 3534 /* 3535 * RCU_INIT_POINTER here is safe because we've not 3536 * modified the ctx and the above modification of 3537 * ctx->task and ctx->task_ctx_data are immaterial 3538 * since those values are always verified under 3539 * ctx->lock which we're now holding. 3540 */ 3541 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3542 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3543 3544 do_switch = 0; 3545 3546 perf_event_sync_stat(ctx, next_ctx); 3547 } 3548 raw_spin_unlock(&next_ctx->lock); 3549 raw_spin_unlock(&ctx->lock); 3550 } 3551 unlock: 3552 rcu_read_unlock(); 3553 3554 if (do_switch) { 3555 raw_spin_lock(&ctx->lock); 3556 perf_pmu_disable(pmu); 3557 3558 if (cpuctx->sched_cb_usage && pmu->sched_task) 3559 pmu->sched_task(ctx, false); 3560 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3561 3562 perf_pmu_enable(pmu); 3563 raw_spin_unlock(&ctx->lock); 3564 } 3565 } 3566 3567 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3568 3569 void perf_sched_cb_dec(struct pmu *pmu) 3570 { 3571 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3572 3573 this_cpu_dec(perf_sched_cb_usages); 3574 3575 if (!--cpuctx->sched_cb_usage) 3576 list_del(&cpuctx->sched_cb_entry); 3577 } 3578 3579 3580 void perf_sched_cb_inc(struct pmu *pmu) 3581 { 3582 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3583 3584 if (!cpuctx->sched_cb_usage++) 3585 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3586 3587 this_cpu_inc(perf_sched_cb_usages); 3588 } 3589 3590 /* 3591 * This function provides the context switch callback to the lower code 3592 * layer. It is invoked ONLY when the context switch callback is enabled. 3593 * 3594 * This callback is relevant even to per-cpu events; for example multi event 3595 * PEBS requires this to provide PID/TID information. This requires we flush 3596 * all queued PEBS records before we context switch to a new task. 3597 */ 3598 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) 3599 { 3600 struct pmu *pmu; 3601 3602 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3603 3604 if (WARN_ON_ONCE(!pmu->sched_task)) 3605 return; 3606 3607 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3608 perf_pmu_disable(pmu); 3609 3610 pmu->sched_task(cpuctx->task_ctx, sched_in); 3611 3612 perf_pmu_enable(pmu); 3613 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3614 } 3615 3616 static void perf_pmu_sched_task(struct task_struct *prev, 3617 struct task_struct *next, 3618 bool sched_in) 3619 { 3620 struct perf_cpu_context *cpuctx; 3621 3622 if (prev == next) 3623 return; 3624 3625 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3626 /* will be handled in perf_event_context_sched_in/out */ 3627 if (cpuctx->task_ctx) 3628 continue; 3629 3630 __perf_pmu_sched_task(cpuctx, sched_in); 3631 } 3632 } 3633 3634 static void perf_event_switch(struct task_struct *task, 3635 struct task_struct *next_prev, bool sched_in); 3636 3637 #define for_each_task_context_nr(ctxn) \ 3638 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3639 3640 /* 3641 * Called from scheduler to remove the events of the current task, 3642 * with interrupts disabled. 3643 * 3644 * We stop each event and update the event value in event->count. 3645 * 3646 * This does not protect us against NMI, but disable() 3647 * sets the disabled bit in the control field of event _before_ 3648 * accessing the event control register. If a NMI hits, then it will 3649 * not restart the event. 3650 */ 3651 void __perf_event_task_sched_out(struct task_struct *task, 3652 struct task_struct *next) 3653 { 3654 int ctxn; 3655 3656 if (__this_cpu_read(perf_sched_cb_usages)) 3657 perf_pmu_sched_task(task, next, false); 3658 3659 if (atomic_read(&nr_switch_events)) 3660 perf_event_switch(task, next, false); 3661 3662 for_each_task_context_nr(ctxn) 3663 perf_event_context_sched_out(task, ctxn, next); 3664 3665 /* 3666 * if cgroup events exist on this CPU, then we need 3667 * to check if we have to switch out PMU state. 3668 * cgroup event are system-wide mode only 3669 */ 3670 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3671 perf_cgroup_sched_out(task, next); 3672 } 3673 3674 /* 3675 * Called with IRQs disabled 3676 */ 3677 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3678 enum event_type_t event_type) 3679 { 3680 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3681 } 3682 3683 static bool perf_less_group_idx(const void *l, const void *r) 3684 { 3685 const struct perf_event *le = *(const struct perf_event **)l; 3686 const struct perf_event *re = *(const struct perf_event **)r; 3687 3688 return le->group_index < re->group_index; 3689 } 3690 3691 static void swap_ptr(void *l, void *r) 3692 { 3693 void **lp = l, **rp = r; 3694 3695 swap(*lp, *rp); 3696 } 3697 3698 static const struct min_heap_callbacks perf_min_heap = { 3699 .elem_size = sizeof(struct perf_event *), 3700 .less = perf_less_group_idx, 3701 .swp = swap_ptr, 3702 }; 3703 3704 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3705 { 3706 struct perf_event **itrs = heap->data; 3707 3708 if (event) { 3709 itrs[heap->nr] = event; 3710 heap->nr++; 3711 } 3712 } 3713 3714 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3715 struct perf_event_groups *groups, int cpu, 3716 int (*func)(struct perf_event *, void *), 3717 void *data) 3718 { 3719 #ifdef CONFIG_CGROUP_PERF 3720 struct cgroup_subsys_state *css = NULL; 3721 #endif 3722 /* Space for per CPU and/or any CPU event iterators. */ 3723 struct perf_event *itrs[2]; 3724 struct min_heap event_heap; 3725 struct perf_event **evt; 3726 int ret; 3727 3728 if (cpuctx) { 3729 event_heap = (struct min_heap){ 3730 .data = cpuctx->heap, 3731 .nr = 0, 3732 .size = cpuctx->heap_size, 3733 }; 3734 3735 lockdep_assert_held(&cpuctx->ctx.lock); 3736 3737 #ifdef CONFIG_CGROUP_PERF 3738 if (cpuctx->cgrp) 3739 css = &cpuctx->cgrp->css; 3740 #endif 3741 } else { 3742 event_heap = (struct min_heap){ 3743 .data = itrs, 3744 .nr = 0, 3745 .size = ARRAY_SIZE(itrs), 3746 }; 3747 /* Events not within a CPU context may be on any CPU. */ 3748 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3749 } 3750 evt = event_heap.data; 3751 3752 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3753 3754 #ifdef CONFIG_CGROUP_PERF 3755 for (; css; css = css->parent) 3756 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3757 #endif 3758 3759 min_heapify_all(&event_heap, &perf_min_heap); 3760 3761 while (event_heap.nr) { 3762 ret = func(*evt, data); 3763 if (ret) 3764 return ret; 3765 3766 *evt = perf_event_groups_next(*evt); 3767 if (*evt) 3768 min_heapify(&event_heap, 0, &perf_min_heap); 3769 else 3770 min_heap_pop(&event_heap, &perf_min_heap); 3771 } 3772 3773 return 0; 3774 } 3775 3776 /* 3777 * Because the userpage is strictly per-event (there is no concept of context, 3778 * so there cannot be a context indirection), every userpage must be updated 3779 * when context time starts :-( 3780 * 3781 * IOW, we must not miss EVENT_TIME edges. 3782 */ 3783 static inline bool event_update_userpage(struct perf_event *event) 3784 { 3785 if (likely(!atomic_read(&event->mmap_count))) 3786 return false; 3787 3788 perf_event_update_time(event); 3789 perf_event_update_userpage(event); 3790 3791 return true; 3792 } 3793 3794 static inline void group_update_userpage(struct perf_event *group_event) 3795 { 3796 struct perf_event *event; 3797 3798 if (!event_update_userpage(group_event)) 3799 return; 3800 3801 for_each_sibling_event(event, group_event) 3802 event_update_userpage(event); 3803 } 3804 3805 static int merge_sched_in(struct perf_event *event, void *data) 3806 { 3807 struct perf_event_context *ctx = event->ctx; 3808 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3809 int *can_add_hw = data; 3810 3811 if (event->state <= PERF_EVENT_STATE_OFF) 3812 return 0; 3813 3814 if (!event_filter_match(event)) 3815 return 0; 3816 3817 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3818 if (!group_sched_in(event, cpuctx, ctx)) 3819 list_add_tail(&event->active_list, get_event_list(event)); 3820 } 3821 3822 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3823 *can_add_hw = 0; 3824 if (event->attr.pinned) { 3825 perf_cgroup_event_disable(event, ctx); 3826 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3827 } else { 3828 ctx->rotate_necessary = 1; 3829 perf_mux_hrtimer_restart(cpuctx); 3830 group_update_userpage(event); 3831 } 3832 } 3833 3834 return 0; 3835 } 3836 3837 static void 3838 ctx_pinned_sched_in(struct perf_event_context *ctx, 3839 struct perf_cpu_context *cpuctx) 3840 { 3841 int can_add_hw = 1; 3842 3843 if (ctx != &cpuctx->ctx) 3844 cpuctx = NULL; 3845 3846 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3847 smp_processor_id(), 3848 merge_sched_in, &can_add_hw); 3849 } 3850 3851 static void 3852 ctx_flexible_sched_in(struct perf_event_context *ctx, 3853 struct perf_cpu_context *cpuctx) 3854 { 3855 int can_add_hw = 1; 3856 3857 if (ctx != &cpuctx->ctx) 3858 cpuctx = NULL; 3859 3860 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3861 smp_processor_id(), 3862 merge_sched_in, &can_add_hw); 3863 } 3864 3865 static void 3866 ctx_sched_in(struct perf_event_context *ctx, 3867 struct perf_cpu_context *cpuctx, 3868 enum event_type_t event_type, 3869 struct task_struct *task) 3870 { 3871 int is_active = ctx->is_active; 3872 3873 lockdep_assert_held(&ctx->lock); 3874 3875 if (likely(!ctx->nr_events)) 3876 return; 3877 3878 if (is_active ^ EVENT_TIME) { 3879 /* start ctx time */ 3880 __update_context_time(ctx, false); 3881 perf_cgroup_set_timestamp(task, ctx); 3882 /* 3883 * CPU-release for the below ->is_active store, 3884 * see __load_acquire() in perf_event_time_now() 3885 */ 3886 barrier(); 3887 } 3888 3889 ctx->is_active |= (event_type | EVENT_TIME); 3890 if (ctx->task) { 3891 if (!is_active) 3892 cpuctx->task_ctx = ctx; 3893 else 3894 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3895 } 3896 3897 is_active ^= ctx->is_active; /* changed bits */ 3898 3899 /* 3900 * First go through the list and put on any pinned groups 3901 * in order to give them the best chance of going on. 3902 */ 3903 if (is_active & EVENT_PINNED) 3904 ctx_pinned_sched_in(ctx, cpuctx); 3905 3906 /* Then walk through the lower prio flexible groups */ 3907 if (is_active & EVENT_FLEXIBLE) 3908 ctx_flexible_sched_in(ctx, cpuctx); 3909 } 3910 3911 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3912 enum event_type_t event_type, 3913 struct task_struct *task) 3914 { 3915 struct perf_event_context *ctx = &cpuctx->ctx; 3916 3917 ctx_sched_in(ctx, cpuctx, event_type, task); 3918 } 3919 3920 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3921 struct task_struct *task) 3922 { 3923 struct perf_cpu_context *cpuctx; 3924 struct pmu *pmu; 3925 3926 cpuctx = __get_cpu_context(ctx); 3927 3928 /* 3929 * HACK: for HETEROGENEOUS the task context might have switched to a 3930 * different PMU, force (re)set the context, 3931 */ 3932 pmu = ctx->pmu = cpuctx->ctx.pmu; 3933 3934 if (cpuctx->task_ctx == ctx) { 3935 if (cpuctx->sched_cb_usage) 3936 __perf_pmu_sched_task(cpuctx, true); 3937 return; 3938 } 3939 3940 perf_ctx_lock(cpuctx, ctx); 3941 /* 3942 * We must check ctx->nr_events while holding ctx->lock, such 3943 * that we serialize against perf_install_in_context(). 3944 */ 3945 if (!ctx->nr_events) 3946 goto unlock; 3947 3948 perf_pmu_disable(pmu); 3949 /* 3950 * We want to keep the following priority order: 3951 * cpu pinned (that don't need to move), task pinned, 3952 * cpu flexible, task flexible. 3953 * 3954 * However, if task's ctx is not carrying any pinned 3955 * events, no need to flip the cpuctx's events around. 3956 */ 3957 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3958 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3959 perf_event_sched_in(cpuctx, ctx, task); 3960 3961 if (cpuctx->sched_cb_usage && pmu->sched_task) 3962 pmu->sched_task(cpuctx->task_ctx, true); 3963 3964 perf_pmu_enable(pmu); 3965 3966 unlock: 3967 perf_ctx_unlock(cpuctx, ctx); 3968 } 3969 3970 /* 3971 * Called from scheduler to add the events of the current task 3972 * with interrupts disabled. 3973 * 3974 * We restore the event value and then enable it. 3975 * 3976 * This does not protect us against NMI, but enable() 3977 * sets the enabled bit in the control field of event _before_ 3978 * accessing the event control register. If a NMI hits, then it will 3979 * keep the event running. 3980 */ 3981 void __perf_event_task_sched_in(struct task_struct *prev, 3982 struct task_struct *task) 3983 { 3984 struct perf_event_context *ctx; 3985 int ctxn; 3986 3987 /* 3988 * If cgroup events exist on this CPU, then we need to check if we have 3989 * to switch in PMU state; cgroup event are system-wide mode only. 3990 * 3991 * Since cgroup events are CPU events, we must schedule these in before 3992 * we schedule in the task events. 3993 */ 3994 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3995 perf_cgroup_sched_in(prev, task); 3996 3997 for_each_task_context_nr(ctxn) { 3998 ctx = task->perf_event_ctxp[ctxn]; 3999 if (likely(!ctx)) 4000 continue; 4001 4002 perf_event_context_sched_in(ctx, task); 4003 } 4004 4005 if (atomic_read(&nr_switch_events)) 4006 perf_event_switch(task, prev, true); 4007 4008 if (__this_cpu_read(perf_sched_cb_usages)) 4009 perf_pmu_sched_task(prev, task, true); 4010 } 4011 4012 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4013 { 4014 u64 frequency = event->attr.sample_freq; 4015 u64 sec = NSEC_PER_SEC; 4016 u64 divisor, dividend; 4017 4018 int count_fls, nsec_fls, frequency_fls, sec_fls; 4019 4020 count_fls = fls64(count); 4021 nsec_fls = fls64(nsec); 4022 frequency_fls = fls64(frequency); 4023 sec_fls = 30; 4024 4025 /* 4026 * We got @count in @nsec, with a target of sample_freq HZ 4027 * the target period becomes: 4028 * 4029 * @count * 10^9 4030 * period = ------------------- 4031 * @nsec * sample_freq 4032 * 4033 */ 4034 4035 /* 4036 * Reduce accuracy by one bit such that @a and @b converge 4037 * to a similar magnitude. 4038 */ 4039 #define REDUCE_FLS(a, b) \ 4040 do { \ 4041 if (a##_fls > b##_fls) { \ 4042 a >>= 1; \ 4043 a##_fls--; \ 4044 } else { \ 4045 b >>= 1; \ 4046 b##_fls--; \ 4047 } \ 4048 } while (0) 4049 4050 /* 4051 * Reduce accuracy until either term fits in a u64, then proceed with 4052 * the other, so that finally we can do a u64/u64 division. 4053 */ 4054 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4055 REDUCE_FLS(nsec, frequency); 4056 REDUCE_FLS(sec, count); 4057 } 4058 4059 if (count_fls + sec_fls > 64) { 4060 divisor = nsec * frequency; 4061 4062 while (count_fls + sec_fls > 64) { 4063 REDUCE_FLS(count, sec); 4064 divisor >>= 1; 4065 } 4066 4067 dividend = count * sec; 4068 } else { 4069 dividend = count * sec; 4070 4071 while (nsec_fls + frequency_fls > 64) { 4072 REDUCE_FLS(nsec, frequency); 4073 dividend >>= 1; 4074 } 4075 4076 divisor = nsec * frequency; 4077 } 4078 4079 if (!divisor) 4080 return dividend; 4081 4082 return div64_u64(dividend, divisor); 4083 } 4084 4085 static DEFINE_PER_CPU(int, perf_throttled_count); 4086 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4087 4088 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4089 { 4090 struct hw_perf_event *hwc = &event->hw; 4091 s64 period, sample_period; 4092 s64 delta; 4093 4094 period = perf_calculate_period(event, nsec, count); 4095 4096 delta = (s64)(period - hwc->sample_period); 4097 delta = (delta + 7) / 8; /* low pass filter */ 4098 4099 sample_period = hwc->sample_period + delta; 4100 4101 if (!sample_period) 4102 sample_period = 1; 4103 4104 hwc->sample_period = sample_period; 4105 4106 if (local64_read(&hwc->period_left) > 8*sample_period) { 4107 if (disable) 4108 event->pmu->stop(event, PERF_EF_UPDATE); 4109 4110 local64_set(&hwc->period_left, 0); 4111 4112 if (disable) 4113 event->pmu->start(event, PERF_EF_RELOAD); 4114 } 4115 } 4116 4117 /* 4118 * combine freq adjustment with unthrottling to avoid two passes over the 4119 * events. At the same time, make sure, having freq events does not change 4120 * the rate of unthrottling as that would introduce bias. 4121 */ 4122 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 4123 int needs_unthr) 4124 { 4125 struct perf_event *event; 4126 struct hw_perf_event *hwc; 4127 u64 now, period = TICK_NSEC; 4128 s64 delta; 4129 4130 /* 4131 * only need to iterate over all events iff: 4132 * - context have events in frequency mode (needs freq adjust) 4133 * - there are events to unthrottle on this cpu 4134 */ 4135 if (!(ctx->nr_freq || needs_unthr)) 4136 return; 4137 4138 raw_spin_lock(&ctx->lock); 4139 perf_pmu_disable(ctx->pmu); 4140 4141 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4142 if (event->state != PERF_EVENT_STATE_ACTIVE) 4143 continue; 4144 4145 if (!event_filter_match(event)) 4146 continue; 4147 4148 perf_pmu_disable(event->pmu); 4149 4150 hwc = &event->hw; 4151 4152 if (hwc->interrupts == MAX_INTERRUPTS) { 4153 hwc->interrupts = 0; 4154 perf_log_throttle(event, 1); 4155 event->pmu->start(event, 0); 4156 } 4157 4158 if (!event->attr.freq || !event->attr.sample_freq) 4159 goto next; 4160 4161 /* 4162 * stop the event and update event->count 4163 */ 4164 event->pmu->stop(event, PERF_EF_UPDATE); 4165 4166 now = local64_read(&event->count); 4167 delta = now - hwc->freq_count_stamp; 4168 hwc->freq_count_stamp = now; 4169 4170 /* 4171 * restart the event 4172 * reload only if value has changed 4173 * we have stopped the event so tell that 4174 * to perf_adjust_period() to avoid stopping it 4175 * twice. 4176 */ 4177 if (delta > 0) 4178 perf_adjust_period(event, period, delta, false); 4179 4180 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4181 next: 4182 perf_pmu_enable(event->pmu); 4183 } 4184 4185 perf_pmu_enable(ctx->pmu); 4186 raw_spin_unlock(&ctx->lock); 4187 } 4188 4189 /* 4190 * Move @event to the tail of the @ctx's elegible events. 4191 */ 4192 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4193 { 4194 /* 4195 * Rotate the first entry last of non-pinned groups. Rotation might be 4196 * disabled by the inheritance code. 4197 */ 4198 if (ctx->rotate_disable) 4199 return; 4200 4201 perf_event_groups_delete(&ctx->flexible_groups, event); 4202 perf_event_groups_insert(&ctx->flexible_groups, event); 4203 } 4204 4205 /* pick an event from the flexible_groups to rotate */ 4206 static inline struct perf_event * 4207 ctx_event_to_rotate(struct perf_event_context *ctx) 4208 { 4209 struct perf_event *event; 4210 4211 /* pick the first active flexible event */ 4212 event = list_first_entry_or_null(&ctx->flexible_active, 4213 struct perf_event, active_list); 4214 4215 /* if no active flexible event, pick the first event */ 4216 if (!event) { 4217 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4218 typeof(*event), group_node); 4219 } 4220 4221 /* 4222 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4223 * finds there are unschedulable events, it will set it again. 4224 */ 4225 ctx->rotate_necessary = 0; 4226 4227 return event; 4228 } 4229 4230 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4231 { 4232 struct perf_event *cpu_event = NULL, *task_event = NULL; 4233 struct perf_event_context *task_ctx = NULL; 4234 int cpu_rotate, task_rotate; 4235 4236 /* 4237 * Since we run this from IRQ context, nobody can install new 4238 * events, thus the event count values are stable. 4239 */ 4240 4241 cpu_rotate = cpuctx->ctx.rotate_necessary; 4242 task_ctx = cpuctx->task_ctx; 4243 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4244 4245 if (!(cpu_rotate || task_rotate)) 4246 return false; 4247 4248 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4249 perf_pmu_disable(cpuctx->ctx.pmu); 4250 4251 if (task_rotate) 4252 task_event = ctx_event_to_rotate(task_ctx); 4253 if (cpu_rotate) 4254 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4255 4256 /* 4257 * As per the order given at ctx_resched() first 'pop' task flexible 4258 * and then, if needed CPU flexible. 4259 */ 4260 if (task_event || (task_ctx && cpu_event)) 4261 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4262 if (cpu_event) 4263 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4264 4265 if (task_event) 4266 rotate_ctx(task_ctx, task_event); 4267 if (cpu_event) 4268 rotate_ctx(&cpuctx->ctx, cpu_event); 4269 4270 perf_event_sched_in(cpuctx, task_ctx, current); 4271 4272 perf_pmu_enable(cpuctx->ctx.pmu); 4273 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4274 4275 return true; 4276 } 4277 4278 void perf_event_task_tick(void) 4279 { 4280 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4281 struct perf_event_context *ctx, *tmp; 4282 int throttled; 4283 4284 lockdep_assert_irqs_disabled(); 4285 4286 __this_cpu_inc(perf_throttled_seq); 4287 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4288 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4289 4290 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4291 perf_adjust_freq_unthr_context(ctx, throttled); 4292 } 4293 4294 static int event_enable_on_exec(struct perf_event *event, 4295 struct perf_event_context *ctx) 4296 { 4297 if (!event->attr.enable_on_exec) 4298 return 0; 4299 4300 event->attr.enable_on_exec = 0; 4301 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4302 return 0; 4303 4304 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4305 4306 return 1; 4307 } 4308 4309 /* 4310 * Enable all of a task's events that have been marked enable-on-exec. 4311 * This expects task == current. 4312 */ 4313 static void perf_event_enable_on_exec(int ctxn) 4314 { 4315 struct perf_event_context *ctx, *clone_ctx = NULL; 4316 enum event_type_t event_type = 0; 4317 struct perf_cpu_context *cpuctx; 4318 struct perf_event *event; 4319 unsigned long flags; 4320 int enabled = 0; 4321 4322 local_irq_save(flags); 4323 ctx = current->perf_event_ctxp[ctxn]; 4324 if (!ctx || !ctx->nr_events) 4325 goto out; 4326 4327 cpuctx = __get_cpu_context(ctx); 4328 perf_ctx_lock(cpuctx, ctx); 4329 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4330 list_for_each_entry(event, &ctx->event_list, event_entry) { 4331 enabled |= event_enable_on_exec(event, ctx); 4332 event_type |= get_event_type(event); 4333 } 4334 4335 /* 4336 * Unclone and reschedule this context if we enabled any event. 4337 */ 4338 if (enabled) { 4339 clone_ctx = unclone_ctx(ctx); 4340 ctx_resched(cpuctx, ctx, event_type); 4341 } else { 4342 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4343 } 4344 perf_ctx_unlock(cpuctx, ctx); 4345 4346 out: 4347 local_irq_restore(flags); 4348 4349 if (clone_ctx) 4350 put_ctx(clone_ctx); 4351 } 4352 4353 static void perf_remove_from_owner(struct perf_event *event); 4354 static void perf_event_exit_event(struct perf_event *event, 4355 struct perf_event_context *ctx); 4356 4357 /* 4358 * Removes all events from the current task that have been marked 4359 * remove-on-exec, and feeds their values back to parent events. 4360 */ 4361 static void perf_event_remove_on_exec(int ctxn) 4362 { 4363 struct perf_event_context *ctx, *clone_ctx = NULL; 4364 struct perf_event *event, *next; 4365 LIST_HEAD(free_list); 4366 unsigned long flags; 4367 bool modified = false; 4368 4369 ctx = perf_pin_task_context(current, ctxn); 4370 if (!ctx) 4371 return; 4372 4373 mutex_lock(&ctx->mutex); 4374 4375 if (WARN_ON_ONCE(ctx->task != current)) 4376 goto unlock; 4377 4378 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4379 if (!event->attr.remove_on_exec) 4380 continue; 4381 4382 if (!is_kernel_event(event)) 4383 perf_remove_from_owner(event); 4384 4385 modified = true; 4386 4387 perf_event_exit_event(event, ctx); 4388 } 4389 4390 raw_spin_lock_irqsave(&ctx->lock, flags); 4391 if (modified) 4392 clone_ctx = unclone_ctx(ctx); 4393 --ctx->pin_count; 4394 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4395 4396 unlock: 4397 mutex_unlock(&ctx->mutex); 4398 4399 put_ctx(ctx); 4400 if (clone_ctx) 4401 put_ctx(clone_ctx); 4402 } 4403 4404 struct perf_read_data { 4405 struct perf_event *event; 4406 bool group; 4407 int ret; 4408 }; 4409 4410 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4411 { 4412 u16 local_pkg, event_pkg; 4413 4414 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4415 int local_cpu = smp_processor_id(); 4416 4417 event_pkg = topology_physical_package_id(event_cpu); 4418 local_pkg = topology_physical_package_id(local_cpu); 4419 4420 if (event_pkg == local_pkg) 4421 return local_cpu; 4422 } 4423 4424 return event_cpu; 4425 } 4426 4427 /* 4428 * Cross CPU call to read the hardware event 4429 */ 4430 static void __perf_event_read(void *info) 4431 { 4432 struct perf_read_data *data = info; 4433 struct perf_event *sub, *event = data->event; 4434 struct perf_event_context *ctx = event->ctx; 4435 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4436 struct pmu *pmu = event->pmu; 4437 4438 /* 4439 * If this is a task context, we need to check whether it is 4440 * the current task context of this cpu. If not it has been 4441 * scheduled out before the smp call arrived. In that case 4442 * event->count would have been updated to a recent sample 4443 * when the event was scheduled out. 4444 */ 4445 if (ctx->task && cpuctx->task_ctx != ctx) 4446 return; 4447 4448 raw_spin_lock(&ctx->lock); 4449 if (ctx->is_active & EVENT_TIME) { 4450 update_context_time(ctx); 4451 update_cgrp_time_from_event(event); 4452 } 4453 4454 perf_event_update_time(event); 4455 if (data->group) 4456 perf_event_update_sibling_time(event); 4457 4458 if (event->state != PERF_EVENT_STATE_ACTIVE) 4459 goto unlock; 4460 4461 if (!data->group) { 4462 pmu->read(event); 4463 data->ret = 0; 4464 goto unlock; 4465 } 4466 4467 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4468 4469 pmu->read(event); 4470 4471 for_each_sibling_event(sub, event) { 4472 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4473 /* 4474 * Use sibling's PMU rather than @event's since 4475 * sibling could be on different (eg: software) PMU. 4476 */ 4477 sub->pmu->read(sub); 4478 } 4479 } 4480 4481 data->ret = pmu->commit_txn(pmu); 4482 4483 unlock: 4484 raw_spin_unlock(&ctx->lock); 4485 } 4486 4487 static inline u64 perf_event_count(struct perf_event *event) 4488 { 4489 return local64_read(&event->count) + atomic64_read(&event->child_count); 4490 } 4491 4492 static void calc_timer_values(struct perf_event *event, 4493 u64 *now, 4494 u64 *enabled, 4495 u64 *running) 4496 { 4497 u64 ctx_time; 4498 4499 *now = perf_clock(); 4500 ctx_time = perf_event_time_now(event, *now); 4501 __perf_update_times(event, ctx_time, enabled, running); 4502 } 4503 4504 /* 4505 * NMI-safe method to read a local event, that is an event that 4506 * is: 4507 * - either for the current task, or for this CPU 4508 * - does not have inherit set, for inherited task events 4509 * will not be local and we cannot read them atomically 4510 * - must not have a pmu::count method 4511 */ 4512 int perf_event_read_local(struct perf_event *event, u64 *value, 4513 u64 *enabled, u64 *running) 4514 { 4515 unsigned long flags; 4516 int ret = 0; 4517 4518 /* 4519 * Disabling interrupts avoids all counter scheduling (context 4520 * switches, timer based rotation and IPIs). 4521 */ 4522 local_irq_save(flags); 4523 4524 /* 4525 * It must not be an event with inherit set, we cannot read 4526 * all child counters from atomic context. 4527 */ 4528 if (event->attr.inherit) { 4529 ret = -EOPNOTSUPP; 4530 goto out; 4531 } 4532 4533 /* If this is a per-task event, it must be for current */ 4534 if ((event->attach_state & PERF_ATTACH_TASK) && 4535 event->hw.target != current) { 4536 ret = -EINVAL; 4537 goto out; 4538 } 4539 4540 /* If this is a per-CPU event, it must be for this CPU */ 4541 if (!(event->attach_state & PERF_ATTACH_TASK) && 4542 event->cpu != smp_processor_id()) { 4543 ret = -EINVAL; 4544 goto out; 4545 } 4546 4547 /* If this is a pinned event it must be running on this CPU */ 4548 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4549 ret = -EBUSY; 4550 goto out; 4551 } 4552 4553 /* 4554 * If the event is currently on this CPU, its either a per-task event, 4555 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4556 * oncpu == -1). 4557 */ 4558 if (event->oncpu == smp_processor_id()) 4559 event->pmu->read(event); 4560 4561 *value = local64_read(&event->count); 4562 if (enabled || running) { 4563 u64 __enabled, __running, __now;; 4564 4565 calc_timer_values(event, &__now, &__enabled, &__running); 4566 if (enabled) 4567 *enabled = __enabled; 4568 if (running) 4569 *running = __running; 4570 } 4571 out: 4572 local_irq_restore(flags); 4573 4574 return ret; 4575 } 4576 4577 static int perf_event_read(struct perf_event *event, bool group) 4578 { 4579 enum perf_event_state state = READ_ONCE(event->state); 4580 int event_cpu, ret = 0; 4581 4582 /* 4583 * If event is enabled and currently active on a CPU, update the 4584 * value in the event structure: 4585 */ 4586 again: 4587 if (state == PERF_EVENT_STATE_ACTIVE) { 4588 struct perf_read_data data; 4589 4590 /* 4591 * Orders the ->state and ->oncpu loads such that if we see 4592 * ACTIVE we must also see the right ->oncpu. 4593 * 4594 * Matches the smp_wmb() from event_sched_in(). 4595 */ 4596 smp_rmb(); 4597 4598 event_cpu = READ_ONCE(event->oncpu); 4599 if ((unsigned)event_cpu >= nr_cpu_ids) 4600 return 0; 4601 4602 data = (struct perf_read_data){ 4603 .event = event, 4604 .group = group, 4605 .ret = 0, 4606 }; 4607 4608 preempt_disable(); 4609 event_cpu = __perf_event_read_cpu(event, event_cpu); 4610 4611 /* 4612 * Purposely ignore the smp_call_function_single() return 4613 * value. 4614 * 4615 * If event_cpu isn't a valid CPU it means the event got 4616 * scheduled out and that will have updated the event count. 4617 * 4618 * Therefore, either way, we'll have an up-to-date event count 4619 * after this. 4620 */ 4621 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4622 preempt_enable(); 4623 ret = data.ret; 4624 4625 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4626 struct perf_event_context *ctx = event->ctx; 4627 unsigned long flags; 4628 4629 raw_spin_lock_irqsave(&ctx->lock, flags); 4630 state = event->state; 4631 if (state != PERF_EVENT_STATE_INACTIVE) { 4632 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4633 goto again; 4634 } 4635 4636 /* 4637 * May read while context is not active (e.g., thread is 4638 * blocked), in that case we cannot update context time 4639 */ 4640 if (ctx->is_active & EVENT_TIME) { 4641 update_context_time(ctx); 4642 update_cgrp_time_from_event(event); 4643 } 4644 4645 perf_event_update_time(event); 4646 if (group) 4647 perf_event_update_sibling_time(event); 4648 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4649 } 4650 4651 return ret; 4652 } 4653 4654 /* 4655 * Initialize the perf_event context in a task_struct: 4656 */ 4657 static void __perf_event_init_context(struct perf_event_context *ctx) 4658 { 4659 raw_spin_lock_init(&ctx->lock); 4660 mutex_init(&ctx->mutex); 4661 INIT_LIST_HEAD(&ctx->active_ctx_list); 4662 perf_event_groups_init(&ctx->pinned_groups); 4663 perf_event_groups_init(&ctx->flexible_groups); 4664 INIT_LIST_HEAD(&ctx->event_list); 4665 INIT_LIST_HEAD(&ctx->pinned_active); 4666 INIT_LIST_HEAD(&ctx->flexible_active); 4667 refcount_set(&ctx->refcount, 1); 4668 } 4669 4670 static struct perf_event_context * 4671 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4672 { 4673 struct perf_event_context *ctx; 4674 4675 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4676 if (!ctx) 4677 return NULL; 4678 4679 __perf_event_init_context(ctx); 4680 if (task) 4681 ctx->task = get_task_struct(task); 4682 ctx->pmu = pmu; 4683 4684 return ctx; 4685 } 4686 4687 static struct task_struct * 4688 find_lively_task_by_vpid(pid_t vpid) 4689 { 4690 struct task_struct *task; 4691 4692 rcu_read_lock(); 4693 if (!vpid) 4694 task = current; 4695 else 4696 task = find_task_by_vpid(vpid); 4697 if (task) 4698 get_task_struct(task); 4699 rcu_read_unlock(); 4700 4701 if (!task) 4702 return ERR_PTR(-ESRCH); 4703 4704 return task; 4705 } 4706 4707 /* 4708 * Returns a matching context with refcount and pincount. 4709 */ 4710 static struct perf_event_context * 4711 find_get_context(struct pmu *pmu, struct task_struct *task, 4712 struct perf_event *event) 4713 { 4714 struct perf_event_context *ctx, *clone_ctx = NULL; 4715 struct perf_cpu_context *cpuctx; 4716 void *task_ctx_data = NULL; 4717 unsigned long flags; 4718 int ctxn, err; 4719 int cpu = event->cpu; 4720 4721 if (!task) { 4722 /* Must be root to operate on a CPU event: */ 4723 err = perf_allow_cpu(&event->attr); 4724 if (err) 4725 return ERR_PTR(err); 4726 4727 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4728 ctx = &cpuctx->ctx; 4729 get_ctx(ctx); 4730 raw_spin_lock_irqsave(&ctx->lock, flags); 4731 ++ctx->pin_count; 4732 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4733 4734 return ctx; 4735 } 4736 4737 err = -EINVAL; 4738 ctxn = pmu->task_ctx_nr; 4739 if (ctxn < 0) 4740 goto errout; 4741 4742 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4743 task_ctx_data = alloc_task_ctx_data(pmu); 4744 if (!task_ctx_data) { 4745 err = -ENOMEM; 4746 goto errout; 4747 } 4748 } 4749 4750 retry: 4751 ctx = perf_lock_task_context(task, ctxn, &flags); 4752 if (ctx) { 4753 clone_ctx = unclone_ctx(ctx); 4754 ++ctx->pin_count; 4755 4756 if (task_ctx_data && !ctx->task_ctx_data) { 4757 ctx->task_ctx_data = task_ctx_data; 4758 task_ctx_data = NULL; 4759 } 4760 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4761 4762 if (clone_ctx) 4763 put_ctx(clone_ctx); 4764 } else { 4765 ctx = alloc_perf_context(pmu, task); 4766 err = -ENOMEM; 4767 if (!ctx) 4768 goto errout; 4769 4770 if (task_ctx_data) { 4771 ctx->task_ctx_data = task_ctx_data; 4772 task_ctx_data = NULL; 4773 } 4774 4775 err = 0; 4776 mutex_lock(&task->perf_event_mutex); 4777 /* 4778 * If it has already passed perf_event_exit_task(). 4779 * we must see PF_EXITING, it takes this mutex too. 4780 */ 4781 if (task->flags & PF_EXITING) 4782 err = -ESRCH; 4783 else if (task->perf_event_ctxp[ctxn]) 4784 err = -EAGAIN; 4785 else { 4786 get_ctx(ctx); 4787 ++ctx->pin_count; 4788 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4789 } 4790 mutex_unlock(&task->perf_event_mutex); 4791 4792 if (unlikely(err)) { 4793 put_ctx(ctx); 4794 4795 if (err == -EAGAIN) 4796 goto retry; 4797 goto errout; 4798 } 4799 } 4800 4801 free_task_ctx_data(pmu, task_ctx_data); 4802 return ctx; 4803 4804 errout: 4805 free_task_ctx_data(pmu, task_ctx_data); 4806 return ERR_PTR(err); 4807 } 4808 4809 static void perf_event_free_filter(struct perf_event *event); 4810 4811 static void free_event_rcu(struct rcu_head *head) 4812 { 4813 struct perf_event *event; 4814 4815 event = container_of(head, struct perf_event, rcu_head); 4816 if (event->ns) 4817 put_pid_ns(event->ns); 4818 perf_event_free_filter(event); 4819 kmem_cache_free(perf_event_cache, event); 4820 } 4821 4822 static void ring_buffer_attach(struct perf_event *event, 4823 struct perf_buffer *rb); 4824 4825 static void detach_sb_event(struct perf_event *event) 4826 { 4827 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4828 4829 raw_spin_lock(&pel->lock); 4830 list_del_rcu(&event->sb_list); 4831 raw_spin_unlock(&pel->lock); 4832 } 4833 4834 static bool is_sb_event(struct perf_event *event) 4835 { 4836 struct perf_event_attr *attr = &event->attr; 4837 4838 if (event->parent) 4839 return false; 4840 4841 if (event->attach_state & PERF_ATTACH_TASK) 4842 return false; 4843 4844 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4845 attr->comm || attr->comm_exec || 4846 attr->task || attr->ksymbol || 4847 attr->context_switch || attr->text_poke || 4848 attr->bpf_event) 4849 return true; 4850 return false; 4851 } 4852 4853 static void unaccount_pmu_sb_event(struct perf_event *event) 4854 { 4855 if (is_sb_event(event)) 4856 detach_sb_event(event); 4857 } 4858 4859 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4860 { 4861 if (event->parent) 4862 return; 4863 4864 if (is_cgroup_event(event)) 4865 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4866 } 4867 4868 #ifdef CONFIG_NO_HZ_FULL 4869 static DEFINE_SPINLOCK(nr_freq_lock); 4870 #endif 4871 4872 static void unaccount_freq_event_nohz(void) 4873 { 4874 #ifdef CONFIG_NO_HZ_FULL 4875 spin_lock(&nr_freq_lock); 4876 if (atomic_dec_and_test(&nr_freq_events)) 4877 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4878 spin_unlock(&nr_freq_lock); 4879 #endif 4880 } 4881 4882 static void unaccount_freq_event(void) 4883 { 4884 if (tick_nohz_full_enabled()) 4885 unaccount_freq_event_nohz(); 4886 else 4887 atomic_dec(&nr_freq_events); 4888 } 4889 4890 static void unaccount_event(struct perf_event *event) 4891 { 4892 bool dec = false; 4893 4894 if (event->parent) 4895 return; 4896 4897 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 4898 dec = true; 4899 if (event->attr.mmap || event->attr.mmap_data) 4900 atomic_dec(&nr_mmap_events); 4901 if (event->attr.build_id) 4902 atomic_dec(&nr_build_id_events); 4903 if (event->attr.comm) 4904 atomic_dec(&nr_comm_events); 4905 if (event->attr.namespaces) 4906 atomic_dec(&nr_namespaces_events); 4907 if (event->attr.cgroup) 4908 atomic_dec(&nr_cgroup_events); 4909 if (event->attr.task) 4910 atomic_dec(&nr_task_events); 4911 if (event->attr.freq) 4912 unaccount_freq_event(); 4913 if (event->attr.context_switch) { 4914 dec = true; 4915 atomic_dec(&nr_switch_events); 4916 } 4917 if (is_cgroup_event(event)) 4918 dec = true; 4919 if (has_branch_stack(event)) 4920 dec = true; 4921 if (event->attr.ksymbol) 4922 atomic_dec(&nr_ksymbol_events); 4923 if (event->attr.bpf_event) 4924 atomic_dec(&nr_bpf_events); 4925 if (event->attr.text_poke) 4926 atomic_dec(&nr_text_poke_events); 4927 4928 if (dec) { 4929 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4930 schedule_delayed_work(&perf_sched_work, HZ); 4931 } 4932 4933 unaccount_event_cpu(event, event->cpu); 4934 4935 unaccount_pmu_sb_event(event); 4936 } 4937 4938 static void perf_sched_delayed(struct work_struct *work) 4939 { 4940 mutex_lock(&perf_sched_mutex); 4941 if (atomic_dec_and_test(&perf_sched_count)) 4942 static_branch_disable(&perf_sched_events); 4943 mutex_unlock(&perf_sched_mutex); 4944 } 4945 4946 /* 4947 * The following implement mutual exclusion of events on "exclusive" pmus 4948 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4949 * at a time, so we disallow creating events that might conflict, namely: 4950 * 4951 * 1) cpu-wide events in the presence of per-task events, 4952 * 2) per-task events in the presence of cpu-wide events, 4953 * 3) two matching events on the same context. 4954 * 4955 * The former two cases are handled in the allocation path (perf_event_alloc(), 4956 * _free_event()), the latter -- before the first perf_install_in_context(). 4957 */ 4958 static int exclusive_event_init(struct perf_event *event) 4959 { 4960 struct pmu *pmu = event->pmu; 4961 4962 if (!is_exclusive_pmu(pmu)) 4963 return 0; 4964 4965 /* 4966 * Prevent co-existence of per-task and cpu-wide events on the 4967 * same exclusive pmu. 4968 * 4969 * Negative pmu::exclusive_cnt means there are cpu-wide 4970 * events on this "exclusive" pmu, positive means there are 4971 * per-task events. 4972 * 4973 * Since this is called in perf_event_alloc() path, event::ctx 4974 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4975 * to mean "per-task event", because unlike other attach states it 4976 * never gets cleared. 4977 */ 4978 if (event->attach_state & PERF_ATTACH_TASK) { 4979 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4980 return -EBUSY; 4981 } else { 4982 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4983 return -EBUSY; 4984 } 4985 4986 return 0; 4987 } 4988 4989 static void exclusive_event_destroy(struct perf_event *event) 4990 { 4991 struct pmu *pmu = event->pmu; 4992 4993 if (!is_exclusive_pmu(pmu)) 4994 return; 4995 4996 /* see comment in exclusive_event_init() */ 4997 if (event->attach_state & PERF_ATTACH_TASK) 4998 atomic_dec(&pmu->exclusive_cnt); 4999 else 5000 atomic_inc(&pmu->exclusive_cnt); 5001 } 5002 5003 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5004 { 5005 if ((e1->pmu == e2->pmu) && 5006 (e1->cpu == e2->cpu || 5007 e1->cpu == -1 || 5008 e2->cpu == -1)) 5009 return true; 5010 return false; 5011 } 5012 5013 static bool exclusive_event_installable(struct perf_event *event, 5014 struct perf_event_context *ctx) 5015 { 5016 struct perf_event *iter_event; 5017 struct pmu *pmu = event->pmu; 5018 5019 lockdep_assert_held(&ctx->mutex); 5020 5021 if (!is_exclusive_pmu(pmu)) 5022 return true; 5023 5024 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5025 if (exclusive_event_match(iter_event, event)) 5026 return false; 5027 } 5028 5029 return true; 5030 } 5031 5032 static void perf_addr_filters_splice(struct perf_event *event, 5033 struct list_head *head); 5034 5035 static void _free_event(struct perf_event *event) 5036 { 5037 irq_work_sync(&event->pending); 5038 5039 unaccount_event(event); 5040 5041 security_perf_event_free(event); 5042 5043 if (event->rb) { 5044 /* 5045 * Can happen when we close an event with re-directed output. 5046 * 5047 * Since we have a 0 refcount, perf_mmap_close() will skip 5048 * over us; possibly making our ring_buffer_put() the last. 5049 */ 5050 mutex_lock(&event->mmap_mutex); 5051 ring_buffer_attach(event, NULL); 5052 mutex_unlock(&event->mmap_mutex); 5053 } 5054 5055 if (is_cgroup_event(event)) 5056 perf_detach_cgroup(event); 5057 5058 if (!event->parent) { 5059 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5060 put_callchain_buffers(); 5061 } 5062 5063 perf_event_free_bpf_prog(event); 5064 perf_addr_filters_splice(event, NULL); 5065 kfree(event->addr_filter_ranges); 5066 5067 if (event->destroy) 5068 event->destroy(event); 5069 5070 /* 5071 * Must be after ->destroy(), due to uprobe_perf_close() using 5072 * hw.target. 5073 */ 5074 if (event->hw.target) 5075 put_task_struct(event->hw.target); 5076 5077 /* 5078 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5079 * all task references must be cleaned up. 5080 */ 5081 if (event->ctx) 5082 put_ctx(event->ctx); 5083 5084 exclusive_event_destroy(event); 5085 module_put(event->pmu->module); 5086 5087 call_rcu(&event->rcu_head, free_event_rcu); 5088 } 5089 5090 /* 5091 * Used to free events which have a known refcount of 1, such as in error paths 5092 * where the event isn't exposed yet and inherited events. 5093 */ 5094 static void free_event(struct perf_event *event) 5095 { 5096 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5097 "unexpected event refcount: %ld; ptr=%p\n", 5098 atomic_long_read(&event->refcount), event)) { 5099 /* leak to avoid use-after-free */ 5100 return; 5101 } 5102 5103 _free_event(event); 5104 } 5105 5106 /* 5107 * Remove user event from the owner task. 5108 */ 5109 static void perf_remove_from_owner(struct perf_event *event) 5110 { 5111 struct task_struct *owner; 5112 5113 rcu_read_lock(); 5114 /* 5115 * Matches the smp_store_release() in perf_event_exit_task(). If we 5116 * observe !owner it means the list deletion is complete and we can 5117 * indeed free this event, otherwise we need to serialize on 5118 * owner->perf_event_mutex. 5119 */ 5120 owner = READ_ONCE(event->owner); 5121 if (owner) { 5122 /* 5123 * Since delayed_put_task_struct() also drops the last 5124 * task reference we can safely take a new reference 5125 * while holding the rcu_read_lock(). 5126 */ 5127 get_task_struct(owner); 5128 } 5129 rcu_read_unlock(); 5130 5131 if (owner) { 5132 /* 5133 * If we're here through perf_event_exit_task() we're already 5134 * holding ctx->mutex which would be an inversion wrt. the 5135 * normal lock order. 5136 * 5137 * However we can safely take this lock because its the child 5138 * ctx->mutex. 5139 */ 5140 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5141 5142 /* 5143 * We have to re-check the event->owner field, if it is cleared 5144 * we raced with perf_event_exit_task(), acquiring the mutex 5145 * ensured they're done, and we can proceed with freeing the 5146 * event. 5147 */ 5148 if (event->owner) { 5149 list_del_init(&event->owner_entry); 5150 smp_store_release(&event->owner, NULL); 5151 } 5152 mutex_unlock(&owner->perf_event_mutex); 5153 put_task_struct(owner); 5154 } 5155 } 5156 5157 static void put_event(struct perf_event *event) 5158 { 5159 if (!atomic_long_dec_and_test(&event->refcount)) 5160 return; 5161 5162 _free_event(event); 5163 } 5164 5165 /* 5166 * Kill an event dead; while event:refcount will preserve the event 5167 * object, it will not preserve its functionality. Once the last 'user' 5168 * gives up the object, we'll destroy the thing. 5169 */ 5170 int perf_event_release_kernel(struct perf_event *event) 5171 { 5172 struct perf_event_context *ctx = event->ctx; 5173 struct perf_event *child, *tmp; 5174 LIST_HEAD(free_list); 5175 5176 /* 5177 * If we got here through err_file: fput(event_file); we will not have 5178 * attached to a context yet. 5179 */ 5180 if (!ctx) { 5181 WARN_ON_ONCE(event->attach_state & 5182 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5183 goto no_ctx; 5184 } 5185 5186 if (!is_kernel_event(event)) 5187 perf_remove_from_owner(event); 5188 5189 ctx = perf_event_ctx_lock(event); 5190 WARN_ON_ONCE(ctx->parent_ctx); 5191 perf_remove_from_context(event, DETACH_GROUP); 5192 5193 raw_spin_lock_irq(&ctx->lock); 5194 /* 5195 * Mark this event as STATE_DEAD, there is no external reference to it 5196 * anymore. 5197 * 5198 * Anybody acquiring event->child_mutex after the below loop _must_ 5199 * also see this, most importantly inherit_event() which will avoid 5200 * placing more children on the list. 5201 * 5202 * Thus this guarantees that we will in fact observe and kill _ALL_ 5203 * child events. 5204 */ 5205 event->state = PERF_EVENT_STATE_DEAD; 5206 raw_spin_unlock_irq(&ctx->lock); 5207 5208 perf_event_ctx_unlock(event, ctx); 5209 5210 again: 5211 mutex_lock(&event->child_mutex); 5212 list_for_each_entry(child, &event->child_list, child_list) { 5213 5214 /* 5215 * Cannot change, child events are not migrated, see the 5216 * comment with perf_event_ctx_lock_nested(). 5217 */ 5218 ctx = READ_ONCE(child->ctx); 5219 /* 5220 * Since child_mutex nests inside ctx::mutex, we must jump 5221 * through hoops. We start by grabbing a reference on the ctx. 5222 * 5223 * Since the event cannot get freed while we hold the 5224 * child_mutex, the context must also exist and have a !0 5225 * reference count. 5226 */ 5227 get_ctx(ctx); 5228 5229 /* 5230 * Now that we have a ctx ref, we can drop child_mutex, and 5231 * acquire ctx::mutex without fear of it going away. Then we 5232 * can re-acquire child_mutex. 5233 */ 5234 mutex_unlock(&event->child_mutex); 5235 mutex_lock(&ctx->mutex); 5236 mutex_lock(&event->child_mutex); 5237 5238 /* 5239 * Now that we hold ctx::mutex and child_mutex, revalidate our 5240 * state, if child is still the first entry, it didn't get freed 5241 * and we can continue doing so. 5242 */ 5243 tmp = list_first_entry_or_null(&event->child_list, 5244 struct perf_event, child_list); 5245 if (tmp == child) { 5246 perf_remove_from_context(child, DETACH_GROUP); 5247 list_move(&child->child_list, &free_list); 5248 /* 5249 * This matches the refcount bump in inherit_event(); 5250 * this can't be the last reference. 5251 */ 5252 put_event(event); 5253 } 5254 5255 mutex_unlock(&event->child_mutex); 5256 mutex_unlock(&ctx->mutex); 5257 put_ctx(ctx); 5258 goto again; 5259 } 5260 mutex_unlock(&event->child_mutex); 5261 5262 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5263 void *var = &child->ctx->refcount; 5264 5265 list_del(&child->child_list); 5266 free_event(child); 5267 5268 /* 5269 * Wake any perf_event_free_task() waiting for this event to be 5270 * freed. 5271 */ 5272 smp_mb(); /* pairs with wait_var_event() */ 5273 wake_up_var(var); 5274 } 5275 5276 no_ctx: 5277 put_event(event); /* Must be the 'last' reference */ 5278 return 0; 5279 } 5280 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5281 5282 /* 5283 * Called when the last reference to the file is gone. 5284 */ 5285 static int perf_release(struct inode *inode, struct file *file) 5286 { 5287 perf_event_release_kernel(file->private_data); 5288 return 0; 5289 } 5290 5291 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5292 { 5293 struct perf_event *child; 5294 u64 total = 0; 5295 5296 *enabled = 0; 5297 *running = 0; 5298 5299 mutex_lock(&event->child_mutex); 5300 5301 (void)perf_event_read(event, false); 5302 total += perf_event_count(event); 5303 5304 *enabled += event->total_time_enabled + 5305 atomic64_read(&event->child_total_time_enabled); 5306 *running += event->total_time_running + 5307 atomic64_read(&event->child_total_time_running); 5308 5309 list_for_each_entry(child, &event->child_list, child_list) { 5310 (void)perf_event_read(child, false); 5311 total += perf_event_count(child); 5312 *enabled += child->total_time_enabled; 5313 *running += child->total_time_running; 5314 } 5315 mutex_unlock(&event->child_mutex); 5316 5317 return total; 5318 } 5319 5320 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5321 { 5322 struct perf_event_context *ctx; 5323 u64 count; 5324 5325 ctx = perf_event_ctx_lock(event); 5326 count = __perf_event_read_value(event, enabled, running); 5327 perf_event_ctx_unlock(event, ctx); 5328 5329 return count; 5330 } 5331 EXPORT_SYMBOL_GPL(perf_event_read_value); 5332 5333 static int __perf_read_group_add(struct perf_event *leader, 5334 u64 read_format, u64 *values) 5335 { 5336 struct perf_event_context *ctx = leader->ctx; 5337 struct perf_event *sub; 5338 unsigned long flags; 5339 int n = 1; /* skip @nr */ 5340 int ret; 5341 5342 ret = perf_event_read(leader, true); 5343 if (ret) 5344 return ret; 5345 5346 raw_spin_lock_irqsave(&ctx->lock, flags); 5347 5348 /* 5349 * Since we co-schedule groups, {enabled,running} times of siblings 5350 * will be identical to those of the leader, so we only publish one 5351 * set. 5352 */ 5353 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5354 values[n++] += leader->total_time_enabled + 5355 atomic64_read(&leader->child_total_time_enabled); 5356 } 5357 5358 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5359 values[n++] += leader->total_time_running + 5360 atomic64_read(&leader->child_total_time_running); 5361 } 5362 5363 /* 5364 * Write {count,id} tuples for every sibling. 5365 */ 5366 values[n++] += perf_event_count(leader); 5367 if (read_format & PERF_FORMAT_ID) 5368 values[n++] = primary_event_id(leader); 5369 5370 for_each_sibling_event(sub, leader) { 5371 values[n++] += perf_event_count(sub); 5372 if (read_format & PERF_FORMAT_ID) 5373 values[n++] = primary_event_id(sub); 5374 } 5375 5376 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5377 return 0; 5378 } 5379 5380 static int perf_read_group(struct perf_event *event, 5381 u64 read_format, char __user *buf) 5382 { 5383 struct perf_event *leader = event->group_leader, *child; 5384 struct perf_event_context *ctx = leader->ctx; 5385 int ret; 5386 u64 *values; 5387 5388 lockdep_assert_held(&ctx->mutex); 5389 5390 values = kzalloc(event->read_size, GFP_KERNEL); 5391 if (!values) 5392 return -ENOMEM; 5393 5394 values[0] = 1 + leader->nr_siblings; 5395 5396 /* 5397 * By locking the child_mutex of the leader we effectively 5398 * lock the child list of all siblings.. XXX explain how. 5399 */ 5400 mutex_lock(&leader->child_mutex); 5401 5402 ret = __perf_read_group_add(leader, read_format, values); 5403 if (ret) 5404 goto unlock; 5405 5406 list_for_each_entry(child, &leader->child_list, child_list) { 5407 ret = __perf_read_group_add(child, read_format, values); 5408 if (ret) 5409 goto unlock; 5410 } 5411 5412 mutex_unlock(&leader->child_mutex); 5413 5414 ret = event->read_size; 5415 if (copy_to_user(buf, values, event->read_size)) 5416 ret = -EFAULT; 5417 goto out; 5418 5419 unlock: 5420 mutex_unlock(&leader->child_mutex); 5421 out: 5422 kfree(values); 5423 return ret; 5424 } 5425 5426 static int perf_read_one(struct perf_event *event, 5427 u64 read_format, char __user *buf) 5428 { 5429 u64 enabled, running; 5430 u64 values[4]; 5431 int n = 0; 5432 5433 values[n++] = __perf_event_read_value(event, &enabled, &running); 5434 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5435 values[n++] = enabled; 5436 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5437 values[n++] = running; 5438 if (read_format & PERF_FORMAT_ID) 5439 values[n++] = primary_event_id(event); 5440 5441 if (copy_to_user(buf, values, n * sizeof(u64))) 5442 return -EFAULT; 5443 5444 return n * sizeof(u64); 5445 } 5446 5447 static bool is_event_hup(struct perf_event *event) 5448 { 5449 bool no_children; 5450 5451 if (event->state > PERF_EVENT_STATE_EXIT) 5452 return false; 5453 5454 mutex_lock(&event->child_mutex); 5455 no_children = list_empty(&event->child_list); 5456 mutex_unlock(&event->child_mutex); 5457 return no_children; 5458 } 5459 5460 /* 5461 * Read the performance event - simple non blocking version for now 5462 */ 5463 static ssize_t 5464 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5465 { 5466 u64 read_format = event->attr.read_format; 5467 int ret; 5468 5469 /* 5470 * Return end-of-file for a read on an event that is in 5471 * error state (i.e. because it was pinned but it couldn't be 5472 * scheduled on to the CPU at some point). 5473 */ 5474 if (event->state == PERF_EVENT_STATE_ERROR) 5475 return 0; 5476 5477 if (count < event->read_size) 5478 return -ENOSPC; 5479 5480 WARN_ON_ONCE(event->ctx->parent_ctx); 5481 if (read_format & PERF_FORMAT_GROUP) 5482 ret = perf_read_group(event, read_format, buf); 5483 else 5484 ret = perf_read_one(event, read_format, buf); 5485 5486 return ret; 5487 } 5488 5489 static ssize_t 5490 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5491 { 5492 struct perf_event *event = file->private_data; 5493 struct perf_event_context *ctx; 5494 int ret; 5495 5496 ret = security_perf_event_read(event); 5497 if (ret) 5498 return ret; 5499 5500 ctx = perf_event_ctx_lock(event); 5501 ret = __perf_read(event, buf, count); 5502 perf_event_ctx_unlock(event, ctx); 5503 5504 return ret; 5505 } 5506 5507 static __poll_t perf_poll(struct file *file, poll_table *wait) 5508 { 5509 struct perf_event *event = file->private_data; 5510 struct perf_buffer *rb; 5511 __poll_t events = EPOLLHUP; 5512 5513 poll_wait(file, &event->waitq, wait); 5514 5515 if (is_event_hup(event)) 5516 return events; 5517 5518 /* 5519 * Pin the event->rb by taking event->mmap_mutex; otherwise 5520 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5521 */ 5522 mutex_lock(&event->mmap_mutex); 5523 rb = event->rb; 5524 if (rb) 5525 events = atomic_xchg(&rb->poll, 0); 5526 mutex_unlock(&event->mmap_mutex); 5527 return events; 5528 } 5529 5530 static void _perf_event_reset(struct perf_event *event) 5531 { 5532 (void)perf_event_read(event, false); 5533 local64_set(&event->count, 0); 5534 perf_event_update_userpage(event); 5535 } 5536 5537 /* Assume it's not an event with inherit set. */ 5538 u64 perf_event_pause(struct perf_event *event, bool reset) 5539 { 5540 struct perf_event_context *ctx; 5541 u64 count; 5542 5543 ctx = perf_event_ctx_lock(event); 5544 WARN_ON_ONCE(event->attr.inherit); 5545 _perf_event_disable(event); 5546 count = local64_read(&event->count); 5547 if (reset) 5548 local64_set(&event->count, 0); 5549 perf_event_ctx_unlock(event, ctx); 5550 5551 return count; 5552 } 5553 EXPORT_SYMBOL_GPL(perf_event_pause); 5554 5555 /* 5556 * Holding the top-level event's child_mutex means that any 5557 * descendant process that has inherited this event will block 5558 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5559 * task existence requirements of perf_event_enable/disable. 5560 */ 5561 static void perf_event_for_each_child(struct perf_event *event, 5562 void (*func)(struct perf_event *)) 5563 { 5564 struct perf_event *child; 5565 5566 WARN_ON_ONCE(event->ctx->parent_ctx); 5567 5568 mutex_lock(&event->child_mutex); 5569 func(event); 5570 list_for_each_entry(child, &event->child_list, child_list) 5571 func(child); 5572 mutex_unlock(&event->child_mutex); 5573 } 5574 5575 static void perf_event_for_each(struct perf_event *event, 5576 void (*func)(struct perf_event *)) 5577 { 5578 struct perf_event_context *ctx = event->ctx; 5579 struct perf_event *sibling; 5580 5581 lockdep_assert_held(&ctx->mutex); 5582 5583 event = event->group_leader; 5584 5585 perf_event_for_each_child(event, func); 5586 for_each_sibling_event(sibling, event) 5587 perf_event_for_each_child(sibling, func); 5588 } 5589 5590 static void __perf_event_period(struct perf_event *event, 5591 struct perf_cpu_context *cpuctx, 5592 struct perf_event_context *ctx, 5593 void *info) 5594 { 5595 u64 value = *((u64 *)info); 5596 bool active; 5597 5598 if (event->attr.freq) { 5599 event->attr.sample_freq = value; 5600 } else { 5601 event->attr.sample_period = value; 5602 event->hw.sample_period = value; 5603 } 5604 5605 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5606 if (active) { 5607 perf_pmu_disable(ctx->pmu); 5608 /* 5609 * We could be throttled; unthrottle now to avoid the tick 5610 * trying to unthrottle while we already re-started the event. 5611 */ 5612 if (event->hw.interrupts == MAX_INTERRUPTS) { 5613 event->hw.interrupts = 0; 5614 perf_log_throttle(event, 1); 5615 } 5616 event->pmu->stop(event, PERF_EF_UPDATE); 5617 } 5618 5619 local64_set(&event->hw.period_left, 0); 5620 5621 if (active) { 5622 event->pmu->start(event, PERF_EF_RELOAD); 5623 perf_pmu_enable(ctx->pmu); 5624 } 5625 } 5626 5627 static int perf_event_check_period(struct perf_event *event, u64 value) 5628 { 5629 return event->pmu->check_period(event, value); 5630 } 5631 5632 static int _perf_event_period(struct perf_event *event, u64 value) 5633 { 5634 if (!is_sampling_event(event)) 5635 return -EINVAL; 5636 5637 if (!value) 5638 return -EINVAL; 5639 5640 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5641 return -EINVAL; 5642 5643 if (perf_event_check_period(event, value)) 5644 return -EINVAL; 5645 5646 if (!event->attr.freq && (value & (1ULL << 63))) 5647 return -EINVAL; 5648 5649 event_function_call(event, __perf_event_period, &value); 5650 5651 return 0; 5652 } 5653 5654 int perf_event_period(struct perf_event *event, u64 value) 5655 { 5656 struct perf_event_context *ctx; 5657 int ret; 5658 5659 ctx = perf_event_ctx_lock(event); 5660 ret = _perf_event_period(event, value); 5661 perf_event_ctx_unlock(event, ctx); 5662 5663 return ret; 5664 } 5665 EXPORT_SYMBOL_GPL(perf_event_period); 5666 5667 static const struct file_operations perf_fops; 5668 5669 static inline int perf_fget_light(int fd, struct fd *p) 5670 { 5671 struct fd f = fdget(fd); 5672 if (!f.file) 5673 return -EBADF; 5674 5675 if (f.file->f_op != &perf_fops) { 5676 fdput(f); 5677 return -EBADF; 5678 } 5679 *p = f; 5680 return 0; 5681 } 5682 5683 static int perf_event_set_output(struct perf_event *event, 5684 struct perf_event *output_event); 5685 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5686 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5687 struct perf_event_attr *attr); 5688 5689 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5690 { 5691 void (*func)(struct perf_event *); 5692 u32 flags = arg; 5693 5694 switch (cmd) { 5695 case PERF_EVENT_IOC_ENABLE: 5696 func = _perf_event_enable; 5697 break; 5698 case PERF_EVENT_IOC_DISABLE: 5699 func = _perf_event_disable; 5700 break; 5701 case PERF_EVENT_IOC_RESET: 5702 func = _perf_event_reset; 5703 break; 5704 5705 case PERF_EVENT_IOC_REFRESH: 5706 return _perf_event_refresh(event, arg); 5707 5708 case PERF_EVENT_IOC_PERIOD: 5709 { 5710 u64 value; 5711 5712 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5713 return -EFAULT; 5714 5715 return _perf_event_period(event, value); 5716 } 5717 case PERF_EVENT_IOC_ID: 5718 { 5719 u64 id = primary_event_id(event); 5720 5721 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5722 return -EFAULT; 5723 return 0; 5724 } 5725 5726 case PERF_EVENT_IOC_SET_OUTPUT: 5727 { 5728 int ret; 5729 if (arg != -1) { 5730 struct perf_event *output_event; 5731 struct fd output; 5732 ret = perf_fget_light(arg, &output); 5733 if (ret) 5734 return ret; 5735 output_event = output.file->private_data; 5736 ret = perf_event_set_output(event, output_event); 5737 fdput(output); 5738 } else { 5739 ret = perf_event_set_output(event, NULL); 5740 } 5741 return ret; 5742 } 5743 5744 case PERF_EVENT_IOC_SET_FILTER: 5745 return perf_event_set_filter(event, (void __user *)arg); 5746 5747 case PERF_EVENT_IOC_SET_BPF: 5748 { 5749 struct bpf_prog *prog; 5750 int err; 5751 5752 prog = bpf_prog_get(arg); 5753 if (IS_ERR(prog)) 5754 return PTR_ERR(prog); 5755 5756 err = perf_event_set_bpf_prog(event, prog, 0); 5757 if (err) { 5758 bpf_prog_put(prog); 5759 return err; 5760 } 5761 5762 return 0; 5763 } 5764 5765 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5766 struct perf_buffer *rb; 5767 5768 rcu_read_lock(); 5769 rb = rcu_dereference(event->rb); 5770 if (!rb || !rb->nr_pages) { 5771 rcu_read_unlock(); 5772 return -EINVAL; 5773 } 5774 rb_toggle_paused(rb, !!arg); 5775 rcu_read_unlock(); 5776 return 0; 5777 } 5778 5779 case PERF_EVENT_IOC_QUERY_BPF: 5780 return perf_event_query_prog_array(event, (void __user *)arg); 5781 5782 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5783 struct perf_event_attr new_attr; 5784 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5785 &new_attr); 5786 5787 if (err) 5788 return err; 5789 5790 return perf_event_modify_attr(event, &new_attr); 5791 } 5792 default: 5793 return -ENOTTY; 5794 } 5795 5796 if (flags & PERF_IOC_FLAG_GROUP) 5797 perf_event_for_each(event, func); 5798 else 5799 perf_event_for_each_child(event, func); 5800 5801 return 0; 5802 } 5803 5804 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5805 { 5806 struct perf_event *event = file->private_data; 5807 struct perf_event_context *ctx; 5808 long ret; 5809 5810 /* Treat ioctl like writes as it is likely a mutating operation. */ 5811 ret = security_perf_event_write(event); 5812 if (ret) 5813 return ret; 5814 5815 ctx = perf_event_ctx_lock(event); 5816 ret = _perf_ioctl(event, cmd, arg); 5817 perf_event_ctx_unlock(event, ctx); 5818 5819 return ret; 5820 } 5821 5822 #ifdef CONFIG_COMPAT 5823 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5824 unsigned long arg) 5825 { 5826 switch (_IOC_NR(cmd)) { 5827 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5828 case _IOC_NR(PERF_EVENT_IOC_ID): 5829 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5830 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5831 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5832 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5833 cmd &= ~IOCSIZE_MASK; 5834 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5835 } 5836 break; 5837 } 5838 return perf_ioctl(file, cmd, arg); 5839 } 5840 #else 5841 # define perf_compat_ioctl NULL 5842 #endif 5843 5844 int perf_event_task_enable(void) 5845 { 5846 struct perf_event_context *ctx; 5847 struct perf_event *event; 5848 5849 mutex_lock(¤t->perf_event_mutex); 5850 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5851 ctx = perf_event_ctx_lock(event); 5852 perf_event_for_each_child(event, _perf_event_enable); 5853 perf_event_ctx_unlock(event, ctx); 5854 } 5855 mutex_unlock(¤t->perf_event_mutex); 5856 5857 return 0; 5858 } 5859 5860 int perf_event_task_disable(void) 5861 { 5862 struct perf_event_context *ctx; 5863 struct perf_event *event; 5864 5865 mutex_lock(¤t->perf_event_mutex); 5866 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5867 ctx = perf_event_ctx_lock(event); 5868 perf_event_for_each_child(event, _perf_event_disable); 5869 perf_event_ctx_unlock(event, ctx); 5870 } 5871 mutex_unlock(¤t->perf_event_mutex); 5872 5873 return 0; 5874 } 5875 5876 static int perf_event_index(struct perf_event *event) 5877 { 5878 if (event->hw.state & PERF_HES_STOPPED) 5879 return 0; 5880 5881 if (event->state != PERF_EVENT_STATE_ACTIVE) 5882 return 0; 5883 5884 return event->pmu->event_idx(event); 5885 } 5886 5887 static void perf_event_init_userpage(struct perf_event *event) 5888 { 5889 struct perf_event_mmap_page *userpg; 5890 struct perf_buffer *rb; 5891 5892 rcu_read_lock(); 5893 rb = rcu_dereference(event->rb); 5894 if (!rb) 5895 goto unlock; 5896 5897 userpg = rb->user_page; 5898 5899 /* Allow new userspace to detect that bit 0 is deprecated */ 5900 userpg->cap_bit0_is_deprecated = 1; 5901 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5902 userpg->data_offset = PAGE_SIZE; 5903 userpg->data_size = perf_data_size(rb); 5904 5905 unlock: 5906 rcu_read_unlock(); 5907 } 5908 5909 void __weak arch_perf_update_userpage( 5910 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5911 { 5912 } 5913 5914 /* 5915 * Callers need to ensure there can be no nesting of this function, otherwise 5916 * the seqlock logic goes bad. We can not serialize this because the arch 5917 * code calls this from NMI context. 5918 */ 5919 void perf_event_update_userpage(struct perf_event *event) 5920 { 5921 struct perf_event_mmap_page *userpg; 5922 struct perf_buffer *rb; 5923 u64 enabled, running, now; 5924 5925 rcu_read_lock(); 5926 rb = rcu_dereference(event->rb); 5927 if (!rb) 5928 goto unlock; 5929 5930 /* 5931 * compute total_time_enabled, total_time_running 5932 * based on snapshot values taken when the event 5933 * was last scheduled in. 5934 * 5935 * we cannot simply called update_context_time() 5936 * because of locking issue as we can be called in 5937 * NMI context 5938 */ 5939 calc_timer_values(event, &now, &enabled, &running); 5940 5941 userpg = rb->user_page; 5942 /* 5943 * Disable preemption to guarantee consistent time stamps are stored to 5944 * the user page. 5945 */ 5946 preempt_disable(); 5947 ++userpg->lock; 5948 barrier(); 5949 userpg->index = perf_event_index(event); 5950 userpg->offset = perf_event_count(event); 5951 if (userpg->index) 5952 userpg->offset -= local64_read(&event->hw.prev_count); 5953 5954 userpg->time_enabled = enabled + 5955 atomic64_read(&event->child_total_time_enabled); 5956 5957 userpg->time_running = running + 5958 atomic64_read(&event->child_total_time_running); 5959 5960 arch_perf_update_userpage(event, userpg, now); 5961 5962 barrier(); 5963 ++userpg->lock; 5964 preempt_enable(); 5965 unlock: 5966 rcu_read_unlock(); 5967 } 5968 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5969 5970 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5971 { 5972 struct perf_event *event = vmf->vma->vm_file->private_data; 5973 struct perf_buffer *rb; 5974 vm_fault_t ret = VM_FAULT_SIGBUS; 5975 5976 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5977 if (vmf->pgoff == 0) 5978 ret = 0; 5979 return ret; 5980 } 5981 5982 rcu_read_lock(); 5983 rb = rcu_dereference(event->rb); 5984 if (!rb) 5985 goto unlock; 5986 5987 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5988 goto unlock; 5989 5990 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5991 if (!vmf->page) 5992 goto unlock; 5993 5994 get_page(vmf->page); 5995 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5996 vmf->page->index = vmf->pgoff; 5997 5998 ret = 0; 5999 unlock: 6000 rcu_read_unlock(); 6001 6002 return ret; 6003 } 6004 6005 static void ring_buffer_attach(struct perf_event *event, 6006 struct perf_buffer *rb) 6007 { 6008 struct perf_buffer *old_rb = NULL; 6009 unsigned long flags; 6010 6011 WARN_ON_ONCE(event->parent); 6012 6013 if (event->rb) { 6014 /* 6015 * Should be impossible, we set this when removing 6016 * event->rb_entry and wait/clear when adding event->rb_entry. 6017 */ 6018 WARN_ON_ONCE(event->rcu_pending); 6019 6020 old_rb = event->rb; 6021 spin_lock_irqsave(&old_rb->event_lock, flags); 6022 list_del_rcu(&event->rb_entry); 6023 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6024 6025 event->rcu_batches = get_state_synchronize_rcu(); 6026 event->rcu_pending = 1; 6027 } 6028 6029 if (rb) { 6030 if (event->rcu_pending) { 6031 cond_synchronize_rcu(event->rcu_batches); 6032 event->rcu_pending = 0; 6033 } 6034 6035 spin_lock_irqsave(&rb->event_lock, flags); 6036 list_add_rcu(&event->rb_entry, &rb->event_list); 6037 spin_unlock_irqrestore(&rb->event_lock, flags); 6038 } 6039 6040 /* 6041 * Avoid racing with perf_mmap_close(AUX): stop the event 6042 * before swizzling the event::rb pointer; if it's getting 6043 * unmapped, its aux_mmap_count will be 0 and it won't 6044 * restart. See the comment in __perf_pmu_output_stop(). 6045 * 6046 * Data will inevitably be lost when set_output is done in 6047 * mid-air, but then again, whoever does it like this is 6048 * not in for the data anyway. 6049 */ 6050 if (has_aux(event)) 6051 perf_event_stop(event, 0); 6052 6053 rcu_assign_pointer(event->rb, rb); 6054 6055 if (old_rb) { 6056 ring_buffer_put(old_rb); 6057 /* 6058 * Since we detached before setting the new rb, so that we 6059 * could attach the new rb, we could have missed a wakeup. 6060 * Provide it now. 6061 */ 6062 wake_up_all(&event->waitq); 6063 } 6064 } 6065 6066 static void ring_buffer_wakeup(struct perf_event *event) 6067 { 6068 struct perf_buffer *rb; 6069 6070 if (event->parent) 6071 event = event->parent; 6072 6073 rcu_read_lock(); 6074 rb = rcu_dereference(event->rb); 6075 if (rb) { 6076 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6077 wake_up_all(&event->waitq); 6078 } 6079 rcu_read_unlock(); 6080 } 6081 6082 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6083 { 6084 struct perf_buffer *rb; 6085 6086 if (event->parent) 6087 event = event->parent; 6088 6089 rcu_read_lock(); 6090 rb = rcu_dereference(event->rb); 6091 if (rb) { 6092 if (!refcount_inc_not_zero(&rb->refcount)) 6093 rb = NULL; 6094 } 6095 rcu_read_unlock(); 6096 6097 return rb; 6098 } 6099 6100 void ring_buffer_put(struct perf_buffer *rb) 6101 { 6102 if (!refcount_dec_and_test(&rb->refcount)) 6103 return; 6104 6105 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6106 6107 call_rcu(&rb->rcu_head, rb_free_rcu); 6108 } 6109 6110 static void perf_mmap_open(struct vm_area_struct *vma) 6111 { 6112 struct perf_event *event = vma->vm_file->private_data; 6113 6114 atomic_inc(&event->mmap_count); 6115 atomic_inc(&event->rb->mmap_count); 6116 6117 if (vma->vm_pgoff) 6118 atomic_inc(&event->rb->aux_mmap_count); 6119 6120 if (event->pmu->event_mapped) 6121 event->pmu->event_mapped(event, vma->vm_mm); 6122 } 6123 6124 static void perf_pmu_output_stop(struct perf_event *event); 6125 6126 /* 6127 * A buffer can be mmap()ed multiple times; either directly through the same 6128 * event, or through other events by use of perf_event_set_output(). 6129 * 6130 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6131 * the buffer here, where we still have a VM context. This means we need 6132 * to detach all events redirecting to us. 6133 */ 6134 static void perf_mmap_close(struct vm_area_struct *vma) 6135 { 6136 struct perf_event *event = vma->vm_file->private_data; 6137 struct perf_buffer *rb = ring_buffer_get(event); 6138 struct user_struct *mmap_user = rb->mmap_user; 6139 int mmap_locked = rb->mmap_locked; 6140 unsigned long size = perf_data_size(rb); 6141 bool detach_rest = false; 6142 6143 if (event->pmu->event_unmapped) 6144 event->pmu->event_unmapped(event, vma->vm_mm); 6145 6146 /* 6147 * rb->aux_mmap_count will always drop before rb->mmap_count and 6148 * event->mmap_count, so it is ok to use event->mmap_mutex to 6149 * serialize with perf_mmap here. 6150 */ 6151 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6152 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6153 /* 6154 * Stop all AUX events that are writing to this buffer, 6155 * so that we can free its AUX pages and corresponding PMU 6156 * data. Note that after rb::aux_mmap_count dropped to zero, 6157 * they won't start any more (see perf_aux_output_begin()). 6158 */ 6159 perf_pmu_output_stop(event); 6160 6161 /* now it's safe to free the pages */ 6162 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6163 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6164 6165 /* this has to be the last one */ 6166 rb_free_aux(rb); 6167 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6168 6169 mutex_unlock(&event->mmap_mutex); 6170 } 6171 6172 if (atomic_dec_and_test(&rb->mmap_count)) 6173 detach_rest = true; 6174 6175 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6176 goto out_put; 6177 6178 ring_buffer_attach(event, NULL); 6179 mutex_unlock(&event->mmap_mutex); 6180 6181 /* If there's still other mmap()s of this buffer, we're done. */ 6182 if (!detach_rest) 6183 goto out_put; 6184 6185 /* 6186 * No other mmap()s, detach from all other events that might redirect 6187 * into the now unreachable buffer. Somewhat complicated by the 6188 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6189 */ 6190 again: 6191 rcu_read_lock(); 6192 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6193 if (!atomic_long_inc_not_zero(&event->refcount)) { 6194 /* 6195 * This event is en-route to free_event() which will 6196 * detach it and remove it from the list. 6197 */ 6198 continue; 6199 } 6200 rcu_read_unlock(); 6201 6202 mutex_lock(&event->mmap_mutex); 6203 /* 6204 * Check we didn't race with perf_event_set_output() which can 6205 * swizzle the rb from under us while we were waiting to 6206 * acquire mmap_mutex. 6207 * 6208 * If we find a different rb; ignore this event, a next 6209 * iteration will no longer find it on the list. We have to 6210 * still restart the iteration to make sure we're not now 6211 * iterating the wrong list. 6212 */ 6213 if (event->rb == rb) 6214 ring_buffer_attach(event, NULL); 6215 6216 mutex_unlock(&event->mmap_mutex); 6217 put_event(event); 6218 6219 /* 6220 * Restart the iteration; either we're on the wrong list or 6221 * destroyed its integrity by doing a deletion. 6222 */ 6223 goto again; 6224 } 6225 rcu_read_unlock(); 6226 6227 /* 6228 * It could be there's still a few 0-ref events on the list; they'll 6229 * get cleaned up by free_event() -- they'll also still have their 6230 * ref on the rb and will free it whenever they are done with it. 6231 * 6232 * Aside from that, this buffer is 'fully' detached and unmapped, 6233 * undo the VM accounting. 6234 */ 6235 6236 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6237 &mmap_user->locked_vm); 6238 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6239 free_uid(mmap_user); 6240 6241 out_put: 6242 ring_buffer_put(rb); /* could be last */ 6243 } 6244 6245 static const struct vm_operations_struct perf_mmap_vmops = { 6246 .open = perf_mmap_open, 6247 .close = perf_mmap_close, /* non mergeable */ 6248 .fault = perf_mmap_fault, 6249 .page_mkwrite = perf_mmap_fault, 6250 }; 6251 6252 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6253 { 6254 struct perf_event *event = file->private_data; 6255 unsigned long user_locked, user_lock_limit; 6256 struct user_struct *user = current_user(); 6257 struct perf_buffer *rb = NULL; 6258 unsigned long locked, lock_limit; 6259 unsigned long vma_size; 6260 unsigned long nr_pages; 6261 long user_extra = 0, extra = 0; 6262 int ret = 0, flags = 0; 6263 6264 /* 6265 * Don't allow mmap() of inherited per-task counters. This would 6266 * create a performance issue due to all children writing to the 6267 * same rb. 6268 */ 6269 if (event->cpu == -1 && event->attr.inherit) 6270 return -EINVAL; 6271 6272 if (!(vma->vm_flags & VM_SHARED)) 6273 return -EINVAL; 6274 6275 ret = security_perf_event_read(event); 6276 if (ret) 6277 return ret; 6278 6279 vma_size = vma->vm_end - vma->vm_start; 6280 6281 if (vma->vm_pgoff == 0) { 6282 nr_pages = (vma_size / PAGE_SIZE) - 1; 6283 } else { 6284 /* 6285 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6286 * mapped, all subsequent mappings should have the same size 6287 * and offset. Must be above the normal perf buffer. 6288 */ 6289 u64 aux_offset, aux_size; 6290 6291 if (!event->rb) 6292 return -EINVAL; 6293 6294 nr_pages = vma_size / PAGE_SIZE; 6295 6296 mutex_lock(&event->mmap_mutex); 6297 ret = -EINVAL; 6298 6299 rb = event->rb; 6300 if (!rb) 6301 goto aux_unlock; 6302 6303 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6304 aux_size = READ_ONCE(rb->user_page->aux_size); 6305 6306 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6307 goto aux_unlock; 6308 6309 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6310 goto aux_unlock; 6311 6312 /* already mapped with a different offset */ 6313 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6314 goto aux_unlock; 6315 6316 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6317 goto aux_unlock; 6318 6319 /* already mapped with a different size */ 6320 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6321 goto aux_unlock; 6322 6323 if (!is_power_of_2(nr_pages)) 6324 goto aux_unlock; 6325 6326 if (!atomic_inc_not_zero(&rb->mmap_count)) 6327 goto aux_unlock; 6328 6329 if (rb_has_aux(rb)) { 6330 atomic_inc(&rb->aux_mmap_count); 6331 ret = 0; 6332 goto unlock; 6333 } 6334 6335 atomic_set(&rb->aux_mmap_count, 1); 6336 user_extra = nr_pages; 6337 6338 goto accounting; 6339 } 6340 6341 /* 6342 * If we have rb pages ensure they're a power-of-two number, so we 6343 * can do bitmasks instead of modulo. 6344 */ 6345 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6346 return -EINVAL; 6347 6348 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6349 return -EINVAL; 6350 6351 WARN_ON_ONCE(event->ctx->parent_ctx); 6352 again: 6353 mutex_lock(&event->mmap_mutex); 6354 if (event->rb) { 6355 if (event->rb->nr_pages != nr_pages) { 6356 ret = -EINVAL; 6357 goto unlock; 6358 } 6359 6360 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6361 /* 6362 * Raced against perf_mmap_close() through 6363 * perf_event_set_output(). Try again, hope for better 6364 * luck. 6365 */ 6366 mutex_unlock(&event->mmap_mutex); 6367 goto again; 6368 } 6369 6370 goto unlock; 6371 } 6372 6373 user_extra = nr_pages + 1; 6374 6375 accounting: 6376 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6377 6378 /* 6379 * Increase the limit linearly with more CPUs: 6380 */ 6381 user_lock_limit *= num_online_cpus(); 6382 6383 user_locked = atomic_long_read(&user->locked_vm); 6384 6385 /* 6386 * sysctl_perf_event_mlock may have changed, so that 6387 * user->locked_vm > user_lock_limit 6388 */ 6389 if (user_locked > user_lock_limit) 6390 user_locked = user_lock_limit; 6391 user_locked += user_extra; 6392 6393 if (user_locked > user_lock_limit) { 6394 /* 6395 * charge locked_vm until it hits user_lock_limit; 6396 * charge the rest from pinned_vm 6397 */ 6398 extra = user_locked - user_lock_limit; 6399 user_extra -= extra; 6400 } 6401 6402 lock_limit = rlimit(RLIMIT_MEMLOCK); 6403 lock_limit >>= PAGE_SHIFT; 6404 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6405 6406 if ((locked > lock_limit) && perf_is_paranoid() && 6407 !capable(CAP_IPC_LOCK)) { 6408 ret = -EPERM; 6409 goto unlock; 6410 } 6411 6412 WARN_ON(!rb && event->rb); 6413 6414 if (vma->vm_flags & VM_WRITE) 6415 flags |= RING_BUFFER_WRITABLE; 6416 6417 if (!rb) { 6418 rb = rb_alloc(nr_pages, 6419 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6420 event->cpu, flags); 6421 6422 if (!rb) { 6423 ret = -ENOMEM; 6424 goto unlock; 6425 } 6426 6427 atomic_set(&rb->mmap_count, 1); 6428 rb->mmap_user = get_current_user(); 6429 rb->mmap_locked = extra; 6430 6431 ring_buffer_attach(event, rb); 6432 6433 perf_event_update_time(event); 6434 perf_event_init_userpage(event); 6435 perf_event_update_userpage(event); 6436 } else { 6437 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6438 event->attr.aux_watermark, flags); 6439 if (!ret) 6440 rb->aux_mmap_locked = extra; 6441 } 6442 6443 unlock: 6444 if (!ret) { 6445 atomic_long_add(user_extra, &user->locked_vm); 6446 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6447 6448 atomic_inc(&event->mmap_count); 6449 } else if (rb) { 6450 atomic_dec(&rb->mmap_count); 6451 } 6452 aux_unlock: 6453 mutex_unlock(&event->mmap_mutex); 6454 6455 /* 6456 * Since pinned accounting is per vm we cannot allow fork() to copy our 6457 * vma. 6458 */ 6459 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6460 vma->vm_ops = &perf_mmap_vmops; 6461 6462 if (event->pmu->event_mapped) 6463 event->pmu->event_mapped(event, vma->vm_mm); 6464 6465 return ret; 6466 } 6467 6468 static int perf_fasync(int fd, struct file *filp, int on) 6469 { 6470 struct inode *inode = file_inode(filp); 6471 struct perf_event *event = filp->private_data; 6472 int retval; 6473 6474 inode_lock(inode); 6475 retval = fasync_helper(fd, filp, on, &event->fasync); 6476 inode_unlock(inode); 6477 6478 if (retval < 0) 6479 return retval; 6480 6481 return 0; 6482 } 6483 6484 static const struct file_operations perf_fops = { 6485 .llseek = no_llseek, 6486 .release = perf_release, 6487 .read = perf_read, 6488 .poll = perf_poll, 6489 .unlocked_ioctl = perf_ioctl, 6490 .compat_ioctl = perf_compat_ioctl, 6491 .mmap = perf_mmap, 6492 .fasync = perf_fasync, 6493 }; 6494 6495 /* 6496 * Perf event wakeup 6497 * 6498 * If there's data, ensure we set the poll() state and publish everything 6499 * to user-space before waking everybody up. 6500 */ 6501 6502 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6503 { 6504 /* only the parent has fasync state */ 6505 if (event->parent) 6506 event = event->parent; 6507 return &event->fasync; 6508 } 6509 6510 void perf_event_wakeup(struct perf_event *event) 6511 { 6512 ring_buffer_wakeup(event); 6513 6514 if (event->pending_kill) { 6515 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6516 event->pending_kill = 0; 6517 } 6518 } 6519 6520 static void perf_sigtrap(struct perf_event *event) 6521 { 6522 /* 6523 * We'd expect this to only occur if the irq_work is delayed and either 6524 * ctx->task or current has changed in the meantime. This can be the 6525 * case on architectures that do not implement arch_irq_work_raise(). 6526 */ 6527 if (WARN_ON_ONCE(event->ctx->task != current)) 6528 return; 6529 6530 /* 6531 * perf_pending_event() can race with the task exiting. 6532 */ 6533 if (current->flags & PF_EXITING) 6534 return; 6535 6536 force_sig_perf((void __user *)event->pending_addr, 6537 event->attr.type, event->attr.sig_data); 6538 } 6539 6540 static void perf_pending_event_disable(struct perf_event *event) 6541 { 6542 int cpu = READ_ONCE(event->pending_disable); 6543 6544 if (cpu < 0) 6545 return; 6546 6547 if (cpu == smp_processor_id()) { 6548 WRITE_ONCE(event->pending_disable, -1); 6549 6550 if (event->attr.sigtrap) { 6551 perf_sigtrap(event); 6552 atomic_set_release(&event->event_limit, 1); /* rearm event */ 6553 return; 6554 } 6555 6556 perf_event_disable_local(event); 6557 return; 6558 } 6559 6560 /* 6561 * CPU-A CPU-B 6562 * 6563 * perf_event_disable_inatomic() 6564 * @pending_disable = CPU-A; 6565 * irq_work_queue(); 6566 * 6567 * sched-out 6568 * @pending_disable = -1; 6569 * 6570 * sched-in 6571 * perf_event_disable_inatomic() 6572 * @pending_disable = CPU-B; 6573 * irq_work_queue(); // FAILS 6574 * 6575 * irq_work_run() 6576 * perf_pending_event() 6577 * 6578 * But the event runs on CPU-B and wants disabling there. 6579 */ 6580 irq_work_queue_on(&event->pending, cpu); 6581 } 6582 6583 static void perf_pending_event(struct irq_work *entry) 6584 { 6585 struct perf_event *event = container_of(entry, struct perf_event, pending); 6586 int rctx; 6587 6588 rctx = perf_swevent_get_recursion_context(); 6589 /* 6590 * If we 'fail' here, that's OK, it means recursion is already disabled 6591 * and we won't recurse 'further'. 6592 */ 6593 6594 perf_pending_event_disable(event); 6595 6596 if (event->pending_wakeup) { 6597 event->pending_wakeup = 0; 6598 perf_event_wakeup(event); 6599 } 6600 6601 if (rctx >= 0) 6602 perf_swevent_put_recursion_context(rctx); 6603 } 6604 6605 #ifdef CONFIG_GUEST_PERF_EVENTS 6606 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6607 6608 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6609 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6610 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6611 6612 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6613 { 6614 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6615 return; 6616 6617 rcu_assign_pointer(perf_guest_cbs, cbs); 6618 static_call_update(__perf_guest_state, cbs->state); 6619 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6620 6621 /* Implementing ->handle_intel_pt_intr is optional. */ 6622 if (cbs->handle_intel_pt_intr) 6623 static_call_update(__perf_guest_handle_intel_pt_intr, 6624 cbs->handle_intel_pt_intr); 6625 } 6626 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6627 6628 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6629 { 6630 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6631 return; 6632 6633 rcu_assign_pointer(perf_guest_cbs, NULL); 6634 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6635 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6636 static_call_update(__perf_guest_handle_intel_pt_intr, 6637 (void *)&__static_call_return0); 6638 synchronize_rcu(); 6639 } 6640 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6641 #endif 6642 6643 static void 6644 perf_output_sample_regs(struct perf_output_handle *handle, 6645 struct pt_regs *regs, u64 mask) 6646 { 6647 int bit; 6648 DECLARE_BITMAP(_mask, 64); 6649 6650 bitmap_from_u64(_mask, mask); 6651 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6652 u64 val; 6653 6654 val = perf_reg_value(regs, bit); 6655 perf_output_put(handle, val); 6656 } 6657 } 6658 6659 static void perf_sample_regs_user(struct perf_regs *regs_user, 6660 struct pt_regs *regs) 6661 { 6662 if (user_mode(regs)) { 6663 regs_user->abi = perf_reg_abi(current); 6664 regs_user->regs = regs; 6665 } else if (!(current->flags & PF_KTHREAD)) { 6666 perf_get_regs_user(regs_user, regs); 6667 } else { 6668 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6669 regs_user->regs = NULL; 6670 } 6671 } 6672 6673 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6674 struct pt_regs *regs) 6675 { 6676 regs_intr->regs = regs; 6677 regs_intr->abi = perf_reg_abi(current); 6678 } 6679 6680 6681 /* 6682 * Get remaining task size from user stack pointer. 6683 * 6684 * It'd be better to take stack vma map and limit this more 6685 * precisely, but there's no way to get it safely under interrupt, 6686 * so using TASK_SIZE as limit. 6687 */ 6688 static u64 perf_ustack_task_size(struct pt_regs *regs) 6689 { 6690 unsigned long addr = perf_user_stack_pointer(regs); 6691 6692 if (!addr || addr >= TASK_SIZE) 6693 return 0; 6694 6695 return TASK_SIZE - addr; 6696 } 6697 6698 static u16 6699 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6700 struct pt_regs *regs) 6701 { 6702 u64 task_size; 6703 6704 /* No regs, no stack pointer, no dump. */ 6705 if (!regs) 6706 return 0; 6707 6708 /* 6709 * Check if we fit in with the requested stack size into the: 6710 * - TASK_SIZE 6711 * If we don't, we limit the size to the TASK_SIZE. 6712 * 6713 * - remaining sample size 6714 * If we don't, we customize the stack size to 6715 * fit in to the remaining sample size. 6716 */ 6717 6718 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6719 stack_size = min(stack_size, (u16) task_size); 6720 6721 /* Current header size plus static size and dynamic size. */ 6722 header_size += 2 * sizeof(u64); 6723 6724 /* Do we fit in with the current stack dump size? */ 6725 if ((u16) (header_size + stack_size) < header_size) { 6726 /* 6727 * If we overflow the maximum size for the sample, 6728 * we customize the stack dump size to fit in. 6729 */ 6730 stack_size = USHRT_MAX - header_size - sizeof(u64); 6731 stack_size = round_up(stack_size, sizeof(u64)); 6732 } 6733 6734 return stack_size; 6735 } 6736 6737 static void 6738 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6739 struct pt_regs *regs) 6740 { 6741 /* Case of a kernel thread, nothing to dump */ 6742 if (!regs) { 6743 u64 size = 0; 6744 perf_output_put(handle, size); 6745 } else { 6746 unsigned long sp; 6747 unsigned int rem; 6748 u64 dyn_size; 6749 mm_segment_t fs; 6750 6751 /* 6752 * We dump: 6753 * static size 6754 * - the size requested by user or the best one we can fit 6755 * in to the sample max size 6756 * data 6757 * - user stack dump data 6758 * dynamic size 6759 * - the actual dumped size 6760 */ 6761 6762 /* Static size. */ 6763 perf_output_put(handle, dump_size); 6764 6765 /* Data. */ 6766 sp = perf_user_stack_pointer(regs); 6767 fs = force_uaccess_begin(); 6768 rem = __output_copy_user(handle, (void *) sp, dump_size); 6769 force_uaccess_end(fs); 6770 dyn_size = dump_size - rem; 6771 6772 perf_output_skip(handle, rem); 6773 6774 /* Dynamic size. */ 6775 perf_output_put(handle, dyn_size); 6776 } 6777 } 6778 6779 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6780 struct perf_sample_data *data, 6781 size_t size) 6782 { 6783 struct perf_event *sampler = event->aux_event; 6784 struct perf_buffer *rb; 6785 6786 data->aux_size = 0; 6787 6788 if (!sampler) 6789 goto out; 6790 6791 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6792 goto out; 6793 6794 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6795 goto out; 6796 6797 rb = ring_buffer_get(sampler); 6798 if (!rb) 6799 goto out; 6800 6801 /* 6802 * If this is an NMI hit inside sampling code, don't take 6803 * the sample. See also perf_aux_sample_output(). 6804 */ 6805 if (READ_ONCE(rb->aux_in_sampling)) { 6806 data->aux_size = 0; 6807 } else { 6808 size = min_t(size_t, size, perf_aux_size(rb)); 6809 data->aux_size = ALIGN(size, sizeof(u64)); 6810 } 6811 ring_buffer_put(rb); 6812 6813 out: 6814 return data->aux_size; 6815 } 6816 6817 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6818 struct perf_event *event, 6819 struct perf_output_handle *handle, 6820 unsigned long size) 6821 { 6822 unsigned long flags; 6823 long ret; 6824 6825 /* 6826 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6827 * paths. If we start calling them in NMI context, they may race with 6828 * the IRQ ones, that is, for example, re-starting an event that's just 6829 * been stopped, which is why we're using a separate callback that 6830 * doesn't change the event state. 6831 * 6832 * IRQs need to be disabled to prevent IPIs from racing with us. 6833 */ 6834 local_irq_save(flags); 6835 /* 6836 * Guard against NMI hits inside the critical section; 6837 * see also perf_prepare_sample_aux(). 6838 */ 6839 WRITE_ONCE(rb->aux_in_sampling, 1); 6840 barrier(); 6841 6842 ret = event->pmu->snapshot_aux(event, handle, size); 6843 6844 barrier(); 6845 WRITE_ONCE(rb->aux_in_sampling, 0); 6846 local_irq_restore(flags); 6847 6848 return ret; 6849 } 6850 6851 static void perf_aux_sample_output(struct perf_event *event, 6852 struct perf_output_handle *handle, 6853 struct perf_sample_data *data) 6854 { 6855 struct perf_event *sampler = event->aux_event; 6856 struct perf_buffer *rb; 6857 unsigned long pad; 6858 long size; 6859 6860 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6861 return; 6862 6863 rb = ring_buffer_get(sampler); 6864 if (!rb) 6865 return; 6866 6867 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6868 6869 /* 6870 * An error here means that perf_output_copy() failed (returned a 6871 * non-zero surplus that it didn't copy), which in its current 6872 * enlightened implementation is not possible. If that changes, we'd 6873 * like to know. 6874 */ 6875 if (WARN_ON_ONCE(size < 0)) 6876 goto out_put; 6877 6878 /* 6879 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6880 * perf_prepare_sample_aux(), so should not be more than that. 6881 */ 6882 pad = data->aux_size - size; 6883 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6884 pad = 8; 6885 6886 if (pad) { 6887 u64 zero = 0; 6888 perf_output_copy(handle, &zero, pad); 6889 } 6890 6891 out_put: 6892 ring_buffer_put(rb); 6893 } 6894 6895 static void __perf_event_header__init_id(struct perf_event_header *header, 6896 struct perf_sample_data *data, 6897 struct perf_event *event) 6898 { 6899 u64 sample_type = event->attr.sample_type; 6900 6901 data->type = sample_type; 6902 header->size += event->id_header_size; 6903 6904 if (sample_type & PERF_SAMPLE_TID) { 6905 /* namespace issues */ 6906 data->tid_entry.pid = perf_event_pid(event, current); 6907 data->tid_entry.tid = perf_event_tid(event, current); 6908 } 6909 6910 if (sample_type & PERF_SAMPLE_TIME) 6911 data->time = perf_event_clock(event); 6912 6913 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6914 data->id = primary_event_id(event); 6915 6916 if (sample_type & PERF_SAMPLE_STREAM_ID) 6917 data->stream_id = event->id; 6918 6919 if (sample_type & PERF_SAMPLE_CPU) { 6920 data->cpu_entry.cpu = raw_smp_processor_id(); 6921 data->cpu_entry.reserved = 0; 6922 } 6923 } 6924 6925 void perf_event_header__init_id(struct perf_event_header *header, 6926 struct perf_sample_data *data, 6927 struct perf_event *event) 6928 { 6929 if (event->attr.sample_id_all) 6930 __perf_event_header__init_id(header, data, event); 6931 } 6932 6933 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6934 struct perf_sample_data *data) 6935 { 6936 u64 sample_type = data->type; 6937 6938 if (sample_type & PERF_SAMPLE_TID) 6939 perf_output_put(handle, data->tid_entry); 6940 6941 if (sample_type & PERF_SAMPLE_TIME) 6942 perf_output_put(handle, data->time); 6943 6944 if (sample_type & PERF_SAMPLE_ID) 6945 perf_output_put(handle, data->id); 6946 6947 if (sample_type & PERF_SAMPLE_STREAM_ID) 6948 perf_output_put(handle, data->stream_id); 6949 6950 if (sample_type & PERF_SAMPLE_CPU) 6951 perf_output_put(handle, data->cpu_entry); 6952 6953 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6954 perf_output_put(handle, data->id); 6955 } 6956 6957 void perf_event__output_id_sample(struct perf_event *event, 6958 struct perf_output_handle *handle, 6959 struct perf_sample_data *sample) 6960 { 6961 if (event->attr.sample_id_all) 6962 __perf_event__output_id_sample(handle, sample); 6963 } 6964 6965 static void perf_output_read_one(struct perf_output_handle *handle, 6966 struct perf_event *event, 6967 u64 enabled, u64 running) 6968 { 6969 u64 read_format = event->attr.read_format; 6970 u64 values[4]; 6971 int n = 0; 6972 6973 values[n++] = perf_event_count(event); 6974 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6975 values[n++] = enabled + 6976 atomic64_read(&event->child_total_time_enabled); 6977 } 6978 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6979 values[n++] = running + 6980 atomic64_read(&event->child_total_time_running); 6981 } 6982 if (read_format & PERF_FORMAT_ID) 6983 values[n++] = primary_event_id(event); 6984 6985 __output_copy(handle, values, n * sizeof(u64)); 6986 } 6987 6988 static void perf_output_read_group(struct perf_output_handle *handle, 6989 struct perf_event *event, 6990 u64 enabled, u64 running) 6991 { 6992 struct perf_event *leader = event->group_leader, *sub; 6993 u64 read_format = event->attr.read_format; 6994 u64 values[5]; 6995 int n = 0; 6996 6997 values[n++] = 1 + leader->nr_siblings; 6998 6999 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7000 values[n++] = enabled; 7001 7002 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7003 values[n++] = running; 7004 7005 if ((leader != event) && 7006 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7007 leader->pmu->read(leader); 7008 7009 values[n++] = perf_event_count(leader); 7010 if (read_format & PERF_FORMAT_ID) 7011 values[n++] = primary_event_id(leader); 7012 7013 __output_copy(handle, values, n * sizeof(u64)); 7014 7015 for_each_sibling_event(sub, leader) { 7016 n = 0; 7017 7018 if ((sub != event) && 7019 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7020 sub->pmu->read(sub); 7021 7022 values[n++] = perf_event_count(sub); 7023 if (read_format & PERF_FORMAT_ID) 7024 values[n++] = primary_event_id(sub); 7025 7026 __output_copy(handle, values, n * sizeof(u64)); 7027 } 7028 } 7029 7030 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7031 PERF_FORMAT_TOTAL_TIME_RUNNING) 7032 7033 /* 7034 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7035 * 7036 * The problem is that its both hard and excessively expensive to iterate the 7037 * child list, not to mention that its impossible to IPI the children running 7038 * on another CPU, from interrupt/NMI context. 7039 */ 7040 static void perf_output_read(struct perf_output_handle *handle, 7041 struct perf_event *event) 7042 { 7043 u64 enabled = 0, running = 0, now; 7044 u64 read_format = event->attr.read_format; 7045 7046 /* 7047 * compute total_time_enabled, total_time_running 7048 * based on snapshot values taken when the event 7049 * was last scheduled in. 7050 * 7051 * we cannot simply called update_context_time() 7052 * because of locking issue as we are called in 7053 * NMI context 7054 */ 7055 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7056 calc_timer_values(event, &now, &enabled, &running); 7057 7058 if (event->attr.read_format & PERF_FORMAT_GROUP) 7059 perf_output_read_group(handle, event, enabled, running); 7060 else 7061 perf_output_read_one(handle, event, enabled, running); 7062 } 7063 7064 static inline bool perf_sample_save_hw_index(struct perf_event *event) 7065 { 7066 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 7067 } 7068 7069 void perf_output_sample(struct perf_output_handle *handle, 7070 struct perf_event_header *header, 7071 struct perf_sample_data *data, 7072 struct perf_event *event) 7073 { 7074 u64 sample_type = data->type; 7075 7076 perf_output_put(handle, *header); 7077 7078 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7079 perf_output_put(handle, data->id); 7080 7081 if (sample_type & PERF_SAMPLE_IP) 7082 perf_output_put(handle, data->ip); 7083 7084 if (sample_type & PERF_SAMPLE_TID) 7085 perf_output_put(handle, data->tid_entry); 7086 7087 if (sample_type & PERF_SAMPLE_TIME) 7088 perf_output_put(handle, data->time); 7089 7090 if (sample_type & PERF_SAMPLE_ADDR) 7091 perf_output_put(handle, data->addr); 7092 7093 if (sample_type & PERF_SAMPLE_ID) 7094 perf_output_put(handle, data->id); 7095 7096 if (sample_type & PERF_SAMPLE_STREAM_ID) 7097 perf_output_put(handle, data->stream_id); 7098 7099 if (sample_type & PERF_SAMPLE_CPU) 7100 perf_output_put(handle, data->cpu_entry); 7101 7102 if (sample_type & PERF_SAMPLE_PERIOD) 7103 perf_output_put(handle, data->period); 7104 7105 if (sample_type & PERF_SAMPLE_READ) 7106 perf_output_read(handle, event); 7107 7108 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7109 int size = 1; 7110 7111 size += data->callchain->nr; 7112 size *= sizeof(u64); 7113 __output_copy(handle, data->callchain, size); 7114 } 7115 7116 if (sample_type & PERF_SAMPLE_RAW) { 7117 struct perf_raw_record *raw = data->raw; 7118 7119 if (raw) { 7120 struct perf_raw_frag *frag = &raw->frag; 7121 7122 perf_output_put(handle, raw->size); 7123 do { 7124 if (frag->copy) { 7125 __output_custom(handle, frag->copy, 7126 frag->data, frag->size); 7127 } else { 7128 __output_copy(handle, frag->data, 7129 frag->size); 7130 } 7131 if (perf_raw_frag_last(frag)) 7132 break; 7133 frag = frag->next; 7134 } while (1); 7135 if (frag->pad) 7136 __output_skip(handle, NULL, frag->pad); 7137 } else { 7138 struct { 7139 u32 size; 7140 u32 data; 7141 } raw = { 7142 .size = sizeof(u32), 7143 .data = 0, 7144 }; 7145 perf_output_put(handle, raw); 7146 } 7147 } 7148 7149 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7150 if (data->br_stack) { 7151 size_t size; 7152 7153 size = data->br_stack->nr 7154 * sizeof(struct perf_branch_entry); 7155 7156 perf_output_put(handle, data->br_stack->nr); 7157 if (perf_sample_save_hw_index(event)) 7158 perf_output_put(handle, data->br_stack->hw_idx); 7159 perf_output_copy(handle, data->br_stack->entries, size); 7160 } else { 7161 /* 7162 * we always store at least the value of nr 7163 */ 7164 u64 nr = 0; 7165 perf_output_put(handle, nr); 7166 } 7167 } 7168 7169 if (sample_type & PERF_SAMPLE_REGS_USER) { 7170 u64 abi = data->regs_user.abi; 7171 7172 /* 7173 * If there are no regs to dump, notice it through 7174 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7175 */ 7176 perf_output_put(handle, abi); 7177 7178 if (abi) { 7179 u64 mask = event->attr.sample_regs_user; 7180 perf_output_sample_regs(handle, 7181 data->regs_user.regs, 7182 mask); 7183 } 7184 } 7185 7186 if (sample_type & PERF_SAMPLE_STACK_USER) { 7187 perf_output_sample_ustack(handle, 7188 data->stack_user_size, 7189 data->regs_user.regs); 7190 } 7191 7192 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7193 perf_output_put(handle, data->weight.full); 7194 7195 if (sample_type & PERF_SAMPLE_DATA_SRC) 7196 perf_output_put(handle, data->data_src.val); 7197 7198 if (sample_type & PERF_SAMPLE_TRANSACTION) 7199 perf_output_put(handle, data->txn); 7200 7201 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7202 u64 abi = data->regs_intr.abi; 7203 /* 7204 * If there are no regs to dump, notice it through 7205 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7206 */ 7207 perf_output_put(handle, abi); 7208 7209 if (abi) { 7210 u64 mask = event->attr.sample_regs_intr; 7211 7212 perf_output_sample_regs(handle, 7213 data->regs_intr.regs, 7214 mask); 7215 } 7216 } 7217 7218 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7219 perf_output_put(handle, data->phys_addr); 7220 7221 if (sample_type & PERF_SAMPLE_CGROUP) 7222 perf_output_put(handle, data->cgroup); 7223 7224 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7225 perf_output_put(handle, data->data_page_size); 7226 7227 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7228 perf_output_put(handle, data->code_page_size); 7229 7230 if (sample_type & PERF_SAMPLE_AUX) { 7231 perf_output_put(handle, data->aux_size); 7232 7233 if (data->aux_size) 7234 perf_aux_sample_output(event, handle, data); 7235 } 7236 7237 if (!event->attr.watermark) { 7238 int wakeup_events = event->attr.wakeup_events; 7239 7240 if (wakeup_events) { 7241 struct perf_buffer *rb = handle->rb; 7242 int events = local_inc_return(&rb->events); 7243 7244 if (events >= wakeup_events) { 7245 local_sub(wakeup_events, &rb->events); 7246 local_inc(&rb->wakeup); 7247 } 7248 } 7249 } 7250 } 7251 7252 static u64 perf_virt_to_phys(u64 virt) 7253 { 7254 u64 phys_addr = 0; 7255 7256 if (!virt) 7257 return 0; 7258 7259 if (virt >= TASK_SIZE) { 7260 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7261 if (virt_addr_valid((void *)(uintptr_t)virt) && 7262 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7263 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7264 } else { 7265 /* 7266 * Walking the pages tables for user address. 7267 * Interrupts are disabled, so it prevents any tear down 7268 * of the page tables. 7269 * Try IRQ-safe get_user_page_fast_only first. 7270 * If failed, leave phys_addr as 0. 7271 */ 7272 if (current->mm != NULL) { 7273 struct page *p; 7274 7275 pagefault_disable(); 7276 if (get_user_page_fast_only(virt, 0, &p)) { 7277 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7278 put_page(p); 7279 } 7280 pagefault_enable(); 7281 } 7282 } 7283 7284 return phys_addr; 7285 } 7286 7287 /* 7288 * Return the pagetable size of a given virtual address. 7289 */ 7290 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7291 { 7292 u64 size = 0; 7293 7294 #ifdef CONFIG_HAVE_FAST_GUP 7295 pgd_t *pgdp, pgd; 7296 p4d_t *p4dp, p4d; 7297 pud_t *pudp, pud; 7298 pmd_t *pmdp, pmd; 7299 pte_t *ptep, pte; 7300 7301 pgdp = pgd_offset(mm, addr); 7302 pgd = READ_ONCE(*pgdp); 7303 if (pgd_none(pgd)) 7304 return 0; 7305 7306 if (pgd_leaf(pgd)) 7307 return pgd_leaf_size(pgd); 7308 7309 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7310 p4d = READ_ONCE(*p4dp); 7311 if (!p4d_present(p4d)) 7312 return 0; 7313 7314 if (p4d_leaf(p4d)) 7315 return p4d_leaf_size(p4d); 7316 7317 pudp = pud_offset_lockless(p4dp, p4d, addr); 7318 pud = READ_ONCE(*pudp); 7319 if (!pud_present(pud)) 7320 return 0; 7321 7322 if (pud_leaf(pud)) 7323 return pud_leaf_size(pud); 7324 7325 pmdp = pmd_offset_lockless(pudp, pud, addr); 7326 pmd = READ_ONCE(*pmdp); 7327 if (!pmd_present(pmd)) 7328 return 0; 7329 7330 if (pmd_leaf(pmd)) 7331 return pmd_leaf_size(pmd); 7332 7333 ptep = pte_offset_map(&pmd, addr); 7334 pte = ptep_get_lockless(ptep); 7335 if (pte_present(pte)) 7336 size = pte_leaf_size(pte); 7337 pte_unmap(ptep); 7338 #endif /* CONFIG_HAVE_FAST_GUP */ 7339 7340 return size; 7341 } 7342 7343 static u64 perf_get_page_size(unsigned long addr) 7344 { 7345 struct mm_struct *mm; 7346 unsigned long flags; 7347 u64 size; 7348 7349 if (!addr) 7350 return 0; 7351 7352 /* 7353 * Software page-table walkers must disable IRQs, 7354 * which prevents any tear down of the page tables. 7355 */ 7356 local_irq_save(flags); 7357 7358 mm = current->mm; 7359 if (!mm) { 7360 /* 7361 * For kernel threads and the like, use init_mm so that 7362 * we can find kernel memory. 7363 */ 7364 mm = &init_mm; 7365 } 7366 7367 size = perf_get_pgtable_size(mm, addr); 7368 7369 local_irq_restore(flags); 7370 7371 return size; 7372 } 7373 7374 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7375 7376 struct perf_callchain_entry * 7377 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7378 { 7379 bool kernel = !event->attr.exclude_callchain_kernel; 7380 bool user = !event->attr.exclude_callchain_user; 7381 /* Disallow cross-task user callchains. */ 7382 bool crosstask = event->ctx->task && event->ctx->task != current; 7383 const u32 max_stack = event->attr.sample_max_stack; 7384 struct perf_callchain_entry *callchain; 7385 7386 if (!kernel && !user) 7387 return &__empty_callchain; 7388 7389 callchain = get_perf_callchain(regs, 0, kernel, user, 7390 max_stack, crosstask, true); 7391 return callchain ?: &__empty_callchain; 7392 } 7393 7394 void perf_prepare_sample(struct perf_event_header *header, 7395 struct perf_sample_data *data, 7396 struct perf_event *event, 7397 struct pt_regs *regs) 7398 { 7399 u64 sample_type = event->attr.sample_type; 7400 7401 header->type = PERF_RECORD_SAMPLE; 7402 header->size = sizeof(*header) + event->header_size; 7403 7404 header->misc = 0; 7405 header->misc |= perf_misc_flags(regs); 7406 7407 __perf_event_header__init_id(header, data, event); 7408 7409 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7410 data->ip = perf_instruction_pointer(regs); 7411 7412 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7413 int size = 1; 7414 7415 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 7416 data->callchain = perf_callchain(event, regs); 7417 7418 size += data->callchain->nr; 7419 7420 header->size += size * sizeof(u64); 7421 } 7422 7423 if (sample_type & PERF_SAMPLE_RAW) { 7424 struct perf_raw_record *raw = data->raw; 7425 int size; 7426 7427 if (raw) { 7428 struct perf_raw_frag *frag = &raw->frag; 7429 u32 sum = 0; 7430 7431 do { 7432 sum += frag->size; 7433 if (perf_raw_frag_last(frag)) 7434 break; 7435 frag = frag->next; 7436 } while (1); 7437 7438 size = round_up(sum + sizeof(u32), sizeof(u64)); 7439 raw->size = size - sizeof(u32); 7440 frag->pad = raw->size - sum; 7441 } else { 7442 size = sizeof(u64); 7443 } 7444 7445 header->size += size; 7446 } 7447 7448 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7449 int size = sizeof(u64); /* nr */ 7450 if (data->br_stack) { 7451 if (perf_sample_save_hw_index(event)) 7452 size += sizeof(u64); 7453 7454 size += data->br_stack->nr 7455 * sizeof(struct perf_branch_entry); 7456 } 7457 header->size += size; 7458 } 7459 7460 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7461 perf_sample_regs_user(&data->regs_user, regs); 7462 7463 if (sample_type & PERF_SAMPLE_REGS_USER) { 7464 /* regs dump ABI info */ 7465 int size = sizeof(u64); 7466 7467 if (data->regs_user.regs) { 7468 u64 mask = event->attr.sample_regs_user; 7469 size += hweight64(mask) * sizeof(u64); 7470 } 7471 7472 header->size += size; 7473 } 7474 7475 if (sample_type & PERF_SAMPLE_STACK_USER) { 7476 /* 7477 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7478 * processed as the last one or have additional check added 7479 * in case new sample type is added, because we could eat 7480 * up the rest of the sample size. 7481 */ 7482 u16 stack_size = event->attr.sample_stack_user; 7483 u16 size = sizeof(u64); 7484 7485 stack_size = perf_sample_ustack_size(stack_size, header->size, 7486 data->regs_user.regs); 7487 7488 /* 7489 * If there is something to dump, add space for the dump 7490 * itself and for the field that tells the dynamic size, 7491 * which is how many have been actually dumped. 7492 */ 7493 if (stack_size) 7494 size += sizeof(u64) + stack_size; 7495 7496 data->stack_user_size = stack_size; 7497 header->size += size; 7498 } 7499 7500 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7501 /* regs dump ABI info */ 7502 int size = sizeof(u64); 7503 7504 perf_sample_regs_intr(&data->regs_intr, regs); 7505 7506 if (data->regs_intr.regs) { 7507 u64 mask = event->attr.sample_regs_intr; 7508 7509 size += hweight64(mask) * sizeof(u64); 7510 } 7511 7512 header->size += size; 7513 } 7514 7515 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7516 data->phys_addr = perf_virt_to_phys(data->addr); 7517 7518 #ifdef CONFIG_CGROUP_PERF 7519 if (sample_type & PERF_SAMPLE_CGROUP) { 7520 struct cgroup *cgrp; 7521 7522 /* protected by RCU */ 7523 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7524 data->cgroup = cgroup_id(cgrp); 7525 } 7526 #endif 7527 7528 /* 7529 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7530 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7531 * but the value will not dump to the userspace. 7532 */ 7533 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7534 data->data_page_size = perf_get_page_size(data->addr); 7535 7536 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7537 data->code_page_size = perf_get_page_size(data->ip); 7538 7539 if (sample_type & PERF_SAMPLE_AUX) { 7540 u64 size; 7541 7542 header->size += sizeof(u64); /* size */ 7543 7544 /* 7545 * Given the 16bit nature of header::size, an AUX sample can 7546 * easily overflow it, what with all the preceding sample bits. 7547 * Make sure this doesn't happen by using up to U16_MAX bytes 7548 * per sample in total (rounded down to 8 byte boundary). 7549 */ 7550 size = min_t(size_t, U16_MAX - header->size, 7551 event->attr.aux_sample_size); 7552 size = rounddown(size, 8); 7553 size = perf_prepare_sample_aux(event, data, size); 7554 7555 WARN_ON_ONCE(size + header->size > U16_MAX); 7556 header->size += size; 7557 } 7558 /* 7559 * If you're adding more sample types here, you likely need to do 7560 * something about the overflowing header::size, like repurpose the 7561 * lowest 3 bits of size, which should be always zero at the moment. 7562 * This raises a more important question, do we really need 512k sized 7563 * samples and why, so good argumentation is in order for whatever you 7564 * do here next. 7565 */ 7566 WARN_ON_ONCE(header->size & 7); 7567 } 7568 7569 static __always_inline int 7570 __perf_event_output(struct perf_event *event, 7571 struct perf_sample_data *data, 7572 struct pt_regs *regs, 7573 int (*output_begin)(struct perf_output_handle *, 7574 struct perf_sample_data *, 7575 struct perf_event *, 7576 unsigned int)) 7577 { 7578 struct perf_output_handle handle; 7579 struct perf_event_header header; 7580 int err; 7581 7582 /* protect the callchain buffers */ 7583 rcu_read_lock(); 7584 7585 perf_prepare_sample(&header, data, event, regs); 7586 7587 err = output_begin(&handle, data, event, header.size); 7588 if (err) 7589 goto exit; 7590 7591 perf_output_sample(&handle, &header, data, event); 7592 7593 perf_output_end(&handle); 7594 7595 exit: 7596 rcu_read_unlock(); 7597 return err; 7598 } 7599 7600 void 7601 perf_event_output_forward(struct perf_event *event, 7602 struct perf_sample_data *data, 7603 struct pt_regs *regs) 7604 { 7605 __perf_event_output(event, data, regs, perf_output_begin_forward); 7606 } 7607 7608 void 7609 perf_event_output_backward(struct perf_event *event, 7610 struct perf_sample_data *data, 7611 struct pt_regs *regs) 7612 { 7613 __perf_event_output(event, data, regs, perf_output_begin_backward); 7614 } 7615 7616 int 7617 perf_event_output(struct perf_event *event, 7618 struct perf_sample_data *data, 7619 struct pt_regs *regs) 7620 { 7621 return __perf_event_output(event, data, regs, perf_output_begin); 7622 } 7623 7624 /* 7625 * read event_id 7626 */ 7627 7628 struct perf_read_event { 7629 struct perf_event_header header; 7630 7631 u32 pid; 7632 u32 tid; 7633 }; 7634 7635 static void 7636 perf_event_read_event(struct perf_event *event, 7637 struct task_struct *task) 7638 { 7639 struct perf_output_handle handle; 7640 struct perf_sample_data sample; 7641 struct perf_read_event read_event = { 7642 .header = { 7643 .type = PERF_RECORD_READ, 7644 .misc = 0, 7645 .size = sizeof(read_event) + event->read_size, 7646 }, 7647 .pid = perf_event_pid(event, task), 7648 .tid = perf_event_tid(event, task), 7649 }; 7650 int ret; 7651 7652 perf_event_header__init_id(&read_event.header, &sample, event); 7653 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7654 if (ret) 7655 return; 7656 7657 perf_output_put(&handle, read_event); 7658 perf_output_read(&handle, event); 7659 perf_event__output_id_sample(event, &handle, &sample); 7660 7661 perf_output_end(&handle); 7662 } 7663 7664 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7665 7666 static void 7667 perf_iterate_ctx(struct perf_event_context *ctx, 7668 perf_iterate_f output, 7669 void *data, bool all) 7670 { 7671 struct perf_event *event; 7672 7673 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7674 if (!all) { 7675 if (event->state < PERF_EVENT_STATE_INACTIVE) 7676 continue; 7677 if (!event_filter_match(event)) 7678 continue; 7679 } 7680 7681 output(event, data); 7682 } 7683 } 7684 7685 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7686 { 7687 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7688 struct perf_event *event; 7689 7690 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7691 /* 7692 * Skip events that are not fully formed yet; ensure that 7693 * if we observe event->ctx, both event and ctx will be 7694 * complete enough. See perf_install_in_context(). 7695 */ 7696 if (!smp_load_acquire(&event->ctx)) 7697 continue; 7698 7699 if (event->state < PERF_EVENT_STATE_INACTIVE) 7700 continue; 7701 if (!event_filter_match(event)) 7702 continue; 7703 output(event, data); 7704 } 7705 } 7706 7707 /* 7708 * Iterate all events that need to receive side-band events. 7709 * 7710 * For new callers; ensure that account_pmu_sb_event() includes 7711 * your event, otherwise it might not get delivered. 7712 */ 7713 static void 7714 perf_iterate_sb(perf_iterate_f output, void *data, 7715 struct perf_event_context *task_ctx) 7716 { 7717 struct perf_event_context *ctx; 7718 int ctxn; 7719 7720 rcu_read_lock(); 7721 preempt_disable(); 7722 7723 /* 7724 * If we have task_ctx != NULL we only notify the task context itself. 7725 * The task_ctx is set only for EXIT events before releasing task 7726 * context. 7727 */ 7728 if (task_ctx) { 7729 perf_iterate_ctx(task_ctx, output, data, false); 7730 goto done; 7731 } 7732 7733 perf_iterate_sb_cpu(output, data); 7734 7735 for_each_task_context_nr(ctxn) { 7736 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7737 if (ctx) 7738 perf_iterate_ctx(ctx, output, data, false); 7739 } 7740 done: 7741 preempt_enable(); 7742 rcu_read_unlock(); 7743 } 7744 7745 /* 7746 * Clear all file-based filters at exec, they'll have to be 7747 * re-instated when/if these objects are mmapped again. 7748 */ 7749 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7750 { 7751 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7752 struct perf_addr_filter *filter; 7753 unsigned int restart = 0, count = 0; 7754 unsigned long flags; 7755 7756 if (!has_addr_filter(event)) 7757 return; 7758 7759 raw_spin_lock_irqsave(&ifh->lock, flags); 7760 list_for_each_entry(filter, &ifh->list, entry) { 7761 if (filter->path.dentry) { 7762 event->addr_filter_ranges[count].start = 0; 7763 event->addr_filter_ranges[count].size = 0; 7764 restart++; 7765 } 7766 7767 count++; 7768 } 7769 7770 if (restart) 7771 event->addr_filters_gen++; 7772 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7773 7774 if (restart) 7775 perf_event_stop(event, 1); 7776 } 7777 7778 void perf_event_exec(void) 7779 { 7780 struct perf_event_context *ctx; 7781 int ctxn; 7782 7783 for_each_task_context_nr(ctxn) { 7784 perf_event_enable_on_exec(ctxn); 7785 perf_event_remove_on_exec(ctxn); 7786 7787 rcu_read_lock(); 7788 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7789 if (ctx) { 7790 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, 7791 NULL, true); 7792 } 7793 rcu_read_unlock(); 7794 } 7795 } 7796 7797 struct remote_output { 7798 struct perf_buffer *rb; 7799 int err; 7800 }; 7801 7802 static void __perf_event_output_stop(struct perf_event *event, void *data) 7803 { 7804 struct perf_event *parent = event->parent; 7805 struct remote_output *ro = data; 7806 struct perf_buffer *rb = ro->rb; 7807 struct stop_event_data sd = { 7808 .event = event, 7809 }; 7810 7811 if (!has_aux(event)) 7812 return; 7813 7814 if (!parent) 7815 parent = event; 7816 7817 /* 7818 * In case of inheritance, it will be the parent that links to the 7819 * ring-buffer, but it will be the child that's actually using it. 7820 * 7821 * We are using event::rb to determine if the event should be stopped, 7822 * however this may race with ring_buffer_attach() (through set_output), 7823 * which will make us skip the event that actually needs to be stopped. 7824 * So ring_buffer_attach() has to stop an aux event before re-assigning 7825 * its rb pointer. 7826 */ 7827 if (rcu_dereference(parent->rb) == rb) 7828 ro->err = __perf_event_stop(&sd); 7829 } 7830 7831 static int __perf_pmu_output_stop(void *info) 7832 { 7833 struct perf_event *event = info; 7834 struct pmu *pmu = event->ctx->pmu; 7835 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7836 struct remote_output ro = { 7837 .rb = event->rb, 7838 }; 7839 7840 rcu_read_lock(); 7841 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7842 if (cpuctx->task_ctx) 7843 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7844 &ro, false); 7845 rcu_read_unlock(); 7846 7847 return ro.err; 7848 } 7849 7850 static void perf_pmu_output_stop(struct perf_event *event) 7851 { 7852 struct perf_event *iter; 7853 int err, cpu; 7854 7855 restart: 7856 rcu_read_lock(); 7857 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7858 /* 7859 * For per-CPU events, we need to make sure that neither they 7860 * nor their children are running; for cpu==-1 events it's 7861 * sufficient to stop the event itself if it's active, since 7862 * it can't have children. 7863 */ 7864 cpu = iter->cpu; 7865 if (cpu == -1) 7866 cpu = READ_ONCE(iter->oncpu); 7867 7868 if (cpu == -1) 7869 continue; 7870 7871 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7872 if (err == -EAGAIN) { 7873 rcu_read_unlock(); 7874 goto restart; 7875 } 7876 } 7877 rcu_read_unlock(); 7878 } 7879 7880 /* 7881 * task tracking -- fork/exit 7882 * 7883 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7884 */ 7885 7886 struct perf_task_event { 7887 struct task_struct *task; 7888 struct perf_event_context *task_ctx; 7889 7890 struct { 7891 struct perf_event_header header; 7892 7893 u32 pid; 7894 u32 ppid; 7895 u32 tid; 7896 u32 ptid; 7897 u64 time; 7898 } event_id; 7899 }; 7900 7901 static int perf_event_task_match(struct perf_event *event) 7902 { 7903 return event->attr.comm || event->attr.mmap || 7904 event->attr.mmap2 || event->attr.mmap_data || 7905 event->attr.task; 7906 } 7907 7908 static void perf_event_task_output(struct perf_event *event, 7909 void *data) 7910 { 7911 struct perf_task_event *task_event = data; 7912 struct perf_output_handle handle; 7913 struct perf_sample_data sample; 7914 struct task_struct *task = task_event->task; 7915 int ret, size = task_event->event_id.header.size; 7916 7917 if (!perf_event_task_match(event)) 7918 return; 7919 7920 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7921 7922 ret = perf_output_begin(&handle, &sample, event, 7923 task_event->event_id.header.size); 7924 if (ret) 7925 goto out; 7926 7927 task_event->event_id.pid = perf_event_pid(event, task); 7928 task_event->event_id.tid = perf_event_tid(event, task); 7929 7930 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7931 task_event->event_id.ppid = perf_event_pid(event, 7932 task->real_parent); 7933 task_event->event_id.ptid = perf_event_pid(event, 7934 task->real_parent); 7935 } else { /* PERF_RECORD_FORK */ 7936 task_event->event_id.ppid = perf_event_pid(event, current); 7937 task_event->event_id.ptid = perf_event_tid(event, current); 7938 } 7939 7940 task_event->event_id.time = perf_event_clock(event); 7941 7942 perf_output_put(&handle, task_event->event_id); 7943 7944 perf_event__output_id_sample(event, &handle, &sample); 7945 7946 perf_output_end(&handle); 7947 out: 7948 task_event->event_id.header.size = size; 7949 } 7950 7951 static void perf_event_task(struct task_struct *task, 7952 struct perf_event_context *task_ctx, 7953 int new) 7954 { 7955 struct perf_task_event task_event; 7956 7957 if (!atomic_read(&nr_comm_events) && 7958 !atomic_read(&nr_mmap_events) && 7959 !atomic_read(&nr_task_events)) 7960 return; 7961 7962 task_event = (struct perf_task_event){ 7963 .task = task, 7964 .task_ctx = task_ctx, 7965 .event_id = { 7966 .header = { 7967 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7968 .misc = 0, 7969 .size = sizeof(task_event.event_id), 7970 }, 7971 /* .pid */ 7972 /* .ppid */ 7973 /* .tid */ 7974 /* .ptid */ 7975 /* .time */ 7976 }, 7977 }; 7978 7979 perf_iterate_sb(perf_event_task_output, 7980 &task_event, 7981 task_ctx); 7982 } 7983 7984 void perf_event_fork(struct task_struct *task) 7985 { 7986 perf_event_task(task, NULL, 1); 7987 perf_event_namespaces(task); 7988 } 7989 7990 /* 7991 * comm tracking 7992 */ 7993 7994 struct perf_comm_event { 7995 struct task_struct *task; 7996 char *comm; 7997 int comm_size; 7998 7999 struct { 8000 struct perf_event_header header; 8001 8002 u32 pid; 8003 u32 tid; 8004 } event_id; 8005 }; 8006 8007 static int perf_event_comm_match(struct perf_event *event) 8008 { 8009 return event->attr.comm; 8010 } 8011 8012 static void perf_event_comm_output(struct perf_event *event, 8013 void *data) 8014 { 8015 struct perf_comm_event *comm_event = data; 8016 struct perf_output_handle handle; 8017 struct perf_sample_data sample; 8018 int size = comm_event->event_id.header.size; 8019 int ret; 8020 8021 if (!perf_event_comm_match(event)) 8022 return; 8023 8024 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8025 ret = perf_output_begin(&handle, &sample, event, 8026 comm_event->event_id.header.size); 8027 8028 if (ret) 8029 goto out; 8030 8031 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8032 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8033 8034 perf_output_put(&handle, comm_event->event_id); 8035 __output_copy(&handle, comm_event->comm, 8036 comm_event->comm_size); 8037 8038 perf_event__output_id_sample(event, &handle, &sample); 8039 8040 perf_output_end(&handle); 8041 out: 8042 comm_event->event_id.header.size = size; 8043 } 8044 8045 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8046 { 8047 char comm[TASK_COMM_LEN]; 8048 unsigned int size; 8049 8050 memset(comm, 0, sizeof(comm)); 8051 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 8052 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8053 8054 comm_event->comm = comm; 8055 comm_event->comm_size = size; 8056 8057 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8058 8059 perf_iterate_sb(perf_event_comm_output, 8060 comm_event, 8061 NULL); 8062 } 8063 8064 void perf_event_comm(struct task_struct *task, bool exec) 8065 { 8066 struct perf_comm_event comm_event; 8067 8068 if (!atomic_read(&nr_comm_events)) 8069 return; 8070 8071 comm_event = (struct perf_comm_event){ 8072 .task = task, 8073 /* .comm */ 8074 /* .comm_size */ 8075 .event_id = { 8076 .header = { 8077 .type = PERF_RECORD_COMM, 8078 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8079 /* .size */ 8080 }, 8081 /* .pid */ 8082 /* .tid */ 8083 }, 8084 }; 8085 8086 perf_event_comm_event(&comm_event); 8087 } 8088 8089 /* 8090 * namespaces tracking 8091 */ 8092 8093 struct perf_namespaces_event { 8094 struct task_struct *task; 8095 8096 struct { 8097 struct perf_event_header header; 8098 8099 u32 pid; 8100 u32 tid; 8101 u64 nr_namespaces; 8102 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8103 } event_id; 8104 }; 8105 8106 static int perf_event_namespaces_match(struct perf_event *event) 8107 { 8108 return event->attr.namespaces; 8109 } 8110 8111 static void perf_event_namespaces_output(struct perf_event *event, 8112 void *data) 8113 { 8114 struct perf_namespaces_event *namespaces_event = data; 8115 struct perf_output_handle handle; 8116 struct perf_sample_data sample; 8117 u16 header_size = namespaces_event->event_id.header.size; 8118 int ret; 8119 8120 if (!perf_event_namespaces_match(event)) 8121 return; 8122 8123 perf_event_header__init_id(&namespaces_event->event_id.header, 8124 &sample, event); 8125 ret = perf_output_begin(&handle, &sample, event, 8126 namespaces_event->event_id.header.size); 8127 if (ret) 8128 goto out; 8129 8130 namespaces_event->event_id.pid = perf_event_pid(event, 8131 namespaces_event->task); 8132 namespaces_event->event_id.tid = perf_event_tid(event, 8133 namespaces_event->task); 8134 8135 perf_output_put(&handle, namespaces_event->event_id); 8136 8137 perf_event__output_id_sample(event, &handle, &sample); 8138 8139 perf_output_end(&handle); 8140 out: 8141 namespaces_event->event_id.header.size = header_size; 8142 } 8143 8144 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8145 struct task_struct *task, 8146 const struct proc_ns_operations *ns_ops) 8147 { 8148 struct path ns_path; 8149 struct inode *ns_inode; 8150 int error; 8151 8152 error = ns_get_path(&ns_path, task, ns_ops); 8153 if (!error) { 8154 ns_inode = ns_path.dentry->d_inode; 8155 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8156 ns_link_info->ino = ns_inode->i_ino; 8157 path_put(&ns_path); 8158 } 8159 } 8160 8161 void perf_event_namespaces(struct task_struct *task) 8162 { 8163 struct perf_namespaces_event namespaces_event; 8164 struct perf_ns_link_info *ns_link_info; 8165 8166 if (!atomic_read(&nr_namespaces_events)) 8167 return; 8168 8169 namespaces_event = (struct perf_namespaces_event){ 8170 .task = task, 8171 .event_id = { 8172 .header = { 8173 .type = PERF_RECORD_NAMESPACES, 8174 .misc = 0, 8175 .size = sizeof(namespaces_event.event_id), 8176 }, 8177 /* .pid */ 8178 /* .tid */ 8179 .nr_namespaces = NR_NAMESPACES, 8180 /* .link_info[NR_NAMESPACES] */ 8181 }, 8182 }; 8183 8184 ns_link_info = namespaces_event.event_id.link_info; 8185 8186 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8187 task, &mntns_operations); 8188 8189 #ifdef CONFIG_USER_NS 8190 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8191 task, &userns_operations); 8192 #endif 8193 #ifdef CONFIG_NET_NS 8194 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8195 task, &netns_operations); 8196 #endif 8197 #ifdef CONFIG_UTS_NS 8198 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8199 task, &utsns_operations); 8200 #endif 8201 #ifdef CONFIG_IPC_NS 8202 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8203 task, &ipcns_operations); 8204 #endif 8205 #ifdef CONFIG_PID_NS 8206 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8207 task, &pidns_operations); 8208 #endif 8209 #ifdef CONFIG_CGROUPS 8210 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8211 task, &cgroupns_operations); 8212 #endif 8213 8214 perf_iterate_sb(perf_event_namespaces_output, 8215 &namespaces_event, 8216 NULL); 8217 } 8218 8219 /* 8220 * cgroup tracking 8221 */ 8222 #ifdef CONFIG_CGROUP_PERF 8223 8224 struct perf_cgroup_event { 8225 char *path; 8226 int path_size; 8227 struct { 8228 struct perf_event_header header; 8229 u64 id; 8230 char path[]; 8231 } event_id; 8232 }; 8233 8234 static int perf_event_cgroup_match(struct perf_event *event) 8235 { 8236 return event->attr.cgroup; 8237 } 8238 8239 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8240 { 8241 struct perf_cgroup_event *cgroup_event = data; 8242 struct perf_output_handle handle; 8243 struct perf_sample_data sample; 8244 u16 header_size = cgroup_event->event_id.header.size; 8245 int ret; 8246 8247 if (!perf_event_cgroup_match(event)) 8248 return; 8249 8250 perf_event_header__init_id(&cgroup_event->event_id.header, 8251 &sample, event); 8252 ret = perf_output_begin(&handle, &sample, event, 8253 cgroup_event->event_id.header.size); 8254 if (ret) 8255 goto out; 8256 8257 perf_output_put(&handle, cgroup_event->event_id); 8258 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8259 8260 perf_event__output_id_sample(event, &handle, &sample); 8261 8262 perf_output_end(&handle); 8263 out: 8264 cgroup_event->event_id.header.size = header_size; 8265 } 8266 8267 static void perf_event_cgroup(struct cgroup *cgrp) 8268 { 8269 struct perf_cgroup_event cgroup_event; 8270 char path_enomem[16] = "//enomem"; 8271 char *pathname; 8272 size_t size; 8273 8274 if (!atomic_read(&nr_cgroup_events)) 8275 return; 8276 8277 cgroup_event = (struct perf_cgroup_event){ 8278 .event_id = { 8279 .header = { 8280 .type = PERF_RECORD_CGROUP, 8281 .misc = 0, 8282 .size = sizeof(cgroup_event.event_id), 8283 }, 8284 .id = cgroup_id(cgrp), 8285 }, 8286 }; 8287 8288 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8289 if (pathname == NULL) { 8290 cgroup_event.path = path_enomem; 8291 } else { 8292 /* just to be sure to have enough space for alignment */ 8293 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8294 cgroup_event.path = pathname; 8295 } 8296 8297 /* 8298 * Since our buffer works in 8 byte units we need to align our string 8299 * size to a multiple of 8. However, we must guarantee the tail end is 8300 * zero'd out to avoid leaking random bits to userspace. 8301 */ 8302 size = strlen(cgroup_event.path) + 1; 8303 while (!IS_ALIGNED(size, sizeof(u64))) 8304 cgroup_event.path[size++] = '\0'; 8305 8306 cgroup_event.event_id.header.size += size; 8307 cgroup_event.path_size = size; 8308 8309 perf_iterate_sb(perf_event_cgroup_output, 8310 &cgroup_event, 8311 NULL); 8312 8313 kfree(pathname); 8314 } 8315 8316 #endif 8317 8318 /* 8319 * mmap tracking 8320 */ 8321 8322 struct perf_mmap_event { 8323 struct vm_area_struct *vma; 8324 8325 const char *file_name; 8326 int file_size; 8327 int maj, min; 8328 u64 ino; 8329 u64 ino_generation; 8330 u32 prot, flags; 8331 u8 build_id[BUILD_ID_SIZE_MAX]; 8332 u32 build_id_size; 8333 8334 struct { 8335 struct perf_event_header header; 8336 8337 u32 pid; 8338 u32 tid; 8339 u64 start; 8340 u64 len; 8341 u64 pgoff; 8342 } event_id; 8343 }; 8344 8345 static int perf_event_mmap_match(struct perf_event *event, 8346 void *data) 8347 { 8348 struct perf_mmap_event *mmap_event = data; 8349 struct vm_area_struct *vma = mmap_event->vma; 8350 int executable = vma->vm_flags & VM_EXEC; 8351 8352 return (!executable && event->attr.mmap_data) || 8353 (executable && (event->attr.mmap || event->attr.mmap2)); 8354 } 8355 8356 static void perf_event_mmap_output(struct perf_event *event, 8357 void *data) 8358 { 8359 struct perf_mmap_event *mmap_event = data; 8360 struct perf_output_handle handle; 8361 struct perf_sample_data sample; 8362 int size = mmap_event->event_id.header.size; 8363 u32 type = mmap_event->event_id.header.type; 8364 bool use_build_id; 8365 int ret; 8366 8367 if (!perf_event_mmap_match(event, data)) 8368 return; 8369 8370 if (event->attr.mmap2) { 8371 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8372 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8373 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8374 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8375 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8376 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8377 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8378 } 8379 8380 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8381 ret = perf_output_begin(&handle, &sample, event, 8382 mmap_event->event_id.header.size); 8383 if (ret) 8384 goto out; 8385 8386 mmap_event->event_id.pid = perf_event_pid(event, current); 8387 mmap_event->event_id.tid = perf_event_tid(event, current); 8388 8389 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8390 8391 if (event->attr.mmap2 && use_build_id) 8392 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8393 8394 perf_output_put(&handle, mmap_event->event_id); 8395 8396 if (event->attr.mmap2) { 8397 if (use_build_id) { 8398 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8399 8400 __output_copy(&handle, size, 4); 8401 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8402 } else { 8403 perf_output_put(&handle, mmap_event->maj); 8404 perf_output_put(&handle, mmap_event->min); 8405 perf_output_put(&handle, mmap_event->ino); 8406 perf_output_put(&handle, mmap_event->ino_generation); 8407 } 8408 perf_output_put(&handle, mmap_event->prot); 8409 perf_output_put(&handle, mmap_event->flags); 8410 } 8411 8412 __output_copy(&handle, mmap_event->file_name, 8413 mmap_event->file_size); 8414 8415 perf_event__output_id_sample(event, &handle, &sample); 8416 8417 perf_output_end(&handle); 8418 out: 8419 mmap_event->event_id.header.size = size; 8420 mmap_event->event_id.header.type = type; 8421 } 8422 8423 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8424 { 8425 struct vm_area_struct *vma = mmap_event->vma; 8426 struct file *file = vma->vm_file; 8427 int maj = 0, min = 0; 8428 u64 ino = 0, gen = 0; 8429 u32 prot = 0, flags = 0; 8430 unsigned int size; 8431 char tmp[16]; 8432 char *buf = NULL; 8433 char *name; 8434 8435 if (vma->vm_flags & VM_READ) 8436 prot |= PROT_READ; 8437 if (vma->vm_flags & VM_WRITE) 8438 prot |= PROT_WRITE; 8439 if (vma->vm_flags & VM_EXEC) 8440 prot |= PROT_EXEC; 8441 8442 if (vma->vm_flags & VM_MAYSHARE) 8443 flags = MAP_SHARED; 8444 else 8445 flags = MAP_PRIVATE; 8446 8447 if (vma->vm_flags & VM_LOCKED) 8448 flags |= MAP_LOCKED; 8449 if (is_vm_hugetlb_page(vma)) 8450 flags |= MAP_HUGETLB; 8451 8452 if (file) { 8453 struct inode *inode; 8454 dev_t dev; 8455 8456 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8457 if (!buf) { 8458 name = "//enomem"; 8459 goto cpy_name; 8460 } 8461 /* 8462 * d_path() works from the end of the rb backwards, so we 8463 * need to add enough zero bytes after the string to handle 8464 * the 64bit alignment we do later. 8465 */ 8466 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8467 if (IS_ERR(name)) { 8468 name = "//toolong"; 8469 goto cpy_name; 8470 } 8471 inode = file_inode(vma->vm_file); 8472 dev = inode->i_sb->s_dev; 8473 ino = inode->i_ino; 8474 gen = inode->i_generation; 8475 maj = MAJOR(dev); 8476 min = MINOR(dev); 8477 8478 goto got_name; 8479 } else { 8480 if (vma->vm_ops && vma->vm_ops->name) { 8481 name = (char *) vma->vm_ops->name(vma); 8482 if (name) 8483 goto cpy_name; 8484 } 8485 8486 name = (char *)arch_vma_name(vma); 8487 if (name) 8488 goto cpy_name; 8489 8490 if (vma->vm_start <= vma->vm_mm->start_brk && 8491 vma->vm_end >= vma->vm_mm->brk) { 8492 name = "[heap]"; 8493 goto cpy_name; 8494 } 8495 if (vma->vm_start <= vma->vm_mm->start_stack && 8496 vma->vm_end >= vma->vm_mm->start_stack) { 8497 name = "[stack]"; 8498 goto cpy_name; 8499 } 8500 8501 name = "//anon"; 8502 goto cpy_name; 8503 } 8504 8505 cpy_name: 8506 strlcpy(tmp, name, sizeof(tmp)); 8507 name = tmp; 8508 got_name: 8509 /* 8510 * Since our buffer works in 8 byte units we need to align our string 8511 * size to a multiple of 8. However, we must guarantee the tail end is 8512 * zero'd out to avoid leaking random bits to userspace. 8513 */ 8514 size = strlen(name)+1; 8515 while (!IS_ALIGNED(size, sizeof(u64))) 8516 name[size++] = '\0'; 8517 8518 mmap_event->file_name = name; 8519 mmap_event->file_size = size; 8520 mmap_event->maj = maj; 8521 mmap_event->min = min; 8522 mmap_event->ino = ino; 8523 mmap_event->ino_generation = gen; 8524 mmap_event->prot = prot; 8525 mmap_event->flags = flags; 8526 8527 if (!(vma->vm_flags & VM_EXEC)) 8528 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8529 8530 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8531 8532 if (atomic_read(&nr_build_id_events)) 8533 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8534 8535 perf_iterate_sb(perf_event_mmap_output, 8536 mmap_event, 8537 NULL); 8538 8539 kfree(buf); 8540 } 8541 8542 /* 8543 * Check whether inode and address range match filter criteria. 8544 */ 8545 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8546 struct file *file, unsigned long offset, 8547 unsigned long size) 8548 { 8549 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8550 if (!filter->path.dentry) 8551 return false; 8552 8553 if (d_inode(filter->path.dentry) != file_inode(file)) 8554 return false; 8555 8556 if (filter->offset > offset + size) 8557 return false; 8558 8559 if (filter->offset + filter->size < offset) 8560 return false; 8561 8562 return true; 8563 } 8564 8565 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8566 struct vm_area_struct *vma, 8567 struct perf_addr_filter_range *fr) 8568 { 8569 unsigned long vma_size = vma->vm_end - vma->vm_start; 8570 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8571 struct file *file = vma->vm_file; 8572 8573 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8574 return false; 8575 8576 if (filter->offset < off) { 8577 fr->start = vma->vm_start; 8578 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8579 } else { 8580 fr->start = vma->vm_start + filter->offset - off; 8581 fr->size = min(vma->vm_end - fr->start, filter->size); 8582 } 8583 8584 return true; 8585 } 8586 8587 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8588 { 8589 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8590 struct vm_area_struct *vma = data; 8591 struct perf_addr_filter *filter; 8592 unsigned int restart = 0, count = 0; 8593 unsigned long flags; 8594 8595 if (!has_addr_filter(event)) 8596 return; 8597 8598 if (!vma->vm_file) 8599 return; 8600 8601 raw_spin_lock_irqsave(&ifh->lock, flags); 8602 list_for_each_entry(filter, &ifh->list, entry) { 8603 if (perf_addr_filter_vma_adjust(filter, vma, 8604 &event->addr_filter_ranges[count])) 8605 restart++; 8606 8607 count++; 8608 } 8609 8610 if (restart) 8611 event->addr_filters_gen++; 8612 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8613 8614 if (restart) 8615 perf_event_stop(event, 1); 8616 } 8617 8618 /* 8619 * Adjust all task's events' filters to the new vma 8620 */ 8621 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8622 { 8623 struct perf_event_context *ctx; 8624 int ctxn; 8625 8626 /* 8627 * Data tracing isn't supported yet and as such there is no need 8628 * to keep track of anything that isn't related to executable code: 8629 */ 8630 if (!(vma->vm_flags & VM_EXEC)) 8631 return; 8632 8633 rcu_read_lock(); 8634 for_each_task_context_nr(ctxn) { 8635 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8636 if (!ctx) 8637 continue; 8638 8639 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8640 } 8641 rcu_read_unlock(); 8642 } 8643 8644 void perf_event_mmap(struct vm_area_struct *vma) 8645 { 8646 struct perf_mmap_event mmap_event; 8647 8648 if (!atomic_read(&nr_mmap_events)) 8649 return; 8650 8651 mmap_event = (struct perf_mmap_event){ 8652 .vma = vma, 8653 /* .file_name */ 8654 /* .file_size */ 8655 .event_id = { 8656 .header = { 8657 .type = PERF_RECORD_MMAP, 8658 .misc = PERF_RECORD_MISC_USER, 8659 /* .size */ 8660 }, 8661 /* .pid */ 8662 /* .tid */ 8663 .start = vma->vm_start, 8664 .len = vma->vm_end - vma->vm_start, 8665 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8666 }, 8667 /* .maj (attr_mmap2 only) */ 8668 /* .min (attr_mmap2 only) */ 8669 /* .ino (attr_mmap2 only) */ 8670 /* .ino_generation (attr_mmap2 only) */ 8671 /* .prot (attr_mmap2 only) */ 8672 /* .flags (attr_mmap2 only) */ 8673 }; 8674 8675 perf_addr_filters_adjust(vma); 8676 perf_event_mmap_event(&mmap_event); 8677 } 8678 8679 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8680 unsigned long size, u64 flags) 8681 { 8682 struct perf_output_handle handle; 8683 struct perf_sample_data sample; 8684 struct perf_aux_event { 8685 struct perf_event_header header; 8686 u64 offset; 8687 u64 size; 8688 u64 flags; 8689 } rec = { 8690 .header = { 8691 .type = PERF_RECORD_AUX, 8692 .misc = 0, 8693 .size = sizeof(rec), 8694 }, 8695 .offset = head, 8696 .size = size, 8697 .flags = flags, 8698 }; 8699 int ret; 8700 8701 perf_event_header__init_id(&rec.header, &sample, event); 8702 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8703 8704 if (ret) 8705 return; 8706 8707 perf_output_put(&handle, rec); 8708 perf_event__output_id_sample(event, &handle, &sample); 8709 8710 perf_output_end(&handle); 8711 } 8712 8713 /* 8714 * Lost/dropped samples logging 8715 */ 8716 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8717 { 8718 struct perf_output_handle handle; 8719 struct perf_sample_data sample; 8720 int ret; 8721 8722 struct { 8723 struct perf_event_header header; 8724 u64 lost; 8725 } lost_samples_event = { 8726 .header = { 8727 .type = PERF_RECORD_LOST_SAMPLES, 8728 .misc = 0, 8729 .size = sizeof(lost_samples_event), 8730 }, 8731 .lost = lost, 8732 }; 8733 8734 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8735 8736 ret = perf_output_begin(&handle, &sample, event, 8737 lost_samples_event.header.size); 8738 if (ret) 8739 return; 8740 8741 perf_output_put(&handle, lost_samples_event); 8742 perf_event__output_id_sample(event, &handle, &sample); 8743 perf_output_end(&handle); 8744 } 8745 8746 /* 8747 * context_switch tracking 8748 */ 8749 8750 struct perf_switch_event { 8751 struct task_struct *task; 8752 struct task_struct *next_prev; 8753 8754 struct { 8755 struct perf_event_header header; 8756 u32 next_prev_pid; 8757 u32 next_prev_tid; 8758 } event_id; 8759 }; 8760 8761 static int perf_event_switch_match(struct perf_event *event) 8762 { 8763 return event->attr.context_switch; 8764 } 8765 8766 static void perf_event_switch_output(struct perf_event *event, void *data) 8767 { 8768 struct perf_switch_event *se = data; 8769 struct perf_output_handle handle; 8770 struct perf_sample_data sample; 8771 int ret; 8772 8773 if (!perf_event_switch_match(event)) 8774 return; 8775 8776 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8777 if (event->ctx->task) { 8778 se->event_id.header.type = PERF_RECORD_SWITCH; 8779 se->event_id.header.size = sizeof(se->event_id.header); 8780 } else { 8781 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8782 se->event_id.header.size = sizeof(se->event_id); 8783 se->event_id.next_prev_pid = 8784 perf_event_pid(event, se->next_prev); 8785 se->event_id.next_prev_tid = 8786 perf_event_tid(event, se->next_prev); 8787 } 8788 8789 perf_event_header__init_id(&se->event_id.header, &sample, event); 8790 8791 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8792 if (ret) 8793 return; 8794 8795 if (event->ctx->task) 8796 perf_output_put(&handle, se->event_id.header); 8797 else 8798 perf_output_put(&handle, se->event_id); 8799 8800 perf_event__output_id_sample(event, &handle, &sample); 8801 8802 perf_output_end(&handle); 8803 } 8804 8805 static void perf_event_switch(struct task_struct *task, 8806 struct task_struct *next_prev, bool sched_in) 8807 { 8808 struct perf_switch_event switch_event; 8809 8810 /* N.B. caller checks nr_switch_events != 0 */ 8811 8812 switch_event = (struct perf_switch_event){ 8813 .task = task, 8814 .next_prev = next_prev, 8815 .event_id = { 8816 .header = { 8817 /* .type */ 8818 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8819 /* .size */ 8820 }, 8821 /* .next_prev_pid */ 8822 /* .next_prev_tid */ 8823 }, 8824 }; 8825 8826 if (!sched_in && task->on_rq) { 8827 switch_event.event_id.header.misc |= 8828 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8829 } 8830 8831 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 8832 } 8833 8834 /* 8835 * IRQ throttle logging 8836 */ 8837 8838 static void perf_log_throttle(struct perf_event *event, int enable) 8839 { 8840 struct perf_output_handle handle; 8841 struct perf_sample_data sample; 8842 int ret; 8843 8844 struct { 8845 struct perf_event_header header; 8846 u64 time; 8847 u64 id; 8848 u64 stream_id; 8849 } throttle_event = { 8850 .header = { 8851 .type = PERF_RECORD_THROTTLE, 8852 .misc = 0, 8853 .size = sizeof(throttle_event), 8854 }, 8855 .time = perf_event_clock(event), 8856 .id = primary_event_id(event), 8857 .stream_id = event->id, 8858 }; 8859 8860 if (enable) 8861 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8862 8863 perf_event_header__init_id(&throttle_event.header, &sample, event); 8864 8865 ret = perf_output_begin(&handle, &sample, event, 8866 throttle_event.header.size); 8867 if (ret) 8868 return; 8869 8870 perf_output_put(&handle, throttle_event); 8871 perf_event__output_id_sample(event, &handle, &sample); 8872 perf_output_end(&handle); 8873 } 8874 8875 /* 8876 * ksymbol register/unregister tracking 8877 */ 8878 8879 struct perf_ksymbol_event { 8880 const char *name; 8881 int name_len; 8882 struct { 8883 struct perf_event_header header; 8884 u64 addr; 8885 u32 len; 8886 u16 ksym_type; 8887 u16 flags; 8888 } event_id; 8889 }; 8890 8891 static int perf_event_ksymbol_match(struct perf_event *event) 8892 { 8893 return event->attr.ksymbol; 8894 } 8895 8896 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8897 { 8898 struct perf_ksymbol_event *ksymbol_event = data; 8899 struct perf_output_handle handle; 8900 struct perf_sample_data sample; 8901 int ret; 8902 8903 if (!perf_event_ksymbol_match(event)) 8904 return; 8905 8906 perf_event_header__init_id(&ksymbol_event->event_id.header, 8907 &sample, event); 8908 ret = perf_output_begin(&handle, &sample, event, 8909 ksymbol_event->event_id.header.size); 8910 if (ret) 8911 return; 8912 8913 perf_output_put(&handle, ksymbol_event->event_id); 8914 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8915 perf_event__output_id_sample(event, &handle, &sample); 8916 8917 perf_output_end(&handle); 8918 } 8919 8920 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8921 const char *sym) 8922 { 8923 struct perf_ksymbol_event ksymbol_event; 8924 char name[KSYM_NAME_LEN]; 8925 u16 flags = 0; 8926 int name_len; 8927 8928 if (!atomic_read(&nr_ksymbol_events)) 8929 return; 8930 8931 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8932 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8933 goto err; 8934 8935 strlcpy(name, sym, KSYM_NAME_LEN); 8936 name_len = strlen(name) + 1; 8937 while (!IS_ALIGNED(name_len, sizeof(u64))) 8938 name[name_len++] = '\0'; 8939 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8940 8941 if (unregister) 8942 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8943 8944 ksymbol_event = (struct perf_ksymbol_event){ 8945 .name = name, 8946 .name_len = name_len, 8947 .event_id = { 8948 .header = { 8949 .type = PERF_RECORD_KSYMBOL, 8950 .size = sizeof(ksymbol_event.event_id) + 8951 name_len, 8952 }, 8953 .addr = addr, 8954 .len = len, 8955 .ksym_type = ksym_type, 8956 .flags = flags, 8957 }, 8958 }; 8959 8960 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8961 return; 8962 err: 8963 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8964 } 8965 8966 /* 8967 * bpf program load/unload tracking 8968 */ 8969 8970 struct perf_bpf_event { 8971 struct bpf_prog *prog; 8972 struct { 8973 struct perf_event_header header; 8974 u16 type; 8975 u16 flags; 8976 u32 id; 8977 u8 tag[BPF_TAG_SIZE]; 8978 } event_id; 8979 }; 8980 8981 static int perf_event_bpf_match(struct perf_event *event) 8982 { 8983 return event->attr.bpf_event; 8984 } 8985 8986 static void perf_event_bpf_output(struct perf_event *event, void *data) 8987 { 8988 struct perf_bpf_event *bpf_event = data; 8989 struct perf_output_handle handle; 8990 struct perf_sample_data sample; 8991 int ret; 8992 8993 if (!perf_event_bpf_match(event)) 8994 return; 8995 8996 perf_event_header__init_id(&bpf_event->event_id.header, 8997 &sample, event); 8998 ret = perf_output_begin(&handle, data, event, 8999 bpf_event->event_id.header.size); 9000 if (ret) 9001 return; 9002 9003 perf_output_put(&handle, bpf_event->event_id); 9004 perf_event__output_id_sample(event, &handle, &sample); 9005 9006 perf_output_end(&handle); 9007 } 9008 9009 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9010 enum perf_bpf_event_type type) 9011 { 9012 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9013 int i; 9014 9015 if (prog->aux->func_cnt == 0) { 9016 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9017 (u64)(unsigned long)prog->bpf_func, 9018 prog->jited_len, unregister, 9019 prog->aux->ksym.name); 9020 } else { 9021 for (i = 0; i < prog->aux->func_cnt; i++) { 9022 struct bpf_prog *subprog = prog->aux->func[i]; 9023 9024 perf_event_ksymbol( 9025 PERF_RECORD_KSYMBOL_TYPE_BPF, 9026 (u64)(unsigned long)subprog->bpf_func, 9027 subprog->jited_len, unregister, 9028 prog->aux->ksym.name); 9029 } 9030 } 9031 } 9032 9033 void perf_event_bpf_event(struct bpf_prog *prog, 9034 enum perf_bpf_event_type type, 9035 u16 flags) 9036 { 9037 struct perf_bpf_event bpf_event; 9038 9039 if (type <= PERF_BPF_EVENT_UNKNOWN || 9040 type >= PERF_BPF_EVENT_MAX) 9041 return; 9042 9043 switch (type) { 9044 case PERF_BPF_EVENT_PROG_LOAD: 9045 case PERF_BPF_EVENT_PROG_UNLOAD: 9046 if (atomic_read(&nr_ksymbol_events)) 9047 perf_event_bpf_emit_ksymbols(prog, type); 9048 break; 9049 default: 9050 break; 9051 } 9052 9053 if (!atomic_read(&nr_bpf_events)) 9054 return; 9055 9056 bpf_event = (struct perf_bpf_event){ 9057 .prog = prog, 9058 .event_id = { 9059 .header = { 9060 .type = PERF_RECORD_BPF_EVENT, 9061 .size = sizeof(bpf_event.event_id), 9062 }, 9063 .type = type, 9064 .flags = flags, 9065 .id = prog->aux->id, 9066 }, 9067 }; 9068 9069 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9070 9071 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9072 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9073 } 9074 9075 struct perf_text_poke_event { 9076 const void *old_bytes; 9077 const void *new_bytes; 9078 size_t pad; 9079 u16 old_len; 9080 u16 new_len; 9081 9082 struct { 9083 struct perf_event_header header; 9084 9085 u64 addr; 9086 } event_id; 9087 }; 9088 9089 static int perf_event_text_poke_match(struct perf_event *event) 9090 { 9091 return event->attr.text_poke; 9092 } 9093 9094 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9095 { 9096 struct perf_text_poke_event *text_poke_event = data; 9097 struct perf_output_handle handle; 9098 struct perf_sample_data sample; 9099 u64 padding = 0; 9100 int ret; 9101 9102 if (!perf_event_text_poke_match(event)) 9103 return; 9104 9105 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9106 9107 ret = perf_output_begin(&handle, &sample, event, 9108 text_poke_event->event_id.header.size); 9109 if (ret) 9110 return; 9111 9112 perf_output_put(&handle, text_poke_event->event_id); 9113 perf_output_put(&handle, text_poke_event->old_len); 9114 perf_output_put(&handle, text_poke_event->new_len); 9115 9116 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9117 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9118 9119 if (text_poke_event->pad) 9120 __output_copy(&handle, &padding, text_poke_event->pad); 9121 9122 perf_event__output_id_sample(event, &handle, &sample); 9123 9124 perf_output_end(&handle); 9125 } 9126 9127 void perf_event_text_poke(const void *addr, const void *old_bytes, 9128 size_t old_len, const void *new_bytes, size_t new_len) 9129 { 9130 struct perf_text_poke_event text_poke_event; 9131 size_t tot, pad; 9132 9133 if (!atomic_read(&nr_text_poke_events)) 9134 return; 9135 9136 tot = sizeof(text_poke_event.old_len) + old_len; 9137 tot += sizeof(text_poke_event.new_len) + new_len; 9138 pad = ALIGN(tot, sizeof(u64)) - tot; 9139 9140 text_poke_event = (struct perf_text_poke_event){ 9141 .old_bytes = old_bytes, 9142 .new_bytes = new_bytes, 9143 .pad = pad, 9144 .old_len = old_len, 9145 .new_len = new_len, 9146 .event_id = { 9147 .header = { 9148 .type = PERF_RECORD_TEXT_POKE, 9149 .misc = PERF_RECORD_MISC_KERNEL, 9150 .size = sizeof(text_poke_event.event_id) + tot + pad, 9151 }, 9152 .addr = (unsigned long)addr, 9153 }, 9154 }; 9155 9156 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9157 } 9158 9159 void perf_event_itrace_started(struct perf_event *event) 9160 { 9161 event->attach_state |= PERF_ATTACH_ITRACE; 9162 } 9163 9164 static void perf_log_itrace_start(struct perf_event *event) 9165 { 9166 struct perf_output_handle handle; 9167 struct perf_sample_data sample; 9168 struct perf_aux_event { 9169 struct perf_event_header header; 9170 u32 pid; 9171 u32 tid; 9172 } rec; 9173 int ret; 9174 9175 if (event->parent) 9176 event = event->parent; 9177 9178 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9179 event->attach_state & PERF_ATTACH_ITRACE) 9180 return; 9181 9182 rec.header.type = PERF_RECORD_ITRACE_START; 9183 rec.header.misc = 0; 9184 rec.header.size = sizeof(rec); 9185 rec.pid = perf_event_pid(event, current); 9186 rec.tid = perf_event_tid(event, current); 9187 9188 perf_event_header__init_id(&rec.header, &sample, event); 9189 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9190 9191 if (ret) 9192 return; 9193 9194 perf_output_put(&handle, rec); 9195 perf_event__output_id_sample(event, &handle, &sample); 9196 9197 perf_output_end(&handle); 9198 } 9199 9200 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9201 { 9202 struct perf_output_handle handle; 9203 struct perf_sample_data sample; 9204 struct perf_aux_event { 9205 struct perf_event_header header; 9206 u64 hw_id; 9207 } rec; 9208 int ret; 9209 9210 if (event->parent) 9211 event = event->parent; 9212 9213 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9214 rec.header.misc = 0; 9215 rec.header.size = sizeof(rec); 9216 rec.hw_id = hw_id; 9217 9218 perf_event_header__init_id(&rec.header, &sample, event); 9219 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9220 9221 if (ret) 9222 return; 9223 9224 perf_output_put(&handle, rec); 9225 perf_event__output_id_sample(event, &handle, &sample); 9226 9227 perf_output_end(&handle); 9228 } 9229 9230 static int 9231 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9232 { 9233 struct hw_perf_event *hwc = &event->hw; 9234 int ret = 0; 9235 u64 seq; 9236 9237 seq = __this_cpu_read(perf_throttled_seq); 9238 if (seq != hwc->interrupts_seq) { 9239 hwc->interrupts_seq = seq; 9240 hwc->interrupts = 1; 9241 } else { 9242 hwc->interrupts++; 9243 if (unlikely(throttle 9244 && hwc->interrupts >= max_samples_per_tick)) { 9245 __this_cpu_inc(perf_throttled_count); 9246 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9247 hwc->interrupts = MAX_INTERRUPTS; 9248 perf_log_throttle(event, 0); 9249 ret = 1; 9250 } 9251 } 9252 9253 if (event->attr.freq) { 9254 u64 now = perf_clock(); 9255 s64 delta = now - hwc->freq_time_stamp; 9256 9257 hwc->freq_time_stamp = now; 9258 9259 if (delta > 0 && delta < 2*TICK_NSEC) 9260 perf_adjust_period(event, delta, hwc->last_period, true); 9261 } 9262 9263 return ret; 9264 } 9265 9266 int perf_event_account_interrupt(struct perf_event *event) 9267 { 9268 return __perf_event_account_interrupt(event, 1); 9269 } 9270 9271 /* 9272 * Generic event overflow handling, sampling. 9273 */ 9274 9275 static int __perf_event_overflow(struct perf_event *event, 9276 int throttle, struct perf_sample_data *data, 9277 struct pt_regs *regs) 9278 { 9279 int events = atomic_read(&event->event_limit); 9280 int ret = 0; 9281 9282 /* 9283 * Non-sampling counters might still use the PMI to fold short 9284 * hardware counters, ignore those. 9285 */ 9286 if (unlikely(!is_sampling_event(event))) 9287 return 0; 9288 9289 ret = __perf_event_account_interrupt(event, throttle); 9290 9291 /* 9292 * XXX event_limit might not quite work as expected on inherited 9293 * events 9294 */ 9295 9296 event->pending_kill = POLL_IN; 9297 if (events && atomic_dec_and_test(&event->event_limit)) { 9298 ret = 1; 9299 event->pending_kill = POLL_HUP; 9300 event->pending_addr = data->addr; 9301 9302 perf_event_disable_inatomic(event); 9303 } 9304 9305 READ_ONCE(event->overflow_handler)(event, data, regs); 9306 9307 if (*perf_event_fasync(event) && event->pending_kill) { 9308 event->pending_wakeup = 1; 9309 irq_work_queue(&event->pending); 9310 } 9311 9312 return ret; 9313 } 9314 9315 int perf_event_overflow(struct perf_event *event, 9316 struct perf_sample_data *data, 9317 struct pt_regs *regs) 9318 { 9319 return __perf_event_overflow(event, 1, data, regs); 9320 } 9321 9322 /* 9323 * Generic software event infrastructure 9324 */ 9325 9326 struct swevent_htable { 9327 struct swevent_hlist *swevent_hlist; 9328 struct mutex hlist_mutex; 9329 int hlist_refcount; 9330 9331 /* Recursion avoidance in each contexts */ 9332 int recursion[PERF_NR_CONTEXTS]; 9333 }; 9334 9335 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9336 9337 /* 9338 * We directly increment event->count and keep a second value in 9339 * event->hw.period_left to count intervals. This period event 9340 * is kept in the range [-sample_period, 0] so that we can use the 9341 * sign as trigger. 9342 */ 9343 9344 u64 perf_swevent_set_period(struct perf_event *event) 9345 { 9346 struct hw_perf_event *hwc = &event->hw; 9347 u64 period = hwc->last_period; 9348 u64 nr, offset; 9349 s64 old, val; 9350 9351 hwc->last_period = hwc->sample_period; 9352 9353 again: 9354 old = val = local64_read(&hwc->period_left); 9355 if (val < 0) 9356 return 0; 9357 9358 nr = div64_u64(period + val, period); 9359 offset = nr * period; 9360 val -= offset; 9361 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9362 goto again; 9363 9364 return nr; 9365 } 9366 9367 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9368 struct perf_sample_data *data, 9369 struct pt_regs *regs) 9370 { 9371 struct hw_perf_event *hwc = &event->hw; 9372 int throttle = 0; 9373 9374 if (!overflow) 9375 overflow = perf_swevent_set_period(event); 9376 9377 if (hwc->interrupts == MAX_INTERRUPTS) 9378 return; 9379 9380 for (; overflow; overflow--) { 9381 if (__perf_event_overflow(event, throttle, 9382 data, regs)) { 9383 /* 9384 * We inhibit the overflow from happening when 9385 * hwc->interrupts == MAX_INTERRUPTS. 9386 */ 9387 break; 9388 } 9389 throttle = 1; 9390 } 9391 } 9392 9393 static void perf_swevent_event(struct perf_event *event, u64 nr, 9394 struct perf_sample_data *data, 9395 struct pt_regs *regs) 9396 { 9397 struct hw_perf_event *hwc = &event->hw; 9398 9399 local64_add(nr, &event->count); 9400 9401 if (!regs) 9402 return; 9403 9404 if (!is_sampling_event(event)) 9405 return; 9406 9407 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9408 data->period = nr; 9409 return perf_swevent_overflow(event, 1, data, regs); 9410 } else 9411 data->period = event->hw.last_period; 9412 9413 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9414 return perf_swevent_overflow(event, 1, data, regs); 9415 9416 if (local64_add_negative(nr, &hwc->period_left)) 9417 return; 9418 9419 perf_swevent_overflow(event, 0, data, regs); 9420 } 9421 9422 static int perf_exclude_event(struct perf_event *event, 9423 struct pt_regs *regs) 9424 { 9425 if (event->hw.state & PERF_HES_STOPPED) 9426 return 1; 9427 9428 if (regs) { 9429 if (event->attr.exclude_user && user_mode(regs)) 9430 return 1; 9431 9432 if (event->attr.exclude_kernel && !user_mode(regs)) 9433 return 1; 9434 } 9435 9436 return 0; 9437 } 9438 9439 static int perf_swevent_match(struct perf_event *event, 9440 enum perf_type_id type, 9441 u32 event_id, 9442 struct perf_sample_data *data, 9443 struct pt_regs *regs) 9444 { 9445 if (event->attr.type != type) 9446 return 0; 9447 9448 if (event->attr.config != event_id) 9449 return 0; 9450 9451 if (perf_exclude_event(event, regs)) 9452 return 0; 9453 9454 return 1; 9455 } 9456 9457 static inline u64 swevent_hash(u64 type, u32 event_id) 9458 { 9459 u64 val = event_id | (type << 32); 9460 9461 return hash_64(val, SWEVENT_HLIST_BITS); 9462 } 9463 9464 static inline struct hlist_head * 9465 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9466 { 9467 u64 hash = swevent_hash(type, event_id); 9468 9469 return &hlist->heads[hash]; 9470 } 9471 9472 /* For the read side: events when they trigger */ 9473 static inline struct hlist_head * 9474 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9475 { 9476 struct swevent_hlist *hlist; 9477 9478 hlist = rcu_dereference(swhash->swevent_hlist); 9479 if (!hlist) 9480 return NULL; 9481 9482 return __find_swevent_head(hlist, type, event_id); 9483 } 9484 9485 /* For the event head insertion and removal in the hlist */ 9486 static inline struct hlist_head * 9487 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9488 { 9489 struct swevent_hlist *hlist; 9490 u32 event_id = event->attr.config; 9491 u64 type = event->attr.type; 9492 9493 /* 9494 * Event scheduling is always serialized against hlist allocation 9495 * and release. Which makes the protected version suitable here. 9496 * The context lock guarantees that. 9497 */ 9498 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9499 lockdep_is_held(&event->ctx->lock)); 9500 if (!hlist) 9501 return NULL; 9502 9503 return __find_swevent_head(hlist, type, event_id); 9504 } 9505 9506 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9507 u64 nr, 9508 struct perf_sample_data *data, 9509 struct pt_regs *regs) 9510 { 9511 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9512 struct perf_event *event; 9513 struct hlist_head *head; 9514 9515 rcu_read_lock(); 9516 head = find_swevent_head_rcu(swhash, type, event_id); 9517 if (!head) 9518 goto end; 9519 9520 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9521 if (perf_swevent_match(event, type, event_id, data, regs)) 9522 perf_swevent_event(event, nr, data, regs); 9523 } 9524 end: 9525 rcu_read_unlock(); 9526 } 9527 9528 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9529 9530 int perf_swevent_get_recursion_context(void) 9531 { 9532 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9533 9534 return get_recursion_context(swhash->recursion); 9535 } 9536 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9537 9538 void perf_swevent_put_recursion_context(int rctx) 9539 { 9540 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9541 9542 put_recursion_context(swhash->recursion, rctx); 9543 } 9544 9545 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9546 { 9547 struct perf_sample_data data; 9548 9549 if (WARN_ON_ONCE(!regs)) 9550 return; 9551 9552 perf_sample_data_init(&data, addr, 0); 9553 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9554 } 9555 9556 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9557 { 9558 int rctx; 9559 9560 preempt_disable_notrace(); 9561 rctx = perf_swevent_get_recursion_context(); 9562 if (unlikely(rctx < 0)) 9563 goto fail; 9564 9565 ___perf_sw_event(event_id, nr, regs, addr); 9566 9567 perf_swevent_put_recursion_context(rctx); 9568 fail: 9569 preempt_enable_notrace(); 9570 } 9571 9572 static void perf_swevent_read(struct perf_event *event) 9573 { 9574 } 9575 9576 static int perf_swevent_add(struct perf_event *event, int flags) 9577 { 9578 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9579 struct hw_perf_event *hwc = &event->hw; 9580 struct hlist_head *head; 9581 9582 if (is_sampling_event(event)) { 9583 hwc->last_period = hwc->sample_period; 9584 perf_swevent_set_period(event); 9585 } 9586 9587 hwc->state = !(flags & PERF_EF_START); 9588 9589 head = find_swevent_head(swhash, event); 9590 if (WARN_ON_ONCE(!head)) 9591 return -EINVAL; 9592 9593 hlist_add_head_rcu(&event->hlist_entry, head); 9594 perf_event_update_userpage(event); 9595 9596 return 0; 9597 } 9598 9599 static void perf_swevent_del(struct perf_event *event, int flags) 9600 { 9601 hlist_del_rcu(&event->hlist_entry); 9602 } 9603 9604 static void perf_swevent_start(struct perf_event *event, int flags) 9605 { 9606 event->hw.state = 0; 9607 } 9608 9609 static void perf_swevent_stop(struct perf_event *event, int flags) 9610 { 9611 event->hw.state = PERF_HES_STOPPED; 9612 } 9613 9614 /* Deref the hlist from the update side */ 9615 static inline struct swevent_hlist * 9616 swevent_hlist_deref(struct swevent_htable *swhash) 9617 { 9618 return rcu_dereference_protected(swhash->swevent_hlist, 9619 lockdep_is_held(&swhash->hlist_mutex)); 9620 } 9621 9622 static void swevent_hlist_release(struct swevent_htable *swhash) 9623 { 9624 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9625 9626 if (!hlist) 9627 return; 9628 9629 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9630 kfree_rcu(hlist, rcu_head); 9631 } 9632 9633 static void swevent_hlist_put_cpu(int cpu) 9634 { 9635 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9636 9637 mutex_lock(&swhash->hlist_mutex); 9638 9639 if (!--swhash->hlist_refcount) 9640 swevent_hlist_release(swhash); 9641 9642 mutex_unlock(&swhash->hlist_mutex); 9643 } 9644 9645 static void swevent_hlist_put(void) 9646 { 9647 int cpu; 9648 9649 for_each_possible_cpu(cpu) 9650 swevent_hlist_put_cpu(cpu); 9651 } 9652 9653 static int swevent_hlist_get_cpu(int cpu) 9654 { 9655 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9656 int err = 0; 9657 9658 mutex_lock(&swhash->hlist_mutex); 9659 if (!swevent_hlist_deref(swhash) && 9660 cpumask_test_cpu(cpu, perf_online_mask)) { 9661 struct swevent_hlist *hlist; 9662 9663 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9664 if (!hlist) { 9665 err = -ENOMEM; 9666 goto exit; 9667 } 9668 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9669 } 9670 swhash->hlist_refcount++; 9671 exit: 9672 mutex_unlock(&swhash->hlist_mutex); 9673 9674 return err; 9675 } 9676 9677 static int swevent_hlist_get(void) 9678 { 9679 int err, cpu, failed_cpu; 9680 9681 mutex_lock(&pmus_lock); 9682 for_each_possible_cpu(cpu) { 9683 err = swevent_hlist_get_cpu(cpu); 9684 if (err) { 9685 failed_cpu = cpu; 9686 goto fail; 9687 } 9688 } 9689 mutex_unlock(&pmus_lock); 9690 return 0; 9691 fail: 9692 for_each_possible_cpu(cpu) { 9693 if (cpu == failed_cpu) 9694 break; 9695 swevent_hlist_put_cpu(cpu); 9696 } 9697 mutex_unlock(&pmus_lock); 9698 return err; 9699 } 9700 9701 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9702 9703 static void sw_perf_event_destroy(struct perf_event *event) 9704 { 9705 u64 event_id = event->attr.config; 9706 9707 WARN_ON(event->parent); 9708 9709 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9710 swevent_hlist_put(); 9711 } 9712 9713 static int perf_swevent_init(struct perf_event *event) 9714 { 9715 u64 event_id = event->attr.config; 9716 9717 if (event->attr.type != PERF_TYPE_SOFTWARE) 9718 return -ENOENT; 9719 9720 /* 9721 * no branch sampling for software events 9722 */ 9723 if (has_branch_stack(event)) 9724 return -EOPNOTSUPP; 9725 9726 switch (event_id) { 9727 case PERF_COUNT_SW_CPU_CLOCK: 9728 case PERF_COUNT_SW_TASK_CLOCK: 9729 return -ENOENT; 9730 9731 default: 9732 break; 9733 } 9734 9735 if (event_id >= PERF_COUNT_SW_MAX) 9736 return -ENOENT; 9737 9738 if (!event->parent) { 9739 int err; 9740 9741 err = swevent_hlist_get(); 9742 if (err) 9743 return err; 9744 9745 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9746 event->destroy = sw_perf_event_destroy; 9747 } 9748 9749 return 0; 9750 } 9751 9752 static struct pmu perf_swevent = { 9753 .task_ctx_nr = perf_sw_context, 9754 9755 .capabilities = PERF_PMU_CAP_NO_NMI, 9756 9757 .event_init = perf_swevent_init, 9758 .add = perf_swevent_add, 9759 .del = perf_swevent_del, 9760 .start = perf_swevent_start, 9761 .stop = perf_swevent_stop, 9762 .read = perf_swevent_read, 9763 }; 9764 9765 #ifdef CONFIG_EVENT_TRACING 9766 9767 static int perf_tp_filter_match(struct perf_event *event, 9768 struct perf_sample_data *data) 9769 { 9770 void *record = data->raw->frag.data; 9771 9772 /* only top level events have filters set */ 9773 if (event->parent) 9774 event = event->parent; 9775 9776 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9777 return 1; 9778 return 0; 9779 } 9780 9781 static int perf_tp_event_match(struct perf_event *event, 9782 struct perf_sample_data *data, 9783 struct pt_regs *regs) 9784 { 9785 if (event->hw.state & PERF_HES_STOPPED) 9786 return 0; 9787 /* 9788 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9789 */ 9790 if (event->attr.exclude_kernel && !user_mode(regs)) 9791 return 0; 9792 9793 if (!perf_tp_filter_match(event, data)) 9794 return 0; 9795 9796 return 1; 9797 } 9798 9799 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9800 struct trace_event_call *call, u64 count, 9801 struct pt_regs *regs, struct hlist_head *head, 9802 struct task_struct *task) 9803 { 9804 if (bpf_prog_array_valid(call)) { 9805 *(struct pt_regs **)raw_data = regs; 9806 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9807 perf_swevent_put_recursion_context(rctx); 9808 return; 9809 } 9810 } 9811 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9812 rctx, task); 9813 } 9814 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9815 9816 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9817 struct pt_regs *regs, struct hlist_head *head, int rctx, 9818 struct task_struct *task) 9819 { 9820 struct perf_sample_data data; 9821 struct perf_event *event; 9822 9823 struct perf_raw_record raw = { 9824 .frag = { 9825 .size = entry_size, 9826 .data = record, 9827 }, 9828 }; 9829 9830 perf_sample_data_init(&data, 0, 0); 9831 data.raw = &raw; 9832 9833 perf_trace_buf_update(record, event_type); 9834 9835 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9836 if (perf_tp_event_match(event, &data, regs)) 9837 perf_swevent_event(event, count, &data, regs); 9838 } 9839 9840 /* 9841 * If we got specified a target task, also iterate its context and 9842 * deliver this event there too. 9843 */ 9844 if (task && task != current) { 9845 struct perf_event_context *ctx; 9846 struct trace_entry *entry = record; 9847 9848 rcu_read_lock(); 9849 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9850 if (!ctx) 9851 goto unlock; 9852 9853 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9854 if (event->cpu != smp_processor_id()) 9855 continue; 9856 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9857 continue; 9858 if (event->attr.config != entry->type) 9859 continue; 9860 /* Cannot deliver synchronous signal to other task. */ 9861 if (event->attr.sigtrap) 9862 continue; 9863 if (perf_tp_event_match(event, &data, regs)) 9864 perf_swevent_event(event, count, &data, regs); 9865 } 9866 unlock: 9867 rcu_read_unlock(); 9868 } 9869 9870 perf_swevent_put_recursion_context(rctx); 9871 } 9872 EXPORT_SYMBOL_GPL(perf_tp_event); 9873 9874 static void tp_perf_event_destroy(struct perf_event *event) 9875 { 9876 perf_trace_destroy(event); 9877 } 9878 9879 static int perf_tp_event_init(struct perf_event *event) 9880 { 9881 int err; 9882 9883 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9884 return -ENOENT; 9885 9886 /* 9887 * no branch sampling for tracepoint events 9888 */ 9889 if (has_branch_stack(event)) 9890 return -EOPNOTSUPP; 9891 9892 err = perf_trace_init(event); 9893 if (err) 9894 return err; 9895 9896 event->destroy = tp_perf_event_destroy; 9897 9898 return 0; 9899 } 9900 9901 static struct pmu perf_tracepoint = { 9902 .task_ctx_nr = perf_sw_context, 9903 9904 .event_init = perf_tp_event_init, 9905 .add = perf_trace_add, 9906 .del = perf_trace_del, 9907 .start = perf_swevent_start, 9908 .stop = perf_swevent_stop, 9909 .read = perf_swevent_read, 9910 }; 9911 9912 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9913 /* 9914 * Flags in config, used by dynamic PMU kprobe and uprobe 9915 * The flags should match following PMU_FORMAT_ATTR(). 9916 * 9917 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9918 * if not set, create kprobe/uprobe 9919 * 9920 * The following values specify a reference counter (or semaphore in the 9921 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9922 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9923 * 9924 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9925 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9926 */ 9927 enum perf_probe_config { 9928 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9929 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9930 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9931 }; 9932 9933 PMU_FORMAT_ATTR(retprobe, "config:0"); 9934 #endif 9935 9936 #ifdef CONFIG_KPROBE_EVENTS 9937 static struct attribute *kprobe_attrs[] = { 9938 &format_attr_retprobe.attr, 9939 NULL, 9940 }; 9941 9942 static struct attribute_group kprobe_format_group = { 9943 .name = "format", 9944 .attrs = kprobe_attrs, 9945 }; 9946 9947 static const struct attribute_group *kprobe_attr_groups[] = { 9948 &kprobe_format_group, 9949 NULL, 9950 }; 9951 9952 static int perf_kprobe_event_init(struct perf_event *event); 9953 static struct pmu perf_kprobe = { 9954 .task_ctx_nr = perf_sw_context, 9955 .event_init = perf_kprobe_event_init, 9956 .add = perf_trace_add, 9957 .del = perf_trace_del, 9958 .start = perf_swevent_start, 9959 .stop = perf_swevent_stop, 9960 .read = perf_swevent_read, 9961 .attr_groups = kprobe_attr_groups, 9962 }; 9963 9964 static int perf_kprobe_event_init(struct perf_event *event) 9965 { 9966 int err; 9967 bool is_retprobe; 9968 9969 if (event->attr.type != perf_kprobe.type) 9970 return -ENOENT; 9971 9972 if (!perfmon_capable()) 9973 return -EACCES; 9974 9975 /* 9976 * no branch sampling for probe events 9977 */ 9978 if (has_branch_stack(event)) 9979 return -EOPNOTSUPP; 9980 9981 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9982 err = perf_kprobe_init(event, is_retprobe); 9983 if (err) 9984 return err; 9985 9986 event->destroy = perf_kprobe_destroy; 9987 9988 return 0; 9989 } 9990 #endif /* CONFIG_KPROBE_EVENTS */ 9991 9992 #ifdef CONFIG_UPROBE_EVENTS 9993 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9994 9995 static struct attribute *uprobe_attrs[] = { 9996 &format_attr_retprobe.attr, 9997 &format_attr_ref_ctr_offset.attr, 9998 NULL, 9999 }; 10000 10001 static struct attribute_group uprobe_format_group = { 10002 .name = "format", 10003 .attrs = uprobe_attrs, 10004 }; 10005 10006 static const struct attribute_group *uprobe_attr_groups[] = { 10007 &uprobe_format_group, 10008 NULL, 10009 }; 10010 10011 static int perf_uprobe_event_init(struct perf_event *event); 10012 static struct pmu perf_uprobe = { 10013 .task_ctx_nr = perf_sw_context, 10014 .event_init = perf_uprobe_event_init, 10015 .add = perf_trace_add, 10016 .del = perf_trace_del, 10017 .start = perf_swevent_start, 10018 .stop = perf_swevent_stop, 10019 .read = perf_swevent_read, 10020 .attr_groups = uprobe_attr_groups, 10021 }; 10022 10023 static int perf_uprobe_event_init(struct perf_event *event) 10024 { 10025 int err; 10026 unsigned long ref_ctr_offset; 10027 bool is_retprobe; 10028 10029 if (event->attr.type != perf_uprobe.type) 10030 return -ENOENT; 10031 10032 if (!perfmon_capable()) 10033 return -EACCES; 10034 10035 /* 10036 * no branch sampling for probe events 10037 */ 10038 if (has_branch_stack(event)) 10039 return -EOPNOTSUPP; 10040 10041 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10042 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10043 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10044 if (err) 10045 return err; 10046 10047 event->destroy = perf_uprobe_destroy; 10048 10049 return 0; 10050 } 10051 #endif /* CONFIG_UPROBE_EVENTS */ 10052 10053 static inline void perf_tp_register(void) 10054 { 10055 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10056 #ifdef CONFIG_KPROBE_EVENTS 10057 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10058 #endif 10059 #ifdef CONFIG_UPROBE_EVENTS 10060 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10061 #endif 10062 } 10063 10064 static void perf_event_free_filter(struct perf_event *event) 10065 { 10066 ftrace_profile_free_filter(event); 10067 } 10068 10069 #ifdef CONFIG_BPF_SYSCALL 10070 static void bpf_overflow_handler(struct perf_event *event, 10071 struct perf_sample_data *data, 10072 struct pt_regs *regs) 10073 { 10074 struct bpf_perf_event_data_kern ctx = { 10075 .data = data, 10076 .event = event, 10077 }; 10078 struct bpf_prog *prog; 10079 int ret = 0; 10080 10081 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10082 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10083 goto out; 10084 rcu_read_lock(); 10085 prog = READ_ONCE(event->prog); 10086 if (prog) 10087 ret = bpf_prog_run(prog, &ctx); 10088 rcu_read_unlock(); 10089 out: 10090 __this_cpu_dec(bpf_prog_active); 10091 if (!ret) 10092 return; 10093 10094 event->orig_overflow_handler(event, data, regs); 10095 } 10096 10097 static int perf_event_set_bpf_handler(struct perf_event *event, 10098 struct bpf_prog *prog, 10099 u64 bpf_cookie) 10100 { 10101 if (event->overflow_handler_context) 10102 /* hw breakpoint or kernel counter */ 10103 return -EINVAL; 10104 10105 if (event->prog) 10106 return -EEXIST; 10107 10108 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10109 return -EINVAL; 10110 10111 if (event->attr.precise_ip && 10112 prog->call_get_stack && 10113 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) || 10114 event->attr.exclude_callchain_kernel || 10115 event->attr.exclude_callchain_user)) { 10116 /* 10117 * On perf_event with precise_ip, calling bpf_get_stack() 10118 * may trigger unwinder warnings and occasional crashes. 10119 * bpf_get_[stack|stackid] works around this issue by using 10120 * callchain attached to perf_sample_data. If the 10121 * perf_event does not full (kernel and user) callchain 10122 * attached to perf_sample_data, do not allow attaching BPF 10123 * program that calls bpf_get_[stack|stackid]. 10124 */ 10125 return -EPROTO; 10126 } 10127 10128 event->prog = prog; 10129 event->bpf_cookie = bpf_cookie; 10130 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10131 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10132 return 0; 10133 } 10134 10135 static void perf_event_free_bpf_handler(struct perf_event *event) 10136 { 10137 struct bpf_prog *prog = event->prog; 10138 10139 if (!prog) 10140 return; 10141 10142 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10143 event->prog = NULL; 10144 bpf_prog_put(prog); 10145 } 10146 #else 10147 static int perf_event_set_bpf_handler(struct perf_event *event, 10148 struct bpf_prog *prog, 10149 u64 bpf_cookie) 10150 { 10151 return -EOPNOTSUPP; 10152 } 10153 static void perf_event_free_bpf_handler(struct perf_event *event) 10154 { 10155 } 10156 #endif 10157 10158 /* 10159 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10160 * with perf_event_open() 10161 */ 10162 static inline bool perf_event_is_tracing(struct perf_event *event) 10163 { 10164 if (event->pmu == &perf_tracepoint) 10165 return true; 10166 #ifdef CONFIG_KPROBE_EVENTS 10167 if (event->pmu == &perf_kprobe) 10168 return true; 10169 #endif 10170 #ifdef CONFIG_UPROBE_EVENTS 10171 if (event->pmu == &perf_uprobe) 10172 return true; 10173 #endif 10174 return false; 10175 } 10176 10177 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10178 u64 bpf_cookie) 10179 { 10180 bool is_kprobe, is_tracepoint, is_syscall_tp; 10181 10182 if (!perf_event_is_tracing(event)) 10183 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10184 10185 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 10186 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10187 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10188 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 10189 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10190 return -EINVAL; 10191 10192 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 10193 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10194 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10195 return -EINVAL; 10196 10197 /* Kprobe override only works for kprobes, not uprobes. */ 10198 if (prog->kprobe_override && 10199 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) 10200 return -EINVAL; 10201 10202 if (is_tracepoint || is_syscall_tp) { 10203 int off = trace_event_get_offsets(event->tp_event); 10204 10205 if (prog->aux->max_ctx_offset > off) 10206 return -EACCES; 10207 } 10208 10209 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10210 } 10211 10212 void perf_event_free_bpf_prog(struct perf_event *event) 10213 { 10214 if (!perf_event_is_tracing(event)) { 10215 perf_event_free_bpf_handler(event); 10216 return; 10217 } 10218 perf_event_detach_bpf_prog(event); 10219 } 10220 10221 #else 10222 10223 static inline void perf_tp_register(void) 10224 { 10225 } 10226 10227 static void perf_event_free_filter(struct perf_event *event) 10228 { 10229 } 10230 10231 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10232 u64 bpf_cookie) 10233 { 10234 return -ENOENT; 10235 } 10236 10237 void perf_event_free_bpf_prog(struct perf_event *event) 10238 { 10239 } 10240 #endif /* CONFIG_EVENT_TRACING */ 10241 10242 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10243 void perf_bp_event(struct perf_event *bp, void *data) 10244 { 10245 struct perf_sample_data sample; 10246 struct pt_regs *regs = data; 10247 10248 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10249 10250 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10251 perf_swevent_event(bp, 1, &sample, regs); 10252 } 10253 #endif 10254 10255 /* 10256 * Allocate a new address filter 10257 */ 10258 static struct perf_addr_filter * 10259 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10260 { 10261 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10262 struct perf_addr_filter *filter; 10263 10264 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10265 if (!filter) 10266 return NULL; 10267 10268 INIT_LIST_HEAD(&filter->entry); 10269 list_add_tail(&filter->entry, filters); 10270 10271 return filter; 10272 } 10273 10274 static void free_filters_list(struct list_head *filters) 10275 { 10276 struct perf_addr_filter *filter, *iter; 10277 10278 list_for_each_entry_safe(filter, iter, filters, entry) { 10279 path_put(&filter->path); 10280 list_del(&filter->entry); 10281 kfree(filter); 10282 } 10283 } 10284 10285 /* 10286 * Free existing address filters and optionally install new ones 10287 */ 10288 static void perf_addr_filters_splice(struct perf_event *event, 10289 struct list_head *head) 10290 { 10291 unsigned long flags; 10292 LIST_HEAD(list); 10293 10294 if (!has_addr_filter(event)) 10295 return; 10296 10297 /* don't bother with children, they don't have their own filters */ 10298 if (event->parent) 10299 return; 10300 10301 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10302 10303 list_splice_init(&event->addr_filters.list, &list); 10304 if (head) 10305 list_splice(head, &event->addr_filters.list); 10306 10307 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10308 10309 free_filters_list(&list); 10310 } 10311 10312 /* 10313 * Scan through mm's vmas and see if one of them matches the 10314 * @filter; if so, adjust filter's address range. 10315 * Called with mm::mmap_lock down for reading. 10316 */ 10317 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10318 struct mm_struct *mm, 10319 struct perf_addr_filter_range *fr) 10320 { 10321 struct vm_area_struct *vma; 10322 10323 for (vma = mm->mmap; vma; vma = vma->vm_next) { 10324 if (!vma->vm_file) 10325 continue; 10326 10327 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10328 return; 10329 } 10330 } 10331 10332 /* 10333 * Update event's address range filters based on the 10334 * task's existing mappings, if any. 10335 */ 10336 static void perf_event_addr_filters_apply(struct perf_event *event) 10337 { 10338 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10339 struct task_struct *task = READ_ONCE(event->ctx->task); 10340 struct perf_addr_filter *filter; 10341 struct mm_struct *mm = NULL; 10342 unsigned int count = 0; 10343 unsigned long flags; 10344 10345 /* 10346 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10347 * will stop on the parent's child_mutex that our caller is also holding 10348 */ 10349 if (task == TASK_TOMBSTONE) 10350 return; 10351 10352 if (ifh->nr_file_filters) { 10353 mm = get_task_mm(task); 10354 if (!mm) 10355 goto restart; 10356 10357 mmap_read_lock(mm); 10358 } 10359 10360 raw_spin_lock_irqsave(&ifh->lock, flags); 10361 list_for_each_entry(filter, &ifh->list, entry) { 10362 if (filter->path.dentry) { 10363 /* 10364 * Adjust base offset if the filter is associated to a 10365 * binary that needs to be mapped: 10366 */ 10367 event->addr_filter_ranges[count].start = 0; 10368 event->addr_filter_ranges[count].size = 0; 10369 10370 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10371 } else { 10372 event->addr_filter_ranges[count].start = filter->offset; 10373 event->addr_filter_ranges[count].size = filter->size; 10374 } 10375 10376 count++; 10377 } 10378 10379 event->addr_filters_gen++; 10380 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10381 10382 if (ifh->nr_file_filters) { 10383 mmap_read_unlock(mm); 10384 10385 mmput(mm); 10386 } 10387 10388 restart: 10389 perf_event_stop(event, 1); 10390 } 10391 10392 /* 10393 * Address range filtering: limiting the data to certain 10394 * instruction address ranges. Filters are ioctl()ed to us from 10395 * userspace as ascii strings. 10396 * 10397 * Filter string format: 10398 * 10399 * ACTION RANGE_SPEC 10400 * where ACTION is one of the 10401 * * "filter": limit the trace to this region 10402 * * "start": start tracing from this address 10403 * * "stop": stop tracing at this address/region; 10404 * RANGE_SPEC is 10405 * * for kernel addresses: <start address>[/<size>] 10406 * * for object files: <start address>[/<size>]@</path/to/object/file> 10407 * 10408 * if <size> is not specified or is zero, the range is treated as a single 10409 * address; not valid for ACTION=="filter". 10410 */ 10411 enum { 10412 IF_ACT_NONE = -1, 10413 IF_ACT_FILTER, 10414 IF_ACT_START, 10415 IF_ACT_STOP, 10416 IF_SRC_FILE, 10417 IF_SRC_KERNEL, 10418 IF_SRC_FILEADDR, 10419 IF_SRC_KERNELADDR, 10420 }; 10421 10422 enum { 10423 IF_STATE_ACTION = 0, 10424 IF_STATE_SOURCE, 10425 IF_STATE_END, 10426 }; 10427 10428 static const match_table_t if_tokens = { 10429 { IF_ACT_FILTER, "filter" }, 10430 { IF_ACT_START, "start" }, 10431 { IF_ACT_STOP, "stop" }, 10432 { IF_SRC_FILE, "%u/%u@%s" }, 10433 { IF_SRC_KERNEL, "%u/%u" }, 10434 { IF_SRC_FILEADDR, "%u@%s" }, 10435 { IF_SRC_KERNELADDR, "%u" }, 10436 { IF_ACT_NONE, NULL }, 10437 }; 10438 10439 /* 10440 * Address filter string parser 10441 */ 10442 static int 10443 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10444 struct list_head *filters) 10445 { 10446 struct perf_addr_filter *filter = NULL; 10447 char *start, *orig, *filename = NULL; 10448 substring_t args[MAX_OPT_ARGS]; 10449 int state = IF_STATE_ACTION, token; 10450 unsigned int kernel = 0; 10451 int ret = -EINVAL; 10452 10453 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10454 if (!fstr) 10455 return -ENOMEM; 10456 10457 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10458 static const enum perf_addr_filter_action_t actions[] = { 10459 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10460 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10461 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10462 }; 10463 ret = -EINVAL; 10464 10465 if (!*start) 10466 continue; 10467 10468 /* filter definition begins */ 10469 if (state == IF_STATE_ACTION) { 10470 filter = perf_addr_filter_new(event, filters); 10471 if (!filter) 10472 goto fail; 10473 } 10474 10475 token = match_token(start, if_tokens, args); 10476 switch (token) { 10477 case IF_ACT_FILTER: 10478 case IF_ACT_START: 10479 case IF_ACT_STOP: 10480 if (state != IF_STATE_ACTION) 10481 goto fail; 10482 10483 filter->action = actions[token]; 10484 state = IF_STATE_SOURCE; 10485 break; 10486 10487 case IF_SRC_KERNELADDR: 10488 case IF_SRC_KERNEL: 10489 kernel = 1; 10490 fallthrough; 10491 10492 case IF_SRC_FILEADDR: 10493 case IF_SRC_FILE: 10494 if (state != IF_STATE_SOURCE) 10495 goto fail; 10496 10497 *args[0].to = 0; 10498 ret = kstrtoul(args[0].from, 0, &filter->offset); 10499 if (ret) 10500 goto fail; 10501 10502 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10503 *args[1].to = 0; 10504 ret = kstrtoul(args[1].from, 0, &filter->size); 10505 if (ret) 10506 goto fail; 10507 } 10508 10509 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10510 int fpos = token == IF_SRC_FILE ? 2 : 1; 10511 10512 kfree(filename); 10513 filename = match_strdup(&args[fpos]); 10514 if (!filename) { 10515 ret = -ENOMEM; 10516 goto fail; 10517 } 10518 } 10519 10520 state = IF_STATE_END; 10521 break; 10522 10523 default: 10524 goto fail; 10525 } 10526 10527 /* 10528 * Filter definition is fully parsed, validate and install it. 10529 * Make sure that it doesn't contradict itself or the event's 10530 * attribute. 10531 */ 10532 if (state == IF_STATE_END) { 10533 ret = -EINVAL; 10534 if (kernel && event->attr.exclude_kernel) 10535 goto fail; 10536 10537 /* 10538 * ACTION "filter" must have a non-zero length region 10539 * specified. 10540 */ 10541 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10542 !filter->size) 10543 goto fail; 10544 10545 if (!kernel) { 10546 if (!filename) 10547 goto fail; 10548 10549 /* 10550 * For now, we only support file-based filters 10551 * in per-task events; doing so for CPU-wide 10552 * events requires additional context switching 10553 * trickery, since same object code will be 10554 * mapped at different virtual addresses in 10555 * different processes. 10556 */ 10557 ret = -EOPNOTSUPP; 10558 if (!event->ctx->task) 10559 goto fail; 10560 10561 /* look up the path and grab its inode */ 10562 ret = kern_path(filename, LOOKUP_FOLLOW, 10563 &filter->path); 10564 if (ret) 10565 goto fail; 10566 10567 ret = -EINVAL; 10568 if (!filter->path.dentry || 10569 !S_ISREG(d_inode(filter->path.dentry) 10570 ->i_mode)) 10571 goto fail; 10572 10573 event->addr_filters.nr_file_filters++; 10574 } 10575 10576 /* ready to consume more filters */ 10577 state = IF_STATE_ACTION; 10578 filter = NULL; 10579 } 10580 } 10581 10582 if (state != IF_STATE_ACTION) 10583 goto fail; 10584 10585 kfree(filename); 10586 kfree(orig); 10587 10588 return 0; 10589 10590 fail: 10591 kfree(filename); 10592 free_filters_list(filters); 10593 kfree(orig); 10594 10595 return ret; 10596 } 10597 10598 static int 10599 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10600 { 10601 LIST_HEAD(filters); 10602 int ret; 10603 10604 /* 10605 * Since this is called in perf_ioctl() path, we're already holding 10606 * ctx::mutex. 10607 */ 10608 lockdep_assert_held(&event->ctx->mutex); 10609 10610 if (WARN_ON_ONCE(event->parent)) 10611 return -EINVAL; 10612 10613 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10614 if (ret) 10615 goto fail_clear_files; 10616 10617 ret = event->pmu->addr_filters_validate(&filters); 10618 if (ret) 10619 goto fail_free_filters; 10620 10621 /* remove existing filters, if any */ 10622 perf_addr_filters_splice(event, &filters); 10623 10624 /* install new filters */ 10625 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10626 10627 return ret; 10628 10629 fail_free_filters: 10630 free_filters_list(&filters); 10631 10632 fail_clear_files: 10633 event->addr_filters.nr_file_filters = 0; 10634 10635 return ret; 10636 } 10637 10638 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10639 { 10640 int ret = -EINVAL; 10641 char *filter_str; 10642 10643 filter_str = strndup_user(arg, PAGE_SIZE); 10644 if (IS_ERR(filter_str)) 10645 return PTR_ERR(filter_str); 10646 10647 #ifdef CONFIG_EVENT_TRACING 10648 if (perf_event_is_tracing(event)) { 10649 struct perf_event_context *ctx = event->ctx; 10650 10651 /* 10652 * Beware, here be dragons!! 10653 * 10654 * the tracepoint muck will deadlock against ctx->mutex, but 10655 * the tracepoint stuff does not actually need it. So 10656 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10657 * already have a reference on ctx. 10658 * 10659 * This can result in event getting moved to a different ctx, 10660 * but that does not affect the tracepoint state. 10661 */ 10662 mutex_unlock(&ctx->mutex); 10663 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10664 mutex_lock(&ctx->mutex); 10665 } else 10666 #endif 10667 if (has_addr_filter(event)) 10668 ret = perf_event_set_addr_filter(event, filter_str); 10669 10670 kfree(filter_str); 10671 return ret; 10672 } 10673 10674 /* 10675 * hrtimer based swevent callback 10676 */ 10677 10678 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10679 { 10680 enum hrtimer_restart ret = HRTIMER_RESTART; 10681 struct perf_sample_data data; 10682 struct pt_regs *regs; 10683 struct perf_event *event; 10684 u64 period; 10685 10686 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10687 10688 if (event->state != PERF_EVENT_STATE_ACTIVE) 10689 return HRTIMER_NORESTART; 10690 10691 event->pmu->read(event); 10692 10693 perf_sample_data_init(&data, 0, event->hw.last_period); 10694 regs = get_irq_regs(); 10695 10696 if (regs && !perf_exclude_event(event, regs)) { 10697 if (!(event->attr.exclude_idle && is_idle_task(current))) 10698 if (__perf_event_overflow(event, 1, &data, regs)) 10699 ret = HRTIMER_NORESTART; 10700 } 10701 10702 period = max_t(u64, 10000, event->hw.sample_period); 10703 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10704 10705 return ret; 10706 } 10707 10708 static void perf_swevent_start_hrtimer(struct perf_event *event) 10709 { 10710 struct hw_perf_event *hwc = &event->hw; 10711 s64 period; 10712 10713 if (!is_sampling_event(event)) 10714 return; 10715 10716 period = local64_read(&hwc->period_left); 10717 if (period) { 10718 if (period < 0) 10719 period = 10000; 10720 10721 local64_set(&hwc->period_left, 0); 10722 } else { 10723 period = max_t(u64, 10000, hwc->sample_period); 10724 } 10725 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10726 HRTIMER_MODE_REL_PINNED_HARD); 10727 } 10728 10729 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10730 { 10731 struct hw_perf_event *hwc = &event->hw; 10732 10733 if (is_sampling_event(event)) { 10734 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10735 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10736 10737 hrtimer_cancel(&hwc->hrtimer); 10738 } 10739 } 10740 10741 static void perf_swevent_init_hrtimer(struct perf_event *event) 10742 { 10743 struct hw_perf_event *hwc = &event->hw; 10744 10745 if (!is_sampling_event(event)) 10746 return; 10747 10748 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10749 hwc->hrtimer.function = perf_swevent_hrtimer; 10750 10751 /* 10752 * Since hrtimers have a fixed rate, we can do a static freq->period 10753 * mapping and avoid the whole period adjust feedback stuff. 10754 */ 10755 if (event->attr.freq) { 10756 long freq = event->attr.sample_freq; 10757 10758 event->attr.sample_period = NSEC_PER_SEC / freq; 10759 hwc->sample_period = event->attr.sample_period; 10760 local64_set(&hwc->period_left, hwc->sample_period); 10761 hwc->last_period = hwc->sample_period; 10762 event->attr.freq = 0; 10763 } 10764 } 10765 10766 /* 10767 * Software event: cpu wall time clock 10768 */ 10769 10770 static void cpu_clock_event_update(struct perf_event *event) 10771 { 10772 s64 prev; 10773 u64 now; 10774 10775 now = local_clock(); 10776 prev = local64_xchg(&event->hw.prev_count, now); 10777 local64_add(now - prev, &event->count); 10778 } 10779 10780 static void cpu_clock_event_start(struct perf_event *event, int flags) 10781 { 10782 local64_set(&event->hw.prev_count, local_clock()); 10783 perf_swevent_start_hrtimer(event); 10784 } 10785 10786 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10787 { 10788 perf_swevent_cancel_hrtimer(event); 10789 cpu_clock_event_update(event); 10790 } 10791 10792 static int cpu_clock_event_add(struct perf_event *event, int flags) 10793 { 10794 if (flags & PERF_EF_START) 10795 cpu_clock_event_start(event, flags); 10796 perf_event_update_userpage(event); 10797 10798 return 0; 10799 } 10800 10801 static void cpu_clock_event_del(struct perf_event *event, int flags) 10802 { 10803 cpu_clock_event_stop(event, flags); 10804 } 10805 10806 static void cpu_clock_event_read(struct perf_event *event) 10807 { 10808 cpu_clock_event_update(event); 10809 } 10810 10811 static int cpu_clock_event_init(struct perf_event *event) 10812 { 10813 if (event->attr.type != PERF_TYPE_SOFTWARE) 10814 return -ENOENT; 10815 10816 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10817 return -ENOENT; 10818 10819 /* 10820 * no branch sampling for software events 10821 */ 10822 if (has_branch_stack(event)) 10823 return -EOPNOTSUPP; 10824 10825 perf_swevent_init_hrtimer(event); 10826 10827 return 0; 10828 } 10829 10830 static struct pmu perf_cpu_clock = { 10831 .task_ctx_nr = perf_sw_context, 10832 10833 .capabilities = PERF_PMU_CAP_NO_NMI, 10834 10835 .event_init = cpu_clock_event_init, 10836 .add = cpu_clock_event_add, 10837 .del = cpu_clock_event_del, 10838 .start = cpu_clock_event_start, 10839 .stop = cpu_clock_event_stop, 10840 .read = cpu_clock_event_read, 10841 }; 10842 10843 /* 10844 * Software event: task time clock 10845 */ 10846 10847 static void task_clock_event_update(struct perf_event *event, u64 now) 10848 { 10849 u64 prev; 10850 s64 delta; 10851 10852 prev = local64_xchg(&event->hw.prev_count, now); 10853 delta = now - prev; 10854 local64_add(delta, &event->count); 10855 } 10856 10857 static void task_clock_event_start(struct perf_event *event, int flags) 10858 { 10859 local64_set(&event->hw.prev_count, event->ctx->time); 10860 perf_swevent_start_hrtimer(event); 10861 } 10862 10863 static void task_clock_event_stop(struct perf_event *event, int flags) 10864 { 10865 perf_swevent_cancel_hrtimer(event); 10866 task_clock_event_update(event, event->ctx->time); 10867 } 10868 10869 static int task_clock_event_add(struct perf_event *event, int flags) 10870 { 10871 if (flags & PERF_EF_START) 10872 task_clock_event_start(event, flags); 10873 perf_event_update_userpage(event); 10874 10875 return 0; 10876 } 10877 10878 static void task_clock_event_del(struct perf_event *event, int flags) 10879 { 10880 task_clock_event_stop(event, PERF_EF_UPDATE); 10881 } 10882 10883 static void task_clock_event_read(struct perf_event *event) 10884 { 10885 u64 now = perf_clock(); 10886 u64 delta = now - event->ctx->timestamp; 10887 u64 time = event->ctx->time + delta; 10888 10889 task_clock_event_update(event, time); 10890 } 10891 10892 static int task_clock_event_init(struct perf_event *event) 10893 { 10894 if (event->attr.type != PERF_TYPE_SOFTWARE) 10895 return -ENOENT; 10896 10897 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10898 return -ENOENT; 10899 10900 /* 10901 * no branch sampling for software events 10902 */ 10903 if (has_branch_stack(event)) 10904 return -EOPNOTSUPP; 10905 10906 perf_swevent_init_hrtimer(event); 10907 10908 return 0; 10909 } 10910 10911 static struct pmu perf_task_clock = { 10912 .task_ctx_nr = perf_sw_context, 10913 10914 .capabilities = PERF_PMU_CAP_NO_NMI, 10915 10916 .event_init = task_clock_event_init, 10917 .add = task_clock_event_add, 10918 .del = task_clock_event_del, 10919 .start = task_clock_event_start, 10920 .stop = task_clock_event_stop, 10921 .read = task_clock_event_read, 10922 }; 10923 10924 static void perf_pmu_nop_void(struct pmu *pmu) 10925 { 10926 } 10927 10928 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10929 { 10930 } 10931 10932 static int perf_pmu_nop_int(struct pmu *pmu) 10933 { 10934 return 0; 10935 } 10936 10937 static int perf_event_nop_int(struct perf_event *event, u64 value) 10938 { 10939 return 0; 10940 } 10941 10942 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10943 10944 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10945 { 10946 __this_cpu_write(nop_txn_flags, flags); 10947 10948 if (flags & ~PERF_PMU_TXN_ADD) 10949 return; 10950 10951 perf_pmu_disable(pmu); 10952 } 10953 10954 static int perf_pmu_commit_txn(struct pmu *pmu) 10955 { 10956 unsigned int flags = __this_cpu_read(nop_txn_flags); 10957 10958 __this_cpu_write(nop_txn_flags, 0); 10959 10960 if (flags & ~PERF_PMU_TXN_ADD) 10961 return 0; 10962 10963 perf_pmu_enable(pmu); 10964 return 0; 10965 } 10966 10967 static void perf_pmu_cancel_txn(struct pmu *pmu) 10968 { 10969 unsigned int flags = __this_cpu_read(nop_txn_flags); 10970 10971 __this_cpu_write(nop_txn_flags, 0); 10972 10973 if (flags & ~PERF_PMU_TXN_ADD) 10974 return; 10975 10976 perf_pmu_enable(pmu); 10977 } 10978 10979 static int perf_event_idx_default(struct perf_event *event) 10980 { 10981 return 0; 10982 } 10983 10984 /* 10985 * Ensures all contexts with the same task_ctx_nr have the same 10986 * pmu_cpu_context too. 10987 */ 10988 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10989 { 10990 struct pmu *pmu; 10991 10992 if (ctxn < 0) 10993 return NULL; 10994 10995 list_for_each_entry(pmu, &pmus, entry) { 10996 if (pmu->task_ctx_nr == ctxn) 10997 return pmu->pmu_cpu_context; 10998 } 10999 11000 return NULL; 11001 } 11002 11003 static void free_pmu_context(struct pmu *pmu) 11004 { 11005 /* 11006 * Static contexts such as perf_sw_context have a global lifetime 11007 * and may be shared between different PMUs. Avoid freeing them 11008 * when a single PMU is going away. 11009 */ 11010 if (pmu->task_ctx_nr > perf_invalid_context) 11011 return; 11012 11013 free_percpu(pmu->pmu_cpu_context); 11014 } 11015 11016 /* 11017 * Let userspace know that this PMU supports address range filtering: 11018 */ 11019 static ssize_t nr_addr_filters_show(struct device *dev, 11020 struct device_attribute *attr, 11021 char *page) 11022 { 11023 struct pmu *pmu = dev_get_drvdata(dev); 11024 11025 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11026 } 11027 DEVICE_ATTR_RO(nr_addr_filters); 11028 11029 static struct idr pmu_idr; 11030 11031 static ssize_t 11032 type_show(struct device *dev, struct device_attribute *attr, char *page) 11033 { 11034 struct pmu *pmu = dev_get_drvdata(dev); 11035 11036 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 11037 } 11038 static DEVICE_ATTR_RO(type); 11039 11040 static ssize_t 11041 perf_event_mux_interval_ms_show(struct device *dev, 11042 struct device_attribute *attr, 11043 char *page) 11044 { 11045 struct pmu *pmu = dev_get_drvdata(dev); 11046 11047 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 11048 } 11049 11050 static DEFINE_MUTEX(mux_interval_mutex); 11051 11052 static ssize_t 11053 perf_event_mux_interval_ms_store(struct device *dev, 11054 struct device_attribute *attr, 11055 const char *buf, size_t count) 11056 { 11057 struct pmu *pmu = dev_get_drvdata(dev); 11058 int timer, cpu, ret; 11059 11060 ret = kstrtoint(buf, 0, &timer); 11061 if (ret) 11062 return ret; 11063 11064 if (timer < 1) 11065 return -EINVAL; 11066 11067 /* same value, noting to do */ 11068 if (timer == pmu->hrtimer_interval_ms) 11069 return count; 11070 11071 mutex_lock(&mux_interval_mutex); 11072 pmu->hrtimer_interval_ms = timer; 11073 11074 /* update all cpuctx for this PMU */ 11075 cpus_read_lock(); 11076 for_each_online_cpu(cpu) { 11077 struct perf_cpu_context *cpuctx; 11078 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11079 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11080 11081 cpu_function_call(cpu, 11082 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 11083 } 11084 cpus_read_unlock(); 11085 mutex_unlock(&mux_interval_mutex); 11086 11087 return count; 11088 } 11089 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11090 11091 static struct attribute *pmu_dev_attrs[] = { 11092 &dev_attr_type.attr, 11093 &dev_attr_perf_event_mux_interval_ms.attr, 11094 NULL, 11095 }; 11096 ATTRIBUTE_GROUPS(pmu_dev); 11097 11098 static int pmu_bus_running; 11099 static struct bus_type pmu_bus = { 11100 .name = "event_source", 11101 .dev_groups = pmu_dev_groups, 11102 }; 11103 11104 static void pmu_dev_release(struct device *dev) 11105 { 11106 kfree(dev); 11107 } 11108 11109 static int pmu_dev_alloc(struct pmu *pmu) 11110 { 11111 int ret = -ENOMEM; 11112 11113 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11114 if (!pmu->dev) 11115 goto out; 11116 11117 pmu->dev->groups = pmu->attr_groups; 11118 device_initialize(pmu->dev); 11119 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11120 if (ret) 11121 goto free_dev; 11122 11123 dev_set_drvdata(pmu->dev, pmu); 11124 pmu->dev->bus = &pmu_bus; 11125 pmu->dev->release = pmu_dev_release; 11126 ret = device_add(pmu->dev); 11127 if (ret) 11128 goto free_dev; 11129 11130 /* For PMUs with address filters, throw in an extra attribute: */ 11131 if (pmu->nr_addr_filters) 11132 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 11133 11134 if (ret) 11135 goto del_dev; 11136 11137 if (pmu->attr_update) 11138 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11139 11140 if (ret) 11141 goto del_dev; 11142 11143 out: 11144 return ret; 11145 11146 del_dev: 11147 device_del(pmu->dev); 11148 11149 free_dev: 11150 put_device(pmu->dev); 11151 goto out; 11152 } 11153 11154 static struct lock_class_key cpuctx_mutex; 11155 static struct lock_class_key cpuctx_lock; 11156 11157 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11158 { 11159 int cpu, ret, max = PERF_TYPE_MAX; 11160 11161 mutex_lock(&pmus_lock); 11162 ret = -ENOMEM; 11163 pmu->pmu_disable_count = alloc_percpu(int); 11164 if (!pmu->pmu_disable_count) 11165 goto unlock; 11166 11167 pmu->type = -1; 11168 if (!name) 11169 goto skip_type; 11170 pmu->name = name; 11171 11172 if (type != PERF_TYPE_SOFTWARE) { 11173 if (type >= 0) 11174 max = type; 11175 11176 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11177 if (ret < 0) 11178 goto free_pdc; 11179 11180 WARN_ON(type >= 0 && ret != type); 11181 11182 type = ret; 11183 } 11184 pmu->type = type; 11185 11186 if (pmu_bus_running) { 11187 ret = pmu_dev_alloc(pmu); 11188 if (ret) 11189 goto free_idr; 11190 } 11191 11192 skip_type: 11193 if (pmu->task_ctx_nr == perf_hw_context) { 11194 static int hw_context_taken = 0; 11195 11196 /* 11197 * Other than systems with heterogeneous CPUs, it never makes 11198 * sense for two PMUs to share perf_hw_context. PMUs which are 11199 * uncore must use perf_invalid_context. 11200 */ 11201 if (WARN_ON_ONCE(hw_context_taken && 11202 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 11203 pmu->task_ctx_nr = perf_invalid_context; 11204 11205 hw_context_taken = 1; 11206 } 11207 11208 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 11209 if (pmu->pmu_cpu_context) 11210 goto got_cpu_context; 11211 11212 ret = -ENOMEM; 11213 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 11214 if (!pmu->pmu_cpu_context) 11215 goto free_dev; 11216 11217 for_each_possible_cpu(cpu) { 11218 struct perf_cpu_context *cpuctx; 11219 11220 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11221 __perf_event_init_context(&cpuctx->ctx); 11222 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 11223 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 11224 cpuctx->ctx.pmu = pmu; 11225 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 11226 11227 __perf_mux_hrtimer_init(cpuctx, cpu); 11228 11229 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 11230 cpuctx->heap = cpuctx->heap_default; 11231 } 11232 11233 got_cpu_context: 11234 if (!pmu->start_txn) { 11235 if (pmu->pmu_enable) { 11236 /* 11237 * If we have pmu_enable/pmu_disable calls, install 11238 * transaction stubs that use that to try and batch 11239 * hardware accesses. 11240 */ 11241 pmu->start_txn = perf_pmu_start_txn; 11242 pmu->commit_txn = perf_pmu_commit_txn; 11243 pmu->cancel_txn = perf_pmu_cancel_txn; 11244 } else { 11245 pmu->start_txn = perf_pmu_nop_txn; 11246 pmu->commit_txn = perf_pmu_nop_int; 11247 pmu->cancel_txn = perf_pmu_nop_void; 11248 } 11249 } 11250 11251 if (!pmu->pmu_enable) { 11252 pmu->pmu_enable = perf_pmu_nop_void; 11253 pmu->pmu_disable = perf_pmu_nop_void; 11254 } 11255 11256 if (!pmu->check_period) 11257 pmu->check_period = perf_event_nop_int; 11258 11259 if (!pmu->event_idx) 11260 pmu->event_idx = perf_event_idx_default; 11261 11262 /* 11263 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 11264 * since these cannot be in the IDR. This way the linear search 11265 * is fast, provided a valid software event is provided. 11266 */ 11267 if (type == PERF_TYPE_SOFTWARE || !name) 11268 list_add_rcu(&pmu->entry, &pmus); 11269 else 11270 list_add_tail_rcu(&pmu->entry, &pmus); 11271 11272 atomic_set(&pmu->exclusive_cnt, 0); 11273 ret = 0; 11274 unlock: 11275 mutex_unlock(&pmus_lock); 11276 11277 return ret; 11278 11279 free_dev: 11280 device_del(pmu->dev); 11281 put_device(pmu->dev); 11282 11283 free_idr: 11284 if (pmu->type != PERF_TYPE_SOFTWARE) 11285 idr_remove(&pmu_idr, pmu->type); 11286 11287 free_pdc: 11288 free_percpu(pmu->pmu_disable_count); 11289 goto unlock; 11290 } 11291 EXPORT_SYMBOL_GPL(perf_pmu_register); 11292 11293 void perf_pmu_unregister(struct pmu *pmu) 11294 { 11295 mutex_lock(&pmus_lock); 11296 list_del_rcu(&pmu->entry); 11297 11298 /* 11299 * We dereference the pmu list under both SRCU and regular RCU, so 11300 * synchronize against both of those. 11301 */ 11302 synchronize_srcu(&pmus_srcu); 11303 synchronize_rcu(); 11304 11305 free_percpu(pmu->pmu_disable_count); 11306 if (pmu->type != PERF_TYPE_SOFTWARE) 11307 idr_remove(&pmu_idr, pmu->type); 11308 if (pmu_bus_running) { 11309 if (pmu->nr_addr_filters) 11310 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11311 device_del(pmu->dev); 11312 put_device(pmu->dev); 11313 } 11314 free_pmu_context(pmu); 11315 mutex_unlock(&pmus_lock); 11316 } 11317 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11318 11319 static inline bool has_extended_regs(struct perf_event *event) 11320 { 11321 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11322 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11323 } 11324 11325 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11326 { 11327 struct perf_event_context *ctx = NULL; 11328 int ret; 11329 11330 if (!try_module_get(pmu->module)) 11331 return -ENODEV; 11332 11333 /* 11334 * A number of pmu->event_init() methods iterate the sibling_list to, 11335 * for example, validate if the group fits on the PMU. Therefore, 11336 * if this is a sibling event, acquire the ctx->mutex to protect 11337 * the sibling_list. 11338 */ 11339 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11340 /* 11341 * This ctx->mutex can nest when we're called through 11342 * inheritance. See the perf_event_ctx_lock_nested() comment. 11343 */ 11344 ctx = perf_event_ctx_lock_nested(event->group_leader, 11345 SINGLE_DEPTH_NESTING); 11346 BUG_ON(!ctx); 11347 } 11348 11349 event->pmu = pmu; 11350 ret = pmu->event_init(event); 11351 11352 if (ctx) 11353 perf_event_ctx_unlock(event->group_leader, ctx); 11354 11355 if (!ret) { 11356 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11357 has_extended_regs(event)) 11358 ret = -EOPNOTSUPP; 11359 11360 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11361 event_has_any_exclude_flag(event)) 11362 ret = -EINVAL; 11363 11364 if (ret && event->destroy) 11365 event->destroy(event); 11366 } 11367 11368 if (ret) 11369 module_put(pmu->module); 11370 11371 return ret; 11372 } 11373 11374 static struct pmu *perf_init_event(struct perf_event *event) 11375 { 11376 bool extended_type = false; 11377 int idx, type, ret; 11378 struct pmu *pmu; 11379 11380 idx = srcu_read_lock(&pmus_srcu); 11381 11382 /* Try parent's PMU first: */ 11383 if (event->parent && event->parent->pmu) { 11384 pmu = event->parent->pmu; 11385 ret = perf_try_init_event(pmu, event); 11386 if (!ret) 11387 goto unlock; 11388 } 11389 11390 /* 11391 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11392 * are often aliases for PERF_TYPE_RAW. 11393 */ 11394 type = event->attr.type; 11395 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11396 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11397 if (!type) { 11398 type = PERF_TYPE_RAW; 11399 } else { 11400 extended_type = true; 11401 event->attr.config &= PERF_HW_EVENT_MASK; 11402 } 11403 } 11404 11405 again: 11406 rcu_read_lock(); 11407 pmu = idr_find(&pmu_idr, type); 11408 rcu_read_unlock(); 11409 if (pmu) { 11410 if (event->attr.type != type && type != PERF_TYPE_RAW && 11411 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11412 goto fail; 11413 11414 ret = perf_try_init_event(pmu, event); 11415 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11416 type = event->attr.type; 11417 goto again; 11418 } 11419 11420 if (ret) 11421 pmu = ERR_PTR(ret); 11422 11423 goto unlock; 11424 } 11425 11426 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11427 ret = perf_try_init_event(pmu, event); 11428 if (!ret) 11429 goto unlock; 11430 11431 if (ret != -ENOENT) { 11432 pmu = ERR_PTR(ret); 11433 goto unlock; 11434 } 11435 } 11436 fail: 11437 pmu = ERR_PTR(-ENOENT); 11438 unlock: 11439 srcu_read_unlock(&pmus_srcu, idx); 11440 11441 return pmu; 11442 } 11443 11444 static void attach_sb_event(struct perf_event *event) 11445 { 11446 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11447 11448 raw_spin_lock(&pel->lock); 11449 list_add_rcu(&event->sb_list, &pel->list); 11450 raw_spin_unlock(&pel->lock); 11451 } 11452 11453 /* 11454 * We keep a list of all !task (and therefore per-cpu) events 11455 * that need to receive side-band records. 11456 * 11457 * This avoids having to scan all the various PMU per-cpu contexts 11458 * looking for them. 11459 */ 11460 static void account_pmu_sb_event(struct perf_event *event) 11461 { 11462 if (is_sb_event(event)) 11463 attach_sb_event(event); 11464 } 11465 11466 static void account_event_cpu(struct perf_event *event, int cpu) 11467 { 11468 if (event->parent) 11469 return; 11470 11471 if (is_cgroup_event(event)) 11472 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11473 } 11474 11475 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11476 static void account_freq_event_nohz(void) 11477 { 11478 #ifdef CONFIG_NO_HZ_FULL 11479 /* Lock so we don't race with concurrent unaccount */ 11480 spin_lock(&nr_freq_lock); 11481 if (atomic_inc_return(&nr_freq_events) == 1) 11482 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11483 spin_unlock(&nr_freq_lock); 11484 #endif 11485 } 11486 11487 static void account_freq_event(void) 11488 { 11489 if (tick_nohz_full_enabled()) 11490 account_freq_event_nohz(); 11491 else 11492 atomic_inc(&nr_freq_events); 11493 } 11494 11495 11496 static void account_event(struct perf_event *event) 11497 { 11498 bool inc = false; 11499 11500 if (event->parent) 11501 return; 11502 11503 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11504 inc = true; 11505 if (event->attr.mmap || event->attr.mmap_data) 11506 atomic_inc(&nr_mmap_events); 11507 if (event->attr.build_id) 11508 atomic_inc(&nr_build_id_events); 11509 if (event->attr.comm) 11510 atomic_inc(&nr_comm_events); 11511 if (event->attr.namespaces) 11512 atomic_inc(&nr_namespaces_events); 11513 if (event->attr.cgroup) 11514 atomic_inc(&nr_cgroup_events); 11515 if (event->attr.task) 11516 atomic_inc(&nr_task_events); 11517 if (event->attr.freq) 11518 account_freq_event(); 11519 if (event->attr.context_switch) { 11520 atomic_inc(&nr_switch_events); 11521 inc = true; 11522 } 11523 if (has_branch_stack(event)) 11524 inc = true; 11525 if (is_cgroup_event(event)) 11526 inc = true; 11527 if (event->attr.ksymbol) 11528 atomic_inc(&nr_ksymbol_events); 11529 if (event->attr.bpf_event) 11530 atomic_inc(&nr_bpf_events); 11531 if (event->attr.text_poke) 11532 atomic_inc(&nr_text_poke_events); 11533 11534 if (inc) { 11535 /* 11536 * We need the mutex here because static_branch_enable() 11537 * must complete *before* the perf_sched_count increment 11538 * becomes visible. 11539 */ 11540 if (atomic_inc_not_zero(&perf_sched_count)) 11541 goto enabled; 11542 11543 mutex_lock(&perf_sched_mutex); 11544 if (!atomic_read(&perf_sched_count)) { 11545 static_branch_enable(&perf_sched_events); 11546 /* 11547 * Guarantee that all CPUs observe they key change and 11548 * call the perf scheduling hooks before proceeding to 11549 * install events that need them. 11550 */ 11551 synchronize_rcu(); 11552 } 11553 /* 11554 * Now that we have waited for the sync_sched(), allow further 11555 * increments to by-pass the mutex. 11556 */ 11557 atomic_inc(&perf_sched_count); 11558 mutex_unlock(&perf_sched_mutex); 11559 } 11560 enabled: 11561 11562 account_event_cpu(event, event->cpu); 11563 11564 account_pmu_sb_event(event); 11565 } 11566 11567 /* 11568 * Allocate and initialize an event structure 11569 */ 11570 static struct perf_event * 11571 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11572 struct task_struct *task, 11573 struct perf_event *group_leader, 11574 struct perf_event *parent_event, 11575 perf_overflow_handler_t overflow_handler, 11576 void *context, int cgroup_fd) 11577 { 11578 struct pmu *pmu; 11579 struct perf_event *event; 11580 struct hw_perf_event *hwc; 11581 long err = -EINVAL; 11582 int node; 11583 11584 if ((unsigned)cpu >= nr_cpu_ids) { 11585 if (!task || cpu != -1) 11586 return ERR_PTR(-EINVAL); 11587 } 11588 if (attr->sigtrap && !task) { 11589 /* Requires a task: avoid signalling random tasks. */ 11590 return ERR_PTR(-EINVAL); 11591 } 11592 11593 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11594 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11595 node); 11596 if (!event) 11597 return ERR_PTR(-ENOMEM); 11598 11599 /* 11600 * Single events are their own group leaders, with an 11601 * empty sibling list: 11602 */ 11603 if (!group_leader) 11604 group_leader = event; 11605 11606 mutex_init(&event->child_mutex); 11607 INIT_LIST_HEAD(&event->child_list); 11608 11609 INIT_LIST_HEAD(&event->event_entry); 11610 INIT_LIST_HEAD(&event->sibling_list); 11611 INIT_LIST_HEAD(&event->active_list); 11612 init_event_group(event); 11613 INIT_LIST_HEAD(&event->rb_entry); 11614 INIT_LIST_HEAD(&event->active_entry); 11615 INIT_LIST_HEAD(&event->addr_filters.list); 11616 INIT_HLIST_NODE(&event->hlist_entry); 11617 11618 11619 init_waitqueue_head(&event->waitq); 11620 event->pending_disable = -1; 11621 init_irq_work(&event->pending, perf_pending_event); 11622 11623 mutex_init(&event->mmap_mutex); 11624 raw_spin_lock_init(&event->addr_filters.lock); 11625 11626 atomic_long_set(&event->refcount, 1); 11627 event->cpu = cpu; 11628 event->attr = *attr; 11629 event->group_leader = group_leader; 11630 event->pmu = NULL; 11631 event->oncpu = -1; 11632 11633 event->parent = parent_event; 11634 11635 event->ns = get_pid_ns(task_active_pid_ns(current)); 11636 event->id = atomic64_inc_return(&perf_event_id); 11637 11638 event->state = PERF_EVENT_STATE_INACTIVE; 11639 11640 if (event->attr.sigtrap) 11641 atomic_set(&event->event_limit, 1); 11642 11643 if (task) { 11644 event->attach_state = PERF_ATTACH_TASK; 11645 /* 11646 * XXX pmu::event_init needs to know what task to account to 11647 * and we cannot use the ctx information because we need the 11648 * pmu before we get a ctx. 11649 */ 11650 event->hw.target = get_task_struct(task); 11651 } 11652 11653 event->clock = &local_clock; 11654 if (parent_event) 11655 event->clock = parent_event->clock; 11656 11657 if (!overflow_handler && parent_event) { 11658 overflow_handler = parent_event->overflow_handler; 11659 context = parent_event->overflow_handler_context; 11660 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11661 if (overflow_handler == bpf_overflow_handler) { 11662 struct bpf_prog *prog = parent_event->prog; 11663 11664 bpf_prog_inc(prog); 11665 event->prog = prog; 11666 event->orig_overflow_handler = 11667 parent_event->orig_overflow_handler; 11668 } 11669 #endif 11670 } 11671 11672 if (overflow_handler) { 11673 event->overflow_handler = overflow_handler; 11674 event->overflow_handler_context = context; 11675 } else if (is_write_backward(event)){ 11676 event->overflow_handler = perf_event_output_backward; 11677 event->overflow_handler_context = NULL; 11678 } else { 11679 event->overflow_handler = perf_event_output_forward; 11680 event->overflow_handler_context = NULL; 11681 } 11682 11683 perf_event__state_init(event); 11684 11685 pmu = NULL; 11686 11687 hwc = &event->hw; 11688 hwc->sample_period = attr->sample_period; 11689 if (attr->freq && attr->sample_freq) 11690 hwc->sample_period = 1; 11691 hwc->last_period = hwc->sample_period; 11692 11693 local64_set(&hwc->period_left, hwc->sample_period); 11694 11695 /* 11696 * We currently do not support PERF_SAMPLE_READ on inherited events. 11697 * See perf_output_read(). 11698 */ 11699 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11700 goto err_ns; 11701 11702 if (!has_branch_stack(event)) 11703 event->attr.branch_sample_type = 0; 11704 11705 pmu = perf_init_event(event); 11706 if (IS_ERR(pmu)) { 11707 err = PTR_ERR(pmu); 11708 goto err_ns; 11709 } 11710 11711 /* 11712 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11713 * be different on other CPUs in the uncore mask. 11714 */ 11715 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11716 err = -EINVAL; 11717 goto err_pmu; 11718 } 11719 11720 if (event->attr.aux_output && 11721 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11722 err = -EOPNOTSUPP; 11723 goto err_pmu; 11724 } 11725 11726 if (cgroup_fd != -1) { 11727 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11728 if (err) 11729 goto err_pmu; 11730 } 11731 11732 err = exclusive_event_init(event); 11733 if (err) 11734 goto err_pmu; 11735 11736 if (has_addr_filter(event)) { 11737 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11738 sizeof(struct perf_addr_filter_range), 11739 GFP_KERNEL); 11740 if (!event->addr_filter_ranges) { 11741 err = -ENOMEM; 11742 goto err_per_task; 11743 } 11744 11745 /* 11746 * Clone the parent's vma offsets: they are valid until exec() 11747 * even if the mm is not shared with the parent. 11748 */ 11749 if (event->parent) { 11750 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11751 11752 raw_spin_lock_irq(&ifh->lock); 11753 memcpy(event->addr_filter_ranges, 11754 event->parent->addr_filter_ranges, 11755 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11756 raw_spin_unlock_irq(&ifh->lock); 11757 } 11758 11759 /* force hw sync on the address filters */ 11760 event->addr_filters_gen = 1; 11761 } 11762 11763 if (!event->parent) { 11764 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11765 err = get_callchain_buffers(attr->sample_max_stack); 11766 if (err) 11767 goto err_addr_filters; 11768 } 11769 } 11770 11771 err = security_perf_event_alloc(event); 11772 if (err) 11773 goto err_callchain_buffer; 11774 11775 /* symmetric to unaccount_event() in _free_event() */ 11776 account_event(event); 11777 11778 return event; 11779 11780 err_callchain_buffer: 11781 if (!event->parent) { 11782 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11783 put_callchain_buffers(); 11784 } 11785 err_addr_filters: 11786 kfree(event->addr_filter_ranges); 11787 11788 err_per_task: 11789 exclusive_event_destroy(event); 11790 11791 err_pmu: 11792 if (is_cgroup_event(event)) 11793 perf_detach_cgroup(event); 11794 if (event->destroy) 11795 event->destroy(event); 11796 module_put(pmu->module); 11797 err_ns: 11798 if (event->ns) 11799 put_pid_ns(event->ns); 11800 if (event->hw.target) 11801 put_task_struct(event->hw.target); 11802 kmem_cache_free(perf_event_cache, event); 11803 11804 return ERR_PTR(err); 11805 } 11806 11807 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11808 struct perf_event_attr *attr) 11809 { 11810 u32 size; 11811 int ret; 11812 11813 /* Zero the full structure, so that a short copy will be nice. */ 11814 memset(attr, 0, sizeof(*attr)); 11815 11816 ret = get_user(size, &uattr->size); 11817 if (ret) 11818 return ret; 11819 11820 /* ABI compatibility quirk: */ 11821 if (!size) 11822 size = PERF_ATTR_SIZE_VER0; 11823 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11824 goto err_size; 11825 11826 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11827 if (ret) { 11828 if (ret == -E2BIG) 11829 goto err_size; 11830 return ret; 11831 } 11832 11833 attr->size = size; 11834 11835 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11836 return -EINVAL; 11837 11838 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11839 return -EINVAL; 11840 11841 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11842 return -EINVAL; 11843 11844 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11845 u64 mask = attr->branch_sample_type; 11846 11847 /* only using defined bits */ 11848 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11849 return -EINVAL; 11850 11851 /* at least one branch bit must be set */ 11852 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11853 return -EINVAL; 11854 11855 /* propagate priv level, when not set for branch */ 11856 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11857 11858 /* exclude_kernel checked on syscall entry */ 11859 if (!attr->exclude_kernel) 11860 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11861 11862 if (!attr->exclude_user) 11863 mask |= PERF_SAMPLE_BRANCH_USER; 11864 11865 if (!attr->exclude_hv) 11866 mask |= PERF_SAMPLE_BRANCH_HV; 11867 /* 11868 * adjust user setting (for HW filter setup) 11869 */ 11870 attr->branch_sample_type = mask; 11871 } 11872 /* privileged levels capture (kernel, hv): check permissions */ 11873 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11874 ret = perf_allow_kernel(attr); 11875 if (ret) 11876 return ret; 11877 } 11878 } 11879 11880 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11881 ret = perf_reg_validate(attr->sample_regs_user); 11882 if (ret) 11883 return ret; 11884 } 11885 11886 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11887 if (!arch_perf_have_user_stack_dump()) 11888 return -ENOSYS; 11889 11890 /* 11891 * We have __u32 type for the size, but so far 11892 * we can only use __u16 as maximum due to the 11893 * __u16 sample size limit. 11894 */ 11895 if (attr->sample_stack_user >= USHRT_MAX) 11896 return -EINVAL; 11897 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11898 return -EINVAL; 11899 } 11900 11901 if (!attr->sample_max_stack) 11902 attr->sample_max_stack = sysctl_perf_event_max_stack; 11903 11904 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11905 ret = perf_reg_validate(attr->sample_regs_intr); 11906 11907 #ifndef CONFIG_CGROUP_PERF 11908 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11909 return -EINVAL; 11910 #endif 11911 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 11912 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 11913 return -EINVAL; 11914 11915 if (!attr->inherit && attr->inherit_thread) 11916 return -EINVAL; 11917 11918 if (attr->remove_on_exec && attr->enable_on_exec) 11919 return -EINVAL; 11920 11921 if (attr->sigtrap && !attr->remove_on_exec) 11922 return -EINVAL; 11923 11924 out: 11925 return ret; 11926 11927 err_size: 11928 put_user(sizeof(*attr), &uattr->size); 11929 ret = -E2BIG; 11930 goto out; 11931 } 11932 11933 static int 11934 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11935 { 11936 struct perf_buffer *rb = NULL; 11937 int ret = -EINVAL; 11938 11939 if (!output_event) 11940 goto set; 11941 11942 /* don't allow circular references */ 11943 if (event == output_event) 11944 goto out; 11945 11946 /* 11947 * Don't allow cross-cpu buffers 11948 */ 11949 if (output_event->cpu != event->cpu) 11950 goto out; 11951 11952 /* 11953 * If its not a per-cpu rb, it must be the same task. 11954 */ 11955 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11956 goto out; 11957 11958 /* 11959 * Mixing clocks in the same buffer is trouble you don't need. 11960 */ 11961 if (output_event->clock != event->clock) 11962 goto out; 11963 11964 /* 11965 * Either writing ring buffer from beginning or from end. 11966 * Mixing is not allowed. 11967 */ 11968 if (is_write_backward(output_event) != is_write_backward(event)) 11969 goto out; 11970 11971 /* 11972 * If both events generate aux data, they must be on the same PMU 11973 */ 11974 if (has_aux(event) && has_aux(output_event) && 11975 event->pmu != output_event->pmu) 11976 goto out; 11977 11978 set: 11979 mutex_lock(&event->mmap_mutex); 11980 /* Can't redirect output if we've got an active mmap() */ 11981 if (atomic_read(&event->mmap_count)) 11982 goto unlock; 11983 11984 if (output_event) { 11985 /* get the rb we want to redirect to */ 11986 rb = ring_buffer_get(output_event); 11987 if (!rb) 11988 goto unlock; 11989 } 11990 11991 ring_buffer_attach(event, rb); 11992 11993 ret = 0; 11994 unlock: 11995 mutex_unlock(&event->mmap_mutex); 11996 11997 out: 11998 return ret; 11999 } 12000 12001 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12002 { 12003 if (b < a) 12004 swap(a, b); 12005 12006 mutex_lock(a); 12007 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12008 } 12009 12010 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12011 { 12012 bool nmi_safe = false; 12013 12014 switch (clk_id) { 12015 case CLOCK_MONOTONIC: 12016 event->clock = &ktime_get_mono_fast_ns; 12017 nmi_safe = true; 12018 break; 12019 12020 case CLOCK_MONOTONIC_RAW: 12021 event->clock = &ktime_get_raw_fast_ns; 12022 nmi_safe = true; 12023 break; 12024 12025 case CLOCK_REALTIME: 12026 event->clock = &ktime_get_real_ns; 12027 break; 12028 12029 case CLOCK_BOOTTIME: 12030 event->clock = &ktime_get_boottime_ns; 12031 break; 12032 12033 case CLOCK_TAI: 12034 event->clock = &ktime_get_clocktai_ns; 12035 break; 12036 12037 default: 12038 return -EINVAL; 12039 } 12040 12041 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12042 return -EINVAL; 12043 12044 return 0; 12045 } 12046 12047 /* 12048 * Variation on perf_event_ctx_lock_nested(), except we take two context 12049 * mutexes. 12050 */ 12051 static struct perf_event_context * 12052 __perf_event_ctx_lock_double(struct perf_event *group_leader, 12053 struct perf_event_context *ctx) 12054 { 12055 struct perf_event_context *gctx; 12056 12057 again: 12058 rcu_read_lock(); 12059 gctx = READ_ONCE(group_leader->ctx); 12060 if (!refcount_inc_not_zero(&gctx->refcount)) { 12061 rcu_read_unlock(); 12062 goto again; 12063 } 12064 rcu_read_unlock(); 12065 12066 mutex_lock_double(&gctx->mutex, &ctx->mutex); 12067 12068 if (group_leader->ctx != gctx) { 12069 mutex_unlock(&ctx->mutex); 12070 mutex_unlock(&gctx->mutex); 12071 put_ctx(gctx); 12072 goto again; 12073 } 12074 12075 return gctx; 12076 } 12077 12078 static bool 12079 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12080 { 12081 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12082 bool is_capable = perfmon_capable(); 12083 12084 if (attr->sigtrap) { 12085 /* 12086 * perf_event_attr::sigtrap sends signals to the other task. 12087 * Require the current task to also have CAP_KILL. 12088 */ 12089 rcu_read_lock(); 12090 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12091 rcu_read_unlock(); 12092 12093 /* 12094 * If the required capabilities aren't available, checks for 12095 * ptrace permissions: upgrade to ATTACH, since sending signals 12096 * can effectively change the target task. 12097 */ 12098 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12099 } 12100 12101 /* 12102 * Preserve ptrace permission check for backwards compatibility. The 12103 * ptrace check also includes checks that the current task and other 12104 * task have matching uids, and is therefore not done here explicitly. 12105 */ 12106 return is_capable || ptrace_may_access(task, ptrace_mode); 12107 } 12108 12109 /** 12110 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12111 * 12112 * @attr_uptr: event_id type attributes for monitoring/sampling 12113 * @pid: target pid 12114 * @cpu: target cpu 12115 * @group_fd: group leader event fd 12116 * @flags: perf event open flags 12117 */ 12118 SYSCALL_DEFINE5(perf_event_open, 12119 struct perf_event_attr __user *, attr_uptr, 12120 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12121 { 12122 struct perf_event *group_leader = NULL, *output_event = NULL; 12123 struct perf_event *event, *sibling; 12124 struct perf_event_attr attr; 12125 struct perf_event_context *ctx, *gctx; 12126 struct file *event_file = NULL; 12127 struct fd group = {NULL, 0}; 12128 struct task_struct *task = NULL; 12129 struct pmu *pmu; 12130 int event_fd; 12131 int move_group = 0; 12132 int err; 12133 int f_flags = O_RDWR; 12134 int cgroup_fd = -1; 12135 12136 /* for future expandability... */ 12137 if (flags & ~PERF_FLAG_ALL) 12138 return -EINVAL; 12139 12140 /* Do we allow access to perf_event_open(2) ? */ 12141 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12142 if (err) 12143 return err; 12144 12145 err = perf_copy_attr(attr_uptr, &attr); 12146 if (err) 12147 return err; 12148 12149 if (!attr.exclude_kernel) { 12150 err = perf_allow_kernel(&attr); 12151 if (err) 12152 return err; 12153 } 12154 12155 if (attr.namespaces) { 12156 if (!perfmon_capable()) 12157 return -EACCES; 12158 } 12159 12160 if (attr.freq) { 12161 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12162 return -EINVAL; 12163 } else { 12164 if (attr.sample_period & (1ULL << 63)) 12165 return -EINVAL; 12166 } 12167 12168 /* Only privileged users can get physical addresses */ 12169 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12170 err = perf_allow_kernel(&attr); 12171 if (err) 12172 return err; 12173 } 12174 12175 /* REGS_INTR can leak data, lockdown must prevent this */ 12176 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12177 err = security_locked_down(LOCKDOWN_PERF); 12178 if (err) 12179 return err; 12180 } 12181 12182 /* 12183 * In cgroup mode, the pid argument is used to pass the fd 12184 * opened to the cgroup directory in cgroupfs. The cpu argument 12185 * designates the cpu on which to monitor threads from that 12186 * cgroup. 12187 */ 12188 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12189 return -EINVAL; 12190 12191 if (flags & PERF_FLAG_FD_CLOEXEC) 12192 f_flags |= O_CLOEXEC; 12193 12194 event_fd = get_unused_fd_flags(f_flags); 12195 if (event_fd < 0) 12196 return event_fd; 12197 12198 if (group_fd != -1) { 12199 err = perf_fget_light(group_fd, &group); 12200 if (err) 12201 goto err_fd; 12202 group_leader = group.file->private_data; 12203 if (flags & PERF_FLAG_FD_OUTPUT) 12204 output_event = group_leader; 12205 if (flags & PERF_FLAG_FD_NO_GROUP) 12206 group_leader = NULL; 12207 } 12208 12209 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12210 task = find_lively_task_by_vpid(pid); 12211 if (IS_ERR(task)) { 12212 err = PTR_ERR(task); 12213 goto err_group_fd; 12214 } 12215 } 12216 12217 if (task && group_leader && 12218 group_leader->attr.inherit != attr.inherit) { 12219 err = -EINVAL; 12220 goto err_task; 12221 } 12222 12223 if (flags & PERF_FLAG_PID_CGROUP) 12224 cgroup_fd = pid; 12225 12226 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12227 NULL, NULL, cgroup_fd); 12228 if (IS_ERR(event)) { 12229 err = PTR_ERR(event); 12230 goto err_task; 12231 } 12232 12233 if (is_sampling_event(event)) { 12234 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12235 err = -EOPNOTSUPP; 12236 goto err_alloc; 12237 } 12238 } 12239 12240 /* 12241 * Special case software events and allow them to be part of 12242 * any hardware group. 12243 */ 12244 pmu = event->pmu; 12245 12246 if (attr.use_clockid) { 12247 err = perf_event_set_clock(event, attr.clockid); 12248 if (err) 12249 goto err_alloc; 12250 } 12251 12252 if (pmu->task_ctx_nr == perf_sw_context) 12253 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12254 12255 if (group_leader) { 12256 if (is_software_event(event) && 12257 !in_software_context(group_leader)) { 12258 /* 12259 * If the event is a sw event, but the group_leader 12260 * is on hw context. 12261 * 12262 * Allow the addition of software events to hw 12263 * groups, this is safe because software events 12264 * never fail to schedule. 12265 */ 12266 pmu = group_leader->ctx->pmu; 12267 } else if (!is_software_event(event) && 12268 is_software_event(group_leader) && 12269 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12270 /* 12271 * In case the group is a pure software group, and we 12272 * try to add a hardware event, move the whole group to 12273 * the hardware context. 12274 */ 12275 move_group = 1; 12276 } 12277 } 12278 12279 /* 12280 * Get the target context (task or percpu): 12281 */ 12282 ctx = find_get_context(pmu, task, event); 12283 if (IS_ERR(ctx)) { 12284 err = PTR_ERR(ctx); 12285 goto err_alloc; 12286 } 12287 12288 /* 12289 * Look up the group leader (we will attach this event to it): 12290 */ 12291 if (group_leader) { 12292 err = -EINVAL; 12293 12294 /* 12295 * Do not allow a recursive hierarchy (this new sibling 12296 * becoming part of another group-sibling): 12297 */ 12298 if (group_leader->group_leader != group_leader) 12299 goto err_context; 12300 12301 /* All events in a group should have the same clock */ 12302 if (group_leader->clock != event->clock) 12303 goto err_context; 12304 12305 /* 12306 * Make sure we're both events for the same CPU; 12307 * grouping events for different CPUs is broken; since 12308 * you can never concurrently schedule them anyhow. 12309 */ 12310 if (group_leader->cpu != event->cpu) 12311 goto err_context; 12312 12313 /* 12314 * Make sure we're both on the same task, or both 12315 * per-CPU events. 12316 */ 12317 if (group_leader->ctx->task != ctx->task) 12318 goto err_context; 12319 12320 /* 12321 * Do not allow to attach to a group in a different task 12322 * or CPU context. If we're moving SW events, we'll fix 12323 * this up later, so allow that. 12324 */ 12325 if (!move_group && group_leader->ctx != ctx) 12326 goto err_context; 12327 12328 /* 12329 * Only a group leader can be exclusive or pinned 12330 */ 12331 if (attr.exclusive || attr.pinned) 12332 goto err_context; 12333 } 12334 12335 if (output_event) { 12336 err = perf_event_set_output(event, output_event); 12337 if (err) 12338 goto err_context; 12339 } 12340 12341 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 12342 f_flags); 12343 if (IS_ERR(event_file)) { 12344 err = PTR_ERR(event_file); 12345 event_file = NULL; 12346 goto err_context; 12347 } 12348 12349 if (task) { 12350 err = down_read_interruptible(&task->signal->exec_update_lock); 12351 if (err) 12352 goto err_file; 12353 12354 /* 12355 * We must hold exec_update_lock across this and any potential 12356 * perf_install_in_context() call for this new event to 12357 * serialize against exec() altering our credentials (and the 12358 * perf_event_exit_task() that could imply). 12359 */ 12360 err = -EACCES; 12361 if (!perf_check_permission(&attr, task)) 12362 goto err_cred; 12363 } 12364 12365 if (move_group) { 12366 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 12367 12368 if (gctx->task == TASK_TOMBSTONE) { 12369 err = -ESRCH; 12370 goto err_locked; 12371 } 12372 12373 /* 12374 * Check if we raced against another sys_perf_event_open() call 12375 * moving the software group underneath us. 12376 */ 12377 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12378 /* 12379 * If someone moved the group out from under us, check 12380 * if this new event wound up on the same ctx, if so 12381 * its the regular !move_group case, otherwise fail. 12382 */ 12383 if (gctx != ctx) { 12384 err = -EINVAL; 12385 goto err_locked; 12386 } else { 12387 perf_event_ctx_unlock(group_leader, gctx); 12388 move_group = 0; 12389 } 12390 } 12391 12392 /* 12393 * Failure to create exclusive events returns -EBUSY. 12394 */ 12395 err = -EBUSY; 12396 if (!exclusive_event_installable(group_leader, ctx)) 12397 goto err_locked; 12398 12399 for_each_sibling_event(sibling, group_leader) { 12400 if (!exclusive_event_installable(sibling, ctx)) 12401 goto err_locked; 12402 } 12403 } else { 12404 mutex_lock(&ctx->mutex); 12405 } 12406 12407 if (ctx->task == TASK_TOMBSTONE) { 12408 err = -ESRCH; 12409 goto err_locked; 12410 } 12411 12412 if (!perf_event_validate_size(event)) { 12413 err = -E2BIG; 12414 goto err_locked; 12415 } 12416 12417 if (!task) { 12418 /* 12419 * Check if the @cpu we're creating an event for is online. 12420 * 12421 * We use the perf_cpu_context::ctx::mutex to serialize against 12422 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12423 */ 12424 struct perf_cpu_context *cpuctx = 12425 container_of(ctx, struct perf_cpu_context, ctx); 12426 12427 if (!cpuctx->online) { 12428 err = -ENODEV; 12429 goto err_locked; 12430 } 12431 } 12432 12433 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12434 err = -EINVAL; 12435 goto err_locked; 12436 } 12437 12438 /* 12439 * Must be under the same ctx::mutex as perf_install_in_context(), 12440 * because we need to serialize with concurrent event creation. 12441 */ 12442 if (!exclusive_event_installable(event, ctx)) { 12443 err = -EBUSY; 12444 goto err_locked; 12445 } 12446 12447 WARN_ON_ONCE(ctx->parent_ctx); 12448 12449 /* 12450 * This is the point on no return; we cannot fail hereafter. This is 12451 * where we start modifying current state. 12452 */ 12453 12454 if (move_group) { 12455 /* 12456 * See perf_event_ctx_lock() for comments on the details 12457 * of swizzling perf_event::ctx. 12458 */ 12459 perf_remove_from_context(group_leader, 0); 12460 put_ctx(gctx); 12461 12462 for_each_sibling_event(sibling, group_leader) { 12463 perf_remove_from_context(sibling, 0); 12464 put_ctx(gctx); 12465 } 12466 12467 /* 12468 * Wait for everybody to stop referencing the events through 12469 * the old lists, before installing it on new lists. 12470 */ 12471 synchronize_rcu(); 12472 12473 /* 12474 * Install the group siblings before the group leader. 12475 * 12476 * Because a group leader will try and install the entire group 12477 * (through the sibling list, which is still in-tact), we can 12478 * end up with siblings installed in the wrong context. 12479 * 12480 * By installing siblings first we NO-OP because they're not 12481 * reachable through the group lists. 12482 */ 12483 for_each_sibling_event(sibling, group_leader) { 12484 perf_event__state_init(sibling); 12485 perf_install_in_context(ctx, sibling, sibling->cpu); 12486 get_ctx(ctx); 12487 } 12488 12489 /* 12490 * Removing from the context ends up with disabled 12491 * event. What we want here is event in the initial 12492 * startup state, ready to be add into new context. 12493 */ 12494 perf_event__state_init(group_leader); 12495 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12496 get_ctx(ctx); 12497 } 12498 12499 /* 12500 * Precalculate sample_data sizes; do while holding ctx::mutex such 12501 * that we're serialized against further additions and before 12502 * perf_install_in_context() which is the point the event is active and 12503 * can use these values. 12504 */ 12505 perf_event__header_size(event); 12506 perf_event__id_header_size(event); 12507 12508 event->owner = current; 12509 12510 perf_install_in_context(ctx, event, event->cpu); 12511 perf_unpin_context(ctx); 12512 12513 if (move_group) 12514 perf_event_ctx_unlock(group_leader, gctx); 12515 mutex_unlock(&ctx->mutex); 12516 12517 if (task) { 12518 up_read(&task->signal->exec_update_lock); 12519 put_task_struct(task); 12520 } 12521 12522 mutex_lock(¤t->perf_event_mutex); 12523 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12524 mutex_unlock(¤t->perf_event_mutex); 12525 12526 /* 12527 * Drop the reference on the group_event after placing the 12528 * new event on the sibling_list. This ensures destruction 12529 * of the group leader will find the pointer to itself in 12530 * perf_group_detach(). 12531 */ 12532 fdput(group); 12533 fd_install(event_fd, event_file); 12534 return event_fd; 12535 12536 err_locked: 12537 if (move_group) 12538 perf_event_ctx_unlock(group_leader, gctx); 12539 mutex_unlock(&ctx->mutex); 12540 err_cred: 12541 if (task) 12542 up_read(&task->signal->exec_update_lock); 12543 err_file: 12544 fput(event_file); 12545 err_context: 12546 perf_unpin_context(ctx); 12547 put_ctx(ctx); 12548 err_alloc: 12549 /* 12550 * If event_file is set, the fput() above will have called ->release() 12551 * and that will take care of freeing the event. 12552 */ 12553 if (!event_file) 12554 free_event(event); 12555 err_task: 12556 if (task) 12557 put_task_struct(task); 12558 err_group_fd: 12559 fdput(group); 12560 err_fd: 12561 put_unused_fd(event_fd); 12562 return err; 12563 } 12564 12565 /** 12566 * perf_event_create_kernel_counter 12567 * 12568 * @attr: attributes of the counter to create 12569 * @cpu: cpu in which the counter is bound 12570 * @task: task to profile (NULL for percpu) 12571 * @overflow_handler: callback to trigger when we hit the event 12572 * @context: context data could be used in overflow_handler callback 12573 */ 12574 struct perf_event * 12575 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12576 struct task_struct *task, 12577 perf_overflow_handler_t overflow_handler, 12578 void *context) 12579 { 12580 struct perf_event_context *ctx; 12581 struct perf_event *event; 12582 int err; 12583 12584 /* 12585 * Grouping is not supported for kernel events, neither is 'AUX', 12586 * make sure the caller's intentions are adjusted. 12587 */ 12588 if (attr->aux_output) 12589 return ERR_PTR(-EINVAL); 12590 12591 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12592 overflow_handler, context, -1); 12593 if (IS_ERR(event)) { 12594 err = PTR_ERR(event); 12595 goto err; 12596 } 12597 12598 /* Mark owner so we could distinguish it from user events. */ 12599 event->owner = TASK_TOMBSTONE; 12600 12601 /* 12602 * Get the target context (task or percpu): 12603 */ 12604 ctx = find_get_context(event->pmu, task, event); 12605 if (IS_ERR(ctx)) { 12606 err = PTR_ERR(ctx); 12607 goto err_free; 12608 } 12609 12610 WARN_ON_ONCE(ctx->parent_ctx); 12611 mutex_lock(&ctx->mutex); 12612 if (ctx->task == TASK_TOMBSTONE) { 12613 err = -ESRCH; 12614 goto err_unlock; 12615 } 12616 12617 if (!task) { 12618 /* 12619 * Check if the @cpu we're creating an event for is online. 12620 * 12621 * We use the perf_cpu_context::ctx::mutex to serialize against 12622 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12623 */ 12624 struct perf_cpu_context *cpuctx = 12625 container_of(ctx, struct perf_cpu_context, ctx); 12626 if (!cpuctx->online) { 12627 err = -ENODEV; 12628 goto err_unlock; 12629 } 12630 } 12631 12632 if (!exclusive_event_installable(event, ctx)) { 12633 err = -EBUSY; 12634 goto err_unlock; 12635 } 12636 12637 perf_install_in_context(ctx, event, event->cpu); 12638 perf_unpin_context(ctx); 12639 mutex_unlock(&ctx->mutex); 12640 12641 return event; 12642 12643 err_unlock: 12644 mutex_unlock(&ctx->mutex); 12645 perf_unpin_context(ctx); 12646 put_ctx(ctx); 12647 err_free: 12648 free_event(event); 12649 err: 12650 return ERR_PTR(err); 12651 } 12652 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12653 12654 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12655 { 12656 struct perf_event_context *src_ctx; 12657 struct perf_event_context *dst_ctx; 12658 struct perf_event *event, *tmp; 12659 LIST_HEAD(events); 12660 12661 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12662 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12663 12664 /* 12665 * See perf_event_ctx_lock() for comments on the details 12666 * of swizzling perf_event::ctx. 12667 */ 12668 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12669 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12670 event_entry) { 12671 perf_remove_from_context(event, 0); 12672 unaccount_event_cpu(event, src_cpu); 12673 put_ctx(src_ctx); 12674 list_add(&event->migrate_entry, &events); 12675 } 12676 12677 /* 12678 * Wait for the events to quiesce before re-instating them. 12679 */ 12680 synchronize_rcu(); 12681 12682 /* 12683 * Re-instate events in 2 passes. 12684 * 12685 * Skip over group leaders and only install siblings on this first 12686 * pass, siblings will not get enabled without a leader, however a 12687 * leader will enable its siblings, even if those are still on the old 12688 * context. 12689 */ 12690 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12691 if (event->group_leader == event) 12692 continue; 12693 12694 list_del(&event->migrate_entry); 12695 if (event->state >= PERF_EVENT_STATE_OFF) 12696 event->state = PERF_EVENT_STATE_INACTIVE; 12697 account_event_cpu(event, dst_cpu); 12698 perf_install_in_context(dst_ctx, event, dst_cpu); 12699 get_ctx(dst_ctx); 12700 } 12701 12702 /* 12703 * Once all the siblings are setup properly, install the group leaders 12704 * to make it go. 12705 */ 12706 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12707 list_del(&event->migrate_entry); 12708 if (event->state >= PERF_EVENT_STATE_OFF) 12709 event->state = PERF_EVENT_STATE_INACTIVE; 12710 account_event_cpu(event, dst_cpu); 12711 perf_install_in_context(dst_ctx, event, dst_cpu); 12712 get_ctx(dst_ctx); 12713 } 12714 mutex_unlock(&dst_ctx->mutex); 12715 mutex_unlock(&src_ctx->mutex); 12716 } 12717 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12718 12719 static void sync_child_event(struct perf_event *child_event) 12720 { 12721 struct perf_event *parent_event = child_event->parent; 12722 u64 child_val; 12723 12724 if (child_event->attr.inherit_stat) { 12725 struct task_struct *task = child_event->ctx->task; 12726 12727 if (task && task != TASK_TOMBSTONE) 12728 perf_event_read_event(child_event, task); 12729 } 12730 12731 child_val = perf_event_count(child_event); 12732 12733 /* 12734 * Add back the child's count to the parent's count: 12735 */ 12736 atomic64_add(child_val, &parent_event->child_count); 12737 atomic64_add(child_event->total_time_enabled, 12738 &parent_event->child_total_time_enabled); 12739 atomic64_add(child_event->total_time_running, 12740 &parent_event->child_total_time_running); 12741 } 12742 12743 static void 12744 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12745 { 12746 struct perf_event *parent_event = event->parent; 12747 unsigned long detach_flags = 0; 12748 12749 if (parent_event) { 12750 /* 12751 * Do not destroy the 'original' grouping; because of the 12752 * context switch optimization the original events could've 12753 * ended up in a random child task. 12754 * 12755 * If we were to destroy the original group, all group related 12756 * operations would cease to function properly after this 12757 * random child dies. 12758 * 12759 * Do destroy all inherited groups, we don't care about those 12760 * and being thorough is better. 12761 */ 12762 detach_flags = DETACH_GROUP | DETACH_CHILD; 12763 mutex_lock(&parent_event->child_mutex); 12764 } 12765 12766 perf_remove_from_context(event, detach_flags); 12767 12768 raw_spin_lock_irq(&ctx->lock); 12769 if (event->state > PERF_EVENT_STATE_EXIT) 12770 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 12771 raw_spin_unlock_irq(&ctx->lock); 12772 12773 /* 12774 * Child events can be freed. 12775 */ 12776 if (parent_event) { 12777 mutex_unlock(&parent_event->child_mutex); 12778 /* 12779 * Kick perf_poll() for is_event_hup(); 12780 */ 12781 perf_event_wakeup(parent_event); 12782 free_event(event); 12783 put_event(parent_event); 12784 return; 12785 } 12786 12787 /* 12788 * Parent events are governed by their filedesc, retain them. 12789 */ 12790 perf_event_wakeup(event); 12791 } 12792 12793 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12794 { 12795 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12796 struct perf_event *child_event, *next; 12797 12798 WARN_ON_ONCE(child != current); 12799 12800 child_ctx = perf_pin_task_context(child, ctxn); 12801 if (!child_ctx) 12802 return; 12803 12804 /* 12805 * In order to reduce the amount of tricky in ctx tear-down, we hold 12806 * ctx::mutex over the entire thing. This serializes against almost 12807 * everything that wants to access the ctx. 12808 * 12809 * The exception is sys_perf_event_open() / 12810 * perf_event_create_kernel_count() which does find_get_context() 12811 * without ctx::mutex (it cannot because of the move_group double mutex 12812 * lock thing). See the comments in perf_install_in_context(). 12813 */ 12814 mutex_lock(&child_ctx->mutex); 12815 12816 /* 12817 * In a single ctx::lock section, de-schedule the events and detach the 12818 * context from the task such that we cannot ever get it scheduled back 12819 * in. 12820 */ 12821 raw_spin_lock_irq(&child_ctx->lock); 12822 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12823 12824 /* 12825 * Now that the context is inactive, destroy the task <-> ctx relation 12826 * and mark the context dead. 12827 */ 12828 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12829 put_ctx(child_ctx); /* cannot be last */ 12830 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12831 put_task_struct(current); /* cannot be last */ 12832 12833 clone_ctx = unclone_ctx(child_ctx); 12834 raw_spin_unlock_irq(&child_ctx->lock); 12835 12836 if (clone_ctx) 12837 put_ctx(clone_ctx); 12838 12839 /* 12840 * Report the task dead after unscheduling the events so that we 12841 * won't get any samples after PERF_RECORD_EXIT. We can however still 12842 * get a few PERF_RECORD_READ events. 12843 */ 12844 perf_event_task(child, child_ctx, 0); 12845 12846 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12847 perf_event_exit_event(child_event, child_ctx); 12848 12849 mutex_unlock(&child_ctx->mutex); 12850 12851 put_ctx(child_ctx); 12852 } 12853 12854 /* 12855 * When a child task exits, feed back event values to parent events. 12856 * 12857 * Can be called with exec_update_lock held when called from 12858 * setup_new_exec(). 12859 */ 12860 void perf_event_exit_task(struct task_struct *child) 12861 { 12862 struct perf_event *event, *tmp; 12863 int ctxn; 12864 12865 mutex_lock(&child->perf_event_mutex); 12866 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12867 owner_entry) { 12868 list_del_init(&event->owner_entry); 12869 12870 /* 12871 * Ensure the list deletion is visible before we clear 12872 * the owner, closes a race against perf_release() where 12873 * we need to serialize on the owner->perf_event_mutex. 12874 */ 12875 smp_store_release(&event->owner, NULL); 12876 } 12877 mutex_unlock(&child->perf_event_mutex); 12878 12879 for_each_task_context_nr(ctxn) 12880 perf_event_exit_task_context(child, ctxn); 12881 12882 /* 12883 * The perf_event_exit_task_context calls perf_event_task 12884 * with child's task_ctx, which generates EXIT events for 12885 * child contexts and sets child->perf_event_ctxp[] to NULL. 12886 * At this point we need to send EXIT events to cpu contexts. 12887 */ 12888 perf_event_task(child, NULL, 0); 12889 } 12890 12891 static void perf_free_event(struct perf_event *event, 12892 struct perf_event_context *ctx) 12893 { 12894 struct perf_event *parent = event->parent; 12895 12896 if (WARN_ON_ONCE(!parent)) 12897 return; 12898 12899 mutex_lock(&parent->child_mutex); 12900 list_del_init(&event->child_list); 12901 mutex_unlock(&parent->child_mutex); 12902 12903 put_event(parent); 12904 12905 raw_spin_lock_irq(&ctx->lock); 12906 perf_group_detach(event); 12907 list_del_event(event, ctx); 12908 raw_spin_unlock_irq(&ctx->lock); 12909 free_event(event); 12910 } 12911 12912 /* 12913 * Free a context as created by inheritance by perf_event_init_task() below, 12914 * used by fork() in case of fail. 12915 * 12916 * Even though the task has never lived, the context and events have been 12917 * exposed through the child_list, so we must take care tearing it all down. 12918 */ 12919 void perf_event_free_task(struct task_struct *task) 12920 { 12921 struct perf_event_context *ctx; 12922 struct perf_event *event, *tmp; 12923 int ctxn; 12924 12925 for_each_task_context_nr(ctxn) { 12926 ctx = task->perf_event_ctxp[ctxn]; 12927 if (!ctx) 12928 continue; 12929 12930 mutex_lock(&ctx->mutex); 12931 raw_spin_lock_irq(&ctx->lock); 12932 /* 12933 * Destroy the task <-> ctx relation and mark the context dead. 12934 * 12935 * This is important because even though the task hasn't been 12936 * exposed yet the context has been (through child_list). 12937 */ 12938 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12939 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12940 put_task_struct(task); /* cannot be last */ 12941 raw_spin_unlock_irq(&ctx->lock); 12942 12943 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12944 perf_free_event(event, ctx); 12945 12946 mutex_unlock(&ctx->mutex); 12947 12948 /* 12949 * perf_event_release_kernel() could've stolen some of our 12950 * child events and still have them on its free_list. In that 12951 * case we must wait for these events to have been freed (in 12952 * particular all their references to this task must've been 12953 * dropped). 12954 * 12955 * Without this copy_process() will unconditionally free this 12956 * task (irrespective of its reference count) and 12957 * _free_event()'s put_task_struct(event->hw.target) will be a 12958 * use-after-free. 12959 * 12960 * Wait for all events to drop their context reference. 12961 */ 12962 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12963 put_ctx(ctx); /* must be last */ 12964 } 12965 } 12966 12967 void perf_event_delayed_put(struct task_struct *task) 12968 { 12969 int ctxn; 12970 12971 for_each_task_context_nr(ctxn) 12972 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12973 } 12974 12975 struct file *perf_event_get(unsigned int fd) 12976 { 12977 struct file *file = fget(fd); 12978 if (!file) 12979 return ERR_PTR(-EBADF); 12980 12981 if (file->f_op != &perf_fops) { 12982 fput(file); 12983 return ERR_PTR(-EBADF); 12984 } 12985 12986 return file; 12987 } 12988 12989 const struct perf_event *perf_get_event(struct file *file) 12990 { 12991 if (file->f_op != &perf_fops) 12992 return ERR_PTR(-EINVAL); 12993 12994 return file->private_data; 12995 } 12996 12997 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12998 { 12999 if (!event) 13000 return ERR_PTR(-EINVAL); 13001 13002 return &event->attr; 13003 } 13004 13005 /* 13006 * Inherit an event from parent task to child task. 13007 * 13008 * Returns: 13009 * - valid pointer on success 13010 * - NULL for orphaned events 13011 * - IS_ERR() on error 13012 */ 13013 static struct perf_event * 13014 inherit_event(struct perf_event *parent_event, 13015 struct task_struct *parent, 13016 struct perf_event_context *parent_ctx, 13017 struct task_struct *child, 13018 struct perf_event *group_leader, 13019 struct perf_event_context *child_ctx) 13020 { 13021 enum perf_event_state parent_state = parent_event->state; 13022 struct perf_event *child_event; 13023 unsigned long flags; 13024 13025 /* 13026 * Instead of creating recursive hierarchies of events, 13027 * we link inherited events back to the original parent, 13028 * which has a filp for sure, which we use as the reference 13029 * count: 13030 */ 13031 if (parent_event->parent) 13032 parent_event = parent_event->parent; 13033 13034 child_event = perf_event_alloc(&parent_event->attr, 13035 parent_event->cpu, 13036 child, 13037 group_leader, parent_event, 13038 NULL, NULL, -1); 13039 if (IS_ERR(child_event)) 13040 return child_event; 13041 13042 13043 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 13044 !child_ctx->task_ctx_data) { 13045 struct pmu *pmu = child_event->pmu; 13046 13047 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu); 13048 if (!child_ctx->task_ctx_data) { 13049 free_event(child_event); 13050 return ERR_PTR(-ENOMEM); 13051 } 13052 } 13053 13054 /* 13055 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13056 * must be under the same lock in order to serialize against 13057 * perf_event_release_kernel(), such that either we must observe 13058 * is_orphaned_event() or they will observe us on the child_list. 13059 */ 13060 mutex_lock(&parent_event->child_mutex); 13061 if (is_orphaned_event(parent_event) || 13062 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13063 mutex_unlock(&parent_event->child_mutex); 13064 /* task_ctx_data is freed with child_ctx */ 13065 free_event(child_event); 13066 return NULL; 13067 } 13068 13069 get_ctx(child_ctx); 13070 13071 /* 13072 * Make the child state follow the state of the parent event, 13073 * not its attr.disabled bit. We hold the parent's mutex, 13074 * so we won't race with perf_event_{en, dis}able_family. 13075 */ 13076 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13077 child_event->state = PERF_EVENT_STATE_INACTIVE; 13078 else 13079 child_event->state = PERF_EVENT_STATE_OFF; 13080 13081 if (parent_event->attr.freq) { 13082 u64 sample_period = parent_event->hw.sample_period; 13083 struct hw_perf_event *hwc = &child_event->hw; 13084 13085 hwc->sample_period = sample_period; 13086 hwc->last_period = sample_period; 13087 13088 local64_set(&hwc->period_left, sample_period); 13089 } 13090 13091 child_event->ctx = child_ctx; 13092 child_event->overflow_handler = parent_event->overflow_handler; 13093 child_event->overflow_handler_context 13094 = parent_event->overflow_handler_context; 13095 13096 /* 13097 * Precalculate sample_data sizes 13098 */ 13099 perf_event__header_size(child_event); 13100 perf_event__id_header_size(child_event); 13101 13102 /* 13103 * Link it up in the child's context: 13104 */ 13105 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13106 add_event_to_ctx(child_event, child_ctx); 13107 child_event->attach_state |= PERF_ATTACH_CHILD; 13108 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13109 13110 /* 13111 * Link this into the parent event's child list 13112 */ 13113 list_add_tail(&child_event->child_list, &parent_event->child_list); 13114 mutex_unlock(&parent_event->child_mutex); 13115 13116 return child_event; 13117 } 13118 13119 /* 13120 * Inherits an event group. 13121 * 13122 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13123 * This matches with perf_event_release_kernel() removing all child events. 13124 * 13125 * Returns: 13126 * - 0 on success 13127 * - <0 on error 13128 */ 13129 static int inherit_group(struct perf_event *parent_event, 13130 struct task_struct *parent, 13131 struct perf_event_context *parent_ctx, 13132 struct task_struct *child, 13133 struct perf_event_context *child_ctx) 13134 { 13135 struct perf_event *leader; 13136 struct perf_event *sub; 13137 struct perf_event *child_ctr; 13138 13139 leader = inherit_event(parent_event, parent, parent_ctx, 13140 child, NULL, child_ctx); 13141 if (IS_ERR(leader)) 13142 return PTR_ERR(leader); 13143 /* 13144 * @leader can be NULL here because of is_orphaned_event(). In this 13145 * case inherit_event() will create individual events, similar to what 13146 * perf_group_detach() would do anyway. 13147 */ 13148 for_each_sibling_event(sub, parent_event) { 13149 child_ctr = inherit_event(sub, parent, parent_ctx, 13150 child, leader, child_ctx); 13151 if (IS_ERR(child_ctr)) 13152 return PTR_ERR(child_ctr); 13153 13154 if (sub->aux_event == parent_event && child_ctr && 13155 !perf_get_aux_event(child_ctr, leader)) 13156 return -EINVAL; 13157 } 13158 return 0; 13159 } 13160 13161 /* 13162 * Creates the child task context and tries to inherit the event-group. 13163 * 13164 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13165 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13166 * consistent with perf_event_release_kernel() removing all child events. 13167 * 13168 * Returns: 13169 * - 0 on success 13170 * - <0 on error 13171 */ 13172 static int 13173 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13174 struct perf_event_context *parent_ctx, 13175 struct task_struct *child, int ctxn, 13176 u64 clone_flags, int *inherited_all) 13177 { 13178 int ret; 13179 struct perf_event_context *child_ctx; 13180 13181 if (!event->attr.inherit || 13182 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13183 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13184 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13185 *inherited_all = 0; 13186 return 0; 13187 } 13188 13189 child_ctx = child->perf_event_ctxp[ctxn]; 13190 if (!child_ctx) { 13191 /* 13192 * This is executed from the parent task context, so 13193 * inherit events that have been marked for cloning. 13194 * First allocate and initialize a context for the 13195 * child. 13196 */ 13197 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 13198 if (!child_ctx) 13199 return -ENOMEM; 13200 13201 child->perf_event_ctxp[ctxn] = child_ctx; 13202 } 13203 13204 ret = inherit_group(event, parent, parent_ctx, 13205 child, child_ctx); 13206 13207 if (ret) 13208 *inherited_all = 0; 13209 13210 return ret; 13211 } 13212 13213 /* 13214 * Initialize the perf_event context in task_struct 13215 */ 13216 static int perf_event_init_context(struct task_struct *child, int ctxn, 13217 u64 clone_flags) 13218 { 13219 struct perf_event_context *child_ctx, *parent_ctx; 13220 struct perf_event_context *cloned_ctx; 13221 struct perf_event *event; 13222 struct task_struct *parent = current; 13223 int inherited_all = 1; 13224 unsigned long flags; 13225 int ret = 0; 13226 13227 if (likely(!parent->perf_event_ctxp[ctxn])) 13228 return 0; 13229 13230 /* 13231 * If the parent's context is a clone, pin it so it won't get 13232 * swapped under us. 13233 */ 13234 parent_ctx = perf_pin_task_context(parent, ctxn); 13235 if (!parent_ctx) 13236 return 0; 13237 13238 /* 13239 * No need to check if parent_ctx != NULL here; since we saw 13240 * it non-NULL earlier, the only reason for it to become NULL 13241 * is if we exit, and since we're currently in the middle of 13242 * a fork we can't be exiting at the same time. 13243 */ 13244 13245 /* 13246 * Lock the parent list. No need to lock the child - not PID 13247 * hashed yet and not running, so nobody can access it. 13248 */ 13249 mutex_lock(&parent_ctx->mutex); 13250 13251 /* 13252 * We dont have to disable NMIs - we are only looking at 13253 * the list, not manipulating it: 13254 */ 13255 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13256 ret = inherit_task_group(event, parent, parent_ctx, 13257 child, ctxn, clone_flags, 13258 &inherited_all); 13259 if (ret) 13260 goto out_unlock; 13261 } 13262 13263 /* 13264 * We can't hold ctx->lock when iterating the ->flexible_group list due 13265 * to allocations, but we need to prevent rotation because 13266 * rotate_ctx() will change the list from interrupt context. 13267 */ 13268 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13269 parent_ctx->rotate_disable = 1; 13270 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13271 13272 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13273 ret = inherit_task_group(event, parent, parent_ctx, 13274 child, ctxn, clone_flags, 13275 &inherited_all); 13276 if (ret) 13277 goto out_unlock; 13278 } 13279 13280 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13281 parent_ctx->rotate_disable = 0; 13282 13283 child_ctx = child->perf_event_ctxp[ctxn]; 13284 13285 if (child_ctx && inherited_all) { 13286 /* 13287 * Mark the child context as a clone of the parent 13288 * context, or of whatever the parent is a clone of. 13289 * 13290 * Note that if the parent is a clone, the holding of 13291 * parent_ctx->lock avoids it from being uncloned. 13292 */ 13293 cloned_ctx = parent_ctx->parent_ctx; 13294 if (cloned_ctx) { 13295 child_ctx->parent_ctx = cloned_ctx; 13296 child_ctx->parent_gen = parent_ctx->parent_gen; 13297 } else { 13298 child_ctx->parent_ctx = parent_ctx; 13299 child_ctx->parent_gen = parent_ctx->generation; 13300 } 13301 get_ctx(child_ctx->parent_ctx); 13302 } 13303 13304 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13305 out_unlock: 13306 mutex_unlock(&parent_ctx->mutex); 13307 13308 perf_unpin_context(parent_ctx); 13309 put_ctx(parent_ctx); 13310 13311 return ret; 13312 } 13313 13314 /* 13315 * Initialize the perf_event context in task_struct 13316 */ 13317 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13318 { 13319 int ctxn, ret; 13320 13321 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 13322 mutex_init(&child->perf_event_mutex); 13323 INIT_LIST_HEAD(&child->perf_event_list); 13324 13325 for_each_task_context_nr(ctxn) { 13326 ret = perf_event_init_context(child, ctxn, clone_flags); 13327 if (ret) { 13328 perf_event_free_task(child); 13329 return ret; 13330 } 13331 } 13332 13333 return 0; 13334 } 13335 13336 static void __init perf_event_init_all_cpus(void) 13337 { 13338 struct swevent_htable *swhash; 13339 int cpu; 13340 13341 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13342 13343 for_each_possible_cpu(cpu) { 13344 swhash = &per_cpu(swevent_htable, cpu); 13345 mutex_init(&swhash->hlist_mutex); 13346 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 13347 13348 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13349 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13350 13351 #ifdef CONFIG_CGROUP_PERF 13352 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 13353 #endif 13354 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13355 } 13356 } 13357 13358 static void perf_swevent_init_cpu(unsigned int cpu) 13359 { 13360 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13361 13362 mutex_lock(&swhash->hlist_mutex); 13363 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13364 struct swevent_hlist *hlist; 13365 13366 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13367 WARN_ON(!hlist); 13368 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13369 } 13370 mutex_unlock(&swhash->hlist_mutex); 13371 } 13372 13373 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13374 static void __perf_event_exit_context(void *__info) 13375 { 13376 struct perf_event_context *ctx = __info; 13377 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 13378 struct perf_event *event; 13379 13380 raw_spin_lock(&ctx->lock); 13381 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 13382 list_for_each_entry(event, &ctx->event_list, event_entry) 13383 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13384 raw_spin_unlock(&ctx->lock); 13385 } 13386 13387 static void perf_event_exit_cpu_context(int cpu) 13388 { 13389 struct perf_cpu_context *cpuctx; 13390 struct perf_event_context *ctx; 13391 struct pmu *pmu; 13392 13393 mutex_lock(&pmus_lock); 13394 list_for_each_entry(pmu, &pmus, entry) { 13395 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13396 ctx = &cpuctx->ctx; 13397 13398 mutex_lock(&ctx->mutex); 13399 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13400 cpuctx->online = 0; 13401 mutex_unlock(&ctx->mutex); 13402 } 13403 cpumask_clear_cpu(cpu, perf_online_mask); 13404 mutex_unlock(&pmus_lock); 13405 } 13406 #else 13407 13408 static void perf_event_exit_cpu_context(int cpu) { } 13409 13410 #endif 13411 13412 int perf_event_init_cpu(unsigned int cpu) 13413 { 13414 struct perf_cpu_context *cpuctx; 13415 struct perf_event_context *ctx; 13416 struct pmu *pmu; 13417 13418 perf_swevent_init_cpu(cpu); 13419 13420 mutex_lock(&pmus_lock); 13421 cpumask_set_cpu(cpu, perf_online_mask); 13422 list_for_each_entry(pmu, &pmus, entry) { 13423 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13424 ctx = &cpuctx->ctx; 13425 13426 mutex_lock(&ctx->mutex); 13427 cpuctx->online = 1; 13428 mutex_unlock(&ctx->mutex); 13429 } 13430 mutex_unlock(&pmus_lock); 13431 13432 return 0; 13433 } 13434 13435 int perf_event_exit_cpu(unsigned int cpu) 13436 { 13437 perf_event_exit_cpu_context(cpu); 13438 return 0; 13439 } 13440 13441 static int 13442 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13443 { 13444 int cpu; 13445 13446 for_each_online_cpu(cpu) 13447 perf_event_exit_cpu(cpu); 13448 13449 return NOTIFY_OK; 13450 } 13451 13452 /* 13453 * Run the perf reboot notifier at the very last possible moment so that 13454 * the generic watchdog code runs as long as possible. 13455 */ 13456 static struct notifier_block perf_reboot_notifier = { 13457 .notifier_call = perf_reboot, 13458 .priority = INT_MIN, 13459 }; 13460 13461 void __init perf_event_init(void) 13462 { 13463 int ret; 13464 13465 idr_init(&pmu_idr); 13466 13467 perf_event_init_all_cpus(); 13468 init_srcu_struct(&pmus_srcu); 13469 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13470 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13471 perf_pmu_register(&perf_task_clock, NULL, -1); 13472 perf_tp_register(); 13473 perf_event_init_cpu(smp_processor_id()); 13474 register_reboot_notifier(&perf_reboot_notifier); 13475 13476 ret = init_hw_breakpoint(); 13477 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13478 13479 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13480 13481 /* 13482 * Build time assertion that we keep the data_head at the intended 13483 * location. IOW, validation we got the __reserved[] size right. 13484 */ 13485 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13486 != 1024); 13487 } 13488 13489 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13490 char *page) 13491 { 13492 struct perf_pmu_events_attr *pmu_attr = 13493 container_of(attr, struct perf_pmu_events_attr, attr); 13494 13495 if (pmu_attr->event_str) 13496 return sprintf(page, "%s\n", pmu_attr->event_str); 13497 13498 return 0; 13499 } 13500 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13501 13502 static int __init perf_event_sysfs_init(void) 13503 { 13504 struct pmu *pmu; 13505 int ret; 13506 13507 mutex_lock(&pmus_lock); 13508 13509 ret = bus_register(&pmu_bus); 13510 if (ret) 13511 goto unlock; 13512 13513 list_for_each_entry(pmu, &pmus, entry) { 13514 if (!pmu->name || pmu->type < 0) 13515 continue; 13516 13517 ret = pmu_dev_alloc(pmu); 13518 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13519 } 13520 pmu_bus_running = 1; 13521 ret = 0; 13522 13523 unlock: 13524 mutex_unlock(&pmus_lock); 13525 13526 return ret; 13527 } 13528 device_initcall(perf_event_sysfs_init); 13529 13530 #ifdef CONFIG_CGROUP_PERF 13531 static struct cgroup_subsys_state * 13532 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13533 { 13534 struct perf_cgroup *jc; 13535 13536 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13537 if (!jc) 13538 return ERR_PTR(-ENOMEM); 13539 13540 jc->info = alloc_percpu(struct perf_cgroup_info); 13541 if (!jc->info) { 13542 kfree(jc); 13543 return ERR_PTR(-ENOMEM); 13544 } 13545 13546 return &jc->css; 13547 } 13548 13549 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13550 { 13551 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13552 13553 free_percpu(jc->info); 13554 kfree(jc); 13555 } 13556 13557 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13558 { 13559 perf_event_cgroup(css->cgroup); 13560 return 0; 13561 } 13562 13563 static int __perf_cgroup_move(void *info) 13564 { 13565 struct task_struct *task = info; 13566 rcu_read_lock(); 13567 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 13568 rcu_read_unlock(); 13569 return 0; 13570 } 13571 13572 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13573 { 13574 struct task_struct *task; 13575 struct cgroup_subsys_state *css; 13576 13577 cgroup_taskset_for_each(task, css, tset) 13578 task_function_call(task, __perf_cgroup_move, task); 13579 } 13580 13581 struct cgroup_subsys perf_event_cgrp_subsys = { 13582 .css_alloc = perf_cgroup_css_alloc, 13583 .css_free = perf_cgroup_css_free, 13584 .css_online = perf_cgroup_css_online, 13585 .attach = perf_cgroup_attach, 13586 /* 13587 * Implicitly enable on dfl hierarchy so that perf events can 13588 * always be filtered by cgroup2 path as long as perf_event 13589 * controller is not mounted on a legacy hierarchy. 13590 */ 13591 .implicit_on_dfl = true, 13592 .threaded = true, 13593 }; 13594 #endif /* CONFIG_CGROUP_PERF */ 13595 13596 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13597