xref: /openbmc/linux/kernel/events/core.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 
50 #include "internal.h"
51 
52 #include <asm/irq_regs.h>
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		/* -EAGAIN */
70 		if (task_cpu(p) != smp_processor_id())
71 			return;
72 
73 		/*
74 		 * Now that we're on right CPU with IRQs disabled, we can test
75 		 * if we hit the right task without races.
76 		 */
77 
78 		tfc->ret = -ESRCH; /* No such (running) process */
79 		if (p != current)
80 			return;
81 	}
82 
83 	tfc->ret = tfc->func(tfc->info);
84 }
85 
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:		the task to evaluate
89  * @func:	the function to be called
90  * @info:	the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *	    -ESRCH  - when the process isn't running
97  *	    -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 	struct remote_function_call data = {
103 		.p	= p,
104 		.func	= func,
105 		.info	= info,
106 		.ret	= -EAGAIN,
107 	};
108 	int ret;
109 
110 	do {
111 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 		if (!ret)
113 			ret = data.ret;
114 	} while (ret == -EAGAIN);
115 
116 	return ret;
117 }
118 
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:	the function to be called
122  * @info:	the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 	struct remote_function_call data = {
131 		.p	= NULL,
132 		.func	= func,
133 		.info	= info,
134 		.ret	= -ENXIO, /* No such CPU */
135 	};
136 
137 	smp_call_function_single(cpu, remote_function, &data, 1);
138 
139 	return data.ret;
140 }
141 
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147 
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 			  struct perf_event_context *ctx)
150 {
151 	raw_spin_lock(&cpuctx->ctx.lock);
152 	if (ctx)
153 		raw_spin_lock(&ctx->lock);
154 }
155 
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 			    struct perf_event_context *ctx)
158 {
159 	if (ctx)
160 		raw_spin_unlock(&ctx->lock);
161 	raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163 
164 #define TASK_TOMBSTONE ((void *)-1L)
165 
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170 
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189 
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 			struct perf_event_context *, void *);
192 
193 struct event_function_struct {
194 	struct perf_event *event;
195 	event_f func;
196 	void *data;
197 };
198 
199 static int event_function(void *info)
200 {
201 	struct event_function_struct *efs = info;
202 	struct perf_event *event = efs->event;
203 	struct perf_event_context *ctx = event->ctx;
204 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 	int ret = 0;
207 
208 	WARN_ON_ONCE(!irqs_disabled());
209 
210 	perf_ctx_lock(cpuctx, task_ctx);
211 	/*
212 	 * Since we do the IPI call without holding ctx->lock things can have
213 	 * changed, double check we hit the task we set out to hit.
214 	 */
215 	if (ctx->task) {
216 		if (ctx->task != current) {
217 			ret = -ESRCH;
218 			goto unlock;
219 		}
220 
221 		/*
222 		 * We only use event_function_call() on established contexts,
223 		 * and event_function() is only ever called when active (or
224 		 * rather, we'll have bailed in task_function_call() or the
225 		 * above ctx->task != current test), therefore we must have
226 		 * ctx->is_active here.
227 		 */
228 		WARN_ON_ONCE(!ctx->is_active);
229 		/*
230 		 * And since we have ctx->is_active, cpuctx->task_ctx must
231 		 * match.
232 		 */
233 		WARN_ON_ONCE(task_ctx != ctx);
234 	} else {
235 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 	}
237 
238 	efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 	perf_ctx_unlock(cpuctx, task_ctx);
241 
242 	return ret;
243 }
244 
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247 	struct perf_event_context *ctx = event->ctx;
248 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 	struct event_function_struct efs = {
250 		.event = event,
251 		.func = func,
252 		.data = data,
253 	};
254 
255 	if (!event->parent) {
256 		/*
257 		 * If this is a !child event, we must hold ctx::mutex to
258 		 * stabilize the the event->ctx relation. See
259 		 * perf_event_ctx_lock().
260 		 */
261 		lockdep_assert_held(&ctx->mutex);
262 	}
263 
264 	if (!task) {
265 		cpu_function_call(event->cpu, event_function, &efs);
266 		return;
267 	}
268 
269 	if (task == TASK_TOMBSTONE)
270 		return;
271 
272 again:
273 	if (!task_function_call(task, event_function, &efs))
274 		return;
275 
276 	raw_spin_lock_irq(&ctx->lock);
277 	/*
278 	 * Reload the task pointer, it might have been changed by
279 	 * a concurrent perf_event_context_sched_out().
280 	 */
281 	task = ctx->task;
282 	if (task == TASK_TOMBSTONE) {
283 		raw_spin_unlock_irq(&ctx->lock);
284 		return;
285 	}
286 	if (ctx->is_active) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		goto again;
289 	}
290 	func(event, NULL, ctx, data);
291 	raw_spin_unlock_irq(&ctx->lock);
292 }
293 
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300 	struct perf_event_context *ctx = event->ctx;
301 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 	struct task_struct *task = READ_ONCE(ctx->task);
303 	struct perf_event_context *task_ctx = NULL;
304 
305 	WARN_ON_ONCE(!irqs_disabled());
306 
307 	if (task) {
308 		if (task == TASK_TOMBSTONE)
309 			return;
310 
311 		task_ctx = ctx;
312 	}
313 
314 	perf_ctx_lock(cpuctx, task_ctx);
315 
316 	task = ctx->task;
317 	if (task == TASK_TOMBSTONE)
318 		goto unlock;
319 
320 	if (task) {
321 		/*
322 		 * We must be either inactive or active and the right task,
323 		 * otherwise we're screwed, since we cannot IPI to somewhere
324 		 * else.
325 		 */
326 		if (ctx->is_active) {
327 			if (WARN_ON_ONCE(task != current))
328 				goto unlock;
329 
330 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 				goto unlock;
332 		}
333 	} else {
334 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 	}
336 
337 	func(event, cpuctx, ctx, data);
338 unlock:
339 	perf_ctx_unlock(cpuctx, task_ctx);
340 }
341 
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 		       PERF_FLAG_FD_OUTPUT  |\
344 		       PERF_FLAG_PID_CGROUP |\
345 		       PERF_FLAG_FD_CLOEXEC)
346 
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 	(PERF_SAMPLE_BRANCH_KERNEL |\
352 	 PERF_SAMPLE_BRANCH_HV)
353 
354 enum event_type_t {
355 	EVENT_FLEXIBLE = 0x1,
356 	EVENT_PINNED = 0x2,
357 	EVENT_TIME = 0x4,
358 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360 
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365 
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371 
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375 
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381 
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385 
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394 
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397 
398 /*
399  * max perf event sample rate
400  */
401 #define DEFAULT_MAX_SAMPLE_RATE		100000
402 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
404 
405 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
406 
407 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
409 
410 static int perf_sample_allowed_ns __read_mostly =
411 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412 
413 static void update_perf_cpu_limits(void)
414 {
415 	u64 tmp = perf_sample_period_ns;
416 
417 	tmp *= sysctl_perf_cpu_time_max_percent;
418 	tmp = div_u64(tmp, 100);
419 	if (!tmp)
420 		tmp = 1;
421 
422 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424 
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426 
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428 		void __user *buffer, size_t *lenp,
429 		loff_t *ppos)
430 {
431 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432 
433 	if (ret || !write)
434 		return ret;
435 
436 	/*
437 	 * If throttling is disabled don't allow the write:
438 	 */
439 	if (sysctl_perf_cpu_time_max_percent == 100 ||
440 	    sysctl_perf_cpu_time_max_percent == 0)
441 		return -EINVAL;
442 
443 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 	update_perf_cpu_limits();
446 
447 	return 0;
448 }
449 
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451 
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 				void __user *buffer, size_t *lenp,
454 				loff_t *ppos)
455 {
456 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457 
458 	if (ret || !write)
459 		return ret;
460 
461 	if (sysctl_perf_cpu_time_max_percent == 100 ||
462 	    sysctl_perf_cpu_time_max_percent == 0) {
463 		printk(KERN_WARNING
464 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 		WRITE_ONCE(perf_sample_allowed_ns, 0);
466 	} else {
467 		update_perf_cpu_limits();
468 	}
469 
470 	return 0;
471 }
472 
473 /*
474  * perf samples are done in some very critical code paths (NMIs).
475  * If they take too much CPU time, the system can lock up and not
476  * get any real work done.  This will drop the sample rate when
477  * we detect that events are taking too long.
478  */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481 
482 static u64 __report_avg;
483 static u64 __report_allowed;
484 
485 static void perf_duration_warn(struct irq_work *w)
486 {
487 	printk_ratelimited(KERN_INFO
488 		"perf: interrupt took too long (%lld > %lld), lowering "
489 		"kernel.perf_event_max_sample_rate to %d\n",
490 		__report_avg, __report_allowed,
491 		sysctl_perf_event_sample_rate);
492 }
493 
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495 
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 	u64 running_len;
500 	u64 avg_len;
501 	u32 max;
502 
503 	if (max_len == 0)
504 		return;
505 
506 	/* Decay the counter by 1 average sample. */
507 	running_len = __this_cpu_read(running_sample_length);
508 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 	running_len += sample_len_ns;
510 	__this_cpu_write(running_sample_length, running_len);
511 
512 	/*
513 	 * Note: this will be biased artifically low until we have
514 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 	 * from having to maintain a count.
516 	 */
517 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 	if (avg_len <= max_len)
519 		return;
520 
521 	__report_avg = avg_len;
522 	__report_allowed = max_len;
523 
524 	/*
525 	 * Compute a throttle threshold 25% below the current duration.
526 	 */
527 	avg_len += avg_len / 4;
528 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 	if (avg_len < max)
530 		max /= (u32)avg_len;
531 	else
532 		max = 1;
533 
534 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 	WRITE_ONCE(max_samples_per_tick, max);
536 
537 	sysctl_perf_event_sample_rate = max * HZ;
538 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539 
540 	if (!irq_work_queue(&perf_duration_work)) {
541 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 			     "kernel.perf_event_max_sample_rate to %d\n",
543 			     __report_avg, __report_allowed,
544 			     sysctl_perf_event_sample_rate);
545 	}
546 }
547 
548 static atomic64_t perf_event_id;
549 
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 			      enum event_type_t event_type);
552 
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554 			     enum event_type_t event_type,
555 			     struct task_struct *task);
556 
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559 
560 void __weak perf_event_print_debug(void)	{ }
561 
562 extern __weak const char *perf_pmu_name(void)
563 {
564 	return "pmu";
565 }
566 
567 static inline u64 perf_clock(void)
568 {
569 	return local_clock();
570 }
571 
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574 	return event->clock();
575 }
576 
577 #ifdef CONFIG_CGROUP_PERF
578 
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582 	struct perf_event_context *ctx = event->ctx;
583 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584 
585 	/* @event doesn't care about cgroup */
586 	if (!event->cgrp)
587 		return true;
588 
589 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
590 	if (!cpuctx->cgrp)
591 		return false;
592 
593 	/*
594 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
595 	 * also enabled for all its descendant cgroups.  If @cpuctx's
596 	 * cgroup is a descendant of @event's (the test covers identity
597 	 * case), it's a match.
598 	 */
599 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 				    event->cgrp->css.cgroup);
601 }
602 
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605 	css_put(&event->cgrp->css);
606 	event->cgrp = NULL;
607 }
608 
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611 	return event->cgrp != NULL;
612 }
613 
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616 	struct perf_cgroup_info *t;
617 
618 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 	return t->time;
620 }
621 
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624 	struct perf_cgroup_info *info;
625 	u64 now;
626 
627 	now = perf_clock();
628 
629 	info = this_cpu_ptr(cgrp->info);
630 
631 	info->time += now - info->timestamp;
632 	info->timestamp = now;
633 }
634 
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 	if (cgrp_out)
639 		__update_cgrp_time(cgrp_out);
640 }
641 
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644 	struct perf_cgroup *cgrp;
645 
646 	/*
647 	 * ensure we access cgroup data only when needed and
648 	 * when we know the cgroup is pinned (css_get)
649 	 */
650 	if (!is_cgroup_event(event))
651 		return;
652 
653 	cgrp = perf_cgroup_from_task(current, event->ctx);
654 	/*
655 	 * Do not update time when cgroup is not active
656 	 */
657 	if (cgrp == event->cgrp)
658 		__update_cgrp_time(event->cgrp);
659 }
660 
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663 			  struct perf_event_context *ctx)
664 {
665 	struct perf_cgroup *cgrp;
666 	struct perf_cgroup_info *info;
667 
668 	/*
669 	 * ctx->lock held by caller
670 	 * ensure we do not access cgroup data
671 	 * unless we have the cgroup pinned (css_get)
672 	 */
673 	if (!task || !ctx->nr_cgroups)
674 		return;
675 
676 	cgrp = perf_cgroup_from_task(task, ctx);
677 	info = this_cpu_ptr(cgrp->info);
678 	info->timestamp = ctx->timestamp;
679 }
680 
681 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
683 
684 /*
685  * reschedule events based on the cgroup constraint of task.
686  *
687  * mode SWOUT : schedule out everything
688  * mode SWIN : schedule in based on cgroup for next
689  */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692 	struct perf_cpu_context *cpuctx;
693 	struct pmu *pmu;
694 	unsigned long flags;
695 
696 	/*
697 	 * disable interrupts to avoid geting nr_cgroup
698 	 * changes via __perf_event_disable(). Also
699 	 * avoids preemption.
700 	 */
701 	local_irq_save(flags);
702 
703 	/*
704 	 * we reschedule only in the presence of cgroup
705 	 * constrained events.
706 	 */
707 
708 	list_for_each_entry_rcu(pmu, &pmus, entry) {
709 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710 		if (cpuctx->unique_pmu != pmu)
711 			continue; /* ensure we process each cpuctx once */
712 
713 		/*
714 		 * perf_cgroup_events says at least one
715 		 * context on this CPU has cgroup events.
716 		 *
717 		 * ctx->nr_cgroups reports the number of cgroup
718 		 * events for a context.
719 		 */
720 		if (cpuctx->ctx.nr_cgroups > 0) {
721 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 			perf_pmu_disable(cpuctx->ctx.pmu);
723 
724 			if (mode & PERF_CGROUP_SWOUT) {
725 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 				/*
727 				 * must not be done before ctxswout due
728 				 * to event_filter_match() in event_sched_out()
729 				 */
730 				cpuctx->cgrp = NULL;
731 			}
732 
733 			if (mode & PERF_CGROUP_SWIN) {
734 				WARN_ON_ONCE(cpuctx->cgrp);
735 				/*
736 				 * set cgrp before ctxsw in to allow
737 				 * event_filter_match() to not have to pass
738 				 * task around
739 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 				 * because cgorup events are only per-cpu
741 				 */
742 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744 			}
745 			perf_pmu_enable(cpuctx->ctx.pmu);
746 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747 		}
748 	}
749 
750 	local_irq_restore(flags);
751 }
752 
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754 					 struct task_struct *next)
755 {
756 	struct perf_cgroup *cgrp1;
757 	struct perf_cgroup *cgrp2 = NULL;
758 
759 	rcu_read_lock();
760 	/*
761 	 * we come here when we know perf_cgroup_events > 0
762 	 * we do not need to pass the ctx here because we know
763 	 * we are holding the rcu lock
764 	 */
765 	cgrp1 = perf_cgroup_from_task(task, NULL);
766 	cgrp2 = perf_cgroup_from_task(next, NULL);
767 
768 	/*
769 	 * only schedule out current cgroup events if we know
770 	 * that we are switching to a different cgroup. Otherwise,
771 	 * do no touch the cgroup events.
772 	 */
773 	if (cgrp1 != cgrp2)
774 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775 
776 	rcu_read_unlock();
777 }
778 
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 					struct task_struct *task)
781 {
782 	struct perf_cgroup *cgrp1;
783 	struct perf_cgroup *cgrp2 = NULL;
784 
785 	rcu_read_lock();
786 	/*
787 	 * we come here when we know perf_cgroup_events > 0
788 	 * we do not need to pass the ctx here because we know
789 	 * we are holding the rcu lock
790 	 */
791 	cgrp1 = perf_cgroup_from_task(task, NULL);
792 	cgrp2 = perf_cgroup_from_task(prev, NULL);
793 
794 	/*
795 	 * only need to schedule in cgroup events if we are changing
796 	 * cgroup during ctxsw. Cgroup events were not scheduled
797 	 * out of ctxsw out if that was not the case.
798 	 */
799 	if (cgrp1 != cgrp2)
800 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801 
802 	rcu_read_unlock();
803 }
804 
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 				      struct perf_event_attr *attr,
807 				      struct perf_event *group_leader)
808 {
809 	struct perf_cgroup *cgrp;
810 	struct cgroup_subsys_state *css;
811 	struct fd f = fdget(fd);
812 	int ret = 0;
813 
814 	if (!f.file)
815 		return -EBADF;
816 
817 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
818 					 &perf_event_cgrp_subsys);
819 	if (IS_ERR(css)) {
820 		ret = PTR_ERR(css);
821 		goto out;
822 	}
823 
824 	cgrp = container_of(css, struct perf_cgroup, css);
825 	event->cgrp = cgrp;
826 
827 	/*
828 	 * all events in a group must monitor
829 	 * the same cgroup because a task belongs
830 	 * to only one perf cgroup at a time
831 	 */
832 	if (group_leader && group_leader->cgrp != cgrp) {
833 		perf_detach_cgroup(event);
834 		ret = -EINVAL;
835 	}
836 out:
837 	fdput(f);
838 	return ret;
839 }
840 
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844 	struct perf_cgroup_info *t;
845 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 	event->shadow_ctx_time = now - t->timestamp;
847 }
848 
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852 	/*
853 	 * when the current task's perf cgroup does not match
854 	 * the event's, we need to remember to call the
855 	 * perf_mark_enable() function the first time a task with
856 	 * a matching perf cgroup is scheduled in.
857 	 */
858 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 		event->cgrp_defer_enabled = 1;
860 }
861 
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864 			 struct perf_event_context *ctx)
865 {
866 	struct perf_event *sub;
867 	u64 tstamp = perf_event_time(event);
868 
869 	if (!event->cgrp_defer_enabled)
870 		return;
871 
872 	event->cgrp_defer_enabled = 0;
873 
874 	event->tstamp_enabled = tstamp - event->total_time_enabled;
875 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 			sub->cgrp_defer_enabled = 0;
879 		}
880 	}
881 }
882 
883 /*
884  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885  * cleared when last cgroup event is removed.
886  */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889 			 struct perf_event_context *ctx, bool add)
890 {
891 	struct perf_cpu_context *cpuctx;
892 
893 	if (!is_cgroup_event(event))
894 		return;
895 
896 	if (add && ctx->nr_cgroups++)
897 		return;
898 	else if (!add && --ctx->nr_cgroups)
899 		return;
900 	/*
901 	 * Because cgroup events are always per-cpu events,
902 	 * this will always be called from the right CPU.
903 	 */
904 	cpuctx = __get_cpu_context(ctx);
905 
906 	/* Only set/clear cpuctx->cgrp if current task uses event->cgrp. */
907 	if (perf_cgroup_from_task(current, ctx) != event->cgrp) {
908 		/*
909 		 * We are removing the last cpu event in this context.
910 		 * If that event is not active in this cpu, cpuctx->cgrp
911 		 * should've been cleared by perf_cgroup_switch.
912 		 */
913 		WARN_ON_ONCE(!add && cpuctx->cgrp);
914 		return;
915 	}
916 	cpuctx->cgrp = add ? event->cgrp : NULL;
917 }
918 
919 #else /* !CONFIG_CGROUP_PERF */
920 
921 static inline bool
922 perf_cgroup_match(struct perf_event *event)
923 {
924 	return true;
925 }
926 
927 static inline void perf_detach_cgroup(struct perf_event *event)
928 {}
929 
930 static inline int is_cgroup_event(struct perf_event *event)
931 {
932 	return 0;
933 }
934 
935 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
936 {
937 	return 0;
938 }
939 
940 static inline void update_cgrp_time_from_event(struct perf_event *event)
941 {
942 }
943 
944 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
945 {
946 }
947 
948 static inline void perf_cgroup_sched_out(struct task_struct *task,
949 					 struct task_struct *next)
950 {
951 }
952 
953 static inline void perf_cgroup_sched_in(struct task_struct *prev,
954 					struct task_struct *task)
955 {
956 }
957 
958 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
959 				      struct perf_event_attr *attr,
960 				      struct perf_event *group_leader)
961 {
962 	return -EINVAL;
963 }
964 
965 static inline void
966 perf_cgroup_set_timestamp(struct task_struct *task,
967 			  struct perf_event_context *ctx)
968 {
969 }
970 
971 void
972 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
973 {
974 }
975 
976 static inline void
977 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
978 {
979 }
980 
981 static inline u64 perf_cgroup_event_time(struct perf_event *event)
982 {
983 	return 0;
984 }
985 
986 static inline void
987 perf_cgroup_defer_enabled(struct perf_event *event)
988 {
989 }
990 
991 static inline void
992 perf_cgroup_mark_enabled(struct perf_event *event,
993 			 struct perf_event_context *ctx)
994 {
995 }
996 
997 static inline void
998 list_update_cgroup_event(struct perf_event *event,
999 			 struct perf_event_context *ctx, bool add)
1000 {
1001 }
1002 
1003 #endif
1004 
1005 /*
1006  * set default to be dependent on timer tick just
1007  * like original code
1008  */
1009 #define PERF_CPU_HRTIMER (1000 / HZ)
1010 /*
1011  * function must be called with interrupts disbled
1012  */
1013 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1014 {
1015 	struct perf_cpu_context *cpuctx;
1016 	int rotations = 0;
1017 
1018 	WARN_ON(!irqs_disabled());
1019 
1020 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1021 	rotations = perf_rotate_context(cpuctx);
1022 
1023 	raw_spin_lock(&cpuctx->hrtimer_lock);
1024 	if (rotations)
1025 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1026 	else
1027 		cpuctx->hrtimer_active = 0;
1028 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1029 
1030 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1031 }
1032 
1033 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1034 {
1035 	struct hrtimer *timer = &cpuctx->hrtimer;
1036 	struct pmu *pmu = cpuctx->ctx.pmu;
1037 	u64 interval;
1038 
1039 	/* no multiplexing needed for SW PMU */
1040 	if (pmu->task_ctx_nr == perf_sw_context)
1041 		return;
1042 
1043 	/*
1044 	 * check default is sane, if not set then force to
1045 	 * default interval (1/tick)
1046 	 */
1047 	interval = pmu->hrtimer_interval_ms;
1048 	if (interval < 1)
1049 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1050 
1051 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1052 
1053 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1054 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1055 	timer->function = perf_mux_hrtimer_handler;
1056 }
1057 
1058 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1059 {
1060 	struct hrtimer *timer = &cpuctx->hrtimer;
1061 	struct pmu *pmu = cpuctx->ctx.pmu;
1062 	unsigned long flags;
1063 
1064 	/* not for SW PMU */
1065 	if (pmu->task_ctx_nr == perf_sw_context)
1066 		return 0;
1067 
1068 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1069 	if (!cpuctx->hrtimer_active) {
1070 		cpuctx->hrtimer_active = 1;
1071 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1072 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1073 	}
1074 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1075 
1076 	return 0;
1077 }
1078 
1079 void perf_pmu_disable(struct pmu *pmu)
1080 {
1081 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1082 	if (!(*count)++)
1083 		pmu->pmu_disable(pmu);
1084 }
1085 
1086 void perf_pmu_enable(struct pmu *pmu)
1087 {
1088 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1089 	if (!--(*count))
1090 		pmu->pmu_enable(pmu);
1091 }
1092 
1093 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1094 
1095 /*
1096  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1097  * perf_event_task_tick() are fully serialized because they're strictly cpu
1098  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1099  * disabled, while perf_event_task_tick is called from IRQ context.
1100  */
1101 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1102 {
1103 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1104 
1105 	WARN_ON(!irqs_disabled());
1106 
1107 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1108 
1109 	list_add(&ctx->active_ctx_list, head);
1110 }
1111 
1112 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1113 {
1114 	WARN_ON(!irqs_disabled());
1115 
1116 	WARN_ON(list_empty(&ctx->active_ctx_list));
1117 
1118 	list_del_init(&ctx->active_ctx_list);
1119 }
1120 
1121 static void get_ctx(struct perf_event_context *ctx)
1122 {
1123 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1124 }
1125 
1126 static void free_ctx(struct rcu_head *head)
1127 {
1128 	struct perf_event_context *ctx;
1129 
1130 	ctx = container_of(head, struct perf_event_context, rcu_head);
1131 	kfree(ctx->task_ctx_data);
1132 	kfree(ctx);
1133 }
1134 
1135 static void put_ctx(struct perf_event_context *ctx)
1136 {
1137 	if (atomic_dec_and_test(&ctx->refcount)) {
1138 		if (ctx->parent_ctx)
1139 			put_ctx(ctx->parent_ctx);
1140 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1141 			put_task_struct(ctx->task);
1142 		call_rcu(&ctx->rcu_head, free_ctx);
1143 	}
1144 }
1145 
1146 /*
1147  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1148  * perf_pmu_migrate_context() we need some magic.
1149  *
1150  * Those places that change perf_event::ctx will hold both
1151  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1152  *
1153  * Lock ordering is by mutex address. There are two other sites where
1154  * perf_event_context::mutex nests and those are:
1155  *
1156  *  - perf_event_exit_task_context()	[ child , 0 ]
1157  *      perf_event_exit_event()
1158  *        put_event()			[ parent, 1 ]
1159  *
1160  *  - perf_event_init_context()		[ parent, 0 ]
1161  *      inherit_task_group()
1162  *        inherit_group()
1163  *          inherit_event()
1164  *            perf_event_alloc()
1165  *              perf_init_event()
1166  *                perf_try_init_event()	[ child , 1 ]
1167  *
1168  * While it appears there is an obvious deadlock here -- the parent and child
1169  * nesting levels are inverted between the two. This is in fact safe because
1170  * life-time rules separate them. That is an exiting task cannot fork, and a
1171  * spawning task cannot (yet) exit.
1172  *
1173  * But remember that that these are parent<->child context relations, and
1174  * migration does not affect children, therefore these two orderings should not
1175  * interact.
1176  *
1177  * The change in perf_event::ctx does not affect children (as claimed above)
1178  * because the sys_perf_event_open() case will install a new event and break
1179  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1180  * concerned with cpuctx and that doesn't have children.
1181  *
1182  * The places that change perf_event::ctx will issue:
1183  *
1184  *   perf_remove_from_context();
1185  *   synchronize_rcu();
1186  *   perf_install_in_context();
1187  *
1188  * to affect the change. The remove_from_context() + synchronize_rcu() should
1189  * quiesce the event, after which we can install it in the new location. This
1190  * means that only external vectors (perf_fops, prctl) can perturb the event
1191  * while in transit. Therefore all such accessors should also acquire
1192  * perf_event_context::mutex to serialize against this.
1193  *
1194  * However; because event->ctx can change while we're waiting to acquire
1195  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1196  * function.
1197  *
1198  * Lock order:
1199  *    cred_guard_mutex
1200  *	task_struct::perf_event_mutex
1201  *	  perf_event_context::mutex
1202  *	    perf_event::child_mutex;
1203  *	      perf_event_context::lock
1204  *	    perf_event::mmap_mutex
1205  *	    mmap_sem
1206  */
1207 static struct perf_event_context *
1208 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1209 {
1210 	struct perf_event_context *ctx;
1211 
1212 again:
1213 	rcu_read_lock();
1214 	ctx = ACCESS_ONCE(event->ctx);
1215 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1216 		rcu_read_unlock();
1217 		goto again;
1218 	}
1219 	rcu_read_unlock();
1220 
1221 	mutex_lock_nested(&ctx->mutex, nesting);
1222 	if (event->ctx != ctx) {
1223 		mutex_unlock(&ctx->mutex);
1224 		put_ctx(ctx);
1225 		goto again;
1226 	}
1227 
1228 	return ctx;
1229 }
1230 
1231 static inline struct perf_event_context *
1232 perf_event_ctx_lock(struct perf_event *event)
1233 {
1234 	return perf_event_ctx_lock_nested(event, 0);
1235 }
1236 
1237 static void perf_event_ctx_unlock(struct perf_event *event,
1238 				  struct perf_event_context *ctx)
1239 {
1240 	mutex_unlock(&ctx->mutex);
1241 	put_ctx(ctx);
1242 }
1243 
1244 /*
1245  * This must be done under the ctx->lock, such as to serialize against
1246  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1247  * calling scheduler related locks and ctx->lock nests inside those.
1248  */
1249 static __must_check struct perf_event_context *
1250 unclone_ctx(struct perf_event_context *ctx)
1251 {
1252 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1253 
1254 	lockdep_assert_held(&ctx->lock);
1255 
1256 	if (parent_ctx)
1257 		ctx->parent_ctx = NULL;
1258 	ctx->generation++;
1259 
1260 	return parent_ctx;
1261 }
1262 
1263 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1264 {
1265 	/*
1266 	 * only top level events have the pid namespace they were created in
1267 	 */
1268 	if (event->parent)
1269 		event = event->parent;
1270 
1271 	return task_tgid_nr_ns(p, event->ns);
1272 }
1273 
1274 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1275 {
1276 	/*
1277 	 * only top level events have the pid namespace they were created in
1278 	 */
1279 	if (event->parent)
1280 		event = event->parent;
1281 
1282 	return task_pid_nr_ns(p, event->ns);
1283 }
1284 
1285 /*
1286  * If we inherit events we want to return the parent event id
1287  * to userspace.
1288  */
1289 static u64 primary_event_id(struct perf_event *event)
1290 {
1291 	u64 id = event->id;
1292 
1293 	if (event->parent)
1294 		id = event->parent->id;
1295 
1296 	return id;
1297 }
1298 
1299 /*
1300  * Get the perf_event_context for a task and lock it.
1301  *
1302  * This has to cope with with the fact that until it is locked,
1303  * the context could get moved to another task.
1304  */
1305 static struct perf_event_context *
1306 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1307 {
1308 	struct perf_event_context *ctx;
1309 
1310 retry:
1311 	/*
1312 	 * One of the few rules of preemptible RCU is that one cannot do
1313 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1314 	 * part of the read side critical section was irqs-enabled -- see
1315 	 * rcu_read_unlock_special().
1316 	 *
1317 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1318 	 * side critical section has interrupts disabled.
1319 	 */
1320 	local_irq_save(*flags);
1321 	rcu_read_lock();
1322 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1323 	if (ctx) {
1324 		/*
1325 		 * If this context is a clone of another, it might
1326 		 * get swapped for another underneath us by
1327 		 * perf_event_task_sched_out, though the
1328 		 * rcu_read_lock() protects us from any context
1329 		 * getting freed.  Lock the context and check if it
1330 		 * got swapped before we could get the lock, and retry
1331 		 * if so.  If we locked the right context, then it
1332 		 * can't get swapped on us any more.
1333 		 */
1334 		raw_spin_lock(&ctx->lock);
1335 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1336 			raw_spin_unlock(&ctx->lock);
1337 			rcu_read_unlock();
1338 			local_irq_restore(*flags);
1339 			goto retry;
1340 		}
1341 
1342 		if (ctx->task == TASK_TOMBSTONE ||
1343 		    !atomic_inc_not_zero(&ctx->refcount)) {
1344 			raw_spin_unlock(&ctx->lock);
1345 			ctx = NULL;
1346 		} else {
1347 			WARN_ON_ONCE(ctx->task != task);
1348 		}
1349 	}
1350 	rcu_read_unlock();
1351 	if (!ctx)
1352 		local_irq_restore(*flags);
1353 	return ctx;
1354 }
1355 
1356 /*
1357  * Get the context for a task and increment its pin_count so it
1358  * can't get swapped to another task.  This also increments its
1359  * reference count so that the context can't get freed.
1360  */
1361 static struct perf_event_context *
1362 perf_pin_task_context(struct task_struct *task, int ctxn)
1363 {
1364 	struct perf_event_context *ctx;
1365 	unsigned long flags;
1366 
1367 	ctx = perf_lock_task_context(task, ctxn, &flags);
1368 	if (ctx) {
1369 		++ctx->pin_count;
1370 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 	}
1372 	return ctx;
1373 }
1374 
1375 static void perf_unpin_context(struct perf_event_context *ctx)
1376 {
1377 	unsigned long flags;
1378 
1379 	raw_spin_lock_irqsave(&ctx->lock, flags);
1380 	--ctx->pin_count;
1381 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1382 }
1383 
1384 /*
1385  * Update the record of the current time in a context.
1386  */
1387 static void update_context_time(struct perf_event_context *ctx)
1388 {
1389 	u64 now = perf_clock();
1390 
1391 	ctx->time += now - ctx->timestamp;
1392 	ctx->timestamp = now;
1393 }
1394 
1395 static u64 perf_event_time(struct perf_event *event)
1396 {
1397 	struct perf_event_context *ctx = event->ctx;
1398 
1399 	if (is_cgroup_event(event))
1400 		return perf_cgroup_event_time(event);
1401 
1402 	return ctx ? ctx->time : 0;
1403 }
1404 
1405 /*
1406  * Update the total_time_enabled and total_time_running fields for a event.
1407  */
1408 static void update_event_times(struct perf_event *event)
1409 {
1410 	struct perf_event_context *ctx = event->ctx;
1411 	u64 run_end;
1412 
1413 	lockdep_assert_held(&ctx->lock);
1414 
1415 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1416 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1417 		return;
1418 
1419 	/*
1420 	 * in cgroup mode, time_enabled represents
1421 	 * the time the event was enabled AND active
1422 	 * tasks were in the monitored cgroup. This is
1423 	 * independent of the activity of the context as
1424 	 * there may be a mix of cgroup and non-cgroup events.
1425 	 *
1426 	 * That is why we treat cgroup events differently
1427 	 * here.
1428 	 */
1429 	if (is_cgroup_event(event))
1430 		run_end = perf_cgroup_event_time(event);
1431 	else if (ctx->is_active)
1432 		run_end = ctx->time;
1433 	else
1434 		run_end = event->tstamp_stopped;
1435 
1436 	event->total_time_enabled = run_end - event->tstamp_enabled;
1437 
1438 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1439 		run_end = event->tstamp_stopped;
1440 	else
1441 		run_end = perf_event_time(event);
1442 
1443 	event->total_time_running = run_end - event->tstamp_running;
1444 
1445 }
1446 
1447 /*
1448  * Update total_time_enabled and total_time_running for all events in a group.
1449  */
1450 static void update_group_times(struct perf_event *leader)
1451 {
1452 	struct perf_event *event;
1453 
1454 	update_event_times(leader);
1455 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1456 		update_event_times(event);
1457 }
1458 
1459 static struct list_head *
1460 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1461 {
1462 	if (event->attr.pinned)
1463 		return &ctx->pinned_groups;
1464 	else
1465 		return &ctx->flexible_groups;
1466 }
1467 
1468 /*
1469  * Add a event from the lists for its context.
1470  * Must be called with ctx->mutex and ctx->lock held.
1471  */
1472 static void
1473 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1474 {
1475 
1476 	lockdep_assert_held(&ctx->lock);
1477 
1478 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1479 	event->attach_state |= PERF_ATTACH_CONTEXT;
1480 
1481 	/*
1482 	 * If we're a stand alone event or group leader, we go to the context
1483 	 * list, group events are kept attached to the group so that
1484 	 * perf_group_detach can, at all times, locate all siblings.
1485 	 */
1486 	if (event->group_leader == event) {
1487 		struct list_head *list;
1488 
1489 		event->group_caps = event->event_caps;
1490 
1491 		list = ctx_group_list(event, ctx);
1492 		list_add_tail(&event->group_entry, list);
1493 	}
1494 
1495 	list_update_cgroup_event(event, ctx, true);
1496 
1497 	list_add_rcu(&event->event_entry, &ctx->event_list);
1498 	ctx->nr_events++;
1499 	if (event->attr.inherit_stat)
1500 		ctx->nr_stat++;
1501 
1502 	ctx->generation++;
1503 }
1504 
1505 /*
1506  * Initialize event state based on the perf_event_attr::disabled.
1507  */
1508 static inline void perf_event__state_init(struct perf_event *event)
1509 {
1510 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1511 					      PERF_EVENT_STATE_INACTIVE;
1512 }
1513 
1514 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1515 {
1516 	int entry = sizeof(u64); /* value */
1517 	int size = 0;
1518 	int nr = 1;
1519 
1520 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1521 		size += sizeof(u64);
1522 
1523 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1524 		size += sizeof(u64);
1525 
1526 	if (event->attr.read_format & PERF_FORMAT_ID)
1527 		entry += sizeof(u64);
1528 
1529 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1530 		nr += nr_siblings;
1531 		size += sizeof(u64);
1532 	}
1533 
1534 	size += entry * nr;
1535 	event->read_size = size;
1536 }
1537 
1538 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1539 {
1540 	struct perf_sample_data *data;
1541 	u16 size = 0;
1542 
1543 	if (sample_type & PERF_SAMPLE_IP)
1544 		size += sizeof(data->ip);
1545 
1546 	if (sample_type & PERF_SAMPLE_ADDR)
1547 		size += sizeof(data->addr);
1548 
1549 	if (sample_type & PERF_SAMPLE_PERIOD)
1550 		size += sizeof(data->period);
1551 
1552 	if (sample_type & PERF_SAMPLE_WEIGHT)
1553 		size += sizeof(data->weight);
1554 
1555 	if (sample_type & PERF_SAMPLE_READ)
1556 		size += event->read_size;
1557 
1558 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1559 		size += sizeof(data->data_src.val);
1560 
1561 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1562 		size += sizeof(data->txn);
1563 
1564 	event->header_size = size;
1565 }
1566 
1567 /*
1568  * Called at perf_event creation and when events are attached/detached from a
1569  * group.
1570  */
1571 static void perf_event__header_size(struct perf_event *event)
1572 {
1573 	__perf_event_read_size(event,
1574 			       event->group_leader->nr_siblings);
1575 	__perf_event_header_size(event, event->attr.sample_type);
1576 }
1577 
1578 static void perf_event__id_header_size(struct perf_event *event)
1579 {
1580 	struct perf_sample_data *data;
1581 	u64 sample_type = event->attr.sample_type;
1582 	u16 size = 0;
1583 
1584 	if (sample_type & PERF_SAMPLE_TID)
1585 		size += sizeof(data->tid_entry);
1586 
1587 	if (sample_type & PERF_SAMPLE_TIME)
1588 		size += sizeof(data->time);
1589 
1590 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1591 		size += sizeof(data->id);
1592 
1593 	if (sample_type & PERF_SAMPLE_ID)
1594 		size += sizeof(data->id);
1595 
1596 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1597 		size += sizeof(data->stream_id);
1598 
1599 	if (sample_type & PERF_SAMPLE_CPU)
1600 		size += sizeof(data->cpu_entry);
1601 
1602 	event->id_header_size = size;
1603 }
1604 
1605 static bool perf_event_validate_size(struct perf_event *event)
1606 {
1607 	/*
1608 	 * The values computed here will be over-written when we actually
1609 	 * attach the event.
1610 	 */
1611 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1612 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1613 	perf_event__id_header_size(event);
1614 
1615 	/*
1616 	 * Sum the lot; should not exceed the 64k limit we have on records.
1617 	 * Conservative limit to allow for callchains and other variable fields.
1618 	 */
1619 	if (event->read_size + event->header_size +
1620 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1621 		return false;
1622 
1623 	return true;
1624 }
1625 
1626 static void perf_group_attach(struct perf_event *event)
1627 {
1628 	struct perf_event *group_leader = event->group_leader, *pos;
1629 
1630 	/*
1631 	 * We can have double attach due to group movement in perf_event_open.
1632 	 */
1633 	if (event->attach_state & PERF_ATTACH_GROUP)
1634 		return;
1635 
1636 	event->attach_state |= PERF_ATTACH_GROUP;
1637 
1638 	if (group_leader == event)
1639 		return;
1640 
1641 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1642 
1643 	group_leader->group_caps &= event->event_caps;
1644 
1645 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1646 	group_leader->nr_siblings++;
1647 
1648 	perf_event__header_size(group_leader);
1649 
1650 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1651 		perf_event__header_size(pos);
1652 }
1653 
1654 /*
1655  * Remove a event from the lists for its context.
1656  * Must be called with ctx->mutex and ctx->lock held.
1657  */
1658 static void
1659 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1660 {
1661 	WARN_ON_ONCE(event->ctx != ctx);
1662 	lockdep_assert_held(&ctx->lock);
1663 
1664 	/*
1665 	 * We can have double detach due to exit/hot-unplug + close.
1666 	 */
1667 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1668 		return;
1669 
1670 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1671 
1672 	list_update_cgroup_event(event, ctx, false);
1673 
1674 	ctx->nr_events--;
1675 	if (event->attr.inherit_stat)
1676 		ctx->nr_stat--;
1677 
1678 	list_del_rcu(&event->event_entry);
1679 
1680 	if (event->group_leader == event)
1681 		list_del_init(&event->group_entry);
1682 
1683 	update_group_times(event);
1684 
1685 	/*
1686 	 * If event was in error state, then keep it
1687 	 * that way, otherwise bogus counts will be
1688 	 * returned on read(). The only way to get out
1689 	 * of error state is by explicit re-enabling
1690 	 * of the event
1691 	 */
1692 	if (event->state > PERF_EVENT_STATE_OFF)
1693 		event->state = PERF_EVENT_STATE_OFF;
1694 
1695 	ctx->generation++;
1696 }
1697 
1698 static void perf_group_detach(struct perf_event *event)
1699 {
1700 	struct perf_event *sibling, *tmp;
1701 	struct list_head *list = NULL;
1702 
1703 	/*
1704 	 * We can have double detach due to exit/hot-unplug + close.
1705 	 */
1706 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1707 		return;
1708 
1709 	event->attach_state &= ~PERF_ATTACH_GROUP;
1710 
1711 	/*
1712 	 * If this is a sibling, remove it from its group.
1713 	 */
1714 	if (event->group_leader != event) {
1715 		list_del_init(&event->group_entry);
1716 		event->group_leader->nr_siblings--;
1717 		goto out;
1718 	}
1719 
1720 	if (!list_empty(&event->group_entry))
1721 		list = &event->group_entry;
1722 
1723 	/*
1724 	 * If this was a group event with sibling events then
1725 	 * upgrade the siblings to singleton events by adding them
1726 	 * to whatever list we are on.
1727 	 */
1728 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1729 		if (list)
1730 			list_move_tail(&sibling->group_entry, list);
1731 		sibling->group_leader = sibling;
1732 
1733 		/* Inherit group flags from the previous leader */
1734 		sibling->group_caps = event->group_caps;
1735 
1736 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1737 	}
1738 
1739 out:
1740 	perf_event__header_size(event->group_leader);
1741 
1742 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1743 		perf_event__header_size(tmp);
1744 }
1745 
1746 static bool is_orphaned_event(struct perf_event *event)
1747 {
1748 	return event->state == PERF_EVENT_STATE_DEAD;
1749 }
1750 
1751 static inline int __pmu_filter_match(struct perf_event *event)
1752 {
1753 	struct pmu *pmu = event->pmu;
1754 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1755 }
1756 
1757 /*
1758  * Check whether we should attempt to schedule an event group based on
1759  * PMU-specific filtering. An event group can consist of HW and SW events,
1760  * potentially with a SW leader, so we must check all the filters, to
1761  * determine whether a group is schedulable:
1762  */
1763 static inline int pmu_filter_match(struct perf_event *event)
1764 {
1765 	struct perf_event *child;
1766 
1767 	if (!__pmu_filter_match(event))
1768 		return 0;
1769 
1770 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1771 		if (!__pmu_filter_match(child))
1772 			return 0;
1773 	}
1774 
1775 	return 1;
1776 }
1777 
1778 static inline int
1779 event_filter_match(struct perf_event *event)
1780 {
1781 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1782 	       perf_cgroup_match(event) && pmu_filter_match(event);
1783 }
1784 
1785 static void
1786 event_sched_out(struct perf_event *event,
1787 		  struct perf_cpu_context *cpuctx,
1788 		  struct perf_event_context *ctx)
1789 {
1790 	u64 tstamp = perf_event_time(event);
1791 	u64 delta;
1792 
1793 	WARN_ON_ONCE(event->ctx != ctx);
1794 	lockdep_assert_held(&ctx->lock);
1795 
1796 	/*
1797 	 * An event which could not be activated because of
1798 	 * filter mismatch still needs to have its timings
1799 	 * maintained, otherwise bogus information is return
1800 	 * via read() for time_enabled, time_running:
1801 	 */
1802 	if (event->state == PERF_EVENT_STATE_INACTIVE &&
1803 	    !event_filter_match(event)) {
1804 		delta = tstamp - event->tstamp_stopped;
1805 		event->tstamp_running += delta;
1806 		event->tstamp_stopped = tstamp;
1807 	}
1808 
1809 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1810 		return;
1811 
1812 	perf_pmu_disable(event->pmu);
1813 
1814 	event->tstamp_stopped = tstamp;
1815 	event->pmu->del(event, 0);
1816 	event->oncpu = -1;
1817 	event->state = PERF_EVENT_STATE_INACTIVE;
1818 	if (event->pending_disable) {
1819 		event->pending_disable = 0;
1820 		event->state = PERF_EVENT_STATE_OFF;
1821 	}
1822 
1823 	if (!is_software_event(event))
1824 		cpuctx->active_oncpu--;
1825 	if (!--ctx->nr_active)
1826 		perf_event_ctx_deactivate(ctx);
1827 	if (event->attr.freq && event->attr.sample_freq)
1828 		ctx->nr_freq--;
1829 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1830 		cpuctx->exclusive = 0;
1831 
1832 	perf_pmu_enable(event->pmu);
1833 }
1834 
1835 static void
1836 group_sched_out(struct perf_event *group_event,
1837 		struct perf_cpu_context *cpuctx,
1838 		struct perf_event_context *ctx)
1839 {
1840 	struct perf_event *event;
1841 	int state = group_event->state;
1842 
1843 	perf_pmu_disable(ctx->pmu);
1844 
1845 	event_sched_out(group_event, cpuctx, ctx);
1846 
1847 	/*
1848 	 * Schedule out siblings (if any):
1849 	 */
1850 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1851 		event_sched_out(event, cpuctx, ctx);
1852 
1853 	perf_pmu_enable(ctx->pmu);
1854 
1855 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1856 		cpuctx->exclusive = 0;
1857 }
1858 
1859 #define DETACH_GROUP	0x01UL
1860 
1861 /*
1862  * Cross CPU call to remove a performance event
1863  *
1864  * We disable the event on the hardware level first. After that we
1865  * remove it from the context list.
1866  */
1867 static void
1868 __perf_remove_from_context(struct perf_event *event,
1869 			   struct perf_cpu_context *cpuctx,
1870 			   struct perf_event_context *ctx,
1871 			   void *info)
1872 {
1873 	unsigned long flags = (unsigned long)info;
1874 
1875 	event_sched_out(event, cpuctx, ctx);
1876 	if (flags & DETACH_GROUP)
1877 		perf_group_detach(event);
1878 	list_del_event(event, ctx);
1879 
1880 	if (!ctx->nr_events && ctx->is_active) {
1881 		ctx->is_active = 0;
1882 		if (ctx->task) {
1883 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1884 			cpuctx->task_ctx = NULL;
1885 		}
1886 	}
1887 }
1888 
1889 /*
1890  * Remove the event from a task's (or a CPU's) list of events.
1891  *
1892  * If event->ctx is a cloned context, callers must make sure that
1893  * every task struct that event->ctx->task could possibly point to
1894  * remains valid.  This is OK when called from perf_release since
1895  * that only calls us on the top-level context, which can't be a clone.
1896  * When called from perf_event_exit_task, it's OK because the
1897  * context has been detached from its task.
1898  */
1899 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1900 {
1901 	lockdep_assert_held(&event->ctx->mutex);
1902 
1903 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1904 }
1905 
1906 /*
1907  * Cross CPU call to disable a performance event
1908  */
1909 static void __perf_event_disable(struct perf_event *event,
1910 				 struct perf_cpu_context *cpuctx,
1911 				 struct perf_event_context *ctx,
1912 				 void *info)
1913 {
1914 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1915 		return;
1916 
1917 	update_context_time(ctx);
1918 	update_cgrp_time_from_event(event);
1919 	update_group_times(event);
1920 	if (event == event->group_leader)
1921 		group_sched_out(event, cpuctx, ctx);
1922 	else
1923 		event_sched_out(event, cpuctx, ctx);
1924 	event->state = PERF_EVENT_STATE_OFF;
1925 }
1926 
1927 /*
1928  * Disable a event.
1929  *
1930  * If event->ctx is a cloned context, callers must make sure that
1931  * every task struct that event->ctx->task could possibly point to
1932  * remains valid.  This condition is satisifed when called through
1933  * perf_event_for_each_child or perf_event_for_each because they
1934  * hold the top-level event's child_mutex, so any descendant that
1935  * goes to exit will block in perf_event_exit_event().
1936  *
1937  * When called from perf_pending_event it's OK because event->ctx
1938  * is the current context on this CPU and preemption is disabled,
1939  * hence we can't get into perf_event_task_sched_out for this context.
1940  */
1941 static void _perf_event_disable(struct perf_event *event)
1942 {
1943 	struct perf_event_context *ctx = event->ctx;
1944 
1945 	raw_spin_lock_irq(&ctx->lock);
1946 	if (event->state <= PERF_EVENT_STATE_OFF) {
1947 		raw_spin_unlock_irq(&ctx->lock);
1948 		return;
1949 	}
1950 	raw_spin_unlock_irq(&ctx->lock);
1951 
1952 	event_function_call(event, __perf_event_disable, NULL);
1953 }
1954 
1955 void perf_event_disable_local(struct perf_event *event)
1956 {
1957 	event_function_local(event, __perf_event_disable, NULL);
1958 }
1959 
1960 /*
1961  * Strictly speaking kernel users cannot create groups and therefore this
1962  * interface does not need the perf_event_ctx_lock() magic.
1963  */
1964 void perf_event_disable(struct perf_event *event)
1965 {
1966 	struct perf_event_context *ctx;
1967 
1968 	ctx = perf_event_ctx_lock(event);
1969 	_perf_event_disable(event);
1970 	perf_event_ctx_unlock(event, ctx);
1971 }
1972 EXPORT_SYMBOL_GPL(perf_event_disable);
1973 
1974 void perf_event_disable_inatomic(struct perf_event *event)
1975 {
1976 	event->pending_disable = 1;
1977 	irq_work_queue(&event->pending);
1978 }
1979 
1980 static void perf_set_shadow_time(struct perf_event *event,
1981 				 struct perf_event_context *ctx,
1982 				 u64 tstamp)
1983 {
1984 	/*
1985 	 * use the correct time source for the time snapshot
1986 	 *
1987 	 * We could get by without this by leveraging the
1988 	 * fact that to get to this function, the caller
1989 	 * has most likely already called update_context_time()
1990 	 * and update_cgrp_time_xx() and thus both timestamp
1991 	 * are identical (or very close). Given that tstamp is,
1992 	 * already adjusted for cgroup, we could say that:
1993 	 *    tstamp - ctx->timestamp
1994 	 * is equivalent to
1995 	 *    tstamp - cgrp->timestamp.
1996 	 *
1997 	 * Then, in perf_output_read(), the calculation would
1998 	 * work with no changes because:
1999 	 * - event is guaranteed scheduled in
2000 	 * - no scheduled out in between
2001 	 * - thus the timestamp would be the same
2002 	 *
2003 	 * But this is a bit hairy.
2004 	 *
2005 	 * So instead, we have an explicit cgroup call to remain
2006 	 * within the time time source all along. We believe it
2007 	 * is cleaner and simpler to understand.
2008 	 */
2009 	if (is_cgroup_event(event))
2010 		perf_cgroup_set_shadow_time(event, tstamp);
2011 	else
2012 		event->shadow_ctx_time = tstamp - ctx->timestamp;
2013 }
2014 
2015 #define MAX_INTERRUPTS (~0ULL)
2016 
2017 static void perf_log_throttle(struct perf_event *event, int enable);
2018 static void perf_log_itrace_start(struct perf_event *event);
2019 
2020 static int
2021 event_sched_in(struct perf_event *event,
2022 		 struct perf_cpu_context *cpuctx,
2023 		 struct perf_event_context *ctx)
2024 {
2025 	u64 tstamp = perf_event_time(event);
2026 	int ret = 0;
2027 
2028 	lockdep_assert_held(&ctx->lock);
2029 
2030 	if (event->state <= PERF_EVENT_STATE_OFF)
2031 		return 0;
2032 
2033 	WRITE_ONCE(event->oncpu, smp_processor_id());
2034 	/*
2035 	 * Order event::oncpu write to happen before the ACTIVE state
2036 	 * is visible.
2037 	 */
2038 	smp_wmb();
2039 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2040 
2041 	/*
2042 	 * Unthrottle events, since we scheduled we might have missed several
2043 	 * ticks already, also for a heavily scheduling task there is little
2044 	 * guarantee it'll get a tick in a timely manner.
2045 	 */
2046 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2047 		perf_log_throttle(event, 1);
2048 		event->hw.interrupts = 0;
2049 	}
2050 
2051 	/*
2052 	 * The new state must be visible before we turn it on in the hardware:
2053 	 */
2054 	smp_wmb();
2055 
2056 	perf_pmu_disable(event->pmu);
2057 
2058 	perf_set_shadow_time(event, ctx, tstamp);
2059 
2060 	perf_log_itrace_start(event);
2061 
2062 	if (event->pmu->add(event, PERF_EF_START)) {
2063 		event->state = PERF_EVENT_STATE_INACTIVE;
2064 		event->oncpu = -1;
2065 		ret = -EAGAIN;
2066 		goto out;
2067 	}
2068 
2069 	event->tstamp_running += tstamp - event->tstamp_stopped;
2070 
2071 	if (!is_software_event(event))
2072 		cpuctx->active_oncpu++;
2073 	if (!ctx->nr_active++)
2074 		perf_event_ctx_activate(ctx);
2075 	if (event->attr.freq && event->attr.sample_freq)
2076 		ctx->nr_freq++;
2077 
2078 	if (event->attr.exclusive)
2079 		cpuctx->exclusive = 1;
2080 
2081 out:
2082 	perf_pmu_enable(event->pmu);
2083 
2084 	return ret;
2085 }
2086 
2087 static int
2088 group_sched_in(struct perf_event *group_event,
2089 	       struct perf_cpu_context *cpuctx,
2090 	       struct perf_event_context *ctx)
2091 {
2092 	struct perf_event *event, *partial_group = NULL;
2093 	struct pmu *pmu = ctx->pmu;
2094 	u64 now = ctx->time;
2095 	bool simulate = false;
2096 
2097 	if (group_event->state == PERF_EVENT_STATE_OFF)
2098 		return 0;
2099 
2100 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2101 
2102 	if (event_sched_in(group_event, cpuctx, ctx)) {
2103 		pmu->cancel_txn(pmu);
2104 		perf_mux_hrtimer_restart(cpuctx);
2105 		return -EAGAIN;
2106 	}
2107 
2108 	/*
2109 	 * Schedule in siblings as one group (if any):
2110 	 */
2111 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2112 		if (event_sched_in(event, cpuctx, ctx)) {
2113 			partial_group = event;
2114 			goto group_error;
2115 		}
2116 	}
2117 
2118 	if (!pmu->commit_txn(pmu))
2119 		return 0;
2120 
2121 group_error:
2122 	/*
2123 	 * Groups can be scheduled in as one unit only, so undo any
2124 	 * partial group before returning:
2125 	 * The events up to the failed event are scheduled out normally,
2126 	 * tstamp_stopped will be updated.
2127 	 *
2128 	 * The failed events and the remaining siblings need to have
2129 	 * their timings updated as if they had gone thru event_sched_in()
2130 	 * and event_sched_out(). This is required to get consistent timings
2131 	 * across the group. This also takes care of the case where the group
2132 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2133 	 * the time the event was actually stopped, such that time delta
2134 	 * calculation in update_event_times() is correct.
2135 	 */
2136 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2137 		if (event == partial_group)
2138 			simulate = true;
2139 
2140 		if (simulate) {
2141 			event->tstamp_running += now - event->tstamp_stopped;
2142 			event->tstamp_stopped = now;
2143 		} else {
2144 			event_sched_out(event, cpuctx, ctx);
2145 		}
2146 	}
2147 	event_sched_out(group_event, cpuctx, ctx);
2148 
2149 	pmu->cancel_txn(pmu);
2150 
2151 	perf_mux_hrtimer_restart(cpuctx);
2152 
2153 	return -EAGAIN;
2154 }
2155 
2156 /*
2157  * Work out whether we can put this event group on the CPU now.
2158  */
2159 static int group_can_go_on(struct perf_event *event,
2160 			   struct perf_cpu_context *cpuctx,
2161 			   int can_add_hw)
2162 {
2163 	/*
2164 	 * Groups consisting entirely of software events can always go on.
2165 	 */
2166 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2167 		return 1;
2168 	/*
2169 	 * If an exclusive group is already on, no other hardware
2170 	 * events can go on.
2171 	 */
2172 	if (cpuctx->exclusive)
2173 		return 0;
2174 	/*
2175 	 * If this group is exclusive and there are already
2176 	 * events on the CPU, it can't go on.
2177 	 */
2178 	if (event->attr.exclusive && cpuctx->active_oncpu)
2179 		return 0;
2180 	/*
2181 	 * Otherwise, try to add it if all previous groups were able
2182 	 * to go on.
2183 	 */
2184 	return can_add_hw;
2185 }
2186 
2187 static void add_event_to_ctx(struct perf_event *event,
2188 			       struct perf_event_context *ctx)
2189 {
2190 	u64 tstamp = perf_event_time(event);
2191 
2192 	list_add_event(event, ctx);
2193 	perf_group_attach(event);
2194 	event->tstamp_enabled = tstamp;
2195 	event->tstamp_running = tstamp;
2196 	event->tstamp_stopped = tstamp;
2197 }
2198 
2199 static void ctx_sched_out(struct perf_event_context *ctx,
2200 			  struct perf_cpu_context *cpuctx,
2201 			  enum event_type_t event_type);
2202 static void
2203 ctx_sched_in(struct perf_event_context *ctx,
2204 	     struct perf_cpu_context *cpuctx,
2205 	     enum event_type_t event_type,
2206 	     struct task_struct *task);
2207 
2208 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2209 			       struct perf_event_context *ctx)
2210 {
2211 	if (!cpuctx->task_ctx)
2212 		return;
2213 
2214 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2215 		return;
2216 
2217 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2218 }
2219 
2220 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2221 				struct perf_event_context *ctx,
2222 				struct task_struct *task)
2223 {
2224 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2225 	if (ctx)
2226 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2227 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2228 	if (ctx)
2229 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2230 }
2231 
2232 static void ctx_resched(struct perf_cpu_context *cpuctx,
2233 			struct perf_event_context *task_ctx)
2234 {
2235 	perf_pmu_disable(cpuctx->ctx.pmu);
2236 	if (task_ctx)
2237 		task_ctx_sched_out(cpuctx, task_ctx);
2238 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2239 	perf_event_sched_in(cpuctx, task_ctx, current);
2240 	perf_pmu_enable(cpuctx->ctx.pmu);
2241 }
2242 
2243 /*
2244  * Cross CPU call to install and enable a performance event
2245  *
2246  * Very similar to remote_function() + event_function() but cannot assume that
2247  * things like ctx->is_active and cpuctx->task_ctx are set.
2248  */
2249 static int  __perf_install_in_context(void *info)
2250 {
2251 	struct perf_event *event = info;
2252 	struct perf_event_context *ctx = event->ctx;
2253 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2254 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2255 	bool activate = true;
2256 	int ret = 0;
2257 
2258 	raw_spin_lock(&cpuctx->ctx.lock);
2259 	if (ctx->task) {
2260 		raw_spin_lock(&ctx->lock);
2261 		task_ctx = ctx;
2262 
2263 		/* If we're on the wrong CPU, try again */
2264 		if (task_cpu(ctx->task) != smp_processor_id()) {
2265 			ret = -ESRCH;
2266 			goto unlock;
2267 		}
2268 
2269 		/*
2270 		 * If we're on the right CPU, see if the task we target is
2271 		 * current, if not we don't have to activate the ctx, a future
2272 		 * context switch will do that for us.
2273 		 */
2274 		if (ctx->task != current)
2275 			activate = false;
2276 		else
2277 			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2278 
2279 	} else if (task_ctx) {
2280 		raw_spin_lock(&task_ctx->lock);
2281 	}
2282 
2283 	if (activate) {
2284 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2285 		add_event_to_ctx(event, ctx);
2286 		ctx_resched(cpuctx, task_ctx);
2287 	} else {
2288 		add_event_to_ctx(event, ctx);
2289 	}
2290 
2291 unlock:
2292 	perf_ctx_unlock(cpuctx, task_ctx);
2293 
2294 	return ret;
2295 }
2296 
2297 /*
2298  * Attach a performance event to a context.
2299  *
2300  * Very similar to event_function_call, see comment there.
2301  */
2302 static void
2303 perf_install_in_context(struct perf_event_context *ctx,
2304 			struct perf_event *event,
2305 			int cpu)
2306 {
2307 	struct task_struct *task = READ_ONCE(ctx->task);
2308 
2309 	lockdep_assert_held(&ctx->mutex);
2310 
2311 	if (event->cpu != -1)
2312 		event->cpu = cpu;
2313 
2314 	/*
2315 	 * Ensures that if we can observe event->ctx, both the event and ctx
2316 	 * will be 'complete'. See perf_iterate_sb_cpu().
2317 	 */
2318 	smp_store_release(&event->ctx, ctx);
2319 
2320 	if (!task) {
2321 		cpu_function_call(cpu, __perf_install_in_context, event);
2322 		return;
2323 	}
2324 
2325 	/*
2326 	 * Should not happen, we validate the ctx is still alive before calling.
2327 	 */
2328 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2329 		return;
2330 
2331 	/*
2332 	 * Installing events is tricky because we cannot rely on ctx->is_active
2333 	 * to be set in case this is the nr_events 0 -> 1 transition.
2334 	 */
2335 again:
2336 	/*
2337 	 * Cannot use task_function_call() because we need to run on the task's
2338 	 * CPU regardless of whether its current or not.
2339 	 */
2340 	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2341 		return;
2342 
2343 	raw_spin_lock_irq(&ctx->lock);
2344 	task = ctx->task;
2345 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2346 		/*
2347 		 * Cannot happen because we already checked above (which also
2348 		 * cannot happen), and we hold ctx->mutex, which serializes us
2349 		 * against perf_event_exit_task_context().
2350 		 */
2351 		raw_spin_unlock_irq(&ctx->lock);
2352 		return;
2353 	}
2354 	raw_spin_unlock_irq(&ctx->lock);
2355 	/*
2356 	 * Since !ctx->is_active doesn't mean anything, we must IPI
2357 	 * unconditionally.
2358 	 */
2359 	goto again;
2360 }
2361 
2362 /*
2363  * Put a event into inactive state and update time fields.
2364  * Enabling the leader of a group effectively enables all
2365  * the group members that aren't explicitly disabled, so we
2366  * have to update their ->tstamp_enabled also.
2367  * Note: this works for group members as well as group leaders
2368  * since the non-leader members' sibling_lists will be empty.
2369  */
2370 static void __perf_event_mark_enabled(struct perf_event *event)
2371 {
2372 	struct perf_event *sub;
2373 	u64 tstamp = perf_event_time(event);
2374 
2375 	event->state = PERF_EVENT_STATE_INACTIVE;
2376 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2377 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2378 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2379 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2380 	}
2381 }
2382 
2383 /*
2384  * Cross CPU call to enable a performance event
2385  */
2386 static void __perf_event_enable(struct perf_event *event,
2387 				struct perf_cpu_context *cpuctx,
2388 				struct perf_event_context *ctx,
2389 				void *info)
2390 {
2391 	struct perf_event *leader = event->group_leader;
2392 	struct perf_event_context *task_ctx;
2393 
2394 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2395 	    event->state <= PERF_EVENT_STATE_ERROR)
2396 		return;
2397 
2398 	if (ctx->is_active)
2399 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2400 
2401 	__perf_event_mark_enabled(event);
2402 
2403 	if (!ctx->is_active)
2404 		return;
2405 
2406 	if (!event_filter_match(event)) {
2407 		if (is_cgroup_event(event))
2408 			perf_cgroup_defer_enabled(event);
2409 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2410 		return;
2411 	}
2412 
2413 	/*
2414 	 * If the event is in a group and isn't the group leader,
2415 	 * then don't put it on unless the group is on.
2416 	 */
2417 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2418 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2419 		return;
2420 	}
2421 
2422 	task_ctx = cpuctx->task_ctx;
2423 	if (ctx->task)
2424 		WARN_ON_ONCE(task_ctx != ctx);
2425 
2426 	ctx_resched(cpuctx, task_ctx);
2427 }
2428 
2429 /*
2430  * Enable a event.
2431  *
2432  * If event->ctx is a cloned context, callers must make sure that
2433  * every task struct that event->ctx->task could possibly point to
2434  * remains valid.  This condition is satisfied when called through
2435  * perf_event_for_each_child or perf_event_for_each as described
2436  * for perf_event_disable.
2437  */
2438 static void _perf_event_enable(struct perf_event *event)
2439 {
2440 	struct perf_event_context *ctx = event->ctx;
2441 
2442 	raw_spin_lock_irq(&ctx->lock);
2443 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2444 	    event->state <  PERF_EVENT_STATE_ERROR) {
2445 		raw_spin_unlock_irq(&ctx->lock);
2446 		return;
2447 	}
2448 
2449 	/*
2450 	 * If the event is in error state, clear that first.
2451 	 *
2452 	 * That way, if we see the event in error state below, we know that it
2453 	 * has gone back into error state, as distinct from the task having
2454 	 * been scheduled away before the cross-call arrived.
2455 	 */
2456 	if (event->state == PERF_EVENT_STATE_ERROR)
2457 		event->state = PERF_EVENT_STATE_OFF;
2458 	raw_spin_unlock_irq(&ctx->lock);
2459 
2460 	event_function_call(event, __perf_event_enable, NULL);
2461 }
2462 
2463 /*
2464  * See perf_event_disable();
2465  */
2466 void perf_event_enable(struct perf_event *event)
2467 {
2468 	struct perf_event_context *ctx;
2469 
2470 	ctx = perf_event_ctx_lock(event);
2471 	_perf_event_enable(event);
2472 	perf_event_ctx_unlock(event, ctx);
2473 }
2474 EXPORT_SYMBOL_GPL(perf_event_enable);
2475 
2476 struct stop_event_data {
2477 	struct perf_event	*event;
2478 	unsigned int		restart;
2479 };
2480 
2481 static int __perf_event_stop(void *info)
2482 {
2483 	struct stop_event_data *sd = info;
2484 	struct perf_event *event = sd->event;
2485 
2486 	/* if it's already INACTIVE, do nothing */
2487 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2488 		return 0;
2489 
2490 	/* matches smp_wmb() in event_sched_in() */
2491 	smp_rmb();
2492 
2493 	/*
2494 	 * There is a window with interrupts enabled before we get here,
2495 	 * so we need to check again lest we try to stop another CPU's event.
2496 	 */
2497 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2498 		return -EAGAIN;
2499 
2500 	event->pmu->stop(event, PERF_EF_UPDATE);
2501 
2502 	/*
2503 	 * May race with the actual stop (through perf_pmu_output_stop()),
2504 	 * but it is only used for events with AUX ring buffer, and such
2505 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2506 	 * see comments in perf_aux_output_begin().
2507 	 *
2508 	 * Since this is happening on a event-local CPU, no trace is lost
2509 	 * while restarting.
2510 	 */
2511 	if (sd->restart)
2512 		event->pmu->start(event, 0);
2513 
2514 	return 0;
2515 }
2516 
2517 static int perf_event_stop(struct perf_event *event, int restart)
2518 {
2519 	struct stop_event_data sd = {
2520 		.event		= event,
2521 		.restart	= restart,
2522 	};
2523 	int ret = 0;
2524 
2525 	do {
2526 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2527 			return 0;
2528 
2529 		/* matches smp_wmb() in event_sched_in() */
2530 		smp_rmb();
2531 
2532 		/*
2533 		 * We only want to restart ACTIVE events, so if the event goes
2534 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2535 		 * fall through with ret==-ENXIO.
2536 		 */
2537 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2538 					__perf_event_stop, &sd);
2539 	} while (ret == -EAGAIN);
2540 
2541 	return ret;
2542 }
2543 
2544 /*
2545  * In order to contain the amount of racy and tricky in the address filter
2546  * configuration management, it is a two part process:
2547  *
2548  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2549  *      we update the addresses of corresponding vmas in
2550  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2551  * (p2) when an event is scheduled in (pmu::add), it calls
2552  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2553  *      if the generation has changed since the previous call.
2554  *
2555  * If (p1) happens while the event is active, we restart it to force (p2).
2556  *
2557  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2558  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2559  *     ioctl;
2560  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2561  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2562  *     for reading;
2563  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2564  *     of exec.
2565  */
2566 void perf_event_addr_filters_sync(struct perf_event *event)
2567 {
2568 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2569 
2570 	if (!has_addr_filter(event))
2571 		return;
2572 
2573 	raw_spin_lock(&ifh->lock);
2574 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2575 		event->pmu->addr_filters_sync(event);
2576 		event->hw.addr_filters_gen = event->addr_filters_gen;
2577 	}
2578 	raw_spin_unlock(&ifh->lock);
2579 }
2580 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2581 
2582 static int _perf_event_refresh(struct perf_event *event, int refresh)
2583 {
2584 	/*
2585 	 * not supported on inherited events
2586 	 */
2587 	if (event->attr.inherit || !is_sampling_event(event))
2588 		return -EINVAL;
2589 
2590 	atomic_add(refresh, &event->event_limit);
2591 	_perf_event_enable(event);
2592 
2593 	return 0;
2594 }
2595 
2596 /*
2597  * See perf_event_disable()
2598  */
2599 int perf_event_refresh(struct perf_event *event, int refresh)
2600 {
2601 	struct perf_event_context *ctx;
2602 	int ret;
2603 
2604 	ctx = perf_event_ctx_lock(event);
2605 	ret = _perf_event_refresh(event, refresh);
2606 	perf_event_ctx_unlock(event, ctx);
2607 
2608 	return ret;
2609 }
2610 EXPORT_SYMBOL_GPL(perf_event_refresh);
2611 
2612 static void ctx_sched_out(struct perf_event_context *ctx,
2613 			  struct perf_cpu_context *cpuctx,
2614 			  enum event_type_t event_type)
2615 {
2616 	int is_active = ctx->is_active;
2617 	struct perf_event *event;
2618 
2619 	lockdep_assert_held(&ctx->lock);
2620 
2621 	if (likely(!ctx->nr_events)) {
2622 		/*
2623 		 * See __perf_remove_from_context().
2624 		 */
2625 		WARN_ON_ONCE(ctx->is_active);
2626 		if (ctx->task)
2627 			WARN_ON_ONCE(cpuctx->task_ctx);
2628 		return;
2629 	}
2630 
2631 	ctx->is_active &= ~event_type;
2632 	if (!(ctx->is_active & EVENT_ALL))
2633 		ctx->is_active = 0;
2634 
2635 	if (ctx->task) {
2636 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2637 		if (!ctx->is_active)
2638 			cpuctx->task_ctx = NULL;
2639 	}
2640 
2641 	/*
2642 	 * Always update time if it was set; not only when it changes.
2643 	 * Otherwise we can 'forget' to update time for any but the last
2644 	 * context we sched out. For example:
2645 	 *
2646 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2647 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2648 	 *
2649 	 * would only update time for the pinned events.
2650 	 */
2651 	if (is_active & EVENT_TIME) {
2652 		/* update (and stop) ctx time */
2653 		update_context_time(ctx);
2654 		update_cgrp_time_from_cpuctx(cpuctx);
2655 	}
2656 
2657 	is_active ^= ctx->is_active; /* changed bits */
2658 
2659 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2660 		return;
2661 
2662 	perf_pmu_disable(ctx->pmu);
2663 	if (is_active & EVENT_PINNED) {
2664 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2665 			group_sched_out(event, cpuctx, ctx);
2666 	}
2667 
2668 	if (is_active & EVENT_FLEXIBLE) {
2669 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2670 			group_sched_out(event, cpuctx, ctx);
2671 	}
2672 	perf_pmu_enable(ctx->pmu);
2673 }
2674 
2675 /*
2676  * Test whether two contexts are equivalent, i.e. whether they have both been
2677  * cloned from the same version of the same context.
2678  *
2679  * Equivalence is measured using a generation number in the context that is
2680  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2681  * and list_del_event().
2682  */
2683 static int context_equiv(struct perf_event_context *ctx1,
2684 			 struct perf_event_context *ctx2)
2685 {
2686 	lockdep_assert_held(&ctx1->lock);
2687 	lockdep_assert_held(&ctx2->lock);
2688 
2689 	/* Pinning disables the swap optimization */
2690 	if (ctx1->pin_count || ctx2->pin_count)
2691 		return 0;
2692 
2693 	/* If ctx1 is the parent of ctx2 */
2694 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2695 		return 1;
2696 
2697 	/* If ctx2 is the parent of ctx1 */
2698 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2699 		return 1;
2700 
2701 	/*
2702 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2703 	 * hierarchy, see perf_event_init_context().
2704 	 */
2705 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2706 			ctx1->parent_gen == ctx2->parent_gen)
2707 		return 1;
2708 
2709 	/* Unmatched */
2710 	return 0;
2711 }
2712 
2713 static void __perf_event_sync_stat(struct perf_event *event,
2714 				     struct perf_event *next_event)
2715 {
2716 	u64 value;
2717 
2718 	if (!event->attr.inherit_stat)
2719 		return;
2720 
2721 	/*
2722 	 * Update the event value, we cannot use perf_event_read()
2723 	 * because we're in the middle of a context switch and have IRQs
2724 	 * disabled, which upsets smp_call_function_single(), however
2725 	 * we know the event must be on the current CPU, therefore we
2726 	 * don't need to use it.
2727 	 */
2728 	switch (event->state) {
2729 	case PERF_EVENT_STATE_ACTIVE:
2730 		event->pmu->read(event);
2731 		/* fall-through */
2732 
2733 	case PERF_EVENT_STATE_INACTIVE:
2734 		update_event_times(event);
2735 		break;
2736 
2737 	default:
2738 		break;
2739 	}
2740 
2741 	/*
2742 	 * In order to keep per-task stats reliable we need to flip the event
2743 	 * values when we flip the contexts.
2744 	 */
2745 	value = local64_read(&next_event->count);
2746 	value = local64_xchg(&event->count, value);
2747 	local64_set(&next_event->count, value);
2748 
2749 	swap(event->total_time_enabled, next_event->total_time_enabled);
2750 	swap(event->total_time_running, next_event->total_time_running);
2751 
2752 	/*
2753 	 * Since we swizzled the values, update the user visible data too.
2754 	 */
2755 	perf_event_update_userpage(event);
2756 	perf_event_update_userpage(next_event);
2757 }
2758 
2759 static void perf_event_sync_stat(struct perf_event_context *ctx,
2760 				   struct perf_event_context *next_ctx)
2761 {
2762 	struct perf_event *event, *next_event;
2763 
2764 	if (!ctx->nr_stat)
2765 		return;
2766 
2767 	update_context_time(ctx);
2768 
2769 	event = list_first_entry(&ctx->event_list,
2770 				   struct perf_event, event_entry);
2771 
2772 	next_event = list_first_entry(&next_ctx->event_list,
2773 					struct perf_event, event_entry);
2774 
2775 	while (&event->event_entry != &ctx->event_list &&
2776 	       &next_event->event_entry != &next_ctx->event_list) {
2777 
2778 		__perf_event_sync_stat(event, next_event);
2779 
2780 		event = list_next_entry(event, event_entry);
2781 		next_event = list_next_entry(next_event, event_entry);
2782 	}
2783 }
2784 
2785 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2786 					 struct task_struct *next)
2787 {
2788 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2789 	struct perf_event_context *next_ctx;
2790 	struct perf_event_context *parent, *next_parent;
2791 	struct perf_cpu_context *cpuctx;
2792 	int do_switch = 1;
2793 
2794 	if (likely(!ctx))
2795 		return;
2796 
2797 	cpuctx = __get_cpu_context(ctx);
2798 	if (!cpuctx->task_ctx)
2799 		return;
2800 
2801 	rcu_read_lock();
2802 	next_ctx = next->perf_event_ctxp[ctxn];
2803 	if (!next_ctx)
2804 		goto unlock;
2805 
2806 	parent = rcu_dereference(ctx->parent_ctx);
2807 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2808 
2809 	/* If neither context have a parent context; they cannot be clones. */
2810 	if (!parent && !next_parent)
2811 		goto unlock;
2812 
2813 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2814 		/*
2815 		 * Looks like the two contexts are clones, so we might be
2816 		 * able to optimize the context switch.  We lock both
2817 		 * contexts and check that they are clones under the
2818 		 * lock (including re-checking that neither has been
2819 		 * uncloned in the meantime).  It doesn't matter which
2820 		 * order we take the locks because no other cpu could
2821 		 * be trying to lock both of these tasks.
2822 		 */
2823 		raw_spin_lock(&ctx->lock);
2824 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2825 		if (context_equiv(ctx, next_ctx)) {
2826 			WRITE_ONCE(ctx->task, next);
2827 			WRITE_ONCE(next_ctx->task, task);
2828 
2829 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2830 
2831 			/*
2832 			 * RCU_INIT_POINTER here is safe because we've not
2833 			 * modified the ctx and the above modification of
2834 			 * ctx->task and ctx->task_ctx_data are immaterial
2835 			 * since those values are always verified under
2836 			 * ctx->lock which we're now holding.
2837 			 */
2838 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2839 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2840 
2841 			do_switch = 0;
2842 
2843 			perf_event_sync_stat(ctx, next_ctx);
2844 		}
2845 		raw_spin_unlock(&next_ctx->lock);
2846 		raw_spin_unlock(&ctx->lock);
2847 	}
2848 unlock:
2849 	rcu_read_unlock();
2850 
2851 	if (do_switch) {
2852 		raw_spin_lock(&ctx->lock);
2853 		task_ctx_sched_out(cpuctx, ctx);
2854 		raw_spin_unlock(&ctx->lock);
2855 	}
2856 }
2857 
2858 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2859 
2860 void perf_sched_cb_dec(struct pmu *pmu)
2861 {
2862 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2863 
2864 	this_cpu_dec(perf_sched_cb_usages);
2865 
2866 	if (!--cpuctx->sched_cb_usage)
2867 		list_del(&cpuctx->sched_cb_entry);
2868 }
2869 
2870 
2871 void perf_sched_cb_inc(struct pmu *pmu)
2872 {
2873 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2874 
2875 	if (!cpuctx->sched_cb_usage++)
2876 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2877 
2878 	this_cpu_inc(perf_sched_cb_usages);
2879 }
2880 
2881 /*
2882  * This function provides the context switch callback to the lower code
2883  * layer. It is invoked ONLY when the context switch callback is enabled.
2884  *
2885  * This callback is relevant even to per-cpu events; for example multi event
2886  * PEBS requires this to provide PID/TID information. This requires we flush
2887  * all queued PEBS records before we context switch to a new task.
2888  */
2889 static void perf_pmu_sched_task(struct task_struct *prev,
2890 				struct task_struct *next,
2891 				bool sched_in)
2892 {
2893 	struct perf_cpu_context *cpuctx;
2894 	struct pmu *pmu;
2895 
2896 	if (prev == next)
2897 		return;
2898 
2899 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2900 		pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2901 
2902 		if (WARN_ON_ONCE(!pmu->sched_task))
2903 			continue;
2904 
2905 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2906 		perf_pmu_disable(pmu);
2907 
2908 		pmu->sched_task(cpuctx->task_ctx, sched_in);
2909 
2910 		perf_pmu_enable(pmu);
2911 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2912 	}
2913 }
2914 
2915 static void perf_event_switch(struct task_struct *task,
2916 			      struct task_struct *next_prev, bool sched_in);
2917 
2918 #define for_each_task_context_nr(ctxn)					\
2919 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2920 
2921 /*
2922  * Called from scheduler to remove the events of the current task,
2923  * with interrupts disabled.
2924  *
2925  * We stop each event and update the event value in event->count.
2926  *
2927  * This does not protect us against NMI, but disable()
2928  * sets the disabled bit in the control field of event _before_
2929  * accessing the event control register. If a NMI hits, then it will
2930  * not restart the event.
2931  */
2932 void __perf_event_task_sched_out(struct task_struct *task,
2933 				 struct task_struct *next)
2934 {
2935 	int ctxn;
2936 
2937 	if (__this_cpu_read(perf_sched_cb_usages))
2938 		perf_pmu_sched_task(task, next, false);
2939 
2940 	if (atomic_read(&nr_switch_events))
2941 		perf_event_switch(task, next, false);
2942 
2943 	for_each_task_context_nr(ctxn)
2944 		perf_event_context_sched_out(task, ctxn, next);
2945 
2946 	/*
2947 	 * if cgroup events exist on this CPU, then we need
2948 	 * to check if we have to switch out PMU state.
2949 	 * cgroup event are system-wide mode only
2950 	 */
2951 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2952 		perf_cgroup_sched_out(task, next);
2953 }
2954 
2955 /*
2956  * Called with IRQs disabled
2957  */
2958 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2959 			      enum event_type_t event_type)
2960 {
2961 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2962 }
2963 
2964 static void
2965 ctx_pinned_sched_in(struct perf_event_context *ctx,
2966 		    struct perf_cpu_context *cpuctx)
2967 {
2968 	struct perf_event *event;
2969 
2970 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2971 		if (event->state <= PERF_EVENT_STATE_OFF)
2972 			continue;
2973 		if (!event_filter_match(event))
2974 			continue;
2975 
2976 		/* may need to reset tstamp_enabled */
2977 		if (is_cgroup_event(event))
2978 			perf_cgroup_mark_enabled(event, ctx);
2979 
2980 		if (group_can_go_on(event, cpuctx, 1))
2981 			group_sched_in(event, cpuctx, ctx);
2982 
2983 		/*
2984 		 * If this pinned group hasn't been scheduled,
2985 		 * put it in error state.
2986 		 */
2987 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2988 			update_group_times(event);
2989 			event->state = PERF_EVENT_STATE_ERROR;
2990 		}
2991 	}
2992 }
2993 
2994 static void
2995 ctx_flexible_sched_in(struct perf_event_context *ctx,
2996 		      struct perf_cpu_context *cpuctx)
2997 {
2998 	struct perf_event *event;
2999 	int can_add_hw = 1;
3000 
3001 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3002 		/* Ignore events in OFF or ERROR state */
3003 		if (event->state <= PERF_EVENT_STATE_OFF)
3004 			continue;
3005 		/*
3006 		 * Listen to the 'cpu' scheduling filter constraint
3007 		 * of events:
3008 		 */
3009 		if (!event_filter_match(event))
3010 			continue;
3011 
3012 		/* may need to reset tstamp_enabled */
3013 		if (is_cgroup_event(event))
3014 			perf_cgroup_mark_enabled(event, ctx);
3015 
3016 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3017 			if (group_sched_in(event, cpuctx, ctx))
3018 				can_add_hw = 0;
3019 		}
3020 	}
3021 }
3022 
3023 static void
3024 ctx_sched_in(struct perf_event_context *ctx,
3025 	     struct perf_cpu_context *cpuctx,
3026 	     enum event_type_t event_type,
3027 	     struct task_struct *task)
3028 {
3029 	int is_active = ctx->is_active;
3030 	u64 now;
3031 
3032 	lockdep_assert_held(&ctx->lock);
3033 
3034 	if (likely(!ctx->nr_events))
3035 		return;
3036 
3037 	ctx->is_active |= (event_type | EVENT_TIME);
3038 	if (ctx->task) {
3039 		if (!is_active)
3040 			cpuctx->task_ctx = ctx;
3041 		else
3042 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3043 	}
3044 
3045 	is_active ^= ctx->is_active; /* changed bits */
3046 
3047 	if (is_active & EVENT_TIME) {
3048 		/* start ctx time */
3049 		now = perf_clock();
3050 		ctx->timestamp = now;
3051 		perf_cgroup_set_timestamp(task, ctx);
3052 	}
3053 
3054 	/*
3055 	 * First go through the list and put on any pinned groups
3056 	 * in order to give them the best chance of going on.
3057 	 */
3058 	if (is_active & EVENT_PINNED)
3059 		ctx_pinned_sched_in(ctx, cpuctx);
3060 
3061 	/* Then walk through the lower prio flexible groups */
3062 	if (is_active & EVENT_FLEXIBLE)
3063 		ctx_flexible_sched_in(ctx, cpuctx);
3064 }
3065 
3066 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3067 			     enum event_type_t event_type,
3068 			     struct task_struct *task)
3069 {
3070 	struct perf_event_context *ctx = &cpuctx->ctx;
3071 
3072 	ctx_sched_in(ctx, cpuctx, event_type, task);
3073 }
3074 
3075 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3076 					struct task_struct *task)
3077 {
3078 	struct perf_cpu_context *cpuctx;
3079 
3080 	cpuctx = __get_cpu_context(ctx);
3081 	if (cpuctx->task_ctx == ctx)
3082 		return;
3083 
3084 	perf_ctx_lock(cpuctx, ctx);
3085 	perf_pmu_disable(ctx->pmu);
3086 	/*
3087 	 * We want to keep the following priority order:
3088 	 * cpu pinned (that don't need to move), task pinned,
3089 	 * cpu flexible, task flexible.
3090 	 */
3091 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3092 	perf_event_sched_in(cpuctx, ctx, task);
3093 	perf_pmu_enable(ctx->pmu);
3094 	perf_ctx_unlock(cpuctx, ctx);
3095 }
3096 
3097 /*
3098  * Called from scheduler to add the events of the current task
3099  * with interrupts disabled.
3100  *
3101  * We restore the event value and then enable it.
3102  *
3103  * This does not protect us against NMI, but enable()
3104  * sets the enabled bit in the control field of event _before_
3105  * accessing the event control register. If a NMI hits, then it will
3106  * keep the event running.
3107  */
3108 void __perf_event_task_sched_in(struct task_struct *prev,
3109 				struct task_struct *task)
3110 {
3111 	struct perf_event_context *ctx;
3112 	int ctxn;
3113 
3114 	/*
3115 	 * If cgroup events exist on this CPU, then we need to check if we have
3116 	 * to switch in PMU state; cgroup event are system-wide mode only.
3117 	 *
3118 	 * Since cgroup events are CPU events, we must schedule these in before
3119 	 * we schedule in the task events.
3120 	 */
3121 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3122 		perf_cgroup_sched_in(prev, task);
3123 
3124 	for_each_task_context_nr(ctxn) {
3125 		ctx = task->perf_event_ctxp[ctxn];
3126 		if (likely(!ctx))
3127 			continue;
3128 
3129 		perf_event_context_sched_in(ctx, task);
3130 	}
3131 
3132 	if (atomic_read(&nr_switch_events))
3133 		perf_event_switch(task, prev, true);
3134 
3135 	if (__this_cpu_read(perf_sched_cb_usages))
3136 		perf_pmu_sched_task(prev, task, true);
3137 }
3138 
3139 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3140 {
3141 	u64 frequency = event->attr.sample_freq;
3142 	u64 sec = NSEC_PER_SEC;
3143 	u64 divisor, dividend;
3144 
3145 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3146 
3147 	count_fls = fls64(count);
3148 	nsec_fls = fls64(nsec);
3149 	frequency_fls = fls64(frequency);
3150 	sec_fls = 30;
3151 
3152 	/*
3153 	 * We got @count in @nsec, with a target of sample_freq HZ
3154 	 * the target period becomes:
3155 	 *
3156 	 *             @count * 10^9
3157 	 * period = -------------------
3158 	 *          @nsec * sample_freq
3159 	 *
3160 	 */
3161 
3162 	/*
3163 	 * Reduce accuracy by one bit such that @a and @b converge
3164 	 * to a similar magnitude.
3165 	 */
3166 #define REDUCE_FLS(a, b)		\
3167 do {					\
3168 	if (a##_fls > b##_fls) {	\
3169 		a >>= 1;		\
3170 		a##_fls--;		\
3171 	} else {			\
3172 		b >>= 1;		\
3173 		b##_fls--;		\
3174 	}				\
3175 } while (0)
3176 
3177 	/*
3178 	 * Reduce accuracy until either term fits in a u64, then proceed with
3179 	 * the other, so that finally we can do a u64/u64 division.
3180 	 */
3181 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3182 		REDUCE_FLS(nsec, frequency);
3183 		REDUCE_FLS(sec, count);
3184 	}
3185 
3186 	if (count_fls + sec_fls > 64) {
3187 		divisor = nsec * frequency;
3188 
3189 		while (count_fls + sec_fls > 64) {
3190 			REDUCE_FLS(count, sec);
3191 			divisor >>= 1;
3192 		}
3193 
3194 		dividend = count * sec;
3195 	} else {
3196 		dividend = count * sec;
3197 
3198 		while (nsec_fls + frequency_fls > 64) {
3199 			REDUCE_FLS(nsec, frequency);
3200 			dividend >>= 1;
3201 		}
3202 
3203 		divisor = nsec * frequency;
3204 	}
3205 
3206 	if (!divisor)
3207 		return dividend;
3208 
3209 	return div64_u64(dividend, divisor);
3210 }
3211 
3212 static DEFINE_PER_CPU(int, perf_throttled_count);
3213 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3214 
3215 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3216 {
3217 	struct hw_perf_event *hwc = &event->hw;
3218 	s64 period, sample_period;
3219 	s64 delta;
3220 
3221 	period = perf_calculate_period(event, nsec, count);
3222 
3223 	delta = (s64)(period - hwc->sample_period);
3224 	delta = (delta + 7) / 8; /* low pass filter */
3225 
3226 	sample_period = hwc->sample_period + delta;
3227 
3228 	if (!sample_period)
3229 		sample_period = 1;
3230 
3231 	hwc->sample_period = sample_period;
3232 
3233 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3234 		if (disable)
3235 			event->pmu->stop(event, PERF_EF_UPDATE);
3236 
3237 		local64_set(&hwc->period_left, 0);
3238 
3239 		if (disable)
3240 			event->pmu->start(event, PERF_EF_RELOAD);
3241 	}
3242 }
3243 
3244 /*
3245  * combine freq adjustment with unthrottling to avoid two passes over the
3246  * events. At the same time, make sure, having freq events does not change
3247  * the rate of unthrottling as that would introduce bias.
3248  */
3249 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3250 					   int needs_unthr)
3251 {
3252 	struct perf_event *event;
3253 	struct hw_perf_event *hwc;
3254 	u64 now, period = TICK_NSEC;
3255 	s64 delta;
3256 
3257 	/*
3258 	 * only need to iterate over all events iff:
3259 	 * - context have events in frequency mode (needs freq adjust)
3260 	 * - there are events to unthrottle on this cpu
3261 	 */
3262 	if (!(ctx->nr_freq || needs_unthr))
3263 		return;
3264 
3265 	raw_spin_lock(&ctx->lock);
3266 	perf_pmu_disable(ctx->pmu);
3267 
3268 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3269 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3270 			continue;
3271 
3272 		if (!event_filter_match(event))
3273 			continue;
3274 
3275 		perf_pmu_disable(event->pmu);
3276 
3277 		hwc = &event->hw;
3278 
3279 		if (hwc->interrupts == MAX_INTERRUPTS) {
3280 			hwc->interrupts = 0;
3281 			perf_log_throttle(event, 1);
3282 			event->pmu->start(event, 0);
3283 		}
3284 
3285 		if (!event->attr.freq || !event->attr.sample_freq)
3286 			goto next;
3287 
3288 		/*
3289 		 * stop the event and update event->count
3290 		 */
3291 		event->pmu->stop(event, PERF_EF_UPDATE);
3292 
3293 		now = local64_read(&event->count);
3294 		delta = now - hwc->freq_count_stamp;
3295 		hwc->freq_count_stamp = now;
3296 
3297 		/*
3298 		 * restart the event
3299 		 * reload only if value has changed
3300 		 * we have stopped the event so tell that
3301 		 * to perf_adjust_period() to avoid stopping it
3302 		 * twice.
3303 		 */
3304 		if (delta > 0)
3305 			perf_adjust_period(event, period, delta, false);
3306 
3307 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3308 	next:
3309 		perf_pmu_enable(event->pmu);
3310 	}
3311 
3312 	perf_pmu_enable(ctx->pmu);
3313 	raw_spin_unlock(&ctx->lock);
3314 }
3315 
3316 /*
3317  * Round-robin a context's events:
3318  */
3319 static void rotate_ctx(struct perf_event_context *ctx)
3320 {
3321 	/*
3322 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3323 	 * disabled by the inheritance code.
3324 	 */
3325 	if (!ctx->rotate_disable)
3326 		list_rotate_left(&ctx->flexible_groups);
3327 }
3328 
3329 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3330 {
3331 	struct perf_event_context *ctx = NULL;
3332 	int rotate = 0;
3333 
3334 	if (cpuctx->ctx.nr_events) {
3335 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3336 			rotate = 1;
3337 	}
3338 
3339 	ctx = cpuctx->task_ctx;
3340 	if (ctx && ctx->nr_events) {
3341 		if (ctx->nr_events != ctx->nr_active)
3342 			rotate = 1;
3343 	}
3344 
3345 	if (!rotate)
3346 		goto done;
3347 
3348 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3349 	perf_pmu_disable(cpuctx->ctx.pmu);
3350 
3351 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3352 	if (ctx)
3353 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3354 
3355 	rotate_ctx(&cpuctx->ctx);
3356 	if (ctx)
3357 		rotate_ctx(ctx);
3358 
3359 	perf_event_sched_in(cpuctx, ctx, current);
3360 
3361 	perf_pmu_enable(cpuctx->ctx.pmu);
3362 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3363 done:
3364 
3365 	return rotate;
3366 }
3367 
3368 void perf_event_task_tick(void)
3369 {
3370 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3371 	struct perf_event_context *ctx, *tmp;
3372 	int throttled;
3373 
3374 	WARN_ON(!irqs_disabled());
3375 
3376 	__this_cpu_inc(perf_throttled_seq);
3377 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3378 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3379 
3380 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3381 		perf_adjust_freq_unthr_context(ctx, throttled);
3382 }
3383 
3384 static int event_enable_on_exec(struct perf_event *event,
3385 				struct perf_event_context *ctx)
3386 {
3387 	if (!event->attr.enable_on_exec)
3388 		return 0;
3389 
3390 	event->attr.enable_on_exec = 0;
3391 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3392 		return 0;
3393 
3394 	__perf_event_mark_enabled(event);
3395 
3396 	return 1;
3397 }
3398 
3399 /*
3400  * Enable all of a task's events that have been marked enable-on-exec.
3401  * This expects task == current.
3402  */
3403 static void perf_event_enable_on_exec(int ctxn)
3404 {
3405 	struct perf_event_context *ctx, *clone_ctx = NULL;
3406 	struct perf_cpu_context *cpuctx;
3407 	struct perf_event *event;
3408 	unsigned long flags;
3409 	int enabled = 0;
3410 
3411 	local_irq_save(flags);
3412 	ctx = current->perf_event_ctxp[ctxn];
3413 	if (!ctx || !ctx->nr_events)
3414 		goto out;
3415 
3416 	cpuctx = __get_cpu_context(ctx);
3417 	perf_ctx_lock(cpuctx, ctx);
3418 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3419 	list_for_each_entry(event, &ctx->event_list, event_entry)
3420 		enabled |= event_enable_on_exec(event, ctx);
3421 
3422 	/*
3423 	 * Unclone and reschedule this context if we enabled any event.
3424 	 */
3425 	if (enabled) {
3426 		clone_ctx = unclone_ctx(ctx);
3427 		ctx_resched(cpuctx, ctx);
3428 	}
3429 	perf_ctx_unlock(cpuctx, ctx);
3430 
3431 out:
3432 	local_irq_restore(flags);
3433 
3434 	if (clone_ctx)
3435 		put_ctx(clone_ctx);
3436 }
3437 
3438 struct perf_read_data {
3439 	struct perf_event *event;
3440 	bool group;
3441 	int ret;
3442 };
3443 
3444 static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3445 {
3446 	int event_cpu = event->oncpu;
3447 	u16 local_pkg, event_pkg;
3448 
3449 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3450 		event_pkg =  topology_physical_package_id(event_cpu);
3451 		local_pkg =  topology_physical_package_id(local_cpu);
3452 
3453 		if (event_pkg == local_pkg)
3454 			return local_cpu;
3455 	}
3456 
3457 	return event_cpu;
3458 }
3459 
3460 /*
3461  * Cross CPU call to read the hardware event
3462  */
3463 static void __perf_event_read(void *info)
3464 {
3465 	struct perf_read_data *data = info;
3466 	struct perf_event *sub, *event = data->event;
3467 	struct perf_event_context *ctx = event->ctx;
3468 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3469 	struct pmu *pmu = event->pmu;
3470 
3471 	/*
3472 	 * If this is a task context, we need to check whether it is
3473 	 * the current task context of this cpu.  If not it has been
3474 	 * scheduled out before the smp call arrived.  In that case
3475 	 * event->count would have been updated to a recent sample
3476 	 * when the event was scheduled out.
3477 	 */
3478 	if (ctx->task && cpuctx->task_ctx != ctx)
3479 		return;
3480 
3481 	raw_spin_lock(&ctx->lock);
3482 	if (ctx->is_active) {
3483 		update_context_time(ctx);
3484 		update_cgrp_time_from_event(event);
3485 	}
3486 
3487 	update_event_times(event);
3488 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3489 		goto unlock;
3490 
3491 	if (!data->group) {
3492 		pmu->read(event);
3493 		data->ret = 0;
3494 		goto unlock;
3495 	}
3496 
3497 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3498 
3499 	pmu->read(event);
3500 
3501 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3502 		update_event_times(sub);
3503 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3504 			/*
3505 			 * Use sibling's PMU rather than @event's since
3506 			 * sibling could be on different (eg: software) PMU.
3507 			 */
3508 			sub->pmu->read(sub);
3509 		}
3510 	}
3511 
3512 	data->ret = pmu->commit_txn(pmu);
3513 
3514 unlock:
3515 	raw_spin_unlock(&ctx->lock);
3516 }
3517 
3518 static inline u64 perf_event_count(struct perf_event *event)
3519 {
3520 	if (event->pmu->count)
3521 		return event->pmu->count(event);
3522 
3523 	return __perf_event_count(event);
3524 }
3525 
3526 /*
3527  * NMI-safe method to read a local event, that is an event that
3528  * is:
3529  *   - either for the current task, or for this CPU
3530  *   - does not have inherit set, for inherited task events
3531  *     will not be local and we cannot read them atomically
3532  *   - must not have a pmu::count method
3533  */
3534 u64 perf_event_read_local(struct perf_event *event)
3535 {
3536 	unsigned long flags;
3537 	u64 val;
3538 
3539 	/*
3540 	 * Disabling interrupts avoids all counter scheduling (context
3541 	 * switches, timer based rotation and IPIs).
3542 	 */
3543 	local_irq_save(flags);
3544 
3545 	/* If this is a per-task event, it must be for current */
3546 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3547 		     event->hw.target != current);
3548 
3549 	/* If this is a per-CPU event, it must be for this CPU */
3550 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3551 		     event->cpu != smp_processor_id());
3552 
3553 	/*
3554 	 * It must not be an event with inherit set, we cannot read
3555 	 * all child counters from atomic context.
3556 	 */
3557 	WARN_ON_ONCE(event->attr.inherit);
3558 
3559 	/*
3560 	 * It must not have a pmu::count method, those are not
3561 	 * NMI safe.
3562 	 */
3563 	WARN_ON_ONCE(event->pmu->count);
3564 
3565 	/*
3566 	 * If the event is currently on this CPU, its either a per-task event,
3567 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3568 	 * oncpu == -1).
3569 	 */
3570 	if (event->oncpu == smp_processor_id())
3571 		event->pmu->read(event);
3572 
3573 	val = local64_read(&event->count);
3574 	local_irq_restore(flags);
3575 
3576 	return val;
3577 }
3578 
3579 static int perf_event_read(struct perf_event *event, bool group)
3580 {
3581 	int ret = 0, cpu_to_read, local_cpu;
3582 
3583 	/*
3584 	 * If event is enabled and currently active on a CPU, update the
3585 	 * value in the event structure:
3586 	 */
3587 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3588 		struct perf_read_data data = {
3589 			.event = event,
3590 			.group = group,
3591 			.ret = 0,
3592 		};
3593 
3594 		local_cpu = get_cpu();
3595 		cpu_to_read = find_cpu_to_read(event, local_cpu);
3596 		put_cpu();
3597 
3598 		/*
3599 		 * Purposely ignore the smp_call_function_single() return
3600 		 * value.
3601 		 *
3602 		 * If event->oncpu isn't a valid CPU it means the event got
3603 		 * scheduled out and that will have updated the event count.
3604 		 *
3605 		 * Therefore, either way, we'll have an up-to-date event count
3606 		 * after this.
3607 		 */
3608 		(void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3609 		ret = data.ret;
3610 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3611 		struct perf_event_context *ctx = event->ctx;
3612 		unsigned long flags;
3613 
3614 		raw_spin_lock_irqsave(&ctx->lock, flags);
3615 		/*
3616 		 * may read while context is not active
3617 		 * (e.g., thread is blocked), in that case
3618 		 * we cannot update context time
3619 		 */
3620 		if (ctx->is_active) {
3621 			update_context_time(ctx);
3622 			update_cgrp_time_from_event(event);
3623 		}
3624 		if (group)
3625 			update_group_times(event);
3626 		else
3627 			update_event_times(event);
3628 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3629 	}
3630 
3631 	return ret;
3632 }
3633 
3634 /*
3635  * Initialize the perf_event context in a task_struct:
3636  */
3637 static void __perf_event_init_context(struct perf_event_context *ctx)
3638 {
3639 	raw_spin_lock_init(&ctx->lock);
3640 	mutex_init(&ctx->mutex);
3641 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3642 	INIT_LIST_HEAD(&ctx->pinned_groups);
3643 	INIT_LIST_HEAD(&ctx->flexible_groups);
3644 	INIT_LIST_HEAD(&ctx->event_list);
3645 	atomic_set(&ctx->refcount, 1);
3646 }
3647 
3648 static struct perf_event_context *
3649 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3650 {
3651 	struct perf_event_context *ctx;
3652 
3653 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3654 	if (!ctx)
3655 		return NULL;
3656 
3657 	__perf_event_init_context(ctx);
3658 	if (task) {
3659 		ctx->task = task;
3660 		get_task_struct(task);
3661 	}
3662 	ctx->pmu = pmu;
3663 
3664 	return ctx;
3665 }
3666 
3667 static struct task_struct *
3668 find_lively_task_by_vpid(pid_t vpid)
3669 {
3670 	struct task_struct *task;
3671 
3672 	rcu_read_lock();
3673 	if (!vpid)
3674 		task = current;
3675 	else
3676 		task = find_task_by_vpid(vpid);
3677 	if (task)
3678 		get_task_struct(task);
3679 	rcu_read_unlock();
3680 
3681 	if (!task)
3682 		return ERR_PTR(-ESRCH);
3683 
3684 	return task;
3685 }
3686 
3687 /*
3688  * Returns a matching context with refcount and pincount.
3689  */
3690 static struct perf_event_context *
3691 find_get_context(struct pmu *pmu, struct task_struct *task,
3692 		struct perf_event *event)
3693 {
3694 	struct perf_event_context *ctx, *clone_ctx = NULL;
3695 	struct perf_cpu_context *cpuctx;
3696 	void *task_ctx_data = NULL;
3697 	unsigned long flags;
3698 	int ctxn, err;
3699 	int cpu = event->cpu;
3700 
3701 	if (!task) {
3702 		/* Must be root to operate on a CPU event: */
3703 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3704 			return ERR_PTR(-EACCES);
3705 
3706 		/*
3707 		 * We could be clever and allow to attach a event to an
3708 		 * offline CPU and activate it when the CPU comes up, but
3709 		 * that's for later.
3710 		 */
3711 		if (!cpu_online(cpu))
3712 			return ERR_PTR(-ENODEV);
3713 
3714 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3715 		ctx = &cpuctx->ctx;
3716 		get_ctx(ctx);
3717 		++ctx->pin_count;
3718 
3719 		return ctx;
3720 	}
3721 
3722 	err = -EINVAL;
3723 	ctxn = pmu->task_ctx_nr;
3724 	if (ctxn < 0)
3725 		goto errout;
3726 
3727 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3728 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3729 		if (!task_ctx_data) {
3730 			err = -ENOMEM;
3731 			goto errout;
3732 		}
3733 	}
3734 
3735 retry:
3736 	ctx = perf_lock_task_context(task, ctxn, &flags);
3737 	if (ctx) {
3738 		clone_ctx = unclone_ctx(ctx);
3739 		++ctx->pin_count;
3740 
3741 		if (task_ctx_data && !ctx->task_ctx_data) {
3742 			ctx->task_ctx_data = task_ctx_data;
3743 			task_ctx_data = NULL;
3744 		}
3745 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3746 
3747 		if (clone_ctx)
3748 			put_ctx(clone_ctx);
3749 	} else {
3750 		ctx = alloc_perf_context(pmu, task);
3751 		err = -ENOMEM;
3752 		if (!ctx)
3753 			goto errout;
3754 
3755 		if (task_ctx_data) {
3756 			ctx->task_ctx_data = task_ctx_data;
3757 			task_ctx_data = NULL;
3758 		}
3759 
3760 		err = 0;
3761 		mutex_lock(&task->perf_event_mutex);
3762 		/*
3763 		 * If it has already passed perf_event_exit_task().
3764 		 * we must see PF_EXITING, it takes this mutex too.
3765 		 */
3766 		if (task->flags & PF_EXITING)
3767 			err = -ESRCH;
3768 		else if (task->perf_event_ctxp[ctxn])
3769 			err = -EAGAIN;
3770 		else {
3771 			get_ctx(ctx);
3772 			++ctx->pin_count;
3773 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3774 		}
3775 		mutex_unlock(&task->perf_event_mutex);
3776 
3777 		if (unlikely(err)) {
3778 			put_ctx(ctx);
3779 
3780 			if (err == -EAGAIN)
3781 				goto retry;
3782 			goto errout;
3783 		}
3784 	}
3785 
3786 	kfree(task_ctx_data);
3787 	return ctx;
3788 
3789 errout:
3790 	kfree(task_ctx_data);
3791 	return ERR_PTR(err);
3792 }
3793 
3794 static void perf_event_free_filter(struct perf_event *event);
3795 static void perf_event_free_bpf_prog(struct perf_event *event);
3796 
3797 static void free_event_rcu(struct rcu_head *head)
3798 {
3799 	struct perf_event *event;
3800 
3801 	event = container_of(head, struct perf_event, rcu_head);
3802 	if (event->ns)
3803 		put_pid_ns(event->ns);
3804 	perf_event_free_filter(event);
3805 	kfree(event);
3806 }
3807 
3808 static void ring_buffer_attach(struct perf_event *event,
3809 			       struct ring_buffer *rb);
3810 
3811 static void detach_sb_event(struct perf_event *event)
3812 {
3813 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3814 
3815 	raw_spin_lock(&pel->lock);
3816 	list_del_rcu(&event->sb_list);
3817 	raw_spin_unlock(&pel->lock);
3818 }
3819 
3820 static bool is_sb_event(struct perf_event *event)
3821 {
3822 	struct perf_event_attr *attr = &event->attr;
3823 
3824 	if (event->parent)
3825 		return false;
3826 
3827 	if (event->attach_state & PERF_ATTACH_TASK)
3828 		return false;
3829 
3830 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3831 	    attr->comm || attr->comm_exec ||
3832 	    attr->task ||
3833 	    attr->context_switch)
3834 		return true;
3835 	return false;
3836 }
3837 
3838 static void unaccount_pmu_sb_event(struct perf_event *event)
3839 {
3840 	if (is_sb_event(event))
3841 		detach_sb_event(event);
3842 }
3843 
3844 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3845 {
3846 	if (event->parent)
3847 		return;
3848 
3849 	if (is_cgroup_event(event))
3850 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3851 }
3852 
3853 #ifdef CONFIG_NO_HZ_FULL
3854 static DEFINE_SPINLOCK(nr_freq_lock);
3855 #endif
3856 
3857 static void unaccount_freq_event_nohz(void)
3858 {
3859 #ifdef CONFIG_NO_HZ_FULL
3860 	spin_lock(&nr_freq_lock);
3861 	if (atomic_dec_and_test(&nr_freq_events))
3862 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3863 	spin_unlock(&nr_freq_lock);
3864 #endif
3865 }
3866 
3867 static void unaccount_freq_event(void)
3868 {
3869 	if (tick_nohz_full_enabled())
3870 		unaccount_freq_event_nohz();
3871 	else
3872 		atomic_dec(&nr_freq_events);
3873 }
3874 
3875 static void unaccount_event(struct perf_event *event)
3876 {
3877 	bool dec = false;
3878 
3879 	if (event->parent)
3880 		return;
3881 
3882 	if (event->attach_state & PERF_ATTACH_TASK)
3883 		dec = true;
3884 	if (event->attr.mmap || event->attr.mmap_data)
3885 		atomic_dec(&nr_mmap_events);
3886 	if (event->attr.comm)
3887 		atomic_dec(&nr_comm_events);
3888 	if (event->attr.task)
3889 		atomic_dec(&nr_task_events);
3890 	if (event->attr.freq)
3891 		unaccount_freq_event();
3892 	if (event->attr.context_switch) {
3893 		dec = true;
3894 		atomic_dec(&nr_switch_events);
3895 	}
3896 	if (is_cgroup_event(event))
3897 		dec = true;
3898 	if (has_branch_stack(event))
3899 		dec = true;
3900 
3901 	if (dec) {
3902 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3903 			schedule_delayed_work(&perf_sched_work, HZ);
3904 	}
3905 
3906 	unaccount_event_cpu(event, event->cpu);
3907 
3908 	unaccount_pmu_sb_event(event);
3909 }
3910 
3911 static void perf_sched_delayed(struct work_struct *work)
3912 {
3913 	mutex_lock(&perf_sched_mutex);
3914 	if (atomic_dec_and_test(&perf_sched_count))
3915 		static_branch_disable(&perf_sched_events);
3916 	mutex_unlock(&perf_sched_mutex);
3917 }
3918 
3919 /*
3920  * The following implement mutual exclusion of events on "exclusive" pmus
3921  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3922  * at a time, so we disallow creating events that might conflict, namely:
3923  *
3924  *  1) cpu-wide events in the presence of per-task events,
3925  *  2) per-task events in the presence of cpu-wide events,
3926  *  3) two matching events on the same context.
3927  *
3928  * The former two cases are handled in the allocation path (perf_event_alloc(),
3929  * _free_event()), the latter -- before the first perf_install_in_context().
3930  */
3931 static int exclusive_event_init(struct perf_event *event)
3932 {
3933 	struct pmu *pmu = event->pmu;
3934 
3935 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3936 		return 0;
3937 
3938 	/*
3939 	 * Prevent co-existence of per-task and cpu-wide events on the
3940 	 * same exclusive pmu.
3941 	 *
3942 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3943 	 * events on this "exclusive" pmu, positive means there are
3944 	 * per-task events.
3945 	 *
3946 	 * Since this is called in perf_event_alloc() path, event::ctx
3947 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3948 	 * to mean "per-task event", because unlike other attach states it
3949 	 * never gets cleared.
3950 	 */
3951 	if (event->attach_state & PERF_ATTACH_TASK) {
3952 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3953 			return -EBUSY;
3954 	} else {
3955 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3956 			return -EBUSY;
3957 	}
3958 
3959 	return 0;
3960 }
3961 
3962 static void exclusive_event_destroy(struct perf_event *event)
3963 {
3964 	struct pmu *pmu = event->pmu;
3965 
3966 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3967 		return;
3968 
3969 	/* see comment in exclusive_event_init() */
3970 	if (event->attach_state & PERF_ATTACH_TASK)
3971 		atomic_dec(&pmu->exclusive_cnt);
3972 	else
3973 		atomic_inc(&pmu->exclusive_cnt);
3974 }
3975 
3976 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3977 {
3978 	if ((e1->pmu == e2->pmu) &&
3979 	    (e1->cpu == e2->cpu ||
3980 	     e1->cpu == -1 ||
3981 	     e2->cpu == -1))
3982 		return true;
3983 	return false;
3984 }
3985 
3986 /* Called under the same ctx::mutex as perf_install_in_context() */
3987 static bool exclusive_event_installable(struct perf_event *event,
3988 					struct perf_event_context *ctx)
3989 {
3990 	struct perf_event *iter_event;
3991 	struct pmu *pmu = event->pmu;
3992 
3993 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3994 		return true;
3995 
3996 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3997 		if (exclusive_event_match(iter_event, event))
3998 			return false;
3999 	}
4000 
4001 	return true;
4002 }
4003 
4004 static void perf_addr_filters_splice(struct perf_event *event,
4005 				       struct list_head *head);
4006 
4007 static void _free_event(struct perf_event *event)
4008 {
4009 	irq_work_sync(&event->pending);
4010 
4011 	unaccount_event(event);
4012 
4013 	if (event->rb) {
4014 		/*
4015 		 * Can happen when we close an event with re-directed output.
4016 		 *
4017 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4018 		 * over us; possibly making our ring_buffer_put() the last.
4019 		 */
4020 		mutex_lock(&event->mmap_mutex);
4021 		ring_buffer_attach(event, NULL);
4022 		mutex_unlock(&event->mmap_mutex);
4023 	}
4024 
4025 	if (is_cgroup_event(event))
4026 		perf_detach_cgroup(event);
4027 
4028 	if (!event->parent) {
4029 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4030 			put_callchain_buffers();
4031 	}
4032 
4033 	perf_event_free_bpf_prog(event);
4034 	perf_addr_filters_splice(event, NULL);
4035 	kfree(event->addr_filters_offs);
4036 
4037 	if (event->destroy)
4038 		event->destroy(event);
4039 
4040 	if (event->ctx)
4041 		put_ctx(event->ctx);
4042 
4043 	exclusive_event_destroy(event);
4044 	module_put(event->pmu->module);
4045 
4046 	call_rcu(&event->rcu_head, free_event_rcu);
4047 }
4048 
4049 /*
4050  * Used to free events which have a known refcount of 1, such as in error paths
4051  * where the event isn't exposed yet and inherited events.
4052  */
4053 static void free_event(struct perf_event *event)
4054 {
4055 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4056 				"unexpected event refcount: %ld; ptr=%p\n",
4057 				atomic_long_read(&event->refcount), event)) {
4058 		/* leak to avoid use-after-free */
4059 		return;
4060 	}
4061 
4062 	_free_event(event);
4063 }
4064 
4065 /*
4066  * Remove user event from the owner task.
4067  */
4068 static void perf_remove_from_owner(struct perf_event *event)
4069 {
4070 	struct task_struct *owner;
4071 
4072 	rcu_read_lock();
4073 	/*
4074 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4075 	 * observe !owner it means the list deletion is complete and we can
4076 	 * indeed free this event, otherwise we need to serialize on
4077 	 * owner->perf_event_mutex.
4078 	 */
4079 	owner = lockless_dereference(event->owner);
4080 	if (owner) {
4081 		/*
4082 		 * Since delayed_put_task_struct() also drops the last
4083 		 * task reference we can safely take a new reference
4084 		 * while holding the rcu_read_lock().
4085 		 */
4086 		get_task_struct(owner);
4087 	}
4088 	rcu_read_unlock();
4089 
4090 	if (owner) {
4091 		/*
4092 		 * If we're here through perf_event_exit_task() we're already
4093 		 * holding ctx->mutex which would be an inversion wrt. the
4094 		 * normal lock order.
4095 		 *
4096 		 * However we can safely take this lock because its the child
4097 		 * ctx->mutex.
4098 		 */
4099 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4100 
4101 		/*
4102 		 * We have to re-check the event->owner field, if it is cleared
4103 		 * we raced with perf_event_exit_task(), acquiring the mutex
4104 		 * ensured they're done, and we can proceed with freeing the
4105 		 * event.
4106 		 */
4107 		if (event->owner) {
4108 			list_del_init(&event->owner_entry);
4109 			smp_store_release(&event->owner, NULL);
4110 		}
4111 		mutex_unlock(&owner->perf_event_mutex);
4112 		put_task_struct(owner);
4113 	}
4114 }
4115 
4116 static void put_event(struct perf_event *event)
4117 {
4118 	if (!atomic_long_dec_and_test(&event->refcount))
4119 		return;
4120 
4121 	_free_event(event);
4122 }
4123 
4124 /*
4125  * Kill an event dead; while event:refcount will preserve the event
4126  * object, it will not preserve its functionality. Once the last 'user'
4127  * gives up the object, we'll destroy the thing.
4128  */
4129 int perf_event_release_kernel(struct perf_event *event)
4130 {
4131 	struct perf_event_context *ctx = event->ctx;
4132 	struct perf_event *child, *tmp;
4133 
4134 	/*
4135 	 * If we got here through err_file: fput(event_file); we will not have
4136 	 * attached to a context yet.
4137 	 */
4138 	if (!ctx) {
4139 		WARN_ON_ONCE(event->attach_state &
4140 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4141 		goto no_ctx;
4142 	}
4143 
4144 	if (!is_kernel_event(event))
4145 		perf_remove_from_owner(event);
4146 
4147 	ctx = perf_event_ctx_lock(event);
4148 	WARN_ON_ONCE(ctx->parent_ctx);
4149 	perf_remove_from_context(event, DETACH_GROUP);
4150 
4151 	raw_spin_lock_irq(&ctx->lock);
4152 	/*
4153 	 * Mark this even as STATE_DEAD, there is no external reference to it
4154 	 * anymore.
4155 	 *
4156 	 * Anybody acquiring event->child_mutex after the below loop _must_
4157 	 * also see this, most importantly inherit_event() which will avoid
4158 	 * placing more children on the list.
4159 	 *
4160 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4161 	 * child events.
4162 	 */
4163 	event->state = PERF_EVENT_STATE_DEAD;
4164 	raw_spin_unlock_irq(&ctx->lock);
4165 
4166 	perf_event_ctx_unlock(event, ctx);
4167 
4168 again:
4169 	mutex_lock(&event->child_mutex);
4170 	list_for_each_entry(child, &event->child_list, child_list) {
4171 
4172 		/*
4173 		 * Cannot change, child events are not migrated, see the
4174 		 * comment with perf_event_ctx_lock_nested().
4175 		 */
4176 		ctx = lockless_dereference(child->ctx);
4177 		/*
4178 		 * Since child_mutex nests inside ctx::mutex, we must jump
4179 		 * through hoops. We start by grabbing a reference on the ctx.
4180 		 *
4181 		 * Since the event cannot get freed while we hold the
4182 		 * child_mutex, the context must also exist and have a !0
4183 		 * reference count.
4184 		 */
4185 		get_ctx(ctx);
4186 
4187 		/*
4188 		 * Now that we have a ctx ref, we can drop child_mutex, and
4189 		 * acquire ctx::mutex without fear of it going away. Then we
4190 		 * can re-acquire child_mutex.
4191 		 */
4192 		mutex_unlock(&event->child_mutex);
4193 		mutex_lock(&ctx->mutex);
4194 		mutex_lock(&event->child_mutex);
4195 
4196 		/*
4197 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4198 		 * state, if child is still the first entry, it didn't get freed
4199 		 * and we can continue doing so.
4200 		 */
4201 		tmp = list_first_entry_or_null(&event->child_list,
4202 					       struct perf_event, child_list);
4203 		if (tmp == child) {
4204 			perf_remove_from_context(child, DETACH_GROUP);
4205 			list_del(&child->child_list);
4206 			free_event(child);
4207 			/*
4208 			 * This matches the refcount bump in inherit_event();
4209 			 * this can't be the last reference.
4210 			 */
4211 			put_event(event);
4212 		}
4213 
4214 		mutex_unlock(&event->child_mutex);
4215 		mutex_unlock(&ctx->mutex);
4216 		put_ctx(ctx);
4217 		goto again;
4218 	}
4219 	mutex_unlock(&event->child_mutex);
4220 
4221 no_ctx:
4222 	put_event(event); /* Must be the 'last' reference */
4223 	return 0;
4224 }
4225 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4226 
4227 /*
4228  * Called when the last reference to the file is gone.
4229  */
4230 static int perf_release(struct inode *inode, struct file *file)
4231 {
4232 	perf_event_release_kernel(file->private_data);
4233 	return 0;
4234 }
4235 
4236 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4237 {
4238 	struct perf_event *child;
4239 	u64 total = 0;
4240 
4241 	*enabled = 0;
4242 	*running = 0;
4243 
4244 	mutex_lock(&event->child_mutex);
4245 
4246 	(void)perf_event_read(event, false);
4247 	total += perf_event_count(event);
4248 
4249 	*enabled += event->total_time_enabled +
4250 			atomic64_read(&event->child_total_time_enabled);
4251 	*running += event->total_time_running +
4252 			atomic64_read(&event->child_total_time_running);
4253 
4254 	list_for_each_entry(child, &event->child_list, child_list) {
4255 		(void)perf_event_read(child, false);
4256 		total += perf_event_count(child);
4257 		*enabled += child->total_time_enabled;
4258 		*running += child->total_time_running;
4259 	}
4260 	mutex_unlock(&event->child_mutex);
4261 
4262 	return total;
4263 }
4264 EXPORT_SYMBOL_GPL(perf_event_read_value);
4265 
4266 static int __perf_read_group_add(struct perf_event *leader,
4267 					u64 read_format, u64 *values)
4268 {
4269 	struct perf_event *sub;
4270 	int n = 1; /* skip @nr */
4271 	int ret;
4272 
4273 	ret = perf_event_read(leader, true);
4274 	if (ret)
4275 		return ret;
4276 
4277 	/*
4278 	 * Since we co-schedule groups, {enabled,running} times of siblings
4279 	 * will be identical to those of the leader, so we only publish one
4280 	 * set.
4281 	 */
4282 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4283 		values[n++] += leader->total_time_enabled +
4284 			atomic64_read(&leader->child_total_time_enabled);
4285 	}
4286 
4287 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4288 		values[n++] += leader->total_time_running +
4289 			atomic64_read(&leader->child_total_time_running);
4290 	}
4291 
4292 	/*
4293 	 * Write {count,id} tuples for every sibling.
4294 	 */
4295 	values[n++] += perf_event_count(leader);
4296 	if (read_format & PERF_FORMAT_ID)
4297 		values[n++] = primary_event_id(leader);
4298 
4299 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4300 		values[n++] += perf_event_count(sub);
4301 		if (read_format & PERF_FORMAT_ID)
4302 			values[n++] = primary_event_id(sub);
4303 	}
4304 
4305 	return 0;
4306 }
4307 
4308 static int perf_read_group(struct perf_event *event,
4309 				   u64 read_format, char __user *buf)
4310 {
4311 	struct perf_event *leader = event->group_leader, *child;
4312 	struct perf_event_context *ctx = leader->ctx;
4313 	int ret;
4314 	u64 *values;
4315 
4316 	lockdep_assert_held(&ctx->mutex);
4317 
4318 	values = kzalloc(event->read_size, GFP_KERNEL);
4319 	if (!values)
4320 		return -ENOMEM;
4321 
4322 	values[0] = 1 + leader->nr_siblings;
4323 
4324 	/*
4325 	 * By locking the child_mutex of the leader we effectively
4326 	 * lock the child list of all siblings.. XXX explain how.
4327 	 */
4328 	mutex_lock(&leader->child_mutex);
4329 
4330 	ret = __perf_read_group_add(leader, read_format, values);
4331 	if (ret)
4332 		goto unlock;
4333 
4334 	list_for_each_entry(child, &leader->child_list, child_list) {
4335 		ret = __perf_read_group_add(child, read_format, values);
4336 		if (ret)
4337 			goto unlock;
4338 	}
4339 
4340 	mutex_unlock(&leader->child_mutex);
4341 
4342 	ret = event->read_size;
4343 	if (copy_to_user(buf, values, event->read_size))
4344 		ret = -EFAULT;
4345 	goto out;
4346 
4347 unlock:
4348 	mutex_unlock(&leader->child_mutex);
4349 out:
4350 	kfree(values);
4351 	return ret;
4352 }
4353 
4354 static int perf_read_one(struct perf_event *event,
4355 				 u64 read_format, char __user *buf)
4356 {
4357 	u64 enabled, running;
4358 	u64 values[4];
4359 	int n = 0;
4360 
4361 	values[n++] = perf_event_read_value(event, &enabled, &running);
4362 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4363 		values[n++] = enabled;
4364 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4365 		values[n++] = running;
4366 	if (read_format & PERF_FORMAT_ID)
4367 		values[n++] = primary_event_id(event);
4368 
4369 	if (copy_to_user(buf, values, n * sizeof(u64)))
4370 		return -EFAULT;
4371 
4372 	return n * sizeof(u64);
4373 }
4374 
4375 static bool is_event_hup(struct perf_event *event)
4376 {
4377 	bool no_children;
4378 
4379 	if (event->state > PERF_EVENT_STATE_EXIT)
4380 		return false;
4381 
4382 	mutex_lock(&event->child_mutex);
4383 	no_children = list_empty(&event->child_list);
4384 	mutex_unlock(&event->child_mutex);
4385 	return no_children;
4386 }
4387 
4388 /*
4389  * Read the performance event - simple non blocking version for now
4390  */
4391 static ssize_t
4392 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4393 {
4394 	u64 read_format = event->attr.read_format;
4395 	int ret;
4396 
4397 	/*
4398 	 * Return end-of-file for a read on a event that is in
4399 	 * error state (i.e. because it was pinned but it couldn't be
4400 	 * scheduled on to the CPU at some point).
4401 	 */
4402 	if (event->state == PERF_EVENT_STATE_ERROR)
4403 		return 0;
4404 
4405 	if (count < event->read_size)
4406 		return -ENOSPC;
4407 
4408 	WARN_ON_ONCE(event->ctx->parent_ctx);
4409 	if (read_format & PERF_FORMAT_GROUP)
4410 		ret = perf_read_group(event, read_format, buf);
4411 	else
4412 		ret = perf_read_one(event, read_format, buf);
4413 
4414 	return ret;
4415 }
4416 
4417 static ssize_t
4418 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4419 {
4420 	struct perf_event *event = file->private_data;
4421 	struct perf_event_context *ctx;
4422 	int ret;
4423 
4424 	ctx = perf_event_ctx_lock(event);
4425 	ret = __perf_read(event, buf, count);
4426 	perf_event_ctx_unlock(event, ctx);
4427 
4428 	return ret;
4429 }
4430 
4431 static unsigned int perf_poll(struct file *file, poll_table *wait)
4432 {
4433 	struct perf_event *event = file->private_data;
4434 	struct ring_buffer *rb;
4435 	unsigned int events = POLLHUP;
4436 
4437 	poll_wait(file, &event->waitq, wait);
4438 
4439 	if (is_event_hup(event))
4440 		return events;
4441 
4442 	/*
4443 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4444 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4445 	 */
4446 	mutex_lock(&event->mmap_mutex);
4447 	rb = event->rb;
4448 	if (rb)
4449 		events = atomic_xchg(&rb->poll, 0);
4450 	mutex_unlock(&event->mmap_mutex);
4451 	return events;
4452 }
4453 
4454 static void _perf_event_reset(struct perf_event *event)
4455 {
4456 	(void)perf_event_read(event, false);
4457 	local64_set(&event->count, 0);
4458 	perf_event_update_userpage(event);
4459 }
4460 
4461 /*
4462  * Holding the top-level event's child_mutex means that any
4463  * descendant process that has inherited this event will block
4464  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4465  * task existence requirements of perf_event_enable/disable.
4466  */
4467 static void perf_event_for_each_child(struct perf_event *event,
4468 					void (*func)(struct perf_event *))
4469 {
4470 	struct perf_event *child;
4471 
4472 	WARN_ON_ONCE(event->ctx->parent_ctx);
4473 
4474 	mutex_lock(&event->child_mutex);
4475 	func(event);
4476 	list_for_each_entry(child, &event->child_list, child_list)
4477 		func(child);
4478 	mutex_unlock(&event->child_mutex);
4479 }
4480 
4481 static void perf_event_for_each(struct perf_event *event,
4482 				  void (*func)(struct perf_event *))
4483 {
4484 	struct perf_event_context *ctx = event->ctx;
4485 	struct perf_event *sibling;
4486 
4487 	lockdep_assert_held(&ctx->mutex);
4488 
4489 	event = event->group_leader;
4490 
4491 	perf_event_for_each_child(event, func);
4492 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4493 		perf_event_for_each_child(sibling, func);
4494 }
4495 
4496 static void __perf_event_period(struct perf_event *event,
4497 				struct perf_cpu_context *cpuctx,
4498 				struct perf_event_context *ctx,
4499 				void *info)
4500 {
4501 	u64 value = *((u64 *)info);
4502 	bool active;
4503 
4504 	if (event->attr.freq) {
4505 		event->attr.sample_freq = value;
4506 	} else {
4507 		event->attr.sample_period = value;
4508 		event->hw.sample_period = value;
4509 	}
4510 
4511 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4512 	if (active) {
4513 		perf_pmu_disable(ctx->pmu);
4514 		/*
4515 		 * We could be throttled; unthrottle now to avoid the tick
4516 		 * trying to unthrottle while we already re-started the event.
4517 		 */
4518 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4519 			event->hw.interrupts = 0;
4520 			perf_log_throttle(event, 1);
4521 		}
4522 		event->pmu->stop(event, PERF_EF_UPDATE);
4523 	}
4524 
4525 	local64_set(&event->hw.period_left, 0);
4526 
4527 	if (active) {
4528 		event->pmu->start(event, PERF_EF_RELOAD);
4529 		perf_pmu_enable(ctx->pmu);
4530 	}
4531 }
4532 
4533 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4534 {
4535 	u64 value;
4536 
4537 	if (!is_sampling_event(event))
4538 		return -EINVAL;
4539 
4540 	if (copy_from_user(&value, arg, sizeof(value)))
4541 		return -EFAULT;
4542 
4543 	if (!value)
4544 		return -EINVAL;
4545 
4546 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4547 		return -EINVAL;
4548 
4549 	event_function_call(event, __perf_event_period, &value);
4550 
4551 	return 0;
4552 }
4553 
4554 static const struct file_operations perf_fops;
4555 
4556 static inline int perf_fget_light(int fd, struct fd *p)
4557 {
4558 	struct fd f = fdget(fd);
4559 	if (!f.file)
4560 		return -EBADF;
4561 
4562 	if (f.file->f_op != &perf_fops) {
4563 		fdput(f);
4564 		return -EBADF;
4565 	}
4566 	*p = f;
4567 	return 0;
4568 }
4569 
4570 static int perf_event_set_output(struct perf_event *event,
4571 				 struct perf_event *output_event);
4572 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4573 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4574 
4575 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4576 {
4577 	void (*func)(struct perf_event *);
4578 	u32 flags = arg;
4579 
4580 	switch (cmd) {
4581 	case PERF_EVENT_IOC_ENABLE:
4582 		func = _perf_event_enable;
4583 		break;
4584 	case PERF_EVENT_IOC_DISABLE:
4585 		func = _perf_event_disable;
4586 		break;
4587 	case PERF_EVENT_IOC_RESET:
4588 		func = _perf_event_reset;
4589 		break;
4590 
4591 	case PERF_EVENT_IOC_REFRESH:
4592 		return _perf_event_refresh(event, arg);
4593 
4594 	case PERF_EVENT_IOC_PERIOD:
4595 		return perf_event_period(event, (u64 __user *)arg);
4596 
4597 	case PERF_EVENT_IOC_ID:
4598 	{
4599 		u64 id = primary_event_id(event);
4600 
4601 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4602 			return -EFAULT;
4603 		return 0;
4604 	}
4605 
4606 	case PERF_EVENT_IOC_SET_OUTPUT:
4607 	{
4608 		int ret;
4609 		if (arg != -1) {
4610 			struct perf_event *output_event;
4611 			struct fd output;
4612 			ret = perf_fget_light(arg, &output);
4613 			if (ret)
4614 				return ret;
4615 			output_event = output.file->private_data;
4616 			ret = perf_event_set_output(event, output_event);
4617 			fdput(output);
4618 		} else {
4619 			ret = perf_event_set_output(event, NULL);
4620 		}
4621 		return ret;
4622 	}
4623 
4624 	case PERF_EVENT_IOC_SET_FILTER:
4625 		return perf_event_set_filter(event, (void __user *)arg);
4626 
4627 	case PERF_EVENT_IOC_SET_BPF:
4628 		return perf_event_set_bpf_prog(event, arg);
4629 
4630 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4631 		struct ring_buffer *rb;
4632 
4633 		rcu_read_lock();
4634 		rb = rcu_dereference(event->rb);
4635 		if (!rb || !rb->nr_pages) {
4636 			rcu_read_unlock();
4637 			return -EINVAL;
4638 		}
4639 		rb_toggle_paused(rb, !!arg);
4640 		rcu_read_unlock();
4641 		return 0;
4642 	}
4643 	default:
4644 		return -ENOTTY;
4645 	}
4646 
4647 	if (flags & PERF_IOC_FLAG_GROUP)
4648 		perf_event_for_each(event, func);
4649 	else
4650 		perf_event_for_each_child(event, func);
4651 
4652 	return 0;
4653 }
4654 
4655 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4656 {
4657 	struct perf_event *event = file->private_data;
4658 	struct perf_event_context *ctx;
4659 	long ret;
4660 
4661 	ctx = perf_event_ctx_lock(event);
4662 	ret = _perf_ioctl(event, cmd, arg);
4663 	perf_event_ctx_unlock(event, ctx);
4664 
4665 	return ret;
4666 }
4667 
4668 #ifdef CONFIG_COMPAT
4669 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4670 				unsigned long arg)
4671 {
4672 	switch (_IOC_NR(cmd)) {
4673 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4674 	case _IOC_NR(PERF_EVENT_IOC_ID):
4675 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4676 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4677 			cmd &= ~IOCSIZE_MASK;
4678 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4679 		}
4680 		break;
4681 	}
4682 	return perf_ioctl(file, cmd, arg);
4683 }
4684 #else
4685 # define perf_compat_ioctl NULL
4686 #endif
4687 
4688 int perf_event_task_enable(void)
4689 {
4690 	struct perf_event_context *ctx;
4691 	struct perf_event *event;
4692 
4693 	mutex_lock(&current->perf_event_mutex);
4694 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4695 		ctx = perf_event_ctx_lock(event);
4696 		perf_event_for_each_child(event, _perf_event_enable);
4697 		perf_event_ctx_unlock(event, ctx);
4698 	}
4699 	mutex_unlock(&current->perf_event_mutex);
4700 
4701 	return 0;
4702 }
4703 
4704 int perf_event_task_disable(void)
4705 {
4706 	struct perf_event_context *ctx;
4707 	struct perf_event *event;
4708 
4709 	mutex_lock(&current->perf_event_mutex);
4710 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4711 		ctx = perf_event_ctx_lock(event);
4712 		perf_event_for_each_child(event, _perf_event_disable);
4713 		perf_event_ctx_unlock(event, ctx);
4714 	}
4715 	mutex_unlock(&current->perf_event_mutex);
4716 
4717 	return 0;
4718 }
4719 
4720 static int perf_event_index(struct perf_event *event)
4721 {
4722 	if (event->hw.state & PERF_HES_STOPPED)
4723 		return 0;
4724 
4725 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4726 		return 0;
4727 
4728 	return event->pmu->event_idx(event);
4729 }
4730 
4731 static void calc_timer_values(struct perf_event *event,
4732 				u64 *now,
4733 				u64 *enabled,
4734 				u64 *running)
4735 {
4736 	u64 ctx_time;
4737 
4738 	*now = perf_clock();
4739 	ctx_time = event->shadow_ctx_time + *now;
4740 	*enabled = ctx_time - event->tstamp_enabled;
4741 	*running = ctx_time - event->tstamp_running;
4742 }
4743 
4744 static void perf_event_init_userpage(struct perf_event *event)
4745 {
4746 	struct perf_event_mmap_page *userpg;
4747 	struct ring_buffer *rb;
4748 
4749 	rcu_read_lock();
4750 	rb = rcu_dereference(event->rb);
4751 	if (!rb)
4752 		goto unlock;
4753 
4754 	userpg = rb->user_page;
4755 
4756 	/* Allow new userspace to detect that bit 0 is deprecated */
4757 	userpg->cap_bit0_is_deprecated = 1;
4758 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4759 	userpg->data_offset = PAGE_SIZE;
4760 	userpg->data_size = perf_data_size(rb);
4761 
4762 unlock:
4763 	rcu_read_unlock();
4764 }
4765 
4766 void __weak arch_perf_update_userpage(
4767 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4768 {
4769 }
4770 
4771 /*
4772  * Callers need to ensure there can be no nesting of this function, otherwise
4773  * the seqlock logic goes bad. We can not serialize this because the arch
4774  * code calls this from NMI context.
4775  */
4776 void perf_event_update_userpage(struct perf_event *event)
4777 {
4778 	struct perf_event_mmap_page *userpg;
4779 	struct ring_buffer *rb;
4780 	u64 enabled, running, now;
4781 
4782 	rcu_read_lock();
4783 	rb = rcu_dereference(event->rb);
4784 	if (!rb)
4785 		goto unlock;
4786 
4787 	/*
4788 	 * compute total_time_enabled, total_time_running
4789 	 * based on snapshot values taken when the event
4790 	 * was last scheduled in.
4791 	 *
4792 	 * we cannot simply called update_context_time()
4793 	 * because of locking issue as we can be called in
4794 	 * NMI context
4795 	 */
4796 	calc_timer_values(event, &now, &enabled, &running);
4797 
4798 	userpg = rb->user_page;
4799 	/*
4800 	 * Disable preemption so as to not let the corresponding user-space
4801 	 * spin too long if we get preempted.
4802 	 */
4803 	preempt_disable();
4804 	++userpg->lock;
4805 	barrier();
4806 	userpg->index = perf_event_index(event);
4807 	userpg->offset = perf_event_count(event);
4808 	if (userpg->index)
4809 		userpg->offset -= local64_read(&event->hw.prev_count);
4810 
4811 	userpg->time_enabled = enabled +
4812 			atomic64_read(&event->child_total_time_enabled);
4813 
4814 	userpg->time_running = running +
4815 			atomic64_read(&event->child_total_time_running);
4816 
4817 	arch_perf_update_userpage(event, userpg, now);
4818 
4819 	barrier();
4820 	++userpg->lock;
4821 	preempt_enable();
4822 unlock:
4823 	rcu_read_unlock();
4824 }
4825 
4826 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4827 {
4828 	struct perf_event *event = vma->vm_file->private_data;
4829 	struct ring_buffer *rb;
4830 	int ret = VM_FAULT_SIGBUS;
4831 
4832 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4833 		if (vmf->pgoff == 0)
4834 			ret = 0;
4835 		return ret;
4836 	}
4837 
4838 	rcu_read_lock();
4839 	rb = rcu_dereference(event->rb);
4840 	if (!rb)
4841 		goto unlock;
4842 
4843 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4844 		goto unlock;
4845 
4846 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4847 	if (!vmf->page)
4848 		goto unlock;
4849 
4850 	get_page(vmf->page);
4851 	vmf->page->mapping = vma->vm_file->f_mapping;
4852 	vmf->page->index   = vmf->pgoff;
4853 
4854 	ret = 0;
4855 unlock:
4856 	rcu_read_unlock();
4857 
4858 	return ret;
4859 }
4860 
4861 static void ring_buffer_attach(struct perf_event *event,
4862 			       struct ring_buffer *rb)
4863 {
4864 	struct ring_buffer *old_rb = NULL;
4865 	unsigned long flags;
4866 
4867 	if (event->rb) {
4868 		/*
4869 		 * Should be impossible, we set this when removing
4870 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4871 		 */
4872 		WARN_ON_ONCE(event->rcu_pending);
4873 
4874 		old_rb = event->rb;
4875 		spin_lock_irqsave(&old_rb->event_lock, flags);
4876 		list_del_rcu(&event->rb_entry);
4877 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4878 
4879 		event->rcu_batches = get_state_synchronize_rcu();
4880 		event->rcu_pending = 1;
4881 	}
4882 
4883 	if (rb) {
4884 		if (event->rcu_pending) {
4885 			cond_synchronize_rcu(event->rcu_batches);
4886 			event->rcu_pending = 0;
4887 		}
4888 
4889 		spin_lock_irqsave(&rb->event_lock, flags);
4890 		list_add_rcu(&event->rb_entry, &rb->event_list);
4891 		spin_unlock_irqrestore(&rb->event_lock, flags);
4892 	}
4893 
4894 	/*
4895 	 * Avoid racing with perf_mmap_close(AUX): stop the event
4896 	 * before swizzling the event::rb pointer; if it's getting
4897 	 * unmapped, its aux_mmap_count will be 0 and it won't
4898 	 * restart. See the comment in __perf_pmu_output_stop().
4899 	 *
4900 	 * Data will inevitably be lost when set_output is done in
4901 	 * mid-air, but then again, whoever does it like this is
4902 	 * not in for the data anyway.
4903 	 */
4904 	if (has_aux(event))
4905 		perf_event_stop(event, 0);
4906 
4907 	rcu_assign_pointer(event->rb, rb);
4908 
4909 	if (old_rb) {
4910 		ring_buffer_put(old_rb);
4911 		/*
4912 		 * Since we detached before setting the new rb, so that we
4913 		 * could attach the new rb, we could have missed a wakeup.
4914 		 * Provide it now.
4915 		 */
4916 		wake_up_all(&event->waitq);
4917 	}
4918 }
4919 
4920 static void ring_buffer_wakeup(struct perf_event *event)
4921 {
4922 	struct ring_buffer *rb;
4923 
4924 	rcu_read_lock();
4925 	rb = rcu_dereference(event->rb);
4926 	if (rb) {
4927 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4928 			wake_up_all(&event->waitq);
4929 	}
4930 	rcu_read_unlock();
4931 }
4932 
4933 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4934 {
4935 	struct ring_buffer *rb;
4936 
4937 	rcu_read_lock();
4938 	rb = rcu_dereference(event->rb);
4939 	if (rb) {
4940 		if (!atomic_inc_not_zero(&rb->refcount))
4941 			rb = NULL;
4942 	}
4943 	rcu_read_unlock();
4944 
4945 	return rb;
4946 }
4947 
4948 void ring_buffer_put(struct ring_buffer *rb)
4949 {
4950 	if (!atomic_dec_and_test(&rb->refcount))
4951 		return;
4952 
4953 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4954 
4955 	call_rcu(&rb->rcu_head, rb_free_rcu);
4956 }
4957 
4958 static void perf_mmap_open(struct vm_area_struct *vma)
4959 {
4960 	struct perf_event *event = vma->vm_file->private_data;
4961 
4962 	atomic_inc(&event->mmap_count);
4963 	atomic_inc(&event->rb->mmap_count);
4964 
4965 	if (vma->vm_pgoff)
4966 		atomic_inc(&event->rb->aux_mmap_count);
4967 
4968 	if (event->pmu->event_mapped)
4969 		event->pmu->event_mapped(event);
4970 }
4971 
4972 static void perf_pmu_output_stop(struct perf_event *event);
4973 
4974 /*
4975  * A buffer can be mmap()ed multiple times; either directly through the same
4976  * event, or through other events by use of perf_event_set_output().
4977  *
4978  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4979  * the buffer here, where we still have a VM context. This means we need
4980  * to detach all events redirecting to us.
4981  */
4982 static void perf_mmap_close(struct vm_area_struct *vma)
4983 {
4984 	struct perf_event *event = vma->vm_file->private_data;
4985 
4986 	struct ring_buffer *rb = ring_buffer_get(event);
4987 	struct user_struct *mmap_user = rb->mmap_user;
4988 	int mmap_locked = rb->mmap_locked;
4989 	unsigned long size = perf_data_size(rb);
4990 
4991 	if (event->pmu->event_unmapped)
4992 		event->pmu->event_unmapped(event);
4993 
4994 	/*
4995 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4996 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4997 	 * serialize with perf_mmap here.
4998 	 */
4999 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5000 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5001 		/*
5002 		 * Stop all AUX events that are writing to this buffer,
5003 		 * so that we can free its AUX pages and corresponding PMU
5004 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5005 		 * they won't start any more (see perf_aux_output_begin()).
5006 		 */
5007 		perf_pmu_output_stop(event);
5008 
5009 		/* now it's safe to free the pages */
5010 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5011 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5012 
5013 		/* this has to be the last one */
5014 		rb_free_aux(rb);
5015 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5016 
5017 		mutex_unlock(&event->mmap_mutex);
5018 	}
5019 
5020 	atomic_dec(&rb->mmap_count);
5021 
5022 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5023 		goto out_put;
5024 
5025 	ring_buffer_attach(event, NULL);
5026 	mutex_unlock(&event->mmap_mutex);
5027 
5028 	/* If there's still other mmap()s of this buffer, we're done. */
5029 	if (atomic_read(&rb->mmap_count))
5030 		goto out_put;
5031 
5032 	/*
5033 	 * No other mmap()s, detach from all other events that might redirect
5034 	 * into the now unreachable buffer. Somewhat complicated by the
5035 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5036 	 */
5037 again:
5038 	rcu_read_lock();
5039 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5040 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5041 			/*
5042 			 * This event is en-route to free_event() which will
5043 			 * detach it and remove it from the list.
5044 			 */
5045 			continue;
5046 		}
5047 		rcu_read_unlock();
5048 
5049 		mutex_lock(&event->mmap_mutex);
5050 		/*
5051 		 * Check we didn't race with perf_event_set_output() which can
5052 		 * swizzle the rb from under us while we were waiting to
5053 		 * acquire mmap_mutex.
5054 		 *
5055 		 * If we find a different rb; ignore this event, a next
5056 		 * iteration will no longer find it on the list. We have to
5057 		 * still restart the iteration to make sure we're not now
5058 		 * iterating the wrong list.
5059 		 */
5060 		if (event->rb == rb)
5061 			ring_buffer_attach(event, NULL);
5062 
5063 		mutex_unlock(&event->mmap_mutex);
5064 		put_event(event);
5065 
5066 		/*
5067 		 * Restart the iteration; either we're on the wrong list or
5068 		 * destroyed its integrity by doing a deletion.
5069 		 */
5070 		goto again;
5071 	}
5072 	rcu_read_unlock();
5073 
5074 	/*
5075 	 * It could be there's still a few 0-ref events on the list; they'll
5076 	 * get cleaned up by free_event() -- they'll also still have their
5077 	 * ref on the rb and will free it whenever they are done with it.
5078 	 *
5079 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5080 	 * undo the VM accounting.
5081 	 */
5082 
5083 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5084 	vma->vm_mm->pinned_vm -= mmap_locked;
5085 	free_uid(mmap_user);
5086 
5087 out_put:
5088 	ring_buffer_put(rb); /* could be last */
5089 }
5090 
5091 static const struct vm_operations_struct perf_mmap_vmops = {
5092 	.open		= perf_mmap_open,
5093 	.close		= perf_mmap_close, /* non mergable */
5094 	.fault		= perf_mmap_fault,
5095 	.page_mkwrite	= perf_mmap_fault,
5096 };
5097 
5098 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5099 {
5100 	struct perf_event *event = file->private_data;
5101 	unsigned long user_locked, user_lock_limit;
5102 	struct user_struct *user = current_user();
5103 	unsigned long locked, lock_limit;
5104 	struct ring_buffer *rb = NULL;
5105 	unsigned long vma_size;
5106 	unsigned long nr_pages;
5107 	long user_extra = 0, extra = 0;
5108 	int ret = 0, flags = 0;
5109 
5110 	/*
5111 	 * Don't allow mmap() of inherited per-task counters. This would
5112 	 * create a performance issue due to all children writing to the
5113 	 * same rb.
5114 	 */
5115 	if (event->cpu == -1 && event->attr.inherit)
5116 		return -EINVAL;
5117 
5118 	if (!(vma->vm_flags & VM_SHARED))
5119 		return -EINVAL;
5120 
5121 	vma_size = vma->vm_end - vma->vm_start;
5122 
5123 	if (vma->vm_pgoff == 0) {
5124 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5125 	} else {
5126 		/*
5127 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5128 		 * mapped, all subsequent mappings should have the same size
5129 		 * and offset. Must be above the normal perf buffer.
5130 		 */
5131 		u64 aux_offset, aux_size;
5132 
5133 		if (!event->rb)
5134 			return -EINVAL;
5135 
5136 		nr_pages = vma_size / PAGE_SIZE;
5137 
5138 		mutex_lock(&event->mmap_mutex);
5139 		ret = -EINVAL;
5140 
5141 		rb = event->rb;
5142 		if (!rb)
5143 			goto aux_unlock;
5144 
5145 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5146 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5147 
5148 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5149 			goto aux_unlock;
5150 
5151 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5152 			goto aux_unlock;
5153 
5154 		/* already mapped with a different offset */
5155 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5156 			goto aux_unlock;
5157 
5158 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5159 			goto aux_unlock;
5160 
5161 		/* already mapped with a different size */
5162 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5163 			goto aux_unlock;
5164 
5165 		if (!is_power_of_2(nr_pages))
5166 			goto aux_unlock;
5167 
5168 		if (!atomic_inc_not_zero(&rb->mmap_count))
5169 			goto aux_unlock;
5170 
5171 		if (rb_has_aux(rb)) {
5172 			atomic_inc(&rb->aux_mmap_count);
5173 			ret = 0;
5174 			goto unlock;
5175 		}
5176 
5177 		atomic_set(&rb->aux_mmap_count, 1);
5178 		user_extra = nr_pages;
5179 
5180 		goto accounting;
5181 	}
5182 
5183 	/*
5184 	 * If we have rb pages ensure they're a power-of-two number, so we
5185 	 * can do bitmasks instead of modulo.
5186 	 */
5187 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5188 		return -EINVAL;
5189 
5190 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5191 		return -EINVAL;
5192 
5193 	WARN_ON_ONCE(event->ctx->parent_ctx);
5194 again:
5195 	mutex_lock(&event->mmap_mutex);
5196 	if (event->rb) {
5197 		if (event->rb->nr_pages != nr_pages) {
5198 			ret = -EINVAL;
5199 			goto unlock;
5200 		}
5201 
5202 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5203 			/*
5204 			 * Raced against perf_mmap_close() through
5205 			 * perf_event_set_output(). Try again, hope for better
5206 			 * luck.
5207 			 */
5208 			mutex_unlock(&event->mmap_mutex);
5209 			goto again;
5210 		}
5211 
5212 		goto unlock;
5213 	}
5214 
5215 	user_extra = nr_pages + 1;
5216 
5217 accounting:
5218 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5219 
5220 	/*
5221 	 * Increase the limit linearly with more CPUs:
5222 	 */
5223 	user_lock_limit *= num_online_cpus();
5224 
5225 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5226 
5227 	if (user_locked > user_lock_limit)
5228 		extra = user_locked - user_lock_limit;
5229 
5230 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5231 	lock_limit >>= PAGE_SHIFT;
5232 	locked = vma->vm_mm->pinned_vm + extra;
5233 
5234 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5235 		!capable(CAP_IPC_LOCK)) {
5236 		ret = -EPERM;
5237 		goto unlock;
5238 	}
5239 
5240 	WARN_ON(!rb && event->rb);
5241 
5242 	if (vma->vm_flags & VM_WRITE)
5243 		flags |= RING_BUFFER_WRITABLE;
5244 
5245 	if (!rb) {
5246 		rb = rb_alloc(nr_pages,
5247 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5248 			      event->cpu, flags);
5249 
5250 		if (!rb) {
5251 			ret = -ENOMEM;
5252 			goto unlock;
5253 		}
5254 
5255 		atomic_set(&rb->mmap_count, 1);
5256 		rb->mmap_user = get_current_user();
5257 		rb->mmap_locked = extra;
5258 
5259 		ring_buffer_attach(event, rb);
5260 
5261 		perf_event_init_userpage(event);
5262 		perf_event_update_userpage(event);
5263 	} else {
5264 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5265 				   event->attr.aux_watermark, flags);
5266 		if (!ret)
5267 			rb->aux_mmap_locked = extra;
5268 	}
5269 
5270 unlock:
5271 	if (!ret) {
5272 		atomic_long_add(user_extra, &user->locked_vm);
5273 		vma->vm_mm->pinned_vm += extra;
5274 
5275 		atomic_inc(&event->mmap_count);
5276 	} else if (rb) {
5277 		atomic_dec(&rb->mmap_count);
5278 	}
5279 aux_unlock:
5280 	mutex_unlock(&event->mmap_mutex);
5281 
5282 	/*
5283 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5284 	 * vma.
5285 	 */
5286 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5287 	vma->vm_ops = &perf_mmap_vmops;
5288 
5289 	if (event->pmu->event_mapped)
5290 		event->pmu->event_mapped(event);
5291 
5292 	return ret;
5293 }
5294 
5295 static int perf_fasync(int fd, struct file *filp, int on)
5296 {
5297 	struct inode *inode = file_inode(filp);
5298 	struct perf_event *event = filp->private_data;
5299 	int retval;
5300 
5301 	inode_lock(inode);
5302 	retval = fasync_helper(fd, filp, on, &event->fasync);
5303 	inode_unlock(inode);
5304 
5305 	if (retval < 0)
5306 		return retval;
5307 
5308 	return 0;
5309 }
5310 
5311 static const struct file_operations perf_fops = {
5312 	.llseek			= no_llseek,
5313 	.release		= perf_release,
5314 	.read			= perf_read,
5315 	.poll			= perf_poll,
5316 	.unlocked_ioctl		= perf_ioctl,
5317 	.compat_ioctl		= perf_compat_ioctl,
5318 	.mmap			= perf_mmap,
5319 	.fasync			= perf_fasync,
5320 };
5321 
5322 /*
5323  * Perf event wakeup
5324  *
5325  * If there's data, ensure we set the poll() state and publish everything
5326  * to user-space before waking everybody up.
5327  */
5328 
5329 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5330 {
5331 	/* only the parent has fasync state */
5332 	if (event->parent)
5333 		event = event->parent;
5334 	return &event->fasync;
5335 }
5336 
5337 void perf_event_wakeup(struct perf_event *event)
5338 {
5339 	ring_buffer_wakeup(event);
5340 
5341 	if (event->pending_kill) {
5342 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5343 		event->pending_kill = 0;
5344 	}
5345 }
5346 
5347 static void perf_pending_event(struct irq_work *entry)
5348 {
5349 	struct perf_event *event = container_of(entry,
5350 			struct perf_event, pending);
5351 	int rctx;
5352 
5353 	rctx = perf_swevent_get_recursion_context();
5354 	/*
5355 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5356 	 * and we won't recurse 'further'.
5357 	 */
5358 
5359 	if (event->pending_disable) {
5360 		event->pending_disable = 0;
5361 		perf_event_disable_local(event);
5362 	}
5363 
5364 	if (event->pending_wakeup) {
5365 		event->pending_wakeup = 0;
5366 		perf_event_wakeup(event);
5367 	}
5368 
5369 	if (rctx >= 0)
5370 		perf_swevent_put_recursion_context(rctx);
5371 }
5372 
5373 /*
5374  * We assume there is only KVM supporting the callbacks.
5375  * Later on, we might change it to a list if there is
5376  * another virtualization implementation supporting the callbacks.
5377  */
5378 struct perf_guest_info_callbacks *perf_guest_cbs;
5379 
5380 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5381 {
5382 	perf_guest_cbs = cbs;
5383 	return 0;
5384 }
5385 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5386 
5387 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5388 {
5389 	perf_guest_cbs = NULL;
5390 	return 0;
5391 }
5392 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5393 
5394 static void
5395 perf_output_sample_regs(struct perf_output_handle *handle,
5396 			struct pt_regs *regs, u64 mask)
5397 {
5398 	int bit;
5399 	DECLARE_BITMAP(_mask, 64);
5400 
5401 	bitmap_from_u64(_mask, mask);
5402 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5403 		u64 val;
5404 
5405 		val = perf_reg_value(regs, bit);
5406 		perf_output_put(handle, val);
5407 	}
5408 }
5409 
5410 static void perf_sample_regs_user(struct perf_regs *regs_user,
5411 				  struct pt_regs *regs,
5412 				  struct pt_regs *regs_user_copy)
5413 {
5414 	if (user_mode(regs)) {
5415 		regs_user->abi = perf_reg_abi(current);
5416 		regs_user->regs = regs;
5417 	} else if (current->mm) {
5418 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5419 	} else {
5420 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5421 		regs_user->regs = NULL;
5422 	}
5423 }
5424 
5425 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5426 				  struct pt_regs *regs)
5427 {
5428 	regs_intr->regs = regs;
5429 	regs_intr->abi  = perf_reg_abi(current);
5430 }
5431 
5432 
5433 /*
5434  * Get remaining task size from user stack pointer.
5435  *
5436  * It'd be better to take stack vma map and limit this more
5437  * precisly, but there's no way to get it safely under interrupt,
5438  * so using TASK_SIZE as limit.
5439  */
5440 static u64 perf_ustack_task_size(struct pt_regs *regs)
5441 {
5442 	unsigned long addr = perf_user_stack_pointer(regs);
5443 
5444 	if (!addr || addr >= TASK_SIZE)
5445 		return 0;
5446 
5447 	return TASK_SIZE - addr;
5448 }
5449 
5450 static u16
5451 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5452 			struct pt_regs *regs)
5453 {
5454 	u64 task_size;
5455 
5456 	/* No regs, no stack pointer, no dump. */
5457 	if (!regs)
5458 		return 0;
5459 
5460 	/*
5461 	 * Check if we fit in with the requested stack size into the:
5462 	 * - TASK_SIZE
5463 	 *   If we don't, we limit the size to the TASK_SIZE.
5464 	 *
5465 	 * - remaining sample size
5466 	 *   If we don't, we customize the stack size to
5467 	 *   fit in to the remaining sample size.
5468 	 */
5469 
5470 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5471 	stack_size = min(stack_size, (u16) task_size);
5472 
5473 	/* Current header size plus static size and dynamic size. */
5474 	header_size += 2 * sizeof(u64);
5475 
5476 	/* Do we fit in with the current stack dump size? */
5477 	if ((u16) (header_size + stack_size) < header_size) {
5478 		/*
5479 		 * If we overflow the maximum size for the sample,
5480 		 * we customize the stack dump size to fit in.
5481 		 */
5482 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5483 		stack_size = round_up(stack_size, sizeof(u64));
5484 	}
5485 
5486 	return stack_size;
5487 }
5488 
5489 static void
5490 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5491 			  struct pt_regs *regs)
5492 {
5493 	/* Case of a kernel thread, nothing to dump */
5494 	if (!regs) {
5495 		u64 size = 0;
5496 		perf_output_put(handle, size);
5497 	} else {
5498 		unsigned long sp;
5499 		unsigned int rem;
5500 		u64 dyn_size;
5501 
5502 		/*
5503 		 * We dump:
5504 		 * static size
5505 		 *   - the size requested by user or the best one we can fit
5506 		 *     in to the sample max size
5507 		 * data
5508 		 *   - user stack dump data
5509 		 * dynamic size
5510 		 *   - the actual dumped size
5511 		 */
5512 
5513 		/* Static size. */
5514 		perf_output_put(handle, dump_size);
5515 
5516 		/* Data. */
5517 		sp = perf_user_stack_pointer(regs);
5518 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5519 		dyn_size = dump_size - rem;
5520 
5521 		perf_output_skip(handle, rem);
5522 
5523 		/* Dynamic size. */
5524 		perf_output_put(handle, dyn_size);
5525 	}
5526 }
5527 
5528 static void __perf_event_header__init_id(struct perf_event_header *header,
5529 					 struct perf_sample_data *data,
5530 					 struct perf_event *event)
5531 {
5532 	u64 sample_type = event->attr.sample_type;
5533 
5534 	data->type = sample_type;
5535 	header->size += event->id_header_size;
5536 
5537 	if (sample_type & PERF_SAMPLE_TID) {
5538 		/* namespace issues */
5539 		data->tid_entry.pid = perf_event_pid(event, current);
5540 		data->tid_entry.tid = perf_event_tid(event, current);
5541 	}
5542 
5543 	if (sample_type & PERF_SAMPLE_TIME)
5544 		data->time = perf_event_clock(event);
5545 
5546 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5547 		data->id = primary_event_id(event);
5548 
5549 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5550 		data->stream_id = event->id;
5551 
5552 	if (sample_type & PERF_SAMPLE_CPU) {
5553 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5554 		data->cpu_entry.reserved = 0;
5555 	}
5556 }
5557 
5558 void perf_event_header__init_id(struct perf_event_header *header,
5559 				struct perf_sample_data *data,
5560 				struct perf_event *event)
5561 {
5562 	if (event->attr.sample_id_all)
5563 		__perf_event_header__init_id(header, data, event);
5564 }
5565 
5566 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5567 					   struct perf_sample_data *data)
5568 {
5569 	u64 sample_type = data->type;
5570 
5571 	if (sample_type & PERF_SAMPLE_TID)
5572 		perf_output_put(handle, data->tid_entry);
5573 
5574 	if (sample_type & PERF_SAMPLE_TIME)
5575 		perf_output_put(handle, data->time);
5576 
5577 	if (sample_type & PERF_SAMPLE_ID)
5578 		perf_output_put(handle, data->id);
5579 
5580 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5581 		perf_output_put(handle, data->stream_id);
5582 
5583 	if (sample_type & PERF_SAMPLE_CPU)
5584 		perf_output_put(handle, data->cpu_entry);
5585 
5586 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5587 		perf_output_put(handle, data->id);
5588 }
5589 
5590 void perf_event__output_id_sample(struct perf_event *event,
5591 				  struct perf_output_handle *handle,
5592 				  struct perf_sample_data *sample)
5593 {
5594 	if (event->attr.sample_id_all)
5595 		__perf_event__output_id_sample(handle, sample);
5596 }
5597 
5598 static void perf_output_read_one(struct perf_output_handle *handle,
5599 				 struct perf_event *event,
5600 				 u64 enabled, u64 running)
5601 {
5602 	u64 read_format = event->attr.read_format;
5603 	u64 values[4];
5604 	int n = 0;
5605 
5606 	values[n++] = perf_event_count(event);
5607 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5608 		values[n++] = enabled +
5609 			atomic64_read(&event->child_total_time_enabled);
5610 	}
5611 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5612 		values[n++] = running +
5613 			atomic64_read(&event->child_total_time_running);
5614 	}
5615 	if (read_format & PERF_FORMAT_ID)
5616 		values[n++] = primary_event_id(event);
5617 
5618 	__output_copy(handle, values, n * sizeof(u64));
5619 }
5620 
5621 /*
5622  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5623  */
5624 static void perf_output_read_group(struct perf_output_handle *handle,
5625 			    struct perf_event *event,
5626 			    u64 enabled, u64 running)
5627 {
5628 	struct perf_event *leader = event->group_leader, *sub;
5629 	u64 read_format = event->attr.read_format;
5630 	u64 values[5];
5631 	int n = 0;
5632 
5633 	values[n++] = 1 + leader->nr_siblings;
5634 
5635 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5636 		values[n++] = enabled;
5637 
5638 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5639 		values[n++] = running;
5640 
5641 	if (leader != event)
5642 		leader->pmu->read(leader);
5643 
5644 	values[n++] = perf_event_count(leader);
5645 	if (read_format & PERF_FORMAT_ID)
5646 		values[n++] = primary_event_id(leader);
5647 
5648 	__output_copy(handle, values, n * sizeof(u64));
5649 
5650 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5651 		n = 0;
5652 
5653 		if ((sub != event) &&
5654 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5655 			sub->pmu->read(sub);
5656 
5657 		values[n++] = perf_event_count(sub);
5658 		if (read_format & PERF_FORMAT_ID)
5659 			values[n++] = primary_event_id(sub);
5660 
5661 		__output_copy(handle, values, n * sizeof(u64));
5662 	}
5663 }
5664 
5665 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5666 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5667 
5668 static void perf_output_read(struct perf_output_handle *handle,
5669 			     struct perf_event *event)
5670 {
5671 	u64 enabled = 0, running = 0, now;
5672 	u64 read_format = event->attr.read_format;
5673 
5674 	/*
5675 	 * compute total_time_enabled, total_time_running
5676 	 * based on snapshot values taken when the event
5677 	 * was last scheduled in.
5678 	 *
5679 	 * we cannot simply called update_context_time()
5680 	 * because of locking issue as we are called in
5681 	 * NMI context
5682 	 */
5683 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5684 		calc_timer_values(event, &now, &enabled, &running);
5685 
5686 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5687 		perf_output_read_group(handle, event, enabled, running);
5688 	else
5689 		perf_output_read_one(handle, event, enabled, running);
5690 }
5691 
5692 void perf_output_sample(struct perf_output_handle *handle,
5693 			struct perf_event_header *header,
5694 			struct perf_sample_data *data,
5695 			struct perf_event *event)
5696 {
5697 	u64 sample_type = data->type;
5698 
5699 	perf_output_put(handle, *header);
5700 
5701 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5702 		perf_output_put(handle, data->id);
5703 
5704 	if (sample_type & PERF_SAMPLE_IP)
5705 		perf_output_put(handle, data->ip);
5706 
5707 	if (sample_type & PERF_SAMPLE_TID)
5708 		perf_output_put(handle, data->tid_entry);
5709 
5710 	if (sample_type & PERF_SAMPLE_TIME)
5711 		perf_output_put(handle, data->time);
5712 
5713 	if (sample_type & PERF_SAMPLE_ADDR)
5714 		perf_output_put(handle, data->addr);
5715 
5716 	if (sample_type & PERF_SAMPLE_ID)
5717 		perf_output_put(handle, data->id);
5718 
5719 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5720 		perf_output_put(handle, data->stream_id);
5721 
5722 	if (sample_type & PERF_SAMPLE_CPU)
5723 		perf_output_put(handle, data->cpu_entry);
5724 
5725 	if (sample_type & PERF_SAMPLE_PERIOD)
5726 		perf_output_put(handle, data->period);
5727 
5728 	if (sample_type & PERF_SAMPLE_READ)
5729 		perf_output_read(handle, event);
5730 
5731 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5732 		if (data->callchain) {
5733 			int size = 1;
5734 
5735 			if (data->callchain)
5736 				size += data->callchain->nr;
5737 
5738 			size *= sizeof(u64);
5739 
5740 			__output_copy(handle, data->callchain, size);
5741 		} else {
5742 			u64 nr = 0;
5743 			perf_output_put(handle, nr);
5744 		}
5745 	}
5746 
5747 	if (sample_type & PERF_SAMPLE_RAW) {
5748 		struct perf_raw_record *raw = data->raw;
5749 
5750 		if (raw) {
5751 			struct perf_raw_frag *frag = &raw->frag;
5752 
5753 			perf_output_put(handle, raw->size);
5754 			do {
5755 				if (frag->copy) {
5756 					__output_custom(handle, frag->copy,
5757 							frag->data, frag->size);
5758 				} else {
5759 					__output_copy(handle, frag->data,
5760 						      frag->size);
5761 				}
5762 				if (perf_raw_frag_last(frag))
5763 					break;
5764 				frag = frag->next;
5765 			} while (1);
5766 			if (frag->pad)
5767 				__output_skip(handle, NULL, frag->pad);
5768 		} else {
5769 			struct {
5770 				u32	size;
5771 				u32	data;
5772 			} raw = {
5773 				.size = sizeof(u32),
5774 				.data = 0,
5775 			};
5776 			perf_output_put(handle, raw);
5777 		}
5778 	}
5779 
5780 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5781 		if (data->br_stack) {
5782 			size_t size;
5783 
5784 			size = data->br_stack->nr
5785 			     * sizeof(struct perf_branch_entry);
5786 
5787 			perf_output_put(handle, data->br_stack->nr);
5788 			perf_output_copy(handle, data->br_stack->entries, size);
5789 		} else {
5790 			/*
5791 			 * we always store at least the value of nr
5792 			 */
5793 			u64 nr = 0;
5794 			perf_output_put(handle, nr);
5795 		}
5796 	}
5797 
5798 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5799 		u64 abi = data->regs_user.abi;
5800 
5801 		/*
5802 		 * If there are no regs to dump, notice it through
5803 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5804 		 */
5805 		perf_output_put(handle, abi);
5806 
5807 		if (abi) {
5808 			u64 mask = event->attr.sample_regs_user;
5809 			perf_output_sample_regs(handle,
5810 						data->regs_user.regs,
5811 						mask);
5812 		}
5813 	}
5814 
5815 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5816 		perf_output_sample_ustack(handle,
5817 					  data->stack_user_size,
5818 					  data->regs_user.regs);
5819 	}
5820 
5821 	if (sample_type & PERF_SAMPLE_WEIGHT)
5822 		perf_output_put(handle, data->weight);
5823 
5824 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5825 		perf_output_put(handle, data->data_src.val);
5826 
5827 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5828 		perf_output_put(handle, data->txn);
5829 
5830 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5831 		u64 abi = data->regs_intr.abi;
5832 		/*
5833 		 * If there are no regs to dump, notice it through
5834 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5835 		 */
5836 		perf_output_put(handle, abi);
5837 
5838 		if (abi) {
5839 			u64 mask = event->attr.sample_regs_intr;
5840 
5841 			perf_output_sample_regs(handle,
5842 						data->regs_intr.regs,
5843 						mask);
5844 		}
5845 	}
5846 
5847 	if (!event->attr.watermark) {
5848 		int wakeup_events = event->attr.wakeup_events;
5849 
5850 		if (wakeup_events) {
5851 			struct ring_buffer *rb = handle->rb;
5852 			int events = local_inc_return(&rb->events);
5853 
5854 			if (events >= wakeup_events) {
5855 				local_sub(wakeup_events, &rb->events);
5856 				local_inc(&rb->wakeup);
5857 			}
5858 		}
5859 	}
5860 }
5861 
5862 void perf_prepare_sample(struct perf_event_header *header,
5863 			 struct perf_sample_data *data,
5864 			 struct perf_event *event,
5865 			 struct pt_regs *regs)
5866 {
5867 	u64 sample_type = event->attr.sample_type;
5868 
5869 	header->type = PERF_RECORD_SAMPLE;
5870 	header->size = sizeof(*header) + event->header_size;
5871 
5872 	header->misc = 0;
5873 	header->misc |= perf_misc_flags(regs);
5874 
5875 	__perf_event_header__init_id(header, data, event);
5876 
5877 	if (sample_type & PERF_SAMPLE_IP)
5878 		data->ip = perf_instruction_pointer(regs);
5879 
5880 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5881 		int size = 1;
5882 
5883 		data->callchain = perf_callchain(event, regs);
5884 
5885 		if (data->callchain)
5886 			size += data->callchain->nr;
5887 
5888 		header->size += size * sizeof(u64);
5889 	}
5890 
5891 	if (sample_type & PERF_SAMPLE_RAW) {
5892 		struct perf_raw_record *raw = data->raw;
5893 		int size;
5894 
5895 		if (raw) {
5896 			struct perf_raw_frag *frag = &raw->frag;
5897 			u32 sum = 0;
5898 
5899 			do {
5900 				sum += frag->size;
5901 				if (perf_raw_frag_last(frag))
5902 					break;
5903 				frag = frag->next;
5904 			} while (1);
5905 
5906 			size = round_up(sum + sizeof(u32), sizeof(u64));
5907 			raw->size = size - sizeof(u32);
5908 			frag->pad = raw->size - sum;
5909 		} else {
5910 			size = sizeof(u64);
5911 		}
5912 
5913 		header->size += size;
5914 	}
5915 
5916 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5917 		int size = sizeof(u64); /* nr */
5918 		if (data->br_stack) {
5919 			size += data->br_stack->nr
5920 			      * sizeof(struct perf_branch_entry);
5921 		}
5922 		header->size += size;
5923 	}
5924 
5925 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5926 		perf_sample_regs_user(&data->regs_user, regs,
5927 				      &data->regs_user_copy);
5928 
5929 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5930 		/* regs dump ABI info */
5931 		int size = sizeof(u64);
5932 
5933 		if (data->regs_user.regs) {
5934 			u64 mask = event->attr.sample_regs_user;
5935 			size += hweight64(mask) * sizeof(u64);
5936 		}
5937 
5938 		header->size += size;
5939 	}
5940 
5941 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5942 		/*
5943 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5944 		 * processed as the last one or have additional check added
5945 		 * in case new sample type is added, because we could eat
5946 		 * up the rest of the sample size.
5947 		 */
5948 		u16 stack_size = event->attr.sample_stack_user;
5949 		u16 size = sizeof(u64);
5950 
5951 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5952 						     data->regs_user.regs);
5953 
5954 		/*
5955 		 * If there is something to dump, add space for the dump
5956 		 * itself and for the field that tells the dynamic size,
5957 		 * which is how many have been actually dumped.
5958 		 */
5959 		if (stack_size)
5960 			size += sizeof(u64) + stack_size;
5961 
5962 		data->stack_user_size = stack_size;
5963 		header->size += size;
5964 	}
5965 
5966 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5967 		/* regs dump ABI info */
5968 		int size = sizeof(u64);
5969 
5970 		perf_sample_regs_intr(&data->regs_intr, regs);
5971 
5972 		if (data->regs_intr.regs) {
5973 			u64 mask = event->attr.sample_regs_intr;
5974 
5975 			size += hweight64(mask) * sizeof(u64);
5976 		}
5977 
5978 		header->size += size;
5979 	}
5980 }
5981 
5982 static void __always_inline
5983 __perf_event_output(struct perf_event *event,
5984 		    struct perf_sample_data *data,
5985 		    struct pt_regs *regs,
5986 		    int (*output_begin)(struct perf_output_handle *,
5987 					struct perf_event *,
5988 					unsigned int))
5989 {
5990 	struct perf_output_handle handle;
5991 	struct perf_event_header header;
5992 
5993 	/* protect the callchain buffers */
5994 	rcu_read_lock();
5995 
5996 	perf_prepare_sample(&header, data, event, regs);
5997 
5998 	if (output_begin(&handle, event, header.size))
5999 		goto exit;
6000 
6001 	perf_output_sample(&handle, &header, data, event);
6002 
6003 	perf_output_end(&handle);
6004 
6005 exit:
6006 	rcu_read_unlock();
6007 }
6008 
6009 void
6010 perf_event_output_forward(struct perf_event *event,
6011 			 struct perf_sample_data *data,
6012 			 struct pt_regs *regs)
6013 {
6014 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6015 }
6016 
6017 void
6018 perf_event_output_backward(struct perf_event *event,
6019 			   struct perf_sample_data *data,
6020 			   struct pt_regs *regs)
6021 {
6022 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6023 }
6024 
6025 void
6026 perf_event_output(struct perf_event *event,
6027 		  struct perf_sample_data *data,
6028 		  struct pt_regs *regs)
6029 {
6030 	__perf_event_output(event, data, regs, perf_output_begin);
6031 }
6032 
6033 /*
6034  * read event_id
6035  */
6036 
6037 struct perf_read_event {
6038 	struct perf_event_header	header;
6039 
6040 	u32				pid;
6041 	u32				tid;
6042 };
6043 
6044 static void
6045 perf_event_read_event(struct perf_event *event,
6046 			struct task_struct *task)
6047 {
6048 	struct perf_output_handle handle;
6049 	struct perf_sample_data sample;
6050 	struct perf_read_event read_event = {
6051 		.header = {
6052 			.type = PERF_RECORD_READ,
6053 			.misc = 0,
6054 			.size = sizeof(read_event) + event->read_size,
6055 		},
6056 		.pid = perf_event_pid(event, task),
6057 		.tid = perf_event_tid(event, task),
6058 	};
6059 	int ret;
6060 
6061 	perf_event_header__init_id(&read_event.header, &sample, event);
6062 	ret = perf_output_begin(&handle, event, read_event.header.size);
6063 	if (ret)
6064 		return;
6065 
6066 	perf_output_put(&handle, read_event);
6067 	perf_output_read(&handle, event);
6068 	perf_event__output_id_sample(event, &handle, &sample);
6069 
6070 	perf_output_end(&handle);
6071 }
6072 
6073 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6074 
6075 static void
6076 perf_iterate_ctx(struct perf_event_context *ctx,
6077 		   perf_iterate_f output,
6078 		   void *data, bool all)
6079 {
6080 	struct perf_event *event;
6081 
6082 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6083 		if (!all) {
6084 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6085 				continue;
6086 			if (!event_filter_match(event))
6087 				continue;
6088 		}
6089 
6090 		output(event, data);
6091 	}
6092 }
6093 
6094 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6095 {
6096 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6097 	struct perf_event *event;
6098 
6099 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6100 		/*
6101 		 * Skip events that are not fully formed yet; ensure that
6102 		 * if we observe event->ctx, both event and ctx will be
6103 		 * complete enough. See perf_install_in_context().
6104 		 */
6105 		if (!smp_load_acquire(&event->ctx))
6106 			continue;
6107 
6108 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6109 			continue;
6110 		if (!event_filter_match(event))
6111 			continue;
6112 		output(event, data);
6113 	}
6114 }
6115 
6116 /*
6117  * Iterate all events that need to receive side-band events.
6118  *
6119  * For new callers; ensure that account_pmu_sb_event() includes
6120  * your event, otherwise it might not get delivered.
6121  */
6122 static void
6123 perf_iterate_sb(perf_iterate_f output, void *data,
6124 	       struct perf_event_context *task_ctx)
6125 {
6126 	struct perf_event_context *ctx;
6127 	int ctxn;
6128 
6129 	rcu_read_lock();
6130 	preempt_disable();
6131 
6132 	/*
6133 	 * If we have task_ctx != NULL we only notify the task context itself.
6134 	 * The task_ctx is set only for EXIT events before releasing task
6135 	 * context.
6136 	 */
6137 	if (task_ctx) {
6138 		perf_iterate_ctx(task_ctx, output, data, false);
6139 		goto done;
6140 	}
6141 
6142 	perf_iterate_sb_cpu(output, data);
6143 
6144 	for_each_task_context_nr(ctxn) {
6145 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6146 		if (ctx)
6147 			perf_iterate_ctx(ctx, output, data, false);
6148 	}
6149 done:
6150 	preempt_enable();
6151 	rcu_read_unlock();
6152 }
6153 
6154 /*
6155  * Clear all file-based filters at exec, they'll have to be
6156  * re-instated when/if these objects are mmapped again.
6157  */
6158 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6159 {
6160 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6161 	struct perf_addr_filter *filter;
6162 	unsigned int restart = 0, count = 0;
6163 	unsigned long flags;
6164 
6165 	if (!has_addr_filter(event))
6166 		return;
6167 
6168 	raw_spin_lock_irqsave(&ifh->lock, flags);
6169 	list_for_each_entry(filter, &ifh->list, entry) {
6170 		if (filter->inode) {
6171 			event->addr_filters_offs[count] = 0;
6172 			restart++;
6173 		}
6174 
6175 		count++;
6176 	}
6177 
6178 	if (restart)
6179 		event->addr_filters_gen++;
6180 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6181 
6182 	if (restart)
6183 		perf_event_stop(event, 1);
6184 }
6185 
6186 void perf_event_exec(void)
6187 {
6188 	struct perf_event_context *ctx;
6189 	int ctxn;
6190 
6191 	rcu_read_lock();
6192 	for_each_task_context_nr(ctxn) {
6193 		ctx = current->perf_event_ctxp[ctxn];
6194 		if (!ctx)
6195 			continue;
6196 
6197 		perf_event_enable_on_exec(ctxn);
6198 
6199 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6200 				   true);
6201 	}
6202 	rcu_read_unlock();
6203 }
6204 
6205 struct remote_output {
6206 	struct ring_buffer	*rb;
6207 	int			err;
6208 };
6209 
6210 static void __perf_event_output_stop(struct perf_event *event, void *data)
6211 {
6212 	struct perf_event *parent = event->parent;
6213 	struct remote_output *ro = data;
6214 	struct ring_buffer *rb = ro->rb;
6215 	struct stop_event_data sd = {
6216 		.event	= event,
6217 	};
6218 
6219 	if (!has_aux(event))
6220 		return;
6221 
6222 	if (!parent)
6223 		parent = event;
6224 
6225 	/*
6226 	 * In case of inheritance, it will be the parent that links to the
6227 	 * ring-buffer, but it will be the child that's actually using it.
6228 	 *
6229 	 * We are using event::rb to determine if the event should be stopped,
6230 	 * however this may race with ring_buffer_attach() (through set_output),
6231 	 * which will make us skip the event that actually needs to be stopped.
6232 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6233 	 * its rb pointer.
6234 	 */
6235 	if (rcu_dereference(parent->rb) == rb)
6236 		ro->err = __perf_event_stop(&sd);
6237 }
6238 
6239 static int __perf_pmu_output_stop(void *info)
6240 {
6241 	struct perf_event *event = info;
6242 	struct pmu *pmu = event->pmu;
6243 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6244 	struct remote_output ro = {
6245 		.rb	= event->rb,
6246 	};
6247 
6248 	rcu_read_lock();
6249 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6250 	if (cpuctx->task_ctx)
6251 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6252 				   &ro, false);
6253 	rcu_read_unlock();
6254 
6255 	return ro.err;
6256 }
6257 
6258 static void perf_pmu_output_stop(struct perf_event *event)
6259 {
6260 	struct perf_event *iter;
6261 	int err, cpu;
6262 
6263 restart:
6264 	rcu_read_lock();
6265 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6266 		/*
6267 		 * For per-CPU events, we need to make sure that neither they
6268 		 * nor their children are running; for cpu==-1 events it's
6269 		 * sufficient to stop the event itself if it's active, since
6270 		 * it can't have children.
6271 		 */
6272 		cpu = iter->cpu;
6273 		if (cpu == -1)
6274 			cpu = READ_ONCE(iter->oncpu);
6275 
6276 		if (cpu == -1)
6277 			continue;
6278 
6279 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6280 		if (err == -EAGAIN) {
6281 			rcu_read_unlock();
6282 			goto restart;
6283 		}
6284 	}
6285 	rcu_read_unlock();
6286 }
6287 
6288 /*
6289  * task tracking -- fork/exit
6290  *
6291  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6292  */
6293 
6294 struct perf_task_event {
6295 	struct task_struct		*task;
6296 	struct perf_event_context	*task_ctx;
6297 
6298 	struct {
6299 		struct perf_event_header	header;
6300 
6301 		u32				pid;
6302 		u32				ppid;
6303 		u32				tid;
6304 		u32				ptid;
6305 		u64				time;
6306 	} event_id;
6307 };
6308 
6309 static int perf_event_task_match(struct perf_event *event)
6310 {
6311 	return event->attr.comm  || event->attr.mmap ||
6312 	       event->attr.mmap2 || event->attr.mmap_data ||
6313 	       event->attr.task;
6314 }
6315 
6316 static void perf_event_task_output(struct perf_event *event,
6317 				   void *data)
6318 {
6319 	struct perf_task_event *task_event = data;
6320 	struct perf_output_handle handle;
6321 	struct perf_sample_data	sample;
6322 	struct task_struct *task = task_event->task;
6323 	int ret, size = task_event->event_id.header.size;
6324 
6325 	if (!perf_event_task_match(event))
6326 		return;
6327 
6328 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6329 
6330 	ret = perf_output_begin(&handle, event,
6331 				task_event->event_id.header.size);
6332 	if (ret)
6333 		goto out;
6334 
6335 	task_event->event_id.pid = perf_event_pid(event, task);
6336 	task_event->event_id.ppid = perf_event_pid(event, current);
6337 
6338 	task_event->event_id.tid = perf_event_tid(event, task);
6339 	task_event->event_id.ptid = perf_event_tid(event, current);
6340 
6341 	task_event->event_id.time = perf_event_clock(event);
6342 
6343 	perf_output_put(&handle, task_event->event_id);
6344 
6345 	perf_event__output_id_sample(event, &handle, &sample);
6346 
6347 	perf_output_end(&handle);
6348 out:
6349 	task_event->event_id.header.size = size;
6350 }
6351 
6352 static void perf_event_task(struct task_struct *task,
6353 			      struct perf_event_context *task_ctx,
6354 			      int new)
6355 {
6356 	struct perf_task_event task_event;
6357 
6358 	if (!atomic_read(&nr_comm_events) &&
6359 	    !atomic_read(&nr_mmap_events) &&
6360 	    !atomic_read(&nr_task_events))
6361 		return;
6362 
6363 	task_event = (struct perf_task_event){
6364 		.task	  = task,
6365 		.task_ctx = task_ctx,
6366 		.event_id    = {
6367 			.header = {
6368 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6369 				.misc = 0,
6370 				.size = sizeof(task_event.event_id),
6371 			},
6372 			/* .pid  */
6373 			/* .ppid */
6374 			/* .tid  */
6375 			/* .ptid */
6376 			/* .time */
6377 		},
6378 	};
6379 
6380 	perf_iterate_sb(perf_event_task_output,
6381 		       &task_event,
6382 		       task_ctx);
6383 }
6384 
6385 void perf_event_fork(struct task_struct *task)
6386 {
6387 	perf_event_task(task, NULL, 1);
6388 }
6389 
6390 /*
6391  * comm tracking
6392  */
6393 
6394 struct perf_comm_event {
6395 	struct task_struct	*task;
6396 	char			*comm;
6397 	int			comm_size;
6398 
6399 	struct {
6400 		struct perf_event_header	header;
6401 
6402 		u32				pid;
6403 		u32				tid;
6404 	} event_id;
6405 };
6406 
6407 static int perf_event_comm_match(struct perf_event *event)
6408 {
6409 	return event->attr.comm;
6410 }
6411 
6412 static void perf_event_comm_output(struct perf_event *event,
6413 				   void *data)
6414 {
6415 	struct perf_comm_event *comm_event = data;
6416 	struct perf_output_handle handle;
6417 	struct perf_sample_data sample;
6418 	int size = comm_event->event_id.header.size;
6419 	int ret;
6420 
6421 	if (!perf_event_comm_match(event))
6422 		return;
6423 
6424 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6425 	ret = perf_output_begin(&handle, event,
6426 				comm_event->event_id.header.size);
6427 
6428 	if (ret)
6429 		goto out;
6430 
6431 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6432 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6433 
6434 	perf_output_put(&handle, comm_event->event_id);
6435 	__output_copy(&handle, comm_event->comm,
6436 				   comm_event->comm_size);
6437 
6438 	perf_event__output_id_sample(event, &handle, &sample);
6439 
6440 	perf_output_end(&handle);
6441 out:
6442 	comm_event->event_id.header.size = size;
6443 }
6444 
6445 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6446 {
6447 	char comm[TASK_COMM_LEN];
6448 	unsigned int size;
6449 
6450 	memset(comm, 0, sizeof(comm));
6451 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6452 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6453 
6454 	comm_event->comm = comm;
6455 	comm_event->comm_size = size;
6456 
6457 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6458 
6459 	perf_iterate_sb(perf_event_comm_output,
6460 		       comm_event,
6461 		       NULL);
6462 }
6463 
6464 void perf_event_comm(struct task_struct *task, bool exec)
6465 {
6466 	struct perf_comm_event comm_event;
6467 
6468 	if (!atomic_read(&nr_comm_events))
6469 		return;
6470 
6471 	comm_event = (struct perf_comm_event){
6472 		.task	= task,
6473 		/* .comm      */
6474 		/* .comm_size */
6475 		.event_id  = {
6476 			.header = {
6477 				.type = PERF_RECORD_COMM,
6478 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6479 				/* .size */
6480 			},
6481 			/* .pid */
6482 			/* .tid */
6483 		},
6484 	};
6485 
6486 	perf_event_comm_event(&comm_event);
6487 }
6488 
6489 /*
6490  * mmap tracking
6491  */
6492 
6493 struct perf_mmap_event {
6494 	struct vm_area_struct	*vma;
6495 
6496 	const char		*file_name;
6497 	int			file_size;
6498 	int			maj, min;
6499 	u64			ino;
6500 	u64			ino_generation;
6501 	u32			prot, flags;
6502 
6503 	struct {
6504 		struct perf_event_header	header;
6505 
6506 		u32				pid;
6507 		u32				tid;
6508 		u64				start;
6509 		u64				len;
6510 		u64				pgoff;
6511 	} event_id;
6512 };
6513 
6514 static int perf_event_mmap_match(struct perf_event *event,
6515 				 void *data)
6516 {
6517 	struct perf_mmap_event *mmap_event = data;
6518 	struct vm_area_struct *vma = mmap_event->vma;
6519 	int executable = vma->vm_flags & VM_EXEC;
6520 
6521 	return (!executable && event->attr.mmap_data) ||
6522 	       (executable && (event->attr.mmap || event->attr.mmap2));
6523 }
6524 
6525 static void perf_event_mmap_output(struct perf_event *event,
6526 				   void *data)
6527 {
6528 	struct perf_mmap_event *mmap_event = data;
6529 	struct perf_output_handle handle;
6530 	struct perf_sample_data sample;
6531 	int size = mmap_event->event_id.header.size;
6532 	int ret;
6533 
6534 	if (!perf_event_mmap_match(event, data))
6535 		return;
6536 
6537 	if (event->attr.mmap2) {
6538 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6539 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6540 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6541 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6542 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6543 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6544 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6545 	}
6546 
6547 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6548 	ret = perf_output_begin(&handle, event,
6549 				mmap_event->event_id.header.size);
6550 	if (ret)
6551 		goto out;
6552 
6553 	mmap_event->event_id.pid = perf_event_pid(event, current);
6554 	mmap_event->event_id.tid = perf_event_tid(event, current);
6555 
6556 	perf_output_put(&handle, mmap_event->event_id);
6557 
6558 	if (event->attr.mmap2) {
6559 		perf_output_put(&handle, mmap_event->maj);
6560 		perf_output_put(&handle, mmap_event->min);
6561 		perf_output_put(&handle, mmap_event->ino);
6562 		perf_output_put(&handle, mmap_event->ino_generation);
6563 		perf_output_put(&handle, mmap_event->prot);
6564 		perf_output_put(&handle, mmap_event->flags);
6565 	}
6566 
6567 	__output_copy(&handle, mmap_event->file_name,
6568 				   mmap_event->file_size);
6569 
6570 	perf_event__output_id_sample(event, &handle, &sample);
6571 
6572 	perf_output_end(&handle);
6573 out:
6574 	mmap_event->event_id.header.size = size;
6575 }
6576 
6577 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6578 {
6579 	struct vm_area_struct *vma = mmap_event->vma;
6580 	struct file *file = vma->vm_file;
6581 	int maj = 0, min = 0;
6582 	u64 ino = 0, gen = 0;
6583 	u32 prot = 0, flags = 0;
6584 	unsigned int size;
6585 	char tmp[16];
6586 	char *buf = NULL;
6587 	char *name;
6588 
6589 	if (file) {
6590 		struct inode *inode;
6591 		dev_t dev;
6592 
6593 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6594 		if (!buf) {
6595 			name = "//enomem";
6596 			goto cpy_name;
6597 		}
6598 		/*
6599 		 * d_path() works from the end of the rb backwards, so we
6600 		 * need to add enough zero bytes after the string to handle
6601 		 * the 64bit alignment we do later.
6602 		 */
6603 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6604 		if (IS_ERR(name)) {
6605 			name = "//toolong";
6606 			goto cpy_name;
6607 		}
6608 		inode = file_inode(vma->vm_file);
6609 		dev = inode->i_sb->s_dev;
6610 		ino = inode->i_ino;
6611 		gen = inode->i_generation;
6612 		maj = MAJOR(dev);
6613 		min = MINOR(dev);
6614 
6615 		if (vma->vm_flags & VM_READ)
6616 			prot |= PROT_READ;
6617 		if (vma->vm_flags & VM_WRITE)
6618 			prot |= PROT_WRITE;
6619 		if (vma->vm_flags & VM_EXEC)
6620 			prot |= PROT_EXEC;
6621 
6622 		if (vma->vm_flags & VM_MAYSHARE)
6623 			flags = MAP_SHARED;
6624 		else
6625 			flags = MAP_PRIVATE;
6626 
6627 		if (vma->vm_flags & VM_DENYWRITE)
6628 			flags |= MAP_DENYWRITE;
6629 		if (vma->vm_flags & VM_MAYEXEC)
6630 			flags |= MAP_EXECUTABLE;
6631 		if (vma->vm_flags & VM_LOCKED)
6632 			flags |= MAP_LOCKED;
6633 		if (vma->vm_flags & VM_HUGETLB)
6634 			flags |= MAP_HUGETLB;
6635 
6636 		goto got_name;
6637 	} else {
6638 		if (vma->vm_ops && vma->vm_ops->name) {
6639 			name = (char *) vma->vm_ops->name(vma);
6640 			if (name)
6641 				goto cpy_name;
6642 		}
6643 
6644 		name = (char *)arch_vma_name(vma);
6645 		if (name)
6646 			goto cpy_name;
6647 
6648 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6649 				vma->vm_end >= vma->vm_mm->brk) {
6650 			name = "[heap]";
6651 			goto cpy_name;
6652 		}
6653 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6654 				vma->vm_end >= vma->vm_mm->start_stack) {
6655 			name = "[stack]";
6656 			goto cpy_name;
6657 		}
6658 
6659 		name = "//anon";
6660 		goto cpy_name;
6661 	}
6662 
6663 cpy_name:
6664 	strlcpy(tmp, name, sizeof(tmp));
6665 	name = tmp;
6666 got_name:
6667 	/*
6668 	 * Since our buffer works in 8 byte units we need to align our string
6669 	 * size to a multiple of 8. However, we must guarantee the tail end is
6670 	 * zero'd out to avoid leaking random bits to userspace.
6671 	 */
6672 	size = strlen(name)+1;
6673 	while (!IS_ALIGNED(size, sizeof(u64)))
6674 		name[size++] = '\0';
6675 
6676 	mmap_event->file_name = name;
6677 	mmap_event->file_size = size;
6678 	mmap_event->maj = maj;
6679 	mmap_event->min = min;
6680 	mmap_event->ino = ino;
6681 	mmap_event->ino_generation = gen;
6682 	mmap_event->prot = prot;
6683 	mmap_event->flags = flags;
6684 
6685 	if (!(vma->vm_flags & VM_EXEC))
6686 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6687 
6688 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6689 
6690 	perf_iterate_sb(perf_event_mmap_output,
6691 		       mmap_event,
6692 		       NULL);
6693 
6694 	kfree(buf);
6695 }
6696 
6697 /*
6698  * Check whether inode and address range match filter criteria.
6699  */
6700 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6701 				     struct file *file, unsigned long offset,
6702 				     unsigned long size)
6703 {
6704 	if (filter->inode != file->f_inode)
6705 		return false;
6706 
6707 	if (filter->offset > offset + size)
6708 		return false;
6709 
6710 	if (filter->offset + filter->size < offset)
6711 		return false;
6712 
6713 	return true;
6714 }
6715 
6716 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6717 {
6718 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6719 	struct vm_area_struct *vma = data;
6720 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6721 	struct file *file = vma->vm_file;
6722 	struct perf_addr_filter *filter;
6723 	unsigned int restart = 0, count = 0;
6724 
6725 	if (!has_addr_filter(event))
6726 		return;
6727 
6728 	if (!file)
6729 		return;
6730 
6731 	raw_spin_lock_irqsave(&ifh->lock, flags);
6732 	list_for_each_entry(filter, &ifh->list, entry) {
6733 		if (perf_addr_filter_match(filter, file, off,
6734 					     vma->vm_end - vma->vm_start)) {
6735 			event->addr_filters_offs[count] = vma->vm_start;
6736 			restart++;
6737 		}
6738 
6739 		count++;
6740 	}
6741 
6742 	if (restart)
6743 		event->addr_filters_gen++;
6744 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6745 
6746 	if (restart)
6747 		perf_event_stop(event, 1);
6748 }
6749 
6750 /*
6751  * Adjust all task's events' filters to the new vma
6752  */
6753 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6754 {
6755 	struct perf_event_context *ctx;
6756 	int ctxn;
6757 
6758 	/*
6759 	 * Data tracing isn't supported yet and as such there is no need
6760 	 * to keep track of anything that isn't related to executable code:
6761 	 */
6762 	if (!(vma->vm_flags & VM_EXEC))
6763 		return;
6764 
6765 	rcu_read_lock();
6766 	for_each_task_context_nr(ctxn) {
6767 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6768 		if (!ctx)
6769 			continue;
6770 
6771 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6772 	}
6773 	rcu_read_unlock();
6774 }
6775 
6776 void perf_event_mmap(struct vm_area_struct *vma)
6777 {
6778 	struct perf_mmap_event mmap_event;
6779 
6780 	if (!atomic_read(&nr_mmap_events))
6781 		return;
6782 
6783 	mmap_event = (struct perf_mmap_event){
6784 		.vma	= vma,
6785 		/* .file_name */
6786 		/* .file_size */
6787 		.event_id  = {
6788 			.header = {
6789 				.type = PERF_RECORD_MMAP,
6790 				.misc = PERF_RECORD_MISC_USER,
6791 				/* .size */
6792 			},
6793 			/* .pid */
6794 			/* .tid */
6795 			.start  = vma->vm_start,
6796 			.len    = vma->vm_end - vma->vm_start,
6797 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6798 		},
6799 		/* .maj (attr_mmap2 only) */
6800 		/* .min (attr_mmap2 only) */
6801 		/* .ino (attr_mmap2 only) */
6802 		/* .ino_generation (attr_mmap2 only) */
6803 		/* .prot (attr_mmap2 only) */
6804 		/* .flags (attr_mmap2 only) */
6805 	};
6806 
6807 	perf_addr_filters_adjust(vma);
6808 	perf_event_mmap_event(&mmap_event);
6809 }
6810 
6811 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6812 			  unsigned long size, u64 flags)
6813 {
6814 	struct perf_output_handle handle;
6815 	struct perf_sample_data sample;
6816 	struct perf_aux_event {
6817 		struct perf_event_header	header;
6818 		u64				offset;
6819 		u64				size;
6820 		u64				flags;
6821 	} rec = {
6822 		.header = {
6823 			.type = PERF_RECORD_AUX,
6824 			.misc = 0,
6825 			.size = sizeof(rec),
6826 		},
6827 		.offset		= head,
6828 		.size		= size,
6829 		.flags		= flags,
6830 	};
6831 	int ret;
6832 
6833 	perf_event_header__init_id(&rec.header, &sample, event);
6834 	ret = perf_output_begin(&handle, event, rec.header.size);
6835 
6836 	if (ret)
6837 		return;
6838 
6839 	perf_output_put(&handle, rec);
6840 	perf_event__output_id_sample(event, &handle, &sample);
6841 
6842 	perf_output_end(&handle);
6843 }
6844 
6845 /*
6846  * Lost/dropped samples logging
6847  */
6848 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6849 {
6850 	struct perf_output_handle handle;
6851 	struct perf_sample_data sample;
6852 	int ret;
6853 
6854 	struct {
6855 		struct perf_event_header	header;
6856 		u64				lost;
6857 	} lost_samples_event = {
6858 		.header = {
6859 			.type = PERF_RECORD_LOST_SAMPLES,
6860 			.misc = 0,
6861 			.size = sizeof(lost_samples_event),
6862 		},
6863 		.lost		= lost,
6864 	};
6865 
6866 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6867 
6868 	ret = perf_output_begin(&handle, event,
6869 				lost_samples_event.header.size);
6870 	if (ret)
6871 		return;
6872 
6873 	perf_output_put(&handle, lost_samples_event);
6874 	perf_event__output_id_sample(event, &handle, &sample);
6875 	perf_output_end(&handle);
6876 }
6877 
6878 /*
6879  * context_switch tracking
6880  */
6881 
6882 struct perf_switch_event {
6883 	struct task_struct	*task;
6884 	struct task_struct	*next_prev;
6885 
6886 	struct {
6887 		struct perf_event_header	header;
6888 		u32				next_prev_pid;
6889 		u32				next_prev_tid;
6890 	} event_id;
6891 };
6892 
6893 static int perf_event_switch_match(struct perf_event *event)
6894 {
6895 	return event->attr.context_switch;
6896 }
6897 
6898 static void perf_event_switch_output(struct perf_event *event, void *data)
6899 {
6900 	struct perf_switch_event *se = data;
6901 	struct perf_output_handle handle;
6902 	struct perf_sample_data sample;
6903 	int ret;
6904 
6905 	if (!perf_event_switch_match(event))
6906 		return;
6907 
6908 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6909 	if (event->ctx->task) {
6910 		se->event_id.header.type = PERF_RECORD_SWITCH;
6911 		se->event_id.header.size = sizeof(se->event_id.header);
6912 	} else {
6913 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6914 		se->event_id.header.size = sizeof(se->event_id);
6915 		se->event_id.next_prev_pid =
6916 					perf_event_pid(event, se->next_prev);
6917 		se->event_id.next_prev_tid =
6918 					perf_event_tid(event, se->next_prev);
6919 	}
6920 
6921 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6922 
6923 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6924 	if (ret)
6925 		return;
6926 
6927 	if (event->ctx->task)
6928 		perf_output_put(&handle, se->event_id.header);
6929 	else
6930 		perf_output_put(&handle, se->event_id);
6931 
6932 	perf_event__output_id_sample(event, &handle, &sample);
6933 
6934 	perf_output_end(&handle);
6935 }
6936 
6937 static void perf_event_switch(struct task_struct *task,
6938 			      struct task_struct *next_prev, bool sched_in)
6939 {
6940 	struct perf_switch_event switch_event;
6941 
6942 	/* N.B. caller checks nr_switch_events != 0 */
6943 
6944 	switch_event = (struct perf_switch_event){
6945 		.task		= task,
6946 		.next_prev	= next_prev,
6947 		.event_id	= {
6948 			.header = {
6949 				/* .type */
6950 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6951 				/* .size */
6952 			},
6953 			/* .next_prev_pid */
6954 			/* .next_prev_tid */
6955 		},
6956 	};
6957 
6958 	perf_iterate_sb(perf_event_switch_output,
6959 		       &switch_event,
6960 		       NULL);
6961 }
6962 
6963 /*
6964  * IRQ throttle logging
6965  */
6966 
6967 static void perf_log_throttle(struct perf_event *event, int enable)
6968 {
6969 	struct perf_output_handle handle;
6970 	struct perf_sample_data sample;
6971 	int ret;
6972 
6973 	struct {
6974 		struct perf_event_header	header;
6975 		u64				time;
6976 		u64				id;
6977 		u64				stream_id;
6978 	} throttle_event = {
6979 		.header = {
6980 			.type = PERF_RECORD_THROTTLE,
6981 			.misc = 0,
6982 			.size = sizeof(throttle_event),
6983 		},
6984 		.time		= perf_event_clock(event),
6985 		.id		= primary_event_id(event),
6986 		.stream_id	= event->id,
6987 	};
6988 
6989 	if (enable)
6990 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6991 
6992 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6993 
6994 	ret = perf_output_begin(&handle, event,
6995 				throttle_event.header.size);
6996 	if (ret)
6997 		return;
6998 
6999 	perf_output_put(&handle, throttle_event);
7000 	perf_event__output_id_sample(event, &handle, &sample);
7001 	perf_output_end(&handle);
7002 }
7003 
7004 static void perf_log_itrace_start(struct perf_event *event)
7005 {
7006 	struct perf_output_handle handle;
7007 	struct perf_sample_data sample;
7008 	struct perf_aux_event {
7009 		struct perf_event_header        header;
7010 		u32				pid;
7011 		u32				tid;
7012 	} rec;
7013 	int ret;
7014 
7015 	if (event->parent)
7016 		event = event->parent;
7017 
7018 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7019 	    event->hw.itrace_started)
7020 		return;
7021 
7022 	rec.header.type	= PERF_RECORD_ITRACE_START;
7023 	rec.header.misc	= 0;
7024 	rec.header.size	= sizeof(rec);
7025 	rec.pid	= perf_event_pid(event, current);
7026 	rec.tid	= perf_event_tid(event, current);
7027 
7028 	perf_event_header__init_id(&rec.header, &sample, event);
7029 	ret = perf_output_begin(&handle, event, rec.header.size);
7030 
7031 	if (ret)
7032 		return;
7033 
7034 	perf_output_put(&handle, rec);
7035 	perf_event__output_id_sample(event, &handle, &sample);
7036 
7037 	perf_output_end(&handle);
7038 }
7039 
7040 /*
7041  * Generic event overflow handling, sampling.
7042  */
7043 
7044 static int __perf_event_overflow(struct perf_event *event,
7045 				   int throttle, struct perf_sample_data *data,
7046 				   struct pt_regs *regs)
7047 {
7048 	int events = atomic_read(&event->event_limit);
7049 	struct hw_perf_event *hwc = &event->hw;
7050 	u64 seq;
7051 	int ret = 0;
7052 
7053 	/*
7054 	 * Non-sampling counters might still use the PMI to fold short
7055 	 * hardware counters, ignore those.
7056 	 */
7057 	if (unlikely(!is_sampling_event(event)))
7058 		return 0;
7059 
7060 	seq = __this_cpu_read(perf_throttled_seq);
7061 	if (seq != hwc->interrupts_seq) {
7062 		hwc->interrupts_seq = seq;
7063 		hwc->interrupts = 1;
7064 	} else {
7065 		hwc->interrupts++;
7066 		if (unlikely(throttle
7067 			     && hwc->interrupts >= max_samples_per_tick)) {
7068 			__this_cpu_inc(perf_throttled_count);
7069 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7070 			hwc->interrupts = MAX_INTERRUPTS;
7071 			perf_log_throttle(event, 0);
7072 			ret = 1;
7073 		}
7074 	}
7075 
7076 	if (event->attr.freq) {
7077 		u64 now = perf_clock();
7078 		s64 delta = now - hwc->freq_time_stamp;
7079 
7080 		hwc->freq_time_stamp = now;
7081 
7082 		if (delta > 0 && delta < 2*TICK_NSEC)
7083 			perf_adjust_period(event, delta, hwc->last_period, true);
7084 	}
7085 
7086 	/*
7087 	 * XXX event_limit might not quite work as expected on inherited
7088 	 * events
7089 	 */
7090 
7091 	event->pending_kill = POLL_IN;
7092 	if (events && atomic_dec_and_test(&event->event_limit)) {
7093 		ret = 1;
7094 		event->pending_kill = POLL_HUP;
7095 
7096 		perf_event_disable_inatomic(event);
7097 	}
7098 
7099 	READ_ONCE(event->overflow_handler)(event, data, regs);
7100 
7101 	if (*perf_event_fasync(event) && event->pending_kill) {
7102 		event->pending_wakeup = 1;
7103 		irq_work_queue(&event->pending);
7104 	}
7105 
7106 	return ret;
7107 }
7108 
7109 int perf_event_overflow(struct perf_event *event,
7110 			  struct perf_sample_data *data,
7111 			  struct pt_regs *regs)
7112 {
7113 	return __perf_event_overflow(event, 1, data, regs);
7114 }
7115 
7116 /*
7117  * Generic software event infrastructure
7118  */
7119 
7120 struct swevent_htable {
7121 	struct swevent_hlist		*swevent_hlist;
7122 	struct mutex			hlist_mutex;
7123 	int				hlist_refcount;
7124 
7125 	/* Recursion avoidance in each contexts */
7126 	int				recursion[PERF_NR_CONTEXTS];
7127 };
7128 
7129 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7130 
7131 /*
7132  * We directly increment event->count and keep a second value in
7133  * event->hw.period_left to count intervals. This period event
7134  * is kept in the range [-sample_period, 0] so that we can use the
7135  * sign as trigger.
7136  */
7137 
7138 u64 perf_swevent_set_period(struct perf_event *event)
7139 {
7140 	struct hw_perf_event *hwc = &event->hw;
7141 	u64 period = hwc->last_period;
7142 	u64 nr, offset;
7143 	s64 old, val;
7144 
7145 	hwc->last_period = hwc->sample_period;
7146 
7147 again:
7148 	old = val = local64_read(&hwc->period_left);
7149 	if (val < 0)
7150 		return 0;
7151 
7152 	nr = div64_u64(period + val, period);
7153 	offset = nr * period;
7154 	val -= offset;
7155 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7156 		goto again;
7157 
7158 	return nr;
7159 }
7160 
7161 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7162 				    struct perf_sample_data *data,
7163 				    struct pt_regs *regs)
7164 {
7165 	struct hw_perf_event *hwc = &event->hw;
7166 	int throttle = 0;
7167 
7168 	if (!overflow)
7169 		overflow = perf_swevent_set_period(event);
7170 
7171 	if (hwc->interrupts == MAX_INTERRUPTS)
7172 		return;
7173 
7174 	for (; overflow; overflow--) {
7175 		if (__perf_event_overflow(event, throttle,
7176 					    data, regs)) {
7177 			/*
7178 			 * We inhibit the overflow from happening when
7179 			 * hwc->interrupts == MAX_INTERRUPTS.
7180 			 */
7181 			break;
7182 		}
7183 		throttle = 1;
7184 	}
7185 }
7186 
7187 static void perf_swevent_event(struct perf_event *event, u64 nr,
7188 			       struct perf_sample_data *data,
7189 			       struct pt_regs *regs)
7190 {
7191 	struct hw_perf_event *hwc = &event->hw;
7192 
7193 	local64_add(nr, &event->count);
7194 
7195 	if (!regs)
7196 		return;
7197 
7198 	if (!is_sampling_event(event))
7199 		return;
7200 
7201 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7202 		data->period = nr;
7203 		return perf_swevent_overflow(event, 1, data, regs);
7204 	} else
7205 		data->period = event->hw.last_period;
7206 
7207 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7208 		return perf_swevent_overflow(event, 1, data, regs);
7209 
7210 	if (local64_add_negative(nr, &hwc->period_left))
7211 		return;
7212 
7213 	perf_swevent_overflow(event, 0, data, regs);
7214 }
7215 
7216 static int perf_exclude_event(struct perf_event *event,
7217 			      struct pt_regs *regs)
7218 {
7219 	if (event->hw.state & PERF_HES_STOPPED)
7220 		return 1;
7221 
7222 	if (regs) {
7223 		if (event->attr.exclude_user && user_mode(regs))
7224 			return 1;
7225 
7226 		if (event->attr.exclude_kernel && !user_mode(regs))
7227 			return 1;
7228 	}
7229 
7230 	return 0;
7231 }
7232 
7233 static int perf_swevent_match(struct perf_event *event,
7234 				enum perf_type_id type,
7235 				u32 event_id,
7236 				struct perf_sample_data *data,
7237 				struct pt_regs *regs)
7238 {
7239 	if (event->attr.type != type)
7240 		return 0;
7241 
7242 	if (event->attr.config != event_id)
7243 		return 0;
7244 
7245 	if (perf_exclude_event(event, regs))
7246 		return 0;
7247 
7248 	return 1;
7249 }
7250 
7251 static inline u64 swevent_hash(u64 type, u32 event_id)
7252 {
7253 	u64 val = event_id | (type << 32);
7254 
7255 	return hash_64(val, SWEVENT_HLIST_BITS);
7256 }
7257 
7258 static inline struct hlist_head *
7259 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7260 {
7261 	u64 hash = swevent_hash(type, event_id);
7262 
7263 	return &hlist->heads[hash];
7264 }
7265 
7266 /* For the read side: events when they trigger */
7267 static inline struct hlist_head *
7268 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7269 {
7270 	struct swevent_hlist *hlist;
7271 
7272 	hlist = rcu_dereference(swhash->swevent_hlist);
7273 	if (!hlist)
7274 		return NULL;
7275 
7276 	return __find_swevent_head(hlist, type, event_id);
7277 }
7278 
7279 /* For the event head insertion and removal in the hlist */
7280 static inline struct hlist_head *
7281 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7282 {
7283 	struct swevent_hlist *hlist;
7284 	u32 event_id = event->attr.config;
7285 	u64 type = event->attr.type;
7286 
7287 	/*
7288 	 * Event scheduling is always serialized against hlist allocation
7289 	 * and release. Which makes the protected version suitable here.
7290 	 * The context lock guarantees that.
7291 	 */
7292 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7293 					  lockdep_is_held(&event->ctx->lock));
7294 	if (!hlist)
7295 		return NULL;
7296 
7297 	return __find_swevent_head(hlist, type, event_id);
7298 }
7299 
7300 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7301 				    u64 nr,
7302 				    struct perf_sample_data *data,
7303 				    struct pt_regs *regs)
7304 {
7305 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7306 	struct perf_event *event;
7307 	struct hlist_head *head;
7308 
7309 	rcu_read_lock();
7310 	head = find_swevent_head_rcu(swhash, type, event_id);
7311 	if (!head)
7312 		goto end;
7313 
7314 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7315 		if (perf_swevent_match(event, type, event_id, data, regs))
7316 			perf_swevent_event(event, nr, data, regs);
7317 	}
7318 end:
7319 	rcu_read_unlock();
7320 }
7321 
7322 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7323 
7324 int perf_swevent_get_recursion_context(void)
7325 {
7326 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7327 
7328 	return get_recursion_context(swhash->recursion);
7329 }
7330 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7331 
7332 void perf_swevent_put_recursion_context(int rctx)
7333 {
7334 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7335 
7336 	put_recursion_context(swhash->recursion, rctx);
7337 }
7338 
7339 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7340 {
7341 	struct perf_sample_data data;
7342 
7343 	if (WARN_ON_ONCE(!regs))
7344 		return;
7345 
7346 	perf_sample_data_init(&data, addr, 0);
7347 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7348 }
7349 
7350 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7351 {
7352 	int rctx;
7353 
7354 	preempt_disable_notrace();
7355 	rctx = perf_swevent_get_recursion_context();
7356 	if (unlikely(rctx < 0))
7357 		goto fail;
7358 
7359 	___perf_sw_event(event_id, nr, regs, addr);
7360 
7361 	perf_swevent_put_recursion_context(rctx);
7362 fail:
7363 	preempt_enable_notrace();
7364 }
7365 
7366 static void perf_swevent_read(struct perf_event *event)
7367 {
7368 }
7369 
7370 static int perf_swevent_add(struct perf_event *event, int flags)
7371 {
7372 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7373 	struct hw_perf_event *hwc = &event->hw;
7374 	struct hlist_head *head;
7375 
7376 	if (is_sampling_event(event)) {
7377 		hwc->last_period = hwc->sample_period;
7378 		perf_swevent_set_period(event);
7379 	}
7380 
7381 	hwc->state = !(flags & PERF_EF_START);
7382 
7383 	head = find_swevent_head(swhash, event);
7384 	if (WARN_ON_ONCE(!head))
7385 		return -EINVAL;
7386 
7387 	hlist_add_head_rcu(&event->hlist_entry, head);
7388 	perf_event_update_userpage(event);
7389 
7390 	return 0;
7391 }
7392 
7393 static void perf_swevent_del(struct perf_event *event, int flags)
7394 {
7395 	hlist_del_rcu(&event->hlist_entry);
7396 }
7397 
7398 static void perf_swevent_start(struct perf_event *event, int flags)
7399 {
7400 	event->hw.state = 0;
7401 }
7402 
7403 static void perf_swevent_stop(struct perf_event *event, int flags)
7404 {
7405 	event->hw.state = PERF_HES_STOPPED;
7406 }
7407 
7408 /* Deref the hlist from the update side */
7409 static inline struct swevent_hlist *
7410 swevent_hlist_deref(struct swevent_htable *swhash)
7411 {
7412 	return rcu_dereference_protected(swhash->swevent_hlist,
7413 					 lockdep_is_held(&swhash->hlist_mutex));
7414 }
7415 
7416 static void swevent_hlist_release(struct swevent_htable *swhash)
7417 {
7418 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7419 
7420 	if (!hlist)
7421 		return;
7422 
7423 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7424 	kfree_rcu(hlist, rcu_head);
7425 }
7426 
7427 static void swevent_hlist_put_cpu(int cpu)
7428 {
7429 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7430 
7431 	mutex_lock(&swhash->hlist_mutex);
7432 
7433 	if (!--swhash->hlist_refcount)
7434 		swevent_hlist_release(swhash);
7435 
7436 	mutex_unlock(&swhash->hlist_mutex);
7437 }
7438 
7439 static void swevent_hlist_put(void)
7440 {
7441 	int cpu;
7442 
7443 	for_each_possible_cpu(cpu)
7444 		swevent_hlist_put_cpu(cpu);
7445 }
7446 
7447 static int swevent_hlist_get_cpu(int cpu)
7448 {
7449 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7450 	int err = 0;
7451 
7452 	mutex_lock(&swhash->hlist_mutex);
7453 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7454 		struct swevent_hlist *hlist;
7455 
7456 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7457 		if (!hlist) {
7458 			err = -ENOMEM;
7459 			goto exit;
7460 		}
7461 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7462 	}
7463 	swhash->hlist_refcount++;
7464 exit:
7465 	mutex_unlock(&swhash->hlist_mutex);
7466 
7467 	return err;
7468 }
7469 
7470 static int swevent_hlist_get(void)
7471 {
7472 	int err, cpu, failed_cpu;
7473 
7474 	get_online_cpus();
7475 	for_each_possible_cpu(cpu) {
7476 		err = swevent_hlist_get_cpu(cpu);
7477 		if (err) {
7478 			failed_cpu = cpu;
7479 			goto fail;
7480 		}
7481 	}
7482 	put_online_cpus();
7483 
7484 	return 0;
7485 fail:
7486 	for_each_possible_cpu(cpu) {
7487 		if (cpu == failed_cpu)
7488 			break;
7489 		swevent_hlist_put_cpu(cpu);
7490 	}
7491 
7492 	put_online_cpus();
7493 	return err;
7494 }
7495 
7496 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7497 
7498 static void sw_perf_event_destroy(struct perf_event *event)
7499 {
7500 	u64 event_id = event->attr.config;
7501 
7502 	WARN_ON(event->parent);
7503 
7504 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7505 	swevent_hlist_put();
7506 }
7507 
7508 static int perf_swevent_init(struct perf_event *event)
7509 {
7510 	u64 event_id = event->attr.config;
7511 
7512 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7513 		return -ENOENT;
7514 
7515 	/*
7516 	 * no branch sampling for software events
7517 	 */
7518 	if (has_branch_stack(event))
7519 		return -EOPNOTSUPP;
7520 
7521 	switch (event_id) {
7522 	case PERF_COUNT_SW_CPU_CLOCK:
7523 	case PERF_COUNT_SW_TASK_CLOCK:
7524 		return -ENOENT;
7525 
7526 	default:
7527 		break;
7528 	}
7529 
7530 	if (event_id >= PERF_COUNT_SW_MAX)
7531 		return -ENOENT;
7532 
7533 	if (!event->parent) {
7534 		int err;
7535 
7536 		err = swevent_hlist_get();
7537 		if (err)
7538 			return err;
7539 
7540 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7541 		event->destroy = sw_perf_event_destroy;
7542 	}
7543 
7544 	return 0;
7545 }
7546 
7547 static struct pmu perf_swevent = {
7548 	.task_ctx_nr	= perf_sw_context,
7549 
7550 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7551 
7552 	.event_init	= perf_swevent_init,
7553 	.add		= perf_swevent_add,
7554 	.del		= perf_swevent_del,
7555 	.start		= perf_swevent_start,
7556 	.stop		= perf_swevent_stop,
7557 	.read		= perf_swevent_read,
7558 };
7559 
7560 #ifdef CONFIG_EVENT_TRACING
7561 
7562 static int perf_tp_filter_match(struct perf_event *event,
7563 				struct perf_sample_data *data)
7564 {
7565 	void *record = data->raw->frag.data;
7566 
7567 	/* only top level events have filters set */
7568 	if (event->parent)
7569 		event = event->parent;
7570 
7571 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7572 		return 1;
7573 	return 0;
7574 }
7575 
7576 static int perf_tp_event_match(struct perf_event *event,
7577 				struct perf_sample_data *data,
7578 				struct pt_regs *regs)
7579 {
7580 	if (event->hw.state & PERF_HES_STOPPED)
7581 		return 0;
7582 	/*
7583 	 * All tracepoints are from kernel-space.
7584 	 */
7585 	if (event->attr.exclude_kernel)
7586 		return 0;
7587 
7588 	if (!perf_tp_filter_match(event, data))
7589 		return 0;
7590 
7591 	return 1;
7592 }
7593 
7594 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7595 			       struct trace_event_call *call, u64 count,
7596 			       struct pt_regs *regs, struct hlist_head *head,
7597 			       struct task_struct *task)
7598 {
7599 	struct bpf_prog *prog = call->prog;
7600 
7601 	if (prog) {
7602 		*(struct pt_regs **)raw_data = regs;
7603 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7604 			perf_swevent_put_recursion_context(rctx);
7605 			return;
7606 		}
7607 	}
7608 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7609 		      rctx, task);
7610 }
7611 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7612 
7613 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7614 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7615 		   struct task_struct *task)
7616 {
7617 	struct perf_sample_data data;
7618 	struct perf_event *event;
7619 
7620 	struct perf_raw_record raw = {
7621 		.frag = {
7622 			.size = entry_size,
7623 			.data = record,
7624 		},
7625 	};
7626 
7627 	perf_sample_data_init(&data, 0, 0);
7628 	data.raw = &raw;
7629 
7630 	perf_trace_buf_update(record, event_type);
7631 
7632 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7633 		if (perf_tp_event_match(event, &data, regs))
7634 			perf_swevent_event(event, count, &data, regs);
7635 	}
7636 
7637 	/*
7638 	 * If we got specified a target task, also iterate its context and
7639 	 * deliver this event there too.
7640 	 */
7641 	if (task && task != current) {
7642 		struct perf_event_context *ctx;
7643 		struct trace_entry *entry = record;
7644 
7645 		rcu_read_lock();
7646 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7647 		if (!ctx)
7648 			goto unlock;
7649 
7650 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7651 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7652 				continue;
7653 			if (event->attr.config != entry->type)
7654 				continue;
7655 			if (perf_tp_event_match(event, &data, regs))
7656 				perf_swevent_event(event, count, &data, regs);
7657 		}
7658 unlock:
7659 		rcu_read_unlock();
7660 	}
7661 
7662 	perf_swevent_put_recursion_context(rctx);
7663 }
7664 EXPORT_SYMBOL_GPL(perf_tp_event);
7665 
7666 static void tp_perf_event_destroy(struct perf_event *event)
7667 {
7668 	perf_trace_destroy(event);
7669 }
7670 
7671 static int perf_tp_event_init(struct perf_event *event)
7672 {
7673 	int err;
7674 
7675 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7676 		return -ENOENT;
7677 
7678 	/*
7679 	 * no branch sampling for tracepoint events
7680 	 */
7681 	if (has_branch_stack(event))
7682 		return -EOPNOTSUPP;
7683 
7684 	err = perf_trace_init(event);
7685 	if (err)
7686 		return err;
7687 
7688 	event->destroy = tp_perf_event_destroy;
7689 
7690 	return 0;
7691 }
7692 
7693 static struct pmu perf_tracepoint = {
7694 	.task_ctx_nr	= perf_sw_context,
7695 
7696 	.event_init	= perf_tp_event_init,
7697 	.add		= perf_trace_add,
7698 	.del		= perf_trace_del,
7699 	.start		= perf_swevent_start,
7700 	.stop		= perf_swevent_stop,
7701 	.read		= perf_swevent_read,
7702 };
7703 
7704 static inline void perf_tp_register(void)
7705 {
7706 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7707 }
7708 
7709 static void perf_event_free_filter(struct perf_event *event)
7710 {
7711 	ftrace_profile_free_filter(event);
7712 }
7713 
7714 #ifdef CONFIG_BPF_SYSCALL
7715 static void bpf_overflow_handler(struct perf_event *event,
7716 				 struct perf_sample_data *data,
7717 				 struct pt_regs *regs)
7718 {
7719 	struct bpf_perf_event_data_kern ctx = {
7720 		.data = data,
7721 		.regs = regs,
7722 	};
7723 	int ret = 0;
7724 
7725 	preempt_disable();
7726 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7727 		goto out;
7728 	rcu_read_lock();
7729 	ret = BPF_PROG_RUN(event->prog, &ctx);
7730 	rcu_read_unlock();
7731 out:
7732 	__this_cpu_dec(bpf_prog_active);
7733 	preempt_enable();
7734 	if (!ret)
7735 		return;
7736 
7737 	event->orig_overflow_handler(event, data, regs);
7738 }
7739 
7740 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7741 {
7742 	struct bpf_prog *prog;
7743 
7744 	if (event->overflow_handler_context)
7745 		/* hw breakpoint or kernel counter */
7746 		return -EINVAL;
7747 
7748 	if (event->prog)
7749 		return -EEXIST;
7750 
7751 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7752 	if (IS_ERR(prog))
7753 		return PTR_ERR(prog);
7754 
7755 	event->prog = prog;
7756 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7757 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7758 	return 0;
7759 }
7760 
7761 static void perf_event_free_bpf_handler(struct perf_event *event)
7762 {
7763 	struct bpf_prog *prog = event->prog;
7764 
7765 	if (!prog)
7766 		return;
7767 
7768 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7769 	event->prog = NULL;
7770 	bpf_prog_put(prog);
7771 }
7772 #else
7773 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7774 {
7775 	return -EOPNOTSUPP;
7776 }
7777 static void perf_event_free_bpf_handler(struct perf_event *event)
7778 {
7779 }
7780 #endif
7781 
7782 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7783 {
7784 	bool is_kprobe, is_tracepoint;
7785 	struct bpf_prog *prog;
7786 
7787 	if (event->attr.type == PERF_TYPE_HARDWARE ||
7788 	    event->attr.type == PERF_TYPE_SOFTWARE)
7789 		return perf_event_set_bpf_handler(event, prog_fd);
7790 
7791 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7792 		return -EINVAL;
7793 
7794 	if (event->tp_event->prog)
7795 		return -EEXIST;
7796 
7797 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7798 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7799 	if (!is_kprobe && !is_tracepoint)
7800 		/* bpf programs can only be attached to u/kprobe or tracepoint */
7801 		return -EINVAL;
7802 
7803 	prog = bpf_prog_get(prog_fd);
7804 	if (IS_ERR(prog))
7805 		return PTR_ERR(prog);
7806 
7807 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7808 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7809 		/* valid fd, but invalid bpf program type */
7810 		bpf_prog_put(prog);
7811 		return -EINVAL;
7812 	}
7813 
7814 	if (is_tracepoint) {
7815 		int off = trace_event_get_offsets(event->tp_event);
7816 
7817 		if (prog->aux->max_ctx_offset > off) {
7818 			bpf_prog_put(prog);
7819 			return -EACCES;
7820 		}
7821 	}
7822 	event->tp_event->prog = prog;
7823 
7824 	return 0;
7825 }
7826 
7827 static void perf_event_free_bpf_prog(struct perf_event *event)
7828 {
7829 	struct bpf_prog *prog;
7830 
7831 	perf_event_free_bpf_handler(event);
7832 
7833 	if (!event->tp_event)
7834 		return;
7835 
7836 	prog = event->tp_event->prog;
7837 	if (prog) {
7838 		event->tp_event->prog = NULL;
7839 		bpf_prog_put(prog);
7840 	}
7841 }
7842 
7843 #else
7844 
7845 static inline void perf_tp_register(void)
7846 {
7847 }
7848 
7849 static void perf_event_free_filter(struct perf_event *event)
7850 {
7851 }
7852 
7853 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7854 {
7855 	return -ENOENT;
7856 }
7857 
7858 static void perf_event_free_bpf_prog(struct perf_event *event)
7859 {
7860 }
7861 #endif /* CONFIG_EVENT_TRACING */
7862 
7863 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7864 void perf_bp_event(struct perf_event *bp, void *data)
7865 {
7866 	struct perf_sample_data sample;
7867 	struct pt_regs *regs = data;
7868 
7869 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7870 
7871 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7872 		perf_swevent_event(bp, 1, &sample, regs);
7873 }
7874 #endif
7875 
7876 /*
7877  * Allocate a new address filter
7878  */
7879 static struct perf_addr_filter *
7880 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7881 {
7882 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7883 	struct perf_addr_filter *filter;
7884 
7885 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7886 	if (!filter)
7887 		return NULL;
7888 
7889 	INIT_LIST_HEAD(&filter->entry);
7890 	list_add_tail(&filter->entry, filters);
7891 
7892 	return filter;
7893 }
7894 
7895 static void free_filters_list(struct list_head *filters)
7896 {
7897 	struct perf_addr_filter *filter, *iter;
7898 
7899 	list_for_each_entry_safe(filter, iter, filters, entry) {
7900 		if (filter->inode)
7901 			iput(filter->inode);
7902 		list_del(&filter->entry);
7903 		kfree(filter);
7904 	}
7905 }
7906 
7907 /*
7908  * Free existing address filters and optionally install new ones
7909  */
7910 static void perf_addr_filters_splice(struct perf_event *event,
7911 				     struct list_head *head)
7912 {
7913 	unsigned long flags;
7914 	LIST_HEAD(list);
7915 
7916 	if (!has_addr_filter(event))
7917 		return;
7918 
7919 	/* don't bother with children, they don't have their own filters */
7920 	if (event->parent)
7921 		return;
7922 
7923 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7924 
7925 	list_splice_init(&event->addr_filters.list, &list);
7926 	if (head)
7927 		list_splice(head, &event->addr_filters.list);
7928 
7929 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7930 
7931 	free_filters_list(&list);
7932 }
7933 
7934 /*
7935  * Scan through mm's vmas and see if one of them matches the
7936  * @filter; if so, adjust filter's address range.
7937  * Called with mm::mmap_sem down for reading.
7938  */
7939 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7940 					    struct mm_struct *mm)
7941 {
7942 	struct vm_area_struct *vma;
7943 
7944 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
7945 		struct file *file = vma->vm_file;
7946 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7947 		unsigned long vma_size = vma->vm_end - vma->vm_start;
7948 
7949 		if (!file)
7950 			continue;
7951 
7952 		if (!perf_addr_filter_match(filter, file, off, vma_size))
7953 			continue;
7954 
7955 		return vma->vm_start;
7956 	}
7957 
7958 	return 0;
7959 }
7960 
7961 /*
7962  * Update event's address range filters based on the
7963  * task's existing mappings, if any.
7964  */
7965 static void perf_event_addr_filters_apply(struct perf_event *event)
7966 {
7967 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7968 	struct task_struct *task = READ_ONCE(event->ctx->task);
7969 	struct perf_addr_filter *filter;
7970 	struct mm_struct *mm = NULL;
7971 	unsigned int count = 0;
7972 	unsigned long flags;
7973 
7974 	/*
7975 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7976 	 * will stop on the parent's child_mutex that our caller is also holding
7977 	 */
7978 	if (task == TASK_TOMBSTONE)
7979 		return;
7980 
7981 	mm = get_task_mm(event->ctx->task);
7982 	if (!mm)
7983 		goto restart;
7984 
7985 	down_read(&mm->mmap_sem);
7986 
7987 	raw_spin_lock_irqsave(&ifh->lock, flags);
7988 	list_for_each_entry(filter, &ifh->list, entry) {
7989 		event->addr_filters_offs[count] = 0;
7990 
7991 		/*
7992 		 * Adjust base offset if the filter is associated to a binary
7993 		 * that needs to be mapped:
7994 		 */
7995 		if (filter->inode)
7996 			event->addr_filters_offs[count] =
7997 				perf_addr_filter_apply(filter, mm);
7998 
7999 		count++;
8000 	}
8001 
8002 	event->addr_filters_gen++;
8003 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8004 
8005 	up_read(&mm->mmap_sem);
8006 
8007 	mmput(mm);
8008 
8009 restart:
8010 	perf_event_stop(event, 1);
8011 }
8012 
8013 /*
8014  * Address range filtering: limiting the data to certain
8015  * instruction address ranges. Filters are ioctl()ed to us from
8016  * userspace as ascii strings.
8017  *
8018  * Filter string format:
8019  *
8020  * ACTION RANGE_SPEC
8021  * where ACTION is one of the
8022  *  * "filter": limit the trace to this region
8023  *  * "start": start tracing from this address
8024  *  * "stop": stop tracing at this address/region;
8025  * RANGE_SPEC is
8026  *  * for kernel addresses: <start address>[/<size>]
8027  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8028  *
8029  * if <size> is not specified, the range is treated as a single address.
8030  */
8031 enum {
8032 	IF_ACT_NONE = -1,
8033 	IF_ACT_FILTER,
8034 	IF_ACT_START,
8035 	IF_ACT_STOP,
8036 	IF_SRC_FILE,
8037 	IF_SRC_KERNEL,
8038 	IF_SRC_FILEADDR,
8039 	IF_SRC_KERNELADDR,
8040 };
8041 
8042 enum {
8043 	IF_STATE_ACTION = 0,
8044 	IF_STATE_SOURCE,
8045 	IF_STATE_END,
8046 };
8047 
8048 static const match_table_t if_tokens = {
8049 	{ IF_ACT_FILTER,	"filter" },
8050 	{ IF_ACT_START,		"start" },
8051 	{ IF_ACT_STOP,		"stop" },
8052 	{ IF_SRC_FILE,		"%u/%u@%s" },
8053 	{ IF_SRC_KERNEL,	"%u/%u" },
8054 	{ IF_SRC_FILEADDR,	"%u@%s" },
8055 	{ IF_SRC_KERNELADDR,	"%u" },
8056 	{ IF_ACT_NONE,		NULL },
8057 };
8058 
8059 /*
8060  * Address filter string parser
8061  */
8062 static int
8063 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8064 			     struct list_head *filters)
8065 {
8066 	struct perf_addr_filter *filter = NULL;
8067 	char *start, *orig, *filename = NULL;
8068 	struct path path;
8069 	substring_t args[MAX_OPT_ARGS];
8070 	int state = IF_STATE_ACTION, token;
8071 	unsigned int kernel = 0;
8072 	int ret = -EINVAL;
8073 
8074 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8075 	if (!fstr)
8076 		return -ENOMEM;
8077 
8078 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8079 		ret = -EINVAL;
8080 
8081 		if (!*start)
8082 			continue;
8083 
8084 		/* filter definition begins */
8085 		if (state == IF_STATE_ACTION) {
8086 			filter = perf_addr_filter_new(event, filters);
8087 			if (!filter)
8088 				goto fail;
8089 		}
8090 
8091 		token = match_token(start, if_tokens, args);
8092 		switch (token) {
8093 		case IF_ACT_FILTER:
8094 		case IF_ACT_START:
8095 			filter->filter = 1;
8096 
8097 		case IF_ACT_STOP:
8098 			if (state != IF_STATE_ACTION)
8099 				goto fail;
8100 
8101 			state = IF_STATE_SOURCE;
8102 			break;
8103 
8104 		case IF_SRC_KERNELADDR:
8105 		case IF_SRC_KERNEL:
8106 			kernel = 1;
8107 
8108 		case IF_SRC_FILEADDR:
8109 		case IF_SRC_FILE:
8110 			if (state != IF_STATE_SOURCE)
8111 				goto fail;
8112 
8113 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8114 				filter->range = 1;
8115 
8116 			*args[0].to = 0;
8117 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8118 			if (ret)
8119 				goto fail;
8120 
8121 			if (filter->range) {
8122 				*args[1].to = 0;
8123 				ret = kstrtoul(args[1].from, 0, &filter->size);
8124 				if (ret)
8125 					goto fail;
8126 			}
8127 
8128 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8129 				int fpos = filter->range ? 2 : 1;
8130 
8131 				filename = match_strdup(&args[fpos]);
8132 				if (!filename) {
8133 					ret = -ENOMEM;
8134 					goto fail;
8135 				}
8136 			}
8137 
8138 			state = IF_STATE_END;
8139 			break;
8140 
8141 		default:
8142 			goto fail;
8143 		}
8144 
8145 		/*
8146 		 * Filter definition is fully parsed, validate and install it.
8147 		 * Make sure that it doesn't contradict itself or the event's
8148 		 * attribute.
8149 		 */
8150 		if (state == IF_STATE_END) {
8151 			if (kernel && event->attr.exclude_kernel)
8152 				goto fail;
8153 
8154 			if (!kernel) {
8155 				if (!filename)
8156 					goto fail;
8157 
8158 				/* look up the path and grab its inode */
8159 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8160 				if (ret)
8161 					goto fail_free_name;
8162 
8163 				filter->inode = igrab(d_inode(path.dentry));
8164 				path_put(&path);
8165 				kfree(filename);
8166 				filename = NULL;
8167 
8168 				ret = -EINVAL;
8169 				if (!filter->inode ||
8170 				    !S_ISREG(filter->inode->i_mode))
8171 					/* free_filters_list() will iput() */
8172 					goto fail;
8173 			}
8174 
8175 			/* ready to consume more filters */
8176 			state = IF_STATE_ACTION;
8177 			filter = NULL;
8178 		}
8179 	}
8180 
8181 	if (state != IF_STATE_ACTION)
8182 		goto fail;
8183 
8184 	kfree(orig);
8185 
8186 	return 0;
8187 
8188 fail_free_name:
8189 	kfree(filename);
8190 fail:
8191 	free_filters_list(filters);
8192 	kfree(orig);
8193 
8194 	return ret;
8195 }
8196 
8197 static int
8198 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8199 {
8200 	LIST_HEAD(filters);
8201 	int ret;
8202 
8203 	/*
8204 	 * Since this is called in perf_ioctl() path, we're already holding
8205 	 * ctx::mutex.
8206 	 */
8207 	lockdep_assert_held(&event->ctx->mutex);
8208 
8209 	if (WARN_ON_ONCE(event->parent))
8210 		return -EINVAL;
8211 
8212 	/*
8213 	 * For now, we only support filtering in per-task events; doing so
8214 	 * for CPU-wide events requires additional context switching trickery,
8215 	 * since same object code will be mapped at different virtual
8216 	 * addresses in different processes.
8217 	 */
8218 	if (!event->ctx->task)
8219 		return -EOPNOTSUPP;
8220 
8221 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8222 	if (ret)
8223 		return ret;
8224 
8225 	ret = event->pmu->addr_filters_validate(&filters);
8226 	if (ret) {
8227 		free_filters_list(&filters);
8228 		return ret;
8229 	}
8230 
8231 	/* remove existing filters, if any */
8232 	perf_addr_filters_splice(event, &filters);
8233 
8234 	/* install new filters */
8235 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8236 
8237 	return ret;
8238 }
8239 
8240 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8241 {
8242 	char *filter_str;
8243 	int ret = -EINVAL;
8244 
8245 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8246 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8247 	    !has_addr_filter(event))
8248 		return -EINVAL;
8249 
8250 	filter_str = strndup_user(arg, PAGE_SIZE);
8251 	if (IS_ERR(filter_str))
8252 		return PTR_ERR(filter_str);
8253 
8254 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8255 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8256 		ret = ftrace_profile_set_filter(event, event->attr.config,
8257 						filter_str);
8258 	else if (has_addr_filter(event))
8259 		ret = perf_event_set_addr_filter(event, filter_str);
8260 
8261 	kfree(filter_str);
8262 	return ret;
8263 }
8264 
8265 /*
8266  * hrtimer based swevent callback
8267  */
8268 
8269 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8270 {
8271 	enum hrtimer_restart ret = HRTIMER_RESTART;
8272 	struct perf_sample_data data;
8273 	struct pt_regs *regs;
8274 	struct perf_event *event;
8275 	u64 period;
8276 
8277 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8278 
8279 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8280 		return HRTIMER_NORESTART;
8281 
8282 	event->pmu->read(event);
8283 
8284 	perf_sample_data_init(&data, 0, event->hw.last_period);
8285 	regs = get_irq_regs();
8286 
8287 	if (regs && !perf_exclude_event(event, regs)) {
8288 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8289 			if (__perf_event_overflow(event, 1, &data, regs))
8290 				ret = HRTIMER_NORESTART;
8291 	}
8292 
8293 	period = max_t(u64, 10000, event->hw.sample_period);
8294 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8295 
8296 	return ret;
8297 }
8298 
8299 static void perf_swevent_start_hrtimer(struct perf_event *event)
8300 {
8301 	struct hw_perf_event *hwc = &event->hw;
8302 	s64 period;
8303 
8304 	if (!is_sampling_event(event))
8305 		return;
8306 
8307 	period = local64_read(&hwc->period_left);
8308 	if (period) {
8309 		if (period < 0)
8310 			period = 10000;
8311 
8312 		local64_set(&hwc->period_left, 0);
8313 	} else {
8314 		period = max_t(u64, 10000, hwc->sample_period);
8315 	}
8316 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8317 		      HRTIMER_MODE_REL_PINNED);
8318 }
8319 
8320 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8321 {
8322 	struct hw_perf_event *hwc = &event->hw;
8323 
8324 	if (is_sampling_event(event)) {
8325 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8326 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8327 
8328 		hrtimer_cancel(&hwc->hrtimer);
8329 	}
8330 }
8331 
8332 static void perf_swevent_init_hrtimer(struct perf_event *event)
8333 {
8334 	struct hw_perf_event *hwc = &event->hw;
8335 
8336 	if (!is_sampling_event(event))
8337 		return;
8338 
8339 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8340 	hwc->hrtimer.function = perf_swevent_hrtimer;
8341 
8342 	/*
8343 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8344 	 * mapping and avoid the whole period adjust feedback stuff.
8345 	 */
8346 	if (event->attr.freq) {
8347 		long freq = event->attr.sample_freq;
8348 
8349 		event->attr.sample_period = NSEC_PER_SEC / freq;
8350 		hwc->sample_period = event->attr.sample_period;
8351 		local64_set(&hwc->period_left, hwc->sample_period);
8352 		hwc->last_period = hwc->sample_period;
8353 		event->attr.freq = 0;
8354 	}
8355 }
8356 
8357 /*
8358  * Software event: cpu wall time clock
8359  */
8360 
8361 static void cpu_clock_event_update(struct perf_event *event)
8362 {
8363 	s64 prev;
8364 	u64 now;
8365 
8366 	now = local_clock();
8367 	prev = local64_xchg(&event->hw.prev_count, now);
8368 	local64_add(now - prev, &event->count);
8369 }
8370 
8371 static void cpu_clock_event_start(struct perf_event *event, int flags)
8372 {
8373 	local64_set(&event->hw.prev_count, local_clock());
8374 	perf_swevent_start_hrtimer(event);
8375 }
8376 
8377 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8378 {
8379 	perf_swevent_cancel_hrtimer(event);
8380 	cpu_clock_event_update(event);
8381 }
8382 
8383 static int cpu_clock_event_add(struct perf_event *event, int flags)
8384 {
8385 	if (flags & PERF_EF_START)
8386 		cpu_clock_event_start(event, flags);
8387 	perf_event_update_userpage(event);
8388 
8389 	return 0;
8390 }
8391 
8392 static void cpu_clock_event_del(struct perf_event *event, int flags)
8393 {
8394 	cpu_clock_event_stop(event, flags);
8395 }
8396 
8397 static void cpu_clock_event_read(struct perf_event *event)
8398 {
8399 	cpu_clock_event_update(event);
8400 }
8401 
8402 static int cpu_clock_event_init(struct perf_event *event)
8403 {
8404 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8405 		return -ENOENT;
8406 
8407 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8408 		return -ENOENT;
8409 
8410 	/*
8411 	 * no branch sampling for software events
8412 	 */
8413 	if (has_branch_stack(event))
8414 		return -EOPNOTSUPP;
8415 
8416 	perf_swevent_init_hrtimer(event);
8417 
8418 	return 0;
8419 }
8420 
8421 static struct pmu perf_cpu_clock = {
8422 	.task_ctx_nr	= perf_sw_context,
8423 
8424 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8425 
8426 	.event_init	= cpu_clock_event_init,
8427 	.add		= cpu_clock_event_add,
8428 	.del		= cpu_clock_event_del,
8429 	.start		= cpu_clock_event_start,
8430 	.stop		= cpu_clock_event_stop,
8431 	.read		= cpu_clock_event_read,
8432 };
8433 
8434 /*
8435  * Software event: task time clock
8436  */
8437 
8438 static void task_clock_event_update(struct perf_event *event, u64 now)
8439 {
8440 	u64 prev;
8441 	s64 delta;
8442 
8443 	prev = local64_xchg(&event->hw.prev_count, now);
8444 	delta = now - prev;
8445 	local64_add(delta, &event->count);
8446 }
8447 
8448 static void task_clock_event_start(struct perf_event *event, int flags)
8449 {
8450 	local64_set(&event->hw.prev_count, event->ctx->time);
8451 	perf_swevent_start_hrtimer(event);
8452 }
8453 
8454 static void task_clock_event_stop(struct perf_event *event, int flags)
8455 {
8456 	perf_swevent_cancel_hrtimer(event);
8457 	task_clock_event_update(event, event->ctx->time);
8458 }
8459 
8460 static int task_clock_event_add(struct perf_event *event, int flags)
8461 {
8462 	if (flags & PERF_EF_START)
8463 		task_clock_event_start(event, flags);
8464 	perf_event_update_userpage(event);
8465 
8466 	return 0;
8467 }
8468 
8469 static void task_clock_event_del(struct perf_event *event, int flags)
8470 {
8471 	task_clock_event_stop(event, PERF_EF_UPDATE);
8472 }
8473 
8474 static void task_clock_event_read(struct perf_event *event)
8475 {
8476 	u64 now = perf_clock();
8477 	u64 delta = now - event->ctx->timestamp;
8478 	u64 time = event->ctx->time + delta;
8479 
8480 	task_clock_event_update(event, time);
8481 }
8482 
8483 static int task_clock_event_init(struct perf_event *event)
8484 {
8485 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8486 		return -ENOENT;
8487 
8488 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8489 		return -ENOENT;
8490 
8491 	/*
8492 	 * no branch sampling for software events
8493 	 */
8494 	if (has_branch_stack(event))
8495 		return -EOPNOTSUPP;
8496 
8497 	perf_swevent_init_hrtimer(event);
8498 
8499 	return 0;
8500 }
8501 
8502 static struct pmu perf_task_clock = {
8503 	.task_ctx_nr	= perf_sw_context,
8504 
8505 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8506 
8507 	.event_init	= task_clock_event_init,
8508 	.add		= task_clock_event_add,
8509 	.del		= task_clock_event_del,
8510 	.start		= task_clock_event_start,
8511 	.stop		= task_clock_event_stop,
8512 	.read		= task_clock_event_read,
8513 };
8514 
8515 static void perf_pmu_nop_void(struct pmu *pmu)
8516 {
8517 }
8518 
8519 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8520 {
8521 }
8522 
8523 static int perf_pmu_nop_int(struct pmu *pmu)
8524 {
8525 	return 0;
8526 }
8527 
8528 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8529 
8530 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8531 {
8532 	__this_cpu_write(nop_txn_flags, flags);
8533 
8534 	if (flags & ~PERF_PMU_TXN_ADD)
8535 		return;
8536 
8537 	perf_pmu_disable(pmu);
8538 }
8539 
8540 static int perf_pmu_commit_txn(struct pmu *pmu)
8541 {
8542 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8543 
8544 	__this_cpu_write(nop_txn_flags, 0);
8545 
8546 	if (flags & ~PERF_PMU_TXN_ADD)
8547 		return 0;
8548 
8549 	perf_pmu_enable(pmu);
8550 	return 0;
8551 }
8552 
8553 static void perf_pmu_cancel_txn(struct pmu *pmu)
8554 {
8555 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8556 
8557 	__this_cpu_write(nop_txn_flags, 0);
8558 
8559 	if (flags & ~PERF_PMU_TXN_ADD)
8560 		return;
8561 
8562 	perf_pmu_enable(pmu);
8563 }
8564 
8565 static int perf_event_idx_default(struct perf_event *event)
8566 {
8567 	return 0;
8568 }
8569 
8570 /*
8571  * Ensures all contexts with the same task_ctx_nr have the same
8572  * pmu_cpu_context too.
8573  */
8574 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8575 {
8576 	struct pmu *pmu;
8577 
8578 	if (ctxn < 0)
8579 		return NULL;
8580 
8581 	list_for_each_entry(pmu, &pmus, entry) {
8582 		if (pmu->task_ctx_nr == ctxn)
8583 			return pmu->pmu_cpu_context;
8584 	}
8585 
8586 	return NULL;
8587 }
8588 
8589 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8590 {
8591 	int cpu;
8592 
8593 	for_each_possible_cpu(cpu) {
8594 		struct perf_cpu_context *cpuctx;
8595 
8596 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8597 
8598 		if (cpuctx->unique_pmu == old_pmu)
8599 			cpuctx->unique_pmu = pmu;
8600 	}
8601 }
8602 
8603 static void free_pmu_context(struct pmu *pmu)
8604 {
8605 	struct pmu *i;
8606 
8607 	mutex_lock(&pmus_lock);
8608 	/*
8609 	 * Like a real lame refcount.
8610 	 */
8611 	list_for_each_entry(i, &pmus, entry) {
8612 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8613 			update_pmu_context(i, pmu);
8614 			goto out;
8615 		}
8616 	}
8617 
8618 	free_percpu(pmu->pmu_cpu_context);
8619 out:
8620 	mutex_unlock(&pmus_lock);
8621 }
8622 
8623 /*
8624  * Let userspace know that this PMU supports address range filtering:
8625  */
8626 static ssize_t nr_addr_filters_show(struct device *dev,
8627 				    struct device_attribute *attr,
8628 				    char *page)
8629 {
8630 	struct pmu *pmu = dev_get_drvdata(dev);
8631 
8632 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8633 }
8634 DEVICE_ATTR_RO(nr_addr_filters);
8635 
8636 static struct idr pmu_idr;
8637 
8638 static ssize_t
8639 type_show(struct device *dev, struct device_attribute *attr, char *page)
8640 {
8641 	struct pmu *pmu = dev_get_drvdata(dev);
8642 
8643 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8644 }
8645 static DEVICE_ATTR_RO(type);
8646 
8647 static ssize_t
8648 perf_event_mux_interval_ms_show(struct device *dev,
8649 				struct device_attribute *attr,
8650 				char *page)
8651 {
8652 	struct pmu *pmu = dev_get_drvdata(dev);
8653 
8654 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8655 }
8656 
8657 static DEFINE_MUTEX(mux_interval_mutex);
8658 
8659 static ssize_t
8660 perf_event_mux_interval_ms_store(struct device *dev,
8661 				 struct device_attribute *attr,
8662 				 const char *buf, size_t count)
8663 {
8664 	struct pmu *pmu = dev_get_drvdata(dev);
8665 	int timer, cpu, ret;
8666 
8667 	ret = kstrtoint(buf, 0, &timer);
8668 	if (ret)
8669 		return ret;
8670 
8671 	if (timer < 1)
8672 		return -EINVAL;
8673 
8674 	/* same value, noting to do */
8675 	if (timer == pmu->hrtimer_interval_ms)
8676 		return count;
8677 
8678 	mutex_lock(&mux_interval_mutex);
8679 	pmu->hrtimer_interval_ms = timer;
8680 
8681 	/* update all cpuctx for this PMU */
8682 	get_online_cpus();
8683 	for_each_online_cpu(cpu) {
8684 		struct perf_cpu_context *cpuctx;
8685 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8686 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8687 
8688 		cpu_function_call(cpu,
8689 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8690 	}
8691 	put_online_cpus();
8692 	mutex_unlock(&mux_interval_mutex);
8693 
8694 	return count;
8695 }
8696 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8697 
8698 static struct attribute *pmu_dev_attrs[] = {
8699 	&dev_attr_type.attr,
8700 	&dev_attr_perf_event_mux_interval_ms.attr,
8701 	NULL,
8702 };
8703 ATTRIBUTE_GROUPS(pmu_dev);
8704 
8705 static int pmu_bus_running;
8706 static struct bus_type pmu_bus = {
8707 	.name		= "event_source",
8708 	.dev_groups	= pmu_dev_groups,
8709 };
8710 
8711 static void pmu_dev_release(struct device *dev)
8712 {
8713 	kfree(dev);
8714 }
8715 
8716 static int pmu_dev_alloc(struct pmu *pmu)
8717 {
8718 	int ret = -ENOMEM;
8719 
8720 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8721 	if (!pmu->dev)
8722 		goto out;
8723 
8724 	pmu->dev->groups = pmu->attr_groups;
8725 	device_initialize(pmu->dev);
8726 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8727 	if (ret)
8728 		goto free_dev;
8729 
8730 	dev_set_drvdata(pmu->dev, pmu);
8731 	pmu->dev->bus = &pmu_bus;
8732 	pmu->dev->release = pmu_dev_release;
8733 	ret = device_add(pmu->dev);
8734 	if (ret)
8735 		goto free_dev;
8736 
8737 	/* For PMUs with address filters, throw in an extra attribute: */
8738 	if (pmu->nr_addr_filters)
8739 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8740 
8741 	if (ret)
8742 		goto del_dev;
8743 
8744 out:
8745 	return ret;
8746 
8747 del_dev:
8748 	device_del(pmu->dev);
8749 
8750 free_dev:
8751 	put_device(pmu->dev);
8752 	goto out;
8753 }
8754 
8755 static struct lock_class_key cpuctx_mutex;
8756 static struct lock_class_key cpuctx_lock;
8757 
8758 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8759 {
8760 	int cpu, ret;
8761 
8762 	mutex_lock(&pmus_lock);
8763 	ret = -ENOMEM;
8764 	pmu->pmu_disable_count = alloc_percpu(int);
8765 	if (!pmu->pmu_disable_count)
8766 		goto unlock;
8767 
8768 	pmu->type = -1;
8769 	if (!name)
8770 		goto skip_type;
8771 	pmu->name = name;
8772 
8773 	if (type < 0) {
8774 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8775 		if (type < 0) {
8776 			ret = type;
8777 			goto free_pdc;
8778 		}
8779 	}
8780 	pmu->type = type;
8781 
8782 	if (pmu_bus_running) {
8783 		ret = pmu_dev_alloc(pmu);
8784 		if (ret)
8785 			goto free_idr;
8786 	}
8787 
8788 skip_type:
8789 	if (pmu->task_ctx_nr == perf_hw_context) {
8790 		static int hw_context_taken = 0;
8791 
8792 		/*
8793 		 * Other than systems with heterogeneous CPUs, it never makes
8794 		 * sense for two PMUs to share perf_hw_context. PMUs which are
8795 		 * uncore must use perf_invalid_context.
8796 		 */
8797 		if (WARN_ON_ONCE(hw_context_taken &&
8798 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8799 			pmu->task_ctx_nr = perf_invalid_context;
8800 
8801 		hw_context_taken = 1;
8802 	}
8803 
8804 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8805 	if (pmu->pmu_cpu_context)
8806 		goto got_cpu_context;
8807 
8808 	ret = -ENOMEM;
8809 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8810 	if (!pmu->pmu_cpu_context)
8811 		goto free_dev;
8812 
8813 	for_each_possible_cpu(cpu) {
8814 		struct perf_cpu_context *cpuctx;
8815 
8816 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8817 		__perf_event_init_context(&cpuctx->ctx);
8818 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8819 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8820 		cpuctx->ctx.pmu = pmu;
8821 
8822 		__perf_mux_hrtimer_init(cpuctx, cpu);
8823 
8824 		cpuctx->unique_pmu = pmu;
8825 	}
8826 
8827 got_cpu_context:
8828 	if (!pmu->start_txn) {
8829 		if (pmu->pmu_enable) {
8830 			/*
8831 			 * If we have pmu_enable/pmu_disable calls, install
8832 			 * transaction stubs that use that to try and batch
8833 			 * hardware accesses.
8834 			 */
8835 			pmu->start_txn  = perf_pmu_start_txn;
8836 			pmu->commit_txn = perf_pmu_commit_txn;
8837 			pmu->cancel_txn = perf_pmu_cancel_txn;
8838 		} else {
8839 			pmu->start_txn  = perf_pmu_nop_txn;
8840 			pmu->commit_txn = perf_pmu_nop_int;
8841 			pmu->cancel_txn = perf_pmu_nop_void;
8842 		}
8843 	}
8844 
8845 	if (!pmu->pmu_enable) {
8846 		pmu->pmu_enable  = perf_pmu_nop_void;
8847 		pmu->pmu_disable = perf_pmu_nop_void;
8848 	}
8849 
8850 	if (!pmu->event_idx)
8851 		pmu->event_idx = perf_event_idx_default;
8852 
8853 	list_add_rcu(&pmu->entry, &pmus);
8854 	atomic_set(&pmu->exclusive_cnt, 0);
8855 	ret = 0;
8856 unlock:
8857 	mutex_unlock(&pmus_lock);
8858 
8859 	return ret;
8860 
8861 free_dev:
8862 	device_del(pmu->dev);
8863 	put_device(pmu->dev);
8864 
8865 free_idr:
8866 	if (pmu->type >= PERF_TYPE_MAX)
8867 		idr_remove(&pmu_idr, pmu->type);
8868 
8869 free_pdc:
8870 	free_percpu(pmu->pmu_disable_count);
8871 	goto unlock;
8872 }
8873 EXPORT_SYMBOL_GPL(perf_pmu_register);
8874 
8875 void perf_pmu_unregister(struct pmu *pmu)
8876 {
8877 	int remove_device;
8878 
8879 	mutex_lock(&pmus_lock);
8880 	remove_device = pmu_bus_running;
8881 	list_del_rcu(&pmu->entry);
8882 	mutex_unlock(&pmus_lock);
8883 
8884 	/*
8885 	 * We dereference the pmu list under both SRCU and regular RCU, so
8886 	 * synchronize against both of those.
8887 	 */
8888 	synchronize_srcu(&pmus_srcu);
8889 	synchronize_rcu();
8890 
8891 	free_percpu(pmu->pmu_disable_count);
8892 	if (pmu->type >= PERF_TYPE_MAX)
8893 		idr_remove(&pmu_idr, pmu->type);
8894 	if (remove_device) {
8895 		if (pmu->nr_addr_filters)
8896 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8897 		device_del(pmu->dev);
8898 		put_device(pmu->dev);
8899 	}
8900 	free_pmu_context(pmu);
8901 }
8902 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8903 
8904 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8905 {
8906 	struct perf_event_context *ctx = NULL;
8907 	int ret;
8908 
8909 	if (!try_module_get(pmu->module))
8910 		return -ENODEV;
8911 
8912 	if (event->group_leader != event) {
8913 		/*
8914 		 * This ctx->mutex can nest when we're called through
8915 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
8916 		 */
8917 		ctx = perf_event_ctx_lock_nested(event->group_leader,
8918 						 SINGLE_DEPTH_NESTING);
8919 		BUG_ON(!ctx);
8920 	}
8921 
8922 	event->pmu = pmu;
8923 	ret = pmu->event_init(event);
8924 
8925 	if (ctx)
8926 		perf_event_ctx_unlock(event->group_leader, ctx);
8927 
8928 	if (ret)
8929 		module_put(pmu->module);
8930 
8931 	return ret;
8932 }
8933 
8934 static struct pmu *perf_init_event(struct perf_event *event)
8935 {
8936 	struct pmu *pmu = NULL;
8937 	int idx;
8938 	int ret;
8939 
8940 	idx = srcu_read_lock(&pmus_srcu);
8941 
8942 	rcu_read_lock();
8943 	pmu = idr_find(&pmu_idr, event->attr.type);
8944 	rcu_read_unlock();
8945 	if (pmu) {
8946 		ret = perf_try_init_event(pmu, event);
8947 		if (ret)
8948 			pmu = ERR_PTR(ret);
8949 		goto unlock;
8950 	}
8951 
8952 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8953 		ret = perf_try_init_event(pmu, event);
8954 		if (!ret)
8955 			goto unlock;
8956 
8957 		if (ret != -ENOENT) {
8958 			pmu = ERR_PTR(ret);
8959 			goto unlock;
8960 		}
8961 	}
8962 	pmu = ERR_PTR(-ENOENT);
8963 unlock:
8964 	srcu_read_unlock(&pmus_srcu, idx);
8965 
8966 	return pmu;
8967 }
8968 
8969 static void attach_sb_event(struct perf_event *event)
8970 {
8971 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8972 
8973 	raw_spin_lock(&pel->lock);
8974 	list_add_rcu(&event->sb_list, &pel->list);
8975 	raw_spin_unlock(&pel->lock);
8976 }
8977 
8978 /*
8979  * We keep a list of all !task (and therefore per-cpu) events
8980  * that need to receive side-band records.
8981  *
8982  * This avoids having to scan all the various PMU per-cpu contexts
8983  * looking for them.
8984  */
8985 static void account_pmu_sb_event(struct perf_event *event)
8986 {
8987 	if (is_sb_event(event))
8988 		attach_sb_event(event);
8989 }
8990 
8991 static void account_event_cpu(struct perf_event *event, int cpu)
8992 {
8993 	if (event->parent)
8994 		return;
8995 
8996 	if (is_cgroup_event(event))
8997 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8998 }
8999 
9000 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9001 static void account_freq_event_nohz(void)
9002 {
9003 #ifdef CONFIG_NO_HZ_FULL
9004 	/* Lock so we don't race with concurrent unaccount */
9005 	spin_lock(&nr_freq_lock);
9006 	if (atomic_inc_return(&nr_freq_events) == 1)
9007 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9008 	spin_unlock(&nr_freq_lock);
9009 #endif
9010 }
9011 
9012 static void account_freq_event(void)
9013 {
9014 	if (tick_nohz_full_enabled())
9015 		account_freq_event_nohz();
9016 	else
9017 		atomic_inc(&nr_freq_events);
9018 }
9019 
9020 
9021 static void account_event(struct perf_event *event)
9022 {
9023 	bool inc = false;
9024 
9025 	if (event->parent)
9026 		return;
9027 
9028 	if (event->attach_state & PERF_ATTACH_TASK)
9029 		inc = true;
9030 	if (event->attr.mmap || event->attr.mmap_data)
9031 		atomic_inc(&nr_mmap_events);
9032 	if (event->attr.comm)
9033 		atomic_inc(&nr_comm_events);
9034 	if (event->attr.task)
9035 		atomic_inc(&nr_task_events);
9036 	if (event->attr.freq)
9037 		account_freq_event();
9038 	if (event->attr.context_switch) {
9039 		atomic_inc(&nr_switch_events);
9040 		inc = true;
9041 	}
9042 	if (has_branch_stack(event))
9043 		inc = true;
9044 	if (is_cgroup_event(event))
9045 		inc = true;
9046 
9047 	if (inc) {
9048 		if (atomic_inc_not_zero(&perf_sched_count))
9049 			goto enabled;
9050 
9051 		mutex_lock(&perf_sched_mutex);
9052 		if (!atomic_read(&perf_sched_count)) {
9053 			static_branch_enable(&perf_sched_events);
9054 			/*
9055 			 * Guarantee that all CPUs observe they key change and
9056 			 * call the perf scheduling hooks before proceeding to
9057 			 * install events that need them.
9058 			 */
9059 			synchronize_sched();
9060 		}
9061 		/*
9062 		 * Now that we have waited for the sync_sched(), allow further
9063 		 * increments to by-pass the mutex.
9064 		 */
9065 		atomic_inc(&perf_sched_count);
9066 		mutex_unlock(&perf_sched_mutex);
9067 	}
9068 enabled:
9069 
9070 	account_event_cpu(event, event->cpu);
9071 
9072 	account_pmu_sb_event(event);
9073 }
9074 
9075 /*
9076  * Allocate and initialize a event structure
9077  */
9078 static struct perf_event *
9079 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9080 		 struct task_struct *task,
9081 		 struct perf_event *group_leader,
9082 		 struct perf_event *parent_event,
9083 		 perf_overflow_handler_t overflow_handler,
9084 		 void *context, int cgroup_fd)
9085 {
9086 	struct pmu *pmu;
9087 	struct perf_event *event;
9088 	struct hw_perf_event *hwc;
9089 	long err = -EINVAL;
9090 
9091 	if ((unsigned)cpu >= nr_cpu_ids) {
9092 		if (!task || cpu != -1)
9093 			return ERR_PTR(-EINVAL);
9094 	}
9095 
9096 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9097 	if (!event)
9098 		return ERR_PTR(-ENOMEM);
9099 
9100 	/*
9101 	 * Single events are their own group leaders, with an
9102 	 * empty sibling list:
9103 	 */
9104 	if (!group_leader)
9105 		group_leader = event;
9106 
9107 	mutex_init(&event->child_mutex);
9108 	INIT_LIST_HEAD(&event->child_list);
9109 
9110 	INIT_LIST_HEAD(&event->group_entry);
9111 	INIT_LIST_HEAD(&event->event_entry);
9112 	INIT_LIST_HEAD(&event->sibling_list);
9113 	INIT_LIST_HEAD(&event->rb_entry);
9114 	INIT_LIST_HEAD(&event->active_entry);
9115 	INIT_LIST_HEAD(&event->addr_filters.list);
9116 	INIT_HLIST_NODE(&event->hlist_entry);
9117 
9118 
9119 	init_waitqueue_head(&event->waitq);
9120 	init_irq_work(&event->pending, perf_pending_event);
9121 
9122 	mutex_init(&event->mmap_mutex);
9123 	raw_spin_lock_init(&event->addr_filters.lock);
9124 
9125 	atomic_long_set(&event->refcount, 1);
9126 	event->cpu		= cpu;
9127 	event->attr		= *attr;
9128 	event->group_leader	= group_leader;
9129 	event->pmu		= NULL;
9130 	event->oncpu		= -1;
9131 
9132 	event->parent		= parent_event;
9133 
9134 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9135 	event->id		= atomic64_inc_return(&perf_event_id);
9136 
9137 	event->state		= PERF_EVENT_STATE_INACTIVE;
9138 
9139 	if (task) {
9140 		event->attach_state = PERF_ATTACH_TASK;
9141 		/*
9142 		 * XXX pmu::event_init needs to know what task to account to
9143 		 * and we cannot use the ctx information because we need the
9144 		 * pmu before we get a ctx.
9145 		 */
9146 		event->hw.target = task;
9147 	}
9148 
9149 	event->clock = &local_clock;
9150 	if (parent_event)
9151 		event->clock = parent_event->clock;
9152 
9153 	if (!overflow_handler && parent_event) {
9154 		overflow_handler = parent_event->overflow_handler;
9155 		context = parent_event->overflow_handler_context;
9156 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9157 		if (overflow_handler == bpf_overflow_handler) {
9158 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9159 
9160 			if (IS_ERR(prog)) {
9161 				err = PTR_ERR(prog);
9162 				goto err_ns;
9163 			}
9164 			event->prog = prog;
9165 			event->orig_overflow_handler =
9166 				parent_event->orig_overflow_handler;
9167 		}
9168 #endif
9169 	}
9170 
9171 	if (overflow_handler) {
9172 		event->overflow_handler	= overflow_handler;
9173 		event->overflow_handler_context = context;
9174 	} else if (is_write_backward(event)){
9175 		event->overflow_handler = perf_event_output_backward;
9176 		event->overflow_handler_context = NULL;
9177 	} else {
9178 		event->overflow_handler = perf_event_output_forward;
9179 		event->overflow_handler_context = NULL;
9180 	}
9181 
9182 	perf_event__state_init(event);
9183 
9184 	pmu = NULL;
9185 
9186 	hwc = &event->hw;
9187 	hwc->sample_period = attr->sample_period;
9188 	if (attr->freq && attr->sample_freq)
9189 		hwc->sample_period = 1;
9190 	hwc->last_period = hwc->sample_period;
9191 
9192 	local64_set(&hwc->period_left, hwc->sample_period);
9193 
9194 	/*
9195 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9196 	 */
9197 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9198 		goto err_ns;
9199 
9200 	if (!has_branch_stack(event))
9201 		event->attr.branch_sample_type = 0;
9202 
9203 	if (cgroup_fd != -1) {
9204 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9205 		if (err)
9206 			goto err_ns;
9207 	}
9208 
9209 	pmu = perf_init_event(event);
9210 	if (!pmu)
9211 		goto err_ns;
9212 	else if (IS_ERR(pmu)) {
9213 		err = PTR_ERR(pmu);
9214 		goto err_ns;
9215 	}
9216 
9217 	err = exclusive_event_init(event);
9218 	if (err)
9219 		goto err_pmu;
9220 
9221 	if (has_addr_filter(event)) {
9222 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9223 						   sizeof(unsigned long),
9224 						   GFP_KERNEL);
9225 		if (!event->addr_filters_offs)
9226 			goto err_per_task;
9227 
9228 		/* force hw sync on the address filters */
9229 		event->addr_filters_gen = 1;
9230 	}
9231 
9232 	if (!event->parent) {
9233 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9234 			err = get_callchain_buffers(attr->sample_max_stack);
9235 			if (err)
9236 				goto err_addr_filters;
9237 		}
9238 	}
9239 
9240 	/* symmetric to unaccount_event() in _free_event() */
9241 	account_event(event);
9242 
9243 	return event;
9244 
9245 err_addr_filters:
9246 	kfree(event->addr_filters_offs);
9247 
9248 err_per_task:
9249 	exclusive_event_destroy(event);
9250 
9251 err_pmu:
9252 	if (event->destroy)
9253 		event->destroy(event);
9254 	module_put(pmu->module);
9255 err_ns:
9256 	if (is_cgroup_event(event))
9257 		perf_detach_cgroup(event);
9258 	if (event->ns)
9259 		put_pid_ns(event->ns);
9260 	kfree(event);
9261 
9262 	return ERR_PTR(err);
9263 }
9264 
9265 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9266 			  struct perf_event_attr *attr)
9267 {
9268 	u32 size;
9269 	int ret;
9270 
9271 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9272 		return -EFAULT;
9273 
9274 	/*
9275 	 * zero the full structure, so that a short copy will be nice.
9276 	 */
9277 	memset(attr, 0, sizeof(*attr));
9278 
9279 	ret = get_user(size, &uattr->size);
9280 	if (ret)
9281 		return ret;
9282 
9283 	if (size > PAGE_SIZE)	/* silly large */
9284 		goto err_size;
9285 
9286 	if (!size)		/* abi compat */
9287 		size = PERF_ATTR_SIZE_VER0;
9288 
9289 	if (size < PERF_ATTR_SIZE_VER0)
9290 		goto err_size;
9291 
9292 	/*
9293 	 * If we're handed a bigger struct than we know of,
9294 	 * ensure all the unknown bits are 0 - i.e. new
9295 	 * user-space does not rely on any kernel feature
9296 	 * extensions we dont know about yet.
9297 	 */
9298 	if (size > sizeof(*attr)) {
9299 		unsigned char __user *addr;
9300 		unsigned char __user *end;
9301 		unsigned char val;
9302 
9303 		addr = (void __user *)uattr + sizeof(*attr);
9304 		end  = (void __user *)uattr + size;
9305 
9306 		for (; addr < end; addr++) {
9307 			ret = get_user(val, addr);
9308 			if (ret)
9309 				return ret;
9310 			if (val)
9311 				goto err_size;
9312 		}
9313 		size = sizeof(*attr);
9314 	}
9315 
9316 	ret = copy_from_user(attr, uattr, size);
9317 	if (ret)
9318 		return -EFAULT;
9319 
9320 	if (attr->__reserved_1)
9321 		return -EINVAL;
9322 
9323 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9324 		return -EINVAL;
9325 
9326 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9327 		return -EINVAL;
9328 
9329 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9330 		u64 mask = attr->branch_sample_type;
9331 
9332 		/* only using defined bits */
9333 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9334 			return -EINVAL;
9335 
9336 		/* at least one branch bit must be set */
9337 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9338 			return -EINVAL;
9339 
9340 		/* propagate priv level, when not set for branch */
9341 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9342 
9343 			/* exclude_kernel checked on syscall entry */
9344 			if (!attr->exclude_kernel)
9345 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9346 
9347 			if (!attr->exclude_user)
9348 				mask |= PERF_SAMPLE_BRANCH_USER;
9349 
9350 			if (!attr->exclude_hv)
9351 				mask |= PERF_SAMPLE_BRANCH_HV;
9352 			/*
9353 			 * adjust user setting (for HW filter setup)
9354 			 */
9355 			attr->branch_sample_type = mask;
9356 		}
9357 		/* privileged levels capture (kernel, hv): check permissions */
9358 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9359 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9360 			return -EACCES;
9361 	}
9362 
9363 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9364 		ret = perf_reg_validate(attr->sample_regs_user);
9365 		if (ret)
9366 			return ret;
9367 	}
9368 
9369 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9370 		if (!arch_perf_have_user_stack_dump())
9371 			return -ENOSYS;
9372 
9373 		/*
9374 		 * We have __u32 type for the size, but so far
9375 		 * we can only use __u16 as maximum due to the
9376 		 * __u16 sample size limit.
9377 		 */
9378 		if (attr->sample_stack_user >= USHRT_MAX)
9379 			ret = -EINVAL;
9380 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9381 			ret = -EINVAL;
9382 	}
9383 
9384 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9385 		ret = perf_reg_validate(attr->sample_regs_intr);
9386 out:
9387 	return ret;
9388 
9389 err_size:
9390 	put_user(sizeof(*attr), &uattr->size);
9391 	ret = -E2BIG;
9392 	goto out;
9393 }
9394 
9395 static int
9396 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9397 {
9398 	struct ring_buffer *rb = NULL;
9399 	int ret = -EINVAL;
9400 
9401 	if (!output_event)
9402 		goto set;
9403 
9404 	/* don't allow circular references */
9405 	if (event == output_event)
9406 		goto out;
9407 
9408 	/*
9409 	 * Don't allow cross-cpu buffers
9410 	 */
9411 	if (output_event->cpu != event->cpu)
9412 		goto out;
9413 
9414 	/*
9415 	 * If its not a per-cpu rb, it must be the same task.
9416 	 */
9417 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9418 		goto out;
9419 
9420 	/*
9421 	 * Mixing clocks in the same buffer is trouble you don't need.
9422 	 */
9423 	if (output_event->clock != event->clock)
9424 		goto out;
9425 
9426 	/*
9427 	 * Either writing ring buffer from beginning or from end.
9428 	 * Mixing is not allowed.
9429 	 */
9430 	if (is_write_backward(output_event) != is_write_backward(event))
9431 		goto out;
9432 
9433 	/*
9434 	 * If both events generate aux data, they must be on the same PMU
9435 	 */
9436 	if (has_aux(event) && has_aux(output_event) &&
9437 	    event->pmu != output_event->pmu)
9438 		goto out;
9439 
9440 set:
9441 	mutex_lock(&event->mmap_mutex);
9442 	/* Can't redirect output if we've got an active mmap() */
9443 	if (atomic_read(&event->mmap_count))
9444 		goto unlock;
9445 
9446 	if (output_event) {
9447 		/* get the rb we want to redirect to */
9448 		rb = ring_buffer_get(output_event);
9449 		if (!rb)
9450 			goto unlock;
9451 	}
9452 
9453 	ring_buffer_attach(event, rb);
9454 
9455 	ret = 0;
9456 unlock:
9457 	mutex_unlock(&event->mmap_mutex);
9458 
9459 out:
9460 	return ret;
9461 }
9462 
9463 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9464 {
9465 	if (b < a)
9466 		swap(a, b);
9467 
9468 	mutex_lock(a);
9469 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9470 }
9471 
9472 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9473 {
9474 	bool nmi_safe = false;
9475 
9476 	switch (clk_id) {
9477 	case CLOCK_MONOTONIC:
9478 		event->clock = &ktime_get_mono_fast_ns;
9479 		nmi_safe = true;
9480 		break;
9481 
9482 	case CLOCK_MONOTONIC_RAW:
9483 		event->clock = &ktime_get_raw_fast_ns;
9484 		nmi_safe = true;
9485 		break;
9486 
9487 	case CLOCK_REALTIME:
9488 		event->clock = &ktime_get_real_ns;
9489 		break;
9490 
9491 	case CLOCK_BOOTTIME:
9492 		event->clock = &ktime_get_boot_ns;
9493 		break;
9494 
9495 	case CLOCK_TAI:
9496 		event->clock = &ktime_get_tai_ns;
9497 		break;
9498 
9499 	default:
9500 		return -EINVAL;
9501 	}
9502 
9503 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9504 		return -EINVAL;
9505 
9506 	return 0;
9507 }
9508 
9509 /**
9510  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9511  *
9512  * @attr_uptr:	event_id type attributes for monitoring/sampling
9513  * @pid:		target pid
9514  * @cpu:		target cpu
9515  * @group_fd:		group leader event fd
9516  */
9517 SYSCALL_DEFINE5(perf_event_open,
9518 		struct perf_event_attr __user *, attr_uptr,
9519 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9520 {
9521 	struct perf_event *group_leader = NULL, *output_event = NULL;
9522 	struct perf_event *event, *sibling;
9523 	struct perf_event_attr attr;
9524 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9525 	struct file *event_file = NULL;
9526 	struct fd group = {NULL, 0};
9527 	struct task_struct *task = NULL;
9528 	struct pmu *pmu;
9529 	int event_fd;
9530 	int move_group = 0;
9531 	int err;
9532 	int f_flags = O_RDWR;
9533 	int cgroup_fd = -1;
9534 
9535 	/* for future expandability... */
9536 	if (flags & ~PERF_FLAG_ALL)
9537 		return -EINVAL;
9538 
9539 	err = perf_copy_attr(attr_uptr, &attr);
9540 	if (err)
9541 		return err;
9542 
9543 	if (!attr.exclude_kernel) {
9544 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9545 			return -EACCES;
9546 	}
9547 
9548 	if (attr.freq) {
9549 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9550 			return -EINVAL;
9551 	} else {
9552 		if (attr.sample_period & (1ULL << 63))
9553 			return -EINVAL;
9554 	}
9555 
9556 	if (!attr.sample_max_stack)
9557 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9558 
9559 	/*
9560 	 * In cgroup mode, the pid argument is used to pass the fd
9561 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9562 	 * designates the cpu on which to monitor threads from that
9563 	 * cgroup.
9564 	 */
9565 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9566 		return -EINVAL;
9567 
9568 	if (flags & PERF_FLAG_FD_CLOEXEC)
9569 		f_flags |= O_CLOEXEC;
9570 
9571 	event_fd = get_unused_fd_flags(f_flags);
9572 	if (event_fd < 0)
9573 		return event_fd;
9574 
9575 	if (group_fd != -1) {
9576 		err = perf_fget_light(group_fd, &group);
9577 		if (err)
9578 			goto err_fd;
9579 		group_leader = group.file->private_data;
9580 		if (flags & PERF_FLAG_FD_OUTPUT)
9581 			output_event = group_leader;
9582 		if (flags & PERF_FLAG_FD_NO_GROUP)
9583 			group_leader = NULL;
9584 	}
9585 
9586 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9587 		task = find_lively_task_by_vpid(pid);
9588 		if (IS_ERR(task)) {
9589 			err = PTR_ERR(task);
9590 			goto err_group_fd;
9591 		}
9592 	}
9593 
9594 	if (task && group_leader &&
9595 	    group_leader->attr.inherit != attr.inherit) {
9596 		err = -EINVAL;
9597 		goto err_task;
9598 	}
9599 
9600 	get_online_cpus();
9601 
9602 	if (task) {
9603 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9604 		if (err)
9605 			goto err_cpus;
9606 
9607 		/*
9608 		 * Reuse ptrace permission checks for now.
9609 		 *
9610 		 * We must hold cred_guard_mutex across this and any potential
9611 		 * perf_install_in_context() call for this new event to
9612 		 * serialize against exec() altering our credentials (and the
9613 		 * perf_event_exit_task() that could imply).
9614 		 */
9615 		err = -EACCES;
9616 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9617 			goto err_cred;
9618 	}
9619 
9620 	if (flags & PERF_FLAG_PID_CGROUP)
9621 		cgroup_fd = pid;
9622 
9623 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9624 				 NULL, NULL, cgroup_fd);
9625 	if (IS_ERR(event)) {
9626 		err = PTR_ERR(event);
9627 		goto err_cred;
9628 	}
9629 
9630 	if (is_sampling_event(event)) {
9631 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9632 			err = -EOPNOTSUPP;
9633 			goto err_alloc;
9634 		}
9635 	}
9636 
9637 	/*
9638 	 * Special case software events and allow them to be part of
9639 	 * any hardware group.
9640 	 */
9641 	pmu = event->pmu;
9642 
9643 	if (attr.use_clockid) {
9644 		err = perf_event_set_clock(event, attr.clockid);
9645 		if (err)
9646 			goto err_alloc;
9647 	}
9648 
9649 	if (pmu->task_ctx_nr == perf_sw_context)
9650 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
9651 
9652 	if (group_leader &&
9653 	    (is_software_event(event) != is_software_event(group_leader))) {
9654 		if (is_software_event(event)) {
9655 			/*
9656 			 * If event and group_leader are not both a software
9657 			 * event, and event is, then group leader is not.
9658 			 *
9659 			 * Allow the addition of software events to !software
9660 			 * groups, this is safe because software events never
9661 			 * fail to schedule.
9662 			 */
9663 			pmu = group_leader->pmu;
9664 		} else if (is_software_event(group_leader) &&
9665 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9666 			/*
9667 			 * In case the group is a pure software group, and we
9668 			 * try to add a hardware event, move the whole group to
9669 			 * the hardware context.
9670 			 */
9671 			move_group = 1;
9672 		}
9673 	}
9674 
9675 	/*
9676 	 * Get the target context (task or percpu):
9677 	 */
9678 	ctx = find_get_context(pmu, task, event);
9679 	if (IS_ERR(ctx)) {
9680 		err = PTR_ERR(ctx);
9681 		goto err_alloc;
9682 	}
9683 
9684 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9685 		err = -EBUSY;
9686 		goto err_context;
9687 	}
9688 
9689 	/*
9690 	 * Look up the group leader (we will attach this event to it):
9691 	 */
9692 	if (group_leader) {
9693 		err = -EINVAL;
9694 
9695 		/*
9696 		 * Do not allow a recursive hierarchy (this new sibling
9697 		 * becoming part of another group-sibling):
9698 		 */
9699 		if (group_leader->group_leader != group_leader)
9700 			goto err_context;
9701 
9702 		/* All events in a group should have the same clock */
9703 		if (group_leader->clock != event->clock)
9704 			goto err_context;
9705 
9706 		/*
9707 		 * Do not allow to attach to a group in a different
9708 		 * task or CPU context:
9709 		 */
9710 		if (move_group) {
9711 			/*
9712 			 * Make sure we're both on the same task, or both
9713 			 * per-cpu events.
9714 			 */
9715 			if (group_leader->ctx->task != ctx->task)
9716 				goto err_context;
9717 
9718 			/*
9719 			 * Make sure we're both events for the same CPU;
9720 			 * grouping events for different CPUs is broken; since
9721 			 * you can never concurrently schedule them anyhow.
9722 			 */
9723 			if (group_leader->cpu != event->cpu)
9724 				goto err_context;
9725 		} else {
9726 			if (group_leader->ctx != ctx)
9727 				goto err_context;
9728 		}
9729 
9730 		/*
9731 		 * Only a group leader can be exclusive or pinned
9732 		 */
9733 		if (attr.exclusive || attr.pinned)
9734 			goto err_context;
9735 	}
9736 
9737 	if (output_event) {
9738 		err = perf_event_set_output(event, output_event);
9739 		if (err)
9740 			goto err_context;
9741 	}
9742 
9743 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9744 					f_flags);
9745 	if (IS_ERR(event_file)) {
9746 		err = PTR_ERR(event_file);
9747 		event_file = NULL;
9748 		goto err_context;
9749 	}
9750 
9751 	if (move_group) {
9752 		gctx = group_leader->ctx;
9753 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
9754 		if (gctx->task == TASK_TOMBSTONE) {
9755 			err = -ESRCH;
9756 			goto err_locked;
9757 		}
9758 	} else {
9759 		mutex_lock(&ctx->mutex);
9760 	}
9761 
9762 	if (ctx->task == TASK_TOMBSTONE) {
9763 		err = -ESRCH;
9764 		goto err_locked;
9765 	}
9766 
9767 	if (!perf_event_validate_size(event)) {
9768 		err = -E2BIG;
9769 		goto err_locked;
9770 	}
9771 
9772 	/*
9773 	 * Must be under the same ctx::mutex as perf_install_in_context(),
9774 	 * because we need to serialize with concurrent event creation.
9775 	 */
9776 	if (!exclusive_event_installable(event, ctx)) {
9777 		/* exclusive and group stuff are assumed mutually exclusive */
9778 		WARN_ON_ONCE(move_group);
9779 
9780 		err = -EBUSY;
9781 		goto err_locked;
9782 	}
9783 
9784 	WARN_ON_ONCE(ctx->parent_ctx);
9785 
9786 	/*
9787 	 * This is the point on no return; we cannot fail hereafter. This is
9788 	 * where we start modifying current state.
9789 	 */
9790 
9791 	if (move_group) {
9792 		/*
9793 		 * See perf_event_ctx_lock() for comments on the details
9794 		 * of swizzling perf_event::ctx.
9795 		 */
9796 		perf_remove_from_context(group_leader, 0);
9797 
9798 		list_for_each_entry(sibling, &group_leader->sibling_list,
9799 				    group_entry) {
9800 			perf_remove_from_context(sibling, 0);
9801 			put_ctx(gctx);
9802 		}
9803 
9804 		/*
9805 		 * Wait for everybody to stop referencing the events through
9806 		 * the old lists, before installing it on new lists.
9807 		 */
9808 		synchronize_rcu();
9809 
9810 		/*
9811 		 * Install the group siblings before the group leader.
9812 		 *
9813 		 * Because a group leader will try and install the entire group
9814 		 * (through the sibling list, which is still in-tact), we can
9815 		 * end up with siblings installed in the wrong context.
9816 		 *
9817 		 * By installing siblings first we NO-OP because they're not
9818 		 * reachable through the group lists.
9819 		 */
9820 		list_for_each_entry(sibling, &group_leader->sibling_list,
9821 				    group_entry) {
9822 			perf_event__state_init(sibling);
9823 			perf_install_in_context(ctx, sibling, sibling->cpu);
9824 			get_ctx(ctx);
9825 		}
9826 
9827 		/*
9828 		 * Removing from the context ends up with disabled
9829 		 * event. What we want here is event in the initial
9830 		 * startup state, ready to be add into new context.
9831 		 */
9832 		perf_event__state_init(group_leader);
9833 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
9834 		get_ctx(ctx);
9835 
9836 		/*
9837 		 * Now that all events are installed in @ctx, nothing
9838 		 * references @gctx anymore, so drop the last reference we have
9839 		 * on it.
9840 		 */
9841 		put_ctx(gctx);
9842 	}
9843 
9844 	/*
9845 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
9846 	 * that we're serialized against further additions and before
9847 	 * perf_install_in_context() which is the point the event is active and
9848 	 * can use these values.
9849 	 */
9850 	perf_event__header_size(event);
9851 	perf_event__id_header_size(event);
9852 
9853 	event->owner = current;
9854 
9855 	perf_install_in_context(ctx, event, event->cpu);
9856 	perf_unpin_context(ctx);
9857 
9858 	if (move_group)
9859 		mutex_unlock(&gctx->mutex);
9860 	mutex_unlock(&ctx->mutex);
9861 
9862 	if (task) {
9863 		mutex_unlock(&task->signal->cred_guard_mutex);
9864 		put_task_struct(task);
9865 	}
9866 
9867 	put_online_cpus();
9868 
9869 	mutex_lock(&current->perf_event_mutex);
9870 	list_add_tail(&event->owner_entry, &current->perf_event_list);
9871 	mutex_unlock(&current->perf_event_mutex);
9872 
9873 	/*
9874 	 * Drop the reference on the group_event after placing the
9875 	 * new event on the sibling_list. This ensures destruction
9876 	 * of the group leader will find the pointer to itself in
9877 	 * perf_group_detach().
9878 	 */
9879 	fdput(group);
9880 	fd_install(event_fd, event_file);
9881 	return event_fd;
9882 
9883 err_locked:
9884 	if (move_group)
9885 		mutex_unlock(&gctx->mutex);
9886 	mutex_unlock(&ctx->mutex);
9887 /* err_file: */
9888 	fput(event_file);
9889 err_context:
9890 	perf_unpin_context(ctx);
9891 	put_ctx(ctx);
9892 err_alloc:
9893 	/*
9894 	 * If event_file is set, the fput() above will have called ->release()
9895 	 * and that will take care of freeing the event.
9896 	 */
9897 	if (!event_file)
9898 		free_event(event);
9899 err_cred:
9900 	if (task)
9901 		mutex_unlock(&task->signal->cred_guard_mutex);
9902 err_cpus:
9903 	put_online_cpus();
9904 err_task:
9905 	if (task)
9906 		put_task_struct(task);
9907 err_group_fd:
9908 	fdput(group);
9909 err_fd:
9910 	put_unused_fd(event_fd);
9911 	return err;
9912 }
9913 
9914 /**
9915  * perf_event_create_kernel_counter
9916  *
9917  * @attr: attributes of the counter to create
9918  * @cpu: cpu in which the counter is bound
9919  * @task: task to profile (NULL for percpu)
9920  */
9921 struct perf_event *
9922 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9923 				 struct task_struct *task,
9924 				 perf_overflow_handler_t overflow_handler,
9925 				 void *context)
9926 {
9927 	struct perf_event_context *ctx;
9928 	struct perf_event *event;
9929 	int err;
9930 
9931 	/*
9932 	 * Get the target context (task or percpu):
9933 	 */
9934 
9935 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9936 				 overflow_handler, context, -1);
9937 	if (IS_ERR(event)) {
9938 		err = PTR_ERR(event);
9939 		goto err;
9940 	}
9941 
9942 	/* Mark owner so we could distinguish it from user events. */
9943 	event->owner = TASK_TOMBSTONE;
9944 
9945 	ctx = find_get_context(event->pmu, task, event);
9946 	if (IS_ERR(ctx)) {
9947 		err = PTR_ERR(ctx);
9948 		goto err_free;
9949 	}
9950 
9951 	WARN_ON_ONCE(ctx->parent_ctx);
9952 	mutex_lock(&ctx->mutex);
9953 	if (ctx->task == TASK_TOMBSTONE) {
9954 		err = -ESRCH;
9955 		goto err_unlock;
9956 	}
9957 
9958 	if (!exclusive_event_installable(event, ctx)) {
9959 		err = -EBUSY;
9960 		goto err_unlock;
9961 	}
9962 
9963 	perf_install_in_context(ctx, event, cpu);
9964 	perf_unpin_context(ctx);
9965 	mutex_unlock(&ctx->mutex);
9966 
9967 	return event;
9968 
9969 err_unlock:
9970 	mutex_unlock(&ctx->mutex);
9971 	perf_unpin_context(ctx);
9972 	put_ctx(ctx);
9973 err_free:
9974 	free_event(event);
9975 err:
9976 	return ERR_PTR(err);
9977 }
9978 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9979 
9980 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9981 {
9982 	struct perf_event_context *src_ctx;
9983 	struct perf_event_context *dst_ctx;
9984 	struct perf_event *event, *tmp;
9985 	LIST_HEAD(events);
9986 
9987 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9988 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9989 
9990 	/*
9991 	 * See perf_event_ctx_lock() for comments on the details
9992 	 * of swizzling perf_event::ctx.
9993 	 */
9994 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9995 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9996 				 event_entry) {
9997 		perf_remove_from_context(event, 0);
9998 		unaccount_event_cpu(event, src_cpu);
9999 		put_ctx(src_ctx);
10000 		list_add(&event->migrate_entry, &events);
10001 	}
10002 
10003 	/*
10004 	 * Wait for the events to quiesce before re-instating them.
10005 	 */
10006 	synchronize_rcu();
10007 
10008 	/*
10009 	 * Re-instate events in 2 passes.
10010 	 *
10011 	 * Skip over group leaders and only install siblings on this first
10012 	 * pass, siblings will not get enabled without a leader, however a
10013 	 * leader will enable its siblings, even if those are still on the old
10014 	 * context.
10015 	 */
10016 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10017 		if (event->group_leader == event)
10018 			continue;
10019 
10020 		list_del(&event->migrate_entry);
10021 		if (event->state >= PERF_EVENT_STATE_OFF)
10022 			event->state = PERF_EVENT_STATE_INACTIVE;
10023 		account_event_cpu(event, dst_cpu);
10024 		perf_install_in_context(dst_ctx, event, dst_cpu);
10025 		get_ctx(dst_ctx);
10026 	}
10027 
10028 	/*
10029 	 * Once all the siblings are setup properly, install the group leaders
10030 	 * to make it go.
10031 	 */
10032 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10033 		list_del(&event->migrate_entry);
10034 		if (event->state >= PERF_EVENT_STATE_OFF)
10035 			event->state = PERF_EVENT_STATE_INACTIVE;
10036 		account_event_cpu(event, dst_cpu);
10037 		perf_install_in_context(dst_ctx, event, dst_cpu);
10038 		get_ctx(dst_ctx);
10039 	}
10040 	mutex_unlock(&dst_ctx->mutex);
10041 	mutex_unlock(&src_ctx->mutex);
10042 }
10043 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10044 
10045 static void sync_child_event(struct perf_event *child_event,
10046 			       struct task_struct *child)
10047 {
10048 	struct perf_event *parent_event = child_event->parent;
10049 	u64 child_val;
10050 
10051 	if (child_event->attr.inherit_stat)
10052 		perf_event_read_event(child_event, child);
10053 
10054 	child_val = perf_event_count(child_event);
10055 
10056 	/*
10057 	 * Add back the child's count to the parent's count:
10058 	 */
10059 	atomic64_add(child_val, &parent_event->child_count);
10060 	atomic64_add(child_event->total_time_enabled,
10061 		     &parent_event->child_total_time_enabled);
10062 	atomic64_add(child_event->total_time_running,
10063 		     &parent_event->child_total_time_running);
10064 }
10065 
10066 static void
10067 perf_event_exit_event(struct perf_event *child_event,
10068 		      struct perf_event_context *child_ctx,
10069 		      struct task_struct *child)
10070 {
10071 	struct perf_event *parent_event = child_event->parent;
10072 
10073 	/*
10074 	 * Do not destroy the 'original' grouping; because of the context
10075 	 * switch optimization the original events could've ended up in a
10076 	 * random child task.
10077 	 *
10078 	 * If we were to destroy the original group, all group related
10079 	 * operations would cease to function properly after this random
10080 	 * child dies.
10081 	 *
10082 	 * Do destroy all inherited groups, we don't care about those
10083 	 * and being thorough is better.
10084 	 */
10085 	raw_spin_lock_irq(&child_ctx->lock);
10086 	WARN_ON_ONCE(child_ctx->is_active);
10087 
10088 	if (parent_event)
10089 		perf_group_detach(child_event);
10090 	list_del_event(child_event, child_ctx);
10091 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10092 	raw_spin_unlock_irq(&child_ctx->lock);
10093 
10094 	/*
10095 	 * Parent events are governed by their filedesc, retain them.
10096 	 */
10097 	if (!parent_event) {
10098 		perf_event_wakeup(child_event);
10099 		return;
10100 	}
10101 	/*
10102 	 * Child events can be cleaned up.
10103 	 */
10104 
10105 	sync_child_event(child_event, child);
10106 
10107 	/*
10108 	 * Remove this event from the parent's list
10109 	 */
10110 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10111 	mutex_lock(&parent_event->child_mutex);
10112 	list_del_init(&child_event->child_list);
10113 	mutex_unlock(&parent_event->child_mutex);
10114 
10115 	/*
10116 	 * Kick perf_poll() for is_event_hup().
10117 	 */
10118 	perf_event_wakeup(parent_event);
10119 	free_event(child_event);
10120 	put_event(parent_event);
10121 }
10122 
10123 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10124 {
10125 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10126 	struct perf_event *child_event, *next;
10127 
10128 	WARN_ON_ONCE(child != current);
10129 
10130 	child_ctx = perf_pin_task_context(child, ctxn);
10131 	if (!child_ctx)
10132 		return;
10133 
10134 	/*
10135 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10136 	 * ctx::mutex over the entire thing. This serializes against almost
10137 	 * everything that wants to access the ctx.
10138 	 *
10139 	 * The exception is sys_perf_event_open() /
10140 	 * perf_event_create_kernel_count() which does find_get_context()
10141 	 * without ctx::mutex (it cannot because of the move_group double mutex
10142 	 * lock thing). See the comments in perf_install_in_context().
10143 	 */
10144 	mutex_lock(&child_ctx->mutex);
10145 
10146 	/*
10147 	 * In a single ctx::lock section, de-schedule the events and detach the
10148 	 * context from the task such that we cannot ever get it scheduled back
10149 	 * in.
10150 	 */
10151 	raw_spin_lock_irq(&child_ctx->lock);
10152 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10153 
10154 	/*
10155 	 * Now that the context is inactive, destroy the task <-> ctx relation
10156 	 * and mark the context dead.
10157 	 */
10158 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10159 	put_ctx(child_ctx); /* cannot be last */
10160 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10161 	put_task_struct(current); /* cannot be last */
10162 
10163 	clone_ctx = unclone_ctx(child_ctx);
10164 	raw_spin_unlock_irq(&child_ctx->lock);
10165 
10166 	if (clone_ctx)
10167 		put_ctx(clone_ctx);
10168 
10169 	/*
10170 	 * Report the task dead after unscheduling the events so that we
10171 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10172 	 * get a few PERF_RECORD_READ events.
10173 	 */
10174 	perf_event_task(child, child_ctx, 0);
10175 
10176 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10177 		perf_event_exit_event(child_event, child_ctx, child);
10178 
10179 	mutex_unlock(&child_ctx->mutex);
10180 
10181 	put_ctx(child_ctx);
10182 }
10183 
10184 /*
10185  * When a child task exits, feed back event values to parent events.
10186  *
10187  * Can be called with cred_guard_mutex held when called from
10188  * install_exec_creds().
10189  */
10190 void perf_event_exit_task(struct task_struct *child)
10191 {
10192 	struct perf_event *event, *tmp;
10193 	int ctxn;
10194 
10195 	mutex_lock(&child->perf_event_mutex);
10196 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10197 				 owner_entry) {
10198 		list_del_init(&event->owner_entry);
10199 
10200 		/*
10201 		 * Ensure the list deletion is visible before we clear
10202 		 * the owner, closes a race against perf_release() where
10203 		 * we need to serialize on the owner->perf_event_mutex.
10204 		 */
10205 		smp_store_release(&event->owner, NULL);
10206 	}
10207 	mutex_unlock(&child->perf_event_mutex);
10208 
10209 	for_each_task_context_nr(ctxn)
10210 		perf_event_exit_task_context(child, ctxn);
10211 
10212 	/*
10213 	 * The perf_event_exit_task_context calls perf_event_task
10214 	 * with child's task_ctx, which generates EXIT events for
10215 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10216 	 * At this point we need to send EXIT events to cpu contexts.
10217 	 */
10218 	perf_event_task(child, NULL, 0);
10219 }
10220 
10221 static void perf_free_event(struct perf_event *event,
10222 			    struct perf_event_context *ctx)
10223 {
10224 	struct perf_event *parent = event->parent;
10225 
10226 	if (WARN_ON_ONCE(!parent))
10227 		return;
10228 
10229 	mutex_lock(&parent->child_mutex);
10230 	list_del_init(&event->child_list);
10231 	mutex_unlock(&parent->child_mutex);
10232 
10233 	put_event(parent);
10234 
10235 	raw_spin_lock_irq(&ctx->lock);
10236 	perf_group_detach(event);
10237 	list_del_event(event, ctx);
10238 	raw_spin_unlock_irq(&ctx->lock);
10239 	free_event(event);
10240 }
10241 
10242 /*
10243  * Free an unexposed, unused context as created by inheritance by
10244  * perf_event_init_task below, used by fork() in case of fail.
10245  *
10246  * Not all locks are strictly required, but take them anyway to be nice and
10247  * help out with the lockdep assertions.
10248  */
10249 void perf_event_free_task(struct task_struct *task)
10250 {
10251 	struct perf_event_context *ctx;
10252 	struct perf_event *event, *tmp;
10253 	int ctxn;
10254 
10255 	for_each_task_context_nr(ctxn) {
10256 		ctx = task->perf_event_ctxp[ctxn];
10257 		if (!ctx)
10258 			continue;
10259 
10260 		mutex_lock(&ctx->mutex);
10261 again:
10262 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10263 				group_entry)
10264 			perf_free_event(event, ctx);
10265 
10266 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10267 				group_entry)
10268 			perf_free_event(event, ctx);
10269 
10270 		if (!list_empty(&ctx->pinned_groups) ||
10271 				!list_empty(&ctx->flexible_groups))
10272 			goto again;
10273 
10274 		mutex_unlock(&ctx->mutex);
10275 
10276 		put_ctx(ctx);
10277 	}
10278 }
10279 
10280 void perf_event_delayed_put(struct task_struct *task)
10281 {
10282 	int ctxn;
10283 
10284 	for_each_task_context_nr(ctxn)
10285 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10286 }
10287 
10288 struct file *perf_event_get(unsigned int fd)
10289 {
10290 	struct file *file;
10291 
10292 	file = fget_raw(fd);
10293 	if (!file)
10294 		return ERR_PTR(-EBADF);
10295 
10296 	if (file->f_op != &perf_fops) {
10297 		fput(file);
10298 		return ERR_PTR(-EBADF);
10299 	}
10300 
10301 	return file;
10302 }
10303 
10304 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10305 {
10306 	if (!event)
10307 		return ERR_PTR(-EINVAL);
10308 
10309 	return &event->attr;
10310 }
10311 
10312 /*
10313  * inherit a event from parent task to child task:
10314  */
10315 static struct perf_event *
10316 inherit_event(struct perf_event *parent_event,
10317 	      struct task_struct *parent,
10318 	      struct perf_event_context *parent_ctx,
10319 	      struct task_struct *child,
10320 	      struct perf_event *group_leader,
10321 	      struct perf_event_context *child_ctx)
10322 {
10323 	enum perf_event_active_state parent_state = parent_event->state;
10324 	struct perf_event *child_event;
10325 	unsigned long flags;
10326 
10327 	/*
10328 	 * Instead of creating recursive hierarchies of events,
10329 	 * we link inherited events back to the original parent,
10330 	 * which has a filp for sure, which we use as the reference
10331 	 * count:
10332 	 */
10333 	if (parent_event->parent)
10334 		parent_event = parent_event->parent;
10335 
10336 	child_event = perf_event_alloc(&parent_event->attr,
10337 					   parent_event->cpu,
10338 					   child,
10339 					   group_leader, parent_event,
10340 					   NULL, NULL, -1);
10341 	if (IS_ERR(child_event))
10342 		return child_event;
10343 
10344 	/*
10345 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10346 	 * must be under the same lock in order to serialize against
10347 	 * perf_event_release_kernel(), such that either we must observe
10348 	 * is_orphaned_event() or they will observe us on the child_list.
10349 	 */
10350 	mutex_lock(&parent_event->child_mutex);
10351 	if (is_orphaned_event(parent_event) ||
10352 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10353 		mutex_unlock(&parent_event->child_mutex);
10354 		free_event(child_event);
10355 		return NULL;
10356 	}
10357 
10358 	get_ctx(child_ctx);
10359 
10360 	/*
10361 	 * Make the child state follow the state of the parent event,
10362 	 * not its attr.disabled bit.  We hold the parent's mutex,
10363 	 * so we won't race with perf_event_{en, dis}able_family.
10364 	 */
10365 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10366 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10367 	else
10368 		child_event->state = PERF_EVENT_STATE_OFF;
10369 
10370 	if (parent_event->attr.freq) {
10371 		u64 sample_period = parent_event->hw.sample_period;
10372 		struct hw_perf_event *hwc = &child_event->hw;
10373 
10374 		hwc->sample_period = sample_period;
10375 		hwc->last_period   = sample_period;
10376 
10377 		local64_set(&hwc->period_left, sample_period);
10378 	}
10379 
10380 	child_event->ctx = child_ctx;
10381 	child_event->overflow_handler = parent_event->overflow_handler;
10382 	child_event->overflow_handler_context
10383 		= parent_event->overflow_handler_context;
10384 
10385 	/*
10386 	 * Precalculate sample_data sizes
10387 	 */
10388 	perf_event__header_size(child_event);
10389 	perf_event__id_header_size(child_event);
10390 
10391 	/*
10392 	 * Link it up in the child's context:
10393 	 */
10394 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10395 	add_event_to_ctx(child_event, child_ctx);
10396 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10397 
10398 	/*
10399 	 * Link this into the parent event's child list
10400 	 */
10401 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10402 	mutex_unlock(&parent_event->child_mutex);
10403 
10404 	return child_event;
10405 }
10406 
10407 static int inherit_group(struct perf_event *parent_event,
10408 	      struct task_struct *parent,
10409 	      struct perf_event_context *parent_ctx,
10410 	      struct task_struct *child,
10411 	      struct perf_event_context *child_ctx)
10412 {
10413 	struct perf_event *leader;
10414 	struct perf_event *sub;
10415 	struct perf_event *child_ctr;
10416 
10417 	leader = inherit_event(parent_event, parent, parent_ctx,
10418 				 child, NULL, child_ctx);
10419 	if (IS_ERR(leader))
10420 		return PTR_ERR(leader);
10421 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10422 		child_ctr = inherit_event(sub, parent, parent_ctx,
10423 					    child, leader, child_ctx);
10424 		if (IS_ERR(child_ctr))
10425 			return PTR_ERR(child_ctr);
10426 	}
10427 	return 0;
10428 }
10429 
10430 static int
10431 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10432 		   struct perf_event_context *parent_ctx,
10433 		   struct task_struct *child, int ctxn,
10434 		   int *inherited_all)
10435 {
10436 	int ret;
10437 	struct perf_event_context *child_ctx;
10438 
10439 	if (!event->attr.inherit) {
10440 		*inherited_all = 0;
10441 		return 0;
10442 	}
10443 
10444 	child_ctx = child->perf_event_ctxp[ctxn];
10445 	if (!child_ctx) {
10446 		/*
10447 		 * This is executed from the parent task context, so
10448 		 * inherit events that have been marked for cloning.
10449 		 * First allocate and initialize a context for the
10450 		 * child.
10451 		 */
10452 
10453 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10454 		if (!child_ctx)
10455 			return -ENOMEM;
10456 
10457 		child->perf_event_ctxp[ctxn] = child_ctx;
10458 	}
10459 
10460 	ret = inherit_group(event, parent, parent_ctx,
10461 			    child, child_ctx);
10462 
10463 	if (ret)
10464 		*inherited_all = 0;
10465 
10466 	return ret;
10467 }
10468 
10469 /*
10470  * Initialize the perf_event context in task_struct
10471  */
10472 static int perf_event_init_context(struct task_struct *child, int ctxn)
10473 {
10474 	struct perf_event_context *child_ctx, *parent_ctx;
10475 	struct perf_event_context *cloned_ctx;
10476 	struct perf_event *event;
10477 	struct task_struct *parent = current;
10478 	int inherited_all = 1;
10479 	unsigned long flags;
10480 	int ret = 0;
10481 
10482 	if (likely(!parent->perf_event_ctxp[ctxn]))
10483 		return 0;
10484 
10485 	/*
10486 	 * If the parent's context is a clone, pin it so it won't get
10487 	 * swapped under us.
10488 	 */
10489 	parent_ctx = perf_pin_task_context(parent, ctxn);
10490 	if (!parent_ctx)
10491 		return 0;
10492 
10493 	/*
10494 	 * No need to check if parent_ctx != NULL here; since we saw
10495 	 * it non-NULL earlier, the only reason for it to become NULL
10496 	 * is if we exit, and since we're currently in the middle of
10497 	 * a fork we can't be exiting at the same time.
10498 	 */
10499 
10500 	/*
10501 	 * Lock the parent list. No need to lock the child - not PID
10502 	 * hashed yet and not running, so nobody can access it.
10503 	 */
10504 	mutex_lock(&parent_ctx->mutex);
10505 
10506 	/*
10507 	 * We dont have to disable NMIs - we are only looking at
10508 	 * the list, not manipulating it:
10509 	 */
10510 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10511 		ret = inherit_task_group(event, parent, parent_ctx,
10512 					 child, ctxn, &inherited_all);
10513 		if (ret)
10514 			break;
10515 	}
10516 
10517 	/*
10518 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10519 	 * to allocations, but we need to prevent rotation because
10520 	 * rotate_ctx() will change the list from interrupt context.
10521 	 */
10522 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10523 	parent_ctx->rotate_disable = 1;
10524 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10525 
10526 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10527 		ret = inherit_task_group(event, parent, parent_ctx,
10528 					 child, ctxn, &inherited_all);
10529 		if (ret)
10530 			break;
10531 	}
10532 
10533 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10534 	parent_ctx->rotate_disable = 0;
10535 
10536 	child_ctx = child->perf_event_ctxp[ctxn];
10537 
10538 	if (child_ctx && inherited_all) {
10539 		/*
10540 		 * Mark the child context as a clone of the parent
10541 		 * context, or of whatever the parent is a clone of.
10542 		 *
10543 		 * Note that if the parent is a clone, the holding of
10544 		 * parent_ctx->lock avoids it from being uncloned.
10545 		 */
10546 		cloned_ctx = parent_ctx->parent_ctx;
10547 		if (cloned_ctx) {
10548 			child_ctx->parent_ctx = cloned_ctx;
10549 			child_ctx->parent_gen = parent_ctx->parent_gen;
10550 		} else {
10551 			child_ctx->parent_ctx = parent_ctx;
10552 			child_ctx->parent_gen = parent_ctx->generation;
10553 		}
10554 		get_ctx(child_ctx->parent_ctx);
10555 	}
10556 
10557 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10558 	mutex_unlock(&parent_ctx->mutex);
10559 
10560 	perf_unpin_context(parent_ctx);
10561 	put_ctx(parent_ctx);
10562 
10563 	return ret;
10564 }
10565 
10566 /*
10567  * Initialize the perf_event context in task_struct
10568  */
10569 int perf_event_init_task(struct task_struct *child)
10570 {
10571 	int ctxn, ret;
10572 
10573 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10574 	mutex_init(&child->perf_event_mutex);
10575 	INIT_LIST_HEAD(&child->perf_event_list);
10576 
10577 	for_each_task_context_nr(ctxn) {
10578 		ret = perf_event_init_context(child, ctxn);
10579 		if (ret) {
10580 			perf_event_free_task(child);
10581 			return ret;
10582 		}
10583 	}
10584 
10585 	return 0;
10586 }
10587 
10588 static void __init perf_event_init_all_cpus(void)
10589 {
10590 	struct swevent_htable *swhash;
10591 	int cpu;
10592 
10593 	for_each_possible_cpu(cpu) {
10594 		swhash = &per_cpu(swevent_htable, cpu);
10595 		mutex_init(&swhash->hlist_mutex);
10596 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10597 
10598 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10599 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10600 
10601 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10602 	}
10603 }
10604 
10605 int perf_event_init_cpu(unsigned int cpu)
10606 {
10607 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10608 
10609 	mutex_lock(&swhash->hlist_mutex);
10610 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10611 		struct swevent_hlist *hlist;
10612 
10613 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10614 		WARN_ON(!hlist);
10615 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10616 	}
10617 	mutex_unlock(&swhash->hlist_mutex);
10618 	return 0;
10619 }
10620 
10621 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10622 static void __perf_event_exit_context(void *__info)
10623 {
10624 	struct perf_event_context *ctx = __info;
10625 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10626 	struct perf_event *event;
10627 
10628 	raw_spin_lock(&ctx->lock);
10629 	list_for_each_entry(event, &ctx->event_list, event_entry)
10630 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10631 	raw_spin_unlock(&ctx->lock);
10632 }
10633 
10634 static void perf_event_exit_cpu_context(int cpu)
10635 {
10636 	struct perf_event_context *ctx;
10637 	struct pmu *pmu;
10638 	int idx;
10639 
10640 	idx = srcu_read_lock(&pmus_srcu);
10641 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10642 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10643 
10644 		mutex_lock(&ctx->mutex);
10645 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10646 		mutex_unlock(&ctx->mutex);
10647 	}
10648 	srcu_read_unlock(&pmus_srcu, idx);
10649 }
10650 #else
10651 
10652 static void perf_event_exit_cpu_context(int cpu) { }
10653 
10654 #endif
10655 
10656 int perf_event_exit_cpu(unsigned int cpu)
10657 {
10658 	perf_event_exit_cpu_context(cpu);
10659 	return 0;
10660 }
10661 
10662 static int
10663 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10664 {
10665 	int cpu;
10666 
10667 	for_each_online_cpu(cpu)
10668 		perf_event_exit_cpu(cpu);
10669 
10670 	return NOTIFY_OK;
10671 }
10672 
10673 /*
10674  * Run the perf reboot notifier at the very last possible moment so that
10675  * the generic watchdog code runs as long as possible.
10676  */
10677 static struct notifier_block perf_reboot_notifier = {
10678 	.notifier_call = perf_reboot,
10679 	.priority = INT_MIN,
10680 };
10681 
10682 void __init perf_event_init(void)
10683 {
10684 	int ret;
10685 
10686 	idr_init(&pmu_idr);
10687 
10688 	perf_event_init_all_cpus();
10689 	init_srcu_struct(&pmus_srcu);
10690 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10691 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
10692 	perf_pmu_register(&perf_task_clock, NULL, -1);
10693 	perf_tp_register();
10694 	perf_event_init_cpu(smp_processor_id());
10695 	register_reboot_notifier(&perf_reboot_notifier);
10696 
10697 	ret = init_hw_breakpoint();
10698 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10699 
10700 	/*
10701 	 * Build time assertion that we keep the data_head at the intended
10702 	 * location.  IOW, validation we got the __reserved[] size right.
10703 	 */
10704 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10705 		     != 1024);
10706 }
10707 
10708 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10709 			      char *page)
10710 {
10711 	struct perf_pmu_events_attr *pmu_attr =
10712 		container_of(attr, struct perf_pmu_events_attr, attr);
10713 
10714 	if (pmu_attr->event_str)
10715 		return sprintf(page, "%s\n", pmu_attr->event_str);
10716 
10717 	return 0;
10718 }
10719 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10720 
10721 static int __init perf_event_sysfs_init(void)
10722 {
10723 	struct pmu *pmu;
10724 	int ret;
10725 
10726 	mutex_lock(&pmus_lock);
10727 
10728 	ret = bus_register(&pmu_bus);
10729 	if (ret)
10730 		goto unlock;
10731 
10732 	list_for_each_entry(pmu, &pmus, entry) {
10733 		if (!pmu->name || pmu->type < 0)
10734 			continue;
10735 
10736 		ret = pmu_dev_alloc(pmu);
10737 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10738 	}
10739 	pmu_bus_running = 1;
10740 	ret = 0;
10741 
10742 unlock:
10743 	mutex_unlock(&pmus_lock);
10744 
10745 	return ret;
10746 }
10747 device_initcall(perf_event_sysfs_init);
10748 
10749 #ifdef CONFIG_CGROUP_PERF
10750 static struct cgroup_subsys_state *
10751 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10752 {
10753 	struct perf_cgroup *jc;
10754 
10755 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10756 	if (!jc)
10757 		return ERR_PTR(-ENOMEM);
10758 
10759 	jc->info = alloc_percpu(struct perf_cgroup_info);
10760 	if (!jc->info) {
10761 		kfree(jc);
10762 		return ERR_PTR(-ENOMEM);
10763 	}
10764 
10765 	return &jc->css;
10766 }
10767 
10768 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10769 {
10770 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10771 
10772 	free_percpu(jc->info);
10773 	kfree(jc);
10774 }
10775 
10776 static int __perf_cgroup_move(void *info)
10777 {
10778 	struct task_struct *task = info;
10779 	rcu_read_lock();
10780 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10781 	rcu_read_unlock();
10782 	return 0;
10783 }
10784 
10785 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10786 {
10787 	struct task_struct *task;
10788 	struct cgroup_subsys_state *css;
10789 
10790 	cgroup_taskset_for_each(task, css, tset)
10791 		task_function_call(task, __perf_cgroup_move, task);
10792 }
10793 
10794 struct cgroup_subsys perf_event_cgrp_subsys = {
10795 	.css_alloc	= perf_cgroup_css_alloc,
10796 	.css_free	= perf_cgroup_css_free,
10797 	.attach		= perf_cgroup_attach,
10798 };
10799 #endif /* CONFIG_CGROUP_PERF */
10800