1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 50 #include "internal.h" 51 52 #include <asm/irq_regs.h> 53 54 typedef int (*remote_function_f)(void *); 55 56 struct remote_function_call { 57 struct task_struct *p; 58 remote_function_f func; 59 void *info; 60 int ret; 61 }; 62 63 static void remote_function(void *data) 64 { 65 struct remote_function_call *tfc = data; 66 struct task_struct *p = tfc->p; 67 68 if (p) { 69 /* -EAGAIN */ 70 if (task_cpu(p) != smp_processor_id()) 71 return; 72 73 /* 74 * Now that we're on right CPU with IRQs disabled, we can test 75 * if we hit the right task without races. 76 */ 77 78 tfc->ret = -ESRCH; /* No such (running) process */ 79 if (p != current) 80 return; 81 } 82 83 tfc->ret = tfc->func(tfc->info); 84 } 85 86 /** 87 * task_function_call - call a function on the cpu on which a task runs 88 * @p: the task to evaluate 89 * @func: the function to be called 90 * @info: the function call argument 91 * 92 * Calls the function @func when the task is currently running. This might 93 * be on the current CPU, which just calls the function directly 94 * 95 * returns: @func return value, or 96 * -ESRCH - when the process isn't running 97 * -EAGAIN - when the process moved away 98 */ 99 static int 100 task_function_call(struct task_struct *p, remote_function_f func, void *info) 101 { 102 struct remote_function_call data = { 103 .p = p, 104 .func = func, 105 .info = info, 106 .ret = -EAGAIN, 107 }; 108 int ret; 109 110 do { 111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 112 if (!ret) 113 ret = data.ret; 114 } while (ret == -EAGAIN); 115 116 return ret; 117 } 118 119 /** 120 * cpu_function_call - call a function on the cpu 121 * @func: the function to be called 122 * @info: the function call argument 123 * 124 * Calls the function @func on the remote cpu. 125 * 126 * returns: @func return value or -ENXIO when the cpu is offline 127 */ 128 static int cpu_function_call(int cpu, remote_function_f func, void *info) 129 { 130 struct remote_function_call data = { 131 .p = NULL, 132 .func = func, 133 .info = info, 134 .ret = -ENXIO, /* No such CPU */ 135 }; 136 137 smp_call_function_single(cpu, remote_function, &data, 1); 138 139 return data.ret; 140 } 141 142 static inline struct perf_cpu_context * 143 __get_cpu_context(struct perf_event_context *ctx) 144 { 145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 146 } 147 148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 149 struct perf_event_context *ctx) 150 { 151 raw_spin_lock(&cpuctx->ctx.lock); 152 if (ctx) 153 raw_spin_lock(&ctx->lock); 154 } 155 156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 157 struct perf_event_context *ctx) 158 { 159 if (ctx) 160 raw_spin_unlock(&ctx->lock); 161 raw_spin_unlock(&cpuctx->ctx.lock); 162 } 163 164 #define TASK_TOMBSTONE ((void *)-1L) 165 166 static bool is_kernel_event(struct perf_event *event) 167 { 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 169 } 170 171 /* 172 * On task ctx scheduling... 173 * 174 * When !ctx->nr_events a task context will not be scheduled. This means 175 * we can disable the scheduler hooks (for performance) without leaving 176 * pending task ctx state. 177 * 178 * This however results in two special cases: 179 * 180 * - removing the last event from a task ctx; this is relatively straight 181 * forward and is done in __perf_remove_from_context. 182 * 183 * - adding the first event to a task ctx; this is tricky because we cannot 184 * rely on ctx->is_active and therefore cannot use event_function_call(). 185 * See perf_install_in_context(). 186 * 187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 188 */ 189 190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 191 struct perf_event_context *, void *); 192 193 struct event_function_struct { 194 struct perf_event *event; 195 event_f func; 196 void *data; 197 }; 198 199 static int event_function(void *info) 200 { 201 struct event_function_struct *efs = info; 202 struct perf_event *event = efs->event; 203 struct perf_event_context *ctx = event->ctx; 204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 205 struct perf_event_context *task_ctx = cpuctx->task_ctx; 206 int ret = 0; 207 208 WARN_ON_ONCE(!irqs_disabled()); 209 210 perf_ctx_lock(cpuctx, task_ctx); 211 /* 212 * Since we do the IPI call without holding ctx->lock things can have 213 * changed, double check we hit the task we set out to hit. 214 */ 215 if (ctx->task) { 216 if (ctx->task != current) { 217 ret = -ESRCH; 218 goto unlock; 219 } 220 221 /* 222 * We only use event_function_call() on established contexts, 223 * and event_function() is only ever called when active (or 224 * rather, we'll have bailed in task_function_call() or the 225 * above ctx->task != current test), therefore we must have 226 * ctx->is_active here. 227 */ 228 WARN_ON_ONCE(!ctx->is_active); 229 /* 230 * And since we have ctx->is_active, cpuctx->task_ctx must 231 * match. 232 */ 233 WARN_ON_ONCE(task_ctx != ctx); 234 } else { 235 WARN_ON_ONCE(&cpuctx->ctx != ctx); 236 } 237 238 efs->func(event, cpuctx, ctx, efs->data); 239 unlock: 240 perf_ctx_unlock(cpuctx, task_ctx); 241 242 return ret; 243 } 244 245 static void event_function_call(struct perf_event *event, event_f func, void *data) 246 { 247 struct perf_event_context *ctx = event->ctx; 248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 249 struct event_function_struct efs = { 250 .event = event, 251 .func = func, 252 .data = data, 253 }; 254 255 if (!event->parent) { 256 /* 257 * If this is a !child event, we must hold ctx::mutex to 258 * stabilize the the event->ctx relation. See 259 * perf_event_ctx_lock(). 260 */ 261 lockdep_assert_held(&ctx->mutex); 262 } 263 264 if (!task) { 265 cpu_function_call(event->cpu, event_function, &efs); 266 return; 267 } 268 269 if (task == TASK_TOMBSTONE) 270 return; 271 272 again: 273 if (!task_function_call(task, event_function, &efs)) 274 return; 275 276 raw_spin_lock_irq(&ctx->lock); 277 /* 278 * Reload the task pointer, it might have been changed by 279 * a concurrent perf_event_context_sched_out(). 280 */ 281 task = ctx->task; 282 if (task == TASK_TOMBSTONE) { 283 raw_spin_unlock_irq(&ctx->lock); 284 return; 285 } 286 if (ctx->is_active) { 287 raw_spin_unlock_irq(&ctx->lock); 288 goto again; 289 } 290 func(event, NULL, ctx, data); 291 raw_spin_unlock_irq(&ctx->lock); 292 } 293 294 /* 295 * Similar to event_function_call() + event_function(), but hard assumes IRQs 296 * are already disabled and we're on the right CPU. 297 */ 298 static void event_function_local(struct perf_event *event, event_f func, void *data) 299 { 300 struct perf_event_context *ctx = event->ctx; 301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 302 struct task_struct *task = READ_ONCE(ctx->task); 303 struct perf_event_context *task_ctx = NULL; 304 305 WARN_ON_ONCE(!irqs_disabled()); 306 307 if (task) { 308 if (task == TASK_TOMBSTONE) 309 return; 310 311 task_ctx = ctx; 312 } 313 314 perf_ctx_lock(cpuctx, task_ctx); 315 316 task = ctx->task; 317 if (task == TASK_TOMBSTONE) 318 goto unlock; 319 320 if (task) { 321 /* 322 * We must be either inactive or active and the right task, 323 * otherwise we're screwed, since we cannot IPI to somewhere 324 * else. 325 */ 326 if (ctx->is_active) { 327 if (WARN_ON_ONCE(task != current)) 328 goto unlock; 329 330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 331 goto unlock; 332 } 333 } else { 334 WARN_ON_ONCE(&cpuctx->ctx != ctx); 335 } 336 337 func(event, cpuctx, ctx, data); 338 unlock: 339 perf_ctx_unlock(cpuctx, task_ctx); 340 } 341 342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 343 PERF_FLAG_FD_OUTPUT |\ 344 PERF_FLAG_PID_CGROUP |\ 345 PERF_FLAG_FD_CLOEXEC) 346 347 /* 348 * branch priv levels that need permission checks 349 */ 350 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 351 (PERF_SAMPLE_BRANCH_KERNEL |\ 352 PERF_SAMPLE_BRANCH_HV) 353 354 enum event_type_t { 355 EVENT_FLEXIBLE = 0x1, 356 EVENT_PINNED = 0x2, 357 EVENT_TIME = 0x4, 358 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 359 }; 360 361 /* 362 * perf_sched_events : >0 events exist 363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 364 */ 365 366 static void perf_sched_delayed(struct work_struct *work); 367 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 369 static DEFINE_MUTEX(perf_sched_mutex); 370 static atomic_t perf_sched_count; 371 372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 373 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 375 376 static atomic_t nr_mmap_events __read_mostly; 377 static atomic_t nr_comm_events __read_mostly; 378 static atomic_t nr_task_events __read_mostly; 379 static atomic_t nr_freq_events __read_mostly; 380 static atomic_t nr_switch_events __read_mostly; 381 382 static LIST_HEAD(pmus); 383 static DEFINE_MUTEX(pmus_lock); 384 static struct srcu_struct pmus_srcu; 385 386 /* 387 * perf event paranoia level: 388 * -1 - not paranoid at all 389 * 0 - disallow raw tracepoint access for unpriv 390 * 1 - disallow cpu events for unpriv 391 * 2 - disallow kernel profiling for unpriv 392 */ 393 int sysctl_perf_event_paranoid __read_mostly = 2; 394 395 /* Minimum for 512 kiB + 1 user control page */ 396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 397 398 /* 399 * max perf event sample rate 400 */ 401 #define DEFAULT_MAX_SAMPLE_RATE 100000 402 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 403 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 404 405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 406 407 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 408 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 409 410 static int perf_sample_allowed_ns __read_mostly = 411 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 412 413 static void update_perf_cpu_limits(void) 414 { 415 u64 tmp = perf_sample_period_ns; 416 417 tmp *= sysctl_perf_cpu_time_max_percent; 418 tmp = div_u64(tmp, 100); 419 if (!tmp) 420 tmp = 1; 421 422 WRITE_ONCE(perf_sample_allowed_ns, tmp); 423 } 424 425 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 426 427 int perf_proc_update_handler(struct ctl_table *table, int write, 428 void __user *buffer, size_t *lenp, 429 loff_t *ppos) 430 { 431 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 432 433 if (ret || !write) 434 return ret; 435 436 /* 437 * If throttling is disabled don't allow the write: 438 */ 439 if (sysctl_perf_cpu_time_max_percent == 100 || 440 sysctl_perf_cpu_time_max_percent == 0) 441 return -EINVAL; 442 443 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 444 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 445 update_perf_cpu_limits(); 446 447 return 0; 448 } 449 450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 451 452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 453 void __user *buffer, size_t *lenp, 454 loff_t *ppos) 455 { 456 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 457 458 if (ret || !write) 459 return ret; 460 461 if (sysctl_perf_cpu_time_max_percent == 100 || 462 sysctl_perf_cpu_time_max_percent == 0) { 463 printk(KERN_WARNING 464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 465 WRITE_ONCE(perf_sample_allowed_ns, 0); 466 } else { 467 update_perf_cpu_limits(); 468 } 469 470 return 0; 471 } 472 473 /* 474 * perf samples are done in some very critical code paths (NMIs). 475 * If they take too much CPU time, the system can lock up and not 476 * get any real work done. This will drop the sample rate when 477 * we detect that events are taking too long. 478 */ 479 #define NR_ACCUMULATED_SAMPLES 128 480 static DEFINE_PER_CPU(u64, running_sample_length); 481 482 static u64 __report_avg; 483 static u64 __report_allowed; 484 485 static void perf_duration_warn(struct irq_work *w) 486 { 487 printk_ratelimited(KERN_INFO 488 "perf: interrupt took too long (%lld > %lld), lowering " 489 "kernel.perf_event_max_sample_rate to %d\n", 490 __report_avg, __report_allowed, 491 sysctl_perf_event_sample_rate); 492 } 493 494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 495 496 void perf_sample_event_took(u64 sample_len_ns) 497 { 498 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 499 u64 running_len; 500 u64 avg_len; 501 u32 max; 502 503 if (max_len == 0) 504 return; 505 506 /* Decay the counter by 1 average sample. */ 507 running_len = __this_cpu_read(running_sample_length); 508 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 509 running_len += sample_len_ns; 510 __this_cpu_write(running_sample_length, running_len); 511 512 /* 513 * Note: this will be biased artifically low until we have 514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 515 * from having to maintain a count. 516 */ 517 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 518 if (avg_len <= max_len) 519 return; 520 521 __report_avg = avg_len; 522 __report_allowed = max_len; 523 524 /* 525 * Compute a throttle threshold 25% below the current duration. 526 */ 527 avg_len += avg_len / 4; 528 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 529 if (avg_len < max) 530 max /= (u32)avg_len; 531 else 532 max = 1; 533 534 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 535 WRITE_ONCE(max_samples_per_tick, max); 536 537 sysctl_perf_event_sample_rate = max * HZ; 538 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 539 540 if (!irq_work_queue(&perf_duration_work)) { 541 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 542 "kernel.perf_event_max_sample_rate to %d\n", 543 __report_avg, __report_allowed, 544 sysctl_perf_event_sample_rate); 545 } 546 } 547 548 static atomic64_t perf_event_id; 549 550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 551 enum event_type_t event_type); 552 553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 554 enum event_type_t event_type, 555 struct task_struct *task); 556 557 static void update_context_time(struct perf_event_context *ctx); 558 static u64 perf_event_time(struct perf_event *event); 559 560 void __weak perf_event_print_debug(void) { } 561 562 extern __weak const char *perf_pmu_name(void) 563 { 564 return "pmu"; 565 } 566 567 static inline u64 perf_clock(void) 568 { 569 return local_clock(); 570 } 571 572 static inline u64 perf_event_clock(struct perf_event *event) 573 { 574 return event->clock(); 575 } 576 577 #ifdef CONFIG_CGROUP_PERF 578 579 static inline bool 580 perf_cgroup_match(struct perf_event *event) 581 { 582 struct perf_event_context *ctx = event->ctx; 583 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 584 585 /* @event doesn't care about cgroup */ 586 if (!event->cgrp) 587 return true; 588 589 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 590 if (!cpuctx->cgrp) 591 return false; 592 593 /* 594 * Cgroup scoping is recursive. An event enabled for a cgroup is 595 * also enabled for all its descendant cgroups. If @cpuctx's 596 * cgroup is a descendant of @event's (the test covers identity 597 * case), it's a match. 598 */ 599 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 600 event->cgrp->css.cgroup); 601 } 602 603 static inline void perf_detach_cgroup(struct perf_event *event) 604 { 605 css_put(&event->cgrp->css); 606 event->cgrp = NULL; 607 } 608 609 static inline int is_cgroup_event(struct perf_event *event) 610 { 611 return event->cgrp != NULL; 612 } 613 614 static inline u64 perf_cgroup_event_time(struct perf_event *event) 615 { 616 struct perf_cgroup_info *t; 617 618 t = per_cpu_ptr(event->cgrp->info, event->cpu); 619 return t->time; 620 } 621 622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 623 { 624 struct perf_cgroup_info *info; 625 u64 now; 626 627 now = perf_clock(); 628 629 info = this_cpu_ptr(cgrp->info); 630 631 info->time += now - info->timestamp; 632 info->timestamp = now; 633 } 634 635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 636 { 637 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 638 if (cgrp_out) 639 __update_cgrp_time(cgrp_out); 640 } 641 642 static inline void update_cgrp_time_from_event(struct perf_event *event) 643 { 644 struct perf_cgroup *cgrp; 645 646 /* 647 * ensure we access cgroup data only when needed and 648 * when we know the cgroup is pinned (css_get) 649 */ 650 if (!is_cgroup_event(event)) 651 return; 652 653 cgrp = perf_cgroup_from_task(current, event->ctx); 654 /* 655 * Do not update time when cgroup is not active 656 */ 657 if (cgrp == event->cgrp) 658 __update_cgrp_time(event->cgrp); 659 } 660 661 static inline void 662 perf_cgroup_set_timestamp(struct task_struct *task, 663 struct perf_event_context *ctx) 664 { 665 struct perf_cgroup *cgrp; 666 struct perf_cgroup_info *info; 667 668 /* 669 * ctx->lock held by caller 670 * ensure we do not access cgroup data 671 * unless we have the cgroup pinned (css_get) 672 */ 673 if (!task || !ctx->nr_cgroups) 674 return; 675 676 cgrp = perf_cgroup_from_task(task, ctx); 677 info = this_cpu_ptr(cgrp->info); 678 info->timestamp = ctx->timestamp; 679 } 680 681 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 682 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 683 684 /* 685 * reschedule events based on the cgroup constraint of task. 686 * 687 * mode SWOUT : schedule out everything 688 * mode SWIN : schedule in based on cgroup for next 689 */ 690 static void perf_cgroup_switch(struct task_struct *task, int mode) 691 { 692 struct perf_cpu_context *cpuctx; 693 struct pmu *pmu; 694 unsigned long flags; 695 696 /* 697 * disable interrupts to avoid geting nr_cgroup 698 * changes via __perf_event_disable(). Also 699 * avoids preemption. 700 */ 701 local_irq_save(flags); 702 703 /* 704 * we reschedule only in the presence of cgroup 705 * constrained events. 706 */ 707 708 list_for_each_entry_rcu(pmu, &pmus, entry) { 709 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 710 if (cpuctx->unique_pmu != pmu) 711 continue; /* ensure we process each cpuctx once */ 712 713 /* 714 * perf_cgroup_events says at least one 715 * context on this CPU has cgroup events. 716 * 717 * ctx->nr_cgroups reports the number of cgroup 718 * events for a context. 719 */ 720 if (cpuctx->ctx.nr_cgroups > 0) { 721 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 722 perf_pmu_disable(cpuctx->ctx.pmu); 723 724 if (mode & PERF_CGROUP_SWOUT) { 725 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 726 /* 727 * must not be done before ctxswout due 728 * to event_filter_match() in event_sched_out() 729 */ 730 cpuctx->cgrp = NULL; 731 } 732 733 if (mode & PERF_CGROUP_SWIN) { 734 WARN_ON_ONCE(cpuctx->cgrp); 735 /* 736 * set cgrp before ctxsw in to allow 737 * event_filter_match() to not have to pass 738 * task around 739 * we pass the cpuctx->ctx to perf_cgroup_from_task() 740 * because cgorup events are only per-cpu 741 */ 742 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx); 743 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 744 } 745 perf_pmu_enable(cpuctx->ctx.pmu); 746 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 747 } 748 } 749 750 local_irq_restore(flags); 751 } 752 753 static inline void perf_cgroup_sched_out(struct task_struct *task, 754 struct task_struct *next) 755 { 756 struct perf_cgroup *cgrp1; 757 struct perf_cgroup *cgrp2 = NULL; 758 759 rcu_read_lock(); 760 /* 761 * we come here when we know perf_cgroup_events > 0 762 * we do not need to pass the ctx here because we know 763 * we are holding the rcu lock 764 */ 765 cgrp1 = perf_cgroup_from_task(task, NULL); 766 cgrp2 = perf_cgroup_from_task(next, NULL); 767 768 /* 769 * only schedule out current cgroup events if we know 770 * that we are switching to a different cgroup. Otherwise, 771 * do no touch the cgroup events. 772 */ 773 if (cgrp1 != cgrp2) 774 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 775 776 rcu_read_unlock(); 777 } 778 779 static inline void perf_cgroup_sched_in(struct task_struct *prev, 780 struct task_struct *task) 781 { 782 struct perf_cgroup *cgrp1; 783 struct perf_cgroup *cgrp2 = NULL; 784 785 rcu_read_lock(); 786 /* 787 * we come here when we know perf_cgroup_events > 0 788 * we do not need to pass the ctx here because we know 789 * we are holding the rcu lock 790 */ 791 cgrp1 = perf_cgroup_from_task(task, NULL); 792 cgrp2 = perf_cgroup_from_task(prev, NULL); 793 794 /* 795 * only need to schedule in cgroup events if we are changing 796 * cgroup during ctxsw. Cgroup events were not scheduled 797 * out of ctxsw out if that was not the case. 798 */ 799 if (cgrp1 != cgrp2) 800 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 801 802 rcu_read_unlock(); 803 } 804 805 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 806 struct perf_event_attr *attr, 807 struct perf_event *group_leader) 808 { 809 struct perf_cgroup *cgrp; 810 struct cgroup_subsys_state *css; 811 struct fd f = fdget(fd); 812 int ret = 0; 813 814 if (!f.file) 815 return -EBADF; 816 817 css = css_tryget_online_from_dir(f.file->f_path.dentry, 818 &perf_event_cgrp_subsys); 819 if (IS_ERR(css)) { 820 ret = PTR_ERR(css); 821 goto out; 822 } 823 824 cgrp = container_of(css, struct perf_cgroup, css); 825 event->cgrp = cgrp; 826 827 /* 828 * all events in a group must monitor 829 * the same cgroup because a task belongs 830 * to only one perf cgroup at a time 831 */ 832 if (group_leader && group_leader->cgrp != cgrp) { 833 perf_detach_cgroup(event); 834 ret = -EINVAL; 835 } 836 out: 837 fdput(f); 838 return ret; 839 } 840 841 static inline void 842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 843 { 844 struct perf_cgroup_info *t; 845 t = per_cpu_ptr(event->cgrp->info, event->cpu); 846 event->shadow_ctx_time = now - t->timestamp; 847 } 848 849 static inline void 850 perf_cgroup_defer_enabled(struct perf_event *event) 851 { 852 /* 853 * when the current task's perf cgroup does not match 854 * the event's, we need to remember to call the 855 * perf_mark_enable() function the first time a task with 856 * a matching perf cgroup is scheduled in. 857 */ 858 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 859 event->cgrp_defer_enabled = 1; 860 } 861 862 static inline void 863 perf_cgroup_mark_enabled(struct perf_event *event, 864 struct perf_event_context *ctx) 865 { 866 struct perf_event *sub; 867 u64 tstamp = perf_event_time(event); 868 869 if (!event->cgrp_defer_enabled) 870 return; 871 872 event->cgrp_defer_enabled = 0; 873 874 event->tstamp_enabled = tstamp - event->total_time_enabled; 875 list_for_each_entry(sub, &event->sibling_list, group_entry) { 876 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 877 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 878 sub->cgrp_defer_enabled = 0; 879 } 880 } 881 } 882 883 /* 884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 885 * cleared when last cgroup event is removed. 886 */ 887 static inline void 888 list_update_cgroup_event(struct perf_event *event, 889 struct perf_event_context *ctx, bool add) 890 { 891 struct perf_cpu_context *cpuctx; 892 893 if (!is_cgroup_event(event)) 894 return; 895 896 if (add && ctx->nr_cgroups++) 897 return; 898 else if (!add && --ctx->nr_cgroups) 899 return; 900 /* 901 * Because cgroup events are always per-cpu events, 902 * this will always be called from the right CPU. 903 */ 904 cpuctx = __get_cpu_context(ctx); 905 906 /* Only set/clear cpuctx->cgrp if current task uses event->cgrp. */ 907 if (perf_cgroup_from_task(current, ctx) != event->cgrp) { 908 /* 909 * We are removing the last cpu event in this context. 910 * If that event is not active in this cpu, cpuctx->cgrp 911 * should've been cleared by perf_cgroup_switch. 912 */ 913 WARN_ON_ONCE(!add && cpuctx->cgrp); 914 return; 915 } 916 cpuctx->cgrp = add ? event->cgrp : NULL; 917 } 918 919 #else /* !CONFIG_CGROUP_PERF */ 920 921 static inline bool 922 perf_cgroup_match(struct perf_event *event) 923 { 924 return true; 925 } 926 927 static inline void perf_detach_cgroup(struct perf_event *event) 928 {} 929 930 static inline int is_cgroup_event(struct perf_event *event) 931 { 932 return 0; 933 } 934 935 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 936 { 937 return 0; 938 } 939 940 static inline void update_cgrp_time_from_event(struct perf_event *event) 941 { 942 } 943 944 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 945 { 946 } 947 948 static inline void perf_cgroup_sched_out(struct task_struct *task, 949 struct task_struct *next) 950 { 951 } 952 953 static inline void perf_cgroup_sched_in(struct task_struct *prev, 954 struct task_struct *task) 955 { 956 } 957 958 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 959 struct perf_event_attr *attr, 960 struct perf_event *group_leader) 961 { 962 return -EINVAL; 963 } 964 965 static inline void 966 perf_cgroup_set_timestamp(struct task_struct *task, 967 struct perf_event_context *ctx) 968 { 969 } 970 971 void 972 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 973 { 974 } 975 976 static inline void 977 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 978 { 979 } 980 981 static inline u64 perf_cgroup_event_time(struct perf_event *event) 982 { 983 return 0; 984 } 985 986 static inline void 987 perf_cgroup_defer_enabled(struct perf_event *event) 988 { 989 } 990 991 static inline void 992 perf_cgroup_mark_enabled(struct perf_event *event, 993 struct perf_event_context *ctx) 994 { 995 } 996 997 static inline void 998 list_update_cgroup_event(struct perf_event *event, 999 struct perf_event_context *ctx, bool add) 1000 { 1001 } 1002 1003 #endif 1004 1005 /* 1006 * set default to be dependent on timer tick just 1007 * like original code 1008 */ 1009 #define PERF_CPU_HRTIMER (1000 / HZ) 1010 /* 1011 * function must be called with interrupts disbled 1012 */ 1013 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1014 { 1015 struct perf_cpu_context *cpuctx; 1016 int rotations = 0; 1017 1018 WARN_ON(!irqs_disabled()); 1019 1020 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1021 rotations = perf_rotate_context(cpuctx); 1022 1023 raw_spin_lock(&cpuctx->hrtimer_lock); 1024 if (rotations) 1025 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1026 else 1027 cpuctx->hrtimer_active = 0; 1028 raw_spin_unlock(&cpuctx->hrtimer_lock); 1029 1030 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1031 } 1032 1033 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1034 { 1035 struct hrtimer *timer = &cpuctx->hrtimer; 1036 struct pmu *pmu = cpuctx->ctx.pmu; 1037 u64 interval; 1038 1039 /* no multiplexing needed for SW PMU */ 1040 if (pmu->task_ctx_nr == perf_sw_context) 1041 return; 1042 1043 /* 1044 * check default is sane, if not set then force to 1045 * default interval (1/tick) 1046 */ 1047 interval = pmu->hrtimer_interval_ms; 1048 if (interval < 1) 1049 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1050 1051 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1052 1053 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1054 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1055 timer->function = perf_mux_hrtimer_handler; 1056 } 1057 1058 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1059 { 1060 struct hrtimer *timer = &cpuctx->hrtimer; 1061 struct pmu *pmu = cpuctx->ctx.pmu; 1062 unsigned long flags; 1063 1064 /* not for SW PMU */ 1065 if (pmu->task_ctx_nr == perf_sw_context) 1066 return 0; 1067 1068 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1069 if (!cpuctx->hrtimer_active) { 1070 cpuctx->hrtimer_active = 1; 1071 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1072 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1073 } 1074 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1075 1076 return 0; 1077 } 1078 1079 void perf_pmu_disable(struct pmu *pmu) 1080 { 1081 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1082 if (!(*count)++) 1083 pmu->pmu_disable(pmu); 1084 } 1085 1086 void perf_pmu_enable(struct pmu *pmu) 1087 { 1088 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1089 if (!--(*count)) 1090 pmu->pmu_enable(pmu); 1091 } 1092 1093 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1094 1095 /* 1096 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1097 * perf_event_task_tick() are fully serialized because they're strictly cpu 1098 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1099 * disabled, while perf_event_task_tick is called from IRQ context. 1100 */ 1101 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1102 { 1103 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1104 1105 WARN_ON(!irqs_disabled()); 1106 1107 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1108 1109 list_add(&ctx->active_ctx_list, head); 1110 } 1111 1112 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1113 { 1114 WARN_ON(!irqs_disabled()); 1115 1116 WARN_ON(list_empty(&ctx->active_ctx_list)); 1117 1118 list_del_init(&ctx->active_ctx_list); 1119 } 1120 1121 static void get_ctx(struct perf_event_context *ctx) 1122 { 1123 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1124 } 1125 1126 static void free_ctx(struct rcu_head *head) 1127 { 1128 struct perf_event_context *ctx; 1129 1130 ctx = container_of(head, struct perf_event_context, rcu_head); 1131 kfree(ctx->task_ctx_data); 1132 kfree(ctx); 1133 } 1134 1135 static void put_ctx(struct perf_event_context *ctx) 1136 { 1137 if (atomic_dec_and_test(&ctx->refcount)) { 1138 if (ctx->parent_ctx) 1139 put_ctx(ctx->parent_ctx); 1140 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1141 put_task_struct(ctx->task); 1142 call_rcu(&ctx->rcu_head, free_ctx); 1143 } 1144 } 1145 1146 /* 1147 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1148 * perf_pmu_migrate_context() we need some magic. 1149 * 1150 * Those places that change perf_event::ctx will hold both 1151 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1152 * 1153 * Lock ordering is by mutex address. There are two other sites where 1154 * perf_event_context::mutex nests and those are: 1155 * 1156 * - perf_event_exit_task_context() [ child , 0 ] 1157 * perf_event_exit_event() 1158 * put_event() [ parent, 1 ] 1159 * 1160 * - perf_event_init_context() [ parent, 0 ] 1161 * inherit_task_group() 1162 * inherit_group() 1163 * inherit_event() 1164 * perf_event_alloc() 1165 * perf_init_event() 1166 * perf_try_init_event() [ child , 1 ] 1167 * 1168 * While it appears there is an obvious deadlock here -- the parent and child 1169 * nesting levels are inverted between the two. This is in fact safe because 1170 * life-time rules separate them. That is an exiting task cannot fork, and a 1171 * spawning task cannot (yet) exit. 1172 * 1173 * But remember that that these are parent<->child context relations, and 1174 * migration does not affect children, therefore these two orderings should not 1175 * interact. 1176 * 1177 * The change in perf_event::ctx does not affect children (as claimed above) 1178 * because the sys_perf_event_open() case will install a new event and break 1179 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1180 * concerned with cpuctx and that doesn't have children. 1181 * 1182 * The places that change perf_event::ctx will issue: 1183 * 1184 * perf_remove_from_context(); 1185 * synchronize_rcu(); 1186 * perf_install_in_context(); 1187 * 1188 * to affect the change. The remove_from_context() + synchronize_rcu() should 1189 * quiesce the event, after which we can install it in the new location. This 1190 * means that only external vectors (perf_fops, prctl) can perturb the event 1191 * while in transit. Therefore all such accessors should also acquire 1192 * perf_event_context::mutex to serialize against this. 1193 * 1194 * However; because event->ctx can change while we're waiting to acquire 1195 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1196 * function. 1197 * 1198 * Lock order: 1199 * cred_guard_mutex 1200 * task_struct::perf_event_mutex 1201 * perf_event_context::mutex 1202 * perf_event::child_mutex; 1203 * perf_event_context::lock 1204 * perf_event::mmap_mutex 1205 * mmap_sem 1206 */ 1207 static struct perf_event_context * 1208 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1209 { 1210 struct perf_event_context *ctx; 1211 1212 again: 1213 rcu_read_lock(); 1214 ctx = ACCESS_ONCE(event->ctx); 1215 if (!atomic_inc_not_zero(&ctx->refcount)) { 1216 rcu_read_unlock(); 1217 goto again; 1218 } 1219 rcu_read_unlock(); 1220 1221 mutex_lock_nested(&ctx->mutex, nesting); 1222 if (event->ctx != ctx) { 1223 mutex_unlock(&ctx->mutex); 1224 put_ctx(ctx); 1225 goto again; 1226 } 1227 1228 return ctx; 1229 } 1230 1231 static inline struct perf_event_context * 1232 perf_event_ctx_lock(struct perf_event *event) 1233 { 1234 return perf_event_ctx_lock_nested(event, 0); 1235 } 1236 1237 static void perf_event_ctx_unlock(struct perf_event *event, 1238 struct perf_event_context *ctx) 1239 { 1240 mutex_unlock(&ctx->mutex); 1241 put_ctx(ctx); 1242 } 1243 1244 /* 1245 * This must be done under the ctx->lock, such as to serialize against 1246 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1247 * calling scheduler related locks and ctx->lock nests inside those. 1248 */ 1249 static __must_check struct perf_event_context * 1250 unclone_ctx(struct perf_event_context *ctx) 1251 { 1252 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1253 1254 lockdep_assert_held(&ctx->lock); 1255 1256 if (parent_ctx) 1257 ctx->parent_ctx = NULL; 1258 ctx->generation++; 1259 1260 return parent_ctx; 1261 } 1262 1263 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1264 { 1265 /* 1266 * only top level events have the pid namespace they were created in 1267 */ 1268 if (event->parent) 1269 event = event->parent; 1270 1271 return task_tgid_nr_ns(p, event->ns); 1272 } 1273 1274 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1275 { 1276 /* 1277 * only top level events have the pid namespace they were created in 1278 */ 1279 if (event->parent) 1280 event = event->parent; 1281 1282 return task_pid_nr_ns(p, event->ns); 1283 } 1284 1285 /* 1286 * If we inherit events we want to return the parent event id 1287 * to userspace. 1288 */ 1289 static u64 primary_event_id(struct perf_event *event) 1290 { 1291 u64 id = event->id; 1292 1293 if (event->parent) 1294 id = event->parent->id; 1295 1296 return id; 1297 } 1298 1299 /* 1300 * Get the perf_event_context for a task and lock it. 1301 * 1302 * This has to cope with with the fact that until it is locked, 1303 * the context could get moved to another task. 1304 */ 1305 static struct perf_event_context * 1306 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1307 { 1308 struct perf_event_context *ctx; 1309 1310 retry: 1311 /* 1312 * One of the few rules of preemptible RCU is that one cannot do 1313 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1314 * part of the read side critical section was irqs-enabled -- see 1315 * rcu_read_unlock_special(). 1316 * 1317 * Since ctx->lock nests under rq->lock we must ensure the entire read 1318 * side critical section has interrupts disabled. 1319 */ 1320 local_irq_save(*flags); 1321 rcu_read_lock(); 1322 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1323 if (ctx) { 1324 /* 1325 * If this context is a clone of another, it might 1326 * get swapped for another underneath us by 1327 * perf_event_task_sched_out, though the 1328 * rcu_read_lock() protects us from any context 1329 * getting freed. Lock the context and check if it 1330 * got swapped before we could get the lock, and retry 1331 * if so. If we locked the right context, then it 1332 * can't get swapped on us any more. 1333 */ 1334 raw_spin_lock(&ctx->lock); 1335 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1336 raw_spin_unlock(&ctx->lock); 1337 rcu_read_unlock(); 1338 local_irq_restore(*flags); 1339 goto retry; 1340 } 1341 1342 if (ctx->task == TASK_TOMBSTONE || 1343 !atomic_inc_not_zero(&ctx->refcount)) { 1344 raw_spin_unlock(&ctx->lock); 1345 ctx = NULL; 1346 } else { 1347 WARN_ON_ONCE(ctx->task != task); 1348 } 1349 } 1350 rcu_read_unlock(); 1351 if (!ctx) 1352 local_irq_restore(*flags); 1353 return ctx; 1354 } 1355 1356 /* 1357 * Get the context for a task and increment its pin_count so it 1358 * can't get swapped to another task. This also increments its 1359 * reference count so that the context can't get freed. 1360 */ 1361 static struct perf_event_context * 1362 perf_pin_task_context(struct task_struct *task, int ctxn) 1363 { 1364 struct perf_event_context *ctx; 1365 unsigned long flags; 1366 1367 ctx = perf_lock_task_context(task, ctxn, &flags); 1368 if (ctx) { 1369 ++ctx->pin_count; 1370 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1371 } 1372 return ctx; 1373 } 1374 1375 static void perf_unpin_context(struct perf_event_context *ctx) 1376 { 1377 unsigned long flags; 1378 1379 raw_spin_lock_irqsave(&ctx->lock, flags); 1380 --ctx->pin_count; 1381 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1382 } 1383 1384 /* 1385 * Update the record of the current time in a context. 1386 */ 1387 static void update_context_time(struct perf_event_context *ctx) 1388 { 1389 u64 now = perf_clock(); 1390 1391 ctx->time += now - ctx->timestamp; 1392 ctx->timestamp = now; 1393 } 1394 1395 static u64 perf_event_time(struct perf_event *event) 1396 { 1397 struct perf_event_context *ctx = event->ctx; 1398 1399 if (is_cgroup_event(event)) 1400 return perf_cgroup_event_time(event); 1401 1402 return ctx ? ctx->time : 0; 1403 } 1404 1405 /* 1406 * Update the total_time_enabled and total_time_running fields for a event. 1407 */ 1408 static void update_event_times(struct perf_event *event) 1409 { 1410 struct perf_event_context *ctx = event->ctx; 1411 u64 run_end; 1412 1413 lockdep_assert_held(&ctx->lock); 1414 1415 if (event->state < PERF_EVENT_STATE_INACTIVE || 1416 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1417 return; 1418 1419 /* 1420 * in cgroup mode, time_enabled represents 1421 * the time the event was enabled AND active 1422 * tasks were in the monitored cgroup. This is 1423 * independent of the activity of the context as 1424 * there may be a mix of cgroup and non-cgroup events. 1425 * 1426 * That is why we treat cgroup events differently 1427 * here. 1428 */ 1429 if (is_cgroup_event(event)) 1430 run_end = perf_cgroup_event_time(event); 1431 else if (ctx->is_active) 1432 run_end = ctx->time; 1433 else 1434 run_end = event->tstamp_stopped; 1435 1436 event->total_time_enabled = run_end - event->tstamp_enabled; 1437 1438 if (event->state == PERF_EVENT_STATE_INACTIVE) 1439 run_end = event->tstamp_stopped; 1440 else 1441 run_end = perf_event_time(event); 1442 1443 event->total_time_running = run_end - event->tstamp_running; 1444 1445 } 1446 1447 /* 1448 * Update total_time_enabled and total_time_running for all events in a group. 1449 */ 1450 static void update_group_times(struct perf_event *leader) 1451 { 1452 struct perf_event *event; 1453 1454 update_event_times(leader); 1455 list_for_each_entry(event, &leader->sibling_list, group_entry) 1456 update_event_times(event); 1457 } 1458 1459 static struct list_head * 1460 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1461 { 1462 if (event->attr.pinned) 1463 return &ctx->pinned_groups; 1464 else 1465 return &ctx->flexible_groups; 1466 } 1467 1468 /* 1469 * Add a event from the lists for its context. 1470 * Must be called with ctx->mutex and ctx->lock held. 1471 */ 1472 static void 1473 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1474 { 1475 1476 lockdep_assert_held(&ctx->lock); 1477 1478 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1479 event->attach_state |= PERF_ATTACH_CONTEXT; 1480 1481 /* 1482 * If we're a stand alone event or group leader, we go to the context 1483 * list, group events are kept attached to the group so that 1484 * perf_group_detach can, at all times, locate all siblings. 1485 */ 1486 if (event->group_leader == event) { 1487 struct list_head *list; 1488 1489 event->group_caps = event->event_caps; 1490 1491 list = ctx_group_list(event, ctx); 1492 list_add_tail(&event->group_entry, list); 1493 } 1494 1495 list_update_cgroup_event(event, ctx, true); 1496 1497 list_add_rcu(&event->event_entry, &ctx->event_list); 1498 ctx->nr_events++; 1499 if (event->attr.inherit_stat) 1500 ctx->nr_stat++; 1501 1502 ctx->generation++; 1503 } 1504 1505 /* 1506 * Initialize event state based on the perf_event_attr::disabled. 1507 */ 1508 static inline void perf_event__state_init(struct perf_event *event) 1509 { 1510 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1511 PERF_EVENT_STATE_INACTIVE; 1512 } 1513 1514 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1515 { 1516 int entry = sizeof(u64); /* value */ 1517 int size = 0; 1518 int nr = 1; 1519 1520 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1521 size += sizeof(u64); 1522 1523 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1524 size += sizeof(u64); 1525 1526 if (event->attr.read_format & PERF_FORMAT_ID) 1527 entry += sizeof(u64); 1528 1529 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1530 nr += nr_siblings; 1531 size += sizeof(u64); 1532 } 1533 1534 size += entry * nr; 1535 event->read_size = size; 1536 } 1537 1538 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1539 { 1540 struct perf_sample_data *data; 1541 u16 size = 0; 1542 1543 if (sample_type & PERF_SAMPLE_IP) 1544 size += sizeof(data->ip); 1545 1546 if (sample_type & PERF_SAMPLE_ADDR) 1547 size += sizeof(data->addr); 1548 1549 if (sample_type & PERF_SAMPLE_PERIOD) 1550 size += sizeof(data->period); 1551 1552 if (sample_type & PERF_SAMPLE_WEIGHT) 1553 size += sizeof(data->weight); 1554 1555 if (sample_type & PERF_SAMPLE_READ) 1556 size += event->read_size; 1557 1558 if (sample_type & PERF_SAMPLE_DATA_SRC) 1559 size += sizeof(data->data_src.val); 1560 1561 if (sample_type & PERF_SAMPLE_TRANSACTION) 1562 size += sizeof(data->txn); 1563 1564 event->header_size = size; 1565 } 1566 1567 /* 1568 * Called at perf_event creation and when events are attached/detached from a 1569 * group. 1570 */ 1571 static void perf_event__header_size(struct perf_event *event) 1572 { 1573 __perf_event_read_size(event, 1574 event->group_leader->nr_siblings); 1575 __perf_event_header_size(event, event->attr.sample_type); 1576 } 1577 1578 static void perf_event__id_header_size(struct perf_event *event) 1579 { 1580 struct perf_sample_data *data; 1581 u64 sample_type = event->attr.sample_type; 1582 u16 size = 0; 1583 1584 if (sample_type & PERF_SAMPLE_TID) 1585 size += sizeof(data->tid_entry); 1586 1587 if (sample_type & PERF_SAMPLE_TIME) 1588 size += sizeof(data->time); 1589 1590 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1591 size += sizeof(data->id); 1592 1593 if (sample_type & PERF_SAMPLE_ID) 1594 size += sizeof(data->id); 1595 1596 if (sample_type & PERF_SAMPLE_STREAM_ID) 1597 size += sizeof(data->stream_id); 1598 1599 if (sample_type & PERF_SAMPLE_CPU) 1600 size += sizeof(data->cpu_entry); 1601 1602 event->id_header_size = size; 1603 } 1604 1605 static bool perf_event_validate_size(struct perf_event *event) 1606 { 1607 /* 1608 * The values computed here will be over-written when we actually 1609 * attach the event. 1610 */ 1611 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1612 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1613 perf_event__id_header_size(event); 1614 1615 /* 1616 * Sum the lot; should not exceed the 64k limit we have on records. 1617 * Conservative limit to allow for callchains and other variable fields. 1618 */ 1619 if (event->read_size + event->header_size + 1620 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1621 return false; 1622 1623 return true; 1624 } 1625 1626 static void perf_group_attach(struct perf_event *event) 1627 { 1628 struct perf_event *group_leader = event->group_leader, *pos; 1629 1630 /* 1631 * We can have double attach due to group movement in perf_event_open. 1632 */ 1633 if (event->attach_state & PERF_ATTACH_GROUP) 1634 return; 1635 1636 event->attach_state |= PERF_ATTACH_GROUP; 1637 1638 if (group_leader == event) 1639 return; 1640 1641 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1642 1643 group_leader->group_caps &= event->event_caps; 1644 1645 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1646 group_leader->nr_siblings++; 1647 1648 perf_event__header_size(group_leader); 1649 1650 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1651 perf_event__header_size(pos); 1652 } 1653 1654 /* 1655 * Remove a event from the lists for its context. 1656 * Must be called with ctx->mutex and ctx->lock held. 1657 */ 1658 static void 1659 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1660 { 1661 WARN_ON_ONCE(event->ctx != ctx); 1662 lockdep_assert_held(&ctx->lock); 1663 1664 /* 1665 * We can have double detach due to exit/hot-unplug + close. 1666 */ 1667 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1668 return; 1669 1670 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1671 1672 list_update_cgroup_event(event, ctx, false); 1673 1674 ctx->nr_events--; 1675 if (event->attr.inherit_stat) 1676 ctx->nr_stat--; 1677 1678 list_del_rcu(&event->event_entry); 1679 1680 if (event->group_leader == event) 1681 list_del_init(&event->group_entry); 1682 1683 update_group_times(event); 1684 1685 /* 1686 * If event was in error state, then keep it 1687 * that way, otherwise bogus counts will be 1688 * returned on read(). The only way to get out 1689 * of error state is by explicit re-enabling 1690 * of the event 1691 */ 1692 if (event->state > PERF_EVENT_STATE_OFF) 1693 event->state = PERF_EVENT_STATE_OFF; 1694 1695 ctx->generation++; 1696 } 1697 1698 static void perf_group_detach(struct perf_event *event) 1699 { 1700 struct perf_event *sibling, *tmp; 1701 struct list_head *list = NULL; 1702 1703 /* 1704 * We can have double detach due to exit/hot-unplug + close. 1705 */ 1706 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1707 return; 1708 1709 event->attach_state &= ~PERF_ATTACH_GROUP; 1710 1711 /* 1712 * If this is a sibling, remove it from its group. 1713 */ 1714 if (event->group_leader != event) { 1715 list_del_init(&event->group_entry); 1716 event->group_leader->nr_siblings--; 1717 goto out; 1718 } 1719 1720 if (!list_empty(&event->group_entry)) 1721 list = &event->group_entry; 1722 1723 /* 1724 * If this was a group event with sibling events then 1725 * upgrade the siblings to singleton events by adding them 1726 * to whatever list we are on. 1727 */ 1728 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1729 if (list) 1730 list_move_tail(&sibling->group_entry, list); 1731 sibling->group_leader = sibling; 1732 1733 /* Inherit group flags from the previous leader */ 1734 sibling->group_caps = event->group_caps; 1735 1736 WARN_ON_ONCE(sibling->ctx != event->ctx); 1737 } 1738 1739 out: 1740 perf_event__header_size(event->group_leader); 1741 1742 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1743 perf_event__header_size(tmp); 1744 } 1745 1746 static bool is_orphaned_event(struct perf_event *event) 1747 { 1748 return event->state == PERF_EVENT_STATE_DEAD; 1749 } 1750 1751 static inline int __pmu_filter_match(struct perf_event *event) 1752 { 1753 struct pmu *pmu = event->pmu; 1754 return pmu->filter_match ? pmu->filter_match(event) : 1; 1755 } 1756 1757 /* 1758 * Check whether we should attempt to schedule an event group based on 1759 * PMU-specific filtering. An event group can consist of HW and SW events, 1760 * potentially with a SW leader, so we must check all the filters, to 1761 * determine whether a group is schedulable: 1762 */ 1763 static inline int pmu_filter_match(struct perf_event *event) 1764 { 1765 struct perf_event *child; 1766 1767 if (!__pmu_filter_match(event)) 1768 return 0; 1769 1770 list_for_each_entry(child, &event->sibling_list, group_entry) { 1771 if (!__pmu_filter_match(child)) 1772 return 0; 1773 } 1774 1775 return 1; 1776 } 1777 1778 static inline int 1779 event_filter_match(struct perf_event *event) 1780 { 1781 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1782 perf_cgroup_match(event) && pmu_filter_match(event); 1783 } 1784 1785 static void 1786 event_sched_out(struct perf_event *event, 1787 struct perf_cpu_context *cpuctx, 1788 struct perf_event_context *ctx) 1789 { 1790 u64 tstamp = perf_event_time(event); 1791 u64 delta; 1792 1793 WARN_ON_ONCE(event->ctx != ctx); 1794 lockdep_assert_held(&ctx->lock); 1795 1796 /* 1797 * An event which could not be activated because of 1798 * filter mismatch still needs to have its timings 1799 * maintained, otherwise bogus information is return 1800 * via read() for time_enabled, time_running: 1801 */ 1802 if (event->state == PERF_EVENT_STATE_INACTIVE && 1803 !event_filter_match(event)) { 1804 delta = tstamp - event->tstamp_stopped; 1805 event->tstamp_running += delta; 1806 event->tstamp_stopped = tstamp; 1807 } 1808 1809 if (event->state != PERF_EVENT_STATE_ACTIVE) 1810 return; 1811 1812 perf_pmu_disable(event->pmu); 1813 1814 event->tstamp_stopped = tstamp; 1815 event->pmu->del(event, 0); 1816 event->oncpu = -1; 1817 event->state = PERF_EVENT_STATE_INACTIVE; 1818 if (event->pending_disable) { 1819 event->pending_disable = 0; 1820 event->state = PERF_EVENT_STATE_OFF; 1821 } 1822 1823 if (!is_software_event(event)) 1824 cpuctx->active_oncpu--; 1825 if (!--ctx->nr_active) 1826 perf_event_ctx_deactivate(ctx); 1827 if (event->attr.freq && event->attr.sample_freq) 1828 ctx->nr_freq--; 1829 if (event->attr.exclusive || !cpuctx->active_oncpu) 1830 cpuctx->exclusive = 0; 1831 1832 perf_pmu_enable(event->pmu); 1833 } 1834 1835 static void 1836 group_sched_out(struct perf_event *group_event, 1837 struct perf_cpu_context *cpuctx, 1838 struct perf_event_context *ctx) 1839 { 1840 struct perf_event *event; 1841 int state = group_event->state; 1842 1843 perf_pmu_disable(ctx->pmu); 1844 1845 event_sched_out(group_event, cpuctx, ctx); 1846 1847 /* 1848 * Schedule out siblings (if any): 1849 */ 1850 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1851 event_sched_out(event, cpuctx, ctx); 1852 1853 perf_pmu_enable(ctx->pmu); 1854 1855 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1856 cpuctx->exclusive = 0; 1857 } 1858 1859 #define DETACH_GROUP 0x01UL 1860 1861 /* 1862 * Cross CPU call to remove a performance event 1863 * 1864 * We disable the event on the hardware level first. After that we 1865 * remove it from the context list. 1866 */ 1867 static void 1868 __perf_remove_from_context(struct perf_event *event, 1869 struct perf_cpu_context *cpuctx, 1870 struct perf_event_context *ctx, 1871 void *info) 1872 { 1873 unsigned long flags = (unsigned long)info; 1874 1875 event_sched_out(event, cpuctx, ctx); 1876 if (flags & DETACH_GROUP) 1877 perf_group_detach(event); 1878 list_del_event(event, ctx); 1879 1880 if (!ctx->nr_events && ctx->is_active) { 1881 ctx->is_active = 0; 1882 if (ctx->task) { 1883 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1884 cpuctx->task_ctx = NULL; 1885 } 1886 } 1887 } 1888 1889 /* 1890 * Remove the event from a task's (or a CPU's) list of events. 1891 * 1892 * If event->ctx is a cloned context, callers must make sure that 1893 * every task struct that event->ctx->task could possibly point to 1894 * remains valid. This is OK when called from perf_release since 1895 * that only calls us on the top-level context, which can't be a clone. 1896 * When called from perf_event_exit_task, it's OK because the 1897 * context has been detached from its task. 1898 */ 1899 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1900 { 1901 lockdep_assert_held(&event->ctx->mutex); 1902 1903 event_function_call(event, __perf_remove_from_context, (void *)flags); 1904 } 1905 1906 /* 1907 * Cross CPU call to disable a performance event 1908 */ 1909 static void __perf_event_disable(struct perf_event *event, 1910 struct perf_cpu_context *cpuctx, 1911 struct perf_event_context *ctx, 1912 void *info) 1913 { 1914 if (event->state < PERF_EVENT_STATE_INACTIVE) 1915 return; 1916 1917 update_context_time(ctx); 1918 update_cgrp_time_from_event(event); 1919 update_group_times(event); 1920 if (event == event->group_leader) 1921 group_sched_out(event, cpuctx, ctx); 1922 else 1923 event_sched_out(event, cpuctx, ctx); 1924 event->state = PERF_EVENT_STATE_OFF; 1925 } 1926 1927 /* 1928 * Disable a event. 1929 * 1930 * If event->ctx is a cloned context, callers must make sure that 1931 * every task struct that event->ctx->task could possibly point to 1932 * remains valid. This condition is satisifed when called through 1933 * perf_event_for_each_child or perf_event_for_each because they 1934 * hold the top-level event's child_mutex, so any descendant that 1935 * goes to exit will block in perf_event_exit_event(). 1936 * 1937 * When called from perf_pending_event it's OK because event->ctx 1938 * is the current context on this CPU and preemption is disabled, 1939 * hence we can't get into perf_event_task_sched_out for this context. 1940 */ 1941 static void _perf_event_disable(struct perf_event *event) 1942 { 1943 struct perf_event_context *ctx = event->ctx; 1944 1945 raw_spin_lock_irq(&ctx->lock); 1946 if (event->state <= PERF_EVENT_STATE_OFF) { 1947 raw_spin_unlock_irq(&ctx->lock); 1948 return; 1949 } 1950 raw_spin_unlock_irq(&ctx->lock); 1951 1952 event_function_call(event, __perf_event_disable, NULL); 1953 } 1954 1955 void perf_event_disable_local(struct perf_event *event) 1956 { 1957 event_function_local(event, __perf_event_disable, NULL); 1958 } 1959 1960 /* 1961 * Strictly speaking kernel users cannot create groups and therefore this 1962 * interface does not need the perf_event_ctx_lock() magic. 1963 */ 1964 void perf_event_disable(struct perf_event *event) 1965 { 1966 struct perf_event_context *ctx; 1967 1968 ctx = perf_event_ctx_lock(event); 1969 _perf_event_disable(event); 1970 perf_event_ctx_unlock(event, ctx); 1971 } 1972 EXPORT_SYMBOL_GPL(perf_event_disable); 1973 1974 void perf_event_disable_inatomic(struct perf_event *event) 1975 { 1976 event->pending_disable = 1; 1977 irq_work_queue(&event->pending); 1978 } 1979 1980 static void perf_set_shadow_time(struct perf_event *event, 1981 struct perf_event_context *ctx, 1982 u64 tstamp) 1983 { 1984 /* 1985 * use the correct time source for the time snapshot 1986 * 1987 * We could get by without this by leveraging the 1988 * fact that to get to this function, the caller 1989 * has most likely already called update_context_time() 1990 * and update_cgrp_time_xx() and thus both timestamp 1991 * are identical (or very close). Given that tstamp is, 1992 * already adjusted for cgroup, we could say that: 1993 * tstamp - ctx->timestamp 1994 * is equivalent to 1995 * tstamp - cgrp->timestamp. 1996 * 1997 * Then, in perf_output_read(), the calculation would 1998 * work with no changes because: 1999 * - event is guaranteed scheduled in 2000 * - no scheduled out in between 2001 * - thus the timestamp would be the same 2002 * 2003 * But this is a bit hairy. 2004 * 2005 * So instead, we have an explicit cgroup call to remain 2006 * within the time time source all along. We believe it 2007 * is cleaner and simpler to understand. 2008 */ 2009 if (is_cgroup_event(event)) 2010 perf_cgroup_set_shadow_time(event, tstamp); 2011 else 2012 event->shadow_ctx_time = tstamp - ctx->timestamp; 2013 } 2014 2015 #define MAX_INTERRUPTS (~0ULL) 2016 2017 static void perf_log_throttle(struct perf_event *event, int enable); 2018 static void perf_log_itrace_start(struct perf_event *event); 2019 2020 static int 2021 event_sched_in(struct perf_event *event, 2022 struct perf_cpu_context *cpuctx, 2023 struct perf_event_context *ctx) 2024 { 2025 u64 tstamp = perf_event_time(event); 2026 int ret = 0; 2027 2028 lockdep_assert_held(&ctx->lock); 2029 2030 if (event->state <= PERF_EVENT_STATE_OFF) 2031 return 0; 2032 2033 WRITE_ONCE(event->oncpu, smp_processor_id()); 2034 /* 2035 * Order event::oncpu write to happen before the ACTIVE state 2036 * is visible. 2037 */ 2038 smp_wmb(); 2039 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 2040 2041 /* 2042 * Unthrottle events, since we scheduled we might have missed several 2043 * ticks already, also for a heavily scheduling task there is little 2044 * guarantee it'll get a tick in a timely manner. 2045 */ 2046 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2047 perf_log_throttle(event, 1); 2048 event->hw.interrupts = 0; 2049 } 2050 2051 /* 2052 * The new state must be visible before we turn it on in the hardware: 2053 */ 2054 smp_wmb(); 2055 2056 perf_pmu_disable(event->pmu); 2057 2058 perf_set_shadow_time(event, ctx, tstamp); 2059 2060 perf_log_itrace_start(event); 2061 2062 if (event->pmu->add(event, PERF_EF_START)) { 2063 event->state = PERF_EVENT_STATE_INACTIVE; 2064 event->oncpu = -1; 2065 ret = -EAGAIN; 2066 goto out; 2067 } 2068 2069 event->tstamp_running += tstamp - event->tstamp_stopped; 2070 2071 if (!is_software_event(event)) 2072 cpuctx->active_oncpu++; 2073 if (!ctx->nr_active++) 2074 perf_event_ctx_activate(ctx); 2075 if (event->attr.freq && event->attr.sample_freq) 2076 ctx->nr_freq++; 2077 2078 if (event->attr.exclusive) 2079 cpuctx->exclusive = 1; 2080 2081 out: 2082 perf_pmu_enable(event->pmu); 2083 2084 return ret; 2085 } 2086 2087 static int 2088 group_sched_in(struct perf_event *group_event, 2089 struct perf_cpu_context *cpuctx, 2090 struct perf_event_context *ctx) 2091 { 2092 struct perf_event *event, *partial_group = NULL; 2093 struct pmu *pmu = ctx->pmu; 2094 u64 now = ctx->time; 2095 bool simulate = false; 2096 2097 if (group_event->state == PERF_EVENT_STATE_OFF) 2098 return 0; 2099 2100 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2101 2102 if (event_sched_in(group_event, cpuctx, ctx)) { 2103 pmu->cancel_txn(pmu); 2104 perf_mux_hrtimer_restart(cpuctx); 2105 return -EAGAIN; 2106 } 2107 2108 /* 2109 * Schedule in siblings as one group (if any): 2110 */ 2111 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2112 if (event_sched_in(event, cpuctx, ctx)) { 2113 partial_group = event; 2114 goto group_error; 2115 } 2116 } 2117 2118 if (!pmu->commit_txn(pmu)) 2119 return 0; 2120 2121 group_error: 2122 /* 2123 * Groups can be scheduled in as one unit only, so undo any 2124 * partial group before returning: 2125 * The events up to the failed event are scheduled out normally, 2126 * tstamp_stopped will be updated. 2127 * 2128 * The failed events and the remaining siblings need to have 2129 * their timings updated as if they had gone thru event_sched_in() 2130 * and event_sched_out(). This is required to get consistent timings 2131 * across the group. This also takes care of the case where the group 2132 * could never be scheduled by ensuring tstamp_stopped is set to mark 2133 * the time the event was actually stopped, such that time delta 2134 * calculation in update_event_times() is correct. 2135 */ 2136 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2137 if (event == partial_group) 2138 simulate = true; 2139 2140 if (simulate) { 2141 event->tstamp_running += now - event->tstamp_stopped; 2142 event->tstamp_stopped = now; 2143 } else { 2144 event_sched_out(event, cpuctx, ctx); 2145 } 2146 } 2147 event_sched_out(group_event, cpuctx, ctx); 2148 2149 pmu->cancel_txn(pmu); 2150 2151 perf_mux_hrtimer_restart(cpuctx); 2152 2153 return -EAGAIN; 2154 } 2155 2156 /* 2157 * Work out whether we can put this event group on the CPU now. 2158 */ 2159 static int group_can_go_on(struct perf_event *event, 2160 struct perf_cpu_context *cpuctx, 2161 int can_add_hw) 2162 { 2163 /* 2164 * Groups consisting entirely of software events can always go on. 2165 */ 2166 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2167 return 1; 2168 /* 2169 * If an exclusive group is already on, no other hardware 2170 * events can go on. 2171 */ 2172 if (cpuctx->exclusive) 2173 return 0; 2174 /* 2175 * If this group is exclusive and there are already 2176 * events on the CPU, it can't go on. 2177 */ 2178 if (event->attr.exclusive && cpuctx->active_oncpu) 2179 return 0; 2180 /* 2181 * Otherwise, try to add it if all previous groups were able 2182 * to go on. 2183 */ 2184 return can_add_hw; 2185 } 2186 2187 static void add_event_to_ctx(struct perf_event *event, 2188 struct perf_event_context *ctx) 2189 { 2190 u64 tstamp = perf_event_time(event); 2191 2192 list_add_event(event, ctx); 2193 perf_group_attach(event); 2194 event->tstamp_enabled = tstamp; 2195 event->tstamp_running = tstamp; 2196 event->tstamp_stopped = tstamp; 2197 } 2198 2199 static void ctx_sched_out(struct perf_event_context *ctx, 2200 struct perf_cpu_context *cpuctx, 2201 enum event_type_t event_type); 2202 static void 2203 ctx_sched_in(struct perf_event_context *ctx, 2204 struct perf_cpu_context *cpuctx, 2205 enum event_type_t event_type, 2206 struct task_struct *task); 2207 2208 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2209 struct perf_event_context *ctx) 2210 { 2211 if (!cpuctx->task_ctx) 2212 return; 2213 2214 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2215 return; 2216 2217 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2218 } 2219 2220 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2221 struct perf_event_context *ctx, 2222 struct task_struct *task) 2223 { 2224 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2225 if (ctx) 2226 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2227 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2228 if (ctx) 2229 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2230 } 2231 2232 static void ctx_resched(struct perf_cpu_context *cpuctx, 2233 struct perf_event_context *task_ctx) 2234 { 2235 perf_pmu_disable(cpuctx->ctx.pmu); 2236 if (task_ctx) 2237 task_ctx_sched_out(cpuctx, task_ctx); 2238 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2239 perf_event_sched_in(cpuctx, task_ctx, current); 2240 perf_pmu_enable(cpuctx->ctx.pmu); 2241 } 2242 2243 /* 2244 * Cross CPU call to install and enable a performance event 2245 * 2246 * Very similar to remote_function() + event_function() but cannot assume that 2247 * things like ctx->is_active and cpuctx->task_ctx are set. 2248 */ 2249 static int __perf_install_in_context(void *info) 2250 { 2251 struct perf_event *event = info; 2252 struct perf_event_context *ctx = event->ctx; 2253 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2254 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2255 bool activate = true; 2256 int ret = 0; 2257 2258 raw_spin_lock(&cpuctx->ctx.lock); 2259 if (ctx->task) { 2260 raw_spin_lock(&ctx->lock); 2261 task_ctx = ctx; 2262 2263 /* If we're on the wrong CPU, try again */ 2264 if (task_cpu(ctx->task) != smp_processor_id()) { 2265 ret = -ESRCH; 2266 goto unlock; 2267 } 2268 2269 /* 2270 * If we're on the right CPU, see if the task we target is 2271 * current, if not we don't have to activate the ctx, a future 2272 * context switch will do that for us. 2273 */ 2274 if (ctx->task != current) 2275 activate = false; 2276 else 2277 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2278 2279 } else if (task_ctx) { 2280 raw_spin_lock(&task_ctx->lock); 2281 } 2282 2283 if (activate) { 2284 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2285 add_event_to_ctx(event, ctx); 2286 ctx_resched(cpuctx, task_ctx); 2287 } else { 2288 add_event_to_ctx(event, ctx); 2289 } 2290 2291 unlock: 2292 perf_ctx_unlock(cpuctx, task_ctx); 2293 2294 return ret; 2295 } 2296 2297 /* 2298 * Attach a performance event to a context. 2299 * 2300 * Very similar to event_function_call, see comment there. 2301 */ 2302 static void 2303 perf_install_in_context(struct perf_event_context *ctx, 2304 struct perf_event *event, 2305 int cpu) 2306 { 2307 struct task_struct *task = READ_ONCE(ctx->task); 2308 2309 lockdep_assert_held(&ctx->mutex); 2310 2311 if (event->cpu != -1) 2312 event->cpu = cpu; 2313 2314 /* 2315 * Ensures that if we can observe event->ctx, both the event and ctx 2316 * will be 'complete'. See perf_iterate_sb_cpu(). 2317 */ 2318 smp_store_release(&event->ctx, ctx); 2319 2320 if (!task) { 2321 cpu_function_call(cpu, __perf_install_in_context, event); 2322 return; 2323 } 2324 2325 /* 2326 * Should not happen, we validate the ctx is still alive before calling. 2327 */ 2328 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2329 return; 2330 2331 /* 2332 * Installing events is tricky because we cannot rely on ctx->is_active 2333 * to be set in case this is the nr_events 0 -> 1 transition. 2334 */ 2335 again: 2336 /* 2337 * Cannot use task_function_call() because we need to run on the task's 2338 * CPU regardless of whether its current or not. 2339 */ 2340 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event)) 2341 return; 2342 2343 raw_spin_lock_irq(&ctx->lock); 2344 task = ctx->task; 2345 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2346 /* 2347 * Cannot happen because we already checked above (which also 2348 * cannot happen), and we hold ctx->mutex, which serializes us 2349 * against perf_event_exit_task_context(). 2350 */ 2351 raw_spin_unlock_irq(&ctx->lock); 2352 return; 2353 } 2354 raw_spin_unlock_irq(&ctx->lock); 2355 /* 2356 * Since !ctx->is_active doesn't mean anything, we must IPI 2357 * unconditionally. 2358 */ 2359 goto again; 2360 } 2361 2362 /* 2363 * Put a event into inactive state and update time fields. 2364 * Enabling the leader of a group effectively enables all 2365 * the group members that aren't explicitly disabled, so we 2366 * have to update their ->tstamp_enabled also. 2367 * Note: this works for group members as well as group leaders 2368 * since the non-leader members' sibling_lists will be empty. 2369 */ 2370 static void __perf_event_mark_enabled(struct perf_event *event) 2371 { 2372 struct perf_event *sub; 2373 u64 tstamp = perf_event_time(event); 2374 2375 event->state = PERF_EVENT_STATE_INACTIVE; 2376 event->tstamp_enabled = tstamp - event->total_time_enabled; 2377 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2378 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2379 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2380 } 2381 } 2382 2383 /* 2384 * Cross CPU call to enable a performance event 2385 */ 2386 static void __perf_event_enable(struct perf_event *event, 2387 struct perf_cpu_context *cpuctx, 2388 struct perf_event_context *ctx, 2389 void *info) 2390 { 2391 struct perf_event *leader = event->group_leader; 2392 struct perf_event_context *task_ctx; 2393 2394 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2395 event->state <= PERF_EVENT_STATE_ERROR) 2396 return; 2397 2398 if (ctx->is_active) 2399 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2400 2401 __perf_event_mark_enabled(event); 2402 2403 if (!ctx->is_active) 2404 return; 2405 2406 if (!event_filter_match(event)) { 2407 if (is_cgroup_event(event)) 2408 perf_cgroup_defer_enabled(event); 2409 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2410 return; 2411 } 2412 2413 /* 2414 * If the event is in a group and isn't the group leader, 2415 * then don't put it on unless the group is on. 2416 */ 2417 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2418 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2419 return; 2420 } 2421 2422 task_ctx = cpuctx->task_ctx; 2423 if (ctx->task) 2424 WARN_ON_ONCE(task_ctx != ctx); 2425 2426 ctx_resched(cpuctx, task_ctx); 2427 } 2428 2429 /* 2430 * Enable a event. 2431 * 2432 * If event->ctx is a cloned context, callers must make sure that 2433 * every task struct that event->ctx->task could possibly point to 2434 * remains valid. This condition is satisfied when called through 2435 * perf_event_for_each_child or perf_event_for_each as described 2436 * for perf_event_disable. 2437 */ 2438 static void _perf_event_enable(struct perf_event *event) 2439 { 2440 struct perf_event_context *ctx = event->ctx; 2441 2442 raw_spin_lock_irq(&ctx->lock); 2443 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2444 event->state < PERF_EVENT_STATE_ERROR) { 2445 raw_spin_unlock_irq(&ctx->lock); 2446 return; 2447 } 2448 2449 /* 2450 * If the event is in error state, clear that first. 2451 * 2452 * That way, if we see the event in error state below, we know that it 2453 * has gone back into error state, as distinct from the task having 2454 * been scheduled away before the cross-call arrived. 2455 */ 2456 if (event->state == PERF_EVENT_STATE_ERROR) 2457 event->state = PERF_EVENT_STATE_OFF; 2458 raw_spin_unlock_irq(&ctx->lock); 2459 2460 event_function_call(event, __perf_event_enable, NULL); 2461 } 2462 2463 /* 2464 * See perf_event_disable(); 2465 */ 2466 void perf_event_enable(struct perf_event *event) 2467 { 2468 struct perf_event_context *ctx; 2469 2470 ctx = perf_event_ctx_lock(event); 2471 _perf_event_enable(event); 2472 perf_event_ctx_unlock(event, ctx); 2473 } 2474 EXPORT_SYMBOL_GPL(perf_event_enable); 2475 2476 struct stop_event_data { 2477 struct perf_event *event; 2478 unsigned int restart; 2479 }; 2480 2481 static int __perf_event_stop(void *info) 2482 { 2483 struct stop_event_data *sd = info; 2484 struct perf_event *event = sd->event; 2485 2486 /* if it's already INACTIVE, do nothing */ 2487 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2488 return 0; 2489 2490 /* matches smp_wmb() in event_sched_in() */ 2491 smp_rmb(); 2492 2493 /* 2494 * There is a window with interrupts enabled before we get here, 2495 * so we need to check again lest we try to stop another CPU's event. 2496 */ 2497 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2498 return -EAGAIN; 2499 2500 event->pmu->stop(event, PERF_EF_UPDATE); 2501 2502 /* 2503 * May race with the actual stop (through perf_pmu_output_stop()), 2504 * but it is only used for events with AUX ring buffer, and such 2505 * events will refuse to restart because of rb::aux_mmap_count==0, 2506 * see comments in perf_aux_output_begin(). 2507 * 2508 * Since this is happening on a event-local CPU, no trace is lost 2509 * while restarting. 2510 */ 2511 if (sd->restart) 2512 event->pmu->start(event, 0); 2513 2514 return 0; 2515 } 2516 2517 static int perf_event_stop(struct perf_event *event, int restart) 2518 { 2519 struct stop_event_data sd = { 2520 .event = event, 2521 .restart = restart, 2522 }; 2523 int ret = 0; 2524 2525 do { 2526 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2527 return 0; 2528 2529 /* matches smp_wmb() in event_sched_in() */ 2530 smp_rmb(); 2531 2532 /* 2533 * We only want to restart ACTIVE events, so if the event goes 2534 * inactive here (event->oncpu==-1), there's nothing more to do; 2535 * fall through with ret==-ENXIO. 2536 */ 2537 ret = cpu_function_call(READ_ONCE(event->oncpu), 2538 __perf_event_stop, &sd); 2539 } while (ret == -EAGAIN); 2540 2541 return ret; 2542 } 2543 2544 /* 2545 * In order to contain the amount of racy and tricky in the address filter 2546 * configuration management, it is a two part process: 2547 * 2548 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2549 * we update the addresses of corresponding vmas in 2550 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2551 * (p2) when an event is scheduled in (pmu::add), it calls 2552 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2553 * if the generation has changed since the previous call. 2554 * 2555 * If (p1) happens while the event is active, we restart it to force (p2). 2556 * 2557 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2558 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2559 * ioctl; 2560 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2561 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2562 * for reading; 2563 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2564 * of exec. 2565 */ 2566 void perf_event_addr_filters_sync(struct perf_event *event) 2567 { 2568 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2569 2570 if (!has_addr_filter(event)) 2571 return; 2572 2573 raw_spin_lock(&ifh->lock); 2574 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2575 event->pmu->addr_filters_sync(event); 2576 event->hw.addr_filters_gen = event->addr_filters_gen; 2577 } 2578 raw_spin_unlock(&ifh->lock); 2579 } 2580 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2581 2582 static int _perf_event_refresh(struct perf_event *event, int refresh) 2583 { 2584 /* 2585 * not supported on inherited events 2586 */ 2587 if (event->attr.inherit || !is_sampling_event(event)) 2588 return -EINVAL; 2589 2590 atomic_add(refresh, &event->event_limit); 2591 _perf_event_enable(event); 2592 2593 return 0; 2594 } 2595 2596 /* 2597 * See perf_event_disable() 2598 */ 2599 int perf_event_refresh(struct perf_event *event, int refresh) 2600 { 2601 struct perf_event_context *ctx; 2602 int ret; 2603 2604 ctx = perf_event_ctx_lock(event); 2605 ret = _perf_event_refresh(event, refresh); 2606 perf_event_ctx_unlock(event, ctx); 2607 2608 return ret; 2609 } 2610 EXPORT_SYMBOL_GPL(perf_event_refresh); 2611 2612 static void ctx_sched_out(struct perf_event_context *ctx, 2613 struct perf_cpu_context *cpuctx, 2614 enum event_type_t event_type) 2615 { 2616 int is_active = ctx->is_active; 2617 struct perf_event *event; 2618 2619 lockdep_assert_held(&ctx->lock); 2620 2621 if (likely(!ctx->nr_events)) { 2622 /* 2623 * See __perf_remove_from_context(). 2624 */ 2625 WARN_ON_ONCE(ctx->is_active); 2626 if (ctx->task) 2627 WARN_ON_ONCE(cpuctx->task_ctx); 2628 return; 2629 } 2630 2631 ctx->is_active &= ~event_type; 2632 if (!(ctx->is_active & EVENT_ALL)) 2633 ctx->is_active = 0; 2634 2635 if (ctx->task) { 2636 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2637 if (!ctx->is_active) 2638 cpuctx->task_ctx = NULL; 2639 } 2640 2641 /* 2642 * Always update time if it was set; not only when it changes. 2643 * Otherwise we can 'forget' to update time for any but the last 2644 * context we sched out. For example: 2645 * 2646 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2647 * ctx_sched_out(.event_type = EVENT_PINNED) 2648 * 2649 * would only update time for the pinned events. 2650 */ 2651 if (is_active & EVENT_TIME) { 2652 /* update (and stop) ctx time */ 2653 update_context_time(ctx); 2654 update_cgrp_time_from_cpuctx(cpuctx); 2655 } 2656 2657 is_active ^= ctx->is_active; /* changed bits */ 2658 2659 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2660 return; 2661 2662 perf_pmu_disable(ctx->pmu); 2663 if (is_active & EVENT_PINNED) { 2664 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2665 group_sched_out(event, cpuctx, ctx); 2666 } 2667 2668 if (is_active & EVENT_FLEXIBLE) { 2669 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2670 group_sched_out(event, cpuctx, ctx); 2671 } 2672 perf_pmu_enable(ctx->pmu); 2673 } 2674 2675 /* 2676 * Test whether two contexts are equivalent, i.e. whether they have both been 2677 * cloned from the same version of the same context. 2678 * 2679 * Equivalence is measured using a generation number in the context that is 2680 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2681 * and list_del_event(). 2682 */ 2683 static int context_equiv(struct perf_event_context *ctx1, 2684 struct perf_event_context *ctx2) 2685 { 2686 lockdep_assert_held(&ctx1->lock); 2687 lockdep_assert_held(&ctx2->lock); 2688 2689 /* Pinning disables the swap optimization */ 2690 if (ctx1->pin_count || ctx2->pin_count) 2691 return 0; 2692 2693 /* If ctx1 is the parent of ctx2 */ 2694 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2695 return 1; 2696 2697 /* If ctx2 is the parent of ctx1 */ 2698 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2699 return 1; 2700 2701 /* 2702 * If ctx1 and ctx2 have the same parent; we flatten the parent 2703 * hierarchy, see perf_event_init_context(). 2704 */ 2705 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2706 ctx1->parent_gen == ctx2->parent_gen) 2707 return 1; 2708 2709 /* Unmatched */ 2710 return 0; 2711 } 2712 2713 static void __perf_event_sync_stat(struct perf_event *event, 2714 struct perf_event *next_event) 2715 { 2716 u64 value; 2717 2718 if (!event->attr.inherit_stat) 2719 return; 2720 2721 /* 2722 * Update the event value, we cannot use perf_event_read() 2723 * because we're in the middle of a context switch and have IRQs 2724 * disabled, which upsets smp_call_function_single(), however 2725 * we know the event must be on the current CPU, therefore we 2726 * don't need to use it. 2727 */ 2728 switch (event->state) { 2729 case PERF_EVENT_STATE_ACTIVE: 2730 event->pmu->read(event); 2731 /* fall-through */ 2732 2733 case PERF_EVENT_STATE_INACTIVE: 2734 update_event_times(event); 2735 break; 2736 2737 default: 2738 break; 2739 } 2740 2741 /* 2742 * In order to keep per-task stats reliable we need to flip the event 2743 * values when we flip the contexts. 2744 */ 2745 value = local64_read(&next_event->count); 2746 value = local64_xchg(&event->count, value); 2747 local64_set(&next_event->count, value); 2748 2749 swap(event->total_time_enabled, next_event->total_time_enabled); 2750 swap(event->total_time_running, next_event->total_time_running); 2751 2752 /* 2753 * Since we swizzled the values, update the user visible data too. 2754 */ 2755 perf_event_update_userpage(event); 2756 perf_event_update_userpage(next_event); 2757 } 2758 2759 static void perf_event_sync_stat(struct perf_event_context *ctx, 2760 struct perf_event_context *next_ctx) 2761 { 2762 struct perf_event *event, *next_event; 2763 2764 if (!ctx->nr_stat) 2765 return; 2766 2767 update_context_time(ctx); 2768 2769 event = list_first_entry(&ctx->event_list, 2770 struct perf_event, event_entry); 2771 2772 next_event = list_first_entry(&next_ctx->event_list, 2773 struct perf_event, event_entry); 2774 2775 while (&event->event_entry != &ctx->event_list && 2776 &next_event->event_entry != &next_ctx->event_list) { 2777 2778 __perf_event_sync_stat(event, next_event); 2779 2780 event = list_next_entry(event, event_entry); 2781 next_event = list_next_entry(next_event, event_entry); 2782 } 2783 } 2784 2785 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2786 struct task_struct *next) 2787 { 2788 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2789 struct perf_event_context *next_ctx; 2790 struct perf_event_context *parent, *next_parent; 2791 struct perf_cpu_context *cpuctx; 2792 int do_switch = 1; 2793 2794 if (likely(!ctx)) 2795 return; 2796 2797 cpuctx = __get_cpu_context(ctx); 2798 if (!cpuctx->task_ctx) 2799 return; 2800 2801 rcu_read_lock(); 2802 next_ctx = next->perf_event_ctxp[ctxn]; 2803 if (!next_ctx) 2804 goto unlock; 2805 2806 parent = rcu_dereference(ctx->parent_ctx); 2807 next_parent = rcu_dereference(next_ctx->parent_ctx); 2808 2809 /* If neither context have a parent context; they cannot be clones. */ 2810 if (!parent && !next_parent) 2811 goto unlock; 2812 2813 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2814 /* 2815 * Looks like the two contexts are clones, so we might be 2816 * able to optimize the context switch. We lock both 2817 * contexts and check that they are clones under the 2818 * lock (including re-checking that neither has been 2819 * uncloned in the meantime). It doesn't matter which 2820 * order we take the locks because no other cpu could 2821 * be trying to lock both of these tasks. 2822 */ 2823 raw_spin_lock(&ctx->lock); 2824 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2825 if (context_equiv(ctx, next_ctx)) { 2826 WRITE_ONCE(ctx->task, next); 2827 WRITE_ONCE(next_ctx->task, task); 2828 2829 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2830 2831 /* 2832 * RCU_INIT_POINTER here is safe because we've not 2833 * modified the ctx and the above modification of 2834 * ctx->task and ctx->task_ctx_data are immaterial 2835 * since those values are always verified under 2836 * ctx->lock which we're now holding. 2837 */ 2838 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2839 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2840 2841 do_switch = 0; 2842 2843 perf_event_sync_stat(ctx, next_ctx); 2844 } 2845 raw_spin_unlock(&next_ctx->lock); 2846 raw_spin_unlock(&ctx->lock); 2847 } 2848 unlock: 2849 rcu_read_unlock(); 2850 2851 if (do_switch) { 2852 raw_spin_lock(&ctx->lock); 2853 task_ctx_sched_out(cpuctx, ctx); 2854 raw_spin_unlock(&ctx->lock); 2855 } 2856 } 2857 2858 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 2859 2860 void perf_sched_cb_dec(struct pmu *pmu) 2861 { 2862 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2863 2864 this_cpu_dec(perf_sched_cb_usages); 2865 2866 if (!--cpuctx->sched_cb_usage) 2867 list_del(&cpuctx->sched_cb_entry); 2868 } 2869 2870 2871 void perf_sched_cb_inc(struct pmu *pmu) 2872 { 2873 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2874 2875 if (!cpuctx->sched_cb_usage++) 2876 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 2877 2878 this_cpu_inc(perf_sched_cb_usages); 2879 } 2880 2881 /* 2882 * This function provides the context switch callback to the lower code 2883 * layer. It is invoked ONLY when the context switch callback is enabled. 2884 * 2885 * This callback is relevant even to per-cpu events; for example multi event 2886 * PEBS requires this to provide PID/TID information. This requires we flush 2887 * all queued PEBS records before we context switch to a new task. 2888 */ 2889 static void perf_pmu_sched_task(struct task_struct *prev, 2890 struct task_struct *next, 2891 bool sched_in) 2892 { 2893 struct perf_cpu_context *cpuctx; 2894 struct pmu *pmu; 2895 2896 if (prev == next) 2897 return; 2898 2899 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 2900 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */ 2901 2902 if (WARN_ON_ONCE(!pmu->sched_task)) 2903 continue; 2904 2905 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2906 perf_pmu_disable(pmu); 2907 2908 pmu->sched_task(cpuctx->task_ctx, sched_in); 2909 2910 perf_pmu_enable(pmu); 2911 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2912 } 2913 } 2914 2915 static void perf_event_switch(struct task_struct *task, 2916 struct task_struct *next_prev, bool sched_in); 2917 2918 #define for_each_task_context_nr(ctxn) \ 2919 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2920 2921 /* 2922 * Called from scheduler to remove the events of the current task, 2923 * with interrupts disabled. 2924 * 2925 * We stop each event and update the event value in event->count. 2926 * 2927 * This does not protect us against NMI, but disable() 2928 * sets the disabled bit in the control field of event _before_ 2929 * accessing the event control register. If a NMI hits, then it will 2930 * not restart the event. 2931 */ 2932 void __perf_event_task_sched_out(struct task_struct *task, 2933 struct task_struct *next) 2934 { 2935 int ctxn; 2936 2937 if (__this_cpu_read(perf_sched_cb_usages)) 2938 perf_pmu_sched_task(task, next, false); 2939 2940 if (atomic_read(&nr_switch_events)) 2941 perf_event_switch(task, next, false); 2942 2943 for_each_task_context_nr(ctxn) 2944 perf_event_context_sched_out(task, ctxn, next); 2945 2946 /* 2947 * if cgroup events exist on this CPU, then we need 2948 * to check if we have to switch out PMU state. 2949 * cgroup event are system-wide mode only 2950 */ 2951 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2952 perf_cgroup_sched_out(task, next); 2953 } 2954 2955 /* 2956 * Called with IRQs disabled 2957 */ 2958 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2959 enum event_type_t event_type) 2960 { 2961 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2962 } 2963 2964 static void 2965 ctx_pinned_sched_in(struct perf_event_context *ctx, 2966 struct perf_cpu_context *cpuctx) 2967 { 2968 struct perf_event *event; 2969 2970 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2971 if (event->state <= PERF_EVENT_STATE_OFF) 2972 continue; 2973 if (!event_filter_match(event)) 2974 continue; 2975 2976 /* may need to reset tstamp_enabled */ 2977 if (is_cgroup_event(event)) 2978 perf_cgroup_mark_enabled(event, ctx); 2979 2980 if (group_can_go_on(event, cpuctx, 1)) 2981 group_sched_in(event, cpuctx, ctx); 2982 2983 /* 2984 * If this pinned group hasn't been scheduled, 2985 * put it in error state. 2986 */ 2987 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2988 update_group_times(event); 2989 event->state = PERF_EVENT_STATE_ERROR; 2990 } 2991 } 2992 } 2993 2994 static void 2995 ctx_flexible_sched_in(struct perf_event_context *ctx, 2996 struct perf_cpu_context *cpuctx) 2997 { 2998 struct perf_event *event; 2999 int can_add_hw = 1; 3000 3001 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 3002 /* Ignore events in OFF or ERROR state */ 3003 if (event->state <= PERF_EVENT_STATE_OFF) 3004 continue; 3005 /* 3006 * Listen to the 'cpu' scheduling filter constraint 3007 * of events: 3008 */ 3009 if (!event_filter_match(event)) 3010 continue; 3011 3012 /* may need to reset tstamp_enabled */ 3013 if (is_cgroup_event(event)) 3014 perf_cgroup_mark_enabled(event, ctx); 3015 3016 if (group_can_go_on(event, cpuctx, can_add_hw)) { 3017 if (group_sched_in(event, cpuctx, ctx)) 3018 can_add_hw = 0; 3019 } 3020 } 3021 } 3022 3023 static void 3024 ctx_sched_in(struct perf_event_context *ctx, 3025 struct perf_cpu_context *cpuctx, 3026 enum event_type_t event_type, 3027 struct task_struct *task) 3028 { 3029 int is_active = ctx->is_active; 3030 u64 now; 3031 3032 lockdep_assert_held(&ctx->lock); 3033 3034 if (likely(!ctx->nr_events)) 3035 return; 3036 3037 ctx->is_active |= (event_type | EVENT_TIME); 3038 if (ctx->task) { 3039 if (!is_active) 3040 cpuctx->task_ctx = ctx; 3041 else 3042 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3043 } 3044 3045 is_active ^= ctx->is_active; /* changed bits */ 3046 3047 if (is_active & EVENT_TIME) { 3048 /* start ctx time */ 3049 now = perf_clock(); 3050 ctx->timestamp = now; 3051 perf_cgroup_set_timestamp(task, ctx); 3052 } 3053 3054 /* 3055 * First go through the list and put on any pinned groups 3056 * in order to give them the best chance of going on. 3057 */ 3058 if (is_active & EVENT_PINNED) 3059 ctx_pinned_sched_in(ctx, cpuctx); 3060 3061 /* Then walk through the lower prio flexible groups */ 3062 if (is_active & EVENT_FLEXIBLE) 3063 ctx_flexible_sched_in(ctx, cpuctx); 3064 } 3065 3066 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3067 enum event_type_t event_type, 3068 struct task_struct *task) 3069 { 3070 struct perf_event_context *ctx = &cpuctx->ctx; 3071 3072 ctx_sched_in(ctx, cpuctx, event_type, task); 3073 } 3074 3075 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3076 struct task_struct *task) 3077 { 3078 struct perf_cpu_context *cpuctx; 3079 3080 cpuctx = __get_cpu_context(ctx); 3081 if (cpuctx->task_ctx == ctx) 3082 return; 3083 3084 perf_ctx_lock(cpuctx, ctx); 3085 perf_pmu_disable(ctx->pmu); 3086 /* 3087 * We want to keep the following priority order: 3088 * cpu pinned (that don't need to move), task pinned, 3089 * cpu flexible, task flexible. 3090 */ 3091 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3092 perf_event_sched_in(cpuctx, ctx, task); 3093 perf_pmu_enable(ctx->pmu); 3094 perf_ctx_unlock(cpuctx, ctx); 3095 } 3096 3097 /* 3098 * Called from scheduler to add the events of the current task 3099 * with interrupts disabled. 3100 * 3101 * We restore the event value and then enable it. 3102 * 3103 * This does not protect us against NMI, but enable() 3104 * sets the enabled bit in the control field of event _before_ 3105 * accessing the event control register. If a NMI hits, then it will 3106 * keep the event running. 3107 */ 3108 void __perf_event_task_sched_in(struct task_struct *prev, 3109 struct task_struct *task) 3110 { 3111 struct perf_event_context *ctx; 3112 int ctxn; 3113 3114 /* 3115 * If cgroup events exist on this CPU, then we need to check if we have 3116 * to switch in PMU state; cgroup event are system-wide mode only. 3117 * 3118 * Since cgroup events are CPU events, we must schedule these in before 3119 * we schedule in the task events. 3120 */ 3121 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3122 perf_cgroup_sched_in(prev, task); 3123 3124 for_each_task_context_nr(ctxn) { 3125 ctx = task->perf_event_ctxp[ctxn]; 3126 if (likely(!ctx)) 3127 continue; 3128 3129 perf_event_context_sched_in(ctx, task); 3130 } 3131 3132 if (atomic_read(&nr_switch_events)) 3133 perf_event_switch(task, prev, true); 3134 3135 if (__this_cpu_read(perf_sched_cb_usages)) 3136 perf_pmu_sched_task(prev, task, true); 3137 } 3138 3139 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3140 { 3141 u64 frequency = event->attr.sample_freq; 3142 u64 sec = NSEC_PER_SEC; 3143 u64 divisor, dividend; 3144 3145 int count_fls, nsec_fls, frequency_fls, sec_fls; 3146 3147 count_fls = fls64(count); 3148 nsec_fls = fls64(nsec); 3149 frequency_fls = fls64(frequency); 3150 sec_fls = 30; 3151 3152 /* 3153 * We got @count in @nsec, with a target of sample_freq HZ 3154 * the target period becomes: 3155 * 3156 * @count * 10^9 3157 * period = ------------------- 3158 * @nsec * sample_freq 3159 * 3160 */ 3161 3162 /* 3163 * Reduce accuracy by one bit such that @a and @b converge 3164 * to a similar magnitude. 3165 */ 3166 #define REDUCE_FLS(a, b) \ 3167 do { \ 3168 if (a##_fls > b##_fls) { \ 3169 a >>= 1; \ 3170 a##_fls--; \ 3171 } else { \ 3172 b >>= 1; \ 3173 b##_fls--; \ 3174 } \ 3175 } while (0) 3176 3177 /* 3178 * Reduce accuracy until either term fits in a u64, then proceed with 3179 * the other, so that finally we can do a u64/u64 division. 3180 */ 3181 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3182 REDUCE_FLS(nsec, frequency); 3183 REDUCE_FLS(sec, count); 3184 } 3185 3186 if (count_fls + sec_fls > 64) { 3187 divisor = nsec * frequency; 3188 3189 while (count_fls + sec_fls > 64) { 3190 REDUCE_FLS(count, sec); 3191 divisor >>= 1; 3192 } 3193 3194 dividend = count * sec; 3195 } else { 3196 dividend = count * sec; 3197 3198 while (nsec_fls + frequency_fls > 64) { 3199 REDUCE_FLS(nsec, frequency); 3200 dividend >>= 1; 3201 } 3202 3203 divisor = nsec * frequency; 3204 } 3205 3206 if (!divisor) 3207 return dividend; 3208 3209 return div64_u64(dividend, divisor); 3210 } 3211 3212 static DEFINE_PER_CPU(int, perf_throttled_count); 3213 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3214 3215 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3216 { 3217 struct hw_perf_event *hwc = &event->hw; 3218 s64 period, sample_period; 3219 s64 delta; 3220 3221 period = perf_calculate_period(event, nsec, count); 3222 3223 delta = (s64)(period - hwc->sample_period); 3224 delta = (delta + 7) / 8; /* low pass filter */ 3225 3226 sample_period = hwc->sample_period + delta; 3227 3228 if (!sample_period) 3229 sample_period = 1; 3230 3231 hwc->sample_period = sample_period; 3232 3233 if (local64_read(&hwc->period_left) > 8*sample_period) { 3234 if (disable) 3235 event->pmu->stop(event, PERF_EF_UPDATE); 3236 3237 local64_set(&hwc->period_left, 0); 3238 3239 if (disable) 3240 event->pmu->start(event, PERF_EF_RELOAD); 3241 } 3242 } 3243 3244 /* 3245 * combine freq adjustment with unthrottling to avoid two passes over the 3246 * events. At the same time, make sure, having freq events does not change 3247 * the rate of unthrottling as that would introduce bias. 3248 */ 3249 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3250 int needs_unthr) 3251 { 3252 struct perf_event *event; 3253 struct hw_perf_event *hwc; 3254 u64 now, period = TICK_NSEC; 3255 s64 delta; 3256 3257 /* 3258 * only need to iterate over all events iff: 3259 * - context have events in frequency mode (needs freq adjust) 3260 * - there are events to unthrottle on this cpu 3261 */ 3262 if (!(ctx->nr_freq || needs_unthr)) 3263 return; 3264 3265 raw_spin_lock(&ctx->lock); 3266 perf_pmu_disable(ctx->pmu); 3267 3268 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3269 if (event->state != PERF_EVENT_STATE_ACTIVE) 3270 continue; 3271 3272 if (!event_filter_match(event)) 3273 continue; 3274 3275 perf_pmu_disable(event->pmu); 3276 3277 hwc = &event->hw; 3278 3279 if (hwc->interrupts == MAX_INTERRUPTS) { 3280 hwc->interrupts = 0; 3281 perf_log_throttle(event, 1); 3282 event->pmu->start(event, 0); 3283 } 3284 3285 if (!event->attr.freq || !event->attr.sample_freq) 3286 goto next; 3287 3288 /* 3289 * stop the event and update event->count 3290 */ 3291 event->pmu->stop(event, PERF_EF_UPDATE); 3292 3293 now = local64_read(&event->count); 3294 delta = now - hwc->freq_count_stamp; 3295 hwc->freq_count_stamp = now; 3296 3297 /* 3298 * restart the event 3299 * reload only if value has changed 3300 * we have stopped the event so tell that 3301 * to perf_adjust_period() to avoid stopping it 3302 * twice. 3303 */ 3304 if (delta > 0) 3305 perf_adjust_period(event, period, delta, false); 3306 3307 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3308 next: 3309 perf_pmu_enable(event->pmu); 3310 } 3311 3312 perf_pmu_enable(ctx->pmu); 3313 raw_spin_unlock(&ctx->lock); 3314 } 3315 3316 /* 3317 * Round-robin a context's events: 3318 */ 3319 static void rotate_ctx(struct perf_event_context *ctx) 3320 { 3321 /* 3322 * Rotate the first entry last of non-pinned groups. Rotation might be 3323 * disabled by the inheritance code. 3324 */ 3325 if (!ctx->rotate_disable) 3326 list_rotate_left(&ctx->flexible_groups); 3327 } 3328 3329 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3330 { 3331 struct perf_event_context *ctx = NULL; 3332 int rotate = 0; 3333 3334 if (cpuctx->ctx.nr_events) { 3335 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3336 rotate = 1; 3337 } 3338 3339 ctx = cpuctx->task_ctx; 3340 if (ctx && ctx->nr_events) { 3341 if (ctx->nr_events != ctx->nr_active) 3342 rotate = 1; 3343 } 3344 3345 if (!rotate) 3346 goto done; 3347 3348 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3349 perf_pmu_disable(cpuctx->ctx.pmu); 3350 3351 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3352 if (ctx) 3353 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3354 3355 rotate_ctx(&cpuctx->ctx); 3356 if (ctx) 3357 rotate_ctx(ctx); 3358 3359 perf_event_sched_in(cpuctx, ctx, current); 3360 3361 perf_pmu_enable(cpuctx->ctx.pmu); 3362 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3363 done: 3364 3365 return rotate; 3366 } 3367 3368 void perf_event_task_tick(void) 3369 { 3370 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3371 struct perf_event_context *ctx, *tmp; 3372 int throttled; 3373 3374 WARN_ON(!irqs_disabled()); 3375 3376 __this_cpu_inc(perf_throttled_seq); 3377 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3378 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3379 3380 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3381 perf_adjust_freq_unthr_context(ctx, throttled); 3382 } 3383 3384 static int event_enable_on_exec(struct perf_event *event, 3385 struct perf_event_context *ctx) 3386 { 3387 if (!event->attr.enable_on_exec) 3388 return 0; 3389 3390 event->attr.enable_on_exec = 0; 3391 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3392 return 0; 3393 3394 __perf_event_mark_enabled(event); 3395 3396 return 1; 3397 } 3398 3399 /* 3400 * Enable all of a task's events that have been marked enable-on-exec. 3401 * This expects task == current. 3402 */ 3403 static void perf_event_enable_on_exec(int ctxn) 3404 { 3405 struct perf_event_context *ctx, *clone_ctx = NULL; 3406 struct perf_cpu_context *cpuctx; 3407 struct perf_event *event; 3408 unsigned long flags; 3409 int enabled = 0; 3410 3411 local_irq_save(flags); 3412 ctx = current->perf_event_ctxp[ctxn]; 3413 if (!ctx || !ctx->nr_events) 3414 goto out; 3415 3416 cpuctx = __get_cpu_context(ctx); 3417 perf_ctx_lock(cpuctx, ctx); 3418 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3419 list_for_each_entry(event, &ctx->event_list, event_entry) 3420 enabled |= event_enable_on_exec(event, ctx); 3421 3422 /* 3423 * Unclone and reschedule this context if we enabled any event. 3424 */ 3425 if (enabled) { 3426 clone_ctx = unclone_ctx(ctx); 3427 ctx_resched(cpuctx, ctx); 3428 } 3429 perf_ctx_unlock(cpuctx, ctx); 3430 3431 out: 3432 local_irq_restore(flags); 3433 3434 if (clone_ctx) 3435 put_ctx(clone_ctx); 3436 } 3437 3438 struct perf_read_data { 3439 struct perf_event *event; 3440 bool group; 3441 int ret; 3442 }; 3443 3444 static int find_cpu_to_read(struct perf_event *event, int local_cpu) 3445 { 3446 int event_cpu = event->oncpu; 3447 u16 local_pkg, event_pkg; 3448 3449 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3450 event_pkg = topology_physical_package_id(event_cpu); 3451 local_pkg = topology_physical_package_id(local_cpu); 3452 3453 if (event_pkg == local_pkg) 3454 return local_cpu; 3455 } 3456 3457 return event_cpu; 3458 } 3459 3460 /* 3461 * Cross CPU call to read the hardware event 3462 */ 3463 static void __perf_event_read(void *info) 3464 { 3465 struct perf_read_data *data = info; 3466 struct perf_event *sub, *event = data->event; 3467 struct perf_event_context *ctx = event->ctx; 3468 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3469 struct pmu *pmu = event->pmu; 3470 3471 /* 3472 * If this is a task context, we need to check whether it is 3473 * the current task context of this cpu. If not it has been 3474 * scheduled out before the smp call arrived. In that case 3475 * event->count would have been updated to a recent sample 3476 * when the event was scheduled out. 3477 */ 3478 if (ctx->task && cpuctx->task_ctx != ctx) 3479 return; 3480 3481 raw_spin_lock(&ctx->lock); 3482 if (ctx->is_active) { 3483 update_context_time(ctx); 3484 update_cgrp_time_from_event(event); 3485 } 3486 3487 update_event_times(event); 3488 if (event->state != PERF_EVENT_STATE_ACTIVE) 3489 goto unlock; 3490 3491 if (!data->group) { 3492 pmu->read(event); 3493 data->ret = 0; 3494 goto unlock; 3495 } 3496 3497 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3498 3499 pmu->read(event); 3500 3501 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3502 update_event_times(sub); 3503 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3504 /* 3505 * Use sibling's PMU rather than @event's since 3506 * sibling could be on different (eg: software) PMU. 3507 */ 3508 sub->pmu->read(sub); 3509 } 3510 } 3511 3512 data->ret = pmu->commit_txn(pmu); 3513 3514 unlock: 3515 raw_spin_unlock(&ctx->lock); 3516 } 3517 3518 static inline u64 perf_event_count(struct perf_event *event) 3519 { 3520 if (event->pmu->count) 3521 return event->pmu->count(event); 3522 3523 return __perf_event_count(event); 3524 } 3525 3526 /* 3527 * NMI-safe method to read a local event, that is an event that 3528 * is: 3529 * - either for the current task, or for this CPU 3530 * - does not have inherit set, for inherited task events 3531 * will not be local and we cannot read them atomically 3532 * - must not have a pmu::count method 3533 */ 3534 u64 perf_event_read_local(struct perf_event *event) 3535 { 3536 unsigned long flags; 3537 u64 val; 3538 3539 /* 3540 * Disabling interrupts avoids all counter scheduling (context 3541 * switches, timer based rotation and IPIs). 3542 */ 3543 local_irq_save(flags); 3544 3545 /* If this is a per-task event, it must be for current */ 3546 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3547 event->hw.target != current); 3548 3549 /* If this is a per-CPU event, it must be for this CPU */ 3550 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3551 event->cpu != smp_processor_id()); 3552 3553 /* 3554 * It must not be an event with inherit set, we cannot read 3555 * all child counters from atomic context. 3556 */ 3557 WARN_ON_ONCE(event->attr.inherit); 3558 3559 /* 3560 * It must not have a pmu::count method, those are not 3561 * NMI safe. 3562 */ 3563 WARN_ON_ONCE(event->pmu->count); 3564 3565 /* 3566 * If the event is currently on this CPU, its either a per-task event, 3567 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3568 * oncpu == -1). 3569 */ 3570 if (event->oncpu == smp_processor_id()) 3571 event->pmu->read(event); 3572 3573 val = local64_read(&event->count); 3574 local_irq_restore(flags); 3575 3576 return val; 3577 } 3578 3579 static int perf_event_read(struct perf_event *event, bool group) 3580 { 3581 int ret = 0, cpu_to_read, local_cpu; 3582 3583 /* 3584 * If event is enabled and currently active on a CPU, update the 3585 * value in the event structure: 3586 */ 3587 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3588 struct perf_read_data data = { 3589 .event = event, 3590 .group = group, 3591 .ret = 0, 3592 }; 3593 3594 local_cpu = get_cpu(); 3595 cpu_to_read = find_cpu_to_read(event, local_cpu); 3596 put_cpu(); 3597 3598 /* 3599 * Purposely ignore the smp_call_function_single() return 3600 * value. 3601 * 3602 * If event->oncpu isn't a valid CPU it means the event got 3603 * scheduled out and that will have updated the event count. 3604 * 3605 * Therefore, either way, we'll have an up-to-date event count 3606 * after this. 3607 */ 3608 (void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1); 3609 ret = data.ret; 3610 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3611 struct perf_event_context *ctx = event->ctx; 3612 unsigned long flags; 3613 3614 raw_spin_lock_irqsave(&ctx->lock, flags); 3615 /* 3616 * may read while context is not active 3617 * (e.g., thread is blocked), in that case 3618 * we cannot update context time 3619 */ 3620 if (ctx->is_active) { 3621 update_context_time(ctx); 3622 update_cgrp_time_from_event(event); 3623 } 3624 if (group) 3625 update_group_times(event); 3626 else 3627 update_event_times(event); 3628 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3629 } 3630 3631 return ret; 3632 } 3633 3634 /* 3635 * Initialize the perf_event context in a task_struct: 3636 */ 3637 static void __perf_event_init_context(struct perf_event_context *ctx) 3638 { 3639 raw_spin_lock_init(&ctx->lock); 3640 mutex_init(&ctx->mutex); 3641 INIT_LIST_HEAD(&ctx->active_ctx_list); 3642 INIT_LIST_HEAD(&ctx->pinned_groups); 3643 INIT_LIST_HEAD(&ctx->flexible_groups); 3644 INIT_LIST_HEAD(&ctx->event_list); 3645 atomic_set(&ctx->refcount, 1); 3646 } 3647 3648 static struct perf_event_context * 3649 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3650 { 3651 struct perf_event_context *ctx; 3652 3653 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3654 if (!ctx) 3655 return NULL; 3656 3657 __perf_event_init_context(ctx); 3658 if (task) { 3659 ctx->task = task; 3660 get_task_struct(task); 3661 } 3662 ctx->pmu = pmu; 3663 3664 return ctx; 3665 } 3666 3667 static struct task_struct * 3668 find_lively_task_by_vpid(pid_t vpid) 3669 { 3670 struct task_struct *task; 3671 3672 rcu_read_lock(); 3673 if (!vpid) 3674 task = current; 3675 else 3676 task = find_task_by_vpid(vpid); 3677 if (task) 3678 get_task_struct(task); 3679 rcu_read_unlock(); 3680 3681 if (!task) 3682 return ERR_PTR(-ESRCH); 3683 3684 return task; 3685 } 3686 3687 /* 3688 * Returns a matching context with refcount and pincount. 3689 */ 3690 static struct perf_event_context * 3691 find_get_context(struct pmu *pmu, struct task_struct *task, 3692 struct perf_event *event) 3693 { 3694 struct perf_event_context *ctx, *clone_ctx = NULL; 3695 struct perf_cpu_context *cpuctx; 3696 void *task_ctx_data = NULL; 3697 unsigned long flags; 3698 int ctxn, err; 3699 int cpu = event->cpu; 3700 3701 if (!task) { 3702 /* Must be root to operate on a CPU event: */ 3703 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3704 return ERR_PTR(-EACCES); 3705 3706 /* 3707 * We could be clever and allow to attach a event to an 3708 * offline CPU and activate it when the CPU comes up, but 3709 * that's for later. 3710 */ 3711 if (!cpu_online(cpu)) 3712 return ERR_PTR(-ENODEV); 3713 3714 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3715 ctx = &cpuctx->ctx; 3716 get_ctx(ctx); 3717 ++ctx->pin_count; 3718 3719 return ctx; 3720 } 3721 3722 err = -EINVAL; 3723 ctxn = pmu->task_ctx_nr; 3724 if (ctxn < 0) 3725 goto errout; 3726 3727 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3728 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3729 if (!task_ctx_data) { 3730 err = -ENOMEM; 3731 goto errout; 3732 } 3733 } 3734 3735 retry: 3736 ctx = perf_lock_task_context(task, ctxn, &flags); 3737 if (ctx) { 3738 clone_ctx = unclone_ctx(ctx); 3739 ++ctx->pin_count; 3740 3741 if (task_ctx_data && !ctx->task_ctx_data) { 3742 ctx->task_ctx_data = task_ctx_data; 3743 task_ctx_data = NULL; 3744 } 3745 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3746 3747 if (clone_ctx) 3748 put_ctx(clone_ctx); 3749 } else { 3750 ctx = alloc_perf_context(pmu, task); 3751 err = -ENOMEM; 3752 if (!ctx) 3753 goto errout; 3754 3755 if (task_ctx_data) { 3756 ctx->task_ctx_data = task_ctx_data; 3757 task_ctx_data = NULL; 3758 } 3759 3760 err = 0; 3761 mutex_lock(&task->perf_event_mutex); 3762 /* 3763 * If it has already passed perf_event_exit_task(). 3764 * we must see PF_EXITING, it takes this mutex too. 3765 */ 3766 if (task->flags & PF_EXITING) 3767 err = -ESRCH; 3768 else if (task->perf_event_ctxp[ctxn]) 3769 err = -EAGAIN; 3770 else { 3771 get_ctx(ctx); 3772 ++ctx->pin_count; 3773 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3774 } 3775 mutex_unlock(&task->perf_event_mutex); 3776 3777 if (unlikely(err)) { 3778 put_ctx(ctx); 3779 3780 if (err == -EAGAIN) 3781 goto retry; 3782 goto errout; 3783 } 3784 } 3785 3786 kfree(task_ctx_data); 3787 return ctx; 3788 3789 errout: 3790 kfree(task_ctx_data); 3791 return ERR_PTR(err); 3792 } 3793 3794 static void perf_event_free_filter(struct perf_event *event); 3795 static void perf_event_free_bpf_prog(struct perf_event *event); 3796 3797 static void free_event_rcu(struct rcu_head *head) 3798 { 3799 struct perf_event *event; 3800 3801 event = container_of(head, struct perf_event, rcu_head); 3802 if (event->ns) 3803 put_pid_ns(event->ns); 3804 perf_event_free_filter(event); 3805 kfree(event); 3806 } 3807 3808 static void ring_buffer_attach(struct perf_event *event, 3809 struct ring_buffer *rb); 3810 3811 static void detach_sb_event(struct perf_event *event) 3812 { 3813 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3814 3815 raw_spin_lock(&pel->lock); 3816 list_del_rcu(&event->sb_list); 3817 raw_spin_unlock(&pel->lock); 3818 } 3819 3820 static bool is_sb_event(struct perf_event *event) 3821 { 3822 struct perf_event_attr *attr = &event->attr; 3823 3824 if (event->parent) 3825 return false; 3826 3827 if (event->attach_state & PERF_ATTACH_TASK) 3828 return false; 3829 3830 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3831 attr->comm || attr->comm_exec || 3832 attr->task || 3833 attr->context_switch) 3834 return true; 3835 return false; 3836 } 3837 3838 static void unaccount_pmu_sb_event(struct perf_event *event) 3839 { 3840 if (is_sb_event(event)) 3841 detach_sb_event(event); 3842 } 3843 3844 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3845 { 3846 if (event->parent) 3847 return; 3848 3849 if (is_cgroup_event(event)) 3850 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3851 } 3852 3853 #ifdef CONFIG_NO_HZ_FULL 3854 static DEFINE_SPINLOCK(nr_freq_lock); 3855 #endif 3856 3857 static void unaccount_freq_event_nohz(void) 3858 { 3859 #ifdef CONFIG_NO_HZ_FULL 3860 spin_lock(&nr_freq_lock); 3861 if (atomic_dec_and_test(&nr_freq_events)) 3862 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3863 spin_unlock(&nr_freq_lock); 3864 #endif 3865 } 3866 3867 static void unaccount_freq_event(void) 3868 { 3869 if (tick_nohz_full_enabled()) 3870 unaccount_freq_event_nohz(); 3871 else 3872 atomic_dec(&nr_freq_events); 3873 } 3874 3875 static void unaccount_event(struct perf_event *event) 3876 { 3877 bool dec = false; 3878 3879 if (event->parent) 3880 return; 3881 3882 if (event->attach_state & PERF_ATTACH_TASK) 3883 dec = true; 3884 if (event->attr.mmap || event->attr.mmap_data) 3885 atomic_dec(&nr_mmap_events); 3886 if (event->attr.comm) 3887 atomic_dec(&nr_comm_events); 3888 if (event->attr.task) 3889 atomic_dec(&nr_task_events); 3890 if (event->attr.freq) 3891 unaccount_freq_event(); 3892 if (event->attr.context_switch) { 3893 dec = true; 3894 atomic_dec(&nr_switch_events); 3895 } 3896 if (is_cgroup_event(event)) 3897 dec = true; 3898 if (has_branch_stack(event)) 3899 dec = true; 3900 3901 if (dec) { 3902 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3903 schedule_delayed_work(&perf_sched_work, HZ); 3904 } 3905 3906 unaccount_event_cpu(event, event->cpu); 3907 3908 unaccount_pmu_sb_event(event); 3909 } 3910 3911 static void perf_sched_delayed(struct work_struct *work) 3912 { 3913 mutex_lock(&perf_sched_mutex); 3914 if (atomic_dec_and_test(&perf_sched_count)) 3915 static_branch_disable(&perf_sched_events); 3916 mutex_unlock(&perf_sched_mutex); 3917 } 3918 3919 /* 3920 * The following implement mutual exclusion of events on "exclusive" pmus 3921 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3922 * at a time, so we disallow creating events that might conflict, namely: 3923 * 3924 * 1) cpu-wide events in the presence of per-task events, 3925 * 2) per-task events in the presence of cpu-wide events, 3926 * 3) two matching events on the same context. 3927 * 3928 * The former two cases are handled in the allocation path (perf_event_alloc(), 3929 * _free_event()), the latter -- before the first perf_install_in_context(). 3930 */ 3931 static int exclusive_event_init(struct perf_event *event) 3932 { 3933 struct pmu *pmu = event->pmu; 3934 3935 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3936 return 0; 3937 3938 /* 3939 * Prevent co-existence of per-task and cpu-wide events on the 3940 * same exclusive pmu. 3941 * 3942 * Negative pmu::exclusive_cnt means there are cpu-wide 3943 * events on this "exclusive" pmu, positive means there are 3944 * per-task events. 3945 * 3946 * Since this is called in perf_event_alloc() path, event::ctx 3947 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3948 * to mean "per-task event", because unlike other attach states it 3949 * never gets cleared. 3950 */ 3951 if (event->attach_state & PERF_ATTACH_TASK) { 3952 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3953 return -EBUSY; 3954 } else { 3955 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3956 return -EBUSY; 3957 } 3958 3959 return 0; 3960 } 3961 3962 static void exclusive_event_destroy(struct perf_event *event) 3963 { 3964 struct pmu *pmu = event->pmu; 3965 3966 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3967 return; 3968 3969 /* see comment in exclusive_event_init() */ 3970 if (event->attach_state & PERF_ATTACH_TASK) 3971 atomic_dec(&pmu->exclusive_cnt); 3972 else 3973 atomic_inc(&pmu->exclusive_cnt); 3974 } 3975 3976 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3977 { 3978 if ((e1->pmu == e2->pmu) && 3979 (e1->cpu == e2->cpu || 3980 e1->cpu == -1 || 3981 e2->cpu == -1)) 3982 return true; 3983 return false; 3984 } 3985 3986 /* Called under the same ctx::mutex as perf_install_in_context() */ 3987 static bool exclusive_event_installable(struct perf_event *event, 3988 struct perf_event_context *ctx) 3989 { 3990 struct perf_event *iter_event; 3991 struct pmu *pmu = event->pmu; 3992 3993 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3994 return true; 3995 3996 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3997 if (exclusive_event_match(iter_event, event)) 3998 return false; 3999 } 4000 4001 return true; 4002 } 4003 4004 static void perf_addr_filters_splice(struct perf_event *event, 4005 struct list_head *head); 4006 4007 static void _free_event(struct perf_event *event) 4008 { 4009 irq_work_sync(&event->pending); 4010 4011 unaccount_event(event); 4012 4013 if (event->rb) { 4014 /* 4015 * Can happen when we close an event with re-directed output. 4016 * 4017 * Since we have a 0 refcount, perf_mmap_close() will skip 4018 * over us; possibly making our ring_buffer_put() the last. 4019 */ 4020 mutex_lock(&event->mmap_mutex); 4021 ring_buffer_attach(event, NULL); 4022 mutex_unlock(&event->mmap_mutex); 4023 } 4024 4025 if (is_cgroup_event(event)) 4026 perf_detach_cgroup(event); 4027 4028 if (!event->parent) { 4029 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4030 put_callchain_buffers(); 4031 } 4032 4033 perf_event_free_bpf_prog(event); 4034 perf_addr_filters_splice(event, NULL); 4035 kfree(event->addr_filters_offs); 4036 4037 if (event->destroy) 4038 event->destroy(event); 4039 4040 if (event->ctx) 4041 put_ctx(event->ctx); 4042 4043 exclusive_event_destroy(event); 4044 module_put(event->pmu->module); 4045 4046 call_rcu(&event->rcu_head, free_event_rcu); 4047 } 4048 4049 /* 4050 * Used to free events which have a known refcount of 1, such as in error paths 4051 * where the event isn't exposed yet and inherited events. 4052 */ 4053 static void free_event(struct perf_event *event) 4054 { 4055 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4056 "unexpected event refcount: %ld; ptr=%p\n", 4057 atomic_long_read(&event->refcount), event)) { 4058 /* leak to avoid use-after-free */ 4059 return; 4060 } 4061 4062 _free_event(event); 4063 } 4064 4065 /* 4066 * Remove user event from the owner task. 4067 */ 4068 static void perf_remove_from_owner(struct perf_event *event) 4069 { 4070 struct task_struct *owner; 4071 4072 rcu_read_lock(); 4073 /* 4074 * Matches the smp_store_release() in perf_event_exit_task(). If we 4075 * observe !owner it means the list deletion is complete and we can 4076 * indeed free this event, otherwise we need to serialize on 4077 * owner->perf_event_mutex. 4078 */ 4079 owner = lockless_dereference(event->owner); 4080 if (owner) { 4081 /* 4082 * Since delayed_put_task_struct() also drops the last 4083 * task reference we can safely take a new reference 4084 * while holding the rcu_read_lock(). 4085 */ 4086 get_task_struct(owner); 4087 } 4088 rcu_read_unlock(); 4089 4090 if (owner) { 4091 /* 4092 * If we're here through perf_event_exit_task() we're already 4093 * holding ctx->mutex which would be an inversion wrt. the 4094 * normal lock order. 4095 * 4096 * However we can safely take this lock because its the child 4097 * ctx->mutex. 4098 */ 4099 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4100 4101 /* 4102 * We have to re-check the event->owner field, if it is cleared 4103 * we raced with perf_event_exit_task(), acquiring the mutex 4104 * ensured they're done, and we can proceed with freeing the 4105 * event. 4106 */ 4107 if (event->owner) { 4108 list_del_init(&event->owner_entry); 4109 smp_store_release(&event->owner, NULL); 4110 } 4111 mutex_unlock(&owner->perf_event_mutex); 4112 put_task_struct(owner); 4113 } 4114 } 4115 4116 static void put_event(struct perf_event *event) 4117 { 4118 if (!atomic_long_dec_and_test(&event->refcount)) 4119 return; 4120 4121 _free_event(event); 4122 } 4123 4124 /* 4125 * Kill an event dead; while event:refcount will preserve the event 4126 * object, it will not preserve its functionality. Once the last 'user' 4127 * gives up the object, we'll destroy the thing. 4128 */ 4129 int perf_event_release_kernel(struct perf_event *event) 4130 { 4131 struct perf_event_context *ctx = event->ctx; 4132 struct perf_event *child, *tmp; 4133 4134 /* 4135 * If we got here through err_file: fput(event_file); we will not have 4136 * attached to a context yet. 4137 */ 4138 if (!ctx) { 4139 WARN_ON_ONCE(event->attach_state & 4140 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4141 goto no_ctx; 4142 } 4143 4144 if (!is_kernel_event(event)) 4145 perf_remove_from_owner(event); 4146 4147 ctx = perf_event_ctx_lock(event); 4148 WARN_ON_ONCE(ctx->parent_ctx); 4149 perf_remove_from_context(event, DETACH_GROUP); 4150 4151 raw_spin_lock_irq(&ctx->lock); 4152 /* 4153 * Mark this even as STATE_DEAD, there is no external reference to it 4154 * anymore. 4155 * 4156 * Anybody acquiring event->child_mutex after the below loop _must_ 4157 * also see this, most importantly inherit_event() which will avoid 4158 * placing more children on the list. 4159 * 4160 * Thus this guarantees that we will in fact observe and kill _ALL_ 4161 * child events. 4162 */ 4163 event->state = PERF_EVENT_STATE_DEAD; 4164 raw_spin_unlock_irq(&ctx->lock); 4165 4166 perf_event_ctx_unlock(event, ctx); 4167 4168 again: 4169 mutex_lock(&event->child_mutex); 4170 list_for_each_entry(child, &event->child_list, child_list) { 4171 4172 /* 4173 * Cannot change, child events are not migrated, see the 4174 * comment with perf_event_ctx_lock_nested(). 4175 */ 4176 ctx = lockless_dereference(child->ctx); 4177 /* 4178 * Since child_mutex nests inside ctx::mutex, we must jump 4179 * through hoops. We start by grabbing a reference on the ctx. 4180 * 4181 * Since the event cannot get freed while we hold the 4182 * child_mutex, the context must also exist and have a !0 4183 * reference count. 4184 */ 4185 get_ctx(ctx); 4186 4187 /* 4188 * Now that we have a ctx ref, we can drop child_mutex, and 4189 * acquire ctx::mutex without fear of it going away. Then we 4190 * can re-acquire child_mutex. 4191 */ 4192 mutex_unlock(&event->child_mutex); 4193 mutex_lock(&ctx->mutex); 4194 mutex_lock(&event->child_mutex); 4195 4196 /* 4197 * Now that we hold ctx::mutex and child_mutex, revalidate our 4198 * state, if child is still the first entry, it didn't get freed 4199 * and we can continue doing so. 4200 */ 4201 tmp = list_first_entry_or_null(&event->child_list, 4202 struct perf_event, child_list); 4203 if (tmp == child) { 4204 perf_remove_from_context(child, DETACH_GROUP); 4205 list_del(&child->child_list); 4206 free_event(child); 4207 /* 4208 * This matches the refcount bump in inherit_event(); 4209 * this can't be the last reference. 4210 */ 4211 put_event(event); 4212 } 4213 4214 mutex_unlock(&event->child_mutex); 4215 mutex_unlock(&ctx->mutex); 4216 put_ctx(ctx); 4217 goto again; 4218 } 4219 mutex_unlock(&event->child_mutex); 4220 4221 no_ctx: 4222 put_event(event); /* Must be the 'last' reference */ 4223 return 0; 4224 } 4225 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4226 4227 /* 4228 * Called when the last reference to the file is gone. 4229 */ 4230 static int perf_release(struct inode *inode, struct file *file) 4231 { 4232 perf_event_release_kernel(file->private_data); 4233 return 0; 4234 } 4235 4236 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4237 { 4238 struct perf_event *child; 4239 u64 total = 0; 4240 4241 *enabled = 0; 4242 *running = 0; 4243 4244 mutex_lock(&event->child_mutex); 4245 4246 (void)perf_event_read(event, false); 4247 total += perf_event_count(event); 4248 4249 *enabled += event->total_time_enabled + 4250 atomic64_read(&event->child_total_time_enabled); 4251 *running += event->total_time_running + 4252 atomic64_read(&event->child_total_time_running); 4253 4254 list_for_each_entry(child, &event->child_list, child_list) { 4255 (void)perf_event_read(child, false); 4256 total += perf_event_count(child); 4257 *enabled += child->total_time_enabled; 4258 *running += child->total_time_running; 4259 } 4260 mutex_unlock(&event->child_mutex); 4261 4262 return total; 4263 } 4264 EXPORT_SYMBOL_GPL(perf_event_read_value); 4265 4266 static int __perf_read_group_add(struct perf_event *leader, 4267 u64 read_format, u64 *values) 4268 { 4269 struct perf_event *sub; 4270 int n = 1; /* skip @nr */ 4271 int ret; 4272 4273 ret = perf_event_read(leader, true); 4274 if (ret) 4275 return ret; 4276 4277 /* 4278 * Since we co-schedule groups, {enabled,running} times of siblings 4279 * will be identical to those of the leader, so we only publish one 4280 * set. 4281 */ 4282 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4283 values[n++] += leader->total_time_enabled + 4284 atomic64_read(&leader->child_total_time_enabled); 4285 } 4286 4287 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4288 values[n++] += leader->total_time_running + 4289 atomic64_read(&leader->child_total_time_running); 4290 } 4291 4292 /* 4293 * Write {count,id} tuples for every sibling. 4294 */ 4295 values[n++] += perf_event_count(leader); 4296 if (read_format & PERF_FORMAT_ID) 4297 values[n++] = primary_event_id(leader); 4298 4299 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4300 values[n++] += perf_event_count(sub); 4301 if (read_format & PERF_FORMAT_ID) 4302 values[n++] = primary_event_id(sub); 4303 } 4304 4305 return 0; 4306 } 4307 4308 static int perf_read_group(struct perf_event *event, 4309 u64 read_format, char __user *buf) 4310 { 4311 struct perf_event *leader = event->group_leader, *child; 4312 struct perf_event_context *ctx = leader->ctx; 4313 int ret; 4314 u64 *values; 4315 4316 lockdep_assert_held(&ctx->mutex); 4317 4318 values = kzalloc(event->read_size, GFP_KERNEL); 4319 if (!values) 4320 return -ENOMEM; 4321 4322 values[0] = 1 + leader->nr_siblings; 4323 4324 /* 4325 * By locking the child_mutex of the leader we effectively 4326 * lock the child list of all siblings.. XXX explain how. 4327 */ 4328 mutex_lock(&leader->child_mutex); 4329 4330 ret = __perf_read_group_add(leader, read_format, values); 4331 if (ret) 4332 goto unlock; 4333 4334 list_for_each_entry(child, &leader->child_list, child_list) { 4335 ret = __perf_read_group_add(child, read_format, values); 4336 if (ret) 4337 goto unlock; 4338 } 4339 4340 mutex_unlock(&leader->child_mutex); 4341 4342 ret = event->read_size; 4343 if (copy_to_user(buf, values, event->read_size)) 4344 ret = -EFAULT; 4345 goto out; 4346 4347 unlock: 4348 mutex_unlock(&leader->child_mutex); 4349 out: 4350 kfree(values); 4351 return ret; 4352 } 4353 4354 static int perf_read_one(struct perf_event *event, 4355 u64 read_format, char __user *buf) 4356 { 4357 u64 enabled, running; 4358 u64 values[4]; 4359 int n = 0; 4360 4361 values[n++] = perf_event_read_value(event, &enabled, &running); 4362 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4363 values[n++] = enabled; 4364 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4365 values[n++] = running; 4366 if (read_format & PERF_FORMAT_ID) 4367 values[n++] = primary_event_id(event); 4368 4369 if (copy_to_user(buf, values, n * sizeof(u64))) 4370 return -EFAULT; 4371 4372 return n * sizeof(u64); 4373 } 4374 4375 static bool is_event_hup(struct perf_event *event) 4376 { 4377 bool no_children; 4378 4379 if (event->state > PERF_EVENT_STATE_EXIT) 4380 return false; 4381 4382 mutex_lock(&event->child_mutex); 4383 no_children = list_empty(&event->child_list); 4384 mutex_unlock(&event->child_mutex); 4385 return no_children; 4386 } 4387 4388 /* 4389 * Read the performance event - simple non blocking version for now 4390 */ 4391 static ssize_t 4392 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4393 { 4394 u64 read_format = event->attr.read_format; 4395 int ret; 4396 4397 /* 4398 * Return end-of-file for a read on a event that is in 4399 * error state (i.e. because it was pinned but it couldn't be 4400 * scheduled on to the CPU at some point). 4401 */ 4402 if (event->state == PERF_EVENT_STATE_ERROR) 4403 return 0; 4404 4405 if (count < event->read_size) 4406 return -ENOSPC; 4407 4408 WARN_ON_ONCE(event->ctx->parent_ctx); 4409 if (read_format & PERF_FORMAT_GROUP) 4410 ret = perf_read_group(event, read_format, buf); 4411 else 4412 ret = perf_read_one(event, read_format, buf); 4413 4414 return ret; 4415 } 4416 4417 static ssize_t 4418 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4419 { 4420 struct perf_event *event = file->private_data; 4421 struct perf_event_context *ctx; 4422 int ret; 4423 4424 ctx = perf_event_ctx_lock(event); 4425 ret = __perf_read(event, buf, count); 4426 perf_event_ctx_unlock(event, ctx); 4427 4428 return ret; 4429 } 4430 4431 static unsigned int perf_poll(struct file *file, poll_table *wait) 4432 { 4433 struct perf_event *event = file->private_data; 4434 struct ring_buffer *rb; 4435 unsigned int events = POLLHUP; 4436 4437 poll_wait(file, &event->waitq, wait); 4438 4439 if (is_event_hup(event)) 4440 return events; 4441 4442 /* 4443 * Pin the event->rb by taking event->mmap_mutex; otherwise 4444 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4445 */ 4446 mutex_lock(&event->mmap_mutex); 4447 rb = event->rb; 4448 if (rb) 4449 events = atomic_xchg(&rb->poll, 0); 4450 mutex_unlock(&event->mmap_mutex); 4451 return events; 4452 } 4453 4454 static void _perf_event_reset(struct perf_event *event) 4455 { 4456 (void)perf_event_read(event, false); 4457 local64_set(&event->count, 0); 4458 perf_event_update_userpage(event); 4459 } 4460 4461 /* 4462 * Holding the top-level event's child_mutex means that any 4463 * descendant process that has inherited this event will block 4464 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4465 * task existence requirements of perf_event_enable/disable. 4466 */ 4467 static void perf_event_for_each_child(struct perf_event *event, 4468 void (*func)(struct perf_event *)) 4469 { 4470 struct perf_event *child; 4471 4472 WARN_ON_ONCE(event->ctx->parent_ctx); 4473 4474 mutex_lock(&event->child_mutex); 4475 func(event); 4476 list_for_each_entry(child, &event->child_list, child_list) 4477 func(child); 4478 mutex_unlock(&event->child_mutex); 4479 } 4480 4481 static void perf_event_for_each(struct perf_event *event, 4482 void (*func)(struct perf_event *)) 4483 { 4484 struct perf_event_context *ctx = event->ctx; 4485 struct perf_event *sibling; 4486 4487 lockdep_assert_held(&ctx->mutex); 4488 4489 event = event->group_leader; 4490 4491 perf_event_for_each_child(event, func); 4492 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4493 perf_event_for_each_child(sibling, func); 4494 } 4495 4496 static void __perf_event_period(struct perf_event *event, 4497 struct perf_cpu_context *cpuctx, 4498 struct perf_event_context *ctx, 4499 void *info) 4500 { 4501 u64 value = *((u64 *)info); 4502 bool active; 4503 4504 if (event->attr.freq) { 4505 event->attr.sample_freq = value; 4506 } else { 4507 event->attr.sample_period = value; 4508 event->hw.sample_period = value; 4509 } 4510 4511 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4512 if (active) { 4513 perf_pmu_disable(ctx->pmu); 4514 /* 4515 * We could be throttled; unthrottle now to avoid the tick 4516 * trying to unthrottle while we already re-started the event. 4517 */ 4518 if (event->hw.interrupts == MAX_INTERRUPTS) { 4519 event->hw.interrupts = 0; 4520 perf_log_throttle(event, 1); 4521 } 4522 event->pmu->stop(event, PERF_EF_UPDATE); 4523 } 4524 4525 local64_set(&event->hw.period_left, 0); 4526 4527 if (active) { 4528 event->pmu->start(event, PERF_EF_RELOAD); 4529 perf_pmu_enable(ctx->pmu); 4530 } 4531 } 4532 4533 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4534 { 4535 u64 value; 4536 4537 if (!is_sampling_event(event)) 4538 return -EINVAL; 4539 4540 if (copy_from_user(&value, arg, sizeof(value))) 4541 return -EFAULT; 4542 4543 if (!value) 4544 return -EINVAL; 4545 4546 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4547 return -EINVAL; 4548 4549 event_function_call(event, __perf_event_period, &value); 4550 4551 return 0; 4552 } 4553 4554 static const struct file_operations perf_fops; 4555 4556 static inline int perf_fget_light(int fd, struct fd *p) 4557 { 4558 struct fd f = fdget(fd); 4559 if (!f.file) 4560 return -EBADF; 4561 4562 if (f.file->f_op != &perf_fops) { 4563 fdput(f); 4564 return -EBADF; 4565 } 4566 *p = f; 4567 return 0; 4568 } 4569 4570 static int perf_event_set_output(struct perf_event *event, 4571 struct perf_event *output_event); 4572 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4573 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4574 4575 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4576 { 4577 void (*func)(struct perf_event *); 4578 u32 flags = arg; 4579 4580 switch (cmd) { 4581 case PERF_EVENT_IOC_ENABLE: 4582 func = _perf_event_enable; 4583 break; 4584 case PERF_EVENT_IOC_DISABLE: 4585 func = _perf_event_disable; 4586 break; 4587 case PERF_EVENT_IOC_RESET: 4588 func = _perf_event_reset; 4589 break; 4590 4591 case PERF_EVENT_IOC_REFRESH: 4592 return _perf_event_refresh(event, arg); 4593 4594 case PERF_EVENT_IOC_PERIOD: 4595 return perf_event_period(event, (u64 __user *)arg); 4596 4597 case PERF_EVENT_IOC_ID: 4598 { 4599 u64 id = primary_event_id(event); 4600 4601 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4602 return -EFAULT; 4603 return 0; 4604 } 4605 4606 case PERF_EVENT_IOC_SET_OUTPUT: 4607 { 4608 int ret; 4609 if (arg != -1) { 4610 struct perf_event *output_event; 4611 struct fd output; 4612 ret = perf_fget_light(arg, &output); 4613 if (ret) 4614 return ret; 4615 output_event = output.file->private_data; 4616 ret = perf_event_set_output(event, output_event); 4617 fdput(output); 4618 } else { 4619 ret = perf_event_set_output(event, NULL); 4620 } 4621 return ret; 4622 } 4623 4624 case PERF_EVENT_IOC_SET_FILTER: 4625 return perf_event_set_filter(event, (void __user *)arg); 4626 4627 case PERF_EVENT_IOC_SET_BPF: 4628 return perf_event_set_bpf_prog(event, arg); 4629 4630 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4631 struct ring_buffer *rb; 4632 4633 rcu_read_lock(); 4634 rb = rcu_dereference(event->rb); 4635 if (!rb || !rb->nr_pages) { 4636 rcu_read_unlock(); 4637 return -EINVAL; 4638 } 4639 rb_toggle_paused(rb, !!arg); 4640 rcu_read_unlock(); 4641 return 0; 4642 } 4643 default: 4644 return -ENOTTY; 4645 } 4646 4647 if (flags & PERF_IOC_FLAG_GROUP) 4648 perf_event_for_each(event, func); 4649 else 4650 perf_event_for_each_child(event, func); 4651 4652 return 0; 4653 } 4654 4655 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4656 { 4657 struct perf_event *event = file->private_data; 4658 struct perf_event_context *ctx; 4659 long ret; 4660 4661 ctx = perf_event_ctx_lock(event); 4662 ret = _perf_ioctl(event, cmd, arg); 4663 perf_event_ctx_unlock(event, ctx); 4664 4665 return ret; 4666 } 4667 4668 #ifdef CONFIG_COMPAT 4669 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4670 unsigned long arg) 4671 { 4672 switch (_IOC_NR(cmd)) { 4673 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4674 case _IOC_NR(PERF_EVENT_IOC_ID): 4675 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4676 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4677 cmd &= ~IOCSIZE_MASK; 4678 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4679 } 4680 break; 4681 } 4682 return perf_ioctl(file, cmd, arg); 4683 } 4684 #else 4685 # define perf_compat_ioctl NULL 4686 #endif 4687 4688 int perf_event_task_enable(void) 4689 { 4690 struct perf_event_context *ctx; 4691 struct perf_event *event; 4692 4693 mutex_lock(¤t->perf_event_mutex); 4694 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4695 ctx = perf_event_ctx_lock(event); 4696 perf_event_for_each_child(event, _perf_event_enable); 4697 perf_event_ctx_unlock(event, ctx); 4698 } 4699 mutex_unlock(¤t->perf_event_mutex); 4700 4701 return 0; 4702 } 4703 4704 int perf_event_task_disable(void) 4705 { 4706 struct perf_event_context *ctx; 4707 struct perf_event *event; 4708 4709 mutex_lock(¤t->perf_event_mutex); 4710 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4711 ctx = perf_event_ctx_lock(event); 4712 perf_event_for_each_child(event, _perf_event_disable); 4713 perf_event_ctx_unlock(event, ctx); 4714 } 4715 mutex_unlock(¤t->perf_event_mutex); 4716 4717 return 0; 4718 } 4719 4720 static int perf_event_index(struct perf_event *event) 4721 { 4722 if (event->hw.state & PERF_HES_STOPPED) 4723 return 0; 4724 4725 if (event->state != PERF_EVENT_STATE_ACTIVE) 4726 return 0; 4727 4728 return event->pmu->event_idx(event); 4729 } 4730 4731 static void calc_timer_values(struct perf_event *event, 4732 u64 *now, 4733 u64 *enabled, 4734 u64 *running) 4735 { 4736 u64 ctx_time; 4737 4738 *now = perf_clock(); 4739 ctx_time = event->shadow_ctx_time + *now; 4740 *enabled = ctx_time - event->tstamp_enabled; 4741 *running = ctx_time - event->tstamp_running; 4742 } 4743 4744 static void perf_event_init_userpage(struct perf_event *event) 4745 { 4746 struct perf_event_mmap_page *userpg; 4747 struct ring_buffer *rb; 4748 4749 rcu_read_lock(); 4750 rb = rcu_dereference(event->rb); 4751 if (!rb) 4752 goto unlock; 4753 4754 userpg = rb->user_page; 4755 4756 /* Allow new userspace to detect that bit 0 is deprecated */ 4757 userpg->cap_bit0_is_deprecated = 1; 4758 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4759 userpg->data_offset = PAGE_SIZE; 4760 userpg->data_size = perf_data_size(rb); 4761 4762 unlock: 4763 rcu_read_unlock(); 4764 } 4765 4766 void __weak arch_perf_update_userpage( 4767 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4768 { 4769 } 4770 4771 /* 4772 * Callers need to ensure there can be no nesting of this function, otherwise 4773 * the seqlock logic goes bad. We can not serialize this because the arch 4774 * code calls this from NMI context. 4775 */ 4776 void perf_event_update_userpage(struct perf_event *event) 4777 { 4778 struct perf_event_mmap_page *userpg; 4779 struct ring_buffer *rb; 4780 u64 enabled, running, now; 4781 4782 rcu_read_lock(); 4783 rb = rcu_dereference(event->rb); 4784 if (!rb) 4785 goto unlock; 4786 4787 /* 4788 * compute total_time_enabled, total_time_running 4789 * based on snapshot values taken when the event 4790 * was last scheduled in. 4791 * 4792 * we cannot simply called update_context_time() 4793 * because of locking issue as we can be called in 4794 * NMI context 4795 */ 4796 calc_timer_values(event, &now, &enabled, &running); 4797 4798 userpg = rb->user_page; 4799 /* 4800 * Disable preemption so as to not let the corresponding user-space 4801 * spin too long if we get preempted. 4802 */ 4803 preempt_disable(); 4804 ++userpg->lock; 4805 barrier(); 4806 userpg->index = perf_event_index(event); 4807 userpg->offset = perf_event_count(event); 4808 if (userpg->index) 4809 userpg->offset -= local64_read(&event->hw.prev_count); 4810 4811 userpg->time_enabled = enabled + 4812 atomic64_read(&event->child_total_time_enabled); 4813 4814 userpg->time_running = running + 4815 atomic64_read(&event->child_total_time_running); 4816 4817 arch_perf_update_userpage(event, userpg, now); 4818 4819 barrier(); 4820 ++userpg->lock; 4821 preempt_enable(); 4822 unlock: 4823 rcu_read_unlock(); 4824 } 4825 4826 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4827 { 4828 struct perf_event *event = vma->vm_file->private_data; 4829 struct ring_buffer *rb; 4830 int ret = VM_FAULT_SIGBUS; 4831 4832 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4833 if (vmf->pgoff == 0) 4834 ret = 0; 4835 return ret; 4836 } 4837 4838 rcu_read_lock(); 4839 rb = rcu_dereference(event->rb); 4840 if (!rb) 4841 goto unlock; 4842 4843 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4844 goto unlock; 4845 4846 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4847 if (!vmf->page) 4848 goto unlock; 4849 4850 get_page(vmf->page); 4851 vmf->page->mapping = vma->vm_file->f_mapping; 4852 vmf->page->index = vmf->pgoff; 4853 4854 ret = 0; 4855 unlock: 4856 rcu_read_unlock(); 4857 4858 return ret; 4859 } 4860 4861 static void ring_buffer_attach(struct perf_event *event, 4862 struct ring_buffer *rb) 4863 { 4864 struct ring_buffer *old_rb = NULL; 4865 unsigned long flags; 4866 4867 if (event->rb) { 4868 /* 4869 * Should be impossible, we set this when removing 4870 * event->rb_entry and wait/clear when adding event->rb_entry. 4871 */ 4872 WARN_ON_ONCE(event->rcu_pending); 4873 4874 old_rb = event->rb; 4875 spin_lock_irqsave(&old_rb->event_lock, flags); 4876 list_del_rcu(&event->rb_entry); 4877 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4878 4879 event->rcu_batches = get_state_synchronize_rcu(); 4880 event->rcu_pending = 1; 4881 } 4882 4883 if (rb) { 4884 if (event->rcu_pending) { 4885 cond_synchronize_rcu(event->rcu_batches); 4886 event->rcu_pending = 0; 4887 } 4888 4889 spin_lock_irqsave(&rb->event_lock, flags); 4890 list_add_rcu(&event->rb_entry, &rb->event_list); 4891 spin_unlock_irqrestore(&rb->event_lock, flags); 4892 } 4893 4894 /* 4895 * Avoid racing with perf_mmap_close(AUX): stop the event 4896 * before swizzling the event::rb pointer; if it's getting 4897 * unmapped, its aux_mmap_count will be 0 and it won't 4898 * restart. See the comment in __perf_pmu_output_stop(). 4899 * 4900 * Data will inevitably be lost when set_output is done in 4901 * mid-air, but then again, whoever does it like this is 4902 * not in for the data anyway. 4903 */ 4904 if (has_aux(event)) 4905 perf_event_stop(event, 0); 4906 4907 rcu_assign_pointer(event->rb, rb); 4908 4909 if (old_rb) { 4910 ring_buffer_put(old_rb); 4911 /* 4912 * Since we detached before setting the new rb, so that we 4913 * could attach the new rb, we could have missed a wakeup. 4914 * Provide it now. 4915 */ 4916 wake_up_all(&event->waitq); 4917 } 4918 } 4919 4920 static void ring_buffer_wakeup(struct perf_event *event) 4921 { 4922 struct ring_buffer *rb; 4923 4924 rcu_read_lock(); 4925 rb = rcu_dereference(event->rb); 4926 if (rb) { 4927 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4928 wake_up_all(&event->waitq); 4929 } 4930 rcu_read_unlock(); 4931 } 4932 4933 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4934 { 4935 struct ring_buffer *rb; 4936 4937 rcu_read_lock(); 4938 rb = rcu_dereference(event->rb); 4939 if (rb) { 4940 if (!atomic_inc_not_zero(&rb->refcount)) 4941 rb = NULL; 4942 } 4943 rcu_read_unlock(); 4944 4945 return rb; 4946 } 4947 4948 void ring_buffer_put(struct ring_buffer *rb) 4949 { 4950 if (!atomic_dec_and_test(&rb->refcount)) 4951 return; 4952 4953 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4954 4955 call_rcu(&rb->rcu_head, rb_free_rcu); 4956 } 4957 4958 static void perf_mmap_open(struct vm_area_struct *vma) 4959 { 4960 struct perf_event *event = vma->vm_file->private_data; 4961 4962 atomic_inc(&event->mmap_count); 4963 atomic_inc(&event->rb->mmap_count); 4964 4965 if (vma->vm_pgoff) 4966 atomic_inc(&event->rb->aux_mmap_count); 4967 4968 if (event->pmu->event_mapped) 4969 event->pmu->event_mapped(event); 4970 } 4971 4972 static void perf_pmu_output_stop(struct perf_event *event); 4973 4974 /* 4975 * A buffer can be mmap()ed multiple times; either directly through the same 4976 * event, or through other events by use of perf_event_set_output(). 4977 * 4978 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4979 * the buffer here, where we still have a VM context. This means we need 4980 * to detach all events redirecting to us. 4981 */ 4982 static void perf_mmap_close(struct vm_area_struct *vma) 4983 { 4984 struct perf_event *event = vma->vm_file->private_data; 4985 4986 struct ring_buffer *rb = ring_buffer_get(event); 4987 struct user_struct *mmap_user = rb->mmap_user; 4988 int mmap_locked = rb->mmap_locked; 4989 unsigned long size = perf_data_size(rb); 4990 4991 if (event->pmu->event_unmapped) 4992 event->pmu->event_unmapped(event); 4993 4994 /* 4995 * rb->aux_mmap_count will always drop before rb->mmap_count and 4996 * event->mmap_count, so it is ok to use event->mmap_mutex to 4997 * serialize with perf_mmap here. 4998 */ 4999 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5000 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5001 /* 5002 * Stop all AUX events that are writing to this buffer, 5003 * so that we can free its AUX pages and corresponding PMU 5004 * data. Note that after rb::aux_mmap_count dropped to zero, 5005 * they won't start any more (see perf_aux_output_begin()). 5006 */ 5007 perf_pmu_output_stop(event); 5008 5009 /* now it's safe to free the pages */ 5010 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5011 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5012 5013 /* this has to be the last one */ 5014 rb_free_aux(rb); 5015 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5016 5017 mutex_unlock(&event->mmap_mutex); 5018 } 5019 5020 atomic_dec(&rb->mmap_count); 5021 5022 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5023 goto out_put; 5024 5025 ring_buffer_attach(event, NULL); 5026 mutex_unlock(&event->mmap_mutex); 5027 5028 /* If there's still other mmap()s of this buffer, we're done. */ 5029 if (atomic_read(&rb->mmap_count)) 5030 goto out_put; 5031 5032 /* 5033 * No other mmap()s, detach from all other events that might redirect 5034 * into the now unreachable buffer. Somewhat complicated by the 5035 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5036 */ 5037 again: 5038 rcu_read_lock(); 5039 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5040 if (!atomic_long_inc_not_zero(&event->refcount)) { 5041 /* 5042 * This event is en-route to free_event() which will 5043 * detach it and remove it from the list. 5044 */ 5045 continue; 5046 } 5047 rcu_read_unlock(); 5048 5049 mutex_lock(&event->mmap_mutex); 5050 /* 5051 * Check we didn't race with perf_event_set_output() which can 5052 * swizzle the rb from under us while we were waiting to 5053 * acquire mmap_mutex. 5054 * 5055 * If we find a different rb; ignore this event, a next 5056 * iteration will no longer find it on the list. We have to 5057 * still restart the iteration to make sure we're not now 5058 * iterating the wrong list. 5059 */ 5060 if (event->rb == rb) 5061 ring_buffer_attach(event, NULL); 5062 5063 mutex_unlock(&event->mmap_mutex); 5064 put_event(event); 5065 5066 /* 5067 * Restart the iteration; either we're on the wrong list or 5068 * destroyed its integrity by doing a deletion. 5069 */ 5070 goto again; 5071 } 5072 rcu_read_unlock(); 5073 5074 /* 5075 * It could be there's still a few 0-ref events on the list; they'll 5076 * get cleaned up by free_event() -- they'll also still have their 5077 * ref on the rb and will free it whenever they are done with it. 5078 * 5079 * Aside from that, this buffer is 'fully' detached and unmapped, 5080 * undo the VM accounting. 5081 */ 5082 5083 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5084 vma->vm_mm->pinned_vm -= mmap_locked; 5085 free_uid(mmap_user); 5086 5087 out_put: 5088 ring_buffer_put(rb); /* could be last */ 5089 } 5090 5091 static const struct vm_operations_struct perf_mmap_vmops = { 5092 .open = perf_mmap_open, 5093 .close = perf_mmap_close, /* non mergable */ 5094 .fault = perf_mmap_fault, 5095 .page_mkwrite = perf_mmap_fault, 5096 }; 5097 5098 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5099 { 5100 struct perf_event *event = file->private_data; 5101 unsigned long user_locked, user_lock_limit; 5102 struct user_struct *user = current_user(); 5103 unsigned long locked, lock_limit; 5104 struct ring_buffer *rb = NULL; 5105 unsigned long vma_size; 5106 unsigned long nr_pages; 5107 long user_extra = 0, extra = 0; 5108 int ret = 0, flags = 0; 5109 5110 /* 5111 * Don't allow mmap() of inherited per-task counters. This would 5112 * create a performance issue due to all children writing to the 5113 * same rb. 5114 */ 5115 if (event->cpu == -1 && event->attr.inherit) 5116 return -EINVAL; 5117 5118 if (!(vma->vm_flags & VM_SHARED)) 5119 return -EINVAL; 5120 5121 vma_size = vma->vm_end - vma->vm_start; 5122 5123 if (vma->vm_pgoff == 0) { 5124 nr_pages = (vma_size / PAGE_SIZE) - 1; 5125 } else { 5126 /* 5127 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5128 * mapped, all subsequent mappings should have the same size 5129 * and offset. Must be above the normal perf buffer. 5130 */ 5131 u64 aux_offset, aux_size; 5132 5133 if (!event->rb) 5134 return -EINVAL; 5135 5136 nr_pages = vma_size / PAGE_SIZE; 5137 5138 mutex_lock(&event->mmap_mutex); 5139 ret = -EINVAL; 5140 5141 rb = event->rb; 5142 if (!rb) 5143 goto aux_unlock; 5144 5145 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 5146 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 5147 5148 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5149 goto aux_unlock; 5150 5151 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5152 goto aux_unlock; 5153 5154 /* already mapped with a different offset */ 5155 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5156 goto aux_unlock; 5157 5158 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5159 goto aux_unlock; 5160 5161 /* already mapped with a different size */ 5162 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5163 goto aux_unlock; 5164 5165 if (!is_power_of_2(nr_pages)) 5166 goto aux_unlock; 5167 5168 if (!atomic_inc_not_zero(&rb->mmap_count)) 5169 goto aux_unlock; 5170 5171 if (rb_has_aux(rb)) { 5172 atomic_inc(&rb->aux_mmap_count); 5173 ret = 0; 5174 goto unlock; 5175 } 5176 5177 atomic_set(&rb->aux_mmap_count, 1); 5178 user_extra = nr_pages; 5179 5180 goto accounting; 5181 } 5182 5183 /* 5184 * If we have rb pages ensure they're a power-of-two number, so we 5185 * can do bitmasks instead of modulo. 5186 */ 5187 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5188 return -EINVAL; 5189 5190 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5191 return -EINVAL; 5192 5193 WARN_ON_ONCE(event->ctx->parent_ctx); 5194 again: 5195 mutex_lock(&event->mmap_mutex); 5196 if (event->rb) { 5197 if (event->rb->nr_pages != nr_pages) { 5198 ret = -EINVAL; 5199 goto unlock; 5200 } 5201 5202 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5203 /* 5204 * Raced against perf_mmap_close() through 5205 * perf_event_set_output(). Try again, hope for better 5206 * luck. 5207 */ 5208 mutex_unlock(&event->mmap_mutex); 5209 goto again; 5210 } 5211 5212 goto unlock; 5213 } 5214 5215 user_extra = nr_pages + 1; 5216 5217 accounting: 5218 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5219 5220 /* 5221 * Increase the limit linearly with more CPUs: 5222 */ 5223 user_lock_limit *= num_online_cpus(); 5224 5225 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5226 5227 if (user_locked > user_lock_limit) 5228 extra = user_locked - user_lock_limit; 5229 5230 lock_limit = rlimit(RLIMIT_MEMLOCK); 5231 lock_limit >>= PAGE_SHIFT; 5232 locked = vma->vm_mm->pinned_vm + extra; 5233 5234 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5235 !capable(CAP_IPC_LOCK)) { 5236 ret = -EPERM; 5237 goto unlock; 5238 } 5239 5240 WARN_ON(!rb && event->rb); 5241 5242 if (vma->vm_flags & VM_WRITE) 5243 flags |= RING_BUFFER_WRITABLE; 5244 5245 if (!rb) { 5246 rb = rb_alloc(nr_pages, 5247 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5248 event->cpu, flags); 5249 5250 if (!rb) { 5251 ret = -ENOMEM; 5252 goto unlock; 5253 } 5254 5255 atomic_set(&rb->mmap_count, 1); 5256 rb->mmap_user = get_current_user(); 5257 rb->mmap_locked = extra; 5258 5259 ring_buffer_attach(event, rb); 5260 5261 perf_event_init_userpage(event); 5262 perf_event_update_userpage(event); 5263 } else { 5264 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5265 event->attr.aux_watermark, flags); 5266 if (!ret) 5267 rb->aux_mmap_locked = extra; 5268 } 5269 5270 unlock: 5271 if (!ret) { 5272 atomic_long_add(user_extra, &user->locked_vm); 5273 vma->vm_mm->pinned_vm += extra; 5274 5275 atomic_inc(&event->mmap_count); 5276 } else if (rb) { 5277 atomic_dec(&rb->mmap_count); 5278 } 5279 aux_unlock: 5280 mutex_unlock(&event->mmap_mutex); 5281 5282 /* 5283 * Since pinned accounting is per vm we cannot allow fork() to copy our 5284 * vma. 5285 */ 5286 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5287 vma->vm_ops = &perf_mmap_vmops; 5288 5289 if (event->pmu->event_mapped) 5290 event->pmu->event_mapped(event); 5291 5292 return ret; 5293 } 5294 5295 static int perf_fasync(int fd, struct file *filp, int on) 5296 { 5297 struct inode *inode = file_inode(filp); 5298 struct perf_event *event = filp->private_data; 5299 int retval; 5300 5301 inode_lock(inode); 5302 retval = fasync_helper(fd, filp, on, &event->fasync); 5303 inode_unlock(inode); 5304 5305 if (retval < 0) 5306 return retval; 5307 5308 return 0; 5309 } 5310 5311 static const struct file_operations perf_fops = { 5312 .llseek = no_llseek, 5313 .release = perf_release, 5314 .read = perf_read, 5315 .poll = perf_poll, 5316 .unlocked_ioctl = perf_ioctl, 5317 .compat_ioctl = perf_compat_ioctl, 5318 .mmap = perf_mmap, 5319 .fasync = perf_fasync, 5320 }; 5321 5322 /* 5323 * Perf event wakeup 5324 * 5325 * If there's data, ensure we set the poll() state and publish everything 5326 * to user-space before waking everybody up. 5327 */ 5328 5329 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5330 { 5331 /* only the parent has fasync state */ 5332 if (event->parent) 5333 event = event->parent; 5334 return &event->fasync; 5335 } 5336 5337 void perf_event_wakeup(struct perf_event *event) 5338 { 5339 ring_buffer_wakeup(event); 5340 5341 if (event->pending_kill) { 5342 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5343 event->pending_kill = 0; 5344 } 5345 } 5346 5347 static void perf_pending_event(struct irq_work *entry) 5348 { 5349 struct perf_event *event = container_of(entry, 5350 struct perf_event, pending); 5351 int rctx; 5352 5353 rctx = perf_swevent_get_recursion_context(); 5354 /* 5355 * If we 'fail' here, that's OK, it means recursion is already disabled 5356 * and we won't recurse 'further'. 5357 */ 5358 5359 if (event->pending_disable) { 5360 event->pending_disable = 0; 5361 perf_event_disable_local(event); 5362 } 5363 5364 if (event->pending_wakeup) { 5365 event->pending_wakeup = 0; 5366 perf_event_wakeup(event); 5367 } 5368 5369 if (rctx >= 0) 5370 perf_swevent_put_recursion_context(rctx); 5371 } 5372 5373 /* 5374 * We assume there is only KVM supporting the callbacks. 5375 * Later on, we might change it to a list if there is 5376 * another virtualization implementation supporting the callbacks. 5377 */ 5378 struct perf_guest_info_callbacks *perf_guest_cbs; 5379 5380 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5381 { 5382 perf_guest_cbs = cbs; 5383 return 0; 5384 } 5385 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5386 5387 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5388 { 5389 perf_guest_cbs = NULL; 5390 return 0; 5391 } 5392 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5393 5394 static void 5395 perf_output_sample_regs(struct perf_output_handle *handle, 5396 struct pt_regs *regs, u64 mask) 5397 { 5398 int bit; 5399 DECLARE_BITMAP(_mask, 64); 5400 5401 bitmap_from_u64(_mask, mask); 5402 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5403 u64 val; 5404 5405 val = perf_reg_value(regs, bit); 5406 perf_output_put(handle, val); 5407 } 5408 } 5409 5410 static void perf_sample_regs_user(struct perf_regs *regs_user, 5411 struct pt_regs *regs, 5412 struct pt_regs *regs_user_copy) 5413 { 5414 if (user_mode(regs)) { 5415 regs_user->abi = perf_reg_abi(current); 5416 regs_user->regs = regs; 5417 } else if (current->mm) { 5418 perf_get_regs_user(regs_user, regs, regs_user_copy); 5419 } else { 5420 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5421 regs_user->regs = NULL; 5422 } 5423 } 5424 5425 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5426 struct pt_regs *regs) 5427 { 5428 regs_intr->regs = regs; 5429 regs_intr->abi = perf_reg_abi(current); 5430 } 5431 5432 5433 /* 5434 * Get remaining task size from user stack pointer. 5435 * 5436 * It'd be better to take stack vma map and limit this more 5437 * precisly, but there's no way to get it safely under interrupt, 5438 * so using TASK_SIZE as limit. 5439 */ 5440 static u64 perf_ustack_task_size(struct pt_regs *regs) 5441 { 5442 unsigned long addr = perf_user_stack_pointer(regs); 5443 5444 if (!addr || addr >= TASK_SIZE) 5445 return 0; 5446 5447 return TASK_SIZE - addr; 5448 } 5449 5450 static u16 5451 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5452 struct pt_regs *regs) 5453 { 5454 u64 task_size; 5455 5456 /* No regs, no stack pointer, no dump. */ 5457 if (!regs) 5458 return 0; 5459 5460 /* 5461 * Check if we fit in with the requested stack size into the: 5462 * - TASK_SIZE 5463 * If we don't, we limit the size to the TASK_SIZE. 5464 * 5465 * - remaining sample size 5466 * If we don't, we customize the stack size to 5467 * fit in to the remaining sample size. 5468 */ 5469 5470 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5471 stack_size = min(stack_size, (u16) task_size); 5472 5473 /* Current header size plus static size and dynamic size. */ 5474 header_size += 2 * sizeof(u64); 5475 5476 /* Do we fit in with the current stack dump size? */ 5477 if ((u16) (header_size + stack_size) < header_size) { 5478 /* 5479 * If we overflow the maximum size for the sample, 5480 * we customize the stack dump size to fit in. 5481 */ 5482 stack_size = USHRT_MAX - header_size - sizeof(u64); 5483 stack_size = round_up(stack_size, sizeof(u64)); 5484 } 5485 5486 return stack_size; 5487 } 5488 5489 static void 5490 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5491 struct pt_regs *regs) 5492 { 5493 /* Case of a kernel thread, nothing to dump */ 5494 if (!regs) { 5495 u64 size = 0; 5496 perf_output_put(handle, size); 5497 } else { 5498 unsigned long sp; 5499 unsigned int rem; 5500 u64 dyn_size; 5501 5502 /* 5503 * We dump: 5504 * static size 5505 * - the size requested by user or the best one we can fit 5506 * in to the sample max size 5507 * data 5508 * - user stack dump data 5509 * dynamic size 5510 * - the actual dumped size 5511 */ 5512 5513 /* Static size. */ 5514 perf_output_put(handle, dump_size); 5515 5516 /* Data. */ 5517 sp = perf_user_stack_pointer(regs); 5518 rem = __output_copy_user(handle, (void *) sp, dump_size); 5519 dyn_size = dump_size - rem; 5520 5521 perf_output_skip(handle, rem); 5522 5523 /* Dynamic size. */ 5524 perf_output_put(handle, dyn_size); 5525 } 5526 } 5527 5528 static void __perf_event_header__init_id(struct perf_event_header *header, 5529 struct perf_sample_data *data, 5530 struct perf_event *event) 5531 { 5532 u64 sample_type = event->attr.sample_type; 5533 5534 data->type = sample_type; 5535 header->size += event->id_header_size; 5536 5537 if (sample_type & PERF_SAMPLE_TID) { 5538 /* namespace issues */ 5539 data->tid_entry.pid = perf_event_pid(event, current); 5540 data->tid_entry.tid = perf_event_tid(event, current); 5541 } 5542 5543 if (sample_type & PERF_SAMPLE_TIME) 5544 data->time = perf_event_clock(event); 5545 5546 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5547 data->id = primary_event_id(event); 5548 5549 if (sample_type & PERF_SAMPLE_STREAM_ID) 5550 data->stream_id = event->id; 5551 5552 if (sample_type & PERF_SAMPLE_CPU) { 5553 data->cpu_entry.cpu = raw_smp_processor_id(); 5554 data->cpu_entry.reserved = 0; 5555 } 5556 } 5557 5558 void perf_event_header__init_id(struct perf_event_header *header, 5559 struct perf_sample_data *data, 5560 struct perf_event *event) 5561 { 5562 if (event->attr.sample_id_all) 5563 __perf_event_header__init_id(header, data, event); 5564 } 5565 5566 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5567 struct perf_sample_data *data) 5568 { 5569 u64 sample_type = data->type; 5570 5571 if (sample_type & PERF_SAMPLE_TID) 5572 perf_output_put(handle, data->tid_entry); 5573 5574 if (sample_type & PERF_SAMPLE_TIME) 5575 perf_output_put(handle, data->time); 5576 5577 if (sample_type & PERF_SAMPLE_ID) 5578 perf_output_put(handle, data->id); 5579 5580 if (sample_type & PERF_SAMPLE_STREAM_ID) 5581 perf_output_put(handle, data->stream_id); 5582 5583 if (sample_type & PERF_SAMPLE_CPU) 5584 perf_output_put(handle, data->cpu_entry); 5585 5586 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5587 perf_output_put(handle, data->id); 5588 } 5589 5590 void perf_event__output_id_sample(struct perf_event *event, 5591 struct perf_output_handle *handle, 5592 struct perf_sample_data *sample) 5593 { 5594 if (event->attr.sample_id_all) 5595 __perf_event__output_id_sample(handle, sample); 5596 } 5597 5598 static void perf_output_read_one(struct perf_output_handle *handle, 5599 struct perf_event *event, 5600 u64 enabled, u64 running) 5601 { 5602 u64 read_format = event->attr.read_format; 5603 u64 values[4]; 5604 int n = 0; 5605 5606 values[n++] = perf_event_count(event); 5607 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5608 values[n++] = enabled + 5609 atomic64_read(&event->child_total_time_enabled); 5610 } 5611 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5612 values[n++] = running + 5613 atomic64_read(&event->child_total_time_running); 5614 } 5615 if (read_format & PERF_FORMAT_ID) 5616 values[n++] = primary_event_id(event); 5617 5618 __output_copy(handle, values, n * sizeof(u64)); 5619 } 5620 5621 /* 5622 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5623 */ 5624 static void perf_output_read_group(struct perf_output_handle *handle, 5625 struct perf_event *event, 5626 u64 enabled, u64 running) 5627 { 5628 struct perf_event *leader = event->group_leader, *sub; 5629 u64 read_format = event->attr.read_format; 5630 u64 values[5]; 5631 int n = 0; 5632 5633 values[n++] = 1 + leader->nr_siblings; 5634 5635 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5636 values[n++] = enabled; 5637 5638 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5639 values[n++] = running; 5640 5641 if (leader != event) 5642 leader->pmu->read(leader); 5643 5644 values[n++] = perf_event_count(leader); 5645 if (read_format & PERF_FORMAT_ID) 5646 values[n++] = primary_event_id(leader); 5647 5648 __output_copy(handle, values, n * sizeof(u64)); 5649 5650 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5651 n = 0; 5652 5653 if ((sub != event) && 5654 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5655 sub->pmu->read(sub); 5656 5657 values[n++] = perf_event_count(sub); 5658 if (read_format & PERF_FORMAT_ID) 5659 values[n++] = primary_event_id(sub); 5660 5661 __output_copy(handle, values, n * sizeof(u64)); 5662 } 5663 } 5664 5665 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5666 PERF_FORMAT_TOTAL_TIME_RUNNING) 5667 5668 static void perf_output_read(struct perf_output_handle *handle, 5669 struct perf_event *event) 5670 { 5671 u64 enabled = 0, running = 0, now; 5672 u64 read_format = event->attr.read_format; 5673 5674 /* 5675 * compute total_time_enabled, total_time_running 5676 * based on snapshot values taken when the event 5677 * was last scheduled in. 5678 * 5679 * we cannot simply called update_context_time() 5680 * because of locking issue as we are called in 5681 * NMI context 5682 */ 5683 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5684 calc_timer_values(event, &now, &enabled, &running); 5685 5686 if (event->attr.read_format & PERF_FORMAT_GROUP) 5687 perf_output_read_group(handle, event, enabled, running); 5688 else 5689 perf_output_read_one(handle, event, enabled, running); 5690 } 5691 5692 void perf_output_sample(struct perf_output_handle *handle, 5693 struct perf_event_header *header, 5694 struct perf_sample_data *data, 5695 struct perf_event *event) 5696 { 5697 u64 sample_type = data->type; 5698 5699 perf_output_put(handle, *header); 5700 5701 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5702 perf_output_put(handle, data->id); 5703 5704 if (sample_type & PERF_SAMPLE_IP) 5705 perf_output_put(handle, data->ip); 5706 5707 if (sample_type & PERF_SAMPLE_TID) 5708 perf_output_put(handle, data->tid_entry); 5709 5710 if (sample_type & PERF_SAMPLE_TIME) 5711 perf_output_put(handle, data->time); 5712 5713 if (sample_type & PERF_SAMPLE_ADDR) 5714 perf_output_put(handle, data->addr); 5715 5716 if (sample_type & PERF_SAMPLE_ID) 5717 perf_output_put(handle, data->id); 5718 5719 if (sample_type & PERF_SAMPLE_STREAM_ID) 5720 perf_output_put(handle, data->stream_id); 5721 5722 if (sample_type & PERF_SAMPLE_CPU) 5723 perf_output_put(handle, data->cpu_entry); 5724 5725 if (sample_type & PERF_SAMPLE_PERIOD) 5726 perf_output_put(handle, data->period); 5727 5728 if (sample_type & PERF_SAMPLE_READ) 5729 perf_output_read(handle, event); 5730 5731 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5732 if (data->callchain) { 5733 int size = 1; 5734 5735 if (data->callchain) 5736 size += data->callchain->nr; 5737 5738 size *= sizeof(u64); 5739 5740 __output_copy(handle, data->callchain, size); 5741 } else { 5742 u64 nr = 0; 5743 perf_output_put(handle, nr); 5744 } 5745 } 5746 5747 if (sample_type & PERF_SAMPLE_RAW) { 5748 struct perf_raw_record *raw = data->raw; 5749 5750 if (raw) { 5751 struct perf_raw_frag *frag = &raw->frag; 5752 5753 perf_output_put(handle, raw->size); 5754 do { 5755 if (frag->copy) { 5756 __output_custom(handle, frag->copy, 5757 frag->data, frag->size); 5758 } else { 5759 __output_copy(handle, frag->data, 5760 frag->size); 5761 } 5762 if (perf_raw_frag_last(frag)) 5763 break; 5764 frag = frag->next; 5765 } while (1); 5766 if (frag->pad) 5767 __output_skip(handle, NULL, frag->pad); 5768 } else { 5769 struct { 5770 u32 size; 5771 u32 data; 5772 } raw = { 5773 .size = sizeof(u32), 5774 .data = 0, 5775 }; 5776 perf_output_put(handle, raw); 5777 } 5778 } 5779 5780 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5781 if (data->br_stack) { 5782 size_t size; 5783 5784 size = data->br_stack->nr 5785 * sizeof(struct perf_branch_entry); 5786 5787 perf_output_put(handle, data->br_stack->nr); 5788 perf_output_copy(handle, data->br_stack->entries, size); 5789 } else { 5790 /* 5791 * we always store at least the value of nr 5792 */ 5793 u64 nr = 0; 5794 perf_output_put(handle, nr); 5795 } 5796 } 5797 5798 if (sample_type & PERF_SAMPLE_REGS_USER) { 5799 u64 abi = data->regs_user.abi; 5800 5801 /* 5802 * If there are no regs to dump, notice it through 5803 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5804 */ 5805 perf_output_put(handle, abi); 5806 5807 if (abi) { 5808 u64 mask = event->attr.sample_regs_user; 5809 perf_output_sample_regs(handle, 5810 data->regs_user.regs, 5811 mask); 5812 } 5813 } 5814 5815 if (sample_type & PERF_SAMPLE_STACK_USER) { 5816 perf_output_sample_ustack(handle, 5817 data->stack_user_size, 5818 data->regs_user.regs); 5819 } 5820 5821 if (sample_type & PERF_SAMPLE_WEIGHT) 5822 perf_output_put(handle, data->weight); 5823 5824 if (sample_type & PERF_SAMPLE_DATA_SRC) 5825 perf_output_put(handle, data->data_src.val); 5826 5827 if (sample_type & PERF_SAMPLE_TRANSACTION) 5828 perf_output_put(handle, data->txn); 5829 5830 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5831 u64 abi = data->regs_intr.abi; 5832 /* 5833 * If there are no regs to dump, notice it through 5834 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5835 */ 5836 perf_output_put(handle, abi); 5837 5838 if (abi) { 5839 u64 mask = event->attr.sample_regs_intr; 5840 5841 perf_output_sample_regs(handle, 5842 data->regs_intr.regs, 5843 mask); 5844 } 5845 } 5846 5847 if (!event->attr.watermark) { 5848 int wakeup_events = event->attr.wakeup_events; 5849 5850 if (wakeup_events) { 5851 struct ring_buffer *rb = handle->rb; 5852 int events = local_inc_return(&rb->events); 5853 5854 if (events >= wakeup_events) { 5855 local_sub(wakeup_events, &rb->events); 5856 local_inc(&rb->wakeup); 5857 } 5858 } 5859 } 5860 } 5861 5862 void perf_prepare_sample(struct perf_event_header *header, 5863 struct perf_sample_data *data, 5864 struct perf_event *event, 5865 struct pt_regs *regs) 5866 { 5867 u64 sample_type = event->attr.sample_type; 5868 5869 header->type = PERF_RECORD_SAMPLE; 5870 header->size = sizeof(*header) + event->header_size; 5871 5872 header->misc = 0; 5873 header->misc |= perf_misc_flags(regs); 5874 5875 __perf_event_header__init_id(header, data, event); 5876 5877 if (sample_type & PERF_SAMPLE_IP) 5878 data->ip = perf_instruction_pointer(regs); 5879 5880 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5881 int size = 1; 5882 5883 data->callchain = perf_callchain(event, regs); 5884 5885 if (data->callchain) 5886 size += data->callchain->nr; 5887 5888 header->size += size * sizeof(u64); 5889 } 5890 5891 if (sample_type & PERF_SAMPLE_RAW) { 5892 struct perf_raw_record *raw = data->raw; 5893 int size; 5894 5895 if (raw) { 5896 struct perf_raw_frag *frag = &raw->frag; 5897 u32 sum = 0; 5898 5899 do { 5900 sum += frag->size; 5901 if (perf_raw_frag_last(frag)) 5902 break; 5903 frag = frag->next; 5904 } while (1); 5905 5906 size = round_up(sum + sizeof(u32), sizeof(u64)); 5907 raw->size = size - sizeof(u32); 5908 frag->pad = raw->size - sum; 5909 } else { 5910 size = sizeof(u64); 5911 } 5912 5913 header->size += size; 5914 } 5915 5916 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5917 int size = sizeof(u64); /* nr */ 5918 if (data->br_stack) { 5919 size += data->br_stack->nr 5920 * sizeof(struct perf_branch_entry); 5921 } 5922 header->size += size; 5923 } 5924 5925 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5926 perf_sample_regs_user(&data->regs_user, regs, 5927 &data->regs_user_copy); 5928 5929 if (sample_type & PERF_SAMPLE_REGS_USER) { 5930 /* regs dump ABI info */ 5931 int size = sizeof(u64); 5932 5933 if (data->regs_user.regs) { 5934 u64 mask = event->attr.sample_regs_user; 5935 size += hweight64(mask) * sizeof(u64); 5936 } 5937 5938 header->size += size; 5939 } 5940 5941 if (sample_type & PERF_SAMPLE_STACK_USER) { 5942 /* 5943 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5944 * processed as the last one or have additional check added 5945 * in case new sample type is added, because we could eat 5946 * up the rest of the sample size. 5947 */ 5948 u16 stack_size = event->attr.sample_stack_user; 5949 u16 size = sizeof(u64); 5950 5951 stack_size = perf_sample_ustack_size(stack_size, header->size, 5952 data->regs_user.regs); 5953 5954 /* 5955 * If there is something to dump, add space for the dump 5956 * itself and for the field that tells the dynamic size, 5957 * which is how many have been actually dumped. 5958 */ 5959 if (stack_size) 5960 size += sizeof(u64) + stack_size; 5961 5962 data->stack_user_size = stack_size; 5963 header->size += size; 5964 } 5965 5966 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5967 /* regs dump ABI info */ 5968 int size = sizeof(u64); 5969 5970 perf_sample_regs_intr(&data->regs_intr, regs); 5971 5972 if (data->regs_intr.regs) { 5973 u64 mask = event->attr.sample_regs_intr; 5974 5975 size += hweight64(mask) * sizeof(u64); 5976 } 5977 5978 header->size += size; 5979 } 5980 } 5981 5982 static void __always_inline 5983 __perf_event_output(struct perf_event *event, 5984 struct perf_sample_data *data, 5985 struct pt_regs *regs, 5986 int (*output_begin)(struct perf_output_handle *, 5987 struct perf_event *, 5988 unsigned int)) 5989 { 5990 struct perf_output_handle handle; 5991 struct perf_event_header header; 5992 5993 /* protect the callchain buffers */ 5994 rcu_read_lock(); 5995 5996 perf_prepare_sample(&header, data, event, regs); 5997 5998 if (output_begin(&handle, event, header.size)) 5999 goto exit; 6000 6001 perf_output_sample(&handle, &header, data, event); 6002 6003 perf_output_end(&handle); 6004 6005 exit: 6006 rcu_read_unlock(); 6007 } 6008 6009 void 6010 perf_event_output_forward(struct perf_event *event, 6011 struct perf_sample_data *data, 6012 struct pt_regs *regs) 6013 { 6014 __perf_event_output(event, data, regs, perf_output_begin_forward); 6015 } 6016 6017 void 6018 perf_event_output_backward(struct perf_event *event, 6019 struct perf_sample_data *data, 6020 struct pt_regs *regs) 6021 { 6022 __perf_event_output(event, data, regs, perf_output_begin_backward); 6023 } 6024 6025 void 6026 perf_event_output(struct perf_event *event, 6027 struct perf_sample_data *data, 6028 struct pt_regs *regs) 6029 { 6030 __perf_event_output(event, data, regs, perf_output_begin); 6031 } 6032 6033 /* 6034 * read event_id 6035 */ 6036 6037 struct perf_read_event { 6038 struct perf_event_header header; 6039 6040 u32 pid; 6041 u32 tid; 6042 }; 6043 6044 static void 6045 perf_event_read_event(struct perf_event *event, 6046 struct task_struct *task) 6047 { 6048 struct perf_output_handle handle; 6049 struct perf_sample_data sample; 6050 struct perf_read_event read_event = { 6051 .header = { 6052 .type = PERF_RECORD_READ, 6053 .misc = 0, 6054 .size = sizeof(read_event) + event->read_size, 6055 }, 6056 .pid = perf_event_pid(event, task), 6057 .tid = perf_event_tid(event, task), 6058 }; 6059 int ret; 6060 6061 perf_event_header__init_id(&read_event.header, &sample, event); 6062 ret = perf_output_begin(&handle, event, read_event.header.size); 6063 if (ret) 6064 return; 6065 6066 perf_output_put(&handle, read_event); 6067 perf_output_read(&handle, event); 6068 perf_event__output_id_sample(event, &handle, &sample); 6069 6070 perf_output_end(&handle); 6071 } 6072 6073 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6074 6075 static void 6076 perf_iterate_ctx(struct perf_event_context *ctx, 6077 perf_iterate_f output, 6078 void *data, bool all) 6079 { 6080 struct perf_event *event; 6081 6082 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6083 if (!all) { 6084 if (event->state < PERF_EVENT_STATE_INACTIVE) 6085 continue; 6086 if (!event_filter_match(event)) 6087 continue; 6088 } 6089 6090 output(event, data); 6091 } 6092 } 6093 6094 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6095 { 6096 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6097 struct perf_event *event; 6098 6099 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6100 /* 6101 * Skip events that are not fully formed yet; ensure that 6102 * if we observe event->ctx, both event and ctx will be 6103 * complete enough. See perf_install_in_context(). 6104 */ 6105 if (!smp_load_acquire(&event->ctx)) 6106 continue; 6107 6108 if (event->state < PERF_EVENT_STATE_INACTIVE) 6109 continue; 6110 if (!event_filter_match(event)) 6111 continue; 6112 output(event, data); 6113 } 6114 } 6115 6116 /* 6117 * Iterate all events that need to receive side-band events. 6118 * 6119 * For new callers; ensure that account_pmu_sb_event() includes 6120 * your event, otherwise it might not get delivered. 6121 */ 6122 static void 6123 perf_iterate_sb(perf_iterate_f output, void *data, 6124 struct perf_event_context *task_ctx) 6125 { 6126 struct perf_event_context *ctx; 6127 int ctxn; 6128 6129 rcu_read_lock(); 6130 preempt_disable(); 6131 6132 /* 6133 * If we have task_ctx != NULL we only notify the task context itself. 6134 * The task_ctx is set only for EXIT events before releasing task 6135 * context. 6136 */ 6137 if (task_ctx) { 6138 perf_iterate_ctx(task_ctx, output, data, false); 6139 goto done; 6140 } 6141 6142 perf_iterate_sb_cpu(output, data); 6143 6144 for_each_task_context_nr(ctxn) { 6145 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6146 if (ctx) 6147 perf_iterate_ctx(ctx, output, data, false); 6148 } 6149 done: 6150 preempt_enable(); 6151 rcu_read_unlock(); 6152 } 6153 6154 /* 6155 * Clear all file-based filters at exec, they'll have to be 6156 * re-instated when/if these objects are mmapped again. 6157 */ 6158 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6159 { 6160 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6161 struct perf_addr_filter *filter; 6162 unsigned int restart = 0, count = 0; 6163 unsigned long flags; 6164 6165 if (!has_addr_filter(event)) 6166 return; 6167 6168 raw_spin_lock_irqsave(&ifh->lock, flags); 6169 list_for_each_entry(filter, &ifh->list, entry) { 6170 if (filter->inode) { 6171 event->addr_filters_offs[count] = 0; 6172 restart++; 6173 } 6174 6175 count++; 6176 } 6177 6178 if (restart) 6179 event->addr_filters_gen++; 6180 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6181 6182 if (restart) 6183 perf_event_stop(event, 1); 6184 } 6185 6186 void perf_event_exec(void) 6187 { 6188 struct perf_event_context *ctx; 6189 int ctxn; 6190 6191 rcu_read_lock(); 6192 for_each_task_context_nr(ctxn) { 6193 ctx = current->perf_event_ctxp[ctxn]; 6194 if (!ctx) 6195 continue; 6196 6197 perf_event_enable_on_exec(ctxn); 6198 6199 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6200 true); 6201 } 6202 rcu_read_unlock(); 6203 } 6204 6205 struct remote_output { 6206 struct ring_buffer *rb; 6207 int err; 6208 }; 6209 6210 static void __perf_event_output_stop(struct perf_event *event, void *data) 6211 { 6212 struct perf_event *parent = event->parent; 6213 struct remote_output *ro = data; 6214 struct ring_buffer *rb = ro->rb; 6215 struct stop_event_data sd = { 6216 .event = event, 6217 }; 6218 6219 if (!has_aux(event)) 6220 return; 6221 6222 if (!parent) 6223 parent = event; 6224 6225 /* 6226 * In case of inheritance, it will be the parent that links to the 6227 * ring-buffer, but it will be the child that's actually using it. 6228 * 6229 * We are using event::rb to determine if the event should be stopped, 6230 * however this may race with ring_buffer_attach() (through set_output), 6231 * which will make us skip the event that actually needs to be stopped. 6232 * So ring_buffer_attach() has to stop an aux event before re-assigning 6233 * its rb pointer. 6234 */ 6235 if (rcu_dereference(parent->rb) == rb) 6236 ro->err = __perf_event_stop(&sd); 6237 } 6238 6239 static int __perf_pmu_output_stop(void *info) 6240 { 6241 struct perf_event *event = info; 6242 struct pmu *pmu = event->pmu; 6243 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6244 struct remote_output ro = { 6245 .rb = event->rb, 6246 }; 6247 6248 rcu_read_lock(); 6249 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6250 if (cpuctx->task_ctx) 6251 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6252 &ro, false); 6253 rcu_read_unlock(); 6254 6255 return ro.err; 6256 } 6257 6258 static void perf_pmu_output_stop(struct perf_event *event) 6259 { 6260 struct perf_event *iter; 6261 int err, cpu; 6262 6263 restart: 6264 rcu_read_lock(); 6265 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6266 /* 6267 * For per-CPU events, we need to make sure that neither they 6268 * nor their children are running; for cpu==-1 events it's 6269 * sufficient to stop the event itself if it's active, since 6270 * it can't have children. 6271 */ 6272 cpu = iter->cpu; 6273 if (cpu == -1) 6274 cpu = READ_ONCE(iter->oncpu); 6275 6276 if (cpu == -1) 6277 continue; 6278 6279 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6280 if (err == -EAGAIN) { 6281 rcu_read_unlock(); 6282 goto restart; 6283 } 6284 } 6285 rcu_read_unlock(); 6286 } 6287 6288 /* 6289 * task tracking -- fork/exit 6290 * 6291 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6292 */ 6293 6294 struct perf_task_event { 6295 struct task_struct *task; 6296 struct perf_event_context *task_ctx; 6297 6298 struct { 6299 struct perf_event_header header; 6300 6301 u32 pid; 6302 u32 ppid; 6303 u32 tid; 6304 u32 ptid; 6305 u64 time; 6306 } event_id; 6307 }; 6308 6309 static int perf_event_task_match(struct perf_event *event) 6310 { 6311 return event->attr.comm || event->attr.mmap || 6312 event->attr.mmap2 || event->attr.mmap_data || 6313 event->attr.task; 6314 } 6315 6316 static void perf_event_task_output(struct perf_event *event, 6317 void *data) 6318 { 6319 struct perf_task_event *task_event = data; 6320 struct perf_output_handle handle; 6321 struct perf_sample_data sample; 6322 struct task_struct *task = task_event->task; 6323 int ret, size = task_event->event_id.header.size; 6324 6325 if (!perf_event_task_match(event)) 6326 return; 6327 6328 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6329 6330 ret = perf_output_begin(&handle, event, 6331 task_event->event_id.header.size); 6332 if (ret) 6333 goto out; 6334 6335 task_event->event_id.pid = perf_event_pid(event, task); 6336 task_event->event_id.ppid = perf_event_pid(event, current); 6337 6338 task_event->event_id.tid = perf_event_tid(event, task); 6339 task_event->event_id.ptid = perf_event_tid(event, current); 6340 6341 task_event->event_id.time = perf_event_clock(event); 6342 6343 perf_output_put(&handle, task_event->event_id); 6344 6345 perf_event__output_id_sample(event, &handle, &sample); 6346 6347 perf_output_end(&handle); 6348 out: 6349 task_event->event_id.header.size = size; 6350 } 6351 6352 static void perf_event_task(struct task_struct *task, 6353 struct perf_event_context *task_ctx, 6354 int new) 6355 { 6356 struct perf_task_event task_event; 6357 6358 if (!atomic_read(&nr_comm_events) && 6359 !atomic_read(&nr_mmap_events) && 6360 !atomic_read(&nr_task_events)) 6361 return; 6362 6363 task_event = (struct perf_task_event){ 6364 .task = task, 6365 .task_ctx = task_ctx, 6366 .event_id = { 6367 .header = { 6368 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6369 .misc = 0, 6370 .size = sizeof(task_event.event_id), 6371 }, 6372 /* .pid */ 6373 /* .ppid */ 6374 /* .tid */ 6375 /* .ptid */ 6376 /* .time */ 6377 }, 6378 }; 6379 6380 perf_iterate_sb(perf_event_task_output, 6381 &task_event, 6382 task_ctx); 6383 } 6384 6385 void perf_event_fork(struct task_struct *task) 6386 { 6387 perf_event_task(task, NULL, 1); 6388 } 6389 6390 /* 6391 * comm tracking 6392 */ 6393 6394 struct perf_comm_event { 6395 struct task_struct *task; 6396 char *comm; 6397 int comm_size; 6398 6399 struct { 6400 struct perf_event_header header; 6401 6402 u32 pid; 6403 u32 tid; 6404 } event_id; 6405 }; 6406 6407 static int perf_event_comm_match(struct perf_event *event) 6408 { 6409 return event->attr.comm; 6410 } 6411 6412 static void perf_event_comm_output(struct perf_event *event, 6413 void *data) 6414 { 6415 struct perf_comm_event *comm_event = data; 6416 struct perf_output_handle handle; 6417 struct perf_sample_data sample; 6418 int size = comm_event->event_id.header.size; 6419 int ret; 6420 6421 if (!perf_event_comm_match(event)) 6422 return; 6423 6424 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6425 ret = perf_output_begin(&handle, event, 6426 comm_event->event_id.header.size); 6427 6428 if (ret) 6429 goto out; 6430 6431 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6432 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6433 6434 perf_output_put(&handle, comm_event->event_id); 6435 __output_copy(&handle, comm_event->comm, 6436 comm_event->comm_size); 6437 6438 perf_event__output_id_sample(event, &handle, &sample); 6439 6440 perf_output_end(&handle); 6441 out: 6442 comm_event->event_id.header.size = size; 6443 } 6444 6445 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6446 { 6447 char comm[TASK_COMM_LEN]; 6448 unsigned int size; 6449 6450 memset(comm, 0, sizeof(comm)); 6451 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6452 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6453 6454 comm_event->comm = comm; 6455 comm_event->comm_size = size; 6456 6457 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6458 6459 perf_iterate_sb(perf_event_comm_output, 6460 comm_event, 6461 NULL); 6462 } 6463 6464 void perf_event_comm(struct task_struct *task, bool exec) 6465 { 6466 struct perf_comm_event comm_event; 6467 6468 if (!atomic_read(&nr_comm_events)) 6469 return; 6470 6471 comm_event = (struct perf_comm_event){ 6472 .task = task, 6473 /* .comm */ 6474 /* .comm_size */ 6475 .event_id = { 6476 .header = { 6477 .type = PERF_RECORD_COMM, 6478 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6479 /* .size */ 6480 }, 6481 /* .pid */ 6482 /* .tid */ 6483 }, 6484 }; 6485 6486 perf_event_comm_event(&comm_event); 6487 } 6488 6489 /* 6490 * mmap tracking 6491 */ 6492 6493 struct perf_mmap_event { 6494 struct vm_area_struct *vma; 6495 6496 const char *file_name; 6497 int file_size; 6498 int maj, min; 6499 u64 ino; 6500 u64 ino_generation; 6501 u32 prot, flags; 6502 6503 struct { 6504 struct perf_event_header header; 6505 6506 u32 pid; 6507 u32 tid; 6508 u64 start; 6509 u64 len; 6510 u64 pgoff; 6511 } event_id; 6512 }; 6513 6514 static int perf_event_mmap_match(struct perf_event *event, 6515 void *data) 6516 { 6517 struct perf_mmap_event *mmap_event = data; 6518 struct vm_area_struct *vma = mmap_event->vma; 6519 int executable = vma->vm_flags & VM_EXEC; 6520 6521 return (!executable && event->attr.mmap_data) || 6522 (executable && (event->attr.mmap || event->attr.mmap2)); 6523 } 6524 6525 static void perf_event_mmap_output(struct perf_event *event, 6526 void *data) 6527 { 6528 struct perf_mmap_event *mmap_event = data; 6529 struct perf_output_handle handle; 6530 struct perf_sample_data sample; 6531 int size = mmap_event->event_id.header.size; 6532 int ret; 6533 6534 if (!perf_event_mmap_match(event, data)) 6535 return; 6536 6537 if (event->attr.mmap2) { 6538 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6539 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6540 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6541 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6542 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6543 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6544 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6545 } 6546 6547 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6548 ret = perf_output_begin(&handle, event, 6549 mmap_event->event_id.header.size); 6550 if (ret) 6551 goto out; 6552 6553 mmap_event->event_id.pid = perf_event_pid(event, current); 6554 mmap_event->event_id.tid = perf_event_tid(event, current); 6555 6556 perf_output_put(&handle, mmap_event->event_id); 6557 6558 if (event->attr.mmap2) { 6559 perf_output_put(&handle, mmap_event->maj); 6560 perf_output_put(&handle, mmap_event->min); 6561 perf_output_put(&handle, mmap_event->ino); 6562 perf_output_put(&handle, mmap_event->ino_generation); 6563 perf_output_put(&handle, mmap_event->prot); 6564 perf_output_put(&handle, mmap_event->flags); 6565 } 6566 6567 __output_copy(&handle, mmap_event->file_name, 6568 mmap_event->file_size); 6569 6570 perf_event__output_id_sample(event, &handle, &sample); 6571 6572 perf_output_end(&handle); 6573 out: 6574 mmap_event->event_id.header.size = size; 6575 } 6576 6577 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6578 { 6579 struct vm_area_struct *vma = mmap_event->vma; 6580 struct file *file = vma->vm_file; 6581 int maj = 0, min = 0; 6582 u64 ino = 0, gen = 0; 6583 u32 prot = 0, flags = 0; 6584 unsigned int size; 6585 char tmp[16]; 6586 char *buf = NULL; 6587 char *name; 6588 6589 if (file) { 6590 struct inode *inode; 6591 dev_t dev; 6592 6593 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6594 if (!buf) { 6595 name = "//enomem"; 6596 goto cpy_name; 6597 } 6598 /* 6599 * d_path() works from the end of the rb backwards, so we 6600 * need to add enough zero bytes after the string to handle 6601 * the 64bit alignment we do later. 6602 */ 6603 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6604 if (IS_ERR(name)) { 6605 name = "//toolong"; 6606 goto cpy_name; 6607 } 6608 inode = file_inode(vma->vm_file); 6609 dev = inode->i_sb->s_dev; 6610 ino = inode->i_ino; 6611 gen = inode->i_generation; 6612 maj = MAJOR(dev); 6613 min = MINOR(dev); 6614 6615 if (vma->vm_flags & VM_READ) 6616 prot |= PROT_READ; 6617 if (vma->vm_flags & VM_WRITE) 6618 prot |= PROT_WRITE; 6619 if (vma->vm_flags & VM_EXEC) 6620 prot |= PROT_EXEC; 6621 6622 if (vma->vm_flags & VM_MAYSHARE) 6623 flags = MAP_SHARED; 6624 else 6625 flags = MAP_PRIVATE; 6626 6627 if (vma->vm_flags & VM_DENYWRITE) 6628 flags |= MAP_DENYWRITE; 6629 if (vma->vm_flags & VM_MAYEXEC) 6630 flags |= MAP_EXECUTABLE; 6631 if (vma->vm_flags & VM_LOCKED) 6632 flags |= MAP_LOCKED; 6633 if (vma->vm_flags & VM_HUGETLB) 6634 flags |= MAP_HUGETLB; 6635 6636 goto got_name; 6637 } else { 6638 if (vma->vm_ops && vma->vm_ops->name) { 6639 name = (char *) vma->vm_ops->name(vma); 6640 if (name) 6641 goto cpy_name; 6642 } 6643 6644 name = (char *)arch_vma_name(vma); 6645 if (name) 6646 goto cpy_name; 6647 6648 if (vma->vm_start <= vma->vm_mm->start_brk && 6649 vma->vm_end >= vma->vm_mm->brk) { 6650 name = "[heap]"; 6651 goto cpy_name; 6652 } 6653 if (vma->vm_start <= vma->vm_mm->start_stack && 6654 vma->vm_end >= vma->vm_mm->start_stack) { 6655 name = "[stack]"; 6656 goto cpy_name; 6657 } 6658 6659 name = "//anon"; 6660 goto cpy_name; 6661 } 6662 6663 cpy_name: 6664 strlcpy(tmp, name, sizeof(tmp)); 6665 name = tmp; 6666 got_name: 6667 /* 6668 * Since our buffer works in 8 byte units we need to align our string 6669 * size to a multiple of 8. However, we must guarantee the tail end is 6670 * zero'd out to avoid leaking random bits to userspace. 6671 */ 6672 size = strlen(name)+1; 6673 while (!IS_ALIGNED(size, sizeof(u64))) 6674 name[size++] = '\0'; 6675 6676 mmap_event->file_name = name; 6677 mmap_event->file_size = size; 6678 mmap_event->maj = maj; 6679 mmap_event->min = min; 6680 mmap_event->ino = ino; 6681 mmap_event->ino_generation = gen; 6682 mmap_event->prot = prot; 6683 mmap_event->flags = flags; 6684 6685 if (!(vma->vm_flags & VM_EXEC)) 6686 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6687 6688 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6689 6690 perf_iterate_sb(perf_event_mmap_output, 6691 mmap_event, 6692 NULL); 6693 6694 kfree(buf); 6695 } 6696 6697 /* 6698 * Check whether inode and address range match filter criteria. 6699 */ 6700 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6701 struct file *file, unsigned long offset, 6702 unsigned long size) 6703 { 6704 if (filter->inode != file->f_inode) 6705 return false; 6706 6707 if (filter->offset > offset + size) 6708 return false; 6709 6710 if (filter->offset + filter->size < offset) 6711 return false; 6712 6713 return true; 6714 } 6715 6716 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 6717 { 6718 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6719 struct vm_area_struct *vma = data; 6720 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 6721 struct file *file = vma->vm_file; 6722 struct perf_addr_filter *filter; 6723 unsigned int restart = 0, count = 0; 6724 6725 if (!has_addr_filter(event)) 6726 return; 6727 6728 if (!file) 6729 return; 6730 6731 raw_spin_lock_irqsave(&ifh->lock, flags); 6732 list_for_each_entry(filter, &ifh->list, entry) { 6733 if (perf_addr_filter_match(filter, file, off, 6734 vma->vm_end - vma->vm_start)) { 6735 event->addr_filters_offs[count] = vma->vm_start; 6736 restart++; 6737 } 6738 6739 count++; 6740 } 6741 6742 if (restart) 6743 event->addr_filters_gen++; 6744 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6745 6746 if (restart) 6747 perf_event_stop(event, 1); 6748 } 6749 6750 /* 6751 * Adjust all task's events' filters to the new vma 6752 */ 6753 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 6754 { 6755 struct perf_event_context *ctx; 6756 int ctxn; 6757 6758 /* 6759 * Data tracing isn't supported yet and as such there is no need 6760 * to keep track of anything that isn't related to executable code: 6761 */ 6762 if (!(vma->vm_flags & VM_EXEC)) 6763 return; 6764 6765 rcu_read_lock(); 6766 for_each_task_context_nr(ctxn) { 6767 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6768 if (!ctx) 6769 continue; 6770 6771 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 6772 } 6773 rcu_read_unlock(); 6774 } 6775 6776 void perf_event_mmap(struct vm_area_struct *vma) 6777 { 6778 struct perf_mmap_event mmap_event; 6779 6780 if (!atomic_read(&nr_mmap_events)) 6781 return; 6782 6783 mmap_event = (struct perf_mmap_event){ 6784 .vma = vma, 6785 /* .file_name */ 6786 /* .file_size */ 6787 .event_id = { 6788 .header = { 6789 .type = PERF_RECORD_MMAP, 6790 .misc = PERF_RECORD_MISC_USER, 6791 /* .size */ 6792 }, 6793 /* .pid */ 6794 /* .tid */ 6795 .start = vma->vm_start, 6796 .len = vma->vm_end - vma->vm_start, 6797 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6798 }, 6799 /* .maj (attr_mmap2 only) */ 6800 /* .min (attr_mmap2 only) */ 6801 /* .ino (attr_mmap2 only) */ 6802 /* .ino_generation (attr_mmap2 only) */ 6803 /* .prot (attr_mmap2 only) */ 6804 /* .flags (attr_mmap2 only) */ 6805 }; 6806 6807 perf_addr_filters_adjust(vma); 6808 perf_event_mmap_event(&mmap_event); 6809 } 6810 6811 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6812 unsigned long size, u64 flags) 6813 { 6814 struct perf_output_handle handle; 6815 struct perf_sample_data sample; 6816 struct perf_aux_event { 6817 struct perf_event_header header; 6818 u64 offset; 6819 u64 size; 6820 u64 flags; 6821 } rec = { 6822 .header = { 6823 .type = PERF_RECORD_AUX, 6824 .misc = 0, 6825 .size = sizeof(rec), 6826 }, 6827 .offset = head, 6828 .size = size, 6829 .flags = flags, 6830 }; 6831 int ret; 6832 6833 perf_event_header__init_id(&rec.header, &sample, event); 6834 ret = perf_output_begin(&handle, event, rec.header.size); 6835 6836 if (ret) 6837 return; 6838 6839 perf_output_put(&handle, rec); 6840 perf_event__output_id_sample(event, &handle, &sample); 6841 6842 perf_output_end(&handle); 6843 } 6844 6845 /* 6846 * Lost/dropped samples logging 6847 */ 6848 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6849 { 6850 struct perf_output_handle handle; 6851 struct perf_sample_data sample; 6852 int ret; 6853 6854 struct { 6855 struct perf_event_header header; 6856 u64 lost; 6857 } lost_samples_event = { 6858 .header = { 6859 .type = PERF_RECORD_LOST_SAMPLES, 6860 .misc = 0, 6861 .size = sizeof(lost_samples_event), 6862 }, 6863 .lost = lost, 6864 }; 6865 6866 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6867 6868 ret = perf_output_begin(&handle, event, 6869 lost_samples_event.header.size); 6870 if (ret) 6871 return; 6872 6873 perf_output_put(&handle, lost_samples_event); 6874 perf_event__output_id_sample(event, &handle, &sample); 6875 perf_output_end(&handle); 6876 } 6877 6878 /* 6879 * context_switch tracking 6880 */ 6881 6882 struct perf_switch_event { 6883 struct task_struct *task; 6884 struct task_struct *next_prev; 6885 6886 struct { 6887 struct perf_event_header header; 6888 u32 next_prev_pid; 6889 u32 next_prev_tid; 6890 } event_id; 6891 }; 6892 6893 static int perf_event_switch_match(struct perf_event *event) 6894 { 6895 return event->attr.context_switch; 6896 } 6897 6898 static void perf_event_switch_output(struct perf_event *event, void *data) 6899 { 6900 struct perf_switch_event *se = data; 6901 struct perf_output_handle handle; 6902 struct perf_sample_data sample; 6903 int ret; 6904 6905 if (!perf_event_switch_match(event)) 6906 return; 6907 6908 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6909 if (event->ctx->task) { 6910 se->event_id.header.type = PERF_RECORD_SWITCH; 6911 se->event_id.header.size = sizeof(se->event_id.header); 6912 } else { 6913 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6914 se->event_id.header.size = sizeof(se->event_id); 6915 se->event_id.next_prev_pid = 6916 perf_event_pid(event, se->next_prev); 6917 se->event_id.next_prev_tid = 6918 perf_event_tid(event, se->next_prev); 6919 } 6920 6921 perf_event_header__init_id(&se->event_id.header, &sample, event); 6922 6923 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6924 if (ret) 6925 return; 6926 6927 if (event->ctx->task) 6928 perf_output_put(&handle, se->event_id.header); 6929 else 6930 perf_output_put(&handle, se->event_id); 6931 6932 perf_event__output_id_sample(event, &handle, &sample); 6933 6934 perf_output_end(&handle); 6935 } 6936 6937 static void perf_event_switch(struct task_struct *task, 6938 struct task_struct *next_prev, bool sched_in) 6939 { 6940 struct perf_switch_event switch_event; 6941 6942 /* N.B. caller checks nr_switch_events != 0 */ 6943 6944 switch_event = (struct perf_switch_event){ 6945 .task = task, 6946 .next_prev = next_prev, 6947 .event_id = { 6948 .header = { 6949 /* .type */ 6950 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 6951 /* .size */ 6952 }, 6953 /* .next_prev_pid */ 6954 /* .next_prev_tid */ 6955 }, 6956 }; 6957 6958 perf_iterate_sb(perf_event_switch_output, 6959 &switch_event, 6960 NULL); 6961 } 6962 6963 /* 6964 * IRQ throttle logging 6965 */ 6966 6967 static void perf_log_throttle(struct perf_event *event, int enable) 6968 { 6969 struct perf_output_handle handle; 6970 struct perf_sample_data sample; 6971 int ret; 6972 6973 struct { 6974 struct perf_event_header header; 6975 u64 time; 6976 u64 id; 6977 u64 stream_id; 6978 } throttle_event = { 6979 .header = { 6980 .type = PERF_RECORD_THROTTLE, 6981 .misc = 0, 6982 .size = sizeof(throttle_event), 6983 }, 6984 .time = perf_event_clock(event), 6985 .id = primary_event_id(event), 6986 .stream_id = event->id, 6987 }; 6988 6989 if (enable) 6990 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6991 6992 perf_event_header__init_id(&throttle_event.header, &sample, event); 6993 6994 ret = perf_output_begin(&handle, event, 6995 throttle_event.header.size); 6996 if (ret) 6997 return; 6998 6999 perf_output_put(&handle, throttle_event); 7000 perf_event__output_id_sample(event, &handle, &sample); 7001 perf_output_end(&handle); 7002 } 7003 7004 static void perf_log_itrace_start(struct perf_event *event) 7005 { 7006 struct perf_output_handle handle; 7007 struct perf_sample_data sample; 7008 struct perf_aux_event { 7009 struct perf_event_header header; 7010 u32 pid; 7011 u32 tid; 7012 } rec; 7013 int ret; 7014 7015 if (event->parent) 7016 event = event->parent; 7017 7018 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7019 event->hw.itrace_started) 7020 return; 7021 7022 rec.header.type = PERF_RECORD_ITRACE_START; 7023 rec.header.misc = 0; 7024 rec.header.size = sizeof(rec); 7025 rec.pid = perf_event_pid(event, current); 7026 rec.tid = perf_event_tid(event, current); 7027 7028 perf_event_header__init_id(&rec.header, &sample, event); 7029 ret = perf_output_begin(&handle, event, rec.header.size); 7030 7031 if (ret) 7032 return; 7033 7034 perf_output_put(&handle, rec); 7035 perf_event__output_id_sample(event, &handle, &sample); 7036 7037 perf_output_end(&handle); 7038 } 7039 7040 /* 7041 * Generic event overflow handling, sampling. 7042 */ 7043 7044 static int __perf_event_overflow(struct perf_event *event, 7045 int throttle, struct perf_sample_data *data, 7046 struct pt_regs *regs) 7047 { 7048 int events = atomic_read(&event->event_limit); 7049 struct hw_perf_event *hwc = &event->hw; 7050 u64 seq; 7051 int ret = 0; 7052 7053 /* 7054 * Non-sampling counters might still use the PMI to fold short 7055 * hardware counters, ignore those. 7056 */ 7057 if (unlikely(!is_sampling_event(event))) 7058 return 0; 7059 7060 seq = __this_cpu_read(perf_throttled_seq); 7061 if (seq != hwc->interrupts_seq) { 7062 hwc->interrupts_seq = seq; 7063 hwc->interrupts = 1; 7064 } else { 7065 hwc->interrupts++; 7066 if (unlikely(throttle 7067 && hwc->interrupts >= max_samples_per_tick)) { 7068 __this_cpu_inc(perf_throttled_count); 7069 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7070 hwc->interrupts = MAX_INTERRUPTS; 7071 perf_log_throttle(event, 0); 7072 ret = 1; 7073 } 7074 } 7075 7076 if (event->attr.freq) { 7077 u64 now = perf_clock(); 7078 s64 delta = now - hwc->freq_time_stamp; 7079 7080 hwc->freq_time_stamp = now; 7081 7082 if (delta > 0 && delta < 2*TICK_NSEC) 7083 perf_adjust_period(event, delta, hwc->last_period, true); 7084 } 7085 7086 /* 7087 * XXX event_limit might not quite work as expected on inherited 7088 * events 7089 */ 7090 7091 event->pending_kill = POLL_IN; 7092 if (events && atomic_dec_and_test(&event->event_limit)) { 7093 ret = 1; 7094 event->pending_kill = POLL_HUP; 7095 7096 perf_event_disable_inatomic(event); 7097 } 7098 7099 READ_ONCE(event->overflow_handler)(event, data, regs); 7100 7101 if (*perf_event_fasync(event) && event->pending_kill) { 7102 event->pending_wakeup = 1; 7103 irq_work_queue(&event->pending); 7104 } 7105 7106 return ret; 7107 } 7108 7109 int perf_event_overflow(struct perf_event *event, 7110 struct perf_sample_data *data, 7111 struct pt_regs *regs) 7112 { 7113 return __perf_event_overflow(event, 1, data, regs); 7114 } 7115 7116 /* 7117 * Generic software event infrastructure 7118 */ 7119 7120 struct swevent_htable { 7121 struct swevent_hlist *swevent_hlist; 7122 struct mutex hlist_mutex; 7123 int hlist_refcount; 7124 7125 /* Recursion avoidance in each contexts */ 7126 int recursion[PERF_NR_CONTEXTS]; 7127 }; 7128 7129 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7130 7131 /* 7132 * We directly increment event->count and keep a second value in 7133 * event->hw.period_left to count intervals. This period event 7134 * is kept in the range [-sample_period, 0] so that we can use the 7135 * sign as trigger. 7136 */ 7137 7138 u64 perf_swevent_set_period(struct perf_event *event) 7139 { 7140 struct hw_perf_event *hwc = &event->hw; 7141 u64 period = hwc->last_period; 7142 u64 nr, offset; 7143 s64 old, val; 7144 7145 hwc->last_period = hwc->sample_period; 7146 7147 again: 7148 old = val = local64_read(&hwc->period_left); 7149 if (val < 0) 7150 return 0; 7151 7152 nr = div64_u64(period + val, period); 7153 offset = nr * period; 7154 val -= offset; 7155 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7156 goto again; 7157 7158 return nr; 7159 } 7160 7161 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7162 struct perf_sample_data *data, 7163 struct pt_regs *regs) 7164 { 7165 struct hw_perf_event *hwc = &event->hw; 7166 int throttle = 0; 7167 7168 if (!overflow) 7169 overflow = perf_swevent_set_period(event); 7170 7171 if (hwc->interrupts == MAX_INTERRUPTS) 7172 return; 7173 7174 for (; overflow; overflow--) { 7175 if (__perf_event_overflow(event, throttle, 7176 data, regs)) { 7177 /* 7178 * We inhibit the overflow from happening when 7179 * hwc->interrupts == MAX_INTERRUPTS. 7180 */ 7181 break; 7182 } 7183 throttle = 1; 7184 } 7185 } 7186 7187 static void perf_swevent_event(struct perf_event *event, u64 nr, 7188 struct perf_sample_data *data, 7189 struct pt_regs *regs) 7190 { 7191 struct hw_perf_event *hwc = &event->hw; 7192 7193 local64_add(nr, &event->count); 7194 7195 if (!regs) 7196 return; 7197 7198 if (!is_sampling_event(event)) 7199 return; 7200 7201 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7202 data->period = nr; 7203 return perf_swevent_overflow(event, 1, data, regs); 7204 } else 7205 data->period = event->hw.last_period; 7206 7207 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7208 return perf_swevent_overflow(event, 1, data, regs); 7209 7210 if (local64_add_negative(nr, &hwc->period_left)) 7211 return; 7212 7213 perf_swevent_overflow(event, 0, data, regs); 7214 } 7215 7216 static int perf_exclude_event(struct perf_event *event, 7217 struct pt_regs *regs) 7218 { 7219 if (event->hw.state & PERF_HES_STOPPED) 7220 return 1; 7221 7222 if (regs) { 7223 if (event->attr.exclude_user && user_mode(regs)) 7224 return 1; 7225 7226 if (event->attr.exclude_kernel && !user_mode(regs)) 7227 return 1; 7228 } 7229 7230 return 0; 7231 } 7232 7233 static int perf_swevent_match(struct perf_event *event, 7234 enum perf_type_id type, 7235 u32 event_id, 7236 struct perf_sample_data *data, 7237 struct pt_regs *regs) 7238 { 7239 if (event->attr.type != type) 7240 return 0; 7241 7242 if (event->attr.config != event_id) 7243 return 0; 7244 7245 if (perf_exclude_event(event, regs)) 7246 return 0; 7247 7248 return 1; 7249 } 7250 7251 static inline u64 swevent_hash(u64 type, u32 event_id) 7252 { 7253 u64 val = event_id | (type << 32); 7254 7255 return hash_64(val, SWEVENT_HLIST_BITS); 7256 } 7257 7258 static inline struct hlist_head * 7259 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7260 { 7261 u64 hash = swevent_hash(type, event_id); 7262 7263 return &hlist->heads[hash]; 7264 } 7265 7266 /* For the read side: events when they trigger */ 7267 static inline struct hlist_head * 7268 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7269 { 7270 struct swevent_hlist *hlist; 7271 7272 hlist = rcu_dereference(swhash->swevent_hlist); 7273 if (!hlist) 7274 return NULL; 7275 7276 return __find_swevent_head(hlist, type, event_id); 7277 } 7278 7279 /* For the event head insertion and removal in the hlist */ 7280 static inline struct hlist_head * 7281 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7282 { 7283 struct swevent_hlist *hlist; 7284 u32 event_id = event->attr.config; 7285 u64 type = event->attr.type; 7286 7287 /* 7288 * Event scheduling is always serialized against hlist allocation 7289 * and release. Which makes the protected version suitable here. 7290 * The context lock guarantees that. 7291 */ 7292 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7293 lockdep_is_held(&event->ctx->lock)); 7294 if (!hlist) 7295 return NULL; 7296 7297 return __find_swevent_head(hlist, type, event_id); 7298 } 7299 7300 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7301 u64 nr, 7302 struct perf_sample_data *data, 7303 struct pt_regs *regs) 7304 { 7305 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7306 struct perf_event *event; 7307 struct hlist_head *head; 7308 7309 rcu_read_lock(); 7310 head = find_swevent_head_rcu(swhash, type, event_id); 7311 if (!head) 7312 goto end; 7313 7314 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7315 if (perf_swevent_match(event, type, event_id, data, regs)) 7316 perf_swevent_event(event, nr, data, regs); 7317 } 7318 end: 7319 rcu_read_unlock(); 7320 } 7321 7322 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7323 7324 int perf_swevent_get_recursion_context(void) 7325 { 7326 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7327 7328 return get_recursion_context(swhash->recursion); 7329 } 7330 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7331 7332 void perf_swevent_put_recursion_context(int rctx) 7333 { 7334 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7335 7336 put_recursion_context(swhash->recursion, rctx); 7337 } 7338 7339 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7340 { 7341 struct perf_sample_data data; 7342 7343 if (WARN_ON_ONCE(!regs)) 7344 return; 7345 7346 perf_sample_data_init(&data, addr, 0); 7347 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7348 } 7349 7350 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7351 { 7352 int rctx; 7353 7354 preempt_disable_notrace(); 7355 rctx = perf_swevent_get_recursion_context(); 7356 if (unlikely(rctx < 0)) 7357 goto fail; 7358 7359 ___perf_sw_event(event_id, nr, regs, addr); 7360 7361 perf_swevent_put_recursion_context(rctx); 7362 fail: 7363 preempt_enable_notrace(); 7364 } 7365 7366 static void perf_swevent_read(struct perf_event *event) 7367 { 7368 } 7369 7370 static int perf_swevent_add(struct perf_event *event, int flags) 7371 { 7372 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7373 struct hw_perf_event *hwc = &event->hw; 7374 struct hlist_head *head; 7375 7376 if (is_sampling_event(event)) { 7377 hwc->last_period = hwc->sample_period; 7378 perf_swevent_set_period(event); 7379 } 7380 7381 hwc->state = !(flags & PERF_EF_START); 7382 7383 head = find_swevent_head(swhash, event); 7384 if (WARN_ON_ONCE(!head)) 7385 return -EINVAL; 7386 7387 hlist_add_head_rcu(&event->hlist_entry, head); 7388 perf_event_update_userpage(event); 7389 7390 return 0; 7391 } 7392 7393 static void perf_swevent_del(struct perf_event *event, int flags) 7394 { 7395 hlist_del_rcu(&event->hlist_entry); 7396 } 7397 7398 static void perf_swevent_start(struct perf_event *event, int flags) 7399 { 7400 event->hw.state = 0; 7401 } 7402 7403 static void perf_swevent_stop(struct perf_event *event, int flags) 7404 { 7405 event->hw.state = PERF_HES_STOPPED; 7406 } 7407 7408 /* Deref the hlist from the update side */ 7409 static inline struct swevent_hlist * 7410 swevent_hlist_deref(struct swevent_htable *swhash) 7411 { 7412 return rcu_dereference_protected(swhash->swevent_hlist, 7413 lockdep_is_held(&swhash->hlist_mutex)); 7414 } 7415 7416 static void swevent_hlist_release(struct swevent_htable *swhash) 7417 { 7418 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7419 7420 if (!hlist) 7421 return; 7422 7423 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7424 kfree_rcu(hlist, rcu_head); 7425 } 7426 7427 static void swevent_hlist_put_cpu(int cpu) 7428 { 7429 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7430 7431 mutex_lock(&swhash->hlist_mutex); 7432 7433 if (!--swhash->hlist_refcount) 7434 swevent_hlist_release(swhash); 7435 7436 mutex_unlock(&swhash->hlist_mutex); 7437 } 7438 7439 static void swevent_hlist_put(void) 7440 { 7441 int cpu; 7442 7443 for_each_possible_cpu(cpu) 7444 swevent_hlist_put_cpu(cpu); 7445 } 7446 7447 static int swevent_hlist_get_cpu(int cpu) 7448 { 7449 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7450 int err = 0; 7451 7452 mutex_lock(&swhash->hlist_mutex); 7453 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 7454 struct swevent_hlist *hlist; 7455 7456 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7457 if (!hlist) { 7458 err = -ENOMEM; 7459 goto exit; 7460 } 7461 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7462 } 7463 swhash->hlist_refcount++; 7464 exit: 7465 mutex_unlock(&swhash->hlist_mutex); 7466 7467 return err; 7468 } 7469 7470 static int swevent_hlist_get(void) 7471 { 7472 int err, cpu, failed_cpu; 7473 7474 get_online_cpus(); 7475 for_each_possible_cpu(cpu) { 7476 err = swevent_hlist_get_cpu(cpu); 7477 if (err) { 7478 failed_cpu = cpu; 7479 goto fail; 7480 } 7481 } 7482 put_online_cpus(); 7483 7484 return 0; 7485 fail: 7486 for_each_possible_cpu(cpu) { 7487 if (cpu == failed_cpu) 7488 break; 7489 swevent_hlist_put_cpu(cpu); 7490 } 7491 7492 put_online_cpus(); 7493 return err; 7494 } 7495 7496 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7497 7498 static void sw_perf_event_destroy(struct perf_event *event) 7499 { 7500 u64 event_id = event->attr.config; 7501 7502 WARN_ON(event->parent); 7503 7504 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7505 swevent_hlist_put(); 7506 } 7507 7508 static int perf_swevent_init(struct perf_event *event) 7509 { 7510 u64 event_id = event->attr.config; 7511 7512 if (event->attr.type != PERF_TYPE_SOFTWARE) 7513 return -ENOENT; 7514 7515 /* 7516 * no branch sampling for software events 7517 */ 7518 if (has_branch_stack(event)) 7519 return -EOPNOTSUPP; 7520 7521 switch (event_id) { 7522 case PERF_COUNT_SW_CPU_CLOCK: 7523 case PERF_COUNT_SW_TASK_CLOCK: 7524 return -ENOENT; 7525 7526 default: 7527 break; 7528 } 7529 7530 if (event_id >= PERF_COUNT_SW_MAX) 7531 return -ENOENT; 7532 7533 if (!event->parent) { 7534 int err; 7535 7536 err = swevent_hlist_get(); 7537 if (err) 7538 return err; 7539 7540 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7541 event->destroy = sw_perf_event_destroy; 7542 } 7543 7544 return 0; 7545 } 7546 7547 static struct pmu perf_swevent = { 7548 .task_ctx_nr = perf_sw_context, 7549 7550 .capabilities = PERF_PMU_CAP_NO_NMI, 7551 7552 .event_init = perf_swevent_init, 7553 .add = perf_swevent_add, 7554 .del = perf_swevent_del, 7555 .start = perf_swevent_start, 7556 .stop = perf_swevent_stop, 7557 .read = perf_swevent_read, 7558 }; 7559 7560 #ifdef CONFIG_EVENT_TRACING 7561 7562 static int perf_tp_filter_match(struct perf_event *event, 7563 struct perf_sample_data *data) 7564 { 7565 void *record = data->raw->frag.data; 7566 7567 /* only top level events have filters set */ 7568 if (event->parent) 7569 event = event->parent; 7570 7571 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7572 return 1; 7573 return 0; 7574 } 7575 7576 static int perf_tp_event_match(struct perf_event *event, 7577 struct perf_sample_data *data, 7578 struct pt_regs *regs) 7579 { 7580 if (event->hw.state & PERF_HES_STOPPED) 7581 return 0; 7582 /* 7583 * All tracepoints are from kernel-space. 7584 */ 7585 if (event->attr.exclude_kernel) 7586 return 0; 7587 7588 if (!perf_tp_filter_match(event, data)) 7589 return 0; 7590 7591 return 1; 7592 } 7593 7594 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7595 struct trace_event_call *call, u64 count, 7596 struct pt_regs *regs, struct hlist_head *head, 7597 struct task_struct *task) 7598 { 7599 struct bpf_prog *prog = call->prog; 7600 7601 if (prog) { 7602 *(struct pt_regs **)raw_data = regs; 7603 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) { 7604 perf_swevent_put_recursion_context(rctx); 7605 return; 7606 } 7607 } 7608 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7609 rctx, task); 7610 } 7611 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7612 7613 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7614 struct pt_regs *regs, struct hlist_head *head, int rctx, 7615 struct task_struct *task) 7616 { 7617 struct perf_sample_data data; 7618 struct perf_event *event; 7619 7620 struct perf_raw_record raw = { 7621 .frag = { 7622 .size = entry_size, 7623 .data = record, 7624 }, 7625 }; 7626 7627 perf_sample_data_init(&data, 0, 0); 7628 data.raw = &raw; 7629 7630 perf_trace_buf_update(record, event_type); 7631 7632 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7633 if (perf_tp_event_match(event, &data, regs)) 7634 perf_swevent_event(event, count, &data, regs); 7635 } 7636 7637 /* 7638 * If we got specified a target task, also iterate its context and 7639 * deliver this event there too. 7640 */ 7641 if (task && task != current) { 7642 struct perf_event_context *ctx; 7643 struct trace_entry *entry = record; 7644 7645 rcu_read_lock(); 7646 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7647 if (!ctx) 7648 goto unlock; 7649 7650 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7651 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7652 continue; 7653 if (event->attr.config != entry->type) 7654 continue; 7655 if (perf_tp_event_match(event, &data, regs)) 7656 perf_swevent_event(event, count, &data, regs); 7657 } 7658 unlock: 7659 rcu_read_unlock(); 7660 } 7661 7662 perf_swevent_put_recursion_context(rctx); 7663 } 7664 EXPORT_SYMBOL_GPL(perf_tp_event); 7665 7666 static void tp_perf_event_destroy(struct perf_event *event) 7667 { 7668 perf_trace_destroy(event); 7669 } 7670 7671 static int perf_tp_event_init(struct perf_event *event) 7672 { 7673 int err; 7674 7675 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7676 return -ENOENT; 7677 7678 /* 7679 * no branch sampling for tracepoint events 7680 */ 7681 if (has_branch_stack(event)) 7682 return -EOPNOTSUPP; 7683 7684 err = perf_trace_init(event); 7685 if (err) 7686 return err; 7687 7688 event->destroy = tp_perf_event_destroy; 7689 7690 return 0; 7691 } 7692 7693 static struct pmu perf_tracepoint = { 7694 .task_ctx_nr = perf_sw_context, 7695 7696 .event_init = perf_tp_event_init, 7697 .add = perf_trace_add, 7698 .del = perf_trace_del, 7699 .start = perf_swevent_start, 7700 .stop = perf_swevent_stop, 7701 .read = perf_swevent_read, 7702 }; 7703 7704 static inline void perf_tp_register(void) 7705 { 7706 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7707 } 7708 7709 static void perf_event_free_filter(struct perf_event *event) 7710 { 7711 ftrace_profile_free_filter(event); 7712 } 7713 7714 #ifdef CONFIG_BPF_SYSCALL 7715 static void bpf_overflow_handler(struct perf_event *event, 7716 struct perf_sample_data *data, 7717 struct pt_regs *regs) 7718 { 7719 struct bpf_perf_event_data_kern ctx = { 7720 .data = data, 7721 .regs = regs, 7722 }; 7723 int ret = 0; 7724 7725 preempt_disable(); 7726 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 7727 goto out; 7728 rcu_read_lock(); 7729 ret = BPF_PROG_RUN(event->prog, &ctx); 7730 rcu_read_unlock(); 7731 out: 7732 __this_cpu_dec(bpf_prog_active); 7733 preempt_enable(); 7734 if (!ret) 7735 return; 7736 7737 event->orig_overflow_handler(event, data, regs); 7738 } 7739 7740 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 7741 { 7742 struct bpf_prog *prog; 7743 7744 if (event->overflow_handler_context) 7745 /* hw breakpoint or kernel counter */ 7746 return -EINVAL; 7747 7748 if (event->prog) 7749 return -EEXIST; 7750 7751 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 7752 if (IS_ERR(prog)) 7753 return PTR_ERR(prog); 7754 7755 event->prog = prog; 7756 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 7757 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 7758 return 0; 7759 } 7760 7761 static void perf_event_free_bpf_handler(struct perf_event *event) 7762 { 7763 struct bpf_prog *prog = event->prog; 7764 7765 if (!prog) 7766 return; 7767 7768 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 7769 event->prog = NULL; 7770 bpf_prog_put(prog); 7771 } 7772 #else 7773 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 7774 { 7775 return -EOPNOTSUPP; 7776 } 7777 static void perf_event_free_bpf_handler(struct perf_event *event) 7778 { 7779 } 7780 #endif 7781 7782 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7783 { 7784 bool is_kprobe, is_tracepoint; 7785 struct bpf_prog *prog; 7786 7787 if (event->attr.type == PERF_TYPE_HARDWARE || 7788 event->attr.type == PERF_TYPE_SOFTWARE) 7789 return perf_event_set_bpf_handler(event, prog_fd); 7790 7791 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7792 return -EINVAL; 7793 7794 if (event->tp_event->prog) 7795 return -EEXIST; 7796 7797 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 7798 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 7799 if (!is_kprobe && !is_tracepoint) 7800 /* bpf programs can only be attached to u/kprobe or tracepoint */ 7801 return -EINVAL; 7802 7803 prog = bpf_prog_get(prog_fd); 7804 if (IS_ERR(prog)) 7805 return PTR_ERR(prog); 7806 7807 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 7808 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 7809 /* valid fd, but invalid bpf program type */ 7810 bpf_prog_put(prog); 7811 return -EINVAL; 7812 } 7813 7814 if (is_tracepoint) { 7815 int off = trace_event_get_offsets(event->tp_event); 7816 7817 if (prog->aux->max_ctx_offset > off) { 7818 bpf_prog_put(prog); 7819 return -EACCES; 7820 } 7821 } 7822 event->tp_event->prog = prog; 7823 7824 return 0; 7825 } 7826 7827 static void perf_event_free_bpf_prog(struct perf_event *event) 7828 { 7829 struct bpf_prog *prog; 7830 7831 perf_event_free_bpf_handler(event); 7832 7833 if (!event->tp_event) 7834 return; 7835 7836 prog = event->tp_event->prog; 7837 if (prog) { 7838 event->tp_event->prog = NULL; 7839 bpf_prog_put(prog); 7840 } 7841 } 7842 7843 #else 7844 7845 static inline void perf_tp_register(void) 7846 { 7847 } 7848 7849 static void perf_event_free_filter(struct perf_event *event) 7850 { 7851 } 7852 7853 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7854 { 7855 return -ENOENT; 7856 } 7857 7858 static void perf_event_free_bpf_prog(struct perf_event *event) 7859 { 7860 } 7861 #endif /* CONFIG_EVENT_TRACING */ 7862 7863 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7864 void perf_bp_event(struct perf_event *bp, void *data) 7865 { 7866 struct perf_sample_data sample; 7867 struct pt_regs *regs = data; 7868 7869 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7870 7871 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7872 perf_swevent_event(bp, 1, &sample, regs); 7873 } 7874 #endif 7875 7876 /* 7877 * Allocate a new address filter 7878 */ 7879 static struct perf_addr_filter * 7880 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 7881 { 7882 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 7883 struct perf_addr_filter *filter; 7884 7885 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 7886 if (!filter) 7887 return NULL; 7888 7889 INIT_LIST_HEAD(&filter->entry); 7890 list_add_tail(&filter->entry, filters); 7891 7892 return filter; 7893 } 7894 7895 static void free_filters_list(struct list_head *filters) 7896 { 7897 struct perf_addr_filter *filter, *iter; 7898 7899 list_for_each_entry_safe(filter, iter, filters, entry) { 7900 if (filter->inode) 7901 iput(filter->inode); 7902 list_del(&filter->entry); 7903 kfree(filter); 7904 } 7905 } 7906 7907 /* 7908 * Free existing address filters and optionally install new ones 7909 */ 7910 static void perf_addr_filters_splice(struct perf_event *event, 7911 struct list_head *head) 7912 { 7913 unsigned long flags; 7914 LIST_HEAD(list); 7915 7916 if (!has_addr_filter(event)) 7917 return; 7918 7919 /* don't bother with children, they don't have their own filters */ 7920 if (event->parent) 7921 return; 7922 7923 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 7924 7925 list_splice_init(&event->addr_filters.list, &list); 7926 if (head) 7927 list_splice(head, &event->addr_filters.list); 7928 7929 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 7930 7931 free_filters_list(&list); 7932 } 7933 7934 /* 7935 * Scan through mm's vmas and see if one of them matches the 7936 * @filter; if so, adjust filter's address range. 7937 * Called with mm::mmap_sem down for reading. 7938 */ 7939 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 7940 struct mm_struct *mm) 7941 { 7942 struct vm_area_struct *vma; 7943 7944 for (vma = mm->mmap; vma; vma = vma->vm_next) { 7945 struct file *file = vma->vm_file; 7946 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7947 unsigned long vma_size = vma->vm_end - vma->vm_start; 7948 7949 if (!file) 7950 continue; 7951 7952 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7953 continue; 7954 7955 return vma->vm_start; 7956 } 7957 7958 return 0; 7959 } 7960 7961 /* 7962 * Update event's address range filters based on the 7963 * task's existing mappings, if any. 7964 */ 7965 static void perf_event_addr_filters_apply(struct perf_event *event) 7966 { 7967 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7968 struct task_struct *task = READ_ONCE(event->ctx->task); 7969 struct perf_addr_filter *filter; 7970 struct mm_struct *mm = NULL; 7971 unsigned int count = 0; 7972 unsigned long flags; 7973 7974 /* 7975 * We may observe TASK_TOMBSTONE, which means that the event tear-down 7976 * will stop on the parent's child_mutex that our caller is also holding 7977 */ 7978 if (task == TASK_TOMBSTONE) 7979 return; 7980 7981 mm = get_task_mm(event->ctx->task); 7982 if (!mm) 7983 goto restart; 7984 7985 down_read(&mm->mmap_sem); 7986 7987 raw_spin_lock_irqsave(&ifh->lock, flags); 7988 list_for_each_entry(filter, &ifh->list, entry) { 7989 event->addr_filters_offs[count] = 0; 7990 7991 /* 7992 * Adjust base offset if the filter is associated to a binary 7993 * that needs to be mapped: 7994 */ 7995 if (filter->inode) 7996 event->addr_filters_offs[count] = 7997 perf_addr_filter_apply(filter, mm); 7998 7999 count++; 8000 } 8001 8002 event->addr_filters_gen++; 8003 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8004 8005 up_read(&mm->mmap_sem); 8006 8007 mmput(mm); 8008 8009 restart: 8010 perf_event_stop(event, 1); 8011 } 8012 8013 /* 8014 * Address range filtering: limiting the data to certain 8015 * instruction address ranges. Filters are ioctl()ed to us from 8016 * userspace as ascii strings. 8017 * 8018 * Filter string format: 8019 * 8020 * ACTION RANGE_SPEC 8021 * where ACTION is one of the 8022 * * "filter": limit the trace to this region 8023 * * "start": start tracing from this address 8024 * * "stop": stop tracing at this address/region; 8025 * RANGE_SPEC is 8026 * * for kernel addresses: <start address>[/<size>] 8027 * * for object files: <start address>[/<size>]@</path/to/object/file> 8028 * 8029 * if <size> is not specified, the range is treated as a single address. 8030 */ 8031 enum { 8032 IF_ACT_NONE = -1, 8033 IF_ACT_FILTER, 8034 IF_ACT_START, 8035 IF_ACT_STOP, 8036 IF_SRC_FILE, 8037 IF_SRC_KERNEL, 8038 IF_SRC_FILEADDR, 8039 IF_SRC_KERNELADDR, 8040 }; 8041 8042 enum { 8043 IF_STATE_ACTION = 0, 8044 IF_STATE_SOURCE, 8045 IF_STATE_END, 8046 }; 8047 8048 static const match_table_t if_tokens = { 8049 { IF_ACT_FILTER, "filter" }, 8050 { IF_ACT_START, "start" }, 8051 { IF_ACT_STOP, "stop" }, 8052 { IF_SRC_FILE, "%u/%u@%s" }, 8053 { IF_SRC_KERNEL, "%u/%u" }, 8054 { IF_SRC_FILEADDR, "%u@%s" }, 8055 { IF_SRC_KERNELADDR, "%u" }, 8056 { IF_ACT_NONE, NULL }, 8057 }; 8058 8059 /* 8060 * Address filter string parser 8061 */ 8062 static int 8063 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8064 struct list_head *filters) 8065 { 8066 struct perf_addr_filter *filter = NULL; 8067 char *start, *orig, *filename = NULL; 8068 struct path path; 8069 substring_t args[MAX_OPT_ARGS]; 8070 int state = IF_STATE_ACTION, token; 8071 unsigned int kernel = 0; 8072 int ret = -EINVAL; 8073 8074 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8075 if (!fstr) 8076 return -ENOMEM; 8077 8078 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8079 ret = -EINVAL; 8080 8081 if (!*start) 8082 continue; 8083 8084 /* filter definition begins */ 8085 if (state == IF_STATE_ACTION) { 8086 filter = perf_addr_filter_new(event, filters); 8087 if (!filter) 8088 goto fail; 8089 } 8090 8091 token = match_token(start, if_tokens, args); 8092 switch (token) { 8093 case IF_ACT_FILTER: 8094 case IF_ACT_START: 8095 filter->filter = 1; 8096 8097 case IF_ACT_STOP: 8098 if (state != IF_STATE_ACTION) 8099 goto fail; 8100 8101 state = IF_STATE_SOURCE; 8102 break; 8103 8104 case IF_SRC_KERNELADDR: 8105 case IF_SRC_KERNEL: 8106 kernel = 1; 8107 8108 case IF_SRC_FILEADDR: 8109 case IF_SRC_FILE: 8110 if (state != IF_STATE_SOURCE) 8111 goto fail; 8112 8113 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 8114 filter->range = 1; 8115 8116 *args[0].to = 0; 8117 ret = kstrtoul(args[0].from, 0, &filter->offset); 8118 if (ret) 8119 goto fail; 8120 8121 if (filter->range) { 8122 *args[1].to = 0; 8123 ret = kstrtoul(args[1].from, 0, &filter->size); 8124 if (ret) 8125 goto fail; 8126 } 8127 8128 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8129 int fpos = filter->range ? 2 : 1; 8130 8131 filename = match_strdup(&args[fpos]); 8132 if (!filename) { 8133 ret = -ENOMEM; 8134 goto fail; 8135 } 8136 } 8137 8138 state = IF_STATE_END; 8139 break; 8140 8141 default: 8142 goto fail; 8143 } 8144 8145 /* 8146 * Filter definition is fully parsed, validate and install it. 8147 * Make sure that it doesn't contradict itself or the event's 8148 * attribute. 8149 */ 8150 if (state == IF_STATE_END) { 8151 if (kernel && event->attr.exclude_kernel) 8152 goto fail; 8153 8154 if (!kernel) { 8155 if (!filename) 8156 goto fail; 8157 8158 /* look up the path and grab its inode */ 8159 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8160 if (ret) 8161 goto fail_free_name; 8162 8163 filter->inode = igrab(d_inode(path.dentry)); 8164 path_put(&path); 8165 kfree(filename); 8166 filename = NULL; 8167 8168 ret = -EINVAL; 8169 if (!filter->inode || 8170 !S_ISREG(filter->inode->i_mode)) 8171 /* free_filters_list() will iput() */ 8172 goto fail; 8173 } 8174 8175 /* ready to consume more filters */ 8176 state = IF_STATE_ACTION; 8177 filter = NULL; 8178 } 8179 } 8180 8181 if (state != IF_STATE_ACTION) 8182 goto fail; 8183 8184 kfree(orig); 8185 8186 return 0; 8187 8188 fail_free_name: 8189 kfree(filename); 8190 fail: 8191 free_filters_list(filters); 8192 kfree(orig); 8193 8194 return ret; 8195 } 8196 8197 static int 8198 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 8199 { 8200 LIST_HEAD(filters); 8201 int ret; 8202 8203 /* 8204 * Since this is called in perf_ioctl() path, we're already holding 8205 * ctx::mutex. 8206 */ 8207 lockdep_assert_held(&event->ctx->mutex); 8208 8209 if (WARN_ON_ONCE(event->parent)) 8210 return -EINVAL; 8211 8212 /* 8213 * For now, we only support filtering in per-task events; doing so 8214 * for CPU-wide events requires additional context switching trickery, 8215 * since same object code will be mapped at different virtual 8216 * addresses in different processes. 8217 */ 8218 if (!event->ctx->task) 8219 return -EOPNOTSUPP; 8220 8221 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 8222 if (ret) 8223 return ret; 8224 8225 ret = event->pmu->addr_filters_validate(&filters); 8226 if (ret) { 8227 free_filters_list(&filters); 8228 return ret; 8229 } 8230 8231 /* remove existing filters, if any */ 8232 perf_addr_filters_splice(event, &filters); 8233 8234 /* install new filters */ 8235 perf_event_for_each_child(event, perf_event_addr_filters_apply); 8236 8237 return ret; 8238 } 8239 8240 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 8241 { 8242 char *filter_str; 8243 int ret = -EINVAL; 8244 8245 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 8246 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 8247 !has_addr_filter(event)) 8248 return -EINVAL; 8249 8250 filter_str = strndup_user(arg, PAGE_SIZE); 8251 if (IS_ERR(filter_str)) 8252 return PTR_ERR(filter_str); 8253 8254 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8255 event->attr.type == PERF_TYPE_TRACEPOINT) 8256 ret = ftrace_profile_set_filter(event, event->attr.config, 8257 filter_str); 8258 else if (has_addr_filter(event)) 8259 ret = perf_event_set_addr_filter(event, filter_str); 8260 8261 kfree(filter_str); 8262 return ret; 8263 } 8264 8265 /* 8266 * hrtimer based swevent callback 8267 */ 8268 8269 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8270 { 8271 enum hrtimer_restart ret = HRTIMER_RESTART; 8272 struct perf_sample_data data; 8273 struct pt_regs *regs; 8274 struct perf_event *event; 8275 u64 period; 8276 8277 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8278 8279 if (event->state != PERF_EVENT_STATE_ACTIVE) 8280 return HRTIMER_NORESTART; 8281 8282 event->pmu->read(event); 8283 8284 perf_sample_data_init(&data, 0, event->hw.last_period); 8285 regs = get_irq_regs(); 8286 8287 if (regs && !perf_exclude_event(event, regs)) { 8288 if (!(event->attr.exclude_idle && is_idle_task(current))) 8289 if (__perf_event_overflow(event, 1, &data, regs)) 8290 ret = HRTIMER_NORESTART; 8291 } 8292 8293 period = max_t(u64, 10000, event->hw.sample_period); 8294 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8295 8296 return ret; 8297 } 8298 8299 static void perf_swevent_start_hrtimer(struct perf_event *event) 8300 { 8301 struct hw_perf_event *hwc = &event->hw; 8302 s64 period; 8303 8304 if (!is_sampling_event(event)) 8305 return; 8306 8307 period = local64_read(&hwc->period_left); 8308 if (period) { 8309 if (period < 0) 8310 period = 10000; 8311 8312 local64_set(&hwc->period_left, 0); 8313 } else { 8314 period = max_t(u64, 10000, hwc->sample_period); 8315 } 8316 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8317 HRTIMER_MODE_REL_PINNED); 8318 } 8319 8320 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8321 { 8322 struct hw_perf_event *hwc = &event->hw; 8323 8324 if (is_sampling_event(event)) { 8325 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8326 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8327 8328 hrtimer_cancel(&hwc->hrtimer); 8329 } 8330 } 8331 8332 static void perf_swevent_init_hrtimer(struct perf_event *event) 8333 { 8334 struct hw_perf_event *hwc = &event->hw; 8335 8336 if (!is_sampling_event(event)) 8337 return; 8338 8339 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8340 hwc->hrtimer.function = perf_swevent_hrtimer; 8341 8342 /* 8343 * Since hrtimers have a fixed rate, we can do a static freq->period 8344 * mapping and avoid the whole period adjust feedback stuff. 8345 */ 8346 if (event->attr.freq) { 8347 long freq = event->attr.sample_freq; 8348 8349 event->attr.sample_period = NSEC_PER_SEC / freq; 8350 hwc->sample_period = event->attr.sample_period; 8351 local64_set(&hwc->period_left, hwc->sample_period); 8352 hwc->last_period = hwc->sample_period; 8353 event->attr.freq = 0; 8354 } 8355 } 8356 8357 /* 8358 * Software event: cpu wall time clock 8359 */ 8360 8361 static void cpu_clock_event_update(struct perf_event *event) 8362 { 8363 s64 prev; 8364 u64 now; 8365 8366 now = local_clock(); 8367 prev = local64_xchg(&event->hw.prev_count, now); 8368 local64_add(now - prev, &event->count); 8369 } 8370 8371 static void cpu_clock_event_start(struct perf_event *event, int flags) 8372 { 8373 local64_set(&event->hw.prev_count, local_clock()); 8374 perf_swevent_start_hrtimer(event); 8375 } 8376 8377 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8378 { 8379 perf_swevent_cancel_hrtimer(event); 8380 cpu_clock_event_update(event); 8381 } 8382 8383 static int cpu_clock_event_add(struct perf_event *event, int flags) 8384 { 8385 if (flags & PERF_EF_START) 8386 cpu_clock_event_start(event, flags); 8387 perf_event_update_userpage(event); 8388 8389 return 0; 8390 } 8391 8392 static void cpu_clock_event_del(struct perf_event *event, int flags) 8393 { 8394 cpu_clock_event_stop(event, flags); 8395 } 8396 8397 static void cpu_clock_event_read(struct perf_event *event) 8398 { 8399 cpu_clock_event_update(event); 8400 } 8401 8402 static int cpu_clock_event_init(struct perf_event *event) 8403 { 8404 if (event->attr.type != PERF_TYPE_SOFTWARE) 8405 return -ENOENT; 8406 8407 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8408 return -ENOENT; 8409 8410 /* 8411 * no branch sampling for software events 8412 */ 8413 if (has_branch_stack(event)) 8414 return -EOPNOTSUPP; 8415 8416 perf_swevent_init_hrtimer(event); 8417 8418 return 0; 8419 } 8420 8421 static struct pmu perf_cpu_clock = { 8422 .task_ctx_nr = perf_sw_context, 8423 8424 .capabilities = PERF_PMU_CAP_NO_NMI, 8425 8426 .event_init = cpu_clock_event_init, 8427 .add = cpu_clock_event_add, 8428 .del = cpu_clock_event_del, 8429 .start = cpu_clock_event_start, 8430 .stop = cpu_clock_event_stop, 8431 .read = cpu_clock_event_read, 8432 }; 8433 8434 /* 8435 * Software event: task time clock 8436 */ 8437 8438 static void task_clock_event_update(struct perf_event *event, u64 now) 8439 { 8440 u64 prev; 8441 s64 delta; 8442 8443 prev = local64_xchg(&event->hw.prev_count, now); 8444 delta = now - prev; 8445 local64_add(delta, &event->count); 8446 } 8447 8448 static void task_clock_event_start(struct perf_event *event, int flags) 8449 { 8450 local64_set(&event->hw.prev_count, event->ctx->time); 8451 perf_swevent_start_hrtimer(event); 8452 } 8453 8454 static void task_clock_event_stop(struct perf_event *event, int flags) 8455 { 8456 perf_swevent_cancel_hrtimer(event); 8457 task_clock_event_update(event, event->ctx->time); 8458 } 8459 8460 static int task_clock_event_add(struct perf_event *event, int flags) 8461 { 8462 if (flags & PERF_EF_START) 8463 task_clock_event_start(event, flags); 8464 perf_event_update_userpage(event); 8465 8466 return 0; 8467 } 8468 8469 static void task_clock_event_del(struct perf_event *event, int flags) 8470 { 8471 task_clock_event_stop(event, PERF_EF_UPDATE); 8472 } 8473 8474 static void task_clock_event_read(struct perf_event *event) 8475 { 8476 u64 now = perf_clock(); 8477 u64 delta = now - event->ctx->timestamp; 8478 u64 time = event->ctx->time + delta; 8479 8480 task_clock_event_update(event, time); 8481 } 8482 8483 static int task_clock_event_init(struct perf_event *event) 8484 { 8485 if (event->attr.type != PERF_TYPE_SOFTWARE) 8486 return -ENOENT; 8487 8488 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8489 return -ENOENT; 8490 8491 /* 8492 * no branch sampling for software events 8493 */ 8494 if (has_branch_stack(event)) 8495 return -EOPNOTSUPP; 8496 8497 perf_swevent_init_hrtimer(event); 8498 8499 return 0; 8500 } 8501 8502 static struct pmu perf_task_clock = { 8503 .task_ctx_nr = perf_sw_context, 8504 8505 .capabilities = PERF_PMU_CAP_NO_NMI, 8506 8507 .event_init = task_clock_event_init, 8508 .add = task_clock_event_add, 8509 .del = task_clock_event_del, 8510 .start = task_clock_event_start, 8511 .stop = task_clock_event_stop, 8512 .read = task_clock_event_read, 8513 }; 8514 8515 static void perf_pmu_nop_void(struct pmu *pmu) 8516 { 8517 } 8518 8519 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8520 { 8521 } 8522 8523 static int perf_pmu_nop_int(struct pmu *pmu) 8524 { 8525 return 0; 8526 } 8527 8528 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8529 8530 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8531 { 8532 __this_cpu_write(nop_txn_flags, flags); 8533 8534 if (flags & ~PERF_PMU_TXN_ADD) 8535 return; 8536 8537 perf_pmu_disable(pmu); 8538 } 8539 8540 static int perf_pmu_commit_txn(struct pmu *pmu) 8541 { 8542 unsigned int flags = __this_cpu_read(nop_txn_flags); 8543 8544 __this_cpu_write(nop_txn_flags, 0); 8545 8546 if (flags & ~PERF_PMU_TXN_ADD) 8547 return 0; 8548 8549 perf_pmu_enable(pmu); 8550 return 0; 8551 } 8552 8553 static void perf_pmu_cancel_txn(struct pmu *pmu) 8554 { 8555 unsigned int flags = __this_cpu_read(nop_txn_flags); 8556 8557 __this_cpu_write(nop_txn_flags, 0); 8558 8559 if (flags & ~PERF_PMU_TXN_ADD) 8560 return; 8561 8562 perf_pmu_enable(pmu); 8563 } 8564 8565 static int perf_event_idx_default(struct perf_event *event) 8566 { 8567 return 0; 8568 } 8569 8570 /* 8571 * Ensures all contexts with the same task_ctx_nr have the same 8572 * pmu_cpu_context too. 8573 */ 8574 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8575 { 8576 struct pmu *pmu; 8577 8578 if (ctxn < 0) 8579 return NULL; 8580 8581 list_for_each_entry(pmu, &pmus, entry) { 8582 if (pmu->task_ctx_nr == ctxn) 8583 return pmu->pmu_cpu_context; 8584 } 8585 8586 return NULL; 8587 } 8588 8589 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 8590 { 8591 int cpu; 8592 8593 for_each_possible_cpu(cpu) { 8594 struct perf_cpu_context *cpuctx; 8595 8596 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8597 8598 if (cpuctx->unique_pmu == old_pmu) 8599 cpuctx->unique_pmu = pmu; 8600 } 8601 } 8602 8603 static void free_pmu_context(struct pmu *pmu) 8604 { 8605 struct pmu *i; 8606 8607 mutex_lock(&pmus_lock); 8608 /* 8609 * Like a real lame refcount. 8610 */ 8611 list_for_each_entry(i, &pmus, entry) { 8612 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 8613 update_pmu_context(i, pmu); 8614 goto out; 8615 } 8616 } 8617 8618 free_percpu(pmu->pmu_cpu_context); 8619 out: 8620 mutex_unlock(&pmus_lock); 8621 } 8622 8623 /* 8624 * Let userspace know that this PMU supports address range filtering: 8625 */ 8626 static ssize_t nr_addr_filters_show(struct device *dev, 8627 struct device_attribute *attr, 8628 char *page) 8629 { 8630 struct pmu *pmu = dev_get_drvdata(dev); 8631 8632 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8633 } 8634 DEVICE_ATTR_RO(nr_addr_filters); 8635 8636 static struct idr pmu_idr; 8637 8638 static ssize_t 8639 type_show(struct device *dev, struct device_attribute *attr, char *page) 8640 { 8641 struct pmu *pmu = dev_get_drvdata(dev); 8642 8643 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8644 } 8645 static DEVICE_ATTR_RO(type); 8646 8647 static ssize_t 8648 perf_event_mux_interval_ms_show(struct device *dev, 8649 struct device_attribute *attr, 8650 char *page) 8651 { 8652 struct pmu *pmu = dev_get_drvdata(dev); 8653 8654 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8655 } 8656 8657 static DEFINE_MUTEX(mux_interval_mutex); 8658 8659 static ssize_t 8660 perf_event_mux_interval_ms_store(struct device *dev, 8661 struct device_attribute *attr, 8662 const char *buf, size_t count) 8663 { 8664 struct pmu *pmu = dev_get_drvdata(dev); 8665 int timer, cpu, ret; 8666 8667 ret = kstrtoint(buf, 0, &timer); 8668 if (ret) 8669 return ret; 8670 8671 if (timer < 1) 8672 return -EINVAL; 8673 8674 /* same value, noting to do */ 8675 if (timer == pmu->hrtimer_interval_ms) 8676 return count; 8677 8678 mutex_lock(&mux_interval_mutex); 8679 pmu->hrtimer_interval_ms = timer; 8680 8681 /* update all cpuctx for this PMU */ 8682 get_online_cpus(); 8683 for_each_online_cpu(cpu) { 8684 struct perf_cpu_context *cpuctx; 8685 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8686 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 8687 8688 cpu_function_call(cpu, 8689 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 8690 } 8691 put_online_cpus(); 8692 mutex_unlock(&mux_interval_mutex); 8693 8694 return count; 8695 } 8696 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 8697 8698 static struct attribute *pmu_dev_attrs[] = { 8699 &dev_attr_type.attr, 8700 &dev_attr_perf_event_mux_interval_ms.attr, 8701 NULL, 8702 }; 8703 ATTRIBUTE_GROUPS(pmu_dev); 8704 8705 static int pmu_bus_running; 8706 static struct bus_type pmu_bus = { 8707 .name = "event_source", 8708 .dev_groups = pmu_dev_groups, 8709 }; 8710 8711 static void pmu_dev_release(struct device *dev) 8712 { 8713 kfree(dev); 8714 } 8715 8716 static int pmu_dev_alloc(struct pmu *pmu) 8717 { 8718 int ret = -ENOMEM; 8719 8720 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 8721 if (!pmu->dev) 8722 goto out; 8723 8724 pmu->dev->groups = pmu->attr_groups; 8725 device_initialize(pmu->dev); 8726 ret = dev_set_name(pmu->dev, "%s", pmu->name); 8727 if (ret) 8728 goto free_dev; 8729 8730 dev_set_drvdata(pmu->dev, pmu); 8731 pmu->dev->bus = &pmu_bus; 8732 pmu->dev->release = pmu_dev_release; 8733 ret = device_add(pmu->dev); 8734 if (ret) 8735 goto free_dev; 8736 8737 /* For PMUs with address filters, throw in an extra attribute: */ 8738 if (pmu->nr_addr_filters) 8739 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 8740 8741 if (ret) 8742 goto del_dev; 8743 8744 out: 8745 return ret; 8746 8747 del_dev: 8748 device_del(pmu->dev); 8749 8750 free_dev: 8751 put_device(pmu->dev); 8752 goto out; 8753 } 8754 8755 static struct lock_class_key cpuctx_mutex; 8756 static struct lock_class_key cpuctx_lock; 8757 8758 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 8759 { 8760 int cpu, ret; 8761 8762 mutex_lock(&pmus_lock); 8763 ret = -ENOMEM; 8764 pmu->pmu_disable_count = alloc_percpu(int); 8765 if (!pmu->pmu_disable_count) 8766 goto unlock; 8767 8768 pmu->type = -1; 8769 if (!name) 8770 goto skip_type; 8771 pmu->name = name; 8772 8773 if (type < 0) { 8774 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 8775 if (type < 0) { 8776 ret = type; 8777 goto free_pdc; 8778 } 8779 } 8780 pmu->type = type; 8781 8782 if (pmu_bus_running) { 8783 ret = pmu_dev_alloc(pmu); 8784 if (ret) 8785 goto free_idr; 8786 } 8787 8788 skip_type: 8789 if (pmu->task_ctx_nr == perf_hw_context) { 8790 static int hw_context_taken = 0; 8791 8792 /* 8793 * Other than systems with heterogeneous CPUs, it never makes 8794 * sense for two PMUs to share perf_hw_context. PMUs which are 8795 * uncore must use perf_invalid_context. 8796 */ 8797 if (WARN_ON_ONCE(hw_context_taken && 8798 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 8799 pmu->task_ctx_nr = perf_invalid_context; 8800 8801 hw_context_taken = 1; 8802 } 8803 8804 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 8805 if (pmu->pmu_cpu_context) 8806 goto got_cpu_context; 8807 8808 ret = -ENOMEM; 8809 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 8810 if (!pmu->pmu_cpu_context) 8811 goto free_dev; 8812 8813 for_each_possible_cpu(cpu) { 8814 struct perf_cpu_context *cpuctx; 8815 8816 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8817 __perf_event_init_context(&cpuctx->ctx); 8818 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 8819 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 8820 cpuctx->ctx.pmu = pmu; 8821 8822 __perf_mux_hrtimer_init(cpuctx, cpu); 8823 8824 cpuctx->unique_pmu = pmu; 8825 } 8826 8827 got_cpu_context: 8828 if (!pmu->start_txn) { 8829 if (pmu->pmu_enable) { 8830 /* 8831 * If we have pmu_enable/pmu_disable calls, install 8832 * transaction stubs that use that to try and batch 8833 * hardware accesses. 8834 */ 8835 pmu->start_txn = perf_pmu_start_txn; 8836 pmu->commit_txn = perf_pmu_commit_txn; 8837 pmu->cancel_txn = perf_pmu_cancel_txn; 8838 } else { 8839 pmu->start_txn = perf_pmu_nop_txn; 8840 pmu->commit_txn = perf_pmu_nop_int; 8841 pmu->cancel_txn = perf_pmu_nop_void; 8842 } 8843 } 8844 8845 if (!pmu->pmu_enable) { 8846 pmu->pmu_enable = perf_pmu_nop_void; 8847 pmu->pmu_disable = perf_pmu_nop_void; 8848 } 8849 8850 if (!pmu->event_idx) 8851 pmu->event_idx = perf_event_idx_default; 8852 8853 list_add_rcu(&pmu->entry, &pmus); 8854 atomic_set(&pmu->exclusive_cnt, 0); 8855 ret = 0; 8856 unlock: 8857 mutex_unlock(&pmus_lock); 8858 8859 return ret; 8860 8861 free_dev: 8862 device_del(pmu->dev); 8863 put_device(pmu->dev); 8864 8865 free_idr: 8866 if (pmu->type >= PERF_TYPE_MAX) 8867 idr_remove(&pmu_idr, pmu->type); 8868 8869 free_pdc: 8870 free_percpu(pmu->pmu_disable_count); 8871 goto unlock; 8872 } 8873 EXPORT_SYMBOL_GPL(perf_pmu_register); 8874 8875 void perf_pmu_unregister(struct pmu *pmu) 8876 { 8877 int remove_device; 8878 8879 mutex_lock(&pmus_lock); 8880 remove_device = pmu_bus_running; 8881 list_del_rcu(&pmu->entry); 8882 mutex_unlock(&pmus_lock); 8883 8884 /* 8885 * We dereference the pmu list under both SRCU and regular RCU, so 8886 * synchronize against both of those. 8887 */ 8888 synchronize_srcu(&pmus_srcu); 8889 synchronize_rcu(); 8890 8891 free_percpu(pmu->pmu_disable_count); 8892 if (pmu->type >= PERF_TYPE_MAX) 8893 idr_remove(&pmu_idr, pmu->type); 8894 if (remove_device) { 8895 if (pmu->nr_addr_filters) 8896 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 8897 device_del(pmu->dev); 8898 put_device(pmu->dev); 8899 } 8900 free_pmu_context(pmu); 8901 } 8902 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 8903 8904 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 8905 { 8906 struct perf_event_context *ctx = NULL; 8907 int ret; 8908 8909 if (!try_module_get(pmu->module)) 8910 return -ENODEV; 8911 8912 if (event->group_leader != event) { 8913 /* 8914 * This ctx->mutex can nest when we're called through 8915 * inheritance. See the perf_event_ctx_lock_nested() comment. 8916 */ 8917 ctx = perf_event_ctx_lock_nested(event->group_leader, 8918 SINGLE_DEPTH_NESTING); 8919 BUG_ON(!ctx); 8920 } 8921 8922 event->pmu = pmu; 8923 ret = pmu->event_init(event); 8924 8925 if (ctx) 8926 perf_event_ctx_unlock(event->group_leader, ctx); 8927 8928 if (ret) 8929 module_put(pmu->module); 8930 8931 return ret; 8932 } 8933 8934 static struct pmu *perf_init_event(struct perf_event *event) 8935 { 8936 struct pmu *pmu = NULL; 8937 int idx; 8938 int ret; 8939 8940 idx = srcu_read_lock(&pmus_srcu); 8941 8942 rcu_read_lock(); 8943 pmu = idr_find(&pmu_idr, event->attr.type); 8944 rcu_read_unlock(); 8945 if (pmu) { 8946 ret = perf_try_init_event(pmu, event); 8947 if (ret) 8948 pmu = ERR_PTR(ret); 8949 goto unlock; 8950 } 8951 8952 list_for_each_entry_rcu(pmu, &pmus, entry) { 8953 ret = perf_try_init_event(pmu, event); 8954 if (!ret) 8955 goto unlock; 8956 8957 if (ret != -ENOENT) { 8958 pmu = ERR_PTR(ret); 8959 goto unlock; 8960 } 8961 } 8962 pmu = ERR_PTR(-ENOENT); 8963 unlock: 8964 srcu_read_unlock(&pmus_srcu, idx); 8965 8966 return pmu; 8967 } 8968 8969 static void attach_sb_event(struct perf_event *event) 8970 { 8971 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 8972 8973 raw_spin_lock(&pel->lock); 8974 list_add_rcu(&event->sb_list, &pel->list); 8975 raw_spin_unlock(&pel->lock); 8976 } 8977 8978 /* 8979 * We keep a list of all !task (and therefore per-cpu) events 8980 * that need to receive side-band records. 8981 * 8982 * This avoids having to scan all the various PMU per-cpu contexts 8983 * looking for them. 8984 */ 8985 static void account_pmu_sb_event(struct perf_event *event) 8986 { 8987 if (is_sb_event(event)) 8988 attach_sb_event(event); 8989 } 8990 8991 static void account_event_cpu(struct perf_event *event, int cpu) 8992 { 8993 if (event->parent) 8994 return; 8995 8996 if (is_cgroup_event(event)) 8997 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 8998 } 8999 9000 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9001 static void account_freq_event_nohz(void) 9002 { 9003 #ifdef CONFIG_NO_HZ_FULL 9004 /* Lock so we don't race with concurrent unaccount */ 9005 spin_lock(&nr_freq_lock); 9006 if (atomic_inc_return(&nr_freq_events) == 1) 9007 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9008 spin_unlock(&nr_freq_lock); 9009 #endif 9010 } 9011 9012 static void account_freq_event(void) 9013 { 9014 if (tick_nohz_full_enabled()) 9015 account_freq_event_nohz(); 9016 else 9017 atomic_inc(&nr_freq_events); 9018 } 9019 9020 9021 static void account_event(struct perf_event *event) 9022 { 9023 bool inc = false; 9024 9025 if (event->parent) 9026 return; 9027 9028 if (event->attach_state & PERF_ATTACH_TASK) 9029 inc = true; 9030 if (event->attr.mmap || event->attr.mmap_data) 9031 atomic_inc(&nr_mmap_events); 9032 if (event->attr.comm) 9033 atomic_inc(&nr_comm_events); 9034 if (event->attr.task) 9035 atomic_inc(&nr_task_events); 9036 if (event->attr.freq) 9037 account_freq_event(); 9038 if (event->attr.context_switch) { 9039 atomic_inc(&nr_switch_events); 9040 inc = true; 9041 } 9042 if (has_branch_stack(event)) 9043 inc = true; 9044 if (is_cgroup_event(event)) 9045 inc = true; 9046 9047 if (inc) { 9048 if (atomic_inc_not_zero(&perf_sched_count)) 9049 goto enabled; 9050 9051 mutex_lock(&perf_sched_mutex); 9052 if (!atomic_read(&perf_sched_count)) { 9053 static_branch_enable(&perf_sched_events); 9054 /* 9055 * Guarantee that all CPUs observe they key change and 9056 * call the perf scheduling hooks before proceeding to 9057 * install events that need them. 9058 */ 9059 synchronize_sched(); 9060 } 9061 /* 9062 * Now that we have waited for the sync_sched(), allow further 9063 * increments to by-pass the mutex. 9064 */ 9065 atomic_inc(&perf_sched_count); 9066 mutex_unlock(&perf_sched_mutex); 9067 } 9068 enabled: 9069 9070 account_event_cpu(event, event->cpu); 9071 9072 account_pmu_sb_event(event); 9073 } 9074 9075 /* 9076 * Allocate and initialize a event structure 9077 */ 9078 static struct perf_event * 9079 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9080 struct task_struct *task, 9081 struct perf_event *group_leader, 9082 struct perf_event *parent_event, 9083 perf_overflow_handler_t overflow_handler, 9084 void *context, int cgroup_fd) 9085 { 9086 struct pmu *pmu; 9087 struct perf_event *event; 9088 struct hw_perf_event *hwc; 9089 long err = -EINVAL; 9090 9091 if ((unsigned)cpu >= nr_cpu_ids) { 9092 if (!task || cpu != -1) 9093 return ERR_PTR(-EINVAL); 9094 } 9095 9096 event = kzalloc(sizeof(*event), GFP_KERNEL); 9097 if (!event) 9098 return ERR_PTR(-ENOMEM); 9099 9100 /* 9101 * Single events are their own group leaders, with an 9102 * empty sibling list: 9103 */ 9104 if (!group_leader) 9105 group_leader = event; 9106 9107 mutex_init(&event->child_mutex); 9108 INIT_LIST_HEAD(&event->child_list); 9109 9110 INIT_LIST_HEAD(&event->group_entry); 9111 INIT_LIST_HEAD(&event->event_entry); 9112 INIT_LIST_HEAD(&event->sibling_list); 9113 INIT_LIST_HEAD(&event->rb_entry); 9114 INIT_LIST_HEAD(&event->active_entry); 9115 INIT_LIST_HEAD(&event->addr_filters.list); 9116 INIT_HLIST_NODE(&event->hlist_entry); 9117 9118 9119 init_waitqueue_head(&event->waitq); 9120 init_irq_work(&event->pending, perf_pending_event); 9121 9122 mutex_init(&event->mmap_mutex); 9123 raw_spin_lock_init(&event->addr_filters.lock); 9124 9125 atomic_long_set(&event->refcount, 1); 9126 event->cpu = cpu; 9127 event->attr = *attr; 9128 event->group_leader = group_leader; 9129 event->pmu = NULL; 9130 event->oncpu = -1; 9131 9132 event->parent = parent_event; 9133 9134 event->ns = get_pid_ns(task_active_pid_ns(current)); 9135 event->id = atomic64_inc_return(&perf_event_id); 9136 9137 event->state = PERF_EVENT_STATE_INACTIVE; 9138 9139 if (task) { 9140 event->attach_state = PERF_ATTACH_TASK; 9141 /* 9142 * XXX pmu::event_init needs to know what task to account to 9143 * and we cannot use the ctx information because we need the 9144 * pmu before we get a ctx. 9145 */ 9146 event->hw.target = task; 9147 } 9148 9149 event->clock = &local_clock; 9150 if (parent_event) 9151 event->clock = parent_event->clock; 9152 9153 if (!overflow_handler && parent_event) { 9154 overflow_handler = parent_event->overflow_handler; 9155 context = parent_event->overflow_handler_context; 9156 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9157 if (overflow_handler == bpf_overflow_handler) { 9158 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9159 9160 if (IS_ERR(prog)) { 9161 err = PTR_ERR(prog); 9162 goto err_ns; 9163 } 9164 event->prog = prog; 9165 event->orig_overflow_handler = 9166 parent_event->orig_overflow_handler; 9167 } 9168 #endif 9169 } 9170 9171 if (overflow_handler) { 9172 event->overflow_handler = overflow_handler; 9173 event->overflow_handler_context = context; 9174 } else if (is_write_backward(event)){ 9175 event->overflow_handler = perf_event_output_backward; 9176 event->overflow_handler_context = NULL; 9177 } else { 9178 event->overflow_handler = perf_event_output_forward; 9179 event->overflow_handler_context = NULL; 9180 } 9181 9182 perf_event__state_init(event); 9183 9184 pmu = NULL; 9185 9186 hwc = &event->hw; 9187 hwc->sample_period = attr->sample_period; 9188 if (attr->freq && attr->sample_freq) 9189 hwc->sample_period = 1; 9190 hwc->last_period = hwc->sample_period; 9191 9192 local64_set(&hwc->period_left, hwc->sample_period); 9193 9194 /* 9195 * we currently do not support PERF_FORMAT_GROUP on inherited events 9196 */ 9197 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 9198 goto err_ns; 9199 9200 if (!has_branch_stack(event)) 9201 event->attr.branch_sample_type = 0; 9202 9203 if (cgroup_fd != -1) { 9204 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 9205 if (err) 9206 goto err_ns; 9207 } 9208 9209 pmu = perf_init_event(event); 9210 if (!pmu) 9211 goto err_ns; 9212 else if (IS_ERR(pmu)) { 9213 err = PTR_ERR(pmu); 9214 goto err_ns; 9215 } 9216 9217 err = exclusive_event_init(event); 9218 if (err) 9219 goto err_pmu; 9220 9221 if (has_addr_filter(event)) { 9222 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 9223 sizeof(unsigned long), 9224 GFP_KERNEL); 9225 if (!event->addr_filters_offs) 9226 goto err_per_task; 9227 9228 /* force hw sync on the address filters */ 9229 event->addr_filters_gen = 1; 9230 } 9231 9232 if (!event->parent) { 9233 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 9234 err = get_callchain_buffers(attr->sample_max_stack); 9235 if (err) 9236 goto err_addr_filters; 9237 } 9238 } 9239 9240 /* symmetric to unaccount_event() in _free_event() */ 9241 account_event(event); 9242 9243 return event; 9244 9245 err_addr_filters: 9246 kfree(event->addr_filters_offs); 9247 9248 err_per_task: 9249 exclusive_event_destroy(event); 9250 9251 err_pmu: 9252 if (event->destroy) 9253 event->destroy(event); 9254 module_put(pmu->module); 9255 err_ns: 9256 if (is_cgroup_event(event)) 9257 perf_detach_cgroup(event); 9258 if (event->ns) 9259 put_pid_ns(event->ns); 9260 kfree(event); 9261 9262 return ERR_PTR(err); 9263 } 9264 9265 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9266 struct perf_event_attr *attr) 9267 { 9268 u32 size; 9269 int ret; 9270 9271 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9272 return -EFAULT; 9273 9274 /* 9275 * zero the full structure, so that a short copy will be nice. 9276 */ 9277 memset(attr, 0, sizeof(*attr)); 9278 9279 ret = get_user(size, &uattr->size); 9280 if (ret) 9281 return ret; 9282 9283 if (size > PAGE_SIZE) /* silly large */ 9284 goto err_size; 9285 9286 if (!size) /* abi compat */ 9287 size = PERF_ATTR_SIZE_VER0; 9288 9289 if (size < PERF_ATTR_SIZE_VER0) 9290 goto err_size; 9291 9292 /* 9293 * If we're handed a bigger struct than we know of, 9294 * ensure all the unknown bits are 0 - i.e. new 9295 * user-space does not rely on any kernel feature 9296 * extensions we dont know about yet. 9297 */ 9298 if (size > sizeof(*attr)) { 9299 unsigned char __user *addr; 9300 unsigned char __user *end; 9301 unsigned char val; 9302 9303 addr = (void __user *)uattr + sizeof(*attr); 9304 end = (void __user *)uattr + size; 9305 9306 for (; addr < end; addr++) { 9307 ret = get_user(val, addr); 9308 if (ret) 9309 return ret; 9310 if (val) 9311 goto err_size; 9312 } 9313 size = sizeof(*attr); 9314 } 9315 9316 ret = copy_from_user(attr, uattr, size); 9317 if (ret) 9318 return -EFAULT; 9319 9320 if (attr->__reserved_1) 9321 return -EINVAL; 9322 9323 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9324 return -EINVAL; 9325 9326 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9327 return -EINVAL; 9328 9329 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9330 u64 mask = attr->branch_sample_type; 9331 9332 /* only using defined bits */ 9333 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9334 return -EINVAL; 9335 9336 /* at least one branch bit must be set */ 9337 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9338 return -EINVAL; 9339 9340 /* propagate priv level, when not set for branch */ 9341 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9342 9343 /* exclude_kernel checked on syscall entry */ 9344 if (!attr->exclude_kernel) 9345 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9346 9347 if (!attr->exclude_user) 9348 mask |= PERF_SAMPLE_BRANCH_USER; 9349 9350 if (!attr->exclude_hv) 9351 mask |= PERF_SAMPLE_BRANCH_HV; 9352 /* 9353 * adjust user setting (for HW filter setup) 9354 */ 9355 attr->branch_sample_type = mask; 9356 } 9357 /* privileged levels capture (kernel, hv): check permissions */ 9358 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9359 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9360 return -EACCES; 9361 } 9362 9363 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9364 ret = perf_reg_validate(attr->sample_regs_user); 9365 if (ret) 9366 return ret; 9367 } 9368 9369 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9370 if (!arch_perf_have_user_stack_dump()) 9371 return -ENOSYS; 9372 9373 /* 9374 * We have __u32 type for the size, but so far 9375 * we can only use __u16 as maximum due to the 9376 * __u16 sample size limit. 9377 */ 9378 if (attr->sample_stack_user >= USHRT_MAX) 9379 ret = -EINVAL; 9380 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9381 ret = -EINVAL; 9382 } 9383 9384 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9385 ret = perf_reg_validate(attr->sample_regs_intr); 9386 out: 9387 return ret; 9388 9389 err_size: 9390 put_user(sizeof(*attr), &uattr->size); 9391 ret = -E2BIG; 9392 goto out; 9393 } 9394 9395 static int 9396 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9397 { 9398 struct ring_buffer *rb = NULL; 9399 int ret = -EINVAL; 9400 9401 if (!output_event) 9402 goto set; 9403 9404 /* don't allow circular references */ 9405 if (event == output_event) 9406 goto out; 9407 9408 /* 9409 * Don't allow cross-cpu buffers 9410 */ 9411 if (output_event->cpu != event->cpu) 9412 goto out; 9413 9414 /* 9415 * If its not a per-cpu rb, it must be the same task. 9416 */ 9417 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9418 goto out; 9419 9420 /* 9421 * Mixing clocks in the same buffer is trouble you don't need. 9422 */ 9423 if (output_event->clock != event->clock) 9424 goto out; 9425 9426 /* 9427 * Either writing ring buffer from beginning or from end. 9428 * Mixing is not allowed. 9429 */ 9430 if (is_write_backward(output_event) != is_write_backward(event)) 9431 goto out; 9432 9433 /* 9434 * If both events generate aux data, they must be on the same PMU 9435 */ 9436 if (has_aux(event) && has_aux(output_event) && 9437 event->pmu != output_event->pmu) 9438 goto out; 9439 9440 set: 9441 mutex_lock(&event->mmap_mutex); 9442 /* Can't redirect output if we've got an active mmap() */ 9443 if (atomic_read(&event->mmap_count)) 9444 goto unlock; 9445 9446 if (output_event) { 9447 /* get the rb we want to redirect to */ 9448 rb = ring_buffer_get(output_event); 9449 if (!rb) 9450 goto unlock; 9451 } 9452 9453 ring_buffer_attach(event, rb); 9454 9455 ret = 0; 9456 unlock: 9457 mutex_unlock(&event->mmap_mutex); 9458 9459 out: 9460 return ret; 9461 } 9462 9463 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9464 { 9465 if (b < a) 9466 swap(a, b); 9467 9468 mutex_lock(a); 9469 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9470 } 9471 9472 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9473 { 9474 bool nmi_safe = false; 9475 9476 switch (clk_id) { 9477 case CLOCK_MONOTONIC: 9478 event->clock = &ktime_get_mono_fast_ns; 9479 nmi_safe = true; 9480 break; 9481 9482 case CLOCK_MONOTONIC_RAW: 9483 event->clock = &ktime_get_raw_fast_ns; 9484 nmi_safe = true; 9485 break; 9486 9487 case CLOCK_REALTIME: 9488 event->clock = &ktime_get_real_ns; 9489 break; 9490 9491 case CLOCK_BOOTTIME: 9492 event->clock = &ktime_get_boot_ns; 9493 break; 9494 9495 case CLOCK_TAI: 9496 event->clock = &ktime_get_tai_ns; 9497 break; 9498 9499 default: 9500 return -EINVAL; 9501 } 9502 9503 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9504 return -EINVAL; 9505 9506 return 0; 9507 } 9508 9509 /** 9510 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9511 * 9512 * @attr_uptr: event_id type attributes for monitoring/sampling 9513 * @pid: target pid 9514 * @cpu: target cpu 9515 * @group_fd: group leader event fd 9516 */ 9517 SYSCALL_DEFINE5(perf_event_open, 9518 struct perf_event_attr __user *, attr_uptr, 9519 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9520 { 9521 struct perf_event *group_leader = NULL, *output_event = NULL; 9522 struct perf_event *event, *sibling; 9523 struct perf_event_attr attr; 9524 struct perf_event_context *ctx, *uninitialized_var(gctx); 9525 struct file *event_file = NULL; 9526 struct fd group = {NULL, 0}; 9527 struct task_struct *task = NULL; 9528 struct pmu *pmu; 9529 int event_fd; 9530 int move_group = 0; 9531 int err; 9532 int f_flags = O_RDWR; 9533 int cgroup_fd = -1; 9534 9535 /* for future expandability... */ 9536 if (flags & ~PERF_FLAG_ALL) 9537 return -EINVAL; 9538 9539 err = perf_copy_attr(attr_uptr, &attr); 9540 if (err) 9541 return err; 9542 9543 if (!attr.exclude_kernel) { 9544 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9545 return -EACCES; 9546 } 9547 9548 if (attr.freq) { 9549 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9550 return -EINVAL; 9551 } else { 9552 if (attr.sample_period & (1ULL << 63)) 9553 return -EINVAL; 9554 } 9555 9556 if (!attr.sample_max_stack) 9557 attr.sample_max_stack = sysctl_perf_event_max_stack; 9558 9559 /* 9560 * In cgroup mode, the pid argument is used to pass the fd 9561 * opened to the cgroup directory in cgroupfs. The cpu argument 9562 * designates the cpu on which to monitor threads from that 9563 * cgroup. 9564 */ 9565 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9566 return -EINVAL; 9567 9568 if (flags & PERF_FLAG_FD_CLOEXEC) 9569 f_flags |= O_CLOEXEC; 9570 9571 event_fd = get_unused_fd_flags(f_flags); 9572 if (event_fd < 0) 9573 return event_fd; 9574 9575 if (group_fd != -1) { 9576 err = perf_fget_light(group_fd, &group); 9577 if (err) 9578 goto err_fd; 9579 group_leader = group.file->private_data; 9580 if (flags & PERF_FLAG_FD_OUTPUT) 9581 output_event = group_leader; 9582 if (flags & PERF_FLAG_FD_NO_GROUP) 9583 group_leader = NULL; 9584 } 9585 9586 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9587 task = find_lively_task_by_vpid(pid); 9588 if (IS_ERR(task)) { 9589 err = PTR_ERR(task); 9590 goto err_group_fd; 9591 } 9592 } 9593 9594 if (task && group_leader && 9595 group_leader->attr.inherit != attr.inherit) { 9596 err = -EINVAL; 9597 goto err_task; 9598 } 9599 9600 get_online_cpus(); 9601 9602 if (task) { 9603 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9604 if (err) 9605 goto err_cpus; 9606 9607 /* 9608 * Reuse ptrace permission checks for now. 9609 * 9610 * We must hold cred_guard_mutex across this and any potential 9611 * perf_install_in_context() call for this new event to 9612 * serialize against exec() altering our credentials (and the 9613 * perf_event_exit_task() that could imply). 9614 */ 9615 err = -EACCES; 9616 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9617 goto err_cred; 9618 } 9619 9620 if (flags & PERF_FLAG_PID_CGROUP) 9621 cgroup_fd = pid; 9622 9623 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 9624 NULL, NULL, cgroup_fd); 9625 if (IS_ERR(event)) { 9626 err = PTR_ERR(event); 9627 goto err_cred; 9628 } 9629 9630 if (is_sampling_event(event)) { 9631 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 9632 err = -EOPNOTSUPP; 9633 goto err_alloc; 9634 } 9635 } 9636 9637 /* 9638 * Special case software events and allow them to be part of 9639 * any hardware group. 9640 */ 9641 pmu = event->pmu; 9642 9643 if (attr.use_clockid) { 9644 err = perf_event_set_clock(event, attr.clockid); 9645 if (err) 9646 goto err_alloc; 9647 } 9648 9649 if (pmu->task_ctx_nr == perf_sw_context) 9650 event->event_caps |= PERF_EV_CAP_SOFTWARE; 9651 9652 if (group_leader && 9653 (is_software_event(event) != is_software_event(group_leader))) { 9654 if (is_software_event(event)) { 9655 /* 9656 * If event and group_leader are not both a software 9657 * event, and event is, then group leader is not. 9658 * 9659 * Allow the addition of software events to !software 9660 * groups, this is safe because software events never 9661 * fail to schedule. 9662 */ 9663 pmu = group_leader->pmu; 9664 } else if (is_software_event(group_leader) && 9665 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 9666 /* 9667 * In case the group is a pure software group, and we 9668 * try to add a hardware event, move the whole group to 9669 * the hardware context. 9670 */ 9671 move_group = 1; 9672 } 9673 } 9674 9675 /* 9676 * Get the target context (task or percpu): 9677 */ 9678 ctx = find_get_context(pmu, task, event); 9679 if (IS_ERR(ctx)) { 9680 err = PTR_ERR(ctx); 9681 goto err_alloc; 9682 } 9683 9684 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 9685 err = -EBUSY; 9686 goto err_context; 9687 } 9688 9689 /* 9690 * Look up the group leader (we will attach this event to it): 9691 */ 9692 if (group_leader) { 9693 err = -EINVAL; 9694 9695 /* 9696 * Do not allow a recursive hierarchy (this new sibling 9697 * becoming part of another group-sibling): 9698 */ 9699 if (group_leader->group_leader != group_leader) 9700 goto err_context; 9701 9702 /* All events in a group should have the same clock */ 9703 if (group_leader->clock != event->clock) 9704 goto err_context; 9705 9706 /* 9707 * Do not allow to attach to a group in a different 9708 * task or CPU context: 9709 */ 9710 if (move_group) { 9711 /* 9712 * Make sure we're both on the same task, or both 9713 * per-cpu events. 9714 */ 9715 if (group_leader->ctx->task != ctx->task) 9716 goto err_context; 9717 9718 /* 9719 * Make sure we're both events for the same CPU; 9720 * grouping events for different CPUs is broken; since 9721 * you can never concurrently schedule them anyhow. 9722 */ 9723 if (group_leader->cpu != event->cpu) 9724 goto err_context; 9725 } else { 9726 if (group_leader->ctx != ctx) 9727 goto err_context; 9728 } 9729 9730 /* 9731 * Only a group leader can be exclusive or pinned 9732 */ 9733 if (attr.exclusive || attr.pinned) 9734 goto err_context; 9735 } 9736 9737 if (output_event) { 9738 err = perf_event_set_output(event, output_event); 9739 if (err) 9740 goto err_context; 9741 } 9742 9743 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 9744 f_flags); 9745 if (IS_ERR(event_file)) { 9746 err = PTR_ERR(event_file); 9747 event_file = NULL; 9748 goto err_context; 9749 } 9750 9751 if (move_group) { 9752 gctx = group_leader->ctx; 9753 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9754 if (gctx->task == TASK_TOMBSTONE) { 9755 err = -ESRCH; 9756 goto err_locked; 9757 } 9758 } else { 9759 mutex_lock(&ctx->mutex); 9760 } 9761 9762 if (ctx->task == TASK_TOMBSTONE) { 9763 err = -ESRCH; 9764 goto err_locked; 9765 } 9766 9767 if (!perf_event_validate_size(event)) { 9768 err = -E2BIG; 9769 goto err_locked; 9770 } 9771 9772 /* 9773 * Must be under the same ctx::mutex as perf_install_in_context(), 9774 * because we need to serialize with concurrent event creation. 9775 */ 9776 if (!exclusive_event_installable(event, ctx)) { 9777 /* exclusive and group stuff are assumed mutually exclusive */ 9778 WARN_ON_ONCE(move_group); 9779 9780 err = -EBUSY; 9781 goto err_locked; 9782 } 9783 9784 WARN_ON_ONCE(ctx->parent_ctx); 9785 9786 /* 9787 * This is the point on no return; we cannot fail hereafter. This is 9788 * where we start modifying current state. 9789 */ 9790 9791 if (move_group) { 9792 /* 9793 * See perf_event_ctx_lock() for comments on the details 9794 * of swizzling perf_event::ctx. 9795 */ 9796 perf_remove_from_context(group_leader, 0); 9797 9798 list_for_each_entry(sibling, &group_leader->sibling_list, 9799 group_entry) { 9800 perf_remove_from_context(sibling, 0); 9801 put_ctx(gctx); 9802 } 9803 9804 /* 9805 * Wait for everybody to stop referencing the events through 9806 * the old lists, before installing it on new lists. 9807 */ 9808 synchronize_rcu(); 9809 9810 /* 9811 * Install the group siblings before the group leader. 9812 * 9813 * Because a group leader will try and install the entire group 9814 * (through the sibling list, which is still in-tact), we can 9815 * end up with siblings installed in the wrong context. 9816 * 9817 * By installing siblings first we NO-OP because they're not 9818 * reachable through the group lists. 9819 */ 9820 list_for_each_entry(sibling, &group_leader->sibling_list, 9821 group_entry) { 9822 perf_event__state_init(sibling); 9823 perf_install_in_context(ctx, sibling, sibling->cpu); 9824 get_ctx(ctx); 9825 } 9826 9827 /* 9828 * Removing from the context ends up with disabled 9829 * event. What we want here is event in the initial 9830 * startup state, ready to be add into new context. 9831 */ 9832 perf_event__state_init(group_leader); 9833 perf_install_in_context(ctx, group_leader, group_leader->cpu); 9834 get_ctx(ctx); 9835 9836 /* 9837 * Now that all events are installed in @ctx, nothing 9838 * references @gctx anymore, so drop the last reference we have 9839 * on it. 9840 */ 9841 put_ctx(gctx); 9842 } 9843 9844 /* 9845 * Precalculate sample_data sizes; do while holding ctx::mutex such 9846 * that we're serialized against further additions and before 9847 * perf_install_in_context() which is the point the event is active and 9848 * can use these values. 9849 */ 9850 perf_event__header_size(event); 9851 perf_event__id_header_size(event); 9852 9853 event->owner = current; 9854 9855 perf_install_in_context(ctx, event, event->cpu); 9856 perf_unpin_context(ctx); 9857 9858 if (move_group) 9859 mutex_unlock(&gctx->mutex); 9860 mutex_unlock(&ctx->mutex); 9861 9862 if (task) { 9863 mutex_unlock(&task->signal->cred_guard_mutex); 9864 put_task_struct(task); 9865 } 9866 9867 put_online_cpus(); 9868 9869 mutex_lock(¤t->perf_event_mutex); 9870 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 9871 mutex_unlock(¤t->perf_event_mutex); 9872 9873 /* 9874 * Drop the reference on the group_event after placing the 9875 * new event on the sibling_list. This ensures destruction 9876 * of the group leader will find the pointer to itself in 9877 * perf_group_detach(). 9878 */ 9879 fdput(group); 9880 fd_install(event_fd, event_file); 9881 return event_fd; 9882 9883 err_locked: 9884 if (move_group) 9885 mutex_unlock(&gctx->mutex); 9886 mutex_unlock(&ctx->mutex); 9887 /* err_file: */ 9888 fput(event_file); 9889 err_context: 9890 perf_unpin_context(ctx); 9891 put_ctx(ctx); 9892 err_alloc: 9893 /* 9894 * If event_file is set, the fput() above will have called ->release() 9895 * and that will take care of freeing the event. 9896 */ 9897 if (!event_file) 9898 free_event(event); 9899 err_cred: 9900 if (task) 9901 mutex_unlock(&task->signal->cred_guard_mutex); 9902 err_cpus: 9903 put_online_cpus(); 9904 err_task: 9905 if (task) 9906 put_task_struct(task); 9907 err_group_fd: 9908 fdput(group); 9909 err_fd: 9910 put_unused_fd(event_fd); 9911 return err; 9912 } 9913 9914 /** 9915 * perf_event_create_kernel_counter 9916 * 9917 * @attr: attributes of the counter to create 9918 * @cpu: cpu in which the counter is bound 9919 * @task: task to profile (NULL for percpu) 9920 */ 9921 struct perf_event * 9922 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 9923 struct task_struct *task, 9924 perf_overflow_handler_t overflow_handler, 9925 void *context) 9926 { 9927 struct perf_event_context *ctx; 9928 struct perf_event *event; 9929 int err; 9930 9931 /* 9932 * Get the target context (task or percpu): 9933 */ 9934 9935 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 9936 overflow_handler, context, -1); 9937 if (IS_ERR(event)) { 9938 err = PTR_ERR(event); 9939 goto err; 9940 } 9941 9942 /* Mark owner so we could distinguish it from user events. */ 9943 event->owner = TASK_TOMBSTONE; 9944 9945 ctx = find_get_context(event->pmu, task, event); 9946 if (IS_ERR(ctx)) { 9947 err = PTR_ERR(ctx); 9948 goto err_free; 9949 } 9950 9951 WARN_ON_ONCE(ctx->parent_ctx); 9952 mutex_lock(&ctx->mutex); 9953 if (ctx->task == TASK_TOMBSTONE) { 9954 err = -ESRCH; 9955 goto err_unlock; 9956 } 9957 9958 if (!exclusive_event_installable(event, ctx)) { 9959 err = -EBUSY; 9960 goto err_unlock; 9961 } 9962 9963 perf_install_in_context(ctx, event, cpu); 9964 perf_unpin_context(ctx); 9965 mutex_unlock(&ctx->mutex); 9966 9967 return event; 9968 9969 err_unlock: 9970 mutex_unlock(&ctx->mutex); 9971 perf_unpin_context(ctx); 9972 put_ctx(ctx); 9973 err_free: 9974 free_event(event); 9975 err: 9976 return ERR_PTR(err); 9977 } 9978 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 9979 9980 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 9981 { 9982 struct perf_event_context *src_ctx; 9983 struct perf_event_context *dst_ctx; 9984 struct perf_event *event, *tmp; 9985 LIST_HEAD(events); 9986 9987 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 9988 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 9989 9990 /* 9991 * See perf_event_ctx_lock() for comments on the details 9992 * of swizzling perf_event::ctx. 9993 */ 9994 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 9995 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 9996 event_entry) { 9997 perf_remove_from_context(event, 0); 9998 unaccount_event_cpu(event, src_cpu); 9999 put_ctx(src_ctx); 10000 list_add(&event->migrate_entry, &events); 10001 } 10002 10003 /* 10004 * Wait for the events to quiesce before re-instating them. 10005 */ 10006 synchronize_rcu(); 10007 10008 /* 10009 * Re-instate events in 2 passes. 10010 * 10011 * Skip over group leaders and only install siblings on this first 10012 * pass, siblings will not get enabled without a leader, however a 10013 * leader will enable its siblings, even if those are still on the old 10014 * context. 10015 */ 10016 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10017 if (event->group_leader == event) 10018 continue; 10019 10020 list_del(&event->migrate_entry); 10021 if (event->state >= PERF_EVENT_STATE_OFF) 10022 event->state = PERF_EVENT_STATE_INACTIVE; 10023 account_event_cpu(event, dst_cpu); 10024 perf_install_in_context(dst_ctx, event, dst_cpu); 10025 get_ctx(dst_ctx); 10026 } 10027 10028 /* 10029 * Once all the siblings are setup properly, install the group leaders 10030 * to make it go. 10031 */ 10032 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10033 list_del(&event->migrate_entry); 10034 if (event->state >= PERF_EVENT_STATE_OFF) 10035 event->state = PERF_EVENT_STATE_INACTIVE; 10036 account_event_cpu(event, dst_cpu); 10037 perf_install_in_context(dst_ctx, event, dst_cpu); 10038 get_ctx(dst_ctx); 10039 } 10040 mutex_unlock(&dst_ctx->mutex); 10041 mutex_unlock(&src_ctx->mutex); 10042 } 10043 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10044 10045 static void sync_child_event(struct perf_event *child_event, 10046 struct task_struct *child) 10047 { 10048 struct perf_event *parent_event = child_event->parent; 10049 u64 child_val; 10050 10051 if (child_event->attr.inherit_stat) 10052 perf_event_read_event(child_event, child); 10053 10054 child_val = perf_event_count(child_event); 10055 10056 /* 10057 * Add back the child's count to the parent's count: 10058 */ 10059 atomic64_add(child_val, &parent_event->child_count); 10060 atomic64_add(child_event->total_time_enabled, 10061 &parent_event->child_total_time_enabled); 10062 atomic64_add(child_event->total_time_running, 10063 &parent_event->child_total_time_running); 10064 } 10065 10066 static void 10067 perf_event_exit_event(struct perf_event *child_event, 10068 struct perf_event_context *child_ctx, 10069 struct task_struct *child) 10070 { 10071 struct perf_event *parent_event = child_event->parent; 10072 10073 /* 10074 * Do not destroy the 'original' grouping; because of the context 10075 * switch optimization the original events could've ended up in a 10076 * random child task. 10077 * 10078 * If we were to destroy the original group, all group related 10079 * operations would cease to function properly after this random 10080 * child dies. 10081 * 10082 * Do destroy all inherited groups, we don't care about those 10083 * and being thorough is better. 10084 */ 10085 raw_spin_lock_irq(&child_ctx->lock); 10086 WARN_ON_ONCE(child_ctx->is_active); 10087 10088 if (parent_event) 10089 perf_group_detach(child_event); 10090 list_del_event(child_event, child_ctx); 10091 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 10092 raw_spin_unlock_irq(&child_ctx->lock); 10093 10094 /* 10095 * Parent events are governed by their filedesc, retain them. 10096 */ 10097 if (!parent_event) { 10098 perf_event_wakeup(child_event); 10099 return; 10100 } 10101 /* 10102 * Child events can be cleaned up. 10103 */ 10104 10105 sync_child_event(child_event, child); 10106 10107 /* 10108 * Remove this event from the parent's list 10109 */ 10110 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 10111 mutex_lock(&parent_event->child_mutex); 10112 list_del_init(&child_event->child_list); 10113 mutex_unlock(&parent_event->child_mutex); 10114 10115 /* 10116 * Kick perf_poll() for is_event_hup(). 10117 */ 10118 perf_event_wakeup(parent_event); 10119 free_event(child_event); 10120 put_event(parent_event); 10121 } 10122 10123 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 10124 { 10125 struct perf_event_context *child_ctx, *clone_ctx = NULL; 10126 struct perf_event *child_event, *next; 10127 10128 WARN_ON_ONCE(child != current); 10129 10130 child_ctx = perf_pin_task_context(child, ctxn); 10131 if (!child_ctx) 10132 return; 10133 10134 /* 10135 * In order to reduce the amount of tricky in ctx tear-down, we hold 10136 * ctx::mutex over the entire thing. This serializes against almost 10137 * everything that wants to access the ctx. 10138 * 10139 * The exception is sys_perf_event_open() / 10140 * perf_event_create_kernel_count() which does find_get_context() 10141 * without ctx::mutex (it cannot because of the move_group double mutex 10142 * lock thing). See the comments in perf_install_in_context(). 10143 */ 10144 mutex_lock(&child_ctx->mutex); 10145 10146 /* 10147 * In a single ctx::lock section, de-schedule the events and detach the 10148 * context from the task such that we cannot ever get it scheduled back 10149 * in. 10150 */ 10151 raw_spin_lock_irq(&child_ctx->lock); 10152 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx); 10153 10154 /* 10155 * Now that the context is inactive, destroy the task <-> ctx relation 10156 * and mark the context dead. 10157 */ 10158 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 10159 put_ctx(child_ctx); /* cannot be last */ 10160 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 10161 put_task_struct(current); /* cannot be last */ 10162 10163 clone_ctx = unclone_ctx(child_ctx); 10164 raw_spin_unlock_irq(&child_ctx->lock); 10165 10166 if (clone_ctx) 10167 put_ctx(clone_ctx); 10168 10169 /* 10170 * Report the task dead after unscheduling the events so that we 10171 * won't get any samples after PERF_RECORD_EXIT. We can however still 10172 * get a few PERF_RECORD_READ events. 10173 */ 10174 perf_event_task(child, child_ctx, 0); 10175 10176 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 10177 perf_event_exit_event(child_event, child_ctx, child); 10178 10179 mutex_unlock(&child_ctx->mutex); 10180 10181 put_ctx(child_ctx); 10182 } 10183 10184 /* 10185 * When a child task exits, feed back event values to parent events. 10186 * 10187 * Can be called with cred_guard_mutex held when called from 10188 * install_exec_creds(). 10189 */ 10190 void perf_event_exit_task(struct task_struct *child) 10191 { 10192 struct perf_event *event, *tmp; 10193 int ctxn; 10194 10195 mutex_lock(&child->perf_event_mutex); 10196 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 10197 owner_entry) { 10198 list_del_init(&event->owner_entry); 10199 10200 /* 10201 * Ensure the list deletion is visible before we clear 10202 * the owner, closes a race against perf_release() where 10203 * we need to serialize on the owner->perf_event_mutex. 10204 */ 10205 smp_store_release(&event->owner, NULL); 10206 } 10207 mutex_unlock(&child->perf_event_mutex); 10208 10209 for_each_task_context_nr(ctxn) 10210 perf_event_exit_task_context(child, ctxn); 10211 10212 /* 10213 * The perf_event_exit_task_context calls perf_event_task 10214 * with child's task_ctx, which generates EXIT events for 10215 * child contexts and sets child->perf_event_ctxp[] to NULL. 10216 * At this point we need to send EXIT events to cpu contexts. 10217 */ 10218 perf_event_task(child, NULL, 0); 10219 } 10220 10221 static void perf_free_event(struct perf_event *event, 10222 struct perf_event_context *ctx) 10223 { 10224 struct perf_event *parent = event->parent; 10225 10226 if (WARN_ON_ONCE(!parent)) 10227 return; 10228 10229 mutex_lock(&parent->child_mutex); 10230 list_del_init(&event->child_list); 10231 mutex_unlock(&parent->child_mutex); 10232 10233 put_event(parent); 10234 10235 raw_spin_lock_irq(&ctx->lock); 10236 perf_group_detach(event); 10237 list_del_event(event, ctx); 10238 raw_spin_unlock_irq(&ctx->lock); 10239 free_event(event); 10240 } 10241 10242 /* 10243 * Free an unexposed, unused context as created by inheritance by 10244 * perf_event_init_task below, used by fork() in case of fail. 10245 * 10246 * Not all locks are strictly required, but take them anyway to be nice and 10247 * help out with the lockdep assertions. 10248 */ 10249 void perf_event_free_task(struct task_struct *task) 10250 { 10251 struct perf_event_context *ctx; 10252 struct perf_event *event, *tmp; 10253 int ctxn; 10254 10255 for_each_task_context_nr(ctxn) { 10256 ctx = task->perf_event_ctxp[ctxn]; 10257 if (!ctx) 10258 continue; 10259 10260 mutex_lock(&ctx->mutex); 10261 again: 10262 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 10263 group_entry) 10264 perf_free_event(event, ctx); 10265 10266 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 10267 group_entry) 10268 perf_free_event(event, ctx); 10269 10270 if (!list_empty(&ctx->pinned_groups) || 10271 !list_empty(&ctx->flexible_groups)) 10272 goto again; 10273 10274 mutex_unlock(&ctx->mutex); 10275 10276 put_ctx(ctx); 10277 } 10278 } 10279 10280 void perf_event_delayed_put(struct task_struct *task) 10281 { 10282 int ctxn; 10283 10284 for_each_task_context_nr(ctxn) 10285 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10286 } 10287 10288 struct file *perf_event_get(unsigned int fd) 10289 { 10290 struct file *file; 10291 10292 file = fget_raw(fd); 10293 if (!file) 10294 return ERR_PTR(-EBADF); 10295 10296 if (file->f_op != &perf_fops) { 10297 fput(file); 10298 return ERR_PTR(-EBADF); 10299 } 10300 10301 return file; 10302 } 10303 10304 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10305 { 10306 if (!event) 10307 return ERR_PTR(-EINVAL); 10308 10309 return &event->attr; 10310 } 10311 10312 /* 10313 * inherit a event from parent task to child task: 10314 */ 10315 static struct perf_event * 10316 inherit_event(struct perf_event *parent_event, 10317 struct task_struct *parent, 10318 struct perf_event_context *parent_ctx, 10319 struct task_struct *child, 10320 struct perf_event *group_leader, 10321 struct perf_event_context *child_ctx) 10322 { 10323 enum perf_event_active_state parent_state = parent_event->state; 10324 struct perf_event *child_event; 10325 unsigned long flags; 10326 10327 /* 10328 * Instead of creating recursive hierarchies of events, 10329 * we link inherited events back to the original parent, 10330 * which has a filp for sure, which we use as the reference 10331 * count: 10332 */ 10333 if (parent_event->parent) 10334 parent_event = parent_event->parent; 10335 10336 child_event = perf_event_alloc(&parent_event->attr, 10337 parent_event->cpu, 10338 child, 10339 group_leader, parent_event, 10340 NULL, NULL, -1); 10341 if (IS_ERR(child_event)) 10342 return child_event; 10343 10344 /* 10345 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10346 * must be under the same lock in order to serialize against 10347 * perf_event_release_kernel(), such that either we must observe 10348 * is_orphaned_event() or they will observe us on the child_list. 10349 */ 10350 mutex_lock(&parent_event->child_mutex); 10351 if (is_orphaned_event(parent_event) || 10352 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10353 mutex_unlock(&parent_event->child_mutex); 10354 free_event(child_event); 10355 return NULL; 10356 } 10357 10358 get_ctx(child_ctx); 10359 10360 /* 10361 * Make the child state follow the state of the parent event, 10362 * not its attr.disabled bit. We hold the parent's mutex, 10363 * so we won't race with perf_event_{en, dis}able_family. 10364 */ 10365 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10366 child_event->state = PERF_EVENT_STATE_INACTIVE; 10367 else 10368 child_event->state = PERF_EVENT_STATE_OFF; 10369 10370 if (parent_event->attr.freq) { 10371 u64 sample_period = parent_event->hw.sample_period; 10372 struct hw_perf_event *hwc = &child_event->hw; 10373 10374 hwc->sample_period = sample_period; 10375 hwc->last_period = sample_period; 10376 10377 local64_set(&hwc->period_left, sample_period); 10378 } 10379 10380 child_event->ctx = child_ctx; 10381 child_event->overflow_handler = parent_event->overflow_handler; 10382 child_event->overflow_handler_context 10383 = parent_event->overflow_handler_context; 10384 10385 /* 10386 * Precalculate sample_data sizes 10387 */ 10388 perf_event__header_size(child_event); 10389 perf_event__id_header_size(child_event); 10390 10391 /* 10392 * Link it up in the child's context: 10393 */ 10394 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10395 add_event_to_ctx(child_event, child_ctx); 10396 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10397 10398 /* 10399 * Link this into the parent event's child list 10400 */ 10401 list_add_tail(&child_event->child_list, &parent_event->child_list); 10402 mutex_unlock(&parent_event->child_mutex); 10403 10404 return child_event; 10405 } 10406 10407 static int inherit_group(struct perf_event *parent_event, 10408 struct task_struct *parent, 10409 struct perf_event_context *parent_ctx, 10410 struct task_struct *child, 10411 struct perf_event_context *child_ctx) 10412 { 10413 struct perf_event *leader; 10414 struct perf_event *sub; 10415 struct perf_event *child_ctr; 10416 10417 leader = inherit_event(parent_event, parent, parent_ctx, 10418 child, NULL, child_ctx); 10419 if (IS_ERR(leader)) 10420 return PTR_ERR(leader); 10421 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10422 child_ctr = inherit_event(sub, parent, parent_ctx, 10423 child, leader, child_ctx); 10424 if (IS_ERR(child_ctr)) 10425 return PTR_ERR(child_ctr); 10426 } 10427 return 0; 10428 } 10429 10430 static int 10431 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10432 struct perf_event_context *parent_ctx, 10433 struct task_struct *child, int ctxn, 10434 int *inherited_all) 10435 { 10436 int ret; 10437 struct perf_event_context *child_ctx; 10438 10439 if (!event->attr.inherit) { 10440 *inherited_all = 0; 10441 return 0; 10442 } 10443 10444 child_ctx = child->perf_event_ctxp[ctxn]; 10445 if (!child_ctx) { 10446 /* 10447 * This is executed from the parent task context, so 10448 * inherit events that have been marked for cloning. 10449 * First allocate and initialize a context for the 10450 * child. 10451 */ 10452 10453 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10454 if (!child_ctx) 10455 return -ENOMEM; 10456 10457 child->perf_event_ctxp[ctxn] = child_ctx; 10458 } 10459 10460 ret = inherit_group(event, parent, parent_ctx, 10461 child, child_ctx); 10462 10463 if (ret) 10464 *inherited_all = 0; 10465 10466 return ret; 10467 } 10468 10469 /* 10470 * Initialize the perf_event context in task_struct 10471 */ 10472 static int perf_event_init_context(struct task_struct *child, int ctxn) 10473 { 10474 struct perf_event_context *child_ctx, *parent_ctx; 10475 struct perf_event_context *cloned_ctx; 10476 struct perf_event *event; 10477 struct task_struct *parent = current; 10478 int inherited_all = 1; 10479 unsigned long flags; 10480 int ret = 0; 10481 10482 if (likely(!parent->perf_event_ctxp[ctxn])) 10483 return 0; 10484 10485 /* 10486 * If the parent's context is a clone, pin it so it won't get 10487 * swapped under us. 10488 */ 10489 parent_ctx = perf_pin_task_context(parent, ctxn); 10490 if (!parent_ctx) 10491 return 0; 10492 10493 /* 10494 * No need to check if parent_ctx != NULL here; since we saw 10495 * it non-NULL earlier, the only reason for it to become NULL 10496 * is if we exit, and since we're currently in the middle of 10497 * a fork we can't be exiting at the same time. 10498 */ 10499 10500 /* 10501 * Lock the parent list. No need to lock the child - not PID 10502 * hashed yet and not running, so nobody can access it. 10503 */ 10504 mutex_lock(&parent_ctx->mutex); 10505 10506 /* 10507 * We dont have to disable NMIs - we are only looking at 10508 * the list, not manipulating it: 10509 */ 10510 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10511 ret = inherit_task_group(event, parent, parent_ctx, 10512 child, ctxn, &inherited_all); 10513 if (ret) 10514 break; 10515 } 10516 10517 /* 10518 * We can't hold ctx->lock when iterating the ->flexible_group list due 10519 * to allocations, but we need to prevent rotation because 10520 * rotate_ctx() will change the list from interrupt context. 10521 */ 10522 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10523 parent_ctx->rotate_disable = 1; 10524 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10525 10526 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10527 ret = inherit_task_group(event, parent, parent_ctx, 10528 child, ctxn, &inherited_all); 10529 if (ret) 10530 break; 10531 } 10532 10533 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10534 parent_ctx->rotate_disable = 0; 10535 10536 child_ctx = child->perf_event_ctxp[ctxn]; 10537 10538 if (child_ctx && inherited_all) { 10539 /* 10540 * Mark the child context as a clone of the parent 10541 * context, or of whatever the parent is a clone of. 10542 * 10543 * Note that if the parent is a clone, the holding of 10544 * parent_ctx->lock avoids it from being uncloned. 10545 */ 10546 cloned_ctx = parent_ctx->parent_ctx; 10547 if (cloned_ctx) { 10548 child_ctx->parent_ctx = cloned_ctx; 10549 child_ctx->parent_gen = parent_ctx->parent_gen; 10550 } else { 10551 child_ctx->parent_ctx = parent_ctx; 10552 child_ctx->parent_gen = parent_ctx->generation; 10553 } 10554 get_ctx(child_ctx->parent_ctx); 10555 } 10556 10557 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10558 mutex_unlock(&parent_ctx->mutex); 10559 10560 perf_unpin_context(parent_ctx); 10561 put_ctx(parent_ctx); 10562 10563 return ret; 10564 } 10565 10566 /* 10567 * Initialize the perf_event context in task_struct 10568 */ 10569 int perf_event_init_task(struct task_struct *child) 10570 { 10571 int ctxn, ret; 10572 10573 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 10574 mutex_init(&child->perf_event_mutex); 10575 INIT_LIST_HEAD(&child->perf_event_list); 10576 10577 for_each_task_context_nr(ctxn) { 10578 ret = perf_event_init_context(child, ctxn); 10579 if (ret) { 10580 perf_event_free_task(child); 10581 return ret; 10582 } 10583 } 10584 10585 return 0; 10586 } 10587 10588 static void __init perf_event_init_all_cpus(void) 10589 { 10590 struct swevent_htable *swhash; 10591 int cpu; 10592 10593 for_each_possible_cpu(cpu) { 10594 swhash = &per_cpu(swevent_htable, cpu); 10595 mutex_init(&swhash->hlist_mutex); 10596 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 10597 10598 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 10599 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 10600 10601 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 10602 } 10603 } 10604 10605 int perf_event_init_cpu(unsigned int cpu) 10606 { 10607 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10608 10609 mutex_lock(&swhash->hlist_mutex); 10610 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 10611 struct swevent_hlist *hlist; 10612 10613 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 10614 WARN_ON(!hlist); 10615 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10616 } 10617 mutex_unlock(&swhash->hlist_mutex); 10618 return 0; 10619 } 10620 10621 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 10622 static void __perf_event_exit_context(void *__info) 10623 { 10624 struct perf_event_context *ctx = __info; 10625 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 10626 struct perf_event *event; 10627 10628 raw_spin_lock(&ctx->lock); 10629 list_for_each_entry(event, &ctx->event_list, event_entry) 10630 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 10631 raw_spin_unlock(&ctx->lock); 10632 } 10633 10634 static void perf_event_exit_cpu_context(int cpu) 10635 { 10636 struct perf_event_context *ctx; 10637 struct pmu *pmu; 10638 int idx; 10639 10640 idx = srcu_read_lock(&pmus_srcu); 10641 list_for_each_entry_rcu(pmu, &pmus, entry) { 10642 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 10643 10644 mutex_lock(&ctx->mutex); 10645 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 10646 mutex_unlock(&ctx->mutex); 10647 } 10648 srcu_read_unlock(&pmus_srcu, idx); 10649 } 10650 #else 10651 10652 static void perf_event_exit_cpu_context(int cpu) { } 10653 10654 #endif 10655 10656 int perf_event_exit_cpu(unsigned int cpu) 10657 { 10658 perf_event_exit_cpu_context(cpu); 10659 return 0; 10660 } 10661 10662 static int 10663 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 10664 { 10665 int cpu; 10666 10667 for_each_online_cpu(cpu) 10668 perf_event_exit_cpu(cpu); 10669 10670 return NOTIFY_OK; 10671 } 10672 10673 /* 10674 * Run the perf reboot notifier at the very last possible moment so that 10675 * the generic watchdog code runs as long as possible. 10676 */ 10677 static struct notifier_block perf_reboot_notifier = { 10678 .notifier_call = perf_reboot, 10679 .priority = INT_MIN, 10680 }; 10681 10682 void __init perf_event_init(void) 10683 { 10684 int ret; 10685 10686 idr_init(&pmu_idr); 10687 10688 perf_event_init_all_cpus(); 10689 init_srcu_struct(&pmus_srcu); 10690 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 10691 perf_pmu_register(&perf_cpu_clock, NULL, -1); 10692 perf_pmu_register(&perf_task_clock, NULL, -1); 10693 perf_tp_register(); 10694 perf_event_init_cpu(smp_processor_id()); 10695 register_reboot_notifier(&perf_reboot_notifier); 10696 10697 ret = init_hw_breakpoint(); 10698 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 10699 10700 /* 10701 * Build time assertion that we keep the data_head at the intended 10702 * location. IOW, validation we got the __reserved[] size right. 10703 */ 10704 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 10705 != 1024); 10706 } 10707 10708 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 10709 char *page) 10710 { 10711 struct perf_pmu_events_attr *pmu_attr = 10712 container_of(attr, struct perf_pmu_events_attr, attr); 10713 10714 if (pmu_attr->event_str) 10715 return sprintf(page, "%s\n", pmu_attr->event_str); 10716 10717 return 0; 10718 } 10719 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 10720 10721 static int __init perf_event_sysfs_init(void) 10722 { 10723 struct pmu *pmu; 10724 int ret; 10725 10726 mutex_lock(&pmus_lock); 10727 10728 ret = bus_register(&pmu_bus); 10729 if (ret) 10730 goto unlock; 10731 10732 list_for_each_entry(pmu, &pmus, entry) { 10733 if (!pmu->name || pmu->type < 0) 10734 continue; 10735 10736 ret = pmu_dev_alloc(pmu); 10737 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 10738 } 10739 pmu_bus_running = 1; 10740 ret = 0; 10741 10742 unlock: 10743 mutex_unlock(&pmus_lock); 10744 10745 return ret; 10746 } 10747 device_initcall(perf_event_sysfs_init); 10748 10749 #ifdef CONFIG_CGROUP_PERF 10750 static struct cgroup_subsys_state * 10751 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10752 { 10753 struct perf_cgroup *jc; 10754 10755 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 10756 if (!jc) 10757 return ERR_PTR(-ENOMEM); 10758 10759 jc->info = alloc_percpu(struct perf_cgroup_info); 10760 if (!jc->info) { 10761 kfree(jc); 10762 return ERR_PTR(-ENOMEM); 10763 } 10764 10765 return &jc->css; 10766 } 10767 10768 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 10769 { 10770 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 10771 10772 free_percpu(jc->info); 10773 kfree(jc); 10774 } 10775 10776 static int __perf_cgroup_move(void *info) 10777 { 10778 struct task_struct *task = info; 10779 rcu_read_lock(); 10780 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 10781 rcu_read_unlock(); 10782 return 0; 10783 } 10784 10785 static void perf_cgroup_attach(struct cgroup_taskset *tset) 10786 { 10787 struct task_struct *task; 10788 struct cgroup_subsys_state *css; 10789 10790 cgroup_taskset_for_each(task, css, tset) 10791 task_function_call(task, __perf_cgroup_move, task); 10792 } 10793 10794 struct cgroup_subsys perf_event_cgrp_subsys = { 10795 .css_alloc = perf_cgroup_css_alloc, 10796 .css_free = perf_cgroup_css_free, 10797 .attach = perf_cgroup_attach, 10798 }; 10799 #endif /* CONFIG_CGROUP_PERF */ 10800