xref: /openbmc/linux/kernel/events/core.c (revision c24c57a4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52 
53 #include "internal.h"
54 
55 #include <asm/irq_regs.h>
56 
57 typedef int (*remote_function_f)(void *);
58 
59 struct remote_function_call {
60 	struct task_struct	*p;
61 	remote_function_f	func;
62 	void			*info;
63 	int			ret;
64 };
65 
66 static void remote_function(void *data)
67 {
68 	struct remote_function_call *tfc = data;
69 	struct task_struct *p = tfc->p;
70 
71 	if (p) {
72 		/* -EAGAIN */
73 		if (task_cpu(p) != smp_processor_id())
74 			return;
75 
76 		/*
77 		 * Now that we're on right CPU with IRQs disabled, we can test
78 		 * if we hit the right task without races.
79 		 */
80 
81 		tfc->ret = -ESRCH; /* No such (running) process */
82 		if (p != current)
83 			return;
84 	}
85 
86 	tfc->ret = tfc->func(tfc->info);
87 }
88 
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:		the task to evaluate
92  * @func:	the function to be called
93  * @info:	the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *	    -ESRCH  - when the process isn't running
100  *	    -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= p,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -EAGAIN,
110 	};
111 	int ret;
112 
113 	do {
114 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 		if (!ret)
116 			ret = data.ret;
117 	} while (ret == -EAGAIN);
118 
119 	return ret;
120 }
121 
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:	the function to be called
125  * @info:	the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133 	struct remote_function_call data = {
134 		.p	= NULL,
135 		.func	= func,
136 		.info	= info,
137 		.ret	= -ENXIO, /* No such CPU */
138 	};
139 
140 	smp_call_function_single(cpu, remote_function, &data, 1);
141 
142 	return data.ret;
143 }
144 
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150 
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 			  struct perf_event_context *ctx)
153 {
154 	raw_spin_lock(&cpuctx->ctx.lock);
155 	if (ctx)
156 		raw_spin_lock(&ctx->lock);
157 }
158 
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 			    struct perf_event_context *ctx)
161 {
162 	if (ctx)
163 		raw_spin_unlock(&ctx->lock);
164 	raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166 
167 #define TASK_TOMBSTONE ((void *)-1L)
168 
169 static bool is_kernel_event(struct perf_event *event)
170 {
171 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173 
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192 
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 			struct perf_event_context *, void *);
195 
196 struct event_function_struct {
197 	struct perf_event *event;
198 	event_f func;
199 	void *data;
200 };
201 
202 static int event_function(void *info)
203 {
204 	struct event_function_struct *efs = info;
205 	struct perf_event *event = efs->event;
206 	struct perf_event_context *ctx = event->ctx;
207 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
209 	int ret = 0;
210 
211 	lockdep_assert_irqs_disabled();
212 
213 	perf_ctx_lock(cpuctx, task_ctx);
214 	/*
215 	 * Since we do the IPI call without holding ctx->lock things can have
216 	 * changed, double check we hit the task we set out to hit.
217 	 */
218 	if (ctx->task) {
219 		if (ctx->task != current) {
220 			ret = -ESRCH;
221 			goto unlock;
222 		}
223 
224 		/*
225 		 * We only use event_function_call() on established contexts,
226 		 * and event_function() is only ever called when active (or
227 		 * rather, we'll have bailed in task_function_call() or the
228 		 * above ctx->task != current test), therefore we must have
229 		 * ctx->is_active here.
230 		 */
231 		WARN_ON_ONCE(!ctx->is_active);
232 		/*
233 		 * And since we have ctx->is_active, cpuctx->task_ctx must
234 		 * match.
235 		 */
236 		WARN_ON_ONCE(task_ctx != ctx);
237 	} else {
238 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
239 	}
240 
241 	efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243 	perf_ctx_unlock(cpuctx, task_ctx);
244 
245 	return ret;
246 }
247 
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250 	struct perf_event_context *ctx = event->ctx;
251 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252 	struct event_function_struct efs = {
253 		.event = event,
254 		.func = func,
255 		.data = data,
256 	};
257 
258 	if (!event->parent) {
259 		/*
260 		 * If this is a !child event, we must hold ctx::mutex to
261 		 * stabilize the the event->ctx relation. See
262 		 * perf_event_ctx_lock().
263 		 */
264 		lockdep_assert_held(&ctx->mutex);
265 	}
266 
267 	if (!task) {
268 		cpu_function_call(event->cpu, event_function, &efs);
269 		return;
270 	}
271 
272 	if (task == TASK_TOMBSTONE)
273 		return;
274 
275 again:
276 	if (!task_function_call(task, event_function, &efs))
277 		return;
278 
279 	raw_spin_lock_irq(&ctx->lock);
280 	/*
281 	 * Reload the task pointer, it might have been changed by
282 	 * a concurrent perf_event_context_sched_out().
283 	 */
284 	task = ctx->task;
285 	if (task == TASK_TOMBSTONE) {
286 		raw_spin_unlock_irq(&ctx->lock);
287 		return;
288 	}
289 	if (ctx->is_active) {
290 		raw_spin_unlock_irq(&ctx->lock);
291 		goto again;
292 	}
293 	func(event, NULL, ctx, data);
294 	raw_spin_unlock_irq(&ctx->lock);
295 }
296 
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303 	struct perf_event_context *ctx = event->ctx;
304 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 	struct task_struct *task = READ_ONCE(ctx->task);
306 	struct perf_event_context *task_ctx = NULL;
307 
308 	lockdep_assert_irqs_disabled();
309 
310 	if (task) {
311 		if (task == TASK_TOMBSTONE)
312 			return;
313 
314 		task_ctx = ctx;
315 	}
316 
317 	perf_ctx_lock(cpuctx, task_ctx);
318 
319 	task = ctx->task;
320 	if (task == TASK_TOMBSTONE)
321 		goto unlock;
322 
323 	if (task) {
324 		/*
325 		 * We must be either inactive or active and the right task,
326 		 * otherwise we're screwed, since we cannot IPI to somewhere
327 		 * else.
328 		 */
329 		if (ctx->is_active) {
330 			if (WARN_ON_ONCE(task != current))
331 				goto unlock;
332 
333 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 				goto unlock;
335 		}
336 	} else {
337 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 	}
339 
340 	func(event, cpuctx, ctx, data);
341 unlock:
342 	perf_ctx_unlock(cpuctx, task_ctx);
343 }
344 
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 		       PERF_FLAG_FD_OUTPUT  |\
347 		       PERF_FLAG_PID_CGROUP |\
348 		       PERF_FLAG_FD_CLOEXEC)
349 
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354 	(PERF_SAMPLE_BRANCH_KERNEL |\
355 	 PERF_SAMPLE_BRANCH_HV)
356 
357 enum event_type_t {
358 	EVENT_FLEXIBLE = 0x1,
359 	EVENT_PINNED = 0x2,
360 	EVENT_TIME = 0x4,
361 	/* see ctx_resched() for details */
362 	EVENT_CPU = 0x8,
363 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365 
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370 
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376 
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380 
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389 
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394 
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403 
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406 
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE		100000
411 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
413 
414 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
415 
416 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
418 
419 static int perf_sample_allowed_ns __read_mostly =
420 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421 
422 static void update_perf_cpu_limits(void)
423 {
424 	u64 tmp = perf_sample_period_ns;
425 
426 	tmp *= sysctl_perf_cpu_time_max_percent;
427 	tmp = div_u64(tmp, 100);
428 	if (!tmp)
429 		tmp = 1;
430 
431 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433 
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435 
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437 		void __user *buffer, size_t *lenp,
438 		loff_t *ppos)
439 {
440 	int ret;
441 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
442 	/*
443 	 * If throttling is disabled don't allow the write:
444 	 */
445 	if (write && (perf_cpu == 100 || perf_cpu == 0))
446 		return -EINVAL;
447 
448 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 	if (ret || !write)
450 		return ret;
451 
452 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 	update_perf_cpu_limits();
455 
456 	return 0;
457 }
458 
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460 
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 				void __user *buffer, size_t *lenp,
463 				loff_t *ppos)
464 {
465 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466 
467 	if (ret || !write)
468 		return ret;
469 
470 	if (sysctl_perf_cpu_time_max_percent == 100 ||
471 	    sysctl_perf_cpu_time_max_percent == 0) {
472 		printk(KERN_WARNING
473 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 		WRITE_ONCE(perf_sample_allowed_ns, 0);
475 	} else {
476 		update_perf_cpu_limits();
477 	}
478 
479 	return 0;
480 }
481 
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490 
491 static u64 __report_avg;
492 static u64 __report_allowed;
493 
494 static void perf_duration_warn(struct irq_work *w)
495 {
496 	printk_ratelimited(KERN_INFO
497 		"perf: interrupt took too long (%lld > %lld), lowering "
498 		"kernel.perf_event_max_sample_rate to %d\n",
499 		__report_avg, __report_allowed,
500 		sysctl_perf_event_sample_rate);
501 }
502 
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504 
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 	u64 running_len;
509 	u64 avg_len;
510 	u32 max;
511 
512 	if (max_len == 0)
513 		return;
514 
515 	/* Decay the counter by 1 average sample. */
516 	running_len = __this_cpu_read(running_sample_length);
517 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 	running_len += sample_len_ns;
519 	__this_cpu_write(running_sample_length, running_len);
520 
521 	/*
522 	 * Note: this will be biased artifically low until we have
523 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 	 * from having to maintain a count.
525 	 */
526 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 	if (avg_len <= max_len)
528 		return;
529 
530 	__report_avg = avg_len;
531 	__report_allowed = max_len;
532 
533 	/*
534 	 * Compute a throttle threshold 25% below the current duration.
535 	 */
536 	avg_len += avg_len / 4;
537 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 	if (avg_len < max)
539 		max /= (u32)avg_len;
540 	else
541 		max = 1;
542 
543 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 	WRITE_ONCE(max_samples_per_tick, max);
545 
546 	sysctl_perf_event_sample_rate = max * HZ;
547 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548 
549 	if (!irq_work_queue(&perf_duration_work)) {
550 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 			     "kernel.perf_event_max_sample_rate to %d\n",
552 			     __report_avg, __report_allowed,
553 			     sysctl_perf_event_sample_rate);
554 	}
555 }
556 
557 static atomic64_t perf_event_id;
558 
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 			      enum event_type_t event_type);
561 
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563 			     enum event_type_t event_type,
564 			     struct task_struct *task);
565 
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568 
569 void __weak perf_event_print_debug(void)	{ }
570 
571 extern __weak const char *perf_pmu_name(void)
572 {
573 	return "pmu";
574 }
575 
576 static inline u64 perf_clock(void)
577 {
578 	return local_clock();
579 }
580 
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583 	return event->clock();
584 }
585 
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607 
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611 	struct perf_event *leader = event->group_leader;
612 
613 	if (leader->state <= PERF_EVENT_STATE_OFF)
614 		return leader->state;
615 
616 	return event->state;
617 }
618 
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622 	enum perf_event_state state = __perf_effective_state(event);
623 	u64 delta = now - event->tstamp;
624 
625 	*enabled = event->total_time_enabled;
626 	if (state >= PERF_EVENT_STATE_INACTIVE)
627 		*enabled += delta;
628 
629 	*running = event->total_time_running;
630 	if (state >= PERF_EVENT_STATE_ACTIVE)
631 		*running += delta;
632 }
633 
634 static void perf_event_update_time(struct perf_event *event)
635 {
636 	u64 now = perf_event_time(event);
637 
638 	__perf_update_times(event, now, &event->total_time_enabled,
639 					&event->total_time_running);
640 	event->tstamp = now;
641 }
642 
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645 	struct perf_event *sibling;
646 
647 	for_each_sibling_event(sibling, leader)
648 		perf_event_update_time(sibling);
649 }
650 
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654 	if (event->state == state)
655 		return;
656 
657 	perf_event_update_time(event);
658 	/*
659 	 * If a group leader gets enabled/disabled all its siblings
660 	 * are affected too.
661 	 */
662 	if ((event->state < 0) ^ (state < 0))
663 		perf_event_update_sibling_time(event);
664 
665 	WRITE_ONCE(event->state, state);
666 }
667 
668 #ifdef CONFIG_CGROUP_PERF
669 
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673 	struct perf_event_context *ctx = event->ctx;
674 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675 
676 	/* @event doesn't care about cgroup */
677 	if (!event->cgrp)
678 		return true;
679 
680 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
681 	if (!cpuctx->cgrp)
682 		return false;
683 
684 	/*
685 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
686 	 * also enabled for all its descendant cgroups.  If @cpuctx's
687 	 * cgroup is a descendant of @event's (the test covers identity
688 	 * case), it's a match.
689 	 */
690 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 				    event->cgrp->css.cgroup);
692 }
693 
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696 	css_put(&event->cgrp->css);
697 	event->cgrp = NULL;
698 }
699 
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702 	return event->cgrp != NULL;
703 }
704 
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707 	struct perf_cgroup_info *t;
708 
709 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 	return t->time;
711 }
712 
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715 	struct perf_cgroup_info *info;
716 	u64 now;
717 
718 	now = perf_clock();
719 
720 	info = this_cpu_ptr(cgrp->info);
721 
722 	info->time += now - info->timestamp;
723 	info->timestamp = now;
724 }
725 
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728 	struct perf_cgroup *cgrp = cpuctx->cgrp;
729 	struct cgroup_subsys_state *css;
730 
731 	if (cgrp) {
732 		for (css = &cgrp->css; css; css = css->parent) {
733 			cgrp = container_of(css, struct perf_cgroup, css);
734 			__update_cgrp_time(cgrp);
735 		}
736 	}
737 }
738 
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741 	struct perf_cgroup *cgrp;
742 
743 	/*
744 	 * ensure we access cgroup data only when needed and
745 	 * when we know the cgroup is pinned (css_get)
746 	 */
747 	if (!is_cgroup_event(event))
748 		return;
749 
750 	cgrp = perf_cgroup_from_task(current, event->ctx);
751 	/*
752 	 * Do not update time when cgroup is not active
753 	 */
754 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755 		__update_cgrp_time(event->cgrp);
756 }
757 
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760 			  struct perf_event_context *ctx)
761 {
762 	struct perf_cgroup *cgrp;
763 	struct perf_cgroup_info *info;
764 	struct cgroup_subsys_state *css;
765 
766 	/*
767 	 * ctx->lock held by caller
768 	 * ensure we do not access cgroup data
769 	 * unless we have the cgroup pinned (css_get)
770 	 */
771 	if (!task || !ctx->nr_cgroups)
772 		return;
773 
774 	cgrp = perf_cgroup_from_task(task, ctx);
775 
776 	for (css = &cgrp->css; css; css = css->parent) {
777 		cgrp = container_of(css, struct perf_cgroup, css);
778 		info = this_cpu_ptr(cgrp->info);
779 		info->timestamp = ctx->timestamp;
780 	}
781 }
782 
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784 
785 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
787 
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796 	struct perf_cpu_context *cpuctx;
797 	struct list_head *list;
798 	unsigned long flags;
799 
800 	/*
801 	 * Disable interrupts and preemption to avoid this CPU's
802 	 * cgrp_cpuctx_entry to change under us.
803 	 */
804 	local_irq_save(flags);
805 
806 	list = this_cpu_ptr(&cgrp_cpuctx_list);
807 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809 
810 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 		perf_pmu_disable(cpuctx->ctx.pmu);
812 
813 		if (mode & PERF_CGROUP_SWOUT) {
814 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 			/*
816 			 * must not be done before ctxswout due
817 			 * to event_filter_match() in event_sched_out()
818 			 */
819 			cpuctx->cgrp = NULL;
820 		}
821 
822 		if (mode & PERF_CGROUP_SWIN) {
823 			WARN_ON_ONCE(cpuctx->cgrp);
824 			/*
825 			 * set cgrp before ctxsw in to allow
826 			 * event_filter_match() to not have to pass
827 			 * task around
828 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 			 * because cgorup events are only per-cpu
830 			 */
831 			cpuctx->cgrp = perf_cgroup_from_task(task,
832 							     &cpuctx->ctx);
833 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834 		}
835 		perf_pmu_enable(cpuctx->ctx.pmu);
836 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837 	}
838 
839 	local_irq_restore(flags);
840 }
841 
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843 					 struct task_struct *next)
844 {
845 	struct perf_cgroup *cgrp1;
846 	struct perf_cgroup *cgrp2 = NULL;
847 
848 	rcu_read_lock();
849 	/*
850 	 * we come here when we know perf_cgroup_events > 0
851 	 * we do not need to pass the ctx here because we know
852 	 * we are holding the rcu lock
853 	 */
854 	cgrp1 = perf_cgroup_from_task(task, NULL);
855 	cgrp2 = perf_cgroup_from_task(next, NULL);
856 
857 	/*
858 	 * only schedule out current cgroup events if we know
859 	 * that we are switching to a different cgroup. Otherwise,
860 	 * do no touch the cgroup events.
861 	 */
862 	if (cgrp1 != cgrp2)
863 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864 
865 	rcu_read_unlock();
866 }
867 
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 					struct task_struct *task)
870 {
871 	struct perf_cgroup *cgrp1;
872 	struct perf_cgroup *cgrp2 = NULL;
873 
874 	rcu_read_lock();
875 	/*
876 	 * we come here when we know perf_cgroup_events > 0
877 	 * we do not need to pass the ctx here because we know
878 	 * we are holding the rcu lock
879 	 */
880 	cgrp1 = perf_cgroup_from_task(task, NULL);
881 	cgrp2 = perf_cgroup_from_task(prev, NULL);
882 
883 	/*
884 	 * only need to schedule in cgroup events if we are changing
885 	 * cgroup during ctxsw. Cgroup events were not scheduled
886 	 * out of ctxsw out if that was not the case.
887 	 */
888 	if (cgrp1 != cgrp2)
889 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890 
891 	rcu_read_unlock();
892 }
893 
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 				      struct perf_event_attr *attr,
896 				      struct perf_event *group_leader)
897 {
898 	struct perf_cgroup *cgrp;
899 	struct cgroup_subsys_state *css;
900 	struct fd f = fdget(fd);
901 	int ret = 0;
902 
903 	if (!f.file)
904 		return -EBADF;
905 
906 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
907 					 &perf_event_cgrp_subsys);
908 	if (IS_ERR(css)) {
909 		ret = PTR_ERR(css);
910 		goto out;
911 	}
912 
913 	cgrp = container_of(css, struct perf_cgroup, css);
914 	event->cgrp = cgrp;
915 
916 	/*
917 	 * all events in a group must monitor
918 	 * the same cgroup because a task belongs
919 	 * to only one perf cgroup at a time
920 	 */
921 	if (group_leader && group_leader->cgrp != cgrp) {
922 		perf_detach_cgroup(event);
923 		ret = -EINVAL;
924 	}
925 out:
926 	fdput(f);
927 	return ret;
928 }
929 
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933 	struct perf_cgroup_info *t;
934 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 	event->shadow_ctx_time = now - t->timestamp;
936 }
937 
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944 			 struct perf_event_context *ctx, bool add)
945 {
946 	struct perf_cpu_context *cpuctx;
947 	struct list_head *cpuctx_entry;
948 
949 	if (!is_cgroup_event(event))
950 		return;
951 
952 	/*
953 	 * Because cgroup events are always per-cpu events,
954 	 * this will always be called from the right CPU.
955 	 */
956 	cpuctx = __get_cpu_context(ctx);
957 
958 	/*
959 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 	 * matching the event's cgroup, we must do this for every new event,
961 	 * because if the first would mismatch, the second would not try again
962 	 * and we would leave cpuctx->cgrp unset.
963 	 */
964 	if (add && !cpuctx->cgrp) {
965 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966 
967 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 			cpuctx->cgrp = cgrp;
969 	}
970 
971 	if (add && ctx->nr_cgroups++)
972 		return;
973 	else if (!add && --ctx->nr_cgroups)
974 		return;
975 
976 	/* no cgroup running */
977 	if (!add)
978 		cpuctx->cgrp = NULL;
979 
980 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 	if (add)
982 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 	else
984 		list_del(cpuctx_entry);
985 }
986 
987 #else /* !CONFIG_CGROUP_PERF */
988 
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992 	return true;
993 }
994 
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997 
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000 	return 0;
1001 }
1002 
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006 
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010 
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 					 struct task_struct *next)
1013 {
1014 }
1015 
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 					struct task_struct *task)
1018 {
1019 }
1020 
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 				      struct perf_event_attr *attr,
1023 				      struct perf_event *group_leader)
1024 {
1025 	return -EINVAL;
1026 }
1027 
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030 			  struct perf_event_context *ctx)
1031 {
1032 }
1033 
1034 static inline void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038 
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043 
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046 	return 0;
1047 }
1048 
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051 			 struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054 
1055 #endif
1056 
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067 	struct perf_cpu_context *cpuctx;
1068 	bool rotations;
1069 
1070 	lockdep_assert_irqs_disabled();
1071 
1072 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073 	rotations = perf_rotate_context(cpuctx);
1074 
1075 	raw_spin_lock(&cpuctx->hrtimer_lock);
1076 	if (rotations)
1077 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078 	else
1079 		cpuctx->hrtimer_active = 0;
1080 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1081 
1082 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084 
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087 	struct hrtimer *timer = &cpuctx->hrtimer;
1088 	struct pmu *pmu = cpuctx->ctx.pmu;
1089 	u64 interval;
1090 
1091 	/* no multiplexing needed for SW PMU */
1092 	if (pmu->task_ctx_nr == perf_sw_context)
1093 		return;
1094 
1095 	/*
1096 	 * check default is sane, if not set then force to
1097 	 * default interval (1/tick)
1098 	 */
1099 	interval = pmu->hrtimer_interval_ms;
1100 	if (interval < 1)
1101 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102 
1103 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104 
1105 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1107 	timer->function = perf_mux_hrtimer_handler;
1108 }
1109 
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112 	struct hrtimer *timer = &cpuctx->hrtimer;
1113 	struct pmu *pmu = cpuctx->ctx.pmu;
1114 	unsigned long flags;
1115 
1116 	/* not for SW PMU */
1117 	if (pmu->task_ctx_nr == perf_sw_context)
1118 		return 0;
1119 
1120 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 	if (!cpuctx->hrtimer_active) {
1122 		cpuctx->hrtimer_active = 1;
1123 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1125 	}
1126 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127 
1128 	return 0;
1129 }
1130 
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 	if (!(*count)++)
1135 		pmu->pmu_disable(pmu);
1136 }
1137 
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 	if (!--(*count))
1142 		pmu->pmu_enable(pmu);
1143 }
1144 
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146 
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156 
1157 	lockdep_assert_irqs_disabled();
1158 
1159 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1160 
1161 	list_add(&ctx->active_ctx_list, head);
1162 }
1163 
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166 	lockdep_assert_irqs_disabled();
1167 
1168 	WARN_ON(list_empty(&ctx->active_ctx_list));
1169 
1170 	list_del_init(&ctx->active_ctx_list);
1171 }
1172 
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175 	refcount_inc(&ctx->refcount);
1176 }
1177 
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180 	struct perf_event_context *ctx;
1181 
1182 	ctx = container_of(head, struct perf_event_context, rcu_head);
1183 	kfree(ctx->task_ctx_data);
1184 	kfree(ctx);
1185 }
1186 
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189 	if (refcount_dec_and_test(&ctx->refcount)) {
1190 		if (ctx->parent_ctx)
1191 			put_ctx(ctx->parent_ctx);
1192 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193 			put_task_struct(ctx->task);
1194 		call_rcu(&ctx->rcu_head, free_ctx);
1195 	}
1196 }
1197 
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()	[ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()			[ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()		[ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event()	[ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *	task_struct::perf_event_mutex
1253  *	  perf_event_context::mutex
1254  *	    perf_event::child_mutex;
1255  *	      perf_event_context::lock
1256  *	    perf_event::mmap_mutex
1257  *	    mmap_sem
1258  *	      perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *	  cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267 	struct perf_event_context *ctx;
1268 
1269 again:
1270 	rcu_read_lock();
1271 	ctx = READ_ONCE(event->ctx);
1272 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1273 		rcu_read_unlock();
1274 		goto again;
1275 	}
1276 	rcu_read_unlock();
1277 
1278 	mutex_lock_nested(&ctx->mutex, nesting);
1279 	if (event->ctx != ctx) {
1280 		mutex_unlock(&ctx->mutex);
1281 		put_ctx(ctx);
1282 		goto again;
1283 	}
1284 
1285 	return ctx;
1286 }
1287 
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291 	return perf_event_ctx_lock_nested(event, 0);
1292 }
1293 
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295 				  struct perf_event_context *ctx)
1296 {
1297 	mutex_unlock(&ctx->mutex);
1298 	put_ctx(ctx);
1299 }
1300 
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310 
1311 	lockdep_assert_held(&ctx->lock);
1312 
1313 	if (parent_ctx)
1314 		ctx->parent_ctx = NULL;
1315 	ctx->generation++;
1316 
1317 	return parent_ctx;
1318 }
1319 
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 				enum pid_type type)
1322 {
1323 	u32 nr;
1324 	/*
1325 	 * only top level events have the pid namespace they were created in
1326 	 */
1327 	if (event->parent)
1328 		event = event->parent;
1329 
1330 	nr = __task_pid_nr_ns(p, type, event->ns);
1331 	/* avoid -1 if it is idle thread or runs in another ns */
1332 	if (!nr && !pid_alive(p))
1333 		nr = -1;
1334 	return nr;
1335 }
1336 
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341 
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346 
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353 	u64 id = event->id;
1354 
1355 	if (event->parent)
1356 		id = event->parent->id;
1357 
1358 	return id;
1359 }
1360 
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370 	struct perf_event_context *ctx;
1371 
1372 retry:
1373 	/*
1374 	 * One of the few rules of preemptible RCU is that one cannot do
1375 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376 	 * part of the read side critical section was irqs-enabled -- see
1377 	 * rcu_read_unlock_special().
1378 	 *
1379 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1380 	 * side critical section has interrupts disabled.
1381 	 */
1382 	local_irq_save(*flags);
1383 	rcu_read_lock();
1384 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385 	if (ctx) {
1386 		/*
1387 		 * If this context is a clone of another, it might
1388 		 * get swapped for another underneath us by
1389 		 * perf_event_task_sched_out, though the
1390 		 * rcu_read_lock() protects us from any context
1391 		 * getting freed.  Lock the context and check if it
1392 		 * got swapped before we could get the lock, and retry
1393 		 * if so.  If we locked the right context, then it
1394 		 * can't get swapped on us any more.
1395 		 */
1396 		raw_spin_lock(&ctx->lock);
1397 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398 			raw_spin_unlock(&ctx->lock);
1399 			rcu_read_unlock();
1400 			local_irq_restore(*flags);
1401 			goto retry;
1402 		}
1403 
1404 		if (ctx->task == TASK_TOMBSTONE ||
1405 		    !refcount_inc_not_zero(&ctx->refcount)) {
1406 			raw_spin_unlock(&ctx->lock);
1407 			ctx = NULL;
1408 		} else {
1409 			WARN_ON_ONCE(ctx->task != task);
1410 		}
1411 	}
1412 	rcu_read_unlock();
1413 	if (!ctx)
1414 		local_irq_restore(*flags);
1415 	return ctx;
1416 }
1417 
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426 	struct perf_event_context *ctx;
1427 	unsigned long flags;
1428 
1429 	ctx = perf_lock_task_context(task, ctxn, &flags);
1430 	if (ctx) {
1431 		++ctx->pin_count;
1432 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433 	}
1434 	return ctx;
1435 }
1436 
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439 	unsigned long flags;
1440 
1441 	raw_spin_lock_irqsave(&ctx->lock, flags);
1442 	--ctx->pin_count;
1443 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445 
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451 	u64 now = perf_clock();
1452 
1453 	ctx->time += now - ctx->timestamp;
1454 	ctx->timestamp = now;
1455 }
1456 
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459 	struct perf_event_context *ctx = event->ctx;
1460 
1461 	if (is_cgroup_event(event))
1462 		return perf_cgroup_event_time(event);
1463 
1464 	return ctx ? ctx->time : 0;
1465 }
1466 
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469 	struct perf_event_context *ctx = event->ctx;
1470 	enum event_type_t event_type;
1471 
1472 	lockdep_assert_held(&ctx->lock);
1473 
1474 	/*
1475 	 * It's 'group type', really, because if our group leader is
1476 	 * pinned, so are we.
1477 	 */
1478 	if (event->group_leader != event)
1479 		event = event->group_leader;
1480 
1481 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 	if (!ctx->task)
1483 		event_type |= EVENT_CPU;
1484 
1485 	return event_type;
1486 }
1487 
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493 	RB_CLEAR_NODE(&event->group_node);
1494 	event->group_index = 0;
1495 }
1496 
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504 	if (event->attr.pinned)
1505 		return &ctx->pinned_groups;
1506 	else
1507 		return &ctx->flexible_groups;
1508 }
1509 
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515 	groups->tree = RB_ROOT;
1516 	groups->index = 0;
1517 }
1518 
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528 	if (left->cpu < right->cpu)
1529 		return true;
1530 	if (left->cpu > right->cpu)
1531 		return false;
1532 
1533 	if (left->group_index < right->group_index)
1534 		return true;
1535 	if (left->group_index > right->group_index)
1536 		return false;
1537 
1538 	return false;
1539 }
1540 
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548 			 struct perf_event *event)
1549 {
1550 	struct perf_event *node_event;
1551 	struct rb_node *parent;
1552 	struct rb_node **node;
1553 
1554 	event->group_index = ++groups->index;
1555 
1556 	node = &groups->tree.rb_node;
1557 	parent = *node;
1558 
1559 	while (*node) {
1560 		parent = *node;
1561 		node_event = container_of(*node, struct perf_event, group_node);
1562 
1563 		if (perf_event_groups_less(event, node_event))
1564 			node = &parent->rb_left;
1565 		else
1566 			node = &parent->rb_right;
1567 	}
1568 
1569 	rb_link_node(&event->group_node, parent, node);
1570 	rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572 
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579 	struct perf_event_groups *groups;
1580 
1581 	groups = get_event_groups(event, ctx);
1582 	perf_event_groups_insert(groups, event);
1583 }
1584 
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590 			 struct perf_event *event)
1591 {
1592 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 		     RB_EMPTY_ROOT(&groups->tree));
1594 
1595 	rb_erase(&event->group_node, &groups->tree);
1596 	init_event_group(event);
1597 }
1598 
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605 	struct perf_event_groups *groups;
1606 
1607 	groups = get_event_groups(event, ctx);
1608 	perf_event_groups_delete(groups, event);
1609 }
1610 
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617 	struct perf_event *node_event = NULL, *match = NULL;
1618 	struct rb_node *node = groups->tree.rb_node;
1619 
1620 	while (node) {
1621 		node_event = container_of(node, struct perf_event, group_node);
1622 
1623 		if (cpu < node_event->cpu) {
1624 			node = node->rb_left;
1625 		} else if (cpu > node_event->cpu) {
1626 			node = node->rb_right;
1627 		} else {
1628 			match = node_event;
1629 			node = node->rb_left;
1630 		}
1631 	}
1632 
1633 	return match;
1634 }
1635 
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642 	struct perf_event *next;
1643 
1644 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 	if (next && next->cpu == event->cpu)
1646 		return next;
1647 
1648 	return NULL;
1649 }
1650 
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)			\
1655 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1656 				typeof(*event), group_node); event;	\
1657 		event = rb_entry_safe(rb_next(&event->group_node),	\
1658 				typeof(*event), group_node))
1659 
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667 	lockdep_assert_held(&ctx->lock);
1668 
1669 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 	event->attach_state |= PERF_ATTACH_CONTEXT;
1671 
1672 	event->tstamp = perf_event_time(event);
1673 
1674 	/*
1675 	 * If we're a stand alone event or group leader, we go to the context
1676 	 * list, group events are kept attached to the group so that
1677 	 * perf_group_detach can, at all times, locate all siblings.
1678 	 */
1679 	if (event->group_leader == event) {
1680 		event->group_caps = event->event_caps;
1681 		add_event_to_groups(event, ctx);
1682 	}
1683 
1684 	list_update_cgroup_event(event, ctx, true);
1685 
1686 	list_add_rcu(&event->event_entry, &ctx->event_list);
1687 	ctx->nr_events++;
1688 	if (event->attr.inherit_stat)
1689 		ctx->nr_stat++;
1690 
1691 	ctx->generation++;
1692 }
1693 
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 					      PERF_EVENT_STATE_INACTIVE;
1701 }
1702 
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705 	int entry = sizeof(u64); /* value */
1706 	int size = 0;
1707 	int nr = 1;
1708 
1709 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 		size += sizeof(u64);
1711 
1712 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 		size += sizeof(u64);
1714 
1715 	if (event->attr.read_format & PERF_FORMAT_ID)
1716 		entry += sizeof(u64);
1717 
1718 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719 		nr += nr_siblings;
1720 		size += sizeof(u64);
1721 	}
1722 
1723 	size += entry * nr;
1724 	event->read_size = size;
1725 }
1726 
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729 	struct perf_sample_data *data;
1730 	u16 size = 0;
1731 
1732 	if (sample_type & PERF_SAMPLE_IP)
1733 		size += sizeof(data->ip);
1734 
1735 	if (sample_type & PERF_SAMPLE_ADDR)
1736 		size += sizeof(data->addr);
1737 
1738 	if (sample_type & PERF_SAMPLE_PERIOD)
1739 		size += sizeof(data->period);
1740 
1741 	if (sample_type & PERF_SAMPLE_WEIGHT)
1742 		size += sizeof(data->weight);
1743 
1744 	if (sample_type & PERF_SAMPLE_READ)
1745 		size += event->read_size;
1746 
1747 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 		size += sizeof(data->data_src.val);
1749 
1750 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 		size += sizeof(data->txn);
1752 
1753 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 		size += sizeof(data->phys_addr);
1755 
1756 	event->header_size = size;
1757 }
1758 
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765 	__perf_event_read_size(event,
1766 			       event->group_leader->nr_siblings);
1767 	__perf_event_header_size(event, event->attr.sample_type);
1768 }
1769 
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772 	struct perf_sample_data *data;
1773 	u64 sample_type = event->attr.sample_type;
1774 	u16 size = 0;
1775 
1776 	if (sample_type & PERF_SAMPLE_TID)
1777 		size += sizeof(data->tid_entry);
1778 
1779 	if (sample_type & PERF_SAMPLE_TIME)
1780 		size += sizeof(data->time);
1781 
1782 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 		size += sizeof(data->id);
1784 
1785 	if (sample_type & PERF_SAMPLE_ID)
1786 		size += sizeof(data->id);
1787 
1788 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 		size += sizeof(data->stream_id);
1790 
1791 	if (sample_type & PERF_SAMPLE_CPU)
1792 		size += sizeof(data->cpu_entry);
1793 
1794 	event->id_header_size = size;
1795 }
1796 
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799 	/*
1800 	 * The values computed here will be over-written when we actually
1801 	 * attach the event.
1802 	 */
1803 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 	perf_event__id_header_size(event);
1806 
1807 	/*
1808 	 * Sum the lot; should not exceed the 64k limit we have on records.
1809 	 * Conservative limit to allow for callchains and other variable fields.
1810 	 */
1811 	if (event->read_size + event->header_size +
1812 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 		return false;
1814 
1815 	return true;
1816 }
1817 
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820 	struct perf_event *group_leader = event->group_leader, *pos;
1821 
1822 	lockdep_assert_held(&event->ctx->lock);
1823 
1824 	/*
1825 	 * We can have double attach due to group movement in perf_event_open.
1826 	 */
1827 	if (event->attach_state & PERF_ATTACH_GROUP)
1828 		return;
1829 
1830 	event->attach_state |= PERF_ATTACH_GROUP;
1831 
1832 	if (group_leader == event)
1833 		return;
1834 
1835 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836 
1837 	group_leader->group_caps &= event->event_caps;
1838 
1839 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840 	group_leader->nr_siblings++;
1841 
1842 	perf_event__header_size(group_leader);
1843 
1844 	for_each_sibling_event(pos, group_leader)
1845 		perf_event__header_size(pos);
1846 }
1847 
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855 	WARN_ON_ONCE(event->ctx != ctx);
1856 	lockdep_assert_held(&ctx->lock);
1857 
1858 	/*
1859 	 * We can have double detach due to exit/hot-unplug + close.
1860 	 */
1861 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862 		return;
1863 
1864 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865 
1866 	list_update_cgroup_event(event, ctx, false);
1867 
1868 	ctx->nr_events--;
1869 	if (event->attr.inherit_stat)
1870 		ctx->nr_stat--;
1871 
1872 	list_del_rcu(&event->event_entry);
1873 
1874 	if (event->group_leader == event)
1875 		del_event_from_groups(event, ctx);
1876 
1877 	/*
1878 	 * If event was in error state, then keep it
1879 	 * that way, otherwise bogus counts will be
1880 	 * returned on read(). The only way to get out
1881 	 * of error state is by explicit re-enabling
1882 	 * of the event
1883 	 */
1884 	if (event->state > PERF_EVENT_STATE_OFF)
1885 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886 
1887 	ctx->generation++;
1888 }
1889 
1890 static int
1891 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1892 {
1893 	if (!has_aux(aux_event))
1894 		return 0;
1895 
1896 	if (!event->pmu->aux_output_match)
1897 		return 0;
1898 
1899 	return event->pmu->aux_output_match(aux_event);
1900 }
1901 
1902 static void put_event(struct perf_event *event);
1903 static void event_sched_out(struct perf_event *event,
1904 			    struct perf_cpu_context *cpuctx,
1905 			    struct perf_event_context *ctx);
1906 
1907 static void perf_put_aux_event(struct perf_event *event)
1908 {
1909 	struct perf_event_context *ctx = event->ctx;
1910 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1911 	struct perf_event *iter;
1912 
1913 	/*
1914 	 * If event uses aux_event tear down the link
1915 	 */
1916 	if (event->aux_event) {
1917 		iter = event->aux_event;
1918 		event->aux_event = NULL;
1919 		put_event(iter);
1920 		return;
1921 	}
1922 
1923 	/*
1924 	 * If the event is an aux_event, tear down all links to
1925 	 * it from other events.
1926 	 */
1927 	for_each_sibling_event(iter, event->group_leader) {
1928 		if (iter->aux_event != event)
1929 			continue;
1930 
1931 		iter->aux_event = NULL;
1932 		put_event(event);
1933 
1934 		/*
1935 		 * If it's ACTIVE, schedule it out and put it into ERROR
1936 		 * state so that we don't try to schedule it again. Note
1937 		 * that perf_event_enable() will clear the ERROR status.
1938 		 */
1939 		event_sched_out(iter, cpuctx, ctx);
1940 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1941 	}
1942 }
1943 
1944 static int perf_get_aux_event(struct perf_event *event,
1945 			      struct perf_event *group_leader)
1946 {
1947 	/*
1948 	 * Our group leader must be an aux event if we want to be
1949 	 * an aux_output. This way, the aux event will precede its
1950 	 * aux_output events in the group, and therefore will always
1951 	 * schedule first.
1952 	 */
1953 	if (!group_leader)
1954 		return 0;
1955 
1956 	if (!perf_aux_output_match(event, group_leader))
1957 		return 0;
1958 
1959 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
1960 		return 0;
1961 
1962 	/*
1963 	 * Link aux_outputs to their aux event; this is undone in
1964 	 * perf_group_detach() by perf_put_aux_event(). When the
1965 	 * group in torn down, the aux_output events loose their
1966 	 * link to the aux_event and can't schedule any more.
1967 	 */
1968 	event->aux_event = group_leader;
1969 
1970 	return 1;
1971 }
1972 
1973 static void perf_group_detach(struct perf_event *event)
1974 {
1975 	struct perf_event *sibling, *tmp;
1976 	struct perf_event_context *ctx = event->ctx;
1977 
1978 	lockdep_assert_held(&ctx->lock);
1979 
1980 	/*
1981 	 * We can have double detach due to exit/hot-unplug + close.
1982 	 */
1983 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1984 		return;
1985 
1986 	event->attach_state &= ~PERF_ATTACH_GROUP;
1987 
1988 	perf_put_aux_event(event);
1989 
1990 	/*
1991 	 * If this is a sibling, remove it from its group.
1992 	 */
1993 	if (event->group_leader != event) {
1994 		list_del_init(&event->sibling_list);
1995 		event->group_leader->nr_siblings--;
1996 		goto out;
1997 	}
1998 
1999 	/*
2000 	 * If this was a group event with sibling events then
2001 	 * upgrade the siblings to singleton events by adding them
2002 	 * to whatever list we are on.
2003 	 */
2004 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2005 
2006 		sibling->group_leader = sibling;
2007 		list_del_init(&sibling->sibling_list);
2008 
2009 		/* Inherit group flags from the previous leader */
2010 		sibling->group_caps = event->group_caps;
2011 
2012 		if (!RB_EMPTY_NODE(&event->group_node)) {
2013 			add_event_to_groups(sibling, event->ctx);
2014 
2015 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2016 				struct list_head *list = sibling->attr.pinned ?
2017 					&ctx->pinned_active : &ctx->flexible_active;
2018 
2019 				list_add_tail(&sibling->active_list, list);
2020 			}
2021 		}
2022 
2023 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2024 	}
2025 
2026 out:
2027 	perf_event__header_size(event->group_leader);
2028 
2029 	for_each_sibling_event(tmp, event->group_leader)
2030 		perf_event__header_size(tmp);
2031 }
2032 
2033 static bool is_orphaned_event(struct perf_event *event)
2034 {
2035 	return event->state == PERF_EVENT_STATE_DEAD;
2036 }
2037 
2038 static inline int __pmu_filter_match(struct perf_event *event)
2039 {
2040 	struct pmu *pmu = event->pmu;
2041 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2042 }
2043 
2044 /*
2045  * Check whether we should attempt to schedule an event group based on
2046  * PMU-specific filtering. An event group can consist of HW and SW events,
2047  * potentially with a SW leader, so we must check all the filters, to
2048  * determine whether a group is schedulable:
2049  */
2050 static inline int pmu_filter_match(struct perf_event *event)
2051 {
2052 	struct perf_event *sibling;
2053 
2054 	if (!__pmu_filter_match(event))
2055 		return 0;
2056 
2057 	for_each_sibling_event(sibling, event) {
2058 		if (!__pmu_filter_match(sibling))
2059 			return 0;
2060 	}
2061 
2062 	return 1;
2063 }
2064 
2065 static inline int
2066 event_filter_match(struct perf_event *event)
2067 {
2068 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2069 	       perf_cgroup_match(event) && pmu_filter_match(event);
2070 }
2071 
2072 static void
2073 event_sched_out(struct perf_event *event,
2074 		  struct perf_cpu_context *cpuctx,
2075 		  struct perf_event_context *ctx)
2076 {
2077 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2078 
2079 	WARN_ON_ONCE(event->ctx != ctx);
2080 	lockdep_assert_held(&ctx->lock);
2081 
2082 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2083 		return;
2084 
2085 	/*
2086 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2087 	 * we can schedule events _OUT_ individually through things like
2088 	 * __perf_remove_from_context().
2089 	 */
2090 	list_del_init(&event->active_list);
2091 
2092 	perf_pmu_disable(event->pmu);
2093 
2094 	event->pmu->del(event, 0);
2095 	event->oncpu = -1;
2096 
2097 	if (READ_ONCE(event->pending_disable) >= 0) {
2098 		WRITE_ONCE(event->pending_disable, -1);
2099 		state = PERF_EVENT_STATE_OFF;
2100 	}
2101 	perf_event_set_state(event, state);
2102 
2103 	if (!is_software_event(event))
2104 		cpuctx->active_oncpu--;
2105 	if (!--ctx->nr_active)
2106 		perf_event_ctx_deactivate(ctx);
2107 	if (event->attr.freq && event->attr.sample_freq)
2108 		ctx->nr_freq--;
2109 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2110 		cpuctx->exclusive = 0;
2111 
2112 	perf_pmu_enable(event->pmu);
2113 }
2114 
2115 static void
2116 group_sched_out(struct perf_event *group_event,
2117 		struct perf_cpu_context *cpuctx,
2118 		struct perf_event_context *ctx)
2119 {
2120 	struct perf_event *event;
2121 
2122 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2123 		return;
2124 
2125 	perf_pmu_disable(ctx->pmu);
2126 
2127 	event_sched_out(group_event, cpuctx, ctx);
2128 
2129 	/*
2130 	 * Schedule out siblings (if any):
2131 	 */
2132 	for_each_sibling_event(event, group_event)
2133 		event_sched_out(event, cpuctx, ctx);
2134 
2135 	perf_pmu_enable(ctx->pmu);
2136 
2137 	if (group_event->attr.exclusive)
2138 		cpuctx->exclusive = 0;
2139 }
2140 
2141 #define DETACH_GROUP	0x01UL
2142 
2143 /*
2144  * Cross CPU call to remove a performance event
2145  *
2146  * We disable the event on the hardware level first. After that we
2147  * remove it from the context list.
2148  */
2149 static void
2150 __perf_remove_from_context(struct perf_event *event,
2151 			   struct perf_cpu_context *cpuctx,
2152 			   struct perf_event_context *ctx,
2153 			   void *info)
2154 {
2155 	unsigned long flags = (unsigned long)info;
2156 
2157 	if (ctx->is_active & EVENT_TIME) {
2158 		update_context_time(ctx);
2159 		update_cgrp_time_from_cpuctx(cpuctx);
2160 	}
2161 
2162 	event_sched_out(event, cpuctx, ctx);
2163 	if (flags & DETACH_GROUP)
2164 		perf_group_detach(event);
2165 	list_del_event(event, ctx);
2166 
2167 	if (!ctx->nr_events && ctx->is_active) {
2168 		ctx->is_active = 0;
2169 		if (ctx->task) {
2170 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2171 			cpuctx->task_ctx = NULL;
2172 		}
2173 	}
2174 }
2175 
2176 /*
2177  * Remove the event from a task's (or a CPU's) list of events.
2178  *
2179  * If event->ctx is a cloned context, callers must make sure that
2180  * every task struct that event->ctx->task could possibly point to
2181  * remains valid.  This is OK when called from perf_release since
2182  * that only calls us on the top-level context, which can't be a clone.
2183  * When called from perf_event_exit_task, it's OK because the
2184  * context has been detached from its task.
2185  */
2186 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2187 {
2188 	struct perf_event_context *ctx = event->ctx;
2189 
2190 	lockdep_assert_held(&ctx->mutex);
2191 
2192 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2193 
2194 	/*
2195 	 * The above event_function_call() can NO-OP when it hits
2196 	 * TASK_TOMBSTONE. In that case we must already have been detached
2197 	 * from the context (by perf_event_exit_event()) but the grouping
2198 	 * might still be in-tact.
2199 	 */
2200 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2201 	if ((flags & DETACH_GROUP) &&
2202 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2203 		/*
2204 		 * Since in that case we cannot possibly be scheduled, simply
2205 		 * detach now.
2206 		 */
2207 		raw_spin_lock_irq(&ctx->lock);
2208 		perf_group_detach(event);
2209 		raw_spin_unlock_irq(&ctx->lock);
2210 	}
2211 }
2212 
2213 /*
2214  * Cross CPU call to disable a performance event
2215  */
2216 static void __perf_event_disable(struct perf_event *event,
2217 				 struct perf_cpu_context *cpuctx,
2218 				 struct perf_event_context *ctx,
2219 				 void *info)
2220 {
2221 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2222 		return;
2223 
2224 	if (ctx->is_active & EVENT_TIME) {
2225 		update_context_time(ctx);
2226 		update_cgrp_time_from_event(event);
2227 	}
2228 
2229 	if (event == event->group_leader)
2230 		group_sched_out(event, cpuctx, ctx);
2231 	else
2232 		event_sched_out(event, cpuctx, ctx);
2233 
2234 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2235 }
2236 
2237 /*
2238  * Disable an event.
2239  *
2240  * If event->ctx is a cloned context, callers must make sure that
2241  * every task struct that event->ctx->task could possibly point to
2242  * remains valid.  This condition is satisfied when called through
2243  * perf_event_for_each_child or perf_event_for_each because they
2244  * hold the top-level event's child_mutex, so any descendant that
2245  * goes to exit will block in perf_event_exit_event().
2246  *
2247  * When called from perf_pending_event it's OK because event->ctx
2248  * is the current context on this CPU and preemption is disabled,
2249  * hence we can't get into perf_event_task_sched_out for this context.
2250  */
2251 static void _perf_event_disable(struct perf_event *event)
2252 {
2253 	struct perf_event_context *ctx = event->ctx;
2254 
2255 	raw_spin_lock_irq(&ctx->lock);
2256 	if (event->state <= PERF_EVENT_STATE_OFF) {
2257 		raw_spin_unlock_irq(&ctx->lock);
2258 		return;
2259 	}
2260 	raw_spin_unlock_irq(&ctx->lock);
2261 
2262 	event_function_call(event, __perf_event_disable, NULL);
2263 }
2264 
2265 void perf_event_disable_local(struct perf_event *event)
2266 {
2267 	event_function_local(event, __perf_event_disable, NULL);
2268 }
2269 
2270 /*
2271  * Strictly speaking kernel users cannot create groups and therefore this
2272  * interface does not need the perf_event_ctx_lock() magic.
2273  */
2274 void perf_event_disable(struct perf_event *event)
2275 {
2276 	struct perf_event_context *ctx;
2277 
2278 	ctx = perf_event_ctx_lock(event);
2279 	_perf_event_disable(event);
2280 	perf_event_ctx_unlock(event, ctx);
2281 }
2282 EXPORT_SYMBOL_GPL(perf_event_disable);
2283 
2284 void perf_event_disable_inatomic(struct perf_event *event)
2285 {
2286 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2287 	/* can fail, see perf_pending_event_disable() */
2288 	irq_work_queue(&event->pending);
2289 }
2290 
2291 static void perf_set_shadow_time(struct perf_event *event,
2292 				 struct perf_event_context *ctx)
2293 {
2294 	/*
2295 	 * use the correct time source for the time snapshot
2296 	 *
2297 	 * We could get by without this by leveraging the
2298 	 * fact that to get to this function, the caller
2299 	 * has most likely already called update_context_time()
2300 	 * and update_cgrp_time_xx() and thus both timestamp
2301 	 * are identical (or very close). Given that tstamp is,
2302 	 * already adjusted for cgroup, we could say that:
2303 	 *    tstamp - ctx->timestamp
2304 	 * is equivalent to
2305 	 *    tstamp - cgrp->timestamp.
2306 	 *
2307 	 * Then, in perf_output_read(), the calculation would
2308 	 * work with no changes because:
2309 	 * - event is guaranteed scheduled in
2310 	 * - no scheduled out in between
2311 	 * - thus the timestamp would be the same
2312 	 *
2313 	 * But this is a bit hairy.
2314 	 *
2315 	 * So instead, we have an explicit cgroup call to remain
2316 	 * within the time time source all along. We believe it
2317 	 * is cleaner and simpler to understand.
2318 	 */
2319 	if (is_cgroup_event(event))
2320 		perf_cgroup_set_shadow_time(event, event->tstamp);
2321 	else
2322 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2323 }
2324 
2325 #define MAX_INTERRUPTS (~0ULL)
2326 
2327 static void perf_log_throttle(struct perf_event *event, int enable);
2328 static void perf_log_itrace_start(struct perf_event *event);
2329 
2330 static int
2331 event_sched_in(struct perf_event *event,
2332 		 struct perf_cpu_context *cpuctx,
2333 		 struct perf_event_context *ctx)
2334 {
2335 	int ret = 0;
2336 
2337 	lockdep_assert_held(&ctx->lock);
2338 
2339 	if (event->state <= PERF_EVENT_STATE_OFF)
2340 		return 0;
2341 
2342 	WRITE_ONCE(event->oncpu, smp_processor_id());
2343 	/*
2344 	 * Order event::oncpu write to happen before the ACTIVE state is
2345 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2346 	 * ->oncpu if it sees ACTIVE.
2347 	 */
2348 	smp_wmb();
2349 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2350 
2351 	/*
2352 	 * Unthrottle events, since we scheduled we might have missed several
2353 	 * ticks already, also for a heavily scheduling task there is little
2354 	 * guarantee it'll get a tick in a timely manner.
2355 	 */
2356 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2357 		perf_log_throttle(event, 1);
2358 		event->hw.interrupts = 0;
2359 	}
2360 
2361 	perf_pmu_disable(event->pmu);
2362 
2363 	perf_set_shadow_time(event, ctx);
2364 
2365 	perf_log_itrace_start(event);
2366 
2367 	if (event->pmu->add(event, PERF_EF_START)) {
2368 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2369 		event->oncpu = -1;
2370 		ret = -EAGAIN;
2371 		goto out;
2372 	}
2373 
2374 	if (!is_software_event(event))
2375 		cpuctx->active_oncpu++;
2376 	if (!ctx->nr_active++)
2377 		perf_event_ctx_activate(ctx);
2378 	if (event->attr.freq && event->attr.sample_freq)
2379 		ctx->nr_freq++;
2380 
2381 	if (event->attr.exclusive)
2382 		cpuctx->exclusive = 1;
2383 
2384 out:
2385 	perf_pmu_enable(event->pmu);
2386 
2387 	return ret;
2388 }
2389 
2390 static int
2391 group_sched_in(struct perf_event *group_event,
2392 	       struct perf_cpu_context *cpuctx,
2393 	       struct perf_event_context *ctx)
2394 {
2395 	struct perf_event *event, *partial_group = NULL;
2396 	struct pmu *pmu = ctx->pmu;
2397 
2398 	if (group_event->state == PERF_EVENT_STATE_OFF)
2399 		return 0;
2400 
2401 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2402 
2403 	if (event_sched_in(group_event, cpuctx, ctx)) {
2404 		pmu->cancel_txn(pmu);
2405 		perf_mux_hrtimer_restart(cpuctx);
2406 		return -EAGAIN;
2407 	}
2408 
2409 	/*
2410 	 * Schedule in siblings as one group (if any):
2411 	 */
2412 	for_each_sibling_event(event, group_event) {
2413 		if (event_sched_in(event, cpuctx, ctx)) {
2414 			partial_group = event;
2415 			goto group_error;
2416 		}
2417 	}
2418 
2419 	if (!pmu->commit_txn(pmu))
2420 		return 0;
2421 
2422 group_error:
2423 	/*
2424 	 * Groups can be scheduled in as one unit only, so undo any
2425 	 * partial group before returning:
2426 	 * The events up to the failed event are scheduled out normally.
2427 	 */
2428 	for_each_sibling_event(event, group_event) {
2429 		if (event == partial_group)
2430 			break;
2431 
2432 		event_sched_out(event, cpuctx, ctx);
2433 	}
2434 	event_sched_out(group_event, cpuctx, ctx);
2435 
2436 	pmu->cancel_txn(pmu);
2437 
2438 	perf_mux_hrtimer_restart(cpuctx);
2439 
2440 	return -EAGAIN;
2441 }
2442 
2443 /*
2444  * Work out whether we can put this event group on the CPU now.
2445  */
2446 static int group_can_go_on(struct perf_event *event,
2447 			   struct perf_cpu_context *cpuctx,
2448 			   int can_add_hw)
2449 {
2450 	/*
2451 	 * Groups consisting entirely of software events can always go on.
2452 	 */
2453 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2454 		return 1;
2455 	/*
2456 	 * If an exclusive group is already on, no other hardware
2457 	 * events can go on.
2458 	 */
2459 	if (cpuctx->exclusive)
2460 		return 0;
2461 	/*
2462 	 * If this group is exclusive and there are already
2463 	 * events on the CPU, it can't go on.
2464 	 */
2465 	if (event->attr.exclusive && cpuctx->active_oncpu)
2466 		return 0;
2467 	/*
2468 	 * Otherwise, try to add it if all previous groups were able
2469 	 * to go on.
2470 	 */
2471 	return can_add_hw;
2472 }
2473 
2474 static void add_event_to_ctx(struct perf_event *event,
2475 			       struct perf_event_context *ctx)
2476 {
2477 	list_add_event(event, ctx);
2478 	perf_group_attach(event);
2479 }
2480 
2481 static void ctx_sched_out(struct perf_event_context *ctx,
2482 			  struct perf_cpu_context *cpuctx,
2483 			  enum event_type_t event_type);
2484 static void
2485 ctx_sched_in(struct perf_event_context *ctx,
2486 	     struct perf_cpu_context *cpuctx,
2487 	     enum event_type_t event_type,
2488 	     struct task_struct *task);
2489 
2490 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2491 			       struct perf_event_context *ctx,
2492 			       enum event_type_t event_type)
2493 {
2494 	if (!cpuctx->task_ctx)
2495 		return;
2496 
2497 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2498 		return;
2499 
2500 	ctx_sched_out(ctx, cpuctx, event_type);
2501 }
2502 
2503 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2504 				struct perf_event_context *ctx,
2505 				struct task_struct *task)
2506 {
2507 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2508 	if (ctx)
2509 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2510 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2511 	if (ctx)
2512 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2513 }
2514 
2515 /*
2516  * We want to maintain the following priority of scheduling:
2517  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2518  *  - task pinned (EVENT_PINNED)
2519  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2520  *  - task flexible (EVENT_FLEXIBLE).
2521  *
2522  * In order to avoid unscheduling and scheduling back in everything every
2523  * time an event is added, only do it for the groups of equal priority and
2524  * below.
2525  *
2526  * This can be called after a batch operation on task events, in which case
2527  * event_type is a bit mask of the types of events involved. For CPU events,
2528  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2529  */
2530 static void ctx_resched(struct perf_cpu_context *cpuctx,
2531 			struct perf_event_context *task_ctx,
2532 			enum event_type_t event_type)
2533 {
2534 	enum event_type_t ctx_event_type;
2535 	bool cpu_event = !!(event_type & EVENT_CPU);
2536 
2537 	/*
2538 	 * If pinned groups are involved, flexible groups also need to be
2539 	 * scheduled out.
2540 	 */
2541 	if (event_type & EVENT_PINNED)
2542 		event_type |= EVENT_FLEXIBLE;
2543 
2544 	ctx_event_type = event_type & EVENT_ALL;
2545 
2546 	perf_pmu_disable(cpuctx->ctx.pmu);
2547 	if (task_ctx)
2548 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2549 
2550 	/*
2551 	 * Decide which cpu ctx groups to schedule out based on the types
2552 	 * of events that caused rescheduling:
2553 	 *  - EVENT_CPU: schedule out corresponding groups;
2554 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2555 	 *  - otherwise, do nothing more.
2556 	 */
2557 	if (cpu_event)
2558 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2559 	else if (ctx_event_type & EVENT_PINNED)
2560 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2561 
2562 	perf_event_sched_in(cpuctx, task_ctx, current);
2563 	perf_pmu_enable(cpuctx->ctx.pmu);
2564 }
2565 
2566 void perf_pmu_resched(struct pmu *pmu)
2567 {
2568 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2569 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2570 
2571 	perf_ctx_lock(cpuctx, task_ctx);
2572 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2573 	perf_ctx_unlock(cpuctx, task_ctx);
2574 }
2575 
2576 /*
2577  * Cross CPU call to install and enable a performance event
2578  *
2579  * Very similar to remote_function() + event_function() but cannot assume that
2580  * things like ctx->is_active and cpuctx->task_ctx are set.
2581  */
2582 static int  __perf_install_in_context(void *info)
2583 {
2584 	struct perf_event *event = info;
2585 	struct perf_event_context *ctx = event->ctx;
2586 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2587 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2588 	bool reprogram = true;
2589 	int ret = 0;
2590 
2591 	raw_spin_lock(&cpuctx->ctx.lock);
2592 	if (ctx->task) {
2593 		raw_spin_lock(&ctx->lock);
2594 		task_ctx = ctx;
2595 
2596 		reprogram = (ctx->task == current);
2597 
2598 		/*
2599 		 * If the task is running, it must be running on this CPU,
2600 		 * otherwise we cannot reprogram things.
2601 		 *
2602 		 * If its not running, we don't care, ctx->lock will
2603 		 * serialize against it becoming runnable.
2604 		 */
2605 		if (task_curr(ctx->task) && !reprogram) {
2606 			ret = -ESRCH;
2607 			goto unlock;
2608 		}
2609 
2610 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2611 	} else if (task_ctx) {
2612 		raw_spin_lock(&task_ctx->lock);
2613 	}
2614 
2615 #ifdef CONFIG_CGROUP_PERF
2616 	if (is_cgroup_event(event)) {
2617 		/*
2618 		 * If the current cgroup doesn't match the event's
2619 		 * cgroup, we should not try to schedule it.
2620 		 */
2621 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2622 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2623 					event->cgrp->css.cgroup);
2624 	}
2625 #endif
2626 
2627 	if (reprogram) {
2628 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2629 		add_event_to_ctx(event, ctx);
2630 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2631 	} else {
2632 		add_event_to_ctx(event, ctx);
2633 	}
2634 
2635 unlock:
2636 	perf_ctx_unlock(cpuctx, task_ctx);
2637 
2638 	return ret;
2639 }
2640 
2641 static bool exclusive_event_installable(struct perf_event *event,
2642 					struct perf_event_context *ctx);
2643 
2644 /*
2645  * Attach a performance event to a context.
2646  *
2647  * Very similar to event_function_call, see comment there.
2648  */
2649 static void
2650 perf_install_in_context(struct perf_event_context *ctx,
2651 			struct perf_event *event,
2652 			int cpu)
2653 {
2654 	struct task_struct *task = READ_ONCE(ctx->task);
2655 
2656 	lockdep_assert_held(&ctx->mutex);
2657 
2658 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2659 
2660 	if (event->cpu != -1)
2661 		event->cpu = cpu;
2662 
2663 	/*
2664 	 * Ensures that if we can observe event->ctx, both the event and ctx
2665 	 * will be 'complete'. See perf_iterate_sb_cpu().
2666 	 */
2667 	smp_store_release(&event->ctx, ctx);
2668 
2669 	if (!task) {
2670 		cpu_function_call(cpu, __perf_install_in_context, event);
2671 		return;
2672 	}
2673 
2674 	/*
2675 	 * Should not happen, we validate the ctx is still alive before calling.
2676 	 */
2677 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2678 		return;
2679 
2680 	/*
2681 	 * Installing events is tricky because we cannot rely on ctx->is_active
2682 	 * to be set in case this is the nr_events 0 -> 1 transition.
2683 	 *
2684 	 * Instead we use task_curr(), which tells us if the task is running.
2685 	 * However, since we use task_curr() outside of rq::lock, we can race
2686 	 * against the actual state. This means the result can be wrong.
2687 	 *
2688 	 * If we get a false positive, we retry, this is harmless.
2689 	 *
2690 	 * If we get a false negative, things are complicated. If we are after
2691 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2692 	 * value must be correct. If we're before, it doesn't matter since
2693 	 * perf_event_context_sched_in() will program the counter.
2694 	 *
2695 	 * However, this hinges on the remote context switch having observed
2696 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2697 	 * ctx::lock in perf_event_context_sched_in().
2698 	 *
2699 	 * We do this by task_function_call(), if the IPI fails to hit the task
2700 	 * we know any future context switch of task must see the
2701 	 * perf_event_ctpx[] store.
2702 	 */
2703 
2704 	/*
2705 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2706 	 * task_cpu() load, such that if the IPI then does not find the task
2707 	 * running, a future context switch of that task must observe the
2708 	 * store.
2709 	 */
2710 	smp_mb();
2711 again:
2712 	if (!task_function_call(task, __perf_install_in_context, event))
2713 		return;
2714 
2715 	raw_spin_lock_irq(&ctx->lock);
2716 	task = ctx->task;
2717 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2718 		/*
2719 		 * Cannot happen because we already checked above (which also
2720 		 * cannot happen), and we hold ctx->mutex, which serializes us
2721 		 * against perf_event_exit_task_context().
2722 		 */
2723 		raw_spin_unlock_irq(&ctx->lock);
2724 		return;
2725 	}
2726 	/*
2727 	 * If the task is not running, ctx->lock will avoid it becoming so,
2728 	 * thus we can safely install the event.
2729 	 */
2730 	if (task_curr(task)) {
2731 		raw_spin_unlock_irq(&ctx->lock);
2732 		goto again;
2733 	}
2734 	add_event_to_ctx(event, ctx);
2735 	raw_spin_unlock_irq(&ctx->lock);
2736 }
2737 
2738 /*
2739  * Cross CPU call to enable a performance event
2740  */
2741 static void __perf_event_enable(struct perf_event *event,
2742 				struct perf_cpu_context *cpuctx,
2743 				struct perf_event_context *ctx,
2744 				void *info)
2745 {
2746 	struct perf_event *leader = event->group_leader;
2747 	struct perf_event_context *task_ctx;
2748 
2749 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2750 	    event->state <= PERF_EVENT_STATE_ERROR)
2751 		return;
2752 
2753 	if (ctx->is_active)
2754 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2755 
2756 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2757 
2758 	if (!ctx->is_active)
2759 		return;
2760 
2761 	if (!event_filter_match(event)) {
2762 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2763 		return;
2764 	}
2765 
2766 	/*
2767 	 * If the event is in a group and isn't the group leader,
2768 	 * then don't put it on unless the group is on.
2769 	 */
2770 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2771 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2772 		return;
2773 	}
2774 
2775 	task_ctx = cpuctx->task_ctx;
2776 	if (ctx->task)
2777 		WARN_ON_ONCE(task_ctx != ctx);
2778 
2779 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2780 }
2781 
2782 /*
2783  * Enable an event.
2784  *
2785  * If event->ctx is a cloned context, callers must make sure that
2786  * every task struct that event->ctx->task could possibly point to
2787  * remains valid.  This condition is satisfied when called through
2788  * perf_event_for_each_child or perf_event_for_each as described
2789  * for perf_event_disable.
2790  */
2791 static void _perf_event_enable(struct perf_event *event)
2792 {
2793 	struct perf_event_context *ctx = event->ctx;
2794 
2795 	raw_spin_lock_irq(&ctx->lock);
2796 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2797 	    event->state <  PERF_EVENT_STATE_ERROR) {
2798 		raw_spin_unlock_irq(&ctx->lock);
2799 		return;
2800 	}
2801 
2802 	/*
2803 	 * If the event is in error state, clear that first.
2804 	 *
2805 	 * That way, if we see the event in error state below, we know that it
2806 	 * has gone back into error state, as distinct from the task having
2807 	 * been scheduled away before the cross-call arrived.
2808 	 */
2809 	if (event->state == PERF_EVENT_STATE_ERROR)
2810 		event->state = PERF_EVENT_STATE_OFF;
2811 	raw_spin_unlock_irq(&ctx->lock);
2812 
2813 	event_function_call(event, __perf_event_enable, NULL);
2814 }
2815 
2816 /*
2817  * See perf_event_disable();
2818  */
2819 void perf_event_enable(struct perf_event *event)
2820 {
2821 	struct perf_event_context *ctx;
2822 
2823 	ctx = perf_event_ctx_lock(event);
2824 	_perf_event_enable(event);
2825 	perf_event_ctx_unlock(event, ctx);
2826 }
2827 EXPORT_SYMBOL_GPL(perf_event_enable);
2828 
2829 struct stop_event_data {
2830 	struct perf_event	*event;
2831 	unsigned int		restart;
2832 };
2833 
2834 static int __perf_event_stop(void *info)
2835 {
2836 	struct stop_event_data *sd = info;
2837 	struct perf_event *event = sd->event;
2838 
2839 	/* if it's already INACTIVE, do nothing */
2840 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2841 		return 0;
2842 
2843 	/* matches smp_wmb() in event_sched_in() */
2844 	smp_rmb();
2845 
2846 	/*
2847 	 * There is a window with interrupts enabled before we get here,
2848 	 * so we need to check again lest we try to stop another CPU's event.
2849 	 */
2850 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2851 		return -EAGAIN;
2852 
2853 	event->pmu->stop(event, PERF_EF_UPDATE);
2854 
2855 	/*
2856 	 * May race with the actual stop (through perf_pmu_output_stop()),
2857 	 * but it is only used for events with AUX ring buffer, and such
2858 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2859 	 * see comments in perf_aux_output_begin().
2860 	 *
2861 	 * Since this is happening on an event-local CPU, no trace is lost
2862 	 * while restarting.
2863 	 */
2864 	if (sd->restart)
2865 		event->pmu->start(event, 0);
2866 
2867 	return 0;
2868 }
2869 
2870 static int perf_event_stop(struct perf_event *event, int restart)
2871 {
2872 	struct stop_event_data sd = {
2873 		.event		= event,
2874 		.restart	= restart,
2875 	};
2876 	int ret = 0;
2877 
2878 	do {
2879 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2880 			return 0;
2881 
2882 		/* matches smp_wmb() in event_sched_in() */
2883 		smp_rmb();
2884 
2885 		/*
2886 		 * We only want to restart ACTIVE events, so if the event goes
2887 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2888 		 * fall through with ret==-ENXIO.
2889 		 */
2890 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2891 					__perf_event_stop, &sd);
2892 	} while (ret == -EAGAIN);
2893 
2894 	return ret;
2895 }
2896 
2897 /*
2898  * In order to contain the amount of racy and tricky in the address filter
2899  * configuration management, it is a two part process:
2900  *
2901  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2902  *      we update the addresses of corresponding vmas in
2903  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
2904  * (p2) when an event is scheduled in (pmu::add), it calls
2905  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2906  *      if the generation has changed since the previous call.
2907  *
2908  * If (p1) happens while the event is active, we restart it to force (p2).
2909  *
2910  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2911  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2912  *     ioctl;
2913  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2914  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2915  *     for reading;
2916  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2917  *     of exec.
2918  */
2919 void perf_event_addr_filters_sync(struct perf_event *event)
2920 {
2921 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2922 
2923 	if (!has_addr_filter(event))
2924 		return;
2925 
2926 	raw_spin_lock(&ifh->lock);
2927 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2928 		event->pmu->addr_filters_sync(event);
2929 		event->hw.addr_filters_gen = event->addr_filters_gen;
2930 	}
2931 	raw_spin_unlock(&ifh->lock);
2932 }
2933 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2934 
2935 static int _perf_event_refresh(struct perf_event *event, int refresh)
2936 {
2937 	/*
2938 	 * not supported on inherited events
2939 	 */
2940 	if (event->attr.inherit || !is_sampling_event(event))
2941 		return -EINVAL;
2942 
2943 	atomic_add(refresh, &event->event_limit);
2944 	_perf_event_enable(event);
2945 
2946 	return 0;
2947 }
2948 
2949 /*
2950  * See perf_event_disable()
2951  */
2952 int perf_event_refresh(struct perf_event *event, int refresh)
2953 {
2954 	struct perf_event_context *ctx;
2955 	int ret;
2956 
2957 	ctx = perf_event_ctx_lock(event);
2958 	ret = _perf_event_refresh(event, refresh);
2959 	perf_event_ctx_unlock(event, ctx);
2960 
2961 	return ret;
2962 }
2963 EXPORT_SYMBOL_GPL(perf_event_refresh);
2964 
2965 static int perf_event_modify_breakpoint(struct perf_event *bp,
2966 					 struct perf_event_attr *attr)
2967 {
2968 	int err;
2969 
2970 	_perf_event_disable(bp);
2971 
2972 	err = modify_user_hw_breakpoint_check(bp, attr, true);
2973 
2974 	if (!bp->attr.disabled)
2975 		_perf_event_enable(bp);
2976 
2977 	return err;
2978 }
2979 
2980 static int perf_event_modify_attr(struct perf_event *event,
2981 				  struct perf_event_attr *attr)
2982 {
2983 	if (event->attr.type != attr->type)
2984 		return -EINVAL;
2985 
2986 	switch (event->attr.type) {
2987 	case PERF_TYPE_BREAKPOINT:
2988 		return perf_event_modify_breakpoint(event, attr);
2989 	default:
2990 		/* Place holder for future additions. */
2991 		return -EOPNOTSUPP;
2992 	}
2993 }
2994 
2995 static void ctx_sched_out(struct perf_event_context *ctx,
2996 			  struct perf_cpu_context *cpuctx,
2997 			  enum event_type_t event_type)
2998 {
2999 	struct perf_event *event, *tmp;
3000 	int is_active = ctx->is_active;
3001 
3002 	lockdep_assert_held(&ctx->lock);
3003 
3004 	if (likely(!ctx->nr_events)) {
3005 		/*
3006 		 * See __perf_remove_from_context().
3007 		 */
3008 		WARN_ON_ONCE(ctx->is_active);
3009 		if (ctx->task)
3010 			WARN_ON_ONCE(cpuctx->task_ctx);
3011 		return;
3012 	}
3013 
3014 	ctx->is_active &= ~event_type;
3015 	if (!(ctx->is_active & EVENT_ALL))
3016 		ctx->is_active = 0;
3017 
3018 	if (ctx->task) {
3019 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3020 		if (!ctx->is_active)
3021 			cpuctx->task_ctx = NULL;
3022 	}
3023 
3024 	/*
3025 	 * Always update time if it was set; not only when it changes.
3026 	 * Otherwise we can 'forget' to update time for any but the last
3027 	 * context we sched out. For example:
3028 	 *
3029 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3030 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3031 	 *
3032 	 * would only update time for the pinned events.
3033 	 */
3034 	if (is_active & EVENT_TIME) {
3035 		/* update (and stop) ctx time */
3036 		update_context_time(ctx);
3037 		update_cgrp_time_from_cpuctx(cpuctx);
3038 	}
3039 
3040 	is_active ^= ctx->is_active; /* changed bits */
3041 
3042 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3043 		return;
3044 
3045 	/*
3046 	 * If we had been multiplexing, no rotations are necessary, now no events
3047 	 * are active.
3048 	 */
3049 	ctx->rotate_necessary = 0;
3050 
3051 	perf_pmu_disable(ctx->pmu);
3052 	if (is_active & EVENT_PINNED) {
3053 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3054 			group_sched_out(event, cpuctx, ctx);
3055 	}
3056 
3057 	if (is_active & EVENT_FLEXIBLE) {
3058 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3059 			group_sched_out(event, cpuctx, ctx);
3060 	}
3061 	perf_pmu_enable(ctx->pmu);
3062 }
3063 
3064 /*
3065  * Test whether two contexts are equivalent, i.e. whether they have both been
3066  * cloned from the same version of the same context.
3067  *
3068  * Equivalence is measured using a generation number in the context that is
3069  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3070  * and list_del_event().
3071  */
3072 static int context_equiv(struct perf_event_context *ctx1,
3073 			 struct perf_event_context *ctx2)
3074 {
3075 	lockdep_assert_held(&ctx1->lock);
3076 	lockdep_assert_held(&ctx2->lock);
3077 
3078 	/* Pinning disables the swap optimization */
3079 	if (ctx1->pin_count || ctx2->pin_count)
3080 		return 0;
3081 
3082 	/* If ctx1 is the parent of ctx2 */
3083 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3084 		return 1;
3085 
3086 	/* If ctx2 is the parent of ctx1 */
3087 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3088 		return 1;
3089 
3090 	/*
3091 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3092 	 * hierarchy, see perf_event_init_context().
3093 	 */
3094 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3095 			ctx1->parent_gen == ctx2->parent_gen)
3096 		return 1;
3097 
3098 	/* Unmatched */
3099 	return 0;
3100 }
3101 
3102 static void __perf_event_sync_stat(struct perf_event *event,
3103 				     struct perf_event *next_event)
3104 {
3105 	u64 value;
3106 
3107 	if (!event->attr.inherit_stat)
3108 		return;
3109 
3110 	/*
3111 	 * Update the event value, we cannot use perf_event_read()
3112 	 * because we're in the middle of a context switch and have IRQs
3113 	 * disabled, which upsets smp_call_function_single(), however
3114 	 * we know the event must be on the current CPU, therefore we
3115 	 * don't need to use it.
3116 	 */
3117 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3118 		event->pmu->read(event);
3119 
3120 	perf_event_update_time(event);
3121 
3122 	/*
3123 	 * In order to keep per-task stats reliable we need to flip the event
3124 	 * values when we flip the contexts.
3125 	 */
3126 	value = local64_read(&next_event->count);
3127 	value = local64_xchg(&event->count, value);
3128 	local64_set(&next_event->count, value);
3129 
3130 	swap(event->total_time_enabled, next_event->total_time_enabled);
3131 	swap(event->total_time_running, next_event->total_time_running);
3132 
3133 	/*
3134 	 * Since we swizzled the values, update the user visible data too.
3135 	 */
3136 	perf_event_update_userpage(event);
3137 	perf_event_update_userpage(next_event);
3138 }
3139 
3140 static void perf_event_sync_stat(struct perf_event_context *ctx,
3141 				   struct perf_event_context *next_ctx)
3142 {
3143 	struct perf_event *event, *next_event;
3144 
3145 	if (!ctx->nr_stat)
3146 		return;
3147 
3148 	update_context_time(ctx);
3149 
3150 	event = list_first_entry(&ctx->event_list,
3151 				   struct perf_event, event_entry);
3152 
3153 	next_event = list_first_entry(&next_ctx->event_list,
3154 					struct perf_event, event_entry);
3155 
3156 	while (&event->event_entry != &ctx->event_list &&
3157 	       &next_event->event_entry != &next_ctx->event_list) {
3158 
3159 		__perf_event_sync_stat(event, next_event);
3160 
3161 		event = list_next_entry(event, event_entry);
3162 		next_event = list_next_entry(next_event, event_entry);
3163 	}
3164 }
3165 
3166 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3167 					 struct task_struct *next)
3168 {
3169 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3170 	struct perf_event_context *next_ctx;
3171 	struct perf_event_context *parent, *next_parent;
3172 	struct perf_cpu_context *cpuctx;
3173 	int do_switch = 1;
3174 
3175 	if (likely(!ctx))
3176 		return;
3177 
3178 	cpuctx = __get_cpu_context(ctx);
3179 	if (!cpuctx->task_ctx)
3180 		return;
3181 
3182 	rcu_read_lock();
3183 	next_ctx = next->perf_event_ctxp[ctxn];
3184 	if (!next_ctx)
3185 		goto unlock;
3186 
3187 	parent = rcu_dereference(ctx->parent_ctx);
3188 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3189 
3190 	/* If neither context have a parent context; they cannot be clones. */
3191 	if (!parent && !next_parent)
3192 		goto unlock;
3193 
3194 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3195 		/*
3196 		 * Looks like the two contexts are clones, so we might be
3197 		 * able to optimize the context switch.  We lock both
3198 		 * contexts and check that they are clones under the
3199 		 * lock (including re-checking that neither has been
3200 		 * uncloned in the meantime).  It doesn't matter which
3201 		 * order we take the locks because no other cpu could
3202 		 * be trying to lock both of these tasks.
3203 		 */
3204 		raw_spin_lock(&ctx->lock);
3205 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3206 		if (context_equiv(ctx, next_ctx)) {
3207 			WRITE_ONCE(ctx->task, next);
3208 			WRITE_ONCE(next_ctx->task, task);
3209 
3210 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3211 
3212 			/*
3213 			 * RCU_INIT_POINTER here is safe because we've not
3214 			 * modified the ctx and the above modification of
3215 			 * ctx->task and ctx->task_ctx_data are immaterial
3216 			 * since those values are always verified under
3217 			 * ctx->lock which we're now holding.
3218 			 */
3219 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3220 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3221 
3222 			do_switch = 0;
3223 
3224 			perf_event_sync_stat(ctx, next_ctx);
3225 		}
3226 		raw_spin_unlock(&next_ctx->lock);
3227 		raw_spin_unlock(&ctx->lock);
3228 	}
3229 unlock:
3230 	rcu_read_unlock();
3231 
3232 	if (do_switch) {
3233 		raw_spin_lock(&ctx->lock);
3234 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3235 		raw_spin_unlock(&ctx->lock);
3236 	}
3237 }
3238 
3239 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3240 
3241 void perf_sched_cb_dec(struct pmu *pmu)
3242 {
3243 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3244 
3245 	this_cpu_dec(perf_sched_cb_usages);
3246 
3247 	if (!--cpuctx->sched_cb_usage)
3248 		list_del(&cpuctx->sched_cb_entry);
3249 }
3250 
3251 
3252 void perf_sched_cb_inc(struct pmu *pmu)
3253 {
3254 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3255 
3256 	if (!cpuctx->sched_cb_usage++)
3257 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3258 
3259 	this_cpu_inc(perf_sched_cb_usages);
3260 }
3261 
3262 /*
3263  * This function provides the context switch callback to the lower code
3264  * layer. It is invoked ONLY when the context switch callback is enabled.
3265  *
3266  * This callback is relevant even to per-cpu events; for example multi event
3267  * PEBS requires this to provide PID/TID information. This requires we flush
3268  * all queued PEBS records before we context switch to a new task.
3269  */
3270 static void perf_pmu_sched_task(struct task_struct *prev,
3271 				struct task_struct *next,
3272 				bool sched_in)
3273 {
3274 	struct perf_cpu_context *cpuctx;
3275 	struct pmu *pmu;
3276 
3277 	if (prev == next)
3278 		return;
3279 
3280 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3281 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3282 
3283 		if (WARN_ON_ONCE(!pmu->sched_task))
3284 			continue;
3285 
3286 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3287 		perf_pmu_disable(pmu);
3288 
3289 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3290 
3291 		perf_pmu_enable(pmu);
3292 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3293 	}
3294 }
3295 
3296 static void perf_event_switch(struct task_struct *task,
3297 			      struct task_struct *next_prev, bool sched_in);
3298 
3299 #define for_each_task_context_nr(ctxn)					\
3300 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3301 
3302 /*
3303  * Called from scheduler to remove the events of the current task,
3304  * with interrupts disabled.
3305  *
3306  * We stop each event and update the event value in event->count.
3307  *
3308  * This does not protect us against NMI, but disable()
3309  * sets the disabled bit in the control field of event _before_
3310  * accessing the event control register. If a NMI hits, then it will
3311  * not restart the event.
3312  */
3313 void __perf_event_task_sched_out(struct task_struct *task,
3314 				 struct task_struct *next)
3315 {
3316 	int ctxn;
3317 
3318 	if (__this_cpu_read(perf_sched_cb_usages))
3319 		perf_pmu_sched_task(task, next, false);
3320 
3321 	if (atomic_read(&nr_switch_events))
3322 		perf_event_switch(task, next, false);
3323 
3324 	for_each_task_context_nr(ctxn)
3325 		perf_event_context_sched_out(task, ctxn, next);
3326 
3327 	/*
3328 	 * if cgroup events exist on this CPU, then we need
3329 	 * to check if we have to switch out PMU state.
3330 	 * cgroup event are system-wide mode only
3331 	 */
3332 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3333 		perf_cgroup_sched_out(task, next);
3334 }
3335 
3336 /*
3337  * Called with IRQs disabled
3338  */
3339 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3340 			      enum event_type_t event_type)
3341 {
3342 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3343 }
3344 
3345 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3346 			      int (*func)(struct perf_event *, void *), void *data)
3347 {
3348 	struct perf_event **evt, *evt1, *evt2;
3349 	int ret;
3350 
3351 	evt1 = perf_event_groups_first(groups, -1);
3352 	evt2 = perf_event_groups_first(groups, cpu);
3353 
3354 	while (evt1 || evt2) {
3355 		if (evt1 && evt2) {
3356 			if (evt1->group_index < evt2->group_index)
3357 				evt = &evt1;
3358 			else
3359 				evt = &evt2;
3360 		} else if (evt1) {
3361 			evt = &evt1;
3362 		} else {
3363 			evt = &evt2;
3364 		}
3365 
3366 		ret = func(*evt, data);
3367 		if (ret)
3368 			return ret;
3369 
3370 		*evt = perf_event_groups_next(*evt);
3371 	}
3372 
3373 	return 0;
3374 }
3375 
3376 struct sched_in_data {
3377 	struct perf_event_context *ctx;
3378 	struct perf_cpu_context *cpuctx;
3379 	int can_add_hw;
3380 };
3381 
3382 static int pinned_sched_in(struct perf_event *event, void *data)
3383 {
3384 	struct sched_in_data *sid = data;
3385 
3386 	if (event->state <= PERF_EVENT_STATE_OFF)
3387 		return 0;
3388 
3389 	if (!event_filter_match(event))
3390 		return 0;
3391 
3392 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3393 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3394 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3395 	}
3396 
3397 	/*
3398 	 * If this pinned group hasn't been scheduled,
3399 	 * put it in error state.
3400 	 */
3401 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3402 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3403 
3404 	return 0;
3405 }
3406 
3407 static int flexible_sched_in(struct perf_event *event, void *data)
3408 {
3409 	struct sched_in_data *sid = data;
3410 
3411 	if (event->state <= PERF_EVENT_STATE_OFF)
3412 		return 0;
3413 
3414 	if (!event_filter_match(event))
3415 		return 0;
3416 
3417 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3418 		int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3419 		if (ret) {
3420 			sid->can_add_hw = 0;
3421 			sid->ctx->rotate_necessary = 1;
3422 			return 0;
3423 		}
3424 		list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3425 	}
3426 
3427 	return 0;
3428 }
3429 
3430 static void
3431 ctx_pinned_sched_in(struct perf_event_context *ctx,
3432 		    struct perf_cpu_context *cpuctx)
3433 {
3434 	struct sched_in_data sid = {
3435 		.ctx = ctx,
3436 		.cpuctx = cpuctx,
3437 		.can_add_hw = 1,
3438 	};
3439 
3440 	visit_groups_merge(&ctx->pinned_groups,
3441 			   smp_processor_id(),
3442 			   pinned_sched_in, &sid);
3443 }
3444 
3445 static void
3446 ctx_flexible_sched_in(struct perf_event_context *ctx,
3447 		      struct perf_cpu_context *cpuctx)
3448 {
3449 	struct sched_in_data sid = {
3450 		.ctx = ctx,
3451 		.cpuctx = cpuctx,
3452 		.can_add_hw = 1,
3453 	};
3454 
3455 	visit_groups_merge(&ctx->flexible_groups,
3456 			   smp_processor_id(),
3457 			   flexible_sched_in, &sid);
3458 }
3459 
3460 static void
3461 ctx_sched_in(struct perf_event_context *ctx,
3462 	     struct perf_cpu_context *cpuctx,
3463 	     enum event_type_t event_type,
3464 	     struct task_struct *task)
3465 {
3466 	int is_active = ctx->is_active;
3467 	u64 now;
3468 
3469 	lockdep_assert_held(&ctx->lock);
3470 
3471 	if (likely(!ctx->nr_events))
3472 		return;
3473 
3474 	ctx->is_active |= (event_type | EVENT_TIME);
3475 	if (ctx->task) {
3476 		if (!is_active)
3477 			cpuctx->task_ctx = ctx;
3478 		else
3479 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3480 	}
3481 
3482 	is_active ^= ctx->is_active; /* changed bits */
3483 
3484 	if (is_active & EVENT_TIME) {
3485 		/* start ctx time */
3486 		now = perf_clock();
3487 		ctx->timestamp = now;
3488 		perf_cgroup_set_timestamp(task, ctx);
3489 	}
3490 
3491 	/*
3492 	 * First go through the list and put on any pinned groups
3493 	 * in order to give them the best chance of going on.
3494 	 */
3495 	if (is_active & EVENT_PINNED)
3496 		ctx_pinned_sched_in(ctx, cpuctx);
3497 
3498 	/* Then walk through the lower prio flexible groups */
3499 	if (is_active & EVENT_FLEXIBLE)
3500 		ctx_flexible_sched_in(ctx, cpuctx);
3501 }
3502 
3503 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3504 			     enum event_type_t event_type,
3505 			     struct task_struct *task)
3506 {
3507 	struct perf_event_context *ctx = &cpuctx->ctx;
3508 
3509 	ctx_sched_in(ctx, cpuctx, event_type, task);
3510 }
3511 
3512 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3513 					struct task_struct *task)
3514 {
3515 	struct perf_cpu_context *cpuctx;
3516 
3517 	cpuctx = __get_cpu_context(ctx);
3518 	if (cpuctx->task_ctx == ctx)
3519 		return;
3520 
3521 	perf_ctx_lock(cpuctx, ctx);
3522 	/*
3523 	 * We must check ctx->nr_events while holding ctx->lock, such
3524 	 * that we serialize against perf_install_in_context().
3525 	 */
3526 	if (!ctx->nr_events)
3527 		goto unlock;
3528 
3529 	perf_pmu_disable(ctx->pmu);
3530 	/*
3531 	 * We want to keep the following priority order:
3532 	 * cpu pinned (that don't need to move), task pinned,
3533 	 * cpu flexible, task flexible.
3534 	 *
3535 	 * However, if task's ctx is not carrying any pinned
3536 	 * events, no need to flip the cpuctx's events around.
3537 	 */
3538 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3539 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3540 	perf_event_sched_in(cpuctx, ctx, task);
3541 	perf_pmu_enable(ctx->pmu);
3542 
3543 unlock:
3544 	perf_ctx_unlock(cpuctx, ctx);
3545 }
3546 
3547 /*
3548  * Called from scheduler to add the events of the current task
3549  * with interrupts disabled.
3550  *
3551  * We restore the event value and then enable it.
3552  *
3553  * This does not protect us against NMI, but enable()
3554  * sets the enabled bit in the control field of event _before_
3555  * accessing the event control register. If a NMI hits, then it will
3556  * keep the event running.
3557  */
3558 void __perf_event_task_sched_in(struct task_struct *prev,
3559 				struct task_struct *task)
3560 {
3561 	struct perf_event_context *ctx;
3562 	int ctxn;
3563 
3564 	/*
3565 	 * If cgroup events exist on this CPU, then we need to check if we have
3566 	 * to switch in PMU state; cgroup event are system-wide mode only.
3567 	 *
3568 	 * Since cgroup events are CPU events, we must schedule these in before
3569 	 * we schedule in the task events.
3570 	 */
3571 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3572 		perf_cgroup_sched_in(prev, task);
3573 
3574 	for_each_task_context_nr(ctxn) {
3575 		ctx = task->perf_event_ctxp[ctxn];
3576 		if (likely(!ctx))
3577 			continue;
3578 
3579 		perf_event_context_sched_in(ctx, task);
3580 	}
3581 
3582 	if (atomic_read(&nr_switch_events))
3583 		perf_event_switch(task, prev, true);
3584 
3585 	if (__this_cpu_read(perf_sched_cb_usages))
3586 		perf_pmu_sched_task(prev, task, true);
3587 }
3588 
3589 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3590 {
3591 	u64 frequency = event->attr.sample_freq;
3592 	u64 sec = NSEC_PER_SEC;
3593 	u64 divisor, dividend;
3594 
3595 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3596 
3597 	count_fls = fls64(count);
3598 	nsec_fls = fls64(nsec);
3599 	frequency_fls = fls64(frequency);
3600 	sec_fls = 30;
3601 
3602 	/*
3603 	 * We got @count in @nsec, with a target of sample_freq HZ
3604 	 * the target period becomes:
3605 	 *
3606 	 *             @count * 10^9
3607 	 * period = -------------------
3608 	 *          @nsec * sample_freq
3609 	 *
3610 	 */
3611 
3612 	/*
3613 	 * Reduce accuracy by one bit such that @a and @b converge
3614 	 * to a similar magnitude.
3615 	 */
3616 #define REDUCE_FLS(a, b)		\
3617 do {					\
3618 	if (a##_fls > b##_fls) {	\
3619 		a >>= 1;		\
3620 		a##_fls--;		\
3621 	} else {			\
3622 		b >>= 1;		\
3623 		b##_fls--;		\
3624 	}				\
3625 } while (0)
3626 
3627 	/*
3628 	 * Reduce accuracy until either term fits in a u64, then proceed with
3629 	 * the other, so that finally we can do a u64/u64 division.
3630 	 */
3631 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3632 		REDUCE_FLS(nsec, frequency);
3633 		REDUCE_FLS(sec, count);
3634 	}
3635 
3636 	if (count_fls + sec_fls > 64) {
3637 		divisor = nsec * frequency;
3638 
3639 		while (count_fls + sec_fls > 64) {
3640 			REDUCE_FLS(count, sec);
3641 			divisor >>= 1;
3642 		}
3643 
3644 		dividend = count * sec;
3645 	} else {
3646 		dividend = count * sec;
3647 
3648 		while (nsec_fls + frequency_fls > 64) {
3649 			REDUCE_FLS(nsec, frequency);
3650 			dividend >>= 1;
3651 		}
3652 
3653 		divisor = nsec * frequency;
3654 	}
3655 
3656 	if (!divisor)
3657 		return dividend;
3658 
3659 	return div64_u64(dividend, divisor);
3660 }
3661 
3662 static DEFINE_PER_CPU(int, perf_throttled_count);
3663 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3664 
3665 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3666 {
3667 	struct hw_perf_event *hwc = &event->hw;
3668 	s64 period, sample_period;
3669 	s64 delta;
3670 
3671 	period = perf_calculate_period(event, nsec, count);
3672 
3673 	delta = (s64)(period - hwc->sample_period);
3674 	delta = (delta + 7) / 8; /* low pass filter */
3675 
3676 	sample_period = hwc->sample_period + delta;
3677 
3678 	if (!sample_period)
3679 		sample_period = 1;
3680 
3681 	hwc->sample_period = sample_period;
3682 
3683 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3684 		if (disable)
3685 			event->pmu->stop(event, PERF_EF_UPDATE);
3686 
3687 		local64_set(&hwc->period_left, 0);
3688 
3689 		if (disable)
3690 			event->pmu->start(event, PERF_EF_RELOAD);
3691 	}
3692 }
3693 
3694 /*
3695  * combine freq adjustment with unthrottling to avoid two passes over the
3696  * events. At the same time, make sure, having freq events does not change
3697  * the rate of unthrottling as that would introduce bias.
3698  */
3699 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3700 					   int needs_unthr)
3701 {
3702 	struct perf_event *event;
3703 	struct hw_perf_event *hwc;
3704 	u64 now, period = TICK_NSEC;
3705 	s64 delta;
3706 
3707 	/*
3708 	 * only need to iterate over all events iff:
3709 	 * - context have events in frequency mode (needs freq adjust)
3710 	 * - there are events to unthrottle on this cpu
3711 	 */
3712 	if (!(ctx->nr_freq || needs_unthr))
3713 		return;
3714 
3715 	raw_spin_lock(&ctx->lock);
3716 	perf_pmu_disable(ctx->pmu);
3717 
3718 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3719 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3720 			continue;
3721 
3722 		if (!event_filter_match(event))
3723 			continue;
3724 
3725 		perf_pmu_disable(event->pmu);
3726 
3727 		hwc = &event->hw;
3728 
3729 		if (hwc->interrupts == MAX_INTERRUPTS) {
3730 			hwc->interrupts = 0;
3731 			perf_log_throttle(event, 1);
3732 			event->pmu->start(event, 0);
3733 		}
3734 
3735 		if (!event->attr.freq || !event->attr.sample_freq)
3736 			goto next;
3737 
3738 		/*
3739 		 * stop the event and update event->count
3740 		 */
3741 		event->pmu->stop(event, PERF_EF_UPDATE);
3742 
3743 		now = local64_read(&event->count);
3744 		delta = now - hwc->freq_count_stamp;
3745 		hwc->freq_count_stamp = now;
3746 
3747 		/*
3748 		 * restart the event
3749 		 * reload only if value has changed
3750 		 * we have stopped the event so tell that
3751 		 * to perf_adjust_period() to avoid stopping it
3752 		 * twice.
3753 		 */
3754 		if (delta > 0)
3755 			perf_adjust_period(event, period, delta, false);
3756 
3757 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3758 	next:
3759 		perf_pmu_enable(event->pmu);
3760 	}
3761 
3762 	perf_pmu_enable(ctx->pmu);
3763 	raw_spin_unlock(&ctx->lock);
3764 }
3765 
3766 /*
3767  * Move @event to the tail of the @ctx's elegible events.
3768  */
3769 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3770 {
3771 	/*
3772 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3773 	 * disabled by the inheritance code.
3774 	 */
3775 	if (ctx->rotate_disable)
3776 		return;
3777 
3778 	perf_event_groups_delete(&ctx->flexible_groups, event);
3779 	perf_event_groups_insert(&ctx->flexible_groups, event);
3780 }
3781 
3782 /* pick an event from the flexible_groups to rotate */
3783 static inline struct perf_event *
3784 ctx_event_to_rotate(struct perf_event_context *ctx)
3785 {
3786 	struct perf_event *event;
3787 
3788 	/* pick the first active flexible event */
3789 	event = list_first_entry_or_null(&ctx->flexible_active,
3790 					 struct perf_event, active_list);
3791 
3792 	/* if no active flexible event, pick the first event */
3793 	if (!event) {
3794 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3795 				      typeof(*event), group_node);
3796 	}
3797 
3798 	return event;
3799 }
3800 
3801 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3802 {
3803 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3804 	struct perf_event_context *task_ctx = NULL;
3805 	int cpu_rotate, task_rotate;
3806 
3807 	/*
3808 	 * Since we run this from IRQ context, nobody can install new
3809 	 * events, thus the event count values are stable.
3810 	 */
3811 
3812 	cpu_rotate = cpuctx->ctx.rotate_necessary;
3813 	task_ctx = cpuctx->task_ctx;
3814 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3815 
3816 	if (!(cpu_rotate || task_rotate))
3817 		return false;
3818 
3819 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3820 	perf_pmu_disable(cpuctx->ctx.pmu);
3821 
3822 	if (task_rotate)
3823 		task_event = ctx_event_to_rotate(task_ctx);
3824 	if (cpu_rotate)
3825 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
3826 
3827 	/*
3828 	 * As per the order given at ctx_resched() first 'pop' task flexible
3829 	 * and then, if needed CPU flexible.
3830 	 */
3831 	if (task_event || (task_ctx && cpu_event))
3832 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3833 	if (cpu_event)
3834 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3835 
3836 	if (task_event)
3837 		rotate_ctx(task_ctx, task_event);
3838 	if (cpu_event)
3839 		rotate_ctx(&cpuctx->ctx, cpu_event);
3840 
3841 	perf_event_sched_in(cpuctx, task_ctx, current);
3842 
3843 	perf_pmu_enable(cpuctx->ctx.pmu);
3844 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3845 
3846 	return true;
3847 }
3848 
3849 void perf_event_task_tick(void)
3850 {
3851 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3852 	struct perf_event_context *ctx, *tmp;
3853 	int throttled;
3854 
3855 	lockdep_assert_irqs_disabled();
3856 
3857 	__this_cpu_inc(perf_throttled_seq);
3858 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3859 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3860 
3861 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3862 		perf_adjust_freq_unthr_context(ctx, throttled);
3863 }
3864 
3865 static int event_enable_on_exec(struct perf_event *event,
3866 				struct perf_event_context *ctx)
3867 {
3868 	if (!event->attr.enable_on_exec)
3869 		return 0;
3870 
3871 	event->attr.enable_on_exec = 0;
3872 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3873 		return 0;
3874 
3875 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3876 
3877 	return 1;
3878 }
3879 
3880 /*
3881  * Enable all of a task's events that have been marked enable-on-exec.
3882  * This expects task == current.
3883  */
3884 static void perf_event_enable_on_exec(int ctxn)
3885 {
3886 	struct perf_event_context *ctx, *clone_ctx = NULL;
3887 	enum event_type_t event_type = 0;
3888 	struct perf_cpu_context *cpuctx;
3889 	struct perf_event *event;
3890 	unsigned long flags;
3891 	int enabled = 0;
3892 
3893 	local_irq_save(flags);
3894 	ctx = current->perf_event_ctxp[ctxn];
3895 	if (!ctx || !ctx->nr_events)
3896 		goto out;
3897 
3898 	cpuctx = __get_cpu_context(ctx);
3899 	perf_ctx_lock(cpuctx, ctx);
3900 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3901 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3902 		enabled |= event_enable_on_exec(event, ctx);
3903 		event_type |= get_event_type(event);
3904 	}
3905 
3906 	/*
3907 	 * Unclone and reschedule this context if we enabled any event.
3908 	 */
3909 	if (enabled) {
3910 		clone_ctx = unclone_ctx(ctx);
3911 		ctx_resched(cpuctx, ctx, event_type);
3912 	} else {
3913 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3914 	}
3915 	perf_ctx_unlock(cpuctx, ctx);
3916 
3917 out:
3918 	local_irq_restore(flags);
3919 
3920 	if (clone_ctx)
3921 		put_ctx(clone_ctx);
3922 }
3923 
3924 struct perf_read_data {
3925 	struct perf_event *event;
3926 	bool group;
3927 	int ret;
3928 };
3929 
3930 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3931 {
3932 	u16 local_pkg, event_pkg;
3933 
3934 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3935 		int local_cpu = smp_processor_id();
3936 
3937 		event_pkg = topology_physical_package_id(event_cpu);
3938 		local_pkg = topology_physical_package_id(local_cpu);
3939 
3940 		if (event_pkg == local_pkg)
3941 			return local_cpu;
3942 	}
3943 
3944 	return event_cpu;
3945 }
3946 
3947 /*
3948  * Cross CPU call to read the hardware event
3949  */
3950 static void __perf_event_read(void *info)
3951 {
3952 	struct perf_read_data *data = info;
3953 	struct perf_event *sub, *event = data->event;
3954 	struct perf_event_context *ctx = event->ctx;
3955 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3956 	struct pmu *pmu = event->pmu;
3957 
3958 	/*
3959 	 * If this is a task context, we need to check whether it is
3960 	 * the current task context of this cpu.  If not it has been
3961 	 * scheduled out before the smp call arrived.  In that case
3962 	 * event->count would have been updated to a recent sample
3963 	 * when the event was scheduled out.
3964 	 */
3965 	if (ctx->task && cpuctx->task_ctx != ctx)
3966 		return;
3967 
3968 	raw_spin_lock(&ctx->lock);
3969 	if (ctx->is_active & EVENT_TIME) {
3970 		update_context_time(ctx);
3971 		update_cgrp_time_from_event(event);
3972 	}
3973 
3974 	perf_event_update_time(event);
3975 	if (data->group)
3976 		perf_event_update_sibling_time(event);
3977 
3978 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3979 		goto unlock;
3980 
3981 	if (!data->group) {
3982 		pmu->read(event);
3983 		data->ret = 0;
3984 		goto unlock;
3985 	}
3986 
3987 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3988 
3989 	pmu->read(event);
3990 
3991 	for_each_sibling_event(sub, event) {
3992 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3993 			/*
3994 			 * Use sibling's PMU rather than @event's since
3995 			 * sibling could be on different (eg: software) PMU.
3996 			 */
3997 			sub->pmu->read(sub);
3998 		}
3999 	}
4000 
4001 	data->ret = pmu->commit_txn(pmu);
4002 
4003 unlock:
4004 	raw_spin_unlock(&ctx->lock);
4005 }
4006 
4007 static inline u64 perf_event_count(struct perf_event *event)
4008 {
4009 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4010 }
4011 
4012 /*
4013  * NMI-safe method to read a local event, that is an event that
4014  * is:
4015  *   - either for the current task, or for this CPU
4016  *   - does not have inherit set, for inherited task events
4017  *     will not be local and we cannot read them atomically
4018  *   - must not have a pmu::count method
4019  */
4020 int perf_event_read_local(struct perf_event *event, u64 *value,
4021 			  u64 *enabled, u64 *running)
4022 {
4023 	unsigned long flags;
4024 	int ret = 0;
4025 
4026 	/*
4027 	 * Disabling interrupts avoids all counter scheduling (context
4028 	 * switches, timer based rotation and IPIs).
4029 	 */
4030 	local_irq_save(flags);
4031 
4032 	/*
4033 	 * It must not be an event with inherit set, we cannot read
4034 	 * all child counters from atomic context.
4035 	 */
4036 	if (event->attr.inherit) {
4037 		ret = -EOPNOTSUPP;
4038 		goto out;
4039 	}
4040 
4041 	/* If this is a per-task event, it must be for current */
4042 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4043 	    event->hw.target != current) {
4044 		ret = -EINVAL;
4045 		goto out;
4046 	}
4047 
4048 	/* If this is a per-CPU event, it must be for this CPU */
4049 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4050 	    event->cpu != smp_processor_id()) {
4051 		ret = -EINVAL;
4052 		goto out;
4053 	}
4054 
4055 	/* If this is a pinned event it must be running on this CPU */
4056 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4057 		ret = -EBUSY;
4058 		goto out;
4059 	}
4060 
4061 	/*
4062 	 * If the event is currently on this CPU, its either a per-task event,
4063 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4064 	 * oncpu == -1).
4065 	 */
4066 	if (event->oncpu == smp_processor_id())
4067 		event->pmu->read(event);
4068 
4069 	*value = local64_read(&event->count);
4070 	if (enabled || running) {
4071 		u64 now = event->shadow_ctx_time + perf_clock();
4072 		u64 __enabled, __running;
4073 
4074 		__perf_update_times(event, now, &__enabled, &__running);
4075 		if (enabled)
4076 			*enabled = __enabled;
4077 		if (running)
4078 			*running = __running;
4079 	}
4080 out:
4081 	local_irq_restore(flags);
4082 
4083 	return ret;
4084 }
4085 
4086 static int perf_event_read(struct perf_event *event, bool group)
4087 {
4088 	enum perf_event_state state = READ_ONCE(event->state);
4089 	int event_cpu, ret = 0;
4090 
4091 	/*
4092 	 * If event is enabled and currently active on a CPU, update the
4093 	 * value in the event structure:
4094 	 */
4095 again:
4096 	if (state == PERF_EVENT_STATE_ACTIVE) {
4097 		struct perf_read_data data;
4098 
4099 		/*
4100 		 * Orders the ->state and ->oncpu loads such that if we see
4101 		 * ACTIVE we must also see the right ->oncpu.
4102 		 *
4103 		 * Matches the smp_wmb() from event_sched_in().
4104 		 */
4105 		smp_rmb();
4106 
4107 		event_cpu = READ_ONCE(event->oncpu);
4108 		if ((unsigned)event_cpu >= nr_cpu_ids)
4109 			return 0;
4110 
4111 		data = (struct perf_read_data){
4112 			.event = event,
4113 			.group = group,
4114 			.ret = 0,
4115 		};
4116 
4117 		preempt_disable();
4118 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4119 
4120 		/*
4121 		 * Purposely ignore the smp_call_function_single() return
4122 		 * value.
4123 		 *
4124 		 * If event_cpu isn't a valid CPU it means the event got
4125 		 * scheduled out and that will have updated the event count.
4126 		 *
4127 		 * Therefore, either way, we'll have an up-to-date event count
4128 		 * after this.
4129 		 */
4130 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4131 		preempt_enable();
4132 		ret = data.ret;
4133 
4134 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4135 		struct perf_event_context *ctx = event->ctx;
4136 		unsigned long flags;
4137 
4138 		raw_spin_lock_irqsave(&ctx->lock, flags);
4139 		state = event->state;
4140 		if (state != PERF_EVENT_STATE_INACTIVE) {
4141 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4142 			goto again;
4143 		}
4144 
4145 		/*
4146 		 * May read while context is not active (e.g., thread is
4147 		 * blocked), in that case we cannot update context time
4148 		 */
4149 		if (ctx->is_active & EVENT_TIME) {
4150 			update_context_time(ctx);
4151 			update_cgrp_time_from_event(event);
4152 		}
4153 
4154 		perf_event_update_time(event);
4155 		if (group)
4156 			perf_event_update_sibling_time(event);
4157 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4158 	}
4159 
4160 	return ret;
4161 }
4162 
4163 /*
4164  * Initialize the perf_event context in a task_struct:
4165  */
4166 static void __perf_event_init_context(struct perf_event_context *ctx)
4167 {
4168 	raw_spin_lock_init(&ctx->lock);
4169 	mutex_init(&ctx->mutex);
4170 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4171 	perf_event_groups_init(&ctx->pinned_groups);
4172 	perf_event_groups_init(&ctx->flexible_groups);
4173 	INIT_LIST_HEAD(&ctx->event_list);
4174 	INIT_LIST_HEAD(&ctx->pinned_active);
4175 	INIT_LIST_HEAD(&ctx->flexible_active);
4176 	refcount_set(&ctx->refcount, 1);
4177 }
4178 
4179 static struct perf_event_context *
4180 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4181 {
4182 	struct perf_event_context *ctx;
4183 
4184 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4185 	if (!ctx)
4186 		return NULL;
4187 
4188 	__perf_event_init_context(ctx);
4189 	if (task)
4190 		ctx->task = get_task_struct(task);
4191 	ctx->pmu = pmu;
4192 
4193 	return ctx;
4194 }
4195 
4196 static struct task_struct *
4197 find_lively_task_by_vpid(pid_t vpid)
4198 {
4199 	struct task_struct *task;
4200 
4201 	rcu_read_lock();
4202 	if (!vpid)
4203 		task = current;
4204 	else
4205 		task = find_task_by_vpid(vpid);
4206 	if (task)
4207 		get_task_struct(task);
4208 	rcu_read_unlock();
4209 
4210 	if (!task)
4211 		return ERR_PTR(-ESRCH);
4212 
4213 	return task;
4214 }
4215 
4216 /*
4217  * Returns a matching context with refcount and pincount.
4218  */
4219 static struct perf_event_context *
4220 find_get_context(struct pmu *pmu, struct task_struct *task,
4221 		struct perf_event *event)
4222 {
4223 	struct perf_event_context *ctx, *clone_ctx = NULL;
4224 	struct perf_cpu_context *cpuctx;
4225 	void *task_ctx_data = NULL;
4226 	unsigned long flags;
4227 	int ctxn, err;
4228 	int cpu = event->cpu;
4229 
4230 	if (!task) {
4231 		/* Must be root to operate on a CPU event: */
4232 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4233 			return ERR_PTR(-EACCES);
4234 
4235 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4236 		ctx = &cpuctx->ctx;
4237 		get_ctx(ctx);
4238 		++ctx->pin_count;
4239 
4240 		return ctx;
4241 	}
4242 
4243 	err = -EINVAL;
4244 	ctxn = pmu->task_ctx_nr;
4245 	if (ctxn < 0)
4246 		goto errout;
4247 
4248 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4249 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4250 		if (!task_ctx_data) {
4251 			err = -ENOMEM;
4252 			goto errout;
4253 		}
4254 	}
4255 
4256 retry:
4257 	ctx = perf_lock_task_context(task, ctxn, &flags);
4258 	if (ctx) {
4259 		clone_ctx = unclone_ctx(ctx);
4260 		++ctx->pin_count;
4261 
4262 		if (task_ctx_data && !ctx->task_ctx_data) {
4263 			ctx->task_ctx_data = task_ctx_data;
4264 			task_ctx_data = NULL;
4265 		}
4266 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4267 
4268 		if (clone_ctx)
4269 			put_ctx(clone_ctx);
4270 	} else {
4271 		ctx = alloc_perf_context(pmu, task);
4272 		err = -ENOMEM;
4273 		if (!ctx)
4274 			goto errout;
4275 
4276 		if (task_ctx_data) {
4277 			ctx->task_ctx_data = task_ctx_data;
4278 			task_ctx_data = NULL;
4279 		}
4280 
4281 		err = 0;
4282 		mutex_lock(&task->perf_event_mutex);
4283 		/*
4284 		 * If it has already passed perf_event_exit_task().
4285 		 * we must see PF_EXITING, it takes this mutex too.
4286 		 */
4287 		if (task->flags & PF_EXITING)
4288 			err = -ESRCH;
4289 		else if (task->perf_event_ctxp[ctxn])
4290 			err = -EAGAIN;
4291 		else {
4292 			get_ctx(ctx);
4293 			++ctx->pin_count;
4294 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4295 		}
4296 		mutex_unlock(&task->perf_event_mutex);
4297 
4298 		if (unlikely(err)) {
4299 			put_ctx(ctx);
4300 
4301 			if (err == -EAGAIN)
4302 				goto retry;
4303 			goto errout;
4304 		}
4305 	}
4306 
4307 	kfree(task_ctx_data);
4308 	return ctx;
4309 
4310 errout:
4311 	kfree(task_ctx_data);
4312 	return ERR_PTR(err);
4313 }
4314 
4315 static void perf_event_free_filter(struct perf_event *event);
4316 static void perf_event_free_bpf_prog(struct perf_event *event);
4317 
4318 static void free_event_rcu(struct rcu_head *head)
4319 {
4320 	struct perf_event *event;
4321 
4322 	event = container_of(head, struct perf_event, rcu_head);
4323 	if (event->ns)
4324 		put_pid_ns(event->ns);
4325 	perf_event_free_filter(event);
4326 	kfree(event);
4327 }
4328 
4329 static void ring_buffer_attach(struct perf_event *event,
4330 			       struct ring_buffer *rb);
4331 
4332 static void detach_sb_event(struct perf_event *event)
4333 {
4334 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4335 
4336 	raw_spin_lock(&pel->lock);
4337 	list_del_rcu(&event->sb_list);
4338 	raw_spin_unlock(&pel->lock);
4339 }
4340 
4341 static bool is_sb_event(struct perf_event *event)
4342 {
4343 	struct perf_event_attr *attr = &event->attr;
4344 
4345 	if (event->parent)
4346 		return false;
4347 
4348 	if (event->attach_state & PERF_ATTACH_TASK)
4349 		return false;
4350 
4351 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4352 	    attr->comm || attr->comm_exec ||
4353 	    attr->task || attr->ksymbol ||
4354 	    attr->context_switch ||
4355 	    attr->bpf_event)
4356 		return true;
4357 	return false;
4358 }
4359 
4360 static void unaccount_pmu_sb_event(struct perf_event *event)
4361 {
4362 	if (is_sb_event(event))
4363 		detach_sb_event(event);
4364 }
4365 
4366 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4367 {
4368 	if (event->parent)
4369 		return;
4370 
4371 	if (is_cgroup_event(event))
4372 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4373 }
4374 
4375 #ifdef CONFIG_NO_HZ_FULL
4376 static DEFINE_SPINLOCK(nr_freq_lock);
4377 #endif
4378 
4379 static void unaccount_freq_event_nohz(void)
4380 {
4381 #ifdef CONFIG_NO_HZ_FULL
4382 	spin_lock(&nr_freq_lock);
4383 	if (atomic_dec_and_test(&nr_freq_events))
4384 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4385 	spin_unlock(&nr_freq_lock);
4386 #endif
4387 }
4388 
4389 static void unaccount_freq_event(void)
4390 {
4391 	if (tick_nohz_full_enabled())
4392 		unaccount_freq_event_nohz();
4393 	else
4394 		atomic_dec(&nr_freq_events);
4395 }
4396 
4397 static void unaccount_event(struct perf_event *event)
4398 {
4399 	bool dec = false;
4400 
4401 	if (event->parent)
4402 		return;
4403 
4404 	if (event->attach_state & PERF_ATTACH_TASK)
4405 		dec = true;
4406 	if (event->attr.mmap || event->attr.mmap_data)
4407 		atomic_dec(&nr_mmap_events);
4408 	if (event->attr.comm)
4409 		atomic_dec(&nr_comm_events);
4410 	if (event->attr.namespaces)
4411 		atomic_dec(&nr_namespaces_events);
4412 	if (event->attr.task)
4413 		atomic_dec(&nr_task_events);
4414 	if (event->attr.freq)
4415 		unaccount_freq_event();
4416 	if (event->attr.context_switch) {
4417 		dec = true;
4418 		atomic_dec(&nr_switch_events);
4419 	}
4420 	if (is_cgroup_event(event))
4421 		dec = true;
4422 	if (has_branch_stack(event))
4423 		dec = true;
4424 	if (event->attr.ksymbol)
4425 		atomic_dec(&nr_ksymbol_events);
4426 	if (event->attr.bpf_event)
4427 		atomic_dec(&nr_bpf_events);
4428 
4429 	if (dec) {
4430 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4431 			schedule_delayed_work(&perf_sched_work, HZ);
4432 	}
4433 
4434 	unaccount_event_cpu(event, event->cpu);
4435 
4436 	unaccount_pmu_sb_event(event);
4437 }
4438 
4439 static void perf_sched_delayed(struct work_struct *work)
4440 {
4441 	mutex_lock(&perf_sched_mutex);
4442 	if (atomic_dec_and_test(&perf_sched_count))
4443 		static_branch_disable(&perf_sched_events);
4444 	mutex_unlock(&perf_sched_mutex);
4445 }
4446 
4447 /*
4448  * The following implement mutual exclusion of events on "exclusive" pmus
4449  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4450  * at a time, so we disallow creating events that might conflict, namely:
4451  *
4452  *  1) cpu-wide events in the presence of per-task events,
4453  *  2) per-task events in the presence of cpu-wide events,
4454  *  3) two matching events on the same context.
4455  *
4456  * The former two cases are handled in the allocation path (perf_event_alloc(),
4457  * _free_event()), the latter -- before the first perf_install_in_context().
4458  */
4459 static int exclusive_event_init(struct perf_event *event)
4460 {
4461 	struct pmu *pmu = event->pmu;
4462 
4463 	if (!is_exclusive_pmu(pmu))
4464 		return 0;
4465 
4466 	/*
4467 	 * Prevent co-existence of per-task and cpu-wide events on the
4468 	 * same exclusive pmu.
4469 	 *
4470 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4471 	 * events on this "exclusive" pmu, positive means there are
4472 	 * per-task events.
4473 	 *
4474 	 * Since this is called in perf_event_alloc() path, event::ctx
4475 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4476 	 * to mean "per-task event", because unlike other attach states it
4477 	 * never gets cleared.
4478 	 */
4479 	if (event->attach_state & PERF_ATTACH_TASK) {
4480 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4481 			return -EBUSY;
4482 	} else {
4483 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4484 			return -EBUSY;
4485 	}
4486 
4487 	return 0;
4488 }
4489 
4490 static void exclusive_event_destroy(struct perf_event *event)
4491 {
4492 	struct pmu *pmu = event->pmu;
4493 
4494 	if (!is_exclusive_pmu(pmu))
4495 		return;
4496 
4497 	/* see comment in exclusive_event_init() */
4498 	if (event->attach_state & PERF_ATTACH_TASK)
4499 		atomic_dec(&pmu->exclusive_cnt);
4500 	else
4501 		atomic_inc(&pmu->exclusive_cnt);
4502 }
4503 
4504 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4505 {
4506 	if ((e1->pmu == e2->pmu) &&
4507 	    (e1->cpu == e2->cpu ||
4508 	     e1->cpu == -1 ||
4509 	     e2->cpu == -1))
4510 		return true;
4511 	return false;
4512 }
4513 
4514 static bool exclusive_event_installable(struct perf_event *event,
4515 					struct perf_event_context *ctx)
4516 {
4517 	struct perf_event *iter_event;
4518 	struct pmu *pmu = event->pmu;
4519 
4520 	lockdep_assert_held(&ctx->mutex);
4521 
4522 	if (!is_exclusive_pmu(pmu))
4523 		return true;
4524 
4525 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4526 		if (exclusive_event_match(iter_event, event))
4527 			return false;
4528 	}
4529 
4530 	return true;
4531 }
4532 
4533 static void perf_addr_filters_splice(struct perf_event *event,
4534 				       struct list_head *head);
4535 
4536 static void _free_event(struct perf_event *event)
4537 {
4538 	irq_work_sync(&event->pending);
4539 
4540 	unaccount_event(event);
4541 
4542 	if (event->rb) {
4543 		/*
4544 		 * Can happen when we close an event with re-directed output.
4545 		 *
4546 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4547 		 * over us; possibly making our ring_buffer_put() the last.
4548 		 */
4549 		mutex_lock(&event->mmap_mutex);
4550 		ring_buffer_attach(event, NULL);
4551 		mutex_unlock(&event->mmap_mutex);
4552 	}
4553 
4554 	if (is_cgroup_event(event))
4555 		perf_detach_cgroup(event);
4556 
4557 	if (!event->parent) {
4558 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4559 			put_callchain_buffers();
4560 	}
4561 
4562 	perf_event_free_bpf_prog(event);
4563 	perf_addr_filters_splice(event, NULL);
4564 	kfree(event->addr_filter_ranges);
4565 
4566 	if (event->destroy)
4567 		event->destroy(event);
4568 
4569 	/*
4570 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4571 	 * hw.target.
4572 	 */
4573 	if (event->hw.target)
4574 		put_task_struct(event->hw.target);
4575 
4576 	/*
4577 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4578 	 * all task references must be cleaned up.
4579 	 */
4580 	if (event->ctx)
4581 		put_ctx(event->ctx);
4582 
4583 	exclusive_event_destroy(event);
4584 	module_put(event->pmu->module);
4585 
4586 	call_rcu(&event->rcu_head, free_event_rcu);
4587 }
4588 
4589 /*
4590  * Used to free events which have a known refcount of 1, such as in error paths
4591  * where the event isn't exposed yet and inherited events.
4592  */
4593 static void free_event(struct perf_event *event)
4594 {
4595 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4596 				"unexpected event refcount: %ld; ptr=%p\n",
4597 				atomic_long_read(&event->refcount), event)) {
4598 		/* leak to avoid use-after-free */
4599 		return;
4600 	}
4601 
4602 	_free_event(event);
4603 }
4604 
4605 /*
4606  * Remove user event from the owner task.
4607  */
4608 static void perf_remove_from_owner(struct perf_event *event)
4609 {
4610 	struct task_struct *owner;
4611 
4612 	rcu_read_lock();
4613 	/*
4614 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4615 	 * observe !owner it means the list deletion is complete and we can
4616 	 * indeed free this event, otherwise we need to serialize on
4617 	 * owner->perf_event_mutex.
4618 	 */
4619 	owner = READ_ONCE(event->owner);
4620 	if (owner) {
4621 		/*
4622 		 * Since delayed_put_task_struct() also drops the last
4623 		 * task reference we can safely take a new reference
4624 		 * while holding the rcu_read_lock().
4625 		 */
4626 		get_task_struct(owner);
4627 	}
4628 	rcu_read_unlock();
4629 
4630 	if (owner) {
4631 		/*
4632 		 * If we're here through perf_event_exit_task() we're already
4633 		 * holding ctx->mutex which would be an inversion wrt. the
4634 		 * normal lock order.
4635 		 *
4636 		 * However we can safely take this lock because its the child
4637 		 * ctx->mutex.
4638 		 */
4639 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4640 
4641 		/*
4642 		 * We have to re-check the event->owner field, if it is cleared
4643 		 * we raced with perf_event_exit_task(), acquiring the mutex
4644 		 * ensured they're done, and we can proceed with freeing the
4645 		 * event.
4646 		 */
4647 		if (event->owner) {
4648 			list_del_init(&event->owner_entry);
4649 			smp_store_release(&event->owner, NULL);
4650 		}
4651 		mutex_unlock(&owner->perf_event_mutex);
4652 		put_task_struct(owner);
4653 	}
4654 }
4655 
4656 static void put_event(struct perf_event *event)
4657 {
4658 	if (!atomic_long_dec_and_test(&event->refcount))
4659 		return;
4660 
4661 	_free_event(event);
4662 }
4663 
4664 /*
4665  * Kill an event dead; while event:refcount will preserve the event
4666  * object, it will not preserve its functionality. Once the last 'user'
4667  * gives up the object, we'll destroy the thing.
4668  */
4669 int perf_event_release_kernel(struct perf_event *event)
4670 {
4671 	struct perf_event_context *ctx = event->ctx;
4672 	struct perf_event *child, *tmp;
4673 	LIST_HEAD(free_list);
4674 
4675 	/*
4676 	 * If we got here through err_file: fput(event_file); we will not have
4677 	 * attached to a context yet.
4678 	 */
4679 	if (!ctx) {
4680 		WARN_ON_ONCE(event->attach_state &
4681 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4682 		goto no_ctx;
4683 	}
4684 
4685 	if (!is_kernel_event(event))
4686 		perf_remove_from_owner(event);
4687 
4688 	ctx = perf_event_ctx_lock(event);
4689 	WARN_ON_ONCE(ctx->parent_ctx);
4690 	perf_remove_from_context(event, DETACH_GROUP);
4691 
4692 	raw_spin_lock_irq(&ctx->lock);
4693 	/*
4694 	 * Mark this event as STATE_DEAD, there is no external reference to it
4695 	 * anymore.
4696 	 *
4697 	 * Anybody acquiring event->child_mutex after the below loop _must_
4698 	 * also see this, most importantly inherit_event() which will avoid
4699 	 * placing more children on the list.
4700 	 *
4701 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4702 	 * child events.
4703 	 */
4704 	event->state = PERF_EVENT_STATE_DEAD;
4705 	raw_spin_unlock_irq(&ctx->lock);
4706 
4707 	perf_event_ctx_unlock(event, ctx);
4708 
4709 again:
4710 	mutex_lock(&event->child_mutex);
4711 	list_for_each_entry(child, &event->child_list, child_list) {
4712 
4713 		/*
4714 		 * Cannot change, child events are not migrated, see the
4715 		 * comment with perf_event_ctx_lock_nested().
4716 		 */
4717 		ctx = READ_ONCE(child->ctx);
4718 		/*
4719 		 * Since child_mutex nests inside ctx::mutex, we must jump
4720 		 * through hoops. We start by grabbing a reference on the ctx.
4721 		 *
4722 		 * Since the event cannot get freed while we hold the
4723 		 * child_mutex, the context must also exist and have a !0
4724 		 * reference count.
4725 		 */
4726 		get_ctx(ctx);
4727 
4728 		/*
4729 		 * Now that we have a ctx ref, we can drop child_mutex, and
4730 		 * acquire ctx::mutex without fear of it going away. Then we
4731 		 * can re-acquire child_mutex.
4732 		 */
4733 		mutex_unlock(&event->child_mutex);
4734 		mutex_lock(&ctx->mutex);
4735 		mutex_lock(&event->child_mutex);
4736 
4737 		/*
4738 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4739 		 * state, if child is still the first entry, it didn't get freed
4740 		 * and we can continue doing so.
4741 		 */
4742 		tmp = list_first_entry_or_null(&event->child_list,
4743 					       struct perf_event, child_list);
4744 		if (tmp == child) {
4745 			perf_remove_from_context(child, DETACH_GROUP);
4746 			list_move(&child->child_list, &free_list);
4747 			/*
4748 			 * This matches the refcount bump in inherit_event();
4749 			 * this can't be the last reference.
4750 			 */
4751 			put_event(event);
4752 		}
4753 
4754 		mutex_unlock(&event->child_mutex);
4755 		mutex_unlock(&ctx->mutex);
4756 		put_ctx(ctx);
4757 		goto again;
4758 	}
4759 	mutex_unlock(&event->child_mutex);
4760 
4761 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4762 		void *var = &child->ctx->refcount;
4763 
4764 		list_del(&child->child_list);
4765 		free_event(child);
4766 
4767 		/*
4768 		 * Wake any perf_event_free_task() waiting for this event to be
4769 		 * freed.
4770 		 */
4771 		smp_mb(); /* pairs with wait_var_event() */
4772 		wake_up_var(var);
4773 	}
4774 
4775 no_ctx:
4776 	put_event(event); /* Must be the 'last' reference */
4777 	return 0;
4778 }
4779 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4780 
4781 /*
4782  * Called when the last reference to the file is gone.
4783  */
4784 static int perf_release(struct inode *inode, struct file *file)
4785 {
4786 	perf_event_release_kernel(file->private_data);
4787 	return 0;
4788 }
4789 
4790 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4791 {
4792 	struct perf_event *child;
4793 	u64 total = 0;
4794 
4795 	*enabled = 0;
4796 	*running = 0;
4797 
4798 	mutex_lock(&event->child_mutex);
4799 
4800 	(void)perf_event_read(event, false);
4801 	total += perf_event_count(event);
4802 
4803 	*enabled += event->total_time_enabled +
4804 			atomic64_read(&event->child_total_time_enabled);
4805 	*running += event->total_time_running +
4806 			atomic64_read(&event->child_total_time_running);
4807 
4808 	list_for_each_entry(child, &event->child_list, child_list) {
4809 		(void)perf_event_read(child, false);
4810 		total += perf_event_count(child);
4811 		*enabled += child->total_time_enabled;
4812 		*running += child->total_time_running;
4813 	}
4814 	mutex_unlock(&event->child_mutex);
4815 
4816 	return total;
4817 }
4818 
4819 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4820 {
4821 	struct perf_event_context *ctx;
4822 	u64 count;
4823 
4824 	ctx = perf_event_ctx_lock(event);
4825 	count = __perf_event_read_value(event, enabled, running);
4826 	perf_event_ctx_unlock(event, ctx);
4827 
4828 	return count;
4829 }
4830 EXPORT_SYMBOL_GPL(perf_event_read_value);
4831 
4832 static int __perf_read_group_add(struct perf_event *leader,
4833 					u64 read_format, u64 *values)
4834 {
4835 	struct perf_event_context *ctx = leader->ctx;
4836 	struct perf_event *sub;
4837 	unsigned long flags;
4838 	int n = 1; /* skip @nr */
4839 	int ret;
4840 
4841 	ret = perf_event_read(leader, true);
4842 	if (ret)
4843 		return ret;
4844 
4845 	raw_spin_lock_irqsave(&ctx->lock, flags);
4846 
4847 	/*
4848 	 * Since we co-schedule groups, {enabled,running} times of siblings
4849 	 * will be identical to those of the leader, so we only publish one
4850 	 * set.
4851 	 */
4852 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4853 		values[n++] += leader->total_time_enabled +
4854 			atomic64_read(&leader->child_total_time_enabled);
4855 	}
4856 
4857 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4858 		values[n++] += leader->total_time_running +
4859 			atomic64_read(&leader->child_total_time_running);
4860 	}
4861 
4862 	/*
4863 	 * Write {count,id} tuples for every sibling.
4864 	 */
4865 	values[n++] += perf_event_count(leader);
4866 	if (read_format & PERF_FORMAT_ID)
4867 		values[n++] = primary_event_id(leader);
4868 
4869 	for_each_sibling_event(sub, leader) {
4870 		values[n++] += perf_event_count(sub);
4871 		if (read_format & PERF_FORMAT_ID)
4872 			values[n++] = primary_event_id(sub);
4873 	}
4874 
4875 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4876 	return 0;
4877 }
4878 
4879 static int perf_read_group(struct perf_event *event,
4880 				   u64 read_format, char __user *buf)
4881 {
4882 	struct perf_event *leader = event->group_leader, *child;
4883 	struct perf_event_context *ctx = leader->ctx;
4884 	int ret;
4885 	u64 *values;
4886 
4887 	lockdep_assert_held(&ctx->mutex);
4888 
4889 	values = kzalloc(event->read_size, GFP_KERNEL);
4890 	if (!values)
4891 		return -ENOMEM;
4892 
4893 	values[0] = 1 + leader->nr_siblings;
4894 
4895 	/*
4896 	 * By locking the child_mutex of the leader we effectively
4897 	 * lock the child list of all siblings.. XXX explain how.
4898 	 */
4899 	mutex_lock(&leader->child_mutex);
4900 
4901 	ret = __perf_read_group_add(leader, read_format, values);
4902 	if (ret)
4903 		goto unlock;
4904 
4905 	list_for_each_entry(child, &leader->child_list, child_list) {
4906 		ret = __perf_read_group_add(child, read_format, values);
4907 		if (ret)
4908 			goto unlock;
4909 	}
4910 
4911 	mutex_unlock(&leader->child_mutex);
4912 
4913 	ret = event->read_size;
4914 	if (copy_to_user(buf, values, event->read_size))
4915 		ret = -EFAULT;
4916 	goto out;
4917 
4918 unlock:
4919 	mutex_unlock(&leader->child_mutex);
4920 out:
4921 	kfree(values);
4922 	return ret;
4923 }
4924 
4925 static int perf_read_one(struct perf_event *event,
4926 				 u64 read_format, char __user *buf)
4927 {
4928 	u64 enabled, running;
4929 	u64 values[4];
4930 	int n = 0;
4931 
4932 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4933 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4934 		values[n++] = enabled;
4935 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4936 		values[n++] = running;
4937 	if (read_format & PERF_FORMAT_ID)
4938 		values[n++] = primary_event_id(event);
4939 
4940 	if (copy_to_user(buf, values, n * sizeof(u64)))
4941 		return -EFAULT;
4942 
4943 	return n * sizeof(u64);
4944 }
4945 
4946 static bool is_event_hup(struct perf_event *event)
4947 {
4948 	bool no_children;
4949 
4950 	if (event->state > PERF_EVENT_STATE_EXIT)
4951 		return false;
4952 
4953 	mutex_lock(&event->child_mutex);
4954 	no_children = list_empty(&event->child_list);
4955 	mutex_unlock(&event->child_mutex);
4956 	return no_children;
4957 }
4958 
4959 /*
4960  * Read the performance event - simple non blocking version for now
4961  */
4962 static ssize_t
4963 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4964 {
4965 	u64 read_format = event->attr.read_format;
4966 	int ret;
4967 
4968 	/*
4969 	 * Return end-of-file for a read on an event that is in
4970 	 * error state (i.e. because it was pinned but it couldn't be
4971 	 * scheduled on to the CPU at some point).
4972 	 */
4973 	if (event->state == PERF_EVENT_STATE_ERROR)
4974 		return 0;
4975 
4976 	if (count < event->read_size)
4977 		return -ENOSPC;
4978 
4979 	WARN_ON_ONCE(event->ctx->parent_ctx);
4980 	if (read_format & PERF_FORMAT_GROUP)
4981 		ret = perf_read_group(event, read_format, buf);
4982 	else
4983 		ret = perf_read_one(event, read_format, buf);
4984 
4985 	return ret;
4986 }
4987 
4988 static ssize_t
4989 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4990 {
4991 	struct perf_event *event = file->private_data;
4992 	struct perf_event_context *ctx;
4993 	int ret;
4994 
4995 	ctx = perf_event_ctx_lock(event);
4996 	ret = __perf_read(event, buf, count);
4997 	perf_event_ctx_unlock(event, ctx);
4998 
4999 	return ret;
5000 }
5001 
5002 static __poll_t perf_poll(struct file *file, poll_table *wait)
5003 {
5004 	struct perf_event *event = file->private_data;
5005 	struct ring_buffer *rb;
5006 	__poll_t events = EPOLLHUP;
5007 
5008 	poll_wait(file, &event->waitq, wait);
5009 
5010 	if (is_event_hup(event))
5011 		return events;
5012 
5013 	/*
5014 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5015 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5016 	 */
5017 	mutex_lock(&event->mmap_mutex);
5018 	rb = event->rb;
5019 	if (rb)
5020 		events = atomic_xchg(&rb->poll, 0);
5021 	mutex_unlock(&event->mmap_mutex);
5022 	return events;
5023 }
5024 
5025 static void _perf_event_reset(struct perf_event *event)
5026 {
5027 	(void)perf_event_read(event, false);
5028 	local64_set(&event->count, 0);
5029 	perf_event_update_userpage(event);
5030 }
5031 
5032 /* Assume it's not an event with inherit set. */
5033 u64 perf_event_pause(struct perf_event *event, bool reset)
5034 {
5035 	struct perf_event_context *ctx;
5036 	u64 count;
5037 
5038 	ctx = perf_event_ctx_lock(event);
5039 	WARN_ON_ONCE(event->attr.inherit);
5040 	_perf_event_disable(event);
5041 	count = local64_read(&event->count);
5042 	if (reset)
5043 		local64_set(&event->count, 0);
5044 	perf_event_ctx_unlock(event, ctx);
5045 
5046 	return count;
5047 }
5048 EXPORT_SYMBOL_GPL(perf_event_pause);
5049 
5050 /*
5051  * Holding the top-level event's child_mutex means that any
5052  * descendant process that has inherited this event will block
5053  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5054  * task existence requirements of perf_event_enable/disable.
5055  */
5056 static void perf_event_for_each_child(struct perf_event *event,
5057 					void (*func)(struct perf_event *))
5058 {
5059 	struct perf_event *child;
5060 
5061 	WARN_ON_ONCE(event->ctx->parent_ctx);
5062 
5063 	mutex_lock(&event->child_mutex);
5064 	func(event);
5065 	list_for_each_entry(child, &event->child_list, child_list)
5066 		func(child);
5067 	mutex_unlock(&event->child_mutex);
5068 }
5069 
5070 static void perf_event_for_each(struct perf_event *event,
5071 				  void (*func)(struct perf_event *))
5072 {
5073 	struct perf_event_context *ctx = event->ctx;
5074 	struct perf_event *sibling;
5075 
5076 	lockdep_assert_held(&ctx->mutex);
5077 
5078 	event = event->group_leader;
5079 
5080 	perf_event_for_each_child(event, func);
5081 	for_each_sibling_event(sibling, event)
5082 		perf_event_for_each_child(sibling, func);
5083 }
5084 
5085 static void __perf_event_period(struct perf_event *event,
5086 				struct perf_cpu_context *cpuctx,
5087 				struct perf_event_context *ctx,
5088 				void *info)
5089 {
5090 	u64 value = *((u64 *)info);
5091 	bool active;
5092 
5093 	if (event->attr.freq) {
5094 		event->attr.sample_freq = value;
5095 	} else {
5096 		event->attr.sample_period = value;
5097 		event->hw.sample_period = value;
5098 	}
5099 
5100 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5101 	if (active) {
5102 		perf_pmu_disable(ctx->pmu);
5103 		/*
5104 		 * We could be throttled; unthrottle now to avoid the tick
5105 		 * trying to unthrottle while we already re-started the event.
5106 		 */
5107 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5108 			event->hw.interrupts = 0;
5109 			perf_log_throttle(event, 1);
5110 		}
5111 		event->pmu->stop(event, PERF_EF_UPDATE);
5112 	}
5113 
5114 	local64_set(&event->hw.period_left, 0);
5115 
5116 	if (active) {
5117 		event->pmu->start(event, PERF_EF_RELOAD);
5118 		perf_pmu_enable(ctx->pmu);
5119 	}
5120 }
5121 
5122 static int perf_event_check_period(struct perf_event *event, u64 value)
5123 {
5124 	return event->pmu->check_period(event, value);
5125 }
5126 
5127 static int _perf_event_period(struct perf_event *event, u64 value)
5128 {
5129 	if (!is_sampling_event(event))
5130 		return -EINVAL;
5131 
5132 	if (!value)
5133 		return -EINVAL;
5134 
5135 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5136 		return -EINVAL;
5137 
5138 	if (perf_event_check_period(event, value))
5139 		return -EINVAL;
5140 
5141 	if (!event->attr.freq && (value & (1ULL << 63)))
5142 		return -EINVAL;
5143 
5144 	event_function_call(event, __perf_event_period, &value);
5145 
5146 	return 0;
5147 }
5148 
5149 int perf_event_period(struct perf_event *event, u64 value)
5150 {
5151 	struct perf_event_context *ctx;
5152 	int ret;
5153 
5154 	ctx = perf_event_ctx_lock(event);
5155 	ret = _perf_event_period(event, value);
5156 	perf_event_ctx_unlock(event, ctx);
5157 
5158 	return ret;
5159 }
5160 EXPORT_SYMBOL_GPL(perf_event_period);
5161 
5162 static const struct file_operations perf_fops;
5163 
5164 static inline int perf_fget_light(int fd, struct fd *p)
5165 {
5166 	struct fd f = fdget(fd);
5167 	if (!f.file)
5168 		return -EBADF;
5169 
5170 	if (f.file->f_op != &perf_fops) {
5171 		fdput(f);
5172 		return -EBADF;
5173 	}
5174 	*p = f;
5175 	return 0;
5176 }
5177 
5178 static int perf_event_set_output(struct perf_event *event,
5179 				 struct perf_event *output_event);
5180 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5181 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5182 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5183 			  struct perf_event_attr *attr);
5184 
5185 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5186 {
5187 	void (*func)(struct perf_event *);
5188 	u32 flags = arg;
5189 
5190 	switch (cmd) {
5191 	case PERF_EVENT_IOC_ENABLE:
5192 		func = _perf_event_enable;
5193 		break;
5194 	case PERF_EVENT_IOC_DISABLE:
5195 		func = _perf_event_disable;
5196 		break;
5197 	case PERF_EVENT_IOC_RESET:
5198 		func = _perf_event_reset;
5199 		break;
5200 
5201 	case PERF_EVENT_IOC_REFRESH:
5202 		return _perf_event_refresh(event, arg);
5203 
5204 	case PERF_EVENT_IOC_PERIOD:
5205 	{
5206 		u64 value;
5207 
5208 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5209 			return -EFAULT;
5210 
5211 		return _perf_event_period(event, value);
5212 	}
5213 	case PERF_EVENT_IOC_ID:
5214 	{
5215 		u64 id = primary_event_id(event);
5216 
5217 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5218 			return -EFAULT;
5219 		return 0;
5220 	}
5221 
5222 	case PERF_EVENT_IOC_SET_OUTPUT:
5223 	{
5224 		int ret;
5225 		if (arg != -1) {
5226 			struct perf_event *output_event;
5227 			struct fd output;
5228 			ret = perf_fget_light(arg, &output);
5229 			if (ret)
5230 				return ret;
5231 			output_event = output.file->private_data;
5232 			ret = perf_event_set_output(event, output_event);
5233 			fdput(output);
5234 		} else {
5235 			ret = perf_event_set_output(event, NULL);
5236 		}
5237 		return ret;
5238 	}
5239 
5240 	case PERF_EVENT_IOC_SET_FILTER:
5241 		return perf_event_set_filter(event, (void __user *)arg);
5242 
5243 	case PERF_EVENT_IOC_SET_BPF:
5244 		return perf_event_set_bpf_prog(event, arg);
5245 
5246 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5247 		struct ring_buffer *rb;
5248 
5249 		rcu_read_lock();
5250 		rb = rcu_dereference(event->rb);
5251 		if (!rb || !rb->nr_pages) {
5252 			rcu_read_unlock();
5253 			return -EINVAL;
5254 		}
5255 		rb_toggle_paused(rb, !!arg);
5256 		rcu_read_unlock();
5257 		return 0;
5258 	}
5259 
5260 	case PERF_EVENT_IOC_QUERY_BPF:
5261 		return perf_event_query_prog_array(event, (void __user *)arg);
5262 
5263 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5264 		struct perf_event_attr new_attr;
5265 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5266 					 &new_attr);
5267 
5268 		if (err)
5269 			return err;
5270 
5271 		return perf_event_modify_attr(event,  &new_attr);
5272 	}
5273 	default:
5274 		return -ENOTTY;
5275 	}
5276 
5277 	if (flags & PERF_IOC_FLAG_GROUP)
5278 		perf_event_for_each(event, func);
5279 	else
5280 		perf_event_for_each_child(event, func);
5281 
5282 	return 0;
5283 }
5284 
5285 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5286 {
5287 	struct perf_event *event = file->private_data;
5288 	struct perf_event_context *ctx;
5289 	long ret;
5290 
5291 	ctx = perf_event_ctx_lock(event);
5292 	ret = _perf_ioctl(event, cmd, arg);
5293 	perf_event_ctx_unlock(event, ctx);
5294 
5295 	return ret;
5296 }
5297 
5298 #ifdef CONFIG_COMPAT
5299 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5300 				unsigned long arg)
5301 {
5302 	switch (_IOC_NR(cmd)) {
5303 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5304 	case _IOC_NR(PERF_EVENT_IOC_ID):
5305 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5306 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5307 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5308 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5309 			cmd &= ~IOCSIZE_MASK;
5310 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5311 		}
5312 		break;
5313 	}
5314 	return perf_ioctl(file, cmd, arg);
5315 }
5316 #else
5317 # define perf_compat_ioctl NULL
5318 #endif
5319 
5320 int perf_event_task_enable(void)
5321 {
5322 	struct perf_event_context *ctx;
5323 	struct perf_event *event;
5324 
5325 	mutex_lock(&current->perf_event_mutex);
5326 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5327 		ctx = perf_event_ctx_lock(event);
5328 		perf_event_for_each_child(event, _perf_event_enable);
5329 		perf_event_ctx_unlock(event, ctx);
5330 	}
5331 	mutex_unlock(&current->perf_event_mutex);
5332 
5333 	return 0;
5334 }
5335 
5336 int perf_event_task_disable(void)
5337 {
5338 	struct perf_event_context *ctx;
5339 	struct perf_event *event;
5340 
5341 	mutex_lock(&current->perf_event_mutex);
5342 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5343 		ctx = perf_event_ctx_lock(event);
5344 		perf_event_for_each_child(event, _perf_event_disable);
5345 		perf_event_ctx_unlock(event, ctx);
5346 	}
5347 	mutex_unlock(&current->perf_event_mutex);
5348 
5349 	return 0;
5350 }
5351 
5352 static int perf_event_index(struct perf_event *event)
5353 {
5354 	if (event->hw.state & PERF_HES_STOPPED)
5355 		return 0;
5356 
5357 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5358 		return 0;
5359 
5360 	return event->pmu->event_idx(event);
5361 }
5362 
5363 static void calc_timer_values(struct perf_event *event,
5364 				u64 *now,
5365 				u64 *enabled,
5366 				u64 *running)
5367 {
5368 	u64 ctx_time;
5369 
5370 	*now = perf_clock();
5371 	ctx_time = event->shadow_ctx_time + *now;
5372 	__perf_update_times(event, ctx_time, enabled, running);
5373 }
5374 
5375 static void perf_event_init_userpage(struct perf_event *event)
5376 {
5377 	struct perf_event_mmap_page *userpg;
5378 	struct ring_buffer *rb;
5379 
5380 	rcu_read_lock();
5381 	rb = rcu_dereference(event->rb);
5382 	if (!rb)
5383 		goto unlock;
5384 
5385 	userpg = rb->user_page;
5386 
5387 	/* Allow new userspace to detect that bit 0 is deprecated */
5388 	userpg->cap_bit0_is_deprecated = 1;
5389 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5390 	userpg->data_offset = PAGE_SIZE;
5391 	userpg->data_size = perf_data_size(rb);
5392 
5393 unlock:
5394 	rcu_read_unlock();
5395 }
5396 
5397 void __weak arch_perf_update_userpage(
5398 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5399 {
5400 }
5401 
5402 /*
5403  * Callers need to ensure there can be no nesting of this function, otherwise
5404  * the seqlock logic goes bad. We can not serialize this because the arch
5405  * code calls this from NMI context.
5406  */
5407 void perf_event_update_userpage(struct perf_event *event)
5408 {
5409 	struct perf_event_mmap_page *userpg;
5410 	struct ring_buffer *rb;
5411 	u64 enabled, running, now;
5412 
5413 	rcu_read_lock();
5414 	rb = rcu_dereference(event->rb);
5415 	if (!rb)
5416 		goto unlock;
5417 
5418 	/*
5419 	 * compute total_time_enabled, total_time_running
5420 	 * based on snapshot values taken when the event
5421 	 * was last scheduled in.
5422 	 *
5423 	 * we cannot simply called update_context_time()
5424 	 * because of locking issue as we can be called in
5425 	 * NMI context
5426 	 */
5427 	calc_timer_values(event, &now, &enabled, &running);
5428 
5429 	userpg = rb->user_page;
5430 	/*
5431 	 * Disable preemption to guarantee consistent time stamps are stored to
5432 	 * the user page.
5433 	 */
5434 	preempt_disable();
5435 	++userpg->lock;
5436 	barrier();
5437 	userpg->index = perf_event_index(event);
5438 	userpg->offset = perf_event_count(event);
5439 	if (userpg->index)
5440 		userpg->offset -= local64_read(&event->hw.prev_count);
5441 
5442 	userpg->time_enabled = enabled +
5443 			atomic64_read(&event->child_total_time_enabled);
5444 
5445 	userpg->time_running = running +
5446 			atomic64_read(&event->child_total_time_running);
5447 
5448 	arch_perf_update_userpage(event, userpg, now);
5449 
5450 	barrier();
5451 	++userpg->lock;
5452 	preempt_enable();
5453 unlock:
5454 	rcu_read_unlock();
5455 }
5456 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5457 
5458 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5459 {
5460 	struct perf_event *event = vmf->vma->vm_file->private_data;
5461 	struct ring_buffer *rb;
5462 	vm_fault_t ret = VM_FAULT_SIGBUS;
5463 
5464 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5465 		if (vmf->pgoff == 0)
5466 			ret = 0;
5467 		return ret;
5468 	}
5469 
5470 	rcu_read_lock();
5471 	rb = rcu_dereference(event->rb);
5472 	if (!rb)
5473 		goto unlock;
5474 
5475 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5476 		goto unlock;
5477 
5478 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5479 	if (!vmf->page)
5480 		goto unlock;
5481 
5482 	get_page(vmf->page);
5483 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5484 	vmf->page->index   = vmf->pgoff;
5485 
5486 	ret = 0;
5487 unlock:
5488 	rcu_read_unlock();
5489 
5490 	return ret;
5491 }
5492 
5493 static void ring_buffer_attach(struct perf_event *event,
5494 			       struct ring_buffer *rb)
5495 {
5496 	struct ring_buffer *old_rb = NULL;
5497 	unsigned long flags;
5498 
5499 	if (event->rb) {
5500 		/*
5501 		 * Should be impossible, we set this when removing
5502 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5503 		 */
5504 		WARN_ON_ONCE(event->rcu_pending);
5505 
5506 		old_rb = event->rb;
5507 		spin_lock_irqsave(&old_rb->event_lock, flags);
5508 		list_del_rcu(&event->rb_entry);
5509 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5510 
5511 		event->rcu_batches = get_state_synchronize_rcu();
5512 		event->rcu_pending = 1;
5513 	}
5514 
5515 	if (rb) {
5516 		if (event->rcu_pending) {
5517 			cond_synchronize_rcu(event->rcu_batches);
5518 			event->rcu_pending = 0;
5519 		}
5520 
5521 		spin_lock_irqsave(&rb->event_lock, flags);
5522 		list_add_rcu(&event->rb_entry, &rb->event_list);
5523 		spin_unlock_irqrestore(&rb->event_lock, flags);
5524 	}
5525 
5526 	/*
5527 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5528 	 * before swizzling the event::rb pointer; if it's getting
5529 	 * unmapped, its aux_mmap_count will be 0 and it won't
5530 	 * restart. See the comment in __perf_pmu_output_stop().
5531 	 *
5532 	 * Data will inevitably be lost when set_output is done in
5533 	 * mid-air, but then again, whoever does it like this is
5534 	 * not in for the data anyway.
5535 	 */
5536 	if (has_aux(event))
5537 		perf_event_stop(event, 0);
5538 
5539 	rcu_assign_pointer(event->rb, rb);
5540 
5541 	if (old_rb) {
5542 		ring_buffer_put(old_rb);
5543 		/*
5544 		 * Since we detached before setting the new rb, so that we
5545 		 * could attach the new rb, we could have missed a wakeup.
5546 		 * Provide it now.
5547 		 */
5548 		wake_up_all(&event->waitq);
5549 	}
5550 }
5551 
5552 static void ring_buffer_wakeup(struct perf_event *event)
5553 {
5554 	struct ring_buffer *rb;
5555 
5556 	rcu_read_lock();
5557 	rb = rcu_dereference(event->rb);
5558 	if (rb) {
5559 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5560 			wake_up_all(&event->waitq);
5561 	}
5562 	rcu_read_unlock();
5563 }
5564 
5565 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5566 {
5567 	struct ring_buffer *rb;
5568 
5569 	rcu_read_lock();
5570 	rb = rcu_dereference(event->rb);
5571 	if (rb) {
5572 		if (!refcount_inc_not_zero(&rb->refcount))
5573 			rb = NULL;
5574 	}
5575 	rcu_read_unlock();
5576 
5577 	return rb;
5578 }
5579 
5580 void ring_buffer_put(struct ring_buffer *rb)
5581 {
5582 	if (!refcount_dec_and_test(&rb->refcount))
5583 		return;
5584 
5585 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5586 
5587 	call_rcu(&rb->rcu_head, rb_free_rcu);
5588 }
5589 
5590 static void perf_mmap_open(struct vm_area_struct *vma)
5591 {
5592 	struct perf_event *event = vma->vm_file->private_data;
5593 
5594 	atomic_inc(&event->mmap_count);
5595 	atomic_inc(&event->rb->mmap_count);
5596 
5597 	if (vma->vm_pgoff)
5598 		atomic_inc(&event->rb->aux_mmap_count);
5599 
5600 	if (event->pmu->event_mapped)
5601 		event->pmu->event_mapped(event, vma->vm_mm);
5602 }
5603 
5604 static void perf_pmu_output_stop(struct perf_event *event);
5605 
5606 /*
5607  * A buffer can be mmap()ed multiple times; either directly through the same
5608  * event, or through other events by use of perf_event_set_output().
5609  *
5610  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5611  * the buffer here, where we still have a VM context. This means we need
5612  * to detach all events redirecting to us.
5613  */
5614 static void perf_mmap_close(struct vm_area_struct *vma)
5615 {
5616 	struct perf_event *event = vma->vm_file->private_data;
5617 
5618 	struct ring_buffer *rb = ring_buffer_get(event);
5619 	struct user_struct *mmap_user = rb->mmap_user;
5620 	int mmap_locked = rb->mmap_locked;
5621 	unsigned long size = perf_data_size(rb);
5622 
5623 	if (event->pmu->event_unmapped)
5624 		event->pmu->event_unmapped(event, vma->vm_mm);
5625 
5626 	/*
5627 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5628 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5629 	 * serialize with perf_mmap here.
5630 	 */
5631 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5632 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5633 		/*
5634 		 * Stop all AUX events that are writing to this buffer,
5635 		 * so that we can free its AUX pages and corresponding PMU
5636 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5637 		 * they won't start any more (see perf_aux_output_begin()).
5638 		 */
5639 		perf_pmu_output_stop(event);
5640 
5641 		/* now it's safe to free the pages */
5642 		if (!rb->aux_mmap_locked)
5643 			atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5644 		else
5645 			atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5646 
5647 		/* this has to be the last one */
5648 		rb_free_aux(rb);
5649 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5650 
5651 		mutex_unlock(&event->mmap_mutex);
5652 	}
5653 
5654 	atomic_dec(&rb->mmap_count);
5655 
5656 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5657 		goto out_put;
5658 
5659 	ring_buffer_attach(event, NULL);
5660 	mutex_unlock(&event->mmap_mutex);
5661 
5662 	/* If there's still other mmap()s of this buffer, we're done. */
5663 	if (atomic_read(&rb->mmap_count))
5664 		goto out_put;
5665 
5666 	/*
5667 	 * No other mmap()s, detach from all other events that might redirect
5668 	 * into the now unreachable buffer. Somewhat complicated by the
5669 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5670 	 */
5671 again:
5672 	rcu_read_lock();
5673 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5674 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5675 			/*
5676 			 * This event is en-route to free_event() which will
5677 			 * detach it and remove it from the list.
5678 			 */
5679 			continue;
5680 		}
5681 		rcu_read_unlock();
5682 
5683 		mutex_lock(&event->mmap_mutex);
5684 		/*
5685 		 * Check we didn't race with perf_event_set_output() which can
5686 		 * swizzle the rb from under us while we were waiting to
5687 		 * acquire mmap_mutex.
5688 		 *
5689 		 * If we find a different rb; ignore this event, a next
5690 		 * iteration will no longer find it on the list. We have to
5691 		 * still restart the iteration to make sure we're not now
5692 		 * iterating the wrong list.
5693 		 */
5694 		if (event->rb == rb)
5695 			ring_buffer_attach(event, NULL);
5696 
5697 		mutex_unlock(&event->mmap_mutex);
5698 		put_event(event);
5699 
5700 		/*
5701 		 * Restart the iteration; either we're on the wrong list or
5702 		 * destroyed its integrity by doing a deletion.
5703 		 */
5704 		goto again;
5705 	}
5706 	rcu_read_unlock();
5707 
5708 	/*
5709 	 * It could be there's still a few 0-ref events on the list; they'll
5710 	 * get cleaned up by free_event() -- they'll also still have their
5711 	 * ref on the rb and will free it whenever they are done with it.
5712 	 *
5713 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5714 	 * undo the VM accounting.
5715 	 */
5716 
5717 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5718 			&mmap_user->locked_vm);
5719 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5720 	free_uid(mmap_user);
5721 
5722 out_put:
5723 	ring_buffer_put(rb); /* could be last */
5724 }
5725 
5726 static const struct vm_operations_struct perf_mmap_vmops = {
5727 	.open		= perf_mmap_open,
5728 	.close		= perf_mmap_close, /* non mergeable */
5729 	.fault		= perf_mmap_fault,
5730 	.page_mkwrite	= perf_mmap_fault,
5731 };
5732 
5733 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5734 {
5735 	struct perf_event *event = file->private_data;
5736 	unsigned long user_locked, user_lock_limit;
5737 	struct user_struct *user = current_user();
5738 	unsigned long locked, lock_limit;
5739 	struct ring_buffer *rb = NULL;
5740 	unsigned long vma_size;
5741 	unsigned long nr_pages;
5742 	long user_extra = 0, extra = 0;
5743 	int ret = 0, flags = 0;
5744 
5745 	/*
5746 	 * Don't allow mmap() of inherited per-task counters. This would
5747 	 * create a performance issue due to all children writing to the
5748 	 * same rb.
5749 	 */
5750 	if (event->cpu == -1 && event->attr.inherit)
5751 		return -EINVAL;
5752 
5753 	if (!(vma->vm_flags & VM_SHARED))
5754 		return -EINVAL;
5755 
5756 	vma_size = vma->vm_end - vma->vm_start;
5757 
5758 	if (vma->vm_pgoff == 0) {
5759 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5760 	} else {
5761 		/*
5762 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5763 		 * mapped, all subsequent mappings should have the same size
5764 		 * and offset. Must be above the normal perf buffer.
5765 		 */
5766 		u64 aux_offset, aux_size;
5767 
5768 		if (!event->rb)
5769 			return -EINVAL;
5770 
5771 		nr_pages = vma_size / PAGE_SIZE;
5772 
5773 		mutex_lock(&event->mmap_mutex);
5774 		ret = -EINVAL;
5775 
5776 		rb = event->rb;
5777 		if (!rb)
5778 			goto aux_unlock;
5779 
5780 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5781 		aux_size = READ_ONCE(rb->user_page->aux_size);
5782 
5783 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5784 			goto aux_unlock;
5785 
5786 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5787 			goto aux_unlock;
5788 
5789 		/* already mapped with a different offset */
5790 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5791 			goto aux_unlock;
5792 
5793 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5794 			goto aux_unlock;
5795 
5796 		/* already mapped with a different size */
5797 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5798 			goto aux_unlock;
5799 
5800 		if (!is_power_of_2(nr_pages))
5801 			goto aux_unlock;
5802 
5803 		if (!atomic_inc_not_zero(&rb->mmap_count))
5804 			goto aux_unlock;
5805 
5806 		if (rb_has_aux(rb)) {
5807 			atomic_inc(&rb->aux_mmap_count);
5808 			ret = 0;
5809 			goto unlock;
5810 		}
5811 
5812 		atomic_set(&rb->aux_mmap_count, 1);
5813 		user_extra = nr_pages;
5814 
5815 		goto accounting;
5816 	}
5817 
5818 	/*
5819 	 * If we have rb pages ensure they're a power-of-two number, so we
5820 	 * can do bitmasks instead of modulo.
5821 	 */
5822 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5823 		return -EINVAL;
5824 
5825 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5826 		return -EINVAL;
5827 
5828 	WARN_ON_ONCE(event->ctx->parent_ctx);
5829 again:
5830 	mutex_lock(&event->mmap_mutex);
5831 	if (event->rb) {
5832 		if (event->rb->nr_pages != nr_pages) {
5833 			ret = -EINVAL;
5834 			goto unlock;
5835 		}
5836 
5837 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5838 			/*
5839 			 * Raced against perf_mmap_close() through
5840 			 * perf_event_set_output(). Try again, hope for better
5841 			 * luck.
5842 			 */
5843 			mutex_unlock(&event->mmap_mutex);
5844 			goto again;
5845 		}
5846 
5847 		goto unlock;
5848 	}
5849 
5850 	user_extra = nr_pages + 1;
5851 
5852 accounting:
5853 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5854 
5855 	/*
5856 	 * Increase the limit linearly with more CPUs:
5857 	 */
5858 	user_lock_limit *= num_online_cpus();
5859 
5860 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5861 
5862 	if (user_locked <= user_lock_limit) {
5863 		/* charge all to locked_vm */
5864 	} else if (atomic_long_read(&user->locked_vm) >= user_lock_limit) {
5865 		/* charge all to pinned_vm */
5866 		extra = user_extra;
5867 		user_extra = 0;
5868 	} else {
5869 		/*
5870 		 * charge locked_vm until it hits user_lock_limit;
5871 		 * charge the rest from pinned_vm
5872 		 */
5873 		extra = user_locked - user_lock_limit;
5874 		user_extra -= extra;
5875 	}
5876 
5877 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5878 	lock_limit >>= PAGE_SHIFT;
5879 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5880 
5881 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5882 		!capable(CAP_IPC_LOCK)) {
5883 		ret = -EPERM;
5884 		goto unlock;
5885 	}
5886 
5887 	WARN_ON(!rb && event->rb);
5888 
5889 	if (vma->vm_flags & VM_WRITE)
5890 		flags |= RING_BUFFER_WRITABLE;
5891 
5892 	if (!rb) {
5893 		rb = rb_alloc(nr_pages,
5894 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5895 			      event->cpu, flags);
5896 
5897 		if (!rb) {
5898 			ret = -ENOMEM;
5899 			goto unlock;
5900 		}
5901 
5902 		atomic_set(&rb->mmap_count, 1);
5903 		rb->mmap_user = get_current_user();
5904 		rb->mmap_locked = extra;
5905 
5906 		ring_buffer_attach(event, rb);
5907 
5908 		perf_event_init_userpage(event);
5909 		perf_event_update_userpage(event);
5910 	} else {
5911 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5912 				   event->attr.aux_watermark, flags);
5913 		if (!ret)
5914 			rb->aux_mmap_locked = extra;
5915 	}
5916 
5917 unlock:
5918 	if (!ret) {
5919 		atomic_long_add(user_extra, &user->locked_vm);
5920 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
5921 
5922 		atomic_inc(&event->mmap_count);
5923 	} else if (rb) {
5924 		atomic_dec(&rb->mmap_count);
5925 	}
5926 aux_unlock:
5927 	mutex_unlock(&event->mmap_mutex);
5928 
5929 	/*
5930 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5931 	 * vma.
5932 	 */
5933 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5934 	vma->vm_ops = &perf_mmap_vmops;
5935 
5936 	if (event->pmu->event_mapped)
5937 		event->pmu->event_mapped(event, vma->vm_mm);
5938 
5939 	return ret;
5940 }
5941 
5942 static int perf_fasync(int fd, struct file *filp, int on)
5943 {
5944 	struct inode *inode = file_inode(filp);
5945 	struct perf_event *event = filp->private_data;
5946 	int retval;
5947 
5948 	inode_lock(inode);
5949 	retval = fasync_helper(fd, filp, on, &event->fasync);
5950 	inode_unlock(inode);
5951 
5952 	if (retval < 0)
5953 		return retval;
5954 
5955 	return 0;
5956 }
5957 
5958 static const struct file_operations perf_fops = {
5959 	.llseek			= no_llseek,
5960 	.release		= perf_release,
5961 	.read			= perf_read,
5962 	.poll			= perf_poll,
5963 	.unlocked_ioctl		= perf_ioctl,
5964 	.compat_ioctl		= perf_compat_ioctl,
5965 	.mmap			= perf_mmap,
5966 	.fasync			= perf_fasync,
5967 };
5968 
5969 /*
5970  * Perf event wakeup
5971  *
5972  * If there's data, ensure we set the poll() state and publish everything
5973  * to user-space before waking everybody up.
5974  */
5975 
5976 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5977 {
5978 	/* only the parent has fasync state */
5979 	if (event->parent)
5980 		event = event->parent;
5981 	return &event->fasync;
5982 }
5983 
5984 void perf_event_wakeup(struct perf_event *event)
5985 {
5986 	ring_buffer_wakeup(event);
5987 
5988 	if (event->pending_kill) {
5989 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5990 		event->pending_kill = 0;
5991 	}
5992 }
5993 
5994 static void perf_pending_event_disable(struct perf_event *event)
5995 {
5996 	int cpu = READ_ONCE(event->pending_disable);
5997 
5998 	if (cpu < 0)
5999 		return;
6000 
6001 	if (cpu == smp_processor_id()) {
6002 		WRITE_ONCE(event->pending_disable, -1);
6003 		perf_event_disable_local(event);
6004 		return;
6005 	}
6006 
6007 	/*
6008 	 *  CPU-A			CPU-B
6009 	 *
6010 	 *  perf_event_disable_inatomic()
6011 	 *    @pending_disable = CPU-A;
6012 	 *    irq_work_queue();
6013 	 *
6014 	 *  sched-out
6015 	 *    @pending_disable = -1;
6016 	 *
6017 	 *				sched-in
6018 	 *				perf_event_disable_inatomic()
6019 	 *				  @pending_disable = CPU-B;
6020 	 *				  irq_work_queue(); // FAILS
6021 	 *
6022 	 *  irq_work_run()
6023 	 *    perf_pending_event()
6024 	 *
6025 	 * But the event runs on CPU-B and wants disabling there.
6026 	 */
6027 	irq_work_queue_on(&event->pending, cpu);
6028 }
6029 
6030 static void perf_pending_event(struct irq_work *entry)
6031 {
6032 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6033 	int rctx;
6034 
6035 	rctx = perf_swevent_get_recursion_context();
6036 	/*
6037 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6038 	 * and we won't recurse 'further'.
6039 	 */
6040 
6041 	perf_pending_event_disable(event);
6042 
6043 	if (event->pending_wakeup) {
6044 		event->pending_wakeup = 0;
6045 		perf_event_wakeup(event);
6046 	}
6047 
6048 	if (rctx >= 0)
6049 		perf_swevent_put_recursion_context(rctx);
6050 }
6051 
6052 /*
6053  * We assume there is only KVM supporting the callbacks.
6054  * Later on, we might change it to a list if there is
6055  * another virtualization implementation supporting the callbacks.
6056  */
6057 struct perf_guest_info_callbacks *perf_guest_cbs;
6058 
6059 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6060 {
6061 	perf_guest_cbs = cbs;
6062 	return 0;
6063 }
6064 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6065 
6066 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6067 {
6068 	perf_guest_cbs = NULL;
6069 	return 0;
6070 }
6071 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6072 
6073 static void
6074 perf_output_sample_regs(struct perf_output_handle *handle,
6075 			struct pt_regs *regs, u64 mask)
6076 {
6077 	int bit;
6078 	DECLARE_BITMAP(_mask, 64);
6079 
6080 	bitmap_from_u64(_mask, mask);
6081 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6082 		u64 val;
6083 
6084 		val = perf_reg_value(regs, bit);
6085 		perf_output_put(handle, val);
6086 	}
6087 }
6088 
6089 static void perf_sample_regs_user(struct perf_regs *regs_user,
6090 				  struct pt_regs *regs,
6091 				  struct pt_regs *regs_user_copy)
6092 {
6093 	if (user_mode(regs)) {
6094 		regs_user->abi = perf_reg_abi(current);
6095 		regs_user->regs = regs;
6096 	} else if (!(current->flags & PF_KTHREAD)) {
6097 		perf_get_regs_user(regs_user, regs, regs_user_copy);
6098 	} else {
6099 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6100 		regs_user->regs = NULL;
6101 	}
6102 }
6103 
6104 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6105 				  struct pt_regs *regs)
6106 {
6107 	regs_intr->regs = regs;
6108 	regs_intr->abi  = perf_reg_abi(current);
6109 }
6110 
6111 
6112 /*
6113  * Get remaining task size from user stack pointer.
6114  *
6115  * It'd be better to take stack vma map and limit this more
6116  * precisely, but there's no way to get it safely under interrupt,
6117  * so using TASK_SIZE as limit.
6118  */
6119 static u64 perf_ustack_task_size(struct pt_regs *regs)
6120 {
6121 	unsigned long addr = perf_user_stack_pointer(regs);
6122 
6123 	if (!addr || addr >= TASK_SIZE)
6124 		return 0;
6125 
6126 	return TASK_SIZE - addr;
6127 }
6128 
6129 static u16
6130 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6131 			struct pt_regs *regs)
6132 {
6133 	u64 task_size;
6134 
6135 	/* No regs, no stack pointer, no dump. */
6136 	if (!regs)
6137 		return 0;
6138 
6139 	/*
6140 	 * Check if we fit in with the requested stack size into the:
6141 	 * - TASK_SIZE
6142 	 *   If we don't, we limit the size to the TASK_SIZE.
6143 	 *
6144 	 * - remaining sample size
6145 	 *   If we don't, we customize the stack size to
6146 	 *   fit in to the remaining sample size.
6147 	 */
6148 
6149 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6150 	stack_size = min(stack_size, (u16) task_size);
6151 
6152 	/* Current header size plus static size and dynamic size. */
6153 	header_size += 2 * sizeof(u64);
6154 
6155 	/* Do we fit in with the current stack dump size? */
6156 	if ((u16) (header_size + stack_size) < header_size) {
6157 		/*
6158 		 * If we overflow the maximum size for the sample,
6159 		 * we customize the stack dump size to fit in.
6160 		 */
6161 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6162 		stack_size = round_up(stack_size, sizeof(u64));
6163 	}
6164 
6165 	return stack_size;
6166 }
6167 
6168 static void
6169 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6170 			  struct pt_regs *regs)
6171 {
6172 	/* Case of a kernel thread, nothing to dump */
6173 	if (!regs) {
6174 		u64 size = 0;
6175 		perf_output_put(handle, size);
6176 	} else {
6177 		unsigned long sp;
6178 		unsigned int rem;
6179 		u64 dyn_size;
6180 		mm_segment_t fs;
6181 
6182 		/*
6183 		 * We dump:
6184 		 * static size
6185 		 *   - the size requested by user or the best one we can fit
6186 		 *     in to the sample max size
6187 		 * data
6188 		 *   - user stack dump data
6189 		 * dynamic size
6190 		 *   - the actual dumped size
6191 		 */
6192 
6193 		/* Static size. */
6194 		perf_output_put(handle, dump_size);
6195 
6196 		/* Data. */
6197 		sp = perf_user_stack_pointer(regs);
6198 		fs = get_fs();
6199 		set_fs(USER_DS);
6200 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6201 		set_fs(fs);
6202 		dyn_size = dump_size - rem;
6203 
6204 		perf_output_skip(handle, rem);
6205 
6206 		/* Dynamic size. */
6207 		perf_output_put(handle, dyn_size);
6208 	}
6209 }
6210 
6211 static void __perf_event_header__init_id(struct perf_event_header *header,
6212 					 struct perf_sample_data *data,
6213 					 struct perf_event *event)
6214 {
6215 	u64 sample_type = event->attr.sample_type;
6216 
6217 	data->type = sample_type;
6218 	header->size += event->id_header_size;
6219 
6220 	if (sample_type & PERF_SAMPLE_TID) {
6221 		/* namespace issues */
6222 		data->tid_entry.pid = perf_event_pid(event, current);
6223 		data->tid_entry.tid = perf_event_tid(event, current);
6224 	}
6225 
6226 	if (sample_type & PERF_SAMPLE_TIME)
6227 		data->time = perf_event_clock(event);
6228 
6229 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6230 		data->id = primary_event_id(event);
6231 
6232 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6233 		data->stream_id = event->id;
6234 
6235 	if (sample_type & PERF_SAMPLE_CPU) {
6236 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6237 		data->cpu_entry.reserved = 0;
6238 	}
6239 }
6240 
6241 void perf_event_header__init_id(struct perf_event_header *header,
6242 				struct perf_sample_data *data,
6243 				struct perf_event *event)
6244 {
6245 	if (event->attr.sample_id_all)
6246 		__perf_event_header__init_id(header, data, event);
6247 }
6248 
6249 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6250 					   struct perf_sample_data *data)
6251 {
6252 	u64 sample_type = data->type;
6253 
6254 	if (sample_type & PERF_SAMPLE_TID)
6255 		perf_output_put(handle, data->tid_entry);
6256 
6257 	if (sample_type & PERF_SAMPLE_TIME)
6258 		perf_output_put(handle, data->time);
6259 
6260 	if (sample_type & PERF_SAMPLE_ID)
6261 		perf_output_put(handle, data->id);
6262 
6263 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6264 		perf_output_put(handle, data->stream_id);
6265 
6266 	if (sample_type & PERF_SAMPLE_CPU)
6267 		perf_output_put(handle, data->cpu_entry);
6268 
6269 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6270 		perf_output_put(handle, data->id);
6271 }
6272 
6273 void perf_event__output_id_sample(struct perf_event *event,
6274 				  struct perf_output_handle *handle,
6275 				  struct perf_sample_data *sample)
6276 {
6277 	if (event->attr.sample_id_all)
6278 		__perf_event__output_id_sample(handle, sample);
6279 }
6280 
6281 static void perf_output_read_one(struct perf_output_handle *handle,
6282 				 struct perf_event *event,
6283 				 u64 enabled, u64 running)
6284 {
6285 	u64 read_format = event->attr.read_format;
6286 	u64 values[4];
6287 	int n = 0;
6288 
6289 	values[n++] = perf_event_count(event);
6290 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6291 		values[n++] = enabled +
6292 			atomic64_read(&event->child_total_time_enabled);
6293 	}
6294 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6295 		values[n++] = running +
6296 			atomic64_read(&event->child_total_time_running);
6297 	}
6298 	if (read_format & PERF_FORMAT_ID)
6299 		values[n++] = primary_event_id(event);
6300 
6301 	__output_copy(handle, values, n * sizeof(u64));
6302 }
6303 
6304 static void perf_output_read_group(struct perf_output_handle *handle,
6305 			    struct perf_event *event,
6306 			    u64 enabled, u64 running)
6307 {
6308 	struct perf_event *leader = event->group_leader, *sub;
6309 	u64 read_format = event->attr.read_format;
6310 	u64 values[5];
6311 	int n = 0;
6312 
6313 	values[n++] = 1 + leader->nr_siblings;
6314 
6315 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6316 		values[n++] = enabled;
6317 
6318 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6319 		values[n++] = running;
6320 
6321 	if ((leader != event) &&
6322 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6323 		leader->pmu->read(leader);
6324 
6325 	values[n++] = perf_event_count(leader);
6326 	if (read_format & PERF_FORMAT_ID)
6327 		values[n++] = primary_event_id(leader);
6328 
6329 	__output_copy(handle, values, n * sizeof(u64));
6330 
6331 	for_each_sibling_event(sub, leader) {
6332 		n = 0;
6333 
6334 		if ((sub != event) &&
6335 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6336 			sub->pmu->read(sub);
6337 
6338 		values[n++] = perf_event_count(sub);
6339 		if (read_format & PERF_FORMAT_ID)
6340 			values[n++] = primary_event_id(sub);
6341 
6342 		__output_copy(handle, values, n * sizeof(u64));
6343 	}
6344 }
6345 
6346 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6347 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6348 
6349 /*
6350  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6351  *
6352  * The problem is that its both hard and excessively expensive to iterate the
6353  * child list, not to mention that its impossible to IPI the children running
6354  * on another CPU, from interrupt/NMI context.
6355  */
6356 static void perf_output_read(struct perf_output_handle *handle,
6357 			     struct perf_event *event)
6358 {
6359 	u64 enabled = 0, running = 0, now;
6360 	u64 read_format = event->attr.read_format;
6361 
6362 	/*
6363 	 * compute total_time_enabled, total_time_running
6364 	 * based on snapshot values taken when the event
6365 	 * was last scheduled in.
6366 	 *
6367 	 * we cannot simply called update_context_time()
6368 	 * because of locking issue as we are called in
6369 	 * NMI context
6370 	 */
6371 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6372 		calc_timer_values(event, &now, &enabled, &running);
6373 
6374 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6375 		perf_output_read_group(handle, event, enabled, running);
6376 	else
6377 		perf_output_read_one(handle, event, enabled, running);
6378 }
6379 
6380 void perf_output_sample(struct perf_output_handle *handle,
6381 			struct perf_event_header *header,
6382 			struct perf_sample_data *data,
6383 			struct perf_event *event)
6384 {
6385 	u64 sample_type = data->type;
6386 
6387 	perf_output_put(handle, *header);
6388 
6389 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6390 		perf_output_put(handle, data->id);
6391 
6392 	if (sample_type & PERF_SAMPLE_IP)
6393 		perf_output_put(handle, data->ip);
6394 
6395 	if (sample_type & PERF_SAMPLE_TID)
6396 		perf_output_put(handle, data->tid_entry);
6397 
6398 	if (sample_type & PERF_SAMPLE_TIME)
6399 		perf_output_put(handle, data->time);
6400 
6401 	if (sample_type & PERF_SAMPLE_ADDR)
6402 		perf_output_put(handle, data->addr);
6403 
6404 	if (sample_type & PERF_SAMPLE_ID)
6405 		perf_output_put(handle, data->id);
6406 
6407 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6408 		perf_output_put(handle, data->stream_id);
6409 
6410 	if (sample_type & PERF_SAMPLE_CPU)
6411 		perf_output_put(handle, data->cpu_entry);
6412 
6413 	if (sample_type & PERF_SAMPLE_PERIOD)
6414 		perf_output_put(handle, data->period);
6415 
6416 	if (sample_type & PERF_SAMPLE_READ)
6417 		perf_output_read(handle, event);
6418 
6419 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6420 		int size = 1;
6421 
6422 		size += data->callchain->nr;
6423 		size *= sizeof(u64);
6424 		__output_copy(handle, data->callchain, size);
6425 	}
6426 
6427 	if (sample_type & PERF_SAMPLE_RAW) {
6428 		struct perf_raw_record *raw = data->raw;
6429 
6430 		if (raw) {
6431 			struct perf_raw_frag *frag = &raw->frag;
6432 
6433 			perf_output_put(handle, raw->size);
6434 			do {
6435 				if (frag->copy) {
6436 					__output_custom(handle, frag->copy,
6437 							frag->data, frag->size);
6438 				} else {
6439 					__output_copy(handle, frag->data,
6440 						      frag->size);
6441 				}
6442 				if (perf_raw_frag_last(frag))
6443 					break;
6444 				frag = frag->next;
6445 			} while (1);
6446 			if (frag->pad)
6447 				__output_skip(handle, NULL, frag->pad);
6448 		} else {
6449 			struct {
6450 				u32	size;
6451 				u32	data;
6452 			} raw = {
6453 				.size = sizeof(u32),
6454 				.data = 0,
6455 			};
6456 			perf_output_put(handle, raw);
6457 		}
6458 	}
6459 
6460 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6461 		if (data->br_stack) {
6462 			size_t size;
6463 
6464 			size = data->br_stack->nr
6465 			     * sizeof(struct perf_branch_entry);
6466 
6467 			perf_output_put(handle, data->br_stack->nr);
6468 			perf_output_copy(handle, data->br_stack->entries, size);
6469 		} else {
6470 			/*
6471 			 * we always store at least the value of nr
6472 			 */
6473 			u64 nr = 0;
6474 			perf_output_put(handle, nr);
6475 		}
6476 	}
6477 
6478 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6479 		u64 abi = data->regs_user.abi;
6480 
6481 		/*
6482 		 * If there are no regs to dump, notice it through
6483 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6484 		 */
6485 		perf_output_put(handle, abi);
6486 
6487 		if (abi) {
6488 			u64 mask = event->attr.sample_regs_user;
6489 			perf_output_sample_regs(handle,
6490 						data->regs_user.regs,
6491 						mask);
6492 		}
6493 	}
6494 
6495 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6496 		perf_output_sample_ustack(handle,
6497 					  data->stack_user_size,
6498 					  data->regs_user.regs);
6499 	}
6500 
6501 	if (sample_type & PERF_SAMPLE_WEIGHT)
6502 		perf_output_put(handle, data->weight);
6503 
6504 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6505 		perf_output_put(handle, data->data_src.val);
6506 
6507 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6508 		perf_output_put(handle, data->txn);
6509 
6510 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6511 		u64 abi = data->regs_intr.abi;
6512 		/*
6513 		 * If there are no regs to dump, notice it through
6514 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6515 		 */
6516 		perf_output_put(handle, abi);
6517 
6518 		if (abi) {
6519 			u64 mask = event->attr.sample_regs_intr;
6520 
6521 			perf_output_sample_regs(handle,
6522 						data->regs_intr.regs,
6523 						mask);
6524 		}
6525 	}
6526 
6527 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6528 		perf_output_put(handle, data->phys_addr);
6529 
6530 	if (!event->attr.watermark) {
6531 		int wakeup_events = event->attr.wakeup_events;
6532 
6533 		if (wakeup_events) {
6534 			struct ring_buffer *rb = handle->rb;
6535 			int events = local_inc_return(&rb->events);
6536 
6537 			if (events >= wakeup_events) {
6538 				local_sub(wakeup_events, &rb->events);
6539 				local_inc(&rb->wakeup);
6540 			}
6541 		}
6542 	}
6543 }
6544 
6545 static u64 perf_virt_to_phys(u64 virt)
6546 {
6547 	u64 phys_addr = 0;
6548 	struct page *p = NULL;
6549 
6550 	if (!virt)
6551 		return 0;
6552 
6553 	if (virt >= TASK_SIZE) {
6554 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6555 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6556 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6557 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6558 	} else {
6559 		/*
6560 		 * Walking the pages tables for user address.
6561 		 * Interrupts are disabled, so it prevents any tear down
6562 		 * of the page tables.
6563 		 * Try IRQ-safe __get_user_pages_fast first.
6564 		 * If failed, leave phys_addr as 0.
6565 		 */
6566 		if ((current->mm != NULL) &&
6567 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6568 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6569 
6570 		if (p)
6571 			put_page(p);
6572 	}
6573 
6574 	return phys_addr;
6575 }
6576 
6577 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6578 
6579 struct perf_callchain_entry *
6580 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6581 {
6582 	bool kernel = !event->attr.exclude_callchain_kernel;
6583 	bool user   = !event->attr.exclude_callchain_user;
6584 	/* Disallow cross-task user callchains. */
6585 	bool crosstask = event->ctx->task && event->ctx->task != current;
6586 	const u32 max_stack = event->attr.sample_max_stack;
6587 	struct perf_callchain_entry *callchain;
6588 
6589 	if (!kernel && !user)
6590 		return &__empty_callchain;
6591 
6592 	callchain = get_perf_callchain(regs, 0, kernel, user,
6593 				       max_stack, crosstask, true);
6594 	return callchain ?: &__empty_callchain;
6595 }
6596 
6597 void perf_prepare_sample(struct perf_event_header *header,
6598 			 struct perf_sample_data *data,
6599 			 struct perf_event *event,
6600 			 struct pt_regs *regs)
6601 {
6602 	u64 sample_type = event->attr.sample_type;
6603 
6604 	header->type = PERF_RECORD_SAMPLE;
6605 	header->size = sizeof(*header) + event->header_size;
6606 
6607 	header->misc = 0;
6608 	header->misc |= perf_misc_flags(regs);
6609 
6610 	__perf_event_header__init_id(header, data, event);
6611 
6612 	if (sample_type & PERF_SAMPLE_IP)
6613 		data->ip = perf_instruction_pointer(regs);
6614 
6615 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6616 		int size = 1;
6617 
6618 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6619 			data->callchain = perf_callchain(event, regs);
6620 
6621 		size += data->callchain->nr;
6622 
6623 		header->size += size * sizeof(u64);
6624 	}
6625 
6626 	if (sample_type & PERF_SAMPLE_RAW) {
6627 		struct perf_raw_record *raw = data->raw;
6628 		int size;
6629 
6630 		if (raw) {
6631 			struct perf_raw_frag *frag = &raw->frag;
6632 			u32 sum = 0;
6633 
6634 			do {
6635 				sum += frag->size;
6636 				if (perf_raw_frag_last(frag))
6637 					break;
6638 				frag = frag->next;
6639 			} while (1);
6640 
6641 			size = round_up(sum + sizeof(u32), sizeof(u64));
6642 			raw->size = size - sizeof(u32);
6643 			frag->pad = raw->size - sum;
6644 		} else {
6645 			size = sizeof(u64);
6646 		}
6647 
6648 		header->size += size;
6649 	}
6650 
6651 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6652 		int size = sizeof(u64); /* nr */
6653 		if (data->br_stack) {
6654 			size += data->br_stack->nr
6655 			      * sizeof(struct perf_branch_entry);
6656 		}
6657 		header->size += size;
6658 	}
6659 
6660 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6661 		perf_sample_regs_user(&data->regs_user, regs,
6662 				      &data->regs_user_copy);
6663 
6664 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6665 		/* regs dump ABI info */
6666 		int size = sizeof(u64);
6667 
6668 		if (data->regs_user.regs) {
6669 			u64 mask = event->attr.sample_regs_user;
6670 			size += hweight64(mask) * sizeof(u64);
6671 		}
6672 
6673 		header->size += size;
6674 	}
6675 
6676 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6677 		/*
6678 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
6679 		 * processed as the last one or have additional check added
6680 		 * in case new sample type is added, because we could eat
6681 		 * up the rest of the sample size.
6682 		 */
6683 		u16 stack_size = event->attr.sample_stack_user;
6684 		u16 size = sizeof(u64);
6685 
6686 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6687 						     data->regs_user.regs);
6688 
6689 		/*
6690 		 * If there is something to dump, add space for the dump
6691 		 * itself and for the field that tells the dynamic size,
6692 		 * which is how many have been actually dumped.
6693 		 */
6694 		if (stack_size)
6695 			size += sizeof(u64) + stack_size;
6696 
6697 		data->stack_user_size = stack_size;
6698 		header->size += size;
6699 	}
6700 
6701 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6702 		/* regs dump ABI info */
6703 		int size = sizeof(u64);
6704 
6705 		perf_sample_regs_intr(&data->regs_intr, regs);
6706 
6707 		if (data->regs_intr.regs) {
6708 			u64 mask = event->attr.sample_regs_intr;
6709 
6710 			size += hweight64(mask) * sizeof(u64);
6711 		}
6712 
6713 		header->size += size;
6714 	}
6715 
6716 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6717 		data->phys_addr = perf_virt_to_phys(data->addr);
6718 }
6719 
6720 static __always_inline int
6721 __perf_event_output(struct perf_event *event,
6722 		    struct perf_sample_data *data,
6723 		    struct pt_regs *regs,
6724 		    int (*output_begin)(struct perf_output_handle *,
6725 					struct perf_event *,
6726 					unsigned int))
6727 {
6728 	struct perf_output_handle handle;
6729 	struct perf_event_header header;
6730 	int err;
6731 
6732 	/* protect the callchain buffers */
6733 	rcu_read_lock();
6734 
6735 	perf_prepare_sample(&header, data, event, regs);
6736 
6737 	err = output_begin(&handle, event, header.size);
6738 	if (err)
6739 		goto exit;
6740 
6741 	perf_output_sample(&handle, &header, data, event);
6742 
6743 	perf_output_end(&handle);
6744 
6745 exit:
6746 	rcu_read_unlock();
6747 	return err;
6748 }
6749 
6750 void
6751 perf_event_output_forward(struct perf_event *event,
6752 			 struct perf_sample_data *data,
6753 			 struct pt_regs *regs)
6754 {
6755 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6756 }
6757 
6758 void
6759 perf_event_output_backward(struct perf_event *event,
6760 			   struct perf_sample_data *data,
6761 			   struct pt_regs *regs)
6762 {
6763 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6764 }
6765 
6766 int
6767 perf_event_output(struct perf_event *event,
6768 		  struct perf_sample_data *data,
6769 		  struct pt_regs *regs)
6770 {
6771 	return __perf_event_output(event, data, regs, perf_output_begin);
6772 }
6773 
6774 /*
6775  * read event_id
6776  */
6777 
6778 struct perf_read_event {
6779 	struct perf_event_header	header;
6780 
6781 	u32				pid;
6782 	u32				tid;
6783 };
6784 
6785 static void
6786 perf_event_read_event(struct perf_event *event,
6787 			struct task_struct *task)
6788 {
6789 	struct perf_output_handle handle;
6790 	struct perf_sample_data sample;
6791 	struct perf_read_event read_event = {
6792 		.header = {
6793 			.type = PERF_RECORD_READ,
6794 			.misc = 0,
6795 			.size = sizeof(read_event) + event->read_size,
6796 		},
6797 		.pid = perf_event_pid(event, task),
6798 		.tid = perf_event_tid(event, task),
6799 	};
6800 	int ret;
6801 
6802 	perf_event_header__init_id(&read_event.header, &sample, event);
6803 	ret = perf_output_begin(&handle, event, read_event.header.size);
6804 	if (ret)
6805 		return;
6806 
6807 	perf_output_put(&handle, read_event);
6808 	perf_output_read(&handle, event);
6809 	perf_event__output_id_sample(event, &handle, &sample);
6810 
6811 	perf_output_end(&handle);
6812 }
6813 
6814 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6815 
6816 static void
6817 perf_iterate_ctx(struct perf_event_context *ctx,
6818 		   perf_iterate_f output,
6819 		   void *data, bool all)
6820 {
6821 	struct perf_event *event;
6822 
6823 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6824 		if (!all) {
6825 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6826 				continue;
6827 			if (!event_filter_match(event))
6828 				continue;
6829 		}
6830 
6831 		output(event, data);
6832 	}
6833 }
6834 
6835 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6836 {
6837 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6838 	struct perf_event *event;
6839 
6840 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6841 		/*
6842 		 * Skip events that are not fully formed yet; ensure that
6843 		 * if we observe event->ctx, both event and ctx will be
6844 		 * complete enough. See perf_install_in_context().
6845 		 */
6846 		if (!smp_load_acquire(&event->ctx))
6847 			continue;
6848 
6849 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6850 			continue;
6851 		if (!event_filter_match(event))
6852 			continue;
6853 		output(event, data);
6854 	}
6855 }
6856 
6857 /*
6858  * Iterate all events that need to receive side-band events.
6859  *
6860  * For new callers; ensure that account_pmu_sb_event() includes
6861  * your event, otherwise it might not get delivered.
6862  */
6863 static void
6864 perf_iterate_sb(perf_iterate_f output, void *data,
6865 	       struct perf_event_context *task_ctx)
6866 {
6867 	struct perf_event_context *ctx;
6868 	int ctxn;
6869 
6870 	rcu_read_lock();
6871 	preempt_disable();
6872 
6873 	/*
6874 	 * If we have task_ctx != NULL we only notify the task context itself.
6875 	 * The task_ctx is set only for EXIT events before releasing task
6876 	 * context.
6877 	 */
6878 	if (task_ctx) {
6879 		perf_iterate_ctx(task_ctx, output, data, false);
6880 		goto done;
6881 	}
6882 
6883 	perf_iterate_sb_cpu(output, data);
6884 
6885 	for_each_task_context_nr(ctxn) {
6886 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6887 		if (ctx)
6888 			perf_iterate_ctx(ctx, output, data, false);
6889 	}
6890 done:
6891 	preempt_enable();
6892 	rcu_read_unlock();
6893 }
6894 
6895 /*
6896  * Clear all file-based filters at exec, they'll have to be
6897  * re-instated when/if these objects are mmapped again.
6898  */
6899 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6900 {
6901 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6902 	struct perf_addr_filter *filter;
6903 	unsigned int restart = 0, count = 0;
6904 	unsigned long flags;
6905 
6906 	if (!has_addr_filter(event))
6907 		return;
6908 
6909 	raw_spin_lock_irqsave(&ifh->lock, flags);
6910 	list_for_each_entry(filter, &ifh->list, entry) {
6911 		if (filter->path.dentry) {
6912 			event->addr_filter_ranges[count].start = 0;
6913 			event->addr_filter_ranges[count].size = 0;
6914 			restart++;
6915 		}
6916 
6917 		count++;
6918 	}
6919 
6920 	if (restart)
6921 		event->addr_filters_gen++;
6922 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6923 
6924 	if (restart)
6925 		perf_event_stop(event, 1);
6926 }
6927 
6928 void perf_event_exec(void)
6929 {
6930 	struct perf_event_context *ctx;
6931 	int ctxn;
6932 
6933 	rcu_read_lock();
6934 	for_each_task_context_nr(ctxn) {
6935 		ctx = current->perf_event_ctxp[ctxn];
6936 		if (!ctx)
6937 			continue;
6938 
6939 		perf_event_enable_on_exec(ctxn);
6940 
6941 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6942 				   true);
6943 	}
6944 	rcu_read_unlock();
6945 }
6946 
6947 struct remote_output {
6948 	struct ring_buffer	*rb;
6949 	int			err;
6950 };
6951 
6952 static void __perf_event_output_stop(struct perf_event *event, void *data)
6953 {
6954 	struct perf_event *parent = event->parent;
6955 	struct remote_output *ro = data;
6956 	struct ring_buffer *rb = ro->rb;
6957 	struct stop_event_data sd = {
6958 		.event	= event,
6959 	};
6960 
6961 	if (!has_aux(event))
6962 		return;
6963 
6964 	if (!parent)
6965 		parent = event;
6966 
6967 	/*
6968 	 * In case of inheritance, it will be the parent that links to the
6969 	 * ring-buffer, but it will be the child that's actually using it.
6970 	 *
6971 	 * We are using event::rb to determine if the event should be stopped,
6972 	 * however this may race with ring_buffer_attach() (through set_output),
6973 	 * which will make us skip the event that actually needs to be stopped.
6974 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6975 	 * its rb pointer.
6976 	 */
6977 	if (rcu_dereference(parent->rb) == rb)
6978 		ro->err = __perf_event_stop(&sd);
6979 }
6980 
6981 static int __perf_pmu_output_stop(void *info)
6982 {
6983 	struct perf_event *event = info;
6984 	struct pmu *pmu = event->ctx->pmu;
6985 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6986 	struct remote_output ro = {
6987 		.rb	= event->rb,
6988 	};
6989 
6990 	rcu_read_lock();
6991 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6992 	if (cpuctx->task_ctx)
6993 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6994 				   &ro, false);
6995 	rcu_read_unlock();
6996 
6997 	return ro.err;
6998 }
6999 
7000 static void perf_pmu_output_stop(struct perf_event *event)
7001 {
7002 	struct perf_event *iter;
7003 	int err, cpu;
7004 
7005 restart:
7006 	rcu_read_lock();
7007 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7008 		/*
7009 		 * For per-CPU events, we need to make sure that neither they
7010 		 * nor their children are running; for cpu==-1 events it's
7011 		 * sufficient to stop the event itself if it's active, since
7012 		 * it can't have children.
7013 		 */
7014 		cpu = iter->cpu;
7015 		if (cpu == -1)
7016 			cpu = READ_ONCE(iter->oncpu);
7017 
7018 		if (cpu == -1)
7019 			continue;
7020 
7021 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7022 		if (err == -EAGAIN) {
7023 			rcu_read_unlock();
7024 			goto restart;
7025 		}
7026 	}
7027 	rcu_read_unlock();
7028 }
7029 
7030 /*
7031  * task tracking -- fork/exit
7032  *
7033  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7034  */
7035 
7036 struct perf_task_event {
7037 	struct task_struct		*task;
7038 	struct perf_event_context	*task_ctx;
7039 
7040 	struct {
7041 		struct perf_event_header	header;
7042 
7043 		u32				pid;
7044 		u32				ppid;
7045 		u32				tid;
7046 		u32				ptid;
7047 		u64				time;
7048 	} event_id;
7049 };
7050 
7051 static int perf_event_task_match(struct perf_event *event)
7052 {
7053 	return event->attr.comm  || event->attr.mmap ||
7054 	       event->attr.mmap2 || event->attr.mmap_data ||
7055 	       event->attr.task;
7056 }
7057 
7058 static void perf_event_task_output(struct perf_event *event,
7059 				   void *data)
7060 {
7061 	struct perf_task_event *task_event = data;
7062 	struct perf_output_handle handle;
7063 	struct perf_sample_data	sample;
7064 	struct task_struct *task = task_event->task;
7065 	int ret, size = task_event->event_id.header.size;
7066 
7067 	if (!perf_event_task_match(event))
7068 		return;
7069 
7070 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7071 
7072 	ret = perf_output_begin(&handle, event,
7073 				task_event->event_id.header.size);
7074 	if (ret)
7075 		goto out;
7076 
7077 	task_event->event_id.pid = perf_event_pid(event, task);
7078 	task_event->event_id.ppid = perf_event_pid(event, current);
7079 
7080 	task_event->event_id.tid = perf_event_tid(event, task);
7081 	task_event->event_id.ptid = perf_event_tid(event, current);
7082 
7083 	task_event->event_id.time = perf_event_clock(event);
7084 
7085 	perf_output_put(&handle, task_event->event_id);
7086 
7087 	perf_event__output_id_sample(event, &handle, &sample);
7088 
7089 	perf_output_end(&handle);
7090 out:
7091 	task_event->event_id.header.size = size;
7092 }
7093 
7094 static void perf_event_task(struct task_struct *task,
7095 			      struct perf_event_context *task_ctx,
7096 			      int new)
7097 {
7098 	struct perf_task_event task_event;
7099 
7100 	if (!atomic_read(&nr_comm_events) &&
7101 	    !atomic_read(&nr_mmap_events) &&
7102 	    !atomic_read(&nr_task_events))
7103 		return;
7104 
7105 	task_event = (struct perf_task_event){
7106 		.task	  = task,
7107 		.task_ctx = task_ctx,
7108 		.event_id    = {
7109 			.header = {
7110 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7111 				.misc = 0,
7112 				.size = sizeof(task_event.event_id),
7113 			},
7114 			/* .pid  */
7115 			/* .ppid */
7116 			/* .tid  */
7117 			/* .ptid */
7118 			/* .time */
7119 		},
7120 	};
7121 
7122 	perf_iterate_sb(perf_event_task_output,
7123 		       &task_event,
7124 		       task_ctx);
7125 }
7126 
7127 void perf_event_fork(struct task_struct *task)
7128 {
7129 	perf_event_task(task, NULL, 1);
7130 	perf_event_namespaces(task);
7131 }
7132 
7133 /*
7134  * comm tracking
7135  */
7136 
7137 struct perf_comm_event {
7138 	struct task_struct	*task;
7139 	char			*comm;
7140 	int			comm_size;
7141 
7142 	struct {
7143 		struct perf_event_header	header;
7144 
7145 		u32				pid;
7146 		u32				tid;
7147 	} event_id;
7148 };
7149 
7150 static int perf_event_comm_match(struct perf_event *event)
7151 {
7152 	return event->attr.comm;
7153 }
7154 
7155 static void perf_event_comm_output(struct perf_event *event,
7156 				   void *data)
7157 {
7158 	struct perf_comm_event *comm_event = data;
7159 	struct perf_output_handle handle;
7160 	struct perf_sample_data sample;
7161 	int size = comm_event->event_id.header.size;
7162 	int ret;
7163 
7164 	if (!perf_event_comm_match(event))
7165 		return;
7166 
7167 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7168 	ret = perf_output_begin(&handle, event,
7169 				comm_event->event_id.header.size);
7170 
7171 	if (ret)
7172 		goto out;
7173 
7174 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7175 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7176 
7177 	perf_output_put(&handle, comm_event->event_id);
7178 	__output_copy(&handle, comm_event->comm,
7179 				   comm_event->comm_size);
7180 
7181 	perf_event__output_id_sample(event, &handle, &sample);
7182 
7183 	perf_output_end(&handle);
7184 out:
7185 	comm_event->event_id.header.size = size;
7186 }
7187 
7188 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7189 {
7190 	char comm[TASK_COMM_LEN];
7191 	unsigned int size;
7192 
7193 	memset(comm, 0, sizeof(comm));
7194 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7195 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7196 
7197 	comm_event->comm = comm;
7198 	comm_event->comm_size = size;
7199 
7200 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7201 
7202 	perf_iterate_sb(perf_event_comm_output,
7203 		       comm_event,
7204 		       NULL);
7205 }
7206 
7207 void perf_event_comm(struct task_struct *task, bool exec)
7208 {
7209 	struct perf_comm_event comm_event;
7210 
7211 	if (!atomic_read(&nr_comm_events))
7212 		return;
7213 
7214 	comm_event = (struct perf_comm_event){
7215 		.task	= task,
7216 		/* .comm      */
7217 		/* .comm_size */
7218 		.event_id  = {
7219 			.header = {
7220 				.type = PERF_RECORD_COMM,
7221 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7222 				/* .size */
7223 			},
7224 			/* .pid */
7225 			/* .tid */
7226 		},
7227 	};
7228 
7229 	perf_event_comm_event(&comm_event);
7230 }
7231 
7232 /*
7233  * namespaces tracking
7234  */
7235 
7236 struct perf_namespaces_event {
7237 	struct task_struct		*task;
7238 
7239 	struct {
7240 		struct perf_event_header	header;
7241 
7242 		u32				pid;
7243 		u32				tid;
7244 		u64				nr_namespaces;
7245 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7246 	} event_id;
7247 };
7248 
7249 static int perf_event_namespaces_match(struct perf_event *event)
7250 {
7251 	return event->attr.namespaces;
7252 }
7253 
7254 static void perf_event_namespaces_output(struct perf_event *event,
7255 					 void *data)
7256 {
7257 	struct perf_namespaces_event *namespaces_event = data;
7258 	struct perf_output_handle handle;
7259 	struct perf_sample_data sample;
7260 	u16 header_size = namespaces_event->event_id.header.size;
7261 	int ret;
7262 
7263 	if (!perf_event_namespaces_match(event))
7264 		return;
7265 
7266 	perf_event_header__init_id(&namespaces_event->event_id.header,
7267 				   &sample, event);
7268 	ret = perf_output_begin(&handle, event,
7269 				namespaces_event->event_id.header.size);
7270 	if (ret)
7271 		goto out;
7272 
7273 	namespaces_event->event_id.pid = perf_event_pid(event,
7274 							namespaces_event->task);
7275 	namespaces_event->event_id.tid = perf_event_tid(event,
7276 							namespaces_event->task);
7277 
7278 	perf_output_put(&handle, namespaces_event->event_id);
7279 
7280 	perf_event__output_id_sample(event, &handle, &sample);
7281 
7282 	perf_output_end(&handle);
7283 out:
7284 	namespaces_event->event_id.header.size = header_size;
7285 }
7286 
7287 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7288 				   struct task_struct *task,
7289 				   const struct proc_ns_operations *ns_ops)
7290 {
7291 	struct path ns_path;
7292 	struct inode *ns_inode;
7293 	void *error;
7294 
7295 	error = ns_get_path(&ns_path, task, ns_ops);
7296 	if (!error) {
7297 		ns_inode = ns_path.dentry->d_inode;
7298 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7299 		ns_link_info->ino = ns_inode->i_ino;
7300 		path_put(&ns_path);
7301 	}
7302 }
7303 
7304 void perf_event_namespaces(struct task_struct *task)
7305 {
7306 	struct perf_namespaces_event namespaces_event;
7307 	struct perf_ns_link_info *ns_link_info;
7308 
7309 	if (!atomic_read(&nr_namespaces_events))
7310 		return;
7311 
7312 	namespaces_event = (struct perf_namespaces_event){
7313 		.task	= task,
7314 		.event_id  = {
7315 			.header = {
7316 				.type = PERF_RECORD_NAMESPACES,
7317 				.misc = 0,
7318 				.size = sizeof(namespaces_event.event_id),
7319 			},
7320 			/* .pid */
7321 			/* .tid */
7322 			.nr_namespaces = NR_NAMESPACES,
7323 			/* .link_info[NR_NAMESPACES] */
7324 		},
7325 	};
7326 
7327 	ns_link_info = namespaces_event.event_id.link_info;
7328 
7329 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7330 			       task, &mntns_operations);
7331 
7332 #ifdef CONFIG_USER_NS
7333 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7334 			       task, &userns_operations);
7335 #endif
7336 #ifdef CONFIG_NET_NS
7337 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7338 			       task, &netns_operations);
7339 #endif
7340 #ifdef CONFIG_UTS_NS
7341 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7342 			       task, &utsns_operations);
7343 #endif
7344 #ifdef CONFIG_IPC_NS
7345 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7346 			       task, &ipcns_operations);
7347 #endif
7348 #ifdef CONFIG_PID_NS
7349 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7350 			       task, &pidns_operations);
7351 #endif
7352 #ifdef CONFIG_CGROUPS
7353 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7354 			       task, &cgroupns_operations);
7355 #endif
7356 
7357 	perf_iterate_sb(perf_event_namespaces_output,
7358 			&namespaces_event,
7359 			NULL);
7360 }
7361 
7362 /*
7363  * mmap tracking
7364  */
7365 
7366 struct perf_mmap_event {
7367 	struct vm_area_struct	*vma;
7368 
7369 	const char		*file_name;
7370 	int			file_size;
7371 	int			maj, min;
7372 	u64			ino;
7373 	u64			ino_generation;
7374 	u32			prot, flags;
7375 
7376 	struct {
7377 		struct perf_event_header	header;
7378 
7379 		u32				pid;
7380 		u32				tid;
7381 		u64				start;
7382 		u64				len;
7383 		u64				pgoff;
7384 	} event_id;
7385 };
7386 
7387 static int perf_event_mmap_match(struct perf_event *event,
7388 				 void *data)
7389 {
7390 	struct perf_mmap_event *mmap_event = data;
7391 	struct vm_area_struct *vma = mmap_event->vma;
7392 	int executable = vma->vm_flags & VM_EXEC;
7393 
7394 	return (!executable && event->attr.mmap_data) ||
7395 	       (executable && (event->attr.mmap || event->attr.mmap2));
7396 }
7397 
7398 static void perf_event_mmap_output(struct perf_event *event,
7399 				   void *data)
7400 {
7401 	struct perf_mmap_event *mmap_event = data;
7402 	struct perf_output_handle handle;
7403 	struct perf_sample_data sample;
7404 	int size = mmap_event->event_id.header.size;
7405 	u32 type = mmap_event->event_id.header.type;
7406 	int ret;
7407 
7408 	if (!perf_event_mmap_match(event, data))
7409 		return;
7410 
7411 	if (event->attr.mmap2) {
7412 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7413 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7414 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7415 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7416 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7417 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7418 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7419 	}
7420 
7421 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7422 	ret = perf_output_begin(&handle, event,
7423 				mmap_event->event_id.header.size);
7424 	if (ret)
7425 		goto out;
7426 
7427 	mmap_event->event_id.pid = perf_event_pid(event, current);
7428 	mmap_event->event_id.tid = perf_event_tid(event, current);
7429 
7430 	perf_output_put(&handle, mmap_event->event_id);
7431 
7432 	if (event->attr.mmap2) {
7433 		perf_output_put(&handle, mmap_event->maj);
7434 		perf_output_put(&handle, mmap_event->min);
7435 		perf_output_put(&handle, mmap_event->ino);
7436 		perf_output_put(&handle, mmap_event->ino_generation);
7437 		perf_output_put(&handle, mmap_event->prot);
7438 		perf_output_put(&handle, mmap_event->flags);
7439 	}
7440 
7441 	__output_copy(&handle, mmap_event->file_name,
7442 				   mmap_event->file_size);
7443 
7444 	perf_event__output_id_sample(event, &handle, &sample);
7445 
7446 	perf_output_end(&handle);
7447 out:
7448 	mmap_event->event_id.header.size = size;
7449 	mmap_event->event_id.header.type = type;
7450 }
7451 
7452 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7453 {
7454 	struct vm_area_struct *vma = mmap_event->vma;
7455 	struct file *file = vma->vm_file;
7456 	int maj = 0, min = 0;
7457 	u64 ino = 0, gen = 0;
7458 	u32 prot = 0, flags = 0;
7459 	unsigned int size;
7460 	char tmp[16];
7461 	char *buf = NULL;
7462 	char *name;
7463 
7464 	if (vma->vm_flags & VM_READ)
7465 		prot |= PROT_READ;
7466 	if (vma->vm_flags & VM_WRITE)
7467 		prot |= PROT_WRITE;
7468 	if (vma->vm_flags & VM_EXEC)
7469 		prot |= PROT_EXEC;
7470 
7471 	if (vma->vm_flags & VM_MAYSHARE)
7472 		flags = MAP_SHARED;
7473 	else
7474 		flags = MAP_PRIVATE;
7475 
7476 	if (vma->vm_flags & VM_DENYWRITE)
7477 		flags |= MAP_DENYWRITE;
7478 	if (vma->vm_flags & VM_MAYEXEC)
7479 		flags |= MAP_EXECUTABLE;
7480 	if (vma->vm_flags & VM_LOCKED)
7481 		flags |= MAP_LOCKED;
7482 	if (vma->vm_flags & VM_HUGETLB)
7483 		flags |= MAP_HUGETLB;
7484 
7485 	if (file) {
7486 		struct inode *inode;
7487 		dev_t dev;
7488 
7489 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7490 		if (!buf) {
7491 			name = "//enomem";
7492 			goto cpy_name;
7493 		}
7494 		/*
7495 		 * d_path() works from the end of the rb backwards, so we
7496 		 * need to add enough zero bytes after the string to handle
7497 		 * the 64bit alignment we do later.
7498 		 */
7499 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7500 		if (IS_ERR(name)) {
7501 			name = "//toolong";
7502 			goto cpy_name;
7503 		}
7504 		inode = file_inode(vma->vm_file);
7505 		dev = inode->i_sb->s_dev;
7506 		ino = inode->i_ino;
7507 		gen = inode->i_generation;
7508 		maj = MAJOR(dev);
7509 		min = MINOR(dev);
7510 
7511 		goto got_name;
7512 	} else {
7513 		if (vma->vm_ops && vma->vm_ops->name) {
7514 			name = (char *) vma->vm_ops->name(vma);
7515 			if (name)
7516 				goto cpy_name;
7517 		}
7518 
7519 		name = (char *)arch_vma_name(vma);
7520 		if (name)
7521 			goto cpy_name;
7522 
7523 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7524 				vma->vm_end >= vma->vm_mm->brk) {
7525 			name = "[heap]";
7526 			goto cpy_name;
7527 		}
7528 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7529 				vma->vm_end >= vma->vm_mm->start_stack) {
7530 			name = "[stack]";
7531 			goto cpy_name;
7532 		}
7533 
7534 		name = "//anon";
7535 		goto cpy_name;
7536 	}
7537 
7538 cpy_name:
7539 	strlcpy(tmp, name, sizeof(tmp));
7540 	name = tmp;
7541 got_name:
7542 	/*
7543 	 * Since our buffer works in 8 byte units we need to align our string
7544 	 * size to a multiple of 8. However, we must guarantee the tail end is
7545 	 * zero'd out to avoid leaking random bits to userspace.
7546 	 */
7547 	size = strlen(name)+1;
7548 	while (!IS_ALIGNED(size, sizeof(u64)))
7549 		name[size++] = '\0';
7550 
7551 	mmap_event->file_name = name;
7552 	mmap_event->file_size = size;
7553 	mmap_event->maj = maj;
7554 	mmap_event->min = min;
7555 	mmap_event->ino = ino;
7556 	mmap_event->ino_generation = gen;
7557 	mmap_event->prot = prot;
7558 	mmap_event->flags = flags;
7559 
7560 	if (!(vma->vm_flags & VM_EXEC))
7561 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7562 
7563 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7564 
7565 	perf_iterate_sb(perf_event_mmap_output,
7566 		       mmap_event,
7567 		       NULL);
7568 
7569 	kfree(buf);
7570 }
7571 
7572 /*
7573  * Check whether inode and address range match filter criteria.
7574  */
7575 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7576 				     struct file *file, unsigned long offset,
7577 				     unsigned long size)
7578 {
7579 	/* d_inode(NULL) won't be equal to any mapped user-space file */
7580 	if (!filter->path.dentry)
7581 		return false;
7582 
7583 	if (d_inode(filter->path.dentry) != file_inode(file))
7584 		return false;
7585 
7586 	if (filter->offset > offset + size)
7587 		return false;
7588 
7589 	if (filter->offset + filter->size < offset)
7590 		return false;
7591 
7592 	return true;
7593 }
7594 
7595 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7596 					struct vm_area_struct *vma,
7597 					struct perf_addr_filter_range *fr)
7598 {
7599 	unsigned long vma_size = vma->vm_end - vma->vm_start;
7600 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7601 	struct file *file = vma->vm_file;
7602 
7603 	if (!perf_addr_filter_match(filter, file, off, vma_size))
7604 		return false;
7605 
7606 	if (filter->offset < off) {
7607 		fr->start = vma->vm_start;
7608 		fr->size = min(vma_size, filter->size - (off - filter->offset));
7609 	} else {
7610 		fr->start = vma->vm_start + filter->offset - off;
7611 		fr->size = min(vma->vm_end - fr->start, filter->size);
7612 	}
7613 
7614 	return true;
7615 }
7616 
7617 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7618 {
7619 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7620 	struct vm_area_struct *vma = data;
7621 	struct perf_addr_filter *filter;
7622 	unsigned int restart = 0, count = 0;
7623 	unsigned long flags;
7624 
7625 	if (!has_addr_filter(event))
7626 		return;
7627 
7628 	if (!vma->vm_file)
7629 		return;
7630 
7631 	raw_spin_lock_irqsave(&ifh->lock, flags);
7632 	list_for_each_entry(filter, &ifh->list, entry) {
7633 		if (perf_addr_filter_vma_adjust(filter, vma,
7634 						&event->addr_filter_ranges[count]))
7635 			restart++;
7636 
7637 		count++;
7638 	}
7639 
7640 	if (restart)
7641 		event->addr_filters_gen++;
7642 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7643 
7644 	if (restart)
7645 		perf_event_stop(event, 1);
7646 }
7647 
7648 /*
7649  * Adjust all task's events' filters to the new vma
7650  */
7651 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7652 {
7653 	struct perf_event_context *ctx;
7654 	int ctxn;
7655 
7656 	/*
7657 	 * Data tracing isn't supported yet and as such there is no need
7658 	 * to keep track of anything that isn't related to executable code:
7659 	 */
7660 	if (!(vma->vm_flags & VM_EXEC))
7661 		return;
7662 
7663 	rcu_read_lock();
7664 	for_each_task_context_nr(ctxn) {
7665 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7666 		if (!ctx)
7667 			continue;
7668 
7669 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7670 	}
7671 	rcu_read_unlock();
7672 }
7673 
7674 void perf_event_mmap(struct vm_area_struct *vma)
7675 {
7676 	struct perf_mmap_event mmap_event;
7677 
7678 	if (!atomic_read(&nr_mmap_events))
7679 		return;
7680 
7681 	mmap_event = (struct perf_mmap_event){
7682 		.vma	= vma,
7683 		/* .file_name */
7684 		/* .file_size */
7685 		.event_id  = {
7686 			.header = {
7687 				.type = PERF_RECORD_MMAP,
7688 				.misc = PERF_RECORD_MISC_USER,
7689 				/* .size */
7690 			},
7691 			/* .pid */
7692 			/* .tid */
7693 			.start  = vma->vm_start,
7694 			.len    = vma->vm_end - vma->vm_start,
7695 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7696 		},
7697 		/* .maj (attr_mmap2 only) */
7698 		/* .min (attr_mmap2 only) */
7699 		/* .ino (attr_mmap2 only) */
7700 		/* .ino_generation (attr_mmap2 only) */
7701 		/* .prot (attr_mmap2 only) */
7702 		/* .flags (attr_mmap2 only) */
7703 	};
7704 
7705 	perf_addr_filters_adjust(vma);
7706 	perf_event_mmap_event(&mmap_event);
7707 }
7708 
7709 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7710 			  unsigned long size, u64 flags)
7711 {
7712 	struct perf_output_handle handle;
7713 	struct perf_sample_data sample;
7714 	struct perf_aux_event {
7715 		struct perf_event_header	header;
7716 		u64				offset;
7717 		u64				size;
7718 		u64				flags;
7719 	} rec = {
7720 		.header = {
7721 			.type = PERF_RECORD_AUX,
7722 			.misc = 0,
7723 			.size = sizeof(rec),
7724 		},
7725 		.offset		= head,
7726 		.size		= size,
7727 		.flags		= flags,
7728 	};
7729 	int ret;
7730 
7731 	perf_event_header__init_id(&rec.header, &sample, event);
7732 	ret = perf_output_begin(&handle, event, rec.header.size);
7733 
7734 	if (ret)
7735 		return;
7736 
7737 	perf_output_put(&handle, rec);
7738 	perf_event__output_id_sample(event, &handle, &sample);
7739 
7740 	perf_output_end(&handle);
7741 }
7742 
7743 /*
7744  * Lost/dropped samples logging
7745  */
7746 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7747 {
7748 	struct perf_output_handle handle;
7749 	struct perf_sample_data sample;
7750 	int ret;
7751 
7752 	struct {
7753 		struct perf_event_header	header;
7754 		u64				lost;
7755 	} lost_samples_event = {
7756 		.header = {
7757 			.type = PERF_RECORD_LOST_SAMPLES,
7758 			.misc = 0,
7759 			.size = sizeof(lost_samples_event),
7760 		},
7761 		.lost		= lost,
7762 	};
7763 
7764 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7765 
7766 	ret = perf_output_begin(&handle, event,
7767 				lost_samples_event.header.size);
7768 	if (ret)
7769 		return;
7770 
7771 	perf_output_put(&handle, lost_samples_event);
7772 	perf_event__output_id_sample(event, &handle, &sample);
7773 	perf_output_end(&handle);
7774 }
7775 
7776 /*
7777  * context_switch tracking
7778  */
7779 
7780 struct perf_switch_event {
7781 	struct task_struct	*task;
7782 	struct task_struct	*next_prev;
7783 
7784 	struct {
7785 		struct perf_event_header	header;
7786 		u32				next_prev_pid;
7787 		u32				next_prev_tid;
7788 	} event_id;
7789 };
7790 
7791 static int perf_event_switch_match(struct perf_event *event)
7792 {
7793 	return event->attr.context_switch;
7794 }
7795 
7796 static void perf_event_switch_output(struct perf_event *event, void *data)
7797 {
7798 	struct perf_switch_event *se = data;
7799 	struct perf_output_handle handle;
7800 	struct perf_sample_data sample;
7801 	int ret;
7802 
7803 	if (!perf_event_switch_match(event))
7804 		return;
7805 
7806 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7807 	if (event->ctx->task) {
7808 		se->event_id.header.type = PERF_RECORD_SWITCH;
7809 		se->event_id.header.size = sizeof(se->event_id.header);
7810 	} else {
7811 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7812 		se->event_id.header.size = sizeof(se->event_id);
7813 		se->event_id.next_prev_pid =
7814 					perf_event_pid(event, se->next_prev);
7815 		se->event_id.next_prev_tid =
7816 					perf_event_tid(event, se->next_prev);
7817 	}
7818 
7819 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7820 
7821 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7822 	if (ret)
7823 		return;
7824 
7825 	if (event->ctx->task)
7826 		perf_output_put(&handle, se->event_id.header);
7827 	else
7828 		perf_output_put(&handle, se->event_id);
7829 
7830 	perf_event__output_id_sample(event, &handle, &sample);
7831 
7832 	perf_output_end(&handle);
7833 }
7834 
7835 static void perf_event_switch(struct task_struct *task,
7836 			      struct task_struct *next_prev, bool sched_in)
7837 {
7838 	struct perf_switch_event switch_event;
7839 
7840 	/* N.B. caller checks nr_switch_events != 0 */
7841 
7842 	switch_event = (struct perf_switch_event){
7843 		.task		= task,
7844 		.next_prev	= next_prev,
7845 		.event_id	= {
7846 			.header = {
7847 				/* .type */
7848 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7849 				/* .size */
7850 			},
7851 			/* .next_prev_pid */
7852 			/* .next_prev_tid */
7853 		},
7854 	};
7855 
7856 	if (!sched_in && task->state == TASK_RUNNING)
7857 		switch_event.event_id.header.misc |=
7858 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7859 
7860 	perf_iterate_sb(perf_event_switch_output,
7861 		       &switch_event,
7862 		       NULL);
7863 }
7864 
7865 /*
7866  * IRQ throttle logging
7867  */
7868 
7869 static void perf_log_throttle(struct perf_event *event, int enable)
7870 {
7871 	struct perf_output_handle handle;
7872 	struct perf_sample_data sample;
7873 	int ret;
7874 
7875 	struct {
7876 		struct perf_event_header	header;
7877 		u64				time;
7878 		u64				id;
7879 		u64				stream_id;
7880 	} throttle_event = {
7881 		.header = {
7882 			.type = PERF_RECORD_THROTTLE,
7883 			.misc = 0,
7884 			.size = sizeof(throttle_event),
7885 		},
7886 		.time		= perf_event_clock(event),
7887 		.id		= primary_event_id(event),
7888 		.stream_id	= event->id,
7889 	};
7890 
7891 	if (enable)
7892 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7893 
7894 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7895 
7896 	ret = perf_output_begin(&handle, event,
7897 				throttle_event.header.size);
7898 	if (ret)
7899 		return;
7900 
7901 	perf_output_put(&handle, throttle_event);
7902 	perf_event__output_id_sample(event, &handle, &sample);
7903 	perf_output_end(&handle);
7904 }
7905 
7906 /*
7907  * ksymbol register/unregister tracking
7908  */
7909 
7910 struct perf_ksymbol_event {
7911 	const char	*name;
7912 	int		name_len;
7913 	struct {
7914 		struct perf_event_header        header;
7915 		u64				addr;
7916 		u32				len;
7917 		u16				ksym_type;
7918 		u16				flags;
7919 	} event_id;
7920 };
7921 
7922 static int perf_event_ksymbol_match(struct perf_event *event)
7923 {
7924 	return event->attr.ksymbol;
7925 }
7926 
7927 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7928 {
7929 	struct perf_ksymbol_event *ksymbol_event = data;
7930 	struct perf_output_handle handle;
7931 	struct perf_sample_data sample;
7932 	int ret;
7933 
7934 	if (!perf_event_ksymbol_match(event))
7935 		return;
7936 
7937 	perf_event_header__init_id(&ksymbol_event->event_id.header,
7938 				   &sample, event);
7939 	ret = perf_output_begin(&handle, event,
7940 				ksymbol_event->event_id.header.size);
7941 	if (ret)
7942 		return;
7943 
7944 	perf_output_put(&handle, ksymbol_event->event_id);
7945 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7946 	perf_event__output_id_sample(event, &handle, &sample);
7947 
7948 	perf_output_end(&handle);
7949 }
7950 
7951 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7952 			const char *sym)
7953 {
7954 	struct perf_ksymbol_event ksymbol_event;
7955 	char name[KSYM_NAME_LEN];
7956 	u16 flags = 0;
7957 	int name_len;
7958 
7959 	if (!atomic_read(&nr_ksymbol_events))
7960 		return;
7961 
7962 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7963 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7964 		goto err;
7965 
7966 	strlcpy(name, sym, KSYM_NAME_LEN);
7967 	name_len = strlen(name) + 1;
7968 	while (!IS_ALIGNED(name_len, sizeof(u64)))
7969 		name[name_len++] = '\0';
7970 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7971 
7972 	if (unregister)
7973 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7974 
7975 	ksymbol_event = (struct perf_ksymbol_event){
7976 		.name = name,
7977 		.name_len = name_len,
7978 		.event_id = {
7979 			.header = {
7980 				.type = PERF_RECORD_KSYMBOL,
7981 				.size = sizeof(ksymbol_event.event_id) +
7982 					name_len,
7983 			},
7984 			.addr = addr,
7985 			.len = len,
7986 			.ksym_type = ksym_type,
7987 			.flags = flags,
7988 		},
7989 	};
7990 
7991 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7992 	return;
7993 err:
7994 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7995 }
7996 
7997 /*
7998  * bpf program load/unload tracking
7999  */
8000 
8001 struct perf_bpf_event {
8002 	struct bpf_prog	*prog;
8003 	struct {
8004 		struct perf_event_header        header;
8005 		u16				type;
8006 		u16				flags;
8007 		u32				id;
8008 		u8				tag[BPF_TAG_SIZE];
8009 	} event_id;
8010 };
8011 
8012 static int perf_event_bpf_match(struct perf_event *event)
8013 {
8014 	return event->attr.bpf_event;
8015 }
8016 
8017 static void perf_event_bpf_output(struct perf_event *event, void *data)
8018 {
8019 	struct perf_bpf_event *bpf_event = data;
8020 	struct perf_output_handle handle;
8021 	struct perf_sample_data sample;
8022 	int ret;
8023 
8024 	if (!perf_event_bpf_match(event))
8025 		return;
8026 
8027 	perf_event_header__init_id(&bpf_event->event_id.header,
8028 				   &sample, event);
8029 	ret = perf_output_begin(&handle, event,
8030 				bpf_event->event_id.header.size);
8031 	if (ret)
8032 		return;
8033 
8034 	perf_output_put(&handle, bpf_event->event_id);
8035 	perf_event__output_id_sample(event, &handle, &sample);
8036 
8037 	perf_output_end(&handle);
8038 }
8039 
8040 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8041 					 enum perf_bpf_event_type type)
8042 {
8043 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8044 	char sym[KSYM_NAME_LEN];
8045 	int i;
8046 
8047 	if (prog->aux->func_cnt == 0) {
8048 		bpf_get_prog_name(prog, sym);
8049 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8050 				   (u64)(unsigned long)prog->bpf_func,
8051 				   prog->jited_len, unregister, sym);
8052 	} else {
8053 		for (i = 0; i < prog->aux->func_cnt; i++) {
8054 			struct bpf_prog *subprog = prog->aux->func[i];
8055 
8056 			bpf_get_prog_name(subprog, sym);
8057 			perf_event_ksymbol(
8058 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8059 				(u64)(unsigned long)subprog->bpf_func,
8060 				subprog->jited_len, unregister, sym);
8061 		}
8062 	}
8063 }
8064 
8065 void perf_event_bpf_event(struct bpf_prog *prog,
8066 			  enum perf_bpf_event_type type,
8067 			  u16 flags)
8068 {
8069 	struct perf_bpf_event bpf_event;
8070 
8071 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8072 	    type >= PERF_BPF_EVENT_MAX)
8073 		return;
8074 
8075 	switch (type) {
8076 	case PERF_BPF_EVENT_PROG_LOAD:
8077 	case PERF_BPF_EVENT_PROG_UNLOAD:
8078 		if (atomic_read(&nr_ksymbol_events))
8079 			perf_event_bpf_emit_ksymbols(prog, type);
8080 		break;
8081 	default:
8082 		break;
8083 	}
8084 
8085 	if (!atomic_read(&nr_bpf_events))
8086 		return;
8087 
8088 	bpf_event = (struct perf_bpf_event){
8089 		.prog = prog,
8090 		.event_id = {
8091 			.header = {
8092 				.type = PERF_RECORD_BPF_EVENT,
8093 				.size = sizeof(bpf_event.event_id),
8094 			},
8095 			.type = type,
8096 			.flags = flags,
8097 			.id = prog->aux->id,
8098 		},
8099 	};
8100 
8101 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8102 
8103 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8104 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8105 }
8106 
8107 void perf_event_itrace_started(struct perf_event *event)
8108 {
8109 	event->attach_state |= PERF_ATTACH_ITRACE;
8110 }
8111 
8112 static void perf_log_itrace_start(struct perf_event *event)
8113 {
8114 	struct perf_output_handle handle;
8115 	struct perf_sample_data sample;
8116 	struct perf_aux_event {
8117 		struct perf_event_header        header;
8118 		u32				pid;
8119 		u32				tid;
8120 	} rec;
8121 	int ret;
8122 
8123 	if (event->parent)
8124 		event = event->parent;
8125 
8126 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8127 	    event->attach_state & PERF_ATTACH_ITRACE)
8128 		return;
8129 
8130 	rec.header.type	= PERF_RECORD_ITRACE_START;
8131 	rec.header.misc	= 0;
8132 	rec.header.size	= sizeof(rec);
8133 	rec.pid	= perf_event_pid(event, current);
8134 	rec.tid	= perf_event_tid(event, current);
8135 
8136 	perf_event_header__init_id(&rec.header, &sample, event);
8137 	ret = perf_output_begin(&handle, event, rec.header.size);
8138 
8139 	if (ret)
8140 		return;
8141 
8142 	perf_output_put(&handle, rec);
8143 	perf_event__output_id_sample(event, &handle, &sample);
8144 
8145 	perf_output_end(&handle);
8146 }
8147 
8148 static int
8149 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8150 {
8151 	struct hw_perf_event *hwc = &event->hw;
8152 	int ret = 0;
8153 	u64 seq;
8154 
8155 	seq = __this_cpu_read(perf_throttled_seq);
8156 	if (seq != hwc->interrupts_seq) {
8157 		hwc->interrupts_seq = seq;
8158 		hwc->interrupts = 1;
8159 	} else {
8160 		hwc->interrupts++;
8161 		if (unlikely(throttle
8162 			     && hwc->interrupts >= max_samples_per_tick)) {
8163 			__this_cpu_inc(perf_throttled_count);
8164 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8165 			hwc->interrupts = MAX_INTERRUPTS;
8166 			perf_log_throttle(event, 0);
8167 			ret = 1;
8168 		}
8169 	}
8170 
8171 	if (event->attr.freq) {
8172 		u64 now = perf_clock();
8173 		s64 delta = now - hwc->freq_time_stamp;
8174 
8175 		hwc->freq_time_stamp = now;
8176 
8177 		if (delta > 0 && delta < 2*TICK_NSEC)
8178 			perf_adjust_period(event, delta, hwc->last_period, true);
8179 	}
8180 
8181 	return ret;
8182 }
8183 
8184 int perf_event_account_interrupt(struct perf_event *event)
8185 {
8186 	return __perf_event_account_interrupt(event, 1);
8187 }
8188 
8189 /*
8190  * Generic event overflow handling, sampling.
8191  */
8192 
8193 static int __perf_event_overflow(struct perf_event *event,
8194 				   int throttle, struct perf_sample_data *data,
8195 				   struct pt_regs *regs)
8196 {
8197 	int events = atomic_read(&event->event_limit);
8198 	int ret = 0;
8199 
8200 	/*
8201 	 * Non-sampling counters might still use the PMI to fold short
8202 	 * hardware counters, ignore those.
8203 	 */
8204 	if (unlikely(!is_sampling_event(event)))
8205 		return 0;
8206 
8207 	ret = __perf_event_account_interrupt(event, throttle);
8208 
8209 	/*
8210 	 * XXX event_limit might not quite work as expected on inherited
8211 	 * events
8212 	 */
8213 
8214 	event->pending_kill = POLL_IN;
8215 	if (events && atomic_dec_and_test(&event->event_limit)) {
8216 		ret = 1;
8217 		event->pending_kill = POLL_HUP;
8218 
8219 		perf_event_disable_inatomic(event);
8220 	}
8221 
8222 	READ_ONCE(event->overflow_handler)(event, data, regs);
8223 
8224 	if (*perf_event_fasync(event) && event->pending_kill) {
8225 		event->pending_wakeup = 1;
8226 		irq_work_queue(&event->pending);
8227 	}
8228 
8229 	return ret;
8230 }
8231 
8232 int perf_event_overflow(struct perf_event *event,
8233 			  struct perf_sample_data *data,
8234 			  struct pt_regs *regs)
8235 {
8236 	return __perf_event_overflow(event, 1, data, regs);
8237 }
8238 
8239 /*
8240  * Generic software event infrastructure
8241  */
8242 
8243 struct swevent_htable {
8244 	struct swevent_hlist		*swevent_hlist;
8245 	struct mutex			hlist_mutex;
8246 	int				hlist_refcount;
8247 
8248 	/* Recursion avoidance in each contexts */
8249 	int				recursion[PERF_NR_CONTEXTS];
8250 };
8251 
8252 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8253 
8254 /*
8255  * We directly increment event->count and keep a second value in
8256  * event->hw.period_left to count intervals. This period event
8257  * is kept in the range [-sample_period, 0] so that we can use the
8258  * sign as trigger.
8259  */
8260 
8261 u64 perf_swevent_set_period(struct perf_event *event)
8262 {
8263 	struct hw_perf_event *hwc = &event->hw;
8264 	u64 period = hwc->last_period;
8265 	u64 nr, offset;
8266 	s64 old, val;
8267 
8268 	hwc->last_period = hwc->sample_period;
8269 
8270 again:
8271 	old = val = local64_read(&hwc->period_left);
8272 	if (val < 0)
8273 		return 0;
8274 
8275 	nr = div64_u64(period + val, period);
8276 	offset = nr * period;
8277 	val -= offset;
8278 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8279 		goto again;
8280 
8281 	return nr;
8282 }
8283 
8284 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8285 				    struct perf_sample_data *data,
8286 				    struct pt_regs *regs)
8287 {
8288 	struct hw_perf_event *hwc = &event->hw;
8289 	int throttle = 0;
8290 
8291 	if (!overflow)
8292 		overflow = perf_swevent_set_period(event);
8293 
8294 	if (hwc->interrupts == MAX_INTERRUPTS)
8295 		return;
8296 
8297 	for (; overflow; overflow--) {
8298 		if (__perf_event_overflow(event, throttle,
8299 					    data, regs)) {
8300 			/*
8301 			 * We inhibit the overflow from happening when
8302 			 * hwc->interrupts == MAX_INTERRUPTS.
8303 			 */
8304 			break;
8305 		}
8306 		throttle = 1;
8307 	}
8308 }
8309 
8310 static void perf_swevent_event(struct perf_event *event, u64 nr,
8311 			       struct perf_sample_data *data,
8312 			       struct pt_regs *regs)
8313 {
8314 	struct hw_perf_event *hwc = &event->hw;
8315 
8316 	local64_add(nr, &event->count);
8317 
8318 	if (!regs)
8319 		return;
8320 
8321 	if (!is_sampling_event(event))
8322 		return;
8323 
8324 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8325 		data->period = nr;
8326 		return perf_swevent_overflow(event, 1, data, regs);
8327 	} else
8328 		data->period = event->hw.last_period;
8329 
8330 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8331 		return perf_swevent_overflow(event, 1, data, regs);
8332 
8333 	if (local64_add_negative(nr, &hwc->period_left))
8334 		return;
8335 
8336 	perf_swevent_overflow(event, 0, data, regs);
8337 }
8338 
8339 static int perf_exclude_event(struct perf_event *event,
8340 			      struct pt_regs *regs)
8341 {
8342 	if (event->hw.state & PERF_HES_STOPPED)
8343 		return 1;
8344 
8345 	if (regs) {
8346 		if (event->attr.exclude_user && user_mode(regs))
8347 			return 1;
8348 
8349 		if (event->attr.exclude_kernel && !user_mode(regs))
8350 			return 1;
8351 	}
8352 
8353 	return 0;
8354 }
8355 
8356 static int perf_swevent_match(struct perf_event *event,
8357 				enum perf_type_id type,
8358 				u32 event_id,
8359 				struct perf_sample_data *data,
8360 				struct pt_regs *regs)
8361 {
8362 	if (event->attr.type != type)
8363 		return 0;
8364 
8365 	if (event->attr.config != event_id)
8366 		return 0;
8367 
8368 	if (perf_exclude_event(event, regs))
8369 		return 0;
8370 
8371 	return 1;
8372 }
8373 
8374 static inline u64 swevent_hash(u64 type, u32 event_id)
8375 {
8376 	u64 val = event_id | (type << 32);
8377 
8378 	return hash_64(val, SWEVENT_HLIST_BITS);
8379 }
8380 
8381 static inline struct hlist_head *
8382 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8383 {
8384 	u64 hash = swevent_hash(type, event_id);
8385 
8386 	return &hlist->heads[hash];
8387 }
8388 
8389 /* For the read side: events when they trigger */
8390 static inline struct hlist_head *
8391 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8392 {
8393 	struct swevent_hlist *hlist;
8394 
8395 	hlist = rcu_dereference(swhash->swevent_hlist);
8396 	if (!hlist)
8397 		return NULL;
8398 
8399 	return __find_swevent_head(hlist, type, event_id);
8400 }
8401 
8402 /* For the event head insertion and removal in the hlist */
8403 static inline struct hlist_head *
8404 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8405 {
8406 	struct swevent_hlist *hlist;
8407 	u32 event_id = event->attr.config;
8408 	u64 type = event->attr.type;
8409 
8410 	/*
8411 	 * Event scheduling is always serialized against hlist allocation
8412 	 * and release. Which makes the protected version suitable here.
8413 	 * The context lock guarantees that.
8414 	 */
8415 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
8416 					  lockdep_is_held(&event->ctx->lock));
8417 	if (!hlist)
8418 		return NULL;
8419 
8420 	return __find_swevent_head(hlist, type, event_id);
8421 }
8422 
8423 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8424 				    u64 nr,
8425 				    struct perf_sample_data *data,
8426 				    struct pt_regs *regs)
8427 {
8428 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8429 	struct perf_event *event;
8430 	struct hlist_head *head;
8431 
8432 	rcu_read_lock();
8433 	head = find_swevent_head_rcu(swhash, type, event_id);
8434 	if (!head)
8435 		goto end;
8436 
8437 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8438 		if (perf_swevent_match(event, type, event_id, data, regs))
8439 			perf_swevent_event(event, nr, data, regs);
8440 	}
8441 end:
8442 	rcu_read_unlock();
8443 }
8444 
8445 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8446 
8447 int perf_swevent_get_recursion_context(void)
8448 {
8449 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8450 
8451 	return get_recursion_context(swhash->recursion);
8452 }
8453 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8454 
8455 void perf_swevent_put_recursion_context(int rctx)
8456 {
8457 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8458 
8459 	put_recursion_context(swhash->recursion, rctx);
8460 }
8461 
8462 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8463 {
8464 	struct perf_sample_data data;
8465 
8466 	if (WARN_ON_ONCE(!regs))
8467 		return;
8468 
8469 	perf_sample_data_init(&data, addr, 0);
8470 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8471 }
8472 
8473 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8474 {
8475 	int rctx;
8476 
8477 	preempt_disable_notrace();
8478 	rctx = perf_swevent_get_recursion_context();
8479 	if (unlikely(rctx < 0))
8480 		goto fail;
8481 
8482 	___perf_sw_event(event_id, nr, regs, addr);
8483 
8484 	perf_swevent_put_recursion_context(rctx);
8485 fail:
8486 	preempt_enable_notrace();
8487 }
8488 
8489 static void perf_swevent_read(struct perf_event *event)
8490 {
8491 }
8492 
8493 static int perf_swevent_add(struct perf_event *event, int flags)
8494 {
8495 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8496 	struct hw_perf_event *hwc = &event->hw;
8497 	struct hlist_head *head;
8498 
8499 	if (is_sampling_event(event)) {
8500 		hwc->last_period = hwc->sample_period;
8501 		perf_swevent_set_period(event);
8502 	}
8503 
8504 	hwc->state = !(flags & PERF_EF_START);
8505 
8506 	head = find_swevent_head(swhash, event);
8507 	if (WARN_ON_ONCE(!head))
8508 		return -EINVAL;
8509 
8510 	hlist_add_head_rcu(&event->hlist_entry, head);
8511 	perf_event_update_userpage(event);
8512 
8513 	return 0;
8514 }
8515 
8516 static void perf_swevent_del(struct perf_event *event, int flags)
8517 {
8518 	hlist_del_rcu(&event->hlist_entry);
8519 }
8520 
8521 static void perf_swevent_start(struct perf_event *event, int flags)
8522 {
8523 	event->hw.state = 0;
8524 }
8525 
8526 static void perf_swevent_stop(struct perf_event *event, int flags)
8527 {
8528 	event->hw.state = PERF_HES_STOPPED;
8529 }
8530 
8531 /* Deref the hlist from the update side */
8532 static inline struct swevent_hlist *
8533 swevent_hlist_deref(struct swevent_htable *swhash)
8534 {
8535 	return rcu_dereference_protected(swhash->swevent_hlist,
8536 					 lockdep_is_held(&swhash->hlist_mutex));
8537 }
8538 
8539 static void swevent_hlist_release(struct swevent_htable *swhash)
8540 {
8541 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8542 
8543 	if (!hlist)
8544 		return;
8545 
8546 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8547 	kfree_rcu(hlist, rcu_head);
8548 }
8549 
8550 static void swevent_hlist_put_cpu(int cpu)
8551 {
8552 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8553 
8554 	mutex_lock(&swhash->hlist_mutex);
8555 
8556 	if (!--swhash->hlist_refcount)
8557 		swevent_hlist_release(swhash);
8558 
8559 	mutex_unlock(&swhash->hlist_mutex);
8560 }
8561 
8562 static void swevent_hlist_put(void)
8563 {
8564 	int cpu;
8565 
8566 	for_each_possible_cpu(cpu)
8567 		swevent_hlist_put_cpu(cpu);
8568 }
8569 
8570 static int swevent_hlist_get_cpu(int cpu)
8571 {
8572 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8573 	int err = 0;
8574 
8575 	mutex_lock(&swhash->hlist_mutex);
8576 	if (!swevent_hlist_deref(swhash) &&
8577 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8578 		struct swevent_hlist *hlist;
8579 
8580 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8581 		if (!hlist) {
8582 			err = -ENOMEM;
8583 			goto exit;
8584 		}
8585 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8586 	}
8587 	swhash->hlist_refcount++;
8588 exit:
8589 	mutex_unlock(&swhash->hlist_mutex);
8590 
8591 	return err;
8592 }
8593 
8594 static int swevent_hlist_get(void)
8595 {
8596 	int err, cpu, failed_cpu;
8597 
8598 	mutex_lock(&pmus_lock);
8599 	for_each_possible_cpu(cpu) {
8600 		err = swevent_hlist_get_cpu(cpu);
8601 		if (err) {
8602 			failed_cpu = cpu;
8603 			goto fail;
8604 		}
8605 	}
8606 	mutex_unlock(&pmus_lock);
8607 	return 0;
8608 fail:
8609 	for_each_possible_cpu(cpu) {
8610 		if (cpu == failed_cpu)
8611 			break;
8612 		swevent_hlist_put_cpu(cpu);
8613 	}
8614 	mutex_unlock(&pmus_lock);
8615 	return err;
8616 }
8617 
8618 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8619 
8620 static void sw_perf_event_destroy(struct perf_event *event)
8621 {
8622 	u64 event_id = event->attr.config;
8623 
8624 	WARN_ON(event->parent);
8625 
8626 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8627 	swevent_hlist_put();
8628 }
8629 
8630 static int perf_swevent_init(struct perf_event *event)
8631 {
8632 	u64 event_id = event->attr.config;
8633 
8634 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8635 		return -ENOENT;
8636 
8637 	/*
8638 	 * no branch sampling for software events
8639 	 */
8640 	if (has_branch_stack(event))
8641 		return -EOPNOTSUPP;
8642 
8643 	switch (event_id) {
8644 	case PERF_COUNT_SW_CPU_CLOCK:
8645 	case PERF_COUNT_SW_TASK_CLOCK:
8646 		return -ENOENT;
8647 
8648 	default:
8649 		break;
8650 	}
8651 
8652 	if (event_id >= PERF_COUNT_SW_MAX)
8653 		return -ENOENT;
8654 
8655 	if (!event->parent) {
8656 		int err;
8657 
8658 		err = swevent_hlist_get();
8659 		if (err)
8660 			return err;
8661 
8662 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8663 		event->destroy = sw_perf_event_destroy;
8664 	}
8665 
8666 	return 0;
8667 }
8668 
8669 static struct pmu perf_swevent = {
8670 	.task_ctx_nr	= perf_sw_context,
8671 
8672 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8673 
8674 	.event_init	= perf_swevent_init,
8675 	.add		= perf_swevent_add,
8676 	.del		= perf_swevent_del,
8677 	.start		= perf_swevent_start,
8678 	.stop		= perf_swevent_stop,
8679 	.read		= perf_swevent_read,
8680 };
8681 
8682 #ifdef CONFIG_EVENT_TRACING
8683 
8684 static int perf_tp_filter_match(struct perf_event *event,
8685 				struct perf_sample_data *data)
8686 {
8687 	void *record = data->raw->frag.data;
8688 
8689 	/* only top level events have filters set */
8690 	if (event->parent)
8691 		event = event->parent;
8692 
8693 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8694 		return 1;
8695 	return 0;
8696 }
8697 
8698 static int perf_tp_event_match(struct perf_event *event,
8699 				struct perf_sample_data *data,
8700 				struct pt_regs *regs)
8701 {
8702 	if (event->hw.state & PERF_HES_STOPPED)
8703 		return 0;
8704 	/*
8705 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
8706 	 */
8707 	if (event->attr.exclude_kernel && !user_mode(regs))
8708 		return 0;
8709 
8710 	if (!perf_tp_filter_match(event, data))
8711 		return 0;
8712 
8713 	return 1;
8714 }
8715 
8716 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8717 			       struct trace_event_call *call, u64 count,
8718 			       struct pt_regs *regs, struct hlist_head *head,
8719 			       struct task_struct *task)
8720 {
8721 	if (bpf_prog_array_valid(call)) {
8722 		*(struct pt_regs **)raw_data = regs;
8723 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8724 			perf_swevent_put_recursion_context(rctx);
8725 			return;
8726 		}
8727 	}
8728 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8729 		      rctx, task);
8730 }
8731 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8732 
8733 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8734 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8735 		   struct task_struct *task)
8736 {
8737 	struct perf_sample_data data;
8738 	struct perf_event *event;
8739 
8740 	struct perf_raw_record raw = {
8741 		.frag = {
8742 			.size = entry_size,
8743 			.data = record,
8744 		},
8745 	};
8746 
8747 	perf_sample_data_init(&data, 0, 0);
8748 	data.raw = &raw;
8749 
8750 	perf_trace_buf_update(record, event_type);
8751 
8752 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8753 		if (perf_tp_event_match(event, &data, regs))
8754 			perf_swevent_event(event, count, &data, regs);
8755 	}
8756 
8757 	/*
8758 	 * If we got specified a target task, also iterate its context and
8759 	 * deliver this event there too.
8760 	 */
8761 	if (task && task != current) {
8762 		struct perf_event_context *ctx;
8763 		struct trace_entry *entry = record;
8764 
8765 		rcu_read_lock();
8766 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8767 		if (!ctx)
8768 			goto unlock;
8769 
8770 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8771 			if (event->cpu != smp_processor_id())
8772 				continue;
8773 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8774 				continue;
8775 			if (event->attr.config != entry->type)
8776 				continue;
8777 			if (perf_tp_event_match(event, &data, regs))
8778 				perf_swevent_event(event, count, &data, regs);
8779 		}
8780 unlock:
8781 		rcu_read_unlock();
8782 	}
8783 
8784 	perf_swevent_put_recursion_context(rctx);
8785 }
8786 EXPORT_SYMBOL_GPL(perf_tp_event);
8787 
8788 static void tp_perf_event_destroy(struct perf_event *event)
8789 {
8790 	perf_trace_destroy(event);
8791 }
8792 
8793 static int perf_tp_event_init(struct perf_event *event)
8794 {
8795 	int err;
8796 
8797 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8798 		return -ENOENT;
8799 
8800 	/*
8801 	 * no branch sampling for tracepoint events
8802 	 */
8803 	if (has_branch_stack(event))
8804 		return -EOPNOTSUPP;
8805 
8806 	err = perf_trace_init(event);
8807 	if (err)
8808 		return err;
8809 
8810 	event->destroy = tp_perf_event_destroy;
8811 
8812 	return 0;
8813 }
8814 
8815 static struct pmu perf_tracepoint = {
8816 	.task_ctx_nr	= perf_sw_context,
8817 
8818 	.event_init	= perf_tp_event_init,
8819 	.add		= perf_trace_add,
8820 	.del		= perf_trace_del,
8821 	.start		= perf_swevent_start,
8822 	.stop		= perf_swevent_stop,
8823 	.read		= perf_swevent_read,
8824 };
8825 
8826 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8827 /*
8828  * Flags in config, used by dynamic PMU kprobe and uprobe
8829  * The flags should match following PMU_FORMAT_ATTR().
8830  *
8831  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8832  *                               if not set, create kprobe/uprobe
8833  *
8834  * The following values specify a reference counter (or semaphore in the
8835  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8836  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8837  *
8838  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
8839  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
8840  */
8841 enum perf_probe_config {
8842 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8843 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8844 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8845 };
8846 
8847 PMU_FORMAT_ATTR(retprobe, "config:0");
8848 #endif
8849 
8850 #ifdef CONFIG_KPROBE_EVENTS
8851 static struct attribute *kprobe_attrs[] = {
8852 	&format_attr_retprobe.attr,
8853 	NULL,
8854 };
8855 
8856 static struct attribute_group kprobe_format_group = {
8857 	.name = "format",
8858 	.attrs = kprobe_attrs,
8859 };
8860 
8861 static const struct attribute_group *kprobe_attr_groups[] = {
8862 	&kprobe_format_group,
8863 	NULL,
8864 };
8865 
8866 static int perf_kprobe_event_init(struct perf_event *event);
8867 static struct pmu perf_kprobe = {
8868 	.task_ctx_nr	= perf_sw_context,
8869 	.event_init	= perf_kprobe_event_init,
8870 	.add		= perf_trace_add,
8871 	.del		= perf_trace_del,
8872 	.start		= perf_swevent_start,
8873 	.stop		= perf_swevent_stop,
8874 	.read		= perf_swevent_read,
8875 	.attr_groups	= kprobe_attr_groups,
8876 };
8877 
8878 static int perf_kprobe_event_init(struct perf_event *event)
8879 {
8880 	int err;
8881 	bool is_retprobe;
8882 
8883 	if (event->attr.type != perf_kprobe.type)
8884 		return -ENOENT;
8885 
8886 	if (!capable(CAP_SYS_ADMIN))
8887 		return -EACCES;
8888 
8889 	/*
8890 	 * no branch sampling for probe events
8891 	 */
8892 	if (has_branch_stack(event))
8893 		return -EOPNOTSUPP;
8894 
8895 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8896 	err = perf_kprobe_init(event, is_retprobe);
8897 	if (err)
8898 		return err;
8899 
8900 	event->destroy = perf_kprobe_destroy;
8901 
8902 	return 0;
8903 }
8904 #endif /* CONFIG_KPROBE_EVENTS */
8905 
8906 #ifdef CONFIG_UPROBE_EVENTS
8907 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8908 
8909 static struct attribute *uprobe_attrs[] = {
8910 	&format_attr_retprobe.attr,
8911 	&format_attr_ref_ctr_offset.attr,
8912 	NULL,
8913 };
8914 
8915 static struct attribute_group uprobe_format_group = {
8916 	.name = "format",
8917 	.attrs = uprobe_attrs,
8918 };
8919 
8920 static const struct attribute_group *uprobe_attr_groups[] = {
8921 	&uprobe_format_group,
8922 	NULL,
8923 };
8924 
8925 static int perf_uprobe_event_init(struct perf_event *event);
8926 static struct pmu perf_uprobe = {
8927 	.task_ctx_nr	= perf_sw_context,
8928 	.event_init	= perf_uprobe_event_init,
8929 	.add		= perf_trace_add,
8930 	.del		= perf_trace_del,
8931 	.start		= perf_swevent_start,
8932 	.stop		= perf_swevent_stop,
8933 	.read		= perf_swevent_read,
8934 	.attr_groups	= uprobe_attr_groups,
8935 };
8936 
8937 static int perf_uprobe_event_init(struct perf_event *event)
8938 {
8939 	int err;
8940 	unsigned long ref_ctr_offset;
8941 	bool is_retprobe;
8942 
8943 	if (event->attr.type != perf_uprobe.type)
8944 		return -ENOENT;
8945 
8946 	if (!capable(CAP_SYS_ADMIN))
8947 		return -EACCES;
8948 
8949 	/*
8950 	 * no branch sampling for probe events
8951 	 */
8952 	if (has_branch_stack(event))
8953 		return -EOPNOTSUPP;
8954 
8955 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8956 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8957 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8958 	if (err)
8959 		return err;
8960 
8961 	event->destroy = perf_uprobe_destroy;
8962 
8963 	return 0;
8964 }
8965 #endif /* CONFIG_UPROBE_EVENTS */
8966 
8967 static inline void perf_tp_register(void)
8968 {
8969 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8970 #ifdef CONFIG_KPROBE_EVENTS
8971 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
8972 #endif
8973 #ifdef CONFIG_UPROBE_EVENTS
8974 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
8975 #endif
8976 }
8977 
8978 static void perf_event_free_filter(struct perf_event *event)
8979 {
8980 	ftrace_profile_free_filter(event);
8981 }
8982 
8983 #ifdef CONFIG_BPF_SYSCALL
8984 static void bpf_overflow_handler(struct perf_event *event,
8985 				 struct perf_sample_data *data,
8986 				 struct pt_regs *regs)
8987 {
8988 	struct bpf_perf_event_data_kern ctx = {
8989 		.data = data,
8990 		.event = event,
8991 	};
8992 	int ret = 0;
8993 
8994 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8995 	preempt_disable();
8996 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8997 		goto out;
8998 	rcu_read_lock();
8999 	ret = BPF_PROG_RUN(event->prog, &ctx);
9000 	rcu_read_unlock();
9001 out:
9002 	__this_cpu_dec(bpf_prog_active);
9003 	preempt_enable();
9004 	if (!ret)
9005 		return;
9006 
9007 	event->orig_overflow_handler(event, data, regs);
9008 }
9009 
9010 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9011 {
9012 	struct bpf_prog *prog;
9013 
9014 	if (event->overflow_handler_context)
9015 		/* hw breakpoint or kernel counter */
9016 		return -EINVAL;
9017 
9018 	if (event->prog)
9019 		return -EEXIST;
9020 
9021 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9022 	if (IS_ERR(prog))
9023 		return PTR_ERR(prog);
9024 
9025 	event->prog = prog;
9026 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9027 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9028 	return 0;
9029 }
9030 
9031 static void perf_event_free_bpf_handler(struct perf_event *event)
9032 {
9033 	struct bpf_prog *prog = event->prog;
9034 
9035 	if (!prog)
9036 		return;
9037 
9038 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9039 	event->prog = NULL;
9040 	bpf_prog_put(prog);
9041 }
9042 #else
9043 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9044 {
9045 	return -EOPNOTSUPP;
9046 }
9047 static void perf_event_free_bpf_handler(struct perf_event *event)
9048 {
9049 }
9050 #endif
9051 
9052 /*
9053  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9054  * with perf_event_open()
9055  */
9056 static inline bool perf_event_is_tracing(struct perf_event *event)
9057 {
9058 	if (event->pmu == &perf_tracepoint)
9059 		return true;
9060 #ifdef CONFIG_KPROBE_EVENTS
9061 	if (event->pmu == &perf_kprobe)
9062 		return true;
9063 #endif
9064 #ifdef CONFIG_UPROBE_EVENTS
9065 	if (event->pmu == &perf_uprobe)
9066 		return true;
9067 #endif
9068 	return false;
9069 }
9070 
9071 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9072 {
9073 	bool is_kprobe, is_tracepoint, is_syscall_tp;
9074 	struct bpf_prog *prog;
9075 	int ret;
9076 
9077 	if (!perf_event_is_tracing(event))
9078 		return perf_event_set_bpf_handler(event, prog_fd);
9079 
9080 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9081 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9082 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
9083 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9084 		/* bpf programs can only be attached to u/kprobe or tracepoint */
9085 		return -EINVAL;
9086 
9087 	prog = bpf_prog_get(prog_fd);
9088 	if (IS_ERR(prog))
9089 		return PTR_ERR(prog);
9090 
9091 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9092 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9093 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9094 		/* valid fd, but invalid bpf program type */
9095 		bpf_prog_put(prog);
9096 		return -EINVAL;
9097 	}
9098 
9099 	/* Kprobe override only works for kprobes, not uprobes. */
9100 	if (prog->kprobe_override &&
9101 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9102 		bpf_prog_put(prog);
9103 		return -EINVAL;
9104 	}
9105 
9106 	if (is_tracepoint || is_syscall_tp) {
9107 		int off = trace_event_get_offsets(event->tp_event);
9108 
9109 		if (prog->aux->max_ctx_offset > off) {
9110 			bpf_prog_put(prog);
9111 			return -EACCES;
9112 		}
9113 	}
9114 
9115 	ret = perf_event_attach_bpf_prog(event, prog);
9116 	if (ret)
9117 		bpf_prog_put(prog);
9118 	return ret;
9119 }
9120 
9121 static void perf_event_free_bpf_prog(struct perf_event *event)
9122 {
9123 	if (!perf_event_is_tracing(event)) {
9124 		perf_event_free_bpf_handler(event);
9125 		return;
9126 	}
9127 	perf_event_detach_bpf_prog(event);
9128 }
9129 
9130 #else
9131 
9132 static inline void perf_tp_register(void)
9133 {
9134 }
9135 
9136 static void perf_event_free_filter(struct perf_event *event)
9137 {
9138 }
9139 
9140 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9141 {
9142 	return -ENOENT;
9143 }
9144 
9145 static void perf_event_free_bpf_prog(struct perf_event *event)
9146 {
9147 }
9148 #endif /* CONFIG_EVENT_TRACING */
9149 
9150 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9151 void perf_bp_event(struct perf_event *bp, void *data)
9152 {
9153 	struct perf_sample_data sample;
9154 	struct pt_regs *regs = data;
9155 
9156 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9157 
9158 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
9159 		perf_swevent_event(bp, 1, &sample, regs);
9160 }
9161 #endif
9162 
9163 /*
9164  * Allocate a new address filter
9165  */
9166 static struct perf_addr_filter *
9167 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9168 {
9169 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9170 	struct perf_addr_filter *filter;
9171 
9172 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9173 	if (!filter)
9174 		return NULL;
9175 
9176 	INIT_LIST_HEAD(&filter->entry);
9177 	list_add_tail(&filter->entry, filters);
9178 
9179 	return filter;
9180 }
9181 
9182 static void free_filters_list(struct list_head *filters)
9183 {
9184 	struct perf_addr_filter *filter, *iter;
9185 
9186 	list_for_each_entry_safe(filter, iter, filters, entry) {
9187 		path_put(&filter->path);
9188 		list_del(&filter->entry);
9189 		kfree(filter);
9190 	}
9191 }
9192 
9193 /*
9194  * Free existing address filters and optionally install new ones
9195  */
9196 static void perf_addr_filters_splice(struct perf_event *event,
9197 				     struct list_head *head)
9198 {
9199 	unsigned long flags;
9200 	LIST_HEAD(list);
9201 
9202 	if (!has_addr_filter(event))
9203 		return;
9204 
9205 	/* don't bother with children, they don't have their own filters */
9206 	if (event->parent)
9207 		return;
9208 
9209 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9210 
9211 	list_splice_init(&event->addr_filters.list, &list);
9212 	if (head)
9213 		list_splice(head, &event->addr_filters.list);
9214 
9215 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9216 
9217 	free_filters_list(&list);
9218 }
9219 
9220 /*
9221  * Scan through mm's vmas and see if one of them matches the
9222  * @filter; if so, adjust filter's address range.
9223  * Called with mm::mmap_sem down for reading.
9224  */
9225 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9226 				   struct mm_struct *mm,
9227 				   struct perf_addr_filter_range *fr)
9228 {
9229 	struct vm_area_struct *vma;
9230 
9231 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
9232 		if (!vma->vm_file)
9233 			continue;
9234 
9235 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
9236 			return;
9237 	}
9238 }
9239 
9240 /*
9241  * Update event's address range filters based on the
9242  * task's existing mappings, if any.
9243  */
9244 static void perf_event_addr_filters_apply(struct perf_event *event)
9245 {
9246 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9247 	struct task_struct *task = READ_ONCE(event->ctx->task);
9248 	struct perf_addr_filter *filter;
9249 	struct mm_struct *mm = NULL;
9250 	unsigned int count = 0;
9251 	unsigned long flags;
9252 
9253 	/*
9254 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9255 	 * will stop on the parent's child_mutex that our caller is also holding
9256 	 */
9257 	if (task == TASK_TOMBSTONE)
9258 		return;
9259 
9260 	if (ifh->nr_file_filters) {
9261 		mm = get_task_mm(event->ctx->task);
9262 		if (!mm)
9263 			goto restart;
9264 
9265 		down_read(&mm->mmap_sem);
9266 	}
9267 
9268 	raw_spin_lock_irqsave(&ifh->lock, flags);
9269 	list_for_each_entry(filter, &ifh->list, entry) {
9270 		if (filter->path.dentry) {
9271 			/*
9272 			 * Adjust base offset if the filter is associated to a
9273 			 * binary that needs to be mapped:
9274 			 */
9275 			event->addr_filter_ranges[count].start = 0;
9276 			event->addr_filter_ranges[count].size = 0;
9277 
9278 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9279 		} else {
9280 			event->addr_filter_ranges[count].start = filter->offset;
9281 			event->addr_filter_ranges[count].size  = filter->size;
9282 		}
9283 
9284 		count++;
9285 	}
9286 
9287 	event->addr_filters_gen++;
9288 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9289 
9290 	if (ifh->nr_file_filters) {
9291 		up_read(&mm->mmap_sem);
9292 
9293 		mmput(mm);
9294 	}
9295 
9296 restart:
9297 	perf_event_stop(event, 1);
9298 }
9299 
9300 /*
9301  * Address range filtering: limiting the data to certain
9302  * instruction address ranges. Filters are ioctl()ed to us from
9303  * userspace as ascii strings.
9304  *
9305  * Filter string format:
9306  *
9307  * ACTION RANGE_SPEC
9308  * where ACTION is one of the
9309  *  * "filter": limit the trace to this region
9310  *  * "start": start tracing from this address
9311  *  * "stop": stop tracing at this address/region;
9312  * RANGE_SPEC is
9313  *  * for kernel addresses: <start address>[/<size>]
9314  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9315  *
9316  * if <size> is not specified or is zero, the range is treated as a single
9317  * address; not valid for ACTION=="filter".
9318  */
9319 enum {
9320 	IF_ACT_NONE = -1,
9321 	IF_ACT_FILTER,
9322 	IF_ACT_START,
9323 	IF_ACT_STOP,
9324 	IF_SRC_FILE,
9325 	IF_SRC_KERNEL,
9326 	IF_SRC_FILEADDR,
9327 	IF_SRC_KERNELADDR,
9328 };
9329 
9330 enum {
9331 	IF_STATE_ACTION = 0,
9332 	IF_STATE_SOURCE,
9333 	IF_STATE_END,
9334 };
9335 
9336 static const match_table_t if_tokens = {
9337 	{ IF_ACT_FILTER,	"filter" },
9338 	{ IF_ACT_START,		"start" },
9339 	{ IF_ACT_STOP,		"stop" },
9340 	{ IF_SRC_FILE,		"%u/%u@%s" },
9341 	{ IF_SRC_KERNEL,	"%u/%u" },
9342 	{ IF_SRC_FILEADDR,	"%u@%s" },
9343 	{ IF_SRC_KERNELADDR,	"%u" },
9344 	{ IF_ACT_NONE,		NULL },
9345 };
9346 
9347 /*
9348  * Address filter string parser
9349  */
9350 static int
9351 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9352 			     struct list_head *filters)
9353 {
9354 	struct perf_addr_filter *filter = NULL;
9355 	char *start, *orig, *filename = NULL;
9356 	substring_t args[MAX_OPT_ARGS];
9357 	int state = IF_STATE_ACTION, token;
9358 	unsigned int kernel = 0;
9359 	int ret = -EINVAL;
9360 
9361 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
9362 	if (!fstr)
9363 		return -ENOMEM;
9364 
9365 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
9366 		static const enum perf_addr_filter_action_t actions[] = {
9367 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
9368 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
9369 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
9370 		};
9371 		ret = -EINVAL;
9372 
9373 		if (!*start)
9374 			continue;
9375 
9376 		/* filter definition begins */
9377 		if (state == IF_STATE_ACTION) {
9378 			filter = perf_addr_filter_new(event, filters);
9379 			if (!filter)
9380 				goto fail;
9381 		}
9382 
9383 		token = match_token(start, if_tokens, args);
9384 		switch (token) {
9385 		case IF_ACT_FILTER:
9386 		case IF_ACT_START:
9387 		case IF_ACT_STOP:
9388 			if (state != IF_STATE_ACTION)
9389 				goto fail;
9390 
9391 			filter->action = actions[token];
9392 			state = IF_STATE_SOURCE;
9393 			break;
9394 
9395 		case IF_SRC_KERNELADDR:
9396 		case IF_SRC_KERNEL:
9397 			kernel = 1;
9398 			/* fall through */
9399 
9400 		case IF_SRC_FILEADDR:
9401 		case IF_SRC_FILE:
9402 			if (state != IF_STATE_SOURCE)
9403 				goto fail;
9404 
9405 			*args[0].to = 0;
9406 			ret = kstrtoul(args[0].from, 0, &filter->offset);
9407 			if (ret)
9408 				goto fail;
9409 
9410 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9411 				*args[1].to = 0;
9412 				ret = kstrtoul(args[1].from, 0, &filter->size);
9413 				if (ret)
9414 					goto fail;
9415 			}
9416 
9417 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9418 				int fpos = token == IF_SRC_FILE ? 2 : 1;
9419 
9420 				filename = match_strdup(&args[fpos]);
9421 				if (!filename) {
9422 					ret = -ENOMEM;
9423 					goto fail;
9424 				}
9425 			}
9426 
9427 			state = IF_STATE_END;
9428 			break;
9429 
9430 		default:
9431 			goto fail;
9432 		}
9433 
9434 		/*
9435 		 * Filter definition is fully parsed, validate and install it.
9436 		 * Make sure that it doesn't contradict itself or the event's
9437 		 * attribute.
9438 		 */
9439 		if (state == IF_STATE_END) {
9440 			ret = -EINVAL;
9441 			if (kernel && event->attr.exclude_kernel)
9442 				goto fail;
9443 
9444 			/*
9445 			 * ACTION "filter" must have a non-zero length region
9446 			 * specified.
9447 			 */
9448 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9449 			    !filter->size)
9450 				goto fail;
9451 
9452 			if (!kernel) {
9453 				if (!filename)
9454 					goto fail;
9455 
9456 				/*
9457 				 * For now, we only support file-based filters
9458 				 * in per-task events; doing so for CPU-wide
9459 				 * events requires additional context switching
9460 				 * trickery, since same object code will be
9461 				 * mapped at different virtual addresses in
9462 				 * different processes.
9463 				 */
9464 				ret = -EOPNOTSUPP;
9465 				if (!event->ctx->task)
9466 					goto fail_free_name;
9467 
9468 				/* look up the path and grab its inode */
9469 				ret = kern_path(filename, LOOKUP_FOLLOW,
9470 						&filter->path);
9471 				if (ret)
9472 					goto fail_free_name;
9473 
9474 				kfree(filename);
9475 				filename = NULL;
9476 
9477 				ret = -EINVAL;
9478 				if (!filter->path.dentry ||
9479 				    !S_ISREG(d_inode(filter->path.dentry)
9480 					     ->i_mode))
9481 					goto fail;
9482 
9483 				event->addr_filters.nr_file_filters++;
9484 			}
9485 
9486 			/* ready to consume more filters */
9487 			state = IF_STATE_ACTION;
9488 			filter = NULL;
9489 		}
9490 	}
9491 
9492 	if (state != IF_STATE_ACTION)
9493 		goto fail;
9494 
9495 	kfree(orig);
9496 
9497 	return 0;
9498 
9499 fail_free_name:
9500 	kfree(filename);
9501 fail:
9502 	free_filters_list(filters);
9503 	kfree(orig);
9504 
9505 	return ret;
9506 }
9507 
9508 static int
9509 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9510 {
9511 	LIST_HEAD(filters);
9512 	int ret;
9513 
9514 	/*
9515 	 * Since this is called in perf_ioctl() path, we're already holding
9516 	 * ctx::mutex.
9517 	 */
9518 	lockdep_assert_held(&event->ctx->mutex);
9519 
9520 	if (WARN_ON_ONCE(event->parent))
9521 		return -EINVAL;
9522 
9523 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9524 	if (ret)
9525 		goto fail_clear_files;
9526 
9527 	ret = event->pmu->addr_filters_validate(&filters);
9528 	if (ret)
9529 		goto fail_free_filters;
9530 
9531 	/* remove existing filters, if any */
9532 	perf_addr_filters_splice(event, &filters);
9533 
9534 	/* install new filters */
9535 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9536 
9537 	return ret;
9538 
9539 fail_free_filters:
9540 	free_filters_list(&filters);
9541 
9542 fail_clear_files:
9543 	event->addr_filters.nr_file_filters = 0;
9544 
9545 	return ret;
9546 }
9547 
9548 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9549 {
9550 	int ret = -EINVAL;
9551 	char *filter_str;
9552 
9553 	filter_str = strndup_user(arg, PAGE_SIZE);
9554 	if (IS_ERR(filter_str))
9555 		return PTR_ERR(filter_str);
9556 
9557 #ifdef CONFIG_EVENT_TRACING
9558 	if (perf_event_is_tracing(event)) {
9559 		struct perf_event_context *ctx = event->ctx;
9560 
9561 		/*
9562 		 * Beware, here be dragons!!
9563 		 *
9564 		 * the tracepoint muck will deadlock against ctx->mutex, but
9565 		 * the tracepoint stuff does not actually need it. So
9566 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9567 		 * already have a reference on ctx.
9568 		 *
9569 		 * This can result in event getting moved to a different ctx,
9570 		 * but that does not affect the tracepoint state.
9571 		 */
9572 		mutex_unlock(&ctx->mutex);
9573 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9574 		mutex_lock(&ctx->mutex);
9575 	} else
9576 #endif
9577 	if (has_addr_filter(event))
9578 		ret = perf_event_set_addr_filter(event, filter_str);
9579 
9580 	kfree(filter_str);
9581 	return ret;
9582 }
9583 
9584 /*
9585  * hrtimer based swevent callback
9586  */
9587 
9588 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9589 {
9590 	enum hrtimer_restart ret = HRTIMER_RESTART;
9591 	struct perf_sample_data data;
9592 	struct pt_regs *regs;
9593 	struct perf_event *event;
9594 	u64 period;
9595 
9596 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9597 
9598 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9599 		return HRTIMER_NORESTART;
9600 
9601 	event->pmu->read(event);
9602 
9603 	perf_sample_data_init(&data, 0, event->hw.last_period);
9604 	regs = get_irq_regs();
9605 
9606 	if (regs && !perf_exclude_event(event, regs)) {
9607 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9608 			if (__perf_event_overflow(event, 1, &data, regs))
9609 				ret = HRTIMER_NORESTART;
9610 	}
9611 
9612 	period = max_t(u64, 10000, event->hw.sample_period);
9613 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9614 
9615 	return ret;
9616 }
9617 
9618 static void perf_swevent_start_hrtimer(struct perf_event *event)
9619 {
9620 	struct hw_perf_event *hwc = &event->hw;
9621 	s64 period;
9622 
9623 	if (!is_sampling_event(event))
9624 		return;
9625 
9626 	period = local64_read(&hwc->period_left);
9627 	if (period) {
9628 		if (period < 0)
9629 			period = 10000;
9630 
9631 		local64_set(&hwc->period_left, 0);
9632 	} else {
9633 		period = max_t(u64, 10000, hwc->sample_period);
9634 	}
9635 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9636 		      HRTIMER_MODE_REL_PINNED_HARD);
9637 }
9638 
9639 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9640 {
9641 	struct hw_perf_event *hwc = &event->hw;
9642 
9643 	if (is_sampling_event(event)) {
9644 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9645 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9646 
9647 		hrtimer_cancel(&hwc->hrtimer);
9648 	}
9649 }
9650 
9651 static void perf_swevent_init_hrtimer(struct perf_event *event)
9652 {
9653 	struct hw_perf_event *hwc = &event->hw;
9654 
9655 	if (!is_sampling_event(event))
9656 		return;
9657 
9658 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
9659 	hwc->hrtimer.function = perf_swevent_hrtimer;
9660 
9661 	/*
9662 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9663 	 * mapping and avoid the whole period adjust feedback stuff.
9664 	 */
9665 	if (event->attr.freq) {
9666 		long freq = event->attr.sample_freq;
9667 
9668 		event->attr.sample_period = NSEC_PER_SEC / freq;
9669 		hwc->sample_period = event->attr.sample_period;
9670 		local64_set(&hwc->period_left, hwc->sample_period);
9671 		hwc->last_period = hwc->sample_period;
9672 		event->attr.freq = 0;
9673 	}
9674 }
9675 
9676 /*
9677  * Software event: cpu wall time clock
9678  */
9679 
9680 static void cpu_clock_event_update(struct perf_event *event)
9681 {
9682 	s64 prev;
9683 	u64 now;
9684 
9685 	now = local_clock();
9686 	prev = local64_xchg(&event->hw.prev_count, now);
9687 	local64_add(now - prev, &event->count);
9688 }
9689 
9690 static void cpu_clock_event_start(struct perf_event *event, int flags)
9691 {
9692 	local64_set(&event->hw.prev_count, local_clock());
9693 	perf_swevent_start_hrtimer(event);
9694 }
9695 
9696 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9697 {
9698 	perf_swevent_cancel_hrtimer(event);
9699 	cpu_clock_event_update(event);
9700 }
9701 
9702 static int cpu_clock_event_add(struct perf_event *event, int flags)
9703 {
9704 	if (flags & PERF_EF_START)
9705 		cpu_clock_event_start(event, flags);
9706 	perf_event_update_userpage(event);
9707 
9708 	return 0;
9709 }
9710 
9711 static void cpu_clock_event_del(struct perf_event *event, int flags)
9712 {
9713 	cpu_clock_event_stop(event, flags);
9714 }
9715 
9716 static void cpu_clock_event_read(struct perf_event *event)
9717 {
9718 	cpu_clock_event_update(event);
9719 }
9720 
9721 static int cpu_clock_event_init(struct perf_event *event)
9722 {
9723 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9724 		return -ENOENT;
9725 
9726 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9727 		return -ENOENT;
9728 
9729 	/*
9730 	 * no branch sampling for software events
9731 	 */
9732 	if (has_branch_stack(event))
9733 		return -EOPNOTSUPP;
9734 
9735 	perf_swevent_init_hrtimer(event);
9736 
9737 	return 0;
9738 }
9739 
9740 static struct pmu perf_cpu_clock = {
9741 	.task_ctx_nr	= perf_sw_context,
9742 
9743 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9744 
9745 	.event_init	= cpu_clock_event_init,
9746 	.add		= cpu_clock_event_add,
9747 	.del		= cpu_clock_event_del,
9748 	.start		= cpu_clock_event_start,
9749 	.stop		= cpu_clock_event_stop,
9750 	.read		= cpu_clock_event_read,
9751 };
9752 
9753 /*
9754  * Software event: task time clock
9755  */
9756 
9757 static void task_clock_event_update(struct perf_event *event, u64 now)
9758 {
9759 	u64 prev;
9760 	s64 delta;
9761 
9762 	prev = local64_xchg(&event->hw.prev_count, now);
9763 	delta = now - prev;
9764 	local64_add(delta, &event->count);
9765 }
9766 
9767 static void task_clock_event_start(struct perf_event *event, int flags)
9768 {
9769 	local64_set(&event->hw.prev_count, event->ctx->time);
9770 	perf_swevent_start_hrtimer(event);
9771 }
9772 
9773 static void task_clock_event_stop(struct perf_event *event, int flags)
9774 {
9775 	perf_swevent_cancel_hrtimer(event);
9776 	task_clock_event_update(event, event->ctx->time);
9777 }
9778 
9779 static int task_clock_event_add(struct perf_event *event, int flags)
9780 {
9781 	if (flags & PERF_EF_START)
9782 		task_clock_event_start(event, flags);
9783 	perf_event_update_userpage(event);
9784 
9785 	return 0;
9786 }
9787 
9788 static void task_clock_event_del(struct perf_event *event, int flags)
9789 {
9790 	task_clock_event_stop(event, PERF_EF_UPDATE);
9791 }
9792 
9793 static void task_clock_event_read(struct perf_event *event)
9794 {
9795 	u64 now = perf_clock();
9796 	u64 delta = now - event->ctx->timestamp;
9797 	u64 time = event->ctx->time + delta;
9798 
9799 	task_clock_event_update(event, time);
9800 }
9801 
9802 static int task_clock_event_init(struct perf_event *event)
9803 {
9804 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9805 		return -ENOENT;
9806 
9807 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9808 		return -ENOENT;
9809 
9810 	/*
9811 	 * no branch sampling for software events
9812 	 */
9813 	if (has_branch_stack(event))
9814 		return -EOPNOTSUPP;
9815 
9816 	perf_swevent_init_hrtimer(event);
9817 
9818 	return 0;
9819 }
9820 
9821 static struct pmu perf_task_clock = {
9822 	.task_ctx_nr	= perf_sw_context,
9823 
9824 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9825 
9826 	.event_init	= task_clock_event_init,
9827 	.add		= task_clock_event_add,
9828 	.del		= task_clock_event_del,
9829 	.start		= task_clock_event_start,
9830 	.stop		= task_clock_event_stop,
9831 	.read		= task_clock_event_read,
9832 };
9833 
9834 static void perf_pmu_nop_void(struct pmu *pmu)
9835 {
9836 }
9837 
9838 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9839 {
9840 }
9841 
9842 static int perf_pmu_nop_int(struct pmu *pmu)
9843 {
9844 	return 0;
9845 }
9846 
9847 static int perf_event_nop_int(struct perf_event *event, u64 value)
9848 {
9849 	return 0;
9850 }
9851 
9852 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9853 
9854 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9855 {
9856 	__this_cpu_write(nop_txn_flags, flags);
9857 
9858 	if (flags & ~PERF_PMU_TXN_ADD)
9859 		return;
9860 
9861 	perf_pmu_disable(pmu);
9862 }
9863 
9864 static int perf_pmu_commit_txn(struct pmu *pmu)
9865 {
9866 	unsigned int flags = __this_cpu_read(nop_txn_flags);
9867 
9868 	__this_cpu_write(nop_txn_flags, 0);
9869 
9870 	if (flags & ~PERF_PMU_TXN_ADD)
9871 		return 0;
9872 
9873 	perf_pmu_enable(pmu);
9874 	return 0;
9875 }
9876 
9877 static void perf_pmu_cancel_txn(struct pmu *pmu)
9878 {
9879 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
9880 
9881 	__this_cpu_write(nop_txn_flags, 0);
9882 
9883 	if (flags & ~PERF_PMU_TXN_ADD)
9884 		return;
9885 
9886 	perf_pmu_enable(pmu);
9887 }
9888 
9889 static int perf_event_idx_default(struct perf_event *event)
9890 {
9891 	return 0;
9892 }
9893 
9894 /*
9895  * Ensures all contexts with the same task_ctx_nr have the same
9896  * pmu_cpu_context too.
9897  */
9898 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9899 {
9900 	struct pmu *pmu;
9901 
9902 	if (ctxn < 0)
9903 		return NULL;
9904 
9905 	list_for_each_entry(pmu, &pmus, entry) {
9906 		if (pmu->task_ctx_nr == ctxn)
9907 			return pmu->pmu_cpu_context;
9908 	}
9909 
9910 	return NULL;
9911 }
9912 
9913 static void free_pmu_context(struct pmu *pmu)
9914 {
9915 	/*
9916 	 * Static contexts such as perf_sw_context have a global lifetime
9917 	 * and may be shared between different PMUs. Avoid freeing them
9918 	 * when a single PMU is going away.
9919 	 */
9920 	if (pmu->task_ctx_nr > perf_invalid_context)
9921 		return;
9922 
9923 	free_percpu(pmu->pmu_cpu_context);
9924 }
9925 
9926 /*
9927  * Let userspace know that this PMU supports address range filtering:
9928  */
9929 static ssize_t nr_addr_filters_show(struct device *dev,
9930 				    struct device_attribute *attr,
9931 				    char *page)
9932 {
9933 	struct pmu *pmu = dev_get_drvdata(dev);
9934 
9935 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9936 }
9937 DEVICE_ATTR_RO(nr_addr_filters);
9938 
9939 static struct idr pmu_idr;
9940 
9941 static ssize_t
9942 type_show(struct device *dev, struct device_attribute *attr, char *page)
9943 {
9944 	struct pmu *pmu = dev_get_drvdata(dev);
9945 
9946 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9947 }
9948 static DEVICE_ATTR_RO(type);
9949 
9950 static ssize_t
9951 perf_event_mux_interval_ms_show(struct device *dev,
9952 				struct device_attribute *attr,
9953 				char *page)
9954 {
9955 	struct pmu *pmu = dev_get_drvdata(dev);
9956 
9957 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9958 }
9959 
9960 static DEFINE_MUTEX(mux_interval_mutex);
9961 
9962 static ssize_t
9963 perf_event_mux_interval_ms_store(struct device *dev,
9964 				 struct device_attribute *attr,
9965 				 const char *buf, size_t count)
9966 {
9967 	struct pmu *pmu = dev_get_drvdata(dev);
9968 	int timer, cpu, ret;
9969 
9970 	ret = kstrtoint(buf, 0, &timer);
9971 	if (ret)
9972 		return ret;
9973 
9974 	if (timer < 1)
9975 		return -EINVAL;
9976 
9977 	/* same value, noting to do */
9978 	if (timer == pmu->hrtimer_interval_ms)
9979 		return count;
9980 
9981 	mutex_lock(&mux_interval_mutex);
9982 	pmu->hrtimer_interval_ms = timer;
9983 
9984 	/* update all cpuctx for this PMU */
9985 	cpus_read_lock();
9986 	for_each_online_cpu(cpu) {
9987 		struct perf_cpu_context *cpuctx;
9988 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9989 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9990 
9991 		cpu_function_call(cpu,
9992 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9993 	}
9994 	cpus_read_unlock();
9995 	mutex_unlock(&mux_interval_mutex);
9996 
9997 	return count;
9998 }
9999 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10000 
10001 static struct attribute *pmu_dev_attrs[] = {
10002 	&dev_attr_type.attr,
10003 	&dev_attr_perf_event_mux_interval_ms.attr,
10004 	NULL,
10005 };
10006 ATTRIBUTE_GROUPS(pmu_dev);
10007 
10008 static int pmu_bus_running;
10009 static struct bus_type pmu_bus = {
10010 	.name		= "event_source",
10011 	.dev_groups	= pmu_dev_groups,
10012 };
10013 
10014 static void pmu_dev_release(struct device *dev)
10015 {
10016 	kfree(dev);
10017 }
10018 
10019 static int pmu_dev_alloc(struct pmu *pmu)
10020 {
10021 	int ret = -ENOMEM;
10022 
10023 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10024 	if (!pmu->dev)
10025 		goto out;
10026 
10027 	pmu->dev->groups = pmu->attr_groups;
10028 	device_initialize(pmu->dev);
10029 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10030 	if (ret)
10031 		goto free_dev;
10032 
10033 	dev_set_drvdata(pmu->dev, pmu);
10034 	pmu->dev->bus = &pmu_bus;
10035 	pmu->dev->release = pmu_dev_release;
10036 	ret = device_add(pmu->dev);
10037 	if (ret)
10038 		goto free_dev;
10039 
10040 	/* For PMUs with address filters, throw in an extra attribute: */
10041 	if (pmu->nr_addr_filters)
10042 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10043 
10044 	if (ret)
10045 		goto del_dev;
10046 
10047 	if (pmu->attr_update)
10048 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10049 
10050 	if (ret)
10051 		goto del_dev;
10052 
10053 out:
10054 	return ret;
10055 
10056 del_dev:
10057 	device_del(pmu->dev);
10058 
10059 free_dev:
10060 	put_device(pmu->dev);
10061 	goto out;
10062 }
10063 
10064 static struct lock_class_key cpuctx_mutex;
10065 static struct lock_class_key cpuctx_lock;
10066 
10067 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10068 {
10069 	int cpu, ret;
10070 
10071 	mutex_lock(&pmus_lock);
10072 	ret = -ENOMEM;
10073 	pmu->pmu_disable_count = alloc_percpu(int);
10074 	if (!pmu->pmu_disable_count)
10075 		goto unlock;
10076 
10077 	pmu->type = -1;
10078 	if (!name)
10079 		goto skip_type;
10080 	pmu->name = name;
10081 
10082 	if (type < 0) {
10083 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
10084 		if (type < 0) {
10085 			ret = type;
10086 			goto free_pdc;
10087 		}
10088 	}
10089 	pmu->type = type;
10090 
10091 	if (pmu_bus_running) {
10092 		ret = pmu_dev_alloc(pmu);
10093 		if (ret)
10094 			goto free_idr;
10095 	}
10096 
10097 skip_type:
10098 	if (pmu->task_ctx_nr == perf_hw_context) {
10099 		static int hw_context_taken = 0;
10100 
10101 		/*
10102 		 * Other than systems with heterogeneous CPUs, it never makes
10103 		 * sense for two PMUs to share perf_hw_context. PMUs which are
10104 		 * uncore must use perf_invalid_context.
10105 		 */
10106 		if (WARN_ON_ONCE(hw_context_taken &&
10107 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10108 			pmu->task_ctx_nr = perf_invalid_context;
10109 
10110 		hw_context_taken = 1;
10111 	}
10112 
10113 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10114 	if (pmu->pmu_cpu_context)
10115 		goto got_cpu_context;
10116 
10117 	ret = -ENOMEM;
10118 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10119 	if (!pmu->pmu_cpu_context)
10120 		goto free_dev;
10121 
10122 	for_each_possible_cpu(cpu) {
10123 		struct perf_cpu_context *cpuctx;
10124 
10125 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10126 		__perf_event_init_context(&cpuctx->ctx);
10127 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10128 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10129 		cpuctx->ctx.pmu = pmu;
10130 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10131 
10132 		__perf_mux_hrtimer_init(cpuctx, cpu);
10133 	}
10134 
10135 got_cpu_context:
10136 	if (!pmu->start_txn) {
10137 		if (pmu->pmu_enable) {
10138 			/*
10139 			 * If we have pmu_enable/pmu_disable calls, install
10140 			 * transaction stubs that use that to try and batch
10141 			 * hardware accesses.
10142 			 */
10143 			pmu->start_txn  = perf_pmu_start_txn;
10144 			pmu->commit_txn = perf_pmu_commit_txn;
10145 			pmu->cancel_txn = perf_pmu_cancel_txn;
10146 		} else {
10147 			pmu->start_txn  = perf_pmu_nop_txn;
10148 			pmu->commit_txn = perf_pmu_nop_int;
10149 			pmu->cancel_txn = perf_pmu_nop_void;
10150 		}
10151 	}
10152 
10153 	if (!pmu->pmu_enable) {
10154 		pmu->pmu_enable  = perf_pmu_nop_void;
10155 		pmu->pmu_disable = perf_pmu_nop_void;
10156 	}
10157 
10158 	if (!pmu->check_period)
10159 		pmu->check_period = perf_event_nop_int;
10160 
10161 	if (!pmu->event_idx)
10162 		pmu->event_idx = perf_event_idx_default;
10163 
10164 	list_add_rcu(&pmu->entry, &pmus);
10165 	atomic_set(&pmu->exclusive_cnt, 0);
10166 	ret = 0;
10167 unlock:
10168 	mutex_unlock(&pmus_lock);
10169 
10170 	return ret;
10171 
10172 free_dev:
10173 	device_del(pmu->dev);
10174 	put_device(pmu->dev);
10175 
10176 free_idr:
10177 	if (pmu->type >= PERF_TYPE_MAX)
10178 		idr_remove(&pmu_idr, pmu->type);
10179 
10180 free_pdc:
10181 	free_percpu(pmu->pmu_disable_count);
10182 	goto unlock;
10183 }
10184 EXPORT_SYMBOL_GPL(perf_pmu_register);
10185 
10186 void perf_pmu_unregister(struct pmu *pmu)
10187 {
10188 	mutex_lock(&pmus_lock);
10189 	list_del_rcu(&pmu->entry);
10190 
10191 	/*
10192 	 * We dereference the pmu list under both SRCU and regular RCU, so
10193 	 * synchronize against both of those.
10194 	 */
10195 	synchronize_srcu(&pmus_srcu);
10196 	synchronize_rcu();
10197 
10198 	free_percpu(pmu->pmu_disable_count);
10199 	if (pmu->type >= PERF_TYPE_MAX)
10200 		idr_remove(&pmu_idr, pmu->type);
10201 	if (pmu_bus_running) {
10202 		if (pmu->nr_addr_filters)
10203 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10204 		device_del(pmu->dev);
10205 		put_device(pmu->dev);
10206 	}
10207 	free_pmu_context(pmu);
10208 	mutex_unlock(&pmus_lock);
10209 }
10210 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10211 
10212 static inline bool has_extended_regs(struct perf_event *event)
10213 {
10214 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10215 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10216 }
10217 
10218 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10219 {
10220 	struct perf_event_context *ctx = NULL;
10221 	int ret;
10222 
10223 	if (!try_module_get(pmu->module))
10224 		return -ENODEV;
10225 
10226 	/*
10227 	 * A number of pmu->event_init() methods iterate the sibling_list to,
10228 	 * for example, validate if the group fits on the PMU. Therefore,
10229 	 * if this is a sibling event, acquire the ctx->mutex to protect
10230 	 * the sibling_list.
10231 	 */
10232 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10233 		/*
10234 		 * This ctx->mutex can nest when we're called through
10235 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
10236 		 */
10237 		ctx = perf_event_ctx_lock_nested(event->group_leader,
10238 						 SINGLE_DEPTH_NESTING);
10239 		BUG_ON(!ctx);
10240 	}
10241 
10242 	event->pmu = pmu;
10243 	ret = pmu->event_init(event);
10244 
10245 	if (ctx)
10246 		perf_event_ctx_unlock(event->group_leader, ctx);
10247 
10248 	if (!ret) {
10249 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10250 		    has_extended_regs(event))
10251 			ret = -EOPNOTSUPP;
10252 
10253 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10254 		    event_has_any_exclude_flag(event))
10255 			ret = -EINVAL;
10256 
10257 		if (ret && event->destroy)
10258 			event->destroy(event);
10259 	}
10260 
10261 	if (ret)
10262 		module_put(pmu->module);
10263 
10264 	return ret;
10265 }
10266 
10267 static struct pmu *perf_init_event(struct perf_event *event)
10268 {
10269 	struct pmu *pmu;
10270 	int idx;
10271 	int ret;
10272 
10273 	idx = srcu_read_lock(&pmus_srcu);
10274 
10275 	/* Try parent's PMU first: */
10276 	if (event->parent && event->parent->pmu) {
10277 		pmu = event->parent->pmu;
10278 		ret = perf_try_init_event(pmu, event);
10279 		if (!ret)
10280 			goto unlock;
10281 	}
10282 
10283 	rcu_read_lock();
10284 	pmu = idr_find(&pmu_idr, event->attr.type);
10285 	rcu_read_unlock();
10286 	if (pmu) {
10287 		ret = perf_try_init_event(pmu, event);
10288 		if (ret)
10289 			pmu = ERR_PTR(ret);
10290 		goto unlock;
10291 	}
10292 
10293 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10294 		ret = perf_try_init_event(pmu, event);
10295 		if (!ret)
10296 			goto unlock;
10297 
10298 		if (ret != -ENOENT) {
10299 			pmu = ERR_PTR(ret);
10300 			goto unlock;
10301 		}
10302 	}
10303 	pmu = ERR_PTR(-ENOENT);
10304 unlock:
10305 	srcu_read_unlock(&pmus_srcu, idx);
10306 
10307 	return pmu;
10308 }
10309 
10310 static void attach_sb_event(struct perf_event *event)
10311 {
10312 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10313 
10314 	raw_spin_lock(&pel->lock);
10315 	list_add_rcu(&event->sb_list, &pel->list);
10316 	raw_spin_unlock(&pel->lock);
10317 }
10318 
10319 /*
10320  * We keep a list of all !task (and therefore per-cpu) events
10321  * that need to receive side-band records.
10322  *
10323  * This avoids having to scan all the various PMU per-cpu contexts
10324  * looking for them.
10325  */
10326 static void account_pmu_sb_event(struct perf_event *event)
10327 {
10328 	if (is_sb_event(event))
10329 		attach_sb_event(event);
10330 }
10331 
10332 static void account_event_cpu(struct perf_event *event, int cpu)
10333 {
10334 	if (event->parent)
10335 		return;
10336 
10337 	if (is_cgroup_event(event))
10338 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10339 }
10340 
10341 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10342 static void account_freq_event_nohz(void)
10343 {
10344 #ifdef CONFIG_NO_HZ_FULL
10345 	/* Lock so we don't race with concurrent unaccount */
10346 	spin_lock(&nr_freq_lock);
10347 	if (atomic_inc_return(&nr_freq_events) == 1)
10348 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10349 	spin_unlock(&nr_freq_lock);
10350 #endif
10351 }
10352 
10353 static void account_freq_event(void)
10354 {
10355 	if (tick_nohz_full_enabled())
10356 		account_freq_event_nohz();
10357 	else
10358 		atomic_inc(&nr_freq_events);
10359 }
10360 
10361 
10362 static void account_event(struct perf_event *event)
10363 {
10364 	bool inc = false;
10365 
10366 	if (event->parent)
10367 		return;
10368 
10369 	if (event->attach_state & PERF_ATTACH_TASK)
10370 		inc = true;
10371 	if (event->attr.mmap || event->attr.mmap_data)
10372 		atomic_inc(&nr_mmap_events);
10373 	if (event->attr.comm)
10374 		atomic_inc(&nr_comm_events);
10375 	if (event->attr.namespaces)
10376 		atomic_inc(&nr_namespaces_events);
10377 	if (event->attr.task)
10378 		atomic_inc(&nr_task_events);
10379 	if (event->attr.freq)
10380 		account_freq_event();
10381 	if (event->attr.context_switch) {
10382 		atomic_inc(&nr_switch_events);
10383 		inc = true;
10384 	}
10385 	if (has_branch_stack(event))
10386 		inc = true;
10387 	if (is_cgroup_event(event))
10388 		inc = true;
10389 	if (event->attr.ksymbol)
10390 		atomic_inc(&nr_ksymbol_events);
10391 	if (event->attr.bpf_event)
10392 		atomic_inc(&nr_bpf_events);
10393 
10394 	if (inc) {
10395 		/*
10396 		 * We need the mutex here because static_branch_enable()
10397 		 * must complete *before* the perf_sched_count increment
10398 		 * becomes visible.
10399 		 */
10400 		if (atomic_inc_not_zero(&perf_sched_count))
10401 			goto enabled;
10402 
10403 		mutex_lock(&perf_sched_mutex);
10404 		if (!atomic_read(&perf_sched_count)) {
10405 			static_branch_enable(&perf_sched_events);
10406 			/*
10407 			 * Guarantee that all CPUs observe they key change and
10408 			 * call the perf scheduling hooks before proceeding to
10409 			 * install events that need them.
10410 			 */
10411 			synchronize_rcu();
10412 		}
10413 		/*
10414 		 * Now that we have waited for the sync_sched(), allow further
10415 		 * increments to by-pass the mutex.
10416 		 */
10417 		atomic_inc(&perf_sched_count);
10418 		mutex_unlock(&perf_sched_mutex);
10419 	}
10420 enabled:
10421 
10422 	account_event_cpu(event, event->cpu);
10423 
10424 	account_pmu_sb_event(event);
10425 }
10426 
10427 /*
10428  * Allocate and initialize an event structure
10429  */
10430 static struct perf_event *
10431 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10432 		 struct task_struct *task,
10433 		 struct perf_event *group_leader,
10434 		 struct perf_event *parent_event,
10435 		 perf_overflow_handler_t overflow_handler,
10436 		 void *context, int cgroup_fd)
10437 {
10438 	struct pmu *pmu;
10439 	struct perf_event *event;
10440 	struct hw_perf_event *hwc;
10441 	long err = -EINVAL;
10442 
10443 	if ((unsigned)cpu >= nr_cpu_ids) {
10444 		if (!task || cpu != -1)
10445 			return ERR_PTR(-EINVAL);
10446 	}
10447 
10448 	event = kzalloc(sizeof(*event), GFP_KERNEL);
10449 	if (!event)
10450 		return ERR_PTR(-ENOMEM);
10451 
10452 	/*
10453 	 * Single events are their own group leaders, with an
10454 	 * empty sibling list:
10455 	 */
10456 	if (!group_leader)
10457 		group_leader = event;
10458 
10459 	mutex_init(&event->child_mutex);
10460 	INIT_LIST_HEAD(&event->child_list);
10461 
10462 	INIT_LIST_HEAD(&event->event_entry);
10463 	INIT_LIST_HEAD(&event->sibling_list);
10464 	INIT_LIST_HEAD(&event->active_list);
10465 	init_event_group(event);
10466 	INIT_LIST_HEAD(&event->rb_entry);
10467 	INIT_LIST_HEAD(&event->active_entry);
10468 	INIT_LIST_HEAD(&event->addr_filters.list);
10469 	INIT_HLIST_NODE(&event->hlist_entry);
10470 
10471 
10472 	init_waitqueue_head(&event->waitq);
10473 	event->pending_disable = -1;
10474 	init_irq_work(&event->pending, perf_pending_event);
10475 
10476 	mutex_init(&event->mmap_mutex);
10477 	raw_spin_lock_init(&event->addr_filters.lock);
10478 
10479 	atomic_long_set(&event->refcount, 1);
10480 	event->cpu		= cpu;
10481 	event->attr		= *attr;
10482 	event->group_leader	= group_leader;
10483 	event->pmu		= NULL;
10484 	event->oncpu		= -1;
10485 
10486 	event->parent		= parent_event;
10487 
10488 	event->ns		= get_pid_ns(task_active_pid_ns(current));
10489 	event->id		= atomic64_inc_return(&perf_event_id);
10490 
10491 	event->state		= PERF_EVENT_STATE_INACTIVE;
10492 
10493 	if (task) {
10494 		event->attach_state = PERF_ATTACH_TASK;
10495 		/*
10496 		 * XXX pmu::event_init needs to know what task to account to
10497 		 * and we cannot use the ctx information because we need the
10498 		 * pmu before we get a ctx.
10499 		 */
10500 		event->hw.target = get_task_struct(task);
10501 	}
10502 
10503 	event->clock = &local_clock;
10504 	if (parent_event)
10505 		event->clock = parent_event->clock;
10506 
10507 	if (!overflow_handler && parent_event) {
10508 		overflow_handler = parent_event->overflow_handler;
10509 		context = parent_event->overflow_handler_context;
10510 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10511 		if (overflow_handler == bpf_overflow_handler) {
10512 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10513 
10514 			if (IS_ERR(prog)) {
10515 				err = PTR_ERR(prog);
10516 				goto err_ns;
10517 			}
10518 			event->prog = prog;
10519 			event->orig_overflow_handler =
10520 				parent_event->orig_overflow_handler;
10521 		}
10522 #endif
10523 	}
10524 
10525 	if (overflow_handler) {
10526 		event->overflow_handler	= overflow_handler;
10527 		event->overflow_handler_context = context;
10528 	} else if (is_write_backward(event)){
10529 		event->overflow_handler = perf_event_output_backward;
10530 		event->overflow_handler_context = NULL;
10531 	} else {
10532 		event->overflow_handler = perf_event_output_forward;
10533 		event->overflow_handler_context = NULL;
10534 	}
10535 
10536 	perf_event__state_init(event);
10537 
10538 	pmu = NULL;
10539 
10540 	hwc = &event->hw;
10541 	hwc->sample_period = attr->sample_period;
10542 	if (attr->freq && attr->sample_freq)
10543 		hwc->sample_period = 1;
10544 	hwc->last_period = hwc->sample_period;
10545 
10546 	local64_set(&hwc->period_left, hwc->sample_period);
10547 
10548 	/*
10549 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10550 	 * See perf_output_read().
10551 	 */
10552 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10553 		goto err_ns;
10554 
10555 	if (!has_branch_stack(event))
10556 		event->attr.branch_sample_type = 0;
10557 
10558 	if (cgroup_fd != -1) {
10559 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10560 		if (err)
10561 			goto err_ns;
10562 	}
10563 
10564 	pmu = perf_init_event(event);
10565 	if (IS_ERR(pmu)) {
10566 		err = PTR_ERR(pmu);
10567 		goto err_ns;
10568 	}
10569 
10570 	/*
10571 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10572 	 * be different on other CPUs in the uncore mask.
10573 	 */
10574 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
10575 		err = -EINVAL;
10576 		goto err_pmu;
10577 	}
10578 
10579 	if (event->attr.aux_output &&
10580 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10581 		err = -EOPNOTSUPP;
10582 		goto err_pmu;
10583 	}
10584 
10585 	err = exclusive_event_init(event);
10586 	if (err)
10587 		goto err_pmu;
10588 
10589 	if (has_addr_filter(event)) {
10590 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10591 						    sizeof(struct perf_addr_filter_range),
10592 						    GFP_KERNEL);
10593 		if (!event->addr_filter_ranges) {
10594 			err = -ENOMEM;
10595 			goto err_per_task;
10596 		}
10597 
10598 		/*
10599 		 * Clone the parent's vma offsets: they are valid until exec()
10600 		 * even if the mm is not shared with the parent.
10601 		 */
10602 		if (event->parent) {
10603 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10604 
10605 			raw_spin_lock_irq(&ifh->lock);
10606 			memcpy(event->addr_filter_ranges,
10607 			       event->parent->addr_filter_ranges,
10608 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10609 			raw_spin_unlock_irq(&ifh->lock);
10610 		}
10611 
10612 		/* force hw sync on the address filters */
10613 		event->addr_filters_gen = 1;
10614 	}
10615 
10616 	if (!event->parent) {
10617 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10618 			err = get_callchain_buffers(attr->sample_max_stack);
10619 			if (err)
10620 				goto err_addr_filters;
10621 		}
10622 	}
10623 
10624 	/* symmetric to unaccount_event() in _free_event() */
10625 	account_event(event);
10626 
10627 	return event;
10628 
10629 err_addr_filters:
10630 	kfree(event->addr_filter_ranges);
10631 
10632 err_per_task:
10633 	exclusive_event_destroy(event);
10634 
10635 err_pmu:
10636 	if (event->destroy)
10637 		event->destroy(event);
10638 	module_put(pmu->module);
10639 err_ns:
10640 	if (is_cgroup_event(event))
10641 		perf_detach_cgroup(event);
10642 	if (event->ns)
10643 		put_pid_ns(event->ns);
10644 	if (event->hw.target)
10645 		put_task_struct(event->hw.target);
10646 	kfree(event);
10647 
10648 	return ERR_PTR(err);
10649 }
10650 
10651 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10652 			  struct perf_event_attr *attr)
10653 {
10654 	u32 size;
10655 	int ret;
10656 
10657 	/* Zero the full structure, so that a short copy will be nice. */
10658 	memset(attr, 0, sizeof(*attr));
10659 
10660 	ret = get_user(size, &uattr->size);
10661 	if (ret)
10662 		return ret;
10663 
10664 	/* ABI compatibility quirk: */
10665 	if (!size)
10666 		size = PERF_ATTR_SIZE_VER0;
10667 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
10668 		goto err_size;
10669 
10670 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10671 	if (ret) {
10672 		if (ret == -E2BIG)
10673 			goto err_size;
10674 		return ret;
10675 	}
10676 
10677 	attr->size = size;
10678 
10679 	if (attr->__reserved_1 || attr->__reserved_2)
10680 		return -EINVAL;
10681 
10682 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10683 		return -EINVAL;
10684 
10685 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10686 		return -EINVAL;
10687 
10688 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10689 		u64 mask = attr->branch_sample_type;
10690 
10691 		/* only using defined bits */
10692 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10693 			return -EINVAL;
10694 
10695 		/* at least one branch bit must be set */
10696 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10697 			return -EINVAL;
10698 
10699 		/* propagate priv level, when not set for branch */
10700 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10701 
10702 			/* exclude_kernel checked on syscall entry */
10703 			if (!attr->exclude_kernel)
10704 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10705 
10706 			if (!attr->exclude_user)
10707 				mask |= PERF_SAMPLE_BRANCH_USER;
10708 
10709 			if (!attr->exclude_hv)
10710 				mask |= PERF_SAMPLE_BRANCH_HV;
10711 			/*
10712 			 * adjust user setting (for HW filter setup)
10713 			 */
10714 			attr->branch_sample_type = mask;
10715 		}
10716 		/* privileged levels capture (kernel, hv): check permissions */
10717 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10718 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10719 			return -EACCES;
10720 	}
10721 
10722 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10723 		ret = perf_reg_validate(attr->sample_regs_user);
10724 		if (ret)
10725 			return ret;
10726 	}
10727 
10728 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10729 		if (!arch_perf_have_user_stack_dump())
10730 			return -ENOSYS;
10731 
10732 		/*
10733 		 * We have __u32 type for the size, but so far
10734 		 * we can only use __u16 as maximum due to the
10735 		 * __u16 sample size limit.
10736 		 */
10737 		if (attr->sample_stack_user >= USHRT_MAX)
10738 			return -EINVAL;
10739 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10740 			return -EINVAL;
10741 	}
10742 
10743 	if (!attr->sample_max_stack)
10744 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10745 
10746 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10747 		ret = perf_reg_validate(attr->sample_regs_intr);
10748 out:
10749 	return ret;
10750 
10751 err_size:
10752 	put_user(sizeof(*attr), &uattr->size);
10753 	ret = -E2BIG;
10754 	goto out;
10755 }
10756 
10757 static int
10758 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10759 {
10760 	struct ring_buffer *rb = NULL;
10761 	int ret = -EINVAL;
10762 
10763 	if (!output_event)
10764 		goto set;
10765 
10766 	/* don't allow circular references */
10767 	if (event == output_event)
10768 		goto out;
10769 
10770 	/*
10771 	 * Don't allow cross-cpu buffers
10772 	 */
10773 	if (output_event->cpu != event->cpu)
10774 		goto out;
10775 
10776 	/*
10777 	 * If its not a per-cpu rb, it must be the same task.
10778 	 */
10779 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10780 		goto out;
10781 
10782 	/*
10783 	 * Mixing clocks in the same buffer is trouble you don't need.
10784 	 */
10785 	if (output_event->clock != event->clock)
10786 		goto out;
10787 
10788 	/*
10789 	 * Either writing ring buffer from beginning or from end.
10790 	 * Mixing is not allowed.
10791 	 */
10792 	if (is_write_backward(output_event) != is_write_backward(event))
10793 		goto out;
10794 
10795 	/*
10796 	 * If both events generate aux data, they must be on the same PMU
10797 	 */
10798 	if (has_aux(event) && has_aux(output_event) &&
10799 	    event->pmu != output_event->pmu)
10800 		goto out;
10801 
10802 set:
10803 	mutex_lock(&event->mmap_mutex);
10804 	/* Can't redirect output if we've got an active mmap() */
10805 	if (atomic_read(&event->mmap_count))
10806 		goto unlock;
10807 
10808 	if (output_event) {
10809 		/* get the rb we want to redirect to */
10810 		rb = ring_buffer_get(output_event);
10811 		if (!rb)
10812 			goto unlock;
10813 	}
10814 
10815 	ring_buffer_attach(event, rb);
10816 
10817 	ret = 0;
10818 unlock:
10819 	mutex_unlock(&event->mmap_mutex);
10820 
10821 out:
10822 	return ret;
10823 }
10824 
10825 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10826 {
10827 	if (b < a)
10828 		swap(a, b);
10829 
10830 	mutex_lock(a);
10831 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10832 }
10833 
10834 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10835 {
10836 	bool nmi_safe = false;
10837 
10838 	switch (clk_id) {
10839 	case CLOCK_MONOTONIC:
10840 		event->clock = &ktime_get_mono_fast_ns;
10841 		nmi_safe = true;
10842 		break;
10843 
10844 	case CLOCK_MONOTONIC_RAW:
10845 		event->clock = &ktime_get_raw_fast_ns;
10846 		nmi_safe = true;
10847 		break;
10848 
10849 	case CLOCK_REALTIME:
10850 		event->clock = &ktime_get_real_ns;
10851 		break;
10852 
10853 	case CLOCK_BOOTTIME:
10854 		event->clock = &ktime_get_boottime_ns;
10855 		break;
10856 
10857 	case CLOCK_TAI:
10858 		event->clock = &ktime_get_clocktai_ns;
10859 		break;
10860 
10861 	default:
10862 		return -EINVAL;
10863 	}
10864 
10865 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10866 		return -EINVAL;
10867 
10868 	return 0;
10869 }
10870 
10871 /*
10872  * Variation on perf_event_ctx_lock_nested(), except we take two context
10873  * mutexes.
10874  */
10875 static struct perf_event_context *
10876 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10877 			     struct perf_event_context *ctx)
10878 {
10879 	struct perf_event_context *gctx;
10880 
10881 again:
10882 	rcu_read_lock();
10883 	gctx = READ_ONCE(group_leader->ctx);
10884 	if (!refcount_inc_not_zero(&gctx->refcount)) {
10885 		rcu_read_unlock();
10886 		goto again;
10887 	}
10888 	rcu_read_unlock();
10889 
10890 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
10891 
10892 	if (group_leader->ctx != gctx) {
10893 		mutex_unlock(&ctx->mutex);
10894 		mutex_unlock(&gctx->mutex);
10895 		put_ctx(gctx);
10896 		goto again;
10897 	}
10898 
10899 	return gctx;
10900 }
10901 
10902 /**
10903  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10904  *
10905  * @attr_uptr:	event_id type attributes for monitoring/sampling
10906  * @pid:		target pid
10907  * @cpu:		target cpu
10908  * @group_fd:		group leader event fd
10909  */
10910 SYSCALL_DEFINE5(perf_event_open,
10911 		struct perf_event_attr __user *, attr_uptr,
10912 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10913 {
10914 	struct perf_event *group_leader = NULL, *output_event = NULL;
10915 	struct perf_event *event, *sibling;
10916 	struct perf_event_attr attr;
10917 	struct perf_event_context *ctx, *uninitialized_var(gctx);
10918 	struct file *event_file = NULL;
10919 	struct fd group = {NULL, 0};
10920 	struct task_struct *task = NULL;
10921 	struct pmu *pmu;
10922 	int event_fd;
10923 	int move_group = 0;
10924 	int err;
10925 	int f_flags = O_RDWR;
10926 	int cgroup_fd = -1;
10927 
10928 	/* for future expandability... */
10929 	if (flags & ~PERF_FLAG_ALL)
10930 		return -EINVAL;
10931 
10932 	err = perf_copy_attr(attr_uptr, &attr);
10933 	if (err)
10934 		return err;
10935 
10936 	if (!attr.exclude_kernel) {
10937 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10938 			return -EACCES;
10939 	}
10940 
10941 	if (attr.namespaces) {
10942 		if (!capable(CAP_SYS_ADMIN))
10943 			return -EACCES;
10944 	}
10945 
10946 	if (attr.freq) {
10947 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10948 			return -EINVAL;
10949 	} else {
10950 		if (attr.sample_period & (1ULL << 63))
10951 			return -EINVAL;
10952 	}
10953 
10954 	/* Only privileged users can get physical addresses */
10955 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10956 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10957 		return -EACCES;
10958 
10959 	err = security_locked_down(LOCKDOWN_PERF);
10960 	if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
10961 		/* REGS_INTR can leak data, lockdown must prevent this */
10962 		return err;
10963 
10964 	err = 0;
10965 
10966 	/*
10967 	 * In cgroup mode, the pid argument is used to pass the fd
10968 	 * opened to the cgroup directory in cgroupfs. The cpu argument
10969 	 * designates the cpu on which to monitor threads from that
10970 	 * cgroup.
10971 	 */
10972 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10973 		return -EINVAL;
10974 
10975 	if (flags & PERF_FLAG_FD_CLOEXEC)
10976 		f_flags |= O_CLOEXEC;
10977 
10978 	event_fd = get_unused_fd_flags(f_flags);
10979 	if (event_fd < 0)
10980 		return event_fd;
10981 
10982 	if (group_fd != -1) {
10983 		err = perf_fget_light(group_fd, &group);
10984 		if (err)
10985 			goto err_fd;
10986 		group_leader = group.file->private_data;
10987 		if (flags & PERF_FLAG_FD_OUTPUT)
10988 			output_event = group_leader;
10989 		if (flags & PERF_FLAG_FD_NO_GROUP)
10990 			group_leader = NULL;
10991 	}
10992 
10993 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10994 		task = find_lively_task_by_vpid(pid);
10995 		if (IS_ERR(task)) {
10996 			err = PTR_ERR(task);
10997 			goto err_group_fd;
10998 		}
10999 	}
11000 
11001 	if (task && group_leader &&
11002 	    group_leader->attr.inherit != attr.inherit) {
11003 		err = -EINVAL;
11004 		goto err_task;
11005 	}
11006 
11007 	if (task) {
11008 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
11009 		if (err)
11010 			goto err_task;
11011 
11012 		/*
11013 		 * Reuse ptrace permission checks for now.
11014 		 *
11015 		 * We must hold cred_guard_mutex across this and any potential
11016 		 * perf_install_in_context() call for this new event to
11017 		 * serialize against exec() altering our credentials (and the
11018 		 * perf_event_exit_task() that could imply).
11019 		 */
11020 		err = -EACCES;
11021 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11022 			goto err_cred;
11023 	}
11024 
11025 	if (flags & PERF_FLAG_PID_CGROUP)
11026 		cgroup_fd = pid;
11027 
11028 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11029 				 NULL, NULL, cgroup_fd);
11030 	if (IS_ERR(event)) {
11031 		err = PTR_ERR(event);
11032 		goto err_cred;
11033 	}
11034 
11035 	if (is_sampling_event(event)) {
11036 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11037 			err = -EOPNOTSUPP;
11038 			goto err_alloc;
11039 		}
11040 	}
11041 
11042 	/*
11043 	 * Special case software events and allow them to be part of
11044 	 * any hardware group.
11045 	 */
11046 	pmu = event->pmu;
11047 
11048 	if (attr.use_clockid) {
11049 		err = perf_event_set_clock(event, attr.clockid);
11050 		if (err)
11051 			goto err_alloc;
11052 	}
11053 
11054 	if (pmu->task_ctx_nr == perf_sw_context)
11055 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
11056 
11057 	if (group_leader) {
11058 		if (is_software_event(event) &&
11059 		    !in_software_context(group_leader)) {
11060 			/*
11061 			 * If the event is a sw event, but the group_leader
11062 			 * is on hw context.
11063 			 *
11064 			 * Allow the addition of software events to hw
11065 			 * groups, this is safe because software events
11066 			 * never fail to schedule.
11067 			 */
11068 			pmu = group_leader->ctx->pmu;
11069 		} else if (!is_software_event(event) &&
11070 			   is_software_event(group_leader) &&
11071 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11072 			/*
11073 			 * In case the group is a pure software group, and we
11074 			 * try to add a hardware event, move the whole group to
11075 			 * the hardware context.
11076 			 */
11077 			move_group = 1;
11078 		}
11079 	}
11080 
11081 	/*
11082 	 * Get the target context (task or percpu):
11083 	 */
11084 	ctx = find_get_context(pmu, task, event);
11085 	if (IS_ERR(ctx)) {
11086 		err = PTR_ERR(ctx);
11087 		goto err_alloc;
11088 	}
11089 
11090 	/*
11091 	 * Look up the group leader (we will attach this event to it):
11092 	 */
11093 	if (group_leader) {
11094 		err = -EINVAL;
11095 
11096 		/*
11097 		 * Do not allow a recursive hierarchy (this new sibling
11098 		 * becoming part of another group-sibling):
11099 		 */
11100 		if (group_leader->group_leader != group_leader)
11101 			goto err_context;
11102 
11103 		/* All events in a group should have the same clock */
11104 		if (group_leader->clock != event->clock)
11105 			goto err_context;
11106 
11107 		/*
11108 		 * Make sure we're both events for the same CPU;
11109 		 * grouping events for different CPUs is broken; since
11110 		 * you can never concurrently schedule them anyhow.
11111 		 */
11112 		if (group_leader->cpu != event->cpu)
11113 			goto err_context;
11114 
11115 		/*
11116 		 * Make sure we're both on the same task, or both
11117 		 * per-CPU events.
11118 		 */
11119 		if (group_leader->ctx->task != ctx->task)
11120 			goto err_context;
11121 
11122 		/*
11123 		 * Do not allow to attach to a group in a different task
11124 		 * or CPU context. If we're moving SW events, we'll fix
11125 		 * this up later, so allow that.
11126 		 */
11127 		if (!move_group && group_leader->ctx != ctx)
11128 			goto err_context;
11129 
11130 		/*
11131 		 * Only a group leader can be exclusive or pinned
11132 		 */
11133 		if (attr.exclusive || attr.pinned)
11134 			goto err_context;
11135 	}
11136 
11137 	if (output_event) {
11138 		err = perf_event_set_output(event, output_event);
11139 		if (err)
11140 			goto err_context;
11141 	}
11142 
11143 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11144 					f_flags);
11145 	if (IS_ERR(event_file)) {
11146 		err = PTR_ERR(event_file);
11147 		event_file = NULL;
11148 		goto err_context;
11149 	}
11150 
11151 	if (move_group) {
11152 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11153 
11154 		if (gctx->task == TASK_TOMBSTONE) {
11155 			err = -ESRCH;
11156 			goto err_locked;
11157 		}
11158 
11159 		/*
11160 		 * Check if we raced against another sys_perf_event_open() call
11161 		 * moving the software group underneath us.
11162 		 */
11163 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11164 			/*
11165 			 * If someone moved the group out from under us, check
11166 			 * if this new event wound up on the same ctx, if so
11167 			 * its the regular !move_group case, otherwise fail.
11168 			 */
11169 			if (gctx != ctx) {
11170 				err = -EINVAL;
11171 				goto err_locked;
11172 			} else {
11173 				perf_event_ctx_unlock(group_leader, gctx);
11174 				move_group = 0;
11175 			}
11176 		}
11177 
11178 		/*
11179 		 * Failure to create exclusive events returns -EBUSY.
11180 		 */
11181 		err = -EBUSY;
11182 		if (!exclusive_event_installable(group_leader, ctx))
11183 			goto err_locked;
11184 
11185 		for_each_sibling_event(sibling, group_leader) {
11186 			if (!exclusive_event_installable(sibling, ctx))
11187 				goto err_locked;
11188 		}
11189 	} else {
11190 		mutex_lock(&ctx->mutex);
11191 	}
11192 
11193 	if (ctx->task == TASK_TOMBSTONE) {
11194 		err = -ESRCH;
11195 		goto err_locked;
11196 	}
11197 
11198 	if (!perf_event_validate_size(event)) {
11199 		err = -E2BIG;
11200 		goto err_locked;
11201 	}
11202 
11203 	if (!task) {
11204 		/*
11205 		 * Check if the @cpu we're creating an event for is online.
11206 		 *
11207 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11208 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11209 		 */
11210 		struct perf_cpu_context *cpuctx =
11211 			container_of(ctx, struct perf_cpu_context, ctx);
11212 
11213 		if (!cpuctx->online) {
11214 			err = -ENODEV;
11215 			goto err_locked;
11216 		}
11217 	}
11218 
11219 	if (event->attr.aux_output && !perf_get_aux_event(event, group_leader))
11220 		goto err_locked;
11221 
11222 	/*
11223 	 * Must be under the same ctx::mutex as perf_install_in_context(),
11224 	 * because we need to serialize with concurrent event creation.
11225 	 */
11226 	if (!exclusive_event_installable(event, ctx)) {
11227 		err = -EBUSY;
11228 		goto err_locked;
11229 	}
11230 
11231 	WARN_ON_ONCE(ctx->parent_ctx);
11232 
11233 	/*
11234 	 * This is the point on no return; we cannot fail hereafter. This is
11235 	 * where we start modifying current state.
11236 	 */
11237 
11238 	if (move_group) {
11239 		/*
11240 		 * See perf_event_ctx_lock() for comments on the details
11241 		 * of swizzling perf_event::ctx.
11242 		 */
11243 		perf_remove_from_context(group_leader, 0);
11244 		put_ctx(gctx);
11245 
11246 		for_each_sibling_event(sibling, group_leader) {
11247 			perf_remove_from_context(sibling, 0);
11248 			put_ctx(gctx);
11249 		}
11250 
11251 		/*
11252 		 * Wait for everybody to stop referencing the events through
11253 		 * the old lists, before installing it on new lists.
11254 		 */
11255 		synchronize_rcu();
11256 
11257 		/*
11258 		 * Install the group siblings before the group leader.
11259 		 *
11260 		 * Because a group leader will try and install the entire group
11261 		 * (through the sibling list, which is still in-tact), we can
11262 		 * end up with siblings installed in the wrong context.
11263 		 *
11264 		 * By installing siblings first we NO-OP because they're not
11265 		 * reachable through the group lists.
11266 		 */
11267 		for_each_sibling_event(sibling, group_leader) {
11268 			perf_event__state_init(sibling);
11269 			perf_install_in_context(ctx, sibling, sibling->cpu);
11270 			get_ctx(ctx);
11271 		}
11272 
11273 		/*
11274 		 * Removing from the context ends up with disabled
11275 		 * event. What we want here is event in the initial
11276 		 * startup state, ready to be add into new context.
11277 		 */
11278 		perf_event__state_init(group_leader);
11279 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
11280 		get_ctx(ctx);
11281 	}
11282 
11283 	/*
11284 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
11285 	 * that we're serialized against further additions and before
11286 	 * perf_install_in_context() which is the point the event is active and
11287 	 * can use these values.
11288 	 */
11289 	perf_event__header_size(event);
11290 	perf_event__id_header_size(event);
11291 
11292 	event->owner = current;
11293 
11294 	perf_install_in_context(ctx, event, event->cpu);
11295 	perf_unpin_context(ctx);
11296 
11297 	if (move_group)
11298 		perf_event_ctx_unlock(group_leader, gctx);
11299 	mutex_unlock(&ctx->mutex);
11300 
11301 	if (task) {
11302 		mutex_unlock(&task->signal->cred_guard_mutex);
11303 		put_task_struct(task);
11304 	}
11305 
11306 	mutex_lock(&current->perf_event_mutex);
11307 	list_add_tail(&event->owner_entry, &current->perf_event_list);
11308 	mutex_unlock(&current->perf_event_mutex);
11309 
11310 	/*
11311 	 * Drop the reference on the group_event after placing the
11312 	 * new event on the sibling_list. This ensures destruction
11313 	 * of the group leader will find the pointer to itself in
11314 	 * perf_group_detach().
11315 	 */
11316 	fdput(group);
11317 	fd_install(event_fd, event_file);
11318 	return event_fd;
11319 
11320 err_locked:
11321 	if (move_group)
11322 		perf_event_ctx_unlock(group_leader, gctx);
11323 	mutex_unlock(&ctx->mutex);
11324 /* err_file: */
11325 	fput(event_file);
11326 err_context:
11327 	perf_unpin_context(ctx);
11328 	put_ctx(ctx);
11329 err_alloc:
11330 	/*
11331 	 * If event_file is set, the fput() above will have called ->release()
11332 	 * and that will take care of freeing the event.
11333 	 */
11334 	if (!event_file)
11335 		free_event(event);
11336 err_cred:
11337 	if (task)
11338 		mutex_unlock(&task->signal->cred_guard_mutex);
11339 err_task:
11340 	if (task)
11341 		put_task_struct(task);
11342 err_group_fd:
11343 	fdput(group);
11344 err_fd:
11345 	put_unused_fd(event_fd);
11346 	return err;
11347 }
11348 
11349 /**
11350  * perf_event_create_kernel_counter
11351  *
11352  * @attr: attributes of the counter to create
11353  * @cpu: cpu in which the counter is bound
11354  * @task: task to profile (NULL for percpu)
11355  */
11356 struct perf_event *
11357 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11358 				 struct task_struct *task,
11359 				 perf_overflow_handler_t overflow_handler,
11360 				 void *context)
11361 {
11362 	struct perf_event_context *ctx;
11363 	struct perf_event *event;
11364 	int err;
11365 
11366 	/*
11367 	 * Grouping is not supported for kernel events, neither is 'AUX',
11368 	 * make sure the caller's intentions are adjusted.
11369 	 */
11370 	if (attr->aux_output)
11371 		return ERR_PTR(-EINVAL);
11372 
11373 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11374 				 overflow_handler, context, -1);
11375 	if (IS_ERR(event)) {
11376 		err = PTR_ERR(event);
11377 		goto err;
11378 	}
11379 
11380 	/* Mark owner so we could distinguish it from user events. */
11381 	event->owner = TASK_TOMBSTONE;
11382 
11383 	/*
11384 	 * Get the target context (task or percpu):
11385 	 */
11386 	ctx = find_get_context(event->pmu, task, event);
11387 	if (IS_ERR(ctx)) {
11388 		err = PTR_ERR(ctx);
11389 		goto err_free;
11390 	}
11391 
11392 	WARN_ON_ONCE(ctx->parent_ctx);
11393 	mutex_lock(&ctx->mutex);
11394 	if (ctx->task == TASK_TOMBSTONE) {
11395 		err = -ESRCH;
11396 		goto err_unlock;
11397 	}
11398 
11399 	if (!task) {
11400 		/*
11401 		 * Check if the @cpu we're creating an event for is online.
11402 		 *
11403 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11404 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11405 		 */
11406 		struct perf_cpu_context *cpuctx =
11407 			container_of(ctx, struct perf_cpu_context, ctx);
11408 		if (!cpuctx->online) {
11409 			err = -ENODEV;
11410 			goto err_unlock;
11411 		}
11412 	}
11413 
11414 	if (!exclusive_event_installable(event, ctx)) {
11415 		err = -EBUSY;
11416 		goto err_unlock;
11417 	}
11418 
11419 	perf_install_in_context(ctx, event, event->cpu);
11420 	perf_unpin_context(ctx);
11421 	mutex_unlock(&ctx->mutex);
11422 
11423 	return event;
11424 
11425 err_unlock:
11426 	mutex_unlock(&ctx->mutex);
11427 	perf_unpin_context(ctx);
11428 	put_ctx(ctx);
11429 err_free:
11430 	free_event(event);
11431 err:
11432 	return ERR_PTR(err);
11433 }
11434 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11435 
11436 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11437 {
11438 	struct perf_event_context *src_ctx;
11439 	struct perf_event_context *dst_ctx;
11440 	struct perf_event *event, *tmp;
11441 	LIST_HEAD(events);
11442 
11443 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11444 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11445 
11446 	/*
11447 	 * See perf_event_ctx_lock() for comments on the details
11448 	 * of swizzling perf_event::ctx.
11449 	 */
11450 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11451 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11452 				 event_entry) {
11453 		perf_remove_from_context(event, 0);
11454 		unaccount_event_cpu(event, src_cpu);
11455 		put_ctx(src_ctx);
11456 		list_add(&event->migrate_entry, &events);
11457 	}
11458 
11459 	/*
11460 	 * Wait for the events to quiesce before re-instating them.
11461 	 */
11462 	synchronize_rcu();
11463 
11464 	/*
11465 	 * Re-instate events in 2 passes.
11466 	 *
11467 	 * Skip over group leaders and only install siblings on this first
11468 	 * pass, siblings will not get enabled without a leader, however a
11469 	 * leader will enable its siblings, even if those are still on the old
11470 	 * context.
11471 	 */
11472 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11473 		if (event->group_leader == event)
11474 			continue;
11475 
11476 		list_del(&event->migrate_entry);
11477 		if (event->state >= PERF_EVENT_STATE_OFF)
11478 			event->state = PERF_EVENT_STATE_INACTIVE;
11479 		account_event_cpu(event, dst_cpu);
11480 		perf_install_in_context(dst_ctx, event, dst_cpu);
11481 		get_ctx(dst_ctx);
11482 	}
11483 
11484 	/*
11485 	 * Once all the siblings are setup properly, install the group leaders
11486 	 * to make it go.
11487 	 */
11488 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11489 		list_del(&event->migrate_entry);
11490 		if (event->state >= PERF_EVENT_STATE_OFF)
11491 			event->state = PERF_EVENT_STATE_INACTIVE;
11492 		account_event_cpu(event, dst_cpu);
11493 		perf_install_in_context(dst_ctx, event, dst_cpu);
11494 		get_ctx(dst_ctx);
11495 	}
11496 	mutex_unlock(&dst_ctx->mutex);
11497 	mutex_unlock(&src_ctx->mutex);
11498 }
11499 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11500 
11501 static void sync_child_event(struct perf_event *child_event,
11502 			       struct task_struct *child)
11503 {
11504 	struct perf_event *parent_event = child_event->parent;
11505 	u64 child_val;
11506 
11507 	if (child_event->attr.inherit_stat)
11508 		perf_event_read_event(child_event, child);
11509 
11510 	child_val = perf_event_count(child_event);
11511 
11512 	/*
11513 	 * Add back the child's count to the parent's count:
11514 	 */
11515 	atomic64_add(child_val, &parent_event->child_count);
11516 	atomic64_add(child_event->total_time_enabled,
11517 		     &parent_event->child_total_time_enabled);
11518 	atomic64_add(child_event->total_time_running,
11519 		     &parent_event->child_total_time_running);
11520 }
11521 
11522 static void
11523 perf_event_exit_event(struct perf_event *child_event,
11524 		      struct perf_event_context *child_ctx,
11525 		      struct task_struct *child)
11526 {
11527 	struct perf_event *parent_event = child_event->parent;
11528 
11529 	/*
11530 	 * Do not destroy the 'original' grouping; because of the context
11531 	 * switch optimization the original events could've ended up in a
11532 	 * random child task.
11533 	 *
11534 	 * If we were to destroy the original group, all group related
11535 	 * operations would cease to function properly after this random
11536 	 * child dies.
11537 	 *
11538 	 * Do destroy all inherited groups, we don't care about those
11539 	 * and being thorough is better.
11540 	 */
11541 	raw_spin_lock_irq(&child_ctx->lock);
11542 	WARN_ON_ONCE(child_ctx->is_active);
11543 
11544 	if (parent_event)
11545 		perf_group_detach(child_event);
11546 	list_del_event(child_event, child_ctx);
11547 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11548 	raw_spin_unlock_irq(&child_ctx->lock);
11549 
11550 	/*
11551 	 * Parent events are governed by their filedesc, retain them.
11552 	 */
11553 	if (!parent_event) {
11554 		perf_event_wakeup(child_event);
11555 		return;
11556 	}
11557 	/*
11558 	 * Child events can be cleaned up.
11559 	 */
11560 
11561 	sync_child_event(child_event, child);
11562 
11563 	/*
11564 	 * Remove this event from the parent's list
11565 	 */
11566 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11567 	mutex_lock(&parent_event->child_mutex);
11568 	list_del_init(&child_event->child_list);
11569 	mutex_unlock(&parent_event->child_mutex);
11570 
11571 	/*
11572 	 * Kick perf_poll() for is_event_hup().
11573 	 */
11574 	perf_event_wakeup(parent_event);
11575 	free_event(child_event);
11576 	put_event(parent_event);
11577 }
11578 
11579 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11580 {
11581 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11582 	struct perf_event *child_event, *next;
11583 
11584 	WARN_ON_ONCE(child != current);
11585 
11586 	child_ctx = perf_pin_task_context(child, ctxn);
11587 	if (!child_ctx)
11588 		return;
11589 
11590 	/*
11591 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11592 	 * ctx::mutex over the entire thing. This serializes against almost
11593 	 * everything that wants to access the ctx.
11594 	 *
11595 	 * The exception is sys_perf_event_open() /
11596 	 * perf_event_create_kernel_count() which does find_get_context()
11597 	 * without ctx::mutex (it cannot because of the move_group double mutex
11598 	 * lock thing). See the comments in perf_install_in_context().
11599 	 */
11600 	mutex_lock(&child_ctx->mutex);
11601 
11602 	/*
11603 	 * In a single ctx::lock section, de-schedule the events and detach the
11604 	 * context from the task such that we cannot ever get it scheduled back
11605 	 * in.
11606 	 */
11607 	raw_spin_lock_irq(&child_ctx->lock);
11608 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11609 
11610 	/*
11611 	 * Now that the context is inactive, destroy the task <-> ctx relation
11612 	 * and mark the context dead.
11613 	 */
11614 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11615 	put_ctx(child_ctx); /* cannot be last */
11616 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11617 	put_task_struct(current); /* cannot be last */
11618 
11619 	clone_ctx = unclone_ctx(child_ctx);
11620 	raw_spin_unlock_irq(&child_ctx->lock);
11621 
11622 	if (clone_ctx)
11623 		put_ctx(clone_ctx);
11624 
11625 	/*
11626 	 * Report the task dead after unscheduling the events so that we
11627 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11628 	 * get a few PERF_RECORD_READ events.
11629 	 */
11630 	perf_event_task(child, child_ctx, 0);
11631 
11632 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11633 		perf_event_exit_event(child_event, child_ctx, child);
11634 
11635 	mutex_unlock(&child_ctx->mutex);
11636 
11637 	put_ctx(child_ctx);
11638 }
11639 
11640 /*
11641  * When a child task exits, feed back event values to parent events.
11642  *
11643  * Can be called with cred_guard_mutex held when called from
11644  * install_exec_creds().
11645  */
11646 void perf_event_exit_task(struct task_struct *child)
11647 {
11648 	struct perf_event *event, *tmp;
11649 	int ctxn;
11650 
11651 	mutex_lock(&child->perf_event_mutex);
11652 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11653 				 owner_entry) {
11654 		list_del_init(&event->owner_entry);
11655 
11656 		/*
11657 		 * Ensure the list deletion is visible before we clear
11658 		 * the owner, closes a race against perf_release() where
11659 		 * we need to serialize on the owner->perf_event_mutex.
11660 		 */
11661 		smp_store_release(&event->owner, NULL);
11662 	}
11663 	mutex_unlock(&child->perf_event_mutex);
11664 
11665 	for_each_task_context_nr(ctxn)
11666 		perf_event_exit_task_context(child, ctxn);
11667 
11668 	/*
11669 	 * The perf_event_exit_task_context calls perf_event_task
11670 	 * with child's task_ctx, which generates EXIT events for
11671 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11672 	 * At this point we need to send EXIT events to cpu contexts.
11673 	 */
11674 	perf_event_task(child, NULL, 0);
11675 }
11676 
11677 static void perf_free_event(struct perf_event *event,
11678 			    struct perf_event_context *ctx)
11679 {
11680 	struct perf_event *parent = event->parent;
11681 
11682 	if (WARN_ON_ONCE(!parent))
11683 		return;
11684 
11685 	mutex_lock(&parent->child_mutex);
11686 	list_del_init(&event->child_list);
11687 	mutex_unlock(&parent->child_mutex);
11688 
11689 	put_event(parent);
11690 
11691 	raw_spin_lock_irq(&ctx->lock);
11692 	perf_group_detach(event);
11693 	list_del_event(event, ctx);
11694 	raw_spin_unlock_irq(&ctx->lock);
11695 	free_event(event);
11696 }
11697 
11698 /*
11699  * Free a context as created by inheritance by perf_event_init_task() below,
11700  * used by fork() in case of fail.
11701  *
11702  * Even though the task has never lived, the context and events have been
11703  * exposed through the child_list, so we must take care tearing it all down.
11704  */
11705 void perf_event_free_task(struct task_struct *task)
11706 {
11707 	struct perf_event_context *ctx;
11708 	struct perf_event *event, *tmp;
11709 	int ctxn;
11710 
11711 	for_each_task_context_nr(ctxn) {
11712 		ctx = task->perf_event_ctxp[ctxn];
11713 		if (!ctx)
11714 			continue;
11715 
11716 		mutex_lock(&ctx->mutex);
11717 		raw_spin_lock_irq(&ctx->lock);
11718 		/*
11719 		 * Destroy the task <-> ctx relation and mark the context dead.
11720 		 *
11721 		 * This is important because even though the task hasn't been
11722 		 * exposed yet the context has been (through child_list).
11723 		 */
11724 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11725 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11726 		put_task_struct(task); /* cannot be last */
11727 		raw_spin_unlock_irq(&ctx->lock);
11728 
11729 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11730 			perf_free_event(event, ctx);
11731 
11732 		mutex_unlock(&ctx->mutex);
11733 
11734 		/*
11735 		 * perf_event_release_kernel() could've stolen some of our
11736 		 * child events and still have them on its free_list. In that
11737 		 * case we must wait for these events to have been freed (in
11738 		 * particular all their references to this task must've been
11739 		 * dropped).
11740 		 *
11741 		 * Without this copy_process() will unconditionally free this
11742 		 * task (irrespective of its reference count) and
11743 		 * _free_event()'s put_task_struct(event->hw.target) will be a
11744 		 * use-after-free.
11745 		 *
11746 		 * Wait for all events to drop their context reference.
11747 		 */
11748 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11749 		put_ctx(ctx); /* must be last */
11750 	}
11751 }
11752 
11753 void perf_event_delayed_put(struct task_struct *task)
11754 {
11755 	int ctxn;
11756 
11757 	for_each_task_context_nr(ctxn)
11758 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11759 }
11760 
11761 struct file *perf_event_get(unsigned int fd)
11762 {
11763 	struct file *file = fget(fd);
11764 	if (!file)
11765 		return ERR_PTR(-EBADF);
11766 
11767 	if (file->f_op != &perf_fops) {
11768 		fput(file);
11769 		return ERR_PTR(-EBADF);
11770 	}
11771 
11772 	return file;
11773 }
11774 
11775 const struct perf_event *perf_get_event(struct file *file)
11776 {
11777 	if (file->f_op != &perf_fops)
11778 		return ERR_PTR(-EINVAL);
11779 
11780 	return file->private_data;
11781 }
11782 
11783 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11784 {
11785 	if (!event)
11786 		return ERR_PTR(-EINVAL);
11787 
11788 	return &event->attr;
11789 }
11790 
11791 /*
11792  * Inherit an event from parent task to child task.
11793  *
11794  * Returns:
11795  *  - valid pointer on success
11796  *  - NULL for orphaned events
11797  *  - IS_ERR() on error
11798  */
11799 static struct perf_event *
11800 inherit_event(struct perf_event *parent_event,
11801 	      struct task_struct *parent,
11802 	      struct perf_event_context *parent_ctx,
11803 	      struct task_struct *child,
11804 	      struct perf_event *group_leader,
11805 	      struct perf_event_context *child_ctx)
11806 {
11807 	enum perf_event_state parent_state = parent_event->state;
11808 	struct perf_event *child_event;
11809 	unsigned long flags;
11810 
11811 	/*
11812 	 * Instead of creating recursive hierarchies of events,
11813 	 * we link inherited events back to the original parent,
11814 	 * which has a filp for sure, which we use as the reference
11815 	 * count:
11816 	 */
11817 	if (parent_event->parent)
11818 		parent_event = parent_event->parent;
11819 
11820 	child_event = perf_event_alloc(&parent_event->attr,
11821 					   parent_event->cpu,
11822 					   child,
11823 					   group_leader, parent_event,
11824 					   NULL, NULL, -1);
11825 	if (IS_ERR(child_event))
11826 		return child_event;
11827 
11828 
11829 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11830 	    !child_ctx->task_ctx_data) {
11831 		struct pmu *pmu = child_event->pmu;
11832 
11833 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11834 						   GFP_KERNEL);
11835 		if (!child_ctx->task_ctx_data) {
11836 			free_event(child_event);
11837 			return ERR_PTR(-ENOMEM);
11838 		}
11839 	}
11840 
11841 	/*
11842 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11843 	 * must be under the same lock in order to serialize against
11844 	 * perf_event_release_kernel(), such that either we must observe
11845 	 * is_orphaned_event() or they will observe us on the child_list.
11846 	 */
11847 	mutex_lock(&parent_event->child_mutex);
11848 	if (is_orphaned_event(parent_event) ||
11849 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11850 		mutex_unlock(&parent_event->child_mutex);
11851 		/* task_ctx_data is freed with child_ctx */
11852 		free_event(child_event);
11853 		return NULL;
11854 	}
11855 
11856 	get_ctx(child_ctx);
11857 
11858 	/*
11859 	 * Make the child state follow the state of the parent event,
11860 	 * not its attr.disabled bit.  We hold the parent's mutex,
11861 	 * so we won't race with perf_event_{en, dis}able_family.
11862 	 */
11863 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11864 		child_event->state = PERF_EVENT_STATE_INACTIVE;
11865 	else
11866 		child_event->state = PERF_EVENT_STATE_OFF;
11867 
11868 	if (parent_event->attr.freq) {
11869 		u64 sample_period = parent_event->hw.sample_period;
11870 		struct hw_perf_event *hwc = &child_event->hw;
11871 
11872 		hwc->sample_period = sample_period;
11873 		hwc->last_period   = sample_period;
11874 
11875 		local64_set(&hwc->period_left, sample_period);
11876 	}
11877 
11878 	child_event->ctx = child_ctx;
11879 	child_event->overflow_handler = parent_event->overflow_handler;
11880 	child_event->overflow_handler_context
11881 		= parent_event->overflow_handler_context;
11882 
11883 	/*
11884 	 * Precalculate sample_data sizes
11885 	 */
11886 	perf_event__header_size(child_event);
11887 	perf_event__id_header_size(child_event);
11888 
11889 	/*
11890 	 * Link it up in the child's context:
11891 	 */
11892 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
11893 	add_event_to_ctx(child_event, child_ctx);
11894 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11895 
11896 	/*
11897 	 * Link this into the parent event's child list
11898 	 */
11899 	list_add_tail(&child_event->child_list, &parent_event->child_list);
11900 	mutex_unlock(&parent_event->child_mutex);
11901 
11902 	return child_event;
11903 }
11904 
11905 /*
11906  * Inherits an event group.
11907  *
11908  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11909  * This matches with perf_event_release_kernel() removing all child events.
11910  *
11911  * Returns:
11912  *  - 0 on success
11913  *  - <0 on error
11914  */
11915 static int inherit_group(struct perf_event *parent_event,
11916 	      struct task_struct *parent,
11917 	      struct perf_event_context *parent_ctx,
11918 	      struct task_struct *child,
11919 	      struct perf_event_context *child_ctx)
11920 {
11921 	struct perf_event *leader;
11922 	struct perf_event *sub;
11923 	struct perf_event *child_ctr;
11924 
11925 	leader = inherit_event(parent_event, parent, parent_ctx,
11926 				 child, NULL, child_ctx);
11927 	if (IS_ERR(leader))
11928 		return PTR_ERR(leader);
11929 	/*
11930 	 * @leader can be NULL here because of is_orphaned_event(). In this
11931 	 * case inherit_event() will create individual events, similar to what
11932 	 * perf_group_detach() would do anyway.
11933 	 */
11934 	for_each_sibling_event(sub, parent_event) {
11935 		child_ctr = inherit_event(sub, parent, parent_ctx,
11936 					    child, leader, child_ctx);
11937 		if (IS_ERR(child_ctr))
11938 			return PTR_ERR(child_ctr);
11939 
11940 		if (sub->aux_event == parent_event && child_ctr &&
11941 		    !perf_get_aux_event(child_ctr, leader))
11942 			return -EINVAL;
11943 	}
11944 	return 0;
11945 }
11946 
11947 /*
11948  * Creates the child task context and tries to inherit the event-group.
11949  *
11950  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11951  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11952  * consistent with perf_event_release_kernel() removing all child events.
11953  *
11954  * Returns:
11955  *  - 0 on success
11956  *  - <0 on error
11957  */
11958 static int
11959 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11960 		   struct perf_event_context *parent_ctx,
11961 		   struct task_struct *child, int ctxn,
11962 		   int *inherited_all)
11963 {
11964 	int ret;
11965 	struct perf_event_context *child_ctx;
11966 
11967 	if (!event->attr.inherit) {
11968 		*inherited_all = 0;
11969 		return 0;
11970 	}
11971 
11972 	child_ctx = child->perf_event_ctxp[ctxn];
11973 	if (!child_ctx) {
11974 		/*
11975 		 * This is executed from the parent task context, so
11976 		 * inherit events that have been marked for cloning.
11977 		 * First allocate and initialize a context for the
11978 		 * child.
11979 		 */
11980 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11981 		if (!child_ctx)
11982 			return -ENOMEM;
11983 
11984 		child->perf_event_ctxp[ctxn] = child_ctx;
11985 	}
11986 
11987 	ret = inherit_group(event, parent, parent_ctx,
11988 			    child, child_ctx);
11989 
11990 	if (ret)
11991 		*inherited_all = 0;
11992 
11993 	return ret;
11994 }
11995 
11996 /*
11997  * Initialize the perf_event context in task_struct
11998  */
11999 static int perf_event_init_context(struct task_struct *child, int ctxn)
12000 {
12001 	struct perf_event_context *child_ctx, *parent_ctx;
12002 	struct perf_event_context *cloned_ctx;
12003 	struct perf_event *event;
12004 	struct task_struct *parent = current;
12005 	int inherited_all = 1;
12006 	unsigned long flags;
12007 	int ret = 0;
12008 
12009 	if (likely(!parent->perf_event_ctxp[ctxn]))
12010 		return 0;
12011 
12012 	/*
12013 	 * If the parent's context is a clone, pin it so it won't get
12014 	 * swapped under us.
12015 	 */
12016 	parent_ctx = perf_pin_task_context(parent, ctxn);
12017 	if (!parent_ctx)
12018 		return 0;
12019 
12020 	/*
12021 	 * No need to check if parent_ctx != NULL here; since we saw
12022 	 * it non-NULL earlier, the only reason for it to become NULL
12023 	 * is if we exit, and since we're currently in the middle of
12024 	 * a fork we can't be exiting at the same time.
12025 	 */
12026 
12027 	/*
12028 	 * Lock the parent list. No need to lock the child - not PID
12029 	 * hashed yet and not running, so nobody can access it.
12030 	 */
12031 	mutex_lock(&parent_ctx->mutex);
12032 
12033 	/*
12034 	 * We dont have to disable NMIs - we are only looking at
12035 	 * the list, not manipulating it:
12036 	 */
12037 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12038 		ret = inherit_task_group(event, parent, parent_ctx,
12039 					 child, ctxn, &inherited_all);
12040 		if (ret)
12041 			goto out_unlock;
12042 	}
12043 
12044 	/*
12045 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
12046 	 * to allocations, but we need to prevent rotation because
12047 	 * rotate_ctx() will change the list from interrupt context.
12048 	 */
12049 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12050 	parent_ctx->rotate_disable = 1;
12051 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12052 
12053 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12054 		ret = inherit_task_group(event, parent, parent_ctx,
12055 					 child, ctxn, &inherited_all);
12056 		if (ret)
12057 			goto out_unlock;
12058 	}
12059 
12060 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12061 	parent_ctx->rotate_disable = 0;
12062 
12063 	child_ctx = child->perf_event_ctxp[ctxn];
12064 
12065 	if (child_ctx && inherited_all) {
12066 		/*
12067 		 * Mark the child context as a clone of the parent
12068 		 * context, or of whatever the parent is a clone of.
12069 		 *
12070 		 * Note that if the parent is a clone, the holding of
12071 		 * parent_ctx->lock avoids it from being uncloned.
12072 		 */
12073 		cloned_ctx = parent_ctx->parent_ctx;
12074 		if (cloned_ctx) {
12075 			child_ctx->parent_ctx = cloned_ctx;
12076 			child_ctx->parent_gen = parent_ctx->parent_gen;
12077 		} else {
12078 			child_ctx->parent_ctx = parent_ctx;
12079 			child_ctx->parent_gen = parent_ctx->generation;
12080 		}
12081 		get_ctx(child_ctx->parent_ctx);
12082 	}
12083 
12084 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12085 out_unlock:
12086 	mutex_unlock(&parent_ctx->mutex);
12087 
12088 	perf_unpin_context(parent_ctx);
12089 	put_ctx(parent_ctx);
12090 
12091 	return ret;
12092 }
12093 
12094 /*
12095  * Initialize the perf_event context in task_struct
12096  */
12097 int perf_event_init_task(struct task_struct *child)
12098 {
12099 	int ctxn, ret;
12100 
12101 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12102 	mutex_init(&child->perf_event_mutex);
12103 	INIT_LIST_HEAD(&child->perf_event_list);
12104 
12105 	for_each_task_context_nr(ctxn) {
12106 		ret = perf_event_init_context(child, ctxn);
12107 		if (ret) {
12108 			perf_event_free_task(child);
12109 			return ret;
12110 		}
12111 	}
12112 
12113 	return 0;
12114 }
12115 
12116 static void __init perf_event_init_all_cpus(void)
12117 {
12118 	struct swevent_htable *swhash;
12119 	int cpu;
12120 
12121 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12122 
12123 	for_each_possible_cpu(cpu) {
12124 		swhash = &per_cpu(swevent_htable, cpu);
12125 		mutex_init(&swhash->hlist_mutex);
12126 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12127 
12128 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12129 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12130 
12131 #ifdef CONFIG_CGROUP_PERF
12132 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12133 #endif
12134 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12135 	}
12136 }
12137 
12138 static void perf_swevent_init_cpu(unsigned int cpu)
12139 {
12140 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12141 
12142 	mutex_lock(&swhash->hlist_mutex);
12143 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12144 		struct swevent_hlist *hlist;
12145 
12146 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12147 		WARN_ON(!hlist);
12148 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
12149 	}
12150 	mutex_unlock(&swhash->hlist_mutex);
12151 }
12152 
12153 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12154 static void __perf_event_exit_context(void *__info)
12155 {
12156 	struct perf_event_context *ctx = __info;
12157 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12158 	struct perf_event *event;
12159 
12160 	raw_spin_lock(&ctx->lock);
12161 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12162 	list_for_each_entry(event, &ctx->event_list, event_entry)
12163 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12164 	raw_spin_unlock(&ctx->lock);
12165 }
12166 
12167 static void perf_event_exit_cpu_context(int cpu)
12168 {
12169 	struct perf_cpu_context *cpuctx;
12170 	struct perf_event_context *ctx;
12171 	struct pmu *pmu;
12172 
12173 	mutex_lock(&pmus_lock);
12174 	list_for_each_entry(pmu, &pmus, entry) {
12175 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12176 		ctx = &cpuctx->ctx;
12177 
12178 		mutex_lock(&ctx->mutex);
12179 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12180 		cpuctx->online = 0;
12181 		mutex_unlock(&ctx->mutex);
12182 	}
12183 	cpumask_clear_cpu(cpu, perf_online_mask);
12184 	mutex_unlock(&pmus_lock);
12185 }
12186 #else
12187 
12188 static void perf_event_exit_cpu_context(int cpu) { }
12189 
12190 #endif
12191 
12192 int perf_event_init_cpu(unsigned int cpu)
12193 {
12194 	struct perf_cpu_context *cpuctx;
12195 	struct perf_event_context *ctx;
12196 	struct pmu *pmu;
12197 
12198 	perf_swevent_init_cpu(cpu);
12199 
12200 	mutex_lock(&pmus_lock);
12201 	cpumask_set_cpu(cpu, perf_online_mask);
12202 	list_for_each_entry(pmu, &pmus, entry) {
12203 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12204 		ctx = &cpuctx->ctx;
12205 
12206 		mutex_lock(&ctx->mutex);
12207 		cpuctx->online = 1;
12208 		mutex_unlock(&ctx->mutex);
12209 	}
12210 	mutex_unlock(&pmus_lock);
12211 
12212 	return 0;
12213 }
12214 
12215 int perf_event_exit_cpu(unsigned int cpu)
12216 {
12217 	perf_event_exit_cpu_context(cpu);
12218 	return 0;
12219 }
12220 
12221 static int
12222 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12223 {
12224 	int cpu;
12225 
12226 	for_each_online_cpu(cpu)
12227 		perf_event_exit_cpu(cpu);
12228 
12229 	return NOTIFY_OK;
12230 }
12231 
12232 /*
12233  * Run the perf reboot notifier at the very last possible moment so that
12234  * the generic watchdog code runs as long as possible.
12235  */
12236 static struct notifier_block perf_reboot_notifier = {
12237 	.notifier_call = perf_reboot,
12238 	.priority = INT_MIN,
12239 };
12240 
12241 void __init perf_event_init(void)
12242 {
12243 	int ret;
12244 
12245 	idr_init(&pmu_idr);
12246 
12247 	perf_event_init_all_cpus();
12248 	init_srcu_struct(&pmus_srcu);
12249 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12250 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
12251 	perf_pmu_register(&perf_task_clock, NULL, -1);
12252 	perf_tp_register();
12253 	perf_event_init_cpu(smp_processor_id());
12254 	register_reboot_notifier(&perf_reboot_notifier);
12255 
12256 	ret = init_hw_breakpoint();
12257 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12258 
12259 	/*
12260 	 * Build time assertion that we keep the data_head at the intended
12261 	 * location.  IOW, validation we got the __reserved[] size right.
12262 	 */
12263 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12264 		     != 1024);
12265 }
12266 
12267 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12268 			      char *page)
12269 {
12270 	struct perf_pmu_events_attr *pmu_attr =
12271 		container_of(attr, struct perf_pmu_events_attr, attr);
12272 
12273 	if (pmu_attr->event_str)
12274 		return sprintf(page, "%s\n", pmu_attr->event_str);
12275 
12276 	return 0;
12277 }
12278 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12279 
12280 static int __init perf_event_sysfs_init(void)
12281 {
12282 	struct pmu *pmu;
12283 	int ret;
12284 
12285 	mutex_lock(&pmus_lock);
12286 
12287 	ret = bus_register(&pmu_bus);
12288 	if (ret)
12289 		goto unlock;
12290 
12291 	list_for_each_entry(pmu, &pmus, entry) {
12292 		if (!pmu->name || pmu->type < 0)
12293 			continue;
12294 
12295 		ret = pmu_dev_alloc(pmu);
12296 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12297 	}
12298 	pmu_bus_running = 1;
12299 	ret = 0;
12300 
12301 unlock:
12302 	mutex_unlock(&pmus_lock);
12303 
12304 	return ret;
12305 }
12306 device_initcall(perf_event_sysfs_init);
12307 
12308 #ifdef CONFIG_CGROUP_PERF
12309 static struct cgroup_subsys_state *
12310 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12311 {
12312 	struct perf_cgroup *jc;
12313 
12314 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12315 	if (!jc)
12316 		return ERR_PTR(-ENOMEM);
12317 
12318 	jc->info = alloc_percpu(struct perf_cgroup_info);
12319 	if (!jc->info) {
12320 		kfree(jc);
12321 		return ERR_PTR(-ENOMEM);
12322 	}
12323 
12324 	return &jc->css;
12325 }
12326 
12327 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12328 {
12329 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12330 
12331 	free_percpu(jc->info);
12332 	kfree(jc);
12333 }
12334 
12335 static int __perf_cgroup_move(void *info)
12336 {
12337 	struct task_struct *task = info;
12338 	rcu_read_lock();
12339 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12340 	rcu_read_unlock();
12341 	return 0;
12342 }
12343 
12344 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12345 {
12346 	struct task_struct *task;
12347 	struct cgroup_subsys_state *css;
12348 
12349 	cgroup_taskset_for_each(task, css, tset)
12350 		task_function_call(task, __perf_cgroup_move, task);
12351 }
12352 
12353 struct cgroup_subsys perf_event_cgrp_subsys = {
12354 	.css_alloc	= perf_cgroup_css_alloc,
12355 	.css_free	= perf_cgroup_css_free,
12356 	.attach		= perf_cgroup_attach,
12357 	/*
12358 	 * Implicitly enable on dfl hierarchy so that perf events can
12359 	 * always be filtered by cgroup2 path as long as perf_event
12360 	 * controller is not mounted on a legacy hierarchy.
12361 	 */
12362 	.implicit_on_dfl = true,
12363 	.threaded	= true,
12364 };
12365 #endif /* CONFIG_CGROUP_PERF */
12366