xref: /openbmc/linux/kernel/events/core.c (revision c0e297dc)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 static struct workqueue_struct *perf_wq;
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		tfc->ret = -EAGAIN;
70 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 			return;
72 	}
73 
74 	tfc->ret = tfc->func(tfc->info);
75 }
76 
77 /**
78  * task_function_call - call a function on the cpu on which a task runs
79  * @p:		the task to evaluate
80  * @func:	the function to be called
81  * @info:	the function call argument
82  *
83  * Calls the function @func when the task is currently running. This might
84  * be on the current CPU, which just calls the function directly
85  *
86  * returns: @func return value, or
87  *	    -ESRCH  - when the process isn't running
88  *	    -EAGAIN - when the process moved away
89  */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 	struct remote_function_call data = {
94 		.p	= p,
95 		.func	= func,
96 		.info	= info,
97 		.ret	= -ESRCH, /* No such (running) process */
98 	};
99 
100 	if (task_curr(p))
101 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102 
103 	return data.ret;
104 }
105 
106 /**
107  * cpu_function_call - call a function on the cpu
108  * @func:	the function to be called
109  * @info:	the function call argument
110  *
111  * Calls the function @func on the remote cpu.
112  *
113  * returns: @func return value or -ENXIO when the cpu is offline
114  */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 	struct remote_function_call data = {
118 		.p	= NULL,
119 		.func	= func,
120 		.info	= info,
121 		.ret	= -ENXIO, /* No such CPU */
122 	};
123 
124 	smp_call_function_single(cpu, remote_function, &data, 1);
125 
126 	return data.ret;
127 }
128 
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130 
131 static bool is_kernel_event(struct perf_event *event)
132 {
133 	return event->owner == EVENT_OWNER_KERNEL;
134 }
135 
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 		       PERF_FLAG_FD_OUTPUT  |\
138 		       PERF_FLAG_PID_CGROUP |\
139 		       PERF_FLAG_FD_CLOEXEC)
140 
141 /*
142  * branch priv levels that need permission checks
143  */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 	(PERF_SAMPLE_BRANCH_KERNEL |\
146 	 PERF_SAMPLE_BRANCH_HV)
147 
148 enum event_type_t {
149 	EVENT_FLEXIBLE = 0x1,
150 	EVENT_PINNED = 0x2,
151 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153 
154 /*
155  * perf_sched_events : >0 events exist
156  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157  */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161 
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166 
167 static LIST_HEAD(pmus);
168 static DEFINE_MUTEX(pmus_lock);
169 static struct srcu_struct pmus_srcu;
170 
171 /*
172  * perf event paranoia level:
173  *  -1 - not paranoid at all
174  *   0 - disallow raw tracepoint access for unpriv
175  *   1 - disallow cpu events for unpriv
176  *   2 - disallow kernel profiling for unpriv
177  */
178 int sysctl_perf_event_paranoid __read_mostly = 1;
179 
180 /* Minimum for 512 kiB + 1 user control page */
181 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
182 
183 /*
184  * max perf event sample rate
185  */
186 #define DEFAULT_MAX_SAMPLE_RATE		100000
187 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
188 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
189 
190 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
191 
192 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
193 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
194 
195 static int perf_sample_allowed_ns __read_mostly =
196 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
197 
198 void update_perf_cpu_limits(void)
199 {
200 	u64 tmp = perf_sample_period_ns;
201 
202 	tmp *= sysctl_perf_cpu_time_max_percent;
203 	do_div(tmp, 100);
204 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
205 }
206 
207 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
208 
209 int perf_proc_update_handler(struct ctl_table *table, int write,
210 		void __user *buffer, size_t *lenp,
211 		loff_t *ppos)
212 {
213 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
214 
215 	if (ret || !write)
216 		return ret;
217 
218 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
219 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
220 	update_perf_cpu_limits();
221 
222 	return 0;
223 }
224 
225 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
226 
227 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
228 				void __user *buffer, size_t *lenp,
229 				loff_t *ppos)
230 {
231 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
232 
233 	if (ret || !write)
234 		return ret;
235 
236 	update_perf_cpu_limits();
237 
238 	return 0;
239 }
240 
241 /*
242  * perf samples are done in some very critical code paths (NMIs).
243  * If they take too much CPU time, the system can lock up and not
244  * get any real work done.  This will drop the sample rate when
245  * we detect that events are taking too long.
246  */
247 #define NR_ACCUMULATED_SAMPLES 128
248 static DEFINE_PER_CPU(u64, running_sample_length);
249 
250 static void perf_duration_warn(struct irq_work *w)
251 {
252 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
253 	u64 avg_local_sample_len;
254 	u64 local_samples_len;
255 
256 	local_samples_len = __this_cpu_read(running_sample_length);
257 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
258 
259 	printk_ratelimited(KERN_WARNING
260 			"perf interrupt took too long (%lld > %lld), lowering "
261 			"kernel.perf_event_max_sample_rate to %d\n",
262 			avg_local_sample_len, allowed_ns >> 1,
263 			sysctl_perf_event_sample_rate);
264 }
265 
266 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
267 
268 void perf_sample_event_took(u64 sample_len_ns)
269 {
270 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
271 	u64 avg_local_sample_len;
272 	u64 local_samples_len;
273 
274 	if (allowed_ns == 0)
275 		return;
276 
277 	/* decay the counter by 1 average sample */
278 	local_samples_len = __this_cpu_read(running_sample_length);
279 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
280 	local_samples_len += sample_len_ns;
281 	__this_cpu_write(running_sample_length, local_samples_len);
282 
283 	/*
284 	 * note: this will be biased artifically low until we have
285 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
286 	 * from having to maintain a count.
287 	 */
288 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
289 
290 	if (avg_local_sample_len <= allowed_ns)
291 		return;
292 
293 	if (max_samples_per_tick <= 1)
294 		return;
295 
296 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
297 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
298 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
299 
300 	update_perf_cpu_limits();
301 
302 	if (!irq_work_queue(&perf_duration_work)) {
303 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
304 			     "kernel.perf_event_max_sample_rate to %d\n",
305 			     avg_local_sample_len, allowed_ns >> 1,
306 			     sysctl_perf_event_sample_rate);
307 	}
308 }
309 
310 static atomic64_t perf_event_id;
311 
312 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
313 			      enum event_type_t event_type);
314 
315 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
316 			     enum event_type_t event_type,
317 			     struct task_struct *task);
318 
319 static void update_context_time(struct perf_event_context *ctx);
320 static u64 perf_event_time(struct perf_event *event);
321 
322 void __weak perf_event_print_debug(void)	{ }
323 
324 extern __weak const char *perf_pmu_name(void)
325 {
326 	return "pmu";
327 }
328 
329 static inline u64 perf_clock(void)
330 {
331 	return local_clock();
332 }
333 
334 static inline u64 perf_event_clock(struct perf_event *event)
335 {
336 	return event->clock();
337 }
338 
339 static inline struct perf_cpu_context *
340 __get_cpu_context(struct perf_event_context *ctx)
341 {
342 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
343 }
344 
345 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
346 			  struct perf_event_context *ctx)
347 {
348 	raw_spin_lock(&cpuctx->ctx.lock);
349 	if (ctx)
350 		raw_spin_lock(&ctx->lock);
351 }
352 
353 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
354 			    struct perf_event_context *ctx)
355 {
356 	if (ctx)
357 		raw_spin_unlock(&ctx->lock);
358 	raw_spin_unlock(&cpuctx->ctx.lock);
359 }
360 
361 #ifdef CONFIG_CGROUP_PERF
362 
363 static inline bool
364 perf_cgroup_match(struct perf_event *event)
365 {
366 	struct perf_event_context *ctx = event->ctx;
367 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
368 
369 	/* @event doesn't care about cgroup */
370 	if (!event->cgrp)
371 		return true;
372 
373 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
374 	if (!cpuctx->cgrp)
375 		return false;
376 
377 	/*
378 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
379 	 * also enabled for all its descendant cgroups.  If @cpuctx's
380 	 * cgroup is a descendant of @event's (the test covers identity
381 	 * case), it's a match.
382 	 */
383 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
384 				    event->cgrp->css.cgroup);
385 }
386 
387 static inline void perf_detach_cgroup(struct perf_event *event)
388 {
389 	css_put(&event->cgrp->css);
390 	event->cgrp = NULL;
391 }
392 
393 static inline int is_cgroup_event(struct perf_event *event)
394 {
395 	return event->cgrp != NULL;
396 }
397 
398 static inline u64 perf_cgroup_event_time(struct perf_event *event)
399 {
400 	struct perf_cgroup_info *t;
401 
402 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
403 	return t->time;
404 }
405 
406 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
407 {
408 	struct perf_cgroup_info *info;
409 	u64 now;
410 
411 	now = perf_clock();
412 
413 	info = this_cpu_ptr(cgrp->info);
414 
415 	info->time += now - info->timestamp;
416 	info->timestamp = now;
417 }
418 
419 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
420 {
421 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
422 	if (cgrp_out)
423 		__update_cgrp_time(cgrp_out);
424 }
425 
426 static inline void update_cgrp_time_from_event(struct perf_event *event)
427 {
428 	struct perf_cgroup *cgrp;
429 
430 	/*
431 	 * ensure we access cgroup data only when needed and
432 	 * when we know the cgroup is pinned (css_get)
433 	 */
434 	if (!is_cgroup_event(event))
435 		return;
436 
437 	cgrp = perf_cgroup_from_task(current);
438 	/*
439 	 * Do not update time when cgroup is not active
440 	 */
441 	if (cgrp == event->cgrp)
442 		__update_cgrp_time(event->cgrp);
443 }
444 
445 static inline void
446 perf_cgroup_set_timestamp(struct task_struct *task,
447 			  struct perf_event_context *ctx)
448 {
449 	struct perf_cgroup *cgrp;
450 	struct perf_cgroup_info *info;
451 
452 	/*
453 	 * ctx->lock held by caller
454 	 * ensure we do not access cgroup data
455 	 * unless we have the cgroup pinned (css_get)
456 	 */
457 	if (!task || !ctx->nr_cgroups)
458 		return;
459 
460 	cgrp = perf_cgroup_from_task(task);
461 	info = this_cpu_ptr(cgrp->info);
462 	info->timestamp = ctx->timestamp;
463 }
464 
465 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
466 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
467 
468 /*
469  * reschedule events based on the cgroup constraint of task.
470  *
471  * mode SWOUT : schedule out everything
472  * mode SWIN : schedule in based on cgroup for next
473  */
474 void perf_cgroup_switch(struct task_struct *task, int mode)
475 {
476 	struct perf_cpu_context *cpuctx;
477 	struct pmu *pmu;
478 	unsigned long flags;
479 
480 	/*
481 	 * disable interrupts to avoid geting nr_cgroup
482 	 * changes via __perf_event_disable(). Also
483 	 * avoids preemption.
484 	 */
485 	local_irq_save(flags);
486 
487 	/*
488 	 * we reschedule only in the presence of cgroup
489 	 * constrained events.
490 	 */
491 	rcu_read_lock();
492 
493 	list_for_each_entry_rcu(pmu, &pmus, entry) {
494 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
495 		if (cpuctx->unique_pmu != pmu)
496 			continue; /* ensure we process each cpuctx once */
497 
498 		/*
499 		 * perf_cgroup_events says at least one
500 		 * context on this CPU has cgroup events.
501 		 *
502 		 * ctx->nr_cgroups reports the number of cgroup
503 		 * events for a context.
504 		 */
505 		if (cpuctx->ctx.nr_cgroups > 0) {
506 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
507 			perf_pmu_disable(cpuctx->ctx.pmu);
508 
509 			if (mode & PERF_CGROUP_SWOUT) {
510 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
511 				/*
512 				 * must not be done before ctxswout due
513 				 * to event_filter_match() in event_sched_out()
514 				 */
515 				cpuctx->cgrp = NULL;
516 			}
517 
518 			if (mode & PERF_CGROUP_SWIN) {
519 				WARN_ON_ONCE(cpuctx->cgrp);
520 				/*
521 				 * set cgrp before ctxsw in to allow
522 				 * event_filter_match() to not have to pass
523 				 * task around
524 				 */
525 				cpuctx->cgrp = perf_cgroup_from_task(task);
526 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
527 			}
528 			perf_pmu_enable(cpuctx->ctx.pmu);
529 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
530 		}
531 	}
532 
533 	rcu_read_unlock();
534 
535 	local_irq_restore(flags);
536 }
537 
538 static inline void perf_cgroup_sched_out(struct task_struct *task,
539 					 struct task_struct *next)
540 {
541 	struct perf_cgroup *cgrp1;
542 	struct perf_cgroup *cgrp2 = NULL;
543 
544 	/*
545 	 * we come here when we know perf_cgroup_events > 0
546 	 */
547 	cgrp1 = perf_cgroup_from_task(task);
548 
549 	/*
550 	 * next is NULL when called from perf_event_enable_on_exec()
551 	 * that will systematically cause a cgroup_switch()
552 	 */
553 	if (next)
554 		cgrp2 = perf_cgroup_from_task(next);
555 
556 	/*
557 	 * only schedule out current cgroup events if we know
558 	 * that we are switching to a different cgroup. Otherwise,
559 	 * do no touch the cgroup events.
560 	 */
561 	if (cgrp1 != cgrp2)
562 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
563 }
564 
565 static inline void perf_cgroup_sched_in(struct task_struct *prev,
566 					struct task_struct *task)
567 {
568 	struct perf_cgroup *cgrp1;
569 	struct perf_cgroup *cgrp2 = NULL;
570 
571 	/*
572 	 * we come here when we know perf_cgroup_events > 0
573 	 */
574 	cgrp1 = perf_cgroup_from_task(task);
575 
576 	/* prev can never be NULL */
577 	cgrp2 = perf_cgroup_from_task(prev);
578 
579 	/*
580 	 * only need to schedule in cgroup events if we are changing
581 	 * cgroup during ctxsw. Cgroup events were not scheduled
582 	 * out of ctxsw out if that was not the case.
583 	 */
584 	if (cgrp1 != cgrp2)
585 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
586 }
587 
588 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
589 				      struct perf_event_attr *attr,
590 				      struct perf_event *group_leader)
591 {
592 	struct perf_cgroup *cgrp;
593 	struct cgroup_subsys_state *css;
594 	struct fd f = fdget(fd);
595 	int ret = 0;
596 
597 	if (!f.file)
598 		return -EBADF;
599 
600 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
601 					 &perf_event_cgrp_subsys);
602 	if (IS_ERR(css)) {
603 		ret = PTR_ERR(css);
604 		goto out;
605 	}
606 
607 	cgrp = container_of(css, struct perf_cgroup, css);
608 	event->cgrp = cgrp;
609 
610 	/*
611 	 * all events in a group must monitor
612 	 * the same cgroup because a task belongs
613 	 * to only one perf cgroup at a time
614 	 */
615 	if (group_leader && group_leader->cgrp != cgrp) {
616 		perf_detach_cgroup(event);
617 		ret = -EINVAL;
618 	}
619 out:
620 	fdput(f);
621 	return ret;
622 }
623 
624 static inline void
625 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
626 {
627 	struct perf_cgroup_info *t;
628 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
629 	event->shadow_ctx_time = now - t->timestamp;
630 }
631 
632 static inline void
633 perf_cgroup_defer_enabled(struct perf_event *event)
634 {
635 	/*
636 	 * when the current task's perf cgroup does not match
637 	 * the event's, we need to remember to call the
638 	 * perf_mark_enable() function the first time a task with
639 	 * a matching perf cgroup is scheduled in.
640 	 */
641 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
642 		event->cgrp_defer_enabled = 1;
643 }
644 
645 static inline void
646 perf_cgroup_mark_enabled(struct perf_event *event,
647 			 struct perf_event_context *ctx)
648 {
649 	struct perf_event *sub;
650 	u64 tstamp = perf_event_time(event);
651 
652 	if (!event->cgrp_defer_enabled)
653 		return;
654 
655 	event->cgrp_defer_enabled = 0;
656 
657 	event->tstamp_enabled = tstamp - event->total_time_enabled;
658 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
659 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
660 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
661 			sub->cgrp_defer_enabled = 0;
662 		}
663 	}
664 }
665 #else /* !CONFIG_CGROUP_PERF */
666 
667 static inline bool
668 perf_cgroup_match(struct perf_event *event)
669 {
670 	return true;
671 }
672 
673 static inline void perf_detach_cgroup(struct perf_event *event)
674 {}
675 
676 static inline int is_cgroup_event(struct perf_event *event)
677 {
678 	return 0;
679 }
680 
681 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
682 {
683 	return 0;
684 }
685 
686 static inline void update_cgrp_time_from_event(struct perf_event *event)
687 {
688 }
689 
690 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
691 {
692 }
693 
694 static inline void perf_cgroup_sched_out(struct task_struct *task,
695 					 struct task_struct *next)
696 {
697 }
698 
699 static inline void perf_cgroup_sched_in(struct task_struct *prev,
700 					struct task_struct *task)
701 {
702 }
703 
704 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
705 				      struct perf_event_attr *attr,
706 				      struct perf_event *group_leader)
707 {
708 	return -EINVAL;
709 }
710 
711 static inline void
712 perf_cgroup_set_timestamp(struct task_struct *task,
713 			  struct perf_event_context *ctx)
714 {
715 }
716 
717 void
718 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
719 {
720 }
721 
722 static inline void
723 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
724 {
725 }
726 
727 static inline u64 perf_cgroup_event_time(struct perf_event *event)
728 {
729 	return 0;
730 }
731 
732 static inline void
733 perf_cgroup_defer_enabled(struct perf_event *event)
734 {
735 }
736 
737 static inline void
738 perf_cgroup_mark_enabled(struct perf_event *event,
739 			 struct perf_event_context *ctx)
740 {
741 }
742 #endif
743 
744 /*
745  * set default to be dependent on timer tick just
746  * like original code
747  */
748 #define PERF_CPU_HRTIMER (1000 / HZ)
749 /*
750  * function must be called with interrupts disbled
751  */
752 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
753 {
754 	struct perf_cpu_context *cpuctx;
755 	int rotations = 0;
756 
757 	WARN_ON(!irqs_disabled());
758 
759 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
760 	rotations = perf_rotate_context(cpuctx);
761 
762 	raw_spin_lock(&cpuctx->hrtimer_lock);
763 	if (rotations)
764 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
765 	else
766 		cpuctx->hrtimer_active = 0;
767 	raw_spin_unlock(&cpuctx->hrtimer_lock);
768 
769 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
770 }
771 
772 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
773 {
774 	struct hrtimer *timer = &cpuctx->hrtimer;
775 	struct pmu *pmu = cpuctx->ctx.pmu;
776 	u64 interval;
777 
778 	/* no multiplexing needed for SW PMU */
779 	if (pmu->task_ctx_nr == perf_sw_context)
780 		return;
781 
782 	/*
783 	 * check default is sane, if not set then force to
784 	 * default interval (1/tick)
785 	 */
786 	interval = pmu->hrtimer_interval_ms;
787 	if (interval < 1)
788 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
789 
790 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
791 
792 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
793 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
794 	timer->function = perf_mux_hrtimer_handler;
795 }
796 
797 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
798 {
799 	struct hrtimer *timer = &cpuctx->hrtimer;
800 	struct pmu *pmu = cpuctx->ctx.pmu;
801 	unsigned long flags;
802 
803 	/* not for SW PMU */
804 	if (pmu->task_ctx_nr == perf_sw_context)
805 		return 0;
806 
807 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
808 	if (!cpuctx->hrtimer_active) {
809 		cpuctx->hrtimer_active = 1;
810 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
811 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
812 	}
813 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
814 
815 	return 0;
816 }
817 
818 void perf_pmu_disable(struct pmu *pmu)
819 {
820 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
821 	if (!(*count)++)
822 		pmu->pmu_disable(pmu);
823 }
824 
825 void perf_pmu_enable(struct pmu *pmu)
826 {
827 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
828 	if (!--(*count))
829 		pmu->pmu_enable(pmu);
830 }
831 
832 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
833 
834 /*
835  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
836  * perf_event_task_tick() are fully serialized because they're strictly cpu
837  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
838  * disabled, while perf_event_task_tick is called from IRQ context.
839  */
840 static void perf_event_ctx_activate(struct perf_event_context *ctx)
841 {
842 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
843 
844 	WARN_ON(!irqs_disabled());
845 
846 	WARN_ON(!list_empty(&ctx->active_ctx_list));
847 
848 	list_add(&ctx->active_ctx_list, head);
849 }
850 
851 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
852 {
853 	WARN_ON(!irqs_disabled());
854 
855 	WARN_ON(list_empty(&ctx->active_ctx_list));
856 
857 	list_del_init(&ctx->active_ctx_list);
858 }
859 
860 static void get_ctx(struct perf_event_context *ctx)
861 {
862 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
863 }
864 
865 static void free_ctx(struct rcu_head *head)
866 {
867 	struct perf_event_context *ctx;
868 
869 	ctx = container_of(head, struct perf_event_context, rcu_head);
870 	kfree(ctx->task_ctx_data);
871 	kfree(ctx);
872 }
873 
874 static void put_ctx(struct perf_event_context *ctx)
875 {
876 	if (atomic_dec_and_test(&ctx->refcount)) {
877 		if (ctx->parent_ctx)
878 			put_ctx(ctx->parent_ctx);
879 		if (ctx->task)
880 			put_task_struct(ctx->task);
881 		call_rcu(&ctx->rcu_head, free_ctx);
882 	}
883 }
884 
885 /*
886  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
887  * perf_pmu_migrate_context() we need some magic.
888  *
889  * Those places that change perf_event::ctx will hold both
890  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
891  *
892  * Lock ordering is by mutex address. There are two other sites where
893  * perf_event_context::mutex nests and those are:
894  *
895  *  - perf_event_exit_task_context()	[ child , 0 ]
896  *      __perf_event_exit_task()
897  *        sync_child_event()
898  *          put_event()			[ parent, 1 ]
899  *
900  *  - perf_event_init_context()		[ parent, 0 ]
901  *      inherit_task_group()
902  *        inherit_group()
903  *          inherit_event()
904  *            perf_event_alloc()
905  *              perf_init_event()
906  *                perf_try_init_event()	[ child , 1 ]
907  *
908  * While it appears there is an obvious deadlock here -- the parent and child
909  * nesting levels are inverted between the two. This is in fact safe because
910  * life-time rules separate them. That is an exiting task cannot fork, and a
911  * spawning task cannot (yet) exit.
912  *
913  * But remember that that these are parent<->child context relations, and
914  * migration does not affect children, therefore these two orderings should not
915  * interact.
916  *
917  * The change in perf_event::ctx does not affect children (as claimed above)
918  * because the sys_perf_event_open() case will install a new event and break
919  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
920  * concerned with cpuctx and that doesn't have children.
921  *
922  * The places that change perf_event::ctx will issue:
923  *
924  *   perf_remove_from_context();
925  *   synchronize_rcu();
926  *   perf_install_in_context();
927  *
928  * to affect the change. The remove_from_context() + synchronize_rcu() should
929  * quiesce the event, after which we can install it in the new location. This
930  * means that only external vectors (perf_fops, prctl) can perturb the event
931  * while in transit. Therefore all such accessors should also acquire
932  * perf_event_context::mutex to serialize against this.
933  *
934  * However; because event->ctx can change while we're waiting to acquire
935  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
936  * function.
937  *
938  * Lock order:
939  *	task_struct::perf_event_mutex
940  *	  perf_event_context::mutex
941  *	    perf_event_context::lock
942  *	    perf_event::child_mutex;
943  *	    perf_event::mmap_mutex
944  *	    mmap_sem
945  */
946 static struct perf_event_context *
947 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
948 {
949 	struct perf_event_context *ctx;
950 
951 again:
952 	rcu_read_lock();
953 	ctx = ACCESS_ONCE(event->ctx);
954 	if (!atomic_inc_not_zero(&ctx->refcount)) {
955 		rcu_read_unlock();
956 		goto again;
957 	}
958 	rcu_read_unlock();
959 
960 	mutex_lock_nested(&ctx->mutex, nesting);
961 	if (event->ctx != ctx) {
962 		mutex_unlock(&ctx->mutex);
963 		put_ctx(ctx);
964 		goto again;
965 	}
966 
967 	return ctx;
968 }
969 
970 static inline struct perf_event_context *
971 perf_event_ctx_lock(struct perf_event *event)
972 {
973 	return perf_event_ctx_lock_nested(event, 0);
974 }
975 
976 static void perf_event_ctx_unlock(struct perf_event *event,
977 				  struct perf_event_context *ctx)
978 {
979 	mutex_unlock(&ctx->mutex);
980 	put_ctx(ctx);
981 }
982 
983 /*
984  * This must be done under the ctx->lock, such as to serialize against
985  * context_equiv(), therefore we cannot call put_ctx() since that might end up
986  * calling scheduler related locks and ctx->lock nests inside those.
987  */
988 static __must_check struct perf_event_context *
989 unclone_ctx(struct perf_event_context *ctx)
990 {
991 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
992 
993 	lockdep_assert_held(&ctx->lock);
994 
995 	if (parent_ctx)
996 		ctx->parent_ctx = NULL;
997 	ctx->generation++;
998 
999 	return parent_ctx;
1000 }
1001 
1002 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1003 {
1004 	/*
1005 	 * only top level events have the pid namespace they were created in
1006 	 */
1007 	if (event->parent)
1008 		event = event->parent;
1009 
1010 	return task_tgid_nr_ns(p, event->ns);
1011 }
1012 
1013 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1014 {
1015 	/*
1016 	 * only top level events have the pid namespace they were created in
1017 	 */
1018 	if (event->parent)
1019 		event = event->parent;
1020 
1021 	return task_pid_nr_ns(p, event->ns);
1022 }
1023 
1024 /*
1025  * If we inherit events we want to return the parent event id
1026  * to userspace.
1027  */
1028 static u64 primary_event_id(struct perf_event *event)
1029 {
1030 	u64 id = event->id;
1031 
1032 	if (event->parent)
1033 		id = event->parent->id;
1034 
1035 	return id;
1036 }
1037 
1038 /*
1039  * Get the perf_event_context for a task and lock it.
1040  * This has to cope with with the fact that until it is locked,
1041  * the context could get moved to another task.
1042  */
1043 static struct perf_event_context *
1044 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1045 {
1046 	struct perf_event_context *ctx;
1047 
1048 retry:
1049 	/*
1050 	 * One of the few rules of preemptible RCU is that one cannot do
1051 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1052 	 * part of the read side critical section was preemptible -- see
1053 	 * rcu_read_unlock_special().
1054 	 *
1055 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1056 	 * side critical section is non-preemptible.
1057 	 */
1058 	preempt_disable();
1059 	rcu_read_lock();
1060 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1061 	if (ctx) {
1062 		/*
1063 		 * If this context is a clone of another, it might
1064 		 * get swapped for another underneath us by
1065 		 * perf_event_task_sched_out, though the
1066 		 * rcu_read_lock() protects us from any context
1067 		 * getting freed.  Lock the context and check if it
1068 		 * got swapped before we could get the lock, and retry
1069 		 * if so.  If we locked the right context, then it
1070 		 * can't get swapped on us any more.
1071 		 */
1072 		raw_spin_lock_irqsave(&ctx->lock, *flags);
1073 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1074 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1075 			rcu_read_unlock();
1076 			preempt_enable();
1077 			goto retry;
1078 		}
1079 
1080 		if (!atomic_inc_not_zero(&ctx->refcount)) {
1081 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1082 			ctx = NULL;
1083 		}
1084 	}
1085 	rcu_read_unlock();
1086 	preempt_enable();
1087 	return ctx;
1088 }
1089 
1090 /*
1091  * Get the context for a task and increment its pin_count so it
1092  * can't get swapped to another task.  This also increments its
1093  * reference count so that the context can't get freed.
1094  */
1095 static struct perf_event_context *
1096 perf_pin_task_context(struct task_struct *task, int ctxn)
1097 {
1098 	struct perf_event_context *ctx;
1099 	unsigned long flags;
1100 
1101 	ctx = perf_lock_task_context(task, ctxn, &flags);
1102 	if (ctx) {
1103 		++ctx->pin_count;
1104 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1105 	}
1106 	return ctx;
1107 }
1108 
1109 static void perf_unpin_context(struct perf_event_context *ctx)
1110 {
1111 	unsigned long flags;
1112 
1113 	raw_spin_lock_irqsave(&ctx->lock, flags);
1114 	--ctx->pin_count;
1115 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1116 }
1117 
1118 /*
1119  * Update the record of the current time in a context.
1120  */
1121 static void update_context_time(struct perf_event_context *ctx)
1122 {
1123 	u64 now = perf_clock();
1124 
1125 	ctx->time += now - ctx->timestamp;
1126 	ctx->timestamp = now;
1127 }
1128 
1129 static u64 perf_event_time(struct perf_event *event)
1130 {
1131 	struct perf_event_context *ctx = event->ctx;
1132 
1133 	if (is_cgroup_event(event))
1134 		return perf_cgroup_event_time(event);
1135 
1136 	return ctx ? ctx->time : 0;
1137 }
1138 
1139 /*
1140  * Update the total_time_enabled and total_time_running fields for a event.
1141  * The caller of this function needs to hold the ctx->lock.
1142  */
1143 static void update_event_times(struct perf_event *event)
1144 {
1145 	struct perf_event_context *ctx = event->ctx;
1146 	u64 run_end;
1147 
1148 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1149 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1150 		return;
1151 	/*
1152 	 * in cgroup mode, time_enabled represents
1153 	 * the time the event was enabled AND active
1154 	 * tasks were in the monitored cgroup. This is
1155 	 * independent of the activity of the context as
1156 	 * there may be a mix of cgroup and non-cgroup events.
1157 	 *
1158 	 * That is why we treat cgroup events differently
1159 	 * here.
1160 	 */
1161 	if (is_cgroup_event(event))
1162 		run_end = perf_cgroup_event_time(event);
1163 	else if (ctx->is_active)
1164 		run_end = ctx->time;
1165 	else
1166 		run_end = event->tstamp_stopped;
1167 
1168 	event->total_time_enabled = run_end - event->tstamp_enabled;
1169 
1170 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1171 		run_end = event->tstamp_stopped;
1172 	else
1173 		run_end = perf_event_time(event);
1174 
1175 	event->total_time_running = run_end - event->tstamp_running;
1176 
1177 }
1178 
1179 /*
1180  * Update total_time_enabled and total_time_running for all events in a group.
1181  */
1182 static void update_group_times(struct perf_event *leader)
1183 {
1184 	struct perf_event *event;
1185 
1186 	update_event_times(leader);
1187 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1188 		update_event_times(event);
1189 }
1190 
1191 static struct list_head *
1192 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1193 {
1194 	if (event->attr.pinned)
1195 		return &ctx->pinned_groups;
1196 	else
1197 		return &ctx->flexible_groups;
1198 }
1199 
1200 /*
1201  * Add a event from the lists for its context.
1202  * Must be called with ctx->mutex and ctx->lock held.
1203  */
1204 static void
1205 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1206 {
1207 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1208 	event->attach_state |= PERF_ATTACH_CONTEXT;
1209 
1210 	/*
1211 	 * If we're a stand alone event or group leader, we go to the context
1212 	 * list, group events are kept attached to the group so that
1213 	 * perf_group_detach can, at all times, locate all siblings.
1214 	 */
1215 	if (event->group_leader == event) {
1216 		struct list_head *list;
1217 
1218 		if (is_software_event(event))
1219 			event->group_flags |= PERF_GROUP_SOFTWARE;
1220 
1221 		list = ctx_group_list(event, ctx);
1222 		list_add_tail(&event->group_entry, list);
1223 	}
1224 
1225 	if (is_cgroup_event(event))
1226 		ctx->nr_cgroups++;
1227 
1228 	list_add_rcu(&event->event_entry, &ctx->event_list);
1229 	ctx->nr_events++;
1230 	if (event->attr.inherit_stat)
1231 		ctx->nr_stat++;
1232 
1233 	ctx->generation++;
1234 }
1235 
1236 /*
1237  * Initialize event state based on the perf_event_attr::disabled.
1238  */
1239 static inline void perf_event__state_init(struct perf_event *event)
1240 {
1241 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1242 					      PERF_EVENT_STATE_INACTIVE;
1243 }
1244 
1245 /*
1246  * Called at perf_event creation and when events are attached/detached from a
1247  * group.
1248  */
1249 static void perf_event__read_size(struct perf_event *event)
1250 {
1251 	int entry = sizeof(u64); /* value */
1252 	int size = 0;
1253 	int nr = 1;
1254 
1255 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1256 		size += sizeof(u64);
1257 
1258 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1259 		size += sizeof(u64);
1260 
1261 	if (event->attr.read_format & PERF_FORMAT_ID)
1262 		entry += sizeof(u64);
1263 
1264 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1265 		nr += event->group_leader->nr_siblings;
1266 		size += sizeof(u64);
1267 	}
1268 
1269 	size += entry * nr;
1270 	event->read_size = size;
1271 }
1272 
1273 static void perf_event__header_size(struct perf_event *event)
1274 {
1275 	struct perf_sample_data *data;
1276 	u64 sample_type = event->attr.sample_type;
1277 	u16 size = 0;
1278 
1279 	perf_event__read_size(event);
1280 
1281 	if (sample_type & PERF_SAMPLE_IP)
1282 		size += sizeof(data->ip);
1283 
1284 	if (sample_type & PERF_SAMPLE_ADDR)
1285 		size += sizeof(data->addr);
1286 
1287 	if (sample_type & PERF_SAMPLE_PERIOD)
1288 		size += sizeof(data->period);
1289 
1290 	if (sample_type & PERF_SAMPLE_WEIGHT)
1291 		size += sizeof(data->weight);
1292 
1293 	if (sample_type & PERF_SAMPLE_READ)
1294 		size += event->read_size;
1295 
1296 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1297 		size += sizeof(data->data_src.val);
1298 
1299 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1300 		size += sizeof(data->txn);
1301 
1302 	event->header_size = size;
1303 }
1304 
1305 static void perf_event__id_header_size(struct perf_event *event)
1306 {
1307 	struct perf_sample_data *data;
1308 	u64 sample_type = event->attr.sample_type;
1309 	u16 size = 0;
1310 
1311 	if (sample_type & PERF_SAMPLE_TID)
1312 		size += sizeof(data->tid_entry);
1313 
1314 	if (sample_type & PERF_SAMPLE_TIME)
1315 		size += sizeof(data->time);
1316 
1317 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1318 		size += sizeof(data->id);
1319 
1320 	if (sample_type & PERF_SAMPLE_ID)
1321 		size += sizeof(data->id);
1322 
1323 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1324 		size += sizeof(data->stream_id);
1325 
1326 	if (sample_type & PERF_SAMPLE_CPU)
1327 		size += sizeof(data->cpu_entry);
1328 
1329 	event->id_header_size = size;
1330 }
1331 
1332 static void perf_group_attach(struct perf_event *event)
1333 {
1334 	struct perf_event *group_leader = event->group_leader, *pos;
1335 
1336 	/*
1337 	 * We can have double attach due to group movement in perf_event_open.
1338 	 */
1339 	if (event->attach_state & PERF_ATTACH_GROUP)
1340 		return;
1341 
1342 	event->attach_state |= PERF_ATTACH_GROUP;
1343 
1344 	if (group_leader == event)
1345 		return;
1346 
1347 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1348 
1349 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1350 			!is_software_event(event))
1351 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1352 
1353 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1354 	group_leader->nr_siblings++;
1355 
1356 	perf_event__header_size(group_leader);
1357 
1358 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1359 		perf_event__header_size(pos);
1360 }
1361 
1362 /*
1363  * Remove a event from the lists for its context.
1364  * Must be called with ctx->mutex and ctx->lock held.
1365  */
1366 static void
1367 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1368 {
1369 	struct perf_cpu_context *cpuctx;
1370 
1371 	WARN_ON_ONCE(event->ctx != ctx);
1372 	lockdep_assert_held(&ctx->lock);
1373 
1374 	/*
1375 	 * We can have double detach due to exit/hot-unplug + close.
1376 	 */
1377 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1378 		return;
1379 
1380 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1381 
1382 	if (is_cgroup_event(event)) {
1383 		ctx->nr_cgroups--;
1384 		cpuctx = __get_cpu_context(ctx);
1385 		/*
1386 		 * if there are no more cgroup events
1387 		 * then cler cgrp to avoid stale pointer
1388 		 * in update_cgrp_time_from_cpuctx()
1389 		 */
1390 		if (!ctx->nr_cgroups)
1391 			cpuctx->cgrp = NULL;
1392 	}
1393 
1394 	ctx->nr_events--;
1395 	if (event->attr.inherit_stat)
1396 		ctx->nr_stat--;
1397 
1398 	list_del_rcu(&event->event_entry);
1399 
1400 	if (event->group_leader == event)
1401 		list_del_init(&event->group_entry);
1402 
1403 	update_group_times(event);
1404 
1405 	/*
1406 	 * If event was in error state, then keep it
1407 	 * that way, otherwise bogus counts will be
1408 	 * returned on read(). The only way to get out
1409 	 * of error state is by explicit re-enabling
1410 	 * of the event
1411 	 */
1412 	if (event->state > PERF_EVENT_STATE_OFF)
1413 		event->state = PERF_EVENT_STATE_OFF;
1414 
1415 	ctx->generation++;
1416 }
1417 
1418 static void perf_group_detach(struct perf_event *event)
1419 {
1420 	struct perf_event *sibling, *tmp;
1421 	struct list_head *list = NULL;
1422 
1423 	/*
1424 	 * We can have double detach due to exit/hot-unplug + close.
1425 	 */
1426 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1427 		return;
1428 
1429 	event->attach_state &= ~PERF_ATTACH_GROUP;
1430 
1431 	/*
1432 	 * If this is a sibling, remove it from its group.
1433 	 */
1434 	if (event->group_leader != event) {
1435 		list_del_init(&event->group_entry);
1436 		event->group_leader->nr_siblings--;
1437 		goto out;
1438 	}
1439 
1440 	if (!list_empty(&event->group_entry))
1441 		list = &event->group_entry;
1442 
1443 	/*
1444 	 * If this was a group event with sibling events then
1445 	 * upgrade the siblings to singleton events by adding them
1446 	 * to whatever list we are on.
1447 	 */
1448 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1449 		if (list)
1450 			list_move_tail(&sibling->group_entry, list);
1451 		sibling->group_leader = sibling;
1452 
1453 		/* Inherit group flags from the previous leader */
1454 		sibling->group_flags = event->group_flags;
1455 
1456 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1457 	}
1458 
1459 out:
1460 	perf_event__header_size(event->group_leader);
1461 
1462 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1463 		perf_event__header_size(tmp);
1464 }
1465 
1466 /*
1467  * User event without the task.
1468  */
1469 static bool is_orphaned_event(struct perf_event *event)
1470 {
1471 	return event && !is_kernel_event(event) && !event->owner;
1472 }
1473 
1474 /*
1475  * Event has a parent but parent's task finished and it's
1476  * alive only because of children holding refference.
1477  */
1478 static bool is_orphaned_child(struct perf_event *event)
1479 {
1480 	return is_orphaned_event(event->parent);
1481 }
1482 
1483 static void orphans_remove_work(struct work_struct *work);
1484 
1485 static void schedule_orphans_remove(struct perf_event_context *ctx)
1486 {
1487 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1488 		return;
1489 
1490 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1491 		get_ctx(ctx);
1492 		ctx->orphans_remove_sched = true;
1493 	}
1494 }
1495 
1496 static int __init perf_workqueue_init(void)
1497 {
1498 	perf_wq = create_singlethread_workqueue("perf");
1499 	WARN(!perf_wq, "failed to create perf workqueue\n");
1500 	return perf_wq ? 0 : -1;
1501 }
1502 
1503 core_initcall(perf_workqueue_init);
1504 
1505 static inline int pmu_filter_match(struct perf_event *event)
1506 {
1507 	struct pmu *pmu = event->pmu;
1508 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1509 }
1510 
1511 static inline int
1512 event_filter_match(struct perf_event *event)
1513 {
1514 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1515 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1516 }
1517 
1518 static void
1519 event_sched_out(struct perf_event *event,
1520 		  struct perf_cpu_context *cpuctx,
1521 		  struct perf_event_context *ctx)
1522 {
1523 	u64 tstamp = perf_event_time(event);
1524 	u64 delta;
1525 
1526 	WARN_ON_ONCE(event->ctx != ctx);
1527 	lockdep_assert_held(&ctx->lock);
1528 
1529 	/*
1530 	 * An event which could not be activated because of
1531 	 * filter mismatch still needs to have its timings
1532 	 * maintained, otherwise bogus information is return
1533 	 * via read() for time_enabled, time_running:
1534 	 */
1535 	if (event->state == PERF_EVENT_STATE_INACTIVE
1536 	    && !event_filter_match(event)) {
1537 		delta = tstamp - event->tstamp_stopped;
1538 		event->tstamp_running += delta;
1539 		event->tstamp_stopped = tstamp;
1540 	}
1541 
1542 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1543 		return;
1544 
1545 	perf_pmu_disable(event->pmu);
1546 
1547 	event->state = PERF_EVENT_STATE_INACTIVE;
1548 	if (event->pending_disable) {
1549 		event->pending_disable = 0;
1550 		event->state = PERF_EVENT_STATE_OFF;
1551 	}
1552 	event->tstamp_stopped = tstamp;
1553 	event->pmu->del(event, 0);
1554 	event->oncpu = -1;
1555 
1556 	if (!is_software_event(event))
1557 		cpuctx->active_oncpu--;
1558 	if (!--ctx->nr_active)
1559 		perf_event_ctx_deactivate(ctx);
1560 	if (event->attr.freq && event->attr.sample_freq)
1561 		ctx->nr_freq--;
1562 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1563 		cpuctx->exclusive = 0;
1564 
1565 	if (is_orphaned_child(event))
1566 		schedule_orphans_remove(ctx);
1567 
1568 	perf_pmu_enable(event->pmu);
1569 }
1570 
1571 static void
1572 group_sched_out(struct perf_event *group_event,
1573 		struct perf_cpu_context *cpuctx,
1574 		struct perf_event_context *ctx)
1575 {
1576 	struct perf_event *event;
1577 	int state = group_event->state;
1578 
1579 	event_sched_out(group_event, cpuctx, ctx);
1580 
1581 	/*
1582 	 * Schedule out siblings (if any):
1583 	 */
1584 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1585 		event_sched_out(event, cpuctx, ctx);
1586 
1587 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1588 		cpuctx->exclusive = 0;
1589 }
1590 
1591 struct remove_event {
1592 	struct perf_event *event;
1593 	bool detach_group;
1594 };
1595 
1596 /*
1597  * Cross CPU call to remove a performance event
1598  *
1599  * We disable the event on the hardware level first. After that we
1600  * remove it from the context list.
1601  */
1602 static int __perf_remove_from_context(void *info)
1603 {
1604 	struct remove_event *re = info;
1605 	struct perf_event *event = re->event;
1606 	struct perf_event_context *ctx = event->ctx;
1607 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1608 
1609 	raw_spin_lock(&ctx->lock);
1610 	event_sched_out(event, cpuctx, ctx);
1611 	if (re->detach_group)
1612 		perf_group_detach(event);
1613 	list_del_event(event, ctx);
1614 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1615 		ctx->is_active = 0;
1616 		cpuctx->task_ctx = NULL;
1617 	}
1618 	raw_spin_unlock(&ctx->lock);
1619 
1620 	return 0;
1621 }
1622 
1623 
1624 /*
1625  * Remove the event from a task's (or a CPU's) list of events.
1626  *
1627  * CPU events are removed with a smp call. For task events we only
1628  * call when the task is on a CPU.
1629  *
1630  * If event->ctx is a cloned context, callers must make sure that
1631  * every task struct that event->ctx->task could possibly point to
1632  * remains valid.  This is OK when called from perf_release since
1633  * that only calls us on the top-level context, which can't be a clone.
1634  * When called from perf_event_exit_task, it's OK because the
1635  * context has been detached from its task.
1636  */
1637 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1638 {
1639 	struct perf_event_context *ctx = event->ctx;
1640 	struct task_struct *task = ctx->task;
1641 	struct remove_event re = {
1642 		.event = event,
1643 		.detach_group = detach_group,
1644 	};
1645 
1646 	lockdep_assert_held(&ctx->mutex);
1647 
1648 	if (!task) {
1649 		/*
1650 		 * Per cpu events are removed via an smp call. The removal can
1651 		 * fail if the CPU is currently offline, but in that case we
1652 		 * already called __perf_remove_from_context from
1653 		 * perf_event_exit_cpu.
1654 		 */
1655 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1656 		return;
1657 	}
1658 
1659 retry:
1660 	if (!task_function_call(task, __perf_remove_from_context, &re))
1661 		return;
1662 
1663 	raw_spin_lock_irq(&ctx->lock);
1664 	/*
1665 	 * If we failed to find a running task, but find the context active now
1666 	 * that we've acquired the ctx->lock, retry.
1667 	 */
1668 	if (ctx->is_active) {
1669 		raw_spin_unlock_irq(&ctx->lock);
1670 		/*
1671 		 * Reload the task pointer, it might have been changed by
1672 		 * a concurrent perf_event_context_sched_out().
1673 		 */
1674 		task = ctx->task;
1675 		goto retry;
1676 	}
1677 
1678 	/*
1679 	 * Since the task isn't running, its safe to remove the event, us
1680 	 * holding the ctx->lock ensures the task won't get scheduled in.
1681 	 */
1682 	if (detach_group)
1683 		perf_group_detach(event);
1684 	list_del_event(event, ctx);
1685 	raw_spin_unlock_irq(&ctx->lock);
1686 }
1687 
1688 /*
1689  * Cross CPU call to disable a performance event
1690  */
1691 int __perf_event_disable(void *info)
1692 {
1693 	struct perf_event *event = info;
1694 	struct perf_event_context *ctx = event->ctx;
1695 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1696 
1697 	/*
1698 	 * If this is a per-task event, need to check whether this
1699 	 * event's task is the current task on this cpu.
1700 	 *
1701 	 * Can trigger due to concurrent perf_event_context_sched_out()
1702 	 * flipping contexts around.
1703 	 */
1704 	if (ctx->task && cpuctx->task_ctx != ctx)
1705 		return -EINVAL;
1706 
1707 	raw_spin_lock(&ctx->lock);
1708 
1709 	/*
1710 	 * If the event is on, turn it off.
1711 	 * If it is in error state, leave it in error state.
1712 	 */
1713 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1714 		update_context_time(ctx);
1715 		update_cgrp_time_from_event(event);
1716 		update_group_times(event);
1717 		if (event == event->group_leader)
1718 			group_sched_out(event, cpuctx, ctx);
1719 		else
1720 			event_sched_out(event, cpuctx, ctx);
1721 		event->state = PERF_EVENT_STATE_OFF;
1722 	}
1723 
1724 	raw_spin_unlock(&ctx->lock);
1725 
1726 	return 0;
1727 }
1728 
1729 /*
1730  * Disable a event.
1731  *
1732  * If event->ctx is a cloned context, callers must make sure that
1733  * every task struct that event->ctx->task could possibly point to
1734  * remains valid.  This condition is satisifed when called through
1735  * perf_event_for_each_child or perf_event_for_each because they
1736  * hold the top-level event's child_mutex, so any descendant that
1737  * goes to exit will block in sync_child_event.
1738  * When called from perf_pending_event it's OK because event->ctx
1739  * is the current context on this CPU and preemption is disabled,
1740  * hence we can't get into perf_event_task_sched_out for this context.
1741  */
1742 static void _perf_event_disable(struct perf_event *event)
1743 {
1744 	struct perf_event_context *ctx = event->ctx;
1745 	struct task_struct *task = ctx->task;
1746 
1747 	if (!task) {
1748 		/*
1749 		 * Disable the event on the cpu that it's on
1750 		 */
1751 		cpu_function_call(event->cpu, __perf_event_disable, event);
1752 		return;
1753 	}
1754 
1755 retry:
1756 	if (!task_function_call(task, __perf_event_disable, event))
1757 		return;
1758 
1759 	raw_spin_lock_irq(&ctx->lock);
1760 	/*
1761 	 * If the event is still active, we need to retry the cross-call.
1762 	 */
1763 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1764 		raw_spin_unlock_irq(&ctx->lock);
1765 		/*
1766 		 * Reload the task pointer, it might have been changed by
1767 		 * a concurrent perf_event_context_sched_out().
1768 		 */
1769 		task = ctx->task;
1770 		goto retry;
1771 	}
1772 
1773 	/*
1774 	 * Since we have the lock this context can't be scheduled
1775 	 * in, so we can change the state safely.
1776 	 */
1777 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1778 		update_group_times(event);
1779 		event->state = PERF_EVENT_STATE_OFF;
1780 	}
1781 	raw_spin_unlock_irq(&ctx->lock);
1782 }
1783 
1784 /*
1785  * Strictly speaking kernel users cannot create groups and therefore this
1786  * interface does not need the perf_event_ctx_lock() magic.
1787  */
1788 void perf_event_disable(struct perf_event *event)
1789 {
1790 	struct perf_event_context *ctx;
1791 
1792 	ctx = perf_event_ctx_lock(event);
1793 	_perf_event_disable(event);
1794 	perf_event_ctx_unlock(event, ctx);
1795 }
1796 EXPORT_SYMBOL_GPL(perf_event_disable);
1797 
1798 static void perf_set_shadow_time(struct perf_event *event,
1799 				 struct perf_event_context *ctx,
1800 				 u64 tstamp)
1801 {
1802 	/*
1803 	 * use the correct time source for the time snapshot
1804 	 *
1805 	 * We could get by without this by leveraging the
1806 	 * fact that to get to this function, the caller
1807 	 * has most likely already called update_context_time()
1808 	 * and update_cgrp_time_xx() and thus both timestamp
1809 	 * are identical (or very close). Given that tstamp is,
1810 	 * already adjusted for cgroup, we could say that:
1811 	 *    tstamp - ctx->timestamp
1812 	 * is equivalent to
1813 	 *    tstamp - cgrp->timestamp.
1814 	 *
1815 	 * Then, in perf_output_read(), the calculation would
1816 	 * work with no changes because:
1817 	 * - event is guaranteed scheduled in
1818 	 * - no scheduled out in between
1819 	 * - thus the timestamp would be the same
1820 	 *
1821 	 * But this is a bit hairy.
1822 	 *
1823 	 * So instead, we have an explicit cgroup call to remain
1824 	 * within the time time source all along. We believe it
1825 	 * is cleaner and simpler to understand.
1826 	 */
1827 	if (is_cgroup_event(event))
1828 		perf_cgroup_set_shadow_time(event, tstamp);
1829 	else
1830 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1831 }
1832 
1833 #define MAX_INTERRUPTS (~0ULL)
1834 
1835 static void perf_log_throttle(struct perf_event *event, int enable);
1836 static void perf_log_itrace_start(struct perf_event *event);
1837 
1838 static int
1839 event_sched_in(struct perf_event *event,
1840 		 struct perf_cpu_context *cpuctx,
1841 		 struct perf_event_context *ctx)
1842 {
1843 	u64 tstamp = perf_event_time(event);
1844 	int ret = 0;
1845 
1846 	lockdep_assert_held(&ctx->lock);
1847 
1848 	if (event->state <= PERF_EVENT_STATE_OFF)
1849 		return 0;
1850 
1851 	event->state = PERF_EVENT_STATE_ACTIVE;
1852 	event->oncpu = smp_processor_id();
1853 
1854 	/*
1855 	 * Unthrottle events, since we scheduled we might have missed several
1856 	 * ticks already, also for a heavily scheduling task there is little
1857 	 * guarantee it'll get a tick in a timely manner.
1858 	 */
1859 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1860 		perf_log_throttle(event, 1);
1861 		event->hw.interrupts = 0;
1862 	}
1863 
1864 	/*
1865 	 * The new state must be visible before we turn it on in the hardware:
1866 	 */
1867 	smp_wmb();
1868 
1869 	perf_pmu_disable(event->pmu);
1870 
1871 	perf_set_shadow_time(event, ctx, tstamp);
1872 
1873 	perf_log_itrace_start(event);
1874 
1875 	if (event->pmu->add(event, PERF_EF_START)) {
1876 		event->state = PERF_EVENT_STATE_INACTIVE;
1877 		event->oncpu = -1;
1878 		ret = -EAGAIN;
1879 		goto out;
1880 	}
1881 
1882 	event->tstamp_running += tstamp - event->tstamp_stopped;
1883 
1884 	if (!is_software_event(event))
1885 		cpuctx->active_oncpu++;
1886 	if (!ctx->nr_active++)
1887 		perf_event_ctx_activate(ctx);
1888 	if (event->attr.freq && event->attr.sample_freq)
1889 		ctx->nr_freq++;
1890 
1891 	if (event->attr.exclusive)
1892 		cpuctx->exclusive = 1;
1893 
1894 	if (is_orphaned_child(event))
1895 		schedule_orphans_remove(ctx);
1896 
1897 out:
1898 	perf_pmu_enable(event->pmu);
1899 
1900 	return ret;
1901 }
1902 
1903 static int
1904 group_sched_in(struct perf_event *group_event,
1905 	       struct perf_cpu_context *cpuctx,
1906 	       struct perf_event_context *ctx)
1907 {
1908 	struct perf_event *event, *partial_group = NULL;
1909 	struct pmu *pmu = ctx->pmu;
1910 	u64 now = ctx->time;
1911 	bool simulate = false;
1912 
1913 	if (group_event->state == PERF_EVENT_STATE_OFF)
1914 		return 0;
1915 
1916 	pmu->start_txn(pmu);
1917 
1918 	if (event_sched_in(group_event, cpuctx, ctx)) {
1919 		pmu->cancel_txn(pmu);
1920 		perf_mux_hrtimer_restart(cpuctx);
1921 		return -EAGAIN;
1922 	}
1923 
1924 	/*
1925 	 * Schedule in siblings as one group (if any):
1926 	 */
1927 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1928 		if (event_sched_in(event, cpuctx, ctx)) {
1929 			partial_group = event;
1930 			goto group_error;
1931 		}
1932 	}
1933 
1934 	if (!pmu->commit_txn(pmu))
1935 		return 0;
1936 
1937 group_error:
1938 	/*
1939 	 * Groups can be scheduled in as one unit only, so undo any
1940 	 * partial group before returning:
1941 	 * The events up to the failed event are scheduled out normally,
1942 	 * tstamp_stopped will be updated.
1943 	 *
1944 	 * The failed events and the remaining siblings need to have
1945 	 * their timings updated as if they had gone thru event_sched_in()
1946 	 * and event_sched_out(). This is required to get consistent timings
1947 	 * across the group. This also takes care of the case where the group
1948 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1949 	 * the time the event was actually stopped, such that time delta
1950 	 * calculation in update_event_times() is correct.
1951 	 */
1952 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1953 		if (event == partial_group)
1954 			simulate = true;
1955 
1956 		if (simulate) {
1957 			event->tstamp_running += now - event->tstamp_stopped;
1958 			event->tstamp_stopped = now;
1959 		} else {
1960 			event_sched_out(event, cpuctx, ctx);
1961 		}
1962 	}
1963 	event_sched_out(group_event, cpuctx, ctx);
1964 
1965 	pmu->cancel_txn(pmu);
1966 
1967 	perf_mux_hrtimer_restart(cpuctx);
1968 
1969 	return -EAGAIN;
1970 }
1971 
1972 /*
1973  * Work out whether we can put this event group on the CPU now.
1974  */
1975 static int group_can_go_on(struct perf_event *event,
1976 			   struct perf_cpu_context *cpuctx,
1977 			   int can_add_hw)
1978 {
1979 	/*
1980 	 * Groups consisting entirely of software events can always go on.
1981 	 */
1982 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1983 		return 1;
1984 	/*
1985 	 * If an exclusive group is already on, no other hardware
1986 	 * events can go on.
1987 	 */
1988 	if (cpuctx->exclusive)
1989 		return 0;
1990 	/*
1991 	 * If this group is exclusive and there are already
1992 	 * events on the CPU, it can't go on.
1993 	 */
1994 	if (event->attr.exclusive && cpuctx->active_oncpu)
1995 		return 0;
1996 	/*
1997 	 * Otherwise, try to add it if all previous groups were able
1998 	 * to go on.
1999 	 */
2000 	return can_add_hw;
2001 }
2002 
2003 static void add_event_to_ctx(struct perf_event *event,
2004 			       struct perf_event_context *ctx)
2005 {
2006 	u64 tstamp = perf_event_time(event);
2007 
2008 	list_add_event(event, ctx);
2009 	perf_group_attach(event);
2010 	event->tstamp_enabled = tstamp;
2011 	event->tstamp_running = tstamp;
2012 	event->tstamp_stopped = tstamp;
2013 }
2014 
2015 static void task_ctx_sched_out(struct perf_event_context *ctx);
2016 static void
2017 ctx_sched_in(struct perf_event_context *ctx,
2018 	     struct perf_cpu_context *cpuctx,
2019 	     enum event_type_t event_type,
2020 	     struct task_struct *task);
2021 
2022 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2023 				struct perf_event_context *ctx,
2024 				struct task_struct *task)
2025 {
2026 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2027 	if (ctx)
2028 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2029 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2030 	if (ctx)
2031 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2032 }
2033 
2034 /*
2035  * Cross CPU call to install and enable a performance event
2036  *
2037  * Must be called with ctx->mutex held
2038  */
2039 static int  __perf_install_in_context(void *info)
2040 {
2041 	struct perf_event *event = info;
2042 	struct perf_event_context *ctx = event->ctx;
2043 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2044 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2045 	struct task_struct *task = current;
2046 
2047 	perf_ctx_lock(cpuctx, task_ctx);
2048 	perf_pmu_disable(cpuctx->ctx.pmu);
2049 
2050 	/*
2051 	 * If there was an active task_ctx schedule it out.
2052 	 */
2053 	if (task_ctx)
2054 		task_ctx_sched_out(task_ctx);
2055 
2056 	/*
2057 	 * If the context we're installing events in is not the
2058 	 * active task_ctx, flip them.
2059 	 */
2060 	if (ctx->task && task_ctx != ctx) {
2061 		if (task_ctx)
2062 			raw_spin_unlock(&task_ctx->lock);
2063 		raw_spin_lock(&ctx->lock);
2064 		task_ctx = ctx;
2065 	}
2066 
2067 	if (task_ctx) {
2068 		cpuctx->task_ctx = task_ctx;
2069 		task = task_ctx->task;
2070 	}
2071 
2072 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2073 
2074 	update_context_time(ctx);
2075 	/*
2076 	 * update cgrp time only if current cgrp
2077 	 * matches event->cgrp. Must be done before
2078 	 * calling add_event_to_ctx()
2079 	 */
2080 	update_cgrp_time_from_event(event);
2081 
2082 	add_event_to_ctx(event, ctx);
2083 
2084 	/*
2085 	 * Schedule everything back in
2086 	 */
2087 	perf_event_sched_in(cpuctx, task_ctx, task);
2088 
2089 	perf_pmu_enable(cpuctx->ctx.pmu);
2090 	perf_ctx_unlock(cpuctx, task_ctx);
2091 
2092 	return 0;
2093 }
2094 
2095 /*
2096  * Attach a performance event to a context
2097  *
2098  * First we add the event to the list with the hardware enable bit
2099  * in event->hw_config cleared.
2100  *
2101  * If the event is attached to a task which is on a CPU we use a smp
2102  * call to enable it in the task context. The task might have been
2103  * scheduled away, but we check this in the smp call again.
2104  */
2105 static void
2106 perf_install_in_context(struct perf_event_context *ctx,
2107 			struct perf_event *event,
2108 			int cpu)
2109 {
2110 	struct task_struct *task = ctx->task;
2111 
2112 	lockdep_assert_held(&ctx->mutex);
2113 
2114 	event->ctx = ctx;
2115 	if (event->cpu != -1)
2116 		event->cpu = cpu;
2117 
2118 	if (!task) {
2119 		/*
2120 		 * Per cpu events are installed via an smp call and
2121 		 * the install is always successful.
2122 		 */
2123 		cpu_function_call(cpu, __perf_install_in_context, event);
2124 		return;
2125 	}
2126 
2127 retry:
2128 	if (!task_function_call(task, __perf_install_in_context, event))
2129 		return;
2130 
2131 	raw_spin_lock_irq(&ctx->lock);
2132 	/*
2133 	 * If we failed to find a running task, but find the context active now
2134 	 * that we've acquired the ctx->lock, retry.
2135 	 */
2136 	if (ctx->is_active) {
2137 		raw_spin_unlock_irq(&ctx->lock);
2138 		/*
2139 		 * Reload the task pointer, it might have been changed by
2140 		 * a concurrent perf_event_context_sched_out().
2141 		 */
2142 		task = ctx->task;
2143 		goto retry;
2144 	}
2145 
2146 	/*
2147 	 * Since the task isn't running, its safe to add the event, us holding
2148 	 * the ctx->lock ensures the task won't get scheduled in.
2149 	 */
2150 	add_event_to_ctx(event, ctx);
2151 	raw_spin_unlock_irq(&ctx->lock);
2152 }
2153 
2154 /*
2155  * Put a event into inactive state and update time fields.
2156  * Enabling the leader of a group effectively enables all
2157  * the group members that aren't explicitly disabled, so we
2158  * have to update their ->tstamp_enabled also.
2159  * Note: this works for group members as well as group leaders
2160  * since the non-leader members' sibling_lists will be empty.
2161  */
2162 static void __perf_event_mark_enabled(struct perf_event *event)
2163 {
2164 	struct perf_event *sub;
2165 	u64 tstamp = perf_event_time(event);
2166 
2167 	event->state = PERF_EVENT_STATE_INACTIVE;
2168 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2169 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2170 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2171 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2172 	}
2173 }
2174 
2175 /*
2176  * Cross CPU call to enable a performance event
2177  */
2178 static int __perf_event_enable(void *info)
2179 {
2180 	struct perf_event *event = info;
2181 	struct perf_event_context *ctx = event->ctx;
2182 	struct perf_event *leader = event->group_leader;
2183 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2184 	int err;
2185 
2186 	/*
2187 	 * There's a time window between 'ctx->is_active' check
2188 	 * in perf_event_enable function and this place having:
2189 	 *   - IRQs on
2190 	 *   - ctx->lock unlocked
2191 	 *
2192 	 * where the task could be killed and 'ctx' deactivated
2193 	 * by perf_event_exit_task.
2194 	 */
2195 	if (!ctx->is_active)
2196 		return -EINVAL;
2197 
2198 	raw_spin_lock(&ctx->lock);
2199 	update_context_time(ctx);
2200 
2201 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2202 		goto unlock;
2203 
2204 	/*
2205 	 * set current task's cgroup time reference point
2206 	 */
2207 	perf_cgroup_set_timestamp(current, ctx);
2208 
2209 	__perf_event_mark_enabled(event);
2210 
2211 	if (!event_filter_match(event)) {
2212 		if (is_cgroup_event(event))
2213 			perf_cgroup_defer_enabled(event);
2214 		goto unlock;
2215 	}
2216 
2217 	/*
2218 	 * If the event is in a group and isn't the group leader,
2219 	 * then don't put it on unless the group is on.
2220 	 */
2221 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2222 		goto unlock;
2223 
2224 	if (!group_can_go_on(event, cpuctx, 1)) {
2225 		err = -EEXIST;
2226 	} else {
2227 		if (event == leader)
2228 			err = group_sched_in(event, cpuctx, ctx);
2229 		else
2230 			err = event_sched_in(event, cpuctx, ctx);
2231 	}
2232 
2233 	if (err) {
2234 		/*
2235 		 * If this event can't go on and it's part of a
2236 		 * group, then the whole group has to come off.
2237 		 */
2238 		if (leader != event) {
2239 			group_sched_out(leader, cpuctx, ctx);
2240 			perf_mux_hrtimer_restart(cpuctx);
2241 		}
2242 		if (leader->attr.pinned) {
2243 			update_group_times(leader);
2244 			leader->state = PERF_EVENT_STATE_ERROR;
2245 		}
2246 	}
2247 
2248 unlock:
2249 	raw_spin_unlock(&ctx->lock);
2250 
2251 	return 0;
2252 }
2253 
2254 /*
2255  * Enable a event.
2256  *
2257  * If event->ctx is a cloned context, callers must make sure that
2258  * every task struct that event->ctx->task could possibly point to
2259  * remains valid.  This condition is satisfied when called through
2260  * perf_event_for_each_child or perf_event_for_each as described
2261  * for perf_event_disable.
2262  */
2263 static void _perf_event_enable(struct perf_event *event)
2264 {
2265 	struct perf_event_context *ctx = event->ctx;
2266 	struct task_struct *task = ctx->task;
2267 
2268 	if (!task) {
2269 		/*
2270 		 * Enable the event on the cpu that it's on
2271 		 */
2272 		cpu_function_call(event->cpu, __perf_event_enable, event);
2273 		return;
2274 	}
2275 
2276 	raw_spin_lock_irq(&ctx->lock);
2277 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2278 		goto out;
2279 
2280 	/*
2281 	 * If the event is in error state, clear that first.
2282 	 * That way, if we see the event in error state below, we
2283 	 * know that it has gone back into error state, as distinct
2284 	 * from the task having been scheduled away before the
2285 	 * cross-call arrived.
2286 	 */
2287 	if (event->state == PERF_EVENT_STATE_ERROR)
2288 		event->state = PERF_EVENT_STATE_OFF;
2289 
2290 retry:
2291 	if (!ctx->is_active) {
2292 		__perf_event_mark_enabled(event);
2293 		goto out;
2294 	}
2295 
2296 	raw_spin_unlock_irq(&ctx->lock);
2297 
2298 	if (!task_function_call(task, __perf_event_enable, event))
2299 		return;
2300 
2301 	raw_spin_lock_irq(&ctx->lock);
2302 
2303 	/*
2304 	 * If the context is active and the event is still off,
2305 	 * we need to retry the cross-call.
2306 	 */
2307 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2308 		/*
2309 		 * task could have been flipped by a concurrent
2310 		 * perf_event_context_sched_out()
2311 		 */
2312 		task = ctx->task;
2313 		goto retry;
2314 	}
2315 
2316 out:
2317 	raw_spin_unlock_irq(&ctx->lock);
2318 }
2319 
2320 /*
2321  * See perf_event_disable();
2322  */
2323 void perf_event_enable(struct perf_event *event)
2324 {
2325 	struct perf_event_context *ctx;
2326 
2327 	ctx = perf_event_ctx_lock(event);
2328 	_perf_event_enable(event);
2329 	perf_event_ctx_unlock(event, ctx);
2330 }
2331 EXPORT_SYMBOL_GPL(perf_event_enable);
2332 
2333 static int _perf_event_refresh(struct perf_event *event, int refresh)
2334 {
2335 	/*
2336 	 * not supported on inherited events
2337 	 */
2338 	if (event->attr.inherit || !is_sampling_event(event))
2339 		return -EINVAL;
2340 
2341 	atomic_add(refresh, &event->event_limit);
2342 	_perf_event_enable(event);
2343 
2344 	return 0;
2345 }
2346 
2347 /*
2348  * See perf_event_disable()
2349  */
2350 int perf_event_refresh(struct perf_event *event, int refresh)
2351 {
2352 	struct perf_event_context *ctx;
2353 	int ret;
2354 
2355 	ctx = perf_event_ctx_lock(event);
2356 	ret = _perf_event_refresh(event, refresh);
2357 	perf_event_ctx_unlock(event, ctx);
2358 
2359 	return ret;
2360 }
2361 EXPORT_SYMBOL_GPL(perf_event_refresh);
2362 
2363 static void ctx_sched_out(struct perf_event_context *ctx,
2364 			  struct perf_cpu_context *cpuctx,
2365 			  enum event_type_t event_type)
2366 {
2367 	struct perf_event *event;
2368 	int is_active = ctx->is_active;
2369 
2370 	ctx->is_active &= ~event_type;
2371 	if (likely(!ctx->nr_events))
2372 		return;
2373 
2374 	update_context_time(ctx);
2375 	update_cgrp_time_from_cpuctx(cpuctx);
2376 	if (!ctx->nr_active)
2377 		return;
2378 
2379 	perf_pmu_disable(ctx->pmu);
2380 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2381 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2382 			group_sched_out(event, cpuctx, ctx);
2383 	}
2384 
2385 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2386 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2387 			group_sched_out(event, cpuctx, ctx);
2388 	}
2389 	perf_pmu_enable(ctx->pmu);
2390 }
2391 
2392 /*
2393  * Test whether two contexts are equivalent, i.e. whether they have both been
2394  * cloned from the same version of the same context.
2395  *
2396  * Equivalence is measured using a generation number in the context that is
2397  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2398  * and list_del_event().
2399  */
2400 static int context_equiv(struct perf_event_context *ctx1,
2401 			 struct perf_event_context *ctx2)
2402 {
2403 	lockdep_assert_held(&ctx1->lock);
2404 	lockdep_assert_held(&ctx2->lock);
2405 
2406 	/* Pinning disables the swap optimization */
2407 	if (ctx1->pin_count || ctx2->pin_count)
2408 		return 0;
2409 
2410 	/* If ctx1 is the parent of ctx2 */
2411 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2412 		return 1;
2413 
2414 	/* If ctx2 is the parent of ctx1 */
2415 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2416 		return 1;
2417 
2418 	/*
2419 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2420 	 * hierarchy, see perf_event_init_context().
2421 	 */
2422 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2423 			ctx1->parent_gen == ctx2->parent_gen)
2424 		return 1;
2425 
2426 	/* Unmatched */
2427 	return 0;
2428 }
2429 
2430 static void __perf_event_sync_stat(struct perf_event *event,
2431 				     struct perf_event *next_event)
2432 {
2433 	u64 value;
2434 
2435 	if (!event->attr.inherit_stat)
2436 		return;
2437 
2438 	/*
2439 	 * Update the event value, we cannot use perf_event_read()
2440 	 * because we're in the middle of a context switch and have IRQs
2441 	 * disabled, which upsets smp_call_function_single(), however
2442 	 * we know the event must be on the current CPU, therefore we
2443 	 * don't need to use it.
2444 	 */
2445 	switch (event->state) {
2446 	case PERF_EVENT_STATE_ACTIVE:
2447 		event->pmu->read(event);
2448 		/* fall-through */
2449 
2450 	case PERF_EVENT_STATE_INACTIVE:
2451 		update_event_times(event);
2452 		break;
2453 
2454 	default:
2455 		break;
2456 	}
2457 
2458 	/*
2459 	 * In order to keep per-task stats reliable we need to flip the event
2460 	 * values when we flip the contexts.
2461 	 */
2462 	value = local64_read(&next_event->count);
2463 	value = local64_xchg(&event->count, value);
2464 	local64_set(&next_event->count, value);
2465 
2466 	swap(event->total_time_enabled, next_event->total_time_enabled);
2467 	swap(event->total_time_running, next_event->total_time_running);
2468 
2469 	/*
2470 	 * Since we swizzled the values, update the user visible data too.
2471 	 */
2472 	perf_event_update_userpage(event);
2473 	perf_event_update_userpage(next_event);
2474 }
2475 
2476 static void perf_event_sync_stat(struct perf_event_context *ctx,
2477 				   struct perf_event_context *next_ctx)
2478 {
2479 	struct perf_event *event, *next_event;
2480 
2481 	if (!ctx->nr_stat)
2482 		return;
2483 
2484 	update_context_time(ctx);
2485 
2486 	event = list_first_entry(&ctx->event_list,
2487 				   struct perf_event, event_entry);
2488 
2489 	next_event = list_first_entry(&next_ctx->event_list,
2490 					struct perf_event, event_entry);
2491 
2492 	while (&event->event_entry != &ctx->event_list &&
2493 	       &next_event->event_entry != &next_ctx->event_list) {
2494 
2495 		__perf_event_sync_stat(event, next_event);
2496 
2497 		event = list_next_entry(event, event_entry);
2498 		next_event = list_next_entry(next_event, event_entry);
2499 	}
2500 }
2501 
2502 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2503 					 struct task_struct *next)
2504 {
2505 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2506 	struct perf_event_context *next_ctx;
2507 	struct perf_event_context *parent, *next_parent;
2508 	struct perf_cpu_context *cpuctx;
2509 	int do_switch = 1;
2510 
2511 	if (likely(!ctx))
2512 		return;
2513 
2514 	cpuctx = __get_cpu_context(ctx);
2515 	if (!cpuctx->task_ctx)
2516 		return;
2517 
2518 	rcu_read_lock();
2519 	next_ctx = next->perf_event_ctxp[ctxn];
2520 	if (!next_ctx)
2521 		goto unlock;
2522 
2523 	parent = rcu_dereference(ctx->parent_ctx);
2524 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2525 
2526 	/* If neither context have a parent context; they cannot be clones. */
2527 	if (!parent && !next_parent)
2528 		goto unlock;
2529 
2530 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2531 		/*
2532 		 * Looks like the two contexts are clones, so we might be
2533 		 * able to optimize the context switch.  We lock both
2534 		 * contexts and check that they are clones under the
2535 		 * lock (including re-checking that neither has been
2536 		 * uncloned in the meantime).  It doesn't matter which
2537 		 * order we take the locks because no other cpu could
2538 		 * be trying to lock both of these tasks.
2539 		 */
2540 		raw_spin_lock(&ctx->lock);
2541 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2542 		if (context_equiv(ctx, next_ctx)) {
2543 			/*
2544 			 * XXX do we need a memory barrier of sorts
2545 			 * wrt to rcu_dereference() of perf_event_ctxp
2546 			 */
2547 			task->perf_event_ctxp[ctxn] = next_ctx;
2548 			next->perf_event_ctxp[ctxn] = ctx;
2549 			ctx->task = next;
2550 			next_ctx->task = task;
2551 
2552 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2553 
2554 			do_switch = 0;
2555 
2556 			perf_event_sync_stat(ctx, next_ctx);
2557 		}
2558 		raw_spin_unlock(&next_ctx->lock);
2559 		raw_spin_unlock(&ctx->lock);
2560 	}
2561 unlock:
2562 	rcu_read_unlock();
2563 
2564 	if (do_switch) {
2565 		raw_spin_lock(&ctx->lock);
2566 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2567 		cpuctx->task_ctx = NULL;
2568 		raw_spin_unlock(&ctx->lock);
2569 	}
2570 }
2571 
2572 void perf_sched_cb_dec(struct pmu *pmu)
2573 {
2574 	this_cpu_dec(perf_sched_cb_usages);
2575 }
2576 
2577 void perf_sched_cb_inc(struct pmu *pmu)
2578 {
2579 	this_cpu_inc(perf_sched_cb_usages);
2580 }
2581 
2582 /*
2583  * This function provides the context switch callback to the lower code
2584  * layer. It is invoked ONLY when the context switch callback is enabled.
2585  */
2586 static void perf_pmu_sched_task(struct task_struct *prev,
2587 				struct task_struct *next,
2588 				bool sched_in)
2589 {
2590 	struct perf_cpu_context *cpuctx;
2591 	struct pmu *pmu;
2592 	unsigned long flags;
2593 
2594 	if (prev == next)
2595 		return;
2596 
2597 	local_irq_save(flags);
2598 
2599 	rcu_read_lock();
2600 
2601 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2602 		if (pmu->sched_task) {
2603 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2604 
2605 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2606 
2607 			perf_pmu_disable(pmu);
2608 
2609 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2610 
2611 			perf_pmu_enable(pmu);
2612 
2613 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2614 		}
2615 	}
2616 
2617 	rcu_read_unlock();
2618 
2619 	local_irq_restore(flags);
2620 }
2621 
2622 #define for_each_task_context_nr(ctxn)					\
2623 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2624 
2625 /*
2626  * Called from scheduler to remove the events of the current task,
2627  * with interrupts disabled.
2628  *
2629  * We stop each event and update the event value in event->count.
2630  *
2631  * This does not protect us against NMI, but disable()
2632  * sets the disabled bit in the control field of event _before_
2633  * accessing the event control register. If a NMI hits, then it will
2634  * not restart the event.
2635  */
2636 void __perf_event_task_sched_out(struct task_struct *task,
2637 				 struct task_struct *next)
2638 {
2639 	int ctxn;
2640 
2641 	if (__this_cpu_read(perf_sched_cb_usages))
2642 		perf_pmu_sched_task(task, next, false);
2643 
2644 	for_each_task_context_nr(ctxn)
2645 		perf_event_context_sched_out(task, ctxn, next);
2646 
2647 	/*
2648 	 * if cgroup events exist on this CPU, then we need
2649 	 * to check if we have to switch out PMU state.
2650 	 * cgroup event are system-wide mode only
2651 	 */
2652 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2653 		perf_cgroup_sched_out(task, next);
2654 }
2655 
2656 static void task_ctx_sched_out(struct perf_event_context *ctx)
2657 {
2658 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2659 
2660 	if (!cpuctx->task_ctx)
2661 		return;
2662 
2663 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2664 		return;
2665 
2666 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2667 	cpuctx->task_ctx = NULL;
2668 }
2669 
2670 /*
2671  * Called with IRQs disabled
2672  */
2673 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2674 			      enum event_type_t event_type)
2675 {
2676 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2677 }
2678 
2679 static void
2680 ctx_pinned_sched_in(struct perf_event_context *ctx,
2681 		    struct perf_cpu_context *cpuctx)
2682 {
2683 	struct perf_event *event;
2684 
2685 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2686 		if (event->state <= PERF_EVENT_STATE_OFF)
2687 			continue;
2688 		if (!event_filter_match(event))
2689 			continue;
2690 
2691 		/* may need to reset tstamp_enabled */
2692 		if (is_cgroup_event(event))
2693 			perf_cgroup_mark_enabled(event, ctx);
2694 
2695 		if (group_can_go_on(event, cpuctx, 1))
2696 			group_sched_in(event, cpuctx, ctx);
2697 
2698 		/*
2699 		 * If this pinned group hasn't been scheduled,
2700 		 * put it in error state.
2701 		 */
2702 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2703 			update_group_times(event);
2704 			event->state = PERF_EVENT_STATE_ERROR;
2705 		}
2706 	}
2707 }
2708 
2709 static void
2710 ctx_flexible_sched_in(struct perf_event_context *ctx,
2711 		      struct perf_cpu_context *cpuctx)
2712 {
2713 	struct perf_event *event;
2714 	int can_add_hw = 1;
2715 
2716 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2717 		/* Ignore events in OFF or ERROR state */
2718 		if (event->state <= PERF_EVENT_STATE_OFF)
2719 			continue;
2720 		/*
2721 		 * Listen to the 'cpu' scheduling filter constraint
2722 		 * of events:
2723 		 */
2724 		if (!event_filter_match(event))
2725 			continue;
2726 
2727 		/* may need to reset tstamp_enabled */
2728 		if (is_cgroup_event(event))
2729 			perf_cgroup_mark_enabled(event, ctx);
2730 
2731 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2732 			if (group_sched_in(event, cpuctx, ctx))
2733 				can_add_hw = 0;
2734 		}
2735 	}
2736 }
2737 
2738 static void
2739 ctx_sched_in(struct perf_event_context *ctx,
2740 	     struct perf_cpu_context *cpuctx,
2741 	     enum event_type_t event_type,
2742 	     struct task_struct *task)
2743 {
2744 	u64 now;
2745 	int is_active = ctx->is_active;
2746 
2747 	ctx->is_active |= event_type;
2748 	if (likely(!ctx->nr_events))
2749 		return;
2750 
2751 	now = perf_clock();
2752 	ctx->timestamp = now;
2753 	perf_cgroup_set_timestamp(task, ctx);
2754 	/*
2755 	 * First go through the list and put on any pinned groups
2756 	 * in order to give them the best chance of going on.
2757 	 */
2758 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2759 		ctx_pinned_sched_in(ctx, cpuctx);
2760 
2761 	/* Then walk through the lower prio flexible groups */
2762 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2763 		ctx_flexible_sched_in(ctx, cpuctx);
2764 }
2765 
2766 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2767 			     enum event_type_t event_type,
2768 			     struct task_struct *task)
2769 {
2770 	struct perf_event_context *ctx = &cpuctx->ctx;
2771 
2772 	ctx_sched_in(ctx, cpuctx, event_type, task);
2773 }
2774 
2775 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2776 					struct task_struct *task)
2777 {
2778 	struct perf_cpu_context *cpuctx;
2779 
2780 	cpuctx = __get_cpu_context(ctx);
2781 	if (cpuctx->task_ctx == ctx)
2782 		return;
2783 
2784 	perf_ctx_lock(cpuctx, ctx);
2785 	perf_pmu_disable(ctx->pmu);
2786 	/*
2787 	 * We want to keep the following priority order:
2788 	 * cpu pinned (that don't need to move), task pinned,
2789 	 * cpu flexible, task flexible.
2790 	 */
2791 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2792 
2793 	if (ctx->nr_events)
2794 		cpuctx->task_ctx = ctx;
2795 
2796 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2797 
2798 	perf_pmu_enable(ctx->pmu);
2799 	perf_ctx_unlock(cpuctx, ctx);
2800 }
2801 
2802 /*
2803  * Called from scheduler to add the events of the current task
2804  * with interrupts disabled.
2805  *
2806  * We restore the event value and then enable it.
2807  *
2808  * This does not protect us against NMI, but enable()
2809  * sets the enabled bit in the control field of event _before_
2810  * accessing the event control register. If a NMI hits, then it will
2811  * keep the event running.
2812  */
2813 void __perf_event_task_sched_in(struct task_struct *prev,
2814 				struct task_struct *task)
2815 {
2816 	struct perf_event_context *ctx;
2817 	int ctxn;
2818 
2819 	for_each_task_context_nr(ctxn) {
2820 		ctx = task->perf_event_ctxp[ctxn];
2821 		if (likely(!ctx))
2822 			continue;
2823 
2824 		perf_event_context_sched_in(ctx, task);
2825 	}
2826 	/*
2827 	 * if cgroup events exist on this CPU, then we need
2828 	 * to check if we have to switch in PMU state.
2829 	 * cgroup event are system-wide mode only
2830 	 */
2831 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2832 		perf_cgroup_sched_in(prev, task);
2833 
2834 	if (__this_cpu_read(perf_sched_cb_usages))
2835 		perf_pmu_sched_task(prev, task, true);
2836 }
2837 
2838 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2839 {
2840 	u64 frequency = event->attr.sample_freq;
2841 	u64 sec = NSEC_PER_SEC;
2842 	u64 divisor, dividend;
2843 
2844 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2845 
2846 	count_fls = fls64(count);
2847 	nsec_fls = fls64(nsec);
2848 	frequency_fls = fls64(frequency);
2849 	sec_fls = 30;
2850 
2851 	/*
2852 	 * We got @count in @nsec, with a target of sample_freq HZ
2853 	 * the target period becomes:
2854 	 *
2855 	 *             @count * 10^9
2856 	 * period = -------------------
2857 	 *          @nsec * sample_freq
2858 	 *
2859 	 */
2860 
2861 	/*
2862 	 * Reduce accuracy by one bit such that @a and @b converge
2863 	 * to a similar magnitude.
2864 	 */
2865 #define REDUCE_FLS(a, b)		\
2866 do {					\
2867 	if (a##_fls > b##_fls) {	\
2868 		a >>= 1;		\
2869 		a##_fls--;		\
2870 	} else {			\
2871 		b >>= 1;		\
2872 		b##_fls--;		\
2873 	}				\
2874 } while (0)
2875 
2876 	/*
2877 	 * Reduce accuracy until either term fits in a u64, then proceed with
2878 	 * the other, so that finally we can do a u64/u64 division.
2879 	 */
2880 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2881 		REDUCE_FLS(nsec, frequency);
2882 		REDUCE_FLS(sec, count);
2883 	}
2884 
2885 	if (count_fls + sec_fls > 64) {
2886 		divisor = nsec * frequency;
2887 
2888 		while (count_fls + sec_fls > 64) {
2889 			REDUCE_FLS(count, sec);
2890 			divisor >>= 1;
2891 		}
2892 
2893 		dividend = count * sec;
2894 	} else {
2895 		dividend = count * sec;
2896 
2897 		while (nsec_fls + frequency_fls > 64) {
2898 			REDUCE_FLS(nsec, frequency);
2899 			dividend >>= 1;
2900 		}
2901 
2902 		divisor = nsec * frequency;
2903 	}
2904 
2905 	if (!divisor)
2906 		return dividend;
2907 
2908 	return div64_u64(dividend, divisor);
2909 }
2910 
2911 static DEFINE_PER_CPU(int, perf_throttled_count);
2912 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2913 
2914 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2915 {
2916 	struct hw_perf_event *hwc = &event->hw;
2917 	s64 period, sample_period;
2918 	s64 delta;
2919 
2920 	period = perf_calculate_period(event, nsec, count);
2921 
2922 	delta = (s64)(period - hwc->sample_period);
2923 	delta = (delta + 7) / 8; /* low pass filter */
2924 
2925 	sample_period = hwc->sample_period + delta;
2926 
2927 	if (!sample_period)
2928 		sample_period = 1;
2929 
2930 	hwc->sample_period = sample_period;
2931 
2932 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2933 		if (disable)
2934 			event->pmu->stop(event, PERF_EF_UPDATE);
2935 
2936 		local64_set(&hwc->period_left, 0);
2937 
2938 		if (disable)
2939 			event->pmu->start(event, PERF_EF_RELOAD);
2940 	}
2941 }
2942 
2943 /*
2944  * combine freq adjustment with unthrottling to avoid two passes over the
2945  * events. At the same time, make sure, having freq events does not change
2946  * the rate of unthrottling as that would introduce bias.
2947  */
2948 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2949 					   int needs_unthr)
2950 {
2951 	struct perf_event *event;
2952 	struct hw_perf_event *hwc;
2953 	u64 now, period = TICK_NSEC;
2954 	s64 delta;
2955 
2956 	/*
2957 	 * only need to iterate over all events iff:
2958 	 * - context have events in frequency mode (needs freq adjust)
2959 	 * - there are events to unthrottle on this cpu
2960 	 */
2961 	if (!(ctx->nr_freq || needs_unthr))
2962 		return;
2963 
2964 	raw_spin_lock(&ctx->lock);
2965 	perf_pmu_disable(ctx->pmu);
2966 
2967 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2968 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2969 			continue;
2970 
2971 		if (!event_filter_match(event))
2972 			continue;
2973 
2974 		perf_pmu_disable(event->pmu);
2975 
2976 		hwc = &event->hw;
2977 
2978 		if (hwc->interrupts == MAX_INTERRUPTS) {
2979 			hwc->interrupts = 0;
2980 			perf_log_throttle(event, 1);
2981 			event->pmu->start(event, 0);
2982 		}
2983 
2984 		if (!event->attr.freq || !event->attr.sample_freq)
2985 			goto next;
2986 
2987 		/*
2988 		 * stop the event and update event->count
2989 		 */
2990 		event->pmu->stop(event, PERF_EF_UPDATE);
2991 
2992 		now = local64_read(&event->count);
2993 		delta = now - hwc->freq_count_stamp;
2994 		hwc->freq_count_stamp = now;
2995 
2996 		/*
2997 		 * restart the event
2998 		 * reload only if value has changed
2999 		 * we have stopped the event so tell that
3000 		 * to perf_adjust_period() to avoid stopping it
3001 		 * twice.
3002 		 */
3003 		if (delta > 0)
3004 			perf_adjust_period(event, period, delta, false);
3005 
3006 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3007 	next:
3008 		perf_pmu_enable(event->pmu);
3009 	}
3010 
3011 	perf_pmu_enable(ctx->pmu);
3012 	raw_spin_unlock(&ctx->lock);
3013 }
3014 
3015 /*
3016  * Round-robin a context's events:
3017  */
3018 static void rotate_ctx(struct perf_event_context *ctx)
3019 {
3020 	/*
3021 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3022 	 * disabled by the inheritance code.
3023 	 */
3024 	if (!ctx->rotate_disable)
3025 		list_rotate_left(&ctx->flexible_groups);
3026 }
3027 
3028 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3029 {
3030 	struct perf_event_context *ctx = NULL;
3031 	int rotate = 0;
3032 
3033 	if (cpuctx->ctx.nr_events) {
3034 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3035 			rotate = 1;
3036 	}
3037 
3038 	ctx = cpuctx->task_ctx;
3039 	if (ctx && ctx->nr_events) {
3040 		if (ctx->nr_events != ctx->nr_active)
3041 			rotate = 1;
3042 	}
3043 
3044 	if (!rotate)
3045 		goto done;
3046 
3047 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3048 	perf_pmu_disable(cpuctx->ctx.pmu);
3049 
3050 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3051 	if (ctx)
3052 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3053 
3054 	rotate_ctx(&cpuctx->ctx);
3055 	if (ctx)
3056 		rotate_ctx(ctx);
3057 
3058 	perf_event_sched_in(cpuctx, ctx, current);
3059 
3060 	perf_pmu_enable(cpuctx->ctx.pmu);
3061 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3062 done:
3063 
3064 	return rotate;
3065 }
3066 
3067 #ifdef CONFIG_NO_HZ_FULL
3068 bool perf_event_can_stop_tick(void)
3069 {
3070 	if (atomic_read(&nr_freq_events) ||
3071 	    __this_cpu_read(perf_throttled_count))
3072 		return false;
3073 	else
3074 		return true;
3075 }
3076 #endif
3077 
3078 void perf_event_task_tick(void)
3079 {
3080 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3081 	struct perf_event_context *ctx, *tmp;
3082 	int throttled;
3083 
3084 	WARN_ON(!irqs_disabled());
3085 
3086 	__this_cpu_inc(perf_throttled_seq);
3087 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3088 
3089 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3090 		perf_adjust_freq_unthr_context(ctx, throttled);
3091 }
3092 
3093 static int event_enable_on_exec(struct perf_event *event,
3094 				struct perf_event_context *ctx)
3095 {
3096 	if (!event->attr.enable_on_exec)
3097 		return 0;
3098 
3099 	event->attr.enable_on_exec = 0;
3100 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3101 		return 0;
3102 
3103 	__perf_event_mark_enabled(event);
3104 
3105 	return 1;
3106 }
3107 
3108 /*
3109  * Enable all of a task's events that have been marked enable-on-exec.
3110  * This expects task == current.
3111  */
3112 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3113 {
3114 	struct perf_event_context *clone_ctx = NULL;
3115 	struct perf_event *event;
3116 	unsigned long flags;
3117 	int enabled = 0;
3118 	int ret;
3119 
3120 	local_irq_save(flags);
3121 	if (!ctx || !ctx->nr_events)
3122 		goto out;
3123 
3124 	/*
3125 	 * We must ctxsw out cgroup events to avoid conflict
3126 	 * when invoking perf_task_event_sched_in() later on
3127 	 * in this function. Otherwise we end up trying to
3128 	 * ctxswin cgroup events which are already scheduled
3129 	 * in.
3130 	 */
3131 	perf_cgroup_sched_out(current, NULL);
3132 
3133 	raw_spin_lock(&ctx->lock);
3134 	task_ctx_sched_out(ctx);
3135 
3136 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3137 		ret = event_enable_on_exec(event, ctx);
3138 		if (ret)
3139 			enabled = 1;
3140 	}
3141 
3142 	/*
3143 	 * Unclone this context if we enabled any event.
3144 	 */
3145 	if (enabled)
3146 		clone_ctx = unclone_ctx(ctx);
3147 
3148 	raw_spin_unlock(&ctx->lock);
3149 
3150 	/*
3151 	 * Also calls ctxswin for cgroup events, if any:
3152 	 */
3153 	perf_event_context_sched_in(ctx, ctx->task);
3154 out:
3155 	local_irq_restore(flags);
3156 
3157 	if (clone_ctx)
3158 		put_ctx(clone_ctx);
3159 }
3160 
3161 void perf_event_exec(void)
3162 {
3163 	struct perf_event_context *ctx;
3164 	int ctxn;
3165 
3166 	rcu_read_lock();
3167 	for_each_task_context_nr(ctxn) {
3168 		ctx = current->perf_event_ctxp[ctxn];
3169 		if (!ctx)
3170 			continue;
3171 
3172 		perf_event_enable_on_exec(ctx);
3173 	}
3174 	rcu_read_unlock();
3175 }
3176 
3177 /*
3178  * Cross CPU call to read the hardware event
3179  */
3180 static void __perf_event_read(void *info)
3181 {
3182 	struct perf_event *event = info;
3183 	struct perf_event_context *ctx = event->ctx;
3184 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3185 
3186 	/*
3187 	 * If this is a task context, we need to check whether it is
3188 	 * the current task context of this cpu.  If not it has been
3189 	 * scheduled out before the smp call arrived.  In that case
3190 	 * event->count would have been updated to a recent sample
3191 	 * when the event was scheduled out.
3192 	 */
3193 	if (ctx->task && cpuctx->task_ctx != ctx)
3194 		return;
3195 
3196 	raw_spin_lock(&ctx->lock);
3197 	if (ctx->is_active) {
3198 		update_context_time(ctx);
3199 		update_cgrp_time_from_event(event);
3200 	}
3201 	update_event_times(event);
3202 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3203 		event->pmu->read(event);
3204 	raw_spin_unlock(&ctx->lock);
3205 }
3206 
3207 static inline u64 perf_event_count(struct perf_event *event)
3208 {
3209 	if (event->pmu->count)
3210 		return event->pmu->count(event);
3211 
3212 	return __perf_event_count(event);
3213 }
3214 
3215 static u64 perf_event_read(struct perf_event *event)
3216 {
3217 	/*
3218 	 * If event is enabled and currently active on a CPU, update the
3219 	 * value in the event structure:
3220 	 */
3221 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3222 		smp_call_function_single(event->oncpu,
3223 					 __perf_event_read, event, 1);
3224 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3225 		struct perf_event_context *ctx = event->ctx;
3226 		unsigned long flags;
3227 
3228 		raw_spin_lock_irqsave(&ctx->lock, flags);
3229 		/*
3230 		 * may read while context is not active
3231 		 * (e.g., thread is blocked), in that case
3232 		 * we cannot update context time
3233 		 */
3234 		if (ctx->is_active) {
3235 			update_context_time(ctx);
3236 			update_cgrp_time_from_event(event);
3237 		}
3238 		update_event_times(event);
3239 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3240 	}
3241 
3242 	return perf_event_count(event);
3243 }
3244 
3245 /*
3246  * Initialize the perf_event context in a task_struct:
3247  */
3248 static void __perf_event_init_context(struct perf_event_context *ctx)
3249 {
3250 	raw_spin_lock_init(&ctx->lock);
3251 	mutex_init(&ctx->mutex);
3252 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3253 	INIT_LIST_HEAD(&ctx->pinned_groups);
3254 	INIT_LIST_HEAD(&ctx->flexible_groups);
3255 	INIT_LIST_HEAD(&ctx->event_list);
3256 	atomic_set(&ctx->refcount, 1);
3257 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3258 }
3259 
3260 static struct perf_event_context *
3261 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3262 {
3263 	struct perf_event_context *ctx;
3264 
3265 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3266 	if (!ctx)
3267 		return NULL;
3268 
3269 	__perf_event_init_context(ctx);
3270 	if (task) {
3271 		ctx->task = task;
3272 		get_task_struct(task);
3273 	}
3274 	ctx->pmu = pmu;
3275 
3276 	return ctx;
3277 }
3278 
3279 static struct task_struct *
3280 find_lively_task_by_vpid(pid_t vpid)
3281 {
3282 	struct task_struct *task;
3283 	int err;
3284 
3285 	rcu_read_lock();
3286 	if (!vpid)
3287 		task = current;
3288 	else
3289 		task = find_task_by_vpid(vpid);
3290 	if (task)
3291 		get_task_struct(task);
3292 	rcu_read_unlock();
3293 
3294 	if (!task)
3295 		return ERR_PTR(-ESRCH);
3296 
3297 	/* Reuse ptrace permission checks for now. */
3298 	err = -EACCES;
3299 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3300 		goto errout;
3301 
3302 	return task;
3303 errout:
3304 	put_task_struct(task);
3305 	return ERR_PTR(err);
3306 
3307 }
3308 
3309 /*
3310  * Returns a matching context with refcount and pincount.
3311  */
3312 static struct perf_event_context *
3313 find_get_context(struct pmu *pmu, struct task_struct *task,
3314 		struct perf_event *event)
3315 {
3316 	struct perf_event_context *ctx, *clone_ctx = NULL;
3317 	struct perf_cpu_context *cpuctx;
3318 	void *task_ctx_data = NULL;
3319 	unsigned long flags;
3320 	int ctxn, err;
3321 	int cpu = event->cpu;
3322 
3323 	if (!task) {
3324 		/* Must be root to operate on a CPU event: */
3325 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3326 			return ERR_PTR(-EACCES);
3327 
3328 		/*
3329 		 * We could be clever and allow to attach a event to an
3330 		 * offline CPU and activate it when the CPU comes up, but
3331 		 * that's for later.
3332 		 */
3333 		if (!cpu_online(cpu))
3334 			return ERR_PTR(-ENODEV);
3335 
3336 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3337 		ctx = &cpuctx->ctx;
3338 		get_ctx(ctx);
3339 		++ctx->pin_count;
3340 
3341 		return ctx;
3342 	}
3343 
3344 	err = -EINVAL;
3345 	ctxn = pmu->task_ctx_nr;
3346 	if (ctxn < 0)
3347 		goto errout;
3348 
3349 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3350 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3351 		if (!task_ctx_data) {
3352 			err = -ENOMEM;
3353 			goto errout;
3354 		}
3355 	}
3356 
3357 retry:
3358 	ctx = perf_lock_task_context(task, ctxn, &flags);
3359 	if (ctx) {
3360 		clone_ctx = unclone_ctx(ctx);
3361 		++ctx->pin_count;
3362 
3363 		if (task_ctx_data && !ctx->task_ctx_data) {
3364 			ctx->task_ctx_data = task_ctx_data;
3365 			task_ctx_data = NULL;
3366 		}
3367 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3368 
3369 		if (clone_ctx)
3370 			put_ctx(clone_ctx);
3371 	} else {
3372 		ctx = alloc_perf_context(pmu, task);
3373 		err = -ENOMEM;
3374 		if (!ctx)
3375 			goto errout;
3376 
3377 		if (task_ctx_data) {
3378 			ctx->task_ctx_data = task_ctx_data;
3379 			task_ctx_data = NULL;
3380 		}
3381 
3382 		err = 0;
3383 		mutex_lock(&task->perf_event_mutex);
3384 		/*
3385 		 * If it has already passed perf_event_exit_task().
3386 		 * we must see PF_EXITING, it takes this mutex too.
3387 		 */
3388 		if (task->flags & PF_EXITING)
3389 			err = -ESRCH;
3390 		else if (task->perf_event_ctxp[ctxn])
3391 			err = -EAGAIN;
3392 		else {
3393 			get_ctx(ctx);
3394 			++ctx->pin_count;
3395 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3396 		}
3397 		mutex_unlock(&task->perf_event_mutex);
3398 
3399 		if (unlikely(err)) {
3400 			put_ctx(ctx);
3401 
3402 			if (err == -EAGAIN)
3403 				goto retry;
3404 			goto errout;
3405 		}
3406 	}
3407 
3408 	kfree(task_ctx_data);
3409 	return ctx;
3410 
3411 errout:
3412 	kfree(task_ctx_data);
3413 	return ERR_PTR(err);
3414 }
3415 
3416 static void perf_event_free_filter(struct perf_event *event);
3417 static void perf_event_free_bpf_prog(struct perf_event *event);
3418 
3419 static void free_event_rcu(struct rcu_head *head)
3420 {
3421 	struct perf_event *event;
3422 
3423 	event = container_of(head, struct perf_event, rcu_head);
3424 	if (event->ns)
3425 		put_pid_ns(event->ns);
3426 	perf_event_free_filter(event);
3427 	kfree(event);
3428 }
3429 
3430 static void ring_buffer_attach(struct perf_event *event,
3431 			       struct ring_buffer *rb);
3432 
3433 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3434 {
3435 	if (event->parent)
3436 		return;
3437 
3438 	if (is_cgroup_event(event))
3439 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3440 }
3441 
3442 static void unaccount_event(struct perf_event *event)
3443 {
3444 	if (event->parent)
3445 		return;
3446 
3447 	if (event->attach_state & PERF_ATTACH_TASK)
3448 		static_key_slow_dec_deferred(&perf_sched_events);
3449 	if (event->attr.mmap || event->attr.mmap_data)
3450 		atomic_dec(&nr_mmap_events);
3451 	if (event->attr.comm)
3452 		atomic_dec(&nr_comm_events);
3453 	if (event->attr.task)
3454 		atomic_dec(&nr_task_events);
3455 	if (event->attr.freq)
3456 		atomic_dec(&nr_freq_events);
3457 	if (is_cgroup_event(event))
3458 		static_key_slow_dec_deferred(&perf_sched_events);
3459 	if (has_branch_stack(event))
3460 		static_key_slow_dec_deferred(&perf_sched_events);
3461 
3462 	unaccount_event_cpu(event, event->cpu);
3463 }
3464 
3465 /*
3466  * The following implement mutual exclusion of events on "exclusive" pmus
3467  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3468  * at a time, so we disallow creating events that might conflict, namely:
3469  *
3470  *  1) cpu-wide events in the presence of per-task events,
3471  *  2) per-task events in the presence of cpu-wide events,
3472  *  3) two matching events on the same context.
3473  *
3474  * The former two cases are handled in the allocation path (perf_event_alloc(),
3475  * __free_event()), the latter -- before the first perf_install_in_context().
3476  */
3477 static int exclusive_event_init(struct perf_event *event)
3478 {
3479 	struct pmu *pmu = event->pmu;
3480 
3481 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3482 		return 0;
3483 
3484 	/*
3485 	 * Prevent co-existence of per-task and cpu-wide events on the
3486 	 * same exclusive pmu.
3487 	 *
3488 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3489 	 * events on this "exclusive" pmu, positive means there are
3490 	 * per-task events.
3491 	 *
3492 	 * Since this is called in perf_event_alloc() path, event::ctx
3493 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3494 	 * to mean "per-task event", because unlike other attach states it
3495 	 * never gets cleared.
3496 	 */
3497 	if (event->attach_state & PERF_ATTACH_TASK) {
3498 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3499 			return -EBUSY;
3500 	} else {
3501 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3502 			return -EBUSY;
3503 	}
3504 
3505 	return 0;
3506 }
3507 
3508 static void exclusive_event_destroy(struct perf_event *event)
3509 {
3510 	struct pmu *pmu = event->pmu;
3511 
3512 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3513 		return;
3514 
3515 	/* see comment in exclusive_event_init() */
3516 	if (event->attach_state & PERF_ATTACH_TASK)
3517 		atomic_dec(&pmu->exclusive_cnt);
3518 	else
3519 		atomic_inc(&pmu->exclusive_cnt);
3520 }
3521 
3522 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3523 {
3524 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3525 	    (e1->cpu == e2->cpu ||
3526 	     e1->cpu == -1 ||
3527 	     e2->cpu == -1))
3528 		return true;
3529 	return false;
3530 }
3531 
3532 /* Called under the same ctx::mutex as perf_install_in_context() */
3533 static bool exclusive_event_installable(struct perf_event *event,
3534 					struct perf_event_context *ctx)
3535 {
3536 	struct perf_event *iter_event;
3537 	struct pmu *pmu = event->pmu;
3538 
3539 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3540 		return true;
3541 
3542 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3543 		if (exclusive_event_match(iter_event, event))
3544 			return false;
3545 	}
3546 
3547 	return true;
3548 }
3549 
3550 static void __free_event(struct perf_event *event)
3551 {
3552 	if (!event->parent) {
3553 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3554 			put_callchain_buffers();
3555 	}
3556 
3557 	perf_event_free_bpf_prog(event);
3558 
3559 	if (event->destroy)
3560 		event->destroy(event);
3561 
3562 	if (event->ctx)
3563 		put_ctx(event->ctx);
3564 
3565 	if (event->pmu) {
3566 		exclusive_event_destroy(event);
3567 		module_put(event->pmu->module);
3568 	}
3569 
3570 	call_rcu(&event->rcu_head, free_event_rcu);
3571 }
3572 
3573 static void _free_event(struct perf_event *event)
3574 {
3575 	irq_work_sync(&event->pending);
3576 
3577 	unaccount_event(event);
3578 
3579 	if (event->rb) {
3580 		/*
3581 		 * Can happen when we close an event with re-directed output.
3582 		 *
3583 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3584 		 * over us; possibly making our ring_buffer_put() the last.
3585 		 */
3586 		mutex_lock(&event->mmap_mutex);
3587 		ring_buffer_attach(event, NULL);
3588 		mutex_unlock(&event->mmap_mutex);
3589 	}
3590 
3591 	if (is_cgroup_event(event))
3592 		perf_detach_cgroup(event);
3593 
3594 	__free_event(event);
3595 }
3596 
3597 /*
3598  * Used to free events which have a known refcount of 1, such as in error paths
3599  * where the event isn't exposed yet and inherited events.
3600  */
3601 static void free_event(struct perf_event *event)
3602 {
3603 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3604 				"unexpected event refcount: %ld; ptr=%p\n",
3605 				atomic_long_read(&event->refcount), event)) {
3606 		/* leak to avoid use-after-free */
3607 		return;
3608 	}
3609 
3610 	_free_event(event);
3611 }
3612 
3613 /*
3614  * Remove user event from the owner task.
3615  */
3616 static void perf_remove_from_owner(struct perf_event *event)
3617 {
3618 	struct task_struct *owner;
3619 
3620 	rcu_read_lock();
3621 	owner = ACCESS_ONCE(event->owner);
3622 	/*
3623 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3624 	 * !owner it means the list deletion is complete and we can indeed
3625 	 * free this event, otherwise we need to serialize on
3626 	 * owner->perf_event_mutex.
3627 	 */
3628 	smp_read_barrier_depends();
3629 	if (owner) {
3630 		/*
3631 		 * Since delayed_put_task_struct() also drops the last
3632 		 * task reference we can safely take a new reference
3633 		 * while holding the rcu_read_lock().
3634 		 */
3635 		get_task_struct(owner);
3636 	}
3637 	rcu_read_unlock();
3638 
3639 	if (owner) {
3640 		/*
3641 		 * If we're here through perf_event_exit_task() we're already
3642 		 * holding ctx->mutex which would be an inversion wrt. the
3643 		 * normal lock order.
3644 		 *
3645 		 * However we can safely take this lock because its the child
3646 		 * ctx->mutex.
3647 		 */
3648 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3649 
3650 		/*
3651 		 * We have to re-check the event->owner field, if it is cleared
3652 		 * we raced with perf_event_exit_task(), acquiring the mutex
3653 		 * ensured they're done, and we can proceed with freeing the
3654 		 * event.
3655 		 */
3656 		if (event->owner)
3657 			list_del_init(&event->owner_entry);
3658 		mutex_unlock(&owner->perf_event_mutex);
3659 		put_task_struct(owner);
3660 	}
3661 }
3662 
3663 static void put_event(struct perf_event *event)
3664 {
3665 	struct perf_event_context *ctx;
3666 
3667 	if (!atomic_long_dec_and_test(&event->refcount))
3668 		return;
3669 
3670 	if (!is_kernel_event(event))
3671 		perf_remove_from_owner(event);
3672 
3673 	/*
3674 	 * There are two ways this annotation is useful:
3675 	 *
3676 	 *  1) there is a lock recursion from perf_event_exit_task
3677 	 *     see the comment there.
3678 	 *
3679 	 *  2) there is a lock-inversion with mmap_sem through
3680 	 *     perf_event_read_group(), which takes faults while
3681 	 *     holding ctx->mutex, however this is called after
3682 	 *     the last filedesc died, so there is no possibility
3683 	 *     to trigger the AB-BA case.
3684 	 */
3685 	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3686 	WARN_ON_ONCE(ctx->parent_ctx);
3687 	perf_remove_from_context(event, true);
3688 	perf_event_ctx_unlock(event, ctx);
3689 
3690 	_free_event(event);
3691 }
3692 
3693 int perf_event_release_kernel(struct perf_event *event)
3694 {
3695 	put_event(event);
3696 	return 0;
3697 }
3698 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3699 
3700 /*
3701  * Called when the last reference to the file is gone.
3702  */
3703 static int perf_release(struct inode *inode, struct file *file)
3704 {
3705 	put_event(file->private_data);
3706 	return 0;
3707 }
3708 
3709 /*
3710  * Remove all orphanes events from the context.
3711  */
3712 static void orphans_remove_work(struct work_struct *work)
3713 {
3714 	struct perf_event_context *ctx;
3715 	struct perf_event *event, *tmp;
3716 
3717 	ctx = container_of(work, struct perf_event_context,
3718 			   orphans_remove.work);
3719 
3720 	mutex_lock(&ctx->mutex);
3721 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3722 		struct perf_event *parent_event = event->parent;
3723 
3724 		if (!is_orphaned_child(event))
3725 			continue;
3726 
3727 		perf_remove_from_context(event, true);
3728 
3729 		mutex_lock(&parent_event->child_mutex);
3730 		list_del_init(&event->child_list);
3731 		mutex_unlock(&parent_event->child_mutex);
3732 
3733 		free_event(event);
3734 		put_event(parent_event);
3735 	}
3736 
3737 	raw_spin_lock_irq(&ctx->lock);
3738 	ctx->orphans_remove_sched = false;
3739 	raw_spin_unlock_irq(&ctx->lock);
3740 	mutex_unlock(&ctx->mutex);
3741 
3742 	put_ctx(ctx);
3743 }
3744 
3745 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3746 {
3747 	struct perf_event *child;
3748 	u64 total = 0;
3749 
3750 	*enabled = 0;
3751 	*running = 0;
3752 
3753 	mutex_lock(&event->child_mutex);
3754 	total += perf_event_read(event);
3755 	*enabled += event->total_time_enabled +
3756 			atomic64_read(&event->child_total_time_enabled);
3757 	*running += event->total_time_running +
3758 			atomic64_read(&event->child_total_time_running);
3759 
3760 	list_for_each_entry(child, &event->child_list, child_list) {
3761 		total += perf_event_read(child);
3762 		*enabled += child->total_time_enabled;
3763 		*running += child->total_time_running;
3764 	}
3765 	mutex_unlock(&event->child_mutex);
3766 
3767 	return total;
3768 }
3769 EXPORT_SYMBOL_GPL(perf_event_read_value);
3770 
3771 static int perf_event_read_group(struct perf_event *event,
3772 				   u64 read_format, char __user *buf)
3773 {
3774 	struct perf_event *leader = event->group_leader, *sub;
3775 	struct perf_event_context *ctx = leader->ctx;
3776 	int n = 0, size = 0, ret;
3777 	u64 count, enabled, running;
3778 	u64 values[5];
3779 
3780 	lockdep_assert_held(&ctx->mutex);
3781 
3782 	count = perf_event_read_value(leader, &enabled, &running);
3783 
3784 	values[n++] = 1 + leader->nr_siblings;
3785 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3786 		values[n++] = enabled;
3787 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3788 		values[n++] = running;
3789 	values[n++] = count;
3790 	if (read_format & PERF_FORMAT_ID)
3791 		values[n++] = primary_event_id(leader);
3792 
3793 	size = n * sizeof(u64);
3794 
3795 	if (copy_to_user(buf, values, size))
3796 		return -EFAULT;
3797 
3798 	ret = size;
3799 
3800 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3801 		n = 0;
3802 
3803 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3804 		if (read_format & PERF_FORMAT_ID)
3805 			values[n++] = primary_event_id(sub);
3806 
3807 		size = n * sizeof(u64);
3808 
3809 		if (copy_to_user(buf + ret, values, size)) {
3810 			return -EFAULT;
3811 		}
3812 
3813 		ret += size;
3814 	}
3815 
3816 	return ret;
3817 }
3818 
3819 static int perf_event_read_one(struct perf_event *event,
3820 				 u64 read_format, char __user *buf)
3821 {
3822 	u64 enabled, running;
3823 	u64 values[4];
3824 	int n = 0;
3825 
3826 	values[n++] = perf_event_read_value(event, &enabled, &running);
3827 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3828 		values[n++] = enabled;
3829 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3830 		values[n++] = running;
3831 	if (read_format & PERF_FORMAT_ID)
3832 		values[n++] = primary_event_id(event);
3833 
3834 	if (copy_to_user(buf, values, n * sizeof(u64)))
3835 		return -EFAULT;
3836 
3837 	return n * sizeof(u64);
3838 }
3839 
3840 static bool is_event_hup(struct perf_event *event)
3841 {
3842 	bool no_children;
3843 
3844 	if (event->state != PERF_EVENT_STATE_EXIT)
3845 		return false;
3846 
3847 	mutex_lock(&event->child_mutex);
3848 	no_children = list_empty(&event->child_list);
3849 	mutex_unlock(&event->child_mutex);
3850 	return no_children;
3851 }
3852 
3853 /*
3854  * Read the performance event - simple non blocking version for now
3855  */
3856 static ssize_t
3857 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3858 {
3859 	u64 read_format = event->attr.read_format;
3860 	int ret;
3861 
3862 	/*
3863 	 * Return end-of-file for a read on a event that is in
3864 	 * error state (i.e. because it was pinned but it couldn't be
3865 	 * scheduled on to the CPU at some point).
3866 	 */
3867 	if (event->state == PERF_EVENT_STATE_ERROR)
3868 		return 0;
3869 
3870 	if (count < event->read_size)
3871 		return -ENOSPC;
3872 
3873 	WARN_ON_ONCE(event->ctx->parent_ctx);
3874 	if (read_format & PERF_FORMAT_GROUP)
3875 		ret = perf_event_read_group(event, read_format, buf);
3876 	else
3877 		ret = perf_event_read_one(event, read_format, buf);
3878 
3879 	return ret;
3880 }
3881 
3882 static ssize_t
3883 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3884 {
3885 	struct perf_event *event = file->private_data;
3886 	struct perf_event_context *ctx;
3887 	int ret;
3888 
3889 	ctx = perf_event_ctx_lock(event);
3890 	ret = perf_read_hw(event, buf, count);
3891 	perf_event_ctx_unlock(event, ctx);
3892 
3893 	return ret;
3894 }
3895 
3896 static unsigned int perf_poll(struct file *file, poll_table *wait)
3897 {
3898 	struct perf_event *event = file->private_data;
3899 	struct ring_buffer *rb;
3900 	unsigned int events = POLLHUP;
3901 
3902 	poll_wait(file, &event->waitq, wait);
3903 
3904 	if (is_event_hup(event))
3905 		return events;
3906 
3907 	/*
3908 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3909 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3910 	 */
3911 	mutex_lock(&event->mmap_mutex);
3912 	rb = event->rb;
3913 	if (rb)
3914 		events = atomic_xchg(&rb->poll, 0);
3915 	mutex_unlock(&event->mmap_mutex);
3916 	return events;
3917 }
3918 
3919 static void _perf_event_reset(struct perf_event *event)
3920 {
3921 	(void)perf_event_read(event);
3922 	local64_set(&event->count, 0);
3923 	perf_event_update_userpage(event);
3924 }
3925 
3926 /*
3927  * Holding the top-level event's child_mutex means that any
3928  * descendant process that has inherited this event will block
3929  * in sync_child_event if it goes to exit, thus satisfying the
3930  * task existence requirements of perf_event_enable/disable.
3931  */
3932 static void perf_event_for_each_child(struct perf_event *event,
3933 					void (*func)(struct perf_event *))
3934 {
3935 	struct perf_event *child;
3936 
3937 	WARN_ON_ONCE(event->ctx->parent_ctx);
3938 
3939 	mutex_lock(&event->child_mutex);
3940 	func(event);
3941 	list_for_each_entry(child, &event->child_list, child_list)
3942 		func(child);
3943 	mutex_unlock(&event->child_mutex);
3944 }
3945 
3946 static void perf_event_for_each(struct perf_event *event,
3947 				  void (*func)(struct perf_event *))
3948 {
3949 	struct perf_event_context *ctx = event->ctx;
3950 	struct perf_event *sibling;
3951 
3952 	lockdep_assert_held(&ctx->mutex);
3953 
3954 	event = event->group_leader;
3955 
3956 	perf_event_for_each_child(event, func);
3957 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3958 		perf_event_for_each_child(sibling, func);
3959 }
3960 
3961 struct period_event {
3962 	struct perf_event *event;
3963 	u64 value;
3964 };
3965 
3966 static int __perf_event_period(void *info)
3967 {
3968 	struct period_event *pe = info;
3969 	struct perf_event *event = pe->event;
3970 	struct perf_event_context *ctx = event->ctx;
3971 	u64 value = pe->value;
3972 	bool active;
3973 
3974 	raw_spin_lock(&ctx->lock);
3975 	if (event->attr.freq) {
3976 		event->attr.sample_freq = value;
3977 	} else {
3978 		event->attr.sample_period = value;
3979 		event->hw.sample_period = value;
3980 	}
3981 
3982 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
3983 	if (active) {
3984 		perf_pmu_disable(ctx->pmu);
3985 		event->pmu->stop(event, PERF_EF_UPDATE);
3986 	}
3987 
3988 	local64_set(&event->hw.period_left, 0);
3989 
3990 	if (active) {
3991 		event->pmu->start(event, PERF_EF_RELOAD);
3992 		perf_pmu_enable(ctx->pmu);
3993 	}
3994 	raw_spin_unlock(&ctx->lock);
3995 
3996 	return 0;
3997 }
3998 
3999 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4000 {
4001 	struct period_event pe = { .event = event, };
4002 	struct perf_event_context *ctx = event->ctx;
4003 	struct task_struct *task;
4004 	u64 value;
4005 
4006 	if (!is_sampling_event(event))
4007 		return -EINVAL;
4008 
4009 	if (copy_from_user(&value, arg, sizeof(value)))
4010 		return -EFAULT;
4011 
4012 	if (!value)
4013 		return -EINVAL;
4014 
4015 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4016 		return -EINVAL;
4017 
4018 	task = ctx->task;
4019 	pe.value = value;
4020 
4021 	if (!task) {
4022 		cpu_function_call(event->cpu, __perf_event_period, &pe);
4023 		return 0;
4024 	}
4025 
4026 retry:
4027 	if (!task_function_call(task, __perf_event_period, &pe))
4028 		return 0;
4029 
4030 	raw_spin_lock_irq(&ctx->lock);
4031 	if (ctx->is_active) {
4032 		raw_spin_unlock_irq(&ctx->lock);
4033 		task = ctx->task;
4034 		goto retry;
4035 	}
4036 
4037 	__perf_event_period(&pe);
4038 	raw_spin_unlock_irq(&ctx->lock);
4039 
4040 	return 0;
4041 }
4042 
4043 static const struct file_operations perf_fops;
4044 
4045 static inline int perf_fget_light(int fd, struct fd *p)
4046 {
4047 	struct fd f = fdget(fd);
4048 	if (!f.file)
4049 		return -EBADF;
4050 
4051 	if (f.file->f_op != &perf_fops) {
4052 		fdput(f);
4053 		return -EBADF;
4054 	}
4055 	*p = f;
4056 	return 0;
4057 }
4058 
4059 static int perf_event_set_output(struct perf_event *event,
4060 				 struct perf_event *output_event);
4061 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4062 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4063 
4064 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4065 {
4066 	void (*func)(struct perf_event *);
4067 	u32 flags = arg;
4068 
4069 	switch (cmd) {
4070 	case PERF_EVENT_IOC_ENABLE:
4071 		func = _perf_event_enable;
4072 		break;
4073 	case PERF_EVENT_IOC_DISABLE:
4074 		func = _perf_event_disable;
4075 		break;
4076 	case PERF_EVENT_IOC_RESET:
4077 		func = _perf_event_reset;
4078 		break;
4079 
4080 	case PERF_EVENT_IOC_REFRESH:
4081 		return _perf_event_refresh(event, arg);
4082 
4083 	case PERF_EVENT_IOC_PERIOD:
4084 		return perf_event_period(event, (u64 __user *)arg);
4085 
4086 	case PERF_EVENT_IOC_ID:
4087 	{
4088 		u64 id = primary_event_id(event);
4089 
4090 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4091 			return -EFAULT;
4092 		return 0;
4093 	}
4094 
4095 	case PERF_EVENT_IOC_SET_OUTPUT:
4096 	{
4097 		int ret;
4098 		if (arg != -1) {
4099 			struct perf_event *output_event;
4100 			struct fd output;
4101 			ret = perf_fget_light(arg, &output);
4102 			if (ret)
4103 				return ret;
4104 			output_event = output.file->private_data;
4105 			ret = perf_event_set_output(event, output_event);
4106 			fdput(output);
4107 		} else {
4108 			ret = perf_event_set_output(event, NULL);
4109 		}
4110 		return ret;
4111 	}
4112 
4113 	case PERF_EVENT_IOC_SET_FILTER:
4114 		return perf_event_set_filter(event, (void __user *)arg);
4115 
4116 	case PERF_EVENT_IOC_SET_BPF:
4117 		return perf_event_set_bpf_prog(event, arg);
4118 
4119 	default:
4120 		return -ENOTTY;
4121 	}
4122 
4123 	if (flags & PERF_IOC_FLAG_GROUP)
4124 		perf_event_for_each(event, func);
4125 	else
4126 		perf_event_for_each_child(event, func);
4127 
4128 	return 0;
4129 }
4130 
4131 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4132 {
4133 	struct perf_event *event = file->private_data;
4134 	struct perf_event_context *ctx;
4135 	long ret;
4136 
4137 	ctx = perf_event_ctx_lock(event);
4138 	ret = _perf_ioctl(event, cmd, arg);
4139 	perf_event_ctx_unlock(event, ctx);
4140 
4141 	return ret;
4142 }
4143 
4144 #ifdef CONFIG_COMPAT
4145 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4146 				unsigned long arg)
4147 {
4148 	switch (_IOC_NR(cmd)) {
4149 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4150 	case _IOC_NR(PERF_EVENT_IOC_ID):
4151 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4152 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4153 			cmd &= ~IOCSIZE_MASK;
4154 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4155 		}
4156 		break;
4157 	}
4158 	return perf_ioctl(file, cmd, arg);
4159 }
4160 #else
4161 # define perf_compat_ioctl NULL
4162 #endif
4163 
4164 int perf_event_task_enable(void)
4165 {
4166 	struct perf_event_context *ctx;
4167 	struct perf_event *event;
4168 
4169 	mutex_lock(&current->perf_event_mutex);
4170 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4171 		ctx = perf_event_ctx_lock(event);
4172 		perf_event_for_each_child(event, _perf_event_enable);
4173 		perf_event_ctx_unlock(event, ctx);
4174 	}
4175 	mutex_unlock(&current->perf_event_mutex);
4176 
4177 	return 0;
4178 }
4179 
4180 int perf_event_task_disable(void)
4181 {
4182 	struct perf_event_context *ctx;
4183 	struct perf_event *event;
4184 
4185 	mutex_lock(&current->perf_event_mutex);
4186 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4187 		ctx = perf_event_ctx_lock(event);
4188 		perf_event_for_each_child(event, _perf_event_disable);
4189 		perf_event_ctx_unlock(event, ctx);
4190 	}
4191 	mutex_unlock(&current->perf_event_mutex);
4192 
4193 	return 0;
4194 }
4195 
4196 static int perf_event_index(struct perf_event *event)
4197 {
4198 	if (event->hw.state & PERF_HES_STOPPED)
4199 		return 0;
4200 
4201 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4202 		return 0;
4203 
4204 	return event->pmu->event_idx(event);
4205 }
4206 
4207 static void calc_timer_values(struct perf_event *event,
4208 				u64 *now,
4209 				u64 *enabled,
4210 				u64 *running)
4211 {
4212 	u64 ctx_time;
4213 
4214 	*now = perf_clock();
4215 	ctx_time = event->shadow_ctx_time + *now;
4216 	*enabled = ctx_time - event->tstamp_enabled;
4217 	*running = ctx_time - event->tstamp_running;
4218 }
4219 
4220 static void perf_event_init_userpage(struct perf_event *event)
4221 {
4222 	struct perf_event_mmap_page *userpg;
4223 	struct ring_buffer *rb;
4224 
4225 	rcu_read_lock();
4226 	rb = rcu_dereference(event->rb);
4227 	if (!rb)
4228 		goto unlock;
4229 
4230 	userpg = rb->user_page;
4231 
4232 	/* Allow new userspace to detect that bit 0 is deprecated */
4233 	userpg->cap_bit0_is_deprecated = 1;
4234 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4235 	userpg->data_offset = PAGE_SIZE;
4236 	userpg->data_size = perf_data_size(rb);
4237 
4238 unlock:
4239 	rcu_read_unlock();
4240 }
4241 
4242 void __weak arch_perf_update_userpage(
4243 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4244 {
4245 }
4246 
4247 /*
4248  * Callers need to ensure there can be no nesting of this function, otherwise
4249  * the seqlock logic goes bad. We can not serialize this because the arch
4250  * code calls this from NMI context.
4251  */
4252 void perf_event_update_userpage(struct perf_event *event)
4253 {
4254 	struct perf_event_mmap_page *userpg;
4255 	struct ring_buffer *rb;
4256 	u64 enabled, running, now;
4257 
4258 	rcu_read_lock();
4259 	rb = rcu_dereference(event->rb);
4260 	if (!rb)
4261 		goto unlock;
4262 
4263 	/*
4264 	 * compute total_time_enabled, total_time_running
4265 	 * based on snapshot values taken when the event
4266 	 * was last scheduled in.
4267 	 *
4268 	 * we cannot simply called update_context_time()
4269 	 * because of locking issue as we can be called in
4270 	 * NMI context
4271 	 */
4272 	calc_timer_values(event, &now, &enabled, &running);
4273 
4274 	userpg = rb->user_page;
4275 	/*
4276 	 * Disable preemption so as to not let the corresponding user-space
4277 	 * spin too long if we get preempted.
4278 	 */
4279 	preempt_disable();
4280 	++userpg->lock;
4281 	barrier();
4282 	userpg->index = perf_event_index(event);
4283 	userpg->offset = perf_event_count(event);
4284 	if (userpg->index)
4285 		userpg->offset -= local64_read(&event->hw.prev_count);
4286 
4287 	userpg->time_enabled = enabled +
4288 			atomic64_read(&event->child_total_time_enabled);
4289 
4290 	userpg->time_running = running +
4291 			atomic64_read(&event->child_total_time_running);
4292 
4293 	arch_perf_update_userpage(event, userpg, now);
4294 
4295 	barrier();
4296 	++userpg->lock;
4297 	preempt_enable();
4298 unlock:
4299 	rcu_read_unlock();
4300 }
4301 
4302 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4303 {
4304 	struct perf_event *event = vma->vm_file->private_data;
4305 	struct ring_buffer *rb;
4306 	int ret = VM_FAULT_SIGBUS;
4307 
4308 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4309 		if (vmf->pgoff == 0)
4310 			ret = 0;
4311 		return ret;
4312 	}
4313 
4314 	rcu_read_lock();
4315 	rb = rcu_dereference(event->rb);
4316 	if (!rb)
4317 		goto unlock;
4318 
4319 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4320 		goto unlock;
4321 
4322 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4323 	if (!vmf->page)
4324 		goto unlock;
4325 
4326 	get_page(vmf->page);
4327 	vmf->page->mapping = vma->vm_file->f_mapping;
4328 	vmf->page->index   = vmf->pgoff;
4329 
4330 	ret = 0;
4331 unlock:
4332 	rcu_read_unlock();
4333 
4334 	return ret;
4335 }
4336 
4337 static void ring_buffer_attach(struct perf_event *event,
4338 			       struct ring_buffer *rb)
4339 {
4340 	struct ring_buffer *old_rb = NULL;
4341 	unsigned long flags;
4342 
4343 	if (event->rb) {
4344 		/*
4345 		 * Should be impossible, we set this when removing
4346 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4347 		 */
4348 		WARN_ON_ONCE(event->rcu_pending);
4349 
4350 		old_rb = event->rb;
4351 		spin_lock_irqsave(&old_rb->event_lock, flags);
4352 		list_del_rcu(&event->rb_entry);
4353 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4354 
4355 		event->rcu_batches = get_state_synchronize_rcu();
4356 		event->rcu_pending = 1;
4357 	}
4358 
4359 	if (rb) {
4360 		if (event->rcu_pending) {
4361 			cond_synchronize_rcu(event->rcu_batches);
4362 			event->rcu_pending = 0;
4363 		}
4364 
4365 		spin_lock_irqsave(&rb->event_lock, flags);
4366 		list_add_rcu(&event->rb_entry, &rb->event_list);
4367 		spin_unlock_irqrestore(&rb->event_lock, flags);
4368 	}
4369 
4370 	rcu_assign_pointer(event->rb, rb);
4371 
4372 	if (old_rb) {
4373 		ring_buffer_put(old_rb);
4374 		/*
4375 		 * Since we detached before setting the new rb, so that we
4376 		 * could attach the new rb, we could have missed a wakeup.
4377 		 * Provide it now.
4378 		 */
4379 		wake_up_all(&event->waitq);
4380 	}
4381 }
4382 
4383 static void ring_buffer_wakeup(struct perf_event *event)
4384 {
4385 	struct ring_buffer *rb;
4386 
4387 	rcu_read_lock();
4388 	rb = rcu_dereference(event->rb);
4389 	if (rb) {
4390 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4391 			wake_up_all(&event->waitq);
4392 	}
4393 	rcu_read_unlock();
4394 }
4395 
4396 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4397 {
4398 	struct ring_buffer *rb;
4399 
4400 	rcu_read_lock();
4401 	rb = rcu_dereference(event->rb);
4402 	if (rb) {
4403 		if (!atomic_inc_not_zero(&rb->refcount))
4404 			rb = NULL;
4405 	}
4406 	rcu_read_unlock();
4407 
4408 	return rb;
4409 }
4410 
4411 void ring_buffer_put(struct ring_buffer *rb)
4412 {
4413 	if (!atomic_dec_and_test(&rb->refcount))
4414 		return;
4415 
4416 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4417 
4418 	call_rcu(&rb->rcu_head, rb_free_rcu);
4419 }
4420 
4421 static void perf_mmap_open(struct vm_area_struct *vma)
4422 {
4423 	struct perf_event *event = vma->vm_file->private_data;
4424 
4425 	atomic_inc(&event->mmap_count);
4426 	atomic_inc(&event->rb->mmap_count);
4427 
4428 	if (vma->vm_pgoff)
4429 		atomic_inc(&event->rb->aux_mmap_count);
4430 
4431 	if (event->pmu->event_mapped)
4432 		event->pmu->event_mapped(event);
4433 }
4434 
4435 /*
4436  * A buffer can be mmap()ed multiple times; either directly through the same
4437  * event, or through other events by use of perf_event_set_output().
4438  *
4439  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4440  * the buffer here, where we still have a VM context. This means we need
4441  * to detach all events redirecting to us.
4442  */
4443 static void perf_mmap_close(struct vm_area_struct *vma)
4444 {
4445 	struct perf_event *event = vma->vm_file->private_data;
4446 
4447 	struct ring_buffer *rb = ring_buffer_get(event);
4448 	struct user_struct *mmap_user = rb->mmap_user;
4449 	int mmap_locked = rb->mmap_locked;
4450 	unsigned long size = perf_data_size(rb);
4451 
4452 	if (event->pmu->event_unmapped)
4453 		event->pmu->event_unmapped(event);
4454 
4455 	/*
4456 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4457 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4458 	 * serialize with perf_mmap here.
4459 	 */
4460 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4461 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4462 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4463 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4464 
4465 		rb_free_aux(rb);
4466 		mutex_unlock(&event->mmap_mutex);
4467 	}
4468 
4469 	atomic_dec(&rb->mmap_count);
4470 
4471 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4472 		goto out_put;
4473 
4474 	ring_buffer_attach(event, NULL);
4475 	mutex_unlock(&event->mmap_mutex);
4476 
4477 	/* If there's still other mmap()s of this buffer, we're done. */
4478 	if (atomic_read(&rb->mmap_count))
4479 		goto out_put;
4480 
4481 	/*
4482 	 * No other mmap()s, detach from all other events that might redirect
4483 	 * into the now unreachable buffer. Somewhat complicated by the
4484 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4485 	 */
4486 again:
4487 	rcu_read_lock();
4488 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4489 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4490 			/*
4491 			 * This event is en-route to free_event() which will
4492 			 * detach it and remove it from the list.
4493 			 */
4494 			continue;
4495 		}
4496 		rcu_read_unlock();
4497 
4498 		mutex_lock(&event->mmap_mutex);
4499 		/*
4500 		 * Check we didn't race with perf_event_set_output() which can
4501 		 * swizzle the rb from under us while we were waiting to
4502 		 * acquire mmap_mutex.
4503 		 *
4504 		 * If we find a different rb; ignore this event, a next
4505 		 * iteration will no longer find it on the list. We have to
4506 		 * still restart the iteration to make sure we're not now
4507 		 * iterating the wrong list.
4508 		 */
4509 		if (event->rb == rb)
4510 			ring_buffer_attach(event, NULL);
4511 
4512 		mutex_unlock(&event->mmap_mutex);
4513 		put_event(event);
4514 
4515 		/*
4516 		 * Restart the iteration; either we're on the wrong list or
4517 		 * destroyed its integrity by doing a deletion.
4518 		 */
4519 		goto again;
4520 	}
4521 	rcu_read_unlock();
4522 
4523 	/*
4524 	 * It could be there's still a few 0-ref events on the list; they'll
4525 	 * get cleaned up by free_event() -- they'll also still have their
4526 	 * ref on the rb and will free it whenever they are done with it.
4527 	 *
4528 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4529 	 * undo the VM accounting.
4530 	 */
4531 
4532 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4533 	vma->vm_mm->pinned_vm -= mmap_locked;
4534 	free_uid(mmap_user);
4535 
4536 out_put:
4537 	ring_buffer_put(rb); /* could be last */
4538 }
4539 
4540 static const struct vm_operations_struct perf_mmap_vmops = {
4541 	.open		= perf_mmap_open,
4542 	.close		= perf_mmap_close, /* non mergable */
4543 	.fault		= perf_mmap_fault,
4544 	.page_mkwrite	= perf_mmap_fault,
4545 };
4546 
4547 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4548 {
4549 	struct perf_event *event = file->private_data;
4550 	unsigned long user_locked, user_lock_limit;
4551 	struct user_struct *user = current_user();
4552 	unsigned long locked, lock_limit;
4553 	struct ring_buffer *rb = NULL;
4554 	unsigned long vma_size;
4555 	unsigned long nr_pages;
4556 	long user_extra = 0, extra = 0;
4557 	int ret = 0, flags = 0;
4558 
4559 	/*
4560 	 * Don't allow mmap() of inherited per-task counters. This would
4561 	 * create a performance issue due to all children writing to the
4562 	 * same rb.
4563 	 */
4564 	if (event->cpu == -1 && event->attr.inherit)
4565 		return -EINVAL;
4566 
4567 	if (!(vma->vm_flags & VM_SHARED))
4568 		return -EINVAL;
4569 
4570 	vma_size = vma->vm_end - vma->vm_start;
4571 
4572 	if (vma->vm_pgoff == 0) {
4573 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4574 	} else {
4575 		/*
4576 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4577 		 * mapped, all subsequent mappings should have the same size
4578 		 * and offset. Must be above the normal perf buffer.
4579 		 */
4580 		u64 aux_offset, aux_size;
4581 
4582 		if (!event->rb)
4583 			return -EINVAL;
4584 
4585 		nr_pages = vma_size / PAGE_SIZE;
4586 
4587 		mutex_lock(&event->mmap_mutex);
4588 		ret = -EINVAL;
4589 
4590 		rb = event->rb;
4591 		if (!rb)
4592 			goto aux_unlock;
4593 
4594 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4595 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4596 
4597 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4598 			goto aux_unlock;
4599 
4600 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4601 			goto aux_unlock;
4602 
4603 		/* already mapped with a different offset */
4604 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4605 			goto aux_unlock;
4606 
4607 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4608 			goto aux_unlock;
4609 
4610 		/* already mapped with a different size */
4611 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4612 			goto aux_unlock;
4613 
4614 		if (!is_power_of_2(nr_pages))
4615 			goto aux_unlock;
4616 
4617 		if (!atomic_inc_not_zero(&rb->mmap_count))
4618 			goto aux_unlock;
4619 
4620 		if (rb_has_aux(rb)) {
4621 			atomic_inc(&rb->aux_mmap_count);
4622 			ret = 0;
4623 			goto unlock;
4624 		}
4625 
4626 		atomic_set(&rb->aux_mmap_count, 1);
4627 		user_extra = nr_pages;
4628 
4629 		goto accounting;
4630 	}
4631 
4632 	/*
4633 	 * If we have rb pages ensure they're a power-of-two number, so we
4634 	 * can do bitmasks instead of modulo.
4635 	 */
4636 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4637 		return -EINVAL;
4638 
4639 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4640 		return -EINVAL;
4641 
4642 	WARN_ON_ONCE(event->ctx->parent_ctx);
4643 again:
4644 	mutex_lock(&event->mmap_mutex);
4645 	if (event->rb) {
4646 		if (event->rb->nr_pages != nr_pages) {
4647 			ret = -EINVAL;
4648 			goto unlock;
4649 		}
4650 
4651 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4652 			/*
4653 			 * Raced against perf_mmap_close() through
4654 			 * perf_event_set_output(). Try again, hope for better
4655 			 * luck.
4656 			 */
4657 			mutex_unlock(&event->mmap_mutex);
4658 			goto again;
4659 		}
4660 
4661 		goto unlock;
4662 	}
4663 
4664 	user_extra = nr_pages + 1;
4665 
4666 accounting:
4667 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4668 
4669 	/*
4670 	 * Increase the limit linearly with more CPUs:
4671 	 */
4672 	user_lock_limit *= num_online_cpus();
4673 
4674 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4675 
4676 	if (user_locked > user_lock_limit)
4677 		extra = user_locked - user_lock_limit;
4678 
4679 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4680 	lock_limit >>= PAGE_SHIFT;
4681 	locked = vma->vm_mm->pinned_vm + extra;
4682 
4683 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4684 		!capable(CAP_IPC_LOCK)) {
4685 		ret = -EPERM;
4686 		goto unlock;
4687 	}
4688 
4689 	WARN_ON(!rb && event->rb);
4690 
4691 	if (vma->vm_flags & VM_WRITE)
4692 		flags |= RING_BUFFER_WRITABLE;
4693 
4694 	if (!rb) {
4695 		rb = rb_alloc(nr_pages,
4696 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4697 			      event->cpu, flags);
4698 
4699 		if (!rb) {
4700 			ret = -ENOMEM;
4701 			goto unlock;
4702 		}
4703 
4704 		atomic_set(&rb->mmap_count, 1);
4705 		rb->mmap_user = get_current_user();
4706 		rb->mmap_locked = extra;
4707 
4708 		ring_buffer_attach(event, rb);
4709 
4710 		perf_event_init_userpage(event);
4711 		perf_event_update_userpage(event);
4712 	} else {
4713 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4714 				   event->attr.aux_watermark, flags);
4715 		if (!ret)
4716 			rb->aux_mmap_locked = extra;
4717 	}
4718 
4719 unlock:
4720 	if (!ret) {
4721 		atomic_long_add(user_extra, &user->locked_vm);
4722 		vma->vm_mm->pinned_vm += extra;
4723 
4724 		atomic_inc(&event->mmap_count);
4725 	} else if (rb) {
4726 		atomic_dec(&rb->mmap_count);
4727 	}
4728 aux_unlock:
4729 	mutex_unlock(&event->mmap_mutex);
4730 
4731 	/*
4732 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4733 	 * vma.
4734 	 */
4735 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4736 	vma->vm_ops = &perf_mmap_vmops;
4737 
4738 	if (event->pmu->event_mapped)
4739 		event->pmu->event_mapped(event);
4740 
4741 	return ret;
4742 }
4743 
4744 static int perf_fasync(int fd, struct file *filp, int on)
4745 {
4746 	struct inode *inode = file_inode(filp);
4747 	struct perf_event *event = filp->private_data;
4748 	int retval;
4749 
4750 	mutex_lock(&inode->i_mutex);
4751 	retval = fasync_helper(fd, filp, on, &event->fasync);
4752 	mutex_unlock(&inode->i_mutex);
4753 
4754 	if (retval < 0)
4755 		return retval;
4756 
4757 	return 0;
4758 }
4759 
4760 static const struct file_operations perf_fops = {
4761 	.llseek			= no_llseek,
4762 	.release		= perf_release,
4763 	.read			= perf_read,
4764 	.poll			= perf_poll,
4765 	.unlocked_ioctl		= perf_ioctl,
4766 	.compat_ioctl		= perf_compat_ioctl,
4767 	.mmap			= perf_mmap,
4768 	.fasync			= perf_fasync,
4769 };
4770 
4771 /*
4772  * Perf event wakeup
4773  *
4774  * If there's data, ensure we set the poll() state and publish everything
4775  * to user-space before waking everybody up.
4776  */
4777 
4778 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4779 {
4780 	/* only the parent has fasync state */
4781 	if (event->parent)
4782 		event = event->parent;
4783 	return &event->fasync;
4784 }
4785 
4786 void perf_event_wakeup(struct perf_event *event)
4787 {
4788 	ring_buffer_wakeup(event);
4789 
4790 	if (event->pending_kill) {
4791 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4792 		event->pending_kill = 0;
4793 	}
4794 }
4795 
4796 static void perf_pending_event(struct irq_work *entry)
4797 {
4798 	struct perf_event *event = container_of(entry,
4799 			struct perf_event, pending);
4800 	int rctx;
4801 
4802 	rctx = perf_swevent_get_recursion_context();
4803 	/*
4804 	 * If we 'fail' here, that's OK, it means recursion is already disabled
4805 	 * and we won't recurse 'further'.
4806 	 */
4807 
4808 	if (event->pending_disable) {
4809 		event->pending_disable = 0;
4810 		__perf_event_disable(event);
4811 	}
4812 
4813 	if (event->pending_wakeup) {
4814 		event->pending_wakeup = 0;
4815 		perf_event_wakeup(event);
4816 	}
4817 
4818 	if (rctx >= 0)
4819 		perf_swevent_put_recursion_context(rctx);
4820 }
4821 
4822 /*
4823  * We assume there is only KVM supporting the callbacks.
4824  * Later on, we might change it to a list if there is
4825  * another virtualization implementation supporting the callbacks.
4826  */
4827 struct perf_guest_info_callbacks *perf_guest_cbs;
4828 
4829 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4830 {
4831 	perf_guest_cbs = cbs;
4832 	return 0;
4833 }
4834 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4835 
4836 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4837 {
4838 	perf_guest_cbs = NULL;
4839 	return 0;
4840 }
4841 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4842 
4843 static void
4844 perf_output_sample_regs(struct perf_output_handle *handle,
4845 			struct pt_regs *regs, u64 mask)
4846 {
4847 	int bit;
4848 
4849 	for_each_set_bit(bit, (const unsigned long *) &mask,
4850 			 sizeof(mask) * BITS_PER_BYTE) {
4851 		u64 val;
4852 
4853 		val = perf_reg_value(regs, bit);
4854 		perf_output_put(handle, val);
4855 	}
4856 }
4857 
4858 static void perf_sample_regs_user(struct perf_regs *regs_user,
4859 				  struct pt_regs *regs,
4860 				  struct pt_regs *regs_user_copy)
4861 {
4862 	if (user_mode(regs)) {
4863 		regs_user->abi = perf_reg_abi(current);
4864 		regs_user->regs = regs;
4865 	} else if (current->mm) {
4866 		perf_get_regs_user(regs_user, regs, regs_user_copy);
4867 	} else {
4868 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4869 		regs_user->regs = NULL;
4870 	}
4871 }
4872 
4873 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4874 				  struct pt_regs *regs)
4875 {
4876 	regs_intr->regs = regs;
4877 	regs_intr->abi  = perf_reg_abi(current);
4878 }
4879 
4880 
4881 /*
4882  * Get remaining task size from user stack pointer.
4883  *
4884  * It'd be better to take stack vma map and limit this more
4885  * precisly, but there's no way to get it safely under interrupt,
4886  * so using TASK_SIZE as limit.
4887  */
4888 static u64 perf_ustack_task_size(struct pt_regs *regs)
4889 {
4890 	unsigned long addr = perf_user_stack_pointer(regs);
4891 
4892 	if (!addr || addr >= TASK_SIZE)
4893 		return 0;
4894 
4895 	return TASK_SIZE - addr;
4896 }
4897 
4898 static u16
4899 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4900 			struct pt_regs *regs)
4901 {
4902 	u64 task_size;
4903 
4904 	/* No regs, no stack pointer, no dump. */
4905 	if (!regs)
4906 		return 0;
4907 
4908 	/*
4909 	 * Check if we fit in with the requested stack size into the:
4910 	 * - TASK_SIZE
4911 	 *   If we don't, we limit the size to the TASK_SIZE.
4912 	 *
4913 	 * - remaining sample size
4914 	 *   If we don't, we customize the stack size to
4915 	 *   fit in to the remaining sample size.
4916 	 */
4917 
4918 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4919 	stack_size = min(stack_size, (u16) task_size);
4920 
4921 	/* Current header size plus static size and dynamic size. */
4922 	header_size += 2 * sizeof(u64);
4923 
4924 	/* Do we fit in with the current stack dump size? */
4925 	if ((u16) (header_size + stack_size) < header_size) {
4926 		/*
4927 		 * If we overflow the maximum size for the sample,
4928 		 * we customize the stack dump size to fit in.
4929 		 */
4930 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4931 		stack_size = round_up(stack_size, sizeof(u64));
4932 	}
4933 
4934 	return stack_size;
4935 }
4936 
4937 static void
4938 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4939 			  struct pt_regs *regs)
4940 {
4941 	/* Case of a kernel thread, nothing to dump */
4942 	if (!regs) {
4943 		u64 size = 0;
4944 		perf_output_put(handle, size);
4945 	} else {
4946 		unsigned long sp;
4947 		unsigned int rem;
4948 		u64 dyn_size;
4949 
4950 		/*
4951 		 * We dump:
4952 		 * static size
4953 		 *   - the size requested by user or the best one we can fit
4954 		 *     in to the sample max size
4955 		 * data
4956 		 *   - user stack dump data
4957 		 * dynamic size
4958 		 *   - the actual dumped size
4959 		 */
4960 
4961 		/* Static size. */
4962 		perf_output_put(handle, dump_size);
4963 
4964 		/* Data. */
4965 		sp = perf_user_stack_pointer(regs);
4966 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4967 		dyn_size = dump_size - rem;
4968 
4969 		perf_output_skip(handle, rem);
4970 
4971 		/* Dynamic size. */
4972 		perf_output_put(handle, dyn_size);
4973 	}
4974 }
4975 
4976 static void __perf_event_header__init_id(struct perf_event_header *header,
4977 					 struct perf_sample_data *data,
4978 					 struct perf_event *event)
4979 {
4980 	u64 sample_type = event->attr.sample_type;
4981 
4982 	data->type = sample_type;
4983 	header->size += event->id_header_size;
4984 
4985 	if (sample_type & PERF_SAMPLE_TID) {
4986 		/* namespace issues */
4987 		data->tid_entry.pid = perf_event_pid(event, current);
4988 		data->tid_entry.tid = perf_event_tid(event, current);
4989 	}
4990 
4991 	if (sample_type & PERF_SAMPLE_TIME)
4992 		data->time = perf_event_clock(event);
4993 
4994 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4995 		data->id = primary_event_id(event);
4996 
4997 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4998 		data->stream_id = event->id;
4999 
5000 	if (sample_type & PERF_SAMPLE_CPU) {
5001 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5002 		data->cpu_entry.reserved = 0;
5003 	}
5004 }
5005 
5006 void perf_event_header__init_id(struct perf_event_header *header,
5007 				struct perf_sample_data *data,
5008 				struct perf_event *event)
5009 {
5010 	if (event->attr.sample_id_all)
5011 		__perf_event_header__init_id(header, data, event);
5012 }
5013 
5014 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5015 					   struct perf_sample_data *data)
5016 {
5017 	u64 sample_type = data->type;
5018 
5019 	if (sample_type & PERF_SAMPLE_TID)
5020 		perf_output_put(handle, data->tid_entry);
5021 
5022 	if (sample_type & PERF_SAMPLE_TIME)
5023 		perf_output_put(handle, data->time);
5024 
5025 	if (sample_type & PERF_SAMPLE_ID)
5026 		perf_output_put(handle, data->id);
5027 
5028 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5029 		perf_output_put(handle, data->stream_id);
5030 
5031 	if (sample_type & PERF_SAMPLE_CPU)
5032 		perf_output_put(handle, data->cpu_entry);
5033 
5034 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5035 		perf_output_put(handle, data->id);
5036 }
5037 
5038 void perf_event__output_id_sample(struct perf_event *event,
5039 				  struct perf_output_handle *handle,
5040 				  struct perf_sample_data *sample)
5041 {
5042 	if (event->attr.sample_id_all)
5043 		__perf_event__output_id_sample(handle, sample);
5044 }
5045 
5046 static void perf_output_read_one(struct perf_output_handle *handle,
5047 				 struct perf_event *event,
5048 				 u64 enabled, u64 running)
5049 {
5050 	u64 read_format = event->attr.read_format;
5051 	u64 values[4];
5052 	int n = 0;
5053 
5054 	values[n++] = perf_event_count(event);
5055 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5056 		values[n++] = enabled +
5057 			atomic64_read(&event->child_total_time_enabled);
5058 	}
5059 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5060 		values[n++] = running +
5061 			atomic64_read(&event->child_total_time_running);
5062 	}
5063 	if (read_format & PERF_FORMAT_ID)
5064 		values[n++] = primary_event_id(event);
5065 
5066 	__output_copy(handle, values, n * sizeof(u64));
5067 }
5068 
5069 /*
5070  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5071  */
5072 static void perf_output_read_group(struct perf_output_handle *handle,
5073 			    struct perf_event *event,
5074 			    u64 enabled, u64 running)
5075 {
5076 	struct perf_event *leader = event->group_leader, *sub;
5077 	u64 read_format = event->attr.read_format;
5078 	u64 values[5];
5079 	int n = 0;
5080 
5081 	values[n++] = 1 + leader->nr_siblings;
5082 
5083 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5084 		values[n++] = enabled;
5085 
5086 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5087 		values[n++] = running;
5088 
5089 	if (leader != event)
5090 		leader->pmu->read(leader);
5091 
5092 	values[n++] = perf_event_count(leader);
5093 	if (read_format & PERF_FORMAT_ID)
5094 		values[n++] = primary_event_id(leader);
5095 
5096 	__output_copy(handle, values, n * sizeof(u64));
5097 
5098 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5099 		n = 0;
5100 
5101 		if ((sub != event) &&
5102 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5103 			sub->pmu->read(sub);
5104 
5105 		values[n++] = perf_event_count(sub);
5106 		if (read_format & PERF_FORMAT_ID)
5107 			values[n++] = primary_event_id(sub);
5108 
5109 		__output_copy(handle, values, n * sizeof(u64));
5110 	}
5111 }
5112 
5113 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5114 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5115 
5116 static void perf_output_read(struct perf_output_handle *handle,
5117 			     struct perf_event *event)
5118 {
5119 	u64 enabled = 0, running = 0, now;
5120 	u64 read_format = event->attr.read_format;
5121 
5122 	/*
5123 	 * compute total_time_enabled, total_time_running
5124 	 * based on snapshot values taken when the event
5125 	 * was last scheduled in.
5126 	 *
5127 	 * we cannot simply called update_context_time()
5128 	 * because of locking issue as we are called in
5129 	 * NMI context
5130 	 */
5131 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5132 		calc_timer_values(event, &now, &enabled, &running);
5133 
5134 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5135 		perf_output_read_group(handle, event, enabled, running);
5136 	else
5137 		perf_output_read_one(handle, event, enabled, running);
5138 }
5139 
5140 void perf_output_sample(struct perf_output_handle *handle,
5141 			struct perf_event_header *header,
5142 			struct perf_sample_data *data,
5143 			struct perf_event *event)
5144 {
5145 	u64 sample_type = data->type;
5146 
5147 	perf_output_put(handle, *header);
5148 
5149 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5150 		perf_output_put(handle, data->id);
5151 
5152 	if (sample_type & PERF_SAMPLE_IP)
5153 		perf_output_put(handle, data->ip);
5154 
5155 	if (sample_type & PERF_SAMPLE_TID)
5156 		perf_output_put(handle, data->tid_entry);
5157 
5158 	if (sample_type & PERF_SAMPLE_TIME)
5159 		perf_output_put(handle, data->time);
5160 
5161 	if (sample_type & PERF_SAMPLE_ADDR)
5162 		perf_output_put(handle, data->addr);
5163 
5164 	if (sample_type & PERF_SAMPLE_ID)
5165 		perf_output_put(handle, data->id);
5166 
5167 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5168 		perf_output_put(handle, data->stream_id);
5169 
5170 	if (sample_type & PERF_SAMPLE_CPU)
5171 		perf_output_put(handle, data->cpu_entry);
5172 
5173 	if (sample_type & PERF_SAMPLE_PERIOD)
5174 		perf_output_put(handle, data->period);
5175 
5176 	if (sample_type & PERF_SAMPLE_READ)
5177 		perf_output_read(handle, event);
5178 
5179 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5180 		if (data->callchain) {
5181 			int size = 1;
5182 
5183 			if (data->callchain)
5184 				size += data->callchain->nr;
5185 
5186 			size *= sizeof(u64);
5187 
5188 			__output_copy(handle, data->callchain, size);
5189 		} else {
5190 			u64 nr = 0;
5191 			perf_output_put(handle, nr);
5192 		}
5193 	}
5194 
5195 	if (sample_type & PERF_SAMPLE_RAW) {
5196 		if (data->raw) {
5197 			perf_output_put(handle, data->raw->size);
5198 			__output_copy(handle, data->raw->data,
5199 					   data->raw->size);
5200 		} else {
5201 			struct {
5202 				u32	size;
5203 				u32	data;
5204 			} raw = {
5205 				.size = sizeof(u32),
5206 				.data = 0,
5207 			};
5208 			perf_output_put(handle, raw);
5209 		}
5210 	}
5211 
5212 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5213 		if (data->br_stack) {
5214 			size_t size;
5215 
5216 			size = data->br_stack->nr
5217 			     * sizeof(struct perf_branch_entry);
5218 
5219 			perf_output_put(handle, data->br_stack->nr);
5220 			perf_output_copy(handle, data->br_stack->entries, size);
5221 		} else {
5222 			/*
5223 			 * we always store at least the value of nr
5224 			 */
5225 			u64 nr = 0;
5226 			perf_output_put(handle, nr);
5227 		}
5228 	}
5229 
5230 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5231 		u64 abi = data->regs_user.abi;
5232 
5233 		/*
5234 		 * If there are no regs to dump, notice it through
5235 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5236 		 */
5237 		perf_output_put(handle, abi);
5238 
5239 		if (abi) {
5240 			u64 mask = event->attr.sample_regs_user;
5241 			perf_output_sample_regs(handle,
5242 						data->regs_user.regs,
5243 						mask);
5244 		}
5245 	}
5246 
5247 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5248 		perf_output_sample_ustack(handle,
5249 					  data->stack_user_size,
5250 					  data->regs_user.regs);
5251 	}
5252 
5253 	if (sample_type & PERF_SAMPLE_WEIGHT)
5254 		perf_output_put(handle, data->weight);
5255 
5256 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5257 		perf_output_put(handle, data->data_src.val);
5258 
5259 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5260 		perf_output_put(handle, data->txn);
5261 
5262 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5263 		u64 abi = data->regs_intr.abi;
5264 		/*
5265 		 * If there are no regs to dump, notice it through
5266 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5267 		 */
5268 		perf_output_put(handle, abi);
5269 
5270 		if (abi) {
5271 			u64 mask = event->attr.sample_regs_intr;
5272 
5273 			perf_output_sample_regs(handle,
5274 						data->regs_intr.regs,
5275 						mask);
5276 		}
5277 	}
5278 
5279 	if (!event->attr.watermark) {
5280 		int wakeup_events = event->attr.wakeup_events;
5281 
5282 		if (wakeup_events) {
5283 			struct ring_buffer *rb = handle->rb;
5284 			int events = local_inc_return(&rb->events);
5285 
5286 			if (events >= wakeup_events) {
5287 				local_sub(wakeup_events, &rb->events);
5288 				local_inc(&rb->wakeup);
5289 			}
5290 		}
5291 	}
5292 }
5293 
5294 void perf_prepare_sample(struct perf_event_header *header,
5295 			 struct perf_sample_data *data,
5296 			 struct perf_event *event,
5297 			 struct pt_regs *regs)
5298 {
5299 	u64 sample_type = event->attr.sample_type;
5300 
5301 	header->type = PERF_RECORD_SAMPLE;
5302 	header->size = sizeof(*header) + event->header_size;
5303 
5304 	header->misc = 0;
5305 	header->misc |= perf_misc_flags(regs);
5306 
5307 	__perf_event_header__init_id(header, data, event);
5308 
5309 	if (sample_type & PERF_SAMPLE_IP)
5310 		data->ip = perf_instruction_pointer(regs);
5311 
5312 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5313 		int size = 1;
5314 
5315 		data->callchain = perf_callchain(event, regs);
5316 
5317 		if (data->callchain)
5318 			size += data->callchain->nr;
5319 
5320 		header->size += size * sizeof(u64);
5321 	}
5322 
5323 	if (sample_type & PERF_SAMPLE_RAW) {
5324 		int size = sizeof(u32);
5325 
5326 		if (data->raw)
5327 			size += data->raw->size;
5328 		else
5329 			size += sizeof(u32);
5330 
5331 		WARN_ON_ONCE(size & (sizeof(u64)-1));
5332 		header->size += size;
5333 	}
5334 
5335 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5336 		int size = sizeof(u64); /* nr */
5337 		if (data->br_stack) {
5338 			size += data->br_stack->nr
5339 			      * sizeof(struct perf_branch_entry);
5340 		}
5341 		header->size += size;
5342 	}
5343 
5344 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5345 		perf_sample_regs_user(&data->regs_user, regs,
5346 				      &data->regs_user_copy);
5347 
5348 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5349 		/* regs dump ABI info */
5350 		int size = sizeof(u64);
5351 
5352 		if (data->regs_user.regs) {
5353 			u64 mask = event->attr.sample_regs_user;
5354 			size += hweight64(mask) * sizeof(u64);
5355 		}
5356 
5357 		header->size += size;
5358 	}
5359 
5360 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5361 		/*
5362 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5363 		 * processed as the last one or have additional check added
5364 		 * in case new sample type is added, because we could eat
5365 		 * up the rest of the sample size.
5366 		 */
5367 		u16 stack_size = event->attr.sample_stack_user;
5368 		u16 size = sizeof(u64);
5369 
5370 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5371 						     data->regs_user.regs);
5372 
5373 		/*
5374 		 * If there is something to dump, add space for the dump
5375 		 * itself and for the field that tells the dynamic size,
5376 		 * which is how many have been actually dumped.
5377 		 */
5378 		if (stack_size)
5379 			size += sizeof(u64) + stack_size;
5380 
5381 		data->stack_user_size = stack_size;
5382 		header->size += size;
5383 	}
5384 
5385 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5386 		/* regs dump ABI info */
5387 		int size = sizeof(u64);
5388 
5389 		perf_sample_regs_intr(&data->regs_intr, regs);
5390 
5391 		if (data->regs_intr.regs) {
5392 			u64 mask = event->attr.sample_regs_intr;
5393 
5394 			size += hweight64(mask) * sizeof(u64);
5395 		}
5396 
5397 		header->size += size;
5398 	}
5399 }
5400 
5401 void perf_event_output(struct perf_event *event,
5402 			struct perf_sample_data *data,
5403 			struct pt_regs *regs)
5404 {
5405 	struct perf_output_handle handle;
5406 	struct perf_event_header header;
5407 
5408 	/* protect the callchain buffers */
5409 	rcu_read_lock();
5410 
5411 	perf_prepare_sample(&header, data, event, regs);
5412 
5413 	if (perf_output_begin(&handle, event, header.size))
5414 		goto exit;
5415 
5416 	perf_output_sample(&handle, &header, data, event);
5417 
5418 	perf_output_end(&handle);
5419 
5420 exit:
5421 	rcu_read_unlock();
5422 }
5423 
5424 /*
5425  * read event_id
5426  */
5427 
5428 struct perf_read_event {
5429 	struct perf_event_header	header;
5430 
5431 	u32				pid;
5432 	u32				tid;
5433 };
5434 
5435 static void
5436 perf_event_read_event(struct perf_event *event,
5437 			struct task_struct *task)
5438 {
5439 	struct perf_output_handle handle;
5440 	struct perf_sample_data sample;
5441 	struct perf_read_event read_event = {
5442 		.header = {
5443 			.type = PERF_RECORD_READ,
5444 			.misc = 0,
5445 			.size = sizeof(read_event) + event->read_size,
5446 		},
5447 		.pid = perf_event_pid(event, task),
5448 		.tid = perf_event_tid(event, task),
5449 	};
5450 	int ret;
5451 
5452 	perf_event_header__init_id(&read_event.header, &sample, event);
5453 	ret = perf_output_begin(&handle, event, read_event.header.size);
5454 	if (ret)
5455 		return;
5456 
5457 	perf_output_put(&handle, read_event);
5458 	perf_output_read(&handle, event);
5459 	perf_event__output_id_sample(event, &handle, &sample);
5460 
5461 	perf_output_end(&handle);
5462 }
5463 
5464 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5465 
5466 static void
5467 perf_event_aux_ctx(struct perf_event_context *ctx,
5468 		   perf_event_aux_output_cb output,
5469 		   void *data)
5470 {
5471 	struct perf_event *event;
5472 
5473 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5474 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5475 			continue;
5476 		if (!event_filter_match(event))
5477 			continue;
5478 		output(event, data);
5479 	}
5480 }
5481 
5482 static void
5483 perf_event_aux(perf_event_aux_output_cb output, void *data,
5484 	       struct perf_event_context *task_ctx)
5485 {
5486 	struct perf_cpu_context *cpuctx;
5487 	struct perf_event_context *ctx;
5488 	struct pmu *pmu;
5489 	int ctxn;
5490 
5491 	rcu_read_lock();
5492 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5493 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5494 		if (cpuctx->unique_pmu != pmu)
5495 			goto next;
5496 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5497 		if (task_ctx)
5498 			goto next;
5499 		ctxn = pmu->task_ctx_nr;
5500 		if (ctxn < 0)
5501 			goto next;
5502 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5503 		if (ctx)
5504 			perf_event_aux_ctx(ctx, output, data);
5505 next:
5506 		put_cpu_ptr(pmu->pmu_cpu_context);
5507 	}
5508 
5509 	if (task_ctx) {
5510 		preempt_disable();
5511 		perf_event_aux_ctx(task_ctx, output, data);
5512 		preempt_enable();
5513 	}
5514 	rcu_read_unlock();
5515 }
5516 
5517 /*
5518  * task tracking -- fork/exit
5519  *
5520  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5521  */
5522 
5523 struct perf_task_event {
5524 	struct task_struct		*task;
5525 	struct perf_event_context	*task_ctx;
5526 
5527 	struct {
5528 		struct perf_event_header	header;
5529 
5530 		u32				pid;
5531 		u32				ppid;
5532 		u32				tid;
5533 		u32				ptid;
5534 		u64				time;
5535 	} event_id;
5536 };
5537 
5538 static int perf_event_task_match(struct perf_event *event)
5539 {
5540 	return event->attr.comm  || event->attr.mmap ||
5541 	       event->attr.mmap2 || event->attr.mmap_data ||
5542 	       event->attr.task;
5543 }
5544 
5545 static void perf_event_task_output(struct perf_event *event,
5546 				   void *data)
5547 {
5548 	struct perf_task_event *task_event = data;
5549 	struct perf_output_handle handle;
5550 	struct perf_sample_data	sample;
5551 	struct task_struct *task = task_event->task;
5552 	int ret, size = task_event->event_id.header.size;
5553 
5554 	if (!perf_event_task_match(event))
5555 		return;
5556 
5557 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5558 
5559 	ret = perf_output_begin(&handle, event,
5560 				task_event->event_id.header.size);
5561 	if (ret)
5562 		goto out;
5563 
5564 	task_event->event_id.pid = perf_event_pid(event, task);
5565 	task_event->event_id.ppid = perf_event_pid(event, current);
5566 
5567 	task_event->event_id.tid = perf_event_tid(event, task);
5568 	task_event->event_id.ptid = perf_event_tid(event, current);
5569 
5570 	task_event->event_id.time = perf_event_clock(event);
5571 
5572 	perf_output_put(&handle, task_event->event_id);
5573 
5574 	perf_event__output_id_sample(event, &handle, &sample);
5575 
5576 	perf_output_end(&handle);
5577 out:
5578 	task_event->event_id.header.size = size;
5579 }
5580 
5581 static void perf_event_task(struct task_struct *task,
5582 			      struct perf_event_context *task_ctx,
5583 			      int new)
5584 {
5585 	struct perf_task_event task_event;
5586 
5587 	if (!atomic_read(&nr_comm_events) &&
5588 	    !atomic_read(&nr_mmap_events) &&
5589 	    !atomic_read(&nr_task_events))
5590 		return;
5591 
5592 	task_event = (struct perf_task_event){
5593 		.task	  = task,
5594 		.task_ctx = task_ctx,
5595 		.event_id    = {
5596 			.header = {
5597 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5598 				.misc = 0,
5599 				.size = sizeof(task_event.event_id),
5600 			},
5601 			/* .pid  */
5602 			/* .ppid */
5603 			/* .tid  */
5604 			/* .ptid */
5605 			/* .time */
5606 		},
5607 	};
5608 
5609 	perf_event_aux(perf_event_task_output,
5610 		       &task_event,
5611 		       task_ctx);
5612 }
5613 
5614 void perf_event_fork(struct task_struct *task)
5615 {
5616 	perf_event_task(task, NULL, 1);
5617 }
5618 
5619 /*
5620  * comm tracking
5621  */
5622 
5623 struct perf_comm_event {
5624 	struct task_struct	*task;
5625 	char			*comm;
5626 	int			comm_size;
5627 
5628 	struct {
5629 		struct perf_event_header	header;
5630 
5631 		u32				pid;
5632 		u32				tid;
5633 	} event_id;
5634 };
5635 
5636 static int perf_event_comm_match(struct perf_event *event)
5637 {
5638 	return event->attr.comm;
5639 }
5640 
5641 static void perf_event_comm_output(struct perf_event *event,
5642 				   void *data)
5643 {
5644 	struct perf_comm_event *comm_event = data;
5645 	struct perf_output_handle handle;
5646 	struct perf_sample_data sample;
5647 	int size = comm_event->event_id.header.size;
5648 	int ret;
5649 
5650 	if (!perf_event_comm_match(event))
5651 		return;
5652 
5653 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5654 	ret = perf_output_begin(&handle, event,
5655 				comm_event->event_id.header.size);
5656 
5657 	if (ret)
5658 		goto out;
5659 
5660 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5661 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5662 
5663 	perf_output_put(&handle, comm_event->event_id);
5664 	__output_copy(&handle, comm_event->comm,
5665 				   comm_event->comm_size);
5666 
5667 	perf_event__output_id_sample(event, &handle, &sample);
5668 
5669 	perf_output_end(&handle);
5670 out:
5671 	comm_event->event_id.header.size = size;
5672 }
5673 
5674 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5675 {
5676 	char comm[TASK_COMM_LEN];
5677 	unsigned int size;
5678 
5679 	memset(comm, 0, sizeof(comm));
5680 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5681 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5682 
5683 	comm_event->comm = comm;
5684 	comm_event->comm_size = size;
5685 
5686 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5687 
5688 	perf_event_aux(perf_event_comm_output,
5689 		       comm_event,
5690 		       NULL);
5691 }
5692 
5693 void perf_event_comm(struct task_struct *task, bool exec)
5694 {
5695 	struct perf_comm_event comm_event;
5696 
5697 	if (!atomic_read(&nr_comm_events))
5698 		return;
5699 
5700 	comm_event = (struct perf_comm_event){
5701 		.task	= task,
5702 		/* .comm      */
5703 		/* .comm_size */
5704 		.event_id  = {
5705 			.header = {
5706 				.type = PERF_RECORD_COMM,
5707 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5708 				/* .size */
5709 			},
5710 			/* .pid */
5711 			/* .tid */
5712 		},
5713 	};
5714 
5715 	perf_event_comm_event(&comm_event);
5716 }
5717 
5718 /*
5719  * mmap tracking
5720  */
5721 
5722 struct perf_mmap_event {
5723 	struct vm_area_struct	*vma;
5724 
5725 	const char		*file_name;
5726 	int			file_size;
5727 	int			maj, min;
5728 	u64			ino;
5729 	u64			ino_generation;
5730 	u32			prot, flags;
5731 
5732 	struct {
5733 		struct perf_event_header	header;
5734 
5735 		u32				pid;
5736 		u32				tid;
5737 		u64				start;
5738 		u64				len;
5739 		u64				pgoff;
5740 	} event_id;
5741 };
5742 
5743 static int perf_event_mmap_match(struct perf_event *event,
5744 				 void *data)
5745 {
5746 	struct perf_mmap_event *mmap_event = data;
5747 	struct vm_area_struct *vma = mmap_event->vma;
5748 	int executable = vma->vm_flags & VM_EXEC;
5749 
5750 	return (!executable && event->attr.mmap_data) ||
5751 	       (executable && (event->attr.mmap || event->attr.mmap2));
5752 }
5753 
5754 static void perf_event_mmap_output(struct perf_event *event,
5755 				   void *data)
5756 {
5757 	struct perf_mmap_event *mmap_event = data;
5758 	struct perf_output_handle handle;
5759 	struct perf_sample_data sample;
5760 	int size = mmap_event->event_id.header.size;
5761 	int ret;
5762 
5763 	if (!perf_event_mmap_match(event, data))
5764 		return;
5765 
5766 	if (event->attr.mmap2) {
5767 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5768 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5769 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5770 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5771 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5772 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5773 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5774 	}
5775 
5776 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5777 	ret = perf_output_begin(&handle, event,
5778 				mmap_event->event_id.header.size);
5779 	if (ret)
5780 		goto out;
5781 
5782 	mmap_event->event_id.pid = perf_event_pid(event, current);
5783 	mmap_event->event_id.tid = perf_event_tid(event, current);
5784 
5785 	perf_output_put(&handle, mmap_event->event_id);
5786 
5787 	if (event->attr.mmap2) {
5788 		perf_output_put(&handle, mmap_event->maj);
5789 		perf_output_put(&handle, mmap_event->min);
5790 		perf_output_put(&handle, mmap_event->ino);
5791 		perf_output_put(&handle, mmap_event->ino_generation);
5792 		perf_output_put(&handle, mmap_event->prot);
5793 		perf_output_put(&handle, mmap_event->flags);
5794 	}
5795 
5796 	__output_copy(&handle, mmap_event->file_name,
5797 				   mmap_event->file_size);
5798 
5799 	perf_event__output_id_sample(event, &handle, &sample);
5800 
5801 	perf_output_end(&handle);
5802 out:
5803 	mmap_event->event_id.header.size = size;
5804 }
5805 
5806 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5807 {
5808 	struct vm_area_struct *vma = mmap_event->vma;
5809 	struct file *file = vma->vm_file;
5810 	int maj = 0, min = 0;
5811 	u64 ino = 0, gen = 0;
5812 	u32 prot = 0, flags = 0;
5813 	unsigned int size;
5814 	char tmp[16];
5815 	char *buf = NULL;
5816 	char *name;
5817 
5818 	if (file) {
5819 		struct inode *inode;
5820 		dev_t dev;
5821 
5822 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5823 		if (!buf) {
5824 			name = "//enomem";
5825 			goto cpy_name;
5826 		}
5827 		/*
5828 		 * d_path() works from the end of the rb backwards, so we
5829 		 * need to add enough zero bytes after the string to handle
5830 		 * the 64bit alignment we do later.
5831 		 */
5832 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5833 		if (IS_ERR(name)) {
5834 			name = "//toolong";
5835 			goto cpy_name;
5836 		}
5837 		inode = file_inode(vma->vm_file);
5838 		dev = inode->i_sb->s_dev;
5839 		ino = inode->i_ino;
5840 		gen = inode->i_generation;
5841 		maj = MAJOR(dev);
5842 		min = MINOR(dev);
5843 
5844 		if (vma->vm_flags & VM_READ)
5845 			prot |= PROT_READ;
5846 		if (vma->vm_flags & VM_WRITE)
5847 			prot |= PROT_WRITE;
5848 		if (vma->vm_flags & VM_EXEC)
5849 			prot |= PROT_EXEC;
5850 
5851 		if (vma->vm_flags & VM_MAYSHARE)
5852 			flags = MAP_SHARED;
5853 		else
5854 			flags = MAP_PRIVATE;
5855 
5856 		if (vma->vm_flags & VM_DENYWRITE)
5857 			flags |= MAP_DENYWRITE;
5858 		if (vma->vm_flags & VM_MAYEXEC)
5859 			flags |= MAP_EXECUTABLE;
5860 		if (vma->vm_flags & VM_LOCKED)
5861 			flags |= MAP_LOCKED;
5862 		if (vma->vm_flags & VM_HUGETLB)
5863 			flags |= MAP_HUGETLB;
5864 
5865 		goto got_name;
5866 	} else {
5867 		if (vma->vm_ops && vma->vm_ops->name) {
5868 			name = (char *) vma->vm_ops->name(vma);
5869 			if (name)
5870 				goto cpy_name;
5871 		}
5872 
5873 		name = (char *)arch_vma_name(vma);
5874 		if (name)
5875 			goto cpy_name;
5876 
5877 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5878 				vma->vm_end >= vma->vm_mm->brk) {
5879 			name = "[heap]";
5880 			goto cpy_name;
5881 		}
5882 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5883 				vma->vm_end >= vma->vm_mm->start_stack) {
5884 			name = "[stack]";
5885 			goto cpy_name;
5886 		}
5887 
5888 		name = "//anon";
5889 		goto cpy_name;
5890 	}
5891 
5892 cpy_name:
5893 	strlcpy(tmp, name, sizeof(tmp));
5894 	name = tmp;
5895 got_name:
5896 	/*
5897 	 * Since our buffer works in 8 byte units we need to align our string
5898 	 * size to a multiple of 8. However, we must guarantee the tail end is
5899 	 * zero'd out to avoid leaking random bits to userspace.
5900 	 */
5901 	size = strlen(name)+1;
5902 	while (!IS_ALIGNED(size, sizeof(u64)))
5903 		name[size++] = '\0';
5904 
5905 	mmap_event->file_name = name;
5906 	mmap_event->file_size = size;
5907 	mmap_event->maj = maj;
5908 	mmap_event->min = min;
5909 	mmap_event->ino = ino;
5910 	mmap_event->ino_generation = gen;
5911 	mmap_event->prot = prot;
5912 	mmap_event->flags = flags;
5913 
5914 	if (!(vma->vm_flags & VM_EXEC))
5915 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5916 
5917 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5918 
5919 	perf_event_aux(perf_event_mmap_output,
5920 		       mmap_event,
5921 		       NULL);
5922 
5923 	kfree(buf);
5924 }
5925 
5926 void perf_event_mmap(struct vm_area_struct *vma)
5927 {
5928 	struct perf_mmap_event mmap_event;
5929 
5930 	if (!atomic_read(&nr_mmap_events))
5931 		return;
5932 
5933 	mmap_event = (struct perf_mmap_event){
5934 		.vma	= vma,
5935 		/* .file_name */
5936 		/* .file_size */
5937 		.event_id  = {
5938 			.header = {
5939 				.type = PERF_RECORD_MMAP,
5940 				.misc = PERF_RECORD_MISC_USER,
5941 				/* .size */
5942 			},
5943 			/* .pid */
5944 			/* .tid */
5945 			.start  = vma->vm_start,
5946 			.len    = vma->vm_end - vma->vm_start,
5947 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5948 		},
5949 		/* .maj (attr_mmap2 only) */
5950 		/* .min (attr_mmap2 only) */
5951 		/* .ino (attr_mmap2 only) */
5952 		/* .ino_generation (attr_mmap2 only) */
5953 		/* .prot (attr_mmap2 only) */
5954 		/* .flags (attr_mmap2 only) */
5955 	};
5956 
5957 	perf_event_mmap_event(&mmap_event);
5958 }
5959 
5960 void perf_event_aux_event(struct perf_event *event, unsigned long head,
5961 			  unsigned long size, u64 flags)
5962 {
5963 	struct perf_output_handle handle;
5964 	struct perf_sample_data sample;
5965 	struct perf_aux_event {
5966 		struct perf_event_header	header;
5967 		u64				offset;
5968 		u64				size;
5969 		u64				flags;
5970 	} rec = {
5971 		.header = {
5972 			.type = PERF_RECORD_AUX,
5973 			.misc = 0,
5974 			.size = sizeof(rec),
5975 		},
5976 		.offset		= head,
5977 		.size		= size,
5978 		.flags		= flags,
5979 	};
5980 	int ret;
5981 
5982 	perf_event_header__init_id(&rec.header, &sample, event);
5983 	ret = perf_output_begin(&handle, event, rec.header.size);
5984 
5985 	if (ret)
5986 		return;
5987 
5988 	perf_output_put(&handle, rec);
5989 	perf_event__output_id_sample(event, &handle, &sample);
5990 
5991 	perf_output_end(&handle);
5992 }
5993 
5994 /*
5995  * Lost/dropped samples logging
5996  */
5997 void perf_log_lost_samples(struct perf_event *event, u64 lost)
5998 {
5999 	struct perf_output_handle handle;
6000 	struct perf_sample_data sample;
6001 	int ret;
6002 
6003 	struct {
6004 		struct perf_event_header	header;
6005 		u64				lost;
6006 	} lost_samples_event = {
6007 		.header = {
6008 			.type = PERF_RECORD_LOST_SAMPLES,
6009 			.misc = 0,
6010 			.size = sizeof(lost_samples_event),
6011 		},
6012 		.lost		= lost,
6013 	};
6014 
6015 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6016 
6017 	ret = perf_output_begin(&handle, event,
6018 				lost_samples_event.header.size);
6019 	if (ret)
6020 		return;
6021 
6022 	perf_output_put(&handle, lost_samples_event);
6023 	perf_event__output_id_sample(event, &handle, &sample);
6024 	perf_output_end(&handle);
6025 }
6026 
6027 /*
6028  * IRQ throttle logging
6029  */
6030 
6031 static void perf_log_throttle(struct perf_event *event, int enable)
6032 {
6033 	struct perf_output_handle handle;
6034 	struct perf_sample_data sample;
6035 	int ret;
6036 
6037 	struct {
6038 		struct perf_event_header	header;
6039 		u64				time;
6040 		u64				id;
6041 		u64				stream_id;
6042 	} throttle_event = {
6043 		.header = {
6044 			.type = PERF_RECORD_THROTTLE,
6045 			.misc = 0,
6046 			.size = sizeof(throttle_event),
6047 		},
6048 		.time		= perf_event_clock(event),
6049 		.id		= primary_event_id(event),
6050 		.stream_id	= event->id,
6051 	};
6052 
6053 	if (enable)
6054 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6055 
6056 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6057 
6058 	ret = perf_output_begin(&handle, event,
6059 				throttle_event.header.size);
6060 	if (ret)
6061 		return;
6062 
6063 	perf_output_put(&handle, throttle_event);
6064 	perf_event__output_id_sample(event, &handle, &sample);
6065 	perf_output_end(&handle);
6066 }
6067 
6068 static void perf_log_itrace_start(struct perf_event *event)
6069 {
6070 	struct perf_output_handle handle;
6071 	struct perf_sample_data sample;
6072 	struct perf_aux_event {
6073 		struct perf_event_header        header;
6074 		u32				pid;
6075 		u32				tid;
6076 	} rec;
6077 	int ret;
6078 
6079 	if (event->parent)
6080 		event = event->parent;
6081 
6082 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6083 	    event->hw.itrace_started)
6084 		return;
6085 
6086 	event->hw.itrace_started = 1;
6087 
6088 	rec.header.type	= PERF_RECORD_ITRACE_START;
6089 	rec.header.misc	= 0;
6090 	rec.header.size	= sizeof(rec);
6091 	rec.pid	= perf_event_pid(event, current);
6092 	rec.tid	= perf_event_tid(event, current);
6093 
6094 	perf_event_header__init_id(&rec.header, &sample, event);
6095 	ret = perf_output_begin(&handle, event, rec.header.size);
6096 
6097 	if (ret)
6098 		return;
6099 
6100 	perf_output_put(&handle, rec);
6101 	perf_event__output_id_sample(event, &handle, &sample);
6102 
6103 	perf_output_end(&handle);
6104 }
6105 
6106 /*
6107  * Generic event overflow handling, sampling.
6108  */
6109 
6110 static int __perf_event_overflow(struct perf_event *event,
6111 				   int throttle, struct perf_sample_data *data,
6112 				   struct pt_regs *regs)
6113 {
6114 	int events = atomic_read(&event->event_limit);
6115 	struct hw_perf_event *hwc = &event->hw;
6116 	u64 seq;
6117 	int ret = 0;
6118 
6119 	/*
6120 	 * Non-sampling counters might still use the PMI to fold short
6121 	 * hardware counters, ignore those.
6122 	 */
6123 	if (unlikely(!is_sampling_event(event)))
6124 		return 0;
6125 
6126 	seq = __this_cpu_read(perf_throttled_seq);
6127 	if (seq != hwc->interrupts_seq) {
6128 		hwc->interrupts_seq = seq;
6129 		hwc->interrupts = 1;
6130 	} else {
6131 		hwc->interrupts++;
6132 		if (unlikely(throttle
6133 			     && hwc->interrupts >= max_samples_per_tick)) {
6134 			__this_cpu_inc(perf_throttled_count);
6135 			hwc->interrupts = MAX_INTERRUPTS;
6136 			perf_log_throttle(event, 0);
6137 			tick_nohz_full_kick();
6138 			ret = 1;
6139 		}
6140 	}
6141 
6142 	if (event->attr.freq) {
6143 		u64 now = perf_clock();
6144 		s64 delta = now - hwc->freq_time_stamp;
6145 
6146 		hwc->freq_time_stamp = now;
6147 
6148 		if (delta > 0 && delta < 2*TICK_NSEC)
6149 			perf_adjust_period(event, delta, hwc->last_period, true);
6150 	}
6151 
6152 	/*
6153 	 * XXX event_limit might not quite work as expected on inherited
6154 	 * events
6155 	 */
6156 
6157 	event->pending_kill = POLL_IN;
6158 	if (events && atomic_dec_and_test(&event->event_limit)) {
6159 		ret = 1;
6160 		event->pending_kill = POLL_HUP;
6161 		event->pending_disable = 1;
6162 		irq_work_queue(&event->pending);
6163 	}
6164 
6165 	if (event->overflow_handler)
6166 		event->overflow_handler(event, data, regs);
6167 	else
6168 		perf_event_output(event, data, regs);
6169 
6170 	if (*perf_event_fasync(event) && event->pending_kill) {
6171 		event->pending_wakeup = 1;
6172 		irq_work_queue(&event->pending);
6173 	}
6174 
6175 	return ret;
6176 }
6177 
6178 int perf_event_overflow(struct perf_event *event,
6179 			  struct perf_sample_data *data,
6180 			  struct pt_regs *regs)
6181 {
6182 	return __perf_event_overflow(event, 1, data, regs);
6183 }
6184 
6185 /*
6186  * Generic software event infrastructure
6187  */
6188 
6189 struct swevent_htable {
6190 	struct swevent_hlist		*swevent_hlist;
6191 	struct mutex			hlist_mutex;
6192 	int				hlist_refcount;
6193 
6194 	/* Recursion avoidance in each contexts */
6195 	int				recursion[PERF_NR_CONTEXTS];
6196 
6197 	/* Keeps track of cpu being initialized/exited */
6198 	bool				online;
6199 };
6200 
6201 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6202 
6203 /*
6204  * We directly increment event->count and keep a second value in
6205  * event->hw.period_left to count intervals. This period event
6206  * is kept in the range [-sample_period, 0] so that we can use the
6207  * sign as trigger.
6208  */
6209 
6210 u64 perf_swevent_set_period(struct perf_event *event)
6211 {
6212 	struct hw_perf_event *hwc = &event->hw;
6213 	u64 period = hwc->last_period;
6214 	u64 nr, offset;
6215 	s64 old, val;
6216 
6217 	hwc->last_period = hwc->sample_period;
6218 
6219 again:
6220 	old = val = local64_read(&hwc->period_left);
6221 	if (val < 0)
6222 		return 0;
6223 
6224 	nr = div64_u64(period + val, period);
6225 	offset = nr * period;
6226 	val -= offset;
6227 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6228 		goto again;
6229 
6230 	return nr;
6231 }
6232 
6233 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6234 				    struct perf_sample_data *data,
6235 				    struct pt_regs *regs)
6236 {
6237 	struct hw_perf_event *hwc = &event->hw;
6238 	int throttle = 0;
6239 
6240 	if (!overflow)
6241 		overflow = perf_swevent_set_period(event);
6242 
6243 	if (hwc->interrupts == MAX_INTERRUPTS)
6244 		return;
6245 
6246 	for (; overflow; overflow--) {
6247 		if (__perf_event_overflow(event, throttle,
6248 					    data, regs)) {
6249 			/*
6250 			 * We inhibit the overflow from happening when
6251 			 * hwc->interrupts == MAX_INTERRUPTS.
6252 			 */
6253 			break;
6254 		}
6255 		throttle = 1;
6256 	}
6257 }
6258 
6259 static void perf_swevent_event(struct perf_event *event, u64 nr,
6260 			       struct perf_sample_data *data,
6261 			       struct pt_regs *regs)
6262 {
6263 	struct hw_perf_event *hwc = &event->hw;
6264 
6265 	local64_add(nr, &event->count);
6266 
6267 	if (!regs)
6268 		return;
6269 
6270 	if (!is_sampling_event(event))
6271 		return;
6272 
6273 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6274 		data->period = nr;
6275 		return perf_swevent_overflow(event, 1, data, regs);
6276 	} else
6277 		data->period = event->hw.last_period;
6278 
6279 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6280 		return perf_swevent_overflow(event, 1, data, regs);
6281 
6282 	if (local64_add_negative(nr, &hwc->period_left))
6283 		return;
6284 
6285 	perf_swevent_overflow(event, 0, data, regs);
6286 }
6287 
6288 static int perf_exclude_event(struct perf_event *event,
6289 			      struct pt_regs *regs)
6290 {
6291 	if (event->hw.state & PERF_HES_STOPPED)
6292 		return 1;
6293 
6294 	if (regs) {
6295 		if (event->attr.exclude_user && user_mode(regs))
6296 			return 1;
6297 
6298 		if (event->attr.exclude_kernel && !user_mode(regs))
6299 			return 1;
6300 	}
6301 
6302 	return 0;
6303 }
6304 
6305 static int perf_swevent_match(struct perf_event *event,
6306 				enum perf_type_id type,
6307 				u32 event_id,
6308 				struct perf_sample_data *data,
6309 				struct pt_regs *regs)
6310 {
6311 	if (event->attr.type != type)
6312 		return 0;
6313 
6314 	if (event->attr.config != event_id)
6315 		return 0;
6316 
6317 	if (perf_exclude_event(event, regs))
6318 		return 0;
6319 
6320 	return 1;
6321 }
6322 
6323 static inline u64 swevent_hash(u64 type, u32 event_id)
6324 {
6325 	u64 val = event_id | (type << 32);
6326 
6327 	return hash_64(val, SWEVENT_HLIST_BITS);
6328 }
6329 
6330 static inline struct hlist_head *
6331 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6332 {
6333 	u64 hash = swevent_hash(type, event_id);
6334 
6335 	return &hlist->heads[hash];
6336 }
6337 
6338 /* For the read side: events when they trigger */
6339 static inline struct hlist_head *
6340 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6341 {
6342 	struct swevent_hlist *hlist;
6343 
6344 	hlist = rcu_dereference(swhash->swevent_hlist);
6345 	if (!hlist)
6346 		return NULL;
6347 
6348 	return __find_swevent_head(hlist, type, event_id);
6349 }
6350 
6351 /* For the event head insertion and removal in the hlist */
6352 static inline struct hlist_head *
6353 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6354 {
6355 	struct swevent_hlist *hlist;
6356 	u32 event_id = event->attr.config;
6357 	u64 type = event->attr.type;
6358 
6359 	/*
6360 	 * Event scheduling is always serialized against hlist allocation
6361 	 * and release. Which makes the protected version suitable here.
6362 	 * The context lock guarantees that.
6363 	 */
6364 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6365 					  lockdep_is_held(&event->ctx->lock));
6366 	if (!hlist)
6367 		return NULL;
6368 
6369 	return __find_swevent_head(hlist, type, event_id);
6370 }
6371 
6372 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6373 				    u64 nr,
6374 				    struct perf_sample_data *data,
6375 				    struct pt_regs *regs)
6376 {
6377 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6378 	struct perf_event *event;
6379 	struct hlist_head *head;
6380 
6381 	rcu_read_lock();
6382 	head = find_swevent_head_rcu(swhash, type, event_id);
6383 	if (!head)
6384 		goto end;
6385 
6386 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6387 		if (perf_swevent_match(event, type, event_id, data, regs))
6388 			perf_swevent_event(event, nr, data, regs);
6389 	}
6390 end:
6391 	rcu_read_unlock();
6392 }
6393 
6394 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6395 
6396 int perf_swevent_get_recursion_context(void)
6397 {
6398 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6399 
6400 	return get_recursion_context(swhash->recursion);
6401 }
6402 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6403 
6404 inline void perf_swevent_put_recursion_context(int rctx)
6405 {
6406 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6407 
6408 	put_recursion_context(swhash->recursion, rctx);
6409 }
6410 
6411 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6412 {
6413 	struct perf_sample_data data;
6414 
6415 	if (WARN_ON_ONCE(!regs))
6416 		return;
6417 
6418 	perf_sample_data_init(&data, addr, 0);
6419 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6420 }
6421 
6422 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6423 {
6424 	int rctx;
6425 
6426 	preempt_disable_notrace();
6427 	rctx = perf_swevent_get_recursion_context();
6428 	if (unlikely(rctx < 0))
6429 		goto fail;
6430 
6431 	___perf_sw_event(event_id, nr, regs, addr);
6432 
6433 	perf_swevent_put_recursion_context(rctx);
6434 fail:
6435 	preempt_enable_notrace();
6436 }
6437 
6438 static void perf_swevent_read(struct perf_event *event)
6439 {
6440 }
6441 
6442 static int perf_swevent_add(struct perf_event *event, int flags)
6443 {
6444 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6445 	struct hw_perf_event *hwc = &event->hw;
6446 	struct hlist_head *head;
6447 
6448 	if (is_sampling_event(event)) {
6449 		hwc->last_period = hwc->sample_period;
6450 		perf_swevent_set_period(event);
6451 	}
6452 
6453 	hwc->state = !(flags & PERF_EF_START);
6454 
6455 	head = find_swevent_head(swhash, event);
6456 	if (!head) {
6457 		/*
6458 		 * We can race with cpu hotplug code. Do not
6459 		 * WARN if the cpu just got unplugged.
6460 		 */
6461 		WARN_ON_ONCE(swhash->online);
6462 		return -EINVAL;
6463 	}
6464 
6465 	hlist_add_head_rcu(&event->hlist_entry, head);
6466 	perf_event_update_userpage(event);
6467 
6468 	return 0;
6469 }
6470 
6471 static void perf_swevent_del(struct perf_event *event, int flags)
6472 {
6473 	hlist_del_rcu(&event->hlist_entry);
6474 }
6475 
6476 static void perf_swevent_start(struct perf_event *event, int flags)
6477 {
6478 	event->hw.state = 0;
6479 }
6480 
6481 static void perf_swevent_stop(struct perf_event *event, int flags)
6482 {
6483 	event->hw.state = PERF_HES_STOPPED;
6484 }
6485 
6486 /* Deref the hlist from the update side */
6487 static inline struct swevent_hlist *
6488 swevent_hlist_deref(struct swevent_htable *swhash)
6489 {
6490 	return rcu_dereference_protected(swhash->swevent_hlist,
6491 					 lockdep_is_held(&swhash->hlist_mutex));
6492 }
6493 
6494 static void swevent_hlist_release(struct swevent_htable *swhash)
6495 {
6496 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6497 
6498 	if (!hlist)
6499 		return;
6500 
6501 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6502 	kfree_rcu(hlist, rcu_head);
6503 }
6504 
6505 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6506 {
6507 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6508 
6509 	mutex_lock(&swhash->hlist_mutex);
6510 
6511 	if (!--swhash->hlist_refcount)
6512 		swevent_hlist_release(swhash);
6513 
6514 	mutex_unlock(&swhash->hlist_mutex);
6515 }
6516 
6517 static void swevent_hlist_put(struct perf_event *event)
6518 {
6519 	int cpu;
6520 
6521 	for_each_possible_cpu(cpu)
6522 		swevent_hlist_put_cpu(event, cpu);
6523 }
6524 
6525 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6526 {
6527 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6528 	int err = 0;
6529 
6530 	mutex_lock(&swhash->hlist_mutex);
6531 
6532 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6533 		struct swevent_hlist *hlist;
6534 
6535 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6536 		if (!hlist) {
6537 			err = -ENOMEM;
6538 			goto exit;
6539 		}
6540 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6541 	}
6542 	swhash->hlist_refcount++;
6543 exit:
6544 	mutex_unlock(&swhash->hlist_mutex);
6545 
6546 	return err;
6547 }
6548 
6549 static int swevent_hlist_get(struct perf_event *event)
6550 {
6551 	int err;
6552 	int cpu, failed_cpu;
6553 
6554 	get_online_cpus();
6555 	for_each_possible_cpu(cpu) {
6556 		err = swevent_hlist_get_cpu(event, cpu);
6557 		if (err) {
6558 			failed_cpu = cpu;
6559 			goto fail;
6560 		}
6561 	}
6562 	put_online_cpus();
6563 
6564 	return 0;
6565 fail:
6566 	for_each_possible_cpu(cpu) {
6567 		if (cpu == failed_cpu)
6568 			break;
6569 		swevent_hlist_put_cpu(event, cpu);
6570 	}
6571 
6572 	put_online_cpus();
6573 	return err;
6574 }
6575 
6576 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6577 
6578 static void sw_perf_event_destroy(struct perf_event *event)
6579 {
6580 	u64 event_id = event->attr.config;
6581 
6582 	WARN_ON(event->parent);
6583 
6584 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6585 	swevent_hlist_put(event);
6586 }
6587 
6588 static int perf_swevent_init(struct perf_event *event)
6589 {
6590 	u64 event_id = event->attr.config;
6591 
6592 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6593 		return -ENOENT;
6594 
6595 	/*
6596 	 * no branch sampling for software events
6597 	 */
6598 	if (has_branch_stack(event))
6599 		return -EOPNOTSUPP;
6600 
6601 	switch (event_id) {
6602 	case PERF_COUNT_SW_CPU_CLOCK:
6603 	case PERF_COUNT_SW_TASK_CLOCK:
6604 		return -ENOENT;
6605 
6606 	default:
6607 		break;
6608 	}
6609 
6610 	if (event_id >= PERF_COUNT_SW_MAX)
6611 		return -ENOENT;
6612 
6613 	if (!event->parent) {
6614 		int err;
6615 
6616 		err = swevent_hlist_get(event);
6617 		if (err)
6618 			return err;
6619 
6620 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6621 		event->destroy = sw_perf_event_destroy;
6622 	}
6623 
6624 	return 0;
6625 }
6626 
6627 static struct pmu perf_swevent = {
6628 	.task_ctx_nr	= perf_sw_context,
6629 
6630 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6631 
6632 	.event_init	= perf_swevent_init,
6633 	.add		= perf_swevent_add,
6634 	.del		= perf_swevent_del,
6635 	.start		= perf_swevent_start,
6636 	.stop		= perf_swevent_stop,
6637 	.read		= perf_swevent_read,
6638 };
6639 
6640 #ifdef CONFIG_EVENT_TRACING
6641 
6642 static int perf_tp_filter_match(struct perf_event *event,
6643 				struct perf_sample_data *data)
6644 {
6645 	void *record = data->raw->data;
6646 
6647 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6648 		return 1;
6649 	return 0;
6650 }
6651 
6652 static int perf_tp_event_match(struct perf_event *event,
6653 				struct perf_sample_data *data,
6654 				struct pt_regs *regs)
6655 {
6656 	if (event->hw.state & PERF_HES_STOPPED)
6657 		return 0;
6658 	/*
6659 	 * All tracepoints are from kernel-space.
6660 	 */
6661 	if (event->attr.exclude_kernel)
6662 		return 0;
6663 
6664 	if (!perf_tp_filter_match(event, data))
6665 		return 0;
6666 
6667 	return 1;
6668 }
6669 
6670 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6671 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6672 		   struct task_struct *task)
6673 {
6674 	struct perf_sample_data data;
6675 	struct perf_event *event;
6676 
6677 	struct perf_raw_record raw = {
6678 		.size = entry_size,
6679 		.data = record,
6680 	};
6681 
6682 	perf_sample_data_init(&data, addr, 0);
6683 	data.raw = &raw;
6684 
6685 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6686 		if (perf_tp_event_match(event, &data, regs))
6687 			perf_swevent_event(event, count, &data, regs);
6688 	}
6689 
6690 	/*
6691 	 * If we got specified a target task, also iterate its context and
6692 	 * deliver this event there too.
6693 	 */
6694 	if (task && task != current) {
6695 		struct perf_event_context *ctx;
6696 		struct trace_entry *entry = record;
6697 
6698 		rcu_read_lock();
6699 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6700 		if (!ctx)
6701 			goto unlock;
6702 
6703 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6704 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6705 				continue;
6706 			if (event->attr.config != entry->type)
6707 				continue;
6708 			if (perf_tp_event_match(event, &data, regs))
6709 				perf_swevent_event(event, count, &data, regs);
6710 		}
6711 unlock:
6712 		rcu_read_unlock();
6713 	}
6714 
6715 	perf_swevent_put_recursion_context(rctx);
6716 }
6717 EXPORT_SYMBOL_GPL(perf_tp_event);
6718 
6719 static void tp_perf_event_destroy(struct perf_event *event)
6720 {
6721 	perf_trace_destroy(event);
6722 }
6723 
6724 static int perf_tp_event_init(struct perf_event *event)
6725 {
6726 	int err;
6727 
6728 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6729 		return -ENOENT;
6730 
6731 	/*
6732 	 * no branch sampling for tracepoint events
6733 	 */
6734 	if (has_branch_stack(event))
6735 		return -EOPNOTSUPP;
6736 
6737 	err = perf_trace_init(event);
6738 	if (err)
6739 		return err;
6740 
6741 	event->destroy = tp_perf_event_destroy;
6742 
6743 	return 0;
6744 }
6745 
6746 static struct pmu perf_tracepoint = {
6747 	.task_ctx_nr	= perf_sw_context,
6748 
6749 	.event_init	= perf_tp_event_init,
6750 	.add		= perf_trace_add,
6751 	.del		= perf_trace_del,
6752 	.start		= perf_swevent_start,
6753 	.stop		= perf_swevent_stop,
6754 	.read		= perf_swevent_read,
6755 };
6756 
6757 static inline void perf_tp_register(void)
6758 {
6759 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6760 }
6761 
6762 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6763 {
6764 	char *filter_str;
6765 	int ret;
6766 
6767 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6768 		return -EINVAL;
6769 
6770 	filter_str = strndup_user(arg, PAGE_SIZE);
6771 	if (IS_ERR(filter_str))
6772 		return PTR_ERR(filter_str);
6773 
6774 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6775 
6776 	kfree(filter_str);
6777 	return ret;
6778 }
6779 
6780 static void perf_event_free_filter(struct perf_event *event)
6781 {
6782 	ftrace_profile_free_filter(event);
6783 }
6784 
6785 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6786 {
6787 	struct bpf_prog *prog;
6788 
6789 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6790 		return -EINVAL;
6791 
6792 	if (event->tp_event->prog)
6793 		return -EEXIST;
6794 
6795 	if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
6796 		/* bpf programs can only be attached to kprobes */
6797 		return -EINVAL;
6798 
6799 	prog = bpf_prog_get(prog_fd);
6800 	if (IS_ERR(prog))
6801 		return PTR_ERR(prog);
6802 
6803 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6804 		/* valid fd, but invalid bpf program type */
6805 		bpf_prog_put(prog);
6806 		return -EINVAL;
6807 	}
6808 
6809 	event->tp_event->prog = prog;
6810 
6811 	return 0;
6812 }
6813 
6814 static void perf_event_free_bpf_prog(struct perf_event *event)
6815 {
6816 	struct bpf_prog *prog;
6817 
6818 	if (!event->tp_event)
6819 		return;
6820 
6821 	prog = event->tp_event->prog;
6822 	if (prog) {
6823 		event->tp_event->prog = NULL;
6824 		bpf_prog_put(prog);
6825 	}
6826 }
6827 
6828 #else
6829 
6830 static inline void perf_tp_register(void)
6831 {
6832 }
6833 
6834 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6835 {
6836 	return -ENOENT;
6837 }
6838 
6839 static void perf_event_free_filter(struct perf_event *event)
6840 {
6841 }
6842 
6843 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6844 {
6845 	return -ENOENT;
6846 }
6847 
6848 static void perf_event_free_bpf_prog(struct perf_event *event)
6849 {
6850 }
6851 #endif /* CONFIG_EVENT_TRACING */
6852 
6853 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6854 void perf_bp_event(struct perf_event *bp, void *data)
6855 {
6856 	struct perf_sample_data sample;
6857 	struct pt_regs *regs = data;
6858 
6859 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6860 
6861 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6862 		perf_swevent_event(bp, 1, &sample, regs);
6863 }
6864 #endif
6865 
6866 /*
6867  * hrtimer based swevent callback
6868  */
6869 
6870 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6871 {
6872 	enum hrtimer_restart ret = HRTIMER_RESTART;
6873 	struct perf_sample_data data;
6874 	struct pt_regs *regs;
6875 	struct perf_event *event;
6876 	u64 period;
6877 
6878 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6879 
6880 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6881 		return HRTIMER_NORESTART;
6882 
6883 	event->pmu->read(event);
6884 
6885 	perf_sample_data_init(&data, 0, event->hw.last_period);
6886 	regs = get_irq_regs();
6887 
6888 	if (regs && !perf_exclude_event(event, regs)) {
6889 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6890 			if (__perf_event_overflow(event, 1, &data, regs))
6891 				ret = HRTIMER_NORESTART;
6892 	}
6893 
6894 	period = max_t(u64, 10000, event->hw.sample_period);
6895 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6896 
6897 	return ret;
6898 }
6899 
6900 static void perf_swevent_start_hrtimer(struct perf_event *event)
6901 {
6902 	struct hw_perf_event *hwc = &event->hw;
6903 	s64 period;
6904 
6905 	if (!is_sampling_event(event))
6906 		return;
6907 
6908 	period = local64_read(&hwc->period_left);
6909 	if (period) {
6910 		if (period < 0)
6911 			period = 10000;
6912 
6913 		local64_set(&hwc->period_left, 0);
6914 	} else {
6915 		period = max_t(u64, 10000, hwc->sample_period);
6916 	}
6917 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
6918 		      HRTIMER_MODE_REL_PINNED);
6919 }
6920 
6921 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6922 {
6923 	struct hw_perf_event *hwc = &event->hw;
6924 
6925 	if (is_sampling_event(event)) {
6926 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6927 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6928 
6929 		hrtimer_cancel(&hwc->hrtimer);
6930 	}
6931 }
6932 
6933 static void perf_swevent_init_hrtimer(struct perf_event *event)
6934 {
6935 	struct hw_perf_event *hwc = &event->hw;
6936 
6937 	if (!is_sampling_event(event))
6938 		return;
6939 
6940 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6941 	hwc->hrtimer.function = perf_swevent_hrtimer;
6942 
6943 	/*
6944 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6945 	 * mapping and avoid the whole period adjust feedback stuff.
6946 	 */
6947 	if (event->attr.freq) {
6948 		long freq = event->attr.sample_freq;
6949 
6950 		event->attr.sample_period = NSEC_PER_SEC / freq;
6951 		hwc->sample_period = event->attr.sample_period;
6952 		local64_set(&hwc->period_left, hwc->sample_period);
6953 		hwc->last_period = hwc->sample_period;
6954 		event->attr.freq = 0;
6955 	}
6956 }
6957 
6958 /*
6959  * Software event: cpu wall time clock
6960  */
6961 
6962 static void cpu_clock_event_update(struct perf_event *event)
6963 {
6964 	s64 prev;
6965 	u64 now;
6966 
6967 	now = local_clock();
6968 	prev = local64_xchg(&event->hw.prev_count, now);
6969 	local64_add(now - prev, &event->count);
6970 }
6971 
6972 static void cpu_clock_event_start(struct perf_event *event, int flags)
6973 {
6974 	local64_set(&event->hw.prev_count, local_clock());
6975 	perf_swevent_start_hrtimer(event);
6976 }
6977 
6978 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6979 {
6980 	perf_swevent_cancel_hrtimer(event);
6981 	cpu_clock_event_update(event);
6982 }
6983 
6984 static int cpu_clock_event_add(struct perf_event *event, int flags)
6985 {
6986 	if (flags & PERF_EF_START)
6987 		cpu_clock_event_start(event, flags);
6988 	perf_event_update_userpage(event);
6989 
6990 	return 0;
6991 }
6992 
6993 static void cpu_clock_event_del(struct perf_event *event, int flags)
6994 {
6995 	cpu_clock_event_stop(event, flags);
6996 }
6997 
6998 static void cpu_clock_event_read(struct perf_event *event)
6999 {
7000 	cpu_clock_event_update(event);
7001 }
7002 
7003 static int cpu_clock_event_init(struct perf_event *event)
7004 {
7005 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7006 		return -ENOENT;
7007 
7008 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7009 		return -ENOENT;
7010 
7011 	/*
7012 	 * no branch sampling for software events
7013 	 */
7014 	if (has_branch_stack(event))
7015 		return -EOPNOTSUPP;
7016 
7017 	perf_swevent_init_hrtimer(event);
7018 
7019 	return 0;
7020 }
7021 
7022 static struct pmu perf_cpu_clock = {
7023 	.task_ctx_nr	= perf_sw_context,
7024 
7025 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7026 
7027 	.event_init	= cpu_clock_event_init,
7028 	.add		= cpu_clock_event_add,
7029 	.del		= cpu_clock_event_del,
7030 	.start		= cpu_clock_event_start,
7031 	.stop		= cpu_clock_event_stop,
7032 	.read		= cpu_clock_event_read,
7033 };
7034 
7035 /*
7036  * Software event: task time clock
7037  */
7038 
7039 static void task_clock_event_update(struct perf_event *event, u64 now)
7040 {
7041 	u64 prev;
7042 	s64 delta;
7043 
7044 	prev = local64_xchg(&event->hw.prev_count, now);
7045 	delta = now - prev;
7046 	local64_add(delta, &event->count);
7047 }
7048 
7049 static void task_clock_event_start(struct perf_event *event, int flags)
7050 {
7051 	local64_set(&event->hw.prev_count, event->ctx->time);
7052 	perf_swevent_start_hrtimer(event);
7053 }
7054 
7055 static void task_clock_event_stop(struct perf_event *event, int flags)
7056 {
7057 	perf_swevent_cancel_hrtimer(event);
7058 	task_clock_event_update(event, event->ctx->time);
7059 }
7060 
7061 static int task_clock_event_add(struct perf_event *event, int flags)
7062 {
7063 	if (flags & PERF_EF_START)
7064 		task_clock_event_start(event, flags);
7065 	perf_event_update_userpage(event);
7066 
7067 	return 0;
7068 }
7069 
7070 static void task_clock_event_del(struct perf_event *event, int flags)
7071 {
7072 	task_clock_event_stop(event, PERF_EF_UPDATE);
7073 }
7074 
7075 static void task_clock_event_read(struct perf_event *event)
7076 {
7077 	u64 now = perf_clock();
7078 	u64 delta = now - event->ctx->timestamp;
7079 	u64 time = event->ctx->time + delta;
7080 
7081 	task_clock_event_update(event, time);
7082 }
7083 
7084 static int task_clock_event_init(struct perf_event *event)
7085 {
7086 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7087 		return -ENOENT;
7088 
7089 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7090 		return -ENOENT;
7091 
7092 	/*
7093 	 * no branch sampling for software events
7094 	 */
7095 	if (has_branch_stack(event))
7096 		return -EOPNOTSUPP;
7097 
7098 	perf_swevent_init_hrtimer(event);
7099 
7100 	return 0;
7101 }
7102 
7103 static struct pmu perf_task_clock = {
7104 	.task_ctx_nr	= perf_sw_context,
7105 
7106 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7107 
7108 	.event_init	= task_clock_event_init,
7109 	.add		= task_clock_event_add,
7110 	.del		= task_clock_event_del,
7111 	.start		= task_clock_event_start,
7112 	.stop		= task_clock_event_stop,
7113 	.read		= task_clock_event_read,
7114 };
7115 
7116 static void perf_pmu_nop_void(struct pmu *pmu)
7117 {
7118 }
7119 
7120 static int perf_pmu_nop_int(struct pmu *pmu)
7121 {
7122 	return 0;
7123 }
7124 
7125 static void perf_pmu_start_txn(struct pmu *pmu)
7126 {
7127 	perf_pmu_disable(pmu);
7128 }
7129 
7130 static int perf_pmu_commit_txn(struct pmu *pmu)
7131 {
7132 	perf_pmu_enable(pmu);
7133 	return 0;
7134 }
7135 
7136 static void perf_pmu_cancel_txn(struct pmu *pmu)
7137 {
7138 	perf_pmu_enable(pmu);
7139 }
7140 
7141 static int perf_event_idx_default(struct perf_event *event)
7142 {
7143 	return 0;
7144 }
7145 
7146 /*
7147  * Ensures all contexts with the same task_ctx_nr have the same
7148  * pmu_cpu_context too.
7149  */
7150 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7151 {
7152 	struct pmu *pmu;
7153 
7154 	if (ctxn < 0)
7155 		return NULL;
7156 
7157 	list_for_each_entry(pmu, &pmus, entry) {
7158 		if (pmu->task_ctx_nr == ctxn)
7159 			return pmu->pmu_cpu_context;
7160 	}
7161 
7162 	return NULL;
7163 }
7164 
7165 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7166 {
7167 	int cpu;
7168 
7169 	for_each_possible_cpu(cpu) {
7170 		struct perf_cpu_context *cpuctx;
7171 
7172 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7173 
7174 		if (cpuctx->unique_pmu == old_pmu)
7175 			cpuctx->unique_pmu = pmu;
7176 	}
7177 }
7178 
7179 static void free_pmu_context(struct pmu *pmu)
7180 {
7181 	struct pmu *i;
7182 
7183 	mutex_lock(&pmus_lock);
7184 	/*
7185 	 * Like a real lame refcount.
7186 	 */
7187 	list_for_each_entry(i, &pmus, entry) {
7188 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7189 			update_pmu_context(i, pmu);
7190 			goto out;
7191 		}
7192 	}
7193 
7194 	free_percpu(pmu->pmu_cpu_context);
7195 out:
7196 	mutex_unlock(&pmus_lock);
7197 }
7198 static struct idr pmu_idr;
7199 
7200 static ssize_t
7201 type_show(struct device *dev, struct device_attribute *attr, char *page)
7202 {
7203 	struct pmu *pmu = dev_get_drvdata(dev);
7204 
7205 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7206 }
7207 static DEVICE_ATTR_RO(type);
7208 
7209 static ssize_t
7210 perf_event_mux_interval_ms_show(struct device *dev,
7211 				struct device_attribute *attr,
7212 				char *page)
7213 {
7214 	struct pmu *pmu = dev_get_drvdata(dev);
7215 
7216 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7217 }
7218 
7219 static DEFINE_MUTEX(mux_interval_mutex);
7220 
7221 static ssize_t
7222 perf_event_mux_interval_ms_store(struct device *dev,
7223 				 struct device_attribute *attr,
7224 				 const char *buf, size_t count)
7225 {
7226 	struct pmu *pmu = dev_get_drvdata(dev);
7227 	int timer, cpu, ret;
7228 
7229 	ret = kstrtoint(buf, 0, &timer);
7230 	if (ret)
7231 		return ret;
7232 
7233 	if (timer < 1)
7234 		return -EINVAL;
7235 
7236 	/* same value, noting to do */
7237 	if (timer == pmu->hrtimer_interval_ms)
7238 		return count;
7239 
7240 	mutex_lock(&mux_interval_mutex);
7241 	pmu->hrtimer_interval_ms = timer;
7242 
7243 	/* update all cpuctx for this PMU */
7244 	get_online_cpus();
7245 	for_each_online_cpu(cpu) {
7246 		struct perf_cpu_context *cpuctx;
7247 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7248 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7249 
7250 		cpu_function_call(cpu,
7251 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7252 	}
7253 	put_online_cpus();
7254 	mutex_unlock(&mux_interval_mutex);
7255 
7256 	return count;
7257 }
7258 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7259 
7260 static struct attribute *pmu_dev_attrs[] = {
7261 	&dev_attr_type.attr,
7262 	&dev_attr_perf_event_mux_interval_ms.attr,
7263 	NULL,
7264 };
7265 ATTRIBUTE_GROUPS(pmu_dev);
7266 
7267 static int pmu_bus_running;
7268 static struct bus_type pmu_bus = {
7269 	.name		= "event_source",
7270 	.dev_groups	= pmu_dev_groups,
7271 };
7272 
7273 static void pmu_dev_release(struct device *dev)
7274 {
7275 	kfree(dev);
7276 }
7277 
7278 static int pmu_dev_alloc(struct pmu *pmu)
7279 {
7280 	int ret = -ENOMEM;
7281 
7282 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7283 	if (!pmu->dev)
7284 		goto out;
7285 
7286 	pmu->dev->groups = pmu->attr_groups;
7287 	device_initialize(pmu->dev);
7288 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7289 	if (ret)
7290 		goto free_dev;
7291 
7292 	dev_set_drvdata(pmu->dev, pmu);
7293 	pmu->dev->bus = &pmu_bus;
7294 	pmu->dev->release = pmu_dev_release;
7295 	ret = device_add(pmu->dev);
7296 	if (ret)
7297 		goto free_dev;
7298 
7299 out:
7300 	return ret;
7301 
7302 free_dev:
7303 	put_device(pmu->dev);
7304 	goto out;
7305 }
7306 
7307 static struct lock_class_key cpuctx_mutex;
7308 static struct lock_class_key cpuctx_lock;
7309 
7310 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7311 {
7312 	int cpu, ret;
7313 
7314 	mutex_lock(&pmus_lock);
7315 	ret = -ENOMEM;
7316 	pmu->pmu_disable_count = alloc_percpu(int);
7317 	if (!pmu->pmu_disable_count)
7318 		goto unlock;
7319 
7320 	pmu->type = -1;
7321 	if (!name)
7322 		goto skip_type;
7323 	pmu->name = name;
7324 
7325 	if (type < 0) {
7326 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7327 		if (type < 0) {
7328 			ret = type;
7329 			goto free_pdc;
7330 		}
7331 	}
7332 	pmu->type = type;
7333 
7334 	if (pmu_bus_running) {
7335 		ret = pmu_dev_alloc(pmu);
7336 		if (ret)
7337 			goto free_idr;
7338 	}
7339 
7340 skip_type:
7341 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7342 	if (pmu->pmu_cpu_context)
7343 		goto got_cpu_context;
7344 
7345 	ret = -ENOMEM;
7346 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7347 	if (!pmu->pmu_cpu_context)
7348 		goto free_dev;
7349 
7350 	for_each_possible_cpu(cpu) {
7351 		struct perf_cpu_context *cpuctx;
7352 
7353 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7354 		__perf_event_init_context(&cpuctx->ctx);
7355 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7356 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7357 		cpuctx->ctx.pmu = pmu;
7358 
7359 		__perf_mux_hrtimer_init(cpuctx, cpu);
7360 
7361 		cpuctx->unique_pmu = pmu;
7362 	}
7363 
7364 got_cpu_context:
7365 	if (!pmu->start_txn) {
7366 		if (pmu->pmu_enable) {
7367 			/*
7368 			 * If we have pmu_enable/pmu_disable calls, install
7369 			 * transaction stubs that use that to try and batch
7370 			 * hardware accesses.
7371 			 */
7372 			pmu->start_txn  = perf_pmu_start_txn;
7373 			pmu->commit_txn = perf_pmu_commit_txn;
7374 			pmu->cancel_txn = perf_pmu_cancel_txn;
7375 		} else {
7376 			pmu->start_txn  = perf_pmu_nop_void;
7377 			pmu->commit_txn = perf_pmu_nop_int;
7378 			pmu->cancel_txn = perf_pmu_nop_void;
7379 		}
7380 	}
7381 
7382 	if (!pmu->pmu_enable) {
7383 		pmu->pmu_enable  = perf_pmu_nop_void;
7384 		pmu->pmu_disable = perf_pmu_nop_void;
7385 	}
7386 
7387 	if (!pmu->event_idx)
7388 		pmu->event_idx = perf_event_idx_default;
7389 
7390 	list_add_rcu(&pmu->entry, &pmus);
7391 	atomic_set(&pmu->exclusive_cnt, 0);
7392 	ret = 0;
7393 unlock:
7394 	mutex_unlock(&pmus_lock);
7395 
7396 	return ret;
7397 
7398 free_dev:
7399 	device_del(pmu->dev);
7400 	put_device(pmu->dev);
7401 
7402 free_idr:
7403 	if (pmu->type >= PERF_TYPE_MAX)
7404 		idr_remove(&pmu_idr, pmu->type);
7405 
7406 free_pdc:
7407 	free_percpu(pmu->pmu_disable_count);
7408 	goto unlock;
7409 }
7410 EXPORT_SYMBOL_GPL(perf_pmu_register);
7411 
7412 void perf_pmu_unregister(struct pmu *pmu)
7413 {
7414 	mutex_lock(&pmus_lock);
7415 	list_del_rcu(&pmu->entry);
7416 	mutex_unlock(&pmus_lock);
7417 
7418 	/*
7419 	 * We dereference the pmu list under both SRCU and regular RCU, so
7420 	 * synchronize against both of those.
7421 	 */
7422 	synchronize_srcu(&pmus_srcu);
7423 	synchronize_rcu();
7424 
7425 	free_percpu(pmu->pmu_disable_count);
7426 	if (pmu->type >= PERF_TYPE_MAX)
7427 		idr_remove(&pmu_idr, pmu->type);
7428 	device_del(pmu->dev);
7429 	put_device(pmu->dev);
7430 	free_pmu_context(pmu);
7431 }
7432 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7433 
7434 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7435 {
7436 	struct perf_event_context *ctx = NULL;
7437 	int ret;
7438 
7439 	if (!try_module_get(pmu->module))
7440 		return -ENODEV;
7441 
7442 	if (event->group_leader != event) {
7443 		/*
7444 		 * This ctx->mutex can nest when we're called through
7445 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7446 		 */
7447 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7448 						 SINGLE_DEPTH_NESTING);
7449 		BUG_ON(!ctx);
7450 	}
7451 
7452 	event->pmu = pmu;
7453 	ret = pmu->event_init(event);
7454 
7455 	if (ctx)
7456 		perf_event_ctx_unlock(event->group_leader, ctx);
7457 
7458 	if (ret)
7459 		module_put(pmu->module);
7460 
7461 	return ret;
7462 }
7463 
7464 struct pmu *perf_init_event(struct perf_event *event)
7465 {
7466 	struct pmu *pmu = NULL;
7467 	int idx;
7468 	int ret;
7469 
7470 	idx = srcu_read_lock(&pmus_srcu);
7471 
7472 	rcu_read_lock();
7473 	pmu = idr_find(&pmu_idr, event->attr.type);
7474 	rcu_read_unlock();
7475 	if (pmu) {
7476 		ret = perf_try_init_event(pmu, event);
7477 		if (ret)
7478 			pmu = ERR_PTR(ret);
7479 		goto unlock;
7480 	}
7481 
7482 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7483 		ret = perf_try_init_event(pmu, event);
7484 		if (!ret)
7485 			goto unlock;
7486 
7487 		if (ret != -ENOENT) {
7488 			pmu = ERR_PTR(ret);
7489 			goto unlock;
7490 		}
7491 	}
7492 	pmu = ERR_PTR(-ENOENT);
7493 unlock:
7494 	srcu_read_unlock(&pmus_srcu, idx);
7495 
7496 	return pmu;
7497 }
7498 
7499 static void account_event_cpu(struct perf_event *event, int cpu)
7500 {
7501 	if (event->parent)
7502 		return;
7503 
7504 	if (is_cgroup_event(event))
7505 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7506 }
7507 
7508 static void account_event(struct perf_event *event)
7509 {
7510 	if (event->parent)
7511 		return;
7512 
7513 	if (event->attach_state & PERF_ATTACH_TASK)
7514 		static_key_slow_inc(&perf_sched_events.key);
7515 	if (event->attr.mmap || event->attr.mmap_data)
7516 		atomic_inc(&nr_mmap_events);
7517 	if (event->attr.comm)
7518 		atomic_inc(&nr_comm_events);
7519 	if (event->attr.task)
7520 		atomic_inc(&nr_task_events);
7521 	if (event->attr.freq) {
7522 		if (atomic_inc_return(&nr_freq_events) == 1)
7523 			tick_nohz_full_kick_all();
7524 	}
7525 	if (has_branch_stack(event))
7526 		static_key_slow_inc(&perf_sched_events.key);
7527 	if (is_cgroup_event(event))
7528 		static_key_slow_inc(&perf_sched_events.key);
7529 
7530 	account_event_cpu(event, event->cpu);
7531 }
7532 
7533 /*
7534  * Allocate and initialize a event structure
7535  */
7536 static struct perf_event *
7537 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7538 		 struct task_struct *task,
7539 		 struct perf_event *group_leader,
7540 		 struct perf_event *parent_event,
7541 		 perf_overflow_handler_t overflow_handler,
7542 		 void *context, int cgroup_fd)
7543 {
7544 	struct pmu *pmu;
7545 	struct perf_event *event;
7546 	struct hw_perf_event *hwc;
7547 	long err = -EINVAL;
7548 
7549 	if ((unsigned)cpu >= nr_cpu_ids) {
7550 		if (!task || cpu != -1)
7551 			return ERR_PTR(-EINVAL);
7552 	}
7553 
7554 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7555 	if (!event)
7556 		return ERR_PTR(-ENOMEM);
7557 
7558 	/*
7559 	 * Single events are their own group leaders, with an
7560 	 * empty sibling list:
7561 	 */
7562 	if (!group_leader)
7563 		group_leader = event;
7564 
7565 	mutex_init(&event->child_mutex);
7566 	INIT_LIST_HEAD(&event->child_list);
7567 
7568 	INIT_LIST_HEAD(&event->group_entry);
7569 	INIT_LIST_HEAD(&event->event_entry);
7570 	INIT_LIST_HEAD(&event->sibling_list);
7571 	INIT_LIST_HEAD(&event->rb_entry);
7572 	INIT_LIST_HEAD(&event->active_entry);
7573 	INIT_HLIST_NODE(&event->hlist_entry);
7574 
7575 
7576 	init_waitqueue_head(&event->waitq);
7577 	init_irq_work(&event->pending, perf_pending_event);
7578 
7579 	mutex_init(&event->mmap_mutex);
7580 
7581 	atomic_long_set(&event->refcount, 1);
7582 	event->cpu		= cpu;
7583 	event->attr		= *attr;
7584 	event->group_leader	= group_leader;
7585 	event->pmu		= NULL;
7586 	event->oncpu		= -1;
7587 
7588 	event->parent		= parent_event;
7589 
7590 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7591 	event->id		= atomic64_inc_return(&perf_event_id);
7592 
7593 	event->state		= PERF_EVENT_STATE_INACTIVE;
7594 
7595 	if (task) {
7596 		event->attach_state = PERF_ATTACH_TASK;
7597 		/*
7598 		 * XXX pmu::event_init needs to know what task to account to
7599 		 * and we cannot use the ctx information because we need the
7600 		 * pmu before we get a ctx.
7601 		 */
7602 		event->hw.target = task;
7603 	}
7604 
7605 	event->clock = &local_clock;
7606 	if (parent_event)
7607 		event->clock = parent_event->clock;
7608 
7609 	if (!overflow_handler && parent_event) {
7610 		overflow_handler = parent_event->overflow_handler;
7611 		context = parent_event->overflow_handler_context;
7612 	}
7613 
7614 	event->overflow_handler	= overflow_handler;
7615 	event->overflow_handler_context = context;
7616 
7617 	perf_event__state_init(event);
7618 
7619 	pmu = NULL;
7620 
7621 	hwc = &event->hw;
7622 	hwc->sample_period = attr->sample_period;
7623 	if (attr->freq && attr->sample_freq)
7624 		hwc->sample_period = 1;
7625 	hwc->last_period = hwc->sample_period;
7626 
7627 	local64_set(&hwc->period_left, hwc->sample_period);
7628 
7629 	/*
7630 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7631 	 */
7632 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7633 		goto err_ns;
7634 
7635 	if (!has_branch_stack(event))
7636 		event->attr.branch_sample_type = 0;
7637 
7638 	if (cgroup_fd != -1) {
7639 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7640 		if (err)
7641 			goto err_ns;
7642 	}
7643 
7644 	pmu = perf_init_event(event);
7645 	if (!pmu)
7646 		goto err_ns;
7647 	else if (IS_ERR(pmu)) {
7648 		err = PTR_ERR(pmu);
7649 		goto err_ns;
7650 	}
7651 
7652 	err = exclusive_event_init(event);
7653 	if (err)
7654 		goto err_pmu;
7655 
7656 	if (!event->parent) {
7657 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7658 			err = get_callchain_buffers();
7659 			if (err)
7660 				goto err_per_task;
7661 		}
7662 	}
7663 
7664 	return event;
7665 
7666 err_per_task:
7667 	exclusive_event_destroy(event);
7668 
7669 err_pmu:
7670 	if (event->destroy)
7671 		event->destroy(event);
7672 	module_put(pmu->module);
7673 err_ns:
7674 	if (is_cgroup_event(event))
7675 		perf_detach_cgroup(event);
7676 	if (event->ns)
7677 		put_pid_ns(event->ns);
7678 	kfree(event);
7679 
7680 	return ERR_PTR(err);
7681 }
7682 
7683 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7684 			  struct perf_event_attr *attr)
7685 {
7686 	u32 size;
7687 	int ret;
7688 
7689 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7690 		return -EFAULT;
7691 
7692 	/*
7693 	 * zero the full structure, so that a short copy will be nice.
7694 	 */
7695 	memset(attr, 0, sizeof(*attr));
7696 
7697 	ret = get_user(size, &uattr->size);
7698 	if (ret)
7699 		return ret;
7700 
7701 	if (size > PAGE_SIZE)	/* silly large */
7702 		goto err_size;
7703 
7704 	if (!size)		/* abi compat */
7705 		size = PERF_ATTR_SIZE_VER0;
7706 
7707 	if (size < PERF_ATTR_SIZE_VER0)
7708 		goto err_size;
7709 
7710 	/*
7711 	 * If we're handed a bigger struct than we know of,
7712 	 * ensure all the unknown bits are 0 - i.e. new
7713 	 * user-space does not rely on any kernel feature
7714 	 * extensions we dont know about yet.
7715 	 */
7716 	if (size > sizeof(*attr)) {
7717 		unsigned char __user *addr;
7718 		unsigned char __user *end;
7719 		unsigned char val;
7720 
7721 		addr = (void __user *)uattr + sizeof(*attr);
7722 		end  = (void __user *)uattr + size;
7723 
7724 		for (; addr < end; addr++) {
7725 			ret = get_user(val, addr);
7726 			if (ret)
7727 				return ret;
7728 			if (val)
7729 				goto err_size;
7730 		}
7731 		size = sizeof(*attr);
7732 	}
7733 
7734 	ret = copy_from_user(attr, uattr, size);
7735 	if (ret)
7736 		return -EFAULT;
7737 
7738 	if (attr->__reserved_1)
7739 		return -EINVAL;
7740 
7741 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7742 		return -EINVAL;
7743 
7744 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7745 		return -EINVAL;
7746 
7747 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7748 		u64 mask = attr->branch_sample_type;
7749 
7750 		/* only using defined bits */
7751 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7752 			return -EINVAL;
7753 
7754 		/* at least one branch bit must be set */
7755 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7756 			return -EINVAL;
7757 
7758 		/* propagate priv level, when not set for branch */
7759 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7760 
7761 			/* exclude_kernel checked on syscall entry */
7762 			if (!attr->exclude_kernel)
7763 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
7764 
7765 			if (!attr->exclude_user)
7766 				mask |= PERF_SAMPLE_BRANCH_USER;
7767 
7768 			if (!attr->exclude_hv)
7769 				mask |= PERF_SAMPLE_BRANCH_HV;
7770 			/*
7771 			 * adjust user setting (for HW filter setup)
7772 			 */
7773 			attr->branch_sample_type = mask;
7774 		}
7775 		/* privileged levels capture (kernel, hv): check permissions */
7776 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7777 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7778 			return -EACCES;
7779 	}
7780 
7781 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7782 		ret = perf_reg_validate(attr->sample_regs_user);
7783 		if (ret)
7784 			return ret;
7785 	}
7786 
7787 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7788 		if (!arch_perf_have_user_stack_dump())
7789 			return -ENOSYS;
7790 
7791 		/*
7792 		 * We have __u32 type for the size, but so far
7793 		 * we can only use __u16 as maximum due to the
7794 		 * __u16 sample size limit.
7795 		 */
7796 		if (attr->sample_stack_user >= USHRT_MAX)
7797 			ret = -EINVAL;
7798 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7799 			ret = -EINVAL;
7800 	}
7801 
7802 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7803 		ret = perf_reg_validate(attr->sample_regs_intr);
7804 out:
7805 	return ret;
7806 
7807 err_size:
7808 	put_user(sizeof(*attr), &uattr->size);
7809 	ret = -E2BIG;
7810 	goto out;
7811 }
7812 
7813 static int
7814 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7815 {
7816 	struct ring_buffer *rb = NULL;
7817 	int ret = -EINVAL;
7818 
7819 	if (!output_event)
7820 		goto set;
7821 
7822 	/* don't allow circular references */
7823 	if (event == output_event)
7824 		goto out;
7825 
7826 	/*
7827 	 * Don't allow cross-cpu buffers
7828 	 */
7829 	if (output_event->cpu != event->cpu)
7830 		goto out;
7831 
7832 	/*
7833 	 * If its not a per-cpu rb, it must be the same task.
7834 	 */
7835 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7836 		goto out;
7837 
7838 	/*
7839 	 * Mixing clocks in the same buffer is trouble you don't need.
7840 	 */
7841 	if (output_event->clock != event->clock)
7842 		goto out;
7843 
7844 	/*
7845 	 * If both events generate aux data, they must be on the same PMU
7846 	 */
7847 	if (has_aux(event) && has_aux(output_event) &&
7848 	    event->pmu != output_event->pmu)
7849 		goto out;
7850 
7851 set:
7852 	mutex_lock(&event->mmap_mutex);
7853 	/* Can't redirect output if we've got an active mmap() */
7854 	if (atomic_read(&event->mmap_count))
7855 		goto unlock;
7856 
7857 	if (output_event) {
7858 		/* get the rb we want to redirect to */
7859 		rb = ring_buffer_get(output_event);
7860 		if (!rb)
7861 			goto unlock;
7862 	}
7863 
7864 	ring_buffer_attach(event, rb);
7865 
7866 	ret = 0;
7867 unlock:
7868 	mutex_unlock(&event->mmap_mutex);
7869 
7870 out:
7871 	return ret;
7872 }
7873 
7874 static void mutex_lock_double(struct mutex *a, struct mutex *b)
7875 {
7876 	if (b < a)
7877 		swap(a, b);
7878 
7879 	mutex_lock(a);
7880 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7881 }
7882 
7883 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
7884 {
7885 	bool nmi_safe = false;
7886 
7887 	switch (clk_id) {
7888 	case CLOCK_MONOTONIC:
7889 		event->clock = &ktime_get_mono_fast_ns;
7890 		nmi_safe = true;
7891 		break;
7892 
7893 	case CLOCK_MONOTONIC_RAW:
7894 		event->clock = &ktime_get_raw_fast_ns;
7895 		nmi_safe = true;
7896 		break;
7897 
7898 	case CLOCK_REALTIME:
7899 		event->clock = &ktime_get_real_ns;
7900 		break;
7901 
7902 	case CLOCK_BOOTTIME:
7903 		event->clock = &ktime_get_boot_ns;
7904 		break;
7905 
7906 	case CLOCK_TAI:
7907 		event->clock = &ktime_get_tai_ns;
7908 		break;
7909 
7910 	default:
7911 		return -EINVAL;
7912 	}
7913 
7914 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
7915 		return -EINVAL;
7916 
7917 	return 0;
7918 }
7919 
7920 /**
7921  * sys_perf_event_open - open a performance event, associate it to a task/cpu
7922  *
7923  * @attr_uptr:	event_id type attributes for monitoring/sampling
7924  * @pid:		target pid
7925  * @cpu:		target cpu
7926  * @group_fd:		group leader event fd
7927  */
7928 SYSCALL_DEFINE5(perf_event_open,
7929 		struct perf_event_attr __user *, attr_uptr,
7930 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7931 {
7932 	struct perf_event *group_leader = NULL, *output_event = NULL;
7933 	struct perf_event *event, *sibling;
7934 	struct perf_event_attr attr;
7935 	struct perf_event_context *ctx, *uninitialized_var(gctx);
7936 	struct file *event_file = NULL;
7937 	struct fd group = {NULL, 0};
7938 	struct task_struct *task = NULL;
7939 	struct pmu *pmu;
7940 	int event_fd;
7941 	int move_group = 0;
7942 	int err;
7943 	int f_flags = O_RDWR;
7944 	int cgroup_fd = -1;
7945 
7946 	/* for future expandability... */
7947 	if (flags & ~PERF_FLAG_ALL)
7948 		return -EINVAL;
7949 
7950 	err = perf_copy_attr(attr_uptr, &attr);
7951 	if (err)
7952 		return err;
7953 
7954 	if (!attr.exclude_kernel) {
7955 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7956 			return -EACCES;
7957 	}
7958 
7959 	if (attr.freq) {
7960 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7961 			return -EINVAL;
7962 	} else {
7963 		if (attr.sample_period & (1ULL << 63))
7964 			return -EINVAL;
7965 	}
7966 
7967 	/*
7968 	 * In cgroup mode, the pid argument is used to pass the fd
7969 	 * opened to the cgroup directory in cgroupfs. The cpu argument
7970 	 * designates the cpu on which to monitor threads from that
7971 	 * cgroup.
7972 	 */
7973 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7974 		return -EINVAL;
7975 
7976 	if (flags & PERF_FLAG_FD_CLOEXEC)
7977 		f_flags |= O_CLOEXEC;
7978 
7979 	event_fd = get_unused_fd_flags(f_flags);
7980 	if (event_fd < 0)
7981 		return event_fd;
7982 
7983 	if (group_fd != -1) {
7984 		err = perf_fget_light(group_fd, &group);
7985 		if (err)
7986 			goto err_fd;
7987 		group_leader = group.file->private_data;
7988 		if (flags & PERF_FLAG_FD_OUTPUT)
7989 			output_event = group_leader;
7990 		if (flags & PERF_FLAG_FD_NO_GROUP)
7991 			group_leader = NULL;
7992 	}
7993 
7994 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7995 		task = find_lively_task_by_vpid(pid);
7996 		if (IS_ERR(task)) {
7997 			err = PTR_ERR(task);
7998 			goto err_group_fd;
7999 		}
8000 	}
8001 
8002 	if (task && group_leader &&
8003 	    group_leader->attr.inherit != attr.inherit) {
8004 		err = -EINVAL;
8005 		goto err_task;
8006 	}
8007 
8008 	get_online_cpus();
8009 
8010 	if (flags & PERF_FLAG_PID_CGROUP)
8011 		cgroup_fd = pid;
8012 
8013 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8014 				 NULL, NULL, cgroup_fd);
8015 	if (IS_ERR(event)) {
8016 		err = PTR_ERR(event);
8017 		goto err_cpus;
8018 	}
8019 
8020 	if (is_sampling_event(event)) {
8021 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8022 			err = -ENOTSUPP;
8023 			goto err_alloc;
8024 		}
8025 	}
8026 
8027 	account_event(event);
8028 
8029 	/*
8030 	 * Special case software events and allow them to be part of
8031 	 * any hardware group.
8032 	 */
8033 	pmu = event->pmu;
8034 
8035 	if (attr.use_clockid) {
8036 		err = perf_event_set_clock(event, attr.clockid);
8037 		if (err)
8038 			goto err_alloc;
8039 	}
8040 
8041 	if (group_leader &&
8042 	    (is_software_event(event) != is_software_event(group_leader))) {
8043 		if (is_software_event(event)) {
8044 			/*
8045 			 * If event and group_leader are not both a software
8046 			 * event, and event is, then group leader is not.
8047 			 *
8048 			 * Allow the addition of software events to !software
8049 			 * groups, this is safe because software events never
8050 			 * fail to schedule.
8051 			 */
8052 			pmu = group_leader->pmu;
8053 		} else if (is_software_event(group_leader) &&
8054 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8055 			/*
8056 			 * In case the group is a pure software group, and we
8057 			 * try to add a hardware event, move the whole group to
8058 			 * the hardware context.
8059 			 */
8060 			move_group = 1;
8061 		}
8062 	}
8063 
8064 	/*
8065 	 * Get the target context (task or percpu):
8066 	 */
8067 	ctx = find_get_context(pmu, task, event);
8068 	if (IS_ERR(ctx)) {
8069 		err = PTR_ERR(ctx);
8070 		goto err_alloc;
8071 	}
8072 
8073 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8074 		err = -EBUSY;
8075 		goto err_context;
8076 	}
8077 
8078 	if (task) {
8079 		put_task_struct(task);
8080 		task = NULL;
8081 	}
8082 
8083 	/*
8084 	 * Look up the group leader (we will attach this event to it):
8085 	 */
8086 	if (group_leader) {
8087 		err = -EINVAL;
8088 
8089 		/*
8090 		 * Do not allow a recursive hierarchy (this new sibling
8091 		 * becoming part of another group-sibling):
8092 		 */
8093 		if (group_leader->group_leader != group_leader)
8094 			goto err_context;
8095 
8096 		/* All events in a group should have the same clock */
8097 		if (group_leader->clock != event->clock)
8098 			goto err_context;
8099 
8100 		/*
8101 		 * Do not allow to attach to a group in a different
8102 		 * task or CPU context:
8103 		 */
8104 		if (move_group) {
8105 			/*
8106 			 * Make sure we're both on the same task, or both
8107 			 * per-cpu events.
8108 			 */
8109 			if (group_leader->ctx->task != ctx->task)
8110 				goto err_context;
8111 
8112 			/*
8113 			 * Make sure we're both events for the same CPU;
8114 			 * grouping events for different CPUs is broken; since
8115 			 * you can never concurrently schedule them anyhow.
8116 			 */
8117 			if (group_leader->cpu != event->cpu)
8118 				goto err_context;
8119 		} else {
8120 			if (group_leader->ctx != ctx)
8121 				goto err_context;
8122 		}
8123 
8124 		/*
8125 		 * Only a group leader can be exclusive or pinned
8126 		 */
8127 		if (attr.exclusive || attr.pinned)
8128 			goto err_context;
8129 	}
8130 
8131 	if (output_event) {
8132 		err = perf_event_set_output(event, output_event);
8133 		if (err)
8134 			goto err_context;
8135 	}
8136 
8137 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8138 					f_flags);
8139 	if (IS_ERR(event_file)) {
8140 		err = PTR_ERR(event_file);
8141 		goto err_context;
8142 	}
8143 
8144 	if (move_group) {
8145 		gctx = group_leader->ctx;
8146 
8147 		/*
8148 		 * See perf_event_ctx_lock() for comments on the details
8149 		 * of swizzling perf_event::ctx.
8150 		 */
8151 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8152 
8153 		perf_remove_from_context(group_leader, false);
8154 
8155 		list_for_each_entry(sibling, &group_leader->sibling_list,
8156 				    group_entry) {
8157 			perf_remove_from_context(sibling, false);
8158 			put_ctx(gctx);
8159 		}
8160 	} else {
8161 		mutex_lock(&ctx->mutex);
8162 	}
8163 
8164 	WARN_ON_ONCE(ctx->parent_ctx);
8165 
8166 	if (move_group) {
8167 		/*
8168 		 * Wait for everybody to stop referencing the events through
8169 		 * the old lists, before installing it on new lists.
8170 		 */
8171 		synchronize_rcu();
8172 
8173 		/*
8174 		 * Install the group siblings before the group leader.
8175 		 *
8176 		 * Because a group leader will try and install the entire group
8177 		 * (through the sibling list, which is still in-tact), we can
8178 		 * end up with siblings installed in the wrong context.
8179 		 *
8180 		 * By installing siblings first we NO-OP because they're not
8181 		 * reachable through the group lists.
8182 		 */
8183 		list_for_each_entry(sibling, &group_leader->sibling_list,
8184 				    group_entry) {
8185 			perf_event__state_init(sibling);
8186 			perf_install_in_context(ctx, sibling, sibling->cpu);
8187 			get_ctx(ctx);
8188 		}
8189 
8190 		/*
8191 		 * Removing from the context ends up with disabled
8192 		 * event. What we want here is event in the initial
8193 		 * startup state, ready to be add into new context.
8194 		 */
8195 		perf_event__state_init(group_leader);
8196 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8197 		get_ctx(ctx);
8198 	}
8199 
8200 	if (!exclusive_event_installable(event, ctx)) {
8201 		err = -EBUSY;
8202 		mutex_unlock(&ctx->mutex);
8203 		fput(event_file);
8204 		goto err_context;
8205 	}
8206 
8207 	perf_install_in_context(ctx, event, event->cpu);
8208 	perf_unpin_context(ctx);
8209 
8210 	if (move_group) {
8211 		mutex_unlock(&gctx->mutex);
8212 		put_ctx(gctx);
8213 	}
8214 	mutex_unlock(&ctx->mutex);
8215 
8216 	put_online_cpus();
8217 
8218 	event->owner = current;
8219 
8220 	mutex_lock(&current->perf_event_mutex);
8221 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8222 	mutex_unlock(&current->perf_event_mutex);
8223 
8224 	/*
8225 	 * Precalculate sample_data sizes
8226 	 */
8227 	perf_event__header_size(event);
8228 	perf_event__id_header_size(event);
8229 
8230 	/*
8231 	 * Drop the reference on the group_event after placing the
8232 	 * new event on the sibling_list. This ensures destruction
8233 	 * of the group leader will find the pointer to itself in
8234 	 * perf_group_detach().
8235 	 */
8236 	fdput(group);
8237 	fd_install(event_fd, event_file);
8238 	return event_fd;
8239 
8240 err_context:
8241 	perf_unpin_context(ctx);
8242 	put_ctx(ctx);
8243 err_alloc:
8244 	free_event(event);
8245 err_cpus:
8246 	put_online_cpus();
8247 err_task:
8248 	if (task)
8249 		put_task_struct(task);
8250 err_group_fd:
8251 	fdput(group);
8252 err_fd:
8253 	put_unused_fd(event_fd);
8254 	return err;
8255 }
8256 
8257 /**
8258  * perf_event_create_kernel_counter
8259  *
8260  * @attr: attributes of the counter to create
8261  * @cpu: cpu in which the counter is bound
8262  * @task: task to profile (NULL for percpu)
8263  */
8264 struct perf_event *
8265 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8266 				 struct task_struct *task,
8267 				 perf_overflow_handler_t overflow_handler,
8268 				 void *context)
8269 {
8270 	struct perf_event_context *ctx;
8271 	struct perf_event *event;
8272 	int err;
8273 
8274 	/*
8275 	 * Get the target context (task or percpu):
8276 	 */
8277 
8278 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8279 				 overflow_handler, context, -1);
8280 	if (IS_ERR(event)) {
8281 		err = PTR_ERR(event);
8282 		goto err;
8283 	}
8284 
8285 	/* Mark owner so we could distinguish it from user events. */
8286 	event->owner = EVENT_OWNER_KERNEL;
8287 
8288 	account_event(event);
8289 
8290 	ctx = find_get_context(event->pmu, task, event);
8291 	if (IS_ERR(ctx)) {
8292 		err = PTR_ERR(ctx);
8293 		goto err_free;
8294 	}
8295 
8296 	WARN_ON_ONCE(ctx->parent_ctx);
8297 	mutex_lock(&ctx->mutex);
8298 	if (!exclusive_event_installable(event, ctx)) {
8299 		mutex_unlock(&ctx->mutex);
8300 		perf_unpin_context(ctx);
8301 		put_ctx(ctx);
8302 		err = -EBUSY;
8303 		goto err_free;
8304 	}
8305 
8306 	perf_install_in_context(ctx, event, cpu);
8307 	perf_unpin_context(ctx);
8308 	mutex_unlock(&ctx->mutex);
8309 
8310 	return event;
8311 
8312 err_free:
8313 	free_event(event);
8314 err:
8315 	return ERR_PTR(err);
8316 }
8317 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8318 
8319 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8320 {
8321 	struct perf_event_context *src_ctx;
8322 	struct perf_event_context *dst_ctx;
8323 	struct perf_event *event, *tmp;
8324 	LIST_HEAD(events);
8325 
8326 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8327 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8328 
8329 	/*
8330 	 * See perf_event_ctx_lock() for comments on the details
8331 	 * of swizzling perf_event::ctx.
8332 	 */
8333 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8334 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8335 				 event_entry) {
8336 		perf_remove_from_context(event, false);
8337 		unaccount_event_cpu(event, src_cpu);
8338 		put_ctx(src_ctx);
8339 		list_add(&event->migrate_entry, &events);
8340 	}
8341 
8342 	/*
8343 	 * Wait for the events to quiesce before re-instating them.
8344 	 */
8345 	synchronize_rcu();
8346 
8347 	/*
8348 	 * Re-instate events in 2 passes.
8349 	 *
8350 	 * Skip over group leaders and only install siblings on this first
8351 	 * pass, siblings will not get enabled without a leader, however a
8352 	 * leader will enable its siblings, even if those are still on the old
8353 	 * context.
8354 	 */
8355 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8356 		if (event->group_leader == event)
8357 			continue;
8358 
8359 		list_del(&event->migrate_entry);
8360 		if (event->state >= PERF_EVENT_STATE_OFF)
8361 			event->state = PERF_EVENT_STATE_INACTIVE;
8362 		account_event_cpu(event, dst_cpu);
8363 		perf_install_in_context(dst_ctx, event, dst_cpu);
8364 		get_ctx(dst_ctx);
8365 	}
8366 
8367 	/*
8368 	 * Once all the siblings are setup properly, install the group leaders
8369 	 * to make it go.
8370 	 */
8371 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8372 		list_del(&event->migrate_entry);
8373 		if (event->state >= PERF_EVENT_STATE_OFF)
8374 			event->state = PERF_EVENT_STATE_INACTIVE;
8375 		account_event_cpu(event, dst_cpu);
8376 		perf_install_in_context(dst_ctx, event, dst_cpu);
8377 		get_ctx(dst_ctx);
8378 	}
8379 	mutex_unlock(&dst_ctx->mutex);
8380 	mutex_unlock(&src_ctx->mutex);
8381 }
8382 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8383 
8384 static void sync_child_event(struct perf_event *child_event,
8385 			       struct task_struct *child)
8386 {
8387 	struct perf_event *parent_event = child_event->parent;
8388 	u64 child_val;
8389 
8390 	if (child_event->attr.inherit_stat)
8391 		perf_event_read_event(child_event, child);
8392 
8393 	child_val = perf_event_count(child_event);
8394 
8395 	/*
8396 	 * Add back the child's count to the parent's count:
8397 	 */
8398 	atomic64_add(child_val, &parent_event->child_count);
8399 	atomic64_add(child_event->total_time_enabled,
8400 		     &parent_event->child_total_time_enabled);
8401 	atomic64_add(child_event->total_time_running,
8402 		     &parent_event->child_total_time_running);
8403 
8404 	/*
8405 	 * Remove this event from the parent's list
8406 	 */
8407 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8408 	mutex_lock(&parent_event->child_mutex);
8409 	list_del_init(&child_event->child_list);
8410 	mutex_unlock(&parent_event->child_mutex);
8411 
8412 	/*
8413 	 * Make sure user/parent get notified, that we just
8414 	 * lost one event.
8415 	 */
8416 	perf_event_wakeup(parent_event);
8417 
8418 	/*
8419 	 * Release the parent event, if this was the last
8420 	 * reference to it.
8421 	 */
8422 	put_event(parent_event);
8423 }
8424 
8425 static void
8426 __perf_event_exit_task(struct perf_event *child_event,
8427 			 struct perf_event_context *child_ctx,
8428 			 struct task_struct *child)
8429 {
8430 	/*
8431 	 * Do not destroy the 'original' grouping; because of the context
8432 	 * switch optimization the original events could've ended up in a
8433 	 * random child task.
8434 	 *
8435 	 * If we were to destroy the original group, all group related
8436 	 * operations would cease to function properly after this random
8437 	 * child dies.
8438 	 *
8439 	 * Do destroy all inherited groups, we don't care about those
8440 	 * and being thorough is better.
8441 	 */
8442 	perf_remove_from_context(child_event, !!child_event->parent);
8443 
8444 	/*
8445 	 * It can happen that the parent exits first, and has events
8446 	 * that are still around due to the child reference. These
8447 	 * events need to be zapped.
8448 	 */
8449 	if (child_event->parent) {
8450 		sync_child_event(child_event, child);
8451 		free_event(child_event);
8452 	} else {
8453 		child_event->state = PERF_EVENT_STATE_EXIT;
8454 		perf_event_wakeup(child_event);
8455 	}
8456 }
8457 
8458 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8459 {
8460 	struct perf_event *child_event, *next;
8461 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8462 	unsigned long flags;
8463 
8464 	if (likely(!child->perf_event_ctxp[ctxn])) {
8465 		perf_event_task(child, NULL, 0);
8466 		return;
8467 	}
8468 
8469 	local_irq_save(flags);
8470 	/*
8471 	 * We can't reschedule here because interrupts are disabled,
8472 	 * and either child is current or it is a task that can't be
8473 	 * scheduled, so we are now safe from rescheduling changing
8474 	 * our context.
8475 	 */
8476 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8477 
8478 	/*
8479 	 * Take the context lock here so that if find_get_context is
8480 	 * reading child->perf_event_ctxp, we wait until it has
8481 	 * incremented the context's refcount before we do put_ctx below.
8482 	 */
8483 	raw_spin_lock(&child_ctx->lock);
8484 	task_ctx_sched_out(child_ctx);
8485 	child->perf_event_ctxp[ctxn] = NULL;
8486 
8487 	/*
8488 	 * If this context is a clone; unclone it so it can't get
8489 	 * swapped to another process while we're removing all
8490 	 * the events from it.
8491 	 */
8492 	clone_ctx = unclone_ctx(child_ctx);
8493 	update_context_time(child_ctx);
8494 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8495 
8496 	if (clone_ctx)
8497 		put_ctx(clone_ctx);
8498 
8499 	/*
8500 	 * Report the task dead after unscheduling the events so that we
8501 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8502 	 * get a few PERF_RECORD_READ events.
8503 	 */
8504 	perf_event_task(child, child_ctx, 0);
8505 
8506 	/*
8507 	 * We can recurse on the same lock type through:
8508 	 *
8509 	 *   __perf_event_exit_task()
8510 	 *     sync_child_event()
8511 	 *       put_event()
8512 	 *         mutex_lock(&ctx->mutex)
8513 	 *
8514 	 * But since its the parent context it won't be the same instance.
8515 	 */
8516 	mutex_lock(&child_ctx->mutex);
8517 
8518 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8519 		__perf_event_exit_task(child_event, child_ctx, child);
8520 
8521 	mutex_unlock(&child_ctx->mutex);
8522 
8523 	put_ctx(child_ctx);
8524 }
8525 
8526 /*
8527  * When a child task exits, feed back event values to parent events.
8528  */
8529 void perf_event_exit_task(struct task_struct *child)
8530 {
8531 	struct perf_event *event, *tmp;
8532 	int ctxn;
8533 
8534 	mutex_lock(&child->perf_event_mutex);
8535 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8536 				 owner_entry) {
8537 		list_del_init(&event->owner_entry);
8538 
8539 		/*
8540 		 * Ensure the list deletion is visible before we clear
8541 		 * the owner, closes a race against perf_release() where
8542 		 * we need to serialize on the owner->perf_event_mutex.
8543 		 */
8544 		smp_wmb();
8545 		event->owner = NULL;
8546 	}
8547 	mutex_unlock(&child->perf_event_mutex);
8548 
8549 	for_each_task_context_nr(ctxn)
8550 		perf_event_exit_task_context(child, ctxn);
8551 }
8552 
8553 static void perf_free_event(struct perf_event *event,
8554 			    struct perf_event_context *ctx)
8555 {
8556 	struct perf_event *parent = event->parent;
8557 
8558 	if (WARN_ON_ONCE(!parent))
8559 		return;
8560 
8561 	mutex_lock(&parent->child_mutex);
8562 	list_del_init(&event->child_list);
8563 	mutex_unlock(&parent->child_mutex);
8564 
8565 	put_event(parent);
8566 
8567 	raw_spin_lock_irq(&ctx->lock);
8568 	perf_group_detach(event);
8569 	list_del_event(event, ctx);
8570 	raw_spin_unlock_irq(&ctx->lock);
8571 	free_event(event);
8572 }
8573 
8574 /*
8575  * Free an unexposed, unused context as created by inheritance by
8576  * perf_event_init_task below, used by fork() in case of fail.
8577  *
8578  * Not all locks are strictly required, but take them anyway to be nice and
8579  * help out with the lockdep assertions.
8580  */
8581 void perf_event_free_task(struct task_struct *task)
8582 {
8583 	struct perf_event_context *ctx;
8584 	struct perf_event *event, *tmp;
8585 	int ctxn;
8586 
8587 	for_each_task_context_nr(ctxn) {
8588 		ctx = task->perf_event_ctxp[ctxn];
8589 		if (!ctx)
8590 			continue;
8591 
8592 		mutex_lock(&ctx->mutex);
8593 again:
8594 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8595 				group_entry)
8596 			perf_free_event(event, ctx);
8597 
8598 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8599 				group_entry)
8600 			perf_free_event(event, ctx);
8601 
8602 		if (!list_empty(&ctx->pinned_groups) ||
8603 				!list_empty(&ctx->flexible_groups))
8604 			goto again;
8605 
8606 		mutex_unlock(&ctx->mutex);
8607 
8608 		put_ctx(ctx);
8609 	}
8610 }
8611 
8612 void perf_event_delayed_put(struct task_struct *task)
8613 {
8614 	int ctxn;
8615 
8616 	for_each_task_context_nr(ctxn)
8617 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8618 }
8619 
8620 /*
8621  * inherit a event from parent task to child task:
8622  */
8623 static struct perf_event *
8624 inherit_event(struct perf_event *parent_event,
8625 	      struct task_struct *parent,
8626 	      struct perf_event_context *parent_ctx,
8627 	      struct task_struct *child,
8628 	      struct perf_event *group_leader,
8629 	      struct perf_event_context *child_ctx)
8630 {
8631 	enum perf_event_active_state parent_state = parent_event->state;
8632 	struct perf_event *child_event;
8633 	unsigned long flags;
8634 
8635 	/*
8636 	 * Instead of creating recursive hierarchies of events,
8637 	 * we link inherited events back to the original parent,
8638 	 * which has a filp for sure, which we use as the reference
8639 	 * count:
8640 	 */
8641 	if (parent_event->parent)
8642 		parent_event = parent_event->parent;
8643 
8644 	child_event = perf_event_alloc(&parent_event->attr,
8645 					   parent_event->cpu,
8646 					   child,
8647 					   group_leader, parent_event,
8648 					   NULL, NULL, -1);
8649 	if (IS_ERR(child_event))
8650 		return child_event;
8651 
8652 	if (is_orphaned_event(parent_event) ||
8653 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8654 		free_event(child_event);
8655 		return NULL;
8656 	}
8657 
8658 	get_ctx(child_ctx);
8659 
8660 	/*
8661 	 * Make the child state follow the state of the parent event,
8662 	 * not its attr.disabled bit.  We hold the parent's mutex,
8663 	 * so we won't race with perf_event_{en, dis}able_family.
8664 	 */
8665 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8666 		child_event->state = PERF_EVENT_STATE_INACTIVE;
8667 	else
8668 		child_event->state = PERF_EVENT_STATE_OFF;
8669 
8670 	if (parent_event->attr.freq) {
8671 		u64 sample_period = parent_event->hw.sample_period;
8672 		struct hw_perf_event *hwc = &child_event->hw;
8673 
8674 		hwc->sample_period = sample_period;
8675 		hwc->last_period   = sample_period;
8676 
8677 		local64_set(&hwc->period_left, sample_period);
8678 	}
8679 
8680 	child_event->ctx = child_ctx;
8681 	child_event->overflow_handler = parent_event->overflow_handler;
8682 	child_event->overflow_handler_context
8683 		= parent_event->overflow_handler_context;
8684 
8685 	/*
8686 	 * Precalculate sample_data sizes
8687 	 */
8688 	perf_event__header_size(child_event);
8689 	perf_event__id_header_size(child_event);
8690 
8691 	/*
8692 	 * Link it up in the child's context:
8693 	 */
8694 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
8695 	add_event_to_ctx(child_event, child_ctx);
8696 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8697 
8698 	/*
8699 	 * Link this into the parent event's child list
8700 	 */
8701 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8702 	mutex_lock(&parent_event->child_mutex);
8703 	list_add_tail(&child_event->child_list, &parent_event->child_list);
8704 	mutex_unlock(&parent_event->child_mutex);
8705 
8706 	return child_event;
8707 }
8708 
8709 static int inherit_group(struct perf_event *parent_event,
8710 	      struct task_struct *parent,
8711 	      struct perf_event_context *parent_ctx,
8712 	      struct task_struct *child,
8713 	      struct perf_event_context *child_ctx)
8714 {
8715 	struct perf_event *leader;
8716 	struct perf_event *sub;
8717 	struct perf_event *child_ctr;
8718 
8719 	leader = inherit_event(parent_event, parent, parent_ctx,
8720 				 child, NULL, child_ctx);
8721 	if (IS_ERR(leader))
8722 		return PTR_ERR(leader);
8723 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8724 		child_ctr = inherit_event(sub, parent, parent_ctx,
8725 					    child, leader, child_ctx);
8726 		if (IS_ERR(child_ctr))
8727 			return PTR_ERR(child_ctr);
8728 	}
8729 	return 0;
8730 }
8731 
8732 static int
8733 inherit_task_group(struct perf_event *event, struct task_struct *parent,
8734 		   struct perf_event_context *parent_ctx,
8735 		   struct task_struct *child, int ctxn,
8736 		   int *inherited_all)
8737 {
8738 	int ret;
8739 	struct perf_event_context *child_ctx;
8740 
8741 	if (!event->attr.inherit) {
8742 		*inherited_all = 0;
8743 		return 0;
8744 	}
8745 
8746 	child_ctx = child->perf_event_ctxp[ctxn];
8747 	if (!child_ctx) {
8748 		/*
8749 		 * This is executed from the parent task context, so
8750 		 * inherit events that have been marked for cloning.
8751 		 * First allocate and initialize a context for the
8752 		 * child.
8753 		 */
8754 
8755 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8756 		if (!child_ctx)
8757 			return -ENOMEM;
8758 
8759 		child->perf_event_ctxp[ctxn] = child_ctx;
8760 	}
8761 
8762 	ret = inherit_group(event, parent, parent_ctx,
8763 			    child, child_ctx);
8764 
8765 	if (ret)
8766 		*inherited_all = 0;
8767 
8768 	return ret;
8769 }
8770 
8771 /*
8772  * Initialize the perf_event context in task_struct
8773  */
8774 static int perf_event_init_context(struct task_struct *child, int ctxn)
8775 {
8776 	struct perf_event_context *child_ctx, *parent_ctx;
8777 	struct perf_event_context *cloned_ctx;
8778 	struct perf_event *event;
8779 	struct task_struct *parent = current;
8780 	int inherited_all = 1;
8781 	unsigned long flags;
8782 	int ret = 0;
8783 
8784 	if (likely(!parent->perf_event_ctxp[ctxn]))
8785 		return 0;
8786 
8787 	/*
8788 	 * If the parent's context is a clone, pin it so it won't get
8789 	 * swapped under us.
8790 	 */
8791 	parent_ctx = perf_pin_task_context(parent, ctxn);
8792 	if (!parent_ctx)
8793 		return 0;
8794 
8795 	/*
8796 	 * No need to check if parent_ctx != NULL here; since we saw
8797 	 * it non-NULL earlier, the only reason for it to become NULL
8798 	 * is if we exit, and since we're currently in the middle of
8799 	 * a fork we can't be exiting at the same time.
8800 	 */
8801 
8802 	/*
8803 	 * Lock the parent list. No need to lock the child - not PID
8804 	 * hashed yet and not running, so nobody can access it.
8805 	 */
8806 	mutex_lock(&parent_ctx->mutex);
8807 
8808 	/*
8809 	 * We dont have to disable NMIs - we are only looking at
8810 	 * the list, not manipulating it:
8811 	 */
8812 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8813 		ret = inherit_task_group(event, parent, parent_ctx,
8814 					 child, ctxn, &inherited_all);
8815 		if (ret)
8816 			break;
8817 	}
8818 
8819 	/*
8820 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
8821 	 * to allocations, but we need to prevent rotation because
8822 	 * rotate_ctx() will change the list from interrupt context.
8823 	 */
8824 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8825 	parent_ctx->rotate_disable = 1;
8826 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8827 
8828 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8829 		ret = inherit_task_group(event, parent, parent_ctx,
8830 					 child, ctxn, &inherited_all);
8831 		if (ret)
8832 			break;
8833 	}
8834 
8835 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8836 	parent_ctx->rotate_disable = 0;
8837 
8838 	child_ctx = child->perf_event_ctxp[ctxn];
8839 
8840 	if (child_ctx && inherited_all) {
8841 		/*
8842 		 * Mark the child context as a clone of the parent
8843 		 * context, or of whatever the parent is a clone of.
8844 		 *
8845 		 * Note that if the parent is a clone, the holding of
8846 		 * parent_ctx->lock avoids it from being uncloned.
8847 		 */
8848 		cloned_ctx = parent_ctx->parent_ctx;
8849 		if (cloned_ctx) {
8850 			child_ctx->parent_ctx = cloned_ctx;
8851 			child_ctx->parent_gen = parent_ctx->parent_gen;
8852 		} else {
8853 			child_ctx->parent_ctx = parent_ctx;
8854 			child_ctx->parent_gen = parent_ctx->generation;
8855 		}
8856 		get_ctx(child_ctx->parent_ctx);
8857 	}
8858 
8859 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8860 	mutex_unlock(&parent_ctx->mutex);
8861 
8862 	perf_unpin_context(parent_ctx);
8863 	put_ctx(parent_ctx);
8864 
8865 	return ret;
8866 }
8867 
8868 /*
8869  * Initialize the perf_event context in task_struct
8870  */
8871 int perf_event_init_task(struct task_struct *child)
8872 {
8873 	int ctxn, ret;
8874 
8875 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8876 	mutex_init(&child->perf_event_mutex);
8877 	INIT_LIST_HEAD(&child->perf_event_list);
8878 
8879 	for_each_task_context_nr(ctxn) {
8880 		ret = perf_event_init_context(child, ctxn);
8881 		if (ret) {
8882 			perf_event_free_task(child);
8883 			return ret;
8884 		}
8885 	}
8886 
8887 	return 0;
8888 }
8889 
8890 static void __init perf_event_init_all_cpus(void)
8891 {
8892 	struct swevent_htable *swhash;
8893 	int cpu;
8894 
8895 	for_each_possible_cpu(cpu) {
8896 		swhash = &per_cpu(swevent_htable, cpu);
8897 		mutex_init(&swhash->hlist_mutex);
8898 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8899 	}
8900 }
8901 
8902 static void perf_event_init_cpu(int cpu)
8903 {
8904 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8905 
8906 	mutex_lock(&swhash->hlist_mutex);
8907 	swhash->online = true;
8908 	if (swhash->hlist_refcount > 0) {
8909 		struct swevent_hlist *hlist;
8910 
8911 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8912 		WARN_ON(!hlist);
8913 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8914 	}
8915 	mutex_unlock(&swhash->hlist_mutex);
8916 }
8917 
8918 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8919 static void __perf_event_exit_context(void *__info)
8920 {
8921 	struct remove_event re = { .detach_group = true };
8922 	struct perf_event_context *ctx = __info;
8923 
8924 	rcu_read_lock();
8925 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8926 		__perf_remove_from_context(&re);
8927 	rcu_read_unlock();
8928 }
8929 
8930 static void perf_event_exit_cpu_context(int cpu)
8931 {
8932 	struct perf_event_context *ctx;
8933 	struct pmu *pmu;
8934 	int idx;
8935 
8936 	idx = srcu_read_lock(&pmus_srcu);
8937 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8938 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8939 
8940 		mutex_lock(&ctx->mutex);
8941 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8942 		mutex_unlock(&ctx->mutex);
8943 	}
8944 	srcu_read_unlock(&pmus_srcu, idx);
8945 }
8946 
8947 static void perf_event_exit_cpu(int cpu)
8948 {
8949 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8950 
8951 	perf_event_exit_cpu_context(cpu);
8952 
8953 	mutex_lock(&swhash->hlist_mutex);
8954 	swhash->online = false;
8955 	swevent_hlist_release(swhash);
8956 	mutex_unlock(&swhash->hlist_mutex);
8957 }
8958 #else
8959 static inline void perf_event_exit_cpu(int cpu) { }
8960 #endif
8961 
8962 static int
8963 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8964 {
8965 	int cpu;
8966 
8967 	for_each_online_cpu(cpu)
8968 		perf_event_exit_cpu(cpu);
8969 
8970 	return NOTIFY_OK;
8971 }
8972 
8973 /*
8974  * Run the perf reboot notifier at the very last possible moment so that
8975  * the generic watchdog code runs as long as possible.
8976  */
8977 static struct notifier_block perf_reboot_notifier = {
8978 	.notifier_call = perf_reboot,
8979 	.priority = INT_MIN,
8980 };
8981 
8982 static int
8983 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8984 {
8985 	unsigned int cpu = (long)hcpu;
8986 
8987 	switch (action & ~CPU_TASKS_FROZEN) {
8988 
8989 	case CPU_UP_PREPARE:
8990 	case CPU_DOWN_FAILED:
8991 		perf_event_init_cpu(cpu);
8992 		break;
8993 
8994 	case CPU_UP_CANCELED:
8995 	case CPU_DOWN_PREPARE:
8996 		perf_event_exit_cpu(cpu);
8997 		break;
8998 	default:
8999 		break;
9000 	}
9001 
9002 	return NOTIFY_OK;
9003 }
9004 
9005 void __init perf_event_init(void)
9006 {
9007 	int ret;
9008 
9009 	idr_init(&pmu_idr);
9010 
9011 	perf_event_init_all_cpus();
9012 	init_srcu_struct(&pmus_srcu);
9013 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9014 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
9015 	perf_pmu_register(&perf_task_clock, NULL, -1);
9016 	perf_tp_register();
9017 	perf_cpu_notifier(perf_cpu_notify);
9018 	register_reboot_notifier(&perf_reboot_notifier);
9019 
9020 	ret = init_hw_breakpoint();
9021 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9022 
9023 	/* do not patch jump label more than once per second */
9024 	jump_label_rate_limit(&perf_sched_events, HZ);
9025 
9026 	/*
9027 	 * Build time assertion that we keep the data_head at the intended
9028 	 * location.  IOW, validation we got the __reserved[] size right.
9029 	 */
9030 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9031 		     != 1024);
9032 }
9033 
9034 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9035 			      char *page)
9036 {
9037 	struct perf_pmu_events_attr *pmu_attr =
9038 		container_of(attr, struct perf_pmu_events_attr, attr);
9039 
9040 	if (pmu_attr->event_str)
9041 		return sprintf(page, "%s\n", pmu_attr->event_str);
9042 
9043 	return 0;
9044 }
9045 
9046 static int __init perf_event_sysfs_init(void)
9047 {
9048 	struct pmu *pmu;
9049 	int ret;
9050 
9051 	mutex_lock(&pmus_lock);
9052 
9053 	ret = bus_register(&pmu_bus);
9054 	if (ret)
9055 		goto unlock;
9056 
9057 	list_for_each_entry(pmu, &pmus, entry) {
9058 		if (!pmu->name || pmu->type < 0)
9059 			continue;
9060 
9061 		ret = pmu_dev_alloc(pmu);
9062 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9063 	}
9064 	pmu_bus_running = 1;
9065 	ret = 0;
9066 
9067 unlock:
9068 	mutex_unlock(&pmus_lock);
9069 
9070 	return ret;
9071 }
9072 device_initcall(perf_event_sysfs_init);
9073 
9074 #ifdef CONFIG_CGROUP_PERF
9075 static struct cgroup_subsys_state *
9076 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9077 {
9078 	struct perf_cgroup *jc;
9079 
9080 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9081 	if (!jc)
9082 		return ERR_PTR(-ENOMEM);
9083 
9084 	jc->info = alloc_percpu(struct perf_cgroup_info);
9085 	if (!jc->info) {
9086 		kfree(jc);
9087 		return ERR_PTR(-ENOMEM);
9088 	}
9089 
9090 	return &jc->css;
9091 }
9092 
9093 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9094 {
9095 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9096 
9097 	free_percpu(jc->info);
9098 	kfree(jc);
9099 }
9100 
9101 static int __perf_cgroup_move(void *info)
9102 {
9103 	struct task_struct *task = info;
9104 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9105 	return 0;
9106 }
9107 
9108 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9109 			       struct cgroup_taskset *tset)
9110 {
9111 	struct task_struct *task;
9112 
9113 	cgroup_taskset_for_each(task, tset)
9114 		task_function_call(task, __perf_cgroup_move, task);
9115 }
9116 
9117 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9118 			     struct cgroup_subsys_state *old_css,
9119 			     struct task_struct *task)
9120 {
9121 	/*
9122 	 * cgroup_exit() is called in the copy_process() failure path.
9123 	 * Ignore this case since the task hasn't ran yet, this avoids
9124 	 * trying to poke a half freed task state from generic code.
9125 	 */
9126 	if (!(task->flags & PF_EXITING))
9127 		return;
9128 
9129 	task_function_call(task, __perf_cgroup_move, task);
9130 }
9131 
9132 struct cgroup_subsys perf_event_cgrp_subsys = {
9133 	.css_alloc	= perf_cgroup_css_alloc,
9134 	.css_free	= perf_cgroup_css_free,
9135 	.exit		= perf_cgroup_exit,
9136 	.attach		= perf_cgroup_attach,
9137 };
9138 #endif /* CONFIG_CGROUP_PERF */
9139