xref: /openbmc/linux/kernel/events/core.c (revision bf3608f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 
58 #include "internal.h"
59 
60 #include <asm/irq_regs.h>
61 
62 typedef int (*remote_function_f)(void *);
63 
64 struct remote_function_call {
65 	struct task_struct	*p;
66 	remote_function_f	func;
67 	void			*info;
68 	int			ret;
69 };
70 
71 static void remote_function(void *data)
72 {
73 	struct remote_function_call *tfc = data;
74 	struct task_struct *p = tfc->p;
75 
76 	if (p) {
77 		/* -EAGAIN */
78 		if (task_cpu(p) != smp_processor_id())
79 			return;
80 
81 		/*
82 		 * Now that we're on right CPU with IRQs disabled, we can test
83 		 * if we hit the right task without races.
84 		 */
85 
86 		tfc->ret = -ESRCH; /* No such (running) process */
87 		if (p != current)
88 			return;
89 	}
90 
91 	tfc->ret = tfc->func(tfc->info);
92 }
93 
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:		the task to evaluate
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110 	struct remote_function_call data = {
111 		.p	= p,
112 		.func	= func,
113 		.info	= info,
114 		.ret	= -EAGAIN,
115 	};
116 	int ret;
117 
118 	for (;;) {
119 		ret = smp_call_function_single(task_cpu(p), remote_function,
120 					       &data, 1);
121 		if (!ret)
122 			ret = data.ret;
123 
124 		if (ret != -EAGAIN)
125 			break;
126 
127 		cond_resched();
128 	}
129 
130 	return ret;
131 }
132 
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:	target cpu to queue this function
136  * @func:	the function to be called
137  * @info:	the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145 	struct remote_function_call data = {
146 		.p	= NULL,
147 		.func	= func,
148 		.info	= info,
149 		.ret	= -ENXIO, /* No such CPU */
150 	};
151 
152 	smp_call_function_single(cpu, remote_function, &data, 1);
153 
154 	return data.ret;
155 }
156 
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162 
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164 			  struct perf_event_context *ctx)
165 {
166 	raw_spin_lock(&cpuctx->ctx.lock);
167 	if (ctx)
168 		raw_spin_lock(&ctx->lock);
169 }
170 
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172 			    struct perf_event_context *ctx)
173 {
174 	if (ctx)
175 		raw_spin_unlock(&ctx->lock);
176 	raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178 
179 #define TASK_TOMBSTONE ((void *)-1L)
180 
181 static bool is_kernel_event(struct perf_event *event)
182 {
183 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185 
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204 
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206 			struct perf_event_context *, void *);
207 
208 struct event_function_struct {
209 	struct perf_event *event;
210 	event_f func;
211 	void *data;
212 };
213 
214 static int event_function(void *info)
215 {
216 	struct event_function_struct *efs = info;
217 	struct perf_event *event = efs->event;
218 	struct perf_event_context *ctx = event->ctx;
219 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
221 	int ret = 0;
222 
223 	lockdep_assert_irqs_disabled();
224 
225 	perf_ctx_lock(cpuctx, task_ctx);
226 	/*
227 	 * Since we do the IPI call without holding ctx->lock things can have
228 	 * changed, double check we hit the task we set out to hit.
229 	 */
230 	if (ctx->task) {
231 		if (ctx->task != current) {
232 			ret = -ESRCH;
233 			goto unlock;
234 		}
235 
236 		/*
237 		 * We only use event_function_call() on established contexts,
238 		 * and event_function() is only ever called when active (or
239 		 * rather, we'll have bailed in task_function_call() or the
240 		 * above ctx->task != current test), therefore we must have
241 		 * ctx->is_active here.
242 		 */
243 		WARN_ON_ONCE(!ctx->is_active);
244 		/*
245 		 * And since we have ctx->is_active, cpuctx->task_ctx must
246 		 * match.
247 		 */
248 		WARN_ON_ONCE(task_ctx != ctx);
249 	} else {
250 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
251 	}
252 
253 	efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255 	perf_ctx_unlock(cpuctx, task_ctx);
256 
257 	return ret;
258 }
259 
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262 	struct perf_event_context *ctx = event->ctx;
263 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264 	struct event_function_struct efs = {
265 		.event = event,
266 		.func = func,
267 		.data = data,
268 	};
269 
270 	if (!event->parent) {
271 		/*
272 		 * If this is a !child event, we must hold ctx::mutex to
273 		 * stabilize the event->ctx relation. See
274 		 * perf_event_ctx_lock().
275 		 */
276 		lockdep_assert_held(&ctx->mutex);
277 	}
278 
279 	if (!task) {
280 		cpu_function_call(event->cpu, event_function, &efs);
281 		return;
282 	}
283 
284 	if (task == TASK_TOMBSTONE)
285 		return;
286 
287 again:
288 	if (!task_function_call(task, event_function, &efs))
289 		return;
290 
291 	raw_spin_lock_irq(&ctx->lock);
292 	/*
293 	 * Reload the task pointer, it might have been changed by
294 	 * a concurrent perf_event_context_sched_out().
295 	 */
296 	task = ctx->task;
297 	if (task == TASK_TOMBSTONE) {
298 		raw_spin_unlock_irq(&ctx->lock);
299 		return;
300 	}
301 	if (ctx->is_active) {
302 		raw_spin_unlock_irq(&ctx->lock);
303 		goto again;
304 	}
305 	func(event, NULL, ctx, data);
306 	raw_spin_unlock_irq(&ctx->lock);
307 }
308 
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315 	struct perf_event_context *ctx = event->ctx;
316 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317 	struct task_struct *task = READ_ONCE(ctx->task);
318 	struct perf_event_context *task_ctx = NULL;
319 
320 	lockdep_assert_irqs_disabled();
321 
322 	if (task) {
323 		if (task == TASK_TOMBSTONE)
324 			return;
325 
326 		task_ctx = ctx;
327 	}
328 
329 	perf_ctx_lock(cpuctx, task_ctx);
330 
331 	task = ctx->task;
332 	if (task == TASK_TOMBSTONE)
333 		goto unlock;
334 
335 	if (task) {
336 		/*
337 		 * We must be either inactive or active and the right task,
338 		 * otherwise we're screwed, since we cannot IPI to somewhere
339 		 * else.
340 		 */
341 		if (ctx->is_active) {
342 			if (WARN_ON_ONCE(task != current))
343 				goto unlock;
344 
345 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346 				goto unlock;
347 		}
348 	} else {
349 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
350 	}
351 
352 	func(event, cpuctx, ctx, data);
353 unlock:
354 	perf_ctx_unlock(cpuctx, task_ctx);
355 }
356 
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358 		       PERF_FLAG_FD_OUTPUT  |\
359 		       PERF_FLAG_PID_CGROUP |\
360 		       PERF_FLAG_FD_CLOEXEC)
361 
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366 	(PERF_SAMPLE_BRANCH_KERNEL |\
367 	 PERF_SAMPLE_BRANCH_HV)
368 
369 enum event_type_t {
370 	EVENT_FLEXIBLE = 0x1,
371 	EVENT_PINNED = 0x2,
372 	EVENT_TIME = 0x4,
373 	/* see ctx_resched() for details */
374 	EVENT_CPU = 0x8,
375 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377 
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382 
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388 
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392 
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404 
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410 
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419 
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422 
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE		100000
427 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
429 
430 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
431 
432 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
434 
435 static int perf_sample_allowed_ns __read_mostly =
436 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437 
438 static void update_perf_cpu_limits(void)
439 {
440 	u64 tmp = perf_sample_period_ns;
441 
442 	tmp *= sysctl_perf_cpu_time_max_percent;
443 	tmp = div_u64(tmp, 100);
444 	if (!tmp)
445 		tmp = 1;
446 
447 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449 
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451 
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453 		void *buffer, size_t *lenp, loff_t *ppos)
454 {
455 	int ret;
456 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
457 	/*
458 	 * If throttling is disabled don't allow the write:
459 	 */
460 	if (write && (perf_cpu == 100 || perf_cpu == 0))
461 		return -EINVAL;
462 
463 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464 	if (ret || !write)
465 		return ret;
466 
467 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469 	update_perf_cpu_limits();
470 
471 	return 0;
472 }
473 
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475 
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477 		void *buffer, size_t *lenp, loff_t *ppos)
478 {
479 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480 
481 	if (ret || !write)
482 		return ret;
483 
484 	if (sysctl_perf_cpu_time_max_percent == 100 ||
485 	    sysctl_perf_cpu_time_max_percent == 0) {
486 		printk(KERN_WARNING
487 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488 		WRITE_ONCE(perf_sample_allowed_ns, 0);
489 	} else {
490 		update_perf_cpu_limits();
491 	}
492 
493 	return 0;
494 }
495 
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504 
505 static u64 __report_avg;
506 static u64 __report_allowed;
507 
508 static void perf_duration_warn(struct irq_work *w)
509 {
510 	printk_ratelimited(KERN_INFO
511 		"perf: interrupt took too long (%lld > %lld), lowering "
512 		"kernel.perf_event_max_sample_rate to %d\n",
513 		__report_avg, __report_allowed,
514 		sysctl_perf_event_sample_rate);
515 }
516 
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518 
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522 	u64 running_len;
523 	u64 avg_len;
524 	u32 max;
525 
526 	if (max_len == 0)
527 		return;
528 
529 	/* Decay the counter by 1 average sample. */
530 	running_len = __this_cpu_read(running_sample_length);
531 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532 	running_len += sample_len_ns;
533 	__this_cpu_write(running_sample_length, running_len);
534 
535 	/*
536 	 * Note: this will be biased artifically low until we have
537 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538 	 * from having to maintain a count.
539 	 */
540 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541 	if (avg_len <= max_len)
542 		return;
543 
544 	__report_avg = avg_len;
545 	__report_allowed = max_len;
546 
547 	/*
548 	 * Compute a throttle threshold 25% below the current duration.
549 	 */
550 	avg_len += avg_len / 4;
551 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552 	if (avg_len < max)
553 		max /= (u32)avg_len;
554 	else
555 		max = 1;
556 
557 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558 	WRITE_ONCE(max_samples_per_tick, max);
559 
560 	sysctl_perf_event_sample_rate = max * HZ;
561 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562 
563 	if (!irq_work_queue(&perf_duration_work)) {
564 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565 			     "kernel.perf_event_max_sample_rate to %d\n",
566 			     __report_avg, __report_allowed,
567 			     sysctl_perf_event_sample_rate);
568 	}
569 }
570 
571 static atomic64_t perf_event_id;
572 
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574 			      enum event_type_t event_type);
575 
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577 			     enum event_type_t event_type,
578 			     struct task_struct *task);
579 
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582 
583 void __weak perf_event_print_debug(void)	{ }
584 
585 static inline u64 perf_clock(void)
586 {
587 	return local_clock();
588 }
589 
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592 	return event->clock();
593 }
594 
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616 
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620 	struct perf_event *leader = event->group_leader;
621 
622 	if (leader->state <= PERF_EVENT_STATE_OFF)
623 		return leader->state;
624 
625 	return event->state;
626 }
627 
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631 	enum perf_event_state state = __perf_effective_state(event);
632 	u64 delta = now - event->tstamp;
633 
634 	*enabled = event->total_time_enabled;
635 	if (state >= PERF_EVENT_STATE_INACTIVE)
636 		*enabled += delta;
637 
638 	*running = event->total_time_running;
639 	if (state >= PERF_EVENT_STATE_ACTIVE)
640 		*running += delta;
641 }
642 
643 static void perf_event_update_time(struct perf_event *event)
644 {
645 	u64 now = perf_event_time(event);
646 
647 	__perf_update_times(event, now, &event->total_time_enabled,
648 					&event->total_time_running);
649 	event->tstamp = now;
650 }
651 
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654 	struct perf_event *sibling;
655 
656 	for_each_sibling_event(sibling, leader)
657 		perf_event_update_time(sibling);
658 }
659 
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663 	if (event->state == state)
664 		return;
665 
666 	perf_event_update_time(event);
667 	/*
668 	 * If a group leader gets enabled/disabled all its siblings
669 	 * are affected too.
670 	 */
671 	if ((event->state < 0) ^ (state < 0))
672 		perf_event_update_sibling_time(event);
673 
674 	WRITE_ONCE(event->state, state);
675 }
676 
677 /*
678  * UP store-release, load-acquire
679  */
680 
681 #define __store_release(ptr, val)					\
682 do {									\
683 	barrier();							\
684 	WRITE_ONCE(*(ptr), (val));					\
685 } while (0)
686 
687 #define __load_acquire(ptr)						\
688 ({									\
689 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
690 	barrier();							\
691 	___p;								\
692 })
693 
694 #ifdef CONFIG_CGROUP_PERF
695 
696 static inline bool
697 perf_cgroup_match(struct perf_event *event)
698 {
699 	struct perf_event_context *ctx = event->ctx;
700 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
701 
702 	/* @event doesn't care about cgroup */
703 	if (!event->cgrp)
704 		return true;
705 
706 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
707 	if (!cpuctx->cgrp)
708 		return false;
709 
710 	/*
711 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
712 	 * also enabled for all its descendant cgroups.  If @cpuctx's
713 	 * cgroup is a descendant of @event's (the test covers identity
714 	 * case), it's a match.
715 	 */
716 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
717 				    event->cgrp->css.cgroup);
718 }
719 
720 static inline void perf_detach_cgroup(struct perf_event *event)
721 {
722 	css_put(&event->cgrp->css);
723 	event->cgrp = NULL;
724 }
725 
726 static inline int is_cgroup_event(struct perf_event *event)
727 {
728 	return event->cgrp != NULL;
729 }
730 
731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
732 {
733 	struct perf_cgroup_info *t;
734 
735 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
736 	return t->time;
737 }
738 
739 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
740 {
741 	struct perf_cgroup_info *t;
742 
743 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
744 	if (!__load_acquire(&t->active))
745 		return t->time;
746 	now += READ_ONCE(t->timeoffset);
747 	return now;
748 }
749 
750 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
751 {
752 	if (adv)
753 		info->time += now - info->timestamp;
754 	info->timestamp = now;
755 	/*
756 	 * see update_context_time()
757 	 */
758 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
759 }
760 
761 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
762 {
763 	struct perf_cgroup *cgrp = cpuctx->cgrp;
764 	struct cgroup_subsys_state *css;
765 	struct perf_cgroup_info *info;
766 
767 	if (cgrp) {
768 		u64 now = perf_clock();
769 
770 		for (css = &cgrp->css; css; css = css->parent) {
771 			cgrp = container_of(css, struct perf_cgroup, css);
772 			info = this_cpu_ptr(cgrp->info);
773 
774 			__update_cgrp_time(info, now, true);
775 			if (final)
776 				__store_release(&info->active, 0);
777 		}
778 	}
779 }
780 
781 static inline void update_cgrp_time_from_event(struct perf_event *event)
782 {
783 	struct perf_cgroup_info *info;
784 	struct perf_cgroup *cgrp;
785 
786 	/*
787 	 * ensure we access cgroup data only when needed and
788 	 * when we know the cgroup is pinned (css_get)
789 	 */
790 	if (!is_cgroup_event(event))
791 		return;
792 
793 	cgrp = perf_cgroup_from_task(current, event->ctx);
794 	/*
795 	 * Do not update time when cgroup is not active
796 	 */
797 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) {
798 		info = this_cpu_ptr(event->cgrp->info);
799 		__update_cgrp_time(info, perf_clock(), true);
800 	}
801 }
802 
803 static inline void
804 perf_cgroup_set_timestamp(struct task_struct *task,
805 			  struct perf_event_context *ctx)
806 {
807 	struct perf_cgroup *cgrp;
808 	struct perf_cgroup_info *info;
809 	struct cgroup_subsys_state *css;
810 
811 	/*
812 	 * ctx->lock held by caller
813 	 * ensure we do not access cgroup data
814 	 * unless we have the cgroup pinned (css_get)
815 	 */
816 	if (!task || !ctx->nr_cgroups)
817 		return;
818 
819 	cgrp = perf_cgroup_from_task(task, ctx);
820 
821 	for (css = &cgrp->css; css; css = css->parent) {
822 		cgrp = container_of(css, struct perf_cgroup, css);
823 		info = this_cpu_ptr(cgrp->info);
824 		__update_cgrp_time(info, ctx->timestamp, false);
825 		__store_release(&info->active, 1);
826 	}
827 }
828 
829 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
830 
831 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
832 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
833 
834 /*
835  * reschedule events based on the cgroup constraint of task.
836  *
837  * mode SWOUT : schedule out everything
838  * mode SWIN : schedule in based on cgroup for next
839  */
840 static void perf_cgroup_switch(struct task_struct *task, int mode)
841 {
842 	struct perf_cpu_context *cpuctx;
843 	struct list_head *list;
844 	unsigned long flags;
845 
846 	/*
847 	 * Disable interrupts and preemption to avoid this CPU's
848 	 * cgrp_cpuctx_entry to change under us.
849 	 */
850 	local_irq_save(flags);
851 
852 	list = this_cpu_ptr(&cgrp_cpuctx_list);
853 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
854 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
855 
856 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
857 		perf_pmu_disable(cpuctx->ctx.pmu);
858 
859 		if (mode & PERF_CGROUP_SWOUT) {
860 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
861 			/*
862 			 * must not be done before ctxswout due
863 			 * to event_filter_match() in event_sched_out()
864 			 */
865 			cpuctx->cgrp = NULL;
866 		}
867 
868 		if (mode & PERF_CGROUP_SWIN) {
869 			WARN_ON_ONCE(cpuctx->cgrp);
870 			/*
871 			 * set cgrp before ctxsw in to allow
872 			 * event_filter_match() to not have to pass
873 			 * task around
874 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
875 			 * because cgorup events are only per-cpu
876 			 */
877 			cpuctx->cgrp = perf_cgroup_from_task(task,
878 							     &cpuctx->ctx);
879 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
880 		}
881 		perf_pmu_enable(cpuctx->ctx.pmu);
882 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
883 	}
884 
885 	local_irq_restore(flags);
886 }
887 
888 static inline void perf_cgroup_sched_out(struct task_struct *task,
889 					 struct task_struct *next)
890 {
891 	struct perf_cgroup *cgrp1;
892 	struct perf_cgroup *cgrp2 = NULL;
893 
894 	rcu_read_lock();
895 	/*
896 	 * we come here when we know perf_cgroup_events > 0
897 	 * we do not need to pass the ctx here because we know
898 	 * we are holding the rcu lock
899 	 */
900 	cgrp1 = perf_cgroup_from_task(task, NULL);
901 	cgrp2 = perf_cgroup_from_task(next, NULL);
902 
903 	/*
904 	 * only schedule out current cgroup events if we know
905 	 * that we are switching to a different cgroup. Otherwise,
906 	 * do no touch the cgroup events.
907 	 */
908 	if (cgrp1 != cgrp2)
909 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
910 
911 	rcu_read_unlock();
912 }
913 
914 static inline void perf_cgroup_sched_in(struct task_struct *prev,
915 					struct task_struct *task)
916 {
917 	struct perf_cgroup *cgrp1;
918 	struct perf_cgroup *cgrp2 = NULL;
919 
920 	rcu_read_lock();
921 	/*
922 	 * we come here when we know perf_cgroup_events > 0
923 	 * we do not need to pass the ctx here because we know
924 	 * we are holding the rcu lock
925 	 */
926 	cgrp1 = perf_cgroup_from_task(task, NULL);
927 	cgrp2 = perf_cgroup_from_task(prev, NULL);
928 
929 	/*
930 	 * only need to schedule in cgroup events if we are changing
931 	 * cgroup during ctxsw. Cgroup events were not scheduled
932 	 * out of ctxsw out if that was not the case.
933 	 */
934 	if (cgrp1 != cgrp2)
935 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
936 
937 	rcu_read_unlock();
938 }
939 
940 static int perf_cgroup_ensure_storage(struct perf_event *event,
941 				struct cgroup_subsys_state *css)
942 {
943 	struct perf_cpu_context *cpuctx;
944 	struct perf_event **storage;
945 	int cpu, heap_size, ret = 0;
946 
947 	/*
948 	 * Allow storage to have sufficent space for an iterator for each
949 	 * possibly nested cgroup plus an iterator for events with no cgroup.
950 	 */
951 	for (heap_size = 1; css; css = css->parent)
952 		heap_size++;
953 
954 	for_each_possible_cpu(cpu) {
955 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
956 		if (heap_size <= cpuctx->heap_size)
957 			continue;
958 
959 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
960 				       GFP_KERNEL, cpu_to_node(cpu));
961 		if (!storage) {
962 			ret = -ENOMEM;
963 			break;
964 		}
965 
966 		raw_spin_lock_irq(&cpuctx->ctx.lock);
967 		if (cpuctx->heap_size < heap_size) {
968 			swap(cpuctx->heap, storage);
969 			if (storage == cpuctx->heap_default)
970 				storage = NULL;
971 			cpuctx->heap_size = heap_size;
972 		}
973 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
974 
975 		kfree(storage);
976 	}
977 
978 	return ret;
979 }
980 
981 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
982 				      struct perf_event_attr *attr,
983 				      struct perf_event *group_leader)
984 {
985 	struct perf_cgroup *cgrp;
986 	struct cgroup_subsys_state *css;
987 	struct fd f = fdget(fd);
988 	int ret = 0;
989 
990 	if (!f.file)
991 		return -EBADF;
992 
993 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
994 					 &perf_event_cgrp_subsys);
995 	if (IS_ERR(css)) {
996 		ret = PTR_ERR(css);
997 		goto out;
998 	}
999 
1000 	ret = perf_cgroup_ensure_storage(event, css);
1001 	if (ret)
1002 		goto out;
1003 
1004 	cgrp = container_of(css, struct perf_cgroup, css);
1005 	event->cgrp = cgrp;
1006 
1007 	/*
1008 	 * all events in a group must monitor
1009 	 * the same cgroup because a task belongs
1010 	 * to only one perf cgroup at a time
1011 	 */
1012 	if (group_leader && group_leader->cgrp != cgrp) {
1013 		perf_detach_cgroup(event);
1014 		ret = -EINVAL;
1015 	}
1016 out:
1017 	fdput(f);
1018 	return ret;
1019 }
1020 
1021 static inline void
1022 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1023 {
1024 	struct perf_cpu_context *cpuctx;
1025 
1026 	if (!is_cgroup_event(event))
1027 		return;
1028 
1029 	/*
1030 	 * Because cgroup events are always per-cpu events,
1031 	 * @ctx == &cpuctx->ctx.
1032 	 */
1033 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1034 
1035 	/*
1036 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1037 	 * matching the event's cgroup, we must do this for every new event,
1038 	 * because if the first would mismatch, the second would not try again
1039 	 * and we would leave cpuctx->cgrp unset.
1040 	 */
1041 	if (ctx->is_active && !cpuctx->cgrp) {
1042 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1043 
1044 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1045 			cpuctx->cgrp = cgrp;
1046 	}
1047 
1048 	if (ctx->nr_cgroups++)
1049 		return;
1050 
1051 	list_add(&cpuctx->cgrp_cpuctx_entry,
1052 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1053 }
1054 
1055 static inline void
1056 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1057 {
1058 	struct perf_cpu_context *cpuctx;
1059 
1060 	if (!is_cgroup_event(event))
1061 		return;
1062 
1063 	/*
1064 	 * Because cgroup events are always per-cpu events,
1065 	 * @ctx == &cpuctx->ctx.
1066 	 */
1067 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1068 
1069 	if (--ctx->nr_cgroups)
1070 		return;
1071 
1072 	if (ctx->is_active && cpuctx->cgrp)
1073 		cpuctx->cgrp = NULL;
1074 
1075 	list_del(&cpuctx->cgrp_cpuctx_entry);
1076 }
1077 
1078 #else /* !CONFIG_CGROUP_PERF */
1079 
1080 static inline bool
1081 perf_cgroup_match(struct perf_event *event)
1082 {
1083 	return true;
1084 }
1085 
1086 static inline void perf_detach_cgroup(struct perf_event *event)
1087 {}
1088 
1089 static inline int is_cgroup_event(struct perf_event *event)
1090 {
1091 	return 0;
1092 }
1093 
1094 static inline void update_cgrp_time_from_event(struct perf_event *event)
1095 {
1096 }
1097 
1098 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1099 						bool final)
1100 {
1101 }
1102 
1103 static inline void perf_cgroup_sched_out(struct task_struct *task,
1104 					 struct task_struct *next)
1105 {
1106 }
1107 
1108 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1109 					struct task_struct *task)
1110 {
1111 }
1112 
1113 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1114 				      struct perf_event_attr *attr,
1115 				      struct perf_event *group_leader)
1116 {
1117 	return -EINVAL;
1118 }
1119 
1120 static inline void
1121 perf_cgroup_set_timestamp(struct task_struct *task,
1122 			  struct perf_event_context *ctx)
1123 {
1124 }
1125 
1126 static inline void
1127 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1128 {
1129 }
1130 
1131 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1132 {
1133 	return 0;
1134 }
1135 
1136 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1137 {
1138 	return 0;
1139 }
1140 
1141 static inline void
1142 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1143 {
1144 }
1145 
1146 static inline void
1147 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1148 {
1149 }
1150 #endif
1151 
1152 /*
1153  * set default to be dependent on timer tick just
1154  * like original code
1155  */
1156 #define PERF_CPU_HRTIMER (1000 / HZ)
1157 /*
1158  * function must be called with interrupts disabled
1159  */
1160 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1161 {
1162 	struct perf_cpu_context *cpuctx;
1163 	bool rotations;
1164 
1165 	lockdep_assert_irqs_disabled();
1166 
1167 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1168 	rotations = perf_rotate_context(cpuctx);
1169 
1170 	raw_spin_lock(&cpuctx->hrtimer_lock);
1171 	if (rotations)
1172 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1173 	else
1174 		cpuctx->hrtimer_active = 0;
1175 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1176 
1177 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1178 }
1179 
1180 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1181 {
1182 	struct hrtimer *timer = &cpuctx->hrtimer;
1183 	struct pmu *pmu = cpuctx->ctx.pmu;
1184 	u64 interval;
1185 
1186 	/* no multiplexing needed for SW PMU */
1187 	if (pmu->task_ctx_nr == perf_sw_context)
1188 		return;
1189 
1190 	/*
1191 	 * check default is sane, if not set then force to
1192 	 * default interval (1/tick)
1193 	 */
1194 	interval = pmu->hrtimer_interval_ms;
1195 	if (interval < 1)
1196 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1197 
1198 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1199 
1200 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1201 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1202 	timer->function = perf_mux_hrtimer_handler;
1203 }
1204 
1205 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1206 {
1207 	struct hrtimer *timer = &cpuctx->hrtimer;
1208 	struct pmu *pmu = cpuctx->ctx.pmu;
1209 	unsigned long flags;
1210 
1211 	/* not for SW PMU */
1212 	if (pmu->task_ctx_nr == perf_sw_context)
1213 		return 0;
1214 
1215 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1216 	if (!cpuctx->hrtimer_active) {
1217 		cpuctx->hrtimer_active = 1;
1218 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1219 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1220 	}
1221 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1222 
1223 	return 0;
1224 }
1225 
1226 void perf_pmu_disable(struct pmu *pmu)
1227 {
1228 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1229 	if (!(*count)++)
1230 		pmu->pmu_disable(pmu);
1231 }
1232 
1233 void perf_pmu_enable(struct pmu *pmu)
1234 {
1235 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1236 	if (!--(*count))
1237 		pmu->pmu_enable(pmu);
1238 }
1239 
1240 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1241 
1242 /*
1243  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1244  * perf_event_task_tick() are fully serialized because they're strictly cpu
1245  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1246  * disabled, while perf_event_task_tick is called from IRQ context.
1247  */
1248 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1249 {
1250 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1251 
1252 	lockdep_assert_irqs_disabled();
1253 
1254 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1255 
1256 	list_add(&ctx->active_ctx_list, head);
1257 }
1258 
1259 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1260 {
1261 	lockdep_assert_irqs_disabled();
1262 
1263 	WARN_ON(list_empty(&ctx->active_ctx_list));
1264 
1265 	list_del_init(&ctx->active_ctx_list);
1266 }
1267 
1268 static void get_ctx(struct perf_event_context *ctx)
1269 {
1270 	refcount_inc(&ctx->refcount);
1271 }
1272 
1273 static void *alloc_task_ctx_data(struct pmu *pmu)
1274 {
1275 	if (pmu->task_ctx_cache)
1276 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1277 
1278 	return NULL;
1279 }
1280 
1281 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1282 {
1283 	if (pmu->task_ctx_cache && task_ctx_data)
1284 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1285 }
1286 
1287 static void free_ctx(struct rcu_head *head)
1288 {
1289 	struct perf_event_context *ctx;
1290 
1291 	ctx = container_of(head, struct perf_event_context, rcu_head);
1292 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1293 	kfree(ctx);
1294 }
1295 
1296 static void put_ctx(struct perf_event_context *ctx)
1297 {
1298 	if (refcount_dec_and_test(&ctx->refcount)) {
1299 		if (ctx->parent_ctx)
1300 			put_ctx(ctx->parent_ctx);
1301 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1302 			put_task_struct(ctx->task);
1303 		call_rcu(&ctx->rcu_head, free_ctx);
1304 	}
1305 }
1306 
1307 /*
1308  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1309  * perf_pmu_migrate_context() we need some magic.
1310  *
1311  * Those places that change perf_event::ctx will hold both
1312  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1313  *
1314  * Lock ordering is by mutex address. There are two other sites where
1315  * perf_event_context::mutex nests and those are:
1316  *
1317  *  - perf_event_exit_task_context()	[ child , 0 ]
1318  *      perf_event_exit_event()
1319  *        put_event()			[ parent, 1 ]
1320  *
1321  *  - perf_event_init_context()		[ parent, 0 ]
1322  *      inherit_task_group()
1323  *        inherit_group()
1324  *          inherit_event()
1325  *            perf_event_alloc()
1326  *              perf_init_event()
1327  *                perf_try_init_event()	[ child , 1 ]
1328  *
1329  * While it appears there is an obvious deadlock here -- the parent and child
1330  * nesting levels are inverted between the two. This is in fact safe because
1331  * life-time rules separate them. That is an exiting task cannot fork, and a
1332  * spawning task cannot (yet) exit.
1333  *
1334  * But remember that these are parent<->child context relations, and
1335  * migration does not affect children, therefore these two orderings should not
1336  * interact.
1337  *
1338  * The change in perf_event::ctx does not affect children (as claimed above)
1339  * because the sys_perf_event_open() case will install a new event and break
1340  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1341  * concerned with cpuctx and that doesn't have children.
1342  *
1343  * The places that change perf_event::ctx will issue:
1344  *
1345  *   perf_remove_from_context();
1346  *   synchronize_rcu();
1347  *   perf_install_in_context();
1348  *
1349  * to affect the change. The remove_from_context() + synchronize_rcu() should
1350  * quiesce the event, after which we can install it in the new location. This
1351  * means that only external vectors (perf_fops, prctl) can perturb the event
1352  * while in transit. Therefore all such accessors should also acquire
1353  * perf_event_context::mutex to serialize against this.
1354  *
1355  * However; because event->ctx can change while we're waiting to acquire
1356  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1357  * function.
1358  *
1359  * Lock order:
1360  *    exec_update_lock
1361  *	task_struct::perf_event_mutex
1362  *	  perf_event_context::mutex
1363  *	    perf_event::child_mutex;
1364  *	      perf_event_context::lock
1365  *	    perf_event::mmap_mutex
1366  *	    mmap_lock
1367  *	      perf_addr_filters_head::lock
1368  *
1369  *    cpu_hotplug_lock
1370  *      pmus_lock
1371  *	  cpuctx->mutex / perf_event_context::mutex
1372  */
1373 static struct perf_event_context *
1374 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1375 {
1376 	struct perf_event_context *ctx;
1377 
1378 again:
1379 	rcu_read_lock();
1380 	ctx = READ_ONCE(event->ctx);
1381 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1382 		rcu_read_unlock();
1383 		goto again;
1384 	}
1385 	rcu_read_unlock();
1386 
1387 	mutex_lock_nested(&ctx->mutex, nesting);
1388 	if (event->ctx != ctx) {
1389 		mutex_unlock(&ctx->mutex);
1390 		put_ctx(ctx);
1391 		goto again;
1392 	}
1393 
1394 	return ctx;
1395 }
1396 
1397 static inline struct perf_event_context *
1398 perf_event_ctx_lock(struct perf_event *event)
1399 {
1400 	return perf_event_ctx_lock_nested(event, 0);
1401 }
1402 
1403 static void perf_event_ctx_unlock(struct perf_event *event,
1404 				  struct perf_event_context *ctx)
1405 {
1406 	mutex_unlock(&ctx->mutex);
1407 	put_ctx(ctx);
1408 }
1409 
1410 /*
1411  * This must be done under the ctx->lock, such as to serialize against
1412  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1413  * calling scheduler related locks and ctx->lock nests inside those.
1414  */
1415 static __must_check struct perf_event_context *
1416 unclone_ctx(struct perf_event_context *ctx)
1417 {
1418 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1419 
1420 	lockdep_assert_held(&ctx->lock);
1421 
1422 	if (parent_ctx)
1423 		ctx->parent_ctx = NULL;
1424 	ctx->generation++;
1425 
1426 	return parent_ctx;
1427 }
1428 
1429 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1430 				enum pid_type type)
1431 {
1432 	u32 nr;
1433 	/*
1434 	 * only top level events have the pid namespace they were created in
1435 	 */
1436 	if (event->parent)
1437 		event = event->parent;
1438 
1439 	nr = __task_pid_nr_ns(p, type, event->ns);
1440 	/* avoid -1 if it is idle thread or runs in another ns */
1441 	if (!nr && !pid_alive(p))
1442 		nr = -1;
1443 	return nr;
1444 }
1445 
1446 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1447 {
1448 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1449 }
1450 
1451 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1452 {
1453 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1454 }
1455 
1456 /*
1457  * If we inherit events we want to return the parent event id
1458  * to userspace.
1459  */
1460 static u64 primary_event_id(struct perf_event *event)
1461 {
1462 	u64 id = event->id;
1463 
1464 	if (event->parent)
1465 		id = event->parent->id;
1466 
1467 	return id;
1468 }
1469 
1470 /*
1471  * Get the perf_event_context for a task and lock it.
1472  *
1473  * This has to cope with the fact that until it is locked,
1474  * the context could get moved to another task.
1475  */
1476 static struct perf_event_context *
1477 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1478 {
1479 	struct perf_event_context *ctx;
1480 
1481 retry:
1482 	/*
1483 	 * One of the few rules of preemptible RCU is that one cannot do
1484 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1485 	 * part of the read side critical section was irqs-enabled -- see
1486 	 * rcu_read_unlock_special().
1487 	 *
1488 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1489 	 * side critical section has interrupts disabled.
1490 	 */
1491 	local_irq_save(*flags);
1492 	rcu_read_lock();
1493 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1494 	if (ctx) {
1495 		/*
1496 		 * If this context is a clone of another, it might
1497 		 * get swapped for another underneath us by
1498 		 * perf_event_task_sched_out, though the
1499 		 * rcu_read_lock() protects us from any context
1500 		 * getting freed.  Lock the context and check if it
1501 		 * got swapped before we could get the lock, and retry
1502 		 * if so.  If we locked the right context, then it
1503 		 * can't get swapped on us any more.
1504 		 */
1505 		raw_spin_lock(&ctx->lock);
1506 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1507 			raw_spin_unlock(&ctx->lock);
1508 			rcu_read_unlock();
1509 			local_irq_restore(*flags);
1510 			goto retry;
1511 		}
1512 
1513 		if (ctx->task == TASK_TOMBSTONE ||
1514 		    !refcount_inc_not_zero(&ctx->refcount)) {
1515 			raw_spin_unlock(&ctx->lock);
1516 			ctx = NULL;
1517 		} else {
1518 			WARN_ON_ONCE(ctx->task != task);
1519 		}
1520 	}
1521 	rcu_read_unlock();
1522 	if (!ctx)
1523 		local_irq_restore(*flags);
1524 	return ctx;
1525 }
1526 
1527 /*
1528  * Get the context for a task and increment its pin_count so it
1529  * can't get swapped to another task.  This also increments its
1530  * reference count so that the context can't get freed.
1531  */
1532 static struct perf_event_context *
1533 perf_pin_task_context(struct task_struct *task, int ctxn)
1534 {
1535 	struct perf_event_context *ctx;
1536 	unsigned long flags;
1537 
1538 	ctx = perf_lock_task_context(task, ctxn, &flags);
1539 	if (ctx) {
1540 		++ctx->pin_count;
1541 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1542 	}
1543 	return ctx;
1544 }
1545 
1546 static void perf_unpin_context(struct perf_event_context *ctx)
1547 {
1548 	unsigned long flags;
1549 
1550 	raw_spin_lock_irqsave(&ctx->lock, flags);
1551 	--ctx->pin_count;
1552 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1553 }
1554 
1555 /*
1556  * Update the record of the current time in a context.
1557  */
1558 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1559 {
1560 	u64 now = perf_clock();
1561 
1562 	if (adv)
1563 		ctx->time += now - ctx->timestamp;
1564 	ctx->timestamp = now;
1565 
1566 	/*
1567 	 * The above: time' = time + (now - timestamp), can be re-arranged
1568 	 * into: time` = now + (time - timestamp), which gives a single value
1569 	 * offset to compute future time without locks on.
1570 	 *
1571 	 * See perf_event_time_now(), which can be used from NMI context where
1572 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1573 	 * both the above values in a consistent manner.
1574 	 */
1575 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1576 }
1577 
1578 static void update_context_time(struct perf_event_context *ctx)
1579 {
1580 	__update_context_time(ctx, true);
1581 }
1582 
1583 static u64 perf_event_time(struct perf_event *event)
1584 {
1585 	struct perf_event_context *ctx = event->ctx;
1586 
1587 	if (unlikely(!ctx))
1588 		return 0;
1589 
1590 	if (is_cgroup_event(event))
1591 		return perf_cgroup_event_time(event);
1592 
1593 	return ctx->time;
1594 }
1595 
1596 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1597 {
1598 	struct perf_event_context *ctx = event->ctx;
1599 
1600 	if (unlikely(!ctx))
1601 		return 0;
1602 
1603 	if (is_cgroup_event(event))
1604 		return perf_cgroup_event_time_now(event, now);
1605 
1606 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1607 		return ctx->time;
1608 
1609 	now += READ_ONCE(ctx->timeoffset);
1610 	return now;
1611 }
1612 
1613 static enum event_type_t get_event_type(struct perf_event *event)
1614 {
1615 	struct perf_event_context *ctx = event->ctx;
1616 	enum event_type_t event_type;
1617 
1618 	lockdep_assert_held(&ctx->lock);
1619 
1620 	/*
1621 	 * It's 'group type', really, because if our group leader is
1622 	 * pinned, so are we.
1623 	 */
1624 	if (event->group_leader != event)
1625 		event = event->group_leader;
1626 
1627 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1628 	if (!ctx->task)
1629 		event_type |= EVENT_CPU;
1630 
1631 	return event_type;
1632 }
1633 
1634 /*
1635  * Helper function to initialize event group nodes.
1636  */
1637 static void init_event_group(struct perf_event *event)
1638 {
1639 	RB_CLEAR_NODE(&event->group_node);
1640 	event->group_index = 0;
1641 }
1642 
1643 /*
1644  * Extract pinned or flexible groups from the context
1645  * based on event attrs bits.
1646  */
1647 static struct perf_event_groups *
1648 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1649 {
1650 	if (event->attr.pinned)
1651 		return &ctx->pinned_groups;
1652 	else
1653 		return &ctx->flexible_groups;
1654 }
1655 
1656 /*
1657  * Helper function to initializes perf_event_group trees.
1658  */
1659 static void perf_event_groups_init(struct perf_event_groups *groups)
1660 {
1661 	groups->tree = RB_ROOT;
1662 	groups->index = 0;
1663 }
1664 
1665 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1666 {
1667 	struct cgroup *cgroup = NULL;
1668 
1669 #ifdef CONFIG_CGROUP_PERF
1670 	if (event->cgrp)
1671 		cgroup = event->cgrp->css.cgroup;
1672 #endif
1673 
1674 	return cgroup;
1675 }
1676 
1677 /*
1678  * Compare function for event groups;
1679  *
1680  * Implements complex key that first sorts by CPU and then by virtual index
1681  * which provides ordering when rotating groups for the same CPU.
1682  */
1683 static __always_inline int
1684 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1685 		      const u64 left_group_index, const struct perf_event *right)
1686 {
1687 	if (left_cpu < right->cpu)
1688 		return -1;
1689 	if (left_cpu > right->cpu)
1690 		return 1;
1691 
1692 #ifdef CONFIG_CGROUP_PERF
1693 	{
1694 		const struct cgroup *right_cgroup = event_cgroup(right);
1695 
1696 		if (left_cgroup != right_cgroup) {
1697 			if (!left_cgroup) {
1698 				/*
1699 				 * Left has no cgroup but right does, no
1700 				 * cgroups come first.
1701 				 */
1702 				return -1;
1703 			}
1704 			if (!right_cgroup) {
1705 				/*
1706 				 * Right has no cgroup but left does, no
1707 				 * cgroups come first.
1708 				 */
1709 				return 1;
1710 			}
1711 			/* Two dissimilar cgroups, order by id. */
1712 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1713 				return -1;
1714 
1715 			return 1;
1716 		}
1717 	}
1718 #endif
1719 
1720 	if (left_group_index < right->group_index)
1721 		return -1;
1722 	if (left_group_index > right->group_index)
1723 		return 1;
1724 
1725 	return 0;
1726 }
1727 
1728 #define __node_2_pe(node) \
1729 	rb_entry((node), struct perf_event, group_node)
1730 
1731 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1732 {
1733 	struct perf_event *e = __node_2_pe(a);
1734 	return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1735 				     __node_2_pe(b)) < 0;
1736 }
1737 
1738 struct __group_key {
1739 	int cpu;
1740 	struct cgroup *cgroup;
1741 };
1742 
1743 static inline int __group_cmp(const void *key, const struct rb_node *node)
1744 {
1745 	const struct __group_key *a = key;
1746 	const struct perf_event *b = __node_2_pe(node);
1747 
1748 	/* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1749 	return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1750 }
1751 
1752 /*
1753  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1754  * key (see perf_event_groups_less). This places it last inside the CPU
1755  * subtree.
1756  */
1757 static void
1758 perf_event_groups_insert(struct perf_event_groups *groups,
1759 			 struct perf_event *event)
1760 {
1761 	event->group_index = ++groups->index;
1762 
1763 	rb_add(&event->group_node, &groups->tree, __group_less);
1764 }
1765 
1766 /*
1767  * Helper function to insert event into the pinned or flexible groups.
1768  */
1769 static void
1770 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1771 {
1772 	struct perf_event_groups *groups;
1773 
1774 	groups = get_event_groups(event, ctx);
1775 	perf_event_groups_insert(groups, event);
1776 }
1777 
1778 /*
1779  * Delete a group from a tree.
1780  */
1781 static void
1782 perf_event_groups_delete(struct perf_event_groups *groups,
1783 			 struct perf_event *event)
1784 {
1785 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1786 		     RB_EMPTY_ROOT(&groups->tree));
1787 
1788 	rb_erase(&event->group_node, &groups->tree);
1789 	init_event_group(event);
1790 }
1791 
1792 /*
1793  * Helper function to delete event from its groups.
1794  */
1795 static void
1796 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1797 {
1798 	struct perf_event_groups *groups;
1799 
1800 	groups = get_event_groups(event, ctx);
1801 	perf_event_groups_delete(groups, event);
1802 }
1803 
1804 /*
1805  * Get the leftmost event in the cpu/cgroup subtree.
1806  */
1807 static struct perf_event *
1808 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1809 			struct cgroup *cgrp)
1810 {
1811 	struct __group_key key = {
1812 		.cpu = cpu,
1813 		.cgroup = cgrp,
1814 	};
1815 	struct rb_node *node;
1816 
1817 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1818 	if (node)
1819 		return __node_2_pe(node);
1820 
1821 	return NULL;
1822 }
1823 
1824 /*
1825  * Like rb_entry_next_safe() for the @cpu subtree.
1826  */
1827 static struct perf_event *
1828 perf_event_groups_next(struct perf_event *event)
1829 {
1830 	struct __group_key key = {
1831 		.cpu = event->cpu,
1832 		.cgroup = event_cgroup(event),
1833 	};
1834 	struct rb_node *next;
1835 
1836 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1837 	if (next)
1838 		return __node_2_pe(next);
1839 
1840 	return NULL;
1841 }
1842 
1843 /*
1844  * Iterate through the whole groups tree.
1845  */
1846 #define perf_event_groups_for_each(event, groups)			\
1847 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1848 				typeof(*event), group_node); event;	\
1849 		event = rb_entry_safe(rb_next(&event->group_node),	\
1850 				typeof(*event), group_node))
1851 
1852 /*
1853  * Add an event from the lists for its context.
1854  * Must be called with ctx->mutex and ctx->lock held.
1855  */
1856 static void
1857 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1858 {
1859 	lockdep_assert_held(&ctx->lock);
1860 
1861 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1862 	event->attach_state |= PERF_ATTACH_CONTEXT;
1863 
1864 	event->tstamp = perf_event_time(event);
1865 
1866 	/*
1867 	 * If we're a stand alone event or group leader, we go to the context
1868 	 * list, group events are kept attached to the group so that
1869 	 * perf_group_detach can, at all times, locate all siblings.
1870 	 */
1871 	if (event->group_leader == event) {
1872 		event->group_caps = event->event_caps;
1873 		add_event_to_groups(event, ctx);
1874 	}
1875 
1876 	list_add_rcu(&event->event_entry, &ctx->event_list);
1877 	ctx->nr_events++;
1878 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1879 		ctx->nr_user++;
1880 	if (event->attr.inherit_stat)
1881 		ctx->nr_stat++;
1882 
1883 	if (event->state > PERF_EVENT_STATE_OFF)
1884 		perf_cgroup_event_enable(event, ctx);
1885 
1886 	ctx->generation++;
1887 }
1888 
1889 /*
1890  * Initialize event state based on the perf_event_attr::disabled.
1891  */
1892 static inline void perf_event__state_init(struct perf_event *event)
1893 {
1894 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1895 					      PERF_EVENT_STATE_INACTIVE;
1896 }
1897 
1898 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1899 {
1900 	int entry = sizeof(u64); /* value */
1901 	int size = 0;
1902 	int nr = 1;
1903 
1904 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1905 		size += sizeof(u64);
1906 
1907 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1908 		size += sizeof(u64);
1909 
1910 	if (event->attr.read_format & PERF_FORMAT_ID)
1911 		entry += sizeof(u64);
1912 
1913 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1914 		nr += nr_siblings;
1915 		size += sizeof(u64);
1916 	}
1917 
1918 	size += entry * nr;
1919 	event->read_size = size;
1920 }
1921 
1922 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1923 {
1924 	struct perf_sample_data *data;
1925 	u16 size = 0;
1926 
1927 	if (sample_type & PERF_SAMPLE_IP)
1928 		size += sizeof(data->ip);
1929 
1930 	if (sample_type & PERF_SAMPLE_ADDR)
1931 		size += sizeof(data->addr);
1932 
1933 	if (sample_type & PERF_SAMPLE_PERIOD)
1934 		size += sizeof(data->period);
1935 
1936 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1937 		size += sizeof(data->weight.full);
1938 
1939 	if (sample_type & PERF_SAMPLE_READ)
1940 		size += event->read_size;
1941 
1942 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1943 		size += sizeof(data->data_src.val);
1944 
1945 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1946 		size += sizeof(data->txn);
1947 
1948 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1949 		size += sizeof(data->phys_addr);
1950 
1951 	if (sample_type & PERF_SAMPLE_CGROUP)
1952 		size += sizeof(data->cgroup);
1953 
1954 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1955 		size += sizeof(data->data_page_size);
1956 
1957 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1958 		size += sizeof(data->code_page_size);
1959 
1960 	event->header_size = size;
1961 }
1962 
1963 /*
1964  * Called at perf_event creation and when events are attached/detached from a
1965  * group.
1966  */
1967 static void perf_event__header_size(struct perf_event *event)
1968 {
1969 	__perf_event_read_size(event,
1970 			       event->group_leader->nr_siblings);
1971 	__perf_event_header_size(event, event->attr.sample_type);
1972 }
1973 
1974 static void perf_event__id_header_size(struct perf_event *event)
1975 {
1976 	struct perf_sample_data *data;
1977 	u64 sample_type = event->attr.sample_type;
1978 	u16 size = 0;
1979 
1980 	if (sample_type & PERF_SAMPLE_TID)
1981 		size += sizeof(data->tid_entry);
1982 
1983 	if (sample_type & PERF_SAMPLE_TIME)
1984 		size += sizeof(data->time);
1985 
1986 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1987 		size += sizeof(data->id);
1988 
1989 	if (sample_type & PERF_SAMPLE_ID)
1990 		size += sizeof(data->id);
1991 
1992 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1993 		size += sizeof(data->stream_id);
1994 
1995 	if (sample_type & PERF_SAMPLE_CPU)
1996 		size += sizeof(data->cpu_entry);
1997 
1998 	event->id_header_size = size;
1999 }
2000 
2001 static bool perf_event_validate_size(struct perf_event *event)
2002 {
2003 	/*
2004 	 * The values computed here will be over-written when we actually
2005 	 * attach the event.
2006 	 */
2007 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
2008 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
2009 	perf_event__id_header_size(event);
2010 
2011 	/*
2012 	 * Sum the lot; should not exceed the 64k limit we have on records.
2013 	 * Conservative limit to allow for callchains and other variable fields.
2014 	 */
2015 	if (event->read_size + event->header_size +
2016 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
2017 		return false;
2018 
2019 	return true;
2020 }
2021 
2022 static void perf_group_attach(struct perf_event *event)
2023 {
2024 	struct perf_event *group_leader = event->group_leader, *pos;
2025 
2026 	lockdep_assert_held(&event->ctx->lock);
2027 
2028 	/*
2029 	 * We can have double attach due to group movement in perf_event_open.
2030 	 */
2031 	if (event->attach_state & PERF_ATTACH_GROUP)
2032 		return;
2033 
2034 	event->attach_state |= PERF_ATTACH_GROUP;
2035 
2036 	if (group_leader == event)
2037 		return;
2038 
2039 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2040 
2041 	group_leader->group_caps &= event->event_caps;
2042 
2043 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2044 	group_leader->nr_siblings++;
2045 
2046 	perf_event__header_size(group_leader);
2047 
2048 	for_each_sibling_event(pos, group_leader)
2049 		perf_event__header_size(pos);
2050 }
2051 
2052 /*
2053  * Remove an event from the lists for its context.
2054  * Must be called with ctx->mutex and ctx->lock held.
2055  */
2056 static void
2057 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2058 {
2059 	WARN_ON_ONCE(event->ctx != ctx);
2060 	lockdep_assert_held(&ctx->lock);
2061 
2062 	/*
2063 	 * We can have double detach due to exit/hot-unplug + close.
2064 	 */
2065 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2066 		return;
2067 
2068 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2069 
2070 	ctx->nr_events--;
2071 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2072 		ctx->nr_user--;
2073 	if (event->attr.inherit_stat)
2074 		ctx->nr_stat--;
2075 
2076 	list_del_rcu(&event->event_entry);
2077 
2078 	if (event->group_leader == event)
2079 		del_event_from_groups(event, ctx);
2080 
2081 	/*
2082 	 * If event was in error state, then keep it
2083 	 * that way, otherwise bogus counts will be
2084 	 * returned on read(). The only way to get out
2085 	 * of error state is by explicit re-enabling
2086 	 * of the event
2087 	 */
2088 	if (event->state > PERF_EVENT_STATE_OFF) {
2089 		perf_cgroup_event_disable(event, ctx);
2090 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2091 	}
2092 
2093 	ctx->generation++;
2094 }
2095 
2096 static int
2097 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2098 {
2099 	if (!has_aux(aux_event))
2100 		return 0;
2101 
2102 	if (!event->pmu->aux_output_match)
2103 		return 0;
2104 
2105 	return event->pmu->aux_output_match(aux_event);
2106 }
2107 
2108 static void put_event(struct perf_event *event);
2109 static void event_sched_out(struct perf_event *event,
2110 			    struct perf_cpu_context *cpuctx,
2111 			    struct perf_event_context *ctx);
2112 
2113 static void perf_put_aux_event(struct perf_event *event)
2114 {
2115 	struct perf_event_context *ctx = event->ctx;
2116 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2117 	struct perf_event *iter;
2118 
2119 	/*
2120 	 * If event uses aux_event tear down the link
2121 	 */
2122 	if (event->aux_event) {
2123 		iter = event->aux_event;
2124 		event->aux_event = NULL;
2125 		put_event(iter);
2126 		return;
2127 	}
2128 
2129 	/*
2130 	 * If the event is an aux_event, tear down all links to
2131 	 * it from other events.
2132 	 */
2133 	for_each_sibling_event(iter, event->group_leader) {
2134 		if (iter->aux_event != event)
2135 			continue;
2136 
2137 		iter->aux_event = NULL;
2138 		put_event(event);
2139 
2140 		/*
2141 		 * If it's ACTIVE, schedule it out and put it into ERROR
2142 		 * state so that we don't try to schedule it again. Note
2143 		 * that perf_event_enable() will clear the ERROR status.
2144 		 */
2145 		event_sched_out(iter, cpuctx, ctx);
2146 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2147 	}
2148 }
2149 
2150 static bool perf_need_aux_event(struct perf_event *event)
2151 {
2152 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2153 }
2154 
2155 static int perf_get_aux_event(struct perf_event *event,
2156 			      struct perf_event *group_leader)
2157 {
2158 	/*
2159 	 * Our group leader must be an aux event if we want to be
2160 	 * an aux_output. This way, the aux event will precede its
2161 	 * aux_output events in the group, and therefore will always
2162 	 * schedule first.
2163 	 */
2164 	if (!group_leader)
2165 		return 0;
2166 
2167 	/*
2168 	 * aux_output and aux_sample_size are mutually exclusive.
2169 	 */
2170 	if (event->attr.aux_output && event->attr.aux_sample_size)
2171 		return 0;
2172 
2173 	if (event->attr.aux_output &&
2174 	    !perf_aux_output_match(event, group_leader))
2175 		return 0;
2176 
2177 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2178 		return 0;
2179 
2180 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2181 		return 0;
2182 
2183 	/*
2184 	 * Link aux_outputs to their aux event; this is undone in
2185 	 * perf_group_detach() by perf_put_aux_event(). When the
2186 	 * group in torn down, the aux_output events loose their
2187 	 * link to the aux_event and can't schedule any more.
2188 	 */
2189 	event->aux_event = group_leader;
2190 
2191 	return 1;
2192 }
2193 
2194 static inline struct list_head *get_event_list(struct perf_event *event)
2195 {
2196 	struct perf_event_context *ctx = event->ctx;
2197 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2198 }
2199 
2200 /*
2201  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2202  * cannot exist on their own, schedule them out and move them into the ERROR
2203  * state. Also see _perf_event_enable(), it will not be able to recover
2204  * this ERROR state.
2205  */
2206 static inline void perf_remove_sibling_event(struct perf_event *event)
2207 {
2208 	struct perf_event_context *ctx = event->ctx;
2209 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2210 
2211 	event_sched_out(event, cpuctx, ctx);
2212 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2213 }
2214 
2215 static void perf_group_detach(struct perf_event *event)
2216 {
2217 	struct perf_event *leader = event->group_leader;
2218 	struct perf_event *sibling, *tmp;
2219 	struct perf_event_context *ctx = event->ctx;
2220 
2221 	lockdep_assert_held(&ctx->lock);
2222 
2223 	/*
2224 	 * We can have double detach due to exit/hot-unplug + close.
2225 	 */
2226 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2227 		return;
2228 
2229 	event->attach_state &= ~PERF_ATTACH_GROUP;
2230 
2231 	perf_put_aux_event(event);
2232 
2233 	/*
2234 	 * If this is a sibling, remove it from its group.
2235 	 */
2236 	if (leader != event) {
2237 		list_del_init(&event->sibling_list);
2238 		event->group_leader->nr_siblings--;
2239 		goto out;
2240 	}
2241 
2242 	/*
2243 	 * If this was a group event with sibling events then
2244 	 * upgrade the siblings to singleton events by adding them
2245 	 * to whatever list we are on.
2246 	 */
2247 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2248 
2249 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2250 			perf_remove_sibling_event(sibling);
2251 
2252 		sibling->group_leader = sibling;
2253 		list_del_init(&sibling->sibling_list);
2254 
2255 		/* Inherit group flags from the previous leader */
2256 		sibling->group_caps = event->group_caps;
2257 
2258 		if (!RB_EMPTY_NODE(&event->group_node)) {
2259 			add_event_to_groups(sibling, event->ctx);
2260 
2261 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2262 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2263 		}
2264 
2265 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2266 	}
2267 
2268 out:
2269 	for_each_sibling_event(tmp, leader)
2270 		perf_event__header_size(tmp);
2271 
2272 	perf_event__header_size(leader);
2273 }
2274 
2275 static void sync_child_event(struct perf_event *child_event);
2276 
2277 static void perf_child_detach(struct perf_event *event)
2278 {
2279 	struct perf_event *parent_event = event->parent;
2280 
2281 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2282 		return;
2283 
2284 	event->attach_state &= ~PERF_ATTACH_CHILD;
2285 
2286 	if (WARN_ON_ONCE(!parent_event))
2287 		return;
2288 
2289 	lockdep_assert_held(&parent_event->child_mutex);
2290 
2291 	sync_child_event(event);
2292 	list_del_init(&event->child_list);
2293 }
2294 
2295 static bool is_orphaned_event(struct perf_event *event)
2296 {
2297 	return event->state == PERF_EVENT_STATE_DEAD;
2298 }
2299 
2300 static inline int __pmu_filter_match(struct perf_event *event)
2301 {
2302 	struct pmu *pmu = event->pmu;
2303 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2304 }
2305 
2306 /*
2307  * Check whether we should attempt to schedule an event group based on
2308  * PMU-specific filtering. An event group can consist of HW and SW events,
2309  * potentially with a SW leader, so we must check all the filters, to
2310  * determine whether a group is schedulable:
2311  */
2312 static inline int pmu_filter_match(struct perf_event *event)
2313 {
2314 	struct perf_event *sibling;
2315 
2316 	if (!__pmu_filter_match(event))
2317 		return 0;
2318 
2319 	for_each_sibling_event(sibling, event) {
2320 		if (!__pmu_filter_match(sibling))
2321 			return 0;
2322 	}
2323 
2324 	return 1;
2325 }
2326 
2327 static inline int
2328 event_filter_match(struct perf_event *event)
2329 {
2330 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2331 	       perf_cgroup_match(event) && pmu_filter_match(event);
2332 }
2333 
2334 static void
2335 event_sched_out(struct perf_event *event,
2336 		  struct perf_cpu_context *cpuctx,
2337 		  struct perf_event_context *ctx)
2338 {
2339 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2340 
2341 	WARN_ON_ONCE(event->ctx != ctx);
2342 	lockdep_assert_held(&ctx->lock);
2343 
2344 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2345 		return;
2346 
2347 	/*
2348 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2349 	 * we can schedule events _OUT_ individually through things like
2350 	 * __perf_remove_from_context().
2351 	 */
2352 	list_del_init(&event->active_list);
2353 
2354 	perf_pmu_disable(event->pmu);
2355 
2356 	event->pmu->del(event, 0);
2357 	event->oncpu = -1;
2358 
2359 	if (READ_ONCE(event->pending_disable) >= 0) {
2360 		WRITE_ONCE(event->pending_disable, -1);
2361 		perf_cgroup_event_disable(event, ctx);
2362 		state = PERF_EVENT_STATE_OFF;
2363 	}
2364 	perf_event_set_state(event, state);
2365 
2366 	if (!is_software_event(event))
2367 		cpuctx->active_oncpu--;
2368 	if (!--ctx->nr_active)
2369 		perf_event_ctx_deactivate(ctx);
2370 	if (event->attr.freq && event->attr.sample_freq)
2371 		ctx->nr_freq--;
2372 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2373 		cpuctx->exclusive = 0;
2374 
2375 	perf_pmu_enable(event->pmu);
2376 }
2377 
2378 static void
2379 group_sched_out(struct perf_event *group_event,
2380 		struct perf_cpu_context *cpuctx,
2381 		struct perf_event_context *ctx)
2382 {
2383 	struct perf_event *event;
2384 
2385 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2386 		return;
2387 
2388 	perf_pmu_disable(ctx->pmu);
2389 
2390 	event_sched_out(group_event, cpuctx, ctx);
2391 
2392 	/*
2393 	 * Schedule out siblings (if any):
2394 	 */
2395 	for_each_sibling_event(event, group_event)
2396 		event_sched_out(event, cpuctx, ctx);
2397 
2398 	perf_pmu_enable(ctx->pmu);
2399 }
2400 
2401 #define DETACH_GROUP	0x01UL
2402 #define DETACH_CHILD	0x02UL
2403 
2404 /*
2405  * Cross CPU call to remove a performance event
2406  *
2407  * We disable the event on the hardware level first. After that we
2408  * remove it from the context list.
2409  */
2410 static void
2411 __perf_remove_from_context(struct perf_event *event,
2412 			   struct perf_cpu_context *cpuctx,
2413 			   struct perf_event_context *ctx,
2414 			   void *info)
2415 {
2416 	unsigned long flags = (unsigned long)info;
2417 
2418 	if (ctx->is_active & EVENT_TIME) {
2419 		update_context_time(ctx);
2420 		update_cgrp_time_from_cpuctx(cpuctx, false);
2421 	}
2422 
2423 	event_sched_out(event, cpuctx, ctx);
2424 	if (flags & DETACH_GROUP)
2425 		perf_group_detach(event);
2426 	if (flags & DETACH_CHILD)
2427 		perf_child_detach(event);
2428 	list_del_event(event, ctx);
2429 
2430 	if (!ctx->nr_events && ctx->is_active) {
2431 		if (ctx == &cpuctx->ctx)
2432 			update_cgrp_time_from_cpuctx(cpuctx, true);
2433 
2434 		ctx->is_active = 0;
2435 		ctx->rotate_necessary = 0;
2436 		if (ctx->task) {
2437 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2438 			cpuctx->task_ctx = NULL;
2439 		}
2440 	}
2441 }
2442 
2443 /*
2444  * Remove the event from a task's (or a CPU's) list of events.
2445  *
2446  * If event->ctx is a cloned context, callers must make sure that
2447  * every task struct that event->ctx->task could possibly point to
2448  * remains valid.  This is OK when called from perf_release since
2449  * that only calls us on the top-level context, which can't be a clone.
2450  * When called from perf_event_exit_task, it's OK because the
2451  * context has been detached from its task.
2452  */
2453 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2454 {
2455 	struct perf_event_context *ctx = event->ctx;
2456 
2457 	lockdep_assert_held(&ctx->mutex);
2458 
2459 	/*
2460 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2461 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2462 	 * event_function_call() user.
2463 	 */
2464 	raw_spin_lock_irq(&ctx->lock);
2465 	/*
2466 	 * Cgroup events are per-cpu events, and must IPI because of
2467 	 * cgrp_cpuctx_list.
2468 	 */
2469 	if (!ctx->is_active && !is_cgroup_event(event)) {
2470 		__perf_remove_from_context(event, __get_cpu_context(ctx),
2471 					   ctx, (void *)flags);
2472 		raw_spin_unlock_irq(&ctx->lock);
2473 		return;
2474 	}
2475 	raw_spin_unlock_irq(&ctx->lock);
2476 
2477 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2478 }
2479 
2480 /*
2481  * Cross CPU call to disable a performance event
2482  */
2483 static void __perf_event_disable(struct perf_event *event,
2484 				 struct perf_cpu_context *cpuctx,
2485 				 struct perf_event_context *ctx,
2486 				 void *info)
2487 {
2488 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2489 		return;
2490 
2491 	if (ctx->is_active & EVENT_TIME) {
2492 		update_context_time(ctx);
2493 		update_cgrp_time_from_event(event);
2494 	}
2495 
2496 	if (event == event->group_leader)
2497 		group_sched_out(event, cpuctx, ctx);
2498 	else
2499 		event_sched_out(event, cpuctx, ctx);
2500 
2501 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2502 	perf_cgroup_event_disable(event, ctx);
2503 }
2504 
2505 /*
2506  * Disable an event.
2507  *
2508  * If event->ctx is a cloned context, callers must make sure that
2509  * every task struct that event->ctx->task could possibly point to
2510  * remains valid.  This condition is satisfied when called through
2511  * perf_event_for_each_child or perf_event_for_each because they
2512  * hold the top-level event's child_mutex, so any descendant that
2513  * goes to exit will block in perf_event_exit_event().
2514  *
2515  * When called from perf_pending_event it's OK because event->ctx
2516  * is the current context on this CPU and preemption is disabled,
2517  * hence we can't get into perf_event_task_sched_out for this context.
2518  */
2519 static void _perf_event_disable(struct perf_event *event)
2520 {
2521 	struct perf_event_context *ctx = event->ctx;
2522 
2523 	raw_spin_lock_irq(&ctx->lock);
2524 	if (event->state <= PERF_EVENT_STATE_OFF) {
2525 		raw_spin_unlock_irq(&ctx->lock);
2526 		return;
2527 	}
2528 	raw_spin_unlock_irq(&ctx->lock);
2529 
2530 	event_function_call(event, __perf_event_disable, NULL);
2531 }
2532 
2533 void perf_event_disable_local(struct perf_event *event)
2534 {
2535 	event_function_local(event, __perf_event_disable, NULL);
2536 }
2537 
2538 /*
2539  * Strictly speaking kernel users cannot create groups and therefore this
2540  * interface does not need the perf_event_ctx_lock() magic.
2541  */
2542 void perf_event_disable(struct perf_event *event)
2543 {
2544 	struct perf_event_context *ctx;
2545 
2546 	ctx = perf_event_ctx_lock(event);
2547 	_perf_event_disable(event);
2548 	perf_event_ctx_unlock(event, ctx);
2549 }
2550 EXPORT_SYMBOL_GPL(perf_event_disable);
2551 
2552 void perf_event_disable_inatomic(struct perf_event *event)
2553 {
2554 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2555 	/* can fail, see perf_pending_event_disable() */
2556 	irq_work_queue(&event->pending);
2557 }
2558 
2559 #define MAX_INTERRUPTS (~0ULL)
2560 
2561 static void perf_log_throttle(struct perf_event *event, int enable);
2562 static void perf_log_itrace_start(struct perf_event *event);
2563 
2564 static int
2565 event_sched_in(struct perf_event *event,
2566 		 struct perf_cpu_context *cpuctx,
2567 		 struct perf_event_context *ctx)
2568 {
2569 	int ret = 0;
2570 
2571 	WARN_ON_ONCE(event->ctx != ctx);
2572 
2573 	lockdep_assert_held(&ctx->lock);
2574 
2575 	if (event->state <= PERF_EVENT_STATE_OFF)
2576 		return 0;
2577 
2578 	WRITE_ONCE(event->oncpu, smp_processor_id());
2579 	/*
2580 	 * Order event::oncpu write to happen before the ACTIVE state is
2581 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2582 	 * ->oncpu if it sees ACTIVE.
2583 	 */
2584 	smp_wmb();
2585 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2586 
2587 	/*
2588 	 * Unthrottle events, since we scheduled we might have missed several
2589 	 * ticks already, also for a heavily scheduling task there is little
2590 	 * guarantee it'll get a tick in a timely manner.
2591 	 */
2592 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2593 		perf_log_throttle(event, 1);
2594 		event->hw.interrupts = 0;
2595 	}
2596 
2597 	perf_pmu_disable(event->pmu);
2598 
2599 	perf_log_itrace_start(event);
2600 
2601 	if (event->pmu->add(event, PERF_EF_START)) {
2602 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2603 		event->oncpu = -1;
2604 		ret = -EAGAIN;
2605 		goto out;
2606 	}
2607 
2608 	if (!is_software_event(event))
2609 		cpuctx->active_oncpu++;
2610 	if (!ctx->nr_active++)
2611 		perf_event_ctx_activate(ctx);
2612 	if (event->attr.freq && event->attr.sample_freq)
2613 		ctx->nr_freq++;
2614 
2615 	if (event->attr.exclusive)
2616 		cpuctx->exclusive = 1;
2617 
2618 out:
2619 	perf_pmu_enable(event->pmu);
2620 
2621 	return ret;
2622 }
2623 
2624 static int
2625 group_sched_in(struct perf_event *group_event,
2626 	       struct perf_cpu_context *cpuctx,
2627 	       struct perf_event_context *ctx)
2628 {
2629 	struct perf_event *event, *partial_group = NULL;
2630 	struct pmu *pmu = ctx->pmu;
2631 
2632 	if (group_event->state == PERF_EVENT_STATE_OFF)
2633 		return 0;
2634 
2635 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2636 
2637 	if (event_sched_in(group_event, cpuctx, ctx))
2638 		goto error;
2639 
2640 	/*
2641 	 * Schedule in siblings as one group (if any):
2642 	 */
2643 	for_each_sibling_event(event, group_event) {
2644 		if (event_sched_in(event, cpuctx, ctx)) {
2645 			partial_group = event;
2646 			goto group_error;
2647 		}
2648 	}
2649 
2650 	if (!pmu->commit_txn(pmu))
2651 		return 0;
2652 
2653 group_error:
2654 	/*
2655 	 * Groups can be scheduled in as one unit only, so undo any
2656 	 * partial group before returning:
2657 	 * The events up to the failed event are scheduled out normally.
2658 	 */
2659 	for_each_sibling_event(event, group_event) {
2660 		if (event == partial_group)
2661 			break;
2662 
2663 		event_sched_out(event, cpuctx, ctx);
2664 	}
2665 	event_sched_out(group_event, cpuctx, ctx);
2666 
2667 error:
2668 	pmu->cancel_txn(pmu);
2669 	return -EAGAIN;
2670 }
2671 
2672 /*
2673  * Work out whether we can put this event group on the CPU now.
2674  */
2675 static int group_can_go_on(struct perf_event *event,
2676 			   struct perf_cpu_context *cpuctx,
2677 			   int can_add_hw)
2678 {
2679 	/*
2680 	 * Groups consisting entirely of software events can always go on.
2681 	 */
2682 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2683 		return 1;
2684 	/*
2685 	 * If an exclusive group is already on, no other hardware
2686 	 * events can go on.
2687 	 */
2688 	if (cpuctx->exclusive)
2689 		return 0;
2690 	/*
2691 	 * If this group is exclusive and there are already
2692 	 * events on the CPU, it can't go on.
2693 	 */
2694 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2695 		return 0;
2696 	/*
2697 	 * Otherwise, try to add it if all previous groups were able
2698 	 * to go on.
2699 	 */
2700 	return can_add_hw;
2701 }
2702 
2703 static void add_event_to_ctx(struct perf_event *event,
2704 			       struct perf_event_context *ctx)
2705 {
2706 	list_add_event(event, ctx);
2707 	perf_group_attach(event);
2708 }
2709 
2710 static void ctx_sched_out(struct perf_event_context *ctx,
2711 			  struct perf_cpu_context *cpuctx,
2712 			  enum event_type_t event_type);
2713 static void
2714 ctx_sched_in(struct perf_event_context *ctx,
2715 	     struct perf_cpu_context *cpuctx,
2716 	     enum event_type_t event_type,
2717 	     struct task_struct *task);
2718 
2719 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2720 			       struct perf_event_context *ctx,
2721 			       enum event_type_t event_type)
2722 {
2723 	if (!cpuctx->task_ctx)
2724 		return;
2725 
2726 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2727 		return;
2728 
2729 	ctx_sched_out(ctx, cpuctx, event_type);
2730 }
2731 
2732 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2733 				struct perf_event_context *ctx,
2734 				struct task_struct *task)
2735 {
2736 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2737 	if (ctx)
2738 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2739 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2740 	if (ctx)
2741 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2742 }
2743 
2744 /*
2745  * We want to maintain the following priority of scheduling:
2746  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2747  *  - task pinned (EVENT_PINNED)
2748  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2749  *  - task flexible (EVENT_FLEXIBLE).
2750  *
2751  * In order to avoid unscheduling and scheduling back in everything every
2752  * time an event is added, only do it for the groups of equal priority and
2753  * below.
2754  *
2755  * This can be called after a batch operation on task events, in which case
2756  * event_type is a bit mask of the types of events involved. For CPU events,
2757  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2758  */
2759 static void ctx_resched(struct perf_cpu_context *cpuctx,
2760 			struct perf_event_context *task_ctx,
2761 			enum event_type_t event_type)
2762 {
2763 	enum event_type_t ctx_event_type;
2764 	bool cpu_event = !!(event_type & EVENT_CPU);
2765 
2766 	/*
2767 	 * If pinned groups are involved, flexible groups also need to be
2768 	 * scheduled out.
2769 	 */
2770 	if (event_type & EVENT_PINNED)
2771 		event_type |= EVENT_FLEXIBLE;
2772 
2773 	ctx_event_type = event_type & EVENT_ALL;
2774 
2775 	perf_pmu_disable(cpuctx->ctx.pmu);
2776 	if (task_ctx)
2777 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2778 
2779 	/*
2780 	 * Decide which cpu ctx groups to schedule out based on the types
2781 	 * of events that caused rescheduling:
2782 	 *  - EVENT_CPU: schedule out corresponding groups;
2783 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2784 	 *  - otherwise, do nothing more.
2785 	 */
2786 	if (cpu_event)
2787 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2788 	else if (ctx_event_type & EVENT_PINNED)
2789 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2790 
2791 	perf_event_sched_in(cpuctx, task_ctx, current);
2792 	perf_pmu_enable(cpuctx->ctx.pmu);
2793 }
2794 
2795 void perf_pmu_resched(struct pmu *pmu)
2796 {
2797 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2798 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2799 
2800 	perf_ctx_lock(cpuctx, task_ctx);
2801 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2802 	perf_ctx_unlock(cpuctx, task_ctx);
2803 }
2804 
2805 /*
2806  * Cross CPU call to install and enable a performance event
2807  *
2808  * Very similar to remote_function() + event_function() but cannot assume that
2809  * things like ctx->is_active and cpuctx->task_ctx are set.
2810  */
2811 static int  __perf_install_in_context(void *info)
2812 {
2813 	struct perf_event *event = info;
2814 	struct perf_event_context *ctx = event->ctx;
2815 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2816 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2817 	bool reprogram = true;
2818 	int ret = 0;
2819 
2820 	raw_spin_lock(&cpuctx->ctx.lock);
2821 	if (ctx->task) {
2822 		raw_spin_lock(&ctx->lock);
2823 		task_ctx = ctx;
2824 
2825 		reprogram = (ctx->task == current);
2826 
2827 		/*
2828 		 * If the task is running, it must be running on this CPU,
2829 		 * otherwise we cannot reprogram things.
2830 		 *
2831 		 * If its not running, we don't care, ctx->lock will
2832 		 * serialize against it becoming runnable.
2833 		 */
2834 		if (task_curr(ctx->task) && !reprogram) {
2835 			ret = -ESRCH;
2836 			goto unlock;
2837 		}
2838 
2839 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2840 	} else if (task_ctx) {
2841 		raw_spin_lock(&task_ctx->lock);
2842 	}
2843 
2844 #ifdef CONFIG_CGROUP_PERF
2845 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2846 		/*
2847 		 * If the current cgroup doesn't match the event's
2848 		 * cgroup, we should not try to schedule it.
2849 		 */
2850 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2851 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2852 					event->cgrp->css.cgroup);
2853 	}
2854 #endif
2855 
2856 	if (reprogram) {
2857 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2858 		add_event_to_ctx(event, ctx);
2859 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2860 	} else {
2861 		add_event_to_ctx(event, ctx);
2862 	}
2863 
2864 unlock:
2865 	perf_ctx_unlock(cpuctx, task_ctx);
2866 
2867 	return ret;
2868 }
2869 
2870 static bool exclusive_event_installable(struct perf_event *event,
2871 					struct perf_event_context *ctx);
2872 
2873 /*
2874  * Attach a performance event to a context.
2875  *
2876  * Very similar to event_function_call, see comment there.
2877  */
2878 static void
2879 perf_install_in_context(struct perf_event_context *ctx,
2880 			struct perf_event *event,
2881 			int cpu)
2882 {
2883 	struct task_struct *task = READ_ONCE(ctx->task);
2884 
2885 	lockdep_assert_held(&ctx->mutex);
2886 
2887 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2888 
2889 	if (event->cpu != -1)
2890 		event->cpu = cpu;
2891 
2892 	/*
2893 	 * Ensures that if we can observe event->ctx, both the event and ctx
2894 	 * will be 'complete'. See perf_iterate_sb_cpu().
2895 	 */
2896 	smp_store_release(&event->ctx, ctx);
2897 
2898 	/*
2899 	 * perf_event_attr::disabled events will not run and can be initialized
2900 	 * without IPI. Except when this is the first event for the context, in
2901 	 * that case we need the magic of the IPI to set ctx->is_active.
2902 	 * Similarly, cgroup events for the context also needs the IPI to
2903 	 * manipulate the cgrp_cpuctx_list.
2904 	 *
2905 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2906 	 * event will issue the IPI and reprogram the hardware.
2907 	 */
2908 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2909 	    ctx->nr_events && !is_cgroup_event(event)) {
2910 		raw_spin_lock_irq(&ctx->lock);
2911 		if (ctx->task == TASK_TOMBSTONE) {
2912 			raw_spin_unlock_irq(&ctx->lock);
2913 			return;
2914 		}
2915 		add_event_to_ctx(event, ctx);
2916 		raw_spin_unlock_irq(&ctx->lock);
2917 		return;
2918 	}
2919 
2920 	if (!task) {
2921 		cpu_function_call(cpu, __perf_install_in_context, event);
2922 		return;
2923 	}
2924 
2925 	/*
2926 	 * Should not happen, we validate the ctx is still alive before calling.
2927 	 */
2928 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2929 		return;
2930 
2931 	/*
2932 	 * Installing events is tricky because we cannot rely on ctx->is_active
2933 	 * to be set in case this is the nr_events 0 -> 1 transition.
2934 	 *
2935 	 * Instead we use task_curr(), which tells us if the task is running.
2936 	 * However, since we use task_curr() outside of rq::lock, we can race
2937 	 * against the actual state. This means the result can be wrong.
2938 	 *
2939 	 * If we get a false positive, we retry, this is harmless.
2940 	 *
2941 	 * If we get a false negative, things are complicated. If we are after
2942 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2943 	 * value must be correct. If we're before, it doesn't matter since
2944 	 * perf_event_context_sched_in() will program the counter.
2945 	 *
2946 	 * However, this hinges on the remote context switch having observed
2947 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2948 	 * ctx::lock in perf_event_context_sched_in().
2949 	 *
2950 	 * We do this by task_function_call(), if the IPI fails to hit the task
2951 	 * we know any future context switch of task must see the
2952 	 * perf_event_ctpx[] store.
2953 	 */
2954 
2955 	/*
2956 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2957 	 * task_cpu() load, such that if the IPI then does not find the task
2958 	 * running, a future context switch of that task must observe the
2959 	 * store.
2960 	 */
2961 	smp_mb();
2962 again:
2963 	if (!task_function_call(task, __perf_install_in_context, event))
2964 		return;
2965 
2966 	raw_spin_lock_irq(&ctx->lock);
2967 	task = ctx->task;
2968 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2969 		/*
2970 		 * Cannot happen because we already checked above (which also
2971 		 * cannot happen), and we hold ctx->mutex, which serializes us
2972 		 * against perf_event_exit_task_context().
2973 		 */
2974 		raw_spin_unlock_irq(&ctx->lock);
2975 		return;
2976 	}
2977 	/*
2978 	 * If the task is not running, ctx->lock will avoid it becoming so,
2979 	 * thus we can safely install the event.
2980 	 */
2981 	if (task_curr(task)) {
2982 		raw_spin_unlock_irq(&ctx->lock);
2983 		goto again;
2984 	}
2985 	add_event_to_ctx(event, ctx);
2986 	raw_spin_unlock_irq(&ctx->lock);
2987 }
2988 
2989 /*
2990  * Cross CPU call to enable a performance event
2991  */
2992 static void __perf_event_enable(struct perf_event *event,
2993 				struct perf_cpu_context *cpuctx,
2994 				struct perf_event_context *ctx,
2995 				void *info)
2996 {
2997 	struct perf_event *leader = event->group_leader;
2998 	struct perf_event_context *task_ctx;
2999 
3000 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3001 	    event->state <= PERF_EVENT_STATE_ERROR)
3002 		return;
3003 
3004 	if (ctx->is_active)
3005 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3006 
3007 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3008 	perf_cgroup_event_enable(event, ctx);
3009 
3010 	if (!ctx->is_active)
3011 		return;
3012 
3013 	if (!event_filter_match(event)) {
3014 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3015 		return;
3016 	}
3017 
3018 	/*
3019 	 * If the event is in a group and isn't the group leader,
3020 	 * then don't put it on unless the group is on.
3021 	 */
3022 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
3023 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3024 		return;
3025 	}
3026 
3027 	task_ctx = cpuctx->task_ctx;
3028 	if (ctx->task)
3029 		WARN_ON_ONCE(task_ctx != ctx);
3030 
3031 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
3032 }
3033 
3034 /*
3035  * Enable an event.
3036  *
3037  * If event->ctx is a cloned context, callers must make sure that
3038  * every task struct that event->ctx->task could possibly point to
3039  * remains valid.  This condition is satisfied when called through
3040  * perf_event_for_each_child or perf_event_for_each as described
3041  * for perf_event_disable.
3042  */
3043 static void _perf_event_enable(struct perf_event *event)
3044 {
3045 	struct perf_event_context *ctx = event->ctx;
3046 
3047 	raw_spin_lock_irq(&ctx->lock);
3048 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3049 	    event->state <  PERF_EVENT_STATE_ERROR) {
3050 out:
3051 		raw_spin_unlock_irq(&ctx->lock);
3052 		return;
3053 	}
3054 
3055 	/*
3056 	 * If the event is in error state, clear that first.
3057 	 *
3058 	 * That way, if we see the event in error state below, we know that it
3059 	 * has gone back into error state, as distinct from the task having
3060 	 * been scheduled away before the cross-call arrived.
3061 	 */
3062 	if (event->state == PERF_EVENT_STATE_ERROR) {
3063 		/*
3064 		 * Detached SIBLING events cannot leave ERROR state.
3065 		 */
3066 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3067 		    event->group_leader == event)
3068 			goto out;
3069 
3070 		event->state = PERF_EVENT_STATE_OFF;
3071 	}
3072 	raw_spin_unlock_irq(&ctx->lock);
3073 
3074 	event_function_call(event, __perf_event_enable, NULL);
3075 }
3076 
3077 /*
3078  * See perf_event_disable();
3079  */
3080 void perf_event_enable(struct perf_event *event)
3081 {
3082 	struct perf_event_context *ctx;
3083 
3084 	ctx = perf_event_ctx_lock(event);
3085 	_perf_event_enable(event);
3086 	perf_event_ctx_unlock(event, ctx);
3087 }
3088 EXPORT_SYMBOL_GPL(perf_event_enable);
3089 
3090 struct stop_event_data {
3091 	struct perf_event	*event;
3092 	unsigned int		restart;
3093 };
3094 
3095 static int __perf_event_stop(void *info)
3096 {
3097 	struct stop_event_data *sd = info;
3098 	struct perf_event *event = sd->event;
3099 
3100 	/* if it's already INACTIVE, do nothing */
3101 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3102 		return 0;
3103 
3104 	/* matches smp_wmb() in event_sched_in() */
3105 	smp_rmb();
3106 
3107 	/*
3108 	 * There is a window with interrupts enabled before we get here,
3109 	 * so we need to check again lest we try to stop another CPU's event.
3110 	 */
3111 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3112 		return -EAGAIN;
3113 
3114 	event->pmu->stop(event, PERF_EF_UPDATE);
3115 
3116 	/*
3117 	 * May race with the actual stop (through perf_pmu_output_stop()),
3118 	 * but it is only used for events with AUX ring buffer, and such
3119 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3120 	 * see comments in perf_aux_output_begin().
3121 	 *
3122 	 * Since this is happening on an event-local CPU, no trace is lost
3123 	 * while restarting.
3124 	 */
3125 	if (sd->restart)
3126 		event->pmu->start(event, 0);
3127 
3128 	return 0;
3129 }
3130 
3131 static int perf_event_stop(struct perf_event *event, int restart)
3132 {
3133 	struct stop_event_data sd = {
3134 		.event		= event,
3135 		.restart	= restart,
3136 	};
3137 	int ret = 0;
3138 
3139 	do {
3140 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3141 			return 0;
3142 
3143 		/* matches smp_wmb() in event_sched_in() */
3144 		smp_rmb();
3145 
3146 		/*
3147 		 * We only want to restart ACTIVE events, so if the event goes
3148 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3149 		 * fall through with ret==-ENXIO.
3150 		 */
3151 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3152 					__perf_event_stop, &sd);
3153 	} while (ret == -EAGAIN);
3154 
3155 	return ret;
3156 }
3157 
3158 /*
3159  * In order to contain the amount of racy and tricky in the address filter
3160  * configuration management, it is a two part process:
3161  *
3162  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3163  *      we update the addresses of corresponding vmas in
3164  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3165  * (p2) when an event is scheduled in (pmu::add), it calls
3166  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3167  *      if the generation has changed since the previous call.
3168  *
3169  * If (p1) happens while the event is active, we restart it to force (p2).
3170  *
3171  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3172  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3173  *     ioctl;
3174  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3175  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3176  *     for reading;
3177  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3178  *     of exec.
3179  */
3180 void perf_event_addr_filters_sync(struct perf_event *event)
3181 {
3182 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3183 
3184 	if (!has_addr_filter(event))
3185 		return;
3186 
3187 	raw_spin_lock(&ifh->lock);
3188 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3189 		event->pmu->addr_filters_sync(event);
3190 		event->hw.addr_filters_gen = event->addr_filters_gen;
3191 	}
3192 	raw_spin_unlock(&ifh->lock);
3193 }
3194 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3195 
3196 static int _perf_event_refresh(struct perf_event *event, int refresh)
3197 {
3198 	/*
3199 	 * not supported on inherited events
3200 	 */
3201 	if (event->attr.inherit || !is_sampling_event(event))
3202 		return -EINVAL;
3203 
3204 	atomic_add(refresh, &event->event_limit);
3205 	_perf_event_enable(event);
3206 
3207 	return 0;
3208 }
3209 
3210 /*
3211  * See perf_event_disable()
3212  */
3213 int perf_event_refresh(struct perf_event *event, int refresh)
3214 {
3215 	struct perf_event_context *ctx;
3216 	int ret;
3217 
3218 	ctx = perf_event_ctx_lock(event);
3219 	ret = _perf_event_refresh(event, refresh);
3220 	perf_event_ctx_unlock(event, ctx);
3221 
3222 	return ret;
3223 }
3224 EXPORT_SYMBOL_GPL(perf_event_refresh);
3225 
3226 static int perf_event_modify_breakpoint(struct perf_event *bp,
3227 					 struct perf_event_attr *attr)
3228 {
3229 	int err;
3230 
3231 	_perf_event_disable(bp);
3232 
3233 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3234 
3235 	if (!bp->attr.disabled)
3236 		_perf_event_enable(bp);
3237 
3238 	return err;
3239 }
3240 
3241 static int perf_event_modify_attr(struct perf_event *event,
3242 				  struct perf_event_attr *attr)
3243 {
3244 	int (*func)(struct perf_event *, struct perf_event_attr *);
3245 	struct perf_event *child;
3246 	int err;
3247 
3248 	if (event->attr.type != attr->type)
3249 		return -EINVAL;
3250 
3251 	switch (event->attr.type) {
3252 	case PERF_TYPE_BREAKPOINT:
3253 		func = perf_event_modify_breakpoint;
3254 		break;
3255 	default:
3256 		/* Place holder for future additions. */
3257 		return -EOPNOTSUPP;
3258 	}
3259 
3260 	WARN_ON_ONCE(event->ctx->parent_ctx);
3261 
3262 	mutex_lock(&event->child_mutex);
3263 	err = func(event, attr);
3264 	if (err)
3265 		goto out;
3266 	list_for_each_entry(child, &event->child_list, child_list) {
3267 		err = func(child, attr);
3268 		if (err)
3269 			goto out;
3270 	}
3271 out:
3272 	mutex_unlock(&event->child_mutex);
3273 	return err;
3274 }
3275 
3276 static void ctx_sched_out(struct perf_event_context *ctx,
3277 			  struct perf_cpu_context *cpuctx,
3278 			  enum event_type_t event_type)
3279 {
3280 	struct perf_event *event, *tmp;
3281 	int is_active = ctx->is_active;
3282 
3283 	lockdep_assert_held(&ctx->lock);
3284 
3285 	if (likely(!ctx->nr_events)) {
3286 		/*
3287 		 * See __perf_remove_from_context().
3288 		 */
3289 		WARN_ON_ONCE(ctx->is_active);
3290 		if (ctx->task)
3291 			WARN_ON_ONCE(cpuctx->task_ctx);
3292 		return;
3293 	}
3294 
3295 	/*
3296 	 * Always update time if it was set; not only when it changes.
3297 	 * Otherwise we can 'forget' to update time for any but the last
3298 	 * context we sched out. For example:
3299 	 *
3300 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3301 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3302 	 *
3303 	 * would only update time for the pinned events.
3304 	 */
3305 	if (is_active & EVENT_TIME) {
3306 		/* update (and stop) ctx time */
3307 		update_context_time(ctx);
3308 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3309 		/*
3310 		 * CPU-release for the below ->is_active store,
3311 		 * see __load_acquire() in perf_event_time_now()
3312 		 */
3313 		barrier();
3314 	}
3315 
3316 	ctx->is_active &= ~event_type;
3317 	if (!(ctx->is_active & EVENT_ALL))
3318 		ctx->is_active = 0;
3319 
3320 	if (ctx->task) {
3321 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3322 		if (!ctx->is_active)
3323 			cpuctx->task_ctx = NULL;
3324 	}
3325 
3326 	is_active ^= ctx->is_active; /* changed bits */
3327 
3328 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3329 		return;
3330 
3331 	perf_pmu_disable(ctx->pmu);
3332 	if (is_active & EVENT_PINNED) {
3333 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3334 			group_sched_out(event, cpuctx, ctx);
3335 	}
3336 
3337 	if (is_active & EVENT_FLEXIBLE) {
3338 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3339 			group_sched_out(event, cpuctx, ctx);
3340 
3341 		/*
3342 		 * Since we cleared EVENT_FLEXIBLE, also clear
3343 		 * rotate_necessary, is will be reset by
3344 		 * ctx_flexible_sched_in() when needed.
3345 		 */
3346 		ctx->rotate_necessary = 0;
3347 	}
3348 	perf_pmu_enable(ctx->pmu);
3349 }
3350 
3351 /*
3352  * Test whether two contexts are equivalent, i.e. whether they have both been
3353  * cloned from the same version of the same context.
3354  *
3355  * Equivalence is measured using a generation number in the context that is
3356  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3357  * and list_del_event().
3358  */
3359 static int context_equiv(struct perf_event_context *ctx1,
3360 			 struct perf_event_context *ctx2)
3361 {
3362 	lockdep_assert_held(&ctx1->lock);
3363 	lockdep_assert_held(&ctx2->lock);
3364 
3365 	/* Pinning disables the swap optimization */
3366 	if (ctx1->pin_count || ctx2->pin_count)
3367 		return 0;
3368 
3369 	/* If ctx1 is the parent of ctx2 */
3370 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3371 		return 1;
3372 
3373 	/* If ctx2 is the parent of ctx1 */
3374 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3375 		return 1;
3376 
3377 	/*
3378 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3379 	 * hierarchy, see perf_event_init_context().
3380 	 */
3381 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3382 			ctx1->parent_gen == ctx2->parent_gen)
3383 		return 1;
3384 
3385 	/* Unmatched */
3386 	return 0;
3387 }
3388 
3389 static void __perf_event_sync_stat(struct perf_event *event,
3390 				     struct perf_event *next_event)
3391 {
3392 	u64 value;
3393 
3394 	if (!event->attr.inherit_stat)
3395 		return;
3396 
3397 	/*
3398 	 * Update the event value, we cannot use perf_event_read()
3399 	 * because we're in the middle of a context switch and have IRQs
3400 	 * disabled, which upsets smp_call_function_single(), however
3401 	 * we know the event must be on the current CPU, therefore we
3402 	 * don't need to use it.
3403 	 */
3404 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3405 		event->pmu->read(event);
3406 
3407 	perf_event_update_time(event);
3408 
3409 	/*
3410 	 * In order to keep per-task stats reliable we need to flip the event
3411 	 * values when we flip the contexts.
3412 	 */
3413 	value = local64_read(&next_event->count);
3414 	value = local64_xchg(&event->count, value);
3415 	local64_set(&next_event->count, value);
3416 
3417 	swap(event->total_time_enabled, next_event->total_time_enabled);
3418 	swap(event->total_time_running, next_event->total_time_running);
3419 
3420 	/*
3421 	 * Since we swizzled the values, update the user visible data too.
3422 	 */
3423 	perf_event_update_userpage(event);
3424 	perf_event_update_userpage(next_event);
3425 }
3426 
3427 static void perf_event_sync_stat(struct perf_event_context *ctx,
3428 				   struct perf_event_context *next_ctx)
3429 {
3430 	struct perf_event *event, *next_event;
3431 
3432 	if (!ctx->nr_stat)
3433 		return;
3434 
3435 	update_context_time(ctx);
3436 
3437 	event = list_first_entry(&ctx->event_list,
3438 				   struct perf_event, event_entry);
3439 
3440 	next_event = list_first_entry(&next_ctx->event_list,
3441 					struct perf_event, event_entry);
3442 
3443 	while (&event->event_entry != &ctx->event_list &&
3444 	       &next_event->event_entry != &next_ctx->event_list) {
3445 
3446 		__perf_event_sync_stat(event, next_event);
3447 
3448 		event = list_next_entry(event, event_entry);
3449 		next_event = list_next_entry(next_event, event_entry);
3450 	}
3451 }
3452 
3453 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3454 					 struct task_struct *next)
3455 {
3456 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3457 	struct perf_event_context *next_ctx;
3458 	struct perf_event_context *parent, *next_parent;
3459 	struct perf_cpu_context *cpuctx;
3460 	int do_switch = 1;
3461 	struct pmu *pmu;
3462 
3463 	if (likely(!ctx))
3464 		return;
3465 
3466 	pmu = ctx->pmu;
3467 	cpuctx = __get_cpu_context(ctx);
3468 	if (!cpuctx->task_ctx)
3469 		return;
3470 
3471 	rcu_read_lock();
3472 	next_ctx = next->perf_event_ctxp[ctxn];
3473 	if (!next_ctx)
3474 		goto unlock;
3475 
3476 	parent = rcu_dereference(ctx->parent_ctx);
3477 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3478 
3479 	/* If neither context have a parent context; they cannot be clones. */
3480 	if (!parent && !next_parent)
3481 		goto unlock;
3482 
3483 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3484 		/*
3485 		 * Looks like the two contexts are clones, so we might be
3486 		 * able to optimize the context switch.  We lock both
3487 		 * contexts and check that they are clones under the
3488 		 * lock (including re-checking that neither has been
3489 		 * uncloned in the meantime).  It doesn't matter which
3490 		 * order we take the locks because no other cpu could
3491 		 * be trying to lock both of these tasks.
3492 		 */
3493 		raw_spin_lock(&ctx->lock);
3494 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3495 		if (context_equiv(ctx, next_ctx)) {
3496 
3497 			WRITE_ONCE(ctx->task, next);
3498 			WRITE_ONCE(next_ctx->task, task);
3499 
3500 			perf_pmu_disable(pmu);
3501 
3502 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3503 				pmu->sched_task(ctx, false);
3504 
3505 			/*
3506 			 * PMU specific parts of task perf context can require
3507 			 * additional synchronization. As an example of such
3508 			 * synchronization see implementation details of Intel
3509 			 * LBR call stack data profiling;
3510 			 */
3511 			if (pmu->swap_task_ctx)
3512 				pmu->swap_task_ctx(ctx, next_ctx);
3513 			else
3514 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3515 
3516 			perf_pmu_enable(pmu);
3517 
3518 			/*
3519 			 * RCU_INIT_POINTER here is safe because we've not
3520 			 * modified the ctx and the above modification of
3521 			 * ctx->task and ctx->task_ctx_data are immaterial
3522 			 * since those values are always verified under
3523 			 * ctx->lock which we're now holding.
3524 			 */
3525 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3526 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3527 
3528 			do_switch = 0;
3529 
3530 			perf_event_sync_stat(ctx, next_ctx);
3531 		}
3532 		raw_spin_unlock(&next_ctx->lock);
3533 		raw_spin_unlock(&ctx->lock);
3534 	}
3535 unlock:
3536 	rcu_read_unlock();
3537 
3538 	if (do_switch) {
3539 		raw_spin_lock(&ctx->lock);
3540 		perf_pmu_disable(pmu);
3541 
3542 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3543 			pmu->sched_task(ctx, false);
3544 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3545 
3546 		perf_pmu_enable(pmu);
3547 		raw_spin_unlock(&ctx->lock);
3548 	}
3549 }
3550 
3551 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3552 
3553 void perf_sched_cb_dec(struct pmu *pmu)
3554 {
3555 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3556 
3557 	this_cpu_dec(perf_sched_cb_usages);
3558 
3559 	if (!--cpuctx->sched_cb_usage)
3560 		list_del(&cpuctx->sched_cb_entry);
3561 }
3562 
3563 
3564 void perf_sched_cb_inc(struct pmu *pmu)
3565 {
3566 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3567 
3568 	if (!cpuctx->sched_cb_usage++)
3569 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3570 
3571 	this_cpu_inc(perf_sched_cb_usages);
3572 }
3573 
3574 /*
3575  * This function provides the context switch callback to the lower code
3576  * layer. It is invoked ONLY when the context switch callback is enabled.
3577  *
3578  * This callback is relevant even to per-cpu events; for example multi event
3579  * PEBS requires this to provide PID/TID information. This requires we flush
3580  * all queued PEBS records before we context switch to a new task.
3581  */
3582 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3583 {
3584 	struct pmu *pmu;
3585 
3586 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3587 
3588 	if (WARN_ON_ONCE(!pmu->sched_task))
3589 		return;
3590 
3591 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3592 	perf_pmu_disable(pmu);
3593 
3594 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3595 
3596 	perf_pmu_enable(pmu);
3597 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3598 }
3599 
3600 static void perf_pmu_sched_task(struct task_struct *prev,
3601 				struct task_struct *next,
3602 				bool sched_in)
3603 {
3604 	struct perf_cpu_context *cpuctx;
3605 
3606 	if (prev == next)
3607 		return;
3608 
3609 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3610 		/* will be handled in perf_event_context_sched_in/out */
3611 		if (cpuctx->task_ctx)
3612 			continue;
3613 
3614 		__perf_pmu_sched_task(cpuctx, sched_in);
3615 	}
3616 }
3617 
3618 static void perf_event_switch(struct task_struct *task,
3619 			      struct task_struct *next_prev, bool sched_in);
3620 
3621 #define for_each_task_context_nr(ctxn)					\
3622 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3623 
3624 /*
3625  * Called from scheduler to remove the events of the current task,
3626  * with interrupts disabled.
3627  *
3628  * We stop each event and update the event value in event->count.
3629  *
3630  * This does not protect us against NMI, but disable()
3631  * sets the disabled bit in the control field of event _before_
3632  * accessing the event control register. If a NMI hits, then it will
3633  * not restart the event.
3634  */
3635 void __perf_event_task_sched_out(struct task_struct *task,
3636 				 struct task_struct *next)
3637 {
3638 	int ctxn;
3639 
3640 	if (__this_cpu_read(perf_sched_cb_usages))
3641 		perf_pmu_sched_task(task, next, false);
3642 
3643 	if (atomic_read(&nr_switch_events))
3644 		perf_event_switch(task, next, false);
3645 
3646 	for_each_task_context_nr(ctxn)
3647 		perf_event_context_sched_out(task, ctxn, next);
3648 
3649 	/*
3650 	 * if cgroup events exist on this CPU, then we need
3651 	 * to check if we have to switch out PMU state.
3652 	 * cgroup event are system-wide mode only
3653 	 */
3654 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3655 		perf_cgroup_sched_out(task, next);
3656 }
3657 
3658 /*
3659  * Called with IRQs disabled
3660  */
3661 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3662 			      enum event_type_t event_type)
3663 {
3664 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3665 }
3666 
3667 static bool perf_less_group_idx(const void *l, const void *r)
3668 {
3669 	const struct perf_event *le = *(const struct perf_event **)l;
3670 	const struct perf_event *re = *(const struct perf_event **)r;
3671 
3672 	return le->group_index < re->group_index;
3673 }
3674 
3675 static void swap_ptr(void *l, void *r)
3676 {
3677 	void **lp = l, **rp = r;
3678 
3679 	swap(*lp, *rp);
3680 }
3681 
3682 static const struct min_heap_callbacks perf_min_heap = {
3683 	.elem_size = sizeof(struct perf_event *),
3684 	.less = perf_less_group_idx,
3685 	.swp = swap_ptr,
3686 };
3687 
3688 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3689 {
3690 	struct perf_event **itrs = heap->data;
3691 
3692 	if (event) {
3693 		itrs[heap->nr] = event;
3694 		heap->nr++;
3695 	}
3696 }
3697 
3698 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3699 				struct perf_event_groups *groups, int cpu,
3700 				int (*func)(struct perf_event *, void *),
3701 				void *data)
3702 {
3703 #ifdef CONFIG_CGROUP_PERF
3704 	struct cgroup_subsys_state *css = NULL;
3705 #endif
3706 	/* Space for per CPU and/or any CPU event iterators. */
3707 	struct perf_event *itrs[2];
3708 	struct min_heap event_heap;
3709 	struct perf_event **evt;
3710 	int ret;
3711 
3712 	if (cpuctx) {
3713 		event_heap = (struct min_heap){
3714 			.data = cpuctx->heap,
3715 			.nr = 0,
3716 			.size = cpuctx->heap_size,
3717 		};
3718 
3719 		lockdep_assert_held(&cpuctx->ctx.lock);
3720 
3721 #ifdef CONFIG_CGROUP_PERF
3722 		if (cpuctx->cgrp)
3723 			css = &cpuctx->cgrp->css;
3724 #endif
3725 	} else {
3726 		event_heap = (struct min_heap){
3727 			.data = itrs,
3728 			.nr = 0,
3729 			.size = ARRAY_SIZE(itrs),
3730 		};
3731 		/* Events not within a CPU context may be on any CPU. */
3732 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3733 	}
3734 	evt = event_heap.data;
3735 
3736 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3737 
3738 #ifdef CONFIG_CGROUP_PERF
3739 	for (; css; css = css->parent)
3740 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3741 #endif
3742 
3743 	min_heapify_all(&event_heap, &perf_min_heap);
3744 
3745 	while (event_heap.nr) {
3746 		ret = func(*evt, data);
3747 		if (ret)
3748 			return ret;
3749 
3750 		*evt = perf_event_groups_next(*evt);
3751 		if (*evt)
3752 			min_heapify(&event_heap, 0, &perf_min_heap);
3753 		else
3754 			min_heap_pop(&event_heap, &perf_min_heap);
3755 	}
3756 
3757 	return 0;
3758 }
3759 
3760 /*
3761  * Because the userpage is strictly per-event (there is no concept of context,
3762  * so there cannot be a context indirection), every userpage must be updated
3763  * when context time starts :-(
3764  *
3765  * IOW, we must not miss EVENT_TIME edges.
3766  */
3767 static inline bool event_update_userpage(struct perf_event *event)
3768 {
3769 	if (likely(!atomic_read(&event->mmap_count)))
3770 		return false;
3771 
3772 	perf_event_update_time(event);
3773 	perf_event_update_userpage(event);
3774 
3775 	return true;
3776 }
3777 
3778 static inline void group_update_userpage(struct perf_event *group_event)
3779 {
3780 	struct perf_event *event;
3781 
3782 	if (!event_update_userpage(group_event))
3783 		return;
3784 
3785 	for_each_sibling_event(event, group_event)
3786 		event_update_userpage(event);
3787 }
3788 
3789 static int merge_sched_in(struct perf_event *event, void *data)
3790 {
3791 	struct perf_event_context *ctx = event->ctx;
3792 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3793 	int *can_add_hw = data;
3794 
3795 	if (event->state <= PERF_EVENT_STATE_OFF)
3796 		return 0;
3797 
3798 	if (!event_filter_match(event))
3799 		return 0;
3800 
3801 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3802 		if (!group_sched_in(event, cpuctx, ctx))
3803 			list_add_tail(&event->active_list, get_event_list(event));
3804 	}
3805 
3806 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3807 		*can_add_hw = 0;
3808 		if (event->attr.pinned) {
3809 			perf_cgroup_event_disable(event, ctx);
3810 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3811 		} else {
3812 			ctx->rotate_necessary = 1;
3813 			perf_mux_hrtimer_restart(cpuctx);
3814 			group_update_userpage(event);
3815 		}
3816 	}
3817 
3818 	return 0;
3819 }
3820 
3821 static void
3822 ctx_pinned_sched_in(struct perf_event_context *ctx,
3823 		    struct perf_cpu_context *cpuctx)
3824 {
3825 	int can_add_hw = 1;
3826 
3827 	if (ctx != &cpuctx->ctx)
3828 		cpuctx = NULL;
3829 
3830 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3831 			   smp_processor_id(),
3832 			   merge_sched_in, &can_add_hw);
3833 }
3834 
3835 static void
3836 ctx_flexible_sched_in(struct perf_event_context *ctx,
3837 		      struct perf_cpu_context *cpuctx)
3838 {
3839 	int can_add_hw = 1;
3840 
3841 	if (ctx != &cpuctx->ctx)
3842 		cpuctx = NULL;
3843 
3844 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3845 			   smp_processor_id(),
3846 			   merge_sched_in, &can_add_hw);
3847 }
3848 
3849 static void
3850 ctx_sched_in(struct perf_event_context *ctx,
3851 	     struct perf_cpu_context *cpuctx,
3852 	     enum event_type_t event_type,
3853 	     struct task_struct *task)
3854 {
3855 	int is_active = ctx->is_active;
3856 
3857 	lockdep_assert_held(&ctx->lock);
3858 
3859 	if (likely(!ctx->nr_events))
3860 		return;
3861 
3862 	if (is_active ^ EVENT_TIME) {
3863 		/* start ctx time */
3864 		__update_context_time(ctx, false);
3865 		perf_cgroup_set_timestamp(task, ctx);
3866 		/*
3867 		 * CPU-release for the below ->is_active store,
3868 		 * see __load_acquire() in perf_event_time_now()
3869 		 */
3870 		barrier();
3871 	}
3872 
3873 	ctx->is_active |= (event_type | EVENT_TIME);
3874 	if (ctx->task) {
3875 		if (!is_active)
3876 			cpuctx->task_ctx = ctx;
3877 		else
3878 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3879 	}
3880 
3881 	is_active ^= ctx->is_active; /* changed bits */
3882 
3883 	/*
3884 	 * First go through the list and put on any pinned groups
3885 	 * in order to give them the best chance of going on.
3886 	 */
3887 	if (is_active & EVENT_PINNED)
3888 		ctx_pinned_sched_in(ctx, cpuctx);
3889 
3890 	/* Then walk through the lower prio flexible groups */
3891 	if (is_active & EVENT_FLEXIBLE)
3892 		ctx_flexible_sched_in(ctx, cpuctx);
3893 }
3894 
3895 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3896 			     enum event_type_t event_type,
3897 			     struct task_struct *task)
3898 {
3899 	struct perf_event_context *ctx = &cpuctx->ctx;
3900 
3901 	ctx_sched_in(ctx, cpuctx, event_type, task);
3902 }
3903 
3904 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3905 					struct task_struct *task)
3906 {
3907 	struct perf_cpu_context *cpuctx;
3908 	struct pmu *pmu;
3909 
3910 	cpuctx = __get_cpu_context(ctx);
3911 
3912 	/*
3913 	 * HACK: for HETEROGENEOUS the task context might have switched to a
3914 	 * different PMU, force (re)set the context,
3915 	 */
3916 	pmu = ctx->pmu = cpuctx->ctx.pmu;
3917 
3918 	if (cpuctx->task_ctx == ctx) {
3919 		if (cpuctx->sched_cb_usage)
3920 			__perf_pmu_sched_task(cpuctx, true);
3921 		return;
3922 	}
3923 
3924 	perf_ctx_lock(cpuctx, ctx);
3925 	/*
3926 	 * We must check ctx->nr_events while holding ctx->lock, such
3927 	 * that we serialize against perf_install_in_context().
3928 	 */
3929 	if (!ctx->nr_events)
3930 		goto unlock;
3931 
3932 	perf_pmu_disable(pmu);
3933 	/*
3934 	 * We want to keep the following priority order:
3935 	 * cpu pinned (that don't need to move), task pinned,
3936 	 * cpu flexible, task flexible.
3937 	 *
3938 	 * However, if task's ctx is not carrying any pinned
3939 	 * events, no need to flip the cpuctx's events around.
3940 	 */
3941 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3942 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3943 	perf_event_sched_in(cpuctx, ctx, task);
3944 
3945 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3946 		pmu->sched_task(cpuctx->task_ctx, true);
3947 
3948 	perf_pmu_enable(pmu);
3949 
3950 unlock:
3951 	perf_ctx_unlock(cpuctx, ctx);
3952 }
3953 
3954 /*
3955  * Called from scheduler to add the events of the current task
3956  * with interrupts disabled.
3957  *
3958  * We restore the event value and then enable it.
3959  *
3960  * This does not protect us against NMI, but enable()
3961  * sets the enabled bit in the control field of event _before_
3962  * accessing the event control register. If a NMI hits, then it will
3963  * keep the event running.
3964  */
3965 void __perf_event_task_sched_in(struct task_struct *prev,
3966 				struct task_struct *task)
3967 {
3968 	struct perf_event_context *ctx;
3969 	int ctxn;
3970 
3971 	/*
3972 	 * If cgroup events exist on this CPU, then we need to check if we have
3973 	 * to switch in PMU state; cgroup event are system-wide mode only.
3974 	 *
3975 	 * Since cgroup events are CPU events, we must schedule these in before
3976 	 * we schedule in the task events.
3977 	 */
3978 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3979 		perf_cgroup_sched_in(prev, task);
3980 
3981 	for_each_task_context_nr(ctxn) {
3982 		ctx = task->perf_event_ctxp[ctxn];
3983 		if (likely(!ctx))
3984 			continue;
3985 
3986 		perf_event_context_sched_in(ctx, task);
3987 	}
3988 
3989 	if (atomic_read(&nr_switch_events))
3990 		perf_event_switch(task, prev, true);
3991 
3992 	if (__this_cpu_read(perf_sched_cb_usages))
3993 		perf_pmu_sched_task(prev, task, true);
3994 }
3995 
3996 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3997 {
3998 	u64 frequency = event->attr.sample_freq;
3999 	u64 sec = NSEC_PER_SEC;
4000 	u64 divisor, dividend;
4001 
4002 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4003 
4004 	count_fls = fls64(count);
4005 	nsec_fls = fls64(nsec);
4006 	frequency_fls = fls64(frequency);
4007 	sec_fls = 30;
4008 
4009 	/*
4010 	 * We got @count in @nsec, with a target of sample_freq HZ
4011 	 * the target period becomes:
4012 	 *
4013 	 *             @count * 10^9
4014 	 * period = -------------------
4015 	 *          @nsec * sample_freq
4016 	 *
4017 	 */
4018 
4019 	/*
4020 	 * Reduce accuracy by one bit such that @a and @b converge
4021 	 * to a similar magnitude.
4022 	 */
4023 #define REDUCE_FLS(a, b)		\
4024 do {					\
4025 	if (a##_fls > b##_fls) {	\
4026 		a >>= 1;		\
4027 		a##_fls--;		\
4028 	} else {			\
4029 		b >>= 1;		\
4030 		b##_fls--;		\
4031 	}				\
4032 } while (0)
4033 
4034 	/*
4035 	 * Reduce accuracy until either term fits in a u64, then proceed with
4036 	 * the other, so that finally we can do a u64/u64 division.
4037 	 */
4038 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4039 		REDUCE_FLS(nsec, frequency);
4040 		REDUCE_FLS(sec, count);
4041 	}
4042 
4043 	if (count_fls + sec_fls > 64) {
4044 		divisor = nsec * frequency;
4045 
4046 		while (count_fls + sec_fls > 64) {
4047 			REDUCE_FLS(count, sec);
4048 			divisor >>= 1;
4049 		}
4050 
4051 		dividend = count * sec;
4052 	} else {
4053 		dividend = count * sec;
4054 
4055 		while (nsec_fls + frequency_fls > 64) {
4056 			REDUCE_FLS(nsec, frequency);
4057 			dividend >>= 1;
4058 		}
4059 
4060 		divisor = nsec * frequency;
4061 	}
4062 
4063 	if (!divisor)
4064 		return dividend;
4065 
4066 	return div64_u64(dividend, divisor);
4067 }
4068 
4069 static DEFINE_PER_CPU(int, perf_throttled_count);
4070 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4071 
4072 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4073 {
4074 	struct hw_perf_event *hwc = &event->hw;
4075 	s64 period, sample_period;
4076 	s64 delta;
4077 
4078 	period = perf_calculate_period(event, nsec, count);
4079 
4080 	delta = (s64)(period - hwc->sample_period);
4081 	delta = (delta + 7) / 8; /* low pass filter */
4082 
4083 	sample_period = hwc->sample_period + delta;
4084 
4085 	if (!sample_period)
4086 		sample_period = 1;
4087 
4088 	hwc->sample_period = sample_period;
4089 
4090 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4091 		if (disable)
4092 			event->pmu->stop(event, PERF_EF_UPDATE);
4093 
4094 		local64_set(&hwc->period_left, 0);
4095 
4096 		if (disable)
4097 			event->pmu->start(event, PERF_EF_RELOAD);
4098 	}
4099 }
4100 
4101 /*
4102  * combine freq adjustment with unthrottling to avoid two passes over the
4103  * events. At the same time, make sure, having freq events does not change
4104  * the rate of unthrottling as that would introduce bias.
4105  */
4106 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4107 					   int needs_unthr)
4108 {
4109 	struct perf_event *event;
4110 	struct hw_perf_event *hwc;
4111 	u64 now, period = TICK_NSEC;
4112 	s64 delta;
4113 
4114 	/*
4115 	 * only need to iterate over all events iff:
4116 	 * - context have events in frequency mode (needs freq adjust)
4117 	 * - there are events to unthrottle on this cpu
4118 	 */
4119 	if (!(ctx->nr_freq || needs_unthr))
4120 		return;
4121 
4122 	raw_spin_lock(&ctx->lock);
4123 	perf_pmu_disable(ctx->pmu);
4124 
4125 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4126 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4127 			continue;
4128 
4129 		if (!event_filter_match(event))
4130 			continue;
4131 
4132 		perf_pmu_disable(event->pmu);
4133 
4134 		hwc = &event->hw;
4135 
4136 		if (hwc->interrupts == MAX_INTERRUPTS) {
4137 			hwc->interrupts = 0;
4138 			perf_log_throttle(event, 1);
4139 			event->pmu->start(event, 0);
4140 		}
4141 
4142 		if (!event->attr.freq || !event->attr.sample_freq)
4143 			goto next;
4144 
4145 		/*
4146 		 * stop the event and update event->count
4147 		 */
4148 		event->pmu->stop(event, PERF_EF_UPDATE);
4149 
4150 		now = local64_read(&event->count);
4151 		delta = now - hwc->freq_count_stamp;
4152 		hwc->freq_count_stamp = now;
4153 
4154 		/*
4155 		 * restart the event
4156 		 * reload only if value has changed
4157 		 * we have stopped the event so tell that
4158 		 * to perf_adjust_period() to avoid stopping it
4159 		 * twice.
4160 		 */
4161 		if (delta > 0)
4162 			perf_adjust_period(event, period, delta, false);
4163 
4164 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4165 	next:
4166 		perf_pmu_enable(event->pmu);
4167 	}
4168 
4169 	perf_pmu_enable(ctx->pmu);
4170 	raw_spin_unlock(&ctx->lock);
4171 }
4172 
4173 /*
4174  * Move @event to the tail of the @ctx's elegible events.
4175  */
4176 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4177 {
4178 	/*
4179 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4180 	 * disabled by the inheritance code.
4181 	 */
4182 	if (ctx->rotate_disable)
4183 		return;
4184 
4185 	perf_event_groups_delete(&ctx->flexible_groups, event);
4186 	perf_event_groups_insert(&ctx->flexible_groups, event);
4187 }
4188 
4189 /* pick an event from the flexible_groups to rotate */
4190 static inline struct perf_event *
4191 ctx_event_to_rotate(struct perf_event_context *ctx)
4192 {
4193 	struct perf_event *event;
4194 
4195 	/* pick the first active flexible event */
4196 	event = list_first_entry_or_null(&ctx->flexible_active,
4197 					 struct perf_event, active_list);
4198 
4199 	/* if no active flexible event, pick the first event */
4200 	if (!event) {
4201 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4202 				      typeof(*event), group_node);
4203 	}
4204 
4205 	/*
4206 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4207 	 * finds there are unschedulable events, it will set it again.
4208 	 */
4209 	ctx->rotate_necessary = 0;
4210 
4211 	return event;
4212 }
4213 
4214 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4215 {
4216 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4217 	struct perf_event_context *task_ctx = NULL;
4218 	int cpu_rotate, task_rotate;
4219 
4220 	/*
4221 	 * Since we run this from IRQ context, nobody can install new
4222 	 * events, thus the event count values are stable.
4223 	 */
4224 
4225 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4226 	task_ctx = cpuctx->task_ctx;
4227 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4228 
4229 	if (!(cpu_rotate || task_rotate))
4230 		return false;
4231 
4232 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4233 	perf_pmu_disable(cpuctx->ctx.pmu);
4234 
4235 	if (task_rotate)
4236 		task_event = ctx_event_to_rotate(task_ctx);
4237 	if (cpu_rotate)
4238 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4239 
4240 	/*
4241 	 * As per the order given at ctx_resched() first 'pop' task flexible
4242 	 * and then, if needed CPU flexible.
4243 	 */
4244 	if (task_event || (task_ctx && cpu_event))
4245 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4246 	if (cpu_event)
4247 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4248 
4249 	if (task_event)
4250 		rotate_ctx(task_ctx, task_event);
4251 	if (cpu_event)
4252 		rotate_ctx(&cpuctx->ctx, cpu_event);
4253 
4254 	perf_event_sched_in(cpuctx, task_ctx, current);
4255 
4256 	perf_pmu_enable(cpuctx->ctx.pmu);
4257 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4258 
4259 	return true;
4260 }
4261 
4262 void perf_event_task_tick(void)
4263 {
4264 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4265 	struct perf_event_context *ctx, *tmp;
4266 	int throttled;
4267 
4268 	lockdep_assert_irqs_disabled();
4269 
4270 	__this_cpu_inc(perf_throttled_seq);
4271 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4272 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4273 
4274 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4275 		perf_adjust_freq_unthr_context(ctx, throttled);
4276 }
4277 
4278 static int event_enable_on_exec(struct perf_event *event,
4279 				struct perf_event_context *ctx)
4280 {
4281 	if (!event->attr.enable_on_exec)
4282 		return 0;
4283 
4284 	event->attr.enable_on_exec = 0;
4285 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4286 		return 0;
4287 
4288 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4289 
4290 	return 1;
4291 }
4292 
4293 /*
4294  * Enable all of a task's events that have been marked enable-on-exec.
4295  * This expects task == current.
4296  */
4297 static void perf_event_enable_on_exec(int ctxn)
4298 {
4299 	struct perf_event_context *ctx, *clone_ctx = NULL;
4300 	enum event_type_t event_type = 0;
4301 	struct perf_cpu_context *cpuctx;
4302 	struct perf_event *event;
4303 	unsigned long flags;
4304 	int enabled = 0;
4305 
4306 	local_irq_save(flags);
4307 	ctx = current->perf_event_ctxp[ctxn];
4308 	if (!ctx || !ctx->nr_events)
4309 		goto out;
4310 
4311 	cpuctx = __get_cpu_context(ctx);
4312 	perf_ctx_lock(cpuctx, ctx);
4313 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4314 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4315 		enabled |= event_enable_on_exec(event, ctx);
4316 		event_type |= get_event_type(event);
4317 	}
4318 
4319 	/*
4320 	 * Unclone and reschedule this context if we enabled any event.
4321 	 */
4322 	if (enabled) {
4323 		clone_ctx = unclone_ctx(ctx);
4324 		ctx_resched(cpuctx, ctx, event_type);
4325 	} else {
4326 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4327 	}
4328 	perf_ctx_unlock(cpuctx, ctx);
4329 
4330 out:
4331 	local_irq_restore(flags);
4332 
4333 	if (clone_ctx)
4334 		put_ctx(clone_ctx);
4335 }
4336 
4337 static void perf_remove_from_owner(struct perf_event *event);
4338 static void perf_event_exit_event(struct perf_event *event,
4339 				  struct perf_event_context *ctx);
4340 
4341 /*
4342  * Removes all events from the current task that have been marked
4343  * remove-on-exec, and feeds their values back to parent events.
4344  */
4345 static void perf_event_remove_on_exec(int ctxn)
4346 {
4347 	struct perf_event_context *ctx, *clone_ctx = NULL;
4348 	struct perf_event *event, *next;
4349 	LIST_HEAD(free_list);
4350 	unsigned long flags;
4351 	bool modified = false;
4352 
4353 	ctx = perf_pin_task_context(current, ctxn);
4354 	if (!ctx)
4355 		return;
4356 
4357 	mutex_lock(&ctx->mutex);
4358 
4359 	if (WARN_ON_ONCE(ctx->task != current))
4360 		goto unlock;
4361 
4362 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4363 		if (!event->attr.remove_on_exec)
4364 			continue;
4365 
4366 		if (!is_kernel_event(event))
4367 			perf_remove_from_owner(event);
4368 
4369 		modified = true;
4370 
4371 		perf_event_exit_event(event, ctx);
4372 	}
4373 
4374 	raw_spin_lock_irqsave(&ctx->lock, flags);
4375 	if (modified)
4376 		clone_ctx = unclone_ctx(ctx);
4377 	--ctx->pin_count;
4378 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4379 
4380 unlock:
4381 	mutex_unlock(&ctx->mutex);
4382 
4383 	put_ctx(ctx);
4384 	if (clone_ctx)
4385 		put_ctx(clone_ctx);
4386 }
4387 
4388 struct perf_read_data {
4389 	struct perf_event *event;
4390 	bool group;
4391 	int ret;
4392 };
4393 
4394 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4395 {
4396 	u16 local_pkg, event_pkg;
4397 
4398 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4399 		int local_cpu = smp_processor_id();
4400 
4401 		event_pkg = topology_physical_package_id(event_cpu);
4402 		local_pkg = topology_physical_package_id(local_cpu);
4403 
4404 		if (event_pkg == local_pkg)
4405 			return local_cpu;
4406 	}
4407 
4408 	return event_cpu;
4409 }
4410 
4411 /*
4412  * Cross CPU call to read the hardware event
4413  */
4414 static void __perf_event_read(void *info)
4415 {
4416 	struct perf_read_data *data = info;
4417 	struct perf_event *sub, *event = data->event;
4418 	struct perf_event_context *ctx = event->ctx;
4419 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4420 	struct pmu *pmu = event->pmu;
4421 
4422 	/*
4423 	 * If this is a task context, we need to check whether it is
4424 	 * the current task context of this cpu.  If not it has been
4425 	 * scheduled out before the smp call arrived.  In that case
4426 	 * event->count would have been updated to a recent sample
4427 	 * when the event was scheduled out.
4428 	 */
4429 	if (ctx->task && cpuctx->task_ctx != ctx)
4430 		return;
4431 
4432 	raw_spin_lock(&ctx->lock);
4433 	if (ctx->is_active & EVENT_TIME) {
4434 		update_context_time(ctx);
4435 		update_cgrp_time_from_event(event);
4436 	}
4437 
4438 	perf_event_update_time(event);
4439 	if (data->group)
4440 		perf_event_update_sibling_time(event);
4441 
4442 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4443 		goto unlock;
4444 
4445 	if (!data->group) {
4446 		pmu->read(event);
4447 		data->ret = 0;
4448 		goto unlock;
4449 	}
4450 
4451 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4452 
4453 	pmu->read(event);
4454 
4455 	for_each_sibling_event(sub, event) {
4456 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4457 			/*
4458 			 * Use sibling's PMU rather than @event's since
4459 			 * sibling could be on different (eg: software) PMU.
4460 			 */
4461 			sub->pmu->read(sub);
4462 		}
4463 	}
4464 
4465 	data->ret = pmu->commit_txn(pmu);
4466 
4467 unlock:
4468 	raw_spin_unlock(&ctx->lock);
4469 }
4470 
4471 static inline u64 perf_event_count(struct perf_event *event)
4472 {
4473 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4474 }
4475 
4476 static void calc_timer_values(struct perf_event *event,
4477 				u64 *now,
4478 				u64 *enabled,
4479 				u64 *running)
4480 {
4481 	u64 ctx_time;
4482 
4483 	*now = perf_clock();
4484 	ctx_time = perf_event_time_now(event, *now);
4485 	__perf_update_times(event, ctx_time, enabled, running);
4486 }
4487 
4488 /*
4489  * NMI-safe method to read a local event, that is an event that
4490  * is:
4491  *   - either for the current task, or for this CPU
4492  *   - does not have inherit set, for inherited task events
4493  *     will not be local and we cannot read them atomically
4494  *   - must not have a pmu::count method
4495  */
4496 int perf_event_read_local(struct perf_event *event, u64 *value,
4497 			  u64 *enabled, u64 *running)
4498 {
4499 	unsigned long flags;
4500 	int ret = 0;
4501 
4502 	/*
4503 	 * Disabling interrupts avoids all counter scheduling (context
4504 	 * switches, timer based rotation and IPIs).
4505 	 */
4506 	local_irq_save(flags);
4507 
4508 	/*
4509 	 * It must not be an event with inherit set, we cannot read
4510 	 * all child counters from atomic context.
4511 	 */
4512 	if (event->attr.inherit) {
4513 		ret = -EOPNOTSUPP;
4514 		goto out;
4515 	}
4516 
4517 	/* If this is a per-task event, it must be for current */
4518 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4519 	    event->hw.target != current) {
4520 		ret = -EINVAL;
4521 		goto out;
4522 	}
4523 
4524 	/* If this is a per-CPU event, it must be for this CPU */
4525 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4526 	    event->cpu != smp_processor_id()) {
4527 		ret = -EINVAL;
4528 		goto out;
4529 	}
4530 
4531 	/* If this is a pinned event it must be running on this CPU */
4532 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4533 		ret = -EBUSY;
4534 		goto out;
4535 	}
4536 
4537 	/*
4538 	 * If the event is currently on this CPU, its either a per-task event,
4539 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4540 	 * oncpu == -1).
4541 	 */
4542 	if (event->oncpu == smp_processor_id())
4543 		event->pmu->read(event);
4544 
4545 	*value = local64_read(&event->count);
4546 	if (enabled || running) {
4547 		u64 __enabled, __running, __now;;
4548 
4549 		calc_timer_values(event, &__now, &__enabled, &__running);
4550 		if (enabled)
4551 			*enabled = __enabled;
4552 		if (running)
4553 			*running = __running;
4554 	}
4555 out:
4556 	local_irq_restore(flags);
4557 
4558 	return ret;
4559 }
4560 
4561 static int perf_event_read(struct perf_event *event, bool group)
4562 {
4563 	enum perf_event_state state = READ_ONCE(event->state);
4564 	int event_cpu, ret = 0;
4565 
4566 	/*
4567 	 * If event is enabled and currently active on a CPU, update the
4568 	 * value in the event structure:
4569 	 */
4570 again:
4571 	if (state == PERF_EVENT_STATE_ACTIVE) {
4572 		struct perf_read_data data;
4573 
4574 		/*
4575 		 * Orders the ->state and ->oncpu loads such that if we see
4576 		 * ACTIVE we must also see the right ->oncpu.
4577 		 *
4578 		 * Matches the smp_wmb() from event_sched_in().
4579 		 */
4580 		smp_rmb();
4581 
4582 		event_cpu = READ_ONCE(event->oncpu);
4583 		if ((unsigned)event_cpu >= nr_cpu_ids)
4584 			return 0;
4585 
4586 		data = (struct perf_read_data){
4587 			.event = event,
4588 			.group = group,
4589 			.ret = 0,
4590 		};
4591 
4592 		preempt_disable();
4593 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4594 
4595 		/*
4596 		 * Purposely ignore the smp_call_function_single() return
4597 		 * value.
4598 		 *
4599 		 * If event_cpu isn't a valid CPU it means the event got
4600 		 * scheduled out and that will have updated the event count.
4601 		 *
4602 		 * Therefore, either way, we'll have an up-to-date event count
4603 		 * after this.
4604 		 */
4605 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4606 		preempt_enable();
4607 		ret = data.ret;
4608 
4609 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4610 		struct perf_event_context *ctx = event->ctx;
4611 		unsigned long flags;
4612 
4613 		raw_spin_lock_irqsave(&ctx->lock, flags);
4614 		state = event->state;
4615 		if (state != PERF_EVENT_STATE_INACTIVE) {
4616 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4617 			goto again;
4618 		}
4619 
4620 		/*
4621 		 * May read while context is not active (e.g., thread is
4622 		 * blocked), in that case we cannot update context time
4623 		 */
4624 		if (ctx->is_active & EVENT_TIME) {
4625 			update_context_time(ctx);
4626 			update_cgrp_time_from_event(event);
4627 		}
4628 
4629 		perf_event_update_time(event);
4630 		if (group)
4631 			perf_event_update_sibling_time(event);
4632 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4633 	}
4634 
4635 	return ret;
4636 }
4637 
4638 /*
4639  * Initialize the perf_event context in a task_struct:
4640  */
4641 static void __perf_event_init_context(struct perf_event_context *ctx)
4642 {
4643 	raw_spin_lock_init(&ctx->lock);
4644 	mutex_init(&ctx->mutex);
4645 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4646 	perf_event_groups_init(&ctx->pinned_groups);
4647 	perf_event_groups_init(&ctx->flexible_groups);
4648 	INIT_LIST_HEAD(&ctx->event_list);
4649 	INIT_LIST_HEAD(&ctx->pinned_active);
4650 	INIT_LIST_HEAD(&ctx->flexible_active);
4651 	refcount_set(&ctx->refcount, 1);
4652 }
4653 
4654 static struct perf_event_context *
4655 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4656 {
4657 	struct perf_event_context *ctx;
4658 
4659 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4660 	if (!ctx)
4661 		return NULL;
4662 
4663 	__perf_event_init_context(ctx);
4664 	if (task)
4665 		ctx->task = get_task_struct(task);
4666 	ctx->pmu = pmu;
4667 
4668 	return ctx;
4669 }
4670 
4671 static struct task_struct *
4672 find_lively_task_by_vpid(pid_t vpid)
4673 {
4674 	struct task_struct *task;
4675 
4676 	rcu_read_lock();
4677 	if (!vpid)
4678 		task = current;
4679 	else
4680 		task = find_task_by_vpid(vpid);
4681 	if (task)
4682 		get_task_struct(task);
4683 	rcu_read_unlock();
4684 
4685 	if (!task)
4686 		return ERR_PTR(-ESRCH);
4687 
4688 	return task;
4689 }
4690 
4691 /*
4692  * Returns a matching context with refcount and pincount.
4693  */
4694 static struct perf_event_context *
4695 find_get_context(struct pmu *pmu, struct task_struct *task,
4696 		struct perf_event *event)
4697 {
4698 	struct perf_event_context *ctx, *clone_ctx = NULL;
4699 	struct perf_cpu_context *cpuctx;
4700 	void *task_ctx_data = NULL;
4701 	unsigned long flags;
4702 	int ctxn, err;
4703 	int cpu = event->cpu;
4704 
4705 	if (!task) {
4706 		/* Must be root to operate on a CPU event: */
4707 		err = perf_allow_cpu(&event->attr);
4708 		if (err)
4709 			return ERR_PTR(err);
4710 
4711 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4712 		ctx = &cpuctx->ctx;
4713 		get_ctx(ctx);
4714 		raw_spin_lock_irqsave(&ctx->lock, flags);
4715 		++ctx->pin_count;
4716 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4717 
4718 		return ctx;
4719 	}
4720 
4721 	err = -EINVAL;
4722 	ctxn = pmu->task_ctx_nr;
4723 	if (ctxn < 0)
4724 		goto errout;
4725 
4726 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4727 		task_ctx_data = alloc_task_ctx_data(pmu);
4728 		if (!task_ctx_data) {
4729 			err = -ENOMEM;
4730 			goto errout;
4731 		}
4732 	}
4733 
4734 retry:
4735 	ctx = perf_lock_task_context(task, ctxn, &flags);
4736 	if (ctx) {
4737 		clone_ctx = unclone_ctx(ctx);
4738 		++ctx->pin_count;
4739 
4740 		if (task_ctx_data && !ctx->task_ctx_data) {
4741 			ctx->task_ctx_data = task_ctx_data;
4742 			task_ctx_data = NULL;
4743 		}
4744 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4745 
4746 		if (clone_ctx)
4747 			put_ctx(clone_ctx);
4748 	} else {
4749 		ctx = alloc_perf_context(pmu, task);
4750 		err = -ENOMEM;
4751 		if (!ctx)
4752 			goto errout;
4753 
4754 		if (task_ctx_data) {
4755 			ctx->task_ctx_data = task_ctx_data;
4756 			task_ctx_data = NULL;
4757 		}
4758 
4759 		err = 0;
4760 		mutex_lock(&task->perf_event_mutex);
4761 		/*
4762 		 * If it has already passed perf_event_exit_task().
4763 		 * we must see PF_EXITING, it takes this mutex too.
4764 		 */
4765 		if (task->flags & PF_EXITING)
4766 			err = -ESRCH;
4767 		else if (task->perf_event_ctxp[ctxn])
4768 			err = -EAGAIN;
4769 		else {
4770 			get_ctx(ctx);
4771 			++ctx->pin_count;
4772 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4773 		}
4774 		mutex_unlock(&task->perf_event_mutex);
4775 
4776 		if (unlikely(err)) {
4777 			put_ctx(ctx);
4778 
4779 			if (err == -EAGAIN)
4780 				goto retry;
4781 			goto errout;
4782 		}
4783 	}
4784 
4785 	free_task_ctx_data(pmu, task_ctx_data);
4786 	return ctx;
4787 
4788 errout:
4789 	free_task_ctx_data(pmu, task_ctx_data);
4790 	return ERR_PTR(err);
4791 }
4792 
4793 static void perf_event_free_filter(struct perf_event *event);
4794 
4795 static void free_event_rcu(struct rcu_head *head)
4796 {
4797 	struct perf_event *event;
4798 
4799 	event = container_of(head, struct perf_event, rcu_head);
4800 	if (event->ns)
4801 		put_pid_ns(event->ns);
4802 	perf_event_free_filter(event);
4803 	kmem_cache_free(perf_event_cache, event);
4804 }
4805 
4806 static void ring_buffer_attach(struct perf_event *event,
4807 			       struct perf_buffer *rb);
4808 
4809 static void detach_sb_event(struct perf_event *event)
4810 {
4811 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4812 
4813 	raw_spin_lock(&pel->lock);
4814 	list_del_rcu(&event->sb_list);
4815 	raw_spin_unlock(&pel->lock);
4816 }
4817 
4818 static bool is_sb_event(struct perf_event *event)
4819 {
4820 	struct perf_event_attr *attr = &event->attr;
4821 
4822 	if (event->parent)
4823 		return false;
4824 
4825 	if (event->attach_state & PERF_ATTACH_TASK)
4826 		return false;
4827 
4828 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4829 	    attr->comm || attr->comm_exec ||
4830 	    attr->task || attr->ksymbol ||
4831 	    attr->context_switch || attr->text_poke ||
4832 	    attr->bpf_event)
4833 		return true;
4834 	return false;
4835 }
4836 
4837 static void unaccount_pmu_sb_event(struct perf_event *event)
4838 {
4839 	if (is_sb_event(event))
4840 		detach_sb_event(event);
4841 }
4842 
4843 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4844 {
4845 	if (event->parent)
4846 		return;
4847 
4848 	if (is_cgroup_event(event))
4849 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4850 }
4851 
4852 #ifdef CONFIG_NO_HZ_FULL
4853 static DEFINE_SPINLOCK(nr_freq_lock);
4854 #endif
4855 
4856 static void unaccount_freq_event_nohz(void)
4857 {
4858 #ifdef CONFIG_NO_HZ_FULL
4859 	spin_lock(&nr_freq_lock);
4860 	if (atomic_dec_and_test(&nr_freq_events))
4861 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4862 	spin_unlock(&nr_freq_lock);
4863 #endif
4864 }
4865 
4866 static void unaccount_freq_event(void)
4867 {
4868 	if (tick_nohz_full_enabled())
4869 		unaccount_freq_event_nohz();
4870 	else
4871 		atomic_dec(&nr_freq_events);
4872 }
4873 
4874 static void unaccount_event(struct perf_event *event)
4875 {
4876 	bool dec = false;
4877 
4878 	if (event->parent)
4879 		return;
4880 
4881 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4882 		dec = true;
4883 	if (event->attr.mmap || event->attr.mmap_data)
4884 		atomic_dec(&nr_mmap_events);
4885 	if (event->attr.build_id)
4886 		atomic_dec(&nr_build_id_events);
4887 	if (event->attr.comm)
4888 		atomic_dec(&nr_comm_events);
4889 	if (event->attr.namespaces)
4890 		atomic_dec(&nr_namespaces_events);
4891 	if (event->attr.cgroup)
4892 		atomic_dec(&nr_cgroup_events);
4893 	if (event->attr.task)
4894 		atomic_dec(&nr_task_events);
4895 	if (event->attr.freq)
4896 		unaccount_freq_event();
4897 	if (event->attr.context_switch) {
4898 		dec = true;
4899 		atomic_dec(&nr_switch_events);
4900 	}
4901 	if (is_cgroup_event(event))
4902 		dec = true;
4903 	if (has_branch_stack(event))
4904 		dec = true;
4905 	if (event->attr.ksymbol)
4906 		atomic_dec(&nr_ksymbol_events);
4907 	if (event->attr.bpf_event)
4908 		atomic_dec(&nr_bpf_events);
4909 	if (event->attr.text_poke)
4910 		atomic_dec(&nr_text_poke_events);
4911 
4912 	if (dec) {
4913 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4914 			schedule_delayed_work(&perf_sched_work, HZ);
4915 	}
4916 
4917 	unaccount_event_cpu(event, event->cpu);
4918 
4919 	unaccount_pmu_sb_event(event);
4920 }
4921 
4922 static void perf_sched_delayed(struct work_struct *work)
4923 {
4924 	mutex_lock(&perf_sched_mutex);
4925 	if (atomic_dec_and_test(&perf_sched_count))
4926 		static_branch_disable(&perf_sched_events);
4927 	mutex_unlock(&perf_sched_mutex);
4928 }
4929 
4930 /*
4931  * The following implement mutual exclusion of events on "exclusive" pmus
4932  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4933  * at a time, so we disallow creating events that might conflict, namely:
4934  *
4935  *  1) cpu-wide events in the presence of per-task events,
4936  *  2) per-task events in the presence of cpu-wide events,
4937  *  3) two matching events on the same context.
4938  *
4939  * The former two cases are handled in the allocation path (perf_event_alloc(),
4940  * _free_event()), the latter -- before the first perf_install_in_context().
4941  */
4942 static int exclusive_event_init(struct perf_event *event)
4943 {
4944 	struct pmu *pmu = event->pmu;
4945 
4946 	if (!is_exclusive_pmu(pmu))
4947 		return 0;
4948 
4949 	/*
4950 	 * Prevent co-existence of per-task and cpu-wide events on the
4951 	 * same exclusive pmu.
4952 	 *
4953 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4954 	 * events on this "exclusive" pmu, positive means there are
4955 	 * per-task events.
4956 	 *
4957 	 * Since this is called in perf_event_alloc() path, event::ctx
4958 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4959 	 * to mean "per-task event", because unlike other attach states it
4960 	 * never gets cleared.
4961 	 */
4962 	if (event->attach_state & PERF_ATTACH_TASK) {
4963 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4964 			return -EBUSY;
4965 	} else {
4966 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4967 			return -EBUSY;
4968 	}
4969 
4970 	return 0;
4971 }
4972 
4973 static void exclusive_event_destroy(struct perf_event *event)
4974 {
4975 	struct pmu *pmu = event->pmu;
4976 
4977 	if (!is_exclusive_pmu(pmu))
4978 		return;
4979 
4980 	/* see comment in exclusive_event_init() */
4981 	if (event->attach_state & PERF_ATTACH_TASK)
4982 		atomic_dec(&pmu->exclusive_cnt);
4983 	else
4984 		atomic_inc(&pmu->exclusive_cnt);
4985 }
4986 
4987 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4988 {
4989 	if ((e1->pmu == e2->pmu) &&
4990 	    (e1->cpu == e2->cpu ||
4991 	     e1->cpu == -1 ||
4992 	     e2->cpu == -1))
4993 		return true;
4994 	return false;
4995 }
4996 
4997 static bool exclusive_event_installable(struct perf_event *event,
4998 					struct perf_event_context *ctx)
4999 {
5000 	struct perf_event *iter_event;
5001 	struct pmu *pmu = event->pmu;
5002 
5003 	lockdep_assert_held(&ctx->mutex);
5004 
5005 	if (!is_exclusive_pmu(pmu))
5006 		return true;
5007 
5008 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5009 		if (exclusive_event_match(iter_event, event))
5010 			return false;
5011 	}
5012 
5013 	return true;
5014 }
5015 
5016 static void perf_addr_filters_splice(struct perf_event *event,
5017 				       struct list_head *head);
5018 
5019 static void _free_event(struct perf_event *event)
5020 {
5021 	irq_work_sync(&event->pending);
5022 
5023 	unaccount_event(event);
5024 
5025 	security_perf_event_free(event);
5026 
5027 	if (event->rb) {
5028 		/*
5029 		 * Can happen when we close an event with re-directed output.
5030 		 *
5031 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5032 		 * over us; possibly making our ring_buffer_put() the last.
5033 		 */
5034 		mutex_lock(&event->mmap_mutex);
5035 		ring_buffer_attach(event, NULL);
5036 		mutex_unlock(&event->mmap_mutex);
5037 	}
5038 
5039 	if (is_cgroup_event(event))
5040 		perf_detach_cgroup(event);
5041 
5042 	if (!event->parent) {
5043 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5044 			put_callchain_buffers();
5045 	}
5046 
5047 	perf_event_free_bpf_prog(event);
5048 	perf_addr_filters_splice(event, NULL);
5049 	kfree(event->addr_filter_ranges);
5050 
5051 	if (event->destroy)
5052 		event->destroy(event);
5053 
5054 	/*
5055 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5056 	 * hw.target.
5057 	 */
5058 	if (event->hw.target)
5059 		put_task_struct(event->hw.target);
5060 
5061 	/*
5062 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5063 	 * all task references must be cleaned up.
5064 	 */
5065 	if (event->ctx)
5066 		put_ctx(event->ctx);
5067 
5068 	exclusive_event_destroy(event);
5069 	module_put(event->pmu->module);
5070 
5071 	call_rcu(&event->rcu_head, free_event_rcu);
5072 }
5073 
5074 /*
5075  * Used to free events which have a known refcount of 1, such as in error paths
5076  * where the event isn't exposed yet and inherited events.
5077  */
5078 static void free_event(struct perf_event *event)
5079 {
5080 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5081 				"unexpected event refcount: %ld; ptr=%p\n",
5082 				atomic_long_read(&event->refcount), event)) {
5083 		/* leak to avoid use-after-free */
5084 		return;
5085 	}
5086 
5087 	_free_event(event);
5088 }
5089 
5090 /*
5091  * Remove user event from the owner task.
5092  */
5093 static void perf_remove_from_owner(struct perf_event *event)
5094 {
5095 	struct task_struct *owner;
5096 
5097 	rcu_read_lock();
5098 	/*
5099 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5100 	 * observe !owner it means the list deletion is complete and we can
5101 	 * indeed free this event, otherwise we need to serialize on
5102 	 * owner->perf_event_mutex.
5103 	 */
5104 	owner = READ_ONCE(event->owner);
5105 	if (owner) {
5106 		/*
5107 		 * Since delayed_put_task_struct() also drops the last
5108 		 * task reference we can safely take a new reference
5109 		 * while holding the rcu_read_lock().
5110 		 */
5111 		get_task_struct(owner);
5112 	}
5113 	rcu_read_unlock();
5114 
5115 	if (owner) {
5116 		/*
5117 		 * If we're here through perf_event_exit_task() we're already
5118 		 * holding ctx->mutex which would be an inversion wrt. the
5119 		 * normal lock order.
5120 		 *
5121 		 * However we can safely take this lock because its the child
5122 		 * ctx->mutex.
5123 		 */
5124 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5125 
5126 		/*
5127 		 * We have to re-check the event->owner field, if it is cleared
5128 		 * we raced with perf_event_exit_task(), acquiring the mutex
5129 		 * ensured they're done, and we can proceed with freeing the
5130 		 * event.
5131 		 */
5132 		if (event->owner) {
5133 			list_del_init(&event->owner_entry);
5134 			smp_store_release(&event->owner, NULL);
5135 		}
5136 		mutex_unlock(&owner->perf_event_mutex);
5137 		put_task_struct(owner);
5138 	}
5139 }
5140 
5141 static void put_event(struct perf_event *event)
5142 {
5143 	if (!atomic_long_dec_and_test(&event->refcount))
5144 		return;
5145 
5146 	_free_event(event);
5147 }
5148 
5149 /*
5150  * Kill an event dead; while event:refcount will preserve the event
5151  * object, it will not preserve its functionality. Once the last 'user'
5152  * gives up the object, we'll destroy the thing.
5153  */
5154 int perf_event_release_kernel(struct perf_event *event)
5155 {
5156 	struct perf_event_context *ctx = event->ctx;
5157 	struct perf_event *child, *tmp;
5158 	LIST_HEAD(free_list);
5159 
5160 	/*
5161 	 * If we got here through err_file: fput(event_file); we will not have
5162 	 * attached to a context yet.
5163 	 */
5164 	if (!ctx) {
5165 		WARN_ON_ONCE(event->attach_state &
5166 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5167 		goto no_ctx;
5168 	}
5169 
5170 	if (!is_kernel_event(event))
5171 		perf_remove_from_owner(event);
5172 
5173 	ctx = perf_event_ctx_lock(event);
5174 	WARN_ON_ONCE(ctx->parent_ctx);
5175 	perf_remove_from_context(event, DETACH_GROUP);
5176 
5177 	raw_spin_lock_irq(&ctx->lock);
5178 	/*
5179 	 * Mark this event as STATE_DEAD, there is no external reference to it
5180 	 * anymore.
5181 	 *
5182 	 * Anybody acquiring event->child_mutex after the below loop _must_
5183 	 * also see this, most importantly inherit_event() which will avoid
5184 	 * placing more children on the list.
5185 	 *
5186 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5187 	 * child events.
5188 	 */
5189 	event->state = PERF_EVENT_STATE_DEAD;
5190 	raw_spin_unlock_irq(&ctx->lock);
5191 
5192 	perf_event_ctx_unlock(event, ctx);
5193 
5194 again:
5195 	mutex_lock(&event->child_mutex);
5196 	list_for_each_entry(child, &event->child_list, child_list) {
5197 
5198 		/*
5199 		 * Cannot change, child events are not migrated, see the
5200 		 * comment with perf_event_ctx_lock_nested().
5201 		 */
5202 		ctx = READ_ONCE(child->ctx);
5203 		/*
5204 		 * Since child_mutex nests inside ctx::mutex, we must jump
5205 		 * through hoops. We start by grabbing a reference on the ctx.
5206 		 *
5207 		 * Since the event cannot get freed while we hold the
5208 		 * child_mutex, the context must also exist and have a !0
5209 		 * reference count.
5210 		 */
5211 		get_ctx(ctx);
5212 
5213 		/*
5214 		 * Now that we have a ctx ref, we can drop child_mutex, and
5215 		 * acquire ctx::mutex without fear of it going away. Then we
5216 		 * can re-acquire child_mutex.
5217 		 */
5218 		mutex_unlock(&event->child_mutex);
5219 		mutex_lock(&ctx->mutex);
5220 		mutex_lock(&event->child_mutex);
5221 
5222 		/*
5223 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5224 		 * state, if child is still the first entry, it didn't get freed
5225 		 * and we can continue doing so.
5226 		 */
5227 		tmp = list_first_entry_or_null(&event->child_list,
5228 					       struct perf_event, child_list);
5229 		if (tmp == child) {
5230 			perf_remove_from_context(child, DETACH_GROUP);
5231 			list_move(&child->child_list, &free_list);
5232 			/*
5233 			 * This matches the refcount bump in inherit_event();
5234 			 * this can't be the last reference.
5235 			 */
5236 			put_event(event);
5237 		}
5238 
5239 		mutex_unlock(&event->child_mutex);
5240 		mutex_unlock(&ctx->mutex);
5241 		put_ctx(ctx);
5242 		goto again;
5243 	}
5244 	mutex_unlock(&event->child_mutex);
5245 
5246 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5247 		void *var = &child->ctx->refcount;
5248 
5249 		list_del(&child->child_list);
5250 		free_event(child);
5251 
5252 		/*
5253 		 * Wake any perf_event_free_task() waiting for this event to be
5254 		 * freed.
5255 		 */
5256 		smp_mb(); /* pairs with wait_var_event() */
5257 		wake_up_var(var);
5258 	}
5259 
5260 no_ctx:
5261 	put_event(event); /* Must be the 'last' reference */
5262 	return 0;
5263 }
5264 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5265 
5266 /*
5267  * Called when the last reference to the file is gone.
5268  */
5269 static int perf_release(struct inode *inode, struct file *file)
5270 {
5271 	perf_event_release_kernel(file->private_data);
5272 	return 0;
5273 }
5274 
5275 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5276 {
5277 	struct perf_event *child;
5278 	u64 total = 0;
5279 
5280 	*enabled = 0;
5281 	*running = 0;
5282 
5283 	mutex_lock(&event->child_mutex);
5284 
5285 	(void)perf_event_read(event, false);
5286 	total += perf_event_count(event);
5287 
5288 	*enabled += event->total_time_enabled +
5289 			atomic64_read(&event->child_total_time_enabled);
5290 	*running += event->total_time_running +
5291 			atomic64_read(&event->child_total_time_running);
5292 
5293 	list_for_each_entry(child, &event->child_list, child_list) {
5294 		(void)perf_event_read(child, false);
5295 		total += perf_event_count(child);
5296 		*enabled += child->total_time_enabled;
5297 		*running += child->total_time_running;
5298 	}
5299 	mutex_unlock(&event->child_mutex);
5300 
5301 	return total;
5302 }
5303 
5304 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5305 {
5306 	struct perf_event_context *ctx;
5307 	u64 count;
5308 
5309 	ctx = perf_event_ctx_lock(event);
5310 	count = __perf_event_read_value(event, enabled, running);
5311 	perf_event_ctx_unlock(event, ctx);
5312 
5313 	return count;
5314 }
5315 EXPORT_SYMBOL_GPL(perf_event_read_value);
5316 
5317 static int __perf_read_group_add(struct perf_event *leader,
5318 					u64 read_format, u64 *values)
5319 {
5320 	struct perf_event_context *ctx = leader->ctx;
5321 	struct perf_event *sub;
5322 	unsigned long flags;
5323 	int n = 1; /* skip @nr */
5324 	int ret;
5325 
5326 	ret = perf_event_read(leader, true);
5327 	if (ret)
5328 		return ret;
5329 
5330 	raw_spin_lock_irqsave(&ctx->lock, flags);
5331 
5332 	/*
5333 	 * Since we co-schedule groups, {enabled,running} times of siblings
5334 	 * will be identical to those of the leader, so we only publish one
5335 	 * set.
5336 	 */
5337 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5338 		values[n++] += leader->total_time_enabled +
5339 			atomic64_read(&leader->child_total_time_enabled);
5340 	}
5341 
5342 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5343 		values[n++] += leader->total_time_running +
5344 			atomic64_read(&leader->child_total_time_running);
5345 	}
5346 
5347 	/*
5348 	 * Write {count,id} tuples for every sibling.
5349 	 */
5350 	values[n++] += perf_event_count(leader);
5351 	if (read_format & PERF_FORMAT_ID)
5352 		values[n++] = primary_event_id(leader);
5353 
5354 	for_each_sibling_event(sub, leader) {
5355 		values[n++] += perf_event_count(sub);
5356 		if (read_format & PERF_FORMAT_ID)
5357 			values[n++] = primary_event_id(sub);
5358 	}
5359 
5360 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5361 	return 0;
5362 }
5363 
5364 static int perf_read_group(struct perf_event *event,
5365 				   u64 read_format, char __user *buf)
5366 {
5367 	struct perf_event *leader = event->group_leader, *child;
5368 	struct perf_event_context *ctx = leader->ctx;
5369 	int ret;
5370 	u64 *values;
5371 
5372 	lockdep_assert_held(&ctx->mutex);
5373 
5374 	values = kzalloc(event->read_size, GFP_KERNEL);
5375 	if (!values)
5376 		return -ENOMEM;
5377 
5378 	values[0] = 1 + leader->nr_siblings;
5379 
5380 	/*
5381 	 * By locking the child_mutex of the leader we effectively
5382 	 * lock the child list of all siblings.. XXX explain how.
5383 	 */
5384 	mutex_lock(&leader->child_mutex);
5385 
5386 	ret = __perf_read_group_add(leader, read_format, values);
5387 	if (ret)
5388 		goto unlock;
5389 
5390 	list_for_each_entry(child, &leader->child_list, child_list) {
5391 		ret = __perf_read_group_add(child, read_format, values);
5392 		if (ret)
5393 			goto unlock;
5394 	}
5395 
5396 	mutex_unlock(&leader->child_mutex);
5397 
5398 	ret = event->read_size;
5399 	if (copy_to_user(buf, values, event->read_size))
5400 		ret = -EFAULT;
5401 	goto out;
5402 
5403 unlock:
5404 	mutex_unlock(&leader->child_mutex);
5405 out:
5406 	kfree(values);
5407 	return ret;
5408 }
5409 
5410 static int perf_read_one(struct perf_event *event,
5411 				 u64 read_format, char __user *buf)
5412 {
5413 	u64 enabled, running;
5414 	u64 values[4];
5415 	int n = 0;
5416 
5417 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5418 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5419 		values[n++] = enabled;
5420 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5421 		values[n++] = running;
5422 	if (read_format & PERF_FORMAT_ID)
5423 		values[n++] = primary_event_id(event);
5424 
5425 	if (copy_to_user(buf, values, n * sizeof(u64)))
5426 		return -EFAULT;
5427 
5428 	return n * sizeof(u64);
5429 }
5430 
5431 static bool is_event_hup(struct perf_event *event)
5432 {
5433 	bool no_children;
5434 
5435 	if (event->state > PERF_EVENT_STATE_EXIT)
5436 		return false;
5437 
5438 	mutex_lock(&event->child_mutex);
5439 	no_children = list_empty(&event->child_list);
5440 	mutex_unlock(&event->child_mutex);
5441 	return no_children;
5442 }
5443 
5444 /*
5445  * Read the performance event - simple non blocking version for now
5446  */
5447 static ssize_t
5448 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5449 {
5450 	u64 read_format = event->attr.read_format;
5451 	int ret;
5452 
5453 	/*
5454 	 * Return end-of-file for a read on an event that is in
5455 	 * error state (i.e. because it was pinned but it couldn't be
5456 	 * scheduled on to the CPU at some point).
5457 	 */
5458 	if (event->state == PERF_EVENT_STATE_ERROR)
5459 		return 0;
5460 
5461 	if (count < event->read_size)
5462 		return -ENOSPC;
5463 
5464 	WARN_ON_ONCE(event->ctx->parent_ctx);
5465 	if (read_format & PERF_FORMAT_GROUP)
5466 		ret = perf_read_group(event, read_format, buf);
5467 	else
5468 		ret = perf_read_one(event, read_format, buf);
5469 
5470 	return ret;
5471 }
5472 
5473 static ssize_t
5474 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5475 {
5476 	struct perf_event *event = file->private_data;
5477 	struct perf_event_context *ctx;
5478 	int ret;
5479 
5480 	ret = security_perf_event_read(event);
5481 	if (ret)
5482 		return ret;
5483 
5484 	ctx = perf_event_ctx_lock(event);
5485 	ret = __perf_read(event, buf, count);
5486 	perf_event_ctx_unlock(event, ctx);
5487 
5488 	return ret;
5489 }
5490 
5491 static __poll_t perf_poll(struct file *file, poll_table *wait)
5492 {
5493 	struct perf_event *event = file->private_data;
5494 	struct perf_buffer *rb;
5495 	__poll_t events = EPOLLHUP;
5496 
5497 	poll_wait(file, &event->waitq, wait);
5498 
5499 	if (is_event_hup(event))
5500 		return events;
5501 
5502 	/*
5503 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5504 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5505 	 */
5506 	mutex_lock(&event->mmap_mutex);
5507 	rb = event->rb;
5508 	if (rb)
5509 		events = atomic_xchg(&rb->poll, 0);
5510 	mutex_unlock(&event->mmap_mutex);
5511 	return events;
5512 }
5513 
5514 static void _perf_event_reset(struct perf_event *event)
5515 {
5516 	(void)perf_event_read(event, false);
5517 	local64_set(&event->count, 0);
5518 	perf_event_update_userpage(event);
5519 }
5520 
5521 /* Assume it's not an event with inherit set. */
5522 u64 perf_event_pause(struct perf_event *event, bool reset)
5523 {
5524 	struct perf_event_context *ctx;
5525 	u64 count;
5526 
5527 	ctx = perf_event_ctx_lock(event);
5528 	WARN_ON_ONCE(event->attr.inherit);
5529 	_perf_event_disable(event);
5530 	count = local64_read(&event->count);
5531 	if (reset)
5532 		local64_set(&event->count, 0);
5533 	perf_event_ctx_unlock(event, ctx);
5534 
5535 	return count;
5536 }
5537 EXPORT_SYMBOL_GPL(perf_event_pause);
5538 
5539 /*
5540  * Holding the top-level event's child_mutex means that any
5541  * descendant process that has inherited this event will block
5542  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5543  * task existence requirements of perf_event_enable/disable.
5544  */
5545 static void perf_event_for_each_child(struct perf_event *event,
5546 					void (*func)(struct perf_event *))
5547 {
5548 	struct perf_event *child;
5549 
5550 	WARN_ON_ONCE(event->ctx->parent_ctx);
5551 
5552 	mutex_lock(&event->child_mutex);
5553 	func(event);
5554 	list_for_each_entry(child, &event->child_list, child_list)
5555 		func(child);
5556 	mutex_unlock(&event->child_mutex);
5557 }
5558 
5559 static void perf_event_for_each(struct perf_event *event,
5560 				  void (*func)(struct perf_event *))
5561 {
5562 	struct perf_event_context *ctx = event->ctx;
5563 	struct perf_event *sibling;
5564 
5565 	lockdep_assert_held(&ctx->mutex);
5566 
5567 	event = event->group_leader;
5568 
5569 	perf_event_for_each_child(event, func);
5570 	for_each_sibling_event(sibling, event)
5571 		perf_event_for_each_child(sibling, func);
5572 }
5573 
5574 static void __perf_event_period(struct perf_event *event,
5575 				struct perf_cpu_context *cpuctx,
5576 				struct perf_event_context *ctx,
5577 				void *info)
5578 {
5579 	u64 value = *((u64 *)info);
5580 	bool active;
5581 
5582 	if (event->attr.freq) {
5583 		event->attr.sample_freq = value;
5584 	} else {
5585 		event->attr.sample_period = value;
5586 		event->hw.sample_period = value;
5587 	}
5588 
5589 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5590 	if (active) {
5591 		perf_pmu_disable(ctx->pmu);
5592 		/*
5593 		 * We could be throttled; unthrottle now to avoid the tick
5594 		 * trying to unthrottle while we already re-started the event.
5595 		 */
5596 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5597 			event->hw.interrupts = 0;
5598 			perf_log_throttle(event, 1);
5599 		}
5600 		event->pmu->stop(event, PERF_EF_UPDATE);
5601 	}
5602 
5603 	local64_set(&event->hw.period_left, 0);
5604 
5605 	if (active) {
5606 		event->pmu->start(event, PERF_EF_RELOAD);
5607 		perf_pmu_enable(ctx->pmu);
5608 	}
5609 }
5610 
5611 static int perf_event_check_period(struct perf_event *event, u64 value)
5612 {
5613 	return event->pmu->check_period(event, value);
5614 }
5615 
5616 static int _perf_event_period(struct perf_event *event, u64 value)
5617 {
5618 	if (!is_sampling_event(event))
5619 		return -EINVAL;
5620 
5621 	if (!value)
5622 		return -EINVAL;
5623 
5624 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5625 		return -EINVAL;
5626 
5627 	if (perf_event_check_period(event, value))
5628 		return -EINVAL;
5629 
5630 	if (!event->attr.freq && (value & (1ULL << 63)))
5631 		return -EINVAL;
5632 
5633 	event_function_call(event, __perf_event_period, &value);
5634 
5635 	return 0;
5636 }
5637 
5638 int perf_event_period(struct perf_event *event, u64 value)
5639 {
5640 	struct perf_event_context *ctx;
5641 	int ret;
5642 
5643 	ctx = perf_event_ctx_lock(event);
5644 	ret = _perf_event_period(event, value);
5645 	perf_event_ctx_unlock(event, ctx);
5646 
5647 	return ret;
5648 }
5649 EXPORT_SYMBOL_GPL(perf_event_period);
5650 
5651 static const struct file_operations perf_fops;
5652 
5653 static inline int perf_fget_light(int fd, struct fd *p)
5654 {
5655 	struct fd f = fdget(fd);
5656 	if (!f.file)
5657 		return -EBADF;
5658 
5659 	if (f.file->f_op != &perf_fops) {
5660 		fdput(f);
5661 		return -EBADF;
5662 	}
5663 	*p = f;
5664 	return 0;
5665 }
5666 
5667 static int perf_event_set_output(struct perf_event *event,
5668 				 struct perf_event *output_event);
5669 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5670 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5671 			  struct perf_event_attr *attr);
5672 
5673 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5674 {
5675 	void (*func)(struct perf_event *);
5676 	u32 flags = arg;
5677 
5678 	switch (cmd) {
5679 	case PERF_EVENT_IOC_ENABLE:
5680 		func = _perf_event_enable;
5681 		break;
5682 	case PERF_EVENT_IOC_DISABLE:
5683 		func = _perf_event_disable;
5684 		break;
5685 	case PERF_EVENT_IOC_RESET:
5686 		func = _perf_event_reset;
5687 		break;
5688 
5689 	case PERF_EVENT_IOC_REFRESH:
5690 		return _perf_event_refresh(event, arg);
5691 
5692 	case PERF_EVENT_IOC_PERIOD:
5693 	{
5694 		u64 value;
5695 
5696 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5697 			return -EFAULT;
5698 
5699 		return _perf_event_period(event, value);
5700 	}
5701 	case PERF_EVENT_IOC_ID:
5702 	{
5703 		u64 id = primary_event_id(event);
5704 
5705 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5706 			return -EFAULT;
5707 		return 0;
5708 	}
5709 
5710 	case PERF_EVENT_IOC_SET_OUTPUT:
5711 	{
5712 		int ret;
5713 		if (arg != -1) {
5714 			struct perf_event *output_event;
5715 			struct fd output;
5716 			ret = perf_fget_light(arg, &output);
5717 			if (ret)
5718 				return ret;
5719 			output_event = output.file->private_data;
5720 			ret = perf_event_set_output(event, output_event);
5721 			fdput(output);
5722 		} else {
5723 			ret = perf_event_set_output(event, NULL);
5724 		}
5725 		return ret;
5726 	}
5727 
5728 	case PERF_EVENT_IOC_SET_FILTER:
5729 		return perf_event_set_filter(event, (void __user *)arg);
5730 
5731 	case PERF_EVENT_IOC_SET_BPF:
5732 	{
5733 		struct bpf_prog *prog;
5734 		int err;
5735 
5736 		prog = bpf_prog_get(arg);
5737 		if (IS_ERR(prog))
5738 			return PTR_ERR(prog);
5739 
5740 		err = perf_event_set_bpf_prog(event, prog, 0);
5741 		if (err) {
5742 			bpf_prog_put(prog);
5743 			return err;
5744 		}
5745 
5746 		return 0;
5747 	}
5748 
5749 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5750 		struct perf_buffer *rb;
5751 
5752 		rcu_read_lock();
5753 		rb = rcu_dereference(event->rb);
5754 		if (!rb || !rb->nr_pages) {
5755 			rcu_read_unlock();
5756 			return -EINVAL;
5757 		}
5758 		rb_toggle_paused(rb, !!arg);
5759 		rcu_read_unlock();
5760 		return 0;
5761 	}
5762 
5763 	case PERF_EVENT_IOC_QUERY_BPF:
5764 		return perf_event_query_prog_array(event, (void __user *)arg);
5765 
5766 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5767 		struct perf_event_attr new_attr;
5768 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5769 					 &new_attr);
5770 
5771 		if (err)
5772 			return err;
5773 
5774 		return perf_event_modify_attr(event,  &new_attr);
5775 	}
5776 	default:
5777 		return -ENOTTY;
5778 	}
5779 
5780 	if (flags & PERF_IOC_FLAG_GROUP)
5781 		perf_event_for_each(event, func);
5782 	else
5783 		perf_event_for_each_child(event, func);
5784 
5785 	return 0;
5786 }
5787 
5788 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5789 {
5790 	struct perf_event *event = file->private_data;
5791 	struct perf_event_context *ctx;
5792 	long ret;
5793 
5794 	/* Treat ioctl like writes as it is likely a mutating operation. */
5795 	ret = security_perf_event_write(event);
5796 	if (ret)
5797 		return ret;
5798 
5799 	ctx = perf_event_ctx_lock(event);
5800 	ret = _perf_ioctl(event, cmd, arg);
5801 	perf_event_ctx_unlock(event, ctx);
5802 
5803 	return ret;
5804 }
5805 
5806 #ifdef CONFIG_COMPAT
5807 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5808 				unsigned long arg)
5809 {
5810 	switch (_IOC_NR(cmd)) {
5811 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5812 	case _IOC_NR(PERF_EVENT_IOC_ID):
5813 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5814 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5815 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5816 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5817 			cmd &= ~IOCSIZE_MASK;
5818 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5819 		}
5820 		break;
5821 	}
5822 	return perf_ioctl(file, cmd, arg);
5823 }
5824 #else
5825 # define perf_compat_ioctl NULL
5826 #endif
5827 
5828 int perf_event_task_enable(void)
5829 {
5830 	struct perf_event_context *ctx;
5831 	struct perf_event *event;
5832 
5833 	mutex_lock(&current->perf_event_mutex);
5834 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5835 		ctx = perf_event_ctx_lock(event);
5836 		perf_event_for_each_child(event, _perf_event_enable);
5837 		perf_event_ctx_unlock(event, ctx);
5838 	}
5839 	mutex_unlock(&current->perf_event_mutex);
5840 
5841 	return 0;
5842 }
5843 
5844 int perf_event_task_disable(void)
5845 {
5846 	struct perf_event_context *ctx;
5847 	struct perf_event *event;
5848 
5849 	mutex_lock(&current->perf_event_mutex);
5850 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5851 		ctx = perf_event_ctx_lock(event);
5852 		perf_event_for_each_child(event, _perf_event_disable);
5853 		perf_event_ctx_unlock(event, ctx);
5854 	}
5855 	mutex_unlock(&current->perf_event_mutex);
5856 
5857 	return 0;
5858 }
5859 
5860 static int perf_event_index(struct perf_event *event)
5861 {
5862 	if (event->hw.state & PERF_HES_STOPPED)
5863 		return 0;
5864 
5865 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5866 		return 0;
5867 
5868 	return event->pmu->event_idx(event);
5869 }
5870 
5871 static void perf_event_init_userpage(struct perf_event *event)
5872 {
5873 	struct perf_event_mmap_page *userpg;
5874 	struct perf_buffer *rb;
5875 
5876 	rcu_read_lock();
5877 	rb = rcu_dereference(event->rb);
5878 	if (!rb)
5879 		goto unlock;
5880 
5881 	userpg = rb->user_page;
5882 
5883 	/* Allow new userspace to detect that bit 0 is deprecated */
5884 	userpg->cap_bit0_is_deprecated = 1;
5885 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5886 	userpg->data_offset = PAGE_SIZE;
5887 	userpg->data_size = perf_data_size(rb);
5888 
5889 unlock:
5890 	rcu_read_unlock();
5891 }
5892 
5893 void __weak arch_perf_update_userpage(
5894 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5895 {
5896 }
5897 
5898 /*
5899  * Callers need to ensure there can be no nesting of this function, otherwise
5900  * the seqlock logic goes bad. We can not serialize this because the arch
5901  * code calls this from NMI context.
5902  */
5903 void perf_event_update_userpage(struct perf_event *event)
5904 {
5905 	struct perf_event_mmap_page *userpg;
5906 	struct perf_buffer *rb;
5907 	u64 enabled, running, now;
5908 
5909 	rcu_read_lock();
5910 	rb = rcu_dereference(event->rb);
5911 	if (!rb)
5912 		goto unlock;
5913 
5914 	/*
5915 	 * compute total_time_enabled, total_time_running
5916 	 * based on snapshot values taken when the event
5917 	 * was last scheduled in.
5918 	 *
5919 	 * we cannot simply called update_context_time()
5920 	 * because of locking issue as we can be called in
5921 	 * NMI context
5922 	 */
5923 	calc_timer_values(event, &now, &enabled, &running);
5924 
5925 	userpg = rb->user_page;
5926 	/*
5927 	 * Disable preemption to guarantee consistent time stamps are stored to
5928 	 * the user page.
5929 	 */
5930 	preempt_disable();
5931 	++userpg->lock;
5932 	barrier();
5933 	userpg->index = perf_event_index(event);
5934 	userpg->offset = perf_event_count(event);
5935 	if (userpg->index)
5936 		userpg->offset -= local64_read(&event->hw.prev_count);
5937 
5938 	userpg->time_enabled = enabled +
5939 			atomic64_read(&event->child_total_time_enabled);
5940 
5941 	userpg->time_running = running +
5942 			atomic64_read(&event->child_total_time_running);
5943 
5944 	arch_perf_update_userpage(event, userpg, now);
5945 
5946 	barrier();
5947 	++userpg->lock;
5948 	preempt_enable();
5949 unlock:
5950 	rcu_read_unlock();
5951 }
5952 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5953 
5954 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5955 {
5956 	struct perf_event *event = vmf->vma->vm_file->private_data;
5957 	struct perf_buffer *rb;
5958 	vm_fault_t ret = VM_FAULT_SIGBUS;
5959 
5960 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5961 		if (vmf->pgoff == 0)
5962 			ret = 0;
5963 		return ret;
5964 	}
5965 
5966 	rcu_read_lock();
5967 	rb = rcu_dereference(event->rb);
5968 	if (!rb)
5969 		goto unlock;
5970 
5971 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5972 		goto unlock;
5973 
5974 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5975 	if (!vmf->page)
5976 		goto unlock;
5977 
5978 	get_page(vmf->page);
5979 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5980 	vmf->page->index   = vmf->pgoff;
5981 
5982 	ret = 0;
5983 unlock:
5984 	rcu_read_unlock();
5985 
5986 	return ret;
5987 }
5988 
5989 static void ring_buffer_attach(struct perf_event *event,
5990 			       struct perf_buffer *rb)
5991 {
5992 	struct perf_buffer *old_rb = NULL;
5993 	unsigned long flags;
5994 
5995 	WARN_ON_ONCE(event->parent);
5996 
5997 	if (event->rb) {
5998 		/*
5999 		 * Should be impossible, we set this when removing
6000 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6001 		 */
6002 		WARN_ON_ONCE(event->rcu_pending);
6003 
6004 		old_rb = event->rb;
6005 		spin_lock_irqsave(&old_rb->event_lock, flags);
6006 		list_del_rcu(&event->rb_entry);
6007 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6008 
6009 		event->rcu_batches = get_state_synchronize_rcu();
6010 		event->rcu_pending = 1;
6011 	}
6012 
6013 	if (rb) {
6014 		if (event->rcu_pending) {
6015 			cond_synchronize_rcu(event->rcu_batches);
6016 			event->rcu_pending = 0;
6017 		}
6018 
6019 		spin_lock_irqsave(&rb->event_lock, flags);
6020 		list_add_rcu(&event->rb_entry, &rb->event_list);
6021 		spin_unlock_irqrestore(&rb->event_lock, flags);
6022 	}
6023 
6024 	/*
6025 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6026 	 * before swizzling the event::rb pointer; if it's getting
6027 	 * unmapped, its aux_mmap_count will be 0 and it won't
6028 	 * restart. See the comment in __perf_pmu_output_stop().
6029 	 *
6030 	 * Data will inevitably be lost when set_output is done in
6031 	 * mid-air, but then again, whoever does it like this is
6032 	 * not in for the data anyway.
6033 	 */
6034 	if (has_aux(event))
6035 		perf_event_stop(event, 0);
6036 
6037 	rcu_assign_pointer(event->rb, rb);
6038 
6039 	if (old_rb) {
6040 		ring_buffer_put(old_rb);
6041 		/*
6042 		 * Since we detached before setting the new rb, so that we
6043 		 * could attach the new rb, we could have missed a wakeup.
6044 		 * Provide it now.
6045 		 */
6046 		wake_up_all(&event->waitq);
6047 	}
6048 }
6049 
6050 static void ring_buffer_wakeup(struct perf_event *event)
6051 {
6052 	struct perf_buffer *rb;
6053 
6054 	if (event->parent)
6055 		event = event->parent;
6056 
6057 	rcu_read_lock();
6058 	rb = rcu_dereference(event->rb);
6059 	if (rb) {
6060 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6061 			wake_up_all(&event->waitq);
6062 	}
6063 	rcu_read_unlock();
6064 }
6065 
6066 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6067 {
6068 	struct perf_buffer *rb;
6069 
6070 	if (event->parent)
6071 		event = event->parent;
6072 
6073 	rcu_read_lock();
6074 	rb = rcu_dereference(event->rb);
6075 	if (rb) {
6076 		if (!refcount_inc_not_zero(&rb->refcount))
6077 			rb = NULL;
6078 	}
6079 	rcu_read_unlock();
6080 
6081 	return rb;
6082 }
6083 
6084 void ring_buffer_put(struct perf_buffer *rb)
6085 {
6086 	if (!refcount_dec_and_test(&rb->refcount))
6087 		return;
6088 
6089 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6090 
6091 	call_rcu(&rb->rcu_head, rb_free_rcu);
6092 }
6093 
6094 static void perf_mmap_open(struct vm_area_struct *vma)
6095 {
6096 	struct perf_event *event = vma->vm_file->private_data;
6097 
6098 	atomic_inc(&event->mmap_count);
6099 	atomic_inc(&event->rb->mmap_count);
6100 
6101 	if (vma->vm_pgoff)
6102 		atomic_inc(&event->rb->aux_mmap_count);
6103 
6104 	if (event->pmu->event_mapped)
6105 		event->pmu->event_mapped(event, vma->vm_mm);
6106 }
6107 
6108 static void perf_pmu_output_stop(struct perf_event *event);
6109 
6110 /*
6111  * A buffer can be mmap()ed multiple times; either directly through the same
6112  * event, or through other events by use of perf_event_set_output().
6113  *
6114  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6115  * the buffer here, where we still have a VM context. This means we need
6116  * to detach all events redirecting to us.
6117  */
6118 static void perf_mmap_close(struct vm_area_struct *vma)
6119 {
6120 	struct perf_event *event = vma->vm_file->private_data;
6121 	struct perf_buffer *rb = ring_buffer_get(event);
6122 	struct user_struct *mmap_user = rb->mmap_user;
6123 	int mmap_locked = rb->mmap_locked;
6124 	unsigned long size = perf_data_size(rb);
6125 	bool detach_rest = false;
6126 
6127 	if (event->pmu->event_unmapped)
6128 		event->pmu->event_unmapped(event, vma->vm_mm);
6129 
6130 	/*
6131 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6132 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6133 	 * serialize with perf_mmap here.
6134 	 */
6135 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6136 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6137 		/*
6138 		 * Stop all AUX events that are writing to this buffer,
6139 		 * so that we can free its AUX pages and corresponding PMU
6140 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6141 		 * they won't start any more (see perf_aux_output_begin()).
6142 		 */
6143 		perf_pmu_output_stop(event);
6144 
6145 		/* now it's safe to free the pages */
6146 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6147 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6148 
6149 		/* this has to be the last one */
6150 		rb_free_aux(rb);
6151 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6152 
6153 		mutex_unlock(&event->mmap_mutex);
6154 	}
6155 
6156 	if (atomic_dec_and_test(&rb->mmap_count))
6157 		detach_rest = true;
6158 
6159 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6160 		goto out_put;
6161 
6162 	ring_buffer_attach(event, NULL);
6163 	mutex_unlock(&event->mmap_mutex);
6164 
6165 	/* If there's still other mmap()s of this buffer, we're done. */
6166 	if (!detach_rest)
6167 		goto out_put;
6168 
6169 	/*
6170 	 * No other mmap()s, detach from all other events that might redirect
6171 	 * into the now unreachable buffer. Somewhat complicated by the
6172 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6173 	 */
6174 again:
6175 	rcu_read_lock();
6176 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6177 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6178 			/*
6179 			 * This event is en-route to free_event() which will
6180 			 * detach it and remove it from the list.
6181 			 */
6182 			continue;
6183 		}
6184 		rcu_read_unlock();
6185 
6186 		mutex_lock(&event->mmap_mutex);
6187 		/*
6188 		 * Check we didn't race with perf_event_set_output() which can
6189 		 * swizzle the rb from under us while we were waiting to
6190 		 * acquire mmap_mutex.
6191 		 *
6192 		 * If we find a different rb; ignore this event, a next
6193 		 * iteration will no longer find it on the list. We have to
6194 		 * still restart the iteration to make sure we're not now
6195 		 * iterating the wrong list.
6196 		 */
6197 		if (event->rb == rb)
6198 			ring_buffer_attach(event, NULL);
6199 
6200 		mutex_unlock(&event->mmap_mutex);
6201 		put_event(event);
6202 
6203 		/*
6204 		 * Restart the iteration; either we're on the wrong list or
6205 		 * destroyed its integrity by doing a deletion.
6206 		 */
6207 		goto again;
6208 	}
6209 	rcu_read_unlock();
6210 
6211 	/*
6212 	 * It could be there's still a few 0-ref events on the list; they'll
6213 	 * get cleaned up by free_event() -- they'll also still have their
6214 	 * ref on the rb and will free it whenever they are done with it.
6215 	 *
6216 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6217 	 * undo the VM accounting.
6218 	 */
6219 
6220 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6221 			&mmap_user->locked_vm);
6222 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6223 	free_uid(mmap_user);
6224 
6225 out_put:
6226 	ring_buffer_put(rb); /* could be last */
6227 }
6228 
6229 static const struct vm_operations_struct perf_mmap_vmops = {
6230 	.open		= perf_mmap_open,
6231 	.close		= perf_mmap_close, /* non mergeable */
6232 	.fault		= perf_mmap_fault,
6233 	.page_mkwrite	= perf_mmap_fault,
6234 };
6235 
6236 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6237 {
6238 	struct perf_event *event = file->private_data;
6239 	unsigned long user_locked, user_lock_limit;
6240 	struct user_struct *user = current_user();
6241 	struct perf_buffer *rb = NULL;
6242 	unsigned long locked, lock_limit;
6243 	unsigned long vma_size;
6244 	unsigned long nr_pages;
6245 	long user_extra = 0, extra = 0;
6246 	int ret = 0, flags = 0;
6247 
6248 	/*
6249 	 * Don't allow mmap() of inherited per-task counters. This would
6250 	 * create a performance issue due to all children writing to the
6251 	 * same rb.
6252 	 */
6253 	if (event->cpu == -1 && event->attr.inherit)
6254 		return -EINVAL;
6255 
6256 	if (!(vma->vm_flags & VM_SHARED))
6257 		return -EINVAL;
6258 
6259 	ret = security_perf_event_read(event);
6260 	if (ret)
6261 		return ret;
6262 
6263 	vma_size = vma->vm_end - vma->vm_start;
6264 
6265 	if (vma->vm_pgoff == 0) {
6266 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6267 	} else {
6268 		/*
6269 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6270 		 * mapped, all subsequent mappings should have the same size
6271 		 * and offset. Must be above the normal perf buffer.
6272 		 */
6273 		u64 aux_offset, aux_size;
6274 
6275 		if (!event->rb)
6276 			return -EINVAL;
6277 
6278 		nr_pages = vma_size / PAGE_SIZE;
6279 
6280 		mutex_lock(&event->mmap_mutex);
6281 		ret = -EINVAL;
6282 
6283 		rb = event->rb;
6284 		if (!rb)
6285 			goto aux_unlock;
6286 
6287 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6288 		aux_size = READ_ONCE(rb->user_page->aux_size);
6289 
6290 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6291 			goto aux_unlock;
6292 
6293 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6294 			goto aux_unlock;
6295 
6296 		/* already mapped with a different offset */
6297 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6298 			goto aux_unlock;
6299 
6300 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6301 			goto aux_unlock;
6302 
6303 		/* already mapped with a different size */
6304 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6305 			goto aux_unlock;
6306 
6307 		if (!is_power_of_2(nr_pages))
6308 			goto aux_unlock;
6309 
6310 		if (!atomic_inc_not_zero(&rb->mmap_count))
6311 			goto aux_unlock;
6312 
6313 		if (rb_has_aux(rb)) {
6314 			atomic_inc(&rb->aux_mmap_count);
6315 			ret = 0;
6316 			goto unlock;
6317 		}
6318 
6319 		atomic_set(&rb->aux_mmap_count, 1);
6320 		user_extra = nr_pages;
6321 
6322 		goto accounting;
6323 	}
6324 
6325 	/*
6326 	 * If we have rb pages ensure they're a power-of-two number, so we
6327 	 * can do bitmasks instead of modulo.
6328 	 */
6329 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6330 		return -EINVAL;
6331 
6332 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6333 		return -EINVAL;
6334 
6335 	WARN_ON_ONCE(event->ctx->parent_ctx);
6336 again:
6337 	mutex_lock(&event->mmap_mutex);
6338 	if (event->rb) {
6339 		if (event->rb->nr_pages != nr_pages) {
6340 			ret = -EINVAL;
6341 			goto unlock;
6342 		}
6343 
6344 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6345 			/*
6346 			 * Raced against perf_mmap_close() through
6347 			 * perf_event_set_output(). Try again, hope for better
6348 			 * luck.
6349 			 */
6350 			mutex_unlock(&event->mmap_mutex);
6351 			goto again;
6352 		}
6353 
6354 		goto unlock;
6355 	}
6356 
6357 	user_extra = nr_pages + 1;
6358 
6359 accounting:
6360 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6361 
6362 	/*
6363 	 * Increase the limit linearly with more CPUs:
6364 	 */
6365 	user_lock_limit *= num_online_cpus();
6366 
6367 	user_locked = atomic_long_read(&user->locked_vm);
6368 
6369 	/*
6370 	 * sysctl_perf_event_mlock may have changed, so that
6371 	 *     user->locked_vm > user_lock_limit
6372 	 */
6373 	if (user_locked > user_lock_limit)
6374 		user_locked = user_lock_limit;
6375 	user_locked += user_extra;
6376 
6377 	if (user_locked > user_lock_limit) {
6378 		/*
6379 		 * charge locked_vm until it hits user_lock_limit;
6380 		 * charge the rest from pinned_vm
6381 		 */
6382 		extra = user_locked - user_lock_limit;
6383 		user_extra -= extra;
6384 	}
6385 
6386 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6387 	lock_limit >>= PAGE_SHIFT;
6388 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6389 
6390 	if ((locked > lock_limit) && perf_is_paranoid() &&
6391 		!capable(CAP_IPC_LOCK)) {
6392 		ret = -EPERM;
6393 		goto unlock;
6394 	}
6395 
6396 	WARN_ON(!rb && event->rb);
6397 
6398 	if (vma->vm_flags & VM_WRITE)
6399 		flags |= RING_BUFFER_WRITABLE;
6400 
6401 	if (!rb) {
6402 		rb = rb_alloc(nr_pages,
6403 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6404 			      event->cpu, flags);
6405 
6406 		if (!rb) {
6407 			ret = -ENOMEM;
6408 			goto unlock;
6409 		}
6410 
6411 		atomic_set(&rb->mmap_count, 1);
6412 		rb->mmap_user = get_current_user();
6413 		rb->mmap_locked = extra;
6414 
6415 		ring_buffer_attach(event, rb);
6416 
6417 		perf_event_update_time(event);
6418 		perf_event_init_userpage(event);
6419 		perf_event_update_userpage(event);
6420 	} else {
6421 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6422 				   event->attr.aux_watermark, flags);
6423 		if (!ret)
6424 			rb->aux_mmap_locked = extra;
6425 	}
6426 
6427 unlock:
6428 	if (!ret) {
6429 		atomic_long_add(user_extra, &user->locked_vm);
6430 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6431 
6432 		atomic_inc(&event->mmap_count);
6433 	} else if (rb) {
6434 		atomic_dec(&rb->mmap_count);
6435 	}
6436 aux_unlock:
6437 	mutex_unlock(&event->mmap_mutex);
6438 
6439 	/*
6440 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6441 	 * vma.
6442 	 */
6443 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6444 	vma->vm_ops = &perf_mmap_vmops;
6445 
6446 	if (event->pmu->event_mapped)
6447 		event->pmu->event_mapped(event, vma->vm_mm);
6448 
6449 	return ret;
6450 }
6451 
6452 static int perf_fasync(int fd, struct file *filp, int on)
6453 {
6454 	struct inode *inode = file_inode(filp);
6455 	struct perf_event *event = filp->private_data;
6456 	int retval;
6457 
6458 	inode_lock(inode);
6459 	retval = fasync_helper(fd, filp, on, &event->fasync);
6460 	inode_unlock(inode);
6461 
6462 	if (retval < 0)
6463 		return retval;
6464 
6465 	return 0;
6466 }
6467 
6468 static const struct file_operations perf_fops = {
6469 	.llseek			= no_llseek,
6470 	.release		= perf_release,
6471 	.read			= perf_read,
6472 	.poll			= perf_poll,
6473 	.unlocked_ioctl		= perf_ioctl,
6474 	.compat_ioctl		= perf_compat_ioctl,
6475 	.mmap			= perf_mmap,
6476 	.fasync			= perf_fasync,
6477 };
6478 
6479 /*
6480  * Perf event wakeup
6481  *
6482  * If there's data, ensure we set the poll() state and publish everything
6483  * to user-space before waking everybody up.
6484  */
6485 
6486 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6487 {
6488 	/* only the parent has fasync state */
6489 	if (event->parent)
6490 		event = event->parent;
6491 	return &event->fasync;
6492 }
6493 
6494 void perf_event_wakeup(struct perf_event *event)
6495 {
6496 	ring_buffer_wakeup(event);
6497 
6498 	if (event->pending_kill) {
6499 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6500 		event->pending_kill = 0;
6501 	}
6502 }
6503 
6504 static void perf_sigtrap(struct perf_event *event)
6505 {
6506 	/*
6507 	 * We'd expect this to only occur if the irq_work is delayed and either
6508 	 * ctx->task or current has changed in the meantime. This can be the
6509 	 * case on architectures that do not implement arch_irq_work_raise().
6510 	 */
6511 	if (WARN_ON_ONCE(event->ctx->task != current))
6512 		return;
6513 
6514 	/*
6515 	 * perf_pending_event() can race with the task exiting.
6516 	 */
6517 	if (current->flags & PF_EXITING)
6518 		return;
6519 
6520 	force_sig_perf((void __user *)event->pending_addr,
6521 		       event->attr.type, event->attr.sig_data);
6522 }
6523 
6524 static void perf_pending_event_disable(struct perf_event *event)
6525 {
6526 	int cpu = READ_ONCE(event->pending_disable);
6527 
6528 	if (cpu < 0)
6529 		return;
6530 
6531 	if (cpu == smp_processor_id()) {
6532 		WRITE_ONCE(event->pending_disable, -1);
6533 
6534 		if (event->attr.sigtrap) {
6535 			perf_sigtrap(event);
6536 			atomic_set_release(&event->event_limit, 1); /* rearm event */
6537 			return;
6538 		}
6539 
6540 		perf_event_disable_local(event);
6541 		return;
6542 	}
6543 
6544 	/*
6545 	 *  CPU-A			CPU-B
6546 	 *
6547 	 *  perf_event_disable_inatomic()
6548 	 *    @pending_disable = CPU-A;
6549 	 *    irq_work_queue();
6550 	 *
6551 	 *  sched-out
6552 	 *    @pending_disable = -1;
6553 	 *
6554 	 *				sched-in
6555 	 *				perf_event_disable_inatomic()
6556 	 *				  @pending_disable = CPU-B;
6557 	 *				  irq_work_queue(); // FAILS
6558 	 *
6559 	 *  irq_work_run()
6560 	 *    perf_pending_event()
6561 	 *
6562 	 * But the event runs on CPU-B and wants disabling there.
6563 	 */
6564 	irq_work_queue_on(&event->pending, cpu);
6565 }
6566 
6567 static void perf_pending_event(struct irq_work *entry)
6568 {
6569 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6570 	int rctx;
6571 
6572 	rctx = perf_swevent_get_recursion_context();
6573 	/*
6574 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6575 	 * and we won't recurse 'further'.
6576 	 */
6577 
6578 	perf_pending_event_disable(event);
6579 
6580 	if (event->pending_wakeup) {
6581 		event->pending_wakeup = 0;
6582 		perf_event_wakeup(event);
6583 	}
6584 
6585 	if (rctx >= 0)
6586 		perf_swevent_put_recursion_context(rctx);
6587 }
6588 
6589 #ifdef CONFIG_GUEST_PERF_EVENTS
6590 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6591 
6592 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6593 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6594 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6595 
6596 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6597 {
6598 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6599 		return;
6600 
6601 	rcu_assign_pointer(perf_guest_cbs, cbs);
6602 	static_call_update(__perf_guest_state, cbs->state);
6603 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6604 
6605 	/* Implementing ->handle_intel_pt_intr is optional. */
6606 	if (cbs->handle_intel_pt_intr)
6607 		static_call_update(__perf_guest_handle_intel_pt_intr,
6608 				   cbs->handle_intel_pt_intr);
6609 }
6610 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6611 
6612 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6613 {
6614 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6615 		return;
6616 
6617 	rcu_assign_pointer(perf_guest_cbs, NULL);
6618 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6619 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6620 	static_call_update(__perf_guest_handle_intel_pt_intr,
6621 			   (void *)&__static_call_return0);
6622 	synchronize_rcu();
6623 }
6624 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6625 #endif
6626 
6627 static void
6628 perf_output_sample_regs(struct perf_output_handle *handle,
6629 			struct pt_regs *regs, u64 mask)
6630 {
6631 	int bit;
6632 	DECLARE_BITMAP(_mask, 64);
6633 
6634 	bitmap_from_u64(_mask, mask);
6635 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6636 		u64 val;
6637 
6638 		val = perf_reg_value(regs, bit);
6639 		perf_output_put(handle, val);
6640 	}
6641 }
6642 
6643 static void perf_sample_regs_user(struct perf_regs *regs_user,
6644 				  struct pt_regs *regs)
6645 {
6646 	if (user_mode(regs)) {
6647 		regs_user->abi = perf_reg_abi(current);
6648 		regs_user->regs = regs;
6649 	} else if (!(current->flags & PF_KTHREAD)) {
6650 		perf_get_regs_user(regs_user, regs);
6651 	} else {
6652 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6653 		regs_user->regs = NULL;
6654 	}
6655 }
6656 
6657 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6658 				  struct pt_regs *regs)
6659 {
6660 	regs_intr->regs = regs;
6661 	regs_intr->abi  = perf_reg_abi(current);
6662 }
6663 
6664 
6665 /*
6666  * Get remaining task size from user stack pointer.
6667  *
6668  * It'd be better to take stack vma map and limit this more
6669  * precisely, but there's no way to get it safely under interrupt,
6670  * so using TASK_SIZE as limit.
6671  */
6672 static u64 perf_ustack_task_size(struct pt_regs *regs)
6673 {
6674 	unsigned long addr = perf_user_stack_pointer(regs);
6675 
6676 	if (!addr || addr >= TASK_SIZE)
6677 		return 0;
6678 
6679 	return TASK_SIZE - addr;
6680 }
6681 
6682 static u16
6683 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6684 			struct pt_regs *regs)
6685 {
6686 	u64 task_size;
6687 
6688 	/* No regs, no stack pointer, no dump. */
6689 	if (!regs)
6690 		return 0;
6691 
6692 	/*
6693 	 * Check if we fit in with the requested stack size into the:
6694 	 * - TASK_SIZE
6695 	 *   If we don't, we limit the size to the TASK_SIZE.
6696 	 *
6697 	 * - remaining sample size
6698 	 *   If we don't, we customize the stack size to
6699 	 *   fit in to the remaining sample size.
6700 	 */
6701 
6702 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6703 	stack_size = min(stack_size, (u16) task_size);
6704 
6705 	/* Current header size plus static size and dynamic size. */
6706 	header_size += 2 * sizeof(u64);
6707 
6708 	/* Do we fit in with the current stack dump size? */
6709 	if ((u16) (header_size + stack_size) < header_size) {
6710 		/*
6711 		 * If we overflow the maximum size for the sample,
6712 		 * we customize the stack dump size to fit in.
6713 		 */
6714 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6715 		stack_size = round_up(stack_size, sizeof(u64));
6716 	}
6717 
6718 	return stack_size;
6719 }
6720 
6721 static void
6722 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6723 			  struct pt_regs *regs)
6724 {
6725 	/* Case of a kernel thread, nothing to dump */
6726 	if (!regs) {
6727 		u64 size = 0;
6728 		perf_output_put(handle, size);
6729 	} else {
6730 		unsigned long sp;
6731 		unsigned int rem;
6732 		u64 dyn_size;
6733 		mm_segment_t fs;
6734 
6735 		/*
6736 		 * We dump:
6737 		 * static size
6738 		 *   - the size requested by user or the best one we can fit
6739 		 *     in to the sample max size
6740 		 * data
6741 		 *   - user stack dump data
6742 		 * dynamic size
6743 		 *   - the actual dumped size
6744 		 */
6745 
6746 		/* Static size. */
6747 		perf_output_put(handle, dump_size);
6748 
6749 		/* Data. */
6750 		sp = perf_user_stack_pointer(regs);
6751 		fs = force_uaccess_begin();
6752 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6753 		force_uaccess_end(fs);
6754 		dyn_size = dump_size - rem;
6755 
6756 		perf_output_skip(handle, rem);
6757 
6758 		/* Dynamic size. */
6759 		perf_output_put(handle, dyn_size);
6760 	}
6761 }
6762 
6763 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6764 					  struct perf_sample_data *data,
6765 					  size_t size)
6766 {
6767 	struct perf_event *sampler = event->aux_event;
6768 	struct perf_buffer *rb;
6769 
6770 	data->aux_size = 0;
6771 
6772 	if (!sampler)
6773 		goto out;
6774 
6775 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6776 		goto out;
6777 
6778 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6779 		goto out;
6780 
6781 	rb = ring_buffer_get(sampler);
6782 	if (!rb)
6783 		goto out;
6784 
6785 	/*
6786 	 * If this is an NMI hit inside sampling code, don't take
6787 	 * the sample. See also perf_aux_sample_output().
6788 	 */
6789 	if (READ_ONCE(rb->aux_in_sampling)) {
6790 		data->aux_size = 0;
6791 	} else {
6792 		size = min_t(size_t, size, perf_aux_size(rb));
6793 		data->aux_size = ALIGN(size, sizeof(u64));
6794 	}
6795 	ring_buffer_put(rb);
6796 
6797 out:
6798 	return data->aux_size;
6799 }
6800 
6801 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6802                                  struct perf_event *event,
6803                                  struct perf_output_handle *handle,
6804                                  unsigned long size)
6805 {
6806 	unsigned long flags;
6807 	long ret;
6808 
6809 	/*
6810 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6811 	 * paths. If we start calling them in NMI context, they may race with
6812 	 * the IRQ ones, that is, for example, re-starting an event that's just
6813 	 * been stopped, which is why we're using a separate callback that
6814 	 * doesn't change the event state.
6815 	 *
6816 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6817 	 */
6818 	local_irq_save(flags);
6819 	/*
6820 	 * Guard against NMI hits inside the critical section;
6821 	 * see also perf_prepare_sample_aux().
6822 	 */
6823 	WRITE_ONCE(rb->aux_in_sampling, 1);
6824 	barrier();
6825 
6826 	ret = event->pmu->snapshot_aux(event, handle, size);
6827 
6828 	barrier();
6829 	WRITE_ONCE(rb->aux_in_sampling, 0);
6830 	local_irq_restore(flags);
6831 
6832 	return ret;
6833 }
6834 
6835 static void perf_aux_sample_output(struct perf_event *event,
6836 				   struct perf_output_handle *handle,
6837 				   struct perf_sample_data *data)
6838 {
6839 	struct perf_event *sampler = event->aux_event;
6840 	struct perf_buffer *rb;
6841 	unsigned long pad;
6842 	long size;
6843 
6844 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6845 		return;
6846 
6847 	rb = ring_buffer_get(sampler);
6848 	if (!rb)
6849 		return;
6850 
6851 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6852 
6853 	/*
6854 	 * An error here means that perf_output_copy() failed (returned a
6855 	 * non-zero surplus that it didn't copy), which in its current
6856 	 * enlightened implementation is not possible. If that changes, we'd
6857 	 * like to know.
6858 	 */
6859 	if (WARN_ON_ONCE(size < 0))
6860 		goto out_put;
6861 
6862 	/*
6863 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6864 	 * perf_prepare_sample_aux(), so should not be more than that.
6865 	 */
6866 	pad = data->aux_size - size;
6867 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6868 		pad = 8;
6869 
6870 	if (pad) {
6871 		u64 zero = 0;
6872 		perf_output_copy(handle, &zero, pad);
6873 	}
6874 
6875 out_put:
6876 	ring_buffer_put(rb);
6877 }
6878 
6879 static void __perf_event_header__init_id(struct perf_event_header *header,
6880 					 struct perf_sample_data *data,
6881 					 struct perf_event *event)
6882 {
6883 	u64 sample_type = event->attr.sample_type;
6884 
6885 	data->type = sample_type;
6886 	header->size += event->id_header_size;
6887 
6888 	if (sample_type & PERF_SAMPLE_TID) {
6889 		/* namespace issues */
6890 		data->tid_entry.pid = perf_event_pid(event, current);
6891 		data->tid_entry.tid = perf_event_tid(event, current);
6892 	}
6893 
6894 	if (sample_type & PERF_SAMPLE_TIME)
6895 		data->time = perf_event_clock(event);
6896 
6897 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6898 		data->id = primary_event_id(event);
6899 
6900 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6901 		data->stream_id = event->id;
6902 
6903 	if (sample_type & PERF_SAMPLE_CPU) {
6904 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6905 		data->cpu_entry.reserved = 0;
6906 	}
6907 }
6908 
6909 void perf_event_header__init_id(struct perf_event_header *header,
6910 				struct perf_sample_data *data,
6911 				struct perf_event *event)
6912 {
6913 	if (event->attr.sample_id_all)
6914 		__perf_event_header__init_id(header, data, event);
6915 }
6916 
6917 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6918 					   struct perf_sample_data *data)
6919 {
6920 	u64 sample_type = data->type;
6921 
6922 	if (sample_type & PERF_SAMPLE_TID)
6923 		perf_output_put(handle, data->tid_entry);
6924 
6925 	if (sample_type & PERF_SAMPLE_TIME)
6926 		perf_output_put(handle, data->time);
6927 
6928 	if (sample_type & PERF_SAMPLE_ID)
6929 		perf_output_put(handle, data->id);
6930 
6931 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6932 		perf_output_put(handle, data->stream_id);
6933 
6934 	if (sample_type & PERF_SAMPLE_CPU)
6935 		perf_output_put(handle, data->cpu_entry);
6936 
6937 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6938 		perf_output_put(handle, data->id);
6939 }
6940 
6941 void perf_event__output_id_sample(struct perf_event *event,
6942 				  struct perf_output_handle *handle,
6943 				  struct perf_sample_data *sample)
6944 {
6945 	if (event->attr.sample_id_all)
6946 		__perf_event__output_id_sample(handle, sample);
6947 }
6948 
6949 static void perf_output_read_one(struct perf_output_handle *handle,
6950 				 struct perf_event *event,
6951 				 u64 enabled, u64 running)
6952 {
6953 	u64 read_format = event->attr.read_format;
6954 	u64 values[4];
6955 	int n = 0;
6956 
6957 	values[n++] = perf_event_count(event);
6958 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6959 		values[n++] = enabled +
6960 			atomic64_read(&event->child_total_time_enabled);
6961 	}
6962 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6963 		values[n++] = running +
6964 			atomic64_read(&event->child_total_time_running);
6965 	}
6966 	if (read_format & PERF_FORMAT_ID)
6967 		values[n++] = primary_event_id(event);
6968 
6969 	__output_copy(handle, values, n * sizeof(u64));
6970 }
6971 
6972 static void perf_output_read_group(struct perf_output_handle *handle,
6973 			    struct perf_event *event,
6974 			    u64 enabled, u64 running)
6975 {
6976 	struct perf_event *leader = event->group_leader, *sub;
6977 	u64 read_format = event->attr.read_format;
6978 	u64 values[5];
6979 	int n = 0;
6980 
6981 	values[n++] = 1 + leader->nr_siblings;
6982 
6983 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6984 		values[n++] = enabled;
6985 
6986 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6987 		values[n++] = running;
6988 
6989 	if ((leader != event) &&
6990 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6991 		leader->pmu->read(leader);
6992 
6993 	values[n++] = perf_event_count(leader);
6994 	if (read_format & PERF_FORMAT_ID)
6995 		values[n++] = primary_event_id(leader);
6996 
6997 	__output_copy(handle, values, n * sizeof(u64));
6998 
6999 	for_each_sibling_event(sub, leader) {
7000 		n = 0;
7001 
7002 		if ((sub != event) &&
7003 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7004 			sub->pmu->read(sub);
7005 
7006 		values[n++] = perf_event_count(sub);
7007 		if (read_format & PERF_FORMAT_ID)
7008 			values[n++] = primary_event_id(sub);
7009 
7010 		__output_copy(handle, values, n * sizeof(u64));
7011 	}
7012 }
7013 
7014 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7015 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7016 
7017 /*
7018  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7019  *
7020  * The problem is that its both hard and excessively expensive to iterate the
7021  * child list, not to mention that its impossible to IPI the children running
7022  * on another CPU, from interrupt/NMI context.
7023  */
7024 static void perf_output_read(struct perf_output_handle *handle,
7025 			     struct perf_event *event)
7026 {
7027 	u64 enabled = 0, running = 0, now;
7028 	u64 read_format = event->attr.read_format;
7029 
7030 	/*
7031 	 * compute total_time_enabled, total_time_running
7032 	 * based on snapshot values taken when the event
7033 	 * was last scheduled in.
7034 	 *
7035 	 * we cannot simply called update_context_time()
7036 	 * because of locking issue as we are called in
7037 	 * NMI context
7038 	 */
7039 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7040 		calc_timer_values(event, &now, &enabled, &running);
7041 
7042 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7043 		perf_output_read_group(handle, event, enabled, running);
7044 	else
7045 		perf_output_read_one(handle, event, enabled, running);
7046 }
7047 
7048 static inline bool perf_sample_save_hw_index(struct perf_event *event)
7049 {
7050 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
7051 }
7052 
7053 void perf_output_sample(struct perf_output_handle *handle,
7054 			struct perf_event_header *header,
7055 			struct perf_sample_data *data,
7056 			struct perf_event *event)
7057 {
7058 	u64 sample_type = data->type;
7059 
7060 	perf_output_put(handle, *header);
7061 
7062 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7063 		perf_output_put(handle, data->id);
7064 
7065 	if (sample_type & PERF_SAMPLE_IP)
7066 		perf_output_put(handle, data->ip);
7067 
7068 	if (sample_type & PERF_SAMPLE_TID)
7069 		perf_output_put(handle, data->tid_entry);
7070 
7071 	if (sample_type & PERF_SAMPLE_TIME)
7072 		perf_output_put(handle, data->time);
7073 
7074 	if (sample_type & PERF_SAMPLE_ADDR)
7075 		perf_output_put(handle, data->addr);
7076 
7077 	if (sample_type & PERF_SAMPLE_ID)
7078 		perf_output_put(handle, data->id);
7079 
7080 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7081 		perf_output_put(handle, data->stream_id);
7082 
7083 	if (sample_type & PERF_SAMPLE_CPU)
7084 		perf_output_put(handle, data->cpu_entry);
7085 
7086 	if (sample_type & PERF_SAMPLE_PERIOD)
7087 		perf_output_put(handle, data->period);
7088 
7089 	if (sample_type & PERF_SAMPLE_READ)
7090 		perf_output_read(handle, event);
7091 
7092 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7093 		int size = 1;
7094 
7095 		size += data->callchain->nr;
7096 		size *= sizeof(u64);
7097 		__output_copy(handle, data->callchain, size);
7098 	}
7099 
7100 	if (sample_type & PERF_SAMPLE_RAW) {
7101 		struct perf_raw_record *raw = data->raw;
7102 
7103 		if (raw) {
7104 			struct perf_raw_frag *frag = &raw->frag;
7105 
7106 			perf_output_put(handle, raw->size);
7107 			do {
7108 				if (frag->copy) {
7109 					__output_custom(handle, frag->copy,
7110 							frag->data, frag->size);
7111 				} else {
7112 					__output_copy(handle, frag->data,
7113 						      frag->size);
7114 				}
7115 				if (perf_raw_frag_last(frag))
7116 					break;
7117 				frag = frag->next;
7118 			} while (1);
7119 			if (frag->pad)
7120 				__output_skip(handle, NULL, frag->pad);
7121 		} else {
7122 			struct {
7123 				u32	size;
7124 				u32	data;
7125 			} raw = {
7126 				.size = sizeof(u32),
7127 				.data = 0,
7128 			};
7129 			perf_output_put(handle, raw);
7130 		}
7131 	}
7132 
7133 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7134 		if (data->br_stack) {
7135 			size_t size;
7136 
7137 			size = data->br_stack->nr
7138 			     * sizeof(struct perf_branch_entry);
7139 
7140 			perf_output_put(handle, data->br_stack->nr);
7141 			if (perf_sample_save_hw_index(event))
7142 				perf_output_put(handle, data->br_stack->hw_idx);
7143 			perf_output_copy(handle, data->br_stack->entries, size);
7144 		} else {
7145 			/*
7146 			 * we always store at least the value of nr
7147 			 */
7148 			u64 nr = 0;
7149 			perf_output_put(handle, nr);
7150 		}
7151 	}
7152 
7153 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7154 		u64 abi = data->regs_user.abi;
7155 
7156 		/*
7157 		 * If there are no regs to dump, notice it through
7158 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7159 		 */
7160 		perf_output_put(handle, abi);
7161 
7162 		if (abi) {
7163 			u64 mask = event->attr.sample_regs_user;
7164 			perf_output_sample_regs(handle,
7165 						data->regs_user.regs,
7166 						mask);
7167 		}
7168 	}
7169 
7170 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7171 		perf_output_sample_ustack(handle,
7172 					  data->stack_user_size,
7173 					  data->regs_user.regs);
7174 	}
7175 
7176 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7177 		perf_output_put(handle, data->weight.full);
7178 
7179 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7180 		perf_output_put(handle, data->data_src.val);
7181 
7182 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7183 		perf_output_put(handle, data->txn);
7184 
7185 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7186 		u64 abi = data->regs_intr.abi;
7187 		/*
7188 		 * If there are no regs to dump, notice it through
7189 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7190 		 */
7191 		perf_output_put(handle, abi);
7192 
7193 		if (abi) {
7194 			u64 mask = event->attr.sample_regs_intr;
7195 
7196 			perf_output_sample_regs(handle,
7197 						data->regs_intr.regs,
7198 						mask);
7199 		}
7200 	}
7201 
7202 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7203 		perf_output_put(handle, data->phys_addr);
7204 
7205 	if (sample_type & PERF_SAMPLE_CGROUP)
7206 		perf_output_put(handle, data->cgroup);
7207 
7208 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7209 		perf_output_put(handle, data->data_page_size);
7210 
7211 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7212 		perf_output_put(handle, data->code_page_size);
7213 
7214 	if (sample_type & PERF_SAMPLE_AUX) {
7215 		perf_output_put(handle, data->aux_size);
7216 
7217 		if (data->aux_size)
7218 			perf_aux_sample_output(event, handle, data);
7219 	}
7220 
7221 	if (!event->attr.watermark) {
7222 		int wakeup_events = event->attr.wakeup_events;
7223 
7224 		if (wakeup_events) {
7225 			struct perf_buffer *rb = handle->rb;
7226 			int events = local_inc_return(&rb->events);
7227 
7228 			if (events >= wakeup_events) {
7229 				local_sub(wakeup_events, &rb->events);
7230 				local_inc(&rb->wakeup);
7231 			}
7232 		}
7233 	}
7234 }
7235 
7236 static u64 perf_virt_to_phys(u64 virt)
7237 {
7238 	u64 phys_addr = 0;
7239 
7240 	if (!virt)
7241 		return 0;
7242 
7243 	if (virt >= TASK_SIZE) {
7244 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7245 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7246 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7247 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7248 	} else {
7249 		/*
7250 		 * Walking the pages tables for user address.
7251 		 * Interrupts are disabled, so it prevents any tear down
7252 		 * of the page tables.
7253 		 * Try IRQ-safe get_user_page_fast_only first.
7254 		 * If failed, leave phys_addr as 0.
7255 		 */
7256 		if (current->mm != NULL) {
7257 			struct page *p;
7258 
7259 			pagefault_disable();
7260 			if (get_user_page_fast_only(virt, 0, &p)) {
7261 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7262 				put_page(p);
7263 			}
7264 			pagefault_enable();
7265 		}
7266 	}
7267 
7268 	return phys_addr;
7269 }
7270 
7271 /*
7272  * Return the pagetable size of a given virtual address.
7273  */
7274 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7275 {
7276 	u64 size = 0;
7277 
7278 #ifdef CONFIG_HAVE_FAST_GUP
7279 	pgd_t *pgdp, pgd;
7280 	p4d_t *p4dp, p4d;
7281 	pud_t *pudp, pud;
7282 	pmd_t *pmdp, pmd;
7283 	pte_t *ptep, pte;
7284 
7285 	pgdp = pgd_offset(mm, addr);
7286 	pgd = READ_ONCE(*pgdp);
7287 	if (pgd_none(pgd))
7288 		return 0;
7289 
7290 	if (pgd_leaf(pgd))
7291 		return pgd_leaf_size(pgd);
7292 
7293 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7294 	p4d = READ_ONCE(*p4dp);
7295 	if (!p4d_present(p4d))
7296 		return 0;
7297 
7298 	if (p4d_leaf(p4d))
7299 		return p4d_leaf_size(p4d);
7300 
7301 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7302 	pud = READ_ONCE(*pudp);
7303 	if (!pud_present(pud))
7304 		return 0;
7305 
7306 	if (pud_leaf(pud))
7307 		return pud_leaf_size(pud);
7308 
7309 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7310 	pmd = READ_ONCE(*pmdp);
7311 	if (!pmd_present(pmd))
7312 		return 0;
7313 
7314 	if (pmd_leaf(pmd))
7315 		return pmd_leaf_size(pmd);
7316 
7317 	ptep = pte_offset_map(&pmd, addr);
7318 	pte = ptep_get_lockless(ptep);
7319 	if (pte_present(pte))
7320 		size = pte_leaf_size(pte);
7321 	pte_unmap(ptep);
7322 #endif /* CONFIG_HAVE_FAST_GUP */
7323 
7324 	return size;
7325 }
7326 
7327 static u64 perf_get_page_size(unsigned long addr)
7328 {
7329 	struct mm_struct *mm;
7330 	unsigned long flags;
7331 	u64 size;
7332 
7333 	if (!addr)
7334 		return 0;
7335 
7336 	/*
7337 	 * Software page-table walkers must disable IRQs,
7338 	 * which prevents any tear down of the page tables.
7339 	 */
7340 	local_irq_save(flags);
7341 
7342 	mm = current->mm;
7343 	if (!mm) {
7344 		/*
7345 		 * For kernel threads and the like, use init_mm so that
7346 		 * we can find kernel memory.
7347 		 */
7348 		mm = &init_mm;
7349 	}
7350 
7351 	size = perf_get_pgtable_size(mm, addr);
7352 
7353 	local_irq_restore(flags);
7354 
7355 	return size;
7356 }
7357 
7358 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7359 
7360 struct perf_callchain_entry *
7361 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7362 {
7363 	bool kernel = !event->attr.exclude_callchain_kernel;
7364 	bool user   = !event->attr.exclude_callchain_user;
7365 	/* Disallow cross-task user callchains. */
7366 	bool crosstask = event->ctx->task && event->ctx->task != current;
7367 	const u32 max_stack = event->attr.sample_max_stack;
7368 	struct perf_callchain_entry *callchain;
7369 
7370 	if (!kernel && !user)
7371 		return &__empty_callchain;
7372 
7373 	callchain = get_perf_callchain(regs, 0, kernel, user,
7374 				       max_stack, crosstask, true);
7375 	return callchain ?: &__empty_callchain;
7376 }
7377 
7378 void perf_prepare_sample(struct perf_event_header *header,
7379 			 struct perf_sample_data *data,
7380 			 struct perf_event *event,
7381 			 struct pt_regs *regs)
7382 {
7383 	u64 sample_type = event->attr.sample_type;
7384 
7385 	header->type = PERF_RECORD_SAMPLE;
7386 	header->size = sizeof(*header) + event->header_size;
7387 
7388 	header->misc = 0;
7389 	header->misc |= perf_misc_flags(regs);
7390 
7391 	__perf_event_header__init_id(header, data, event);
7392 
7393 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7394 		data->ip = perf_instruction_pointer(regs);
7395 
7396 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7397 		int size = 1;
7398 
7399 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7400 			data->callchain = perf_callchain(event, regs);
7401 
7402 		size += data->callchain->nr;
7403 
7404 		header->size += size * sizeof(u64);
7405 	}
7406 
7407 	if (sample_type & PERF_SAMPLE_RAW) {
7408 		struct perf_raw_record *raw = data->raw;
7409 		int size;
7410 
7411 		if (raw) {
7412 			struct perf_raw_frag *frag = &raw->frag;
7413 			u32 sum = 0;
7414 
7415 			do {
7416 				sum += frag->size;
7417 				if (perf_raw_frag_last(frag))
7418 					break;
7419 				frag = frag->next;
7420 			} while (1);
7421 
7422 			size = round_up(sum + sizeof(u32), sizeof(u64));
7423 			raw->size = size - sizeof(u32);
7424 			frag->pad = raw->size - sum;
7425 		} else {
7426 			size = sizeof(u64);
7427 		}
7428 
7429 		header->size += size;
7430 	}
7431 
7432 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7433 		int size = sizeof(u64); /* nr */
7434 		if (data->br_stack) {
7435 			if (perf_sample_save_hw_index(event))
7436 				size += sizeof(u64);
7437 
7438 			size += data->br_stack->nr
7439 			      * sizeof(struct perf_branch_entry);
7440 		}
7441 		header->size += size;
7442 	}
7443 
7444 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7445 		perf_sample_regs_user(&data->regs_user, regs);
7446 
7447 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7448 		/* regs dump ABI info */
7449 		int size = sizeof(u64);
7450 
7451 		if (data->regs_user.regs) {
7452 			u64 mask = event->attr.sample_regs_user;
7453 			size += hweight64(mask) * sizeof(u64);
7454 		}
7455 
7456 		header->size += size;
7457 	}
7458 
7459 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7460 		/*
7461 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7462 		 * processed as the last one or have additional check added
7463 		 * in case new sample type is added, because we could eat
7464 		 * up the rest of the sample size.
7465 		 */
7466 		u16 stack_size = event->attr.sample_stack_user;
7467 		u16 size = sizeof(u64);
7468 
7469 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7470 						     data->regs_user.regs);
7471 
7472 		/*
7473 		 * If there is something to dump, add space for the dump
7474 		 * itself and for the field that tells the dynamic size,
7475 		 * which is how many have been actually dumped.
7476 		 */
7477 		if (stack_size)
7478 			size += sizeof(u64) + stack_size;
7479 
7480 		data->stack_user_size = stack_size;
7481 		header->size += size;
7482 	}
7483 
7484 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7485 		/* regs dump ABI info */
7486 		int size = sizeof(u64);
7487 
7488 		perf_sample_regs_intr(&data->regs_intr, regs);
7489 
7490 		if (data->regs_intr.regs) {
7491 			u64 mask = event->attr.sample_regs_intr;
7492 
7493 			size += hweight64(mask) * sizeof(u64);
7494 		}
7495 
7496 		header->size += size;
7497 	}
7498 
7499 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7500 		data->phys_addr = perf_virt_to_phys(data->addr);
7501 
7502 #ifdef CONFIG_CGROUP_PERF
7503 	if (sample_type & PERF_SAMPLE_CGROUP) {
7504 		struct cgroup *cgrp;
7505 
7506 		/* protected by RCU */
7507 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7508 		data->cgroup = cgroup_id(cgrp);
7509 	}
7510 #endif
7511 
7512 	/*
7513 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7514 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7515 	 * but the value will not dump to the userspace.
7516 	 */
7517 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7518 		data->data_page_size = perf_get_page_size(data->addr);
7519 
7520 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7521 		data->code_page_size = perf_get_page_size(data->ip);
7522 
7523 	if (sample_type & PERF_SAMPLE_AUX) {
7524 		u64 size;
7525 
7526 		header->size += sizeof(u64); /* size */
7527 
7528 		/*
7529 		 * Given the 16bit nature of header::size, an AUX sample can
7530 		 * easily overflow it, what with all the preceding sample bits.
7531 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7532 		 * per sample in total (rounded down to 8 byte boundary).
7533 		 */
7534 		size = min_t(size_t, U16_MAX - header->size,
7535 			     event->attr.aux_sample_size);
7536 		size = rounddown(size, 8);
7537 		size = perf_prepare_sample_aux(event, data, size);
7538 
7539 		WARN_ON_ONCE(size + header->size > U16_MAX);
7540 		header->size += size;
7541 	}
7542 	/*
7543 	 * If you're adding more sample types here, you likely need to do
7544 	 * something about the overflowing header::size, like repurpose the
7545 	 * lowest 3 bits of size, which should be always zero at the moment.
7546 	 * This raises a more important question, do we really need 512k sized
7547 	 * samples and why, so good argumentation is in order for whatever you
7548 	 * do here next.
7549 	 */
7550 	WARN_ON_ONCE(header->size & 7);
7551 }
7552 
7553 static __always_inline int
7554 __perf_event_output(struct perf_event *event,
7555 		    struct perf_sample_data *data,
7556 		    struct pt_regs *regs,
7557 		    int (*output_begin)(struct perf_output_handle *,
7558 					struct perf_sample_data *,
7559 					struct perf_event *,
7560 					unsigned int))
7561 {
7562 	struct perf_output_handle handle;
7563 	struct perf_event_header header;
7564 	int err;
7565 
7566 	/* protect the callchain buffers */
7567 	rcu_read_lock();
7568 
7569 	perf_prepare_sample(&header, data, event, regs);
7570 
7571 	err = output_begin(&handle, data, event, header.size);
7572 	if (err)
7573 		goto exit;
7574 
7575 	perf_output_sample(&handle, &header, data, event);
7576 
7577 	perf_output_end(&handle);
7578 
7579 exit:
7580 	rcu_read_unlock();
7581 	return err;
7582 }
7583 
7584 void
7585 perf_event_output_forward(struct perf_event *event,
7586 			 struct perf_sample_data *data,
7587 			 struct pt_regs *regs)
7588 {
7589 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7590 }
7591 
7592 void
7593 perf_event_output_backward(struct perf_event *event,
7594 			   struct perf_sample_data *data,
7595 			   struct pt_regs *regs)
7596 {
7597 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7598 }
7599 
7600 int
7601 perf_event_output(struct perf_event *event,
7602 		  struct perf_sample_data *data,
7603 		  struct pt_regs *regs)
7604 {
7605 	return __perf_event_output(event, data, regs, perf_output_begin);
7606 }
7607 
7608 /*
7609  * read event_id
7610  */
7611 
7612 struct perf_read_event {
7613 	struct perf_event_header	header;
7614 
7615 	u32				pid;
7616 	u32				tid;
7617 };
7618 
7619 static void
7620 perf_event_read_event(struct perf_event *event,
7621 			struct task_struct *task)
7622 {
7623 	struct perf_output_handle handle;
7624 	struct perf_sample_data sample;
7625 	struct perf_read_event read_event = {
7626 		.header = {
7627 			.type = PERF_RECORD_READ,
7628 			.misc = 0,
7629 			.size = sizeof(read_event) + event->read_size,
7630 		},
7631 		.pid = perf_event_pid(event, task),
7632 		.tid = perf_event_tid(event, task),
7633 	};
7634 	int ret;
7635 
7636 	perf_event_header__init_id(&read_event.header, &sample, event);
7637 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7638 	if (ret)
7639 		return;
7640 
7641 	perf_output_put(&handle, read_event);
7642 	perf_output_read(&handle, event);
7643 	perf_event__output_id_sample(event, &handle, &sample);
7644 
7645 	perf_output_end(&handle);
7646 }
7647 
7648 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7649 
7650 static void
7651 perf_iterate_ctx(struct perf_event_context *ctx,
7652 		   perf_iterate_f output,
7653 		   void *data, bool all)
7654 {
7655 	struct perf_event *event;
7656 
7657 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7658 		if (!all) {
7659 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7660 				continue;
7661 			if (!event_filter_match(event))
7662 				continue;
7663 		}
7664 
7665 		output(event, data);
7666 	}
7667 }
7668 
7669 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7670 {
7671 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7672 	struct perf_event *event;
7673 
7674 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7675 		/*
7676 		 * Skip events that are not fully formed yet; ensure that
7677 		 * if we observe event->ctx, both event and ctx will be
7678 		 * complete enough. See perf_install_in_context().
7679 		 */
7680 		if (!smp_load_acquire(&event->ctx))
7681 			continue;
7682 
7683 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7684 			continue;
7685 		if (!event_filter_match(event))
7686 			continue;
7687 		output(event, data);
7688 	}
7689 }
7690 
7691 /*
7692  * Iterate all events that need to receive side-band events.
7693  *
7694  * For new callers; ensure that account_pmu_sb_event() includes
7695  * your event, otherwise it might not get delivered.
7696  */
7697 static void
7698 perf_iterate_sb(perf_iterate_f output, void *data,
7699 	       struct perf_event_context *task_ctx)
7700 {
7701 	struct perf_event_context *ctx;
7702 	int ctxn;
7703 
7704 	rcu_read_lock();
7705 	preempt_disable();
7706 
7707 	/*
7708 	 * If we have task_ctx != NULL we only notify the task context itself.
7709 	 * The task_ctx is set only for EXIT events before releasing task
7710 	 * context.
7711 	 */
7712 	if (task_ctx) {
7713 		perf_iterate_ctx(task_ctx, output, data, false);
7714 		goto done;
7715 	}
7716 
7717 	perf_iterate_sb_cpu(output, data);
7718 
7719 	for_each_task_context_nr(ctxn) {
7720 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7721 		if (ctx)
7722 			perf_iterate_ctx(ctx, output, data, false);
7723 	}
7724 done:
7725 	preempt_enable();
7726 	rcu_read_unlock();
7727 }
7728 
7729 /*
7730  * Clear all file-based filters at exec, they'll have to be
7731  * re-instated when/if these objects are mmapped again.
7732  */
7733 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7734 {
7735 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7736 	struct perf_addr_filter *filter;
7737 	unsigned int restart = 0, count = 0;
7738 	unsigned long flags;
7739 
7740 	if (!has_addr_filter(event))
7741 		return;
7742 
7743 	raw_spin_lock_irqsave(&ifh->lock, flags);
7744 	list_for_each_entry(filter, &ifh->list, entry) {
7745 		if (filter->path.dentry) {
7746 			event->addr_filter_ranges[count].start = 0;
7747 			event->addr_filter_ranges[count].size = 0;
7748 			restart++;
7749 		}
7750 
7751 		count++;
7752 	}
7753 
7754 	if (restart)
7755 		event->addr_filters_gen++;
7756 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7757 
7758 	if (restart)
7759 		perf_event_stop(event, 1);
7760 }
7761 
7762 void perf_event_exec(void)
7763 {
7764 	struct perf_event_context *ctx;
7765 	int ctxn;
7766 
7767 	for_each_task_context_nr(ctxn) {
7768 		perf_event_enable_on_exec(ctxn);
7769 		perf_event_remove_on_exec(ctxn);
7770 
7771 		rcu_read_lock();
7772 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7773 		if (ctx) {
7774 			perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7775 					 NULL, true);
7776 		}
7777 		rcu_read_unlock();
7778 	}
7779 }
7780 
7781 struct remote_output {
7782 	struct perf_buffer	*rb;
7783 	int			err;
7784 };
7785 
7786 static void __perf_event_output_stop(struct perf_event *event, void *data)
7787 {
7788 	struct perf_event *parent = event->parent;
7789 	struct remote_output *ro = data;
7790 	struct perf_buffer *rb = ro->rb;
7791 	struct stop_event_data sd = {
7792 		.event	= event,
7793 	};
7794 
7795 	if (!has_aux(event))
7796 		return;
7797 
7798 	if (!parent)
7799 		parent = event;
7800 
7801 	/*
7802 	 * In case of inheritance, it will be the parent that links to the
7803 	 * ring-buffer, but it will be the child that's actually using it.
7804 	 *
7805 	 * We are using event::rb to determine if the event should be stopped,
7806 	 * however this may race with ring_buffer_attach() (through set_output),
7807 	 * which will make us skip the event that actually needs to be stopped.
7808 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7809 	 * its rb pointer.
7810 	 */
7811 	if (rcu_dereference(parent->rb) == rb)
7812 		ro->err = __perf_event_stop(&sd);
7813 }
7814 
7815 static int __perf_pmu_output_stop(void *info)
7816 {
7817 	struct perf_event *event = info;
7818 	struct pmu *pmu = event->ctx->pmu;
7819 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7820 	struct remote_output ro = {
7821 		.rb	= event->rb,
7822 	};
7823 
7824 	rcu_read_lock();
7825 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7826 	if (cpuctx->task_ctx)
7827 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7828 				   &ro, false);
7829 	rcu_read_unlock();
7830 
7831 	return ro.err;
7832 }
7833 
7834 static void perf_pmu_output_stop(struct perf_event *event)
7835 {
7836 	struct perf_event *iter;
7837 	int err, cpu;
7838 
7839 restart:
7840 	rcu_read_lock();
7841 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7842 		/*
7843 		 * For per-CPU events, we need to make sure that neither they
7844 		 * nor their children are running; for cpu==-1 events it's
7845 		 * sufficient to stop the event itself if it's active, since
7846 		 * it can't have children.
7847 		 */
7848 		cpu = iter->cpu;
7849 		if (cpu == -1)
7850 			cpu = READ_ONCE(iter->oncpu);
7851 
7852 		if (cpu == -1)
7853 			continue;
7854 
7855 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7856 		if (err == -EAGAIN) {
7857 			rcu_read_unlock();
7858 			goto restart;
7859 		}
7860 	}
7861 	rcu_read_unlock();
7862 }
7863 
7864 /*
7865  * task tracking -- fork/exit
7866  *
7867  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7868  */
7869 
7870 struct perf_task_event {
7871 	struct task_struct		*task;
7872 	struct perf_event_context	*task_ctx;
7873 
7874 	struct {
7875 		struct perf_event_header	header;
7876 
7877 		u32				pid;
7878 		u32				ppid;
7879 		u32				tid;
7880 		u32				ptid;
7881 		u64				time;
7882 	} event_id;
7883 };
7884 
7885 static int perf_event_task_match(struct perf_event *event)
7886 {
7887 	return event->attr.comm  || event->attr.mmap ||
7888 	       event->attr.mmap2 || event->attr.mmap_data ||
7889 	       event->attr.task;
7890 }
7891 
7892 static void perf_event_task_output(struct perf_event *event,
7893 				   void *data)
7894 {
7895 	struct perf_task_event *task_event = data;
7896 	struct perf_output_handle handle;
7897 	struct perf_sample_data	sample;
7898 	struct task_struct *task = task_event->task;
7899 	int ret, size = task_event->event_id.header.size;
7900 
7901 	if (!perf_event_task_match(event))
7902 		return;
7903 
7904 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7905 
7906 	ret = perf_output_begin(&handle, &sample, event,
7907 				task_event->event_id.header.size);
7908 	if (ret)
7909 		goto out;
7910 
7911 	task_event->event_id.pid = perf_event_pid(event, task);
7912 	task_event->event_id.tid = perf_event_tid(event, task);
7913 
7914 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7915 		task_event->event_id.ppid = perf_event_pid(event,
7916 							task->real_parent);
7917 		task_event->event_id.ptid = perf_event_pid(event,
7918 							task->real_parent);
7919 	} else {  /* PERF_RECORD_FORK */
7920 		task_event->event_id.ppid = perf_event_pid(event, current);
7921 		task_event->event_id.ptid = perf_event_tid(event, current);
7922 	}
7923 
7924 	task_event->event_id.time = perf_event_clock(event);
7925 
7926 	perf_output_put(&handle, task_event->event_id);
7927 
7928 	perf_event__output_id_sample(event, &handle, &sample);
7929 
7930 	perf_output_end(&handle);
7931 out:
7932 	task_event->event_id.header.size = size;
7933 }
7934 
7935 static void perf_event_task(struct task_struct *task,
7936 			      struct perf_event_context *task_ctx,
7937 			      int new)
7938 {
7939 	struct perf_task_event task_event;
7940 
7941 	if (!atomic_read(&nr_comm_events) &&
7942 	    !atomic_read(&nr_mmap_events) &&
7943 	    !atomic_read(&nr_task_events))
7944 		return;
7945 
7946 	task_event = (struct perf_task_event){
7947 		.task	  = task,
7948 		.task_ctx = task_ctx,
7949 		.event_id    = {
7950 			.header = {
7951 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7952 				.misc = 0,
7953 				.size = sizeof(task_event.event_id),
7954 			},
7955 			/* .pid  */
7956 			/* .ppid */
7957 			/* .tid  */
7958 			/* .ptid */
7959 			/* .time */
7960 		},
7961 	};
7962 
7963 	perf_iterate_sb(perf_event_task_output,
7964 		       &task_event,
7965 		       task_ctx);
7966 }
7967 
7968 void perf_event_fork(struct task_struct *task)
7969 {
7970 	perf_event_task(task, NULL, 1);
7971 	perf_event_namespaces(task);
7972 }
7973 
7974 /*
7975  * comm tracking
7976  */
7977 
7978 struct perf_comm_event {
7979 	struct task_struct	*task;
7980 	char			*comm;
7981 	int			comm_size;
7982 
7983 	struct {
7984 		struct perf_event_header	header;
7985 
7986 		u32				pid;
7987 		u32				tid;
7988 	} event_id;
7989 };
7990 
7991 static int perf_event_comm_match(struct perf_event *event)
7992 {
7993 	return event->attr.comm;
7994 }
7995 
7996 static void perf_event_comm_output(struct perf_event *event,
7997 				   void *data)
7998 {
7999 	struct perf_comm_event *comm_event = data;
8000 	struct perf_output_handle handle;
8001 	struct perf_sample_data sample;
8002 	int size = comm_event->event_id.header.size;
8003 	int ret;
8004 
8005 	if (!perf_event_comm_match(event))
8006 		return;
8007 
8008 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8009 	ret = perf_output_begin(&handle, &sample, event,
8010 				comm_event->event_id.header.size);
8011 
8012 	if (ret)
8013 		goto out;
8014 
8015 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8016 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8017 
8018 	perf_output_put(&handle, comm_event->event_id);
8019 	__output_copy(&handle, comm_event->comm,
8020 				   comm_event->comm_size);
8021 
8022 	perf_event__output_id_sample(event, &handle, &sample);
8023 
8024 	perf_output_end(&handle);
8025 out:
8026 	comm_event->event_id.header.size = size;
8027 }
8028 
8029 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8030 {
8031 	char comm[TASK_COMM_LEN];
8032 	unsigned int size;
8033 
8034 	memset(comm, 0, sizeof(comm));
8035 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
8036 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8037 
8038 	comm_event->comm = comm;
8039 	comm_event->comm_size = size;
8040 
8041 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8042 
8043 	perf_iterate_sb(perf_event_comm_output,
8044 		       comm_event,
8045 		       NULL);
8046 }
8047 
8048 void perf_event_comm(struct task_struct *task, bool exec)
8049 {
8050 	struct perf_comm_event comm_event;
8051 
8052 	if (!atomic_read(&nr_comm_events))
8053 		return;
8054 
8055 	comm_event = (struct perf_comm_event){
8056 		.task	= task,
8057 		/* .comm      */
8058 		/* .comm_size */
8059 		.event_id  = {
8060 			.header = {
8061 				.type = PERF_RECORD_COMM,
8062 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8063 				/* .size */
8064 			},
8065 			/* .pid */
8066 			/* .tid */
8067 		},
8068 	};
8069 
8070 	perf_event_comm_event(&comm_event);
8071 }
8072 
8073 /*
8074  * namespaces tracking
8075  */
8076 
8077 struct perf_namespaces_event {
8078 	struct task_struct		*task;
8079 
8080 	struct {
8081 		struct perf_event_header	header;
8082 
8083 		u32				pid;
8084 		u32				tid;
8085 		u64				nr_namespaces;
8086 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8087 	} event_id;
8088 };
8089 
8090 static int perf_event_namespaces_match(struct perf_event *event)
8091 {
8092 	return event->attr.namespaces;
8093 }
8094 
8095 static void perf_event_namespaces_output(struct perf_event *event,
8096 					 void *data)
8097 {
8098 	struct perf_namespaces_event *namespaces_event = data;
8099 	struct perf_output_handle handle;
8100 	struct perf_sample_data sample;
8101 	u16 header_size = namespaces_event->event_id.header.size;
8102 	int ret;
8103 
8104 	if (!perf_event_namespaces_match(event))
8105 		return;
8106 
8107 	perf_event_header__init_id(&namespaces_event->event_id.header,
8108 				   &sample, event);
8109 	ret = perf_output_begin(&handle, &sample, event,
8110 				namespaces_event->event_id.header.size);
8111 	if (ret)
8112 		goto out;
8113 
8114 	namespaces_event->event_id.pid = perf_event_pid(event,
8115 							namespaces_event->task);
8116 	namespaces_event->event_id.tid = perf_event_tid(event,
8117 							namespaces_event->task);
8118 
8119 	perf_output_put(&handle, namespaces_event->event_id);
8120 
8121 	perf_event__output_id_sample(event, &handle, &sample);
8122 
8123 	perf_output_end(&handle);
8124 out:
8125 	namespaces_event->event_id.header.size = header_size;
8126 }
8127 
8128 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8129 				   struct task_struct *task,
8130 				   const struct proc_ns_operations *ns_ops)
8131 {
8132 	struct path ns_path;
8133 	struct inode *ns_inode;
8134 	int error;
8135 
8136 	error = ns_get_path(&ns_path, task, ns_ops);
8137 	if (!error) {
8138 		ns_inode = ns_path.dentry->d_inode;
8139 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8140 		ns_link_info->ino = ns_inode->i_ino;
8141 		path_put(&ns_path);
8142 	}
8143 }
8144 
8145 void perf_event_namespaces(struct task_struct *task)
8146 {
8147 	struct perf_namespaces_event namespaces_event;
8148 	struct perf_ns_link_info *ns_link_info;
8149 
8150 	if (!atomic_read(&nr_namespaces_events))
8151 		return;
8152 
8153 	namespaces_event = (struct perf_namespaces_event){
8154 		.task	= task,
8155 		.event_id  = {
8156 			.header = {
8157 				.type = PERF_RECORD_NAMESPACES,
8158 				.misc = 0,
8159 				.size = sizeof(namespaces_event.event_id),
8160 			},
8161 			/* .pid */
8162 			/* .tid */
8163 			.nr_namespaces = NR_NAMESPACES,
8164 			/* .link_info[NR_NAMESPACES] */
8165 		},
8166 	};
8167 
8168 	ns_link_info = namespaces_event.event_id.link_info;
8169 
8170 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8171 			       task, &mntns_operations);
8172 
8173 #ifdef CONFIG_USER_NS
8174 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8175 			       task, &userns_operations);
8176 #endif
8177 #ifdef CONFIG_NET_NS
8178 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8179 			       task, &netns_operations);
8180 #endif
8181 #ifdef CONFIG_UTS_NS
8182 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8183 			       task, &utsns_operations);
8184 #endif
8185 #ifdef CONFIG_IPC_NS
8186 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8187 			       task, &ipcns_operations);
8188 #endif
8189 #ifdef CONFIG_PID_NS
8190 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8191 			       task, &pidns_operations);
8192 #endif
8193 #ifdef CONFIG_CGROUPS
8194 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8195 			       task, &cgroupns_operations);
8196 #endif
8197 
8198 	perf_iterate_sb(perf_event_namespaces_output,
8199 			&namespaces_event,
8200 			NULL);
8201 }
8202 
8203 /*
8204  * cgroup tracking
8205  */
8206 #ifdef CONFIG_CGROUP_PERF
8207 
8208 struct perf_cgroup_event {
8209 	char				*path;
8210 	int				path_size;
8211 	struct {
8212 		struct perf_event_header	header;
8213 		u64				id;
8214 		char				path[];
8215 	} event_id;
8216 };
8217 
8218 static int perf_event_cgroup_match(struct perf_event *event)
8219 {
8220 	return event->attr.cgroup;
8221 }
8222 
8223 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8224 {
8225 	struct perf_cgroup_event *cgroup_event = data;
8226 	struct perf_output_handle handle;
8227 	struct perf_sample_data sample;
8228 	u16 header_size = cgroup_event->event_id.header.size;
8229 	int ret;
8230 
8231 	if (!perf_event_cgroup_match(event))
8232 		return;
8233 
8234 	perf_event_header__init_id(&cgroup_event->event_id.header,
8235 				   &sample, event);
8236 	ret = perf_output_begin(&handle, &sample, event,
8237 				cgroup_event->event_id.header.size);
8238 	if (ret)
8239 		goto out;
8240 
8241 	perf_output_put(&handle, cgroup_event->event_id);
8242 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8243 
8244 	perf_event__output_id_sample(event, &handle, &sample);
8245 
8246 	perf_output_end(&handle);
8247 out:
8248 	cgroup_event->event_id.header.size = header_size;
8249 }
8250 
8251 static void perf_event_cgroup(struct cgroup *cgrp)
8252 {
8253 	struct perf_cgroup_event cgroup_event;
8254 	char path_enomem[16] = "//enomem";
8255 	char *pathname;
8256 	size_t size;
8257 
8258 	if (!atomic_read(&nr_cgroup_events))
8259 		return;
8260 
8261 	cgroup_event = (struct perf_cgroup_event){
8262 		.event_id  = {
8263 			.header = {
8264 				.type = PERF_RECORD_CGROUP,
8265 				.misc = 0,
8266 				.size = sizeof(cgroup_event.event_id),
8267 			},
8268 			.id = cgroup_id(cgrp),
8269 		},
8270 	};
8271 
8272 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8273 	if (pathname == NULL) {
8274 		cgroup_event.path = path_enomem;
8275 	} else {
8276 		/* just to be sure to have enough space for alignment */
8277 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8278 		cgroup_event.path = pathname;
8279 	}
8280 
8281 	/*
8282 	 * Since our buffer works in 8 byte units we need to align our string
8283 	 * size to a multiple of 8. However, we must guarantee the tail end is
8284 	 * zero'd out to avoid leaking random bits to userspace.
8285 	 */
8286 	size = strlen(cgroup_event.path) + 1;
8287 	while (!IS_ALIGNED(size, sizeof(u64)))
8288 		cgroup_event.path[size++] = '\0';
8289 
8290 	cgroup_event.event_id.header.size += size;
8291 	cgroup_event.path_size = size;
8292 
8293 	perf_iterate_sb(perf_event_cgroup_output,
8294 			&cgroup_event,
8295 			NULL);
8296 
8297 	kfree(pathname);
8298 }
8299 
8300 #endif
8301 
8302 /*
8303  * mmap tracking
8304  */
8305 
8306 struct perf_mmap_event {
8307 	struct vm_area_struct	*vma;
8308 
8309 	const char		*file_name;
8310 	int			file_size;
8311 	int			maj, min;
8312 	u64			ino;
8313 	u64			ino_generation;
8314 	u32			prot, flags;
8315 	u8			build_id[BUILD_ID_SIZE_MAX];
8316 	u32			build_id_size;
8317 
8318 	struct {
8319 		struct perf_event_header	header;
8320 
8321 		u32				pid;
8322 		u32				tid;
8323 		u64				start;
8324 		u64				len;
8325 		u64				pgoff;
8326 	} event_id;
8327 };
8328 
8329 static int perf_event_mmap_match(struct perf_event *event,
8330 				 void *data)
8331 {
8332 	struct perf_mmap_event *mmap_event = data;
8333 	struct vm_area_struct *vma = mmap_event->vma;
8334 	int executable = vma->vm_flags & VM_EXEC;
8335 
8336 	return (!executable && event->attr.mmap_data) ||
8337 	       (executable && (event->attr.mmap || event->attr.mmap2));
8338 }
8339 
8340 static void perf_event_mmap_output(struct perf_event *event,
8341 				   void *data)
8342 {
8343 	struct perf_mmap_event *mmap_event = data;
8344 	struct perf_output_handle handle;
8345 	struct perf_sample_data sample;
8346 	int size = mmap_event->event_id.header.size;
8347 	u32 type = mmap_event->event_id.header.type;
8348 	bool use_build_id;
8349 	int ret;
8350 
8351 	if (!perf_event_mmap_match(event, data))
8352 		return;
8353 
8354 	if (event->attr.mmap2) {
8355 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8356 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8357 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8358 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8359 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8360 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8361 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8362 	}
8363 
8364 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8365 	ret = perf_output_begin(&handle, &sample, event,
8366 				mmap_event->event_id.header.size);
8367 	if (ret)
8368 		goto out;
8369 
8370 	mmap_event->event_id.pid = perf_event_pid(event, current);
8371 	mmap_event->event_id.tid = perf_event_tid(event, current);
8372 
8373 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8374 
8375 	if (event->attr.mmap2 && use_build_id)
8376 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8377 
8378 	perf_output_put(&handle, mmap_event->event_id);
8379 
8380 	if (event->attr.mmap2) {
8381 		if (use_build_id) {
8382 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8383 
8384 			__output_copy(&handle, size, 4);
8385 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8386 		} else {
8387 			perf_output_put(&handle, mmap_event->maj);
8388 			perf_output_put(&handle, mmap_event->min);
8389 			perf_output_put(&handle, mmap_event->ino);
8390 			perf_output_put(&handle, mmap_event->ino_generation);
8391 		}
8392 		perf_output_put(&handle, mmap_event->prot);
8393 		perf_output_put(&handle, mmap_event->flags);
8394 	}
8395 
8396 	__output_copy(&handle, mmap_event->file_name,
8397 				   mmap_event->file_size);
8398 
8399 	perf_event__output_id_sample(event, &handle, &sample);
8400 
8401 	perf_output_end(&handle);
8402 out:
8403 	mmap_event->event_id.header.size = size;
8404 	mmap_event->event_id.header.type = type;
8405 }
8406 
8407 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8408 {
8409 	struct vm_area_struct *vma = mmap_event->vma;
8410 	struct file *file = vma->vm_file;
8411 	int maj = 0, min = 0;
8412 	u64 ino = 0, gen = 0;
8413 	u32 prot = 0, flags = 0;
8414 	unsigned int size;
8415 	char tmp[16];
8416 	char *buf = NULL;
8417 	char *name;
8418 
8419 	if (vma->vm_flags & VM_READ)
8420 		prot |= PROT_READ;
8421 	if (vma->vm_flags & VM_WRITE)
8422 		prot |= PROT_WRITE;
8423 	if (vma->vm_flags & VM_EXEC)
8424 		prot |= PROT_EXEC;
8425 
8426 	if (vma->vm_flags & VM_MAYSHARE)
8427 		flags = MAP_SHARED;
8428 	else
8429 		flags = MAP_PRIVATE;
8430 
8431 	if (vma->vm_flags & VM_LOCKED)
8432 		flags |= MAP_LOCKED;
8433 	if (is_vm_hugetlb_page(vma))
8434 		flags |= MAP_HUGETLB;
8435 
8436 	if (file) {
8437 		struct inode *inode;
8438 		dev_t dev;
8439 
8440 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8441 		if (!buf) {
8442 			name = "//enomem";
8443 			goto cpy_name;
8444 		}
8445 		/*
8446 		 * d_path() works from the end of the rb backwards, so we
8447 		 * need to add enough zero bytes after the string to handle
8448 		 * the 64bit alignment we do later.
8449 		 */
8450 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8451 		if (IS_ERR(name)) {
8452 			name = "//toolong";
8453 			goto cpy_name;
8454 		}
8455 		inode = file_inode(vma->vm_file);
8456 		dev = inode->i_sb->s_dev;
8457 		ino = inode->i_ino;
8458 		gen = inode->i_generation;
8459 		maj = MAJOR(dev);
8460 		min = MINOR(dev);
8461 
8462 		goto got_name;
8463 	} else {
8464 		if (vma->vm_ops && vma->vm_ops->name) {
8465 			name = (char *) vma->vm_ops->name(vma);
8466 			if (name)
8467 				goto cpy_name;
8468 		}
8469 
8470 		name = (char *)arch_vma_name(vma);
8471 		if (name)
8472 			goto cpy_name;
8473 
8474 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8475 				vma->vm_end >= vma->vm_mm->brk) {
8476 			name = "[heap]";
8477 			goto cpy_name;
8478 		}
8479 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8480 				vma->vm_end >= vma->vm_mm->start_stack) {
8481 			name = "[stack]";
8482 			goto cpy_name;
8483 		}
8484 
8485 		name = "//anon";
8486 		goto cpy_name;
8487 	}
8488 
8489 cpy_name:
8490 	strlcpy(tmp, name, sizeof(tmp));
8491 	name = tmp;
8492 got_name:
8493 	/*
8494 	 * Since our buffer works in 8 byte units we need to align our string
8495 	 * size to a multiple of 8. However, we must guarantee the tail end is
8496 	 * zero'd out to avoid leaking random bits to userspace.
8497 	 */
8498 	size = strlen(name)+1;
8499 	while (!IS_ALIGNED(size, sizeof(u64)))
8500 		name[size++] = '\0';
8501 
8502 	mmap_event->file_name = name;
8503 	mmap_event->file_size = size;
8504 	mmap_event->maj = maj;
8505 	mmap_event->min = min;
8506 	mmap_event->ino = ino;
8507 	mmap_event->ino_generation = gen;
8508 	mmap_event->prot = prot;
8509 	mmap_event->flags = flags;
8510 
8511 	if (!(vma->vm_flags & VM_EXEC))
8512 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8513 
8514 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8515 
8516 	if (atomic_read(&nr_build_id_events))
8517 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8518 
8519 	perf_iterate_sb(perf_event_mmap_output,
8520 		       mmap_event,
8521 		       NULL);
8522 
8523 	kfree(buf);
8524 }
8525 
8526 /*
8527  * Check whether inode and address range match filter criteria.
8528  */
8529 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8530 				     struct file *file, unsigned long offset,
8531 				     unsigned long size)
8532 {
8533 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8534 	if (!filter->path.dentry)
8535 		return false;
8536 
8537 	if (d_inode(filter->path.dentry) != file_inode(file))
8538 		return false;
8539 
8540 	if (filter->offset > offset + size)
8541 		return false;
8542 
8543 	if (filter->offset + filter->size < offset)
8544 		return false;
8545 
8546 	return true;
8547 }
8548 
8549 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8550 					struct vm_area_struct *vma,
8551 					struct perf_addr_filter_range *fr)
8552 {
8553 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8554 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8555 	struct file *file = vma->vm_file;
8556 
8557 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8558 		return false;
8559 
8560 	if (filter->offset < off) {
8561 		fr->start = vma->vm_start;
8562 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8563 	} else {
8564 		fr->start = vma->vm_start + filter->offset - off;
8565 		fr->size = min(vma->vm_end - fr->start, filter->size);
8566 	}
8567 
8568 	return true;
8569 }
8570 
8571 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8572 {
8573 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8574 	struct vm_area_struct *vma = data;
8575 	struct perf_addr_filter *filter;
8576 	unsigned int restart = 0, count = 0;
8577 	unsigned long flags;
8578 
8579 	if (!has_addr_filter(event))
8580 		return;
8581 
8582 	if (!vma->vm_file)
8583 		return;
8584 
8585 	raw_spin_lock_irqsave(&ifh->lock, flags);
8586 	list_for_each_entry(filter, &ifh->list, entry) {
8587 		if (perf_addr_filter_vma_adjust(filter, vma,
8588 						&event->addr_filter_ranges[count]))
8589 			restart++;
8590 
8591 		count++;
8592 	}
8593 
8594 	if (restart)
8595 		event->addr_filters_gen++;
8596 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8597 
8598 	if (restart)
8599 		perf_event_stop(event, 1);
8600 }
8601 
8602 /*
8603  * Adjust all task's events' filters to the new vma
8604  */
8605 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8606 {
8607 	struct perf_event_context *ctx;
8608 	int ctxn;
8609 
8610 	/*
8611 	 * Data tracing isn't supported yet and as such there is no need
8612 	 * to keep track of anything that isn't related to executable code:
8613 	 */
8614 	if (!(vma->vm_flags & VM_EXEC))
8615 		return;
8616 
8617 	rcu_read_lock();
8618 	for_each_task_context_nr(ctxn) {
8619 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8620 		if (!ctx)
8621 			continue;
8622 
8623 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8624 	}
8625 	rcu_read_unlock();
8626 }
8627 
8628 void perf_event_mmap(struct vm_area_struct *vma)
8629 {
8630 	struct perf_mmap_event mmap_event;
8631 
8632 	if (!atomic_read(&nr_mmap_events))
8633 		return;
8634 
8635 	mmap_event = (struct perf_mmap_event){
8636 		.vma	= vma,
8637 		/* .file_name */
8638 		/* .file_size */
8639 		.event_id  = {
8640 			.header = {
8641 				.type = PERF_RECORD_MMAP,
8642 				.misc = PERF_RECORD_MISC_USER,
8643 				/* .size */
8644 			},
8645 			/* .pid */
8646 			/* .tid */
8647 			.start  = vma->vm_start,
8648 			.len    = vma->vm_end - vma->vm_start,
8649 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8650 		},
8651 		/* .maj (attr_mmap2 only) */
8652 		/* .min (attr_mmap2 only) */
8653 		/* .ino (attr_mmap2 only) */
8654 		/* .ino_generation (attr_mmap2 only) */
8655 		/* .prot (attr_mmap2 only) */
8656 		/* .flags (attr_mmap2 only) */
8657 	};
8658 
8659 	perf_addr_filters_adjust(vma);
8660 	perf_event_mmap_event(&mmap_event);
8661 }
8662 
8663 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8664 			  unsigned long size, u64 flags)
8665 {
8666 	struct perf_output_handle handle;
8667 	struct perf_sample_data sample;
8668 	struct perf_aux_event {
8669 		struct perf_event_header	header;
8670 		u64				offset;
8671 		u64				size;
8672 		u64				flags;
8673 	} rec = {
8674 		.header = {
8675 			.type = PERF_RECORD_AUX,
8676 			.misc = 0,
8677 			.size = sizeof(rec),
8678 		},
8679 		.offset		= head,
8680 		.size		= size,
8681 		.flags		= flags,
8682 	};
8683 	int ret;
8684 
8685 	perf_event_header__init_id(&rec.header, &sample, event);
8686 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8687 
8688 	if (ret)
8689 		return;
8690 
8691 	perf_output_put(&handle, rec);
8692 	perf_event__output_id_sample(event, &handle, &sample);
8693 
8694 	perf_output_end(&handle);
8695 }
8696 
8697 /*
8698  * Lost/dropped samples logging
8699  */
8700 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8701 {
8702 	struct perf_output_handle handle;
8703 	struct perf_sample_data sample;
8704 	int ret;
8705 
8706 	struct {
8707 		struct perf_event_header	header;
8708 		u64				lost;
8709 	} lost_samples_event = {
8710 		.header = {
8711 			.type = PERF_RECORD_LOST_SAMPLES,
8712 			.misc = 0,
8713 			.size = sizeof(lost_samples_event),
8714 		},
8715 		.lost		= lost,
8716 	};
8717 
8718 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8719 
8720 	ret = perf_output_begin(&handle, &sample, event,
8721 				lost_samples_event.header.size);
8722 	if (ret)
8723 		return;
8724 
8725 	perf_output_put(&handle, lost_samples_event);
8726 	perf_event__output_id_sample(event, &handle, &sample);
8727 	perf_output_end(&handle);
8728 }
8729 
8730 /*
8731  * context_switch tracking
8732  */
8733 
8734 struct perf_switch_event {
8735 	struct task_struct	*task;
8736 	struct task_struct	*next_prev;
8737 
8738 	struct {
8739 		struct perf_event_header	header;
8740 		u32				next_prev_pid;
8741 		u32				next_prev_tid;
8742 	} event_id;
8743 };
8744 
8745 static int perf_event_switch_match(struct perf_event *event)
8746 {
8747 	return event->attr.context_switch;
8748 }
8749 
8750 static void perf_event_switch_output(struct perf_event *event, void *data)
8751 {
8752 	struct perf_switch_event *se = data;
8753 	struct perf_output_handle handle;
8754 	struct perf_sample_data sample;
8755 	int ret;
8756 
8757 	if (!perf_event_switch_match(event))
8758 		return;
8759 
8760 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8761 	if (event->ctx->task) {
8762 		se->event_id.header.type = PERF_RECORD_SWITCH;
8763 		se->event_id.header.size = sizeof(se->event_id.header);
8764 	} else {
8765 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8766 		se->event_id.header.size = sizeof(se->event_id);
8767 		se->event_id.next_prev_pid =
8768 					perf_event_pid(event, se->next_prev);
8769 		se->event_id.next_prev_tid =
8770 					perf_event_tid(event, se->next_prev);
8771 	}
8772 
8773 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8774 
8775 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8776 	if (ret)
8777 		return;
8778 
8779 	if (event->ctx->task)
8780 		perf_output_put(&handle, se->event_id.header);
8781 	else
8782 		perf_output_put(&handle, se->event_id);
8783 
8784 	perf_event__output_id_sample(event, &handle, &sample);
8785 
8786 	perf_output_end(&handle);
8787 }
8788 
8789 static void perf_event_switch(struct task_struct *task,
8790 			      struct task_struct *next_prev, bool sched_in)
8791 {
8792 	struct perf_switch_event switch_event;
8793 
8794 	/* N.B. caller checks nr_switch_events != 0 */
8795 
8796 	switch_event = (struct perf_switch_event){
8797 		.task		= task,
8798 		.next_prev	= next_prev,
8799 		.event_id	= {
8800 			.header = {
8801 				/* .type */
8802 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8803 				/* .size */
8804 			},
8805 			/* .next_prev_pid */
8806 			/* .next_prev_tid */
8807 		},
8808 	};
8809 
8810 	if (!sched_in && task->on_rq) {
8811 		switch_event.event_id.header.misc |=
8812 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8813 	}
8814 
8815 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8816 }
8817 
8818 /*
8819  * IRQ throttle logging
8820  */
8821 
8822 static void perf_log_throttle(struct perf_event *event, int enable)
8823 {
8824 	struct perf_output_handle handle;
8825 	struct perf_sample_data sample;
8826 	int ret;
8827 
8828 	struct {
8829 		struct perf_event_header	header;
8830 		u64				time;
8831 		u64				id;
8832 		u64				stream_id;
8833 	} throttle_event = {
8834 		.header = {
8835 			.type = PERF_RECORD_THROTTLE,
8836 			.misc = 0,
8837 			.size = sizeof(throttle_event),
8838 		},
8839 		.time		= perf_event_clock(event),
8840 		.id		= primary_event_id(event),
8841 		.stream_id	= event->id,
8842 	};
8843 
8844 	if (enable)
8845 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8846 
8847 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8848 
8849 	ret = perf_output_begin(&handle, &sample, event,
8850 				throttle_event.header.size);
8851 	if (ret)
8852 		return;
8853 
8854 	perf_output_put(&handle, throttle_event);
8855 	perf_event__output_id_sample(event, &handle, &sample);
8856 	perf_output_end(&handle);
8857 }
8858 
8859 /*
8860  * ksymbol register/unregister tracking
8861  */
8862 
8863 struct perf_ksymbol_event {
8864 	const char	*name;
8865 	int		name_len;
8866 	struct {
8867 		struct perf_event_header        header;
8868 		u64				addr;
8869 		u32				len;
8870 		u16				ksym_type;
8871 		u16				flags;
8872 	} event_id;
8873 };
8874 
8875 static int perf_event_ksymbol_match(struct perf_event *event)
8876 {
8877 	return event->attr.ksymbol;
8878 }
8879 
8880 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8881 {
8882 	struct perf_ksymbol_event *ksymbol_event = data;
8883 	struct perf_output_handle handle;
8884 	struct perf_sample_data sample;
8885 	int ret;
8886 
8887 	if (!perf_event_ksymbol_match(event))
8888 		return;
8889 
8890 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8891 				   &sample, event);
8892 	ret = perf_output_begin(&handle, &sample, event,
8893 				ksymbol_event->event_id.header.size);
8894 	if (ret)
8895 		return;
8896 
8897 	perf_output_put(&handle, ksymbol_event->event_id);
8898 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8899 	perf_event__output_id_sample(event, &handle, &sample);
8900 
8901 	perf_output_end(&handle);
8902 }
8903 
8904 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8905 			const char *sym)
8906 {
8907 	struct perf_ksymbol_event ksymbol_event;
8908 	char name[KSYM_NAME_LEN];
8909 	u16 flags = 0;
8910 	int name_len;
8911 
8912 	if (!atomic_read(&nr_ksymbol_events))
8913 		return;
8914 
8915 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8916 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8917 		goto err;
8918 
8919 	strlcpy(name, sym, KSYM_NAME_LEN);
8920 	name_len = strlen(name) + 1;
8921 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8922 		name[name_len++] = '\0';
8923 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8924 
8925 	if (unregister)
8926 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8927 
8928 	ksymbol_event = (struct perf_ksymbol_event){
8929 		.name = name,
8930 		.name_len = name_len,
8931 		.event_id = {
8932 			.header = {
8933 				.type = PERF_RECORD_KSYMBOL,
8934 				.size = sizeof(ksymbol_event.event_id) +
8935 					name_len,
8936 			},
8937 			.addr = addr,
8938 			.len = len,
8939 			.ksym_type = ksym_type,
8940 			.flags = flags,
8941 		},
8942 	};
8943 
8944 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8945 	return;
8946 err:
8947 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8948 }
8949 
8950 /*
8951  * bpf program load/unload tracking
8952  */
8953 
8954 struct perf_bpf_event {
8955 	struct bpf_prog	*prog;
8956 	struct {
8957 		struct perf_event_header        header;
8958 		u16				type;
8959 		u16				flags;
8960 		u32				id;
8961 		u8				tag[BPF_TAG_SIZE];
8962 	} event_id;
8963 };
8964 
8965 static int perf_event_bpf_match(struct perf_event *event)
8966 {
8967 	return event->attr.bpf_event;
8968 }
8969 
8970 static void perf_event_bpf_output(struct perf_event *event, void *data)
8971 {
8972 	struct perf_bpf_event *bpf_event = data;
8973 	struct perf_output_handle handle;
8974 	struct perf_sample_data sample;
8975 	int ret;
8976 
8977 	if (!perf_event_bpf_match(event))
8978 		return;
8979 
8980 	perf_event_header__init_id(&bpf_event->event_id.header,
8981 				   &sample, event);
8982 	ret = perf_output_begin(&handle, data, event,
8983 				bpf_event->event_id.header.size);
8984 	if (ret)
8985 		return;
8986 
8987 	perf_output_put(&handle, bpf_event->event_id);
8988 	perf_event__output_id_sample(event, &handle, &sample);
8989 
8990 	perf_output_end(&handle);
8991 }
8992 
8993 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8994 					 enum perf_bpf_event_type type)
8995 {
8996 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8997 	int i;
8998 
8999 	if (prog->aux->func_cnt == 0) {
9000 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9001 				   (u64)(unsigned long)prog->bpf_func,
9002 				   prog->jited_len, unregister,
9003 				   prog->aux->ksym.name);
9004 	} else {
9005 		for (i = 0; i < prog->aux->func_cnt; i++) {
9006 			struct bpf_prog *subprog = prog->aux->func[i];
9007 
9008 			perf_event_ksymbol(
9009 				PERF_RECORD_KSYMBOL_TYPE_BPF,
9010 				(u64)(unsigned long)subprog->bpf_func,
9011 				subprog->jited_len, unregister,
9012 				prog->aux->ksym.name);
9013 		}
9014 	}
9015 }
9016 
9017 void perf_event_bpf_event(struct bpf_prog *prog,
9018 			  enum perf_bpf_event_type type,
9019 			  u16 flags)
9020 {
9021 	struct perf_bpf_event bpf_event;
9022 
9023 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
9024 	    type >= PERF_BPF_EVENT_MAX)
9025 		return;
9026 
9027 	switch (type) {
9028 	case PERF_BPF_EVENT_PROG_LOAD:
9029 	case PERF_BPF_EVENT_PROG_UNLOAD:
9030 		if (atomic_read(&nr_ksymbol_events))
9031 			perf_event_bpf_emit_ksymbols(prog, type);
9032 		break;
9033 	default:
9034 		break;
9035 	}
9036 
9037 	if (!atomic_read(&nr_bpf_events))
9038 		return;
9039 
9040 	bpf_event = (struct perf_bpf_event){
9041 		.prog = prog,
9042 		.event_id = {
9043 			.header = {
9044 				.type = PERF_RECORD_BPF_EVENT,
9045 				.size = sizeof(bpf_event.event_id),
9046 			},
9047 			.type = type,
9048 			.flags = flags,
9049 			.id = prog->aux->id,
9050 		},
9051 	};
9052 
9053 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9054 
9055 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9056 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9057 }
9058 
9059 struct perf_text_poke_event {
9060 	const void		*old_bytes;
9061 	const void		*new_bytes;
9062 	size_t			pad;
9063 	u16			old_len;
9064 	u16			new_len;
9065 
9066 	struct {
9067 		struct perf_event_header	header;
9068 
9069 		u64				addr;
9070 	} event_id;
9071 };
9072 
9073 static int perf_event_text_poke_match(struct perf_event *event)
9074 {
9075 	return event->attr.text_poke;
9076 }
9077 
9078 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9079 {
9080 	struct perf_text_poke_event *text_poke_event = data;
9081 	struct perf_output_handle handle;
9082 	struct perf_sample_data sample;
9083 	u64 padding = 0;
9084 	int ret;
9085 
9086 	if (!perf_event_text_poke_match(event))
9087 		return;
9088 
9089 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9090 
9091 	ret = perf_output_begin(&handle, &sample, event,
9092 				text_poke_event->event_id.header.size);
9093 	if (ret)
9094 		return;
9095 
9096 	perf_output_put(&handle, text_poke_event->event_id);
9097 	perf_output_put(&handle, text_poke_event->old_len);
9098 	perf_output_put(&handle, text_poke_event->new_len);
9099 
9100 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9101 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9102 
9103 	if (text_poke_event->pad)
9104 		__output_copy(&handle, &padding, text_poke_event->pad);
9105 
9106 	perf_event__output_id_sample(event, &handle, &sample);
9107 
9108 	perf_output_end(&handle);
9109 }
9110 
9111 void perf_event_text_poke(const void *addr, const void *old_bytes,
9112 			  size_t old_len, const void *new_bytes, size_t new_len)
9113 {
9114 	struct perf_text_poke_event text_poke_event;
9115 	size_t tot, pad;
9116 
9117 	if (!atomic_read(&nr_text_poke_events))
9118 		return;
9119 
9120 	tot  = sizeof(text_poke_event.old_len) + old_len;
9121 	tot += sizeof(text_poke_event.new_len) + new_len;
9122 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9123 
9124 	text_poke_event = (struct perf_text_poke_event){
9125 		.old_bytes    = old_bytes,
9126 		.new_bytes    = new_bytes,
9127 		.pad          = pad,
9128 		.old_len      = old_len,
9129 		.new_len      = new_len,
9130 		.event_id  = {
9131 			.header = {
9132 				.type = PERF_RECORD_TEXT_POKE,
9133 				.misc = PERF_RECORD_MISC_KERNEL,
9134 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9135 			},
9136 			.addr = (unsigned long)addr,
9137 		},
9138 	};
9139 
9140 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9141 }
9142 
9143 void perf_event_itrace_started(struct perf_event *event)
9144 {
9145 	event->attach_state |= PERF_ATTACH_ITRACE;
9146 }
9147 
9148 static void perf_log_itrace_start(struct perf_event *event)
9149 {
9150 	struct perf_output_handle handle;
9151 	struct perf_sample_data sample;
9152 	struct perf_aux_event {
9153 		struct perf_event_header        header;
9154 		u32				pid;
9155 		u32				tid;
9156 	} rec;
9157 	int ret;
9158 
9159 	if (event->parent)
9160 		event = event->parent;
9161 
9162 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9163 	    event->attach_state & PERF_ATTACH_ITRACE)
9164 		return;
9165 
9166 	rec.header.type	= PERF_RECORD_ITRACE_START;
9167 	rec.header.misc	= 0;
9168 	rec.header.size	= sizeof(rec);
9169 	rec.pid	= perf_event_pid(event, current);
9170 	rec.tid	= perf_event_tid(event, current);
9171 
9172 	perf_event_header__init_id(&rec.header, &sample, event);
9173 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9174 
9175 	if (ret)
9176 		return;
9177 
9178 	perf_output_put(&handle, rec);
9179 	perf_event__output_id_sample(event, &handle, &sample);
9180 
9181 	perf_output_end(&handle);
9182 }
9183 
9184 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9185 {
9186 	struct perf_output_handle handle;
9187 	struct perf_sample_data sample;
9188 	struct perf_aux_event {
9189 		struct perf_event_header        header;
9190 		u64				hw_id;
9191 	} rec;
9192 	int ret;
9193 
9194 	if (event->parent)
9195 		event = event->parent;
9196 
9197 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9198 	rec.header.misc	= 0;
9199 	rec.header.size	= sizeof(rec);
9200 	rec.hw_id	= hw_id;
9201 
9202 	perf_event_header__init_id(&rec.header, &sample, event);
9203 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9204 
9205 	if (ret)
9206 		return;
9207 
9208 	perf_output_put(&handle, rec);
9209 	perf_event__output_id_sample(event, &handle, &sample);
9210 
9211 	perf_output_end(&handle);
9212 }
9213 
9214 static int
9215 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9216 {
9217 	struct hw_perf_event *hwc = &event->hw;
9218 	int ret = 0;
9219 	u64 seq;
9220 
9221 	seq = __this_cpu_read(perf_throttled_seq);
9222 	if (seq != hwc->interrupts_seq) {
9223 		hwc->interrupts_seq = seq;
9224 		hwc->interrupts = 1;
9225 	} else {
9226 		hwc->interrupts++;
9227 		if (unlikely(throttle
9228 			     && hwc->interrupts >= max_samples_per_tick)) {
9229 			__this_cpu_inc(perf_throttled_count);
9230 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9231 			hwc->interrupts = MAX_INTERRUPTS;
9232 			perf_log_throttle(event, 0);
9233 			ret = 1;
9234 		}
9235 	}
9236 
9237 	if (event->attr.freq) {
9238 		u64 now = perf_clock();
9239 		s64 delta = now - hwc->freq_time_stamp;
9240 
9241 		hwc->freq_time_stamp = now;
9242 
9243 		if (delta > 0 && delta < 2*TICK_NSEC)
9244 			perf_adjust_period(event, delta, hwc->last_period, true);
9245 	}
9246 
9247 	return ret;
9248 }
9249 
9250 int perf_event_account_interrupt(struct perf_event *event)
9251 {
9252 	return __perf_event_account_interrupt(event, 1);
9253 }
9254 
9255 /*
9256  * Generic event overflow handling, sampling.
9257  */
9258 
9259 static int __perf_event_overflow(struct perf_event *event,
9260 				   int throttle, struct perf_sample_data *data,
9261 				   struct pt_regs *regs)
9262 {
9263 	int events = atomic_read(&event->event_limit);
9264 	int ret = 0;
9265 
9266 	/*
9267 	 * Non-sampling counters might still use the PMI to fold short
9268 	 * hardware counters, ignore those.
9269 	 */
9270 	if (unlikely(!is_sampling_event(event)))
9271 		return 0;
9272 
9273 	ret = __perf_event_account_interrupt(event, throttle);
9274 
9275 	/*
9276 	 * XXX event_limit might not quite work as expected on inherited
9277 	 * events
9278 	 */
9279 
9280 	event->pending_kill = POLL_IN;
9281 	if (events && atomic_dec_and_test(&event->event_limit)) {
9282 		ret = 1;
9283 		event->pending_kill = POLL_HUP;
9284 		event->pending_addr = data->addr;
9285 
9286 		perf_event_disable_inatomic(event);
9287 	}
9288 
9289 	READ_ONCE(event->overflow_handler)(event, data, regs);
9290 
9291 	if (*perf_event_fasync(event) && event->pending_kill) {
9292 		event->pending_wakeup = 1;
9293 		irq_work_queue(&event->pending);
9294 	}
9295 
9296 	return ret;
9297 }
9298 
9299 int perf_event_overflow(struct perf_event *event,
9300 			  struct perf_sample_data *data,
9301 			  struct pt_regs *regs)
9302 {
9303 	return __perf_event_overflow(event, 1, data, regs);
9304 }
9305 
9306 /*
9307  * Generic software event infrastructure
9308  */
9309 
9310 struct swevent_htable {
9311 	struct swevent_hlist		*swevent_hlist;
9312 	struct mutex			hlist_mutex;
9313 	int				hlist_refcount;
9314 
9315 	/* Recursion avoidance in each contexts */
9316 	int				recursion[PERF_NR_CONTEXTS];
9317 };
9318 
9319 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9320 
9321 /*
9322  * We directly increment event->count and keep a second value in
9323  * event->hw.period_left to count intervals. This period event
9324  * is kept in the range [-sample_period, 0] so that we can use the
9325  * sign as trigger.
9326  */
9327 
9328 u64 perf_swevent_set_period(struct perf_event *event)
9329 {
9330 	struct hw_perf_event *hwc = &event->hw;
9331 	u64 period = hwc->last_period;
9332 	u64 nr, offset;
9333 	s64 old, val;
9334 
9335 	hwc->last_period = hwc->sample_period;
9336 
9337 again:
9338 	old = val = local64_read(&hwc->period_left);
9339 	if (val < 0)
9340 		return 0;
9341 
9342 	nr = div64_u64(period + val, period);
9343 	offset = nr * period;
9344 	val -= offset;
9345 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9346 		goto again;
9347 
9348 	return nr;
9349 }
9350 
9351 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9352 				    struct perf_sample_data *data,
9353 				    struct pt_regs *regs)
9354 {
9355 	struct hw_perf_event *hwc = &event->hw;
9356 	int throttle = 0;
9357 
9358 	if (!overflow)
9359 		overflow = perf_swevent_set_period(event);
9360 
9361 	if (hwc->interrupts == MAX_INTERRUPTS)
9362 		return;
9363 
9364 	for (; overflow; overflow--) {
9365 		if (__perf_event_overflow(event, throttle,
9366 					    data, regs)) {
9367 			/*
9368 			 * We inhibit the overflow from happening when
9369 			 * hwc->interrupts == MAX_INTERRUPTS.
9370 			 */
9371 			break;
9372 		}
9373 		throttle = 1;
9374 	}
9375 }
9376 
9377 static void perf_swevent_event(struct perf_event *event, u64 nr,
9378 			       struct perf_sample_data *data,
9379 			       struct pt_regs *regs)
9380 {
9381 	struct hw_perf_event *hwc = &event->hw;
9382 
9383 	local64_add(nr, &event->count);
9384 
9385 	if (!regs)
9386 		return;
9387 
9388 	if (!is_sampling_event(event))
9389 		return;
9390 
9391 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9392 		data->period = nr;
9393 		return perf_swevent_overflow(event, 1, data, regs);
9394 	} else
9395 		data->period = event->hw.last_period;
9396 
9397 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9398 		return perf_swevent_overflow(event, 1, data, regs);
9399 
9400 	if (local64_add_negative(nr, &hwc->period_left))
9401 		return;
9402 
9403 	perf_swevent_overflow(event, 0, data, regs);
9404 }
9405 
9406 static int perf_exclude_event(struct perf_event *event,
9407 			      struct pt_regs *regs)
9408 {
9409 	if (event->hw.state & PERF_HES_STOPPED)
9410 		return 1;
9411 
9412 	if (regs) {
9413 		if (event->attr.exclude_user && user_mode(regs))
9414 			return 1;
9415 
9416 		if (event->attr.exclude_kernel && !user_mode(regs))
9417 			return 1;
9418 	}
9419 
9420 	return 0;
9421 }
9422 
9423 static int perf_swevent_match(struct perf_event *event,
9424 				enum perf_type_id type,
9425 				u32 event_id,
9426 				struct perf_sample_data *data,
9427 				struct pt_regs *regs)
9428 {
9429 	if (event->attr.type != type)
9430 		return 0;
9431 
9432 	if (event->attr.config != event_id)
9433 		return 0;
9434 
9435 	if (perf_exclude_event(event, regs))
9436 		return 0;
9437 
9438 	return 1;
9439 }
9440 
9441 static inline u64 swevent_hash(u64 type, u32 event_id)
9442 {
9443 	u64 val = event_id | (type << 32);
9444 
9445 	return hash_64(val, SWEVENT_HLIST_BITS);
9446 }
9447 
9448 static inline struct hlist_head *
9449 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9450 {
9451 	u64 hash = swevent_hash(type, event_id);
9452 
9453 	return &hlist->heads[hash];
9454 }
9455 
9456 /* For the read side: events when they trigger */
9457 static inline struct hlist_head *
9458 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9459 {
9460 	struct swevent_hlist *hlist;
9461 
9462 	hlist = rcu_dereference(swhash->swevent_hlist);
9463 	if (!hlist)
9464 		return NULL;
9465 
9466 	return __find_swevent_head(hlist, type, event_id);
9467 }
9468 
9469 /* For the event head insertion and removal in the hlist */
9470 static inline struct hlist_head *
9471 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9472 {
9473 	struct swevent_hlist *hlist;
9474 	u32 event_id = event->attr.config;
9475 	u64 type = event->attr.type;
9476 
9477 	/*
9478 	 * Event scheduling is always serialized against hlist allocation
9479 	 * and release. Which makes the protected version suitable here.
9480 	 * The context lock guarantees that.
9481 	 */
9482 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9483 					  lockdep_is_held(&event->ctx->lock));
9484 	if (!hlist)
9485 		return NULL;
9486 
9487 	return __find_swevent_head(hlist, type, event_id);
9488 }
9489 
9490 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9491 				    u64 nr,
9492 				    struct perf_sample_data *data,
9493 				    struct pt_regs *regs)
9494 {
9495 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9496 	struct perf_event *event;
9497 	struct hlist_head *head;
9498 
9499 	rcu_read_lock();
9500 	head = find_swevent_head_rcu(swhash, type, event_id);
9501 	if (!head)
9502 		goto end;
9503 
9504 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9505 		if (perf_swevent_match(event, type, event_id, data, regs))
9506 			perf_swevent_event(event, nr, data, regs);
9507 	}
9508 end:
9509 	rcu_read_unlock();
9510 }
9511 
9512 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9513 
9514 int perf_swevent_get_recursion_context(void)
9515 {
9516 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9517 
9518 	return get_recursion_context(swhash->recursion);
9519 }
9520 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9521 
9522 void perf_swevent_put_recursion_context(int rctx)
9523 {
9524 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9525 
9526 	put_recursion_context(swhash->recursion, rctx);
9527 }
9528 
9529 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9530 {
9531 	struct perf_sample_data data;
9532 
9533 	if (WARN_ON_ONCE(!regs))
9534 		return;
9535 
9536 	perf_sample_data_init(&data, addr, 0);
9537 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9538 }
9539 
9540 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9541 {
9542 	int rctx;
9543 
9544 	preempt_disable_notrace();
9545 	rctx = perf_swevent_get_recursion_context();
9546 	if (unlikely(rctx < 0))
9547 		goto fail;
9548 
9549 	___perf_sw_event(event_id, nr, regs, addr);
9550 
9551 	perf_swevent_put_recursion_context(rctx);
9552 fail:
9553 	preempt_enable_notrace();
9554 }
9555 
9556 static void perf_swevent_read(struct perf_event *event)
9557 {
9558 }
9559 
9560 static int perf_swevent_add(struct perf_event *event, int flags)
9561 {
9562 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9563 	struct hw_perf_event *hwc = &event->hw;
9564 	struct hlist_head *head;
9565 
9566 	if (is_sampling_event(event)) {
9567 		hwc->last_period = hwc->sample_period;
9568 		perf_swevent_set_period(event);
9569 	}
9570 
9571 	hwc->state = !(flags & PERF_EF_START);
9572 
9573 	head = find_swevent_head(swhash, event);
9574 	if (WARN_ON_ONCE(!head))
9575 		return -EINVAL;
9576 
9577 	hlist_add_head_rcu(&event->hlist_entry, head);
9578 	perf_event_update_userpage(event);
9579 
9580 	return 0;
9581 }
9582 
9583 static void perf_swevent_del(struct perf_event *event, int flags)
9584 {
9585 	hlist_del_rcu(&event->hlist_entry);
9586 }
9587 
9588 static void perf_swevent_start(struct perf_event *event, int flags)
9589 {
9590 	event->hw.state = 0;
9591 }
9592 
9593 static void perf_swevent_stop(struct perf_event *event, int flags)
9594 {
9595 	event->hw.state = PERF_HES_STOPPED;
9596 }
9597 
9598 /* Deref the hlist from the update side */
9599 static inline struct swevent_hlist *
9600 swevent_hlist_deref(struct swevent_htable *swhash)
9601 {
9602 	return rcu_dereference_protected(swhash->swevent_hlist,
9603 					 lockdep_is_held(&swhash->hlist_mutex));
9604 }
9605 
9606 static void swevent_hlist_release(struct swevent_htable *swhash)
9607 {
9608 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9609 
9610 	if (!hlist)
9611 		return;
9612 
9613 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9614 	kfree_rcu(hlist, rcu_head);
9615 }
9616 
9617 static void swevent_hlist_put_cpu(int cpu)
9618 {
9619 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9620 
9621 	mutex_lock(&swhash->hlist_mutex);
9622 
9623 	if (!--swhash->hlist_refcount)
9624 		swevent_hlist_release(swhash);
9625 
9626 	mutex_unlock(&swhash->hlist_mutex);
9627 }
9628 
9629 static void swevent_hlist_put(void)
9630 {
9631 	int cpu;
9632 
9633 	for_each_possible_cpu(cpu)
9634 		swevent_hlist_put_cpu(cpu);
9635 }
9636 
9637 static int swevent_hlist_get_cpu(int cpu)
9638 {
9639 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9640 	int err = 0;
9641 
9642 	mutex_lock(&swhash->hlist_mutex);
9643 	if (!swevent_hlist_deref(swhash) &&
9644 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9645 		struct swevent_hlist *hlist;
9646 
9647 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9648 		if (!hlist) {
9649 			err = -ENOMEM;
9650 			goto exit;
9651 		}
9652 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9653 	}
9654 	swhash->hlist_refcount++;
9655 exit:
9656 	mutex_unlock(&swhash->hlist_mutex);
9657 
9658 	return err;
9659 }
9660 
9661 static int swevent_hlist_get(void)
9662 {
9663 	int err, cpu, failed_cpu;
9664 
9665 	mutex_lock(&pmus_lock);
9666 	for_each_possible_cpu(cpu) {
9667 		err = swevent_hlist_get_cpu(cpu);
9668 		if (err) {
9669 			failed_cpu = cpu;
9670 			goto fail;
9671 		}
9672 	}
9673 	mutex_unlock(&pmus_lock);
9674 	return 0;
9675 fail:
9676 	for_each_possible_cpu(cpu) {
9677 		if (cpu == failed_cpu)
9678 			break;
9679 		swevent_hlist_put_cpu(cpu);
9680 	}
9681 	mutex_unlock(&pmus_lock);
9682 	return err;
9683 }
9684 
9685 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9686 
9687 static void sw_perf_event_destroy(struct perf_event *event)
9688 {
9689 	u64 event_id = event->attr.config;
9690 
9691 	WARN_ON(event->parent);
9692 
9693 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9694 	swevent_hlist_put();
9695 }
9696 
9697 static int perf_swevent_init(struct perf_event *event)
9698 {
9699 	u64 event_id = event->attr.config;
9700 
9701 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9702 		return -ENOENT;
9703 
9704 	/*
9705 	 * no branch sampling for software events
9706 	 */
9707 	if (has_branch_stack(event))
9708 		return -EOPNOTSUPP;
9709 
9710 	switch (event_id) {
9711 	case PERF_COUNT_SW_CPU_CLOCK:
9712 	case PERF_COUNT_SW_TASK_CLOCK:
9713 		return -ENOENT;
9714 
9715 	default:
9716 		break;
9717 	}
9718 
9719 	if (event_id >= PERF_COUNT_SW_MAX)
9720 		return -ENOENT;
9721 
9722 	if (!event->parent) {
9723 		int err;
9724 
9725 		err = swevent_hlist_get();
9726 		if (err)
9727 			return err;
9728 
9729 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9730 		event->destroy = sw_perf_event_destroy;
9731 	}
9732 
9733 	return 0;
9734 }
9735 
9736 static struct pmu perf_swevent = {
9737 	.task_ctx_nr	= perf_sw_context,
9738 
9739 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9740 
9741 	.event_init	= perf_swevent_init,
9742 	.add		= perf_swevent_add,
9743 	.del		= perf_swevent_del,
9744 	.start		= perf_swevent_start,
9745 	.stop		= perf_swevent_stop,
9746 	.read		= perf_swevent_read,
9747 };
9748 
9749 #ifdef CONFIG_EVENT_TRACING
9750 
9751 static int perf_tp_filter_match(struct perf_event *event,
9752 				struct perf_sample_data *data)
9753 {
9754 	void *record = data->raw->frag.data;
9755 
9756 	/* only top level events have filters set */
9757 	if (event->parent)
9758 		event = event->parent;
9759 
9760 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9761 		return 1;
9762 	return 0;
9763 }
9764 
9765 static int perf_tp_event_match(struct perf_event *event,
9766 				struct perf_sample_data *data,
9767 				struct pt_regs *regs)
9768 {
9769 	if (event->hw.state & PERF_HES_STOPPED)
9770 		return 0;
9771 	/*
9772 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9773 	 */
9774 	if (event->attr.exclude_kernel && !user_mode(regs))
9775 		return 0;
9776 
9777 	if (!perf_tp_filter_match(event, data))
9778 		return 0;
9779 
9780 	return 1;
9781 }
9782 
9783 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9784 			       struct trace_event_call *call, u64 count,
9785 			       struct pt_regs *regs, struct hlist_head *head,
9786 			       struct task_struct *task)
9787 {
9788 	if (bpf_prog_array_valid(call)) {
9789 		*(struct pt_regs **)raw_data = regs;
9790 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9791 			perf_swevent_put_recursion_context(rctx);
9792 			return;
9793 		}
9794 	}
9795 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9796 		      rctx, task);
9797 }
9798 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9799 
9800 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9801 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9802 		   struct task_struct *task)
9803 {
9804 	struct perf_sample_data data;
9805 	struct perf_event *event;
9806 
9807 	struct perf_raw_record raw = {
9808 		.frag = {
9809 			.size = entry_size,
9810 			.data = record,
9811 		},
9812 	};
9813 
9814 	perf_sample_data_init(&data, 0, 0);
9815 	data.raw = &raw;
9816 
9817 	perf_trace_buf_update(record, event_type);
9818 
9819 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9820 		if (perf_tp_event_match(event, &data, regs))
9821 			perf_swevent_event(event, count, &data, regs);
9822 	}
9823 
9824 	/*
9825 	 * If we got specified a target task, also iterate its context and
9826 	 * deliver this event there too.
9827 	 */
9828 	if (task && task != current) {
9829 		struct perf_event_context *ctx;
9830 		struct trace_entry *entry = record;
9831 
9832 		rcu_read_lock();
9833 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9834 		if (!ctx)
9835 			goto unlock;
9836 
9837 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9838 			if (event->cpu != smp_processor_id())
9839 				continue;
9840 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9841 				continue;
9842 			if (event->attr.config != entry->type)
9843 				continue;
9844 			/* Cannot deliver synchronous signal to other task. */
9845 			if (event->attr.sigtrap)
9846 				continue;
9847 			if (perf_tp_event_match(event, &data, regs))
9848 				perf_swevent_event(event, count, &data, regs);
9849 		}
9850 unlock:
9851 		rcu_read_unlock();
9852 	}
9853 
9854 	perf_swevent_put_recursion_context(rctx);
9855 }
9856 EXPORT_SYMBOL_GPL(perf_tp_event);
9857 
9858 static void tp_perf_event_destroy(struct perf_event *event)
9859 {
9860 	perf_trace_destroy(event);
9861 }
9862 
9863 static int perf_tp_event_init(struct perf_event *event)
9864 {
9865 	int err;
9866 
9867 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9868 		return -ENOENT;
9869 
9870 	/*
9871 	 * no branch sampling for tracepoint events
9872 	 */
9873 	if (has_branch_stack(event))
9874 		return -EOPNOTSUPP;
9875 
9876 	err = perf_trace_init(event);
9877 	if (err)
9878 		return err;
9879 
9880 	event->destroy = tp_perf_event_destroy;
9881 
9882 	return 0;
9883 }
9884 
9885 static struct pmu perf_tracepoint = {
9886 	.task_ctx_nr	= perf_sw_context,
9887 
9888 	.event_init	= perf_tp_event_init,
9889 	.add		= perf_trace_add,
9890 	.del		= perf_trace_del,
9891 	.start		= perf_swevent_start,
9892 	.stop		= perf_swevent_stop,
9893 	.read		= perf_swevent_read,
9894 };
9895 
9896 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9897 /*
9898  * Flags in config, used by dynamic PMU kprobe and uprobe
9899  * The flags should match following PMU_FORMAT_ATTR().
9900  *
9901  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9902  *                               if not set, create kprobe/uprobe
9903  *
9904  * The following values specify a reference counter (or semaphore in the
9905  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9906  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9907  *
9908  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9909  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9910  */
9911 enum perf_probe_config {
9912 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9913 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9914 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9915 };
9916 
9917 PMU_FORMAT_ATTR(retprobe, "config:0");
9918 #endif
9919 
9920 #ifdef CONFIG_KPROBE_EVENTS
9921 static struct attribute *kprobe_attrs[] = {
9922 	&format_attr_retprobe.attr,
9923 	NULL,
9924 };
9925 
9926 static struct attribute_group kprobe_format_group = {
9927 	.name = "format",
9928 	.attrs = kprobe_attrs,
9929 };
9930 
9931 static const struct attribute_group *kprobe_attr_groups[] = {
9932 	&kprobe_format_group,
9933 	NULL,
9934 };
9935 
9936 static int perf_kprobe_event_init(struct perf_event *event);
9937 static struct pmu perf_kprobe = {
9938 	.task_ctx_nr	= perf_sw_context,
9939 	.event_init	= perf_kprobe_event_init,
9940 	.add		= perf_trace_add,
9941 	.del		= perf_trace_del,
9942 	.start		= perf_swevent_start,
9943 	.stop		= perf_swevent_stop,
9944 	.read		= perf_swevent_read,
9945 	.attr_groups	= kprobe_attr_groups,
9946 };
9947 
9948 static int perf_kprobe_event_init(struct perf_event *event)
9949 {
9950 	int err;
9951 	bool is_retprobe;
9952 
9953 	if (event->attr.type != perf_kprobe.type)
9954 		return -ENOENT;
9955 
9956 	if (!perfmon_capable())
9957 		return -EACCES;
9958 
9959 	/*
9960 	 * no branch sampling for probe events
9961 	 */
9962 	if (has_branch_stack(event))
9963 		return -EOPNOTSUPP;
9964 
9965 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9966 	err = perf_kprobe_init(event, is_retprobe);
9967 	if (err)
9968 		return err;
9969 
9970 	event->destroy = perf_kprobe_destroy;
9971 
9972 	return 0;
9973 }
9974 #endif /* CONFIG_KPROBE_EVENTS */
9975 
9976 #ifdef CONFIG_UPROBE_EVENTS
9977 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9978 
9979 static struct attribute *uprobe_attrs[] = {
9980 	&format_attr_retprobe.attr,
9981 	&format_attr_ref_ctr_offset.attr,
9982 	NULL,
9983 };
9984 
9985 static struct attribute_group uprobe_format_group = {
9986 	.name = "format",
9987 	.attrs = uprobe_attrs,
9988 };
9989 
9990 static const struct attribute_group *uprobe_attr_groups[] = {
9991 	&uprobe_format_group,
9992 	NULL,
9993 };
9994 
9995 static int perf_uprobe_event_init(struct perf_event *event);
9996 static struct pmu perf_uprobe = {
9997 	.task_ctx_nr	= perf_sw_context,
9998 	.event_init	= perf_uprobe_event_init,
9999 	.add		= perf_trace_add,
10000 	.del		= perf_trace_del,
10001 	.start		= perf_swevent_start,
10002 	.stop		= perf_swevent_stop,
10003 	.read		= perf_swevent_read,
10004 	.attr_groups	= uprobe_attr_groups,
10005 };
10006 
10007 static int perf_uprobe_event_init(struct perf_event *event)
10008 {
10009 	int err;
10010 	unsigned long ref_ctr_offset;
10011 	bool is_retprobe;
10012 
10013 	if (event->attr.type != perf_uprobe.type)
10014 		return -ENOENT;
10015 
10016 	if (!perfmon_capable())
10017 		return -EACCES;
10018 
10019 	/*
10020 	 * no branch sampling for probe events
10021 	 */
10022 	if (has_branch_stack(event))
10023 		return -EOPNOTSUPP;
10024 
10025 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10026 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10027 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10028 	if (err)
10029 		return err;
10030 
10031 	event->destroy = perf_uprobe_destroy;
10032 
10033 	return 0;
10034 }
10035 #endif /* CONFIG_UPROBE_EVENTS */
10036 
10037 static inline void perf_tp_register(void)
10038 {
10039 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10040 #ifdef CONFIG_KPROBE_EVENTS
10041 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10042 #endif
10043 #ifdef CONFIG_UPROBE_EVENTS
10044 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10045 #endif
10046 }
10047 
10048 static void perf_event_free_filter(struct perf_event *event)
10049 {
10050 	ftrace_profile_free_filter(event);
10051 }
10052 
10053 #ifdef CONFIG_BPF_SYSCALL
10054 static void bpf_overflow_handler(struct perf_event *event,
10055 				 struct perf_sample_data *data,
10056 				 struct pt_regs *regs)
10057 {
10058 	struct bpf_perf_event_data_kern ctx = {
10059 		.data = data,
10060 		.event = event,
10061 	};
10062 	struct bpf_prog *prog;
10063 	int ret = 0;
10064 
10065 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10066 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10067 		goto out;
10068 	rcu_read_lock();
10069 	prog = READ_ONCE(event->prog);
10070 	if (prog)
10071 		ret = bpf_prog_run(prog, &ctx);
10072 	rcu_read_unlock();
10073 out:
10074 	__this_cpu_dec(bpf_prog_active);
10075 	if (!ret)
10076 		return;
10077 
10078 	event->orig_overflow_handler(event, data, regs);
10079 }
10080 
10081 static int perf_event_set_bpf_handler(struct perf_event *event,
10082 				      struct bpf_prog *prog,
10083 				      u64 bpf_cookie)
10084 {
10085 	if (event->overflow_handler_context)
10086 		/* hw breakpoint or kernel counter */
10087 		return -EINVAL;
10088 
10089 	if (event->prog)
10090 		return -EEXIST;
10091 
10092 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10093 		return -EINVAL;
10094 
10095 	if (event->attr.precise_ip &&
10096 	    prog->call_get_stack &&
10097 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10098 	     event->attr.exclude_callchain_kernel ||
10099 	     event->attr.exclude_callchain_user)) {
10100 		/*
10101 		 * On perf_event with precise_ip, calling bpf_get_stack()
10102 		 * may trigger unwinder warnings and occasional crashes.
10103 		 * bpf_get_[stack|stackid] works around this issue by using
10104 		 * callchain attached to perf_sample_data. If the
10105 		 * perf_event does not full (kernel and user) callchain
10106 		 * attached to perf_sample_data, do not allow attaching BPF
10107 		 * program that calls bpf_get_[stack|stackid].
10108 		 */
10109 		return -EPROTO;
10110 	}
10111 
10112 	event->prog = prog;
10113 	event->bpf_cookie = bpf_cookie;
10114 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10115 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10116 	return 0;
10117 }
10118 
10119 static void perf_event_free_bpf_handler(struct perf_event *event)
10120 {
10121 	struct bpf_prog *prog = event->prog;
10122 
10123 	if (!prog)
10124 		return;
10125 
10126 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10127 	event->prog = NULL;
10128 	bpf_prog_put(prog);
10129 }
10130 #else
10131 static int perf_event_set_bpf_handler(struct perf_event *event,
10132 				      struct bpf_prog *prog,
10133 				      u64 bpf_cookie)
10134 {
10135 	return -EOPNOTSUPP;
10136 }
10137 static void perf_event_free_bpf_handler(struct perf_event *event)
10138 {
10139 }
10140 #endif
10141 
10142 /*
10143  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10144  * with perf_event_open()
10145  */
10146 static inline bool perf_event_is_tracing(struct perf_event *event)
10147 {
10148 	if (event->pmu == &perf_tracepoint)
10149 		return true;
10150 #ifdef CONFIG_KPROBE_EVENTS
10151 	if (event->pmu == &perf_kprobe)
10152 		return true;
10153 #endif
10154 #ifdef CONFIG_UPROBE_EVENTS
10155 	if (event->pmu == &perf_uprobe)
10156 		return true;
10157 #endif
10158 	return false;
10159 }
10160 
10161 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10162 			    u64 bpf_cookie)
10163 {
10164 	bool is_kprobe, is_tracepoint, is_syscall_tp;
10165 
10166 	if (!perf_event_is_tracing(event))
10167 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10168 
10169 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10170 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10171 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10172 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10173 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10174 		return -EINVAL;
10175 
10176 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10177 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10178 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10179 		return -EINVAL;
10180 
10181 	/* Kprobe override only works for kprobes, not uprobes. */
10182 	if (prog->kprobe_override &&
10183 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10184 		return -EINVAL;
10185 
10186 	if (is_tracepoint || is_syscall_tp) {
10187 		int off = trace_event_get_offsets(event->tp_event);
10188 
10189 		if (prog->aux->max_ctx_offset > off)
10190 			return -EACCES;
10191 	}
10192 
10193 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10194 }
10195 
10196 void perf_event_free_bpf_prog(struct perf_event *event)
10197 {
10198 	if (!perf_event_is_tracing(event)) {
10199 		perf_event_free_bpf_handler(event);
10200 		return;
10201 	}
10202 	perf_event_detach_bpf_prog(event);
10203 }
10204 
10205 #else
10206 
10207 static inline void perf_tp_register(void)
10208 {
10209 }
10210 
10211 static void perf_event_free_filter(struct perf_event *event)
10212 {
10213 }
10214 
10215 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10216 			    u64 bpf_cookie)
10217 {
10218 	return -ENOENT;
10219 }
10220 
10221 void perf_event_free_bpf_prog(struct perf_event *event)
10222 {
10223 }
10224 #endif /* CONFIG_EVENT_TRACING */
10225 
10226 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10227 void perf_bp_event(struct perf_event *bp, void *data)
10228 {
10229 	struct perf_sample_data sample;
10230 	struct pt_regs *regs = data;
10231 
10232 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10233 
10234 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10235 		perf_swevent_event(bp, 1, &sample, regs);
10236 }
10237 #endif
10238 
10239 /*
10240  * Allocate a new address filter
10241  */
10242 static struct perf_addr_filter *
10243 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10244 {
10245 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10246 	struct perf_addr_filter *filter;
10247 
10248 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10249 	if (!filter)
10250 		return NULL;
10251 
10252 	INIT_LIST_HEAD(&filter->entry);
10253 	list_add_tail(&filter->entry, filters);
10254 
10255 	return filter;
10256 }
10257 
10258 static void free_filters_list(struct list_head *filters)
10259 {
10260 	struct perf_addr_filter *filter, *iter;
10261 
10262 	list_for_each_entry_safe(filter, iter, filters, entry) {
10263 		path_put(&filter->path);
10264 		list_del(&filter->entry);
10265 		kfree(filter);
10266 	}
10267 }
10268 
10269 /*
10270  * Free existing address filters and optionally install new ones
10271  */
10272 static void perf_addr_filters_splice(struct perf_event *event,
10273 				     struct list_head *head)
10274 {
10275 	unsigned long flags;
10276 	LIST_HEAD(list);
10277 
10278 	if (!has_addr_filter(event))
10279 		return;
10280 
10281 	/* don't bother with children, they don't have their own filters */
10282 	if (event->parent)
10283 		return;
10284 
10285 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10286 
10287 	list_splice_init(&event->addr_filters.list, &list);
10288 	if (head)
10289 		list_splice(head, &event->addr_filters.list);
10290 
10291 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10292 
10293 	free_filters_list(&list);
10294 }
10295 
10296 /*
10297  * Scan through mm's vmas and see if one of them matches the
10298  * @filter; if so, adjust filter's address range.
10299  * Called with mm::mmap_lock down for reading.
10300  */
10301 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10302 				   struct mm_struct *mm,
10303 				   struct perf_addr_filter_range *fr)
10304 {
10305 	struct vm_area_struct *vma;
10306 
10307 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10308 		if (!vma->vm_file)
10309 			continue;
10310 
10311 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10312 			return;
10313 	}
10314 }
10315 
10316 /*
10317  * Update event's address range filters based on the
10318  * task's existing mappings, if any.
10319  */
10320 static void perf_event_addr_filters_apply(struct perf_event *event)
10321 {
10322 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10323 	struct task_struct *task = READ_ONCE(event->ctx->task);
10324 	struct perf_addr_filter *filter;
10325 	struct mm_struct *mm = NULL;
10326 	unsigned int count = 0;
10327 	unsigned long flags;
10328 
10329 	/*
10330 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10331 	 * will stop on the parent's child_mutex that our caller is also holding
10332 	 */
10333 	if (task == TASK_TOMBSTONE)
10334 		return;
10335 
10336 	if (ifh->nr_file_filters) {
10337 		mm = get_task_mm(task);
10338 		if (!mm)
10339 			goto restart;
10340 
10341 		mmap_read_lock(mm);
10342 	}
10343 
10344 	raw_spin_lock_irqsave(&ifh->lock, flags);
10345 	list_for_each_entry(filter, &ifh->list, entry) {
10346 		if (filter->path.dentry) {
10347 			/*
10348 			 * Adjust base offset if the filter is associated to a
10349 			 * binary that needs to be mapped:
10350 			 */
10351 			event->addr_filter_ranges[count].start = 0;
10352 			event->addr_filter_ranges[count].size = 0;
10353 
10354 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10355 		} else {
10356 			event->addr_filter_ranges[count].start = filter->offset;
10357 			event->addr_filter_ranges[count].size  = filter->size;
10358 		}
10359 
10360 		count++;
10361 	}
10362 
10363 	event->addr_filters_gen++;
10364 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10365 
10366 	if (ifh->nr_file_filters) {
10367 		mmap_read_unlock(mm);
10368 
10369 		mmput(mm);
10370 	}
10371 
10372 restart:
10373 	perf_event_stop(event, 1);
10374 }
10375 
10376 /*
10377  * Address range filtering: limiting the data to certain
10378  * instruction address ranges. Filters are ioctl()ed to us from
10379  * userspace as ascii strings.
10380  *
10381  * Filter string format:
10382  *
10383  * ACTION RANGE_SPEC
10384  * where ACTION is one of the
10385  *  * "filter": limit the trace to this region
10386  *  * "start": start tracing from this address
10387  *  * "stop": stop tracing at this address/region;
10388  * RANGE_SPEC is
10389  *  * for kernel addresses: <start address>[/<size>]
10390  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10391  *
10392  * if <size> is not specified or is zero, the range is treated as a single
10393  * address; not valid for ACTION=="filter".
10394  */
10395 enum {
10396 	IF_ACT_NONE = -1,
10397 	IF_ACT_FILTER,
10398 	IF_ACT_START,
10399 	IF_ACT_STOP,
10400 	IF_SRC_FILE,
10401 	IF_SRC_KERNEL,
10402 	IF_SRC_FILEADDR,
10403 	IF_SRC_KERNELADDR,
10404 };
10405 
10406 enum {
10407 	IF_STATE_ACTION = 0,
10408 	IF_STATE_SOURCE,
10409 	IF_STATE_END,
10410 };
10411 
10412 static const match_table_t if_tokens = {
10413 	{ IF_ACT_FILTER,	"filter" },
10414 	{ IF_ACT_START,		"start" },
10415 	{ IF_ACT_STOP,		"stop" },
10416 	{ IF_SRC_FILE,		"%u/%u@%s" },
10417 	{ IF_SRC_KERNEL,	"%u/%u" },
10418 	{ IF_SRC_FILEADDR,	"%u@%s" },
10419 	{ IF_SRC_KERNELADDR,	"%u" },
10420 	{ IF_ACT_NONE,		NULL },
10421 };
10422 
10423 /*
10424  * Address filter string parser
10425  */
10426 static int
10427 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10428 			     struct list_head *filters)
10429 {
10430 	struct perf_addr_filter *filter = NULL;
10431 	char *start, *orig, *filename = NULL;
10432 	substring_t args[MAX_OPT_ARGS];
10433 	int state = IF_STATE_ACTION, token;
10434 	unsigned int kernel = 0;
10435 	int ret = -EINVAL;
10436 
10437 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10438 	if (!fstr)
10439 		return -ENOMEM;
10440 
10441 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10442 		static const enum perf_addr_filter_action_t actions[] = {
10443 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10444 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10445 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10446 		};
10447 		ret = -EINVAL;
10448 
10449 		if (!*start)
10450 			continue;
10451 
10452 		/* filter definition begins */
10453 		if (state == IF_STATE_ACTION) {
10454 			filter = perf_addr_filter_new(event, filters);
10455 			if (!filter)
10456 				goto fail;
10457 		}
10458 
10459 		token = match_token(start, if_tokens, args);
10460 		switch (token) {
10461 		case IF_ACT_FILTER:
10462 		case IF_ACT_START:
10463 		case IF_ACT_STOP:
10464 			if (state != IF_STATE_ACTION)
10465 				goto fail;
10466 
10467 			filter->action = actions[token];
10468 			state = IF_STATE_SOURCE;
10469 			break;
10470 
10471 		case IF_SRC_KERNELADDR:
10472 		case IF_SRC_KERNEL:
10473 			kernel = 1;
10474 			fallthrough;
10475 
10476 		case IF_SRC_FILEADDR:
10477 		case IF_SRC_FILE:
10478 			if (state != IF_STATE_SOURCE)
10479 				goto fail;
10480 
10481 			*args[0].to = 0;
10482 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10483 			if (ret)
10484 				goto fail;
10485 
10486 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10487 				*args[1].to = 0;
10488 				ret = kstrtoul(args[1].from, 0, &filter->size);
10489 				if (ret)
10490 					goto fail;
10491 			}
10492 
10493 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10494 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10495 
10496 				kfree(filename);
10497 				filename = match_strdup(&args[fpos]);
10498 				if (!filename) {
10499 					ret = -ENOMEM;
10500 					goto fail;
10501 				}
10502 			}
10503 
10504 			state = IF_STATE_END;
10505 			break;
10506 
10507 		default:
10508 			goto fail;
10509 		}
10510 
10511 		/*
10512 		 * Filter definition is fully parsed, validate and install it.
10513 		 * Make sure that it doesn't contradict itself or the event's
10514 		 * attribute.
10515 		 */
10516 		if (state == IF_STATE_END) {
10517 			ret = -EINVAL;
10518 			if (kernel && event->attr.exclude_kernel)
10519 				goto fail;
10520 
10521 			/*
10522 			 * ACTION "filter" must have a non-zero length region
10523 			 * specified.
10524 			 */
10525 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10526 			    !filter->size)
10527 				goto fail;
10528 
10529 			if (!kernel) {
10530 				if (!filename)
10531 					goto fail;
10532 
10533 				/*
10534 				 * For now, we only support file-based filters
10535 				 * in per-task events; doing so for CPU-wide
10536 				 * events requires additional context switching
10537 				 * trickery, since same object code will be
10538 				 * mapped at different virtual addresses in
10539 				 * different processes.
10540 				 */
10541 				ret = -EOPNOTSUPP;
10542 				if (!event->ctx->task)
10543 					goto fail;
10544 
10545 				/* look up the path and grab its inode */
10546 				ret = kern_path(filename, LOOKUP_FOLLOW,
10547 						&filter->path);
10548 				if (ret)
10549 					goto fail;
10550 
10551 				ret = -EINVAL;
10552 				if (!filter->path.dentry ||
10553 				    !S_ISREG(d_inode(filter->path.dentry)
10554 					     ->i_mode))
10555 					goto fail;
10556 
10557 				event->addr_filters.nr_file_filters++;
10558 			}
10559 
10560 			/* ready to consume more filters */
10561 			state = IF_STATE_ACTION;
10562 			filter = NULL;
10563 		}
10564 	}
10565 
10566 	if (state != IF_STATE_ACTION)
10567 		goto fail;
10568 
10569 	kfree(filename);
10570 	kfree(orig);
10571 
10572 	return 0;
10573 
10574 fail:
10575 	kfree(filename);
10576 	free_filters_list(filters);
10577 	kfree(orig);
10578 
10579 	return ret;
10580 }
10581 
10582 static int
10583 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10584 {
10585 	LIST_HEAD(filters);
10586 	int ret;
10587 
10588 	/*
10589 	 * Since this is called in perf_ioctl() path, we're already holding
10590 	 * ctx::mutex.
10591 	 */
10592 	lockdep_assert_held(&event->ctx->mutex);
10593 
10594 	if (WARN_ON_ONCE(event->parent))
10595 		return -EINVAL;
10596 
10597 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10598 	if (ret)
10599 		goto fail_clear_files;
10600 
10601 	ret = event->pmu->addr_filters_validate(&filters);
10602 	if (ret)
10603 		goto fail_free_filters;
10604 
10605 	/* remove existing filters, if any */
10606 	perf_addr_filters_splice(event, &filters);
10607 
10608 	/* install new filters */
10609 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10610 
10611 	return ret;
10612 
10613 fail_free_filters:
10614 	free_filters_list(&filters);
10615 
10616 fail_clear_files:
10617 	event->addr_filters.nr_file_filters = 0;
10618 
10619 	return ret;
10620 }
10621 
10622 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10623 {
10624 	int ret = -EINVAL;
10625 	char *filter_str;
10626 
10627 	filter_str = strndup_user(arg, PAGE_SIZE);
10628 	if (IS_ERR(filter_str))
10629 		return PTR_ERR(filter_str);
10630 
10631 #ifdef CONFIG_EVENT_TRACING
10632 	if (perf_event_is_tracing(event)) {
10633 		struct perf_event_context *ctx = event->ctx;
10634 
10635 		/*
10636 		 * Beware, here be dragons!!
10637 		 *
10638 		 * the tracepoint muck will deadlock against ctx->mutex, but
10639 		 * the tracepoint stuff does not actually need it. So
10640 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10641 		 * already have a reference on ctx.
10642 		 *
10643 		 * This can result in event getting moved to a different ctx,
10644 		 * but that does not affect the tracepoint state.
10645 		 */
10646 		mutex_unlock(&ctx->mutex);
10647 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10648 		mutex_lock(&ctx->mutex);
10649 	} else
10650 #endif
10651 	if (has_addr_filter(event))
10652 		ret = perf_event_set_addr_filter(event, filter_str);
10653 
10654 	kfree(filter_str);
10655 	return ret;
10656 }
10657 
10658 /*
10659  * hrtimer based swevent callback
10660  */
10661 
10662 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10663 {
10664 	enum hrtimer_restart ret = HRTIMER_RESTART;
10665 	struct perf_sample_data data;
10666 	struct pt_regs *regs;
10667 	struct perf_event *event;
10668 	u64 period;
10669 
10670 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10671 
10672 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10673 		return HRTIMER_NORESTART;
10674 
10675 	event->pmu->read(event);
10676 
10677 	perf_sample_data_init(&data, 0, event->hw.last_period);
10678 	regs = get_irq_regs();
10679 
10680 	if (regs && !perf_exclude_event(event, regs)) {
10681 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10682 			if (__perf_event_overflow(event, 1, &data, regs))
10683 				ret = HRTIMER_NORESTART;
10684 	}
10685 
10686 	period = max_t(u64, 10000, event->hw.sample_period);
10687 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10688 
10689 	return ret;
10690 }
10691 
10692 static void perf_swevent_start_hrtimer(struct perf_event *event)
10693 {
10694 	struct hw_perf_event *hwc = &event->hw;
10695 	s64 period;
10696 
10697 	if (!is_sampling_event(event))
10698 		return;
10699 
10700 	period = local64_read(&hwc->period_left);
10701 	if (period) {
10702 		if (period < 0)
10703 			period = 10000;
10704 
10705 		local64_set(&hwc->period_left, 0);
10706 	} else {
10707 		period = max_t(u64, 10000, hwc->sample_period);
10708 	}
10709 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10710 		      HRTIMER_MODE_REL_PINNED_HARD);
10711 }
10712 
10713 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10714 {
10715 	struct hw_perf_event *hwc = &event->hw;
10716 
10717 	if (is_sampling_event(event)) {
10718 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10719 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10720 
10721 		hrtimer_cancel(&hwc->hrtimer);
10722 	}
10723 }
10724 
10725 static void perf_swevent_init_hrtimer(struct perf_event *event)
10726 {
10727 	struct hw_perf_event *hwc = &event->hw;
10728 
10729 	if (!is_sampling_event(event))
10730 		return;
10731 
10732 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10733 	hwc->hrtimer.function = perf_swevent_hrtimer;
10734 
10735 	/*
10736 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10737 	 * mapping and avoid the whole period adjust feedback stuff.
10738 	 */
10739 	if (event->attr.freq) {
10740 		long freq = event->attr.sample_freq;
10741 
10742 		event->attr.sample_period = NSEC_PER_SEC / freq;
10743 		hwc->sample_period = event->attr.sample_period;
10744 		local64_set(&hwc->period_left, hwc->sample_period);
10745 		hwc->last_period = hwc->sample_period;
10746 		event->attr.freq = 0;
10747 	}
10748 }
10749 
10750 /*
10751  * Software event: cpu wall time clock
10752  */
10753 
10754 static void cpu_clock_event_update(struct perf_event *event)
10755 {
10756 	s64 prev;
10757 	u64 now;
10758 
10759 	now = local_clock();
10760 	prev = local64_xchg(&event->hw.prev_count, now);
10761 	local64_add(now - prev, &event->count);
10762 }
10763 
10764 static void cpu_clock_event_start(struct perf_event *event, int flags)
10765 {
10766 	local64_set(&event->hw.prev_count, local_clock());
10767 	perf_swevent_start_hrtimer(event);
10768 }
10769 
10770 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10771 {
10772 	perf_swevent_cancel_hrtimer(event);
10773 	cpu_clock_event_update(event);
10774 }
10775 
10776 static int cpu_clock_event_add(struct perf_event *event, int flags)
10777 {
10778 	if (flags & PERF_EF_START)
10779 		cpu_clock_event_start(event, flags);
10780 	perf_event_update_userpage(event);
10781 
10782 	return 0;
10783 }
10784 
10785 static void cpu_clock_event_del(struct perf_event *event, int flags)
10786 {
10787 	cpu_clock_event_stop(event, flags);
10788 }
10789 
10790 static void cpu_clock_event_read(struct perf_event *event)
10791 {
10792 	cpu_clock_event_update(event);
10793 }
10794 
10795 static int cpu_clock_event_init(struct perf_event *event)
10796 {
10797 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10798 		return -ENOENT;
10799 
10800 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10801 		return -ENOENT;
10802 
10803 	/*
10804 	 * no branch sampling for software events
10805 	 */
10806 	if (has_branch_stack(event))
10807 		return -EOPNOTSUPP;
10808 
10809 	perf_swevent_init_hrtimer(event);
10810 
10811 	return 0;
10812 }
10813 
10814 static struct pmu perf_cpu_clock = {
10815 	.task_ctx_nr	= perf_sw_context,
10816 
10817 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10818 
10819 	.event_init	= cpu_clock_event_init,
10820 	.add		= cpu_clock_event_add,
10821 	.del		= cpu_clock_event_del,
10822 	.start		= cpu_clock_event_start,
10823 	.stop		= cpu_clock_event_stop,
10824 	.read		= cpu_clock_event_read,
10825 };
10826 
10827 /*
10828  * Software event: task time clock
10829  */
10830 
10831 static void task_clock_event_update(struct perf_event *event, u64 now)
10832 {
10833 	u64 prev;
10834 	s64 delta;
10835 
10836 	prev = local64_xchg(&event->hw.prev_count, now);
10837 	delta = now - prev;
10838 	local64_add(delta, &event->count);
10839 }
10840 
10841 static void task_clock_event_start(struct perf_event *event, int flags)
10842 {
10843 	local64_set(&event->hw.prev_count, event->ctx->time);
10844 	perf_swevent_start_hrtimer(event);
10845 }
10846 
10847 static void task_clock_event_stop(struct perf_event *event, int flags)
10848 {
10849 	perf_swevent_cancel_hrtimer(event);
10850 	task_clock_event_update(event, event->ctx->time);
10851 }
10852 
10853 static int task_clock_event_add(struct perf_event *event, int flags)
10854 {
10855 	if (flags & PERF_EF_START)
10856 		task_clock_event_start(event, flags);
10857 	perf_event_update_userpage(event);
10858 
10859 	return 0;
10860 }
10861 
10862 static void task_clock_event_del(struct perf_event *event, int flags)
10863 {
10864 	task_clock_event_stop(event, PERF_EF_UPDATE);
10865 }
10866 
10867 static void task_clock_event_read(struct perf_event *event)
10868 {
10869 	u64 now = perf_clock();
10870 	u64 delta = now - event->ctx->timestamp;
10871 	u64 time = event->ctx->time + delta;
10872 
10873 	task_clock_event_update(event, time);
10874 }
10875 
10876 static int task_clock_event_init(struct perf_event *event)
10877 {
10878 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10879 		return -ENOENT;
10880 
10881 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10882 		return -ENOENT;
10883 
10884 	/*
10885 	 * no branch sampling for software events
10886 	 */
10887 	if (has_branch_stack(event))
10888 		return -EOPNOTSUPP;
10889 
10890 	perf_swevent_init_hrtimer(event);
10891 
10892 	return 0;
10893 }
10894 
10895 static struct pmu perf_task_clock = {
10896 	.task_ctx_nr	= perf_sw_context,
10897 
10898 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10899 
10900 	.event_init	= task_clock_event_init,
10901 	.add		= task_clock_event_add,
10902 	.del		= task_clock_event_del,
10903 	.start		= task_clock_event_start,
10904 	.stop		= task_clock_event_stop,
10905 	.read		= task_clock_event_read,
10906 };
10907 
10908 static void perf_pmu_nop_void(struct pmu *pmu)
10909 {
10910 }
10911 
10912 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10913 {
10914 }
10915 
10916 static int perf_pmu_nop_int(struct pmu *pmu)
10917 {
10918 	return 0;
10919 }
10920 
10921 static int perf_event_nop_int(struct perf_event *event, u64 value)
10922 {
10923 	return 0;
10924 }
10925 
10926 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10927 
10928 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10929 {
10930 	__this_cpu_write(nop_txn_flags, flags);
10931 
10932 	if (flags & ~PERF_PMU_TXN_ADD)
10933 		return;
10934 
10935 	perf_pmu_disable(pmu);
10936 }
10937 
10938 static int perf_pmu_commit_txn(struct pmu *pmu)
10939 {
10940 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10941 
10942 	__this_cpu_write(nop_txn_flags, 0);
10943 
10944 	if (flags & ~PERF_PMU_TXN_ADD)
10945 		return 0;
10946 
10947 	perf_pmu_enable(pmu);
10948 	return 0;
10949 }
10950 
10951 static void perf_pmu_cancel_txn(struct pmu *pmu)
10952 {
10953 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10954 
10955 	__this_cpu_write(nop_txn_flags, 0);
10956 
10957 	if (flags & ~PERF_PMU_TXN_ADD)
10958 		return;
10959 
10960 	perf_pmu_enable(pmu);
10961 }
10962 
10963 static int perf_event_idx_default(struct perf_event *event)
10964 {
10965 	return 0;
10966 }
10967 
10968 /*
10969  * Ensures all contexts with the same task_ctx_nr have the same
10970  * pmu_cpu_context too.
10971  */
10972 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10973 {
10974 	struct pmu *pmu;
10975 
10976 	if (ctxn < 0)
10977 		return NULL;
10978 
10979 	list_for_each_entry(pmu, &pmus, entry) {
10980 		if (pmu->task_ctx_nr == ctxn)
10981 			return pmu->pmu_cpu_context;
10982 	}
10983 
10984 	return NULL;
10985 }
10986 
10987 static void free_pmu_context(struct pmu *pmu)
10988 {
10989 	/*
10990 	 * Static contexts such as perf_sw_context have a global lifetime
10991 	 * and may be shared between different PMUs. Avoid freeing them
10992 	 * when a single PMU is going away.
10993 	 */
10994 	if (pmu->task_ctx_nr > perf_invalid_context)
10995 		return;
10996 
10997 	free_percpu(pmu->pmu_cpu_context);
10998 }
10999 
11000 /*
11001  * Let userspace know that this PMU supports address range filtering:
11002  */
11003 static ssize_t nr_addr_filters_show(struct device *dev,
11004 				    struct device_attribute *attr,
11005 				    char *page)
11006 {
11007 	struct pmu *pmu = dev_get_drvdata(dev);
11008 
11009 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11010 }
11011 DEVICE_ATTR_RO(nr_addr_filters);
11012 
11013 static struct idr pmu_idr;
11014 
11015 static ssize_t
11016 type_show(struct device *dev, struct device_attribute *attr, char *page)
11017 {
11018 	struct pmu *pmu = dev_get_drvdata(dev);
11019 
11020 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
11021 }
11022 static DEVICE_ATTR_RO(type);
11023 
11024 static ssize_t
11025 perf_event_mux_interval_ms_show(struct device *dev,
11026 				struct device_attribute *attr,
11027 				char *page)
11028 {
11029 	struct pmu *pmu = dev_get_drvdata(dev);
11030 
11031 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
11032 }
11033 
11034 static DEFINE_MUTEX(mux_interval_mutex);
11035 
11036 static ssize_t
11037 perf_event_mux_interval_ms_store(struct device *dev,
11038 				 struct device_attribute *attr,
11039 				 const char *buf, size_t count)
11040 {
11041 	struct pmu *pmu = dev_get_drvdata(dev);
11042 	int timer, cpu, ret;
11043 
11044 	ret = kstrtoint(buf, 0, &timer);
11045 	if (ret)
11046 		return ret;
11047 
11048 	if (timer < 1)
11049 		return -EINVAL;
11050 
11051 	/* same value, noting to do */
11052 	if (timer == pmu->hrtimer_interval_ms)
11053 		return count;
11054 
11055 	mutex_lock(&mux_interval_mutex);
11056 	pmu->hrtimer_interval_ms = timer;
11057 
11058 	/* update all cpuctx for this PMU */
11059 	cpus_read_lock();
11060 	for_each_online_cpu(cpu) {
11061 		struct perf_cpu_context *cpuctx;
11062 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11063 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11064 
11065 		cpu_function_call(cpu,
11066 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
11067 	}
11068 	cpus_read_unlock();
11069 	mutex_unlock(&mux_interval_mutex);
11070 
11071 	return count;
11072 }
11073 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11074 
11075 static struct attribute *pmu_dev_attrs[] = {
11076 	&dev_attr_type.attr,
11077 	&dev_attr_perf_event_mux_interval_ms.attr,
11078 	NULL,
11079 };
11080 ATTRIBUTE_GROUPS(pmu_dev);
11081 
11082 static int pmu_bus_running;
11083 static struct bus_type pmu_bus = {
11084 	.name		= "event_source",
11085 	.dev_groups	= pmu_dev_groups,
11086 };
11087 
11088 static void pmu_dev_release(struct device *dev)
11089 {
11090 	kfree(dev);
11091 }
11092 
11093 static int pmu_dev_alloc(struct pmu *pmu)
11094 {
11095 	int ret = -ENOMEM;
11096 
11097 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11098 	if (!pmu->dev)
11099 		goto out;
11100 
11101 	pmu->dev->groups = pmu->attr_groups;
11102 	device_initialize(pmu->dev);
11103 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11104 	if (ret)
11105 		goto free_dev;
11106 
11107 	dev_set_drvdata(pmu->dev, pmu);
11108 	pmu->dev->bus = &pmu_bus;
11109 	pmu->dev->release = pmu_dev_release;
11110 	ret = device_add(pmu->dev);
11111 	if (ret)
11112 		goto free_dev;
11113 
11114 	/* For PMUs with address filters, throw in an extra attribute: */
11115 	if (pmu->nr_addr_filters)
11116 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11117 
11118 	if (ret)
11119 		goto del_dev;
11120 
11121 	if (pmu->attr_update)
11122 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11123 
11124 	if (ret)
11125 		goto del_dev;
11126 
11127 out:
11128 	return ret;
11129 
11130 del_dev:
11131 	device_del(pmu->dev);
11132 
11133 free_dev:
11134 	put_device(pmu->dev);
11135 	goto out;
11136 }
11137 
11138 static struct lock_class_key cpuctx_mutex;
11139 static struct lock_class_key cpuctx_lock;
11140 
11141 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11142 {
11143 	int cpu, ret, max = PERF_TYPE_MAX;
11144 
11145 	mutex_lock(&pmus_lock);
11146 	ret = -ENOMEM;
11147 	pmu->pmu_disable_count = alloc_percpu(int);
11148 	if (!pmu->pmu_disable_count)
11149 		goto unlock;
11150 
11151 	pmu->type = -1;
11152 	if (!name)
11153 		goto skip_type;
11154 	pmu->name = name;
11155 
11156 	if (type != PERF_TYPE_SOFTWARE) {
11157 		if (type >= 0)
11158 			max = type;
11159 
11160 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11161 		if (ret < 0)
11162 			goto free_pdc;
11163 
11164 		WARN_ON(type >= 0 && ret != type);
11165 
11166 		type = ret;
11167 	}
11168 	pmu->type = type;
11169 
11170 	if (pmu_bus_running) {
11171 		ret = pmu_dev_alloc(pmu);
11172 		if (ret)
11173 			goto free_idr;
11174 	}
11175 
11176 skip_type:
11177 	if (pmu->task_ctx_nr == perf_hw_context) {
11178 		static int hw_context_taken = 0;
11179 
11180 		/*
11181 		 * Other than systems with heterogeneous CPUs, it never makes
11182 		 * sense for two PMUs to share perf_hw_context. PMUs which are
11183 		 * uncore must use perf_invalid_context.
11184 		 */
11185 		if (WARN_ON_ONCE(hw_context_taken &&
11186 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11187 			pmu->task_ctx_nr = perf_invalid_context;
11188 
11189 		hw_context_taken = 1;
11190 	}
11191 
11192 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11193 	if (pmu->pmu_cpu_context)
11194 		goto got_cpu_context;
11195 
11196 	ret = -ENOMEM;
11197 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11198 	if (!pmu->pmu_cpu_context)
11199 		goto free_dev;
11200 
11201 	for_each_possible_cpu(cpu) {
11202 		struct perf_cpu_context *cpuctx;
11203 
11204 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11205 		__perf_event_init_context(&cpuctx->ctx);
11206 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11207 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11208 		cpuctx->ctx.pmu = pmu;
11209 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11210 
11211 		__perf_mux_hrtimer_init(cpuctx, cpu);
11212 
11213 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11214 		cpuctx->heap = cpuctx->heap_default;
11215 	}
11216 
11217 got_cpu_context:
11218 	if (!pmu->start_txn) {
11219 		if (pmu->pmu_enable) {
11220 			/*
11221 			 * If we have pmu_enable/pmu_disable calls, install
11222 			 * transaction stubs that use that to try and batch
11223 			 * hardware accesses.
11224 			 */
11225 			pmu->start_txn  = perf_pmu_start_txn;
11226 			pmu->commit_txn = perf_pmu_commit_txn;
11227 			pmu->cancel_txn = perf_pmu_cancel_txn;
11228 		} else {
11229 			pmu->start_txn  = perf_pmu_nop_txn;
11230 			pmu->commit_txn = perf_pmu_nop_int;
11231 			pmu->cancel_txn = perf_pmu_nop_void;
11232 		}
11233 	}
11234 
11235 	if (!pmu->pmu_enable) {
11236 		pmu->pmu_enable  = perf_pmu_nop_void;
11237 		pmu->pmu_disable = perf_pmu_nop_void;
11238 	}
11239 
11240 	if (!pmu->check_period)
11241 		pmu->check_period = perf_event_nop_int;
11242 
11243 	if (!pmu->event_idx)
11244 		pmu->event_idx = perf_event_idx_default;
11245 
11246 	/*
11247 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11248 	 * since these cannot be in the IDR. This way the linear search
11249 	 * is fast, provided a valid software event is provided.
11250 	 */
11251 	if (type == PERF_TYPE_SOFTWARE || !name)
11252 		list_add_rcu(&pmu->entry, &pmus);
11253 	else
11254 		list_add_tail_rcu(&pmu->entry, &pmus);
11255 
11256 	atomic_set(&pmu->exclusive_cnt, 0);
11257 	ret = 0;
11258 unlock:
11259 	mutex_unlock(&pmus_lock);
11260 
11261 	return ret;
11262 
11263 free_dev:
11264 	device_del(pmu->dev);
11265 	put_device(pmu->dev);
11266 
11267 free_idr:
11268 	if (pmu->type != PERF_TYPE_SOFTWARE)
11269 		idr_remove(&pmu_idr, pmu->type);
11270 
11271 free_pdc:
11272 	free_percpu(pmu->pmu_disable_count);
11273 	goto unlock;
11274 }
11275 EXPORT_SYMBOL_GPL(perf_pmu_register);
11276 
11277 void perf_pmu_unregister(struct pmu *pmu)
11278 {
11279 	mutex_lock(&pmus_lock);
11280 	list_del_rcu(&pmu->entry);
11281 
11282 	/*
11283 	 * We dereference the pmu list under both SRCU and regular RCU, so
11284 	 * synchronize against both of those.
11285 	 */
11286 	synchronize_srcu(&pmus_srcu);
11287 	synchronize_rcu();
11288 
11289 	free_percpu(pmu->pmu_disable_count);
11290 	if (pmu->type != PERF_TYPE_SOFTWARE)
11291 		idr_remove(&pmu_idr, pmu->type);
11292 	if (pmu_bus_running) {
11293 		if (pmu->nr_addr_filters)
11294 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11295 		device_del(pmu->dev);
11296 		put_device(pmu->dev);
11297 	}
11298 	free_pmu_context(pmu);
11299 	mutex_unlock(&pmus_lock);
11300 }
11301 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11302 
11303 static inline bool has_extended_regs(struct perf_event *event)
11304 {
11305 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11306 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11307 }
11308 
11309 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11310 {
11311 	struct perf_event_context *ctx = NULL;
11312 	int ret;
11313 
11314 	if (!try_module_get(pmu->module))
11315 		return -ENODEV;
11316 
11317 	/*
11318 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11319 	 * for example, validate if the group fits on the PMU. Therefore,
11320 	 * if this is a sibling event, acquire the ctx->mutex to protect
11321 	 * the sibling_list.
11322 	 */
11323 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11324 		/*
11325 		 * This ctx->mutex can nest when we're called through
11326 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11327 		 */
11328 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11329 						 SINGLE_DEPTH_NESTING);
11330 		BUG_ON(!ctx);
11331 	}
11332 
11333 	event->pmu = pmu;
11334 	ret = pmu->event_init(event);
11335 
11336 	if (ctx)
11337 		perf_event_ctx_unlock(event->group_leader, ctx);
11338 
11339 	if (!ret) {
11340 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11341 		    has_extended_regs(event))
11342 			ret = -EOPNOTSUPP;
11343 
11344 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11345 		    event_has_any_exclude_flag(event))
11346 			ret = -EINVAL;
11347 
11348 		if (ret && event->destroy)
11349 			event->destroy(event);
11350 	}
11351 
11352 	if (ret)
11353 		module_put(pmu->module);
11354 
11355 	return ret;
11356 }
11357 
11358 static struct pmu *perf_init_event(struct perf_event *event)
11359 {
11360 	bool extended_type = false;
11361 	int idx, type, ret;
11362 	struct pmu *pmu;
11363 
11364 	idx = srcu_read_lock(&pmus_srcu);
11365 
11366 	/* Try parent's PMU first: */
11367 	if (event->parent && event->parent->pmu) {
11368 		pmu = event->parent->pmu;
11369 		ret = perf_try_init_event(pmu, event);
11370 		if (!ret)
11371 			goto unlock;
11372 	}
11373 
11374 	/*
11375 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11376 	 * are often aliases for PERF_TYPE_RAW.
11377 	 */
11378 	type = event->attr.type;
11379 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11380 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11381 		if (!type) {
11382 			type = PERF_TYPE_RAW;
11383 		} else {
11384 			extended_type = true;
11385 			event->attr.config &= PERF_HW_EVENT_MASK;
11386 		}
11387 	}
11388 
11389 again:
11390 	rcu_read_lock();
11391 	pmu = idr_find(&pmu_idr, type);
11392 	rcu_read_unlock();
11393 	if (pmu) {
11394 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11395 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11396 			goto fail;
11397 
11398 		ret = perf_try_init_event(pmu, event);
11399 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11400 			type = event->attr.type;
11401 			goto again;
11402 		}
11403 
11404 		if (ret)
11405 			pmu = ERR_PTR(ret);
11406 
11407 		goto unlock;
11408 	}
11409 
11410 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11411 		ret = perf_try_init_event(pmu, event);
11412 		if (!ret)
11413 			goto unlock;
11414 
11415 		if (ret != -ENOENT) {
11416 			pmu = ERR_PTR(ret);
11417 			goto unlock;
11418 		}
11419 	}
11420 fail:
11421 	pmu = ERR_PTR(-ENOENT);
11422 unlock:
11423 	srcu_read_unlock(&pmus_srcu, idx);
11424 
11425 	return pmu;
11426 }
11427 
11428 static void attach_sb_event(struct perf_event *event)
11429 {
11430 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11431 
11432 	raw_spin_lock(&pel->lock);
11433 	list_add_rcu(&event->sb_list, &pel->list);
11434 	raw_spin_unlock(&pel->lock);
11435 }
11436 
11437 /*
11438  * We keep a list of all !task (and therefore per-cpu) events
11439  * that need to receive side-band records.
11440  *
11441  * This avoids having to scan all the various PMU per-cpu contexts
11442  * looking for them.
11443  */
11444 static void account_pmu_sb_event(struct perf_event *event)
11445 {
11446 	if (is_sb_event(event))
11447 		attach_sb_event(event);
11448 }
11449 
11450 static void account_event_cpu(struct perf_event *event, int cpu)
11451 {
11452 	if (event->parent)
11453 		return;
11454 
11455 	if (is_cgroup_event(event))
11456 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11457 }
11458 
11459 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11460 static void account_freq_event_nohz(void)
11461 {
11462 #ifdef CONFIG_NO_HZ_FULL
11463 	/* Lock so we don't race with concurrent unaccount */
11464 	spin_lock(&nr_freq_lock);
11465 	if (atomic_inc_return(&nr_freq_events) == 1)
11466 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11467 	spin_unlock(&nr_freq_lock);
11468 #endif
11469 }
11470 
11471 static void account_freq_event(void)
11472 {
11473 	if (tick_nohz_full_enabled())
11474 		account_freq_event_nohz();
11475 	else
11476 		atomic_inc(&nr_freq_events);
11477 }
11478 
11479 
11480 static void account_event(struct perf_event *event)
11481 {
11482 	bool inc = false;
11483 
11484 	if (event->parent)
11485 		return;
11486 
11487 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11488 		inc = true;
11489 	if (event->attr.mmap || event->attr.mmap_data)
11490 		atomic_inc(&nr_mmap_events);
11491 	if (event->attr.build_id)
11492 		atomic_inc(&nr_build_id_events);
11493 	if (event->attr.comm)
11494 		atomic_inc(&nr_comm_events);
11495 	if (event->attr.namespaces)
11496 		atomic_inc(&nr_namespaces_events);
11497 	if (event->attr.cgroup)
11498 		atomic_inc(&nr_cgroup_events);
11499 	if (event->attr.task)
11500 		atomic_inc(&nr_task_events);
11501 	if (event->attr.freq)
11502 		account_freq_event();
11503 	if (event->attr.context_switch) {
11504 		atomic_inc(&nr_switch_events);
11505 		inc = true;
11506 	}
11507 	if (has_branch_stack(event))
11508 		inc = true;
11509 	if (is_cgroup_event(event))
11510 		inc = true;
11511 	if (event->attr.ksymbol)
11512 		atomic_inc(&nr_ksymbol_events);
11513 	if (event->attr.bpf_event)
11514 		atomic_inc(&nr_bpf_events);
11515 	if (event->attr.text_poke)
11516 		atomic_inc(&nr_text_poke_events);
11517 
11518 	if (inc) {
11519 		/*
11520 		 * We need the mutex here because static_branch_enable()
11521 		 * must complete *before* the perf_sched_count increment
11522 		 * becomes visible.
11523 		 */
11524 		if (atomic_inc_not_zero(&perf_sched_count))
11525 			goto enabled;
11526 
11527 		mutex_lock(&perf_sched_mutex);
11528 		if (!atomic_read(&perf_sched_count)) {
11529 			static_branch_enable(&perf_sched_events);
11530 			/*
11531 			 * Guarantee that all CPUs observe they key change and
11532 			 * call the perf scheduling hooks before proceeding to
11533 			 * install events that need them.
11534 			 */
11535 			synchronize_rcu();
11536 		}
11537 		/*
11538 		 * Now that we have waited for the sync_sched(), allow further
11539 		 * increments to by-pass the mutex.
11540 		 */
11541 		atomic_inc(&perf_sched_count);
11542 		mutex_unlock(&perf_sched_mutex);
11543 	}
11544 enabled:
11545 
11546 	account_event_cpu(event, event->cpu);
11547 
11548 	account_pmu_sb_event(event);
11549 }
11550 
11551 /*
11552  * Allocate and initialize an event structure
11553  */
11554 static struct perf_event *
11555 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11556 		 struct task_struct *task,
11557 		 struct perf_event *group_leader,
11558 		 struct perf_event *parent_event,
11559 		 perf_overflow_handler_t overflow_handler,
11560 		 void *context, int cgroup_fd)
11561 {
11562 	struct pmu *pmu;
11563 	struct perf_event *event;
11564 	struct hw_perf_event *hwc;
11565 	long err = -EINVAL;
11566 	int node;
11567 
11568 	if ((unsigned)cpu >= nr_cpu_ids) {
11569 		if (!task || cpu != -1)
11570 			return ERR_PTR(-EINVAL);
11571 	}
11572 	if (attr->sigtrap && !task) {
11573 		/* Requires a task: avoid signalling random tasks. */
11574 		return ERR_PTR(-EINVAL);
11575 	}
11576 
11577 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11578 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11579 				      node);
11580 	if (!event)
11581 		return ERR_PTR(-ENOMEM);
11582 
11583 	/*
11584 	 * Single events are their own group leaders, with an
11585 	 * empty sibling list:
11586 	 */
11587 	if (!group_leader)
11588 		group_leader = event;
11589 
11590 	mutex_init(&event->child_mutex);
11591 	INIT_LIST_HEAD(&event->child_list);
11592 
11593 	INIT_LIST_HEAD(&event->event_entry);
11594 	INIT_LIST_HEAD(&event->sibling_list);
11595 	INIT_LIST_HEAD(&event->active_list);
11596 	init_event_group(event);
11597 	INIT_LIST_HEAD(&event->rb_entry);
11598 	INIT_LIST_HEAD(&event->active_entry);
11599 	INIT_LIST_HEAD(&event->addr_filters.list);
11600 	INIT_HLIST_NODE(&event->hlist_entry);
11601 
11602 
11603 	init_waitqueue_head(&event->waitq);
11604 	event->pending_disable = -1;
11605 	init_irq_work(&event->pending, perf_pending_event);
11606 
11607 	mutex_init(&event->mmap_mutex);
11608 	raw_spin_lock_init(&event->addr_filters.lock);
11609 
11610 	atomic_long_set(&event->refcount, 1);
11611 	event->cpu		= cpu;
11612 	event->attr		= *attr;
11613 	event->group_leader	= group_leader;
11614 	event->pmu		= NULL;
11615 	event->oncpu		= -1;
11616 
11617 	event->parent		= parent_event;
11618 
11619 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11620 	event->id		= atomic64_inc_return(&perf_event_id);
11621 
11622 	event->state		= PERF_EVENT_STATE_INACTIVE;
11623 
11624 	if (event->attr.sigtrap)
11625 		atomic_set(&event->event_limit, 1);
11626 
11627 	if (task) {
11628 		event->attach_state = PERF_ATTACH_TASK;
11629 		/*
11630 		 * XXX pmu::event_init needs to know what task to account to
11631 		 * and we cannot use the ctx information because we need the
11632 		 * pmu before we get a ctx.
11633 		 */
11634 		event->hw.target = get_task_struct(task);
11635 	}
11636 
11637 	event->clock = &local_clock;
11638 	if (parent_event)
11639 		event->clock = parent_event->clock;
11640 
11641 	if (!overflow_handler && parent_event) {
11642 		overflow_handler = parent_event->overflow_handler;
11643 		context = parent_event->overflow_handler_context;
11644 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11645 		if (overflow_handler == bpf_overflow_handler) {
11646 			struct bpf_prog *prog = parent_event->prog;
11647 
11648 			bpf_prog_inc(prog);
11649 			event->prog = prog;
11650 			event->orig_overflow_handler =
11651 				parent_event->orig_overflow_handler;
11652 		}
11653 #endif
11654 	}
11655 
11656 	if (overflow_handler) {
11657 		event->overflow_handler	= overflow_handler;
11658 		event->overflow_handler_context = context;
11659 	} else if (is_write_backward(event)){
11660 		event->overflow_handler = perf_event_output_backward;
11661 		event->overflow_handler_context = NULL;
11662 	} else {
11663 		event->overflow_handler = perf_event_output_forward;
11664 		event->overflow_handler_context = NULL;
11665 	}
11666 
11667 	perf_event__state_init(event);
11668 
11669 	pmu = NULL;
11670 
11671 	hwc = &event->hw;
11672 	hwc->sample_period = attr->sample_period;
11673 	if (attr->freq && attr->sample_freq)
11674 		hwc->sample_period = 1;
11675 	hwc->last_period = hwc->sample_period;
11676 
11677 	local64_set(&hwc->period_left, hwc->sample_period);
11678 
11679 	/*
11680 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11681 	 * See perf_output_read().
11682 	 */
11683 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11684 		goto err_ns;
11685 
11686 	if (!has_branch_stack(event))
11687 		event->attr.branch_sample_type = 0;
11688 
11689 	pmu = perf_init_event(event);
11690 	if (IS_ERR(pmu)) {
11691 		err = PTR_ERR(pmu);
11692 		goto err_ns;
11693 	}
11694 
11695 	/*
11696 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11697 	 * be different on other CPUs in the uncore mask.
11698 	 */
11699 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11700 		err = -EINVAL;
11701 		goto err_pmu;
11702 	}
11703 
11704 	if (event->attr.aux_output &&
11705 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11706 		err = -EOPNOTSUPP;
11707 		goto err_pmu;
11708 	}
11709 
11710 	if (cgroup_fd != -1) {
11711 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11712 		if (err)
11713 			goto err_pmu;
11714 	}
11715 
11716 	err = exclusive_event_init(event);
11717 	if (err)
11718 		goto err_pmu;
11719 
11720 	if (has_addr_filter(event)) {
11721 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11722 						    sizeof(struct perf_addr_filter_range),
11723 						    GFP_KERNEL);
11724 		if (!event->addr_filter_ranges) {
11725 			err = -ENOMEM;
11726 			goto err_per_task;
11727 		}
11728 
11729 		/*
11730 		 * Clone the parent's vma offsets: they are valid until exec()
11731 		 * even if the mm is not shared with the parent.
11732 		 */
11733 		if (event->parent) {
11734 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11735 
11736 			raw_spin_lock_irq(&ifh->lock);
11737 			memcpy(event->addr_filter_ranges,
11738 			       event->parent->addr_filter_ranges,
11739 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11740 			raw_spin_unlock_irq(&ifh->lock);
11741 		}
11742 
11743 		/* force hw sync on the address filters */
11744 		event->addr_filters_gen = 1;
11745 	}
11746 
11747 	if (!event->parent) {
11748 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11749 			err = get_callchain_buffers(attr->sample_max_stack);
11750 			if (err)
11751 				goto err_addr_filters;
11752 		}
11753 	}
11754 
11755 	err = security_perf_event_alloc(event);
11756 	if (err)
11757 		goto err_callchain_buffer;
11758 
11759 	/* symmetric to unaccount_event() in _free_event() */
11760 	account_event(event);
11761 
11762 	return event;
11763 
11764 err_callchain_buffer:
11765 	if (!event->parent) {
11766 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11767 			put_callchain_buffers();
11768 	}
11769 err_addr_filters:
11770 	kfree(event->addr_filter_ranges);
11771 
11772 err_per_task:
11773 	exclusive_event_destroy(event);
11774 
11775 err_pmu:
11776 	if (is_cgroup_event(event))
11777 		perf_detach_cgroup(event);
11778 	if (event->destroy)
11779 		event->destroy(event);
11780 	module_put(pmu->module);
11781 err_ns:
11782 	if (event->ns)
11783 		put_pid_ns(event->ns);
11784 	if (event->hw.target)
11785 		put_task_struct(event->hw.target);
11786 	kmem_cache_free(perf_event_cache, event);
11787 
11788 	return ERR_PTR(err);
11789 }
11790 
11791 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11792 			  struct perf_event_attr *attr)
11793 {
11794 	u32 size;
11795 	int ret;
11796 
11797 	/* Zero the full structure, so that a short copy will be nice. */
11798 	memset(attr, 0, sizeof(*attr));
11799 
11800 	ret = get_user(size, &uattr->size);
11801 	if (ret)
11802 		return ret;
11803 
11804 	/* ABI compatibility quirk: */
11805 	if (!size)
11806 		size = PERF_ATTR_SIZE_VER0;
11807 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11808 		goto err_size;
11809 
11810 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11811 	if (ret) {
11812 		if (ret == -E2BIG)
11813 			goto err_size;
11814 		return ret;
11815 	}
11816 
11817 	attr->size = size;
11818 
11819 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11820 		return -EINVAL;
11821 
11822 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11823 		return -EINVAL;
11824 
11825 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11826 		return -EINVAL;
11827 
11828 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11829 		u64 mask = attr->branch_sample_type;
11830 
11831 		/* only using defined bits */
11832 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11833 			return -EINVAL;
11834 
11835 		/* at least one branch bit must be set */
11836 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11837 			return -EINVAL;
11838 
11839 		/* propagate priv level, when not set for branch */
11840 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11841 
11842 			/* exclude_kernel checked on syscall entry */
11843 			if (!attr->exclude_kernel)
11844 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11845 
11846 			if (!attr->exclude_user)
11847 				mask |= PERF_SAMPLE_BRANCH_USER;
11848 
11849 			if (!attr->exclude_hv)
11850 				mask |= PERF_SAMPLE_BRANCH_HV;
11851 			/*
11852 			 * adjust user setting (for HW filter setup)
11853 			 */
11854 			attr->branch_sample_type = mask;
11855 		}
11856 		/* privileged levels capture (kernel, hv): check permissions */
11857 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11858 			ret = perf_allow_kernel(attr);
11859 			if (ret)
11860 				return ret;
11861 		}
11862 	}
11863 
11864 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11865 		ret = perf_reg_validate(attr->sample_regs_user);
11866 		if (ret)
11867 			return ret;
11868 	}
11869 
11870 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11871 		if (!arch_perf_have_user_stack_dump())
11872 			return -ENOSYS;
11873 
11874 		/*
11875 		 * We have __u32 type for the size, but so far
11876 		 * we can only use __u16 as maximum due to the
11877 		 * __u16 sample size limit.
11878 		 */
11879 		if (attr->sample_stack_user >= USHRT_MAX)
11880 			return -EINVAL;
11881 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11882 			return -EINVAL;
11883 	}
11884 
11885 	if (!attr->sample_max_stack)
11886 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11887 
11888 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11889 		ret = perf_reg_validate(attr->sample_regs_intr);
11890 
11891 #ifndef CONFIG_CGROUP_PERF
11892 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11893 		return -EINVAL;
11894 #endif
11895 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11896 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11897 		return -EINVAL;
11898 
11899 	if (!attr->inherit && attr->inherit_thread)
11900 		return -EINVAL;
11901 
11902 	if (attr->remove_on_exec && attr->enable_on_exec)
11903 		return -EINVAL;
11904 
11905 	if (attr->sigtrap && !attr->remove_on_exec)
11906 		return -EINVAL;
11907 
11908 out:
11909 	return ret;
11910 
11911 err_size:
11912 	put_user(sizeof(*attr), &uattr->size);
11913 	ret = -E2BIG;
11914 	goto out;
11915 }
11916 
11917 static int
11918 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11919 {
11920 	struct perf_buffer *rb = NULL;
11921 	int ret = -EINVAL;
11922 
11923 	if (!output_event)
11924 		goto set;
11925 
11926 	/* don't allow circular references */
11927 	if (event == output_event)
11928 		goto out;
11929 
11930 	/*
11931 	 * Don't allow cross-cpu buffers
11932 	 */
11933 	if (output_event->cpu != event->cpu)
11934 		goto out;
11935 
11936 	/*
11937 	 * If its not a per-cpu rb, it must be the same task.
11938 	 */
11939 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11940 		goto out;
11941 
11942 	/*
11943 	 * Mixing clocks in the same buffer is trouble you don't need.
11944 	 */
11945 	if (output_event->clock != event->clock)
11946 		goto out;
11947 
11948 	/*
11949 	 * Either writing ring buffer from beginning or from end.
11950 	 * Mixing is not allowed.
11951 	 */
11952 	if (is_write_backward(output_event) != is_write_backward(event))
11953 		goto out;
11954 
11955 	/*
11956 	 * If both events generate aux data, they must be on the same PMU
11957 	 */
11958 	if (has_aux(event) && has_aux(output_event) &&
11959 	    event->pmu != output_event->pmu)
11960 		goto out;
11961 
11962 set:
11963 	mutex_lock(&event->mmap_mutex);
11964 	/* Can't redirect output if we've got an active mmap() */
11965 	if (atomic_read(&event->mmap_count))
11966 		goto unlock;
11967 
11968 	if (output_event) {
11969 		/* get the rb we want to redirect to */
11970 		rb = ring_buffer_get(output_event);
11971 		if (!rb)
11972 			goto unlock;
11973 	}
11974 
11975 	ring_buffer_attach(event, rb);
11976 
11977 	ret = 0;
11978 unlock:
11979 	mutex_unlock(&event->mmap_mutex);
11980 
11981 out:
11982 	return ret;
11983 }
11984 
11985 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11986 {
11987 	if (b < a)
11988 		swap(a, b);
11989 
11990 	mutex_lock(a);
11991 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11992 }
11993 
11994 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11995 {
11996 	bool nmi_safe = false;
11997 
11998 	switch (clk_id) {
11999 	case CLOCK_MONOTONIC:
12000 		event->clock = &ktime_get_mono_fast_ns;
12001 		nmi_safe = true;
12002 		break;
12003 
12004 	case CLOCK_MONOTONIC_RAW:
12005 		event->clock = &ktime_get_raw_fast_ns;
12006 		nmi_safe = true;
12007 		break;
12008 
12009 	case CLOCK_REALTIME:
12010 		event->clock = &ktime_get_real_ns;
12011 		break;
12012 
12013 	case CLOCK_BOOTTIME:
12014 		event->clock = &ktime_get_boottime_ns;
12015 		break;
12016 
12017 	case CLOCK_TAI:
12018 		event->clock = &ktime_get_clocktai_ns;
12019 		break;
12020 
12021 	default:
12022 		return -EINVAL;
12023 	}
12024 
12025 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12026 		return -EINVAL;
12027 
12028 	return 0;
12029 }
12030 
12031 /*
12032  * Variation on perf_event_ctx_lock_nested(), except we take two context
12033  * mutexes.
12034  */
12035 static struct perf_event_context *
12036 __perf_event_ctx_lock_double(struct perf_event *group_leader,
12037 			     struct perf_event_context *ctx)
12038 {
12039 	struct perf_event_context *gctx;
12040 
12041 again:
12042 	rcu_read_lock();
12043 	gctx = READ_ONCE(group_leader->ctx);
12044 	if (!refcount_inc_not_zero(&gctx->refcount)) {
12045 		rcu_read_unlock();
12046 		goto again;
12047 	}
12048 	rcu_read_unlock();
12049 
12050 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
12051 
12052 	if (group_leader->ctx != gctx) {
12053 		mutex_unlock(&ctx->mutex);
12054 		mutex_unlock(&gctx->mutex);
12055 		put_ctx(gctx);
12056 		goto again;
12057 	}
12058 
12059 	return gctx;
12060 }
12061 
12062 static bool
12063 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12064 {
12065 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12066 	bool is_capable = perfmon_capable();
12067 
12068 	if (attr->sigtrap) {
12069 		/*
12070 		 * perf_event_attr::sigtrap sends signals to the other task.
12071 		 * Require the current task to also have CAP_KILL.
12072 		 */
12073 		rcu_read_lock();
12074 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12075 		rcu_read_unlock();
12076 
12077 		/*
12078 		 * If the required capabilities aren't available, checks for
12079 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12080 		 * can effectively change the target task.
12081 		 */
12082 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12083 	}
12084 
12085 	/*
12086 	 * Preserve ptrace permission check for backwards compatibility. The
12087 	 * ptrace check also includes checks that the current task and other
12088 	 * task have matching uids, and is therefore not done here explicitly.
12089 	 */
12090 	return is_capable || ptrace_may_access(task, ptrace_mode);
12091 }
12092 
12093 /**
12094  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12095  *
12096  * @attr_uptr:	event_id type attributes for monitoring/sampling
12097  * @pid:		target pid
12098  * @cpu:		target cpu
12099  * @group_fd:		group leader event fd
12100  * @flags:		perf event open flags
12101  */
12102 SYSCALL_DEFINE5(perf_event_open,
12103 		struct perf_event_attr __user *, attr_uptr,
12104 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12105 {
12106 	struct perf_event *group_leader = NULL, *output_event = NULL;
12107 	struct perf_event *event, *sibling;
12108 	struct perf_event_attr attr;
12109 	struct perf_event_context *ctx, *gctx;
12110 	struct file *event_file = NULL;
12111 	struct fd group = {NULL, 0};
12112 	struct task_struct *task = NULL;
12113 	struct pmu *pmu;
12114 	int event_fd;
12115 	int move_group = 0;
12116 	int err;
12117 	int f_flags = O_RDWR;
12118 	int cgroup_fd = -1;
12119 
12120 	/* for future expandability... */
12121 	if (flags & ~PERF_FLAG_ALL)
12122 		return -EINVAL;
12123 
12124 	/* Do we allow access to perf_event_open(2) ? */
12125 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12126 	if (err)
12127 		return err;
12128 
12129 	err = perf_copy_attr(attr_uptr, &attr);
12130 	if (err)
12131 		return err;
12132 
12133 	if (!attr.exclude_kernel) {
12134 		err = perf_allow_kernel(&attr);
12135 		if (err)
12136 			return err;
12137 	}
12138 
12139 	if (attr.namespaces) {
12140 		if (!perfmon_capable())
12141 			return -EACCES;
12142 	}
12143 
12144 	if (attr.freq) {
12145 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12146 			return -EINVAL;
12147 	} else {
12148 		if (attr.sample_period & (1ULL << 63))
12149 			return -EINVAL;
12150 	}
12151 
12152 	/* Only privileged users can get physical addresses */
12153 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12154 		err = perf_allow_kernel(&attr);
12155 		if (err)
12156 			return err;
12157 	}
12158 
12159 	/* REGS_INTR can leak data, lockdown must prevent this */
12160 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12161 		err = security_locked_down(LOCKDOWN_PERF);
12162 		if (err)
12163 			return err;
12164 	}
12165 
12166 	/*
12167 	 * In cgroup mode, the pid argument is used to pass the fd
12168 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12169 	 * designates the cpu on which to monitor threads from that
12170 	 * cgroup.
12171 	 */
12172 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12173 		return -EINVAL;
12174 
12175 	if (flags & PERF_FLAG_FD_CLOEXEC)
12176 		f_flags |= O_CLOEXEC;
12177 
12178 	event_fd = get_unused_fd_flags(f_flags);
12179 	if (event_fd < 0)
12180 		return event_fd;
12181 
12182 	if (group_fd != -1) {
12183 		err = perf_fget_light(group_fd, &group);
12184 		if (err)
12185 			goto err_fd;
12186 		group_leader = group.file->private_data;
12187 		if (flags & PERF_FLAG_FD_OUTPUT)
12188 			output_event = group_leader;
12189 		if (flags & PERF_FLAG_FD_NO_GROUP)
12190 			group_leader = NULL;
12191 	}
12192 
12193 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12194 		task = find_lively_task_by_vpid(pid);
12195 		if (IS_ERR(task)) {
12196 			err = PTR_ERR(task);
12197 			goto err_group_fd;
12198 		}
12199 	}
12200 
12201 	if (task && group_leader &&
12202 	    group_leader->attr.inherit != attr.inherit) {
12203 		err = -EINVAL;
12204 		goto err_task;
12205 	}
12206 
12207 	if (flags & PERF_FLAG_PID_CGROUP)
12208 		cgroup_fd = pid;
12209 
12210 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12211 				 NULL, NULL, cgroup_fd);
12212 	if (IS_ERR(event)) {
12213 		err = PTR_ERR(event);
12214 		goto err_task;
12215 	}
12216 
12217 	if (is_sampling_event(event)) {
12218 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12219 			err = -EOPNOTSUPP;
12220 			goto err_alloc;
12221 		}
12222 	}
12223 
12224 	/*
12225 	 * Special case software events and allow them to be part of
12226 	 * any hardware group.
12227 	 */
12228 	pmu = event->pmu;
12229 
12230 	if (attr.use_clockid) {
12231 		err = perf_event_set_clock(event, attr.clockid);
12232 		if (err)
12233 			goto err_alloc;
12234 	}
12235 
12236 	if (pmu->task_ctx_nr == perf_sw_context)
12237 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12238 
12239 	if (group_leader) {
12240 		if (is_software_event(event) &&
12241 		    !in_software_context(group_leader)) {
12242 			/*
12243 			 * If the event is a sw event, but the group_leader
12244 			 * is on hw context.
12245 			 *
12246 			 * Allow the addition of software events to hw
12247 			 * groups, this is safe because software events
12248 			 * never fail to schedule.
12249 			 */
12250 			pmu = group_leader->ctx->pmu;
12251 		} else if (!is_software_event(event) &&
12252 			   is_software_event(group_leader) &&
12253 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12254 			/*
12255 			 * In case the group is a pure software group, and we
12256 			 * try to add a hardware event, move the whole group to
12257 			 * the hardware context.
12258 			 */
12259 			move_group = 1;
12260 		}
12261 	}
12262 
12263 	/*
12264 	 * Get the target context (task or percpu):
12265 	 */
12266 	ctx = find_get_context(pmu, task, event);
12267 	if (IS_ERR(ctx)) {
12268 		err = PTR_ERR(ctx);
12269 		goto err_alloc;
12270 	}
12271 
12272 	/*
12273 	 * Look up the group leader (we will attach this event to it):
12274 	 */
12275 	if (group_leader) {
12276 		err = -EINVAL;
12277 
12278 		/*
12279 		 * Do not allow a recursive hierarchy (this new sibling
12280 		 * becoming part of another group-sibling):
12281 		 */
12282 		if (group_leader->group_leader != group_leader)
12283 			goto err_context;
12284 
12285 		/* All events in a group should have the same clock */
12286 		if (group_leader->clock != event->clock)
12287 			goto err_context;
12288 
12289 		/*
12290 		 * Make sure we're both events for the same CPU;
12291 		 * grouping events for different CPUs is broken; since
12292 		 * you can never concurrently schedule them anyhow.
12293 		 */
12294 		if (group_leader->cpu != event->cpu)
12295 			goto err_context;
12296 
12297 		/*
12298 		 * Make sure we're both on the same task, or both
12299 		 * per-CPU events.
12300 		 */
12301 		if (group_leader->ctx->task != ctx->task)
12302 			goto err_context;
12303 
12304 		/*
12305 		 * Do not allow to attach to a group in a different task
12306 		 * or CPU context. If we're moving SW events, we'll fix
12307 		 * this up later, so allow that.
12308 		 */
12309 		if (!move_group && group_leader->ctx != ctx)
12310 			goto err_context;
12311 
12312 		/*
12313 		 * Only a group leader can be exclusive or pinned
12314 		 */
12315 		if (attr.exclusive || attr.pinned)
12316 			goto err_context;
12317 	}
12318 
12319 	if (output_event) {
12320 		err = perf_event_set_output(event, output_event);
12321 		if (err)
12322 			goto err_context;
12323 	}
12324 
12325 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12326 					f_flags);
12327 	if (IS_ERR(event_file)) {
12328 		err = PTR_ERR(event_file);
12329 		event_file = NULL;
12330 		goto err_context;
12331 	}
12332 
12333 	if (task) {
12334 		err = down_read_interruptible(&task->signal->exec_update_lock);
12335 		if (err)
12336 			goto err_file;
12337 
12338 		/*
12339 		 * We must hold exec_update_lock across this and any potential
12340 		 * perf_install_in_context() call for this new event to
12341 		 * serialize against exec() altering our credentials (and the
12342 		 * perf_event_exit_task() that could imply).
12343 		 */
12344 		err = -EACCES;
12345 		if (!perf_check_permission(&attr, task))
12346 			goto err_cred;
12347 	}
12348 
12349 	if (move_group) {
12350 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12351 
12352 		if (gctx->task == TASK_TOMBSTONE) {
12353 			err = -ESRCH;
12354 			goto err_locked;
12355 		}
12356 
12357 		/*
12358 		 * Check if we raced against another sys_perf_event_open() call
12359 		 * moving the software group underneath us.
12360 		 */
12361 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12362 			/*
12363 			 * If someone moved the group out from under us, check
12364 			 * if this new event wound up on the same ctx, if so
12365 			 * its the regular !move_group case, otherwise fail.
12366 			 */
12367 			if (gctx != ctx) {
12368 				err = -EINVAL;
12369 				goto err_locked;
12370 			} else {
12371 				perf_event_ctx_unlock(group_leader, gctx);
12372 				move_group = 0;
12373 			}
12374 		}
12375 
12376 		/*
12377 		 * Failure to create exclusive events returns -EBUSY.
12378 		 */
12379 		err = -EBUSY;
12380 		if (!exclusive_event_installable(group_leader, ctx))
12381 			goto err_locked;
12382 
12383 		for_each_sibling_event(sibling, group_leader) {
12384 			if (!exclusive_event_installable(sibling, ctx))
12385 				goto err_locked;
12386 		}
12387 	} else {
12388 		mutex_lock(&ctx->mutex);
12389 	}
12390 
12391 	if (ctx->task == TASK_TOMBSTONE) {
12392 		err = -ESRCH;
12393 		goto err_locked;
12394 	}
12395 
12396 	if (!perf_event_validate_size(event)) {
12397 		err = -E2BIG;
12398 		goto err_locked;
12399 	}
12400 
12401 	if (!task) {
12402 		/*
12403 		 * Check if the @cpu we're creating an event for is online.
12404 		 *
12405 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12406 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12407 		 */
12408 		struct perf_cpu_context *cpuctx =
12409 			container_of(ctx, struct perf_cpu_context, ctx);
12410 
12411 		if (!cpuctx->online) {
12412 			err = -ENODEV;
12413 			goto err_locked;
12414 		}
12415 	}
12416 
12417 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12418 		err = -EINVAL;
12419 		goto err_locked;
12420 	}
12421 
12422 	/*
12423 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12424 	 * because we need to serialize with concurrent event creation.
12425 	 */
12426 	if (!exclusive_event_installable(event, ctx)) {
12427 		err = -EBUSY;
12428 		goto err_locked;
12429 	}
12430 
12431 	WARN_ON_ONCE(ctx->parent_ctx);
12432 
12433 	/*
12434 	 * This is the point on no return; we cannot fail hereafter. This is
12435 	 * where we start modifying current state.
12436 	 */
12437 
12438 	if (move_group) {
12439 		/*
12440 		 * See perf_event_ctx_lock() for comments on the details
12441 		 * of swizzling perf_event::ctx.
12442 		 */
12443 		perf_remove_from_context(group_leader, 0);
12444 		put_ctx(gctx);
12445 
12446 		for_each_sibling_event(sibling, group_leader) {
12447 			perf_remove_from_context(sibling, 0);
12448 			put_ctx(gctx);
12449 		}
12450 
12451 		/*
12452 		 * Wait for everybody to stop referencing the events through
12453 		 * the old lists, before installing it on new lists.
12454 		 */
12455 		synchronize_rcu();
12456 
12457 		/*
12458 		 * Install the group siblings before the group leader.
12459 		 *
12460 		 * Because a group leader will try and install the entire group
12461 		 * (through the sibling list, which is still in-tact), we can
12462 		 * end up with siblings installed in the wrong context.
12463 		 *
12464 		 * By installing siblings first we NO-OP because they're not
12465 		 * reachable through the group lists.
12466 		 */
12467 		for_each_sibling_event(sibling, group_leader) {
12468 			perf_event__state_init(sibling);
12469 			perf_install_in_context(ctx, sibling, sibling->cpu);
12470 			get_ctx(ctx);
12471 		}
12472 
12473 		/*
12474 		 * Removing from the context ends up with disabled
12475 		 * event. What we want here is event in the initial
12476 		 * startup state, ready to be add into new context.
12477 		 */
12478 		perf_event__state_init(group_leader);
12479 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12480 		get_ctx(ctx);
12481 	}
12482 
12483 	/*
12484 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12485 	 * that we're serialized against further additions and before
12486 	 * perf_install_in_context() which is the point the event is active and
12487 	 * can use these values.
12488 	 */
12489 	perf_event__header_size(event);
12490 	perf_event__id_header_size(event);
12491 
12492 	event->owner = current;
12493 
12494 	perf_install_in_context(ctx, event, event->cpu);
12495 	perf_unpin_context(ctx);
12496 
12497 	if (move_group)
12498 		perf_event_ctx_unlock(group_leader, gctx);
12499 	mutex_unlock(&ctx->mutex);
12500 
12501 	if (task) {
12502 		up_read(&task->signal->exec_update_lock);
12503 		put_task_struct(task);
12504 	}
12505 
12506 	mutex_lock(&current->perf_event_mutex);
12507 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12508 	mutex_unlock(&current->perf_event_mutex);
12509 
12510 	/*
12511 	 * Drop the reference on the group_event after placing the
12512 	 * new event on the sibling_list. This ensures destruction
12513 	 * of the group leader will find the pointer to itself in
12514 	 * perf_group_detach().
12515 	 */
12516 	fdput(group);
12517 	fd_install(event_fd, event_file);
12518 	return event_fd;
12519 
12520 err_locked:
12521 	if (move_group)
12522 		perf_event_ctx_unlock(group_leader, gctx);
12523 	mutex_unlock(&ctx->mutex);
12524 err_cred:
12525 	if (task)
12526 		up_read(&task->signal->exec_update_lock);
12527 err_file:
12528 	fput(event_file);
12529 err_context:
12530 	perf_unpin_context(ctx);
12531 	put_ctx(ctx);
12532 err_alloc:
12533 	/*
12534 	 * If event_file is set, the fput() above will have called ->release()
12535 	 * and that will take care of freeing the event.
12536 	 */
12537 	if (!event_file)
12538 		free_event(event);
12539 err_task:
12540 	if (task)
12541 		put_task_struct(task);
12542 err_group_fd:
12543 	fdput(group);
12544 err_fd:
12545 	put_unused_fd(event_fd);
12546 	return err;
12547 }
12548 
12549 /**
12550  * perf_event_create_kernel_counter
12551  *
12552  * @attr: attributes of the counter to create
12553  * @cpu: cpu in which the counter is bound
12554  * @task: task to profile (NULL for percpu)
12555  * @overflow_handler: callback to trigger when we hit the event
12556  * @context: context data could be used in overflow_handler callback
12557  */
12558 struct perf_event *
12559 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12560 				 struct task_struct *task,
12561 				 perf_overflow_handler_t overflow_handler,
12562 				 void *context)
12563 {
12564 	struct perf_event_context *ctx;
12565 	struct perf_event *event;
12566 	int err;
12567 
12568 	/*
12569 	 * Grouping is not supported for kernel events, neither is 'AUX',
12570 	 * make sure the caller's intentions are adjusted.
12571 	 */
12572 	if (attr->aux_output)
12573 		return ERR_PTR(-EINVAL);
12574 
12575 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12576 				 overflow_handler, context, -1);
12577 	if (IS_ERR(event)) {
12578 		err = PTR_ERR(event);
12579 		goto err;
12580 	}
12581 
12582 	/* Mark owner so we could distinguish it from user events. */
12583 	event->owner = TASK_TOMBSTONE;
12584 
12585 	/*
12586 	 * Get the target context (task or percpu):
12587 	 */
12588 	ctx = find_get_context(event->pmu, task, event);
12589 	if (IS_ERR(ctx)) {
12590 		err = PTR_ERR(ctx);
12591 		goto err_free;
12592 	}
12593 
12594 	WARN_ON_ONCE(ctx->parent_ctx);
12595 	mutex_lock(&ctx->mutex);
12596 	if (ctx->task == TASK_TOMBSTONE) {
12597 		err = -ESRCH;
12598 		goto err_unlock;
12599 	}
12600 
12601 	if (!task) {
12602 		/*
12603 		 * Check if the @cpu we're creating an event for is online.
12604 		 *
12605 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12606 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12607 		 */
12608 		struct perf_cpu_context *cpuctx =
12609 			container_of(ctx, struct perf_cpu_context, ctx);
12610 		if (!cpuctx->online) {
12611 			err = -ENODEV;
12612 			goto err_unlock;
12613 		}
12614 	}
12615 
12616 	if (!exclusive_event_installable(event, ctx)) {
12617 		err = -EBUSY;
12618 		goto err_unlock;
12619 	}
12620 
12621 	perf_install_in_context(ctx, event, event->cpu);
12622 	perf_unpin_context(ctx);
12623 	mutex_unlock(&ctx->mutex);
12624 
12625 	return event;
12626 
12627 err_unlock:
12628 	mutex_unlock(&ctx->mutex);
12629 	perf_unpin_context(ctx);
12630 	put_ctx(ctx);
12631 err_free:
12632 	free_event(event);
12633 err:
12634 	return ERR_PTR(err);
12635 }
12636 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12637 
12638 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12639 {
12640 	struct perf_event_context *src_ctx;
12641 	struct perf_event_context *dst_ctx;
12642 	struct perf_event *event, *tmp;
12643 	LIST_HEAD(events);
12644 
12645 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12646 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12647 
12648 	/*
12649 	 * See perf_event_ctx_lock() for comments on the details
12650 	 * of swizzling perf_event::ctx.
12651 	 */
12652 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12653 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12654 				 event_entry) {
12655 		perf_remove_from_context(event, 0);
12656 		unaccount_event_cpu(event, src_cpu);
12657 		put_ctx(src_ctx);
12658 		list_add(&event->migrate_entry, &events);
12659 	}
12660 
12661 	/*
12662 	 * Wait for the events to quiesce before re-instating them.
12663 	 */
12664 	synchronize_rcu();
12665 
12666 	/*
12667 	 * Re-instate events in 2 passes.
12668 	 *
12669 	 * Skip over group leaders and only install siblings on this first
12670 	 * pass, siblings will not get enabled without a leader, however a
12671 	 * leader will enable its siblings, even if those are still on the old
12672 	 * context.
12673 	 */
12674 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12675 		if (event->group_leader == event)
12676 			continue;
12677 
12678 		list_del(&event->migrate_entry);
12679 		if (event->state >= PERF_EVENT_STATE_OFF)
12680 			event->state = PERF_EVENT_STATE_INACTIVE;
12681 		account_event_cpu(event, dst_cpu);
12682 		perf_install_in_context(dst_ctx, event, dst_cpu);
12683 		get_ctx(dst_ctx);
12684 	}
12685 
12686 	/*
12687 	 * Once all the siblings are setup properly, install the group leaders
12688 	 * to make it go.
12689 	 */
12690 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12691 		list_del(&event->migrate_entry);
12692 		if (event->state >= PERF_EVENT_STATE_OFF)
12693 			event->state = PERF_EVENT_STATE_INACTIVE;
12694 		account_event_cpu(event, dst_cpu);
12695 		perf_install_in_context(dst_ctx, event, dst_cpu);
12696 		get_ctx(dst_ctx);
12697 	}
12698 	mutex_unlock(&dst_ctx->mutex);
12699 	mutex_unlock(&src_ctx->mutex);
12700 }
12701 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12702 
12703 static void sync_child_event(struct perf_event *child_event)
12704 {
12705 	struct perf_event *parent_event = child_event->parent;
12706 	u64 child_val;
12707 
12708 	if (child_event->attr.inherit_stat) {
12709 		struct task_struct *task = child_event->ctx->task;
12710 
12711 		if (task && task != TASK_TOMBSTONE)
12712 			perf_event_read_event(child_event, task);
12713 	}
12714 
12715 	child_val = perf_event_count(child_event);
12716 
12717 	/*
12718 	 * Add back the child's count to the parent's count:
12719 	 */
12720 	atomic64_add(child_val, &parent_event->child_count);
12721 	atomic64_add(child_event->total_time_enabled,
12722 		     &parent_event->child_total_time_enabled);
12723 	atomic64_add(child_event->total_time_running,
12724 		     &parent_event->child_total_time_running);
12725 }
12726 
12727 static void
12728 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12729 {
12730 	struct perf_event *parent_event = event->parent;
12731 	unsigned long detach_flags = 0;
12732 
12733 	if (parent_event) {
12734 		/*
12735 		 * Do not destroy the 'original' grouping; because of the
12736 		 * context switch optimization the original events could've
12737 		 * ended up in a random child task.
12738 		 *
12739 		 * If we were to destroy the original group, all group related
12740 		 * operations would cease to function properly after this
12741 		 * random child dies.
12742 		 *
12743 		 * Do destroy all inherited groups, we don't care about those
12744 		 * and being thorough is better.
12745 		 */
12746 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12747 		mutex_lock(&parent_event->child_mutex);
12748 	}
12749 
12750 	perf_remove_from_context(event, detach_flags);
12751 
12752 	raw_spin_lock_irq(&ctx->lock);
12753 	if (event->state > PERF_EVENT_STATE_EXIT)
12754 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12755 	raw_spin_unlock_irq(&ctx->lock);
12756 
12757 	/*
12758 	 * Child events can be freed.
12759 	 */
12760 	if (parent_event) {
12761 		mutex_unlock(&parent_event->child_mutex);
12762 		/*
12763 		 * Kick perf_poll() for is_event_hup();
12764 		 */
12765 		perf_event_wakeup(parent_event);
12766 		free_event(event);
12767 		put_event(parent_event);
12768 		return;
12769 	}
12770 
12771 	/*
12772 	 * Parent events are governed by their filedesc, retain them.
12773 	 */
12774 	perf_event_wakeup(event);
12775 }
12776 
12777 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12778 {
12779 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12780 	struct perf_event *child_event, *next;
12781 
12782 	WARN_ON_ONCE(child != current);
12783 
12784 	child_ctx = perf_pin_task_context(child, ctxn);
12785 	if (!child_ctx)
12786 		return;
12787 
12788 	/*
12789 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12790 	 * ctx::mutex over the entire thing. This serializes against almost
12791 	 * everything that wants to access the ctx.
12792 	 *
12793 	 * The exception is sys_perf_event_open() /
12794 	 * perf_event_create_kernel_count() which does find_get_context()
12795 	 * without ctx::mutex (it cannot because of the move_group double mutex
12796 	 * lock thing). See the comments in perf_install_in_context().
12797 	 */
12798 	mutex_lock(&child_ctx->mutex);
12799 
12800 	/*
12801 	 * In a single ctx::lock section, de-schedule the events and detach the
12802 	 * context from the task such that we cannot ever get it scheduled back
12803 	 * in.
12804 	 */
12805 	raw_spin_lock_irq(&child_ctx->lock);
12806 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12807 
12808 	/*
12809 	 * Now that the context is inactive, destroy the task <-> ctx relation
12810 	 * and mark the context dead.
12811 	 */
12812 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12813 	put_ctx(child_ctx); /* cannot be last */
12814 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12815 	put_task_struct(current); /* cannot be last */
12816 
12817 	clone_ctx = unclone_ctx(child_ctx);
12818 	raw_spin_unlock_irq(&child_ctx->lock);
12819 
12820 	if (clone_ctx)
12821 		put_ctx(clone_ctx);
12822 
12823 	/*
12824 	 * Report the task dead after unscheduling the events so that we
12825 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12826 	 * get a few PERF_RECORD_READ events.
12827 	 */
12828 	perf_event_task(child, child_ctx, 0);
12829 
12830 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12831 		perf_event_exit_event(child_event, child_ctx);
12832 
12833 	mutex_unlock(&child_ctx->mutex);
12834 
12835 	put_ctx(child_ctx);
12836 }
12837 
12838 /*
12839  * When a child task exits, feed back event values to parent events.
12840  *
12841  * Can be called with exec_update_lock held when called from
12842  * setup_new_exec().
12843  */
12844 void perf_event_exit_task(struct task_struct *child)
12845 {
12846 	struct perf_event *event, *tmp;
12847 	int ctxn;
12848 
12849 	mutex_lock(&child->perf_event_mutex);
12850 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12851 				 owner_entry) {
12852 		list_del_init(&event->owner_entry);
12853 
12854 		/*
12855 		 * Ensure the list deletion is visible before we clear
12856 		 * the owner, closes a race against perf_release() where
12857 		 * we need to serialize on the owner->perf_event_mutex.
12858 		 */
12859 		smp_store_release(&event->owner, NULL);
12860 	}
12861 	mutex_unlock(&child->perf_event_mutex);
12862 
12863 	for_each_task_context_nr(ctxn)
12864 		perf_event_exit_task_context(child, ctxn);
12865 
12866 	/*
12867 	 * The perf_event_exit_task_context calls perf_event_task
12868 	 * with child's task_ctx, which generates EXIT events for
12869 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12870 	 * At this point we need to send EXIT events to cpu contexts.
12871 	 */
12872 	perf_event_task(child, NULL, 0);
12873 }
12874 
12875 static void perf_free_event(struct perf_event *event,
12876 			    struct perf_event_context *ctx)
12877 {
12878 	struct perf_event *parent = event->parent;
12879 
12880 	if (WARN_ON_ONCE(!parent))
12881 		return;
12882 
12883 	mutex_lock(&parent->child_mutex);
12884 	list_del_init(&event->child_list);
12885 	mutex_unlock(&parent->child_mutex);
12886 
12887 	put_event(parent);
12888 
12889 	raw_spin_lock_irq(&ctx->lock);
12890 	perf_group_detach(event);
12891 	list_del_event(event, ctx);
12892 	raw_spin_unlock_irq(&ctx->lock);
12893 	free_event(event);
12894 }
12895 
12896 /*
12897  * Free a context as created by inheritance by perf_event_init_task() below,
12898  * used by fork() in case of fail.
12899  *
12900  * Even though the task has never lived, the context and events have been
12901  * exposed through the child_list, so we must take care tearing it all down.
12902  */
12903 void perf_event_free_task(struct task_struct *task)
12904 {
12905 	struct perf_event_context *ctx;
12906 	struct perf_event *event, *tmp;
12907 	int ctxn;
12908 
12909 	for_each_task_context_nr(ctxn) {
12910 		ctx = task->perf_event_ctxp[ctxn];
12911 		if (!ctx)
12912 			continue;
12913 
12914 		mutex_lock(&ctx->mutex);
12915 		raw_spin_lock_irq(&ctx->lock);
12916 		/*
12917 		 * Destroy the task <-> ctx relation and mark the context dead.
12918 		 *
12919 		 * This is important because even though the task hasn't been
12920 		 * exposed yet the context has been (through child_list).
12921 		 */
12922 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12923 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12924 		put_task_struct(task); /* cannot be last */
12925 		raw_spin_unlock_irq(&ctx->lock);
12926 
12927 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12928 			perf_free_event(event, ctx);
12929 
12930 		mutex_unlock(&ctx->mutex);
12931 
12932 		/*
12933 		 * perf_event_release_kernel() could've stolen some of our
12934 		 * child events and still have them on its free_list. In that
12935 		 * case we must wait for these events to have been freed (in
12936 		 * particular all their references to this task must've been
12937 		 * dropped).
12938 		 *
12939 		 * Without this copy_process() will unconditionally free this
12940 		 * task (irrespective of its reference count) and
12941 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12942 		 * use-after-free.
12943 		 *
12944 		 * Wait for all events to drop their context reference.
12945 		 */
12946 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12947 		put_ctx(ctx); /* must be last */
12948 	}
12949 }
12950 
12951 void perf_event_delayed_put(struct task_struct *task)
12952 {
12953 	int ctxn;
12954 
12955 	for_each_task_context_nr(ctxn)
12956 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12957 }
12958 
12959 struct file *perf_event_get(unsigned int fd)
12960 {
12961 	struct file *file = fget(fd);
12962 	if (!file)
12963 		return ERR_PTR(-EBADF);
12964 
12965 	if (file->f_op != &perf_fops) {
12966 		fput(file);
12967 		return ERR_PTR(-EBADF);
12968 	}
12969 
12970 	return file;
12971 }
12972 
12973 const struct perf_event *perf_get_event(struct file *file)
12974 {
12975 	if (file->f_op != &perf_fops)
12976 		return ERR_PTR(-EINVAL);
12977 
12978 	return file->private_data;
12979 }
12980 
12981 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12982 {
12983 	if (!event)
12984 		return ERR_PTR(-EINVAL);
12985 
12986 	return &event->attr;
12987 }
12988 
12989 /*
12990  * Inherit an event from parent task to child task.
12991  *
12992  * Returns:
12993  *  - valid pointer on success
12994  *  - NULL for orphaned events
12995  *  - IS_ERR() on error
12996  */
12997 static struct perf_event *
12998 inherit_event(struct perf_event *parent_event,
12999 	      struct task_struct *parent,
13000 	      struct perf_event_context *parent_ctx,
13001 	      struct task_struct *child,
13002 	      struct perf_event *group_leader,
13003 	      struct perf_event_context *child_ctx)
13004 {
13005 	enum perf_event_state parent_state = parent_event->state;
13006 	struct perf_event *child_event;
13007 	unsigned long flags;
13008 
13009 	/*
13010 	 * Instead of creating recursive hierarchies of events,
13011 	 * we link inherited events back to the original parent,
13012 	 * which has a filp for sure, which we use as the reference
13013 	 * count:
13014 	 */
13015 	if (parent_event->parent)
13016 		parent_event = parent_event->parent;
13017 
13018 	child_event = perf_event_alloc(&parent_event->attr,
13019 					   parent_event->cpu,
13020 					   child,
13021 					   group_leader, parent_event,
13022 					   NULL, NULL, -1);
13023 	if (IS_ERR(child_event))
13024 		return child_event;
13025 
13026 
13027 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
13028 	    !child_ctx->task_ctx_data) {
13029 		struct pmu *pmu = child_event->pmu;
13030 
13031 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
13032 		if (!child_ctx->task_ctx_data) {
13033 			free_event(child_event);
13034 			return ERR_PTR(-ENOMEM);
13035 		}
13036 	}
13037 
13038 	/*
13039 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13040 	 * must be under the same lock in order to serialize against
13041 	 * perf_event_release_kernel(), such that either we must observe
13042 	 * is_orphaned_event() or they will observe us on the child_list.
13043 	 */
13044 	mutex_lock(&parent_event->child_mutex);
13045 	if (is_orphaned_event(parent_event) ||
13046 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13047 		mutex_unlock(&parent_event->child_mutex);
13048 		/* task_ctx_data is freed with child_ctx */
13049 		free_event(child_event);
13050 		return NULL;
13051 	}
13052 
13053 	get_ctx(child_ctx);
13054 
13055 	/*
13056 	 * Make the child state follow the state of the parent event,
13057 	 * not its attr.disabled bit.  We hold the parent's mutex,
13058 	 * so we won't race with perf_event_{en, dis}able_family.
13059 	 */
13060 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13061 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13062 	else
13063 		child_event->state = PERF_EVENT_STATE_OFF;
13064 
13065 	if (parent_event->attr.freq) {
13066 		u64 sample_period = parent_event->hw.sample_period;
13067 		struct hw_perf_event *hwc = &child_event->hw;
13068 
13069 		hwc->sample_period = sample_period;
13070 		hwc->last_period   = sample_period;
13071 
13072 		local64_set(&hwc->period_left, sample_period);
13073 	}
13074 
13075 	child_event->ctx = child_ctx;
13076 	child_event->overflow_handler = parent_event->overflow_handler;
13077 	child_event->overflow_handler_context
13078 		= parent_event->overflow_handler_context;
13079 
13080 	/*
13081 	 * Precalculate sample_data sizes
13082 	 */
13083 	perf_event__header_size(child_event);
13084 	perf_event__id_header_size(child_event);
13085 
13086 	/*
13087 	 * Link it up in the child's context:
13088 	 */
13089 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13090 	add_event_to_ctx(child_event, child_ctx);
13091 	child_event->attach_state |= PERF_ATTACH_CHILD;
13092 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13093 
13094 	/*
13095 	 * Link this into the parent event's child list
13096 	 */
13097 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13098 	mutex_unlock(&parent_event->child_mutex);
13099 
13100 	return child_event;
13101 }
13102 
13103 /*
13104  * Inherits an event group.
13105  *
13106  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13107  * This matches with perf_event_release_kernel() removing all child events.
13108  *
13109  * Returns:
13110  *  - 0 on success
13111  *  - <0 on error
13112  */
13113 static int inherit_group(struct perf_event *parent_event,
13114 	      struct task_struct *parent,
13115 	      struct perf_event_context *parent_ctx,
13116 	      struct task_struct *child,
13117 	      struct perf_event_context *child_ctx)
13118 {
13119 	struct perf_event *leader;
13120 	struct perf_event *sub;
13121 	struct perf_event *child_ctr;
13122 
13123 	leader = inherit_event(parent_event, parent, parent_ctx,
13124 				 child, NULL, child_ctx);
13125 	if (IS_ERR(leader))
13126 		return PTR_ERR(leader);
13127 	/*
13128 	 * @leader can be NULL here because of is_orphaned_event(). In this
13129 	 * case inherit_event() will create individual events, similar to what
13130 	 * perf_group_detach() would do anyway.
13131 	 */
13132 	for_each_sibling_event(sub, parent_event) {
13133 		child_ctr = inherit_event(sub, parent, parent_ctx,
13134 					    child, leader, child_ctx);
13135 		if (IS_ERR(child_ctr))
13136 			return PTR_ERR(child_ctr);
13137 
13138 		if (sub->aux_event == parent_event && child_ctr &&
13139 		    !perf_get_aux_event(child_ctr, leader))
13140 			return -EINVAL;
13141 	}
13142 	return 0;
13143 }
13144 
13145 /*
13146  * Creates the child task context and tries to inherit the event-group.
13147  *
13148  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13149  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13150  * consistent with perf_event_release_kernel() removing all child events.
13151  *
13152  * Returns:
13153  *  - 0 on success
13154  *  - <0 on error
13155  */
13156 static int
13157 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13158 		   struct perf_event_context *parent_ctx,
13159 		   struct task_struct *child, int ctxn,
13160 		   u64 clone_flags, int *inherited_all)
13161 {
13162 	int ret;
13163 	struct perf_event_context *child_ctx;
13164 
13165 	if (!event->attr.inherit ||
13166 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13167 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13168 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13169 		*inherited_all = 0;
13170 		return 0;
13171 	}
13172 
13173 	child_ctx = child->perf_event_ctxp[ctxn];
13174 	if (!child_ctx) {
13175 		/*
13176 		 * This is executed from the parent task context, so
13177 		 * inherit events that have been marked for cloning.
13178 		 * First allocate and initialize a context for the
13179 		 * child.
13180 		 */
13181 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13182 		if (!child_ctx)
13183 			return -ENOMEM;
13184 
13185 		child->perf_event_ctxp[ctxn] = child_ctx;
13186 	}
13187 
13188 	ret = inherit_group(event, parent, parent_ctx,
13189 			    child, child_ctx);
13190 
13191 	if (ret)
13192 		*inherited_all = 0;
13193 
13194 	return ret;
13195 }
13196 
13197 /*
13198  * Initialize the perf_event context in task_struct
13199  */
13200 static int perf_event_init_context(struct task_struct *child, int ctxn,
13201 				   u64 clone_flags)
13202 {
13203 	struct perf_event_context *child_ctx, *parent_ctx;
13204 	struct perf_event_context *cloned_ctx;
13205 	struct perf_event *event;
13206 	struct task_struct *parent = current;
13207 	int inherited_all = 1;
13208 	unsigned long flags;
13209 	int ret = 0;
13210 
13211 	if (likely(!parent->perf_event_ctxp[ctxn]))
13212 		return 0;
13213 
13214 	/*
13215 	 * If the parent's context is a clone, pin it so it won't get
13216 	 * swapped under us.
13217 	 */
13218 	parent_ctx = perf_pin_task_context(parent, ctxn);
13219 	if (!parent_ctx)
13220 		return 0;
13221 
13222 	/*
13223 	 * No need to check if parent_ctx != NULL here; since we saw
13224 	 * it non-NULL earlier, the only reason for it to become NULL
13225 	 * is if we exit, and since we're currently in the middle of
13226 	 * a fork we can't be exiting at the same time.
13227 	 */
13228 
13229 	/*
13230 	 * Lock the parent list. No need to lock the child - not PID
13231 	 * hashed yet and not running, so nobody can access it.
13232 	 */
13233 	mutex_lock(&parent_ctx->mutex);
13234 
13235 	/*
13236 	 * We dont have to disable NMIs - we are only looking at
13237 	 * the list, not manipulating it:
13238 	 */
13239 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13240 		ret = inherit_task_group(event, parent, parent_ctx,
13241 					 child, ctxn, clone_flags,
13242 					 &inherited_all);
13243 		if (ret)
13244 			goto out_unlock;
13245 	}
13246 
13247 	/*
13248 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13249 	 * to allocations, but we need to prevent rotation because
13250 	 * rotate_ctx() will change the list from interrupt context.
13251 	 */
13252 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13253 	parent_ctx->rotate_disable = 1;
13254 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13255 
13256 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13257 		ret = inherit_task_group(event, parent, parent_ctx,
13258 					 child, ctxn, clone_flags,
13259 					 &inherited_all);
13260 		if (ret)
13261 			goto out_unlock;
13262 	}
13263 
13264 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13265 	parent_ctx->rotate_disable = 0;
13266 
13267 	child_ctx = child->perf_event_ctxp[ctxn];
13268 
13269 	if (child_ctx && inherited_all) {
13270 		/*
13271 		 * Mark the child context as a clone of the parent
13272 		 * context, or of whatever the parent is a clone of.
13273 		 *
13274 		 * Note that if the parent is a clone, the holding of
13275 		 * parent_ctx->lock avoids it from being uncloned.
13276 		 */
13277 		cloned_ctx = parent_ctx->parent_ctx;
13278 		if (cloned_ctx) {
13279 			child_ctx->parent_ctx = cloned_ctx;
13280 			child_ctx->parent_gen = parent_ctx->parent_gen;
13281 		} else {
13282 			child_ctx->parent_ctx = parent_ctx;
13283 			child_ctx->parent_gen = parent_ctx->generation;
13284 		}
13285 		get_ctx(child_ctx->parent_ctx);
13286 	}
13287 
13288 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13289 out_unlock:
13290 	mutex_unlock(&parent_ctx->mutex);
13291 
13292 	perf_unpin_context(parent_ctx);
13293 	put_ctx(parent_ctx);
13294 
13295 	return ret;
13296 }
13297 
13298 /*
13299  * Initialize the perf_event context in task_struct
13300  */
13301 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13302 {
13303 	int ctxn, ret;
13304 
13305 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13306 	mutex_init(&child->perf_event_mutex);
13307 	INIT_LIST_HEAD(&child->perf_event_list);
13308 
13309 	for_each_task_context_nr(ctxn) {
13310 		ret = perf_event_init_context(child, ctxn, clone_flags);
13311 		if (ret) {
13312 			perf_event_free_task(child);
13313 			return ret;
13314 		}
13315 	}
13316 
13317 	return 0;
13318 }
13319 
13320 static void __init perf_event_init_all_cpus(void)
13321 {
13322 	struct swevent_htable *swhash;
13323 	int cpu;
13324 
13325 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13326 
13327 	for_each_possible_cpu(cpu) {
13328 		swhash = &per_cpu(swevent_htable, cpu);
13329 		mutex_init(&swhash->hlist_mutex);
13330 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13331 
13332 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13333 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13334 
13335 #ifdef CONFIG_CGROUP_PERF
13336 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13337 #endif
13338 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13339 	}
13340 }
13341 
13342 static void perf_swevent_init_cpu(unsigned int cpu)
13343 {
13344 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13345 
13346 	mutex_lock(&swhash->hlist_mutex);
13347 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13348 		struct swevent_hlist *hlist;
13349 
13350 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13351 		WARN_ON(!hlist);
13352 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13353 	}
13354 	mutex_unlock(&swhash->hlist_mutex);
13355 }
13356 
13357 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13358 static void __perf_event_exit_context(void *__info)
13359 {
13360 	struct perf_event_context *ctx = __info;
13361 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13362 	struct perf_event *event;
13363 
13364 	raw_spin_lock(&ctx->lock);
13365 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13366 	list_for_each_entry(event, &ctx->event_list, event_entry)
13367 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13368 	raw_spin_unlock(&ctx->lock);
13369 }
13370 
13371 static void perf_event_exit_cpu_context(int cpu)
13372 {
13373 	struct perf_cpu_context *cpuctx;
13374 	struct perf_event_context *ctx;
13375 	struct pmu *pmu;
13376 
13377 	mutex_lock(&pmus_lock);
13378 	list_for_each_entry(pmu, &pmus, entry) {
13379 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13380 		ctx = &cpuctx->ctx;
13381 
13382 		mutex_lock(&ctx->mutex);
13383 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13384 		cpuctx->online = 0;
13385 		mutex_unlock(&ctx->mutex);
13386 	}
13387 	cpumask_clear_cpu(cpu, perf_online_mask);
13388 	mutex_unlock(&pmus_lock);
13389 }
13390 #else
13391 
13392 static void perf_event_exit_cpu_context(int cpu) { }
13393 
13394 #endif
13395 
13396 int perf_event_init_cpu(unsigned int cpu)
13397 {
13398 	struct perf_cpu_context *cpuctx;
13399 	struct perf_event_context *ctx;
13400 	struct pmu *pmu;
13401 
13402 	perf_swevent_init_cpu(cpu);
13403 
13404 	mutex_lock(&pmus_lock);
13405 	cpumask_set_cpu(cpu, perf_online_mask);
13406 	list_for_each_entry(pmu, &pmus, entry) {
13407 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13408 		ctx = &cpuctx->ctx;
13409 
13410 		mutex_lock(&ctx->mutex);
13411 		cpuctx->online = 1;
13412 		mutex_unlock(&ctx->mutex);
13413 	}
13414 	mutex_unlock(&pmus_lock);
13415 
13416 	return 0;
13417 }
13418 
13419 int perf_event_exit_cpu(unsigned int cpu)
13420 {
13421 	perf_event_exit_cpu_context(cpu);
13422 	return 0;
13423 }
13424 
13425 static int
13426 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13427 {
13428 	int cpu;
13429 
13430 	for_each_online_cpu(cpu)
13431 		perf_event_exit_cpu(cpu);
13432 
13433 	return NOTIFY_OK;
13434 }
13435 
13436 /*
13437  * Run the perf reboot notifier at the very last possible moment so that
13438  * the generic watchdog code runs as long as possible.
13439  */
13440 static struct notifier_block perf_reboot_notifier = {
13441 	.notifier_call = perf_reboot,
13442 	.priority = INT_MIN,
13443 };
13444 
13445 void __init perf_event_init(void)
13446 {
13447 	int ret;
13448 
13449 	idr_init(&pmu_idr);
13450 
13451 	perf_event_init_all_cpus();
13452 	init_srcu_struct(&pmus_srcu);
13453 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13454 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13455 	perf_pmu_register(&perf_task_clock, NULL, -1);
13456 	perf_tp_register();
13457 	perf_event_init_cpu(smp_processor_id());
13458 	register_reboot_notifier(&perf_reboot_notifier);
13459 
13460 	ret = init_hw_breakpoint();
13461 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13462 
13463 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13464 
13465 	/*
13466 	 * Build time assertion that we keep the data_head at the intended
13467 	 * location.  IOW, validation we got the __reserved[] size right.
13468 	 */
13469 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13470 		     != 1024);
13471 }
13472 
13473 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13474 			      char *page)
13475 {
13476 	struct perf_pmu_events_attr *pmu_attr =
13477 		container_of(attr, struct perf_pmu_events_attr, attr);
13478 
13479 	if (pmu_attr->event_str)
13480 		return sprintf(page, "%s\n", pmu_attr->event_str);
13481 
13482 	return 0;
13483 }
13484 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13485 
13486 static int __init perf_event_sysfs_init(void)
13487 {
13488 	struct pmu *pmu;
13489 	int ret;
13490 
13491 	mutex_lock(&pmus_lock);
13492 
13493 	ret = bus_register(&pmu_bus);
13494 	if (ret)
13495 		goto unlock;
13496 
13497 	list_for_each_entry(pmu, &pmus, entry) {
13498 		if (!pmu->name || pmu->type < 0)
13499 			continue;
13500 
13501 		ret = pmu_dev_alloc(pmu);
13502 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13503 	}
13504 	pmu_bus_running = 1;
13505 	ret = 0;
13506 
13507 unlock:
13508 	mutex_unlock(&pmus_lock);
13509 
13510 	return ret;
13511 }
13512 device_initcall(perf_event_sysfs_init);
13513 
13514 #ifdef CONFIG_CGROUP_PERF
13515 static struct cgroup_subsys_state *
13516 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13517 {
13518 	struct perf_cgroup *jc;
13519 
13520 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13521 	if (!jc)
13522 		return ERR_PTR(-ENOMEM);
13523 
13524 	jc->info = alloc_percpu(struct perf_cgroup_info);
13525 	if (!jc->info) {
13526 		kfree(jc);
13527 		return ERR_PTR(-ENOMEM);
13528 	}
13529 
13530 	return &jc->css;
13531 }
13532 
13533 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13534 {
13535 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13536 
13537 	free_percpu(jc->info);
13538 	kfree(jc);
13539 }
13540 
13541 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13542 {
13543 	perf_event_cgroup(css->cgroup);
13544 	return 0;
13545 }
13546 
13547 static int __perf_cgroup_move(void *info)
13548 {
13549 	struct task_struct *task = info;
13550 	rcu_read_lock();
13551 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13552 	rcu_read_unlock();
13553 	return 0;
13554 }
13555 
13556 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13557 {
13558 	struct task_struct *task;
13559 	struct cgroup_subsys_state *css;
13560 
13561 	cgroup_taskset_for_each(task, css, tset)
13562 		task_function_call(task, __perf_cgroup_move, task);
13563 }
13564 
13565 struct cgroup_subsys perf_event_cgrp_subsys = {
13566 	.css_alloc	= perf_cgroup_css_alloc,
13567 	.css_free	= perf_cgroup_css_free,
13568 	.css_online	= perf_cgroup_css_online,
13569 	.attach		= perf_cgroup_attach,
13570 	/*
13571 	 * Implicitly enable on dfl hierarchy so that perf events can
13572 	 * always be filtered by cgroup2 path as long as perf_event
13573 	 * controller is not mounted on a legacy hierarchy.
13574 	 */
13575 	.implicit_on_dfl = true,
13576 	.threaded	= true,
13577 };
13578 #endif /* CONFIG_CGROUP_PERF */
13579 
13580 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13581