1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 58 #include "internal.h" 59 60 #include <asm/irq_regs.h> 61 62 typedef int (*remote_function_f)(void *); 63 64 struct remote_function_call { 65 struct task_struct *p; 66 remote_function_f func; 67 void *info; 68 int ret; 69 }; 70 71 static void remote_function(void *data) 72 { 73 struct remote_function_call *tfc = data; 74 struct task_struct *p = tfc->p; 75 76 if (p) { 77 /* -EAGAIN */ 78 if (task_cpu(p) != smp_processor_id()) 79 return; 80 81 /* 82 * Now that we're on right CPU with IRQs disabled, we can test 83 * if we hit the right task without races. 84 */ 85 86 tfc->ret = -ESRCH; /* No such (running) process */ 87 if (p != current) 88 return; 89 } 90 91 tfc->ret = tfc->func(tfc->info); 92 } 93 94 /** 95 * task_function_call - call a function on the cpu on which a task runs 96 * @p: the task to evaluate 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func when the task is currently running. This might 101 * be on the current CPU, which just calls the function directly. This will 102 * retry due to any failures in smp_call_function_single(), such as if the 103 * task_cpu() goes offline concurrently. 104 * 105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 106 */ 107 static int 108 task_function_call(struct task_struct *p, remote_function_f func, void *info) 109 { 110 struct remote_function_call data = { 111 .p = p, 112 .func = func, 113 .info = info, 114 .ret = -EAGAIN, 115 }; 116 int ret; 117 118 for (;;) { 119 ret = smp_call_function_single(task_cpu(p), remote_function, 120 &data, 1); 121 if (!ret) 122 ret = data.ret; 123 124 if (ret != -EAGAIN) 125 break; 126 127 cond_resched(); 128 } 129 130 return ret; 131 } 132 133 /** 134 * cpu_function_call - call a function on the cpu 135 * @cpu: target cpu to queue this function 136 * @func: the function to be called 137 * @info: the function call argument 138 * 139 * Calls the function @func on the remote cpu. 140 * 141 * returns: @func return value or -ENXIO when the cpu is offline 142 */ 143 static int cpu_function_call(int cpu, remote_function_f func, void *info) 144 { 145 struct remote_function_call data = { 146 .p = NULL, 147 .func = func, 148 .info = info, 149 .ret = -ENXIO, /* No such CPU */ 150 }; 151 152 smp_call_function_single(cpu, remote_function, &data, 1); 153 154 return data.ret; 155 } 156 157 static inline struct perf_cpu_context * 158 __get_cpu_context(struct perf_event_context *ctx) 159 { 160 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 161 } 162 163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 164 struct perf_event_context *ctx) 165 { 166 raw_spin_lock(&cpuctx->ctx.lock); 167 if (ctx) 168 raw_spin_lock(&ctx->lock); 169 } 170 171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 172 struct perf_event_context *ctx) 173 { 174 if (ctx) 175 raw_spin_unlock(&ctx->lock); 176 raw_spin_unlock(&cpuctx->ctx.lock); 177 } 178 179 #define TASK_TOMBSTONE ((void *)-1L) 180 181 static bool is_kernel_event(struct perf_event *event) 182 { 183 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 184 } 185 186 /* 187 * On task ctx scheduling... 188 * 189 * When !ctx->nr_events a task context will not be scheduled. This means 190 * we can disable the scheduler hooks (for performance) without leaving 191 * pending task ctx state. 192 * 193 * This however results in two special cases: 194 * 195 * - removing the last event from a task ctx; this is relatively straight 196 * forward and is done in __perf_remove_from_context. 197 * 198 * - adding the first event to a task ctx; this is tricky because we cannot 199 * rely on ctx->is_active and therefore cannot use event_function_call(). 200 * See perf_install_in_context(). 201 * 202 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 203 */ 204 205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 206 struct perf_event_context *, void *); 207 208 struct event_function_struct { 209 struct perf_event *event; 210 event_f func; 211 void *data; 212 }; 213 214 static int event_function(void *info) 215 { 216 struct event_function_struct *efs = info; 217 struct perf_event *event = efs->event; 218 struct perf_event_context *ctx = event->ctx; 219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 220 struct perf_event_context *task_ctx = cpuctx->task_ctx; 221 int ret = 0; 222 223 lockdep_assert_irqs_disabled(); 224 225 perf_ctx_lock(cpuctx, task_ctx); 226 /* 227 * Since we do the IPI call without holding ctx->lock things can have 228 * changed, double check we hit the task we set out to hit. 229 */ 230 if (ctx->task) { 231 if (ctx->task != current) { 232 ret = -ESRCH; 233 goto unlock; 234 } 235 236 /* 237 * We only use event_function_call() on established contexts, 238 * and event_function() is only ever called when active (or 239 * rather, we'll have bailed in task_function_call() or the 240 * above ctx->task != current test), therefore we must have 241 * ctx->is_active here. 242 */ 243 WARN_ON_ONCE(!ctx->is_active); 244 /* 245 * And since we have ctx->is_active, cpuctx->task_ctx must 246 * match. 247 */ 248 WARN_ON_ONCE(task_ctx != ctx); 249 } else { 250 WARN_ON_ONCE(&cpuctx->ctx != ctx); 251 } 252 253 efs->func(event, cpuctx, ctx, efs->data); 254 unlock: 255 perf_ctx_unlock(cpuctx, task_ctx); 256 257 return ret; 258 } 259 260 static void event_function_call(struct perf_event *event, event_f func, void *data) 261 { 262 struct perf_event_context *ctx = event->ctx; 263 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 264 struct event_function_struct efs = { 265 .event = event, 266 .func = func, 267 .data = data, 268 }; 269 270 if (!event->parent) { 271 /* 272 * If this is a !child event, we must hold ctx::mutex to 273 * stabilize the event->ctx relation. See 274 * perf_event_ctx_lock(). 275 */ 276 lockdep_assert_held(&ctx->mutex); 277 } 278 279 if (!task) { 280 cpu_function_call(event->cpu, event_function, &efs); 281 return; 282 } 283 284 if (task == TASK_TOMBSTONE) 285 return; 286 287 again: 288 if (!task_function_call(task, event_function, &efs)) 289 return; 290 291 raw_spin_lock_irq(&ctx->lock); 292 /* 293 * Reload the task pointer, it might have been changed by 294 * a concurrent perf_event_context_sched_out(). 295 */ 296 task = ctx->task; 297 if (task == TASK_TOMBSTONE) { 298 raw_spin_unlock_irq(&ctx->lock); 299 return; 300 } 301 if (ctx->is_active) { 302 raw_spin_unlock_irq(&ctx->lock); 303 goto again; 304 } 305 func(event, NULL, ctx, data); 306 raw_spin_unlock_irq(&ctx->lock); 307 } 308 309 /* 310 * Similar to event_function_call() + event_function(), but hard assumes IRQs 311 * are already disabled and we're on the right CPU. 312 */ 313 static void event_function_local(struct perf_event *event, event_f func, void *data) 314 { 315 struct perf_event_context *ctx = event->ctx; 316 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 317 struct task_struct *task = READ_ONCE(ctx->task); 318 struct perf_event_context *task_ctx = NULL; 319 320 lockdep_assert_irqs_disabled(); 321 322 if (task) { 323 if (task == TASK_TOMBSTONE) 324 return; 325 326 task_ctx = ctx; 327 } 328 329 perf_ctx_lock(cpuctx, task_ctx); 330 331 task = ctx->task; 332 if (task == TASK_TOMBSTONE) 333 goto unlock; 334 335 if (task) { 336 /* 337 * We must be either inactive or active and the right task, 338 * otherwise we're screwed, since we cannot IPI to somewhere 339 * else. 340 */ 341 if (ctx->is_active) { 342 if (WARN_ON_ONCE(task != current)) 343 goto unlock; 344 345 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 346 goto unlock; 347 } 348 } else { 349 WARN_ON_ONCE(&cpuctx->ctx != ctx); 350 } 351 352 func(event, cpuctx, ctx, data); 353 unlock: 354 perf_ctx_unlock(cpuctx, task_ctx); 355 } 356 357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 358 PERF_FLAG_FD_OUTPUT |\ 359 PERF_FLAG_PID_CGROUP |\ 360 PERF_FLAG_FD_CLOEXEC) 361 362 /* 363 * branch priv levels that need permission checks 364 */ 365 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 366 (PERF_SAMPLE_BRANCH_KERNEL |\ 367 PERF_SAMPLE_BRANCH_HV) 368 369 enum event_type_t { 370 EVENT_FLEXIBLE = 0x1, 371 EVENT_PINNED = 0x2, 372 EVENT_TIME = 0x4, 373 /* see ctx_resched() for details */ 374 EVENT_CPU = 0x8, 375 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 376 }; 377 378 /* 379 * perf_sched_events : >0 events exist 380 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 381 */ 382 383 static void perf_sched_delayed(struct work_struct *work); 384 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 386 static DEFINE_MUTEX(perf_sched_mutex); 387 static atomic_t perf_sched_count; 388 389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 390 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 392 393 static atomic_t nr_mmap_events __read_mostly; 394 static atomic_t nr_comm_events __read_mostly; 395 static atomic_t nr_namespaces_events __read_mostly; 396 static atomic_t nr_task_events __read_mostly; 397 static atomic_t nr_freq_events __read_mostly; 398 static atomic_t nr_switch_events __read_mostly; 399 static atomic_t nr_ksymbol_events __read_mostly; 400 static atomic_t nr_bpf_events __read_mostly; 401 static atomic_t nr_cgroup_events __read_mostly; 402 static atomic_t nr_text_poke_events __read_mostly; 403 static atomic_t nr_build_id_events __read_mostly; 404 405 static LIST_HEAD(pmus); 406 static DEFINE_MUTEX(pmus_lock); 407 static struct srcu_struct pmus_srcu; 408 static cpumask_var_t perf_online_mask; 409 static struct kmem_cache *perf_event_cache; 410 411 /* 412 * perf event paranoia level: 413 * -1 - not paranoid at all 414 * 0 - disallow raw tracepoint access for unpriv 415 * 1 - disallow cpu events for unpriv 416 * 2 - disallow kernel profiling for unpriv 417 */ 418 int sysctl_perf_event_paranoid __read_mostly = 2; 419 420 /* Minimum for 512 kiB + 1 user control page */ 421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 422 423 /* 424 * max perf event sample rate 425 */ 426 #define DEFAULT_MAX_SAMPLE_RATE 100000 427 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 428 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 429 430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 431 432 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 433 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 434 435 static int perf_sample_allowed_ns __read_mostly = 436 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 437 438 static void update_perf_cpu_limits(void) 439 { 440 u64 tmp = perf_sample_period_ns; 441 442 tmp *= sysctl_perf_cpu_time_max_percent; 443 tmp = div_u64(tmp, 100); 444 if (!tmp) 445 tmp = 1; 446 447 WRITE_ONCE(perf_sample_allowed_ns, tmp); 448 } 449 450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 451 452 int perf_proc_update_handler(struct ctl_table *table, int write, 453 void *buffer, size_t *lenp, loff_t *ppos) 454 { 455 int ret; 456 int perf_cpu = sysctl_perf_cpu_time_max_percent; 457 /* 458 * If throttling is disabled don't allow the write: 459 */ 460 if (write && (perf_cpu == 100 || perf_cpu == 0)) 461 return -EINVAL; 462 463 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 464 if (ret || !write) 465 return ret; 466 467 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 468 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 469 update_perf_cpu_limits(); 470 471 return 0; 472 } 473 474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 475 476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 477 void *buffer, size_t *lenp, loff_t *ppos) 478 { 479 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 480 481 if (ret || !write) 482 return ret; 483 484 if (sysctl_perf_cpu_time_max_percent == 100 || 485 sysctl_perf_cpu_time_max_percent == 0) { 486 printk(KERN_WARNING 487 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 488 WRITE_ONCE(perf_sample_allowed_ns, 0); 489 } else { 490 update_perf_cpu_limits(); 491 } 492 493 return 0; 494 } 495 496 /* 497 * perf samples are done in some very critical code paths (NMIs). 498 * If they take too much CPU time, the system can lock up and not 499 * get any real work done. This will drop the sample rate when 500 * we detect that events are taking too long. 501 */ 502 #define NR_ACCUMULATED_SAMPLES 128 503 static DEFINE_PER_CPU(u64, running_sample_length); 504 505 static u64 __report_avg; 506 static u64 __report_allowed; 507 508 static void perf_duration_warn(struct irq_work *w) 509 { 510 printk_ratelimited(KERN_INFO 511 "perf: interrupt took too long (%lld > %lld), lowering " 512 "kernel.perf_event_max_sample_rate to %d\n", 513 __report_avg, __report_allowed, 514 sysctl_perf_event_sample_rate); 515 } 516 517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 518 519 void perf_sample_event_took(u64 sample_len_ns) 520 { 521 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 522 u64 running_len; 523 u64 avg_len; 524 u32 max; 525 526 if (max_len == 0) 527 return; 528 529 /* Decay the counter by 1 average sample. */ 530 running_len = __this_cpu_read(running_sample_length); 531 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 532 running_len += sample_len_ns; 533 __this_cpu_write(running_sample_length, running_len); 534 535 /* 536 * Note: this will be biased artifically low until we have 537 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 538 * from having to maintain a count. 539 */ 540 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 541 if (avg_len <= max_len) 542 return; 543 544 __report_avg = avg_len; 545 __report_allowed = max_len; 546 547 /* 548 * Compute a throttle threshold 25% below the current duration. 549 */ 550 avg_len += avg_len / 4; 551 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 552 if (avg_len < max) 553 max /= (u32)avg_len; 554 else 555 max = 1; 556 557 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 558 WRITE_ONCE(max_samples_per_tick, max); 559 560 sysctl_perf_event_sample_rate = max * HZ; 561 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 562 563 if (!irq_work_queue(&perf_duration_work)) { 564 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 565 "kernel.perf_event_max_sample_rate to %d\n", 566 __report_avg, __report_allowed, 567 sysctl_perf_event_sample_rate); 568 } 569 } 570 571 static atomic64_t perf_event_id; 572 573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 574 enum event_type_t event_type); 575 576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 577 enum event_type_t event_type, 578 struct task_struct *task); 579 580 static void update_context_time(struct perf_event_context *ctx); 581 static u64 perf_event_time(struct perf_event *event); 582 583 void __weak perf_event_print_debug(void) { } 584 585 static inline u64 perf_clock(void) 586 { 587 return local_clock(); 588 } 589 590 static inline u64 perf_event_clock(struct perf_event *event) 591 { 592 return event->clock(); 593 } 594 595 /* 596 * State based event timekeeping... 597 * 598 * The basic idea is to use event->state to determine which (if any) time 599 * fields to increment with the current delta. This means we only need to 600 * update timestamps when we change state or when they are explicitly requested 601 * (read). 602 * 603 * Event groups make things a little more complicated, but not terribly so. The 604 * rules for a group are that if the group leader is OFF the entire group is 605 * OFF, irrespecive of what the group member states are. This results in 606 * __perf_effective_state(). 607 * 608 * A futher ramification is that when a group leader flips between OFF and 609 * !OFF, we need to update all group member times. 610 * 611 * 612 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 613 * need to make sure the relevant context time is updated before we try and 614 * update our timestamps. 615 */ 616 617 static __always_inline enum perf_event_state 618 __perf_effective_state(struct perf_event *event) 619 { 620 struct perf_event *leader = event->group_leader; 621 622 if (leader->state <= PERF_EVENT_STATE_OFF) 623 return leader->state; 624 625 return event->state; 626 } 627 628 static __always_inline void 629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 630 { 631 enum perf_event_state state = __perf_effective_state(event); 632 u64 delta = now - event->tstamp; 633 634 *enabled = event->total_time_enabled; 635 if (state >= PERF_EVENT_STATE_INACTIVE) 636 *enabled += delta; 637 638 *running = event->total_time_running; 639 if (state >= PERF_EVENT_STATE_ACTIVE) 640 *running += delta; 641 } 642 643 static void perf_event_update_time(struct perf_event *event) 644 { 645 u64 now = perf_event_time(event); 646 647 __perf_update_times(event, now, &event->total_time_enabled, 648 &event->total_time_running); 649 event->tstamp = now; 650 } 651 652 static void perf_event_update_sibling_time(struct perf_event *leader) 653 { 654 struct perf_event *sibling; 655 656 for_each_sibling_event(sibling, leader) 657 perf_event_update_time(sibling); 658 } 659 660 static void 661 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 662 { 663 if (event->state == state) 664 return; 665 666 perf_event_update_time(event); 667 /* 668 * If a group leader gets enabled/disabled all its siblings 669 * are affected too. 670 */ 671 if ((event->state < 0) ^ (state < 0)) 672 perf_event_update_sibling_time(event); 673 674 WRITE_ONCE(event->state, state); 675 } 676 677 /* 678 * UP store-release, load-acquire 679 */ 680 681 #define __store_release(ptr, val) \ 682 do { \ 683 barrier(); \ 684 WRITE_ONCE(*(ptr), (val)); \ 685 } while (0) 686 687 #define __load_acquire(ptr) \ 688 ({ \ 689 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 690 barrier(); \ 691 ___p; \ 692 }) 693 694 #ifdef CONFIG_CGROUP_PERF 695 696 static inline bool 697 perf_cgroup_match(struct perf_event *event) 698 { 699 struct perf_event_context *ctx = event->ctx; 700 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 701 702 /* @event doesn't care about cgroup */ 703 if (!event->cgrp) 704 return true; 705 706 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 707 if (!cpuctx->cgrp) 708 return false; 709 710 /* 711 * Cgroup scoping is recursive. An event enabled for a cgroup is 712 * also enabled for all its descendant cgroups. If @cpuctx's 713 * cgroup is a descendant of @event's (the test covers identity 714 * case), it's a match. 715 */ 716 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 717 event->cgrp->css.cgroup); 718 } 719 720 static inline void perf_detach_cgroup(struct perf_event *event) 721 { 722 css_put(&event->cgrp->css); 723 event->cgrp = NULL; 724 } 725 726 static inline int is_cgroup_event(struct perf_event *event) 727 { 728 return event->cgrp != NULL; 729 } 730 731 static inline u64 perf_cgroup_event_time(struct perf_event *event) 732 { 733 struct perf_cgroup_info *t; 734 735 t = per_cpu_ptr(event->cgrp->info, event->cpu); 736 return t->time; 737 } 738 739 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 740 { 741 struct perf_cgroup_info *t; 742 743 t = per_cpu_ptr(event->cgrp->info, event->cpu); 744 if (!__load_acquire(&t->active)) 745 return t->time; 746 now += READ_ONCE(t->timeoffset); 747 return now; 748 } 749 750 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 751 { 752 if (adv) 753 info->time += now - info->timestamp; 754 info->timestamp = now; 755 /* 756 * see update_context_time() 757 */ 758 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 759 } 760 761 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 762 { 763 struct perf_cgroup *cgrp = cpuctx->cgrp; 764 struct cgroup_subsys_state *css; 765 struct perf_cgroup_info *info; 766 767 if (cgrp) { 768 u64 now = perf_clock(); 769 770 for (css = &cgrp->css; css; css = css->parent) { 771 cgrp = container_of(css, struct perf_cgroup, css); 772 info = this_cpu_ptr(cgrp->info); 773 774 __update_cgrp_time(info, now, true); 775 if (final) 776 __store_release(&info->active, 0); 777 } 778 } 779 } 780 781 static inline void update_cgrp_time_from_event(struct perf_event *event) 782 { 783 struct perf_cgroup_info *info; 784 struct perf_cgroup *cgrp; 785 786 /* 787 * ensure we access cgroup data only when needed and 788 * when we know the cgroup is pinned (css_get) 789 */ 790 if (!is_cgroup_event(event)) 791 return; 792 793 cgrp = perf_cgroup_from_task(current, event->ctx); 794 /* 795 * Do not update time when cgroup is not active 796 */ 797 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) { 798 info = this_cpu_ptr(event->cgrp->info); 799 __update_cgrp_time(info, perf_clock(), true); 800 } 801 } 802 803 static inline void 804 perf_cgroup_set_timestamp(struct task_struct *task, 805 struct perf_event_context *ctx) 806 { 807 struct perf_cgroup *cgrp; 808 struct perf_cgroup_info *info; 809 struct cgroup_subsys_state *css; 810 811 /* 812 * ctx->lock held by caller 813 * ensure we do not access cgroup data 814 * unless we have the cgroup pinned (css_get) 815 */ 816 if (!task || !ctx->nr_cgroups) 817 return; 818 819 cgrp = perf_cgroup_from_task(task, ctx); 820 821 for (css = &cgrp->css; css; css = css->parent) { 822 cgrp = container_of(css, struct perf_cgroup, css); 823 info = this_cpu_ptr(cgrp->info); 824 __update_cgrp_time(info, ctx->timestamp, false); 825 __store_release(&info->active, 1); 826 } 827 } 828 829 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 830 831 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 832 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 833 834 /* 835 * reschedule events based on the cgroup constraint of task. 836 * 837 * mode SWOUT : schedule out everything 838 * mode SWIN : schedule in based on cgroup for next 839 */ 840 static void perf_cgroup_switch(struct task_struct *task, int mode) 841 { 842 struct perf_cpu_context *cpuctx; 843 struct list_head *list; 844 unsigned long flags; 845 846 /* 847 * Disable interrupts and preemption to avoid this CPU's 848 * cgrp_cpuctx_entry to change under us. 849 */ 850 local_irq_save(flags); 851 852 list = this_cpu_ptr(&cgrp_cpuctx_list); 853 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 854 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 855 856 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 857 perf_pmu_disable(cpuctx->ctx.pmu); 858 859 if (mode & PERF_CGROUP_SWOUT) { 860 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 861 /* 862 * must not be done before ctxswout due 863 * to event_filter_match() in event_sched_out() 864 */ 865 cpuctx->cgrp = NULL; 866 } 867 868 if (mode & PERF_CGROUP_SWIN) { 869 WARN_ON_ONCE(cpuctx->cgrp); 870 /* 871 * set cgrp before ctxsw in to allow 872 * event_filter_match() to not have to pass 873 * task around 874 * we pass the cpuctx->ctx to perf_cgroup_from_task() 875 * because cgorup events are only per-cpu 876 */ 877 cpuctx->cgrp = perf_cgroup_from_task(task, 878 &cpuctx->ctx); 879 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 880 } 881 perf_pmu_enable(cpuctx->ctx.pmu); 882 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 883 } 884 885 local_irq_restore(flags); 886 } 887 888 static inline void perf_cgroup_sched_out(struct task_struct *task, 889 struct task_struct *next) 890 { 891 struct perf_cgroup *cgrp1; 892 struct perf_cgroup *cgrp2 = NULL; 893 894 rcu_read_lock(); 895 /* 896 * we come here when we know perf_cgroup_events > 0 897 * we do not need to pass the ctx here because we know 898 * we are holding the rcu lock 899 */ 900 cgrp1 = perf_cgroup_from_task(task, NULL); 901 cgrp2 = perf_cgroup_from_task(next, NULL); 902 903 /* 904 * only schedule out current cgroup events if we know 905 * that we are switching to a different cgroup. Otherwise, 906 * do no touch the cgroup events. 907 */ 908 if (cgrp1 != cgrp2) 909 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 910 911 rcu_read_unlock(); 912 } 913 914 static inline void perf_cgroup_sched_in(struct task_struct *prev, 915 struct task_struct *task) 916 { 917 struct perf_cgroup *cgrp1; 918 struct perf_cgroup *cgrp2 = NULL; 919 920 rcu_read_lock(); 921 /* 922 * we come here when we know perf_cgroup_events > 0 923 * we do not need to pass the ctx here because we know 924 * we are holding the rcu lock 925 */ 926 cgrp1 = perf_cgroup_from_task(task, NULL); 927 cgrp2 = perf_cgroup_from_task(prev, NULL); 928 929 /* 930 * only need to schedule in cgroup events if we are changing 931 * cgroup during ctxsw. Cgroup events were not scheduled 932 * out of ctxsw out if that was not the case. 933 */ 934 if (cgrp1 != cgrp2) 935 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 936 937 rcu_read_unlock(); 938 } 939 940 static int perf_cgroup_ensure_storage(struct perf_event *event, 941 struct cgroup_subsys_state *css) 942 { 943 struct perf_cpu_context *cpuctx; 944 struct perf_event **storage; 945 int cpu, heap_size, ret = 0; 946 947 /* 948 * Allow storage to have sufficent space for an iterator for each 949 * possibly nested cgroup plus an iterator for events with no cgroup. 950 */ 951 for (heap_size = 1; css; css = css->parent) 952 heap_size++; 953 954 for_each_possible_cpu(cpu) { 955 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 956 if (heap_size <= cpuctx->heap_size) 957 continue; 958 959 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 960 GFP_KERNEL, cpu_to_node(cpu)); 961 if (!storage) { 962 ret = -ENOMEM; 963 break; 964 } 965 966 raw_spin_lock_irq(&cpuctx->ctx.lock); 967 if (cpuctx->heap_size < heap_size) { 968 swap(cpuctx->heap, storage); 969 if (storage == cpuctx->heap_default) 970 storage = NULL; 971 cpuctx->heap_size = heap_size; 972 } 973 raw_spin_unlock_irq(&cpuctx->ctx.lock); 974 975 kfree(storage); 976 } 977 978 return ret; 979 } 980 981 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 982 struct perf_event_attr *attr, 983 struct perf_event *group_leader) 984 { 985 struct perf_cgroup *cgrp; 986 struct cgroup_subsys_state *css; 987 struct fd f = fdget(fd); 988 int ret = 0; 989 990 if (!f.file) 991 return -EBADF; 992 993 css = css_tryget_online_from_dir(f.file->f_path.dentry, 994 &perf_event_cgrp_subsys); 995 if (IS_ERR(css)) { 996 ret = PTR_ERR(css); 997 goto out; 998 } 999 1000 ret = perf_cgroup_ensure_storage(event, css); 1001 if (ret) 1002 goto out; 1003 1004 cgrp = container_of(css, struct perf_cgroup, css); 1005 event->cgrp = cgrp; 1006 1007 /* 1008 * all events in a group must monitor 1009 * the same cgroup because a task belongs 1010 * to only one perf cgroup at a time 1011 */ 1012 if (group_leader && group_leader->cgrp != cgrp) { 1013 perf_detach_cgroup(event); 1014 ret = -EINVAL; 1015 } 1016 out: 1017 fdput(f); 1018 return ret; 1019 } 1020 1021 static inline void 1022 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1023 { 1024 struct perf_cpu_context *cpuctx; 1025 1026 if (!is_cgroup_event(event)) 1027 return; 1028 1029 /* 1030 * Because cgroup events are always per-cpu events, 1031 * @ctx == &cpuctx->ctx. 1032 */ 1033 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1034 1035 /* 1036 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1037 * matching the event's cgroup, we must do this for every new event, 1038 * because if the first would mismatch, the second would not try again 1039 * and we would leave cpuctx->cgrp unset. 1040 */ 1041 if (ctx->is_active && !cpuctx->cgrp) { 1042 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1043 1044 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1045 cpuctx->cgrp = cgrp; 1046 } 1047 1048 if (ctx->nr_cgroups++) 1049 return; 1050 1051 list_add(&cpuctx->cgrp_cpuctx_entry, 1052 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1053 } 1054 1055 static inline void 1056 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1057 { 1058 struct perf_cpu_context *cpuctx; 1059 1060 if (!is_cgroup_event(event)) 1061 return; 1062 1063 /* 1064 * Because cgroup events are always per-cpu events, 1065 * @ctx == &cpuctx->ctx. 1066 */ 1067 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1068 1069 if (--ctx->nr_cgroups) 1070 return; 1071 1072 if (ctx->is_active && cpuctx->cgrp) 1073 cpuctx->cgrp = NULL; 1074 1075 list_del(&cpuctx->cgrp_cpuctx_entry); 1076 } 1077 1078 #else /* !CONFIG_CGROUP_PERF */ 1079 1080 static inline bool 1081 perf_cgroup_match(struct perf_event *event) 1082 { 1083 return true; 1084 } 1085 1086 static inline void perf_detach_cgroup(struct perf_event *event) 1087 {} 1088 1089 static inline int is_cgroup_event(struct perf_event *event) 1090 { 1091 return 0; 1092 } 1093 1094 static inline void update_cgrp_time_from_event(struct perf_event *event) 1095 { 1096 } 1097 1098 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1099 bool final) 1100 { 1101 } 1102 1103 static inline void perf_cgroup_sched_out(struct task_struct *task, 1104 struct task_struct *next) 1105 { 1106 } 1107 1108 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1109 struct task_struct *task) 1110 { 1111 } 1112 1113 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1114 struct perf_event_attr *attr, 1115 struct perf_event *group_leader) 1116 { 1117 return -EINVAL; 1118 } 1119 1120 static inline void 1121 perf_cgroup_set_timestamp(struct task_struct *task, 1122 struct perf_event_context *ctx) 1123 { 1124 } 1125 1126 static inline void 1127 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1128 { 1129 } 1130 1131 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1132 { 1133 return 0; 1134 } 1135 1136 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1137 { 1138 return 0; 1139 } 1140 1141 static inline void 1142 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1143 { 1144 } 1145 1146 static inline void 1147 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1148 { 1149 } 1150 #endif 1151 1152 /* 1153 * set default to be dependent on timer tick just 1154 * like original code 1155 */ 1156 #define PERF_CPU_HRTIMER (1000 / HZ) 1157 /* 1158 * function must be called with interrupts disabled 1159 */ 1160 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1161 { 1162 struct perf_cpu_context *cpuctx; 1163 bool rotations; 1164 1165 lockdep_assert_irqs_disabled(); 1166 1167 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1168 rotations = perf_rotate_context(cpuctx); 1169 1170 raw_spin_lock(&cpuctx->hrtimer_lock); 1171 if (rotations) 1172 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1173 else 1174 cpuctx->hrtimer_active = 0; 1175 raw_spin_unlock(&cpuctx->hrtimer_lock); 1176 1177 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1178 } 1179 1180 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1181 { 1182 struct hrtimer *timer = &cpuctx->hrtimer; 1183 struct pmu *pmu = cpuctx->ctx.pmu; 1184 u64 interval; 1185 1186 /* no multiplexing needed for SW PMU */ 1187 if (pmu->task_ctx_nr == perf_sw_context) 1188 return; 1189 1190 /* 1191 * check default is sane, if not set then force to 1192 * default interval (1/tick) 1193 */ 1194 interval = pmu->hrtimer_interval_ms; 1195 if (interval < 1) 1196 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1197 1198 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1199 1200 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1201 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1202 timer->function = perf_mux_hrtimer_handler; 1203 } 1204 1205 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1206 { 1207 struct hrtimer *timer = &cpuctx->hrtimer; 1208 struct pmu *pmu = cpuctx->ctx.pmu; 1209 unsigned long flags; 1210 1211 /* not for SW PMU */ 1212 if (pmu->task_ctx_nr == perf_sw_context) 1213 return 0; 1214 1215 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1216 if (!cpuctx->hrtimer_active) { 1217 cpuctx->hrtimer_active = 1; 1218 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1219 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1220 } 1221 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1222 1223 return 0; 1224 } 1225 1226 void perf_pmu_disable(struct pmu *pmu) 1227 { 1228 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1229 if (!(*count)++) 1230 pmu->pmu_disable(pmu); 1231 } 1232 1233 void perf_pmu_enable(struct pmu *pmu) 1234 { 1235 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1236 if (!--(*count)) 1237 pmu->pmu_enable(pmu); 1238 } 1239 1240 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1241 1242 /* 1243 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1244 * perf_event_task_tick() are fully serialized because they're strictly cpu 1245 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1246 * disabled, while perf_event_task_tick is called from IRQ context. 1247 */ 1248 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1249 { 1250 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1251 1252 lockdep_assert_irqs_disabled(); 1253 1254 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1255 1256 list_add(&ctx->active_ctx_list, head); 1257 } 1258 1259 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1260 { 1261 lockdep_assert_irqs_disabled(); 1262 1263 WARN_ON(list_empty(&ctx->active_ctx_list)); 1264 1265 list_del_init(&ctx->active_ctx_list); 1266 } 1267 1268 static void get_ctx(struct perf_event_context *ctx) 1269 { 1270 refcount_inc(&ctx->refcount); 1271 } 1272 1273 static void *alloc_task_ctx_data(struct pmu *pmu) 1274 { 1275 if (pmu->task_ctx_cache) 1276 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1277 1278 return NULL; 1279 } 1280 1281 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1282 { 1283 if (pmu->task_ctx_cache && task_ctx_data) 1284 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1285 } 1286 1287 static void free_ctx(struct rcu_head *head) 1288 { 1289 struct perf_event_context *ctx; 1290 1291 ctx = container_of(head, struct perf_event_context, rcu_head); 1292 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1293 kfree(ctx); 1294 } 1295 1296 static void put_ctx(struct perf_event_context *ctx) 1297 { 1298 if (refcount_dec_and_test(&ctx->refcount)) { 1299 if (ctx->parent_ctx) 1300 put_ctx(ctx->parent_ctx); 1301 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1302 put_task_struct(ctx->task); 1303 call_rcu(&ctx->rcu_head, free_ctx); 1304 } 1305 } 1306 1307 /* 1308 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1309 * perf_pmu_migrate_context() we need some magic. 1310 * 1311 * Those places that change perf_event::ctx will hold both 1312 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1313 * 1314 * Lock ordering is by mutex address. There are two other sites where 1315 * perf_event_context::mutex nests and those are: 1316 * 1317 * - perf_event_exit_task_context() [ child , 0 ] 1318 * perf_event_exit_event() 1319 * put_event() [ parent, 1 ] 1320 * 1321 * - perf_event_init_context() [ parent, 0 ] 1322 * inherit_task_group() 1323 * inherit_group() 1324 * inherit_event() 1325 * perf_event_alloc() 1326 * perf_init_event() 1327 * perf_try_init_event() [ child , 1 ] 1328 * 1329 * While it appears there is an obvious deadlock here -- the parent and child 1330 * nesting levels are inverted between the two. This is in fact safe because 1331 * life-time rules separate them. That is an exiting task cannot fork, and a 1332 * spawning task cannot (yet) exit. 1333 * 1334 * But remember that these are parent<->child context relations, and 1335 * migration does not affect children, therefore these two orderings should not 1336 * interact. 1337 * 1338 * The change in perf_event::ctx does not affect children (as claimed above) 1339 * because the sys_perf_event_open() case will install a new event and break 1340 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1341 * concerned with cpuctx and that doesn't have children. 1342 * 1343 * The places that change perf_event::ctx will issue: 1344 * 1345 * perf_remove_from_context(); 1346 * synchronize_rcu(); 1347 * perf_install_in_context(); 1348 * 1349 * to affect the change. The remove_from_context() + synchronize_rcu() should 1350 * quiesce the event, after which we can install it in the new location. This 1351 * means that only external vectors (perf_fops, prctl) can perturb the event 1352 * while in transit. Therefore all such accessors should also acquire 1353 * perf_event_context::mutex to serialize against this. 1354 * 1355 * However; because event->ctx can change while we're waiting to acquire 1356 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1357 * function. 1358 * 1359 * Lock order: 1360 * exec_update_lock 1361 * task_struct::perf_event_mutex 1362 * perf_event_context::mutex 1363 * perf_event::child_mutex; 1364 * perf_event_context::lock 1365 * perf_event::mmap_mutex 1366 * mmap_lock 1367 * perf_addr_filters_head::lock 1368 * 1369 * cpu_hotplug_lock 1370 * pmus_lock 1371 * cpuctx->mutex / perf_event_context::mutex 1372 */ 1373 static struct perf_event_context * 1374 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1375 { 1376 struct perf_event_context *ctx; 1377 1378 again: 1379 rcu_read_lock(); 1380 ctx = READ_ONCE(event->ctx); 1381 if (!refcount_inc_not_zero(&ctx->refcount)) { 1382 rcu_read_unlock(); 1383 goto again; 1384 } 1385 rcu_read_unlock(); 1386 1387 mutex_lock_nested(&ctx->mutex, nesting); 1388 if (event->ctx != ctx) { 1389 mutex_unlock(&ctx->mutex); 1390 put_ctx(ctx); 1391 goto again; 1392 } 1393 1394 return ctx; 1395 } 1396 1397 static inline struct perf_event_context * 1398 perf_event_ctx_lock(struct perf_event *event) 1399 { 1400 return perf_event_ctx_lock_nested(event, 0); 1401 } 1402 1403 static void perf_event_ctx_unlock(struct perf_event *event, 1404 struct perf_event_context *ctx) 1405 { 1406 mutex_unlock(&ctx->mutex); 1407 put_ctx(ctx); 1408 } 1409 1410 /* 1411 * This must be done under the ctx->lock, such as to serialize against 1412 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1413 * calling scheduler related locks and ctx->lock nests inside those. 1414 */ 1415 static __must_check struct perf_event_context * 1416 unclone_ctx(struct perf_event_context *ctx) 1417 { 1418 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1419 1420 lockdep_assert_held(&ctx->lock); 1421 1422 if (parent_ctx) 1423 ctx->parent_ctx = NULL; 1424 ctx->generation++; 1425 1426 return parent_ctx; 1427 } 1428 1429 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1430 enum pid_type type) 1431 { 1432 u32 nr; 1433 /* 1434 * only top level events have the pid namespace they were created in 1435 */ 1436 if (event->parent) 1437 event = event->parent; 1438 1439 nr = __task_pid_nr_ns(p, type, event->ns); 1440 /* avoid -1 if it is idle thread or runs in another ns */ 1441 if (!nr && !pid_alive(p)) 1442 nr = -1; 1443 return nr; 1444 } 1445 1446 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1447 { 1448 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1449 } 1450 1451 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1452 { 1453 return perf_event_pid_type(event, p, PIDTYPE_PID); 1454 } 1455 1456 /* 1457 * If we inherit events we want to return the parent event id 1458 * to userspace. 1459 */ 1460 static u64 primary_event_id(struct perf_event *event) 1461 { 1462 u64 id = event->id; 1463 1464 if (event->parent) 1465 id = event->parent->id; 1466 1467 return id; 1468 } 1469 1470 /* 1471 * Get the perf_event_context for a task and lock it. 1472 * 1473 * This has to cope with the fact that until it is locked, 1474 * the context could get moved to another task. 1475 */ 1476 static struct perf_event_context * 1477 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1478 { 1479 struct perf_event_context *ctx; 1480 1481 retry: 1482 /* 1483 * One of the few rules of preemptible RCU is that one cannot do 1484 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1485 * part of the read side critical section was irqs-enabled -- see 1486 * rcu_read_unlock_special(). 1487 * 1488 * Since ctx->lock nests under rq->lock we must ensure the entire read 1489 * side critical section has interrupts disabled. 1490 */ 1491 local_irq_save(*flags); 1492 rcu_read_lock(); 1493 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1494 if (ctx) { 1495 /* 1496 * If this context is a clone of another, it might 1497 * get swapped for another underneath us by 1498 * perf_event_task_sched_out, though the 1499 * rcu_read_lock() protects us from any context 1500 * getting freed. Lock the context and check if it 1501 * got swapped before we could get the lock, and retry 1502 * if so. If we locked the right context, then it 1503 * can't get swapped on us any more. 1504 */ 1505 raw_spin_lock(&ctx->lock); 1506 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1507 raw_spin_unlock(&ctx->lock); 1508 rcu_read_unlock(); 1509 local_irq_restore(*flags); 1510 goto retry; 1511 } 1512 1513 if (ctx->task == TASK_TOMBSTONE || 1514 !refcount_inc_not_zero(&ctx->refcount)) { 1515 raw_spin_unlock(&ctx->lock); 1516 ctx = NULL; 1517 } else { 1518 WARN_ON_ONCE(ctx->task != task); 1519 } 1520 } 1521 rcu_read_unlock(); 1522 if (!ctx) 1523 local_irq_restore(*flags); 1524 return ctx; 1525 } 1526 1527 /* 1528 * Get the context for a task and increment its pin_count so it 1529 * can't get swapped to another task. This also increments its 1530 * reference count so that the context can't get freed. 1531 */ 1532 static struct perf_event_context * 1533 perf_pin_task_context(struct task_struct *task, int ctxn) 1534 { 1535 struct perf_event_context *ctx; 1536 unsigned long flags; 1537 1538 ctx = perf_lock_task_context(task, ctxn, &flags); 1539 if (ctx) { 1540 ++ctx->pin_count; 1541 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1542 } 1543 return ctx; 1544 } 1545 1546 static void perf_unpin_context(struct perf_event_context *ctx) 1547 { 1548 unsigned long flags; 1549 1550 raw_spin_lock_irqsave(&ctx->lock, flags); 1551 --ctx->pin_count; 1552 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1553 } 1554 1555 /* 1556 * Update the record of the current time in a context. 1557 */ 1558 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1559 { 1560 u64 now = perf_clock(); 1561 1562 if (adv) 1563 ctx->time += now - ctx->timestamp; 1564 ctx->timestamp = now; 1565 1566 /* 1567 * The above: time' = time + (now - timestamp), can be re-arranged 1568 * into: time` = now + (time - timestamp), which gives a single value 1569 * offset to compute future time without locks on. 1570 * 1571 * See perf_event_time_now(), which can be used from NMI context where 1572 * it's (obviously) not possible to acquire ctx->lock in order to read 1573 * both the above values in a consistent manner. 1574 */ 1575 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1576 } 1577 1578 static void update_context_time(struct perf_event_context *ctx) 1579 { 1580 __update_context_time(ctx, true); 1581 } 1582 1583 static u64 perf_event_time(struct perf_event *event) 1584 { 1585 struct perf_event_context *ctx = event->ctx; 1586 1587 if (unlikely(!ctx)) 1588 return 0; 1589 1590 if (is_cgroup_event(event)) 1591 return perf_cgroup_event_time(event); 1592 1593 return ctx->time; 1594 } 1595 1596 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1597 { 1598 struct perf_event_context *ctx = event->ctx; 1599 1600 if (unlikely(!ctx)) 1601 return 0; 1602 1603 if (is_cgroup_event(event)) 1604 return perf_cgroup_event_time_now(event, now); 1605 1606 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1607 return ctx->time; 1608 1609 now += READ_ONCE(ctx->timeoffset); 1610 return now; 1611 } 1612 1613 static enum event_type_t get_event_type(struct perf_event *event) 1614 { 1615 struct perf_event_context *ctx = event->ctx; 1616 enum event_type_t event_type; 1617 1618 lockdep_assert_held(&ctx->lock); 1619 1620 /* 1621 * It's 'group type', really, because if our group leader is 1622 * pinned, so are we. 1623 */ 1624 if (event->group_leader != event) 1625 event = event->group_leader; 1626 1627 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1628 if (!ctx->task) 1629 event_type |= EVENT_CPU; 1630 1631 return event_type; 1632 } 1633 1634 /* 1635 * Helper function to initialize event group nodes. 1636 */ 1637 static void init_event_group(struct perf_event *event) 1638 { 1639 RB_CLEAR_NODE(&event->group_node); 1640 event->group_index = 0; 1641 } 1642 1643 /* 1644 * Extract pinned or flexible groups from the context 1645 * based on event attrs bits. 1646 */ 1647 static struct perf_event_groups * 1648 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1649 { 1650 if (event->attr.pinned) 1651 return &ctx->pinned_groups; 1652 else 1653 return &ctx->flexible_groups; 1654 } 1655 1656 /* 1657 * Helper function to initializes perf_event_group trees. 1658 */ 1659 static void perf_event_groups_init(struct perf_event_groups *groups) 1660 { 1661 groups->tree = RB_ROOT; 1662 groups->index = 0; 1663 } 1664 1665 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1666 { 1667 struct cgroup *cgroup = NULL; 1668 1669 #ifdef CONFIG_CGROUP_PERF 1670 if (event->cgrp) 1671 cgroup = event->cgrp->css.cgroup; 1672 #endif 1673 1674 return cgroup; 1675 } 1676 1677 /* 1678 * Compare function for event groups; 1679 * 1680 * Implements complex key that first sorts by CPU and then by virtual index 1681 * which provides ordering when rotating groups for the same CPU. 1682 */ 1683 static __always_inline int 1684 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup, 1685 const u64 left_group_index, const struct perf_event *right) 1686 { 1687 if (left_cpu < right->cpu) 1688 return -1; 1689 if (left_cpu > right->cpu) 1690 return 1; 1691 1692 #ifdef CONFIG_CGROUP_PERF 1693 { 1694 const struct cgroup *right_cgroup = event_cgroup(right); 1695 1696 if (left_cgroup != right_cgroup) { 1697 if (!left_cgroup) { 1698 /* 1699 * Left has no cgroup but right does, no 1700 * cgroups come first. 1701 */ 1702 return -1; 1703 } 1704 if (!right_cgroup) { 1705 /* 1706 * Right has no cgroup but left does, no 1707 * cgroups come first. 1708 */ 1709 return 1; 1710 } 1711 /* Two dissimilar cgroups, order by id. */ 1712 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1713 return -1; 1714 1715 return 1; 1716 } 1717 } 1718 #endif 1719 1720 if (left_group_index < right->group_index) 1721 return -1; 1722 if (left_group_index > right->group_index) 1723 return 1; 1724 1725 return 0; 1726 } 1727 1728 #define __node_2_pe(node) \ 1729 rb_entry((node), struct perf_event, group_node) 1730 1731 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1732 { 1733 struct perf_event *e = __node_2_pe(a); 1734 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index, 1735 __node_2_pe(b)) < 0; 1736 } 1737 1738 struct __group_key { 1739 int cpu; 1740 struct cgroup *cgroup; 1741 }; 1742 1743 static inline int __group_cmp(const void *key, const struct rb_node *node) 1744 { 1745 const struct __group_key *a = key; 1746 const struct perf_event *b = __node_2_pe(node); 1747 1748 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */ 1749 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b); 1750 } 1751 1752 /* 1753 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1754 * key (see perf_event_groups_less). This places it last inside the CPU 1755 * subtree. 1756 */ 1757 static void 1758 perf_event_groups_insert(struct perf_event_groups *groups, 1759 struct perf_event *event) 1760 { 1761 event->group_index = ++groups->index; 1762 1763 rb_add(&event->group_node, &groups->tree, __group_less); 1764 } 1765 1766 /* 1767 * Helper function to insert event into the pinned or flexible groups. 1768 */ 1769 static void 1770 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1771 { 1772 struct perf_event_groups *groups; 1773 1774 groups = get_event_groups(event, ctx); 1775 perf_event_groups_insert(groups, event); 1776 } 1777 1778 /* 1779 * Delete a group from a tree. 1780 */ 1781 static void 1782 perf_event_groups_delete(struct perf_event_groups *groups, 1783 struct perf_event *event) 1784 { 1785 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1786 RB_EMPTY_ROOT(&groups->tree)); 1787 1788 rb_erase(&event->group_node, &groups->tree); 1789 init_event_group(event); 1790 } 1791 1792 /* 1793 * Helper function to delete event from its groups. 1794 */ 1795 static void 1796 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1797 { 1798 struct perf_event_groups *groups; 1799 1800 groups = get_event_groups(event, ctx); 1801 perf_event_groups_delete(groups, event); 1802 } 1803 1804 /* 1805 * Get the leftmost event in the cpu/cgroup subtree. 1806 */ 1807 static struct perf_event * 1808 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1809 struct cgroup *cgrp) 1810 { 1811 struct __group_key key = { 1812 .cpu = cpu, 1813 .cgroup = cgrp, 1814 }; 1815 struct rb_node *node; 1816 1817 node = rb_find_first(&key, &groups->tree, __group_cmp); 1818 if (node) 1819 return __node_2_pe(node); 1820 1821 return NULL; 1822 } 1823 1824 /* 1825 * Like rb_entry_next_safe() for the @cpu subtree. 1826 */ 1827 static struct perf_event * 1828 perf_event_groups_next(struct perf_event *event) 1829 { 1830 struct __group_key key = { 1831 .cpu = event->cpu, 1832 .cgroup = event_cgroup(event), 1833 }; 1834 struct rb_node *next; 1835 1836 next = rb_next_match(&key, &event->group_node, __group_cmp); 1837 if (next) 1838 return __node_2_pe(next); 1839 1840 return NULL; 1841 } 1842 1843 /* 1844 * Iterate through the whole groups tree. 1845 */ 1846 #define perf_event_groups_for_each(event, groups) \ 1847 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1848 typeof(*event), group_node); event; \ 1849 event = rb_entry_safe(rb_next(&event->group_node), \ 1850 typeof(*event), group_node)) 1851 1852 /* 1853 * Add an event from the lists for its context. 1854 * Must be called with ctx->mutex and ctx->lock held. 1855 */ 1856 static void 1857 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1858 { 1859 lockdep_assert_held(&ctx->lock); 1860 1861 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1862 event->attach_state |= PERF_ATTACH_CONTEXT; 1863 1864 event->tstamp = perf_event_time(event); 1865 1866 /* 1867 * If we're a stand alone event or group leader, we go to the context 1868 * list, group events are kept attached to the group so that 1869 * perf_group_detach can, at all times, locate all siblings. 1870 */ 1871 if (event->group_leader == event) { 1872 event->group_caps = event->event_caps; 1873 add_event_to_groups(event, ctx); 1874 } 1875 1876 list_add_rcu(&event->event_entry, &ctx->event_list); 1877 ctx->nr_events++; 1878 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1879 ctx->nr_user++; 1880 if (event->attr.inherit_stat) 1881 ctx->nr_stat++; 1882 1883 if (event->state > PERF_EVENT_STATE_OFF) 1884 perf_cgroup_event_enable(event, ctx); 1885 1886 ctx->generation++; 1887 } 1888 1889 /* 1890 * Initialize event state based on the perf_event_attr::disabled. 1891 */ 1892 static inline void perf_event__state_init(struct perf_event *event) 1893 { 1894 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1895 PERF_EVENT_STATE_INACTIVE; 1896 } 1897 1898 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1899 { 1900 int entry = sizeof(u64); /* value */ 1901 int size = 0; 1902 int nr = 1; 1903 1904 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1905 size += sizeof(u64); 1906 1907 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1908 size += sizeof(u64); 1909 1910 if (event->attr.read_format & PERF_FORMAT_ID) 1911 entry += sizeof(u64); 1912 1913 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1914 nr += nr_siblings; 1915 size += sizeof(u64); 1916 } 1917 1918 size += entry * nr; 1919 event->read_size = size; 1920 } 1921 1922 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1923 { 1924 struct perf_sample_data *data; 1925 u16 size = 0; 1926 1927 if (sample_type & PERF_SAMPLE_IP) 1928 size += sizeof(data->ip); 1929 1930 if (sample_type & PERF_SAMPLE_ADDR) 1931 size += sizeof(data->addr); 1932 1933 if (sample_type & PERF_SAMPLE_PERIOD) 1934 size += sizeof(data->period); 1935 1936 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1937 size += sizeof(data->weight.full); 1938 1939 if (sample_type & PERF_SAMPLE_READ) 1940 size += event->read_size; 1941 1942 if (sample_type & PERF_SAMPLE_DATA_SRC) 1943 size += sizeof(data->data_src.val); 1944 1945 if (sample_type & PERF_SAMPLE_TRANSACTION) 1946 size += sizeof(data->txn); 1947 1948 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1949 size += sizeof(data->phys_addr); 1950 1951 if (sample_type & PERF_SAMPLE_CGROUP) 1952 size += sizeof(data->cgroup); 1953 1954 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1955 size += sizeof(data->data_page_size); 1956 1957 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1958 size += sizeof(data->code_page_size); 1959 1960 event->header_size = size; 1961 } 1962 1963 /* 1964 * Called at perf_event creation and when events are attached/detached from a 1965 * group. 1966 */ 1967 static void perf_event__header_size(struct perf_event *event) 1968 { 1969 __perf_event_read_size(event, 1970 event->group_leader->nr_siblings); 1971 __perf_event_header_size(event, event->attr.sample_type); 1972 } 1973 1974 static void perf_event__id_header_size(struct perf_event *event) 1975 { 1976 struct perf_sample_data *data; 1977 u64 sample_type = event->attr.sample_type; 1978 u16 size = 0; 1979 1980 if (sample_type & PERF_SAMPLE_TID) 1981 size += sizeof(data->tid_entry); 1982 1983 if (sample_type & PERF_SAMPLE_TIME) 1984 size += sizeof(data->time); 1985 1986 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1987 size += sizeof(data->id); 1988 1989 if (sample_type & PERF_SAMPLE_ID) 1990 size += sizeof(data->id); 1991 1992 if (sample_type & PERF_SAMPLE_STREAM_ID) 1993 size += sizeof(data->stream_id); 1994 1995 if (sample_type & PERF_SAMPLE_CPU) 1996 size += sizeof(data->cpu_entry); 1997 1998 event->id_header_size = size; 1999 } 2000 2001 static bool perf_event_validate_size(struct perf_event *event) 2002 { 2003 /* 2004 * The values computed here will be over-written when we actually 2005 * attach the event. 2006 */ 2007 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 2008 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 2009 perf_event__id_header_size(event); 2010 2011 /* 2012 * Sum the lot; should not exceed the 64k limit we have on records. 2013 * Conservative limit to allow for callchains and other variable fields. 2014 */ 2015 if (event->read_size + event->header_size + 2016 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 2017 return false; 2018 2019 return true; 2020 } 2021 2022 static void perf_group_attach(struct perf_event *event) 2023 { 2024 struct perf_event *group_leader = event->group_leader, *pos; 2025 2026 lockdep_assert_held(&event->ctx->lock); 2027 2028 /* 2029 * We can have double attach due to group movement in perf_event_open. 2030 */ 2031 if (event->attach_state & PERF_ATTACH_GROUP) 2032 return; 2033 2034 event->attach_state |= PERF_ATTACH_GROUP; 2035 2036 if (group_leader == event) 2037 return; 2038 2039 WARN_ON_ONCE(group_leader->ctx != event->ctx); 2040 2041 group_leader->group_caps &= event->event_caps; 2042 2043 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 2044 group_leader->nr_siblings++; 2045 2046 perf_event__header_size(group_leader); 2047 2048 for_each_sibling_event(pos, group_leader) 2049 perf_event__header_size(pos); 2050 } 2051 2052 /* 2053 * Remove an event from the lists for its context. 2054 * Must be called with ctx->mutex and ctx->lock held. 2055 */ 2056 static void 2057 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2058 { 2059 WARN_ON_ONCE(event->ctx != ctx); 2060 lockdep_assert_held(&ctx->lock); 2061 2062 /* 2063 * We can have double detach due to exit/hot-unplug + close. 2064 */ 2065 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2066 return; 2067 2068 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2069 2070 ctx->nr_events--; 2071 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2072 ctx->nr_user--; 2073 if (event->attr.inherit_stat) 2074 ctx->nr_stat--; 2075 2076 list_del_rcu(&event->event_entry); 2077 2078 if (event->group_leader == event) 2079 del_event_from_groups(event, ctx); 2080 2081 /* 2082 * If event was in error state, then keep it 2083 * that way, otherwise bogus counts will be 2084 * returned on read(). The only way to get out 2085 * of error state is by explicit re-enabling 2086 * of the event 2087 */ 2088 if (event->state > PERF_EVENT_STATE_OFF) { 2089 perf_cgroup_event_disable(event, ctx); 2090 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2091 } 2092 2093 ctx->generation++; 2094 } 2095 2096 static int 2097 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2098 { 2099 if (!has_aux(aux_event)) 2100 return 0; 2101 2102 if (!event->pmu->aux_output_match) 2103 return 0; 2104 2105 return event->pmu->aux_output_match(aux_event); 2106 } 2107 2108 static void put_event(struct perf_event *event); 2109 static void event_sched_out(struct perf_event *event, 2110 struct perf_cpu_context *cpuctx, 2111 struct perf_event_context *ctx); 2112 2113 static void perf_put_aux_event(struct perf_event *event) 2114 { 2115 struct perf_event_context *ctx = event->ctx; 2116 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2117 struct perf_event *iter; 2118 2119 /* 2120 * If event uses aux_event tear down the link 2121 */ 2122 if (event->aux_event) { 2123 iter = event->aux_event; 2124 event->aux_event = NULL; 2125 put_event(iter); 2126 return; 2127 } 2128 2129 /* 2130 * If the event is an aux_event, tear down all links to 2131 * it from other events. 2132 */ 2133 for_each_sibling_event(iter, event->group_leader) { 2134 if (iter->aux_event != event) 2135 continue; 2136 2137 iter->aux_event = NULL; 2138 put_event(event); 2139 2140 /* 2141 * If it's ACTIVE, schedule it out and put it into ERROR 2142 * state so that we don't try to schedule it again. Note 2143 * that perf_event_enable() will clear the ERROR status. 2144 */ 2145 event_sched_out(iter, cpuctx, ctx); 2146 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2147 } 2148 } 2149 2150 static bool perf_need_aux_event(struct perf_event *event) 2151 { 2152 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2153 } 2154 2155 static int perf_get_aux_event(struct perf_event *event, 2156 struct perf_event *group_leader) 2157 { 2158 /* 2159 * Our group leader must be an aux event if we want to be 2160 * an aux_output. This way, the aux event will precede its 2161 * aux_output events in the group, and therefore will always 2162 * schedule first. 2163 */ 2164 if (!group_leader) 2165 return 0; 2166 2167 /* 2168 * aux_output and aux_sample_size are mutually exclusive. 2169 */ 2170 if (event->attr.aux_output && event->attr.aux_sample_size) 2171 return 0; 2172 2173 if (event->attr.aux_output && 2174 !perf_aux_output_match(event, group_leader)) 2175 return 0; 2176 2177 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2178 return 0; 2179 2180 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2181 return 0; 2182 2183 /* 2184 * Link aux_outputs to their aux event; this is undone in 2185 * perf_group_detach() by perf_put_aux_event(). When the 2186 * group in torn down, the aux_output events loose their 2187 * link to the aux_event and can't schedule any more. 2188 */ 2189 event->aux_event = group_leader; 2190 2191 return 1; 2192 } 2193 2194 static inline struct list_head *get_event_list(struct perf_event *event) 2195 { 2196 struct perf_event_context *ctx = event->ctx; 2197 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2198 } 2199 2200 /* 2201 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2202 * cannot exist on their own, schedule them out and move them into the ERROR 2203 * state. Also see _perf_event_enable(), it will not be able to recover 2204 * this ERROR state. 2205 */ 2206 static inline void perf_remove_sibling_event(struct perf_event *event) 2207 { 2208 struct perf_event_context *ctx = event->ctx; 2209 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2210 2211 event_sched_out(event, cpuctx, ctx); 2212 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2213 } 2214 2215 static void perf_group_detach(struct perf_event *event) 2216 { 2217 struct perf_event *leader = event->group_leader; 2218 struct perf_event *sibling, *tmp; 2219 struct perf_event_context *ctx = event->ctx; 2220 2221 lockdep_assert_held(&ctx->lock); 2222 2223 /* 2224 * We can have double detach due to exit/hot-unplug + close. 2225 */ 2226 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2227 return; 2228 2229 event->attach_state &= ~PERF_ATTACH_GROUP; 2230 2231 perf_put_aux_event(event); 2232 2233 /* 2234 * If this is a sibling, remove it from its group. 2235 */ 2236 if (leader != event) { 2237 list_del_init(&event->sibling_list); 2238 event->group_leader->nr_siblings--; 2239 goto out; 2240 } 2241 2242 /* 2243 * If this was a group event with sibling events then 2244 * upgrade the siblings to singleton events by adding them 2245 * to whatever list we are on. 2246 */ 2247 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2248 2249 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2250 perf_remove_sibling_event(sibling); 2251 2252 sibling->group_leader = sibling; 2253 list_del_init(&sibling->sibling_list); 2254 2255 /* Inherit group flags from the previous leader */ 2256 sibling->group_caps = event->group_caps; 2257 2258 if (!RB_EMPTY_NODE(&event->group_node)) { 2259 add_event_to_groups(sibling, event->ctx); 2260 2261 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2262 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2263 } 2264 2265 WARN_ON_ONCE(sibling->ctx != event->ctx); 2266 } 2267 2268 out: 2269 for_each_sibling_event(tmp, leader) 2270 perf_event__header_size(tmp); 2271 2272 perf_event__header_size(leader); 2273 } 2274 2275 static void sync_child_event(struct perf_event *child_event); 2276 2277 static void perf_child_detach(struct perf_event *event) 2278 { 2279 struct perf_event *parent_event = event->parent; 2280 2281 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2282 return; 2283 2284 event->attach_state &= ~PERF_ATTACH_CHILD; 2285 2286 if (WARN_ON_ONCE(!parent_event)) 2287 return; 2288 2289 lockdep_assert_held(&parent_event->child_mutex); 2290 2291 sync_child_event(event); 2292 list_del_init(&event->child_list); 2293 } 2294 2295 static bool is_orphaned_event(struct perf_event *event) 2296 { 2297 return event->state == PERF_EVENT_STATE_DEAD; 2298 } 2299 2300 static inline int __pmu_filter_match(struct perf_event *event) 2301 { 2302 struct pmu *pmu = event->pmu; 2303 return pmu->filter_match ? pmu->filter_match(event) : 1; 2304 } 2305 2306 /* 2307 * Check whether we should attempt to schedule an event group based on 2308 * PMU-specific filtering. An event group can consist of HW and SW events, 2309 * potentially with a SW leader, so we must check all the filters, to 2310 * determine whether a group is schedulable: 2311 */ 2312 static inline int pmu_filter_match(struct perf_event *event) 2313 { 2314 struct perf_event *sibling; 2315 2316 if (!__pmu_filter_match(event)) 2317 return 0; 2318 2319 for_each_sibling_event(sibling, event) { 2320 if (!__pmu_filter_match(sibling)) 2321 return 0; 2322 } 2323 2324 return 1; 2325 } 2326 2327 static inline int 2328 event_filter_match(struct perf_event *event) 2329 { 2330 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2331 perf_cgroup_match(event) && pmu_filter_match(event); 2332 } 2333 2334 static void 2335 event_sched_out(struct perf_event *event, 2336 struct perf_cpu_context *cpuctx, 2337 struct perf_event_context *ctx) 2338 { 2339 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2340 2341 WARN_ON_ONCE(event->ctx != ctx); 2342 lockdep_assert_held(&ctx->lock); 2343 2344 if (event->state != PERF_EVENT_STATE_ACTIVE) 2345 return; 2346 2347 /* 2348 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2349 * we can schedule events _OUT_ individually through things like 2350 * __perf_remove_from_context(). 2351 */ 2352 list_del_init(&event->active_list); 2353 2354 perf_pmu_disable(event->pmu); 2355 2356 event->pmu->del(event, 0); 2357 event->oncpu = -1; 2358 2359 if (READ_ONCE(event->pending_disable) >= 0) { 2360 WRITE_ONCE(event->pending_disable, -1); 2361 perf_cgroup_event_disable(event, ctx); 2362 state = PERF_EVENT_STATE_OFF; 2363 } 2364 perf_event_set_state(event, state); 2365 2366 if (!is_software_event(event)) 2367 cpuctx->active_oncpu--; 2368 if (!--ctx->nr_active) 2369 perf_event_ctx_deactivate(ctx); 2370 if (event->attr.freq && event->attr.sample_freq) 2371 ctx->nr_freq--; 2372 if (event->attr.exclusive || !cpuctx->active_oncpu) 2373 cpuctx->exclusive = 0; 2374 2375 perf_pmu_enable(event->pmu); 2376 } 2377 2378 static void 2379 group_sched_out(struct perf_event *group_event, 2380 struct perf_cpu_context *cpuctx, 2381 struct perf_event_context *ctx) 2382 { 2383 struct perf_event *event; 2384 2385 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2386 return; 2387 2388 perf_pmu_disable(ctx->pmu); 2389 2390 event_sched_out(group_event, cpuctx, ctx); 2391 2392 /* 2393 * Schedule out siblings (if any): 2394 */ 2395 for_each_sibling_event(event, group_event) 2396 event_sched_out(event, cpuctx, ctx); 2397 2398 perf_pmu_enable(ctx->pmu); 2399 } 2400 2401 #define DETACH_GROUP 0x01UL 2402 #define DETACH_CHILD 0x02UL 2403 2404 /* 2405 * Cross CPU call to remove a performance event 2406 * 2407 * We disable the event on the hardware level first. After that we 2408 * remove it from the context list. 2409 */ 2410 static void 2411 __perf_remove_from_context(struct perf_event *event, 2412 struct perf_cpu_context *cpuctx, 2413 struct perf_event_context *ctx, 2414 void *info) 2415 { 2416 unsigned long flags = (unsigned long)info; 2417 2418 if (ctx->is_active & EVENT_TIME) { 2419 update_context_time(ctx); 2420 update_cgrp_time_from_cpuctx(cpuctx, false); 2421 } 2422 2423 event_sched_out(event, cpuctx, ctx); 2424 if (flags & DETACH_GROUP) 2425 perf_group_detach(event); 2426 if (flags & DETACH_CHILD) 2427 perf_child_detach(event); 2428 list_del_event(event, ctx); 2429 2430 if (!ctx->nr_events && ctx->is_active) { 2431 if (ctx == &cpuctx->ctx) 2432 update_cgrp_time_from_cpuctx(cpuctx, true); 2433 2434 ctx->is_active = 0; 2435 ctx->rotate_necessary = 0; 2436 if (ctx->task) { 2437 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2438 cpuctx->task_ctx = NULL; 2439 } 2440 } 2441 } 2442 2443 /* 2444 * Remove the event from a task's (or a CPU's) list of events. 2445 * 2446 * If event->ctx is a cloned context, callers must make sure that 2447 * every task struct that event->ctx->task could possibly point to 2448 * remains valid. This is OK when called from perf_release since 2449 * that only calls us on the top-level context, which can't be a clone. 2450 * When called from perf_event_exit_task, it's OK because the 2451 * context has been detached from its task. 2452 */ 2453 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2454 { 2455 struct perf_event_context *ctx = event->ctx; 2456 2457 lockdep_assert_held(&ctx->mutex); 2458 2459 /* 2460 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2461 * to work in the face of TASK_TOMBSTONE, unlike every other 2462 * event_function_call() user. 2463 */ 2464 raw_spin_lock_irq(&ctx->lock); 2465 /* 2466 * Cgroup events are per-cpu events, and must IPI because of 2467 * cgrp_cpuctx_list. 2468 */ 2469 if (!ctx->is_active && !is_cgroup_event(event)) { 2470 __perf_remove_from_context(event, __get_cpu_context(ctx), 2471 ctx, (void *)flags); 2472 raw_spin_unlock_irq(&ctx->lock); 2473 return; 2474 } 2475 raw_spin_unlock_irq(&ctx->lock); 2476 2477 event_function_call(event, __perf_remove_from_context, (void *)flags); 2478 } 2479 2480 /* 2481 * Cross CPU call to disable a performance event 2482 */ 2483 static void __perf_event_disable(struct perf_event *event, 2484 struct perf_cpu_context *cpuctx, 2485 struct perf_event_context *ctx, 2486 void *info) 2487 { 2488 if (event->state < PERF_EVENT_STATE_INACTIVE) 2489 return; 2490 2491 if (ctx->is_active & EVENT_TIME) { 2492 update_context_time(ctx); 2493 update_cgrp_time_from_event(event); 2494 } 2495 2496 if (event == event->group_leader) 2497 group_sched_out(event, cpuctx, ctx); 2498 else 2499 event_sched_out(event, cpuctx, ctx); 2500 2501 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2502 perf_cgroup_event_disable(event, ctx); 2503 } 2504 2505 /* 2506 * Disable an event. 2507 * 2508 * If event->ctx is a cloned context, callers must make sure that 2509 * every task struct that event->ctx->task could possibly point to 2510 * remains valid. This condition is satisfied when called through 2511 * perf_event_for_each_child or perf_event_for_each because they 2512 * hold the top-level event's child_mutex, so any descendant that 2513 * goes to exit will block in perf_event_exit_event(). 2514 * 2515 * When called from perf_pending_event it's OK because event->ctx 2516 * is the current context on this CPU and preemption is disabled, 2517 * hence we can't get into perf_event_task_sched_out for this context. 2518 */ 2519 static void _perf_event_disable(struct perf_event *event) 2520 { 2521 struct perf_event_context *ctx = event->ctx; 2522 2523 raw_spin_lock_irq(&ctx->lock); 2524 if (event->state <= PERF_EVENT_STATE_OFF) { 2525 raw_spin_unlock_irq(&ctx->lock); 2526 return; 2527 } 2528 raw_spin_unlock_irq(&ctx->lock); 2529 2530 event_function_call(event, __perf_event_disable, NULL); 2531 } 2532 2533 void perf_event_disable_local(struct perf_event *event) 2534 { 2535 event_function_local(event, __perf_event_disable, NULL); 2536 } 2537 2538 /* 2539 * Strictly speaking kernel users cannot create groups and therefore this 2540 * interface does not need the perf_event_ctx_lock() magic. 2541 */ 2542 void perf_event_disable(struct perf_event *event) 2543 { 2544 struct perf_event_context *ctx; 2545 2546 ctx = perf_event_ctx_lock(event); 2547 _perf_event_disable(event); 2548 perf_event_ctx_unlock(event, ctx); 2549 } 2550 EXPORT_SYMBOL_GPL(perf_event_disable); 2551 2552 void perf_event_disable_inatomic(struct perf_event *event) 2553 { 2554 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2555 /* can fail, see perf_pending_event_disable() */ 2556 irq_work_queue(&event->pending); 2557 } 2558 2559 #define MAX_INTERRUPTS (~0ULL) 2560 2561 static void perf_log_throttle(struct perf_event *event, int enable); 2562 static void perf_log_itrace_start(struct perf_event *event); 2563 2564 static int 2565 event_sched_in(struct perf_event *event, 2566 struct perf_cpu_context *cpuctx, 2567 struct perf_event_context *ctx) 2568 { 2569 int ret = 0; 2570 2571 WARN_ON_ONCE(event->ctx != ctx); 2572 2573 lockdep_assert_held(&ctx->lock); 2574 2575 if (event->state <= PERF_EVENT_STATE_OFF) 2576 return 0; 2577 2578 WRITE_ONCE(event->oncpu, smp_processor_id()); 2579 /* 2580 * Order event::oncpu write to happen before the ACTIVE state is 2581 * visible. This allows perf_event_{stop,read}() to observe the correct 2582 * ->oncpu if it sees ACTIVE. 2583 */ 2584 smp_wmb(); 2585 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2586 2587 /* 2588 * Unthrottle events, since we scheduled we might have missed several 2589 * ticks already, also for a heavily scheduling task there is little 2590 * guarantee it'll get a tick in a timely manner. 2591 */ 2592 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2593 perf_log_throttle(event, 1); 2594 event->hw.interrupts = 0; 2595 } 2596 2597 perf_pmu_disable(event->pmu); 2598 2599 perf_log_itrace_start(event); 2600 2601 if (event->pmu->add(event, PERF_EF_START)) { 2602 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2603 event->oncpu = -1; 2604 ret = -EAGAIN; 2605 goto out; 2606 } 2607 2608 if (!is_software_event(event)) 2609 cpuctx->active_oncpu++; 2610 if (!ctx->nr_active++) 2611 perf_event_ctx_activate(ctx); 2612 if (event->attr.freq && event->attr.sample_freq) 2613 ctx->nr_freq++; 2614 2615 if (event->attr.exclusive) 2616 cpuctx->exclusive = 1; 2617 2618 out: 2619 perf_pmu_enable(event->pmu); 2620 2621 return ret; 2622 } 2623 2624 static int 2625 group_sched_in(struct perf_event *group_event, 2626 struct perf_cpu_context *cpuctx, 2627 struct perf_event_context *ctx) 2628 { 2629 struct perf_event *event, *partial_group = NULL; 2630 struct pmu *pmu = ctx->pmu; 2631 2632 if (group_event->state == PERF_EVENT_STATE_OFF) 2633 return 0; 2634 2635 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2636 2637 if (event_sched_in(group_event, cpuctx, ctx)) 2638 goto error; 2639 2640 /* 2641 * Schedule in siblings as one group (if any): 2642 */ 2643 for_each_sibling_event(event, group_event) { 2644 if (event_sched_in(event, cpuctx, ctx)) { 2645 partial_group = event; 2646 goto group_error; 2647 } 2648 } 2649 2650 if (!pmu->commit_txn(pmu)) 2651 return 0; 2652 2653 group_error: 2654 /* 2655 * Groups can be scheduled in as one unit only, so undo any 2656 * partial group before returning: 2657 * The events up to the failed event are scheduled out normally. 2658 */ 2659 for_each_sibling_event(event, group_event) { 2660 if (event == partial_group) 2661 break; 2662 2663 event_sched_out(event, cpuctx, ctx); 2664 } 2665 event_sched_out(group_event, cpuctx, ctx); 2666 2667 error: 2668 pmu->cancel_txn(pmu); 2669 return -EAGAIN; 2670 } 2671 2672 /* 2673 * Work out whether we can put this event group on the CPU now. 2674 */ 2675 static int group_can_go_on(struct perf_event *event, 2676 struct perf_cpu_context *cpuctx, 2677 int can_add_hw) 2678 { 2679 /* 2680 * Groups consisting entirely of software events can always go on. 2681 */ 2682 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2683 return 1; 2684 /* 2685 * If an exclusive group is already on, no other hardware 2686 * events can go on. 2687 */ 2688 if (cpuctx->exclusive) 2689 return 0; 2690 /* 2691 * If this group is exclusive and there are already 2692 * events on the CPU, it can't go on. 2693 */ 2694 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2695 return 0; 2696 /* 2697 * Otherwise, try to add it if all previous groups were able 2698 * to go on. 2699 */ 2700 return can_add_hw; 2701 } 2702 2703 static void add_event_to_ctx(struct perf_event *event, 2704 struct perf_event_context *ctx) 2705 { 2706 list_add_event(event, ctx); 2707 perf_group_attach(event); 2708 } 2709 2710 static void ctx_sched_out(struct perf_event_context *ctx, 2711 struct perf_cpu_context *cpuctx, 2712 enum event_type_t event_type); 2713 static void 2714 ctx_sched_in(struct perf_event_context *ctx, 2715 struct perf_cpu_context *cpuctx, 2716 enum event_type_t event_type, 2717 struct task_struct *task); 2718 2719 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2720 struct perf_event_context *ctx, 2721 enum event_type_t event_type) 2722 { 2723 if (!cpuctx->task_ctx) 2724 return; 2725 2726 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2727 return; 2728 2729 ctx_sched_out(ctx, cpuctx, event_type); 2730 } 2731 2732 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2733 struct perf_event_context *ctx, 2734 struct task_struct *task) 2735 { 2736 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2737 if (ctx) 2738 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2739 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2740 if (ctx) 2741 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2742 } 2743 2744 /* 2745 * We want to maintain the following priority of scheduling: 2746 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2747 * - task pinned (EVENT_PINNED) 2748 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2749 * - task flexible (EVENT_FLEXIBLE). 2750 * 2751 * In order to avoid unscheduling and scheduling back in everything every 2752 * time an event is added, only do it for the groups of equal priority and 2753 * below. 2754 * 2755 * This can be called after a batch operation on task events, in which case 2756 * event_type is a bit mask of the types of events involved. For CPU events, 2757 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2758 */ 2759 static void ctx_resched(struct perf_cpu_context *cpuctx, 2760 struct perf_event_context *task_ctx, 2761 enum event_type_t event_type) 2762 { 2763 enum event_type_t ctx_event_type; 2764 bool cpu_event = !!(event_type & EVENT_CPU); 2765 2766 /* 2767 * If pinned groups are involved, flexible groups also need to be 2768 * scheduled out. 2769 */ 2770 if (event_type & EVENT_PINNED) 2771 event_type |= EVENT_FLEXIBLE; 2772 2773 ctx_event_type = event_type & EVENT_ALL; 2774 2775 perf_pmu_disable(cpuctx->ctx.pmu); 2776 if (task_ctx) 2777 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2778 2779 /* 2780 * Decide which cpu ctx groups to schedule out based on the types 2781 * of events that caused rescheduling: 2782 * - EVENT_CPU: schedule out corresponding groups; 2783 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2784 * - otherwise, do nothing more. 2785 */ 2786 if (cpu_event) 2787 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2788 else if (ctx_event_type & EVENT_PINNED) 2789 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2790 2791 perf_event_sched_in(cpuctx, task_ctx, current); 2792 perf_pmu_enable(cpuctx->ctx.pmu); 2793 } 2794 2795 void perf_pmu_resched(struct pmu *pmu) 2796 { 2797 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2798 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2799 2800 perf_ctx_lock(cpuctx, task_ctx); 2801 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2802 perf_ctx_unlock(cpuctx, task_ctx); 2803 } 2804 2805 /* 2806 * Cross CPU call to install and enable a performance event 2807 * 2808 * Very similar to remote_function() + event_function() but cannot assume that 2809 * things like ctx->is_active and cpuctx->task_ctx are set. 2810 */ 2811 static int __perf_install_in_context(void *info) 2812 { 2813 struct perf_event *event = info; 2814 struct perf_event_context *ctx = event->ctx; 2815 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2816 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2817 bool reprogram = true; 2818 int ret = 0; 2819 2820 raw_spin_lock(&cpuctx->ctx.lock); 2821 if (ctx->task) { 2822 raw_spin_lock(&ctx->lock); 2823 task_ctx = ctx; 2824 2825 reprogram = (ctx->task == current); 2826 2827 /* 2828 * If the task is running, it must be running on this CPU, 2829 * otherwise we cannot reprogram things. 2830 * 2831 * If its not running, we don't care, ctx->lock will 2832 * serialize against it becoming runnable. 2833 */ 2834 if (task_curr(ctx->task) && !reprogram) { 2835 ret = -ESRCH; 2836 goto unlock; 2837 } 2838 2839 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2840 } else if (task_ctx) { 2841 raw_spin_lock(&task_ctx->lock); 2842 } 2843 2844 #ifdef CONFIG_CGROUP_PERF 2845 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2846 /* 2847 * If the current cgroup doesn't match the event's 2848 * cgroup, we should not try to schedule it. 2849 */ 2850 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2851 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2852 event->cgrp->css.cgroup); 2853 } 2854 #endif 2855 2856 if (reprogram) { 2857 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2858 add_event_to_ctx(event, ctx); 2859 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2860 } else { 2861 add_event_to_ctx(event, ctx); 2862 } 2863 2864 unlock: 2865 perf_ctx_unlock(cpuctx, task_ctx); 2866 2867 return ret; 2868 } 2869 2870 static bool exclusive_event_installable(struct perf_event *event, 2871 struct perf_event_context *ctx); 2872 2873 /* 2874 * Attach a performance event to a context. 2875 * 2876 * Very similar to event_function_call, see comment there. 2877 */ 2878 static void 2879 perf_install_in_context(struct perf_event_context *ctx, 2880 struct perf_event *event, 2881 int cpu) 2882 { 2883 struct task_struct *task = READ_ONCE(ctx->task); 2884 2885 lockdep_assert_held(&ctx->mutex); 2886 2887 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2888 2889 if (event->cpu != -1) 2890 event->cpu = cpu; 2891 2892 /* 2893 * Ensures that if we can observe event->ctx, both the event and ctx 2894 * will be 'complete'. See perf_iterate_sb_cpu(). 2895 */ 2896 smp_store_release(&event->ctx, ctx); 2897 2898 /* 2899 * perf_event_attr::disabled events will not run and can be initialized 2900 * without IPI. Except when this is the first event for the context, in 2901 * that case we need the magic of the IPI to set ctx->is_active. 2902 * Similarly, cgroup events for the context also needs the IPI to 2903 * manipulate the cgrp_cpuctx_list. 2904 * 2905 * The IOC_ENABLE that is sure to follow the creation of a disabled 2906 * event will issue the IPI and reprogram the hardware. 2907 */ 2908 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2909 ctx->nr_events && !is_cgroup_event(event)) { 2910 raw_spin_lock_irq(&ctx->lock); 2911 if (ctx->task == TASK_TOMBSTONE) { 2912 raw_spin_unlock_irq(&ctx->lock); 2913 return; 2914 } 2915 add_event_to_ctx(event, ctx); 2916 raw_spin_unlock_irq(&ctx->lock); 2917 return; 2918 } 2919 2920 if (!task) { 2921 cpu_function_call(cpu, __perf_install_in_context, event); 2922 return; 2923 } 2924 2925 /* 2926 * Should not happen, we validate the ctx is still alive before calling. 2927 */ 2928 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2929 return; 2930 2931 /* 2932 * Installing events is tricky because we cannot rely on ctx->is_active 2933 * to be set in case this is the nr_events 0 -> 1 transition. 2934 * 2935 * Instead we use task_curr(), which tells us if the task is running. 2936 * However, since we use task_curr() outside of rq::lock, we can race 2937 * against the actual state. This means the result can be wrong. 2938 * 2939 * If we get a false positive, we retry, this is harmless. 2940 * 2941 * If we get a false negative, things are complicated. If we are after 2942 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2943 * value must be correct. If we're before, it doesn't matter since 2944 * perf_event_context_sched_in() will program the counter. 2945 * 2946 * However, this hinges on the remote context switch having observed 2947 * our task->perf_event_ctxp[] store, such that it will in fact take 2948 * ctx::lock in perf_event_context_sched_in(). 2949 * 2950 * We do this by task_function_call(), if the IPI fails to hit the task 2951 * we know any future context switch of task must see the 2952 * perf_event_ctpx[] store. 2953 */ 2954 2955 /* 2956 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2957 * task_cpu() load, such that if the IPI then does not find the task 2958 * running, a future context switch of that task must observe the 2959 * store. 2960 */ 2961 smp_mb(); 2962 again: 2963 if (!task_function_call(task, __perf_install_in_context, event)) 2964 return; 2965 2966 raw_spin_lock_irq(&ctx->lock); 2967 task = ctx->task; 2968 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2969 /* 2970 * Cannot happen because we already checked above (which also 2971 * cannot happen), and we hold ctx->mutex, which serializes us 2972 * against perf_event_exit_task_context(). 2973 */ 2974 raw_spin_unlock_irq(&ctx->lock); 2975 return; 2976 } 2977 /* 2978 * If the task is not running, ctx->lock will avoid it becoming so, 2979 * thus we can safely install the event. 2980 */ 2981 if (task_curr(task)) { 2982 raw_spin_unlock_irq(&ctx->lock); 2983 goto again; 2984 } 2985 add_event_to_ctx(event, ctx); 2986 raw_spin_unlock_irq(&ctx->lock); 2987 } 2988 2989 /* 2990 * Cross CPU call to enable a performance event 2991 */ 2992 static void __perf_event_enable(struct perf_event *event, 2993 struct perf_cpu_context *cpuctx, 2994 struct perf_event_context *ctx, 2995 void *info) 2996 { 2997 struct perf_event *leader = event->group_leader; 2998 struct perf_event_context *task_ctx; 2999 3000 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3001 event->state <= PERF_EVENT_STATE_ERROR) 3002 return; 3003 3004 if (ctx->is_active) 3005 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3006 3007 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3008 perf_cgroup_event_enable(event, ctx); 3009 3010 if (!ctx->is_active) 3011 return; 3012 3013 if (!event_filter_match(event)) { 3014 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3015 return; 3016 } 3017 3018 /* 3019 * If the event is in a group and isn't the group leader, 3020 * then don't put it on unless the group is on. 3021 */ 3022 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 3023 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3024 return; 3025 } 3026 3027 task_ctx = cpuctx->task_ctx; 3028 if (ctx->task) 3029 WARN_ON_ONCE(task_ctx != ctx); 3030 3031 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 3032 } 3033 3034 /* 3035 * Enable an event. 3036 * 3037 * If event->ctx is a cloned context, callers must make sure that 3038 * every task struct that event->ctx->task could possibly point to 3039 * remains valid. This condition is satisfied when called through 3040 * perf_event_for_each_child or perf_event_for_each as described 3041 * for perf_event_disable. 3042 */ 3043 static void _perf_event_enable(struct perf_event *event) 3044 { 3045 struct perf_event_context *ctx = event->ctx; 3046 3047 raw_spin_lock_irq(&ctx->lock); 3048 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3049 event->state < PERF_EVENT_STATE_ERROR) { 3050 out: 3051 raw_spin_unlock_irq(&ctx->lock); 3052 return; 3053 } 3054 3055 /* 3056 * If the event is in error state, clear that first. 3057 * 3058 * That way, if we see the event in error state below, we know that it 3059 * has gone back into error state, as distinct from the task having 3060 * been scheduled away before the cross-call arrived. 3061 */ 3062 if (event->state == PERF_EVENT_STATE_ERROR) { 3063 /* 3064 * Detached SIBLING events cannot leave ERROR state. 3065 */ 3066 if (event->event_caps & PERF_EV_CAP_SIBLING && 3067 event->group_leader == event) 3068 goto out; 3069 3070 event->state = PERF_EVENT_STATE_OFF; 3071 } 3072 raw_spin_unlock_irq(&ctx->lock); 3073 3074 event_function_call(event, __perf_event_enable, NULL); 3075 } 3076 3077 /* 3078 * See perf_event_disable(); 3079 */ 3080 void perf_event_enable(struct perf_event *event) 3081 { 3082 struct perf_event_context *ctx; 3083 3084 ctx = perf_event_ctx_lock(event); 3085 _perf_event_enable(event); 3086 perf_event_ctx_unlock(event, ctx); 3087 } 3088 EXPORT_SYMBOL_GPL(perf_event_enable); 3089 3090 struct stop_event_data { 3091 struct perf_event *event; 3092 unsigned int restart; 3093 }; 3094 3095 static int __perf_event_stop(void *info) 3096 { 3097 struct stop_event_data *sd = info; 3098 struct perf_event *event = sd->event; 3099 3100 /* if it's already INACTIVE, do nothing */ 3101 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3102 return 0; 3103 3104 /* matches smp_wmb() in event_sched_in() */ 3105 smp_rmb(); 3106 3107 /* 3108 * There is a window with interrupts enabled before we get here, 3109 * so we need to check again lest we try to stop another CPU's event. 3110 */ 3111 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3112 return -EAGAIN; 3113 3114 event->pmu->stop(event, PERF_EF_UPDATE); 3115 3116 /* 3117 * May race with the actual stop (through perf_pmu_output_stop()), 3118 * but it is only used for events with AUX ring buffer, and such 3119 * events will refuse to restart because of rb::aux_mmap_count==0, 3120 * see comments in perf_aux_output_begin(). 3121 * 3122 * Since this is happening on an event-local CPU, no trace is lost 3123 * while restarting. 3124 */ 3125 if (sd->restart) 3126 event->pmu->start(event, 0); 3127 3128 return 0; 3129 } 3130 3131 static int perf_event_stop(struct perf_event *event, int restart) 3132 { 3133 struct stop_event_data sd = { 3134 .event = event, 3135 .restart = restart, 3136 }; 3137 int ret = 0; 3138 3139 do { 3140 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3141 return 0; 3142 3143 /* matches smp_wmb() in event_sched_in() */ 3144 smp_rmb(); 3145 3146 /* 3147 * We only want to restart ACTIVE events, so if the event goes 3148 * inactive here (event->oncpu==-1), there's nothing more to do; 3149 * fall through with ret==-ENXIO. 3150 */ 3151 ret = cpu_function_call(READ_ONCE(event->oncpu), 3152 __perf_event_stop, &sd); 3153 } while (ret == -EAGAIN); 3154 3155 return ret; 3156 } 3157 3158 /* 3159 * In order to contain the amount of racy and tricky in the address filter 3160 * configuration management, it is a two part process: 3161 * 3162 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3163 * we update the addresses of corresponding vmas in 3164 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3165 * (p2) when an event is scheduled in (pmu::add), it calls 3166 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3167 * if the generation has changed since the previous call. 3168 * 3169 * If (p1) happens while the event is active, we restart it to force (p2). 3170 * 3171 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3172 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3173 * ioctl; 3174 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3175 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3176 * for reading; 3177 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3178 * of exec. 3179 */ 3180 void perf_event_addr_filters_sync(struct perf_event *event) 3181 { 3182 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3183 3184 if (!has_addr_filter(event)) 3185 return; 3186 3187 raw_spin_lock(&ifh->lock); 3188 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3189 event->pmu->addr_filters_sync(event); 3190 event->hw.addr_filters_gen = event->addr_filters_gen; 3191 } 3192 raw_spin_unlock(&ifh->lock); 3193 } 3194 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3195 3196 static int _perf_event_refresh(struct perf_event *event, int refresh) 3197 { 3198 /* 3199 * not supported on inherited events 3200 */ 3201 if (event->attr.inherit || !is_sampling_event(event)) 3202 return -EINVAL; 3203 3204 atomic_add(refresh, &event->event_limit); 3205 _perf_event_enable(event); 3206 3207 return 0; 3208 } 3209 3210 /* 3211 * See perf_event_disable() 3212 */ 3213 int perf_event_refresh(struct perf_event *event, int refresh) 3214 { 3215 struct perf_event_context *ctx; 3216 int ret; 3217 3218 ctx = perf_event_ctx_lock(event); 3219 ret = _perf_event_refresh(event, refresh); 3220 perf_event_ctx_unlock(event, ctx); 3221 3222 return ret; 3223 } 3224 EXPORT_SYMBOL_GPL(perf_event_refresh); 3225 3226 static int perf_event_modify_breakpoint(struct perf_event *bp, 3227 struct perf_event_attr *attr) 3228 { 3229 int err; 3230 3231 _perf_event_disable(bp); 3232 3233 err = modify_user_hw_breakpoint_check(bp, attr, true); 3234 3235 if (!bp->attr.disabled) 3236 _perf_event_enable(bp); 3237 3238 return err; 3239 } 3240 3241 static int perf_event_modify_attr(struct perf_event *event, 3242 struct perf_event_attr *attr) 3243 { 3244 int (*func)(struct perf_event *, struct perf_event_attr *); 3245 struct perf_event *child; 3246 int err; 3247 3248 if (event->attr.type != attr->type) 3249 return -EINVAL; 3250 3251 switch (event->attr.type) { 3252 case PERF_TYPE_BREAKPOINT: 3253 func = perf_event_modify_breakpoint; 3254 break; 3255 default: 3256 /* Place holder for future additions. */ 3257 return -EOPNOTSUPP; 3258 } 3259 3260 WARN_ON_ONCE(event->ctx->parent_ctx); 3261 3262 mutex_lock(&event->child_mutex); 3263 err = func(event, attr); 3264 if (err) 3265 goto out; 3266 list_for_each_entry(child, &event->child_list, child_list) { 3267 err = func(child, attr); 3268 if (err) 3269 goto out; 3270 } 3271 out: 3272 mutex_unlock(&event->child_mutex); 3273 return err; 3274 } 3275 3276 static void ctx_sched_out(struct perf_event_context *ctx, 3277 struct perf_cpu_context *cpuctx, 3278 enum event_type_t event_type) 3279 { 3280 struct perf_event *event, *tmp; 3281 int is_active = ctx->is_active; 3282 3283 lockdep_assert_held(&ctx->lock); 3284 3285 if (likely(!ctx->nr_events)) { 3286 /* 3287 * See __perf_remove_from_context(). 3288 */ 3289 WARN_ON_ONCE(ctx->is_active); 3290 if (ctx->task) 3291 WARN_ON_ONCE(cpuctx->task_ctx); 3292 return; 3293 } 3294 3295 /* 3296 * Always update time if it was set; not only when it changes. 3297 * Otherwise we can 'forget' to update time for any but the last 3298 * context we sched out. For example: 3299 * 3300 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3301 * ctx_sched_out(.event_type = EVENT_PINNED) 3302 * 3303 * would only update time for the pinned events. 3304 */ 3305 if (is_active & EVENT_TIME) { 3306 /* update (and stop) ctx time */ 3307 update_context_time(ctx); 3308 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3309 /* 3310 * CPU-release for the below ->is_active store, 3311 * see __load_acquire() in perf_event_time_now() 3312 */ 3313 barrier(); 3314 } 3315 3316 ctx->is_active &= ~event_type; 3317 if (!(ctx->is_active & EVENT_ALL)) 3318 ctx->is_active = 0; 3319 3320 if (ctx->task) { 3321 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3322 if (!ctx->is_active) 3323 cpuctx->task_ctx = NULL; 3324 } 3325 3326 is_active ^= ctx->is_active; /* changed bits */ 3327 3328 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3329 return; 3330 3331 perf_pmu_disable(ctx->pmu); 3332 if (is_active & EVENT_PINNED) { 3333 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3334 group_sched_out(event, cpuctx, ctx); 3335 } 3336 3337 if (is_active & EVENT_FLEXIBLE) { 3338 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3339 group_sched_out(event, cpuctx, ctx); 3340 3341 /* 3342 * Since we cleared EVENT_FLEXIBLE, also clear 3343 * rotate_necessary, is will be reset by 3344 * ctx_flexible_sched_in() when needed. 3345 */ 3346 ctx->rotate_necessary = 0; 3347 } 3348 perf_pmu_enable(ctx->pmu); 3349 } 3350 3351 /* 3352 * Test whether two contexts are equivalent, i.e. whether they have both been 3353 * cloned from the same version of the same context. 3354 * 3355 * Equivalence is measured using a generation number in the context that is 3356 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3357 * and list_del_event(). 3358 */ 3359 static int context_equiv(struct perf_event_context *ctx1, 3360 struct perf_event_context *ctx2) 3361 { 3362 lockdep_assert_held(&ctx1->lock); 3363 lockdep_assert_held(&ctx2->lock); 3364 3365 /* Pinning disables the swap optimization */ 3366 if (ctx1->pin_count || ctx2->pin_count) 3367 return 0; 3368 3369 /* If ctx1 is the parent of ctx2 */ 3370 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3371 return 1; 3372 3373 /* If ctx2 is the parent of ctx1 */ 3374 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3375 return 1; 3376 3377 /* 3378 * If ctx1 and ctx2 have the same parent; we flatten the parent 3379 * hierarchy, see perf_event_init_context(). 3380 */ 3381 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3382 ctx1->parent_gen == ctx2->parent_gen) 3383 return 1; 3384 3385 /* Unmatched */ 3386 return 0; 3387 } 3388 3389 static void __perf_event_sync_stat(struct perf_event *event, 3390 struct perf_event *next_event) 3391 { 3392 u64 value; 3393 3394 if (!event->attr.inherit_stat) 3395 return; 3396 3397 /* 3398 * Update the event value, we cannot use perf_event_read() 3399 * because we're in the middle of a context switch and have IRQs 3400 * disabled, which upsets smp_call_function_single(), however 3401 * we know the event must be on the current CPU, therefore we 3402 * don't need to use it. 3403 */ 3404 if (event->state == PERF_EVENT_STATE_ACTIVE) 3405 event->pmu->read(event); 3406 3407 perf_event_update_time(event); 3408 3409 /* 3410 * In order to keep per-task stats reliable we need to flip the event 3411 * values when we flip the contexts. 3412 */ 3413 value = local64_read(&next_event->count); 3414 value = local64_xchg(&event->count, value); 3415 local64_set(&next_event->count, value); 3416 3417 swap(event->total_time_enabled, next_event->total_time_enabled); 3418 swap(event->total_time_running, next_event->total_time_running); 3419 3420 /* 3421 * Since we swizzled the values, update the user visible data too. 3422 */ 3423 perf_event_update_userpage(event); 3424 perf_event_update_userpage(next_event); 3425 } 3426 3427 static void perf_event_sync_stat(struct perf_event_context *ctx, 3428 struct perf_event_context *next_ctx) 3429 { 3430 struct perf_event *event, *next_event; 3431 3432 if (!ctx->nr_stat) 3433 return; 3434 3435 update_context_time(ctx); 3436 3437 event = list_first_entry(&ctx->event_list, 3438 struct perf_event, event_entry); 3439 3440 next_event = list_first_entry(&next_ctx->event_list, 3441 struct perf_event, event_entry); 3442 3443 while (&event->event_entry != &ctx->event_list && 3444 &next_event->event_entry != &next_ctx->event_list) { 3445 3446 __perf_event_sync_stat(event, next_event); 3447 3448 event = list_next_entry(event, event_entry); 3449 next_event = list_next_entry(next_event, event_entry); 3450 } 3451 } 3452 3453 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3454 struct task_struct *next) 3455 { 3456 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3457 struct perf_event_context *next_ctx; 3458 struct perf_event_context *parent, *next_parent; 3459 struct perf_cpu_context *cpuctx; 3460 int do_switch = 1; 3461 struct pmu *pmu; 3462 3463 if (likely(!ctx)) 3464 return; 3465 3466 pmu = ctx->pmu; 3467 cpuctx = __get_cpu_context(ctx); 3468 if (!cpuctx->task_ctx) 3469 return; 3470 3471 rcu_read_lock(); 3472 next_ctx = next->perf_event_ctxp[ctxn]; 3473 if (!next_ctx) 3474 goto unlock; 3475 3476 parent = rcu_dereference(ctx->parent_ctx); 3477 next_parent = rcu_dereference(next_ctx->parent_ctx); 3478 3479 /* If neither context have a parent context; they cannot be clones. */ 3480 if (!parent && !next_parent) 3481 goto unlock; 3482 3483 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3484 /* 3485 * Looks like the two contexts are clones, so we might be 3486 * able to optimize the context switch. We lock both 3487 * contexts and check that they are clones under the 3488 * lock (including re-checking that neither has been 3489 * uncloned in the meantime). It doesn't matter which 3490 * order we take the locks because no other cpu could 3491 * be trying to lock both of these tasks. 3492 */ 3493 raw_spin_lock(&ctx->lock); 3494 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3495 if (context_equiv(ctx, next_ctx)) { 3496 3497 WRITE_ONCE(ctx->task, next); 3498 WRITE_ONCE(next_ctx->task, task); 3499 3500 perf_pmu_disable(pmu); 3501 3502 if (cpuctx->sched_cb_usage && pmu->sched_task) 3503 pmu->sched_task(ctx, false); 3504 3505 /* 3506 * PMU specific parts of task perf context can require 3507 * additional synchronization. As an example of such 3508 * synchronization see implementation details of Intel 3509 * LBR call stack data profiling; 3510 */ 3511 if (pmu->swap_task_ctx) 3512 pmu->swap_task_ctx(ctx, next_ctx); 3513 else 3514 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3515 3516 perf_pmu_enable(pmu); 3517 3518 /* 3519 * RCU_INIT_POINTER here is safe because we've not 3520 * modified the ctx and the above modification of 3521 * ctx->task and ctx->task_ctx_data are immaterial 3522 * since those values are always verified under 3523 * ctx->lock which we're now holding. 3524 */ 3525 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3526 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3527 3528 do_switch = 0; 3529 3530 perf_event_sync_stat(ctx, next_ctx); 3531 } 3532 raw_spin_unlock(&next_ctx->lock); 3533 raw_spin_unlock(&ctx->lock); 3534 } 3535 unlock: 3536 rcu_read_unlock(); 3537 3538 if (do_switch) { 3539 raw_spin_lock(&ctx->lock); 3540 perf_pmu_disable(pmu); 3541 3542 if (cpuctx->sched_cb_usage && pmu->sched_task) 3543 pmu->sched_task(ctx, false); 3544 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3545 3546 perf_pmu_enable(pmu); 3547 raw_spin_unlock(&ctx->lock); 3548 } 3549 } 3550 3551 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3552 3553 void perf_sched_cb_dec(struct pmu *pmu) 3554 { 3555 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3556 3557 this_cpu_dec(perf_sched_cb_usages); 3558 3559 if (!--cpuctx->sched_cb_usage) 3560 list_del(&cpuctx->sched_cb_entry); 3561 } 3562 3563 3564 void perf_sched_cb_inc(struct pmu *pmu) 3565 { 3566 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3567 3568 if (!cpuctx->sched_cb_usage++) 3569 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3570 3571 this_cpu_inc(perf_sched_cb_usages); 3572 } 3573 3574 /* 3575 * This function provides the context switch callback to the lower code 3576 * layer. It is invoked ONLY when the context switch callback is enabled. 3577 * 3578 * This callback is relevant even to per-cpu events; for example multi event 3579 * PEBS requires this to provide PID/TID information. This requires we flush 3580 * all queued PEBS records before we context switch to a new task. 3581 */ 3582 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) 3583 { 3584 struct pmu *pmu; 3585 3586 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3587 3588 if (WARN_ON_ONCE(!pmu->sched_task)) 3589 return; 3590 3591 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3592 perf_pmu_disable(pmu); 3593 3594 pmu->sched_task(cpuctx->task_ctx, sched_in); 3595 3596 perf_pmu_enable(pmu); 3597 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3598 } 3599 3600 static void perf_pmu_sched_task(struct task_struct *prev, 3601 struct task_struct *next, 3602 bool sched_in) 3603 { 3604 struct perf_cpu_context *cpuctx; 3605 3606 if (prev == next) 3607 return; 3608 3609 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3610 /* will be handled in perf_event_context_sched_in/out */ 3611 if (cpuctx->task_ctx) 3612 continue; 3613 3614 __perf_pmu_sched_task(cpuctx, sched_in); 3615 } 3616 } 3617 3618 static void perf_event_switch(struct task_struct *task, 3619 struct task_struct *next_prev, bool sched_in); 3620 3621 #define for_each_task_context_nr(ctxn) \ 3622 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3623 3624 /* 3625 * Called from scheduler to remove the events of the current task, 3626 * with interrupts disabled. 3627 * 3628 * We stop each event and update the event value in event->count. 3629 * 3630 * This does not protect us against NMI, but disable() 3631 * sets the disabled bit in the control field of event _before_ 3632 * accessing the event control register. If a NMI hits, then it will 3633 * not restart the event. 3634 */ 3635 void __perf_event_task_sched_out(struct task_struct *task, 3636 struct task_struct *next) 3637 { 3638 int ctxn; 3639 3640 if (__this_cpu_read(perf_sched_cb_usages)) 3641 perf_pmu_sched_task(task, next, false); 3642 3643 if (atomic_read(&nr_switch_events)) 3644 perf_event_switch(task, next, false); 3645 3646 for_each_task_context_nr(ctxn) 3647 perf_event_context_sched_out(task, ctxn, next); 3648 3649 /* 3650 * if cgroup events exist on this CPU, then we need 3651 * to check if we have to switch out PMU state. 3652 * cgroup event are system-wide mode only 3653 */ 3654 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3655 perf_cgroup_sched_out(task, next); 3656 } 3657 3658 /* 3659 * Called with IRQs disabled 3660 */ 3661 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3662 enum event_type_t event_type) 3663 { 3664 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3665 } 3666 3667 static bool perf_less_group_idx(const void *l, const void *r) 3668 { 3669 const struct perf_event *le = *(const struct perf_event **)l; 3670 const struct perf_event *re = *(const struct perf_event **)r; 3671 3672 return le->group_index < re->group_index; 3673 } 3674 3675 static void swap_ptr(void *l, void *r) 3676 { 3677 void **lp = l, **rp = r; 3678 3679 swap(*lp, *rp); 3680 } 3681 3682 static const struct min_heap_callbacks perf_min_heap = { 3683 .elem_size = sizeof(struct perf_event *), 3684 .less = perf_less_group_idx, 3685 .swp = swap_ptr, 3686 }; 3687 3688 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3689 { 3690 struct perf_event **itrs = heap->data; 3691 3692 if (event) { 3693 itrs[heap->nr] = event; 3694 heap->nr++; 3695 } 3696 } 3697 3698 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3699 struct perf_event_groups *groups, int cpu, 3700 int (*func)(struct perf_event *, void *), 3701 void *data) 3702 { 3703 #ifdef CONFIG_CGROUP_PERF 3704 struct cgroup_subsys_state *css = NULL; 3705 #endif 3706 /* Space for per CPU and/or any CPU event iterators. */ 3707 struct perf_event *itrs[2]; 3708 struct min_heap event_heap; 3709 struct perf_event **evt; 3710 int ret; 3711 3712 if (cpuctx) { 3713 event_heap = (struct min_heap){ 3714 .data = cpuctx->heap, 3715 .nr = 0, 3716 .size = cpuctx->heap_size, 3717 }; 3718 3719 lockdep_assert_held(&cpuctx->ctx.lock); 3720 3721 #ifdef CONFIG_CGROUP_PERF 3722 if (cpuctx->cgrp) 3723 css = &cpuctx->cgrp->css; 3724 #endif 3725 } else { 3726 event_heap = (struct min_heap){ 3727 .data = itrs, 3728 .nr = 0, 3729 .size = ARRAY_SIZE(itrs), 3730 }; 3731 /* Events not within a CPU context may be on any CPU. */ 3732 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3733 } 3734 evt = event_heap.data; 3735 3736 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3737 3738 #ifdef CONFIG_CGROUP_PERF 3739 for (; css; css = css->parent) 3740 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3741 #endif 3742 3743 min_heapify_all(&event_heap, &perf_min_heap); 3744 3745 while (event_heap.nr) { 3746 ret = func(*evt, data); 3747 if (ret) 3748 return ret; 3749 3750 *evt = perf_event_groups_next(*evt); 3751 if (*evt) 3752 min_heapify(&event_heap, 0, &perf_min_heap); 3753 else 3754 min_heap_pop(&event_heap, &perf_min_heap); 3755 } 3756 3757 return 0; 3758 } 3759 3760 /* 3761 * Because the userpage is strictly per-event (there is no concept of context, 3762 * so there cannot be a context indirection), every userpage must be updated 3763 * when context time starts :-( 3764 * 3765 * IOW, we must not miss EVENT_TIME edges. 3766 */ 3767 static inline bool event_update_userpage(struct perf_event *event) 3768 { 3769 if (likely(!atomic_read(&event->mmap_count))) 3770 return false; 3771 3772 perf_event_update_time(event); 3773 perf_event_update_userpage(event); 3774 3775 return true; 3776 } 3777 3778 static inline void group_update_userpage(struct perf_event *group_event) 3779 { 3780 struct perf_event *event; 3781 3782 if (!event_update_userpage(group_event)) 3783 return; 3784 3785 for_each_sibling_event(event, group_event) 3786 event_update_userpage(event); 3787 } 3788 3789 static int merge_sched_in(struct perf_event *event, void *data) 3790 { 3791 struct perf_event_context *ctx = event->ctx; 3792 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3793 int *can_add_hw = data; 3794 3795 if (event->state <= PERF_EVENT_STATE_OFF) 3796 return 0; 3797 3798 if (!event_filter_match(event)) 3799 return 0; 3800 3801 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3802 if (!group_sched_in(event, cpuctx, ctx)) 3803 list_add_tail(&event->active_list, get_event_list(event)); 3804 } 3805 3806 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3807 *can_add_hw = 0; 3808 if (event->attr.pinned) { 3809 perf_cgroup_event_disable(event, ctx); 3810 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3811 } else { 3812 ctx->rotate_necessary = 1; 3813 perf_mux_hrtimer_restart(cpuctx); 3814 group_update_userpage(event); 3815 } 3816 } 3817 3818 return 0; 3819 } 3820 3821 static void 3822 ctx_pinned_sched_in(struct perf_event_context *ctx, 3823 struct perf_cpu_context *cpuctx) 3824 { 3825 int can_add_hw = 1; 3826 3827 if (ctx != &cpuctx->ctx) 3828 cpuctx = NULL; 3829 3830 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3831 smp_processor_id(), 3832 merge_sched_in, &can_add_hw); 3833 } 3834 3835 static void 3836 ctx_flexible_sched_in(struct perf_event_context *ctx, 3837 struct perf_cpu_context *cpuctx) 3838 { 3839 int can_add_hw = 1; 3840 3841 if (ctx != &cpuctx->ctx) 3842 cpuctx = NULL; 3843 3844 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3845 smp_processor_id(), 3846 merge_sched_in, &can_add_hw); 3847 } 3848 3849 static void 3850 ctx_sched_in(struct perf_event_context *ctx, 3851 struct perf_cpu_context *cpuctx, 3852 enum event_type_t event_type, 3853 struct task_struct *task) 3854 { 3855 int is_active = ctx->is_active; 3856 3857 lockdep_assert_held(&ctx->lock); 3858 3859 if (likely(!ctx->nr_events)) 3860 return; 3861 3862 if (is_active ^ EVENT_TIME) { 3863 /* start ctx time */ 3864 __update_context_time(ctx, false); 3865 perf_cgroup_set_timestamp(task, ctx); 3866 /* 3867 * CPU-release for the below ->is_active store, 3868 * see __load_acquire() in perf_event_time_now() 3869 */ 3870 barrier(); 3871 } 3872 3873 ctx->is_active |= (event_type | EVENT_TIME); 3874 if (ctx->task) { 3875 if (!is_active) 3876 cpuctx->task_ctx = ctx; 3877 else 3878 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3879 } 3880 3881 is_active ^= ctx->is_active; /* changed bits */ 3882 3883 /* 3884 * First go through the list and put on any pinned groups 3885 * in order to give them the best chance of going on. 3886 */ 3887 if (is_active & EVENT_PINNED) 3888 ctx_pinned_sched_in(ctx, cpuctx); 3889 3890 /* Then walk through the lower prio flexible groups */ 3891 if (is_active & EVENT_FLEXIBLE) 3892 ctx_flexible_sched_in(ctx, cpuctx); 3893 } 3894 3895 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3896 enum event_type_t event_type, 3897 struct task_struct *task) 3898 { 3899 struct perf_event_context *ctx = &cpuctx->ctx; 3900 3901 ctx_sched_in(ctx, cpuctx, event_type, task); 3902 } 3903 3904 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3905 struct task_struct *task) 3906 { 3907 struct perf_cpu_context *cpuctx; 3908 struct pmu *pmu; 3909 3910 cpuctx = __get_cpu_context(ctx); 3911 3912 /* 3913 * HACK: for HETEROGENEOUS the task context might have switched to a 3914 * different PMU, force (re)set the context, 3915 */ 3916 pmu = ctx->pmu = cpuctx->ctx.pmu; 3917 3918 if (cpuctx->task_ctx == ctx) { 3919 if (cpuctx->sched_cb_usage) 3920 __perf_pmu_sched_task(cpuctx, true); 3921 return; 3922 } 3923 3924 perf_ctx_lock(cpuctx, ctx); 3925 /* 3926 * We must check ctx->nr_events while holding ctx->lock, such 3927 * that we serialize against perf_install_in_context(). 3928 */ 3929 if (!ctx->nr_events) 3930 goto unlock; 3931 3932 perf_pmu_disable(pmu); 3933 /* 3934 * We want to keep the following priority order: 3935 * cpu pinned (that don't need to move), task pinned, 3936 * cpu flexible, task flexible. 3937 * 3938 * However, if task's ctx is not carrying any pinned 3939 * events, no need to flip the cpuctx's events around. 3940 */ 3941 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3942 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3943 perf_event_sched_in(cpuctx, ctx, task); 3944 3945 if (cpuctx->sched_cb_usage && pmu->sched_task) 3946 pmu->sched_task(cpuctx->task_ctx, true); 3947 3948 perf_pmu_enable(pmu); 3949 3950 unlock: 3951 perf_ctx_unlock(cpuctx, ctx); 3952 } 3953 3954 /* 3955 * Called from scheduler to add the events of the current task 3956 * with interrupts disabled. 3957 * 3958 * We restore the event value and then enable it. 3959 * 3960 * This does not protect us against NMI, but enable() 3961 * sets the enabled bit in the control field of event _before_ 3962 * accessing the event control register. If a NMI hits, then it will 3963 * keep the event running. 3964 */ 3965 void __perf_event_task_sched_in(struct task_struct *prev, 3966 struct task_struct *task) 3967 { 3968 struct perf_event_context *ctx; 3969 int ctxn; 3970 3971 /* 3972 * If cgroup events exist on this CPU, then we need to check if we have 3973 * to switch in PMU state; cgroup event are system-wide mode only. 3974 * 3975 * Since cgroup events are CPU events, we must schedule these in before 3976 * we schedule in the task events. 3977 */ 3978 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3979 perf_cgroup_sched_in(prev, task); 3980 3981 for_each_task_context_nr(ctxn) { 3982 ctx = task->perf_event_ctxp[ctxn]; 3983 if (likely(!ctx)) 3984 continue; 3985 3986 perf_event_context_sched_in(ctx, task); 3987 } 3988 3989 if (atomic_read(&nr_switch_events)) 3990 perf_event_switch(task, prev, true); 3991 3992 if (__this_cpu_read(perf_sched_cb_usages)) 3993 perf_pmu_sched_task(prev, task, true); 3994 } 3995 3996 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3997 { 3998 u64 frequency = event->attr.sample_freq; 3999 u64 sec = NSEC_PER_SEC; 4000 u64 divisor, dividend; 4001 4002 int count_fls, nsec_fls, frequency_fls, sec_fls; 4003 4004 count_fls = fls64(count); 4005 nsec_fls = fls64(nsec); 4006 frequency_fls = fls64(frequency); 4007 sec_fls = 30; 4008 4009 /* 4010 * We got @count in @nsec, with a target of sample_freq HZ 4011 * the target period becomes: 4012 * 4013 * @count * 10^9 4014 * period = ------------------- 4015 * @nsec * sample_freq 4016 * 4017 */ 4018 4019 /* 4020 * Reduce accuracy by one bit such that @a and @b converge 4021 * to a similar magnitude. 4022 */ 4023 #define REDUCE_FLS(a, b) \ 4024 do { \ 4025 if (a##_fls > b##_fls) { \ 4026 a >>= 1; \ 4027 a##_fls--; \ 4028 } else { \ 4029 b >>= 1; \ 4030 b##_fls--; \ 4031 } \ 4032 } while (0) 4033 4034 /* 4035 * Reduce accuracy until either term fits in a u64, then proceed with 4036 * the other, so that finally we can do a u64/u64 division. 4037 */ 4038 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4039 REDUCE_FLS(nsec, frequency); 4040 REDUCE_FLS(sec, count); 4041 } 4042 4043 if (count_fls + sec_fls > 64) { 4044 divisor = nsec * frequency; 4045 4046 while (count_fls + sec_fls > 64) { 4047 REDUCE_FLS(count, sec); 4048 divisor >>= 1; 4049 } 4050 4051 dividend = count * sec; 4052 } else { 4053 dividend = count * sec; 4054 4055 while (nsec_fls + frequency_fls > 64) { 4056 REDUCE_FLS(nsec, frequency); 4057 dividend >>= 1; 4058 } 4059 4060 divisor = nsec * frequency; 4061 } 4062 4063 if (!divisor) 4064 return dividend; 4065 4066 return div64_u64(dividend, divisor); 4067 } 4068 4069 static DEFINE_PER_CPU(int, perf_throttled_count); 4070 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4071 4072 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4073 { 4074 struct hw_perf_event *hwc = &event->hw; 4075 s64 period, sample_period; 4076 s64 delta; 4077 4078 period = perf_calculate_period(event, nsec, count); 4079 4080 delta = (s64)(period - hwc->sample_period); 4081 delta = (delta + 7) / 8; /* low pass filter */ 4082 4083 sample_period = hwc->sample_period + delta; 4084 4085 if (!sample_period) 4086 sample_period = 1; 4087 4088 hwc->sample_period = sample_period; 4089 4090 if (local64_read(&hwc->period_left) > 8*sample_period) { 4091 if (disable) 4092 event->pmu->stop(event, PERF_EF_UPDATE); 4093 4094 local64_set(&hwc->period_left, 0); 4095 4096 if (disable) 4097 event->pmu->start(event, PERF_EF_RELOAD); 4098 } 4099 } 4100 4101 /* 4102 * combine freq adjustment with unthrottling to avoid two passes over the 4103 * events. At the same time, make sure, having freq events does not change 4104 * the rate of unthrottling as that would introduce bias. 4105 */ 4106 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 4107 int needs_unthr) 4108 { 4109 struct perf_event *event; 4110 struct hw_perf_event *hwc; 4111 u64 now, period = TICK_NSEC; 4112 s64 delta; 4113 4114 /* 4115 * only need to iterate over all events iff: 4116 * - context have events in frequency mode (needs freq adjust) 4117 * - there are events to unthrottle on this cpu 4118 */ 4119 if (!(ctx->nr_freq || needs_unthr)) 4120 return; 4121 4122 raw_spin_lock(&ctx->lock); 4123 perf_pmu_disable(ctx->pmu); 4124 4125 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4126 if (event->state != PERF_EVENT_STATE_ACTIVE) 4127 continue; 4128 4129 if (!event_filter_match(event)) 4130 continue; 4131 4132 perf_pmu_disable(event->pmu); 4133 4134 hwc = &event->hw; 4135 4136 if (hwc->interrupts == MAX_INTERRUPTS) { 4137 hwc->interrupts = 0; 4138 perf_log_throttle(event, 1); 4139 event->pmu->start(event, 0); 4140 } 4141 4142 if (!event->attr.freq || !event->attr.sample_freq) 4143 goto next; 4144 4145 /* 4146 * stop the event and update event->count 4147 */ 4148 event->pmu->stop(event, PERF_EF_UPDATE); 4149 4150 now = local64_read(&event->count); 4151 delta = now - hwc->freq_count_stamp; 4152 hwc->freq_count_stamp = now; 4153 4154 /* 4155 * restart the event 4156 * reload only if value has changed 4157 * we have stopped the event so tell that 4158 * to perf_adjust_period() to avoid stopping it 4159 * twice. 4160 */ 4161 if (delta > 0) 4162 perf_adjust_period(event, period, delta, false); 4163 4164 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4165 next: 4166 perf_pmu_enable(event->pmu); 4167 } 4168 4169 perf_pmu_enable(ctx->pmu); 4170 raw_spin_unlock(&ctx->lock); 4171 } 4172 4173 /* 4174 * Move @event to the tail of the @ctx's elegible events. 4175 */ 4176 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4177 { 4178 /* 4179 * Rotate the first entry last of non-pinned groups. Rotation might be 4180 * disabled by the inheritance code. 4181 */ 4182 if (ctx->rotate_disable) 4183 return; 4184 4185 perf_event_groups_delete(&ctx->flexible_groups, event); 4186 perf_event_groups_insert(&ctx->flexible_groups, event); 4187 } 4188 4189 /* pick an event from the flexible_groups to rotate */ 4190 static inline struct perf_event * 4191 ctx_event_to_rotate(struct perf_event_context *ctx) 4192 { 4193 struct perf_event *event; 4194 4195 /* pick the first active flexible event */ 4196 event = list_first_entry_or_null(&ctx->flexible_active, 4197 struct perf_event, active_list); 4198 4199 /* if no active flexible event, pick the first event */ 4200 if (!event) { 4201 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4202 typeof(*event), group_node); 4203 } 4204 4205 /* 4206 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4207 * finds there are unschedulable events, it will set it again. 4208 */ 4209 ctx->rotate_necessary = 0; 4210 4211 return event; 4212 } 4213 4214 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4215 { 4216 struct perf_event *cpu_event = NULL, *task_event = NULL; 4217 struct perf_event_context *task_ctx = NULL; 4218 int cpu_rotate, task_rotate; 4219 4220 /* 4221 * Since we run this from IRQ context, nobody can install new 4222 * events, thus the event count values are stable. 4223 */ 4224 4225 cpu_rotate = cpuctx->ctx.rotate_necessary; 4226 task_ctx = cpuctx->task_ctx; 4227 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4228 4229 if (!(cpu_rotate || task_rotate)) 4230 return false; 4231 4232 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4233 perf_pmu_disable(cpuctx->ctx.pmu); 4234 4235 if (task_rotate) 4236 task_event = ctx_event_to_rotate(task_ctx); 4237 if (cpu_rotate) 4238 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4239 4240 /* 4241 * As per the order given at ctx_resched() first 'pop' task flexible 4242 * and then, if needed CPU flexible. 4243 */ 4244 if (task_event || (task_ctx && cpu_event)) 4245 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4246 if (cpu_event) 4247 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4248 4249 if (task_event) 4250 rotate_ctx(task_ctx, task_event); 4251 if (cpu_event) 4252 rotate_ctx(&cpuctx->ctx, cpu_event); 4253 4254 perf_event_sched_in(cpuctx, task_ctx, current); 4255 4256 perf_pmu_enable(cpuctx->ctx.pmu); 4257 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4258 4259 return true; 4260 } 4261 4262 void perf_event_task_tick(void) 4263 { 4264 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4265 struct perf_event_context *ctx, *tmp; 4266 int throttled; 4267 4268 lockdep_assert_irqs_disabled(); 4269 4270 __this_cpu_inc(perf_throttled_seq); 4271 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4272 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4273 4274 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4275 perf_adjust_freq_unthr_context(ctx, throttled); 4276 } 4277 4278 static int event_enable_on_exec(struct perf_event *event, 4279 struct perf_event_context *ctx) 4280 { 4281 if (!event->attr.enable_on_exec) 4282 return 0; 4283 4284 event->attr.enable_on_exec = 0; 4285 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4286 return 0; 4287 4288 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4289 4290 return 1; 4291 } 4292 4293 /* 4294 * Enable all of a task's events that have been marked enable-on-exec. 4295 * This expects task == current. 4296 */ 4297 static void perf_event_enable_on_exec(int ctxn) 4298 { 4299 struct perf_event_context *ctx, *clone_ctx = NULL; 4300 enum event_type_t event_type = 0; 4301 struct perf_cpu_context *cpuctx; 4302 struct perf_event *event; 4303 unsigned long flags; 4304 int enabled = 0; 4305 4306 local_irq_save(flags); 4307 ctx = current->perf_event_ctxp[ctxn]; 4308 if (!ctx || !ctx->nr_events) 4309 goto out; 4310 4311 cpuctx = __get_cpu_context(ctx); 4312 perf_ctx_lock(cpuctx, ctx); 4313 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4314 list_for_each_entry(event, &ctx->event_list, event_entry) { 4315 enabled |= event_enable_on_exec(event, ctx); 4316 event_type |= get_event_type(event); 4317 } 4318 4319 /* 4320 * Unclone and reschedule this context if we enabled any event. 4321 */ 4322 if (enabled) { 4323 clone_ctx = unclone_ctx(ctx); 4324 ctx_resched(cpuctx, ctx, event_type); 4325 } else { 4326 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4327 } 4328 perf_ctx_unlock(cpuctx, ctx); 4329 4330 out: 4331 local_irq_restore(flags); 4332 4333 if (clone_ctx) 4334 put_ctx(clone_ctx); 4335 } 4336 4337 static void perf_remove_from_owner(struct perf_event *event); 4338 static void perf_event_exit_event(struct perf_event *event, 4339 struct perf_event_context *ctx); 4340 4341 /* 4342 * Removes all events from the current task that have been marked 4343 * remove-on-exec, and feeds their values back to parent events. 4344 */ 4345 static void perf_event_remove_on_exec(int ctxn) 4346 { 4347 struct perf_event_context *ctx, *clone_ctx = NULL; 4348 struct perf_event *event, *next; 4349 LIST_HEAD(free_list); 4350 unsigned long flags; 4351 bool modified = false; 4352 4353 ctx = perf_pin_task_context(current, ctxn); 4354 if (!ctx) 4355 return; 4356 4357 mutex_lock(&ctx->mutex); 4358 4359 if (WARN_ON_ONCE(ctx->task != current)) 4360 goto unlock; 4361 4362 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4363 if (!event->attr.remove_on_exec) 4364 continue; 4365 4366 if (!is_kernel_event(event)) 4367 perf_remove_from_owner(event); 4368 4369 modified = true; 4370 4371 perf_event_exit_event(event, ctx); 4372 } 4373 4374 raw_spin_lock_irqsave(&ctx->lock, flags); 4375 if (modified) 4376 clone_ctx = unclone_ctx(ctx); 4377 --ctx->pin_count; 4378 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4379 4380 unlock: 4381 mutex_unlock(&ctx->mutex); 4382 4383 put_ctx(ctx); 4384 if (clone_ctx) 4385 put_ctx(clone_ctx); 4386 } 4387 4388 struct perf_read_data { 4389 struct perf_event *event; 4390 bool group; 4391 int ret; 4392 }; 4393 4394 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4395 { 4396 u16 local_pkg, event_pkg; 4397 4398 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4399 int local_cpu = smp_processor_id(); 4400 4401 event_pkg = topology_physical_package_id(event_cpu); 4402 local_pkg = topology_physical_package_id(local_cpu); 4403 4404 if (event_pkg == local_pkg) 4405 return local_cpu; 4406 } 4407 4408 return event_cpu; 4409 } 4410 4411 /* 4412 * Cross CPU call to read the hardware event 4413 */ 4414 static void __perf_event_read(void *info) 4415 { 4416 struct perf_read_data *data = info; 4417 struct perf_event *sub, *event = data->event; 4418 struct perf_event_context *ctx = event->ctx; 4419 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4420 struct pmu *pmu = event->pmu; 4421 4422 /* 4423 * If this is a task context, we need to check whether it is 4424 * the current task context of this cpu. If not it has been 4425 * scheduled out before the smp call arrived. In that case 4426 * event->count would have been updated to a recent sample 4427 * when the event was scheduled out. 4428 */ 4429 if (ctx->task && cpuctx->task_ctx != ctx) 4430 return; 4431 4432 raw_spin_lock(&ctx->lock); 4433 if (ctx->is_active & EVENT_TIME) { 4434 update_context_time(ctx); 4435 update_cgrp_time_from_event(event); 4436 } 4437 4438 perf_event_update_time(event); 4439 if (data->group) 4440 perf_event_update_sibling_time(event); 4441 4442 if (event->state != PERF_EVENT_STATE_ACTIVE) 4443 goto unlock; 4444 4445 if (!data->group) { 4446 pmu->read(event); 4447 data->ret = 0; 4448 goto unlock; 4449 } 4450 4451 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4452 4453 pmu->read(event); 4454 4455 for_each_sibling_event(sub, event) { 4456 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4457 /* 4458 * Use sibling's PMU rather than @event's since 4459 * sibling could be on different (eg: software) PMU. 4460 */ 4461 sub->pmu->read(sub); 4462 } 4463 } 4464 4465 data->ret = pmu->commit_txn(pmu); 4466 4467 unlock: 4468 raw_spin_unlock(&ctx->lock); 4469 } 4470 4471 static inline u64 perf_event_count(struct perf_event *event) 4472 { 4473 return local64_read(&event->count) + atomic64_read(&event->child_count); 4474 } 4475 4476 static void calc_timer_values(struct perf_event *event, 4477 u64 *now, 4478 u64 *enabled, 4479 u64 *running) 4480 { 4481 u64 ctx_time; 4482 4483 *now = perf_clock(); 4484 ctx_time = perf_event_time_now(event, *now); 4485 __perf_update_times(event, ctx_time, enabled, running); 4486 } 4487 4488 /* 4489 * NMI-safe method to read a local event, that is an event that 4490 * is: 4491 * - either for the current task, or for this CPU 4492 * - does not have inherit set, for inherited task events 4493 * will not be local and we cannot read them atomically 4494 * - must not have a pmu::count method 4495 */ 4496 int perf_event_read_local(struct perf_event *event, u64 *value, 4497 u64 *enabled, u64 *running) 4498 { 4499 unsigned long flags; 4500 int ret = 0; 4501 4502 /* 4503 * Disabling interrupts avoids all counter scheduling (context 4504 * switches, timer based rotation and IPIs). 4505 */ 4506 local_irq_save(flags); 4507 4508 /* 4509 * It must not be an event with inherit set, we cannot read 4510 * all child counters from atomic context. 4511 */ 4512 if (event->attr.inherit) { 4513 ret = -EOPNOTSUPP; 4514 goto out; 4515 } 4516 4517 /* If this is a per-task event, it must be for current */ 4518 if ((event->attach_state & PERF_ATTACH_TASK) && 4519 event->hw.target != current) { 4520 ret = -EINVAL; 4521 goto out; 4522 } 4523 4524 /* If this is a per-CPU event, it must be for this CPU */ 4525 if (!(event->attach_state & PERF_ATTACH_TASK) && 4526 event->cpu != smp_processor_id()) { 4527 ret = -EINVAL; 4528 goto out; 4529 } 4530 4531 /* If this is a pinned event it must be running on this CPU */ 4532 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4533 ret = -EBUSY; 4534 goto out; 4535 } 4536 4537 /* 4538 * If the event is currently on this CPU, its either a per-task event, 4539 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4540 * oncpu == -1). 4541 */ 4542 if (event->oncpu == smp_processor_id()) 4543 event->pmu->read(event); 4544 4545 *value = local64_read(&event->count); 4546 if (enabled || running) { 4547 u64 __enabled, __running, __now;; 4548 4549 calc_timer_values(event, &__now, &__enabled, &__running); 4550 if (enabled) 4551 *enabled = __enabled; 4552 if (running) 4553 *running = __running; 4554 } 4555 out: 4556 local_irq_restore(flags); 4557 4558 return ret; 4559 } 4560 4561 static int perf_event_read(struct perf_event *event, bool group) 4562 { 4563 enum perf_event_state state = READ_ONCE(event->state); 4564 int event_cpu, ret = 0; 4565 4566 /* 4567 * If event is enabled and currently active on a CPU, update the 4568 * value in the event structure: 4569 */ 4570 again: 4571 if (state == PERF_EVENT_STATE_ACTIVE) { 4572 struct perf_read_data data; 4573 4574 /* 4575 * Orders the ->state and ->oncpu loads such that if we see 4576 * ACTIVE we must also see the right ->oncpu. 4577 * 4578 * Matches the smp_wmb() from event_sched_in(). 4579 */ 4580 smp_rmb(); 4581 4582 event_cpu = READ_ONCE(event->oncpu); 4583 if ((unsigned)event_cpu >= nr_cpu_ids) 4584 return 0; 4585 4586 data = (struct perf_read_data){ 4587 .event = event, 4588 .group = group, 4589 .ret = 0, 4590 }; 4591 4592 preempt_disable(); 4593 event_cpu = __perf_event_read_cpu(event, event_cpu); 4594 4595 /* 4596 * Purposely ignore the smp_call_function_single() return 4597 * value. 4598 * 4599 * If event_cpu isn't a valid CPU it means the event got 4600 * scheduled out and that will have updated the event count. 4601 * 4602 * Therefore, either way, we'll have an up-to-date event count 4603 * after this. 4604 */ 4605 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4606 preempt_enable(); 4607 ret = data.ret; 4608 4609 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4610 struct perf_event_context *ctx = event->ctx; 4611 unsigned long flags; 4612 4613 raw_spin_lock_irqsave(&ctx->lock, flags); 4614 state = event->state; 4615 if (state != PERF_EVENT_STATE_INACTIVE) { 4616 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4617 goto again; 4618 } 4619 4620 /* 4621 * May read while context is not active (e.g., thread is 4622 * blocked), in that case we cannot update context time 4623 */ 4624 if (ctx->is_active & EVENT_TIME) { 4625 update_context_time(ctx); 4626 update_cgrp_time_from_event(event); 4627 } 4628 4629 perf_event_update_time(event); 4630 if (group) 4631 perf_event_update_sibling_time(event); 4632 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4633 } 4634 4635 return ret; 4636 } 4637 4638 /* 4639 * Initialize the perf_event context in a task_struct: 4640 */ 4641 static void __perf_event_init_context(struct perf_event_context *ctx) 4642 { 4643 raw_spin_lock_init(&ctx->lock); 4644 mutex_init(&ctx->mutex); 4645 INIT_LIST_HEAD(&ctx->active_ctx_list); 4646 perf_event_groups_init(&ctx->pinned_groups); 4647 perf_event_groups_init(&ctx->flexible_groups); 4648 INIT_LIST_HEAD(&ctx->event_list); 4649 INIT_LIST_HEAD(&ctx->pinned_active); 4650 INIT_LIST_HEAD(&ctx->flexible_active); 4651 refcount_set(&ctx->refcount, 1); 4652 } 4653 4654 static struct perf_event_context * 4655 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4656 { 4657 struct perf_event_context *ctx; 4658 4659 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4660 if (!ctx) 4661 return NULL; 4662 4663 __perf_event_init_context(ctx); 4664 if (task) 4665 ctx->task = get_task_struct(task); 4666 ctx->pmu = pmu; 4667 4668 return ctx; 4669 } 4670 4671 static struct task_struct * 4672 find_lively_task_by_vpid(pid_t vpid) 4673 { 4674 struct task_struct *task; 4675 4676 rcu_read_lock(); 4677 if (!vpid) 4678 task = current; 4679 else 4680 task = find_task_by_vpid(vpid); 4681 if (task) 4682 get_task_struct(task); 4683 rcu_read_unlock(); 4684 4685 if (!task) 4686 return ERR_PTR(-ESRCH); 4687 4688 return task; 4689 } 4690 4691 /* 4692 * Returns a matching context with refcount and pincount. 4693 */ 4694 static struct perf_event_context * 4695 find_get_context(struct pmu *pmu, struct task_struct *task, 4696 struct perf_event *event) 4697 { 4698 struct perf_event_context *ctx, *clone_ctx = NULL; 4699 struct perf_cpu_context *cpuctx; 4700 void *task_ctx_data = NULL; 4701 unsigned long flags; 4702 int ctxn, err; 4703 int cpu = event->cpu; 4704 4705 if (!task) { 4706 /* Must be root to operate on a CPU event: */ 4707 err = perf_allow_cpu(&event->attr); 4708 if (err) 4709 return ERR_PTR(err); 4710 4711 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4712 ctx = &cpuctx->ctx; 4713 get_ctx(ctx); 4714 raw_spin_lock_irqsave(&ctx->lock, flags); 4715 ++ctx->pin_count; 4716 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4717 4718 return ctx; 4719 } 4720 4721 err = -EINVAL; 4722 ctxn = pmu->task_ctx_nr; 4723 if (ctxn < 0) 4724 goto errout; 4725 4726 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4727 task_ctx_data = alloc_task_ctx_data(pmu); 4728 if (!task_ctx_data) { 4729 err = -ENOMEM; 4730 goto errout; 4731 } 4732 } 4733 4734 retry: 4735 ctx = perf_lock_task_context(task, ctxn, &flags); 4736 if (ctx) { 4737 clone_ctx = unclone_ctx(ctx); 4738 ++ctx->pin_count; 4739 4740 if (task_ctx_data && !ctx->task_ctx_data) { 4741 ctx->task_ctx_data = task_ctx_data; 4742 task_ctx_data = NULL; 4743 } 4744 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4745 4746 if (clone_ctx) 4747 put_ctx(clone_ctx); 4748 } else { 4749 ctx = alloc_perf_context(pmu, task); 4750 err = -ENOMEM; 4751 if (!ctx) 4752 goto errout; 4753 4754 if (task_ctx_data) { 4755 ctx->task_ctx_data = task_ctx_data; 4756 task_ctx_data = NULL; 4757 } 4758 4759 err = 0; 4760 mutex_lock(&task->perf_event_mutex); 4761 /* 4762 * If it has already passed perf_event_exit_task(). 4763 * we must see PF_EXITING, it takes this mutex too. 4764 */ 4765 if (task->flags & PF_EXITING) 4766 err = -ESRCH; 4767 else if (task->perf_event_ctxp[ctxn]) 4768 err = -EAGAIN; 4769 else { 4770 get_ctx(ctx); 4771 ++ctx->pin_count; 4772 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4773 } 4774 mutex_unlock(&task->perf_event_mutex); 4775 4776 if (unlikely(err)) { 4777 put_ctx(ctx); 4778 4779 if (err == -EAGAIN) 4780 goto retry; 4781 goto errout; 4782 } 4783 } 4784 4785 free_task_ctx_data(pmu, task_ctx_data); 4786 return ctx; 4787 4788 errout: 4789 free_task_ctx_data(pmu, task_ctx_data); 4790 return ERR_PTR(err); 4791 } 4792 4793 static void perf_event_free_filter(struct perf_event *event); 4794 4795 static void free_event_rcu(struct rcu_head *head) 4796 { 4797 struct perf_event *event; 4798 4799 event = container_of(head, struct perf_event, rcu_head); 4800 if (event->ns) 4801 put_pid_ns(event->ns); 4802 perf_event_free_filter(event); 4803 kmem_cache_free(perf_event_cache, event); 4804 } 4805 4806 static void ring_buffer_attach(struct perf_event *event, 4807 struct perf_buffer *rb); 4808 4809 static void detach_sb_event(struct perf_event *event) 4810 { 4811 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4812 4813 raw_spin_lock(&pel->lock); 4814 list_del_rcu(&event->sb_list); 4815 raw_spin_unlock(&pel->lock); 4816 } 4817 4818 static bool is_sb_event(struct perf_event *event) 4819 { 4820 struct perf_event_attr *attr = &event->attr; 4821 4822 if (event->parent) 4823 return false; 4824 4825 if (event->attach_state & PERF_ATTACH_TASK) 4826 return false; 4827 4828 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4829 attr->comm || attr->comm_exec || 4830 attr->task || attr->ksymbol || 4831 attr->context_switch || attr->text_poke || 4832 attr->bpf_event) 4833 return true; 4834 return false; 4835 } 4836 4837 static void unaccount_pmu_sb_event(struct perf_event *event) 4838 { 4839 if (is_sb_event(event)) 4840 detach_sb_event(event); 4841 } 4842 4843 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4844 { 4845 if (event->parent) 4846 return; 4847 4848 if (is_cgroup_event(event)) 4849 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4850 } 4851 4852 #ifdef CONFIG_NO_HZ_FULL 4853 static DEFINE_SPINLOCK(nr_freq_lock); 4854 #endif 4855 4856 static void unaccount_freq_event_nohz(void) 4857 { 4858 #ifdef CONFIG_NO_HZ_FULL 4859 spin_lock(&nr_freq_lock); 4860 if (atomic_dec_and_test(&nr_freq_events)) 4861 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4862 spin_unlock(&nr_freq_lock); 4863 #endif 4864 } 4865 4866 static void unaccount_freq_event(void) 4867 { 4868 if (tick_nohz_full_enabled()) 4869 unaccount_freq_event_nohz(); 4870 else 4871 atomic_dec(&nr_freq_events); 4872 } 4873 4874 static void unaccount_event(struct perf_event *event) 4875 { 4876 bool dec = false; 4877 4878 if (event->parent) 4879 return; 4880 4881 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 4882 dec = true; 4883 if (event->attr.mmap || event->attr.mmap_data) 4884 atomic_dec(&nr_mmap_events); 4885 if (event->attr.build_id) 4886 atomic_dec(&nr_build_id_events); 4887 if (event->attr.comm) 4888 atomic_dec(&nr_comm_events); 4889 if (event->attr.namespaces) 4890 atomic_dec(&nr_namespaces_events); 4891 if (event->attr.cgroup) 4892 atomic_dec(&nr_cgroup_events); 4893 if (event->attr.task) 4894 atomic_dec(&nr_task_events); 4895 if (event->attr.freq) 4896 unaccount_freq_event(); 4897 if (event->attr.context_switch) { 4898 dec = true; 4899 atomic_dec(&nr_switch_events); 4900 } 4901 if (is_cgroup_event(event)) 4902 dec = true; 4903 if (has_branch_stack(event)) 4904 dec = true; 4905 if (event->attr.ksymbol) 4906 atomic_dec(&nr_ksymbol_events); 4907 if (event->attr.bpf_event) 4908 atomic_dec(&nr_bpf_events); 4909 if (event->attr.text_poke) 4910 atomic_dec(&nr_text_poke_events); 4911 4912 if (dec) { 4913 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4914 schedule_delayed_work(&perf_sched_work, HZ); 4915 } 4916 4917 unaccount_event_cpu(event, event->cpu); 4918 4919 unaccount_pmu_sb_event(event); 4920 } 4921 4922 static void perf_sched_delayed(struct work_struct *work) 4923 { 4924 mutex_lock(&perf_sched_mutex); 4925 if (atomic_dec_and_test(&perf_sched_count)) 4926 static_branch_disable(&perf_sched_events); 4927 mutex_unlock(&perf_sched_mutex); 4928 } 4929 4930 /* 4931 * The following implement mutual exclusion of events on "exclusive" pmus 4932 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4933 * at a time, so we disallow creating events that might conflict, namely: 4934 * 4935 * 1) cpu-wide events in the presence of per-task events, 4936 * 2) per-task events in the presence of cpu-wide events, 4937 * 3) two matching events on the same context. 4938 * 4939 * The former two cases are handled in the allocation path (perf_event_alloc(), 4940 * _free_event()), the latter -- before the first perf_install_in_context(). 4941 */ 4942 static int exclusive_event_init(struct perf_event *event) 4943 { 4944 struct pmu *pmu = event->pmu; 4945 4946 if (!is_exclusive_pmu(pmu)) 4947 return 0; 4948 4949 /* 4950 * Prevent co-existence of per-task and cpu-wide events on the 4951 * same exclusive pmu. 4952 * 4953 * Negative pmu::exclusive_cnt means there are cpu-wide 4954 * events on this "exclusive" pmu, positive means there are 4955 * per-task events. 4956 * 4957 * Since this is called in perf_event_alloc() path, event::ctx 4958 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4959 * to mean "per-task event", because unlike other attach states it 4960 * never gets cleared. 4961 */ 4962 if (event->attach_state & PERF_ATTACH_TASK) { 4963 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4964 return -EBUSY; 4965 } else { 4966 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4967 return -EBUSY; 4968 } 4969 4970 return 0; 4971 } 4972 4973 static void exclusive_event_destroy(struct perf_event *event) 4974 { 4975 struct pmu *pmu = event->pmu; 4976 4977 if (!is_exclusive_pmu(pmu)) 4978 return; 4979 4980 /* see comment in exclusive_event_init() */ 4981 if (event->attach_state & PERF_ATTACH_TASK) 4982 atomic_dec(&pmu->exclusive_cnt); 4983 else 4984 atomic_inc(&pmu->exclusive_cnt); 4985 } 4986 4987 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4988 { 4989 if ((e1->pmu == e2->pmu) && 4990 (e1->cpu == e2->cpu || 4991 e1->cpu == -1 || 4992 e2->cpu == -1)) 4993 return true; 4994 return false; 4995 } 4996 4997 static bool exclusive_event_installable(struct perf_event *event, 4998 struct perf_event_context *ctx) 4999 { 5000 struct perf_event *iter_event; 5001 struct pmu *pmu = event->pmu; 5002 5003 lockdep_assert_held(&ctx->mutex); 5004 5005 if (!is_exclusive_pmu(pmu)) 5006 return true; 5007 5008 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5009 if (exclusive_event_match(iter_event, event)) 5010 return false; 5011 } 5012 5013 return true; 5014 } 5015 5016 static void perf_addr_filters_splice(struct perf_event *event, 5017 struct list_head *head); 5018 5019 static void _free_event(struct perf_event *event) 5020 { 5021 irq_work_sync(&event->pending); 5022 5023 unaccount_event(event); 5024 5025 security_perf_event_free(event); 5026 5027 if (event->rb) { 5028 /* 5029 * Can happen when we close an event with re-directed output. 5030 * 5031 * Since we have a 0 refcount, perf_mmap_close() will skip 5032 * over us; possibly making our ring_buffer_put() the last. 5033 */ 5034 mutex_lock(&event->mmap_mutex); 5035 ring_buffer_attach(event, NULL); 5036 mutex_unlock(&event->mmap_mutex); 5037 } 5038 5039 if (is_cgroup_event(event)) 5040 perf_detach_cgroup(event); 5041 5042 if (!event->parent) { 5043 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5044 put_callchain_buffers(); 5045 } 5046 5047 perf_event_free_bpf_prog(event); 5048 perf_addr_filters_splice(event, NULL); 5049 kfree(event->addr_filter_ranges); 5050 5051 if (event->destroy) 5052 event->destroy(event); 5053 5054 /* 5055 * Must be after ->destroy(), due to uprobe_perf_close() using 5056 * hw.target. 5057 */ 5058 if (event->hw.target) 5059 put_task_struct(event->hw.target); 5060 5061 /* 5062 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5063 * all task references must be cleaned up. 5064 */ 5065 if (event->ctx) 5066 put_ctx(event->ctx); 5067 5068 exclusive_event_destroy(event); 5069 module_put(event->pmu->module); 5070 5071 call_rcu(&event->rcu_head, free_event_rcu); 5072 } 5073 5074 /* 5075 * Used to free events which have a known refcount of 1, such as in error paths 5076 * where the event isn't exposed yet and inherited events. 5077 */ 5078 static void free_event(struct perf_event *event) 5079 { 5080 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5081 "unexpected event refcount: %ld; ptr=%p\n", 5082 atomic_long_read(&event->refcount), event)) { 5083 /* leak to avoid use-after-free */ 5084 return; 5085 } 5086 5087 _free_event(event); 5088 } 5089 5090 /* 5091 * Remove user event from the owner task. 5092 */ 5093 static void perf_remove_from_owner(struct perf_event *event) 5094 { 5095 struct task_struct *owner; 5096 5097 rcu_read_lock(); 5098 /* 5099 * Matches the smp_store_release() in perf_event_exit_task(). If we 5100 * observe !owner it means the list deletion is complete and we can 5101 * indeed free this event, otherwise we need to serialize on 5102 * owner->perf_event_mutex. 5103 */ 5104 owner = READ_ONCE(event->owner); 5105 if (owner) { 5106 /* 5107 * Since delayed_put_task_struct() also drops the last 5108 * task reference we can safely take a new reference 5109 * while holding the rcu_read_lock(). 5110 */ 5111 get_task_struct(owner); 5112 } 5113 rcu_read_unlock(); 5114 5115 if (owner) { 5116 /* 5117 * If we're here through perf_event_exit_task() we're already 5118 * holding ctx->mutex which would be an inversion wrt. the 5119 * normal lock order. 5120 * 5121 * However we can safely take this lock because its the child 5122 * ctx->mutex. 5123 */ 5124 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5125 5126 /* 5127 * We have to re-check the event->owner field, if it is cleared 5128 * we raced with perf_event_exit_task(), acquiring the mutex 5129 * ensured they're done, and we can proceed with freeing the 5130 * event. 5131 */ 5132 if (event->owner) { 5133 list_del_init(&event->owner_entry); 5134 smp_store_release(&event->owner, NULL); 5135 } 5136 mutex_unlock(&owner->perf_event_mutex); 5137 put_task_struct(owner); 5138 } 5139 } 5140 5141 static void put_event(struct perf_event *event) 5142 { 5143 if (!atomic_long_dec_and_test(&event->refcount)) 5144 return; 5145 5146 _free_event(event); 5147 } 5148 5149 /* 5150 * Kill an event dead; while event:refcount will preserve the event 5151 * object, it will not preserve its functionality. Once the last 'user' 5152 * gives up the object, we'll destroy the thing. 5153 */ 5154 int perf_event_release_kernel(struct perf_event *event) 5155 { 5156 struct perf_event_context *ctx = event->ctx; 5157 struct perf_event *child, *tmp; 5158 LIST_HEAD(free_list); 5159 5160 /* 5161 * If we got here through err_file: fput(event_file); we will not have 5162 * attached to a context yet. 5163 */ 5164 if (!ctx) { 5165 WARN_ON_ONCE(event->attach_state & 5166 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5167 goto no_ctx; 5168 } 5169 5170 if (!is_kernel_event(event)) 5171 perf_remove_from_owner(event); 5172 5173 ctx = perf_event_ctx_lock(event); 5174 WARN_ON_ONCE(ctx->parent_ctx); 5175 perf_remove_from_context(event, DETACH_GROUP); 5176 5177 raw_spin_lock_irq(&ctx->lock); 5178 /* 5179 * Mark this event as STATE_DEAD, there is no external reference to it 5180 * anymore. 5181 * 5182 * Anybody acquiring event->child_mutex after the below loop _must_ 5183 * also see this, most importantly inherit_event() which will avoid 5184 * placing more children on the list. 5185 * 5186 * Thus this guarantees that we will in fact observe and kill _ALL_ 5187 * child events. 5188 */ 5189 event->state = PERF_EVENT_STATE_DEAD; 5190 raw_spin_unlock_irq(&ctx->lock); 5191 5192 perf_event_ctx_unlock(event, ctx); 5193 5194 again: 5195 mutex_lock(&event->child_mutex); 5196 list_for_each_entry(child, &event->child_list, child_list) { 5197 5198 /* 5199 * Cannot change, child events are not migrated, see the 5200 * comment with perf_event_ctx_lock_nested(). 5201 */ 5202 ctx = READ_ONCE(child->ctx); 5203 /* 5204 * Since child_mutex nests inside ctx::mutex, we must jump 5205 * through hoops. We start by grabbing a reference on the ctx. 5206 * 5207 * Since the event cannot get freed while we hold the 5208 * child_mutex, the context must also exist and have a !0 5209 * reference count. 5210 */ 5211 get_ctx(ctx); 5212 5213 /* 5214 * Now that we have a ctx ref, we can drop child_mutex, and 5215 * acquire ctx::mutex without fear of it going away. Then we 5216 * can re-acquire child_mutex. 5217 */ 5218 mutex_unlock(&event->child_mutex); 5219 mutex_lock(&ctx->mutex); 5220 mutex_lock(&event->child_mutex); 5221 5222 /* 5223 * Now that we hold ctx::mutex and child_mutex, revalidate our 5224 * state, if child is still the first entry, it didn't get freed 5225 * and we can continue doing so. 5226 */ 5227 tmp = list_first_entry_or_null(&event->child_list, 5228 struct perf_event, child_list); 5229 if (tmp == child) { 5230 perf_remove_from_context(child, DETACH_GROUP); 5231 list_move(&child->child_list, &free_list); 5232 /* 5233 * This matches the refcount bump in inherit_event(); 5234 * this can't be the last reference. 5235 */ 5236 put_event(event); 5237 } 5238 5239 mutex_unlock(&event->child_mutex); 5240 mutex_unlock(&ctx->mutex); 5241 put_ctx(ctx); 5242 goto again; 5243 } 5244 mutex_unlock(&event->child_mutex); 5245 5246 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5247 void *var = &child->ctx->refcount; 5248 5249 list_del(&child->child_list); 5250 free_event(child); 5251 5252 /* 5253 * Wake any perf_event_free_task() waiting for this event to be 5254 * freed. 5255 */ 5256 smp_mb(); /* pairs with wait_var_event() */ 5257 wake_up_var(var); 5258 } 5259 5260 no_ctx: 5261 put_event(event); /* Must be the 'last' reference */ 5262 return 0; 5263 } 5264 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5265 5266 /* 5267 * Called when the last reference to the file is gone. 5268 */ 5269 static int perf_release(struct inode *inode, struct file *file) 5270 { 5271 perf_event_release_kernel(file->private_data); 5272 return 0; 5273 } 5274 5275 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5276 { 5277 struct perf_event *child; 5278 u64 total = 0; 5279 5280 *enabled = 0; 5281 *running = 0; 5282 5283 mutex_lock(&event->child_mutex); 5284 5285 (void)perf_event_read(event, false); 5286 total += perf_event_count(event); 5287 5288 *enabled += event->total_time_enabled + 5289 atomic64_read(&event->child_total_time_enabled); 5290 *running += event->total_time_running + 5291 atomic64_read(&event->child_total_time_running); 5292 5293 list_for_each_entry(child, &event->child_list, child_list) { 5294 (void)perf_event_read(child, false); 5295 total += perf_event_count(child); 5296 *enabled += child->total_time_enabled; 5297 *running += child->total_time_running; 5298 } 5299 mutex_unlock(&event->child_mutex); 5300 5301 return total; 5302 } 5303 5304 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5305 { 5306 struct perf_event_context *ctx; 5307 u64 count; 5308 5309 ctx = perf_event_ctx_lock(event); 5310 count = __perf_event_read_value(event, enabled, running); 5311 perf_event_ctx_unlock(event, ctx); 5312 5313 return count; 5314 } 5315 EXPORT_SYMBOL_GPL(perf_event_read_value); 5316 5317 static int __perf_read_group_add(struct perf_event *leader, 5318 u64 read_format, u64 *values) 5319 { 5320 struct perf_event_context *ctx = leader->ctx; 5321 struct perf_event *sub; 5322 unsigned long flags; 5323 int n = 1; /* skip @nr */ 5324 int ret; 5325 5326 ret = perf_event_read(leader, true); 5327 if (ret) 5328 return ret; 5329 5330 raw_spin_lock_irqsave(&ctx->lock, flags); 5331 5332 /* 5333 * Since we co-schedule groups, {enabled,running} times of siblings 5334 * will be identical to those of the leader, so we only publish one 5335 * set. 5336 */ 5337 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5338 values[n++] += leader->total_time_enabled + 5339 atomic64_read(&leader->child_total_time_enabled); 5340 } 5341 5342 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5343 values[n++] += leader->total_time_running + 5344 atomic64_read(&leader->child_total_time_running); 5345 } 5346 5347 /* 5348 * Write {count,id} tuples for every sibling. 5349 */ 5350 values[n++] += perf_event_count(leader); 5351 if (read_format & PERF_FORMAT_ID) 5352 values[n++] = primary_event_id(leader); 5353 5354 for_each_sibling_event(sub, leader) { 5355 values[n++] += perf_event_count(sub); 5356 if (read_format & PERF_FORMAT_ID) 5357 values[n++] = primary_event_id(sub); 5358 } 5359 5360 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5361 return 0; 5362 } 5363 5364 static int perf_read_group(struct perf_event *event, 5365 u64 read_format, char __user *buf) 5366 { 5367 struct perf_event *leader = event->group_leader, *child; 5368 struct perf_event_context *ctx = leader->ctx; 5369 int ret; 5370 u64 *values; 5371 5372 lockdep_assert_held(&ctx->mutex); 5373 5374 values = kzalloc(event->read_size, GFP_KERNEL); 5375 if (!values) 5376 return -ENOMEM; 5377 5378 values[0] = 1 + leader->nr_siblings; 5379 5380 /* 5381 * By locking the child_mutex of the leader we effectively 5382 * lock the child list of all siblings.. XXX explain how. 5383 */ 5384 mutex_lock(&leader->child_mutex); 5385 5386 ret = __perf_read_group_add(leader, read_format, values); 5387 if (ret) 5388 goto unlock; 5389 5390 list_for_each_entry(child, &leader->child_list, child_list) { 5391 ret = __perf_read_group_add(child, read_format, values); 5392 if (ret) 5393 goto unlock; 5394 } 5395 5396 mutex_unlock(&leader->child_mutex); 5397 5398 ret = event->read_size; 5399 if (copy_to_user(buf, values, event->read_size)) 5400 ret = -EFAULT; 5401 goto out; 5402 5403 unlock: 5404 mutex_unlock(&leader->child_mutex); 5405 out: 5406 kfree(values); 5407 return ret; 5408 } 5409 5410 static int perf_read_one(struct perf_event *event, 5411 u64 read_format, char __user *buf) 5412 { 5413 u64 enabled, running; 5414 u64 values[4]; 5415 int n = 0; 5416 5417 values[n++] = __perf_event_read_value(event, &enabled, &running); 5418 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5419 values[n++] = enabled; 5420 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5421 values[n++] = running; 5422 if (read_format & PERF_FORMAT_ID) 5423 values[n++] = primary_event_id(event); 5424 5425 if (copy_to_user(buf, values, n * sizeof(u64))) 5426 return -EFAULT; 5427 5428 return n * sizeof(u64); 5429 } 5430 5431 static bool is_event_hup(struct perf_event *event) 5432 { 5433 bool no_children; 5434 5435 if (event->state > PERF_EVENT_STATE_EXIT) 5436 return false; 5437 5438 mutex_lock(&event->child_mutex); 5439 no_children = list_empty(&event->child_list); 5440 mutex_unlock(&event->child_mutex); 5441 return no_children; 5442 } 5443 5444 /* 5445 * Read the performance event - simple non blocking version for now 5446 */ 5447 static ssize_t 5448 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5449 { 5450 u64 read_format = event->attr.read_format; 5451 int ret; 5452 5453 /* 5454 * Return end-of-file for a read on an event that is in 5455 * error state (i.e. because it was pinned but it couldn't be 5456 * scheduled on to the CPU at some point). 5457 */ 5458 if (event->state == PERF_EVENT_STATE_ERROR) 5459 return 0; 5460 5461 if (count < event->read_size) 5462 return -ENOSPC; 5463 5464 WARN_ON_ONCE(event->ctx->parent_ctx); 5465 if (read_format & PERF_FORMAT_GROUP) 5466 ret = perf_read_group(event, read_format, buf); 5467 else 5468 ret = perf_read_one(event, read_format, buf); 5469 5470 return ret; 5471 } 5472 5473 static ssize_t 5474 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5475 { 5476 struct perf_event *event = file->private_data; 5477 struct perf_event_context *ctx; 5478 int ret; 5479 5480 ret = security_perf_event_read(event); 5481 if (ret) 5482 return ret; 5483 5484 ctx = perf_event_ctx_lock(event); 5485 ret = __perf_read(event, buf, count); 5486 perf_event_ctx_unlock(event, ctx); 5487 5488 return ret; 5489 } 5490 5491 static __poll_t perf_poll(struct file *file, poll_table *wait) 5492 { 5493 struct perf_event *event = file->private_data; 5494 struct perf_buffer *rb; 5495 __poll_t events = EPOLLHUP; 5496 5497 poll_wait(file, &event->waitq, wait); 5498 5499 if (is_event_hup(event)) 5500 return events; 5501 5502 /* 5503 * Pin the event->rb by taking event->mmap_mutex; otherwise 5504 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5505 */ 5506 mutex_lock(&event->mmap_mutex); 5507 rb = event->rb; 5508 if (rb) 5509 events = atomic_xchg(&rb->poll, 0); 5510 mutex_unlock(&event->mmap_mutex); 5511 return events; 5512 } 5513 5514 static void _perf_event_reset(struct perf_event *event) 5515 { 5516 (void)perf_event_read(event, false); 5517 local64_set(&event->count, 0); 5518 perf_event_update_userpage(event); 5519 } 5520 5521 /* Assume it's not an event with inherit set. */ 5522 u64 perf_event_pause(struct perf_event *event, bool reset) 5523 { 5524 struct perf_event_context *ctx; 5525 u64 count; 5526 5527 ctx = perf_event_ctx_lock(event); 5528 WARN_ON_ONCE(event->attr.inherit); 5529 _perf_event_disable(event); 5530 count = local64_read(&event->count); 5531 if (reset) 5532 local64_set(&event->count, 0); 5533 perf_event_ctx_unlock(event, ctx); 5534 5535 return count; 5536 } 5537 EXPORT_SYMBOL_GPL(perf_event_pause); 5538 5539 /* 5540 * Holding the top-level event's child_mutex means that any 5541 * descendant process that has inherited this event will block 5542 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5543 * task existence requirements of perf_event_enable/disable. 5544 */ 5545 static void perf_event_for_each_child(struct perf_event *event, 5546 void (*func)(struct perf_event *)) 5547 { 5548 struct perf_event *child; 5549 5550 WARN_ON_ONCE(event->ctx->parent_ctx); 5551 5552 mutex_lock(&event->child_mutex); 5553 func(event); 5554 list_for_each_entry(child, &event->child_list, child_list) 5555 func(child); 5556 mutex_unlock(&event->child_mutex); 5557 } 5558 5559 static void perf_event_for_each(struct perf_event *event, 5560 void (*func)(struct perf_event *)) 5561 { 5562 struct perf_event_context *ctx = event->ctx; 5563 struct perf_event *sibling; 5564 5565 lockdep_assert_held(&ctx->mutex); 5566 5567 event = event->group_leader; 5568 5569 perf_event_for_each_child(event, func); 5570 for_each_sibling_event(sibling, event) 5571 perf_event_for_each_child(sibling, func); 5572 } 5573 5574 static void __perf_event_period(struct perf_event *event, 5575 struct perf_cpu_context *cpuctx, 5576 struct perf_event_context *ctx, 5577 void *info) 5578 { 5579 u64 value = *((u64 *)info); 5580 bool active; 5581 5582 if (event->attr.freq) { 5583 event->attr.sample_freq = value; 5584 } else { 5585 event->attr.sample_period = value; 5586 event->hw.sample_period = value; 5587 } 5588 5589 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5590 if (active) { 5591 perf_pmu_disable(ctx->pmu); 5592 /* 5593 * We could be throttled; unthrottle now to avoid the tick 5594 * trying to unthrottle while we already re-started the event. 5595 */ 5596 if (event->hw.interrupts == MAX_INTERRUPTS) { 5597 event->hw.interrupts = 0; 5598 perf_log_throttle(event, 1); 5599 } 5600 event->pmu->stop(event, PERF_EF_UPDATE); 5601 } 5602 5603 local64_set(&event->hw.period_left, 0); 5604 5605 if (active) { 5606 event->pmu->start(event, PERF_EF_RELOAD); 5607 perf_pmu_enable(ctx->pmu); 5608 } 5609 } 5610 5611 static int perf_event_check_period(struct perf_event *event, u64 value) 5612 { 5613 return event->pmu->check_period(event, value); 5614 } 5615 5616 static int _perf_event_period(struct perf_event *event, u64 value) 5617 { 5618 if (!is_sampling_event(event)) 5619 return -EINVAL; 5620 5621 if (!value) 5622 return -EINVAL; 5623 5624 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5625 return -EINVAL; 5626 5627 if (perf_event_check_period(event, value)) 5628 return -EINVAL; 5629 5630 if (!event->attr.freq && (value & (1ULL << 63))) 5631 return -EINVAL; 5632 5633 event_function_call(event, __perf_event_period, &value); 5634 5635 return 0; 5636 } 5637 5638 int perf_event_period(struct perf_event *event, u64 value) 5639 { 5640 struct perf_event_context *ctx; 5641 int ret; 5642 5643 ctx = perf_event_ctx_lock(event); 5644 ret = _perf_event_period(event, value); 5645 perf_event_ctx_unlock(event, ctx); 5646 5647 return ret; 5648 } 5649 EXPORT_SYMBOL_GPL(perf_event_period); 5650 5651 static const struct file_operations perf_fops; 5652 5653 static inline int perf_fget_light(int fd, struct fd *p) 5654 { 5655 struct fd f = fdget(fd); 5656 if (!f.file) 5657 return -EBADF; 5658 5659 if (f.file->f_op != &perf_fops) { 5660 fdput(f); 5661 return -EBADF; 5662 } 5663 *p = f; 5664 return 0; 5665 } 5666 5667 static int perf_event_set_output(struct perf_event *event, 5668 struct perf_event *output_event); 5669 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5670 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5671 struct perf_event_attr *attr); 5672 5673 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5674 { 5675 void (*func)(struct perf_event *); 5676 u32 flags = arg; 5677 5678 switch (cmd) { 5679 case PERF_EVENT_IOC_ENABLE: 5680 func = _perf_event_enable; 5681 break; 5682 case PERF_EVENT_IOC_DISABLE: 5683 func = _perf_event_disable; 5684 break; 5685 case PERF_EVENT_IOC_RESET: 5686 func = _perf_event_reset; 5687 break; 5688 5689 case PERF_EVENT_IOC_REFRESH: 5690 return _perf_event_refresh(event, arg); 5691 5692 case PERF_EVENT_IOC_PERIOD: 5693 { 5694 u64 value; 5695 5696 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5697 return -EFAULT; 5698 5699 return _perf_event_period(event, value); 5700 } 5701 case PERF_EVENT_IOC_ID: 5702 { 5703 u64 id = primary_event_id(event); 5704 5705 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5706 return -EFAULT; 5707 return 0; 5708 } 5709 5710 case PERF_EVENT_IOC_SET_OUTPUT: 5711 { 5712 int ret; 5713 if (arg != -1) { 5714 struct perf_event *output_event; 5715 struct fd output; 5716 ret = perf_fget_light(arg, &output); 5717 if (ret) 5718 return ret; 5719 output_event = output.file->private_data; 5720 ret = perf_event_set_output(event, output_event); 5721 fdput(output); 5722 } else { 5723 ret = perf_event_set_output(event, NULL); 5724 } 5725 return ret; 5726 } 5727 5728 case PERF_EVENT_IOC_SET_FILTER: 5729 return perf_event_set_filter(event, (void __user *)arg); 5730 5731 case PERF_EVENT_IOC_SET_BPF: 5732 { 5733 struct bpf_prog *prog; 5734 int err; 5735 5736 prog = bpf_prog_get(arg); 5737 if (IS_ERR(prog)) 5738 return PTR_ERR(prog); 5739 5740 err = perf_event_set_bpf_prog(event, prog, 0); 5741 if (err) { 5742 bpf_prog_put(prog); 5743 return err; 5744 } 5745 5746 return 0; 5747 } 5748 5749 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5750 struct perf_buffer *rb; 5751 5752 rcu_read_lock(); 5753 rb = rcu_dereference(event->rb); 5754 if (!rb || !rb->nr_pages) { 5755 rcu_read_unlock(); 5756 return -EINVAL; 5757 } 5758 rb_toggle_paused(rb, !!arg); 5759 rcu_read_unlock(); 5760 return 0; 5761 } 5762 5763 case PERF_EVENT_IOC_QUERY_BPF: 5764 return perf_event_query_prog_array(event, (void __user *)arg); 5765 5766 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5767 struct perf_event_attr new_attr; 5768 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5769 &new_attr); 5770 5771 if (err) 5772 return err; 5773 5774 return perf_event_modify_attr(event, &new_attr); 5775 } 5776 default: 5777 return -ENOTTY; 5778 } 5779 5780 if (flags & PERF_IOC_FLAG_GROUP) 5781 perf_event_for_each(event, func); 5782 else 5783 perf_event_for_each_child(event, func); 5784 5785 return 0; 5786 } 5787 5788 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5789 { 5790 struct perf_event *event = file->private_data; 5791 struct perf_event_context *ctx; 5792 long ret; 5793 5794 /* Treat ioctl like writes as it is likely a mutating operation. */ 5795 ret = security_perf_event_write(event); 5796 if (ret) 5797 return ret; 5798 5799 ctx = perf_event_ctx_lock(event); 5800 ret = _perf_ioctl(event, cmd, arg); 5801 perf_event_ctx_unlock(event, ctx); 5802 5803 return ret; 5804 } 5805 5806 #ifdef CONFIG_COMPAT 5807 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5808 unsigned long arg) 5809 { 5810 switch (_IOC_NR(cmd)) { 5811 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5812 case _IOC_NR(PERF_EVENT_IOC_ID): 5813 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5814 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5815 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5816 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5817 cmd &= ~IOCSIZE_MASK; 5818 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5819 } 5820 break; 5821 } 5822 return perf_ioctl(file, cmd, arg); 5823 } 5824 #else 5825 # define perf_compat_ioctl NULL 5826 #endif 5827 5828 int perf_event_task_enable(void) 5829 { 5830 struct perf_event_context *ctx; 5831 struct perf_event *event; 5832 5833 mutex_lock(¤t->perf_event_mutex); 5834 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5835 ctx = perf_event_ctx_lock(event); 5836 perf_event_for_each_child(event, _perf_event_enable); 5837 perf_event_ctx_unlock(event, ctx); 5838 } 5839 mutex_unlock(¤t->perf_event_mutex); 5840 5841 return 0; 5842 } 5843 5844 int perf_event_task_disable(void) 5845 { 5846 struct perf_event_context *ctx; 5847 struct perf_event *event; 5848 5849 mutex_lock(¤t->perf_event_mutex); 5850 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5851 ctx = perf_event_ctx_lock(event); 5852 perf_event_for_each_child(event, _perf_event_disable); 5853 perf_event_ctx_unlock(event, ctx); 5854 } 5855 mutex_unlock(¤t->perf_event_mutex); 5856 5857 return 0; 5858 } 5859 5860 static int perf_event_index(struct perf_event *event) 5861 { 5862 if (event->hw.state & PERF_HES_STOPPED) 5863 return 0; 5864 5865 if (event->state != PERF_EVENT_STATE_ACTIVE) 5866 return 0; 5867 5868 return event->pmu->event_idx(event); 5869 } 5870 5871 static void perf_event_init_userpage(struct perf_event *event) 5872 { 5873 struct perf_event_mmap_page *userpg; 5874 struct perf_buffer *rb; 5875 5876 rcu_read_lock(); 5877 rb = rcu_dereference(event->rb); 5878 if (!rb) 5879 goto unlock; 5880 5881 userpg = rb->user_page; 5882 5883 /* Allow new userspace to detect that bit 0 is deprecated */ 5884 userpg->cap_bit0_is_deprecated = 1; 5885 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5886 userpg->data_offset = PAGE_SIZE; 5887 userpg->data_size = perf_data_size(rb); 5888 5889 unlock: 5890 rcu_read_unlock(); 5891 } 5892 5893 void __weak arch_perf_update_userpage( 5894 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5895 { 5896 } 5897 5898 /* 5899 * Callers need to ensure there can be no nesting of this function, otherwise 5900 * the seqlock logic goes bad. We can not serialize this because the arch 5901 * code calls this from NMI context. 5902 */ 5903 void perf_event_update_userpage(struct perf_event *event) 5904 { 5905 struct perf_event_mmap_page *userpg; 5906 struct perf_buffer *rb; 5907 u64 enabled, running, now; 5908 5909 rcu_read_lock(); 5910 rb = rcu_dereference(event->rb); 5911 if (!rb) 5912 goto unlock; 5913 5914 /* 5915 * compute total_time_enabled, total_time_running 5916 * based on snapshot values taken when the event 5917 * was last scheduled in. 5918 * 5919 * we cannot simply called update_context_time() 5920 * because of locking issue as we can be called in 5921 * NMI context 5922 */ 5923 calc_timer_values(event, &now, &enabled, &running); 5924 5925 userpg = rb->user_page; 5926 /* 5927 * Disable preemption to guarantee consistent time stamps are stored to 5928 * the user page. 5929 */ 5930 preempt_disable(); 5931 ++userpg->lock; 5932 barrier(); 5933 userpg->index = perf_event_index(event); 5934 userpg->offset = perf_event_count(event); 5935 if (userpg->index) 5936 userpg->offset -= local64_read(&event->hw.prev_count); 5937 5938 userpg->time_enabled = enabled + 5939 atomic64_read(&event->child_total_time_enabled); 5940 5941 userpg->time_running = running + 5942 atomic64_read(&event->child_total_time_running); 5943 5944 arch_perf_update_userpage(event, userpg, now); 5945 5946 barrier(); 5947 ++userpg->lock; 5948 preempt_enable(); 5949 unlock: 5950 rcu_read_unlock(); 5951 } 5952 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5953 5954 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5955 { 5956 struct perf_event *event = vmf->vma->vm_file->private_data; 5957 struct perf_buffer *rb; 5958 vm_fault_t ret = VM_FAULT_SIGBUS; 5959 5960 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5961 if (vmf->pgoff == 0) 5962 ret = 0; 5963 return ret; 5964 } 5965 5966 rcu_read_lock(); 5967 rb = rcu_dereference(event->rb); 5968 if (!rb) 5969 goto unlock; 5970 5971 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5972 goto unlock; 5973 5974 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5975 if (!vmf->page) 5976 goto unlock; 5977 5978 get_page(vmf->page); 5979 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5980 vmf->page->index = vmf->pgoff; 5981 5982 ret = 0; 5983 unlock: 5984 rcu_read_unlock(); 5985 5986 return ret; 5987 } 5988 5989 static void ring_buffer_attach(struct perf_event *event, 5990 struct perf_buffer *rb) 5991 { 5992 struct perf_buffer *old_rb = NULL; 5993 unsigned long flags; 5994 5995 WARN_ON_ONCE(event->parent); 5996 5997 if (event->rb) { 5998 /* 5999 * Should be impossible, we set this when removing 6000 * event->rb_entry and wait/clear when adding event->rb_entry. 6001 */ 6002 WARN_ON_ONCE(event->rcu_pending); 6003 6004 old_rb = event->rb; 6005 spin_lock_irqsave(&old_rb->event_lock, flags); 6006 list_del_rcu(&event->rb_entry); 6007 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6008 6009 event->rcu_batches = get_state_synchronize_rcu(); 6010 event->rcu_pending = 1; 6011 } 6012 6013 if (rb) { 6014 if (event->rcu_pending) { 6015 cond_synchronize_rcu(event->rcu_batches); 6016 event->rcu_pending = 0; 6017 } 6018 6019 spin_lock_irqsave(&rb->event_lock, flags); 6020 list_add_rcu(&event->rb_entry, &rb->event_list); 6021 spin_unlock_irqrestore(&rb->event_lock, flags); 6022 } 6023 6024 /* 6025 * Avoid racing with perf_mmap_close(AUX): stop the event 6026 * before swizzling the event::rb pointer; if it's getting 6027 * unmapped, its aux_mmap_count will be 0 and it won't 6028 * restart. See the comment in __perf_pmu_output_stop(). 6029 * 6030 * Data will inevitably be lost when set_output is done in 6031 * mid-air, but then again, whoever does it like this is 6032 * not in for the data anyway. 6033 */ 6034 if (has_aux(event)) 6035 perf_event_stop(event, 0); 6036 6037 rcu_assign_pointer(event->rb, rb); 6038 6039 if (old_rb) { 6040 ring_buffer_put(old_rb); 6041 /* 6042 * Since we detached before setting the new rb, so that we 6043 * could attach the new rb, we could have missed a wakeup. 6044 * Provide it now. 6045 */ 6046 wake_up_all(&event->waitq); 6047 } 6048 } 6049 6050 static void ring_buffer_wakeup(struct perf_event *event) 6051 { 6052 struct perf_buffer *rb; 6053 6054 if (event->parent) 6055 event = event->parent; 6056 6057 rcu_read_lock(); 6058 rb = rcu_dereference(event->rb); 6059 if (rb) { 6060 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6061 wake_up_all(&event->waitq); 6062 } 6063 rcu_read_unlock(); 6064 } 6065 6066 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6067 { 6068 struct perf_buffer *rb; 6069 6070 if (event->parent) 6071 event = event->parent; 6072 6073 rcu_read_lock(); 6074 rb = rcu_dereference(event->rb); 6075 if (rb) { 6076 if (!refcount_inc_not_zero(&rb->refcount)) 6077 rb = NULL; 6078 } 6079 rcu_read_unlock(); 6080 6081 return rb; 6082 } 6083 6084 void ring_buffer_put(struct perf_buffer *rb) 6085 { 6086 if (!refcount_dec_and_test(&rb->refcount)) 6087 return; 6088 6089 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6090 6091 call_rcu(&rb->rcu_head, rb_free_rcu); 6092 } 6093 6094 static void perf_mmap_open(struct vm_area_struct *vma) 6095 { 6096 struct perf_event *event = vma->vm_file->private_data; 6097 6098 atomic_inc(&event->mmap_count); 6099 atomic_inc(&event->rb->mmap_count); 6100 6101 if (vma->vm_pgoff) 6102 atomic_inc(&event->rb->aux_mmap_count); 6103 6104 if (event->pmu->event_mapped) 6105 event->pmu->event_mapped(event, vma->vm_mm); 6106 } 6107 6108 static void perf_pmu_output_stop(struct perf_event *event); 6109 6110 /* 6111 * A buffer can be mmap()ed multiple times; either directly through the same 6112 * event, or through other events by use of perf_event_set_output(). 6113 * 6114 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6115 * the buffer here, where we still have a VM context. This means we need 6116 * to detach all events redirecting to us. 6117 */ 6118 static void perf_mmap_close(struct vm_area_struct *vma) 6119 { 6120 struct perf_event *event = vma->vm_file->private_data; 6121 struct perf_buffer *rb = ring_buffer_get(event); 6122 struct user_struct *mmap_user = rb->mmap_user; 6123 int mmap_locked = rb->mmap_locked; 6124 unsigned long size = perf_data_size(rb); 6125 bool detach_rest = false; 6126 6127 if (event->pmu->event_unmapped) 6128 event->pmu->event_unmapped(event, vma->vm_mm); 6129 6130 /* 6131 * rb->aux_mmap_count will always drop before rb->mmap_count and 6132 * event->mmap_count, so it is ok to use event->mmap_mutex to 6133 * serialize with perf_mmap here. 6134 */ 6135 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6136 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6137 /* 6138 * Stop all AUX events that are writing to this buffer, 6139 * so that we can free its AUX pages and corresponding PMU 6140 * data. Note that after rb::aux_mmap_count dropped to zero, 6141 * they won't start any more (see perf_aux_output_begin()). 6142 */ 6143 perf_pmu_output_stop(event); 6144 6145 /* now it's safe to free the pages */ 6146 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6147 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6148 6149 /* this has to be the last one */ 6150 rb_free_aux(rb); 6151 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6152 6153 mutex_unlock(&event->mmap_mutex); 6154 } 6155 6156 if (atomic_dec_and_test(&rb->mmap_count)) 6157 detach_rest = true; 6158 6159 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6160 goto out_put; 6161 6162 ring_buffer_attach(event, NULL); 6163 mutex_unlock(&event->mmap_mutex); 6164 6165 /* If there's still other mmap()s of this buffer, we're done. */ 6166 if (!detach_rest) 6167 goto out_put; 6168 6169 /* 6170 * No other mmap()s, detach from all other events that might redirect 6171 * into the now unreachable buffer. Somewhat complicated by the 6172 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6173 */ 6174 again: 6175 rcu_read_lock(); 6176 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6177 if (!atomic_long_inc_not_zero(&event->refcount)) { 6178 /* 6179 * This event is en-route to free_event() which will 6180 * detach it and remove it from the list. 6181 */ 6182 continue; 6183 } 6184 rcu_read_unlock(); 6185 6186 mutex_lock(&event->mmap_mutex); 6187 /* 6188 * Check we didn't race with perf_event_set_output() which can 6189 * swizzle the rb from under us while we were waiting to 6190 * acquire mmap_mutex. 6191 * 6192 * If we find a different rb; ignore this event, a next 6193 * iteration will no longer find it on the list. We have to 6194 * still restart the iteration to make sure we're not now 6195 * iterating the wrong list. 6196 */ 6197 if (event->rb == rb) 6198 ring_buffer_attach(event, NULL); 6199 6200 mutex_unlock(&event->mmap_mutex); 6201 put_event(event); 6202 6203 /* 6204 * Restart the iteration; either we're on the wrong list or 6205 * destroyed its integrity by doing a deletion. 6206 */ 6207 goto again; 6208 } 6209 rcu_read_unlock(); 6210 6211 /* 6212 * It could be there's still a few 0-ref events on the list; they'll 6213 * get cleaned up by free_event() -- they'll also still have their 6214 * ref on the rb and will free it whenever they are done with it. 6215 * 6216 * Aside from that, this buffer is 'fully' detached and unmapped, 6217 * undo the VM accounting. 6218 */ 6219 6220 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6221 &mmap_user->locked_vm); 6222 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6223 free_uid(mmap_user); 6224 6225 out_put: 6226 ring_buffer_put(rb); /* could be last */ 6227 } 6228 6229 static const struct vm_operations_struct perf_mmap_vmops = { 6230 .open = perf_mmap_open, 6231 .close = perf_mmap_close, /* non mergeable */ 6232 .fault = perf_mmap_fault, 6233 .page_mkwrite = perf_mmap_fault, 6234 }; 6235 6236 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6237 { 6238 struct perf_event *event = file->private_data; 6239 unsigned long user_locked, user_lock_limit; 6240 struct user_struct *user = current_user(); 6241 struct perf_buffer *rb = NULL; 6242 unsigned long locked, lock_limit; 6243 unsigned long vma_size; 6244 unsigned long nr_pages; 6245 long user_extra = 0, extra = 0; 6246 int ret = 0, flags = 0; 6247 6248 /* 6249 * Don't allow mmap() of inherited per-task counters. This would 6250 * create a performance issue due to all children writing to the 6251 * same rb. 6252 */ 6253 if (event->cpu == -1 && event->attr.inherit) 6254 return -EINVAL; 6255 6256 if (!(vma->vm_flags & VM_SHARED)) 6257 return -EINVAL; 6258 6259 ret = security_perf_event_read(event); 6260 if (ret) 6261 return ret; 6262 6263 vma_size = vma->vm_end - vma->vm_start; 6264 6265 if (vma->vm_pgoff == 0) { 6266 nr_pages = (vma_size / PAGE_SIZE) - 1; 6267 } else { 6268 /* 6269 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6270 * mapped, all subsequent mappings should have the same size 6271 * and offset. Must be above the normal perf buffer. 6272 */ 6273 u64 aux_offset, aux_size; 6274 6275 if (!event->rb) 6276 return -EINVAL; 6277 6278 nr_pages = vma_size / PAGE_SIZE; 6279 6280 mutex_lock(&event->mmap_mutex); 6281 ret = -EINVAL; 6282 6283 rb = event->rb; 6284 if (!rb) 6285 goto aux_unlock; 6286 6287 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6288 aux_size = READ_ONCE(rb->user_page->aux_size); 6289 6290 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6291 goto aux_unlock; 6292 6293 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6294 goto aux_unlock; 6295 6296 /* already mapped with a different offset */ 6297 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6298 goto aux_unlock; 6299 6300 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6301 goto aux_unlock; 6302 6303 /* already mapped with a different size */ 6304 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6305 goto aux_unlock; 6306 6307 if (!is_power_of_2(nr_pages)) 6308 goto aux_unlock; 6309 6310 if (!atomic_inc_not_zero(&rb->mmap_count)) 6311 goto aux_unlock; 6312 6313 if (rb_has_aux(rb)) { 6314 atomic_inc(&rb->aux_mmap_count); 6315 ret = 0; 6316 goto unlock; 6317 } 6318 6319 atomic_set(&rb->aux_mmap_count, 1); 6320 user_extra = nr_pages; 6321 6322 goto accounting; 6323 } 6324 6325 /* 6326 * If we have rb pages ensure they're a power-of-two number, so we 6327 * can do bitmasks instead of modulo. 6328 */ 6329 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6330 return -EINVAL; 6331 6332 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6333 return -EINVAL; 6334 6335 WARN_ON_ONCE(event->ctx->parent_ctx); 6336 again: 6337 mutex_lock(&event->mmap_mutex); 6338 if (event->rb) { 6339 if (event->rb->nr_pages != nr_pages) { 6340 ret = -EINVAL; 6341 goto unlock; 6342 } 6343 6344 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6345 /* 6346 * Raced against perf_mmap_close() through 6347 * perf_event_set_output(). Try again, hope for better 6348 * luck. 6349 */ 6350 mutex_unlock(&event->mmap_mutex); 6351 goto again; 6352 } 6353 6354 goto unlock; 6355 } 6356 6357 user_extra = nr_pages + 1; 6358 6359 accounting: 6360 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6361 6362 /* 6363 * Increase the limit linearly with more CPUs: 6364 */ 6365 user_lock_limit *= num_online_cpus(); 6366 6367 user_locked = atomic_long_read(&user->locked_vm); 6368 6369 /* 6370 * sysctl_perf_event_mlock may have changed, so that 6371 * user->locked_vm > user_lock_limit 6372 */ 6373 if (user_locked > user_lock_limit) 6374 user_locked = user_lock_limit; 6375 user_locked += user_extra; 6376 6377 if (user_locked > user_lock_limit) { 6378 /* 6379 * charge locked_vm until it hits user_lock_limit; 6380 * charge the rest from pinned_vm 6381 */ 6382 extra = user_locked - user_lock_limit; 6383 user_extra -= extra; 6384 } 6385 6386 lock_limit = rlimit(RLIMIT_MEMLOCK); 6387 lock_limit >>= PAGE_SHIFT; 6388 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6389 6390 if ((locked > lock_limit) && perf_is_paranoid() && 6391 !capable(CAP_IPC_LOCK)) { 6392 ret = -EPERM; 6393 goto unlock; 6394 } 6395 6396 WARN_ON(!rb && event->rb); 6397 6398 if (vma->vm_flags & VM_WRITE) 6399 flags |= RING_BUFFER_WRITABLE; 6400 6401 if (!rb) { 6402 rb = rb_alloc(nr_pages, 6403 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6404 event->cpu, flags); 6405 6406 if (!rb) { 6407 ret = -ENOMEM; 6408 goto unlock; 6409 } 6410 6411 atomic_set(&rb->mmap_count, 1); 6412 rb->mmap_user = get_current_user(); 6413 rb->mmap_locked = extra; 6414 6415 ring_buffer_attach(event, rb); 6416 6417 perf_event_update_time(event); 6418 perf_event_init_userpage(event); 6419 perf_event_update_userpage(event); 6420 } else { 6421 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6422 event->attr.aux_watermark, flags); 6423 if (!ret) 6424 rb->aux_mmap_locked = extra; 6425 } 6426 6427 unlock: 6428 if (!ret) { 6429 atomic_long_add(user_extra, &user->locked_vm); 6430 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6431 6432 atomic_inc(&event->mmap_count); 6433 } else if (rb) { 6434 atomic_dec(&rb->mmap_count); 6435 } 6436 aux_unlock: 6437 mutex_unlock(&event->mmap_mutex); 6438 6439 /* 6440 * Since pinned accounting is per vm we cannot allow fork() to copy our 6441 * vma. 6442 */ 6443 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6444 vma->vm_ops = &perf_mmap_vmops; 6445 6446 if (event->pmu->event_mapped) 6447 event->pmu->event_mapped(event, vma->vm_mm); 6448 6449 return ret; 6450 } 6451 6452 static int perf_fasync(int fd, struct file *filp, int on) 6453 { 6454 struct inode *inode = file_inode(filp); 6455 struct perf_event *event = filp->private_data; 6456 int retval; 6457 6458 inode_lock(inode); 6459 retval = fasync_helper(fd, filp, on, &event->fasync); 6460 inode_unlock(inode); 6461 6462 if (retval < 0) 6463 return retval; 6464 6465 return 0; 6466 } 6467 6468 static const struct file_operations perf_fops = { 6469 .llseek = no_llseek, 6470 .release = perf_release, 6471 .read = perf_read, 6472 .poll = perf_poll, 6473 .unlocked_ioctl = perf_ioctl, 6474 .compat_ioctl = perf_compat_ioctl, 6475 .mmap = perf_mmap, 6476 .fasync = perf_fasync, 6477 }; 6478 6479 /* 6480 * Perf event wakeup 6481 * 6482 * If there's data, ensure we set the poll() state and publish everything 6483 * to user-space before waking everybody up. 6484 */ 6485 6486 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6487 { 6488 /* only the parent has fasync state */ 6489 if (event->parent) 6490 event = event->parent; 6491 return &event->fasync; 6492 } 6493 6494 void perf_event_wakeup(struct perf_event *event) 6495 { 6496 ring_buffer_wakeup(event); 6497 6498 if (event->pending_kill) { 6499 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6500 event->pending_kill = 0; 6501 } 6502 } 6503 6504 static void perf_sigtrap(struct perf_event *event) 6505 { 6506 /* 6507 * We'd expect this to only occur if the irq_work is delayed and either 6508 * ctx->task or current has changed in the meantime. This can be the 6509 * case on architectures that do not implement arch_irq_work_raise(). 6510 */ 6511 if (WARN_ON_ONCE(event->ctx->task != current)) 6512 return; 6513 6514 /* 6515 * perf_pending_event() can race with the task exiting. 6516 */ 6517 if (current->flags & PF_EXITING) 6518 return; 6519 6520 force_sig_perf((void __user *)event->pending_addr, 6521 event->attr.type, event->attr.sig_data); 6522 } 6523 6524 static void perf_pending_event_disable(struct perf_event *event) 6525 { 6526 int cpu = READ_ONCE(event->pending_disable); 6527 6528 if (cpu < 0) 6529 return; 6530 6531 if (cpu == smp_processor_id()) { 6532 WRITE_ONCE(event->pending_disable, -1); 6533 6534 if (event->attr.sigtrap) { 6535 perf_sigtrap(event); 6536 atomic_set_release(&event->event_limit, 1); /* rearm event */ 6537 return; 6538 } 6539 6540 perf_event_disable_local(event); 6541 return; 6542 } 6543 6544 /* 6545 * CPU-A CPU-B 6546 * 6547 * perf_event_disable_inatomic() 6548 * @pending_disable = CPU-A; 6549 * irq_work_queue(); 6550 * 6551 * sched-out 6552 * @pending_disable = -1; 6553 * 6554 * sched-in 6555 * perf_event_disable_inatomic() 6556 * @pending_disable = CPU-B; 6557 * irq_work_queue(); // FAILS 6558 * 6559 * irq_work_run() 6560 * perf_pending_event() 6561 * 6562 * But the event runs on CPU-B and wants disabling there. 6563 */ 6564 irq_work_queue_on(&event->pending, cpu); 6565 } 6566 6567 static void perf_pending_event(struct irq_work *entry) 6568 { 6569 struct perf_event *event = container_of(entry, struct perf_event, pending); 6570 int rctx; 6571 6572 rctx = perf_swevent_get_recursion_context(); 6573 /* 6574 * If we 'fail' here, that's OK, it means recursion is already disabled 6575 * and we won't recurse 'further'. 6576 */ 6577 6578 perf_pending_event_disable(event); 6579 6580 if (event->pending_wakeup) { 6581 event->pending_wakeup = 0; 6582 perf_event_wakeup(event); 6583 } 6584 6585 if (rctx >= 0) 6586 perf_swevent_put_recursion_context(rctx); 6587 } 6588 6589 #ifdef CONFIG_GUEST_PERF_EVENTS 6590 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6591 6592 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6593 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6594 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6595 6596 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6597 { 6598 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6599 return; 6600 6601 rcu_assign_pointer(perf_guest_cbs, cbs); 6602 static_call_update(__perf_guest_state, cbs->state); 6603 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6604 6605 /* Implementing ->handle_intel_pt_intr is optional. */ 6606 if (cbs->handle_intel_pt_intr) 6607 static_call_update(__perf_guest_handle_intel_pt_intr, 6608 cbs->handle_intel_pt_intr); 6609 } 6610 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6611 6612 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6613 { 6614 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6615 return; 6616 6617 rcu_assign_pointer(perf_guest_cbs, NULL); 6618 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6619 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6620 static_call_update(__perf_guest_handle_intel_pt_intr, 6621 (void *)&__static_call_return0); 6622 synchronize_rcu(); 6623 } 6624 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6625 #endif 6626 6627 static void 6628 perf_output_sample_regs(struct perf_output_handle *handle, 6629 struct pt_regs *regs, u64 mask) 6630 { 6631 int bit; 6632 DECLARE_BITMAP(_mask, 64); 6633 6634 bitmap_from_u64(_mask, mask); 6635 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6636 u64 val; 6637 6638 val = perf_reg_value(regs, bit); 6639 perf_output_put(handle, val); 6640 } 6641 } 6642 6643 static void perf_sample_regs_user(struct perf_regs *regs_user, 6644 struct pt_regs *regs) 6645 { 6646 if (user_mode(regs)) { 6647 regs_user->abi = perf_reg_abi(current); 6648 regs_user->regs = regs; 6649 } else if (!(current->flags & PF_KTHREAD)) { 6650 perf_get_regs_user(regs_user, regs); 6651 } else { 6652 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6653 regs_user->regs = NULL; 6654 } 6655 } 6656 6657 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6658 struct pt_regs *regs) 6659 { 6660 regs_intr->regs = regs; 6661 regs_intr->abi = perf_reg_abi(current); 6662 } 6663 6664 6665 /* 6666 * Get remaining task size from user stack pointer. 6667 * 6668 * It'd be better to take stack vma map and limit this more 6669 * precisely, but there's no way to get it safely under interrupt, 6670 * so using TASK_SIZE as limit. 6671 */ 6672 static u64 perf_ustack_task_size(struct pt_regs *regs) 6673 { 6674 unsigned long addr = perf_user_stack_pointer(regs); 6675 6676 if (!addr || addr >= TASK_SIZE) 6677 return 0; 6678 6679 return TASK_SIZE - addr; 6680 } 6681 6682 static u16 6683 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6684 struct pt_regs *regs) 6685 { 6686 u64 task_size; 6687 6688 /* No regs, no stack pointer, no dump. */ 6689 if (!regs) 6690 return 0; 6691 6692 /* 6693 * Check if we fit in with the requested stack size into the: 6694 * - TASK_SIZE 6695 * If we don't, we limit the size to the TASK_SIZE. 6696 * 6697 * - remaining sample size 6698 * If we don't, we customize the stack size to 6699 * fit in to the remaining sample size. 6700 */ 6701 6702 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6703 stack_size = min(stack_size, (u16) task_size); 6704 6705 /* Current header size plus static size and dynamic size. */ 6706 header_size += 2 * sizeof(u64); 6707 6708 /* Do we fit in with the current stack dump size? */ 6709 if ((u16) (header_size + stack_size) < header_size) { 6710 /* 6711 * If we overflow the maximum size for the sample, 6712 * we customize the stack dump size to fit in. 6713 */ 6714 stack_size = USHRT_MAX - header_size - sizeof(u64); 6715 stack_size = round_up(stack_size, sizeof(u64)); 6716 } 6717 6718 return stack_size; 6719 } 6720 6721 static void 6722 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6723 struct pt_regs *regs) 6724 { 6725 /* Case of a kernel thread, nothing to dump */ 6726 if (!regs) { 6727 u64 size = 0; 6728 perf_output_put(handle, size); 6729 } else { 6730 unsigned long sp; 6731 unsigned int rem; 6732 u64 dyn_size; 6733 mm_segment_t fs; 6734 6735 /* 6736 * We dump: 6737 * static size 6738 * - the size requested by user or the best one we can fit 6739 * in to the sample max size 6740 * data 6741 * - user stack dump data 6742 * dynamic size 6743 * - the actual dumped size 6744 */ 6745 6746 /* Static size. */ 6747 perf_output_put(handle, dump_size); 6748 6749 /* Data. */ 6750 sp = perf_user_stack_pointer(regs); 6751 fs = force_uaccess_begin(); 6752 rem = __output_copy_user(handle, (void *) sp, dump_size); 6753 force_uaccess_end(fs); 6754 dyn_size = dump_size - rem; 6755 6756 perf_output_skip(handle, rem); 6757 6758 /* Dynamic size. */ 6759 perf_output_put(handle, dyn_size); 6760 } 6761 } 6762 6763 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6764 struct perf_sample_data *data, 6765 size_t size) 6766 { 6767 struct perf_event *sampler = event->aux_event; 6768 struct perf_buffer *rb; 6769 6770 data->aux_size = 0; 6771 6772 if (!sampler) 6773 goto out; 6774 6775 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6776 goto out; 6777 6778 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6779 goto out; 6780 6781 rb = ring_buffer_get(sampler); 6782 if (!rb) 6783 goto out; 6784 6785 /* 6786 * If this is an NMI hit inside sampling code, don't take 6787 * the sample. See also perf_aux_sample_output(). 6788 */ 6789 if (READ_ONCE(rb->aux_in_sampling)) { 6790 data->aux_size = 0; 6791 } else { 6792 size = min_t(size_t, size, perf_aux_size(rb)); 6793 data->aux_size = ALIGN(size, sizeof(u64)); 6794 } 6795 ring_buffer_put(rb); 6796 6797 out: 6798 return data->aux_size; 6799 } 6800 6801 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6802 struct perf_event *event, 6803 struct perf_output_handle *handle, 6804 unsigned long size) 6805 { 6806 unsigned long flags; 6807 long ret; 6808 6809 /* 6810 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6811 * paths. If we start calling them in NMI context, they may race with 6812 * the IRQ ones, that is, for example, re-starting an event that's just 6813 * been stopped, which is why we're using a separate callback that 6814 * doesn't change the event state. 6815 * 6816 * IRQs need to be disabled to prevent IPIs from racing with us. 6817 */ 6818 local_irq_save(flags); 6819 /* 6820 * Guard against NMI hits inside the critical section; 6821 * see also perf_prepare_sample_aux(). 6822 */ 6823 WRITE_ONCE(rb->aux_in_sampling, 1); 6824 barrier(); 6825 6826 ret = event->pmu->snapshot_aux(event, handle, size); 6827 6828 barrier(); 6829 WRITE_ONCE(rb->aux_in_sampling, 0); 6830 local_irq_restore(flags); 6831 6832 return ret; 6833 } 6834 6835 static void perf_aux_sample_output(struct perf_event *event, 6836 struct perf_output_handle *handle, 6837 struct perf_sample_data *data) 6838 { 6839 struct perf_event *sampler = event->aux_event; 6840 struct perf_buffer *rb; 6841 unsigned long pad; 6842 long size; 6843 6844 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6845 return; 6846 6847 rb = ring_buffer_get(sampler); 6848 if (!rb) 6849 return; 6850 6851 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6852 6853 /* 6854 * An error here means that perf_output_copy() failed (returned a 6855 * non-zero surplus that it didn't copy), which in its current 6856 * enlightened implementation is not possible. If that changes, we'd 6857 * like to know. 6858 */ 6859 if (WARN_ON_ONCE(size < 0)) 6860 goto out_put; 6861 6862 /* 6863 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6864 * perf_prepare_sample_aux(), so should not be more than that. 6865 */ 6866 pad = data->aux_size - size; 6867 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6868 pad = 8; 6869 6870 if (pad) { 6871 u64 zero = 0; 6872 perf_output_copy(handle, &zero, pad); 6873 } 6874 6875 out_put: 6876 ring_buffer_put(rb); 6877 } 6878 6879 static void __perf_event_header__init_id(struct perf_event_header *header, 6880 struct perf_sample_data *data, 6881 struct perf_event *event) 6882 { 6883 u64 sample_type = event->attr.sample_type; 6884 6885 data->type = sample_type; 6886 header->size += event->id_header_size; 6887 6888 if (sample_type & PERF_SAMPLE_TID) { 6889 /* namespace issues */ 6890 data->tid_entry.pid = perf_event_pid(event, current); 6891 data->tid_entry.tid = perf_event_tid(event, current); 6892 } 6893 6894 if (sample_type & PERF_SAMPLE_TIME) 6895 data->time = perf_event_clock(event); 6896 6897 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6898 data->id = primary_event_id(event); 6899 6900 if (sample_type & PERF_SAMPLE_STREAM_ID) 6901 data->stream_id = event->id; 6902 6903 if (sample_type & PERF_SAMPLE_CPU) { 6904 data->cpu_entry.cpu = raw_smp_processor_id(); 6905 data->cpu_entry.reserved = 0; 6906 } 6907 } 6908 6909 void perf_event_header__init_id(struct perf_event_header *header, 6910 struct perf_sample_data *data, 6911 struct perf_event *event) 6912 { 6913 if (event->attr.sample_id_all) 6914 __perf_event_header__init_id(header, data, event); 6915 } 6916 6917 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6918 struct perf_sample_data *data) 6919 { 6920 u64 sample_type = data->type; 6921 6922 if (sample_type & PERF_SAMPLE_TID) 6923 perf_output_put(handle, data->tid_entry); 6924 6925 if (sample_type & PERF_SAMPLE_TIME) 6926 perf_output_put(handle, data->time); 6927 6928 if (sample_type & PERF_SAMPLE_ID) 6929 perf_output_put(handle, data->id); 6930 6931 if (sample_type & PERF_SAMPLE_STREAM_ID) 6932 perf_output_put(handle, data->stream_id); 6933 6934 if (sample_type & PERF_SAMPLE_CPU) 6935 perf_output_put(handle, data->cpu_entry); 6936 6937 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6938 perf_output_put(handle, data->id); 6939 } 6940 6941 void perf_event__output_id_sample(struct perf_event *event, 6942 struct perf_output_handle *handle, 6943 struct perf_sample_data *sample) 6944 { 6945 if (event->attr.sample_id_all) 6946 __perf_event__output_id_sample(handle, sample); 6947 } 6948 6949 static void perf_output_read_one(struct perf_output_handle *handle, 6950 struct perf_event *event, 6951 u64 enabled, u64 running) 6952 { 6953 u64 read_format = event->attr.read_format; 6954 u64 values[4]; 6955 int n = 0; 6956 6957 values[n++] = perf_event_count(event); 6958 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6959 values[n++] = enabled + 6960 atomic64_read(&event->child_total_time_enabled); 6961 } 6962 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6963 values[n++] = running + 6964 atomic64_read(&event->child_total_time_running); 6965 } 6966 if (read_format & PERF_FORMAT_ID) 6967 values[n++] = primary_event_id(event); 6968 6969 __output_copy(handle, values, n * sizeof(u64)); 6970 } 6971 6972 static void perf_output_read_group(struct perf_output_handle *handle, 6973 struct perf_event *event, 6974 u64 enabled, u64 running) 6975 { 6976 struct perf_event *leader = event->group_leader, *sub; 6977 u64 read_format = event->attr.read_format; 6978 u64 values[5]; 6979 int n = 0; 6980 6981 values[n++] = 1 + leader->nr_siblings; 6982 6983 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6984 values[n++] = enabled; 6985 6986 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6987 values[n++] = running; 6988 6989 if ((leader != event) && 6990 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6991 leader->pmu->read(leader); 6992 6993 values[n++] = perf_event_count(leader); 6994 if (read_format & PERF_FORMAT_ID) 6995 values[n++] = primary_event_id(leader); 6996 6997 __output_copy(handle, values, n * sizeof(u64)); 6998 6999 for_each_sibling_event(sub, leader) { 7000 n = 0; 7001 7002 if ((sub != event) && 7003 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7004 sub->pmu->read(sub); 7005 7006 values[n++] = perf_event_count(sub); 7007 if (read_format & PERF_FORMAT_ID) 7008 values[n++] = primary_event_id(sub); 7009 7010 __output_copy(handle, values, n * sizeof(u64)); 7011 } 7012 } 7013 7014 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7015 PERF_FORMAT_TOTAL_TIME_RUNNING) 7016 7017 /* 7018 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7019 * 7020 * The problem is that its both hard and excessively expensive to iterate the 7021 * child list, not to mention that its impossible to IPI the children running 7022 * on another CPU, from interrupt/NMI context. 7023 */ 7024 static void perf_output_read(struct perf_output_handle *handle, 7025 struct perf_event *event) 7026 { 7027 u64 enabled = 0, running = 0, now; 7028 u64 read_format = event->attr.read_format; 7029 7030 /* 7031 * compute total_time_enabled, total_time_running 7032 * based on snapshot values taken when the event 7033 * was last scheduled in. 7034 * 7035 * we cannot simply called update_context_time() 7036 * because of locking issue as we are called in 7037 * NMI context 7038 */ 7039 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7040 calc_timer_values(event, &now, &enabled, &running); 7041 7042 if (event->attr.read_format & PERF_FORMAT_GROUP) 7043 perf_output_read_group(handle, event, enabled, running); 7044 else 7045 perf_output_read_one(handle, event, enabled, running); 7046 } 7047 7048 static inline bool perf_sample_save_hw_index(struct perf_event *event) 7049 { 7050 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 7051 } 7052 7053 void perf_output_sample(struct perf_output_handle *handle, 7054 struct perf_event_header *header, 7055 struct perf_sample_data *data, 7056 struct perf_event *event) 7057 { 7058 u64 sample_type = data->type; 7059 7060 perf_output_put(handle, *header); 7061 7062 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7063 perf_output_put(handle, data->id); 7064 7065 if (sample_type & PERF_SAMPLE_IP) 7066 perf_output_put(handle, data->ip); 7067 7068 if (sample_type & PERF_SAMPLE_TID) 7069 perf_output_put(handle, data->tid_entry); 7070 7071 if (sample_type & PERF_SAMPLE_TIME) 7072 perf_output_put(handle, data->time); 7073 7074 if (sample_type & PERF_SAMPLE_ADDR) 7075 perf_output_put(handle, data->addr); 7076 7077 if (sample_type & PERF_SAMPLE_ID) 7078 perf_output_put(handle, data->id); 7079 7080 if (sample_type & PERF_SAMPLE_STREAM_ID) 7081 perf_output_put(handle, data->stream_id); 7082 7083 if (sample_type & PERF_SAMPLE_CPU) 7084 perf_output_put(handle, data->cpu_entry); 7085 7086 if (sample_type & PERF_SAMPLE_PERIOD) 7087 perf_output_put(handle, data->period); 7088 7089 if (sample_type & PERF_SAMPLE_READ) 7090 perf_output_read(handle, event); 7091 7092 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7093 int size = 1; 7094 7095 size += data->callchain->nr; 7096 size *= sizeof(u64); 7097 __output_copy(handle, data->callchain, size); 7098 } 7099 7100 if (sample_type & PERF_SAMPLE_RAW) { 7101 struct perf_raw_record *raw = data->raw; 7102 7103 if (raw) { 7104 struct perf_raw_frag *frag = &raw->frag; 7105 7106 perf_output_put(handle, raw->size); 7107 do { 7108 if (frag->copy) { 7109 __output_custom(handle, frag->copy, 7110 frag->data, frag->size); 7111 } else { 7112 __output_copy(handle, frag->data, 7113 frag->size); 7114 } 7115 if (perf_raw_frag_last(frag)) 7116 break; 7117 frag = frag->next; 7118 } while (1); 7119 if (frag->pad) 7120 __output_skip(handle, NULL, frag->pad); 7121 } else { 7122 struct { 7123 u32 size; 7124 u32 data; 7125 } raw = { 7126 .size = sizeof(u32), 7127 .data = 0, 7128 }; 7129 perf_output_put(handle, raw); 7130 } 7131 } 7132 7133 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7134 if (data->br_stack) { 7135 size_t size; 7136 7137 size = data->br_stack->nr 7138 * sizeof(struct perf_branch_entry); 7139 7140 perf_output_put(handle, data->br_stack->nr); 7141 if (perf_sample_save_hw_index(event)) 7142 perf_output_put(handle, data->br_stack->hw_idx); 7143 perf_output_copy(handle, data->br_stack->entries, size); 7144 } else { 7145 /* 7146 * we always store at least the value of nr 7147 */ 7148 u64 nr = 0; 7149 perf_output_put(handle, nr); 7150 } 7151 } 7152 7153 if (sample_type & PERF_SAMPLE_REGS_USER) { 7154 u64 abi = data->regs_user.abi; 7155 7156 /* 7157 * If there are no regs to dump, notice it through 7158 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7159 */ 7160 perf_output_put(handle, abi); 7161 7162 if (abi) { 7163 u64 mask = event->attr.sample_regs_user; 7164 perf_output_sample_regs(handle, 7165 data->regs_user.regs, 7166 mask); 7167 } 7168 } 7169 7170 if (sample_type & PERF_SAMPLE_STACK_USER) { 7171 perf_output_sample_ustack(handle, 7172 data->stack_user_size, 7173 data->regs_user.regs); 7174 } 7175 7176 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7177 perf_output_put(handle, data->weight.full); 7178 7179 if (sample_type & PERF_SAMPLE_DATA_SRC) 7180 perf_output_put(handle, data->data_src.val); 7181 7182 if (sample_type & PERF_SAMPLE_TRANSACTION) 7183 perf_output_put(handle, data->txn); 7184 7185 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7186 u64 abi = data->regs_intr.abi; 7187 /* 7188 * If there are no regs to dump, notice it through 7189 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7190 */ 7191 perf_output_put(handle, abi); 7192 7193 if (abi) { 7194 u64 mask = event->attr.sample_regs_intr; 7195 7196 perf_output_sample_regs(handle, 7197 data->regs_intr.regs, 7198 mask); 7199 } 7200 } 7201 7202 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7203 perf_output_put(handle, data->phys_addr); 7204 7205 if (sample_type & PERF_SAMPLE_CGROUP) 7206 perf_output_put(handle, data->cgroup); 7207 7208 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7209 perf_output_put(handle, data->data_page_size); 7210 7211 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7212 perf_output_put(handle, data->code_page_size); 7213 7214 if (sample_type & PERF_SAMPLE_AUX) { 7215 perf_output_put(handle, data->aux_size); 7216 7217 if (data->aux_size) 7218 perf_aux_sample_output(event, handle, data); 7219 } 7220 7221 if (!event->attr.watermark) { 7222 int wakeup_events = event->attr.wakeup_events; 7223 7224 if (wakeup_events) { 7225 struct perf_buffer *rb = handle->rb; 7226 int events = local_inc_return(&rb->events); 7227 7228 if (events >= wakeup_events) { 7229 local_sub(wakeup_events, &rb->events); 7230 local_inc(&rb->wakeup); 7231 } 7232 } 7233 } 7234 } 7235 7236 static u64 perf_virt_to_phys(u64 virt) 7237 { 7238 u64 phys_addr = 0; 7239 7240 if (!virt) 7241 return 0; 7242 7243 if (virt >= TASK_SIZE) { 7244 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7245 if (virt_addr_valid((void *)(uintptr_t)virt) && 7246 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7247 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7248 } else { 7249 /* 7250 * Walking the pages tables for user address. 7251 * Interrupts are disabled, so it prevents any tear down 7252 * of the page tables. 7253 * Try IRQ-safe get_user_page_fast_only first. 7254 * If failed, leave phys_addr as 0. 7255 */ 7256 if (current->mm != NULL) { 7257 struct page *p; 7258 7259 pagefault_disable(); 7260 if (get_user_page_fast_only(virt, 0, &p)) { 7261 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7262 put_page(p); 7263 } 7264 pagefault_enable(); 7265 } 7266 } 7267 7268 return phys_addr; 7269 } 7270 7271 /* 7272 * Return the pagetable size of a given virtual address. 7273 */ 7274 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7275 { 7276 u64 size = 0; 7277 7278 #ifdef CONFIG_HAVE_FAST_GUP 7279 pgd_t *pgdp, pgd; 7280 p4d_t *p4dp, p4d; 7281 pud_t *pudp, pud; 7282 pmd_t *pmdp, pmd; 7283 pte_t *ptep, pte; 7284 7285 pgdp = pgd_offset(mm, addr); 7286 pgd = READ_ONCE(*pgdp); 7287 if (pgd_none(pgd)) 7288 return 0; 7289 7290 if (pgd_leaf(pgd)) 7291 return pgd_leaf_size(pgd); 7292 7293 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7294 p4d = READ_ONCE(*p4dp); 7295 if (!p4d_present(p4d)) 7296 return 0; 7297 7298 if (p4d_leaf(p4d)) 7299 return p4d_leaf_size(p4d); 7300 7301 pudp = pud_offset_lockless(p4dp, p4d, addr); 7302 pud = READ_ONCE(*pudp); 7303 if (!pud_present(pud)) 7304 return 0; 7305 7306 if (pud_leaf(pud)) 7307 return pud_leaf_size(pud); 7308 7309 pmdp = pmd_offset_lockless(pudp, pud, addr); 7310 pmd = READ_ONCE(*pmdp); 7311 if (!pmd_present(pmd)) 7312 return 0; 7313 7314 if (pmd_leaf(pmd)) 7315 return pmd_leaf_size(pmd); 7316 7317 ptep = pte_offset_map(&pmd, addr); 7318 pte = ptep_get_lockless(ptep); 7319 if (pte_present(pte)) 7320 size = pte_leaf_size(pte); 7321 pte_unmap(ptep); 7322 #endif /* CONFIG_HAVE_FAST_GUP */ 7323 7324 return size; 7325 } 7326 7327 static u64 perf_get_page_size(unsigned long addr) 7328 { 7329 struct mm_struct *mm; 7330 unsigned long flags; 7331 u64 size; 7332 7333 if (!addr) 7334 return 0; 7335 7336 /* 7337 * Software page-table walkers must disable IRQs, 7338 * which prevents any tear down of the page tables. 7339 */ 7340 local_irq_save(flags); 7341 7342 mm = current->mm; 7343 if (!mm) { 7344 /* 7345 * For kernel threads and the like, use init_mm so that 7346 * we can find kernel memory. 7347 */ 7348 mm = &init_mm; 7349 } 7350 7351 size = perf_get_pgtable_size(mm, addr); 7352 7353 local_irq_restore(flags); 7354 7355 return size; 7356 } 7357 7358 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7359 7360 struct perf_callchain_entry * 7361 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7362 { 7363 bool kernel = !event->attr.exclude_callchain_kernel; 7364 bool user = !event->attr.exclude_callchain_user; 7365 /* Disallow cross-task user callchains. */ 7366 bool crosstask = event->ctx->task && event->ctx->task != current; 7367 const u32 max_stack = event->attr.sample_max_stack; 7368 struct perf_callchain_entry *callchain; 7369 7370 if (!kernel && !user) 7371 return &__empty_callchain; 7372 7373 callchain = get_perf_callchain(regs, 0, kernel, user, 7374 max_stack, crosstask, true); 7375 return callchain ?: &__empty_callchain; 7376 } 7377 7378 void perf_prepare_sample(struct perf_event_header *header, 7379 struct perf_sample_data *data, 7380 struct perf_event *event, 7381 struct pt_regs *regs) 7382 { 7383 u64 sample_type = event->attr.sample_type; 7384 7385 header->type = PERF_RECORD_SAMPLE; 7386 header->size = sizeof(*header) + event->header_size; 7387 7388 header->misc = 0; 7389 header->misc |= perf_misc_flags(regs); 7390 7391 __perf_event_header__init_id(header, data, event); 7392 7393 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7394 data->ip = perf_instruction_pointer(regs); 7395 7396 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7397 int size = 1; 7398 7399 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 7400 data->callchain = perf_callchain(event, regs); 7401 7402 size += data->callchain->nr; 7403 7404 header->size += size * sizeof(u64); 7405 } 7406 7407 if (sample_type & PERF_SAMPLE_RAW) { 7408 struct perf_raw_record *raw = data->raw; 7409 int size; 7410 7411 if (raw) { 7412 struct perf_raw_frag *frag = &raw->frag; 7413 u32 sum = 0; 7414 7415 do { 7416 sum += frag->size; 7417 if (perf_raw_frag_last(frag)) 7418 break; 7419 frag = frag->next; 7420 } while (1); 7421 7422 size = round_up(sum + sizeof(u32), sizeof(u64)); 7423 raw->size = size - sizeof(u32); 7424 frag->pad = raw->size - sum; 7425 } else { 7426 size = sizeof(u64); 7427 } 7428 7429 header->size += size; 7430 } 7431 7432 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7433 int size = sizeof(u64); /* nr */ 7434 if (data->br_stack) { 7435 if (perf_sample_save_hw_index(event)) 7436 size += sizeof(u64); 7437 7438 size += data->br_stack->nr 7439 * sizeof(struct perf_branch_entry); 7440 } 7441 header->size += size; 7442 } 7443 7444 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7445 perf_sample_regs_user(&data->regs_user, regs); 7446 7447 if (sample_type & PERF_SAMPLE_REGS_USER) { 7448 /* regs dump ABI info */ 7449 int size = sizeof(u64); 7450 7451 if (data->regs_user.regs) { 7452 u64 mask = event->attr.sample_regs_user; 7453 size += hweight64(mask) * sizeof(u64); 7454 } 7455 7456 header->size += size; 7457 } 7458 7459 if (sample_type & PERF_SAMPLE_STACK_USER) { 7460 /* 7461 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7462 * processed as the last one or have additional check added 7463 * in case new sample type is added, because we could eat 7464 * up the rest of the sample size. 7465 */ 7466 u16 stack_size = event->attr.sample_stack_user; 7467 u16 size = sizeof(u64); 7468 7469 stack_size = perf_sample_ustack_size(stack_size, header->size, 7470 data->regs_user.regs); 7471 7472 /* 7473 * If there is something to dump, add space for the dump 7474 * itself and for the field that tells the dynamic size, 7475 * which is how many have been actually dumped. 7476 */ 7477 if (stack_size) 7478 size += sizeof(u64) + stack_size; 7479 7480 data->stack_user_size = stack_size; 7481 header->size += size; 7482 } 7483 7484 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7485 /* regs dump ABI info */ 7486 int size = sizeof(u64); 7487 7488 perf_sample_regs_intr(&data->regs_intr, regs); 7489 7490 if (data->regs_intr.regs) { 7491 u64 mask = event->attr.sample_regs_intr; 7492 7493 size += hweight64(mask) * sizeof(u64); 7494 } 7495 7496 header->size += size; 7497 } 7498 7499 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7500 data->phys_addr = perf_virt_to_phys(data->addr); 7501 7502 #ifdef CONFIG_CGROUP_PERF 7503 if (sample_type & PERF_SAMPLE_CGROUP) { 7504 struct cgroup *cgrp; 7505 7506 /* protected by RCU */ 7507 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7508 data->cgroup = cgroup_id(cgrp); 7509 } 7510 #endif 7511 7512 /* 7513 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7514 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7515 * but the value will not dump to the userspace. 7516 */ 7517 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7518 data->data_page_size = perf_get_page_size(data->addr); 7519 7520 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7521 data->code_page_size = perf_get_page_size(data->ip); 7522 7523 if (sample_type & PERF_SAMPLE_AUX) { 7524 u64 size; 7525 7526 header->size += sizeof(u64); /* size */ 7527 7528 /* 7529 * Given the 16bit nature of header::size, an AUX sample can 7530 * easily overflow it, what with all the preceding sample bits. 7531 * Make sure this doesn't happen by using up to U16_MAX bytes 7532 * per sample in total (rounded down to 8 byte boundary). 7533 */ 7534 size = min_t(size_t, U16_MAX - header->size, 7535 event->attr.aux_sample_size); 7536 size = rounddown(size, 8); 7537 size = perf_prepare_sample_aux(event, data, size); 7538 7539 WARN_ON_ONCE(size + header->size > U16_MAX); 7540 header->size += size; 7541 } 7542 /* 7543 * If you're adding more sample types here, you likely need to do 7544 * something about the overflowing header::size, like repurpose the 7545 * lowest 3 bits of size, which should be always zero at the moment. 7546 * This raises a more important question, do we really need 512k sized 7547 * samples and why, so good argumentation is in order for whatever you 7548 * do here next. 7549 */ 7550 WARN_ON_ONCE(header->size & 7); 7551 } 7552 7553 static __always_inline int 7554 __perf_event_output(struct perf_event *event, 7555 struct perf_sample_data *data, 7556 struct pt_regs *regs, 7557 int (*output_begin)(struct perf_output_handle *, 7558 struct perf_sample_data *, 7559 struct perf_event *, 7560 unsigned int)) 7561 { 7562 struct perf_output_handle handle; 7563 struct perf_event_header header; 7564 int err; 7565 7566 /* protect the callchain buffers */ 7567 rcu_read_lock(); 7568 7569 perf_prepare_sample(&header, data, event, regs); 7570 7571 err = output_begin(&handle, data, event, header.size); 7572 if (err) 7573 goto exit; 7574 7575 perf_output_sample(&handle, &header, data, event); 7576 7577 perf_output_end(&handle); 7578 7579 exit: 7580 rcu_read_unlock(); 7581 return err; 7582 } 7583 7584 void 7585 perf_event_output_forward(struct perf_event *event, 7586 struct perf_sample_data *data, 7587 struct pt_regs *regs) 7588 { 7589 __perf_event_output(event, data, regs, perf_output_begin_forward); 7590 } 7591 7592 void 7593 perf_event_output_backward(struct perf_event *event, 7594 struct perf_sample_data *data, 7595 struct pt_regs *regs) 7596 { 7597 __perf_event_output(event, data, regs, perf_output_begin_backward); 7598 } 7599 7600 int 7601 perf_event_output(struct perf_event *event, 7602 struct perf_sample_data *data, 7603 struct pt_regs *regs) 7604 { 7605 return __perf_event_output(event, data, regs, perf_output_begin); 7606 } 7607 7608 /* 7609 * read event_id 7610 */ 7611 7612 struct perf_read_event { 7613 struct perf_event_header header; 7614 7615 u32 pid; 7616 u32 tid; 7617 }; 7618 7619 static void 7620 perf_event_read_event(struct perf_event *event, 7621 struct task_struct *task) 7622 { 7623 struct perf_output_handle handle; 7624 struct perf_sample_data sample; 7625 struct perf_read_event read_event = { 7626 .header = { 7627 .type = PERF_RECORD_READ, 7628 .misc = 0, 7629 .size = sizeof(read_event) + event->read_size, 7630 }, 7631 .pid = perf_event_pid(event, task), 7632 .tid = perf_event_tid(event, task), 7633 }; 7634 int ret; 7635 7636 perf_event_header__init_id(&read_event.header, &sample, event); 7637 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7638 if (ret) 7639 return; 7640 7641 perf_output_put(&handle, read_event); 7642 perf_output_read(&handle, event); 7643 perf_event__output_id_sample(event, &handle, &sample); 7644 7645 perf_output_end(&handle); 7646 } 7647 7648 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7649 7650 static void 7651 perf_iterate_ctx(struct perf_event_context *ctx, 7652 perf_iterate_f output, 7653 void *data, bool all) 7654 { 7655 struct perf_event *event; 7656 7657 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7658 if (!all) { 7659 if (event->state < PERF_EVENT_STATE_INACTIVE) 7660 continue; 7661 if (!event_filter_match(event)) 7662 continue; 7663 } 7664 7665 output(event, data); 7666 } 7667 } 7668 7669 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7670 { 7671 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7672 struct perf_event *event; 7673 7674 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7675 /* 7676 * Skip events that are not fully formed yet; ensure that 7677 * if we observe event->ctx, both event and ctx will be 7678 * complete enough. See perf_install_in_context(). 7679 */ 7680 if (!smp_load_acquire(&event->ctx)) 7681 continue; 7682 7683 if (event->state < PERF_EVENT_STATE_INACTIVE) 7684 continue; 7685 if (!event_filter_match(event)) 7686 continue; 7687 output(event, data); 7688 } 7689 } 7690 7691 /* 7692 * Iterate all events that need to receive side-band events. 7693 * 7694 * For new callers; ensure that account_pmu_sb_event() includes 7695 * your event, otherwise it might not get delivered. 7696 */ 7697 static void 7698 perf_iterate_sb(perf_iterate_f output, void *data, 7699 struct perf_event_context *task_ctx) 7700 { 7701 struct perf_event_context *ctx; 7702 int ctxn; 7703 7704 rcu_read_lock(); 7705 preempt_disable(); 7706 7707 /* 7708 * If we have task_ctx != NULL we only notify the task context itself. 7709 * The task_ctx is set only for EXIT events before releasing task 7710 * context. 7711 */ 7712 if (task_ctx) { 7713 perf_iterate_ctx(task_ctx, output, data, false); 7714 goto done; 7715 } 7716 7717 perf_iterate_sb_cpu(output, data); 7718 7719 for_each_task_context_nr(ctxn) { 7720 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7721 if (ctx) 7722 perf_iterate_ctx(ctx, output, data, false); 7723 } 7724 done: 7725 preempt_enable(); 7726 rcu_read_unlock(); 7727 } 7728 7729 /* 7730 * Clear all file-based filters at exec, they'll have to be 7731 * re-instated when/if these objects are mmapped again. 7732 */ 7733 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7734 { 7735 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7736 struct perf_addr_filter *filter; 7737 unsigned int restart = 0, count = 0; 7738 unsigned long flags; 7739 7740 if (!has_addr_filter(event)) 7741 return; 7742 7743 raw_spin_lock_irqsave(&ifh->lock, flags); 7744 list_for_each_entry(filter, &ifh->list, entry) { 7745 if (filter->path.dentry) { 7746 event->addr_filter_ranges[count].start = 0; 7747 event->addr_filter_ranges[count].size = 0; 7748 restart++; 7749 } 7750 7751 count++; 7752 } 7753 7754 if (restart) 7755 event->addr_filters_gen++; 7756 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7757 7758 if (restart) 7759 perf_event_stop(event, 1); 7760 } 7761 7762 void perf_event_exec(void) 7763 { 7764 struct perf_event_context *ctx; 7765 int ctxn; 7766 7767 for_each_task_context_nr(ctxn) { 7768 perf_event_enable_on_exec(ctxn); 7769 perf_event_remove_on_exec(ctxn); 7770 7771 rcu_read_lock(); 7772 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7773 if (ctx) { 7774 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, 7775 NULL, true); 7776 } 7777 rcu_read_unlock(); 7778 } 7779 } 7780 7781 struct remote_output { 7782 struct perf_buffer *rb; 7783 int err; 7784 }; 7785 7786 static void __perf_event_output_stop(struct perf_event *event, void *data) 7787 { 7788 struct perf_event *parent = event->parent; 7789 struct remote_output *ro = data; 7790 struct perf_buffer *rb = ro->rb; 7791 struct stop_event_data sd = { 7792 .event = event, 7793 }; 7794 7795 if (!has_aux(event)) 7796 return; 7797 7798 if (!parent) 7799 parent = event; 7800 7801 /* 7802 * In case of inheritance, it will be the parent that links to the 7803 * ring-buffer, but it will be the child that's actually using it. 7804 * 7805 * We are using event::rb to determine if the event should be stopped, 7806 * however this may race with ring_buffer_attach() (through set_output), 7807 * which will make us skip the event that actually needs to be stopped. 7808 * So ring_buffer_attach() has to stop an aux event before re-assigning 7809 * its rb pointer. 7810 */ 7811 if (rcu_dereference(parent->rb) == rb) 7812 ro->err = __perf_event_stop(&sd); 7813 } 7814 7815 static int __perf_pmu_output_stop(void *info) 7816 { 7817 struct perf_event *event = info; 7818 struct pmu *pmu = event->ctx->pmu; 7819 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7820 struct remote_output ro = { 7821 .rb = event->rb, 7822 }; 7823 7824 rcu_read_lock(); 7825 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7826 if (cpuctx->task_ctx) 7827 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7828 &ro, false); 7829 rcu_read_unlock(); 7830 7831 return ro.err; 7832 } 7833 7834 static void perf_pmu_output_stop(struct perf_event *event) 7835 { 7836 struct perf_event *iter; 7837 int err, cpu; 7838 7839 restart: 7840 rcu_read_lock(); 7841 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7842 /* 7843 * For per-CPU events, we need to make sure that neither they 7844 * nor their children are running; for cpu==-1 events it's 7845 * sufficient to stop the event itself if it's active, since 7846 * it can't have children. 7847 */ 7848 cpu = iter->cpu; 7849 if (cpu == -1) 7850 cpu = READ_ONCE(iter->oncpu); 7851 7852 if (cpu == -1) 7853 continue; 7854 7855 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7856 if (err == -EAGAIN) { 7857 rcu_read_unlock(); 7858 goto restart; 7859 } 7860 } 7861 rcu_read_unlock(); 7862 } 7863 7864 /* 7865 * task tracking -- fork/exit 7866 * 7867 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7868 */ 7869 7870 struct perf_task_event { 7871 struct task_struct *task; 7872 struct perf_event_context *task_ctx; 7873 7874 struct { 7875 struct perf_event_header header; 7876 7877 u32 pid; 7878 u32 ppid; 7879 u32 tid; 7880 u32 ptid; 7881 u64 time; 7882 } event_id; 7883 }; 7884 7885 static int perf_event_task_match(struct perf_event *event) 7886 { 7887 return event->attr.comm || event->attr.mmap || 7888 event->attr.mmap2 || event->attr.mmap_data || 7889 event->attr.task; 7890 } 7891 7892 static void perf_event_task_output(struct perf_event *event, 7893 void *data) 7894 { 7895 struct perf_task_event *task_event = data; 7896 struct perf_output_handle handle; 7897 struct perf_sample_data sample; 7898 struct task_struct *task = task_event->task; 7899 int ret, size = task_event->event_id.header.size; 7900 7901 if (!perf_event_task_match(event)) 7902 return; 7903 7904 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7905 7906 ret = perf_output_begin(&handle, &sample, event, 7907 task_event->event_id.header.size); 7908 if (ret) 7909 goto out; 7910 7911 task_event->event_id.pid = perf_event_pid(event, task); 7912 task_event->event_id.tid = perf_event_tid(event, task); 7913 7914 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7915 task_event->event_id.ppid = perf_event_pid(event, 7916 task->real_parent); 7917 task_event->event_id.ptid = perf_event_pid(event, 7918 task->real_parent); 7919 } else { /* PERF_RECORD_FORK */ 7920 task_event->event_id.ppid = perf_event_pid(event, current); 7921 task_event->event_id.ptid = perf_event_tid(event, current); 7922 } 7923 7924 task_event->event_id.time = perf_event_clock(event); 7925 7926 perf_output_put(&handle, task_event->event_id); 7927 7928 perf_event__output_id_sample(event, &handle, &sample); 7929 7930 perf_output_end(&handle); 7931 out: 7932 task_event->event_id.header.size = size; 7933 } 7934 7935 static void perf_event_task(struct task_struct *task, 7936 struct perf_event_context *task_ctx, 7937 int new) 7938 { 7939 struct perf_task_event task_event; 7940 7941 if (!atomic_read(&nr_comm_events) && 7942 !atomic_read(&nr_mmap_events) && 7943 !atomic_read(&nr_task_events)) 7944 return; 7945 7946 task_event = (struct perf_task_event){ 7947 .task = task, 7948 .task_ctx = task_ctx, 7949 .event_id = { 7950 .header = { 7951 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7952 .misc = 0, 7953 .size = sizeof(task_event.event_id), 7954 }, 7955 /* .pid */ 7956 /* .ppid */ 7957 /* .tid */ 7958 /* .ptid */ 7959 /* .time */ 7960 }, 7961 }; 7962 7963 perf_iterate_sb(perf_event_task_output, 7964 &task_event, 7965 task_ctx); 7966 } 7967 7968 void perf_event_fork(struct task_struct *task) 7969 { 7970 perf_event_task(task, NULL, 1); 7971 perf_event_namespaces(task); 7972 } 7973 7974 /* 7975 * comm tracking 7976 */ 7977 7978 struct perf_comm_event { 7979 struct task_struct *task; 7980 char *comm; 7981 int comm_size; 7982 7983 struct { 7984 struct perf_event_header header; 7985 7986 u32 pid; 7987 u32 tid; 7988 } event_id; 7989 }; 7990 7991 static int perf_event_comm_match(struct perf_event *event) 7992 { 7993 return event->attr.comm; 7994 } 7995 7996 static void perf_event_comm_output(struct perf_event *event, 7997 void *data) 7998 { 7999 struct perf_comm_event *comm_event = data; 8000 struct perf_output_handle handle; 8001 struct perf_sample_data sample; 8002 int size = comm_event->event_id.header.size; 8003 int ret; 8004 8005 if (!perf_event_comm_match(event)) 8006 return; 8007 8008 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8009 ret = perf_output_begin(&handle, &sample, event, 8010 comm_event->event_id.header.size); 8011 8012 if (ret) 8013 goto out; 8014 8015 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8016 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8017 8018 perf_output_put(&handle, comm_event->event_id); 8019 __output_copy(&handle, comm_event->comm, 8020 comm_event->comm_size); 8021 8022 perf_event__output_id_sample(event, &handle, &sample); 8023 8024 perf_output_end(&handle); 8025 out: 8026 comm_event->event_id.header.size = size; 8027 } 8028 8029 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8030 { 8031 char comm[TASK_COMM_LEN]; 8032 unsigned int size; 8033 8034 memset(comm, 0, sizeof(comm)); 8035 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 8036 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8037 8038 comm_event->comm = comm; 8039 comm_event->comm_size = size; 8040 8041 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8042 8043 perf_iterate_sb(perf_event_comm_output, 8044 comm_event, 8045 NULL); 8046 } 8047 8048 void perf_event_comm(struct task_struct *task, bool exec) 8049 { 8050 struct perf_comm_event comm_event; 8051 8052 if (!atomic_read(&nr_comm_events)) 8053 return; 8054 8055 comm_event = (struct perf_comm_event){ 8056 .task = task, 8057 /* .comm */ 8058 /* .comm_size */ 8059 .event_id = { 8060 .header = { 8061 .type = PERF_RECORD_COMM, 8062 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8063 /* .size */ 8064 }, 8065 /* .pid */ 8066 /* .tid */ 8067 }, 8068 }; 8069 8070 perf_event_comm_event(&comm_event); 8071 } 8072 8073 /* 8074 * namespaces tracking 8075 */ 8076 8077 struct perf_namespaces_event { 8078 struct task_struct *task; 8079 8080 struct { 8081 struct perf_event_header header; 8082 8083 u32 pid; 8084 u32 tid; 8085 u64 nr_namespaces; 8086 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8087 } event_id; 8088 }; 8089 8090 static int perf_event_namespaces_match(struct perf_event *event) 8091 { 8092 return event->attr.namespaces; 8093 } 8094 8095 static void perf_event_namespaces_output(struct perf_event *event, 8096 void *data) 8097 { 8098 struct perf_namespaces_event *namespaces_event = data; 8099 struct perf_output_handle handle; 8100 struct perf_sample_data sample; 8101 u16 header_size = namespaces_event->event_id.header.size; 8102 int ret; 8103 8104 if (!perf_event_namespaces_match(event)) 8105 return; 8106 8107 perf_event_header__init_id(&namespaces_event->event_id.header, 8108 &sample, event); 8109 ret = perf_output_begin(&handle, &sample, event, 8110 namespaces_event->event_id.header.size); 8111 if (ret) 8112 goto out; 8113 8114 namespaces_event->event_id.pid = perf_event_pid(event, 8115 namespaces_event->task); 8116 namespaces_event->event_id.tid = perf_event_tid(event, 8117 namespaces_event->task); 8118 8119 perf_output_put(&handle, namespaces_event->event_id); 8120 8121 perf_event__output_id_sample(event, &handle, &sample); 8122 8123 perf_output_end(&handle); 8124 out: 8125 namespaces_event->event_id.header.size = header_size; 8126 } 8127 8128 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8129 struct task_struct *task, 8130 const struct proc_ns_operations *ns_ops) 8131 { 8132 struct path ns_path; 8133 struct inode *ns_inode; 8134 int error; 8135 8136 error = ns_get_path(&ns_path, task, ns_ops); 8137 if (!error) { 8138 ns_inode = ns_path.dentry->d_inode; 8139 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8140 ns_link_info->ino = ns_inode->i_ino; 8141 path_put(&ns_path); 8142 } 8143 } 8144 8145 void perf_event_namespaces(struct task_struct *task) 8146 { 8147 struct perf_namespaces_event namespaces_event; 8148 struct perf_ns_link_info *ns_link_info; 8149 8150 if (!atomic_read(&nr_namespaces_events)) 8151 return; 8152 8153 namespaces_event = (struct perf_namespaces_event){ 8154 .task = task, 8155 .event_id = { 8156 .header = { 8157 .type = PERF_RECORD_NAMESPACES, 8158 .misc = 0, 8159 .size = sizeof(namespaces_event.event_id), 8160 }, 8161 /* .pid */ 8162 /* .tid */ 8163 .nr_namespaces = NR_NAMESPACES, 8164 /* .link_info[NR_NAMESPACES] */ 8165 }, 8166 }; 8167 8168 ns_link_info = namespaces_event.event_id.link_info; 8169 8170 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8171 task, &mntns_operations); 8172 8173 #ifdef CONFIG_USER_NS 8174 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8175 task, &userns_operations); 8176 #endif 8177 #ifdef CONFIG_NET_NS 8178 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8179 task, &netns_operations); 8180 #endif 8181 #ifdef CONFIG_UTS_NS 8182 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8183 task, &utsns_operations); 8184 #endif 8185 #ifdef CONFIG_IPC_NS 8186 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8187 task, &ipcns_operations); 8188 #endif 8189 #ifdef CONFIG_PID_NS 8190 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8191 task, &pidns_operations); 8192 #endif 8193 #ifdef CONFIG_CGROUPS 8194 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8195 task, &cgroupns_operations); 8196 #endif 8197 8198 perf_iterate_sb(perf_event_namespaces_output, 8199 &namespaces_event, 8200 NULL); 8201 } 8202 8203 /* 8204 * cgroup tracking 8205 */ 8206 #ifdef CONFIG_CGROUP_PERF 8207 8208 struct perf_cgroup_event { 8209 char *path; 8210 int path_size; 8211 struct { 8212 struct perf_event_header header; 8213 u64 id; 8214 char path[]; 8215 } event_id; 8216 }; 8217 8218 static int perf_event_cgroup_match(struct perf_event *event) 8219 { 8220 return event->attr.cgroup; 8221 } 8222 8223 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8224 { 8225 struct perf_cgroup_event *cgroup_event = data; 8226 struct perf_output_handle handle; 8227 struct perf_sample_data sample; 8228 u16 header_size = cgroup_event->event_id.header.size; 8229 int ret; 8230 8231 if (!perf_event_cgroup_match(event)) 8232 return; 8233 8234 perf_event_header__init_id(&cgroup_event->event_id.header, 8235 &sample, event); 8236 ret = perf_output_begin(&handle, &sample, event, 8237 cgroup_event->event_id.header.size); 8238 if (ret) 8239 goto out; 8240 8241 perf_output_put(&handle, cgroup_event->event_id); 8242 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8243 8244 perf_event__output_id_sample(event, &handle, &sample); 8245 8246 perf_output_end(&handle); 8247 out: 8248 cgroup_event->event_id.header.size = header_size; 8249 } 8250 8251 static void perf_event_cgroup(struct cgroup *cgrp) 8252 { 8253 struct perf_cgroup_event cgroup_event; 8254 char path_enomem[16] = "//enomem"; 8255 char *pathname; 8256 size_t size; 8257 8258 if (!atomic_read(&nr_cgroup_events)) 8259 return; 8260 8261 cgroup_event = (struct perf_cgroup_event){ 8262 .event_id = { 8263 .header = { 8264 .type = PERF_RECORD_CGROUP, 8265 .misc = 0, 8266 .size = sizeof(cgroup_event.event_id), 8267 }, 8268 .id = cgroup_id(cgrp), 8269 }, 8270 }; 8271 8272 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8273 if (pathname == NULL) { 8274 cgroup_event.path = path_enomem; 8275 } else { 8276 /* just to be sure to have enough space for alignment */ 8277 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8278 cgroup_event.path = pathname; 8279 } 8280 8281 /* 8282 * Since our buffer works in 8 byte units we need to align our string 8283 * size to a multiple of 8. However, we must guarantee the tail end is 8284 * zero'd out to avoid leaking random bits to userspace. 8285 */ 8286 size = strlen(cgroup_event.path) + 1; 8287 while (!IS_ALIGNED(size, sizeof(u64))) 8288 cgroup_event.path[size++] = '\0'; 8289 8290 cgroup_event.event_id.header.size += size; 8291 cgroup_event.path_size = size; 8292 8293 perf_iterate_sb(perf_event_cgroup_output, 8294 &cgroup_event, 8295 NULL); 8296 8297 kfree(pathname); 8298 } 8299 8300 #endif 8301 8302 /* 8303 * mmap tracking 8304 */ 8305 8306 struct perf_mmap_event { 8307 struct vm_area_struct *vma; 8308 8309 const char *file_name; 8310 int file_size; 8311 int maj, min; 8312 u64 ino; 8313 u64 ino_generation; 8314 u32 prot, flags; 8315 u8 build_id[BUILD_ID_SIZE_MAX]; 8316 u32 build_id_size; 8317 8318 struct { 8319 struct perf_event_header header; 8320 8321 u32 pid; 8322 u32 tid; 8323 u64 start; 8324 u64 len; 8325 u64 pgoff; 8326 } event_id; 8327 }; 8328 8329 static int perf_event_mmap_match(struct perf_event *event, 8330 void *data) 8331 { 8332 struct perf_mmap_event *mmap_event = data; 8333 struct vm_area_struct *vma = mmap_event->vma; 8334 int executable = vma->vm_flags & VM_EXEC; 8335 8336 return (!executable && event->attr.mmap_data) || 8337 (executable && (event->attr.mmap || event->attr.mmap2)); 8338 } 8339 8340 static void perf_event_mmap_output(struct perf_event *event, 8341 void *data) 8342 { 8343 struct perf_mmap_event *mmap_event = data; 8344 struct perf_output_handle handle; 8345 struct perf_sample_data sample; 8346 int size = mmap_event->event_id.header.size; 8347 u32 type = mmap_event->event_id.header.type; 8348 bool use_build_id; 8349 int ret; 8350 8351 if (!perf_event_mmap_match(event, data)) 8352 return; 8353 8354 if (event->attr.mmap2) { 8355 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8356 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8357 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8358 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8359 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8360 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8361 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8362 } 8363 8364 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8365 ret = perf_output_begin(&handle, &sample, event, 8366 mmap_event->event_id.header.size); 8367 if (ret) 8368 goto out; 8369 8370 mmap_event->event_id.pid = perf_event_pid(event, current); 8371 mmap_event->event_id.tid = perf_event_tid(event, current); 8372 8373 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8374 8375 if (event->attr.mmap2 && use_build_id) 8376 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8377 8378 perf_output_put(&handle, mmap_event->event_id); 8379 8380 if (event->attr.mmap2) { 8381 if (use_build_id) { 8382 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8383 8384 __output_copy(&handle, size, 4); 8385 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8386 } else { 8387 perf_output_put(&handle, mmap_event->maj); 8388 perf_output_put(&handle, mmap_event->min); 8389 perf_output_put(&handle, mmap_event->ino); 8390 perf_output_put(&handle, mmap_event->ino_generation); 8391 } 8392 perf_output_put(&handle, mmap_event->prot); 8393 perf_output_put(&handle, mmap_event->flags); 8394 } 8395 8396 __output_copy(&handle, mmap_event->file_name, 8397 mmap_event->file_size); 8398 8399 perf_event__output_id_sample(event, &handle, &sample); 8400 8401 perf_output_end(&handle); 8402 out: 8403 mmap_event->event_id.header.size = size; 8404 mmap_event->event_id.header.type = type; 8405 } 8406 8407 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8408 { 8409 struct vm_area_struct *vma = mmap_event->vma; 8410 struct file *file = vma->vm_file; 8411 int maj = 0, min = 0; 8412 u64 ino = 0, gen = 0; 8413 u32 prot = 0, flags = 0; 8414 unsigned int size; 8415 char tmp[16]; 8416 char *buf = NULL; 8417 char *name; 8418 8419 if (vma->vm_flags & VM_READ) 8420 prot |= PROT_READ; 8421 if (vma->vm_flags & VM_WRITE) 8422 prot |= PROT_WRITE; 8423 if (vma->vm_flags & VM_EXEC) 8424 prot |= PROT_EXEC; 8425 8426 if (vma->vm_flags & VM_MAYSHARE) 8427 flags = MAP_SHARED; 8428 else 8429 flags = MAP_PRIVATE; 8430 8431 if (vma->vm_flags & VM_LOCKED) 8432 flags |= MAP_LOCKED; 8433 if (is_vm_hugetlb_page(vma)) 8434 flags |= MAP_HUGETLB; 8435 8436 if (file) { 8437 struct inode *inode; 8438 dev_t dev; 8439 8440 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8441 if (!buf) { 8442 name = "//enomem"; 8443 goto cpy_name; 8444 } 8445 /* 8446 * d_path() works from the end of the rb backwards, so we 8447 * need to add enough zero bytes after the string to handle 8448 * the 64bit alignment we do later. 8449 */ 8450 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8451 if (IS_ERR(name)) { 8452 name = "//toolong"; 8453 goto cpy_name; 8454 } 8455 inode = file_inode(vma->vm_file); 8456 dev = inode->i_sb->s_dev; 8457 ino = inode->i_ino; 8458 gen = inode->i_generation; 8459 maj = MAJOR(dev); 8460 min = MINOR(dev); 8461 8462 goto got_name; 8463 } else { 8464 if (vma->vm_ops && vma->vm_ops->name) { 8465 name = (char *) vma->vm_ops->name(vma); 8466 if (name) 8467 goto cpy_name; 8468 } 8469 8470 name = (char *)arch_vma_name(vma); 8471 if (name) 8472 goto cpy_name; 8473 8474 if (vma->vm_start <= vma->vm_mm->start_brk && 8475 vma->vm_end >= vma->vm_mm->brk) { 8476 name = "[heap]"; 8477 goto cpy_name; 8478 } 8479 if (vma->vm_start <= vma->vm_mm->start_stack && 8480 vma->vm_end >= vma->vm_mm->start_stack) { 8481 name = "[stack]"; 8482 goto cpy_name; 8483 } 8484 8485 name = "//anon"; 8486 goto cpy_name; 8487 } 8488 8489 cpy_name: 8490 strlcpy(tmp, name, sizeof(tmp)); 8491 name = tmp; 8492 got_name: 8493 /* 8494 * Since our buffer works in 8 byte units we need to align our string 8495 * size to a multiple of 8. However, we must guarantee the tail end is 8496 * zero'd out to avoid leaking random bits to userspace. 8497 */ 8498 size = strlen(name)+1; 8499 while (!IS_ALIGNED(size, sizeof(u64))) 8500 name[size++] = '\0'; 8501 8502 mmap_event->file_name = name; 8503 mmap_event->file_size = size; 8504 mmap_event->maj = maj; 8505 mmap_event->min = min; 8506 mmap_event->ino = ino; 8507 mmap_event->ino_generation = gen; 8508 mmap_event->prot = prot; 8509 mmap_event->flags = flags; 8510 8511 if (!(vma->vm_flags & VM_EXEC)) 8512 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8513 8514 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8515 8516 if (atomic_read(&nr_build_id_events)) 8517 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8518 8519 perf_iterate_sb(perf_event_mmap_output, 8520 mmap_event, 8521 NULL); 8522 8523 kfree(buf); 8524 } 8525 8526 /* 8527 * Check whether inode and address range match filter criteria. 8528 */ 8529 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8530 struct file *file, unsigned long offset, 8531 unsigned long size) 8532 { 8533 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8534 if (!filter->path.dentry) 8535 return false; 8536 8537 if (d_inode(filter->path.dentry) != file_inode(file)) 8538 return false; 8539 8540 if (filter->offset > offset + size) 8541 return false; 8542 8543 if (filter->offset + filter->size < offset) 8544 return false; 8545 8546 return true; 8547 } 8548 8549 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8550 struct vm_area_struct *vma, 8551 struct perf_addr_filter_range *fr) 8552 { 8553 unsigned long vma_size = vma->vm_end - vma->vm_start; 8554 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8555 struct file *file = vma->vm_file; 8556 8557 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8558 return false; 8559 8560 if (filter->offset < off) { 8561 fr->start = vma->vm_start; 8562 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8563 } else { 8564 fr->start = vma->vm_start + filter->offset - off; 8565 fr->size = min(vma->vm_end - fr->start, filter->size); 8566 } 8567 8568 return true; 8569 } 8570 8571 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8572 { 8573 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8574 struct vm_area_struct *vma = data; 8575 struct perf_addr_filter *filter; 8576 unsigned int restart = 0, count = 0; 8577 unsigned long flags; 8578 8579 if (!has_addr_filter(event)) 8580 return; 8581 8582 if (!vma->vm_file) 8583 return; 8584 8585 raw_spin_lock_irqsave(&ifh->lock, flags); 8586 list_for_each_entry(filter, &ifh->list, entry) { 8587 if (perf_addr_filter_vma_adjust(filter, vma, 8588 &event->addr_filter_ranges[count])) 8589 restart++; 8590 8591 count++; 8592 } 8593 8594 if (restart) 8595 event->addr_filters_gen++; 8596 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8597 8598 if (restart) 8599 perf_event_stop(event, 1); 8600 } 8601 8602 /* 8603 * Adjust all task's events' filters to the new vma 8604 */ 8605 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8606 { 8607 struct perf_event_context *ctx; 8608 int ctxn; 8609 8610 /* 8611 * Data tracing isn't supported yet and as such there is no need 8612 * to keep track of anything that isn't related to executable code: 8613 */ 8614 if (!(vma->vm_flags & VM_EXEC)) 8615 return; 8616 8617 rcu_read_lock(); 8618 for_each_task_context_nr(ctxn) { 8619 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8620 if (!ctx) 8621 continue; 8622 8623 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8624 } 8625 rcu_read_unlock(); 8626 } 8627 8628 void perf_event_mmap(struct vm_area_struct *vma) 8629 { 8630 struct perf_mmap_event mmap_event; 8631 8632 if (!atomic_read(&nr_mmap_events)) 8633 return; 8634 8635 mmap_event = (struct perf_mmap_event){ 8636 .vma = vma, 8637 /* .file_name */ 8638 /* .file_size */ 8639 .event_id = { 8640 .header = { 8641 .type = PERF_RECORD_MMAP, 8642 .misc = PERF_RECORD_MISC_USER, 8643 /* .size */ 8644 }, 8645 /* .pid */ 8646 /* .tid */ 8647 .start = vma->vm_start, 8648 .len = vma->vm_end - vma->vm_start, 8649 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8650 }, 8651 /* .maj (attr_mmap2 only) */ 8652 /* .min (attr_mmap2 only) */ 8653 /* .ino (attr_mmap2 only) */ 8654 /* .ino_generation (attr_mmap2 only) */ 8655 /* .prot (attr_mmap2 only) */ 8656 /* .flags (attr_mmap2 only) */ 8657 }; 8658 8659 perf_addr_filters_adjust(vma); 8660 perf_event_mmap_event(&mmap_event); 8661 } 8662 8663 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8664 unsigned long size, u64 flags) 8665 { 8666 struct perf_output_handle handle; 8667 struct perf_sample_data sample; 8668 struct perf_aux_event { 8669 struct perf_event_header header; 8670 u64 offset; 8671 u64 size; 8672 u64 flags; 8673 } rec = { 8674 .header = { 8675 .type = PERF_RECORD_AUX, 8676 .misc = 0, 8677 .size = sizeof(rec), 8678 }, 8679 .offset = head, 8680 .size = size, 8681 .flags = flags, 8682 }; 8683 int ret; 8684 8685 perf_event_header__init_id(&rec.header, &sample, event); 8686 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8687 8688 if (ret) 8689 return; 8690 8691 perf_output_put(&handle, rec); 8692 perf_event__output_id_sample(event, &handle, &sample); 8693 8694 perf_output_end(&handle); 8695 } 8696 8697 /* 8698 * Lost/dropped samples logging 8699 */ 8700 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8701 { 8702 struct perf_output_handle handle; 8703 struct perf_sample_data sample; 8704 int ret; 8705 8706 struct { 8707 struct perf_event_header header; 8708 u64 lost; 8709 } lost_samples_event = { 8710 .header = { 8711 .type = PERF_RECORD_LOST_SAMPLES, 8712 .misc = 0, 8713 .size = sizeof(lost_samples_event), 8714 }, 8715 .lost = lost, 8716 }; 8717 8718 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8719 8720 ret = perf_output_begin(&handle, &sample, event, 8721 lost_samples_event.header.size); 8722 if (ret) 8723 return; 8724 8725 perf_output_put(&handle, lost_samples_event); 8726 perf_event__output_id_sample(event, &handle, &sample); 8727 perf_output_end(&handle); 8728 } 8729 8730 /* 8731 * context_switch tracking 8732 */ 8733 8734 struct perf_switch_event { 8735 struct task_struct *task; 8736 struct task_struct *next_prev; 8737 8738 struct { 8739 struct perf_event_header header; 8740 u32 next_prev_pid; 8741 u32 next_prev_tid; 8742 } event_id; 8743 }; 8744 8745 static int perf_event_switch_match(struct perf_event *event) 8746 { 8747 return event->attr.context_switch; 8748 } 8749 8750 static void perf_event_switch_output(struct perf_event *event, void *data) 8751 { 8752 struct perf_switch_event *se = data; 8753 struct perf_output_handle handle; 8754 struct perf_sample_data sample; 8755 int ret; 8756 8757 if (!perf_event_switch_match(event)) 8758 return; 8759 8760 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8761 if (event->ctx->task) { 8762 se->event_id.header.type = PERF_RECORD_SWITCH; 8763 se->event_id.header.size = sizeof(se->event_id.header); 8764 } else { 8765 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8766 se->event_id.header.size = sizeof(se->event_id); 8767 se->event_id.next_prev_pid = 8768 perf_event_pid(event, se->next_prev); 8769 se->event_id.next_prev_tid = 8770 perf_event_tid(event, se->next_prev); 8771 } 8772 8773 perf_event_header__init_id(&se->event_id.header, &sample, event); 8774 8775 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8776 if (ret) 8777 return; 8778 8779 if (event->ctx->task) 8780 perf_output_put(&handle, se->event_id.header); 8781 else 8782 perf_output_put(&handle, se->event_id); 8783 8784 perf_event__output_id_sample(event, &handle, &sample); 8785 8786 perf_output_end(&handle); 8787 } 8788 8789 static void perf_event_switch(struct task_struct *task, 8790 struct task_struct *next_prev, bool sched_in) 8791 { 8792 struct perf_switch_event switch_event; 8793 8794 /* N.B. caller checks nr_switch_events != 0 */ 8795 8796 switch_event = (struct perf_switch_event){ 8797 .task = task, 8798 .next_prev = next_prev, 8799 .event_id = { 8800 .header = { 8801 /* .type */ 8802 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8803 /* .size */ 8804 }, 8805 /* .next_prev_pid */ 8806 /* .next_prev_tid */ 8807 }, 8808 }; 8809 8810 if (!sched_in && task->on_rq) { 8811 switch_event.event_id.header.misc |= 8812 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8813 } 8814 8815 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 8816 } 8817 8818 /* 8819 * IRQ throttle logging 8820 */ 8821 8822 static void perf_log_throttle(struct perf_event *event, int enable) 8823 { 8824 struct perf_output_handle handle; 8825 struct perf_sample_data sample; 8826 int ret; 8827 8828 struct { 8829 struct perf_event_header header; 8830 u64 time; 8831 u64 id; 8832 u64 stream_id; 8833 } throttle_event = { 8834 .header = { 8835 .type = PERF_RECORD_THROTTLE, 8836 .misc = 0, 8837 .size = sizeof(throttle_event), 8838 }, 8839 .time = perf_event_clock(event), 8840 .id = primary_event_id(event), 8841 .stream_id = event->id, 8842 }; 8843 8844 if (enable) 8845 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8846 8847 perf_event_header__init_id(&throttle_event.header, &sample, event); 8848 8849 ret = perf_output_begin(&handle, &sample, event, 8850 throttle_event.header.size); 8851 if (ret) 8852 return; 8853 8854 perf_output_put(&handle, throttle_event); 8855 perf_event__output_id_sample(event, &handle, &sample); 8856 perf_output_end(&handle); 8857 } 8858 8859 /* 8860 * ksymbol register/unregister tracking 8861 */ 8862 8863 struct perf_ksymbol_event { 8864 const char *name; 8865 int name_len; 8866 struct { 8867 struct perf_event_header header; 8868 u64 addr; 8869 u32 len; 8870 u16 ksym_type; 8871 u16 flags; 8872 } event_id; 8873 }; 8874 8875 static int perf_event_ksymbol_match(struct perf_event *event) 8876 { 8877 return event->attr.ksymbol; 8878 } 8879 8880 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8881 { 8882 struct perf_ksymbol_event *ksymbol_event = data; 8883 struct perf_output_handle handle; 8884 struct perf_sample_data sample; 8885 int ret; 8886 8887 if (!perf_event_ksymbol_match(event)) 8888 return; 8889 8890 perf_event_header__init_id(&ksymbol_event->event_id.header, 8891 &sample, event); 8892 ret = perf_output_begin(&handle, &sample, event, 8893 ksymbol_event->event_id.header.size); 8894 if (ret) 8895 return; 8896 8897 perf_output_put(&handle, ksymbol_event->event_id); 8898 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8899 perf_event__output_id_sample(event, &handle, &sample); 8900 8901 perf_output_end(&handle); 8902 } 8903 8904 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8905 const char *sym) 8906 { 8907 struct perf_ksymbol_event ksymbol_event; 8908 char name[KSYM_NAME_LEN]; 8909 u16 flags = 0; 8910 int name_len; 8911 8912 if (!atomic_read(&nr_ksymbol_events)) 8913 return; 8914 8915 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8916 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8917 goto err; 8918 8919 strlcpy(name, sym, KSYM_NAME_LEN); 8920 name_len = strlen(name) + 1; 8921 while (!IS_ALIGNED(name_len, sizeof(u64))) 8922 name[name_len++] = '\0'; 8923 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8924 8925 if (unregister) 8926 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8927 8928 ksymbol_event = (struct perf_ksymbol_event){ 8929 .name = name, 8930 .name_len = name_len, 8931 .event_id = { 8932 .header = { 8933 .type = PERF_RECORD_KSYMBOL, 8934 .size = sizeof(ksymbol_event.event_id) + 8935 name_len, 8936 }, 8937 .addr = addr, 8938 .len = len, 8939 .ksym_type = ksym_type, 8940 .flags = flags, 8941 }, 8942 }; 8943 8944 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8945 return; 8946 err: 8947 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8948 } 8949 8950 /* 8951 * bpf program load/unload tracking 8952 */ 8953 8954 struct perf_bpf_event { 8955 struct bpf_prog *prog; 8956 struct { 8957 struct perf_event_header header; 8958 u16 type; 8959 u16 flags; 8960 u32 id; 8961 u8 tag[BPF_TAG_SIZE]; 8962 } event_id; 8963 }; 8964 8965 static int perf_event_bpf_match(struct perf_event *event) 8966 { 8967 return event->attr.bpf_event; 8968 } 8969 8970 static void perf_event_bpf_output(struct perf_event *event, void *data) 8971 { 8972 struct perf_bpf_event *bpf_event = data; 8973 struct perf_output_handle handle; 8974 struct perf_sample_data sample; 8975 int ret; 8976 8977 if (!perf_event_bpf_match(event)) 8978 return; 8979 8980 perf_event_header__init_id(&bpf_event->event_id.header, 8981 &sample, event); 8982 ret = perf_output_begin(&handle, data, event, 8983 bpf_event->event_id.header.size); 8984 if (ret) 8985 return; 8986 8987 perf_output_put(&handle, bpf_event->event_id); 8988 perf_event__output_id_sample(event, &handle, &sample); 8989 8990 perf_output_end(&handle); 8991 } 8992 8993 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8994 enum perf_bpf_event_type type) 8995 { 8996 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8997 int i; 8998 8999 if (prog->aux->func_cnt == 0) { 9000 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9001 (u64)(unsigned long)prog->bpf_func, 9002 prog->jited_len, unregister, 9003 prog->aux->ksym.name); 9004 } else { 9005 for (i = 0; i < prog->aux->func_cnt; i++) { 9006 struct bpf_prog *subprog = prog->aux->func[i]; 9007 9008 perf_event_ksymbol( 9009 PERF_RECORD_KSYMBOL_TYPE_BPF, 9010 (u64)(unsigned long)subprog->bpf_func, 9011 subprog->jited_len, unregister, 9012 prog->aux->ksym.name); 9013 } 9014 } 9015 } 9016 9017 void perf_event_bpf_event(struct bpf_prog *prog, 9018 enum perf_bpf_event_type type, 9019 u16 flags) 9020 { 9021 struct perf_bpf_event bpf_event; 9022 9023 if (type <= PERF_BPF_EVENT_UNKNOWN || 9024 type >= PERF_BPF_EVENT_MAX) 9025 return; 9026 9027 switch (type) { 9028 case PERF_BPF_EVENT_PROG_LOAD: 9029 case PERF_BPF_EVENT_PROG_UNLOAD: 9030 if (atomic_read(&nr_ksymbol_events)) 9031 perf_event_bpf_emit_ksymbols(prog, type); 9032 break; 9033 default: 9034 break; 9035 } 9036 9037 if (!atomic_read(&nr_bpf_events)) 9038 return; 9039 9040 bpf_event = (struct perf_bpf_event){ 9041 .prog = prog, 9042 .event_id = { 9043 .header = { 9044 .type = PERF_RECORD_BPF_EVENT, 9045 .size = sizeof(bpf_event.event_id), 9046 }, 9047 .type = type, 9048 .flags = flags, 9049 .id = prog->aux->id, 9050 }, 9051 }; 9052 9053 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9054 9055 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9056 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9057 } 9058 9059 struct perf_text_poke_event { 9060 const void *old_bytes; 9061 const void *new_bytes; 9062 size_t pad; 9063 u16 old_len; 9064 u16 new_len; 9065 9066 struct { 9067 struct perf_event_header header; 9068 9069 u64 addr; 9070 } event_id; 9071 }; 9072 9073 static int perf_event_text_poke_match(struct perf_event *event) 9074 { 9075 return event->attr.text_poke; 9076 } 9077 9078 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9079 { 9080 struct perf_text_poke_event *text_poke_event = data; 9081 struct perf_output_handle handle; 9082 struct perf_sample_data sample; 9083 u64 padding = 0; 9084 int ret; 9085 9086 if (!perf_event_text_poke_match(event)) 9087 return; 9088 9089 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9090 9091 ret = perf_output_begin(&handle, &sample, event, 9092 text_poke_event->event_id.header.size); 9093 if (ret) 9094 return; 9095 9096 perf_output_put(&handle, text_poke_event->event_id); 9097 perf_output_put(&handle, text_poke_event->old_len); 9098 perf_output_put(&handle, text_poke_event->new_len); 9099 9100 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9101 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9102 9103 if (text_poke_event->pad) 9104 __output_copy(&handle, &padding, text_poke_event->pad); 9105 9106 perf_event__output_id_sample(event, &handle, &sample); 9107 9108 perf_output_end(&handle); 9109 } 9110 9111 void perf_event_text_poke(const void *addr, const void *old_bytes, 9112 size_t old_len, const void *new_bytes, size_t new_len) 9113 { 9114 struct perf_text_poke_event text_poke_event; 9115 size_t tot, pad; 9116 9117 if (!atomic_read(&nr_text_poke_events)) 9118 return; 9119 9120 tot = sizeof(text_poke_event.old_len) + old_len; 9121 tot += sizeof(text_poke_event.new_len) + new_len; 9122 pad = ALIGN(tot, sizeof(u64)) - tot; 9123 9124 text_poke_event = (struct perf_text_poke_event){ 9125 .old_bytes = old_bytes, 9126 .new_bytes = new_bytes, 9127 .pad = pad, 9128 .old_len = old_len, 9129 .new_len = new_len, 9130 .event_id = { 9131 .header = { 9132 .type = PERF_RECORD_TEXT_POKE, 9133 .misc = PERF_RECORD_MISC_KERNEL, 9134 .size = sizeof(text_poke_event.event_id) + tot + pad, 9135 }, 9136 .addr = (unsigned long)addr, 9137 }, 9138 }; 9139 9140 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9141 } 9142 9143 void perf_event_itrace_started(struct perf_event *event) 9144 { 9145 event->attach_state |= PERF_ATTACH_ITRACE; 9146 } 9147 9148 static void perf_log_itrace_start(struct perf_event *event) 9149 { 9150 struct perf_output_handle handle; 9151 struct perf_sample_data sample; 9152 struct perf_aux_event { 9153 struct perf_event_header header; 9154 u32 pid; 9155 u32 tid; 9156 } rec; 9157 int ret; 9158 9159 if (event->parent) 9160 event = event->parent; 9161 9162 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9163 event->attach_state & PERF_ATTACH_ITRACE) 9164 return; 9165 9166 rec.header.type = PERF_RECORD_ITRACE_START; 9167 rec.header.misc = 0; 9168 rec.header.size = sizeof(rec); 9169 rec.pid = perf_event_pid(event, current); 9170 rec.tid = perf_event_tid(event, current); 9171 9172 perf_event_header__init_id(&rec.header, &sample, event); 9173 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9174 9175 if (ret) 9176 return; 9177 9178 perf_output_put(&handle, rec); 9179 perf_event__output_id_sample(event, &handle, &sample); 9180 9181 perf_output_end(&handle); 9182 } 9183 9184 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9185 { 9186 struct perf_output_handle handle; 9187 struct perf_sample_data sample; 9188 struct perf_aux_event { 9189 struct perf_event_header header; 9190 u64 hw_id; 9191 } rec; 9192 int ret; 9193 9194 if (event->parent) 9195 event = event->parent; 9196 9197 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9198 rec.header.misc = 0; 9199 rec.header.size = sizeof(rec); 9200 rec.hw_id = hw_id; 9201 9202 perf_event_header__init_id(&rec.header, &sample, event); 9203 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9204 9205 if (ret) 9206 return; 9207 9208 perf_output_put(&handle, rec); 9209 perf_event__output_id_sample(event, &handle, &sample); 9210 9211 perf_output_end(&handle); 9212 } 9213 9214 static int 9215 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9216 { 9217 struct hw_perf_event *hwc = &event->hw; 9218 int ret = 0; 9219 u64 seq; 9220 9221 seq = __this_cpu_read(perf_throttled_seq); 9222 if (seq != hwc->interrupts_seq) { 9223 hwc->interrupts_seq = seq; 9224 hwc->interrupts = 1; 9225 } else { 9226 hwc->interrupts++; 9227 if (unlikely(throttle 9228 && hwc->interrupts >= max_samples_per_tick)) { 9229 __this_cpu_inc(perf_throttled_count); 9230 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9231 hwc->interrupts = MAX_INTERRUPTS; 9232 perf_log_throttle(event, 0); 9233 ret = 1; 9234 } 9235 } 9236 9237 if (event->attr.freq) { 9238 u64 now = perf_clock(); 9239 s64 delta = now - hwc->freq_time_stamp; 9240 9241 hwc->freq_time_stamp = now; 9242 9243 if (delta > 0 && delta < 2*TICK_NSEC) 9244 perf_adjust_period(event, delta, hwc->last_period, true); 9245 } 9246 9247 return ret; 9248 } 9249 9250 int perf_event_account_interrupt(struct perf_event *event) 9251 { 9252 return __perf_event_account_interrupt(event, 1); 9253 } 9254 9255 /* 9256 * Generic event overflow handling, sampling. 9257 */ 9258 9259 static int __perf_event_overflow(struct perf_event *event, 9260 int throttle, struct perf_sample_data *data, 9261 struct pt_regs *regs) 9262 { 9263 int events = atomic_read(&event->event_limit); 9264 int ret = 0; 9265 9266 /* 9267 * Non-sampling counters might still use the PMI to fold short 9268 * hardware counters, ignore those. 9269 */ 9270 if (unlikely(!is_sampling_event(event))) 9271 return 0; 9272 9273 ret = __perf_event_account_interrupt(event, throttle); 9274 9275 /* 9276 * XXX event_limit might not quite work as expected on inherited 9277 * events 9278 */ 9279 9280 event->pending_kill = POLL_IN; 9281 if (events && atomic_dec_and_test(&event->event_limit)) { 9282 ret = 1; 9283 event->pending_kill = POLL_HUP; 9284 event->pending_addr = data->addr; 9285 9286 perf_event_disable_inatomic(event); 9287 } 9288 9289 READ_ONCE(event->overflow_handler)(event, data, regs); 9290 9291 if (*perf_event_fasync(event) && event->pending_kill) { 9292 event->pending_wakeup = 1; 9293 irq_work_queue(&event->pending); 9294 } 9295 9296 return ret; 9297 } 9298 9299 int perf_event_overflow(struct perf_event *event, 9300 struct perf_sample_data *data, 9301 struct pt_regs *regs) 9302 { 9303 return __perf_event_overflow(event, 1, data, regs); 9304 } 9305 9306 /* 9307 * Generic software event infrastructure 9308 */ 9309 9310 struct swevent_htable { 9311 struct swevent_hlist *swevent_hlist; 9312 struct mutex hlist_mutex; 9313 int hlist_refcount; 9314 9315 /* Recursion avoidance in each contexts */ 9316 int recursion[PERF_NR_CONTEXTS]; 9317 }; 9318 9319 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9320 9321 /* 9322 * We directly increment event->count and keep a second value in 9323 * event->hw.period_left to count intervals. This period event 9324 * is kept in the range [-sample_period, 0] so that we can use the 9325 * sign as trigger. 9326 */ 9327 9328 u64 perf_swevent_set_period(struct perf_event *event) 9329 { 9330 struct hw_perf_event *hwc = &event->hw; 9331 u64 period = hwc->last_period; 9332 u64 nr, offset; 9333 s64 old, val; 9334 9335 hwc->last_period = hwc->sample_period; 9336 9337 again: 9338 old = val = local64_read(&hwc->period_left); 9339 if (val < 0) 9340 return 0; 9341 9342 nr = div64_u64(period + val, period); 9343 offset = nr * period; 9344 val -= offset; 9345 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9346 goto again; 9347 9348 return nr; 9349 } 9350 9351 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9352 struct perf_sample_data *data, 9353 struct pt_regs *regs) 9354 { 9355 struct hw_perf_event *hwc = &event->hw; 9356 int throttle = 0; 9357 9358 if (!overflow) 9359 overflow = perf_swevent_set_period(event); 9360 9361 if (hwc->interrupts == MAX_INTERRUPTS) 9362 return; 9363 9364 for (; overflow; overflow--) { 9365 if (__perf_event_overflow(event, throttle, 9366 data, regs)) { 9367 /* 9368 * We inhibit the overflow from happening when 9369 * hwc->interrupts == MAX_INTERRUPTS. 9370 */ 9371 break; 9372 } 9373 throttle = 1; 9374 } 9375 } 9376 9377 static void perf_swevent_event(struct perf_event *event, u64 nr, 9378 struct perf_sample_data *data, 9379 struct pt_regs *regs) 9380 { 9381 struct hw_perf_event *hwc = &event->hw; 9382 9383 local64_add(nr, &event->count); 9384 9385 if (!regs) 9386 return; 9387 9388 if (!is_sampling_event(event)) 9389 return; 9390 9391 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9392 data->period = nr; 9393 return perf_swevent_overflow(event, 1, data, regs); 9394 } else 9395 data->period = event->hw.last_period; 9396 9397 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9398 return perf_swevent_overflow(event, 1, data, regs); 9399 9400 if (local64_add_negative(nr, &hwc->period_left)) 9401 return; 9402 9403 perf_swevent_overflow(event, 0, data, regs); 9404 } 9405 9406 static int perf_exclude_event(struct perf_event *event, 9407 struct pt_regs *regs) 9408 { 9409 if (event->hw.state & PERF_HES_STOPPED) 9410 return 1; 9411 9412 if (regs) { 9413 if (event->attr.exclude_user && user_mode(regs)) 9414 return 1; 9415 9416 if (event->attr.exclude_kernel && !user_mode(regs)) 9417 return 1; 9418 } 9419 9420 return 0; 9421 } 9422 9423 static int perf_swevent_match(struct perf_event *event, 9424 enum perf_type_id type, 9425 u32 event_id, 9426 struct perf_sample_data *data, 9427 struct pt_regs *regs) 9428 { 9429 if (event->attr.type != type) 9430 return 0; 9431 9432 if (event->attr.config != event_id) 9433 return 0; 9434 9435 if (perf_exclude_event(event, regs)) 9436 return 0; 9437 9438 return 1; 9439 } 9440 9441 static inline u64 swevent_hash(u64 type, u32 event_id) 9442 { 9443 u64 val = event_id | (type << 32); 9444 9445 return hash_64(val, SWEVENT_HLIST_BITS); 9446 } 9447 9448 static inline struct hlist_head * 9449 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9450 { 9451 u64 hash = swevent_hash(type, event_id); 9452 9453 return &hlist->heads[hash]; 9454 } 9455 9456 /* For the read side: events when they trigger */ 9457 static inline struct hlist_head * 9458 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9459 { 9460 struct swevent_hlist *hlist; 9461 9462 hlist = rcu_dereference(swhash->swevent_hlist); 9463 if (!hlist) 9464 return NULL; 9465 9466 return __find_swevent_head(hlist, type, event_id); 9467 } 9468 9469 /* For the event head insertion and removal in the hlist */ 9470 static inline struct hlist_head * 9471 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9472 { 9473 struct swevent_hlist *hlist; 9474 u32 event_id = event->attr.config; 9475 u64 type = event->attr.type; 9476 9477 /* 9478 * Event scheduling is always serialized against hlist allocation 9479 * and release. Which makes the protected version suitable here. 9480 * The context lock guarantees that. 9481 */ 9482 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9483 lockdep_is_held(&event->ctx->lock)); 9484 if (!hlist) 9485 return NULL; 9486 9487 return __find_swevent_head(hlist, type, event_id); 9488 } 9489 9490 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9491 u64 nr, 9492 struct perf_sample_data *data, 9493 struct pt_regs *regs) 9494 { 9495 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9496 struct perf_event *event; 9497 struct hlist_head *head; 9498 9499 rcu_read_lock(); 9500 head = find_swevent_head_rcu(swhash, type, event_id); 9501 if (!head) 9502 goto end; 9503 9504 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9505 if (perf_swevent_match(event, type, event_id, data, regs)) 9506 perf_swevent_event(event, nr, data, regs); 9507 } 9508 end: 9509 rcu_read_unlock(); 9510 } 9511 9512 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9513 9514 int perf_swevent_get_recursion_context(void) 9515 { 9516 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9517 9518 return get_recursion_context(swhash->recursion); 9519 } 9520 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9521 9522 void perf_swevent_put_recursion_context(int rctx) 9523 { 9524 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9525 9526 put_recursion_context(swhash->recursion, rctx); 9527 } 9528 9529 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9530 { 9531 struct perf_sample_data data; 9532 9533 if (WARN_ON_ONCE(!regs)) 9534 return; 9535 9536 perf_sample_data_init(&data, addr, 0); 9537 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9538 } 9539 9540 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9541 { 9542 int rctx; 9543 9544 preempt_disable_notrace(); 9545 rctx = perf_swevent_get_recursion_context(); 9546 if (unlikely(rctx < 0)) 9547 goto fail; 9548 9549 ___perf_sw_event(event_id, nr, regs, addr); 9550 9551 perf_swevent_put_recursion_context(rctx); 9552 fail: 9553 preempt_enable_notrace(); 9554 } 9555 9556 static void perf_swevent_read(struct perf_event *event) 9557 { 9558 } 9559 9560 static int perf_swevent_add(struct perf_event *event, int flags) 9561 { 9562 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9563 struct hw_perf_event *hwc = &event->hw; 9564 struct hlist_head *head; 9565 9566 if (is_sampling_event(event)) { 9567 hwc->last_period = hwc->sample_period; 9568 perf_swevent_set_period(event); 9569 } 9570 9571 hwc->state = !(flags & PERF_EF_START); 9572 9573 head = find_swevent_head(swhash, event); 9574 if (WARN_ON_ONCE(!head)) 9575 return -EINVAL; 9576 9577 hlist_add_head_rcu(&event->hlist_entry, head); 9578 perf_event_update_userpage(event); 9579 9580 return 0; 9581 } 9582 9583 static void perf_swevent_del(struct perf_event *event, int flags) 9584 { 9585 hlist_del_rcu(&event->hlist_entry); 9586 } 9587 9588 static void perf_swevent_start(struct perf_event *event, int flags) 9589 { 9590 event->hw.state = 0; 9591 } 9592 9593 static void perf_swevent_stop(struct perf_event *event, int flags) 9594 { 9595 event->hw.state = PERF_HES_STOPPED; 9596 } 9597 9598 /* Deref the hlist from the update side */ 9599 static inline struct swevent_hlist * 9600 swevent_hlist_deref(struct swevent_htable *swhash) 9601 { 9602 return rcu_dereference_protected(swhash->swevent_hlist, 9603 lockdep_is_held(&swhash->hlist_mutex)); 9604 } 9605 9606 static void swevent_hlist_release(struct swevent_htable *swhash) 9607 { 9608 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9609 9610 if (!hlist) 9611 return; 9612 9613 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9614 kfree_rcu(hlist, rcu_head); 9615 } 9616 9617 static void swevent_hlist_put_cpu(int cpu) 9618 { 9619 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9620 9621 mutex_lock(&swhash->hlist_mutex); 9622 9623 if (!--swhash->hlist_refcount) 9624 swevent_hlist_release(swhash); 9625 9626 mutex_unlock(&swhash->hlist_mutex); 9627 } 9628 9629 static void swevent_hlist_put(void) 9630 { 9631 int cpu; 9632 9633 for_each_possible_cpu(cpu) 9634 swevent_hlist_put_cpu(cpu); 9635 } 9636 9637 static int swevent_hlist_get_cpu(int cpu) 9638 { 9639 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9640 int err = 0; 9641 9642 mutex_lock(&swhash->hlist_mutex); 9643 if (!swevent_hlist_deref(swhash) && 9644 cpumask_test_cpu(cpu, perf_online_mask)) { 9645 struct swevent_hlist *hlist; 9646 9647 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9648 if (!hlist) { 9649 err = -ENOMEM; 9650 goto exit; 9651 } 9652 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9653 } 9654 swhash->hlist_refcount++; 9655 exit: 9656 mutex_unlock(&swhash->hlist_mutex); 9657 9658 return err; 9659 } 9660 9661 static int swevent_hlist_get(void) 9662 { 9663 int err, cpu, failed_cpu; 9664 9665 mutex_lock(&pmus_lock); 9666 for_each_possible_cpu(cpu) { 9667 err = swevent_hlist_get_cpu(cpu); 9668 if (err) { 9669 failed_cpu = cpu; 9670 goto fail; 9671 } 9672 } 9673 mutex_unlock(&pmus_lock); 9674 return 0; 9675 fail: 9676 for_each_possible_cpu(cpu) { 9677 if (cpu == failed_cpu) 9678 break; 9679 swevent_hlist_put_cpu(cpu); 9680 } 9681 mutex_unlock(&pmus_lock); 9682 return err; 9683 } 9684 9685 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9686 9687 static void sw_perf_event_destroy(struct perf_event *event) 9688 { 9689 u64 event_id = event->attr.config; 9690 9691 WARN_ON(event->parent); 9692 9693 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9694 swevent_hlist_put(); 9695 } 9696 9697 static int perf_swevent_init(struct perf_event *event) 9698 { 9699 u64 event_id = event->attr.config; 9700 9701 if (event->attr.type != PERF_TYPE_SOFTWARE) 9702 return -ENOENT; 9703 9704 /* 9705 * no branch sampling for software events 9706 */ 9707 if (has_branch_stack(event)) 9708 return -EOPNOTSUPP; 9709 9710 switch (event_id) { 9711 case PERF_COUNT_SW_CPU_CLOCK: 9712 case PERF_COUNT_SW_TASK_CLOCK: 9713 return -ENOENT; 9714 9715 default: 9716 break; 9717 } 9718 9719 if (event_id >= PERF_COUNT_SW_MAX) 9720 return -ENOENT; 9721 9722 if (!event->parent) { 9723 int err; 9724 9725 err = swevent_hlist_get(); 9726 if (err) 9727 return err; 9728 9729 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9730 event->destroy = sw_perf_event_destroy; 9731 } 9732 9733 return 0; 9734 } 9735 9736 static struct pmu perf_swevent = { 9737 .task_ctx_nr = perf_sw_context, 9738 9739 .capabilities = PERF_PMU_CAP_NO_NMI, 9740 9741 .event_init = perf_swevent_init, 9742 .add = perf_swevent_add, 9743 .del = perf_swevent_del, 9744 .start = perf_swevent_start, 9745 .stop = perf_swevent_stop, 9746 .read = perf_swevent_read, 9747 }; 9748 9749 #ifdef CONFIG_EVENT_TRACING 9750 9751 static int perf_tp_filter_match(struct perf_event *event, 9752 struct perf_sample_data *data) 9753 { 9754 void *record = data->raw->frag.data; 9755 9756 /* only top level events have filters set */ 9757 if (event->parent) 9758 event = event->parent; 9759 9760 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9761 return 1; 9762 return 0; 9763 } 9764 9765 static int perf_tp_event_match(struct perf_event *event, 9766 struct perf_sample_data *data, 9767 struct pt_regs *regs) 9768 { 9769 if (event->hw.state & PERF_HES_STOPPED) 9770 return 0; 9771 /* 9772 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9773 */ 9774 if (event->attr.exclude_kernel && !user_mode(regs)) 9775 return 0; 9776 9777 if (!perf_tp_filter_match(event, data)) 9778 return 0; 9779 9780 return 1; 9781 } 9782 9783 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9784 struct trace_event_call *call, u64 count, 9785 struct pt_regs *regs, struct hlist_head *head, 9786 struct task_struct *task) 9787 { 9788 if (bpf_prog_array_valid(call)) { 9789 *(struct pt_regs **)raw_data = regs; 9790 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9791 perf_swevent_put_recursion_context(rctx); 9792 return; 9793 } 9794 } 9795 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9796 rctx, task); 9797 } 9798 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9799 9800 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9801 struct pt_regs *regs, struct hlist_head *head, int rctx, 9802 struct task_struct *task) 9803 { 9804 struct perf_sample_data data; 9805 struct perf_event *event; 9806 9807 struct perf_raw_record raw = { 9808 .frag = { 9809 .size = entry_size, 9810 .data = record, 9811 }, 9812 }; 9813 9814 perf_sample_data_init(&data, 0, 0); 9815 data.raw = &raw; 9816 9817 perf_trace_buf_update(record, event_type); 9818 9819 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9820 if (perf_tp_event_match(event, &data, regs)) 9821 perf_swevent_event(event, count, &data, regs); 9822 } 9823 9824 /* 9825 * If we got specified a target task, also iterate its context and 9826 * deliver this event there too. 9827 */ 9828 if (task && task != current) { 9829 struct perf_event_context *ctx; 9830 struct trace_entry *entry = record; 9831 9832 rcu_read_lock(); 9833 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9834 if (!ctx) 9835 goto unlock; 9836 9837 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9838 if (event->cpu != smp_processor_id()) 9839 continue; 9840 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9841 continue; 9842 if (event->attr.config != entry->type) 9843 continue; 9844 /* Cannot deliver synchronous signal to other task. */ 9845 if (event->attr.sigtrap) 9846 continue; 9847 if (perf_tp_event_match(event, &data, regs)) 9848 perf_swevent_event(event, count, &data, regs); 9849 } 9850 unlock: 9851 rcu_read_unlock(); 9852 } 9853 9854 perf_swevent_put_recursion_context(rctx); 9855 } 9856 EXPORT_SYMBOL_GPL(perf_tp_event); 9857 9858 static void tp_perf_event_destroy(struct perf_event *event) 9859 { 9860 perf_trace_destroy(event); 9861 } 9862 9863 static int perf_tp_event_init(struct perf_event *event) 9864 { 9865 int err; 9866 9867 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9868 return -ENOENT; 9869 9870 /* 9871 * no branch sampling for tracepoint events 9872 */ 9873 if (has_branch_stack(event)) 9874 return -EOPNOTSUPP; 9875 9876 err = perf_trace_init(event); 9877 if (err) 9878 return err; 9879 9880 event->destroy = tp_perf_event_destroy; 9881 9882 return 0; 9883 } 9884 9885 static struct pmu perf_tracepoint = { 9886 .task_ctx_nr = perf_sw_context, 9887 9888 .event_init = perf_tp_event_init, 9889 .add = perf_trace_add, 9890 .del = perf_trace_del, 9891 .start = perf_swevent_start, 9892 .stop = perf_swevent_stop, 9893 .read = perf_swevent_read, 9894 }; 9895 9896 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9897 /* 9898 * Flags in config, used by dynamic PMU kprobe and uprobe 9899 * The flags should match following PMU_FORMAT_ATTR(). 9900 * 9901 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9902 * if not set, create kprobe/uprobe 9903 * 9904 * The following values specify a reference counter (or semaphore in the 9905 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9906 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9907 * 9908 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9909 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9910 */ 9911 enum perf_probe_config { 9912 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9913 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9914 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9915 }; 9916 9917 PMU_FORMAT_ATTR(retprobe, "config:0"); 9918 #endif 9919 9920 #ifdef CONFIG_KPROBE_EVENTS 9921 static struct attribute *kprobe_attrs[] = { 9922 &format_attr_retprobe.attr, 9923 NULL, 9924 }; 9925 9926 static struct attribute_group kprobe_format_group = { 9927 .name = "format", 9928 .attrs = kprobe_attrs, 9929 }; 9930 9931 static const struct attribute_group *kprobe_attr_groups[] = { 9932 &kprobe_format_group, 9933 NULL, 9934 }; 9935 9936 static int perf_kprobe_event_init(struct perf_event *event); 9937 static struct pmu perf_kprobe = { 9938 .task_ctx_nr = perf_sw_context, 9939 .event_init = perf_kprobe_event_init, 9940 .add = perf_trace_add, 9941 .del = perf_trace_del, 9942 .start = perf_swevent_start, 9943 .stop = perf_swevent_stop, 9944 .read = perf_swevent_read, 9945 .attr_groups = kprobe_attr_groups, 9946 }; 9947 9948 static int perf_kprobe_event_init(struct perf_event *event) 9949 { 9950 int err; 9951 bool is_retprobe; 9952 9953 if (event->attr.type != perf_kprobe.type) 9954 return -ENOENT; 9955 9956 if (!perfmon_capable()) 9957 return -EACCES; 9958 9959 /* 9960 * no branch sampling for probe events 9961 */ 9962 if (has_branch_stack(event)) 9963 return -EOPNOTSUPP; 9964 9965 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9966 err = perf_kprobe_init(event, is_retprobe); 9967 if (err) 9968 return err; 9969 9970 event->destroy = perf_kprobe_destroy; 9971 9972 return 0; 9973 } 9974 #endif /* CONFIG_KPROBE_EVENTS */ 9975 9976 #ifdef CONFIG_UPROBE_EVENTS 9977 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9978 9979 static struct attribute *uprobe_attrs[] = { 9980 &format_attr_retprobe.attr, 9981 &format_attr_ref_ctr_offset.attr, 9982 NULL, 9983 }; 9984 9985 static struct attribute_group uprobe_format_group = { 9986 .name = "format", 9987 .attrs = uprobe_attrs, 9988 }; 9989 9990 static const struct attribute_group *uprobe_attr_groups[] = { 9991 &uprobe_format_group, 9992 NULL, 9993 }; 9994 9995 static int perf_uprobe_event_init(struct perf_event *event); 9996 static struct pmu perf_uprobe = { 9997 .task_ctx_nr = perf_sw_context, 9998 .event_init = perf_uprobe_event_init, 9999 .add = perf_trace_add, 10000 .del = perf_trace_del, 10001 .start = perf_swevent_start, 10002 .stop = perf_swevent_stop, 10003 .read = perf_swevent_read, 10004 .attr_groups = uprobe_attr_groups, 10005 }; 10006 10007 static int perf_uprobe_event_init(struct perf_event *event) 10008 { 10009 int err; 10010 unsigned long ref_ctr_offset; 10011 bool is_retprobe; 10012 10013 if (event->attr.type != perf_uprobe.type) 10014 return -ENOENT; 10015 10016 if (!perfmon_capable()) 10017 return -EACCES; 10018 10019 /* 10020 * no branch sampling for probe events 10021 */ 10022 if (has_branch_stack(event)) 10023 return -EOPNOTSUPP; 10024 10025 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10026 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10027 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10028 if (err) 10029 return err; 10030 10031 event->destroy = perf_uprobe_destroy; 10032 10033 return 0; 10034 } 10035 #endif /* CONFIG_UPROBE_EVENTS */ 10036 10037 static inline void perf_tp_register(void) 10038 { 10039 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10040 #ifdef CONFIG_KPROBE_EVENTS 10041 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10042 #endif 10043 #ifdef CONFIG_UPROBE_EVENTS 10044 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10045 #endif 10046 } 10047 10048 static void perf_event_free_filter(struct perf_event *event) 10049 { 10050 ftrace_profile_free_filter(event); 10051 } 10052 10053 #ifdef CONFIG_BPF_SYSCALL 10054 static void bpf_overflow_handler(struct perf_event *event, 10055 struct perf_sample_data *data, 10056 struct pt_regs *regs) 10057 { 10058 struct bpf_perf_event_data_kern ctx = { 10059 .data = data, 10060 .event = event, 10061 }; 10062 struct bpf_prog *prog; 10063 int ret = 0; 10064 10065 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10066 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10067 goto out; 10068 rcu_read_lock(); 10069 prog = READ_ONCE(event->prog); 10070 if (prog) 10071 ret = bpf_prog_run(prog, &ctx); 10072 rcu_read_unlock(); 10073 out: 10074 __this_cpu_dec(bpf_prog_active); 10075 if (!ret) 10076 return; 10077 10078 event->orig_overflow_handler(event, data, regs); 10079 } 10080 10081 static int perf_event_set_bpf_handler(struct perf_event *event, 10082 struct bpf_prog *prog, 10083 u64 bpf_cookie) 10084 { 10085 if (event->overflow_handler_context) 10086 /* hw breakpoint or kernel counter */ 10087 return -EINVAL; 10088 10089 if (event->prog) 10090 return -EEXIST; 10091 10092 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10093 return -EINVAL; 10094 10095 if (event->attr.precise_ip && 10096 prog->call_get_stack && 10097 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) || 10098 event->attr.exclude_callchain_kernel || 10099 event->attr.exclude_callchain_user)) { 10100 /* 10101 * On perf_event with precise_ip, calling bpf_get_stack() 10102 * may trigger unwinder warnings and occasional crashes. 10103 * bpf_get_[stack|stackid] works around this issue by using 10104 * callchain attached to perf_sample_data. If the 10105 * perf_event does not full (kernel and user) callchain 10106 * attached to perf_sample_data, do not allow attaching BPF 10107 * program that calls bpf_get_[stack|stackid]. 10108 */ 10109 return -EPROTO; 10110 } 10111 10112 event->prog = prog; 10113 event->bpf_cookie = bpf_cookie; 10114 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10115 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10116 return 0; 10117 } 10118 10119 static void perf_event_free_bpf_handler(struct perf_event *event) 10120 { 10121 struct bpf_prog *prog = event->prog; 10122 10123 if (!prog) 10124 return; 10125 10126 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10127 event->prog = NULL; 10128 bpf_prog_put(prog); 10129 } 10130 #else 10131 static int perf_event_set_bpf_handler(struct perf_event *event, 10132 struct bpf_prog *prog, 10133 u64 bpf_cookie) 10134 { 10135 return -EOPNOTSUPP; 10136 } 10137 static void perf_event_free_bpf_handler(struct perf_event *event) 10138 { 10139 } 10140 #endif 10141 10142 /* 10143 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10144 * with perf_event_open() 10145 */ 10146 static inline bool perf_event_is_tracing(struct perf_event *event) 10147 { 10148 if (event->pmu == &perf_tracepoint) 10149 return true; 10150 #ifdef CONFIG_KPROBE_EVENTS 10151 if (event->pmu == &perf_kprobe) 10152 return true; 10153 #endif 10154 #ifdef CONFIG_UPROBE_EVENTS 10155 if (event->pmu == &perf_uprobe) 10156 return true; 10157 #endif 10158 return false; 10159 } 10160 10161 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10162 u64 bpf_cookie) 10163 { 10164 bool is_kprobe, is_tracepoint, is_syscall_tp; 10165 10166 if (!perf_event_is_tracing(event)) 10167 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10168 10169 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 10170 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10171 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10172 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 10173 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10174 return -EINVAL; 10175 10176 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 10177 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10178 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10179 return -EINVAL; 10180 10181 /* Kprobe override only works for kprobes, not uprobes. */ 10182 if (prog->kprobe_override && 10183 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) 10184 return -EINVAL; 10185 10186 if (is_tracepoint || is_syscall_tp) { 10187 int off = trace_event_get_offsets(event->tp_event); 10188 10189 if (prog->aux->max_ctx_offset > off) 10190 return -EACCES; 10191 } 10192 10193 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10194 } 10195 10196 void perf_event_free_bpf_prog(struct perf_event *event) 10197 { 10198 if (!perf_event_is_tracing(event)) { 10199 perf_event_free_bpf_handler(event); 10200 return; 10201 } 10202 perf_event_detach_bpf_prog(event); 10203 } 10204 10205 #else 10206 10207 static inline void perf_tp_register(void) 10208 { 10209 } 10210 10211 static void perf_event_free_filter(struct perf_event *event) 10212 { 10213 } 10214 10215 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10216 u64 bpf_cookie) 10217 { 10218 return -ENOENT; 10219 } 10220 10221 void perf_event_free_bpf_prog(struct perf_event *event) 10222 { 10223 } 10224 #endif /* CONFIG_EVENT_TRACING */ 10225 10226 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10227 void perf_bp_event(struct perf_event *bp, void *data) 10228 { 10229 struct perf_sample_data sample; 10230 struct pt_regs *regs = data; 10231 10232 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10233 10234 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10235 perf_swevent_event(bp, 1, &sample, regs); 10236 } 10237 #endif 10238 10239 /* 10240 * Allocate a new address filter 10241 */ 10242 static struct perf_addr_filter * 10243 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10244 { 10245 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10246 struct perf_addr_filter *filter; 10247 10248 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10249 if (!filter) 10250 return NULL; 10251 10252 INIT_LIST_HEAD(&filter->entry); 10253 list_add_tail(&filter->entry, filters); 10254 10255 return filter; 10256 } 10257 10258 static void free_filters_list(struct list_head *filters) 10259 { 10260 struct perf_addr_filter *filter, *iter; 10261 10262 list_for_each_entry_safe(filter, iter, filters, entry) { 10263 path_put(&filter->path); 10264 list_del(&filter->entry); 10265 kfree(filter); 10266 } 10267 } 10268 10269 /* 10270 * Free existing address filters and optionally install new ones 10271 */ 10272 static void perf_addr_filters_splice(struct perf_event *event, 10273 struct list_head *head) 10274 { 10275 unsigned long flags; 10276 LIST_HEAD(list); 10277 10278 if (!has_addr_filter(event)) 10279 return; 10280 10281 /* don't bother with children, they don't have their own filters */ 10282 if (event->parent) 10283 return; 10284 10285 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10286 10287 list_splice_init(&event->addr_filters.list, &list); 10288 if (head) 10289 list_splice(head, &event->addr_filters.list); 10290 10291 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10292 10293 free_filters_list(&list); 10294 } 10295 10296 /* 10297 * Scan through mm's vmas and see if one of them matches the 10298 * @filter; if so, adjust filter's address range. 10299 * Called with mm::mmap_lock down for reading. 10300 */ 10301 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10302 struct mm_struct *mm, 10303 struct perf_addr_filter_range *fr) 10304 { 10305 struct vm_area_struct *vma; 10306 10307 for (vma = mm->mmap; vma; vma = vma->vm_next) { 10308 if (!vma->vm_file) 10309 continue; 10310 10311 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10312 return; 10313 } 10314 } 10315 10316 /* 10317 * Update event's address range filters based on the 10318 * task's existing mappings, if any. 10319 */ 10320 static void perf_event_addr_filters_apply(struct perf_event *event) 10321 { 10322 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10323 struct task_struct *task = READ_ONCE(event->ctx->task); 10324 struct perf_addr_filter *filter; 10325 struct mm_struct *mm = NULL; 10326 unsigned int count = 0; 10327 unsigned long flags; 10328 10329 /* 10330 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10331 * will stop on the parent's child_mutex that our caller is also holding 10332 */ 10333 if (task == TASK_TOMBSTONE) 10334 return; 10335 10336 if (ifh->nr_file_filters) { 10337 mm = get_task_mm(task); 10338 if (!mm) 10339 goto restart; 10340 10341 mmap_read_lock(mm); 10342 } 10343 10344 raw_spin_lock_irqsave(&ifh->lock, flags); 10345 list_for_each_entry(filter, &ifh->list, entry) { 10346 if (filter->path.dentry) { 10347 /* 10348 * Adjust base offset if the filter is associated to a 10349 * binary that needs to be mapped: 10350 */ 10351 event->addr_filter_ranges[count].start = 0; 10352 event->addr_filter_ranges[count].size = 0; 10353 10354 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10355 } else { 10356 event->addr_filter_ranges[count].start = filter->offset; 10357 event->addr_filter_ranges[count].size = filter->size; 10358 } 10359 10360 count++; 10361 } 10362 10363 event->addr_filters_gen++; 10364 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10365 10366 if (ifh->nr_file_filters) { 10367 mmap_read_unlock(mm); 10368 10369 mmput(mm); 10370 } 10371 10372 restart: 10373 perf_event_stop(event, 1); 10374 } 10375 10376 /* 10377 * Address range filtering: limiting the data to certain 10378 * instruction address ranges. Filters are ioctl()ed to us from 10379 * userspace as ascii strings. 10380 * 10381 * Filter string format: 10382 * 10383 * ACTION RANGE_SPEC 10384 * where ACTION is one of the 10385 * * "filter": limit the trace to this region 10386 * * "start": start tracing from this address 10387 * * "stop": stop tracing at this address/region; 10388 * RANGE_SPEC is 10389 * * for kernel addresses: <start address>[/<size>] 10390 * * for object files: <start address>[/<size>]@</path/to/object/file> 10391 * 10392 * if <size> is not specified or is zero, the range is treated as a single 10393 * address; not valid for ACTION=="filter". 10394 */ 10395 enum { 10396 IF_ACT_NONE = -1, 10397 IF_ACT_FILTER, 10398 IF_ACT_START, 10399 IF_ACT_STOP, 10400 IF_SRC_FILE, 10401 IF_SRC_KERNEL, 10402 IF_SRC_FILEADDR, 10403 IF_SRC_KERNELADDR, 10404 }; 10405 10406 enum { 10407 IF_STATE_ACTION = 0, 10408 IF_STATE_SOURCE, 10409 IF_STATE_END, 10410 }; 10411 10412 static const match_table_t if_tokens = { 10413 { IF_ACT_FILTER, "filter" }, 10414 { IF_ACT_START, "start" }, 10415 { IF_ACT_STOP, "stop" }, 10416 { IF_SRC_FILE, "%u/%u@%s" }, 10417 { IF_SRC_KERNEL, "%u/%u" }, 10418 { IF_SRC_FILEADDR, "%u@%s" }, 10419 { IF_SRC_KERNELADDR, "%u" }, 10420 { IF_ACT_NONE, NULL }, 10421 }; 10422 10423 /* 10424 * Address filter string parser 10425 */ 10426 static int 10427 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10428 struct list_head *filters) 10429 { 10430 struct perf_addr_filter *filter = NULL; 10431 char *start, *orig, *filename = NULL; 10432 substring_t args[MAX_OPT_ARGS]; 10433 int state = IF_STATE_ACTION, token; 10434 unsigned int kernel = 0; 10435 int ret = -EINVAL; 10436 10437 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10438 if (!fstr) 10439 return -ENOMEM; 10440 10441 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10442 static const enum perf_addr_filter_action_t actions[] = { 10443 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10444 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10445 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10446 }; 10447 ret = -EINVAL; 10448 10449 if (!*start) 10450 continue; 10451 10452 /* filter definition begins */ 10453 if (state == IF_STATE_ACTION) { 10454 filter = perf_addr_filter_new(event, filters); 10455 if (!filter) 10456 goto fail; 10457 } 10458 10459 token = match_token(start, if_tokens, args); 10460 switch (token) { 10461 case IF_ACT_FILTER: 10462 case IF_ACT_START: 10463 case IF_ACT_STOP: 10464 if (state != IF_STATE_ACTION) 10465 goto fail; 10466 10467 filter->action = actions[token]; 10468 state = IF_STATE_SOURCE; 10469 break; 10470 10471 case IF_SRC_KERNELADDR: 10472 case IF_SRC_KERNEL: 10473 kernel = 1; 10474 fallthrough; 10475 10476 case IF_SRC_FILEADDR: 10477 case IF_SRC_FILE: 10478 if (state != IF_STATE_SOURCE) 10479 goto fail; 10480 10481 *args[0].to = 0; 10482 ret = kstrtoul(args[0].from, 0, &filter->offset); 10483 if (ret) 10484 goto fail; 10485 10486 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10487 *args[1].to = 0; 10488 ret = kstrtoul(args[1].from, 0, &filter->size); 10489 if (ret) 10490 goto fail; 10491 } 10492 10493 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10494 int fpos = token == IF_SRC_FILE ? 2 : 1; 10495 10496 kfree(filename); 10497 filename = match_strdup(&args[fpos]); 10498 if (!filename) { 10499 ret = -ENOMEM; 10500 goto fail; 10501 } 10502 } 10503 10504 state = IF_STATE_END; 10505 break; 10506 10507 default: 10508 goto fail; 10509 } 10510 10511 /* 10512 * Filter definition is fully parsed, validate and install it. 10513 * Make sure that it doesn't contradict itself or the event's 10514 * attribute. 10515 */ 10516 if (state == IF_STATE_END) { 10517 ret = -EINVAL; 10518 if (kernel && event->attr.exclude_kernel) 10519 goto fail; 10520 10521 /* 10522 * ACTION "filter" must have a non-zero length region 10523 * specified. 10524 */ 10525 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10526 !filter->size) 10527 goto fail; 10528 10529 if (!kernel) { 10530 if (!filename) 10531 goto fail; 10532 10533 /* 10534 * For now, we only support file-based filters 10535 * in per-task events; doing so for CPU-wide 10536 * events requires additional context switching 10537 * trickery, since same object code will be 10538 * mapped at different virtual addresses in 10539 * different processes. 10540 */ 10541 ret = -EOPNOTSUPP; 10542 if (!event->ctx->task) 10543 goto fail; 10544 10545 /* look up the path and grab its inode */ 10546 ret = kern_path(filename, LOOKUP_FOLLOW, 10547 &filter->path); 10548 if (ret) 10549 goto fail; 10550 10551 ret = -EINVAL; 10552 if (!filter->path.dentry || 10553 !S_ISREG(d_inode(filter->path.dentry) 10554 ->i_mode)) 10555 goto fail; 10556 10557 event->addr_filters.nr_file_filters++; 10558 } 10559 10560 /* ready to consume more filters */ 10561 state = IF_STATE_ACTION; 10562 filter = NULL; 10563 } 10564 } 10565 10566 if (state != IF_STATE_ACTION) 10567 goto fail; 10568 10569 kfree(filename); 10570 kfree(orig); 10571 10572 return 0; 10573 10574 fail: 10575 kfree(filename); 10576 free_filters_list(filters); 10577 kfree(orig); 10578 10579 return ret; 10580 } 10581 10582 static int 10583 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10584 { 10585 LIST_HEAD(filters); 10586 int ret; 10587 10588 /* 10589 * Since this is called in perf_ioctl() path, we're already holding 10590 * ctx::mutex. 10591 */ 10592 lockdep_assert_held(&event->ctx->mutex); 10593 10594 if (WARN_ON_ONCE(event->parent)) 10595 return -EINVAL; 10596 10597 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10598 if (ret) 10599 goto fail_clear_files; 10600 10601 ret = event->pmu->addr_filters_validate(&filters); 10602 if (ret) 10603 goto fail_free_filters; 10604 10605 /* remove existing filters, if any */ 10606 perf_addr_filters_splice(event, &filters); 10607 10608 /* install new filters */ 10609 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10610 10611 return ret; 10612 10613 fail_free_filters: 10614 free_filters_list(&filters); 10615 10616 fail_clear_files: 10617 event->addr_filters.nr_file_filters = 0; 10618 10619 return ret; 10620 } 10621 10622 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10623 { 10624 int ret = -EINVAL; 10625 char *filter_str; 10626 10627 filter_str = strndup_user(arg, PAGE_SIZE); 10628 if (IS_ERR(filter_str)) 10629 return PTR_ERR(filter_str); 10630 10631 #ifdef CONFIG_EVENT_TRACING 10632 if (perf_event_is_tracing(event)) { 10633 struct perf_event_context *ctx = event->ctx; 10634 10635 /* 10636 * Beware, here be dragons!! 10637 * 10638 * the tracepoint muck will deadlock against ctx->mutex, but 10639 * the tracepoint stuff does not actually need it. So 10640 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10641 * already have a reference on ctx. 10642 * 10643 * This can result in event getting moved to a different ctx, 10644 * but that does not affect the tracepoint state. 10645 */ 10646 mutex_unlock(&ctx->mutex); 10647 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10648 mutex_lock(&ctx->mutex); 10649 } else 10650 #endif 10651 if (has_addr_filter(event)) 10652 ret = perf_event_set_addr_filter(event, filter_str); 10653 10654 kfree(filter_str); 10655 return ret; 10656 } 10657 10658 /* 10659 * hrtimer based swevent callback 10660 */ 10661 10662 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10663 { 10664 enum hrtimer_restart ret = HRTIMER_RESTART; 10665 struct perf_sample_data data; 10666 struct pt_regs *regs; 10667 struct perf_event *event; 10668 u64 period; 10669 10670 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10671 10672 if (event->state != PERF_EVENT_STATE_ACTIVE) 10673 return HRTIMER_NORESTART; 10674 10675 event->pmu->read(event); 10676 10677 perf_sample_data_init(&data, 0, event->hw.last_period); 10678 regs = get_irq_regs(); 10679 10680 if (regs && !perf_exclude_event(event, regs)) { 10681 if (!(event->attr.exclude_idle && is_idle_task(current))) 10682 if (__perf_event_overflow(event, 1, &data, regs)) 10683 ret = HRTIMER_NORESTART; 10684 } 10685 10686 period = max_t(u64, 10000, event->hw.sample_period); 10687 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10688 10689 return ret; 10690 } 10691 10692 static void perf_swevent_start_hrtimer(struct perf_event *event) 10693 { 10694 struct hw_perf_event *hwc = &event->hw; 10695 s64 period; 10696 10697 if (!is_sampling_event(event)) 10698 return; 10699 10700 period = local64_read(&hwc->period_left); 10701 if (period) { 10702 if (period < 0) 10703 period = 10000; 10704 10705 local64_set(&hwc->period_left, 0); 10706 } else { 10707 period = max_t(u64, 10000, hwc->sample_period); 10708 } 10709 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10710 HRTIMER_MODE_REL_PINNED_HARD); 10711 } 10712 10713 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10714 { 10715 struct hw_perf_event *hwc = &event->hw; 10716 10717 if (is_sampling_event(event)) { 10718 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10719 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10720 10721 hrtimer_cancel(&hwc->hrtimer); 10722 } 10723 } 10724 10725 static void perf_swevent_init_hrtimer(struct perf_event *event) 10726 { 10727 struct hw_perf_event *hwc = &event->hw; 10728 10729 if (!is_sampling_event(event)) 10730 return; 10731 10732 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10733 hwc->hrtimer.function = perf_swevent_hrtimer; 10734 10735 /* 10736 * Since hrtimers have a fixed rate, we can do a static freq->period 10737 * mapping and avoid the whole period adjust feedback stuff. 10738 */ 10739 if (event->attr.freq) { 10740 long freq = event->attr.sample_freq; 10741 10742 event->attr.sample_period = NSEC_PER_SEC / freq; 10743 hwc->sample_period = event->attr.sample_period; 10744 local64_set(&hwc->period_left, hwc->sample_period); 10745 hwc->last_period = hwc->sample_period; 10746 event->attr.freq = 0; 10747 } 10748 } 10749 10750 /* 10751 * Software event: cpu wall time clock 10752 */ 10753 10754 static void cpu_clock_event_update(struct perf_event *event) 10755 { 10756 s64 prev; 10757 u64 now; 10758 10759 now = local_clock(); 10760 prev = local64_xchg(&event->hw.prev_count, now); 10761 local64_add(now - prev, &event->count); 10762 } 10763 10764 static void cpu_clock_event_start(struct perf_event *event, int flags) 10765 { 10766 local64_set(&event->hw.prev_count, local_clock()); 10767 perf_swevent_start_hrtimer(event); 10768 } 10769 10770 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10771 { 10772 perf_swevent_cancel_hrtimer(event); 10773 cpu_clock_event_update(event); 10774 } 10775 10776 static int cpu_clock_event_add(struct perf_event *event, int flags) 10777 { 10778 if (flags & PERF_EF_START) 10779 cpu_clock_event_start(event, flags); 10780 perf_event_update_userpage(event); 10781 10782 return 0; 10783 } 10784 10785 static void cpu_clock_event_del(struct perf_event *event, int flags) 10786 { 10787 cpu_clock_event_stop(event, flags); 10788 } 10789 10790 static void cpu_clock_event_read(struct perf_event *event) 10791 { 10792 cpu_clock_event_update(event); 10793 } 10794 10795 static int cpu_clock_event_init(struct perf_event *event) 10796 { 10797 if (event->attr.type != PERF_TYPE_SOFTWARE) 10798 return -ENOENT; 10799 10800 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10801 return -ENOENT; 10802 10803 /* 10804 * no branch sampling for software events 10805 */ 10806 if (has_branch_stack(event)) 10807 return -EOPNOTSUPP; 10808 10809 perf_swevent_init_hrtimer(event); 10810 10811 return 0; 10812 } 10813 10814 static struct pmu perf_cpu_clock = { 10815 .task_ctx_nr = perf_sw_context, 10816 10817 .capabilities = PERF_PMU_CAP_NO_NMI, 10818 10819 .event_init = cpu_clock_event_init, 10820 .add = cpu_clock_event_add, 10821 .del = cpu_clock_event_del, 10822 .start = cpu_clock_event_start, 10823 .stop = cpu_clock_event_stop, 10824 .read = cpu_clock_event_read, 10825 }; 10826 10827 /* 10828 * Software event: task time clock 10829 */ 10830 10831 static void task_clock_event_update(struct perf_event *event, u64 now) 10832 { 10833 u64 prev; 10834 s64 delta; 10835 10836 prev = local64_xchg(&event->hw.prev_count, now); 10837 delta = now - prev; 10838 local64_add(delta, &event->count); 10839 } 10840 10841 static void task_clock_event_start(struct perf_event *event, int flags) 10842 { 10843 local64_set(&event->hw.prev_count, event->ctx->time); 10844 perf_swevent_start_hrtimer(event); 10845 } 10846 10847 static void task_clock_event_stop(struct perf_event *event, int flags) 10848 { 10849 perf_swevent_cancel_hrtimer(event); 10850 task_clock_event_update(event, event->ctx->time); 10851 } 10852 10853 static int task_clock_event_add(struct perf_event *event, int flags) 10854 { 10855 if (flags & PERF_EF_START) 10856 task_clock_event_start(event, flags); 10857 perf_event_update_userpage(event); 10858 10859 return 0; 10860 } 10861 10862 static void task_clock_event_del(struct perf_event *event, int flags) 10863 { 10864 task_clock_event_stop(event, PERF_EF_UPDATE); 10865 } 10866 10867 static void task_clock_event_read(struct perf_event *event) 10868 { 10869 u64 now = perf_clock(); 10870 u64 delta = now - event->ctx->timestamp; 10871 u64 time = event->ctx->time + delta; 10872 10873 task_clock_event_update(event, time); 10874 } 10875 10876 static int task_clock_event_init(struct perf_event *event) 10877 { 10878 if (event->attr.type != PERF_TYPE_SOFTWARE) 10879 return -ENOENT; 10880 10881 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10882 return -ENOENT; 10883 10884 /* 10885 * no branch sampling for software events 10886 */ 10887 if (has_branch_stack(event)) 10888 return -EOPNOTSUPP; 10889 10890 perf_swevent_init_hrtimer(event); 10891 10892 return 0; 10893 } 10894 10895 static struct pmu perf_task_clock = { 10896 .task_ctx_nr = perf_sw_context, 10897 10898 .capabilities = PERF_PMU_CAP_NO_NMI, 10899 10900 .event_init = task_clock_event_init, 10901 .add = task_clock_event_add, 10902 .del = task_clock_event_del, 10903 .start = task_clock_event_start, 10904 .stop = task_clock_event_stop, 10905 .read = task_clock_event_read, 10906 }; 10907 10908 static void perf_pmu_nop_void(struct pmu *pmu) 10909 { 10910 } 10911 10912 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10913 { 10914 } 10915 10916 static int perf_pmu_nop_int(struct pmu *pmu) 10917 { 10918 return 0; 10919 } 10920 10921 static int perf_event_nop_int(struct perf_event *event, u64 value) 10922 { 10923 return 0; 10924 } 10925 10926 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10927 10928 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10929 { 10930 __this_cpu_write(nop_txn_flags, flags); 10931 10932 if (flags & ~PERF_PMU_TXN_ADD) 10933 return; 10934 10935 perf_pmu_disable(pmu); 10936 } 10937 10938 static int perf_pmu_commit_txn(struct pmu *pmu) 10939 { 10940 unsigned int flags = __this_cpu_read(nop_txn_flags); 10941 10942 __this_cpu_write(nop_txn_flags, 0); 10943 10944 if (flags & ~PERF_PMU_TXN_ADD) 10945 return 0; 10946 10947 perf_pmu_enable(pmu); 10948 return 0; 10949 } 10950 10951 static void perf_pmu_cancel_txn(struct pmu *pmu) 10952 { 10953 unsigned int flags = __this_cpu_read(nop_txn_flags); 10954 10955 __this_cpu_write(nop_txn_flags, 0); 10956 10957 if (flags & ~PERF_PMU_TXN_ADD) 10958 return; 10959 10960 perf_pmu_enable(pmu); 10961 } 10962 10963 static int perf_event_idx_default(struct perf_event *event) 10964 { 10965 return 0; 10966 } 10967 10968 /* 10969 * Ensures all contexts with the same task_ctx_nr have the same 10970 * pmu_cpu_context too. 10971 */ 10972 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10973 { 10974 struct pmu *pmu; 10975 10976 if (ctxn < 0) 10977 return NULL; 10978 10979 list_for_each_entry(pmu, &pmus, entry) { 10980 if (pmu->task_ctx_nr == ctxn) 10981 return pmu->pmu_cpu_context; 10982 } 10983 10984 return NULL; 10985 } 10986 10987 static void free_pmu_context(struct pmu *pmu) 10988 { 10989 /* 10990 * Static contexts such as perf_sw_context have a global lifetime 10991 * and may be shared between different PMUs. Avoid freeing them 10992 * when a single PMU is going away. 10993 */ 10994 if (pmu->task_ctx_nr > perf_invalid_context) 10995 return; 10996 10997 free_percpu(pmu->pmu_cpu_context); 10998 } 10999 11000 /* 11001 * Let userspace know that this PMU supports address range filtering: 11002 */ 11003 static ssize_t nr_addr_filters_show(struct device *dev, 11004 struct device_attribute *attr, 11005 char *page) 11006 { 11007 struct pmu *pmu = dev_get_drvdata(dev); 11008 11009 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11010 } 11011 DEVICE_ATTR_RO(nr_addr_filters); 11012 11013 static struct idr pmu_idr; 11014 11015 static ssize_t 11016 type_show(struct device *dev, struct device_attribute *attr, char *page) 11017 { 11018 struct pmu *pmu = dev_get_drvdata(dev); 11019 11020 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 11021 } 11022 static DEVICE_ATTR_RO(type); 11023 11024 static ssize_t 11025 perf_event_mux_interval_ms_show(struct device *dev, 11026 struct device_attribute *attr, 11027 char *page) 11028 { 11029 struct pmu *pmu = dev_get_drvdata(dev); 11030 11031 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 11032 } 11033 11034 static DEFINE_MUTEX(mux_interval_mutex); 11035 11036 static ssize_t 11037 perf_event_mux_interval_ms_store(struct device *dev, 11038 struct device_attribute *attr, 11039 const char *buf, size_t count) 11040 { 11041 struct pmu *pmu = dev_get_drvdata(dev); 11042 int timer, cpu, ret; 11043 11044 ret = kstrtoint(buf, 0, &timer); 11045 if (ret) 11046 return ret; 11047 11048 if (timer < 1) 11049 return -EINVAL; 11050 11051 /* same value, noting to do */ 11052 if (timer == pmu->hrtimer_interval_ms) 11053 return count; 11054 11055 mutex_lock(&mux_interval_mutex); 11056 pmu->hrtimer_interval_ms = timer; 11057 11058 /* update all cpuctx for this PMU */ 11059 cpus_read_lock(); 11060 for_each_online_cpu(cpu) { 11061 struct perf_cpu_context *cpuctx; 11062 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11063 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11064 11065 cpu_function_call(cpu, 11066 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 11067 } 11068 cpus_read_unlock(); 11069 mutex_unlock(&mux_interval_mutex); 11070 11071 return count; 11072 } 11073 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11074 11075 static struct attribute *pmu_dev_attrs[] = { 11076 &dev_attr_type.attr, 11077 &dev_attr_perf_event_mux_interval_ms.attr, 11078 NULL, 11079 }; 11080 ATTRIBUTE_GROUPS(pmu_dev); 11081 11082 static int pmu_bus_running; 11083 static struct bus_type pmu_bus = { 11084 .name = "event_source", 11085 .dev_groups = pmu_dev_groups, 11086 }; 11087 11088 static void pmu_dev_release(struct device *dev) 11089 { 11090 kfree(dev); 11091 } 11092 11093 static int pmu_dev_alloc(struct pmu *pmu) 11094 { 11095 int ret = -ENOMEM; 11096 11097 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11098 if (!pmu->dev) 11099 goto out; 11100 11101 pmu->dev->groups = pmu->attr_groups; 11102 device_initialize(pmu->dev); 11103 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11104 if (ret) 11105 goto free_dev; 11106 11107 dev_set_drvdata(pmu->dev, pmu); 11108 pmu->dev->bus = &pmu_bus; 11109 pmu->dev->release = pmu_dev_release; 11110 ret = device_add(pmu->dev); 11111 if (ret) 11112 goto free_dev; 11113 11114 /* For PMUs with address filters, throw in an extra attribute: */ 11115 if (pmu->nr_addr_filters) 11116 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 11117 11118 if (ret) 11119 goto del_dev; 11120 11121 if (pmu->attr_update) 11122 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11123 11124 if (ret) 11125 goto del_dev; 11126 11127 out: 11128 return ret; 11129 11130 del_dev: 11131 device_del(pmu->dev); 11132 11133 free_dev: 11134 put_device(pmu->dev); 11135 goto out; 11136 } 11137 11138 static struct lock_class_key cpuctx_mutex; 11139 static struct lock_class_key cpuctx_lock; 11140 11141 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11142 { 11143 int cpu, ret, max = PERF_TYPE_MAX; 11144 11145 mutex_lock(&pmus_lock); 11146 ret = -ENOMEM; 11147 pmu->pmu_disable_count = alloc_percpu(int); 11148 if (!pmu->pmu_disable_count) 11149 goto unlock; 11150 11151 pmu->type = -1; 11152 if (!name) 11153 goto skip_type; 11154 pmu->name = name; 11155 11156 if (type != PERF_TYPE_SOFTWARE) { 11157 if (type >= 0) 11158 max = type; 11159 11160 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11161 if (ret < 0) 11162 goto free_pdc; 11163 11164 WARN_ON(type >= 0 && ret != type); 11165 11166 type = ret; 11167 } 11168 pmu->type = type; 11169 11170 if (pmu_bus_running) { 11171 ret = pmu_dev_alloc(pmu); 11172 if (ret) 11173 goto free_idr; 11174 } 11175 11176 skip_type: 11177 if (pmu->task_ctx_nr == perf_hw_context) { 11178 static int hw_context_taken = 0; 11179 11180 /* 11181 * Other than systems with heterogeneous CPUs, it never makes 11182 * sense for two PMUs to share perf_hw_context. PMUs which are 11183 * uncore must use perf_invalid_context. 11184 */ 11185 if (WARN_ON_ONCE(hw_context_taken && 11186 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 11187 pmu->task_ctx_nr = perf_invalid_context; 11188 11189 hw_context_taken = 1; 11190 } 11191 11192 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 11193 if (pmu->pmu_cpu_context) 11194 goto got_cpu_context; 11195 11196 ret = -ENOMEM; 11197 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 11198 if (!pmu->pmu_cpu_context) 11199 goto free_dev; 11200 11201 for_each_possible_cpu(cpu) { 11202 struct perf_cpu_context *cpuctx; 11203 11204 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11205 __perf_event_init_context(&cpuctx->ctx); 11206 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 11207 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 11208 cpuctx->ctx.pmu = pmu; 11209 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 11210 11211 __perf_mux_hrtimer_init(cpuctx, cpu); 11212 11213 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 11214 cpuctx->heap = cpuctx->heap_default; 11215 } 11216 11217 got_cpu_context: 11218 if (!pmu->start_txn) { 11219 if (pmu->pmu_enable) { 11220 /* 11221 * If we have pmu_enable/pmu_disable calls, install 11222 * transaction stubs that use that to try and batch 11223 * hardware accesses. 11224 */ 11225 pmu->start_txn = perf_pmu_start_txn; 11226 pmu->commit_txn = perf_pmu_commit_txn; 11227 pmu->cancel_txn = perf_pmu_cancel_txn; 11228 } else { 11229 pmu->start_txn = perf_pmu_nop_txn; 11230 pmu->commit_txn = perf_pmu_nop_int; 11231 pmu->cancel_txn = perf_pmu_nop_void; 11232 } 11233 } 11234 11235 if (!pmu->pmu_enable) { 11236 pmu->pmu_enable = perf_pmu_nop_void; 11237 pmu->pmu_disable = perf_pmu_nop_void; 11238 } 11239 11240 if (!pmu->check_period) 11241 pmu->check_period = perf_event_nop_int; 11242 11243 if (!pmu->event_idx) 11244 pmu->event_idx = perf_event_idx_default; 11245 11246 /* 11247 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 11248 * since these cannot be in the IDR. This way the linear search 11249 * is fast, provided a valid software event is provided. 11250 */ 11251 if (type == PERF_TYPE_SOFTWARE || !name) 11252 list_add_rcu(&pmu->entry, &pmus); 11253 else 11254 list_add_tail_rcu(&pmu->entry, &pmus); 11255 11256 atomic_set(&pmu->exclusive_cnt, 0); 11257 ret = 0; 11258 unlock: 11259 mutex_unlock(&pmus_lock); 11260 11261 return ret; 11262 11263 free_dev: 11264 device_del(pmu->dev); 11265 put_device(pmu->dev); 11266 11267 free_idr: 11268 if (pmu->type != PERF_TYPE_SOFTWARE) 11269 idr_remove(&pmu_idr, pmu->type); 11270 11271 free_pdc: 11272 free_percpu(pmu->pmu_disable_count); 11273 goto unlock; 11274 } 11275 EXPORT_SYMBOL_GPL(perf_pmu_register); 11276 11277 void perf_pmu_unregister(struct pmu *pmu) 11278 { 11279 mutex_lock(&pmus_lock); 11280 list_del_rcu(&pmu->entry); 11281 11282 /* 11283 * We dereference the pmu list under both SRCU and regular RCU, so 11284 * synchronize against both of those. 11285 */ 11286 synchronize_srcu(&pmus_srcu); 11287 synchronize_rcu(); 11288 11289 free_percpu(pmu->pmu_disable_count); 11290 if (pmu->type != PERF_TYPE_SOFTWARE) 11291 idr_remove(&pmu_idr, pmu->type); 11292 if (pmu_bus_running) { 11293 if (pmu->nr_addr_filters) 11294 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11295 device_del(pmu->dev); 11296 put_device(pmu->dev); 11297 } 11298 free_pmu_context(pmu); 11299 mutex_unlock(&pmus_lock); 11300 } 11301 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11302 11303 static inline bool has_extended_regs(struct perf_event *event) 11304 { 11305 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11306 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11307 } 11308 11309 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11310 { 11311 struct perf_event_context *ctx = NULL; 11312 int ret; 11313 11314 if (!try_module_get(pmu->module)) 11315 return -ENODEV; 11316 11317 /* 11318 * A number of pmu->event_init() methods iterate the sibling_list to, 11319 * for example, validate if the group fits on the PMU. Therefore, 11320 * if this is a sibling event, acquire the ctx->mutex to protect 11321 * the sibling_list. 11322 */ 11323 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11324 /* 11325 * This ctx->mutex can nest when we're called through 11326 * inheritance. See the perf_event_ctx_lock_nested() comment. 11327 */ 11328 ctx = perf_event_ctx_lock_nested(event->group_leader, 11329 SINGLE_DEPTH_NESTING); 11330 BUG_ON(!ctx); 11331 } 11332 11333 event->pmu = pmu; 11334 ret = pmu->event_init(event); 11335 11336 if (ctx) 11337 perf_event_ctx_unlock(event->group_leader, ctx); 11338 11339 if (!ret) { 11340 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11341 has_extended_regs(event)) 11342 ret = -EOPNOTSUPP; 11343 11344 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11345 event_has_any_exclude_flag(event)) 11346 ret = -EINVAL; 11347 11348 if (ret && event->destroy) 11349 event->destroy(event); 11350 } 11351 11352 if (ret) 11353 module_put(pmu->module); 11354 11355 return ret; 11356 } 11357 11358 static struct pmu *perf_init_event(struct perf_event *event) 11359 { 11360 bool extended_type = false; 11361 int idx, type, ret; 11362 struct pmu *pmu; 11363 11364 idx = srcu_read_lock(&pmus_srcu); 11365 11366 /* Try parent's PMU first: */ 11367 if (event->parent && event->parent->pmu) { 11368 pmu = event->parent->pmu; 11369 ret = perf_try_init_event(pmu, event); 11370 if (!ret) 11371 goto unlock; 11372 } 11373 11374 /* 11375 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11376 * are often aliases for PERF_TYPE_RAW. 11377 */ 11378 type = event->attr.type; 11379 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11380 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11381 if (!type) { 11382 type = PERF_TYPE_RAW; 11383 } else { 11384 extended_type = true; 11385 event->attr.config &= PERF_HW_EVENT_MASK; 11386 } 11387 } 11388 11389 again: 11390 rcu_read_lock(); 11391 pmu = idr_find(&pmu_idr, type); 11392 rcu_read_unlock(); 11393 if (pmu) { 11394 if (event->attr.type != type && type != PERF_TYPE_RAW && 11395 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11396 goto fail; 11397 11398 ret = perf_try_init_event(pmu, event); 11399 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11400 type = event->attr.type; 11401 goto again; 11402 } 11403 11404 if (ret) 11405 pmu = ERR_PTR(ret); 11406 11407 goto unlock; 11408 } 11409 11410 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11411 ret = perf_try_init_event(pmu, event); 11412 if (!ret) 11413 goto unlock; 11414 11415 if (ret != -ENOENT) { 11416 pmu = ERR_PTR(ret); 11417 goto unlock; 11418 } 11419 } 11420 fail: 11421 pmu = ERR_PTR(-ENOENT); 11422 unlock: 11423 srcu_read_unlock(&pmus_srcu, idx); 11424 11425 return pmu; 11426 } 11427 11428 static void attach_sb_event(struct perf_event *event) 11429 { 11430 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11431 11432 raw_spin_lock(&pel->lock); 11433 list_add_rcu(&event->sb_list, &pel->list); 11434 raw_spin_unlock(&pel->lock); 11435 } 11436 11437 /* 11438 * We keep a list of all !task (and therefore per-cpu) events 11439 * that need to receive side-band records. 11440 * 11441 * This avoids having to scan all the various PMU per-cpu contexts 11442 * looking for them. 11443 */ 11444 static void account_pmu_sb_event(struct perf_event *event) 11445 { 11446 if (is_sb_event(event)) 11447 attach_sb_event(event); 11448 } 11449 11450 static void account_event_cpu(struct perf_event *event, int cpu) 11451 { 11452 if (event->parent) 11453 return; 11454 11455 if (is_cgroup_event(event)) 11456 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11457 } 11458 11459 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11460 static void account_freq_event_nohz(void) 11461 { 11462 #ifdef CONFIG_NO_HZ_FULL 11463 /* Lock so we don't race with concurrent unaccount */ 11464 spin_lock(&nr_freq_lock); 11465 if (atomic_inc_return(&nr_freq_events) == 1) 11466 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11467 spin_unlock(&nr_freq_lock); 11468 #endif 11469 } 11470 11471 static void account_freq_event(void) 11472 { 11473 if (tick_nohz_full_enabled()) 11474 account_freq_event_nohz(); 11475 else 11476 atomic_inc(&nr_freq_events); 11477 } 11478 11479 11480 static void account_event(struct perf_event *event) 11481 { 11482 bool inc = false; 11483 11484 if (event->parent) 11485 return; 11486 11487 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11488 inc = true; 11489 if (event->attr.mmap || event->attr.mmap_data) 11490 atomic_inc(&nr_mmap_events); 11491 if (event->attr.build_id) 11492 atomic_inc(&nr_build_id_events); 11493 if (event->attr.comm) 11494 atomic_inc(&nr_comm_events); 11495 if (event->attr.namespaces) 11496 atomic_inc(&nr_namespaces_events); 11497 if (event->attr.cgroup) 11498 atomic_inc(&nr_cgroup_events); 11499 if (event->attr.task) 11500 atomic_inc(&nr_task_events); 11501 if (event->attr.freq) 11502 account_freq_event(); 11503 if (event->attr.context_switch) { 11504 atomic_inc(&nr_switch_events); 11505 inc = true; 11506 } 11507 if (has_branch_stack(event)) 11508 inc = true; 11509 if (is_cgroup_event(event)) 11510 inc = true; 11511 if (event->attr.ksymbol) 11512 atomic_inc(&nr_ksymbol_events); 11513 if (event->attr.bpf_event) 11514 atomic_inc(&nr_bpf_events); 11515 if (event->attr.text_poke) 11516 atomic_inc(&nr_text_poke_events); 11517 11518 if (inc) { 11519 /* 11520 * We need the mutex here because static_branch_enable() 11521 * must complete *before* the perf_sched_count increment 11522 * becomes visible. 11523 */ 11524 if (atomic_inc_not_zero(&perf_sched_count)) 11525 goto enabled; 11526 11527 mutex_lock(&perf_sched_mutex); 11528 if (!atomic_read(&perf_sched_count)) { 11529 static_branch_enable(&perf_sched_events); 11530 /* 11531 * Guarantee that all CPUs observe they key change and 11532 * call the perf scheduling hooks before proceeding to 11533 * install events that need them. 11534 */ 11535 synchronize_rcu(); 11536 } 11537 /* 11538 * Now that we have waited for the sync_sched(), allow further 11539 * increments to by-pass the mutex. 11540 */ 11541 atomic_inc(&perf_sched_count); 11542 mutex_unlock(&perf_sched_mutex); 11543 } 11544 enabled: 11545 11546 account_event_cpu(event, event->cpu); 11547 11548 account_pmu_sb_event(event); 11549 } 11550 11551 /* 11552 * Allocate and initialize an event structure 11553 */ 11554 static struct perf_event * 11555 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11556 struct task_struct *task, 11557 struct perf_event *group_leader, 11558 struct perf_event *parent_event, 11559 perf_overflow_handler_t overflow_handler, 11560 void *context, int cgroup_fd) 11561 { 11562 struct pmu *pmu; 11563 struct perf_event *event; 11564 struct hw_perf_event *hwc; 11565 long err = -EINVAL; 11566 int node; 11567 11568 if ((unsigned)cpu >= nr_cpu_ids) { 11569 if (!task || cpu != -1) 11570 return ERR_PTR(-EINVAL); 11571 } 11572 if (attr->sigtrap && !task) { 11573 /* Requires a task: avoid signalling random tasks. */ 11574 return ERR_PTR(-EINVAL); 11575 } 11576 11577 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11578 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11579 node); 11580 if (!event) 11581 return ERR_PTR(-ENOMEM); 11582 11583 /* 11584 * Single events are their own group leaders, with an 11585 * empty sibling list: 11586 */ 11587 if (!group_leader) 11588 group_leader = event; 11589 11590 mutex_init(&event->child_mutex); 11591 INIT_LIST_HEAD(&event->child_list); 11592 11593 INIT_LIST_HEAD(&event->event_entry); 11594 INIT_LIST_HEAD(&event->sibling_list); 11595 INIT_LIST_HEAD(&event->active_list); 11596 init_event_group(event); 11597 INIT_LIST_HEAD(&event->rb_entry); 11598 INIT_LIST_HEAD(&event->active_entry); 11599 INIT_LIST_HEAD(&event->addr_filters.list); 11600 INIT_HLIST_NODE(&event->hlist_entry); 11601 11602 11603 init_waitqueue_head(&event->waitq); 11604 event->pending_disable = -1; 11605 init_irq_work(&event->pending, perf_pending_event); 11606 11607 mutex_init(&event->mmap_mutex); 11608 raw_spin_lock_init(&event->addr_filters.lock); 11609 11610 atomic_long_set(&event->refcount, 1); 11611 event->cpu = cpu; 11612 event->attr = *attr; 11613 event->group_leader = group_leader; 11614 event->pmu = NULL; 11615 event->oncpu = -1; 11616 11617 event->parent = parent_event; 11618 11619 event->ns = get_pid_ns(task_active_pid_ns(current)); 11620 event->id = atomic64_inc_return(&perf_event_id); 11621 11622 event->state = PERF_EVENT_STATE_INACTIVE; 11623 11624 if (event->attr.sigtrap) 11625 atomic_set(&event->event_limit, 1); 11626 11627 if (task) { 11628 event->attach_state = PERF_ATTACH_TASK; 11629 /* 11630 * XXX pmu::event_init needs to know what task to account to 11631 * and we cannot use the ctx information because we need the 11632 * pmu before we get a ctx. 11633 */ 11634 event->hw.target = get_task_struct(task); 11635 } 11636 11637 event->clock = &local_clock; 11638 if (parent_event) 11639 event->clock = parent_event->clock; 11640 11641 if (!overflow_handler && parent_event) { 11642 overflow_handler = parent_event->overflow_handler; 11643 context = parent_event->overflow_handler_context; 11644 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11645 if (overflow_handler == bpf_overflow_handler) { 11646 struct bpf_prog *prog = parent_event->prog; 11647 11648 bpf_prog_inc(prog); 11649 event->prog = prog; 11650 event->orig_overflow_handler = 11651 parent_event->orig_overflow_handler; 11652 } 11653 #endif 11654 } 11655 11656 if (overflow_handler) { 11657 event->overflow_handler = overflow_handler; 11658 event->overflow_handler_context = context; 11659 } else if (is_write_backward(event)){ 11660 event->overflow_handler = perf_event_output_backward; 11661 event->overflow_handler_context = NULL; 11662 } else { 11663 event->overflow_handler = perf_event_output_forward; 11664 event->overflow_handler_context = NULL; 11665 } 11666 11667 perf_event__state_init(event); 11668 11669 pmu = NULL; 11670 11671 hwc = &event->hw; 11672 hwc->sample_period = attr->sample_period; 11673 if (attr->freq && attr->sample_freq) 11674 hwc->sample_period = 1; 11675 hwc->last_period = hwc->sample_period; 11676 11677 local64_set(&hwc->period_left, hwc->sample_period); 11678 11679 /* 11680 * We currently do not support PERF_SAMPLE_READ on inherited events. 11681 * See perf_output_read(). 11682 */ 11683 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11684 goto err_ns; 11685 11686 if (!has_branch_stack(event)) 11687 event->attr.branch_sample_type = 0; 11688 11689 pmu = perf_init_event(event); 11690 if (IS_ERR(pmu)) { 11691 err = PTR_ERR(pmu); 11692 goto err_ns; 11693 } 11694 11695 /* 11696 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11697 * be different on other CPUs in the uncore mask. 11698 */ 11699 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11700 err = -EINVAL; 11701 goto err_pmu; 11702 } 11703 11704 if (event->attr.aux_output && 11705 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11706 err = -EOPNOTSUPP; 11707 goto err_pmu; 11708 } 11709 11710 if (cgroup_fd != -1) { 11711 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11712 if (err) 11713 goto err_pmu; 11714 } 11715 11716 err = exclusive_event_init(event); 11717 if (err) 11718 goto err_pmu; 11719 11720 if (has_addr_filter(event)) { 11721 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11722 sizeof(struct perf_addr_filter_range), 11723 GFP_KERNEL); 11724 if (!event->addr_filter_ranges) { 11725 err = -ENOMEM; 11726 goto err_per_task; 11727 } 11728 11729 /* 11730 * Clone the parent's vma offsets: they are valid until exec() 11731 * even if the mm is not shared with the parent. 11732 */ 11733 if (event->parent) { 11734 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11735 11736 raw_spin_lock_irq(&ifh->lock); 11737 memcpy(event->addr_filter_ranges, 11738 event->parent->addr_filter_ranges, 11739 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11740 raw_spin_unlock_irq(&ifh->lock); 11741 } 11742 11743 /* force hw sync on the address filters */ 11744 event->addr_filters_gen = 1; 11745 } 11746 11747 if (!event->parent) { 11748 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11749 err = get_callchain_buffers(attr->sample_max_stack); 11750 if (err) 11751 goto err_addr_filters; 11752 } 11753 } 11754 11755 err = security_perf_event_alloc(event); 11756 if (err) 11757 goto err_callchain_buffer; 11758 11759 /* symmetric to unaccount_event() in _free_event() */ 11760 account_event(event); 11761 11762 return event; 11763 11764 err_callchain_buffer: 11765 if (!event->parent) { 11766 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11767 put_callchain_buffers(); 11768 } 11769 err_addr_filters: 11770 kfree(event->addr_filter_ranges); 11771 11772 err_per_task: 11773 exclusive_event_destroy(event); 11774 11775 err_pmu: 11776 if (is_cgroup_event(event)) 11777 perf_detach_cgroup(event); 11778 if (event->destroy) 11779 event->destroy(event); 11780 module_put(pmu->module); 11781 err_ns: 11782 if (event->ns) 11783 put_pid_ns(event->ns); 11784 if (event->hw.target) 11785 put_task_struct(event->hw.target); 11786 kmem_cache_free(perf_event_cache, event); 11787 11788 return ERR_PTR(err); 11789 } 11790 11791 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11792 struct perf_event_attr *attr) 11793 { 11794 u32 size; 11795 int ret; 11796 11797 /* Zero the full structure, so that a short copy will be nice. */ 11798 memset(attr, 0, sizeof(*attr)); 11799 11800 ret = get_user(size, &uattr->size); 11801 if (ret) 11802 return ret; 11803 11804 /* ABI compatibility quirk: */ 11805 if (!size) 11806 size = PERF_ATTR_SIZE_VER0; 11807 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11808 goto err_size; 11809 11810 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11811 if (ret) { 11812 if (ret == -E2BIG) 11813 goto err_size; 11814 return ret; 11815 } 11816 11817 attr->size = size; 11818 11819 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11820 return -EINVAL; 11821 11822 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11823 return -EINVAL; 11824 11825 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11826 return -EINVAL; 11827 11828 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11829 u64 mask = attr->branch_sample_type; 11830 11831 /* only using defined bits */ 11832 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11833 return -EINVAL; 11834 11835 /* at least one branch bit must be set */ 11836 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11837 return -EINVAL; 11838 11839 /* propagate priv level, when not set for branch */ 11840 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11841 11842 /* exclude_kernel checked on syscall entry */ 11843 if (!attr->exclude_kernel) 11844 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11845 11846 if (!attr->exclude_user) 11847 mask |= PERF_SAMPLE_BRANCH_USER; 11848 11849 if (!attr->exclude_hv) 11850 mask |= PERF_SAMPLE_BRANCH_HV; 11851 /* 11852 * adjust user setting (for HW filter setup) 11853 */ 11854 attr->branch_sample_type = mask; 11855 } 11856 /* privileged levels capture (kernel, hv): check permissions */ 11857 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11858 ret = perf_allow_kernel(attr); 11859 if (ret) 11860 return ret; 11861 } 11862 } 11863 11864 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11865 ret = perf_reg_validate(attr->sample_regs_user); 11866 if (ret) 11867 return ret; 11868 } 11869 11870 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11871 if (!arch_perf_have_user_stack_dump()) 11872 return -ENOSYS; 11873 11874 /* 11875 * We have __u32 type for the size, but so far 11876 * we can only use __u16 as maximum due to the 11877 * __u16 sample size limit. 11878 */ 11879 if (attr->sample_stack_user >= USHRT_MAX) 11880 return -EINVAL; 11881 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11882 return -EINVAL; 11883 } 11884 11885 if (!attr->sample_max_stack) 11886 attr->sample_max_stack = sysctl_perf_event_max_stack; 11887 11888 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11889 ret = perf_reg_validate(attr->sample_regs_intr); 11890 11891 #ifndef CONFIG_CGROUP_PERF 11892 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11893 return -EINVAL; 11894 #endif 11895 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 11896 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 11897 return -EINVAL; 11898 11899 if (!attr->inherit && attr->inherit_thread) 11900 return -EINVAL; 11901 11902 if (attr->remove_on_exec && attr->enable_on_exec) 11903 return -EINVAL; 11904 11905 if (attr->sigtrap && !attr->remove_on_exec) 11906 return -EINVAL; 11907 11908 out: 11909 return ret; 11910 11911 err_size: 11912 put_user(sizeof(*attr), &uattr->size); 11913 ret = -E2BIG; 11914 goto out; 11915 } 11916 11917 static int 11918 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11919 { 11920 struct perf_buffer *rb = NULL; 11921 int ret = -EINVAL; 11922 11923 if (!output_event) 11924 goto set; 11925 11926 /* don't allow circular references */ 11927 if (event == output_event) 11928 goto out; 11929 11930 /* 11931 * Don't allow cross-cpu buffers 11932 */ 11933 if (output_event->cpu != event->cpu) 11934 goto out; 11935 11936 /* 11937 * If its not a per-cpu rb, it must be the same task. 11938 */ 11939 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11940 goto out; 11941 11942 /* 11943 * Mixing clocks in the same buffer is trouble you don't need. 11944 */ 11945 if (output_event->clock != event->clock) 11946 goto out; 11947 11948 /* 11949 * Either writing ring buffer from beginning or from end. 11950 * Mixing is not allowed. 11951 */ 11952 if (is_write_backward(output_event) != is_write_backward(event)) 11953 goto out; 11954 11955 /* 11956 * If both events generate aux data, they must be on the same PMU 11957 */ 11958 if (has_aux(event) && has_aux(output_event) && 11959 event->pmu != output_event->pmu) 11960 goto out; 11961 11962 set: 11963 mutex_lock(&event->mmap_mutex); 11964 /* Can't redirect output if we've got an active mmap() */ 11965 if (atomic_read(&event->mmap_count)) 11966 goto unlock; 11967 11968 if (output_event) { 11969 /* get the rb we want to redirect to */ 11970 rb = ring_buffer_get(output_event); 11971 if (!rb) 11972 goto unlock; 11973 } 11974 11975 ring_buffer_attach(event, rb); 11976 11977 ret = 0; 11978 unlock: 11979 mutex_unlock(&event->mmap_mutex); 11980 11981 out: 11982 return ret; 11983 } 11984 11985 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11986 { 11987 if (b < a) 11988 swap(a, b); 11989 11990 mutex_lock(a); 11991 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11992 } 11993 11994 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11995 { 11996 bool nmi_safe = false; 11997 11998 switch (clk_id) { 11999 case CLOCK_MONOTONIC: 12000 event->clock = &ktime_get_mono_fast_ns; 12001 nmi_safe = true; 12002 break; 12003 12004 case CLOCK_MONOTONIC_RAW: 12005 event->clock = &ktime_get_raw_fast_ns; 12006 nmi_safe = true; 12007 break; 12008 12009 case CLOCK_REALTIME: 12010 event->clock = &ktime_get_real_ns; 12011 break; 12012 12013 case CLOCK_BOOTTIME: 12014 event->clock = &ktime_get_boottime_ns; 12015 break; 12016 12017 case CLOCK_TAI: 12018 event->clock = &ktime_get_clocktai_ns; 12019 break; 12020 12021 default: 12022 return -EINVAL; 12023 } 12024 12025 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12026 return -EINVAL; 12027 12028 return 0; 12029 } 12030 12031 /* 12032 * Variation on perf_event_ctx_lock_nested(), except we take two context 12033 * mutexes. 12034 */ 12035 static struct perf_event_context * 12036 __perf_event_ctx_lock_double(struct perf_event *group_leader, 12037 struct perf_event_context *ctx) 12038 { 12039 struct perf_event_context *gctx; 12040 12041 again: 12042 rcu_read_lock(); 12043 gctx = READ_ONCE(group_leader->ctx); 12044 if (!refcount_inc_not_zero(&gctx->refcount)) { 12045 rcu_read_unlock(); 12046 goto again; 12047 } 12048 rcu_read_unlock(); 12049 12050 mutex_lock_double(&gctx->mutex, &ctx->mutex); 12051 12052 if (group_leader->ctx != gctx) { 12053 mutex_unlock(&ctx->mutex); 12054 mutex_unlock(&gctx->mutex); 12055 put_ctx(gctx); 12056 goto again; 12057 } 12058 12059 return gctx; 12060 } 12061 12062 static bool 12063 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12064 { 12065 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12066 bool is_capable = perfmon_capable(); 12067 12068 if (attr->sigtrap) { 12069 /* 12070 * perf_event_attr::sigtrap sends signals to the other task. 12071 * Require the current task to also have CAP_KILL. 12072 */ 12073 rcu_read_lock(); 12074 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12075 rcu_read_unlock(); 12076 12077 /* 12078 * If the required capabilities aren't available, checks for 12079 * ptrace permissions: upgrade to ATTACH, since sending signals 12080 * can effectively change the target task. 12081 */ 12082 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12083 } 12084 12085 /* 12086 * Preserve ptrace permission check for backwards compatibility. The 12087 * ptrace check also includes checks that the current task and other 12088 * task have matching uids, and is therefore not done here explicitly. 12089 */ 12090 return is_capable || ptrace_may_access(task, ptrace_mode); 12091 } 12092 12093 /** 12094 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12095 * 12096 * @attr_uptr: event_id type attributes for monitoring/sampling 12097 * @pid: target pid 12098 * @cpu: target cpu 12099 * @group_fd: group leader event fd 12100 * @flags: perf event open flags 12101 */ 12102 SYSCALL_DEFINE5(perf_event_open, 12103 struct perf_event_attr __user *, attr_uptr, 12104 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12105 { 12106 struct perf_event *group_leader = NULL, *output_event = NULL; 12107 struct perf_event *event, *sibling; 12108 struct perf_event_attr attr; 12109 struct perf_event_context *ctx, *gctx; 12110 struct file *event_file = NULL; 12111 struct fd group = {NULL, 0}; 12112 struct task_struct *task = NULL; 12113 struct pmu *pmu; 12114 int event_fd; 12115 int move_group = 0; 12116 int err; 12117 int f_flags = O_RDWR; 12118 int cgroup_fd = -1; 12119 12120 /* for future expandability... */ 12121 if (flags & ~PERF_FLAG_ALL) 12122 return -EINVAL; 12123 12124 /* Do we allow access to perf_event_open(2) ? */ 12125 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12126 if (err) 12127 return err; 12128 12129 err = perf_copy_attr(attr_uptr, &attr); 12130 if (err) 12131 return err; 12132 12133 if (!attr.exclude_kernel) { 12134 err = perf_allow_kernel(&attr); 12135 if (err) 12136 return err; 12137 } 12138 12139 if (attr.namespaces) { 12140 if (!perfmon_capable()) 12141 return -EACCES; 12142 } 12143 12144 if (attr.freq) { 12145 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12146 return -EINVAL; 12147 } else { 12148 if (attr.sample_period & (1ULL << 63)) 12149 return -EINVAL; 12150 } 12151 12152 /* Only privileged users can get physical addresses */ 12153 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12154 err = perf_allow_kernel(&attr); 12155 if (err) 12156 return err; 12157 } 12158 12159 /* REGS_INTR can leak data, lockdown must prevent this */ 12160 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12161 err = security_locked_down(LOCKDOWN_PERF); 12162 if (err) 12163 return err; 12164 } 12165 12166 /* 12167 * In cgroup mode, the pid argument is used to pass the fd 12168 * opened to the cgroup directory in cgroupfs. The cpu argument 12169 * designates the cpu on which to monitor threads from that 12170 * cgroup. 12171 */ 12172 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12173 return -EINVAL; 12174 12175 if (flags & PERF_FLAG_FD_CLOEXEC) 12176 f_flags |= O_CLOEXEC; 12177 12178 event_fd = get_unused_fd_flags(f_flags); 12179 if (event_fd < 0) 12180 return event_fd; 12181 12182 if (group_fd != -1) { 12183 err = perf_fget_light(group_fd, &group); 12184 if (err) 12185 goto err_fd; 12186 group_leader = group.file->private_data; 12187 if (flags & PERF_FLAG_FD_OUTPUT) 12188 output_event = group_leader; 12189 if (flags & PERF_FLAG_FD_NO_GROUP) 12190 group_leader = NULL; 12191 } 12192 12193 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12194 task = find_lively_task_by_vpid(pid); 12195 if (IS_ERR(task)) { 12196 err = PTR_ERR(task); 12197 goto err_group_fd; 12198 } 12199 } 12200 12201 if (task && group_leader && 12202 group_leader->attr.inherit != attr.inherit) { 12203 err = -EINVAL; 12204 goto err_task; 12205 } 12206 12207 if (flags & PERF_FLAG_PID_CGROUP) 12208 cgroup_fd = pid; 12209 12210 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12211 NULL, NULL, cgroup_fd); 12212 if (IS_ERR(event)) { 12213 err = PTR_ERR(event); 12214 goto err_task; 12215 } 12216 12217 if (is_sampling_event(event)) { 12218 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12219 err = -EOPNOTSUPP; 12220 goto err_alloc; 12221 } 12222 } 12223 12224 /* 12225 * Special case software events and allow them to be part of 12226 * any hardware group. 12227 */ 12228 pmu = event->pmu; 12229 12230 if (attr.use_clockid) { 12231 err = perf_event_set_clock(event, attr.clockid); 12232 if (err) 12233 goto err_alloc; 12234 } 12235 12236 if (pmu->task_ctx_nr == perf_sw_context) 12237 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12238 12239 if (group_leader) { 12240 if (is_software_event(event) && 12241 !in_software_context(group_leader)) { 12242 /* 12243 * If the event is a sw event, but the group_leader 12244 * is on hw context. 12245 * 12246 * Allow the addition of software events to hw 12247 * groups, this is safe because software events 12248 * never fail to schedule. 12249 */ 12250 pmu = group_leader->ctx->pmu; 12251 } else if (!is_software_event(event) && 12252 is_software_event(group_leader) && 12253 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12254 /* 12255 * In case the group is a pure software group, and we 12256 * try to add a hardware event, move the whole group to 12257 * the hardware context. 12258 */ 12259 move_group = 1; 12260 } 12261 } 12262 12263 /* 12264 * Get the target context (task or percpu): 12265 */ 12266 ctx = find_get_context(pmu, task, event); 12267 if (IS_ERR(ctx)) { 12268 err = PTR_ERR(ctx); 12269 goto err_alloc; 12270 } 12271 12272 /* 12273 * Look up the group leader (we will attach this event to it): 12274 */ 12275 if (group_leader) { 12276 err = -EINVAL; 12277 12278 /* 12279 * Do not allow a recursive hierarchy (this new sibling 12280 * becoming part of another group-sibling): 12281 */ 12282 if (group_leader->group_leader != group_leader) 12283 goto err_context; 12284 12285 /* All events in a group should have the same clock */ 12286 if (group_leader->clock != event->clock) 12287 goto err_context; 12288 12289 /* 12290 * Make sure we're both events for the same CPU; 12291 * grouping events for different CPUs is broken; since 12292 * you can never concurrently schedule them anyhow. 12293 */ 12294 if (group_leader->cpu != event->cpu) 12295 goto err_context; 12296 12297 /* 12298 * Make sure we're both on the same task, or both 12299 * per-CPU events. 12300 */ 12301 if (group_leader->ctx->task != ctx->task) 12302 goto err_context; 12303 12304 /* 12305 * Do not allow to attach to a group in a different task 12306 * or CPU context. If we're moving SW events, we'll fix 12307 * this up later, so allow that. 12308 */ 12309 if (!move_group && group_leader->ctx != ctx) 12310 goto err_context; 12311 12312 /* 12313 * Only a group leader can be exclusive or pinned 12314 */ 12315 if (attr.exclusive || attr.pinned) 12316 goto err_context; 12317 } 12318 12319 if (output_event) { 12320 err = perf_event_set_output(event, output_event); 12321 if (err) 12322 goto err_context; 12323 } 12324 12325 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 12326 f_flags); 12327 if (IS_ERR(event_file)) { 12328 err = PTR_ERR(event_file); 12329 event_file = NULL; 12330 goto err_context; 12331 } 12332 12333 if (task) { 12334 err = down_read_interruptible(&task->signal->exec_update_lock); 12335 if (err) 12336 goto err_file; 12337 12338 /* 12339 * We must hold exec_update_lock across this and any potential 12340 * perf_install_in_context() call for this new event to 12341 * serialize against exec() altering our credentials (and the 12342 * perf_event_exit_task() that could imply). 12343 */ 12344 err = -EACCES; 12345 if (!perf_check_permission(&attr, task)) 12346 goto err_cred; 12347 } 12348 12349 if (move_group) { 12350 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 12351 12352 if (gctx->task == TASK_TOMBSTONE) { 12353 err = -ESRCH; 12354 goto err_locked; 12355 } 12356 12357 /* 12358 * Check if we raced against another sys_perf_event_open() call 12359 * moving the software group underneath us. 12360 */ 12361 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12362 /* 12363 * If someone moved the group out from under us, check 12364 * if this new event wound up on the same ctx, if so 12365 * its the regular !move_group case, otherwise fail. 12366 */ 12367 if (gctx != ctx) { 12368 err = -EINVAL; 12369 goto err_locked; 12370 } else { 12371 perf_event_ctx_unlock(group_leader, gctx); 12372 move_group = 0; 12373 } 12374 } 12375 12376 /* 12377 * Failure to create exclusive events returns -EBUSY. 12378 */ 12379 err = -EBUSY; 12380 if (!exclusive_event_installable(group_leader, ctx)) 12381 goto err_locked; 12382 12383 for_each_sibling_event(sibling, group_leader) { 12384 if (!exclusive_event_installable(sibling, ctx)) 12385 goto err_locked; 12386 } 12387 } else { 12388 mutex_lock(&ctx->mutex); 12389 } 12390 12391 if (ctx->task == TASK_TOMBSTONE) { 12392 err = -ESRCH; 12393 goto err_locked; 12394 } 12395 12396 if (!perf_event_validate_size(event)) { 12397 err = -E2BIG; 12398 goto err_locked; 12399 } 12400 12401 if (!task) { 12402 /* 12403 * Check if the @cpu we're creating an event for is online. 12404 * 12405 * We use the perf_cpu_context::ctx::mutex to serialize against 12406 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12407 */ 12408 struct perf_cpu_context *cpuctx = 12409 container_of(ctx, struct perf_cpu_context, ctx); 12410 12411 if (!cpuctx->online) { 12412 err = -ENODEV; 12413 goto err_locked; 12414 } 12415 } 12416 12417 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12418 err = -EINVAL; 12419 goto err_locked; 12420 } 12421 12422 /* 12423 * Must be under the same ctx::mutex as perf_install_in_context(), 12424 * because we need to serialize with concurrent event creation. 12425 */ 12426 if (!exclusive_event_installable(event, ctx)) { 12427 err = -EBUSY; 12428 goto err_locked; 12429 } 12430 12431 WARN_ON_ONCE(ctx->parent_ctx); 12432 12433 /* 12434 * This is the point on no return; we cannot fail hereafter. This is 12435 * where we start modifying current state. 12436 */ 12437 12438 if (move_group) { 12439 /* 12440 * See perf_event_ctx_lock() for comments on the details 12441 * of swizzling perf_event::ctx. 12442 */ 12443 perf_remove_from_context(group_leader, 0); 12444 put_ctx(gctx); 12445 12446 for_each_sibling_event(sibling, group_leader) { 12447 perf_remove_from_context(sibling, 0); 12448 put_ctx(gctx); 12449 } 12450 12451 /* 12452 * Wait for everybody to stop referencing the events through 12453 * the old lists, before installing it on new lists. 12454 */ 12455 synchronize_rcu(); 12456 12457 /* 12458 * Install the group siblings before the group leader. 12459 * 12460 * Because a group leader will try and install the entire group 12461 * (through the sibling list, which is still in-tact), we can 12462 * end up with siblings installed in the wrong context. 12463 * 12464 * By installing siblings first we NO-OP because they're not 12465 * reachable through the group lists. 12466 */ 12467 for_each_sibling_event(sibling, group_leader) { 12468 perf_event__state_init(sibling); 12469 perf_install_in_context(ctx, sibling, sibling->cpu); 12470 get_ctx(ctx); 12471 } 12472 12473 /* 12474 * Removing from the context ends up with disabled 12475 * event. What we want here is event in the initial 12476 * startup state, ready to be add into new context. 12477 */ 12478 perf_event__state_init(group_leader); 12479 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12480 get_ctx(ctx); 12481 } 12482 12483 /* 12484 * Precalculate sample_data sizes; do while holding ctx::mutex such 12485 * that we're serialized against further additions and before 12486 * perf_install_in_context() which is the point the event is active and 12487 * can use these values. 12488 */ 12489 perf_event__header_size(event); 12490 perf_event__id_header_size(event); 12491 12492 event->owner = current; 12493 12494 perf_install_in_context(ctx, event, event->cpu); 12495 perf_unpin_context(ctx); 12496 12497 if (move_group) 12498 perf_event_ctx_unlock(group_leader, gctx); 12499 mutex_unlock(&ctx->mutex); 12500 12501 if (task) { 12502 up_read(&task->signal->exec_update_lock); 12503 put_task_struct(task); 12504 } 12505 12506 mutex_lock(¤t->perf_event_mutex); 12507 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12508 mutex_unlock(¤t->perf_event_mutex); 12509 12510 /* 12511 * Drop the reference on the group_event after placing the 12512 * new event on the sibling_list. This ensures destruction 12513 * of the group leader will find the pointer to itself in 12514 * perf_group_detach(). 12515 */ 12516 fdput(group); 12517 fd_install(event_fd, event_file); 12518 return event_fd; 12519 12520 err_locked: 12521 if (move_group) 12522 perf_event_ctx_unlock(group_leader, gctx); 12523 mutex_unlock(&ctx->mutex); 12524 err_cred: 12525 if (task) 12526 up_read(&task->signal->exec_update_lock); 12527 err_file: 12528 fput(event_file); 12529 err_context: 12530 perf_unpin_context(ctx); 12531 put_ctx(ctx); 12532 err_alloc: 12533 /* 12534 * If event_file is set, the fput() above will have called ->release() 12535 * and that will take care of freeing the event. 12536 */ 12537 if (!event_file) 12538 free_event(event); 12539 err_task: 12540 if (task) 12541 put_task_struct(task); 12542 err_group_fd: 12543 fdput(group); 12544 err_fd: 12545 put_unused_fd(event_fd); 12546 return err; 12547 } 12548 12549 /** 12550 * perf_event_create_kernel_counter 12551 * 12552 * @attr: attributes of the counter to create 12553 * @cpu: cpu in which the counter is bound 12554 * @task: task to profile (NULL for percpu) 12555 * @overflow_handler: callback to trigger when we hit the event 12556 * @context: context data could be used in overflow_handler callback 12557 */ 12558 struct perf_event * 12559 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12560 struct task_struct *task, 12561 perf_overflow_handler_t overflow_handler, 12562 void *context) 12563 { 12564 struct perf_event_context *ctx; 12565 struct perf_event *event; 12566 int err; 12567 12568 /* 12569 * Grouping is not supported for kernel events, neither is 'AUX', 12570 * make sure the caller's intentions are adjusted. 12571 */ 12572 if (attr->aux_output) 12573 return ERR_PTR(-EINVAL); 12574 12575 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12576 overflow_handler, context, -1); 12577 if (IS_ERR(event)) { 12578 err = PTR_ERR(event); 12579 goto err; 12580 } 12581 12582 /* Mark owner so we could distinguish it from user events. */ 12583 event->owner = TASK_TOMBSTONE; 12584 12585 /* 12586 * Get the target context (task or percpu): 12587 */ 12588 ctx = find_get_context(event->pmu, task, event); 12589 if (IS_ERR(ctx)) { 12590 err = PTR_ERR(ctx); 12591 goto err_free; 12592 } 12593 12594 WARN_ON_ONCE(ctx->parent_ctx); 12595 mutex_lock(&ctx->mutex); 12596 if (ctx->task == TASK_TOMBSTONE) { 12597 err = -ESRCH; 12598 goto err_unlock; 12599 } 12600 12601 if (!task) { 12602 /* 12603 * Check if the @cpu we're creating an event for is online. 12604 * 12605 * We use the perf_cpu_context::ctx::mutex to serialize against 12606 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12607 */ 12608 struct perf_cpu_context *cpuctx = 12609 container_of(ctx, struct perf_cpu_context, ctx); 12610 if (!cpuctx->online) { 12611 err = -ENODEV; 12612 goto err_unlock; 12613 } 12614 } 12615 12616 if (!exclusive_event_installable(event, ctx)) { 12617 err = -EBUSY; 12618 goto err_unlock; 12619 } 12620 12621 perf_install_in_context(ctx, event, event->cpu); 12622 perf_unpin_context(ctx); 12623 mutex_unlock(&ctx->mutex); 12624 12625 return event; 12626 12627 err_unlock: 12628 mutex_unlock(&ctx->mutex); 12629 perf_unpin_context(ctx); 12630 put_ctx(ctx); 12631 err_free: 12632 free_event(event); 12633 err: 12634 return ERR_PTR(err); 12635 } 12636 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12637 12638 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12639 { 12640 struct perf_event_context *src_ctx; 12641 struct perf_event_context *dst_ctx; 12642 struct perf_event *event, *tmp; 12643 LIST_HEAD(events); 12644 12645 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12646 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12647 12648 /* 12649 * See perf_event_ctx_lock() for comments on the details 12650 * of swizzling perf_event::ctx. 12651 */ 12652 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12653 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12654 event_entry) { 12655 perf_remove_from_context(event, 0); 12656 unaccount_event_cpu(event, src_cpu); 12657 put_ctx(src_ctx); 12658 list_add(&event->migrate_entry, &events); 12659 } 12660 12661 /* 12662 * Wait for the events to quiesce before re-instating them. 12663 */ 12664 synchronize_rcu(); 12665 12666 /* 12667 * Re-instate events in 2 passes. 12668 * 12669 * Skip over group leaders and only install siblings on this first 12670 * pass, siblings will not get enabled without a leader, however a 12671 * leader will enable its siblings, even if those are still on the old 12672 * context. 12673 */ 12674 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12675 if (event->group_leader == event) 12676 continue; 12677 12678 list_del(&event->migrate_entry); 12679 if (event->state >= PERF_EVENT_STATE_OFF) 12680 event->state = PERF_EVENT_STATE_INACTIVE; 12681 account_event_cpu(event, dst_cpu); 12682 perf_install_in_context(dst_ctx, event, dst_cpu); 12683 get_ctx(dst_ctx); 12684 } 12685 12686 /* 12687 * Once all the siblings are setup properly, install the group leaders 12688 * to make it go. 12689 */ 12690 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12691 list_del(&event->migrate_entry); 12692 if (event->state >= PERF_EVENT_STATE_OFF) 12693 event->state = PERF_EVENT_STATE_INACTIVE; 12694 account_event_cpu(event, dst_cpu); 12695 perf_install_in_context(dst_ctx, event, dst_cpu); 12696 get_ctx(dst_ctx); 12697 } 12698 mutex_unlock(&dst_ctx->mutex); 12699 mutex_unlock(&src_ctx->mutex); 12700 } 12701 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12702 12703 static void sync_child_event(struct perf_event *child_event) 12704 { 12705 struct perf_event *parent_event = child_event->parent; 12706 u64 child_val; 12707 12708 if (child_event->attr.inherit_stat) { 12709 struct task_struct *task = child_event->ctx->task; 12710 12711 if (task && task != TASK_TOMBSTONE) 12712 perf_event_read_event(child_event, task); 12713 } 12714 12715 child_val = perf_event_count(child_event); 12716 12717 /* 12718 * Add back the child's count to the parent's count: 12719 */ 12720 atomic64_add(child_val, &parent_event->child_count); 12721 atomic64_add(child_event->total_time_enabled, 12722 &parent_event->child_total_time_enabled); 12723 atomic64_add(child_event->total_time_running, 12724 &parent_event->child_total_time_running); 12725 } 12726 12727 static void 12728 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12729 { 12730 struct perf_event *parent_event = event->parent; 12731 unsigned long detach_flags = 0; 12732 12733 if (parent_event) { 12734 /* 12735 * Do not destroy the 'original' grouping; because of the 12736 * context switch optimization the original events could've 12737 * ended up in a random child task. 12738 * 12739 * If we were to destroy the original group, all group related 12740 * operations would cease to function properly after this 12741 * random child dies. 12742 * 12743 * Do destroy all inherited groups, we don't care about those 12744 * and being thorough is better. 12745 */ 12746 detach_flags = DETACH_GROUP | DETACH_CHILD; 12747 mutex_lock(&parent_event->child_mutex); 12748 } 12749 12750 perf_remove_from_context(event, detach_flags); 12751 12752 raw_spin_lock_irq(&ctx->lock); 12753 if (event->state > PERF_EVENT_STATE_EXIT) 12754 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 12755 raw_spin_unlock_irq(&ctx->lock); 12756 12757 /* 12758 * Child events can be freed. 12759 */ 12760 if (parent_event) { 12761 mutex_unlock(&parent_event->child_mutex); 12762 /* 12763 * Kick perf_poll() for is_event_hup(); 12764 */ 12765 perf_event_wakeup(parent_event); 12766 free_event(event); 12767 put_event(parent_event); 12768 return; 12769 } 12770 12771 /* 12772 * Parent events are governed by their filedesc, retain them. 12773 */ 12774 perf_event_wakeup(event); 12775 } 12776 12777 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12778 { 12779 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12780 struct perf_event *child_event, *next; 12781 12782 WARN_ON_ONCE(child != current); 12783 12784 child_ctx = perf_pin_task_context(child, ctxn); 12785 if (!child_ctx) 12786 return; 12787 12788 /* 12789 * In order to reduce the amount of tricky in ctx tear-down, we hold 12790 * ctx::mutex over the entire thing. This serializes against almost 12791 * everything that wants to access the ctx. 12792 * 12793 * The exception is sys_perf_event_open() / 12794 * perf_event_create_kernel_count() which does find_get_context() 12795 * without ctx::mutex (it cannot because of the move_group double mutex 12796 * lock thing). See the comments in perf_install_in_context(). 12797 */ 12798 mutex_lock(&child_ctx->mutex); 12799 12800 /* 12801 * In a single ctx::lock section, de-schedule the events and detach the 12802 * context from the task such that we cannot ever get it scheduled back 12803 * in. 12804 */ 12805 raw_spin_lock_irq(&child_ctx->lock); 12806 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12807 12808 /* 12809 * Now that the context is inactive, destroy the task <-> ctx relation 12810 * and mark the context dead. 12811 */ 12812 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12813 put_ctx(child_ctx); /* cannot be last */ 12814 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12815 put_task_struct(current); /* cannot be last */ 12816 12817 clone_ctx = unclone_ctx(child_ctx); 12818 raw_spin_unlock_irq(&child_ctx->lock); 12819 12820 if (clone_ctx) 12821 put_ctx(clone_ctx); 12822 12823 /* 12824 * Report the task dead after unscheduling the events so that we 12825 * won't get any samples after PERF_RECORD_EXIT. We can however still 12826 * get a few PERF_RECORD_READ events. 12827 */ 12828 perf_event_task(child, child_ctx, 0); 12829 12830 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12831 perf_event_exit_event(child_event, child_ctx); 12832 12833 mutex_unlock(&child_ctx->mutex); 12834 12835 put_ctx(child_ctx); 12836 } 12837 12838 /* 12839 * When a child task exits, feed back event values to parent events. 12840 * 12841 * Can be called with exec_update_lock held when called from 12842 * setup_new_exec(). 12843 */ 12844 void perf_event_exit_task(struct task_struct *child) 12845 { 12846 struct perf_event *event, *tmp; 12847 int ctxn; 12848 12849 mutex_lock(&child->perf_event_mutex); 12850 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12851 owner_entry) { 12852 list_del_init(&event->owner_entry); 12853 12854 /* 12855 * Ensure the list deletion is visible before we clear 12856 * the owner, closes a race against perf_release() where 12857 * we need to serialize on the owner->perf_event_mutex. 12858 */ 12859 smp_store_release(&event->owner, NULL); 12860 } 12861 mutex_unlock(&child->perf_event_mutex); 12862 12863 for_each_task_context_nr(ctxn) 12864 perf_event_exit_task_context(child, ctxn); 12865 12866 /* 12867 * The perf_event_exit_task_context calls perf_event_task 12868 * with child's task_ctx, which generates EXIT events for 12869 * child contexts and sets child->perf_event_ctxp[] to NULL. 12870 * At this point we need to send EXIT events to cpu contexts. 12871 */ 12872 perf_event_task(child, NULL, 0); 12873 } 12874 12875 static void perf_free_event(struct perf_event *event, 12876 struct perf_event_context *ctx) 12877 { 12878 struct perf_event *parent = event->parent; 12879 12880 if (WARN_ON_ONCE(!parent)) 12881 return; 12882 12883 mutex_lock(&parent->child_mutex); 12884 list_del_init(&event->child_list); 12885 mutex_unlock(&parent->child_mutex); 12886 12887 put_event(parent); 12888 12889 raw_spin_lock_irq(&ctx->lock); 12890 perf_group_detach(event); 12891 list_del_event(event, ctx); 12892 raw_spin_unlock_irq(&ctx->lock); 12893 free_event(event); 12894 } 12895 12896 /* 12897 * Free a context as created by inheritance by perf_event_init_task() below, 12898 * used by fork() in case of fail. 12899 * 12900 * Even though the task has never lived, the context and events have been 12901 * exposed through the child_list, so we must take care tearing it all down. 12902 */ 12903 void perf_event_free_task(struct task_struct *task) 12904 { 12905 struct perf_event_context *ctx; 12906 struct perf_event *event, *tmp; 12907 int ctxn; 12908 12909 for_each_task_context_nr(ctxn) { 12910 ctx = task->perf_event_ctxp[ctxn]; 12911 if (!ctx) 12912 continue; 12913 12914 mutex_lock(&ctx->mutex); 12915 raw_spin_lock_irq(&ctx->lock); 12916 /* 12917 * Destroy the task <-> ctx relation and mark the context dead. 12918 * 12919 * This is important because even though the task hasn't been 12920 * exposed yet the context has been (through child_list). 12921 */ 12922 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12923 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12924 put_task_struct(task); /* cannot be last */ 12925 raw_spin_unlock_irq(&ctx->lock); 12926 12927 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12928 perf_free_event(event, ctx); 12929 12930 mutex_unlock(&ctx->mutex); 12931 12932 /* 12933 * perf_event_release_kernel() could've stolen some of our 12934 * child events and still have them on its free_list. In that 12935 * case we must wait for these events to have been freed (in 12936 * particular all their references to this task must've been 12937 * dropped). 12938 * 12939 * Without this copy_process() will unconditionally free this 12940 * task (irrespective of its reference count) and 12941 * _free_event()'s put_task_struct(event->hw.target) will be a 12942 * use-after-free. 12943 * 12944 * Wait for all events to drop their context reference. 12945 */ 12946 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12947 put_ctx(ctx); /* must be last */ 12948 } 12949 } 12950 12951 void perf_event_delayed_put(struct task_struct *task) 12952 { 12953 int ctxn; 12954 12955 for_each_task_context_nr(ctxn) 12956 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12957 } 12958 12959 struct file *perf_event_get(unsigned int fd) 12960 { 12961 struct file *file = fget(fd); 12962 if (!file) 12963 return ERR_PTR(-EBADF); 12964 12965 if (file->f_op != &perf_fops) { 12966 fput(file); 12967 return ERR_PTR(-EBADF); 12968 } 12969 12970 return file; 12971 } 12972 12973 const struct perf_event *perf_get_event(struct file *file) 12974 { 12975 if (file->f_op != &perf_fops) 12976 return ERR_PTR(-EINVAL); 12977 12978 return file->private_data; 12979 } 12980 12981 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12982 { 12983 if (!event) 12984 return ERR_PTR(-EINVAL); 12985 12986 return &event->attr; 12987 } 12988 12989 /* 12990 * Inherit an event from parent task to child task. 12991 * 12992 * Returns: 12993 * - valid pointer on success 12994 * - NULL for orphaned events 12995 * - IS_ERR() on error 12996 */ 12997 static struct perf_event * 12998 inherit_event(struct perf_event *parent_event, 12999 struct task_struct *parent, 13000 struct perf_event_context *parent_ctx, 13001 struct task_struct *child, 13002 struct perf_event *group_leader, 13003 struct perf_event_context *child_ctx) 13004 { 13005 enum perf_event_state parent_state = parent_event->state; 13006 struct perf_event *child_event; 13007 unsigned long flags; 13008 13009 /* 13010 * Instead of creating recursive hierarchies of events, 13011 * we link inherited events back to the original parent, 13012 * which has a filp for sure, which we use as the reference 13013 * count: 13014 */ 13015 if (parent_event->parent) 13016 parent_event = parent_event->parent; 13017 13018 child_event = perf_event_alloc(&parent_event->attr, 13019 parent_event->cpu, 13020 child, 13021 group_leader, parent_event, 13022 NULL, NULL, -1); 13023 if (IS_ERR(child_event)) 13024 return child_event; 13025 13026 13027 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 13028 !child_ctx->task_ctx_data) { 13029 struct pmu *pmu = child_event->pmu; 13030 13031 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu); 13032 if (!child_ctx->task_ctx_data) { 13033 free_event(child_event); 13034 return ERR_PTR(-ENOMEM); 13035 } 13036 } 13037 13038 /* 13039 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13040 * must be under the same lock in order to serialize against 13041 * perf_event_release_kernel(), such that either we must observe 13042 * is_orphaned_event() or they will observe us on the child_list. 13043 */ 13044 mutex_lock(&parent_event->child_mutex); 13045 if (is_orphaned_event(parent_event) || 13046 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13047 mutex_unlock(&parent_event->child_mutex); 13048 /* task_ctx_data is freed with child_ctx */ 13049 free_event(child_event); 13050 return NULL; 13051 } 13052 13053 get_ctx(child_ctx); 13054 13055 /* 13056 * Make the child state follow the state of the parent event, 13057 * not its attr.disabled bit. We hold the parent's mutex, 13058 * so we won't race with perf_event_{en, dis}able_family. 13059 */ 13060 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13061 child_event->state = PERF_EVENT_STATE_INACTIVE; 13062 else 13063 child_event->state = PERF_EVENT_STATE_OFF; 13064 13065 if (parent_event->attr.freq) { 13066 u64 sample_period = parent_event->hw.sample_period; 13067 struct hw_perf_event *hwc = &child_event->hw; 13068 13069 hwc->sample_period = sample_period; 13070 hwc->last_period = sample_period; 13071 13072 local64_set(&hwc->period_left, sample_period); 13073 } 13074 13075 child_event->ctx = child_ctx; 13076 child_event->overflow_handler = parent_event->overflow_handler; 13077 child_event->overflow_handler_context 13078 = parent_event->overflow_handler_context; 13079 13080 /* 13081 * Precalculate sample_data sizes 13082 */ 13083 perf_event__header_size(child_event); 13084 perf_event__id_header_size(child_event); 13085 13086 /* 13087 * Link it up in the child's context: 13088 */ 13089 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13090 add_event_to_ctx(child_event, child_ctx); 13091 child_event->attach_state |= PERF_ATTACH_CHILD; 13092 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13093 13094 /* 13095 * Link this into the parent event's child list 13096 */ 13097 list_add_tail(&child_event->child_list, &parent_event->child_list); 13098 mutex_unlock(&parent_event->child_mutex); 13099 13100 return child_event; 13101 } 13102 13103 /* 13104 * Inherits an event group. 13105 * 13106 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13107 * This matches with perf_event_release_kernel() removing all child events. 13108 * 13109 * Returns: 13110 * - 0 on success 13111 * - <0 on error 13112 */ 13113 static int inherit_group(struct perf_event *parent_event, 13114 struct task_struct *parent, 13115 struct perf_event_context *parent_ctx, 13116 struct task_struct *child, 13117 struct perf_event_context *child_ctx) 13118 { 13119 struct perf_event *leader; 13120 struct perf_event *sub; 13121 struct perf_event *child_ctr; 13122 13123 leader = inherit_event(parent_event, parent, parent_ctx, 13124 child, NULL, child_ctx); 13125 if (IS_ERR(leader)) 13126 return PTR_ERR(leader); 13127 /* 13128 * @leader can be NULL here because of is_orphaned_event(). In this 13129 * case inherit_event() will create individual events, similar to what 13130 * perf_group_detach() would do anyway. 13131 */ 13132 for_each_sibling_event(sub, parent_event) { 13133 child_ctr = inherit_event(sub, parent, parent_ctx, 13134 child, leader, child_ctx); 13135 if (IS_ERR(child_ctr)) 13136 return PTR_ERR(child_ctr); 13137 13138 if (sub->aux_event == parent_event && child_ctr && 13139 !perf_get_aux_event(child_ctr, leader)) 13140 return -EINVAL; 13141 } 13142 return 0; 13143 } 13144 13145 /* 13146 * Creates the child task context and tries to inherit the event-group. 13147 * 13148 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13149 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13150 * consistent with perf_event_release_kernel() removing all child events. 13151 * 13152 * Returns: 13153 * - 0 on success 13154 * - <0 on error 13155 */ 13156 static int 13157 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13158 struct perf_event_context *parent_ctx, 13159 struct task_struct *child, int ctxn, 13160 u64 clone_flags, int *inherited_all) 13161 { 13162 int ret; 13163 struct perf_event_context *child_ctx; 13164 13165 if (!event->attr.inherit || 13166 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13167 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13168 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13169 *inherited_all = 0; 13170 return 0; 13171 } 13172 13173 child_ctx = child->perf_event_ctxp[ctxn]; 13174 if (!child_ctx) { 13175 /* 13176 * This is executed from the parent task context, so 13177 * inherit events that have been marked for cloning. 13178 * First allocate and initialize a context for the 13179 * child. 13180 */ 13181 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 13182 if (!child_ctx) 13183 return -ENOMEM; 13184 13185 child->perf_event_ctxp[ctxn] = child_ctx; 13186 } 13187 13188 ret = inherit_group(event, parent, parent_ctx, 13189 child, child_ctx); 13190 13191 if (ret) 13192 *inherited_all = 0; 13193 13194 return ret; 13195 } 13196 13197 /* 13198 * Initialize the perf_event context in task_struct 13199 */ 13200 static int perf_event_init_context(struct task_struct *child, int ctxn, 13201 u64 clone_flags) 13202 { 13203 struct perf_event_context *child_ctx, *parent_ctx; 13204 struct perf_event_context *cloned_ctx; 13205 struct perf_event *event; 13206 struct task_struct *parent = current; 13207 int inherited_all = 1; 13208 unsigned long flags; 13209 int ret = 0; 13210 13211 if (likely(!parent->perf_event_ctxp[ctxn])) 13212 return 0; 13213 13214 /* 13215 * If the parent's context is a clone, pin it so it won't get 13216 * swapped under us. 13217 */ 13218 parent_ctx = perf_pin_task_context(parent, ctxn); 13219 if (!parent_ctx) 13220 return 0; 13221 13222 /* 13223 * No need to check if parent_ctx != NULL here; since we saw 13224 * it non-NULL earlier, the only reason for it to become NULL 13225 * is if we exit, and since we're currently in the middle of 13226 * a fork we can't be exiting at the same time. 13227 */ 13228 13229 /* 13230 * Lock the parent list. No need to lock the child - not PID 13231 * hashed yet and not running, so nobody can access it. 13232 */ 13233 mutex_lock(&parent_ctx->mutex); 13234 13235 /* 13236 * We dont have to disable NMIs - we are only looking at 13237 * the list, not manipulating it: 13238 */ 13239 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13240 ret = inherit_task_group(event, parent, parent_ctx, 13241 child, ctxn, clone_flags, 13242 &inherited_all); 13243 if (ret) 13244 goto out_unlock; 13245 } 13246 13247 /* 13248 * We can't hold ctx->lock when iterating the ->flexible_group list due 13249 * to allocations, but we need to prevent rotation because 13250 * rotate_ctx() will change the list from interrupt context. 13251 */ 13252 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13253 parent_ctx->rotate_disable = 1; 13254 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13255 13256 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13257 ret = inherit_task_group(event, parent, parent_ctx, 13258 child, ctxn, clone_flags, 13259 &inherited_all); 13260 if (ret) 13261 goto out_unlock; 13262 } 13263 13264 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13265 parent_ctx->rotate_disable = 0; 13266 13267 child_ctx = child->perf_event_ctxp[ctxn]; 13268 13269 if (child_ctx && inherited_all) { 13270 /* 13271 * Mark the child context as a clone of the parent 13272 * context, or of whatever the parent is a clone of. 13273 * 13274 * Note that if the parent is a clone, the holding of 13275 * parent_ctx->lock avoids it from being uncloned. 13276 */ 13277 cloned_ctx = parent_ctx->parent_ctx; 13278 if (cloned_ctx) { 13279 child_ctx->parent_ctx = cloned_ctx; 13280 child_ctx->parent_gen = parent_ctx->parent_gen; 13281 } else { 13282 child_ctx->parent_ctx = parent_ctx; 13283 child_ctx->parent_gen = parent_ctx->generation; 13284 } 13285 get_ctx(child_ctx->parent_ctx); 13286 } 13287 13288 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13289 out_unlock: 13290 mutex_unlock(&parent_ctx->mutex); 13291 13292 perf_unpin_context(parent_ctx); 13293 put_ctx(parent_ctx); 13294 13295 return ret; 13296 } 13297 13298 /* 13299 * Initialize the perf_event context in task_struct 13300 */ 13301 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13302 { 13303 int ctxn, ret; 13304 13305 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 13306 mutex_init(&child->perf_event_mutex); 13307 INIT_LIST_HEAD(&child->perf_event_list); 13308 13309 for_each_task_context_nr(ctxn) { 13310 ret = perf_event_init_context(child, ctxn, clone_flags); 13311 if (ret) { 13312 perf_event_free_task(child); 13313 return ret; 13314 } 13315 } 13316 13317 return 0; 13318 } 13319 13320 static void __init perf_event_init_all_cpus(void) 13321 { 13322 struct swevent_htable *swhash; 13323 int cpu; 13324 13325 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13326 13327 for_each_possible_cpu(cpu) { 13328 swhash = &per_cpu(swevent_htable, cpu); 13329 mutex_init(&swhash->hlist_mutex); 13330 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 13331 13332 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13333 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13334 13335 #ifdef CONFIG_CGROUP_PERF 13336 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 13337 #endif 13338 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13339 } 13340 } 13341 13342 static void perf_swevent_init_cpu(unsigned int cpu) 13343 { 13344 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13345 13346 mutex_lock(&swhash->hlist_mutex); 13347 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13348 struct swevent_hlist *hlist; 13349 13350 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13351 WARN_ON(!hlist); 13352 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13353 } 13354 mutex_unlock(&swhash->hlist_mutex); 13355 } 13356 13357 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13358 static void __perf_event_exit_context(void *__info) 13359 { 13360 struct perf_event_context *ctx = __info; 13361 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 13362 struct perf_event *event; 13363 13364 raw_spin_lock(&ctx->lock); 13365 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 13366 list_for_each_entry(event, &ctx->event_list, event_entry) 13367 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13368 raw_spin_unlock(&ctx->lock); 13369 } 13370 13371 static void perf_event_exit_cpu_context(int cpu) 13372 { 13373 struct perf_cpu_context *cpuctx; 13374 struct perf_event_context *ctx; 13375 struct pmu *pmu; 13376 13377 mutex_lock(&pmus_lock); 13378 list_for_each_entry(pmu, &pmus, entry) { 13379 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13380 ctx = &cpuctx->ctx; 13381 13382 mutex_lock(&ctx->mutex); 13383 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13384 cpuctx->online = 0; 13385 mutex_unlock(&ctx->mutex); 13386 } 13387 cpumask_clear_cpu(cpu, perf_online_mask); 13388 mutex_unlock(&pmus_lock); 13389 } 13390 #else 13391 13392 static void perf_event_exit_cpu_context(int cpu) { } 13393 13394 #endif 13395 13396 int perf_event_init_cpu(unsigned int cpu) 13397 { 13398 struct perf_cpu_context *cpuctx; 13399 struct perf_event_context *ctx; 13400 struct pmu *pmu; 13401 13402 perf_swevent_init_cpu(cpu); 13403 13404 mutex_lock(&pmus_lock); 13405 cpumask_set_cpu(cpu, perf_online_mask); 13406 list_for_each_entry(pmu, &pmus, entry) { 13407 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13408 ctx = &cpuctx->ctx; 13409 13410 mutex_lock(&ctx->mutex); 13411 cpuctx->online = 1; 13412 mutex_unlock(&ctx->mutex); 13413 } 13414 mutex_unlock(&pmus_lock); 13415 13416 return 0; 13417 } 13418 13419 int perf_event_exit_cpu(unsigned int cpu) 13420 { 13421 perf_event_exit_cpu_context(cpu); 13422 return 0; 13423 } 13424 13425 static int 13426 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13427 { 13428 int cpu; 13429 13430 for_each_online_cpu(cpu) 13431 perf_event_exit_cpu(cpu); 13432 13433 return NOTIFY_OK; 13434 } 13435 13436 /* 13437 * Run the perf reboot notifier at the very last possible moment so that 13438 * the generic watchdog code runs as long as possible. 13439 */ 13440 static struct notifier_block perf_reboot_notifier = { 13441 .notifier_call = perf_reboot, 13442 .priority = INT_MIN, 13443 }; 13444 13445 void __init perf_event_init(void) 13446 { 13447 int ret; 13448 13449 idr_init(&pmu_idr); 13450 13451 perf_event_init_all_cpus(); 13452 init_srcu_struct(&pmus_srcu); 13453 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13454 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13455 perf_pmu_register(&perf_task_clock, NULL, -1); 13456 perf_tp_register(); 13457 perf_event_init_cpu(smp_processor_id()); 13458 register_reboot_notifier(&perf_reboot_notifier); 13459 13460 ret = init_hw_breakpoint(); 13461 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13462 13463 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13464 13465 /* 13466 * Build time assertion that we keep the data_head at the intended 13467 * location. IOW, validation we got the __reserved[] size right. 13468 */ 13469 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13470 != 1024); 13471 } 13472 13473 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13474 char *page) 13475 { 13476 struct perf_pmu_events_attr *pmu_attr = 13477 container_of(attr, struct perf_pmu_events_attr, attr); 13478 13479 if (pmu_attr->event_str) 13480 return sprintf(page, "%s\n", pmu_attr->event_str); 13481 13482 return 0; 13483 } 13484 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13485 13486 static int __init perf_event_sysfs_init(void) 13487 { 13488 struct pmu *pmu; 13489 int ret; 13490 13491 mutex_lock(&pmus_lock); 13492 13493 ret = bus_register(&pmu_bus); 13494 if (ret) 13495 goto unlock; 13496 13497 list_for_each_entry(pmu, &pmus, entry) { 13498 if (!pmu->name || pmu->type < 0) 13499 continue; 13500 13501 ret = pmu_dev_alloc(pmu); 13502 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13503 } 13504 pmu_bus_running = 1; 13505 ret = 0; 13506 13507 unlock: 13508 mutex_unlock(&pmus_lock); 13509 13510 return ret; 13511 } 13512 device_initcall(perf_event_sysfs_init); 13513 13514 #ifdef CONFIG_CGROUP_PERF 13515 static struct cgroup_subsys_state * 13516 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13517 { 13518 struct perf_cgroup *jc; 13519 13520 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13521 if (!jc) 13522 return ERR_PTR(-ENOMEM); 13523 13524 jc->info = alloc_percpu(struct perf_cgroup_info); 13525 if (!jc->info) { 13526 kfree(jc); 13527 return ERR_PTR(-ENOMEM); 13528 } 13529 13530 return &jc->css; 13531 } 13532 13533 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13534 { 13535 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13536 13537 free_percpu(jc->info); 13538 kfree(jc); 13539 } 13540 13541 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13542 { 13543 perf_event_cgroup(css->cgroup); 13544 return 0; 13545 } 13546 13547 static int __perf_cgroup_move(void *info) 13548 { 13549 struct task_struct *task = info; 13550 rcu_read_lock(); 13551 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 13552 rcu_read_unlock(); 13553 return 0; 13554 } 13555 13556 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13557 { 13558 struct task_struct *task; 13559 struct cgroup_subsys_state *css; 13560 13561 cgroup_taskset_for_each(task, css, tset) 13562 task_function_call(task, __perf_cgroup_move, task); 13563 } 13564 13565 struct cgroup_subsys perf_event_cgrp_subsys = { 13566 .css_alloc = perf_cgroup_css_alloc, 13567 .css_free = perf_cgroup_css_free, 13568 .css_online = perf_cgroup_css_online, 13569 .attach = perf_cgroup_attach, 13570 /* 13571 * Implicitly enable on dfl hierarchy so that perf events can 13572 * always be filtered by cgroup2 path as long as perf_event 13573 * controller is not mounted on a legacy hierarchy. 13574 */ 13575 .implicit_on_dfl = true, 13576 .threaded = true, 13577 }; 13578 #endif /* CONFIG_CGROUP_PERF */ 13579 13580 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13581