xref: /openbmc/linux/kernel/events/core.c (revision bc5aa3a0)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 
50 #include "internal.h"
51 
52 #include <asm/irq_regs.h>
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		/* -EAGAIN */
70 		if (task_cpu(p) != smp_processor_id())
71 			return;
72 
73 		/*
74 		 * Now that we're on right CPU with IRQs disabled, we can test
75 		 * if we hit the right task without races.
76 		 */
77 
78 		tfc->ret = -ESRCH; /* No such (running) process */
79 		if (p != current)
80 			return;
81 	}
82 
83 	tfc->ret = tfc->func(tfc->info);
84 }
85 
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:		the task to evaluate
89  * @func:	the function to be called
90  * @info:	the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *	    -ESRCH  - when the process isn't running
97  *	    -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 	struct remote_function_call data = {
103 		.p	= p,
104 		.func	= func,
105 		.info	= info,
106 		.ret	= -EAGAIN,
107 	};
108 	int ret;
109 
110 	do {
111 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 		if (!ret)
113 			ret = data.ret;
114 	} while (ret == -EAGAIN);
115 
116 	return ret;
117 }
118 
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:	the function to be called
122  * @info:	the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 	struct remote_function_call data = {
131 		.p	= NULL,
132 		.func	= func,
133 		.info	= info,
134 		.ret	= -ENXIO, /* No such CPU */
135 	};
136 
137 	smp_call_function_single(cpu, remote_function, &data, 1);
138 
139 	return data.ret;
140 }
141 
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147 
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 			  struct perf_event_context *ctx)
150 {
151 	raw_spin_lock(&cpuctx->ctx.lock);
152 	if (ctx)
153 		raw_spin_lock(&ctx->lock);
154 }
155 
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 			    struct perf_event_context *ctx)
158 {
159 	if (ctx)
160 		raw_spin_unlock(&ctx->lock);
161 	raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163 
164 #define TASK_TOMBSTONE ((void *)-1L)
165 
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170 
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189 
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 			struct perf_event_context *, void *);
192 
193 struct event_function_struct {
194 	struct perf_event *event;
195 	event_f func;
196 	void *data;
197 };
198 
199 static int event_function(void *info)
200 {
201 	struct event_function_struct *efs = info;
202 	struct perf_event *event = efs->event;
203 	struct perf_event_context *ctx = event->ctx;
204 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 	int ret = 0;
207 
208 	WARN_ON_ONCE(!irqs_disabled());
209 
210 	perf_ctx_lock(cpuctx, task_ctx);
211 	/*
212 	 * Since we do the IPI call without holding ctx->lock things can have
213 	 * changed, double check we hit the task we set out to hit.
214 	 */
215 	if (ctx->task) {
216 		if (ctx->task != current) {
217 			ret = -ESRCH;
218 			goto unlock;
219 		}
220 
221 		/*
222 		 * We only use event_function_call() on established contexts,
223 		 * and event_function() is only ever called when active (or
224 		 * rather, we'll have bailed in task_function_call() or the
225 		 * above ctx->task != current test), therefore we must have
226 		 * ctx->is_active here.
227 		 */
228 		WARN_ON_ONCE(!ctx->is_active);
229 		/*
230 		 * And since we have ctx->is_active, cpuctx->task_ctx must
231 		 * match.
232 		 */
233 		WARN_ON_ONCE(task_ctx != ctx);
234 	} else {
235 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 	}
237 
238 	efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 	perf_ctx_unlock(cpuctx, task_ctx);
241 
242 	return ret;
243 }
244 
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247 	struct perf_event_context *ctx = event->ctx;
248 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 	struct event_function_struct efs = {
250 		.event = event,
251 		.func = func,
252 		.data = data,
253 	};
254 
255 	if (!event->parent) {
256 		/*
257 		 * If this is a !child event, we must hold ctx::mutex to
258 		 * stabilize the the event->ctx relation. See
259 		 * perf_event_ctx_lock().
260 		 */
261 		lockdep_assert_held(&ctx->mutex);
262 	}
263 
264 	if (!task) {
265 		cpu_function_call(event->cpu, event_function, &efs);
266 		return;
267 	}
268 
269 	if (task == TASK_TOMBSTONE)
270 		return;
271 
272 again:
273 	if (!task_function_call(task, event_function, &efs))
274 		return;
275 
276 	raw_spin_lock_irq(&ctx->lock);
277 	/*
278 	 * Reload the task pointer, it might have been changed by
279 	 * a concurrent perf_event_context_sched_out().
280 	 */
281 	task = ctx->task;
282 	if (task == TASK_TOMBSTONE) {
283 		raw_spin_unlock_irq(&ctx->lock);
284 		return;
285 	}
286 	if (ctx->is_active) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		goto again;
289 	}
290 	func(event, NULL, ctx, data);
291 	raw_spin_unlock_irq(&ctx->lock);
292 }
293 
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300 	struct perf_event_context *ctx = event->ctx;
301 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 	struct task_struct *task = READ_ONCE(ctx->task);
303 	struct perf_event_context *task_ctx = NULL;
304 
305 	WARN_ON_ONCE(!irqs_disabled());
306 
307 	if (task) {
308 		if (task == TASK_TOMBSTONE)
309 			return;
310 
311 		task_ctx = ctx;
312 	}
313 
314 	perf_ctx_lock(cpuctx, task_ctx);
315 
316 	task = ctx->task;
317 	if (task == TASK_TOMBSTONE)
318 		goto unlock;
319 
320 	if (task) {
321 		/*
322 		 * We must be either inactive or active and the right task,
323 		 * otherwise we're screwed, since we cannot IPI to somewhere
324 		 * else.
325 		 */
326 		if (ctx->is_active) {
327 			if (WARN_ON_ONCE(task != current))
328 				goto unlock;
329 
330 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 				goto unlock;
332 		}
333 	} else {
334 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 	}
336 
337 	func(event, cpuctx, ctx, data);
338 unlock:
339 	perf_ctx_unlock(cpuctx, task_ctx);
340 }
341 
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 		       PERF_FLAG_FD_OUTPUT  |\
344 		       PERF_FLAG_PID_CGROUP |\
345 		       PERF_FLAG_FD_CLOEXEC)
346 
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 	(PERF_SAMPLE_BRANCH_KERNEL |\
352 	 PERF_SAMPLE_BRANCH_HV)
353 
354 enum event_type_t {
355 	EVENT_FLEXIBLE = 0x1,
356 	EVENT_PINNED = 0x2,
357 	EVENT_TIME = 0x4,
358 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360 
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365 
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371 
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375 
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381 
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385 
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394 
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397 
398 /*
399  * max perf event sample rate
400  */
401 #define DEFAULT_MAX_SAMPLE_RATE		100000
402 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
404 
405 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
406 
407 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
409 
410 static int perf_sample_allowed_ns __read_mostly =
411 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412 
413 static void update_perf_cpu_limits(void)
414 {
415 	u64 tmp = perf_sample_period_ns;
416 
417 	tmp *= sysctl_perf_cpu_time_max_percent;
418 	tmp = div_u64(tmp, 100);
419 	if (!tmp)
420 		tmp = 1;
421 
422 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424 
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426 
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428 		void __user *buffer, size_t *lenp,
429 		loff_t *ppos)
430 {
431 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432 
433 	if (ret || !write)
434 		return ret;
435 
436 	/*
437 	 * If throttling is disabled don't allow the write:
438 	 */
439 	if (sysctl_perf_cpu_time_max_percent == 100 ||
440 	    sysctl_perf_cpu_time_max_percent == 0)
441 		return -EINVAL;
442 
443 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 	update_perf_cpu_limits();
446 
447 	return 0;
448 }
449 
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451 
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 				void __user *buffer, size_t *lenp,
454 				loff_t *ppos)
455 {
456 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457 
458 	if (ret || !write)
459 		return ret;
460 
461 	if (sysctl_perf_cpu_time_max_percent == 100 ||
462 	    sysctl_perf_cpu_time_max_percent == 0) {
463 		printk(KERN_WARNING
464 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 		WRITE_ONCE(perf_sample_allowed_ns, 0);
466 	} else {
467 		update_perf_cpu_limits();
468 	}
469 
470 	return 0;
471 }
472 
473 /*
474  * perf samples are done in some very critical code paths (NMIs).
475  * If they take too much CPU time, the system can lock up and not
476  * get any real work done.  This will drop the sample rate when
477  * we detect that events are taking too long.
478  */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481 
482 static u64 __report_avg;
483 static u64 __report_allowed;
484 
485 static void perf_duration_warn(struct irq_work *w)
486 {
487 	printk_ratelimited(KERN_INFO
488 		"perf: interrupt took too long (%lld > %lld), lowering "
489 		"kernel.perf_event_max_sample_rate to %d\n",
490 		__report_avg, __report_allowed,
491 		sysctl_perf_event_sample_rate);
492 }
493 
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495 
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 	u64 running_len;
500 	u64 avg_len;
501 	u32 max;
502 
503 	if (max_len == 0)
504 		return;
505 
506 	/* Decay the counter by 1 average sample. */
507 	running_len = __this_cpu_read(running_sample_length);
508 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 	running_len += sample_len_ns;
510 	__this_cpu_write(running_sample_length, running_len);
511 
512 	/*
513 	 * Note: this will be biased artifically low until we have
514 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 	 * from having to maintain a count.
516 	 */
517 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 	if (avg_len <= max_len)
519 		return;
520 
521 	__report_avg = avg_len;
522 	__report_allowed = max_len;
523 
524 	/*
525 	 * Compute a throttle threshold 25% below the current duration.
526 	 */
527 	avg_len += avg_len / 4;
528 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 	if (avg_len < max)
530 		max /= (u32)avg_len;
531 	else
532 		max = 1;
533 
534 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 	WRITE_ONCE(max_samples_per_tick, max);
536 
537 	sysctl_perf_event_sample_rate = max * HZ;
538 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539 
540 	if (!irq_work_queue(&perf_duration_work)) {
541 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 			     "kernel.perf_event_max_sample_rate to %d\n",
543 			     __report_avg, __report_allowed,
544 			     sysctl_perf_event_sample_rate);
545 	}
546 }
547 
548 static atomic64_t perf_event_id;
549 
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 			      enum event_type_t event_type);
552 
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554 			     enum event_type_t event_type,
555 			     struct task_struct *task);
556 
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559 
560 void __weak perf_event_print_debug(void)	{ }
561 
562 extern __weak const char *perf_pmu_name(void)
563 {
564 	return "pmu";
565 }
566 
567 static inline u64 perf_clock(void)
568 {
569 	return local_clock();
570 }
571 
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574 	return event->clock();
575 }
576 
577 #ifdef CONFIG_CGROUP_PERF
578 
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582 	struct perf_event_context *ctx = event->ctx;
583 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584 
585 	/* @event doesn't care about cgroup */
586 	if (!event->cgrp)
587 		return true;
588 
589 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
590 	if (!cpuctx->cgrp)
591 		return false;
592 
593 	/*
594 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
595 	 * also enabled for all its descendant cgroups.  If @cpuctx's
596 	 * cgroup is a descendant of @event's (the test covers identity
597 	 * case), it's a match.
598 	 */
599 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 				    event->cgrp->css.cgroup);
601 }
602 
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605 	css_put(&event->cgrp->css);
606 	event->cgrp = NULL;
607 }
608 
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611 	return event->cgrp != NULL;
612 }
613 
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616 	struct perf_cgroup_info *t;
617 
618 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 	return t->time;
620 }
621 
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624 	struct perf_cgroup_info *info;
625 	u64 now;
626 
627 	now = perf_clock();
628 
629 	info = this_cpu_ptr(cgrp->info);
630 
631 	info->time += now - info->timestamp;
632 	info->timestamp = now;
633 }
634 
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 	if (cgrp_out)
639 		__update_cgrp_time(cgrp_out);
640 }
641 
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644 	struct perf_cgroup *cgrp;
645 
646 	/*
647 	 * ensure we access cgroup data only when needed and
648 	 * when we know the cgroup is pinned (css_get)
649 	 */
650 	if (!is_cgroup_event(event))
651 		return;
652 
653 	cgrp = perf_cgroup_from_task(current, event->ctx);
654 	/*
655 	 * Do not update time when cgroup is not active
656 	 */
657 	if (cgrp == event->cgrp)
658 		__update_cgrp_time(event->cgrp);
659 }
660 
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663 			  struct perf_event_context *ctx)
664 {
665 	struct perf_cgroup *cgrp;
666 	struct perf_cgroup_info *info;
667 
668 	/*
669 	 * ctx->lock held by caller
670 	 * ensure we do not access cgroup data
671 	 * unless we have the cgroup pinned (css_get)
672 	 */
673 	if (!task || !ctx->nr_cgroups)
674 		return;
675 
676 	cgrp = perf_cgroup_from_task(task, ctx);
677 	info = this_cpu_ptr(cgrp->info);
678 	info->timestamp = ctx->timestamp;
679 }
680 
681 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
683 
684 /*
685  * reschedule events based on the cgroup constraint of task.
686  *
687  * mode SWOUT : schedule out everything
688  * mode SWIN : schedule in based on cgroup for next
689  */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692 	struct perf_cpu_context *cpuctx;
693 	struct pmu *pmu;
694 	unsigned long flags;
695 
696 	/*
697 	 * disable interrupts to avoid geting nr_cgroup
698 	 * changes via __perf_event_disable(). Also
699 	 * avoids preemption.
700 	 */
701 	local_irq_save(flags);
702 
703 	/*
704 	 * we reschedule only in the presence of cgroup
705 	 * constrained events.
706 	 */
707 
708 	list_for_each_entry_rcu(pmu, &pmus, entry) {
709 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710 		if (cpuctx->unique_pmu != pmu)
711 			continue; /* ensure we process each cpuctx once */
712 
713 		/*
714 		 * perf_cgroup_events says at least one
715 		 * context on this CPU has cgroup events.
716 		 *
717 		 * ctx->nr_cgroups reports the number of cgroup
718 		 * events for a context.
719 		 */
720 		if (cpuctx->ctx.nr_cgroups > 0) {
721 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 			perf_pmu_disable(cpuctx->ctx.pmu);
723 
724 			if (mode & PERF_CGROUP_SWOUT) {
725 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 				/*
727 				 * must not be done before ctxswout due
728 				 * to event_filter_match() in event_sched_out()
729 				 */
730 				cpuctx->cgrp = NULL;
731 			}
732 
733 			if (mode & PERF_CGROUP_SWIN) {
734 				WARN_ON_ONCE(cpuctx->cgrp);
735 				/*
736 				 * set cgrp before ctxsw in to allow
737 				 * event_filter_match() to not have to pass
738 				 * task around
739 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 				 * because cgorup events are only per-cpu
741 				 */
742 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744 			}
745 			perf_pmu_enable(cpuctx->ctx.pmu);
746 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747 		}
748 	}
749 
750 	local_irq_restore(flags);
751 }
752 
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754 					 struct task_struct *next)
755 {
756 	struct perf_cgroup *cgrp1;
757 	struct perf_cgroup *cgrp2 = NULL;
758 
759 	rcu_read_lock();
760 	/*
761 	 * we come here when we know perf_cgroup_events > 0
762 	 * we do not need to pass the ctx here because we know
763 	 * we are holding the rcu lock
764 	 */
765 	cgrp1 = perf_cgroup_from_task(task, NULL);
766 	cgrp2 = perf_cgroup_from_task(next, NULL);
767 
768 	/*
769 	 * only schedule out current cgroup events if we know
770 	 * that we are switching to a different cgroup. Otherwise,
771 	 * do no touch the cgroup events.
772 	 */
773 	if (cgrp1 != cgrp2)
774 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775 
776 	rcu_read_unlock();
777 }
778 
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 					struct task_struct *task)
781 {
782 	struct perf_cgroup *cgrp1;
783 	struct perf_cgroup *cgrp2 = NULL;
784 
785 	rcu_read_lock();
786 	/*
787 	 * we come here when we know perf_cgroup_events > 0
788 	 * we do not need to pass the ctx here because we know
789 	 * we are holding the rcu lock
790 	 */
791 	cgrp1 = perf_cgroup_from_task(task, NULL);
792 	cgrp2 = perf_cgroup_from_task(prev, NULL);
793 
794 	/*
795 	 * only need to schedule in cgroup events if we are changing
796 	 * cgroup during ctxsw. Cgroup events were not scheduled
797 	 * out of ctxsw out if that was not the case.
798 	 */
799 	if (cgrp1 != cgrp2)
800 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801 
802 	rcu_read_unlock();
803 }
804 
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 				      struct perf_event_attr *attr,
807 				      struct perf_event *group_leader)
808 {
809 	struct perf_cgroup *cgrp;
810 	struct cgroup_subsys_state *css;
811 	struct fd f = fdget(fd);
812 	int ret = 0;
813 
814 	if (!f.file)
815 		return -EBADF;
816 
817 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
818 					 &perf_event_cgrp_subsys);
819 	if (IS_ERR(css)) {
820 		ret = PTR_ERR(css);
821 		goto out;
822 	}
823 
824 	cgrp = container_of(css, struct perf_cgroup, css);
825 	event->cgrp = cgrp;
826 
827 	/*
828 	 * all events in a group must monitor
829 	 * the same cgroup because a task belongs
830 	 * to only one perf cgroup at a time
831 	 */
832 	if (group_leader && group_leader->cgrp != cgrp) {
833 		perf_detach_cgroup(event);
834 		ret = -EINVAL;
835 	}
836 out:
837 	fdput(f);
838 	return ret;
839 }
840 
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844 	struct perf_cgroup_info *t;
845 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 	event->shadow_ctx_time = now - t->timestamp;
847 }
848 
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852 	/*
853 	 * when the current task's perf cgroup does not match
854 	 * the event's, we need to remember to call the
855 	 * perf_mark_enable() function the first time a task with
856 	 * a matching perf cgroup is scheduled in.
857 	 */
858 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 		event->cgrp_defer_enabled = 1;
860 }
861 
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864 			 struct perf_event_context *ctx)
865 {
866 	struct perf_event *sub;
867 	u64 tstamp = perf_event_time(event);
868 
869 	if (!event->cgrp_defer_enabled)
870 		return;
871 
872 	event->cgrp_defer_enabled = 0;
873 
874 	event->tstamp_enabled = tstamp - event->total_time_enabled;
875 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 			sub->cgrp_defer_enabled = 0;
879 		}
880 	}
881 }
882 
883 /*
884  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885  * cleared when last cgroup event is removed.
886  */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889 			 struct perf_event_context *ctx, bool add)
890 {
891 	struct perf_cpu_context *cpuctx;
892 
893 	if (!is_cgroup_event(event))
894 		return;
895 
896 	if (add && ctx->nr_cgroups++)
897 		return;
898 	else if (!add && --ctx->nr_cgroups)
899 		return;
900 	/*
901 	 * Because cgroup events are always per-cpu events,
902 	 * this will always be called from the right CPU.
903 	 */
904 	cpuctx = __get_cpu_context(ctx);
905 	cpuctx->cgrp = add ? event->cgrp : NULL;
906 }
907 
908 #else /* !CONFIG_CGROUP_PERF */
909 
910 static inline bool
911 perf_cgroup_match(struct perf_event *event)
912 {
913 	return true;
914 }
915 
916 static inline void perf_detach_cgroup(struct perf_event *event)
917 {}
918 
919 static inline int is_cgroup_event(struct perf_event *event)
920 {
921 	return 0;
922 }
923 
924 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
925 {
926 	return 0;
927 }
928 
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932 
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936 
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938 					 struct task_struct *next)
939 {
940 }
941 
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 					struct task_struct *task)
944 {
945 }
946 
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 				      struct perf_event_attr *attr,
949 				      struct perf_event *group_leader)
950 {
951 	return -EINVAL;
952 }
953 
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956 			  struct perf_event_context *ctx)
957 {
958 }
959 
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964 
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969 
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972 	return 0;
973 }
974 
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979 
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982 			 struct perf_event_context *ctx)
983 {
984 }
985 
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988 			 struct perf_event_context *ctx, bool add)
989 {
990 }
991 
992 #endif
993 
994 /*
995  * set default to be dependent on timer tick just
996  * like original code
997  */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000  * function must be called with interrupts disbled
1001  */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004 	struct perf_cpu_context *cpuctx;
1005 	int rotations = 0;
1006 
1007 	WARN_ON(!irqs_disabled());
1008 
1009 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010 	rotations = perf_rotate_context(cpuctx);
1011 
1012 	raw_spin_lock(&cpuctx->hrtimer_lock);
1013 	if (rotations)
1014 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015 	else
1016 		cpuctx->hrtimer_active = 0;
1017 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1018 
1019 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021 
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024 	struct hrtimer *timer = &cpuctx->hrtimer;
1025 	struct pmu *pmu = cpuctx->ctx.pmu;
1026 	u64 interval;
1027 
1028 	/* no multiplexing needed for SW PMU */
1029 	if (pmu->task_ctx_nr == perf_sw_context)
1030 		return;
1031 
1032 	/*
1033 	 * check default is sane, if not set then force to
1034 	 * default interval (1/tick)
1035 	 */
1036 	interval = pmu->hrtimer_interval_ms;
1037 	if (interval < 1)
1038 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039 
1040 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041 
1042 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044 	timer->function = perf_mux_hrtimer_handler;
1045 }
1046 
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049 	struct hrtimer *timer = &cpuctx->hrtimer;
1050 	struct pmu *pmu = cpuctx->ctx.pmu;
1051 	unsigned long flags;
1052 
1053 	/* not for SW PMU */
1054 	if (pmu->task_ctx_nr == perf_sw_context)
1055 		return 0;
1056 
1057 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 	if (!cpuctx->hrtimer_active) {
1059 		cpuctx->hrtimer_active = 1;
1060 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 	}
1063 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064 
1065 	return 0;
1066 }
1067 
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 	if (!(*count)++)
1072 		pmu->pmu_disable(pmu);
1073 }
1074 
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 	if (!--(*count))
1079 		pmu->pmu_enable(pmu);
1080 }
1081 
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083 
1084 /*
1085  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086  * perf_event_task_tick() are fully serialized because they're strictly cpu
1087  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088  * disabled, while perf_event_task_tick is called from IRQ context.
1089  */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093 
1094 	WARN_ON(!irqs_disabled());
1095 
1096 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1097 
1098 	list_add(&ctx->active_ctx_list, head);
1099 }
1100 
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103 	WARN_ON(!irqs_disabled());
1104 
1105 	WARN_ON(list_empty(&ctx->active_ctx_list));
1106 
1107 	list_del_init(&ctx->active_ctx_list);
1108 }
1109 
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114 
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117 	struct perf_event_context *ctx;
1118 
1119 	ctx = container_of(head, struct perf_event_context, rcu_head);
1120 	kfree(ctx->task_ctx_data);
1121 	kfree(ctx);
1122 }
1123 
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126 	if (atomic_dec_and_test(&ctx->refcount)) {
1127 		if (ctx->parent_ctx)
1128 			put_ctx(ctx->parent_ctx);
1129 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130 			put_task_struct(ctx->task);
1131 		call_rcu(&ctx->rcu_head, free_ctx);
1132 	}
1133 }
1134 
1135 /*
1136  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137  * perf_pmu_migrate_context() we need some magic.
1138  *
1139  * Those places that change perf_event::ctx will hold both
1140  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141  *
1142  * Lock ordering is by mutex address. There are two other sites where
1143  * perf_event_context::mutex nests and those are:
1144  *
1145  *  - perf_event_exit_task_context()	[ child , 0 ]
1146  *      perf_event_exit_event()
1147  *        put_event()			[ parent, 1 ]
1148  *
1149  *  - perf_event_init_context()		[ parent, 0 ]
1150  *      inherit_task_group()
1151  *        inherit_group()
1152  *          inherit_event()
1153  *            perf_event_alloc()
1154  *              perf_init_event()
1155  *                perf_try_init_event()	[ child , 1 ]
1156  *
1157  * While it appears there is an obvious deadlock here -- the parent and child
1158  * nesting levels are inverted between the two. This is in fact safe because
1159  * life-time rules separate them. That is an exiting task cannot fork, and a
1160  * spawning task cannot (yet) exit.
1161  *
1162  * But remember that that these are parent<->child context relations, and
1163  * migration does not affect children, therefore these two orderings should not
1164  * interact.
1165  *
1166  * The change in perf_event::ctx does not affect children (as claimed above)
1167  * because the sys_perf_event_open() case will install a new event and break
1168  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169  * concerned with cpuctx and that doesn't have children.
1170  *
1171  * The places that change perf_event::ctx will issue:
1172  *
1173  *   perf_remove_from_context();
1174  *   synchronize_rcu();
1175  *   perf_install_in_context();
1176  *
1177  * to affect the change. The remove_from_context() + synchronize_rcu() should
1178  * quiesce the event, after which we can install it in the new location. This
1179  * means that only external vectors (perf_fops, prctl) can perturb the event
1180  * while in transit. Therefore all such accessors should also acquire
1181  * perf_event_context::mutex to serialize against this.
1182  *
1183  * However; because event->ctx can change while we're waiting to acquire
1184  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185  * function.
1186  *
1187  * Lock order:
1188  *    cred_guard_mutex
1189  *	task_struct::perf_event_mutex
1190  *	  perf_event_context::mutex
1191  *	    perf_event::child_mutex;
1192  *	      perf_event_context::lock
1193  *	    perf_event::mmap_mutex
1194  *	    mmap_sem
1195  */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199 	struct perf_event_context *ctx;
1200 
1201 again:
1202 	rcu_read_lock();
1203 	ctx = ACCESS_ONCE(event->ctx);
1204 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 		rcu_read_unlock();
1206 		goto again;
1207 	}
1208 	rcu_read_unlock();
1209 
1210 	mutex_lock_nested(&ctx->mutex, nesting);
1211 	if (event->ctx != ctx) {
1212 		mutex_unlock(&ctx->mutex);
1213 		put_ctx(ctx);
1214 		goto again;
1215 	}
1216 
1217 	return ctx;
1218 }
1219 
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223 	return perf_event_ctx_lock_nested(event, 0);
1224 }
1225 
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227 				  struct perf_event_context *ctx)
1228 {
1229 	mutex_unlock(&ctx->mutex);
1230 	put_ctx(ctx);
1231 }
1232 
1233 /*
1234  * This must be done under the ctx->lock, such as to serialize against
1235  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236  * calling scheduler related locks and ctx->lock nests inside those.
1237  */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242 
1243 	lockdep_assert_held(&ctx->lock);
1244 
1245 	if (parent_ctx)
1246 		ctx->parent_ctx = NULL;
1247 	ctx->generation++;
1248 
1249 	return parent_ctx;
1250 }
1251 
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254 	/*
1255 	 * only top level events have the pid namespace they were created in
1256 	 */
1257 	if (event->parent)
1258 		event = event->parent;
1259 
1260 	return task_tgid_nr_ns(p, event->ns);
1261 }
1262 
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265 	/*
1266 	 * only top level events have the pid namespace they were created in
1267 	 */
1268 	if (event->parent)
1269 		event = event->parent;
1270 
1271 	return task_pid_nr_ns(p, event->ns);
1272 }
1273 
1274 /*
1275  * If we inherit events we want to return the parent event id
1276  * to userspace.
1277  */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280 	u64 id = event->id;
1281 
1282 	if (event->parent)
1283 		id = event->parent->id;
1284 
1285 	return id;
1286 }
1287 
1288 /*
1289  * Get the perf_event_context for a task and lock it.
1290  *
1291  * This has to cope with with the fact that until it is locked,
1292  * the context could get moved to another task.
1293  */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297 	struct perf_event_context *ctx;
1298 
1299 retry:
1300 	/*
1301 	 * One of the few rules of preemptible RCU is that one cannot do
1302 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303 	 * part of the read side critical section was irqs-enabled -- see
1304 	 * rcu_read_unlock_special().
1305 	 *
1306 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1307 	 * side critical section has interrupts disabled.
1308 	 */
1309 	local_irq_save(*flags);
1310 	rcu_read_lock();
1311 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312 	if (ctx) {
1313 		/*
1314 		 * If this context is a clone of another, it might
1315 		 * get swapped for another underneath us by
1316 		 * perf_event_task_sched_out, though the
1317 		 * rcu_read_lock() protects us from any context
1318 		 * getting freed.  Lock the context and check if it
1319 		 * got swapped before we could get the lock, and retry
1320 		 * if so.  If we locked the right context, then it
1321 		 * can't get swapped on us any more.
1322 		 */
1323 		raw_spin_lock(&ctx->lock);
1324 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325 			raw_spin_unlock(&ctx->lock);
1326 			rcu_read_unlock();
1327 			local_irq_restore(*flags);
1328 			goto retry;
1329 		}
1330 
1331 		if (ctx->task == TASK_TOMBSTONE ||
1332 		    !atomic_inc_not_zero(&ctx->refcount)) {
1333 			raw_spin_unlock(&ctx->lock);
1334 			ctx = NULL;
1335 		} else {
1336 			WARN_ON_ONCE(ctx->task != task);
1337 		}
1338 	}
1339 	rcu_read_unlock();
1340 	if (!ctx)
1341 		local_irq_restore(*flags);
1342 	return ctx;
1343 }
1344 
1345 /*
1346  * Get the context for a task and increment its pin_count so it
1347  * can't get swapped to another task.  This also increments its
1348  * reference count so that the context can't get freed.
1349  */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353 	struct perf_event_context *ctx;
1354 	unsigned long flags;
1355 
1356 	ctx = perf_lock_task_context(task, ctxn, &flags);
1357 	if (ctx) {
1358 		++ctx->pin_count;
1359 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360 	}
1361 	return ctx;
1362 }
1363 
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366 	unsigned long flags;
1367 
1368 	raw_spin_lock_irqsave(&ctx->lock, flags);
1369 	--ctx->pin_count;
1370 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372 
1373 /*
1374  * Update the record of the current time in a context.
1375  */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378 	u64 now = perf_clock();
1379 
1380 	ctx->time += now - ctx->timestamp;
1381 	ctx->timestamp = now;
1382 }
1383 
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386 	struct perf_event_context *ctx = event->ctx;
1387 
1388 	if (is_cgroup_event(event))
1389 		return perf_cgroup_event_time(event);
1390 
1391 	return ctx ? ctx->time : 0;
1392 }
1393 
1394 /*
1395  * Update the total_time_enabled and total_time_running fields for a event.
1396  */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399 	struct perf_event_context *ctx = event->ctx;
1400 	u64 run_end;
1401 
1402 	lockdep_assert_held(&ctx->lock);
1403 
1404 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406 		return;
1407 
1408 	/*
1409 	 * in cgroup mode, time_enabled represents
1410 	 * the time the event was enabled AND active
1411 	 * tasks were in the monitored cgroup. This is
1412 	 * independent of the activity of the context as
1413 	 * there may be a mix of cgroup and non-cgroup events.
1414 	 *
1415 	 * That is why we treat cgroup events differently
1416 	 * here.
1417 	 */
1418 	if (is_cgroup_event(event))
1419 		run_end = perf_cgroup_event_time(event);
1420 	else if (ctx->is_active)
1421 		run_end = ctx->time;
1422 	else
1423 		run_end = event->tstamp_stopped;
1424 
1425 	event->total_time_enabled = run_end - event->tstamp_enabled;
1426 
1427 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1428 		run_end = event->tstamp_stopped;
1429 	else
1430 		run_end = perf_event_time(event);
1431 
1432 	event->total_time_running = run_end - event->tstamp_running;
1433 
1434 }
1435 
1436 /*
1437  * Update total_time_enabled and total_time_running for all events in a group.
1438  */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441 	struct perf_event *event;
1442 
1443 	update_event_times(leader);
1444 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1445 		update_event_times(event);
1446 }
1447 
1448 static struct list_head *
1449 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1450 {
1451 	if (event->attr.pinned)
1452 		return &ctx->pinned_groups;
1453 	else
1454 		return &ctx->flexible_groups;
1455 }
1456 
1457 /*
1458  * Add a event from the lists for its context.
1459  * Must be called with ctx->mutex and ctx->lock held.
1460  */
1461 static void
1462 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1463 {
1464 
1465 	lockdep_assert_held(&ctx->lock);
1466 
1467 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1468 	event->attach_state |= PERF_ATTACH_CONTEXT;
1469 
1470 	/*
1471 	 * If we're a stand alone event or group leader, we go to the context
1472 	 * list, group events are kept attached to the group so that
1473 	 * perf_group_detach can, at all times, locate all siblings.
1474 	 */
1475 	if (event->group_leader == event) {
1476 		struct list_head *list;
1477 
1478 		if (is_software_event(event))
1479 			event->group_flags |= PERF_GROUP_SOFTWARE;
1480 
1481 		list = ctx_group_list(event, ctx);
1482 		list_add_tail(&event->group_entry, list);
1483 	}
1484 
1485 	list_update_cgroup_event(event, ctx, true);
1486 
1487 	list_add_rcu(&event->event_entry, &ctx->event_list);
1488 	ctx->nr_events++;
1489 	if (event->attr.inherit_stat)
1490 		ctx->nr_stat++;
1491 
1492 	ctx->generation++;
1493 }
1494 
1495 /*
1496  * Initialize event state based on the perf_event_attr::disabled.
1497  */
1498 static inline void perf_event__state_init(struct perf_event *event)
1499 {
1500 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1501 					      PERF_EVENT_STATE_INACTIVE;
1502 }
1503 
1504 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1505 {
1506 	int entry = sizeof(u64); /* value */
1507 	int size = 0;
1508 	int nr = 1;
1509 
1510 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1511 		size += sizeof(u64);
1512 
1513 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1514 		size += sizeof(u64);
1515 
1516 	if (event->attr.read_format & PERF_FORMAT_ID)
1517 		entry += sizeof(u64);
1518 
1519 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1520 		nr += nr_siblings;
1521 		size += sizeof(u64);
1522 	}
1523 
1524 	size += entry * nr;
1525 	event->read_size = size;
1526 }
1527 
1528 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1529 {
1530 	struct perf_sample_data *data;
1531 	u16 size = 0;
1532 
1533 	if (sample_type & PERF_SAMPLE_IP)
1534 		size += sizeof(data->ip);
1535 
1536 	if (sample_type & PERF_SAMPLE_ADDR)
1537 		size += sizeof(data->addr);
1538 
1539 	if (sample_type & PERF_SAMPLE_PERIOD)
1540 		size += sizeof(data->period);
1541 
1542 	if (sample_type & PERF_SAMPLE_WEIGHT)
1543 		size += sizeof(data->weight);
1544 
1545 	if (sample_type & PERF_SAMPLE_READ)
1546 		size += event->read_size;
1547 
1548 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1549 		size += sizeof(data->data_src.val);
1550 
1551 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1552 		size += sizeof(data->txn);
1553 
1554 	event->header_size = size;
1555 }
1556 
1557 /*
1558  * Called at perf_event creation and when events are attached/detached from a
1559  * group.
1560  */
1561 static void perf_event__header_size(struct perf_event *event)
1562 {
1563 	__perf_event_read_size(event,
1564 			       event->group_leader->nr_siblings);
1565 	__perf_event_header_size(event, event->attr.sample_type);
1566 }
1567 
1568 static void perf_event__id_header_size(struct perf_event *event)
1569 {
1570 	struct perf_sample_data *data;
1571 	u64 sample_type = event->attr.sample_type;
1572 	u16 size = 0;
1573 
1574 	if (sample_type & PERF_SAMPLE_TID)
1575 		size += sizeof(data->tid_entry);
1576 
1577 	if (sample_type & PERF_SAMPLE_TIME)
1578 		size += sizeof(data->time);
1579 
1580 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1581 		size += sizeof(data->id);
1582 
1583 	if (sample_type & PERF_SAMPLE_ID)
1584 		size += sizeof(data->id);
1585 
1586 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1587 		size += sizeof(data->stream_id);
1588 
1589 	if (sample_type & PERF_SAMPLE_CPU)
1590 		size += sizeof(data->cpu_entry);
1591 
1592 	event->id_header_size = size;
1593 }
1594 
1595 static bool perf_event_validate_size(struct perf_event *event)
1596 {
1597 	/*
1598 	 * The values computed here will be over-written when we actually
1599 	 * attach the event.
1600 	 */
1601 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1602 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1603 	perf_event__id_header_size(event);
1604 
1605 	/*
1606 	 * Sum the lot; should not exceed the 64k limit we have on records.
1607 	 * Conservative limit to allow for callchains and other variable fields.
1608 	 */
1609 	if (event->read_size + event->header_size +
1610 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1611 		return false;
1612 
1613 	return true;
1614 }
1615 
1616 static void perf_group_attach(struct perf_event *event)
1617 {
1618 	struct perf_event *group_leader = event->group_leader, *pos;
1619 
1620 	/*
1621 	 * We can have double attach due to group movement in perf_event_open.
1622 	 */
1623 	if (event->attach_state & PERF_ATTACH_GROUP)
1624 		return;
1625 
1626 	event->attach_state |= PERF_ATTACH_GROUP;
1627 
1628 	if (group_leader == event)
1629 		return;
1630 
1631 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1632 
1633 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1634 			!is_software_event(event))
1635 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1636 
1637 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1638 	group_leader->nr_siblings++;
1639 
1640 	perf_event__header_size(group_leader);
1641 
1642 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1643 		perf_event__header_size(pos);
1644 }
1645 
1646 /*
1647  * Remove a event from the lists for its context.
1648  * Must be called with ctx->mutex and ctx->lock held.
1649  */
1650 static void
1651 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1652 {
1653 	WARN_ON_ONCE(event->ctx != ctx);
1654 	lockdep_assert_held(&ctx->lock);
1655 
1656 	/*
1657 	 * We can have double detach due to exit/hot-unplug + close.
1658 	 */
1659 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1660 		return;
1661 
1662 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1663 
1664 	list_update_cgroup_event(event, ctx, false);
1665 
1666 	ctx->nr_events--;
1667 	if (event->attr.inherit_stat)
1668 		ctx->nr_stat--;
1669 
1670 	list_del_rcu(&event->event_entry);
1671 
1672 	if (event->group_leader == event)
1673 		list_del_init(&event->group_entry);
1674 
1675 	update_group_times(event);
1676 
1677 	/*
1678 	 * If event was in error state, then keep it
1679 	 * that way, otherwise bogus counts will be
1680 	 * returned on read(). The only way to get out
1681 	 * of error state is by explicit re-enabling
1682 	 * of the event
1683 	 */
1684 	if (event->state > PERF_EVENT_STATE_OFF)
1685 		event->state = PERF_EVENT_STATE_OFF;
1686 
1687 	ctx->generation++;
1688 }
1689 
1690 static void perf_group_detach(struct perf_event *event)
1691 {
1692 	struct perf_event *sibling, *tmp;
1693 	struct list_head *list = NULL;
1694 
1695 	/*
1696 	 * We can have double detach due to exit/hot-unplug + close.
1697 	 */
1698 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1699 		return;
1700 
1701 	event->attach_state &= ~PERF_ATTACH_GROUP;
1702 
1703 	/*
1704 	 * If this is a sibling, remove it from its group.
1705 	 */
1706 	if (event->group_leader != event) {
1707 		list_del_init(&event->group_entry);
1708 		event->group_leader->nr_siblings--;
1709 		goto out;
1710 	}
1711 
1712 	if (!list_empty(&event->group_entry))
1713 		list = &event->group_entry;
1714 
1715 	/*
1716 	 * If this was a group event with sibling events then
1717 	 * upgrade the siblings to singleton events by adding them
1718 	 * to whatever list we are on.
1719 	 */
1720 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1721 		if (list)
1722 			list_move_tail(&sibling->group_entry, list);
1723 		sibling->group_leader = sibling;
1724 
1725 		/* Inherit group flags from the previous leader */
1726 		sibling->group_flags = event->group_flags;
1727 
1728 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1729 	}
1730 
1731 out:
1732 	perf_event__header_size(event->group_leader);
1733 
1734 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1735 		perf_event__header_size(tmp);
1736 }
1737 
1738 static bool is_orphaned_event(struct perf_event *event)
1739 {
1740 	return event->state == PERF_EVENT_STATE_DEAD;
1741 }
1742 
1743 static inline int __pmu_filter_match(struct perf_event *event)
1744 {
1745 	struct pmu *pmu = event->pmu;
1746 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1747 }
1748 
1749 /*
1750  * Check whether we should attempt to schedule an event group based on
1751  * PMU-specific filtering. An event group can consist of HW and SW events,
1752  * potentially with a SW leader, so we must check all the filters, to
1753  * determine whether a group is schedulable:
1754  */
1755 static inline int pmu_filter_match(struct perf_event *event)
1756 {
1757 	struct perf_event *child;
1758 
1759 	if (!__pmu_filter_match(event))
1760 		return 0;
1761 
1762 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1763 		if (!__pmu_filter_match(child))
1764 			return 0;
1765 	}
1766 
1767 	return 1;
1768 }
1769 
1770 static inline int
1771 event_filter_match(struct perf_event *event)
1772 {
1773 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1774 	       perf_cgroup_match(event) && pmu_filter_match(event);
1775 }
1776 
1777 static void
1778 event_sched_out(struct perf_event *event,
1779 		  struct perf_cpu_context *cpuctx,
1780 		  struct perf_event_context *ctx)
1781 {
1782 	u64 tstamp = perf_event_time(event);
1783 	u64 delta;
1784 
1785 	WARN_ON_ONCE(event->ctx != ctx);
1786 	lockdep_assert_held(&ctx->lock);
1787 
1788 	/*
1789 	 * An event which could not be activated because of
1790 	 * filter mismatch still needs to have its timings
1791 	 * maintained, otherwise bogus information is return
1792 	 * via read() for time_enabled, time_running:
1793 	 */
1794 	if (event->state == PERF_EVENT_STATE_INACTIVE &&
1795 	    !event_filter_match(event)) {
1796 		delta = tstamp - event->tstamp_stopped;
1797 		event->tstamp_running += delta;
1798 		event->tstamp_stopped = tstamp;
1799 	}
1800 
1801 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1802 		return;
1803 
1804 	perf_pmu_disable(event->pmu);
1805 
1806 	event->tstamp_stopped = tstamp;
1807 	event->pmu->del(event, 0);
1808 	event->oncpu = -1;
1809 	event->state = PERF_EVENT_STATE_INACTIVE;
1810 	if (event->pending_disable) {
1811 		event->pending_disable = 0;
1812 		event->state = PERF_EVENT_STATE_OFF;
1813 	}
1814 
1815 	if (!is_software_event(event))
1816 		cpuctx->active_oncpu--;
1817 	if (!--ctx->nr_active)
1818 		perf_event_ctx_deactivate(ctx);
1819 	if (event->attr.freq && event->attr.sample_freq)
1820 		ctx->nr_freq--;
1821 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1822 		cpuctx->exclusive = 0;
1823 
1824 	perf_pmu_enable(event->pmu);
1825 }
1826 
1827 static void
1828 group_sched_out(struct perf_event *group_event,
1829 		struct perf_cpu_context *cpuctx,
1830 		struct perf_event_context *ctx)
1831 {
1832 	struct perf_event *event;
1833 	int state = group_event->state;
1834 
1835 	event_sched_out(group_event, cpuctx, ctx);
1836 
1837 	/*
1838 	 * Schedule out siblings (if any):
1839 	 */
1840 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1841 		event_sched_out(event, cpuctx, ctx);
1842 
1843 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1844 		cpuctx->exclusive = 0;
1845 }
1846 
1847 #define DETACH_GROUP	0x01UL
1848 
1849 /*
1850  * Cross CPU call to remove a performance event
1851  *
1852  * We disable the event on the hardware level first. After that we
1853  * remove it from the context list.
1854  */
1855 static void
1856 __perf_remove_from_context(struct perf_event *event,
1857 			   struct perf_cpu_context *cpuctx,
1858 			   struct perf_event_context *ctx,
1859 			   void *info)
1860 {
1861 	unsigned long flags = (unsigned long)info;
1862 
1863 	event_sched_out(event, cpuctx, ctx);
1864 	if (flags & DETACH_GROUP)
1865 		perf_group_detach(event);
1866 	list_del_event(event, ctx);
1867 
1868 	if (!ctx->nr_events && ctx->is_active) {
1869 		ctx->is_active = 0;
1870 		if (ctx->task) {
1871 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1872 			cpuctx->task_ctx = NULL;
1873 		}
1874 	}
1875 }
1876 
1877 /*
1878  * Remove the event from a task's (or a CPU's) list of events.
1879  *
1880  * If event->ctx is a cloned context, callers must make sure that
1881  * every task struct that event->ctx->task could possibly point to
1882  * remains valid.  This is OK when called from perf_release since
1883  * that only calls us on the top-level context, which can't be a clone.
1884  * When called from perf_event_exit_task, it's OK because the
1885  * context has been detached from its task.
1886  */
1887 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1888 {
1889 	lockdep_assert_held(&event->ctx->mutex);
1890 
1891 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1892 }
1893 
1894 /*
1895  * Cross CPU call to disable a performance event
1896  */
1897 static void __perf_event_disable(struct perf_event *event,
1898 				 struct perf_cpu_context *cpuctx,
1899 				 struct perf_event_context *ctx,
1900 				 void *info)
1901 {
1902 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1903 		return;
1904 
1905 	update_context_time(ctx);
1906 	update_cgrp_time_from_event(event);
1907 	update_group_times(event);
1908 	if (event == event->group_leader)
1909 		group_sched_out(event, cpuctx, ctx);
1910 	else
1911 		event_sched_out(event, cpuctx, ctx);
1912 	event->state = PERF_EVENT_STATE_OFF;
1913 }
1914 
1915 /*
1916  * Disable a event.
1917  *
1918  * If event->ctx is a cloned context, callers must make sure that
1919  * every task struct that event->ctx->task could possibly point to
1920  * remains valid.  This condition is satisifed when called through
1921  * perf_event_for_each_child or perf_event_for_each because they
1922  * hold the top-level event's child_mutex, so any descendant that
1923  * goes to exit will block in perf_event_exit_event().
1924  *
1925  * When called from perf_pending_event it's OK because event->ctx
1926  * is the current context on this CPU and preemption is disabled,
1927  * hence we can't get into perf_event_task_sched_out for this context.
1928  */
1929 static void _perf_event_disable(struct perf_event *event)
1930 {
1931 	struct perf_event_context *ctx = event->ctx;
1932 
1933 	raw_spin_lock_irq(&ctx->lock);
1934 	if (event->state <= PERF_EVENT_STATE_OFF) {
1935 		raw_spin_unlock_irq(&ctx->lock);
1936 		return;
1937 	}
1938 	raw_spin_unlock_irq(&ctx->lock);
1939 
1940 	event_function_call(event, __perf_event_disable, NULL);
1941 }
1942 
1943 void perf_event_disable_local(struct perf_event *event)
1944 {
1945 	event_function_local(event, __perf_event_disable, NULL);
1946 }
1947 
1948 /*
1949  * Strictly speaking kernel users cannot create groups and therefore this
1950  * interface does not need the perf_event_ctx_lock() magic.
1951  */
1952 void perf_event_disable(struct perf_event *event)
1953 {
1954 	struct perf_event_context *ctx;
1955 
1956 	ctx = perf_event_ctx_lock(event);
1957 	_perf_event_disable(event);
1958 	perf_event_ctx_unlock(event, ctx);
1959 }
1960 EXPORT_SYMBOL_GPL(perf_event_disable);
1961 
1962 static void perf_set_shadow_time(struct perf_event *event,
1963 				 struct perf_event_context *ctx,
1964 				 u64 tstamp)
1965 {
1966 	/*
1967 	 * use the correct time source for the time snapshot
1968 	 *
1969 	 * We could get by without this by leveraging the
1970 	 * fact that to get to this function, the caller
1971 	 * has most likely already called update_context_time()
1972 	 * and update_cgrp_time_xx() and thus both timestamp
1973 	 * are identical (or very close). Given that tstamp is,
1974 	 * already adjusted for cgroup, we could say that:
1975 	 *    tstamp - ctx->timestamp
1976 	 * is equivalent to
1977 	 *    tstamp - cgrp->timestamp.
1978 	 *
1979 	 * Then, in perf_output_read(), the calculation would
1980 	 * work with no changes because:
1981 	 * - event is guaranteed scheduled in
1982 	 * - no scheduled out in between
1983 	 * - thus the timestamp would be the same
1984 	 *
1985 	 * But this is a bit hairy.
1986 	 *
1987 	 * So instead, we have an explicit cgroup call to remain
1988 	 * within the time time source all along. We believe it
1989 	 * is cleaner and simpler to understand.
1990 	 */
1991 	if (is_cgroup_event(event))
1992 		perf_cgroup_set_shadow_time(event, tstamp);
1993 	else
1994 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1995 }
1996 
1997 #define MAX_INTERRUPTS (~0ULL)
1998 
1999 static void perf_log_throttle(struct perf_event *event, int enable);
2000 static void perf_log_itrace_start(struct perf_event *event);
2001 
2002 static int
2003 event_sched_in(struct perf_event *event,
2004 		 struct perf_cpu_context *cpuctx,
2005 		 struct perf_event_context *ctx)
2006 {
2007 	u64 tstamp = perf_event_time(event);
2008 	int ret = 0;
2009 
2010 	lockdep_assert_held(&ctx->lock);
2011 
2012 	if (event->state <= PERF_EVENT_STATE_OFF)
2013 		return 0;
2014 
2015 	WRITE_ONCE(event->oncpu, smp_processor_id());
2016 	/*
2017 	 * Order event::oncpu write to happen before the ACTIVE state
2018 	 * is visible.
2019 	 */
2020 	smp_wmb();
2021 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2022 
2023 	/*
2024 	 * Unthrottle events, since we scheduled we might have missed several
2025 	 * ticks already, also for a heavily scheduling task there is little
2026 	 * guarantee it'll get a tick in a timely manner.
2027 	 */
2028 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2029 		perf_log_throttle(event, 1);
2030 		event->hw.interrupts = 0;
2031 	}
2032 
2033 	/*
2034 	 * The new state must be visible before we turn it on in the hardware:
2035 	 */
2036 	smp_wmb();
2037 
2038 	perf_pmu_disable(event->pmu);
2039 
2040 	perf_set_shadow_time(event, ctx, tstamp);
2041 
2042 	perf_log_itrace_start(event);
2043 
2044 	if (event->pmu->add(event, PERF_EF_START)) {
2045 		event->state = PERF_EVENT_STATE_INACTIVE;
2046 		event->oncpu = -1;
2047 		ret = -EAGAIN;
2048 		goto out;
2049 	}
2050 
2051 	event->tstamp_running += tstamp - event->tstamp_stopped;
2052 
2053 	if (!is_software_event(event))
2054 		cpuctx->active_oncpu++;
2055 	if (!ctx->nr_active++)
2056 		perf_event_ctx_activate(ctx);
2057 	if (event->attr.freq && event->attr.sample_freq)
2058 		ctx->nr_freq++;
2059 
2060 	if (event->attr.exclusive)
2061 		cpuctx->exclusive = 1;
2062 
2063 out:
2064 	perf_pmu_enable(event->pmu);
2065 
2066 	return ret;
2067 }
2068 
2069 static int
2070 group_sched_in(struct perf_event *group_event,
2071 	       struct perf_cpu_context *cpuctx,
2072 	       struct perf_event_context *ctx)
2073 {
2074 	struct perf_event *event, *partial_group = NULL;
2075 	struct pmu *pmu = ctx->pmu;
2076 	u64 now = ctx->time;
2077 	bool simulate = false;
2078 
2079 	if (group_event->state == PERF_EVENT_STATE_OFF)
2080 		return 0;
2081 
2082 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2083 
2084 	if (event_sched_in(group_event, cpuctx, ctx)) {
2085 		pmu->cancel_txn(pmu);
2086 		perf_mux_hrtimer_restart(cpuctx);
2087 		return -EAGAIN;
2088 	}
2089 
2090 	/*
2091 	 * Schedule in siblings as one group (if any):
2092 	 */
2093 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2094 		if (event_sched_in(event, cpuctx, ctx)) {
2095 			partial_group = event;
2096 			goto group_error;
2097 		}
2098 	}
2099 
2100 	if (!pmu->commit_txn(pmu))
2101 		return 0;
2102 
2103 group_error:
2104 	/*
2105 	 * Groups can be scheduled in as one unit only, so undo any
2106 	 * partial group before returning:
2107 	 * The events up to the failed event are scheduled out normally,
2108 	 * tstamp_stopped will be updated.
2109 	 *
2110 	 * The failed events and the remaining siblings need to have
2111 	 * their timings updated as if they had gone thru event_sched_in()
2112 	 * and event_sched_out(). This is required to get consistent timings
2113 	 * across the group. This also takes care of the case where the group
2114 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2115 	 * the time the event was actually stopped, such that time delta
2116 	 * calculation in update_event_times() is correct.
2117 	 */
2118 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2119 		if (event == partial_group)
2120 			simulate = true;
2121 
2122 		if (simulate) {
2123 			event->tstamp_running += now - event->tstamp_stopped;
2124 			event->tstamp_stopped = now;
2125 		} else {
2126 			event_sched_out(event, cpuctx, ctx);
2127 		}
2128 	}
2129 	event_sched_out(group_event, cpuctx, ctx);
2130 
2131 	pmu->cancel_txn(pmu);
2132 
2133 	perf_mux_hrtimer_restart(cpuctx);
2134 
2135 	return -EAGAIN;
2136 }
2137 
2138 /*
2139  * Work out whether we can put this event group on the CPU now.
2140  */
2141 static int group_can_go_on(struct perf_event *event,
2142 			   struct perf_cpu_context *cpuctx,
2143 			   int can_add_hw)
2144 {
2145 	/*
2146 	 * Groups consisting entirely of software events can always go on.
2147 	 */
2148 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2149 		return 1;
2150 	/*
2151 	 * If an exclusive group is already on, no other hardware
2152 	 * events can go on.
2153 	 */
2154 	if (cpuctx->exclusive)
2155 		return 0;
2156 	/*
2157 	 * If this group is exclusive and there are already
2158 	 * events on the CPU, it can't go on.
2159 	 */
2160 	if (event->attr.exclusive && cpuctx->active_oncpu)
2161 		return 0;
2162 	/*
2163 	 * Otherwise, try to add it if all previous groups were able
2164 	 * to go on.
2165 	 */
2166 	return can_add_hw;
2167 }
2168 
2169 static void add_event_to_ctx(struct perf_event *event,
2170 			       struct perf_event_context *ctx)
2171 {
2172 	u64 tstamp = perf_event_time(event);
2173 
2174 	list_add_event(event, ctx);
2175 	perf_group_attach(event);
2176 	event->tstamp_enabled = tstamp;
2177 	event->tstamp_running = tstamp;
2178 	event->tstamp_stopped = tstamp;
2179 }
2180 
2181 static void ctx_sched_out(struct perf_event_context *ctx,
2182 			  struct perf_cpu_context *cpuctx,
2183 			  enum event_type_t event_type);
2184 static void
2185 ctx_sched_in(struct perf_event_context *ctx,
2186 	     struct perf_cpu_context *cpuctx,
2187 	     enum event_type_t event_type,
2188 	     struct task_struct *task);
2189 
2190 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2191 			       struct perf_event_context *ctx)
2192 {
2193 	if (!cpuctx->task_ctx)
2194 		return;
2195 
2196 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2197 		return;
2198 
2199 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2200 }
2201 
2202 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2203 				struct perf_event_context *ctx,
2204 				struct task_struct *task)
2205 {
2206 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2207 	if (ctx)
2208 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2209 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2210 	if (ctx)
2211 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2212 }
2213 
2214 static void ctx_resched(struct perf_cpu_context *cpuctx,
2215 			struct perf_event_context *task_ctx)
2216 {
2217 	perf_pmu_disable(cpuctx->ctx.pmu);
2218 	if (task_ctx)
2219 		task_ctx_sched_out(cpuctx, task_ctx);
2220 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2221 	perf_event_sched_in(cpuctx, task_ctx, current);
2222 	perf_pmu_enable(cpuctx->ctx.pmu);
2223 }
2224 
2225 /*
2226  * Cross CPU call to install and enable a performance event
2227  *
2228  * Very similar to remote_function() + event_function() but cannot assume that
2229  * things like ctx->is_active and cpuctx->task_ctx are set.
2230  */
2231 static int  __perf_install_in_context(void *info)
2232 {
2233 	struct perf_event *event = info;
2234 	struct perf_event_context *ctx = event->ctx;
2235 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2236 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2237 	bool activate = true;
2238 	int ret = 0;
2239 
2240 	raw_spin_lock(&cpuctx->ctx.lock);
2241 	if (ctx->task) {
2242 		raw_spin_lock(&ctx->lock);
2243 		task_ctx = ctx;
2244 
2245 		/* If we're on the wrong CPU, try again */
2246 		if (task_cpu(ctx->task) != smp_processor_id()) {
2247 			ret = -ESRCH;
2248 			goto unlock;
2249 		}
2250 
2251 		/*
2252 		 * If we're on the right CPU, see if the task we target is
2253 		 * current, if not we don't have to activate the ctx, a future
2254 		 * context switch will do that for us.
2255 		 */
2256 		if (ctx->task != current)
2257 			activate = false;
2258 		else
2259 			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2260 
2261 	} else if (task_ctx) {
2262 		raw_spin_lock(&task_ctx->lock);
2263 	}
2264 
2265 	if (activate) {
2266 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2267 		add_event_to_ctx(event, ctx);
2268 		ctx_resched(cpuctx, task_ctx);
2269 	} else {
2270 		add_event_to_ctx(event, ctx);
2271 	}
2272 
2273 unlock:
2274 	perf_ctx_unlock(cpuctx, task_ctx);
2275 
2276 	return ret;
2277 }
2278 
2279 /*
2280  * Attach a performance event to a context.
2281  *
2282  * Very similar to event_function_call, see comment there.
2283  */
2284 static void
2285 perf_install_in_context(struct perf_event_context *ctx,
2286 			struct perf_event *event,
2287 			int cpu)
2288 {
2289 	struct task_struct *task = READ_ONCE(ctx->task);
2290 
2291 	lockdep_assert_held(&ctx->mutex);
2292 
2293 	if (event->cpu != -1)
2294 		event->cpu = cpu;
2295 
2296 	/*
2297 	 * Ensures that if we can observe event->ctx, both the event and ctx
2298 	 * will be 'complete'. See perf_iterate_sb_cpu().
2299 	 */
2300 	smp_store_release(&event->ctx, ctx);
2301 
2302 	if (!task) {
2303 		cpu_function_call(cpu, __perf_install_in_context, event);
2304 		return;
2305 	}
2306 
2307 	/*
2308 	 * Should not happen, we validate the ctx is still alive before calling.
2309 	 */
2310 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2311 		return;
2312 
2313 	/*
2314 	 * Installing events is tricky because we cannot rely on ctx->is_active
2315 	 * to be set in case this is the nr_events 0 -> 1 transition.
2316 	 */
2317 again:
2318 	/*
2319 	 * Cannot use task_function_call() because we need to run on the task's
2320 	 * CPU regardless of whether its current or not.
2321 	 */
2322 	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2323 		return;
2324 
2325 	raw_spin_lock_irq(&ctx->lock);
2326 	task = ctx->task;
2327 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2328 		/*
2329 		 * Cannot happen because we already checked above (which also
2330 		 * cannot happen), and we hold ctx->mutex, which serializes us
2331 		 * against perf_event_exit_task_context().
2332 		 */
2333 		raw_spin_unlock_irq(&ctx->lock);
2334 		return;
2335 	}
2336 	raw_spin_unlock_irq(&ctx->lock);
2337 	/*
2338 	 * Since !ctx->is_active doesn't mean anything, we must IPI
2339 	 * unconditionally.
2340 	 */
2341 	goto again;
2342 }
2343 
2344 /*
2345  * Put a event into inactive state and update time fields.
2346  * Enabling the leader of a group effectively enables all
2347  * the group members that aren't explicitly disabled, so we
2348  * have to update their ->tstamp_enabled also.
2349  * Note: this works for group members as well as group leaders
2350  * since the non-leader members' sibling_lists will be empty.
2351  */
2352 static void __perf_event_mark_enabled(struct perf_event *event)
2353 {
2354 	struct perf_event *sub;
2355 	u64 tstamp = perf_event_time(event);
2356 
2357 	event->state = PERF_EVENT_STATE_INACTIVE;
2358 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2359 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2360 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2361 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2362 	}
2363 }
2364 
2365 /*
2366  * Cross CPU call to enable a performance event
2367  */
2368 static void __perf_event_enable(struct perf_event *event,
2369 				struct perf_cpu_context *cpuctx,
2370 				struct perf_event_context *ctx,
2371 				void *info)
2372 {
2373 	struct perf_event *leader = event->group_leader;
2374 	struct perf_event_context *task_ctx;
2375 
2376 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2377 	    event->state <= PERF_EVENT_STATE_ERROR)
2378 		return;
2379 
2380 	if (ctx->is_active)
2381 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2382 
2383 	__perf_event_mark_enabled(event);
2384 
2385 	if (!ctx->is_active)
2386 		return;
2387 
2388 	if (!event_filter_match(event)) {
2389 		if (is_cgroup_event(event))
2390 			perf_cgroup_defer_enabled(event);
2391 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2392 		return;
2393 	}
2394 
2395 	/*
2396 	 * If the event is in a group and isn't the group leader,
2397 	 * then don't put it on unless the group is on.
2398 	 */
2399 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2400 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2401 		return;
2402 	}
2403 
2404 	task_ctx = cpuctx->task_ctx;
2405 	if (ctx->task)
2406 		WARN_ON_ONCE(task_ctx != ctx);
2407 
2408 	ctx_resched(cpuctx, task_ctx);
2409 }
2410 
2411 /*
2412  * Enable a event.
2413  *
2414  * If event->ctx is a cloned context, callers must make sure that
2415  * every task struct that event->ctx->task could possibly point to
2416  * remains valid.  This condition is satisfied when called through
2417  * perf_event_for_each_child or perf_event_for_each as described
2418  * for perf_event_disable.
2419  */
2420 static void _perf_event_enable(struct perf_event *event)
2421 {
2422 	struct perf_event_context *ctx = event->ctx;
2423 
2424 	raw_spin_lock_irq(&ctx->lock);
2425 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2426 	    event->state <  PERF_EVENT_STATE_ERROR) {
2427 		raw_spin_unlock_irq(&ctx->lock);
2428 		return;
2429 	}
2430 
2431 	/*
2432 	 * If the event is in error state, clear that first.
2433 	 *
2434 	 * That way, if we see the event in error state below, we know that it
2435 	 * has gone back into error state, as distinct from the task having
2436 	 * been scheduled away before the cross-call arrived.
2437 	 */
2438 	if (event->state == PERF_EVENT_STATE_ERROR)
2439 		event->state = PERF_EVENT_STATE_OFF;
2440 	raw_spin_unlock_irq(&ctx->lock);
2441 
2442 	event_function_call(event, __perf_event_enable, NULL);
2443 }
2444 
2445 /*
2446  * See perf_event_disable();
2447  */
2448 void perf_event_enable(struct perf_event *event)
2449 {
2450 	struct perf_event_context *ctx;
2451 
2452 	ctx = perf_event_ctx_lock(event);
2453 	_perf_event_enable(event);
2454 	perf_event_ctx_unlock(event, ctx);
2455 }
2456 EXPORT_SYMBOL_GPL(perf_event_enable);
2457 
2458 struct stop_event_data {
2459 	struct perf_event	*event;
2460 	unsigned int		restart;
2461 };
2462 
2463 static int __perf_event_stop(void *info)
2464 {
2465 	struct stop_event_data *sd = info;
2466 	struct perf_event *event = sd->event;
2467 
2468 	/* if it's already INACTIVE, do nothing */
2469 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2470 		return 0;
2471 
2472 	/* matches smp_wmb() in event_sched_in() */
2473 	smp_rmb();
2474 
2475 	/*
2476 	 * There is a window with interrupts enabled before we get here,
2477 	 * so we need to check again lest we try to stop another CPU's event.
2478 	 */
2479 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2480 		return -EAGAIN;
2481 
2482 	event->pmu->stop(event, PERF_EF_UPDATE);
2483 
2484 	/*
2485 	 * May race with the actual stop (through perf_pmu_output_stop()),
2486 	 * but it is only used for events with AUX ring buffer, and such
2487 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2488 	 * see comments in perf_aux_output_begin().
2489 	 *
2490 	 * Since this is happening on a event-local CPU, no trace is lost
2491 	 * while restarting.
2492 	 */
2493 	if (sd->restart)
2494 		event->pmu->start(event, PERF_EF_START);
2495 
2496 	return 0;
2497 }
2498 
2499 static int perf_event_restart(struct perf_event *event)
2500 {
2501 	struct stop_event_data sd = {
2502 		.event		= event,
2503 		.restart	= 1,
2504 	};
2505 	int ret = 0;
2506 
2507 	do {
2508 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2509 			return 0;
2510 
2511 		/* matches smp_wmb() in event_sched_in() */
2512 		smp_rmb();
2513 
2514 		/*
2515 		 * We only want to restart ACTIVE events, so if the event goes
2516 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2517 		 * fall through with ret==-ENXIO.
2518 		 */
2519 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2520 					__perf_event_stop, &sd);
2521 	} while (ret == -EAGAIN);
2522 
2523 	return ret;
2524 }
2525 
2526 /*
2527  * In order to contain the amount of racy and tricky in the address filter
2528  * configuration management, it is a two part process:
2529  *
2530  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2531  *      we update the addresses of corresponding vmas in
2532  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2533  * (p2) when an event is scheduled in (pmu::add), it calls
2534  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2535  *      if the generation has changed since the previous call.
2536  *
2537  * If (p1) happens while the event is active, we restart it to force (p2).
2538  *
2539  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2540  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2541  *     ioctl;
2542  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2543  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2544  *     for reading;
2545  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2546  *     of exec.
2547  */
2548 void perf_event_addr_filters_sync(struct perf_event *event)
2549 {
2550 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2551 
2552 	if (!has_addr_filter(event))
2553 		return;
2554 
2555 	raw_spin_lock(&ifh->lock);
2556 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2557 		event->pmu->addr_filters_sync(event);
2558 		event->hw.addr_filters_gen = event->addr_filters_gen;
2559 	}
2560 	raw_spin_unlock(&ifh->lock);
2561 }
2562 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2563 
2564 static int _perf_event_refresh(struct perf_event *event, int refresh)
2565 {
2566 	/*
2567 	 * not supported on inherited events
2568 	 */
2569 	if (event->attr.inherit || !is_sampling_event(event))
2570 		return -EINVAL;
2571 
2572 	atomic_add(refresh, &event->event_limit);
2573 	_perf_event_enable(event);
2574 
2575 	return 0;
2576 }
2577 
2578 /*
2579  * See perf_event_disable()
2580  */
2581 int perf_event_refresh(struct perf_event *event, int refresh)
2582 {
2583 	struct perf_event_context *ctx;
2584 	int ret;
2585 
2586 	ctx = perf_event_ctx_lock(event);
2587 	ret = _perf_event_refresh(event, refresh);
2588 	perf_event_ctx_unlock(event, ctx);
2589 
2590 	return ret;
2591 }
2592 EXPORT_SYMBOL_GPL(perf_event_refresh);
2593 
2594 static void ctx_sched_out(struct perf_event_context *ctx,
2595 			  struct perf_cpu_context *cpuctx,
2596 			  enum event_type_t event_type)
2597 {
2598 	int is_active = ctx->is_active;
2599 	struct perf_event *event;
2600 
2601 	lockdep_assert_held(&ctx->lock);
2602 
2603 	if (likely(!ctx->nr_events)) {
2604 		/*
2605 		 * See __perf_remove_from_context().
2606 		 */
2607 		WARN_ON_ONCE(ctx->is_active);
2608 		if (ctx->task)
2609 			WARN_ON_ONCE(cpuctx->task_ctx);
2610 		return;
2611 	}
2612 
2613 	ctx->is_active &= ~event_type;
2614 	if (!(ctx->is_active & EVENT_ALL))
2615 		ctx->is_active = 0;
2616 
2617 	if (ctx->task) {
2618 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2619 		if (!ctx->is_active)
2620 			cpuctx->task_ctx = NULL;
2621 	}
2622 
2623 	/*
2624 	 * Always update time if it was set; not only when it changes.
2625 	 * Otherwise we can 'forget' to update time for any but the last
2626 	 * context we sched out. For example:
2627 	 *
2628 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2629 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2630 	 *
2631 	 * would only update time for the pinned events.
2632 	 */
2633 	if (is_active & EVENT_TIME) {
2634 		/* update (and stop) ctx time */
2635 		update_context_time(ctx);
2636 		update_cgrp_time_from_cpuctx(cpuctx);
2637 	}
2638 
2639 	is_active ^= ctx->is_active; /* changed bits */
2640 
2641 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2642 		return;
2643 
2644 	perf_pmu_disable(ctx->pmu);
2645 	if (is_active & EVENT_PINNED) {
2646 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2647 			group_sched_out(event, cpuctx, ctx);
2648 	}
2649 
2650 	if (is_active & EVENT_FLEXIBLE) {
2651 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2652 			group_sched_out(event, cpuctx, ctx);
2653 	}
2654 	perf_pmu_enable(ctx->pmu);
2655 }
2656 
2657 /*
2658  * Test whether two contexts are equivalent, i.e. whether they have both been
2659  * cloned from the same version of the same context.
2660  *
2661  * Equivalence is measured using a generation number in the context that is
2662  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2663  * and list_del_event().
2664  */
2665 static int context_equiv(struct perf_event_context *ctx1,
2666 			 struct perf_event_context *ctx2)
2667 {
2668 	lockdep_assert_held(&ctx1->lock);
2669 	lockdep_assert_held(&ctx2->lock);
2670 
2671 	/* Pinning disables the swap optimization */
2672 	if (ctx1->pin_count || ctx2->pin_count)
2673 		return 0;
2674 
2675 	/* If ctx1 is the parent of ctx2 */
2676 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2677 		return 1;
2678 
2679 	/* If ctx2 is the parent of ctx1 */
2680 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2681 		return 1;
2682 
2683 	/*
2684 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2685 	 * hierarchy, see perf_event_init_context().
2686 	 */
2687 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2688 			ctx1->parent_gen == ctx2->parent_gen)
2689 		return 1;
2690 
2691 	/* Unmatched */
2692 	return 0;
2693 }
2694 
2695 static void __perf_event_sync_stat(struct perf_event *event,
2696 				     struct perf_event *next_event)
2697 {
2698 	u64 value;
2699 
2700 	if (!event->attr.inherit_stat)
2701 		return;
2702 
2703 	/*
2704 	 * Update the event value, we cannot use perf_event_read()
2705 	 * because we're in the middle of a context switch and have IRQs
2706 	 * disabled, which upsets smp_call_function_single(), however
2707 	 * we know the event must be on the current CPU, therefore we
2708 	 * don't need to use it.
2709 	 */
2710 	switch (event->state) {
2711 	case PERF_EVENT_STATE_ACTIVE:
2712 		event->pmu->read(event);
2713 		/* fall-through */
2714 
2715 	case PERF_EVENT_STATE_INACTIVE:
2716 		update_event_times(event);
2717 		break;
2718 
2719 	default:
2720 		break;
2721 	}
2722 
2723 	/*
2724 	 * In order to keep per-task stats reliable we need to flip the event
2725 	 * values when we flip the contexts.
2726 	 */
2727 	value = local64_read(&next_event->count);
2728 	value = local64_xchg(&event->count, value);
2729 	local64_set(&next_event->count, value);
2730 
2731 	swap(event->total_time_enabled, next_event->total_time_enabled);
2732 	swap(event->total_time_running, next_event->total_time_running);
2733 
2734 	/*
2735 	 * Since we swizzled the values, update the user visible data too.
2736 	 */
2737 	perf_event_update_userpage(event);
2738 	perf_event_update_userpage(next_event);
2739 }
2740 
2741 static void perf_event_sync_stat(struct perf_event_context *ctx,
2742 				   struct perf_event_context *next_ctx)
2743 {
2744 	struct perf_event *event, *next_event;
2745 
2746 	if (!ctx->nr_stat)
2747 		return;
2748 
2749 	update_context_time(ctx);
2750 
2751 	event = list_first_entry(&ctx->event_list,
2752 				   struct perf_event, event_entry);
2753 
2754 	next_event = list_first_entry(&next_ctx->event_list,
2755 					struct perf_event, event_entry);
2756 
2757 	while (&event->event_entry != &ctx->event_list &&
2758 	       &next_event->event_entry != &next_ctx->event_list) {
2759 
2760 		__perf_event_sync_stat(event, next_event);
2761 
2762 		event = list_next_entry(event, event_entry);
2763 		next_event = list_next_entry(next_event, event_entry);
2764 	}
2765 }
2766 
2767 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2768 					 struct task_struct *next)
2769 {
2770 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2771 	struct perf_event_context *next_ctx;
2772 	struct perf_event_context *parent, *next_parent;
2773 	struct perf_cpu_context *cpuctx;
2774 	int do_switch = 1;
2775 
2776 	if (likely(!ctx))
2777 		return;
2778 
2779 	cpuctx = __get_cpu_context(ctx);
2780 	if (!cpuctx->task_ctx)
2781 		return;
2782 
2783 	rcu_read_lock();
2784 	next_ctx = next->perf_event_ctxp[ctxn];
2785 	if (!next_ctx)
2786 		goto unlock;
2787 
2788 	parent = rcu_dereference(ctx->parent_ctx);
2789 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2790 
2791 	/* If neither context have a parent context; they cannot be clones. */
2792 	if (!parent && !next_parent)
2793 		goto unlock;
2794 
2795 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2796 		/*
2797 		 * Looks like the two contexts are clones, so we might be
2798 		 * able to optimize the context switch.  We lock both
2799 		 * contexts and check that they are clones under the
2800 		 * lock (including re-checking that neither has been
2801 		 * uncloned in the meantime).  It doesn't matter which
2802 		 * order we take the locks because no other cpu could
2803 		 * be trying to lock both of these tasks.
2804 		 */
2805 		raw_spin_lock(&ctx->lock);
2806 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2807 		if (context_equiv(ctx, next_ctx)) {
2808 			WRITE_ONCE(ctx->task, next);
2809 			WRITE_ONCE(next_ctx->task, task);
2810 
2811 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2812 
2813 			/*
2814 			 * RCU_INIT_POINTER here is safe because we've not
2815 			 * modified the ctx and the above modification of
2816 			 * ctx->task and ctx->task_ctx_data are immaterial
2817 			 * since those values are always verified under
2818 			 * ctx->lock which we're now holding.
2819 			 */
2820 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2821 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2822 
2823 			do_switch = 0;
2824 
2825 			perf_event_sync_stat(ctx, next_ctx);
2826 		}
2827 		raw_spin_unlock(&next_ctx->lock);
2828 		raw_spin_unlock(&ctx->lock);
2829 	}
2830 unlock:
2831 	rcu_read_unlock();
2832 
2833 	if (do_switch) {
2834 		raw_spin_lock(&ctx->lock);
2835 		task_ctx_sched_out(cpuctx, ctx);
2836 		raw_spin_unlock(&ctx->lock);
2837 	}
2838 }
2839 
2840 void perf_sched_cb_dec(struct pmu *pmu)
2841 {
2842 	this_cpu_dec(perf_sched_cb_usages);
2843 }
2844 
2845 void perf_sched_cb_inc(struct pmu *pmu)
2846 {
2847 	this_cpu_inc(perf_sched_cb_usages);
2848 }
2849 
2850 /*
2851  * This function provides the context switch callback to the lower code
2852  * layer. It is invoked ONLY when the context switch callback is enabled.
2853  */
2854 static void perf_pmu_sched_task(struct task_struct *prev,
2855 				struct task_struct *next,
2856 				bool sched_in)
2857 {
2858 	struct perf_cpu_context *cpuctx;
2859 	struct pmu *pmu;
2860 	unsigned long flags;
2861 
2862 	if (prev == next)
2863 		return;
2864 
2865 	local_irq_save(flags);
2866 
2867 	rcu_read_lock();
2868 
2869 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2870 		if (pmu->sched_task) {
2871 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2872 
2873 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2874 
2875 			perf_pmu_disable(pmu);
2876 
2877 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2878 
2879 			perf_pmu_enable(pmu);
2880 
2881 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2882 		}
2883 	}
2884 
2885 	rcu_read_unlock();
2886 
2887 	local_irq_restore(flags);
2888 }
2889 
2890 static void perf_event_switch(struct task_struct *task,
2891 			      struct task_struct *next_prev, bool sched_in);
2892 
2893 #define for_each_task_context_nr(ctxn)					\
2894 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2895 
2896 /*
2897  * Called from scheduler to remove the events of the current task,
2898  * with interrupts disabled.
2899  *
2900  * We stop each event and update the event value in event->count.
2901  *
2902  * This does not protect us against NMI, but disable()
2903  * sets the disabled bit in the control field of event _before_
2904  * accessing the event control register. If a NMI hits, then it will
2905  * not restart the event.
2906  */
2907 void __perf_event_task_sched_out(struct task_struct *task,
2908 				 struct task_struct *next)
2909 {
2910 	int ctxn;
2911 
2912 	if (__this_cpu_read(perf_sched_cb_usages))
2913 		perf_pmu_sched_task(task, next, false);
2914 
2915 	if (atomic_read(&nr_switch_events))
2916 		perf_event_switch(task, next, false);
2917 
2918 	for_each_task_context_nr(ctxn)
2919 		perf_event_context_sched_out(task, ctxn, next);
2920 
2921 	/*
2922 	 * if cgroup events exist on this CPU, then we need
2923 	 * to check if we have to switch out PMU state.
2924 	 * cgroup event are system-wide mode only
2925 	 */
2926 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2927 		perf_cgroup_sched_out(task, next);
2928 }
2929 
2930 /*
2931  * Called with IRQs disabled
2932  */
2933 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2934 			      enum event_type_t event_type)
2935 {
2936 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2937 }
2938 
2939 static void
2940 ctx_pinned_sched_in(struct perf_event_context *ctx,
2941 		    struct perf_cpu_context *cpuctx)
2942 {
2943 	struct perf_event *event;
2944 
2945 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2946 		if (event->state <= PERF_EVENT_STATE_OFF)
2947 			continue;
2948 		if (!event_filter_match(event))
2949 			continue;
2950 
2951 		/* may need to reset tstamp_enabled */
2952 		if (is_cgroup_event(event))
2953 			perf_cgroup_mark_enabled(event, ctx);
2954 
2955 		if (group_can_go_on(event, cpuctx, 1))
2956 			group_sched_in(event, cpuctx, ctx);
2957 
2958 		/*
2959 		 * If this pinned group hasn't been scheduled,
2960 		 * put it in error state.
2961 		 */
2962 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2963 			update_group_times(event);
2964 			event->state = PERF_EVENT_STATE_ERROR;
2965 		}
2966 	}
2967 }
2968 
2969 static void
2970 ctx_flexible_sched_in(struct perf_event_context *ctx,
2971 		      struct perf_cpu_context *cpuctx)
2972 {
2973 	struct perf_event *event;
2974 	int can_add_hw = 1;
2975 
2976 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2977 		/* Ignore events in OFF or ERROR state */
2978 		if (event->state <= PERF_EVENT_STATE_OFF)
2979 			continue;
2980 		/*
2981 		 * Listen to the 'cpu' scheduling filter constraint
2982 		 * of events:
2983 		 */
2984 		if (!event_filter_match(event))
2985 			continue;
2986 
2987 		/* may need to reset tstamp_enabled */
2988 		if (is_cgroup_event(event))
2989 			perf_cgroup_mark_enabled(event, ctx);
2990 
2991 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2992 			if (group_sched_in(event, cpuctx, ctx))
2993 				can_add_hw = 0;
2994 		}
2995 	}
2996 }
2997 
2998 static void
2999 ctx_sched_in(struct perf_event_context *ctx,
3000 	     struct perf_cpu_context *cpuctx,
3001 	     enum event_type_t event_type,
3002 	     struct task_struct *task)
3003 {
3004 	int is_active = ctx->is_active;
3005 	u64 now;
3006 
3007 	lockdep_assert_held(&ctx->lock);
3008 
3009 	if (likely(!ctx->nr_events))
3010 		return;
3011 
3012 	ctx->is_active |= (event_type | EVENT_TIME);
3013 	if (ctx->task) {
3014 		if (!is_active)
3015 			cpuctx->task_ctx = ctx;
3016 		else
3017 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3018 	}
3019 
3020 	is_active ^= ctx->is_active; /* changed bits */
3021 
3022 	if (is_active & EVENT_TIME) {
3023 		/* start ctx time */
3024 		now = perf_clock();
3025 		ctx->timestamp = now;
3026 		perf_cgroup_set_timestamp(task, ctx);
3027 	}
3028 
3029 	/*
3030 	 * First go through the list and put on any pinned groups
3031 	 * in order to give them the best chance of going on.
3032 	 */
3033 	if (is_active & EVENT_PINNED)
3034 		ctx_pinned_sched_in(ctx, cpuctx);
3035 
3036 	/* Then walk through the lower prio flexible groups */
3037 	if (is_active & EVENT_FLEXIBLE)
3038 		ctx_flexible_sched_in(ctx, cpuctx);
3039 }
3040 
3041 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3042 			     enum event_type_t event_type,
3043 			     struct task_struct *task)
3044 {
3045 	struct perf_event_context *ctx = &cpuctx->ctx;
3046 
3047 	ctx_sched_in(ctx, cpuctx, event_type, task);
3048 }
3049 
3050 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3051 					struct task_struct *task)
3052 {
3053 	struct perf_cpu_context *cpuctx;
3054 
3055 	cpuctx = __get_cpu_context(ctx);
3056 	if (cpuctx->task_ctx == ctx)
3057 		return;
3058 
3059 	perf_ctx_lock(cpuctx, ctx);
3060 	perf_pmu_disable(ctx->pmu);
3061 	/*
3062 	 * We want to keep the following priority order:
3063 	 * cpu pinned (that don't need to move), task pinned,
3064 	 * cpu flexible, task flexible.
3065 	 */
3066 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3067 	perf_event_sched_in(cpuctx, ctx, task);
3068 	perf_pmu_enable(ctx->pmu);
3069 	perf_ctx_unlock(cpuctx, ctx);
3070 }
3071 
3072 /*
3073  * Called from scheduler to add the events of the current task
3074  * with interrupts disabled.
3075  *
3076  * We restore the event value and then enable it.
3077  *
3078  * This does not protect us against NMI, but enable()
3079  * sets the enabled bit in the control field of event _before_
3080  * accessing the event control register. If a NMI hits, then it will
3081  * keep the event running.
3082  */
3083 void __perf_event_task_sched_in(struct task_struct *prev,
3084 				struct task_struct *task)
3085 {
3086 	struct perf_event_context *ctx;
3087 	int ctxn;
3088 
3089 	/*
3090 	 * If cgroup events exist on this CPU, then we need to check if we have
3091 	 * to switch in PMU state; cgroup event are system-wide mode only.
3092 	 *
3093 	 * Since cgroup events are CPU events, we must schedule these in before
3094 	 * we schedule in the task events.
3095 	 */
3096 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3097 		perf_cgroup_sched_in(prev, task);
3098 
3099 	for_each_task_context_nr(ctxn) {
3100 		ctx = task->perf_event_ctxp[ctxn];
3101 		if (likely(!ctx))
3102 			continue;
3103 
3104 		perf_event_context_sched_in(ctx, task);
3105 	}
3106 
3107 	if (atomic_read(&nr_switch_events))
3108 		perf_event_switch(task, prev, true);
3109 
3110 	if (__this_cpu_read(perf_sched_cb_usages))
3111 		perf_pmu_sched_task(prev, task, true);
3112 }
3113 
3114 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3115 {
3116 	u64 frequency = event->attr.sample_freq;
3117 	u64 sec = NSEC_PER_SEC;
3118 	u64 divisor, dividend;
3119 
3120 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3121 
3122 	count_fls = fls64(count);
3123 	nsec_fls = fls64(nsec);
3124 	frequency_fls = fls64(frequency);
3125 	sec_fls = 30;
3126 
3127 	/*
3128 	 * We got @count in @nsec, with a target of sample_freq HZ
3129 	 * the target period becomes:
3130 	 *
3131 	 *             @count * 10^9
3132 	 * period = -------------------
3133 	 *          @nsec * sample_freq
3134 	 *
3135 	 */
3136 
3137 	/*
3138 	 * Reduce accuracy by one bit such that @a and @b converge
3139 	 * to a similar magnitude.
3140 	 */
3141 #define REDUCE_FLS(a, b)		\
3142 do {					\
3143 	if (a##_fls > b##_fls) {	\
3144 		a >>= 1;		\
3145 		a##_fls--;		\
3146 	} else {			\
3147 		b >>= 1;		\
3148 		b##_fls--;		\
3149 	}				\
3150 } while (0)
3151 
3152 	/*
3153 	 * Reduce accuracy until either term fits in a u64, then proceed with
3154 	 * the other, so that finally we can do a u64/u64 division.
3155 	 */
3156 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3157 		REDUCE_FLS(nsec, frequency);
3158 		REDUCE_FLS(sec, count);
3159 	}
3160 
3161 	if (count_fls + sec_fls > 64) {
3162 		divisor = nsec * frequency;
3163 
3164 		while (count_fls + sec_fls > 64) {
3165 			REDUCE_FLS(count, sec);
3166 			divisor >>= 1;
3167 		}
3168 
3169 		dividend = count * sec;
3170 	} else {
3171 		dividend = count * sec;
3172 
3173 		while (nsec_fls + frequency_fls > 64) {
3174 			REDUCE_FLS(nsec, frequency);
3175 			dividend >>= 1;
3176 		}
3177 
3178 		divisor = nsec * frequency;
3179 	}
3180 
3181 	if (!divisor)
3182 		return dividend;
3183 
3184 	return div64_u64(dividend, divisor);
3185 }
3186 
3187 static DEFINE_PER_CPU(int, perf_throttled_count);
3188 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3189 
3190 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3191 {
3192 	struct hw_perf_event *hwc = &event->hw;
3193 	s64 period, sample_period;
3194 	s64 delta;
3195 
3196 	period = perf_calculate_period(event, nsec, count);
3197 
3198 	delta = (s64)(period - hwc->sample_period);
3199 	delta = (delta + 7) / 8; /* low pass filter */
3200 
3201 	sample_period = hwc->sample_period + delta;
3202 
3203 	if (!sample_period)
3204 		sample_period = 1;
3205 
3206 	hwc->sample_period = sample_period;
3207 
3208 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3209 		if (disable)
3210 			event->pmu->stop(event, PERF_EF_UPDATE);
3211 
3212 		local64_set(&hwc->period_left, 0);
3213 
3214 		if (disable)
3215 			event->pmu->start(event, PERF_EF_RELOAD);
3216 	}
3217 }
3218 
3219 /*
3220  * combine freq adjustment with unthrottling to avoid two passes over the
3221  * events. At the same time, make sure, having freq events does not change
3222  * the rate of unthrottling as that would introduce bias.
3223  */
3224 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3225 					   int needs_unthr)
3226 {
3227 	struct perf_event *event;
3228 	struct hw_perf_event *hwc;
3229 	u64 now, period = TICK_NSEC;
3230 	s64 delta;
3231 
3232 	/*
3233 	 * only need to iterate over all events iff:
3234 	 * - context have events in frequency mode (needs freq adjust)
3235 	 * - there are events to unthrottle on this cpu
3236 	 */
3237 	if (!(ctx->nr_freq || needs_unthr))
3238 		return;
3239 
3240 	raw_spin_lock(&ctx->lock);
3241 	perf_pmu_disable(ctx->pmu);
3242 
3243 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3244 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3245 			continue;
3246 
3247 		if (!event_filter_match(event))
3248 			continue;
3249 
3250 		perf_pmu_disable(event->pmu);
3251 
3252 		hwc = &event->hw;
3253 
3254 		if (hwc->interrupts == MAX_INTERRUPTS) {
3255 			hwc->interrupts = 0;
3256 			perf_log_throttle(event, 1);
3257 			event->pmu->start(event, 0);
3258 		}
3259 
3260 		if (!event->attr.freq || !event->attr.sample_freq)
3261 			goto next;
3262 
3263 		/*
3264 		 * stop the event and update event->count
3265 		 */
3266 		event->pmu->stop(event, PERF_EF_UPDATE);
3267 
3268 		now = local64_read(&event->count);
3269 		delta = now - hwc->freq_count_stamp;
3270 		hwc->freq_count_stamp = now;
3271 
3272 		/*
3273 		 * restart the event
3274 		 * reload only if value has changed
3275 		 * we have stopped the event so tell that
3276 		 * to perf_adjust_period() to avoid stopping it
3277 		 * twice.
3278 		 */
3279 		if (delta > 0)
3280 			perf_adjust_period(event, period, delta, false);
3281 
3282 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3283 	next:
3284 		perf_pmu_enable(event->pmu);
3285 	}
3286 
3287 	perf_pmu_enable(ctx->pmu);
3288 	raw_spin_unlock(&ctx->lock);
3289 }
3290 
3291 /*
3292  * Round-robin a context's events:
3293  */
3294 static void rotate_ctx(struct perf_event_context *ctx)
3295 {
3296 	/*
3297 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3298 	 * disabled by the inheritance code.
3299 	 */
3300 	if (!ctx->rotate_disable)
3301 		list_rotate_left(&ctx->flexible_groups);
3302 }
3303 
3304 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3305 {
3306 	struct perf_event_context *ctx = NULL;
3307 	int rotate = 0;
3308 
3309 	if (cpuctx->ctx.nr_events) {
3310 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3311 			rotate = 1;
3312 	}
3313 
3314 	ctx = cpuctx->task_ctx;
3315 	if (ctx && ctx->nr_events) {
3316 		if (ctx->nr_events != ctx->nr_active)
3317 			rotate = 1;
3318 	}
3319 
3320 	if (!rotate)
3321 		goto done;
3322 
3323 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3324 	perf_pmu_disable(cpuctx->ctx.pmu);
3325 
3326 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3327 	if (ctx)
3328 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3329 
3330 	rotate_ctx(&cpuctx->ctx);
3331 	if (ctx)
3332 		rotate_ctx(ctx);
3333 
3334 	perf_event_sched_in(cpuctx, ctx, current);
3335 
3336 	perf_pmu_enable(cpuctx->ctx.pmu);
3337 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3338 done:
3339 
3340 	return rotate;
3341 }
3342 
3343 void perf_event_task_tick(void)
3344 {
3345 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3346 	struct perf_event_context *ctx, *tmp;
3347 	int throttled;
3348 
3349 	WARN_ON(!irqs_disabled());
3350 
3351 	__this_cpu_inc(perf_throttled_seq);
3352 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3353 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3354 
3355 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3356 		perf_adjust_freq_unthr_context(ctx, throttled);
3357 }
3358 
3359 static int event_enable_on_exec(struct perf_event *event,
3360 				struct perf_event_context *ctx)
3361 {
3362 	if (!event->attr.enable_on_exec)
3363 		return 0;
3364 
3365 	event->attr.enable_on_exec = 0;
3366 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3367 		return 0;
3368 
3369 	__perf_event_mark_enabled(event);
3370 
3371 	return 1;
3372 }
3373 
3374 /*
3375  * Enable all of a task's events that have been marked enable-on-exec.
3376  * This expects task == current.
3377  */
3378 static void perf_event_enable_on_exec(int ctxn)
3379 {
3380 	struct perf_event_context *ctx, *clone_ctx = NULL;
3381 	struct perf_cpu_context *cpuctx;
3382 	struct perf_event *event;
3383 	unsigned long flags;
3384 	int enabled = 0;
3385 
3386 	local_irq_save(flags);
3387 	ctx = current->perf_event_ctxp[ctxn];
3388 	if (!ctx || !ctx->nr_events)
3389 		goto out;
3390 
3391 	cpuctx = __get_cpu_context(ctx);
3392 	perf_ctx_lock(cpuctx, ctx);
3393 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3394 	list_for_each_entry(event, &ctx->event_list, event_entry)
3395 		enabled |= event_enable_on_exec(event, ctx);
3396 
3397 	/*
3398 	 * Unclone and reschedule this context if we enabled any event.
3399 	 */
3400 	if (enabled) {
3401 		clone_ctx = unclone_ctx(ctx);
3402 		ctx_resched(cpuctx, ctx);
3403 	}
3404 	perf_ctx_unlock(cpuctx, ctx);
3405 
3406 out:
3407 	local_irq_restore(flags);
3408 
3409 	if (clone_ctx)
3410 		put_ctx(clone_ctx);
3411 }
3412 
3413 struct perf_read_data {
3414 	struct perf_event *event;
3415 	bool group;
3416 	int ret;
3417 };
3418 
3419 /*
3420  * Cross CPU call to read the hardware event
3421  */
3422 static void __perf_event_read(void *info)
3423 {
3424 	struct perf_read_data *data = info;
3425 	struct perf_event *sub, *event = data->event;
3426 	struct perf_event_context *ctx = event->ctx;
3427 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3428 	struct pmu *pmu = event->pmu;
3429 
3430 	/*
3431 	 * If this is a task context, we need to check whether it is
3432 	 * the current task context of this cpu.  If not it has been
3433 	 * scheduled out before the smp call arrived.  In that case
3434 	 * event->count would have been updated to a recent sample
3435 	 * when the event was scheduled out.
3436 	 */
3437 	if (ctx->task && cpuctx->task_ctx != ctx)
3438 		return;
3439 
3440 	raw_spin_lock(&ctx->lock);
3441 	if (ctx->is_active) {
3442 		update_context_time(ctx);
3443 		update_cgrp_time_from_event(event);
3444 	}
3445 
3446 	update_event_times(event);
3447 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3448 		goto unlock;
3449 
3450 	if (!data->group) {
3451 		pmu->read(event);
3452 		data->ret = 0;
3453 		goto unlock;
3454 	}
3455 
3456 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3457 
3458 	pmu->read(event);
3459 
3460 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3461 		update_event_times(sub);
3462 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3463 			/*
3464 			 * Use sibling's PMU rather than @event's since
3465 			 * sibling could be on different (eg: software) PMU.
3466 			 */
3467 			sub->pmu->read(sub);
3468 		}
3469 	}
3470 
3471 	data->ret = pmu->commit_txn(pmu);
3472 
3473 unlock:
3474 	raw_spin_unlock(&ctx->lock);
3475 }
3476 
3477 static inline u64 perf_event_count(struct perf_event *event)
3478 {
3479 	if (event->pmu->count)
3480 		return event->pmu->count(event);
3481 
3482 	return __perf_event_count(event);
3483 }
3484 
3485 /*
3486  * NMI-safe method to read a local event, that is an event that
3487  * is:
3488  *   - either for the current task, or for this CPU
3489  *   - does not have inherit set, for inherited task events
3490  *     will not be local and we cannot read them atomically
3491  *   - must not have a pmu::count method
3492  */
3493 u64 perf_event_read_local(struct perf_event *event)
3494 {
3495 	unsigned long flags;
3496 	u64 val;
3497 
3498 	/*
3499 	 * Disabling interrupts avoids all counter scheduling (context
3500 	 * switches, timer based rotation and IPIs).
3501 	 */
3502 	local_irq_save(flags);
3503 
3504 	/* If this is a per-task event, it must be for current */
3505 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3506 		     event->hw.target != current);
3507 
3508 	/* If this is a per-CPU event, it must be for this CPU */
3509 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3510 		     event->cpu != smp_processor_id());
3511 
3512 	/*
3513 	 * It must not be an event with inherit set, we cannot read
3514 	 * all child counters from atomic context.
3515 	 */
3516 	WARN_ON_ONCE(event->attr.inherit);
3517 
3518 	/*
3519 	 * It must not have a pmu::count method, those are not
3520 	 * NMI safe.
3521 	 */
3522 	WARN_ON_ONCE(event->pmu->count);
3523 
3524 	/*
3525 	 * If the event is currently on this CPU, its either a per-task event,
3526 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3527 	 * oncpu == -1).
3528 	 */
3529 	if (event->oncpu == smp_processor_id())
3530 		event->pmu->read(event);
3531 
3532 	val = local64_read(&event->count);
3533 	local_irq_restore(flags);
3534 
3535 	return val;
3536 }
3537 
3538 static int perf_event_read(struct perf_event *event, bool group)
3539 {
3540 	int ret = 0;
3541 
3542 	/*
3543 	 * If event is enabled and currently active on a CPU, update the
3544 	 * value in the event structure:
3545 	 */
3546 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3547 		struct perf_read_data data = {
3548 			.event = event,
3549 			.group = group,
3550 			.ret = 0,
3551 		};
3552 		ret = smp_call_function_single(event->oncpu, __perf_event_read, &data, 1);
3553 		/* The event must have been read from an online CPU: */
3554 		WARN_ON_ONCE(ret);
3555 		ret = ret ? : data.ret;
3556 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3557 		struct perf_event_context *ctx = event->ctx;
3558 		unsigned long flags;
3559 
3560 		raw_spin_lock_irqsave(&ctx->lock, flags);
3561 		/*
3562 		 * may read while context is not active
3563 		 * (e.g., thread is blocked), in that case
3564 		 * we cannot update context time
3565 		 */
3566 		if (ctx->is_active) {
3567 			update_context_time(ctx);
3568 			update_cgrp_time_from_event(event);
3569 		}
3570 		if (group)
3571 			update_group_times(event);
3572 		else
3573 			update_event_times(event);
3574 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3575 	}
3576 
3577 	return ret;
3578 }
3579 
3580 /*
3581  * Initialize the perf_event context in a task_struct:
3582  */
3583 static void __perf_event_init_context(struct perf_event_context *ctx)
3584 {
3585 	raw_spin_lock_init(&ctx->lock);
3586 	mutex_init(&ctx->mutex);
3587 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3588 	INIT_LIST_HEAD(&ctx->pinned_groups);
3589 	INIT_LIST_HEAD(&ctx->flexible_groups);
3590 	INIT_LIST_HEAD(&ctx->event_list);
3591 	atomic_set(&ctx->refcount, 1);
3592 }
3593 
3594 static struct perf_event_context *
3595 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3596 {
3597 	struct perf_event_context *ctx;
3598 
3599 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3600 	if (!ctx)
3601 		return NULL;
3602 
3603 	__perf_event_init_context(ctx);
3604 	if (task) {
3605 		ctx->task = task;
3606 		get_task_struct(task);
3607 	}
3608 	ctx->pmu = pmu;
3609 
3610 	return ctx;
3611 }
3612 
3613 static struct task_struct *
3614 find_lively_task_by_vpid(pid_t vpid)
3615 {
3616 	struct task_struct *task;
3617 
3618 	rcu_read_lock();
3619 	if (!vpid)
3620 		task = current;
3621 	else
3622 		task = find_task_by_vpid(vpid);
3623 	if (task)
3624 		get_task_struct(task);
3625 	rcu_read_unlock();
3626 
3627 	if (!task)
3628 		return ERR_PTR(-ESRCH);
3629 
3630 	return task;
3631 }
3632 
3633 /*
3634  * Returns a matching context with refcount and pincount.
3635  */
3636 static struct perf_event_context *
3637 find_get_context(struct pmu *pmu, struct task_struct *task,
3638 		struct perf_event *event)
3639 {
3640 	struct perf_event_context *ctx, *clone_ctx = NULL;
3641 	struct perf_cpu_context *cpuctx;
3642 	void *task_ctx_data = NULL;
3643 	unsigned long flags;
3644 	int ctxn, err;
3645 	int cpu = event->cpu;
3646 
3647 	if (!task) {
3648 		/* Must be root to operate on a CPU event: */
3649 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3650 			return ERR_PTR(-EACCES);
3651 
3652 		/*
3653 		 * We could be clever and allow to attach a event to an
3654 		 * offline CPU and activate it when the CPU comes up, but
3655 		 * that's for later.
3656 		 */
3657 		if (!cpu_online(cpu))
3658 			return ERR_PTR(-ENODEV);
3659 
3660 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3661 		ctx = &cpuctx->ctx;
3662 		get_ctx(ctx);
3663 		++ctx->pin_count;
3664 
3665 		return ctx;
3666 	}
3667 
3668 	err = -EINVAL;
3669 	ctxn = pmu->task_ctx_nr;
3670 	if (ctxn < 0)
3671 		goto errout;
3672 
3673 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3674 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3675 		if (!task_ctx_data) {
3676 			err = -ENOMEM;
3677 			goto errout;
3678 		}
3679 	}
3680 
3681 retry:
3682 	ctx = perf_lock_task_context(task, ctxn, &flags);
3683 	if (ctx) {
3684 		clone_ctx = unclone_ctx(ctx);
3685 		++ctx->pin_count;
3686 
3687 		if (task_ctx_data && !ctx->task_ctx_data) {
3688 			ctx->task_ctx_data = task_ctx_data;
3689 			task_ctx_data = NULL;
3690 		}
3691 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3692 
3693 		if (clone_ctx)
3694 			put_ctx(clone_ctx);
3695 	} else {
3696 		ctx = alloc_perf_context(pmu, task);
3697 		err = -ENOMEM;
3698 		if (!ctx)
3699 			goto errout;
3700 
3701 		if (task_ctx_data) {
3702 			ctx->task_ctx_data = task_ctx_data;
3703 			task_ctx_data = NULL;
3704 		}
3705 
3706 		err = 0;
3707 		mutex_lock(&task->perf_event_mutex);
3708 		/*
3709 		 * If it has already passed perf_event_exit_task().
3710 		 * we must see PF_EXITING, it takes this mutex too.
3711 		 */
3712 		if (task->flags & PF_EXITING)
3713 			err = -ESRCH;
3714 		else if (task->perf_event_ctxp[ctxn])
3715 			err = -EAGAIN;
3716 		else {
3717 			get_ctx(ctx);
3718 			++ctx->pin_count;
3719 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3720 		}
3721 		mutex_unlock(&task->perf_event_mutex);
3722 
3723 		if (unlikely(err)) {
3724 			put_ctx(ctx);
3725 
3726 			if (err == -EAGAIN)
3727 				goto retry;
3728 			goto errout;
3729 		}
3730 	}
3731 
3732 	kfree(task_ctx_data);
3733 	return ctx;
3734 
3735 errout:
3736 	kfree(task_ctx_data);
3737 	return ERR_PTR(err);
3738 }
3739 
3740 static void perf_event_free_filter(struct perf_event *event);
3741 static void perf_event_free_bpf_prog(struct perf_event *event);
3742 
3743 static void free_event_rcu(struct rcu_head *head)
3744 {
3745 	struct perf_event *event;
3746 
3747 	event = container_of(head, struct perf_event, rcu_head);
3748 	if (event->ns)
3749 		put_pid_ns(event->ns);
3750 	perf_event_free_filter(event);
3751 	kfree(event);
3752 }
3753 
3754 static void ring_buffer_attach(struct perf_event *event,
3755 			       struct ring_buffer *rb);
3756 
3757 static void detach_sb_event(struct perf_event *event)
3758 {
3759 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3760 
3761 	raw_spin_lock(&pel->lock);
3762 	list_del_rcu(&event->sb_list);
3763 	raw_spin_unlock(&pel->lock);
3764 }
3765 
3766 static bool is_sb_event(struct perf_event *event)
3767 {
3768 	struct perf_event_attr *attr = &event->attr;
3769 
3770 	if (event->parent)
3771 		return false;
3772 
3773 	if (event->attach_state & PERF_ATTACH_TASK)
3774 		return false;
3775 
3776 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3777 	    attr->comm || attr->comm_exec ||
3778 	    attr->task ||
3779 	    attr->context_switch)
3780 		return true;
3781 	return false;
3782 }
3783 
3784 static void unaccount_pmu_sb_event(struct perf_event *event)
3785 {
3786 	if (is_sb_event(event))
3787 		detach_sb_event(event);
3788 }
3789 
3790 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3791 {
3792 	if (event->parent)
3793 		return;
3794 
3795 	if (is_cgroup_event(event))
3796 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3797 }
3798 
3799 #ifdef CONFIG_NO_HZ_FULL
3800 static DEFINE_SPINLOCK(nr_freq_lock);
3801 #endif
3802 
3803 static void unaccount_freq_event_nohz(void)
3804 {
3805 #ifdef CONFIG_NO_HZ_FULL
3806 	spin_lock(&nr_freq_lock);
3807 	if (atomic_dec_and_test(&nr_freq_events))
3808 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3809 	spin_unlock(&nr_freq_lock);
3810 #endif
3811 }
3812 
3813 static void unaccount_freq_event(void)
3814 {
3815 	if (tick_nohz_full_enabled())
3816 		unaccount_freq_event_nohz();
3817 	else
3818 		atomic_dec(&nr_freq_events);
3819 }
3820 
3821 static void unaccount_event(struct perf_event *event)
3822 {
3823 	bool dec = false;
3824 
3825 	if (event->parent)
3826 		return;
3827 
3828 	if (event->attach_state & PERF_ATTACH_TASK)
3829 		dec = true;
3830 	if (event->attr.mmap || event->attr.mmap_data)
3831 		atomic_dec(&nr_mmap_events);
3832 	if (event->attr.comm)
3833 		atomic_dec(&nr_comm_events);
3834 	if (event->attr.task)
3835 		atomic_dec(&nr_task_events);
3836 	if (event->attr.freq)
3837 		unaccount_freq_event();
3838 	if (event->attr.context_switch) {
3839 		dec = true;
3840 		atomic_dec(&nr_switch_events);
3841 	}
3842 	if (is_cgroup_event(event))
3843 		dec = true;
3844 	if (has_branch_stack(event))
3845 		dec = true;
3846 
3847 	if (dec) {
3848 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3849 			schedule_delayed_work(&perf_sched_work, HZ);
3850 	}
3851 
3852 	unaccount_event_cpu(event, event->cpu);
3853 
3854 	unaccount_pmu_sb_event(event);
3855 }
3856 
3857 static void perf_sched_delayed(struct work_struct *work)
3858 {
3859 	mutex_lock(&perf_sched_mutex);
3860 	if (atomic_dec_and_test(&perf_sched_count))
3861 		static_branch_disable(&perf_sched_events);
3862 	mutex_unlock(&perf_sched_mutex);
3863 }
3864 
3865 /*
3866  * The following implement mutual exclusion of events on "exclusive" pmus
3867  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3868  * at a time, so we disallow creating events that might conflict, namely:
3869  *
3870  *  1) cpu-wide events in the presence of per-task events,
3871  *  2) per-task events in the presence of cpu-wide events,
3872  *  3) two matching events on the same context.
3873  *
3874  * The former two cases are handled in the allocation path (perf_event_alloc(),
3875  * _free_event()), the latter -- before the first perf_install_in_context().
3876  */
3877 static int exclusive_event_init(struct perf_event *event)
3878 {
3879 	struct pmu *pmu = event->pmu;
3880 
3881 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3882 		return 0;
3883 
3884 	/*
3885 	 * Prevent co-existence of per-task and cpu-wide events on the
3886 	 * same exclusive pmu.
3887 	 *
3888 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3889 	 * events on this "exclusive" pmu, positive means there are
3890 	 * per-task events.
3891 	 *
3892 	 * Since this is called in perf_event_alloc() path, event::ctx
3893 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3894 	 * to mean "per-task event", because unlike other attach states it
3895 	 * never gets cleared.
3896 	 */
3897 	if (event->attach_state & PERF_ATTACH_TASK) {
3898 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3899 			return -EBUSY;
3900 	} else {
3901 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3902 			return -EBUSY;
3903 	}
3904 
3905 	return 0;
3906 }
3907 
3908 static void exclusive_event_destroy(struct perf_event *event)
3909 {
3910 	struct pmu *pmu = event->pmu;
3911 
3912 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3913 		return;
3914 
3915 	/* see comment in exclusive_event_init() */
3916 	if (event->attach_state & PERF_ATTACH_TASK)
3917 		atomic_dec(&pmu->exclusive_cnt);
3918 	else
3919 		atomic_inc(&pmu->exclusive_cnt);
3920 }
3921 
3922 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3923 {
3924 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3925 	    (e1->cpu == e2->cpu ||
3926 	     e1->cpu == -1 ||
3927 	     e2->cpu == -1))
3928 		return true;
3929 	return false;
3930 }
3931 
3932 /* Called under the same ctx::mutex as perf_install_in_context() */
3933 static bool exclusive_event_installable(struct perf_event *event,
3934 					struct perf_event_context *ctx)
3935 {
3936 	struct perf_event *iter_event;
3937 	struct pmu *pmu = event->pmu;
3938 
3939 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3940 		return true;
3941 
3942 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3943 		if (exclusive_event_match(iter_event, event))
3944 			return false;
3945 	}
3946 
3947 	return true;
3948 }
3949 
3950 static void perf_addr_filters_splice(struct perf_event *event,
3951 				       struct list_head *head);
3952 
3953 static void _free_event(struct perf_event *event)
3954 {
3955 	irq_work_sync(&event->pending);
3956 
3957 	unaccount_event(event);
3958 
3959 	if (event->rb) {
3960 		/*
3961 		 * Can happen when we close an event with re-directed output.
3962 		 *
3963 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3964 		 * over us; possibly making our ring_buffer_put() the last.
3965 		 */
3966 		mutex_lock(&event->mmap_mutex);
3967 		ring_buffer_attach(event, NULL);
3968 		mutex_unlock(&event->mmap_mutex);
3969 	}
3970 
3971 	if (is_cgroup_event(event))
3972 		perf_detach_cgroup(event);
3973 
3974 	if (!event->parent) {
3975 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3976 			put_callchain_buffers();
3977 	}
3978 
3979 	perf_event_free_bpf_prog(event);
3980 	perf_addr_filters_splice(event, NULL);
3981 	kfree(event->addr_filters_offs);
3982 
3983 	if (event->destroy)
3984 		event->destroy(event);
3985 
3986 	if (event->ctx)
3987 		put_ctx(event->ctx);
3988 
3989 	exclusive_event_destroy(event);
3990 	module_put(event->pmu->module);
3991 
3992 	call_rcu(&event->rcu_head, free_event_rcu);
3993 }
3994 
3995 /*
3996  * Used to free events which have a known refcount of 1, such as in error paths
3997  * where the event isn't exposed yet and inherited events.
3998  */
3999 static void free_event(struct perf_event *event)
4000 {
4001 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4002 				"unexpected event refcount: %ld; ptr=%p\n",
4003 				atomic_long_read(&event->refcount), event)) {
4004 		/* leak to avoid use-after-free */
4005 		return;
4006 	}
4007 
4008 	_free_event(event);
4009 }
4010 
4011 /*
4012  * Remove user event from the owner task.
4013  */
4014 static void perf_remove_from_owner(struct perf_event *event)
4015 {
4016 	struct task_struct *owner;
4017 
4018 	rcu_read_lock();
4019 	/*
4020 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4021 	 * observe !owner it means the list deletion is complete and we can
4022 	 * indeed free this event, otherwise we need to serialize on
4023 	 * owner->perf_event_mutex.
4024 	 */
4025 	owner = lockless_dereference(event->owner);
4026 	if (owner) {
4027 		/*
4028 		 * Since delayed_put_task_struct() also drops the last
4029 		 * task reference we can safely take a new reference
4030 		 * while holding the rcu_read_lock().
4031 		 */
4032 		get_task_struct(owner);
4033 	}
4034 	rcu_read_unlock();
4035 
4036 	if (owner) {
4037 		/*
4038 		 * If we're here through perf_event_exit_task() we're already
4039 		 * holding ctx->mutex which would be an inversion wrt. the
4040 		 * normal lock order.
4041 		 *
4042 		 * However we can safely take this lock because its the child
4043 		 * ctx->mutex.
4044 		 */
4045 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4046 
4047 		/*
4048 		 * We have to re-check the event->owner field, if it is cleared
4049 		 * we raced with perf_event_exit_task(), acquiring the mutex
4050 		 * ensured they're done, and we can proceed with freeing the
4051 		 * event.
4052 		 */
4053 		if (event->owner) {
4054 			list_del_init(&event->owner_entry);
4055 			smp_store_release(&event->owner, NULL);
4056 		}
4057 		mutex_unlock(&owner->perf_event_mutex);
4058 		put_task_struct(owner);
4059 	}
4060 }
4061 
4062 static void put_event(struct perf_event *event)
4063 {
4064 	if (!atomic_long_dec_and_test(&event->refcount))
4065 		return;
4066 
4067 	_free_event(event);
4068 }
4069 
4070 /*
4071  * Kill an event dead; while event:refcount will preserve the event
4072  * object, it will not preserve its functionality. Once the last 'user'
4073  * gives up the object, we'll destroy the thing.
4074  */
4075 int perf_event_release_kernel(struct perf_event *event)
4076 {
4077 	struct perf_event_context *ctx = event->ctx;
4078 	struct perf_event *child, *tmp;
4079 
4080 	/*
4081 	 * If we got here through err_file: fput(event_file); we will not have
4082 	 * attached to a context yet.
4083 	 */
4084 	if (!ctx) {
4085 		WARN_ON_ONCE(event->attach_state &
4086 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4087 		goto no_ctx;
4088 	}
4089 
4090 	if (!is_kernel_event(event))
4091 		perf_remove_from_owner(event);
4092 
4093 	ctx = perf_event_ctx_lock(event);
4094 	WARN_ON_ONCE(ctx->parent_ctx);
4095 	perf_remove_from_context(event, DETACH_GROUP);
4096 
4097 	raw_spin_lock_irq(&ctx->lock);
4098 	/*
4099 	 * Mark this even as STATE_DEAD, there is no external reference to it
4100 	 * anymore.
4101 	 *
4102 	 * Anybody acquiring event->child_mutex after the below loop _must_
4103 	 * also see this, most importantly inherit_event() which will avoid
4104 	 * placing more children on the list.
4105 	 *
4106 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4107 	 * child events.
4108 	 */
4109 	event->state = PERF_EVENT_STATE_DEAD;
4110 	raw_spin_unlock_irq(&ctx->lock);
4111 
4112 	perf_event_ctx_unlock(event, ctx);
4113 
4114 again:
4115 	mutex_lock(&event->child_mutex);
4116 	list_for_each_entry(child, &event->child_list, child_list) {
4117 
4118 		/*
4119 		 * Cannot change, child events are not migrated, see the
4120 		 * comment with perf_event_ctx_lock_nested().
4121 		 */
4122 		ctx = lockless_dereference(child->ctx);
4123 		/*
4124 		 * Since child_mutex nests inside ctx::mutex, we must jump
4125 		 * through hoops. We start by grabbing a reference on the ctx.
4126 		 *
4127 		 * Since the event cannot get freed while we hold the
4128 		 * child_mutex, the context must also exist and have a !0
4129 		 * reference count.
4130 		 */
4131 		get_ctx(ctx);
4132 
4133 		/*
4134 		 * Now that we have a ctx ref, we can drop child_mutex, and
4135 		 * acquire ctx::mutex without fear of it going away. Then we
4136 		 * can re-acquire child_mutex.
4137 		 */
4138 		mutex_unlock(&event->child_mutex);
4139 		mutex_lock(&ctx->mutex);
4140 		mutex_lock(&event->child_mutex);
4141 
4142 		/*
4143 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4144 		 * state, if child is still the first entry, it didn't get freed
4145 		 * and we can continue doing so.
4146 		 */
4147 		tmp = list_first_entry_or_null(&event->child_list,
4148 					       struct perf_event, child_list);
4149 		if (tmp == child) {
4150 			perf_remove_from_context(child, DETACH_GROUP);
4151 			list_del(&child->child_list);
4152 			free_event(child);
4153 			/*
4154 			 * This matches the refcount bump in inherit_event();
4155 			 * this can't be the last reference.
4156 			 */
4157 			put_event(event);
4158 		}
4159 
4160 		mutex_unlock(&event->child_mutex);
4161 		mutex_unlock(&ctx->mutex);
4162 		put_ctx(ctx);
4163 		goto again;
4164 	}
4165 	mutex_unlock(&event->child_mutex);
4166 
4167 no_ctx:
4168 	put_event(event); /* Must be the 'last' reference */
4169 	return 0;
4170 }
4171 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4172 
4173 /*
4174  * Called when the last reference to the file is gone.
4175  */
4176 static int perf_release(struct inode *inode, struct file *file)
4177 {
4178 	perf_event_release_kernel(file->private_data);
4179 	return 0;
4180 }
4181 
4182 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4183 {
4184 	struct perf_event *child;
4185 	u64 total = 0;
4186 
4187 	*enabled = 0;
4188 	*running = 0;
4189 
4190 	mutex_lock(&event->child_mutex);
4191 
4192 	(void)perf_event_read(event, false);
4193 	total += perf_event_count(event);
4194 
4195 	*enabled += event->total_time_enabled +
4196 			atomic64_read(&event->child_total_time_enabled);
4197 	*running += event->total_time_running +
4198 			atomic64_read(&event->child_total_time_running);
4199 
4200 	list_for_each_entry(child, &event->child_list, child_list) {
4201 		(void)perf_event_read(child, false);
4202 		total += perf_event_count(child);
4203 		*enabled += child->total_time_enabled;
4204 		*running += child->total_time_running;
4205 	}
4206 	mutex_unlock(&event->child_mutex);
4207 
4208 	return total;
4209 }
4210 EXPORT_SYMBOL_GPL(perf_event_read_value);
4211 
4212 static int __perf_read_group_add(struct perf_event *leader,
4213 					u64 read_format, u64 *values)
4214 {
4215 	struct perf_event *sub;
4216 	int n = 1; /* skip @nr */
4217 	int ret;
4218 
4219 	ret = perf_event_read(leader, true);
4220 	if (ret)
4221 		return ret;
4222 
4223 	/*
4224 	 * Since we co-schedule groups, {enabled,running} times of siblings
4225 	 * will be identical to those of the leader, so we only publish one
4226 	 * set.
4227 	 */
4228 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4229 		values[n++] += leader->total_time_enabled +
4230 			atomic64_read(&leader->child_total_time_enabled);
4231 	}
4232 
4233 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4234 		values[n++] += leader->total_time_running +
4235 			atomic64_read(&leader->child_total_time_running);
4236 	}
4237 
4238 	/*
4239 	 * Write {count,id} tuples for every sibling.
4240 	 */
4241 	values[n++] += perf_event_count(leader);
4242 	if (read_format & PERF_FORMAT_ID)
4243 		values[n++] = primary_event_id(leader);
4244 
4245 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4246 		values[n++] += perf_event_count(sub);
4247 		if (read_format & PERF_FORMAT_ID)
4248 			values[n++] = primary_event_id(sub);
4249 	}
4250 
4251 	return 0;
4252 }
4253 
4254 static int perf_read_group(struct perf_event *event,
4255 				   u64 read_format, char __user *buf)
4256 {
4257 	struct perf_event *leader = event->group_leader, *child;
4258 	struct perf_event_context *ctx = leader->ctx;
4259 	int ret;
4260 	u64 *values;
4261 
4262 	lockdep_assert_held(&ctx->mutex);
4263 
4264 	values = kzalloc(event->read_size, GFP_KERNEL);
4265 	if (!values)
4266 		return -ENOMEM;
4267 
4268 	values[0] = 1 + leader->nr_siblings;
4269 
4270 	/*
4271 	 * By locking the child_mutex of the leader we effectively
4272 	 * lock the child list of all siblings.. XXX explain how.
4273 	 */
4274 	mutex_lock(&leader->child_mutex);
4275 
4276 	ret = __perf_read_group_add(leader, read_format, values);
4277 	if (ret)
4278 		goto unlock;
4279 
4280 	list_for_each_entry(child, &leader->child_list, child_list) {
4281 		ret = __perf_read_group_add(child, read_format, values);
4282 		if (ret)
4283 			goto unlock;
4284 	}
4285 
4286 	mutex_unlock(&leader->child_mutex);
4287 
4288 	ret = event->read_size;
4289 	if (copy_to_user(buf, values, event->read_size))
4290 		ret = -EFAULT;
4291 	goto out;
4292 
4293 unlock:
4294 	mutex_unlock(&leader->child_mutex);
4295 out:
4296 	kfree(values);
4297 	return ret;
4298 }
4299 
4300 static int perf_read_one(struct perf_event *event,
4301 				 u64 read_format, char __user *buf)
4302 {
4303 	u64 enabled, running;
4304 	u64 values[4];
4305 	int n = 0;
4306 
4307 	values[n++] = perf_event_read_value(event, &enabled, &running);
4308 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4309 		values[n++] = enabled;
4310 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4311 		values[n++] = running;
4312 	if (read_format & PERF_FORMAT_ID)
4313 		values[n++] = primary_event_id(event);
4314 
4315 	if (copy_to_user(buf, values, n * sizeof(u64)))
4316 		return -EFAULT;
4317 
4318 	return n * sizeof(u64);
4319 }
4320 
4321 static bool is_event_hup(struct perf_event *event)
4322 {
4323 	bool no_children;
4324 
4325 	if (event->state > PERF_EVENT_STATE_EXIT)
4326 		return false;
4327 
4328 	mutex_lock(&event->child_mutex);
4329 	no_children = list_empty(&event->child_list);
4330 	mutex_unlock(&event->child_mutex);
4331 	return no_children;
4332 }
4333 
4334 /*
4335  * Read the performance event - simple non blocking version for now
4336  */
4337 static ssize_t
4338 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4339 {
4340 	u64 read_format = event->attr.read_format;
4341 	int ret;
4342 
4343 	/*
4344 	 * Return end-of-file for a read on a event that is in
4345 	 * error state (i.e. because it was pinned but it couldn't be
4346 	 * scheduled on to the CPU at some point).
4347 	 */
4348 	if (event->state == PERF_EVENT_STATE_ERROR)
4349 		return 0;
4350 
4351 	if (count < event->read_size)
4352 		return -ENOSPC;
4353 
4354 	WARN_ON_ONCE(event->ctx->parent_ctx);
4355 	if (read_format & PERF_FORMAT_GROUP)
4356 		ret = perf_read_group(event, read_format, buf);
4357 	else
4358 		ret = perf_read_one(event, read_format, buf);
4359 
4360 	return ret;
4361 }
4362 
4363 static ssize_t
4364 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4365 {
4366 	struct perf_event *event = file->private_data;
4367 	struct perf_event_context *ctx;
4368 	int ret;
4369 
4370 	ctx = perf_event_ctx_lock(event);
4371 	ret = __perf_read(event, buf, count);
4372 	perf_event_ctx_unlock(event, ctx);
4373 
4374 	return ret;
4375 }
4376 
4377 static unsigned int perf_poll(struct file *file, poll_table *wait)
4378 {
4379 	struct perf_event *event = file->private_data;
4380 	struct ring_buffer *rb;
4381 	unsigned int events = POLLHUP;
4382 
4383 	poll_wait(file, &event->waitq, wait);
4384 
4385 	if (is_event_hup(event))
4386 		return events;
4387 
4388 	/*
4389 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4390 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4391 	 */
4392 	mutex_lock(&event->mmap_mutex);
4393 	rb = event->rb;
4394 	if (rb)
4395 		events = atomic_xchg(&rb->poll, 0);
4396 	mutex_unlock(&event->mmap_mutex);
4397 	return events;
4398 }
4399 
4400 static void _perf_event_reset(struct perf_event *event)
4401 {
4402 	(void)perf_event_read(event, false);
4403 	local64_set(&event->count, 0);
4404 	perf_event_update_userpage(event);
4405 }
4406 
4407 /*
4408  * Holding the top-level event's child_mutex means that any
4409  * descendant process that has inherited this event will block
4410  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4411  * task existence requirements of perf_event_enable/disable.
4412  */
4413 static void perf_event_for_each_child(struct perf_event *event,
4414 					void (*func)(struct perf_event *))
4415 {
4416 	struct perf_event *child;
4417 
4418 	WARN_ON_ONCE(event->ctx->parent_ctx);
4419 
4420 	mutex_lock(&event->child_mutex);
4421 	func(event);
4422 	list_for_each_entry(child, &event->child_list, child_list)
4423 		func(child);
4424 	mutex_unlock(&event->child_mutex);
4425 }
4426 
4427 static void perf_event_for_each(struct perf_event *event,
4428 				  void (*func)(struct perf_event *))
4429 {
4430 	struct perf_event_context *ctx = event->ctx;
4431 	struct perf_event *sibling;
4432 
4433 	lockdep_assert_held(&ctx->mutex);
4434 
4435 	event = event->group_leader;
4436 
4437 	perf_event_for_each_child(event, func);
4438 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4439 		perf_event_for_each_child(sibling, func);
4440 }
4441 
4442 static void __perf_event_period(struct perf_event *event,
4443 				struct perf_cpu_context *cpuctx,
4444 				struct perf_event_context *ctx,
4445 				void *info)
4446 {
4447 	u64 value = *((u64 *)info);
4448 	bool active;
4449 
4450 	if (event->attr.freq) {
4451 		event->attr.sample_freq = value;
4452 	} else {
4453 		event->attr.sample_period = value;
4454 		event->hw.sample_period = value;
4455 	}
4456 
4457 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4458 	if (active) {
4459 		perf_pmu_disable(ctx->pmu);
4460 		/*
4461 		 * We could be throttled; unthrottle now to avoid the tick
4462 		 * trying to unthrottle while we already re-started the event.
4463 		 */
4464 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4465 			event->hw.interrupts = 0;
4466 			perf_log_throttle(event, 1);
4467 		}
4468 		event->pmu->stop(event, PERF_EF_UPDATE);
4469 	}
4470 
4471 	local64_set(&event->hw.period_left, 0);
4472 
4473 	if (active) {
4474 		event->pmu->start(event, PERF_EF_RELOAD);
4475 		perf_pmu_enable(ctx->pmu);
4476 	}
4477 }
4478 
4479 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4480 {
4481 	u64 value;
4482 
4483 	if (!is_sampling_event(event))
4484 		return -EINVAL;
4485 
4486 	if (copy_from_user(&value, arg, sizeof(value)))
4487 		return -EFAULT;
4488 
4489 	if (!value)
4490 		return -EINVAL;
4491 
4492 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4493 		return -EINVAL;
4494 
4495 	event_function_call(event, __perf_event_period, &value);
4496 
4497 	return 0;
4498 }
4499 
4500 static const struct file_operations perf_fops;
4501 
4502 static inline int perf_fget_light(int fd, struct fd *p)
4503 {
4504 	struct fd f = fdget(fd);
4505 	if (!f.file)
4506 		return -EBADF;
4507 
4508 	if (f.file->f_op != &perf_fops) {
4509 		fdput(f);
4510 		return -EBADF;
4511 	}
4512 	*p = f;
4513 	return 0;
4514 }
4515 
4516 static int perf_event_set_output(struct perf_event *event,
4517 				 struct perf_event *output_event);
4518 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4519 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4520 
4521 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4522 {
4523 	void (*func)(struct perf_event *);
4524 	u32 flags = arg;
4525 
4526 	switch (cmd) {
4527 	case PERF_EVENT_IOC_ENABLE:
4528 		func = _perf_event_enable;
4529 		break;
4530 	case PERF_EVENT_IOC_DISABLE:
4531 		func = _perf_event_disable;
4532 		break;
4533 	case PERF_EVENT_IOC_RESET:
4534 		func = _perf_event_reset;
4535 		break;
4536 
4537 	case PERF_EVENT_IOC_REFRESH:
4538 		return _perf_event_refresh(event, arg);
4539 
4540 	case PERF_EVENT_IOC_PERIOD:
4541 		return perf_event_period(event, (u64 __user *)arg);
4542 
4543 	case PERF_EVENT_IOC_ID:
4544 	{
4545 		u64 id = primary_event_id(event);
4546 
4547 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4548 			return -EFAULT;
4549 		return 0;
4550 	}
4551 
4552 	case PERF_EVENT_IOC_SET_OUTPUT:
4553 	{
4554 		int ret;
4555 		if (arg != -1) {
4556 			struct perf_event *output_event;
4557 			struct fd output;
4558 			ret = perf_fget_light(arg, &output);
4559 			if (ret)
4560 				return ret;
4561 			output_event = output.file->private_data;
4562 			ret = perf_event_set_output(event, output_event);
4563 			fdput(output);
4564 		} else {
4565 			ret = perf_event_set_output(event, NULL);
4566 		}
4567 		return ret;
4568 	}
4569 
4570 	case PERF_EVENT_IOC_SET_FILTER:
4571 		return perf_event_set_filter(event, (void __user *)arg);
4572 
4573 	case PERF_EVENT_IOC_SET_BPF:
4574 		return perf_event_set_bpf_prog(event, arg);
4575 
4576 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4577 		struct ring_buffer *rb;
4578 
4579 		rcu_read_lock();
4580 		rb = rcu_dereference(event->rb);
4581 		if (!rb || !rb->nr_pages) {
4582 			rcu_read_unlock();
4583 			return -EINVAL;
4584 		}
4585 		rb_toggle_paused(rb, !!arg);
4586 		rcu_read_unlock();
4587 		return 0;
4588 	}
4589 	default:
4590 		return -ENOTTY;
4591 	}
4592 
4593 	if (flags & PERF_IOC_FLAG_GROUP)
4594 		perf_event_for_each(event, func);
4595 	else
4596 		perf_event_for_each_child(event, func);
4597 
4598 	return 0;
4599 }
4600 
4601 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4602 {
4603 	struct perf_event *event = file->private_data;
4604 	struct perf_event_context *ctx;
4605 	long ret;
4606 
4607 	ctx = perf_event_ctx_lock(event);
4608 	ret = _perf_ioctl(event, cmd, arg);
4609 	perf_event_ctx_unlock(event, ctx);
4610 
4611 	return ret;
4612 }
4613 
4614 #ifdef CONFIG_COMPAT
4615 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4616 				unsigned long arg)
4617 {
4618 	switch (_IOC_NR(cmd)) {
4619 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4620 	case _IOC_NR(PERF_EVENT_IOC_ID):
4621 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4622 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4623 			cmd &= ~IOCSIZE_MASK;
4624 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4625 		}
4626 		break;
4627 	}
4628 	return perf_ioctl(file, cmd, arg);
4629 }
4630 #else
4631 # define perf_compat_ioctl NULL
4632 #endif
4633 
4634 int perf_event_task_enable(void)
4635 {
4636 	struct perf_event_context *ctx;
4637 	struct perf_event *event;
4638 
4639 	mutex_lock(&current->perf_event_mutex);
4640 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4641 		ctx = perf_event_ctx_lock(event);
4642 		perf_event_for_each_child(event, _perf_event_enable);
4643 		perf_event_ctx_unlock(event, ctx);
4644 	}
4645 	mutex_unlock(&current->perf_event_mutex);
4646 
4647 	return 0;
4648 }
4649 
4650 int perf_event_task_disable(void)
4651 {
4652 	struct perf_event_context *ctx;
4653 	struct perf_event *event;
4654 
4655 	mutex_lock(&current->perf_event_mutex);
4656 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4657 		ctx = perf_event_ctx_lock(event);
4658 		perf_event_for_each_child(event, _perf_event_disable);
4659 		perf_event_ctx_unlock(event, ctx);
4660 	}
4661 	mutex_unlock(&current->perf_event_mutex);
4662 
4663 	return 0;
4664 }
4665 
4666 static int perf_event_index(struct perf_event *event)
4667 {
4668 	if (event->hw.state & PERF_HES_STOPPED)
4669 		return 0;
4670 
4671 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4672 		return 0;
4673 
4674 	return event->pmu->event_idx(event);
4675 }
4676 
4677 static void calc_timer_values(struct perf_event *event,
4678 				u64 *now,
4679 				u64 *enabled,
4680 				u64 *running)
4681 {
4682 	u64 ctx_time;
4683 
4684 	*now = perf_clock();
4685 	ctx_time = event->shadow_ctx_time + *now;
4686 	*enabled = ctx_time - event->tstamp_enabled;
4687 	*running = ctx_time - event->tstamp_running;
4688 }
4689 
4690 static void perf_event_init_userpage(struct perf_event *event)
4691 {
4692 	struct perf_event_mmap_page *userpg;
4693 	struct ring_buffer *rb;
4694 
4695 	rcu_read_lock();
4696 	rb = rcu_dereference(event->rb);
4697 	if (!rb)
4698 		goto unlock;
4699 
4700 	userpg = rb->user_page;
4701 
4702 	/* Allow new userspace to detect that bit 0 is deprecated */
4703 	userpg->cap_bit0_is_deprecated = 1;
4704 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4705 	userpg->data_offset = PAGE_SIZE;
4706 	userpg->data_size = perf_data_size(rb);
4707 
4708 unlock:
4709 	rcu_read_unlock();
4710 }
4711 
4712 void __weak arch_perf_update_userpage(
4713 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4714 {
4715 }
4716 
4717 /*
4718  * Callers need to ensure there can be no nesting of this function, otherwise
4719  * the seqlock logic goes bad. We can not serialize this because the arch
4720  * code calls this from NMI context.
4721  */
4722 void perf_event_update_userpage(struct perf_event *event)
4723 {
4724 	struct perf_event_mmap_page *userpg;
4725 	struct ring_buffer *rb;
4726 	u64 enabled, running, now;
4727 
4728 	rcu_read_lock();
4729 	rb = rcu_dereference(event->rb);
4730 	if (!rb)
4731 		goto unlock;
4732 
4733 	/*
4734 	 * compute total_time_enabled, total_time_running
4735 	 * based on snapshot values taken when the event
4736 	 * was last scheduled in.
4737 	 *
4738 	 * we cannot simply called update_context_time()
4739 	 * because of locking issue as we can be called in
4740 	 * NMI context
4741 	 */
4742 	calc_timer_values(event, &now, &enabled, &running);
4743 
4744 	userpg = rb->user_page;
4745 	/*
4746 	 * Disable preemption so as to not let the corresponding user-space
4747 	 * spin too long if we get preempted.
4748 	 */
4749 	preempt_disable();
4750 	++userpg->lock;
4751 	barrier();
4752 	userpg->index = perf_event_index(event);
4753 	userpg->offset = perf_event_count(event);
4754 	if (userpg->index)
4755 		userpg->offset -= local64_read(&event->hw.prev_count);
4756 
4757 	userpg->time_enabled = enabled +
4758 			atomic64_read(&event->child_total_time_enabled);
4759 
4760 	userpg->time_running = running +
4761 			atomic64_read(&event->child_total_time_running);
4762 
4763 	arch_perf_update_userpage(event, userpg, now);
4764 
4765 	barrier();
4766 	++userpg->lock;
4767 	preempt_enable();
4768 unlock:
4769 	rcu_read_unlock();
4770 }
4771 
4772 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4773 {
4774 	struct perf_event *event = vma->vm_file->private_data;
4775 	struct ring_buffer *rb;
4776 	int ret = VM_FAULT_SIGBUS;
4777 
4778 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4779 		if (vmf->pgoff == 0)
4780 			ret = 0;
4781 		return ret;
4782 	}
4783 
4784 	rcu_read_lock();
4785 	rb = rcu_dereference(event->rb);
4786 	if (!rb)
4787 		goto unlock;
4788 
4789 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4790 		goto unlock;
4791 
4792 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4793 	if (!vmf->page)
4794 		goto unlock;
4795 
4796 	get_page(vmf->page);
4797 	vmf->page->mapping = vma->vm_file->f_mapping;
4798 	vmf->page->index   = vmf->pgoff;
4799 
4800 	ret = 0;
4801 unlock:
4802 	rcu_read_unlock();
4803 
4804 	return ret;
4805 }
4806 
4807 static void ring_buffer_attach(struct perf_event *event,
4808 			       struct ring_buffer *rb)
4809 {
4810 	struct ring_buffer *old_rb = NULL;
4811 	unsigned long flags;
4812 
4813 	if (event->rb) {
4814 		/*
4815 		 * Should be impossible, we set this when removing
4816 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4817 		 */
4818 		WARN_ON_ONCE(event->rcu_pending);
4819 
4820 		old_rb = event->rb;
4821 		spin_lock_irqsave(&old_rb->event_lock, flags);
4822 		list_del_rcu(&event->rb_entry);
4823 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4824 
4825 		event->rcu_batches = get_state_synchronize_rcu();
4826 		event->rcu_pending = 1;
4827 	}
4828 
4829 	if (rb) {
4830 		if (event->rcu_pending) {
4831 			cond_synchronize_rcu(event->rcu_batches);
4832 			event->rcu_pending = 0;
4833 		}
4834 
4835 		spin_lock_irqsave(&rb->event_lock, flags);
4836 		list_add_rcu(&event->rb_entry, &rb->event_list);
4837 		spin_unlock_irqrestore(&rb->event_lock, flags);
4838 	}
4839 
4840 	rcu_assign_pointer(event->rb, rb);
4841 
4842 	if (old_rb) {
4843 		ring_buffer_put(old_rb);
4844 		/*
4845 		 * Since we detached before setting the new rb, so that we
4846 		 * could attach the new rb, we could have missed a wakeup.
4847 		 * Provide it now.
4848 		 */
4849 		wake_up_all(&event->waitq);
4850 	}
4851 }
4852 
4853 static void ring_buffer_wakeup(struct perf_event *event)
4854 {
4855 	struct ring_buffer *rb;
4856 
4857 	rcu_read_lock();
4858 	rb = rcu_dereference(event->rb);
4859 	if (rb) {
4860 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4861 			wake_up_all(&event->waitq);
4862 	}
4863 	rcu_read_unlock();
4864 }
4865 
4866 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4867 {
4868 	struct ring_buffer *rb;
4869 
4870 	rcu_read_lock();
4871 	rb = rcu_dereference(event->rb);
4872 	if (rb) {
4873 		if (!atomic_inc_not_zero(&rb->refcount))
4874 			rb = NULL;
4875 	}
4876 	rcu_read_unlock();
4877 
4878 	return rb;
4879 }
4880 
4881 void ring_buffer_put(struct ring_buffer *rb)
4882 {
4883 	if (!atomic_dec_and_test(&rb->refcount))
4884 		return;
4885 
4886 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4887 
4888 	call_rcu(&rb->rcu_head, rb_free_rcu);
4889 }
4890 
4891 static void perf_mmap_open(struct vm_area_struct *vma)
4892 {
4893 	struct perf_event *event = vma->vm_file->private_data;
4894 
4895 	atomic_inc(&event->mmap_count);
4896 	atomic_inc(&event->rb->mmap_count);
4897 
4898 	if (vma->vm_pgoff)
4899 		atomic_inc(&event->rb->aux_mmap_count);
4900 
4901 	if (event->pmu->event_mapped)
4902 		event->pmu->event_mapped(event);
4903 }
4904 
4905 static void perf_pmu_output_stop(struct perf_event *event);
4906 
4907 /*
4908  * A buffer can be mmap()ed multiple times; either directly through the same
4909  * event, or through other events by use of perf_event_set_output().
4910  *
4911  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4912  * the buffer here, where we still have a VM context. This means we need
4913  * to detach all events redirecting to us.
4914  */
4915 static void perf_mmap_close(struct vm_area_struct *vma)
4916 {
4917 	struct perf_event *event = vma->vm_file->private_data;
4918 
4919 	struct ring_buffer *rb = ring_buffer_get(event);
4920 	struct user_struct *mmap_user = rb->mmap_user;
4921 	int mmap_locked = rb->mmap_locked;
4922 	unsigned long size = perf_data_size(rb);
4923 
4924 	if (event->pmu->event_unmapped)
4925 		event->pmu->event_unmapped(event);
4926 
4927 	/*
4928 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4929 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4930 	 * serialize with perf_mmap here.
4931 	 */
4932 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4933 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4934 		/*
4935 		 * Stop all AUX events that are writing to this buffer,
4936 		 * so that we can free its AUX pages and corresponding PMU
4937 		 * data. Note that after rb::aux_mmap_count dropped to zero,
4938 		 * they won't start any more (see perf_aux_output_begin()).
4939 		 */
4940 		perf_pmu_output_stop(event);
4941 
4942 		/* now it's safe to free the pages */
4943 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4944 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4945 
4946 		/* this has to be the last one */
4947 		rb_free_aux(rb);
4948 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4949 
4950 		mutex_unlock(&event->mmap_mutex);
4951 	}
4952 
4953 	atomic_dec(&rb->mmap_count);
4954 
4955 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4956 		goto out_put;
4957 
4958 	ring_buffer_attach(event, NULL);
4959 	mutex_unlock(&event->mmap_mutex);
4960 
4961 	/* If there's still other mmap()s of this buffer, we're done. */
4962 	if (atomic_read(&rb->mmap_count))
4963 		goto out_put;
4964 
4965 	/*
4966 	 * No other mmap()s, detach from all other events that might redirect
4967 	 * into the now unreachable buffer. Somewhat complicated by the
4968 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4969 	 */
4970 again:
4971 	rcu_read_lock();
4972 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4973 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4974 			/*
4975 			 * This event is en-route to free_event() which will
4976 			 * detach it and remove it from the list.
4977 			 */
4978 			continue;
4979 		}
4980 		rcu_read_unlock();
4981 
4982 		mutex_lock(&event->mmap_mutex);
4983 		/*
4984 		 * Check we didn't race with perf_event_set_output() which can
4985 		 * swizzle the rb from under us while we were waiting to
4986 		 * acquire mmap_mutex.
4987 		 *
4988 		 * If we find a different rb; ignore this event, a next
4989 		 * iteration will no longer find it on the list. We have to
4990 		 * still restart the iteration to make sure we're not now
4991 		 * iterating the wrong list.
4992 		 */
4993 		if (event->rb == rb)
4994 			ring_buffer_attach(event, NULL);
4995 
4996 		mutex_unlock(&event->mmap_mutex);
4997 		put_event(event);
4998 
4999 		/*
5000 		 * Restart the iteration; either we're on the wrong list or
5001 		 * destroyed its integrity by doing a deletion.
5002 		 */
5003 		goto again;
5004 	}
5005 	rcu_read_unlock();
5006 
5007 	/*
5008 	 * It could be there's still a few 0-ref events on the list; they'll
5009 	 * get cleaned up by free_event() -- they'll also still have their
5010 	 * ref on the rb and will free it whenever they are done with it.
5011 	 *
5012 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5013 	 * undo the VM accounting.
5014 	 */
5015 
5016 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5017 	vma->vm_mm->pinned_vm -= mmap_locked;
5018 	free_uid(mmap_user);
5019 
5020 out_put:
5021 	ring_buffer_put(rb); /* could be last */
5022 }
5023 
5024 static const struct vm_operations_struct perf_mmap_vmops = {
5025 	.open		= perf_mmap_open,
5026 	.close		= perf_mmap_close, /* non mergable */
5027 	.fault		= perf_mmap_fault,
5028 	.page_mkwrite	= perf_mmap_fault,
5029 };
5030 
5031 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5032 {
5033 	struct perf_event *event = file->private_data;
5034 	unsigned long user_locked, user_lock_limit;
5035 	struct user_struct *user = current_user();
5036 	unsigned long locked, lock_limit;
5037 	struct ring_buffer *rb = NULL;
5038 	unsigned long vma_size;
5039 	unsigned long nr_pages;
5040 	long user_extra = 0, extra = 0;
5041 	int ret = 0, flags = 0;
5042 
5043 	/*
5044 	 * Don't allow mmap() of inherited per-task counters. This would
5045 	 * create a performance issue due to all children writing to the
5046 	 * same rb.
5047 	 */
5048 	if (event->cpu == -1 && event->attr.inherit)
5049 		return -EINVAL;
5050 
5051 	if (!(vma->vm_flags & VM_SHARED))
5052 		return -EINVAL;
5053 
5054 	vma_size = vma->vm_end - vma->vm_start;
5055 
5056 	if (vma->vm_pgoff == 0) {
5057 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5058 	} else {
5059 		/*
5060 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5061 		 * mapped, all subsequent mappings should have the same size
5062 		 * and offset. Must be above the normal perf buffer.
5063 		 */
5064 		u64 aux_offset, aux_size;
5065 
5066 		if (!event->rb)
5067 			return -EINVAL;
5068 
5069 		nr_pages = vma_size / PAGE_SIZE;
5070 
5071 		mutex_lock(&event->mmap_mutex);
5072 		ret = -EINVAL;
5073 
5074 		rb = event->rb;
5075 		if (!rb)
5076 			goto aux_unlock;
5077 
5078 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5079 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5080 
5081 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5082 			goto aux_unlock;
5083 
5084 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5085 			goto aux_unlock;
5086 
5087 		/* already mapped with a different offset */
5088 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5089 			goto aux_unlock;
5090 
5091 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5092 			goto aux_unlock;
5093 
5094 		/* already mapped with a different size */
5095 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5096 			goto aux_unlock;
5097 
5098 		if (!is_power_of_2(nr_pages))
5099 			goto aux_unlock;
5100 
5101 		if (!atomic_inc_not_zero(&rb->mmap_count))
5102 			goto aux_unlock;
5103 
5104 		if (rb_has_aux(rb)) {
5105 			atomic_inc(&rb->aux_mmap_count);
5106 			ret = 0;
5107 			goto unlock;
5108 		}
5109 
5110 		atomic_set(&rb->aux_mmap_count, 1);
5111 		user_extra = nr_pages;
5112 
5113 		goto accounting;
5114 	}
5115 
5116 	/*
5117 	 * If we have rb pages ensure they're a power-of-two number, so we
5118 	 * can do bitmasks instead of modulo.
5119 	 */
5120 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5121 		return -EINVAL;
5122 
5123 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5124 		return -EINVAL;
5125 
5126 	WARN_ON_ONCE(event->ctx->parent_ctx);
5127 again:
5128 	mutex_lock(&event->mmap_mutex);
5129 	if (event->rb) {
5130 		if (event->rb->nr_pages != nr_pages) {
5131 			ret = -EINVAL;
5132 			goto unlock;
5133 		}
5134 
5135 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5136 			/*
5137 			 * Raced against perf_mmap_close() through
5138 			 * perf_event_set_output(). Try again, hope for better
5139 			 * luck.
5140 			 */
5141 			mutex_unlock(&event->mmap_mutex);
5142 			goto again;
5143 		}
5144 
5145 		goto unlock;
5146 	}
5147 
5148 	user_extra = nr_pages + 1;
5149 
5150 accounting:
5151 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5152 
5153 	/*
5154 	 * Increase the limit linearly with more CPUs:
5155 	 */
5156 	user_lock_limit *= num_online_cpus();
5157 
5158 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5159 
5160 	if (user_locked > user_lock_limit)
5161 		extra = user_locked - user_lock_limit;
5162 
5163 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5164 	lock_limit >>= PAGE_SHIFT;
5165 	locked = vma->vm_mm->pinned_vm + extra;
5166 
5167 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5168 		!capable(CAP_IPC_LOCK)) {
5169 		ret = -EPERM;
5170 		goto unlock;
5171 	}
5172 
5173 	WARN_ON(!rb && event->rb);
5174 
5175 	if (vma->vm_flags & VM_WRITE)
5176 		flags |= RING_BUFFER_WRITABLE;
5177 
5178 	if (!rb) {
5179 		rb = rb_alloc(nr_pages,
5180 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5181 			      event->cpu, flags);
5182 
5183 		if (!rb) {
5184 			ret = -ENOMEM;
5185 			goto unlock;
5186 		}
5187 
5188 		atomic_set(&rb->mmap_count, 1);
5189 		rb->mmap_user = get_current_user();
5190 		rb->mmap_locked = extra;
5191 
5192 		ring_buffer_attach(event, rb);
5193 
5194 		perf_event_init_userpage(event);
5195 		perf_event_update_userpage(event);
5196 	} else {
5197 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5198 				   event->attr.aux_watermark, flags);
5199 		if (!ret)
5200 			rb->aux_mmap_locked = extra;
5201 	}
5202 
5203 unlock:
5204 	if (!ret) {
5205 		atomic_long_add(user_extra, &user->locked_vm);
5206 		vma->vm_mm->pinned_vm += extra;
5207 
5208 		atomic_inc(&event->mmap_count);
5209 	} else if (rb) {
5210 		atomic_dec(&rb->mmap_count);
5211 	}
5212 aux_unlock:
5213 	mutex_unlock(&event->mmap_mutex);
5214 
5215 	/*
5216 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5217 	 * vma.
5218 	 */
5219 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5220 	vma->vm_ops = &perf_mmap_vmops;
5221 
5222 	if (event->pmu->event_mapped)
5223 		event->pmu->event_mapped(event);
5224 
5225 	return ret;
5226 }
5227 
5228 static int perf_fasync(int fd, struct file *filp, int on)
5229 {
5230 	struct inode *inode = file_inode(filp);
5231 	struct perf_event *event = filp->private_data;
5232 	int retval;
5233 
5234 	inode_lock(inode);
5235 	retval = fasync_helper(fd, filp, on, &event->fasync);
5236 	inode_unlock(inode);
5237 
5238 	if (retval < 0)
5239 		return retval;
5240 
5241 	return 0;
5242 }
5243 
5244 static const struct file_operations perf_fops = {
5245 	.llseek			= no_llseek,
5246 	.release		= perf_release,
5247 	.read			= perf_read,
5248 	.poll			= perf_poll,
5249 	.unlocked_ioctl		= perf_ioctl,
5250 	.compat_ioctl		= perf_compat_ioctl,
5251 	.mmap			= perf_mmap,
5252 	.fasync			= perf_fasync,
5253 };
5254 
5255 /*
5256  * Perf event wakeup
5257  *
5258  * If there's data, ensure we set the poll() state and publish everything
5259  * to user-space before waking everybody up.
5260  */
5261 
5262 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5263 {
5264 	/* only the parent has fasync state */
5265 	if (event->parent)
5266 		event = event->parent;
5267 	return &event->fasync;
5268 }
5269 
5270 void perf_event_wakeup(struct perf_event *event)
5271 {
5272 	ring_buffer_wakeup(event);
5273 
5274 	if (event->pending_kill) {
5275 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5276 		event->pending_kill = 0;
5277 	}
5278 }
5279 
5280 static void perf_pending_event(struct irq_work *entry)
5281 {
5282 	struct perf_event *event = container_of(entry,
5283 			struct perf_event, pending);
5284 	int rctx;
5285 
5286 	rctx = perf_swevent_get_recursion_context();
5287 	/*
5288 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5289 	 * and we won't recurse 'further'.
5290 	 */
5291 
5292 	if (event->pending_disable) {
5293 		event->pending_disable = 0;
5294 		perf_event_disable_local(event);
5295 	}
5296 
5297 	if (event->pending_wakeup) {
5298 		event->pending_wakeup = 0;
5299 		perf_event_wakeup(event);
5300 	}
5301 
5302 	if (rctx >= 0)
5303 		perf_swevent_put_recursion_context(rctx);
5304 }
5305 
5306 /*
5307  * We assume there is only KVM supporting the callbacks.
5308  * Later on, we might change it to a list if there is
5309  * another virtualization implementation supporting the callbacks.
5310  */
5311 struct perf_guest_info_callbacks *perf_guest_cbs;
5312 
5313 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5314 {
5315 	perf_guest_cbs = cbs;
5316 	return 0;
5317 }
5318 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5319 
5320 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5321 {
5322 	perf_guest_cbs = NULL;
5323 	return 0;
5324 }
5325 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5326 
5327 static void
5328 perf_output_sample_regs(struct perf_output_handle *handle,
5329 			struct pt_regs *regs, u64 mask)
5330 {
5331 	int bit;
5332 
5333 	for_each_set_bit(bit, (const unsigned long *) &mask,
5334 			 sizeof(mask) * BITS_PER_BYTE) {
5335 		u64 val;
5336 
5337 		val = perf_reg_value(regs, bit);
5338 		perf_output_put(handle, val);
5339 	}
5340 }
5341 
5342 static void perf_sample_regs_user(struct perf_regs *regs_user,
5343 				  struct pt_regs *regs,
5344 				  struct pt_regs *regs_user_copy)
5345 {
5346 	if (user_mode(regs)) {
5347 		regs_user->abi = perf_reg_abi(current);
5348 		regs_user->regs = regs;
5349 	} else if (current->mm) {
5350 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5351 	} else {
5352 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5353 		regs_user->regs = NULL;
5354 	}
5355 }
5356 
5357 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5358 				  struct pt_regs *regs)
5359 {
5360 	regs_intr->regs = regs;
5361 	regs_intr->abi  = perf_reg_abi(current);
5362 }
5363 
5364 
5365 /*
5366  * Get remaining task size from user stack pointer.
5367  *
5368  * It'd be better to take stack vma map and limit this more
5369  * precisly, but there's no way to get it safely under interrupt,
5370  * so using TASK_SIZE as limit.
5371  */
5372 static u64 perf_ustack_task_size(struct pt_regs *regs)
5373 {
5374 	unsigned long addr = perf_user_stack_pointer(regs);
5375 
5376 	if (!addr || addr >= TASK_SIZE)
5377 		return 0;
5378 
5379 	return TASK_SIZE - addr;
5380 }
5381 
5382 static u16
5383 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5384 			struct pt_regs *regs)
5385 {
5386 	u64 task_size;
5387 
5388 	/* No regs, no stack pointer, no dump. */
5389 	if (!regs)
5390 		return 0;
5391 
5392 	/*
5393 	 * Check if we fit in with the requested stack size into the:
5394 	 * - TASK_SIZE
5395 	 *   If we don't, we limit the size to the TASK_SIZE.
5396 	 *
5397 	 * - remaining sample size
5398 	 *   If we don't, we customize the stack size to
5399 	 *   fit in to the remaining sample size.
5400 	 */
5401 
5402 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5403 	stack_size = min(stack_size, (u16) task_size);
5404 
5405 	/* Current header size plus static size and dynamic size. */
5406 	header_size += 2 * sizeof(u64);
5407 
5408 	/* Do we fit in with the current stack dump size? */
5409 	if ((u16) (header_size + stack_size) < header_size) {
5410 		/*
5411 		 * If we overflow the maximum size for the sample,
5412 		 * we customize the stack dump size to fit in.
5413 		 */
5414 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5415 		stack_size = round_up(stack_size, sizeof(u64));
5416 	}
5417 
5418 	return stack_size;
5419 }
5420 
5421 static void
5422 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5423 			  struct pt_regs *regs)
5424 {
5425 	/* Case of a kernel thread, nothing to dump */
5426 	if (!regs) {
5427 		u64 size = 0;
5428 		perf_output_put(handle, size);
5429 	} else {
5430 		unsigned long sp;
5431 		unsigned int rem;
5432 		u64 dyn_size;
5433 
5434 		/*
5435 		 * We dump:
5436 		 * static size
5437 		 *   - the size requested by user or the best one we can fit
5438 		 *     in to the sample max size
5439 		 * data
5440 		 *   - user stack dump data
5441 		 * dynamic size
5442 		 *   - the actual dumped size
5443 		 */
5444 
5445 		/* Static size. */
5446 		perf_output_put(handle, dump_size);
5447 
5448 		/* Data. */
5449 		sp = perf_user_stack_pointer(regs);
5450 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5451 		dyn_size = dump_size - rem;
5452 
5453 		perf_output_skip(handle, rem);
5454 
5455 		/* Dynamic size. */
5456 		perf_output_put(handle, dyn_size);
5457 	}
5458 }
5459 
5460 static void __perf_event_header__init_id(struct perf_event_header *header,
5461 					 struct perf_sample_data *data,
5462 					 struct perf_event *event)
5463 {
5464 	u64 sample_type = event->attr.sample_type;
5465 
5466 	data->type = sample_type;
5467 	header->size += event->id_header_size;
5468 
5469 	if (sample_type & PERF_SAMPLE_TID) {
5470 		/* namespace issues */
5471 		data->tid_entry.pid = perf_event_pid(event, current);
5472 		data->tid_entry.tid = perf_event_tid(event, current);
5473 	}
5474 
5475 	if (sample_type & PERF_SAMPLE_TIME)
5476 		data->time = perf_event_clock(event);
5477 
5478 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5479 		data->id = primary_event_id(event);
5480 
5481 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5482 		data->stream_id = event->id;
5483 
5484 	if (sample_type & PERF_SAMPLE_CPU) {
5485 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5486 		data->cpu_entry.reserved = 0;
5487 	}
5488 }
5489 
5490 void perf_event_header__init_id(struct perf_event_header *header,
5491 				struct perf_sample_data *data,
5492 				struct perf_event *event)
5493 {
5494 	if (event->attr.sample_id_all)
5495 		__perf_event_header__init_id(header, data, event);
5496 }
5497 
5498 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5499 					   struct perf_sample_data *data)
5500 {
5501 	u64 sample_type = data->type;
5502 
5503 	if (sample_type & PERF_SAMPLE_TID)
5504 		perf_output_put(handle, data->tid_entry);
5505 
5506 	if (sample_type & PERF_SAMPLE_TIME)
5507 		perf_output_put(handle, data->time);
5508 
5509 	if (sample_type & PERF_SAMPLE_ID)
5510 		perf_output_put(handle, data->id);
5511 
5512 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5513 		perf_output_put(handle, data->stream_id);
5514 
5515 	if (sample_type & PERF_SAMPLE_CPU)
5516 		perf_output_put(handle, data->cpu_entry);
5517 
5518 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5519 		perf_output_put(handle, data->id);
5520 }
5521 
5522 void perf_event__output_id_sample(struct perf_event *event,
5523 				  struct perf_output_handle *handle,
5524 				  struct perf_sample_data *sample)
5525 {
5526 	if (event->attr.sample_id_all)
5527 		__perf_event__output_id_sample(handle, sample);
5528 }
5529 
5530 static void perf_output_read_one(struct perf_output_handle *handle,
5531 				 struct perf_event *event,
5532 				 u64 enabled, u64 running)
5533 {
5534 	u64 read_format = event->attr.read_format;
5535 	u64 values[4];
5536 	int n = 0;
5537 
5538 	values[n++] = perf_event_count(event);
5539 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5540 		values[n++] = enabled +
5541 			atomic64_read(&event->child_total_time_enabled);
5542 	}
5543 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5544 		values[n++] = running +
5545 			atomic64_read(&event->child_total_time_running);
5546 	}
5547 	if (read_format & PERF_FORMAT_ID)
5548 		values[n++] = primary_event_id(event);
5549 
5550 	__output_copy(handle, values, n * sizeof(u64));
5551 }
5552 
5553 /*
5554  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5555  */
5556 static void perf_output_read_group(struct perf_output_handle *handle,
5557 			    struct perf_event *event,
5558 			    u64 enabled, u64 running)
5559 {
5560 	struct perf_event *leader = event->group_leader, *sub;
5561 	u64 read_format = event->attr.read_format;
5562 	u64 values[5];
5563 	int n = 0;
5564 
5565 	values[n++] = 1 + leader->nr_siblings;
5566 
5567 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5568 		values[n++] = enabled;
5569 
5570 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5571 		values[n++] = running;
5572 
5573 	if (leader != event)
5574 		leader->pmu->read(leader);
5575 
5576 	values[n++] = perf_event_count(leader);
5577 	if (read_format & PERF_FORMAT_ID)
5578 		values[n++] = primary_event_id(leader);
5579 
5580 	__output_copy(handle, values, n * sizeof(u64));
5581 
5582 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5583 		n = 0;
5584 
5585 		if ((sub != event) &&
5586 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5587 			sub->pmu->read(sub);
5588 
5589 		values[n++] = perf_event_count(sub);
5590 		if (read_format & PERF_FORMAT_ID)
5591 			values[n++] = primary_event_id(sub);
5592 
5593 		__output_copy(handle, values, n * sizeof(u64));
5594 	}
5595 }
5596 
5597 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5598 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5599 
5600 static void perf_output_read(struct perf_output_handle *handle,
5601 			     struct perf_event *event)
5602 {
5603 	u64 enabled = 0, running = 0, now;
5604 	u64 read_format = event->attr.read_format;
5605 
5606 	/*
5607 	 * compute total_time_enabled, total_time_running
5608 	 * based on snapshot values taken when the event
5609 	 * was last scheduled in.
5610 	 *
5611 	 * we cannot simply called update_context_time()
5612 	 * because of locking issue as we are called in
5613 	 * NMI context
5614 	 */
5615 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5616 		calc_timer_values(event, &now, &enabled, &running);
5617 
5618 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5619 		perf_output_read_group(handle, event, enabled, running);
5620 	else
5621 		perf_output_read_one(handle, event, enabled, running);
5622 }
5623 
5624 void perf_output_sample(struct perf_output_handle *handle,
5625 			struct perf_event_header *header,
5626 			struct perf_sample_data *data,
5627 			struct perf_event *event)
5628 {
5629 	u64 sample_type = data->type;
5630 
5631 	perf_output_put(handle, *header);
5632 
5633 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5634 		perf_output_put(handle, data->id);
5635 
5636 	if (sample_type & PERF_SAMPLE_IP)
5637 		perf_output_put(handle, data->ip);
5638 
5639 	if (sample_type & PERF_SAMPLE_TID)
5640 		perf_output_put(handle, data->tid_entry);
5641 
5642 	if (sample_type & PERF_SAMPLE_TIME)
5643 		perf_output_put(handle, data->time);
5644 
5645 	if (sample_type & PERF_SAMPLE_ADDR)
5646 		perf_output_put(handle, data->addr);
5647 
5648 	if (sample_type & PERF_SAMPLE_ID)
5649 		perf_output_put(handle, data->id);
5650 
5651 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5652 		perf_output_put(handle, data->stream_id);
5653 
5654 	if (sample_type & PERF_SAMPLE_CPU)
5655 		perf_output_put(handle, data->cpu_entry);
5656 
5657 	if (sample_type & PERF_SAMPLE_PERIOD)
5658 		perf_output_put(handle, data->period);
5659 
5660 	if (sample_type & PERF_SAMPLE_READ)
5661 		perf_output_read(handle, event);
5662 
5663 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5664 		if (data->callchain) {
5665 			int size = 1;
5666 
5667 			if (data->callchain)
5668 				size += data->callchain->nr;
5669 
5670 			size *= sizeof(u64);
5671 
5672 			__output_copy(handle, data->callchain, size);
5673 		} else {
5674 			u64 nr = 0;
5675 			perf_output_put(handle, nr);
5676 		}
5677 	}
5678 
5679 	if (sample_type & PERF_SAMPLE_RAW) {
5680 		struct perf_raw_record *raw = data->raw;
5681 
5682 		if (raw) {
5683 			struct perf_raw_frag *frag = &raw->frag;
5684 
5685 			perf_output_put(handle, raw->size);
5686 			do {
5687 				if (frag->copy) {
5688 					__output_custom(handle, frag->copy,
5689 							frag->data, frag->size);
5690 				} else {
5691 					__output_copy(handle, frag->data,
5692 						      frag->size);
5693 				}
5694 				if (perf_raw_frag_last(frag))
5695 					break;
5696 				frag = frag->next;
5697 			} while (1);
5698 			if (frag->pad)
5699 				__output_skip(handle, NULL, frag->pad);
5700 		} else {
5701 			struct {
5702 				u32	size;
5703 				u32	data;
5704 			} raw = {
5705 				.size = sizeof(u32),
5706 				.data = 0,
5707 			};
5708 			perf_output_put(handle, raw);
5709 		}
5710 	}
5711 
5712 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5713 		if (data->br_stack) {
5714 			size_t size;
5715 
5716 			size = data->br_stack->nr
5717 			     * sizeof(struct perf_branch_entry);
5718 
5719 			perf_output_put(handle, data->br_stack->nr);
5720 			perf_output_copy(handle, data->br_stack->entries, size);
5721 		} else {
5722 			/*
5723 			 * we always store at least the value of nr
5724 			 */
5725 			u64 nr = 0;
5726 			perf_output_put(handle, nr);
5727 		}
5728 	}
5729 
5730 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5731 		u64 abi = data->regs_user.abi;
5732 
5733 		/*
5734 		 * If there are no regs to dump, notice it through
5735 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5736 		 */
5737 		perf_output_put(handle, abi);
5738 
5739 		if (abi) {
5740 			u64 mask = event->attr.sample_regs_user;
5741 			perf_output_sample_regs(handle,
5742 						data->regs_user.regs,
5743 						mask);
5744 		}
5745 	}
5746 
5747 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5748 		perf_output_sample_ustack(handle,
5749 					  data->stack_user_size,
5750 					  data->regs_user.regs);
5751 	}
5752 
5753 	if (sample_type & PERF_SAMPLE_WEIGHT)
5754 		perf_output_put(handle, data->weight);
5755 
5756 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5757 		perf_output_put(handle, data->data_src.val);
5758 
5759 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5760 		perf_output_put(handle, data->txn);
5761 
5762 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5763 		u64 abi = data->regs_intr.abi;
5764 		/*
5765 		 * If there are no regs to dump, notice it through
5766 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5767 		 */
5768 		perf_output_put(handle, abi);
5769 
5770 		if (abi) {
5771 			u64 mask = event->attr.sample_regs_intr;
5772 
5773 			perf_output_sample_regs(handle,
5774 						data->regs_intr.regs,
5775 						mask);
5776 		}
5777 	}
5778 
5779 	if (!event->attr.watermark) {
5780 		int wakeup_events = event->attr.wakeup_events;
5781 
5782 		if (wakeup_events) {
5783 			struct ring_buffer *rb = handle->rb;
5784 			int events = local_inc_return(&rb->events);
5785 
5786 			if (events >= wakeup_events) {
5787 				local_sub(wakeup_events, &rb->events);
5788 				local_inc(&rb->wakeup);
5789 			}
5790 		}
5791 	}
5792 }
5793 
5794 void perf_prepare_sample(struct perf_event_header *header,
5795 			 struct perf_sample_data *data,
5796 			 struct perf_event *event,
5797 			 struct pt_regs *regs)
5798 {
5799 	u64 sample_type = event->attr.sample_type;
5800 
5801 	header->type = PERF_RECORD_SAMPLE;
5802 	header->size = sizeof(*header) + event->header_size;
5803 
5804 	header->misc = 0;
5805 	header->misc |= perf_misc_flags(regs);
5806 
5807 	__perf_event_header__init_id(header, data, event);
5808 
5809 	if (sample_type & PERF_SAMPLE_IP)
5810 		data->ip = perf_instruction_pointer(regs);
5811 
5812 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5813 		int size = 1;
5814 
5815 		data->callchain = perf_callchain(event, regs);
5816 
5817 		if (data->callchain)
5818 			size += data->callchain->nr;
5819 
5820 		header->size += size * sizeof(u64);
5821 	}
5822 
5823 	if (sample_type & PERF_SAMPLE_RAW) {
5824 		struct perf_raw_record *raw = data->raw;
5825 		int size;
5826 
5827 		if (raw) {
5828 			struct perf_raw_frag *frag = &raw->frag;
5829 			u32 sum = 0;
5830 
5831 			do {
5832 				sum += frag->size;
5833 				if (perf_raw_frag_last(frag))
5834 					break;
5835 				frag = frag->next;
5836 			} while (1);
5837 
5838 			size = round_up(sum + sizeof(u32), sizeof(u64));
5839 			raw->size = size - sizeof(u32);
5840 			frag->pad = raw->size - sum;
5841 		} else {
5842 			size = sizeof(u64);
5843 		}
5844 
5845 		header->size += size;
5846 	}
5847 
5848 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5849 		int size = sizeof(u64); /* nr */
5850 		if (data->br_stack) {
5851 			size += data->br_stack->nr
5852 			      * sizeof(struct perf_branch_entry);
5853 		}
5854 		header->size += size;
5855 	}
5856 
5857 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5858 		perf_sample_regs_user(&data->regs_user, regs,
5859 				      &data->regs_user_copy);
5860 
5861 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5862 		/* regs dump ABI info */
5863 		int size = sizeof(u64);
5864 
5865 		if (data->regs_user.regs) {
5866 			u64 mask = event->attr.sample_regs_user;
5867 			size += hweight64(mask) * sizeof(u64);
5868 		}
5869 
5870 		header->size += size;
5871 	}
5872 
5873 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5874 		/*
5875 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5876 		 * processed as the last one or have additional check added
5877 		 * in case new sample type is added, because we could eat
5878 		 * up the rest of the sample size.
5879 		 */
5880 		u16 stack_size = event->attr.sample_stack_user;
5881 		u16 size = sizeof(u64);
5882 
5883 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5884 						     data->regs_user.regs);
5885 
5886 		/*
5887 		 * If there is something to dump, add space for the dump
5888 		 * itself and for the field that tells the dynamic size,
5889 		 * which is how many have been actually dumped.
5890 		 */
5891 		if (stack_size)
5892 			size += sizeof(u64) + stack_size;
5893 
5894 		data->stack_user_size = stack_size;
5895 		header->size += size;
5896 	}
5897 
5898 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5899 		/* regs dump ABI info */
5900 		int size = sizeof(u64);
5901 
5902 		perf_sample_regs_intr(&data->regs_intr, regs);
5903 
5904 		if (data->regs_intr.regs) {
5905 			u64 mask = event->attr.sample_regs_intr;
5906 
5907 			size += hweight64(mask) * sizeof(u64);
5908 		}
5909 
5910 		header->size += size;
5911 	}
5912 }
5913 
5914 static void __always_inline
5915 __perf_event_output(struct perf_event *event,
5916 		    struct perf_sample_data *data,
5917 		    struct pt_regs *regs,
5918 		    int (*output_begin)(struct perf_output_handle *,
5919 					struct perf_event *,
5920 					unsigned int))
5921 {
5922 	struct perf_output_handle handle;
5923 	struct perf_event_header header;
5924 
5925 	/* protect the callchain buffers */
5926 	rcu_read_lock();
5927 
5928 	perf_prepare_sample(&header, data, event, regs);
5929 
5930 	if (output_begin(&handle, event, header.size))
5931 		goto exit;
5932 
5933 	perf_output_sample(&handle, &header, data, event);
5934 
5935 	perf_output_end(&handle);
5936 
5937 exit:
5938 	rcu_read_unlock();
5939 }
5940 
5941 void
5942 perf_event_output_forward(struct perf_event *event,
5943 			 struct perf_sample_data *data,
5944 			 struct pt_regs *regs)
5945 {
5946 	__perf_event_output(event, data, regs, perf_output_begin_forward);
5947 }
5948 
5949 void
5950 perf_event_output_backward(struct perf_event *event,
5951 			   struct perf_sample_data *data,
5952 			   struct pt_regs *regs)
5953 {
5954 	__perf_event_output(event, data, regs, perf_output_begin_backward);
5955 }
5956 
5957 void
5958 perf_event_output(struct perf_event *event,
5959 		  struct perf_sample_data *data,
5960 		  struct pt_regs *regs)
5961 {
5962 	__perf_event_output(event, data, regs, perf_output_begin);
5963 }
5964 
5965 /*
5966  * read event_id
5967  */
5968 
5969 struct perf_read_event {
5970 	struct perf_event_header	header;
5971 
5972 	u32				pid;
5973 	u32				tid;
5974 };
5975 
5976 static void
5977 perf_event_read_event(struct perf_event *event,
5978 			struct task_struct *task)
5979 {
5980 	struct perf_output_handle handle;
5981 	struct perf_sample_data sample;
5982 	struct perf_read_event read_event = {
5983 		.header = {
5984 			.type = PERF_RECORD_READ,
5985 			.misc = 0,
5986 			.size = sizeof(read_event) + event->read_size,
5987 		},
5988 		.pid = perf_event_pid(event, task),
5989 		.tid = perf_event_tid(event, task),
5990 	};
5991 	int ret;
5992 
5993 	perf_event_header__init_id(&read_event.header, &sample, event);
5994 	ret = perf_output_begin(&handle, event, read_event.header.size);
5995 	if (ret)
5996 		return;
5997 
5998 	perf_output_put(&handle, read_event);
5999 	perf_output_read(&handle, event);
6000 	perf_event__output_id_sample(event, &handle, &sample);
6001 
6002 	perf_output_end(&handle);
6003 }
6004 
6005 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6006 
6007 static void
6008 perf_iterate_ctx(struct perf_event_context *ctx,
6009 		   perf_iterate_f output,
6010 		   void *data, bool all)
6011 {
6012 	struct perf_event *event;
6013 
6014 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6015 		if (!all) {
6016 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6017 				continue;
6018 			if (!event_filter_match(event))
6019 				continue;
6020 		}
6021 
6022 		output(event, data);
6023 	}
6024 }
6025 
6026 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6027 {
6028 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6029 	struct perf_event *event;
6030 
6031 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6032 		/*
6033 		 * Skip events that are not fully formed yet; ensure that
6034 		 * if we observe event->ctx, both event and ctx will be
6035 		 * complete enough. See perf_install_in_context().
6036 		 */
6037 		if (!smp_load_acquire(&event->ctx))
6038 			continue;
6039 
6040 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6041 			continue;
6042 		if (!event_filter_match(event))
6043 			continue;
6044 		output(event, data);
6045 	}
6046 }
6047 
6048 /*
6049  * Iterate all events that need to receive side-band events.
6050  *
6051  * For new callers; ensure that account_pmu_sb_event() includes
6052  * your event, otherwise it might not get delivered.
6053  */
6054 static void
6055 perf_iterate_sb(perf_iterate_f output, void *data,
6056 	       struct perf_event_context *task_ctx)
6057 {
6058 	struct perf_event_context *ctx;
6059 	int ctxn;
6060 
6061 	rcu_read_lock();
6062 	preempt_disable();
6063 
6064 	/*
6065 	 * If we have task_ctx != NULL we only notify the task context itself.
6066 	 * The task_ctx is set only for EXIT events before releasing task
6067 	 * context.
6068 	 */
6069 	if (task_ctx) {
6070 		perf_iterate_ctx(task_ctx, output, data, false);
6071 		goto done;
6072 	}
6073 
6074 	perf_iterate_sb_cpu(output, data);
6075 
6076 	for_each_task_context_nr(ctxn) {
6077 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6078 		if (ctx)
6079 			perf_iterate_ctx(ctx, output, data, false);
6080 	}
6081 done:
6082 	preempt_enable();
6083 	rcu_read_unlock();
6084 }
6085 
6086 /*
6087  * Clear all file-based filters at exec, they'll have to be
6088  * re-instated when/if these objects are mmapped again.
6089  */
6090 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6091 {
6092 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6093 	struct perf_addr_filter *filter;
6094 	unsigned int restart = 0, count = 0;
6095 	unsigned long flags;
6096 
6097 	if (!has_addr_filter(event))
6098 		return;
6099 
6100 	raw_spin_lock_irqsave(&ifh->lock, flags);
6101 	list_for_each_entry(filter, &ifh->list, entry) {
6102 		if (filter->inode) {
6103 			event->addr_filters_offs[count] = 0;
6104 			restart++;
6105 		}
6106 
6107 		count++;
6108 	}
6109 
6110 	if (restart)
6111 		event->addr_filters_gen++;
6112 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6113 
6114 	if (restart)
6115 		perf_event_restart(event);
6116 }
6117 
6118 void perf_event_exec(void)
6119 {
6120 	struct perf_event_context *ctx;
6121 	int ctxn;
6122 
6123 	rcu_read_lock();
6124 	for_each_task_context_nr(ctxn) {
6125 		ctx = current->perf_event_ctxp[ctxn];
6126 		if (!ctx)
6127 			continue;
6128 
6129 		perf_event_enable_on_exec(ctxn);
6130 
6131 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6132 				   true);
6133 	}
6134 	rcu_read_unlock();
6135 }
6136 
6137 struct remote_output {
6138 	struct ring_buffer	*rb;
6139 	int			err;
6140 };
6141 
6142 static void __perf_event_output_stop(struct perf_event *event, void *data)
6143 {
6144 	struct perf_event *parent = event->parent;
6145 	struct remote_output *ro = data;
6146 	struct ring_buffer *rb = ro->rb;
6147 	struct stop_event_data sd = {
6148 		.event	= event,
6149 	};
6150 
6151 	if (!has_aux(event))
6152 		return;
6153 
6154 	if (!parent)
6155 		parent = event;
6156 
6157 	/*
6158 	 * In case of inheritance, it will be the parent that links to the
6159 	 * ring-buffer, but it will be the child that's actually using it:
6160 	 */
6161 	if (rcu_dereference(parent->rb) == rb)
6162 		ro->err = __perf_event_stop(&sd);
6163 }
6164 
6165 static int __perf_pmu_output_stop(void *info)
6166 {
6167 	struct perf_event *event = info;
6168 	struct pmu *pmu = event->pmu;
6169 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6170 	struct remote_output ro = {
6171 		.rb	= event->rb,
6172 	};
6173 
6174 	rcu_read_lock();
6175 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6176 	if (cpuctx->task_ctx)
6177 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6178 				   &ro, false);
6179 	rcu_read_unlock();
6180 
6181 	return ro.err;
6182 }
6183 
6184 static void perf_pmu_output_stop(struct perf_event *event)
6185 {
6186 	struct perf_event *iter;
6187 	int err, cpu;
6188 
6189 restart:
6190 	rcu_read_lock();
6191 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6192 		/*
6193 		 * For per-CPU events, we need to make sure that neither they
6194 		 * nor their children are running; for cpu==-1 events it's
6195 		 * sufficient to stop the event itself if it's active, since
6196 		 * it can't have children.
6197 		 */
6198 		cpu = iter->cpu;
6199 		if (cpu == -1)
6200 			cpu = READ_ONCE(iter->oncpu);
6201 
6202 		if (cpu == -1)
6203 			continue;
6204 
6205 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6206 		if (err == -EAGAIN) {
6207 			rcu_read_unlock();
6208 			goto restart;
6209 		}
6210 	}
6211 	rcu_read_unlock();
6212 }
6213 
6214 /*
6215  * task tracking -- fork/exit
6216  *
6217  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6218  */
6219 
6220 struct perf_task_event {
6221 	struct task_struct		*task;
6222 	struct perf_event_context	*task_ctx;
6223 
6224 	struct {
6225 		struct perf_event_header	header;
6226 
6227 		u32				pid;
6228 		u32				ppid;
6229 		u32				tid;
6230 		u32				ptid;
6231 		u64				time;
6232 	} event_id;
6233 };
6234 
6235 static int perf_event_task_match(struct perf_event *event)
6236 {
6237 	return event->attr.comm  || event->attr.mmap ||
6238 	       event->attr.mmap2 || event->attr.mmap_data ||
6239 	       event->attr.task;
6240 }
6241 
6242 static void perf_event_task_output(struct perf_event *event,
6243 				   void *data)
6244 {
6245 	struct perf_task_event *task_event = data;
6246 	struct perf_output_handle handle;
6247 	struct perf_sample_data	sample;
6248 	struct task_struct *task = task_event->task;
6249 	int ret, size = task_event->event_id.header.size;
6250 
6251 	if (!perf_event_task_match(event))
6252 		return;
6253 
6254 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6255 
6256 	ret = perf_output_begin(&handle, event,
6257 				task_event->event_id.header.size);
6258 	if (ret)
6259 		goto out;
6260 
6261 	task_event->event_id.pid = perf_event_pid(event, task);
6262 	task_event->event_id.ppid = perf_event_pid(event, current);
6263 
6264 	task_event->event_id.tid = perf_event_tid(event, task);
6265 	task_event->event_id.ptid = perf_event_tid(event, current);
6266 
6267 	task_event->event_id.time = perf_event_clock(event);
6268 
6269 	perf_output_put(&handle, task_event->event_id);
6270 
6271 	perf_event__output_id_sample(event, &handle, &sample);
6272 
6273 	perf_output_end(&handle);
6274 out:
6275 	task_event->event_id.header.size = size;
6276 }
6277 
6278 static void perf_event_task(struct task_struct *task,
6279 			      struct perf_event_context *task_ctx,
6280 			      int new)
6281 {
6282 	struct perf_task_event task_event;
6283 
6284 	if (!atomic_read(&nr_comm_events) &&
6285 	    !atomic_read(&nr_mmap_events) &&
6286 	    !atomic_read(&nr_task_events))
6287 		return;
6288 
6289 	task_event = (struct perf_task_event){
6290 		.task	  = task,
6291 		.task_ctx = task_ctx,
6292 		.event_id    = {
6293 			.header = {
6294 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6295 				.misc = 0,
6296 				.size = sizeof(task_event.event_id),
6297 			},
6298 			/* .pid  */
6299 			/* .ppid */
6300 			/* .tid  */
6301 			/* .ptid */
6302 			/* .time */
6303 		},
6304 	};
6305 
6306 	perf_iterate_sb(perf_event_task_output,
6307 		       &task_event,
6308 		       task_ctx);
6309 }
6310 
6311 void perf_event_fork(struct task_struct *task)
6312 {
6313 	perf_event_task(task, NULL, 1);
6314 }
6315 
6316 /*
6317  * comm tracking
6318  */
6319 
6320 struct perf_comm_event {
6321 	struct task_struct	*task;
6322 	char			*comm;
6323 	int			comm_size;
6324 
6325 	struct {
6326 		struct perf_event_header	header;
6327 
6328 		u32				pid;
6329 		u32				tid;
6330 	} event_id;
6331 };
6332 
6333 static int perf_event_comm_match(struct perf_event *event)
6334 {
6335 	return event->attr.comm;
6336 }
6337 
6338 static void perf_event_comm_output(struct perf_event *event,
6339 				   void *data)
6340 {
6341 	struct perf_comm_event *comm_event = data;
6342 	struct perf_output_handle handle;
6343 	struct perf_sample_data sample;
6344 	int size = comm_event->event_id.header.size;
6345 	int ret;
6346 
6347 	if (!perf_event_comm_match(event))
6348 		return;
6349 
6350 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6351 	ret = perf_output_begin(&handle, event,
6352 				comm_event->event_id.header.size);
6353 
6354 	if (ret)
6355 		goto out;
6356 
6357 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6358 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6359 
6360 	perf_output_put(&handle, comm_event->event_id);
6361 	__output_copy(&handle, comm_event->comm,
6362 				   comm_event->comm_size);
6363 
6364 	perf_event__output_id_sample(event, &handle, &sample);
6365 
6366 	perf_output_end(&handle);
6367 out:
6368 	comm_event->event_id.header.size = size;
6369 }
6370 
6371 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6372 {
6373 	char comm[TASK_COMM_LEN];
6374 	unsigned int size;
6375 
6376 	memset(comm, 0, sizeof(comm));
6377 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6378 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6379 
6380 	comm_event->comm = comm;
6381 	comm_event->comm_size = size;
6382 
6383 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6384 
6385 	perf_iterate_sb(perf_event_comm_output,
6386 		       comm_event,
6387 		       NULL);
6388 }
6389 
6390 void perf_event_comm(struct task_struct *task, bool exec)
6391 {
6392 	struct perf_comm_event comm_event;
6393 
6394 	if (!atomic_read(&nr_comm_events))
6395 		return;
6396 
6397 	comm_event = (struct perf_comm_event){
6398 		.task	= task,
6399 		/* .comm      */
6400 		/* .comm_size */
6401 		.event_id  = {
6402 			.header = {
6403 				.type = PERF_RECORD_COMM,
6404 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6405 				/* .size */
6406 			},
6407 			/* .pid */
6408 			/* .tid */
6409 		},
6410 	};
6411 
6412 	perf_event_comm_event(&comm_event);
6413 }
6414 
6415 /*
6416  * mmap tracking
6417  */
6418 
6419 struct perf_mmap_event {
6420 	struct vm_area_struct	*vma;
6421 
6422 	const char		*file_name;
6423 	int			file_size;
6424 	int			maj, min;
6425 	u64			ino;
6426 	u64			ino_generation;
6427 	u32			prot, flags;
6428 
6429 	struct {
6430 		struct perf_event_header	header;
6431 
6432 		u32				pid;
6433 		u32				tid;
6434 		u64				start;
6435 		u64				len;
6436 		u64				pgoff;
6437 	} event_id;
6438 };
6439 
6440 static int perf_event_mmap_match(struct perf_event *event,
6441 				 void *data)
6442 {
6443 	struct perf_mmap_event *mmap_event = data;
6444 	struct vm_area_struct *vma = mmap_event->vma;
6445 	int executable = vma->vm_flags & VM_EXEC;
6446 
6447 	return (!executable && event->attr.mmap_data) ||
6448 	       (executable && (event->attr.mmap || event->attr.mmap2));
6449 }
6450 
6451 static void perf_event_mmap_output(struct perf_event *event,
6452 				   void *data)
6453 {
6454 	struct perf_mmap_event *mmap_event = data;
6455 	struct perf_output_handle handle;
6456 	struct perf_sample_data sample;
6457 	int size = mmap_event->event_id.header.size;
6458 	int ret;
6459 
6460 	if (!perf_event_mmap_match(event, data))
6461 		return;
6462 
6463 	if (event->attr.mmap2) {
6464 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6465 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6466 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6467 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6468 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6469 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6470 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6471 	}
6472 
6473 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6474 	ret = perf_output_begin(&handle, event,
6475 				mmap_event->event_id.header.size);
6476 	if (ret)
6477 		goto out;
6478 
6479 	mmap_event->event_id.pid = perf_event_pid(event, current);
6480 	mmap_event->event_id.tid = perf_event_tid(event, current);
6481 
6482 	perf_output_put(&handle, mmap_event->event_id);
6483 
6484 	if (event->attr.mmap2) {
6485 		perf_output_put(&handle, mmap_event->maj);
6486 		perf_output_put(&handle, mmap_event->min);
6487 		perf_output_put(&handle, mmap_event->ino);
6488 		perf_output_put(&handle, mmap_event->ino_generation);
6489 		perf_output_put(&handle, mmap_event->prot);
6490 		perf_output_put(&handle, mmap_event->flags);
6491 	}
6492 
6493 	__output_copy(&handle, mmap_event->file_name,
6494 				   mmap_event->file_size);
6495 
6496 	perf_event__output_id_sample(event, &handle, &sample);
6497 
6498 	perf_output_end(&handle);
6499 out:
6500 	mmap_event->event_id.header.size = size;
6501 }
6502 
6503 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6504 {
6505 	struct vm_area_struct *vma = mmap_event->vma;
6506 	struct file *file = vma->vm_file;
6507 	int maj = 0, min = 0;
6508 	u64 ino = 0, gen = 0;
6509 	u32 prot = 0, flags = 0;
6510 	unsigned int size;
6511 	char tmp[16];
6512 	char *buf = NULL;
6513 	char *name;
6514 
6515 	if (file) {
6516 		struct inode *inode;
6517 		dev_t dev;
6518 
6519 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6520 		if (!buf) {
6521 			name = "//enomem";
6522 			goto cpy_name;
6523 		}
6524 		/*
6525 		 * d_path() works from the end of the rb backwards, so we
6526 		 * need to add enough zero bytes after the string to handle
6527 		 * the 64bit alignment we do later.
6528 		 */
6529 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6530 		if (IS_ERR(name)) {
6531 			name = "//toolong";
6532 			goto cpy_name;
6533 		}
6534 		inode = file_inode(vma->vm_file);
6535 		dev = inode->i_sb->s_dev;
6536 		ino = inode->i_ino;
6537 		gen = inode->i_generation;
6538 		maj = MAJOR(dev);
6539 		min = MINOR(dev);
6540 
6541 		if (vma->vm_flags & VM_READ)
6542 			prot |= PROT_READ;
6543 		if (vma->vm_flags & VM_WRITE)
6544 			prot |= PROT_WRITE;
6545 		if (vma->vm_flags & VM_EXEC)
6546 			prot |= PROT_EXEC;
6547 
6548 		if (vma->vm_flags & VM_MAYSHARE)
6549 			flags = MAP_SHARED;
6550 		else
6551 			flags = MAP_PRIVATE;
6552 
6553 		if (vma->vm_flags & VM_DENYWRITE)
6554 			flags |= MAP_DENYWRITE;
6555 		if (vma->vm_flags & VM_MAYEXEC)
6556 			flags |= MAP_EXECUTABLE;
6557 		if (vma->vm_flags & VM_LOCKED)
6558 			flags |= MAP_LOCKED;
6559 		if (vma->vm_flags & VM_HUGETLB)
6560 			flags |= MAP_HUGETLB;
6561 
6562 		goto got_name;
6563 	} else {
6564 		if (vma->vm_ops && vma->vm_ops->name) {
6565 			name = (char *) vma->vm_ops->name(vma);
6566 			if (name)
6567 				goto cpy_name;
6568 		}
6569 
6570 		name = (char *)arch_vma_name(vma);
6571 		if (name)
6572 			goto cpy_name;
6573 
6574 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6575 				vma->vm_end >= vma->vm_mm->brk) {
6576 			name = "[heap]";
6577 			goto cpy_name;
6578 		}
6579 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6580 				vma->vm_end >= vma->vm_mm->start_stack) {
6581 			name = "[stack]";
6582 			goto cpy_name;
6583 		}
6584 
6585 		name = "//anon";
6586 		goto cpy_name;
6587 	}
6588 
6589 cpy_name:
6590 	strlcpy(tmp, name, sizeof(tmp));
6591 	name = tmp;
6592 got_name:
6593 	/*
6594 	 * Since our buffer works in 8 byte units we need to align our string
6595 	 * size to a multiple of 8. However, we must guarantee the tail end is
6596 	 * zero'd out to avoid leaking random bits to userspace.
6597 	 */
6598 	size = strlen(name)+1;
6599 	while (!IS_ALIGNED(size, sizeof(u64)))
6600 		name[size++] = '\0';
6601 
6602 	mmap_event->file_name = name;
6603 	mmap_event->file_size = size;
6604 	mmap_event->maj = maj;
6605 	mmap_event->min = min;
6606 	mmap_event->ino = ino;
6607 	mmap_event->ino_generation = gen;
6608 	mmap_event->prot = prot;
6609 	mmap_event->flags = flags;
6610 
6611 	if (!(vma->vm_flags & VM_EXEC))
6612 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6613 
6614 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6615 
6616 	perf_iterate_sb(perf_event_mmap_output,
6617 		       mmap_event,
6618 		       NULL);
6619 
6620 	kfree(buf);
6621 }
6622 
6623 /*
6624  * Check whether inode and address range match filter criteria.
6625  */
6626 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6627 				     struct file *file, unsigned long offset,
6628 				     unsigned long size)
6629 {
6630 	if (filter->inode != file->f_inode)
6631 		return false;
6632 
6633 	if (filter->offset > offset + size)
6634 		return false;
6635 
6636 	if (filter->offset + filter->size < offset)
6637 		return false;
6638 
6639 	return true;
6640 }
6641 
6642 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6643 {
6644 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6645 	struct vm_area_struct *vma = data;
6646 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6647 	struct file *file = vma->vm_file;
6648 	struct perf_addr_filter *filter;
6649 	unsigned int restart = 0, count = 0;
6650 
6651 	if (!has_addr_filter(event))
6652 		return;
6653 
6654 	if (!file)
6655 		return;
6656 
6657 	raw_spin_lock_irqsave(&ifh->lock, flags);
6658 	list_for_each_entry(filter, &ifh->list, entry) {
6659 		if (perf_addr_filter_match(filter, file, off,
6660 					     vma->vm_end - vma->vm_start)) {
6661 			event->addr_filters_offs[count] = vma->vm_start;
6662 			restart++;
6663 		}
6664 
6665 		count++;
6666 	}
6667 
6668 	if (restart)
6669 		event->addr_filters_gen++;
6670 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6671 
6672 	if (restart)
6673 		perf_event_restart(event);
6674 }
6675 
6676 /*
6677  * Adjust all task's events' filters to the new vma
6678  */
6679 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6680 {
6681 	struct perf_event_context *ctx;
6682 	int ctxn;
6683 
6684 	/*
6685 	 * Data tracing isn't supported yet and as such there is no need
6686 	 * to keep track of anything that isn't related to executable code:
6687 	 */
6688 	if (!(vma->vm_flags & VM_EXEC))
6689 		return;
6690 
6691 	rcu_read_lock();
6692 	for_each_task_context_nr(ctxn) {
6693 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6694 		if (!ctx)
6695 			continue;
6696 
6697 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6698 	}
6699 	rcu_read_unlock();
6700 }
6701 
6702 void perf_event_mmap(struct vm_area_struct *vma)
6703 {
6704 	struct perf_mmap_event mmap_event;
6705 
6706 	if (!atomic_read(&nr_mmap_events))
6707 		return;
6708 
6709 	mmap_event = (struct perf_mmap_event){
6710 		.vma	= vma,
6711 		/* .file_name */
6712 		/* .file_size */
6713 		.event_id  = {
6714 			.header = {
6715 				.type = PERF_RECORD_MMAP,
6716 				.misc = PERF_RECORD_MISC_USER,
6717 				/* .size */
6718 			},
6719 			/* .pid */
6720 			/* .tid */
6721 			.start  = vma->vm_start,
6722 			.len    = vma->vm_end - vma->vm_start,
6723 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6724 		},
6725 		/* .maj (attr_mmap2 only) */
6726 		/* .min (attr_mmap2 only) */
6727 		/* .ino (attr_mmap2 only) */
6728 		/* .ino_generation (attr_mmap2 only) */
6729 		/* .prot (attr_mmap2 only) */
6730 		/* .flags (attr_mmap2 only) */
6731 	};
6732 
6733 	perf_addr_filters_adjust(vma);
6734 	perf_event_mmap_event(&mmap_event);
6735 }
6736 
6737 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6738 			  unsigned long size, u64 flags)
6739 {
6740 	struct perf_output_handle handle;
6741 	struct perf_sample_data sample;
6742 	struct perf_aux_event {
6743 		struct perf_event_header	header;
6744 		u64				offset;
6745 		u64				size;
6746 		u64				flags;
6747 	} rec = {
6748 		.header = {
6749 			.type = PERF_RECORD_AUX,
6750 			.misc = 0,
6751 			.size = sizeof(rec),
6752 		},
6753 		.offset		= head,
6754 		.size		= size,
6755 		.flags		= flags,
6756 	};
6757 	int ret;
6758 
6759 	perf_event_header__init_id(&rec.header, &sample, event);
6760 	ret = perf_output_begin(&handle, event, rec.header.size);
6761 
6762 	if (ret)
6763 		return;
6764 
6765 	perf_output_put(&handle, rec);
6766 	perf_event__output_id_sample(event, &handle, &sample);
6767 
6768 	perf_output_end(&handle);
6769 }
6770 
6771 /*
6772  * Lost/dropped samples logging
6773  */
6774 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6775 {
6776 	struct perf_output_handle handle;
6777 	struct perf_sample_data sample;
6778 	int ret;
6779 
6780 	struct {
6781 		struct perf_event_header	header;
6782 		u64				lost;
6783 	} lost_samples_event = {
6784 		.header = {
6785 			.type = PERF_RECORD_LOST_SAMPLES,
6786 			.misc = 0,
6787 			.size = sizeof(lost_samples_event),
6788 		},
6789 		.lost		= lost,
6790 	};
6791 
6792 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6793 
6794 	ret = perf_output_begin(&handle, event,
6795 				lost_samples_event.header.size);
6796 	if (ret)
6797 		return;
6798 
6799 	perf_output_put(&handle, lost_samples_event);
6800 	perf_event__output_id_sample(event, &handle, &sample);
6801 	perf_output_end(&handle);
6802 }
6803 
6804 /*
6805  * context_switch tracking
6806  */
6807 
6808 struct perf_switch_event {
6809 	struct task_struct	*task;
6810 	struct task_struct	*next_prev;
6811 
6812 	struct {
6813 		struct perf_event_header	header;
6814 		u32				next_prev_pid;
6815 		u32				next_prev_tid;
6816 	} event_id;
6817 };
6818 
6819 static int perf_event_switch_match(struct perf_event *event)
6820 {
6821 	return event->attr.context_switch;
6822 }
6823 
6824 static void perf_event_switch_output(struct perf_event *event, void *data)
6825 {
6826 	struct perf_switch_event *se = data;
6827 	struct perf_output_handle handle;
6828 	struct perf_sample_data sample;
6829 	int ret;
6830 
6831 	if (!perf_event_switch_match(event))
6832 		return;
6833 
6834 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6835 	if (event->ctx->task) {
6836 		se->event_id.header.type = PERF_RECORD_SWITCH;
6837 		se->event_id.header.size = sizeof(se->event_id.header);
6838 	} else {
6839 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6840 		se->event_id.header.size = sizeof(se->event_id);
6841 		se->event_id.next_prev_pid =
6842 					perf_event_pid(event, se->next_prev);
6843 		se->event_id.next_prev_tid =
6844 					perf_event_tid(event, se->next_prev);
6845 	}
6846 
6847 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6848 
6849 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6850 	if (ret)
6851 		return;
6852 
6853 	if (event->ctx->task)
6854 		perf_output_put(&handle, se->event_id.header);
6855 	else
6856 		perf_output_put(&handle, se->event_id);
6857 
6858 	perf_event__output_id_sample(event, &handle, &sample);
6859 
6860 	perf_output_end(&handle);
6861 }
6862 
6863 static void perf_event_switch(struct task_struct *task,
6864 			      struct task_struct *next_prev, bool sched_in)
6865 {
6866 	struct perf_switch_event switch_event;
6867 
6868 	/* N.B. caller checks nr_switch_events != 0 */
6869 
6870 	switch_event = (struct perf_switch_event){
6871 		.task		= task,
6872 		.next_prev	= next_prev,
6873 		.event_id	= {
6874 			.header = {
6875 				/* .type */
6876 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6877 				/* .size */
6878 			},
6879 			/* .next_prev_pid */
6880 			/* .next_prev_tid */
6881 		},
6882 	};
6883 
6884 	perf_iterate_sb(perf_event_switch_output,
6885 		       &switch_event,
6886 		       NULL);
6887 }
6888 
6889 /*
6890  * IRQ throttle logging
6891  */
6892 
6893 static void perf_log_throttle(struct perf_event *event, int enable)
6894 {
6895 	struct perf_output_handle handle;
6896 	struct perf_sample_data sample;
6897 	int ret;
6898 
6899 	struct {
6900 		struct perf_event_header	header;
6901 		u64				time;
6902 		u64				id;
6903 		u64				stream_id;
6904 	} throttle_event = {
6905 		.header = {
6906 			.type = PERF_RECORD_THROTTLE,
6907 			.misc = 0,
6908 			.size = sizeof(throttle_event),
6909 		},
6910 		.time		= perf_event_clock(event),
6911 		.id		= primary_event_id(event),
6912 		.stream_id	= event->id,
6913 	};
6914 
6915 	if (enable)
6916 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6917 
6918 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6919 
6920 	ret = perf_output_begin(&handle, event,
6921 				throttle_event.header.size);
6922 	if (ret)
6923 		return;
6924 
6925 	perf_output_put(&handle, throttle_event);
6926 	perf_event__output_id_sample(event, &handle, &sample);
6927 	perf_output_end(&handle);
6928 }
6929 
6930 static void perf_log_itrace_start(struct perf_event *event)
6931 {
6932 	struct perf_output_handle handle;
6933 	struct perf_sample_data sample;
6934 	struct perf_aux_event {
6935 		struct perf_event_header        header;
6936 		u32				pid;
6937 		u32				tid;
6938 	} rec;
6939 	int ret;
6940 
6941 	if (event->parent)
6942 		event = event->parent;
6943 
6944 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6945 	    event->hw.itrace_started)
6946 		return;
6947 
6948 	rec.header.type	= PERF_RECORD_ITRACE_START;
6949 	rec.header.misc	= 0;
6950 	rec.header.size	= sizeof(rec);
6951 	rec.pid	= perf_event_pid(event, current);
6952 	rec.tid	= perf_event_tid(event, current);
6953 
6954 	perf_event_header__init_id(&rec.header, &sample, event);
6955 	ret = perf_output_begin(&handle, event, rec.header.size);
6956 
6957 	if (ret)
6958 		return;
6959 
6960 	perf_output_put(&handle, rec);
6961 	perf_event__output_id_sample(event, &handle, &sample);
6962 
6963 	perf_output_end(&handle);
6964 }
6965 
6966 /*
6967  * Generic event overflow handling, sampling.
6968  */
6969 
6970 static int __perf_event_overflow(struct perf_event *event,
6971 				   int throttle, struct perf_sample_data *data,
6972 				   struct pt_regs *regs)
6973 {
6974 	int events = atomic_read(&event->event_limit);
6975 	struct hw_perf_event *hwc = &event->hw;
6976 	u64 seq;
6977 	int ret = 0;
6978 
6979 	/*
6980 	 * Non-sampling counters might still use the PMI to fold short
6981 	 * hardware counters, ignore those.
6982 	 */
6983 	if (unlikely(!is_sampling_event(event)))
6984 		return 0;
6985 
6986 	seq = __this_cpu_read(perf_throttled_seq);
6987 	if (seq != hwc->interrupts_seq) {
6988 		hwc->interrupts_seq = seq;
6989 		hwc->interrupts = 1;
6990 	} else {
6991 		hwc->interrupts++;
6992 		if (unlikely(throttle
6993 			     && hwc->interrupts >= max_samples_per_tick)) {
6994 			__this_cpu_inc(perf_throttled_count);
6995 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6996 			hwc->interrupts = MAX_INTERRUPTS;
6997 			perf_log_throttle(event, 0);
6998 			ret = 1;
6999 		}
7000 	}
7001 
7002 	if (event->attr.freq) {
7003 		u64 now = perf_clock();
7004 		s64 delta = now - hwc->freq_time_stamp;
7005 
7006 		hwc->freq_time_stamp = now;
7007 
7008 		if (delta > 0 && delta < 2*TICK_NSEC)
7009 			perf_adjust_period(event, delta, hwc->last_period, true);
7010 	}
7011 
7012 	/*
7013 	 * XXX event_limit might not quite work as expected on inherited
7014 	 * events
7015 	 */
7016 
7017 	event->pending_kill = POLL_IN;
7018 	if (events && atomic_dec_and_test(&event->event_limit)) {
7019 		ret = 1;
7020 		event->pending_kill = POLL_HUP;
7021 		event->pending_disable = 1;
7022 		irq_work_queue(&event->pending);
7023 	}
7024 
7025 	event->overflow_handler(event, data, regs);
7026 
7027 	if (*perf_event_fasync(event) && event->pending_kill) {
7028 		event->pending_wakeup = 1;
7029 		irq_work_queue(&event->pending);
7030 	}
7031 
7032 	return ret;
7033 }
7034 
7035 int perf_event_overflow(struct perf_event *event,
7036 			  struct perf_sample_data *data,
7037 			  struct pt_regs *regs)
7038 {
7039 	return __perf_event_overflow(event, 1, data, regs);
7040 }
7041 
7042 /*
7043  * Generic software event infrastructure
7044  */
7045 
7046 struct swevent_htable {
7047 	struct swevent_hlist		*swevent_hlist;
7048 	struct mutex			hlist_mutex;
7049 	int				hlist_refcount;
7050 
7051 	/* Recursion avoidance in each contexts */
7052 	int				recursion[PERF_NR_CONTEXTS];
7053 };
7054 
7055 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7056 
7057 /*
7058  * We directly increment event->count and keep a second value in
7059  * event->hw.period_left to count intervals. This period event
7060  * is kept in the range [-sample_period, 0] so that we can use the
7061  * sign as trigger.
7062  */
7063 
7064 u64 perf_swevent_set_period(struct perf_event *event)
7065 {
7066 	struct hw_perf_event *hwc = &event->hw;
7067 	u64 period = hwc->last_period;
7068 	u64 nr, offset;
7069 	s64 old, val;
7070 
7071 	hwc->last_period = hwc->sample_period;
7072 
7073 again:
7074 	old = val = local64_read(&hwc->period_left);
7075 	if (val < 0)
7076 		return 0;
7077 
7078 	nr = div64_u64(period + val, period);
7079 	offset = nr * period;
7080 	val -= offset;
7081 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7082 		goto again;
7083 
7084 	return nr;
7085 }
7086 
7087 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7088 				    struct perf_sample_data *data,
7089 				    struct pt_regs *regs)
7090 {
7091 	struct hw_perf_event *hwc = &event->hw;
7092 	int throttle = 0;
7093 
7094 	if (!overflow)
7095 		overflow = perf_swevent_set_period(event);
7096 
7097 	if (hwc->interrupts == MAX_INTERRUPTS)
7098 		return;
7099 
7100 	for (; overflow; overflow--) {
7101 		if (__perf_event_overflow(event, throttle,
7102 					    data, regs)) {
7103 			/*
7104 			 * We inhibit the overflow from happening when
7105 			 * hwc->interrupts == MAX_INTERRUPTS.
7106 			 */
7107 			break;
7108 		}
7109 		throttle = 1;
7110 	}
7111 }
7112 
7113 static void perf_swevent_event(struct perf_event *event, u64 nr,
7114 			       struct perf_sample_data *data,
7115 			       struct pt_regs *regs)
7116 {
7117 	struct hw_perf_event *hwc = &event->hw;
7118 
7119 	local64_add(nr, &event->count);
7120 
7121 	if (!regs)
7122 		return;
7123 
7124 	if (!is_sampling_event(event))
7125 		return;
7126 
7127 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7128 		data->period = nr;
7129 		return perf_swevent_overflow(event, 1, data, regs);
7130 	} else
7131 		data->period = event->hw.last_period;
7132 
7133 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7134 		return perf_swevent_overflow(event, 1, data, regs);
7135 
7136 	if (local64_add_negative(nr, &hwc->period_left))
7137 		return;
7138 
7139 	perf_swevent_overflow(event, 0, data, regs);
7140 }
7141 
7142 static int perf_exclude_event(struct perf_event *event,
7143 			      struct pt_regs *regs)
7144 {
7145 	if (event->hw.state & PERF_HES_STOPPED)
7146 		return 1;
7147 
7148 	if (regs) {
7149 		if (event->attr.exclude_user && user_mode(regs))
7150 			return 1;
7151 
7152 		if (event->attr.exclude_kernel && !user_mode(regs))
7153 			return 1;
7154 	}
7155 
7156 	return 0;
7157 }
7158 
7159 static int perf_swevent_match(struct perf_event *event,
7160 				enum perf_type_id type,
7161 				u32 event_id,
7162 				struct perf_sample_data *data,
7163 				struct pt_regs *regs)
7164 {
7165 	if (event->attr.type != type)
7166 		return 0;
7167 
7168 	if (event->attr.config != event_id)
7169 		return 0;
7170 
7171 	if (perf_exclude_event(event, regs))
7172 		return 0;
7173 
7174 	return 1;
7175 }
7176 
7177 static inline u64 swevent_hash(u64 type, u32 event_id)
7178 {
7179 	u64 val = event_id | (type << 32);
7180 
7181 	return hash_64(val, SWEVENT_HLIST_BITS);
7182 }
7183 
7184 static inline struct hlist_head *
7185 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7186 {
7187 	u64 hash = swevent_hash(type, event_id);
7188 
7189 	return &hlist->heads[hash];
7190 }
7191 
7192 /* For the read side: events when they trigger */
7193 static inline struct hlist_head *
7194 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7195 {
7196 	struct swevent_hlist *hlist;
7197 
7198 	hlist = rcu_dereference(swhash->swevent_hlist);
7199 	if (!hlist)
7200 		return NULL;
7201 
7202 	return __find_swevent_head(hlist, type, event_id);
7203 }
7204 
7205 /* For the event head insertion and removal in the hlist */
7206 static inline struct hlist_head *
7207 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7208 {
7209 	struct swevent_hlist *hlist;
7210 	u32 event_id = event->attr.config;
7211 	u64 type = event->attr.type;
7212 
7213 	/*
7214 	 * Event scheduling is always serialized against hlist allocation
7215 	 * and release. Which makes the protected version suitable here.
7216 	 * The context lock guarantees that.
7217 	 */
7218 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7219 					  lockdep_is_held(&event->ctx->lock));
7220 	if (!hlist)
7221 		return NULL;
7222 
7223 	return __find_swevent_head(hlist, type, event_id);
7224 }
7225 
7226 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7227 				    u64 nr,
7228 				    struct perf_sample_data *data,
7229 				    struct pt_regs *regs)
7230 {
7231 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7232 	struct perf_event *event;
7233 	struct hlist_head *head;
7234 
7235 	rcu_read_lock();
7236 	head = find_swevent_head_rcu(swhash, type, event_id);
7237 	if (!head)
7238 		goto end;
7239 
7240 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7241 		if (perf_swevent_match(event, type, event_id, data, regs))
7242 			perf_swevent_event(event, nr, data, regs);
7243 	}
7244 end:
7245 	rcu_read_unlock();
7246 }
7247 
7248 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7249 
7250 int perf_swevent_get_recursion_context(void)
7251 {
7252 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7253 
7254 	return get_recursion_context(swhash->recursion);
7255 }
7256 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7257 
7258 void perf_swevent_put_recursion_context(int rctx)
7259 {
7260 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7261 
7262 	put_recursion_context(swhash->recursion, rctx);
7263 }
7264 
7265 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7266 {
7267 	struct perf_sample_data data;
7268 
7269 	if (WARN_ON_ONCE(!regs))
7270 		return;
7271 
7272 	perf_sample_data_init(&data, addr, 0);
7273 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7274 }
7275 
7276 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7277 {
7278 	int rctx;
7279 
7280 	preempt_disable_notrace();
7281 	rctx = perf_swevent_get_recursion_context();
7282 	if (unlikely(rctx < 0))
7283 		goto fail;
7284 
7285 	___perf_sw_event(event_id, nr, regs, addr);
7286 
7287 	perf_swevent_put_recursion_context(rctx);
7288 fail:
7289 	preempt_enable_notrace();
7290 }
7291 
7292 static void perf_swevent_read(struct perf_event *event)
7293 {
7294 }
7295 
7296 static int perf_swevent_add(struct perf_event *event, int flags)
7297 {
7298 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7299 	struct hw_perf_event *hwc = &event->hw;
7300 	struct hlist_head *head;
7301 
7302 	if (is_sampling_event(event)) {
7303 		hwc->last_period = hwc->sample_period;
7304 		perf_swevent_set_period(event);
7305 	}
7306 
7307 	hwc->state = !(flags & PERF_EF_START);
7308 
7309 	head = find_swevent_head(swhash, event);
7310 	if (WARN_ON_ONCE(!head))
7311 		return -EINVAL;
7312 
7313 	hlist_add_head_rcu(&event->hlist_entry, head);
7314 	perf_event_update_userpage(event);
7315 
7316 	return 0;
7317 }
7318 
7319 static void perf_swevent_del(struct perf_event *event, int flags)
7320 {
7321 	hlist_del_rcu(&event->hlist_entry);
7322 }
7323 
7324 static void perf_swevent_start(struct perf_event *event, int flags)
7325 {
7326 	event->hw.state = 0;
7327 }
7328 
7329 static void perf_swevent_stop(struct perf_event *event, int flags)
7330 {
7331 	event->hw.state = PERF_HES_STOPPED;
7332 }
7333 
7334 /* Deref the hlist from the update side */
7335 static inline struct swevent_hlist *
7336 swevent_hlist_deref(struct swevent_htable *swhash)
7337 {
7338 	return rcu_dereference_protected(swhash->swevent_hlist,
7339 					 lockdep_is_held(&swhash->hlist_mutex));
7340 }
7341 
7342 static void swevent_hlist_release(struct swevent_htable *swhash)
7343 {
7344 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7345 
7346 	if (!hlist)
7347 		return;
7348 
7349 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7350 	kfree_rcu(hlist, rcu_head);
7351 }
7352 
7353 static void swevent_hlist_put_cpu(int cpu)
7354 {
7355 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7356 
7357 	mutex_lock(&swhash->hlist_mutex);
7358 
7359 	if (!--swhash->hlist_refcount)
7360 		swevent_hlist_release(swhash);
7361 
7362 	mutex_unlock(&swhash->hlist_mutex);
7363 }
7364 
7365 static void swevent_hlist_put(void)
7366 {
7367 	int cpu;
7368 
7369 	for_each_possible_cpu(cpu)
7370 		swevent_hlist_put_cpu(cpu);
7371 }
7372 
7373 static int swevent_hlist_get_cpu(int cpu)
7374 {
7375 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7376 	int err = 0;
7377 
7378 	mutex_lock(&swhash->hlist_mutex);
7379 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7380 		struct swevent_hlist *hlist;
7381 
7382 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7383 		if (!hlist) {
7384 			err = -ENOMEM;
7385 			goto exit;
7386 		}
7387 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7388 	}
7389 	swhash->hlist_refcount++;
7390 exit:
7391 	mutex_unlock(&swhash->hlist_mutex);
7392 
7393 	return err;
7394 }
7395 
7396 static int swevent_hlist_get(void)
7397 {
7398 	int err, cpu, failed_cpu;
7399 
7400 	get_online_cpus();
7401 	for_each_possible_cpu(cpu) {
7402 		err = swevent_hlist_get_cpu(cpu);
7403 		if (err) {
7404 			failed_cpu = cpu;
7405 			goto fail;
7406 		}
7407 	}
7408 	put_online_cpus();
7409 
7410 	return 0;
7411 fail:
7412 	for_each_possible_cpu(cpu) {
7413 		if (cpu == failed_cpu)
7414 			break;
7415 		swevent_hlist_put_cpu(cpu);
7416 	}
7417 
7418 	put_online_cpus();
7419 	return err;
7420 }
7421 
7422 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7423 
7424 static void sw_perf_event_destroy(struct perf_event *event)
7425 {
7426 	u64 event_id = event->attr.config;
7427 
7428 	WARN_ON(event->parent);
7429 
7430 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7431 	swevent_hlist_put();
7432 }
7433 
7434 static int perf_swevent_init(struct perf_event *event)
7435 {
7436 	u64 event_id = event->attr.config;
7437 
7438 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7439 		return -ENOENT;
7440 
7441 	/*
7442 	 * no branch sampling for software events
7443 	 */
7444 	if (has_branch_stack(event))
7445 		return -EOPNOTSUPP;
7446 
7447 	switch (event_id) {
7448 	case PERF_COUNT_SW_CPU_CLOCK:
7449 	case PERF_COUNT_SW_TASK_CLOCK:
7450 		return -ENOENT;
7451 
7452 	default:
7453 		break;
7454 	}
7455 
7456 	if (event_id >= PERF_COUNT_SW_MAX)
7457 		return -ENOENT;
7458 
7459 	if (!event->parent) {
7460 		int err;
7461 
7462 		err = swevent_hlist_get();
7463 		if (err)
7464 			return err;
7465 
7466 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7467 		event->destroy = sw_perf_event_destroy;
7468 	}
7469 
7470 	return 0;
7471 }
7472 
7473 static struct pmu perf_swevent = {
7474 	.task_ctx_nr	= perf_sw_context,
7475 
7476 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7477 
7478 	.event_init	= perf_swevent_init,
7479 	.add		= perf_swevent_add,
7480 	.del		= perf_swevent_del,
7481 	.start		= perf_swevent_start,
7482 	.stop		= perf_swevent_stop,
7483 	.read		= perf_swevent_read,
7484 };
7485 
7486 #ifdef CONFIG_EVENT_TRACING
7487 
7488 static int perf_tp_filter_match(struct perf_event *event,
7489 				struct perf_sample_data *data)
7490 {
7491 	void *record = data->raw->frag.data;
7492 
7493 	/* only top level events have filters set */
7494 	if (event->parent)
7495 		event = event->parent;
7496 
7497 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7498 		return 1;
7499 	return 0;
7500 }
7501 
7502 static int perf_tp_event_match(struct perf_event *event,
7503 				struct perf_sample_data *data,
7504 				struct pt_regs *regs)
7505 {
7506 	if (event->hw.state & PERF_HES_STOPPED)
7507 		return 0;
7508 	/*
7509 	 * All tracepoints are from kernel-space.
7510 	 */
7511 	if (event->attr.exclude_kernel)
7512 		return 0;
7513 
7514 	if (!perf_tp_filter_match(event, data))
7515 		return 0;
7516 
7517 	return 1;
7518 }
7519 
7520 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7521 			       struct trace_event_call *call, u64 count,
7522 			       struct pt_regs *regs, struct hlist_head *head,
7523 			       struct task_struct *task)
7524 {
7525 	struct bpf_prog *prog = call->prog;
7526 
7527 	if (prog) {
7528 		*(struct pt_regs **)raw_data = regs;
7529 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7530 			perf_swevent_put_recursion_context(rctx);
7531 			return;
7532 		}
7533 	}
7534 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7535 		      rctx, task);
7536 }
7537 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7538 
7539 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7540 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7541 		   struct task_struct *task)
7542 {
7543 	struct perf_sample_data data;
7544 	struct perf_event *event;
7545 
7546 	struct perf_raw_record raw = {
7547 		.frag = {
7548 			.size = entry_size,
7549 			.data = record,
7550 		},
7551 	};
7552 
7553 	perf_sample_data_init(&data, 0, 0);
7554 	data.raw = &raw;
7555 
7556 	perf_trace_buf_update(record, event_type);
7557 
7558 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7559 		if (perf_tp_event_match(event, &data, regs))
7560 			perf_swevent_event(event, count, &data, regs);
7561 	}
7562 
7563 	/*
7564 	 * If we got specified a target task, also iterate its context and
7565 	 * deliver this event there too.
7566 	 */
7567 	if (task && task != current) {
7568 		struct perf_event_context *ctx;
7569 		struct trace_entry *entry = record;
7570 
7571 		rcu_read_lock();
7572 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7573 		if (!ctx)
7574 			goto unlock;
7575 
7576 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7577 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7578 				continue;
7579 			if (event->attr.config != entry->type)
7580 				continue;
7581 			if (perf_tp_event_match(event, &data, regs))
7582 				perf_swevent_event(event, count, &data, regs);
7583 		}
7584 unlock:
7585 		rcu_read_unlock();
7586 	}
7587 
7588 	perf_swevent_put_recursion_context(rctx);
7589 }
7590 EXPORT_SYMBOL_GPL(perf_tp_event);
7591 
7592 static void tp_perf_event_destroy(struct perf_event *event)
7593 {
7594 	perf_trace_destroy(event);
7595 }
7596 
7597 static int perf_tp_event_init(struct perf_event *event)
7598 {
7599 	int err;
7600 
7601 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7602 		return -ENOENT;
7603 
7604 	/*
7605 	 * no branch sampling for tracepoint events
7606 	 */
7607 	if (has_branch_stack(event))
7608 		return -EOPNOTSUPP;
7609 
7610 	err = perf_trace_init(event);
7611 	if (err)
7612 		return err;
7613 
7614 	event->destroy = tp_perf_event_destroy;
7615 
7616 	return 0;
7617 }
7618 
7619 static struct pmu perf_tracepoint = {
7620 	.task_ctx_nr	= perf_sw_context,
7621 
7622 	.event_init	= perf_tp_event_init,
7623 	.add		= perf_trace_add,
7624 	.del		= perf_trace_del,
7625 	.start		= perf_swevent_start,
7626 	.stop		= perf_swevent_stop,
7627 	.read		= perf_swevent_read,
7628 };
7629 
7630 static inline void perf_tp_register(void)
7631 {
7632 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7633 }
7634 
7635 static void perf_event_free_filter(struct perf_event *event)
7636 {
7637 	ftrace_profile_free_filter(event);
7638 }
7639 
7640 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7641 {
7642 	bool is_kprobe, is_tracepoint;
7643 	struct bpf_prog *prog;
7644 
7645 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7646 		return -EINVAL;
7647 
7648 	if (event->tp_event->prog)
7649 		return -EEXIST;
7650 
7651 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7652 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7653 	if (!is_kprobe && !is_tracepoint)
7654 		/* bpf programs can only be attached to u/kprobe or tracepoint */
7655 		return -EINVAL;
7656 
7657 	prog = bpf_prog_get(prog_fd);
7658 	if (IS_ERR(prog))
7659 		return PTR_ERR(prog);
7660 
7661 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7662 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7663 		/* valid fd, but invalid bpf program type */
7664 		bpf_prog_put(prog);
7665 		return -EINVAL;
7666 	}
7667 
7668 	if (is_tracepoint) {
7669 		int off = trace_event_get_offsets(event->tp_event);
7670 
7671 		if (prog->aux->max_ctx_offset > off) {
7672 			bpf_prog_put(prog);
7673 			return -EACCES;
7674 		}
7675 	}
7676 	event->tp_event->prog = prog;
7677 
7678 	return 0;
7679 }
7680 
7681 static void perf_event_free_bpf_prog(struct perf_event *event)
7682 {
7683 	struct bpf_prog *prog;
7684 
7685 	if (!event->tp_event)
7686 		return;
7687 
7688 	prog = event->tp_event->prog;
7689 	if (prog) {
7690 		event->tp_event->prog = NULL;
7691 		bpf_prog_put(prog);
7692 	}
7693 }
7694 
7695 #else
7696 
7697 static inline void perf_tp_register(void)
7698 {
7699 }
7700 
7701 static void perf_event_free_filter(struct perf_event *event)
7702 {
7703 }
7704 
7705 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7706 {
7707 	return -ENOENT;
7708 }
7709 
7710 static void perf_event_free_bpf_prog(struct perf_event *event)
7711 {
7712 }
7713 #endif /* CONFIG_EVENT_TRACING */
7714 
7715 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7716 void perf_bp_event(struct perf_event *bp, void *data)
7717 {
7718 	struct perf_sample_data sample;
7719 	struct pt_regs *regs = data;
7720 
7721 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7722 
7723 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7724 		perf_swevent_event(bp, 1, &sample, regs);
7725 }
7726 #endif
7727 
7728 /*
7729  * Allocate a new address filter
7730  */
7731 static struct perf_addr_filter *
7732 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7733 {
7734 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7735 	struct perf_addr_filter *filter;
7736 
7737 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7738 	if (!filter)
7739 		return NULL;
7740 
7741 	INIT_LIST_HEAD(&filter->entry);
7742 	list_add_tail(&filter->entry, filters);
7743 
7744 	return filter;
7745 }
7746 
7747 static void free_filters_list(struct list_head *filters)
7748 {
7749 	struct perf_addr_filter *filter, *iter;
7750 
7751 	list_for_each_entry_safe(filter, iter, filters, entry) {
7752 		if (filter->inode)
7753 			iput(filter->inode);
7754 		list_del(&filter->entry);
7755 		kfree(filter);
7756 	}
7757 }
7758 
7759 /*
7760  * Free existing address filters and optionally install new ones
7761  */
7762 static void perf_addr_filters_splice(struct perf_event *event,
7763 				     struct list_head *head)
7764 {
7765 	unsigned long flags;
7766 	LIST_HEAD(list);
7767 
7768 	if (!has_addr_filter(event))
7769 		return;
7770 
7771 	/* don't bother with children, they don't have their own filters */
7772 	if (event->parent)
7773 		return;
7774 
7775 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7776 
7777 	list_splice_init(&event->addr_filters.list, &list);
7778 	if (head)
7779 		list_splice(head, &event->addr_filters.list);
7780 
7781 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7782 
7783 	free_filters_list(&list);
7784 }
7785 
7786 /*
7787  * Scan through mm's vmas and see if one of them matches the
7788  * @filter; if so, adjust filter's address range.
7789  * Called with mm::mmap_sem down for reading.
7790  */
7791 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7792 					    struct mm_struct *mm)
7793 {
7794 	struct vm_area_struct *vma;
7795 
7796 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
7797 		struct file *file = vma->vm_file;
7798 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7799 		unsigned long vma_size = vma->vm_end - vma->vm_start;
7800 
7801 		if (!file)
7802 			continue;
7803 
7804 		if (!perf_addr_filter_match(filter, file, off, vma_size))
7805 			continue;
7806 
7807 		return vma->vm_start;
7808 	}
7809 
7810 	return 0;
7811 }
7812 
7813 /*
7814  * Update event's address range filters based on the
7815  * task's existing mappings, if any.
7816  */
7817 static void perf_event_addr_filters_apply(struct perf_event *event)
7818 {
7819 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7820 	struct task_struct *task = READ_ONCE(event->ctx->task);
7821 	struct perf_addr_filter *filter;
7822 	struct mm_struct *mm = NULL;
7823 	unsigned int count = 0;
7824 	unsigned long flags;
7825 
7826 	/*
7827 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7828 	 * will stop on the parent's child_mutex that our caller is also holding
7829 	 */
7830 	if (task == TASK_TOMBSTONE)
7831 		return;
7832 
7833 	mm = get_task_mm(event->ctx->task);
7834 	if (!mm)
7835 		goto restart;
7836 
7837 	down_read(&mm->mmap_sem);
7838 
7839 	raw_spin_lock_irqsave(&ifh->lock, flags);
7840 	list_for_each_entry(filter, &ifh->list, entry) {
7841 		event->addr_filters_offs[count] = 0;
7842 
7843 		/*
7844 		 * Adjust base offset if the filter is associated to a binary
7845 		 * that needs to be mapped:
7846 		 */
7847 		if (filter->inode)
7848 			event->addr_filters_offs[count] =
7849 				perf_addr_filter_apply(filter, mm);
7850 
7851 		count++;
7852 	}
7853 
7854 	event->addr_filters_gen++;
7855 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7856 
7857 	up_read(&mm->mmap_sem);
7858 
7859 	mmput(mm);
7860 
7861 restart:
7862 	perf_event_restart(event);
7863 }
7864 
7865 /*
7866  * Address range filtering: limiting the data to certain
7867  * instruction address ranges. Filters are ioctl()ed to us from
7868  * userspace as ascii strings.
7869  *
7870  * Filter string format:
7871  *
7872  * ACTION RANGE_SPEC
7873  * where ACTION is one of the
7874  *  * "filter": limit the trace to this region
7875  *  * "start": start tracing from this address
7876  *  * "stop": stop tracing at this address/region;
7877  * RANGE_SPEC is
7878  *  * for kernel addresses: <start address>[/<size>]
7879  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
7880  *
7881  * if <size> is not specified, the range is treated as a single address.
7882  */
7883 enum {
7884 	IF_ACT_FILTER,
7885 	IF_ACT_START,
7886 	IF_ACT_STOP,
7887 	IF_SRC_FILE,
7888 	IF_SRC_KERNEL,
7889 	IF_SRC_FILEADDR,
7890 	IF_SRC_KERNELADDR,
7891 };
7892 
7893 enum {
7894 	IF_STATE_ACTION = 0,
7895 	IF_STATE_SOURCE,
7896 	IF_STATE_END,
7897 };
7898 
7899 static const match_table_t if_tokens = {
7900 	{ IF_ACT_FILTER,	"filter" },
7901 	{ IF_ACT_START,		"start" },
7902 	{ IF_ACT_STOP,		"stop" },
7903 	{ IF_SRC_FILE,		"%u/%u@%s" },
7904 	{ IF_SRC_KERNEL,	"%u/%u" },
7905 	{ IF_SRC_FILEADDR,	"%u@%s" },
7906 	{ IF_SRC_KERNELADDR,	"%u" },
7907 };
7908 
7909 /*
7910  * Address filter string parser
7911  */
7912 static int
7913 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7914 			     struct list_head *filters)
7915 {
7916 	struct perf_addr_filter *filter = NULL;
7917 	char *start, *orig, *filename = NULL;
7918 	struct path path;
7919 	substring_t args[MAX_OPT_ARGS];
7920 	int state = IF_STATE_ACTION, token;
7921 	unsigned int kernel = 0;
7922 	int ret = -EINVAL;
7923 
7924 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
7925 	if (!fstr)
7926 		return -ENOMEM;
7927 
7928 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
7929 		ret = -EINVAL;
7930 
7931 		if (!*start)
7932 			continue;
7933 
7934 		/* filter definition begins */
7935 		if (state == IF_STATE_ACTION) {
7936 			filter = perf_addr_filter_new(event, filters);
7937 			if (!filter)
7938 				goto fail;
7939 		}
7940 
7941 		token = match_token(start, if_tokens, args);
7942 		switch (token) {
7943 		case IF_ACT_FILTER:
7944 		case IF_ACT_START:
7945 			filter->filter = 1;
7946 
7947 		case IF_ACT_STOP:
7948 			if (state != IF_STATE_ACTION)
7949 				goto fail;
7950 
7951 			state = IF_STATE_SOURCE;
7952 			break;
7953 
7954 		case IF_SRC_KERNELADDR:
7955 		case IF_SRC_KERNEL:
7956 			kernel = 1;
7957 
7958 		case IF_SRC_FILEADDR:
7959 		case IF_SRC_FILE:
7960 			if (state != IF_STATE_SOURCE)
7961 				goto fail;
7962 
7963 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7964 				filter->range = 1;
7965 
7966 			*args[0].to = 0;
7967 			ret = kstrtoul(args[0].from, 0, &filter->offset);
7968 			if (ret)
7969 				goto fail;
7970 
7971 			if (filter->range) {
7972 				*args[1].to = 0;
7973 				ret = kstrtoul(args[1].from, 0, &filter->size);
7974 				if (ret)
7975 					goto fail;
7976 			}
7977 
7978 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
7979 				int fpos = filter->range ? 2 : 1;
7980 
7981 				filename = match_strdup(&args[fpos]);
7982 				if (!filename) {
7983 					ret = -ENOMEM;
7984 					goto fail;
7985 				}
7986 			}
7987 
7988 			state = IF_STATE_END;
7989 			break;
7990 
7991 		default:
7992 			goto fail;
7993 		}
7994 
7995 		/*
7996 		 * Filter definition is fully parsed, validate and install it.
7997 		 * Make sure that it doesn't contradict itself or the event's
7998 		 * attribute.
7999 		 */
8000 		if (state == IF_STATE_END) {
8001 			if (kernel && event->attr.exclude_kernel)
8002 				goto fail;
8003 
8004 			if (!kernel) {
8005 				if (!filename)
8006 					goto fail;
8007 
8008 				/* look up the path and grab its inode */
8009 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8010 				if (ret)
8011 					goto fail_free_name;
8012 
8013 				filter->inode = igrab(d_inode(path.dentry));
8014 				path_put(&path);
8015 				kfree(filename);
8016 				filename = NULL;
8017 
8018 				ret = -EINVAL;
8019 				if (!filter->inode ||
8020 				    !S_ISREG(filter->inode->i_mode))
8021 					/* free_filters_list() will iput() */
8022 					goto fail;
8023 			}
8024 
8025 			/* ready to consume more filters */
8026 			state = IF_STATE_ACTION;
8027 			filter = NULL;
8028 		}
8029 	}
8030 
8031 	if (state != IF_STATE_ACTION)
8032 		goto fail;
8033 
8034 	kfree(orig);
8035 
8036 	return 0;
8037 
8038 fail_free_name:
8039 	kfree(filename);
8040 fail:
8041 	free_filters_list(filters);
8042 	kfree(orig);
8043 
8044 	return ret;
8045 }
8046 
8047 static int
8048 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8049 {
8050 	LIST_HEAD(filters);
8051 	int ret;
8052 
8053 	/*
8054 	 * Since this is called in perf_ioctl() path, we're already holding
8055 	 * ctx::mutex.
8056 	 */
8057 	lockdep_assert_held(&event->ctx->mutex);
8058 
8059 	if (WARN_ON_ONCE(event->parent))
8060 		return -EINVAL;
8061 
8062 	/*
8063 	 * For now, we only support filtering in per-task events; doing so
8064 	 * for CPU-wide events requires additional context switching trickery,
8065 	 * since same object code will be mapped at different virtual
8066 	 * addresses in different processes.
8067 	 */
8068 	if (!event->ctx->task)
8069 		return -EOPNOTSUPP;
8070 
8071 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8072 	if (ret)
8073 		return ret;
8074 
8075 	ret = event->pmu->addr_filters_validate(&filters);
8076 	if (ret) {
8077 		free_filters_list(&filters);
8078 		return ret;
8079 	}
8080 
8081 	/* remove existing filters, if any */
8082 	perf_addr_filters_splice(event, &filters);
8083 
8084 	/* install new filters */
8085 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8086 
8087 	return ret;
8088 }
8089 
8090 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8091 {
8092 	char *filter_str;
8093 	int ret = -EINVAL;
8094 
8095 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8096 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8097 	    !has_addr_filter(event))
8098 		return -EINVAL;
8099 
8100 	filter_str = strndup_user(arg, PAGE_SIZE);
8101 	if (IS_ERR(filter_str))
8102 		return PTR_ERR(filter_str);
8103 
8104 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8105 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8106 		ret = ftrace_profile_set_filter(event, event->attr.config,
8107 						filter_str);
8108 	else if (has_addr_filter(event))
8109 		ret = perf_event_set_addr_filter(event, filter_str);
8110 
8111 	kfree(filter_str);
8112 	return ret;
8113 }
8114 
8115 /*
8116  * hrtimer based swevent callback
8117  */
8118 
8119 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8120 {
8121 	enum hrtimer_restart ret = HRTIMER_RESTART;
8122 	struct perf_sample_data data;
8123 	struct pt_regs *regs;
8124 	struct perf_event *event;
8125 	u64 period;
8126 
8127 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8128 
8129 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8130 		return HRTIMER_NORESTART;
8131 
8132 	event->pmu->read(event);
8133 
8134 	perf_sample_data_init(&data, 0, event->hw.last_period);
8135 	regs = get_irq_regs();
8136 
8137 	if (regs && !perf_exclude_event(event, regs)) {
8138 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8139 			if (__perf_event_overflow(event, 1, &data, regs))
8140 				ret = HRTIMER_NORESTART;
8141 	}
8142 
8143 	period = max_t(u64, 10000, event->hw.sample_period);
8144 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8145 
8146 	return ret;
8147 }
8148 
8149 static void perf_swevent_start_hrtimer(struct perf_event *event)
8150 {
8151 	struct hw_perf_event *hwc = &event->hw;
8152 	s64 period;
8153 
8154 	if (!is_sampling_event(event))
8155 		return;
8156 
8157 	period = local64_read(&hwc->period_left);
8158 	if (period) {
8159 		if (period < 0)
8160 			period = 10000;
8161 
8162 		local64_set(&hwc->period_left, 0);
8163 	} else {
8164 		period = max_t(u64, 10000, hwc->sample_period);
8165 	}
8166 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8167 		      HRTIMER_MODE_REL_PINNED);
8168 }
8169 
8170 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8171 {
8172 	struct hw_perf_event *hwc = &event->hw;
8173 
8174 	if (is_sampling_event(event)) {
8175 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8176 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8177 
8178 		hrtimer_cancel(&hwc->hrtimer);
8179 	}
8180 }
8181 
8182 static void perf_swevent_init_hrtimer(struct perf_event *event)
8183 {
8184 	struct hw_perf_event *hwc = &event->hw;
8185 
8186 	if (!is_sampling_event(event))
8187 		return;
8188 
8189 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8190 	hwc->hrtimer.function = perf_swevent_hrtimer;
8191 
8192 	/*
8193 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8194 	 * mapping and avoid the whole period adjust feedback stuff.
8195 	 */
8196 	if (event->attr.freq) {
8197 		long freq = event->attr.sample_freq;
8198 
8199 		event->attr.sample_period = NSEC_PER_SEC / freq;
8200 		hwc->sample_period = event->attr.sample_period;
8201 		local64_set(&hwc->period_left, hwc->sample_period);
8202 		hwc->last_period = hwc->sample_period;
8203 		event->attr.freq = 0;
8204 	}
8205 }
8206 
8207 /*
8208  * Software event: cpu wall time clock
8209  */
8210 
8211 static void cpu_clock_event_update(struct perf_event *event)
8212 {
8213 	s64 prev;
8214 	u64 now;
8215 
8216 	now = local_clock();
8217 	prev = local64_xchg(&event->hw.prev_count, now);
8218 	local64_add(now - prev, &event->count);
8219 }
8220 
8221 static void cpu_clock_event_start(struct perf_event *event, int flags)
8222 {
8223 	local64_set(&event->hw.prev_count, local_clock());
8224 	perf_swevent_start_hrtimer(event);
8225 }
8226 
8227 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8228 {
8229 	perf_swevent_cancel_hrtimer(event);
8230 	cpu_clock_event_update(event);
8231 }
8232 
8233 static int cpu_clock_event_add(struct perf_event *event, int flags)
8234 {
8235 	if (flags & PERF_EF_START)
8236 		cpu_clock_event_start(event, flags);
8237 	perf_event_update_userpage(event);
8238 
8239 	return 0;
8240 }
8241 
8242 static void cpu_clock_event_del(struct perf_event *event, int flags)
8243 {
8244 	cpu_clock_event_stop(event, flags);
8245 }
8246 
8247 static void cpu_clock_event_read(struct perf_event *event)
8248 {
8249 	cpu_clock_event_update(event);
8250 }
8251 
8252 static int cpu_clock_event_init(struct perf_event *event)
8253 {
8254 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8255 		return -ENOENT;
8256 
8257 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8258 		return -ENOENT;
8259 
8260 	/*
8261 	 * no branch sampling for software events
8262 	 */
8263 	if (has_branch_stack(event))
8264 		return -EOPNOTSUPP;
8265 
8266 	perf_swevent_init_hrtimer(event);
8267 
8268 	return 0;
8269 }
8270 
8271 static struct pmu perf_cpu_clock = {
8272 	.task_ctx_nr	= perf_sw_context,
8273 
8274 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8275 
8276 	.event_init	= cpu_clock_event_init,
8277 	.add		= cpu_clock_event_add,
8278 	.del		= cpu_clock_event_del,
8279 	.start		= cpu_clock_event_start,
8280 	.stop		= cpu_clock_event_stop,
8281 	.read		= cpu_clock_event_read,
8282 };
8283 
8284 /*
8285  * Software event: task time clock
8286  */
8287 
8288 static void task_clock_event_update(struct perf_event *event, u64 now)
8289 {
8290 	u64 prev;
8291 	s64 delta;
8292 
8293 	prev = local64_xchg(&event->hw.prev_count, now);
8294 	delta = now - prev;
8295 	local64_add(delta, &event->count);
8296 }
8297 
8298 static void task_clock_event_start(struct perf_event *event, int flags)
8299 {
8300 	local64_set(&event->hw.prev_count, event->ctx->time);
8301 	perf_swevent_start_hrtimer(event);
8302 }
8303 
8304 static void task_clock_event_stop(struct perf_event *event, int flags)
8305 {
8306 	perf_swevent_cancel_hrtimer(event);
8307 	task_clock_event_update(event, event->ctx->time);
8308 }
8309 
8310 static int task_clock_event_add(struct perf_event *event, int flags)
8311 {
8312 	if (flags & PERF_EF_START)
8313 		task_clock_event_start(event, flags);
8314 	perf_event_update_userpage(event);
8315 
8316 	return 0;
8317 }
8318 
8319 static void task_clock_event_del(struct perf_event *event, int flags)
8320 {
8321 	task_clock_event_stop(event, PERF_EF_UPDATE);
8322 }
8323 
8324 static void task_clock_event_read(struct perf_event *event)
8325 {
8326 	u64 now = perf_clock();
8327 	u64 delta = now - event->ctx->timestamp;
8328 	u64 time = event->ctx->time + delta;
8329 
8330 	task_clock_event_update(event, time);
8331 }
8332 
8333 static int task_clock_event_init(struct perf_event *event)
8334 {
8335 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8336 		return -ENOENT;
8337 
8338 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8339 		return -ENOENT;
8340 
8341 	/*
8342 	 * no branch sampling for software events
8343 	 */
8344 	if (has_branch_stack(event))
8345 		return -EOPNOTSUPP;
8346 
8347 	perf_swevent_init_hrtimer(event);
8348 
8349 	return 0;
8350 }
8351 
8352 static struct pmu perf_task_clock = {
8353 	.task_ctx_nr	= perf_sw_context,
8354 
8355 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8356 
8357 	.event_init	= task_clock_event_init,
8358 	.add		= task_clock_event_add,
8359 	.del		= task_clock_event_del,
8360 	.start		= task_clock_event_start,
8361 	.stop		= task_clock_event_stop,
8362 	.read		= task_clock_event_read,
8363 };
8364 
8365 static void perf_pmu_nop_void(struct pmu *pmu)
8366 {
8367 }
8368 
8369 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8370 {
8371 }
8372 
8373 static int perf_pmu_nop_int(struct pmu *pmu)
8374 {
8375 	return 0;
8376 }
8377 
8378 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8379 
8380 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8381 {
8382 	__this_cpu_write(nop_txn_flags, flags);
8383 
8384 	if (flags & ~PERF_PMU_TXN_ADD)
8385 		return;
8386 
8387 	perf_pmu_disable(pmu);
8388 }
8389 
8390 static int perf_pmu_commit_txn(struct pmu *pmu)
8391 {
8392 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8393 
8394 	__this_cpu_write(nop_txn_flags, 0);
8395 
8396 	if (flags & ~PERF_PMU_TXN_ADD)
8397 		return 0;
8398 
8399 	perf_pmu_enable(pmu);
8400 	return 0;
8401 }
8402 
8403 static void perf_pmu_cancel_txn(struct pmu *pmu)
8404 {
8405 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8406 
8407 	__this_cpu_write(nop_txn_flags, 0);
8408 
8409 	if (flags & ~PERF_PMU_TXN_ADD)
8410 		return;
8411 
8412 	perf_pmu_enable(pmu);
8413 }
8414 
8415 static int perf_event_idx_default(struct perf_event *event)
8416 {
8417 	return 0;
8418 }
8419 
8420 /*
8421  * Ensures all contexts with the same task_ctx_nr have the same
8422  * pmu_cpu_context too.
8423  */
8424 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8425 {
8426 	struct pmu *pmu;
8427 
8428 	if (ctxn < 0)
8429 		return NULL;
8430 
8431 	list_for_each_entry(pmu, &pmus, entry) {
8432 		if (pmu->task_ctx_nr == ctxn)
8433 			return pmu->pmu_cpu_context;
8434 	}
8435 
8436 	return NULL;
8437 }
8438 
8439 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8440 {
8441 	int cpu;
8442 
8443 	for_each_possible_cpu(cpu) {
8444 		struct perf_cpu_context *cpuctx;
8445 
8446 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8447 
8448 		if (cpuctx->unique_pmu == old_pmu)
8449 			cpuctx->unique_pmu = pmu;
8450 	}
8451 }
8452 
8453 static void free_pmu_context(struct pmu *pmu)
8454 {
8455 	struct pmu *i;
8456 
8457 	mutex_lock(&pmus_lock);
8458 	/*
8459 	 * Like a real lame refcount.
8460 	 */
8461 	list_for_each_entry(i, &pmus, entry) {
8462 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8463 			update_pmu_context(i, pmu);
8464 			goto out;
8465 		}
8466 	}
8467 
8468 	free_percpu(pmu->pmu_cpu_context);
8469 out:
8470 	mutex_unlock(&pmus_lock);
8471 }
8472 
8473 /*
8474  * Let userspace know that this PMU supports address range filtering:
8475  */
8476 static ssize_t nr_addr_filters_show(struct device *dev,
8477 				    struct device_attribute *attr,
8478 				    char *page)
8479 {
8480 	struct pmu *pmu = dev_get_drvdata(dev);
8481 
8482 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8483 }
8484 DEVICE_ATTR_RO(nr_addr_filters);
8485 
8486 static struct idr pmu_idr;
8487 
8488 static ssize_t
8489 type_show(struct device *dev, struct device_attribute *attr, char *page)
8490 {
8491 	struct pmu *pmu = dev_get_drvdata(dev);
8492 
8493 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8494 }
8495 static DEVICE_ATTR_RO(type);
8496 
8497 static ssize_t
8498 perf_event_mux_interval_ms_show(struct device *dev,
8499 				struct device_attribute *attr,
8500 				char *page)
8501 {
8502 	struct pmu *pmu = dev_get_drvdata(dev);
8503 
8504 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8505 }
8506 
8507 static DEFINE_MUTEX(mux_interval_mutex);
8508 
8509 static ssize_t
8510 perf_event_mux_interval_ms_store(struct device *dev,
8511 				 struct device_attribute *attr,
8512 				 const char *buf, size_t count)
8513 {
8514 	struct pmu *pmu = dev_get_drvdata(dev);
8515 	int timer, cpu, ret;
8516 
8517 	ret = kstrtoint(buf, 0, &timer);
8518 	if (ret)
8519 		return ret;
8520 
8521 	if (timer < 1)
8522 		return -EINVAL;
8523 
8524 	/* same value, noting to do */
8525 	if (timer == pmu->hrtimer_interval_ms)
8526 		return count;
8527 
8528 	mutex_lock(&mux_interval_mutex);
8529 	pmu->hrtimer_interval_ms = timer;
8530 
8531 	/* update all cpuctx for this PMU */
8532 	get_online_cpus();
8533 	for_each_online_cpu(cpu) {
8534 		struct perf_cpu_context *cpuctx;
8535 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8536 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8537 
8538 		cpu_function_call(cpu,
8539 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8540 	}
8541 	put_online_cpus();
8542 	mutex_unlock(&mux_interval_mutex);
8543 
8544 	return count;
8545 }
8546 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8547 
8548 static struct attribute *pmu_dev_attrs[] = {
8549 	&dev_attr_type.attr,
8550 	&dev_attr_perf_event_mux_interval_ms.attr,
8551 	NULL,
8552 };
8553 ATTRIBUTE_GROUPS(pmu_dev);
8554 
8555 static int pmu_bus_running;
8556 static struct bus_type pmu_bus = {
8557 	.name		= "event_source",
8558 	.dev_groups	= pmu_dev_groups,
8559 };
8560 
8561 static void pmu_dev_release(struct device *dev)
8562 {
8563 	kfree(dev);
8564 }
8565 
8566 static int pmu_dev_alloc(struct pmu *pmu)
8567 {
8568 	int ret = -ENOMEM;
8569 
8570 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8571 	if (!pmu->dev)
8572 		goto out;
8573 
8574 	pmu->dev->groups = pmu->attr_groups;
8575 	device_initialize(pmu->dev);
8576 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8577 	if (ret)
8578 		goto free_dev;
8579 
8580 	dev_set_drvdata(pmu->dev, pmu);
8581 	pmu->dev->bus = &pmu_bus;
8582 	pmu->dev->release = pmu_dev_release;
8583 	ret = device_add(pmu->dev);
8584 	if (ret)
8585 		goto free_dev;
8586 
8587 	/* For PMUs with address filters, throw in an extra attribute: */
8588 	if (pmu->nr_addr_filters)
8589 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8590 
8591 	if (ret)
8592 		goto del_dev;
8593 
8594 out:
8595 	return ret;
8596 
8597 del_dev:
8598 	device_del(pmu->dev);
8599 
8600 free_dev:
8601 	put_device(pmu->dev);
8602 	goto out;
8603 }
8604 
8605 static struct lock_class_key cpuctx_mutex;
8606 static struct lock_class_key cpuctx_lock;
8607 
8608 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8609 {
8610 	int cpu, ret;
8611 
8612 	mutex_lock(&pmus_lock);
8613 	ret = -ENOMEM;
8614 	pmu->pmu_disable_count = alloc_percpu(int);
8615 	if (!pmu->pmu_disable_count)
8616 		goto unlock;
8617 
8618 	pmu->type = -1;
8619 	if (!name)
8620 		goto skip_type;
8621 	pmu->name = name;
8622 
8623 	if (type < 0) {
8624 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8625 		if (type < 0) {
8626 			ret = type;
8627 			goto free_pdc;
8628 		}
8629 	}
8630 	pmu->type = type;
8631 
8632 	if (pmu_bus_running) {
8633 		ret = pmu_dev_alloc(pmu);
8634 		if (ret)
8635 			goto free_idr;
8636 	}
8637 
8638 skip_type:
8639 	if (pmu->task_ctx_nr == perf_hw_context) {
8640 		static int hw_context_taken = 0;
8641 
8642 		/*
8643 		 * Other than systems with heterogeneous CPUs, it never makes
8644 		 * sense for two PMUs to share perf_hw_context. PMUs which are
8645 		 * uncore must use perf_invalid_context.
8646 		 */
8647 		if (WARN_ON_ONCE(hw_context_taken &&
8648 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8649 			pmu->task_ctx_nr = perf_invalid_context;
8650 
8651 		hw_context_taken = 1;
8652 	}
8653 
8654 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8655 	if (pmu->pmu_cpu_context)
8656 		goto got_cpu_context;
8657 
8658 	ret = -ENOMEM;
8659 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8660 	if (!pmu->pmu_cpu_context)
8661 		goto free_dev;
8662 
8663 	for_each_possible_cpu(cpu) {
8664 		struct perf_cpu_context *cpuctx;
8665 
8666 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8667 		__perf_event_init_context(&cpuctx->ctx);
8668 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8669 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8670 		cpuctx->ctx.pmu = pmu;
8671 
8672 		__perf_mux_hrtimer_init(cpuctx, cpu);
8673 
8674 		cpuctx->unique_pmu = pmu;
8675 	}
8676 
8677 got_cpu_context:
8678 	if (!pmu->start_txn) {
8679 		if (pmu->pmu_enable) {
8680 			/*
8681 			 * If we have pmu_enable/pmu_disable calls, install
8682 			 * transaction stubs that use that to try and batch
8683 			 * hardware accesses.
8684 			 */
8685 			pmu->start_txn  = perf_pmu_start_txn;
8686 			pmu->commit_txn = perf_pmu_commit_txn;
8687 			pmu->cancel_txn = perf_pmu_cancel_txn;
8688 		} else {
8689 			pmu->start_txn  = perf_pmu_nop_txn;
8690 			pmu->commit_txn = perf_pmu_nop_int;
8691 			pmu->cancel_txn = perf_pmu_nop_void;
8692 		}
8693 	}
8694 
8695 	if (!pmu->pmu_enable) {
8696 		pmu->pmu_enable  = perf_pmu_nop_void;
8697 		pmu->pmu_disable = perf_pmu_nop_void;
8698 	}
8699 
8700 	if (!pmu->event_idx)
8701 		pmu->event_idx = perf_event_idx_default;
8702 
8703 	list_add_rcu(&pmu->entry, &pmus);
8704 	atomic_set(&pmu->exclusive_cnt, 0);
8705 	ret = 0;
8706 unlock:
8707 	mutex_unlock(&pmus_lock);
8708 
8709 	return ret;
8710 
8711 free_dev:
8712 	device_del(pmu->dev);
8713 	put_device(pmu->dev);
8714 
8715 free_idr:
8716 	if (pmu->type >= PERF_TYPE_MAX)
8717 		idr_remove(&pmu_idr, pmu->type);
8718 
8719 free_pdc:
8720 	free_percpu(pmu->pmu_disable_count);
8721 	goto unlock;
8722 }
8723 EXPORT_SYMBOL_GPL(perf_pmu_register);
8724 
8725 void perf_pmu_unregister(struct pmu *pmu)
8726 {
8727 	mutex_lock(&pmus_lock);
8728 	list_del_rcu(&pmu->entry);
8729 	mutex_unlock(&pmus_lock);
8730 
8731 	/*
8732 	 * We dereference the pmu list under both SRCU and regular RCU, so
8733 	 * synchronize against both of those.
8734 	 */
8735 	synchronize_srcu(&pmus_srcu);
8736 	synchronize_rcu();
8737 
8738 	free_percpu(pmu->pmu_disable_count);
8739 	if (pmu->type >= PERF_TYPE_MAX)
8740 		idr_remove(&pmu_idr, pmu->type);
8741 	if (pmu->nr_addr_filters)
8742 		device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8743 	device_del(pmu->dev);
8744 	put_device(pmu->dev);
8745 	free_pmu_context(pmu);
8746 }
8747 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8748 
8749 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8750 {
8751 	struct perf_event_context *ctx = NULL;
8752 	int ret;
8753 
8754 	if (!try_module_get(pmu->module))
8755 		return -ENODEV;
8756 
8757 	if (event->group_leader != event) {
8758 		/*
8759 		 * This ctx->mutex can nest when we're called through
8760 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
8761 		 */
8762 		ctx = perf_event_ctx_lock_nested(event->group_leader,
8763 						 SINGLE_DEPTH_NESTING);
8764 		BUG_ON(!ctx);
8765 	}
8766 
8767 	event->pmu = pmu;
8768 	ret = pmu->event_init(event);
8769 
8770 	if (ctx)
8771 		perf_event_ctx_unlock(event->group_leader, ctx);
8772 
8773 	if (ret)
8774 		module_put(pmu->module);
8775 
8776 	return ret;
8777 }
8778 
8779 static struct pmu *perf_init_event(struct perf_event *event)
8780 {
8781 	struct pmu *pmu = NULL;
8782 	int idx;
8783 	int ret;
8784 
8785 	idx = srcu_read_lock(&pmus_srcu);
8786 
8787 	rcu_read_lock();
8788 	pmu = idr_find(&pmu_idr, event->attr.type);
8789 	rcu_read_unlock();
8790 	if (pmu) {
8791 		ret = perf_try_init_event(pmu, event);
8792 		if (ret)
8793 			pmu = ERR_PTR(ret);
8794 		goto unlock;
8795 	}
8796 
8797 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8798 		ret = perf_try_init_event(pmu, event);
8799 		if (!ret)
8800 			goto unlock;
8801 
8802 		if (ret != -ENOENT) {
8803 			pmu = ERR_PTR(ret);
8804 			goto unlock;
8805 		}
8806 	}
8807 	pmu = ERR_PTR(-ENOENT);
8808 unlock:
8809 	srcu_read_unlock(&pmus_srcu, idx);
8810 
8811 	return pmu;
8812 }
8813 
8814 static void attach_sb_event(struct perf_event *event)
8815 {
8816 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8817 
8818 	raw_spin_lock(&pel->lock);
8819 	list_add_rcu(&event->sb_list, &pel->list);
8820 	raw_spin_unlock(&pel->lock);
8821 }
8822 
8823 /*
8824  * We keep a list of all !task (and therefore per-cpu) events
8825  * that need to receive side-band records.
8826  *
8827  * This avoids having to scan all the various PMU per-cpu contexts
8828  * looking for them.
8829  */
8830 static void account_pmu_sb_event(struct perf_event *event)
8831 {
8832 	if (is_sb_event(event))
8833 		attach_sb_event(event);
8834 }
8835 
8836 static void account_event_cpu(struct perf_event *event, int cpu)
8837 {
8838 	if (event->parent)
8839 		return;
8840 
8841 	if (is_cgroup_event(event))
8842 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8843 }
8844 
8845 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8846 static void account_freq_event_nohz(void)
8847 {
8848 #ifdef CONFIG_NO_HZ_FULL
8849 	/* Lock so we don't race with concurrent unaccount */
8850 	spin_lock(&nr_freq_lock);
8851 	if (atomic_inc_return(&nr_freq_events) == 1)
8852 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8853 	spin_unlock(&nr_freq_lock);
8854 #endif
8855 }
8856 
8857 static void account_freq_event(void)
8858 {
8859 	if (tick_nohz_full_enabled())
8860 		account_freq_event_nohz();
8861 	else
8862 		atomic_inc(&nr_freq_events);
8863 }
8864 
8865 
8866 static void account_event(struct perf_event *event)
8867 {
8868 	bool inc = false;
8869 
8870 	if (event->parent)
8871 		return;
8872 
8873 	if (event->attach_state & PERF_ATTACH_TASK)
8874 		inc = true;
8875 	if (event->attr.mmap || event->attr.mmap_data)
8876 		atomic_inc(&nr_mmap_events);
8877 	if (event->attr.comm)
8878 		atomic_inc(&nr_comm_events);
8879 	if (event->attr.task)
8880 		atomic_inc(&nr_task_events);
8881 	if (event->attr.freq)
8882 		account_freq_event();
8883 	if (event->attr.context_switch) {
8884 		atomic_inc(&nr_switch_events);
8885 		inc = true;
8886 	}
8887 	if (has_branch_stack(event))
8888 		inc = true;
8889 	if (is_cgroup_event(event))
8890 		inc = true;
8891 
8892 	if (inc) {
8893 		if (atomic_inc_not_zero(&perf_sched_count))
8894 			goto enabled;
8895 
8896 		mutex_lock(&perf_sched_mutex);
8897 		if (!atomic_read(&perf_sched_count)) {
8898 			static_branch_enable(&perf_sched_events);
8899 			/*
8900 			 * Guarantee that all CPUs observe they key change and
8901 			 * call the perf scheduling hooks before proceeding to
8902 			 * install events that need them.
8903 			 */
8904 			synchronize_sched();
8905 		}
8906 		/*
8907 		 * Now that we have waited for the sync_sched(), allow further
8908 		 * increments to by-pass the mutex.
8909 		 */
8910 		atomic_inc(&perf_sched_count);
8911 		mutex_unlock(&perf_sched_mutex);
8912 	}
8913 enabled:
8914 
8915 	account_event_cpu(event, event->cpu);
8916 
8917 	account_pmu_sb_event(event);
8918 }
8919 
8920 /*
8921  * Allocate and initialize a event structure
8922  */
8923 static struct perf_event *
8924 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8925 		 struct task_struct *task,
8926 		 struct perf_event *group_leader,
8927 		 struct perf_event *parent_event,
8928 		 perf_overflow_handler_t overflow_handler,
8929 		 void *context, int cgroup_fd)
8930 {
8931 	struct pmu *pmu;
8932 	struct perf_event *event;
8933 	struct hw_perf_event *hwc;
8934 	long err = -EINVAL;
8935 
8936 	if ((unsigned)cpu >= nr_cpu_ids) {
8937 		if (!task || cpu != -1)
8938 			return ERR_PTR(-EINVAL);
8939 	}
8940 
8941 	event = kzalloc(sizeof(*event), GFP_KERNEL);
8942 	if (!event)
8943 		return ERR_PTR(-ENOMEM);
8944 
8945 	/*
8946 	 * Single events are their own group leaders, with an
8947 	 * empty sibling list:
8948 	 */
8949 	if (!group_leader)
8950 		group_leader = event;
8951 
8952 	mutex_init(&event->child_mutex);
8953 	INIT_LIST_HEAD(&event->child_list);
8954 
8955 	INIT_LIST_HEAD(&event->group_entry);
8956 	INIT_LIST_HEAD(&event->event_entry);
8957 	INIT_LIST_HEAD(&event->sibling_list);
8958 	INIT_LIST_HEAD(&event->rb_entry);
8959 	INIT_LIST_HEAD(&event->active_entry);
8960 	INIT_LIST_HEAD(&event->addr_filters.list);
8961 	INIT_HLIST_NODE(&event->hlist_entry);
8962 
8963 
8964 	init_waitqueue_head(&event->waitq);
8965 	init_irq_work(&event->pending, perf_pending_event);
8966 
8967 	mutex_init(&event->mmap_mutex);
8968 	raw_spin_lock_init(&event->addr_filters.lock);
8969 
8970 	atomic_long_set(&event->refcount, 1);
8971 	event->cpu		= cpu;
8972 	event->attr		= *attr;
8973 	event->group_leader	= group_leader;
8974 	event->pmu		= NULL;
8975 	event->oncpu		= -1;
8976 
8977 	event->parent		= parent_event;
8978 
8979 	event->ns		= get_pid_ns(task_active_pid_ns(current));
8980 	event->id		= atomic64_inc_return(&perf_event_id);
8981 
8982 	event->state		= PERF_EVENT_STATE_INACTIVE;
8983 
8984 	if (task) {
8985 		event->attach_state = PERF_ATTACH_TASK;
8986 		/*
8987 		 * XXX pmu::event_init needs to know what task to account to
8988 		 * and we cannot use the ctx information because we need the
8989 		 * pmu before we get a ctx.
8990 		 */
8991 		event->hw.target = task;
8992 	}
8993 
8994 	event->clock = &local_clock;
8995 	if (parent_event)
8996 		event->clock = parent_event->clock;
8997 
8998 	if (!overflow_handler && parent_event) {
8999 		overflow_handler = parent_event->overflow_handler;
9000 		context = parent_event->overflow_handler_context;
9001 	}
9002 
9003 	if (overflow_handler) {
9004 		event->overflow_handler	= overflow_handler;
9005 		event->overflow_handler_context = context;
9006 	} else if (is_write_backward(event)){
9007 		event->overflow_handler = perf_event_output_backward;
9008 		event->overflow_handler_context = NULL;
9009 	} else {
9010 		event->overflow_handler = perf_event_output_forward;
9011 		event->overflow_handler_context = NULL;
9012 	}
9013 
9014 	perf_event__state_init(event);
9015 
9016 	pmu = NULL;
9017 
9018 	hwc = &event->hw;
9019 	hwc->sample_period = attr->sample_period;
9020 	if (attr->freq && attr->sample_freq)
9021 		hwc->sample_period = 1;
9022 	hwc->last_period = hwc->sample_period;
9023 
9024 	local64_set(&hwc->period_left, hwc->sample_period);
9025 
9026 	/*
9027 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9028 	 */
9029 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9030 		goto err_ns;
9031 
9032 	if (!has_branch_stack(event))
9033 		event->attr.branch_sample_type = 0;
9034 
9035 	if (cgroup_fd != -1) {
9036 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9037 		if (err)
9038 			goto err_ns;
9039 	}
9040 
9041 	pmu = perf_init_event(event);
9042 	if (!pmu)
9043 		goto err_ns;
9044 	else if (IS_ERR(pmu)) {
9045 		err = PTR_ERR(pmu);
9046 		goto err_ns;
9047 	}
9048 
9049 	err = exclusive_event_init(event);
9050 	if (err)
9051 		goto err_pmu;
9052 
9053 	if (has_addr_filter(event)) {
9054 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9055 						   sizeof(unsigned long),
9056 						   GFP_KERNEL);
9057 		if (!event->addr_filters_offs)
9058 			goto err_per_task;
9059 
9060 		/* force hw sync on the address filters */
9061 		event->addr_filters_gen = 1;
9062 	}
9063 
9064 	if (!event->parent) {
9065 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9066 			err = get_callchain_buffers(attr->sample_max_stack);
9067 			if (err)
9068 				goto err_addr_filters;
9069 		}
9070 	}
9071 
9072 	/* symmetric to unaccount_event() in _free_event() */
9073 	account_event(event);
9074 
9075 	return event;
9076 
9077 err_addr_filters:
9078 	kfree(event->addr_filters_offs);
9079 
9080 err_per_task:
9081 	exclusive_event_destroy(event);
9082 
9083 err_pmu:
9084 	if (event->destroy)
9085 		event->destroy(event);
9086 	module_put(pmu->module);
9087 err_ns:
9088 	if (is_cgroup_event(event))
9089 		perf_detach_cgroup(event);
9090 	if (event->ns)
9091 		put_pid_ns(event->ns);
9092 	kfree(event);
9093 
9094 	return ERR_PTR(err);
9095 }
9096 
9097 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9098 			  struct perf_event_attr *attr)
9099 {
9100 	u32 size;
9101 	int ret;
9102 
9103 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9104 		return -EFAULT;
9105 
9106 	/*
9107 	 * zero the full structure, so that a short copy will be nice.
9108 	 */
9109 	memset(attr, 0, sizeof(*attr));
9110 
9111 	ret = get_user(size, &uattr->size);
9112 	if (ret)
9113 		return ret;
9114 
9115 	if (size > PAGE_SIZE)	/* silly large */
9116 		goto err_size;
9117 
9118 	if (!size)		/* abi compat */
9119 		size = PERF_ATTR_SIZE_VER0;
9120 
9121 	if (size < PERF_ATTR_SIZE_VER0)
9122 		goto err_size;
9123 
9124 	/*
9125 	 * If we're handed a bigger struct than we know of,
9126 	 * ensure all the unknown bits are 0 - i.e. new
9127 	 * user-space does not rely on any kernel feature
9128 	 * extensions we dont know about yet.
9129 	 */
9130 	if (size > sizeof(*attr)) {
9131 		unsigned char __user *addr;
9132 		unsigned char __user *end;
9133 		unsigned char val;
9134 
9135 		addr = (void __user *)uattr + sizeof(*attr);
9136 		end  = (void __user *)uattr + size;
9137 
9138 		for (; addr < end; addr++) {
9139 			ret = get_user(val, addr);
9140 			if (ret)
9141 				return ret;
9142 			if (val)
9143 				goto err_size;
9144 		}
9145 		size = sizeof(*attr);
9146 	}
9147 
9148 	ret = copy_from_user(attr, uattr, size);
9149 	if (ret)
9150 		return -EFAULT;
9151 
9152 	if (attr->__reserved_1)
9153 		return -EINVAL;
9154 
9155 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9156 		return -EINVAL;
9157 
9158 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9159 		return -EINVAL;
9160 
9161 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9162 		u64 mask = attr->branch_sample_type;
9163 
9164 		/* only using defined bits */
9165 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9166 			return -EINVAL;
9167 
9168 		/* at least one branch bit must be set */
9169 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9170 			return -EINVAL;
9171 
9172 		/* propagate priv level, when not set for branch */
9173 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9174 
9175 			/* exclude_kernel checked on syscall entry */
9176 			if (!attr->exclude_kernel)
9177 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9178 
9179 			if (!attr->exclude_user)
9180 				mask |= PERF_SAMPLE_BRANCH_USER;
9181 
9182 			if (!attr->exclude_hv)
9183 				mask |= PERF_SAMPLE_BRANCH_HV;
9184 			/*
9185 			 * adjust user setting (for HW filter setup)
9186 			 */
9187 			attr->branch_sample_type = mask;
9188 		}
9189 		/* privileged levels capture (kernel, hv): check permissions */
9190 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9191 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9192 			return -EACCES;
9193 	}
9194 
9195 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9196 		ret = perf_reg_validate(attr->sample_regs_user);
9197 		if (ret)
9198 			return ret;
9199 	}
9200 
9201 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9202 		if (!arch_perf_have_user_stack_dump())
9203 			return -ENOSYS;
9204 
9205 		/*
9206 		 * We have __u32 type for the size, but so far
9207 		 * we can only use __u16 as maximum due to the
9208 		 * __u16 sample size limit.
9209 		 */
9210 		if (attr->sample_stack_user >= USHRT_MAX)
9211 			ret = -EINVAL;
9212 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9213 			ret = -EINVAL;
9214 	}
9215 
9216 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9217 		ret = perf_reg_validate(attr->sample_regs_intr);
9218 out:
9219 	return ret;
9220 
9221 err_size:
9222 	put_user(sizeof(*attr), &uattr->size);
9223 	ret = -E2BIG;
9224 	goto out;
9225 }
9226 
9227 static int
9228 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9229 {
9230 	struct ring_buffer *rb = NULL;
9231 	int ret = -EINVAL;
9232 
9233 	if (!output_event)
9234 		goto set;
9235 
9236 	/* don't allow circular references */
9237 	if (event == output_event)
9238 		goto out;
9239 
9240 	/*
9241 	 * Don't allow cross-cpu buffers
9242 	 */
9243 	if (output_event->cpu != event->cpu)
9244 		goto out;
9245 
9246 	/*
9247 	 * If its not a per-cpu rb, it must be the same task.
9248 	 */
9249 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9250 		goto out;
9251 
9252 	/*
9253 	 * Mixing clocks in the same buffer is trouble you don't need.
9254 	 */
9255 	if (output_event->clock != event->clock)
9256 		goto out;
9257 
9258 	/*
9259 	 * Either writing ring buffer from beginning or from end.
9260 	 * Mixing is not allowed.
9261 	 */
9262 	if (is_write_backward(output_event) != is_write_backward(event))
9263 		goto out;
9264 
9265 	/*
9266 	 * If both events generate aux data, they must be on the same PMU
9267 	 */
9268 	if (has_aux(event) && has_aux(output_event) &&
9269 	    event->pmu != output_event->pmu)
9270 		goto out;
9271 
9272 set:
9273 	mutex_lock(&event->mmap_mutex);
9274 	/* Can't redirect output if we've got an active mmap() */
9275 	if (atomic_read(&event->mmap_count))
9276 		goto unlock;
9277 
9278 	if (output_event) {
9279 		/* get the rb we want to redirect to */
9280 		rb = ring_buffer_get(output_event);
9281 		if (!rb)
9282 			goto unlock;
9283 	}
9284 
9285 	ring_buffer_attach(event, rb);
9286 
9287 	ret = 0;
9288 unlock:
9289 	mutex_unlock(&event->mmap_mutex);
9290 
9291 out:
9292 	return ret;
9293 }
9294 
9295 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9296 {
9297 	if (b < a)
9298 		swap(a, b);
9299 
9300 	mutex_lock(a);
9301 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9302 }
9303 
9304 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9305 {
9306 	bool nmi_safe = false;
9307 
9308 	switch (clk_id) {
9309 	case CLOCK_MONOTONIC:
9310 		event->clock = &ktime_get_mono_fast_ns;
9311 		nmi_safe = true;
9312 		break;
9313 
9314 	case CLOCK_MONOTONIC_RAW:
9315 		event->clock = &ktime_get_raw_fast_ns;
9316 		nmi_safe = true;
9317 		break;
9318 
9319 	case CLOCK_REALTIME:
9320 		event->clock = &ktime_get_real_ns;
9321 		break;
9322 
9323 	case CLOCK_BOOTTIME:
9324 		event->clock = &ktime_get_boot_ns;
9325 		break;
9326 
9327 	case CLOCK_TAI:
9328 		event->clock = &ktime_get_tai_ns;
9329 		break;
9330 
9331 	default:
9332 		return -EINVAL;
9333 	}
9334 
9335 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9336 		return -EINVAL;
9337 
9338 	return 0;
9339 }
9340 
9341 /**
9342  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9343  *
9344  * @attr_uptr:	event_id type attributes for monitoring/sampling
9345  * @pid:		target pid
9346  * @cpu:		target cpu
9347  * @group_fd:		group leader event fd
9348  */
9349 SYSCALL_DEFINE5(perf_event_open,
9350 		struct perf_event_attr __user *, attr_uptr,
9351 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9352 {
9353 	struct perf_event *group_leader = NULL, *output_event = NULL;
9354 	struct perf_event *event, *sibling;
9355 	struct perf_event_attr attr;
9356 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9357 	struct file *event_file = NULL;
9358 	struct fd group = {NULL, 0};
9359 	struct task_struct *task = NULL;
9360 	struct pmu *pmu;
9361 	int event_fd;
9362 	int move_group = 0;
9363 	int err;
9364 	int f_flags = O_RDWR;
9365 	int cgroup_fd = -1;
9366 
9367 	/* for future expandability... */
9368 	if (flags & ~PERF_FLAG_ALL)
9369 		return -EINVAL;
9370 
9371 	err = perf_copy_attr(attr_uptr, &attr);
9372 	if (err)
9373 		return err;
9374 
9375 	if (!attr.exclude_kernel) {
9376 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9377 			return -EACCES;
9378 	}
9379 
9380 	if (attr.freq) {
9381 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9382 			return -EINVAL;
9383 	} else {
9384 		if (attr.sample_period & (1ULL << 63))
9385 			return -EINVAL;
9386 	}
9387 
9388 	if (!attr.sample_max_stack)
9389 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9390 
9391 	/*
9392 	 * In cgroup mode, the pid argument is used to pass the fd
9393 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9394 	 * designates the cpu on which to monitor threads from that
9395 	 * cgroup.
9396 	 */
9397 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9398 		return -EINVAL;
9399 
9400 	if (flags & PERF_FLAG_FD_CLOEXEC)
9401 		f_flags |= O_CLOEXEC;
9402 
9403 	event_fd = get_unused_fd_flags(f_flags);
9404 	if (event_fd < 0)
9405 		return event_fd;
9406 
9407 	if (group_fd != -1) {
9408 		err = perf_fget_light(group_fd, &group);
9409 		if (err)
9410 			goto err_fd;
9411 		group_leader = group.file->private_data;
9412 		if (flags & PERF_FLAG_FD_OUTPUT)
9413 			output_event = group_leader;
9414 		if (flags & PERF_FLAG_FD_NO_GROUP)
9415 			group_leader = NULL;
9416 	}
9417 
9418 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9419 		task = find_lively_task_by_vpid(pid);
9420 		if (IS_ERR(task)) {
9421 			err = PTR_ERR(task);
9422 			goto err_group_fd;
9423 		}
9424 	}
9425 
9426 	if (task && group_leader &&
9427 	    group_leader->attr.inherit != attr.inherit) {
9428 		err = -EINVAL;
9429 		goto err_task;
9430 	}
9431 
9432 	get_online_cpus();
9433 
9434 	if (task) {
9435 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9436 		if (err)
9437 			goto err_cpus;
9438 
9439 		/*
9440 		 * Reuse ptrace permission checks for now.
9441 		 *
9442 		 * We must hold cred_guard_mutex across this and any potential
9443 		 * perf_install_in_context() call for this new event to
9444 		 * serialize against exec() altering our credentials (and the
9445 		 * perf_event_exit_task() that could imply).
9446 		 */
9447 		err = -EACCES;
9448 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9449 			goto err_cred;
9450 	}
9451 
9452 	if (flags & PERF_FLAG_PID_CGROUP)
9453 		cgroup_fd = pid;
9454 
9455 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9456 				 NULL, NULL, cgroup_fd);
9457 	if (IS_ERR(event)) {
9458 		err = PTR_ERR(event);
9459 		goto err_cred;
9460 	}
9461 
9462 	if (is_sampling_event(event)) {
9463 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9464 			err = -EOPNOTSUPP;
9465 			goto err_alloc;
9466 		}
9467 	}
9468 
9469 	/*
9470 	 * Special case software events and allow them to be part of
9471 	 * any hardware group.
9472 	 */
9473 	pmu = event->pmu;
9474 
9475 	if (attr.use_clockid) {
9476 		err = perf_event_set_clock(event, attr.clockid);
9477 		if (err)
9478 			goto err_alloc;
9479 	}
9480 
9481 	if (group_leader &&
9482 	    (is_software_event(event) != is_software_event(group_leader))) {
9483 		if (is_software_event(event)) {
9484 			/*
9485 			 * If event and group_leader are not both a software
9486 			 * event, and event is, then group leader is not.
9487 			 *
9488 			 * Allow the addition of software events to !software
9489 			 * groups, this is safe because software events never
9490 			 * fail to schedule.
9491 			 */
9492 			pmu = group_leader->pmu;
9493 		} else if (is_software_event(group_leader) &&
9494 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9495 			/*
9496 			 * In case the group is a pure software group, and we
9497 			 * try to add a hardware event, move the whole group to
9498 			 * the hardware context.
9499 			 */
9500 			move_group = 1;
9501 		}
9502 	}
9503 
9504 	/*
9505 	 * Get the target context (task or percpu):
9506 	 */
9507 	ctx = find_get_context(pmu, task, event);
9508 	if (IS_ERR(ctx)) {
9509 		err = PTR_ERR(ctx);
9510 		goto err_alloc;
9511 	}
9512 
9513 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9514 		err = -EBUSY;
9515 		goto err_context;
9516 	}
9517 
9518 	/*
9519 	 * Look up the group leader (we will attach this event to it):
9520 	 */
9521 	if (group_leader) {
9522 		err = -EINVAL;
9523 
9524 		/*
9525 		 * Do not allow a recursive hierarchy (this new sibling
9526 		 * becoming part of another group-sibling):
9527 		 */
9528 		if (group_leader->group_leader != group_leader)
9529 			goto err_context;
9530 
9531 		/* All events in a group should have the same clock */
9532 		if (group_leader->clock != event->clock)
9533 			goto err_context;
9534 
9535 		/*
9536 		 * Do not allow to attach to a group in a different
9537 		 * task or CPU context:
9538 		 */
9539 		if (move_group) {
9540 			/*
9541 			 * Make sure we're both on the same task, or both
9542 			 * per-cpu events.
9543 			 */
9544 			if (group_leader->ctx->task != ctx->task)
9545 				goto err_context;
9546 
9547 			/*
9548 			 * Make sure we're both events for the same CPU;
9549 			 * grouping events for different CPUs is broken; since
9550 			 * you can never concurrently schedule them anyhow.
9551 			 */
9552 			if (group_leader->cpu != event->cpu)
9553 				goto err_context;
9554 		} else {
9555 			if (group_leader->ctx != ctx)
9556 				goto err_context;
9557 		}
9558 
9559 		/*
9560 		 * Only a group leader can be exclusive or pinned
9561 		 */
9562 		if (attr.exclusive || attr.pinned)
9563 			goto err_context;
9564 	}
9565 
9566 	if (output_event) {
9567 		err = perf_event_set_output(event, output_event);
9568 		if (err)
9569 			goto err_context;
9570 	}
9571 
9572 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9573 					f_flags);
9574 	if (IS_ERR(event_file)) {
9575 		err = PTR_ERR(event_file);
9576 		event_file = NULL;
9577 		goto err_context;
9578 	}
9579 
9580 	if (move_group) {
9581 		gctx = group_leader->ctx;
9582 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
9583 		if (gctx->task == TASK_TOMBSTONE) {
9584 			err = -ESRCH;
9585 			goto err_locked;
9586 		}
9587 	} else {
9588 		mutex_lock(&ctx->mutex);
9589 	}
9590 
9591 	if (ctx->task == TASK_TOMBSTONE) {
9592 		err = -ESRCH;
9593 		goto err_locked;
9594 	}
9595 
9596 	if (!perf_event_validate_size(event)) {
9597 		err = -E2BIG;
9598 		goto err_locked;
9599 	}
9600 
9601 	/*
9602 	 * Must be under the same ctx::mutex as perf_install_in_context(),
9603 	 * because we need to serialize with concurrent event creation.
9604 	 */
9605 	if (!exclusive_event_installable(event, ctx)) {
9606 		/* exclusive and group stuff are assumed mutually exclusive */
9607 		WARN_ON_ONCE(move_group);
9608 
9609 		err = -EBUSY;
9610 		goto err_locked;
9611 	}
9612 
9613 	WARN_ON_ONCE(ctx->parent_ctx);
9614 
9615 	/*
9616 	 * This is the point on no return; we cannot fail hereafter. This is
9617 	 * where we start modifying current state.
9618 	 */
9619 
9620 	if (move_group) {
9621 		/*
9622 		 * See perf_event_ctx_lock() for comments on the details
9623 		 * of swizzling perf_event::ctx.
9624 		 */
9625 		perf_remove_from_context(group_leader, 0);
9626 
9627 		list_for_each_entry(sibling, &group_leader->sibling_list,
9628 				    group_entry) {
9629 			perf_remove_from_context(sibling, 0);
9630 			put_ctx(gctx);
9631 		}
9632 
9633 		/*
9634 		 * Wait for everybody to stop referencing the events through
9635 		 * the old lists, before installing it on new lists.
9636 		 */
9637 		synchronize_rcu();
9638 
9639 		/*
9640 		 * Install the group siblings before the group leader.
9641 		 *
9642 		 * Because a group leader will try and install the entire group
9643 		 * (through the sibling list, which is still in-tact), we can
9644 		 * end up with siblings installed in the wrong context.
9645 		 *
9646 		 * By installing siblings first we NO-OP because they're not
9647 		 * reachable through the group lists.
9648 		 */
9649 		list_for_each_entry(sibling, &group_leader->sibling_list,
9650 				    group_entry) {
9651 			perf_event__state_init(sibling);
9652 			perf_install_in_context(ctx, sibling, sibling->cpu);
9653 			get_ctx(ctx);
9654 		}
9655 
9656 		/*
9657 		 * Removing from the context ends up with disabled
9658 		 * event. What we want here is event in the initial
9659 		 * startup state, ready to be add into new context.
9660 		 */
9661 		perf_event__state_init(group_leader);
9662 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
9663 		get_ctx(ctx);
9664 
9665 		/*
9666 		 * Now that all events are installed in @ctx, nothing
9667 		 * references @gctx anymore, so drop the last reference we have
9668 		 * on it.
9669 		 */
9670 		put_ctx(gctx);
9671 	}
9672 
9673 	/*
9674 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
9675 	 * that we're serialized against further additions and before
9676 	 * perf_install_in_context() which is the point the event is active and
9677 	 * can use these values.
9678 	 */
9679 	perf_event__header_size(event);
9680 	perf_event__id_header_size(event);
9681 
9682 	event->owner = current;
9683 
9684 	perf_install_in_context(ctx, event, event->cpu);
9685 	perf_unpin_context(ctx);
9686 
9687 	if (move_group)
9688 		mutex_unlock(&gctx->mutex);
9689 	mutex_unlock(&ctx->mutex);
9690 
9691 	if (task) {
9692 		mutex_unlock(&task->signal->cred_guard_mutex);
9693 		put_task_struct(task);
9694 	}
9695 
9696 	put_online_cpus();
9697 
9698 	mutex_lock(&current->perf_event_mutex);
9699 	list_add_tail(&event->owner_entry, &current->perf_event_list);
9700 	mutex_unlock(&current->perf_event_mutex);
9701 
9702 	/*
9703 	 * Drop the reference on the group_event after placing the
9704 	 * new event on the sibling_list. This ensures destruction
9705 	 * of the group leader will find the pointer to itself in
9706 	 * perf_group_detach().
9707 	 */
9708 	fdput(group);
9709 	fd_install(event_fd, event_file);
9710 	return event_fd;
9711 
9712 err_locked:
9713 	if (move_group)
9714 		mutex_unlock(&gctx->mutex);
9715 	mutex_unlock(&ctx->mutex);
9716 /* err_file: */
9717 	fput(event_file);
9718 err_context:
9719 	perf_unpin_context(ctx);
9720 	put_ctx(ctx);
9721 err_alloc:
9722 	/*
9723 	 * If event_file is set, the fput() above will have called ->release()
9724 	 * and that will take care of freeing the event.
9725 	 */
9726 	if (!event_file)
9727 		free_event(event);
9728 err_cred:
9729 	if (task)
9730 		mutex_unlock(&task->signal->cred_guard_mutex);
9731 err_cpus:
9732 	put_online_cpus();
9733 err_task:
9734 	if (task)
9735 		put_task_struct(task);
9736 err_group_fd:
9737 	fdput(group);
9738 err_fd:
9739 	put_unused_fd(event_fd);
9740 	return err;
9741 }
9742 
9743 /**
9744  * perf_event_create_kernel_counter
9745  *
9746  * @attr: attributes of the counter to create
9747  * @cpu: cpu in which the counter is bound
9748  * @task: task to profile (NULL for percpu)
9749  */
9750 struct perf_event *
9751 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9752 				 struct task_struct *task,
9753 				 perf_overflow_handler_t overflow_handler,
9754 				 void *context)
9755 {
9756 	struct perf_event_context *ctx;
9757 	struct perf_event *event;
9758 	int err;
9759 
9760 	/*
9761 	 * Get the target context (task or percpu):
9762 	 */
9763 
9764 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9765 				 overflow_handler, context, -1);
9766 	if (IS_ERR(event)) {
9767 		err = PTR_ERR(event);
9768 		goto err;
9769 	}
9770 
9771 	/* Mark owner so we could distinguish it from user events. */
9772 	event->owner = TASK_TOMBSTONE;
9773 
9774 	ctx = find_get_context(event->pmu, task, event);
9775 	if (IS_ERR(ctx)) {
9776 		err = PTR_ERR(ctx);
9777 		goto err_free;
9778 	}
9779 
9780 	WARN_ON_ONCE(ctx->parent_ctx);
9781 	mutex_lock(&ctx->mutex);
9782 	if (ctx->task == TASK_TOMBSTONE) {
9783 		err = -ESRCH;
9784 		goto err_unlock;
9785 	}
9786 
9787 	if (!exclusive_event_installable(event, ctx)) {
9788 		err = -EBUSY;
9789 		goto err_unlock;
9790 	}
9791 
9792 	perf_install_in_context(ctx, event, cpu);
9793 	perf_unpin_context(ctx);
9794 	mutex_unlock(&ctx->mutex);
9795 
9796 	return event;
9797 
9798 err_unlock:
9799 	mutex_unlock(&ctx->mutex);
9800 	perf_unpin_context(ctx);
9801 	put_ctx(ctx);
9802 err_free:
9803 	free_event(event);
9804 err:
9805 	return ERR_PTR(err);
9806 }
9807 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9808 
9809 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9810 {
9811 	struct perf_event_context *src_ctx;
9812 	struct perf_event_context *dst_ctx;
9813 	struct perf_event *event, *tmp;
9814 	LIST_HEAD(events);
9815 
9816 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9817 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9818 
9819 	/*
9820 	 * See perf_event_ctx_lock() for comments on the details
9821 	 * of swizzling perf_event::ctx.
9822 	 */
9823 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9824 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9825 				 event_entry) {
9826 		perf_remove_from_context(event, 0);
9827 		unaccount_event_cpu(event, src_cpu);
9828 		put_ctx(src_ctx);
9829 		list_add(&event->migrate_entry, &events);
9830 	}
9831 
9832 	/*
9833 	 * Wait for the events to quiesce before re-instating them.
9834 	 */
9835 	synchronize_rcu();
9836 
9837 	/*
9838 	 * Re-instate events in 2 passes.
9839 	 *
9840 	 * Skip over group leaders and only install siblings on this first
9841 	 * pass, siblings will not get enabled without a leader, however a
9842 	 * leader will enable its siblings, even if those are still on the old
9843 	 * context.
9844 	 */
9845 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9846 		if (event->group_leader == event)
9847 			continue;
9848 
9849 		list_del(&event->migrate_entry);
9850 		if (event->state >= PERF_EVENT_STATE_OFF)
9851 			event->state = PERF_EVENT_STATE_INACTIVE;
9852 		account_event_cpu(event, dst_cpu);
9853 		perf_install_in_context(dst_ctx, event, dst_cpu);
9854 		get_ctx(dst_ctx);
9855 	}
9856 
9857 	/*
9858 	 * Once all the siblings are setup properly, install the group leaders
9859 	 * to make it go.
9860 	 */
9861 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9862 		list_del(&event->migrate_entry);
9863 		if (event->state >= PERF_EVENT_STATE_OFF)
9864 			event->state = PERF_EVENT_STATE_INACTIVE;
9865 		account_event_cpu(event, dst_cpu);
9866 		perf_install_in_context(dst_ctx, event, dst_cpu);
9867 		get_ctx(dst_ctx);
9868 	}
9869 	mutex_unlock(&dst_ctx->mutex);
9870 	mutex_unlock(&src_ctx->mutex);
9871 }
9872 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9873 
9874 static void sync_child_event(struct perf_event *child_event,
9875 			       struct task_struct *child)
9876 {
9877 	struct perf_event *parent_event = child_event->parent;
9878 	u64 child_val;
9879 
9880 	if (child_event->attr.inherit_stat)
9881 		perf_event_read_event(child_event, child);
9882 
9883 	child_val = perf_event_count(child_event);
9884 
9885 	/*
9886 	 * Add back the child's count to the parent's count:
9887 	 */
9888 	atomic64_add(child_val, &parent_event->child_count);
9889 	atomic64_add(child_event->total_time_enabled,
9890 		     &parent_event->child_total_time_enabled);
9891 	atomic64_add(child_event->total_time_running,
9892 		     &parent_event->child_total_time_running);
9893 }
9894 
9895 static void
9896 perf_event_exit_event(struct perf_event *child_event,
9897 		      struct perf_event_context *child_ctx,
9898 		      struct task_struct *child)
9899 {
9900 	struct perf_event *parent_event = child_event->parent;
9901 
9902 	/*
9903 	 * Do not destroy the 'original' grouping; because of the context
9904 	 * switch optimization the original events could've ended up in a
9905 	 * random child task.
9906 	 *
9907 	 * If we were to destroy the original group, all group related
9908 	 * operations would cease to function properly after this random
9909 	 * child dies.
9910 	 *
9911 	 * Do destroy all inherited groups, we don't care about those
9912 	 * and being thorough is better.
9913 	 */
9914 	raw_spin_lock_irq(&child_ctx->lock);
9915 	WARN_ON_ONCE(child_ctx->is_active);
9916 
9917 	if (parent_event)
9918 		perf_group_detach(child_event);
9919 	list_del_event(child_event, child_ctx);
9920 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9921 	raw_spin_unlock_irq(&child_ctx->lock);
9922 
9923 	/*
9924 	 * Parent events are governed by their filedesc, retain them.
9925 	 */
9926 	if (!parent_event) {
9927 		perf_event_wakeup(child_event);
9928 		return;
9929 	}
9930 	/*
9931 	 * Child events can be cleaned up.
9932 	 */
9933 
9934 	sync_child_event(child_event, child);
9935 
9936 	/*
9937 	 * Remove this event from the parent's list
9938 	 */
9939 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9940 	mutex_lock(&parent_event->child_mutex);
9941 	list_del_init(&child_event->child_list);
9942 	mutex_unlock(&parent_event->child_mutex);
9943 
9944 	/*
9945 	 * Kick perf_poll() for is_event_hup().
9946 	 */
9947 	perf_event_wakeup(parent_event);
9948 	free_event(child_event);
9949 	put_event(parent_event);
9950 }
9951 
9952 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9953 {
9954 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
9955 	struct perf_event *child_event, *next;
9956 
9957 	WARN_ON_ONCE(child != current);
9958 
9959 	child_ctx = perf_pin_task_context(child, ctxn);
9960 	if (!child_ctx)
9961 		return;
9962 
9963 	/*
9964 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
9965 	 * ctx::mutex over the entire thing. This serializes against almost
9966 	 * everything that wants to access the ctx.
9967 	 *
9968 	 * The exception is sys_perf_event_open() /
9969 	 * perf_event_create_kernel_count() which does find_get_context()
9970 	 * without ctx::mutex (it cannot because of the move_group double mutex
9971 	 * lock thing). See the comments in perf_install_in_context().
9972 	 */
9973 	mutex_lock(&child_ctx->mutex);
9974 
9975 	/*
9976 	 * In a single ctx::lock section, de-schedule the events and detach the
9977 	 * context from the task such that we cannot ever get it scheduled back
9978 	 * in.
9979 	 */
9980 	raw_spin_lock_irq(&child_ctx->lock);
9981 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9982 
9983 	/*
9984 	 * Now that the context is inactive, destroy the task <-> ctx relation
9985 	 * and mark the context dead.
9986 	 */
9987 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9988 	put_ctx(child_ctx); /* cannot be last */
9989 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9990 	put_task_struct(current); /* cannot be last */
9991 
9992 	clone_ctx = unclone_ctx(child_ctx);
9993 	raw_spin_unlock_irq(&child_ctx->lock);
9994 
9995 	if (clone_ctx)
9996 		put_ctx(clone_ctx);
9997 
9998 	/*
9999 	 * Report the task dead after unscheduling the events so that we
10000 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10001 	 * get a few PERF_RECORD_READ events.
10002 	 */
10003 	perf_event_task(child, child_ctx, 0);
10004 
10005 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10006 		perf_event_exit_event(child_event, child_ctx, child);
10007 
10008 	mutex_unlock(&child_ctx->mutex);
10009 
10010 	put_ctx(child_ctx);
10011 }
10012 
10013 /*
10014  * When a child task exits, feed back event values to parent events.
10015  *
10016  * Can be called with cred_guard_mutex held when called from
10017  * install_exec_creds().
10018  */
10019 void perf_event_exit_task(struct task_struct *child)
10020 {
10021 	struct perf_event *event, *tmp;
10022 	int ctxn;
10023 
10024 	mutex_lock(&child->perf_event_mutex);
10025 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10026 				 owner_entry) {
10027 		list_del_init(&event->owner_entry);
10028 
10029 		/*
10030 		 * Ensure the list deletion is visible before we clear
10031 		 * the owner, closes a race against perf_release() where
10032 		 * we need to serialize on the owner->perf_event_mutex.
10033 		 */
10034 		smp_store_release(&event->owner, NULL);
10035 	}
10036 	mutex_unlock(&child->perf_event_mutex);
10037 
10038 	for_each_task_context_nr(ctxn)
10039 		perf_event_exit_task_context(child, ctxn);
10040 
10041 	/*
10042 	 * The perf_event_exit_task_context calls perf_event_task
10043 	 * with child's task_ctx, which generates EXIT events for
10044 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10045 	 * At this point we need to send EXIT events to cpu contexts.
10046 	 */
10047 	perf_event_task(child, NULL, 0);
10048 }
10049 
10050 static void perf_free_event(struct perf_event *event,
10051 			    struct perf_event_context *ctx)
10052 {
10053 	struct perf_event *parent = event->parent;
10054 
10055 	if (WARN_ON_ONCE(!parent))
10056 		return;
10057 
10058 	mutex_lock(&parent->child_mutex);
10059 	list_del_init(&event->child_list);
10060 	mutex_unlock(&parent->child_mutex);
10061 
10062 	put_event(parent);
10063 
10064 	raw_spin_lock_irq(&ctx->lock);
10065 	perf_group_detach(event);
10066 	list_del_event(event, ctx);
10067 	raw_spin_unlock_irq(&ctx->lock);
10068 	free_event(event);
10069 }
10070 
10071 /*
10072  * Free an unexposed, unused context as created by inheritance by
10073  * perf_event_init_task below, used by fork() in case of fail.
10074  *
10075  * Not all locks are strictly required, but take them anyway to be nice and
10076  * help out with the lockdep assertions.
10077  */
10078 void perf_event_free_task(struct task_struct *task)
10079 {
10080 	struct perf_event_context *ctx;
10081 	struct perf_event *event, *tmp;
10082 	int ctxn;
10083 
10084 	for_each_task_context_nr(ctxn) {
10085 		ctx = task->perf_event_ctxp[ctxn];
10086 		if (!ctx)
10087 			continue;
10088 
10089 		mutex_lock(&ctx->mutex);
10090 again:
10091 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10092 				group_entry)
10093 			perf_free_event(event, ctx);
10094 
10095 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10096 				group_entry)
10097 			perf_free_event(event, ctx);
10098 
10099 		if (!list_empty(&ctx->pinned_groups) ||
10100 				!list_empty(&ctx->flexible_groups))
10101 			goto again;
10102 
10103 		mutex_unlock(&ctx->mutex);
10104 
10105 		put_ctx(ctx);
10106 	}
10107 }
10108 
10109 void perf_event_delayed_put(struct task_struct *task)
10110 {
10111 	int ctxn;
10112 
10113 	for_each_task_context_nr(ctxn)
10114 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10115 }
10116 
10117 struct file *perf_event_get(unsigned int fd)
10118 {
10119 	struct file *file;
10120 
10121 	file = fget_raw(fd);
10122 	if (!file)
10123 		return ERR_PTR(-EBADF);
10124 
10125 	if (file->f_op != &perf_fops) {
10126 		fput(file);
10127 		return ERR_PTR(-EBADF);
10128 	}
10129 
10130 	return file;
10131 }
10132 
10133 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10134 {
10135 	if (!event)
10136 		return ERR_PTR(-EINVAL);
10137 
10138 	return &event->attr;
10139 }
10140 
10141 /*
10142  * inherit a event from parent task to child task:
10143  */
10144 static struct perf_event *
10145 inherit_event(struct perf_event *parent_event,
10146 	      struct task_struct *parent,
10147 	      struct perf_event_context *parent_ctx,
10148 	      struct task_struct *child,
10149 	      struct perf_event *group_leader,
10150 	      struct perf_event_context *child_ctx)
10151 {
10152 	enum perf_event_active_state parent_state = parent_event->state;
10153 	struct perf_event *child_event;
10154 	unsigned long flags;
10155 
10156 	/*
10157 	 * Instead of creating recursive hierarchies of events,
10158 	 * we link inherited events back to the original parent,
10159 	 * which has a filp for sure, which we use as the reference
10160 	 * count:
10161 	 */
10162 	if (parent_event->parent)
10163 		parent_event = parent_event->parent;
10164 
10165 	child_event = perf_event_alloc(&parent_event->attr,
10166 					   parent_event->cpu,
10167 					   child,
10168 					   group_leader, parent_event,
10169 					   NULL, NULL, -1);
10170 	if (IS_ERR(child_event))
10171 		return child_event;
10172 
10173 	/*
10174 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10175 	 * must be under the same lock in order to serialize against
10176 	 * perf_event_release_kernel(), such that either we must observe
10177 	 * is_orphaned_event() or they will observe us on the child_list.
10178 	 */
10179 	mutex_lock(&parent_event->child_mutex);
10180 	if (is_orphaned_event(parent_event) ||
10181 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10182 		mutex_unlock(&parent_event->child_mutex);
10183 		free_event(child_event);
10184 		return NULL;
10185 	}
10186 
10187 	get_ctx(child_ctx);
10188 
10189 	/*
10190 	 * Make the child state follow the state of the parent event,
10191 	 * not its attr.disabled bit.  We hold the parent's mutex,
10192 	 * so we won't race with perf_event_{en, dis}able_family.
10193 	 */
10194 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10195 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10196 	else
10197 		child_event->state = PERF_EVENT_STATE_OFF;
10198 
10199 	if (parent_event->attr.freq) {
10200 		u64 sample_period = parent_event->hw.sample_period;
10201 		struct hw_perf_event *hwc = &child_event->hw;
10202 
10203 		hwc->sample_period = sample_period;
10204 		hwc->last_period   = sample_period;
10205 
10206 		local64_set(&hwc->period_left, sample_period);
10207 	}
10208 
10209 	child_event->ctx = child_ctx;
10210 	child_event->overflow_handler = parent_event->overflow_handler;
10211 	child_event->overflow_handler_context
10212 		= parent_event->overflow_handler_context;
10213 
10214 	/*
10215 	 * Precalculate sample_data sizes
10216 	 */
10217 	perf_event__header_size(child_event);
10218 	perf_event__id_header_size(child_event);
10219 
10220 	/*
10221 	 * Link it up in the child's context:
10222 	 */
10223 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10224 	add_event_to_ctx(child_event, child_ctx);
10225 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10226 
10227 	/*
10228 	 * Link this into the parent event's child list
10229 	 */
10230 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10231 	mutex_unlock(&parent_event->child_mutex);
10232 
10233 	return child_event;
10234 }
10235 
10236 static int inherit_group(struct perf_event *parent_event,
10237 	      struct task_struct *parent,
10238 	      struct perf_event_context *parent_ctx,
10239 	      struct task_struct *child,
10240 	      struct perf_event_context *child_ctx)
10241 {
10242 	struct perf_event *leader;
10243 	struct perf_event *sub;
10244 	struct perf_event *child_ctr;
10245 
10246 	leader = inherit_event(parent_event, parent, parent_ctx,
10247 				 child, NULL, child_ctx);
10248 	if (IS_ERR(leader))
10249 		return PTR_ERR(leader);
10250 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10251 		child_ctr = inherit_event(sub, parent, parent_ctx,
10252 					    child, leader, child_ctx);
10253 		if (IS_ERR(child_ctr))
10254 			return PTR_ERR(child_ctr);
10255 	}
10256 	return 0;
10257 }
10258 
10259 static int
10260 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10261 		   struct perf_event_context *parent_ctx,
10262 		   struct task_struct *child, int ctxn,
10263 		   int *inherited_all)
10264 {
10265 	int ret;
10266 	struct perf_event_context *child_ctx;
10267 
10268 	if (!event->attr.inherit) {
10269 		*inherited_all = 0;
10270 		return 0;
10271 	}
10272 
10273 	child_ctx = child->perf_event_ctxp[ctxn];
10274 	if (!child_ctx) {
10275 		/*
10276 		 * This is executed from the parent task context, so
10277 		 * inherit events that have been marked for cloning.
10278 		 * First allocate and initialize a context for the
10279 		 * child.
10280 		 */
10281 
10282 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10283 		if (!child_ctx)
10284 			return -ENOMEM;
10285 
10286 		child->perf_event_ctxp[ctxn] = child_ctx;
10287 	}
10288 
10289 	ret = inherit_group(event, parent, parent_ctx,
10290 			    child, child_ctx);
10291 
10292 	if (ret)
10293 		*inherited_all = 0;
10294 
10295 	return ret;
10296 }
10297 
10298 /*
10299  * Initialize the perf_event context in task_struct
10300  */
10301 static int perf_event_init_context(struct task_struct *child, int ctxn)
10302 {
10303 	struct perf_event_context *child_ctx, *parent_ctx;
10304 	struct perf_event_context *cloned_ctx;
10305 	struct perf_event *event;
10306 	struct task_struct *parent = current;
10307 	int inherited_all = 1;
10308 	unsigned long flags;
10309 	int ret = 0;
10310 
10311 	if (likely(!parent->perf_event_ctxp[ctxn]))
10312 		return 0;
10313 
10314 	/*
10315 	 * If the parent's context is a clone, pin it so it won't get
10316 	 * swapped under us.
10317 	 */
10318 	parent_ctx = perf_pin_task_context(parent, ctxn);
10319 	if (!parent_ctx)
10320 		return 0;
10321 
10322 	/*
10323 	 * No need to check if parent_ctx != NULL here; since we saw
10324 	 * it non-NULL earlier, the only reason for it to become NULL
10325 	 * is if we exit, and since we're currently in the middle of
10326 	 * a fork we can't be exiting at the same time.
10327 	 */
10328 
10329 	/*
10330 	 * Lock the parent list. No need to lock the child - not PID
10331 	 * hashed yet and not running, so nobody can access it.
10332 	 */
10333 	mutex_lock(&parent_ctx->mutex);
10334 
10335 	/*
10336 	 * We dont have to disable NMIs - we are only looking at
10337 	 * the list, not manipulating it:
10338 	 */
10339 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10340 		ret = inherit_task_group(event, parent, parent_ctx,
10341 					 child, ctxn, &inherited_all);
10342 		if (ret)
10343 			break;
10344 	}
10345 
10346 	/*
10347 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10348 	 * to allocations, but we need to prevent rotation because
10349 	 * rotate_ctx() will change the list from interrupt context.
10350 	 */
10351 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10352 	parent_ctx->rotate_disable = 1;
10353 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10354 
10355 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10356 		ret = inherit_task_group(event, parent, parent_ctx,
10357 					 child, ctxn, &inherited_all);
10358 		if (ret)
10359 			break;
10360 	}
10361 
10362 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10363 	parent_ctx->rotate_disable = 0;
10364 
10365 	child_ctx = child->perf_event_ctxp[ctxn];
10366 
10367 	if (child_ctx && inherited_all) {
10368 		/*
10369 		 * Mark the child context as a clone of the parent
10370 		 * context, or of whatever the parent is a clone of.
10371 		 *
10372 		 * Note that if the parent is a clone, the holding of
10373 		 * parent_ctx->lock avoids it from being uncloned.
10374 		 */
10375 		cloned_ctx = parent_ctx->parent_ctx;
10376 		if (cloned_ctx) {
10377 			child_ctx->parent_ctx = cloned_ctx;
10378 			child_ctx->parent_gen = parent_ctx->parent_gen;
10379 		} else {
10380 			child_ctx->parent_ctx = parent_ctx;
10381 			child_ctx->parent_gen = parent_ctx->generation;
10382 		}
10383 		get_ctx(child_ctx->parent_ctx);
10384 	}
10385 
10386 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10387 	mutex_unlock(&parent_ctx->mutex);
10388 
10389 	perf_unpin_context(parent_ctx);
10390 	put_ctx(parent_ctx);
10391 
10392 	return ret;
10393 }
10394 
10395 /*
10396  * Initialize the perf_event context in task_struct
10397  */
10398 int perf_event_init_task(struct task_struct *child)
10399 {
10400 	int ctxn, ret;
10401 
10402 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10403 	mutex_init(&child->perf_event_mutex);
10404 	INIT_LIST_HEAD(&child->perf_event_list);
10405 
10406 	for_each_task_context_nr(ctxn) {
10407 		ret = perf_event_init_context(child, ctxn);
10408 		if (ret) {
10409 			perf_event_free_task(child);
10410 			return ret;
10411 		}
10412 	}
10413 
10414 	return 0;
10415 }
10416 
10417 static void __init perf_event_init_all_cpus(void)
10418 {
10419 	struct swevent_htable *swhash;
10420 	int cpu;
10421 
10422 	for_each_possible_cpu(cpu) {
10423 		swhash = &per_cpu(swevent_htable, cpu);
10424 		mutex_init(&swhash->hlist_mutex);
10425 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10426 
10427 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10428 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10429 	}
10430 }
10431 
10432 int perf_event_init_cpu(unsigned int cpu)
10433 {
10434 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10435 
10436 	mutex_lock(&swhash->hlist_mutex);
10437 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10438 		struct swevent_hlist *hlist;
10439 
10440 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10441 		WARN_ON(!hlist);
10442 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10443 	}
10444 	mutex_unlock(&swhash->hlist_mutex);
10445 	return 0;
10446 }
10447 
10448 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10449 static void __perf_event_exit_context(void *__info)
10450 {
10451 	struct perf_event_context *ctx = __info;
10452 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10453 	struct perf_event *event;
10454 
10455 	raw_spin_lock(&ctx->lock);
10456 	list_for_each_entry(event, &ctx->event_list, event_entry)
10457 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10458 	raw_spin_unlock(&ctx->lock);
10459 }
10460 
10461 static void perf_event_exit_cpu_context(int cpu)
10462 {
10463 	struct perf_event_context *ctx;
10464 	struct pmu *pmu;
10465 	int idx;
10466 
10467 	idx = srcu_read_lock(&pmus_srcu);
10468 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10469 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10470 
10471 		mutex_lock(&ctx->mutex);
10472 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10473 		mutex_unlock(&ctx->mutex);
10474 	}
10475 	srcu_read_unlock(&pmus_srcu, idx);
10476 }
10477 #else
10478 
10479 static void perf_event_exit_cpu_context(int cpu) { }
10480 
10481 #endif
10482 
10483 int perf_event_exit_cpu(unsigned int cpu)
10484 {
10485 	perf_event_exit_cpu_context(cpu);
10486 	return 0;
10487 }
10488 
10489 static int
10490 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10491 {
10492 	int cpu;
10493 
10494 	for_each_online_cpu(cpu)
10495 		perf_event_exit_cpu(cpu);
10496 
10497 	return NOTIFY_OK;
10498 }
10499 
10500 /*
10501  * Run the perf reboot notifier at the very last possible moment so that
10502  * the generic watchdog code runs as long as possible.
10503  */
10504 static struct notifier_block perf_reboot_notifier = {
10505 	.notifier_call = perf_reboot,
10506 	.priority = INT_MIN,
10507 };
10508 
10509 void __init perf_event_init(void)
10510 {
10511 	int ret;
10512 
10513 	idr_init(&pmu_idr);
10514 
10515 	perf_event_init_all_cpus();
10516 	init_srcu_struct(&pmus_srcu);
10517 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10518 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
10519 	perf_pmu_register(&perf_task_clock, NULL, -1);
10520 	perf_tp_register();
10521 	perf_event_init_cpu(smp_processor_id());
10522 	register_reboot_notifier(&perf_reboot_notifier);
10523 
10524 	ret = init_hw_breakpoint();
10525 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10526 
10527 	/*
10528 	 * Build time assertion that we keep the data_head at the intended
10529 	 * location.  IOW, validation we got the __reserved[] size right.
10530 	 */
10531 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10532 		     != 1024);
10533 }
10534 
10535 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10536 			      char *page)
10537 {
10538 	struct perf_pmu_events_attr *pmu_attr =
10539 		container_of(attr, struct perf_pmu_events_attr, attr);
10540 
10541 	if (pmu_attr->event_str)
10542 		return sprintf(page, "%s\n", pmu_attr->event_str);
10543 
10544 	return 0;
10545 }
10546 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10547 
10548 static int __init perf_event_sysfs_init(void)
10549 {
10550 	struct pmu *pmu;
10551 	int ret;
10552 
10553 	mutex_lock(&pmus_lock);
10554 
10555 	ret = bus_register(&pmu_bus);
10556 	if (ret)
10557 		goto unlock;
10558 
10559 	list_for_each_entry(pmu, &pmus, entry) {
10560 		if (!pmu->name || pmu->type < 0)
10561 			continue;
10562 
10563 		ret = pmu_dev_alloc(pmu);
10564 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10565 	}
10566 	pmu_bus_running = 1;
10567 	ret = 0;
10568 
10569 unlock:
10570 	mutex_unlock(&pmus_lock);
10571 
10572 	return ret;
10573 }
10574 device_initcall(perf_event_sysfs_init);
10575 
10576 #ifdef CONFIG_CGROUP_PERF
10577 static struct cgroup_subsys_state *
10578 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10579 {
10580 	struct perf_cgroup *jc;
10581 
10582 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10583 	if (!jc)
10584 		return ERR_PTR(-ENOMEM);
10585 
10586 	jc->info = alloc_percpu(struct perf_cgroup_info);
10587 	if (!jc->info) {
10588 		kfree(jc);
10589 		return ERR_PTR(-ENOMEM);
10590 	}
10591 
10592 	return &jc->css;
10593 }
10594 
10595 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10596 {
10597 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10598 
10599 	free_percpu(jc->info);
10600 	kfree(jc);
10601 }
10602 
10603 static int __perf_cgroup_move(void *info)
10604 {
10605 	struct task_struct *task = info;
10606 	rcu_read_lock();
10607 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10608 	rcu_read_unlock();
10609 	return 0;
10610 }
10611 
10612 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10613 {
10614 	struct task_struct *task;
10615 	struct cgroup_subsys_state *css;
10616 
10617 	cgroup_taskset_for_each(task, css, tset)
10618 		task_function_call(task, __perf_cgroup_move, task);
10619 }
10620 
10621 struct cgroup_subsys perf_event_cgrp_subsys = {
10622 	.css_alloc	= perf_cgroup_css_alloc,
10623 	.css_free	= perf_cgroup_css_free,
10624 	.attach		= perf_cgroup_attach,
10625 };
10626 #endif /* CONFIG_CGROUP_PERF */
10627