1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 50 #include "internal.h" 51 52 #include <asm/irq_regs.h> 53 54 typedef int (*remote_function_f)(void *); 55 56 struct remote_function_call { 57 struct task_struct *p; 58 remote_function_f func; 59 void *info; 60 int ret; 61 }; 62 63 static void remote_function(void *data) 64 { 65 struct remote_function_call *tfc = data; 66 struct task_struct *p = tfc->p; 67 68 if (p) { 69 /* -EAGAIN */ 70 if (task_cpu(p) != smp_processor_id()) 71 return; 72 73 /* 74 * Now that we're on right CPU with IRQs disabled, we can test 75 * if we hit the right task without races. 76 */ 77 78 tfc->ret = -ESRCH; /* No such (running) process */ 79 if (p != current) 80 return; 81 } 82 83 tfc->ret = tfc->func(tfc->info); 84 } 85 86 /** 87 * task_function_call - call a function on the cpu on which a task runs 88 * @p: the task to evaluate 89 * @func: the function to be called 90 * @info: the function call argument 91 * 92 * Calls the function @func when the task is currently running. This might 93 * be on the current CPU, which just calls the function directly 94 * 95 * returns: @func return value, or 96 * -ESRCH - when the process isn't running 97 * -EAGAIN - when the process moved away 98 */ 99 static int 100 task_function_call(struct task_struct *p, remote_function_f func, void *info) 101 { 102 struct remote_function_call data = { 103 .p = p, 104 .func = func, 105 .info = info, 106 .ret = -EAGAIN, 107 }; 108 int ret; 109 110 do { 111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 112 if (!ret) 113 ret = data.ret; 114 } while (ret == -EAGAIN); 115 116 return ret; 117 } 118 119 /** 120 * cpu_function_call - call a function on the cpu 121 * @func: the function to be called 122 * @info: the function call argument 123 * 124 * Calls the function @func on the remote cpu. 125 * 126 * returns: @func return value or -ENXIO when the cpu is offline 127 */ 128 static int cpu_function_call(int cpu, remote_function_f func, void *info) 129 { 130 struct remote_function_call data = { 131 .p = NULL, 132 .func = func, 133 .info = info, 134 .ret = -ENXIO, /* No such CPU */ 135 }; 136 137 smp_call_function_single(cpu, remote_function, &data, 1); 138 139 return data.ret; 140 } 141 142 static inline struct perf_cpu_context * 143 __get_cpu_context(struct perf_event_context *ctx) 144 { 145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 146 } 147 148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 149 struct perf_event_context *ctx) 150 { 151 raw_spin_lock(&cpuctx->ctx.lock); 152 if (ctx) 153 raw_spin_lock(&ctx->lock); 154 } 155 156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 157 struct perf_event_context *ctx) 158 { 159 if (ctx) 160 raw_spin_unlock(&ctx->lock); 161 raw_spin_unlock(&cpuctx->ctx.lock); 162 } 163 164 #define TASK_TOMBSTONE ((void *)-1L) 165 166 static bool is_kernel_event(struct perf_event *event) 167 { 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 169 } 170 171 /* 172 * On task ctx scheduling... 173 * 174 * When !ctx->nr_events a task context will not be scheduled. This means 175 * we can disable the scheduler hooks (for performance) without leaving 176 * pending task ctx state. 177 * 178 * This however results in two special cases: 179 * 180 * - removing the last event from a task ctx; this is relatively straight 181 * forward and is done in __perf_remove_from_context. 182 * 183 * - adding the first event to a task ctx; this is tricky because we cannot 184 * rely on ctx->is_active and therefore cannot use event_function_call(). 185 * See perf_install_in_context(). 186 * 187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 188 */ 189 190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 191 struct perf_event_context *, void *); 192 193 struct event_function_struct { 194 struct perf_event *event; 195 event_f func; 196 void *data; 197 }; 198 199 static int event_function(void *info) 200 { 201 struct event_function_struct *efs = info; 202 struct perf_event *event = efs->event; 203 struct perf_event_context *ctx = event->ctx; 204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 205 struct perf_event_context *task_ctx = cpuctx->task_ctx; 206 int ret = 0; 207 208 WARN_ON_ONCE(!irqs_disabled()); 209 210 perf_ctx_lock(cpuctx, task_ctx); 211 /* 212 * Since we do the IPI call without holding ctx->lock things can have 213 * changed, double check we hit the task we set out to hit. 214 */ 215 if (ctx->task) { 216 if (ctx->task != current) { 217 ret = -ESRCH; 218 goto unlock; 219 } 220 221 /* 222 * We only use event_function_call() on established contexts, 223 * and event_function() is only ever called when active (or 224 * rather, we'll have bailed in task_function_call() or the 225 * above ctx->task != current test), therefore we must have 226 * ctx->is_active here. 227 */ 228 WARN_ON_ONCE(!ctx->is_active); 229 /* 230 * And since we have ctx->is_active, cpuctx->task_ctx must 231 * match. 232 */ 233 WARN_ON_ONCE(task_ctx != ctx); 234 } else { 235 WARN_ON_ONCE(&cpuctx->ctx != ctx); 236 } 237 238 efs->func(event, cpuctx, ctx, efs->data); 239 unlock: 240 perf_ctx_unlock(cpuctx, task_ctx); 241 242 return ret; 243 } 244 245 static void event_function_call(struct perf_event *event, event_f func, void *data) 246 { 247 struct perf_event_context *ctx = event->ctx; 248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 249 struct event_function_struct efs = { 250 .event = event, 251 .func = func, 252 .data = data, 253 }; 254 255 if (!event->parent) { 256 /* 257 * If this is a !child event, we must hold ctx::mutex to 258 * stabilize the the event->ctx relation. See 259 * perf_event_ctx_lock(). 260 */ 261 lockdep_assert_held(&ctx->mutex); 262 } 263 264 if (!task) { 265 cpu_function_call(event->cpu, event_function, &efs); 266 return; 267 } 268 269 if (task == TASK_TOMBSTONE) 270 return; 271 272 again: 273 if (!task_function_call(task, event_function, &efs)) 274 return; 275 276 raw_spin_lock_irq(&ctx->lock); 277 /* 278 * Reload the task pointer, it might have been changed by 279 * a concurrent perf_event_context_sched_out(). 280 */ 281 task = ctx->task; 282 if (task == TASK_TOMBSTONE) { 283 raw_spin_unlock_irq(&ctx->lock); 284 return; 285 } 286 if (ctx->is_active) { 287 raw_spin_unlock_irq(&ctx->lock); 288 goto again; 289 } 290 func(event, NULL, ctx, data); 291 raw_spin_unlock_irq(&ctx->lock); 292 } 293 294 /* 295 * Similar to event_function_call() + event_function(), but hard assumes IRQs 296 * are already disabled and we're on the right CPU. 297 */ 298 static void event_function_local(struct perf_event *event, event_f func, void *data) 299 { 300 struct perf_event_context *ctx = event->ctx; 301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 302 struct task_struct *task = READ_ONCE(ctx->task); 303 struct perf_event_context *task_ctx = NULL; 304 305 WARN_ON_ONCE(!irqs_disabled()); 306 307 if (task) { 308 if (task == TASK_TOMBSTONE) 309 return; 310 311 task_ctx = ctx; 312 } 313 314 perf_ctx_lock(cpuctx, task_ctx); 315 316 task = ctx->task; 317 if (task == TASK_TOMBSTONE) 318 goto unlock; 319 320 if (task) { 321 /* 322 * We must be either inactive or active and the right task, 323 * otherwise we're screwed, since we cannot IPI to somewhere 324 * else. 325 */ 326 if (ctx->is_active) { 327 if (WARN_ON_ONCE(task != current)) 328 goto unlock; 329 330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 331 goto unlock; 332 } 333 } else { 334 WARN_ON_ONCE(&cpuctx->ctx != ctx); 335 } 336 337 func(event, cpuctx, ctx, data); 338 unlock: 339 perf_ctx_unlock(cpuctx, task_ctx); 340 } 341 342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 343 PERF_FLAG_FD_OUTPUT |\ 344 PERF_FLAG_PID_CGROUP |\ 345 PERF_FLAG_FD_CLOEXEC) 346 347 /* 348 * branch priv levels that need permission checks 349 */ 350 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 351 (PERF_SAMPLE_BRANCH_KERNEL |\ 352 PERF_SAMPLE_BRANCH_HV) 353 354 enum event_type_t { 355 EVENT_FLEXIBLE = 0x1, 356 EVENT_PINNED = 0x2, 357 EVENT_TIME = 0x4, 358 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 359 }; 360 361 /* 362 * perf_sched_events : >0 events exist 363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 364 */ 365 366 static void perf_sched_delayed(struct work_struct *work); 367 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 369 static DEFINE_MUTEX(perf_sched_mutex); 370 static atomic_t perf_sched_count; 371 372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 373 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 375 376 static atomic_t nr_mmap_events __read_mostly; 377 static atomic_t nr_comm_events __read_mostly; 378 static atomic_t nr_task_events __read_mostly; 379 static atomic_t nr_freq_events __read_mostly; 380 static atomic_t nr_switch_events __read_mostly; 381 382 static LIST_HEAD(pmus); 383 static DEFINE_MUTEX(pmus_lock); 384 static struct srcu_struct pmus_srcu; 385 386 /* 387 * perf event paranoia level: 388 * -1 - not paranoid at all 389 * 0 - disallow raw tracepoint access for unpriv 390 * 1 - disallow cpu events for unpriv 391 * 2 - disallow kernel profiling for unpriv 392 */ 393 int sysctl_perf_event_paranoid __read_mostly = 2; 394 395 /* Minimum for 512 kiB + 1 user control page */ 396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 397 398 /* 399 * max perf event sample rate 400 */ 401 #define DEFAULT_MAX_SAMPLE_RATE 100000 402 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 403 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 404 405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 406 407 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 408 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 409 410 static int perf_sample_allowed_ns __read_mostly = 411 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 412 413 static void update_perf_cpu_limits(void) 414 { 415 u64 tmp = perf_sample_period_ns; 416 417 tmp *= sysctl_perf_cpu_time_max_percent; 418 tmp = div_u64(tmp, 100); 419 if (!tmp) 420 tmp = 1; 421 422 WRITE_ONCE(perf_sample_allowed_ns, tmp); 423 } 424 425 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 426 427 int perf_proc_update_handler(struct ctl_table *table, int write, 428 void __user *buffer, size_t *lenp, 429 loff_t *ppos) 430 { 431 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 432 433 if (ret || !write) 434 return ret; 435 436 /* 437 * If throttling is disabled don't allow the write: 438 */ 439 if (sysctl_perf_cpu_time_max_percent == 100 || 440 sysctl_perf_cpu_time_max_percent == 0) 441 return -EINVAL; 442 443 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 444 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 445 update_perf_cpu_limits(); 446 447 return 0; 448 } 449 450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 451 452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 453 void __user *buffer, size_t *lenp, 454 loff_t *ppos) 455 { 456 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 457 458 if (ret || !write) 459 return ret; 460 461 if (sysctl_perf_cpu_time_max_percent == 100 || 462 sysctl_perf_cpu_time_max_percent == 0) { 463 printk(KERN_WARNING 464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 465 WRITE_ONCE(perf_sample_allowed_ns, 0); 466 } else { 467 update_perf_cpu_limits(); 468 } 469 470 return 0; 471 } 472 473 /* 474 * perf samples are done in some very critical code paths (NMIs). 475 * If they take too much CPU time, the system can lock up and not 476 * get any real work done. This will drop the sample rate when 477 * we detect that events are taking too long. 478 */ 479 #define NR_ACCUMULATED_SAMPLES 128 480 static DEFINE_PER_CPU(u64, running_sample_length); 481 482 static u64 __report_avg; 483 static u64 __report_allowed; 484 485 static void perf_duration_warn(struct irq_work *w) 486 { 487 printk_ratelimited(KERN_INFO 488 "perf: interrupt took too long (%lld > %lld), lowering " 489 "kernel.perf_event_max_sample_rate to %d\n", 490 __report_avg, __report_allowed, 491 sysctl_perf_event_sample_rate); 492 } 493 494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 495 496 void perf_sample_event_took(u64 sample_len_ns) 497 { 498 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 499 u64 running_len; 500 u64 avg_len; 501 u32 max; 502 503 if (max_len == 0) 504 return; 505 506 /* Decay the counter by 1 average sample. */ 507 running_len = __this_cpu_read(running_sample_length); 508 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 509 running_len += sample_len_ns; 510 __this_cpu_write(running_sample_length, running_len); 511 512 /* 513 * Note: this will be biased artifically low until we have 514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 515 * from having to maintain a count. 516 */ 517 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 518 if (avg_len <= max_len) 519 return; 520 521 __report_avg = avg_len; 522 __report_allowed = max_len; 523 524 /* 525 * Compute a throttle threshold 25% below the current duration. 526 */ 527 avg_len += avg_len / 4; 528 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 529 if (avg_len < max) 530 max /= (u32)avg_len; 531 else 532 max = 1; 533 534 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 535 WRITE_ONCE(max_samples_per_tick, max); 536 537 sysctl_perf_event_sample_rate = max * HZ; 538 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 539 540 if (!irq_work_queue(&perf_duration_work)) { 541 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 542 "kernel.perf_event_max_sample_rate to %d\n", 543 __report_avg, __report_allowed, 544 sysctl_perf_event_sample_rate); 545 } 546 } 547 548 static atomic64_t perf_event_id; 549 550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 551 enum event_type_t event_type); 552 553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 554 enum event_type_t event_type, 555 struct task_struct *task); 556 557 static void update_context_time(struct perf_event_context *ctx); 558 static u64 perf_event_time(struct perf_event *event); 559 560 void __weak perf_event_print_debug(void) { } 561 562 extern __weak const char *perf_pmu_name(void) 563 { 564 return "pmu"; 565 } 566 567 static inline u64 perf_clock(void) 568 { 569 return local_clock(); 570 } 571 572 static inline u64 perf_event_clock(struct perf_event *event) 573 { 574 return event->clock(); 575 } 576 577 #ifdef CONFIG_CGROUP_PERF 578 579 static inline bool 580 perf_cgroup_match(struct perf_event *event) 581 { 582 struct perf_event_context *ctx = event->ctx; 583 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 584 585 /* @event doesn't care about cgroup */ 586 if (!event->cgrp) 587 return true; 588 589 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 590 if (!cpuctx->cgrp) 591 return false; 592 593 /* 594 * Cgroup scoping is recursive. An event enabled for a cgroup is 595 * also enabled for all its descendant cgroups. If @cpuctx's 596 * cgroup is a descendant of @event's (the test covers identity 597 * case), it's a match. 598 */ 599 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 600 event->cgrp->css.cgroup); 601 } 602 603 static inline void perf_detach_cgroup(struct perf_event *event) 604 { 605 css_put(&event->cgrp->css); 606 event->cgrp = NULL; 607 } 608 609 static inline int is_cgroup_event(struct perf_event *event) 610 { 611 return event->cgrp != NULL; 612 } 613 614 static inline u64 perf_cgroup_event_time(struct perf_event *event) 615 { 616 struct perf_cgroup_info *t; 617 618 t = per_cpu_ptr(event->cgrp->info, event->cpu); 619 return t->time; 620 } 621 622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 623 { 624 struct perf_cgroup_info *info; 625 u64 now; 626 627 now = perf_clock(); 628 629 info = this_cpu_ptr(cgrp->info); 630 631 info->time += now - info->timestamp; 632 info->timestamp = now; 633 } 634 635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 636 { 637 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 638 if (cgrp_out) 639 __update_cgrp_time(cgrp_out); 640 } 641 642 static inline void update_cgrp_time_from_event(struct perf_event *event) 643 { 644 struct perf_cgroup *cgrp; 645 646 /* 647 * ensure we access cgroup data only when needed and 648 * when we know the cgroup is pinned (css_get) 649 */ 650 if (!is_cgroup_event(event)) 651 return; 652 653 cgrp = perf_cgroup_from_task(current, event->ctx); 654 /* 655 * Do not update time when cgroup is not active 656 */ 657 if (cgrp == event->cgrp) 658 __update_cgrp_time(event->cgrp); 659 } 660 661 static inline void 662 perf_cgroup_set_timestamp(struct task_struct *task, 663 struct perf_event_context *ctx) 664 { 665 struct perf_cgroup *cgrp; 666 struct perf_cgroup_info *info; 667 668 /* 669 * ctx->lock held by caller 670 * ensure we do not access cgroup data 671 * unless we have the cgroup pinned (css_get) 672 */ 673 if (!task || !ctx->nr_cgroups) 674 return; 675 676 cgrp = perf_cgroup_from_task(task, ctx); 677 info = this_cpu_ptr(cgrp->info); 678 info->timestamp = ctx->timestamp; 679 } 680 681 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 682 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 683 684 /* 685 * reschedule events based on the cgroup constraint of task. 686 * 687 * mode SWOUT : schedule out everything 688 * mode SWIN : schedule in based on cgroup for next 689 */ 690 static void perf_cgroup_switch(struct task_struct *task, int mode) 691 { 692 struct perf_cpu_context *cpuctx; 693 struct pmu *pmu; 694 unsigned long flags; 695 696 /* 697 * disable interrupts to avoid geting nr_cgroup 698 * changes via __perf_event_disable(). Also 699 * avoids preemption. 700 */ 701 local_irq_save(flags); 702 703 /* 704 * we reschedule only in the presence of cgroup 705 * constrained events. 706 */ 707 708 list_for_each_entry_rcu(pmu, &pmus, entry) { 709 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 710 if (cpuctx->unique_pmu != pmu) 711 continue; /* ensure we process each cpuctx once */ 712 713 /* 714 * perf_cgroup_events says at least one 715 * context on this CPU has cgroup events. 716 * 717 * ctx->nr_cgroups reports the number of cgroup 718 * events for a context. 719 */ 720 if (cpuctx->ctx.nr_cgroups > 0) { 721 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 722 perf_pmu_disable(cpuctx->ctx.pmu); 723 724 if (mode & PERF_CGROUP_SWOUT) { 725 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 726 /* 727 * must not be done before ctxswout due 728 * to event_filter_match() in event_sched_out() 729 */ 730 cpuctx->cgrp = NULL; 731 } 732 733 if (mode & PERF_CGROUP_SWIN) { 734 WARN_ON_ONCE(cpuctx->cgrp); 735 /* 736 * set cgrp before ctxsw in to allow 737 * event_filter_match() to not have to pass 738 * task around 739 * we pass the cpuctx->ctx to perf_cgroup_from_task() 740 * because cgorup events are only per-cpu 741 */ 742 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx); 743 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 744 } 745 perf_pmu_enable(cpuctx->ctx.pmu); 746 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 747 } 748 } 749 750 local_irq_restore(flags); 751 } 752 753 static inline void perf_cgroup_sched_out(struct task_struct *task, 754 struct task_struct *next) 755 { 756 struct perf_cgroup *cgrp1; 757 struct perf_cgroup *cgrp2 = NULL; 758 759 rcu_read_lock(); 760 /* 761 * we come here when we know perf_cgroup_events > 0 762 * we do not need to pass the ctx here because we know 763 * we are holding the rcu lock 764 */ 765 cgrp1 = perf_cgroup_from_task(task, NULL); 766 cgrp2 = perf_cgroup_from_task(next, NULL); 767 768 /* 769 * only schedule out current cgroup events if we know 770 * that we are switching to a different cgroup. Otherwise, 771 * do no touch the cgroup events. 772 */ 773 if (cgrp1 != cgrp2) 774 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 775 776 rcu_read_unlock(); 777 } 778 779 static inline void perf_cgroup_sched_in(struct task_struct *prev, 780 struct task_struct *task) 781 { 782 struct perf_cgroup *cgrp1; 783 struct perf_cgroup *cgrp2 = NULL; 784 785 rcu_read_lock(); 786 /* 787 * we come here when we know perf_cgroup_events > 0 788 * we do not need to pass the ctx here because we know 789 * we are holding the rcu lock 790 */ 791 cgrp1 = perf_cgroup_from_task(task, NULL); 792 cgrp2 = perf_cgroup_from_task(prev, NULL); 793 794 /* 795 * only need to schedule in cgroup events if we are changing 796 * cgroup during ctxsw. Cgroup events were not scheduled 797 * out of ctxsw out if that was not the case. 798 */ 799 if (cgrp1 != cgrp2) 800 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 801 802 rcu_read_unlock(); 803 } 804 805 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 806 struct perf_event_attr *attr, 807 struct perf_event *group_leader) 808 { 809 struct perf_cgroup *cgrp; 810 struct cgroup_subsys_state *css; 811 struct fd f = fdget(fd); 812 int ret = 0; 813 814 if (!f.file) 815 return -EBADF; 816 817 css = css_tryget_online_from_dir(f.file->f_path.dentry, 818 &perf_event_cgrp_subsys); 819 if (IS_ERR(css)) { 820 ret = PTR_ERR(css); 821 goto out; 822 } 823 824 cgrp = container_of(css, struct perf_cgroup, css); 825 event->cgrp = cgrp; 826 827 /* 828 * all events in a group must monitor 829 * the same cgroup because a task belongs 830 * to only one perf cgroup at a time 831 */ 832 if (group_leader && group_leader->cgrp != cgrp) { 833 perf_detach_cgroup(event); 834 ret = -EINVAL; 835 } 836 out: 837 fdput(f); 838 return ret; 839 } 840 841 static inline void 842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 843 { 844 struct perf_cgroup_info *t; 845 t = per_cpu_ptr(event->cgrp->info, event->cpu); 846 event->shadow_ctx_time = now - t->timestamp; 847 } 848 849 static inline void 850 perf_cgroup_defer_enabled(struct perf_event *event) 851 { 852 /* 853 * when the current task's perf cgroup does not match 854 * the event's, we need to remember to call the 855 * perf_mark_enable() function the first time a task with 856 * a matching perf cgroup is scheduled in. 857 */ 858 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 859 event->cgrp_defer_enabled = 1; 860 } 861 862 static inline void 863 perf_cgroup_mark_enabled(struct perf_event *event, 864 struct perf_event_context *ctx) 865 { 866 struct perf_event *sub; 867 u64 tstamp = perf_event_time(event); 868 869 if (!event->cgrp_defer_enabled) 870 return; 871 872 event->cgrp_defer_enabled = 0; 873 874 event->tstamp_enabled = tstamp - event->total_time_enabled; 875 list_for_each_entry(sub, &event->sibling_list, group_entry) { 876 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 877 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 878 sub->cgrp_defer_enabled = 0; 879 } 880 } 881 } 882 883 /* 884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 885 * cleared when last cgroup event is removed. 886 */ 887 static inline void 888 list_update_cgroup_event(struct perf_event *event, 889 struct perf_event_context *ctx, bool add) 890 { 891 struct perf_cpu_context *cpuctx; 892 893 if (!is_cgroup_event(event)) 894 return; 895 896 if (add && ctx->nr_cgroups++) 897 return; 898 else if (!add && --ctx->nr_cgroups) 899 return; 900 /* 901 * Because cgroup events are always per-cpu events, 902 * this will always be called from the right CPU. 903 */ 904 cpuctx = __get_cpu_context(ctx); 905 cpuctx->cgrp = add ? event->cgrp : NULL; 906 } 907 908 #else /* !CONFIG_CGROUP_PERF */ 909 910 static inline bool 911 perf_cgroup_match(struct perf_event *event) 912 { 913 return true; 914 } 915 916 static inline void perf_detach_cgroup(struct perf_event *event) 917 {} 918 919 static inline int is_cgroup_event(struct perf_event *event) 920 { 921 return 0; 922 } 923 924 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 925 { 926 return 0; 927 } 928 929 static inline void update_cgrp_time_from_event(struct perf_event *event) 930 { 931 } 932 933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 934 { 935 } 936 937 static inline void perf_cgroup_sched_out(struct task_struct *task, 938 struct task_struct *next) 939 { 940 } 941 942 static inline void perf_cgroup_sched_in(struct task_struct *prev, 943 struct task_struct *task) 944 { 945 } 946 947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 948 struct perf_event_attr *attr, 949 struct perf_event *group_leader) 950 { 951 return -EINVAL; 952 } 953 954 static inline void 955 perf_cgroup_set_timestamp(struct task_struct *task, 956 struct perf_event_context *ctx) 957 { 958 } 959 960 void 961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 962 { 963 } 964 965 static inline void 966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 967 { 968 } 969 970 static inline u64 perf_cgroup_event_time(struct perf_event *event) 971 { 972 return 0; 973 } 974 975 static inline void 976 perf_cgroup_defer_enabled(struct perf_event *event) 977 { 978 } 979 980 static inline void 981 perf_cgroup_mark_enabled(struct perf_event *event, 982 struct perf_event_context *ctx) 983 { 984 } 985 986 static inline void 987 list_update_cgroup_event(struct perf_event *event, 988 struct perf_event_context *ctx, bool add) 989 { 990 } 991 992 #endif 993 994 /* 995 * set default to be dependent on timer tick just 996 * like original code 997 */ 998 #define PERF_CPU_HRTIMER (1000 / HZ) 999 /* 1000 * function must be called with interrupts disbled 1001 */ 1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1003 { 1004 struct perf_cpu_context *cpuctx; 1005 int rotations = 0; 1006 1007 WARN_ON(!irqs_disabled()); 1008 1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1010 rotations = perf_rotate_context(cpuctx); 1011 1012 raw_spin_lock(&cpuctx->hrtimer_lock); 1013 if (rotations) 1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1015 else 1016 cpuctx->hrtimer_active = 0; 1017 raw_spin_unlock(&cpuctx->hrtimer_lock); 1018 1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1020 } 1021 1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1023 { 1024 struct hrtimer *timer = &cpuctx->hrtimer; 1025 struct pmu *pmu = cpuctx->ctx.pmu; 1026 u64 interval; 1027 1028 /* no multiplexing needed for SW PMU */ 1029 if (pmu->task_ctx_nr == perf_sw_context) 1030 return; 1031 1032 /* 1033 * check default is sane, if not set then force to 1034 * default interval (1/tick) 1035 */ 1036 interval = pmu->hrtimer_interval_ms; 1037 if (interval < 1) 1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1039 1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1041 1042 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1044 timer->function = perf_mux_hrtimer_handler; 1045 } 1046 1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1048 { 1049 struct hrtimer *timer = &cpuctx->hrtimer; 1050 struct pmu *pmu = cpuctx->ctx.pmu; 1051 unsigned long flags; 1052 1053 /* not for SW PMU */ 1054 if (pmu->task_ctx_nr == perf_sw_context) 1055 return 0; 1056 1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1058 if (!cpuctx->hrtimer_active) { 1059 cpuctx->hrtimer_active = 1; 1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1062 } 1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1064 1065 return 0; 1066 } 1067 1068 void perf_pmu_disable(struct pmu *pmu) 1069 { 1070 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1071 if (!(*count)++) 1072 pmu->pmu_disable(pmu); 1073 } 1074 1075 void perf_pmu_enable(struct pmu *pmu) 1076 { 1077 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1078 if (!--(*count)) 1079 pmu->pmu_enable(pmu); 1080 } 1081 1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1083 1084 /* 1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1086 * perf_event_task_tick() are fully serialized because they're strictly cpu 1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1088 * disabled, while perf_event_task_tick is called from IRQ context. 1089 */ 1090 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1091 { 1092 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1093 1094 WARN_ON(!irqs_disabled()); 1095 1096 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1097 1098 list_add(&ctx->active_ctx_list, head); 1099 } 1100 1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1102 { 1103 WARN_ON(!irqs_disabled()); 1104 1105 WARN_ON(list_empty(&ctx->active_ctx_list)); 1106 1107 list_del_init(&ctx->active_ctx_list); 1108 } 1109 1110 static void get_ctx(struct perf_event_context *ctx) 1111 { 1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1113 } 1114 1115 static void free_ctx(struct rcu_head *head) 1116 { 1117 struct perf_event_context *ctx; 1118 1119 ctx = container_of(head, struct perf_event_context, rcu_head); 1120 kfree(ctx->task_ctx_data); 1121 kfree(ctx); 1122 } 1123 1124 static void put_ctx(struct perf_event_context *ctx) 1125 { 1126 if (atomic_dec_and_test(&ctx->refcount)) { 1127 if (ctx->parent_ctx) 1128 put_ctx(ctx->parent_ctx); 1129 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1130 put_task_struct(ctx->task); 1131 call_rcu(&ctx->rcu_head, free_ctx); 1132 } 1133 } 1134 1135 /* 1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1137 * perf_pmu_migrate_context() we need some magic. 1138 * 1139 * Those places that change perf_event::ctx will hold both 1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1141 * 1142 * Lock ordering is by mutex address. There are two other sites where 1143 * perf_event_context::mutex nests and those are: 1144 * 1145 * - perf_event_exit_task_context() [ child , 0 ] 1146 * perf_event_exit_event() 1147 * put_event() [ parent, 1 ] 1148 * 1149 * - perf_event_init_context() [ parent, 0 ] 1150 * inherit_task_group() 1151 * inherit_group() 1152 * inherit_event() 1153 * perf_event_alloc() 1154 * perf_init_event() 1155 * perf_try_init_event() [ child , 1 ] 1156 * 1157 * While it appears there is an obvious deadlock here -- the parent and child 1158 * nesting levels are inverted between the two. This is in fact safe because 1159 * life-time rules separate them. That is an exiting task cannot fork, and a 1160 * spawning task cannot (yet) exit. 1161 * 1162 * But remember that that these are parent<->child context relations, and 1163 * migration does not affect children, therefore these two orderings should not 1164 * interact. 1165 * 1166 * The change in perf_event::ctx does not affect children (as claimed above) 1167 * because the sys_perf_event_open() case will install a new event and break 1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1169 * concerned with cpuctx and that doesn't have children. 1170 * 1171 * The places that change perf_event::ctx will issue: 1172 * 1173 * perf_remove_from_context(); 1174 * synchronize_rcu(); 1175 * perf_install_in_context(); 1176 * 1177 * to affect the change. The remove_from_context() + synchronize_rcu() should 1178 * quiesce the event, after which we can install it in the new location. This 1179 * means that only external vectors (perf_fops, prctl) can perturb the event 1180 * while in transit. Therefore all such accessors should also acquire 1181 * perf_event_context::mutex to serialize against this. 1182 * 1183 * However; because event->ctx can change while we're waiting to acquire 1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1185 * function. 1186 * 1187 * Lock order: 1188 * cred_guard_mutex 1189 * task_struct::perf_event_mutex 1190 * perf_event_context::mutex 1191 * perf_event::child_mutex; 1192 * perf_event_context::lock 1193 * perf_event::mmap_mutex 1194 * mmap_sem 1195 */ 1196 static struct perf_event_context * 1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1198 { 1199 struct perf_event_context *ctx; 1200 1201 again: 1202 rcu_read_lock(); 1203 ctx = ACCESS_ONCE(event->ctx); 1204 if (!atomic_inc_not_zero(&ctx->refcount)) { 1205 rcu_read_unlock(); 1206 goto again; 1207 } 1208 rcu_read_unlock(); 1209 1210 mutex_lock_nested(&ctx->mutex, nesting); 1211 if (event->ctx != ctx) { 1212 mutex_unlock(&ctx->mutex); 1213 put_ctx(ctx); 1214 goto again; 1215 } 1216 1217 return ctx; 1218 } 1219 1220 static inline struct perf_event_context * 1221 perf_event_ctx_lock(struct perf_event *event) 1222 { 1223 return perf_event_ctx_lock_nested(event, 0); 1224 } 1225 1226 static void perf_event_ctx_unlock(struct perf_event *event, 1227 struct perf_event_context *ctx) 1228 { 1229 mutex_unlock(&ctx->mutex); 1230 put_ctx(ctx); 1231 } 1232 1233 /* 1234 * This must be done under the ctx->lock, such as to serialize against 1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1236 * calling scheduler related locks and ctx->lock nests inside those. 1237 */ 1238 static __must_check struct perf_event_context * 1239 unclone_ctx(struct perf_event_context *ctx) 1240 { 1241 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1242 1243 lockdep_assert_held(&ctx->lock); 1244 1245 if (parent_ctx) 1246 ctx->parent_ctx = NULL; 1247 ctx->generation++; 1248 1249 return parent_ctx; 1250 } 1251 1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1253 { 1254 /* 1255 * only top level events have the pid namespace they were created in 1256 */ 1257 if (event->parent) 1258 event = event->parent; 1259 1260 return task_tgid_nr_ns(p, event->ns); 1261 } 1262 1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1264 { 1265 /* 1266 * only top level events have the pid namespace they were created in 1267 */ 1268 if (event->parent) 1269 event = event->parent; 1270 1271 return task_pid_nr_ns(p, event->ns); 1272 } 1273 1274 /* 1275 * If we inherit events we want to return the parent event id 1276 * to userspace. 1277 */ 1278 static u64 primary_event_id(struct perf_event *event) 1279 { 1280 u64 id = event->id; 1281 1282 if (event->parent) 1283 id = event->parent->id; 1284 1285 return id; 1286 } 1287 1288 /* 1289 * Get the perf_event_context for a task and lock it. 1290 * 1291 * This has to cope with with the fact that until it is locked, 1292 * the context could get moved to another task. 1293 */ 1294 static struct perf_event_context * 1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1296 { 1297 struct perf_event_context *ctx; 1298 1299 retry: 1300 /* 1301 * One of the few rules of preemptible RCU is that one cannot do 1302 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1303 * part of the read side critical section was irqs-enabled -- see 1304 * rcu_read_unlock_special(). 1305 * 1306 * Since ctx->lock nests under rq->lock we must ensure the entire read 1307 * side critical section has interrupts disabled. 1308 */ 1309 local_irq_save(*flags); 1310 rcu_read_lock(); 1311 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1312 if (ctx) { 1313 /* 1314 * If this context is a clone of another, it might 1315 * get swapped for another underneath us by 1316 * perf_event_task_sched_out, though the 1317 * rcu_read_lock() protects us from any context 1318 * getting freed. Lock the context and check if it 1319 * got swapped before we could get the lock, and retry 1320 * if so. If we locked the right context, then it 1321 * can't get swapped on us any more. 1322 */ 1323 raw_spin_lock(&ctx->lock); 1324 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1325 raw_spin_unlock(&ctx->lock); 1326 rcu_read_unlock(); 1327 local_irq_restore(*flags); 1328 goto retry; 1329 } 1330 1331 if (ctx->task == TASK_TOMBSTONE || 1332 !atomic_inc_not_zero(&ctx->refcount)) { 1333 raw_spin_unlock(&ctx->lock); 1334 ctx = NULL; 1335 } else { 1336 WARN_ON_ONCE(ctx->task != task); 1337 } 1338 } 1339 rcu_read_unlock(); 1340 if (!ctx) 1341 local_irq_restore(*flags); 1342 return ctx; 1343 } 1344 1345 /* 1346 * Get the context for a task and increment its pin_count so it 1347 * can't get swapped to another task. This also increments its 1348 * reference count so that the context can't get freed. 1349 */ 1350 static struct perf_event_context * 1351 perf_pin_task_context(struct task_struct *task, int ctxn) 1352 { 1353 struct perf_event_context *ctx; 1354 unsigned long flags; 1355 1356 ctx = perf_lock_task_context(task, ctxn, &flags); 1357 if (ctx) { 1358 ++ctx->pin_count; 1359 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1360 } 1361 return ctx; 1362 } 1363 1364 static void perf_unpin_context(struct perf_event_context *ctx) 1365 { 1366 unsigned long flags; 1367 1368 raw_spin_lock_irqsave(&ctx->lock, flags); 1369 --ctx->pin_count; 1370 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1371 } 1372 1373 /* 1374 * Update the record of the current time in a context. 1375 */ 1376 static void update_context_time(struct perf_event_context *ctx) 1377 { 1378 u64 now = perf_clock(); 1379 1380 ctx->time += now - ctx->timestamp; 1381 ctx->timestamp = now; 1382 } 1383 1384 static u64 perf_event_time(struct perf_event *event) 1385 { 1386 struct perf_event_context *ctx = event->ctx; 1387 1388 if (is_cgroup_event(event)) 1389 return perf_cgroup_event_time(event); 1390 1391 return ctx ? ctx->time : 0; 1392 } 1393 1394 /* 1395 * Update the total_time_enabled and total_time_running fields for a event. 1396 */ 1397 static void update_event_times(struct perf_event *event) 1398 { 1399 struct perf_event_context *ctx = event->ctx; 1400 u64 run_end; 1401 1402 lockdep_assert_held(&ctx->lock); 1403 1404 if (event->state < PERF_EVENT_STATE_INACTIVE || 1405 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1406 return; 1407 1408 /* 1409 * in cgroup mode, time_enabled represents 1410 * the time the event was enabled AND active 1411 * tasks were in the monitored cgroup. This is 1412 * independent of the activity of the context as 1413 * there may be a mix of cgroup and non-cgroup events. 1414 * 1415 * That is why we treat cgroup events differently 1416 * here. 1417 */ 1418 if (is_cgroup_event(event)) 1419 run_end = perf_cgroup_event_time(event); 1420 else if (ctx->is_active) 1421 run_end = ctx->time; 1422 else 1423 run_end = event->tstamp_stopped; 1424 1425 event->total_time_enabled = run_end - event->tstamp_enabled; 1426 1427 if (event->state == PERF_EVENT_STATE_INACTIVE) 1428 run_end = event->tstamp_stopped; 1429 else 1430 run_end = perf_event_time(event); 1431 1432 event->total_time_running = run_end - event->tstamp_running; 1433 1434 } 1435 1436 /* 1437 * Update total_time_enabled and total_time_running for all events in a group. 1438 */ 1439 static void update_group_times(struct perf_event *leader) 1440 { 1441 struct perf_event *event; 1442 1443 update_event_times(leader); 1444 list_for_each_entry(event, &leader->sibling_list, group_entry) 1445 update_event_times(event); 1446 } 1447 1448 static struct list_head * 1449 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1450 { 1451 if (event->attr.pinned) 1452 return &ctx->pinned_groups; 1453 else 1454 return &ctx->flexible_groups; 1455 } 1456 1457 /* 1458 * Add a event from the lists for its context. 1459 * Must be called with ctx->mutex and ctx->lock held. 1460 */ 1461 static void 1462 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1463 { 1464 1465 lockdep_assert_held(&ctx->lock); 1466 1467 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1468 event->attach_state |= PERF_ATTACH_CONTEXT; 1469 1470 /* 1471 * If we're a stand alone event or group leader, we go to the context 1472 * list, group events are kept attached to the group so that 1473 * perf_group_detach can, at all times, locate all siblings. 1474 */ 1475 if (event->group_leader == event) { 1476 struct list_head *list; 1477 1478 if (is_software_event(event)) 1479 event->group_flags |= PERF_GROUP_SOFTWARE; 1480 1481 list = ctx_group_list(event, ctx); 1482 list_add_tail(&event->group_entry, list); 1483 } 1484 1485 list_update_cgroup_event(event, ctx, true); 1486 1487 list_add_rcu(&event->event_entry, &ctx->event_list); 1488 ctx->nr_events++; 1489 if (event->attr.inherit_stat) 1490 ctx->nr_stat++; 1491 1492 ctx->generation++; 1493 } 1494 1495 /* 1496 * Initialize event state based on the perf_event_attr::disabled. 1497 */ 1498 static inline void perf_event__state_init(struct perf_event *event) 1499 { 1500 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1501 PERF_EVENT_STATE_INACTIVE; 1502 } 1503 1504 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1505 { 1506 int entry = sizeof(u64); /* value */ 1507 int size = 0; 1508 int nr = 1; 1509 1510 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1511 size += sizeof(u64); 1512 1513 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1514 size += sizeof(u64); 1515 1516 if (event->attr.read_format & PERF_FORMAT_ID) 1517 entry += sizeof(u64); 1518 1519 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1520 nr += nr_siblings; 1521 size += sizeof(u64); 1522 } 1523 1524 size += entry * nr; 1525 event->read_size = size; 1526 } 1527 1528 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1529 { 1530 struct perf_sample_data *data; 1531 u16 size = 0; 1532 1533 if (sample_type & PERF_SAMPLE_IP) 1534 size += sizeof(data->ip); 1535 1536 if (sample_type & PERF_SAMPLE_ADDR) 1537 size += sizeof(data->addr); 1538 1539 if (sample_type & PERF_SAMPLE_PERIOD) 1540 size += sizeof(data->period); 1541 1542 if (sample_type & PERF_SAMPLE_WEIGHT) 1543 size += sizeof(data->weight); 1544 1545 if (sample_type & PERF_SAMPLE_READ) 1546 size += event->read_size; 1547 1548 if (sample_type & PERF_SAMPLE_DATA_SRC) 1549 size += sizeof(data->data_src.val); 1550 1551 if (sample_type & PERF_SAMPLE_TRANSACTION) 1552 size += sizeof(data->txn); 1553 1554 event->header_size = size; 1555 } 1556 1557 /* 1558 * Called at perf_event creation and when events are attached/detached from a 1559 * group. 1560 */ 1561 static void perf_event__header_size(struct perf_event *event) 1562 { 1563 __perf_event_read_size(event, 1564 event->group_leader->nr_siblings); 1565 __perf_event_header_size(event, event->attr.sample_type); 1566 } 1567 1568 static void perf_event__id_header_size(struct perf_event *event) 1569 { 1570 struct perf_sample_data *data; 1571 u64 sample_type = event->attr.sample_type; 1572 u16 size = 0; 1573 1574 if (sample_type & PERF_SAMPLE_TID) 1575 size += sizeof(data->tid_entry); 1576 1577 if (sample_type & PERF_SAMPLE_TIME) 1578 size += sizeof(data->time); 1579 1580 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1581 size += sizeof(data->id); 1582 1583 if (sample_type & PERF_SAMPLE_ID) 1584 size += sizeof(data->id); 1585 1586 if (sample_type & PERF_SAMPLE_STREAM_ID) 1587 size += sizeof(data->stream_id); 1588 1589 if (sample_type & PERF_SAMPLE_CPU) 1590 size += sizeof(data->cpu_entry); 1591 1592 event->id_header_size = size; 1593 } 1594 1595 static bool perf_event_validate_size(struct perf_event *event) 1596 { 1597 /* 1598 * The values computed here will be over-written when we actually 1599 * attach the event. 1600 */ 1601 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1602 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1603 perf_event__id_header_size(event); 1604 1605 /* 1606 * Sum the lot; should not exceed the 64k limit we have on records. 1607 * Conservative limit to allow for callchains and other variable fields. 1608 */ 1609 if (event->read_size + event->header_size + 1610 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1611 return false; 1612 1613 return true; 1614 } 1615 1616 static void perf_group_attach(struct perf_event *event) 1617 { 1618 struct perf_event *group_leader = event->group_leader, *pos; 1619 1620 /* 1621 * We can have double attach due to group movement in perf_event_open. 1622 */ 1623 if (event->attach_state & PERF_ATTACH_GROUP) 1624 return; 1625 1626 event->attach_state |= PERF_ATTACH_GROUP; 1627 1628 if (group_leader == event) 1629 return; 1630 1631 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1632 1633 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1634 !is_software_event(event)) 1635 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1636 1637 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1638 group_leader->nr_siblings++; 1639 1640 perf_event__header_size(group_leader); 1641 1642 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1643 perf_event__header_size(pos); 1644 } 1645 1646 /* 1647 * Remove a event from the lists for its context. 1648 * Must be called with ctx->mutex and ctx->lock held. 1649 */ 1650 static void 1651 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1652 { 1653 WARN_ON_ONCE(event->ctx != ctx); 1654 lockdep_assert_held(&ctx->lock); 1655 1656 /* 1657 * We can have double detach due to exit/hot-unplug + close. 1658 */ 1659 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1660 return; 1661 1662 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1663 1664 list_update_cgroup_event(event, ctx, false); 1665 1666 ctx->nr_events--; 1667 if (event->attr.inherit_stat) 1668 ctx->nr_stat--; 1669 1670 list_del_rcu(&event->event_entry); 1671 1672 if (event->group_leader == event) 1673 list_del_init(&event->group_entry); 1674 1675 update_group_times(event); 1676 1677 /* 1678 * If event was in error state, then keep it 1679 * that way, otherwise bogus counts will be 1680 * returned on read(). The only way to get out 1681 * of error state is by explicit re-enabling 1682 * of the event 1683 */ 1684 if (event->state > PERF_EVENT_STATE_OFF) 1685 event->state = PERF_EVENT_STATE_OFF; 1686 1687 ctx->generation++; 1688 } 1689 1690 static void perf_group_detach(struct perf_event *event) 1691 { 1692 struct perf_event *sibling, *tmp; 1693 struct list_head *list = NULL; 1694 1695 /* 1696 * We can have double detach due to exit/hot-unplug + close. 1697 */ 1698 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1699 return; 1700 1701 event->attach_state &= ~PERF_ATTACH_GROUP; 1702 1703 /* 1704 * If this is a sibling, remove it from its group. 1705 */ 1706 if (event->group_leader != event) { 1707 list_del_init(&event->group_entry); 1708 event->group_leader->nr_siblings--; 1709 goto out; 1710 } 1711 1712 if (!list_empty(&event->group_entry)) 1713 list = &event->group_entry; 1714 1715 /* 1716 * If this was a group event with sibling events then 1717 * upgrade the siblings to singleton events by adding them 1718 * to whatever list we are on. 1719 */ 1720 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1721 if (list) 1722 list_move_tail(&sibling->group_entry, list); 1723 sibling->group_leader = sibling; 1724 1725 /* Inherit group flags from the previous leader */ 1726 sibling->group_flags = event->group_flags; 1727 1728 WARN_ON_ONCE(sibling->ctx != event->ctx); 1729 } 1730 1731 out: 1732 perf_event__header_size(event->group_leader); 1733 1734 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1735 perf_event__header_size(tmp); 1736 } 1737 1738 static bool is_orphaned_event(struct perf_event *event) 1739 { 1740 return event->state == PERF_EVENT_STATE_DEAD; 1741 } 1742 1743 static inline int __pmu_filter_match(struct perf_event *event) 1744 { 1745 struct pmu *pmu = event->pmu; 1746 return pmu->filter_match ? pmu->filter_match(event) : 1; 1747 } 1748 1749 /* 1750 * Check whether we should attempt to schedule an event group based on 1751 * PMU-specific filtering. An event group can consist of HW and SW events, 1752 * potentially with a SW leader, so we must check all the filters, to 1753 * determine whether a group is schedulable: 1754 */ 1755 static inline int pmu_filter_match(struct perf_event *event) 1756 { 1757 struct perf_event *child; 1758 1759 if (!__pmu_filter_match(event)) 1760 return 0; 1761 1762 list_for_each_entry(child, &event->sibling_list, group_entry) { 1763 if (!__pmu_filter_match(child)) 1764 return 0; 1765 } 1766 1767 return 1; 1768 } 1769 1770 static inline int 1771 event_filter_match(struct perf_event *event) 1772 { 1773 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1774 perf_cgroup_match(event) && pmu_filter_match(event); 1775 } 1776 1777 static void 1778 event_sched_out(struct perf_event *event, 1779 struct perf_cpu_context *cpuctx, 1780 struct perf_event_context *ctx) 1781 { 1782 u64 tstamp = perf_event_time(event); 1783 u64 delta; 1784 1785 WARN_ON_ONCE(event->ctx != ctx); 1786 lockdep_assert_held(&ctx->lock); 1787 1788 /* 1789 * An event which could not be activated because of 1790 * filter mismatch still needs to have its timings 1791 * maintained, otherwise bogus information is return 1792 * via read() for time_enabled, time_running: 1793 */ 1794 if (event->state == PERF_EVENT_STATE_INACTIVE && 1795 !event_filter_match(event)) { 1796 delta = tstamp - event->tstamp_stopped; 1797 event->tstamp_running += delta; 1798 event->tstamp_stopped = tstamp; 1799 } 1800 1801 if (event->state != PERF_EVENT_STATE_ACTIVE) 1802 return; 1803 1804 perf_pmu_disable(event->pmu); 1805 1806 event->tstamp_stopped = tstamp; 1807 event->pmu->del(event, 0); 1808 event->oncpu = -1; 1809 event->state = PERF_EVENT_STATE_INACTIVE; 1810 if (event->pending_disable) { 1811 event->pending_disable = 0; 1812 event->state = PERF_EVENT_STATE_OFF; 1813 } 1814 1815 if (!is_software_event(event)) 1816 cpuctx->active_oncpu--; 1817 if (!--ctx->nr_active) 1818 perf_event_ctx_deactivate(ctx); 1819 if (event->attr.freq && event->attr.sample_freq) 1820 ctx->nr_freq--; 1821 if (event->attr.exclusive || !cpuctx->active_oncpu) 1822 cpuctx->exclusive = 0; 1823 1824 perf_pmu_enable(event->pmu); 1825 } 1826 1827 static void 1828 group_sched_out(struct perf_event *group_event, 1829 struct perf_cpu_context *cpuctx, 1830 struct perf_event_context *ctx) 1831 { 1832 struct perf_event *event; 1833 int state = group_event->state; 1834 1835 event_sched_out(group_event, cpuctx, ctx); 1836 1837 /* 1838 * Schedule out siblings (if any): 1839 */ 1840 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1841 event_sched_out(event, cpuctx, ctx); 1842 1843 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1844 cpuctx->exclusive = 0; 1845 } 1846 1847 #define DETACH_GROUP 0x01UL 1848 1849 /* 1850 * Cross CPU call to remove a performance event 1851 * 1852 * We disable the event on the hardware level first. After that we 1853 * remove it from the context list. 1854 */ 1855 static void 1856 __perf_remove_from_context(struct perf_event *event, 1857 struct perf_cpu_context *cpuctx, 1858 struct perf_event_context *ctx, 1859 void *info) 1860 { 1861 unsigned long flags = (unsigned long)info; 1862 1863 event_sched_out(event, cpuctx, ctx); 1864 if (flags & DETACH_GROUP) 1865 perf_group_detach(event); 1866 list_del_event(event, ctx); 1867 1868 if (!ctx->nr_events && ctx->is_active) { 1869 ctx->is_active = 0; 1870 if (ctx->task) { 1871 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1872 cpuctx->task_ctx = NULL; 1873 } 1874 } 1875 } 1876 1877 /* 1878 * Remove the event from a task's (or a CPU's) list of events. 1879 * 1880 * If event->ctx is a cloned context, callers must make sure that 1881 * every task struct that event->ctx->task could possibly point to 1882 * remains valid. This is OK when called from perf_release since 1883 * that only calls us on the top-level context, which can't be a clone. 1884 * When called from perf_event_exit_task, it's OK because the 1885 * context has been detached from its task. 1886 */ 1887 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1888 { 1889 lockdep_assert_held(&event->ctx->mutex); 1890 1891 event_function_call(event, __perf_remove_from_context, (void *)flags); 1892 } 1893 1894 /* 1895 * Cross CPU call to disable a performance event 1896 */ 1897 static void __perf_event_disable(struct perf_event *event, 1898 struct perf_cpu_context *cpuctx, 1899 struct perf_event_context *ctx, 1900 void *info) 1901 { 1902 if (event->state < PERF_EVENT_STATE_INACTIVE) 1903 return; 1904 1905 update_context_time(ctx); 1906 update_cgrp_time_from_event(event); 1907 update_group_times(event); 1908 if (event == event->group_leader) 1909 group_sched_out(event, cpuctx, ctx); 1910 else 1911 event_sched_out(event, cpuctx, ctx); 1912 event->state = PERF_EVENT_STATE_OFF; 1913 } 1914 1915 /* 1916 * Disable a event. 1917 * 1918 * If event->ctx is a cloned context, callers must make sure that 1919 * every task struct that event->ctx->task could possibly point to 1920 * remains valid. This condition is satisifed when called through 1921 * perf_event_for_each_child or perf_event_for_each because they 1922 * hold the top-level event's child_mutex, so any descendant that 1923 * goes to exit will block in perf_event_exit_event(). 1924 * 1925 * When called from perf_pending_event it's OK because event->ctx 1926 * is the current context on this CPU and preemption is disabled, 1927 * hence we can't get into perf_event_task_sched_out for this context. 1928 */ 1929 static void _perf_event_disable(struct perf_event *event) 1930 { 1931 struct perf_event_context *ctx = event->ctx; 1932 1933 raw_spin_lock_irq(&ctx->lock); 1934 if (event->state <= PERF_EVENT_STATE_OFF) { 1935 raw_spin_unlock_irq(&ctx->lock); 1936 return; 1937 } 1938 raw_spin_unlock_irq(&ctx->lock); 1939 1940 event_function_call(event, __perf_event_disable, NULL); 1941 } 1942 1943 void perf_event_disable_local(struct perf_event *event) 1944 { 1945 event_function_local(event, __perf_event_disable, NULL); 1946 } 1947 1948 /* 1949 * Strictly speaking kernel users cannot create groups and therefore this 1950 * interface does not need the perf_event_ctx_lock() magic. 1951 */ 1952 void perf_event_disable(struct perf_event *event) 1953 { 1954 struct perf_event_context *ctx; 1955 1956 ctx = perf_event_ctx_lock(event); 1957 _perf_event_disable(event); 1958 perf_event_ctx_unlock(event, ctx); 1959 } 1960 EXPORT_SYMBOL_GPL(perf_event_disable); 1961 1962 static void perf_set_shadow_time(struct perf_event *event, 1963 struct perf_event_context *ctx, 1964 u64 tstamp) 1965 { 1966 /* 1967 * use the correct time source for the time snapshot 1968 * 1969 * We could get by without this by leveraging the 1970 * fact that to get to this function, the caller 1971 * has most likely already called update_context_time() 1972 * and update_cgrp_time_xx() and thus both timestamp 1973 * are identical (or very close). Given that tstamp is, 1974 * already adjusted for cgroup, we could say that: 1975 * tstamp - ctx->timestamp 1976 * is equivalent to 1977 * tstamp - cgrp->timestamp. 1978 * 1979 * Then, in perf_output_read(), the calculation would 1980 * work with no changes because: 1981 * - event is guaranteed scheduled in 1982 * - no scheduled out in between 1983 * - thus the timestamp would be the same 1984 * 1985 * But this is a bit hairy. 1986 * 1987 * So instead, we have an explicit cgroup call to remain 1988 * within the time time source all along. We believe it 1989 * is cleaner and simpler to understand. 1990 */ 1991 if (is_cgroup_event(event)) 1992 perf_cgroup_set_shadow_time(event, tstamp); 1993 else 1994 event->shadow_ctx_time = tstamp - ctx->timestamp; 1995 } 1996 1997 #define MAX_INTERRUPTS (~0ULL) 1998 1999 static void perf_log_throttle(struct perf_event *event, int enable); 2000 static void perf_log_itrace_start(struct perf_event *event); 2001 2002 static int 2003 event_sched_in(struct perf_event *event, 2004 struct perf_cpu_context *cpuctx, 2005 struct perf_event_context *ctx) 2006 { 2007 u64 tstamp = perf_event_time(event); 2008 int ret = 0; 2009 2010 lockdep_assert_held(&ctx->lock); 2011 2012 if (event->state <= PERF_EVENT_STATE_OFF) 2013 return 0; 2014 2015 WRITE_ONCE(event->oncpu, smp_processor_id()); 2016 /* 2017 * Order event::oncpu write to happen before the ACTIVE state 2018 * is visible. 2019 */ 2020 smp_wmb(); 2021 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 2022 2023 /* 2024 * Unthrottle events, since we scheduled we might have missed several 2025 * ticks already, also for a heavily scheduling task there is little 2026 * guarantee it'll get a tick in a timely manner. 2027 */ 2028 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2029 perf_log_throttle(event, 1); 2030 event->hw.interrupts = 0; 2031 } 2032 2033 /* 2034 * The new state must be visible before we turn it on in the hardware: 2035 */ 2036 smp_wmb(); 2037 2038 perf_pmu_disable(event->pmu); 2039 2040 perf_set_shadow_time(event, ctx, tstamp); 2041 2042 perf_log_itrace_start(event); 2043 2044 if (event->pmu->add(event, PERF_EF_START)) { 2045 event->state = PERF_EVENT_STATE_INACTIVE; 2046 event->oncpu = -1; 2047 ret = -EAGAIN; 2048 goto out; 2049 } 2050 2051 event->tstamp_running += tstamp - event->tstamp_stopped; 2052 2053 if (!is_software_event(event)) 2054 cpuctx->active_oncpu++; 2055 if (!ctx->nr_active++) 2056 perf_event_ctx_activate(ctx); 2057 if (event->attr.freq && event->attr.sample_freq) 2058 ctx->nr_freq++; 2059 2060 if (event->attr.exclusive) 2061 cpuctx->exclusive = 1; 2062 2063 out: 2064 perf_pmu_enable(event->pmu); 2065 2066 return ret; 2067 } 2068 2069 static int 2070 group_sched_in(struct perf_event *group_event, 2071 struct perf_cpu_context *cpuctx, 2072 struct perf_event_context *ctx) 2073 { 2074 struct perf_event *event, *partial_group = NULL; 2075 struct pmu *pmu = ctx->pmu; 2076 u64 now = ctx->time; 2077 bool simulate = false; 2078 2079 if (group_event->state == PERF_EVENT_STATE_OFF) 2080 return 0; 2081 2082 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2083 2084 if (event_sched_in(group_event, cpuctx, ctx)) { 2085 pmu->cancel_txn(pmu); 2086 perf_mux_hrtimer_restart(cpuctx); 2087 return -EAGAIN; 2088 } 2089 2090 /* 2091 * Schedule in siblings as one group (if any): 2092 */ 2093 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2094 if (event_sched_in(event, cpuctx, ctx)) { 2095 partial_group = event; 2096 goto group_error; 2097 } 2098 } 2099 2100 if (!pmu->commit_txn(pmu)) 2101 return 0; 2102 2103 group_error: 2104 /* 2105 * Groups can be scheduled in as one unit only, so undo any 2106 * partial group before returning: 2107 * The events up to the failed event are scheduled out normally, 2108 * tstamp_stopped will be updated. 2109 * 2110 * The failed events and the remaining siblings need to have 2111 * their timings updated as if they had gone thru event_sched_in() 2112 * and event_sched_out(). This is required to get consistent timings 2113 * across the group. This also takes care of the case where the group 2114 * could never be scheduled by ensuring tstamp_stopped is set to mark 2115 * the time the event was actually stopped, such that time delta 2116 * calculation in update_event_times() is correct. 2117 */ 2118 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2119 if (event == partial_group) 2120 simulate = true; 2121 2122 if (simulate) { 2123 event->tstamp_running += now - event->tstamp_stopped; 2124 event->tstamp_stopped = now; 2125 } else { 2126 event_sched_out(event, cpuctx, ctx); 2127 } 2128 } 2129 event_sched_out(group_event, cpuctx, ctx); 2130 2131 pmu->cancel_txn(pmu); 2132 2133 perf_mux_hrtimer_restart(cpuctx); 2134 2135 return -EAGAIN; 2136 } 2137 2138 /* 2139 * Work out whether we can put this event group on the CPU now. 2140 */ 2141 static int group_can_go_on(struct perf_event *event, 2142 struct perf_cpu_context *cpuctx, 2143 int can_add_hw) 2144 { 2145 /* 2146 * Groups consisting entirely of software events can always go on. 2147 */ 2148 if (event->group_flags & PERF_GROUP_SOFTWARE) 2149 return 1; 2150 /* 2151 * If an exclusive group is already on, no other hardware 2152 * events can go on. 2153 */ 2154 if (cpuctx->exclusive) 2155 return 0; 2156 /* 2157 * If this group is exclusive and there are already 2158 * events on the CPU, it can't go on. 2159 */ 2160 if (event->attr.exclusive && cpuctx->active_oncpu) 2161 return 0; 2162 /* 2163 * Otherwise, try to add it if all previous groups were able 2164 * to go on. 2165 */ 2166 return can_add_hw; 2167 } 2168 2169 static void add_event_to_ctx(struct perf_event *event, 2170 struct perf_event_context *ctx) 2171 { 2172 u64 tstamp = perf_event_time(event); 2173 2174 list_add_event(event, ctx); 2175 perf_group_attach(event); 2176 event->tstamp_enabled = tstamp; 2177 event->tstamp_running = tstamp; 2178 event->tstamp_stopped = tstamp; 2179 } 2180 2181 static void ctx_sched_out(struct perf_event_context *ctx, 2182 struct perf_cpu_context *cpuctx, 2183 enum event_type_t event_type); 2184 static void 2185 ctx_sched_in(struct perf_event_context *ctx, 2186 struct perf_cpu_context *cpuctx, 2187 enum event_type_t event_type, 2188 struct task_struct *task); 2189 2190 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2191 struct perf_event_context *ctx) 2192 { 2193 if (!cpuctx->task_ctx) 2194 return; 2195 2196 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2197 return; 2198 2199 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2200 } 2201 2202 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2203 struct perf_event_context *ctx, 2204 struct task_struct *task) 2205 { 2206 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2207 if (ctx) 2208 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2209 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2210 if (ctx) 2211 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2212 } 2213 2214 static void ctx_resched(struct perf_cpu_context *cpuctx, 2215 struct perf_event_context *task_ctx) 2216 { 2217 perf_pmu_disable(cpuctx->ctx.pmu); 2218 if (task_ctx) 2219 task_ctx_sched_out(cpuctx, task_ctx); 2220 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2221 perf_event_sched_in(cpuctx, task_ctx, current); 2222 perf_pmu_enable(cpuctx->ctx.pmu); 2223 } 2224 2225 /* 2226 * Cross CPU call to install and enable a performance event 2227 * 2228 * Very similar to remote_function() + event_function() but cannot assume that 2229 * things like ctx->is_active and cpuctx->task_ctx are set. 2230 */ 2231 static int __perf_install_in_context(void *info) 2232 { 2233 struct perf_event *event = info; 2234 struct perf_event_context *ctx = event->ctx; 2235 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2236 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2237 bool activate = true; 2238 int ret = 0; 2239 2240 raw_spin_lock(&cpuctx->ctx.lock); 2241 if (ctx->task) { 2242 raw_spin_lock(&ctx->lock); 2243 task_ctx = ctx; 2244 2245 /* If we're on the wrong CPU, try again */ 2246 if (task_cpu(ctx->task) != smp_processor_id()) { 2247 ret = -ESRCH; 2248 goto unlock; 2249 } 2250 2251 /* 2252 * If we're on the right CPU, see if the task we target is 2253 * current, if not we don't have to activate the ctx, a future 2254 * context switch will do that for us. 2255 */ 2256 if (ctx->task != current) 2257 activate = false; 2258 else 2259 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2260 2261 } else if (task_ctx) { 2262 raw_spin_lock(&task_ctx->lock); 2263 } 2264 2265 if (activate) { 2266 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2267 add_event_to_ctx(event, ctx); 2268 ctx_resched(cpuctx, task_ctx); 2269 } else { 2270 add_event_to_ctx(event, ctx); 2271 } 2272 2273 unlock: 2274 perf_ctx_unlock(cpuctx, task_ctx); 2275 2276 return ret; 2277 } 2278 2279 /* 2280 * Attach a performance event to a context. 2281 * 2282 * Very similar to event_function_call, see comment there. 2283 */ 2284 static void 2285 perf_install_in_context(struct perf_event_context *ctx, 2286 struct perf_event *event, 2287 int cpu) 2288 { 2289 struct task_struct *task = READ_ONCE(ctx->task); 2290 2291 lockdep_assert_held(&ctx->mutex); 2292 2293 if (event->cpu != -1) 2294 event->cpu = cpu; 2295 2296 /* 2297 * Ensures that if we can observe event->ctx, both the event and ctx 2298 * will be 'complete'. See perf_iterate_sb_cpu(). 2299 */ 2300 smp_store_release(&event->ctx, ctx); 2301 2302 if (!task) { 2303 cpu_function_call(cpu, __perf_install_in_context, event); 2304 return; 2305 } 2306 2307 /* 2308 * Should not happen, we validate the ctx is still alive before calling. 2309 */ 2310 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2311 return; 2312 2313 /* 2314 * Installing events is tricky because we cannot rely on ctx->is_active 2315 * to be set in case this is the nr_events 0 -> 1 transition. 2316 */ 2317 again: 2318 /* 2319 * Cannot use task_function_call() because we need to run on the task's 2320 * CPU regardless of whether its current or not. 2321 */ 2322 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event)) 2323 return; 2324 2325 raw_spin_lock_irq(&ctx->lock); 2326 task = ctx->task; 2327 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2328 /* 2329 * Cannot happen because we already checked above (which also 2330 * cannot happen), and we hold ctx->mutex, which serializes us 2331 * against perf_event_exit_task_context(). 2332 */ 2333 raw_spin_unlock_irq(&ctx->lock); 2334 return; 2335 } 2336 raw_spin_unlock_irq(&ctx->lock); 2337 /* 2338 * Since !ctx->is_active doesn't mean anything, we must IPI 2339 * unconditionally. 2340 */ 2341 goto again; 2342 } 2343 2344 /* 2345 * Put a event into inactive state and update time fields. 2346 * Enabling the leader of a group effectively enables all 2347 * the group members that aren't explicitly disabled, so we 2348 * have to update their ->tstamp_enabled also. 2349 * Note: this works for group members as well as group leaders 2350 * since the non-leader members' sibling_lists will be empty. 2351 */ 2352 static void __perf_event_mark_enabled(struct perf_event *event) 2353 { 2354 struct perf_event *sub; 2355 u64 tstamp = perf_event_time(event); 2356 2357 event->state = PERF_EVENT_STATE_INACTIVE; 2358 event->tstamp_enabled = tstamp - event->total_time_enabled; 2359 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2360 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2361 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2362 } 2363 } 2364 2365 /* 2366 * Cross CPU call to enable a performance event 2367 */ 2368 static void __perf_event_enable(struct perf_event *event, 2369 struct perf_cpu_context *cpuctx, 2370 struct perf_event_context *ctx, 2371 void *info) 2372 { 2373 struct perf_event *leader = event->group_leader; 2374 struct perf_event_context *task_ctx; 2375 2376 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2377 event->state <= PERF_EVENT_STATE_ERROR) 2378 return; 2379 2380 if (ctx->is_active) 2381 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2382 2383 __perf_event_mark_enabled(event); 2384 2385 if (!ctx->is_active) 2386 return; 2387 2388 if (!event_filter_match(event)) { 2389 if (is_cgroup_event(event)) 2390 perf_cgroup_defer_enabled(event); 2391 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2392 return; 2393 } 2394 2395 /* 2396 * If the event is in a group and isn't the group leader, 2397 * then don't put it on unless the group is on. 2398 */ 2399 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2400 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2401 return; 2402 } 2403 2404 task_ctx = cpuctx->task_ctx; 2405 if (ctx->task) 2406 WARN_ON_ONCE(task_ctx != ctx); 2407 2408 ctx_resched(cpuctx, task_ctx); 2409 } 2410 2411 /* 2412 * Enable a event. 2413 * 2414 * If event->ctx is a cloned context, callers must make sure that 2415 * every task struct that event->ctx->task could possibly point to 2416 * remains valid. This condition is satisfied when called through 2417 * perf_event_for_each_child or perf_event_for_each as described 2418 * for perf_event_disable. 2419 */ 2420 static void _perf_event_enable(struct perf_event *event) 2421 { 2422 struct perf_event_context *ctx = event->ctx; 2423 2424 raw_spin_lock_irq(&ctx->lock); 2425 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2426 event->state < PERF_EVENT_STATE_ERROR) { 2427 raw_spin_unlock_irq(&ctx->lock); 2428 return; 2429 } 2430 2431 /* 2432 * If the event is in error state, clear that first. 2433 * 2434 * That way, if we see the event in error state below, we know that it 2435 * has gone back into error state, as distinct from the task having 2436 * been scheduled away before the cross-call arrived. 2437 */ 2438 if (event->state == PERF_EVENT_STATE_ERROR) 2439 event->state = PERF_EVENT_STATE_OFF; 2440 raw_spin_unlock_irq(&ctx->lock); 2441 2442 event_function_call(event, __perf_event_enable, NULL); 2443 } 2444 2445 /* 2446 * See perf_event_disable(); 2447 */ 2448 void perf_event_enable(struct perf_event *event) 2449 { 2450 struct perf_event_context *ctx; 2451 2452 ctx = perf_event_ctx_lock(event); 2453 _perf_event_enable(event); 2454 perf_event_ctx_unlock(event, ctx); 2455 } 2456 EXPORT_SYMBOL_GPL(perf_event_enable); 2457 2458 struct stop_event_data { 2459 struct perf_event *event; 2460 unsigned int restart; 2461 }; 2462 2463 static int __perf_event_stop(void *info) 2464 { 2465 struct stop_event_data *sd = info; 2466 struct perf_event *event = sd->event; 2467 2468 /* if it's already INACTIVE, do nothing */ 2469 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2470 return 0; 2471 2472 /* matches smp_wmb() in event_sched_in() */ 2473 smp_rmb(); 2474 2475 /* 2476 * There is a window with interrupts enabled before we get here, 2477 * so we need to check again lest we try to stop another CPU's event. 2478 */ 2479 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2480 return -EAGAIN; 2481 2482 event->pmu->stop(event, PERF_EF_UPDATE); 2483 2484 /* 2485 * May race with the actual stop (through perf_pmu_output_stop()), 2486 * but it is only used for events with AUX ring buffer, and such 2487 * events will refuse to restart because of rb::aux_mmap_count==0, 2488 * see comments in perf_aux_output_begin(). 2489 * 2490 * Since this is happening on a event-local CPU, no trace is lost 2491 * while restarting. 2492 */ 2493 if (sd->restart) 2494 event->pmu->start(event, PERF_EF_START); 2495 2496 return 0; 2497 } 2498 2499 static int perf_event_restart(struct perf_event *event) 2500 { 2501 struct stop_event_data sd = { 2502 .event = event, 2503 .restart = 1, 2504 }; 2505 int ret = 0; 2506 2507 do { 2508 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2509 return 0; 2510 2511 /* matches smp_wmb() in event_sched_in() */ 2512 smp_rmb(); 2513 2514 /* 2515 * We only want to restart ACTIVE events, so if the event goes 2516 * inactive here (event->oncpu==-1), there's nothing more to do; 2517 * fall through with ret==-ENXIO. 2518 */ 2519 ret = cpu_function_call(READ_ONCE(event->oncpu), 2520 __perf_event_stop, &sd); 2521 } while (ret == -EAGAIN); 2522 2523 return ret; 2524 } 2525 2526 /* 2527 * In order to contain the amount of racy and tricky in the address filter 2528 * configuration management, it is a two part process: 2529 * 2530 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2531 * we update the addresses of corresponding vmas in 2532 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2533 * (p2) when an event is scheduled in (pmu::add), it calls 2534 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2535 * if the generation has changed since the previous call. 2536 * 2537 * If (p1) happens while the event is active, we restart it to force (p2). 2538 * 2539 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2540 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2541 * ioctl; 2542 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2543 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2544 * for reading; 2545 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2546 * of exec. 2547 */ 2548 void perf_event_addr_filters_sync(struct perf_event *event) 2549 { 2550 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2551 2552 if (!has_addr_filter(event)) 2553 return; 2554 2555 raw_spin_lock(&ifh->lock); 2556 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2557 event->pmu->addr_filters_sync(event); 2558 event->hw.addr_filters_gen = event->addr_filters_gen; 2559 } 2560 raw_spin_unlock(&ifh->lock); 2561 } 2562 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2563 2564 static int _perf_event_refresh(struct perf_event *event, int refresh) 2565 { 2566 /* 2567 * not supported on inherited events 2568 */ 2569 if (event->attr.inherit || !is_sampling_event(event)) 2570 return -EINVAL; 2571 2572 atomic_add(refresh, &event->event_limit); 2573 _perf_event_enable(event); 2574 2575 return 0; 2576 } 2577 2578 /* 2579 * See perf_event_disable() 2580 */ 2581 int perf_event_refresh(struct perf_event *event, int refresh) 2582 { 2583 struct perf_event_context *ctx; 2584 int ret; 2585 2586 ctx = perf_event_ctx_lock(event); 2587 ret = _perf_event_refresh(event, refresh); 2588 perf_event_ctx_unlock(event, ctx); 2589 2590 return ret; 2591 } 2592 EXPORT_SYMBOL_GPL(perf_event_refresh); 2593 2594 static void ctx_sched_out(struct perf_event_context *ctx, 2595 struct perf_cpu_context *cpuctx, 2596 enum event_type_t event_type) 2597 { 2598 int is_active = ctx->is_active; 2599 struct perf_event *event; 2600 2601 lockdep_assert_held(&ctx->lock); 2602 2603 if (likely(!ctx->nr_events)) { 2604 /* 2605 * See __perf_remove_from_context(). 2606 */ 2607 WARN_ON_ONCE(ctx->is_active); 2608 if (ctx->task) 2609 WARN_ON_ONCE(cpuctx->task_ctx); 2610 return; 2611 } 2612 2613 ctx->is_active &= ~event_type; 2614 if (!(ctx->is_active & EVENT_ALL)) 2615 ctx->is_active = 0; 2616 2617 if (ctx->task) { 2618 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2619 if (!ctx->is_active) 2620 cpuctx->task_ctx = NULL; 2621 } 2622 2623 /* 2624 * Always update time if it was set; not only when it changes. 2625 * Otherwise we can 'forget' to update time for any but the last 2626 * context we sched out. For example: 2627 * 2628 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2629 * ctx_sched_out(.event_type = EVENT_PINNED) 2630 * 2631 * would only update time for the pinned events. 2632 */ 2633 if (is_active & EVENT_TIME) { 2634 /* update (and stop) ctx time */ 2635 update_context_time(ctx); 2636 update_cgrp_time_from_cpuctx(cpuctx); 2637 } 2638 2639 is_active ^= ctx->is_active; /* changed bits */ 2640 2641 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2642 return; 2643 2644 perf_pmu_disable(ctx->pmu); 2645 if (is_active & EVENT_PINNED) { 2646 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2647 group_sched_out(event, cpuctx, ctx); 2648 } 2649 2650 if (is_active & EVENT_FLEXIBLE) { 2651 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2652 group_sched_out(event, cpuctx, ctx); 2653 } 2654 perf_pmu_enable(ctx->pmu); 2655 } 2656 2657 /* 2658 * Test whether two contexts are equivalent, i.e. whether they have both been 2659 * cloned from the same version of the same context. 2660 * 2661 * Equivalence is measured using a generation number in the context that is 2662 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2663 * and list_del_event(). 2664 */ 2665 static int context_equiv(struct perf_event_context *ctx1, 2666 struct perf_event_context *ctx2) 2667 { 2668 lockdep_assert_held(&ctx1->lock); 2669 lockdep_assert_held(&ctx2->lock); 2670 2671 /* Pinning disables the swap optimization */ 2672 if (ctx1->pin_count || ctx2->pin_count) 2673 return 0; 2674 2675 /* If ctx1 is the parent of ctx2 */ 2676 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2677 return 1; 2678 2679 /* If ctx2 is the parent of ctx1 */ 2680 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2681 return 1; 2682 2683 /* 2684 * If ctx1 and ctx2 have the same parent; we flatten the parent 2685 * hierarchy, see perf_event_init_context(). 2686 */ 2687 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2688 ctx1->parent_gen == ctx2->parent_gen) 2689 return 1; 2690 2691 /* Unmatched */ 2692 return 0; 2693 } 2694 2695 static void __perf_event_sync_stat(struct perf_event *event, 2696 struct perf_event *next_event) 2697 { 2698 u64 value; 2699 2700 if (!event->attr.inherit_stat) 2701 return; 2702 2703 /* 2704 * Update the event value, we cannot use perf_event_read() 2705 * because we're in the middle of a context switch and have IRQs 2706 * disabled, which upsets smp_call_function_single(), however 2707 * we know the event must be on the current CPU, therefore we 2708 * don't need to use it. 2709 */ 2710 switch (event->state) { 2711 case PERF_EVENT_STATE_ACTIVE: 2712 event->pmu->read(event); 2713 /* fall-through */ 2714 2715 case PERF_EVENT_STATE_INACTIVE: 2716 update_event_times(event); 2717 break; 2718 2719 default: 2720 break; 2721 } 2722 2723 /* 2724 * In order to keep per-task stats reliable we need to flip the event 2725 * values when we flip the contexts. 2726 */ 2727 value = local64_read(&next_event->count); 2728 value = local64_xchg(&event->count, value); 2729 local64_set(&next_event->count, value); 2730 2731 swap(event->total_time_enabled, next_event->total_time_enabled); 2732 swap(event->total_time_running, next_event->total_time_running); 2733 2734 /* 2735 * Since we swizzled the values, update the user visible data too. 2736 */ 2737 perf_event_update_userpage(event); 2738 perf_event_update_userpage(next_event); 2739 } 2740 2741 static void perf_event_sync_stat(struct perf_event_context *ctx, 2742 struct perf_event_context *next_ctx) 2743 { 2744 struct perf_event *event, *next_event; 2745 2746 if (!ctx->nr_stat) 2747 return; 2748 2749 update_context_time(ctx); 2750 2751 event = list_first_entry(&ctx->event_list, 2752 struct perf_event, event_entry); 2753 2754 next_event = list_first_entry(&next_ctx->event_list, 2755 struct perf_event, event_entry); 2756 2757 while (&event->event_entry != &ctx->event_list && 2758 &next_event->event_entry != &next_ctx->event_list) { 2759 2760 __perf_event_sync_stat(event, next_event); 2761 2762 event = list_next_entry(event, event_entry); 2763 next_event = list_next_entry(next_event, event_entry); 2764 } 2765 } 2766 2767 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2768 struct task_struct *next) 2769 { 2770 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2771 struct perf_event_context *next_ctx; 2772 struct perf_event_context *parent, *next_parent; 2773 struct perf_cpu_context *cpuctx; 2774 int do_switch = 1; 2775 2776 if (likely(!ctx)) 2777 return; 2778 2779 cpuctx = __get_cpu_context(ctx); 2780 if (!cpuctx->task_ctx) 2781 return; 2782 2783 rcu_read_lock(); 2784 next_ctx = next->perf_event_ctxp[ctxn]; 2785 if (!next_ctx) 2786 goto unlock; 2787 2788 parent = rcu_dereference(ctx->parent_ctx); 2789 next_parent = rcu_dereference(next_ctx->parent_ctx); 2790 2791 /* If neither context have a parent context; they cannot be clones. */ 2792 if (!parent && !next_parent) 2793 goto unlock; 2794 2795 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2796 /* 2797 * Looks like the two contexts are clones, so we might be 2798 * able to optimize the context switch. We lock both 2799 * contexts and check that they are clones under the 2800 * lock (including re-checking that neither has been 2801 * uncloned in the meantime). It doesn't matter which 2802 * order we take the locks because no other cpu could 2803 * be trying to lock both of these tasks. 2804 */ 2805 raw_spin_lock(&ctx->lock); 2806 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2807 if (context_equiv(ctx, next_ctx)) { 2808 WRITE_ONCE(ctx->task, next); 2809 WRITE_ONCE(next_ctx->task, task); 2810 2811 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2812 2813 /* 2814 * RCU_INIT_POINTER here is safe because we've not 2815 * modified the ctx and the above modification of 2816 * ctx->task and ctx->task_ctx_data are immaterial 2817 * since those values are always verified under 2818 * ctx->lock which we're now holding. 2819 */ 2820 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2821 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2822 2823 do_switch = 0; 2824 2825 perf_event_sync_stat(ctx, next_ctx); 2826 } 2827 raw_spin_unlock(&next_ctx->lock); 2828 raw_spin_unlock(&ctx->lock); 2829 } 2830 unlock: 2831 rcu_read_unlock(); 2832 2833 if (do_switch) { 2834 raw_spin_lock(&ctx->lock); 2835 task_ctx_sched_out(cpuctx, ctx); 2836 raw_spin_unlock(&ctx->lock); 2837 } 2838 } 2839 2840 void perf_sched_cb_dec(struct pmu *pmu) 2841 { 2842 this_cpu_dec(perf_sched_cb_usages); 2843 } 2844 2845 void perf_sched_cb_inc(struct pmu *pmu) 2846 { 2847 this_cpu_inc(perf_sched_cb_usages); 2848 } 2849 2850 /* 2851 * This function provides the context switch callback to the lower code 2852 * layer. It is invoked ONLY when the context switch callback is enabled. 2853 */ 2854 static void perf_pmu_sched_task(struct task_struct *prev, 2855 struct task_struct *next, 2856 bool sched_in) 2857 { 2858 struct perf_cpu_context *cpuctx; 2859 struct pmu *pmu; 2860 unsigned long flags; 2861 2862 if (prev == next) 2863 return; 2864 2865 local_irq_save(flags); 2866 2867 rcu_read_lock(); 2868 2869 list_for_each_entry_rcu(pmu, &pmus, entry) { 2870 if (pmu->sched_task) { 2871 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2872 2873 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2874 2875 perf_pmu_disable(pmu); 2876 2877 pmu->sched_task(cpuctx->task_ctx, sched_in); 2878 2879 perf_pmu_enable(pmu); 2880 2881 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2882 } 2883 } 2884 2885 rcu_read_unlock(); 2886 2887 local_irq_restore(flags); 2888 } 2889 2890 static void perf_event_switch(struct task_struct *task, 2891 struct task_struct *next_prev, bool sched_in); 2892 2893 #define for_each_task_context_nr(ctxn) \ 2894 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2895 2896 /* 2897 * Called from scheduler to remove the events of the current task, 2898 * with interrupts disabled. 2899 * 2900 * We stop each event and update the event value in event->count. 2901 * 2902 * This does not protect us against NMI, but disable() 2903 * sets the disabled bit in the control field of event _before_ 2904 * accessing the event control register. If a NMI hits, then it will 2905 * not restart the event. 2906 */ 2907 void __perf_event_task_sched_out(struct task_struct *task, 2908 struct task_struct *next) 2909 { 2910 int ctxn; 2911 2912 if (__this_cpu_read(perf_sched_cb_usages)) 2913 perf_pmu_sched_task(task, next, false); 2914 2915 if (atomic_read(&nr_switch_events)) 2916 perf_event_switch(task, next, false); 2917 2918 for_each_task_context_nr(ctxn) 2919 perf_event_context_sched_out(task, ctxn, next); 2920 2921 /* 2922 * if cgroup events exist on this CPU, then we need 2923 * to check if we have to switch out PMU state. 2924 * cgroup event are system-wide mode only 2925 */ 2926 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2927 perf_cgroup_sched_out(task, next); 2928 } 2929 2930 /* 2931 * Called with IRQs disabled 2932 */ 2933 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2934 enum event_type_t event_type) 2935 { 2936 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2937 } 2938 2939 static void 2940 ctx_pinned_sched_in(struct perf_event_context *ctx, 2941 struct perf_cpu_context *cpuctx) 2942 { 2943 struct perf_event *event; 2944 2945 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2946 if (event->state <= PERF_EVENT_STATE_OFF) 2947 continue; 2948 if (!event_filter_match(event)) 2949 continue; 2950 2951 /* may need to reset tstamp_enabled */ 2952 if (is_cgroup_event(event)) 2953 perf_cgroup_mark_enabled(event, ctx); 2954 2955 if (group_can_go_on(event, cpuctx, 1)) 2956 group_sched_in(event, cpuctx, ctx); 2957 2958 /* 2959 * If this pinned group hasn't been scheduled, 2960 * put it in error state. 2961 */ 2962 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2963 update_group_times(event); 2964 event->state = PERF_EVENT_STATE_ERROR; 2965 } 2966 } 2967 } 2968 2969 static void 2970 ctx_flexible_sched_in(struct perf_event_context *ctx, 2971 struct perf_cpu_context *cpuctx) 2972 { 2973 struct perf_event *event; 2974 int can_add_hw = 1; 2975 2976 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2977 /* Ignore events in OFF or ERROR state */ 2978 if (event->state <= PERF_EVENT_STATE_OFF) 2979 continue; 2980 /* 2981 * Listen to the 'cpu' scheduling filter constraint 2982 * of events: 2983 */ 2984 if (!event_filter_match(event)) 2985 continue; 2986 2987 /* may need to reset tstamp_enabled */ 2988 if (is_cgroup_event(event)) 2989 perf_cgroup_mark_enabled(event, ctx); 2990 2991 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2992 if (group_sched_in(event, cpuctx, ctx)) 2993 can_add_hw = 0; 2994 } 2995 } 2996 } 2997 2998 static void 2999 ctx_sched_in(struct perf_event_context *ctx, 3000 struct perf_cpu_context *cpuctx, 3001 enum event_type_t event_type, 3002 struct task_struct *task) 3003 { 3004 int is_active = ctx->is_active; 3005 u64 now; 3006 3007 lockdep_assert_held(&ctx->lock); 3008 3009 if (likely(!ctx->nr_events)) 3010 return; 3011 3012 ctx->is_active |= (event_type | EVENT_TIME); 3013 if (ctx->task) { 3014 if (!is_active) 3015 cpuctx->task_ctx = ctx; 3016 else 3017 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3018 } 3019 3020 is_active ^= ctx->is_active; /* changed bits */ 3021 3022 if (is_active & EVENT_TIME) { 3023 /* start ctx time */ 3024 now = perf_clock(); 3025 ctx->timestamp = now; 3026 perf_cgroup_set_timestamp(task, ctx); 3027 } 3028 3029 /* 3030 * First go through the list and put on any pinned groups 3031 * in order to give them the best chance of going on. 3032 */ 3033 if (is_active & EVENT_PINNED) 3034 ctx_pinned_sched_in(ctx, cpuctx); 3035 3036 /* Then walk through the lower prio flexible groups */ 3037 if (is_active & EVENT_FLEXIBLE) 3038 ctx_flexible_sched_in(ctx, cpuctx); 3039 } 3040 3041 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3042 enum event_type_t event_type, 3043 struct task_struct *task) 3044 { 3045 struct perf_event_context *ctx = &cpuctx->ctx; 3046 3047 ctx_sched_in(ctx, cpuctx, event_type, task); 3048 } 3049 3050 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3051 struct task_struct *task) 3052 { 3053 struct perf_cpu_context *cpuctx; 3054 3055 cpuctx = __get_cpu_context(ctx); 3056 if (cpuctx->task_ctx == ctx) 3057 return; 3058 3059 perf_ctx_lock(cpuctx, ctx); 3060 perf_pmu_disable(ctx->pmu); 3061 /* 3062 * We want to keep the following priority order: 3063 * cpu pinned (that don't need to move), task pinned, 3064 * cpu flexible, task flexible. 3065 */ 3066 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3067 perf_event_sched_in(cpuctx, ctx, task); 3068 perf_pmu_enable(ctx->pmu); 3069 perf_ctx_unlock(cpuctx, ctx); 3070 } 3071 3072 /* 3073 * Called from scheduler to add the events of the current task 3074 * with interrupts disabled. 3075 * 3076 * We restore the event value and then enable it. 3077 * 3078 * This does not protect us against NMI, but enable() 3079 * sets the enabled bit in the control field of event _before_ 3080 * accessing the event control register. If a NMI hits, then it will 3081 * keep the event running. 3082 */ 3083 void __perf_event_task_sched_in(struct task_struct *prev, 3084 struct task_struct *task) 3085 { 3086 struct perf_event_context *ctx; 3087 int ctxn; 3088 3089 /* 3090 * If cgroup events exist on this CPU, then we need to check if we have 3091 * to switch in PMU state; cgroup event are system-wide mode only. 3092 * 3093 * Since cgroup events are CPU events, we must schedule these in before 3094 * we schedule in the task events. 3095 */ 3096 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3097 perf_cgroup_sched_in(prev, task); 3098 3099 for_each_task_context_nr(ctxn) { 3100 ctx = task->perf_event_ctxp[ctxn]; 3101 if (likely(!ctx)) 3102 continue; 3103 3104 perf_event_context_sched_in(ctx, task); 3105 } 3106 3107 if (atomic_read(&nr_switch_events)) 3108 perf_event_switch(task, prev, true); 3109 3110 if (__this_cpu_read(perf_sched_cb_usages)) 3111 perf_pmu_sched_task(prev, task, true); 3112 } 3113 3114 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3115 { 3116 u64 frequency = event->attr.sample_freq; 3117 u64 sec = NSEC_PER_SEC; 3118 u64 divisor, dividend; 3119 3120 int count_fls, nsec_fls, frequency_fls, sec_fls; 3121 3122 count_fls = fls64(count); 3123 nsec_fls = fls64(nsec); 3124 frequency_fls = fls64(frequency); 3125 sec_fls = 30; 3126 3127 /* 3128 * We got @count in @nsec, with a target of sample_freq HZ 3129 * the target period becomes: 3130 * 3131 * @count * 10^9 3132 * period = ------------------- 3133 * @nsec * sample_freq 3134 * 3135 */ 3136 3137 /* 3138 * Reduce accuracy by one bit such that @a and @b converge 3139 * to a similar magnitude. 3140 */ 3141 #define REDUCE_FLS(a, b) \ 3142 do { \ 3143 if (a##_fls > b##_fls) { \ 3144 a >>= 1; \ 3145 a##_fls--; \ 3146 } else { \ 3147 b >>= 1; \ 3148 b##_fls--; \ 3149 } \ 3150 } while (0) 3151 3152 /* 3153 * Reduce accuracy until either term fits in a u64, then proceed with 3154 * the other, so that finally we can do a u64/u64 division. 3155 */ 3156 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3157 REDUCE_FLS(nsec, frequency); 3158 REDUCE_FLS(sec, count); 3159 } 3160 3161 if (count_fls + sec_fls > 64) { 3162 divisor = nsec * frequency; 3163 3164 while (count_fls + sec_fls > 64) { 3165 REDUCE_FLS(count, sec); 3166 divisor >>= 1; 3167 } 3168 3169 dividend = count * sec; 3170 } else { 3171 dividend = count * sec; 3172 3173 while (nsec_fls + frequency_fls > 64) { 3174 REDUCE_FLS(nsec, frequency); 3175 dividend >>= 1; 3176 } 3177 3178 divisor = nsec * frequency; 3179 } 3180 3181 if (!divisor) 3182 return dividend; 3183 3184 return div64_u64(dividend, divisor); 3185 } 3186 3187 static DEFINE_PER_CPU(int, perf_throttled_count); 3188 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3189 3190 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3191 { 3192 struct hw_perf_event *hwc = &event->hw; 3193 s64 period, sample_period; 3194 s64 delta; 3195 3196 period = perf_calculate_period(event, nsec, count); 3197 3198 delta = (s64)(period - hwc->sample_period); 3199 delta = (delta + 7) / 8; /* low pass filter */ 3200 3201 sample_period = hwc->sample_period + delta; 3202 3203 if (!sample_period) 3204 sample_period = 1; 3205 3206 hwc->sample_period = sample_period; 3207 3208 if (local64_read(&hwc->period_left) > 8*sample_period) { 3209 if (disable) 3210 event->pmu->stop(event, PERF_EF_UPDATE); 3211 3212 local64_set(&hwc->period_left, 0); 3213 3214 if (disable) 3215 event->pmu->start(event, PERF_EF_RELOAD); 3216 } 3217 } 3218 3219 /* 3220 * combine freq adjustment with unthrottling to avoid two passes over the 3221 * events. At the same time, make sure, having freq events does not change 3222 * the rate of unthrottling as that would introduce bias. 3223 */ 3224 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3225 int needs_unthr) 3226 { 3227 struct perf_event *event; 3228 struct hw_perf_event *hwc; 3229 u64 now, period = TICK_NSEC; 3230 s64 delta; 3231 3232 /* 3233 * only need to iterate over all events iff: 3234 * - context have events in frequency mode (needs freq adjust) 3235 * - there are events to unthrottle on this cpu 3236 */ 3237 if (!(ctx->nr_freq || needs_unthr)) 3238 return; 3239 3240 raw_spin_lock(&ctx->lock); 3241 perf_pmu_disable(ctx->pmu); 3242 3243 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3244 if (event->state != PERF_EVENT_STATE_ACTIVE) 3245 continue; 3246 3247 if (!event_filter_match(event)) 3248 continue; 3249 3250 perf_pmu_disable(event->pmu); 3251 3252 hwc = &event->hw; 3253 3254 if (hwc->interrupts == MAX_INTERRUPTS) { 3255 hwc->interrupts = 0; 3256 perf_log_throttle(event, 1); 3257 event->pmu->start(event, 0); 3258 } 3259 3260 if (!event->attr.freq || !event->attr.sample_freq) 3261 goto next; 3262 3263 /* 3264 * stop the event and update event->count 3265 */ 3266 event->pmu->stop(event, PERF_EF_UPDATE); 3267 3268 now = local64_read(&event->count); 3269 delta = now - hwc->freq_count_stamp; 3270 hwc->freq_count_stamp = now; 3271 3272 /* 3273 * restart the event 3274 * reload only if value has changed 3275 * we have stopped the event so tell that 3276 * to perf_adjust_period() to avoid stopping it 3277 * twice. 3278 */ 3279 if (delta > 0) 3280 perf_adjust_period(event, period, delta, false); 3281 3282 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3283 next: 3284 perf_pmu_enable(event->pmu); 3285 } 3286 3287 perf_pmu_enable(ctx->pmu); 3288 raw_spin_unlock(&ctx->lock); 3289 } 3290 3291 /* 3292 * Round-robin a context's events: 3293 */ 3294 static void rotate_ctx(struct perf_event_context *ctx) 3295 { 3296 /* 3297 * Rotate the first entry last of non-pinned groups. Rotation might be 3298 * disabled by the inheritance code. 3299 */ 3300 if (!ctx->rotate_disable) 3301 list_rotate_left(&ctx->flexible_groups); 3302 } 3303 3304 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3305 { 3306 struct perf_event_context *ctx = NULL; 3307 int rotate = 0; 3308 3309 if (cpuctx->ctx.nr_events) { 3310 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3311 rotate = 1; 3312 } 3313 3314 ctx = cpuctx->task_ctx; 3315 if (ctx && ctx->nr_events) { 3316 if (ctx->nr_events != ctx->nr_active) 3317 rotate = 1; 3318 } 3319 3320 if (!rotate) 3321 goto done; 3322 3323 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3324 perf_pmu_disable(cpuctx->ctx.pmu); 3325 3326 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3327 if (ctx) 3328 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3329 3330 rotate_ctx(&cpuctx->ctx); 3331 if (ctx) 3332 rotate_ctx(ctx); 3333 3334 perf_event_sched_in(cpuctx, ctx, current); 3335 3336 perf_pmu_enable(cpuctx->ctx.pmu); 3337 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3338 done: 3339 3340 return rotate; 3341 } 3342 3343 void perf_event_task_tick(void) 3344 { 3345 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3346 struct perf_event_context *ctx, *tmp; 3347 int throttled; 3348 3349 WARN_ON(!irqs_disabled()); 3350 3351 __this_cpu_inc(perf_throttled_seq); 3352 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3353 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3354 3355 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3356 perf_adjust_freq_unthr_context(ctx, throttled); 3357 } 3358 3359 static int event_enable_on_exec(struct perf_event *event, 3360 struct perf_event_context *ctx) 3361 { 3362 if (!event->attr.enable_on_exec) 3363 return 0; 3364 3365 event->attr.enable_on_exec = 0; 3366 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3367 return 0; 3368 3369 __perf_event_mark_enabled(event); 3370 3371 return 1; 3372 } 3373 3374 /* 3375 * Enable all of a task's events that have been marked enable-on-exec. 3376 * This expects task == current. 3377 */ 3378 static void perf_event_enable_on_exec(int ctxn) 3379 { 3380 struct perf_event_context *ctx, *clone_ctx = NULL; 3381 struct perf_cpu_context *cpuctx; 3382 struct perf_event *event; 3383 unsigned long flags; 3384 int enabled = 0; 3385 3386 local_irq_save(flags); 3387 ctx = current->perf_event_ctxp[ctxn]; 3388 if (!ctx || !ctx->nr_events) 3389 goto out; 3390 3391 cpuctx = __get_cpu_context(ctx); 3392 perf_ctx_lock(cpuctx, ctx); 3393 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3394 list_for_each_entry(event, &ctx->event_list, event_entry) 3395 enabled |= event_enable_on_exec(event, ctx); 3396 3397 /* 3398 * Unclone and reschedule this context if we enabled any event. 3399 */ 3400 if (enabled) { 3401 clone_ctx = unclone_ctx(ctx); 3402 ctx_resched(cpuctx, ctx); 3403 } 3404 perf_ctx_unlock(cpuctx, ctx); 3405 3406 out: 3407 local_irq_restore(flags); 3408 3409 if (clone_ctx) 3410 put_ctx(clone_ctx); 3411 } 3412 3413 struct perf_read_data { 3414 struct perf_event *event; 3415 bool group; 3416 int ret; 3417 }; 3418 3419 /* 3420 * Cross CPU call to read the hardware event 3421 */ 3422 static void __perf_event_read(void *info) 3423 { 3424 struct perf_read_data *data = info; 3425 struct perf_event *sub, *event = data->event; 3426 struct perf_event_context *ctx = event->ctx; 3427 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3428 struct pmu *pmu = event->pmu; 3429 3430 /* 3431 * If this is a task context, we need to check whether it is 3432 * the current task context of this cpu. If not it has been 3433 * scheduled out before the smp call arrived. In that case 3434 * event->count would have been updated to a recent sample 3435 * when the event was scheduled out. 3436 */ 3437 if (ctx->task && cpuctx->task_ctx != ctx) 3438 return; 3439 3440 raw_spin_lock(&ctx->lock); 3441 if (ctx->is_active) { 3442 update_context_time(ctx); 3443 update_cgrp_time_from_event(event); 3444 } 3445 3446 update_event_times(event); 3447 if (event->state != PERF_EVENT_STATE_ACTIVE) 3448 goto unlock; 3449 3450 if (!data->group) { 3451 pmu->read(event); 3452 data->ret = 0; 3453 goto unlock; 3454 } 3455 3456 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3457 3458 pmu->read(event); 3459 3460 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3461 update_event_times(sub); 3462 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3463 /* 3464 * Use sibling's PMU rather than @event's since 3465 * sibling could be on different (eg: software) PMU. 3466 */ 3467 sub->pmu->read(sub); 3468 } 3469 } 3470 3471 data->ret = pmu->commit_txn(pmu); 3472 3473 unlock: 3474 raw_spin_unlock(&ctx->lock); 3475 } 3476 3477 static inline u64 perf_event_count(struct perf_event *event) 3478 { 3479 if (event->pmu->count) 3480 return event->pmu->count(event); 3481 3482 return __perf_event_count(event); 3483 } 3484 3485 /* 3486 * NMI-safe method to read a local event, that is an event that 3487 * is: 3488 * - either for the current task, or for this CPU 3489 * - does not have inherit set, for inherited task events 3490 * will not be local and we cannot read them atomically 3491 * - must not have a pmu::count method 3492 */ 3493 u64 perf_event_read_local(struct perf_event *event) 3494 { 3495 unsigned long flags; 3496 u64 val; 3497 3498 /* 3499 * Disabling interrupts avoids all counter scheduling (context 3500 * switches, timer based rotation and IPIs). 3501 */ 3502 local_irq_save(flags); 3503 3504 /* If this is a per-task event, it must be for current */ 3505 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3506 event->hw.target != current); 3507 3508 /* If this is a per-CPU event, it must be for this CPU */ 3509 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3510 event->cpu != smp_processor_id()); 3511 3512 /* 3513 * It must not be an event with inherit set, we cannot read 3514 * all child counters from atomic context. 3515 */ 3516 WARN_ON_ONCE(event->attr.inherit); 3517 3518 /* 3519 * It must not have a pmu::count method, those are not 3520 * NMI safe. 3521 */ 3522 WARN_ON_ONCE(event->pmu->count); 3523 3524 /* 3525 * If the event is currently on this CPU, its either a per-task event, 3526 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3527 * oncpu == -1). 3528 */ 3529 if (event->oncpu == smp_processor_id()) 3530 event->pmu->read(event); 3531 3532 val = local64_read(&event->count); 3533 local_irq_restore(flags); 3534 3535 return val; 3536 } 3537 3538 static int perf_event_read(struct perf_event *event, bool group) 3539 { 3540 int ret = 0; 3541 3542 /* 3543 * If event is enabled and currently active on a CPU, update the 3544 * value in the event structure: 3545 */ 3546 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3547 struct perf_read_data data = { 3548 .event = event, 3549 .group = group, 3550 .ret = 0, 3551 }; 3552 ret = smp_call_function_single(event->oncpu, __perf_event_read, &data, 1); 3553 /* The event must have been read from an online CPU: */ 3554 WARN_ON_ONCE(ret); 3555 ret = ret ? : data.ret; 3556 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3557 struct perf_event_context *ctx = event->ctx; 3558 unsigned long flags; 3559 3560 raw_spin_lock_irqsave(&ctx->lock, flags); 3561 /* 3562 * may read while context is not active 3563 * (e.g., thread is blocked), in that case 3564 * we cannot update context time 3565 */ 3566 if (ctx->is_active) { 3567 update_context_time(ctx); 3568 update_cgrp_time_from_event(event); 3569 } 3570 if (group) 3571 update_group_times(event); 3572 else 3573 update_event_times(event); 3574 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3575 } 3576 3577 return ret; 3578 } 3579 3580 /* 3581 * Initialize the perf_event context in a task_struct: 3582 */ 3583 static void __perf_event_init_context(struct perf_event_context *ctx) 3584 { 3585 raw_spin_lock_init(&ctx->lock); 3586 mutex_init(&ctx->mutex); 3587 INIT_LIST_HEAD(&ctx->active_ctx_list); 3588 INIT_LIST_HEAD(&ctx->pinned_groups); 3589 INIT_LIST_HEAD(&ctx->flexible_groups); 3590 INIT_LIST_HEAD(&ctx->event_list); 3591 atomic_set(&ctx->refcount, 1); 3592 } 3593 3594 static struct perf_event_context * 3595 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3596 { 3597 struct perf_event_context *ctx; 3598 3599 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3600 if (!ctx) 3601 return NULL; 3602 3603 __perf_event_init_context(ctx); 3604 if (task) { 3605 ctx->task = task; 3606 get_task_struct(task); 3607 } 3608 ctx->pmu = pmu; 3609 3610 return ctx; 3611 } 3612 3613 static struct task_struct * 3614 find_lively_task_by_vpid(pid_t vpid) 3615 { 3616 struct task_struct *task; 3617 3618 rcu_read_lock(); 3619 if (!vpid) 3620 task = current; 3621 else 3622 task = find_task_by_vpid(vpid); 3623 if (task) 3624 get_task_struct(task); 3625 rcu_read_unlock(); 3626 3627 if (!task) 3628 return ERR_PTR(-ESRCH); 3629 3630 return task; 3631 } 3632 3633 /* 3634 * Returns a matching context with refcount and pincount. 3635 */ 3636 static struct perf_event_context * 3637 find_get_context(struct pmu *pmu, struct task_struct *task, 3638 struct perf_event *event) 3639 { 3640 struct perf_event_context *ctx, *clone_ctx = NULL; 3641 struct perf_cpu_context *cpuctx; 3642 void *task_ctx_data = NULL; 3643 unsigned long flags; 3644 int ctxn, err; 3645 int cpu = event->cpu; 3646 3647 if (!task) { 3648 /* Must be root to operate on a CPU event: */ 3649 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3650 return ERR_PTR(-EACCES); 3651 3652 /* 3653 * We could be clever and allow to attach a event to an 3654 * offline CPU and activate it when the CPU comes up, but 3655 * that's for later. 3656 */ 3657 if (!cpu_online(cpu)) 3658 return ERR_PTR(-ENODEV); 3659 3660 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3661 ctx = &cpuctx->ctx; 3662 get_ctx(ctx); 3663 ++ctx->pin_count; 3664 3665 return ctx; 3666 } 3667 3668 err = -EINVAL; 3669 ctxn = pmu->task_ctx_nr; 3670 if (ctxn < 0) 3671 goto errout; 3672 3673 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3674 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3675 if (!task_ctx_data) { 3676 err = -ENOMEM; 3677 goto errout; 3678 } 3679 } 3680 3681 retry: 3682 ctx = perf_lock_task_context(task, ctxn, &flags); 3683 if (ctx) { 3684 clone_ctx = unclone_ctx(ctx); 3685 ++ctx->pin_count; 3686 3687 if (task_ctx_data && !ctx->task_ctx_data) { 3688 ctx->task_ctx_data = task_ctx_data; 3689 task_ctx_data = NULL; 3690 } 3691 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3692 3693 if (clone_ctx) 3694 put_ctx(clone_ctx); 3695 } else { 3696 ctx = alloc_perf_context(pmu, task); 3697 err = -ENOMEM; 3698 if (!ctx) 3699 goto errout; 3700 3701 if (task_ctx_data) { 3702 ctx->task_ctx_data = task_ctx_data; 3703 task_ctx_data = NULL; 3704 } 3705 3706 err = 0; 3707 mutex_lock(&task->perf_event_mutex); 3708 /* 3709 * If it has already passed perf_event_exit_task(). 3710 * we must see PF_EXITING, it takes this mutex too. 3711 */ 3712 if (task->flags & PF_EXITING) 3713 err = -ESRCH; 3714 else if (task->perf_event_ctxp[ctxn]) 3715 err = -EAGAIN; 3716 else { 3717 get_ctx(ctx); 3718 ++ctx->pin_count; 3719 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3720 } 3721 mutex_unlock(&task->perf_event_mutex); 3722 3723 if (unlikely(err)) { 3724 put_ctx(ctx); 3725 3726 if (err == -EAGAIN) 3727 goto retry; 3728 goto errout; 3729 } 3730 } 3731 3732 kfree(task_ctx_data); 3733 return ctx; 3734 3735 errout: 3736 kfree(task_ctx_data); 3737 return ERR_PTR(err); 3738 } 3739 3740 static void perf_event_free_filter(struct perf_event *event); 3741 static void perf_event_free_bpf_prog(struct perf_event *event); 3742 3743 static void free_event_rcu(struct rcu_head *head) 3744 { 3745 struct perf_event *event; 3746 3747 event = container_of(head, struct perf_event, rcu_head); 3748 if (event->ns) 3749 put_pid_ns(event->ns); 3750 perf_event_free_filter(event); 3751 kfree(event); 3752 } 3753 3754 static void ring_buffer_attach(struct perf_event *event, 3755 struct ring_buffer *rb); 3756 3757 static void detach_sb_event(struct perf_event *event) 3758 { 3759 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3760 3761 raw_spin_lock(&pel->lock); 3762 list_del_rcu(&event->sb_list); 3763 raw_spin_unlock(&pel->lock); 3764 } 3765 3766 static bool is_sb_event(struct perf_event *event) 3767 { 3768 struct perf_event_attr *attr = &event->attr; 3769 3770 if (event->parent) 3771 return false; 3772 3773 if (event->attach_state & PERF_ATTACH_TASK) 3774 return false; 3775 3776 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3777 attr->comm || attr->comm_exec || 3778 attr->task || 3779 attr->context_switch) 3780 return true; 3781 return false; 3782 } 3783 3784 static void unaccount_pmu_sb_event(struct perf_event *event) 3785 { 3786 if (is_sb_event(event)) 3787 detach_sb_event(event); 3788 } 3789 3790 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3791 { 3792 if (event->parent) 3793 return; 3794 3795 if (is_cgroup_event(event)) 3796 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3797 } 3798 3799 #ifdef CONFIG_NO_HZ_FULL 3800 static DEFINE_SPINLOCK(nr_freq_lock); 3801 #endif 3802 3803 static void unaccount_freq_event_nohz(void) 3804 { 3805 #ifdef CONFIG_NO_HZ_FULL 3806 spin_lock(&nr_freq_lock); 3807 if (atomic_dec_and_test(&nr_freq_events)) 3808 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3809 spin_unlock(&nr_freq_lock); 3810 #endif 3811 } 3812 3813 static void unaccount_freq_event(void) 3814 { 3815 if (tick_nohz_full_enabled()) 3816 unaccount_freq_event_nohz(); 3817 else 3818 atomic_dec(&nr_freq_events); 3819 } 3820 3821 static void unaccount_event(struct perf_event *event) 3822 { 3823 bool dec = false; 3824 3825 if (event->parent) 3826 return; 3827 3828 if (event->attach_state & PERF_ATTACH_TASK) 3829 dec = true; 3830 if (event->attr.mmap || event->attr.mmap_data) 3831 atomic_dec(&nr_mmap_events); 3832 if (event->attr.comm) 3833 atomic_dec(&nr_comm_events); 3834 if (event->attr.task) 3835 atomic_dec(&nr_task_events); 3836 if (event->attr.freq) 3837 unaccount_freq_event(); 3838 if (event->attr.context_switch) { 3839 dec = true; 3840 atomic_dec(&nr_switch_events); 3841 } 3842 if (is_cgroup_event(event)) 3843 dec = true; 3844 if (has_branch_stack(event)) 3845 dec = true; 3846 3847 if (dec) { 3848 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3849 schedule_delayed_work(&perf_sched_work, HZ); 3850 } 3851 3852 unaccount_event_cpu(event, event->cpu); 3853 3854 unaccount_pmu_sb_event(event); 3855 } 3856 3857 static void perf_sched_delayed(struct work_struct *work) 3858 { 3859 mutex_lock(&perf_sched_mutex); 3860 if (atomic_dec_and_test(&perf_sched_count)) 3861 static_branch_disable(&perf_sched_events); 3862 mutex_unlock(&perf_sched_mutex); 3863 } 3864 3865 /* 3866 * The following implement mutual exclusion of events on "exclusive" pmus 3867 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3868 * at a time, so we disallow creating events that might conflict, namely: 3869 * 3870 * 1) cpu-wide events in the presence of per-task events, 3871 * 2) per-task events in the presence of cpu-wide events, 3872 * 3) two matching events on the same context. 3873 * 3874 * The former two cases are handled in the allocation path (perf_event_alloc(), 3875 * _free_event()), the latter -- before the first perf_install_in_context(). 3876 */ 3877 static int exclusive_event_init(struct perf_event *event) 3878 { 3879 struct pmu *pmu = event->pmu; 3880 3881 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3882 return 0; 3883 3884 /* 3885 * Prevent co-existence of per-task and cpu-wide events on the 3886 * same exclusive pmu. 3887 * 3888 * Negative pmu::exclusive_cnt means there are cpu-wide 3889 * events on this "exclusive" pmu, positive means there are 3890 * per-task events. 3891 * 3892 * Since this is called in perf_event_alloc() path, event::ctx 3893 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3894 * to mean "per-task event", because unlike other attach states it 3895 * never gets cleared. 3896 */ 3897 if (event->attach_state & PERF_ATTACH_TASK) { 3898 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3899 return -EBUSY; 3900 } else { 3901 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3902 return -EBUSY; 3903 } 3904 3905 return 0; 3906 } 3907 3908 static void exclusive_event_destroy(struct perf_event *event) 3909 { 3910 struct pmu *pmu = event->pmu; 3911 3912 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3913 return; 3914 3915 /* see comment in exclusive_event_init() */ 3916 if (event->attach_state & PERF_ATTACH_TASK) 3917 atomic_dec(&pmu->exclusive_cnt); 3918 else 3919 atomic_inc(&pmu->exclusive_cnt); 3920 } 3921 3922 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3923 { 3924 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3925 (e1->cpu == e2->cpu || 3926 e1->cpu == -1 || 3927 e2->cpu == -1)) 3928 return true; 3929 return false; 3930 } 3931 3932 /* Called under the same ctx::mutex as perf_install_in_context() */ 3933 static bool exclusive_event_installable(struct perf_event *event, 3934 struct perf_event_context *ctx) 3935 { 3936 struct perf_event *iter_event; 3937 struct pmu *pmu = event->pmu; 3938 3939 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3940 return true; 3941 3942 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3943 if (exclusive_event_match(iter_event, event)) 3944 return false; 3945 } 3946 3947 return true; 3948 } 3949 3950 static void perf_addr_filters_splice(struct perf_event *event, 3951 struct list_head *head); 3952 3953 static void _free_event(struct perf_event *event) 3954 { 3955 irq_work_sync(&event->pending); 3956 3957 unaccount_event(event); 3958 3959 if (event->rb) { 3960 /* 3961 * Can happen when we close an event with re-directed output. 3962 * 3963 * Since we have a 0 refcount, perf_mmap_close() will skip 3964 * over us; possibly making our ring_buffer_put() the last. 3965 */ 3966 mutex_lock(&event->mmap_mutex); 3967 ring_buffer_attach(event, NULL); 3968 mutex_unlock(&event->mmap_mutex); 3969 } 3970 3971 if (is_cgroup_event(event)) 3972 perf_detach_cgroup(event); 3973 3974 if (!event->parent) { 3975 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3976 put_callchain_buffers(); 3977 } 3978 3979 perf_event_free_bpf_prog(event); 3980 perf_addr_filters_splice(event, NULL); 3981 kfree(event->addr_filters_offs); 3982 3983 if (event->destroy) 3984 event->destroy(event); 3985 3986 if (event->ctx) 3987 put_ctx(event->ctx); 3988 3989 exclusive_event_destroy(event); 3990 module_put(event->pmu->module); 3991 3992 call_rcu(&event->rcu_head, free_event_rcu); 3993 } 3994 3995 /* 3996 * Used to free events which have a known refcount of 1, such as in error paths 3997 * where the event isn't exposed yet and inherited events. 3998 */ 3999 static void free_event(struct perf_event *event) 4000 { 4001 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4002 "unexpected event refcount: %ld; ptr=%p\n", 4003 atomic_long_read(&event->refcount), event)) { 4004 /* leak to avoid use-after-free */ 4005 return; 4006 } 4007 4008 _free_event(event); 4009 } 4010 4011 /* 4012 * Remove user event from the owner task. 4013 */ 4014 static void perf_remove_from_owner(struct perf_event *event) 4015 { 4016 struct task_struct *owner; 4017 4018 rcu_read_lock(); 4019 /* 4020 * Matches the smp_store_release() in perf_event_exit_task(). If we 4021 * observe !owner it means the list deletion is complete and we can 4022 * indeed free this event, otherwise we need to serialize on 4023 * owner->perf_event_mutex. 4024 */ 4025 owner = lockless_dereference(event->owner); 4026 if (owner) { 4027 /* 4028 * Since delayed_put_task_struct() also drops the last 4029 * task reference we can safely take a new reference 4030 * while holding the rcu_read_lock(). 4031 */ 4032 get_task_struct(owner); 4033 } 4034 rcu_read_unlock(); 4035 4036 if (owner) { 4037 /* 4038 * If we're here through perf_event_exit_task() we're already 4039 * holding ctx->mutex which would be an inversion wrt. the 4040 * normal lock order. 4041 * 4042 * However we can safely take this lock because its the child 4043 * ctx->mutex. 4044 */ 4045 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4046 4047 /* 4048 * We have to re-check the event->owner field, if it is cleared 4049 * we raced with perf_event_exit_task(), acquiring the mutex 4050 * ensured they're done, and we can proceed with freeing the 4051 * event. 4052 */ 4053 if (event->owner) { 4054 list_del_init(&event->owner_entry); 4055 smp_store_release(&event->owner, NULL); 4056 } 4057 mutex_unlock(&owner->perf_event_mutex); 4058 put_task_struct(owner); 4059 } 4060 } 4061 4062 static void put_event(struct perf_event *event) 4063 { 4064 if (!atomic_long_dec_and_test(&event->refcount)) 4065 return; 4066 4067 _free_event(event); 4068 } 4069 4070 /* 4071 * Kill an event dead; while event:refcount will preserve the event 4072 * object, it will not preserve its functionality. Once the last 'user' 4073 * gives up the object, we'll destroy the thing. 4074 */ 4075 int perf_event_release_kernel(struct perf_event *event) 4076 { 4077 struct perf_event_context *ctx = event->ctx; 4078 struct perf_event *child, *tmp; 4079 4080 /* 4081 * If we got here through err_file: fput(event_file); we will not have 4082 * attached to a context yet. 4083 */ 4084 if (!ctx) { 4085 WARN_ON_ONCE(event->attach_state & 4086 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4087 goto no_ctx; 4088 } 4089 4090 if (!is_kernel_event(event)) 4091 perf_remove_from_owner(event); 4092 4093 ctx = perf_event_ctx_lock(event); 4094 WARN_ON_ONCE(ctx->parent_ctx); 4095 perf_remove_from_context(event, DETACH_GROUP); 4096 4097 raw_spin_lock_irq(&ctx->lock); 4098 /* 4099 * Mark this even as STATE_DEAD, there is no external reference to it 4100 * anymore. 4101 * 4102 * Anybody acquiring event->child_mutex after the below loop _must_ 4103 * also see this, most importantly inherit_event() which will avoid 4104 * placing more children on the list. 4105 * 4106 * Thus this guarantees that we will in fact observe and kill _ALL_ 4107 * child events. 4108 */ 4109 event->state = PERF_EVENT_STATE_DEAD; 4110 raw_spin_unlock_irq(&ctx->lock); 4111 4112 perf_event_ctx_unlock(event, ctx); 4113 4114 again: 4115 mutex_lock(&event->child_mutex); 4116 list_for_each_entry(child, &event->child_list, child_list) { 4117 4118 /* 4119 * Cannot change, child events are not migrated, see the 4120 * comment with perf_event_ctx_lock_nested(). 4121 */ 4122 ctx = lockless_dereference(child->ctx); 4123 /* 4124 * Since child_mutex nests inside ctx::mutex, we must jump 4125 * through hoops. We start by grabbing a reference on the ctx. 4126 * 4127 * Since the event cannot get freed while we hold the 4128 * child_mutex, the context must also exist and have a !0 4129 * reference count. 4130 */ 4131 get_ctx(ctx); 4132 4133 /* 4134 * Now that we have a ctx ref, we can drop child_mutex, and 4135 * acquire ctx::mutex without fear of it going away. Then we 4136 * can re-acquire child_mutex. 4137 */ 4138 mutex_unlock(&event->child_mutex); 4139 mutex_lock(&ctx->mutex); 4140 mutex_lock(&event->child_mutex); 4141 4142 /* 4143 * Now that we hold ctx::mutex and child_mutex, revalidate our 4144 * state, if child is still the first entry, it didn't get freed 4145 * and we can continue doing so. 4146 */ 4147 tmp = list_first_entry_or_null(&event->child_list, 4148 struct perf_event, child_list); 4149 if (tmp == child) { 4150 perf_remove_from_context(child, DETACH_GROUP); 4151 list_del(&child->child_list); 4152 free_event(child); 4153 /* 4154 * This matches the refcount bump in inherit_event(); 4155 * this can't be the last reference. 4156 */ 4157 put_event(event); 4158 } 4159 4160 mutex_unlock(&event->child_mutex); 4161 mutex_unlock(&ctx->mutex); 4162 put_ctx(ctx); 4163 goto again; 4164 } 4165 mutex_unlock(&event->child_mutex); 4166 4167 no_ctx: 4168 put_event(event); /* Must be the 'last' reference */ 4169 return 0; 4170 } 4171 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4172 4173 /* 4174 * Called when the last reference to the file is gone. 4175 */ 4176 static int perf_release(struct inode *inode, struct file *file) 4177 { 4178 perf_event_release_kernel(file->private_data); 4179 return 0; 4180 } 4181 4182 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4183 { 4184 struct perf_event *child; 4185 u64 total = 0; 4186 4187 *enabled = 0; 4188 *running = 0; 4189 4190 mutex_lock(&event->child_mutex); 4191 4192 (void)perf_event_read(event, false); 4193 total += perf_event_count(event); 4194 4195 *enabled += event->total_time_enabled + 4196 atomic64_read(&event->child_total_time_enabled); 4197 *running += event->total_time_running + 4198 atomic64_read(&event->child_total_time_running); 4199 4200 list_for_each_entry(child, &event->child_list, child_list) { 4201 (void)perf_event_read(child, false); 4202 total += perf_event_count(child); 4203 *enabled += child->total_time_enabled; 4204 *running += child->total_time_running; 4205 } 4206 mutex_unlock(&event->child_mutex); 4207 4208 return total; 4209 } 4210 EXPORT_SYMBOL_GPL(perf_event_read_value); 4211 4212 static int __perf_read_group_add(struct perf_event *leader, 4213 u64 read_format, u64 *values) 4214 { 4215 struct perf_event *sub; 4216 int n = 1; /* skip @nr */ 4217 int ret; 4218 4219 ret = perf_event_read(leader, true); 4220 if (ret) 4221 return ret; 4222 4223 /* 4224 * Since we co-schedule groups, {enabled,running} times of siblings 4225 * will be identical to those of the leader, so we only publish one 4226 * set. 4227 */ 4228 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4229 values[n++] += leader->total_time_enabled + 4230 atomic64_read(&leader->child_total_time_enabled); 4231 } 4232 4233 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4234 values[n++] += leader->total_time_running + 4235 atomic64_read(&leader->child_total_time_running); 4236 } 4237 4238 /* 4239 * Write {count,id} tuples for every sibling. 4240 */ 4241 values[n++] += perf_event_count(leader); 4242 if (read_format & PERF_FORMAT_ID) 4243 values[n++] = primary_event_id(leader); 4244 4245 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4246 values[n++] += perf_event_count(sub); 4247 if (read_format & PERF_FORMAT_ID) 4248 values[n++] = primary_event_id(sub); 4249 } 4250 4251 return 0; 4252 } 4253 4254 static int perf_read_group(struct perf_event *event, 4255 u64 read_format, char __user *buf) 4256 { 4257 struct perf_event *leader = event->group_leader, *child; 4258 struct perf_event_context *ctx = leader->ctx; 4259 int ret; 4260 u64 *values; 4261 4262 lockdep_assert_held(&ctx->mutex); 4263 4264 values = kzalloc(event->read_size, GFP_KERNEL); 4265 if (!values) 4266 return -ENOMEM; 4267 4268 values[0] = 1 + leader->nr_siblings; 4269 4270 /* 4271 * By locking the child_mutex of the leader we effectively 4272 * lock the child list of all siblings.. XXX explain how. 4273 */ 4274 mutex_lock(&leader->child_mutex); 4275 4276 ret = __perf_read_group_add(leader, read_format, values); 4277 if (ret) 4278 goto unlock; 4279 4280 list_for_each_entry(child, &leader->child_list, child_list) { 4281 ret = __perf_read_group_add(child, read_format, values); 4282 if (ret) 4283 goto unlock; 4284 } 4285 4286 mutex_unlock(&leader->child_mutex); 4287 4288 ret = event->read_size; 4289 if (copy_to_user(buf, values, event->read_size)) 4290 ret = -EFAULT; 4291 goto out; 4292 4293 unlock: 4294 mutex_unlock(&leader->child_mutex); 4295 out: 4296 kfree(values); 4297 return ret; 4298 } 4299 4300 static int perf_read_one(struct perf_event *event, 4301 u64 read_format, char __user *buf) 4302 { 4303 u64 enabled, running; 4304 u64 values[4]; 4305 int n = 0; 4306 4307 values[n++] = perf_event_read_value(event, &enabled, &running); 4308 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4309 values[n++] = enabled; 4310 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4311 values[n++] = running; 4312 if (read_format & PERF_FORMAT_ID) 4313 values[n++] = primary_event_id(event); 4314 4315 if (copy_to_user(buf, values, n * sizeof(u64))) 4316 return -EFAULT; 4317 4318 return n * sizeof(u64); 4319 } 4320 4321 static bool is_event_hup(struct perf_event *event) 4322 { 4323 bool no_children; 4324 4325 if (event->state > PERF_EVENT_STATE_EXIT) 4326 return false; 4327 4328 mutex_lock(&event->child_mutex); 4329 no_children = list_empty(&event->child_list); 4330 mutex_unlock(&event->child_mutex); 4331 return no_children; 4332 } 4333 4334 /* 4335 * Read the performance event - simple non blocking version for now 4336 */ 4337 static ssize_t 4338 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4339 { 4340 u64 read_format = event->attr.read_format; 4341 int ret; 4342 4343 /* 4344 * Return end-of-file for a read on a event that is in 4345 * error state (i.e. because it was pinned but it couldn't be 4346 * scheduled on to the CPU at some point). 4347 */ 4348 if (event->state == PERF_EVENT_STATE_ERROR) 4349 return 0; 4350 4351 if (count < event->read_size) 4352 return -ENOSPC; 4353 4354 WARN_ON_ONCE(event->ctx->parent_ctx); 4355 if (read_format & PERF_FORMAT_GROUP) 4356 ret = perf_read_group(event, read_format, buf); 4357 else 4358 ret = perf_read_one(event, read_format, buf); 4359 4360 return ret; 4361 } 4362 4363 static ssize_t 4364 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4365 { 4366 struct perf_event *event = file->private_data; 4367 struct perf_event_context *ctx; 4368 int ret; 4369 4370 ctx = perf_event_ctx_lock(event); 4371 ret = __perf_read(event, buf, count); 4372 perf_event_ctx_unlock(event, ctx); 4373 4374 return ret; 4375 } 4376 4377 static unsigned int perf_poll(struct file *file, poll_table *wait) 4378 { 4379 struct perf_event *event = file->private_data; 4380 struct ring_buffer *rb; 4381 unsigned int events = POLLHUP; 4382 4383 poll_wait(file, &event->waitq, wait); 4384 4385 if (is_event_hup(event)) 4386 return events; 4387 4388 /* 4389 * Pin the event->rb by taking event->mmap_mutex; otherwise 4390 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4391 */ 4392 mutex_lock(&event->mmap_mutex); 4393 rb = event->rb; 4394 if (rb) 4395 events = atomic_xchg(&rb->poll, 0); 4396 mutex_unlock(&event->mmap_mutex); 4397 return events; 4398 } 4399 4400 static void _perf_event_reset(struct perf_event *event) 4401 { 4402 (void)perf_event_read(event, false); 4403 local64_set(&event->count, 0); 4404 perf_event_update_userpage(event); 4405 } 4406 4407 /* 4408 * Holding the top-level event's child_mutex means that any 4409 * descendant process that has inherited this event will block 4410 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4411 * task existence requirements of perf_event_enable/disable. 4412 */ 4413 static void perf_event_for_each_child(struct perf_event *event, 4414 void (*func)(struct perf_event *)) 4415 { 4416 struct perf_event *child; 4417 4418 WARN_ON_ONCE(event->ctx->parent_ctx); 4419 4420 mutex_lock(&event->child_mutex); 4421 func(event); 4422 list_for_each_entry(child, &event->child_list, child_list) 4423 func(child); 4424 mutex_unlock(&event->child_mutex); 4425 } 4426 4427 static void perf_event_for_each(struct perf_event *event, 4428 void (*func)(struct perf_event *)) 4429 { 4430 struct perf_event_context *ctx = event->ctx; 4431 struct perf_event *sibling; 4432 4433 lockdep_assert_held(&ctx->mutex); 4434 4435 event = event->group_leader; 4436 4437 perf_event_for_each_child(event, func); 4438 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4439 perf_event_for_each_child(sibling, func); 4440 } 4441 4442 static void __perf_event_period(struct perf_event *event, 4443 struct perf_cpu_context *cpuctx, 4444 struct perf_event_context *ctx, 4445 void *info) 4446 { 4447 u64 value = *((u64 *)info); 4448 bool active; 4449 4450 if (event->attr.freq) { 4451 event->attr.sample_freq = value; 4452 } else { 4453 event->attr.sample_period = value; 4454 event->hw.sample_period = value; 4455 } 4456 4457 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4458 if (active) { 4459 perf_pmu_disable(ctx->pmu); 4460 /* 4461 * We could be throttled; unthrottle now to avoid the tick 4462 * trying to unthrottle while we already re-started the event. 4463 */ 4464 if (event->hw.interrupts == MAX_INTERRUPTS) { 4465 event->hw.interrupts = 0; 4466 perf_log_throttle(event, 1); 4467 } 4468 event->pmu->stop(event, PERF_EF_UPDATE); 4469 } 4470 4471 local64_set(&event->hw.period_left, 0); 4472 4473 if (active) { 4474 event->pmu->start(event, PERF_EF_RELOAD); 4475 perf_pmu_enable(ctx->pmu); 4476 } 4477 } 4478 4479 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4480 { 4481 u64 value; 4482 4483 if (!is_sampling_event(event)) 4484 return -EINVAL; 4485 4486 if (copy_from_user(&value, arg, sizeof(value))) 4487 return -EFAULT; 4488 4489 if (!value) 4490 return -EINVAL; 4491 4492 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4493 return -EINVAL; 4494 4495 event_function_call(event, __perf_event_period, &value); 4496 4497 return 0; 4498 } 4499 4500 static const struct file_operations perf_fops; 4501 4502 static inline int perf_fget_light(int fd, struct fd *p) 4503 { 4504 struct fd f = fdget(fd); 4505 if (!f.file) 4506 return -EBADF; 4507 4508 if (f.file->f_op != &perf_fops) { 4509 fdput(f); 4510 return -EBADF; 4511 } 4512 *p = f; 4513 return 0; 4514 } 4515 4516 static int perf_event_set_output(struct perf_event *event, 4517 struct perf_event *output_event); 4518 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4519 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4520 4521 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4522 { 4523 void (*func)(struct perf_event *); 4524 u32 flags = arg; 4525 4526 switch (cmd) { 4527 case PERF_EVENT_IOC_ENABLE: 4528 func = _perf_event_enable; 4529 break; 4530 case PERF_EVENT_IOC_DISABLE: 4531 func = _perf_event_disable; 4532 break; 4533 case PERF_EVENT_IOC_RESET: 4534 func = _perf_event_reset; 4535 break; 4536 4537 case PERF_EVENT_IOC_REFRESH: 4538 return _perf_event_refresh(event, arg); 4539 4540 case PERF_EVENT_IOC_PERIOD: 4541 return perf_event_period(event, (u64 __user *)arg); 4542 4543 case PERF_EVENT_IOC_ID: 4544 { 4545 u64 id = primary_event_id(event); 4546 4547 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4548 return -EFAULT; 4549 return 0; 4550 } 4551 4552 case PERF_EVENT_IOC_SET_OUTPUT: 4553 { 4554 int ret; 4555 if (arg != -1) { 4556 struct perf_event *output_event; 4557 struct fd output; 4558 ret = perf_fget_light(arg, &output); 4559 if (ret) 4560 return ret; 4561 output_event = output.file->private_data; 4562 ret = perf_event_set_output(event, output_event); 4563 fdput(output); 4564 } else { 4565 ret = perf_event_set_output(event, NULL); 4566 } 4567 return ret; 4568 } 4569 4570 case PERF_EVENT_IOC_SET_FILTER: 4571 return perf_event_set_filter(event, (void __user *)arg); 4572 4573 case PERF_EVENT_IOC_SET_BPF: 4574 return perf_event_set_bpf_prog(event, arg); 4575 4576 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4577 struct ring_buffer *rb; 4578 4579 rcu_read_lock(); 4580 rb = rcu_dereference(event->rb); 4581 if (!rb || !rb->nr_pages) { 4582 rcu_read_unlock(); 4583 return -EINVAL; 4584 } 4585 rb_toggle_paused(rb, !!arg); 4586 rcu_read_unlock(); 4587 return 0; 4588 } 4589 default: 4590 return -ENOTTY; 4591 } 4592 4593 if (flags & PERF_IOC_FLAG_GROUP) 4594 perf_event_for_each(event, func); 4595 else 4596 perf_event_for_each_child(event, func); 4597 4598 return 0; 4599 } 4600 4601 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4602 { 4603 struct perf_event *event = file->private_data; 4604 struct perf_event_context *ctx; 4605 long ret; 4606 4607 ctx = perf_event_ctx_lock(event); 4608 ret = _perf_ioctl(event, cmd, arg); 4609 perf_event_ctx_unlock(event, ctx); 4610 4611 return ret; 4612 } 4613 4614 #ifdef CONFIG_COMPAT 4615 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4616 unsigned long arg) 4617 { 4618 switch (_IOC_NR(cmd)) { 4619 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4620 case _IOC_NR(PERF_EVENT_IOC_ID): 4621 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4622 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4623 cmd &= ~IOCSIZE_MASK; 4624 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4625 } 4626 break; 4627 } 4628 return perf_ioctl(file, cmd, arg); 4629 } 4630 #else 4631 # define perf_compat_ioctl NULL 4632 #endif 4633 4634 int perf_event_task_enable(void) 4635 { 4636 struct perf_event_context *ctx; 4637 struct perf_event *event; 4638 4639 mutex_lock(¤t->perf_event_mutex); 4640 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4641 ctx = perf_event_ctx_lock(event); 4642 perf_event_for_each_child(event, _perf_event_enable); 4643 perf_event_ctx_unlock(event, ctx); 4644 } 4645 mutex_unlock(¤t->perf_event_mutex); 4646 4647 return 0; 4648 } 4649 4650 int perf_event_task_disable(void) 4651 { 4652 struct perf_event_context *ctx; 4653 struct perf_event *event; 4654 4655 mutex_lock(¤t->perf_event_mutex); 4656 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4657 ctx = perf_event_ctx_lock(event); 4658 perf_event_for_each_child(event, _perf_event_disable); 4659 perf_event_ctx_unlock(event, ctx); 4660 } 4661 mutex_unlock(¤t->perf_event_mutex); 4662 4663 return 0; 4664 } 4665 4666 static int perf_event_index(struct perf_event *event) 4667 { 4668 if (event->hw.state & PERF_HES_STOPPED) 4669 return 0; 4670 4671 if (event->state != PERF_EVENT_STATE_ACTIVE) 4672 return 0; 4673 4674 return event->pmu->event_idx(event); 4675 } 4676 4677 static void calc_timer_values(struct perf_event *event, 4678 u64 *now, 4679 u64 *enabled, 4680 u64 *running) 4681 { 4682 u64 ctx_time; 4683 4684 *now = perf_clock(); 4685 ctx_time = event->shadow_ctx_time + *now; 4686 *enabled = ctx_time - event->tstamp_enabled; 4687 *running = ctx_time - event->tstamp_running; 4688 } 4689 4690 static void perf_event_init_userpage(struct perf_event *event) 4691 { 4692 struct perf_event_mmap_page *userpg; 4693 struct ring_buffer *rb; 4694 4695 rcu_read_lock(); 4696 rb = rcu_dereference(event->rb); 4697 if (!rb) 4698 goto unlock; 4699 4700 userpg = rb->user_page; 4701 4702 /* Allow new userspace to detect that bit 0 is deprecated */ 4703 userpg->cap_bit0_is_deprecated = 1; 4704 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4705 userpg->data_offset = PAGE_SIZE; 4706 userpg->data_size = perf_data_size(rb); 4707 4708 unlock: 4709 rcu_read_unlock(); 4710 } 4711 4712 void __weak arch_perf_update_userpage( 4713 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4714 { 4715 } 4716 4717 /* 4718 * Callers need to ensure there can be no nesting of this function, otherwise 4719 * the seqlock logic goes bad. We can not serialize this because the arch 4720 * code calls this from NMI context. 4721 */ 4722 void perf_event_update_userpage(struct perf_event *event) 4723 { 4724 struct perf_event_mmap_page *userpg; 4725 struct ring_buffer *rb; 4726 u64 enabled, running, now; 4727 4728 rcu_read_lock(); 4729 rb = rcu_dereference(event->rb); 4730 if (!rb) 4731 goto unlock; 4732 4733 /* 4734 * compute total_time_enabled, total_time_running 4735 * based on snapshot values taken when the event 4736 * was last scheduled in. 4737 * 4738 * we cannot simply called update_context_time() 4739 * because of locking issue as we can be called in 4740 * NMI context 4741 */ 4742 calc_timer_values(event, &now, &enabled, &running); 4743 4744 userpg = rb->user_page; 4745 /* 4746 * Disable preemption so as to not let the corresponding user-space 4747 * spin too long if we get preempted. 4748 */ 4749 preempt_disable(); 4750 ++userpg->lock; 4751 barrier(); 4752 userpg->index = perf_event_index(event); 4753 userpg->offset = perf_event_count(event); 4754 if (userpg->index) 4755 userpg->offset -= local64_read(&event->hw.prev_count); 4756 4757 userpg->time_enabled = enabled + 4758 atomic64_read(&event->child_total_time_enabled); 4759 4760 userpg->time_running = running + 4761 atomic64_read(&event->child_total_time_running); 4762 4763 arch_perf_update_userpage(event, userpg, now); 4764 4765 barrier(); 4766 ++userpg->lock; 4767 preempt_enable(); 4768 unlock: 4769 rcu_read_unlock(); 4770 } 4771 4772 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4773 { 4774 struct perf_event *event = vma->vm_file->private_data; 4775 struct ring_buffer *rb; 4776 int ret = VM_FAULT_SIGBUS; 4777 4778 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4779 if (vmf->pgoff == 0) 4780 ret = 0; 4781 return ret; 4782 } 4783 4784 rcu_read_lock(); 4785 rb = rcu_dereference(event->rb); 4786 if (!rb) 4787 goto unlock; 4788 4789 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4790 goto unlock; 4791 4792 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4793 if (!vmf->page) 4794 goto unlock; 4795 4796 get_page(vmf->page); 4797 vmf->page->mapping = vma->vm_file->f_mapping; 4798 vmf->page->index = vmf->pgoff; 4799 4800 ret = 0; 4801 unlock: 4802 rcu_read_unlock(); 4803 4804 return ret; 4805 } 4806 4807 static void ring_buffer_attach(struct perf_event *event, 4808 struct ring_buffer *rb) 4809 { 4810 struct ring_buffer *old_rb = NULL; 4811 unsigned long flags; 4812 4813 if (event->rb) { 4814 /* 4815 * Should be impossible, we set this when removing 4816 * event->rb_entry and wait/clear when adding event->rb_entry. 4817 */ 4818 WARN_ON_ONCE(event->rcu_pending); 4819 4820 old_rb = event->rb; 4821 spin_lock_irqsave(&old_rb->event_lock, flags); 4822 list_del_rcu(&event->rb_entry); 4823 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4824 4825 event->rcu_batches = get_state_synchronize_rcu(); 4826 event->rcu_pending = 1; 4827 } 4828 4829 if (rb) { 4830 if (event->rcu_pending) { 4831 cond_synchronize_rcu(event->rcu_batches); 4832 event->rcu_pending = 0; 4833 } 4834 4835 spin_lock_irqsave(&rb->event_lock, flags); 4836 list_add_rcu(&event->rb_entry, &rb->event_list); 4837 spin_unlock_irqrestore(&rb->event_lock, flags); 4838 } 4839 4840 rcu_assign_pointer(event->rb, rb); 4841 4842 if (old_rb) { 4843 ring_buffer_put(old_rb); 4844 /* 4845 * Since we detached before setting the new rb, so that we 4846 * could attach the new rb, we could have missed a wakeup. 4847 * Provide it now. 4848 */ 4849 wake_up_all(&event->waitq); 4850 } 4851 } 4852 4853 static void ring_buffer_wakeup(struct perf_event *event) 4854 { 4855 struct ring_buffer *rb; 4856 4857 rcu_read_lock(); 4858 rb = rcu_dereference(event->rb); 4859 if (rb) { 4860 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4861 wake_up_all(&event->waitq); 4862 } 4863 rcu_read_unlock(); 4864 } 4865 4866 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4867 { 4868 struct ring_buffer *rb; 4869 4870 rcu_read_lock(); 4871 rb = rcu_dereference(event->rb); 4872 if (rb) { 4873 if (!atomic_inc_not_zero(&rb->refcount)) 4874 rb = NULL; 4875 } 4876 rcu_read_unlock(); 4877 4878 return rb; 4879 } 4880 4881 void ring_buffer_put(struct ring_buffer *rb) 4882 { 4883 if (!atomic_dec_and_test(&rb->refcount)) 4884 return; 4885 4886 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4887 4888 call_rcu(&rb->rcu_head, rb_free_rcu); 4889 } 4890 4891 static void perf_mmap_open(struct vm_area_struct *vma) 4892 { 4893 struct perf_event *event = vma->vm_file->private_data; 4894 4895 atomic_inc(&event->mmap_count); 4896 atomic_inc(&event->rb->mmap_count); 4897 4898 if (vma->vm_pgoff) 4899 atomic_inc(&event->rb->aux_mmap_count); 4900 4901 if (event->pmu->event_mapped) 4902 event->pmu->event_mapped(event); 4903 } 4904 4905 static void perf_pmu_output_stop(struct perf_event *event); 4906 4907 /* 4908 * A buffer can be mmap()ed multiple times; either directly through the same 4909 * event, or through other events by use of perf_event_set_output(). 4910 * 4911 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4912 * the buffer here, where we still have a VM context. This means we need 4913 * to detach all events redirecting to us. 4914 */ 4915 static void perf_mmap_close(struct vm_area_struct *vma) 4916 { 4917 struct perf_event *event = vma->vm_file->private_data; 4918 4919 struct ring_buffer *rb = ring_buffer_get(event); 4920 struct user_struct *mmap_user = rb->mmap_user; 4921 int mmap_locked = rb->mmap_locked; 4922 unsigned long size = perf_data_size(rb); 4923 4924 if (event->pmu->event_unmapped) 4925 event->pmu->event_unmapped(event); 4926 4927 /* 4928 * rb->aux_mmap_count will always drop before rb->mmap_count and 4929 * event->mmap_count, so it is ok to use event->mmap_mutex to 4930 * serialize with perf_mmap here. 4931 */ 4932 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4933 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4934 /* 4935 * Stop all AUX events that are writing to this buffer, 4936 * so that we can free its AUX pages and corresponding PMU 4937 * data. Note that after rb::aux_mmap_count dropped to zero, 4938 * they won't start any more (see perf_aux_output_begin()). 4939 */ 4940 perf_pmu_output_stop(event); 4941 4942 /* now it's safe to free the pages */ 4943 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4944 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4945 4946 /* this has to be the last one */ 4947 rb_free_aux(rb); 4948 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 4949 4950 mutex_unlock(&event->mmap_mutex); 4951 } 4952 4953 atomic_dec(&rb->mmap_count); 4954 4955 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4956 goto out_put; 4957 4958 ring_buffer_attach(event, NULL); 4959 mutex_unlock(&event->mmap_mutex); 4960 4961 /* If there's still other mmap()s of this buffer, we're done. */ 4962 if (atomic_read(&rb->mmap_count)) 4963 goto out_put; 4964 4965 /* 4966 * No other mmap()s, detach from all other events that might redirect 4967 * into the now unreachable buffer. Somewhat complicated by the 4968 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4969 */ 4970 again: 4971 rcu_read_lock(); 4972 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4973 if (!atomic_long_inc_not_zero(&event->refcount)) { 4974 /* 4975 * This event is en-route to free_event() which will 4976 * detach it and remove it from the list. 4977 */ 4978 continue; 4979 } 4980 rcu_read_unlock(); 4981 4982 mutex_lock(&event->mmap_mutex); 4983 /* 4984 * Check we didn't race with perf_event_set_output() which can 4985 * swizzle the rb from under us while we were waiting to 4986 * acquire mmap_mutex. 4987 * 4988 * If we find a different rb; ignore this event, a next 4989 * iteration will no longer find it on the list. We have to 4990 * still restart the iteration to make sure we're not now 4991 * iterating the wrong list. 4992 */ 4993 if (event->rb == rb) 4994 ring_buffer_attach(event, NULL); 4995 4996 mutex_unlock(&event->mmap_mutex); 4997 put_event(event); 4998 4999 /* 5000 * Restart the iteration; either we're on the wrong list or 5001 * destroyed its integrity by doing a deletion. 5002 */ 5003 goto again; 5004 } 5005 rcu_read_unlock(); 5006 5007 /* 5008 * It could be there's still a few 0-ref events on the list; they'll 5009 * get cleaned up by free_event() -- they'll also still have their 5010 * ref on the rb and will free it whenever they are done with it. 5011 * 5012 * Aside from that, this buffer is 'fully' detached and unmapped, 5013 * undo the VM accounting. 5014 */ 5015 5016 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5017 vma->vm_mm->pinned_vm -= mmap_locked; 5018 free_uid(mmap_user); 5019 5020 out_put: 5021 ring_buffer_put(rb); /* could be last */ 5022 } 5023 5024 static const struct vm_operations_struct perf_mmap_vmops = { 5025 .open = perf_mmap_open, 5026 .close = perf_mmap_close, /* non mergable */ 5027 .fault = perf_mmap_fault, 5028 .page_mkwrite = perf_mmap_fault, 5029 }; 5030 5031 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5032 { 5033 struct perf_event *event = file->private_data; 5034 unsigned long user_locked, user_lock_limit; 5035 struct user_struct *user = current_user(); 5036 unsigned long locked, lock_limit; 5037 struct ring_buffer *rb = NULL; 5038 unsigned long vma_size; 5039 unsigned long nr_pages; 5040 long user_extra = 0, extra = 0; 5041 int ret = 0, flags = 0; 5042 5043 /* 5044 * Don't allow mmap() of inherited per-task counters. This would 5045 * create a performance issue due to all children writing to the 5046 * same rb. 5047 */ 5048 if (event->cpu == -1 && event->attr.inherit) 5049 return -EINVAL; 5050 5051 if (!(vma->vm_flags & VM_SHARED)) 5052 return -EINVAL; 5053 5054 vma_size = vma->vm_end - vma->vm_start; 5055 5056 if (vma->vm_pgoff == 0) { 5057 nr_pages = (vma_size / PAGE_SIZE) - 1; 5058 } else { 5059 /* 5060 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5061 * mapped, all subsequent mappings should have the same size 5062 * and offset. Must be above the normal perf buffer. 5063 */ 5064 u64 aux_offset, aux_size; 5065 5066 if (!event->rb) 5067 return -EINVAL; 5068 5069 nr_pages = vma_size / PAGE_SIZE; 5070 5071 mutex_lock(&event->mmap_mutex); 5072 ret = -EINVAL; 5073 5074 rb = event->rb; 5075 if (!rb) 5076 goto aux_unlock; 5077 5078 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 5079 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 5080 5081 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5082 goto aux_unlock; 5083 5084 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5085 goto aux_unlock; 5086 5087 /* already mapped with a different offset */ 5088 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5089 goto aux_unlock; 5090 5091 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5092 goto aux_unlock; 5093 5094 /* already mapped with a different size */ 5095 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5096 goto aux_unlock; 5097 5098 if (!is_power_of_2(nr_pages)) 5099 goto aux_unlock; 5100 5101 if (!atomic_inc_not_zero(&rb->mmap_count)) 5102 goto aux_unlock; 5103 5104 if (rb_has_aux(rb)) { 5105 atomic_inc(&rb->aux_mmap_count); 5106 ret = 0; 5107 goto unlock; 5108 } 5109 5110 atomic_set(&rb->aux_mmap_count, 1); 5111 user_extra = nr_pages; 5112 5113 goto accounting; 5114 } 5115 5116 /* 5117 * If we have rb pages ensure they're a power-of-two number, so we 5118 * can do bitmasks instead of modulo. 5119 */ 5120 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5121 return -EINVAL; 5122 5123 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5124 return -EINVAL; 5125 5126 WARN_ON_ONCE(event->ctx->parent_ctx); 5127 again: 5128 mutex_lock(&event->mmap_mutex); 5129 if (event->rb) { 5130 if (event->rb->nr_pages != nr_pages) { 5131 ret = -EINVAL; 5132 goto unlock; 5133 } 5134 5135 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5136 /* 5137 * Raced against perf_mmap_close() through 5138 * perf_event_set_output(). Try again, hope for better 5139 * luck. 5140 */ 5141 mutex_unlock(&event->mmap_mutex); 5142 goto again; 5143 } 5144 5145 goto unlock; 5146 } 5147 5148 user_extra = nr_pages + 1; 5149 5150 accounting: 5151 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5152 5153 /* 5154 * Increase the limit linearly with more CPUs: 5155 */ 5156 user_lock_limit *= num_online_cpus(); 5157 5158 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5159 5160 if (user_locked > user_lock_limit) 5161 extra = user_locked - user_lock_limit; 5162 5163 lock_limit = rlimit(RLIMIT_MEMLOCK); 5164 lock_limit >>= PAGE_SHIFT; 5165 locked = vma->vm_mm->pinned_vm + extra; 5166 5167 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5168 !capable(CAP_IPC_LOCK)) { 5169 ret = -EPERM; 5170 goto unlock; 5171 } 5172 5173 WARN_ON(!rb && event->rb); 5174 5175 if (vma->vm_flags & VM_WRITE) 5176 flags |= RING_BUFFER_WRITABLE; 5177 5178 if (!rb) { 5179 rb = rb_alloc(nr_pages, 5180 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5181 event->cpu, flags); 5182 5183 if (!rb) { 5184 ret = -ENOMEM; 5185 goto unlock; 5186 } 5187 5188 atomic_set(&rb->mmap_count, 1); 5189 rb->mmap_user = get_current_user(); 5190 rb->mmap_locked = extra; 5191 5192 ring_buffer_attach(event, rb); 5193 5194 perf_event_init_userpage(event); 5195 perf_event_update_userpage(event); 5196 } else { 5197 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5198 event->attr.aux_watermark, flags); 5199 if (!ret) 5200 rb->aux_mmap_locked = extra; 5201 } 5202 5203 unlock: 5204 if (!ret) { 5205 atomic_long_add(user_extra, &user->locked_vm); 5206 vma->vm_mm->pinned_vm += extra; 5207 5208 atomic_inc(&event->mmap_count); 5209 } else if (rb) { 5210 atomic_dec(&rb->mmap_count); 5211 } 5212 aux_unlock: 5213 mutex_unlock(&event->mmap_mutex); 5214 5215 /* 5216 * Since pinned accounting is per vm we cannot allow fork() to copy our 5217 * vma. 5218 */ 5219 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5220 vma->vm_ops = &perf_mmap_vmops; 5221 5222 if (event->pmu->event_mapped) 5223 event->pmu->event_mapped(event); 5224 5225 return ret; 5226 } 5227 5228 static int perf_fasync(int fd, struct file *filp, int on) 5229 { 5230 struct inode *inode = file_inode(filp); 5231 struct perf_event *event = filp->private_data; 5232 int retval; 5233 5234 inode_lock(inode); 5235 retval = fasync_helper(fd, filp, on, &event->fasync); 5236 inode_unlock(inode); 5237 5238 if (retval < 0) 5239 return retval; 5240 5241 return 0; 5242 } 5243 5244 static const struct file_operations perf_fops = { 5245 .llseek = no_llseek, 5246 .release = perf_release, 5247 .read = perf_read, 5248 .poll = perf_poll, 5249 .unlocked_ioctl = perf_ioctl, 5250 .compat_ioctl = perf_compat_ioctl, 5251 .mmap = perf_mmap, 5252 .fasync = perf_fasync, 5253 }; 5254 5255 /* 5256 * Perf event wakeup 5257 * 5258 * If there's data, ensure we set the poll() state and publish everything 5259 * to user-space before waking everybody up. 5260 */ 5261 5262 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5263 { 5264 /* only the parent has fasync state */ 5265 if (event->parent) 5266 event = event->parent; 5267 return &event->fasync; 5268 } 5269 5270 void perf_event_wakeup(struct perf_event *event) 5271 { 5272 ring_buffer_wakeup(event); 5273 5274 if (event->pending_kill) { 5275 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5276 event->pending_kill = 0; 5277 } 5278 } 5279 5280 static void perf_pending_event(struct irq_work *entry) 5281 { 5282 struct perf_event *event = container_of(entry, 5283 struct perf_event, pending); 5284 int rctx; 5285 5286 rctx = perf_swevent_get_recursion_context(); 5287 /* 5288 * If we 'fail' here, that's OK, it means recursion is already disabled 5289 * and we won't recurse 'further'. 5290 */ 5291 5292 if (event->pending_disable) { 5293 event->pending_disable = 0; 5294 perf_event_disable_local(event); 5295 } 5296 5297 if (event->pending_wakeup) { 5298 event->pending_wakeup = 0; 5299 perf_event_wakeup(event); 5300 } 5301 5302 if (rctx >= 0) 5303 perf_swevent_put_recursion_context(rctx); 5304 } 5305 5306 /* 5307 * We assume there is only KVM supporting the callbacks. 5308 * Later on, we might change it to a list if there is 5309 * another virtualization implementation supporting the callbacks. 5310 */ 5311 struct perf_guest_info_callbacks *perf_guest_cbs; 5312 5313 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5314 { 5315 perf_guest_cbs = cbs; 5316 return 0; 5317 } 5318 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5319 5320 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5321 { 5322 perf_guest_cbs = NULL; 5323 return 0; 5324 } 5325 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5326 5327 static void 5328 perf_output_sample_regs(struct perf_output_handle *handle, 5329 struct pt_regs *regs, u64 mask) 5330 { 5331 int bit; 5332 5333 for_each_set_bit(bit, (const unsigned long *) &mask, 5334 sizeof(mask) * BITS_PER_BYTE) { 5335 u64 val; 5336 5337 val = perf_reg_value(regs, bit); 5338 perf_output_put(handle, val); 5339 } 5340 } 5341 5342 static void perf_sample_regs_user(struct perf_regs *regs_user, 5343 struct pt_regs *regs, 5344 struct pt_regs *regs_user_copy) 5345 { 5346 if (user_mode(regs)) { 5347 regs_user->abi = perf_reg_abi(current); 5348 regs_user->regs = regs; 5349 } else if (current->mm) { 5350 perf_get_regs_user(regs_user, regs, regs_user_copy); 5351 } else { 5352 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5353 regs_user->regs = NULL; 5354 } 5355 } 5356 5357 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5358 struct pt_regs *regs) 5359 { 5360 regs_intr->regs = regs; 5361 regs_intr->abi = perf_reg_abi(current); 5362 } 5363 5364 5365 /* 5366 * Get remaining task size from user stack pointer. 5367 * 5368 * It'd be better to take stack vma map and limit this more 5369 * precisly, but there's no way to get it safely under interrupt, 5370 * so using TASK_SIZE as limit. 5371 */ 5372 static u64 perf_ustack_task_size(struct pt_regs *regs) 5373 { 5374 unsigned long addr = perf_user_stack_pointer(regs); 5375 5376 if (!addr || addr >= TASK_SIZE) 5377 return 0; 5378 5379 return TASK_SIZE - addr; 5380 } 5381 5382 static u16 5383 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5384 struct pt_regs *regs) 5385 { 5386 u64 task_size; 5387 5388 /* No regs, no stack pointer, no dump. */ 5389 if (!regs) 5390 return 0; 5391 5392 /* 5393 * Check if we fit in with the requested stack size into the: 5394 * - TASK_SIZE 5395 * If we don't, we limit the size to the TASK_SIZE. 5396 * 5397 * - remaining sample size 5398 * If we don't, we customize the stack size to 5399 * fit in to the remaining sample size. 5400 */ 5401 5402 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5403 stack_size = min(stack_size, (u16) task_size); 5404 5405 /* Current header size plus static size and dynamic size. */ 5406 header_size += 2 * sizeof(u64); 5407 5408 /* Do we fit in with the current stack dump size? */ 5409 if ((u16) (header_size + stack_size) < header_size) { 5410 /* 5411 * If we overflow the maximum size for the sample, 5412 * we customize the stack dump size to fit in. 5413 */ 5414 stack_size = USHRT_MAX - header_size - sizeof(u64); 5415 stack_size = round_up(stack_size, sizeof(u64)); 5416 } 5417 5418 return stack_size; 5419 } 5420 5421 static void 5422 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5423 struct pt_regs *regs) 5424 { 5425 /* Case of a kernel thread, nothing to dump */ 5426 if (!regs) { 5427 u64 size = 0; 5428 perf_output_put(handle, size); 5429 } else { 5430 unsigned long sp; 5431 unsigned int rem; 5432 u64 dyn_size; 5433 5434 /* 5435 * We dump: 5436 * static size 5437 * - the size requested by user or the best one we can fit 5438 * in to the sample max size 5439 * data 5440 * - user stack dump data 5441 * dynamic size 5442 * - the actual dumped size 5443 */ 5444 5445 /* Static size. */ 5446 perf_output_put(handle, dump_size); 5447 5448 /* Data. */ 5449 sp = perf_user_stack_pointer(regs); 5450 rem = __output_copy_user(handle, (void *) sp, dump_size); 5451 dyn_size = dump_size - rem; 5452 5453 perf_output_skip(handle, rem); 5454 5455 /* Dynamic size. */ 5456 perf_output_put(handle, dyn_size); 5457 } 5458 } 5459 5460 static void __perf_event_header__init_id(struct perf_event_header *header, 5461 struct perf_sample_data *data, 5462 struct perf_event *event) 5463 { 5464 u64 sample_type = event->attr.sample_type; 5465 5466 data->type = sample_type; 5467 header->size += event->id_header_size; 5468 5469 if (sample_type & PERF_SAMPLE_TID) { 5470 /* namespace issues */ 5471 data->tid_entry.pid = perf_event_pid(event, current); 5472 data->tid_entry.tid = perf_event_tid(event, current); 5473 } 5474 5475 if (sample_type & PERF_SAMPLE_TIME) 5476 data->time = perf_event_clock(event); 5477 5478 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5479 data->id = primary_event_id(event); 5480 5481 if (sample_type & PERF_SAMPLE_STREAM_ID) 5482 data->stream_id = event->id; 5483 5484 if (sample_type & PERF_SAMPLE_CPU) { 5485 data->cpu_entry.cpu = raw_smp_processor_id(); 5486 data->cpu_entry.reserved = 0; 5487 } 5488 } 5489 5490 void perf_event_header__init_id(struct perf_event_header *header, 5491 struct perf_sample_data *data, 5492 struct perf_event *event) 5493 { 5494 if (event->attr.sample_id_all) 5495 __perf_event_header__init_id(header, data, event); 5496 } 5497 5498 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5499 struct perf_sample_data *data) 5500 { 5501 u64 sample_type = data->type; 5502 5503 if (sample_type & PERF_SAMPLE_TID) 5504 perf_output_put(handle, data->tid_entry); 5505 5506 if (sample_type & PERF_SAMPLE_TIME) 5507 perf_output_put(handle, data->time); 5508 5509 if (sample_type & PERF_SAMPLE_ID) 5510 perf_output_put(handle, data->id); 5511 5512 if (sample_type & PERF_SAMPLE_STREAM_ID) 5513 perf_output_put(handle, data->stream_id); 5514 5515 if (sample_type & PERF_SAMPLE_CPU) 5516 perf_output_put(handle, data->cpu_entry); 5517 5518 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5519 perf_output_put(handle, data->id); 5520 } 5521 5522 void perf_event__output_id_sample(struct perf_event *event, 5523 struct perf_output_handle *handle, 5524 struct perf_sample_data *sample) 5525 { 5526 if (event->attr.sample_id_all) 5527 __perf_event__output_id_sample(handle, sample); 5528 } 5529 5530 static void perf_output_read_one(struct perf_output_handle *handle, 5531 struct perf_event *event, 5532 u64 enabled, u64 running) 5533 { 5534 u64 read_format = event->attr.read_format; 5535 u64 values[4]; 5536 int n = 0; 5537 5538 values[n++] = perf_event_count(event); 5539 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5540 values[n++] = enabled + 5541 atomic64_read(&event->child_total_time_enabled); 5542 } 5543 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5544 values[n++] = running + 5545 atomic64_read(&event->child_total_time_running); 5546 } 5547 if (read_format & PERF_FORMAT_ID) 5548 values[n++] = primary_event_id(event); 5549 5550 __output_copy(handle, values, n * sizeof(u64)); 5551 } 5552 5553 /* 5554 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5555 */ 5556 static void perf_output_read_group(struct perf_output_handle *handle, 5557 struct perf_event *event, 5558 u64 enabled, u64 running) 5559 { 5560 struct perf_event *leader = event->group_leader, *sub; 5561 u64 read_format = event->attr.read_format; 5562 u64 values[5]; 5563 int n = 0; 5564 5565 values[n++] = 1 + leader->nr_siblings; 5566 5567 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5568 values[n++] = enabled; 5569 5570 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5571 values[n++] = running; 5572 5573 if (leader != event) 5574 leader->pmu->read(leader); 5575 5576 values[n++] = perf_event_count(leader); 5577 if (read_format & PERF_FORMAT_ID) 5578 values[n++] = primary_event_id(leader); 5579 5580 __output_copy(handle, values, n * sizeof(u64)); 5581 5582 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5583 n = 0; 5584 5585 if ((sub != event) && 5586 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5587 sub->pmu->read(sub); 5588 5589 values[n++] = perf_event_count(sub); 5590 if (read_format & PERF_FORMAT_ID) 5591 values[n++] = primary_event_id(sub); 5592 5593 __output_copy(handle, values, n * sizeof(u64)); 5594 } 5595 } 5596 5597 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5598 PERF_FORMAT_TOTAL_TIME_RUNNING) 5599 5600 static void perf_output_read(struct perf_output_handle *handle, 5601 struct perf_event *event) 5602 { 5603 u64 enabled = 0, running = 0, now; 5604 u64 read_format = event->attr.read_format; 5605 5606 /* 5607 * compute total_time_enabled, total_time_running 5608 * based on snapshot values taken when the event 5609 * was last scheduled in. 5610 * 5611 * we cannot simply called update_context_time() 5612 * because of locking issue as we are called in 5613 * NMI context 5614 */ 5615 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5616 calc_timer_values(event, &now, &enabled, &running); 5617 5618 if (event->attr.read_format & PERF_FORMAT_GROUP) 5619 perf_output_read_group(handle, event, enabled, running); 5620 else 5621 perf_output_read_one(handle, event, enabled, running); 5622 } 5623 5624 void perf_output_sample(struct perf_output_handle *handle, 5625 struct perf_event_header *header, 5626 struct perf_sample_data *data, 5627 struct perf_event *event) 5628 { 5629 u64 sample_type = data->type; 5630 5631 perf_output_put(handle, *header); 5632 5633 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5634 perf_output_put(handle, data->id); 5635 5636 if (sample_type & PERF_SAMPLE_IP) 5637 perf_output_put(handle, data->ip); 5638 5639 if (sample_type & PERF_SAMPLE_TID) 5640 perf_output_put(handle, data->tid_entry); 5641 5642 if (sample_type & PERF_SAMPLE_TIME) 5643 perf_output_put(handle, data->time); 5644 5645 if (sample_type & PERF_SAMPLE_ADDR) 5646 perf_output_put(handle, data->addr); 5647 5648 if (sample_type & PERF_SAMPLE_ID) 5649 perf_output_put(handle, data->id); 5650 5651 if (sample_type & PERF_SAMPLE_STREAM_ID) 5652 perf_output_put(handle, data->stream_id); 5653 5654 if (sample_type & PERF_SAMPLE_CPU) 5655 perf_output_put(handle, data->cpu_entry); 5656 5657 if (sample_type & PERF_SAMPLE_PERIOD) 5658 perf_output_put(handle, data->period); 5659 5660 if (sample_type & PERF_SAMPLE_READ) 5661 perf_output_read(handle, event); 5662 5663 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5664 if (data->callchain) { 5665 int size = 1; 5666 5667 if (data->callchain) 5668 size += data->callchain->nr; 5669 5670 size *= sizeof(u64); 5671 5672 __output_copy(handle, data->callchain, size); 5673 } else { 5674 u64 nr = 0; 5675 perf_output_put(handle, nr); 5676 } 5677 } 5678 5679 if (sample_type & PERF_SAMPLE_RAW) { 5680 struct perf_raw_record *raw = data->raw; 5681 5682 if (raw) { 5683 struct perf_raw_frag *frag = &raw->frag; 5684 5685 perf_output_put(handle, raw->size); 5686 do { 5687 if (frag->copy) { 5688 __output_custom(handle, frag->copy, 5689 frag->data, frag->size); 5690 } else { 5691 __output_copy(handle, frag->data, 5692 frag->size); 5693 } 5694 if (perf_raw_frag_last(frag)) 5695 break; 5696 frag = frag->next; 5697 } while (1); 5698 if (frag->pad) 5699 __output_skip(handle, NULL, frag->pad); 5700 } else { 5701 struct { 5702 u32 size; 5703 u32 data; 5704 } raw = { 5705 .size = sizeof(u32), 5706 .data = 0, 5707 }; 5708 perf_output_put(handle, raw); 5709 } 5710 } 5711 5712 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5713 if (data->br_stack) { 5714 size_t size; 5715 5716 size = data->br_stack->nr 5717 * sizeof(struct perf_branch_entry); 5718 5719 perf_output_put(handle, data->br_stack->nr); 5720 perf_output_copy(handle, data->br_stack->entries, size); 5721 } else { 5722 /* 5723 * we always store at least the value of nr 5724 */ 5725 u64 nr = 0; 5726 perf_output_put(handle, nr); 5727 } 5728 } 5729 5730 if (sample_type & PERF_SAMPLE_REGS_USER) { 5731 u64 abi = data->regs_user.abi; 5732 5733 /* 5734 * If there are no regs to dump, notice it through 5735 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5736 */ 5737 perf_output_put(handle, abi); 5738 5739 if (abi) { 5740 u64 mask = event->attr.sample_regs_user; 5741 perf_output_sample_regs(handle, 5742 data->regs_user.regs, 5743 mask); 5744 } 5745 } 5746 5747 if (sample_type & PERF_SAMPLE_STACK_USER) { 5748 perf_output_sample_ustack(handle, 5749 data->stack_user_size, 5750 data->regs_user.regs); 5751 } 5752 5753 if (sample_type & PERF_SAMPLE_WEIGHT) 5754 perf_output_put(handle, data->weight); 5755 5756 if (sample_type & PERF_SAMPLE_DATA_SRC) 5757 perf_output_put(handle, data->data_src.val); 5758 5759 if (sample_type & PERF_SAMPLE_TRANSACTION) 5760 perf_output_put(handle, data->txn); 5761 5762 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5763 u64 abi = data->regs_intr.abi; 5764 /* 5765 * If there are no regs to dump, notice it through 5766 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5767 */ 5768 perf_output_put(handle, abi); 5769 5770 if (abi) { 5771 u64 mask = event->attr.sample_regs_intr; 5772 5773 perf_output_sample_regs(handle, 5774 data->regs_intr.regs, 5775 mask); 5776 } 5777 } 5778 5779 if (!event->attr.watermark) { 5780 int wakeup_events = event->attr.wakeup_events; 5781 5782 if (wakeup_events) { 5783 struct ring_buffer *rb = handle->rb; 5784 int events = local_inc_return(&rb->events); 5785 5786 if (events >= wakeup_events) { 5787 local_sub(wakeup_events, &rb->events); 5788 local_inc(&rb->wakeup); 5789 } 5790 } 5791 } 5792 } 5793 5794 void perf_prepare_sample(struct perf_event_header *header, 5795 struct perf_sample_data *data, 5796 struct perf_event *event, 5797 struct pt_regs *regs) 5798 { 5799 u64 sample_type = event->attr.sample_type; 5800 5801 header->type = PERF_RECORD_SAMPLE; 5802 header->size = sizeof(*header) + event->header_size; 5803 5804 header->misc = 0; 5805 header->misc |= perf_misc_flags(regs); 5806 5807 __perf_event_header__init_id(header, data, event); 5808 5809 if (sample_type & PERF_SAMPLE_IP) 5810 data->ip = perf_instruction_pointer(regs); 5811 5812 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5813 int size = 1; 5814 5815 data->callchain = perf_callchain(event, regs); 5816 5817 if (data->callchain) 5818 size += data->callchain->nr; 5819 5820 header->size += size * sizeof(u64); 5821 } 5822 5823 if (sample_type & PERF_SAMPLE_RAW) { 5824 struct perf_raw_record *raw = data->raw; 5825 int size; 5826 5827 if (raw) { 5828 struct perf_raw_frag *frag = &raw->frag; 5829 u32 sum = 0; 5830 5831 do { 5832 sum += frag->size; 5833 if (perf_raw_frag_last(frag)) 5834 break; 5835 frag = frag->next; 5836 } while (1); 5837 5838 size = round_up(sum + sizeof(u32), sizeof(u64)); 5839 raw->size = size - sizeof(u32); 5840 frag->pad = raw->size - sum; 5841 } else { 5842 size = sizeof(u64); 5843 } 5844 5845 header->size += size; 5846 } 5847 5848 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5849 int size = sizeof(u64); /* nr */ 5850 if (data->br_stack) { 5851 size += data->br_stack->nr 5852 * sizeof(struct perf_branch_entry); 5853 } 5854 header->size += size; 5855 } 5856 5857 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5858 perf_sample_regs_user(&data->regs_user, regs, 5859 &data->regs_user_copy); 5860 5861 if (sample_type & PERF_SAMPLE_REGS_USER) { 5862 /* regs dump ABI info */ 5863 int size = sizeof(u64); 5864 5865 if (data->regs_user.regs) { 5866 u64 mask = event->attr.sample_regs_user; 5867 size += hweight64(mask) * sizeof(u64); 5868 } 5869 5870 header->size += size; 5871 } 5872 5873 if (sample_type & PERF_SAMPLE_STACK_USER) { 5874 /* 5875 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5876 * processed as the last one or have additional check added 5877 * in case new sample type is added, because we could eat 5878 * up the rest of the sample size. 5879 */ 5880 u16 stack_size = event->attr.sample_stack_user; 5881 u16 size = sizeof(u64); 5882 5883 stack_size = perf_sample_ustack_size(stack_size, header->size, 5884 data->regs_user.regs); 5885 5886 /* 5887 * If there is something to dump, add space for the dump 5888 * itself and for the field that tells the dynamic size, 5889 * which is how many have been actually dumped. 5890 */ 5891 if (stack_size) 5892 size += sizeof(u64) + stack_size; 5893 5894 data->stack_user_size = stack_size; 5895 header->size += size; 5896 } 5897 5898 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5899 /* regs dump ABI info */ 5900 int size = sizeof(u64); 5901 5902 perf_sample_regs_intr(&data->regs_intr, regs); 5903 5904 if (data->regs_intr.regs) { 5905 u64 mask = event->attr.sample_regs_intr; 5906 5907 size += hweight64(mask) * sizeof(u64); 5908 } 5909 5910 header->size += size; 5911 } 5912 } 5913 5914 static void __always_inline 5915 __perf_event_output(struct perf_event *event, 5916 struct perf_sample_data *data, 5917 struct pt_regs *regs, 5918 int (*output_begin)(struct perf_output_handle *, 5919 struct perf_event *, 5920 unsigned int)) 5921 { 5922 struct perf_output_handle handle; 5923 struct perf_event_header header; 5924 5925 /* protect the callchain buffers */ 5926 rcu_read_lock(); 5927 5928 perf_prepare_sample(&header, data, event, regs); 5929 5930 if (output_begin(&handle, event, header.size)) 5931 goto exit; 5932 5933 perf_output_sample(&handle, &header, data, event); 5934 5935 perf_output_end(&handle); 5936 5937 exit: 5938 rcu_read_unlock(); 5939 } 5940 5941 void 5942 perf_event_output_forward(struct perf_event *event, 5943 struct perf_sample_data *data, 5944 struct pt_regs *regs) 5945 { 5946 __perf_event_output(event, data, regs, perf_output_begin_forward); 5947 } 5948 5949 void 5950 perf_event_output_backward(struct perf_event *event, 5951 struct perf_sample_data *data, 5952 struct pt_regs *regs) 5953 { 5954 __perf_event_output(event, data, regs, perf_output_begin_backward); 5955 } 5956 5957 void 5958 perf_event_output(struct perf_event *event, 5959 struct perf_sample_data *data, 5960 struct pt_regs *regs) 5961 { 5962 __perf_event_output(event, data, regs, perf_output_begin); 5963 } 5964 5965 /* 5966 * read event_id 5967 */ 5968 5969 struct perf_read_event { 5970 struct perf_event_header header; 5971 5972 u32 pid; 5973 u32 tid; 5974 }; 5975 5976 static void 5977 perf_event_read_event(struct perf_event *event, 5978 struct task_struct *task) 5979 { 5980 struct perf_output_handle handle; 5981 struct perf_sample_data sample; 5982 struct perf_read_event read_event = { 5983 .header = { 5984 .type = PERF_RECORD_READ, 5985 .misc = 0, 5986 .size = sizeof(read_event) + event->read_size, 5987 }, 5988 .pid = perf_event_pid(event, task), 5989 .tid = perf_event_tid(event, task), 5990 }; 5991 int ret; 5992 5993 perf_event_header__init_id(&read_event.header, &sample, event); 5994 ret = perf_output_begin(&handle, event, read_event.header.size); 5995 if (ret) 5996 return; 5997 5998 perf_output_put(&handle, read_event); 5999 perf_output_read(&handle, event); 6000 perf_event__output_id_sample(event, &handle, &sample); 6001 6002 perf_output_end(&handle); 6003 } 6004 6005 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6006 6007 static void 6008 perf_iterate_ctx(struct perf_event_context *ctx, 6009 perf_iterate_f output, 6010 void *data, bool all) 6011 { 6012 struct perf_event *event; 6013 6014 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6015 if (!all) { 6016 if (event->state < PERF_EVENT_STATE_INACTIVE) 6017 continue; 6018 if (!event_filter_match(event)) 6019 continue; 6020 } 6021 6022 output(event, data); 6023 } 6024 } 6025 6026 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6027 { 6028 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6029 struct perf_event *event; 6030 6031 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6032 /* 6033 * Skip events that are not fully formed yet; ensure that 6034 * if we observe event->ctx, both event and ctx will be 6035 * complete enough. See perf_install_in_context(). 6036 */ 6037 if (!smp_load_acquire(&event->ctx)) 6038 continue; 6039 6040 if (event->state < PERF_EVENT_STATE_INACTIVE) 6041 continue; 6042 if (!event_filter_match(event)) 6043 continue; 6044 output(event, data); 6045 } 6046 } 6047 6048 /* 6049 * Iterate all events that need to receive side-band events. 6050 * 6051 * For new callers; ensure that account_pmu_sb_event() includes 6052 * your event, otherwise it might not get delivered. 6053 */ 6054 static void 6055 perf_iterate_sb(perf_iterate_f output, void *data, 6056 struct perf_event_context *task_ctx) 6057 { 6058 struct perf_event_context *ctx; 6059 int ctxn; 6060 6061 rcu_read_lock(); 6062 preempt_disable(); 6063 6064 /* 6065 * If we have task_ctx != NULL we only notify the task context itself. 6066 * The task_ctx is set only for EXIT events before releasing task 6067 * context. 6068 */ 6069 if (task_ctx) { 6070 perf_iterate_ctx(task_ctx, output, data, false); 6071 goto done; 6072 } 6073 6074 perf_iterate_sb_cpu(output, data); 6075 6076 for_each_task_context_nr(ctxn) { 6077 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6078 if (ctx) 6079 perf_iterate_ctx(ctx, output, data, false); 6080 } 6081 done: 6082 preempt_enable(); 6083 rcu_read_unlock(); 6084 } 6085 6086 /* 6087 * Clear all file-based filters at exec, they'll have to be 6088 * re-instated when/if these objects are mmapped again. 6089 */ 6090 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6091 { 6092 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6093 struct perf_addr_filter *filter; 6094 unsigned int restart = 0, count = 0; 6095 unsigned long flags; 6096 6097 if (!has_addr_filter(event)) 6098 return; 6099 6100 raw_spin_lock_irqsave(&ifh->lock, flags); 6101 list_for_each_entry(filter, &ifh->list, entry) { 6102 if (filter->inode) { 6103 event->addr_filters_offs[count] = 0; 6104 restart++; 6105 } 6106 6107 count++; 6108 } 6109 6110 if (restart) 6111 event->addr_filters_gen++; 6112 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6113 6114 if (restart) 6115 perf_event_restart(event); 6116 } 6117 6118 void perf_event_exec(void) 6119 { 6120 struct perf_event_context *ctx; 6121 int ctxn; 6122 6123 rcu_read_lock(); 6124 for_each_task_context_nr(ctxn) { 6125 ctx = current->perf_event_ctxp[ctxn]; 6126 if (!ctx) 6127 continue; 6128 6129 perf_event_enable_on_exec(ctxn); 6130 6131 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6132 true); 6133 } 6134 rcu_read_unlock(); 6135 } 6136 6137 struct remote_output { 6138 struct ring_buffer *rb; 6139 int err; 6140 }; 6141 6142 static void __perf_event_output_stop(struct perf_event *event, void *data) 6143 { 6144 struct perf_event *parent = event->parent; 6145 struct remote_output *ro = data; 6146 struct ring_buffer *rb = ro->rb; 6147 struct stop_event_data sd = { 6148 .event = event, 6149 }; 6150 6151 if (!has_aux(event)) 6152 return; 6153 6154 if (!parent) 6155 parent = event; 6156 6157 /* 6158 * In case of inheritance, it will be the parent that links to the 6159 * ring-buffer, but it will be the child that's actually using it: 6160 */ 6161 if (rcu_dereference(parent->rb) == rb) 6162 ro->err = __perf_event_stop(&sd); 6163 } 6164 6165 static int __perf_pmu_output_stop(void *info) 6166 { 6167 struct perf_event *event = info; 6168 struct pmu *pmu = event->pmu; 6169 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6170 struct remote_output ro = { 6171 .rb = event->rb, 6172 }; 6173 6174 rcu_read_lock(); 6175 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6176 if (cpuctx->task_ctx) 6177 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6178 &ro, false); 6179 rcu_read_unlock(); 6180 6181 return ro.err; 6182 } 6183 6184 static void perf_pmu_output_stop(struct perf_event *event) 6185 { 6186 struct perf_event *iter; 6187 int err, cpu; 6188 6189 restart: 6190 rcu_read_lock(); 6191 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6192 /* 6193 * For per-CPU events, we need to make sure that neither they 6194 * nor their children are running; for cpu==-1 events it's 6195 * sufficient to stop the event itself if it's active, since 6196 * it can't have children. 6197 */ 6198 cpu = iter->cpu; 6199 if (cpu == -1) 6200 cpu = READ_ONCE(iter->oncpu); 6201 6202 if (cpu == -1) 6203 continue; 6204 6205 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6206 if (err == -EAGAIN) { 6207 rcu_read_unlock(); 6208 goto restart; 6209 } 6210 } 6211 rcu_read_unlock(); 6212 } 6213 6214 /* 6215 * task tracking -- fork/exit 6216 * 6217 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6218 */ 6219 6220 struct perf_task_event { 6221 struct task_struct *task; 6222 struct perf_event_context *task_ctx; 6223 6224 struct { 6225 struct perf_event_header header; 6226 6227 u32 pid; 6228 u32 ppid; 6229 u32 tid; 6230 u32 ptid; 6231 u64 time; 6232 } event_id; 6233 }; 6234 6235 static int perf_event_task_match(struct perf_event *event) 6236 { 6237 return event->attr.comm || event->attr.mmap || 6238 event->attr.mmap2 || event->attr.mmap_data || 6239 event->attr.task; 6240 } 6241 6242 static void perf_event_task_output(struct perf_event *event, 6243 void *data) 6244 { 6245 struct perf_task_event *task_event = data; 6246 struct perf_output_handle handle; 6247 struct perf_sample_data sample; 6248 struct task_struct *task = task_event->task; 6249 int ret, size = task_event->event_id.header.size; 6250 6251 if (!perf_event_task_match(event)) 6252 return; 6253 6254 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6255 6256 ret = perf_output_begin(&handle, event, 6257 task_event->event_id.header.size); 6258 if (ret) 6259 goto out; 6260 6261 task_event->event_id.pid = perf_event_pid(event, task); 6262 task_event->event_id.ppid = perf_event_pid(event, current); 6263 6264 task_event->event_id.tid = perf_event_tid(event, task); 6265 task_event->event_id.ptid = perf_event_tid(event, current); 6266 6267 task_event->event_id.time = perf_event_clock(event); 6268 6269 perf_output_put(&handle, task_event->event_id); 6270 6271 perf_event__output_id_sample(event, &handle, &sample); 6272 6273 perf_output_end(&handle); 6274 out: 6275 task_event->event_id.header.size = size; 6276 } 6277 6278 static void perf_event_task(struct task_struct *task, 6279 struct perf_event_context *task_ctx, 6280 int new) 6281 { 6282 struct perf_task_event task_event; 6283 6284 if (!atomic_read(&nr_comm_events) && 6285 !atomic_read(&nr_mmap_events) && 6286 !atomic_read(&nr_task_events)) 6287 return; 6288 6289 task_event = (struct perf_task_event){ 6290 .task = task, 6291 .task_ctx = task_ctx, 6292 .event_id = { 6293 .header = { 6294 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6295 .misc = 0, 6296 .size = sizeof(task_event.event_id), 6297 }, 6298 /* .pid */ 6299 /* .ppid */ 6300 /* .tid */ 6301 /* .ptid */ 6302 /* .time */ 6303 }, 6304 }; 6305 6306 perf_iterate_sb(perf_event_task_output, 6307 &task_event, 6308 task_ctx); 6309 } 6310 6311 void perf_event_fork(struct task_struct *task) 6312 { 6313 perf_event_task(task, NULL, 1); 6314 } 6315 6316 /* 6317 * comm tracking 6318 */ 6319 6320 struct perf_comm_event { 6321 struct task_struct *task; 6322 char *comm; 6323 int comm_size; 6324 6325 struct { 6326 struct perf_event_header header; 6327 6328 u32 pid; 6329 u32 tid; 6330 } event_id; 6331 }; 6332 6333 static int perf_event_comm_match(struct perf_event *event) 6334 { 6335 return event->attr.comm; 6336 } 6337 6338 static void perf_event_comm_output(struct perf_event *event, 6339 void *data) 6340 { 6341 struct perf_comm_event *comm_event = data; 6342 struct perf_output_handle handle; 6343 struct perf_sample_data sample; 6344 int size = comm_event->event_id.header.size; 6345 int ret; 6346 6347 if (!perf_event_comm_match(event)) 6348 return; 6349 6350 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6351 ret = perf_output_begin(&handle, event, 6352 comm_event->event_id.header.size); 6353 6354 if (ret) 6355 goto out; 6356 6357 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6358 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6359 6360 perf_output_put(&handle, comm_event->event_id); 6361 __output_copy(&handle, comm_event->comm, 6362 comm_event->comm_size); 6363 6364 perf_event__output_id_sample(event, &handle, &sample); 6365 6366 perf_output_end(&handle); 6367 out: 6368 comm_event->event_id.header.size = size; 6369 } 6370 6371 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6372 { 6373 char comm[TASK_COMM_LEN]; 6374 unsigned int size; 6375 6376 memset(comm, 0, sizeof(comm)); 6377 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6378 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6379 6380 comm_event->comm = comm; 6381 comm_event->comm_size = size; 6382 6383 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6384 6385 perf_iterate_sb(perf_event_comm_output, 6386 comm_event, 6387 NULL); 6388 } 6389 6390 void perf_event_comm(struct task_struct *task, bool exec) 6391 { 6392 struct perf_comm_event comm_event; 6393 6394 if (!atomic_read(&nr_comm_events)) 6395 return; 6396 6397 comm_event = (struct perf_comm_event){ 6398 .task = task, 6399 /* .comm */ 6400 /* .comm_size */ 6401 .event_id = { 6402 .header = { 6403 .type = PERF_RECORD_COMM, 6404 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6405 /* .size */ 6406 }, 6407 /* .pid */ 6408 /* .tid */ 6409 }, 6410 }; 6411 6412 perf_event_comm_event(&comm_event); 6413 } 6414 6415 /* 6416 * mmap tracking 6417 */ 6418 6419 struct perf_mmap_event { 6420 struct vm_area_struct *vma; 6421 6422 const char *file_name; 6423 int file_size; 6424 int maj, min; 6425 u64 ino; 6426 u64 ino_generation; 6427 u32 prot, flags; 6428 6429 struct { 6430 struct perf_event_header header; 6431 6432 u32 pid; 6433 u32 tid; 6434 u64 start; 6435 u64 len; 6436 u64 pgoff; 6437 } event_id; 6438 }; 6439 6440 static int perf_event_mmap_match(struct perf_event *event, 6441 void *data) 6442 { 6443 struct perf_mmap_event *mmap_event = data; 6444 struct vm_area_struct *vma = mmap_event->vma; 6445 int executable = vma->vm_flags & VM_EXEC; 6446 6447 return (!executable && event->attr.mmap_data) || 6448 (executable && (event->attr.mmap || event->attr.mmap2)); 6449 } 6450 6451 static void perf_event_mmap_output(struct perf_event *event, 6452 void *data) 6453 { 6454 struct perf_mmap_event *mmap_event = data; 6455 struct perf_output_handle handle; 6456 struct perf_sample_data sample; 6457 int size = mmap_event->event_id.header.size; 6458 int ret; 6459 6460 if (!perf_event_mmap_match(event, data)) 6461 return; 6462 6463 if (event->attr.mmap2) { 6464 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6465 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6466 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6467 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6468 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6469 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6470 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6471 } 6472 6473 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6474 ret = perf_output_begin(&handle, event, 6475 mmap_event->event_id.header.size); 6476 if (ret) 6477 goto out; 6478 6479 mmap_event->event_id.pid = perf_event_pid(event, current); 6480 mmap_event->event_id.tid = perf_event_tid(event, current); 6481 6482 perf_output_put(&handle, mmap_event->event_id); 6483 6484 if (event->attr.mmap2) { 6485 perf_output_put(&handle, mmap_event->maj); 6486 perf_output_put(&handle, mmap_event->min); 6487 perf_output_put(&handle, mmap_event->ino); 6488 perf_output_put(&handle, mmap_event->ino_generation); 6489 perf_output_put(&handle, mmap_event->prot); 6490 perf_output_put(&handle, mmap_event->flags); 6491 } 6492 6493 __output_copy(&handle, mmap_event->file_name, 6494 mmap_event->file_size); 6495 6496 perf_event__output_id_sample(event, &handle, &sample); 6497 6498 perf_output_end(&handle); 6499 out: 6500 mmap_event->event_id.header.size = size; 6501 } 6502 6503 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6504 { 6505 struct vm_area_struct *vma = mmap_event->vma; 6506 struct file *file = vma->vm_file; 6507 int maj = 0, min = 0; 6508 u64 ino = 0, gen = 0; 6509 u32 prot = 0, flags = 0; 6510 unsigned int size; 6511 char tmp[16]; 6512 char *buf = NULL; 6513 char *name; 6514 6515 if (file) { 6516 struct inode *inode; 6517 dev_t dev; 6518 6519 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6520 if (!buf) { 6521 name = "//enomem"; 6522 goto cpy_name; 6523 } 6524 /* 6525 * d_path() works from the end of the rb backwards, so we 6526 * need to add enough zero bytes after the string to handle 6527 * the 64bit alignment we do later. 6528 */ 6529 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6530 if (IS_ERR(name)) { 6531 name = "//toolong"; 6532 goto cpy_name; 6533 } 6534 inode = file_inode(vma->vm_file); 6535 dev = inode->i_sb->s_dev; 6536 ino = inode->i_ino; 6537 gen = inode->i_generation; 6538 maj = MAJOR(dev); 6539 min = MINOR(dev); 6540 6541 if (vma->vm_flags & VM_READ) 6542 prot |= PROT_READ; 6543 if (vma->vm_flags & VM_WRITE) 6544 prot |= PROT_WRITE; 6545 if (vma->vm_flags & VM_EXEC) 6546 prot |= PROT_EXEC; 6547 6548 if (vma->vm_flags & VM_MAYSHARE) 6549 flags = MAP_SHARED; 6550 else 6551 flags = MAP_PRIVATE; 6552 6553 if (vma->vm_flags & VM_DENYWRITE) 6554 flags |= MAP_DENYWRITE; 6555 if (vma->vm_flags & VM_MAYEXEC) 6556 flags |= MAP_EXECUTABLE; 6557 if (vma->vm_flags & VM_LOCKED) 6558 flags |= MAP_LOCKED; 6559 if (vma->vm_flags & VM_HUGETLB) 6560 flags |= MAP_HUGETLB; 6561 6562 goto got_name; 6563 } else { 6564 if (vma->vm_ops && vma->vm_ops->name) { 6565 name = (char *) vma->vm_ops->name(vma); 6566 if (name) 6567 goto cpy_name; 6568 } 6569 6570 name = (char *)arch_vma_name(vma); 6571 if (name) 6572 goto cpy_name; 6573 6574 if (vma->vm_start <= vma->vm_mm->start_brk && 6575 vma->vm_end >= vma->vm_mm->brk) { 6576 name = "[heap]"; 6577 goto cpy_name; 6578 } 6579 if (vma->vm_start <= vma->vm_mm->start_stack && 6580 vma->vm_end >= vma->vm_mm->start_stack) { 6581 name = "[stack]"; 6582 goto cpy_name; 6583 } 6584 6585 name = "//anon"; 6586 goto cpy_name; 6587 } 6588 6589 cpy_name: 6590 strlcpy(tmp, name, sizeof(tmp)); 6591 name = tmp; 6592 got_name: 6593 /* 6594 * Since our buffer works in 8 byte units we need to align our string 6595 * size to a multiple of 8. However, we must guarantee the tail end is 6596 * zero'd out to avoid leaking random bits to userspace. 6597 */ 6598 size = strlen(name)+1; 6599 while (!IS_ALIGNED(size, sizeof(u64))) 6600 name[size++] = '\0'; 6601 6602 mmap_event->file_name = name; 6603 mmap_event->file_size = size; 6604 mmap_event->maj = maj; 6605 mmap_event->min = min; 6606 mmap_event->ino = ino; 6607 mmap_event->ino_generation = gen; 6608 mmap_event->prot = prot; 6609 mmap_event->flags = flags; 6610 6611 if (!(vma->vm_flags & VM_EXEC)) 6612 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6613 6614 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6615 6616 perf_iterate_sb(perf_event_mmap_output, 6617 mmap_event, 6618 NULL); 6619 6620 kfree(buf); 6621 } 6622 6623 /* 6624 * Check whether inode and address range match filter criteria. 6625 */ 6626 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6627 struct file *file, unsigned long offset, 6628 unsigned long size) 6629 { 6630 if (filter->inode != file->f_inode) 6631 return false; 6632 6633 if (filter->offset > offset + size) 6634 return false; 6635 6636 if (filter->offset + filter->size < offset) 6637 return false; 6638 6639 return true; 6640 } 6641 6642 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 6643 { 6644 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6645 struct vm_area_struct *vma = data; 6646 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 6647 struct file *file = vma->vm_file; 6648 struct perf_addr_filter *filter; 6649 unsigned int restart = 0, count = 0; 6650 6651 if (!has_addr_filter(event)) 6652 return; 6653 6654 if (!file) 6655 return; 6656 6657 raw_spin_lock_irqsave(&ifh->lock, flags); 6658 list_for_each_entry(filter, &ifh->list, entry) { 6659 if (perf_addr_filter_match(filter, file, off, 6660 vma->vm_end - vma->vm_start)) { 6661 event->addr_filters_offs[count] = vma->vm_start; 6662 restart++; 6663 } 6664 6665 count++; 6666 } 6667 6668 if (restart) 6669 event->addr_filters_gen++; 6670 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6671 6672 if (restart) 6673 perf_event_restart(event); 6674 } 6675 6676 /* 6677 * Adjust all task's events' filters to the new vma 6678 */ 6679 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 6680 { 6681 struct perf_event_context *ctx; 6682 int ctxn; 6683 6684 /* 6685 * Data tracing isn't supported yet and as such there is no need 6686 * to keep track of anything that isn't related to executable code: 6687 */ 6688 if (!(vma->vm_flags & VM_EXEC)) 6689 return; 6690 6691 rcu_read_lock(); 6692 for_each_task_context_nr(ctxn) { 6693 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6694 if (!ctx) 6695 continue; 6696 6697 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 6698 } 6699 rcu_read_unlock(); 6700 } 6701 6702 void perf_event_mmap(struct vm_area_struct *vma) 6703 { 6704 struct perf_mmap_event mmap_event; 6705 6706 if (!atomic_read(&nr_mmap_events)) 6707 return; 6708 6709 mmap_event = (struct perf_mmap_event){ 6710 .vma = vma, 6711 /* .file_name */ 6712 /* .file_size */ 6713 .event_id = { 6714 .header = { 6715 .type = PERF_RECORD_MMAP, 6716 .misc = PERF_RECORD_MISC_USER, 6717 /* .size */ 6718 }, 6719 /* .pid */ 6720 /* .tid */ 6721 .start = vma->vm_start, 6722 .len = vma->vm_end - vma->vm_start, 6723 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6724 }, 6725 /* .maj (attr_mmap2 only) */ 6726 /* .min (attr_mmap2 only) */ 6727 /* .ino (attr_mmap2 only) */ 6728 /* .ino_generation (attr_mmap2 only) */ 6729 /* .prot (attr_mmap2 only) */ 6730 /* .flags (attr_mmap2 only) */ 6731 }; 6732 6733 perf_addr_filters_adjust(vma); 6734 perf_event_mmap_event(&mmap_event); 6735 } 6736 6737 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6738 unsigned long size, u64 flags) 6739 { 6740 struct perf_output_handle handle; 6741 struct perf_sample_data sample; 6742 struct perf_aux_event { 6743 struct perf_event_header header; 6744 u64 offset; 6745 u64 size; 6746 u64 flags; 6747 } rec = { 6748 .header = { 6749 .type = PERF_RECORD_AUX, 6750 .misc = 0, 6751 .size = sizeof(rec), 6752 }, 6753 .offset = head, 6754 .size = size, 6755 .flags = flags, 6756 }; 6757 int ret; 6758 6759 perf_event_header__init_id(&rec.header, &sample, event); 6760 ret = perf_output_begin(&handle, event, rec.header.size); 6761 6762 if (ret) 6763 return; 6764 6765 perf_output_put(&handle, rec); 6766 perf_event__output_id_sample(event, &handle, &sample); 6767 6768 perf_output_end(&handle); 6769 } 6770 6771 /* 6772 * Lost/dropped samples logging 6773 */ 6774 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6775 { 6776 struct perf_output_handle handle; 6777 struct perf_sample_data sample; 6778 int ret; 6779 6780 struct { 6781 struct perf_event_header header; 6782 u64 lost; 6783 } lost_samples_event = { 6784 .header = { 6785 .type = PERF_RECORD_LOST_SAMPLES, 6786 .misc = 0, 6787 .size = sizeof(lost_samples_event), 6788 }, 6789 .lost = lost, 6790 }; 6791 6792 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6793 6794 ret = perf_output_begin(&handle, event, 6795 lost_samples_event.header.size); 6796 if (ret) 6797 return; 6798 6799 perf_output_put(&handle, lost_samples_event); 6800 perf_event__output_id_sample(event, &handle, &sample); 6801 perf_output_end(&handle); 6802 } 6803 6804 /* 6805 * context_switch tracking 6806 */ 6807 6808 struct perf_switch_event { 6809 struct task_struct *task; 6810 struct task_struct *next_prev; 6811 6812 struct { 6813 struct perf_event_header header; 6814 u32 next_prev_pid; 6815 u32 next_prev_tid; 6816 } event_id; 6817 }; 6818 6819 static int perf_event_switch_match(struct perf_event *event) 6820 { 6821 return event->attr.context_switch; 6822 } 6823 6824 static void perf_event_switch_output(struct perf_event *event, void *data) 6825 { 6826 struct perf_switch_event *se = data; 6827 struct perf_output_handle handle; 6828 struct perf_sample_data sample; 6829 int ret; 6830 6831 if (!perf_event_switch_match(event)) 6832 return; 6833 6834 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6835 if (event->ctx->task) { 6836 se->event_id.header.type = PERF_RECORD_SWITCH; 6837 se->event_id.header.size = sizeof(se->event_id.header); 6838 } else { 6839 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6840 se->event_id.header.size = sizeof(se->event_id); 6841 se->event_id.next_prev_pid = 6842 perf_event_pid(event, se->next_prev); 6843 se->event_id.next_prev_tid = 6844 perf_event_tid(event, se->next_prev); 6845 } 6846 6847 perf_event_header__init_id(&se->event_id.header, &sample, event); 6848 6849 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6850 if (ret) 6851 return; 6852 6853 if (event->ctx->task) 6854 perf_output_put(&handle, se->event_id.header); 6855 else 6856 perf_output_put(&handle, se->event_id); 6857 6858 perf_event__output_id_sample(event, &handle, &sample); 6859 6860 perf_output_end(&handle); 6861 } 6862 6863 static void perf_event_switch(struct task_struct *task, 6864 struct task_struct *next_prev, bool sched_in) 6865 { 6866 struct perf_switch_event switch_event; 6867 6868 /* N.B. caller checks nr_switch_events != 0 */ 6869 6870 switch_event = (struct perf_switch_event){ 6871 .task = task, 6872 .next_prev = next_prev, 6873 .event_id = { 6874 .header = { 6875 /* .type */ 6876 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 6877 /* .size */ 6878 }, 6879 /* .next_prev_pid */ 6880 /* .next_prev_tid */ 6881 }, 6882 }; 6883 6884 perf_iterate_sb(perf_event_switch_output, 6885 &switch_event, 6886 NULL); 6887 } 6888 6889 /* 6890 * IRQ throttle logging 6891 */ 6892 6893 static void perf_log_throttle(struct perf_event *event, int enable) 6894 { 6895 struct perf_output_handle handle; 6896 struct perf_sample_data sample; 6897 int ret; 6898 6899 struct { 6900 struct perf_event_header header; 6901 u64 time; 6902 u64 id; 6903 u64 stream_id; 6904 } throttle_event = { 6905 .header = { 6906 .type = PERF_RECORD_THROTTLE, 6907 .misc = 0, 6908 .size = sizeof(throttle_event), 6909 }, 6910 .time = perf_event_clock(event), 6911 .id = primary_event_id(event), 6912 .stream_id = event->id, 6913 }; 6914 6915 if (enable) 6916 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6917 6918 perf_event_header__init_id(&throttle_event.header, &sample, event); 6919 6920 ret = perf_output_begin(&handle, event, 6921 throttle_event.header.size); 6922 if (ret) 6923 return; 6924 6925 perf_output_put(&handle, throttle_event); 6926 perf_event__output_id_sample(event, &handle, &sample); 6927 perf_output_end(&handle); 6928 } 6929 6930 static void perf_log_itrace_start(struct perf_event *event) 6931 { 6932 struct perf_output_handle handle; 6933 struct perf_sample_data sample; 6934 struct perf_aux_event { 6935 struct perf_event_header header; 6936 u32 pid; 6937 u32 tid; 6938 } rec; 6939 int ret; 6940 6941 if (event->parent) 6942 event = event->parent; 6943 6944 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6945 event->hw.itrace_started) 6946 return; 6947 6948 rec.header.type = PERF_RECORD_ITRACE_START; 6949 rec.header.misc = 0; 6950 rec.header.size = sizeof(rec); 6951 rec.pid = perf_event_pid(event, current); 6952 rec.tid = perf_event_tid(event, current); 6953 6954 perf_event_header__init_id(&rec.header, &sample, event); 6955 ret = perf_output_begin(&handle, event, rec.header.size); 6956 6957 if (ret) 6958 return; 6959 6960 perf_output_put(&handle, rec); 6961 perf_event__output_id_sample(event, &handle, &sample); 6962 6963 perf_output_end(&handle); 6964 } 6965 6966 /* 6967 * Generic event overflow handling, sampling. 6968 */ 6969 6970 static int __perf_event_overflow(struct perf_event *event, 6971 int throttle, struct perf_sample_data *data, 6972 struct pt_regs *regs) 6973 { 6974 int events = atomic_read(&event->event_limit); 6975 struct hw_perf_event *hwc = &event->hw; 6976 u64 seq; 6977 int ret = 0; 6978 6979 /* 6980 * Non-sampling counters might still use the PMI to fold short 6981 * hardware counters, ignore those. 6982 */ 6983 if (unlikely(!is_sampling_event(event))) 6984 return 0; 6985 6986 seq = __this_cpu_read(perf_throttled_seq); 6987 if (seq != hwc->interrupts_seq) { 6988 hwc->interrupts_seq = seq; 6989 hwc->interrupts = 1; 6990 } else { 6991 hwc->interrupts++; 6992 if (unlikely(throttle 6993 && hwc->interrupts >= max_samples_per_tick)) { 6994 __this_cpu_inc(perf_throttled_count); 6995 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 6996 hwc->interrupts = MAX_INTERRUPTS; 6997 perf_log_throttle(event, 0); 6998 ret = 1; 6999 } 7000 } 7001 7002 if (event->attr.freq) { 7003 u64 now = perf_clock(); 7004 s64 delta = now - hwc->freq_time_stamp; 7005 7006 hwc->freq_time_stamp = now; 7007 7008 if (delta > 0 && delta < 2*TICK_NSEC) 7009 perf_adjust_period(event, delta, hwc->last_period, true); 7010 } 7011 7012 /* 7013 * XXX event_limit might not quite work as expected on inherited 7014 * events 7015 */ 7016 7017 event->pending_kill = POLL_IN; 7018 if (events && atomic_dec_and_test(&event->event_limit)) { 7019 ret = 1; 7020 event->pending_kill = POLL_HUP; 7021 event->pending_disable = 1; 7022 irq_work_queue(&event->pending); 7023 } 7024 7025 event->overflow_handler(event, data, regs); 7026 7027 if (*perf_event_fasync(event) && event->pending_kill) { 7028 event->pending_wakeup = 1; 7029 irq_work_queue(&event->pending); 7030 } 7031 7032 return ret; 7033 } 7034 7035 int perf_event_overflow(struct perf_event *event, 7036 struct perf_sample_data *data, 7037 struct pt_regs *regs) 7038 { 7039 return __perf_event_overflow(event, 1, data, regs); 7040 } 7041 7042 /* 7043 * Generic software event infrastructure 7044 */ 7045 7046 struct swevent_htable { 7047 struct swevent_hlist *swevent_hlist; 7048 struct mutex hlist_mutex; 7049 int hlist_refcount; 7050 7051 /* Recursion avoidance in each contexts */ 7052 int recursion[PERF_NR_CONTEXTS]; 7053 }; 7054 7055 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7056 7057 /* 7058 * We directly increment event->count and keep a second value in 7059 * event->hw.period_left to count intervals. This period event 7060 * is kept in the range [-sample_period, 0] so that we can use the 7061 * sign as trigger. 7062 */ 7063 7064 u64 perf_swevent_set_period(struct perf_event *event) 7065 { 7066 struct hw_perf_event *hwc = &event->hw; 7067 u64 period = hwc->last_period; 7068 u64 nr, offset; 7069 s64 old, val; 7070 7071 hwc->last_period = hwc->sample_period; 7072 7073 again: 7074 old = val = local64_read(&hwc->period_left); 7075 if (val < 0) 7076 return 0; 7077 7078 nr = div64_u64(period + val, period); 7079 offset = nr * period; 7080 val -= offset; 7081 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7082 goto again; 7083 7084 return nr; 7085 } 7086 7087 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7088 struct perf_sample_data *data, 7089 struct pt_regs *regs) 7090 { 7091 struct hw_perf_event *hwc = &event->hw; 7092 int throttle = 0; 7093 7094 if (!overflow) 7095 overflow = perf_swevent_set_period(event); 7096 7097 if (hwc->interrupts == MAX_INTERRUPTS) 7098 return; 7099 7100 for (; overflow; overflow--) { 7101 if (__perf_event_overflow(event, throttle, 7102 data, regs)) { 7103 /* 7104 * We inhibit the overflow from happening when 7105 * hwc->interrupts == MAX_INTERRUPTS. 7106 */ 7107 break; 7108 } 7109 throttle = 1; 7110 } 7111 } 7112 7113 static void perf_swevent_event(struct perf_event *event, u64 nr, 7114 struct perf_sample_data *data, 7115 struct pt_regs *regs) 7116 { 7117 struct hw_perf_event *hwc = &event->hw; 7118 7119 local64_add(nr, &event->count); 7120 7121 if (!regs) 7122 return; 7123 7124 if (!is_sampling_event(event)) 7125 return; 7126 7127 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7128 data->period = nr; 7129 return perf_swevent_overflow(event, 1, data, regs); 7130 } else 7131 data->period = event->hw.last_period; 7132 7133 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7134 return perf_swevent_overflow(event, 1, data, regs); 7135 7136 if (local64_add_negative(nr, &hwc->period_left)) 7137 return; 7138 7139 perf_swevent_overflow(event, 0, data, regs); 7140 } 7141 7142 static int perf_exclude_event(struct perf_event *event, 7143 struct pt_regs *regs) 7144 { 7145 if (event->hw.state & PERF_HES_STOPPED) 7146 return 1; 7147 7148 if (regs) { 7149 if (event->attr.exclude_user && user_mode(regs)) 7150 return 1; 7151 7152 if (event->attr.exclude_kernel && !user_mode(regs)) 7153 return 1; 7154 } 7155 7156 return 0; 7157 } 7158 7159 static int perf_swevent_match(struct perf_event *event, 7160 enum perf_type_id type, 7161 u32 event_id, 7162 struct perf_sample_data *data, 7163 struct pt_regs *regs) 7164 { 7165 if (event->attr.type != type) 7166 return 0; 7167 7168 if (event->attr.config != event_id) 7169 return 0; 7170 7171 if (perf_exclude_event(event, regs)) 7172 return 0; 7173 7174 return 1; 7175 } 7176 7177 static inline u64 swevent_hash(u64 type, u32 event_id) 7178 { 7179 u64 val = event_id | (type << 32); 7180 7181 return hash_64(val, SWEVENT_HLIST_BITS); 7182 } 7183 7184 static inline struct hlist_head * 7185 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7186 { 7187 u64 hash = swevent_hash(type, event_id); 7188 7189 return &hlist->heads[hash]; 7190 } 7191 7192 /* For the read side: events when they trigger */ 7193 static inline struct hlist_head * 7194 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7195 { 7196 struct swevent_hlist *hlist; 7197 7198 hlist = rcu_dereference(swhash->swevent_hlist); 7199 if (!hlist) 7200 return NULL; 7201 7202 return __find_swevent_head(hlist, type, event_id); 7203 } 7204 7205 /* For the event head insertion and removal in the hlist */ 7206 static inline struct hlist_head * 7207 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7208 { 7209 struct swevent_hlist *hlist; 7210 u32 event_id = event->attr.config; 7211 u64 type = event->attr.type; 7212 7213 /* 7214 * Event scheduling is always serialized against hlist allocation 7215 * and release. Which makes the protected version suitable here. 7216 * The context lock guarantees that. 7217 */ 7218 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7219 lockdep_is_held(&event->ctx->lock)); 7220 if (!hlist) 7221 return NULL; 7222 7223 return __find_swevent_head(hlist, type, event_id); 7224 } 7225 7226 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7227 u64 nr, 7228 struct perf_sample_data *data, 7229 struct pt_regs *regs) 7230 { 7231 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7232 struct perf_event *event; 7233 struct hlist_head *head; 7234 7235 rcu_read_lock(); 7236 head = find_swevent_head_rcu(swhash, type, event_id); 7237 if (!head) 7238 goto end; 7239 7240 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7241 if (perf_swevent_match(event, type, event_id, data, regs)) 7242 perf_swevent_event(event, nr, data, regs); 7243 } 7244 end: 7245 rcu_read_unlock(); 7246 } 7247 7248 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7249 7250 int perf_swevent_get_recursion_context(void) 7251 { 7252 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7253 7254 return get_recursion_context(swhash->recursion); 7255 } 7256 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7257 7258 void perf_swevent_put_recursion_context(int rctx) 7259 { 7260 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7261 7262 put_recursion_context(swhash->recursion, rctx); 7263 } 7264 7265 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7266 { 7267 struct perf_sample_data data; 7268 7269 if (WARN_ON_ONCE(!regs)) 7270 return; 7271 7272 perf_sample_data_init(&data, addr, 0); 7273 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7274 } 7275 7276 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7277 { 7278 int rctx; 7279 7280 preempt_disable_notrace(); 7281 rctx = perf_swevent_get_recursion_context(); 7282 if (unlikely(rctx < 0)) 7283 goto fail; 7284 7285 ___perf_sw_event(event_id, nr, regs, addr); 7286 7287 perf_swevent_put_recursion_context(rctx); 7288 fail: 7289 preempt_enable_notrace(); 7290 } 7291 7292 static void perf_swevent_read(struct perf_event *event) 7293 { 7294 } 7295 7296 static int perf_swevent_add(struct perf_event *event, int flags) 7297 { 7298 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7299 struct hw_perf_event *hwc = &event->hw; 7300 struct hlist_head *head; 7301 7302 if (is_sampling_event(event)) { 7303 hwc->last_period = hwc->sample_period; 7304 perf_swevent_set_period(event); 7305 } 7306 7307 hwc->state = !(flags & PERF_EF_START); 7308 7309 head = find_swevent_head(swhash, event); 7310 if (WARN_ON_ONCE(!head)) 7311 return -EINVAL; 7312 7313 hlist_add_head_rcu(&event->hlist_entry, head); 7314 perf_event_update_userpage(event); 7315 7316 return 0; 7317 } 7318 7319 static void perf_swevent_del(struct perf_event *event, int flags) 7320 { 7321 hlist_del_rcu(&event->hlist_entry); 7322 } 7323 7324 static void perf_swevent_start(struct perf_event *event, int flags) 7325 { 7326 event->hw.state = 0; 7327 } 7328 7329 static void perf_swevent_stop(struct perf_event *event, int flags) 7330 { 7331 event->hw.state = PERF_HES_STOPPED; 7332 } 7333 7334 /* Deref the hlist from the update side */ 7335 static inline struct swevent_hlist * 7336 swevent_hlist_deref(struct swevent_htable *swhash) 7337 { 7338 return rcu_dereference_protected(swhash->swevent_hlist, 7339 lockdep_is_held(&swhash->hlist_mutex)); 7340 } 7341 7342 static void swevent_hlist_release(struct swevent_htable *swhash) 7343 { 7344 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7345 7346 if (!hlist) 7347 return; 7348 7349 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7350 kfree_rcu(hlist, rcu_head); 7351 } 7352 7353 static void swevent_hlist_put_cpu(int cpu) 7354 { 7355 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7356 7357 mutex_lock(&swhash->hlist_mutex); 7358 7359 if (!--swhash->hlist_refcount) 7360 swevent_hlist_release(swhash); 7361 7362 mutex_unlock(&swhash->hlist_mutex); 7363 } 7364 7365 static void swevent_hlist_put(void) 7366 { 7367 int cpu; 7368 7369 for_each_possible_cpu(cpu) 7370 swevent_hlist_put_cpu(cpu); 7371 } 7372 7373 static int swevent_hlist_get_cpu(int cpu) 7374 { 7375 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7376 int err = 0; 7377 7378 mutex_lock(&swhash->hlist_mutex); 7379 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 7380 struct swevent_hlist *hlist; 7381 7382 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7383 if (!hlist) { 7384 err = -ENOMEM; 7385 goto exit; 7386 } 7387 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7388 } 7389 swhash->hlist_refcount++; 7390 exit: 7391 mutex_unlock(&swhash->hlist_mutex); 7392 7393 return err; 7394 } 7395 7396 static int swevent_hlist_get(void) 7397 { 7398 int err, cpu, failed_cpu; 7399 7400 get_online_cpus(); 7401 for_each_possible_cpu(cpu) { 7402 err = swevent_hlist_get_cpu(cpu); 7403 if (err) { 7404 failed_cpu = cpu; 7405 goto fail; 7406 } 7407 } 7408 put_online_cpus(); 7409 7410 return 0; 7411 fail: 7412 for_each_possible_cpu(cpu) { 7413 if (cpu == failed_cpu) 7414 break; 7415 swevent_hlist_put_cpu(cpu); 7416 } 7417 7418 put_online_cpus(); 7419 return err; 7420 } 7421 7422 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7423 7424 static void sw_perf_event_destroy(struct perf_event *event) 7425 { 7426 u64 event_id = event->attr.config; 7427 7428 WARN_ON(event->parent); 7429 7430 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7431 swevent_hlist_put(); 7432 } 7433 7434 static int perf_swevent_init(struct perf_event *event) 7435 { 7436 u64 event_id = event->attr.config; 7437 7438 if (event->attr.type != PERF_TYPE_SOFTWARE) 7439 return -ENOENT; 7440 7441 /* 7442 * no branch sampling for software events 7443 */ 7444 if (has_branch_stack(event)) 7445 return -EOPNOTSUPP; 7446 7447 switch (event_id) { 7448 case PERF_COUNT_SW_CPU_CLOCK: 7449 case PERF_COUNT_SW_TASK_CLOCK: 7450 return -ENOENT; 7451 7452 default: 7453 break; 7454 } 7455 7456 if (event_id >= PERF_COUNT_SW_MAX) 7457 return -ENOENT; 7458 7459 if (!event->parent) { 7460 int err; 7461 7462 err = swevent_hlist_get(); 7463 if (err) 7464 return err; 7465 7466 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7467 event->destroy = sw_perf_event_destroy; 7468 } 7469 7470 return 0; 7471 } 7472 7473 static struct pmu perf_swevent = { 7474 .task_ctx_nr = perf_sw_context, 7475 7476 .capabilities = PERF_PMU_CAP_NO_NMI, 7477 7478 .event_init = perf_swevent_init, 7479 .add = perf_swevent_add, 7480 .del = perf_swevent_del, 7481 .start = perf_swevent_start, 7482 .stop = perf_swevent_stop, 7483 .read = perf_swevent_read, 7484 }; 7485 7486 #ifdef CONFIG_EVENT_TRACING 7487 7488 static int perf_tp_filter_match(struct perf_event *event, 7489 struct perf_sample_data *data) 7490 { 7491 void *record = data->raw->frag.data; 7492 7493 /* only top level events have filters set */ 7494 if (event->parent) 7495 event = event->parent; 7496 7497 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7498 return 1; 7499 return 0; 7500 } 7501 7502 static int perf_tp_event_match(struct perf_event *event, 7503 struct perf_sample_data *data, 7504 struct pt_regs *regs) 7505 { 7506 if (event->hw.state & PERF_HES_STOPPED) 7507 return 0; 7508 /* 7509 * All tracepoints are from kernel-space. 7510 */ 7511 if (event->attr.exclude_kernel) 7512 return 0; 7513 7514 if (!perf_tp_filter_match(event, data)) 7515 return 0; 7516 7517 return 1; 7518 } 7519 7520 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7521 struct trace_event_call *call, u64 count, 7522 struct pt_regs *regs, struct hlist_head *head, 7523 struct task_struct *task) 7524 { 7525 struct bpf_prog *prog = call->prog; 7526 7527 if (prog) { 7528 *(struct pt_regs **)raw_data = regs; 7529 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) { 7530 perf_swevent_put_recursion_context(rctx); 7531 return; 7532 } 7533 } 7534 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7535 rctx, task); 7536 } 7537 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7538 7539 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7540 struct pt_regs *regs, struct hlist_head *head, int rctx, 7541 struct task_struct *task) 7542 { 7543 struct perf_sample_data data; 7544 struct perf_event *event; 7545 7546 struct perf_raw_record raw = { 7547 .frag = { 7548 .size = entry_size, 7549 .data = record, 7550 }, 7551 }; 7552 7553 perf_sample_data_init(&data, 0, 0); 7554 data.raw = &raw; 7555 7556 perf_trace_buf_update(record, event_type); 7557 7558 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7559 if (perf_tp_event_match(event, &data, regs)) 7560 perf_swevent_event(event, count, &data, regs); 7561 } 7562 7563 /* 7564 * If we got specified a target task, also iterate its context and 7565 * deliver this event there too. 7566 */ 7567 if (task && task != current) { 7568 struct perf_event_context *ctx; 7569 struct trace_entry *entry = record; 7570 7571 rcu_read_lock(); 7572 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7573 if (!ctx) 7574 goto unlock; 7575 7576 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7577 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7578 continue; 7579 if (event->attr.config != entry->type) 7580 continue; 7581 if (perf_tp_event_match(event, &data, regs)) 7582 perf_swevent_event(event, count, &data, regs); 7583 } 7584 unlock: 7585 rcu_read_unlock(); 7586 } 7587 7588 perf_swevent_put_recursion_context(rctx); 7589 } 7590 EXPORT_SYMBOL_GPL(perf_tp_event); 7591 7592 static void tp_perf_event_destroy(struct perf_event *event) 7593 { 7594 perf_trace_destroy(event); 7595 } 7596 7597 static int perf_tp_event_init(struct perf_event *event) 7598 { 7599 int err; 7600 7601 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7602 return -ENOENT; 7603 7604 /* 7605 * no branch sampling for tracepoint events 7606 */ 7607 if (has_branch_stack(event)) 7608 return -EOPNOTSUPP; 7609 7610 err = perf_trace_init(event); 7611 if (err) 7612 return err; 7613 7614 event->destroy = tp_perf_event_destroy; 7615 7616 return 0; 7617 } 7618 7619 static struct pmu perf_tracepoint = { 7620 .task_ctx_nr = perf_sw_context, 7621 7622 .event_init = perf_tp_event_init, 7623 .add = perf_trace_add, 7624 .del = perf_trace_del, 7625 .start = perf_swevent_start, 7626 .stop = perf_swevent_stop, 7627 .read = perf_swevent_read, 7628 }; 7629 7630 static inline void perf_tp_register(void) 7631 { 7632 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7633 } 7634 7635 static void perf_event_free_filter(struct perf_event *event) 7636 { 7637 ftrace_profile_free_filter(event); 7638 } 7639 7640 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7641 { 7642 bool is_kprobe, is_tracepoint; 7643 struct bpf_prog *prog; 7644 7645 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7646 return -EINVAL; 7647 7648 if (event->tp_event->prog) 7649 return -EEXIST; 7650 7651 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 7652 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 7653 if (!is_kprobe && !is_tracepoint) 7654 /* bpf programs can only be attached to u/kprobe or tracepoint */ 7655 return -EINVAL; 7656 7657 prog = bpf_prog_get(prog_fd); 7658 if (IS_ERR(prog)) 7659 return PTR_ERR(prog); 7660 7661 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 7662 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 7663 /* valid fd, but invalid bpf program type */ 7664 bpf_prog_put(prog); 7665 return -EINVAL; 7666 } 7667 7668 if (is_tracepoint) { 7669 int off = trace_event_get_offsets(event->tp_event); 7670 7671 if (prog->aux->max_ctx_offset > off) { 7672 bpf_prog_put(prog); 7673 return -EACCES; 7674 } 7675 } 7676 event->tp_event->prog = prog; 7677 7678 return 0; 7679 } 7680 7681 static void perf_event_free_bpf_prog(struct perf_event *event) 7682 { 7683 struct bpf_prog *prog; 7684 7685 if (!event->tp_event) 7686 return; 7687 7688 prog = event->tp_event->prog; 7689 if (prog) { 7690 event->tp_event->prog = NULL; 7691 bpf_prog_put(prog); 7692 } 7693 } 7694 7695 #else 7696 7697 static inline void perf_tp_register(void) 7698 { 7699 } 7700 7701 static void perf_event_free_filter(struct perf_event *event) 7702 { 7703 } 7704 7705 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7706 { 7707 return -ENOENT; 7708 } 7709 7710 static void perf_event_free_bpf_prog(struct perf_event *event) 7711 { 7712 } 7713 #endif /* CONFIG_EVENT_TRACING */ 7714 7715 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7716 void perf_bp_event(struct perf_event *bp, void *data) 7717 { 7718 struct perf_sample_data sample; 7719 struct pt_regs *regs = data; 7720 7721 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7722 7723 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7724 perf_swevent_event(bp, 1, &sample, regs); 7725 } 7726 #endif 7727 7728 /* 7729 * Allocate a new address filter 7730 */ 7731 static struct perf_addr_filter * 7732 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 7733 { 7734 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 7735 struct perf_addr_filter *filter; 7736 7737 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 7738 if (!filter) 7739 return NULL; 7740 7741 INIT_LIST_HEAD(&filter->entry); 7742 list_add_tail(&filter->entry, filters); 7743 7744 return filter; 7745 } 7746 7747 static void free_filters_list(struct list_head *filters) 7748 { 7749 struct perf_addr_filter *filter, *iter; 7750 7751 list_for_each_entry_safe(filter, iter, filters, entry) { 7752 if (filter->inode) 7753 iput(filter->inode); 7754 list_del(&filter->entry); 7755 kfree(filter); 7756 } 7757 } 7758 7759 /* 7760 * Free existing address filters and optionally install new ones 7761 */ 7762 static void perf_addr_filters_splice(struct perf_event *event, 7763 struct list_head *head) 7764 { 7765 unsigned long flags; 7766 LIST_HEAD(list); 7767 7768 if (!has_addr_filter(event)) 7769 return; 7770 7771 /* don't bother with children, they don't have their own filters */ 7772 if (event->parent) 7773 return; 7774 7775 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 7776 7777 list_splice_init(&event->addr_filters.list, &list); 7778 if (head) 7779 list_splice(head, &event->addr_filters.list); 7780 7781 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 7782 7783 free_filters_list(&list); 7784 } 7785 7786 /* 7787 * Scan through mm's vmas and see if one of them matches the 7788 * @filter; if so, adjust filter's address range. 7789 * Called with mm::mmap_sem down for reading. 7790 */ 7791 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 7792 struct mm_struct *mm) 7793 { 7794 struct vm_area_struct *vma; 7795 7796 for (vma = mm->mmap; vma; vma = vma->vm_next) { 7797 struct file *file = vma->vm_file; 7798 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7799 unsigned long vma_size = vma->vm_end - vma->vm_start; 7800 7801 if (!file) 7802 continue; 7803 7804 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7805 continue; 7806 7807 return vma->vm_start; 7808 } 7809 7810 return 0; 7811 } 7812 7813 /* 7814 * Update event's address range filters based on the 7815 * task's existing mappings, if any. 7816 */ 7817 static void perf_event_addr_filters_apply(struct perf_event *event) 7818 { 7819 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7820 struct task_struct *task = READ_ONCE(event->ctx->task); 7821 struct perf_addr_filter *filter; 7822 struct mm_struct *mm = NULL; 7823 unsigned int count = 0; 7824 unsigned long flags; 7825 7826 /* 7827 * We may observe TASK_TOMBSTONE, which means that the event tear-down 7828 * will stop on the parent's child_mutex that our caller is also holding 7829 */ 7830 if (task == TASK_TOMBSTONE) 7831 return; 7832 7833 mm = get_task_mm(event->ctx->task); 7834 if (!mm) 7835 goto restart; 7836 7837 down_read(&mm->mmap_sem); 7838 7839 raw_spin_lock_irqsave(&ifh->lock, flags); 7840 list_for_each_entry(filter, &ifh->list, entry) { 7841 event->addr_filters_offs[count] = 0; 7842 7843 /* 7844 * Adjust base offset if the filter is associated to a binary 7845 * that needs to be mapped: 7846 */ 7847 if (filter->inode) 7848 event->addr_filters_offs[count] = 7849 perf_addr_filter_apply(filter, mm); 7850 7851 count++; 7852 } 7853 7854 event->addr_filters_gen++; 7855 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7856 7857 up_read(&mm->mmap_sem); 7858 7859 mmput(mm); 7860 7861 restart: 7862 perf_event_restart(event); 7863 } 7864 7865 /* 7866 * Address range filtering: limiting the data to certain 7867 * instruction address ranges. Filters are ioctl()ed to us from 7868 * userspace as ascii strings. 7869 * 7870 * Filter string format: 7871 * 7872 * ACTION RANGE_SPEC 7873 * where ACTION is one of the 7874 * * "filter": limit the trace to this region 7875 * * "start": start tracing from this address 7876 * * "stop": stop tracing at this address/region; 7877 * RANGE_SPEC is 7878 * * for kernel addresses: <start address>[/<size>] 7879 * * for object files: <start address>[/<size>]@</path/to/object/file> 7880 * 7881 * if <size> is not specified, the range is treated as a single address. 7882 */ 7883 enum { 7884 IF_ACT_FILTER, 7885 IF_ACT_START, 7886 IF_ACT_STOP, 7887 IF_SRC_FILE, 7888 IF_SRC_KERNEL, 7889 IF_SRC_FILEADDR, 7890 IF_SRC_KERNELADDR, 7891 }; 7892 7893 enum { 7894 IF_STATE_ACTION = 0, 7895 IF_STATE_SOURCE, 7896 IF_STATE_END, 7897 }; 7898 7899 static const match_table_t if_tokens = { 7900 { IF_ACT_FILTER, "filter" }, 7901 { IF_ACT_START, "start" }, 7902 { IF_ACT_STOP, "stop" }, 7903 { IF_SRC_FILE, "%u/%u@%s" }, 7904 { IF_SRC_KERNEL, "%u/%u" }, 7905 { IF_SRC_FILEADDR, "%u@%s" }, 7906 { IF_SRC_KERNELADDR, "%u" }, 7907 }; 7908 7909 /* 7910 * Address filter string parser 7911 */ 7912 static int 7913 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 7914 struct list_head *filters) 7915 { 7916 struct perf_addr_filter *filter = NULL; 7917 char *start, *orig, *filename = NULL; 7918 struct path path; 7919 substring_t args[MAX_OPT_ARGS]; 7920 int state = IF_STATE_ACTION, token; 7921 unsigned int kernel = 0; 7922 int ret = -EINVAL; 7923 7924 orig = fstr = kstrdup(fstr, GFP_KERNEL); 7925 if (!fstr) 7926 return -ENOMEM; 7927 7928 while ((start = strsep(&fstr, " ,\n")) != NULL) { 7929 ret = -EINVAL; 7930 7931 if (!*start) 7932 continue; 7933 7934 /* filter definition begins */ 7935 if (state == IF_STATE_ACTION) { 7936 filter = perf_addr_filter_new(event, filters); 7937 if (!filter) 7938 goto fail; 7939 } 7940 7941 token = match_token(start, if_tokens, args); 7942 switch (token) { 7943 case IF_ACT_FILTER: 7944 case IF_ACT_START: 7945 filter->filter = 1; 7946 7947 case IF_ACT_STOP: 7948 if (state != IF_STATE_ACTION) 7949 goto fail; 7950 7951 state = IF_STATE_SOURCE; 7952 break; 7953 7954 case IF_SRC_KERNELADDR: 7955 case IF_SRC_KERNEL: 7956 kernel = 1; 7957 7958 case IF_SRC_FILEADDR: 7959 case IF_SRC_FILE: 7960 if (state != IF_STATE_SOURCE) 7961 goto fail; 7962 7963 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 7964 filter->range = 1; 7965 7966 *args[0].to = 0; 7967 ret = kstrtoul(args[0].from, 0, &filter->offset); 7968 if (ret) 7969 goto fail; 7970 7971 if (filter->range) { 7972 *args[1].to = 0; 7973 ret = kstrtoul(args[1].from, 0, &filter->size); 7974 if (ret) 7975 goto fail; 7976 } 7977 7978 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 7979 int fpos = filter->range ? 2 : 1; 7980 7981 filename = match_strdup(&args[fpos]); 7982 if (!filename) { 7983 ret = -ENOMEM; 7984 goto fail; 7985 } 7986 } 7987 7988 state = IF_STATE_END; 7989 break; 7990 7991 default: 7992 goto fail; 7993 } 7994 7995 /* 7996 * Filter definition is fully parsed, validate and install it. 7997 * Make sure that it doesn't contradict itself or the event's 7998 * attribute. 7999 */ 8000 if (state == IF_STATE_END) { 8001 if (kernel && event->attr.exclude_kernel) 8002 goto fail; 8003 8004 if (!kernel) { 8005 if (!filename) 8006 goto fail; 8007 8008 /* look up the path and grab its inode */ 8009 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8010 if (ret) 8011 goto fail_free_name; 8012 8013 filter->inode = igrab(d_inode(path.dentry)); 8014 path_put(&path); 8015 kfree(filename); 8016 filename = NULL; 8017 8018 ret = -EINVAL; 8019 if (!filter->inode || 8020 !S_ISREG(filter->inode->i_mode)) 8021 /* free_filters_list() will iput() */ 8022 goto fail; 8023 } 8024 8025 /* ready to consume more filters */ 8026 state = IF_STATE_ACTION; 8027 filter = NULL; 8028 } 8029 } 8030 8031 if (state != IF_STATE_ACTION) 8032 goto fail; 8033 8034 kfree(orig); 8035 8036 return 0; 8037 8038 fail_free_name: 8039 kfree(filename); 8040 fail: 8041 free_filters_list(filters); 8042 kfree(orig); 8043 8044 return ret; 8045 } 8046 8047 static int 8048 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 8049 { 8050 LIST_HEAD(filters); 8051 int ret; 8052 8053 /* 8054 * Since this is called in perf_ioctl() path, we're already holding 8055 * ctx::mutex. 8056 */ 8057 lockdep_assert_held(&event->ctx->mutex); 8058 8059 if (WARN_ON_ONCE(event->parent)) 8060 return -EINVAL; 8061 8062 /* 8063 * For now, we only support filtering in per-task events; doing so 8064 * for CPU-wide events requires additional context switching trickery, 8065 * since same object code will be mapped at different virtual 8066 * addresses in different processes. 8067 */ 8068 if (!event->ctx->task) 8069 return -EOPNOTSUPP; 8070 8071 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 8072 if (ret) 8073 return ret; 8074 8075 ret = event->pmu->addr_filters_validate(&filters); 8076 if (ret) { 8077 free_filters_list(&filters); 8078 return ret; 8079 } 8080 8081 /* remove existing filters, if any */ 8082 perf_addr_filters_splice(event, &filters); 8083 8084 /* install new filters */ 8085 perf_event_for_each_child(event, perf_event_addr_filters_apply); 8086 8087 return ret; 8088 } 8089 8090 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 8091 { 8092 char *filter_str; 8093 int ret = -EINVAL; 8094 8095 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 8096 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 8097 !has_addr_filter(event)) 8098 return -EINVAL; 8099 8100 filter_str = strndup_user(arg, PAGE_SIZE); 8101 if (IS_ERR(filter_str)) 8102 return PTR_ERR(filter_str); 8103 8104 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8105 event->attr.type == PERF_TYPE_TRACEPOINT) 8106 ret = ftrace_profile_set_filter(event, event->attr.config, 8107 filter_str); 8108 else if (has_addr_filter(event)) 8109 ret = perf_event_set_addr_filter(event, filter_str); 8110 8111 kfree(filter_str); 8112 return ret; 8113 } 8114 8115 /* 8116 * hrtimer based swevent callback 8117 */ 8118 8119 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8120 { 8121 enum hrtimer_restart ret = HRTIMER_RESTART; 8122 struct perf_sample_data data; 8123 struct pt_regs *regs; 8124 struct perf_event *event; 8125 u64 period; 8126 8127 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8128 8129 if (event->state != PERF_EVENT_STATE_ACTIVE) 8130 return HRTIMER_NORESTART; 8131 8132 event->pmu->read(event); 8133 8134 perf_sample_data_init(&data, 0, event->hw.last_period); 8135 regs = get_irq_regs(); 8136 8137 if (regs && !perf_exclude_event(event, regs)) { 8138 if (!(event->attr.exclude_idle && is_idle_task(current))) 8139 if (__perf_event_overflow(event, 1, &data, regs)) 8140 ret = HRTIMER_NORESTART; 8141 } 8142 8143 period = max_t(u64, 10000, event->hw.sample_period); 8144 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8145 8146 return ret; 8147 } 8148 8149 static void perf_swevent_start_hrtimer(struct perf_event *event) 8150 { 8151 struct hw_perf_event *hwc = &event->hw; 8152 s64 period; 8153 8154 if (!is_sampling_event(event)) 8155 return; 8156 8157 period = local64_read(&hwc->period_left); 8158 if (period) { 8159 if (period < 0) 8160 period = 10000; 8161 8162 local64_set(&hwc->period_left, 0); 8163 } else { 8164 period = max_t(u64, 10000, hwc->sample_period); 8165 } 8166 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8167 HRTIMER_MODE_REL_PINNED); 8168 } 8169 8170 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8171 { 8172 struct hw_perf_event *hwc = &event->hw; 8173 8174 if (is_sampling_event(event)) { 8175 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8176 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8177 8178 hrtimer_cancel(&hwc->hrtimer); 8179 } 8180 } 8181 8182 static void perf_swevent_init_hrtimer(struct perf_event *event) 8183 { 8184 struct hw_perf_event *hwc = &event->hw; 8185 8186 if (!is_sampling_event(event)) 8187 return; 8188 8189 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8190 hwc->hrtimer.function = perf_swevent_hrtimer; 8191 8192 /* 8193 * Since hrtimers have a fixed rate, we can do a static freq->period 8194 * mapping and avoid the whole period adjust feedback stuff. 8195 */ 8196 if (event->attr.freq) { 8197 long freq = event->attr.sample_freq; 8198 8199 event->attr.sample_period = NSEC_PER_SEC / freq; 8200 hwc->sample_period = event->attr.sample_period; 8201 local64_set(&hwc->period_left, hwc->sample_period); 8202 hwc->last_period = hwc->sample_period; 8203 event->attr.freq = 0; 8204 } 8205 } 8206 8207 /* 8208 * Software event: cpu wall time clock 8209 */ 8210 8211 static void cpu_clock_event_update(struct perf_event *event) 8212 { 8213 s64 prev; 8214 u64 now; 8215 8216 now = local_clock(); 8217 prev = local64_xchg(&event->hw.prev_count, now); 8218 local64_add(now - prev, &event->count); 8219 } 8220 8221 static void cpu_clock_event_start(struct perf_event *event, int flags) 8222 { 8223 local64_set(&event->hw.prev_count, local_clock()); 8224 perf_swevent_start_hrtimer(event); 8225 } 8226 8227 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8228 { 8229 perf_swevent_cancel_hrtimer(event); 8230 cpu_clock_event_update(event); 8231 } 8232 8233 static int cpu_clock_event_add(struct perf_event *event, int flags) 8234 { 8235 if (flags & PERF_EF_START) 8236 cpu_clock_event_start(event, flags); 8237 perf_event_update_userpage(event); 8238 8239 return 0; 8240 } 8241 8242 static void cpu_clock_event_del(struct perf_event *event, int flags) 8243 { 8244 cpu_clock_event_stop(event, flags); 8245 } 8246 8247 static void cpu_clock_event_read(struct perf_event *event) 8248 { 8249 cpu_clock_event_update(event); 8250 } 8251 8252 static int cpu_clock_event_init(struct perf_event *event) 8253 { 8254 if (event->attr.type != PERF_TYPE_SOFTWARE) 8255 return -ENOENT; 8256 8257 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8258 return -ENOENT; 8259 8260 /* 8261 * no branch sampling for software events 8262 */ 8263 if (has_branch_stack(event)) 8264 return -EOPNOTSUPP; 8265 8266 perf_swevent_init_hrtimer(event); 8267 8268 return 0; 8269 } 8270 8271 static struct pmu perf_cpu_clock = { 8272 .task_ctx_nr = perf_sw_context, 8273 8274 .capabilities = PERF_PMU_CAP_NO_NMI, 8275 8276 .event_init = cpu_clock_event_init, 8277 .add = cpu_clock_event_add, 8278 .del = cpu_clock_event_del, 8279 .start = cpu_clock_event_start, 8280 .stop = cpu_clock_event_stop, 8281 .read = cpu_clock_event_read, 8282 }; 8283 8284 /* 8285 * Software event: task time clock 8286 */ 8287 8288 static void task_clock_event_update(struct perf_event *event, u64 now) 8289 { 8290 u64 prev; 8291 s64 delta; 8292 8293 prev = local64_xchg(&event->hw.prev_count, now); 8294 delta = now - prev; 8295 local64_add(delta, &event->count); 8296 } 8297 8298 static void task_clock_event_start(struct perf_event *event, int flags) 8299 { 8300 local64_set(&event->hw.prev_count, event->ctx->time); 8301 perf_swevent_start_hrtimer(event); 8302 } 8303 8304 static void task_clock_event_stop(struct perf_event *event, int flags) 8305 { 8306 perf_swevent_cancel_hrtimer(event); 8307 task_clock_event_update(event, event->ctx->time); 8308 } 8309 8310 static int task_clock_event_add(struct perf_event *event, int flags) 8311 { 8312 if (flags & PERF_EF_START) 8313 task_clock_event_start(event, flags); 8314 perf_event_update_userpage(event); 8315 8316 return 0; 8317 } 8318 8319 static void task_clock_event_del(struct perf_event *event, int flags) 8320 { 8321 task_clock_event_stop(event, PERF_EF_UPDATE); 8322 } 8323 8324 static void task_clock_event_read(struct perf_event *event) 8325 { 8326 u64 now = perf_clock(); 8327 u64 delta = now - event->ctx->timestamp; 8328 u64 time = event->ctx->time + delta; 8329 8330 task_clock_event_update(event, time); 8331 } 8332 8333 static int task_clock_event_init(struct perf_event *event) 8334 { 8335 if (event->attr.type != PERF_TYPE_SOFTWARE) 8336 return -ENOENT; 8337 8338 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8339 return -ENOENT; 8340 8341 /* 8342 * no branch sampling for software events 8343 */ 8344 if (has_branch_stack(event)) 8345 return -EOPNOTSUPP; 8346 8347 perf_swevent_init_hrtimer(event); 8348 8349 return 0; 8350 } 8351 8352 static struct pmu perf_task_clock = { 8353 .task_ctx_nr = perf_sw_context, 8354 8355 .capabilities = PERF_PMU_CAP_NO_NMI, 8356 8357 .event_init = task_clock_event_init, 8358 .add = task_clock_event_add, 8359 .del = task_clock_event_del, 8360 .start = task_clock_event_start, 8361 .stop = task_clock_event_stop, 8362 .read = task_clock_event_read, 8363 }; 8364 8365 static void perf_pmu_nop_void(struct pmu *pmu) 8366 { 8367 } 8368 8369 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8370 { 8371 } 8372 8373 static int perf_pmu_nop_int(struct pmu *pmu) 8374 { 8375 return 0; 8376 } 8377 8378 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8379 8380 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8381 { 8382 __this_cpu_write(nop_txn_flags, flags); 8383 8384 if (flags & ~PERF_PMU_TXN_ADD) 8385 return; 8386 8387 perf_pmu_disable(pmu); 8388 } 8389 8390 static int perf_pmu_commit_txn(struct pmu *pmu) 8391 { 8392 unsigned int flags = __this_cpu_read(nop_txn_flags); 8393 8394 __this_cpu_write(nop_txn_flags, 0); 8395 8396 if (flags & ~PERF_PMU_TXN_ADD) 8397 return 0; 8398 8399 perf_pmu_enable(pmu); 8400 return 0; 8401 } 8402 8403 static void perf_pmu_cancel_txn(struct pmu *pmu) 8404 { 8405 unsigned int flags = __this_cpu_read(nop_txn_flags); 8406 8407 __this_cpu_write(nop_txn_flags, 0); 8408 8409 if (flags & ~PERF_PMU_TXN_ADD) 8410 return; 8411 8412 perf_pmu_enable(pmu); 8413 } 8414 8415 static int perf_event_idx_default(struct perf_event *event) 8416 { 8417 return 0; 8418 } 8419 8420 /* 8421 * Ensures all contexts with the same task_ctx_nr have the same 8422 * pmu_cpu_context too. 8423 */ 8424 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8425 { 8426 struct pmu *pmu; 8427 8428 if (ctxn < 0) 8429 return NULL; 8430 8431 list_for_each_entry(pmu, &pmus, entry) { 8432 if (pmu->task_ctx_nr == ctxn) 8433 return pmu->pmu_cpu_context; 8434 } 8435 8436 return NULL; 8437 } 8438 8439 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 8440 { 8441 int cpu; 8442 8443 for_each_possible_cpu(cpu) { 8444 struct perf_cpu_context *cpuctx; 8445 8446 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8447 8448 if (cpuctx->unique_pmu == old_pmu) 8449 cpuctx->unique_pmu = pmu; 8450 } 8451 } 8452 8453 static void free_pmu_context(struct pmu *pmu) 8454 { 8455 struct pmu *i; 8456 8457 mutex_lock(&pmus_lock); 8458 /* 8459 * Like a real lame refcount. 8460 */ 8461 list_for_each_entry(i, &pmus, entry) { 8462 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 8463 update_pmu_context(i, pmu); 8464 goto out; 8465 } 8466 } 8467 8468 free_percpu(pmu->pmu_cpu_context); 8469 out: 8470 mutex_unlock(&pmus_lock); 8471 } 8472 8473 /* 8474 * Let userspace know that this PMU supports address range filtering: 8475 */ 8476 static ssize_t nr_addr_filters_show(struct device *dev, 8477 struct device_attribute *attr, 8478 char *page) 8479 { 8480 struct pmu *pmu = dev_get_drvdata(dev); 8481 8482 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8483 } 8484 DEVICE_ATTR_RO(nr_addr_filters); 8485 8486 static struct idr pmu_idr; 8487 8488 static ssize_t 8489 type_show(struct device *dev, struct device_attribute *attr, char *page) 8490 { 8491 struct pmu *pmu = dev_get_drvdata(dev); 8492 8493 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8494 } 8495 static DEVICE_ATTR_RO(type); 8496 8497 static ssize_t 8498 perf_event_mux_interval_ms_show(struct device *dev, 8499 struct device_attribute *attr, 8500 char *page) 8501 { 8502 struct pmu *pmu = dev_get_drvdata(dev); 8503 8504 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8505 } 8506 8507 static DEFINE_MUTEX(mux_interval_mutex); 8508 8509 static ssize_t 8510 perf_event_mux_interval_ms_store(struct device *dev, 8511 struct device_attribute *attr, 8512 const char *buf, size_t count) 8513 { 8514 struct pmu *pmu = dev_get_drvdata(dev); 8515 int timer, cpu, ret; 8516 8517 ret = kstrtoint(buf, 0, &timer); 8518 if (ret) 8519 return ret; 8520 8521 if (timer < 1) 8522 return -EINVAL; 8523 8524 /* same value, noting to do */ 8525 if (timer == pmu->hrtimer_interval_ms) 8526 return count; 8527 8528 mutex_lock(&mux_interval_mutex); 8529 pmu->hrtimer_interval_ms = timer; 8530 8531 /* update all cpuctx for this PMU */ 8532 get_online_cpus(); 8533 for_each_online_cpu(cpu) { 8534 struct perf_cpu_context *cpuctx; 8535 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8536 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 8537 8538 cpu_function_call(cpu, 8539 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 8540 } 8541 put_online_cpus(); 8542 mutex_unlock(&mux_interval_mutex); 8543 8544 return count; 8545 } 8546 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 8547 8548 static struct attribute *pmu_dev_attrs[] = { 8549 &dev_attr_type.attr, 8550 &dev_attr_perf_event_mux_interval_ms.attr, 8551 NULL, 8552 }; 8553 ATTRIBUTE_GROUPS(pmu_dev); 8554 8555 static int pmu_bus_running; 8556 static struct bus_type pmu_bus = { 8557 .name = "event_source", 8558 .dev_groups = pmu_dev_groups, 8559 }; 8560 8561 static void pmu_dev_release(struct device *dev) 8562 { 8563 kfree(dev); 8564 } 8565 8566 static int pmu_dev_alloc(struct pmu *pmu) 8567 { 8568 int ret = -ENOMEM; 8569 8570 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 8571 if (!pmu->dev) 8572 goto out; 8573 8574 pmu->dev->groups = pmu->attr_groups; 8575 device_initialize(pmu->dev); 8576 ret = dev_set_name(pmu->dev, "%s", pmu->name); 8577 if (ret) 8578 goto free_dev; 8579 8580 dev_set_drvdata(pmu->dev, pmu); 8581 pmu->dev->bus = &pmu_bus; 8582 pmu->dev->release = pmu_dev_release; 8583 ret = device_add(pmu->dev); 8584 if (ret) 8585 goto free_dev; 8586 8587 /* For PMUs with address filters, throw in an extra attribute: */ 8588 if (pmu->nr_addr_filters) 8589 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 8590 8591 if (ret) 8592 goto del_dev; 8593 8594 out: 8595 return ret; 8596 8597 del_dev: 8598 device_del(pmu->dev); 8599 8600 free_dev: 8601 put_device(pmu->dev); 8602 goto out; 8603 } 8604 8605 static struct lock_class_key cpuctx_mutex; 8606 static struct lock_class_key cpuctx_lock; 8607 8608 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 8609 { 8610 int cpu, ret; 8611 8612 mutex_lock(&pmus_lock); 8613 ret = -ENOMEM; 8614 pmu->pmu_disable_count = alloc_percpu(int); 8615 if (!pmu->pmu_disable_count) 8616 goto unlock; 8617 8618 pmu->type = -1; 8619 if (!name) 8620 goto skip_type; 8621 pmu->name = name; 8622 8623 if (type < 0) { 8624 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 8625 if (type < 0) { 8626 ret = type; 8627 goto free_pdc; 8628 } 8629 } 8630 pmu->type = type; 8631 8632 if (pmu_bus_running) { 8633 ret = pmu_dev_alloc(pmu); 8634 if (ret) 8635 goto free_idr; 8636 } 8637 8638 skip_type: 8639 if (pmu->task_ctx_nr == perf_hw_context) { 8640 static int hw_context_taken = 0; 8641 8642 /* 8643 * Other than systems with heterogeneous CPUs, it never makes 8644 * sense for two PMUs to share perf_hw_context. PMUs which are 8645 * uncore must use perf_invalid_context. 8646 */ 8647 if (WARN_ON_ONCE(hw_context_taken && 8648 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 8649 pmu->task_ctx_nr = perf_invalid_context; 8650 8651 hw_context_taken = 1; 8652 } 8653 8654 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 8655 if (pmu->pmu_cpu_context) 8656 goto got_cpu_context; 8657 8658 ret = -ENOMEM; 8659 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 8660 if (!pmu->pmu_cpu_context) 8661 goto free_dev; 8662 8663 for_each_possible_cpu(cpu) { 8664 struct perf_cpu_context *cpuctx; 8665 8666 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8667 __perf_event_init_context(&cpuctx->ctx); 8668 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 8669 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 8670 cpuctx->ctx.pmu = pmu; 8671 8672 __perf_mux_hrtimer_init(cpuctx, cpu); 8673 8674 cpuctx->unique_pmu = pmu; 8675 } 8676 8677 got_cpu_context: 8678 if (!pmu->start_txn) { 8679 if (pmu->pmu_enable) { 8680 /* 8681 * If we have pmu_enable/pmu_disable calls, install 8682 * transaction stubs that use that to try and batch 8683 * hardware accesses. 8684 */ 8685 pmu->start_txn = perf_pmu_start_txn; 8686 pmu->commit_txn = perf_pmu_commit_txn; 8687 pmu->cancel_txn = perf_pmu_cancel_txn; 8688 } else { 8689 pmu->start_txn = perf_pmu_nop_txn; 8690 pmu->commit_txn = perf_pmu_nop_int; 8691 pmu->cancel_txn = perf_pmu_nop_void; 8692 } 8693 } 8694 8695 if (!pmu->pmu_enable) { 8696 pmu->pmu_enable = perf_pmu_nop_void; 8697 pmu->pmu_disable = perf_pmu_nop_void; 8698 } 8699 8700 if (!pmu->event_idx) 8701 pmu->event_idx = perf_event_idx_default; 8702 8703 list_add_rcu(&pmu->entry, &pmus); 8704 atomic_set(&pmu->exclusive_cnt, 0); 8705 ret = 0; 8706 unlock: 8707 mutex_unlock(&pmus_lock); 8708 8709 return ret; 8710 8711 free_dev: 8712 device_del(pmu->dev); 8713 put_device(pmu->dev); 8714 8715 free_idr: 8716 if (pmu->type >= PERF_TYPE_MAX) 8717 idr_remove(&pmu_idr, pmu->type); 8718 8719 free_pdc: 8720 free_percpu(pmu->pmu_disable_count); 8721 goto unlock; 8722 } 8723 EXPORT_SYMBOL_GPL(perf_pmu_register); 8724 8725 void perf_pmu_unregister(struct pmu *pmu) 8726 { 8727 mutex_lock(&pmus_lock); 8728 list_del_rcu(&pmu->entry); 8729 mutex_unlock(&pmus_lock); 8730 8731 /* 8732 * We dereference the pmu list under both SRCU and regular RCU, so 8733 * synchronize against both of those. 8734 */ 8735 synchronize_srcu(&pmus_srcu); 8736 synchronize_rcu(); 8737 8738 free_percpu(pmu->pmu_disable_count); 8739 if (pmu->type >= PERF_TYPE_MAX) 8740 idr_remove(&pmu_idr, pmu->type); 8741 if (pmu->nr_addr_filters) 8742 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 8743 device_del(pmu->dev); 8744 put_device(pmu->dev); 8745 free_pmu_context(pmu); 8746 } 8747 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 8748 8749 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 8750 { 8751 struct perf_event_context *ctx = NULL; 8752 int ret; 8753 8754 if (!try_module_get(pmu->module)) 8755 return -ENODEV; 8756 8757 if (event->group_leader != event) { 8758 /* 8759 * This ctx->mutex can nest when we're called through 8760 * inheritance. See the perf_event_ctx_lock_nested() comment. 8761 */ 8762 ctx = perf_event_ctx_lock_nested(event->group_leader, 8763 SINGLE_DEPTH_NESTING); 8764 BUG_ON(!ctx); 8765 } 8766 8767 event->pmu = pmu; 8768 ret = pmu->event_init(event); 8769 8770 if (ctx) 8771 perf_event_ctx_unlock(event->group_leader, ctx); 8772 8773 if (ret) 8774 module_put(pmu->module); 8775 8776 return ret; 8777 } 8778 8779 static struct pmu *perf_init_event(struct perf_event *event) 8780 { 8781 struct pmu *pmu = NULL; 8782 int idx; 8783 int ret; 8784 8785 idx = srcu_read_lock(&pmus_srcu); 8786 8787 rcu_read_lock(); 8788 pmu = idr_find(&pmu_idr, event->attr.type); 8789 rcu_read_unlock(); 8790 if (pmu) { 8791 ret = perf_try_init_event(pmu, event); 8792 if (ret) 8793 pmu = ERR_PTR(ret); 8794 goto unlock; 8795 } 8796 8797 list_for_each_entry_rcu(pmu, &pmus, entry) { 8798 ret = perf_try_init_event(pmu, event); 8799 if (!ret) 8800 goto unlock; 8801 8802 if (ret != -ENOENT) { 8803 pmu = ERR_PTR(ret); 8804 goto unlock; 8805 } 8806 } 8807 pmu = ERR_PTR(-ENOENT); 8808 unlock: 8809 srcu_read_unlock(&pmus_srcu, idx); 8810 8811 return pmu; 8812 } 8813 8814 static void attach_sb_event(struct perf_event *event) 8815 { 8816 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 8817 8818 raw_spin_lock(&pel->lock); 8819 list_add_rcu(&event->sb_list, &pel->list); 8820 raw_spin_unlock(&pel->lock); 8821 } 8822 8823 /* 8824 * We keep a list of all !task (and therefore per-cpu) events 8825 * that need to receive side-band records. 8826 * 8827 * This avoids having to scan all the various PMU per-cpu contexts 8828 * looking for them. 8829 */ 8830 static void account_pmu_sb_event(struct perf_event *event) 8831 { 8832 if (is_sb_event(event)) 8833 attach_sb_event(event); 8834 } 8835 8836 static void account_event_cpu(struct perf_event *event, int cpu) 8837 { 8838 if (event->parent) 8839 return; 8840 8841 if (is_cgroup_event(event)) 8842 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 8843 } 8844 8845 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 8846 static void account_freq_event_nohz(void) 8847 { 8848 #ifdef CONFIG_NO_HZ_FULL 8849 /* Lock so we don't race with concurrent unaccount */ 8850 spin_lock(&nr_freq_lock); 8851 if (atomic_inc_return(&nr_freq_events) == 1) 8852 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 8853 spin_unlock(&nr_freq_lock); 8854 #endif 8855 } 8856 8857 static void account_freq_event(void) 8858 { 8859 if (tick_nohz_full_enabled()) 8860 account_freq_event_nohz(); 8861 else 8862 atomic_inc(&nr_freq_events); 8863 } 8864 8865 8866 static void account_event(struct perf_event *event) 8867 { 8868 bool inc = false; 8869 8870 if (event->parent) 8871 return; 8872 8873 if (event->attach_state & PERF_ATTACH_TASK) 8874 inc = true; 8875 if (event->attr.mmap || event->attr.mmap_data) 8876 atomic_inc(&nr_mmap_events); 8877 if (event->attr.comm) 8878 atomic_inc(&nr_comm_events); 8879 if (event->attr.task) 8880 atomic_inc(&nr_task_events); 8881 if (event->attr.freq) 8882 account_freq_event(); 8883 if (event->attr.context_switch) { 8884 atomic_inc(&nr_switch_events); 8885 inc = true; 8886 } 8887 if (has_branch_stack(event)) 8888 inc = true; 8889 if (is_cgroup_event(event)) 8890 inc = true; 8891 8892 if (inc) { 8893 if (atomic_inc_not_zero(&perf_sched_count)) 8894 goto enabled; 8895 8896 mutex_lock(&perf_sched_mutex); 8897 if (!atomic_read(&perf_sched_count)) { 8898 static_branch_enable(&perf_sched_events); 8899 /* 8900 * Guarantee that all CPUs observe they key change and 8901 * call the perf scheduling hooks before proceeding to 8902 * install events that need them. 8903 */ 8904 synchronize_sched(); 8905 } 8906 /* 8907 * Now that we have waited for the sync_sched(), allow further 8908 * increments to by-pass the mutex. 8909 */ 8910 atomic_inc(&perf_sched_count); 8911 mutex_unlock(&perf_sched_mutex); 8912 } 8913 enabled: 8914 8915 account_event_cpu(event, event->cpu); 8916 8917 account_pmu_sb_event(event); 8918 } 8919 8920 /* 8921 * Allocate and initialize a event structure 8922 */ 8923 static struct perf_event * 8924 perf_event_alloc(struct perf_event_attr *attr, int cpu, 8925 struct task_struct *task, 8926 struct perf_event *group_leader, 8927 struct perf_event *parent_event, 8928 perf_overflow_handler_t overflow_handler, 8929 void *context, int cgroup_fd) 8930 { 8931 struct pmu *pmu; 8932 struct perf_event *event; 8933 struct hw_perf_event *hwc; 8934 long err = -EINVAL; 8935 8936 if ((unsigned)cpu >= nr_cpu_ids) { 8937 if (!task || cpu != -1) 8938 return ERR_PTR(-EINVAL); 8939 } 8940 8941 event = kzalloc(sizeof(*event), GFP_KERNEL); 8942 if (!event) 8943 return ERR_PTR(-ENOMEM); 8944 8945 /* 8946 * Single events are their own group leaders, with an 8947 * empty sibling list: 8948 */ 8949 if (!group_leader) 8950 group_leader = event; 8951 8952 mutex_init(&event->child_mutex); 8953 INIT_LIST_HEAD(&event->child_list); 8954 8955 INIT_LIST_HEAD(&event->group_entry); 8956 INIT_LIST_HEAD(&event->event_entry); 8957 INIT_LIST_HEAD(&event->sibling_list); 8958 INIT_LIST_HEAD(&event->rb_entry); 8959 INIT_LIST_HEAD(&event->active_entry); 8960 INIT_LIST_HEAD(&event->addr_filters.list); 8961 INIT_HLIST_NODE(&event->hlist_entry); 8962 8963 8964 init_waitqueue_head(&event->waitq); 8965 init_irq_work(&event->pending, perf_pending_event); 8966 8967 mutex_init(&event->mmap_mutex); 8968 raw_spin_lock_init(&event->addr_filters.lock); 8969 8970 atomic_long_set(&event->refcount, 1); 8971 event->cpu = cpu; 8972 event->attr = *attr; 8973 event->group_leader = group_leader; 8974 event->pmu = NULL; 8975 event->oncpu = -1; 8976 8977 event->parent = parent_event; 8978 8979 event->ns = get_pid_ns(task_active_pid_ns(current)); 8980 event->id = atomic64_inc_return(&perf_event_id); 8981 8982 event->state = PERF_EVENT_STATE_INACTIVE; 8983 8984 if (task) { 8985 event->attach_state = PERF_ATTACH_TASK; 8986 /* 8987 * XXX pmu::event_init needs to know what task to account to 8988 * and we cannot use the ctx information because we need the 8989 * pmu before we get a ctx. 8990 */ 8991 event->hw.target = task; 8992 } 8993 8994 event->clock = &local_clock; 8995 if (parent_event) 8996 event->clock = parent_event->clock; 8997 8998 if (!overflow_handler && parent_event) { 8999 overflow_handler = parent_event->overflow_handler; 9000 context = parent_event->overflow_handler_context; 9001 } 9002 9003 if (overflow_handler) { 9004 event->overflow_handler = overflow_handler; 9005 event->overflow_handler_context = context; 9006 } else if (is_write_backward(event)){ 9007 event->overflow_handler = perf_event_output_backward; 9008 event->overflow_handler_context = NULL; 9009 } else { 9010 event->overflow_handler = perf_event_output_forward; 9011 event->overflow_handler_context = NULL; 9012 } 9013 9014 perf_event__state_init(event); 9015 9016 pmu = NULL; 9017 9018 hwc = &event->hw; 9019 hwc->sample_period = attr->sample_period; 9020 if (attr->freq && attr->sample_freq) 9021 hwc->sample_period = 1; 9022 hwc->last_period = hwc->sample_period; 9023 9024 local64_set(&hwc->period_left, hwc->sample_period); 9025 9026 /* 9027 * we currently do not support PERF_FORMAT_GROUP on inherited events 9028 */ 9029 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 9030 goto err_ns; 9031 9032 if (!has_branch_stack(event)) 9033 event->attr.branch_sample_type = 0; 9034 9035 if (cgroup_fd != -1) { 9036 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 9037 if (err) 9038 goto err_ns; 9039 } 9040 9041 pmu = perf_init_event(event); 9042 if (!pmu) 9043 goto err_ns; 9044 else if (IS_ERR(pmu)) { 9045 err = PTR_ERR(pmu); 9046 goto err_ns; 9047 } 9048 9049 err = exclusive_event_init(event); 9050 if (err) 9051 goto err_pmu; 9052 9053 if (has_addr_filter(event)) { 9054 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 9055 sizeof(unsigned long), 9056 GFP_KERNEL); 9057 if (!event->addr_filters_offs) 9058 goto err_per_task; 9059 9060 /* force hw sync on the address filters */ 9061 event->addr_filters_gen = 1; 9062 } 9063 9064 if (!event->parent) { 9065 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 9066 err = get_callchain_buffers(attr->sample_max_stack); 9067 if (err) 9068 goto err_addr_filters; 9069 } 9070 } 9071 9072 /* symmetric to unaccount_event() in _free_event() */ 9073 account_event(event); 9074 9075 return event; 9076 9077 err_addr_filters: 9078 kfree(event->addr_filters_offs); 9079 9080 err_per_task: 9081 exclusive_event_destroy(event); 9082 9083 err_pmu: 9084 if (event->destroy) 9085 event->destroy(event); 9086 module_put(pmu->module); 9087 err_ns: 9088 if (is_cgroup_event(event)) 9089 perf_detach_cgroup(event); 9090 if (event->ns) 9091 put_pid_ns(event->ns); 9092 kfree(event); 9093 9094 return ERR_PTR(err); 9095 } 9096 9097 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9098 struct perf_event_attr *attr) 9099 { 9100 u32 size; 9101 int ret; 9102 9103 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9104 return -EFAULT; 9105 9106 /* 9107 * zero the full structure, so that a short copy will be nice. 9108 */ 9109 memset(attr, 0, sizeof(*attr)); 9110 9111 ret = get_user(size, &uattr->size); 9112 if (ret) 9113 return ret; 9114 9115 if (size > PAGE_SIZE) /* silly large */ 9116 goto err_size; 9117 9118 if (!size) /* abi compat */ 9119 size = PERF_ATTR_SIZE_VER0; 9120 9121 if (size < PERF_ATTR_SIZE_VER0) 9122 goto err_size; 9123 9124 /* 9125 * If we're handed a bigger struct than we know of, 9126 * ensure all the unknown bits are 0 - i.e. new 9127 * user-space does not rely on any kernel feature 9128 * extensions we dont know about yet. 9129 */ 9130 if (size > sizeof(*attr)) { 9131 unsigned char __user *addr; 9132 unsigned char __user *end; 9133 unsigned char val; 9134 9135 addr = (void __user *)uattr + sizeof(*attr); 9136 end = (void __user *)uattr + size; 9137 9138 for (; addr < end; addr++) { 9139 ret = get_user(val, addr); 9140 if (ret) 9141 return ret; 9142 if (val) 9143 goto err_size; 9144 } 9145 size = sizeof(*attr); 9146 } 9147 9148 ret = copy_from_user(attr, uattr, size); 9149 if (ret) 9150 return -EFAULT; 9151 9152 if (attr->__reserved_1) 9153 return -EINVAL; 9154 9155 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9156 return -EINVAL; 9157 9158 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9159 return -EINVAL; 9160 9161 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9162 u64 mask = attr->branch_sample_type; 9163 9164 /* only using defined bits */ 9165 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9166 return -EINVAL; 9167 9168 /* at least one branch bit must be set */ 9169 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9170 return -EINVAL; 9171 9172 /* propagate priv level, when not set for branch */ 9173 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9174 9175 /* exclude_kernel checked on syscall entry */ 9176 if (!attr->exclude_kernel) 9177 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9178 9179 if (!attr->exclude_user) 9180 mask |= PERF_SAMPLE_BRANCH_USER; 9181 9182 if (!attr->exclude_hv) 9183 mask |= PERF_SAMPLE_BRANCH_HV; 9184 /* 9185 * adjust user setting (for HW filter setup) 9186 */ 9187 attr->branch_sample_type = mask; 9188 } 9189 /* privileged levels capture (kernel, hv): check permissions */ 9190 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9191 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9192 return -EACCES; 9193 } 9194 9195 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9196 ret = perf_reg_validate(attr->sample_regs_user); 9197 if (ret) 9198 return ret; 9199 } 9200 9201 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9202 if (!arch_perf_have_user_stack_dump()) 9203 return -ENOSYS; 9204 9205 /* 9206 * We have __u32 type for the size, but so far 9207 * we can only use __u16 as maximum due to the 9208 * __u16 sample size limit. 9209 */ 9210 if (attr->sample_stack_user >= USHRT_MAX) 9211 ret = -EINVAL; 9212 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9213 ret = -EINVAL; 9214 } 9215 9216 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9217 ret = perf_reg_validate(attr->sample_regs_intr); 9218 out: 9219 return ret; 9220 9221 err_size: 9222 put_user(sizeof(*attr), &uattr->size); 9223 ret = -E2BIG; 9224 goto out; 9225 } 9226 9227 static int 9228 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9229 { 9230 struct ring_buffer *rb = NULL; 9231 int ret = -EINVAL; 9232 9233 if (!output_event) 9234 goto set; 9235 9236 /* don't allow circular references */ 9237 if (event == output_event) 9238 goto out; 9239 9240 /* 9241 * Don't allow cross-cpu buffers 9242 */ 9243 if (output_event->cpu != event->cpu) 9244 goto out; 9245 9246 /* 9247 * If its not a per-cpu rb, it must be the same task. 9248 */ 9249 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9250 goto out; 9251 9252 /* 9253 * Mixing clocks in the same buffer is trouble you don't need. 9254 */ 9255 if (output_event->clock != event->clock) 9256 goto out; 9257 9258 /* 9259 * Either writing ring buffer from beginning or from end. 9260 * Mixing is not allowed. 9261 */ 9262 if (is_write_backward(output_event) != is_write_backward(event)) 9263 goto out; 9264 9265 /* 9266 * If both events generate aux data, they must be on the same PMU 9267 */ 9268 if (has_aux(event) && has_aux(output_event) && 9269 event->pmu != output_event->pmu) 9270 goto out; 9271 9272 set: 9273 mutex_lock(&event->mmap_mutex); 9274 /* Can't redirect output if we've got an active mmap() */ 9275 if (atomic_read(&event->mmap_count)) 9276 goto unlock; 9277 9278 if (output_event) { 9279 /* get the rb we want to redirect to */ 9280 rb = ring_buffer_get(output_event); 9281 if (!rb) 9282 goto unlock; 9283 } 9284 9285 ring_buffer_attach(event, rb); 9286 9287 ret = 0; 9288 unlock: 9289 mutex_unlock(&event->mmap_mutex); 9290 9291 out: 9292 return ret; 9293 } 9294 9295 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9296 { 9297 if (b < a) 9298 swap(a, b); 9299 9300 mutex_lock(a); 9301 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9302 } 9303 9304 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9305 { 9306 bool nmi_safe = false; 9307 9308 switch (clk_id) { 9309 case CLOCK_MONOTONIC: 9310 event->clock = &ktime_get_mono_fast_ns; 9311 nmi_safe = true; 9312 break; 9313 9314 case CLOCK_MONOTONIC_RAW: 9315 event->clock = &ktime_get_raw_fast_ns; 9316 nmi_safe = true; 9317 break; 9318 9319 case CLOCK_REALTIME: 9320 event->clock = &ktime_get_real_ns; 9321 break; 9322 9323 case CLOCK_BOOTTIME: 9324 event->clock = &ktime_get_boot_ns; 9325 break; 9326 9327 case CLOCK_TAI: 9328 event->clock = &ktime_get_tai_ns; 9329 break; 9330 9331 default: 9332 return -EINVAL; 9333 } 9334 9335 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9336 return -EINVAL; 9337 9338 return 0; 9339 } 9340 9341 /** 9342 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9343 * 9344 * @attr_uptr: event_id type attributes for monitoring/sampling 9345 * @pid: target pid 9346 * @cpu: target cpu 9347 * @group_fd: group leader event fd 9348 */ 9349 SYSCALL_DEFINE5(perf_event_open, 9350 struct perf_event_attr __user *, attr_uptr, 9351 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9352 { 9353 struct perf_event *group_leader = NULL, *output_event = NULL; 9354 struct perf_event *event, *sibling; 9355 struct perf_event_attr attr; 9356 struct perf_event_context *ctx, *uninitialized_var(gctx); 9357 struct file *event_file = NULL; 9358 struct fd group = {NULL, 0}; 9359 struct task_struct *task = NULL; 9360 struct pmu *pmu; 9361 int event_fd; 9362 int move_group = 0; 9363 int err; 9364 int f_flags = O_RDWR; 9365 int cgroup_fd = -1; 9366 9367 /* for future expandability... */ 9368 if (flags & ~PERF_FLAG_ALL) 9369 return -EINVAL; 9370 9371 err = perf_copy_attr(attr_uptr, &attr); 9372 if (err) 9373 return err; 9374 9375 if (!attr.exclude_kernel) { 9376 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9377 return -EACCES; 9378 } 9379 9380 if (attr.freq) { 9381 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9382 return -EINVAL; 9383 } else { 9384 if (attr.sample_period & (1ULL << 63)) 9385 return -EINVAL; 9386 } 9387 9388 if (!attr.sample_max_stack) 9389 attr.sample_max_stack = sysctl_perf_event_max_stack; 9390 9391 /* 9392 * In cgroup mode, the pid argument is used to pass the fd 9393 * opened to the cgroup directory in cgroupfs. The cpu argument 9394 * designates the cpu on which to monitor threads from that 9395 * cgroup. 9396 */ 9397 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9398 return -EINVAL; 9399 9400 if (flags & PERF_FLAG_FD_CLOEXEC) 9401 f_flags |= O_CLOEXEC; 9402 9403 event_fd = get_unused_fd_flags(f_flags); 9404 if (event_fd < 0) 9405 return event_fd; 9406 9407 if (group_fd != -1) { 9408 err = perf_fget_light(group_fd, &group); 9409 if (err) 9410 goto err_fd; 9411 group_leader = group.file->private_data; 9412 if (flags & PERF_FLAG_FD_OUTPUT) 9413 output_event = group_leader; 9414 if (flags & PERF_FLAG_FD_NO_GROUP) 9415 group_leader = NULL; 9416 } 9417 9418 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9419 task = find_lively_task_by_vpid(pid); 9420 if (IS_ERR(task)) { 9421 err = PTR_ERR(task); 9422 goto err_group_fd; 9423 } 9424 } 9425 9426 if (task && group_leader && 9427 group_leader->attr.inherit != attr.inherit) { 9428 err = -EINVAL; 9429 goto err_task; 9430 } 9431 9432 get_online_cpus(); 9433 9434 if (task) { 9435 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9436 if (err) 9437 goto err_cpus; 9438 9439 /* 9440 * Reuse ptrace permission checks for now. 9441 * 9442 * We must hold cred_guard_mutex across this and any potential 9443 * perf_install_in_context() call for this new event to 9444 * serialize against exec() altering our credentials (and the 9445 * perf_event_exit_task() that could imply). 9446 */ 9447 err = -EACCES; 9448 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9449 goto err_cred; 9450 } 9451 9452 if (flags & PERF_FLAG_PID_CGROUP) 9453 cgroup_fd = pid; 9454 9455 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 9456 NULL, NULL, cgroup_fd); 9457 if (IS_ERR(event)) { 9458 err = PTR_ERR(event); 9459 goto err_cred; 9460 } 9461 9462 if (is_sampling_event(event)) { 9463 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 9464 err = -EOPNOTSUPP; 9465 goto err_alloc; 9466 } 9467 } 9468 9469 /* 9470 * Special case software events and allow them to be part of 9471 * any hardware group. 9472 */ 9473 pmu = event->pmu; 9474 9475 if (attr.use_clockid) { 9476 err = perf_event_set_clock(event, attr.clockid); 9477 if (err) 9478 goto err_alloc; 9479 } 9480 9481 if (group_leader && 9482 (is_software_event(event) != is_software_event(group_leader))) { 9483 if (is_software_event(event)) { 9484 /* 9485 * If event and group_leader are not both a software 9486 * event, and event is, then group leader is not. 9487 * 9488 * Allow the addition of software events to !software 9489 * groups, this is safe because software events never 9490 * fail to schedule. 9491 */ 9492 pmu = group_leader->pmu; 9493 } else if (is_software_event(group_leader) && 9494 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 9495 /* 9496 * In case the group is a pure software group, and we 9497 * try to add a hardware event, move the whole group to 9498 * the hardware context. 9499 */ 9500 move_group = 1; 9501 } 9502 } 9503 9504 /* 9505 * Get the target context (task or percpu): 9506 */ 9507 ctx = find_get_context(pmu, task, event); 9508 if (IS_ERR(ctx)) { 9509 err = PTR_ERR(ctx); 9510 goto err_alloc; 9511 } 9512 9513 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 9514 err = -EBUSY; 9515 goto err_context; 9516 } 9517 9518 /* 9519 * Look up the group leader (we will attach this event to it): 9520 */ 9521 if (group_leader) { 9522 err = -EINVAL; 9523 9524 /* 9525 * Do not allow a recursive hierarchy (this new sibling 9526 * becoming part of another group-sibling): 9527 */ 9528 if (group_leader->group_leader != group_leader) 9529 goto err_context; 9530 9531 /* All events in a group should have the same clock */ 9532 if (group_leader->clock != event->clock) 9533 goto err_context; 9534 9535 /* 9536 * Do not allow to attach to a group in a different 9537 * task or CPU context: 9538 */ 9539 if (move_group) { 9540 /* 9541 * Make sure we're both on the same task, or both 9542 * per-cpu events. 9543 */ 9544 if (group_leader->ctx->task != ctx->task) 9545 goto err_context; 9546 9547 /* 9548 * Make sure we're both events for the same CPU; 9549 * grouping events for different CPUs is broken; since 9550 * you can never concurrently schedule them anyhow. 9551 */ 9552 if (group_leader->cpu != event->cpu) 9553 goto err_context; 9554 } else { 9555 if (group_leader->ctx != ctx) 9556 goto err_context; 9557 } 9558 9559 /* 9560 * Only a group leader can be exclusive or pinned 9561 */ 9562 if (attr.exclusive || attr.pinned) 9563 goto err_context; 9564 } 9565 9566 if (output_event) { 9567 err = perf_event_set_output(event, output_event); 9568 if (err) 9569 goto err_context; 9570 } 9571 9572 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 9573 f_flags); 9574 if (IS_ERR(event_file)) { 9575 err = PTR_ERR(event_file); 9576 event_file = NULL; 9577 goto err_context; 9578 } 9579 9580 if (move_group) { 9581 gctx = group_leader->ctx; 9582 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9583 if (gctx->task == TASK_TOMBSTONE) { 9584 err = -ESRCH; 9585 goto err_locked; 9586 } 9587 } else { 9588 mutex_lock(&ctx->mutex); 9589 } 9590 9591 if (ctx->task == TASK_TOMBSTONE) { 9592 err = -ESRCH; 9593 goto err_locked; 9594 } 9595 9596 if (!perf_event_validate_size(event)) { 9597 err = -E2BIG; 9598 goto err_locked; 9599 } 9600 9601 /* 9602 * Must be under the same ctx::mutex as perf_install_in_context(), 9603 * because we need to serialize with concurrent event creation. 9604 */ 9605 if (!exclusive_event_installable(event, ctx)) { 9606 /* exclusive and group stuff are assumed mutually exclusive */ 9607 WARN_ON_ONCE(move_group); 9608 9609 err = -EBUSY; 9610 goto err_locked; 9611 } 9612 9613 WARN_ON_ONCE(ctx->parent_ctx); 9614 9615 /* 9616 * This is the point on no return; we cannot fail hereafter. This is 9617 * where we start modifying current state. 9618 */ 9619 9620 if (move_group) { 9621 /* 9622 * See perf_event_ctx_lock() for comments on the details 9623 * of swizzling perf_event::ctx. 9624 */ 9625 perf_remove_from_context(group_leader, 0); 9626 9627 list_for_each_entry(sibling, &group_leader->sibling_list, 9628 group_entry) { 9629 perf_remove_from_context(sibling, 0); 9630 put_ctx(gctx); 9631 } 9632 9633 /* 9634 * Wait for everybody to stop referencing the events through 9635 * the old lists, before installing it on new lists. 9636 */ 9637 synchronize_rcu(); 9638 9639 /* 9640 * Install the group siblings before the group leader. 9641 * 9642 * Because a group leader will try and install the entire group 9643 * (through the sibling list, which is still in-tact), we can 9644 * end up with siblings installed in the wrong context. 9645 * 9646 * By installing siblings first we NO-OP because they're not 9647 * reachable through the group lists. 9648 */ 9649 list_for_each_entry(sibling, &group_leader->sibling_list, 9650 group_entry) { 9651 perf_event__state_init(sibling); 9652 perf_install_in_context(ctx, sibling, sibling->cpu); 9653 get_ctx(ctx); 9654 } 9655 9656 /* 9657 * Removing from the context ends up with disabled 9658 * event. What we want here is event in the initial 9659 * startup state, ready to be add into new context. 9660 */ 9661 perf_event__state_init(group_leader); 9662 perf_install_in_context(ctx, group_leader, group_leader->cpu); 9663 get_ctx(ctx); 9664 9665 /* 9666 * Now that all events are installed in @ctx, nothing 9667 * references @gctx anymore, so drop the last reference we have 9668 * on it. 9669 */ 9670 put_ctx(gctx); 9671 } 9672 9673 /* 9674 * Precalculate sample_data sizes; do while holding ctx::mutex such 9675 * that we're serialized against further additions and before 9676 * perf_install_in_context() which is the point the event is active and 9677 * can use these values. 9678 */ 9679 perf_event__header_size(event); 9680 perf_event__id_header_size(event); 9681 9682 event->owner = current; 9683 9684 perf_install_in_context(ctx, event, event->cpu); 9685 perf_unpin_context(ctx); 9686 9687 if (move_group) 9688 mutex_unlock(&gctx->mutex); 9689 mutex_unlock(&ctx->mutex); 9690 9691 if (task) { 9692 mutex_unlock(&task->signal->cred_guard_mutex); 9693 put_task_struct(task); 9694 } 9695 9696 put_online_cpus(); 9697 9698 mutex_lock(¤t->perf_event_mutex); 9699 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 9700 mutex_unlock(¤t->perf_event_mutex); 9701 9702 /* 9703 * Drop the reference on the group_event after placing the 9704 * new event on the sibling_list. This ensures destruction 9705 * of the group leader will find the pointer to itself in 9706 * perf_group_detach(). 9707 */ 9708 fdput(group); 9709 fd_install(event_fd, event_file); 9710 return event_fd; 9711 9712 err_locked: 9713 if (move_group) 9714 mutex_unlock(&gctx->mutex); 9715 mutex_unlock(&ctx->mutex); 9716 /* err_file: */ 9717 fput(event_file); 9718 err_context: 9719 perf_unpin_context(ctx); 9720 put_ctx(ctx); 9721 err_alloc: 9722 /* 9723 * If event_file is set, the fput() above will have called ->release() 9724 * and that will take care of freeing the event. 9725 */ 9726 if (!event_file) 9727 free_event(event); 9728 err_cred: 9729 if (task) 9730 mutex_unlock(&task->signal->cred_guard_mutex); 9731 err_cpus: 9732 put_online_cpus(); 9733 err_task: 9734 if (task) 9735 put_task_struct(task); 9736 err_group_fd: 9737 fdput(group); 9738 err_fd: 9739 put_unused_fd(event_fd); 9740 return err; 9741 } 9742 9743 /** 9744 * perf_event_create_kernel_counter 9745 * 9746 * @attr: attributes of the counter to create 9747 * @cpu: cpu in which the counter is bound 9748 * @task: task to profile (NULL for percpu) 9749 */ 9750 struct perf_event * 9751 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 9752 struct task_struct *task, 9753 perf_overflow_handler_t overflow_handler, 9754 void *context) 9755 { 9756 struct perf_event_context *ctx; 9757 struct perf_event *event; 9758 int err; 9759 9760 /* 9761 * Get the target context (task or percpu): 9762 */ 9763 9764 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 9765 overflow_handler, context, -1); 9766 if (IS_ERR(event)) { 9767 err = PTR_ERR(event); 9768 goto err; 9769 } 9770 9771 /* Mark owner so we could distinguish it from user events. */ 9772 event->owner = TASK_TOMBSTONE; 9773 9774 ctx = find_get_context(event->pmu, task, event); 9775 if (IS_ERR(ctx)) { 9776 err = PTR_ERR(ctx); 9777 goto err_free; 9778 } 9779 9780 WARN_ON_ONCE(ctx->parent_ctx); 9781 mutex_lock(&ctx->mutex); 9782 if (ctx->task == TASK_TOMBSTONE) { 9783 err = -ESRCH; 9784 goto err_unlock; 9785 } 9786 9787 if (!exclusive_event_installable(event, ctx)) { 9788 err = -EBUSY; 9789 goto err_unlock; 9790 } 9791 9792 perf_install_in_context(ctx, event, cpu); 9793 perf_unpin_context(ctx); 9794 mutex_unlock(&ctx->mutex); 9795 9796 return event; 9797 9798 err_unlock: 9799 mutex_unlock(&ctx->mutex); 9800 perf_unpin_context(ctx); 9801 put_ctx(ctx); 9802 err_free: 9803 free_event(event); 9804 err: 9805 return ERR_PTR(err); 9806 } 9807 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 9808 9809 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 9810 { 9811 struct perf_event_context *src_ctx; 9812 struct perf_event_context *dst_ctx; 9813 struct perf_event *event, *tmp; 9814 LIST_HEAD(events); 9815 9816 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 9817 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 9818 9819 /* 9820 * See perf_event_ctx_lock() for comments on the details 9821 * of swizzling perf_event::ctx. 9822 */ 9823 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 9824 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 9825 event_entry) { 9826 perf_remove_from_context(event, 0); 9827 unaccount_event_cpu(event, src_cpu); 9828 put_ctx(src_ctx); 9829 list_add(&event->migrate_entry, &events); 9830 } 9831 9832 /* 9833 * Wait for the events to quiesce before re-instating them. 9834 */ 9835 synchronize_rcu(); 9836 9837 /* 9838 * Re-instate events in 2 passes. 9839 * 9840 * Skip over group leaders and only install siblings on this first 9841 * pass, siblings will not get enabled without a leader, however a 9842 * leader will enable its siblings, even if those are still on the old 9843 * context. 9844 */ 9845 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 9846 if (event->group_leader == event) 9847 continue; 9848 9849 list_del(&event->migrate_entry); 9850 if (event->state >= PERF_EVENT_STATE_OFF) 9851 event->state = PERF_EVENT_STATE_INACTIVE; 9852 account_event_cpu(event, dst_cpu); 9853 perf_install_in_context(dst_ctx, event, dst_cpu); 9854 get_ctx(dst_ctx); 9855 } 9856 9857 /* 9858 * Once all the siblings are setup properly, install the group leaders 9859 * to make it go. 9860 */ 9861 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 9862 list_del(&event->migrate_entry); 9863 if (event->state >= PERF_EVENT_STATE_OFF) 9864 event->state = PERF_EVENT_STATE_INACTIVE; 9865 account_event_cpu(event, dst_cpu); 9866 perf_install_in_context(dst_ctx, event, dst_cpu); 9867 get_ctx(dst_ctx); 9868 } 9869 mutex_unlock(&dst_ctx->mutex); 9870 mutex_unlock(&src_ctx->mutex); 9871 } 9872 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 9873 9874 static void sync_child_event(struct perf_event *child_event, 9875 struct task_struct *child) 9876 { 9877 struct perf_event *parent_event = child_event->parent; 9878 u64 child_val; 9879 9880 if (child_event->attr.inherit_stat) 9881 perf_event_read_event(child_event, child); 9882 9883 child_val = perf_event_count(child_event); 9884 9885 /* 9886 * Add back the child's count to the parent's count: 9887 */ 9888 atomic64_add(child_val, &parent_event->child_count); 9889 atomic64_add(child_event->total_time_enabled, 9890 &parent_event->child_total_time_enabled); 9891 atomic64_add(child_event->total_time_running, 9892 &parent_event->child_total_time_running); 9893 } 9894 9895 static void 9896 perf_event_exit_event(struct perf_event *child_event, 9897 struct perf_event_context *child_ctx, 9898 struct task_struct *child) 9899 { 9900 struct perf_event *parent_event = child_event->parent; 9901 9902 /* 9903 * Do not destroy the 'original' grouping; because of the context 9904 * switch optimization the original events could've ended up in a 9905 * random child task. 9906 * 9907 * If we were to destroy the original group, all group related 9908 * operations would cease to function properly after this random 9909 * child dies. 9910 * 9911 * Do destroy all inherited groups, we don't care about those 9912 * and being thorough is better. 9913 */ 9914 raw_spin_lock_irq(&child_ctx->lock); 9915 WARN_ON_ONCE(child_ctx->is_active); 9916 9917 if (parent_event) 9918 perf_group_detach(child_event); 9919 list_del_event(child_event, child_ctx); 9920 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 9921 raw_spin_unlock_irq(&child_ctx->lock); 9922 9923 /* 9924 * Parent events are governed by their filedesc, retain them. 9925 */ 9926 if (!parent_event) { 9927 perf_event_wakeup(child_event); 9928 return; 9929 } 9930 /* 9931 * Child events can be cleaned up. 9932 */ 9933 9934 sync_child_event(child_event, child); 9935 9936 /* 9937 * Remove this event from the parent's list 9938 */ 9939 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 9940 mutex_lock(&parent_event->child_mutex); 9941 list_del_init(&child_event->child_list); 9942 mutex_unlock(&parent_event->child_mutex); 9943 9944 /* 9945 * Kick perf_poll() for is_event_hup(). 9946 */ 9947 perf_event_wakeup(parent_event); 9948 free_event(child_event); 9949 put_event(parent_event); 9950 } 9951 9952 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 9953 { 9954 struct perf_event_context *child_ctx, *clone_ctx = NULL; 9955 struct perf_event *child_event, *next; 9956 9957 WARN_ON_ONCE(child != current); 9958 9959 child_ctx = perf_pin_task_context(child, ctxn); 9960 if (!child_ctx) 9961 return; 9962 9963 /* 9964 * In order to reduce the amount of tricky in ctx tear-down, we hold 9965 * ctx::mutex over the entire thing. This serializes against almost 9966 * everything that wants to access the ctx. 9967 * 9968 * The exception is sys_perf_event_open() / 9969 * perf_event_create_kernel_count() which does find_get_context() 9970 * without ctx::mutex (it cannot because of the move_group double mutex 9971 * lock thing). See the comments in perf_install_in_context(). 9972 */ 9973 mutex_lock(&child_ctx->mutex); 9974 9975 /* 9976 * In a single ctx::lock section, de-schedule the events and detach the 9977 * context from the task such that we cannot ever get it scheduled back 9978 * in. 9979 */ 9980 raw_spin_lock_irq(&child_ctx->lock); 9981 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx); 9982 9983 /* 9984 * Now that the context is inactive, destroy the task <-> ctx relation 9985 * and mark the context dead. 9986 */ 9987 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 9988 put_ctx(child_ctx); /* cannot be last */ 9989 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 9990 put_task_struct(current); /* cannot be last */ 9991 9992 clone_ctx = unclone_ctx(child_ctx); 9993 raw_spin_unlock_irq(&child_ctx->lock); 9994 9995 if (clone_ctx) 9996 put_ctx(clone_ctx); 9997 9998 /* 9999 * Report the task dead after unscheduling the events so that we 10000 * won't get any samples after PERF_RECORD_EXIT. We can however still 10001 * get a few PERF_RECORD_READ events. 10002 */ 10003 perf_event_task(child, child_ctx, 0); 10004 10005 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 10006 perf_event_exit_event(child_event, child_ctx, child); 10007 10008 mutex_unlock(&child_ctx->mutex); 10009 10010 put_ctx(child_ctx); 10011 } 10012 10013 /* 10014 * When a child task exits, feed back event values to parent events. 10015 * 10016 * Can be called with cred_guard_mutex held when called from 10017 * install_exec_creds(). 10018 */ 10019 void perf_event_exit_task(struct task_struct *child) 10020 { 10021 struct perf_event *event, *tmp; 10022 int ctxn; 10023 10024 mutex_lock(&child->perf_event_mutex); 10025 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 10026 owner_entry) { 10027 list_del_init(&event->owner_entry); 10028 10029 /* 10030 * Ensure the list deletion is visible before we clear 10031 * the owner, closes a race against perf_release() where 10032 * we need to serialize on the owner->perf_event_mutex. 10033 */ 10034 smp_store_release(&event->owner, NULL); 10035 } 10036 mutex_unlock(&child->perf_event_mutex); 10037 10038 for_each_task_context_nr(ctxn) 10039 perf_event_exit_task_context(child, ctxn); 10040 10041 /* 10042 * The perf_event_exit_task_context calls perf_event_task 10043 * with child's task_ctx, which generates EXIT events for 10044 * child contexts and sets child->perf_event_ctxp[] to NULL. 10045 * At this point we need to send EXIT events to cpu contexts. 10046 */ 10047 perf_event_task(child, NULL, 0); 10048 } 10049 10050 static void perf_free_event(struct perf_event *event, 10051 struct perf_event_context *ctx) 10052 { 10053 struct perf_event *parent = event->parent; 10054 10055 if (WARN_ON_ONCE(!parent)) 10056 return; 10057 10058 mutex_lock(&parent->child_mutex); 10059 list_del_init(&event->child_list); 10060 mutex_unlock(&parent->child_mutex); 10061 10062 put_event(parent); 10063 10064 raw_spin_lock_irq(&ctx->lock); 10065 perf_group_detach(event); 10066 list_del_event(event, ctx); 10067 raw_spin_unlock_irq(&ctx->lock); 10068 free_event(event); 10069 } 10070 10071 /* 10072 * Free an unexposed, unused context as created by inheritance by 10073 * perf_event_init_task below, used by fork() in case of fail. 10074 * 10075 * Not all locks are strictly required, but take them anyway to be nice and 10076 * help out with the lockdep assertions. 10077 */ 10078 void perf_event_free_task(struct task_struct *task) 10079 { 10080 struct perf_event_context *ctx; 10081 struct perf_event *event, *tmp; 10082 int ctxn; 10083 10084 for_each_task_context_nr(ctxn) { 10085 ctx = task->perf_event_ctxp[ctxn]; 10086 if (!ctx) 10087 continue; 10088 10089 mutex_lock(&ctx->mutex); 10090 again: 10091 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 10092 group_entry) 10093 perf_free_event(event, ctx); 10094 10095 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 10096 group_entry) 10097 perf_free_event(event, ctx); 10098 10099 if (!list_empty(&ctx->pinned_groups) || 10100 !list_empty(&ctx->flexible_groups)) 10101 goto again; 10102 10103 mutex_unlock(&ctx->mutex); 10104 10105 put_ctx(ctx); 10106 } 10107 } 10108 10109 void perf_event_delayed_put(struct task_struct *task) 10110 { 10111 int ctxn; 10112 10113 for_each_task_context_nr(ctxn) 10114 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10115 } 10116 10117 struct file *perf_event_get(unsigned int fd) 10118 { 10119 struct file *file; 10120 10121 file = fget_raw(fd); 10122 if (!file) 10123 return ERR_PTR(-EBADF); 10124 10125 if (file->f_op != &perf_fops) { 10126 fput(file); 10127 return ERR_PTR(-EBADF); 10128 } 10129 10130 return file; 10131 } 10132 10133 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10134 { 10135 if (!event) 10136 return ERR_PTR(-EINVAL); 10137 10138 return &event->attr; 10139 } 10140 10141 /* 10142 * inherit a event from parent task to child task: 10143 */ 10144 static struct perf_event * 10145 inherit_event(struct perf_event *parent_event, 10146 struct task_struct *parent, 10147 struct perf_event_context *parent_ctx, 10148 struct task_struct *child, 10149 struct perf_event *group_leader, 10150 struct perf_event_context *child_ctx) 10151 { 10152 enum perf_event_active_state parent_state = parent_event->state; 10153 struct perf_event *child_event; 10154 unsigned long flags; 10155 10156 /* 10157 * Instead of creating recursive hierarchies of events, 10158 * we link inherited events back to the original parent, 10159 * which has a filp for sure, which we use as the reference 10160 * count: 10161 */ 10162 if (parent_event->parent) 10163 parent_event = parent_event->parent; 10164 10165 child_event = perf_event_alloc(&parent_event->attr, 10166 parent_event->cpu, 10167 child, 10168 group_leader, parent_event, 10169 NULL, NULL, -1); 10170 if (IS_ERR(child_event)) 10171 return child_event; 10172 10173 /* 10174 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10175 * must be under the same lock in order to serialize against 10176 * perf_event_release_kernel(), such that either we must observe 10177 * is_orphaned_event() or they will observe us on the child_list. 10178 */ 10179 mutex_lock(&parent_event->child_mutex); 10180 if (is_orphaned_event(parent_event) || 10181 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10182 mutex_unlock(&parent_event->child_mutex); 10183 free_event(child_event); 10184 return NULL; 10185 } 10186 10187 get_ctx(child_ctx); 10188 10189 /* 10190 * Make the child state follow the state of the parent event, 10191 * not its attr.disabled bit. We hold the parent's mutex, 10192 * so we won't race with perf_event_{en, dis}able_family. 10193 */ 10194 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10195 child_event->state = PERF_EVENT_STATE_INACTIVE; 10196 else 10197 child_event->state = PERF_EVENT_STATE_OFF; 10198 10199 if (parent_event->attr.freq) { 10200 u64 sample_period = parent_event->hw.sample_period; 10201 struct hw_perf_event *hwc = &child_event->hw; 10202 10203 hwc->sample_period = sample_period; 10204 hwc->last_period = sample_period; 10205 10206 local64_set(&hwc->period_left, sample_period); 10207 } 10208 10209 child_event->ctx = child_ctx; 10210 child_event->overflow_handler = parent_event->overflow_handler; 10211 child_event->overflow_handler_context 10212 = parent_event->overflow_handler_context; 10213 10214 /* 10215 * Precalculate sample_data sizes 10216 */ 10217 perf_event__header_size(child_event); 10218 perf_event__id_header_size(child_event); 10219 10220 /* 10221 * Link it up in the child's context: 10222 */ 10223 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10224 add_event_to_ctx(child_event, child_ctx); 10225 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10226 10227 /* 10228 * Link this into the parent event's child list 10229 */ 10230 list_add_tail(&child_event->child_list, &parent_event->child_list); 10231 mutex_unlock(&parent_event->child_mutex); 10232 10233 return child_event; 10234 } 10235 10236 static int inherit_group(struct perf_event *parent_event, 10237 struct task_struct *parent, 10238 struct perf_event_context *parent_ctx, 10239 struct task_struct *child, 10240 struct perf_event_context *child_ctx) 10241 { 10242 struct perf_event *leader; 10243 struct perf_event *sub; 10244 struct perf_event *child_ctr; 10245 10246 leader = inherit_event(parent_event, parent, parent_ctx, 10247 child, NULL, child_ctx); 10248 if (IS_ERR(leader)) 10249 return PTR_ERR(leader); 10250 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10251 child_ctr = inherit_event(sub, parent, parent_ctx, 10252 child, leader, child_ctx); 10253 if (IS_ERR(child_ctr)) 10254 return PTR_ERR(child_ctr); 10255 } 10256 return 0; 10257 } 10258 10259 static int 10260 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10261 struct perf_event_context *parent_ctx, 10262 struct task_struct *child, int ctxn, 10263 int *inherited_all) 10264 { 10265 int ret; 10266 struct perf_event_context *child_ctx; 10267 10268 if (!event->attr.inherit) { 10269 *inherited_all = 0; 10270 return 0; 10271 } 10272 10273 child_ctx = child->perf_event_ctxp[ctxn]; 10274 if (!child_ctx) { 10275 /* 10276 * This is executed from the parent task context, so 10277 * inherit events that have been marked for cloning. 10278 * First allocate and initialize a context for the 10279 * child. 10280 */ 10281 10282 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10283 if (!child_ctx) 10284 return -ENOMEM; 10285 10286 child->perf_event_ctxp[ctxn] = child_ctx; 10287 } 10288 10289 ret = inherit_group(event, parent, parent_ctx, 10290 child, child_ctx); 10291 10292 if (ret) 10293 *inherited_all = 0; 10294 10295 return ret; 10296 } 10297 10298 /* 10299 * Initialize the perf_event context in task_struct 10300 */ 10301 static int perf_event_init_context(struct task_struct *child, int ctxn) 10302 { 10303 struct perf_event_context *child_ctx, *parent_ctx; 10304 struct perf_event_context *cloned_ctx; 10305 struct perf_event *event; 10306 struct task_struct *parent = current; 10307 int inherited_all = 1; 10308 unsigned long flags; 10309 int ret = 0; 10310 10311 if (likely(!parent->perf_event_ctxp[ctxn])) 10312 return 0; 10313 10314 /* 10315 * If the parent's context is a clone, pin it so it won't get 10316 * swapped under us. 10317 */ 10318 parent_ctx = perf_pin_task_context(parent, ctxn); 10319 if (!parent_ctx) 10320 return 0; 10321 10322 /* 10323 * No need to check if parent_ctx != NULL here; since we saw 10324 * it non-NULL earlier, the only reason for it to become NULL 10325 * is if we exit, and since we're currently in the middle of 10326 * a fork we can't be exiting at the same time. 10327 */ 10328 10329 /* 10330 * Lock the parent list. No need to lock the child - not PID 10331 * hashed yet and not running, so nobody can access it. 10332 */ 10333 mutex_lock(&parent_ctx->mutex); 10334 10335 /* 10336 * We dont have to disable NMIs - we are only looking at 10337 * the list, not manipulating it: 10338 */ 10339 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10340 ret = inherit_task_group(event, parent, parent_ctx, 10341 child, ctxn, &inherited_all); 10342 if (ret) 10343 break; 10344 } 10345 10346 /* 10347 * We can't hold ctx->lock when iterating the ->flexible_group list due 10348 * to allocations, but we need to prevent rotation because 10349 * rotate_ctx() will change the list from interrupt context. 10350 */ 10351 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10352 parent_ctx->rotate_disable = 1; 10353 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10354 10355 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10356 ret = inherit_task_group(event, parent, parent_ctx, 10357 child, ctxn, &inherited_all); 10358 if (ret) 10359 break; 10360 } 10361 10362 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10363 parent_ctx->rotate_disable = 0; 10364 10365 child_ctx = child->perf_event_ctxp[ctxn]; 10366 10367 if (child_ctx && inherited_all) { 10368 /* 10369 * Mark the child context as a clone of the parent 10370 * context, or of whatever the parent is a clone of. 10371 * 10372 * Note that if the parent is a clone, the holding of 10373 * parent_ctx->lock avoids it from being uncloned. 10374 */ 10375 cloned_ctx = parent_ctx->parent_ctx; 10376 if (cloned_ctx) { 10377 child_ctx->parent_ctx = cloned_ctx; 10378 child_ctx->parent_gen = parent_ctx->parent_gen; 10379 } else { 10380 child_ctx->parent_ctx = parent_ctx; 10381 child_ctx->parent_gen = parent_ctx->generation; 10382 } 10383 get_ctx(child_ctx->parent_ctx); 10384 } 10385 10386 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10387 mutex_unlock(&parent_ctx->mutex); 10388 10389 perf_unpin_context(parent_ctx); 10390 put_ctx(parent_ctx); 10391 10392 return ret; 10393 } 10394 10395 /* 10396 * Initialize the perf_event context in task_struct 10397 */ 10398 int perf_event_init_task(struct task_struct *child) 10399 { 10400 int ctxn, ret; 10401 10402 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 10403 mutex_init(&child->perf_event_mutex); 10404 INIT_LIST_HEAD(&child->perf_event_list); 10405 10406 for_each_task_context_nr(ctxn) { 10407 ret = perf_event_init_context(child, ctxn); 10408 if (ret) { 10409 perf_event_free_task(child); 10410 return ret; 10411 } 10412 } 10413 10414 return 0; 10415 } 10416 10417 static void __init perf_event_init_all_cpus(void) 10418 { 10419 struct swevent_htable *swhash; 10420 int cpu; 10421 10422 for_each_possible_cpu(cpu) { 10423 swhash = &per_cpu(swevent_htable, cpu); 10424 mutex_init(&swhash->hlist_mutex); 10425 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 10426 10427 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 10428 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 10429 } 10430 } 10431 10432 int perf_event_init_cpu(unsigned int cpu) 10433 { 10434 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10435 10436 mutex_lock(&swhash->hlist_mutex); 10437 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 10438 struct swevent_hlist *hlist; 10439 10440 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 10441 WARN_ON(!hlist); 10442 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10443 } 10444 mutex_unlock(&swhash->hlist_mutex); 10445 return 0; 10446 } 10447 10448 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 10449 static void __perf_event_exit_context(void *__info) 10450 { 10451 struct perf_event_context *ctx = __info; 10452 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 10453 struct perf_event *event; 10454 10455 raw_spin_lock(&ctx->lock); 10456 list_for_each_entry(event, &ctx->event_list, event_entry) 10457 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 10458 raw_spin_unlock(&ctx->lock); 10459 } 10460 10461 static void perf_event_exit_cpu_context(int cpu) 10462 { 10463 struct perf_event_context *ctx; 10464 struct pmu *pmu; 10465 int idx; 10466 10467 idx = srcu_read_lock(&pmus_srcu); 10468 list_for_each_entry_rcu(pmu, &pmus, entry) { 10469 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 10470 10471 mutex_lock(&ctx->mutex); 10472 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 10473 mutex_unlock(&ctx->mutex); 10474 } 10475 srcu_read_unlock(&pmus_srcu, idx); 10476 } 10477 #else 10478 10479 static void perf_event_exit_cpu_context(int cpu) { } 10480 10481 #endif 10482 10483 int perf_event_exit_cpu(unsigned int cpu) 10484 { 10485 perf_event_exit_cpu_context(cpu); 10486 return 0; 10487 } 10488 10489 static int 10490 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 10491 { 10492 int cpu; 10493 10494 for_each_online_cpu(cpu) 10495 perf_event_exit_cpu(cpu); 10496 10497 return NOTIFY_OK; 10498 } 10499 10500 /* 10501 * Run the perf reboot notifier at the very last possible moment so that 10502 * the generic watchdog code runs as long as possible. 10503 */ 10504 static struct notifier_block perf_reboot_notifier = { 10505 .notifier_call = perf_reboot, 10506 .priority = INT_MIN, 10507 }; 10508 10509 void __init perf_event_init(void) 10510 { 10511 int ret; 10512 10513 idr_init(&pmu_idr); 10514 10515 perf_event_init_all_cpus(); 10516 init_srcu_struct(&pmus_srcu); 10517 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 10518 perf_pmu_register(&perf_cpu_clock, NULL, -1); 10519 perf_pmu_register(&perf_task_clock, NULL, -1); 10520 perf_tp_register(); 10521 perf_event_init_cpu(smp_processor_id()); 10522 register_reboot_notifier(&perf_reboot_notifier); 10523 10524 ret = init_hw_breakpoint(); 10525 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 10526 10527 /* 10528 * Build time assertion that we keep the data_head at the intended 10529 * location. IOW, validation we got the __reserved[] size right. 10530 */ 10531 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 10532 != 1024); 10533 } 10534 10535 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 10536 char *page) 10537 { 10538 struct perf_pmu_events_attr *pmu_attr = 10539 container_of(attr, struct perf_pmu_events_attr, attr); 10540 10541 if (pmu_attr->event_str) 10542 return sprintf(page, "%s\n", pmu_attr->event_str); 10543 10544 return 0; 10545 } 10546 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 10547 10548 static int __init perf_event_sysfs_init(void) 10549 { 10550 struct pmu *pmu; 10551 int ret; 10552 10553 mutex_lock(&pmus_lock); 10554 10555 ret = bus_register(&pmu_bus); 10556 if (ret) 10557 goto unlock; 10558 10559 list_for_each_entry(pmu, &pmus, entry) { 10560 if (!pmu->name || pmu->type < 0) 10561 continue; 10562 10563 ret = pmu_dev_alloc(pmu); 10564 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 10565 } 10566 pmu_bus_running = 1; 10567 ret = 0; 10568 10569 unlock: 10570 mutex_unlock(&pmus_lock); 10571 10572 return ret; 10573 } 10574 device_initcall(perf_event_sysfs_init); 10575 10576 #ifdef CONFIG_CGROUP_PERF 10577 static struct cgroup_subsys_state * 10578 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10579 { 10580 struct perf_cgroup *jc; 10581 10582 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 10583 if (!jc) 10584 return ERR_PTR(-ENOMEM); 10585 10586 jc->info = alloc_percpu(struct perf_cgroup_info); 10587 if (!jc->info) { 10588 kfree(jc); 10589 return ERR_PTR(-ENOMEM); 10590 } 10591 10592 return &jc->css; 10593 } 10594 10595 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 10596 { 10597 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 10598 10599 free_percpu(jc->info); 10600 kfree(jc); 10601 } 10602 10603 static int __perf_cgroup_move(void *info) 10604 { 10605 struct task_struct *task = info; 10606 rcu_read_lock(); 10607 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 10608 rcu_read_unlock(); 10609 return 0; 10610 } 10611 10612 static void perf_cgroup_attach(struct cgroup_taskset *tset) 10613 { 10614 struct task_struct *task; 10615 struct cgroup_subsys_state *css; 10616 10617 cgroup_taskset_for_each(task, css, tset) 10618 task_function_call(task, __perf_cgroup_move, task); 10619 } 10620 10621 struct cgroup_subsys perf_event_cgrp_subsys = { 10622 .css_alloc = perf_cgroup_css_alloc, 10623 .css_free = perf_cgroup_css_free, 10624 .attach = perf_cgroup_attach, 10625 }; 10626 #endif /* CONFIG_CGROUP_PERF */ 10627