1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 58 #include "internal.h" 59 60 #include <asm/irq_regs.h> 61 62 typedef int (*remote_function_f)(void *); 63 64 struct remote_function_call { 65 struct task_struct *p; 66 remote_function_f func; 67 void *info; 68 int ret; 69 }; 70 71 static void remote_function(void *data) 72 { 73 struct remote_function_call *tfc = data; 74 struct task_struct *p = tfc->p; 75 76 if (p) { 77 /* -EAGAIN */ 78 if (task_cpu(p) != smp_processor_id()) 79 return; 80 81 /* 82 * Now that we're on right CPU with IRQs disabled, we can test 83 * if we hit the right task without races. 84 */ 85 86 tfc->ret = -ESRCH; /* No such (running) process */ 87 if (p != current) 88 return; 89 } 90 91 tfc->ret = tfc->func(tfc->info); 92 } 93 94 /** 95 * task_function_call - call a function on the cpu on which a task runs 96 * @p: the task to evaluate 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func when the task is currently running. This might 101 * be on the current CPU, which just calls the function directly. This will 102 * retry due to any failures in smp_call_function_single(), such as if the 103 * task_cpu() goes offline concurrently. 104 * 105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 106 */ 107 static int 108 task_function_call(struct task_struct *p, remote_function_f func, void *info) 109 { 110 struct remote_function_call data = { 111 .p = p, 112 .func = func, 113 .info = info, 114 .ret = -EAGAIN, 115 }; 116 int ret; 117 118 for (;;) { 119 ret = smp_call_function_single(task_cpu(p), remote_function, 120 &data, 1); 121 if (!ret) 122 ret = data.ret; 123 124 if (ret != -EAGAIN) 125 break; 126 127 cond_resched(); 128 } 129 130 return ret; 131 } 132 133 /** 134 * cpu_function_call - call a function on the cpu 135 * @cpu: target cpu to queue this function 136 * @func: the function to be called 137 * @info: the function call argument 138 * 139 * Calls the function @func on the remote cpu. 140 * 141 * returns: @func return value or -ENXIO when the cpu is offline 142 */ 143 static int cpu_function_call(int cpu, remote_function_f func, void *info) 144 { 145 struct remote_function_call data = { 146 .p = NULL, 147 .func = func, 148 .info = info, 149 .ret = -ENXIO, /* No such CPU */ 150 }; 151 152 smp_call_function_single(cpu, remote_function, &data, 1); 153 154 return data.ret; 155 } 156 157 static inline struct perf_cpu_context * 158 __get_cpu_context(struct perf_event_context *ctx) 159 { 160 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 161 } 162 163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 164 struct perf_event_context *ctx) 165 { 166 raw_spin_lock(&cpuctx->ctx.lock); 167 if (ctx) 168 raw_spin_lock(&ctx->lock); 169 } 170 171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 172 struct perf_event_context *ctx) 173 { 174 if (ctx) 175 raw_spin_unlock(&ctx->lock); 176 raw_spin_unlock(&cpuctx->ctx.lock); 177 } 178 179 #define TASK_TOMBSTONE ((void *)-1L) 180 181 static bool is_kernel_event(struct perf_event *event) 182 { 183 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 184 } 185 186 /* 187 * On task ctx scheduling... 188 * 189 * When !ctx->nr_events a task context will not be scheduled. This means 190 * we can disable the scheduler hooks (for performance) without leaving 191 * pending task ctx state. 192 * 193 * This however results in two special cases: 194 * 195 * - removing the last event from a task ctx; this is relatively straight 196 * forward and is done in __perf_remove_from_context. 197 * 198 * - adding the first event to a task ctx; this is tricky because we cannot 199 * rely on ctx->is_active and therefore cannot use event_function_call(). 200 * See perf_install_in_context(). 201 * 202 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 203 */ 204 205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 206 struct perf_event_context *, void *); 207 208 struct event_function_struct { 209 struct perf_event *event; 210 event_f func; 211 void *data; 212 }; 213 214 static int event_function(void *info) 215 { 216 struct event_function_struct *efs = info; 217 struct perf_event *event = efs->event; 218 struct perf_event_context *ctx = event->ctx; 219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 220 struct perf_event_context *task_ctx = cpuctx->task_ctx; 221 int ret = 0; 222 223 lockdep_assert_irqs_disabled(); 224 225 perf_ctx_lock(cpuctx, task_ctx); 226 /* 227 * Since we do the IPI call without holding ctx->lock things can have 228 * changed, double check we hit the task we set out to hit. 229 */ 230 if (ctx->task) { 231 if (ctx->task != current) { 232 ret = -ESRCH; 233 goto unlock; 234 } 235 236 /* 237 * We only use event_function_call() on established contexts, 238 * and event_function() is only ever called when active (or 239 * rather, we'll have bailed in task_function_call() or the 240 * above ctx->task != current test), therefore we must have 241 * ctx->is_active here. 242 */ 243 WARN_ON_ONCE(!ctx->is_active); 244 /* 245 * And since we have ctx->is_active, cpuctx->task_ctx must 246 * match. 247 */ 248 WARN_ON_ONCE(task_ctx != ctx); 249 } else { 250 WARN_ON_ONCE(&cpuctx->ctx != ctx); 251 } 252 253 efs->func(event, cpuctx, ctx, efs->data); 254 unlock: 255 perf_ctx_unlock(cpuctx, task_ctx); 256 257 return ret; 258 } 259 260 static void event_function_call(struct perf_event *event, event_f func, void *data) 261 { 262 struct perf_event_context *ctx = event->ctx; 263 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 264 struct event_function_struct efs = { 265 .event = event, 266 .func = func, 267 .data = data, 268 }; 269 270 if (!event->parent) { 271 /* 272 * If this is a !child event, we must hold ctx::mutex to 273 * stabilize the event->ctx relation. See 274 * perf_event_ctx_lock(). 275 */ 276 lockdep_assert_held(&ctx->mutex); 277 } 278 279 if (!task) { 280 cpu_function_call(event->cpu, event_function, &efs); 281 return; 282 } 283 284 if (task == TASK_TOMBSTONE) 285 return; 286 287 again: 288 if (!task_function_call(task, event_function, &efs)) 289 return; 290 291 raw_spin_lock_irq(&ctx->lock); 292 /* 293 * Reload the task pointer, it might have been changed by 294 * a concurrent perf_event_context_sched_out(). 295 */ 296 task = ctx->task; 297 if (task == TASK_TOMBSTONE) { 298 raw_spin_unlock_irq(&ctx->lock); 299 return; 300 } 301 if (ctx->is_active) { 302 raw_spin_unlock_irq(&ctx->lock); 303 goto again; 304 } 305 func(event, NULL, ctx, data); 306 raw_spin_unlock_irq(&ctx->lock); 307 } 308 309 /* 310 * Similar to event_function_call() + event_function(), but hard assumes IRQs 311 * are already disabled and we're on the right CPU. 312 */ 313 static void event_function_local(struct perf_event *event, event_f func, void *data) 314 { 315 struct perf_event_context *ctx = event->ctx; 316 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 317 struct task_struct *task = READ_ONCE(ctx->task); 318 struct perf_event_context *task_ctx = NULL; 319 320 lockdep_assert_irqs_disabled(); 321 322 if (task) { 323 if (task == TASK_TOMBSTONE) 324 return; 325 326 task_ctx = ctx; 327 } 328 329 perf_ctx_lock(cpuctx, task_ctx); 330 331 task = ctx->task; 332 if (task == TASK_TOMBSTONE) 333 goto unlock; 334 335 if (task) { 336 /* 337 * We must be either inactive or active and the right task, 338 * otherwise we're screwed, since we cannot IPI to somewhere 339 * else. 340 */ 341 if (ctx->is_active) { 342 if (WARN_ON_ONCE(task != current)) 343 goto unlock; 344 345 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 346 goto unlock; 347 } 348 } else { 349 WARN_ON_ONCE(&cpuctx->ctx != ctx); 350 } 351 352 func(event, cpuctx, ctx, data); 353 unlock: 354 perf_ctx_unlock(cpuctx, task_ctx); 355 } 356 357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 358 PERF_FLAG_FD_OUTPUT |\ 359 PERF_FLAG_PID_CGROUP |\ 360 PERF_FLAG_FD_CLOEXEC) 361 362 /* 363 * branch priv levels that need permission checks 364 */ 365 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 366 (PERF_SAMPLE_BRANCH_KERNEL |\ 367 PERF_SAMPLE_BRANCH_HV) 368 369 enum event_type_t { 370 EVENT_FLEXIBLE = 0x1, 371 EVENT_PINNED = 0x2, 372 EVENT_TIME = 0x4, 373 /* see ctx_resched() for details */ 374 EVENT_CPU = 0x8, 375 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 376 }; 377 378 /* 379 * perf_sched_events : >0 events exist 380 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 381 */ 382 383 static void perf_sched_delayed(struct work_struct *work); 384 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 386 static DEFINE_MUTEX(perf_sched_mutex); 387 static atomic_t perf_sched_count; 388 389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 390 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 392 393 static atomic_t nr_mmap_events __read_mostly; 394 static atomic_t nr_comm_events __read_mostly; 395 static atomic_t nr_namespaces_events __read_mostly; 396 static atomic_t nr_task_events __read_mostly; 397 static atomic_t nr_freq_events __read_mostly; 398 static atomic_t nr_switch_events __read_mostly; 399 static atomic_t nr_ksymbol_events __read_mostly; 400 static atomic_t nr_bpf_events __read_mostly; 401 static atomic_t nr_cgroup_events __read_mostly; 402 static atomic_t nr_text_poke_events __read_mostly; 403 static atomic_t nr_build_id_events __read_mostly; 404 405 static LIST_HEAD(pmus); 406 static DEFINE_MUTEX(pmus_lock); 407 static struct srcu_struct pmus_srcu; 408 static cpumask_var_t perf_online_mask; 409 static struct kmem_cache *perf_event_cache; 410 411 /* 412 * perf event paranoia level: 413 * -1 - not paranoid at all 414 * 0 - disallow raw tracepoint access for unpriv 415 * 1 - disallow cpu events for unpriv 416 * 2 - disallow kernel profiling for unpriv 417 */ 418 int sysctl_perf_event_paranoid __read_mostly = 2; 419 420 /* Minimum for 512 kiB + 1 user control page */ 421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 422 423 /* 424 * max perf event sample rate 425 */ 426 #define DEFAULT_MAX_SAMPLE_RATE 100000 427 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 428 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 429 430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 431 432 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 433 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 434 435 static int perf_sample_allowed_ns __read_mostly = 436 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 437 438 static void update_perf_cpu_limits(void) 439 { 440 u64 tmp = perf_sample_period_ns; 441 442 tmp *= sysctl_perf_cpu_time_max_percent; 443 tmp = div_u64(tmp, 100); 444 if (!tmp) 445 tmp = 1; 446 447 WRITE_ONCE(perf_sample_allowed_ns, tmp); 448 } 449 450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 451 452 int perf_proc_update_handler(struct ctl_table *table, int write, 453 void *buffer, size_t *lenp, loff_t *ppos) 454 { 455 int ret; 456 int perf_cpu = sysctl_perf_cpu_time_max_percent; 457 /* 458 * If throttling is disabled don't allow the write: 459 */ 460 if (write && (perf_cpu == 100 || perf_cpu == 0)) 461 return -EINVAL; 462 463 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 464 if (ret || !write) 465 return ret; 466 467 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 468 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 469 update_perf_cpu_limits(); 470 471 return 0; 472 } 473 474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 475 476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 477 void *buffer, size_t *lenp, loff_t *ppos) 478 { 479 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 480 481 if (ret || !write) 482 return ret; 483 484 if (sysctl_perf_cpu_time_max_percent == 100 || 485 sysctl_perf_cpu_time_max_percent == 0) { 486 printk(KERN_WARNING 487 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 488 WRITE_ONCE(perf_sample_allowed_ns, 0); 489 } else { 490 update_perf_cpu_limits(); 491 } 492 493 return 0; 494 } 495 496 /* 497 * perf samples are done in some very critical code paths (NMIs). 498 * If they take too much CPU time, the system can lock up and not 499 * get any real work done. This will drop the sample rate when 500 * we detect that events are taking too long. 501 */ 502 #define NR_ACCUMULATED_SAMPLES 128 503 static DEFINE_PER_CPU(u64, running_sample_length); 504 505 static u64 __report_avg; 506 static u64 __report_allowed; 507 508 static void perf_duration_warn(struct irq_work *w) 509 { 510 printk_ratelimited(KERN_INFO 511 "perf: interrupt took too long (%lld > %lld), lowering " 512 "kernel.perf_event_max_sample_rate to %d\n", 513 __report_avg, __report_allowed, 514 sysctl_perf_event_sample_rate); 515 } 516 517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 518 519 void perf_sample_event_took(u64 sample_len_ns) 520 { 521 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 522 u64 running_len; 523 u64 avg_len; 524 u32 max; 525 526 if (max_len == 0) 527 return; 528 529 /* Decay the counter by 1 average sample. */ 530 running_len = __this_cpu_read(running_sample_length); 531 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 532 running_len += sample_len_ns; 533 __this_cpu_write(running_sample_length, running_len); 534 535 /* 536 * Note: this will be biased artifically low until we have 537 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 538 * from having to maintain a count. 539 */ 540 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 541 if (avg_len <= max_len) 542 return; 543 544 __report_avg = avg_len; 545 __report_allowed = max_len; 546 547 /* 548 * Compute a throttle threshold 25% below the current duration. 549 */ 550 avg_len += avg_len / 4; 551 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 552 if (avg_len < max) 553 max /= (u32)avg_len; 554 else 555 max = 1; 556 557 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 558 WRITE_ONCE(max_samples_per_tick, max); 559 560 sysctl_perf_event_sample_rate = max * HZ; 561 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 562 563 if (!irq_work_queue(&perf_duration_work)) { 564 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 565 "kernel.perf_event_max_sample_rate to %d\n", 566 __report_avg, __report_allowed, 567 sysctl_perf_event_sample_rate); 568 } 569 } 570 571 static atomic64_t perf_event_id; 572 573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 574 enum event_type_t event_type); 575 576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 577 enum event_type_t event_type); 578 579 static void update_context_time(struct perf_event_context *ctx); 580 static u64 perf_event_time(struct perf_event *event); 581 582 void __weak perf_event_print_debug(void) { } 583 584 static inline u64 perf_clock(void) 585 { 586 return local_clock(); 587 } 588 589 static inline u64 perf_event_clock(struct perf_event *event) 590 { 591 return event->clock(); 592 } 593 594 /* 595 * State based event timekeeping... 596 * 597 * The basic idea is to use event->state to determine which (if any) time 598 * fields to increment with the current delta. This means we only need to 599 * update timestamps when we change state or when they are explicitly requested 600 * (read). 601 * 602 * Event groups make things a little more complicated, but not terribly so. The 603 * rules for a group are that if the group leader is OFF the entire group is 604 * OFF, irrespecive of what the group member states are. This results in 605 * __perf_effective_state(). 606 * 607 * A futher ramification is that when a group leader flips between OFF and 608 * !OFF, we need to update all group member times. 609 * 610 * 611 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 612 * need to make sure the relevant context time is updated before we try and 613 * update our timestamps. 614 */ 615 616 static __always_inline enum perf_event_state 617 __perf_effective_state(struct perf_event *event) 618 { 619 struct perf_event *leader = event->group_leader; 620 621 if (leader->state <= PERF_EVENT_STATE_OFF) 622 return leader->state; 623 624 return event->state; 625 } 626 627 static __always_inline void 628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 629 { 630 enum perf_event_state state = __perf_effective_state(event); 631 u64 delta = now - event->tstamp; 632 633 *enabled = event->total_time_enabled; 634 if (state >= PERF_EVENT_STATE_INACTIVE) 635 *enabled += delta; 636 637 *running = event->total_time_running; 638 if (state >= PERF_EVENT_STATE_ACTIVE) 639 *running += delta; 640 } 641 642 static void perf_event_update_time(struct perf_event *event) 643 { 644 u64 now = perf_event_time(event); 645 646 __perf_update_times(event, now, &event->total_time_enabled, 647 &event->total_time_running); 648 event->tstamp = now; 649 } 650 651 static void perf_event_update_sibling_time(struct perf_event *leader) 652 { 653 struct perf_event *sibling; 654 655 for_each_sibling_event(sibling, leader) 656 perf_event_update_time(sibling); 657 } 658 659 static void 660 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 661 { 662 if (event->state == state) 663 return; 664 665 perf_event_update_time(event); 666 /* 667 * If a group leader gets enabled/disabled all its siblings 668 * are affected too. 669 */ 670 if ((event->state < 0) ^ (state < 0)) 671 perf_event_update_sibling_time(event); 672 673 WRITE_ONCE(event->state, state); 674 } 675 676 /* 677 * UP store-release, load-acquire 678 */ 679 680 #define __store_release(ptr, val) \ 681 do { \ 682 barrier(); \ 683 WRITE_ONCE(*(ptr), (val)); \ 684 } while (0) 685 686 #define __load_acquire(ptr) \ 687 ({ \ 688 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 689 barrier(); \ 690 ___p; \ 691 }) 692 693 #ifdef CONFIG_CGROUP_PERF 694 695 static inline bool 696 perf_cgroup_match(struct perf_event *event) 697 { 698 struct perf_event_context *ctx = event->ctx; 699 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 700 701 /* @event doesn't care about cgroup */ 702 if (!event->cgrp) 703 return true; 704 705 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 706 if (!cpuctx->cgrp) 707 return false; 708 709 /* 710 * Cgroup scoping is recursive. An event enabled for a cgroup is 711 * also enabled for all its descendant cgroups. If @cpuctx's 712 * cgroup is a descendant of @event's (the test covers identity 713 * case), it's a match. 714 */ 715 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 716 event->cgrp->css.cgroup); 717 } 718 719 static inline void perf_detach_cgroup(struct perf_event *event) 720 { 721 css_put(&event->cgrp->css); 722 event->cgrp = NULL; 723 } 724 725 static inline int is_cgroup_event(struct perf_event *event) 726 { 727 return event->cgrp != NULL; 728 } 729 730 static inline u64 perf_cgroup_event_time(struct perf_event *event) 731 { 732 struct perf_cgroup_info *t; 733 734 t = per_cpu_ptr(event->cgrp->info, event->cpu); 735 return t->time; 736 } 737 738 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 739 { 740 struct perf_cgroup_info *t; 741 742 t = per_cpu_ptr(event->cgrp->info, event->cpu); 743 if (!__load_acquire(&t->active)) 744 return t->time; 745 now += READ_ONCE(t->timeoffset); 746 return now; 747 } 748 749 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 750 { 751 if (adv) 752 info->time += now - info->timestamp; 753 info->timestamp = now; 754 /* 755 * see update_context_time() 756 */ 757 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 758 } 759 760 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 761 { 762 struct perf_cgroup *cgrp = cpuctx->cgrp; 763 struct cgroup_subsys_state *css; 764 struct perf_cgroup_info *info; 765 766 if (cgrp) { 767 u64 now = perf_clock(); 768 769 for (css = &cgrp->css; css; css = css->parent) { 770 cgrp = container_of(css, struct perf_cgroup, css); 771 info = this_cpu_ptr(cgrp->info); 772 773 __update_cgrp_time(info, now, true); 774 if (final) 775 __store_release(&info->active, 0); 776 } 777 } 778 } 779 780 static inline void update_cgrp_time_from_event(struct perf_event *event) 781 { 782 struct perf_cgroup_info *info; 783 784 /* 785 * ensure we access cgroup data only when needed and 786 * when we know the cgroup is pinned (css_get) 787 */ 788 if (!is_cgroup_event(event)) 789 return; 790 791 info = this_cpu_ptr(event->cgrp->info); 792 /* 793 * Do not update time when cgroup is not active 794 */ 795 if (info->active) 796 __update_cgrp_time(info, perf_clock(), true); 797 } 798 799 static inline void 800 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 801 { 802 struct perf_event_context *ctx = &cpuctx->ctx; 803 struct perf_cgroup *cgrp = cpuctx->cgrp; 804 struct perf_cgroup_info *info; 805 struct cgroup_subsys_state *css; 806 807 /* 808 * ctx->lock held by caller 809 * ensure we do not access cgroup data 810 * unless we have the cgroup pinned (css_get) 811 */ 812 if (!cgrp) 813 return; 814 815 WARN_ON_ONCE(!ctx->nr_cgroups); 816 817 for (css = &cgrp->css; css; css = css->parent) { 818 cgrp = container_of(css, struct perf_cgroup, css); 819 info = this_cpu_ptr(cgrp->info); 820 __update_cgrp_time(info, ctx->timestamp, false); 821 __store_release(&info->active, 1); 822 } 823 } 824 825 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 826 827 /* 828 * reschedule events based on the cgroup constraint of task. 829 */ 830 static void perf_cgroup_switch(struct task_struct *task) 831 { 832 struct perf_cgroup *cgrp; 833 struct perf_cpu_context *cpuctx, *tmp; 834 struct list_head *list; 835 unsigned long flags; 836 837 /* 838 * Disable interrupts and preemption to avoid this CPU's 839 * cgrp_cpuctx_entry to change under us. 840 */ 841 local_irq_save(flags); 842 843 cgrp = perf_cgroup_from_task(task, NULL); 844 845 list = this_cpu_ptr(&cgrp_cpuctx_list); 846 list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) { 847 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 848 if (READ_ONCE(cpuctx->cgrp) == cgrp) 849 continue; 850 851 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 852 perf_pmu_disable(cpuctx->ctx.pmu); 853 854 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 855 /* 856 * must not be done before ctxswout due 857 * to update_cgrp_time_from_cpuctx() in 858 * ctx_sched_out() 859 */ 860 cpuctx->cgrp = cgrp; 861 /* 862 * set cgrp before ctxsw in to allow 863 * perf_cgroup_set_timestamp() in ctx_sched_in() 864 * to not have to pass task around 865 */ 866 cpu_ctx_sched_in(cpuctx, EVENT_ALL); 867 868 perf_pmu_enable(cpuctx->ctx.pmu); 869 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 870 } 871 872 local_irq_restore(flags); 873 } 874 875 static int perf_cgroup_ensure_storage(struct perf_event *event, 876 struct cgroup_subsys_state *css) 877 { 878 struct perf_cpu_context *cpuctx; 879 struct perf_event **storage; 880 int cpu, heap_size, ret = 0; 881 882 /* 883 * Allow storage to have sufficent space for an iterator for each 884 * possibly nested cgroup plus an iterator for events with no cgroup. 885 */ 886 for (heap_size = 1; css; css = css->parent) 887 heap_size++; 888 889 for_each_possible_cpu(cpu) { 890 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 891 if (heap_size <= cpuctx->heap_size) 892 continue; 893 894 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 895 GFP_KERNEL, cpu_to_node(cpu)); 896 if (!storage) { 897 ret = -ENOMEM; 898 break; 899 } 900 901 raw_spin_lock_irq(&cpuctx->ctx.lock); 902 if (cpuctx->heap_size < heap_size) { 903 swap(cpuctx->heap, storage); 904 if (storage == cpuctx->heap_default) 905 storage = NULL; 906 cpuctx->heap_size = heap_size; 907 } 908 raw_spin_unlock_irq(&cpuctx->ctx.lock); 909 910 kfree(storage); 911 } 912 913 return ret; 914 } 915 916 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 917 struct perf_event_attr *attr, 918 struct perf_event *group_leader) 919 { 920 struct perf_cgroup *cgrp; 921 struct cgroup_subsys_state *css; 922 struct fd f = fdget(fd); 923 int ret = 0; 924 925 if (!f.file) 926 return -EBADF; 927 928 css = css_tryget_online_from_dir(f.file->f_path.dentry, 929 &perf_event_cgrp_subsys); 930 if (IS_ERR(css)) { 931 ret = PTR_ERR(css); 932 goto out; 933 } 934 935 ret = perf_cgroup_ensure_storage(event, css); 936 if (ret) 937 goto out; 938 939 cgrp = container_of(css, struct perf_cgroup, css); 940 event->cgrp = cgrp; 941 942 /* 943 * all events in a group must monitor 944 * the same cgroup because a task belongs 945 * to only one perf cgroup at a time 946 */ 947 if (group_leader && group_leader->cgrp != cgrp) { 948 perf_detach_cgroup(event); 949 ret = -EINVAL; 950 } 951 out: 952 fdput(f); 953 return ret; 954 } 955 956 static inline void 957 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 958 { 959 struct perf_cpu_context *cpuctx; 960 961 if (!is_cgroup_event(event)) 962 return; 963 964 /* 965 * Because cgroup events are always per-cpu events, 966 * @ctx == &cpuctx->ctx. 967 */ 968 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 969 970 if (ctx->nr_cgroups++) 971 return; 972 973 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 974 list_add(&cpuctx->cgrp_cpuctx_entry, 975 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 976 } 977 978 static inline void 979 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 980 { 981 struct perf_cpu_context *cpuctx; 982 983 if (!is_cgroup_event(event)) 984 return; 985 986 /* 987 * Because cgroup events are always per-cpu events, 988 * @ctx == &cpuctx->ctx. 989 */ 990 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 991 992 if (--ctx->nr_cgroups) 993 return; 994 995 cpuctx->cgrp = NULL; 996 list_del(&cpuctx->cgrp_cpuctx_entry); 997 } 998 999 #else /* !CONFIG_CGROUP_PERF */ 1000 1001 static inline bool 1002 perf_cgroup_match(struct perf_event *event) 1003 { 1004 return true; 1005 } 1006 1007 static inline void perf_detach_cgroup(struct perf_event *event) 1008 {} 1009 1010 static inline int is_cgroup_event(struct perf_event *event) 1011 { 1012 return 0; 1013 } 1014 1015 static inline void update_cgrp_time_from_event(struct perf_event *event) 1016 { 1017 } 1018 1019 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1020 bool final) 1021 { 1022 } 1023 1024 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1025 struct perf_event_attr *attr, 1026 struct perf_event *group_leader) 1027 { 1028 return -EINVAL; 1029 } 1030 1031 static inline void 1032 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1033 { 1034 } 1035 1036 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1037 { 1038 return 0; 1039 } 1040 1041 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1042 { 1043 return 0; 1044 } 1045 1046 static inline void 1047 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1048 { 1049 } 1050 1051 static inline void 1052 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1053 { 1054 } 1055 1056 static void perf_cgroup_switch(struct task_struct *task) 1057 { 1058 } 1059 #endif 1060 1061 /* 1062 * set default to be dependent on timer tick just 1063 * like original code 1064 */ 1065 #define PERF_CPU_HRTIMER (1000 / HZ) 1066 /* 1067 * function must be called with interrupts disabled 1068 */ 1069 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1070 { 1071 struct perf_cpu_context *cpuctx; 1072 bool rotations; 1073 1074 lockdep_assert_irqs_disabled(); 1075 1076 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1077 rotations = perf_rotate_context(cpuctx); 1078 1079 raw_spin_lock(&cpuctx->hrtimer_lock); 1080 if (rotations) 1081 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1082 else 1083 cpuctx->hrtimer_active = 0; 1084 raw_spin_unlock(&cpuctx->hrtimer_lock); 1085 1086 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1087 } 1088 1089 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1090 { 1091 struct hrtimer *timer = &cpuctx->hrtimer; 1092 struct pmu *pmu = cpuctx->ctx.pmu; 1093 u64 interval; 1094 1095 /* no multiplexing needed for SW PMU */ 1096 if (pmu->task_ctx_nr == perf_sw_context) 1097 return; 1098 1099 /* 1100 * check default is sane, if not set then force to 1101 * default interval (1/tick) 1102 */ 1103 interval = pmu->hrtimer_interval_ms; 1104 if (interval < 1) 1105 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1106 1107 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1108 1109 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1110 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1111 timer->function = perf_mux_hrtimer_handler; 1112 } 1113 1114 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1115 { 1116 struct hrtimer *timer = &cpuctx->hrtimer; 1117 struct pmu *pmu = cpuctx->ctx.pmu; 1118 unsigned long flags; 1119 1120 /* not for SW PMU */ 1121 if (pmu->task_ctx_nr == perf_sw_context) 1122 return 0; 1123 1124 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1125 if (!cpuctx->hrtimer_active) { 1126 cpuctx->hrtimer_active = 1; 1127 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1128 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1129 } 1130 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1131 1132 return 0; 1133 } 1134 1135 void perf_pmu_disable(struct pmu *pmu) 1136 { 1137 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1138 if (!(*count)++) 1139 pmu->pmu_disable(pmu); 1140 } 1141 1142 void perf_pmu_enable(struct pmu *pmu) 1143 { 1144 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1145 if (!--(*count)) 1146 pmu->pmu_enable(pmu); 1147 } 1148 1149 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1150 1151 /* 1152 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1153 * perf_event_task_tick() are fully serialized because they're strictly cpu 1154 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1155 * disabled, while perf_event_task_tick is called from IRQ context. 1156 */ 1157 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1158 { 1159 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1160 1161 lockdep_assert_irqs_disabled(); 1162 1163 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1164 1165 list_add(&ctx->active_ctx_list, head); 1166 } 1167 1168 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1169 { 1170 lockdep_assert_irqs_disabled(); 1171 1172 WARN_ON(list_empty(&ctx->active_ctx_list)); 1173 1174 list_del_init(&ctx->active_ctx_list); 1175 } 1176 1177 static void get_ctx(struct perf_event_context *ctx) 1178 { 1179 refcount_inc(&ctx->refcount); 1180 } 1181 1182 static void *alloc_task_ctx_data(struct pmu *pmu) 1183 { 1184 if (pmu->task_ctx_cache) 1185 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1186 1187 return NULL; 1188 } 1189 1190 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1191 { 1192 if (pmu->task_ctx_cache && task_ctx_data) 1193 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1194 } 1195 1196 static void free_ctx(struct rcu_head *head) 1197 { 1198 struct perf_event_context *ctx; 1199 1200 ctx = container_of(head, struct perf_event_context, rcu_head); 1201 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1202 kfree(ctx); 1203 } 1204 1205 static void put_ctx(struct perf_event_context *ctx) 1206 { 1207 if (refcount_dec_and_test(&ctx->refcount)) { 1208 if (ctx->parent_ctx) 1209 put_ctx(ctx->parent_ctx); 1210 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1211 put_task_struct(ctx->task); 1212 call_rcu(&ctx->rcu_head, free_ctx); 1213 } 1214 } 1215 1216 /* 1217 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1218 * perf_pmu_migrate_context() we need some magic. 1219 * 1220 * Those places that change perf_event::ctx will hold both 1221 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1222 * 1223 * Lock ordering is by mutex address. There are two other sites where 1224 * perf_event_context::mutex nests and those are: 1225 * 1226 * - perf_event_exit_task_context() [ child , 0 ] 1227 * perf_event_exit_event() 1228 * put_event() [ parent, 1 ] 1229 * 1230 * - perf_event_init_context() [ parent, 0 ] 1231 * inherit_task_group() 1232 * inherit_group() 1233 * inherit_event() 1234 * perf_event_alloc() 1235 * perf_init_event() 1236 * perf_try_init_event() [ child , 1 ] 1237 * 1238 * While it appears there is an obvious deadlock here -- the parent and child 1239 * nesting levels are inverted between the two. This is in fact safe because 1240 * life-time rules separate them. That is an exiting task cannot fork, and a 1241 * spawning task cannot (yet) exit. 1242 * 1243 * But remember that these are parent<->child context relations, and 1244 * migration does not affect children, therefore these two orderings should not 1245 * interact. 1246 * 1247 * The change in perf_event::ctx does not affect children (as claimed above) 1248 * because the sys_perf_event_open() case will install a new event and break 1249 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1250 * concerned with cpuctx and that doesn't have children. 1251 * 1252 * The places that change perf_event::ctx will issue: 1253 * 1254 * perf_remove_from_context(); 1255 * synchronize_rcu(); 1256 * perf_install_in_context(); 1257 * 1258 * to affect the change. The remove_from_context() + synchronize_rcu() should 1259 * quiesce the event, after which we can install it in the new location. This 1260 * means that only external vectors (perf_fops, prctl) can perturb the event 1261 * while in transit. Therefore all such accessors should also acquire 1262 * perf_event_context::mutex to serialize against this. 1263 * 1264 * However; because event->ctx can change while we're waiting to acquire 1265 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1266 * function. 1267 * 1268 * Lock order: 1269 * exec_update_lock 1270 * task_struct::perf_event_mutex 1271 * perf_event_context::mutex 1272 * perf_event::child_mutex; 1273 * perf_event_context::lock 1274 * perf_event::mmap_mutex 1275 * mmap_lock 1276 * perf_addr_filters_head::lock 1277 * 1278 * cpu_hotplug_lock 1279 * pmus_lock 1280 * cpuctx->mutex / perf_event_context::mutex 1281 */ 1282 static struct perf_event_context * 1283 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1284 { 1285 struct perf_event_context *ctx; 1286 1287 again: 1288 rcu_read_lock(); 1289 ctx = READ_ONCE(event->ctx); 1290 if (!refcount_inc_not_zero(&ctx->refcount)) { 1291 rcu_read_unlock(); 1292 goto again; 1293 } 1294 rcu_read_unlock(); 1295 1296 mutex_lock_nested(&ctx->mutex, nesting); 1297 if (event->ctx != ctx) { 1298 mutex_unlock(&ctx->mutex); 1299 put_ctx(ctx); 1300 goto again; 1301 } 1302 1303 return ctx; 1304 } 1305 1306 static inline struct perf_event_context * 1307 perf_event_ctx_lock(struct perf_event *event) 1308 { 1309 return perf_event_ctx_lock_nested(event, 0); 1310 } 1311 1312 static void perf_event_ctx_unlock(struct perf_event *event, 1313 struct perf_event_context *ctx) 1314 { 1315 mutex_unlock(&ctx->mutex); 1316 put_ctx(ctx); 1317 } 1318 1319 /* 1320 * This must be done under the ctx->lock, such as to serialize against 1321 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1322 * calling scheduler related locks and ctx->lock nests inside those. 1323 */ 1324 static __must_check struct perf_event_context * 1325 unclone_ctx(struct perf_event_context *ctx) 1326 { 1327 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1328 1329 lockdep_assert_held(&ctx->lock); 1330 1331 if (parent_ctx) 1332 ctx->parent_ctx = NULL; 1333 ctx->generation++; 1334 1335 return parent_ctx; 1336 } 1337 1338 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1339 enum pid_type type) 1340 { 1341 u32 nr; 1342 /* 1343 * only top level events have the pid namespace they were created in 1344 */ 1345 if (event->parent) 1346 event = event->parent; 1347 1348 nr = __task_pid_nr_ns(p, type, event->ns); 1349 /* avoid -1 if it is idle thread or runs in another ns */ 1350 if (!nr && !pid_alive(p)) 1351 nr = -1; 1352 return nr; 1353 } 1354 1355 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1356 { 1357 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1358 } 1359 1360 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1361 { 1362 return perf_event_pid_type(event, p, PIDTYPE_PID); 1363 } 1364 1365 /* 1366 * If we inherit events we want to return the parent event id 1367 * to userspace. 1368 */ 1369 static u64 primary_event_id(struct perf_event *event) 1370 { 1371 u64 id = event->id; 1372 1373 if (event->parent) 1374 id = event->parent->id; 1375 1376 return id; 1377 } 1378 1379 /* 1380 * Get the perf_event_context for a task and lock it. 1381 * 1382 * This has to cope with the fact that until it is locked, 1383 * the context could get moved to another task. 1384 */ 1385 static struct perf_event_context * 1386 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1387 { 1388 struct perf_event_context *ctx; 1389 1390 retry: 1391 /* 1392 * One of the few rules of preemptible RCU is that one cannot do 1393 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1394 * part of the read side critical section was irqs-enabled -- see 1395 * rcu_read_unlock_special(). 1396 * 1397 * Since ctx->lock nests under rq->lock we must ensure the entire read 1398 * side critical section has interrupts disabled. 1399 */ 1400 local_irq_save(*flags); 1401 rcu_read_lock(); 1402 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1403 if (ctx) { 1404 /* 1405 * If this context is a clone of another, it might 1406 * get swapped for another underneath us by 1407 * perf_event_task_sched_out, though the 1408 * rcu_read_lock() protects us from any context 1409 * getting freed. Lock the context and check if it 1410 * got swapped before we could get the lock, and retry 1411 * if so. If we locked the right context, then it 1412 * can't get swapped on us any more. 1413 */ 1414 raw_spin_lock(&ctx->lock); 1415 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1416 raw_spin_unlock(&ctx->lock); 1417 rcu_read_unlock(); 1418 local_irq_restore(*flags); 1419 goto retry; 1420 } 1421 1422 if (ctx->task == TASK_TOMBSTONE || 1423 !refcount_inc_not_zero(&ctx->refcount)) { 1424 raw_spin_unlock(&ctx->lock); 1425 ctx = NULL; 1426 } else { 1427 WARN_ON_ONCE(ctx->task != task); 1428 } 1429 } 1430 rcu_read_unlock(); 1431 if (!ctx) 1432 local_irq_restore(*flags); 1433 return ctx; 1434 } 1435 1436 /* 1437 * Get the context for a task and increment its pin_count so it 1438 * can't get swapped to another task. This also increments its 1439 * reference count so that the context can't get freed. 1440 */ 1441 static struct perf_event_context * 1442 perf_pin_task_context(struct task_struct *task, int ctxn) 1443 { 1444 struct perf_event_context *ctx; 1445 unsigned long flags; 1446 1447 ctx = perf_lock_task_context(task, ctxn, &flags); 1448 if (ctx) { 1449 ++ctx->pin_count; 1450 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1451 } 1452 return ctx; 1453 } 1454 1455 static void perf_unpin_context(struct perf_event_context *ctx) 1456 { 1457 unsigned long flags; 1458 1459 raw_spin_lock_irqsave(&ctx->lock, flags); 1460 --ctx->pin_count; 1461 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1462 } 1463 1464 /* 1465 * Update the record of the current time in a context. 1466 */ 1467 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1468 { 1469 u64 now = perf_clock(); 1470 1471 lockdep_assert_held(&ctx->lock); 1472 1473 if (adv) 1474 ctx->time += now - ctx->timestamp; 1475 ctx->timestamp = now; 1476 1477 /* 1478 * The above: time' = time + (now - timestamp), can be re-arranged 1479 * into: time` = now + (time - timestamp), which gives a single value 1480 * offset to compute future time without locks on. 1481 * 1482 * See perf_event_time_now(), which can be used from NMI context where 1483 * it's (obviously) not possible to acquire ctx->lock in order to read 1484 * both the above values in a consistent manner. 1485 */ 1486 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1487 } 1488 1489 static void update_context_time(struct perf_event_context *ctx) 1490 { 1491 __update_context_time(ctx, true); 1492 } 1493 1494 static u64 perf_event_time(struct perf_event *event) 1495 { 1496 struct perf_event_context *ctx = event->ctx; 1497 1498 if (unlikely(!ctx)) 1499 return 0; 1500 1501 if (is_cgroup_event(event)) 1502 return perf_cgroup_event_time(event); 1503 1504 return ctx->time; 1505 } 1506 1507 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1508 { 1509 struct perf_event_context *ctx = event->ctx; 1510 1511 if (unlikely(!ctx)) 1512 return 0; 1513 1514 if (is_cgroup_event(event)) 1515 return perf_cgroup_event_time_now(event, now); 1516 1517 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1518 return ctx->time; 1519 1520 now += READ_ONCE(ctx->timeoffset); 1521 return now; 1522 } 1523 1524 static enum event_type_t get_event_type(struct perf_event *event) 1525 { 1526 struct perf_event_context *ctx = event->ctx; 1527 enum event_type_t event_type; 1528 1529 lockdep_assert_held(&ctx->lock); 1530 1531 /* 1532 * It's 'group type', really, because if our group leader is 1533 * pinned, so are we. 1534 */ 1535 if (event->group_leader != event) 1536 event = event->group_leader; 1537 1538 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1539 if (!ctx->task) 1540 event_type |= EVENT_CPU; 1541 1542 return event_type; 1543 } 1544 1545 /* 1546 * Helper function to initialize event group nodes. 1547 */ 1548 static void init_event_group(struct perf_event *event) 1549 { 1550 RB_CLEAR_NODE(&event->group_node); 1551 event->group_index = 0; 1552 } 1553 1554 /* 1555 * Extract pinned or flexible groups from the context 1556 * based on event attrs bits. 1557 */ 1558 static struct perf_event_groups * 1559 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1560 { 1561 if (event->attr.pinned) 1562 return &ctx->pinned_groups; 1563 else 1564 return &ctx->flexible_groups; 1565 } 1566 1567 /* 1568 * Helper function to initializes perf_event_group trees. 1569 */ 1570 static void perf_event_groups_init(struct perf_event_groups *groups) 1571 { 1572 groups->tree = RB_ROOT; 1573 groups->index = 0; 1574 } 1575 1576 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1577 { 1578 struct cgroup *cgroup = NULL; 1579 1580 #ifdef CONFIG_CGROUP_PERF 1581 if (event->cgrp) 1582 cgroup = event->cgrp->css.cgroup; 1583 #endif 1584 1585 return cgroup; 1586 } 1587 1588 /* 1589 * Compare function for event groups; 1590 * 1591 * Implements complex key that first sorts by CPU and then by virtual index 1592 * which provides ordering when rotating groups for the same CPU. 1593 */ 1594 static __always_inline int 1595 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup, 1596 const u64 left_group_index, const struct perf_event *right) 1597 { 1598 if (left_cpu < right->cpu) 1599 return -1; 1600 if (left_cpu > right->cpu) 1601 return 1; 1602 1603 #ifdef CONFIG_CGROUP_PERF 1604 { 1605 const struct cgroup *right_cgroup = event_cgroup(right); 1606 1607 if (left_cgroup != right_cgroup) { 1608 if (!left_cgroup) { 1609 /* 1610 * Left has no cgroup but right does, no 1611 * cgroups come first. 1612 */ 1613 return -1; 1614 } 1615 if (!right_cgroup) { 1616 /* 1617 * Right has no cgroup but left does, no 1618 * cgroups come first. 1619 */ 1620 return 1; 1621 } 1622 /* Two dissimilar cgroups, order by id. */ 1623 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1624 return -1; 1625 1626 return 1; 1627 } 1628 } 1629 #endif 1630 1631 if (left_group_index < right->group_index) 1632 return -1; 1633 if (left_group_index > right->group_index) 1634 return 1; 1635 1636 return 0; 1637 } 1638 1639 #define __node_2_pe(node) \ 1640 rb_entry((node), struct perf_event, group_node) 1641 1642 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1643 { 1644 struct perf_event *e = __node_2_pe(a); 1645 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index, 1646 __node_2_pe(b)) < 0; 1647 } 1648 1649 struct __group_key { 1650 int cpu; 1651 struct cgroup *cgroup; 1652 }; 1653 1654 static inline int __group_cmp(const void *key, const struct rb_node *node) 1655 { 1656 const struct __group_key *a = key; 1657 const struct perf_event *b = __node_2_pe(node); 1658 1659 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */ 1660 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b); 1661 } 1662 1663 /* 1664 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1665 * key (see perf_event_groups_less). This places it last inside the CPU 1666 * subtree. 1667 */ 1668 static void 1669 perf_event_groups_insert(struct perf_event_groups *groups, 1670 struct perf_event *event) 1671 { 1672 event->group_index = ++groups->index; 1673 1674 rb_add(&event->group_node, &groups->tree, __group_less); 1675 } 1676 1677 /* 1678 * Helper function to insert event into the pinned or flexible groups. 1679 */ 1680 static void 1681 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1682 { 1683 struct perf_event_groups *groups; 1684 1685 groups = get_event_groups(event, ctx); 1686 perf_event_groups_insert(groups, event); 1687 } 1688 1689 /* 1690 * Delete a group from a tree. 1691 */ 1692 static void 1693 perf_event_groups_delete(struct perf_event_groups *groups, 1694 struct perf_event *event) 1695 { 1696 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1697 RB_EMPTY_ROOT(&groups->tree)); 1698 1699 rb_erase(&event->group_node, &groups->tree); 1700 init_event_group(event); 1701 } 1702 1703 /* 1704 * Helper function to delete event from its groups. 1705 */ 1706 static void 1707 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1708 { 1709 struct perf_event_groups *groups; 1710 1711 groups = get_event_groups(event, ctx); 1712 perf_event_groups_delete(groups, event); 1713 } 1714 1715 /* 1716 * Get the leftmost event in the cpu/cgroup subtree. 1717 */ 1718 static struct perf_event * 1719 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1720 struct cgroup *cgrp) 1721 { 1722 struct __group_key key = { 1723 .cpu = cpu, 1724 .cgroup = cgrp, 1725 }; 1726 struct rb_node *node; 1727 1728 node = rb_find_first(&key, &groups->tree, __group_cmp); 1729 if (node) 1730 return __node_2_pe(node); 1731 1732 return NULL; 1733 } 1734 1735 /* 1736 * Like rb_entry_next_safe() for the @cpu subtree. 1737 */ 1738 static struct perf_event * 1739 perf_event_groups_next(struct perf_event *event) 1740 { 1741 struct __group_key key = { 1742 .cpu = event->cpu, 1743 .cgroup = event_cgroup(event), 1744 }; 1745 struct rb_node *next; 1746 1747 next = rb_next_match(&key, &event->group_node, __group_cmp); 1748 if (next) 1749 return __node_2_pe(next); 1750 1751 return NULL; 1752 } 1753 1754 /* 1755 * Iterate through the whole groups tree. 1756 */ 1757 #define perf_event_groups_for_each(event, groups) \ 1758 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1759 typeof(*event), group_node); event; \ 1760 event = rb_entry_safe(rb_next(&event->group_node), \ 1761 typeof(*event), group_node)) 1762 1763 /* 1764 * Add an event from the lists for its context. 1765 * Must be called with ctx->mutex and ctx->lock held. 1766 */ 1767 static void 1768 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1769 { 1770 lockdep_assert_held(&ctx->lock); 1771 1772 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1773 event->attach_state |= PERF_ATTACH_CONTEXT; 1774 1775 event->tstamp = perf_event_time(event); 1776 1777 /* 1778 * If we're a stand alone event or group leader, we go to the context 1779 * list, group events are kept attached to the group so that 1780 * perf_group_detach can, at all times, locate all siblings. 1781 */ 1782 if (event->group_leader == event) { 1783 event->group_caps = event->event_caps; 1784 add_event_to_groups(event, ctx); 1785 } 1786 1787 list_add_rcu(&event->event_entry, &ctx->event_list); 1788 ctx->nr_events++; 1789 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1790 ctx->nr_user++; 1791 if (event->attr.inherit_stat) 1792 ctx->nr_stat++; 1793 1794 if (event->state > PERF_EVENT_STATE_OFF) 1795 perf_cgroup_event_enable(event, ctx); 1796 1797 ctx->generation++; 1798 } 1799 1800 /* 1801 * Initialize event state based on the perf_event_attr::disabled. 1802 */ 1803 static inline void perf_event__state_init(struct perf_event *event) 1804 { 1805 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1806 PERF_EVENT_STATE_INACTIVE; 1807 } 1808 1809 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1810 { 1811 int entry = sizeof(u64); /* value */ 1812 int size = 0; 1813 int nr = 1; 1814 1815 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1816 size += sizeof(u64); 1817 1818 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1819 size += sizeof(u64); 1820 1821 if (event->attr.read_format & PERF_FORMAT_ID) 1822 entry += sizeof(u64); 1823 1824 if (event->attr.read_format & PERF_FORMAT_LOST) 1825 entry += sizeof(u64); 1826 1827 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1828 nr += nr_siblings; 1829 size += sizeof(u64); 1830 } 1831 1832 size += entry * nr; 1833 event->read_size = size; 1834 } 1835 1836 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1837 { 1838 struct perf_sample_data *data; 1839 u16 size = 0; 1840 1841 if (sample_type & PERF_SAMPLE_IP) 1842 size += sizeof(data->ip); 1843 1844 if (sample_type & PERF_SAMPLE_ADDR) 1845 size += sizeof(data->addr); 1846 1847 if (sample_type & PERF_SAMPLE_PERIOD) 1848 size += sizeof(data->period); 1849 1850 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1851 size += sizeof(data->weight.full); 1852 1853 if (sample_type & PERF_SAMPLE_READ) 1854 size += event->read_size; 1855 1856 if (sample_type & PERF_SAMPLE_DATA_SRC) 1857 size += sizeof(data->data_src.val); 1858 1859 if (sample_type & PERF_SAMPLE_TRANSACTION) 1860 size += sizeof(data->txn); 1861 1862 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1863 size += sizeof(data->phys_addr); 1864 1865 if (sample_type & PERF_SAMPLE_CGROUP) 1866 size += sizeof(data->cgroup); 1867 1868 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1869 size += sizeof(data->data_page_size); 1870 1871 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1872 size += sizeof(data->code_page_size); 1873 1874 event->header_size = size; 1875 } 1876 1877 /* 1878 * Called at perf_event creation and when events are attached/detached from a 1879 * group. 1880 */ 1881 static void perf_event__header_size(struct perf_event *event) 1882 { 1883 __perf_event_read_size(event, 1884 event->group_leader->nr_siblings); 1885 __perf_event_header_size(event, event->attr.sample_type); 1886 } 1887 1888 static void perf_event__id_header_size(struct perf_event *event) 1889 { 1890 struct perf_sample_data *data; 1891 u64 sample_type = event->attr.sample_type; 1892 u16 size = 0; 1893 1894 if (sample_type & PERF_SAMPLE_TID) 1895 size += sizeof(data->tid_entry); 1896 1897 if (sample_type & PERF_SAMPLE_TIME) 1898 size += sizeof(data->time); 1899 1900 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1901 size += sizeof(data->id); 1902 1903 if (sample_type & PERF_SAMPLE_ID) 1904 size += sizeof(data->id); 1905 1906 if (sample_type & PERF_SAMPLE_STREAM_ID) 1907 size += sizeof(data->stream_id); 1908 1909 if (sample_type & PERF_SAMPLE_CPU) 1910 size += sizeof(data->cpu_entry); 1911 1912 event->id_header_size = size; 1913 } 1914 1915 static bool perf_event_validate_size(struct perf_event *event) 1916 { 1917 /* 1918 * The values computed here will be over-written when we actually 1919 * attach the event. 1920 */ 1921 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1922 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1923 perf_event__id_header_size(event); 1924 1925 /* 1926 * Sum the lot; should not exceed the 64k limit we have on records. 1927 * Conservative limit to allow for callchains and other variable fields. 1928 */ 1929 if (event->read_size + event->header_size + 1930 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1931 return false; 1932 1933 return true; 1934 } 1935 1936 static void perf_group_attach(struct perf_event *event) 1937 { 1938 struct perf_event *group_leader = event->group_leader, *pos; 1939 1940 lockdep_assert_held(&event->ctx->lock); 1941 1942 /* 1943 * We can have double attach due to group movement in perf_event_open. 1944 */ 1945 if (event->attach_state & PERF_ATTACH_GROUP) 1946 return; 1947 1948 event->attach_state |= PERF_ATTACH_GROUP; 1949 1950 if (group_leader == event) 1951 return; 1952 1953 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1954 1955 group_leader->group_caps &= event->event_caps; 1956 1957 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1958 group_leader->nr_siblings++; 1959 1960 perf_event__header_size(group_leader); 1961 1962 for_each_sibling_event(pos, group_leader) 1963 perf_event__header_size(pos); 1964 } 1965 1966 /* 1967 * Remove an event from the lists for its context. 1968 * Must be called with ctx->mutex and ctx->lock held. 1969 */ 1970 static void 1971 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1972 { 1973 WARN_ON_ONCE(event->ctx != ctx); 1974 lockdep_assert_held(&ctx->lock); 1975 1976 /* 1977 * We can have double detach due to exit/hot-unplug + close. 1978 */ 1979 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1980 return; 1981 1982 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1983 1984 ctx->nr_events--; 1985 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1986 ctx->nr_user--; 1987 if (event->attr.inherit_stat) 1988 ctx->nr_stat--; 1989 1990 list_del_rcu(&event->event_entry); 1991 1992 if (event->group_leader == event) 1993 del_event_from_groups(event, ctx); 1994 1995 /* 1996 * If event was in error state, then keep it 1997 * that way, otherwise bogus counts will be 1998 * returned on read(). The only way to get out 1999 * of error state is by explicit re-enabling 2000 * of the event 2001 */ 2002 if (event->state > PERF_EVENT_STATE_OFF) { 2003 perf_cgroup_event_disable(event, ctx); 2004 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2005 } 2006 2007 ctx->generation++; 2008 } 2009 2010 static int 2011 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2012 { 2013 if (!has_aux(aux_event)) 2014 return 0; 2015 2016 if (!event->pmu->aux_output_match) 2017 return 0; 2018 2019 return event->pmu->aux_output_match(aux_event); 2020 } 2021 2022 static void put_event(struct perf_event *event); 2023 static void event_sched_out(struct perf_event *event, 2024 struct perf_cpu_context *cpuctx, 2025 struct perf_event_context *ctx); 2026 2027 static void perf_put_aux_event(struct perf_event *event) 2028 { 2029 struct perf_event_context *ctx = event->ctx; 2030 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2031 struct perf_event *iter; 2032 2033 /* 2034 * If event uses aux_event tear down the link 2035 */ 2036 if (event->aux_event) { 2037 iter = event->aux_event; 2038 event->aux_event = NULL; 2039 put_event(iter); 2040 return; 2041 } 2042 2043 /* 2044 * If the event is an aux_event, tear down all links to 2045 * it from other events. 2046 */ 2047 for_each_sibling_event(iter, event->group_leader) { 2048 if (iter->aux_event != event) 2049 continue; 2050 2051 iter->aux_event = NULL; 2052 put_event(event); 2053 2054 /* 2055 * If it's ACTIVE, schedule it out and put it into ERROR 2056 * state so that we don't try to schedule it again. Note 2057 * that perf_event_enable() will clear the ERROR status. 2058 */ 2059 event_sched_out(iter, cpuctx, ctx); 2060 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2061 } 2062 } 2063 2064 static bool perf_need_aux_event(struct perf_event *event) 2065 { 2066 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2067 } 2068 2069 static int perf_get_aux_event(struct perf_event *event, 2070 struct perf_event *group_leader) 2071 { 2072 /* 2073 * Our group leader must be an aux event if we want to be 2074 * an aux_output. This way, the aux event will precede its 2075 * aux_output events in the group, and therefore will always 2076 * schedule first. 2077 */ 2078 if (!group_leader) 2079 return 0; 2080 2081 /* 2082 * aux_output and aux_sample_size are mutually exclusive. 2083 */ 2084 if (event->attr.aux_output && event->attr.aux_sample_size) 2085 return 0; 2086 2087 if (event->attr.aux_output && 2088 !perf_aux_output_match(event, group_leader)) 2089 return 0; 2090 2091 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2092 return 0; 2093 2094 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2095 return 0; 2096 2097 /* 2098 * Link aux_outputs to their aux event; this is undone in 2099 * perf_group_detach() by perf_put_aux_event(). When the 2100 * group in torn down, the aux_output events loose their 2101 * link to the aux_event and can't schedule any more. 2102 */ 2103 event->aux_event = group_leader; 2104 2105 return 1; 2106 } 2107 2108 static inline struct list_head *get_event_list(struct perf_event *event) 2109 { 2110 struct perf_event_context *ctx = event->ctx; 2111 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2112 } 2113 2114 /* 2115 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2116 * cannot exist on their own, schedule them out and move them into the ERROR 2117 * state. Also see _perf_event_enable(), it will not be able to recover 2118 * this ERROR state. 2119 */ 2120 static inline void perf_remove_sibling_event(struct perf_event *event) 2121 { 2122 struct perf_event_context *ctx = event->ctx; 2123 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2124 2125 event_sched_out(event, cpuctx, ctx); 2126 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2127 } 2128 2129 static void perf_group_detach(struct perf_event *event) 2130 { 2131 struct perf_event *leader = event->group_leader; 2132 struct perf_event *sibling, *tmp; 2133 struct perf_event_context *ctx = event->ctx; 2134 2135 lockdep_assert_held(&ctx->lock); 2136 2137 /* 2138 * We can have double detach due to exit/hot-unplug + close. 2139 */ 2140 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2141 return; 2142 2143 event->attach_state &= ~PERF_ATTACH_GROUP; 2144 2145 perf_put_aux_event(event); 2146 2147 /* 2148 * If this is a sibling, remove it from its group. 2149 */ 2150 if (leader != event) { 2151 list_del_init(&event->sibling_list); 2152 event->group_leader->nr_siblings--; 2153 goto out; 2154 } 2155 2156 /* 2157 * If this was a group event with sibling events then 2158 * upgrade the siblings to singleton events by adding them 2159 * to whatever list we are on. 2160 */ 2161 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2162 2163 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2164 perf_remove_sibling_event(sibling); 2165 2166 sibling->group_leader = sibling; 2167 list_del_init(&sibling->sibling_list); 2168 2169 /* Inherit group flags from the previous leader */ 2170 sibling->group_caps = event->group_caps; 2171 2172 if (!RB_EMPTY_NODE(&event->group_node)) { 2173 add_event_to_groups(sibling, event->ctx); 2174 2175 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2176 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2177 } 2178 2179 WARN_ON_ONCE(sibling->ctx != event->ctx); 2180 } 2181 2182 out: 2183 for_each_sibling_event(tmp, leader) 2184 perf_event__header_size(tmp); 2185 2186 perf_event__header_size(leader); 2187 } 2188 2189 static void sync_child_event(struct perf_event *child_event); 2190 2191 static void perf_child_detach(struct perf_event *event) 2192 { 2193 struct perf_event *parent_event = event->parent; 2194 2195 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2196 return; 2197 2198 event->attach_state &= ~PERF_ATTACH_CHILD; 2199 2200 if (WARN_ON_ONCE(!parent_event)) 2201 return; 2202 2203 lockdep_assert_held(&parent_event->child_mutex); 2204 2205 sync_child_event(event); 2206 list_del_init(&event->child_list); 2207 } 2208 2209 static bool is_orphaned_event(struct perf_event *event) 2210 { 2211 return event->state == PERF_EVENT_STATE_DEAD; 2212 } 2213 2214 static inline int __pmu_filter_match(struct perf_event *event) 2215 { 2216 struct pmu *pmu = event->pmu; 2217 return pmu->filter_match ? pmu->filter_match(event) : 1; 2218 } 2219 2220 /* 2221 * Check whether we should attempt to schedule an event group based on 2222 * PMU-specific filtering. An event group can consist of HW and SW events, 2223 * potentially with a SW leader, so we must check all the filters, to 2224 * determine whether a group is schedulable: 2225 */ 2226 static inline int pmu_filter_match(struct perf_event *event) 2227 { 2228 struct perf_event *sibling; 2229 unsigned long flags; 2230 int ret = 1; 2231 2232 if (!__pmu_filter_match(event)) 2233 return 0; 2234 2235 local_irq_save(flags); 2236 for_each_sibling_event(sibling, event) { 2237 if (!__pmu_filter_match(sibling)) { 2238 ret = 0; 2239 break; 2240 } 2241 } 2242 local_irq_restore(flags); 2243 2244 return ret; 2245 } 2246 2247 static inline int 2248 event_filter_match(struct perf_event *event) 2249 { 2250 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2251 perf_cgroup_match(event) && pmu_filter_match(event); 2252 } 2253 2254 static void 2255 event_sched_out(struct perf_event *event, 2256 struct perf_cpu_context *cpuctx, 2257 struct perf_event_context *ctx) 2258 { 2259 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2260 2261 WARN_ON_ONCE(event->ctx != ctx); 2262 lockdep_assert_held(&ctx->lock); 2263 2264 if (event->state != PERF_EVENT_STATE_ACTIVE) 2265 return; 2266 2267 /* 2268 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2269 * we can schedule events _OUT_ individually through things like 2270 * __perf_remove_from_context(). 2271 */ 2272 list_del_init(&event->active_list); 2273 2274 perf_pmu_disable(event->pmu); 2275 2276 event->pmu->del(event, 0); 2277 event->oncpu = -1; 2278 2279 if (READ_ONCE(event->pending_disable) >= 0) { 2280 WRITE_ONCE(event->pending_disable, -1); 2281 perf_cgroup_event_disable(event, ctx); 2282 state = PERF_EVENT_STATE_OFF; 2283 } 2284 perf_event_set_state(event, state); 2285 2286 if (!is_software_event(event)) 2287 cpuctx->active_oncpu--; 2288 if (!--ctx->nr_active) 2289 perf_event_ctx_deactivate(ctx); 2290 if (event->attr.freq && event->attr.sample_freq) 2291 ctx->nr_freq--; 2292 if (event->attr.exclusive || !cpuctx->active_oncpu) 2293 cpuctx->exclusive = 0; 2294 2295 perf_pmu_enable(event->pmu); 2296 } 2297 2298 static void 2299 group_sched_out(struct perf_event *group_event, 2300 struct perf_cpu_context *cpuctx, 2301 struct perf_event_context *ctx) 2302 { 2303 struct perf_event *event; 2304 2305 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2306 return; 2307 2308 perf_pmu_disable(ctx->pmu); 2309 2310 event_sched_out(group_event, cpuctx, ctx); 2311 2312 /* 2313 * Schedule out siblings (if any): 2314 */ 2315 for_each_sibling_event(event, group_event) 2316 event_sched_out(event, cpuctx, ctx); 2317 2318 perf_pmu_enable(ctx->pmu); 2319 } 2320 2321 #define DETACH_GROUP 0x01UL 2322 #define DETACH_CHILD 0x02UL 2323 2324 /* 2325 * Cross CPU call to remove a performance event 2326 * 2327 * We disable the event on the hardware level first. After that we 2328 * remove it from the context list. 2329 */ 2330 static void 2331 __perf_remove_from_context(struct perf_event *event, 2332 struct perf_cpu_context *cpuctx, 2333 struct perf_event_context *ctx, 2334 void *info) 2335 { 2336 unsigned long flags = (unsigned long)info; 2337 2338 if (ctx->is_active & EVENT_TIME) { 2339 update_context_time(ctx); 2340 update_cgrp_time_from_cpuctx(cpuctx, false); 2341 } 2342 2343 event_sched_out(event, cpuctx, ctx); 2344 if (flags & DETACH_GROUP) 2345 perf_group_detach(event); 2346 if (flags & DETACH_CHILD) 2347 perf_child_detach(event); 2348 list_del_event(event, ctx); 2349 2350 if (!ctx->nr_events && ctx->is_active) { 2351 if (ctx == &cpuctx->ctx) 2352 update_cgrp_time_from_cpuctx(cpuctx, true); 2353 2354 ctx->is_active = 0; 2355 ctx->rotate_necessary = 0; 2356 if (ctx->task) { 2357 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2358 cpuctx->task_ctx = NULL; 2359 } 2360 } 2361 } 2362 2363 /* 2364 * Remove the event from a task's (or a CPU's) list of events. 2365 * 2366 * If event->ctx is a cloned context, callers must make sure that 2367 * every task struct that event->ctx->task could possibly point to 2368 * remains valid. This is OK when called from perf_release since 2369 * that only calls us on the top-level context, which can't be a clone. 2370 * When called from perf_event_exit_task, it's OK because the 2371 * context has been detached from its task. 2372 */ 2373 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2374 { 2375 struct perf_event_context *ctx = event->ctx; 2376 2377 lockdep_assert_held(&ctx->mutex); 2378 2379 /* 2380 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2381 * to work in the face of TASK_TOMBSTONE, unlike every other 2382 * event_function_call() user. 2383 */ 2384 raw_spin_lock_irq(&ctx->lock); 2385 /* 2386 * Cgroup events are per-cpu events, and must IPI because of 2387 * cgrp_cpuctx_list. 2388 */ 2389 if (!ctx->is_active && !is_cgroup_event(event)) { 2390 __perf_remove_from_context(event, __get_cpu_context(ctx), 2391 ctx, (void *)flags); 2392 raw_spin_unlock_irq(&ctx->lock); 2393 return; 2394 } 2395 raw_spin_unlock_irq(&ctx->lock); 2396 2397 event_function_call(event, __perf_remove_from_context, (void *)flags); 2398 } 2399 2400 /* 2401 * Cross CPU call to disable a performance event 2402 */ 2403 static void __perf_event_disable(struct perf_event *event, 2404 struct perf_cpu_context *cpuctx, 2405 struct perf_event_context *ctx, 2406 void *info) 2407 { 2408 if (event->state < PERF_EVENT_STATE_INACTIVE) 2409 return; 2410 2411 if (ctx->is_active & EVENT_TIME) { 2412 update_context_time(ctx); 2413 update_cgrp_time_from_event(event); 2414 } 2415 2416 if (event == event->group_leader) 2417 group_sched_out(event, cpuctx, ctx); 2418 else 2419 event_sched_out(event, cpuctx, ctx); 2420 2421 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2422 perf_cgroup_event_disable(event, ctx); 2423 } 2424 2425 /* 2426 * Disable an event. 2427 * 2428 * If event->ctx is a cloned context, callers must make sure that 2429 * every task struct that event->ctx->task could possibly point to 2430 * remains valid. This condition is satisfied when called through 2431 * perf_event_for_each_child or perf_event_for_each because they 2432 * hold the top-level event's child_mutex, so any descendant that 2433 * goes to exit will block in perf_event_exit_event(). 2434 * 2435 * When called from perf_pending_event it's OK because event->ctx 2436 * is the current context on this CPU and preemption is disabled, 2437 * hence we can't get into perf_event_task_sched_out for this context. 2438 */ 2439 static void _perf_event_disable(struct perf_event *event) 2440 { 2441 struct perf_event_context *ctx = event->ctx; 2442 2443 raw_spin_lock_irq(&ctx->lock); 2444 if (event->state <= PERF_EVENT_STATE_OFF) { 2445 raw_spin_unlock_irq(&ctx->lock); 2446 return; 2447 } 2448 raw_spin_unlock_irq(&ctx->lock); 2449 2450 event_function_call(event, __perf_event_disable, NULL); 2451 } 2452 2453 void perf_event_disable_local(struct perf_event *event) 2454 { 2455 event_function_local(event, __perf_event_disable, NULL); 2456 } 2457 2458 /* 2459 * Strictly speaking kernel users cannot create groups and therefore this 2460 * interface does not need the perf_event_ctx_lock() magic. 2461 */ 2462 void perf_event_disable(struct perf_event *event) 2463 { 2464 struct perf_event_context *ctx; 2465 2466 ctx = perf_event_ctx_lock(event); 2467 _perf_event_disable(event); 2468 perf_event_ctx_unlock(event, ctx); 2469 } 2470 EXPORT_SYMBOL_GPL(perf_event_disable); 2471 2472 void perf_event_disable_inatomic(struct perf_event *event) 2473 { 2474 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2475 /* can fail, see perf_pending_event_disable() */ 2476 irq_work_queue(&event->pending); 2477 } 2478 2479 #define MAX_INTERRUPTS (~0ULL) 2480 2481 static void perf_log_throttle(struct perf_event *event, int enable); 2482 static void perf_log_itrace_start(struct perf_event *event); 2483 2484 static int 2485 event_sched_in(struct perf_event *event, 2486 struct perf_cpu_context *cpuctx, 2487 struct perf_event_context *ctx) 2488 { 2489 int ret = 0; 2490 2491 WARN_ON_ONCE(event->ctx != ctx); 2492 2493 lockdep_assert_held(&ctx->lock); 2494 2495 if (event->state <= PERF_EVENT_STATE_OFF) 2496 return 0; 2497 2498 WRITE_ONCE(event->oncpu, smp_processor_id()); 2499 /* 2500 * Order event::oncpu write to happen before the ACTIVE state is 2501 * visible. This allows perf_event_{stop,read}() to observe the correct 2502 * ->oncpu if it sees ACTIVE. 2503 */ 2504 smp_wmb(); 2505 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2506 2507 /* 2508 * Unthrottle events, since we scheduled we might have missed several 2509 * ticks already, also for a heavily scheduling task there is little 2510 * guarantee it'll get a tick in a timely manner. 2511 */ 2512 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2513 perf_log_throttle(event, 1); 2514 event->hw.interrupts = 0; 2515 } 2516 2517 perf_pmu_disable(event->pmu); 2518 2519 perf_log_itrace_start(event); 2520 2521 if (event->pmu->add(event, PERF_EF_START)) { 2522 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2523 event->oncpu = -1; 2524 ret = -EAGAIN; 2525 goto out; 2526 } 2527 2528 if (!is_software_event(event)) 2529 cpuctx->active_oncpu++; 2530 if (!ctx->nr_active++) 2531 perf_event_ctx_activate(ctx); 2532 if (event->attr.freq && event->attr.sample_freq) 2533 ctx->nr_freq++; 2534 2535 if (event->attr.exclusive) 2536 cpuctx->exclusive = 1; 2537 2538 out: 2539 perf_pmu_enable(event->pmu); 2540 2541 return ret; 2542 } 2543 2544 static int 2545 group_sched_in(struct perf_event *group_event, 2546 struct perf_cpu_context *cpuctx, 2547 struct perf_event_context *ctx) 2548 { 2549 struct perf_event *event, *partial_group = NULL; 2550 struct pmu *pmu = ctx->pmu; 2551 2552 if (group_event->state == PERF_EVENT_STATE_OFF) 2553 return 0; 2554 2555 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2556 2557 if (event_sched_in(group_event, cpuctx, ctx)) 2558 goto error; 2559 2560 /* 2561 * Schedule in siblings as one group (if any): 2562 */ 2563 for_each_sibling_event(event, group_event) { 2564 if (event_sched_in(event, cpuctx, ctx)) { 2565 partial_group = event; 2566 goto group_error; 2567 } 2568 } 2569 2570 if (!pmu->commit_txn(pmu)) 2571 return 0; 2572 2573 group_error: 2574 /* 2575 * Groups can be scheduled in as one unit only, so undo any 2576 * partial group before returning: 2577 * The events up to the failed event are scheduled out normally. 2578 */ 2579 for_each_sibling_event(event, group_event) { 2580 if (event == partial_group) 2581 break; 2582 2583 event_sched_out(event, cpuctx, ctx); 2584 } 2585 event_sched_out(group_event, cpuctx, ctx); 2586 2587 error: 2588 pmu->cancel_txn(pmu); 2589 return -EAGAIN; 2590 } 2591 2592 /* 2593 * Work out whether we can put this event group on the CPU now. 2594 */ 2595 static int group_can_go_on(struct perf_event *event, 2596 struct perf_cpu_context *cpuctx, 2597 int can_add_hw) 2598 { 2599 /* 2600 * Groups consisting entirely of software events can always go on. 2601 */ 2602 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2603 return 1; 2604 /* 2605 * If an exclusive group is already on, no other hardware 2606 * events can go on. 2607 */ 2608 if (cpuctx->exclusive) 2609 return 0; 2610 /* 2611 * If this group is exclusive and there are already 2612 * events on the CPU, it can't go on. 2613 */ 2614 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2615 return 0; 2616 /* 2617 * Otherwise, try to add it if all previous groups were able 2618 * to go on. 2619 */ 2620 return can_add_hw; 2621 } 2622 2623 static void add_event_to_ctx(struct perf_event *event, 2624 struct perf_event_context *ctx) 2625 { 2626 list_add_event(event, ctx); 2627 perf_group_attach(event); 2628 } 2629 2630 static void ctx_sched_out(struct perf_event_context *ctx, 2631 struct perf_cpu_context *cpuctx, 2632 enum event_type_t event_type); 2633 static void 2634 ctx_sched_in(struct perf_event_context *ctx, 2635 struct perf_cpu_context *cpuctx, 2636 enum event_type_t event_type); 2637 2638 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2639 struct perf_event_context *ctx, 2640 enum event_type_t event_type) 2641 { 2642 if (!cpuctx->task_ctx) 2643 return; 2644 2645 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2646 return; 2647 2648 ctx_sched_out(ctx, cpuctx, event_type); 2649 } 2650 2651 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2652 struct perf_event_context *ctx) 2653 { 2654 cpu_ctx_sched_in(cpuctx, EVENT_PINNED); 2655 if (ctx) 2656 ctx_sched_in(ctx, cpuctx, EVENT_PINNED); 2657 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE); 2658 if (ctx) 2659 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE); 2660 } 2661 2662 /* 2663 * We want to maintain the following priority of scheduling: 2664 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2665 * - task pinned (EVENT_PINNED) 2666 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2667 * - task flexible (EVENT_FLEXIBLE). 2668 * 2669 * In order to avoid unscheduling and scheduling back in everything every 2670 * time an event is added, only do it for the groups of equal priority and 2671 * below. 2672 * 2673 * This can be called after a batch operation on task events, in which case 2674 * event_type is a bit mask of the types of events involved. For CPU events, 2675 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2676 */ 2677 static void ctx_resched(struct perf_cpu_context *cpuctx, 2678 struct perf_event_context *task_ctx, 2679 enum event_type_t event_type) 2680 { 2681 enum event_type_t ctx_event_type; 2682 bool cpu_event = !!(event_type & EVENT_CPU); 2683 2684 /* 2685 * If pinned groups are involved, flexible groups also need to be 2686 * scheduled out. 2687 */ 2688 if (event_type & EVENT_PINNED) 2689 event_type |= EVENT_FLEXIBLE; 2690 2691 ctx_event_type = event_type & EVENT_ALL; 2692 2693 perf_pmu_disable(cpuctx->ctx.pmu); 2694 if (task_ctx) 2695 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2696 2697 /* 2698 * Decide which cpu ctx groups to schedule out based on the types 2699 * of events that caused rescheduling: 2700 * - EVENT_CPU: schedule out corresponding groups; 2701 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2702 * - otherwise, do nothing more. 2703 */ 2704 if (cpu_event) 2705 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2706 else if (ctx_event_type & EVENT_PINNED) 2707 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2708 2709 perf_event_sched_in(cpuctx, task_ctx); 2710 perf_pmu_enable(cpuctx->ctx.pmu); 2711 } 2712 2713 void perf_pmu_resched(struct pmu *pmu) 2714 { 2715 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2716 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2717 2718 perf_ctx_lock(cpuctx, task_ctx); 2719 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2720 perf_ctx_unlock(cpuctx, task_ctx); 2721 } 2722 2723 /* 2724 * Cross CPU call to install and enable a performance event 2725 * 2726 * Very similar to remote_function() + event_function() but cannot assume that 2727 * things like ctx->is_active and cpuctx->task_ctx are set. 2728 */ 2729 static int __perf_install_in_context(void *info) 2730 { 2731 struct perf_event *event = info; 2732 struct perf_event_context *ctx = event->ctx; 2733 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2734 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2735 bool reprogram = true; 2736 int ret = 0; 2737 2738 raw_spin_lock(&cpuctx->ctx.lock); 2739 if (ctx->task) { 2740 raw_spin_lock(&ctx->lock); 2741 task_ctx = ctx; 2742 2743 reprogram = (ctx->task == current); 2744 2745 /* 2746 * If the task is running, it must be running on this CPU, 2747 * otherwise we cannot reprogram things. 2748 * 2749 * If its not running, we don't care, ctx->lock will 2750 * serialize against it becoming runnable. 2751 */ 2752 if (task_curr(ctx->task) && !reprogram) { 2753 ret = -ESRCH; 2754 goto unlock; 2755 } 2756 2757 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2758 } else if (task_ctx) { 2759 raw_spin_lock(&task_ctx->lock); 2760 } 2761 2762 #ifdef CONFIG_CGROUP_PERF 2763 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2764 /* 2765 * If the current cgroup doesn't match the event's 2766 * cgroup, we should not try to schedule it. 2767 */ 2768 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2769 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2770 event->cgrp->css.cgroup); 2771 } 2772 #endif 2773 2774 if (reprogram) { 2775 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2776 add_event_to_ctx(event, ctx); 2777 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2778 } else { 2779 add_event_to_ctx(event, ctx); 2780 } 2781 2782 unlock: 2783 perf_ctx_unlock(cpuctx, task_ctx); 2784 2785 return ret; 2786 } 2787 2788 static bool exclusive_event_installable(struct perf_event *event, 2789 struct perf_event_context *ctx); 2790 2791 /* 2792 * Attach a performance event to a context. 2793 * 2794 * Very similar to event_function_call, see comment there. 2795 */ 2796 static void 2797 perf_install_in_context(struct perf_event_context *ctx, 2798 struct perf_event *event, 2799 int cpu) 2800 { 2801 struct task_struct *task = READ_ONCE(ctx->task); 2802 2803 lockdep_assert_held(&ctx->mutex); 2804 2805 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2806 2807 if (event->cpu != -1) 2808 event->cpu = cpu; 2809 2810 /* 2811 * Ensures that if we can observe event->ctx, both the event and ctx 2812 * will be 'complete'. See perf_iterate_sb_cpu(). 2813 */ 2814 smp_store_release(&event->ctx, ctx); 2815 2816 /* 2817 * perf_event_attr::disabled events will not run and can be initialized 2818 * without IPI. Except when this is the first event for the context, in 2819 * that case we need the magic of the IPI to set ctx->is_active. 2820 * Similarly, cgroup events for the context also needs the IPI to 2821 * manipulate the cgrp_cpuctx_list. 2822 * 2823 * The IOC_ENABLE that is sure to follow the creation of a disabled 2824 * event will issue the IPI and reprogram the hardware. 2825 */ 2826 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2827 ctx->nr_events && !is_cgroup_event(event)) { 2828 raw_spin_lock_irq(&ctx->lock); 2829 if (ctx->task == TASK_TOMBSTONE) { 2830 raw_spin_unlock_irq(&ctx->lock); 2831 return; 2832 } 2833 add_event_to_ctx(event, ctx); 2834 raw_spin_unlock_irq(&ctx->lock); 2835 return; 2836 } 2837 2838 if (!task) { 2839 cpu_function_call(cpu, __perf_install_in_context, event); 2840 return; 2841 } 2842 2843 /* 2844 * Should not happen, we validate the ctx is still alive before calling. 2845 */ 2846 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2847 return; 2848 2849 /* 2850 * Installing events is tricky because we cannot rely on ctx->is_active 2851 * to be set in case this is the nr_events 0 -> 1 transition. 2852 * 2853 * Instead we use task_curr(), which tells us if the task is running. 2854 * However, since we use task_curr() outside of rq::lock, we can race 2855 * against the actual state. This means the result can be wrong. 2856 * 2857 * If we get a false positive, we retry, this is harmless. 2858 * 2859 * If we get a false negative, things are complicated. If we are after 2860 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2861 * value must be correct. If we're before, it doesn't matter since 2862 * perf_event_context_sched_in() will program the counter. 2863 * 2864 * However, this hinges on the remote context switch having observed 2865 * our task->perf_event_ctxp[] store, such that it will in fact take 2866 * ctx::lock in perf_event_context_sched_in(). 2867 * 2868 * We do this by task_function_call(), if the IPI fails to hit the task 2869 * we know any future context switch of task must see the 2870 * perf_event_ctpx[] store. 2871 */ 2872 2873 /* 2874 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2875 * task_cpu() load, such that if the IPI then does not find the task 2876 * running, a future context switch of that task must observe the 2877 * store. 2878 */ 2879 smp_mb(); 2880 again: 2881 if (!task_function_call(task, __perf_install_in_context, event)) 2882 return; 2883 2884 raw_spin_lock_irq(&ctx->lock); 2885 task = ctx->task; 2886 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2887 /* 2888 * Cannot happen because we already checked above (which also 2889 * cannot happen), and we hold ctx->mutex, which serializes us 2890 * against perf_event_exit_task_context(). 2891 */ 2892 raw_spin_unlock_irq(&ctx->lock); 2893 return; 2894 } 2895 /* 2896 * If the task is not running, ctx->lock will avoid it becoming so, 2897 * thus we can safely install the event. 2898 */ 2899 if (task_curr(task)) { 2900 raw_spin_unlock_irq(&ctx->lock); 2901 goto again; 2902 } 2903 add_event_to_ctx(event, ctx); 2904 raw_spin_unlock_irq(&ctx->lock); 2905 } 2906 2907 /* 2908 * Cross CPU call to enable a performance event 2909 */ 2910 static void __perf_event_enable(struct perf_event *event, 2911 struct perf_cpu_context *cpuctx, 2912 struct perf_event_context *ctx, 2913 void *info) 2914 { 2915 struct perf_event *leader = event->group_leader; 2916 struct perf_event_context *task_ctx; 2917 2918 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2919 event->state <= PERF_EVENT_STATE_ERROR) 2920 return; 2921 2922 if (ctx->is_active) 2923 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2924 2925 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2926 perf_cgroup_event_enable(event, ctx); 2927 2928 if (!ctx->is_active) 2929 return; 2930 2931 if (!event_filter_match(event)) { 2932 ctx_sched_in(ctx, cpuctx, EVENT_TIME); 2933 return; 2934 } 2935 2936 /* 2937 * If the event is in a group and isn't the group leader, 2938 * then don't put it on unless the group is on. 2939 */ 2940 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2941 ctx_sched_in(ctx, cpuctx, EVENT_TIME); 2942 return; 2943 } 2944 2945 task_ctx = cpuctx->task_ctx; 2946 if (ctx->task) 2947 WARN_ON_ONCE(task_ctx != ctx); 2948 2949 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2950 } 2951 2952 /* 2953 * Enable an event. 2954 * 2955 * If event->ctx is a cloned context, callers must make sure that 2956 * every task struct that event->ctx->task could possibly point to 2957 * remains valid. This condition is satisfied when called through 2958 * perf_event_for_each_child or perf_event_for_each as described 2959 * for perf_event_disable. 2960 */ 2961 static void _perf_event_enable(struct perf_event *event) 2962 { 2963 struct perf_event_context *ctx = event->ctx; 2964 2965 raw_spin_lock_irq(&ctx->lock); 2966 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2967 event->state < PERF_EVENT_STATE_ERROR) { 2968 out: 2969 raw_spin_unlock_irq(&ctx->lock); 2970 return; 2971 } 2972 2973 /* 2974 * If the event is in error state, clear that first. 2975 * 2976 * That way, if we see the event in error state below, we know that it 2977 * has gone back into error state, as distinct from the task having 2978 * been scheduled away before the cross-call arrived. 2979 */ 2980 if (event->state == PERF_EVENT_STATE_ERROR) { 2981 /* 2982 * Detached SIBLING events cannot leave ERROR state. 2983 */ 2984 if (event->event_caps & PERF_EV_CAP_SIBLING && 2985 event->group_leader == event) 2986 goto out; 2987 2988 event->state = PERF_EVENT_STATE_OFF; 2989 } 2990 raw_spin_unlock_irq(&ctx->lock); 2991 2992 event_function_call(event, __perf_event_enable, NULL); 2993 } 2994 2995 /* 2996 * See perf_event_disable(); 2997 */ 2998 void perf_event_enable(struct perf_event *event) 2999 { 3000 struct perf_event_context *ctx; 3001 3002 ctx = perf_event_ctx_lock(event); 3003 _perf_event_enable(event); 3004 perf_event_ctx_unlock(event, ctx); 3005 } 3006 EXPORT_SYMBOL_GPL(perf_event_enable); 3007 3008 struct stop_event_data { 3009 struct perf_event *event; 3010 unsigned int restart; 3011 }; 3012 3013 static int __perf_event_stop(void *info) 3014 { 3015 struct stop_event_data *sd = info; 3016 struct perf_event *event = sd->event; 3017 3018 /* if it's already INACTIVE, do nothing */ 3019 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3020 return 0; 3021 3022 /* matches smp_wmb() in event_sched_in() */ 3023 smp_rmb(); 3024 3025 /* 3026 * There is a window with interrupts enabled before we get here, 3027 * so we need to check again lest we try to stop another CPU's event. 3028 */ 3029 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3030 return -EAGAIN; 3031 3032 event->pmu->stop(event, PERF_EF_UPDATE); 3033 3034 /* 3035 * May race with the actual stop (through perf_pmu_output_stop()), 3036 * but it is only used for events with AUX ring buffer, and such 3037 * events will refuse to restart because of rb::aux_mmap_count==0, 3038 * see comments in perf_aux_output_begin(). 3039 * 3040 * Since this is happening on an event-local CPU, no trace is lost 3041 * while restarting. 3042 */ 3043 if (sd->restart) 3044 event->pmu->start(event, 0); 3045 3046 return 0; 3047 } 3048 3049 static int perf_event_stop(struct perf_event *event, int restart) 3050 { 3051 struct stop_event_data sd = { 3052 .event = event, 3053 .restart = restart, 3054 }; 3055 int ret = 0; 3056 3057 do { 3058 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3059 return 0; 3060 3061 /* matches smp_wmb() in event_sched_in() */ 3062 smp_rmb(); 3063 3064 /* 3065 * We only want to restart ACTIVE events, so if the event goes 3066 * inactive here (event->oncpu==-1), there's nothing more to do; 3067 * fall through with ret==-ENXIO. 3068 */ 3069 ret = cpu_function_call(READ_ONCE(event->oncpu), 3070 __perf_event_stop, &sd); 3071 } while (ret == -EAGAIN); 3072 3073 return ret; 3074 } 3075 3076 /* 3077 * In order to contain the amount of racy and tricky in the address filter 3078 * configuration management, it is a two part process: 3079 * 3080 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3081 * we update the addresses of corresponding vmas in 3082 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3083 * (p2) when an event is scheduled in (pmu::add), it calls 3084 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3085 * if the generation has changed since the previous call. 3086 * 3087 * If (p1) happens while the event is active, we restart it to force (p2). 3088 * 3089 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3090 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3091 * ioctl; 3092 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3093 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3094 * for reading; 3095 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3096 * of exec. 3097 */ 3098 void perf_event_addr_filters_sync(struct perf_event *event) 3099 { 3100 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3101 3102 if (!has_addr_filter(event)) 3103 return; 3104 3105 raw_spin_lock(&ifh->lock); 3106 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3107 event->pmu->addr_filters_sync(event); 3108 event->hw.addr_filters_gen = event->addr_filters_gen; 3109 } 3110 raw_spin_unlock(&ifh->lock); 3111 } 3112 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3113 3114 static int _perf_event_refresh(struct perf_event *event, int refresh) 3115 { 3116 /* 3117 * not supported on inherited events 3118 */ 3119 if (event->attr.inherit || !is_sampling_event(event)) 3120 return -EINVAL; 3121 3122 atomic_add(refresh, &event->event_limit); 3123 _perf_event_enable(event); 3124 3125 return 0; 3126 } 3127 3128 /* 3129 * See perf_event_disable() 3130 */ 3131 int perf_event_refresh(struct perf_event *event, int refresh) 3132 { 3133 struct perf_event_context *ctx; 3134 int ret; 3135 3136 ctx = perf_event_ctx_lock(event); 3137 ret = _perf_event_refresh(event, refresh); 3138 perf_event_ctx_unlock(event, ctx); 3139 3140 return ret; 3141 } 3142 EXPORT_SYMBOL_GPL(perf_event_refresh); 3143 3144 static int perf_event_modify_breakpoint(struct perf_event *bp, 3145 struct perf_event_attr *attr) 3146 { 3147 int err; 3148 3149 _perf_event_disable(bp); 3150 3151 err = modify_user_hw_breakpoint_check(bp, attr, true); 3152 3153 if (!bp->attr.disabled) 3154 _perf_event_enable(bp); 3155 3156 return err; 3157 } 3158 3159 /* 3160 * Copy event-type-independent attributes that may be modified. 3161 */ 3162 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3163 const struct perf_event_attr *from) 3164 { 3165 to->sig_data = from->sig_data; 3166 } 3167 3168 static int perf_event_modify_attr(struct perf_event *event, 3169 struct perf_event_attr *attr) 3170 { 3171 int (*func)(struct perf_event *, struct perf_event_attr *); 3172 struct perf_event *child; 3173 int err; 3174 3175 if (event->attr.type != attr->type) 3176 return -EINVAL; 3177 3178 switch (event->attr.type) { 3179 case PERF_TYPE_BREAKPOINT: 3180 func = perf_event_modify_breakpoint; 3181 break; 3182 default: 3183 /* Place holder for future additions. */ 3184 return -EOPNOTSUPP; 3185 } 3186 3187 WARN_ON_ONCE(event->ctx->parent_ctx); 3188 3189 mutex_lock(&event->child_mutex); 3190 /* 3191 * Event-type-independent attributes must be copied before event-type 3192 * modification, which will validate that final attributes match the 3193 * source attributes after all relevant attributes have been copied. 3194 */ 3195 perf_event_modify_copy_attr(&event->attr, attr); 3196 err = func(event, attr); 3197 if (err) 3198 goto out; 3199 list_for_each_entry(child, &event->child_list, child_list) { 3200 perf_event_modify_copy_attr(&child->attr, attr); 3201 err = func(child, attr); 3202 if (err) 3203 goto out; 3204 } 3205 out: 3206 mutex_unlock(&event->child_mutex); 3207 return err; 3208 } 3209 3210 static void ctx_sched_out(struct perf_event_context *ctx, 3211 struct perf_cpu_context *cpuctx, 3212 enum event_type_t event_type) 3213 { 3214 struct perf_event *event, *tmp; 3215 int is_active = ctx->is_active; 3216 3217 lockdep_assert_held(&ctx->lock); 3218 3219 if (likely(!ctx->nr_events)) { 3220 /* 3221 * See __perf_remove_from_context(). 3222 */ 3223 WARN_ON_ONCE(ctx->is_active); 3224 if (ctx->task) 3225 WARN_ON_ONCE(cpuctx->task_ctx); 3226 return; 3227 } 3228 3229 /* 3230 * Always update time if it was set; not only when it changes. 3231 * Otherwise we can 'forget' to update time for any but the last 3232 * context we sched out. For example: 3233 * 3234 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3235 * ctx_sched_out(.event_type = EVENT_PINNED) 3236 * 3237 * would only update time for the pinned events. 3238 */ 3239 if (is_active & EVENT_TIME) { 3240 /* update (and stop) ctx time */ 3241 update_context_time(ctx); 3242 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3243 /* 3244 * CPU-release for the below ->is_active store, 3245 * see __load_acquire() in perf_event_time_now() 3246 */ 3247 barrier(); 3248 } 3249 3250 ctx->is_active &= ~event_type; 3251 if (!(ctx->is_active & EVENT_ALL)) 3252 ctx->is_active = 0; 3253 3254 if (ctx->task) { 3255 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3256 if (!ctx->is_active) 3257 cpuctx->task_ctx = NULL; 3258 } 3259 3260 is_active ^= ctx->is_active; /* changed bits */ 3261 3262 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3263 return; 3264 3265 perf_pmu_disable(ctx->pmu); 3266 if (is_active & EVENT_PINNED) { 3267 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3268 group_sched_out(event, cpuctx, ctx); 3269 } 3270 3271 if (is_active & EVENT_FLEXIBLE) { 3272 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3273 group_sched_out(event, cpuctx, ctx); 3274 3275 /* 3276 * Since we cleared EVENT_FLEXIBLE, also clear 3277 * rotate_necessary, is will be reset by 3278 * ctx_flexible_sched_in() when needed. 3279 */ 3280 ctx->rotate_necessary = 0; 3281 } 3282 perf_pmu_enable(ctx->pmu); 3283 } 3284 3285 /* 3286 * Test whether two contexts are equivalent, i.e. whether they have both been 3287 * cloned from the same version of the same context. 3288 * 3289 * Equivalence is measured using a generation number in the context that is 3290 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3291 * and list_del_event(). 3292 */ 3293 static int context_equiv(struct perf_event_context *ctx1, 3294 struct perf_event_context *ctx2) 3295 { 3296 lockdep_assert_held(&ctx1->lock); 3297 lockdep_assert_held(&ctx2->lock); 3298 3299 /* Pinning disables the swap optimization */ 3300 if (ctx1->pin_count || ctx2->pin_count) 3301 return 0; 3302 3303 /* If ctx1 is the parent of ctx2 */ 3304 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3305 return 1; 3306 3307 /* If ctx2 is the parent of ctx1 */ 3308 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3309 return 1; 3310 3311 /* 3312 * If ctx1 and ctx2 have the same parent; we flatten the parent 3313 * hierarchy, see perf_event_init_context(). 3314 */ 3315 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3316 ctx1->parent_gen == ctx2->parent_gen) 3317 return 1; 3318 3319 /* Unmatched */ 3320 return 0; 3321 } 3322 3323 static void __perf_event_sync_stat(struct perf_event *event, 3324 struct perf_event *next_event) 3325 { 3326 u64 value; 3327 3328 if (!event->attr.inherit_stat) 3329 return; 3330 3331 /* 3332 * Update the event value, we cannot use perf_event_read() 3333 * because we're in the middle of a context switch and have IRQs 3334 * disabled, which upsets smp_call_function_single(), however 3335 * we know the event must be on the current CPU, therefore we 3336 * don't need to use it. 3337 */ 3338 if (event->state == PERF_EVENT_STATE_ACTIVE) 3339 event->pmu->read(event); 3340 3341 perf_event_update_time(event); 3342 3343 /* 3344 * In order to keep per-task stats reliable we need to flip the event 3345 * values when we flip the contexts. 3346 */ 3347 value = local64_read(&next_event->count); 3348 value = local64_xchg(&event->count, value); 3349 local64_set(&next_event->count, value); 3350 3351 swap(event->total_time_enabled, next_event->total_time_enabled); 3352 swap(event->total_time_running, next_event->total_time_running); 3353 3354 /* 3355 * Since we swizzled the values, update the user visible data too. 3356 */ 3357 perf_event_update_userpage(event); 3358 perf_event_update_userpage(next_event); 3359 } 3360 3361 static void perf_event_sync_stat(struct perf_event_context *ctx, 3362 struct perf_event_context *next_ctx) 3363 { 3364 struct perf_event *event, *next_event; 3365 3366 if (!ctx->nr_stat) 3367 return; 3368 3369 update_context_time(ctx); 3370 3371 event = list_first_entry(&ctx->event_list, 3372 struct perf_event, event_entry); 3373 3374 next_event = list_first_entry(&next_ctx->event_list, 3375 struct perf_event, event_entry); 3376 3377 while (&event->event_entry != &ctx->event_list && 3378 &next_event->event_entry != &next_ctx->event_list) { 3379 3380 __perf_event_sync_stat(event, next_event); 3381 3382 event = list_next_entry(event, event_entry); 3383 next_event = list_next_entry(next_event, event_entry); 3384 } 3385 } 3386 3387 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3388 struct task_struct *next) 3389 { 3390 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3391 struct perf_event_context *next_ctx; 3392 struct perf_event_context *parent, *next_parent; 3393 struct perf_cpu_context *cpuctx; 3394 int do_switch = 1; 3395 struct pmu *pmu; 3396 3397 if (likely(!ctx)) 3398 return; 3399 3400 pmu = ctx->pmu; 3401 cpuctx = __get_cpu_context(ctx); 3402 if (!cpuctx->task_ctx) 3403 return; 3404 3405 rcu_read_lock(); 3406 next_ctx = next->perf_event_ctxp[ctxn]; 3407 if (!next_ctx) 3408 goto unlock; 3409 3410 parent = rcu_dereference(ctx->parent_ctx); 3411 next_parent = rcu_dereference(next_ctx->parent_ctx); 3412 3413 /* If neither context have a parent context; they cannot be clones. */ 3414 if (!parent && !next_parent) 3415 goto unlock; 3416 3417 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3418 /* 3419 * Looks like the two contexts are clones, so we might be 3420 * able to optimize the context switch. We lock both 3421 * contexts and check that they are clones under the 3422 * lock (including re-checking that neither has been 3423 * uncloned in the meantime). It doesn't matter which 3424 * order we take the locks because no other cpu could 3425 * be trying to lock both of these tasks. 3426 */ 3427 raw_spin_lock(&ctx->lock); 3428 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3429 if (context_equiv(ctx, next_ctx)) { 3430 3431 WRITE_ONCE(ctx->task, next); 3432 WRITE_ONCE(next_ctx->task, task); 3433 3434 perf_pmu_disable(pmu); 3435 3436 if (cpuctx->sched_cb_usage && pmu->sched_task) 3437 pmu->sched_task(ctx, false); 3438 3439 /* 3440 * PMU specific parts of task perf context can require 3441 * additional synchronization. As an example of such 3442 * synchronization see implementation details of Intel 3443 * LBR call stack data profiling; 3444 */ 3445 if (pmu->swap_task_ctx) 3446 pmu->swap_task_ctx(ctx, next_ctx); 3447 else 3448 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3449 3450 perf_pmu_enable(pmu); 3451 3452 /* 3453 * RCU_INIT_POINTER here is safe because we've not 3454 * modified the ctx and the above modification of 3455 * ctx->task and ctx->task_ctx_data are immaterial 3456 * since those values are always verified under 3457 * ctx->lock which we're now holding. 3458 */ 3459 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3460 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3461 3462 do_switch = 0; 3463 3464 perf_event_sync_stat(ctx, next_ctx); 3465 } 3466 raw_spin_unlock(&next_ctx->lock); 3467 raw_spin_unlock(&ctx->lock); 3468 } 3469 unlock: 3470 rcu_read_unlock(); 3471 3472 if (do_switch) { 3473 raw_spin_lock(&ctx->lock); 3474 perf_pmu_disable(pmu); 3475 3476 if (cpuctx->sched_cb_usage && pmu->sched_task) 3477 pmu->sched_task(ctx, false); 3478 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3479 3480 perf_pmu_enable(pmu); 3481 raw_spin_unlock(&ctx->lock); 3482 } 3483 } 3484 3485 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3486 3487 void perf_sched_cb_dec(struct pmu *pmu) 3488 { 3489 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3490 3491 this_cpu_dec(perf_sched_cb_usages); 3492 3493 if (!--cpuctx->sched_cb_usage) 3494 list_del(&cpuctx->sched_cb_entry); 3495 } 3496 3497 3498 void perf_sched_cb_inc(struct pmu *pmu) 3499 { 3500 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3501 3502 if (!cpuctx->sched_cb_usage++) 3503 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3504 3505 this_cpu_inc(perf_sched_cb_usages); 3506 } 3507 3508 /* 3509 * This function provides the context switch callback to the lower code 3510 * layer. It is invoked ONLY when the context switch callback is enabled. 3511 * 3512 * This callback is relevant even to per-cpu events; for example multi event 3513 * PEBS requires this to provide PID/TID information. This requires we flush 3514 * all queued PEBS records before we context switch to a new task. 3515 */ 3516 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) 3517 { 3518 struct pmu *pmu; 3519 3520 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3521 3522 if (WARN_ON_ONCE(!pmu->sched_task)) 3523 return; 3524 3525 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3526 perf_pmu_disable(pmu); 3527 3528 pmu->sched_task(cpuctx->task_ctx, sched_in); 3529 3530 perf_pmu_enable(pmu); 3531 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3532 } 3533 3534 static void perf_pmu_sched_task(struct task_struct *prev, 3535 struct task_struct *next, 3536 bool sched_in) 3537 { 3538 struct perf_cpu_context *cpuctx; 3539 3540 if (prev == next) 3541 return; 3542 3543 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3544 /* will be handled in perf_event_context_sched_in/out */ 3545 if (cpuctx->task_ctx) 3546 continue; 3547 3548 __perf_pmu_sched_task(cpuctx, sched_in); 3549 } 3550 } 3551 3552 static void perf_event_switch(struct task_struct *task, 3553 struct task_struct *next_prev, bool sched_in); 3554 3555 #define for_each_task_context_nr(ctxn) \ 3556 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3557 3558 /* 3559 * Called from scheduler to remove the events of the current task, 3560 * with interrupts disabled. 3561 * 3562 * We stop each event and update the event value in event->count. 3563 * 3564 * This does not protect us against NMI, but disable() 3565 * sets the disabled bit in the control field of event _before_ 3566 * accessing the event control register. If a NMI hits, then it will 3567 * not restart the event. 3568 */ 3569 void __perf_event_task_sched_out(struct task_struct *task, 3570 struct task_struct *next) 3571 { 3572 int ctxn; 3573 3574 if (__this_cpu_read(perf_sched_cb_usages)) 3575 perf_pmu_sched_task(task, next, false); 3576 3577 if (atomic_read(&nr_switch_events)) 3578 perf_event_switch(task, next, false); 3579 3580 for_each_task_context_nr(ctxn) 3581 perf_event_context_sched_out(task, ctxn, next); 3582 3583 /* 3584 * if cgroup events exist on this CPU, then we need 3585 * to check if we have to switch out PMU state. 3586 * cgroup event are system-wide mode only 3587 */ 3588 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3589 perf_cgroup_switch(next); 3590 } 3591 3592 /* 3593 * Called with IRQs disabled 3594 */ 3595 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3596 enum event_type_t event_type) 3597 { 3598 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3599 } 3600 3601 static bool perf_less_group_idx(const void *l, const void *r) 3602 { 3603 const struct perf_event *le = *(const struct perf_event **)l; 3604 const struct perf_event *re = *(const struct perf_event **)r; 3605 3606 return le->group_index < re->group_index; 3607 } 3608 3609 static void swap_ptr(void *l, void *r) 3610 { 3611 void **lp = l, **rp = r; 3612 3613 swap(*lp, *rp); 3614 } 3615 3616 static const struct min_heap_callbacks perf_min_heap = { 3617 .elem_size = sizeof(struct perf_event *), 3618 .less = perf_less_group_idx, 3619 .swp = swap_ptr, 3620 }; 3621 3622 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3623 { 3624 struct perf_event **itrs = heap->data; 3625 3626 if (event) { 3627 itrs[heap->nr] = event; 3628 heap->nr++; 3629 } 3630 } 3631 3632 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3633 struct perf_event_groups *groups, int cpu, 3634 int (*func)(struct perf_event *, void *), 3635 void *data) 3636 { 3637 #ifdef CONFIG_CGROUP_PERF 3638 struct cgroup_subsys_state *css = NULL; 3639 #endif 3640 /* Space for per CPU and/or any CPU event iterators. */ 3641 struct perf_event *itrs[2]; 3642 struct min_heap event_heap; 3643 struct perf_event **evt; 3644 int ret; 3645 3646 if (cpuctx) { 3647 event_heap = (struct min_heap){ 3648 .data = cpuctx->heap, 3649 .nr = 0, 3650 .size = cpuctx->heap_size, 3651 }; 3652 3653 lockdep_assert_held(&cpuctx->ctx.lock); 3654 3655 #ifdef CONFIG_CGROUP_PERF 3656 if (cpuctx->cgrp) 3657 css = &cpuctx->cgrp->css; 3658 #endif 3659 } else { 3660 event_heap = (struct min_heap){ 3661 .data = itrs, 3662 .nr = 0, 3663 .size = ARRAY_SIZE(itrs), 3664 }; 3665 /* Events not within a CPU context may be on any CPU. */ 3666 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3667 } 3668 evt = event_heap.data; 3669 3670 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3671 3672 #ifdef CONFIG_CGROUP_PERF 3673 for (; css; css = css->parent) 3674 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3675 #endif 3676 3677 min_heapify_all(&event_heap, &perf_min_heap); 3678 3679 while (event_heap.nr) { 3680 ret = func(*evt, data); 3681 if (ret) 3682 return ret; 3683 3684 *evt = perf_event_groups_next(*evt); 3685 if (*evt) 3686 min_heapify(&event_heap, 0, &perf_min_heap); 3687 else 3688 min_heap_pop(&event_heap, &perf_min_heap); 3689 } 3690 3691 return 0; 3692 } 3693 3694 /* 3695 * Because the userpage is strictly per-event (there is no concept of context, 3696 * so there cannot be a context indirection), every userpage must be updated 3697 * when context time starts :-( 3698 * 3699 * IOW, we must not miss EVENT_TIME edges. 3700 */ 3701 static inline bool event_update_userpage(struct perf_event *event) 3702 { 3703 if (likely(!atomic_read(&event->mmap_count))) 3704 return false; 3705 3706 perf_event_update_time(event); 3707 perf_event_update_userpage(event); 3708 3709 return true; 3710 } 3711 3712 static inline void group_update_userpage(struct perf_event *group_event) 3713 { 3714 struct perf_event *event; 3715 3716 if (!event_update_userpage(group_event)) 3717 return; 3718 3719 for_each_sibling_event(event, group_event) 3720 event_update_userpage(event); 3721 } 3722 3723 static int merge_sched_in(struct perf_event *event, void *data) 3724 { 3725 struct perf_event_context *ctx = event->ctx; 3726 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3727 int *can_add_hw = data; 3728 3729 if (event->state <= PERF_EVENT_STATE_OFF) 3730 return 0; 3731 3732 if (!event_filter_match(event)) 3733 return 0; 3734 3735 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3736 if (!group_sched_in(event, cpuctx, ctx)) 3737 list_add_tail(&event->active_list, get_event_list(event)); 3738 } 3739 3740 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3741 *can_add_hw = 0; 3742 if (event->attr.pinned) { 3743 perf_cgroup_event_disable(event, ctx); 3744 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3745 } else { 3746 ctx->rotate_necessary = 1; 3747 perf_mux_hrtimer_restart(cpuctx); 3748 group_update_userpage(event); 3749 } 3750 } 3751 3752 return 0; 3753 } 3754 3755 static void 3756 ctx_pinned_sched_in(struct perf_event_context *ctx, 3757 struct perf_cpu_context *cpuctx) 3758 { 3759 int can_add_hw = 1; 3760 3761 if (ctx != &cpuctx->ctx) 3762 cpuctx = NULL; 3763 3764 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3765 smp_processor_id(), 3766 merge_sched_in, &can_add_hw); 3767 } 3768 3769 static void 3770 ctx_flexible_sched_in(struct perf_event_context *ctx, 3771 struct perf_cpu_context *cpuctx) 3772 { 3773 int can_add_hw = 1; 3774 3775 if (ctx != &cpuctx->ctx) 3776 cpuctx = NULL; 3777 3778 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3779 smp_processor_id(), 3780 merge_sched_in, &can_add_hw); 3781 } 3782 3783 static void 3784 ctx_sched_in(struct perf_event_context *ctx, 3785 struct perf_cpu_context *cpuctx, 3786 enum event_type_t event_type) 3787 { 3788 int is_active = ctx->is_active; 3789 3790 lockdep_assert_held(&ctx->lock); 3791 3792 if (likely(!ctx->nr_events)) 3793 return; 3794 3795 if (is_active ^ EVENT_TIME) { 3796 /* start ctx time */ 3797 __update_context_time(ctx, false); 3798 perf_cgroup_set_timestamp(cpuctx); 3799 /* 3800 * CPU-release for the below ->is_active store, 3801 * see __load_acquire() in perf_event_time_now() 3802 */ 3803 barrier(); 3804 } 3805 3806 ctx->is_active |= (event_type | EVENT_TIME); 3807 if (ctx->task) { 3808 if (!is_active) 3809 cpuctx->task_ctx = ctx; 3810 else 3811 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3812 } 3813 3814 is_active ^= ctx->is_active; /* changed bits */ 3815 3816 /* 3817 * First go through the list and put on any pinned groups 3818 * in order to give them the best chance of going on. 3819 */ 3820 if (is_active & EVENT_PINNED) 3821 ctx_pinned_sched_in(ctx, cpuctx); 3822 3823 /* Then walk through the lower prio flexible groups */ 3824 if (is_active & EVENT_FLEXIBLE) 3825 ctx_flexible_sched_in(ctx, cpuctx); 3826 } 3827 3828 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3829 enum event_type_t event_type) 3830 { 3831 struct perf_event_context *ctx = &cpuctx->ctx; 3832 3833 ctx_sched_in(ctx, cpuctx, event_type); 3834 } 3835 3836 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3837 struct task_struct *task) 3838 { 3839 struct perf_cpu_context *cpuctx; 3840 struct pmu *pmu; 3841 3842 cpuctx = __get_cpu_context(ctx); 3843 3844 /* 3845 * HACK: for HETEROGENEOUS the task context might have switched to a 3846 * different PMU, force (re)set the context, 3847 */ 3848 pmu = ctx->pmu = cpuctx->ctx.pmu; 3849 3850 if (cpuctx->task_ctx == ctx) { 3851 if (cpuctx->sched_cb_usage) 3852 __perf_pmu_sched_task(cpuctx, true); 3853 return; 3854 } 3855 3856 perf_ctx_lock(cpuctx, ctx); 3857 /* 3858 * We must check ctx->nr_events while holding ctx->lock, such 3859 * that we serialize against perf_install_in_context(). 3860 */ 3861 if (!ctx->nr_events) 3862 goto unlock; 3863 3864 perf_pmu_disable(pmu); 3865 /* 3866 * We want to keep the following priority order: 3867 * cpu pinned (that don't need to move), task pinned, 3868 * cpu flexible, task flexible. 3869 * 3870 * However, if task's ctx is not carrying any pinned 3871 * events, no need to flip the cpuctx's events around. 3872 */ 3873 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3874 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3875 perf_event_sched_in(cpuctx, ctx); 3876 3877 if (cpuctx->sched_cb_usage && pmu->sched_task) 3878 pmu->sched_task(cpuctx->task_ctx, true); 3879 3880 perf_pmu_enable(pmu); 3881 3882 unlock: 3883 perf_ctx_unlock(cpuctx, ctx); 3884 } 3885 3886 /* 3887 * Called from scheduler to add the events of the current task 3888 * with interrupts disabled. 3889 * 3890 * We restore the event value and then enable it. 3891 * 3892 * This does not protect us against NMI, but enable() 3893 * sets the enabled bit in the control field of event _before_ 3894 * accessing the event control register. If a NMI hits, then it will 3895 * keep the event running. 3896 */ 3897 void __perf_event_task_sched_in(struct task_struct *prev, 3898 struct task_struct *task) 3899 { 3900 struct perf_event_context *ctx; 3901 int ctxn; 3902 3903 for_each_task_context_nr(ctxn) { 3904 ctx = task->perf_event_ctxp[ctxn]; 3905 if (likely(!ctx)) 3906 continue; 3907 3908 perf_event_context_sched_in(ctx, task); 3909 } 3910 3911 if (atomic_read(&nr_switch_events)) 3912 perf_event_switch(task, prev, true); 3913 3914 if (__this_cpu_read(perf_sched_cb_usages)) 3915 perf_pmu_sched_task(prev, task, true); 3916 } 3917 3918 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3919 { 3920 u64 frequency = event->attr.sample_freq; 3921 u64 sec = NSEC_PER_SEC; 3922 u64 divisor, dividend; 3923 3924 int count_fls, nsec_fls, frequency_fls, sec_fls; 3925 3926 count_fls = fls64(count); 3927 nsec_fls = fls64(nsec); 3928 frequency_fls = fls64(frequency); 3929 sec_fls = 30; 3930 3931 /* 3932 * We got @count in @nsec, with a target of sample_freq HZ 3933 * the target period becomes: 3934 * 3935 * @count * 10^9 3936 * period = ------------------- 3937 * @nsec * sample_freq 3938 * 3939 */ 3940 3941 /* 3942 * Reduce accuracy by one bit such that @a and @b converge 3943 * to a similar magnitude. 3944 */ 3945 #define REDUCE_FLS(a, b) \ 3946 do { \ 3947 if (a##_fls > b##_fls) { \ 3948 a >>= 1; \ 3949 a##_fls--; \ 3950 } else { \ 3951 b >>= 1; \ 3952 b##_fls--; \ 3953 } \ 3954 } while (0) 3955 3956 /* 3957 * Reduce accuracy until either term fits in a u64, then proceed with 3958 * the other, so that finally we can do a u64/u64 division. 3959 */ 3960 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3961 REDUCE_FLS(nsec, frequency); 3962 REDUCE_FLS(sec, count); 3963 } 3964 3965 if (count_fls + sec_fls > 64) { 3966 divisor = nsec * frequency; 3967 3968 while (count_fls + sec_fls > 64) { 3969 REDUCE_FLS(count, sec); 3970 divisor >>= 1; 3971 } 3972 3973 dividend = count * sec; 3974 } else { 3975 dividend = count * sec; 3976 3977 while (nsec_fls + frequency_fls > 64) { 3978 REDUCE_FLS(nsec, frequency); 3979 dividend >>= 1; 3980 } 3981 3982 divisor = nsec * frequency; 3983 } 3984 3985 if (!divisor) 3986 return dividend; 3987 3988 return div64_u64(dividend, divisor); 3989 } 3990 3991 static DEFINE_PER_CPU(int, perf_throttled_count); 3992 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3993 3994 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3995 { 3996 struct hw_perf_event *hwc = &event->hw; 3997 s64 period, sample_period; 3998 s64 delta; 3999 4000 period = perf_calculate_period(event, nsec, count); 4001 4002 delta = (s64)(period - hwc->sample_period); 4003 delta = (delta + 7) / 8; /* low pass filter */ 4004 4005 sample_period = hwc->sample_period + delta; 4006 4007 if (!sample_period) 4008 sample_period = 1; 4009 4010 hwc->sample_period = sample_period; 4011 4012 if (local64_read(&hwc->period_left) > 8*sample_period) { 4013 if (disable) 4014 event->pmu->stop(event, PERF_EF_UPDATE); 4015 4016 local64_set(&hwc->period_left, 0); 4017 4018 if (disable) 4019 event->pmu->start(event, PERF_EF_RELOAD); 4020 } 4021 } 4022 4023 /* 4024 * combine freq adjustment with unthrottling to avoid two passes over the 4025 * events. At the same time, make sure, having freq events does not change 4026 * the rate of unthrottling as that would introduce bias. 4027 */ 4028 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 4029 int needs_unthr) 4030 { 4031 struct perf_event *event; 4032 struct hw_perf_event *hwc; 4033 u64 now, period = TICK_NSEC; 4034 s64 delta; 4035 4036 /* 4037 * only need to iterate over all events iff: 4038 * - context have events in frequency mode (needs freq adjust) 4039 * - there are events to unthrottle on this cpu 4040 */ 4041 if (!(ctx->nr_freq || needs_unthr)) 4042 return; 4043 4044 raw_spin_lock(&ctx->lock); 4045 perf_pmu_disable(ctx->pmu); 4046 4047 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4048 if (event->state != PERF_EVENT_STATE_ACTIVE) 4049 continue; 4050 4051 if (!event_filter_match(event)) 4052 continue; 4053 4054 perf_pmu_disable(event->pmu); 4055 4056 hwc = &event->hw; 4057 4058 if (hwc->interrupts == MAX_INTERRUPTS) { 4059 hwc->interrupts = 0; 4060 perf_log_throttle(event, 1); 4061 event->pmu->start(event, 0); 4062 } 4063 4064 if (!event->attr.freq || !event->attr.sample_freq) 4065 goto next; 4066 4067 /* 4068 * stop the event and update event->count 4069 */ 4070 event->pmu->stop(event, PERF_EF_UPDATE); 4071 4072 now = local64_read(&event->count); 4073 delta = now - hwc->freq_count_stamp; 4074 hwc->freq_count_stamp = now; 4075 4076 /* 4077 * restart the event 4078 * reload only if value has changed 4079 * we have stopped the event so tell that 4080 * to perf_adjust_period() to avoid stopping it 4081 * twice. 4082 */ 4083 if (delta > 0) 4084 perf_adjust_period(event, period, delta, false); 4085 4086 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4087 next: 4088 perf_pmu_enable(event->pmu); 4089 } 4090 4091 perf_pmu_enable(ctx->pmu); 4092 raw_spin_unlock(&ctx->lock); 4093 } 4094 4095 /* 4096 * Move @event to the tail of the @ctx's elegible events. 4097 */ 4098 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4099 { 4100 /* 4101 * Rotate the first entry last of non-pinned groups. Rotation might be 4102 * disabled by the inheritance code. 4103 */ 4104 if (ctx->rotate_disable) 4105 return; 4106 4107 perf_event_groups_delete(&ctx->flexible_groups, event); 4108 perf_event_groups_insert(&ctx->flexible_groups, event); 4109 } 4110 4111 /* pick an event from the flexible_groups to rotate */ 4112 static inline struct perf_event * 4113 ctx_event_to_rotate(struct perf_event_context *ctx) 4114 { 4115 struct perf_event *event; 4116 4117 /* pick the first active flexible event */ 4118 event = list_first_entry_or_null(&ctx->flexible_active, 4119 struct perf_event, active_list); 4120 4121 /* if no active flexible event, pick the first event */ 4122 if (!event) { 4123 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4124 typeof(*event), group_node); 4125 } 4126 4127 /* 4128 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4129 * finds there are unschedulable events, it will set it again. 4130 */ 4131 ctx->rotate_necessary = 0; 4132 4133 return event; 4134 } 4135 4136 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4137 { 4138 struct perf_event *cpu_event = NULL, *task_event = NULL; 4139 struct perf_event_context *task_ctx = NULL; 4140 int cpu_rotate, task_rotate; 4141 4142 /* 4143 * Since we run this from IRQ context, nobody can install new 4144 * events, thus the event count values are stable. 4145 */ 4146 4147 cpu_rotate = cpuctx->ctx.rotate_necessary; 4148 task_ctx = cpuctx->task_ctx; 4149 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4150 4151 if (!(cpu_rotate || task_rotate)) 4152 return false; 4153 4154 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4155 perf_pmu_disable(cpuctx->ctx.pmu); 4156 4157 if (task_rotate) 4158 task_event = ctx_event_to_rotate(task_ctx); 4159 if (cpu_rotate) 4160 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4161 4162 /* 4163 * As per the order given at ctx_resched() first 'pop' task flexible 4164 * and then, if needed CPU flexible. 4165 */ 4166 if (task_event || (task_ctx && cpu_event)) 4167 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4168 if (cpu_event) 4169 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4170 4171 if (task_event) 4172 rotate_ctx(task_ctx, task_event); 4173 if (cpu_event) 4174 rotate_ctx(&cpuctx->ctx, cpu_event); 4175 4176 perf_event_sched_in(cpuctx, task_ctx); 4177 4178 perf_pmu_enable(cpuctx->ctx.pmu); 4179 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4180 4181 return true; 4182 } 4183 4184 void perf_event_task_tick(void) 4185 { 4186 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4187 struct perf_event_context *ctx, *tmp; 4188 int throttled; 4189 4190 lockdep_assert_irqs_disabled(); 4191 4192 __this_cpu_inc(perf_throttled_seq); 4193 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4194 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4195 4196 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4197 perf_adjust_freq_unthr_context(ctx, throttled); 4198 } 4199 4200 static int event_enable_on_exec(struct perf_event *event, 4201 struct perf_event_context *ctx) 4202 { 4203 if (!event->attr.enable_on_exec) 4204 return 0; 4205 4206 event->attr.enable_on_exec = 0; 4207 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4208 return 0; 4209 4210 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4211 4212 return 1; 4213 } 4214 4215 /* 4216 * Enable all of a task's events that have been marked enable-on-exec. 4217 * This expects task == current. 4218 */ 4219 static void perf_event_enable_on_exec(int ctxn) 4220 { 4221 struct perf_event_context *ctx, *clone_ctx = NULL; 4222 enum event_type_t event_type = 0; 4223 struct perf_cpu_context *cpuctx; 4224 struct perf_event *event; 4225 unsigned long flags; 4226 int enabled = 0; 4227 4228 local_irq_save(flags); 4229 ctx = current->perf_event_ctxp[ctxn]; 4230 if (!ctx || !ctx->nr_events) 4231 goto out; 4232 4233 cpuctx = __get_cpu_context(ctx); 4234 perf_ctx_lock(cpuctx, ctx); 4235 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4236 list_for_each_entry(event, &ctx->event_list, event_entry) { 4237 enabled |= event_enable_on_exec(event, ctx); 4238 event_type |= get_event_type(event); 4239 } 4240 4241 /* 4242 * Unclone and reschedule this context if we enabled any event. 4243 */ 4244 if (enabled) { 4245 clone_ctx = unclone_ctx(ctx); 4246 ctx_resched(cpuctx, ctx, event_type); 4247 } else { 4248 ctx_sched_in(ctx, cpuctx, EVENT_TIME); 4249 } 4250 perf_ctx_unlock(cpuctx, ctx); 4251 4252 out: 4253 local_irq_restore(flags); 4254 4255 if (clone_ctx) 4256 put_ctx(clone_ctx); 4257 } 4258 4259 static void perf_remove_from_owner(struct perf_event *event); 4260 static void perf_event_exit_event(struct perf_event *event, 4261 struct perf_event_context *ctx); 4262 4263 /* 4264 * Removes all events from the current task that have been marked 4265 * remove-on-exec, and feeds their values back to parent events. 4266 */ 4267 static void perf_event_remove_on_exec(int ctxn) 4268 { 4269 struct perf_event_context *ctx, *clone_ctx = NULL; 4270 struct perf_event *event, *next; 4271 unsigned long flags; 4272 bool modified = false; 4273 4274 ctx = perf_pin_task_context(current, ctxn); 4275 if (!ctx) 4276 return; 4277 4278 mutex_lock(&ctx->mutex); 4279 4280 if (WARN_ON_ONCE(ctx->task != current)) 4281 goto unlock; 4282 4283 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4284 if (!event->attr.remove_on_exec) 4285 continue; 4286 4287 if (!is_kernel_event(event)) 4288 perf_remove_from_owner(event); 4289 4290 modified = true; 4291 4292 perf_event_exit_event(event, ctx); 4293 } 4294 4295 raw_spin_lock_irqsave(&ctx->lock, flags); 4296 if (modified) 4297 clone_ctx = unclone_ctx(ctx); 4298 --ctx->pin_count; 4299 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4300 4301 unlock: 4302 mutex_unlock(&ctx->mutex); 4303 4304 put_ctx(ctx); 4305 if (clone_ctx) 4306 put_ctx(clone_ctx); 4307 } 4308 4309 struct perf_read_data { 4310 struct perf_event *event; 4311 bool group; 4312 int ret; 4313 }; 4314 4315 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4316 { 4317 u16 local_pkg, event_pkg; 4318 4319 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4320 int local_cpu = smp_processor_id(); 4321 4322 event_pkg = topology_physical_package_id(event_cpu); 4323 local_pkg = topology_physical_package_id(local_cpu); 4324 4325 if (event_pkg == local_pkg) 4326 return local_cpu; 4327 } 4328 4329 return event_cpu; 4330 } 4331 4332 /* 4333 * Cross CPU call to read the hardware event 4334 */ 4335 static void __perf_event_read(void *info) 4336 { 4337 struct perf_read_data *data = info; 4338 struct perf_event *sub, *event = data->event; 4339 struct perf_event_context *ctx = event->ctx; 4340 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4341 struct pmu *pmu = event->pmu; 4342 4343 /* 4344 * If this is a task context, we need to check whether it is 4345 * the current task context of this cpu. If not it has been 4346 * scheduled out before the smp call arrived. In that case 4347 * event->count would have been updated to a recent sample 4348 * when the event was scheduled out. 4349 */ 4350 if (ctx->task && cpuctx->task_ctx != ctx) 4351 return; 4352 4353 raw_spin_lock(&ctx->lock); 4354 if (ctx->is_active & EVENT_TIME) { 4355 update_context_time(ctx); 4356 update_cgrp_time_from_event(event); 4357 } 4358 4359 perf_event_update_time(event); 4360 if (data->group) 4361 perf_event_update_sibling_time(event); 4362 4363 if (event->state != PERF_EVENT_STATE_ACTIVE) 4364 goto unlock; 4365 4366 if (!data->group) { 4367 pmu->read(event); 4368 data->ret = 0; 4369 goto unlock; 4370 } 4371 4372 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4373 4374 pmu->read(event); 4375 4376 for_each_sibling_event(sub, event) { 4377 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4378 /* 4379 * Use sibling's PMU rather than @event's since 4380 * sibling could be on different (eg: software) PMU. 4381 */ 4382 sub->pmu->read(sub); 4383 } 4384 } 4385 4386 data->ret = pmu->commit_txn(pmu); 4387 4388 unlock: 4389 raw_spin_unlock(&ctx->lock); 4390 } 4391 4392 static inline u64 perf_event_count(struct perf_event *event) 4393 { 4394 return local64_read(&event->count) + atomic64_read(&event->child_count); 4395 } 4396 4397 static void calc_timer_values(struct perf_event *event, 4398 u64 *now, 4399 u64 *enabled, 4400 u64 *running) 4401 { 4402 u64 ctx_time; 4403 4404 *now = perf_clock(); 4405 ctx_time = perf_event_time_now(event, *now); 4406 __perf_update_times(event, ctx_time, enabled, running); 4407 } 4408 4409 /* 4410 * NMI-safe method to read a local event, that is an event that 4411 * is: 4412 * - either for the current task, or for this CPU 4413 * - does not have inherit set, for inherited task events 4414 * will not be local and we cannot read them atomically 4415 * - must not have a pmu::count method 4416 */ 4417 int perf_event_read_local(struct perf_event *event, u64 *value, 4418 u64 *enabled, u64 *running) 4419 { 4420 unsigned long flags; 4421 int ret = 0; 4422 4423 /* 4424 * Disabling interrupts avoids all counter scheduling (context 4425 * switches, timer based rotation and IPIs). 4426 */ 4427 local_irq_save(flags); 4428 4429 /* 4430 * It must not be an event with inherit set, we cannot read 4431 * all child counters from atomic context. 4432 */ 4433 if (event->attr.inherit) { 4434 ret = -EOPNOTSUPP; 4435 goto out; 4436 } 4437 4438 /* If this is a per-task event, it must be for current */ 4439 if ((event->attach_state & PERF_ATTACH_TASK) && 4440 event->hw.target != current) { 4441 ret = -EINVAL; 4442 goto out; 4443 } 4444 4445 /* If this is a per-CPU event, it must be for this CPU */ 4446 if (!(event->attach_state & PERF_ATTACH_TASK) && 4447 event->cpu != smp_processor_id()) { 4448 ret = -EINVAL; 4449 goto out; 4450 } 4451 4452 /* If this is a pinned event it must be running on this CPU */ 4453 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4454 ret = -EBUSY; 4455 goto out; 4456 } 4457 4458 /* 4459 * If the event is currently on this CPU, its either a per-task event, 4460 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4461 * oncpu == -1). 4462 */ 4463 if (event->oncpu == smp_processor_id()) 4464 event->pmu->read(event); 4465 4466 *value = local64_read(&event->count); 4467 if (enabled || running) { 4468 u64 __enabled, __running, __now; 4469 4470 calc_timer_values(event, &__now, &__enabled, &__running); 4471 if (enabled) 4472 *enabled = __enabled; 4473 if (running) 4474 *running = __running; 4475 } 4476 out: 4477 local_irq_restore(flags); 4478 4479 return ret; 4480 } 4481 4482 static int perf_event_read(struct perf_event *event, bool group) 4483 { 4484 enum perf_event_state state = READ_ONCE(event->state); 4485 int event_cpu, ret = 0; 4486 4487 /* 4488 * If event is enabled and currently active on a CPU, update the 4489 * value in the event structure: 4490 */ 4491 again: 4492 if (state == PERF_EVENT_STATE_ACTIVE) { 4493 struct perf_read_data data; 4494 4495 /* 4496 * Orders the ->state and ->oncpu loads such that if we see 4497 * ACTIVE we must also see the right ->oncpu. 4498 * 4499 * Matches the smp_wmb() from event_sched_in(). 4500 */ 4501 smp_rmb(); 4502 4503 event_cpu = READ_ONCE(event->oncpu); 4504 if ((unsigned)event_cpu >= nr_cpu_ids) 4505 return 0; 4506 4507 data = (struct perf_read_data){ 4508 .event = event, 4509 .group = group, 4510 .ret = 0, 4511 }; 4512 4513 preempt_disable(); 4514 event_cpu = __perf_event_read_cpu(event, event_cpu); 4515 4516 /* 4517 * Purposely ignore the smp_call_function_single() return 4518 * value. 4519 * 4520 * If event_cpu isn't a valid CPU it means the event got 4521 * scheduled out and that will have updated the event count. 4522 * 4523 * Therefore, either way, we'll have an up-to-date event count 4524 * after this. 4525 */ 4526 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4527 preempt_enable(); 4528 ret = data.ret; 4529 4530 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4531 struct perf_event_context *ctx = event->ctx; 4532 unsigned long flags; 4533 4534 raw_spin_lock_irqsave(&ctx->lock, flags); 4535 state = event->state; 4536 if (state != PERF_EVENT_STATE_INACTIVE) { 4537 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4538 goto again; 4539 } 4540 4541 /* 4542 * May read while context is not active (e.g., thread is 4543 * blocked), in that case we cannot update context time 4544 */ 4545 if (ctx->is_active & EVENT_TIME) { 4546 update_context_time(ctx); 4547 update_cgrp_time_from_event(event); 4548 } 4549 4550 perf_event_update_time(event); 4551 if (group) 4552 perf_event_update_sibling_time(event); 4553 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4554 } 4555 4556 return ret; 4557 } 4558 4559 /* 4560 * Initialize the perf_event context in a task_struct: 4561 */ 4562 static void __perf_event_init_context(struct perf_event_context *ctx) 4563 { 4564 raw_spin_lock_init(&ctx->lock); 4565 mutex_init(&ctx->mutex); 4566 INIT_LIST_HEAD(&ctx->active_ctx_list); 4567 perf_event_groups_init(&ctx->pinned_groups); 4568 perf_event_groups_init(&ctx->flexible_groups); 4569 INIT_LIST_HEAD(&ctx->event_list); 4570 INIT_LIST_HEAD(&ctx->pinned_active); 4571 INIT_LIST_HEAD(&ctx->flexible_active); 4572 refcount_set(&ctx->refcount, 1); 4573 } 4574 4575 static struct perf_event_context * 4576 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4577 { 4578 struct perf_event_context *ctx; 4579 4580 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4581 if (!ctx) 4582 return NULL; 4583 4584 __perf_event_init_context(ctx); 4585 if (task) 4586 ctx->task = get_task_struct(task); 4587 ctx->pmu = pmu; 4588 4589 return ctx; 4590 } 4591 4592 static struct task_struct * 4593 find_lively_task_by_vpid(pid_t vpid) 4594 { 4595 struct task_struct *task; 4596 4597 rcu_read_lock(); 4598 if (!vpid) 4599 task = current; 4600 else 4601 task = find_task_by_vpid(vpid); 4602 if (task) 4603 get_task_struct(task); 4604 rcu_read_unlock(); 4605 4606 if (!task) 4607 return ERR_PTR(-ESRCH); 4608 4609 return task; 4610 } 4611 4612 /* 4613 * Returns a matching context with refcount and pincount. 4614 */ 4615 static struct perf_event_context * 4616 find_get_context(struct pmu *pmu, struct task_struct *task, 4617 struct perf_event *event) 4618 { 4619 struct perf_event_context *ctx, *clone_ctx = NULL; 4620 struct perf_cpu_context *cpuctx; 4621 void *task_ctx_data = NULL; 4622 unsigned long flags; 4623 int ctxn, err; 4624 int cpu = event->cpu; 4625 4626 if (!task) { 4627 /* Must be root to operate on a CPU event: */ 4628 err = perf_allow_cpu(&event->attr); 4629 if (err) 4630 return ERR_PTR(err); 4631 4632 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4633 ctx = &cpuctx->ctx; 4634 get_ctx(ctx); 4635 raw_spin_lock_irqsave(&ctx->lock, flags); 4636 ++ctx->pin_count; 4637 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4638 4639 return ctx; 4640 } 4641 4642 err = -EINVAL; 4643 ctxn = pmu->task_ctx_nr; 4644 if (ctxn < 0) 4645 goto errout; 4646 4647 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4648 task_ctx_data = alloc_task_ctx_data(pmu); 4649 if (!task_ctx_data) { 4650 err = -ENOMEM; 4651 goto errout; 4652 } 4653 } 4654 4655 retry: 4656 ctx = perf_lock_task_context(task, ctxn, &flags); 4657 if (ctx) { 4658 clone_ctx = unclone_ctx(ctx); 4659 ++ctx->pin_count; 4660 4661 if (task_ctx_data && !ctx->task_ctx_data) { 4662 ctx->task_ctx_data = task_ctx_data; 4663 task_ctx_data = NULL; 4664 } 4665 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4666 4667 if (clone_ctx) 4668 put_ctx(clone_ctx); 4669 } else { 4670 ctx = alloc_perf_context(pmu, task); 4671 err = -ENOMEM; 4672 if (!ctx) 4673 goto errout; 4674 4675 if (task_ctx_data) { 4676 ctx->task_ctx_data = task_ctx_data; 4677 task_ctx_data = NULL; 4678 } 4679 4680 err = 0; 4681 mutex_lock(&task->perf_event_mutex); 4682 /* 4683 * If it has already passed perf_event_exit_task(). 4684 * we must see PF_EXITING, it takes this mutex too. 4685 */ 4686 if (task->flags & PF_EXITING) 4687 err = -ESRCH; 4688 else if (task->perf_event_ctxp[ctxn]) 4689 err = -EAGAIN; 4690 else { 4691 get_ctx(ctx); 4692 ++ctx->pin_count; 4693 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4694 } 4695 mutex_unlock(&task->perf_event_mutex); 4696 4697 if (unlikely(err)) { 4698 put_ctx(ctx); 4699 4700 if (err == -EAGAIN) 4701 goto retry; 4702 goto errout; 4703 } 4704 } 4705 4706 free_task_ctx_data(pmu, task_ctx_data); 4707 return ctx; 4708 4709 errout: 4710 free_task_ctx_data(pmu, task_ctx_data); 4711 return ERR_PTR(err); 4712 } 4713 4714 static void perf_event_free_filter(struct perf_event *event); 4715 4716 static void free_event_rcu(struct rcu_head *head) 4717 { 4718 struct perf_event *event; 4719 4720 event = container_of(head, struct perf_event, rcu_head); 4721 if (event->ns) 4722 put_pid_ns(event->ns); 4723 perf_event_free_filter(event); 4724 kmem_cache_free(perf_event_cache, event); 4725 } 4726 4727 static void ring_buffer_attach(struct perf_event *event, 4728 struct perf_buffer *rb); 4729 4730 static void detach_sb_event(struct perf_event *event) 4731 { 4732 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4733 4734 raw_spin_lock(&pel->lock); 4735 list_del_rcu(&event->sb_list); 4736 raw_spin_unlock(&pel->lock); 4737 } 4738 4739 static bool is_sb_event(struct perf_event *event) 4740 { 4741 struct perf_event_attr *attr = &event->attr; 4742 4743 if (event->parent) 4744 return false; 4745 4746 if (event->attach_state & PERF_ATTACH_TASK) 4747 return false; 4748 4749 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4750 attr->comm || attr->comm_exec || 4751 attr->task || attr->ksymbol || 4752 attr->context_switch || attr->text_poke || 4753 attr->bpf_event) 4754 return true; 4755 return false; 4756 } 4757 4758 static void unaccount_pmu_sb_event(struct perf_event *event) 4759 { 4760 if (is_sb_event(event)) 4761 detach_sb_event(event); 4762 } 4763 4764 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4765 { 4766 if (event->parent) 4767 return; 4768 4769 if (is_cgroup_event(event)) 4770 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4771 } 4772 4773 #ifdef CONFIG_NO_HZ_FULL 4774 static DEFINE_SPINLOCK(nr_freq_lock); 4775 #endif 4776 4777 static void unaccount_freq_event_nohz(void) 4778 { 4779 #ifdef CONFIG_NO_HZ_FULL 4780 spin_lock(&nr_freq_lock); 4781 if (atomic_dec_and_test(&nr_freq_events)) 4782 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4783 spin_unlock(&nr_freq_lock); 4784 #endif 4785 } 4786 4787 static void unaccount_freq_event(void) 4788 { 4789 if (tick_nohz_full_enabled()) 4790 unaccount_freq_event_nohz(); 4791 else 4792 atomic_dec(&nr_freq_events); 4793 } 4794 4795 static void unaccount_event(struct perf_event *event) 4796 { 4797 bool dec = false; 4798 4799 if (event->parent) 4800 return; 4801 4802 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 4803 dec = true; 4804 if (event->attr.mmap || event->attr.mmap_data) 4805 atomic_dec(&nr_mmap_events); 4806 if (event->attr.build_id) 4807 atomic_dec(&nr_build_id_events); 4808 if (event->attr.comm) 4809 atomic_dec(&nr_comm_events); 4810 if (event->attr.namespaces) 4811 atomic_dec(&nr_namespaces_events); 4812 if (event->attr.cgroup) 4813 atomic_dec(&nr_cgroup_events); 4814 if (event->attr.task) 4815 atomic_dec(&nr_task_events); 4816 if (event->attr.freq) 4817 unaccount_freq_event(); 4818 if (event->attr.context_switch) { 4819 dec = true; 4820 atomic_dec(&nr_switch_events); 4821 } 4822 if (is_cgroup_event(event)) 4823 dec = true; 4824 if (has_branch_stack(event)) 4825 dec = true; 4826 if (event->attr.ksymbol) 4827 atomic_dec(&nr_ksymbol_events); 4828 if (event->attr.bpf_event) 4829 atomic_dec(&nr_bpf_events); 4830 if (event->attr.text_poke) 4831 atomic_dec(&nr_text_poke_events); 4832 4833 if (dec) { 4834 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4835 schedule_delayed_work(&perf_sched_work, HZ); 4836 } 4837 4838 unaccount_event_cpu(event, event->cpu); 4839 4840 unaccount_pmu_sb_event(event); 4841 } 4842 4843 static void perf_sched_delayed(struct work_struct *work) 4844 { 4845 mutex_lock(&perf_sched_mutex); 4846 if (atomic_dec_and_test(&perf_sched_count)) 4847 static_branch_disable(&perf_sched_events); 4848 mutex_unlock(&perf_sched_mutex); 4849 } 4850 4851 /* 4852 * The following implement mutual exclusion of events on "exclusive" pmus 4853 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4854 * at a time, so we disallow creating events that might conflict, namely: 4855 * 4856 * 1) cpu-wide events in the presence of per-task events, 4857 * 2) per-task events in the presence of cpu-wide events, 4858 * 3) two matching events on the same context. 4859 * 4860 * The former two cases are handled in the allocation path (perf_event_alloc(), 4861 * _free_event()), the latter -- before the first perf_install_in_context(). 4862 */ 4863 static int exclusive_event_init(struct perf_event *event) 4864 { 4865 struct pmu *pmu = event->pmu; 4866 4867 if (!is_exclusive_pmu(pmu)) 4868 return 0; 4869 4870 /* 4871 * Prevent co-existence of per-task and cpu-wide events on the 4872 * same exclusive pmu. 4873 * 4874 * Negative pmu::exclusive_cnt means there are cpu-wide 4875 * events on this "exclusive" pmu, positive means there are 4876 * per-task events. 4877 * 4878 * Since this is called in perf_event_alloc() path, event::ctx 4879 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4880 * to mean "per-task event", because unlike other attach states it 4881 * never gets cleared. 4882 */ 4883 if (event->attach_state & PERF_ATTACH_TASK) { 4884 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4885 return -EBUSY; 4886 } else { 4887 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4888 return -EBUSY; 4889 } 4890 4891 return 0; 4892 } 4893 4894 static void exclusive_event_destroy(struct perf_event *event) 4895 { 4896 struct pmu *pmu = event->pmu; 4897 4898 if (!is_exclusive_pmu(pmu)) 4899 return; 4900 4901 /* see comment in exclusive_event_init() */ 4902 if (event->attach_state & PERF_ATTACH_TASK) 4903 atomic_dec(&pmu->exclusive_cnt); 4904 else 4905 atomic_inc(&pmu->exclusive_cnt); 4906 } 4907 4908 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4909 { 4910 if ((e1->pmu == e2->pmu) && 4911 (e1->cpu == e2->cpu || 4912 e1->cpu == -1 || 4913 e2->cpu == -1)) 4914 return true; 4915 return false; 4916 } 4917 4918 static bool exclusive_event_installable(struct perf_event *event, 4919 struct perf_event_context *ctx) 4920 { 4921 struct perf_event *iter_event; 4922 struct pmu *pmu = event->pmu; 4923 4924 lockdep_assert_held(&ctx->mutex); 4925 4926 if (!is_exclusive_pmu(pmu)) 4927 return true; 4928 4929 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4930 if (exclusive_event_match(iter_event, event)) 4931 return false; 4932 } 4933 4934 return true; 4935 } 4936 4937 static void perf_addr_filters_splice(struct perf_event *event, 4938 struct list_head *head); 4939 4940 static void _free_event(struct perf_event *event) 4941 { 4942 irq_work_sync(&event->pending); 4943 4944 unaccount_event(event); 4945 4946 security_perf_event_free(event); 4947 4948 if (event->rb) { 4949 /* 4950 * Can happen when we close an event with re-directed output. 4951 * 4952 * Since we have a 0 refcount, perf_mmap_close() will skip 4953 * over us; possibly making our ring_buffer_put() the last. 4954 */ 4955 mutex_lock(&event->mmap_mutex); 4956 ring_buffer_attach(event, NULL); 4957 mutex_unlock(&event->mmap_mutex); 4958 } 4959 4960 if (is_cgroup_event(event)) 4961 perf_detach_cgroup(event); 4962 4963 if (!event->parent) { 4964 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4965 put_callchain_buffers(); 4966 } 4967 4968 perf_event_free_bpf_prog(event); 4969 perf_addr_filters_splice(event, NULL); 4970 kfree(event->addr_filter_ranges); 4971 4972 if (event->destroy) 4973 event->destroy(event); 4974 4975 /* 4976 * Must be after ->destroy(), due to uprobe_perf_close() using 4977 * hw.target. 4978 */ 4979 if (event->hw.target) 4980 put_task_struct(event->hw.target); 4981 4982 /* 4983 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4984 * all task references must be cleaned up. 4985 */ 4986 if (event->ctx) 4987 put_ctx(event->ctx); 4988 4989 exclusive_event_destroy(event); 4990 module_put(event->pmu->module); 4991 4992 call_rcu(&event->rcu_head, free_event_rcu); 4993 } 4994 4995 /* 4996 * Used to free events which have a known refcount of 1, such as in error paths 4997 * where the event isn't exposed yet and inherited events. 4998 */ 4999 static void free_event(struct perf_event *event) 5000 { 5001 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5002 "unexpected event refcount: %ld; ptr=%p\n", 5003 atomic_long_read(&event->refcount), event)) { 5004 /* leak to avoid use-after-free */ 5005 return; 5006 } 5007 5008 _free_event(event); 5009 } 5010 5011 /* 5012 * Remove user event from the owner task. 5013 */ 5014 static void perf_remove_from_owner(struct perf_event *event) 5015 { 5016 struct task_struct *owner; 5017 5018 rcu_read_lock(); 5019 /* 5020 * Matches the smp_store_release() in perf_event_exit_task(). If we 5021 * observe !owner it means the list deletion is complete and we can 5022 * indeed free this event, otherwise we need to serialize on 5023 * owner->perf_event_mutex. 5024 */ 5025 owner = READ_ONCE(event->owner); 5026 if (owner) { 5027 /* 5028 * Since delayed_put_task_struct() also drops the last 5029 * task reference we can safely take a new reference 5030 * while holding the rcu_read_lock(). 5031 */ 5032 get_task_struct(owner); 5033 } 5034 rcu_read_unlock(); 5035 5036 if (owner) { 5037 /* 5038 * If we're here through perf_event_exit_task() we're already 5039 * holding ctx->mutex which would be an inversion wrt. the 5040 * normal lock order. 5041 * 5042 * However we can safely take this lock because its the child 5043 * ctx->mutex. 5044 */ 5045 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5046 5047 /* 5048 * We have to re-check the event->owner field, if it is cleared 5049 * we raced with perf_event_exit_task(), acquiring the mutex 5050 * ensured they're done, and we can proceed with freeing the 5051 * event. 5052 */ 5053 if (event->owner) { 5054 list_del_init(&event->owner_entry); 5055 smp_store_release(&event->owner, NULL); 5056 } 5057 mutex_unlock(&owner->perf_event_mutex); 5058 put_task_struct(owner); 5059 } 5060 } 5061 5062 static void put_event(struct perf_event *event) 5063 { 5064 if (!atomic_long_dec_and_test(&event->refcount)) 5065 return; 5066 5067 _free_event(event); 5068 } 5069 5070 /* 5071 * Kill an event dead; while event:refcount will preserve the event 5072 * object, it will not preserve its functionality. Once the last 'user' 5073 * gives up the object, we'll destroy the thing. 5074 */ 5075 int perf_event_release_kernel(struct perf_event *event) 5076 { 5077 struct perf_event_context *ctx = event->ctx; 5078 struct perf_event *child, *tmp; 5079 LIST_HEAD(free_list); 5080 5081 /* 5082 * If we got here through err_file: fput(event_file); we will not have 5083 * attached to a context yet. 5084 */ 5085 if (!ctx) { 5086 WARN_ON_ONCE(event->attach_state & 5087 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5088 goto no_ctx; 5089 } 5090 5091 if (!is_kernel_event(event)) 5092 perf_remove_from_owner(event); 5093 5094 ctx = perf_event_ctx_lock(event); 5095 WARN_ON_ONCE(ctx->parent_ctx); 5096 perf_remove_from_context(event, DETACH_GROUP); 5097 5098 raw_spin_lock_irq(&ctx->lock); 5099 /* 5100 * Mark this event as STATE_DEAD, there is no external reference to it 5101 * anymore. 5102 * 5103 * Anybody acquiring event->child_mutex after the below loop _must_ 5104 * also see this, most importantly inherit_event() which will avoid 5105 * placing more children on the list. 5106 * 5107 * Thus this guarantees that we will in fact observe and kill _ALL_ 5108 * child events. 5109 */ 5110 event->state = PERF_EVENT_STATE_DEAD; 5111 raw_spin_unlock_irq(&ctx->lock); 5112 5113 perf_event_ctx_unlock(event, ctx); 5114 5115 again: 5116 mutex_lock(&event->child_mutex); 5117 list_for_each_entry(child, &event->child_list, child_list) { 5118 5119 /* 5120 * Cannot change, child events are not migrated, see the 5121 * comment with perf_event_ctx_lock_nested(). 5122 */ 5123 ctx = READ_ONCE(child->ctx); 5124 /* 5125 * Since child_mutex nests inside ctx::mutex, we must jump 5126 * through hoops. We start by grabbing a reference on the ctx. 5127 * 5128 * Since the event cannot get freed while we hold the 5129 * child_mutex, the context must also exist and have a !0 5130 * reference count. 5131 */ 5132 get_ctx(ctx); 5133 5134 /* 5135 * Now that we have a ctx ref, we can drop child_mutex, and 5136 * acquire ctx::mutex without fear of it going away. Then we 5137 * can re-acquire child_mutex. 5138 */ 5139 mutex_unlock(&event->child_mutex); 5140 mutex_lock(&ctx->mutex); 5141 mutex_lock(&event->child_mutex); 5142 5143 /* 5144 * Now that we hold ctx::mutex and child_mutex, revalidate our 5145 * state, if child is still the first entry, it didn't get freed 5146 * and we can continue doing so. 5147 */ 5148 tmp = list_first_entry_or_null(&event->child_list, 5149 struct perf_event, child_list); 5150 if (tmp == child) { 5151 perf_remove_from_context(child, DETACH_GROUP); 5152 list_move(&child->child_list, &free_list); 5153 /* 5154 * This matches the refcount bump in inherit_event(); 5155 * this can't be the last reference. 5156 */ 5157 put_event(event); 5158 } 5159 5160 mutex_unlock(&event->child_mutex); 5161 mutex_unlock(&ctx->mutex); 5162 put_ctx(ctx); 5163 goto again; 5164 } 5165 mutex_unlock(&event->child_mutex); 5166 5167 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5168 void *var = &child->ctx->refcount; 5169 5170 list_del(&child->child_list); 5171 free_event(child); 5172 5173 /* 5174 * Wake any perf_event_free_task() waiting for this event to be 5175 * freed. 5176 */ 5177 smp_mb(); /* pairs with wait_var_event() */ 5178 wake_up_var(var); 5179 } 5180 5181 no_ctx: 5182 put_event(event); /* Must be the 'last' reference */ 5183 return 0; 5184 } 5185 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5186 5187 /* 5188 * Called when the last reference to the file is gone. 5189 */ 5190 static int perf_release(struct inode *inode, struct file *file) 5191 { 5192 perf_event_release_kernel(file->private_data); 5193 return 0; 5194 } 5195 5196 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5197 { 5198 struct perf_event *child; 5199 u64 total = 0; 5200 5201 *enabled = 0; 5202 *running = 0; 5203 5204 mutex_lock(&event->child_mutex); 5205 5206 (void)perf_event_read(event, false); 5207 total += perf_event_count(event); 5208 5209 *enabled += event->total_time_enabled + 5210 atomic64_read(&event->child_total_time_enabled); 5211 *running += event->total_time_running + 5212 atomic64_read(&event->child_total_time_running); 5213 5214 list_for_each_entry(child, &event->child_list, child_list) { 5215 (void)perf_event_read(child, false); 5216 total += perf_event_count(child); 5217 *enabled += child->total_time_enabled; 5218 *running += child->total_time_running; 5219 } 5220 mutex_unlock(&event->child_mutex); 5221 5222 return total; 5223 } 5224 5225 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5226 { 5227 struct perf_event_context *ctx; 5228 u64 count; 5229 5230 ctx = perf_event_ctx_lock(event); 5231 count = __perf_event_read_value(event, enabled, running); 5232 perf_event_ctx_unlock(event, ctx); 5233 5234 return count; 5235 } 5236 EXPORT_SYMBOL_GPL(perf_event_read_value); 5237 5238 static int __perf_read_group_add(struct perf_event *leader, 5239 u64 read_format, u64 *values) 5240 { 5241 struct perf_event_context *ctx = leader->ctx; 5242 struct perf_event *sub; 5243 unsigned long flags; 5244 int n = 1; /* skip @nr */ 5245 int ret; 5246 5247 ret = perf_event_read(leader, true); 5248 if (ret) 5249 return ret; 5250 5251 raw_spin_lock_irqsave(&ctx->lock, flags); 5252 5253 /* 5254 * Since we co-schedule groups, {enabled,running} times of siblings 5255 * will be identical to those of the leader, so we only publish one 5256 * set. 5257 */ 5258 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5259 values[n++] += leader->total_time_enabled + 5260 atomic64_read(&leader->child_total_time_enabled); 5261 } 5262 5263 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5264 values[n++] += leader->total_time_running + 5265 atomic64_read(&leader->child_total_time_running); 5266 } 5267 5268 /* 5269 * Write {count,id} tuples for every sibling. 5270 */ 5271 values[n++] += perf_event_count(leader); 5272 if (read_format & PERF_FORMAT_ID) 5273 values[n++] = primary_event_id(leader); 5274 if (read_format & PERF_FORMAT_LOST) 5275 values[n++] = atomic64_read(&leader->lost_samples); 5276 5277 for_each_sibling_event(sub, leader) { 5278 values[n++] += perf_event_count(sub); 5279 if (read_format & PERF_FORMAT_ID) 5280 values[n++] = primary_event_id(sub); 5281 if (read_format & PERF_FORMAT_LOST) 5282 values[n++] = atomic64_read(&sub->lost_samples); 5283 } 5284 5285 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5286 return 0; 5287 } 5288 5289 static int perf_read_group(struct perf_event *event, 5290 u64 read_format, char __user *buf) 5291 { 5292 struct perf_event *leader = event->group_leader, *child; 5293 struct perf_event_context *ctx = leader->ctx; 5294 int ret; 5295 u64 *values; 5296 5297 lockdep_assert_held(&ctx->mutex); 5298 5299 values = kzalloc(event->read_size, GFP_KERNEL); 5300 if (!values) 5301 return -ENOMEM; 5302 5303 values[0] = 1 + leader->nr_siblings; 5304 5305 /* 5306 * By locking the child_mutex of the leader we effectively 5307 * lock the child list of all siblings.. XXX explain how. 5308 */ 5309 mutex_lock(&leader->child_mutex); 5310 5311 ret = __perf_read_group_add(leader, read_format, values); 5312 if (ret) 5313 goto unlock; 5314 5315 list_for_each_entry(child, &leader->child_list, child_list) { 5316 ret = __perf_read_group_add(child, read_format, values); 5317 if (ret) 5318 goto unlock; 5319 } 5320 5321 mutex_unlock(&leader->child_mutex); 5322 5323 ret = event->read_size; 5324 if (copy_to_user(buf, values, event->read_size)) 5325 ret = -EFAULT; 5326 goto out; 5327 5328 unlock: 5329 mutex_unlock(&leader->child_mutex); 5330 out: 5331 kfree(values); 5332 return ret; 5333 } 5334 5335 static int perf_read_one(struct perf_event *event, 5336 u64 read_format, char __user *buf) 5337 { 5338 u64 enabled, running; 5339 u64 values[5]; 5340 int n = 0; 5341 5342 values[n++] = __perf_event_read_value(event, &enabled, &running); 5343 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5344 values[n++] = enabled; 5345 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5346 values[n++] = running; 5347 if (read_format & PERF_FORMAT_ID) 5348 values[n++] = primary_event_id(event); 5349 if (read_format & PERF_FORMAT_LOST) 5350 values[n++] = atomic64_read(&event->lost_samples); 5351 5352 if (copy_to_user(buf, values, n * sizeof(u64))) 5353 return -EFAULT; 5354 5355 return n * sizeof(u64); 5356 } 5357 5358 static bool is_event_hup(struct perf_event *event) 5359 { 5360 bool no_children; 5361 5362 if (event->state > PERF_EVENT_STATE_EXIT) 5363 return false; 5364 5365 mutex_lock(&event->child_mutex); 5366 no_children = list_empty(&event->child_list); 5367 mutex_unlock(&event->child_mutex); 5368 return no_children; 5369 } 5370 5371 /* 5372 * Read the performance event - simple non blocking version for now 5373 */ 5374 static ssize_t 5375 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5376 { 5377 u64 read_format = event->attr.read_format; 5378 int ret; 5379 5380 /* 5381 * Return end-of-file for a read on an event that is in 5382 * error state (i.e. because it was pinned but it couldn't be 5383 * scheduled on to the CPU at some point). 5384 */ 5385 if (event->state == PERF_EVENT_STATE_ERROR) 5386 return 0; 5387 5388 if (count < event->read_size) 5389 return -ENOSPC; 5390 5391 WARN_ON_ONCE(event->ctx->parent_ctx); 5392 if (read_format & PERF_FORMAT_GROUP) 5393 ret = perf_read_group(event, read_format, buf); 5394 else 5395 ret = perf_read_one(event, read_format, buf); 5396 5397 return ret; 5398 } 5399 5400 static ssize_t 5401 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5402 { 5403 struct perf_event *event = file->private_data; 5404 struct perf_event_context *ctx; 5405 int ret; 5406 5407 ret = security_perf_event_read(event); 5408 if (ret) 5409 return ret; 5410 5411 ctx = perf_event_ctx_lock(event); 5412 ret = __perf_read(event, buf, count); 5413 perf_event_ctx_unlock(event, ctx); 5414 5415 return ret; 5416 } 5417 5418 static __poll_t perf_poll(struct file *file, poll_table *wait) 5419 { 5420 struct perf_event *event = file->private_data; 5421 struct perf_buffer *rb; 5422 __poll_t events = EPOLLHUP; 5423 5424 poll_wait(file, &event->waitq, wait); 5425 5426 if (is_event_hup(event)) 5427 return events; 5428 5429 /* 5430 * Pin the event->rb by taking event->mmap_mutex; otherwise 5431 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5432 */ 5433 mutex_lock(&event->mmap_mutex); 5434 rb = event->rb; 5435 if (rb) 5436 events = atomic_xchg(&rb->poll, 0); 5437 mutex_unlock(&event->mmap_mutex); 5438 return events; 5439 } 5440 5441 static void _perf_event_reset(struct perf_event *event) 5442 { 5443 (void)perf_event_read(event, false); 5444 local64_set(&event->count, 0); 5445 perf_event_update_userpage(event); 5446 } 5447 5448 /* Assume it's not an event with inherit set. */ 5449 u64 perf_event_pause(struct perf_event *event, bool reset) 5450 { 5451 struct perf_event_context *ctx; 5452 u64 count; 5453 5454 ctx = perf_event_ctx_lock(event); 5455 WARN_ON_ONCE(event->attr.inherit); 5456 _perf_event_disable(event); 5457 count = local64_read(&event->count); 5458 if (reset) 5459 local64_set(&event->count, 0); 5460 perf_event_ctx_unlock(event, ctx); 5461 5462 return count; 5463 } 5464 EXPORT_SYMBOL_GPL(perf_event_pause); 5465 5466 /* 5467 * Holding the top-level event's child_mutex means that any 5468 * descendant process that has inherited this event will block 5469 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5470 * task existence requirements of perf_event_enable/disable. 5471 */ 5472 static void perf_event_for_each_child(struct perf_event *event, 5473 void (*func)(struct perf_event *)) 5474 { 5475 struct perf_event *child; 5476 5477 WARN_ON_ONCE(event->ctx->parent_ctx); 5478 5479 mutex_lock(&event->child_mutex); 5480 func(event); 5481 list_for_each_entry(child, &event->child_list, child_list) 5482 func(child); 5483 mutex_unlock(&event->child_mutex); 5484 } 5485 5486 static void perf_event_for_each(struct perf_event *event, 5487 void (*func)(struct perf_event *)) 5488 { 5489 struct perf_event_context *ctx = event->ctx; 5490 struct perf_event *sibling; 5491 5492 lockdep_assert_held(&ctx->mutex); 5493 5494 event = event->group_leader; 5495 5496 perf_event_for_each_child(event, func); 5497 for_each_sibling_event(sibling, event) 5498 perf_event_for_each_child(sibling, func); 5499 } 5500 5501 static void __perf_event_period(struct perf_event *event, 5502 struct perf_cpu_context *cpuctx, 5503 struct perf_event_context *ctx, 5504 void *info) 5505 { 5506 u64 value = *((u64 *)info); 5507 bool active; 5508 5509 if (event->attr.freq) { 5510 event->attr.sample_freq = value; 5511 } else { 5512 event->attr.sample_period = value; 5513 event->hw.sample_period = value; 5514 } 5515 5516 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5517 if (active) { 5518 perf_pmu_disable(ctx->pmu); 5519 /* 5520 * We could be throttled; unthrottle now to avoid the tick 5521 * trying to unthrottle while we already re-started the event. 5522 */ 5523 if (event->hw.interrupts == MAX_INTERRUPTS) { 5524 event->hw.interrupts = 0; 5525 perf_log_throttle(event, 1); 5526 } 5527 event->pmu->stop(event, PERF_EF_UPDATE); 5528 } 5529 5530 local64_set(&event->hw.period_left, 0); 5531 5532 if (active) { 5533 event->pmu->start(event, PERF_EF_RELOAD); 5534 perf_pmu_enable(ctx->pmu); 5535 } 5536 } 5537 5538 static int perf_event_check_period(struct perf_event *event, u64 value) 5539 { 5540 return event->pmu->check_period(event, value); 5541 } 5542 5543 static int _perf_event_period(struct perf_event *event, u64 value) 5544 { 5545 if (!is_sampling_event(event)) 5546 return -EINVAL; 5547 5548 if (!value) 5549 return -EINVAL; 5550 5551 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5552 return -EINVAL; 5553 5554 if (perf_event_check_period(event, value)) 5555 return -EINVAL; 5556 5557 if (!event->attr.freq && (value & (1ULL << 63))) 5558 return -EINVAL; 5559 5560 event_function_call(event, __perf_event_period, &value); 5561 5562 return 0; 5563 } 5564 5565 int perf_event_period(struct perf_event *event, u64 value) 5566 { 5567 struct perf_event_context *ctx; 5568 int ret; 5569 5570 ctx = perf_event_ctx_lock(event); 5571 ret = _perf_event_period(event, value); 5572 perf_event_ctx_unlock(event, ctx); 5573 5574 return ret; 5575 } 5576 EXPORT_SYMBOL_GPL(perf_event_period); 5577 5578 static const struct file_operations perf_fops; 5579 5580 static inline int perf_fget_light(int fd, struct fd *p) 5581 { 5582 struct fd f = fdget(fd); 5583 if (!f.file) 5584 return -EBADF; 5585 5586 if (f.file->f_op != &perf_fops) { 5587 fdput(f); 5588 return -EBADF; 5589 } 5590 *p = f; 5591 return 0; 5592 } 5593 5594 static int perf_event_set_output(struct perf_event *event, 5595 struct perf_event *output_event); 5596 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5597 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5598 struct perf_event_attr *attr); 5599 5600 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5601 { 5602 void (*func)(struct perf_event *); 5603 u32 flags = arg; 5604 5605 switch (cmd) { 5606 case PERF_EVENT_IOC_ENABLE: 5607 func = _perf_event_enable; 5608 break; 5609 case PERF_EVENT_IOC_DISABLE: 5610 func = _perf_event_disable; 5611 break; 5612 case PERF_EVENT_IOC_RESET: 5613 func = _perf_event_reset; 5614 break; 5615 5616 case PERF_EVENT_IOC_REFRESH: 5617 return _perf_event_refresh(event, arg); 5618 5619 case PERF_EVENT_IOC_PERIOD: 5620 { 5621 u64 value; 5622 5623 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5624 return -EFAULT; 5625 5626 return _perf_event_period(event, value); 5627 } 5628 case PERF_EVENT_IOC_ID: 5629 { 5630 u64 id = primary_event_id(event); 5631 5632 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5633 return -EFAULT; 5634 return 0; 5635 } 5636 5637 case PERF_EVENT_IOC_SET_OUTPUT: 5638 { 5639 int ret; 5640 if (arg != -1) { 5641 struct perf_event *output_event; 5642 struct fd output; 5643 ret = perf_fget_light(arg, &output); 5644 if (ret) 5645 return ret; 5646 output_event = output.file->private_data; 5647 ret = perf_event_set_output(event, output_event); 5648 fdput(output); 5649 } else { 5650 ret = perf_event_set_output(event, NULL); 5651 } 5652 return ret; 5653 } 5654 5655 case PERF_EVENT_IOC_SET_FILTER: 5656 return perf_event_set_filter(event, (void __user *)arg); 5657 5658 case PERF_EVENT_IOC_SET_BPF: 5659 { 5660 struct bpf_prog *prog; 5661 int err; 5662 5663 prog = bpf_prog_get(arg); 5664 if (IS_ERR(prog)) 5665 return PTR_ERR(prog); 5666 5667 err = perf_event_set_bpf_prog(event, prog, 0); 5668 if (err) { 5669 bpf_prog_put(prog); 5670 return err; 5671 } 5672 5673 return 0; 5674 } 5675 5676 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5677 struct perf_buffer *rb; 5678 5679 rcu_read_lock(); 5680 rb = rcu_dereference(event->rb); 5681 if (!rb || !rb->nr_pages) { 5682 rcu_read_unlock(); 5683 return -EINVAL; 5684 } 5685 rb_toggle_paused(rb, !!arg); 5686 rcu_read_unlock(); 5687 return 0; 5688 } 5689 5690 case PERF_EVENT_IOC_QUERY_BPF: 5691 return perf_event_query_prog_array(event, (void __user *)arg); 5692 5693 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5694 struct perf_event_attr new_attr; 5695 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5696 &new_attr); 5697 5698 if (err) 5699 return err; 5700 5701 return perf_event_modify_attr(event, &new_attr); 5702 } 5703 default: 5704 return -ENOTTY; 5705 } 5706 5707 if (flags & PERF_IOC_FLAG_GROUP) 5708 perf_event_for_each(event, func); 5709 else 5710 perf_event_for_each_child(event, func); 5711 5712 return 0; 5713 } 5714 5715 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5716 { 5717 struct perf_event *event = file->private_data; 5718 struct perf_event_context *ctx; 5719 long ret; 5720 5721 /* Treat ioctl like writes as it is likely a mutating operation. */ 5722 ret = security_perf_event_write(event); 5723 if (ret) 5724 return ret; 5725 5726 ctx = perf_event_ctx_lock(event); 5727 ret = _perf_ioctl(event, cmd, arg); 5728 perf_event_ctx_unlock(event, ctx); 5729 5730 return ret; 5731 } 5732 5733 #ifdef CONFIG_COMPAT 5734 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5735 unsigned long arg) 5736 { 5737 switch (_IOC_NR(cmd)) { 5738 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5739 case _IOC_NR(PERF_EVENT_IOC_ID): 5740 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5741 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5742 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5743 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5744 cmd &= ~IOCSIZE_MASK; 5745 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5746 } 5747 break; 5748 } 5749 return perf_ioctl(file, cmd, arg); 5750 } 5751 #else 5752 # define perf_compat_ioctl NULL 5753 #endif 5754 5755 int perf_event_task_enable(void) 5756 { 5757 struct perf_event_context *ctx; 5758 struct perf_event *event; 5759 5760 mutex_lock(¤t->perf_event_mutex); 5761 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5762 ctx = perf_event_ctx_lock(event); 5763 perf_event_for_each_child(event, _perf_event_enable); 5764 perf_event_ctx_unlock(event, ctx); 5765 } 5766 mutex_unlock(¤t->perf_event_mutex); 5767 5768 return 0; 5769 } 5770 5771 int perf_event_task_disable(void) 5772 { 5773 struct perf_event_context *ctx; 5774 struct perf_event *event; 5775 5776 mutex_lock(¤t->perf_event_mutex); 5777 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5778 ctx = perf_event_ctx_lock(event); 5779 perf_event_for_each_child(event, _perf_event_disable); 5780 perf_event_ctx_unlock(event, ctx); 5781 } 5782 mutex_unlock(¤t->perf_event_mutex); 5783 5784 return 0; 5785 } 5786 5787 static int perf_event_index(struct perf_event *event) 5788 { 5789 if (event->hw.state & PERF_HES_STOPPED) 5790 return 0; 5791 5792 if (event->state != PERF_EVENT_STATE_ACTIVE) 5793 return 0; 5794 5795 return event->pmu->event_idx(event); 5796 } 5797 5798 static void perf_event_init_userpage(struct perf_event *event) 5799 { 5800 struct perf_event_mmap_page *userpg; 5801 struct perf_buffer *rb; 5802 5803 rcu_read_lock(); 5804 rb = rcu_dereference(event->rb); 5805 if (!rb) 5806 goto unlock; 5807 5808 userpg = rb->user_page; 5809 5810 /* Allow new userspace to detect that bit 0 is deprecated */ 5811 userpg->cap_bit0_is_deprecated = 1; 5812 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5813 userpg->data_offset = PAGE_SIZE; 5814 userpg->data_size = perf_data_size(rb); 5815 5816 unlock: 5817 rcu_read_unlock(); 5818 } 5819 5820 void __weak arch_perf_update_userpage( 5821 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5822 { 5823 } 5824 5825 /* 5826 * Callers need to ensure there can be no nesting of this function, otherwise 5827 * the seqlock logic goes bad. We can not serialize this because the arch 5828 * code calls this from NMI context. 5829 */ 5830 void perf_event_update_userpage(struct perf_event *event) 5831 { 5832 struct perf_event_mmap_page *userpg; 5833 struct perf_buffer *rb; 5834 u64 enabled, running, now; 5835 5836 rcu_read_lock(); 5837 rb = rcu_dereference(event->rb); 5838 if (!rb) 5839 goto unlock; 5840 5841 /* 5842 * compute total_time_enabled, total_time_running 5843 * based on snapshot values taken when the event 5844 * was last scheduled in. 5845 * 5846 * we cannot simply called update_context_time() 5847 * because of locking issue as we can be called in 5848 * NMI context 5849 */ 5850 calc_timer_values(event, &now, &enabled, &running); 5851 5852 userpg = rb->user_page; 5853 /* 5854 * Disable preemption to guarantee consistent time stamps are stored to 5855 * the user page. 5856 */ 5857 preempt_disable(); 5858 ++userpg->lock; 5859 barrier(); 5860 userpg->index = perf_event_index(event); 5861 userpg->offset = perf_event_count(event); 5862 if (userpg->index) 5863 userpg->offset -= local64_read(&event->hw.prev_count); 5864 5865 userpg->time_enabled = enabled + 5866 atomic64_read(&event->child_total_time_enabled); 5867 5868 userpg->time_running = running + 5869 atomic64_read(&event->child_total_time_running); 5870 5871 arch_perf_update_userpage(event, userpg, now); 5872 5873 barrier(); 5874 ++userpg->lock; 5875 preempt_enable(); 5876 unlock: 5877 rcu_read_unlock(); 5878 } 5879 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5880 5881 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5882 { 5883 struct perf_event *event = vmf->vma->vm_file->private_data; 5884 struct perf_buffer *rb; 5885 vm_fault_t ret = VM_FAULT_SIGBUS; 5886 5887 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5888 if (vmf->pgoff == 0) 5889 ret = 0; 5890 return ret; 5891 } 5892 5893 rcu_read_lock(); 5894 rb = rcu_dereference(event->rb); 5895 if (!rb) 5896 goto unlock; 5897 5898 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5899 goto unlock; 5900 5901 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5902 if (!vmf->page) 5903 goto unlock; 5904 5905 get_page(vmf->page); 5906 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5907 vmf->page->index = vmf->pgoff; 5908 5909 ret = 0; 5910 unlock: 5911 rcu_read_unlock(); 5912 5913 return ret; 5914 } 5915 5916 static void ring_buffer_attach(struct perf_event *event, 5917 struct perf_buffer *rb) 5918 { 5919 struct perf_buffer *old_rb = NULL; 5920 unsigned long flags; 5921 5922 WARN_ON_ONCE(event->parent); 5923 5924 if (event->rb) { 5925 /* 5926 * Should be impossible, we set this when removing 5927 * event->rb_entry and wait/clear when adding event->rb_entry. 5928 */ 5929 WARN_ON_ONCE(event->rcu_pending); 5930 5931 old_rb = event->rb; 5932 spin_lock_irqsave(&old_rb->event_lock, flags); 5933 list_del_rcu(&event->rb_entry); 5934 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5935 5936 event->rcu_batches = get_state_synchronize_rcu(); 5937 event->rcu_pending = 1; 5938 } 5939 5940 if (rb) { 5941 if (event->rcu_pending) { 5942 cond_synchronize_rcu(event->rcu_batches); 5943 event->rcu_pending = 0; 5944 } 5945 5946 spin_lock_irqsave(&rb->event_lock, flags); 5947 list_add_rcu(&event->rb_entry, &rb->event_list); 5948 spin_unlock_irqrestore(&rb->event_lock, flags); 5949 } 5950 5951 /* 5952 * Avoid racing with perf_mmap_close(AUX): stop the event 5953 * before swizzling the event::rb pointer; if it's getting 5954 * unmapped, its aux_mmap_count will be 0 and it won't 5955 * restart. See the comment in __perf_pmu_output_stop(). 5956 * 5957 * Data will inevitably be lost when set_output is done in 5958 * mid-air, but then again, whoever does it like this is 5959 * not in for the data anyway. 5960 */ 5961 if (has_aux(event)) 5962 perf_event_stop(event, 0); 5963 5964 rcu_assign_pointer(event->rb, rb); 5965 5966 if (old_rb) { 5967 ring_buffer_put(old_rb); 5968 /* 5969 * Since we detached before setting the new rb, so that we 5970 * could attach the new rb, we could have missed a wakeup. 5971 * Provide it now. 5972 */ 5973 wake_up_all(&event->waitq); 5974 } 5975 } 5976 5977 static void ring_buffer_wakeup(struct perf_event *event) 5978 { 5979 struct perf_buffer *rb; 5980 5981 if (event->parent) 5982 event = event->parent; 5983 5984 rcu_read_lock(); 5985 rb = rcu_dereference(event->rb); 5986 if (rb) { 5987 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5988 wake_up_all(&event->waitq); 5989 } 5990 rcu_read_unlock(); 5991 } 5992 5993 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5994 { 5995 struct perf_buffer *rb; 5996 5997 if (event->parent) 5998 event = event->parent; 5999 6000 rcu_read_lock(); 6001 rb = rcu_dereference(event->rb); 6002 if (rb) { 6003 if (!refcount_inc_not_zero(&rb->refcount)) 6004 rb = NULL; 6005 } 6006 rcu_read_unlock(); 6007 6008 return rb; 6009 } 6010 6011 void ring_buffer_put(struct perf_buffer *rb) 6012 { 6013 if (!refcount_dec_and_test(&rb->refcount)) 6014 return; 6015 6016 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6017 6018 call_rcu(&rb->rcu_head, rb_free_rcu); 6019 } 6020 6021 static void perf_mmap_open(struct vm_area_struct *vma) 6022 { 6023 struct perf_event *event = vma->vm_file->private_data; 6024 6025 atomic_inc(&event->mmap_count); 6026 atomic_inc(&event->rb->mmap_count); 6027 6028 if (vma->vm_pgoff) 6029 atomic_inc(&event->rb->aux_mmap_count); 6030 6031 if (event->pmu->event_mapped) 6032 event->pmu->event_mapped(event, vma->vm_mm); 6033 } 6034 6035 static void perf_pmu_output_stop(struct perf_event *event); 6036 6037 /* 6038 * A buffer can be mmap()ed multiple times; either directly through the same 6039 * event, or through other events by use of perf_event_set_output(). 6040 * 6041 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6042 * the buffer here, where we still have a VM context. This means we need 6043 * to detach all events redirecting to us. 6044 */ 6045 static void perf_mmap_close(struct vm_area_struct *vma) 6046 { 6047 struct perf_event *event = vma->vm_file->private_data; 6048 struct perf_buffer *rb = ring_buffer_get(event); 6049 struct user_struct *mmap_user = rb->mmap_user; 6050 int mmap_locked = rb->mmap_locked; 6051 unsigned long size = perf_data_size(rb); 6052 bool detach_rest = false; 6053 6054 if (event->pmu->event_unmapped) 6055 event->pmu->event_unmapped(event, vma->vm_mm); 6056 6057 /* 6058 * rb->aux_mmap_count will always drop before rb->mmap_count and 6059 * event->mmap_count, so it is ok to use event->mmap_mutex to 6060 * serialize with perf_mmap here. 6061 */ 6062 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6063 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6064 /* 6065 * Stop all AUX events that are writing to this buffer, 6066 * so that we can free its AUX pages and corresponding PMU 6067 * data. Note that after rb::aux_mmap_count dropped to zero, 6068 * they won't start any more (see perf_aux_output_begin()). 6069 */ 6070 perf_pmu_output_stop(event); 6071 6072 /* now it's safe to free the pages */ 6073 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6074 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6075 6076 /* this has to be the last one */ 6077 rb_free_aux(rb); 6078 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6079 6080 mutex_unlock(&event->mmap_mutex); 6081 } 6082 6083 if (atomic_dec_and_test(&rb->mmap_count)) 6084 detach_rest = true; 6085 6086 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6087 goto out_put; 6088 6089 ring_buffer_attach(event, NULL); 6090 mutex_unlock(&event->mmap_mutex); 6091 6092 /* If there's still other mmap()s of this buffer, we're done. */ 6093 if (!detach_rest) 6094 goto out_put; 6095 6096 /* 6097 * No other mmap()s, detach from all other events that might redirect 6098 * into the now unreachable buffer. Somewhat complicated by the 6099 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6100 */ 6101 again: 6102 rcu_read_lock(); 6103 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6104 if (!atomic_long_inc_not_zero(&event->refcount)) { 6105 /* 6106 * This event is en-route to free_event() which will 6107 * detach it and remove it from the list. 6108 */ 6109 continue; 6110 } 6111 rcu_read_unlock(); 6112 6113 mutex_lock(&event->mmap_mutex); 6114 /* 6115 * Check we didn't race with perf_event_set_output() which can 6116 * swizzle the rb from under us while we were waiting to 6117 * acquire mmap_mutex. 6118 * 6119 * If we find a different rb; ignore this event, a next 6120 * iteration will no longer find it on the list. We have to 6121 * still restart the iteration to make sure we're not now 6122 * iterating the wrong list. 6123 */ 6124 if (event->rb == rb) 6125 ring_buffer_attach(event, NULL); 6126 6127 mutex_unlock(&event->mmap_mutex); 6128 put_event(event); 6129 6130 /* 6131 * Restart the iteration; either we're on the wrong list or 6132 * destroyed its integrity by doing a deletion. 6133 */ 6134 goto again; 6135 } 6136 rcu_read_unlock(); 6137 6138 /* 6139 * It could be there's still a few 0-ref events on the list; they'll 6140 * get cleaned up by free_event() -- they'll also still have their 6141 * ref on the rb and will free it whenever they are done with it. 6142 * 6143 * Aside from that, this buffer is 'fully' detached and unmapped, 6144 * undo the VM accounting. 6145 */ 6146 6147 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6148 &mmap_user->locked_vm); 6149 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6150 free_uid(mmap_user); 6151 6152 out_put: 6153 ring_buffer_put(rb); /* could be last */ 6154 } 6155 6156 static const struct vm_operations_struct perf_mmap_vmops = { 6157 .open = perf_mmap_open, 6158 .close = perf_mmap_close, /* non mergeable */ 6159 .fault = perf_mmap_fault, 6160 .page_mkwrite = perf_mmap_fault, 6161 }; 6162 6163 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6164 { 6165 struct perf_event *event = file->private_data; 6166 unsigned long user_locked, user_lock_limit; 6167 struct user_struct *user = current_user(); 6168 struct perf_buffer *rb = NULL; 6169 unsigned long locked, lock_limit; 6170 unsigned long vma_size; 6171 unsigned long nr_pages; 6172 long user_extra = 0, extra = 0; 6173 int ret = 0, flags = 0; 6174 6175 /* 6176 * Don't allow mmap() of inherited per-task counters. This would 6177 * create a performance issue due to all children writing to the 6178 * same rb. 6179 */ 6180 if (event->cpu == -1 && event->attr.inherit) 6181 return -EINVAL; 6182 6183 if (!(vma->vm_flags & VM_SHARED)) 6184 return -EINVAL; 6185 6186 ret = security_perf_event_read(event); 6187 if (ret) 6188 return ret; 6189 6190 vma_size = vma->vm_end - vma->vm_start; 6191 6192 if (vma->vm_pgoff == 0) { 6193 nr_pages = (vma_size / PAGE_SIZE) - 1; 6194 } else { 6195 /* 6196 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6197 * mapped, all subsequent mappings should have the same size 6198 * and offset. Must be above the normal perf buffer. 6199 */ 6200 u64 aux_offset, aux_size; 6201 6202 if (!event->rb) 6203 return -EINVAL; 6204 6205 nr_pages = vma_size / PAGE_SIZE; 6206 6207 mutex_lock(&event->mmap_mutex); 6208 ret = -EINVAL; 6209 6210 rb = event->rb; 6211 if (!rb) 6212 goto aux_unlock; 6213 6214 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6215 aux_size = READ_ONCE(rb->user_page->aux_size); 6216 6217 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6218 goto aux_unlock; 6219 6220 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6221 goto aux_unlock; 6222 6223 /* already mapped with a different offset */ 6224 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6225 goto aux_unlock; 6226 6227 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6228 goto aux_unlock; 6229 6230 /* already mapped with a different size */ 6231 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6232 goto aux_unlock; 6233 6234 if (!is_power_of_2(nr_pages)) 6235 goto aux_unlock; 6236 6237 if (!atomic_inc_not_zero(&rb->mmap_count)) 6238 goto aux_unlock; 6239 6240 if (rb_has_aux(rb)) { 6241 atomic_inc(&rb->aux_mmap_count); 6242 ret = 0; 6243 goto unlock; 6244 } 6245 6246 atomic_set(&rb->aux_mmap_count, 1); 6247 user_extra = nr_pages; 6248 6249 goto accounting; 6250 } 6251 6252 /* 6253 * If we have rb pages ensure they're a power-of-two number, so we 6254 * can do bitmasks instead of modulo. 6255 */ 6256 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6257 return -EINVAL; 6258 6259 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6260 return -EINVAL; 6261 6262 WARN_ON_ONCE(event->ctx->parent_ctx); 6263 again: 6264 mutex_lock(&event->mmap_mutex); 6265 if (event->rb) { 6266 if (data_page_nr(event->rb) != nr_pages) { 6267 ret = -EINVAL; 6268 goto unlock; 6269 } 6270 6271 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6272 /* 6273 * Raced against perf_mmap_close(); remove the 6274 * event and try again. 6275 */ 6276 ring_buffer_attach(event, NULL); 6277 mutex_unlock(&event->mmap_mutex); 6278 goto again; 6279 } 6280 6281 goto unlock; 6282 } 6283 6284 user_extra = nr_pages + 1; 6285 6286 accounting: 6287 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6288 6289 /* 6290 * Increase the limit linearly with more CPUs: 6291 */ 6292 user_lock_limit *= num_online_cpus(); 6293 6294 user_locked = atomic_long_read(&user->locked_vm); 6295 6296 /* 6297 * sysctl_perf_event_mlock may have changed, so that 6298 * user->locked_vm > user_lock_limit 6299 */ 6300 if (user_locked > user_lock_limit) 6301 user_locked = user_lock_limit; 6302 user_locked += user_extra; 6303 6304 if (user_locked > user_lock_limit) { 6305 /* 6306 * charge locked_vm until it hits user_lock_limit; 6307 * charge the rest from pinned_vm 6308 */ 6309 extra = user_locked - user_lock_limit; 6310 user_extra -= extra; 6311 } 6312 6313 lock_limit = rlimit(RLIMIT_MEMLOCK); 6314 lock_limit >>= PAGE_SHIFT; 6315 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6316 6317 if ((locked > lock_limit) && perf_is_paranoid() && 6318 !capable(CAP_IPC_LOCK)) { 6319 ret = -EPERM; 6320 goto unlock; 6321 } 6322 6323 WARN_ON(!rb && event->rb); 6324 6325 if (vma->vm_flags & VM_WRITE) 6326 flags |= RING_BUFFER_WRITABLE; 6327 6328 if (!rb) { 6329 rb = rb_alloc(nr_pages, 6330 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6331 event->cpu, flags); 6332 6333 if (!rb) { 6334 ret = -ENOMEM; 6335 goto unlock; 6336 } 6337 6338 atomic_set(&rb->mmap_count, 1); 6339 rb->mmap_user = get_current_user(); 6340 rb->mmap_locked = extra; 6341 6342 ring_buffer_attach(event, rb); 6343 6344 perf_event_update_time(event); 6345 perf_event_init_userpage(event); 6346 perf_event_update_userpage(event); 6347 } else { 6348 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6349 event->attr.aux_watermark, flags); 6350 if (!ret) 6351 rb->aux_mmap_locked = extra; 6352 } 6353 6354 unlock: 6355 if (!ret) { 6356 atomic_long_add(user_extra, &user->locked_vm); 6357 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6358 6359 atomic_inc(&event->mmap_count); 6360 } else if (rb) { 6361 atomic_dec(&rb->mmap_count); 6362 } 6363 aux_unlock: 6364 mutex_unlock(&event->mmap_mutex); 6365 6366 /* 6367 * Since pinned accounting is per vm we cannot allow fork() to copy our 6368 * vma. 6369 */ 6370 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6371 vma->vm_ops = &perf_mmap_vmops; 6372 6373 if (event->pmu->event_mapped) 6374 event->pmu->event_mapped(event, vma->vm_mm); 6375 6376 return ret; 6377 } 6378 6379 static int perf_fasync(int fd, struct file *filp, int on) 6380 { 6381 struct inode *inode = file_inode(filp); 6382 struct perf_event *event = filp->private_data; 6383 int retval; 6384 6385 inode_lock(inode); 6386 retval = fasync_helper(fd, filp, on, &event->fasync); 6387 inode_unlock(inode); 6388 6389 if (retval < 0) 6390 return retval; 6391 6392 return 0; 6393 } 6394 6395 static const struct file_operations perf_fops = { 6396 .llseek = no_llseek, 6397 .release = perf_release, 6398 .read = perf_read, 6399 .poll = perf_poll, 6400 .unlocked_ioctl = perf_ioctl, 6401 .compat_ioctl = perf_compat_ioctl, 6402 .mmap = perf_mmap, 6403 .fasync = perf_fasync, 6404 }; 6405 6406 /* 6407 * Perf event wakeup 6408 * 6409 * If there's data, ensure we set the poll() state and publish everything 6410 * to user-space before waking everybody up. 6411 */ 6412 6413 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6414 { 6415 /* only the parent has fasync state */ 6416 if (event->parent) 6417 event = event->parent; 6418 return &event->fasync; 6419 } 6420 6421 void perf_event_wakeup(struct perf_event *event) 6422 { 6423 ring_buffer_wakeup(event); 6424 6425 if (event->pending_kill) { 6426 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6427 event->pending_kill = 0; 6428 } 6429 } 6430 6431 static void perf_sigtrap(struct perf_event *event) 6432 { 6433 /* 6434 * We'd expect this to only occur if the irq_work is delayed and either 6435 * ctx->task or current has changed in the meantime. This can be the 6436 * case on architectures that do not implement arch_irq_work_raise(). 6437 */ 6438 if (WARN_ON_ONCE(event->ctx->task != current)) 6439 return; 6440 6441 /* 6442 * perf_pending_event() can race with the task exiting. 6443 */ 6444 if (current->flags & PF_EXITING) 6445 return; 6446 6447 send_sig_perf((void __user *)event->pending_addr, 6448 event->attr.type, event->attr.sig_data); 6449 } 6450 6451 static void perf_pending_event_disable(struct perf_event *event) 6452 { 6453 int cpu = READ_ONCE(event->pending_disable); 6454 6455 if (cpu < 0) 6456 return; 6457 6458 if (cpu == smp_processor_id()) { 6459 WRITE_ONCE(event->pending_disable, -1); 6460 6461 if (event->attr.sigtrap) { 6462 perf_sigtrap(event); 6463 atomic_set_release(&event->event_limit, 1); /* rearm event */ 6464 return; 6465 } 6466 6467 perf_event_disable_local(event); 6468 return; 6469 } 6470 6471 /* 6472 * CPU-A CPU-B 6473 * 6474 * perf_event_disable_inatomic() 6475 * @pending_disable = CPU-A; 6476 * irq_work_queue(); 6477 * 6478 * sched-out 6479 * @pending_disable = -1; 6480 * 6481 * sched-in 6482 * perf_event_disable_inatomic() 6483 * @pending_disable = CPU-B; 6484 * irq_work_queue(); // FAILS 6485 * 6486 * irq_work_run() 6487 * perf_pending_event() 6488 * 6489 * But the event runs on CPU-B and wants disabling there. 6490 */ 6491 irq_work_queue_on(&event->pending, cpu); 6492 } 6493 6494 static void perf_pending_event(struct irq_work *entry) 6495 { 6496 struct perf_event *event = container_of(entry, struct perf_event, pending); 6497 int rctx; 6498 6499 rctx = perf_swevent_get_recursion_context(); 6500 /* 6501 * If we 'fail' here, that's OK, it means recursion is already disabled 6502 * and we won't recurse 'further'. 6503 */ 6504 6505 perf_pending_event_disable(event); 6506 6507 if (event->pending_wakeup) { 6508 event->pending_wakeup = 0; 6509 perf_event_wakeup(event); 6510 } 6511 6512 if (rctx >= 0) 6513 perf_swevent_put_recursion_context(rctx); 6514 } 6515 6516 #ifdef CONFIG_GUEST_PERF_EVENTS 6517 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6518 6519 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6520 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6521 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6522 6523 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6524 { 6525 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6526 return; 6527 6528 rcu_assign_pointer(perf_guest_cbs, cbs); 6529 static_call_update(__perf_guest_state, cbs->state); 6530 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6531 6532 /* Implementing ->handle_intel_pt_intr is optional. */ 6533 if (cbs->handle_intel_pt_intr) 6534 static_call_update(__perf_guest_handle_intel_pt_intr, 6535 cbs->handle_intel_pt_intr); 6536 } 6537 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6538 6539 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6540 { 6541 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6542 return; 6543 6544 rcu_assign_pointer(perf_guest_cbs, NULL); 6545 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6546 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6547 static_call_update(__perf_guest_handle_intel_pt_intr, 6548 (void *)&__static_call_return0); 6549 synchronize_rcu(); 6550 } 6551 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6552 #endif 6553 6554 static void 6555 perf_output_sample_regs(struct perf_output_handle *handle, 6556 struct pt_regs *regs, u64 mask) 6557 { 6558 int bit; 6559 DECLARE_BITMAP(_mask, 64); 6560 6561 bitmap_from_u64(_mask, mask); 6562 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6563 u64 val; 6564 6565 val = perf_reg_value(regs, bit); 6566 perf_output_put(handle, val); 6567 } 6568 } 6569 6570 static void perf_sample_regs_user(struct perf_regs *regs_user, 6571 struct pt_regs *regs) 6572 { 6573 if (user_mode(regs)) { 6574 regs_user->abi = perf_reg_abi(current); 6575 regs_user->regs = regs; 6576 } else if (!(current->flags & PF_KTHREAD)) { 6577 perf_get_regs_user(regs_user, regs); 6578 } else { 6579 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6580 regs_user->regs = NULL; 6581 } 6582 } 6583 6584 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6585 struct pt_regs *regs) 6586 { 6587 regs_intr->regs = regs; 6588 regs_intr->abi = perf_reg_abi(current); 6589 } 6590 6591 6592 /* 6593 * Get remaining task size from user stack pointer. 6594 * 6595 * It'd be better to take stack vma map and limit this more 6596 * precisely, but there's no way to get it safely under interrupt, 6597 * so using TASK_SIZE as limit. 6598 */ 6599 static u64 perf_ustack_task_size(struct pt_regs *regs) 6600 { 6601 unsigned long addr = perf_user_stack_pointer(regs); 6602 6603 if (!addr || addr >= TASK_SIZE) 6604 return 0; 6605 6606 return TASK_SIZE - addr; 6607 } 6608 6609 static u16 6610 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6611 struct pt_regs *regs) 6612 { 6613 u64 task_size; 6614 6615 /* No regs, no stack pointer, no dump. */ 6616 if (!regs) 6617 return 0; 6618 6619 /* 6620 * Check if we fit in with the requested stack size into the: 6621 * - TASK_SIZE 6622 * If we don't, we limit the size to the TASK_SIZE. 6623 * 6624 * - remaining sample size 6625 * If we don't, we customize the stack size to 6626 * fit in to the remaining sample size. 6627 */ 6628 6629 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6630 stack_size = min(stack_size, (u16) task_size); 6631 6632 /* Current header size plus static size and dynamic size. */ 6633 header_size += 2 * sizeof(u64); 6634 6635 /* Do we fit in with the current stack dump size? */ 6636 if ((u16) (header_size + stack_size) < header_size) { 6637 /* 6638 * If we overflow the maximum size for the sample, 6639 * we customize the stack dump size to fit in. 6640 */ 6641 stack_size = USHRT_MAX - header_size - sizeof(u64); 6642 stack_size = round_up(stack_size, sizeof(u64)); 6643 } 6644 6645 return stack_size; 6646 } 6647 6648 static void 6649 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6650 struct pt_regs *regs) 6651 { 6652 /* Case of a kernel thread, nothing to dump */ 6653 if (!regs) { 6654 u64 size = 0; 6655 perf_output_put(handle, size); 6656 } else { 6657 unsigned long sp; 6658 unsigned int rem; 6659 u64 dyn_size; 6660 6661 /* 6662 * We dump: 6663 * static size 6664 * - the size requested by user or the best one we can fit 6665 * in to the sample max size 6666 * data 6667 * - user stack dump data 6668 * dynamic size 6669 * - the actual dumped size 6670 */ 6671 6672 /* Static size. */ 6673 perf_output_put(handle, dump_size); 6674 6675 /* Data. */ 6676 sp = perf_user_stack_pointer(regs); 6677 rem = __output_copy_user(handle, (void *) sp, dump_size); 6678 dyn_size = dump_size - rem; 6679 6680 perf_output_skip(handle, rem); 6681 6682 /* Dynamic size. */ 6683 perf_output_put(handle, dyn_size); 6684 } 6685 } 6686 6687 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6688 struct perf_sample_data *data, 6689 size_t size) 6690 { 6691 struct perf_event *sampler = event->aux_event; 6692 struct perf_buffer *rb; 6693 6694 data->aux_size = 0; 6695 6696 if (!sampler) 6697 goto out; 6698 6699 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6700 goto out; 6701 6702 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6703 goto out; 6704 6705 rb = ring_buffer_get(sampler); 6706 if (!rb) 6707 goto out; 6708 6709 /* 6710 * If this is an NMI hit inside sampling code, don't take 6711 * the sample. See also perf_aux_sample_output(). 6712 */ 6713 if (READ_ONCE(rb->aux_in_sampling)) { 6714 data->aux_size = 0; 6715 } else { 6716 size = min_t(size_t, size, perf_aux_size(rb)); 6717 data->aux_size = ALIGN(size, sizeof(u64)); 6718 } 6719 ring_buffer_put(rb); 6720 6721 out: 6722 return data->aux_size; 6723 } 6724 6725 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6726 struct perf_event *event, 6727 struct perf_output_handle *handle, 6728 unsigned long size) 6729 { 6730 unsigned long flags; 6731 long ret; 6732 6733 /* 6734 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6735 * paths. If we start calling them in NMI context, they may race with 6736 * the IRQ ones, that is, for example, re-starting an event that's just 6737 * been stopped, which is why we're using a separate callback that 6738 * doesn't change the event state. 6739 * 6740 * IRQs need to be disabled to prevent IPIs from racing with us. 6741 */ 6742 local_irq_save(flags); 6743 /* 6744 * Guard against NMI hits inside the critical section; 6745 * see also perf_prepare_sample_aux(). 6746 */ 6747 WRITE_ONCE(rb->aux_in_sampling, 1); 6748 barrier(); 6749 6750 ret = event->pmu->snapshot_aux(event, handle, size); 6751 6752 barrier(); 6753 WRITE_ONCE(rb->aux_in_sampling, 0); 6754 local_irq_restore(flags); 6755 6756 return ret; 6757 } 6758 6759 static void perf_aux_sample_output(struct perf_event *event, 6760 struct perf_output_handle *handle, 6761 struct perf_sample_data *data) 6762 { 6763 struct perf_event *sampler = event->aux_event; 6764 struct perf_buffer *rb; 6765 unsigned long pad; 6766 long size; 6767 6768 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6769 return; 6770 6771 rb = ring_buffer_get(sampler); 6772 if (!rb) 6773 return; 6774 6775 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6776 6777 /* 6778 * An error here means that perf_output_copy() failed (returned a 6779 * non-zero surplus that it didn't copy), which in its current 6780 * enlightened implementation is not possible. If that changes, we'd 6781 * like to know. 6782 */ 6783 if (WARN_ON_ONCE(size < 0)) 6784 goto out_put; 6785 6786 /* 6787 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6788 * perf_prepare_sample_aux(), so should not be more than that. 6789 */ 6790 pad = data->aux_size - size; 6791 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6792 pad = 8; 6793 6794 if (pad) { 6795 u64 zero = 0; 6796 perf_output_copy(handle, &zero, pad); 6797 } 6798 6799 out_put: 6800 ring_buffer_put(rb); 6801 } 6802 6803 static void __perf_event_header__init_id(struct perf_event_header *header, 6804 struct perf_sample_data *data, 6805 struct perf_event *event, 6806 u64 sample_type) 6807 { 6808 data->type = event->attr.sample_type; 6809 header->size += event->id_header_size; 6810 6811 if (sample_type & PERF_SAMPLE_TID) { 6812 /* namespace issues */ 6813 data->tid_entry.pid = perf_event_pid(event, current); 6814 data->tid_entry.tid = perf_event_tid(event, current); 6815 } 6816 6817 if (sample_type & PERF_SAMPLE_TIME) 6818 data->time = perf_event_clock(event); 6819 6820 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6821 data->id = primary_event_id(event); 6822 6823 if (sample_type & PERF_SAMPLE_STREAM_ID) 6824 data->stream_id = event->id; 6825 6826 if (sample_type & PERF_SAMPLE_CPU) { 6827 data->cpu_entry.cpu = raw_smp_processor_id(); 6828 data->cpu_entry.reserved = 0; 6829 } 6830 } 6831 6832 void perf_event_header__init_id(struct perf_event_header *header, 6833 struct perf_sample_data *data, 6834 struct perf_event *event) 6835 { 6836 if (event->attr.sample_id_all) 6837 __perf_event_header__init_id(header, data, event, event->attr.sample_type); 6838 } 6839 6840 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6841 struct perf_sample_data *data) 6842 { 6843 u64 sample_type = data->type; 6844 6845 if (sample_type & PERF_SAMPLE_TID) 6846 perf_output_put(handle, data->tid_entry); 6847 6848 if (sample_type & PERF_SAMPLE_TIME) 6849 perf_output_put(handle, data->time); 6850 6851 if (sample_type & PERF_SAMPLE_ID) 6852 perf_output_put(handle, data->id); 6853 6854 if (sample_type & PERF_SAMPLE_STREAM_ID) 6855 perf_output_put(handle, data->stream_id); 6856 6857 if (sample_type & PERF_SAMPLE_CPU) 6858 perf_output_put(handle, data->cpu_entry); 6859 6860 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6861 perf_output_put(handle, data->id); 6862 } 6863 6864 void perf_event__output_id_sample(struct perf_event *event, 6865 struct perf_output_handle *handle, 6866 struct perf_sample_data *sample) 6867 { 6868 if (event->attr.sample_id_all) 6869 __perf_event__output_id_sample(handle, sample); 6870 } 6871 6872 static void perf_output_read_one(struct perf_output_handle *handle, 6873 struct perf_event *event, 6874 u64 enabled, u64 running) 6875 { 6876 u64 read_format = event->attr.read_format; 6877 u64 values[5]; 6878 int n = 0; 6879 6880 values[n++] = perf_event_count(event); 6881 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6882 values[n++] = enabled + 6883 atomic64_read(&event->child_total_time_enabled); 6884 } 6885 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6886 values[n++] = running + 6887 atomic64_read(&event->child_total_time_running); 6888 } 6889 if (read_format & PERF_FORMAT_ID) 6890 values[n++] = primary_event_id(event); 6891 if (read_format & PERF_FORMAT_LOST) 6892 values[n++] = atomic64_read(&event->lost_samples); 6893 6894 __output_copy(handle, values, n * sizeof(u64)); 6895 } 6896 6897 static void perf_output_read_group(struct perf_output_handle *handle, 6898 struct perf_event *event, 6899 u64 enabled, u64 running) 6900 { 6901 struct perf_event *leader = event->group_leader, *sub; 6902 u64 read_format = event->attr.read_format; 6903 unsigned long flags; 6904 u64 values[6]; 6905 int n = 0; 6906 6907 /* 6908 * Disabling interrupts avoids all counter scheduling 6909 * (context switches, timer based rotation and IPIs). 6910 */ 6911 local_irq_save(flags); 6912 6913 values[n++] = 1 + leader->nr_siblings; 6914 6915 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6916 values[n++] = enabled; 6917 6918 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6919 values[n++] = running; 6920 6921 if ((leader != event) && 6922 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6923 leader->pmu->read(leader); 6924 6925 values[n++] = perf_event_count(leader); 6926 if (read_format & PERF_FORMAT_ID) 6927 values[n++] = primary_event_id(leader); 6928 if (read_format & PERF_FORMAT_LOST) 6929 values[n++] = atomic64_read(&leader->lost_samples); 6930 6931 __output_copy(handle, values, n * sizeof(u64)); 6932 6933 for_each_sibling_event(sub, leader) { 6934 n = 0; 6935 6936 if ((sub != event) && 6937 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6938 sub->pmu->read(sub); 6939 6940 values[n++] = perf_event_count(sub); 6941 if (read_format & PERF_FORMAT_ID) 6942 values[n++] = primary_event_id(sub); 6943 if (read_format & PERF_FORMAT_LOST) 6944 values[n++] = atomic64_read(&sub->lost_samples); 6945 6946 __output_copy(handle, values, n * sizeof(u64)); 6947 } 6948 6949 local_irq_restore(flags); 6950 } 6951 6952 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6953 PERF_FORMAT_TOTAL_TIME_RUNNING) 6954 6955 /* 6956 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6957 * 6958 * The problem is that its both hard and excessively expensive to iterate the 6959 * child list, not to mention that its impossible to IPI the children running 6960 * on another CPU, from interrupt/NMI context. 6961 */ 6962 static void perf_output_read(struct perf_output_handle *handle, 6963 struct perf_event *event) 6964 { 6965 u64 enabled = 0, running = 0, now; 6966 u64 read_format = event->attr.read_format; 6967 6968 /* 6969 * compute total_time_enabled, total_time_running 6970 * based on snapshot values taken when the event 6971 * was last scheduled in. 6972 * 6973 * we cannot simply called update_context_time() 6974 * because of locking issue as we are called in 6975 * NMI context 6976 */ 6977 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6978 calc_timer_values(event, &now, &enabled, &running); 6979 6980 if (event->attr.read_format & PERF_FORMAT_GROUP) 6981 perf_output_read_group(handle, event, enabled, running); 6982 else 6983 perf_output_read_one(handle, event, enabled, running); 6984 } 6985 6986 void perf_output_sample(struct perf_output_handle *handle, 6987 struct perf_event_header *header, 6988 struct perf_sample_data *data, 6989 struct perf_event *event) 6990 { 6991 u64 sample_type = data->type; 6992 6993 perf_output_put(handle, *header); 6994 6995 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6996 perf_output_put(handle, data->id); 6997 6998 if (sample_type & PERF_SAMPLE_IP) 6999 perf_output_put(handle, data->ip); 7000 7001 if (sample_type & PERF_SAMPLE_TID) 7002 perf_output_put(handle, data->tid_entry); 7003 7004 if (sample_type & PERF_SAMPLE_TIME) 7005 perf_output_put(handle, data->time); 7006 7007 if (sample_type & PERF_SAMPLE_ADDR) 7008 perf_output_put(handle, data->addr); 7009 7010 if (sample_type & PERF_SAMPLE_ID) 7011 perf_output_put(handle, data->id); 7012 7013 if (sample_type & PERF_SAMPLE_STREAM_ID) 7014 perf_output_put(handle, data->stream_id); 7015 7016 if (sample_type & PERF_SAMPLE_CPU) 7017 perf_output_put(handle, data->cpu_entry); 7018 7019 if (sample_type & PERF_SAMPLE_PERIOD) 7020 perf_output_put(handle, data->period); 7021 7022 if (sample_type & PERF_SAMPLE_READ) 7023 perf_output_read(handle, event); 7024 7025 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7026 int size = 1; 7027 7028 size += data->callchain->nr; 7029 size *= sizeof(u64); 7030 __output_copy(handle, data->callchain, size); 7031 } 7032 7033 if (sample_type & PERF_SAMPLE_RAW) { 7034 struct perf_raw_record *raw = data->raw; 7035 7036 if (raw) { 7037 struct perf_raw_frag *frag = &raw->frag; 7038 7039 perf_output_put(handle, raw->size); 7040 do { 7041 if (frag->copy) { 7042 __output_custom(handle, frag->copy, 7043 frag->data, frag->size); 7044 } else { 7045 __output_copy(handle, frag->data, 7046 frag->size); 7047 } 7048 if (perf_raw_frag_last(frag)) 7049 break; 7050 frag = frag->next; 7051 } while (1); 7052 if (frag->pad) 7053 __output_skip(handle, NULL, frag->pad); 7054 } else { 7055 struct { 7056 u32 size; 7057 u32 data; 7058 } raw = { 7059 .size = sizeof(u32), 7060 .data = 0, 7061 }; 7062 perf_output_put(handle, raw); 7063 } 7064 } 7065 7066 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7067 if (data->sample_flags & PERF_SAMPLE_BRANCH_STACK) { 7068 size_t size; 7069 7070 size = data->br_stack->nr 7071 * sizeof(struct perf_branch_entry); 7072 7073 perf_output_put(handle, data->br_stack->nr); 7074 if (branch_sample_hw_index(event)) 7075 perf_output_put(handle, data->br_stack->hw_idx); 7076 perf_output_copy(handle, data->br_stack->entries, size); 7077 } else { 7078 /* 7079 * we always store at least the value of nr 7080 */ 7081 u64 nr = 0; 7082 perf_output_put(handle, nr); 7083 } 7084 } 7085 7086 if (sample_type & PERF_SAMPLE_REGS_USER) { 7087 u64 abi = data->regs_user.abi; 7088 7089 /* 7090 * If there are no regs to dump, notice it through 7091 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7092 */ 7093 perf_output_put(handle, abi); 7094 7095 if (abi) { 7096 u64 mask = event->attr.sample_regs_user; 7097 perf_output_sample_regs(handle, 7098 data->regs_user.regs, 7099 mask); 7100 } 7101 } 7102 7103 if (sample_type & PERF_SAMPLE_STACK_USER) { 7104 perf_output_sample_ustack(handle, 7105 data->stack_user_size, 7106 data->regs_user.regs); 7107 } 7108 7109 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7110 perf_output_put(handle, data->weight.full); 7111 7112 if (sample_type & PERF_SAMPLE_DATA_SRC) 7113 perf_output_put(handle, data->data_src.val); 7114 7115 if (sample_type & PERF_SAMPLE_TRANSACTION) 7116 perf_output_put(handle, data->txn); 7117 7118 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7119 u64 abi = data->regs_intr.abi; 7120 /* 7121 * If there are no regs to dump, notice it through 7122 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7123 */ 7124 perf_output_put(handle, abi); 7125 7126 if (abi) { 7127 u64 mask = event->attr.sample_regs_intr; 7128 7129 perf_output_sample_regs(handle, 7130 data->regs_intr.regs, 7131 mask); 7132 } 7133 } 7134 7135 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7136 perf_output_put(handle, data->phys_addr); 7137 7138 if (sample_type & PERF_SAMPLE_CGROUP) 7139 perf_output_put(handle, data->cgroup); 7140 7141 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7142 perf_output_put(handle, data->data_page_size); 7143 7144 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7145 perf_output_put(handle, data->code_page_size); 7146 7147 if (sample_type & PERF_SAMPLE_AUX) { 7148 perf_output_put(handle, data->aux_size); 7149 7150 if (data->aux_size) 7151 perf_aux_sample_output(event, handle, data); 7152 } 7153 7154 if (!event->attr.watermark) { 7155 int wakeup_events = event->attr.wakeup_events; 7156 7157 if (wakeup_events) { 7158 struct perf_buffer *rb = handle->rb; 7159 int events = local_inc_return(&rb->events); 7160 7161 if (events >= wakeup_events) { 7162 local_sub(wakeup_events, &rb->events); 7163 local_inc(&rb->wakeup); 7164 } 7165 } 7166 } 7167 } 7168 7169 static u64 perf_virt_to_phys(u64 virt) 7170 { 7171 u64 phys_addr = 0; 7172 7173 if (!virt) 7174 return 0; 7175 7176 if (virt >= TASK_SIZE) { 7177 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7178 if (virt_addr_valid((void *)(uintptr_t)virt) && 7179 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7180 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7181 } else { 7182 /* 7183 * Walking the pages tables for user address. 7184 * Interrupts are disabled, so it prevents any tear down 7185 * of the page tables. 7186 * Try IRQ-safe get_user_page_fast_only first. 7187 * If failed, leave phys_addr as 0. 7188 */ 7189 if (current->mm != NULL) { 7190 struct page *p; 7191 7192 pagefault_disable(); 7193 if (get_user_page_fast_only(virt, 0, &p)) { 7194 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7195 put_page(p); 7196 } 7197 pagefault_enable(); 7198 } 7199 } 7200 7201 return phys_addr; 7202 } 7203 7204 /* 7205 * Return the pagetable size of a given virtual address. 7206 */ 7207 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7208 { 7209 u64 size = 0; 7210 7211 #ifdef CONFIG_HAVE_FAST_GUP 7212 pgd_t *pgdp, pgd; 7213 p4d_t *p4dp, p4d; 7214 pud_t *pudp, pud; 7215 pmd_t *pmdp, pmd; 7216 pte_t *ptep, pte; 7217 7218 pgdp = pgd_offset(mm, addr); 7219 pgd = READ_ONCE(*pgdp); 7220 if (pgd_none(pgd)) 7221 return 0; 7222 7223 if (pgd_leaf(pgd)) 7224 return pgd_leaf_size(pgd); 7225 7226 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7227 p4d = READ_ONCE(*p4dp); 7228 if (!p4d_present(p4d)) 7229 return 0; 7230 7231 if (p4d_leaf(p4d)) 7232 return p4d_leaf_size(p4d); 7233 7234 pudp = pud_offset_lockless(p4dp, p4d, addr); 7235 pud = READ_ONCE(*pudp); 7236 if (!pud_present(pud)) 7237 return 0; 7238 7239 if (pud_leaf(pud)) 7240 return pud_leaf_size(pud); 7241 7242 pmdp = pmd_offset_lockless(pudp, pud, addr); 7243 pmd = READ_ONCE(*pmdp); 7244 if (!pmd_present(pmd)) 7245 return 0; 7246 7247 if (pmd_leaf(pmd)) 7248 return pmd_leaf_size(pmd); 7249 7250 ptep = pte_offset_map(&pmd, addr); 7251 pte = ptep_get_lockless(ptep); 7252 if (pte_present(pte)) 7253 size = pte_leaf_size(pte); 7254 pte_unmap(ptep); 7255 #endif /* CONFIG_HAVE_FAST_GUP */ 7256 7257 return size; 7258 } 7259 7260 static u64 perf_get_page_size(unsigned long addr) 7261 { 7262 struct mm_struct *mm; 7263 unsigned long flags; 7264 u64 size; 7265 7266 if (!addr) 7267 return 0; 7268 7269 /* 7270 * Software page-table walkers must disable IRQs, 7271 * which prevents any tear down of the page tables. 7272 */ 7273 local_irq_save(flags); 7274 7275 mm = current->mm; 7276 if (!mm) { 7277 /* 7278 * For kernel threads and the like, use init_mm so that 7279 * we can find kernel memory. 7280 */ 7281 mm = &init_mm; 7282 } 7283 7284 size = perf_get_pgtable_size(mm, addr); 7285 7286 local_irq_restore(flags); 7287 7288 return size; 7289 } 7290 7291 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7292 7293 struct perf_callchain_entry * 7294 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7295 { 7296 bool kernel = !event->attr.exclude_callchain_kernel; 7297 bool user = !event->attr.exclude_callchain_user; 7298 /* Disallow cross-task user callchains. */ 7299 bool crosstask = event->ctx->task && event->ctx->task != current; 7300 const u32 max_stack = event->attr.sample_max_stack; 7301 struct perf_callchain_entry *callchain; 7302 7303 if (!kernel && !user) 7304 return &__empty_callchain; 7305 7306 callchain = get_perf_callchain(regs, 0, kernel, user, 7307 max_stack, crosstask, true); 7308 return callchain ?: &__empty_callchain; 7309 } 7310 7311 void perf_prepare_sample(struct perf_event_header *header, 7312 struct perf_sample_data *data, 7313 struct perf_event *event, 7314 struct pt_regs *regs) 7315 { 7316 u64 sample_type = event->attr.sample_type; 7317 u64 filtered_sample_type; 7318 7319 header->type = PERF_RECORD_SAMPLE; 7320 header->size = sizeof(*header) + event->header_size; 7321 7322 header->misc = 0; 7323 header->misc |= perf_misc_flags(regs); 7324 7325 /* 7326 * Clear the sample flags that have already been done by the 7327 * PMU driver. 7328 */ 7329 filtered_sample_type = sample_type & ~data->sample_flags; 7330 __perf_event_header__init_id(header, data, event, filtered_sample_type); 7331 7332 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7333 data->ip = perf_instruction_pointer(regs); 7334 7335 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7336 int size = 1; 7337 7338 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7339 data->callchain = perf_callchain(event, regs); 7340 7341 size += data->callchain->nr; 7342 7343 header->size += size * sizeof(u64); 7344 } 7345 7346 if (sample_type & PERF_SAMPLE_RAW) { 7347 struct perf_raw_record *raw = data->raw; 7348 int size; 7349 7350 if (raw && (data->sample_flags & PERF_SAMPLE_RAW)) { 7351 struct perf_raw_frag *frag = &raw->frag; 7352 u32 sum = 0; 7353 7354 do { 7355 sum += frag->size; 7356 if (perf_raw_frag_last(frag)) 7357 break; 7358 frag = frag->next; 7359 } while (1); 7360 7361 size = round_up(sum + sizeof(u32), sizeof(u64)); 7362 raw->size = size - sizeof(u32); 7363 frag->pad = raw->size - sum; 7364 } else { 7365 size = sizeof(u64); 7366 data->raw = NULL; 7367 } 7368 7369 header->size += size; 7370 } 7371 7372 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7373 int size = sizeof(u64); /* nr */ 7374 if (data->sample_flags & PERF_SAMPLE_BRANCH_STACK) { 7375 if (branch_sample_hw_index(event)) 7376 size += sizeof(u64); 7377 7378 size += data->br_stack->nr 7379 * sizeof(struct perf_branch_entry); 7380 } 7381 header->size += size; 7382 } 7383 7384 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7385 perf_sample_regs_user(&data->regs_user, regs); 7386 7387 if (sample_type & PERF_SAMPLE_REGS_USER) { 7388 /* regs dump ABI info */ 7389 int size = sizeof(u64); 7390 7391 if (data->regs_user.regs) { 7392 u64 mask = event->attr.sample_regs_user; 7393 size += hweight64(mask) * sizeof(u64); 7394 } 7395 7396 header->size += size; 7397 } 7398 7399 if (sample_type & PERF_SAMPLE_STACK_USER) { 7400 /* 7401 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7402 * processed as the last one or have additional check added 7403 * in case new sample type is added, because we could eat 7404 * up the rest of the sample size. 7405 */ 7406 u16 stack_size = event->attr.sample_stack_user; 7407 u16 size = sizeof(u64); 7408 7409 stack_size = perf_sample_ustack_size(stack_size, header->size, 7410 data->regs_user.regs); 7411 7412 /* 7413 * If there is something to dump, add space for the dump 7414 * itself and for the field that tells the dynamic size, 7415 * which is how many have been actually dumped. 7416 */ 7417 if (stack_size) 7418 size += sizeof(u64) + stack_size; 7419 7420 data->stack_user_size = stack_size; 7421 header->size += size; 7422 } 7423 7424 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7425 data->weight.full = 0; 7426 7427 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) 7428 data->data_src.val = PERF_MEM_NA; 7429 7430 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) 7431 data->txn = 0; 7432 7433 if (sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_DATA_PAGE_SIZE)) { 7434 if (filtered_sample_type & PERF_SAMPLE_ADDR) 7435 data->addr = 0; 7436 } 7437 7438 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7439 /* regs dump ABI info */ 7440 int size = sizeof(u64); 7441 7442 perf_sample_regs_intr(&data->regs_intr, regs); 7443 7444 if (data->regs_intr.regs) { 7445 u64 mask = event->attr.sample_regs_intr; 7446 7447 size += hweight64(mask) * sizeof(u64); 7448 } 7449 7450 header->size += size; 7451 } 7452 7453 if (sample_type & PERF_SAMPLE_PHYS_ADDR && 7454 filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) 7455 data->phys_addr = perf_virt_to_phys(data->addr); 7456 7457 #ifdef CONFIG_CGROUP_PERF 7458 if (sample_type & PERF_SAMPLE_CGROUP) { 7459 struct cgroup *cgrp; 7460 7461 /* protected by RCU */ 7462 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7463 data->cgroup = cgroup_id(cgrp); 7464 } 7465 #endif 7466 7467 /* 7468 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7469 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7470 * but the value will not dump to the userspace. 7471 */ 7472 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7473 data->data_page_size = perf_get_page_size(data->addr); 7474 7475 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7476 data->code_page_size = perf_get_page_size(data->ip); 7477 7478 if (sample_type & PERF_SAMPLE_AUX) { 7479 u64 size; 7480 7481 header->size += sizeof(u64); /* size */ 7482 7483 /* 7484 * Given the 16bit nature of header::size, an AUX sample can 7485 * easily overflow it, what with all the preceding sample bits. 7486 * Make sure this doesn't happen by using up to U16_MAX bytes 7487 * per sample in total (rounded down to 8 byte boundary). 7488 */ 7489 size = min_t(size_t, U16_MAX - header->size, 7490 event->attr.aux_sample_size); 7491 size = rounddown(size, 8); 7492 size = perf_prepare_sample_aux(event, data, size); 7493 7494 WARN_ON_ONCE(size + header->size > U16_MAX); 7495 header->size += size; 7496 } 7497 /* 7498 * If you're adding more sample types here, you likely need to do 7499 * something about the overflowing header::size, like repurpose the 7500 * lowest 3 bits of size, which should be always zero at the moment. 7501 * This raises a more important question, do we really need 512k sized 7502 * samples and why, so good argumentation is in order for whatever you 7503 * do here next. 7504 */ 7505 WARN_ON_ONCE(header->size & 7); 7506 } 7507 7508 static __always_inline int 7509 __perf_event_output(struct perf_event *event, 7510 struct perf_sample_data *data, 7511 struct pt_regs *regs, 7512 int (*output_begin)(struct perf_output_handle *, 7513 struct perf_sample_data *, 7514 struct perf_event *, 7515 unsigned int)) 7516 { 7517 struct perf_output_handle handle; 7518 struct perf_event_header header; 7519 int err; 7520 7521 /* protect the callchain buffers */ 7522 rcu_read_lock(); 7523 7524 perf_prepare_sample(&header, data, event, regs); 7525 7526 err = output_begin(&handle, data, event, header.size); 7527 if (err) 7528 goto exit; 7529 7530 perf_output_sample(&handle, &header, data, event); 7531 7532 perf_output_end(&handle); 7533 7534 exit: 7535 rcu_read_unlock(); 7536 return err; 7537 } 7538 7539 void 7540 perf_event_output_forward(struct perf_event *event, 7541 struct perf_sample_data *data, 7542 struct pt_regs *regs) 7543 { 7544 __perf_event_output(event, data, regs, perf_output_begin_forward); 7545 } 7546 7547 void 7548 perf_event_output_backward(struct perf_event *event, 7549 struct perf_sample_data *data, 7550 struct pt_regs *regs) 7551 { 7552 __perf_event_output(event, data, regs, perf_output_begin_backward); 7553 } 7554 7555 int 7556 perf_event_output(struct perf_event *event, 7557 struct perf_sample_data *data, 7558 struct pt_regs *regs) 7559 { 7560 return __perf_event_output(event, data, regs, perf_output_begin); 7561 } 7562 7563 /* 7564 * read event_id 7565 */ 7566 7567 struct perf_read_event { 7568 struct perf_event_header header; 7569 7570 u32 pid; 7571 u32 tid; 7572 }; 7573 7574 static void 7575 perf_event_read_event(struct perf_event *event, 7576 struct task_struct *task) 7577 { 7578 struct perf_output_handle handle; 7579 struct perf_sample_data sample; 7580 struct perf_read_event read_event = { 7581 .header = { 7582 .type = PERF_RECORD_READ, 7583 .misc = 0, 7584 .size = sizeof(read_event) + event->read_size, 7585 }, 7586 .pid = perf_event_pid(event, task), 7587 .tid = perf_event_tid(event, task), 7588 }; 7589 int ret; 7590 7591 perf_event_header__init_id(&read_event.header, &sample, event); 7592 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7593 if (ret) 7594 return; 7595 7596 perf_output_put(&handle, read_event); 7597 perf_output_read(&handle, event); 7598 perf_event__output_id_sample(event, &handle, &sample); 7599 7600 perf_output_end(&handle); 7601 } 7602 7603 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7604 7605 static void 7606 perf_iterate_ctx(struct perf_event_context *ctx, 7607 perf_iterate_f output, 7608 void *data, bool all) 7609 { 7610 struct perf_event *event; 7611 7612 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7613 if (!all) { 7614 if (event->state < PERF_EVENT_STATE_INACTIVE) 7615 continue; 7616 if (!event_filter_match(event)) 7617 continue; 7618 } 7619 7620 output(event, data); 7621 } 7622 } 7623 7624 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7625 { 7626 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7627 struct perf_event *event; 7628 7629 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7630 /* 7631 * Skip events that are not fully formed yet; ensure that 7632 * if we observe event->ctx, both event and ctx will be 7633 * complete enough. See perf_install_in_context(). 7634 */ 7635 if (!smp_load_acquire(&event->ctx)) 7636 continue; 7637 7638 if (event->state < PERF_EVENT_STATE_INACTIVE) 7639 continue; 7640 if (!event_filter_match(event)) 7641 continue; 7642 output(event, data); 7643 } 7644 } 7645 7646 /* 7647 * Iterate all events that need to receive side-band events. 7648 * 7649 * For new callers; ensure that account_pmu_sb_event() includes 7650 * your event, otherwise it might not get delivered. 7651 */ 7652 static void 7653 perf_iterate_sb(perf_iterate_f output, void *data, 7654 struct perf_event_context *task_ctx) 7655 { 7656 struct perf_event_context *ctx; 7657 int ctxn; 7658 7659 rcu_read_lock(); 7660 preempt_disable(); 7661 7662 /* 7663 * If we have task_ctx != NULL we only notify the task context itself. 7664 * The task_ctx is set only for EXIT events before releasing task 7665 * context. 7666 */ 7667 if (task_ctx) { 7668 perf_iterate_ctx(task_ctx, output, data, false); 7669 goto done; 7670 } 7671 7672 perf_iterate_sb_cpu(output, data); 7673 7674 for_each_task_context_nr(ctxn) { 7675 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7676 if (ctx) 7677 perf_iterate_ctx(ctx, output, data, false); 7678 } 7679 done: 7680 preempt_enable(); 7681 rcu_read_unlock(); 7682 } 7683 7684 /* 7685 * Clear all file-based filters at exec, they'll have to be 7686 * re-instated when/if these objects are mmapped again. 7687 */ 7688 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7689 { 7690 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7691 struct perf_addr_filter *filter; 7692 unsigned int restart = 0, count = 0; 7693 unsigned long flags; 7694 7695 if (!has_addr_filter(event)) 7696 return; 7697 7698 raw_spin_lock_irqsave(&ifh->lock, flags); 7699 list_for_each_entry(filter, &ifh->list, entry) { 7700 if (filter->path.dentry) { 7701 event->addr_filter_ranges[count].start = 0; 7702 event->addr_filter_ranges[count].size = 0; 7703 restart++; 7704 } 7705 7706 count++; 7707 } 7708 7709 if (restart) 7710 event->addr_filters_gen++; 7711 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7712 7713 if (restart) 7714 perf_event_stop(event, 1); 7715 } 7716 7717 void perf_event_exec(void) 7718 { 7719 struct perf_event_context *ctx; 7720 int ctxn; 7721 7722 for_each_task_context_nr(ctxn) { 7723 perf_event_enable_on_exec(ctxn); 7724 perf_event_remove_on_exec(ctxn); 7725 7726 rcu_read_lock(); 7727 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7728 if (ctx) { 7729 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, 7730 NULL, true); 7731 } 7732 rcu_read_unlock(); 7733 } 7734 } 7735 7736 struct remote_output { 7737 struct perf_buffer *rb; 7738 int err; 7739 }; 7740 7741 static void __perf_event_output_stop(struct perf_event *event, void *data) 7742 { 7743 struct perf_event *parent = event->parent; 7744 struct remote_output *ro = data; 7745 struct perf_buffer *rb = ro->rb; 7746 struct stop_event_data sd = { 7747 .event = event, 7748 }; 7749 7750 if (!has_aux(event)) 7751 return; 7752 7753 if (!parent) 7754 parent = event; 7755 7756 /* 7757 * In case of inheritance, it will be the parent that links to the 7758 * ring-buffer, but it will be the child that's actually using it. 7759 * 7760 * We are using event::rb to determine if the event should be stopped, 7761 * however this may race with ring_buffer_attach() (through set_output), 7762 * which will make us skip the event that actually needs to be stopped. 7763 * So ring_buffer_attach() has to stop an aux event before re-assigning 7764 * its rb pointer. 7765 */ 7766 if (rcu_dereference(parent->rb) == rb) 7767 ro->err = __perf_event_stop(&sd); 7768 } 7769 7770 static int __perf_pmu_output_stop(void *info) 7771 { 7772 struct perf_event *event = info; 7773 struct pmu *pmu = event->ctx->pmu; 7774 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7775 struct remote_output ro = { 7776 .rb = event->rb, 7777 }; 7778 7779 rcu_read_lock(); 7780 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7781 if (cpuctx->task_ctx) 7782 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7783 &ro, false); 7784 rcu_read_unlock(); 7785 7786 return ro.err; 7787 } 7788 7789 static void perf_pmu_output_stop(struct perf_event *event) 7790 { 7791 struct perf_event *iter; 7792 int err, cpu; 7793 7794 restart: 7795 rcu_read_lock(); 7796 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7797 /* 7798 * For per-CPU events, we need to make sure that neither they 7799 * nor their children are running; for cpu==-1 events it's 7800 * sufficient to stop the event itself if it's active, since 7801 * it can't have children. 7802 */ 7803 cpu = iter->cpu; 7804 if (cpu == -1) 7805 cpu = READ_ONCE(iter->oncpu); 7806 7807 if (cpu == -1) 7808 continue; 7809 7810 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7811 if (err == -EAGAIN) { 7812 rcu_read_unlock(); 7813 goto restart; 7814 } 7815 } 7816 rcu_read_unlock(); 7817 } 7818 7819 /* 7820 * task tracking -- fork/exit 7821 * 7822 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7823 */ 7824 7825 struct perf_task_event { 7826 struct task_struct *task; 7827 struct perf_event_context *task_ctx; 7828 7829 struct { 7830 struct perf_event_header header; 7831 7832 u32 pid; 7833 u32 ppid; 7834 u32 tid; 7835 u32 ptid; 7836 u64 time; 7837 } event_id; 7838 }; 7839 7840 static int perf_event_task_match(struct perf_event *event) 7841 { 7842 return event->attr.comm || event->attr.mmap || 7843 event->attr.mmap2 || event->attr.mmap_data || 7844 event->attr.task; 7845 } 7846 7847 static void perf_event_task_output(struct perf_event *event, 7848 void *data) 7849 { 7850 struct perf_task_event *task_event = data; 7851 struct perf_output_handle handle; 7852 struct perf_sample_data sample; 7853 struct task_struct *task = task_event->task; 7854 int ret, size = task_event->event_id.header.size; 7855 7856 if (!perf_event_task_match(event)) 7857 return; 7858 7859 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7860 7861 ret = perf_output_begin(&handle, &sample, event, 7862 task_event->event_id.header.size); 7863 if (ret) 7864 goto out; 7865 7866 task_event->event_id.pid = perf_event_pid(event, task); 7867 task_event->event_id.tid = perf_event_tid(event, task); 7868 7869 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7870 task_event->event_id.ppid = perf_event_pid(event, 7871 task->real_parent); 7872 task_event->event_id.ptid = perf_event_pid(event, 7873 task->real_parent); 7874 } else { /* PERF_RECORD_FORK */ 7875 task_event->event_id.ppid = perf_event_pid(event, current); 7876 task_event->event_id.ptid = perf_event_tid(event, current); 7877 } 7878 7879 task_event->event_id.time = perf_event_clock(event); 7880 7881 perf_output_put(&handle, task_event->event_id); 7882 7883 perf_event__output_id_sample(event, &handle, &sample); 7884 7885 perf_output_end(&handle); 7886 out: 7887 task_event->event_id.header.size = size; 7888 } 7889 7890 static void perf_event_task(struct task_struct *task, 7891 struct perf_event_context *task_ctx, 7892 int new) 7893 { 7894 struct perf_task_event task_event; 7895 7896 if (!atomic_read(&nr_comm_events) && 7897 !atomic_read(&nr_mmap_events) && 7898 !atomic_read(&nr_task_events)) 7899 return; 7900 7901 task_event = (struct perf_task_event){ 7902 .task = task, 7903 .task_ctx = task_ctx, 7904 .event_id = { 7905 .header = { 7906 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7907 .misc = 0, 7908 .size = sizeof(task_event.event_id), 7909 }, 7910 /* .pid */ 7911 /* .ppid */ 7912 /* .tid */ 7913 /* .ptid */ 7914 /* .time */ 7915 }, 7916 }; 7917 7918 perf_iterate_sb(perf_event_task_output, 7919 &task_event, 7920 task_ctx); 7921 } 7922 7923 void perf_event_fork(struct task_struct *task) 7924 { 7925 perf_event_task(task, NULL, 1); 7926 perf_event_namespaces(task); 7927 } 7928 7929 /* 7930 * comm tracking 7931 */ 7932 7933 struct perf_comm_event { 7934 struct task_struct *task; 7935 char *comm; 7936 int comm_size; 7937 7938 struct { 7939 struct perf_event_header header; 7940 7941 u32 pid; 7942 u32 tid; 7943 } event_id; 7944 }; 7945 7946 static int perf_event_comm_match(struct perf_event *event) 7947 { 7948 return event->attr.comm; 7949 } 7950 7951 static void perf_event_comm_output(struct perf_event *event, 7952 void *data) 7953 { 7954 struct perf_comm_event *comm_event = data; 7955 struct perf_output_handle handle; 7956 struct perf_sample_data sample; 7957 int size = comm_event->event_id.header.size; 7958 int ret; 7959 7960 if (!perf_event_comm_match(event)) 7961 return; 7962 7963 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7964 ret = perf_output_begin(&handle, &sample, event, 7965 comm_event->event_id.header.size); 7966 7967 if (ret) 7968 goto out; 7969 7970 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7971 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7972 7973 perf_output_put(&handle, comm_event->event_id); 7974 __output_copy(&handle, comm_event->comm, 7975 comm_event->comm_size); 7976 7977 perf_event__output_id_sample(event, &handle, &sample); 7978 7979 perf_output_end(&handle); 7980 out: 7981 comm_event->event_id.header.size = size; 7982 } 7983 7984 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7985 { 7986 char comm[TASK_COMM_LEN]; 7987 unsigned int size; 7988 7989 memset(comm, 0, sizeof(comm)); 7990 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7991 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7992 7993 comm_event->comm = comm; 7994 comm_event->comm_size = size; 7995 7996 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7997 7998 perf_iterate_sb(perf_event_comm_output, 7999 comm_event, 8000 NULL); 8001 } 8002 8003 void perf_event_comm(struct task_struct *task, bool exec) 8004 { 8005 struct perf_comm_event comm_event; 8006 8007 if (!atomic_read(&nr_comm_events)) 8008 return; 8009 8010 comm_event = (struct perf_comm_event){ 8011 .task = task, 8012 /* .comm */ 8013 /* .comm_size */ 8014 .event_id = { 8015 .header = { 8016 .type = PERF_RECORD_COMM, 8017 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8018 /* .size */ 8019 }, 8020 /* .pid */ 8021 /* .tid */ 8022 }, 8023 }; 8024 8025 perf_event_comm_event(&comm_event); 8026 } 8027 8028 /* 8029 * namespaces tracking 8030 */ 8031 8032 struct perf_namespaces_event { 8033 struct task_struct *task; 8034 8035 struct { 8036 struct perf_event_header header; 8037 8038 u32 pid; 8039 u32 tid; 8040 u64 nr_namespaces; 8041 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8042 } event_id; 8043 }; 8044 8045 static int perf_event_namespaces_match(struct perf_event *event) 8046 { 8047 return event->attr.namespaces; 8048 } 8049 8050 static void perf_event_namespaces_output(struct perf_event *event, 8051 void *data) 8052 { 8053 struct perf_namespaces_event *namespaces_event = data; 8054 struct perf_output_handle handle; 8055 struct perf_sample_data sample; 8056 u16 header_size = namespaces_event->event_id.header.size; 8057 int ret; 8058 8059 if (!perf_event_namespaces_match(event)) 8060 return; 8061 8062 perf_event_header__init_id(&namespaces_event->event_id.header, 8063 &sample, event); 8064 ret = perf_output_begin(&handle, &sample, event, 8065 namespaces_event->event_id.header.size); 8066 if (ret) 8067 goto out; 8068 8069 namespaces_event->event_id.pid = perf_event_pid(event, 8070 namespaces_event->task); 8071 namespaces_event->event_id.tid = perf_event_tid(event, 8072 namespaces_event->task); 8073 8074 perf_output_put(&handle, namespaces_event->event_id); 8075 8076 perf_event__output_id_sample(event, &handle, &sample); 8077 8078 perf_output_end(&handle); 8079 out: 8080 namespaces_event->event_id.header.size = header_size; 8081 } 8082 8083 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8084 struct task_struct *task, 8085 const struct proc_ns_operations *ns_ops) 8086 { 8087 struct path ns_path; 8088 struct inode *ns_inode; 8089 int error; 8090 8091 error = ns_get_path(&ns_path, task, ns_ops); 8092 if (!error) { 8093 ns_inode = ns_path.dentry->d_inode; 8094 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8095 ns_link_info->ino = ns_inode->i_ino; 8096 path_put(&ns_path); 8097 } 8098 } 8099 8100 void perf_event_namespaces(struct task_struct *task) 8101 { 8102 struct perf_namespaces_event namespaces_event; 8103 struct perf_ns_link_info *ns_link_info; 8104 8105 if (!atomic_read(&nr_namespaces_events)) 8106 return; 8107 8108 namespaces_event = (struct perf_namespaces_event){ 8109 .task = task, 8110 .event_id = { 8111 .header = { 8112 .type = PERF_RECORD_NAMESPACES, 8113 .misc = 0, 8114 .size = sizeof(namespaces_event.event_id), 8115 }, 8116 /* .pid */ 8117 /* .tid */ 8118 .nr_namespaces = NR_NAMESPACES, 8119 /* .link_info[NR_NAMESPACES] */ 8120 }, 8121 }; 8122 8123 ns_link_info = namespaces_event.event_id.link_info; 8124 8125 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8126 task, &mntns_operations); 8127 8128 #ifdef CONFIG_USER_NS 8129 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8130 task, &userns_operations); 8131 #endif 8132 #ifdef CONFIG_NET_NS 8133 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8134 task, &netns_operations); 8135 #endif 8136 #ifdef CONFIG_UTS_NS 8137 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8138 task, &utsns_operations); 8139 #endif 8140 #ifdef CONFIG_IPC_NS 8141 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8142 task, &ipcns_operations); 8143 #endif 8144 #ifdef CONFIG_PID_NS 8145 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8146 task, &pidns_operations); 8147 #endif 8148 #ifdef CONFIG_CGROUPS 8149 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8150 task, &cgroupns_operations); 8151 #endif 8152 8153 perf_iterate_sb(perf_event_namespaces_output, 8154 &namespaces_event, 8155 NULL); 8156 } 8157 8158 /* 8159 * cgroup tracking 8160 */ 8161 #ifdef CONFIG_CGROUP_PERF 8162 8163 struct perf_cgroup_event { 8164 char *path; 8165 int path_size; 8166 struct { 8167 struct perf_event_header header; 8168 u64 id; 8169 char path[]; 8170 } event_id; 8171 }; 8172 8173 static int perf_event_cgroup_match(struct perf_event *event) 8174 { 8175 return event->attr.cgroup; 8176 } 8177 8178 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8179 { 8180 struct perf_cgroup_event *cgroup_event = data; 8181 struct perf_output_handle handle; 8182 struct perf_sample_data sample; 8183 u16 header_size = cgroup_event->event_id.header.size; 8184 int ret; 8185 8186 if (!perf_event_cgroup_match(event)) 8187 return; 8188 8189 perf_event_header__init_id(&cgroup_event->event_id.header, 8190 &sample, event); 8191 ret = perf_output_begin(&handle, &sample, event, 8192 cgroup_event->event_id.header.size); 8193 if (ret) 8194 goto out; 8195 8196 perf_output_put(&handle, cgroup_event->event_id); 8197 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8198 8199 perf_event__output_id_sample(event, &handle, &sample); 8200 8201 perf_output_end(&handle); 8202 out: 8203 cgroup_event->event_id.header.size = header_size; 8204 } 8205 8206 static void perf_event_cgroup(struct cgroup *cgrp) 8207 { 8208 struct perf_cgroup_event cgroup_event; 8209 char path_enomem[16] = "//enomem"; 8210 char *pathname; 8211 size_t size; 8212 8213 if (!atomic_read(&nr_cgroup_events)) 8214 return; 8215 8216 cgroup_event = (struct perf_cgroup_event){ 8217 .event_id = { 8218 .header = { 8219 .type = PERF_RECORD_CGROUP, 8220 .misc = 0, 8221 .size = sizeof(cgroup_event.event_id), 8222 }, 8223 .id = cgroup_id(cgrp), 8224 }, 8225 }; 8226 8227 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8228 if (pathname == NULL) { 8229 cgroup_event.path = path_enomem; 8230 } else { 8231 /* just to be sure to have enough space for alignment */ 8232 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8233 cgroup_event.path = pathname; 8234 } 8235 8236 /* 8237 * Since our buffer works in 8 byte units we need to align our string 8238 * size to a multiple of 8. However, we must guarantee the tail end is 8239 * zero'd out to avoid leaking random bits to userspace. 8240 */ 8241 size = strlen(cgroup_event.path) + 1; 8242 while (!IS_ALIGNED(size, sizeof(u64))) 8243 cgroup_event.path[size++] = '\0'; 8244 8245 cgroup_event.event_id.header.size += size; 8246 cgroup_event.path_size = size; 8247 8248 perf_iterate_sb(perf_event_cgroup_output, 8249 &cgroup_event, 8250 NULL); 8251 8252 kfree(pathname); 8253 } 8254 8255 #endif 8256 8257 /* 8258 * mmap tracking 8259 */ 8260 8261 struct perf_mmap_event { 8262 struct vm_area_struct *vma; 8263 8264 const char *file_name; 8265 int file_size; 8266 int maj, min; 8267 u64 ino; 8268 u64 ino_generation; 8269 u32 prot, flags; 8270 u8 build_id[BUILD_ID_SIZE_MAX]; 8271 u32 build_id_size; 8272 8273 struct { 8274 struct perf_event_header header; 8275 8276 u32 pid; 8277 u32 tid; 8278 u64 start; 8279 u64 len; 8280 u64 pgoff; 8281 } event_id; 8282 }; 8283 8284 static int perf_event_mmap_match(struct perf_event *event, 8285 void *data) 8286 { 8287 struct perf_mmap_event *mmap_event = data; 8288 struct vm_area_struct *vma = mmap_event->vma; 8289 int executable = vma->vm_flags & VM_EXEC; 8290 8291 return (!executable && event->attr.mmap_data) || 8292 (executable && (event->attr.mmap || event->attr.mmap2)); 8293 } 8294 8295 static void perf_event_mmap_output(struct perf_event *event, 8296 void *data) 8297 { 8298 struct perf_mmap_event *mmap_event = data; 8299 struct perf_output_handle handle; 8300 struct perf_sample_data sample; 8301 int size = mmap_event->event_id.header.size; 8302 u32 type = mmap_event->event_id.header.type; 8303 bool use_build_id; 8304 int ret; 8305 8306 if (!perf_event_mmap_match(event, data)) 8307 return; 8308 8309 if (event->attr.mmap2) { 8310 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8311 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8312 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8313 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8314 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8315 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8316 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8317 } 8318 8319 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8320 ret = perf_output_begin(&handle, &sample, event, 8321 mmap_event->event_id.header.size); 8322 if (ret) 8323 goto out; 8324 8325 mmap_event->event_id.pid = perf_event_pid(event, current); 8326 mmap_event->event_id.tid = perf_event_tid(event, current); 8327 8328 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8329 8330 if (event->attr.mmap2 && use_build_id) 8331 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8332 8333 perf_output_put(&handle, mmap_event->event_id); 8334 8335 if (event->attr.mmap2) { 8336 if (use_build_id) { 8337 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8338 8339 __output_copy(&handle, size, 4); 8340 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8341 } else { 8342 perf_output_put(&handle, mmap_event->maj); 8343 perf_output_put(&handle, mmap_event->min); 8344 perf_output_put(&handle, mmap_event->ino); 8345 perf_output_put(&handle, mmap_event->ino_generation); 8346 } 8347 perf_output_put(&handle, mmap_event->prot); 8348 perf_output_put(&handle, mmap_event->flags); 8349 } 8350 8351 __output_copy(&handle, mmap_event->file_name, 8352 mmap_event->file_size); 8353 8354 perf_event__output_id_sample(event, &handle, &sample); 8355 8356 perf_output_end(&handle); 8357 out: 8358 mmap_event->event_id.header.size = size; 8359 mmap_event->event_id.header.type = type; 8360 } 8361 8362 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8363 { 8364 struct vm_area_struct *vma = mmap_event->vma; 8365 struct file *file = vma->vm_file; 8366 int maj = 0, min = 0; 8367 u64 ino = 0, gen = 0; 8368 u32 prot = 0, flags = 0; 8369 unsigned int size; 8370 char tmp[16]; 8371 char *buf = NULL; 8372 char *name; 8373 8374 if (vma->vm_flags & VM_READ) 8375 prot |= PROT_READ; 8376 if (vma->vm_flags & VM_WRITE) 8377 prot |= PROT_WRITE; 8378 if (vma->vm_flags & VM_EXEC) 8379 prot |= PROT_EXEC; 8380 8381 if (vma->vm_flags & VM_MAYSHARE) 8382 flags = MAP_SHARED; 8383 else 8384 flags = MAP_PRIVATE; 8385 8386 if (vma->vm_flags & VM_LOCKED) 8387 flags |= MAP_LOCKED; 8388 if (is_vm_hugetlb_page(vma)) 8389 flags |= MAP_HUGETLB; 8390 8391 if (file) { 8392 struct inode *inode; 8393 dev_t dev; 8394 8395 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8396 if (!buf) { 8397 name = "//enomem"; 8398 goto cpy_name; 8399 } 8400 /* 8401 * d_path() works from the end of the rb backwards, so we 8402 * need to add enough zero bytes after the string to handle 8403 * the 64bit alignment we do later. 8404 */ 8405 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8406 if (IS_ERR(name)) { 8407 name = "//toolong"; 8408 goto cpy_name; 8409 } 8410 inode = file_inode(vma->vm_file); 8411 dev = inode->i_sb->s_dev; 8412 ino = inode->i_ino; 8413 gen = inode->i_generation; 8414 maj = MAJOR(dev); 8415 min = MINOR(dev); 8416 8417 goto got_name; 8418 } else { 8419 if (vma->vm_ops && vma->vm_ops->name) { 8420 name = (char *) vma->vm_ops->name(vma); 8421 if (name) 8422 goto cpy_name; 8423 } 8424 8425 name = (char *)arch_vma_name(vma); 8426 if (name) 8427 goto cpy_name; 8428 8429 if (vma->vm_start <= vma->vm_mm->start_brk && 8430 vma->vm_end >= vma->vm_mm->brk) { 8431 name = "[heap]"; 8432 goto cpy_name; 8433 } 8434 if (vma->vm_start <= vma->vm_mm->start_stack && 8435 vma->vm_end >= vma->vm_mm->start_stack) { 8436 name = "[stack]"; 8437 goto cpy_name; 8438 } 8439 8440 name = "//anon"; 8441 goto cpy_name; 8442 } 8443 8444 cpy_name: 8445 strlcpy(tmp, name, sizeof(tmp)); 8446 name = tmp; 8447 got_name: 8448 /* 8449 * Since our buffer works in 8 byte units we need to align our string 8450 * size to a multiple of 8. However, we must guarantee the tail end is 8451 * zero'd out to avoid leaking random bits to userspace. 8452 */ 8453 size = strlen(name)+1; 8454 while (!IS_ALIGNED(size, sizeof(u64))) 8455 name[size++] = '\0'; 8456 8457 mmap_event->file_name = name; 8458 mmap_event->file_size = size; 8459 mmap_event->maj = maj; 8460 mmap_event->min = min; 8461 mmap_event->ino = ino; 8462 mmap_event->ino_generation = gen; 8463 mmap_event->prot = prot; 8464 mmap_event->flags = flags; 8465 8466 if (!(vma->vm_flags & VM_EXEC)) 8467 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8468 8469 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8470 8471 if (atomic_read(&nr_build_id_events)) 8472 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8473 8474 perf_iterate_sb(perf_event_mmap_output, 8475 mmap_event, 8476 NULL); 8477 8478 kfree(buf); 8479 } 8480 8481 /* 8482 * Check whether inode and address range match filter criteria. 8483 */ 8484 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8485 struct file *file, unsigned long offset, 8486 unsigned long size) 8487 { 8488 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8489 if (!filter->path.dentry) 8490 return false; 8491 8492 if (d_inode(filter->path.dentry) != file_inode(file)) 8493 return false; 8494 8495 if (filter->offset > offset + size) 8496 return false; 8497 8498 if (filter->offset + filter->size < offset) 8499 return false; 8500 8501 return true; 8502 } 8503 8504 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8505 struct vm_area_struct *vma, 8506 struct perf_addr_filter_range *fr) 8507 { 8508 unsigned long vma_size = vma->vm_end - vma->vm_start; 8509 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8510 struct file *file = vma->vm_file; 8511 8512 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8513 return false; 8514 8515 if (filter->offset < off) { 8516 fr->start = vma->vm_start; 8517 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8518 } else { 8519 fr->start = vma->vm_start + filter->offset - off; 8520 fr->size = min(vma->vm_end - fr->start, filter->size); 8521 } 8522 8523 return true; 8524 } 8525 8526 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8527 { 8528 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8529 struct vm_area_struct *vma = data; 8530 struct perf_addr_filter *filter; 8531 unsigned int restart = 0, count = 0; 8532 unsigned long flags; 8533 8534 if (!has_addr_filter(event)) 8535 return; 8536 8537 if (!vma->vm_file) 8538 return; 8539 8540 raw_spin_lock_irqsave(&ifh->lock, flags); 8541 list_for_each_entry(filter, &ifh->list, entry) { 8542 if (perf_addr_filter_vma_adjust(filter, vma, 8543 &event->addr_filter_ranges[count])) 8544 restart++; 8545 8546 count++; 8547 } 8548 8549 if (restart) 8550 event->addr_filters_gen++; 8551 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8552 8553 if (restart) 8554 perf_event_stop(event, 1); 8555 } 8556 8557 /* 8558 * Adjust all task's events' filters to the new vma 8559 */ 8560 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8561 { 8562 struct perf_event_context *ctx; 8563 int ctxn; 8564 8565 /* 8566 * Data tracing isn't supported yet and as such there is no need 8567 * to keep track of anything that isn't related to executable code: 8568 */ 8569 if (!(vma->vm_flags & VM_EXEC)) 8570 return; 8571 8572 rcu_read_lock(); 8573 for_each_task_context_nr(ctxn) { 8574 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8575 if (!ctx) 8576 continue; 8577 8578 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8579 } 8580 rcu_read_unlock(); 8581 } 8582 8583 void perf_event_mmap(struct vm_area_struct *vma) 8584 { 8585 struct perf_mmap_event mmap_event; 8586 8587 if (!atomic_read(&nr_mmap_events)) 8588 return; 8589 8590 mmap_event = (struct perf_mmap_event){ 8591 .vma = vma, 8592 /* .file_name */ 8593 /* .file_size */ 8594 .event_id = { 8595 .header = { 8596 .type = PERF_RECORD_MMAP, 8597 .misc = PERF_RECORD_MISC_USER, 8598 /* .size */ 8599 }, 8600 /* .pid */ 8601 /* .tid */ 8602 .start = vma->vm_start, 8603 .len = vma->vm_end - vma->vm_start, 8604 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8605 }, 8606 /* .maj (attr_mmap2 only) */ 8607 /* .min (attr_mmap2 only) */ 8608 /* .ino (attr_mmap2 only) */ 8609 /* .ino_generation (attr_mmap2 only) */ 8610 /* .prot (attr_mmap2 only) */ 8611 /* .flags (attr_mmap2 only) */ 8612 }; 8613 8614 perf_addr_filters_adjust(vma); 8615 perf_event_mmap_event(&mmap_event); 8616 } 8617 8618 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8619 unsigned long size, u64 flags) 8620 { 8621 struct perf_output_handle handle; 8622 struct perf_sample_data sample; 8623 struct perf_aux_event { 8624 struct perf_event_header header; 8625 u64 offset; 8626 u64 size; 8627 u64 flags; 8628 } rec = { 8629 .header = { 8630 .type = PERF_RECORD_AUX, 8631 .misc = 0, 8632 .size = sizeof(rec), 8633 }, 8634 .offset = head, 8635 .size = size, 8636 .flags = flags, 8637 }; 8638 int ret; 8639 8640 perf_event_header__init_id(&rec.header, &sample, event); 8641 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8642 8643 if (ret) 8644 return; 8645 8646 perf_output_put(&handle, rec); 8647 perf_event__output_id_sample(event, &handle, &sample); 8648 8649 perf_output_end(&handle); 8650 } 8651 8652 /* 8653 * Lost/dropped samples logging 8654 */ 8655 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8656 { 8657 struct perf_output_handle handle; 8658 struct perf_sample_data sample; 8659 int ret; 8660 8661 struct { 8662 struct perf_event_header header; 8663 u64 lost; 8664 } lost_samples_event = { 8665 .header = { 8666 .type = PERF_RECORD_LOST_SAMPLES, 8667 .misc = 0, 8668 .size = sizeof(lost_samples_event), 8669 }, 8670 .lost = lost, 8671 }; 8672 8673 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8674 8675 ret = perf_output_begin(&handle, &sample, event, 8676 lost_samples_event.header.size); 8677 if (ret) 8678 return; 8679 8680 perf_output_put(&handle, lost_samples_event); 8681 perf_event__output_id_sample(event, &handle, &sample); 8682 perf_output_end(&handle); 8683 } 8684 8685 /* 8686 * context_switch tracking 8687 */ 8688 8689 struct perf_switch_event { 8690 struct task_struct *task; 8691 struct task_struct *next_prev; 8692 8693 struct { 8694 struct perf_event_header header; 8695 u32 next_prev_pid; 8696 u32 next_prev_tid; 8697 } event_id; 8698 }; 8699 8700 static int perf_event_switch_match(struct perf_event *event) 8701 { 8702 return event->attr.context_switch; 8703 } 8704 8705 static void perf_event_switch_output(struct perf_event *event, void *data) 8706 { 8707 struct perf_switch_event *se = data; 8708 struct perf_output_handle handle; 8709 struct perf_sample_data sample; 8710 int ret; 8711 8712 if (!perf_event_switch_match(event)) 8713 return; 8714 8715 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8716 if (event->ctx->task) { 8717 se->event_id.header.type = PERF_RECORD_SWITCH; 8718 se->event_id.header.size = sizeof(se->event_id.header); 8719 } else { 8720 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8721 se->event_id.header.size = sizeof(se->event_id); 8722 se->event_id.next_prev_pid = 8723 perf_event_pid(event, se->next_prev); 8724 se->event_id.next_prev_tid = 8725 perf_event_tid(event, se->next_prev); 8726 } 8727 8728 perf_event_header__init_id(&se->event_id.header, &sample, event); 8729 8730 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8731 if (ret) 8732 return; 8733 8734 if (event->ctx->task) 8735 perf_output_put(&handle, se->event_id.header); 8736 else 8737 perf_output_put(&handle, se->event_id); 8738 8739 perf_event__output_id_sample(event, &handle, &sample); 8740 8741 perf_output_end(&handle); 8742 } 8743 8744 static void perf_event_switch(struct task_struct *task, 8745 struct task_struct *next_prev, bool sched_in) 8746 { 8747 struct perf_switch_event switch_event; 8748 8749 /* N.B. caller checks nr_switch_events != 0 */ 8750 8751 switch_event = (struct perf_switch_event){ 8752 .task = task, 8753 .next_prev = next_prev, 8754 .event_id = { 8755 .header = { 8756 /* .type */ 8757 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8758 /* .size */ 8759 }, 8760 /* .next_prev_pid */ 8761 /* .next_prev_tid */ 8762 }, 8763 }; 8764 8765 if (!sched_in && task->on_rq) { 8766 switch_event.event_id.header.misc |= 8767 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8768 } 8769 8770 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 8771 } 8772 8773 /* 8774 * IRQ throttle logging 8775 */ 8776 8777 static void perf_log_throttle(struct perf_event *event, int enable) 8778 { 8779 struct perf_output_handle handle; 8780 struct perf_sample_data sample; 8781 int ret; 8782 8783 struct { 8784 struct perf_event_header header; 8785 u64 time; 8786 u64 id; 8787 u64 stream_id; 8788 } throttle_event = { 8789 .header = { 8790 .type = PERF_RECORD_THROTTLE, 8791 .misc = 0, 8792 .size = sizeof(throttle_event), 8793 }, 8794 .time = perf_event_clock(event), 8795 .id = primary_event_id(event), 8796 .stream_id = event->id, 8797 }; 8798 8799 if (enable) 8800 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8801 8802 perf_event_header__init_id(&throttle_event.header, &sample, event); 8803 8804 ret = perf_output_begin(&handle, &sample, event, 8805 throttle_event.header.size); 8806 if (ret) 8807 return; 8808 8809 perf_output_put(&handle, throttle_event); 8810 perf_event__output_id_sample(event, &handle, &sample); 8811 perf_output_end(&handle); 8812 } 8813 8814 /* 8815 * ksymbol register/unregister tracking 8816 */ 8817 8818 struct perf_ksymbol_event { 8819 const char *name; 8820 int name_len; 8821 struct { 8822 struct perf_event_header header; 8823 u64 addr; 8824 u32 len; 8825 u16 ksym_type; 8826 u16 flags; 8827 } event_id; 8828 }; 8829 8830 static int perf_event_ksymbol_match(struct perf_event *event) 8831 { 8832 return event->attr.ksymbol; 8833 } 8834 8835 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8836 { 8837 struct perf_ksymbol_event *ksymbol_event = data; 8838 struct perf_output_handle handle; 8839 struct perf_sample_data sample; 8840 int ret; 8841 8842 if (!perf_event_ksymbol_match(event)) 8843 return; 8844 8845 perf_event_header__init_id(&ksymbol_event->event_id.header, 8846 &sample, event); 8847 ret = perf_output_begin(&handle, &sample, event, 8848 ksymbol_event->event_id.header.size); 8849 if (ret) 8850 return; 8851 8852 perf_output_put(&handle, ksymbol_event->event_id); 8853 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8854 perf_event__output_id_sample(event, &handle, &sample); 8855 8856 perf_output_end(&handle); 8857 } 8858 8859 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8860 const char *sym) 8861 { 8862 struct perf_ksymbol_event ksymbol_event; 8863 char name[KSYM_NAME_LEN]; 8864 u16 flags = 0; 8865 int name_len; 8866 8867 if (!atomic_read(&nr_ksymbol_events)) 8868 return; 8869 8870 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8871 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8872 goto err; 8873 8874 strlcpy(name, sym, KSYM_NAME_LEN); 8875 name_len = strlen(name) + 1; 8876 while (!IS_ALIGNED(name_len, sizeof(u64))) 8877 name[name_len++] = '\0'; 8878 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8879 8880 if (unregister) 8881 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8882 8883 ksymbol_event = (struct perf_ksymbol_event){ 8884 .name = name, 8885 .name_len = name_len, 8886 .event_id = { 8887 .header = { 8888 .type = PERF_RECORD_KSYMBOL, 8889 .size = sizeof(ksymbol_event.event_id) + 8890 name_len, 8891 }, 8892 .addr = addr, 8893 .len = len, 8894 .ksym_type = ksym_type, 8895 .flags = flags, 8896 }, 8897 }; 8898 8899 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8900 return; 8901 err: 8902 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8903 } 8904 8905 /* 8906 * bpf program load/unload tracking 8907 */ 8908 8909 struct perf_bpf_event { 8910 struct bpf_prog *prog; 8911 struct { 8912 struct perf_event_header header; 8913 u16 type; 8914 u16 flags; 8915 u32 id; 8916 u8 tag[BPF_TAG_SIZE]; 8917 } event_id; 8918 }; 8919 8920 static int perf_event_bpf_match(struct perf_event *event) 8921 { 8922 return event->attr.bpf_event; 8923 } 8924 8925 static void perf_event_bpf_output(struct perf_event *event, void *data) 8926 { 8927 struct perf_bpf_event *bpf_event = data; 8928 struct perf_output_handle handle; 8929 struct perf_sample_data sample; 8930 int ret; 8931 8932 if (!perf_event_bpf_match(event)) 8933 return; 8934 8935 perf_event_header__init_id(&bpf_event->event_id.header, 8936 &sample, event); 8937 ret = perf_output_begin(&handle, data, event, 8938 bpf_event->event_id.header.size); 8939 if (ret) 8940 return; 8941 8942 perf_output_put(&handle, bpf_event->event_id); 8943 perf_event__output_id_sample(event, &handle, &sample); 8944 8945 perf_output_end(&handle); 8946 } 8947 8948 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8949 enum perf_bpf_event_type type) 8950 { 8951 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8952 int i; 8953 8954 if (prog->aux->func_cnt == 0) { 8955 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8956 (u64)(unsigned long)prog->bpf_func, 8957 prog->jited_len, unregister, 8958 prog->aux->ksym.name); 8959 } else { 8960 for (i = 0; i < prog->aux->func_cnt; i++) { 8961 struct bpf_prog *subprog = prog->aux->func[i]; 8962 8963 perf_event_ksymbol( 8964 PERF_RECORD_KSYMBOL_TYPE_BPF, 8965 (u64)(unsigned long)subprog->bpf_func, 8966 subprog->jited_len, unregister, 8967 prog->aux->ksym.name); 8968 } 8969 } 8970 } 8971 8972 void perf_event_bpf_event(struct bpf_prog *prog, 8973 enum perf_bpf_event_type type, 8974 u16 flags) 8975 { 8976 struct perf_bpf_event bpf_event; 8977 8978 if (type <= PERF_BPF_EVENT_UNKNOWN || 8979 type >= PERF_BPF_EVENT_MAX) 8980 return; 8981 8982 switch (type) { 8983 case PERF_BPF_EVENT_PROG_LOAD: 8984 case PERF_BPF_EVENT_PROG_UNLOAD: 8985 if (atomic_read(&nr_ksymbol_events)) 8986 perf_event_bpf_emit_ksymbols(prog, type); 8987 break; 8988 default: 8989 break; 8990 } 8991 8992 if (!atomic_read(&nr_bpf_events)) 8993 return; 8994 8995 bpf_event = (struct perf_bpf_event){ 8996 .prog = prog, 8997 .event_id = { 8998 .header = { 8999 .type = PERF_RECORD_BPF_EVENT, 9000 .size = sizeof(bpf_event.event_id), 9001 }, 9002 .type = type, 9003 .flags = flags, 9004 .id = prog->aux->id, 9005 }, 9006 }; 9007 9008 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9009 9010 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9011 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9012 } 9013 9014 struct perf_text_poke_event { 9015 const void *old_bytes; 9016 const void *new_bytes; 9017 size_t pad; 9018 u16 old_len; 9019 u16 new_len; 9020 9021 struct { 9022 struct perf_event_header header; 9023 9024 u64 addr; 9025 } event_id; 9026 }; 9027 9028 static int perf_event_text_poke_match(struct perf_event *event) 9029 { 9030 return event->attr.text_poke; 9031 } 9032 9033 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9034 { 9035 struct perf_text_poke_event *text_poke_event = data; 9036 struct perf_output_handle handle; 9037 struct perf_sample_data sample; 9038 u64 padding = 0; 9039 int ret; 9040 9041 if (!perf_event_text_poke_match(event)) 9042 return; 9043 9044 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9045 9046 ret = perf_output_begin(&handle, &sample, event, 9047 text_poke_event->event_id.header.size); 9048 if (ret) 9049 return; 9050 9051 perf_output_put(&handle, text_poke_event->event_id); 9052 perf_output_put(&handle, text_poke_event->old_len); 9053 perf_output_put(&handle, text_poke_event->new_len); 9054 9055 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9056 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9057 9058 if (text_poke_event->pad) 9059 __output_copy(&handle, &padding, text_poke_event->pad); 9060 9061 perf_event__output_id_sample(event, &handle, &sample); 9062 9063 perf_output_end(&handle); 9064 } 9065 9066 void perf_event_text_poke(const void *addr, const void *old_bytes, 9067 size_t old_len, const void *new_bytes, size_t new_len) 9068 { 9069 struct perf_text_poke_event text_poke_event; 9070 size_t tot, pad; 9071 9072 if (!atomic_read(&nr_text_poke_events)) 9073 return; 9074 9075 tot = sizeof(text_poke_event.old_len) + old_len; 9076 tot += sizeof(text_poke_event.new_len) + new_len; 9077 pad = ALIGN(tot, sizeof(u64)) - tot; 9078 9079 text_poke_event = (struct perf_text_poke_event){ 9080 .old_bytes = old_bytes, 9081 .new_bytes = new_bytes, 9082 .pad = pad, 9083 .old_len = old_len, 9084 .new_len = new_len, 9085 .event_id = { 9086 .header = { 9087 .type = PERF_RECORD_TEXT_POKE, 9088 .misc = PERF_RECORD_MISC_KERNEL, 9089 .size = sizeof(text_poke_event.event_id) + tot + pad, 9090 }, 9091 .addr = (unsigned long)addr, 9092 }, 9093 }; 9094 9095 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9096 } 9097 9098 void perf_event_itrace_started(struct perf_event *event) 9099 { 9100 event->attach_state |= PERF_ATTACH_ITRACE; 9101 } 9102 9103 static void perf_log_itrace_start(struct perf_event *event) 9104 { 9105 struct perf_output_handle handle; 9106 struct perf_sample_data sample; 9107 struct perf_aux_event { 9108 struct perf_event_header header; 9109 u32 pid; 9110 u32 tid; 9111 } rec; 9112 int ret; 9113 9114 if (event->parent) 9115 event = event->parent; 9116 9117 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9118 event->attach_state & PERF_ATTACH_ITRACE) 9119 return; 9120 9121 rec.header.type = PERF_RECORD_ITRACE_START; 9122 rec.header.misc = 0; 9123 rec.header.size = sizeof(rec); 9124 rec.pid = perf_event_pid(event, current); 9125 rec.tid = perf_event_tid(event, current); 9126 9127 perf_event_header__init_id(&rec.header, &sample, event); 9128 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9129 9130 if (ret) 9131 return; 9132 9133 perf_output_put(&handle, rec); 9134 perf_event__output_id_sample(event, &handle, &sample); 9135 9136 perf_output_end(&handle); 9137 } 9138 9139 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9140 { 9141 struct perf_output_handle handle; 9142 struct perf_sample_data sample; 9143 struct perf_aux_event { 9144 struct perf_event_header header; 9145 u64 hw_id; 9146 } rec; 9147 int ret; 9148 9149 if (event->parent) 9150 event = event->parent; 9151 9152 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9153 rec.header.misc = 0; 9154 rec.header.size = sizeof(rec); 9155 rec.hw_id = hw_id; 9156 9157 perf_event_header__init_id(&rec.header, &sample, event); 9158 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9159 9160 if (ret) 9161 return; 9162 9163 perf_output_put(&handle, rec); 9164 perf_event__output_id_sample(event, &handle, &sample); 9165 9166 perf_output_end(&handle); 9167 } 9168 9169 static int 9170 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9171 { 9172 struct hw_perf_event *hwc = &event->hw; 9173 int ret = 0; 9174 u64 seq; 9175 9176 seq = __this_cpu_read(perf_throttled_seq); 9177 if (seq != hwc->interrupts_seq) { 9178 hwc->interrupts_seq = seq; 9179 hwc->interrupts = 1; 9180 } else { 9181 hwc->interrupts++; 9182 if (unlikely(throttle 9183 && hwc->interrupts >= max_samples_per_tick)) { 9184 __this_cpu_inc(perf_throttled_count); 9185 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9186 hwc->interrupts = MAX_INTERRUPTS; 9187 perf_log_throttle(event, 0); 9188 ret = 1; 9189 } 9190 } 9191 9192 if (event->attr.freq) { 9193 u64 now = perf_clock(); 9194 s64 delta = now - hwc->freq_time_stamp; 9195 9196 hwc->freq_time_stamp = now; 9197 9198 if (delta > 0 && delta < 2*TICK_NSEC) 9199 perf_adjust_period(event, delta, hwc->last_period, true); 9200 } 9201 9202 return ret; 9203 } 9204 9205 int perf_event_account_interrupt(struct perf_event *event) 9206 { 9207 return __perf_event_account_interrupt(event, 1); 9208 } 9209 9210 /* 9211 * Generic event overflow handling, sampling. 9212 */ 9213 9214 static int __perf_event_overflow(struct perf_event *event, 9215 int throttle, struct perf_sample_data *data, 9216 struct pt_regs *regs) 9217 { 9218 int events = atomic_read(&event->event_limit); 9219 int ret = 0; 9220 9221 /* 9222 * Non-sampling counters might still use the PMI to fold short 9223 * hardware counters, ignore those. 9224 */ 9225 if (unlikely(!is_sampling_event(event))) 9226 return 0; 9227 9228 ret = __perf_event_account_interrupt(event, throttle); 9229 9230 /* 9231 * XXX event_limit might not quite work as expected on inherited 9232 * events 9233 */ 9234 9235 event->pending_kill = POLL_IN; 9236 if (events && atomic_dec_and_test(&event->event_limit)) { 9237 ret = 1; 9238 event->pending_kill = POLL_HUP; 9239 event->pending_addr = data->addr; 9240 9241 perf_event_disable_inatomic(event); 9242 } 9243 9244 READ_ONCE(event->overflow_handler)(event, data, regs); 9245 9246 if (*perf_event_fasync(event) && event->pending_kill) { 9247 event->pending_wakeup = 1; 9248 irq_work_queue(&event->pending); 9249 } 9250 9251 return ret; 9252 } 9253 9254 int perf_event_overflow(struct perf_event *event, 9255 struct perf_sample_data *data, 9256 struct pt_regs *regs) 9257 { 9258 return __perf_event_overflow(event, 1, data, regs); 9259 } 9260 9261 /* 9262 * Generic software event infrastructure 9263 */ 9264 9265 struct swevent_htable { 9266 struct swevent_hlist *swevent_hlist; 9267 struct mutex hlist_mutex; 9268 int hlist_refcount; 9269 9270 /* Recursion avoidance in each contexts */ 9271 int recursion[PERF_NR_CONTEXTS]; 9272 }; 9273 9274 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9275 9276 /* 9277 * We directly increment event->count and keep a second value in 9278 * event->hw.period_left to count intervals. This period event 9279 * is kept in the range [-sample_period, 0] so that we can use the 9280 * sign as trigger. 9281 */ 9282 9283 u64 perf_swevent_set_period(struct perf_event *event) 9284 { 9285 struct hw_perf_event *hwc = &event->hw; 9286 u64 period = hwc->last_period; 9287 u64 nr, offset; 9288 s64 old, val; 9289 9290 hwc->last_period = hwc->sample_period; 9291 9292 again: 9293 old = val = local64_read(&hwc->period_left); 9294 if (val < 0) 9295 return 0; 9296 9297 nr = div64_u64(period + val, period); 9298 offset = nr * period; 9299 val -= offset; 9300 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9301 goto again; 9302 9303 return nr; 9304 } 9305 9306 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9307 struct perf_sample_data *data, 9308 struct pt_regs *regs) 9309 { 9310 struct hw_perf_event *hwc = &event->hw; 9311 int throttle = 0; 9312 9313 if (!overflow) 9314 overflow = perf_swevent_set_period(event); 9315 9316 if (hwc->interrupts == MAX_INTERRUPTS) 9317 return; 9318 9319 for (; overflow; overflow--) { 9320 if (__perf_event_overflow(event, throttle, 9321 data, regs)) { 9322 /* 9323 * We inhibit the overflow from happening when 9324 * hwc->interrupts == MAX_INTERRUPTS. 9325 */ 9326 break; 9327 } 9328 throttle = 1; 9329 } 9330 } 9331 9332 static void perf_swevent_event(struct perf_event *event, u64 nr, 9333 struct perf_sample_data *data, 9334 struct pt_regs *regs) 9335 { 9336 struct hw_perf_event *hwc = &event->hw; 9337 9338 local64_add(nr, &event->count); 9339 9340 if (!regs) 9341 return; 9342 9343 if (!is_sampling_event(event)) 9344 return; 9345 9346 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9347 data->period = nr; 9348 return perf_swevent_overflow(event, 1, data, regs); 9349 } else 9350 data->period = event->hw.last_period; 9351 9352 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9353 return perf_swevent_overflow(event, 1, data, regs); 9354 9355 if (local64_add_negative(nr, &hwc->period_left)) 9356 return; 9357 9358 perf_swevent_overflow(event, 0, data, regs); 9359 } 9360 9361 static int perf_exclude_event(struct perf_event *event, 9362 struct pt_regs *regs) 9363 { 9364 if (event->hw.state & PERF_HES_STOPPED) 9365 return 1; 9366 9367 if (regs) { 9368 if (event->attr.exclude_user && user_mode(regs)) 9369 return 1; 9370 9371 if (event->attr.exclude_kernel && !user_mode(regs)) 9372 return 1; 9373 } 9374 9375 return 0; 9376 } 9377 9378 static int perf_swevent_match(struct perf_event *event, 9379 enum perf_type_id type, 9380 u32 event_id, 9381 struct perf_sample_data *data, 9382 struct pt_regs *regs) 9383 { 9384 if (event->attr.type != type) 9385 return 0; 9386 9387 if (event->attr.config != event_id) 9388 return 0; 9389 9390 if (perf_exclude_event(event, regs)) 9391 return 0; 9392 9393 return 1; 9394 } 9395 9396 static inline u64 swevent_hash(u64 type, u32 event_id) 9397 { 9398 u64 val = event_id | (type << 32); 9399 9400 return hash_64(val, SWEVENT_HLIST_BITS); 9401 } 9402 9403 static inline struct hlist_head * 9404 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9405 { 9406 u64 hash = swevent_hash(type, event_id); 9407 9408 return &hlist->heads[hash]; 9409 } 9410 9411 /* For the read side: events when they trigger */ 9412 static inline struct hlist_head * 9413 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9414 { 9415 struct swevent_hlist *hlist; 9416 9417 hlist = rcu_dereference(swhash->swevent_hlist); 9418 if (!hlist) 9419 return NULL; 9420 9421 return __find_swevent_head(hlist, type, event_id); 9422 } 9423 9424 /* For the event head insertion and removal in the hlist */ 9425 static inline struct hlist_head * 9426 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9427 { 9428 struct swevent_hlist *hlist; 9429 u32 event_id = event->attr.config; 9430 u64 type = event->attr.type; 9431 9432 /* 9433 * Event scheduling is always serialized against hlist allocation 9434 * and release. Which makes the protected version suitable here. 9435 * The context lock guarantees that. 9436 */ 9437 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9438 lockdep_is_held(&event->ctx->lock)); 9439 if (!hlist) 9440 return NULL; 9441 9442 return __find_swevent_head(hlist, type, event_id); 9443 } 9444 9445 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9446 u64 nr, 9447 struct perf_sample_data *data, 9448 struct pt_regs *regs) 9449 { 9450 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9451 struct perf_event *event; 9452 struct hlist_head *head; 9453 9454 rcu_read_lock(); 9455 head = find_swevent_head_rcu(swhash, type, event_id); 9456 if (!head) 9457 goto end; 9458 9459 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9460 if (perf_swevent_match(event, type, event_id, data, regs)) 9461 perf_swevent_event(event, nr, data, regs); 9462 } 9463 end: 9464 rcu_read_unlock(); 9465 } 9466 9467 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9468 9469 int perf_swevent_get_recursion_context(void) 9470 { 9471 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9472 9473 return get_recursion_context(swhash->recursion); 9474 } 9475 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9476 9477 void perf_swevent_put_recursion_context(int rctx) 9478 { 9479 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9480 9481 put_recursion_context(swhash->recursion, rctx); 9482 } 9483 9484 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9485 { 9486 struct perf_sample_data data; 9487 9488 if (WARN_ON_ONCE(!regs)) 9489 return; 9490 9491 perf_sample_data_init(&data, addr, 0); 9492 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9493 } 9494 9495 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9496 { 9497 int rctx; 9498 9499 preempt_disable_notrace(); 9500 rctx = perf_swevent_get_recursion_context(); 9501 if (unlikely(rctx < 0)) 9502 goto fail; 9503 9504 ___perf_sw_event(event_id, nr, regs, addr); 9505 9506 perf_swevent_put_recursion_context(rctx); 9507 fail: 9508 preempt_enable_notrace(); 9509 } 9510 9511 static void perf_swevent_read(struct perf_event *event) 9512 { 9513 } 9514 9515 static int perf_swevent_add(struct perf_event *event, int flags) 9516 { 9517 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9518 struct hw_perf_event *hwc = &event->hw; 9519 struct hlist_head *head; 9520 9521 if (is_sampling_event(event)) { 9522 hwc->last_period = hwc->sample_period; 9523 perf_swevent_set_period(event); 9524 } 9525 9526 hwc->state = !(flags & PERF_EF_START); 9527 9528 head = find_swevent_head(swhash, event); 9529 if (WARN_ON_ONCE(!head)) 9530 return -EINVAL; 9531 9532 hlist_add_head_rcu(&event->hlist_entry, head); 9533 perf_event_update_userpage(event); 9534 9535 return 0; 9536 } 9537 9538 static void perf_swevent_del(struct perf_event *event, int flags) 9539 { 9540 hlist_del_rcu(&event->hlist_entry); 9541 } 9542 9543 static void perf_swevent_start(struct perf_event *event, int flags) 9544 { 9545 event->hw.state = 0; 9546 } 9547 9548 static void perf_swevent_stop(struct perf_event *event, int flags) 9549 { 9550 event->hw.state = PERF_HES_STOPPED; 9551 } 9552 9553 /* Deref the hlist from the update side */ 9554 static inline struct swevent_hlist * 9555 swevent_hlist_deref(struct swevent_htable *swhash) 9556 { 9557 return rcu_dereference_protected(swhash->swevent_hlist, 9558 lockdep_is_held(&swhash->hlist_mutex)); 9559 } 9560 9561 static void swevent_hlist_release(struct swevent_htable *swhash) 9562 { 9563 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9564 9565 if (!hlist) 9566 return; 9567 9568 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9569 kfree_rcu(hlist, rcu_head); 9570 } 9571 9572 static void swevent_hlist_put_cpu(int cpu) 9573 { 9574 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9575 9576 mutex_lock(&swhash->hlist_mutex); 9577 9578 if (!--swhash->hlist_refcount) 9579 swevent_hlist_release(swhash); 9580 9581 mutex_unlock(&swhash->hlist_mutex); 9582 } 9583 9584 static void swevent_hlist_put(void) 9585 { 9586 int cpu; 9587 9588 for_each_possible_cpu(cpu) 9589 swevent_hlist_put_cpu(cpu); 9590 } 9591 9592 static int swevent_hlist_get_cpu(int cpu) 9593 { 9594 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9595 int err = 0; 9596 9597 mutex_lock(&swhash->hlist_mutex); 9598 if (!swevent_hlist_deref(swhash) && 9599 cpumask_test_cpu(cpu, perf_online_mask)) { 9600 struct swevent_hlist *hlist; 9601 9602 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9603 if (!hlist) { 9604 err = -ENOMEM; 9605 goto exit; 9606 } 9607 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9608 } 9609 swhash->hlist_refcount++; 9610 exit: 9611 mutex_unlock(&swhash->hlist_mutex); 9612 9613 return err; 9614 } 9615 9616 static int swevent_hlist_get(void) 9617 { 9618 int err, cpu, failed_cpu; 9619 9620 mutex_lock(&pmus_lock); 9621 for_each_possible_cpu(cpu) { 9622 err = swevent_hlist_get_cpu(cpu); 9623 if (err) { 9624 failed_cpu = cpu; 9625 goto fail; 9626 } 9627 } 9628 mutex_unlock(&pmus_lock); 9629 return 0; 9630 fail: 9631 for_each_possible_cpu(cpu) { 9632 if (cpu == failed_cpu) 9633 break; 9634 swevent_hlist_put_cpu(cpu); 9635 } 9636 mutex_unlock(&pmus_lock); 9637 return err; 9638 } 9639 9640 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9641 9642 static void sw_perf_event_destroy(struct perf_event *event) 9643 { 9644 u64 event_id = event->attr.config; 9645 9646 WARN_ON(event->parent); 9647 9648 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9649 swevent_hlist_put(); 9650 } 9651 9652 static int perf_swevent_init(struct perf_event *event) 9653 { 9654 u64 event_id = event->attr.config; 9655 9656 if (event->attr.type != PERF_TYPE_SOFTWARE) 9657 return -ENOENT; 9658 9659 /* 9660 * no branch sampling for software events 9661 */ 9662 if (has_branch_stack(event)) 9663 return -EOPNOTSUPP; 9664 9665 switch (event_id) { 9666 case PERF_COUNT_SW_CPU_CLOCK: 9667 case PERF_COUNT_SW_TASK_CLOCK: 9668 return -ENOENT; 9669 9670 default: 9671 break; 9672 } 9673 9674 if (event_id >= PERF_COUNT_SW_MAX) 9675 return -ENOENT; 9676 9677 if (!event->parent) { 9678 int err; 9679 9680 err = swevent_hlist_get(); 9681 if (err) 9682 return err; 9683 9684 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9685 event->destroy = sw_perf_event_destroy; 9686 } 9687 9688 return 0; 9689 } 9690 9691 static struct pmu perf_swevent = { 9692 .task_ctx_nr = perf_sw_context, 9693 9694 .capabilities = PERF_PMU_CAP_NO_NMI, 9695 9696 .event_init = perf_swevent_init, 9697 .add = perf_swevent_add, 9698 .del = perf_swevent_del, 9699 .start = perf_swevent_start, 9700 .stop = perf_swevent_stop, 9701 .read = perf_swevent_read, 9702 }; 9703 9704 #ifdef CONFIG_EVENT_TRACING 9705 9706 static int perf_tp_filter_match(struct perf_event *event, 9707 struct perf_sample_data *data) 9708 { 9709 void *record = data->raw->frag.data; 9710 9711 /* only top level events have filters set */ 9712 if (event->parent) 9713 event = event->parent; 9714 9715 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9716 return 1; 9717 return 0; 9718 } 9719 9720 static int perf_tp_event_match(struct perf_event *event, 9721 struct perf_sample_data *data, 9722 struct pt_regs *regs) 9723 { 9724 if (event->hw.state & PERF_HES_STOPPED) 9725 return 0; 9726 /* 9727 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9728 */ 9729 if (event->attr.exclude_kernel && !user_mode(regs)) 9730 return 0; 9731 9732 if (!perf_tp_filter_match(event, data)) 9733 return 0; 9734 9735 return 1; 9736 } 9737 9738 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9739 struct trace_event_call *call, u64 count, 9740 struct pt_regs *regs, struct hlist_head *head, 9741 struct task_struct *task) 9742 { 9743 if (bpf_prog_array_valid(call)) { 9744 *(struct pt_regs **)raw_data = regs; 9745 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9746 perf_swevent_put_recursion_context(rctx); 9747 return; 9748 } 9749 } 9750 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9751 rctx, task); 9752 } 9753 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9754 9755 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9756 struct pt_regs *regs, struct hlist_head *head, int rctx, 9757 struct task_struct *task) 9758 { 9759 struct perf_sample_data data; 9760 struct perf_event *event; 9761 9762 struct perf_raw_record raw = { 9763 .frag = { 9764 .size = entry_size, 9765 .data = record, 9766 }, 9767 }; 9768 9769 perf_sample_data_init(&data, 0, 0); 9770 data.raw = &raw; 9771 9772 perf_trace_buf_update(record, event_type); 9773 9774 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9775 if (perf_tp_event_match(event, &data, regs)) 9776 perf_swevent_event(event, count, &data, regs); 9777 } 9778 9779 /* 9780 * If we got specified a target task, also iterate its context and 9781 * deliver this event there too. 9782 */ 9783 if (task && task != current) { 9784 struct perf_event_context *ctx; 9785 struct trace_entry *entry = record; 9786 9787 rcu_read_lock(); 9788 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9789 if (!ctx) 9790 goto unlock; 9791 9792 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9793 if (event->cpu != smp_processor_id()) 9794 continue; 9795 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9796 continue; 9797 if (event->attr.config != entry->type) 9798 continue; 9799 /* Cannot deliver synchronous signal to other task. */ 9800 if (event->attr.sigtrap) 9801 continue; 9802 if (perf_tp_event_match(event, &data, regs)) 9803 perf_swevent_event(event, count, &data, regs); 9804 } 9805 unlock: 9806 rcu_read_unlock(); 9807 } 9808 9809 perf_swevent_put_recursion_context(rctx); 9810 } 9811 EXPORT_SYMBOL_GPL(perf_tp_event); 9812 9813 static void tp_perf_event_destroy(struct perf_event *event) 9814 { 9815 perf_trace_destroy(event); 9816 } 9817 9818 static int perf_tp_event_init(struct perf_event *event) 9819 { 9820 int err; 9821 9822 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9823 return -ENOENT; 9824 9825 /* 9826 * no branch sampling for tracepoint events 9827 */ 9828 if (has_branch_stack(event)) 9829 return -EOPNOTSUPP; 9830 9831 err = perf_trace_init(event); 9832 if (err) 9833 return err; 9834 9835 event->destroy = tp_perf_event_destroy; 9836 9837 return 0; 9838 } 9839 9840 static struct pmu perf_tracepoint = { 9841 .task_ctx_nr = perf_sw_context, 9842 9843 .event_init = perf_tp_event_init, 9844 .add = perf_trace_add, 9845 .del = perf_trace_del, 9846 .start = perf_swevent_start, 9847 .stop = perf_swevent_stop, 9848 .read = perf_swevent_read, 9849 }; 9850 9851 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9852 /* 9853 * Flags in config, used by dynamic PMU kprobe and uprobe 9854 * The flags should match following PMU_FORMAT_ATTR(). 9855 * 9856 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9857 * if not set, create kprobe/uprobe 9858 * 9859 * The following values specify a reference counter (or semaphore in the 9860 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9861 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9862 * 9863 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9864 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9865 */ 9866 enum perf_probe_config { 9867 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9868 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9869 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9870 }; 9871 9872 PMU_FORMAT_ATTR(retprobe, "config:0"); 9873 #endif 9874 9875 #ifdef CONFIG_KPROBE_EVENTS 9876 static struct attribute *kprobe_attrs[] = { 9877 &format_attr_retprobe.attr, 9878 NULL, 9879 }; 9880 9881 static struct attribute_group kprobe_format_group = { 9882 .name = "format", 9883 .attrs = kprobe_attrs, 9884 }; 9885 9886 static const struct attribute_group *kprobe_attr_groups[] = { 9887 &kprobe_format_group, 9888 NULL, 9889 }; 9890 9891 static int perf_kprobe_event_init(struct perf_event *event); 9892 static struct pmu perf_kprobe = { 9893 .task_ctx_nr = perf_sw_context, 9894 .event_init = perf_kprobe_event_init, 9895 .add = perf_trace_add, 9896 .del = perf_trace_del, 9897 .start = perf_swevent_start, 9898 .stop = perf_swevent_stop, 9899 .read = perf_swevent_read, 9900 .attr_groups = kprobe_attr_groups, 9901 }; 9902 9903 static int perf_kprobe_event_init(struct perf_event *event) 9904 { 9905 int err; 9906 bool is_retprobe; 9907 9908 if (event->attr.type != perf_kprobe.type) 9909 return -ENOENT; 9910 9911 if (!perfmon_capable()) 9912 return -EACCES; 9913 9914 /* 9915 * no branch sampling for probe events 9916 */ 9917 if (has_branch_stack(event)) 9918 return -EOPNOTSUPP; 9919 9920 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9921 err = perf_kprobe_init(event, is_retprobe); 9922 if (err) 9923 return err; 9924 9925 event->destroy = perf_kprobe_destroy; 9926 9927 return 0; 9928 } 9929 #endif /* CONFIG_KPROBE_EVENTS */ 9930 9931 #ifdef CONFIG_UPROBE_EVENTS 9932 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9933 9934 static struct attribute *uprobe_attrs[] = { 9935 &format_attr_retprobe.attr, 9936 &format_attr_ref_ctr_offset.attr, 9937 NULL, 9938 }; 9939 9940 static struct attribute_group uprobe_format_group = { 9941 .name = "format", 9942 .attrs = uprobe_attrs, 9943 }; 9944 9945 static const struct attribute_group *uprobe_attr_groups[] = { 9946 &uprobe_format_group, 9947 NULL, 9948 }; 9949 9950 static int perf_uprobe_event_init(struct perf_event *event); 9951 static struct pmu perf_uprobe = { 9952 .task_ctx_nr = perf_sw_context, 9953 .event_init = perf_uprobe_event_init, 9954 .add = perf_trace_add, 9955 .del = perf_trace_del, 9956 .start = perf_swevent_start, 9957 .stop = perf_swevent_stop, 9958 .read = perf_swevent_read, 9959 .attr_groups = uprobe_attr_groups, 9960 }; 9961 9962 static int perf_uprobe_event_init(struct perf_event *event) 9963 { 9964 int err; 9965 unsigned long ref_ctr_offset; 9966 bool is_retprobe; 9967 9968 if (event->attr.type != perf_uprobe.type) 9969 return -ENOENT; 9970 9971 if (!perfmon_capable()) 9972 return -EACCES; 9973 9974 /* 9975 * no branch sampling for probe events 9976 */ 9977 if (has_branch_stack(event)) 9978 return -EOPNOTSUPP; 9979 9980 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9981 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9982 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9983 if (err) 9984 return err; 9985 9986 event->destroy = perf_uprobe_destroy; 9987 9988 return 0; 9989 } 9990 #endif /* CONFIG_UPROBE_EVENTS */ 9991 9992 static inline void perf_tp_register(void) 9993 { 9994 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9995 #ifdef CONFIG_KPROBE_EVENTS 9996 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9997 #endif 9998 #ifdef CONFIG_UPROBE_EVENTS 9999 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10000 #endif 10001 } 10002 10003 static void perf_event_free_filter(struct perf_event *event) 10004 { 10005 ftrace_profile_free_filter(event); 10006 } 10007 10008 #ifdef CONFIG_BPF_SYSCALL 10009 static void bpf_overflow_handler(struct perf_event *event, 10010 struct perf_sample_data *data, 10011 struct pt_regs *regs) 10012 { 10013 struct bpf_perf_event_data_kern ctx = { 10014 .data = data, 10015 .event = event, 10016 }; 10017 struct bpf_prog *prog; 10018 int ret = 0; 10019 10020 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10021 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10022 goto out; 10023 rcu_read_lock(); 10024 prog = READ_ONCE(event->prog); 10025 if (prog) { 10026 if (prog->call_get_stack && 10027 (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) && 10028 !(data->sample_flags & PERF_SAMPLE_CALLCHAIN)) { 10029 data->callchain = perf_callchain(event, regs); 10030 data->sample_flags |= PERF_SAMPLE_CALLCHAIN; 10031 } 10032 10033 ret = bpf_prog_run(prog, &ctx); 10034 } 10035 rcu_read_unlock(); 10036 out: 10037 __this_cpu_dec(bpf_prog_active); 10038 if (!ret) 10039 return; 10040 10041 event->orig_overflow_handler(event, data, regs); 10042 } 10043 10044 static int perf_event_set_bpf_handler(struct perf_event *event, 10045 struct bpf_prog *prog, 10046 u64 bpf_cookie) 10047 { 10048 if (event->overflow_handler_context) 10049 /* hw breakpoint or kernel counter */ 10050 return -EINVAL; 10051 10052 if (event->prog) 10053 return -EEXIST; 10054 10055 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10056 return -EINVAL; 10057 10058 if (event->attr.precise_ip && 10059 prog->call_get_stack && 10060 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10061 event->attr.exclude_callchain_kernel || 10062 event->attr.exclude_callchain_user)) { 10063 /* 10064 * On perf_event with precise_ip, calling bpf_get_stack() 10065 * may trigger unwinder warnings and occasional crashes. 10066 * bpf_get_[stack|stackid] works around this issue by using 10067 * callchain attached to perf_sample_data. If the 10068 * perf_event does not full (kernel and user) callchain 10069 * attached to perf_sample_data, do not allow attaching BPF 10070 * program that calls bpf_get_[stack|stackid]. 10071 */ 10072 return -EPROTO; 10073 } 10074 10075 event->prog = prog; 10076 event->bpf_cookie = bpf_cookie; 10077 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10078 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10079 return 0; 10080 } 10081 10082 static void perf_event_free_bpf_handler(struct perf_event *event) 10083 { 10084 struct bpf_prog *prog = event->prog; 10085 10086 if (!prog) 10087 return; 10088 10089 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10090 event->prog = NULL; 10091 bpf_prog_put(prog); 10092 } 10093 #else 10094 static int perf_event_set_bpf_handler(struct perf_event *event, 10095 struct bpf_prog *prog, 10096 u64 bpf_cookie) 10097 { 10098 return -EOPNOTSUPP; 10099 } 10100 static void perf_event_free_bpf_handler(struct perf_event *event) 10101 { 10102 } 10103 #endif 10104 10105 /* 10106 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10107 * with perf_event_open() 10108 */ 10109 static inline bool perf_event_is_tracing(struct perf_event *event) 10110 { 10111 if (event->pmu == &perf_tracepoint) 10112 return true; 10113 #ifdef CONFIG_KPROBE_EVENTS 10114 if (event->pmu == &perf_kprobe) 10115 return true; 10116 #endif 10117 #ifdef CONFIG_UPROBE_EVENTS 10118 if (event->pmu == &perf_uprobe) 10119 return true; 10120 #endif 10121 return false; 10122 } 10123 10124 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10125 u64 bpf_cookie) 10126 { 10127 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10128 10129 if (!perf_event_is_tracing(event)) 10130 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10131 10132 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10133 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10134 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10135 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10136 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10137 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10138 return -EINVAL; 10139 10140 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10141 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10142 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10143 return -EINVAL; 10144 10145 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe) 10146 /* only uprobe programs are allowed to be sleepable */ 10147 return -EINVAL; 10148 10149 /* Kprobe override only works for kprobes, not uprobes. */ 10150 if (prog->kprobe_override && !is_kprobe) 10151 return -EINVAL; 10152 10153 if (is_tracepoint || is_syscall_tp) { 10154 int off = trace_event_get_offsets(event->tp_event); 10155 10156 if (prog->aux->max_ctx_offset > off) 10157 return -EACCES; 10158 } 10159 10160 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10161 } 10162 10163 void perf_event_free_bpf_prog(struct perf_event *event) 10164 { 10165 if (!perf_event_is_tracing(event)) { 10166 perf_event_free_bpf_handler(event); 10167 return; 10168 } 10169 perf_event_detach_bpf_prog(event); 10170 } 10171 10172 #else 10173 10174 static inline void perf_tp_register(void) 10175 { 10176 } 10177 10178 static void perf_event_free_filter(struct perf_event *event) 10179 { 10180 } 10181 10182 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10183 u64 bpf_cookie) 10184 { 10185 return -ENOENT; 10186 } 10187 10188 void perf_event_free_bpf_prog(struct perf_event *event) 10189 { 10190 } 10191 #endif /* CONFIG_EVENT_TRACING */ 10192 10193 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10194 void perf_bp_event(struct perf_event *bp, void *data) 10195 { 10196 struct perf_sample_data sample; 10197 struct pt_regs *regs = data; 10198 10199 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10200 10201 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10202 perf_swevent_event(bp, 1, &sample, regs); 10203 } 10204 #endif 10205 10206 /* 10207 * Allocate a new address filter 10208 */ 10209 static struct perf_addr_filter * 10210 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10211 { 10212 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10213 struct perf_addr_filter *filter; 10214 10215 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10216 if (!filter) 10217 return NULL; 10218 10219 INIT_LIST_HEAD(&filter->entry); 10220 list_add_tail(&filter->entry, filters); 10221 10222 return filter; 10223 } 10224 10225 static void free_filters_list(struct list_head *filters) 10226 { 10227 struct perf_addr_filter *filter, *iter; 10228 10229 list_for_each_entry_safe(filter, iter, filters, entry) { 10230 path_put(&filter->path); 10231 list_del(&filter->entry); 10232 kfree(filter); 10233 } 10234 } 10235 10236 /* 10237 * Free existing address filters and optionally install new ones 10238 */ 10239 static void perf_addr_filters_splice(struct perf_event *event, 10240 struct list_head *head) 10241 { 10242 unsigned long flags; 10243 LIST_HEAD(list); 10244 10245 if (!has_addr_filter(event)) 10246 return; 10247 10248 /* don't bother with children, they don't have their own filters */ 10249 if (event->parent) 10250 return; 10251 10252 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10253 10254 list_splice_init(&event->addr_filters.list, &list); 10255 if (head) 10256 list_splice(head, &event->addr_filters.list); 10257 10258 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10259 10260 free_filters_list(&list); 10261 } 10262 10263 /* 10264 * Scan through mm's vmas and see if one of them matches the 10265 * @filter; if so, adjust filter's address range. 10266 * Called with mm::mmap_lock down for reading. 10267 */ 10268 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10269 struct mm_struct *mm, 10270 struct perf_addr_filter_range *fr) 10271 { 10272 struct vm_area_struct *vma; 10273 VMA_ITERATOR(vmi, mm, 0); 10274 10275 for_each_vma(vmi, vma) { 10276 if (!vma->vm_file) 10277 continue; 10278 10279 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10280 return; 10281 } 10282 } 10283 10284 /* 10285 * Update event's address range filters based on the 10286 * task's existing mappings, if any. 10287 */ 10288 static void perf_event_addr_filters_apply(struct perf_event *event) 10289 { 10290 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10291 struct task_struct *task = READ_ONCE(event->ctx->task); 10292 struct perf_addr_filter *filter; 10293 struct mm_struct *mm = NULL; 10294 unsigned int count = 0; 10295 unsigned long flags; 10296 10297 /* 10298 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10299 * will stop on the parent's child_mutex that our caller is also holding 10300 */ 10301 if (task == TASK_TOMBSTONE) 10302 return; 10303 10304 if (ifh->nr_file_filters) { 10305 mm = get_task_mm(task); 10306 if (!mm) 10307 goto restart; 10308 10309 mmap_read_lock(mm); 10310 } 10311 10312 raw_spin_lock_irqsave(&ifh->lock, flags); 10313 list_for_each_entry(filter, &ifh->list, entry) { 10314 if (filter->path.dentry) { 10315 /* 10316 * Adjust base offset if the filter is associated to a 10317 * binary that needs to be mapped: 10318 */ 10319 event->addr_filter_ranges[count].start = 0; 10320 event->addr_filter_ranges[count].size = 0; 10321 10322 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10323 } else { 10324 event->addr_filter_ranges[count].start = filter->offset; 10325 event->addr_filter_ranges[count].size = filter->size; 10326 } 10327 10328 count++; 10329 } 10330 10331 event->addr_filters_gen++; 10332 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10333 10334 if (ifh->nr_file_filters) { 10335 mmap_read_unlock(mm); 10336 10337 mmput(mm); 10338 } 10339 10340 restart: 10341 perf_event_stop(event, 1); 10342 } 10343 10344 /* 10345 * Address range filtering: limiting the data to certain 10346 * instruction address ranges. Filters are ioctl()ed to us from 10347 * userspace as ascii strings. 10348 * 10349 * Filter string format: 10350 * 10351 * ACTION RANGE_SPEC 10352 * where ACTION is one of the 10353 * * "filter": limit the trace to this region 10354 * * "start": start tracing from this address 10355 * * "stop": stop tracing at this address/region; 10356 * RANGE_SPEC is 10357 * * for kernel addresses: <start address>[/<size>] 10358 * * for object files: <start address>[/<size>]@</path/to/object/file> 10359 * 10360 * if <size> is not specified or is zero, the range is treated as a single 10361 * address; not valid for ACTION=="filter". 10362 */ 10363 enum { 10364 IF_ACT_NONE = -1, 10365 IF_ACT_FILTER, 10366 IF_ACT_START, 10367 IF_ACT_STOP, 10368 IF_SRC_FILE, 10369 IF_SRC_KERNEL, 10370 IF_SRC_FILEADDR, 10371 IF_SRC_KERNELADDR, 10372 }; 10373 10374 enum { 10375 IF_STATE_ACTION = 0, 10376 IF_STATE_SOURCE, 10377 IF_STATE_END, 10378 }; 10379 10380 static const match_table_t if_tokens = { 10381 { IF_ACT_FILTER, "filter" }, 10382 { IF_ACT_START, "start" }, 10383 { IF_ACT_STOP, "stop" }, 10384 { IF_SRC_FILE, "%u/%u@%s" }, 10385 { IF_SRC_KERNEL, "%u/%u" }, 10386 { IF_SRC_FILEADDR, "%u@%s" }, 10387 { IF_SRC_KERNELADDR, "%u" }, 10388 { IF_ACT_NONE, NULL }, 10389 }; 10390 10391 /* 10392 * Address filter string parser 10393 */ 10394 static int 10395 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10396 struct list_head *filters) 10397 { 10398 struct perf_addr_filter *filter = NULL; 10399 char *start, *orig, *filename = NULL; 10400 substring_t args[MAX_OPT_ARGS]; 10401 int state = IF_STATE_ACTION, token; 10402 unsigned int kernel = 0; 10403 int ret = -EINVAL; 10404 10405 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10406 if (!fstr) 10407 return -ENOMEM; 10408 10409 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10410 static const enum perf_addr_filter_action_t actions[] = { 10411 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10412 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10413 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10414 }; 10415 ret = -EINVAL; 10416 10417 if (!*start) 10418 continue; 10419 10420 /* filter definition begins */ 10421 if (state == IF_STATE_ACTION) { 10422 filter = perf_addr_filter_new(event, filters); 10423 if (!filter) 10424 goto fail; 10425 } 10426 10427 token = match_token(start, if_tokens, args); 10428 switch (token) { 10429 case IF_ACT_FILTER: 10430 case IF_ACT_START: 10431 case IF_ACT_STOP: 10432 if (state != IF_STATE_ACTION) 10433 goto fail; 10434 10435 filter->action = actions[token]; 10436 state = IF_STATE_SOURCE; 10437 break; 10438 10439 case IF_SRC_KERNELADDR: 10440 case IF_SRC_KERNEL: 10441 kernel = 1; 10442 fallthrough; 10443 10444 case IF_SRC_FILEADDR: 10445 case IF_SRC_FILE: 10446 if (state != IF_STATE_SOURCE) 10447 goto fail; 10448 10449 *args[0].to = 0; 10450 ret = kstrtoul(args[0].from, 0, &filter->offset); 10451 if (ret) 10452 goto fail; 10453 10454 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10455 *args[1].to = 0; 10456 ret = kstrtoul(args[1].from, 0, &filter->size); 10457 if (ret) 10458 goto fail; 10459 } 10460 10461 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10462 int fpos = token == IF_SRC_FILE ? 2 : 1; 10463 10464 kfree(filename); 10465 filename = match_strdup(&args[fpos]); 10466 if (!filename) { 10467 ret = -ENOMEM; 10468 goto fail; 10469 } 10470 } 10471 10472 state = IF_STATE_END; 10473 break; 10474 10475 default: 10476 goto fail; 10477 } 10478 10479 /* 10480 * Filter definition is fully parsed, validate and install it. 10481 * Make sure that it doesn't contradict itself or the event's 10482 * attribute. 10483 */ 10484 if (state == IF_STATE_END) { 10485 ret = -EINVAL; 10486 10487 /* 10488 * ACTION "filter" must have a non-zero length region 10489 * specified. 10490 */ 10491 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10492 !filter->size) 10493 goto fail; 10494 10495 if (!kernel) { 10496 if (!filename) 10497 goto fail; 10498 10499 /* 10500 * For now, we only support file-based filters 10501 * in per-task events; doing so for CPU-wide 10502 * events requires additional context switching 10503 * trickery, since same object code will be 10504 * mapped at different virtual addresses in 10505 * different processes. 10506 */ 10507 ret = -EOPNOTSUPP; 10508 if (!event->ctx->task) 10509 goto fail; 10510 10511 /* look up the path and grab its inode */ 10512 ret = kern_path(filename, LOOKUP_FOLLOW, 10513 &filter->path); 10514 if (ret) 10515 goto fail; 10516 10517 ret = -EINVAL; 10518 if (!filter->path.dentry || 10519 !S_ISREG(d_inode(filter->path.dentry) 10520 ->i_mode)) 10521 goto fail; 10522 10523 event->addr_filters.nr_file_filters++; 10524 } 10525 10526 /* ready to consume more filters */ 10527 kfree(filename); 10528 filename = NULL; 10529 state = IF_STATE_ACTION; 10530 filter = NULL; 10531 kernel = 0; 10532 } 10533 } 10534 10535 if (state != IF_STATE_ACTION) 10536 goto fail; 10537 10538 kfree(filename); 10539 kfree(orig); 10540 10541 return 0; 10542 10543 fail: 10544 kfree(filename); 10545 free_filters_list(filters); 10546 kfree(orig); 10547 10548 return ret; 10549 } 10550 10551 static int 10552 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10553 { 10554 LIST_HEAD(filters); 10555 int ret; 10556 10557 /* 10558 * Since this is called in perf_ioctl() path, we're already holding 10559 * ctx::mutex. 10560 */ 10561 lockdep_assert_held(&event->ctx->mutex); 10562 10563 if (WARN_ON_ONCE(event->parent)) 10564 return -EINVAL; 10565 10566 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10567 if (ret) 10568 goto fail_clear_files; 10569 10570 ret = event->pmu->addr_filters_validate(&filters); 10571 if (ret) 10572 goto fail_free_filters; 10573 10574 /* remove existing filters, if any */ 10575 perf_addr_filters_splice(event, &filters); 10576 10577 /* install new filters */ 10578 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10579 10580 return ret; 10581 10582 fail_free_filters: 10583 free_filters_list(&filters); 10584 10585 fail_clear_files: 10586 event->addr_filters.nr_file_filters = 0; 10587 10588 return ret; 10589 } 10590 10591 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10592 { 10593 int ret = -EINVAL; 10594 char *filter_str; 10595 10596 filter_str = strndup_user(arg, PAGE_SIZE); 10597 if (IS_ERR(filter_str)) 10598 return PTR_ERR(filter_str); 10599 10600 #ifdef CONFIG_EVENT_TRACING 10601 if (perf_event_is_tracing(event)) { 10602 struct perf_event_context *ctx = event->ctx; 10603 10604 /* 10605 * Beware, here be dragons!! 10606 * 10607 * the tracepoint muck will deadlock against ctx->mutex, but 10608 * the tracepoint stuff does not actually need it. So 10609 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10610 * already have a reference on ctx. 10611 * 10612 * This can result in event getting moved to a different ctx, 10613 * but that does not affect the tracepoint state. 10614 */ 10615 mutex_unlock(&ctx->mutex); 10616 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10617 mutex_lock(&ctx->mutex); 10618 } else 10619 #endif 10620 if (has_addr_filter(event)) 10621 ret = perf_event_set_addr_filter(event, filter_str); 10622 10623 kfree(filter_str); 10624 return ret; 10625 } 10626 10627 /* 10628 * hrtimer based swevent callback 10629 */ 10630 10631 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10632 { 10633 enum hrtimer_restart ret = HRTIMER_RESTART; 10634 struct perf_sample_data data; 10635 struct pt_regs *regs; 10636 struct perf_event *event; 10637 u64 period; 10638 10639 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10640 10641 if (event->state != PERF_EVENT_STATE_ACTIVE) 10642 return HRTIMER_NORESTART; 10643 10644 event->pmu->read(event); 10645 10646 perf_sample_data_init(&data, 0, event->hw.last_period); 10647 regs = get_irq_regs(); 10648 10649 if (regs && !perf_exclude_event(event, regs)) { 10650 if (!(event->attr.exclude_idle && is_idle_task(current))) 10651 if (__perf_event_overflow(event, 1, &data, regs)) 10652 ret = HRTIMER_NORESTART; 10653 } 10654 10655 period = max_t(u64, 10000, event->hw.sample_period); 10656 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10657 10658 return ret; 10659 } 10660 10661 static void perf_swevent_start_hrtimer(struct perf_event *event) 10662 { 10663 struct hw_perf_event *hwc = &event->hw; 10664 s64 period; 10665 10666 if (!is_sampling_event(event)) 10667 return; 10668 10669 period = local64_read(&hwc->period_left); 10670 if (period) { 10671 if (period < 0) 10672 period = 10000; 10673 10674 local64_set(&hwc->period_left, 0); 10675 } else { 10676 period = max_t(u64, 10000, hwc->sample_period); 10677 } 10678 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10679 HRTIMER_MODE_REL_PINNED_HARD); 10680 } 10681 10682 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10683 { 10684 struct hw_perf_event *hwc = &event->hw; 10685 10686 if (is_sampling_event(event)) { 10687 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10688 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10689 10690 hrtimer_cancel(&hwc->hrtimer); 10691 } 10692 } 10693 10694 static void perf_swevent_init_hrtimer(struct perf_event *event) 10695 { 10696 struct hw_perf_event *hwc = &event->hw; 10697 10698 if (!is_sampling_event(event)) 10699 return; 10700 10701 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10702 hwc->hrtimer.function = perf_swevent_hrtimer; 10703 10704 /* 10705 * Since hrtimers have a fixed rate, we can do a static freq->period 10706 * mapping and avoid the whole period adjust feedback stuff. 10707 */ 10708 if (event->attr.freq) { 10709 long freq = event->attr.sample_freq; 10710 10711 event->attr.sample_period = NSEC_PER_SEC / freq; 10712 hwc->sample_period = event->attr.sample_period; 10713 local64_set(&hwc->period_left, hwc->sample_period); 10714 hwc->last_period = hwc->sample_period; 10715 event->attr.freq = 0; 10716 } 10717 } 10718 10719 /* 10720 * Software event: cpu wall time clock 10721 */ 10722 10723 static void cpu_clock_event_update(struct perf_event *event) 10724 { 10725 s64 prev; 10726 u64 now; 10727 10728 now = local_clock(); 10729 prev = local64_xchg(&event->hw.prev_count, now); 10730 local64_add(now - prev, &event->count); 10731 } 10732 10733 static void cpu_clock_event_start(struct perf_event *event, int flags) 10734 { 10735 local64_set(&event->hw.prev_count, local_clock()); 10736 perf_swevent_start_hrtimer(event); 10737 } 10738 10739 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10740 { 10741 perf_swevent_cancel_hrtimer(event); 10742 cpu_clock_event_update(event); 10743 } 10744 10745 static int cpu_clock_event_add(struct perf_event *event, int flags) 10746 { 10747 if (flags & PERF_EF_START) 10748 cpu_clock_event_start(event, flags); 10749 perf_event_update_userpage(event); 10750 10751 return 0; 10752 } 10753 10754 static void cpu_clock_event_del(struct perf_event *event, int flags) 10755 { 10756 cpu_clock_event_stop(event, flags); 10757 } 10758 10759 static void cpu_clock_event_read(struct perf_event *event) 10760 { 10761 cpu_clock_event_update(event); 10762 } 10763 10764 static int cpu_clock_event_init(struct perf_event *event) 10765 { 10766 if (event->attr.type != PERF_TYPE_SOFTWARE) 10767 return -ENOENT; 10768 10769 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10770 return -ENOENT; 10771 10772 /* 10773 * no branch sampling for software events 10774 */ 10775 if (has_branch_stack(event)) 10776 return -EOPNOTSUPP; 10777 10778 perf_swevent_init_hrtimer(event); 10779 10780 return 0; 10781 } 10782 10783 static struct pmu perf_cpu_clock = { 10784 .task_ctx_nr = perf_sw_context, 10785 10786 .capabilities = PERF_PMU_CAP_NO_NMI, 10787 10788 .event_init = cpu_clock_event_init, 10789 .add = cpu_clock_event_add, 10790 .del = cpu_clock_event_del, 10791 .start = cpu_clock_event_start, 10792 .stop = cpu_clock_event_stop, 10793 .read = cpu_clock_event_read, 10794 }; 10795 10796 /* 10797 * Software event: task time clock 10798 */ 10799 10800 static void task_clock_event_update(struct perf_event *event, u64 now) 10801 { 10802 u64 prev; 10803 s64 delta; 10804 10805 prev = local64_xchg(&event->hw.prev_count, now); 10806 delta = now - prev; 10807 local64_add(delta, &event->count); 10808 } 10809 10810 static void task_clock_event_start(struct perf_event *event, int flags) 10811 { 10812 local64_set(&event->hw.prev_count, event->ctx->time); 10813 perf_swevent_start_hrtimer(event); 10814 } 10815 10816 static void task_clock_event_stop(struct perf_event *event, int flags) 10817 { 10818 perf_swevent_cancel_hrtimer(event); 10819 task_clock_event_update(event, event->ctx->time); 10820 } 10821 10822 static int task_clock_event_add(struct perf_event *event, int flags) 10823 { 10824 if (flags & PERF_EF_START) 10825 task_clock_event_start(event, flags); 10826 perf_event_update_userpage(event); 10827 10828 return 0; 10829 } 10830 10831 static void task_clock_event_del(struct perf_event *event, int flags) 10832 { 10833 task_clock_event_stop(event, PERF_EF_UPDATE); 10834 } 10835 10836 static void task_clock_event_read(struct perf_event *event) 10837 { 10838 u64 now = perf_clock(); 10839 u64 delta = now - event->ctx->timestamp; 10840 u64 time = event->ctx->time + delta; 10841 10842 task_clock_event_update(event, time); 10843 } 10844 10845 static int task_clock_event_init(struct perf_event *event) 10846 { 10847 if (event->attr.type != PERF_TYPE_SOFTWARE) 10848 return -ENOENT; 10849 10850 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10851 return -ENOENT; 10852 10853 /* 10854 * no branch sampling for software events 10855 */ 10856 if (has_branch_stack(event)) 10857 return -EOPNOTSUPP; 10858 10859 perf_swevent_init_hrtimer(event); 10860 10861 return 0; 10862 } 10863 10864 static struct pmu perf_task_clock = { 10865 .task_ctx_nr = perf_sw_context, 10866 10867 .capabilities = PERF_PMU_CAP_NO_NMI, 10868 10869 .event_init = task_clock_event_init, 10870 .add = task_clock_event_add, 10871 .del = task_clock_event_del, 10872 .start = task_clock_event_start, 10873 .stop = task_clock_event_stop, 10874 .read = task_clock_event_read, 10875 }; 10876 10877 static void perf_pmu_nop_void(struct pmu *pmu) 10878 { 10879 } 10880 10881 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10882 { 10883 } 10884 10885 static int perf_pmu_nop_int(struct pmu *pmu) 10886 { 10887 return 0; 10888 } 10889 10890 static int perf_event_nop_int(struct perf_event *event, u64 value) 10891 { 10892 return 0; 10893 } 10894 10895 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10896 10897 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10898 { 10899 __this_cpu_write(nop_txn_flags, flags); 10900 10901 if (flags & ~PERF_PMU_TXN_ADD) 10902 return; 10903 10904 perf_pmu_disable(pmu); 10905 } 10906 10907 static int perf_pmu_commit_txn(struct pmu *pmu) 10908 { 10909 unsigned int flags = __this_cpu_read(nop_txn_flags); 10910 10911 __this_cpu_write(nop_txn_flags, 0); 10912 10913 if (flags & ~PERF_PMU_TXN_ADD) 10914 return 0; 10915 10916 perf_pmu_enable(pmu); 10917 return 0; 10918 } 10919 10920 static void perf_pmu_cancel_txn(struct pmu *pmu) 10921 { 10922 unsigned int flags = __this_cpu_read(nop_txn_flags); 10923 10924 __this_cpu_write(nop_txn_flags, 0); 10925 10926 if (flags & ~PERF_PMU_TXN_ADD) 10927 return; 10928 10929 perf_pmu_enable(pmu); 10930 } 10931 10932 static int perf_event_idx_default(struct perf_event *event) 10933 { 10934 return 0; 10935 } 10936 10937 /* 10938 * Ensures all contexts with the same task_ctx_nr have the same 10939 * pmu_cpu_context too. 10940 */ 10941 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10942 { 10943 struct pmu *pmu; 10944 10945 if (ctxn < 0) 10946 return NULL; 10947 10948 list_for_each_entry(pmu, &pmus, entry) { 10949 if (pmu->task_ctx_nr == ctxn) 10950 return pmu->pmu_cpu_context; 10951 } 10952 10953 return NULL; 10954 } 10955 10956 static void free_pmu_context(struct pmu *pmu) 10957 { 10958 /* 10959 * Static contexts such as perf_sw_context have a global lifetime 10960 * and may be shared between different PMUs. Avoid freeing them 10961 * when a single PMU is going away. 10962 */ 10963 if (pmu->task_ctx_nr > perf_invalid_context) 10964 return; 10965 10966 free_percpu(pmu->pmu_cpu_context); 10967 } 10968 10969 /* 10970 * Let userspace know that this PMU supports address range filtering: 10971 */ 10972 static ssize_t nr_addr_filters_show(struct device *dev, 10973 struct device_attribute *attr, 10974 char *page) 10975 { 10976 struct pmu *pmu = dev_get_drvdata(dev); 10977 10978 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10979 } 10980 DEVICE_ATTR_RO(nr_addr_filters); 10981 10982 static struct idr pmu_idr; 10983 10984 static ssize_t 10985 type_show(struct device *dev, struct device_attribute *attr, char *page) 10986 { 10987 struct pmu *pmu = dev_get_drvdata(dev); 10988 10989 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 10990 } 10991 static DEVICE_ATTR_RO(type); 10992 10993 static ssize_t 10994 perf_event_mux_interval_ms_show(struct device *dev, 10995 struct device_attribute *attr, 10996 char *page) 10997 { 10998 struct pmu *pmu = dev_get_drvdata(dev); 10999 11000 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11001 } 11002 11003 static DEFINE_MUTEX(mux_interval_mutex); 11004 11005 static ssize_t 11006 perf_event_mux_interval_ms_store(struct device *dev, 11007 struct device_attribute *attr, 11008 const char *buf, size_t count) 11009 { 11010 struct pmu *pmu = dev_get_drvdata(dev); 11011 int timer, cpu, ret; 11012 11013 ret = kstrtoint(buf, 0, &timer); 11014 if (ret) 11015 return ret; 11016 11017 if (timer < 1) 11018 return -EINVAL; 11019 11020 /* same value, noting to do */ 11021 if (timer == pmu->hrtimer_interval_ms) 11022 return count; 11023 11024 mutex_lock(&mux_interval_mutex); 11025 pmu->hrtimer_interval_ms = timer; 11026 11027 /* update all cpuctx for this PMU */ 11028 cpus_read_lock(); 11029 for_each_online_cpu(cpu) { 11030 struct perf_cpu_context *cpuctx; 11031 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11032 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11033 11034 cpu_function_call(cpu, 11035 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 11036 } 11037 cpus_read_unlock(); 11038 mutex_unlock(&mux_interval_mutex); 11039 11040 return count; 11041 } 11042 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11043 11044 static struct attribute *pmu_dev_attrs[] = { 11045 &dev_attr_type.attr, 11046 &dev_attr_perf_event_mux_interval_ms.attr, 11047 NULL, 11048 }; 11049 ATTRIBUTE_GROUPS(pmu_dev); 11050 11051 static int pmu_bus_running; 11052 static struct bus_type pmu_bus = { 11053 .name = "event_source", 11054 .dev_groups = pmu_dev_groups, 11055 }; 11056 11057 static void pmu_dev_release(struct device *dev) 11058 { 11059 kfree(dev); 11060 } 11061 11062 static int pmu_dev_alloc(struct pmu *pmu) 11063 { 11064 int ret = -ENOMEM; 11065 11066 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11067 if (!pmu->dev) 11068 goto out; 11069 11070 pmu->dev->groups = pmu->attr_groups; 11071 device_initialize(pmu->dev); 11072 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11073 if (ret) 11074 goto free_dev; 11075 11076 dev_set_drvdata(pmu->dev, pmu); 11077 pmu->dev->bus = &pmu_bus; 11078 pmu->dev->release = pmu_dev_release; 11079 ret = device_add(pmu->dev); 11080 if (ret) 11081 goto free_dev; 11082 11083 /* For PMUs with address filters, throw in an extra attribute: */ 11084 if (pmu->nr_addr_filters) 11085 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 11086 11087 if (ret) 11088 goto del_dev; 11089 11090 if (pmu->attr_update) 11091 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11092 11093 if (ret) 11094 goto del_dev; 11095 11096 out: 11097 return ret; 11098 11099 del_dev: 11100 device_del(pmu->dev); 11101 11102 free_dev: 11103 put_device(pmu->dev); 11104 goto out; 11105 } 11106 11107 static struct lock_class_key cpuctx_mutex; 11108 static struct lock_class_key cpuctx_lock; 11109 11110 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11111 { 11112 int cpu, ret, max = PERF_TYPE_MAX; 11113 11114 mutex_lock(&pmus_lock); 11115 ret = -ENOMEM; 11116 pmu->pmu_disable_count = alloc_percpu(int); 11117 if (!pmu->pmu_disable_count) 11118 goto unlock; 11119 11120 pmu->type = -1; 11121 if (!name) 11122 goto skip_type; 11123 pmu->name = name; 11124 11125 if (type != PERF_TYPE_SOFTWARE) { 11126 if (type >= 0) 11127 max = type; 11128 11129 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11130 if (ret < 0) 11131 goto free_pdc; 11132 11133 WARN_ON(type >= 0 && ret != type); 11134 11135 type = ret; 11136 } 11137 pmu->type = type; 11138 11139 if (pmu_bus_running) { 11140 ret = pmu_dev_alloc(pmu); 11141 if (ret) 11142 goto free_idr; 11143 } 11144 11145 skip_type: 11146 if (pmu->task_ctx_nr == perf_hw_context) { 11147 static int hw_context_taken = 0; 11148 11149 /* 11150 * Other than systems with heterogeneous CPUs, it never makes 11151 * sense for two PMUs to share perf_hw_context. PMUs which are 11152 * uncore must use perf_invalid_context. 11153 */ 11154 if (WARN_ON_ONCE(hw_context_taken && 11155 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 11156 pmu->task_ctx_nr = perf_invalid_context; 11157 11158 hw_context_taken = 1; 11159 } 11160 11161 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 11162 if (pmu->pmu_cpu_context) 11163 goto got_cpu_context; 11164 11165 ret = -ENOMEM; 11166 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 11167 if (!pmu->pmu_cpu_context) 11168 goto free_dev; 11169 11170 for_each_possible_cpu(cpu) { 11171 struct perf_cpu_context *cpuctx; 11172 11173 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11174 __perf_event_init_context(&cpuctx->ctx); 11175 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 11176 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 11177 cpuctx->ctx.pmu = pmu; 11178 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 11179 11180 __perf_mux_hrtimer_init(cpuctx, cpu); 11181 11182 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 11183 cpuctx->heap = cpuctx->heap_default; 11184 } 11185 11186 got_cpu_context: 11187 if (!pmu->start_txn) { 11188 if (pmu->pmu_enable) { 11189 /* 11190 * If we have pmu_enable/pmu_disable calls, install 11191 * transaction stubs that use that to try and batch 11192 * hardware accesses. 11193 */ 11194 pmu->start_txn = perf_pmu_start_txn; 11195 pmu->commit_txn = perf_pmu_commit_txn; 11196 pmu->cancel_txn = perf_pmu_cancel_txn; 11197 } else { 11198 pmu->start_txn = perf_pmu_nop_txn; 11199 pmu->commit_txn = perf_pmu_nop_int; 11200 pmu->cancel_txn = perf_pmu_nop_void; 11201 } 11202 } 11203 11204 if (!pmu->pmu_enable) { 11205 pmu->pmu_enable = perf_pmu_nop_void; 11206 pmu->pmu_disable = perf_pmu_nop_void; 11207 } 11208 11209 if (!pmu->check_period) 11210 pmu->check_period = perf_event_nop_int; 11211 11212 if (!pmu->event_idx) 11213 pmu->event_idx = perf_event_idx_default; 11214 11215 /* 11216 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 11217 * since these cannot be in the IDR. This way the linear search 11218 * is fast, provided a valid software event is provided. 11219 */ 11220 if (type == PERF_TYPE_SOFTWARE || !name) 11221 list_add_rcu(&pmu->entry, &pmus); 11222 else 11223 list_add_tail_rcu(&pmu->entry, &pmus); 11224 11225 atomic_set(&pmu->exclusive_cnt, 0); 11226 ret = 0; 11227 unlock: 11228 mutex_unlock(&pmus_lock); 11229 11230 return ret; 11231 11232 free_dev: 11233 device_del(pmu->dev); 11234 put_device(pmu->dev); 11235 11236 free_idr: 11237 if (pmu->type != PERF_TYPE_SOFTWARE) 11238 idr_remove(&pmu_idr, pmu->type); 11239 11240 free_pdc: 11241 free_percpu(pmu->pmu_disable_count); 11242 goto unlock; 11243 } 11244 EXPORT_SYMBOL_GPL(perf_pmu_register); 11245 11246 void perf_pmu_unregister(struct pmu *pmu) 11247 { 11248 mutex_lock(&pmus_lock); 11249 list_del_rcu(&pmu->entry); 11250 11251 /* 11252 * We dereference the pmu list under both SRCU and regular RCU, so 11253 * synchronize against both of those. 11254 */ 11255 synchronize_srcu(&pmus_srcu); 11256 synchronize_rcu(); 11257 11258 free_percpu(pmu->pmu_disable_count); 11259 if (pmu->type != PERF_TYPE_SOFTWARE) 11260 idr_remove(&pmu_idr, pmu->type); 11261 if (pmu_bus_running) { 11262 if (pmu->nr_addr_filters) 11263 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11264 device_del(pmu->dev); 11265 put_device(pmu->dev); 11266 } 11267 free_pmu_context(pmu); 11268 mutex_unlock(&pmus_lock); 11269 } 11270 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11271 11272 static inline bool has_extended_regs(struct perf_event *event) 11273 { 11274 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11275 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11276 } 11277 11278 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11279 { 11280 struct perf_event_context *ctx = NULL; 11281 int ret; 11282 11283 if (!try_module_get(pmu->module)) 11284 return -ENODEV; 11285 11286 /* 11287 * A number of pmu->event_init() methods iterate the sibling_list to, 11288 * for example, validate if the group fits on the PMU. Therefore, 11289 * if this is a sibling event, acquire the ctx->mutex to protect 11290 * the sibling_list. 11291 */ 11292 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11293 /* 11294 * This ctx->mutex can nest when we're called through 11295 * inheritance. See the perf_event_ctx_lock_nested() comment. 11296 */ 11297 ctx = perf_event_ctx_lock_nested(event->group_leader, 11298 SINGLE_DEPTH_NESTING); 11299 BUG_ON(!ctx); 11300 } 11301 11302 event->pmu = pmu; 11303 ret = pmu->event_init(event); 11304 11305 if (ctx) 11306 perf_event_ctx_unlock(event->group_leader, ctx); 11307 11308 if (!ret) { 11309 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11310 has_extended_regs(event)) 11311 ret = -EOPNOTSUPP; 11312 11313 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11314 event_has_any_exclude_flag(event)) 11315 ret = -EINVAL; 11316 11317 if (ret && event->destroy) 11318 event->destroy(event); 11319 } 11320 11321 if (ret) 11322 module_put(pmu->module); 11323 11324 return ret; 11325 } 11326 11327 static struct pmu *perf_init_event(struct perf_event *event) 11328 { 11329 bool extended_type = false; 11330 int idx, type, ret; 11331 struct pmu *pmu; 11332 11333 idx = srcu_read_lock(&pmus_srcu); 11334 11335 /* Try parent's PMU first: */ 11336 if (event->parent && event->parent->pmu) { 11337 pmu = event->parent->pmu; 11338 ret = perf_try_init_event(pmu, event); 11339 if (!ret) 11340 goto unlock; 11341 } 11342 11343 /* 11344 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11345 * are often aliases for PERF_TYPE_RAW. 11346 */ 11347 type = event->attr.type; 11348 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11349 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11350 if (!type) { 11351 type = PERF_TYPE_RAW; 11352 } else { 11353 extended_type = true; 11354 event->attr.config &= PERF_HW_EVENT_MASK; 11355 } 11356 } 11357 11358 again: 11359 rcu_read_lock(); 11360 pmu = idr_find(&pmu_idr, type); 11361 rcu_read_unlock(); 11362 if (pmu) { 11363 if (event->attr.type != type && type != PERF_TYPE_RAW && 11364 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11365 goto fail; 11366 11367 ret = perf_try_init_event(pmu, event); 11368 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11369 type = event->attr.type; 11370 goto again; 11371 } 11372 11373 if (ret) 11374 pmu = ERR_PTR(ret); 11375 11376 goto unlock; 11377 } 11378 11379 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11380 ret = perf_try_init_event(pmu, event); 11381 if (!ret) 11382 goto unlock; 11383 11384 if (ret != -ENOENT) { 11385 pmu = ERR_PTR(ret); 11386 goto unlock; 11387 } 11388 } 11389 fail: 11390 pmu = ERR_PTR(-ENOENT); 11391 unlock: 11392 srcu_read_unlock(&pmus_srcu, idx); 11393 11394 return pmu; 11395 } 11396 11397 static void attach_sb_event(struct perf_event *event) 11398 { 11399 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11400 11401 raw_spin_lock(&pel->lock); 11402 list_add_rcu(&event->sb_list, &pel->list); 11403 raw_spin_unlock(&pel->lock); 11404 } 11405 11406 /* 11407 * We keep a list of all !task (and therefore per-cpu) events 11408 * that need to receive side-band records. 11409 * 11410 * This avoids having to scan all the various PMU per-cpu contexts 11411 * looking for them. 11412 */ 11413 static void account_pmu_sb_event(struct perf_event *event) 11414 { 11415 if (is_sb_event(event)) 11416 attach_sb_event(event); 11417 } 11418 11419 static void account_event_cpu(struct perf_event *event, int cpu) 11420 { 11421 if (event->parent) 11422 return; 11423 11424 if (is_cgroup_event(event)) 11425 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11426 } 11427 11428 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11429 static void account_freq_event_nohz(void) 11430 { 11431 #ifdef CONFIG_NO_HZ_FULL 11432 /* Lock so we don't race with concurrent unaccount */ 11433 spin_lock(&nr_freq_lock); 11434 if (atomic_inc_return(&nr_freq_events) == 1) 11435 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11436 spin_unlock(&nr_freq_lock); 11437 #endif 11438 } 11439 11440 static void account_freq_event(void) 11441 { 11442 if (tick_nohz_full_enabled()) 11443 account_freq_event_nohz(); 11444 else 11445 atomic_inc(&nr_freq_events); 11446 } 11447 11448 11449 static void account_event(struct perf_event *event) 11450 { 11451 bool inc = false; 11452 11453 if (event->parent) 11454 return; 11455 11456 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11457 inc = true; 11458 if (event->attr.mmap || event->attr.mmap_data) 11459 atomic_inc(&nr_mmap_events); 11460 if (event->attr.build_id) 11461 atomic_inc(&nr_build_id_events); 11462 if (event->attr.comm) 11463 atomic_inc(&nr_comm_events); 11464 if (event->attr.namespaces) 11465 atomic_inc(&nr_namespaces_events); 11466 if (event->attr.cgroup) 11467 atomic_inc(&nr_cgroup_events); 11468 if (event->attr.task) 11469 atomic_inc(&nr_task_events); 11470 if (event->attr.freq) 11471 account_freq_event(); 11472 if (event->attr.context_switch) { 11473 atomic_inc(&nr_switch_events); 11474 inc = true; 11475 } 11476 if (has_branch_stack(event)) 11477 inc = true; 11478 if (is_cgroup_event(event)) 11479 inc = true; 11480 if (event->attr.ksymbol) 11481 atomic_inc(&nr_ksymbol_events); 11482 if (event->attr.bpf_event) 11483 atomic_inc(&nr_bpf_events); 11484 if (event->attr.text_poke) 11485 atomic_inc(&nr_text_poke_events); 11486 11487 if (inc) { 11488 /* 11489 * We need the mutex here because static_branch_enable() 11490 * must complete *before* the perf_sched_count increment 11491 * becomes visible. 11492 */ 11493 if (atomic_inc_not_zero(&perf_sched_count)) 11494 goto enabled; 11495 11496 mutex_lock(&perf_sched_mutex); 11497 if (!atomic_read(&perf_sched_count)) { 11498 static_branch_enable(&perf_sched_events); 11499 /* 11500 * Guarantee that all CPUs observe they key change and 11501 * call the perf scheduling hooks before proceeding to 11502 * install events that need them. 11503 */ 11504 synchronize_rcu(); 11505 } 11506 /* 11507 * Now that we have waited for the sync_sched(), allow further 11508 * increments to by-pass the mutex. 11509 */ 11510 atomic_inc(&perf_sched_count); 11511 mutex_unlock(&perf_sched_mutex); 11512 } 11513 enabled: 11514 11515 account_event_cpu(event, event->cpu); 11516 11517 account_pmu_sb_event(event); 11518 } 11519 11520 /* 11521 * Allocate and initialize an event structure 11522 */ 11523 static struct perf_event * 11524 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11525 struct task_struct *task, 11526 struct perf_event *group_leader, 11527 struct perf_event *parent_event, 11528 perf_overflow_handler_t overflow_handler, 11529 void *context, int cgroup_fd) 11530 { 11531 struct pmu *pmu; 11532 struct perf_event *event; 11533 struct hw_perf_event *hwc; 11534 long err = -EINVAL; 11535 int node; 11536 11537 if ((unsigned)cpu >= nr_cpu_ids) { 11538 if (!task || cpu != -1) 11539 return ERR_PTR(-EINVAL); 11540 } 11541 if (attr->sigtrap && !task) { 11542 /* Requires a task: avoid signalling random tasks. */ 11543 return ERR_PTR(-EINVAL); 11544 } 11545 11546 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11547 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11548 node); 11549 if (!event) 11550 return ERR_PTR(-ENOMEM); 11551 11552 /* 11553 * Single events are their own group leaders, with an 11554 * empty sibling list: 11555 */ 11556 if (!group_leader) 11557 group_leader = event; 11558 11559 mutex_init(&event->child_mutex); 11560 INIT_LIST_HEAD(&event->child_list); 11561 11562 INIT_LIST_HEAD(&event->event_entry); 11563 INIT_LIST_HEAD(&event->sibling_list); 11564 INIT_LIST_HEAD(&event->active_list); 11565 init_event_group(event); 11566 INIT_LIST_HEAD(&event->rb_entry); 11567 INIT_LIST_HEAD(&event->active_entry); 11568 INIT_LIST_HEAD(&event->addr_filters.list); 11569 INIT_HLIST_NODE(&event->hlist_entry); 11570 11571 11572 init_waitqueue_head(&event->waitq); 11573 event->pending_disable = -1; 11574 init_irq_work(&event->pending, perf_pending_event); 11575 11576 mutex_init(&event->mmap_mutex); 11577 raw_spin_lock_init(&event->addr_filters.lock); 11578 11579 atomic_long_set(&event->refcount, 1); 11580 event->cpu = cpu; 11581 event->attr = *attr; 11582 event->group_leader = group_leader; 11583 event->pmu = NULL; 11584 event->oncpu = -1; 11585 11586 event->parent = parent_event; 11587 11588 event->ns = get_pid_ns(task_active_pid_ns(current)); 11589 event->id = atomic64_inc_return(&perf_event_id); 11590 11591 event->state = PERF_EVENT_STATE_INACTIVE; 11592 11593 if (parent_event) 11594 event->event_caps = parent_event->event_caps; 11595 11596 if (event->attr.sigtrap) 11597 atomic_set(&event->event_limit, 1); 11598 11599 if (task) { 11600 event->attach_state = PERF_ATTACH_TASK; 11601 /* 11602 * XXX pmu::event_init needs to know what task to account to 11603 * and we cannot use the ctx information because we need the 11604 * pmu before we get a ctx. 11605 */ 11606 event->hw.target = get_task_struct(task); 11607 } 11608 11609 event->clock = &local_clock; 11610 if (parent_event) 11611 event->clock = parent_event->clock; 11612 11613 if (!overflow_handler && parent_event) { 11614 overflow_handler = parent_event->overflow_handler; 11615 context = parent_event->overflow_handler_context; 11616 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11617 if (overflow_handler == bpf_overflow_handler) { 11618 struct bpf_prog *prog = parent_event->prog; 11619 11620 bpf_prog_inc(prog); 11621 event->prog = prog; 11622 event->orig_overflow_handler = 11623 parent_event->orig_overflow_handler; 11624 } 11625 #endif 11626 } 11627 11628 if (overflow_handler) { 11629 event->overflow_handler = overflow_handler; 11630 event->overflow_handler_context = context; 11631 } else if (is_write_backward(event)){ 11632 event->overflow_handler = perf_event_output_backward; 11633 event->overflow_handler_context = NULL; 11634 } else { 11635 event->overflow_handler = perf_event_output_forward; 11636 event->overflow_handler_context = NULL; 11637 } 11638 11639 perf_event__state_init(event); 11640 11641 pmu = NULL; 11642 11643 hwc = &event->hw; 11644 hwc->sample_period = attr->sample_period; 11645 if (attr->freq && attr->sample_freq) 11646 hwc->sample_period = 1; 11647 hwc->last_period = hwc->sample_period; 11648 11649 local64_set(&hwc->period_left, hwc->sample_period); 11650 11651 /* 11652 * We currently do not support PERF_SAMPLE_READ on inherited events. 11653 * See perf_output_read(). 11654 */ 11655 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11656 goto err_ns; 11657 11658 if (!has_branch_stack(event)) 11659 event->attr.branch_sample_type = 0; 11660 11661 pmu = perf_init_event(event); 11662 if (IS_ERR(pmu)) { 11663 err = PTR_ERR(pmu); 11664 goto err_ns; 11665 } 11666 11667 /* 11668 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11669 * be different on other CPUs in the uncore mask. 11670 */ 11671 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11672 err = -EINVAL; 11673 goto err_pmu; 11674 } 11675 11676 if (event->attr.aux_output && 11677 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11678 err = -EOPNOTSUPP; 11679 goto err_pmu; 11680 } 11681 11682 if (cgroup_fd != -1) { 11683 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11684 if (err) 11685 goto err_pmu; 11686 } 11687 11688 err = exclusive_event_init(event); 11689 if (err) 11690 goto err_pmu; 11691 11692 if (has_addr_filter(event)) { 11693 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11694 sizeof(struct perf_addr_filter_range), 11695 GFP_KERNEL); 11696 if (!event->addr_filter_ranges) { 11697 err = -ENOMEM; 11698 goto err_per_task; 11699 } 11700 11701 /* 11702 * Clone the parent's vma offsets: they are valid until exec() 11703 * even if the mm is not shared with the parent. 11704 */ 11705 if (event->parent) { 11706 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11707 11708 raw_spin_lock_irq(&ifh->lock); 11709 memcpy(event->addr_filter_ranges, 11710 event->parent->addr_filter_ranges, 11711 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11712 raw_spin_unlock_irq(&ifh->lock); 11713 } 11714 11715 /* force hw sync on the address filters */ 11716 event->addr_filters_gen = 1; 11717 } 11718 11719 if (!event->parent) { 11720 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11721 err = get_callchain_buffers(attr->sample_max_stack); 11722 if (err) 11723 goto err_addr_filters; 11724 } 11725 } 11726 11727 err = security_perf_event_alloc(event); 11728 if (err) 11729 goto err_callchain_buffer; 11730 11731 /* symmetric to unaccount_event() in _free_event() */ 11732 account_event(event); 11733 11734 return event; 11735 11736 err_callchain_buffer: 11737 if (!event->parent) { 11738 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11739 put_callchain_buffers(); 11740 } 11741 err_addr_filters: 11742 kfree(event->addr_filter_ranges); 11743 11744 err_per_task: 11745 exclusive_event_destroy(event); 11746 11747 err_pmu: 11748 if (is_cgroup_event(event)) 11749 perf_detach_cgroup(event); 11750 if (event->destroy) 11751 event->destroy(event); 11752 module_put(pmu->module); 11753 err_ns: 11754 if (event->hw.target) 11755 put_task_struct(event->hw.target); 11756 call_rcu(&event->rcu_head, free_event_rcu); 11757 11758 return ERR_PTR(err); 11759 } 11760 11761 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11762 struct perf_event_attr *attr) 11763 { 11764 u32 size; 11765 int ret; 11766 11767 /* Zero the full structure, so that a short copy will be nice. */ 11768 memset(attr, 0, sizeof(*attr)); 11769 11770 ret = get_user(size, &uattr->size); 11771 if (ret) 11772 return ret; 11773 11774 /* ABI compatibility quirk: */ 11775 if (!size) 11776 size = PERF_ATTR_SIZE_VER0; 11777 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11778 goto err_size; 11779 11780 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11781 if (ret) { 11782 if (ret == -E2BIG) 11783 goto err_size; 11784 return ret; 11785 } 11786 11787 attr->size = size; 11788 11789 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11790 return -EINVAL; 11791 11792 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11793 return -EINVAL; 11794 11795 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11796 return -EINVAL; 11797 11798 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11799 u64 mask = attr->branch_sample_type; 11800 11801 /* only using defined bits */ 11802 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11803 return -EINVAL; 11804 11805 /* at least one branch bit must be set */ 11806 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11807 return -EINVAL; 11808 11809 /* propagate priv level, when not set for branch */ 11810 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11811 11812 /* exclude_kernel checked on syscall entry */ 11813 if (!attr->exclude_kernel) 11814 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11815 11816 if (!attr->exclude_user) 11817 mask |= PERF_SAMPLE_BRANCH_USER; 11818 11819 if (!attr->exclude_hv) 11820 mask |= PERF_SAMPLE_BRANCH_HV; 11821 /* 11822 * adjust user setting (for HW filter setup) 11823 */ 11824 attr->branch_sample_type = mask; 11825 } 11826 /* privileged levels capture (kernel, hv): check permissions */ 11827 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11828 ret = perf_allow_kernel(attr); 11829 if (ret) 11830 return ret; 11831 } 11832 } 11833 11834 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11835 ret = perf_reg_validate(attr->sample_regs_user); 11836 if (ret) 11837 return ret; 11838 } 11839 11840 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11841 if (!arch_perf_have_user_stack_dump()) 11842 return -ENOSYS; 11843 11844 /* 11845 * We have __u32 type for the size, but so far 11846 * we can only use __u16 as maximum due to the 11847 * __u16 sample size limit. 11848 */ 11849 if (attr->sample_stack_user >= USHRT_MAX) 11850 return -EINVAL; 11851 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11852 return -EINVAL; 11853 } 11854 11855 if (!attr->sample_max_stack) 11856 attr->sample_max_stack = sysctl_perf_event_max_stack; 11857 11858 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11859 ret = perf_reg_validate(attr->sample_regs_intr); 11860 11861 #ifndef CONFIG_CGROUP_PERF 11862 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11863 return -EINVAL; 11864 #endif 11865 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 11866 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 11867 return -EINVAL; 11868 11869 if (!attr->inherit && attr->inherit_thread) 11870 return -EINVAL; 11871 11872 if (attr->remove_on_exec && attr->enable_on_exec) 11873 return -EINVAL; 11874 11875 if (attr->sigtrap && !attr->remove_on_exec) 11876 return -EINVAL; 11877 11878 out: 11879 return ret; 11880 11881 err_size: 11882 put_user(sizeof(*attr), &uattr->size); 11883 ret = -E2BIG; 11884 goto out; 11885 } 11886 11887 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11888 { 11889 if (b < a) 11890 swap(a, b); 11891 11892 mutex_lock(a); 11893 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11894 } 11895 11896 static int 11897 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11898 { 11899 struct perf_buffer *rb = NULL; 11900 int ret = -EINVAL; 11901 11902 if (!output_event) { 11903 mutex_lock(&event->mmap_mutex); 11904 goto set; 11905 } 11906 11907 /* don't allow circular references */ 11908 if (event == output_event) 11909 goto out; 11910 11911 /* 11912 * Don't allow cross-cpu buffers 11913 */ 11914 if (output_event->cpu != event->cpu) 11915 goto out; 11916 11917 /* 11918 * If its not a per-cpu rb, it must be the same task. 11919 */ 11920 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11921 goto out; 11922 11923 /* 11924 * Mixing clocks in the same buffer is trouble you don't need. 11925 */ 11926 if (output_event->clock != event->clock) 11927 goto out; 11928 11929 /* 11930 * Either writing ring buffer from beginning or from end. 11931 * Mixing is not allowed. 11932 */ 11933 if (is_write_backward(output_event) != is_write_backward(event)) 11934 goto out; 11935 11936 /* 11937 * If both events generate aux data, they must be on the same PMU 11938 */ 11939 if (has_aux(event) && has_aux(output_event) && 11940 event->pmu != output_event->pmu) 11941 goto out; 11942 11943 /* 11944 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 11945 * output_event is already on rb->event_list, and the list iteration 11946 * restarts after every removal, it is guaranteed this new event is 11947 * observed *OR* if output_event is already removed, it's guaranteed we 11948 * observe !rb->mmap_count. 11949 */ 11950 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 11951 set: 11952 /* Can't redirect output if we've got an active mmap() */ 11953 if (atomic_read(&event->mmap_count)) 11954 goto unlock; 11955 11956 if (output_event) { 11957 /* get the rb we want to redirect to */ 11958 rb = ring_buffer_get(output_event); 11959 if (!rb) 11960 goto unlock; 11961 11962 /* did we race against perf_mmap_close() */ 11963 if (!atomic_read(&rb->mmap_count)) { 11964 ring_buffer_put(rb); 11965 goto unlock; 11966 } 11967 } 11968 11969 ring_buffer_attach(event, rb); 11970 11971 ret = 0; 11972 unlock: 11973 mutex_unlock(&event->mmap_mutex); 11974 if (output_event) 11975 mutex_unlock(&output_event->mmap_mutex); 11976 11977 out: 11978 return ret; 11979 } 11980 11981 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11982 { 11983 bool nmi_safe = false; 11984 11985 switch (clk_id) { 11986 case CLOCK_MONOTONIC: 11987 event->clock = &ktime_get_mono_fast_ns; 11988 nmi_safe = true; 11989 break; 11990 11991 case CLOCK_MONOTONIC_RAW: 11992 event->clock = &ktime_get_raw_fast_ns; 11993 nmi_safe = true; 11994 break; 11995 11996 case CLOCK_REALTIME: 11997 event->clock = &ktime_get_real_ns; 11998 break; 11999 12000 case CLOCK_BOOTTIME: 12001 event->clock = &ktime_get_boottime_ns; 12002 break; 12003 12004 case CLOCK_TAI: 12005 event->clock = &ktime_get_clocktai_ns; 12006 break; 12007 12008 default: 12009 return -EINVAL; 12010 } 12011 12012 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12013 return -EINVAL; 12014 12015 return 0; 12016 } 12017 12018 /* 12019 * Variation on perf_event_ctx_lock_nested(), except we take two context 12020 * mutexes. 12021 */ 12022 static struct perf_event_context * 12023 __perf_event_ctx_lock_double(struct perf_event *group_leader, 12024 struct perf_event_context *ctx) 12025 { 12026 struct perf_event_context *gctx; 12027 12028 again: 12029 rcu_read_lock(); 12030 gctx = READ_ONCE(group_leader->ctx); 12031 if (!refcount_inc_not_zero(&gctx->refcount)) { 12032 rcu_read_unlock(); 12033 goto again; 12034 } 12035 rcu_read_unlock(); 12036 12037 mutex_lock_double(&gctx->mutex, &ctx->mutex); 12038 12039 if (group_leader->ctx != gctx) { 12040 mutex_unlock(&ctx->mutex); 12041 mutex_unlock(&gctx->mutex); 12042 put_ctx(gctx); 12043 goto again; 12044 } 12045 12046 return gctx; 12047 } 12048 12049 static bool 12050 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12051 { 12052 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12053 bool is_capable = perfmon_capable(); 12054 12055 if (attr->sigtrap) { 12056 /* 12057 * perf_event_attr::sigtrap sends signals to the other task. 12058 * Require the current task to also have CAP_KILL. 12059 */ 12060 rcu_read_lock(); 12061 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12062 rcu_read_unlock(); 12063 12064 /* 12065 * If the required capabilities aren't available, checks for 12066 * ptrace permissions: upgrade to ATTACH, since sending signals 12067 * can effectively change the target task. 12068 */ 12069 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12070 } 12071 12072 /* 12073 * Preserve ptrace permission check for backwards compatibility. The 12074 * ptrace check also includes checks that the current task and other 12075 * task have matching uids, and is therefore not done here explicitly. 12076 */ 12077 return is_capable || ptrace_may_access(task, ptrace_mode); 12078 } 12079 12080 /** 12081 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12082 * 12083 * @attr_uptr: event_id type attributes for monitoring/sampling 12084 * @pid: target pid 12085 * @cpu: target cpu 12086 * @group_fd: group leader event fd 12087 * @flags: perf event open flags 12088 */ 12089 SYSCALL_DEFINE5(perf_event_open, 12090 struct perf_event_attr __user *, attr_uptr, 12091 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12092 { 12093 struct perf_event *group_leader = NULL, *output_event = NULL; 12094 struct perf_event *event, *sibling; 12095 struct perf_event_attr attr; 12096 struct perf_event_context *ctx, *gctx; 12097 struct file *event_file = NULL; 12098 struct fd group = {NULL, 0}; 12099 struct task_struct *task = NULL; 12100 struct pmu *pmu; 12101 int event_fd; 12102 int move_group = 0; 12103 int err; 12104 int f_flags = O_RDWR; 12105 int cgroup_fd = -1; 12106 12107 /* for future expandability... */ 12108 if (flags & ~PERF_FLAG_ALL) 12109 return -EINVAL; 12110 12111 /* Do we allow access to perf_event_open(2) ? */ 12112 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12113 if (err) 12114 return err; 12115 12116 err = perf_copy_attr(attr_uptr, &attr); 12117 if (err) 12118 return err; 12119 12120 if (!attr.exclude_kernel) { 12121 err = perf_allow_kernel(&attr); 12122 if (err) 12123 return err; 12124 } 12125 12126 if (attr.namespaces) { 12127 if (!perfmon_capable()) 12128 return -EACCES; 12129 } 12130 12131 if (attr.freq) { 12132 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12133 return -EINVAL; 12134 } else { 12135 if (attr.sample_period & (1ULL << 63)) 12136 return -EINVAL; 12137 } 12138 12139 /* Only privileged users can get physical addresses */ 12140 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12141 err = perf_allow_kernel(&attr); 12142 if (err) 12143 return err; 12144 } 12145 12146 /* REGS_INTR can leak data, lockdown must prevent this */ 12147 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12148 err = security_locked_down(LOCKDOWN_PERF); 12149 if (err) 12150 return err; 12151 } 12152 12153 /* 12154 * In cgroup mode, the pid argument is used to pass the fd 12155 * opened to the cgroup directory in cgroupfs. The cpu argument 12156 * designates the cpu on which to monitor threads from that 12157 * cgroup. 12158 */ 12159 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12160 return -EINVAL; 12161 12162 if (flags & PERF_FLAG_FD_CLOEXEC) 12163 f_flags |= O_CLOEXEC; 12164 12165 event_fd = get_unused_fd_flags(f_flags); 12166 if (event_fd < 0) 12167 return event_fd; 12168 12169 if (group_fd != -1) { 12170 err = perf_fget_light(group_fd, &group); 12171 if (err) 12172 goto err_fd; 12173 group_leader = group.file->private_data; 12174 if (flags & PERF_FLAG_FD_OUTPUT) 12175 output_event = group_leader; 12176 if (flags & PERF_FLAG_FD_NO_GROUP) 12177 group_leader = NULL; 12178 } 12179 12180 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12181 task = find_lively_task_by_vpid(pid); 12182 if (IS_ERR(task)) { 12183 err = PTR_ERR(task); 12184 goto err_group_fd; 12185 } 12186 } 12187 12188 if (task && group_leader && 12189 group_leader->attr.inherit != attr.inherit) { 12190 err = -EINVAL; 12191 goto err_task; 12192 } 12193 12194 if (flags & PERF_FLAG_PID_CGROUP) 12195 cgroup_fd = pid; 12196 12197 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12198 NULL, NULL, cgroup_fd); 12199 if (IS_ERR(event)) { 12200 err = PTR_ERR(event); 12201 goto err_task; 12202 } 12203 12204 if (is_sampling_event(event)) { 12205 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12206 err = -EOPNOTSUPP; 12207 goto err_alloc; 12208 } 12209 } 12210 12211 /* 12212 * Special case software events and allow them to be part of 12213 * any hardware group. 12214 */ 12215 pmu = event->pmu; 12216 12217 if (attr.use_clockid) { 12218 err = perf_event_set_clock(event, attr.clockid); 12219 if (err) 12220 goto err_alloc; 12221 } 12222 12223 if (pmu->task_ctx_nr == perf_sw_context) 12224 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12225 12226 if (group_leader) { 12227 if (is_software_event(event) && 12228 !in_software_context(group_leader)) { 12229 /* 12230 * If the event is a sw event, but the group_leader 12231 * is on hw context. 12232 * 12233 * Allow the addition of software events to hw 12234 * groups, this is safe because software events 12235 * never fail to schedule. 12236 */ 12237 pmu = group_leader->ctx->pmu; 12238 } else if (!is_software_event(event) && 12239 is_software_event(group_leader) && 12240 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12241 /* 12242 * In case the group is a pure software group, and we 12243 * try to add a hardware event, move the whole group to 12244 * the hardware context. 12245 */ 12246 move_group = 1; 12247 } 12248 } 12249 12250 /* 12251 * Get the target context (task or percpu): 12252 */ 12253 ctx = find_get_context(pmu, task, event); 12254 if (IS_ERR(ctx)) { 12255 err = PTR_ERR(ctx); 12256 goto err_alloc; 12257 } 12258 12259 /* 12260 * Look up the group leader (we will attach this event to it): 12261 */ 12262 if (group_leader) { 12263 err = -EINVAL; 12264 12265 /* 12266 * Do not allow a recursive hierarchy (this new sibling 12267 * becoming part of another group-sibling): 12268 */ 12269 if (group_leader->group_leader != group_leader) 12270 goto err_context; 12271 12272 /* All events in a group should have the same clock */ 12273 if (group_leader->clock != event->clock) 12274 goto err_context; 12275 12276 /* 12277 * Make sure we're both events for the same CPU; 12278 * grouping events for different CPUs is broken; since 12279 * you can never concurrently schedule them anyhow. 12280 */ 12281 if (group_leader->cpu != event->cpu) 12282 goto err_context; 12283 12284 /* 12285 * Make sure we're both on the same task, or both 12286 * per-CPU events. 12287 */ 12288 if (group_leader->ctx->task != ctx->task) 12289 goto err_context; 12290 12291 /* 12292 * Do not allow to attach to a group in a different task 12293 * or CPU context. If we're moving SW events, we'll fix 12294 * this up later, so allow that. 12295 * 12296 * Racy, not holding group_leader->ctx->mutex, see comment with 12297 * perf_event_ctx_lock(). 12298 */ 12299 if (!move_group && group_leader->ctx != ctx) 12300 goto err_context; 12301 12302 /* 12303 * Only a group leader can be exclusive or pinned 12304 */ 12305 if (attr.exclusive || attr.pinned) 12306 goto err_context; 12307 } 12308 12309 if (output_event) { 12310 err = perf_event_set_output(event, output_event); 12311 if (err) 12312 goto err_context; 12313 } 12314 12315 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 12316 f_flags); 12317 if (IS_ERR(event_file)) { 12318 err = PTR_ERR(event_file); 12319 event_file = NULL; 12320 goto err_context; 12321 } 12322 12323 if (task) { 12324 err = down_read_interruptible(&task->signal->exec_update_lock); 12325 if (err) 12326 goto err_file; 12327 12328 /* 12329 * We must hold exec_update_lock across this and any potential 12330 * perf_install_in_context() call for this new event to 12331 * serialize against exec() altering our credentials (and the 12332 * perf_event_exit_task() that could imply). 12333 */ 12334 err = -EACCES; 12335 if (!perf_check_permission(&attr, task)) 12336 goto err_cred; 12337 } 12338 12339 if (move_group) { 12340 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 12341 12342 if (gctx->task == TASK_TOMBSTONE) { 12343 err = -ESRCH; 12344 goto err_locked; 12345 } 12346 12347 /* 12348 * Check if we raced against another sys_perf_event_open() call 12349 * moving the software group underneath us. 12350 */ 12351 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12352 /* 12353 * If someone moved the group out from under us, check 12354 * if this new event wound up on the same ctx, if so 12355 * its the regular !move_group case, otherwise fail. 12356 */ 12357 if (gctx != ctx) { 12358 err = -EINVAL; 12359 goto err_locked; 12360 } else { 12361 perf_event_ctx_unlock(group_leader, gctx); 12362 move_group = 0; 12363 goto not_move_group; 12364 } 12365 } 12366 12367 /* 12368 * Failure to create exclusive events returns -EBUSY. 12369 */ 12370 err = -EBUSY; 12371 if (!exclusive_event_installable(group_leader, ctx)) 12372 goto err_locked; 12373 12374 for_each_sibling_event(sibling, group_leader) { 12375 if (!exclusive_event_installable(sibling, ctx)) 12376 goto err_locked; 12377 } 12378 } else { 12379 mutex_lock(&ctx->mutex); 12380 12381 /* 12382 * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx, 12383 * see the group_leader && !move_group test earlier. 12384 */ 12385 if (group_leader && group_leader->ctx != ctx) { 12386 err = -EINVAL; 12387 goto err_locked; 12388 } 12389 } 12390 not_move_group: 12391 12392 if (ctx->task == TASK_TOMBSTONE) { 12393 err = -ESRCH; 12394 goto err_locked; 12395 } 12396 12397 if (!perf_event_validate_size(event)) { 12398 err = -E2BIG; 12399 goto err_locked; 12400 } 12401 12402 if (!task) { 12403 /* 12404 * Check if the @cpu we're creating an event for is online. 12405 * 12406 * We use the perf_cpu_context::ctx::mutex to serialize against 12407 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12408 */ 12409 struct perf_cpu_context *cpuctx = 12410 container_of(ctx, struct perf_cpu_context, ctx); 12411 12412 if (!cpuctx->online) { 12413 err = -ENODEV; 12414 goto err_locked; 12415 } 12416 } 12417 12418 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12419 err = -EINVAL; 12420 goto err_locked; 12421 } 12422 12423 /* 12424 * Must be under the same ctx::mutex as perf_install_in_context(), 12425 * because we need to serialize with concurrent event creation. 12426 */ 12427 if (!exclusive_event_installable(event, ctx)) { 12428 err = -EBUSY; 12429 goto err_locked; 12430 } 12431 12432 WARN_ON_ONCE(ctx->parent_ctx); 12433 12434 /* 12435 * This is the point on no return; we cannot fail hereafter. This is 12436 * where we start modifying current state. 12437 */ 12438 12439 if (move_group) { 12440 /* 12441 * See perf_event_ctx_lock() for comments on the details 12442 * of swizzling perf_event::ctx. 12443 */ 12444 perf_remove_from_context(group_leader, 0); 12445 put_ctx(gctx); 12446 12447 for_each_sibling_event(sibling, group_leader) { 12448 perf_remove_from_context(sibling, 0); 12449 put_ctx(gctx); 12450 } 12451 12452 /* 12453 * Wait for everybody to stop referencing the events through 12454 * the old lists, before installing it on new lists. 12455 */ 12456 synchronize_rcu(); 12457 12458 /* 12459 * Install the group siblings before the group leader. 12460 * 12461 * Because a group leader will try and install the entire group 12462 * (through the sibling list, which is still in-tact), we can 12463 * end up with siblings installed in the wrong context. 12464 * 12465 * By installing siblings first we NO-OP because they're not 12466 * reachable through the group lists. 12467 */ 12468 for_each_sibling_event(sibling, group_leader) { 12469 perf_event__state_init(sibling); 12470 perf_install_in_context(ctx, sibling, sibling->cpu); 12471 get_ctx(ctx); 12472 } 12473 12474 /* 12475 * Removing from the context ends up with disabled 12476 * event. What we want here is event in the initial 12477 * startup state, ready to be add into new context. 12478 */ 12479 perf_event__state_init(group_leader); 12480 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12481 get_ctx(ctx); 12482 } 12483 12484 /* 12485 * Precalculate sample_data sizes; do while holding ctx::mutex such 12486 * that we're serialized against further additions and before 12487 * perf_install_in_context() which is the point the event is active and 12488 * can use these values. 12489 */ 12490 perf_event__header_size(event); 12491 perf_event__id_header_size(event); 12492 12493 event->owner = current; 12494 12495 perf_install_in_context(ctx, event, event->cpu); 12496 perf_unpin_context(ctx); 12497 12498 if (move_group) 12499 perf_event_ctx_unlock(group_leader, gctx); 12500 mutex_unlock(&ctx->mutex); 12501 12502 if (task) { 12503 up_read(&task->signal->exec_update_lock); 12504 put_task_struct(task); 12505 } 12506 12507 mutex_lock(¤t->perf_event_mutex); 12508 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12509 mutex_unlock(¤t->perf_event_mutex); 12510 12511 /* 12512 * Drop the reference on the group_event after placing the 12513 * new event on the sibling_list. This ensures destruction 12514 * of the group leader will find the pointer to itself in 12515 * perf_group_detach(). 12516 */ 12517 fdput(group); 12518 fd_install(event_fd, event_file); 12519 return event_fd; 12520 12521 err_locked: 12522 if (move_group) 12523 perf_event_ctx_unlock(group_leader, gctx); 12524 mutex_unlock(&ctx->mutex); 12525 err_cred: 12526 if (task) 12527 up_read(&task->signal->exec_update_lock); 12528 err_file: 12529 fput(event_file); 12530 err_context: 12531 perf_unpin_context(ctx); 12532 put_ctx(ctx); 12533 err_alloc: 12534 /* 12535 * If event_file is set, the fput() above will have called ->release() 12536 * and that will take care of freeing the event. 12537 */ 12538 if (!event_file) 12539 free_event(event); 12540 err_task: 12541 if (task) 12542 put_task_struct(task); 12543 err_group_fd: 12544 fdput(group); 12545 err_fd: 12546 put_unused_fd(event_fd); 12547 return err; 12548 } 12549 12550 /** 12551 * perf_event_create_kernel_counter 12552 * 12553 * @attr: attributes of the counter to create 12554 * @cpu: cpu in which the counter is bound 12555 * @task: task to profile (NULL for percpu) 12556 * @overflow_handler: callback to trigger when we hit the event 12557 * @context: context data could be used in overflow_handler callback 12558 */ 12559 struct perf_event * 12560 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12561 struct task_struct *task, 12562 perf_overflow_handler_t overflow_handler, 12563 void *context) 12564 { 12565 struct perf_event_context *ctx; 12566 struct perf_event *event; 12567 int err; 12568 12569 /* 12570 * Grouping is not supported for kernel events, neither is 'AUX', 12571 * make sure the caller's intentions are adjusted. 12572 */ 12573 if (attr->aux_output) 12574 return ERR_PTR(-EINVAL); 12575 12576 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12577 overflow_handler, context, -1); 12578 if (IS_ERR(event)) { 12579 err = PTR_ERR(event); 12580 goto err; 12581 } 12582 12583 /* Mark owner so we could distinguish it from user events. */ 12584 event->owner = TASK_TOMBSTONE; 12585 12586 /* 12587 * Get the target context (task or percpu): 12588 */ 12589 ctx = find_get_context(event->pmu, task, event); 12590 if (IS_ERR(ctx)) { 12591 err = PTR_ERR(ctx); 12592 goto err_free; 12593 } 12594 12595 WARN_ON_ONCE(ctx->parent_ctx); 12596 mutex_lock(&ctx->mutex); 12597 if (ctx->task == TASK_TOMBSTONE) { 12598 err = -ESRCH; 12599 goto err_unlock; 12600 } 12601 12602 if (!task) { 12603 /* 12604 * Check if the @cpu we're creating an event for is online. 12605 * 12606 * We use the perf_cpu_context::ctx::mutex to serialize against 12607 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12608 */ 12609 struct perf_cpu_context *cpuctx = 12610 container_of(ctx, struct perf_cpu_context, ctx); 12611 if (!cpuctx->online) { 12612 err = -ENODEV; 12613 goto err_unlock; 12614 } 12615 } 12616 12617 if (!exclusive_event_installable(event, ctx)) { 12618 err = -EBUSY; 12619 goto err_unlock; 12620 } 12621 12622 perf_install_in_context(ctx, event, event->cpu); 12623 perf_unpin_context(ctx); 12624 mutex_unlock(&ctx->mutex); 12625 12626 return event; 12627 12628 err_unlock: 12629 mutex_unlock(&ctx->mutex); 12630 perf_unpin_context(ctx); 12631 put_ctx(ctx); 12632 err_free: 12633 free_event(event); 12634 err: 12635 return ERR_PTR(err); 12636 } 12637 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12638 12639 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12640 { 12641 struct perf_event_context *src_ctx; 12642 struct perf_event_context *dst_ctx; 12643 struct perf_event *event, *tmp; 12644 LIST_HEAD(events); 12645 12646 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12647 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12648 12649 /* 12650 * See perf_event_ctx_lock() for comments on the details 12651 * of swizzling perf_event::ctx. 12652 */ 12653 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12654 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12655 event_entry) { 12656 perf_remove_from_context(event, 0); 12657 unaccount_event_cpu(event, src_cpu); 12658 put_ctx(src_ctx); 12659 list_add(&event->migrate_entry, &events); 12660 } 12661 12662 /* 12663 * Wait for the events to quiesce before re-instating them. 12664 */ 12665 synchronize_rcu(); 12666 12667 /* 12668 * Re-instate events in 2 passes. 12669 * 12670 * Skip over group leaders and only install siblings on this first 12671 * pass, siblings will not get enabled without a leader, however a 12672 * leader will enable its siblings, even if those are still on the old 12673 * context. 12674 */ 12675 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12676 if (event->group_leader == event) 12677 continue; 12678 12679 list_del(&event->migrate_entry); 12680 if (event->state >= PERF_EVENT_STATE_OFF) 12681 event->state = PERF_EVENT_STATE_INACTIVE; 12682 account_event_cpu(event, dst_cpu); 12683 perf_install_in_context(dst_ctx, event, dst_cpu); 12684 get_ctx(dst_ctx); 12685 } 12686 12687 /* 12688 * Once all the siblings are setup properly, install the group leaders 12689 * to make it go. 12690 */ 12691 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12692 list_del(&event->migrate_entry); 12693 if (event->state >= PERF_EVENT_STATE_OFF) 12694 event->state = PERF_EVENT_STATE_INACTIVE; 12695 account_event_cpu(event, dst_cpu); 12696 perf_install_in_context(dst_ctx, event, dst_cpu); 12697 get_ctx(dst_ctx); 12698 } 12699 mutex_unlock(&dst_ctx->mutex); 12700 mutex_unlock(&src_ctx->mutex); 12701 } 12702 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12703 12704 static void sync_child_event(struct perf_event *child_event) 12705 { 12706 struct perf_event *parent_event = child_event->parent; 12707 u64 child_val; 12708 12709 if (child_event->attr.inherit_stat) { 12710 struct task_struct *task = child_event->ctx->task; 12711 12712 if (task && task != TASK_TOMBSTONE) 12713 perf_event_read_event(child_event, task); 12714 } 12715 12716 child_val = perf_event_count(child_event); 12717 12718 /* 12719 * Add back the child's count to the parent's count: 12720 */ 12721 atomic64_add(child_val, &parent_event->child_count); 12722 atomic64_add(child_event->total_time_enabled, 12723 &parent_event->child_total_time_enabled); 12724 atomic64_add(child_event->total_time_running, 12725 &parent_event->child_total_time_running); 12726 } 12727 12728 static void 12729 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12730 { 12731 struct perf_event *parent_event = event->parent; 12732 unsigned long detach_flags = 0; 12733 12734 if (parent_event) { 12735 /* 12736 * Do not destroy the 'original' grouping; because of the 12737 * context switch optimization the original events could've 12738 * ended up in a random child task. 12739 * 12740 * If we were to destroy the original group, all group related 12741 * operations would cease to function properly after this 12742 * random child dies. 12743 * 12744 * Do destroy all inherited groups, we don't care about those 12745 * and being thorough is better. 12746 */ 12747 detach_flags = DETACH_GROUP | DETACH_CHILD; 12748 mutex_lock(&parent_event->child_mutex); 12749 } 12750 12751 perf_remove_from_context(event, detach_flags); 12752 12753 raw_spin_lock_irq(&ctx->lock); 12754 if (event->state > PERF_EVENT_STATE_EXIT) 12755 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 12756 raw_spin_unlock_irq(&ctx->lock); 12757 12758 /* 12759 * Child events can be freed. 12760 */ 12761 if (parent_event) { 12762 mutex_unlock(&parent_event->child_mutex); 12763 /* 12764 * Kick perf_poll() for is_event_hup(); 12765 */ 12766 perf_event_wakeup(parent_event); 12767 free_event(event); 12768 put_event(parent_event); 12769 return; 12770 } 12771 12772 /* 12773 * Parent events are governed by their filedesc, retain them. 12774 */ 12775 perf_event_wakeup(event); 12776 } 12777 12778 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12779 { 12780 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12781 struct perf_event *child_event, *next; 12782 12783 WARN_ON_ONCE(child != current); 12784 12785 child_ctx = perf_pin_task_context(child, ctxn); 12786 if (!child_ctx) 12787 return; 12788 12789 /* 12790 * In order to reduce the amount of tricky in ctx tear-down, we hold 12791 * ctx::mutex over the entire thing. This serializes against almost 12792 * everything that wants to access the ctx. 12793 * 12794 * The exception is sys_perf_event_open() / 12795 * perf_event_create_kernel_count() which does find_get_context() 12796 * without ctx::mutex (it cannot because of the move_group double mutex 12797 * lock thing). See the comments in perf_install_in_context(). 12798 */ 12799 mutex_lock(&child_ctx->mutex); 12800 12801 /* 12802 * In a single ctx::lock section, de-schedule the events and detach the 12803 * context from the task such that we cannot ever get it scheduled back 12804 * in. 12805 */ 12806 raw_spin_lock_irq(&child_ctx->lock); 12807 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12808 12809 /* 12810 * Now that the context is inactive, destroy the task <-> ctx relation 12811 * and mark the context dead. 12812 */ 12813 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12814 put_ctx(child_ctx); /* cannot be last */ 12815 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12816 put_task_struct(current); /* cannot be last */ 12817 12818 clone_ctx = unclone_ctx(child_ctx); 12819 raw_spin_unlock_irq(&child_ctx->lock); 12820 12821 if (clone_ctx) 12822 put_ctx(clone_ctx); 12823 12824 /* 12825 * Report the task dead after unscheduling the events so that we 12826 * won't get any samples after PERF_RECORD_EXIT. We can however still 12827 * get a few PERF_RECORD_READ events. 12828 */ 12829 perf_event_task(child, child_ctx, 0); 12830 12831 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12832 perf_event_exit_event(child_event, child_ctx); 12833 12834 mutex_unlock(&child_ctx->mutex); 12835 12836 put_ctx(child_ctx); 12837 } 12838 12839 /* 12840 * When a child task exits, feed back event values to parent events. 12841 * 12842 * Can be called with exec_update_lock held when called from 12843 * setup_new_exec(). 12844 */ 12845 void perf_event_exit_task(struct task_struct *child) 12846 { 12847 struct perf_event *event, *tmp; 12848 int ctxn; 12849 12850 mutex_lock(&child->perf_event_mutex); 12851 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12852 owner_entry) { 12853 list_del_init(&event->owner_entry); 12854 12855 /* 12856 * Ensure the list deletion is visible before we clear 12857 * the owner, closes a race against perf_release() where 12858 * we need to serialize on the owner->perf_event_mutex. 12859 */ 12860 smp_store_release(&event->owner, NULL); 12861 } 12862 mutex_unlock(&child->perf_event_mutex); 12863 12864 for_each_task_context_nr(ctxn) 12865 perf_event_exit_task_context(child, ctxn); 12866 12867 /* 12868 * The perf_event_exit_task_context calls perf_event_task 12869 * with child's task_ctx, which generates EXIT events for 12870 * child contexts and sets child->perf_event_ctxp[] to NULL. 12871 * At this point we need to send EXIT events to cpu contexts. 12872 */ 12873 perf_event_task(child, NULL, 0); 12874 } 12875 12876 static void perf_free_event(struct perf_event *event, 12877 struct perf_event_context *ctx) 12878 { 12879 struct perf_event *parent = event->parent; 12880 12881 if (WARN_ON_ONCE(!parent)) 12882 return; 12883 12884 mutex_lock(&parent->child_mutex); 12885 list_del_init(&event->child_list); 12886 mutex_unlock(&parent->child_mutex); 12887 12888 put_event(parent); 12889 12890 raw_spin_lock_irq(&ctx->lock); 12891 perf_group_detach(event); 12892 list_del_event(event, ctx); 12893 raw_spin_unlock_irq(&ctx->lock); 12894 free_event(event); 12895 } 12896 12897 /* 12898 * Free a context as created by inheritance by perf_event_init_task() below, 12899 * used by fork() in case of fail. 12900 * 12901 * Even though the task has never lived, the context and events have been 12902 * exposed through the child_list, so we must take care tearing it all down. 12903 */ 12904 void perf_event_free_task(struct task_struct *task) 12905 { 12906 struct perf_event_context *ctx; 12907 struct perf_event *event, *tmp; 12908 int ctxn; 12909 12910 for_each_task_context_nr(ctxn) { 12911 ctx = task->perf_event_ctxp[ctxn]; 12912 if (!ctx) 12913 continue; 12914 12915 mutex_lock(&ctx->mutex); 12916 raw_spin_lock_irq(&ctx->lock); 12917 /* 12918 * Destroy the task <-> ctx relation and mark the context dead. 12919 * 12920 * This is important because even though the task hasn't been 12921 * exposed yet the context has been (through child_list). 12922 */ 12923 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12924 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12925 put_task_struct(task); /* cannot be last */ 12926 raw_spin_unlock_irq(&ctx->lock); 12927 12928 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12929 perf_free_event(event, ctx); 12930 12931 mutex_unlock(&ctx->mutex); 12932 12933 /* 12934 * perf_event_release_kernel() could've stolen some of our 12935 * child events and still have them on its free_list. In that 12936 * case we must wait for these events to have been freed (in 12937 * particular all their references to this task must've been 12938 * dropped). 12939 * 12940 * Without this copy_process() will unconditionally free this 12941 * task (irrespective of its reference count) and 12942 * _free_event()'s put_task_struct(event->hw.target) will be a 12943 * use-after-free. 12944 * 12945 * Wait for all events to drop their context reference. 12946 */ 12947 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12948 put_ctx(ctx); /* must be last */ 12949 } 12950 } 12951 12952 void perf_event_delayed_put(struct task_struct *task) 12953 { 12954 int ctxn; 12955 12956 for_each_task_context_nr(ctxn) 12957 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12958 } 12959 12960 struct file *perf_event_get(unsigned int fd) 12961 { 12962 struct file *file = fget(fd); 12963 if (!file) 12964 return ERR_PTR(-EBADF); 12965 12966 if (file->f_op != &perf_fops) { 12967 fput(file); 12968 return ERR_PTR(-EBADF); 12969 } 12970 12971 return file; 12972 } 12973 12974 const struct perf_event *perf_get_event(struct file *file) 12975 { 12976 if (file->f_op != &perf_fops) 12977 return ERR_PTR(-EINVAL); 12978 12979 return file->private_data; 12980 } 12981 12982 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12983 { 12984 if (!event) 12985 return ERR_PTR(-EINVAL); 12986 12987 return &event->attr; 12988 } 12989 12990 /* 12991 * Inherit an event from parent task to child task. 12992 * 12993 * Returns: 12994 * - valid pointer on success 12995 * - NULL for orphaned events 12996 * - IS_ERR() on error 12997 */ 12998 static struct perf_event * 12999 inherit_event(struct perf_event *parent_event, 13000 struct task_struct *parent, 13001 struct perf_event_context *parent_ctx, 13002 struct task_struct *child, 13003 struct perf_event *group_leader, 13004 struct perf_event_context *child_ctx) 13005 { 13006 enum perf_event_state parent_state = parent_event->state; 13007 struct perf_event *child_event; 13008 unsigned long flags; 13009 13010 /* 13011 * Instead of creating recursive hierarchies of events, 13012 * we link inherited events back to the original parent, 13013 * which has a filp for sure, which we use as the reference 13014 * count: 13015 */ 13016 if (parent_event->parent) 13017 parent_event = parent_event->parent; 13018 13019 child_event = perf_event_alloc(&parent_event->attr, 13020 parent_event->cpu, 13021 child, 13022 group_leader, parent_event, 13023 NULL, NULL, -1); 13024 if (IS_ERR(child_event)) 13025 return child_event; 13026 13027 13028 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 13029 !child_ctx->task_ctx_data) { 13030 struct pmu *pmu = child_event->pmu; 13031 13032 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu); 13033 if (!child_ctx->task_ctx_data) { 13034 free_event(child_event); 13035 return ERR_PTR(-ENOMEM); 13036 } 13037 } 13038 13039 /* 13040 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13041 * must be under the same lock in order to serialize against 13042 * perf_event_release_kernel(), such that either we must observe 13043 * is_orphaned_event() or they will observe us on the child_list. 13044 */ 13045 mutex_lock(&parent_event->child_mutex); 13046 if (is_orphaned_event(parent_event) || 13047 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13048 mutex_unlock(&parent_event->child_mutex); 13049 /* task_ctx_data is freed with child_ctx */ 13050 free_event(child_event); 13051 return NULL; 13052 } 13053 13054 get_ctx(child_ctx); 13055 13056 /* 13057 * Make the child state follow the state of the parent event, 13058 * not its attr.disabled bit. We hold the parent's mutex, 13059 * so we won't race with perf_event_{en, dis}able_family. 13060 */ 13061 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13062 child_event->state = PERF_EVENT_STATE_INACTIVE; 13063 else 13064 child_event->state = PERF_EVENT_STATE_OFF; 13065 13066 if (parent_event->attr.freq) { 13067 u64 sample_period = parent_event->hw.sample_period; 13068 struct hw_perf_event *hwc = &child_event->hw; 13069 13070 hwc->sample_period = sample_period; 13071 hwc->last_period = sample_period; 13072 13073 local64_set(&hwc->period_left, sample_period); 13074 } 13075 13076 child_event->ctx = child_ctx; 13077 child_event->overflow_handler = parent_event->overflow_handler; 13078 child_event->overflow_handler_context 13079 = parent_event->overflow_handler_context; 13080 13081 /* 13082 * Precalculate sample_data sizes 13083 */ 13084 perf_event__header_size(child_event); 13085 perf_event__id_header_size(child_event); 13086 13087 /* 13088 * Link it up in the child's context: 13089 */ 13090 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13091 add_event_to_ctx(child_event, child_ctx); 13092 child_event->attach_state |= PERF_ATTACH_CHILD; 13093 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13094 13095 /* 13096 * Link this into the parent event's child list 13097 */ 13098 list_add_tail(&child_event->child_list, &parent_event->child_list); 13099 mutex_unlock(&parent_event->child_mutex); 13100 13101 return child_event; 13102 } 13103 13104 /* 13105 * Inherits an event group. 13106 * 13107 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13108 * This matches with perf_event_release_kernel() removing all child events. 13109 * 13110 * Returns: 13111 * - 0 on success 13112 * - <0 on error 13113 */ 13114 static int inherit_group(struct perf_event *parent_event, 13115 struct task_struct *parent, 13116 struct perf_event_context *parent_ctx, 13117 struct task_struct *child, 13118 struct perf_event_context *child_ctx) 13119 { 13120 struct perf_event *leader; 13121 struct perf_event *sub; 13122 struct perf_event *child_ctr; 13123 13124 leader = inherit_event(parent_event, parent, parent_ctx, 13125 child, NULL, child_ctx); 13126 if (IS_ERR(leader)) 13127 return PTR_ERR(leader); 13128 /* 13129 * @leader can be NULL here because of is_orphaned_event(). In this 13130 * case inherit_event() will create individual events, similar to what 13131 * perf_group_detach() would do anyway. 13132 */ 13133 for_each_sibling_event(sub, parent_event) { 13134 child_ctr = inherit_event(sub, parent, parent_ctx, 13135 child, leader, child_ctx); 13136 if (IS_ERR(child_ctr)) 13137 return PTR_ERR(child_ctr); 13138 13139 if (sub->aux_event == parent_event && child_ctr && 13140 !perf_get_aux_event(child_ctr, leader)) 13141 return -EINVAL; 13142 } 13143 return 0; 13144 } 13145 13146 /* 13147 * Creates the child task context and tries to inherit the event-group. 13148 * 13149 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13150 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13151 * consistent with perf_event_release_kernel() removing all child events. 13152 * 13153 * Returns: 13154 * - 0 on success 13155 * - <0 on error 13156 */ 13157 static int 13158 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13159 struct perf_event_context *parent_ctx, 13160 struct task_struct *child, int ctxn, 13161 u64 clone_flags, int *inherited_all) 13162 { 13163 int ret; 13164 struct perf_event_context *child_ctx; 13165 13166 if (!event->attr.inherit || 13167 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13168 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13169 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13170 *inherited_all = 0; 13171 return 0; 13172 } 13173 13174 child_ctx = child->perf_event_ctxp[ctxn]; 13175 if (!child_ctx) { 13176 /* 13177 * This is executed from the parent task context, so 13178 * inherit events that have been marked for cloning. 13179 * First allocate and initialize a context for the 13180 * child. 13181 */ 13182 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 13183 if (!child_ctx) 13184 return -ENOMEM; 13185 13186 child->perf_event_ctxp[ctxn] = child_ctx; 13187 } 13188 13189 ret = inherit_group(event, parent, parent_ctx, 13190 child, child_ctx); 13191 13192 if (ret) 13193 *inherited_all = 0; 13194 13195 return ret; 13196 } 13197 13198 /* 13199 * Initialize the perf_event context in task_struct 13200 */ 13201 static int perf_event_init_context(struct task_struct *child, int ctxn, 13202 u64 clone_flags) 13203 { 13204 struct perf_event_context *child_ctx, *parent_ctx; 13205 struct perf_event_context *cloned_ctx; 13206 struct perf_event *event; 13207 struct task_struct *parent = current; 13208 int inherited_all = 1; 13209 unsigned long flags; 13210 int ret = 0; 13211 13212 if (likely(!parent->perf_event_ctxp[ctxn])) 13213 return 0; 13214 13215 /* 13216 * If the parent's context is a clone, pin it so it won't get 13217 * swapped under us. 13218 */ 13219 parent_ctx = perf_pin_task_context(parent, ctxn); 13220 if (!parent_ctx) 13221 return 0; 13222 13223 /* 13224 * No need to check if parent_ctx != NULL here; since we saw 13225 * it non-NULL earlier, the only reason for it to become NULL 13226 * is if we exit, and since we're currently in the middle of 13227 * a fork we can't be exiting at the same time. 13228 */ 13229 13230 /* 13231 * Lock the parent list. No need to lock the child - not PID 13232 * hashed yet and not running, so nobody can access it. 13233 */ 13234 mutex_lock(&parent_ctx->mutex); 13235 13236 /* 13237 * We dont have to disable NMIs - we are only looking at 13238 * the list, not manipulating it: 13239 */ 13240 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13241 ret = inherit_task_group(event, parent, parent_ctx, 13242 child, ctxn, clone_flags, 13243 &inherited_all); 13244 if (ret) 13245 goto out_unlock; 13246 } 13247 13248 /* 13249 * We can't hold ctx->lock when iterating the ->flexible_group list due 13250 * to allocations, but we need to prevent rotation because 13251 * rotate_ctx() will change the list from interrupt context. 13252 */ 13253 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13254 parent_ctx->rotate_disable = 1; 13255 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13256 13257 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13258 ret = inherit_task_group(event, parent, parent_ctx, 13259 child, ctxn, clone_flags, 13260 &inherited_all); 13261 if (ret) 13262 goto out_unlock; 13263 } 13264 13265 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13266 parent_ctx->rotate_disable = 0; 13267 13268 child_ctx = child->perf_event_ctxp[ctxn]; 13269 13270 if (child_ctx && inherited_all) { 13271 /* 13272 * Mark the child context as a clone of the parent 13273 * context, or of whatever the parent is a clone of. 13274 * 13275 * Note that if the parent is a clone, the holding of 13276 * parent_ctx->lock avoids it from being uncloned. 13277 */ 13278 cloned_ctx = parent_ctx->parent_ctx; 13279 if (cloned_ctx) { 13280 child_ctx->parent_ctx = cloned_ctx; 13281 child_ctx->parent_gen = parent_ctx->parent_gen; 13282 } else { 13283 child_ctx->parent_ctx = parent_ctx; 13284 child_ctx->parent_gen = parent_ctx->generation; 13285 } 13286 get_ctx(child_ctx->parent_ctx); 13287 } 13288 13289 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13290 out_unlock: 13291 mutex_unlock(&parent_ctx->mutex); 13292 13293 perf_unpin_context(parent_ctx); 13294 put_ctx(parent_ctx); 13295 13296 return ret; 13297 } 13298 13299 /* 13300 * Initialize the perf_event context in task_struct 13301 */ 13302 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13303 { 13304 int ctxn, ret; 13305 13306 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 13307 mutex_init(&child->perf_event_mutex); 13308 INIT_LIST_HEAD(&child->perf_event_list); 13309 13310 for_each_task_context_nr(ctxn) { 13311 ret = perf_event_init_context(child, ctxn, clone_flags); 13312 if (ret) { 13313 perf_event_free_task(child); 13314 return ret; 13315 } 13316 } 13317 13318 return 0; 13319 } 13320 13321 static void __init perf_event_init_all_cpus(void) 13322 { 13323 struct swevent_htable *swhash; 13324 int cpu; 13325 13326 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13327 13328 for_each_possible_cpu(cpu) { 13329 swhash = &per_cpu(swevent_htable, cpu); 13330 mutex_init(&swhash->hlist_mutex); 13331 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 13332 13333 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13334 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13335 13336 #ifdef CONFIG_CGROUP_PERF 13337 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 13338 #endif 13339 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13340 } 13341 } 13342 13343 static void perf_swevent_init_cpu(unsigned int cpu) 13344 { 13345 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13346 13347 mutex_lock(&swhash->hlist_mutex); 13348 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13349 struct swevent_hlist *hlist; 13350 13351 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13352 WARN_ON(!hlist); 13353 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13354 } 13355 mutex_unlock(&swhash->hlist_mutex); 13356 } 13357 13358 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13359 static void __perf_event_exit_context(void *__info) 13360 { 13361 struct perf_event_context *ctx = __info; 13362 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 13363 struct perf_event *event; 13364 13365 raw_spin_lock(&ctx->lock); 13366 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 13367 list_for_each_entry(event, &ctx->event_list, event_entry) 13368 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13369 raw_spin_unlock(&ctx->lock); 13370 } 13371 13372 static void perf_event_exit_cpu_context(int cpu) 13373 { 13374 struct perf_cpu_context *cpuctx; 13375 struct perf_event_context *ctx; 13376 struct pmu *pmu; 13377 13378 mutex_lock(&pmus_lock); 13379 list_for_each_entry(pmu, &pmus, entry) { 13380 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13381 ctx = &cpuctx->ctx; 13382 13383 mutex_lock(&ctx->mutex); 13384 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13385 cpuctx->online = 0; 13386 mutex_unlock(&ctx->mutex); 13387 } 13388 cpumask_clear_cpu(cpu, perf_online_mask); 13389 mutex_unlock(&pmus_lock); 13390 } 13391 #else 13392 13393 static void perf_event_exit_cpu_context(int cpu) { } 13394 13395 #endif 13396 13397 int perf_event_init_cpu(unsigned int cpu) 13398 { 13399 struct perf_cpu_context *cpuctx; 13400 struct perf_event_context *ctx; 13401 struct pmu *pmu; 13402 13403 perf_swevent_init_cpu(cpu); 13404 13405 mutex_lock(&pmus_lock); 13406 cpumask_set_cpu(cpu, perf_online_mask); 13407 list_for_each_entry(pmu, &pmus, entry) { 13408 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13409 ctx = &cpuctx->ctx; 13410 13411 mutex_lock(&ctx->mutex); 13412 cpuctx->online = 1; 13413 mutex_unlock(&ctx->mutex); 13414 } 13415 mutex_unlock(&pmus_lock); 13416 13417 return 0; 13418 } 13419 13420 int perf_event_exit_cpu(unsigned int cpu) 13421 { 13422 perf_event_exit_cpu_context(cpu); 13423 return 0; 13424 } 13425 13426 static int 13427 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13428 { 13429 int cpu; 13430 13431 for_each_online_cpu(cpu) 13432 perf_event_exit_cpu(cpu); 13433 13434 return NOTIFY_OK; 13435 } 13436 13437 /* 13438 * Run the perf reboot notifier at the very last possible moment so that 13439 * the generic watchdog code runs as long as possible. 13440 */ 13441 static struct notifier_block perf_reboot_notifier = { 13442 .notifier_call = perf_reboot, 13443 .priority = INT_MIN, 13444 }; 13445 13446 void __init perf_event_init(void) 13447 { 13448 int ret; 13449 13450 idr_init(&pmu_idr); 13451 13452 perf_event_init_all_cpus(); 13453 init_srcu_struct(&pmus_srcu); 13454 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13455 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13456 perf_pmu_register(&perf_task_clock, NULL, -1); 13457 perf_tp_register(); 13458 perf_event_init_cpu(smp_processor_id()); 13459 register_reboot_notifier(&perf_reboot_notifier); 13460 13461 ret = init_hw_breakpoint(); 13462 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13463 13464 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13465 13466 /* 13467 * Build time assertion that we keep the data_head at the intended 13468 * location. IOW, validation we got the __reserved[] size right. 13469 */ 13470 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13471 != 1024); 13472 } 13473 13474 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13475 char *page) 13476 { 13477 struct perf_pmu_events_attr *pmu_attr = 13478 container_of(attr, struct perf_pmu_events_attr, attr); 13479 13480 if (pmu_attr->event_str) 13481 return sprintf(page, "%s\n", pmu_attr->event_str); 13482 13483 return 0; 13484 } 13485 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13486 13487 static int __init perf_event_sysfs_init(void) 13488 { 13489 struct pmu *pmu; 13490 int ret; 13491 13492 mutex_lock(&pmus_lock); 13493 13494 ret = bus_register(&pmu_bus); 13495 if (ret) 13496 goto unlock; 13497 13498 list_for_each_entry(pmu, &pmus, entry) { 13499 if (!pmu->name || pmu->type < 0) 13500 continue; 13501 13502 ret = pmu_dev_alloc(pmu); 13503 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13504 } 13505 pmu_bus_running = 1; 13506 ret = 0; 13507 13508 unlock: 13509 mutex_unlock(&pmus_lock); 13510 13511 return ret; 13512 } 13513 device_initcall(perf_event_sysfs_init); 13514 13515 #ifdef CONFIG_CGROUP_PERF 13516 static struct cgroup_subsys_state * 13517 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13518 { 13519 struct perf_cgroup *jc; 13520 13521 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13522 if (!jc) 13523 return ERR_PTR(-ENOMEM); 13524 13525 jc->info = alloc_percpu(struct perf_cgroup_info); 13526 if (!jc->info) { 13527 kfree(jc); 13528 return ERR_PTR(-ENOMEM); 13529 } 13530 13531 return &jc->css; 13532 } 13533 13534 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13535 { 13536 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13537 13538 free_percpu(jc->info); 13539 kfree(jc); 13540 } 13541 13542 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13543 { 13544 perf_event_cgroup(css->cgroup); 13545 return 0; 13546 } 13547 13548 static int __perf_cgroup_move(void *info) 13549 { 13550 struct task_struct *task = info; 13551 rcu_read_lock(); 13552 perf_cgroup_switch(task); 13553 rcu_read_unlock(); 13554 return 0; 13555 } 13556 13557 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13558 { 13559 struct task_struct *task; 13560 struct cgroup_subsys_state *css; 13561 13562 cgroup_taskset_for_each(task, css, tset) 13563 task_function_call(task, __perf_cgroup_move, task); 13564 } 13565 13566 struct cgroup_subsys perf_event_cgrp_subsys = { 13567 .css_alloc = perf_cgroup_css_alloc, 13568 .css_free = perf_cgroup_css_free, 13569 .css_online = perf_cgroup_css_online, 13570 .attach = perf_cgroup_attach, 13571 /* 13572 * Implicitly enable on dfl hierarchy so that perf events can 13573 * always be filtered by cgroup2 path as long as perf_event 13574 * controller is not mounted on a legacy hierarchy. 13575 */ 13576 .implicit_on_dfl = true, 13577 .threaded = true, 13578 }; 13579 #endif /* CONFIG_CGROUP_PERF */ 13580 13581 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13582