1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 54 #include "internal.h" 55 56 #include <asm/irq_regs.h> 57 58 typedef int (*remote_function_f)(void *); 59 60 struct remote_function_call { 61 struct task_struct *p; 62 remote_function_f func; 63 void *info; 64 int ret; 65 }; 66 67 static void remote_function(void *data) 68 { 69 struct remote_function_call *tfc = data; 70 struct task_struct *p = tfc->p; 71 72 if (p) { 73 /* -EAGAIN */ 74 if (task_cpu(p) != smp_processor_id()) 75 return; 76 77 /* 78 * Now that we're on right CPU with IRQs disabled, we can test 79 * if we hit the right task without races. 80 */ 81 82 tfc->ret = -ESRCH; /* No such (running) process */ 83 if (p != current) 84 return; 85 } 86 87 tfc->ret = tfc->func(tfc->info); 88 } 89 90 /** 91 * task_function_call - call a function on the cpu on which a task runs 92 * @p: the task to evaluate 93 * @func: the function to be called 94 * @info: the function call argument 95 * 96 * Calls the function @func when the task is currently running. This might 97 * be on the current CPU, which just calls the function directly 98 * 99 * returns: @func return value, or 100 * -ESRCH - when the process isn't running 101 * -EAGAIN - when the process moved away 102 */ 103 static int 104 task_function_call(struct task_struct *p, remote_function_f func, void *info) 105 { 106 struct remote_function_call data = { 107 .p = p, 108 .func = func, 109 .info = info, 110 .ret = -EAGAIN, 111 }; 112 int ret; 113 114 do { 115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 116 if (!ret) 117 ret = data.ret; 118 } while (ret == -EAGAIN); 119 120 return ret; 121 } 122 123 /** 124 * cpu_function_call - call a function on the cpu 125 * @func: the function to be called 126 * @info: the function call argument 127 * 128 * Calls the function @func on the remote cpu. 129 * 130 * returns: @func return value or -ENXIO when the cpu is offline 131 */ 132 static int cpu_function_call(int cpu, remote_function_f func, void *info) 133 { 134 struct remote_function_call data = { 135 .p = NULL, 136 .func = func, 137 .info = info, 138 .ret = -ENXIO, /* No such CPU */ 139 }; 140 141 smp_call_function_single(cpu, remote_function, &data, 1); 142 143 return data.ret; 144 } 145 146 static inline struct perf_cpu_context * 147 __get_cpu_context(struct perf_event_context *ctx) 148 { 149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 150 } 151 152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 153 struct perf_event_context *ctx) 154 { 155 raw_spin_lock(&cpuctx->ctx.lock); 156 if (ctx) 157 raw_spin_lock(&ctx->lock); 158 } 159 160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 161 struct perf_event_context *ctx) 162 { 163 if (ctx) 164 raw_spin_unlock(&ctx->lock); 165 raw_spin_unlock(&cpuctx->ctx.lock); 166 } 167 168 #define TASK_TOMBSTONE ((void *)-1L) 169 170 static bool is_kernel_event(struct perf_event *event) 171 { 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 173 } 174 175 /* 176 * On task ctx scheduling... 177 * 178 * When !ctx->nr_events a task context will not be scheduled. This means 179 * we can disable the scheduler hooks (for performance) without leaving 180 * pending task ctx state. 181 * 182 * This however results in two special cases: 183 * 184 * - removing the last event from a task ctx; this is relatively straight 185 * forward and is done in __perf_remove_from_context. 186 * 187 * - adding the first event to a task ctx; this is tricky because we cannot 188 * rely on ctx->is_active and therefore cannot use event_function_call(). 189 * See perf_install_in_context(). 190 * 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 192 */ 193 194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 195 struct perf_event_context *, void *); 196 197 struct event_function_struct { 198 struct perf_event *event; 199 event_f func; 200 void *data; 201 }; 202 203 static int event_function(void *info) 204 { 205 struct event_function_struct *efs = info; 206 struct perf_event *event = efs->event; 207 struct perf_event_context *ctx = event->ctx; 208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 209 struct perf_event_context *task_ctx = cpuctx->task_ctx; 210 int ret = 0; 211 212 WARN_ON_ONCE(!irqs_disabled()); 213 214 perf_ctx_lock(cpuctx, task_ctx); 215 /* 216 * Since we do the IPI call without holding ctx->lock things can have 217 * changed, double check we hit the task we set out to hit. 218 */ 219 if (ctx->task) { 220 if (ctx->task != current) { 221 ret = -ESRCH; 222 goto unlock; 223 } 224 225 /* 226 * We only use event_function_call() on established contexts, 227 * and event_function() is only ever called when active (or 228 * rather, we'll have bailed in task_function_call() or the 229 * above ctx->task != current test), therefore we must have 230 * ctx->is_active here. 231 */ 232 WARN_ON_ONCE(!ctx->is_active); 233 /* 234 * And since we have ctx->is_active, cpuctx->task_ctx must 235 * match. 236 */ 237 WARN_ON_ONCE(task_ctx != ctx); 238 } else { 239 WARN_ON_ONCE(&cpuctx->ctx != ctx); 240 } 241 242 efs->func(event, cpuctx, ctx, efs->data); 243 unlock: 244 perf_ctx_unlock(cpuctx, task_ctx); 245 246 return ret; 247 } 248 249 static void event_function_call(struct perf_event *event, event_f func, void *data) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 253 struct event_function_struct efs = { 254 .event = event, 255 .func = func, 256 .data = data, 257 }; 258 259 if (!event->parent) { 260 /* 261 * If this is a !child event, we must hold ctx::mutex to 262 * stabilize the the event->ctx relation. See 263 * perf_event_ctx_lock(). 264 */ 265 lockdep_assert_held(&ctx->mutex); 266 } 267 268 if (!task) { 269 cpu_function_call(event->cpu, event_function, &efs); 270 return; 271 } 272 273 if (task == TASK_TOMBSTONE) 274 return; 275 276 again: 277 if (!task_function_call(task, event_function, &efs)) 278 return; 279 280 raw_spin_lock_irq(&ctx->lock); 281 /* 282 * Reload the task pointer, it might have been changed by 283 * a concurrent perf_event_context_sched_out(). 284 */ 285 task = ctx->task; 286 if (task == TASK_TOMBSTONE) { 287 raw_spin_unlock_irq(&ctx->lock); 288 return; 289 } 290 if (ctx->is_active) { 291 raw_spin_unlock_irq(&ctx->lock); 292 goto again; 293 } 294 func(event, NULL, ctx, data); 295 raw_spin_unlock_irq(&ctx->lock); 296 } 297 298 /* 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs 300 * are already disabled and we're on the right CPU. 301 */ 302 static void event_function_local(struct perf_event *event, event_f func, void *data) 303 { 304 struct perf_event_context *ctx = event->ctx; 305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 306 struct task_struct *task = READ_ONCE(ctx->task); 307 struct perf_event_context *task_ctx = NULL; 308 309 WARN_ON_ONCE(!irqs_disabled()); 310 311 if (task) { 312 if (task == TASK_TOMBSTONE) 313 return; 314 315 task_ctx = ctx; 316 } 317 318 perf_ctx_lock(cpuctx, task_ctx); 319 320 task = ctx->task; 321 if (task == TASK_TOMBSTONE) 322 goto unlock; 323 324 if (task) { 325 /* 326 * We must be either inactive or active and the right task, 327 * otherwise we're screwed, since we cannot IPI to somewhere 328 * else. 329 */ 330 if (ctx->is_active) { 331 if (WARN_ON_ONCE(task != current)) 332 goto unlock; 333 334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 335 goto unlock; 336 } 337 } else { 338 WARN_ON_ONCE(&cpuctx->ctx != ctx); 339 } 340 341 func(event, cpuctx, ctx, data); 342 unlock: 343 perf_ctx_unlock(cpuctx, task_ctx); 344 } 345 346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 347 PERF_FLAG_FD_OUTPUT |\ 348 PERF_FLAG_PID_CGROUP |\ 349 PERF_FLAG_FD_CLOEXEC) 350 351 /* 352 * branch priv levels that need permission checks 353 */ 354 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 355 (PERF_SAMPLE_BRANCH_KERNEL |\ 356 PERF_SAMPLE_BRANCH_HV) 357 358 enum event_type_t { 359 EVENT_FLEXIBLE = 0x1, 360 EVENT_PINNED = 0x2, 361 EVENT_TIME = 0x4, 362 /* see ctx_resched() for details */ 363 EVENT_CPU = 0x8, 364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 365 }; 366 367 /* 368 * perf_sched_events : >0 events exist 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 370 */ 371 372 static void perf_sched_delayed(struct work_struct *work); 373 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 375 static DEFINE_MUTEX(perf_sched_mutex); 376 static atomic_t perf_sched_count; 377 378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 379 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 381 382 static atomic_t nr_mmap_events __read_mostly; 383 static atomic_t nr_comm_events __read_mostly; 384 static atomic_t nr_namespaces_events __read_mostly; 385 static atomic_t nr_task_events __read_mostly; 386 static atomic_t nr_freq_events __read_mostly; 387 static atomic_t nr_switch_events __read_mostly; 388 389 static LIST_HEAD(pmus); 390 static DEFINE_MUTEX(pmus_lock); 391 static struct srcu_struct pmus_srcu; 392 static cpumask_var_t perf_online_mask; 393 394 /* 395 * perf event paranoia level: 396 * -1 - not paranoid at all 397 * 0 - disallow raw tracepoint access for unpriv 398 * 1 - disallow cpu events for unpriv 399 * 2 - disallow kernel profiling for unpriv 400 */ 401 int sysctl_perf_event_paranoid __read_mostly = 2; 402 403 /* Minimum for 512 kiB + 1 user control page */ 404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 405 406 /* 407 * max perf event sample rate 408 */ 409 #define DEFAULT_MAX_SAMPLE_RATE 100000 410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 412 413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 414 415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 417 418 static int perf_sample_allowed_ns __read_mostly = 419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 420 421 static void update_perf_cpu_limits(void) 422 { 423 u64 tmp = perf_sample_period_ns; 424 425 tmp *= sysctl_perf_cpu_time_max_percent; 426 tmp = div_u64(tmp, 100); 427 if (!tmp) 428 tmp = 1; 429 430 WRITE_ONCE(perf_sample_allowed_ns, tmp); 431 } 432 433 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 434 435 int perf_proc_update_handler(struct ctl_table *table, int write, 436 void __user *buffer, size_t *lenp, 437 loff_t *ppos) 438 { 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 440 441 if (ret || !write) 442 return ret; 443 444 /* 445 * If throttling is disabled don't allow the write: 446 */ 447 if (sysctl_perf_cpu_time_max_percent == 100 || 448 sysctl_perf_cpu_time_max_percent == 0) 449 return -EINVAL; 450 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 453 update_perf_cpu_limits(); 454 455 return 0; 456 } 457 458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 459 460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 461 void __user *buffer, size_t *lenp, 462 loff_t *ppos) 463 { 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 466 if (ret || !write) 467 return ret; 468 469 if (sysctl_perf_cpu_time_max_percent == 100 || 470 sysctl_perf_cpu_time_max_percent == 0) { 471 printk(KERN_WARNING 472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 473 WRITE_ONCE(perf_sample_allowed_ns, 0); 474 } else { 475 update_perf_cpu_limits(); 476 } 477 478 return 0; 479 } 480 481 /* 482 * perf samples are done in some very critical code paths (NMIs). 483 * If they take too much CPU time, the system can lock up and not 484 * get any real work done. This will drop the sample rate when 485 * we detect that events are taking too long. 486 */ 487 #define NR_ACCUMULATED_SAMPLES 128 488 static DEFINE_PER_CPU(u64, running_sample_length); 489 490 static u64 __report_avg; 491 static u64 __report_allowed; 492 493 static void perf_duration_warn(struct irq_work *w) 494 { 495 printk_ratelimited(KERN_INFO 496 "perf: interrupt took too long (%lld > %lld), lowering " 497 "kernel.perf_event_max_sample_rate to %d\n", 498 __report_avg, __report_allowed, 499 sysctl_perf_event_sample_rate); 500 } 501 502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 503 504 void perf_sample_event_took(u64 sample_len_ns) 505 { 506 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 507 u64 running_len; 508 u64 avg_len; 509 u32 max; 510 511 if (max_len == 0) 512 return; 513 514 /* Decay the counter by 1 average sample. */ 515 running_len = __this_cpu_read(running_sample_length); 516 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 517 running_len += sample_len_ns; 518 __this_cpu_write(running_sample_length, running_len); 519 520 /* 521 * Note: this will be biased artifically low until we have 522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 523 * from having to maintain a count. 524 */ 525 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 526 if (avg_len <= max_len) 527 return; 528 529 __report_avg = avg_len; 530 __report_allowed = max_len; 531 532 /* 533 * Compute a throttle threshold 25% below the current duration. 534 */ 535 avg_len += avg_len / 4; 536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 537 if (avg_len < max) 538 max /= (u32)avg_len; 539 else 540 max = 1; 541 542 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 543 WRITE_ONCE(max_samples_per_tick, max); 544 545 sysctl_perf_event_sample_rate = max * HZ; 546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 547 548 if (!irq_work_queue(&perf_duration_work)) { 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 550 "kernel.perf_event_max_sample_rate to %d\n", 551 __report_avg, __report_allowed, 552 sysctl_perf_event_sample_rate); 553 } 554 } 555 556 static atomic64_t perf_event_id; 557 558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 559 enum event_type_t event_type); 560 561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 562 enum event_type_t event_type, 563 struct task_struct *task); 564 565 static void update_context_time(struct perf_event_context *ctx); 566 static u64 perf_event_time(struct perf_event *event); 567 568 void __weak perf_event_print_debug(void) { } 569 570 extern __weak const char *perf_pmu_name(void) 571 { 572 return "pmu"; 573 } 574 575 static inline u64 perf_clock(void) 576 { 577 return local_clock(); 578 } 579 580 static inline u64 perf_event_clock(struct perf_event *event) 581 { 582 return event->clock(); 583 } 584 585 #ifdef CONFIG_CGROUP_PERF 586 587 static inline bool 588 perf_cgroup_match(struct perf_event *event) 589 { 590 struct perf_event_context *ctx = event->ctx; 591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 592 593 /* @event doesn't care about cgroup */ 594 if (!event->cgrp) 595 return true; 596 597 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 598 if (!cpuctx->cgrp) 599 return false; 600 601 /* 602 * Cgroup scoping is recursive. An event enabled for a cgroup is 603 * also enabled for all its descendant cgroups. If @cpuctx's 604 * cgroup is a descendant of @event's (the test covers identity 605 * case), it's a match. 606 */ 607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 608 event->cgrp->css.cgroup); 609 } 610 611 static inline void perf_detach_cgroup(struct perf_event *event) 612 { 613 css_put(&event->cgrp->css); 614 event->cgrp = NULL; 615 } 616 617 static inline int is_cgroup_event(struct perf_event *event) 618 { 619 return event->cgrp != NULL; 620 } 621 622 static inline u64 perf_cgroup_event_time(struct perf_event *event) 623 { 624 struct perf_cgroup_info *t; 625 626 t = per_cpu_ptr(event->cgrp->info, event->cpu); 627 return t->time; 628 } 629 630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 631 { 632 struct perf_cgroup_info *info; 633 u64 now; 634 635 now = perf_clock(); 636 637 info = this_cpu_ptr(cgrp->info); 638 639 info->time += now - info->timestamp; 640 info->timestamp = now; 641 } 642 643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 644 { 645 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 646 if (cgrp_out) 647 __update_cgrp_time(cgrp_out); 648 } 649 650 static inline void update_cgrp_time_from_event(struct perf_event *event) 651 { 652 struct perf_cgroup *cgrp; 653 654 /* 655 * ensure we access cgroup data only when needed and 656 * when we know the cgroup is pinned (css_get) 657 */ 658 if (!is_cgroup_event(event)) 659 return; 660 661 cgrp = perf_cgroup_from_task(current, event->ctx); 662 /* 663 * Do not update time when cgroup is not active 664 */ 665 if (cgrp == event->cgrp) 666 __update_cgrp_time(event->cgrp); 667 } 668 669 static inline void 670 perf_cgroup_set_timestamp(struct task_struct *task, 671 struct perf_event_context *ctx) 672 { 673 struct perf_cgroup *cgrp; 674 struct perf_cgroup_info *info; 675 676 /* 677 * ctx->lock held by caller 678 * ensure we do not access cgroup data 679 * unless we have the cgroup pinned (css_get) 680 */ 681 if (!task || !ctx->nr_cgroups) 682 return; 683 684 cgrp = perf_cgroup_from_task(task, ctx); 685 info = this_cpu_ptr(cgrp->info); 686 info->timestamp = ctx->timestamp; 687 } 688 689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 690 691 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 692 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 693 694 /* 695 * reschedule events based on the cgroup constraint of task. 696 * 697 * mode SWOUT : schedule out everything 698 * mode SWIN : schedule in based on cgroup for next 699 */ 700 static void perf_cgroup_switch(struct task_struct *task, int mode) 701 { 702 struct perf_cpu_context *cpuctx; 703 struct list_head *list; 704 unsigned long flags; 705 706 /* 707 * Disable interrupts and preemption to avoid this CPU's 708 * cgrp_cpuctx_entry to change under us. 709 */ 710 local_irq_save(flags); 711 712 list = this_cpu_ptr(&cgrp_cpuctx_list); 713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 715 716 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 717 perf_pmu_disable(cpuctx->ctx.pmu); 718 719 if (mode & PERF_CGROUP_SWOUT) { 720 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 721 /* 722 * must not be done before ctxswout due 723 * to event_filter_match() in event_sched_out() 724 */ 725 cpuctx->cgrp = NULL; 726 } 727 728 if (mode & PERF_CGROUP_SWIN) { 729 WARN_ON_ONCE(cpuctx->cgrp); 730 /* 731 * set cgrp before ctxsw in to allow 732 * event_filter_match() to not have to pass 733 * task around 734 * we pass the cpuctx->ctx to perf_cgroup_from_task() 735 * because cgorup events are only per-cpu 736 */ 737 cpuctx->cgrp = perf_cgroup_from_task(task, 738 &cpuctx->ctx); 739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 740 } 741 perf_pmu_enable(cpuctx->ctx.pmu); 742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 743 } 744 745 local_irq_restore(flags); 746 } 747 748 static inline void perf_cgroup_sched_out(struct task_struct *task, 749 struct task_struct *next) 750 { 751 struct perf_cgroup *cgrp1; 752 struct perf_cgroup *cgrp2 = NULL; 753 754 rcu_read_lock(); 755 /* 756 * we come here when we know perf_cgroup_events > 0 757 * we do not need to pass the ctx here because we know 758 * we are holding the rcu lock 759 */ 760 cgrp1 = perf_cgroup_from_task(task, NULL); 761 cgrp2 = perf_cgroup_from_task(next, NULL); 762 763 /* 764 * only schedule out current cgroup events if we know 765 * that we are switching to a different cgroup. Otherwise, 766 * do no touch the cgroup events. 767 */ 768 if (cgrp1 != cgrp2) 769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 770 771 rcu_read_unlock(); 772 } 773 774 static inline void perf_cgroup_sched_in(struct task_struct *prev, 775 struct task_struct *task) 776 { 777 struct perf_cgroup *cgrp1; 778 struct perf_cgroup *cgrp2 = NULL; 779 780 rcu_read_lock(); 781 /* 782 * we come here when we know perf_cgroup_events > 0 783 * we do not need to pass the ctx here because we know 784 * we are holding the rcu lock 785 */ 786 cgrp1 = perf_cgroup_from_task(task, NULL); 787 cgrp2 = perf_cgroup_from_task(prev, NULL); 788 789 /* 790 * only need to schedule in cgroup events if we are changing 791 * cgroup during ctxsw. Cgroup events were not scheduled 792 * out of ctxsw out if that was not the case. 793 */ 794 if (cgrp1 != cgrp2) 795 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 796 797 rcu_read_unlock(); 798 } 799 800 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 801 struct perf_event_attr *attr, 802 struct perf_event *group_leader) 803 { 804 struct perf_cgroup *cgrp; 805 struct cgroup_subsys_state *css; 806 struct fd f = fdget(fd); 807 int ret = 0; 808 809 if (!f.file) 810 return -EBADF; 811 812 css = css_tryget_online_from_dir(f.file->f_path.dentry, 813 &perf_event_cgrp_subsys); 814 if (IS_ERR(css)) { 815 ret = PTR_ERR(css); 816 goto out; 817 } 818 819 cgrp = container_of(css, struct perf_cgroup, css); 820 event->cgrp = cgrp; 821 822 /* 823 * all events in a group must monitor 824 * the same cgroup because a task belongs 825 * to only one perf cgroup at a time 826 */ 827 if (group_leader && group_leader->cgrp != cgrp) { 828 perf_detach_cgroup(event); 829 ret = -EINVAL; 830 } 831 out: 832 fdput(f); 833 return ret; 834 } 835 836 static inline void 837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 838 { 839 struct perf_cgroup_info *t; 840 t = per_cpu_ptr(event->cgrp->info, event->cpu); 841 event->shadow_ctx_time = now - t->timestamp; 842 } 843 844 static inline void 845 perf_cgroup_defer_enabled(struct perf_event *event) 846 { 847 /* 848 * when the current task's perf cgroup does not match 849 * the event's, we need to remember to call the 850 * perf_mark_enable() function the first time a task with 851 * a matching perf cgroup is scheduled in. 852 */ 853 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 854 event->cgrp_defer_enabled = 1; 855 } 856 857 static inline void 858 perf_cgroup_mark_enabled(struct perf_event *event, 859 struct perf_event_context *ctx) 860 { 861 struct perf_event *sub; 862 u64 tstamp = perf_event_time(event); 863 864 if (!event->cgrp_defer_enabled) 865 return; 866 867 event->cgrp_defer_enabled = 0; 868 869 event->tstamp_enabled = tstamp - event->total_time_enabled; 870 list_for_each_entry(sub, &event->sibling_list, group_entry) { 871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 872 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 873 sub->cgrp_defer_enabled = 0; 874 } 875 } 876 } 877 878 /* 879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 880 * cleared when last cgroup event is removed. 881 */ 882 static inline void 883 list_update_cgroup_event(struct perf_event *event, 884 struct perf_event_context *ctx, bool add) 885 { 886 struct perf_cpu_context *cpuctx; 887 struct list_head *cpuctx_entry; 888 889 if (!is_cgroup_event(event)) 890 return; 891 892 if (add && ctx->nr_cgroups++) 893 return; 894 else if (!add && --ctx->nr_cgroups) 895 return; 896 /* 897 * Because cgroup events are always per-cpu events, 898 * this will always be called from the right CPU. 899 */ 900 cpuctx = __get_cpu_context(ctx); 901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/ 903 if (add) { 904 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 905 if (perf_cgroup_from_task(current, ctx) == event->cgrp) 906 cpuctx->cgrp = event->cgrp; 907 } else { 908 list_del(cpuctx_entry); 909 cpuctx->cgrp = NULL; 910 } 911 } 912 913 #else /* !CONFIG_CGROUP_PERF */ 914 915 static inline bool 916 perf_cgroup_match(struct perf_event *event) 917 { 918 return true; 919 } 920 921 static inline void perf_detach_cgroup(struct perf_event *event) 922 {} 923 924 static inline int is_cgroup_event(struct perf_event *event) 925 { 926 return 0; 927 } 928 929 static inline void update_cgrp_time_from_event(struct perf_event *event) 930 { 931 } 932 933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 934 { 935 } 936 937 static inline void perf_cgroup_sched_out(struct task_struct *task, 938 struct task_struct *next) 939 { 940 } 941 942 static inline void perf_cgroup_sched_in(struct task_struct *prev, 943 struct task_struct *task) 944 { 945 } 946 947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 948 struct perf_event_attr *attr, 949 struct perf_event *group_leader) 950 { 951 return -EINVAL; 952 } 953 954 static inline void 955 perf_cgroup_set_timestamp(struct task_struct *task, 956 struct perf_event_context *ctx) 957 { 958 } 959 960 void 961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 962 { 963 } 964 965 static inline void 966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 967 { 968 } 969 970 static inline u64 perf_cgroup_event_time(struct perf_event *event) 971 { 972 return 0; 973 } 974 975 static inline void 976 perf_cgroup_defer_enabled(struct perf_event *event) 977 { 978 } 979 980 static inline void 981 perf_cgroup_mark_enabled(struct perf_event *event, 982 struct perf_event_context *ctx) 983 { 984 } 985 986 static inline void 987 list_update_cgroup_event(struct perf_event *event, 988 struct perf_event_context *ctx, bool add) 989 { 990 } 991 992 #endif 993 994 /* 995 * set default to be dependent on timer tick just 996 * like original code 997 */ 998 #define PERF_CPU_HRTIMER (1000 / HZ) 999 /* 1000 * function must be called with interrupts disabled 1001 */ 1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1003 { 1004 struct perf_cpu_context *cpuctx; 1005 int rotations = 0; 1006 1007 WARN_ON(!irqs_disabled()); 1008 1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1010 rotations = perf_rotate_context(cpuctx); 1011 1012 raw_spin_lock(&cpuctx->hrtimer_lock); 1013 if (rotations) 1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1015 else 1016 cpuctx->hrtimer_active = 0; 1017 raw_spin_unlock(&cpuctx->hrtimer_lock); 1018 1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1020 } 1021 1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1023 { 1024 struct hrtimer *timer = &cpuctx->hrtimer; 1025 struct pmu *pmu = cpuctx->ctx.pmu; 1026 u64 interval; 1027 1028 /* no multiplexing needed for SW PMU */ 1029 if (pmu->task_ctx_nr == perf_sw_context) 1030 return; 1031 1032 /* 1033 * check default is sane, if not set then force to 1034 * default interval (1/tick) 1035 */ 1036 interval = pmu->hrtimer_interval_ms; 1037 if (interval < 1) 1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1039 1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1041 1042 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1044 timer->function = perf_mux_hrtimer_handler; 1045 } 1046 1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1048 { 1049 struct hrtimer *timer = &cpuctx->hrtimer; 1050 struct pmu *pmu = cpuctx->ctx.pmu; 1051 unsigned long flags; 1052 1053 /* not for SW PMU */ 1054 if (pmu->task_ctx_nr == perf_sw_context) 1055 return 0; 1056 1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1058 if (!cpuctx->hrtimer_active) { 1059 cpuctx->hrtimer_active = 1; 1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1062 } 1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1064 1065 return 0; 1066 } 1067 1068 void perf_pmu_disable(struct pmu *pmu) 1069 { 1070 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1071 if (!(*count)++) 1072 pmu->pmu_disable(pmu); 1073 } 1074 1075 void perf_pmu_enable(struct pmu *pmu) 1076 { 1077 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1078 if (!--(*count)) 1079 pmu->pmu_enable(pmu); 1080 } 1081 1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1083 1084 /* 1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1086 * perf_event_task_tick() are fully serialized because they're strictly cpu 1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1088 * disabled, while perf_event_task_tick is called from IRQ context. 1089 */ 1090 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1091 { 1092 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1093 1094 WARN_ON(!irqs_disabled()); 1095 1096 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1097 1098 list_add(&ctx->active_ctx_list, head); 1099 } 1100 1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1102 { 1103 WARN_ON(!irqs_disabled()); 1104 1105 WARN_ON(list_empty(&ctx->active_ctx_list)); 1106 1107 list_del_init(&ctx->active_ctx_list); 1108 } 1109 1110 static void get_ctx(struct perf_event_context *ctx) 1111 { 1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1113 } 1114 1115 static void free_ctx(struct rcu_head *head) 1116 { 1117 struct perf_event_context *ctx; 1118 1119 ctx = container_of(head, struct perf_event_context, rcu_head); 1120 kfree(ctx->task_ctx_data); 1121 kfree(ctx); 1122 } 1123 1124 static void put_ctx(struct perf_event_context *ctx) 1125 { 1126 if (atomic_dec_and_test(&ctx->refcount)) { 1127 if (ctx->parent_ctx) 1128 put_ctx(ctx->parent_ctx); 1129 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1130 put_task_struct(ctx->task); 1131 call_rcu(&ctx->rcu_head, free_ctx); 1132 } 1133 } 1134 1135 /* 1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1137 * perf_pmu_migrate_context() we need some magic. 1138 * 1139 * Those places that change perf_event::ctx will hold both 1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1141 * 1142 * Lock ordering is by mutex address. There are two other sites where 1143 * perf_event_context::mutex nests and those are: 1144 * 1145 * - perf_event_exit_task_context() [ child , 0 ] 1146 * perf_event_exit_event() 1147 * put_event() [ parent, 1 ] 1148 * 1149 * - perf_event_init_context() [ parent, 0 ] 1150 * inherit_task_group() 1151 * inherit_group() 1152 * inherit_event() 1153 * perf_event_alloc() 1154 * perf_init_event() 1155 * perf_try_init_event() [ child , 1 ] 1156 * 1157 * While it appears there is an obvious deadlock here -- the parent and child 1158 * nesting levels are inverted between the two. This is in fact safe because 1159 * life-time rules separate them. That is an exiting task cannot fork, and a 1160 * spawning task cannot (yet) exit. 1161 * 1162 * But remember that that these are parent<->child context relations, and 1163 * migration does not affect children, therefore these two orderings should not 1164 * interact. 1165 * 1166 * The change in perf_event::ctx does not affect children (as claimed above) 1167 * because the sys_perf_event_open() case will install a new event and break 1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1169 * concerned with cpuctx and that doesn't have children. 1170 * 1171 * The places that change perf_event::ctx will issue: 1172 * 1173 * perf_remove_from_context(); 1174 * synchronize_rcu(); 1175 * perf_install_in_context(); 1176 * 1177 * to affect the change. The remove_from_context() + synchronize_rcu() should 1178 * quiesce the event, after which we can install it in the new location. This 1179 * means that only external vectors (perf_fops, prctl) can perturb the event 1180 * while in transit. Therefore all such accessors should also acquire 1181 * perf_event_context::mutex to serialize against this. 1182 * 1183 * However; because event->ctx can change while we're waiting to acquire 1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1185 * function. 1186 * 1187 * Lock order: 1188 * cred_guard_mutex 1189 * task_struct::perf_event_mutex 1190 * perf_event_context::mutex 1191 * perf_event::child_mutex; 1192 * perf_event_context::lock 1193 * perf_event::mmap_mutex 1194 * mmap_sem 1195 */ 1196 static struct perf_event_context * 1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1198 { 1199 struct perf_event_context *ctx; 1200 1201 again: 1202 rcu_read_lock(); 1203 ctx = ACCESS_ONCE(event->ctx); 1204 if (!atomic_inc_not_zero(&ctx->refcount)) { 1205 rcu_read_unlock(); 1206 goto again; 1207 } 1208 rcu_read_unlock(); 1209 1210 mutex_lock_nested(&ctx->mutex, nesting); 1211 if (event->ctx != ctx) { 1212 mutex_unlock(&ctx->mutex); 1213 put_ctx(ctx); 1214 goto again; 1215 } 1216 1217 return ctx; 1218 } 1219 1220 static inline struct perf_event_context * 1221 perf_event_ctx_lock(struct perf_event *event) 1222 { 1223 return perf_event_ctx_lock_nested(event, 0); 1224 } 1225 1226 static void perf_event_ctx_unlock(struct perf_event *event, 1227 struct perf_event_context *ctx) 1228 { 1229 mutex_unlock(&ctx->mutex); 1230 put_ctx(ctx); 1231 } 1232 1233 /* 1234 * This must be done under the ctx->lock, such as to serialize against 1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1236 * calling scheduler related locks and ctx->lock nests inside those. 1237 */ 1238 static __must_check struct perf_event_context * 1239 unclone_ctx(struct perf_event_context *ctx) 1240 { 1241 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1242 1243 lockdep_assert_held(&ctx->lock); 1244 1245 if (parent_ctx) 1246 ctx->parent_ctx = NULL; 1247 ctx->generation++; 1248 1249 return parent_ctx; 1250 } 1251 1252 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1253 enum pid_type type) 1254 { 1255 u32 nr; 1256 /* 1257 * only top level events have the pid namespace they were created in 1258 */ 1259 if (event->parent) 1260 event = event->parent; 1261 1262 nr = __task_pid_nr_ns(p, type, event->ns); 1263 /* avoid -1 if it is idle thread or runs in another ns */ 1264 if (!nr && !pid_alive(p)) 1265 nr = -1; 1266 return nr; 1267 } 1268 1269 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1270 { 1271 return perf_event_pid_type(event, p, __PIDTYPE_TGID); 1272 } 1273 1274 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1275 { 1276 return perf_event_pid_type(event, p, PIDTYPE_PID); 1277 } 1278 1279 /* 1280 * If we inherit events we want to return the parent event id 1281 * to userspace. 1282 */ 1283 static u64 primary_event_id(struct perf_event *event) 1284 { 1285 u64 id = event->id; 1286 1287 if (event->parent) 1288 id = event->parent->id; 1289 1290 return id; 1291 } 1292 1293 /* 1294 * Get the perf_event_context for a task and lock it. 1295 * 1296 * This has to cope with with the fact that until it is locked, 1297 * the context could get moved to another task. 1298 */ 1299 static struct perf_event_context * 1300 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1301 { 1302 struct perf_event_context *ctx; 1303 1304 retry: 1305 /* 1306 * One of the few rules of preemptible RCU is that one cannot do 1307 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1308 * part of the read side critical section was irqs-enabled -- see 1309 * rcu_read_unlock_special(). 1310 * 1311 * Since ctx->lock nests under rq->lock we must ensure the entire read 1312 * side critical section has interrupts disabled. 1313 */ 1314 local_irq_save(*flags); 1315 rcu_read_lock(); 1316 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1317 if (ctx) { 1318 /* 1319 * If this context is a clone of another, it might 1320 * get swapped for another underneath us by 1321 * perf_event_task_sched_out, though the 1322 * rcu_read_lock() protects us from any context 1323 * getting freed. Lock the context and check if it 1324 * got swapped before we could get the lock, and retry 1325 * if so. If we locked the right context, then it 1326 * can't get swapped on us any more. 1327 */ 1328 raw_spin_lock(&ctx->lock); 1329 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1330 raw_spin_unlock(&ctx->lock); 1331 rcu_read_unlock(); 1332 local_irq_restore(*flags); 1333 goto retry; 1334 } 1335 1336 if (ctx->task == TASK_TOMBSTONE || 1337 !atomic_inc_not_zero(&ctx->refcount)) { 1338 raw_spin_unlock(&ctx->lock); 1339 ctx = NULL; 1340 } else { 1341 WARN_ON_ONCE(ctx->task != task); 1342 } 1343 } 1344 rcu_read_unlock(); 1345 if (!ctx) 1346 local_irq_restore(*flags); 1347 return ctx; 1348 } 1349 1350 /* 1351 * Get the context for a task and increment its pin_count so it 1352 * can't get swapped to another task. This also increments its 1353 * reference count so that the context can't get freed. 1354 */ 1355 static struct perf_event_context * 1356 perf_pin_task_context(struct task_struct *task, int ctxn) 1357 { 1358 struct perf_event_context *ctx; 1359 unsigned long flags; 1360 1361 ctx = perf_lock_task_context(task, ctxn, &flags); 1362 if (ctx) { 1363 ++ctx->pin_count; 1364 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1365 } 1366 return ctx; 1367 } 1368 1369 static void perf_unpin_context(struct perf_event_context *ctx) 1370 { 1371 unsigned long flags; 1372 1373 raw_spin_lock_irqsave(&ctx->lock, flags); 1374 --ctx->pin_count; 1375 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1376 } 1377 1378 /* 1379 * Update the record of the current time in a context. 1380 */ 1381 static void update_context_time(struct perf_event_context *ctx) 1382 { 1383 u64 now = perf_clock(); 1384 1385 ctx->time += now - ctx->timestamp; 1386 ctx->timestamp = now; 1387 } 1388 1389 static u64 perf_event_time(struct perf_event *event) 1390 { 1391 struct perf_event_context *ctx = event->ctx; 1392 1393 if (is_cgroup_event(event)) 1394 return perf_cgroup_event_time(event); 1395 1396 return ctx ? ctx->time : 0; 1397 } 1398 1399 /* 1400 * Update the total_time_enabled and total_time_running fields for a event. 1401 */ 1402 static void update_event_times(struct perf_event *event) 1403 { 1404 struct perf_event_context *ctx = event->ctx; 1405 u64 run_end; 1406 1407 lockdep_assert_held(&ctx->lock); 1408 1409 if (event->state < PERF_EVENT_STATE_INACTIVE || 1410 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1411 return; 1412 1413 /* 1414 * in cgroup mode, time_enabled represents 1415 * the time the event was enabled AND active 1416 * tasks were in the monitored cgroup. This is 1417 * independent of the activity of the context as 1418 * there may be a mix of cgroup and non-cgroup events. 1419 * 1420 * That is why we treat cgroup events differently 1421 * here. 1422 */ 1423 if (is_cgroup_event(event)) 1424 run_end = perf_cgroup_event_time(event); 1425 else if (ctx->is_active) 1426 run_end = ctx->time; 1427 else 1428 run_end = event->tstamp_stopped; 1429 1430 event->total_time_enabled = run_end - event->tstamp_enabled; 1431 1432 if (event->state == PERF_EVENT_STATE_INACTIVE) 1433 run_end = event->tstamp_stopped; 1434 else 1435 run_end = perf_event_time(event); 1436 1437 event->total_time_running = run_end - event->tstamp_running; 1438 1439 } 1440 1441 /* 1442 * Update total_time_enabled and total_time_running for all events in a group. 1443 */ 1444 static void update_group_times(struct perf_event *leader) 1445 { 1446 struct perf_event *event; 1447 1448 update_event_times(leader); 1449 list_for_each_entry(event, &leader->sibling_list, group_entry) 1450 update_event_times(event); 1451 } 1452 1453 static enum event_type_t get_event_type(struct perf_event *event) 1454 { 1455 struct perf_event_context *ctx = event->ctx; 1456 enum event_type_t event_type; 1457 1458 lockdep_assert_held(&ctx->lock); 1459 1460 /* 1461 * It's 'group type', really, because if our group leader is 1462 * pinned, so are we. 1463 */ 1464 if (event->group_leader != event) 1465 event = event->group_leader; 1466 1467 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1468 if (!ctx->task) 1469 event_type |= EVENT_CPU; 1470 1471 return event_type; 1472 } 1473 1474 static struct list_head * 1475 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1476 { 1477 if (event->attr.pinned) 1478 return &ctx->pinned_groups; 1479 else 1480 return &ctx->flexible_groups; 1481 } 1482 1483 /* 1484 * Add a event from the lists for its context. 1485 * Must be called with ctx->mutex and ctx->lock held. 1486 */ 1487 static void 1488 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1489 { 1490 lockdep_assert_held(&ctx->lock); 1491 1492 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1493 event->attach_state |= PERF_ATTACH_CONTEXT; 1494 1495 /* 1496 * If we're a stand alone event or group leader, we go to the context 1497 * list, group events are kept attached to the group so that 1498 * perf_group_detach can, at all times, locate all siblings. 1499 */ 1500 if (event->group_leader == event) { 1501 struct list_head *list; 1502 1503 event->group_caps = event->event_caps; 1504 1505 list = ctx_group_list(event, ctx); 1506 list_add_tail(&event->group_entry, list); 1507 } 1508 1509 list_update_cgroup_event(event, ctx, true); 1510 1511 list_add_rcu(&event->event_entry, &ctx->event_list); 1512 ctx->nr_events++; 1513 if (event->attr.inherit_stat) 1514 ctx->nr_stat++; 1515 1516 ctx->generation++; 1517 } 1518 1519 /* 1520 * Initialize event state based on the perf_event_attr::disabled. 1521 */ 1522 static inline void perf_event__state_init(struct perf_event *event) 1523 { 1524 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1525 PERF_EVENT_STATE_INACTIVE; 1526 } 1527 1528 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1529 { 1530 int entry = sizeof(u64); /* value */ 1531 int size = 0; 1532 int nr = 1; 1533 1534 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1535 size += sizeof(u64); 1536 1537 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1538 size += sizeof(u64); 1539 1540 if (event->attr.read_format & PERF_FORMAT_ID) 1541 entry += sizeof(u64); 1542 1543 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1544 nr += nr_siblings; 1545 size += sizeof(u64); 1546 } 1547 1548 size += entry * nr; 1549 event->read_size = size; 1550 } 1551 1552 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1553 { 1554 struct perf_sample_data *data; 1555 u16 size = 0; 1556 1557 if (sample_type & PERF_SAMPLE_IP) 1558 size += sizeof(data->ip); 1559 1560 if (sample_type & PERF_SAMPLE_ADDR) 1561 size += sizeof(data->addr); 1562 1563 if (sample_type & PERF_SAMPLE_PERIOD) 1564 size += sizeof(data->period); 1565 1566 if (sample_type & PERF_SAMPLE_WEIGHT) 1567 size += sizeof(data->weight); 1568 1569 if (sample_type & PERF_SAMPLE_READ) 1570 size += event->read_size; 1571 1572 if (sample_type & PERF_SAMPLE_DATA_SRC) 1573 size += sizeof(data->data_src.val); 1574 1575 if (sample_type & PERF_SAMPLE_TRANSACTION) 1576 size += sizeof(data->txn); 1577 1578 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1579 size += sizeof(data->phys_addr); 1580 1581 event->header_size = size; 1582 } 1583 1584 /* 1585 * Called at perf_event creation and when events are attached/detached from a 1586 * group. 1587 */ 1588 static void perf_event__header_size(struct perf_event *event) 1589 { 1590 __perf_event_read_size(event, 1591 event->group_leader->nr_siblings); 1592 __perf_event_header_size(event, event->attr.sample_type); 1593 } 1594 1595 static void perf_event__id_header_size(struct perf_event *event) 1596 { 1597 struct perf_sample_data *data; 1598 u64 sample_type = event->attr.sample_type; 1599 u16 size = 0; 1600 1601 if (sample_type & PERF_SAMPLE_TID) 1602 size += sizeof(data->tid_entry); 1603 1604 if (sample_type & PERF_SAMPLE_TIME) 1605 size += sizeof(data->time); 1606 1607 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1608 size += sizeof(data->id); 1609 1610 if (sample_type & PERF_SAMPLE_ID) 1611 size += sizeof(data->id); 1612 1613 if (sample_type & PERF_SAMPLE_STREAM_ID) 1614 size += sizeof(data->stream_id); 1615 1616 if (sample_type & PERF_SAMPLE_CPU) 1617 size += sizeof(data->cpu_entry); 1618 1619 event->id_header_size = size; 1620 } 1621 1622 static bool perf_event_validate_size(struct perf_event *event) 1623 { 1624 /* 1625 * The values computed here will be over-written when we actually 1626 * attach the event. 1627 */ 1628 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1629 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1630 perf_event__id_header_size(event); 1631 1632 /* 1633 * Sum the lot; should not exceed the 64k limit we have on records. 1634 * Conservative limit to allow for callchains and other variable fields. 1635 */ 1636 if (event->read_size + event->header_size + 1637 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1638 return false; 1639 1640 return true; 1641 } 1642 1643 static void perf_group_attach(struct perf_event *event) 1644 { 1645 struct perf_event *group_leader = event->group_leader, *pos; 1646 1647 lockdep_assert_held(&event->ctx->lock); 1648 1649 /* 1650 * We can have double attach due to group movement in perf_event_open. 1651 */ 1652 if (event->attach_state & PERF_ATTACH_GROUP) 1653 return; 1654 1655 event->attach_state |= PERF_ATTACH_GROUP; 1656 1657 if (group_leader == event) 1658 return; 1659 1660 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1661 1662 group_leader->group_caps &= event->event_caps; 1663 1664 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1665 group_leader->nr_siblings++; 1666 1667 perf_event__header_size(group_leader); 1668 1669 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1670 perf_event__header_size(pos); 1671 } 1672 1673 /* 1674 * Remove a event from the lists for its context. 1675 * Must be called with ctx->mutex and ctx->lock held. 1676 */ 1677 static void 1678 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1679 { 1680 WARN_ON_ONCE(event->ctx != ctx); 1681 lockdep_assert_held(&ctx->lock); 1682 1683 /* 1684 * We can have double detach due to exit/hot-unplug + close. 1685 */ 1686 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1687 return; 1688 1689 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1690 1691 list_update_cgroup_event(event, ctx, false); 1692 1693 ctx->nr_events--; 1694 if (event->attr.inherit_stat) 1695 ctx->nr_stat--; 1696 1697 list_del_rcu(&event->event_entry); 1698 1699 if (event->group_leader == event) 1700 list_del_init(&event->group_entry); 1701 1702 update_group_times(event); 1703 1704 /* 1705 * If event was in error state, then keep it 1706 * that way, otherwise bogus counts will be 1707 * returned on read(). The only way to get out 1708 * of error state is by explicit re-enabling 1709 * of the event 1710 */ 1711 if (event->state > PERF_EVENT_STATE_OFF) 1712 event->state = PERF_EVENT_STATE_OFF; 1713 1714 ctx->generation++; 1715 } 1716 1717 static void perf_group_detach(struct perf_event *event) 1718 { 1719 struct perf_event *sibling, *tmp; 1720 struct list_head *list = NULL; 1721 1722 lockdep_assert_held(&event->ctx->lock); 1723 1724 /* 1725 * We can have double detach due to exit/hot-unplug + close. 1726 */ 1727 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1728 return; 1729 1730 event->attach_state &= ~PERF_ATTACH_GROUP; 1731 1732 /* 1733 * If this is a sibling, remove it from its group. 1734 */ 1735 if (event->group_leader != event) { 1736 list_del_init(&event->group_entry); 1737 event->group_leader->nr_siblings--; 1738 goto out; 1739 } 1740 1741 if (!list_empty(&event->group_entry)) 1742 list = &event->group_entry; 1743 1744 /* 1745 * If this was a group event with sibling events then 1746 * upgrade the siblings to singleton events by adding them 1747 * to whatever list we are on. 1748 */ 1749 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1750 if (list) 1751 list_move_tail(&sibling->group_entry, list); 1752 sibling->group_leader = sibling; 1753 1754 /* Inherit group flags from the previous leader */ 1755 sibling->group_caps = event->group_caps; 1756 1757 WARN_ON_ONCE(sibling->ctx != event->ctx); 1758 } 1759 1760 out: 1761 perf_event__header_size(event->group_leader); 1762 1763 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1764 perf_event__header_size(tmp); 1765 } 1766 1767 static bool is_orphaned_event(struct perf_event *event) 1768 { 1769 return event->state == PERF_EVENT_STATE_DEAD; 1770 } 1771 1772 static inline int __pmu_filter_match(struct perf_event *event) 1773 { 1774 struct pmu *pmu = event->pmu; 1775 return pmu->filter_match ? pmu->filter_match(event) : 1; 1776 } 1777 1778 /* 1779 * Check whether we should attempt to schedule an event group based on 1780 * PMU-specific filtering. An event group can consist of HW and SW events, 1781 * potentially with a SW leader, so we must check all the filters, to 1782 * determine whether a group is schedulable: 1783 */ 1784 static inline int pmu_filter_match(struct perf_event *event) 1785 { 1786 struct perf_event *child; 1787 1788 if (!__pmu_filter_match(event)) 1789 return 0; 1790 1791 list_for_each_entry(child, &event->sibling_list, group_entry) { 1792 if (!__pmu_filter_match(child)) 1793 return 0; 1794 } 1795 1796 return 1; 1797 } 1798 1799 static inline int 1800 event_filter_match(struct perf_event *event) 1801 { 1802 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1803 perf_cgroup_match(event) && pmu_filter_match(event); 1804 } 1805 1806 static void 1807 event_sched_out(struct perf_event *event, 1808 struct perf_cpu_context *cpuctx, 1809 struct perf_event_context *ctx) 1810 { 1811 u64 tstamp = perf_event_time(event); 1812 u64 delta; 1813 1814 WARN_ON_ONCE(event->ctx != ctx); 1815 lockdep_assert_held(&ctx->lock); 1816 1817 /* 1818 * An event which could not be activated because of 1819 * filter mismatch still needs to have its timings 1820 * maintained, otherwise bogus information is return 1821 * via read() for time_enabled, time_running: 1822 */ 1823 if (event->state == PERF_EVENT_STATE_INACTIVE && 1824 !event_filter_match(event)) { 1825 delta = tstamp - event->tstamp_stopped; 1826 event->tstamp_running += delta; 1827 event->tstamp_stopped = tstamp; 1828 } 1829 1830 if (event->state != PERF_EVENT_STATE_ACTIVE) 1831 return; 1832 1833 perf_pmu_disable(event->pmu); 1834 1835 event->tstamp_stopped = tstamp; 1836 event->pmu->del(event, 0); 1837 event->oncpu = -1; 1838 event->state = PERF_EVENT_STATE_INACTIVE; 1839 if (event->pending_disable) { 1840 event->pending_disable = 0; 1841 event->state = PERF_EVENT_STATE_OFF; 1842 } 1843 1844 if (!is_software_event(event)) 1845 cpuctx->active_oncpu--; 1846 if (!--ctx->nr_active) 1847 perf_event_ctx_deactivate(ctx); 1848 if (event->attr.freq && event->attr.sample_freq) 1849 ctx->nr_freq--; 1850 if (event->attr.exclusive || !cpuctx->active_oncpu) 1851 cpuctx->exclusive = 0; 1852 1853 perf_pmu_enable(event->pmu); 1854 } 1855 1856 static void 1857 group_sched_out(struct perf_event *group_event, 1858 struct perf_cpu_context *cpuctx, 1859 struct perf_event_context *ctx) 1860 { 1861 struct perf_event *event; 1862 int state = group_event->state; 1863 1864 perf_pmu_disable(ctx->pmu); 1865 1866 event_sched_out(group_event, cpuctx, ctx); 1867 1868 /* 1869 * Schedule out siblings (if any): 1870 */ 1871 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1872 event_sched_out(event, cpuctx, ctx); 1873 1874 perf_pmu_enable(ctx->pmu); 1875 1876 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1877 cpuctx->exclusive = 0; 1878 } 1879 1880 #define DETACH_GROUP 0x01UL 1881 1882 /* 1883 * Cross CPU call to remove a performance event 1884 * 1885 * We disable the event on the hardware level first. After that we 1886 * remove it from the context list. 1887 */ 1888 static void 1889 __perf_remove_from_context(struct perf_event *event, 1890 struct perf_cpu_context *cpuctx, 1891 struct perf_event_context *ctx, 1892 void *info) 1893 { 1894 unsigned long flags = (unsigned long)info; 1895 1896 event_sched_out(event, cpuctx, ctx); 1897 if (flags & DETACH_GROUP) 1898 perf_group_detach(event); 1899 list_del_event(event, ctx); 1900 1901 if (!ctx->nr_events && ctx->is_active) { 1902 ctx->is_active = 0; 1903 if (ctx->task) { 1904 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1905 cpuctx->task_ctx = NULL; 1906 } 1907 } 1908 } 1909 1910 /* 1911 * Remove the event from a task's (or a CPU's) list of events. 1912 * 1913 * If event->ctx is a cloned context, callers must make sure that 1914 * every task struct that event->ctx->task could possibly point to 1915 * remains valid. This is OK when called from perf_release since 1916 * that only calls us on the top-level context, which can't be a clone. 1917 * When called from perf_event_exit_task, it's OK because the 1918 * context has been detached from its task. 1919 */ 1920 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1921 { 1922 struct perf_event_context *ctx = event->ctx; 1923 1924 lockdep_assert_held(&ctx->mutex); 1925 1926 event_function_call(event, __perf_remove_from_context, (void *)flags); 1927 1928 /* 1929 * The above event_function_call() can NO-OP when it hits 1930 * TASK_TOMBSTONE. In that case we must already have been detached 1931 * from the context (by perf_event_exit_event()) but the grouping 1932 * might still be in-tact. 1933 */ 1934 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1935 if ((flags & DETACH_GROUP) && 1936 (event->attach_state & PERF_ATTACH_GROUP)) { 1937 /* 1938 * Since in that case we cannot possibly be scheduled, simply 1939 * detach now. 1940 */ 1941 raw_spin_lock_irq(&ctx->lock); 1942 perf_group_detach(event); 1943 raw_spin_unlock_irq(&ctx->lock); 1944 } 1945 } 1946 1947 /* 1948 * Cross CPU call to disable a performance event 1949 */ 1950 static void __perf_event_disable(struct perf_event *event, 1951 struct perf_cpu_context *cpuctx, 1952 struct perf_event_context *ctx, 1953 void *info) 1954 { 1955 if (event->state < PERF_EVENT_STATE_INACTIVE) 1956 return; 1957 1958 update_context_time(ctx); 1959 update_cgrp_time_from_event(event); 1960 update_group_times(event); 1961 if (event == event->group_leader) 1962 group_sched_out(event, cpuctx, ctx); 1963 else 1964 event_sched_out(event, cpuctx, ctx); 1965 event->state = PERF_EVENT_STATE_OFF; 1966 } 1967 1968 /* 1969 * Disable a event. 1970 * 1971 * If event->ctx is a cloned context, callers must make sure that 1972 * every task struct that event->ctx->task could possibly point to 1973 * remains valid. This condition is satisifed when called through 1974 * perf_event_for_each_child or perf_event_for_each because they 1975 * hold the top-level event's child_mutex, so any descendant that 1976 * goes to exit will block in perf_event_exit_event(). 1977 * 1978 * When called from perf_pending_event it's OK because event->ctx 1979 * is the current context on this CPU and preemption is disabled, 1980 * hence we can't get into perf_event_task_sched_out for this context. 1981 */ 1982 static void _perf_event_disable(struct perf_event *event) 1983 { 1984 struct perf_event_context *ctx = event->ctx; 1985 1986 raw_spin_lock_irq(&ctx->lock); 1987 if (event->state <= PERF_EVENT_STATE_OFF) { 1988 raw_spin_unlock_irq(&ctx->lock); 1989 return; 1990 } 1991 raw_spin_unlock_irq(&ctx->lock); 1992 1993 event_function_call(event, __perf_event_disable, NULL); 1994 } 1995 1996 void perf_event_disable_local(struct perf_event *event) 1997 { 1998 event_function_local(event, __perf_event_disable, NULL); 1999 } 2000 2001 /* 2002 * Strictly speaking kernel users cannot create groups and therefore this 2003 * interface does not need the perf_event_ctx_lock() magic. 2004 */ 2005 void perf_event_disable(struct perf_event *event) 2006 { 2007 struct perf_event_context *ctx; 2008 2009 ctx = perf_event_ctx_lock(event); 2010 _perf_event_disable(event); 2011 perf_event_ctx_unlock(event, ctx); 2012 } 2013 EXPORT_SYMBOL_GPL(perf_event_disable); 2014 2015 void perf_event_disable_inatomic(struct perf_event *event) 2016 { 2017 event->pending_disable = 1; 2018 irq_work_queue(&event->pending); 2019 } 2020 2021 static void perf_set_shadow_time(struct perf_event *event, 2022 struct perf_event_context *ctx, 2023 u64 tstamp) 2024 { 2025 /* 2026 * use the correct time source for the time snapshot 2027 * 2028 * We could get by without this by leveraging the 2029 * fact that to get to this function, the caller 2030 * has most likely already called update_context_time() 2031 * and update_cgrp_time_xx() and thus both timestamp 2032 * are identical (or very close). Given that tstamp is, 2033 * already adjusted for cgroup, we could say that: 2034 * tstamp - ctx->timestamp 2035 * is equivalent to 2036 * tstamp - cgrp->timestamp. 2037 * 2038 * Then, in perf_output_read(), the calculation would 2039 * work with no changes because: 2040 * - event is guaranteed scheduled in 2041 * - no scheduled out in between 2042 * - thus the timestamp would be the same 2043 * 2044 * But this is a bit hairy. 2045 * 2046 * So instead, we have an explicit cgroup call to remain 2047 * within the time time source all along. We believe it 2048 * is cleaner and simpler to understand. 2049 */ 2050 if (is_cgroup_event(event)) 2051 perf_cgroup_set_shadow_time(event, tstamp); 2052 else 2053 event->shadow_ctx_time = tstamp - ctx->timestamp; 2054 } 2055 2056 #define MAX_INTERRUPTS (~0ULL) 2057 2058 static void perf_log_throttle(struct perf_event *event, int enable); 2059 static void perf_log_itrace_start(struct perf_event *event); 2060 2061 static int 2062 event_sched_in(struct perf_event *event, 2063 struct perf_cpu_context *cpuctx, 2064 struct perf_event_context *ctx) 2065 { 2066 u64 tstamp = perf_event_time(event); 2067 int ret = 0; 2068 2069 lockdep_assert_held(&ctx->lock); 2070 2071 if (event->state <= PERF_EVENT_STATE_OFF) 2072 return 0; 2073 2074 WRITE_ONCE(event->oncpu, smp_processor_id()); 2075 /* 2076 * Order event::oncpu write to happen before the ACTIVE state 2077 * is visible. 2078 */ 2079 smp_wmb(); 2080 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 2081 2082 /* 2083 * Unthrottle events, since we scheduled we might have missed several 2084 * ticks already, also for a heavily scheduling task there is little 2085 * guarantee it'll get a tick in a timely manner. 2086 */ 2087 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2088 perf_log_throttle(event, 1); 2089 event->hw.interrupts = 0; 2090 } 2091 2092 /* 2093 * The new state must be visible before we turn it on in the hardware: 2094 */ 2095 smp_wmb(); 2096 2097 perf_pmu_disable(event->pmu); 2098 2099 perf_set_shadow_time(event, ctx, tstamp); 2100 2101 perf_log_itrace_start(event); 2102 2103 if (event->pmu->add(event, PERF_EF_START)) { 2104 event->state = PERF_EVENT_STATE_INACTIVE; 2105 event->oncpu = -1; 2106 ret = -EAGAIN; 2107 goto out; 2108 } 2109 2110 event->tstamp_running += tstamp - event->tstamp_stopped; 2111 2112 if (!is_software_event(event)) 2113 cpuctx->active_oncpu++; 2114 if (!ctx->nr_active++) 2115 perf_event_ctx_activate(ctx); 2116 if (event->attr.freq && event->attr.sample_freq) 2117 ctx->nr_freq++; 2118 2119 if (event->attr.exclusive) 2120 cpuctx->exclusive = 1; 2121 2122 out: 2123 perf_pmu_enable(event->pmu); 2124 2125 return ret; 2126 } 2127 2128 static int 2129 group_sched_in(struct perf_event *group_event, 2130 struct perf_cpu_context *cpuctx, 2131 struct perf_event_context *ctx) 2132 { 2133 struct perf_event *event, *partial_group = NULL; 2134 struct pmu *pmu = ctx->pmu; 2135 u64 now = ctx->time; 2136 bool simulate = false; 2137 2138 if (group_event->state == PERF_EVENT_STATE_OFF) 2139 return 0; 2140 2141 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2142 2143 if (event_sched_in(group_event, cpuctx, ctx)) { 2144 pmu->cancel_txn(pmu); 2145 perf_mux_hrtimer_restart(cpuctx); 2146 return -EAGAIN; 2147 } 2148 2149 /* 2150 * Schedule in siblings as one group (if any): 2151 */ 2152 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2153 if (event_sched_in(event, cpuctx, ctx)) { 2154 partial_group = event; 2155 goto group_error; 2156 } 2157 } 2158 2159 if (!pmu->commit_txn(pmu)) 2160 return 0; 2161 2162 group_error: 2163 /* 2164 * Groups can be scheduled in as one unit only, so undo any 2165 * partial group before returning: 2166 * The events up to the failed event are scheduled out normally, 2167 * tstamp_stopped will be updated. 2168 * 2169 * The failed events and the remaining siblings need to have 2170 * their timings updated as if they had gone thru event_sched_in() 2171 * and event_sched_out(). This is required to get consistent timings 2172 * across the group. This also takes care of the case where the group 2173 * could never be scheduled by ensuring tstamp_stopped is set to mark 2174 * the time the event was actually stopped, such that time delta 2175 * calculation in update_event_times() is correct. 2176 */ 2177 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2178 if (event == partial_group) 2179 simulate = true; 2180 2181 if (simulate) { 2182 event->tstamp_running += now - event->tstamp_stopped; 2183 event->tstamp_stopped = now; 2184 } else { 2185 event_sched_out(event, cpuctx, ctx); 2186 } 2187 } 2188 event_sched_out(group_event, cpuctx, ctx); 2189 2190 pmu->cancel_txn(pmu); 2191 2192 perf_mux_hrtimer_restart(cpuctx); 2193 2194 return -EAGAIN; 2195 } 2196 2197 /* 2198 * Work out whether we can put this event group on the CPU now. 2199 */ 2200 static int group_can_go_on(struct perf_event *event, 2201 struct perf_cpu_context *cpuctx, 2202 int can_add_hw) 2203 { 2204 /* 2205 * Groups consisting entirely of software events can always go on. 2206 */ 2207 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2208 return 1; 2209 /* 2210 * If an exclusive group is already on, no other hardware 2211 * events can go on. 2212 */ 2213 if (cpuctx->exclusive) 2214 return 0; 2215 /* 2216 * If this group is exclusive and there are already 2217 * events on the CPU, it can't go on. 2218 */ 2219 if (event->attr.exclusive && cpuctx->active_oncpu) 2220 return 0; 2221 /* 2222 * Otherwise, try to add it if all previous groups were able 2223 * to go on. 2224 */ 2225 return can_add_hw; 2226 } 2227 2228 /* 2229 * Complement to update_event_times(). This computes the tstamp_* values to 2230 * continue 'enabled' state from @now, and effectively discards the time 2231 * between the prior tstamp_stopped and now (as we were in the OFF state, or 2232 * just switched (context) time base). 2233 * 2234 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and 2235 * cannot have been scheduled in yet. And going into INACTIVE state means 2236 * '@event->tstamp_stopped = @now'. 2237 * 2238 * Thus given the rules of update_event_times(): 2239 * 2240 * total_time_enabled = tstamp_stopped - tstamp_enabled 2241 * total_time_running = tstamp_stopped - tstamp_running 2242 * 2243 * We can insert 'tstamp_stopped == now' and reverse them to compute new 2244 * tstamp_* values. 2245 */ 2246 static void __perf_event_enable_time(struct perf_event *event, u64 now) 2247 { 2248 WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE); 2249 2250 event->tstamp_stopped = now; 2251 event->tstamp_enabled = now - event->total_time_enabled; 2252 event->tstamp_running = now - event->total_time_running; 2253 } 2254 2255 static void add_event_to_ctx(struct perf_event *event, 2256 struct perf_event_context *ctx) 2257 { 2258 u64 tstamp = perf_event_time(event); 2259 2260 list_add_event(event, ctx); 2261 perf_group_attach(event); 2262 /* 2263 * We can be called with event->state == STATE_OFF when we create with 2264 * .disabled = 1. In that case the IOC_ENABLE will call this function. 2265 */ 2266 if (event->state == PERF_EVENT_STATE_INACTIVE) 2267 __perf_event_enable_time(event, tstamp); 2268 } 2269 2270 static void ctx_sched_out(struct perf_event_context *ctx, 2271 struct perf_cpu_context *cpuctx, 2272 enum event_type_t event_type); 2273 static void 2274 ctx_sched_in(struct perf_event_context *ctx, 2275 struct perf_cpu_context *cpuctx, 2276 enum event_type_t event_type, 2277 struct task_struct *task); 2278 2279 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2280 struct perf_event_context *ctx, 2281 enum event_type_t event_type) 2282 { 2283 if (!cpuctx->task_ctx) 2284 return; 2285 2286 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2287 return; 2288 2289 ctx_sched_out(ctx, cpuctx, event_type); 2290 } 2291 2292 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2293 struct perf_event_context *ctx, 2294 struct task_struct *task) 2295 { 2296 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2297 if (ctx) 2298 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2299 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2300 if (ctx) 2301 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2302 } 2303 2304 /* 2305 * We want to maintain the following priority of scheduling: 2306 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2307 * - task pinned (EVENT_PINNED) 2308 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2309 * - task flexible (EVENT_FLEXIBLE). 2310 * 2311 * In order to avoid unscheduling and scheduling back in everything every 2312 * time an event is added, only do it for the groups of equal priority and 2313 * below. 2314 * 2315 * This can be called after a batch operation on task events, in which case 2316 * event_type is a bit mask of the types of events involved. For CPU events, 2317 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2318 */ 2319 static void ctx_resched(struct perf_cpu_context *cpuctx, 2320 struct perf_event_context *task_ctx, 2321 enum event_type_t event_type) 2322 { 2323 enum event_type_t ctx_event_type = event_type & EVENT_ALL; 2324 bool cpu_event = !!(event_type & EVENT_CPU); 2325 2326 /* 2327 * If pinned groups are involved, flexible groups also need to be 2328 * scheduled out. 2329 */ 2330 if (event_type & EVENT_PINNED) 2331 event_type |= EVENT_FLEXIBLE; 2332 2333 perf_pmu_disable(cpuctx->ctx.pmu); 2334 if (task_ctx) 2335 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2336 2337 /* 2338 * Decide which cpu ctx groups to schedule out based on the types 2339 * of events that caused rescheduling: 2340 * - EVENT_CPU: schedule out corresponding groups; 2341 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2342 * - otherwise, do nothing more. 2343 */ 2344 if (cpu_event) 2345 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2346 else if (ctx_event_type & EVENT_PINNED) 2347 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2348 2349 perf_event_sched_in(cpuctx, task_ctx, current); 2350 perf_pmu_enable(cpuctx->ctx.pmu); 2351 } 2352 2353 /* 2354 * Cross CPU call to install and enable a performance event 2355 * 2356 * Very similar to remote_function() + event_function() but cannot assume that 2357 * things like ctx->is_active and cpuctx->task_ctx are set. 2358 */ 2359 static int __perf_install_in_context(void *info) 2360 { 2361 struct perf_event *event = info; 2362 struct perf_event_context *ctx = event->ctx; 2363 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2364 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2365 bool reprogram = true; 2366 int ret = 0; 2367 2368 raw_spin_lock(&cpuctx->ctx.lock); 2369 if (ctx->task) { 2370 raw_spin_lock(&ctx->lock); 2371 task_ctx = ctx; 2372 2373 reprogram = (ctx->task == current); 2374 2375 /* 2376 * If the task is running, it must be running on this CPU, 2377 * otherwise we cannot reprogram things. 2378 * 2379 * If its not running, we don't care, ctx->lock will 2380 * serialize against it becoming runnable. 2381 */ 2382 if (task_curr(ctx->task) && !reprogram) { 2383 ret = -ESRCH; 2384 goto unlock; 2385 } 2386 2387 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2388 } else if (task_ctx) { 2389 raw_spin_lock(&task_ctx->lock); 2390 } 2391 2392 if (reprogram) { 2393 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2394 add_event_to_ctx(event, ctx); 2395 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2396 } else { 2397 add_event_to_ctx(event, ctx); 2398 } 2399 2400 unlock: 2401 perf_ctx_unlock(cpuctx, task_ctx); 2402 2403 return ret; 2404 } 2405 2406 /* 2407 * Attach a performance event to a context. 2408 * 2409 * Very similar to event_function_call, see comment there. 2410 */ 2411 static void 2412 perf_install_in_context(struct perf_event_context *ctx, 2413 struct perf_event *event, 2414 int cpu) 2415 { 2416 struct task_struct *task = READ_ONCE(ctx->task); 2417 2418 lockdep_assert_held(&ctx->mutex); 2419 2420 if (event->cpu != -1) 2421 event->cpu = cpu; 2422 2423 /* 2424 * Ensures that if we can observe event->ctx, both the event and ctx 2425 * will be 'complete'. See perf_iterate_sb_cpu(). 2426 */ 2427 smp_store_release(&event->ctx, ctx); 2428 2429 if (!task) { 2430 cpu_function_call(cpu, __perf_install_in_context, event); 2431 return; 2432 } 2433 2434 /* 2435 * Should not happen, we validate the ctx is still alive before calling. 2436 */ 2437 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2438 return; 2439 2440 /* 2441 * Installing events is tricky because we cannot rely on ctx->is_active 2442 * to be set in case this is the nr_events 0 -> 1 transition. 2443 * 2444 * Instead we use task_curr(), which tells us if the task is running. 2445 * However, since we use task_curr() outside of rq::lock, we can race 2446 * against the actual state. This means the result can be wrong. 2447 * 2448 * If we get a false positive, we retry, this is harmless. 2449 * 2450 * If we get a false negative, things are complicated. If we are after 2451 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2452 * value must be correct. If we're before, it doesn't matter since 2453 * perf_event_context_sched_in() will program the counter. 2454 * 2455 * However, this hinges on the remote context switch having observed 2456 * our task->perf_event_ctxp[] store, such that it will in fact take 2457 * ctx::lock in perf_event_context_sched_in(). 2458 * 2459 * We do this by task_function_call(), if the IPI fails to hit the task 2460 * we know any future context switch of task must see the 2461 * perf_event_ctpx[] store. 2462 */ 2463 2464 /* 2465 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2466 * task_cpu() load, such that if the IPI then does not find the task 2467 * running, a future context switch of that task must observe the 2468 * store. 2469 */ 2470 smp_mb(); 2471 again: 2472 if (!task_function_call(task, __perf_install_in_context, event)) 2473 return; 2474 2475 raw_spin_lock_irq(&ctx->lock); 2476 task = ctx->task; 2477 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2478 /* 2479 * Cannot happen because we already checked above (which also 2480 * cannot happen), and we hold ctx->mutex, which serializes us 2481 * against perf_event_exit_task_context(). 2482 */ 2483 raw_spin_unlock_irq(&ctx->lock); 2484 return; 2485 } 2486 /* 2487 * If the task is not running, ctx->lock will avoid it becoming so, 2488 * thus we can safely install the event. 2489 */ 2490 if (task_curr(task)) { 2491 raw_spin_unlock_irq(&ctx->lock); 2492 goto again; 2493 } 2494 add_event_to_ctx(event, ctx); 2495 raw_spin_unlock_irq(&ctx->lock); 2496 } 2497 2498 /* 2499 * Put a event into inactive state and update time fields. 2500 * Enabling the leader of a group effectively enables all 2501 * the group members that aren't explicitly disabled, so we 2502 * have to update their ->tstamp_enabled also. 2503 * Note: this works for group members as well as group leaders 2504 * since the non-leader members' sibling_lists will be empty. 2505 */ 2506 static void __perf_event_mark_enabled(struct perf_event *event) 2507 { 2508 struct perf_event *sub; 2509 u64 tstamp = perf_event_time(event); 2510 2511 event->state = PERF_EVENT_STATE_INACTIVE; 2512 __perf_event_enable_time(event, tstamp); 2513 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2514 /* XXX should not be > INACTIVE if event isn't */ 2515 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2516 __perf_event_enable_time(sub, tstamp); 2517 } 2518 } 2519 2520 /* 2521 * Cross CPU call to enable a performance event 2522 */ 2523 static void __perf_event_enable(struct perf_event *event, 2524 struct perf_cpu_context *cpuctx, 2525 struct perf_event_context *ctx, 2526 void *info) 2527 { 2528 struct perf_event *leader = event->group_leader; 2529 struct perf_event_context *task_ctx; 2530 2531 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2532 event->state <= PERF_EVENT_STATE_ERROR) 2533 return; 2534 2535 if (ctx->is_active) 2536 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2537 2538 __perf_event_mark_enabled(event); 2539 2540 if (!ctx->is_active) 2541 return; 2542 2543 if (!event_filter_match(event)) { 2544 if (is_cgroup_event(event)) 2545 perf_cgroup_defer_enabled(event); 2546 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2547 return; 2548 } 2549 2550 /* 2551 * If the event is in a group and isn't the group leader, 2552 * then don't put it on unless the group is on. 2553 */ 2554 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2555 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2556 return; 2557 } 2558 2559 task_ctx = cpuctx->task_ctx; 2560 if (ctx->task) 2561 WARN_ON_ONCE(task_ctx != ctx); 2562 2563 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2564 } 2565 2566 /* 2567 * Enable a event. 2568 * 2569 * If event->ctx is a cloned context, callers must make sure that 2570 * every task struct that event->ctx->task could possibly point to 2571 * remains valid. This condition is satisfied when called through 2572 * perf_event_for_each_child or perf_event_for_each as described 2573 * for perf_event_disable. 2574 */ 2575 static void _perf_event_enable(struct perf_event *event) 2576 { 2577 struct perf_event_context *ctx = event->ctx; 2578 2579 raw_spin_lock_irq(&ctx->lock); 2580 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2581 event->state < PERF_EVENT_STATE_ERROR) { 2582 raw_spin_unlock_irq(&ctx->lock); 2583 return; 2584 } 2585 2586 /* 2587 * If the event is in error state, clear that first. 2588 * 2589 * That way, if we see the event in error state below, we know that it 2590 * has gone back into error state, as distinct from the task having 2591 * been scheduled away before the cross-call arrived. 2592 */ 2593 if (event->state == PERF_EVENT_STATE_ERROR) 2594 event->state = PERF_EVENT_STATE_OFF; 2595 raw_spin_unlock_irq(&ctx->lock); 2596 2597 event_function_call(event, __perf_event_enable, NULL); 2598 } 2599 2600 /* 2601 * See perf_event_disable(); 2602 */ 2603 void perf_event_enable(struct perf_event *event) 2604 { 2605 struct perf_event_context *ctx; 2606 2607 ctx = perf_event_ctx_lock(event); 2608 _perf_event_enable(event); 2609 perf_event_ctx_unlock(event, ctx); 2610 } 2611 EXPORT_SYMBOL_GPL(perf_event_enable); 2612 2613 struct stop_event_data { 2614 struct perf_event *event; 2615 unsigned int restart; 2616 }; 2617 2618 static int __perf_event_stop(void *info) 2619 { 2620 struct stop_event_data *sd = info; 2621 struct perf_event *event = sd->event; 2622 2623 /* if it's already INACTIVE, do nothing */ 2624 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2625 return 0; 2626 2627 /* matches smp_wmb() in event_sched_in() */ 2628 smp_rmb(); 2629 2630 /* 2631 * There is a window with interrupts enabled before we get here, 2632 * so we need to check again lest we try to stop another CPU's event. 2633 */ 2634 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2635 return -EAGAIN; 2636 2637 event->pmu->stop(event, PERF_EF_UPDATE); 2638 2639 /* 2640 * May race with the actual stop (through perf_pmu_output_stop()), 2641 * but it is only used for events with AUX ring buffer, and such 2642 * events will refuse to restart because of rb::aux_mmap_count==0, 2643 * see comments in perf_aux_output_begin(). 2644 * 2645 * Since this is happening on a event-local CPU, no trace is lost 2646 * while restarting. 2647 */ 2648 if (sd->restart) 2649 event->pmu->start(event, 0); 2650 2651 return 0; 2652 } 2653 2654 static int perf_event_stop(struct perf_event *event, int restart) 2655 { 2656 struct stop_event_data sd = { 2657 .event = event, 2658 .restart = restart, 2659 }; 2660 int ret = 0; 2661 2662 do { 2663 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2664 return 0; 2665 2666 /* matches smp_wmb() in event_sched_in() */ 2667 smp_rmb(); 2668 2669 /* 2670 * We only want to restart ACTIVE events, so if the event goes 2671 * inactive here (event->oncpu==-1), there's nothing more to do; 2672 * fall through with ret==-ENXIO. 2673 */ 2674 ret = cpu_function_call(READ_ONCE(event->oncpu), 2675 __perf_event_stop, &sd); 2676 } while (ret == -EAGAIN); 2677 2678 return ret; 2679 } 2680 2681 /* 2682 * In order to contain the amount of racy and tricky in the address filter 2683 * configuration management, it is a two part process: 2684 * 2685 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2686 * we update the addresses of corresponding vmas in 2687 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2688 * (p2) when an event is scheduled in (pmu::add), it calls 2689 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2690 * if the generation has changed since the previous call. 2691 * 2692 * If (p1) happens while the event is active, we restart it to force (p2). 2693 * 2694 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2695 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2696 * ioctl; 2697 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2698 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2699 * for reading; 2700 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2701 * of exec. 2702 */ 2703 void perf_event_addr_filters_sync(struct perf_event *event) 2704 { 2705 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2706 2707 if (!has_addr_filter(event)) 2708 return; 2709 2710 raw_spin_lock(&ifh->lock); 2711 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2712 event->pmu->addr_filters_sync(event); 2713 event->hw.addr_filters_gen = event->addr_filters_gen; 2714 } 2715 raw_spin_unlock(&ifh->lock); 2716 } 2717 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2718 2719 static int _perf_event_refresh(struct perf_event *event, int refresh) 2720 { 2721 /* 2722 * not supported on inherited events 2723 */ 2724 if (event->attr.inherit || !is_sampling_event(event)) 2725 return -EINVAL; 2726 2727 atomic_add(refresh, &event->event_limit); 2728 _perf_event_enable(event); 2729 2730 return 0; 2731 } 2732 2733 /* 2734 * See perf_event_disable() 2735 */ 2736 int perf_event_refresh(struct perf_event *event, int refresh) 2737 { 2738 struct perf_event_context *ctx; 2739 int ret; 2740 2741 ctx = perf_event_ctx_lock(event); 2742 ret = _perf_event_refresh(event, refresh); 2743 perf_event_ctx_unlock(event, ctx); 2744 2745 return ret; 2746 } 2747 EXPORT_SYMBOL_GPL(perf_event_refresh); 2748 2749 static void ctx_sched_out(struct perf_event_context *ctx, 2750 struct perf_cpu_context *cpuctx, 2751 enum event_type_t event_type) 2752 { 2753 int is_active = ctx->is_active; 2754 struct perf_event *event; 2755 2756 lockdep_assert_held(&ctx->lock); 2757 2758 if (likely(!ctx->nr_events)) { 2759 /* 2760 * See __perf_remove_from_context(). 2761 */ 2762 WARN_ON_ONCE(ctx->is_active); 2763 if (ctx->task) 2764 WARN_ON_ONCE(cpuctx->task_ctx); 2765 return; 2766 } 2767 2768 ctx->is_active &= ~event_type; 2769 if (!(ctx->is_active & EVENT_ALL)) 2770 ctx->is_active = 0; 2771 2772 if (ctx->task) { 2773 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2774 if (!ctx->is_active) 2775 cpuctx->task_ctx = NULL; 2776 } 2777 2778 /* 2779 * Always update time if it was set; not only when it changes. 2780 * Otherwise we can 'forget' to update time for any but the last 2781 * context we sched out. For example: 2782 * 2783 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2784 * ctx_sched_out(.event_type = EVENT_PINNED) 2785 * 2786 * would only update time for the pinned events. 2787 */ 2788 if (is_active & EVENT_TIME) { 2789 /* update (and stop) ctx time */ 2790 update_context_time(ctx); 2791 update_cgrp_time_from_cpuctx(cpuctx); 2792 } 2793 2794 is_active ^= ctx->is_active; /* changed bits */ 2795 2796 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2797 return; 2798 2799 perf_pmu_disable(ctx->pmu); 2800 if (is_active & EVENT_PINNED) { 2801 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2802 group_sched_out(event, cpuctx, ctx); 2803 } 2804 2805 if (is_active & EVENT_FLEXIBLE) { 2806 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2807 group_sched_out(event, cpuctx, ctx); 2808 } 2809 perf_pmu_enable(ctx->pmu); 2810 } 2811 2812 /* 2813 * Test whether two contexts are equivalent, i.e. whether they have both been 2814 * cloned from the same version of the same context. 2815 * 2816 * Equivalence is measured using a generation number in the context that is 2817 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2818 * and list_del_event(). 2819 */ 2820 static int context_equiv(struct perf_event_context *ctx1, 2821 struct perf_event_context *ctx2) 2822 { 2823 lockdep_assert_held(&ctx1->lock); 2824 lockdep_assert_held(&ctx2->lock); 2825 2826 /* Pinning disables the swap optimization */ 2827 if (ctx1->pin_count || ctx2->pin_count) 2828 return 0; 2829 2830 /* If ctx1 is the parent of ctx2 */ 2831 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2832 return 1; 2833 2834 /* If ctx2 is the parent of ctx1 */ 2835 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2836 return 1; 2837 2838 /* 2839 * If ctx1 and ctx2 have the same parent; we flatten the parent 2840 * hierarchy, see perf_event_init_context(). 2841 */ 2842 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2843 ctx1->parent_gen == ctx2->parent_gen) 2844 return 1; 2845 2846 /* Unmatched */ 2847 return 0; 2848 } 2849 2850 static void __perf_event_sync_stat(struct perf_event *event, 2851 struct perf_event *next_event) 2852 { 2853 u64 value; 2854 2855 if (!event->attr.inherit_stat) 2856 return; 2857 2858 /* 2859 * Update the event value, we cannot use perf_event_read() 2860 * because we're in the middle of a context switch and have IRQs 2861 * disabled, which upsets smp_call_function_single(), however 2862 * we know the event must be on the current CPU, therefore we 2863 * don't need to use it. 2864 */ 2865 switch (event->state) { 2866 case PERF_EVENT_STATE_ACTIVE: 2867 event->pmu->read(event); 2868 /* fall-through */ 2869 2870 case PERF_EVENT_STATE_INACTIVE: 2871 update_event_times(event); 2872 break; 2873 2874 default: 2875 break; 2876 } 2877 2878 /* 2879 * In order to keep per-task stats reliable we need to flip the event 2880 * values when we flip the contexts. 2881 */ 2882 value = local64_read(&next_event->count); 2883 value = local64_xchg(&event->count, value); 2884 local64_set(&next_event->count, value); 2885 2886 swap(event->total_time_enabled, next_event->total_time_enabled); 2887 swap(event->total_time_running, next_event->total_time_running); 2888 2889 /* 2890 * Since we swizzled the values, update the user visible data too. 2891 */ 2892 perf_event_update_userpage(event); 2893 perf_event_update_userpage(next_event); 2894 } 2895 2896 static void perf_event_sync_stat(struct perf_event_context *ctx, 2897 struct perf_event_context *next_ctx) 2898 { 2899 struct perf_event *event, *next_event; 2900 2901 if (!ctx->nr_stat) 2902 return; 2903 2904 update_context_time(ctx); 2905 2906 event = list_first_entry(&ctx->event_list, 2907 struct perf_event, event_entry); 2908 2909 next_event = list_first_entry(&next_ctx->event_list, 2910 struct perf_event, event_entry); 2911 2912 while (&event->event_entry != &ctx->event_list && 2913 &next_event->event_entry != &next_ctx->event_list) { 2914 2915 __perf_event_sync_stat(event, next_event); 2916 2917 event = list_next_entry(event, event_entry); 2918 next_event = list_next_entry(next_event, event_entry); 2919 } 2920 } 2921 2922 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2923 struct task_struct *next) 2924 { 2925 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2926 struct perf_event_context *next_ctx; 2927 struct perf_event_context *parent, *next_parent; 2928 struct perf_cpu_context *cpuctx; 2929 int do_switch = 1; 2930 2931 if (likely(!ctx)) 2932 return; 2933 2934 cpuctx = __get_cpu_context(ctx); 2935 if (!cpuctx->task_ctx) 2936 return; 2937 2938 rcu_read_lock(); 2939 next_ctx = next->perf_event_ctxp[ctxn]; 2940 if (!next_ctx) 2941 goto unlock; 2942 2943 parent = rcu_dereference(ctx->parent_ctx); 2944 next_parent = rcu_dereference(next_ctx->parent_ctx); 2945 2946 /* If neither context have a parent context; they cannot be clones. */ 2947 if (!parent && !next_parent) 2948 goto unlock; 2949 2950 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2951 /* 2952 * Looks like the two contexts are clones, so we might be 2953 * able to optimize the context switch. We lock both 2954 * contexts and check that they are clones under the 2955 * lock (including re-checking that neither has been 2956 * uncloned in the meantime). It doesn't matter which 2957 * order we take the locks because no other cpu could 2958 * be trying to lock both of these tasks. 2959 */ 2960 raw_spin_lock(&ctx->lock); 2961 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2962 if (context_equiv(ctx, next_ctx)) { 2963 WRITE_ONCE(ctx->task, next); 2964 WRITE_ONCE(next_ctx->task, task); 2965 2966 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2967 2968 /* 2969 * RCU_INIT_POINTER here is safe because we've not 2970 * modified the ctx and the above modification of 2971 * ctx->task and ctx->task_ctx_data are immaterial 2972 * since those values are always verified under 2973 * ctx->lock which we're now holding. 2974 */ 2975 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2976 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2977 2978 do_switch = 0; 2979 2980 perf_event_sync_stat(ctx, next_ctx); 2981 } 2982 raw_spin_unlock(&next_ctx->lock); 2983 raw_spin_unlock(&ctx->lock); 2984 } 2985 unlock: 2986 rcu_read_unlock(); 2987 2988 if (do_switch) { 2989 raw_spin_lock(&ctx->lock); 2990 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 2991 raw_spin_unlock(&ctx->lock); 2992 } 2993 } 2994 2995 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 2996 2997 void perf_sched_cb_dec(struct pmu *pmu) 2998 { 2999 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3000 3001 this_cpu_dec(perf_sched_cb_usages); 3002 3003 if (!--cpuctx->sched_cb_usage) 3004 list_del(&cpuctx->sched_cb_entry); 3005 } 3006 3007 3008 void perf_sched_cb_inc(struct pmu *pmu) 3009 { 3010 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3011 3012 if (!cpuctx->sched_cb_usage++) 3013 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3014 3015 this_cpu_inc(perf_sched_cb_usages); 3016 } 3017 3018 /* 3019 * This function provides the context switch callback to the lower code 3020 * layer. It is invoked ONLY when the context switch callback is enabled. 3021 * 3022 * This callback is relevant even to per-cpu events; for example multi event 3023 * PEBS requires this to provide PID/TID information. This requires we flush 3024 * all queued PEBS records before we context switch to a new task. 3025 */ 3026 static void perf_pmu_sched_task(struct task_struct *prev, 3027 struct task_struct *next, 3028 bool sched_in) 3029 { 3030 struct perf_cpu_context *cpuctx; 3031 struct pmu *pmu; 3032 3033 if (prev == next) 3034 return; 3035 3036 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3037 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3038 3039 if (WARN_ON_ONCE(!pmu->sched_task)) 3040 continue; 3041 3042 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3043 perf_pmu_disable(pmu); 3044 3045 pmu->sched_task(cpuctx->task_ctx, sched_in); 3046 3047 perf_pmu_enable(pmu); 3048 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3049 } 3050 } 3051 3052 static void perf_event_switch(struct task_struct *task, 3053 struct task_struct *next_prev, bool sched_in); 3054 3055 #define for_each_task_context_nr(ctxn) \ 3056 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3057 3058 /* 3059 * Called from scheduler to remove the events of the current task, 3060 * with interrupts disabled. 3061 * 3062 * We stop each event and update the event value in event->count. 3063 * 3064 * This does not protect us against NMI, but disable() 3065 * sets the disabled bit in the control field of event _before_ 3066 * accessing the event control register. If a NMI hits, then it will 3067 * not restart the event. 3068 */ 3069 void __perf_event_task_sched_out(struct task_struct *task, 3070 struct task_struct *next) 3071 { 3072 int ctxn; 3073 3074 if (__this_cpu_read(perf_sched_cb_usages)) 3075 perf_pmu_sched_task(task, next, false); 3076 3077 if (atomic_read(&nr_switch_events)) 3078 perf_event_switch(task, next, false); 3079 3080 for_each_task_context_nr(ctxn) 3081 perf_event_context_sched_out(task, ctxn, next); 3082 3083 /* 3084 * if cgroup events exist on this CPU, then we need 3085 * to check if we have to switch out PMU state. 3086 * cgroup event are system-wide mode only 3087 */ 3088 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3089 perf_cgroup_sched_out(task, next); 3090 } 3091 3092 /* 3093 * Called with IRQs disabled 3094 */ 3095 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3096 enum event_type_t event_type) 3097 { 3098 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3099 } 3100 3101 static void 3102 ctx_pinned_sched_in(struct perf_event_context *ctx, 3103 struct perf_cpu_context *cpuctx) 3104 { 3105 struct perf_event *event; 3106 3107 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 3108 if (event->state <= PERF_EVENT_STATE_OFF) 3109 continue; 3110 if (!event_filter_match(event)) 3111 continue; 3112 3113 /* may need to reset tstamp_enabled */ 3114 if (is_cgroup_event(event)) 3115 perf_cgroup_mark_enabled(event, ctx); 3116 3117 if (group_can_go_on(event, cpuctx, 1)) 3118 group_sched_in(event, cpuctx, ctx); 3119 3120 /* 3121 * If this pinned group hasn't been scheduled, 3122 * put it in error state. 3123 */ 3124 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3125 update_group_times(event); 3126 event->state = PERF_EVENT_STATE_ERROR; 3127 } 3128 } 3129 } 3130 3131 static void 3132 ctx_flexible_sched_in(struct perf_event_context *ctx, 3133 struct perf_cpu_context *cpuctx) 3134 { 3135 struct perf_event *event; 3136 int can_add_hw = 1; 3137 3138 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 3139 /* Ignore events in OFF or ERROR state */ 3140 if (event->state <= PERF_EVENT_STATE_OFF) 3141 continue; 3142 /* 3143 * Listen to the 'cpu' scheduling filter constraint 3144 * of events: 3145 */ 3146 if (!event_filter_match(event)) 3147 continue; 3148 3149 /* may need to reset tstamp_enabled */ 3150 if (is_cgroup_event(event)) 3151 perf_cgroup_mark_enabled(event, ctx); 3152 3153 if (group_can_go_on(event, cpuctx, can_add_hw)) { 3154 if (group_sched_in(event, cpuctx, ctx)) 3155 can_add_hw = 0; 3156 } 3157 } 3158 } 3159 3160 static void 3161 ctx_sched_in(struct perf_event_context *ctx, 3162 struct perf_cpu_context *cpuctx, 3163 enum event_type_t event_type, 3164 struct task_struct *task) 3165 { 3166 int is_active = ctx->is_active; 3167 u64 now; 3168 3169 lockdep_assert_held(&ctx->lock); 3170 3171 if (likely(!ctx->nr_events)) 3172 return; 3173 3174 ctx->is_active |= (event_type | EVENT_TIME); 3175 if (ctx->task) { 3176 if (!is_active) 3177 cpuctx->task_ctx = ctx; 3178 else 3179 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3180 } 3181 3182 is_active ^= ctx->is_active; /* changed bits */ 3183 3184 if (is_active & EVENT_TIME) { 3185 /* start ctx time */ 3186 now = perf_clock(); 3187 ctx->timestamp = now; 3188 perf_cgroup_set_timestamp(task, ctx); 3189 } 3190 3191 /* 3192 * First go through the list and put on any pinned groups 3193 * in order to give them the best chance of going on. 3194 */ 3195 if (is_active & EVENT_PINNED) 3196 ctx_pinned_sched_in(ctx, cpuctx); 3197 3198 /* Then walk through the lower prio flexible groups */ 3199 if (is_active & EVENT_FLEXIBLE) 3200 ctx_flexible_sched_in(ctx, cpuctx); 3201 } 3202 3203 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3204 enum event_type_t event_type, 3205 struct task_struct *task) 3206 { 3207 struct perf_event_context *ctx = &cpuctx->ctx; 3208 3209 ctx_sched_in(ctx, cpuctx, event_type, task); 3210 } 3211 3212 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3213 struct task_struct *task) 3214 { 3215 struct perf_cpu_context *cpuctx; 3216 3217 cpuctx = __get_cpu_context(ctx); 3218 if (cpuctx->task_ctx == ctx) 3219 return; 3220 3221 perf_ctx_lock(cpuctx, ctx); 3222 /* 3223 * We must check ctx->nr_events while holding ctx->lock, such 3224 * that we serialize against perf_install_in_context(). 3225 */ 3226 if (!ctx->nr_events) 3227 goto unlock; 3228 3229 perf_pmu_disable(ctx->pmu); 3230 /* 3231 * We want to keep the following priority order: 3232 * cpu pinned (that don't need to move), task pinned, 3233 * cpu flexible, task flexible. 3234 * 3235 * However, if task's ctx is not carrying any pinned 3236 * events, no need to flip the cpuctx's events around. 3237 */ 3238 if (!list_empty(&ctx->pinned_groups)) 3239 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3240 perf_event_sched_in(cpuctx, ctx, task); 3241 perf_pmu_enable(ctx->pmu); 3242 3243 unlock: 3244 perf_ctx_unlock(cpuctx, ctx); 3245 } 3246 3247 /* 3248 * Called from scheduler to add the events of the current task 3249 * with interrupts disabled. 3250 * 3251 * We restore the event value and then enable it. 3252 * 3253 * This does not protect us against NMI, but enable() 3254 * sets the enabled bit in the control field of event _before_ 3255 * accessing the event control register. If a NMI hits, then it will 3256 * keep the event running. 3257 */ 3258 void __perf_event_task_sched_in(struct task_struct *prev, 3259 struct task_struct *task) 3260 { 3261 struct perf_event_context *ctx; 3262 int ctxn; 3263 3264 /* 3265 * If cgroup events exist on this CPU, then we need to check if we have 3266 * to switch in PMU state; cgroup event are system-wide mode only. 3267 * 3268 * Since cgroup events are CPU events, we must schedule these in before 3269 * we schedule in the task events. 3270 */ 3271 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3272 perf_cgroup_sched_in(prev, task); 3273 3274 for_each_task_context_nr(ctxn) { 3275 ctx = task->perf_event_ctxp[ctxn]; 3276 if (likely(!ctx)) 3277 continue; 3278 3279 perf_event_context_sched_in(ctx, task); 3280 } 3281 3282 if (atomic_read(&nr_switch_events)) 3283 perf_event_switch(task, prev, true); 3284 3285 if (__this_cpu_read(perf_sched_cb_usages)) 3286 perf_pmu_sched_task(prev, task, true); 3287 } 3288 3289 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3290 { 3291 u64 frequency = event->attr.sample_freq; 3292 u64 sec = NSEC_PER_SEC; 3293 u64 divisor, dividend; 3294 3295 int count_fls, nsec_fls, frequency_fls, sec_fls; 3296 3297 count_fls = fls64(count); 3298 nsec_fls = fls64(nsec); 3299 frequency_fls = fls64(frequency); 3300 sec_fls = 30; 3301 3302 /* 3303 * We got @count in @nsec, with a target of sample_freq HZ 3304 * the target period becomes: 3305 * 3306 * @count * 10^9 3307 * period = ------------------- 3308 * @nsec * sample_freq 3309 * 3310 */ 3311 3312 /* 3313 * Reduce accuracy by one bit such that @a and @b converge 3314 * to a similar magnitude. 3315 */ 3316 #define REDUCE_FLS(a, b) \ 3317 do { \ 3318 if (a##_fls > b##_fls) { \ 3319 a >>= 1; \ 3320 a##_fls--; \ 3321 } else { \ 3322 b >>= 1; \ 3323 b##_fls--; \ 3324 } \ 3325 } while (0) 3326 3327 /* 3328 * Reduce accuracy until either term fits in a u64, then proceed with 3329 * the other, so that finally we can do a u64/u64 division. 3330 */ 3331 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3332 REDUCE_FLS(nsec, frequency); 3333 REDUCE_FLS(sec, count); 3334 } 3335 3336 if (count_fls + sec_fls > 64) { 3337 divisor = nsec * frequency; 3338 3339 while (count_fls + sec_fls > 64) { 3340 REDUCE_FLS(count, sec); 3341 divisor >>= 1; 3342 } 3343 3344 dividend = count * sec; 3345 } else { 3346 dividend = count * sec; 3347 3348 while (nsec_fls + frequency_fls > 64) { 3349 REDUCE_FLS(nsec, frequency); 3350 dividend >>= 1; 3351 } 3352 3353 divisor = nsec * frequency; 3354 } 3355 3356 if (!divisor) 3357 return dividend; 3358 3359 return div64_u64(dividend, divisor); 3360 } 3361 3362 static DEFINE_PER_CPU(int, perf_throttled_count); 3363 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3364 3365 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3366 { 3367 struct hw_perf_event *hwc = &event->hw; 3368 s64 period, sample_period; 3369 s64 delta; 3370 3371 period = perf_calculate_period(event, nsec, count); 3372 3373 delta = (s64)(period - hwc->sample_period); 3374 delta = (delta + 7) / 8; /* low pass filter */ 3375 3376 sample_period = hwc->sample_period + delta; 3377 3378 if (!sample_period) 3379 sample_period = 1; 3380 3381 hwc->sample_period = sample_period; 3382 3383 if (local64_read(&hwc->period_left) > 8*sample_period) { 3384 if (disable) 3385 event->pmu->stop(event, PERF_EF_UPDATE); 3386 3387 local64_set(&hwc->period_left, 0); 3388 3389 if (disable) 3390 event->pmu->start(event, PERF_EF_RELOAD); 3391 } 3392 } 3393 3394 /* 3395 * combine freq adjustment with unthrottling to avoid two passes over the 3396 * events. At the same time, make sure, having freq events does not change 3397 * the rate of unthrottling as that would introduce bias. 3398 */ 3399 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3400 int needs_unthr) 3401 { 3402 struct perf_event *event; 3403 struct hw_perf_event *hwc; 3404 u64 now, period = TICK_NSEC; 3405 s64 delta; 3406 3407 /* 3408 * only need to iterate over all events iff: 3409 * - context have events in frequency mode (needs freq adjust) 3410 * - there are events to unthrottle on this cpu 3411 */ 3412 if (!(ctx->nr_freq || needs_unthr)) 3413 return; 3414 3415 raw_spin_lock(&ctx->lock); 3416 perf_pmu_disable(ctx->pmu); 3417 3418 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3419 if (event->state != PERF_EVENT_STATE_ACTIVE) 3420 continue; 3421 3422 if (!event_filter_match(event)) 3423 continue; 3424 3425 perf_pmu_disable(event->pmu); 3426 3427 hwc = &event->hw; 3428 3429 if (hwc->interrupts == MAX_INTERRUPTS) { 3430 hwc->interrupts = 0; 3431 perf_log_throttle(event, 1); 3432 event->pmu->start(event, 0); 3433 } 3434 3435 if (!event->attr.freq || !event->attr.sample_freq) 3436 goto next; 3437 3438 /* 3439 * stop the event and update event->count 3440 */ 3441 event->pmu->stop(event, PERF_EF_UPDATE); 3442 3443 now = local64_read(&event->count); 3444 delta = now - hwc->freq_count_stamp; 3445 hwc->freq_count_stamp = now; 3446 3447 /* 3448 * restart the event 3449 * reload only if value has changed 3450 * we have stopped the event so tell that 3451 * to perf_adjust_period() to avoid stopping it 3452 * twice. 3453 */ 3454 if (delta > 0) 3455 perf_adjust_period(event, period, delta, false); 3456 3457 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3458 next: 3459 perf_pmu_enable(event->pmu); 3460 } 3461 3462 perf_pmu_enable(ctx->pmu); 3463 raw_spin_unlock(&ctx->lock); 3464 } 3465 3466 /* 3467 * Round-robin a context's events: 3468 */ 3469 static void rotate_ctx(struct perf_event_context *ctx) 3470 { 3471 /* 3472 * Rotate the first entry last of non-pinned groups. Rotation might be 3473 * disabled by the inheritance code. 3474 */ 3475 if (!ctx->rotate_disable) 3476 list_rotate_left(&ctx->flexible_groups); 3477 } 3478 3479 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3480 { 3481 struct perf_event_context *ctx = NULL; 3482 int rotate = 0; 3483 3484 if (cpuctx->ctx.nr_events) { 3485 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3486 rotate = 1; 3487 } 3488 3489 ctx = cpuctx->task_ctx; 3490 if (ctx && ctx->nr_events) { 3491 if (ctx->nr_events != ctx->nr_active) 3492 rotate = 1; 3493 } 3494 3495 if (!rotate) 3496 goto done; 3497 3498 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3499 perf_pmu_disable(cpuctx->ctx.pmu); 3500 3501 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3502 if (ctx) 3503 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3504 3505 rotate_ctx(&cpuctx->ctx); 3506 if (ctx) 3507 rotate_ctx(ctx); 3508 3509 perf_event_sched_in(cpuctx, ctx, current); 3510 3511 perf_pmu_enable(cpuctx->ctx.pmu); 3512 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3513 done: 3514 3515 return rotate; 3516 } 3517 3518 void perf_event_task_tick(void) 3519 { 3520 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3521 struct perf_event_context *ctx, *tmp; 3522 int throttled; 3523 3524 WARN_ON(!irqs_disabled()); 3525 3526 __this_cpu_inc(perf_throttled_seq); 3527 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3528 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3529 3530 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3531 perf_adjust_freq_unthr_context(ctx, throttled); 3532 } 3533 3534 static int event_enable_on_exec(struct perf_event *event, 3535 struct perf_event_context *ctx) 3536 { 3537 if (!event->attr.enable_on_exec) 3538 return 0; 3539 3540 event->attr.enable_on_exec = 0; 3541 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3542 return 0; 3543 3544 __perf_event_mark_enabled(event); 3545 3546 return 1; 3547 } 3548 3549 /* 3550 * Enable all of a task's events that have been marked enable-on-exec. 3551 * This expects task == current. 3552 */ 3553 static void perf_event_enable_on_exec(int ctxn) 3554 { 3555 struct perf_event_context *ctx, *clone_ctx = NULL; 3556 enum event_type_t event_type = 0; 3557 struct perf_cpu_context *cpuctx; 3558 struct perf_event *event; 3559 unsigned long flags; 3560 int enabled = 0; 3561 3562 local_irq_save(flags); 3563 ctx = current->perf_event_ctxp[ctxn]; 3564 if (!ctx || !ctx->nr_events) 3565 goto out; 3566 3567 cpuctx = __get_cpu_context(ctx); 3568 perf_ctx_lock(cpuctx, ctx); 3569 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3570 list_for_each_entry(event, &ctx->event_list, event_entry) { 3571 enabled |= event_enable_on_exec(event, ctx); 3572 event_type |= get_event_type(event); 3573 } 3574 3575 /* 3576 * Unclone and reschedule this context if we enabled any event. 3577 */ 3578 if (enabled) { 3579 clone_ctx = unclone_ctx(ctx); 3580 ctx_resched(cpuctx, ctx, event_type); 3581 } else { 3582 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3583 } 3584 perf_ctx_unlock(cpuctx, ctx); 3585 3586 out: 3587 local_irq_restore(flags); 3588 3589 if (clone_ctx) 3590 put_ctx(clone_ctx); 3591 } 3592 3593 struct perf_read_data { 3594 struct perf_event *event; 3595 bool group; 3596 int ret; 3597 }; 3598 3599 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3600 { 3601 u16 local_pkg, event_pkg; 3602 3603 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3604 int local_cpu = smp_processor_id(); 3605 3606 event_pkg = topology_physical_package_id(event_cpu); 3607 local_pkg = topology_physical_package_id(local_cpu); 3608 3609 if (event_pkg == local_pkg) 3610 return local_cpu; 3611 } 3612 3613 return event_cpu; 3614 } 3615 3616 /* 3617 * Cross CPU call to read the hardware event 3618 */ 3619 static void __perf_event_read(void *info) 3620 { 3621 struct perf_read_data *data = info; 3622 struct perf_event *sub, *event = data->event; 3623 struct perf_event_context *ctx = event->ctx; 3624 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3625 struct pmu *pmu = event->pmu; 3626 3627 /* 3628 * If this is a task context, we need to check whether it is 3629 * the current task context of this cpu. If not it has been 3630 * scheduled out before the smp call arrived. In that case 3631 * event->count would have been updated to a recent sample 3632 * when the event was scheduled out. 3633 */ 3634 if (ctx->task && cpuctx->task_ctx != ctx) 3635 return; 3636 3637 raw_spin_lock(&ctx->lock); 3638 if (ctx->is_active) { 3639 update_context_time(ctx); 3640 update_cgrp_time_from_event(event); 3641 } 3642 3643 update_event_times(event); 3644 if (event->state != PERF_EVENT_STATE_ACTIVE) 3645 goto unlock; 3646 3647 if (!data->group) { 3648 pmu->read(event); 3649 data->ret = 0; 3650 goto unlock; 3651 } 3652 3653 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3654 3655 pmu->read(event); 3656 3657 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3658 update_event_times(sub); 3659 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3660 /* 3661 * Use sibling's PMU rather than @event's since 3662 * sibling could be on different (eg: software) PMU. 3663 */ 3664 sub->pmu->read(sub); 3665 } 3666 } 3667 3668 data->ret = pmu->commit_txn(pmu); 3669 3670 unlock: 3671 raw_spin_unlock(&ctx->lock); 3672 } 3673 3674 static inline u64 perf_event_count(struct perf_event *event) 3675 { 3676 return local64_read(&event->count) + atomic64_read(&event->child_count); 3677 } 3678 3679 /* 3680 * NMI-safe method to read a local event, that is an event that 3681 * is: 3682 * - either for the current task, or for this CPU 3683 * - does not have inherit set, for inherited task events 3684 * will not be local and we cannot read them atomically 3685 * - must not have a pmu::count method 3686 */ 3687 int perf_event_read_local(struct perf_event *event, u64 *value) 3688 { 3689 unsigned long flags; 3690 int ret = 0; 3691 3692 /* 3693 * Disabling interrupts avoids all counter scheduling (context 3694 * switches, timer based rotation and IPIs). 3695 */ 3696 local_irq_save(flags); 3697 3698 /* 3699 * It must not be an event with inherit set, we cannot read 3700 * all child counters from atomic context. 3701 */ 3702 if (event->attr.inherit) { 3703 ret = -EOPNOTSUPP; 3704 goto out; 3705 } 3706 3707 /* If this is a per-task event, it must be for current */ 3708 if ((event->attach_state & PERF_ATTACH_TASK) && 3709 event->hw.target != current) { 3710 ret = -EINVAL; 3711 goto out; 3712 } 3713 3714 /* If this is a per-CPU event, it must be for this CPU */ 3715 if (!(event->attach_state & PERF_ATTACH_TASK) && 3716 event->cpu != smp_processor_id()) { 3717 ret = -EINVAL; 3718 goto out; 3719 } 3720 3721 /* 3722 * If the event is currently on this CPU, its either a per-task event, 3723 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3724 * oncpu == -1). 3725 */ 3726 if (event->oncpu == smp_processor_id()) 3727 event->pmu->read(event); 3728 3729 *value = local64_read(&event->count); 3730 out: 3731 local_irq_restore(flags); 3732 3733 return ret; 3734 } 3735 3736 static int perf_event_read(struct perf_event *event, bool group) 3737 { 3738 int event_cpu, ret = 0; 3739 3740 /* 3741 * If event is enabled and currently active on a CPU, update the 3742 * value in the event structure: 3743 */ 3744 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3745 struct perf_read_data data = { 3746 .event = event, 3747 .group = group, 3748 .ret = 0, 3749 }; 3750 3751 event_cpu = READ_ONCE(event->oncpu); 3752 if ((unsigned)event_cpu >= nr_cpu_ids) 3753 return 0; 3754 3755 preempt_disable(); 3756 event_cpu = __perf_event_read_cpu(event, event_cpu); 3757 3758 /* 3759 * Purposely ignore the smp_call_function_single() return 3760 * value. 3761 * 3762 * If event_cpu isn't a valid CPU it means the event got 3763 * scheduled out and that will have updated the event count. 3764 * 3765 * Therefore, either way, we'll have an up-to-date event count 3766 * after this. 3767 */ 3768 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 3769 preempt_enable(); 3770 ret = data.ret; 3771 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3772 struct perf_event_context *ctx = event->ctx; 3773 unsigned long flags; 3774 3775 raw_spin_lock_irqsave(&ctx->lock, flags); 3776 /* 3777 * may read while context is not active 3778 * (e.g., thread is blocked), in that case 3779 * we cannot update context time 3780 */ 3781 if (ctx->is_active) { 3782 update_context_time(ctx); 3783 update_cgrp_time_from_event(event); 3784 } 3785 if (group) 3786 update_group_times(event); 3787 else 3788 update_event_times(event); 3789 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3790 } 3791 3792 return ret; 3793 } 3794 3795 /* 3796 * Initialize the perf_event context in a task_struct: 3797 */ 3798 static void __perf_event_init_context(struct perf_event_context *ctx) 3799 { 3800 raw_spin_lock_init(&ctx->lock); 3801 mutex_init(&ctx->mutex); 3802 INIT_LIST_HEAD(&ctx->active_ctx_list); 3803 INIT_LIST_HEAD(&ctx->pinned_groups); 3804 INIT_LIST_HEAD(&ctx->flexible_groups); 3805 INIT_LIST_HEAD(&ctx->event_list); 3806 atomic_set(&ctx->refcount, 1); 3807 } 3808 3809 static struct perf_event_context * 3810 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3811 { 3812 struct perf_event_context *ctx; 3813 3814 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3815 if (!ctx) 3816 return NULL; 3817 3818 __perf_event_init_context(ctx); 3819 if (task) { 3820 ctx->task = task; 3821 get_task_struct(task); 3822 } 3823 ctx->pmu = pmu; 3824 3825 return ctx; 3826 } 3827 3828 static struct task_struct * 3829 find_lively_task_by_vpid(pid_t vpid) 3830 { 3831 struct task_struct *task; 3832 3833 rcu_read_lock(); 3834 if (!vpid) 3835 task = current; 3836 else 3837 task = find_task_by_vpid(vpid); 3838 if (task) 3839 get_task_struct(task); 3840 rcu_read_unlock(); 3841 3842 if (!task) 3843 return ERR_PTR(-ESRCH); 3844 3845 return task; 3846 } 3847 3848 /* 3849 * Returns a matching context with refcount and pincount. 3850 */ 3851 static struct perf_event_context * 3852 find_get_context(struct pmu *pmu, struct task_struct *task, 3853 struct perf_event *event) 3854 { 3855 struct perf_event_context *ctx, *clone_ctx = NULL; 3856 struct perf_cpu_context *cpuctx; 3857 void *task_ctx_data = NULL; 3858 unsigned long flags; 3859 int ctxn, err; 3860 int cpu = event->cpu; 3861 3862 if (!task) { 3863 /* Must be root to operate on a CPU event: */ 3864 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3865 return ERR_PTR(-EACCES); 3866 3867 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3868 ctx = &cpuctx->ctx; 3869 get_ctx(ctx); 3870 ++ctx->pin_count; 3871 3872 return ctx; 3873 } 3874 3875 err = -EINVAL; 3876 ctxn = pmu->task_ctx_nr; 3877 if (ctxn < 0) 3878 goto errout; 3879 3880 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3881 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3882 if (!task_ctx_data) { 3883 err = -ENOMEM; 3884 goto errout; 3885 } 3886 } 3887 3888 retry: 3889 ctx = perf_lock_task_context(task, ctxn, &flags); 3890 if (ctx) { 3891 clone_ctx = unclone_ctx(ctx); 3892 ++ctx->pin_count; 3893 3894 if (task_ctx_data && !ctx->task_ctx_data) { 3895 ctx->task_ctx_data = task_ctx_data; 3896 task_ctx_data = NULL; 3897 } 3898 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3899 3900 if (clone_ctx) 3901 put_ctx(clone_ctx); 3902 } else { 3903 ctx = alloc_perf_context(pmu, task); 3904 err = -ENOMEM; 3905 if (!ctx) 3906 goto errout; 3907 3908 if (task_ctx_data) { 3909 ctx->task_ctx_data = task_ctx_data; 3910 task_ctx_data = NULL; 3911 } 3912 3913 err = 0; 3914 mutex_lock(&task->perf_event_mutex); 3915 /* 3916 * If it has already passed perf_event_exit_task(). 3917 * we must see PF_EXITING, it takes this mutex too. 3918 */ 3919 if (task->flags & PF_EXITING) 3920 err = -ESRCH; 3921 else if (task->perf_event_ctxp[ctxn]) 3922 err = -EAGAIN; 3923 else { 3924 get_ctx(ctx); 3925 ++ctx->pin_count; 3926 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3927 } 3928 mutex_unlock(&task->perf_event_mutex); 3929 3930 if (unlikely(err)) { 3931 put_ctx(ctx); 3932 3933 if (err == -EAGAIN) 3934 goto retry; 3935 goto errout; 3936 } 3937 } 3938 3939 kfree(task_ctx_data); 3940 return ctx; 3941 3942 errout: 3943 kfree(task_ctx_data); 3944 return ERR_PTR(err); 3945 } 3946 3947 static void perf_event_free_filter(struct perf_event *event); 3948 static void perf_event_free_bpf_prog(struct perf_event *event); 3949 3950 static void free_event_rcu(struct rcu_head *head) 3951 { 3952 struct perf_event *event; 3953 3954 event = container_of(head, struct perf_event, rcu_head); 3955 if (event->ns) 3956 put_pid_ns(event->ns); 3957 perf_event_free_filter(event); 3958 kfree(event); 3959 } 3960 3961 static void ring_buffer_attach(struct perf_event *event, 3962 struct ring_buffer *rb); 3963 3964 static void detach_sb_event(struct perf_event *event) 3965 { 3966 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3967 3968 raw_spin_lock(&pel->lock); 3969 list_del_rcu(&event->sb_list); 3970 raw_spin_unlock(&pel->lock); 3971 } 3972 3973 static bool is_sb_event(struct perf_event *event) 3974 { 3975 struct perf_event_attr *attr = &event->attr; 3976 3977 if (event->parent) 3978 return false; 3979 3980 if (event->attach_state & PERF_ATTACH_TASK) 3981 return false; 3982 3983 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3984 attr->comm || attr->comm_exec || 3985 attr->task || 3986 attr->context_switch) 3987 return true; 3988 return false; 3989 } 3990 3991 static void unaccount_pmu_sb_event(struct perf_event *event) 3992 { 3993 if (is_sb_event(event)) 3994 detach_sb_event(event); 3995 } 3996 3997 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3998 { 3999 if (event->parent) 4000 return; 4001 4002 if (is_cgroup_event(event)) 4003 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4004 } 4005 4006 #ifdef CONFIG_NO_HZ_FULL 4007 static DEFINE_SPINLOCK(nr_freq_lock); 4008 #endif 4009 4010 static void unaccount_freq_event_nohz(void) 4011 { 4012 #ifdef CONFIG_NO_HZ_FULL 4013 spin_lock(&nr_freq_lock); 4014 if (atomic_dec_and_test(&nr_freq_events)) 4015 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4016 spin_unlock(&nr_freq_lock); 4017 #endif 4018 } 4019 4020 static void unaccount_freq_event(void) 4021 { 4022 if (tick_nohz_full_enabled()) 4023 unaccount_freq_event_nohz(); 4024 else 4025 atomic_dec(&nr_freq_events); 4026 } 4027 4028 static void unaccount_event(struct perf_event *event) 4029 { 4030 bool dec = false; 4031 4032 if (event->parent) 4033 return; 4034 4035 if (event->attach_state & PERF_ATTACH_TASK) 4036 dec = true; 4037 if (event->attr.mmap || event->attr.mmap_data) 4038 atomic_dec(&nr_mmap_events); 4039 if (event->attr.comm) 4040 atomic_dec(&nr_comm_events); 4041 if (event->attr.namespaces) 4042 atomic_dec(&nr_namespaces_events); 4043 if (event->attr.task) 4044 atomic_dec(&nr_task_events); 4045 if (event->attr.freq) 4046 unaccount_freq_event(); 4047 if (event->attr.context_switch) { 4048 dec = true; 4049 atomic_dec(&nr_switch_events); 4050 } 4051 if (is_cgroup_event(event)) 4052 dec = true; 4053 if (has_branch_stack(event)) 4054 dec = true; 4055 4056 if (dec) { 4057 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4058 schedule_delayed_work(&perf_sched_work, HZ); 4059 } 4060 4061 unaccount_event_cpu(event, event->cpu); 4062 4063 unaccount_pmu_sb_event(event); 4064 } 4065 4066 static void perf_sched_delayed(struct work_struct *work) 4067 { 4068 mutex_lock(&perf_sched_mutex); 4069 if (atomic_dec_and_test(&perf_sched_count)) 4070 static_branch_disable(&perf_sched_events); 4071 mutex_unlock(&perf_sched_mutex); 4072 } 4073 4074 /* 4075 * The following implement mutual exclusion of events on "exclusive" pmus 4076 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4077 * at a time, so we disallow creating events that might conflict, namely: 4078 * 4079 * 1) cpu-wide events in the presence of per-task events, 4080 * 2) per-task events in the presence of cpu-wide events, 4081 * 3) two matching events on the same context. 4082 * 4083 * The former two cases are handled in the allocation path (perf_event_alloc(), 4084 * _free_event()), the latter -- before the first perf_install_in_context(). 4085 */ 4086 static int exclusive_event_init(struct perf_event *event) 4087 { 4088 struct pmu *pmu = event->pmu; 4089 4090 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4091 return 0; 4092 4093 /* 4094 * Prevent co-existence of per-task and cpu-wide events on the 4095 * same exclusive pmu. 4096 * 4097 * Negative pmu::exclusive_cnt means there are cpu-wide 4098 * events on this "exclusive" pmu, positive means there are 4099 * per-task events. 4100 * 4101 * Since this is called in perf_event_alloc() path, event::ctx 4102 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4103 * to mean "per-task event", because unlike other attach states it 4104 * never gets cleared. 4105 */ 4106 if (event->attach_state & PERF_ATTACH_TASK) { 4107 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4108 return -EBUSY; 4109 } else { 4110 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4111 return -EBUSY; 4112 } 4113 4114 return 0; 4115 } 4116 4117 static void exclusive_event_destroy(struct perf_event *event) 4118 { 4119 struct pmu *pmu = event->pmu; 4120 4121 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4122 return; 4123 4124 /* see comment in exclusive_event_init() */ 4125 if (event->attach_state & PERF_ATTACH_TASK) 4126 atomic_dec(&pmu->exclusive_cnt); 4127 else 4128 atomic_inc(&pmu->exclusive_cnt); 4129 } 4130 4131 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4132 { 4133 if ((e1->pmu == e2->pmu) && 4134 (e1->cpu == e2->cpu || 4135 e1->cpu == -1 || 4136 e2->cpu == -1)) 4137 return true; 4138 return false; 4139 } 4140 4141 /* Called under the same ctx::mutex as perf_install_in_context() */ 4142 static bool exclusive_event_installable(struct perf_event *event, 4143 struct perf_event_context *ctx) 4144 { 4145 struct perf_event *iter_event; 4146 struct pmu *pmu = event->pmu; 4147 4148 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4149 return true; 4150 4151 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4152 if (exclusive_event_match(iter_event, event)) 4153 return false; 4154 } 4155 4156 return true; 4157 } 4158 4159 static void perf_addr_filters_splice(struct perf_event *event, 4160 struct list_head *head); 4161 4162 static void _free_event(struct perf_event *event) 4163 { 4164 irq_work_sync(&event->pending); 4165 4166 unaccount_event(event); 4167 4168 if (event->rb) { 4169 /* 4170 * Can happen when we close an event with re-directed output. 4171 * 4172 * Since we have a 0 refcount, perf_mmap_close() will skip 4173 * over us; possibly making our ring_buffer_put() the last. 4174 */ 4175 mutex_lock(&event->mmap_mutex); 4176 ring_buffer_attach(event, NULL); 4177 mutex_unlock(&event->mmap_mutex); 4178 } 4179 4180 if (is_cgroup_event(event)) 4181 perf_detach_cgroup(event); 4182 4183 if (!event->parent) { 4184 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4185 put_callchain_buffers(); 4186 } 4187 4188 perf_event_free_bpf_prog(event); 4189 perf_addr_filters_splice(event, NULL); 4190 kfree(event->addr_filters_offs); 4191 4192 if (event->destroy) 4193 event->destroy(event); 4194 4195 if (event->ctx) 4196 put_ctx(event->ctx); 4197 4198 exclusive_event_destroy(event); 4199 module_put(event->pmu->module); 4200 4201 call_rcu(&event->rcu_head, free_event_rcu); 4202 } 4203 4204 /* 4205 * Used to free events which have a known refcount of 1, such as in error paths 4206 * where the event isn't exposed yet and inherited events. 4207 */ 4208 static void free_event(struct perf_event *event) 4209 { 4210 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4211 "unexpected event refcount: %ld; ptr=%p\n", 4212 atomic_long_read(&event->refcount), event)) { 4213 /* leak to avoid use-after-free */ 4214 return; 4215 } 4216 4217 _free_event(event); 4218 } 4219 4220 /* 4221 * Remove user event from the owner task. 4222 */ 4223 static void perf_remove_from_owner(struct perf_event *event) 4224 { 4225 struct task_struct *owner; 4226 4227 rcu_read_lock(); 4228 /* 4229 * Matches the smp_store_release() in perf_event_exit_task(). If we 4230 * observe !owner it means the list deletion is complete and we can 4231 * indeed free this event, otherwise we need to serialize on 4232 * owner->perf_event_mutex. 4233 */ 4234 owner = lockless_dereference(event->owner); 4235 if (owner) { 4236 /* 4237 * Since delayed_put_task_struct() also drops the last 4238 * task reference we can safely take a new reference 4239 * while holding the rcu_read_lock(). 4240 */ 4241 get_task_struct(owner); 4242 } 4243 rcu_read_unlock(); 4244 4245 if (owner) { 4246 /* 4247 * If we're here through perf_event_exit_task() we're already 4248 * holding ctx->mutex which would be an inversion wrt. the 4249 * normal lock order. 4250 * 4251 * However we can safely take this lock because its the child 4252 * ctx->mutex. 4253 */ 4254 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4255 4256 /* 4257 * We have to re-check the event->owner field, if it is cleared 4258 * we raced with perf_event_exit_task(), acquiring the mutex 4259 * ensured they're done, and we can proceed with freeing the 4260 * event. 4261 */ 4262 if (event->owner) { 4263 list_del_init(&event->owner_entry); 4264 smp_store_release(&event->owner, NULL); 4265 } 4266 mutex_unlock(&owner->perf_event_mutex); 4267 put_task_struct(owner); 4268 } 4269 } 4270 4271 static void put_event(struct perf_event *event) 4272 { 4273 if (!atomic_long_dec_and_test(&event->refcount)) 4274 return; 4275 4276 _free_event(event); 4277 } 4278 4279 /* 4280 * Kill an event dead; while event:refcount will preserve the event 4281 * object, it will not preserve its functionality. Once the last 'user' 4282 * gives up the object, we'll destroy the thing. 4283 */ 4284 int perf_event_release_kernel(struct perf_event *event) 4285 { 4286 struct perf_event_context *ctx = event->ctx; 4287 struct perf_event *child, *tmp; 4288 4289 /* 4290 * If we got here through err_file: fput(event_file); we will not have 4291 * attached to a context yet. 4292 */ 4293 if (!ctx) { 4294 WARN_ON_ONCE(event->attach_state & 4295 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4296 goto no_ctx; 4297 } 4298 4299 if (!is_kernel_event(event)) 4300 perf_remove_from_owner(event); 4301 4302 ctx = perf_event_ctx_lock(event); 4303 WARN_ON_ONCE(ctx->parent_ctx); 4304 perf_remove_from_context(event, DETACH_GROUP); 4305 4306 raw_spin_lock_irq(&ctx->lock); 4307 /* 4308 * Mark this event as STATE_DEAD, there is no external reference to it 4309 * anymore. 4310 * 4311 * Anybody acquiring event->child_mutex after the below loop _must_ 4312 * also see this, most importantly inherit_event() which will avoid 4313 * placing more children on the list. 4314 * 4315 * Thus this guarantees that we will in fact observe and kill _ALL_ 4316 * child events. 4317 */ 4318 event->state = PERF_EVENT_STATE_DEAD; 4319 raw_spin_unlock_irq(&ctx->lock); 4320 4321 perf_event_ctx_unlock(event, ctx); 4322 4323 again: 4324 mutex_lock(&event->child_mutex); 4325 list_for_each_entry(child, &event->child_list, child_list) { 4326 4327 /* 4328 * Cannot change, child events are not migrated, see the 4329 * comment with perf_event_ctx_lock_nested(). 4330 */ 4331 ctx = lockless_dereference(child->ctx); 4332 /* 4333 * Since child_mutex nests inside ctx::mutex, we must jump 4334 * through hoops. We start by grabbing a reference on the ctx. 4335 * 4336 * Since the event cannot get freed while we hold the 4337 * child_mutex, the context must also exist and have a !0 4338 * reference count. 4339 */ 4340 get_ctx(ctx); 4341 4342 /* 4343 * Now that we have a ctx ref, we can drop child_mutex, and 4344 * acquire ctx::mutex without fear of it going away. Then we 4345 * can re-acquire child_mutex. 4346 */ 4347 mutex_unlock(&event->child_mutex); 4348 mutex_lock(&ctx->mutex); 4349 mutex_lock(&event->child_mutex); 4350 4351 /* 4352 * Now that we hold ctx::mutex and child_mutex, revalidate our 4353 * state, if child is still the first entry, it didn't get freed 4354 * and we can continue doing so. 4355 */ 4356 tmp = list_first_entry_or_null(&event->child_list, 4357 struct perf_event, child_list); 4358 if (tmp == child) { 4359 perf_remove_from_context(child, DETACH_GROUP); 4360 list_del(&child->child_list); 4361 free_event(child); 4362 /* 4363 * This matches the refcount bump in inherit_event(); 4364 * this can't be the last reference. 4365 */ 4366 put_event(event); 4367 } 4368 4369 mutex_unlock(&event->child_mutex); 4370 mutex_unlock(&ctx->mutex); 4371 put_ctx(ctx); 4372 goto again; 4373 } 4374 mutex_unlock(&event->child_mutex); 4375 4376 no_ctx: 4377 put_event(event); /* Must be the 'last' reference */ 4378 return 0; 4379 } 4380 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4381 4382 /* 4383 * Called when the last reference to the file is gone. 4384 */ 4385 static int perf_release(struct inode *inode, struct file *file) 4386 { 4387 perf_event_release_kernel(file->private_data); 4388 return 0; 4389 } 4390 4391 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4392 { 4393 struct perf_event *child; 4394 u64 total = 0; 4395 4396 *enabled = 0; 4397 *running = 0; 4398 4399 mutex_lock(&event->child_mutex); 4400 4401 (void)perf_event_read(event, false); 4402 total += perf_event_count(event); 4403 4404 *enabled += event->total_time_enabled + 4405 atomic64_read(&event->child_total_time_enabled); 4406 *running += event->total_time_running + 4407 atomic64_read(&event->child_total_time_running); 4408 4409 list_for_each_entry(child, &event->child_list, child_list) { 4410 (void)perf_event_read(child, false); 4411 total += perf_event_count(child); 4412 *enabled += child->total_time_enabled; 4413 *running += child->total_time_running; 4414 } 4415 mutex_unlock(&event->child_mutex); 4416 4417 return total; 4418 } 4419 EXPORT_SYMBOL_GPL(perf_event_read_value); 4420 4421 static int __perf_read_group_add(struct perf_event *leader, 4422 u64 read_format, u64 *values) 4423 { 4424 struct perf_event_context *ctx = leader->ctx; 4425 struct perf_event *sub; 4426 unsigned long flags; 4427 int n = 1; /* skip @nr */ 4428 int ret; 4429 4430 ret = perf_event_read(leader, true); 4431 if (ret) 4432 return ret; 4433 4434 /* 4435 * Since we co-schedule groups, {enabled,running} times of siblings 4436 * will be identical to those of the leader, so we only publish one 4437 * set. 4438 */ 4439 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4440 values[n++] += leader->total_time_enabled + 4441 atomic64_read(&leader->child_total_time_enabled); 4442 } 4443 4444 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4445 values[n++] += leader->total_time_running + 4446 atomic64_read(&leader->child_total_time_running); 4447 } 4448 4449 /* 4450 * Write {count,id} tuples for every sibling. 4451 */ 4452 values[n++] += perf_event_count(leader); 4453 if (read_format & PERF_FORMAT_ID) 4454 values[n++] = primary_event_id(leader); 4455 4456 raw_spin_lock_irqsave(&ctx->lock, flags); 4457 4458 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4459 values[n++] += perf_event_count(sub); 4460 if (read_format & PERF_FORMAT_ID) 4461 values[n++] = primary_event_id(sub); 4462 } 4463 4464 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4465 return 0; 4466 } 4467 4468 static int perf_read_group(struct perf_event *event, 4469 u64 read_format, char __user *buf) 4470 { 4471 struct perf_event *leader = event->group_leader, *child; 4472 struct perf_event_context *ctx = leader->ctx; 4473 int ret; 4474 u64 *values; 4475 4476 lockdep_assert_held(&ctx->mutex); 4477 4478 values = kzalloc(event->read_size, GFP_KERNEL); 4479 if (!values) 4480 return -ENOMEM; 4481 4482 values[0] = 1 + leader->nr_siblings; 4483 4484 /* 4485 * By locking the child_mutex of the leader we effectively 4486 * lock the child list of all siblings.. XXX explain how. 4487 */ 4488 mutex_lock(&leader->child_mutex); 4489 4490 ret = __perf_read_group_add(leader, read_format, values); 4491 if (ret) 4492 goto unlock; 4493 4494 list_for_each_entry(child, &leader->child_list, child_list) { 4495 ret = __perf_read_group_add(child, read_format, values); 4496 if (ret) 4497 goto unlock; 4498 } 4499 4500 mutex_unlock(&leader->child_mutex); 4501 4502 ret = event->read_size; 4503 if (copy_to_user(buf, values, event->read_size)) 4504 ret = -EFAULT; 4505 goto out; 4506 4507 unlock: 4508 mutex_unlock(&leader->child_mutex); 4509 out: 4510 kfree(values); 4511 return ret; 4512 } 4513 4514 static int perf_read_one(struct perf_event *event, 4515 u64 read_format, char __user *buf) 4516 { 4517 u64 enabled, running; 4518 u64 values[4]; 4519 int n = 0; 4520 4521 values[n++] = perf_event_read_value(event, &enabled, &running); 4522 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4523 values[n++] = enabled; 4524 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4525 values[n++] = running; 4526 if (read_format & PERF_FORMAT_ID) 4527 values[n++] = primary_event_id(event); 4528 4529 if (copy_to_user(buf, values, n * sizeof(u64))) 4530 return -EFAULT; 4531 4532 return n * sizeof(u64); 4533 } 4534 4535 static bool is_event_hup(struct perf_event *event) 4536 { 4537 bool no_children; 4538 4539 if (event->state > PERF_EVENT_STATE_EXIT) 4540 return false; 4541 4542 mutex_lock(&event->child_mutex); 4543 no_children = list_empty(&event->child_list); 4544 mutex_unlock(&event->child_mutex); 4545 return no_children; 4546 } 4547 4548 /* 4549 * Read the performance event - simple non blocking version for now 4550 */ 4551 static ssize_t 4552 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4553 { 4554 u64 read_format = event->attr.read_format; 4555 int ret; 4556 4557 /* 4558 * Return end-of-file for a read on a event that is in 4559 * error state (i.e. because it was pinned but it couldn't be 4560 * scheduled on to the CPU at some point). 4561 */ 4562 if (event->state == PERF_EVENT_STATE_ERROR) 4563 return 0; 4564 4565 if (count < event->read_size) 4566 return -ENOSPC; 4567 4568 WARN_ON_ONCE(event->ctx->parent_ctx); 4569 if (read_format & PERF_FORMAT_GROUP) 4570 ret = perf_read_group(event, read_format, buf); 4571 else 4572 ret = perf_read_one(event, read_format, buf); 4573 4574 return ret; 4575 } 4576 4577 static ssize_t 4578 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4579 { 4580 struct perf_event *event = file->private_data; 4581 struct perf_event_context *ctx; 4582 int ret; 4583 4584 ctx = perf_event_ctx_lock(event); 4585 ret = __perf_read(event, buf, count); 4586 perf_event_ctx_unlock(event, ctx); 4587 4588 return ret; 4589 } 4590 4591 static unsigned int perf_poll(struct file *file, poll_table *wait) 4592 { 4593 struct perf_event *event = file->private_data; 4594 struct ring_buffer *rb; 4595 unsigned int events = POLLHUP; 4596 4597 poll_wait(file, &event->waitq, wait); 4598 4599 if (is_event_hup(event)) 4600 return events; 4601 4602 /* 4603 * Pin the event->rb by taking event->mmap_mutex; otherwise 4604 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4605 */ 4606 mutex_lock(&event->mmap_mutex); 4607 rb = event->rb; 4608 if (rb) 4609 events = atomic_xchg(&rb->poll, 0); 4610 mutex_unlock(&event->mmap_mutex); 4611 return events; 4612 } 4613 4614 static void _perf_event_reset(struct perf_event *event) 4615 { 4616 (void)perf_event_read(event, false); 4617 local64_set(&event->count, 0); 4618 perf_event_update_userpage(event); 4619 } 4620 4621 /* 4622 * Holding the top-level event's child_mutex means that any 4623 * descendant process that has inherited this event will block 4624 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4625 * task existence requirements of perf_event_enable/disable. 4626 */ 4627 static void perf_event_for_each_child(struct perf_event *event, 4628 void (*func)(struct perf_event *)) 4629 { 4630 struct perf_event *child; 4631 4632 WARN_ON_ONCE(event->ctx->parent_ctx); 4633 4634 mutex_lock(&event->child_mutex); 4635 func(event); 4636 list_for_each_entry(child, &event->child_list, child_list) 4637 func(child); 4638 mutex_unlock(&event->child_mutex); 4639 } 4640 4641 static void perf_event_for_each(struct perf_event *event, 4642 void (*func)(struct perf_event *)) 4643 { 4644 struct perf_event_context *ctx = event->ctx; 4645 struct perf_event *sibling; 4646 4647 lockdep_assert_held(&ctx->mutex); 4648 4649 event = event->group_leader; 4650 4651 perf_event_for_each_child(event, func); 4652 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4653 perf_event_for_each_child(sibling, func); 4654 } 4655 4656 static void __perf_event_period(struct perf_event *event, 4657 struct perf_cpu_context *cpuctx, 4658 struct perf_event_context *ctx, 4659 void *info) 4660 { 4661 u64 value = *((u64 *)info); 4662 bool active; 4663 4664 if (event->attr.freq) { 4665 event->attr.sample_freq = value; 4666 } else { 4667 event->attr.sample_period = value; 4668 event->hw.sample_period = value; 4669 } 4670 4671 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4672 if (active) { 4673 perf_pmu_disable(ctx->pmu); 4674 /* 4675 * We could be throttled; unthrottle now to avoid the tick 4676 * trying to unthrottle while we already re-started the event. 4677 */ 4678 if (event->hw.interrupts == MAX_INTERRUPTS) { 4679 event->hw.interrupts = 0; 4680 perf_log_throttle(event, 1); 4681 } 4682 event->pmu->stop(event, PERF_EF_UPDATE); 4683 } 4684 4685 local64_set(&event->hw.period_left, 0); 4686 4687 if (active) { 4688 event->pmu->start(event, PERF_EF_RELOAD); 4689 perf_pmu_enable(ctx->pmu); 4690 } 4691 } 4692 4693 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4694 { 4695 u64 value; 4696 4697 if (!is_sampling_event(event)) 4698 return -EINVAL; 4699 4700 if (copy_from_user(&value, arg, sizeof(value))) 4701 return -EFAULT; 4702 4703 if (!value) 4704 return -EINVAL; 4705 4706 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4707 return -EINVAL; 4708 4709 event_function_call(event, __perf_event_period, &value); 4710 4711 return 0; 4712 } 4713 4714 static const struct file_operations perf_fops; 4715 4716 static inline int perf_fget_light(int fd, struct fd *p) 4717 { 4718 struct fd f = fdget(fd); 4719 if (!f.file) 4720 return -EBADF; 4721 4722 if (f.file->f_op != &perf_fops) { 4723 fdput(f); 4724 return -EBADF; 4725 } 4726 *p = f; 4727 return 0; 4728 } 4729 4730 static int perf_event_set_output(struct perf_event *event, 4731 struct perf_event *output_event); 4732 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4733 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4734 4735 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4736 { 4737 void (*func)(struct perf_event *); 4738 u32 flags = arg; 4739 4740 switch (cmd) { 4741 case PERF_EVENT_IOC_ENABLE: 4742 func = _perf_event_enable; 4743 break; 4744 case PERF_EVENT_IOC_DISABLE: 4745 func = _perf_event_disable; 4746 break; 4747 case PERF_EVENT_IOC_RESET: 4748 func = _perf_event_reset; 4749 break; 4750 4751 case PERF_EVENT_IOC_REFRESH: 4752 return _perf_event_refresh(event, arg); 4753 4754 case PERF_EVENT_IOC_PERIOD: 4755 return perf_event_period(event, (u64 __user *)arg); 4756 4757 case PERF_EVENT_IOC_ID: 4758 { 4759 u64 id = primary_event_id(event); 4760 4761 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4762 return -EFAULT; 4763 return 0; 4764 } 4765 4766 case PERF_EVENT_IOC_SET_OUTPUT: 4767 { 4768 int ret; 4769 if (arg != -1) { 4770 struct perf_event *output_event; 4771 struct fd output; 4772 ret = perf_fget_light(arg, &output); 4773 if (ret) 4774 return ret; 4775 output_event = output.file->private_data; 4776 ret = perf_event_set_output(event, output_event); 4777 fdput(output); 4778 } else { 4779 ret = perf_event_set_output(event, NULL); 4780 } 4781 return ret; 4782 } 4783 4784 case PERF_EVENT_IOC_SET_FILTER: 4785 return perf_event_set_filter(event, (void __user *)arg); 4786 4787 case PERF_EVENT_IOC_SET_BPF: 4788 return perf_event_set_bpf_prog(event, arg); 4789 4790 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4791 struct ring_buffer *rb; 4792 4793 rcu_read_lock(); 4794 rb = rcu_dereference(event->rb); 4795 if (!rb || !rb->nr_pages) { 4796 rcu_read_unlock(); 4797 return -EINVAL; 4798 } 4799 rb_toggle_paused(rb, !!arg); 4800 rcu_read_unlock(); 4801 return 0; 4802 } 4803 default: 4804 return -ENOTTY; 4805 } 4806 4807 if (flags & PERF_IOC_FLAG_GROUP) 4808 perf_event_for_each(event, func); 4809 else 4810 perf_event_for_each_child(event, func); 4811 4812 return 0; 4813 } 4814 4815 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4816 { 4817 struct perf_event *event = file->private_data; 4818 struct perf_event_context *ctx; 4819 long ret; 4820 4821 ctx = perf_event_ctx_lock(event); 4822 ret = _perf_ioctl(event, cmd, arg); 4823 perf_event_ctx_unlock(event, ctx); 4824 4825 return ret; 4826 } 4827 4828 #ifdef CONFIG_COMPAT 4829 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4830 unsigned long arg) 4831 { 4832 switch (_IOC_NR(cmd)) { 4833 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4834 case _IOC_NR(PERF_EVENT_IOC_ID): 4835 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4836 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4837 cmd &= ~IOCSIZE_MASK; 4838 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4839 } 4840 break; 4841 } 4842 return perf_ioctl(file, cmd, arg); 4843 } 4844 #else 4845 # define perf_compat_ioctl NULL 4846 #endif 4847 4848 int perf_event_task_enable(void) 4849 { 4850 struct perf_event_context *ctx; 4851 struct perf_event *event; 4852 4853 mutex_lock(¤t->perf_event_mutex); 4854 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4855 ctx = perf_event_ctx_lock(event); 4856 perf_event_for_each_child(event, _perf_event_enable); 4857 perf_event_ctx_unlock(event, ctx); 4858 } 4859 mutex_unlock(¤t->perf_event_mutex); 4860 4861 return 0; 4862 } 4863 4864 int perf_event_task_disable(void) 4865 { 4866 struct perf_event_context *ctx; 4867 struct perf_event *event; 4868 4869 mutex_lock(¤t->perf_event_mutex); 4870 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4871 ctx = perf_event_ctx_lock(event); 4872 perf_event_for_each_child(event, _perf_event_disable); 4873 perf_event_ctx_unlock(event, ctx); 4874 } 4875 mutex_unlock(¤t->perf_event_mutex); 4876 4877 return 0; 4878 } 4879 4880 static int perf_event_index(struct perf_event *event) 4881 { 4882 if (event->hw.state & PERF_HES_STOPPED) 4883 return 0; 4884 4885 if (event->state != PERF_EVENT_STATE_ACTIVE) 4886 return 0; 4887 4888 return event->pmu->event_idx(event); 4889 } 4890 4891 static void calc_timer_values(struct perf_event *event, 4892 u64 *now, 4893 u64 *enabled, 4894 u64 *running) 4895 { 4896 u64 ctx_time; 4897 4898 *now = perf_clock(); 4899 ctx_time = event->shadow_ctx_time + *now; 4900 *enabled = ctx_time - event->tstamp_enabled; 4901 *running = ctx_time - event->tstamp_running; 4902 } 4903 4904 static void perf_event_init_userpage(struct perf_event *event) 4905 { 4906 struct perf_event_mmap_page *userpg; 4907 struct ring_buffer *rb; 4908 4909 rcu_read_lock(); 4910 rb = rcu_dereference(event->rb); 4911 if (!rb) 4912 goto unlock; 4913 4914 userpg = rb->user_page; 4915 4916 /* Allow new userspace to detect that bit 0 is deprecated */ 4917 userpg->cap_bit0_is_deprecated = 1; 4918 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4919 userpg->data_offset = PAGE_SIZE; 4920 userpg->data_size = perf_data_size(rb); 4921 4922 unlock: 4923 rcu_read_unlock(); 4924 } 4925 4926 void __weak arch_perf_update_userpage( 4927 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4928 { 4929 } 4930 4931 /* 4932 * Callers need to ensure there can be no nesting of this function, otherwise 4933 * the seqlock logic goes bad. We can not serialize this because the arch 4934 * code calls this from NMI context. 4935 */ 4936 void perf_event_update_userpage(struct perf_event *event) 4937 { 4938 struct perf_event_mmap_page *userpg; 4939 struct ring_buffer *rb; 4940 u64 enabled, running, now; 4941 4942 rcu_read_lock(); 4943 rb = rcu_dereference(event->rb); 4944 if (!rb) 4945 goto unlock; 4946 4947 /* 4948 * compute total_time_enabled, total_time_running 4949 * based on snapshot values taken when the event 4950 * was last scheduled in. 4951 * 4952 * we cannot simply called update_context_time() 4953 * because of locking issue as we can be called in 4954 * NMI context 4955 */ 4956 calc_timer_values(event, &now, &enabled, &running); 4957 4958 userpg = rb->user_page; 4959 /* 4960 * Disable preemption so as to not let the corresponding user-space 4961 * spin too long if we get preempted. 4962 */ 4963 preempt_disable(); 4964 ++userpg->lock; 4965 barrier(); 4966 userpg->index = perf_event_index(event); 4967 userpg->offset = perf_event_count(event); 4968 if (userpg->index) 4969 userpg->offset -= local64_read(&event->hw.prev_count); 4970 4971 userpg->time_enabled = enabled + 4972 atomic64_read(&event->child_total_time_enabled); 4973 4974 userpg->time_running = running + 4975 atomic64_read(&event->child_total_time_running); 4976 4977 arch_perf_update_userpage(event, userpg, now); 4978 4979 barrier(); 4980 ++userpg->lock; 4981 preempt_enable(); 4982 unlock: 4983 rcu_read_unlock(); 4984 } 4985 4986 static int perf_mmap_fault(struct vm_fault *vmf) 4987 { 4988 struct perf_event *event = vmf->vma->vm_file->private_data; 4989 struct ring_buffer *rb; 4990 int ret = VM_FAULT_SIGBUS; 4991 4992 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4993 if (vmf->pgoff == 0) 4994 ret = 0; 4995 return ret; 4996 } 4997 4998 rcu_read_lock(); 4999 rb = rcu_dereference(event->rb); 5000 if (!rb) 5001 goto unlock; 5002 5003 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5004 goto unlock; 5005 5006 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5007 if (!vmf->page) 5008 goto unlock; 5009 5010 get_page(vmf->page); 5011 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5012 vmf->page->index = vmf->pgoff; 5013 5014 ret = 0; 5015 unlock: 5016 rcu_read_unlock(); 5017 5018 return ret; 5019 } 5020 5021 static void ring_buffer_attach(struct perf_event *event, 5022 struct ring_buffer *rb) 5023 { 5024 struct ring_buffer *old_rb = NULL; 5025 unsigned long flags; 5026 5027 if (event->rb) { 5028 /* 5029 * Should be impossible, we set this when removing 5030 * event->rb_entry and wait/clear when adding event->rb_entry. 5031 */ 5032 WARN_ON_ONCE(event->rcu_pending); 5033 5034 old_rb = event->rb; 5035 spin_lock_irqsave(&old_rb->event_lock, flags); 5036 list_del_rcu(&event->rb_entry); 5037 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5038 5039 event->rcu_batches = get_state_synchronize_rcu(); 5040 event->rcu_pending = 1; 5041 } 5042 5043 if (rb) { 5044 if (event->rcu_pending) { 5045 cond_synchronize_rcu(event->rcu_batches); 5046 event->rcu_pending = 0; 5047 } 5048 5049 spin_lock_irqsave(&rb->event_lock, flags); 5050 list_add_rcu(&event->rb_entry, &rb->event_list); 5051 spin_unlock_irqrestore(&rb->event_lock, flags); 5052 } 5053 5054 /* 5055 * Avoid racing with perf_mmap_close(AUX): stop the event 5056 * before swizzling the event::rb pointer; if it's getting 5057 * unmapped, its aux_mmap_count will be 0 and it won't 5058 * restart. See the comment in __perf_pmu_output_stop(). 5059 * 5060 * Data will inevitably be lost when set_output is done in 5061 * mid-air, but then again, whoever does it like this is 5062 * not in for the data anyway. 5063 */ 5064 if (has_aux(event)) 5065 perf_event_stop(event, 0); 5066 5067 rcu_assign_pointer(event->rb, rb); 5068 5069 if (old_rb) { 5070 ring_buffer_put(old_rb); 5071 /* 5072 * Since we detached before setting the new rb, so that we 5073 * could attach the new rb, we could have missed a wakeup. 5074 * Provide it now. 5075 */ 5076 wake_up_all(&event->waitq); 5077 } 5078 } 5079 5080 static void ring_buffer_wakeup(struct perf_event *event) 5081 { 5082 struct ring_buffer *rb; 5083 5084 rcu_read_lock(); 5085 rb = rcu_dereference(event->rb); 5086 if (rb) { 5087 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5088 wake_up_all(&event->waitq); 5089 } 5090 rcu_read_unlock(); 5091 } 5092 5093 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5094 { 5095 struct ring_buffer *rb; 5096 5097 rcu_read_lock(); 5098 rb = rcu_dereference(event->rb); 5099 if (rb) { 5100 if (!atomic_inc_not_zero(&rb->refcount)) 5101 rb = NULL; 5102 } 5103 rcu_read_unlock(); 5104 5105 return rb; 5106 } 5107 5108 void ring_buffer_put(struct ring_buffer *rb) 5109 { 5110 if (!atomic_dec_and_test(&rb->refcount)) 5111 return; 5112 5113 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5114 5115 call_rcu(&rb->rcu_head, rb_free_rcu); 5116 } 5117 5118 static void perf_mmap_open(struct vm_area_struct *vma) 5119 { 5120 struct perf_event *event = vma->vm_file->private_data; 5121 5122 atomic_inc(&event->mmap_count); 5123 atomic_inc(&event->rb->mmap_count); 5124 5125 if (vma->vm_pgoff) 5126 atomic_inc(&event->rb->aux_mmap_count); 5127 5128 if (event->pmu->event_mapped) 5129 event->pmu->event_mapped(event, vma->vm_mm); 5130 } 5131 5132 static void perf_pmu_output_stop(struct perf_event *event); 5133 5134 /* 5135 * A buffer can be mmap()ed multiple times; either directly through the same 5136 * event, or through other events by use of perf_event_set_output(). 5137 * 5138 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5139 * the buffer here, where we still have a VM context. This means we need 5140 * to detach all events redirecting to us. 5141 */ 5142 static void perf_mmap_close(struct vm_area_struct *vma) 5143 { 5144 struct perf_event *event = vma->vm_file->private_data; 5145 5146 struct ring_buffer *rb = ring_buffer_get(event); 5147 struct user_struct *mmap_user = rb->mmap_user; 5148 int mmap_locked = rb->mmap_locked; 5149 unsigned long size = perf_data_size(rb); 5150 5151 if (event->pmu->event_unmapped) 5152 event->pmu->event_unmapped(event, vma->vm_mm); 5153 5154 /* 5155 * rb->aux_mmap_count will always drop before rb->mmap_count and 5156 * event->mmap_count, so it is ok to use event->mmap_mutex to 5157 * serialize with perf_mmap here. 5158 */ 5159 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5160 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5161 /* 5162 * Stop all AUX events that are writing to this buffer, 5163 * so that we can free its AUX pages and corresponding PMU 5164 * data. Note that after rb::aux_mmap_count dropped to zero, 5165 * they won't start any more (see perf_aux_output_begin()). 5166 */ 5167 perf_pmu_output_stop(event); 5168 5169 /* now it's safe to free the pages */ 5170 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5171 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5172 5173 /* this has to be the last one */ 5174 rb_free_aux(rb); 5175 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5176 5177 mutex_unlock(&event->mmap_mutex); 5178 } 5179 5180 atomic_dec(&rb->mmap_count); 5181 5182 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5183 goto out_put; 5184 5185 ring_buffer_attach(event, NULL); 5186 mutex_unlock(&event->mmap_mutex); 5187 5188 /* If there's still other mmap()s of this buffer, we're done. */ 5189 if (atomic_read(&rb->mmap_count)) 5190 goto out_put; 5191 5192 /* 5193 * No other mmap()s, detach from all other events that might redirect 5194 * into the now unreachable buffer. Somewhat complicated by the 5195 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5196 */ 5197 again: 5198 rcu_read_lock(); 5199 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5200 if (!atomic_long_inc_not_zero(&event->refcount)) { 5201 /* 5202 * This event is en-route to free_event() which will 5203 * detach it and remove it from the list. 5204 */ 5205 continue; 5206 } 5207 rcu_read_unlock(); 5208 5209 mutex_lock(&event->mmap_mutex); 5210 /* 5211 * Check we didn't race with perf_event_set_output() which can 5212 * swizzle the rb from under us while we were waiting to 5213 * acquire mmap_mutex. 5214 * 5215 * If we find a different rb; ignore this event, a next 5216 * iteration will no longer find it on the list. We have to 5217 * still restart the iteration to make sure we're not now 5218 * iterating the wrong list. 5219 */ 5220 if (event->rb == rb) 5221 ring_buffer_attach(event, NULL); 5222 5223 mutex_unlock(&event->mmap_mutex); 5224 put_event(event); 5225 5226 /* 5227 * Restart the iteration; either we're on the wrong list or 5228 * destroyed its integrity by doing a deletion. 5229 */ 5230 goto again; 5231 } 5232 rcu_read_unlock(); 5233 5234 /* 5235 * It could be there's still a few 0-ref events on the list; they'll 5236 * get cleaned up by free_event() -- they'll also still have their 5237 * ref on the rb and will free it whenever they are done with it. 5238 * 5239 * Aside from that, this buffer is 'fully' detached and unmapped, 5240 * undo the VM accounting. 5241 */ 5242 5243 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5244 vma->vm_mm->pinned_vm -= mmap_locked; 5245 free_uid(mmap_user); 5246 5247 out_put: 5248 ring_buffer_put(rb); /* could be last */ 5249 } 5250 5251 static const struct vm_operations_struct perf_mmap_vmops = { 5252 .open = perf_mmap_open, 5253 .close = perf_mmap_close, /* non mergable */ 5254 .fault = perf_mmap_fault, 5255 .page_mkwrite = perf_mmap_fault, 5256 }; 5257 5258 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5259 { 5260 struct perf_event *event = file->private_data; 5261 unsigned long user_locked, user_lock_limit; 5262 struct user_struct *user = current_user(); 5263 unsigned long locked, lock_limit; 5264 struct ring_buffer *rb = NULL; 5265 unsigned long vma_size; 5266 unsigned long nr_pages; 5267 long user_extra = 0, extra = 0; 5268 int ret = 0, flags = 0; 5269 5270 /* 5271 * Don't allow mmap() of inherited per-task counters. This would 5272 * create a performance issue due to all children writing to the 5273 * same rb. 5274 */ 5275 if (event->cpu == -1 && event->attr.inherit) 5276 return -EINVAL; 5277 5278 if (!(vma->vm_flags & VM_SHARED)) 5279 return -EINVAL; 5280 5281 vma_size = vma->vm_end - vma->vm_start; 5282 5283 if (vma->vm_pgoff == 0) { 5284 nr_pages = (vma_size / PAGE_SIZE) - 1; 5285 } else { 5286 /* 5287 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5288 * mapped, all subsequent mappings should have the same size 5289 * and offset. Must be above the normal perf buffer. 5290 */ 5291 u64 aux_offset, aux_size; 5292 5293 if (!event->rb) 5294 return -EINVAL; 5295 5296 nr_pages = vma_size / PAGE_SIZE; 5297 5298 mutex_lock(&event->mmap_mutex); 5299 ret = -EINVAL; 5300 5301 rb = event->rb; 5302 if (!rb) 5303 goto aux_unlock; 5304 5305 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 5306 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 5307 5308 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5309 goto aux_unlock; 5310 5311 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5312 goto aux_unlock; 5313 5314 /* already mapped with a different offset */ 5315 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5316 goto aux_unlock; 5317 5318 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5319 goto aux_unlock; 5320 5321 /* already mapped with a different size */ 5322 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5323 goto aux_unlock; 5324 5325 if (!is_power_of_2(nr_pages)) 5326 goto aux_unlock; 5327 5328 if (!atomic_inc_not_zero(&rb->mmap_count)) 5329 goto aux_unlock; 5330 5331 if (rb_has_aux(rb)) { 5332 atomic_inc(&rb->aux_mmap_count); 5333 ret = 0; 5334 goto unlock; 5335 } 5336 5337 atomic_set(&rb->aux_mmap_count, 1); 5338 user_extra = nr_pages; 5339 5340 goto accounting; 5341 } 5342 5343 /* 5344 * If we have rb pages ensure they're a power-of-two number, so we 5345 * can do bitmasks instead of modulo. 5346 */ 5347 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5348 return -EINVAL; 5349 5350 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5351 return -EINVAL; 5352 5353 WARN_ON_ONCE(event->ctx->parent_ctx); 5354 again: 5355 mutex_lock(&event->mmap_mutex); 5356 if (event->rb) { 5357 if (event->rb->nr_pages != nr_pages) { 5358 ret = -EINVAL; 5359 goto unlock; 5360 } 5361 5362 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5363 /* 5364 * Raced against perf_mmap_close() through 5365 * perf_event_set_output(). Try again, hope for better 5366 * luck. 5367 */ 5368 mutex_unlock(&event->mmap_mutex); 5369 goto again; 5370 } 5371 5372 goto unlock; 5373 } 5374 5375 user_extra = nr_pages + 1; 5376 5377 accounting: 5378 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5379 5380 /* 5381 * Increase the limit linearly with more CPUs: 5382 */ 5383 user_lock_limit *= num_online_cpus(); 5384 5385 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5386 5387 if (user_locked > user_lock_limit) 5388 extra = user_locked - user_lock_limit; 5389 5390 lock_limit = rlimit(RLIMIT_MEMLOCK); 5391 lock_limit >>= PAGE_SHIFT; 5392 locked = vma->vm_mm->pinned_vm + extra; 5393 5394 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5395 !capable(CAP_IPC_LOCK)) { 5396 ret = -EPERM; 5397 goto unlock; 5398 } 5399 5400 WARN_ON(!rb && event->rb); 5401 5402 if (vma->vm_flags & VM_WRITE) 5403 flags |= RING_BUFFER_WRITABLE; 5404 5405 if (!rb) { 5406 rb = rb_alloc(nr_pages, 5407 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5408 event->cpu, flags); 5409 5410 if (!rb) { 5411 ret = -ENOMEM; 5412 goto unlock; 5413 } 5414 5415 atomic_set(&rb->mmap_count, 1); 5416 rb->mmap_user = get_current_user(); 5417 rb->mmap_locked = extra; 5418 5419 ring_buffer_attach(event, rb); 5420 5421 perf_event_init_userpage(event); 5422 perf_event_update_userpage(event); 5423 } else { 5424 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5425 event->attr.aux_watermark, flags); 5426 if (!ret) 5427 rb->aux_mmap_locked = extra; 5428 } 5429 5430 unlock: 5431 if (!ret) { 5432 atomic_long_add(user_extra, &user->locked_vm); 5433 vma->vm_mm->pinned_vm += extra; 5434 5435 atomic_inc(&event->mmap_count); 5436 } else if (rb) { 5437 atomic_dec(&rb->mmap_count); 5438 } 5439 aux_unlock: 5440 mutex_unlock(&event->mmap_mutex); 5441 5442 /* 5443 * Since pinned accounting is per vm we cannot allow fork() to copy our 5444 * vma. 5445 */ 5446 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5447 vma->vm_ops = &perf_mmap_vmops; 5448 5449 if (event->pmu->event_mapped) 5450 event->pmu->event_mapped(event, vma->vm_mm); 5451 5452 return ret; 5453 } 5454 5455 static int perf_fasync(int fd, struct file *filp, int on) 5456 { 5457 struct inode *inode = file_inode(filp); 5458 struct perf_event *event = filp->private_data; 5459 int retval; 5460 5461 inode_lock(inode); 5462 retval = fasync_helper(fd, filp, on, &event->fasync); 5463 inode_unlock(inode); 5464 5465 if (retval < 0) 5466 return retval; 5467 5468 return 0; 5469 } 5470 5471 static const struct file_operations perf_fops = { 5472 .llseek = no_llseek, 5473 .release = perf_release, 5474 .read = perf_read, 5475 .poll = perf_poll, 5476 .unlocked_ioctl = perf_ioctl, 5477 .compat_ioctl = perf_compat_ioctl, 5478 .mmap = perf_mmap, 5479 .fasync = perf_fasync, 5480 }; 5481 5482 /* 5483 * Perf event wakeup 5484 * 5485 * If there's data, ensure we set the poll() state and publish everything 5486 * to user-space before waking everybody up. 5487 */ 5488 5489 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5490 { 5491 /* only the parent has fasync state */ 5492 if (event->parent) 5493 event = event->parent; 5494 return &event->fasync; 5495 } 5496 5497 void perf_event_wakeup(struct perf_event *event) 5498 { 5499 ring_buffer_wakeup(event); 5500 5501 if (event->pending_kill) { 5502 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5503 event->pending_kill = 0; 5504 } 5505 } 5506 5507 static void perf_pending_event(struct irq_work *entry) 5508 { 5509 struct perf_event *event = container_of(entry, 5510 struct perf_event, pending); 5511 int rctx; 5512 5513 rctx = perf_swevent_get_recursion_context(); 5514 /* 5515 * If we 'fail' here, that's OK, it means recursion is already disabled 5516 * and we won't recurse 'further'. 5517 */ 5518 5519 if (event->pending_disable) { 5520 event->pending_disable = 0; 5521 perf_event_disable_local(event); 5522 } 5523 5524 if (event->pending_wakeup) { 5525 event->pending_wakeup = 0; 5526 perf_event_wakeup(event); 5527 } 5528 5529 if (rctx >= 0) 5530 perf_swevent_put_recursion_context(rctx); 5531 } 5532 5533 /* 5534 * We assume there is only KVM supporting the callbacks. 5535 * Later on, we might change it to a list if there is 5536 * another virtualization implementation supporting the callbacks. 5537 */ 5538 struct perf_guest_info_callbacks *perf_guest_cbs; 5539 5540 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5541 { 5542 perf_guest_cbs = cbs; 5543 return 0; 5544 } 5545 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5546 5547 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5548 { 5549 perf_guest_cbs = NULL; 5550 return 0; 5551 } 5552 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5553 5554 static void 5555 perf_output_sample_regs(struct perf_output_handle *handle, 5556 struct pt_regs *regs, u64 mask) 5557 { 5558 int bit; 5559 DECLARE_BITMAP(_mask, 64); 5560 5561 bitmap_from_u64(_mask, mask); 5562 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5563 u64 val; 5564 5565 val = perf_reg_value(regs, bit); 5566 perf_output_put(handle, val); 5567 } 5568 } 5569 5570 static void perf_sample_regs_user(struct perf_regs *regs_user, 5571 struct pt_regs *regs, 5572 struct pt_regs *regs_user_copy) 5573 { 5574 if (user_mode(regs)) { 5575 regs_user->abi = perf_reg_abi(current); 5576 regs_user->regs = regs; 5577 } else if (current->mm) { 5578 perf_get_regs_user(regs_user, regs, regs_user_copy); 5579 } else { 5580 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5581 regs_user->regs = NULL; 5582 } 5583 } 5584 5585 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5586 struct pt_regs *regs) 5587 { 5588 regs_intr->regs = regs; 5589 regs_intr->abi = perf_reg_abi(current); 5590 } 5591 5592 5593 /* 5594 * Get remaining task size from user stack pointer. 5595 * 5596 * It'd be better to take stack vma map and limit this more 5597 * precisly, but there's no way to get it safely under interrupt, 5598 * so using TASK_SIZE as limit. 5599 */ 5600 static u64 perf_ustack_task_size(struct pt_regs *regs) 5601 { 5602 unsigned long addr = perf_user_stack_pointer(regs); 5603 5604 if (!addr || addr >= TASK_SIZE) 5605 return 0; 5606 5607 return TASK_SIZE - addr; 5608 } 5609 5610 static u16 5611 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5612 struct pt_regs *regs) 5613 { 5614 u64 task_size; 5615 5616 /* No regs, no stack pointer, no dump. */ 5617 if (!regs) 5618 return 0; 5619 5620 /* 5621 * Check if we fit in with the requested stack size into the: 5622 * - TASK_SIZE 5623 * If we don't, we limit the size to the TASK_SIZE. 5624 * 5625 * - remaining sample size 5626 * If we don't, we customize the stack size to 5627 * fit in to the remaining sample size. 5628 */ 5629 5630 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5631 stack_size = min(stack_size, (u16) task_size); 5632 5633 /* Current header size plus static size and dynamic size. */ 5634 header_size += 2 * sizeof(u64); 5635 5636 /* Do we fit in with the current stack dump size? */ 5637 if ((u16) (header_size + stack_size) < header_size) { 5638 /* 5639 * If we overflow the maximum size for the sample, 5640 * we customize the stack dump size to fit in. 5641 */ 5642 stack_size = USHRT_MAX - header_size - sizeof(u64); 5643 stack_size = round_up(stack_size, sizeof(u64)); 5644 } 5645 5646 return stack_size; 5647 } 5648 5649 static void 5650 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5651 struct pt_regs *regs) 5652 { 5653 /* Case of a kernel thread, nothing to dump */ 5654 if (!regs) { 5655 u64 size = 0; 5656 perf_output_put(handle, size); 5657 } else { 5658 unsigned long sp; 5659 unsigned int rem; 5660 u64 dyn_size; 5661 5662 /* 5663 * We dump: 5664 * static size 5665 * - the size requested by user or the best one we can fit 5666 * in to the sample max size 5667 * data 5668 * - user stack dump data 5669 * dynamic size 5670 * - the actual dumped size 5671 */ 5672 5673 /* Static size. */ 5674 perf_output_put(handle, dump_size); 5675 5676 /* Data. */ 5677 sp = perf_user_stack_pointer(regs); 5678 rem = __output_copy_user(handle, (void *) sp, dump_size); 5679 dyn_size = dump_size - rem; 5680 5681 perf_output_skip(handle, rem); 5682 5683 /* Dynamic size. */ 5684 perf_output_put(handle, dyn_size); 5685 } 5686 } 5687 5688 static void __perf_event_header__init_id(struct perf_event_header *header, 5689 struct perf_sample_data *data, 5690 struct perf_event *event) 5691 { 5692 u64 sample_type = event->attr.sample_type; 5693 5694 data->type = sample_type; 5695 header->size += event->id_header_size; 5696 5697 if (sample_type & PERF_SAMPLE_TID) { 5698 /* namespace issues */ 5699 data->tid_entry.pid = perf_event_pid(event, current); 5700 data->tid_entry.tid = perf_event_tid(event, current); 5701 } 5702 5703 if (sample_type & PERF_SAMPLE_TIME) 5704 data->time = perf_event_clock(event); 5705 5706 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5707 data->id = primary_event_id(event); 5708 5709 if (sample_type & PERF_SAMPLE_STREAM_ID) 5710 data->stream_id = event->id; 5711 5712 if (sample_type & PERF_SAMPLE_CPU) { 5713 data->cpu_entry.cpu = raw_smp_processor_id(); 5714 data->cpu_entry.reserved = 0; 5715 } 5716 } 5717 5718 void perf_event_header__init_id(struct perf_event_header *header, 5719 struct perf_sample_data *data, 5720 struct perf_event *event) 5721 { 5722 if (event->attr.sample_id_all) 5723 __perf_event_header__init_id(header, data, event); 5724 } 5725 5726 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5727 struct perf_sample_data *data) 5728 { 5729 u64 sample_type = data->type; 5730 5731 if (sample_type & PERF_SAMPLE_TID) 5732 perf_output_put(handle, data->tid_entry); 5733 5734 if (sample_type & PERF_SAMPLE_TIME) 5735 perf_output_put(handle, data->time); 5736 5737 if (sample_type & PERF_SAMPLE_ID) 5738 perf_output_put(handle, data->id); 5739 5740 if (sample_type & PERF_SAMPLE_STREAM_ID) 5741 perf_output_put(handle, data->stream_id); 5742 5743 if (sample_type & PERF_SAMPLE_CPU) 5744 perf_output_put(handle, data->cpu_entry); 5745 5746 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5747 perf_output_put(handle, data->id); 5748 } 5749 5750 void perf_event__output_id_sample(struct perf_event *event, 5751 struct perf_output_handle *handle, 5752 struct perf_sample_data *sample) 5753 { 5754 if (event->attr.sample_id_all) 5755 __perf_event__output_id_sample(handle, sample); 5756 } 5757 5758 static void perf_output_read_one(struct perf_output_handle *handle, 5759 struct perf_event *event, 5760 u64 enabled, u64 running) 5761 { 5762 u64 read_format = event->attr.read_format; 5763 u64 values[4]; 5764 int n = 0; 5765 5766 values[n++] = perf_event_count(event); 5767 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5768 values[n++] = enabled + 5769 atomic64_read(&event->child_total_time_enabled); 5770 } 5771 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5772 values[n++] = running + 5773 atomic64_read(&event->child_total_time_running); 5774 } 5775 if (read_format & PERF_FORMAT_ID) 5776 values[n++] = primary_event_id(event); 5777 5778 __output_copy(handle, values, n * sizeof(u64)); 5779 } 5780 5781 static void perf_output_read_group(struct perf_output_handle *handle, 5782 struct perf_event *event, 5783 u64 enabled, u64 running) 5784 { 5785 struct perf_event *leader = event->group_leader, *sub; 5786 u64 read_format = event->attr.read_format; 5787 u64 values[5]; 5788 int n = 0; 5789 5790 values[n++] = 1 + leader->nr_siblings; 5791 5792 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5793 values[n++] = enabled; 5794 5795 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5796 values[n++] = running; 5797 5798 if (leader != event) 5799 leader->pmu->read(leader); 5800 5801 values[n++] = perf_event_count(leader); 5802 if (read_format & PERF_FORMAT_ID) 5803 values[n++] = primary_event_id(leader); 5804 5805 __output_copy(handle, values, n * sizeof(u64)); 5806 5807 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5808 n = 0; 5809 5810 if ((sub != event) && 5811 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5812 sub->pmu->read(sub); 5813 5814 values[n++] = perf_event_count(sub); 5815 if (read_format & PERF_FORMAT_ID) 5816 values[n++] = primary_event_id(sub); 5817 5818 __output_copy(handle, values, n * sizeof(u64)); 5819 } 5820 } 5821 5822 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5823 PERF_FORMAT_TOTAL_TIME_RUNNING) 5824 5825 /* 5826 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 5827 * 5828 * The problem is that its both hard and excessively expensive to iterate the 5829 * child list, not to mention that its impossible to IPI the children running 5830 * on another CPU, from interrupt/NMI context. 5831 */ 5832 static void perf_output_read(struct perf_output_handle *handle, 5833 struct perf_event *event) 5834 { 5835 u64 enabled = 0, running = 0, now; 5836 u64 read_format = event->attr.read_format; 5837 5838 /* 5839 * compute total_time_enabled, total_time_running 5840 * based on snapshot values taken when the event 5841 * was last scheduled in. 5842 * 5843 * we cannot simply called update_context_time() 5844 * because of locking issue as we are called in 5845 * NMI context 5846 */ 5847 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5848 calc_timer_values(event, &now, &enabled, &running); 5849 5850 if (event->attr.read_format & PERF_FORMAT_GROUP) 5851 perf_output_read_group(handle, event, enabled, running); 5852 else 5853 perf_output_read_one(handle, event, enabled, running); 5854 } 5855 5856 void perf_output_sample(struct perf_output_handle *handle, 5857 struct perf_event_header *header, 5858 struct perf_sample_data *data, 5859 struct perf_event *event) 5860 { 5861 u64 sample_type = data->type; 5862 5863 perf_output_put(handle, *header); 5864 5865 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5866 perf_output_put(handle, data->id); 5867 5868 if (sample_type & PERF_SAMPLE_IP) 5869 perf_output_put(handle, data->ip); 5870 5871 if (sample_type & PERF_SAMPLE_TID) 5872 perf_output_put(handle, data->tid_entry); 5873 5874 if (sample_type & PERF_SAMPLE_TIME) 5875 perf_output_put(handle, data->time); 5876 5877 if (sample_type & PERF_SAMPLE_ADDR) 5878 perf_output_put(handle, data->addr); 5879 5880 if (sample_type & PERF_SAMPLE_ID) 5881 perf_output_put(handle, data->id); 5882 5883 if (sample_type & PERF_SAMPLE_STREAM_ID) 5884 perf_output_put(handle, data->stream_id); 5885 5886 if (sample_type & PERF_SAMPLE_CPU) 5887 perf_output_put(handle, data->cpu_entry); 5888 5889 if (sample_type & PERF_SAMPLE_PERIOD) 5890 perf_output_put(handle, data->period); 5891 5892 if (sample_type & PERF_SAMPLE_READ) 5893 perf_output_read(handle, event); 5894 5895 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5896 if (data->callchain) { 5897 int size = 1; 5898 5899 if (data->callchain) 5900 size += data->callchain->nr; 5901 5902 size *= sizeof(u64); 5903 5904 __output_copy(handle, data->callchain, size); 5905 } else { 5906 u64 nr = 0; 5907 perf_output_put(handle, nr); 5908 } 5909 } 5910 5911 if (sample_type & PERF_SAMPLE_RAW) { 5912 struct perf_raw_record *raw = data->raw; 5913 5914 if (raw) { 5915 struct perf_raw_frag *frag = &raw->frag; 5916 5917 perf_output_put(handle, raw->size); 5918 do { 5919 if (frag->copy) { 5920 __output_custom(handle, frag->copy, 5921 frag->data, frag->size); 5922 } else { 5923 __output_copy(handle, frag->data, 5924 frag->size); 5925 } 5926 if (perf_raw_frag_last(frag)) 5927 break; 5928 frag = frag->next; 5929 } while (1); 5930 if (frag->pad) 5931 __output_skip(handle, NULL, frag->pad); 5932 } else { 5933 struct { 5934 u32 size; 5935 u32 data; 5936 } raw = { 5937 .size = sizeof(u32), 5938 .data = 0, 5939 }; 5940 perf_output_put(handle, raw); 5941 } 5942 } 5943 5944 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5945 if (data->br_stack) { 5946 size_t size; 5947 5948 size = data->br_stack->nr 5949 * sizeof(struct perf_branch_entry); 5950 5951 perf_output_put(handle, data->br_stack->nr); 5952 perf_output_copy(handle, data->br_stack->entries, size); 5953 } else { 5954 /* 5955 * we always store at least the value of nr 5956 */ 5957 u64 nr = 0; 5958 perf_output_put(handle, nr); 5959 } 5960 } 5961 5962 if (sample_type & PERF_SAMPLE_REGS_USER) { 5963 u64 abi = data->regs_user.abi; 5964 5965 /* 5966 * If there are no regs to dump, notice it through 5967 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5968 */ 5969 perf_output_put(handle, abi); 5970 5971 if (abi) { 5972 u64 mask = event->attr.sample_regs_user; 5973 perf_output_sample_regs(handle, 5974 data->regs_user.regs, 5975 mask); 5976 } 5977 } 5978 5979 if (sample_type & PERF_SAMPLE_STACK_USER) { 5980 perf_output_sample_ustack(handle, 5981 data->stack_user_size, 5982 data->regs_user.regs); 5983 } 5984 5985 if (sample_type & PERF_SAMPLE_WEIGHT) 5986 perf_output_put(handle, data->weight); 5987 5988 if (sample_type & PERF_SAMPLE_DATA_SRC) 5989 perf_output_put(handle, data->data_src.val); 5990 5991 if (sample_type & PERF_SAMPLE_TRANSACTION) 5992 perf_output_put(handle, data->txn); 5993 5994 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5995 u64 abi = data->regs_intr.abi; 5996 /* 5997 * If there are no regs to dump, notice it through 5998 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5999 */ 6000 perf_output_put(handle, abi); 6001 6002 if (abi) { 6003 u64 mask = event->attr.sample_regs_intr; 6004 6005 perf_output_sample_regs(handle, 6006 data->regs_intr.regs, 6007 mask); 6008 } 6009 } 6010 6011 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6012 perf_output_put(handle, data->phys_addr); 6013 6014 if (!event->attr.watermark) { 6015 int wakeup_events = event->attr.wakeup_events; 6016 6017 if (wakeup_events) { 6018 struct ring_buffer *rb = handle->rb; 6019 int events = local_inc_return(&rb->events); 6020 6021 if (events >= wakeup_events) { 6022 local_sub(wakeup_events, &rb->events); 6023 local_inc(&rb->wakeup); 6024 } 6025 } 6026 } 6027 } 6028 6029 static u64 perf_virt_to_phys(u64 virt) 6030 { 6031 u64 phys_addr = 0; 6032 struct page *p = NULL; 6033 6034 if (!virt) 6035 return 0; 6036 6037 if (virt >= TASK_SIZE) { 6038 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6039 if (virt_addr_valid((void *)(uintptr_t)virt) && 6040 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6041 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6042 } else { 6043 /* 6044 * Walking the pages tables for user address. 6045 * Interrupts are disabled, so it prevents any tear down 6046 * of the page tables. 6047 * Try IRQ-safe __get_user_pages_fast first. 6048 * If failed, leave phys_addr as 0. 6049 */ 6050 if ((current->mm != NULL) && 6051 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6052 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6053 6054 if (p) 6055 put_page(p); 6056 } 6057 6058 return phys_addr; 6059 } 6060 6061 void perf_prepare_sample(struct perf_event_header *header, 6062 struct perf_sample_data *data, 6063 struct perf_event *event, 6064 struct pt_regs *regs) 6065 { 6066 u64 sample_type = event->attr.sample_type; 6067 6068 header->type = PERF_RECORD_SAMPLE; 6069 header->size = sizeof(*header) + event->header_size; 6070 6071 header->misc = 0; 6072 header->misc |= perf_misc_flags(regs); 6073 6074 __perf_event_header__init_id(header, data, event); 6075 6076 if (sample_type & PERF_SAMPLE_IP) 6077 data->ip = perf_instruction_pointer(regs); 6078 6079 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6080 int size = 1; 6081 6082 data->callchain = perf_callchain(event, regs); 6083 6084 if (data->callchain) 6085 size += data->callchain->nr; 6086 6087 header->size += size * sizeof(u64); 6088 } 6089 6090 if (sample_type & PERF_SAMPLE_RAW) { 6091 struct perf_raw_record *raw = data->raw; 6092 int size; 6093 6094 if (raw) { 6095 struct perf_raw_frag *frag = &raw->frag; 6096 u32 sum = 0; 6097 6098 do { 6099 sum += frag->size; 6100 if (perf_raw_frag_last(frag)) 6101 break; 6102 frag = frag->next; 6103 } while (1); 6104 6105 size = round_up(sum + sizeof(u32), sizeof(u64)); 6106 raw->size = size - sizeof(u32); 6107 frag->pad = raw->size - sum; 6108 } else { 6109 size = sizeof(u64); 6110 } 6111 6112 header->size += size; 6113 } 6114 6115 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6116 int size = sizeof(u64); /* nr */ 6117 if (data->br_stack) { 6118 size += data->br_stack->nr 6119 * sizeof(struct perf_branch_entry); 6120 } 6121 header->size += size; 6122 } 6123 6124 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6125 perf_sample_regs_user(&data->regs_user, regs, 6126 &data->regs_user_copy); 6127 6128 if (sample_type & PERF_SAMPLE_REGS_USER) { 6129 /* regs dump ABI info */ 6130 int size = sizeof(u64); 6131 6132 if (data->regs_user.regs) { 6133 u64 mask = event->attr.sample_regs_user; 6134 size += hweight64(mask) * sizeof(u64); 6135 } 6136 6137 header->size += size; 6138 } 6139 6140 if (sample_type & PERF_SAMPLE_STACK_USER) { 6141 /* 6142 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6143 * processed as the last one or have additional check added 6144 * in case new sample type is added, because we could eat 6145 * up the rest of the sample size. 6146 */ 6147 u16 stack_size = event->attr.sample_stack_user; 6148 u16 size = sizeof(u64); 6149 6150 stack_size = perf_sample_ustack_size(stack_size, header->size, 6151 data->regs_user.regs); 6152 6153 /* 6154 * If there is something to dump, add space for the dump 6155 * itself and for the field that tells the dynamic size, 6156 * which is how many have been actually dumped. 6157 */ 6158 if (stack_size) 6159 size += sizeof(u64) + stack_size; 6160 6161 data->stack_user_size = stack_size; 6162 header->size += size; 6163 } 6164 6165 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6166 /* regs dump ABI info */ 6167 int size = sizeof(u64); 6168 6169 perf_sample_regs_intr(&data->regs_intr, regs); 6170 6171 if (data->regs_intr.regs) { 6172 u64 mask = event->attr.sample_regs_intr; 6173 6174 size += hweight64(mask) * sizeof(u64); 6175 } 6176 6177 header->size += size; 6178 } 6179 6180 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6181 data->phys_addr = perf_virt_to_phys(data->addr); 6182 } 6183 6184 static void __always_inline 6185 __perf_event_output(struct perf_event *event, 6186 struct perf_sample_data *data, 6187 struct pt_regs *regs, 6188 int (*output_begin)(struct perf_output_handle *, 6189 struct perf_event *, 6190 unsigned int)) 6191 { 6192 struct perf_output_handle handle; 6193 struct perf_event_header header; 6194 6195 /* protect the callchain buffers */ 6196 rcu_read_lock(); 6197 6198 perf_prepare_sample(&header, data, event, regs); 6199 6200 if (output_begin(&handle, event, header.size)) 6201 goto exit; 6202 6203 perf_output_sample(&handle, &header, data, event); 6204 6205 perf_output_end(&handle); 6206 6207 exit: 6208 rcu_read_unlock(); 6209 } 6210 6211 void 6212 perf_event_output_forward(struct perf_event *event, 6213 struct perf_sample_data *data, 6214 struct pt_regs *regs) 6215 { 6216 __perf_event_output(event, data, regs, perf_output_begin_forward); 6217 } 6218 6219 void 6220 perf_event_output_backward(struct perf_event *event, 6221 struct perf_sample_data *data, 6222 struct pt_regs *regs) 6223 { 6224 __perf_event_output(event, data, regs, perf_output_begin_backward); 6225 } 6226 6227 void 6228 perf_event_output(struct perf_event *event, 6229 struct perf_sample_data *data, 6230 struct pt_regs *regs) 6231 { 6232 __perf_event_output(event, data, regs, perf_output_begin); 6233 } 6234 6235 /* 6236 * read event_id 6237 */ 6238 6239 struct perf_read_event { 6240 struct perf_event_header header; 6241 6242 u32 pid; 6243 u32 tid; 6244 }; 6245 6246 static void 6247 perf_event_read_event(struct perf_event *event, 6248 struct task_struct *task) 6249 { 6250 struct perf_output_handle handle; 6251 struct perf_sample_data sample; 6252 struct perf_read_event read_event = { 6253 .header = { 6254 .type = PERF_RECORD_READ, 6255 .misc = 0, 6256 .size = sizeof(read_event) + event->read_size, 6257 }, 6258 .pid = perf_event_pid(event, task), 6259 .tid = perf_event_tid(event, task), 6260 }; 6261 int ret; 6262 6263 perf_event_header__init_id(&read_event.header, &sample, event); 6264 ret = perf_output_begin(&handle, event, read_event.header.size); 6265 if (ret) 6266 return; 6267 6268 perf_output_put(&handle, read_event); 6269 perf_output_read(&handle, event); 6270 perf_event__output_id_sample(event, &handle, &sample); 6271 6272 perf_output_end(&handle); 6273 } 6274 6275 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6276 6277 static void 6278 perf_iterate_ctx(struct perf_event_context *ctx, 6279 perf_iterate_f output, 6280 void *data, bool all) 6281 { 6282 struct perf_event *event; 6283 6284 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6285 if (!all) { 6286 if (event->state < PERF_EVENT_STATE_INACTIVE) 6287 continue; 6288 if (!event_filter_match(event)) 6289 continue; 6290 } 6291 6292 output(event, data); 6293 } 6294 } 6295 6296 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6297 { 6298 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6299 struct perf_event *event; 6300 6301 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6302 /* 6303 * Skip events that are not fully formed yet; ensure that 6304 * if we observe event->ctx, both event and ctx will be 6305 * complete enough. See perf_install_in_context(). 6306 */ 6307 if (!smp_load_acquire(&event->ctx)) 6308 continue; 6309 6310 if (event->state < PERF_EVENT_STATE_INACTIVE) 6311 continue; 6312 if (!event_filter_match(event)) 6313 continue; 6314 output(event, data); 6315 } 6316 } 6317 6318 /* 6319 * Iterate all events that need to receive side-band events. 6320 * 6321 * For new callers; ensure that account_pmu_sb_event() includes 6322 * your event, otherwise it might not get delivered. 6323 */ 6324 static void 6325 perf_iterate_sb(perf_iterate_f output, void *data, 6326 struct perf_event_context *task_ctx) 6327 { 6328 struct perf_event_context *ctx; 6329 int ctxn; 6330 6331 rcu_read_lock(); 6332 preempt_disable(); 6333 6334 /* 6335 * If we have task_ctx != NULL we only notify the task context itself. 6336 * The task_ctx is set only for EXIT events before releasing task 6337 * context. 6338 */ 6339 if (task_ctx) { 6340 perf_iterate_ctx(task_ctx, output, data, false); 6341 goto done; 6342 } 6343 6344 perf_iterate_sb_cpu(output, data); 6345 6346 for_each_task_context_nr(ctxn) { 6347 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6348 if (ctx) 6349 perf_iterate_ctx(ctx, output, data, false); 6350 } 6351 done: 6352 preempt_enable(); 6353 rcu_read_unlock(); 6354 } 6355 6356 /* 6357 * Clear all file-based filters at exec, they'll have to be 6358 * re-instated when/if these objects are mmapped again. 6359 */ 6360 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6361 { 6362 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6363 struct perf_addr_filter *filter; 6364 unsigned int restart = 0, count = 0; 6365 unsigned long flags; 6366 6367 if (!has_addr_filter(event)) 6368 return; 6369 6370 raw_spin_lock_irqsave(&ifh->lock, flags); 6371 list_for_each_entry(filter, &ifh->list, entry) { 6372 if (filter->inode) { 6373 event->addr_filters_offs[count] = 0; 6374 restart++; 6375 } 6376 6377 count++; 6378 } 6379 6380 if (restart) 6381 event->addr_filters_gen++; 6382 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6383 6384 if (restart) 6385 perf_event_stop(event, 1); 6386 } 6387 6388 void perf_event_exec(void) 6389 { 6390 struct perf_event_context *ctx; 6391 int ctxn; 6392 6393 rcu_read_lock(); 6394 for_each_task_context_nr(ctxn) { 6395 ctx = current->perf_event_ctxp[ctxn]; 6396 if (!ctx) 6397 continue; 6398 6399 perf_event_enable_on_exec(ctxn); 6400 6401 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6402 true); 6403 } 6404 rcu_read_unlock(); 6405 } 6406 6407 struct remote_output { 6408 struct ring_buffer *rb; 6409 int err; 6410 }; 6411 6412 static void __perf_event_output_stop(struct perf_event *event, void *data) 6413 { 6414 struct perf_event *parent = event->parent; 6415 struct remote_output *ro = data; 6416 struct ring_buffer *rb = ro->rb; 6417 struct stop_event_data sd = { 6418 .event = event, 6419 }; 6420 6421 if (!has_aux(event)) 6422 return; 6423 6424 if (!parent) 6425 parent = event; 6426 6427 /* 6428 * In case of inheritance, it will be the parent that links to the 6429 * ring-buffer, but it will be the child that's actually using it. 6430 * 6431 * We are using event::rb to determine if the event should be stopped, 6432 * however this may race with ring_buffer_attach() (through set_output), 6433 * which will make us skip the event that actually needs to be stopped. 6434 * So ring_buffer_attach() has to stop an aux event before re-assigning 6435 * its rb pointer. 6436 */ 6437 if (rcu_dereference(parent->rb) == rb) 6438 ro->err = __perf_event_stop(&sd); 6439 } 6440 6441 static int __perf_pmu_output_stop(void *info) 6442 { 6443 struct perf_event *event = info; 6444 struct pmu *pmu = event->pmu; 6445 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6446 struct remote_output ro = { 6447 .rb = event->rb, 6448 }; 6449 6450 rcu_read_lock(); 6451 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6452 if (cpuctx->task_ctx) 6453 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6454 &ro, false); 6455 rcu_read_unlock(); 6456 6457 return ro.err; 6458 } 6459 6460 static void perf_pmu_output_stop(struct perf_event *event) 6461 { 6462 struct perf_event *iter; 6463 int err, cpu; 6464 6465 restart: 6466 rcu_read_lock(); 6467 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6468 /* 6469 * For per-CPU events, we need to make sure that neither they 6470 * nor their children are running; for cpu==-1 events it's 6471 * sufficient to stop the event itself if it's active, since 6472 * it can't have children. 6473 */ 6474 cpu = iter->cpu; 6475 if (cpu == -1) 6476 cpu = READ_ONCE(iter->oncpu); 6477 6478 if (cpu == -1) 6479 continue; 6480 6481 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6482 if (err == -EAGAIN) { 6483 rcu_read_unlock(); 6484 goto restart; 6485 } 6486 } 6487 rcu_read_unlock(); 6488 } 6489 6490 /* 6491 * task tracking -- fork/exit 6492 * 6493 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6494 */ 6495 6496 struct perf_task_event { 6497 struct task_struct *task; 6498 struct perf_event_context *task_ctx; 6499 6500 struct { 6501 struct perf_event_header header; 6502 6503 u32 pid; 6504 u32 ppid; 6505 u32 tid; 6506 u32 ptid; 6507 u64 time; 6508 } event_id; 6509 }; 6510 6511 static int perf_event_task_match(struct perf_event *event) 6512 { 6513 return event->attr.comm || event->attr.mmap || 6514 event->attr.mmap2 || event->attr.mmap_data || 6515 event->attr.task; 6516 } 6517 6518 static void perf_event_task_output(struct perf_event *event, 6519 void *data) 6520 { 6521 struct perf_task_event *task_event = data; 6522 struct perf_output_handle handle; 6523 struct perf_sample_data sample; 6524 struct task_struct *task = task_event->task; 6525 int ret, size = task_event->event_id.header.size; 6526 6527 if (!perf_event_task_match(event)) 6528 return; 6529 6530 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6531 6532 ret = perf_output_begin(&handle, event, 6533 task_event->event_id.header.size); 6534 if (ret) 6535 goto out; 6536 6537 task_event->event_id.pid = perf_event_pid(event, task); 6538 task_event->event_id.ppid = perf_event_pid(event, current); 6539 6540 task_event->event_id.tid = perf_event_tid(event, task); 6541 task_event->event_id.ptid = perf_event_tid(event, current); 6542 6543 task_event->event_id.time = perf_event_clock(event); 6544 6545 perf_output_put(&handle, task_event->event_id); 6546 6547 perf_event__output_id_sample(event, &handle, &sample); 6548 6549 perf_output_end(&handle); 6550 out: 6551 task_event->event_id.header.size = size; 6552 } 6553 6554 static void perf_event_task(struct task_struct *task, 6555 struct perf_event_context *task_ctx, 6556 int new) 6557 { 6558 struct perf_task_event task_event; 6559 6560 if (!atomic_read(&nr_comm_events) && 6561 !atomic_read(&nr_mmap_events) && 6562 !atomic_read(&nr_task_events)) 6563 return; 6564 6565 task_event = (struct perf_task_event){ 6566 .task = task, 6567 .task_ctx = task_ctx, 6568 .event_id = { 6569 .header = { 6570 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6571 .misc = 0, 6572 .size = sizeof(task_event.event_id), 6573 }, 6574 /* .pid */ 6575 /* .ppid */ 6576 /* .tid */ 6577 /* .ptid */ 6578 /* .time */ 6579 }, 6580 }; 6581 6582 perf_iterate_sb(perf_event_task_output, 6583 &task_event, 6584 task_ctx); 6585 } 6586 6587 void perf_event_fork(struct task_struct *task) 6588 { 6589 perf_event_task(task, NULL, 1); 6590 perf_event_namespaces(task); 6591 } 6592 6593 /* 6594 * comm tracking 6595 */ 6596 6597 struct perf_comm_event { 6598 struct task_struct *task; 6599 char *comm; 6600 int comm_size; 6601 6602 struct { 6603 struct perf_event_header header; 6604 6605 u32 pid; 6606 u32 tid; 6607 } event_id; 6608 }; 6609 6610 static int perf_event_comm_match(struct perf_event *event) 6611 { 6612 return event->attr.comm; 6613 } 6614 6615 static void perf_event_comm_output(struct perf_event *event, 6616 void *data) 6617 { 6618 struct perf_comm_event *comm_event = data; 6619 struct perf_output_handle handle; 6620 struct perf_sample_data sample; 6621 int size = comm_event->event_id.header.size; 6622 int ret; 6623 6624 if (!perf_event_comm_match(event)) 6625 return; 6626 6627 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6628 ret = perf_output_begin(&handle, event, 6629 comm_event->event_id.header.size); 6630 6631 if (ret) 6632 goto out; 6633 6634 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6635 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6636 6637 perf_output_put(&handle, comm_event->event_id); 6638 __output_copy(&handle, comm_event->comm, 6639 comm_event->comm_size); 6640 6641 perf_event__output_id_sample(event, &handle, &sample); 6642 6643 perf_output_end(&handle); 6644 out: 6645 comm_event->event_id.header.size = size; 6646 } 6647 6648 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6649 { 6650 char comm[TASK_COMM_LEN]; 6651 unsigned int size; 6652 6653 memset(comm, 0, sizeof(comm)); 6654 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6655 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6656 6657 comm_event->comm = comm; 6658 comm_event->comm_size = size; 6659 6660 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6661 6662 perf_iterate_sb(perf_event_comm_output, 6663 comm_event, 6664 NULL); 6665 } 6666 6667 void perf_event_comm(struct task_struct *task, bool exec) 6668 { 6669 struct perf_comm_event comm_event; 6670 6671 if (!atomic_read(&nr_comm_events)) 6672 return; 6673 6674 comm_event = (struct perf_comm_event){ 6675 .task = task, 6676 /* .comm */ 6677 /* .comm_size */ 6678 .event_id = { 6679 .header = { 6680 .type = PERF_RECORD_COMM, 6681 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6682 /* .size */ 6683 }, 6684 /* .pid */ 6685 /* .tid */ 6686 }, 6687 }; 6688 6689 perf_event_comm_event(&comm_event); 6690 } 6691 6692 /* 6693 * namespaces tracking 6694 */ 6695 6696 struct perf_namespaces_event { 6697 struct task_struct *task; 6698 6699 struct { 6700 struct perf_event_header header; 6701 6702 u32 pid; 6703 u32 tid; 6704 u64 nr_namespaces; 6705 struct perf_ns_link_info link_info[NR_NAMESPACES]; 6706 } event_id; 6707 }; 6708 6709 static int perf_event_namespaces_match(struct perf_event *event) 6710 { 6711 return event->attr.namespaces; 6712 } 6713 6714 static void perf_event_namespaces_output(struct perf_event *event, 6715 void *data) 6716 { 6717 struct perf_namespaces_event *namespaces_event = data; 6718 struct perf_output_handle handle; 6719 struct perf_sample_data sample; 6720 int ret; 6721 6722 if (!perf_event_namespaces_match(event)) 6723 return; 6724 6725 perf_event_header__init_id(&namespaces_event->event_id.header, 6726 &sample, event); 6727 ret = perf_output_begin(&handle, event, 6728 namespaces_event->event_id.header.size); 6729 if (ret) 6730 return; 6731 6732 namespaces_event->event_id.pid = perf_event_pid(event, 6733 namespaces_event->task); 6734 namespaces_event->event_id.tid = perf_event_tid(event, 6735 namespaces_event->task); 6736 6737 perf_output_put(&handle, namespaces_event->event_id); 6738 6739 perf_event__output_id_sample(event, &handle, &sample); 6740 6741 perf_output_end(&handle); 6742 } 6743 6744 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 6745 struct task_struct *task, 6746 const struct proc_ns_operations *ns_ops) 6747 { 6748 struct path ns_path; 6749 struct inode *ns_inode; 6750 void *error; 6751 6752 error = ns_get_path(&ns_path, task, ns_ops); 6753 if (!error) { 6754 ns_inode = ns_path.dentry->d_inode; 6755 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 6756 ns_link_info->ino = ns_inode->i_ino; 6757 } 6758 } 6759 6760 void perf_event_namespaces(struct task_struct *task) 6761 { 6762 struct perf_namespaces_event namespaces_event; 6763 struct perf_ns_link_info *ns_link_info; 6764 6765 if (!atomic_read(&nr_namespaces_events)) 6766 return; 6767 6768 namespaces_event = (struct perf_namespaces_event){ 6769 .task = task, 6770 .event_id = { 6771 .header = { 6772 .type = PERF_RECORD_NAMESPACES, 6773 .misc = 0, 6774 .size = sizeof(namespaces_event.event_id), 6775 }, 6776 /* .pid */ 6777 /* .tid */ 6778 .nr_namespaces = NR_NAMESPACES, 6779 /* .link_info[NR_NAMESPACES] */ 6780 }, 6781 }; 6782 6783 ns_link_info = namespaces_event.event_id.link_info; 6784 6785 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 6786 task, &mntns_operations); 6787 6788 #ifdef CONFIG_USER_NS 6789 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 6790 task, &userns_operations); 6791 #endif 6792 #ifdef CONFIG_NET_NS 6793 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 6794 task, &netns_operations); 6795 #endif 6796 #ifdef CONFIG_UTS_NS 6797 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 6798 task, &utsns_operations); 6799 #endif 6800 #ifdef CONFIG_IPC_NS 6801 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 6802 task, &ipcns_operations); 6803 #endif 6804 #ifdef CONFIG_PID_NS 6805 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 6806 task, &pidns_operations); 6807 #endif 6808 #ifdef CONFIG_CGROUPS 6809 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 6810 task, &cgroupns_operations); 6811 #endif 6812 6813 perf_iterate_sb(perf_event_namespaces_output, 6814 &namespaces_event, 6815 NULL); 6816 } 6817 6818 /* 6819 * mmap tracking 6820 */ 6821 6822 struct perf_mmap_event { 6823 struct vm_area_struct *vma; 6824 6825 const char *file_name; 6826 int file_size; 6827 int maj, min; 6828 u64 ino; 6829 u64 ino_generation; 6830 u32 prot, flags; 6831 6832 struct { 6833 struct perf_event_header header; 6834 6835 u32 pid; 6836 u32 tid; 6837 u64 start; 6838 u64 len; 6839 u64 pgoff; 6840 } event_id; 6841 }; 6842 6843 static int perf_event_mmap_match(struct perf_event *event, 6844 void *data) 6845 { 6846 struct perf_mmap_event *mmap_event = data; 6847 struct vm_area_struct *vma = mmap_event->vma; 6848 int executable = vma->vm_flags & VM_EXEC; 6849 6850 return (!executable && event->attr.mmap_data) || 6851 (executable && (event->attr.mmap || event->attr.mmap2)); 6852 } 6853 6854 static void perf_event_mmap_output(struct perf_event *event, 6855 void *data) 6856 { 6857 struct perf_mmap_event *mmap_event = data; 6858 struct perf_output_handle handle; 6859 struct perf_sample_data sample; 6860 int size = mmap_event->event_id.header.size; 6861 int ret; 6862 6863 if (!perf_event_mmap_match(event, data)) 6864 return; 6865 6866 if (event->attr.mmap2) { 6867 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6868 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6869 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6870 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6871 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6872 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6873 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6874 } 6875 6876 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6877 ret = perf_output_begin(&handle, event, 6878 mmap_event->event_id.header.size); 6879 if (ret) 6880 goto out; 6881 6882 mmap_event->event_id.pid = perf_event_pid(event, current); 6883 mmap_event->event_id.tid = perf_event_tid(event, current); 6884 6885 perf_output_put(&handle, mmap_event->event_id); 6886 6887 if (event->attr.mmap2) { 6888 perf_output_put(&handle, mmap_event->maj); 6889 perf_output_put(&handle, mmap_event->min); 6890 perf_output_put(&handle, mmap_event->ino); 6891 perf_output_put(&handle, mmap_event->ino_generation); 6892 perf_output_put(&handle, mmap_event->prot); 6893 perf_output_put(&handle, mmap_event->flags); 6894 } 6895 6896 __output_copy(&handle, mmap_event->file_name, 6897 mmap_event->file_size); 6898 6899 perf_event__output_id_sample(event, &handle, &sample); 6900 6901 perf_output_end(&handle); 6902 out: 6903 mmap_event->event_id.header.size = size; 6904 } 6905 6906 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6907 { 6908 struct vm_area_struct *vma = mmap_event->vma; 6909 struct file *file = vma->vm_file; 6910 int maj = 0, min = 0; 6911 u64 ino = 0, gen = 0; 6912 u32 prot = 0, flags = 0; 6913 unsigned int size; 6914 char tmp[16]; 6915 char *buf = NULL; 6916 char *name; 6917 6918 if (vma->vm_flags & VM_READ) 6919 prot |= PROT_READ; 6920 if (vma->vm_flags & VM_WRITE) 6921 prot |= PROT_WRITE; 6922 if (vma->vm_flags & VM_EXEC) 6923 prot |= PROT_EXEC; 6924 6925 if (vma->vm_flags & VM_MAYSHARE) 6926 flags = MAP_SHARED; 6927 else 6928 flags = MAP_PRIVATE; 6929 6930 if (vma->vm_flags & VM_DENYWRITE) 6931 flags |= MAP_DENYWRITE; 6932 if (vma->vm_flags & VM_MAYEXEC) 6933 flags |= MAP_EXECUTABLE; 6934 if (vma->vm_flags & VM_LOCKED) 6935 flags |= MAP_LOCKED; 6936 if (vma->vm_flags & VM_HUGETLB) 6937 flags |= MAP_HUGETLB; 6938 6939 if (file) { 6940 struct inode *inode; 6941 dev_t dev; 6942 6943 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6944 if (!buf) { 6945 name = "//enomem"; 6946 goto cpy_name; 6947 } 6948 /* 6949 * d_path() works from the end of the rb backwards, so we 6950 * need to add enough zero bytes after the string to handle 6951 * the 64bit alignment we do later. 6952 */ 6953 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6954 if (IS_ERR(name)) { 6955 name = "//toolong"; 6956 goto cpy_name; 6957 } 6958 inode = file_inode(vma->vm_file); 6959 dev = inode->i_sb->s_dev; 6960 ino = inode->i_ino; 6961 gen = inode->i_generation; 6962 maj = MAJOR(dev); 6963 min = MINOR(dev); 6964 6965 goto got_name; 6966 } else { 6967 if (vma->vm_ops && vma->vm_ops->name) { 6968 name = (char *) vma->vm_ops->name(vma); 6969 if (name) 6970 goto cpy_name; 6971 } 6972 6973 name = (char *)arch_vma_name(vma); 6974 if (name) 6975 goto cpy_name; 6976 6977 if (vma->vm_start <= vma->vm_mm->start_brk && 6978 vma->vm_end >= vma->vm_mm->brk) { 6979 name = "[heap]"; 6980 goto cpy_name; 6981 } 6982 if (vma->vm_start <= vma->vm_mm->start_stack && 6983 vma->vm_end >= vma->vm_mm->start_stack) { 6984 name = "[stack]"; 6985 goto cpy_name; 6986 } 6987 6988 name = "//anon"; 6989 goto cpy_name; 6990 } 6991 6992 cpy_name: 6993 strlcpy(tmp, name, sizeof(tmp)); 6994 name = tmp; 6995 got_name: 6996 /* 6997 * Since our buffer works in 8 byte units we need to align our string 6998 * size to a multiple of 8. However, we must guarantee the tail end is 6999 * zero'd out to avoid leaking random bits to userspace. 7000 */ 7001 size = strlen(name)+1; 7002 while (!IS_ALIGNED(size, sizeof(u64))) 7003 name[size++] = '\0'; 7004 7005 mmap_event->file_name = name; 7006 mmap_event->file_size = size; 7007 mmap_event->maj = maj; 7008 mmap_event->min = min; 7009 mmap_event->ino = ino; 7010 mmap_event->ino_generation = gen; 7011 mmap_event->prot = prot; 7012 mmap_event->flags = flags; 7013 7014 if (!(vma->vm_flags & VM_EXEC)) 7015 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7016 7017 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7018 7019 perf_iterate_sb(perf_event_mmap_output, 7020 mmap_event, 7021 NULL); 7022 7023 kfree(buf); 7024 } 7025 7026 /* 7027 * Check whether inode and address range match filter criteria. 7028 */ 7029 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7030 struct file *file, unsigned long offset, 7031 unsigned long size) 7032 { 7033 if (filter->inode != file_inode(file)) 7034 return false; 7035 7036 if (filter->offset > offset + size) 7037 return false; 7038 7039 if (filter->offset + filter->size < offset) 7040 return false; 7041 7042 return true; 7043 } 7044 7045 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7046 { 7047 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7048 struct vm_area_struct *vma = data; 7049 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 7050 struct file *file = vma->vm_file; 7051 struct perf_addr_filter *filter; 7052 unsigned int restart = 0, count = 0; 7053 7054 if (!has_addr_filter(event)) 7055 return; 7056 7057 if (!file) 7058 return; 7059 7060 raw_spin_lock_irqsave(&ifh->lock, flags); 7061 list_for_each_entry(filter, &ifh->list, entry) { 7062 if (perf_addr_filter_match(filter, file, off, 7063 vma->vm_end - vma->vm_start)) { 7064 event->addr_filters_offs[count] = vma->vm_start; 7065 restart++; 7066 } 7067 7068 count++; 7069 } 7070 7071 if (restart) 7072 event->addr_filters_gen++; 7073 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7074 7075 if (restart) 7076 perf_event_stop(event, 1); 7077 } 7078 7079 /* 7080 * Adjust all task's events' filters to the new vma 7081 */ 7082 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7083 { 7084 struct perf_event_context *ctx; 7085 int ctxn; 7086 7087 /* 7088 * Data tracing isn't supported yet and as such there is no need 7089 * to keep track of anything that isn't related to executable code: 7090 */ 7091 if (!(vma->vm_flags & VM_EXEC)) 7092 return; 7093 7094 rcu_read_lock(); 7095 for_each_task_context_nr(ctxn) { 7096 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7097 if (!ctx) 7098 continue; 7099 7100 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7101 } 7102 rcu_read_unlock(); 7103 } 7104 7105 void perf_event_mmap(struct vm_area_struct *vma) 7106 { 7107 struct perf_mmap_event mmap_event; 7108 7109 if (!atomic_read(&nr_mmap_events)) 7110 return; 7111 7112 mmap_event = (struct perf_mmap_event){ 7113 .vma = vma, 7114 /* .file_name */ 7115 /* .file_size */ 7116 .event_id = { 7117 .header = { 7118 .type = PERF_RECORD_MMAP, 7119 .misc = PERF_RECORD_MISC_USER, 7120 /* .size */ 7121 }, 7122 /* .pid */ 7123 /* .tid */ 7124 .start = vma->vm_start, 7125 .len = vma->vm_end - vma->vm_start, 7126 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7127 }, 7128 /* .maj (attr_mmap2 only) */ 7129 /* .min (attr_mmap2 only) */ 7130 /* .ino (attr_mmap2 only) */ 7131 /* .ino_generation (attr_mmap2 only) */ 7132 /* .prot (attr_mmap2 only) */ 7133 /* .flags (attr_mmap2 only) */ 7134 }; 7135 7136 perf_addr_filters_adjust(vma); 7137 perf_event_mmap_event(&mmap_event); 7138 } 7139 7140 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7141 unsigned long size, u64 flags) 7142 { 7143 struct perf_output_handle handle; 7144 struct perf_sample_data sample; 7145 struct perf_aux_event { 7146 struct perf_event_header header; 7147 u64 offset; 7148 u64 size; 7149 u64 flags; 7150 } rec = { 7151 .header = { 7152 .type = PERF_RECORD_AUX, 7153 .misc = 0, 7154 .size = sizeof(rec), 7155 }, 7156 .offset = head, 7157 .size = size, 7158 .flags = flags, 7159 }; 7160 int ret; 7161 7162 perf_event_header__init_id(&rec.header, &sample, event); 7163 ret = perf_output_begin(&handle, event, rec.header.size); 7164 7165 if (ret) 7166 return; 7167 7168 perf_output_put(&handle, rec); 7169 perf_event__output_id_sample(event, &handle, &sample); 7170 7171 perf_output_end(&handle); 7172 } 7173 7174 /* 7175 * Lost/dropped samples logging 7176 */ 7177 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7178 { 7179 struct perf_output_handle handle; 7180 struct perf_sample_data sample; 7181 int ret; 7182 7183 struct { 7184 struct perf_event_header header; 7185 u64 lost; 7186 } lost_samples_event = { 7187 .header = { 7188 .type = PERF_RECORD_LOST_SAMPLES, 7189 .misc = 0, 7190 .size = sizeof(lost_samples_event), 7191 }, 7192 .lost = lost, 7193 }; 7194 7195 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7196 7197 ret = perf_output_begin(&handle, event, 7198 lost_samples_event.header.size); 7199 if (ret) 7200 return; 7201 7202 perf_output_put(&handle, lost_samples_event); 7203 perf_event__output_id_sample(event, &handle, &sample); 7204 perf_output_end(&handle); 7205 } 7206 7207 /* 7208 * context_switch tracking 7209 */ 7210 7211 struct perf_switch_event { 7212 struct task_struct *task; 7213 struct task_struct *next_prev; 7214 7215 struct { 7216 struct perf_event_header header; 7217 u32 next_prev_pid; 7218 u32 next_prev_tid; 7219 } event_id; 7220 }; 7221 7222 static int perf_event_switch_match(struct perf_event *event) 7223 { 7224 return event->attr.context_switch; 7225 } 7226 7227 static void perf_event_switch_output(struct perf_event *event, void *data) 7228 { 7229 struct perf_switch_event *se = data; 7230 struct perf_output_handle handle; 7231 struct perf_sample_data sample; 7232 int ret; 7233 7234 if (!perf_event_switch_match(event)) 7235 return; 7236 7237 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7238 if (event->ctx->task) { 7239 se->event_id.header.type = PERF_RECORD_SWITCH; 7240 se->event_id.header.size = sizeof(se->event_id.header); 7241 } else { 7242 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7243 se->event_id.header.size = sizeof(se->event_id); 7244 se->event_id.next_prev_pid = 7245 perf_event_pid(event, se->next_prev); 7246 se->event_id.next_prev_tid = 7247 perf_event_tid(event, se->next_prev); 7248 } 7249 7250 perf_event_header__init_id(&se->event_id.header, &sample, event); 7251 7252 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7253 if (ret) 7254 return; 7255 7256 if (event->ctx->task) 7257 perf_output_put(&handle, se->event_id.header); 7258 else 7259 perf_output_put(&handle, se->event_id); 7260 7261 perf_event__output_id_sample(event, &handle, &sample); 7262 7263 perf_output_end(&handle); 7264 } 7265 7266 static void perf_event_switch(struct task_struct *task, 7267 struct task_struct *next_prev, bool sched_in) 7268 { 7269 struct perf_switch_event switch_event; 7270 7271 /* N.B. caller checks nr_switch_events != 0 */ 7272 7273 switch_event = (struct perf_switch_event){ 7274 .task = task, 7275 .next_prev = next_prev, 7276 .event_id = { 7277 .header = { 7278 /* .type */ 7279 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7280 /* .size */ 7281 }, 7282 /* .next_prev_pid */ 7283 /* .next_prev_tid */ 7284 }, 7285 }; 7286 7287 perf_iterate_sb(perf_event_switch_output, 7288 &switch_event, 7289 NULL); 7290 } 7291 7292 /* 7293 * IRQ throttle logging 7294 */ 7295 7296 static void perf_log_throttle(struct perf_event *event, int enable) 7297 { 7298 struct perf_output_handle handle; 7299 struct perf_sample_data sample; 7300 int ret; 7301 7302 struct { 7303 struct perf_event_header header; 7304 u64 time; 7305 u64 id; 7306 u64 stream_id; 7307 } throttle_event = { 7308 .header = { 7309 .type = PERF_RECORD_THROTTLE, 7310 .misc = 0, 7311 .size = sizeof(throttle_event), 7312 }, 7313 .time = perf_event_clock(event), 7314 .id = primary_event_id(event), 7315 .stream_id = event->id, 7316 }; 7317 7318 if (enable) 7319 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7320 7321 perf_event_header__init_id(&throttle_event.header, &sample, event); 7322 7323 ret = perf_output_begin(&handle, event, 7324 throttle_event.header.size); 7325 if (ret) 7326 return; 7327 7328 perf_output_put(&handle, throttle_event); 7329 perf_event__output_id_sample(event, &handle, &sample); 7330 perf_output_end(&handle); 7331 } 7332 7333 void perf_event_itrace_started(struct perf_event *event) 7334 { 7335 event->attach_state |= PERF_ATTACH_ITRACE; 7336 } 7337 7338 static void perf_log_itrace_start(struct perf_event *event) 7339 { 7340 struct perf_output_handle handle; 7341 struct perf_sample_data sample; 7342 struct perf_aux_event { 7343 struct perf_event_header header; 7344 u32 pid; 7345 u32 tid; 7346 } rec; 7347 int ret; 7348 7349 if (event->parent) 7350 event = event->parent; 7351 7352 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7353 event->attach_state & PERF_ATTACH_ITRACE) 7354 return; 7355 7356 rec.header.type = PERF_RECORD_ITRACE_START; 7357 rec.header.misc = 0; 7358 rec.header.size = sizeof(rec); 7359 rec.pid = perf_event_pid(event, current); 7360 rec.tid = perf_event_tid(event, current); 7361 7362 perf_event_header__init_id(&rec.header, &sample, event); 7363 ret = perf_output_begin(&handle, event, rec.header.size); 7364 7365 if (ret) 7366 return; 7367 7368 perf_output_put(&handle, rec); 7369 perf_event__output_id_sample(event, &handle, &sample); 7370 7371 perf_output_end(&handle); 7372 } 7373 7374 static int 7375 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7376 { 7377 struct hw_perf_event *hwc = &event->hw; 7378 int ret = 0; 7379 u64 seq; 7380 7381 seq = __this_cpu_read(perf_throttled_seq); 7382 if (seq != hwc->interrupts_seq) { 7383 hwc->interrupts_seq = seq; 7384 hwc->interrupts = 1; 7385 } else { 7386 hwc->interrupts++; 7387 if (unlikely(throttle 7388 && hwc->interrupts >= max_samples_per_tick)) { 7389 __this_cpu_inc(perf_throttled_count); 7390 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7391 hwc->interrupts = MAX_INTERRUPTS; 7392 perf_log_throttle(event, 0); 7393 ret = 1; 7394 } 7395 } 7396 7397 if (event->attr.freq) { 7398 u64 now = perf_clock(); 7399 s64 delta = now - hwc->freq_time_stamp; 7400 7401 hwc->freq_time_stamp = now; 7402 7403 if (delta > 0 && delta < 2*TICK_NSEC) 7404 perf_adjust_period(event, delta, hwc->last_period, true); 7405 } 7406 7407 return ret; 7408 } 7409 7410 int perf_event_account_interrupt(struct perf_event *event) 7411 { 7412 return __perf_event_account_interrupt(event, 1); 7413 } 7414 7415 /* 7416 * Generic event overflow handling, sampling. 7417 */ 7418 7419 static int __perf_event_overflow(struct perf_event *event, 7420 int throttle, struct perf_sample_data *data, 7421 struct pt_regs *regs) 7422 { 7423 int events = atomic_read(&event->event_limit); 7424 int ret = 0; 7425 7426 /* 7427 * Non-sampling counters might still use the PMI to fold short 7428 * hardware counters, ignore those. 7429 */ 7430 if (unlikely(!is_sampling_event(event))) 7431 return 0; 7432 7433 ret = __perf_event_account_interrupt(event, throttle); 7434 7435 /* 7436 * XXX event_limit might not quite work as expected on inherited 7437 * events 7438 */ 7439 7440 event->pending_kill = POLL_IN; 7441 if (events && atomic_dec_and_test(&event->event_limit)) { 7442 ret = 1; 7443 event->pending_kill = POLL_HUP; 7444 7445 perf_event_disable_inatomic(event); 7446 } 7447 7448 READ_ONCE(event->overflow_handler)(event, data, regs); 7449 7450 if (*perf_event_fasync(event) && event->pending_kill) { 7451 event->pending_wakeup = 1; 7452 irq_work_queue(&event->pending); 7453 } 7454 7455 return ret; 7456 } 7457 7458 int perf_event_overflow(struct perf_event *event, 7459 struct perf_sample_data *data, 7460 struct pt_regs *regs) 7461 { 7462 return __perf_event_overflow(event, 1, data, regs); 7463 } 7464 7465 /* 7466 * Generic software event infrastructure 7467 */ 7468 7469 struct swevent_htable { 7470 struct swevent_hlist *swevent_hlist; 7471 struct mutex hlist_mutex; 7472 int hlist_refcount; 7473 7474 /* Recursion avoidance in each contexts */ 7475 int recursion[PERF_NR_CONTEXTS]; 7476 }; 7477 7478 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7479 7480 /* 7481 * We directly increment event->count and keep a second value in 7482 * event->hw.period_left to count intervals. This period event 7483 * is kept in the range [-sample_period, 0] so that we can use the 7484 * sign as trigger. 7485 */ 7486 7487 u64 perf_swevent_set_period(struct perf_event *event) 7488 { 7489 struct hw_perf_event *hwc = &event->hw; 7490 u64 period = hwc->last_period; 7491 u64 nr, offset; 7492 s64 old, val; 7493 7494 hwc->last_period = hwc->sample_period; 7495 7496 again: 7497 old = val = local64_read(&hwc->period_left); 7498 if (val < 0) 7499 return 0; 7500 7501 nr = div64_u64(period + val, period); 7502 offset = nr * period; 7503 val -= offset; 7504 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7505 goto again; 7506 7507 return nr; 7508 } 7509 7510 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7511 struct perf_sample_data *data, 7512 struct pt_regs *regs) 7513 { 7514 struct hw_perf_event *hwc = &event->hw; 7515 int throttle = 0; 7516 7517 if (!overflow) 7518 overflow = perf_swevent_set_period(event); 7519 7520 if (hwc->interrupts == MAX_INTERRUPTS) 7521 return; 7522 7523 for (; overflow; overflow--) { 7524 if (__perf_event_overflow(event, throttle, 7525 data, regs)) { 7526 /* 7527 * We inhibit the overflow from happening when 7528 * hwc->interrupts == MAX_INTERRUPTS. 7529 */ 7530 break; 7531 } 7532 throttle = 1; 7533 } 7534 } 7535 7536 static void perf_swevent_event(struct perf_event *event, u64 nr, 7537 struct perf_sample_data *data, 7538 struct pt_regs *regs) 7539 { 7540 struct hw_perf_event *hwc = &event->hw; 7541 7542 local64_add(nr, &event->count); 7543 7544 if (!regs) 7545 return; 7546 7547 if (!is_sampling_event(event)) 7548 return; 7549 7550 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7551 data->period = nr; 7552 return perf_swevent_overflow(event, 1, data, regs); 7553 } else 7554 data->period = event->hw.last_period; 7555 7556 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7557 return perf_swevent_overflow(event, 1, data, regs); 7558 7559 if (local64_add_negative(nr, &hwc->period_left)) 7560 return; 7561 7562 perf_swevent_overflow(event, 0, data, regs); 7563 } 7564 7565 static int perf_exclude_event(struct perf_event *event, 7566 struct pt_regs *regs) 7567 { 7568 if (event->hw.state & PERF_HES_STOPPED) 7569 return 1; 7570 7571 if (regs) { 7572 if (event->attr.exclude_user && user_mode(regs)) 7573 return 1; 7574 7575 if (event->attr.exclude_kernel && !user_mode(regs)) 7576 return 1; 7577 } 7578 7579 return 0; 7580 } 7581 7582 static int perf_swevent_match(struct perf_event *event, 7583 enum perf_type_id type, 7584 u32 event_id, 7585 struct perf_sample_data *data, 7586 struct pt_regs *regs) 7587 { 7588 if (event->attr.type != type) 7589 return 0; 7590 7591 if (event->attr.config != event_id) 7592 return 0; 7593 7594 if (perf_exclude_event(event, regs)) 7595 return 0; 7596 7597 return 1; 7598 } 7599 7600 static inline u64 swevent_hash(u64 type, u32 event_id) 7601 { 7602 u64 val = event_id | (type << 32); 7603 7604 return hash_64(val, SWEVENT_HLIST_BITS); 7605 } 7606 7607 static inline struct hlist_head * 7608 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7609 { 7610 u64 hash = swevent_hash(type, event_id); 7611 7612 return &hlist->heads[hash]; 7613 } 7614 7615 /* For the read side: events when they trigger */ 7616 static inline struct hlist_head * 7617 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7618 { 7619 struct swevent_hlist *hlist; 7620 7621 hlist = rcu_dereference(swhash->swevent_hlist); 7622 if (!hlist) 7623 return NULL; 7624 7625 return __find_swevent_head(hlist, type, event_id); 7626 } 7627 7628 /* For the event head insertion and removal in the hlist */ 7629 static inline struct hlist_head * 7630 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7631 { 7632 struct swevent_hlist *hlist; 7633 u32 event_id = event->attr.config; 7634 u64 type = event->attr.type; 7635 7636 /* 7637 * Event scheduling is always serialized against hlist allocation 7638 * and release. Which makes the protected version suitable here. 7639 * The context lock guarantees that. 7640 */ 7641 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7642 lockdep_is_held(&event->ctx->lock)); 7643 if (!hlist) 7644 return NULL; 7645 7646 return __find_swevent_head(hlist, type, event_id); 7647 } 7648 7649 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7650 u64 nr, 7651 struct perf_sample_data *data, 7652 struct pt_regs *regs) 7653 { 7654 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7655 struct perf_event *event; 7656 struct hlist_head *head; 7657 7658 rcu_read_lock(); 7659 head = find_swevent_head_rcu(swhash, type, event_id); 7660 if (!head) 7661 goto end; 7662 7663 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7664 if (perf_swevent_match(event, type, event_id, data, regs)) 7665 perf_swevent_event(event, nr, data, regs); 7666 } 7667 end: 7668 rcu_read_unlock(); 7669 } 7670 7671 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7672 7673 int perf_swevent_get_recursion_context(void) 7674 { 7675 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7676 7677 return get_recursion_context(swhash->recursion); 7678 } 7679 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7680 7681 void perf_swevent_put_recursion_context(int rctx) 7682 { 7683 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7684 7685 put_recursion_context(swhash->recursion, rctx); 7686 } 7687 7688 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7689 { 7690 struct perf_sample_data data; 7691 7692 if (WARN_ON_ONCE(!regs)) 7693 return; 7694 7695 perf_sample_data_init(&data, addr, 0); 7696 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7697 } 7698 7699 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7700 { 7701 int rctx; 7702 7703 preempt_disable_notrace(); 7704 rctx = perf_swevent_get_recursion_context(); 7705 if (unlikely(rctx < 0)) 7706 goto fail; 7707 7708 ___perf_sw_event(event_id, nr, regs, addr); 7709 7710 perf_swevent_put_recursion_context(rctx); 7711 fail: 7712 preempt_enable_notrace(); 7713 } 7714 7715 static void perf_swevent_read(struct perf_event *event) 7716 { 7717 } 7718 7719 static int perf_swevent_add(struct perf_event *event, int flags) 7720 { 7721 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7722 struct hw_perf_event *hwc = &event->hw; 7723 struct hlist_head *head; 7724 7725 if (is_sampling_event(event)) { 7726 hwc->last_period = hwc->sample_period; 7727 perf_swevent_set_period(event); 7728 } 7729 7730 hwc->state = !(flags & PERF_EF_START); 7731 7732 head = find_swevent_head(swhash, event); 7733 if (WARN_ON_ONCE(!head)) 7734 return -EINVAL; 7735 7736 hlist_add_head_rcu(&event->hlist_entry, head); 7737 perf_event_update_userpage(event); 7738 7739 return 0; 7740 } 7741 7742 static void perf_swevent_del(struct perf_event *event, int flags) 7743 { 7744 hlist_del_rcu(&event->hlist_entry); 7745 } 7746 7747 static void perf_swevent_start(struct perf_event *event, int flags) 7748 { 7749 event->hw.state = 0; 7750 } 7751 7752 static void perf_swevent_stop(struct perf_event *event, int flags) 7753 { 7754 event->hw.state = PERF_HES_STOPPED; 7755 } 7756 7757 /* Deref the hlist from the update side */ 7758 static inline struct swevent_hlist * 7759 swevent_hlist_deref(struct swevent_htable *swhash) 7760 { 7761 return rcu_dereference_protected(swhash->swevent_hlist, 7762 lockdep_is_held(&swhash->hlist_mutex)); 7763 } 7764 7765 static void swevent_hlist_release(struct swevent_htable *swhash) 7766 { 7767 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7768 7769 if (!hlist) 7770 return; 7771 7772 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7773 kfree_rcu(hlist, rcu_head); 7774 } 7775 7776 static void swevent_hlist_put_cpu(int cpu) 7777 { 7778 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7779 7780 mutex_lock(&swhash->hlist_mutex); 7781 7782 if (!--swhash->hlist_refcount) 7783 swevent_hlist_release(swhash); 7784 7785 mutex_unlock(&swhash->hlist_mutex); 7786 } 7787 7788 static void swevent_hlist_put(void) 7789 { 7790 int cpu; 7791 7792 for_each_possible_cpu(cpu) 7793 swevent_hlist_put_cpu(cpu); 7794 } 7795 7796 static int swevent_hlist_get_cpu(int cpu) 7797 { 7798 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7799 int err = 0; 7800 7801 mutex_lock(&swhash->hlist_mutex); 7802 if (!swevent_hlist_deref(swhash) && 7803 cpumask_test_cpu(cpu, perf_online_mask)) { 7804 struct swevent_hlist *hlist; 7805 7806 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7807 if (!hlist) { 7808 err = -ENOMEM; 7809 goto exit; 7810 } 7811 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7812 } 7813 swhash->hlist_refcount++; 7814 exit: 7815 mutex_unlock(&swhash->hlist_mutex); 7816 7817 return err; 7818 } 7819 7820 static int swevent_hlist_get(void) 7821 { 7822 int err, cpu, failed_cpu; 7823 7824 mutex_lock(&pmus_lock); 7825 for_each_possible_cpu(cpu) { 7826 err = swevent_hlist_get_cpu(cpu); 7827 if (err) { 7828 failed_cpu = cpu; 7829 goto fail; 7830 } 7831 } 7832 mutex_unlock(&pmus_lock); 7833 return 0; 7834 fail: 7835 for_each_possible_cpu(cpu) { 7836 if (cpu == failed_cpu) 7837 break; 7838 swevent_hlist_put_cpu(cpu); 7839 } 7840 mutex_unlock(&pmus_lock); 7841 return err; 7842 } 7843 7844 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7845 7846 static void sw_perf_event_destroy(struct perf_event *event) 7847 { 7848 u64 event_id = event->attr.config; 7849 7850 WARN_ON(event->parent); 7851 7852 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7853 swevent_hlist_put(); 7854 } 7855 7856 static int perf_swevent_init(struct perf_event *event) 7857 { 7858 u64 event_id = event->attr.config; 7859 7860 if (event->attr.type != PERF_TYPE_SOFTWARE) 7861 return -ENOENT; 7862 7863 /* 7864 * no branch sampling for software events 7865 */ 7866 if (has_branch_stack(event)) 7867 return -EOPNOTSUPP; 7868 7869 switch (event_id) { 7870 case PERF_COUNT_SW_CPU_CLOCK: 7871 case PERF_COUNT_SW_TASK_CLOCK: 7872 return -ENOENT; 7873 7874 default: 7875 break; 7876 } 7877 7878 if (event_id >= PERF_COUNT_SW_MAX) 7879 return -ENOENT; 7880 7881 if (!event->parent) { 7882 int err; 7883 7884 err = swevent_hlist_get(); 7885 if (err) 7886 return err; 7887 7888 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7889 event->destroy = sw_perf_event_destroy; 7890 } 7891 7892 return 0; 7893 } 7894 7895 static struct pmu perf_swevent = { 7896 .task_ctx_nr = perf_sw_context, 7897 7898 .capabilities = PERF_PMU_CAP_NO_NMI, 7899 7900 .event_init = perf_swevent_init, 7901 .add = perf_swevent_add, 7902 .del = perf_swevent_del, 7903 .start = perf_swevent_start, 7904 .stop = perf_swevent_stop, 7905 .read = perf_swevent_read, 7906 }; 7907 7908 #ifdef CONFIG_EVENT_TRACING 7909 7910 static int perf_tp_filter_match(struct perf_event *event, 7911 struct perf_sample_data *data) 7912 { 7913 void *record = data->raw->frag.data; 7914 7915 /* only top level events have filters set */ 7916 if (event->parent) 7917 event = event->parent; 7918 7919 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7920 return 1; 7921 return 0; 7922 } 7923 7924 static int perf_tp_event_match(struct perf_event *event, 7925 struct perf_sample_data *data, 7926 struct pt_regs *regs) 7927 { 7928 if (event->hw.state & PERF_HES_STOPPED) 7929 return 0; 7930 /* 7931 * All tracepoints are from kernel-space. 7932 */ 7933 if (event->attr.exclude_kernel) 7934 return 0; 7935 7936 if (!perf_tp_filter_match(event, data)) 7937 return 0; 7938 7939 return 1; 7940 } 7941 7942 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7943 struct trace_event_call *call, u64 count, 7944 struct pt_regs *regs, struct hlist_head *head, 7945 struct task_struct *task) 7946 { 7947 struct bpf_prog *prog = call->prog; 7948 7949 if (prog) { 7950 *(struct pt_regs **)raw_data = regs; 7951 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) { 7952 perf_swevent_put_recursion_context(rctx); 7953 return; 7954 } 7955 } 7956 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7957 rctx, task, NULL); 7958 } 7959 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7960 7961 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7962 struct pt_regs *regs, struct hlist_head *head, int rctx, 7963 struct task_struct *task, struct perf_event *event) 7964 { 7965 struct perf_sample_data data; 7966 7967 struct perf_raw_record raw = { 7968 .frag = { 7969 .size = entry_size, 7970 .data = record, 7971 }, 7972 }; 7973 7974 perf_sample_data_init(&data, 0, 0); 7975 data.raw = &raw; 7976 7977 perf_trace_buf_update(record, event_type); 7978 7979 /* Use the given event instead of the hlist */ 7980 if (event) { 7981 if (perf_tp_event_match(event, &data, regs)) 7982 perf_swevent_event(event, count, &data, regs); 7983 } else { 7984 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7985 if (perf_tp_event_match(event, &data, regs)) 7986 perf_swevent_event(event, count, &data, regs); 7987 } 7988 } 7989 7990 /* 7991 * If we got specified a target task, also iterate its context and 7992 * deliver this event there too. 7993 */ 7994 if (task && task != current) { 7995 struct perf_event_context *ctx; 7996 struct trace_entry *entry = record; 7997 7998 rcu_read_lock(); 7999 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8000 if (!ctx) 8001 goto unlock; 8002 8003 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8004 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8005 continue; 8006 if (event->attr.config != entry->type) 8007 continue; 8008 if (perf_tp_event_match(event, &data, regs)) 8009 perf_swevent_event(event, count, &data, regs); 8010 } 8011 unlock: 8012 rcu_read_unlock(); 8013 } 8014 8015 perf_swevent_put_recursion_context(rctx); 8016 } 8017 EXPORT_SYMBOL_GPL(perf_tp_event); 8018 8019 static void tp_perf_event_destroy(struct perf_event *event) 8020 { 8021 perf_trace_destroy(event); 8022 } 8023 8024 static int perf_tp_event_init(struct perf_event *event) 8025 { 8026 int err; 8027 8028 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8029 return -ENOENT; 8030 8031 /* 8032 * no branch sampling for tracepoint events 8033 */ 8034 if (has_branch_stack(event)) 8035 return -EOPNOTSUPP; 8036 8037 err = perf_trace_init(event); 8038 if (err) 8039 return err; 8040 8041 event->destroy = tp_perf_event_destroy; 8042 8043 return 0; 8044 } 8045 8046 static struct pmu perf_tracepoint = { 8047 .task_ctx_nr = perf_sw_context, 8048 8049 .event_init = perf_tp_event_init, 8050 .add = perf_trace_add, 8051 .del = perf_trace_del, 8052 .start = perf_swevent_start, 8053 .stop = perf_swevent_stop, 8054 .read = perf_swevent_read, 8055 }; 8056 8057 static inline void perf_tp_register(void) 8058 { 8059 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8060 } 8061 8062 static void perf_event_free_filter(struct perf_event *event) 8063 { 8064 ftrace_profile_free_filter(event); 8065 } 8066 8067 #ifdef CONFIG_BPF_SYSCALL 8068 static void bpf_overflow_handler(struct perf_event *event, 8069 struct perf_sample_data *data, 8070 struct pt_regs *regs) 8071 { 8072 struct bpf_perf_event_data_kern ctx = { 8073 .data = data, 8074 .regs = regs, 8075 }; 8076 int ret = 0; 8077 8078 preempt_disable(); 8079 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8080 goto out; 8081 rcu_read_lock(); 8082 ret = BPF_PROG_RUN(event->prog, &ctx); 8083 rcu_read_unlock(); 8084 out: 8085 __this_cpu_dec(bpf_prog_active); 8086 preempt_enable(); 8087 if (!ret) 8088 return; 8089 8090 event->orig_overflow_handler(event, data, regs); 8091 } 8092 8093 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8094 { 8095 struct bpf_prog *prog; 8096 8097 if (event->overflow_handler_context) 8098 /* hw breakpoint or kernel counter */ 8099 return -EINVAL; 8100 8101 if (event->prog) 8102 return -EEXIST; 8103 8104 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8105 if (IS_ERR(prog)) 8106 return PTR_ERR(prog); 8107 8108 event->prog = prog; 8109 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8110 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8111 return 0; 8112 } 8113 8114 static void perf_event_free_bpf_handler(struct perf_event *event) 8115 { 8116 struct bpf_prog *prog = event->prog; 8117 8118 if (!prog) 8119 return; 8120 8121 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8122 event->prog = NULL; 8123 bpf_prog_put(prog); 8124 } 8125 #else 8126 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8127 { 8128 return -EOPNOTSUPP; 8129 } 8130 static void perf_event_free_bpf_handler(struct perf_event *event) 8131 { 8132 } 8133 #endif 8134 8135 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8136 { 8137 bool is_kprobe, is_tracepoint, is_syscall_tp; 8138 struct bpf_prog *prog; 8139 8140 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8141 return perf_event_set_bpf_handler(event, prog_fd); 8142 8143 if (event->tp_event->prog) 8144 return -EEXIST; 8145 8146 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8147 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8148 is_syscall_tp = is_syscall_trace_event(event->tp_event); 8149 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 8150 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8151 return -EINVAL; 8152 8153 prog = bpf_prog_get(prog_fd); 8154 if (IS_ERR(prog)) 8155 return PTR_ERR(prog); 8156 8157 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8158 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 8159 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8160 /* valid fd, but invalid bpf program type */ 8161 bpf_prog_put(prog); 8162 return -EINVAL; 8163 } 8164 8165 if (is_tracepoint || is_syscall_tp) { 8166 int off = trace_event_get_offsets(event->tp_event); 8167 8168 if (prog->aux->max_ctx_offset > off) { 8169 bpf_prog_put(prog); 8170 return -EACCES; 8171 } 8172 } 8173 event->tp_event->prog = prog; 8174 event->tp_event->bpf_prog_owner = event; 8175 8176 return 0; 8177 } 8178 8179 static void perf_event_free_bpf_prog(struct perf_event *event) 8180 { 8181 struct bpf_prog *prog; 8182 8183 perf_event_free_bpf_handler(event); 8184 8185 if (!event->tp_event) 8186 return; 8187 8188 prog = event->tp_event->prog; 8189 if (prog && event->tp_event->bpf_prog_owner == event) { 8190 event->tp_event->prog = NULL; 8191 bpf_prog_put(prog); 8192 } 8193 } 8194 8195 #else 8196 8197 static inline void perf_tp_register(void) 8198 { 8199 } 8200 8201 static void perf_event_free_filter(struct perf_event *event) 8202 { 8203 } 8204 8205 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8206 { 8207 return -ENOENT; 8208 } 8209 8210 static void perf_event_free_bpf_prog(struct perf_event *event) 8211 { 8212 } 8213 #endif /* CONFIG_EVENT_TRACING */ 8214 8215 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8216 void perf_bp_event(struct perf_event *bp, void *data) 8217 { 8218 struct perf_sample_data sample; 8219 struct pt_regs *regs = data; 8220 8221 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8222 8223 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8224 perf_swevent_event(bp, 1, &sample, regs); 8225 } 8226 #endif 8227 8228 /* 8229 * Allocate a new address filter 8230 */ 8231 static struct perf_addr_filter * 8232 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8233 { 8234 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 8235 struct perf_addr_filter *filter; 8236 8237 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 8238 if (!filter) 8239 return NULL; 8240 8241 INIT_LIST_HEAD(&filter->entry); 8242 list_add_tail(&filter->entry, filters); 8243 8244 return filter; 8245 } 8246 8247 static void free_filters_list(struct list_head *filters) 8248 { 8249 struct perf_addr_filter *filter, *iter; 8250 8251 list_for_each_entry_safe(filter, iter, filters, entry) { 8252 if (filter->inode) 8253 iput(filter->inode); 8254 list_del(&filter->entry); 8255 kfree(filter); 8256 } 8257 } 8258 8259 /* 8260 * Free existing address filters and optionally install new ones 8261 */ 8262 static void perf_addr_filters_splice(struct perf_event *event, 8263 struct list_head *head) 8264 { 8265 unsigned long flags; 8266 LIST_HEAD(list); 8267 8268 if (!has_addr_filter(event)) 8269 return; 8270 8271 /* don't bother with children, they don't have their own filters */ 8272 if (event->parent) 8273 return; 8274 8275 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 8276 8277 list_splice_init(&event->addr_filters.list, &list); 8278 if (head) 8279 list_splice(head, &event->addr_filters.list); 8280 8281 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 8282 8283 free_filters_list(&list); 8284 } 8285 8286 /* 8287 * Scan through mm's vmas and see if one of them matches the 8288 * @filter; if so, adjust filter's address range. 8289 * Called with mm::mmap_sem down for reading. 8290 */ 8291 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 8292 struct mm_struct *mm) 8293 { 8294 struct vm_area_struct *vma; 8295 8296 for (vma = mm->mmap; vma; vma = vma->vm_next) { 8297 struct file *file = vma->vm_file; 8298 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8299 unsigned long vma_size = vma->vm_end - vma->vm_start; 8300 8301 if (!file) 8302 continue; 8303 8304 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8305 continue; 8306 8307 return vma->vm_start; 8308 } 8309 8310 return 0; 8311 } 8312 8313 /* 8314 * Update event's address range filters based on the 8315 * task's existing mappings, if any. 8316 */ 8317 static void perf_event_addr_filters_apply(struct perf_event *event) 8318 { 8319 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8320 struct task_struct *task = READ_ONCE(event->ctx->task); 8321 struct perf_addr_filter *filter; 8322 struct mm_struct *mm = NULL; 8323 unsigned int count = 0; 8324 unsigned long flags; 8325 8326 /* 8327 * We may observe TASK_TOMBSTONE, which means that the event tear-down 8328 * will stop on the parent's child_mutex that our caller is also holding 8329 */ 8330 if (task == TASK_TOMBSTONE) 8331 return; 8332 8333 if (!ifh->nr_file_filters) 8334 return; 8335 8336 mm = get_task_mm(event->ctx->task); 8337 if (!mm) 8338 goto restart; 8339 8340 down_read(&mm->mmap_sem); 8341 8342 raw_spin_lock_irqsave(&ifh->lock, flags); 8343 list_for_each_entry(filter, &ifh->list, entry) { 8344 event->addr_filters_offs[count] = 0; 8345 8346 /* 8347 * Adjust base offset if the filter is associated to a binary 8348 * that needs to be mapped: 8349 */ 8350 if (filter->inode) 8351 event->addr_filters_offs[count] = 8352 perf_addr_filter_apply(filter, mm); 8353 8354 count++; 8355 } 8356 8357 event->addr_filters_gen++; 8358 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8359 8360 up_read(&mm->mmap_sem); 8361 8362 mmput(mm); 8363 8364 restart: 8365 perf_event_stop(event, 1); 8366 } 8367 8368 /* 8369 * Address range filtering: limiting the data to certain 8370 * instruction address ranges. Filters are ioctl()ed to us from 8371 * userspace as ascii strings. 8372 * 8373 * Filter string format: 8374 * 8375 * ACTION RANGE_SPEC 8376 * where ACTION is one of the 8377 * * "filter": limit the trace to this region 8378 * * "start": start tracing from this address 8379 * * "stop": stop tracing at this address/region; 8380 * RANGE_SPEC is 8381 * * for kernel addresses: <start address>[/<size>] 8382 * * for object files: <start address>[/<size>]@</path/to/object/file> 8383 * 8384 * if <size> is not specified, the range is treated as a single address. 8385 */ 8386 enum { 8387 IF_ACT_NONE = -1, 8388 IF_ACT_FILTER, 8389 IF_ACT_START, 8390 IF_ACT_STOP, 8391 IF_SRC_FILE, 8392 IF_SRC_KERNEL, 8393 IF_SRC_FILEADDR, 8394 IF_SRC_KERNELADDR, 8395 }; 8396 8397 enum { 8398 IF_STATE_ACTION = 0, 8399 IF_STATE_SOURCE, 8400 IF_STATE_END, 8401 }; 8402 8403 static const match_table_t if_tokens = { 8404 { IF_ACT_FILTER, "filter" }, 8405 { IF_ACT_START, "start" }, 8406 { IF_ACT_STOP, "stop" }, 8407 { IF_SRC_FILE, "%u/%u@%s" }, 8408 { IF_SRC_KERNEL, "%u/%u" }, 8409 { IF_SRC_FILEADDR, "%u@%s" }, 8410 { IF_SRC_KERNELADDR, "%u" }, 8411 { IF_ACT_NONE, NULL }, 8412 }; 8413 8414 /* 8415 * Address filter string parser 8416 */ 8417 static int 8418 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8419 struct list_head *filters) 8420 { 8421 struct perf_addr_filter *filter = NULL; 8422 char *start, *orig, *filename = NULL; 8423 struct path path; 8424 substring_t args[MAX_OPT_ARGS]; 8425 int state = IF_STATE_ACTION, token; 8426 unsigned int kernel = 0; 8427 int ret = -EINVAL; 8428 8429 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8430 if (!fstr) 8431 return -ENOMEM; 8432 8433 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8434 ret = -EINVAL; 8435 8436 if (!*start) 8437 continue; 8438 8439 /* filter definition begins */ 8440 if (state == IF_STATE_ACTION) { 8441 filter = perf_addr_filter_new(event, filters); 8442 if (!filter) 8443 goto fail; 8444 } 8445 8446 token = match_token(start, if_tokens, args); 8447 switch (token) { 8448 case IF_ACT_FILTER: 8449 case IF_ACT_START: 8450 filter->filter = 1; 8451 8452 case IF_ACT_STOP: 8453 if (state != IF_STATE_ACTION) 8454 goto fail; 8455 8456 state = IF_STATE_SOURCE; 8457 break; 8458 8459 case IF_SRC_KERNELADDR: 8460 case IF_SRC_KERNEL: 8461 kernel = 1; 8462 8463 case IF_SRC_FILEADDR: 8464 case IF_SRC_FILE: 8465 if (state != IF_STATE_SOURCE) 8466 goto fail; 8467 8468 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 8469 filter->range = 1; 8470 8471 *args[0].to = 0; 8472 ret = kstrtoul(args[0].from, 0, &filter->offset); 8473 if (ret) 8474 goto fail; 8475 8476 if (filter->range) { 8477 *args[1].to = 0; 8478 ret = kstrtoul(args[1].from, 0, &filter->size); 8479 if (ret) 8480 goto fail; 8481 } 8482 8483 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8484 int fpos = filter->range ? 2 : 1; 8485 8486 filename = match_strdup(&args[fpos]); 8487 if (!filename) { 8488 ret = -ENOMEM; 8489 goto fail; 8490 } 8491 } 8492 8493 state = IF_STATE_END; 8494 break; 8495 8496 default: 8497 goto fail; 8498 } 8499 8500 /* 8501 * Filter definition is fully parsed, validate and install it. 8502 * Make sure that it doesn't contradict itself or the event's 8503 * attribute. 8504 */ 8505 if (state == IF_STATE_END) { 8506 ret = -EINVAL; 8507 if (kernel && event->attr.exclude_kernel) 8508 goto fail; 8509 8510 if (!kernel) { 8511 if (!filename) 8512 goto fail; 8513 8514 /* 8515 * For now, we only support file-based filters 8516 * in per-task events; doing so for CPU-wide 8517 * events requires additional context switching 8518 * trickery, since same object code will be 8519 * mapped at different virtual addresses in 8520 * different processes. 8521 */ 8522 ret = -EOPNOTSUPP; 8523 if (!event->ctx->task) 8524 goto fail_free_name; 8525 8526 /* look up the path and grab its inode */ 8527 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8528 if (ret) 8529 goto fail_free_name; 8530 8531 filter->inode = igrab(d_inode(path.dentry)); 8532 path_put(&path); 8533 kfree(filename); 8534 filename = NULL; 8535 8536 ret = -EINVAL; 8537 if (!filter->inode || 8538 !S_ISREG(filter->inode->i_mode)) 8539 /* free_filters_list() will iput() */ 8540 goto fail; 8541 8542 event->addr_filters.nr_file_filters++; 8543 } 8544 8545 /* ready to consume more filters */ 8546 state = IF_STATE_ACTION; 8547 filter = NULL; 8548 } 8549 } 8550 8551 if (state != IF_STATE_ACTION) 8552 goto fail; 8553 8554 kfree(orig); 8555 8556 return 0; 8557 8558 fail_free_name: 8559 kfree(filename); 8560 fail: 8561 free_filters_list(filters); 8562 kfree(orig); 8563 8564 return ret; 8565 } 8566 8567 static int 8568 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 8569 { 8570 LIST_HEAD(filters); 8571 int ret; 8572 8573 /* 8574 * Since this is called in perf_ioctl() path, we're already holding 8575 * ctx::mutex. 8576 */ 8577 lockdep_assert_held(&event->ctx->mutex); 8578 8579 if (WARN_ON_ONCE(event->parent)) 8580 return -EINVAL; 8581 8582 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 8583 if (ret) 8584 goto fail_clear_files; 8585 8586 ret = event->pmu->addr_filters_validate(&filters); 8587 if (ret) 8588 goto fail_free_filters; 8589 8590 /* remove existing filters, if any */ 8591 perf_addr_filters_splice(event, &filters); 8592 8593 /* install new filters */ 8594 perf_event_for_each_child(event, perf_event_addr_filters_apply); 8595 8596 return ret; 8597 8598 fail_free_filters: 8599 free_filters_list(&filters); 8600 8601 fail_clear_files: 8602 event->addr_filters.nr_file_filters = 0; 8603 8604 return ret; 8605 } 8606 8607 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 8608 { 8609 char *filter_str; 8610 int ret = -EINVAL; 8611 8612 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 8613 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 8614 !has_addr_filter(event)) 8615 return -EINVAL; 8616 8617 filter_str = strndup_user(arg, PAGE_SIZE); 8618 if (IS_ERR(filter_str)) 8619 return PTR_ERR(filter_str); 8620 8621 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8622 event->attr.type == PERF_TYPE_TRACEPOINT) 8623 ret = ftrace_profile_set_filter(event, event->attr.config, 8624 filter_str); 8625 else if (has_addr_filter(event)) 8626 ret = perf_event_set_addr_filter(event, filter_str); 8627 8628 kfree(filter_str); 8629 return ret; 8630 } 8631 8632 /* 8633 * hrtimer based swevent callback 8634 */ 8635 8636 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8637 { 8638 enum hrtimer_restart ret = HRTIMER_RESTART; 8639 struct perf_sample_data data; 8640 struct pt_regs *regs; 8641 struct perf_event *event; 8642 u64 period; 8643 8644 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8645 8646 if (event->state != PERF_EVENT_STATE_ACTIVE) 8647 return HRTIMER_NORESTART; 8648 8649 event->pmu->read(event); 8650 8651 perf_sample_data_init(&data, 0, event->hw.last_period); 8652 regs = get_irq_regs(); 8653 8654 if (regs && !perf_exclude_event(event, regs)) { 8655 if (!(event->attr.exclude_idle && is_idle_task(current))) 8656 if (__perf_event_overflow(event, 1, &data, regs)) 8657 ret = HRTIMER_NORESTART; 8658 } 8659 8660 period = max_t(u64, 10000, event->hw.sample_period); 8661 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8662 8663 return ret; 8664 } 8665 8666 static void perf_swevent_start_hrtimer(struct perf_event *event) 8667 { 8668 struct hw_perf_event *hwc = &event->hw; 8669 s64 period; 8670 8671 if (!is_sampling_event(event)) 8672 return; 8673 8674 period = local64_read(&hwc->period_left); 8675 if (period) { 8676 if (period < 0) 8677 period = 10000; 8678 8679 local64_set(&hwc->period_left, 0); 8680 } else { 8681 period = max_t(u64, 10000, hwc->sample_period); 8682 } 8683 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8684 HRTIMER_MODE_REL_PINNED); 8685 } 8686 8687 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8688 { 8689 struct hw_perf_event *hwc = &event->hw; 8690 8691 if (is_sampling_event(event)) { 8692 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8693 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8694 8695 hrtimer_cancel(&hwc->hrtimer); 8696 } 8697 } 8698 8699 static void perf_swevent_init_hrtimer(struct perf_event *event) 8700 { 8701 struct hw_perf_event *hwc = &event->hw; 8702 8703 if (!is_sampling_event(event)) 8704 return; 8705 8706 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8707 hwc->hrtimer.function = perf_swevent_hrtimer; 8708 8709 /* 8710 * Since hrtimers have a fixed rate, we can do a static freq->period 8711 * mapping and avoid the whole period adjust feedback stuff. 8712 */ 8713 if (event->attr.freq) { 8714 long freq = event->attr.sample_freq; 8715 8716 event->attr.sample_period = NSEC_PER_SEC / freq; 8717 hwc->sample_period = event->attr.sample_period; 8718 local64_set(&hwc->period_left, hwc->sample_period); 8719 hwc->last_period = hwc->sample_period; 8720 event->attr.freq = 0; 8721 } 8722 } 8723 8724 /* 8725 * Software event: cpu wall time clock 8726 */ 8727 8728 static void cpu_clock_event_update(struct perf_event *event) 8729 { 8730 s64 prev; 8731 u64 now; 8732 8733 now = local_clock(); 8734 prev = local64_xchg(&event->hw.prev_count, now); 8735 local64_add(now - prev, &event->count); 8736 } 8737 8738 static void cpu_clock_event_start(struct perf_event *event, int flags) 8739 { 8740 local64_set(&event->hw.prev_count, local_clock()); 8741 perf_swevent_start_hrtimer(event); 8742 } 8743 8744 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8745 { 8746 perf_swevent_cancel_hrtimer(event); 8747 cpu_clock_event_update(event); 8748 } 8749 8750 static int cpu_clock_event_add(struct perf_event *event, int flags) 8751 { 8752 if (flags & PERF_EF_START) 8753 cpu_clock_event_start(event, flags); 8754 perf_event_update_userpage(event); 8755 8756 return 0; 8757 } 8758 8759 static void cpu_clock_event_del(struct perf_event *event, int flags) 8760 { 8761 cpu_clock_event_stop(event, flags); 8762 } 8763 8764 static void cpu_clock_event_read(struct perf_event *event) 8765 { 8766 cpu_clock_event_update(event); 8767 } 8768 8769 static int cpu_clock_event_init(struct perf_event *event) 8770 { 8771 if (event->attr.type != PERF_TYPE_SOFTWARE) 8772 return -ENOENT; 8773 8774 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8775 return -ENOENT; 8776 8777 /* 8778 * no branch sampling for software events 8779 */ 8780 if (has_branch_stack(event)) 8781 return -EOPNOTSUPP; 8782 8783 perf_swevent_init_hrtimer(event); 8784 8785 return 0; 8786 } 8787 8788 static struct pmu perf_cpu_clock = { 8789 .task_ctx_nr = perf_sw_context, 8790 8791 .capabilities = PERF_PMU_CAP_NO_NMI, 8792 8793 .event_init = cpu_clock_event_init, 8794 .add = cpu_clock_event_add, 8795 .del = cpu_clock_event_del, 8796 .start = cpu_clock_event_start, 8797 .stop = cpu_clock_event_stop, 8798 .read = cpu_clock_event_read, 8799 }; 8800 8801 /* 8802 * Software event: task time clock 8803 */ 8804 8805 static void task_clock_event_update(struct perf_event *event, u64 now) 8806 { 8807 u64 prev; 8808 s64 delta; 8809 8810 prev = local64_xchg(&event->hw.prev_count, now); 8811 delta = now - prev; 8812 local64_add(delta, &event->count); 8813 } 8814 8815 static void task_clock_event_start(struct perf_event *event, int flags) 8816 { 8817 local64_set(&event->hw.prev_count, event->ctx->time); 8818 perf_swevent_start_hrtimer(event); 8819 } 8820 8821 static void task_clock_event_stop(struct perf_event *event, int flags) 8822 { 8823 perf_swevent_cancel_hrtimer(event); 8824 task_clock_event_update(event, event->ctx->time); 8825 } 8826 8827 static int task_clock_event_add(struct perf_event *event, int flags) 8828 { 8829 if (flags & PERF_EF_START) 8830 task_clock_event_start(event, flags); 8831 perf_event_update_userpage(event); 8832 8833 return 0; 8834 } 8835 8836 static void task_clock_event_del(struct perf_event *event, int flags) 8837 { 8838 task_clock_event_stop(event, PERF_EF_UPDATE); 8839 } 8840 8841 static void task_clock_event_read(struct perf_event *event) 8842 { 8843 u64 now = perf_clock(); 8844 u64 delta = now - event->ctx->timestamp; 8845 u64 time = event->ctx->time + delta; 8846 8847 task_clock_event_update(event, time); 8848 } 8849 8850 static int task_clock_event_init(struct perf_event *event) 8851 { 8852 if (event->attr.type != PERF_TYPE_SOFTWARE) 8853 return -ENOENT; 8854 8855 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8856 return -ENOENT; 8857 8858 /* 8859 * no branch sampling for software events 8860 */ 8861 if (has_branch_stack(event)) 8862 return -EOPNOTSUPP; 8863 8864 perf_swevent_init_hrtimer(event); 8865 8866 return 0; 8867 } 8868 8869 static struct pmu perf_task_clock = { 8870 .task_ctx_nr = perf_sw_context, 8871 8872 .capabilities = PERF_PMU_CAP_NO_NMI, 8873 8874 .event_init = task_clock_event_init, 8875 .add = task_clock_event_add, 8876 .del = task_clock_event_del, 8877 .start = task_clock_event_start, 8878 .stop = task_clock_event_stop, 8879 .read = task_clock_event_read, 8880 }; 8881 8882 static void perf_pmu_nop_void(struct pmu *pmu) 8883 { 8884 } 8885 8886 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8887 { 8888 } 8889 8890 static int perf_pmu_nop_int(struct pmu *pmu) 8891 { 8892 return 0; 8893 } 8894 8895 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8896 8897 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8898 { 8899 __this_cpu_write(nop_txn_flags, flags); 8900 8901 if (flags & ~PERF_PMU_TXN_ADD) 8902 return; 8903 8904 perf_pmu_disable(pmu); 8905 } 8906 8907 static int perf_pmu_commit_txn(struct pmu *pmu) 8908 { 8909 unsigned int flags = __this_cpu_read(nop_txn_flags); 8910 8911 __this_cpu_write(nop_txn_flags, 0); 8912 8913 if (flags & ~PERF_PMU_TXN_ADD) 8914 return 0; 8915 8916 perf_pmu_enable(pmu); 8917 return 0; 8918 } 8919 8920 static void perf_pmu_cancel_txn(struct pmu *pmu) 8921 { 8922 unsigned int flags = __this_cpu_read(nop_txn_flags); 8923 8924 __this_cpu_write(nop_txn_flags, 0); 8925 8926 if (flags & ~PERF_PMU_TXN_ADD) 8927 return; 8928 8929 perf_pmu_enable(pmu); 8930 } 8931 8932 static int perf_event_idx_default(struct perf_event *event) 8933 { 8934 return 0; 8935 } 8936 8937 /* 8938 * Ensures all contexts with the same task_ctx_nr have the same 8939 * pmu_cpu_context too. 8940 */ 8941 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8942 { 8943 struct pmu *pmu; 8944 8945 if (ctxn < 0) 8946 return NULL; 8947 8948 list_for_each_entry(pmu, &pmus, entry) { 8949 if (pmu->task_ctx_nr == ctxn) 8950 return pmu->pmu_cpu_context; 8951 } 8952 8953 return NULL; 8954 } 8955 8956 static void free_pmu_context(struct pmu *pmu) 8957 { 8958 mutex_lock(&pmus_lock); 8959 free_percpu(pmu->pmu_cpu_context); 8960 mutex_unlock(&pmus_lock); 8961 } 8962 8963 /* 8964 * Let userspace know that this PMU supports address range filtering: 8965 */ 8966 static ssize_t nr_addr_filters_show(struct device *dev, 8967 struct device_attribute *attr, 8968 char *page) 8969 { 8970 struct pmu *pmu = dev_get_drvdata(dev); 8971 8972 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8973 } 8974 DEVICE_ATTR_RO(nr_addr_filters); 8975 8976 static struct idr pmu_idr; 8977 8978 static ssize_t 8979 type_show(struct device *dev, struct device_attribute *attr, char *page) 8980 { 8981 struct pmu *pmu = dev_get_drvdata(dev); 8982 8983 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8984 } 8985 static DEVICE_ATTR_RO(type); 8986 8987 static ssize_t 8988 perf_event_mux_interval_ms_show(struct device *dev, 8989 struct device_attribute *attr, 8990 char *page) 8991 { 8992 struct pmu *pmu = dev_get_drvdata(dev); 8993 8994 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8995 } 8996 8997 static DEFINE_MUTEX(mux_interval_mutex); 8998 8999 static ssize_t 9000 perf_event_mux_interval_ms_store(struct device *dev, 9001 struct device_attribute *attr, 9002 const char *buf, size_t count) 9003 { 9004 struct pmu *pmu = dev_get_drvdata(dev); 9005 int timer, cpu, ret; 9006 9007 ret = kstrtoint(buf, 0, &timer); 9008 if (ret) 9009 return ret; 9010 9011 if (timer < 1) 9012 return -EINVAL; 9013 9014 /* same value, noting to do */ 9015 if (timer == pmu->hrtimer_interval_ms) 9016 return count; 9017 9018 mutex_lock(&mux_interval_mutex); 9019 pmu->hrtimer_interval_ms = timer; 9020 9021 /* update all cpuctx for this PMU */ 9022 cpus_read_lock(); 9023 for_each_online_cpu(cpu) { 9024 struct perf_cpu_context *cpuctx; 9025 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9026 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 9027 9028 cpu_function_call(cpu, 9029 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 9030 } 9031 cpus_read_unlock(); 9032 mutex_unlock(&mux_interval_mutex); 9033 9034 return count; 9035 } 9036 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 9037 9038 static struct attribute *pmu_dev_attrs[] = { 9039 &dev_attr_type.attr, 9040 &dev_attr_perf_event_mux_interval_ms.attr, 9041 NULL, 9042 }; 9043 ATTRIBUTE_GROUPS(pmu_dev); 9044 9045 static int pmu_bus_running; 9046 static struct bus_type pmu_bus = { 9047 .name = "event_source", 9048 .dev_groups = pmu_dev_groups, 9049 }; 9050 9051 static void pmu_dev_release(struct device *dev) 9052 { 9053 kfree(dev); 9054 } 9055 9056 static int pmu_dev_alloc(struct pmu *pmu) 9057 { 9058 int ret = -ENOMEM; 9059 9060 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9061 if (!pmu->dev) 9062 goto out; 9063 9064 pmu->dev->groups = pmu->attr_groups; 9065 device_initialize(pmu->dev); 9066 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9067 if (ret) 9068 goto free_dev; 9069 9070 dev_set_drvdata(pmu->dev, pmu); 9071 pmu->dev->bus = &pmu_bus; 9072 pmu->dev->release = pmu_dev_release; 9073 ret = device_add(pmu->dev); 9074 if (ret) 9075 goto free_dev; 9076 9077 /* For PMUs with address filters, throw in an extra attribute: */ 9078 if (pmu->nr_addr_filters) 9079 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9080 9081 if (ret) 9082 goto del_dev; 9083 9084 out: 9085 return ret; 9086 9087 del_dev: 9088 device_del(pmu->dev); 9089 9090 free_dev: 9091 put_device(pmu->dev); 9092 goto out; 9093 } 9094 9095 static struct lock_class_key cpuctx_mutex; 9096 static struct lock_class_key cpuctx_lock; 9097 9098 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9099 { 9100 int cpu, ret; 9101 9102 mutex_lock(&pmus_lock); 9103 ret = -ENOMEM; 9104 pmu->pmu_disable_count = alloc_percpu(int); 9105 if (!pmu->pmu_disable_count) 9106 goto unlock; 9107 9108 pmu->type = -1; 9109 if (!name) 9110 goto skip_type; 9111 pmu->name = name; 9112 9113 if (type < 0) { 9114 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9115 if (type < 0) { 9116 ret = type; 9117 goto free_pdc; 9118 } 9119 } 9120 pmu->type = type; 9121 9122 if (pmu_bus_running) { 9123 ret = pmu_dev_alloc(pmu); 9124 if (ret) 9125 goto free_idr; 9126 } 9127 9128 skip_type: 9129 if (pmu->task_ctx_nr == perf_hw_context) { 9130 static int hw_context_taken = 0; 9131 9132 /* 9133 * Other than systems with heterogeneous CPUs, it never makes 9134 * sense for two PMUs to share perf_hw_context. PMUs which are 9135 * uncore must use perf_invalid_context. 9136 */ 9137 if (WARN_ON_ONCE(hw_context_taken && 9138 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9139 pmu->task_ctx_nr = perf_invalid_context; 9140 9141 hw_context_taken = 1; 9142 } 9143 9144 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9145 if (pmu->pmu_cpu_context) 9146 goto got_cpu_context; 9147 9148 ret = -ENOMEM; 9149 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9150 if (!pmu->pmu_cpu_context) 9151 goto free_dev; 9152 9153 for_each_possible_cpu(cpu) { 9154 struct perf_cpu_context *cpuctx; 9155 9156 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9157 __perf_event_init_context(&cpuctx->ctx); 9158 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9159 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9160 cpuctx->ctx.pmu = pmu; 9161 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9162 9163 __perf_mux_hrtimer_init(cpuctx, cpu); 9164 } 9165 9166 got_cpu_context: 9167 if (!pmu->start_txn) { 9168 if (pmu->pmu_enable) { 9169 /* 9170 * If we have pmu_enable/pmu_disable calls, install 9171 * transaction stubs that use that to try and batch 9172 * hardware accesses. 9173 */ 9174 pmu->start_txn = perf_pmu_start_txn; 9175 pmu->commit_txn = perf_pmu_commit_txn; 9176 pmu->cancel_txn = perf_pmu_cancel_txn; 9177 } else { 9178 pmu->start_txn = perf_pmu_nop_txn; 9179 pmu->commit_txn = perf_pmu_nop_int; 9180 pmu->cancel_txn = perf_pmu_nop_void; 9181 } 9182 } 9183 9184 if (!pmu->pmu_enable) { 9185 pmu->pmu_enable = perf_pmu_nop_void; 9186 pmu->pmu_disable = perf_pmu_nop_void; 9187 } 9188 9189 if (!pmu->event_idx) 9190 pmu->event_idx = perf_event_idx_default; 9191 9192 list_add_rcu(&pmu->entry, &pmus); 9193 atomic_set(&pmu->exclusive_cnt, 0); 9194 ret = 0; 9195 unlock: 9196 mutex_unlock(&pmus_lock); 9197 9198 return ret; 9199 9200 free_dev: 9201 device_del(pmu->dev); 9202 put_device(pmu->dev); 9203 9204 free_idr: 9205 if (pmu->type >= PERF_TYPE_MAX) 9206 idr_remove(&pmu_idr, pmu->type); 9207 9208 free_pdc: 9209 free_percpu(pmu->pmu_disable_count); 9210 goto unlock; 9211 } 9212 EXPORT_SYMBOL_GPL(perf_pmu_register); 9213 9214 void perf_pmu_unregister(struct pmu *pmu) 9215 { 9216 int remove_device; 9217 9218 mutex_lock(&pmus_lock); 9219 remove_device = pmu_bus_running; 9220 list_del_rcu(&pmu->entry); 9221 mutex_unlock(&pmus_lock); 9222 9223 /* 9224 * We dereference the pmu list under both SRCU and regular RCU, so 9225 * synchronize against both of those. 9226 */ 9227 synchronize_srcu(&pmus_srcu); 9228 synchronize_rcu(); 9229 9230 free_percpu(pmu->pmu_disable_count); 9231 if (pmu->type >= PERF_TYPE_MAX) 9232 idr_remove(&pmu_idr, pmu->type); 9233 if (remove_device) { 9234 if (pmu->nr_addr_filters) 9235 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 9236 device_del(pmu->dev); 9237 put_device(pmu->dev); 9238 } 9239 free_pmu_context(pmu); 9240 } 9241 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 9242 9243 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 9244 { 9245 struct perf_event_context *ctx = NULL; 9246 int ret; 9247 9248 if (!try_module_get(pmu->module)) 9249 return -ENODEV; 9250 9251 if (event->group_leader != event) { 9252 /* 9253 * This ctx->mutex can nest when we're called through 9254 * inheritance. See the perf_event_ctx_lock_nested() comment. 9255 */ 9256 ctx = perf_event_ctx_lock_nested(event->group_leader, 9257 SINGLE_DEPTH_NESTING); 9258 BUG_ON(!ctx); 9259 } 9260 9261 event->pmu = pmu; 9262 ret = pmu->event_init(event); 9263 9264 if (ctx) 9265 perf_event_ctx_unlock(event->group_leader, ctx); 9266 9267 if (ret) 9268 module_put(pmu->module); 9269 9270 return ret; 9271 } 9272 9273 static struct pmu *perf_init_event(struct perf_event *event) 9274 { 9275 struct pmu *pmu; 9276 int idx; 9277 int ret; 9278 9279 idx = srcu_read_lock(&pmus_srcu); 9280 9281 /* Try parent's PMU first: */ 9282 if (event->parent && event->parent->pmu) { 9283 pmu = event->parent->pmu; 9284 ret = perf_try_init_event(pmu, event); 9285 if (!ret) 9286 goto unlock; 9287 } 9288 9289 rcu_read_lock(); 9290 pmu = idr_find(&pmu_idr, event->attr.type); 9291 rcu_read_unlock(); 9292 if (pmu) { 9293 ret = perf_try_init_event(pmu, event); 9294 if (ret) 9295 pmu = ERR_PTR(ret); 9296 goto unlock; 9297 } 9298 9299 list_for_each_entry_rcu(pmu, &pmus, entry) { 9300 ret = perf_try_init_event(pmu, event); 9301 if (!ret) 9302 goto unlock; 9303 9304 if (ret != -ENOENT) { 9305 pmu = ERR_PTR(ret); 9306 goto unlock; 9307 } 9308 } 9309 pmu = ERR_PTR(-ENOENT); 9310 unlock: 9311 srcu_read_unlock(&pmus_srcu, idx); 9312 9313 return pmu; 9314 } 9315 9316 static void attach_sb_event(struct perf_event *event) 9317 { 9318 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 9319 9320 raw_spin_lock(&pel->lock); 9321 list_add_rcu(&event->sb_list, &pel->list); 9322 raw_spin_unlock(&pel->lock); 9323 } 9324 9325 /* 9326 * We keep a list of all !task (and therefore per-cpu) events 9327 * that need to receive side-band records. 9328 * 9329 * This avoids having to scan all the various PMU per-cpu contexts 9330 * looking for them. 9331 */ 9332 static void account_pmu_sb_event(struct perf_event *event) 9333 { 9334 if (is_sb_event(event)) 9335 attach_sb_event(event); 9336 } 9337 9338 static void account_event_cpu(struct perf_event *event, int cpu) 9339 { 9340 if (event->parent) 9341 return; 9342 9343 if (is_cgroup_event(event)) 9344 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 9345 } 9346 9347 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9348 static void account_freq_event_nohz(void) 9349 { 9350 #ifdef CONFIG_NO_HZ_FULL 9351 /* Lock so we don't race with concurrent unaccount */ 9352 spin_lock(&nr_freq_lock); 9353 if (atomic_inc_return(&nr_freq_events) == 1) 9354 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9355 spin_unlock(&nr_freq_lock); 9356 #endif 9357 } 9358 9359 static void account_freq_event(void) 9360 { 9361 if (tick_nohz_full_enabled()) 9362 account_freq_event_nohz(); 9363 else 9364 atomic_inc(&nr_freq_events); 9365 } 9366 9367 9368 static void account_event(struct perf_event *event) 9369 { 9370 bool inc = false; 9371 9372 if (event->parent) 9373 return; 9374 9375 if (event->attach_state & PERF_ATTACH_TASK) 9376 inc = true; 9377 if (event->attr.mmap || event->attr.mmap_data) 9378 atomic_inc(&nr_mmap_events); 9379 if (event->attr.comm) 9380 atomic_inc(&nr_comm_events); 9381 if (event->attr.namespaces) 9382 atomic_inc(&nr_namespaces_events); 9383 if (event->attr.task) 9384 atomic_inc(&nr_task_events); 9385 if (event->attr.freq) 9386 account_freq_event(); 9387 if (event->attr.context_switch) { 9388 atomic_inc(&nr_switch_events); 9389 inc = true; 9390 } 9391 if (has_branch_stack(event)) 9392 inc = true; 9393 if (is_cgroup_event(event)) 9394 inc = true; 9395 9396 if (inc) { 9397 if (atomic_inc_not_zero(&perf_sched_count)) 9398 goto enabled; 9399 9400 mutex_lock(&perf_sched_mutex); 9401 if (!atomic_read(&perf_sched_count)) { 9402 static_branch_enable(&perf_sched_events); 9403 /* 9404 * Guarantee that all CPUs observe they key change and 9405 * call the perf scheduling hooks before proceeding to 9406 * install events that need them. 9407 */ 9408 synchronize_sched(); 9409 } 9410 /* 9411 * Now that we have waited for the sync_sched(), allow further 9412 * increments to by-pass the mutex. 9413 */ 9414 atomic_inc(&perf_sched_count); 9415 mutex_unlock(&perf_sched_mutex); 9416 } 9417 enabled: 9418 9419 account_event_cpu(event, event->cpu); 9420 9421 account_pmu_sb_event(event); 9422 } 9423 9424 /* 9425 * Allocate and initialize a event structure 9426 */ 9427 static struct perf_event * 9428 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9429 struct task_struct *task, 9430 struct perf_event *group_leader, 9431 struct perf_event *parent_event, 9432 perf_overflow_handler_t overflow_handler, 9433 void *context, int cgroup_fd) 9434 { 9435 struct pmu *pmu; 9436 struct perf_event *event; 9437 struct hw_perf_event *hwc; 9438 long err = -EINVAL; 9439 9440 if ((unsigned)cpu >= nr_cpu_ids) { 9441 if (!task || cpu != -1) 9442 return ERR_PTR(-EINVAL); 9443 } 9444 9445 event = kzalloc(sizeof(*event), GFP_KERNEL); 9446 if (!event) 9447 return ERR_PTR(-ENOMEM); 9448 9449 /* 9450 * Single events are their own group leaders, with an 9451 * empty sibling list: 9452 */ 9453 if (!group_leader) 9454 group_leader = event; 9455 9456 mutex_init(&event->child_mutex); 9457 INIT_LIST_HEAD(&event->child_list); 9458 9459 INIT_LIST_HEAD(&event->group_entry); 9460 INIT_LIST_HEAD(&event->event_entry); 9461 INIT_LIST_HEAD(&event->sibling_list); 9462 INIT_LIST_HEAD(&event->rb_entry); 9463 INIT_LIST_HEAD(&event->active_entry); 9464 INIT_LIST_HEAD(&event->addr_filters.list); 9465 INIT_HLIST_NODE(&event->hlist_entry); 9466 9467 9468 init_waitqueue_head(&event->waitq); 9469 init_irq_work(&event->pending, perf_pending_event); 9470 9471 mutex_init(&event->mmap_mutex); 9472 raw_spin_lock_init(&event->addr_filters.lock); 9473 9474 atomic_long_set(&event->refcount, 1); 9475 event->cpu = cpu; 9476 event->attr = *attr; 9477 event->group_leader = group_leader; 9478 event->pmu = NULL; 9479 event->oncpu = -1; 9480 9481 event->parent = parent_event; 9482 9483 event->ns = get_pid_ns(task_active_pid_ns(current)); 9484 event->id = atomic64_inc_return(&perf_event_id); 9485 9486 event->state = PERF_EVENT_STATE_INACTIVE; 9487 9488 if (task) { 9489 event->attach_state = PERF_ATTACH_TASK; 9490 /* 9491 * XXX pmu::event_init needs to know what task to account to 9492 * and we cannot use the ctx information because we need the 9493 * pmu before we get a ctx. 9494 */ 9495 event->hw.target = task; 9496 } 9497 9498 event->clock = &local_clock; 9499 if (parent_event) 9500 event->clock = parent_event->clock; 9501 9502 if (!overflow_handler && parent_event) { 9503 overflow_handler = parent_event->overflow_handler; 9504 context = parent_event->overflow_handler_context; 9505 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9506 if (overflow_handler == bpf_overflow_handler) { 9507 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9508 9509 if (IS_ERR(prog)) { 9510 err = PTR_ERR(prog); 9511 goto err_ns; 9512 } 9513 event->prog = prog; 9514 event->orig_overflow_handler = 9515 parent_event->orig_overflow_handler; 9516 } 9517 #endif 9518 } 9519 9520 if (overflow_handler) { 9521 event->overflow_handler = overflow_handler; 9522 event->overflow_handler_context = context; 9523 } else if (is_write_backward(event)){ 9524 event->overflow_handler = perf_event_output_backward; 9525 event->overflow_handler_context = NULL; 9526 } else { 9527 event->overflow_handler = perf_event_output_forward; 9528 event->overflow_handler_context = NULL; 9529 } 9530 9531 perf_event__state_init(event); 9532 9533 pmu = NULL; 9534 9535 hwc = &event->hw; 9536 hwc->sample_period = attr->sample_period; 9537 if (attr->freq && attr->sample_freq) 9538 hwc->sample_period = 1; 9539 hwc->last_period = hwc->sample_period; 9540 9541 local64_set(&hwc->period_left, hwc->sample_period); 9542 9543 /* 9544 * We currently do not support PERF_SAMPLE_READ on inherited events. 9545 * See perf_output_read(). 9546 */ 9547 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 9548 goto err_ns; 9549 9550 if (!has_branch_stack(event)) 9551 event->attr.branch_sample_type = 0; 9552 9553 if (cgroup_fd != -1) { 9554 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 9555 if (err) 9556 goto err_ns; 9557 } 9558 9559 pmu = perf_init_event(event); 9560 if (IS_ERR(pmu)) { 9561 err = PTR_ERR(pmu); 9562 goto err_ns; 9563 } 9564 9565 err = exclusive_event_init(event); 9566 if (err) 9567 goto err_pmu; 9568 9569 if (has_addr_filter(event)) { 9570 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 9571 sizeof(unsigned long), 9572 GFP_KERNEL); 9573 if (!event->addr_filters_offs) { 9574 err = -ENOMEM; 9575 goto err_per_task; 9576 } 9577 9578 /* force hw sync on the address filters */ 9579 event->addr_filters_gen = 1; 9580 } 9581 9582 if (!event->parent) { 9583 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 9584 err = get_callchain_buffers(attr->sample_max_stack); 9585 if (err) 9586 goto err_addr_filters; 9587 } 9588 } 9589 9590 /* symmetric to unaccount_event() in _free_event() */ 9591 account_event(event); 9592 9593 return event; 9594 9595 err_addr_filters: 9596 kfree(event->addr_filters_offs); 9597 9598 err_per_task: 9599 exclusive_event_destroy(event); 9600 9601 err_pmu: 9602 if (event->destroy) 9603 event->destroy(event); 9604 module_put(pmu->module); 9605 err_ns: 9606 if (is_cgroup_event(event)) 9607 perf_detach_cgroup(event); 9608 if (event->ns) 9609 put_pid_ns(event->ns); 9610 kfree(event); 9611 9612 return ERR_PTR(err); 9613 } 9614 9615 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9616 struct perf_event_attr *attr) 9617 { 9618 u32 size; 9619 int ret; 9620 9621 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9622 return -EFAULT; 9623 9624 /* 9625 * zero the full structure, so that a short copy will be nice. 9626 */ 9627 memset(attr, 0, sizeof(*attr)); 9628 9629 ret = get_user(size, &uattr->size); 9630 if (ret) 9631 return ret; 9632 9633 if (size > PAGE_SIZE) /* silly large */ 9634 goto err_size; 9635 9636 if (!size) /* abi compat */ 9637 size = PERF_ATTR_SIZE_VER0; 9638 9639 if (size < PERF_ATTR_SIZE_VER0) 9640 goto err_size; 9641 9642 /* 9643 * If we're handed a bigger struct than we know of, 9644 * ensure all the unknown bits are 0 - i.e. new 9645 * user-space does not rely on any kernel feature 9646 * extensions we dont know about yet. 9647 */ 9648 if (size > sizeof(*attr)) { 9649 unsigned char __user *addr; 9650 unsigned char __user *end; 9651 unsigned char val; 9652 9653 addr = (void __user *)uattr + sizeof(*attr); 9654 end = (void __user *)uattr + size; 9655 9656 for (; addr < end; addr++) { 9657 ret = get_user(val, addr); 9658 if (ret) 9659 return ret; 9660 if (val) 9661 goto err_size; 9662 } 9663 size = sizeof(*attr); 9664 } 9665 9666 ret = copy_from_user(attr, uattr, size); 9667 if (ret) 9668 return -EFAULT; 9669 9670 attr->size = size; 9671 9672 if (attr->__reserved_1) 9673 return -EINVAL; 9674 9675 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9676 return -EINVAL; 9677 9678 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9679 return -EINVAL; 9680 9681 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9682 u64 mask = attr->branch_sample_type; 9683 9684 /* only using defined bits */ 9685 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9686 return -EINVAL; 9687 9688 /* at least one branch bit must be set */ 9689 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9690 return -EINVAL; 9691 9692 /* propagate priv level, when not set for branch */ 9693 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9694 9695 /* exclude_kernel checked on syscall entry */ 9696 if (!attr->exclude_kernel) 9697 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9698 9699 if (!attr->exclude_user) 9700 mask |= PERF_SAMPLE_BRANCH_USER; 9701 9702 if (!attr->exclude_hv) 9703 mask |= PERF_SAMPLE_BRANCH_HV; 9704 /* 9705 * adjust user setting (for HW filter setup) 9706 */ 9707 attr->branch_sample_type = mask; 9708 } 9709 /* privileged levels capture (kernel, hv): check permissions */ 9710 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9711 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9712 return -EACCES; 9713 } 9714 9715 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9716 ret = perf_reg_validate(attr->sample_regs_user); 9717 if (ret) 9718 return ret; 9719 } 9720 9721 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9722 if (!arch_perf_have_user_stack_dump()) 9723 return -ENOSYS; 9724 9725 /* 9726 * We have __u32 type for the size, but so far 9727 * we can only use __u16 as maximum due to the 9728 * __u16 sample size limit. 9729 */ 9730 if (attr->sample_stack_user >= USHRT_MAX) 9731 ret = -EINVAL; 9732 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9733 ret = -EINVAL; 9734 } 9735 9736 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9737 ret = perf_reg_validate(attr->sample_regs_intr); 9738 out: 9739 return ret; 9740 9741 err_size: 9742 put_user(sizeof(*attr), &uattr->size); 9743 ret = -E2BIG; 9744 goto out; 9745 } 9746 9747 static int 9748 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9749 { 9750 struct ring_buffer *rb = NULL; 9751 int ret = -EINVAL; 9752 9753 if (!output_event) 9754 goto set; 9755 9756 /* don't allow circular references */ 9757 if (event == output_event) 9758 goto out; 9759 9760 /* 9761 * Don't allow cross-cpu buffers 9762 */ 9763 if (output_event->cpu != event->cpu) 9764 goto out; 9765 9766 /* 9767 * If its not a per-cpu rb, it must be the same task. 9768 */ 9769 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9770 goto out; 9771 9772 /* 9773 * Mixing clocks in the same buffer is trouble you don't need. 9774 */ 9775 if (output_event->clock != event->clock) 9776 goto out; 9777 9778 /* 9779 * Either writing ring buffer from beginning or from end. 9780 * Mixing is not allowed. 9781 */ 9782 if (is_write_backward(output_event) != is_write_backward(event)) 9783 goto out; 9784 9785 /* 9786 * If both events generate aux data, they must be on the same PMU 9787 */ 9788 if (has_aux(event) && has_aux(output_event) && 9789 event->pmu != output_event->pmu) 9790 goto out; 9791 9792 set: 9793 mutex_lock(&event->mmap_mutex); 9794 /* Can't redirect output if we've got an active mmap() */ 9795 if (atomic_read(&event->mmap_count)) 9796 goto unlock; 9797 9798 if (output_event) { 9799 /* get the rb we want to redirect to */ 9800 rb = ring_buffer_get(output_event); 9801 if (!rb) 9802 goto unlock; 9803 } 9804 9805 ring_buffer_attach(event, rb); 9806 9807 ret = 0; 9808 unlock: 9809 mutex_unlock(&event->mmap_mutex); 9810 9811 out: 9812 return ret; 9813 } 9814 9815 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9816 { 9817 if (b < a) 9818 swap(a, b); 9819 9820 mutex_lock(a); 9821 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9822 } 9823 9824 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9825 { 9826 bool nmi_safe = false; 9827 9828 switch (clk_id) { 9829 case CLOCK_MONOTONIC: 9830 event->clock = &ktime_get_mono_fast_ns; 9831 nmi_safe = true; 9832 break; 9833 9834 case CLOCK_MONOTONIC_RAW: 9835 event->clock = &ktime_get_raw_fast_ns; 9836 nmi_safe = true; 9837 break; 9838 9839 case CLOCK_REALTIME: 9840 event->clock = &ktime_get_real_ns; 9841 break; 9842 9843 case CLOCK_BOOTTIME: 9844 event->clock = &ktime_get_boot_ns; 9845 break; 9846 9847 case CLOCK_TAI: 9848 event->clock = &ktime_get_tai_ns; 9849 break; 9850 9851 default: 9852 return -EINVAL; 9853 } 9854 9855 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9856 return -EINVAL; 9857 9858 return 0; 9859 } 9860 9861 /* 9862 * Variation on perf_event_ctx_lock_nested(), except we take two context 9863 * mutexes. 9864 */ 9865 static struct perf_event_context * 9866 __perf_event_ctx_lock_double(struct perf_event *group_leader, 9867 struct perf_event_context *ctx) 9868 { 9869 struct perf_event_context *gctx; 9870 9871 again: 9872 rcu_read_lock(); 9873 gctx = READ_ONCE(group_leader->ctx); 9874 if (!atomic_inc_not_zero(&gctx->refcount)) { 9875 rcu_read_unlock(); 9876 goto again; 9877 } 9878 rcu_read_unlock(); 9879 9880 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9881 9882 if (group_leader->ctx != gctx) { 9883 mutex_unlock(&ctx->mutex); 9884 mutex_unlock(&gctx->mutex); 9885 put_ctx(gctx); 9886 goto again; 9887 } 9888 9889 return gctx; 9890 } 9891 9892 /** 9893 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9894 * 9895 * @attr_uptr: event_id type attributes for monitoring/sampling 9896 * @pid: target pid 9897 * @cpu: target cpu 9898 * @group_fd: group leader event fd 9899 */ 9900 SYSCALL_DEFINE5(perf_event_open, 9901 struct perf_event_attr __user *, attr_uptr, 9902 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9903 { 9904 struct perf_event *group_leader = NULL, *output_event = NULL; 9905 struct perf_event *event, *sibling; 9906 struct perf_event_attr attr; 9907 struct perf_event_context *ctx, *uninitialized_var(gctx); 9908 struct file *event_file = NULL; 9909 struct fd group = {NULL, 0}; 9910 struct task_struct *task = NULL; 9911 struct pmu *pmu; 9912 int event_fd; 9913 int move_group = 0; 9914 int err; 9915 int f_flags = O_RDWR; 9916 int cgroup_fd = -1; 9917 9918 /* for future expandability... */ 9919 if (flags & ~PERF_FLAG_ALL) 9920 return -EINVAL; 9921 9922 err = perf_copy_attr(attr_uptr, &attr); 9923 if (err) 9924 return err; 9925 9926 if (!attr.exclude_kernel) { 9927 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9928 return -EACCES; 9929 } 9930 9931 if (attr.namespaces) { 9932 if (!capable(CAP_SYS_ADMIN)) 9933 return -EACCES; 9934 } 9935 9936 if (attr.freq) { 9937 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9938 return -EINVAL; 9939 } else { 9940 if (attr.sample_period & (1ULL << 63)) 9941 return -EINVAL; 9942 } 9943 9944 /* Only privileged users can get physical addresses */ 9945 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 9946 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9947 return -EACCES; 9948 9949 if (!attr.sample_max_stack) 9950 attr.sample_max_stack = sysctl_perf_event_max_stack; 9951 9952 /* 9953 * In cgroup mode, the pid argument is used to pass the fd 9954 * opened to the cgroup directory in cgroupfs. The cpu argument 9955 * designates the cpu on which to monitor threads from that 9956 * cgroup. 9957 */ 9958 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9959 return -EINVAL; 9960 9961 if (flags & PERF_FLAG_FD_CLOEXEC) 9962 f_flags |= O_CLOEXEC; 9963 9964 event_fd = get_unused_fd_flags(f_flags); 9965 if (event_fd < 0) 9966 return event_fd; 9967 9968 if (group_fd != -1) { 9969 err = perf_fget_light(group_fd, &group); 9970 if (err) 9971 goto err_fd; 9972 group_leader = group.file->private_data; 9973 if (flags & PERF_FLAG_FD_OUTPUT) 9974 output_event = group_leader; 9975 if (flags & PERF_FLAG_FD_NO_GROUP) 9976 group_leader = NULL; 9977 } 9978 9979 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9980 task = find_lively_task_by_vpid(pid); 9981 if (IS_ERR(task)) { 9982 err = PTR_ERR(task); 9983 goto err_group_fd; 9984 } 9985 } 9986 9987 if (task && group_leader && 9988 group_leader->attr.inherit != attr.inherit) { 9989 err = -EINVAL; 9990 goto err_task; 9991 } 9992 9993 if (task) { 9994 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9995 if (err) 9996 goto err_task; 9997 9998 /* 9999 * Reuse ptrace permission checks for now. 10000 * 10001 * We must hold cred_guard_mutex across this and any potential 10002 * perf_install_in_context() call for this new event to 10003 * serialize against exec() altering our credentials (and the 10004 * perf_event_exit_task() that could imply). 10005 */ 10006 err = -EACCES; 10007 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 10008 goto err_cred; 10009 } 10010 10011 if (flags & PERF_FLAG_PID_CGROUP) 10012 cgroup_fd = pid; 10013 10014 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 10015 NULL, NULL, cgroup_fd); 10016 if (IS_ERR(event)) { 10017 err = PTR_ERR(event); 10018 goto err_cred; 10019 } 10020 10021 if (is_sampling_event(event)) { 10022 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 10023 err = -EOPNOTSUPP; 10024 goto err_alloc; 10025 } 10026 } 10027 10028 /* 10029 * Special case software events and allow them to be part of 10030 * any hardware group. 10031 */ 10032 pmu = event->pmu; 10033 10034 if (attr.use_clockid) { 10035 err = perf_event_set_clock(event, attr.clockid); 10036 if (err) 10037 goto err_alloc; 10038 } 10039 10040 if (pmu->task_ctx_nr == perf_sw_context) 10041 event->event_caps |= PERF_EV_CAP_SOFTWARE; 10042 10043 if (group_leader && 10044 (is_software_event(event) != is_software_event(group_leader))) { 10045 if (is_software_event(event)) { 10046 /* 10047 * If event and group_leader are not both a software 10048 * event, and event is, then group leader is not. 10049 * 10050 * Allow the addition of software events to !software 10051 * groups, this is safe because software events never 10052 * fail to schedule. 10053 */ 10054 pmu = group_leader->pmu; 10055 } else if (is_software_event(group_leader) && 10056 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10057 /* 10058 * In case the group is a pure software group, and we 10059 * try to add a hardware event, move the whole group to 10060 * the hardware context. 10061 */ 10062 move_group = 1; 10063 } 10064 } 10065 10066 /* 10067 * Get the target context (task or percpu): 10068 */ 10069 ctx = find_get_context(pmu, task, event); 10070 if (IS_ERR(ctx)) { 10071 err = PTR_ERR(ctx); 10072 goto err_alloc; 10073 } 10074 10075 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 10076 err = -EBUSY; 10077 goto err_context; 10078 } 10079 10080 /* 10081 * Look up the group leader (we will attach this event to it): 10082 */ 10083 if (group_leader) { 10084 err = -EINVAL; 10085 10086 /* 10087 * Do not allow a recursive hierarchy (this new sibling 10088 * becoming part of another group-sibling): 10089 */ 10090 if (group_leader->group_leader != group_leader) 10091 goto err_context; 10092 10093 /* All events in a group should have the same clock */ 10094 if (group_leader->clock != event->clock) 10095 goto err_context; 10096 10097 /* 10098 * Make sure we're both events for the same CPU; 10099 * grouping events for different CPUs is broken; since 10100 * you can never concurrently schedule them anyhow. 10101 */ 10102 if (group_leader->cpu != event->cpu) 10103 goto err_context; 10104 10105 /* 10106 * Make sure we're both on the same task, or both 10107 * per-CPU events. 10108 */ 10109 if (group_leader->ctx->task != ctx->task) 10110 goto err_context; 10111 10112 /* 10113 * Do not allow to attach to a group in a different task 10114 * or CPU context. If we're moving SW events, we'll fix 10115 * this up later, so allow that. 10116 */ 10117 if (!move_group && group_leader->ctx != ctx) 10118 goto err_context; 10119 10120 /* 10121 * Only a group leader can be exclusive or pinned 10122 */ 10123 if (attr.exclusive || attr.pinned) 10124 goto err_context; 10125 } 10126 10127 if (output_event) { 10128 err = perf_event_set_output(event, output_event); 10129 if (err) 10130 goto err_context; 10131 } 10132 10133 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10134 f_flags); 10135 if (IS_ERR(event_file)) { 10136 err = PTR_ERR(event_file); 10137 event_file = NULL; 10138 goto err_context; 10139 } 10140 10141 if (move_group) { 10142 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10143 10144 if (gctx->task == TASK_TOMBSTONE) { 10145 err = -ESRCH; 10146 goto err_locked; 10147 } 10148 10149 /* 10150 * Check if we raced against another sys_perf_event_open() call 10151 * moving the software group underneath us. 10152 */ 10153 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10154 /* 10155 * If someone moved the group out from under us, check 10156 * if this new event wound up on the same ctx, if so 10157 * its the regular !move_group case, otherwise fail. 10158 */ 10159 if (gctx != ctx) { 10160 err = -EINVAL; 10161 goto err_locked; 10162 } else { 10163 perf_event_ctx_unlock(group_leader, gctx); 10164 move_group = 0; 10165 } 10166 } 10167 } else { 10168 mutex_lock(&ctx->mutex); 10169 } 10170 10171 if (ctx->task == TASK_TOMBSTONE) { 10172 err = -ESRCH; 10173 goto err_locked; 10174 } 10175 10176 if (!perf_event_validate_size(event)) { 10177 err = -E2BIG; 10178 goto err_locked; 10179 } 10180 10181 if (!task) { 10182 /* 10183 * Check if the @cpu we're creating an event for is online. 10184 * 10185 * We use the perf_cpu_context::ctx::mutex to serialize against 10186 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10187 */ 10188 struct perf_cpu_context *cpuctx = 10189 container_of(ctx, struct perf_cpu_context, ctx); 10190 10191 if (!cpuctx->online) { 10192 err = -ENODEV; 10193 goto err_locked; 10194 } 10195 } 10196 10197 10198 /* 10199 * Must be under the same ctx::mutex as perf_install_in_context(), 10200 * because we need to serialize with concurrent event creation. 10201 */ 10202 if (!exclusive_event_installable(event, ctx)) { 10203 /* exclusive and group stuff are assumed mutually exclusive */ 10204 WARN_ON_ONCE(move_group); 10205 10206 err = -EBUSY; 10207 goto err_locked; 10208 } 10209 10210 WARN_ON_ONCE(ctx->parent_ctx); 10211 10212 /* 10213 * This is the point on no return; we cannot fail hereafter. This is 10214 * where we start modifying current state. 10215 */ 10216 10217 if (move_group) { 10218 /* 10219 * See perf_event_ctx_lock() for comments on the details 10220 * of swizzling perf_event::ctx. 10221 */ 10222 perf_remove_from_context(group_leader, 0); 10223 put_ctx(gctx); 10224 10225 list_for_each_entry(sibling, &group_leader->sibling_list, 10226 group_entry) { 10227 perf_remove_from_context(sibling, 0); 10228 put_ctx(gctx); 10229 } 10230 10231 /* 10232 * Wait for everybody to stop referencing the events through 10233 * the old lists, before installing it on new lists. 10234 */ 10235 synchronize_rcu(); 10236 10237 /* 10238 * Install the group siblings before the group leader. 10239 * 10240 * Because a group leader will try and install the entire group 10241 * (through the sibling list, which is still in-tact), we can 10242 * end up with siblings installed in the wrong context. 10243 * 10244 * By installing siblings first we NO-OP because they're not 10245 * reachable through the group lists. 10246 */ 10247 list_for_each_entry(sibling, &group_leader->sibling_list, 10248 group_entry) { 10249 perf_event__state_init(sibling); 10250 perf_install_in_context(ctx, sibling, sibling->cpu); 10251 get_ctx(ctx); 10252 } 10253 10254 /* 10255 * Removing from the context ends up with disabled 10256 * event. What we want here is event in the initial 10257 * startup state, ready to be add into new context. 10258 */ 10259 perf_event__state_init(group_leader); 10260 perf_install_in_context(ctx, group_leader, group_leader->cpu); 10261 get_ctx(ctx); 10262 } 10263 10264 /* 10265 * Precalculate sample_data sizes; do while holding ctx::mutex such 10266 * that we're serialized against further additions and before 10267 * perf_install_in_context() which is the point the event is active and 10268 * can use these values. 10269 */ 10270 perf_event__header_size(event); 10271 perf_event__id_header_size(event); 10272 10273 event->owner = current; 10274 10275 perf_install_in_context(ctx, event, event->cpu); 10276 perf_unpin_context(ctx); 10277 10278 if (move_group) 10279 perf_event_ctx_unlock(group_leader, gctx); 10280 mutex_unlock(&ctx->mutex); 10281 10282 if (task) { 10283 mutex_unlock(&task->signal->cred_guard_mutex); 10284 put_task_struct(task); 10285 } 10286 10287 mutex_lock(¤t->perf_event_mutex); 10288 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 10289 mutex_unlock(¤t->perf_event_mutex); 10290 10291 /* 10292 * Drop the reference on the group_event after placing the 10293 * new event on the sibling_list. This ensures destruction 10294 * of the group leader will find the pointer to itself in 10295 * perf_group_detach(). 10296 */ 10297 fdput(group); 10298 fd_install(event_fd, event_file); 10299 return event_fd; 10300 10301 err_locked: 10302 if (move_group) 10303 perf_event_ctx_unlock(group_leader, gctx); 10304 mutex_unlock(&ctx->mutex); 10305 /* err_file: */ 10306 fput(event_file); 10307 err_context: 10308 perf_unpin_context(ctx); 10309 put_ctx(ctx); 10310 err_alloc: 10311 /* 10312 * If event_file is set, the fput() above will have called ->release() 10313 * and that will take care of freeing the event. 10314 */ 10315 if (!event_file) 10316 free_event(event); 10317 err_cred: 10318 if (task) 10319 mutex_unlock(&task->signal->cred_guard_mutex); 10320 err_task: 10321 if (task) 10322 put_task_struct(task); 10323 err_group_fd: 10324 fdput(group); 10325 err_fd: 10326 put_unused_fd(event_fd); 10327 return err; 10328 } 10329 10330 /** 10331 * perf_event_create_kernel_counter 10332 * 10333 * @attr: attributes of the counter to create 10334 * @cpu: cpu in which the counter is bound 10335 * @task: task to profile (NULL for percpu) 10336 */ 10337 struct perf_event * 10338 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 10339 struct task_struct *task, 10340 perf_overflow_handler_t overflow_handler, 10341 void *context) 10342 { 10343 struct perf_event_context *ctx; 10344 struct perf_event *event; 10345 int err; 10346 10347 /* 10348 * Get the target context (task or percpu): 10349 */ 10350 10351 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 10352 overflow_handler, context, -1); 10353 if (IS_ERR(event)) { 10354 err = PTR_ERR(event); 10355 goto err; 10356 } 10357 10358 /* Mark owner so we could distinguish it from user events. */ 10359 event->owner = TASK_TOMBSTONE; 10360 10361 ctx = find_get_context(event->pmu, task, event); 10362 if (IS_ERR(ctx)) { 10363 err = PTR_ERR(ctx); 10364 goto err_free; 10365 } 10366 10367 WARN_ON_ONCE(ctx->parent_ctx); 10368 mutex_lock(&ctx->mutex); 10369 if (ctx->task == TASK_TOMBSTONE) { 10370 err = -ESRCH; 10371 goto err_unlock; 10372 } 10373 10374 if (!task) { 10375 /* 10376 * Check if the @cpu we're creating an event for is online. 10377 * 10378 * We use the perf_cpu_context::ctx::mutex to serialize against 10379 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10380 */ 10381 struct perf_cpu_context *cpuctx = 10382 container_of(ctx, struct perf_cpu_context, ctx); 10383 if (!cpuctx->online) { 10384 err = -ENODEV; 10385 goto err_unlock; 10386 } 10387 } 10388 10389 if (!exclusive_event_installable(event, ctx)) { 10390 err = -EBUSY; 10391 goto err_unlock; 10392 } 10393 10394 perf_install_in_context(ctx, event, cpu); 10395 perf_unpin_context(ctx); 10396 mutex_unlock(&ctx->mutex); 10397 10398 return event; 10399 10400 err_unlock: 10401 mutex_unlock(&ctx->mutex); 10402 perf_unpin_context(ctx); 10403 put_ctx(ctx); 10404 err_free: 10405 free_event(event); 10406 err: 10407 return ERR_PTR(err); 10408 } 10409 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 10410 10411 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 10412 { 10413 struct perf_event_context *src_ctx; 10414 struct perf_event_context *dst_ctx; 10415 struct perf_event *event, *tmp; 10416 LIST_HEAD(events); 10417 10418 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 10419 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 10420 10421 /* 10422 * See perf_event_ctx_lock() for comments on the details 10423 * of swizzling perf_event::ctx. 10424 */ 10425 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 10426 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 10427 event_entry) { 10428 perf_remove_from_context(event, 0); 10429 unaccount_event_cpu(event, src_cpu); 10430 put_ctx(src_ctx); 10431 list_add(&event->migrate_entry, &events); 10432 } 10433 10434 /* 10435 * Wait for the events to quiesce before re-instating them. 10436 */ 10437 synchronize_rcu(); 10438 10439 /* 10440 * Re-instate events in 2 passes. 10441 * 10442 * Skip over group leaders and only install siblings on this first 10443 * pass, siblings will not get enabled without a leader, however a 10444 * leader will enable its siblings, even if those are still on the old 10445 * context. 10446 */ 10447 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10448 if (event->group_leader == event) 10449 continue; 10450 10451 list_del(&event->migrate_entry); 10452 if (event->state >= PERF_EVENT_STATE_OFF) 10453 event->state = PERF_EVENT_STATE_INACTIVE; 10454 account_event_cpu(event, dst_cpu); 10455 perf_install_in_context(dst_ctx, event, dst_cpu); 10456 get_ctx(dst_ctx); 10457 } 10458 10459 /* 10460 * Once all the siblings are setup properly, install the group leaders 10461 * to make it go. 10462 */ 10463 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10464 list_del(&event->migrate_entry); 10465 if (event->state >= PERF_EVENT_STATE_OFF) 10466 event->state = PERF_EVENT_STATE_INACTIVE; 10467 account_event_cpu(event, dst_cpu); 10468 perf_install_in_context(dst_ctx, event, dst_cpu); 10469 get_ctx(dst_ctx); 10470 } 10471 mutex_unlock(&dst_ctx->mutex); 10472 mutex_unlock(&src_ctx->mutex); 10473 } 10474 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10475 10476 static void sync_child_event(struct perf_event *child_event, 10477 struct task_struct *child) 10478 { 10479 struct perf_event *parent_event = child_event->parent; 10480 u64 child_val; 10481 10482 if (child_event->attr.inherit_stat) 10483 perf_event_read_event(child_event, child); 10484 10485 child_val = perf_event_count(child_event); 10486 10487 /* 10488 * Add back the child's count to the parent's count: 10489 */ 10490 atomic64_add(child_val, &parent_event->child_count); 10491 atomic64_add(child_event->total_time_enabled, 10492 &parent_event->child_total_time_enabled); 10493 atomic64_add(child_event->total_time_running, 10494 &parent_event->child_total_time_running); 10495 } 10496 10497 static void 10498 perf_event_exit_event(struct perf_event *child_event, 10499 struct perf_event_context *child_ctx, 10500 struct task_struct *child) 10501 { 10502 struct perf_event *parent_event = child_event->parent; 10503 10504 /* 10505 * Do not destroy the 'original' grouping; because of the context 10506 * switch optimization the original events could've ended up in a 10507 * random child task. 10508 * 10509 * If we were to destroy the original group, all group related 10510 * operations would cease to function properly after this random 10511 * child dies. 10512 * 10513 * Do destroy all inherited groups, we don't care about those 10514 * and being thorough is better. 10515 */ 10516 raw_spin_lock_irq(&child_ctx->lock); 10517 WARN_ON_ONCE(child_ctx->is_active); 10518 10519 if (parent_event) 10520 perf_group_detach(child_event); 10521 list_del_event(child_event, child_ctx); 10522 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 10523 raw_spin_unlock_irq(&child_ctx->lock); 10524 10525 /* 10526 * Parent events are governed by their filedesc, retain them. 10527 */ 10528 if (!parent_event) { 10529 perf_event_wakeup(child_event); 10530 return; 10531 } 10532 /* 10533 * Child events can be cleaned up. 10534 */ 10535 10536 sync_child_event(child_event, child); 10537 10538 /* 10539 * Remove this event from the parent's list 10540 */ 10541 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 10542 mutex_lock(&parent_event->child_mutex); 10543 list_del_init(&child_event->child_list); 10544 mutex_unlock(&parent_event->child_mutex); 10545 10546 /* 10547 * Kick perf_poll() for is_event_hup(). 10548 */ 10549 perf_event_wakeup(parent_event); 10550 free_event(child_event); 10551 put_event(parent_event); 10552 } 10553 10554 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 10555 { 10556 struct perf_event_context *child_ctx, *clone_ctx = NULL; 10557 struct perf_event *child_event, *next; 10558 10559 WARN_ON_ONCE(child != current); 10560 10561 child_ctx = perf_pin_task_context(child, ctxn); 10562 if (!child_ctx) 10563 return; 10564 10565 /* 10566 * In order to reduce the amount of tricky in ctx tear-down, we hold 10567 * ctx::mutex over the entire thing. This serializes against almost 10568 * everything that wants to access the ctx. 10569 * 10570 * The exception is sys_perf_event_open() / 10571 * perf_event_create_kernel_count() which does find_get_context() 10572 * without ctx::mutex (it cannot because of the move_group double mutex 10573 * lock thing). See the comments in perf_install_in_context(). 10574 */ 10575 mutex_lock(&child_ctx->mutex); 10576 10577 /* 10578 * In a single ctx::lock section, de-schedule the events and detach the 10579 * context from the task such that we cannot ever get it scheduled back 10580 * in. 10581 */ 10582 raw_spin_lock_irq(&child_ctx->lock); 10583 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 10584 10585 /* 10586 * Now that the context is inactive, destroy the task <-> ctx relation 10587 * and mark the context dead. 10588 */ 10589 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 10590 put_ctx(child_ctx); /* cannot be last */ 10591 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 10592 put_task_struct(current); /* cannot be last */ 10593 10594 clone_ctx = unclone_ctx(child_ctx); 10595 raw_spin_unlock_irq(&child_ctx->lock); 10596 10597 if (clone_ctx) 10598 put_ctx(clone_ctx); 10599 10600 /* 10601 * Report the task dead after unscheduling the events so that we 10602 * won't get any samples after PERF_RECORD_EXIT. We can however still 10603 * get a few PERF_RECORD_READ events. 10604 */ 10605 perf_event_task(child, child_ctx, 0); 10606 10607 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 10608 perf_event_exit_event(child_event, child_ctx, child); 10609 10610 mutex_unlock(&child_ctx->mutex); 10611 10612 put_ctx(child_ctx); 10613 } 10614 10615 /* 10616 * When a child task exits, feed back event values to parent events. 10617 * 10618 * Can be called with cred_guard_mutex held when called from 10619 * install_exec_creds(). 10620 */ 10621 void perf_event_exit_task(struct task_struct *child) 10622 { 10623 struct perf_event *event, *tmp; 10624 int ctxn; 10625 10626 mutex_lock(&child->perf_event_mutex); 10627 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 10628 owner_entry) { 10629 list_del_init(&event->owner_entry); 10630 10631 /* 10632 * Ensure the list deletion is visible before we clear 10633 * the owner, closes a race against perf_release() where 10634 * we need to serialize on the owner->perf_event_mutex. 10635 */ 10636 smp_store_release(&event->owner, NULL); 10637 } 10638 mutex_unlock(&child->perf_event_mutex); 10639 10640 for_each_task_context_nr(ctxn) 10641 perf_event_exit_task_context(child, ctxn); 10642 10643 /* 10644 * The perf_event_exit_task_context calls perf_event_task 10645 * with child's task_ctx, which generates EXIT events for 10646 * child contexts and sets child->perf_event_ctxp[] to NULL. 10647 * At this point we need to send EXIT events to cpu contexts. 10648 */ 10649 perf_event_task(child, NULL, 0); 10650 } 10651 10652 static void perf_free_event(struct perf_event *event, 10653 struct perf_event_context *ctx) 10654 { 10655 struct perf_event *parent = event->parent; 10656 10657 if (WARN_ON_ONCE(!parent)) 10658 return; 10659 10660 mutex_lock(&parent->child_mutex); 10661 list_del_init(&event->child_list); 10662 mutex_unlock(&parent->child_mutex); 10663 10664 put_event(parent); 10665 10666 raw_spin_lock_irq(&ctx->lock); 10667 perf_group_detach(event); 10668 list_del_event(event, ctx); 10669 raw_spin_unlock_irq(&ctx->lock); 10670 free_event(event); 10671 } 10672 10673 /* 10674 * Free an unexposed, unused context as created by inheritance by 10675 * perf_event_init_task below, used by fork() in case of fail. 10676 * 10677 * Not all locks are strictly required, but take them anyway to be nice and 10678 * help out with the lockdep assertions. 10679 */ 10680 void perf_event_free_task(struct task_struct *task) 10681 { 10682 struct perf_event_context *ctx; 10683 struct perf_event *event, *tmp; 10684 int ctxn; 10685 10686 for_each_task_context_nr(ctxn) { 10687 ctx = task->perf_event_ctxp[ctxn]; 10688 if (!ctx) 10689 continue; 10690 10691 mutex_lock(&ctx->mutex); 10692 raw_spin_lock_irq(&ctx->lock); 10693 /* 10694 * Destroy the task <-> ctx relation and mark the context dead. 10695 * 10696 * This is important because even though the task hasn't been 10697 * exposed yet the context has been (through child_list). 10698 */ 10699 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 10700 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 10701 put_task_struct(task); /* cannot be last */ 10702 raw_spin_unlock_irq(&ctx->lock); 10703 10704 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 10705 perf_free_event(event, ctx); 10706 10707 mutex_unlock(&ctx->mutex); 10708 put_ctx(ctx); 10709 } 10710 } 10711 10712 void perf_event_delayed_put(struct task_struct *task) 10713 { 10714 int ctxn; 10715 10716 for_each_task_context_nr(ctxn) 10717 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10718 } 10719 10720 struct file *perf_event_get(unsigned int fd) 10721 { 10722 struct file *file; 10723 10724 file = fget_raw(fd); 10725 if (!file) 10726 return ERR_PTR(-EBADF); 10727 10728 if (file->f_op != &perf_fops) { 10729 fput(file); 10730 return ERR_PTR(-EBADF); 10731 } 10732 10733 return file; 10734 } 10735 10736 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10737 { 10738 if (!event) 10739 return ERR_PTR(-EINVAL); 10740 10741 return &event->attr; 10742 } 10743 10744 /* 10745 * Inherit a event from parent task to child task. 10746 * 10747 * Returns: 10748 * - valid pointer on success 10749 * - NULL for orphaned events 10750 * - IS_ERR() on error 10751 */ 10752 static struct perf_event * 10753 inherit_event(struct perf_event *parent_event, 10754 struct task_struct *parent, 10755 struct perf_event_context *parent_ctx, 10756 struct task_struct *child, 10757 struct perf_event *group_leader, 10758 struct perf_event_context *child_ctx) 10759 { 10760 enum perf_event_active_state parent_state = parent_event->state; 10761 struct perf_event *child_event; 10762 unsigned long flags; 10763 10764 /* 10765 * Instead of creating recursive hierarchies of events, 10766 * we link inherited events back to the original parent, 10767 * which has a filp for sure, which we use as the reference 10768 * count: 10769 */ 10770 if (parent_event->parent) 10771 parent_event = parent_event->parent; 10772 10773 child_event = perf_event_alloc(&parent_event->attr, 10774 parent_event->cpu, 10775 child, 10776 group_leader, parent_event, 10777 NULL, NULL, -1); 10778 if (IS_ERR(child_event)) 10779 return child_event; 10780 10781 /* 10782 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10783 * must be under the same lock in order to serialize against 10784 * perf_event_release_kernel(), such that either we must observe 10785 * is_orphaned_event() or they will observe us on the child_list. 10786 */ 10787 mutex_lock(&parent_event->child_mutex); 10788 if (is_orphaned_event(parent_event) || 10789 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10790 mutex_unlock(&parent_event->child_mutex); 10791 free_event(child_event); 10792 return NULL; 10793 } 10794 10795 get_ctx(child_ctx); 10796 10797 /* 10798 * Make the child state follow the state of the parent event, 10799 * not its attr.disabled bit. We hold the parent's mutex, 10800 * so we won't race with perf_event_{en, dis}able_family. 10801 */ 10802 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10803 child_event->state = PERF_EVENT_STATE_INACTIVE; 10804 else 10805 child_event->state = PERF_EVENT_STATE_OFF; 10806 10807 if (parent_event->attr.freq) { 10808 u64 sample_period = parent_event->hw.sample_period; 10809 struct hw_perf_event *hwc = &child_event->hw; 10810 10811 hwc->sample_period = sample_period; 10812 hwc->last_period = sample_period; 10813 10814 local64_set(&hwc->period_left, sample_period); 10815 } 10816 10817 child_event->ctx = child_ctx; 10818 child_event->overflow_handler = parent_event->overflow_handler; 10819 child_event->overflow_handler_context 10820 = parent_event->overflow_handler_context; 10821 10822 /* 10823 * Precalculate sample_data sizes 10824 */ 10825 perf_event__header_size(child_event); 10826 perf_event__id_header_size(child_event); 10827 10828 /* 10829 * Link it up in the child's context: 10830 */ 10831 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10832 add_event_to_ctx(child_event, child_ctx); 10833 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10834 10835 /* 10836 * Link this into the parent event's child list 10837 */ 10838 list_add_tail(&child_event->child_list, &parent_event->child_list); 10839 mutex_unlock(&parent_event->child_mutex); 10840 10841 return child_event; 10842 } 10843 10844 /* 10845 * Inherits an event group. 10846 * 10847 * This will quietly suppress orphaned events; !inherit_event() is not an error. 10848 * This matches with perf_event_release_kernel() removing all child events. 10849 * 10850 * Returns: 10851 * - 0 on success 10852 * - <0 on error 10853 */ 10854 static int inherit_group(struct perf_event *parent_event, 10855 struct task_struct *parent, 10856 struct perf_event_context *parent_ctx, 10857 struct task_struct *child, 10858 struct perf_event_context *child_ctx) 10859 { 10860 struct perf_event *leader; 10861 struct perf_event *sub; 10862 struct perf_event *child_ctr; 10863 10864 leader = inherit_event(parent_event, parent, parent_ctx, 10865 child, NULL, child_ctx); 10866 if (IS_ERR(leader)) 10867 return PTR_ERR(leader); 10868 /* 10869 * @leader can be NULL here because of is_orphaned_event(). In this 10870 * case inherit_event() will create individual events, similar to what 10871 * perf_group_detach() would do anyway. 10872 */ 10873 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10874 child_ctr = inherit_event(sub, parent, parent_ctx, 10875 child, leader, child_ctx); 10876 if (IS_ERR(child_ctr)) 10877 return PTR_ERR(child_ctr); 10878 } 10879 return 0; 10880 } 10881 10882 /* 10883 * Creates the child task context and tries to inherit the event-group. 10884 * 10885 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 10886 * inherited_all set when we 'fail' to inherit an orphaned event; this is 10887 * consistent with perf_event_release_kernel() removing all child events. 10888 * 10889 * Returns: 10890 * - 0 on success 10891 * - <0 on error 10892 */ 10893 static int 10894 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10895 struct perf_event_context *parent_ctx, 10896 struct task_struct *child, int ctxn, 10897 int *inherited_all) 10898 { 10899 int ret; 10900 struct perf_event_context *child_ctx; 10901 10902 if (!event->attr.inherit) { 10903 *inherited_all = 0; 10904 return 0; 10905 } 10906 10907 child_ctx = child->perf_event_ctxp[ctxn]; 10908 if (!child_ctx) { 10909 /* 10910 * This is executed from the parent task context, so 10911 * inherit events that have been marked for cloning. 10912 * First allocate and initialize a context for the 10913 * child. 10914 */ 10915 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10916 if (!child_ctx) 10917 return -ENOMEM; 10918 10919 child->perf_event_ctxp[ctxn] = child_ctx; 10920 } 10921 10922 ret = inherit_group(event, parent, parent_ctx, 10923 child, child_ctx); 10924 10925 if (ret) 10926 *inherited_all = 0; 10927 10928 return ret; 10929 } 10930 10931 /* 10932 * Initialize the perf_event context in task_struct 10933 */ 10934 static int perf_event_init_context(struct task_struct *child, int ctxn) 10935 { 10936 struct perf_event_context *child_ctx, *parent_ctx; 10937 struct perf_event_context *cloned_ctx; 10938 struct perf_event *event; 10939 struct task_struct *parent = current; 10940 int inherited_all = 1; 10941 unsigned long flags; 10942 int ret = 0; 10943 10944 if (likely(!parent->perf_event_ctxp[ctxn])) 10945 return 0; 10946 10947 /* 10948 * If the parent's context is a clone, pin it so it won't get 10949 * swapped under us. 10950 */ 10951 parent_ctx = perf_pin_task_context(parent, ctxn); 10952 if (!parent_ctx) 10953 return 0; 10954 10955 /* 10956 * No need to check if parent_ctx != NULL here; since we saw 10957 * it non-NULL earlier, the only reason for it to become NULL 10958 * is if we exit, and since we're currently in the middle of 10959 * a fork we can't be exiting at the same time. 10960 */ 10961 10962 /* 10963 * Lock the parent list. No need to lock the child - not PID 10964 * hashed yet and not running, so nobody can access it. 10965 */ 10966 mutex_lock(&parent_ctx->mutex); 10967 10968 /* 10969 * We dont have to disable NMIs - we are only looking at 10970 * the list, not manipulating it: 10971 */ 10972 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10973 ret = inherit_task_group(event, parent, parent_ctx, 10974 child, ctxn, &inherited_all); 10975 if (ret) 10976 goto out_unlock; 10977 } 10978 10979 /* 10980 * We can't hold ctx->lock when iterating the ->flexible_group list due 10981 * to allocations, but we need to prevent rotation because 10982 * rotate_ctx() will change the list from interrupt context. 10983 */ 10984 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10985 parent_ctx->rotate_disable = 1; 10986 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10987 10988 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10989 ret = inherit_task_group(event, parent, parent_ctx, 10990 child, ctxn, &inherited_all); 10991 if (ret) 10992 goto out_unlock; 10993 } 10994 10995 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10996 parent_ctx->rotate_disable = 0; 10997 10998 child_ctx = child->perf_event_ctxp[ctxn]; 10999 11000 if (child_ctx && inherited_all) { 11001 /* 11002 * Mark the child context as a clone of the parent 11003 * context, or of whatever the parent is a clone of. 11004 * 11005 * Note that if the parent is a clone, the holding of 11006 * parent_ctx->lock avoids it from being uncloned. 11007 */ 11008 cloned_ctx = parent_ctx->parent_ctx; 11009 if (cloned_ctx) { 11010 child_ctx->parent_ctx = cloned_ctx; 11011 child_ctx->parent_gen = parent_ctx->parent_gen; 11012 } else { 11013 child_ctx->parent_ctx = parent_ctx; 11014 child_ctx->parent_gen = parent_ctx->generation; 11015 } 11016 get_ctx(child_ctx->parent_ctx); 11017 } 11018 11019 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11020 out_unlock: 11021 mutex_unlock(&parent_ctx->mutex); 11022 11023 perf_unpin_context(parent_ctx); 11024 put_ctx(parent_ctx); 11025 11026 return ret; 11027 } 11028 11029 /* 11030 * Initialize the perf_event context in task_struct 11031 */ 11032 int perf_event_init_task(struct task_struct *child) 11033 { 11034 int ctxn, ret; 11035 11036 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 11037 mutex_init(&child->perf_event_mutex); 11038 INIT_LIST_HEAD(&child->perf_event_list); 11039 11040 for_each_task_context_nr(ctxn) { 11041 ret = perf_event_init_context(child, ctxn); 11042 if (ret) { 11043 perf_event_free_task(child); 11044 return ret; 11045 } 11046 } 11047 11048 return 0; 11049 } 11050 11051 static void __init perf_event_init_all_cpus(void) 11052 { 11053 struct swevent_htable *swhash; 11054 int cpu; 11055 11056 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 11057 11058 for_each_possible_cpu(cpu) { 11059 swhash = &per_cpu(swevent_htable, cpu); 11060 mutex_init(&swhash->hlist_mutex); 11061 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 11062 11063 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 11064 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 11065 11066 #ifdef CONFIG_CGROUP_PERF 11067 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 11068 #endif 11069 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 11070 } 11071 } 11072 11073 void perf_swevent_init_cpu(unsigned int cpu) 11074 { 11075 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11076 11077 mutex_lock(&swhash->hlist_mutex); 11078 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 11079 struct swevent_hlist *hlist; 11080 11081 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 11082 WARN_ON(!hlist); 11083 rcu_assign_pointer(swhash->swevent_hlist, hlist); 11084 } 11085 mutex_unlock(&swhash->hlist_mutex); 11086 } 11087 11088 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 11089 static void __perf_event_exit_context(void *__info) 11090 { 11091 struct perf_event_context *ctx = __info; 11092 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11093 struct perf_event *event; 11094 11095 raw_spin_lock(&ctx->lock); 11096 list_for_each_entry(event, &ctx->event_list, event_entry) 11097 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11098 raw_spin_unlock(&ctx->lock); 11099 } 11100 11101 static void perf_event_exit_cpu_context(int cpu) 11102 { 11103 struct perf_cpu_context *cpuctx; 11104 struct perf_event_context *ctx; 11105 struct pmu *pmu; 11106 11107 mutex_lock(&pmus_lock); 11108 list_for_each_entry(pmu, &pmus, entry) { 11109 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11110 ctx = &cpuctx->ctx; 11111 11112 mutex_lock(&ctx->mutex); 11113 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11114 cpuctx->online = 0; 11115 mutex_unlock(&ctx->mutex); 11116 } 11117 cpumask_clear_cpu(cpu, perf_online_mask); 11118 mutex_unlock(&pmus_lock); 11119 } 11120 #else 11121 11122 static void perf_event_exit_cpu_context(int cpu) { } 11123 11124 #endif 11125 11126 int perf_event_init_cpu(unsigned int cpu) 11127 { 11128 struct perf_cpu_context *cpuctx; 11129 struct perf_event_context *ctx; 11130 struct pmu *pmu; 11131 11132 perf_swevent_init_cpu(cpu); 11133 11134 mutex_lock(&pmus_lock); 11135 cpumask_set_cpu(cpu, perf_online_mask); 11136 list_for_each_entry(pmu, &pmus, entry) { 11137 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11138 ctx = &cpuctx->ctx; 11139 11140 mutex_lock(&ctx->mutex); 11141 cpuctx->online = 1; 11142 mutex_unlock(&ctx->mutex); 11143 } 11144 mutex_unlock(&pmus_lock); 11145 11146 return 0; 11147 } 11148 11149 int perf_event_exit_cpu(unsigned int cpu) 11150 { 11151 perf_event_exit_cpu_context(cpu); 11152 return 0; 11153 } 11154 11155 static int 11156 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 11157 { 11158 int cpu; 11159 11160 for_each_online_cpu(cpu) 11161 perf_event_exit_cpu(cpu); 11162 11163 return NOTIFY_OK; 11164 } 11165 11166 /* 11167 * Run the perf reboot notifier at the very last possible moment so that 11168 * the generic watchdog code runs as long as possible. 11169 */ 11170 static struct notifier_block perf_reboot_notifier = { 11171 .notifier_call = perf_reboot, 11172 .priority = INT_MIN, 11173 }; 11174 11175 void __init perf_event_init(void) 11176 { 11177 int ret; 11178 11179 idr_init(&pmu_idr); 11180 11181 perf_event_init_all_cpus(); 11182 init_srcu_struct(&pmus_srcu); 11183 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 11184 perf_pmu_register(&perf_cpu_clock, NULL, -1); 11185 perf_pmu_register(&perf_task_clock, NULL, -1); 11186 perf_tp_register(); 11187 perf_event_init_cpu(smp_processor_id()); 11188 register_reboot_notifier(&perf_reboot_notifier); 11189 11190 ret = init_hw_breakpoint(); 11191 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 11192 11193 /* 11194 * Build time assertion that we keep the data_head at the intended 11195 * location. IOW, validation we got the __reserved[] size right. 11196 */ 11197 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 11198 != 1024); 11199 } 11200 11201 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 11202 char *page) 11203 { 11204 struct perf_pmu_events_attr *pmu_attr = 11205 container_of(attr, struct perf_pmu_events_attr, attr); 11206 11207 if (pmu_attr->event_str) 11208 return sprintf(page, "%s\n", pmu_attr->event_str); 11209 11210 return 0; 11211 } 11212 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 11213 11214 static int __init perf_event_sysfs_init(void) 11215 { 11216 struct pmu *pmu; 11217 int ret; 11218 11219 mutex_lock(&pmus_lock); 11220 11221 ret = bus_register(&pmu_bus); 11222 if (ret) 11223 goto unlock; 11224 11225 list_for_each_entry(pmu, &pmus, entry) { 11226 if (!pmu->name || pmu->type < 0) 11227 continue; 11228 11229 ret = pmu_dev_alloc(pmu); 11230 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 11231 } 11232 pmu_bus_running = 1; 11233 ret = 0; 11234 11235 unlock: 11236 mutex_unlock(&pmus_lock); 11237 11238 return ret; 11239 } 11240 device_initcall(perf_event_sysfs_init); 11241 11242 #ifdef CONFIG_CGROUP_PERF 11243 static struct cgroup_subsys_state * 11244 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 11245 { 11246 struct perf_cgroup *jc; 11247 11248 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 11249 if (!jc) 11250 return ERR_PTR(-ENOMEM); 11251 11252 jc->info = alloc_percpu(struct perf_cgroup_info); 11253 if (!jc->info) { 11254 kfree(jc); 11255 return ERR_PTR(-ENOMEM); 11256 } 11257 11258 return &jc->css; 11259 } 11260 11261 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 11262 { 11263 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 11264 11265 free_percpu(jc->info); 11266 kfree(jc); 11267 } 11268 11269 static int __perf_cgroup_move(void *info) 11270 { 11271 struct task_struct *task = info; 11272 rcu_read_lock(); 11273 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 11274 rcu_read_unlock(); 11275 return 0; 11276 } 11277 11278 static void perf_cgroup_attach(struct cgroup_taskset *tset) 11279 { 11280 struct task_struct *task; 11281 struct cgroup_subsys_state *css; 11282 11283 cgroup_taskset_for_each(task, css, tset) 11284 task_function_call(task, __perf_cgroup_move, task); 11285 } 11286 11287 struct cgroup_subsys perf_event_cgrp_subsys = { 11288 .css_alloc = perf_cgroup_css_alloc, 11289 .css_free = perf_cgroup_css_free, 11290 .attach = perf_cgroup_attach, 11291 /* 11292 * Implicitly enable on dfl hierarchy so that perf events can 11293 * always be filtered by cgroup2 path as long as perf_event 11294 * controller is not mounted on a legacy hierarchy. 11295 */ 11296 .implicit_on_dfl = true, 11297 .threaded = true, 11298 }; 11299 #endif /* CONFIG_CGROUP_PERF */ 11300