1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/cgroup.h> 37 #include <linux/perf_event.h> 38 #include <linux/trace_events.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/module.h> 42 #include <linux/mman.h> 43 #include <linux/compat.h> 44 #include <linux/bpf.h> 45 #include <linux/filter.h> 46 #include <linux/namei.h> 47 #include <linux/parser.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/mm.h> 50 #include <linux/proc_ns.h> 51 #include <linux/mount.h> 52 53 #include "internal.h" 54 55 #include <asm/irq_regs.h> 56 57 typedef int (*remote_function_f)(void *); 58 59 struct remote_function_call { 60 struct task_struct *p; 61 remote_function_f func; 62 void *info; 63 int ret; 64 }; 65 66 static void remote_function(void *data) 67 { 68 struct remote_function_call *tfc = data; 69 struct task_struct *p = tfc->p; 70 71 if (p) { 72 /* -EAGAIN */ 73 if (task_cpu(p) != smp_processor_id()) 74 return; 75 76 /* 77 * Now that we're on right CPU with IRQs disabled, we can test 78 * if we hit the right task without races. 79 */ 80 81 tfc->ret = -ESRCH; /* No such (running) process */ 82 if (p != current) 83 return; 84 } 85 86 tfc->ret = tfc->func(tfc->info); 87 } 88 89 /** 90 * task_function_call - call a function on the cpu on which a task runs 91 * @p: the task to evaluate 92 * @func: the function to be called 93 * @info: the function call argument 94 * 95 * Calls the function @func when the task is currently running. This might 96 * be on the current CPU, which just calls the function directly 97 * 98 * returns: @func return value, or 99 * -ESRCH - when the process isn't running 100 * -EAGAIN - when the process moved away 101 */ 102 static int 103 task_function_call(struct task_struct *p, remote_function_f func, void *info) 104 { 105 struct remote_function_call data = { 106 .p = p, 107 .func = func, 108 .info = info, 109 .ret = -EAGAIN, 110 }; 111 int ret; 112 113 do { 114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 115 if (!ret) 116 ret = data.ret; 117 } while (ret == -EAGAIN); 118 119 return ret; 120 } 121 122 /** 123 * cpu_function_call - call a function on the cpu 124 * @func: the function to be called 125 * @info: the function call argument 126 * 127 * Calls the function @func on the remote cpu. 128 * 129 * returns: @func return value or -ENXIO when the cpu is offline 130 */ 131 static int cpu_function_call(int cpu, remote_function_f func, void *info) 132 { 133 struct remote_function_call data = { 134 .p = NULL, 135 .func = func, 136 .info = info, 137 .ret = -ENXIO, /* No such CPU */ 138 }; 139 140 smp_call_function_single(cpu, remote_function, &data, 1); 141 142 return data.ret; 143 } 144 145 static inline struct perf_cpu_context * 146 __get_cpu_context(struct perf_event_context *ctx) 147 { 148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 149 } 150 151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 152 struct perf_event_context *ctx) 153 { 154 raw_spin_lock(&cpuctx->ctx.lock); 155 if (ctx) 156 raw_spin_lock(&ctx->lock); 157 } 158 159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 160 struct perf_event_context *ctx) 161 { 162 if (ctx) 163 raw_spin_unlock(&ctx->lock); 164 raw_spin_unlock(&cpuctx->ctx.lock); 165 } 166 167 #define TASK_TOMBSTONE ((void *)-1L) 168 169 static bool is_kernel_event(struct perf_event *event) 170 { 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 172 } 173 174 /* 175 * On task ctx scheduling... 176 * 177 * When !ctx->nr_events a task context will not be scheduled. This means 178 * we can disable the scheduler hooks (for performance) without leaving 179 * pending task ctx state. 180 * 181 * This however results in two special cases: 182 * 183 * - removing the last event from a task ctx; this is relatively straight 184 * forward and is done in __perf_remove_from_context. 185 * 186 * - adding the first event to a task ctx; this is tricky because we cannot 187 * rely on ctx->is_active and therefore cannot use event_function_call(). 188 * See perf_install_in_context(). 189 * 190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 191 */ 192 193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 194 struct perf_event_context *, void *); 195 196 struct event_function_struct { 197 struct perf_event *event; 198 event_f func; 199 void *data; 200 }; 201 202 static int event_function(void *info) 203 { 204 struct event_function_struct *efs = info; 205 struct perf_event *event = efs->event; 206 struct perf_event_context *ctx = event->ctx; 207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 208 struct perf_event_context *task_ctx = cpuctx->task_ctx; 209 int ret = 0; 210 211 lockdep_assert_irqs_disabled(); 212 213 perf_ctx_lock(cpuctx, task_ctx); 214 /* 215 * Since we do the IPI call without holding ctx->lock things can have 216 * changed, double check we hit the task we set out to hit. 217 */ 218 if (ctx->task) { 219 if (ctx->task != current) { 220 ret = -ESRCH; 221 goto unlock; 222 } 223 224 /* 225 * We only use event_function_call() on established contexts, 226 * and event_function() is only ever called when active (or 227 * rather, we'll have bailed in task_function_call() or the 228 * above ctx->task != current test), therefore we must have 229 * ctx->is_active here. 230 */ 231 WARN_ON_ONCE(!ctx->is_active); 232 /* 233 * And since we have ctx->is_active, cpuctx->task_ctx must 234 * match. 235 */ 236 WARN_ON_ONCE(task_ctx != ctx); 237 } else { 238 WARN_ON_ONCE(&cpuctx->ctx != ctx); 239 } 240 241 efs->func(event, cpuctx, ctx, efs->data); 242 unlock: 243 perf_ctx_unlock(cpuctx, task_ctx); 244 245 return ret; 246 } 247 248 static void event_function_call(struct perf_event *event, event_f func, void *data) 249 { 250 struct perf_event_context *ctx = event->ctx; 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 252 struct event_function_struct efs = { 253 .event = event, 254 .func = func, 255 .data = data, 256 }; 257 258 if (!event->parent) { 259 /* 260 * If this is a !child event, we must hold ctx::mutex to 261 * stabilize the the event->ctx relation. See 262 * perf_event_ctx_lock(). 263 */ 264 lockdep_assert_held(&ctx->mutex); 265 } 266 267 if (!task) { 268 cpu_function_call(event->cpu, event_function, &efs); 269 return; 270 } 271 272 if (task == TASK_TOMBSTONE) 273 return; 274 275 again: 276 if (!task_function_call(task, event_function, &efs)) 277 return; 278 279 raw_spin_lock_irq(&ctx->lock); 280 /* 281 * Reload the task pointer, it might have been changed by 282 * a concurrent perf_event_context_sched_out(). 283 */ 284 task = ctx->task; 285 if (task == TASK_TOMBSTONE) { 286 raw_spin_unlock_irq(&ctx->lock); 287 return; 288 } 289 if (ctx->is_active) { 290 raw_spin_unlock_irq(&ctx->lock); 291 goto again; 292 } 293 func(event, NULL, ctx, data); 294 raw_spin_unlock_irq(&ctx->lock); 295 } 296 297 /* 298 * Similar to event_function_call() + event_function(), but hard assumes IRQs 299 * are already disabled and we're on the right CPU. 300 */ 301 static void event_function_local(struct perf_event *event, event_f func, void *data) 302 { 303 struct perf_event_context *ctx = event->ctx; 304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 305 struct task_struct *task = READ_ONCE(ctx->task); 306 struct perf_event_context *task_ctx = NULL; 307 308 lockdep_assert_irqs_disabled(); 309 310 if (task) { 311 if (task == TASK_TOMBSTONE) 312 return; 313 314 task_ctx = ctx; 315 } 316 317 perf_ctx_lock(cpuctx, task_ctx); 318 319 task = ctx->task; 320 if (task == TASK_TOMBSTONE) 321 goto unlock; 322 323 if (task) { 324 /* 325 * We must be either inactive or active and the right task, 326 * otherwise we're screwed, since we cannot IPI to somewhere 327 * else. 328 */ 329 if (ctx->is_active) { 330 if (WARN_ON_ONCE(task != current)) 331 goto unlock; 332 333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 334 goto unlock; 335 } 336 } else { 337 WARN_ON_ONCE(&cpuctx->ctx != ctx); 338 } 339 340 func(event, cpuctx, ctx, data); 341 unlock: 342 perf_ctx_unlock(cpuctx, task_ctx); 343 } 344 345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 346 PERF_FLAG_FD_OUTPUT |\ 347 PERF_FLAG_PID_CGROUP |\ 348 PERF_FLAG_FD_CLOEXEC) 349 350 /* 351 * branch priv levels that need permission checks 352 */ 353 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 354 (PERF_SAMPLE_BRANCH_KERNEL |\ 355 PERF_SAMPLE_BRANCH_HV) 356 357 enum event_type_t { 358 EVENT_FLEXIBLE = 0x1, 359 EVENT_PINNED = 0x2, 360 EVENT_TIME = 0x4, 361 /* see ctx_resched() for details */ 362 EVENT_CPU = 0x8, 363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 364 }; 365 366 /* 367 * perf_sched_events : >0 events exist 368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 369 */ 370 371 static void perf_sched_delayed(struct work_struct *work); 372 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 374 static DEFINE_MUTEX(perf_sched_mutex); 375 static atomic_t perf_sched_count; 376 377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 378 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 380 381 static atomic_t nr_mmap_events __read_mostly; 382 static atomic_t nr_comm_events __read_mostly; 383 static atomic_t nr_namespaces_events __read_mostly; 384 static atomic_t nr_task_events __read_mostly; 385 static atomic_t nr_freq_events __read_mostly; 386 static atomic_t nr_switch_events __read_mostly; 387 static atomic_t nr_ksymbol_events __read_mostly; 388 static atomic_t nr_bpf_events __read_mostly; 389 390 static LIST_HEAD(pmus); 391 static DEFINE_MUTEX(pmus_lock); 392 static struct srcu_struct pmus_srcu; 393 static cpumask_var_t perf_online_mask; 394 395 /* 396 * perf event paranoia level: 397 * -1 - not paranoid at all 398 * 0 - disallow raw tracepoint access for unpriv 399 * 1 - disallow cpu events for unpriv 400 * 2 - disallow kernel profiling for unpriv 401 */ 402 int sysctl_perf_event_paranoid __read_mostly = 2; 403 404 /* Minimum for 512 kiB + 1 user control page */ 405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 406 407 /* 408 * max perf event sample rate 409 */ 410 #define DEFAULT_MAX_SAMPLE_RATE 100000 411 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 412 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 413 414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 415 416 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 417 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 418 419 static int perf_sample_allowed_ns __read_mostly = 420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 421 422 static void update_perf_cpu_limits(void) 423 { 424 u64 tmp = perf_sample_period_ns; 425 426 tmp *= sysctl_perf_cpu_time_max_percent; 427 tmp = div_u64(tmp, 100); 428 if (!tmp) 429 tmp = 1; 430 431 WRITE_ONCE(perf_sample_allowed_ns, tmp); 432 } 433 434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 435 436 int perf_proc_update_handler(struct ctl_table *table, int write, 437 void __user *buffer, size_t *lenp, 438 loff_t *ppos) 439 { 440 int ret; 441 int perf_cpu = sysctl_perf_cpu_time_max_percent; 442 /* 443 * If throttling is disabled don't allow the write: 444 */ 445 if (write && (perf_cpu == 100 || perf_cpu == 0)) 446 return -EINVAL; 447 448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 449 if (ret || !write) 450 return ret; 451 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 454 update_perf_cpu_limits(); 455 456 return 0; 457 } 458 459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 460 461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 462 void __user *buffer, size_t *lenp, 463 loff_t *ppos) 464 { 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 466 467 if (ret || !write) 468 return ret; 469 470 if (sysctl_perf_cpu_time_max_percent == 100 || 471 sysctl_perf_cpu_time_max_percent == 0) { 472 printk(KERN_WARNING 473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 474 WRITE_ONCE(perf_sample_allowed_ns, 0); 475 } else { 476 update_perf_cpu_limits(); 477 } 478 479 return 0; 480 } 481 482 /* 483 * perf samples are done in some very critical code paths (NMIs). 484 * If they take too much CPU time, the system can lock up and not 485 * get any real work done. This will drop the sample rate when 486 * we detect that events are taking too long. 487 */ 488 #define NR_ACCUMULATED_SAMPLES 128 489 static DEFINE_PER_CPU(u64, running_sample_length); 490 491 static u64 __report_avg; 492 static u64 __report_allowed; 493 494 static void perf_duration_warn(struct irq_work *w) 495 { 496 printk_ratelimited(KERN_INFO 497 "perf: interrupt took too long (%lld > %lld), lowering " 498 "kernel.perf_event_max_sample_rate to %d\n", 499 __report_avg, __report_allowed, 500 sysctl_perf_event_sample_rate); 501 } 502 503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 504 505 void perf_sample_event_took(u64 sample_len_ns) 506 { 507 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 508 u64 running_len; 509 u64 avg_len; 510 u32 max; 511 512 if (max_len == 0) 513 return; 514 515 /* Decay the counter by 1 average sample. */ 516 running_len = __this_cpu_read(running_sample_length); 517 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 518 running_len += sample_len_ns; 519 __this_cpu_write(running_sample_length, running_len); 520 521 /* 522 * Note: this will be biased artifically low until we have 523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 524 * from having to maintain a count. 525 */ 526 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 527 if (avg_len <= max_len) 528 return; 529 530 __report_avg = avg_len; 531 __report_allowed = max_len; 532 533 /* 534 * Compute a throttle threshold 25% below the current duration. 535 */ 536 avg_len += avg_len / 4; 537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 538 if (avg_len < max) 539 max /= (u32)avg_len; 540 else 541 max = 1; 542 543 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 544 WRITE_ONCE(max_samples_per_tick, max); 545 546 sysctl_perf_event_sample_rate = max * HZ; 547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 548 549 if (!irq_work_queue(&perf_duration_work)) { 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 551 "kernel.perf_event_max_sample_rate to %d\n", 552 __report_avg, __report_allowed, 553 sysctl_perf_event_sample_rate); 554 } 555 } 556 557 static atomic64_t perf_event_id; 558 559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 560 enum event_type_t event_type); 561 562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 563 enum event_type_t event_type, 564 struct task_struct *task); 565 566 static void update_context_time(struct perf_event_context *ctx); 567 static u64 perf_event_time(struct perf_event *event); 568 569 void __weak perf_event_print_debug(void) { } 570 571 extern __weak const char *perf_pmu_name(void) 572 { 573 return "pmu"; 574 } 575 576 static inline u64 perf_clock(void) 577 { 578 return local_clock(); 579 } 580 581 static inline u64 perf_event_clock(struct perf_event *event) 582 { 583 return event->clock(); 584 } 585 586 /* 587 * State based event timekeeping... 588 * 589 * The basic idea is to use event->state to determine which (if any) time 590 * fields to increment with the current delta. This means we only need to 591 * update timestamps when we change state or when they are explicitly requested 592 * (read). 593 * 594 * Event groups make things a little more complicated, but not terribly so. The 595 * rules for a group are that if the group leader is OFF the entire group is 596 * OFF, irrespecive of what the group member states are. This results in 597 * __perf_effective_state(). 598 * 599 * A futher ramification is that when a group leader flips between OFF and 600 * !OFF, we need to update all group member times. 601 * 602 * 603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 604 * need to make sure the relevant context time is updated before we try and 605 * update our timestamps. 606 */ 607 608 static __always_inline enum perf_event_state 609 __perf_effective_state(struct perf_event *event) 610 { 611 struct perf_event *leader = event->group_leader; 612 613 if (leader->state <= PERF_EVENT_STATE_OFF) 614 return leader->state; 615 616 return event->state; 617 } 618 619 static __always_inline void 620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 621 { 622 enum perf_event_state state = __perf_effective_state(event); 623 u64 delta = now - event->tstamp; 624 625 *enabled = event->total_time_enabled; 626 if (state >= PERF_EVENT_STATE_INACTIVE) 627 *enabled += delta; 628 629 *running = event->total_time_running; 630 if (state >= PERF_EVENT_STATE_ACTIVE) 631 *running += delta; 632 } 633 634 static void perf_event_update_time(struct perf_event *event) 635 { 636 u64 now = perf_event_time(event); 637 638 __perf_update_times(event, now, &event->total_time_enabled, 639 &event->total_time_running); 640 event->tstamp = now; 641 } 642 643 static void perf_event_update_sibling_time(struct perf_event *leader) 644 { 645 struct perf_event *sibling; 646 647 for_each_sibling_event(sibling, leader) 648 perf_event_update_time(sibling); 649 } 650 651 static void 652 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 653 { 654 if (event->state == state) 655 return; 656 657 perf_event_update_time(event); 658 /* 659 * If a group leader gets enabled/disabled all its siblings 660 * are affected too. 661 */ 662 if ((event->state < 0) ^ (state < 0)) 663 perf_event_update_sibling_time(event); 664 665 WRITE_ONCE(event->state, state); 666 } 667 668 #ifdef CONFIG_CGROUP_PERF 669 670 static inline bool 671 perf_cgroup_match(struct perf_event *event) 672 { 673 struct perf_event_context *ctx = event->ctx; 674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 675 676 /* @event doesn't care about cgroup */ 677 if (!event->cgrp) 678 return true; 679 680 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 681 if (!cpuctx->cgrp) 682 return false; 683 684 /* 685 * Cgroup scoping is recursive. An event enabled for a cgroup is 686 * also enabled for all its descendant cgroups. If @cpuctx's 687 * cgroup is a descendant of @event's (the test covers identity 688 * case), it's a match. 689 */ 690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 691 event->cgrp->css.cgroup); 692 } 693 694 static inline void perf_detach_cgroup(struct perf_event *event) 695 { 696 css_put(&event->cgrp->css); 697 event->cgrp = NULL; 698 } 699 700 static inline int is_cgroup_event(struct perf_event *event) 701 { 702 return event->cgrp != NULL; 703 } 704 705 static inline u64 perf_cgroup_event_time(struct perf_event *event) 706 { 707 struct perf_cgroup_info *t; 708 709 t = per_cpu_ptr(event->cgrp->info, event->cpu); 710 return t->time; 711 } 712 713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 714 { 715 struct perf_cgroup_info *info; 716 u64 now; 717 718 now = perf_clock(); 719 720 info = this_cpu_ptr(cgrp->info); 721 722 info->time += now - info->timestamp; 723 info->timestamp = now; 724 } 725 726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 727 { 728 struct perf_cgroup *cgrp = cpuctx->cgrp; 729 struct cgroup_subsys_state *css; 730 731 if (cgrp) { 732 for (css = &cgrp->css; css; css = css->parent) { 733 cgrp = container_of(css, struct perf_cgroup, css); 734 __update_cgrp_time(cgrp); 735 } 736 } 737 } 738 739 static inline void update_cgrp_time_from_event(struct perf_event *event) 740 { 741 struct perf_cgroup *cgrp; 742 743 /* 744 * ensure we access cgroup data only when needed and 745 * when we know the cgroup is pinned (css_get) 746 */ 747 if (!is_cgroup_event(event)) 748 return; 749 750 cgrp = perf_cgroup_from_task(current, event->ctx); 751 /* 752 * Do not update time when cgroup is not active 753 */ 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 755 __update_cgrp_time(event->cgrp); 756 } 757 758 static inline void 759 perf_cgroup_set_timestamp(struct task_struct *task, 760 struct perf_event_context *ctx) 761 { 762 struct perf_cgroup *cgrp; 763 struct perf_cgroup_info *info; 764 struct cgroup_subsys_state *css; 765 766 /* 767 * ctx->lock held by caller 768 * ensure we do not access cgroup data 769 * unless we have the cgroup pinned (css_get) 770 */ 771 if (!task || !ctx->nr_cgroups) 772 return; 773 774 cgrp = perf_cgroup_from_task(task, ctx); 775 776 for (css = &cgrp->css; css; css = css->parent) { 777 cgrp = container_of(css, struct perf_cgroup, css); 778 info = this_cpu_ptr(cgrp->info); 779 info->timestamp = ctx->timestamp; 780 } 781 } 782 783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 784 785 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 786 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 787 788 /* 789 * reschedule events based on the cgroup constraint of task. 790 * 791 * mode SWOUT : schedule out everything 792 * mode SWIN : schedule in based on cgroup for next 793 */ 794 static void perf_cgroup_switch(struct task_struct *task, int mode) 795 { 796 struct perf_cpu_context *cpuctx; 797 struct list_head *list; 798 unsigned long flags; 799 800 /* 801 * Disable interrupts and preemption to avoid this CPU's 802 * cgrp_cpuctx_entry to change under us. 803 */ 804 local_irq_save(flags); 805 806 list = this_cpu_ptr(&cgrp_cpuctx_list); 807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 809 810 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 811 perf_pmu_disable(cpuctx->ctx.pmu); 812 813 if (mode & PERF_CGROUP_SWOUT) { 814 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 815 /* 816 * must not be done before ctxswout due 817 * to event_filter_match() in event_sched_out() 818 */ 819 cpuctx->cgrp = NULL; 820 } 821 822 if (mode & PERF_CGROUP_SWIN) { 823 WARN_ON_ONCE(cpuctx->cgrp); 824 /* 825 * set cgrp before ctxsw in to allow 826 * event_filter_match() to not have to pass 827 * task around 828 * we pass the cpuctx->ctx to perf_cgroup_from_task() 829 * because cgorup events are only per-cpu 830 */ 831 cpuctx->cgrp = perf_cgroup_from_task(task, 832 &cpuctx->ctx); 833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 834 } 835 perf_pmu_enable(cpuctx->ctx.pmu); 836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 837 } 838 839 local_irq_restore(flags); 840 } 841 842 static inline void perf_cgroup_sched_out(struct task_struct *task, 843 struct task_struct *next) 844 { 845 struct perf_cgroup *cgrp1; 846 struct perf_cgroup *cgrp2 = NULL; 847 848 rcu_read_lock(); 849 /* 850 * we come here when we know perf_cgroup_events > 0 851 * we do not need to pass the ctx here because we know 852 * we are holding the rcu lock 853 */ 854 cgrp1 = perf_cgroup_from_task(task, NULL); 855 cgrp2 = perf_cgroup_from_task(next, NULL); 856 857 /* 858 * only schedule out current cgroup events if we know 859 * that we are switching to a different cgroup. Otherwise, 860 * do no touch the cgroup events. 861 */ 862 if (cgrp1 != cgrp2) 863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 864 865 rcu_read_unlock(); 866 } 867 868 static inline void perf_cgroup_sched_in(struct task_struct *prev, 869 struct task_struct *task) 870 { 871 struct perf_cgroup *cgrp1; 872 struct perf_cgroup *cgrp2 = NULL; 873 874 rcu_read_lock(); 875 /* 876 * we come here when we know perf_cgroup_events > 0 877 * we do not need to pass the ctx here because we know 878 * we are holding the rcu lock 879 */ 880 cgrp1 = perf_cgroup_from_task(task, NULL); 881 cgrp2 = perf_cgroup_from_task(prev, NULL); 882 883 /* 884 * only need to schedule in cgroup events if we are changing 885 * cgroup during ctxsw. Cgroup events were not scheduled 886 * out of ctxsw out if that was not the case. 887 */ 888 if (cgrp1 != cgrp2) 889 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 890 891 rcu_read_unlock(); 892 } 893 894 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 895 struct perf_event_attr *attr, 896 struct perf_event *group_leader) 897 { 898 struct perf_cgroup *cgrp; 899 struct cgroup_subsys_state *css; 900 struct fd f = fdget(fd); 901 int ret = 0; 902 903 if (!f.file) 904 return -EBADF; 905 906 css = css_tryget_online_from_dir(f.file->f_path.dentry, 907 &perf_event_cgrp_subsys); 908 if (IS_ERR(css)) { 909 ret = PTR_ERR(css); 910 goto out; 911 } 912 913 cgrp = container_of(css, struct perf_cgroup, css); 914 event->cgrp = cgrp; 915 916 /* 917 * all events in a group must monitor 918 * the same cgroup because a task belongs 919 * to only one perf cgroup at a time 920 */ 921 if (group_leader && group_leader->cgrp != cgrp) { 922 perf_detach_cgroup(event); 923 ret = -EINVAL; 924 } 925 out: 926 fdput(f); 927 return ret; 928 } 929 930 static inline void 931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 932 { 933 struct perf_cgroup_info *t; 934 t = per_cpu_ptr(event->cgrp->info, event->cpu); 935 event->shadow_ctx_time = now - t->timestamp; 936 } 937 938 /* 939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 940 * cleared when last cgroup event is removed. 941 */ 942 static inline void 943 list_update_cgroup_event(struct perf_event *event, 944 struct perf_event_context *ctx, bool add) 945 { 946 struct perf_cpu_context *cpuctx; 947 struct list_head *cpuctx_entry; 948 949 if (!is_cgroup_event(event)) 950 return; 951 952 /* 953 * Because cgroup events are always per-cpu events, 954 * this will always be called from the right CPU. 955 */ 956 cpuctx = __get_cpu_context(ctx); 957 958 /* 959 * Since setting cpuctx->cgrp is conditional on the current @cgrp 960 * matching the event's cgroup, we must do this for every new event, 961 * because if the first would mismatch, the second would not try again 962 * and we would leave cpuctx->cgrp unset. 963 */ 964 if (add && !cpuctx->cgrp) { 965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 966 967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 968 cpuctx->cgrp = cgrp; 969 } 970 971 if (add && ctx->nr_cgroups++) 972 return; 973 else if (!add && --ctx->nr_cgroups) 974 return; 975 976 /* no cgroup running */ 977 if (!add) 978 cpuctx->cgrp = NULL; 979 980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 981 if (add) 982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 983 else 984 list_del(cpuctx_entry); 985 } 986 987 #else /* !CONFIG_CGROUP_PERF */ 988 989 static inline bool 990 perf_cgroup_match(struct perf_event *event) 991 { 992 return true; 993 } 994 995 static inline void perf_detach_cgroup(struct perf_event *event) 996 {} 997 998 static inline int is_cgroup_event(struct perf_event *event) 999 { 1000 return 0; 1001 } 1002 1003 static inline void update_cgrp_time_from_event(struct perf_event *event) 1004 { 1005 } 1006 1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1008 { 1009 } 1010 1011 static inline void perf_cgroup_sched_out(struct task_struct *task, 1012 struct task_struct *next) 1013 { 1014 } 1015 1016 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1017 struct task_struct *task) 1018 { 1019 } 1020 1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1022 struct perf_event_attr *attr, 1023 struct perf_event *group_leader) 1024 { 1025 return -EINVAL; 1026 } 1027 1028 static inline void 1029 perf_cgroup_set_timestamp(struct task_struct *task, 1030 struct perf_event_context *ctx) 1031 { 1032 } 1033 1034 void 1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1036 { 1037 } 1038 1039 static inline void 1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1041 { 1042 } 1043 1044 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1045 { 1046 return 0; 1047 } 1048 1049 static inline void 1050 list_update_cgroup_event(struct perf_event *event, 1051 struct perf_event_context *ctx, bool add) 1052 { 1053 } 1054 1055 #endif 1056 1057 /* 1058 * set default to be dependent on timer tick just 1059 * like original code 1060 */ 1061 #define PERF_CPU_HRTIMER (1000 / HZ) 1062 /* 1063 * function must be called with interrupts disabled 1064 */ 1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1066 { 1067 struct perf_cpu_context *cpuctx; 1068 bool rotations; 1069 1070 lockdep_assert_irqs_disabled(); 1071 1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1073 rotations = perf_rotate_context(cpuctx); 1074 1075 raw_spin_lock(&cpuctx->hrtimer_lock); 1076 if (rotations) 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1078 else 1079 cpuctx->hrtimer_active = 0; 1080 raw_spin_unlock(&cpuctx->hrtimer_lock); 1081 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1083 } 1084 1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1086 { 1087 struct hrtimer *timer = &cpuctx->hrtimer; 1088 struct pmu *pmu = cpuctx->ctx.pmu; 1089 u64 interval; 1090 1091 /* no multiplexing needed for SW PMU */ 1092 if (pmu->task_ctx_nr == perf_sw_context) 1093 return; 1094 1095 /* 1096 * check default is sane, if not set then force to 1097 * default interval (1/tick) 1098 */ 1099 interval = pmu->hrtimer_interval_ms; 1100 if (interval < 1) 1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1102 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1104 1105 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1107 timer->function = perf_mux_hrtimer_handler; 1108 } 1109 1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1111 { 1112 struct hrtimer *timer = &cpuctx->hrtimer; 1113 struct pmu *pmu = cpuctx->ctx.pmu; 1114 unsigned long flags; 1115 1116 /* not for SW PMU */ 1117 if (pmu->task_ctx_nr == perf_sw_context) 1118 return 0; 1119 1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1121 if (!cpuctx->hrtimer_active) { 1122 cpuctx->hrtimer_active = 1; 1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1125 } 1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1127 1128 return 0; 1129 } 1130 1131 void perf_pmu_disable(struct pmu *pmu) 1132 { 1133 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1134 if (!(*count)++) 1135 pmu->pmu_disable(pmu); 1136 } 1137 1138 void perf_pmu_enable(struct pmu *pmu) 1139 { 1140 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1141 if (!--(*count)) 1142 pmu->pmu_enable(pmu); 1143 } 1144 1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1146 1147 /* 1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1149 * perf_event_task_tick() are fully serialized because they're strictly cpu 1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1151 * disabled, while perf_event_task_tick is called from IRQ context. 1152 */ 1153 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1154 { 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1156 1157 lockdep_assert_irqs_disabled(); 1158 1159 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1160 1161 list_add(&ctx->active_ctx_list, head); 1162 } 1163 1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1165 { 1166 lockdep_assert_irqs_disabled(); 1167 1168 WARN_ON(list_empty(&ctx->active_ctx_list)); 1169 1170 list_del_init(&ctx->active_ctx_list); 1171 } 1172 1173 static void get_ctx(struct perf_event_context *ctx) 1174 { 1175 refcount_inc(&ctx->refcount); 1176 } 1177 1178 static void free_ctx(struct rcu_head *head) 1179 { 1180 struct perf_event_context *ctx; 1181 1182 ctx = container_of(head, struct perf_event_context, rcu_head); 1183 kfree(ctx->task_ctx_data); 1184 kfree(ctx); 1185 } 1186 1187 static void put_ctx(struct perf_event_context *ctx) 1188 { 1189 if (refcount_dec_and_test(&ctx->refcount)) { 1190 if (ctx->parent_ctx) 1191 put_ctx(ctx->parent_ctx); 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1193 put_task_struct(ctx->task); 1194 call_rcu(&ctx->rcu_head, free_ctx); 1195 } 1196 } 1197 1198 /* 1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1200 * perf_pmu_migrate_context() we need some magic. 1201 * 1202 * Those places that change perf_event::ctx will hold both 1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1204 * 1205 * Lock ordering is by mutex address. There are two other sites where 1206 * perf_event_context::mutex nests and those are: 1207 * 1208 * - perf_event_exit_task_context() [ child , 0 ] 1209 * perf_event_exit_event() 1210 * put_event() [ parent, 1 ] 1211 * 1212 * - perf_event_init_context() [ parent, 0 ] 1213 * inherit_task_group() 1214 * inherit_group() 1215 * inherit_event() 1216 * perf_event_alloc() 1217 * perf_init_event() 1218 * perf_try_init_event() [ child , 1 ] 1219 * 1220 * While it appears there is an obvious deadlock here -- the parent and child 1221 * nesting levels are inverted between the two. This is in fact safe because 1222 * life-time rules separate them. That is an exiting task cannot fork, and a 1223 * spawning task cannot (yet) exit. 1224 * 1225 * But remember that that these are parent<->child context relations, and 1226 * migration does not affect children, therefore these two orderings should not 1227 * interact. 1228 * 1229 * The change in perf_event::ctx does not affect children (as claimed above) 1230 * because the sys_perf_event_open() case will install a new event and break 1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1232 * concerned with cpuctx and that doesn't have children. 1233 * 1234 * The places that change perf_event::ctx will issue: 1235 * 1236 * perf_remove_from_context(); 1237 * synchronize_rcu(); 1238 * perf_install_in_context(); 1239 * 1240 * to affect the change. The remove_from_context() + synchronize_rcu() should 1241 * quiesce the event, after which we can install it in the new location. This 1242 * means that only external vectors (perf_fops, prctl) can perturb the event 1243 * while in transit. Therefore all such accessors should also acquire 1244 * perf_event_context::mutex to serialize against this. 1245 * 1246 * However; because event->ctx can change while we're waiting to acquire 1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1248 * function. 1249 * 1250 * Lock order: 1251 * cred_guard_mutex 1252 * task_struct::perf_event_mutex 1253 * perf_event_context::mutex 1254 * perf_event::child_mutex; 1255 * perf_event_context::lock 1256 * perf_event::mmap_mutex 1257 * mmap_sem 1258 * perf_addr_filters_head::lock 1259 * 1260 * cpu_hotplug_lock 1261 * pmus_lock 1262 * cpuctx->mutex / perf_event_context::mutex 1263 */ 1264 static struct perf_event_context * 1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1266 { 1267 struct perf_event_context *ctx; 1268 1269 again: 1270 rcu_read_lock(); 1271 ctx = READ_ONCE(event->ctx); 1272 if (!refcount_inc_not_zero(&ctx->refcount)) { 1273 rcu_read_unlock(); 1274 goto again; 1275 } 1276 rcu_read_unlock(); 1277 1278 mutex_lock_nested(&ctx->mutex, nesting); 1279 if (event->ctx != ctx) { 1280 mutex_unlock(&ctx->mutex); 1281 put_ctx(ctx); 1282 goto again; 1283 } 1284 1285 return ctx; 1286 } 1287 1288 static inline struct perf_event_context * 1289 perf_event_ctx_lock(struct perf_event *event) 1290 { 1291 return perf_event_ctx_lock_nested(event, 0); 1292 } 1293 1294 static void perf_event_ctx_unlock(struct perf_event *event, 1295 struct perf_event_context *ctx) 1296 { 1297 mutex_unlock(&ctx->mutex); 1298 put_ctx(ctx); 1299 } 1300 1301 /* 1302 * This must be done under the ctx->lock, such as to serialize against 1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1304 * calling scheduler related locks and ctx->lock nests inside those. 1305 */ 1306 static __must_check struct perf_event_context * 1307 unclone_ctx(struct perf_event_context *ctx) 1308 { 1309 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1310 1311 lockdep_assert_held(&ctx->lock); 1312 1313 if (parent_ctx) 1314 ctx->parent_ctx = NULL; 1315 ctx->generation++; 1316 1317 return parent_ctx; 1318 } 1319 1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1321 enum pid_type type) 1322 { 1323 u32 nr; 1324 /* 1325 * only top level events have the pid namespace they were created in 1326 */ 1327 if (event->parent) 1328 event = event->parent; 1329 1330 nr = __task_pid_nr_ns(p, type, event->ns); 1331 /* avoid -1 if it is idle thread or runs in another ns */ 1332 if (!nr && !pid_alive(p)) 1333 nr = -1; 1334 return nr; 1335 } 1336 1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1338 { 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1340 } 1341 1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1343 { 1344 return perf_event_pid_type(event, p, PIDTYPE_PID); 1345 } 1346 1347 /* 1348 * If we inherit events we want to return the parent event id 1349 * to userspace. 1350 */ 1351 static u64 primary_event_id(struct perf_event *event) 1352 { 1353 u64 id = event->id; 1354 1355 if (event->parent) 1356 id = event->parent->id; 1357 1358 return id; 1359 } 1360 1361 /* 1362 * Get the perf_event_context for a task and lock it. 1363 * 1364 * This has to cope with with the fact that until it is locked, 1365 * the context could get moved to another task. 1366 */ 1367 static struct perf_event_context * 1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1369 { 1370 struct perf_event_context *ctx; 1371 1372 retry: 1373 /* 1374 * One of the few rules of preemptible RCU is that one cannot do 1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1376 * part of the read side critical section was irqs-enabled -- see 1377 * rcu_read_unlock_special(). 1378 * 1379 * Since ctx->lock nests under rq->lock we must ensure the entire read 1380 * side critical section has interrupts disabled. 1381 */ 1382 local_irq_save(*flags); 1383 rcu_read_lock(); 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1385 if (ctx) { 1386 /* 1387 * If this context is a clone of another, it might 1388 * get swapped for another underneath us by 1389 * perf_event_task_sched_out, though the 1390 * rcu_read_lock() protects us from any context 1391 * getting freed. Lock the context and check if it 1392 * got swapped before we could get the lock, and retry 1393 * if so. If we locked the right context, then it 1394 * can't get swapped on us any more. 1395 */ 1396 raw_spin_lock(&ctx->lock); 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1398 raw_spin_unlock(&ctx->lock); 1399 rcu_read_unlock(); 1400 local_irq_restore(*flags); 1401 goto retry; 1402 } 1403 1404 if (ctx->task == TASK_TOMBSTONE || 1405 !refcount_inc_not_zero(&ctx->refcount)) { 1406 raw_spin_unlock(&ctx->lock); 1407 ctx = NULL; 1408 } else { 1409 WARN_ON_ONCE(ctx->task != task); 1410 } 1411 } 1412 rcu_read_unlock(); 1413 if (!ctx) 1414 local_irq_restore(*flags); 1415 return ctx; 1416 } 1417 1418 /* 1419 * Get the context for a task and increment its pin_count so it 1420 * can't get swapped to another task. This also increments its 1421 * reference count so that the context can't get freed. 1422 */ 1423 static struct perf_event_context * 1424 perf_pin_task_context(struct task_struct *task, int ctxn) 1425 { 1426 struct perf_event_context *ctx; 1427 unsigned long flags; 1428 1429 ctx = perf_lock_task_context(task, ctxn, &flags); 1430 if (ctx) { 1431 ++ctx->pin_count; 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1433 } 1434 return ctx; 1435 } 1436 1437 static void perf_unpin_context(struct perf_event_context *ctx) 1438 { 1439 unsigned long flags; 1440 1441 raw_spin_lock_irqsave(&ctx->lock, flags); 1442 --ctx->pin_count; 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1444 } 1445 1446 /* 1447 * Update the record of the current time in a context. 1448 */ 1449 static void update_context_time(struct perf_event_context *ctx) 1450 { 1451 u64 now = perf_clock(); 1452 1453 ctx->time += now - ctx->timestamp; 1454 ctx->timestamp = now; 1455 } 1456 1457 static u64 perf_event_time(struct perf_event *event) 1458 { 1459 struct perf_event_context *ctx = event->ctx; 1460 1461 if (is_cgroup_event(event)) 1462 return perf_cgroup_event_time(event); 1463 1464 return ctx ? ctx->time : 0; 1465 } 1466 1467 static enum event_type_t get_event_type(struct perf_event *event) 1468 { 1469 struct perf_event_context *ctx = event->ctx; 1470 enum event_type_t event_type; 1471 1472 lockdep_assert_held(&ctx->lock); 1473 1474 /* 1475 * It's 'group type', really, because if our group leader is 1476 * pinned, so are we. 1477 */ 1478 if (event->group_leader != event) 1479 event = event->group_leader; 1480 1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1482 if (!ctx->task) 1483 event_type |= EVENT_CPU; 1484 1485 return event_type; 1486 } 1487 1488 /* 1489 * Helper function to initialize event group nodes. 1490 */ 1491 static void init_event_group(struct perf_event *event) 1492 { 1493 RB_CLEAR_NODE(&event->group_node); 1494 event->group_index = 0; 1495 } 1496 1497 /* 1498 * Extract pinned or flexible groups from the context 1499 * based on event attrs bits. 1500 */ 1501 static struct perf_event_groups * 1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1503 { 1504 if (event->attr.pinned) 1505 return &ctx->pinned_groups; 1506 else 1507 return &ctx->flexible_groups; 1508 } 1509 1510 /* 1511 * Helper function to initializes perf_event_group trees. 1512 */ 1513 static void perf_event_groups_init(struct perf_event_groups *groups) 1514 { 1515 groups->tree = RB_ROOT; 1516 groups->index = 0; 1517 } 1518 1519 /* 1520 * Compare function for event groups; 1521 * 1522 * Implements complex key that first sorts by CPU and then by virtual index 1523 * which provides ordering when rotating groups for the same CPU. 1524 */ 1525 static bool 1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1527 { 1528 if (left->cpu < right->cpu) 1529 return true; 1530 if (left->cpu > right->cpu) 1531 return false; 1532 1533 if (left->group_index < right->group_index) 1534 return true; 1535 if (left->group_index > right->group_index) 1536 return false; 1537 1538 return false; 1539 } 1540 1541 /* 1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1543 * key (see perf_event_groups_less). This places it last inside the CPU 1544 * subtree. 1545 */ 1546 static void 1547 perf_event_groups_insert(struct perf_event_groups *groups, 1548 struct perf_event *event) 1549 { 1550 struct perf_event *node_event; 1551 struct rb_node *parent; 1552 struct rb_node **node; 1553 1554 event->group_index = ++groups->index; 1555 1556 node = &groups->tree.rb_node; 1557 parent = *node; 1558 1559 while (*node) { 1560 parent = *node; 1561 node_event = container_of(*node, struct perf_event, group_node); 1562 1563 if (perf_event_groups_less(event, node_event)) 1564 node = &parent->rb_left; 1565 else 1566 node = &parent->rb_right; 1567 } 1568 1569 rb_link_node(&event->group_node, parent, node); 1570 rb_insert_color(&event->group_node, &groups->tree); 1571 } 1572 1573 /* 1574 * Helper function to insert event into the pinned or flexible groups. 1575 */ 1576 static void 1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1578 { 1579 struct perf_event_groups *groups; 1580 1581 groups = get_event_groups(event, ctx); 1582 perf_event_groups_insert(groups, event); 1583 } 1584 1585 /* 1586 * Delete a group from a tree. 1587 */ 1588 static void 1589 perf_event_groups_delete(struct perf_event_groups *groups, 1590 struct perf_event *event) 1591 { 1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1593 RB_EMPTY_ROOT(&groups->tree)); 1594 1595 rb_erase(&event->group_node, &groups->tree); 1596 init_event_group(event); 1597 } 1598 1599 /* 1600 * Helper function to delete event from its groups. 1601 */ 1602 static void 1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1604 { 1605 struct perf_event_groups *groups; 1606 1607 groups = get_event_groups(event, ctx); 1608 perf_event_groups_delete(groups, event); 1609 } 1610 1611 /* 1612 * Get the leftmost event in the @cpu subtree. 1613 */ 1614 static struct perf_event * 1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu) 1616 { 1617 struct perf_event *node_event = NULL, *match = NULL; 1618 struct rb_node *node = groups->tree.rb_node; 1619 1620 while (node) { 1621 node_event = container_of(node, struct perf_event, group_node); 1622 1623 if (cpu < node_event->cpu) { 1624 node = node->rb_left; 1625 } else if (cpu > node_event->cpu) { 1626 node = node->rb_right; 1627 } else { 1628 match = node_event; 1629 node = node->rb_left; 1630 } 1631 } 1632 1633 return match; 1634 } 1635 1636 /* 1637 * Like rb_entry_next_safe() for the @cpu subtree. 1638 */ 1639 static struct perf_event * 1640 perf_event_groups_next(struct perf_event *event) 1641 { 1642 struct perf_event *next; 1643 1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1645 if (next && next->cpu == event->cpu) 1646 return next; 1647 1648 return NULL; 1649 } 1650 1651 /* 1652 * Iterate through the whole groups tree. 1653 */ 1654 #define perf_event_groups_for_each(event, groups) \ 1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1656 typeof(*event), group_node); event; \ 1657 event = rb_entry_safe(rb_next(&event->group_node), \ 1658 typeof(*event), group_node)) 1659 1660 /* 1661 * Add an event from the lists for its context. 1662 * Must be called with ctx->mutex and ctx->lock held. 1663 */ 1664 static void 1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1666 { 1667 lockdep_assert_held(&ctx->lock); 1668 1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1670 event->attach_state |= PERF_ATTACH_CONTEXT; 1671 1672 event->tstamp = perf_event_time(event); 1673 1674 /* 1675 * If we're a stand alone event or group leader, we go to the context 1676 * list, group events are kept attached to the group so that 1677 * perf_group_detach can, at all times, locate all siblings. 1678 */ 1679 if (event->group_leader == event) { 1680 event->group_caps = event->event_caps; 1681 add_event_to_groups(event, ctx); 1682 } 1683 1684 list_update_cgroup_event(event, ctx, true); 1685 1686 list_add_rcu(&event->event_entry, &ctx->event_list); 1687 ctx->nr_events++; 1688 if (event->attr.inherit_stat) 1689 ctx->nr_stat++; 1690 1691 ctx->generation++; 1692 } 1693 1694 /* 1695 * Initialize event state based on the perf_event_attr::disabled. 1696 */ 1697 static inline void perf_event__state_init(struct perf_event *event) 1698 { 1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1700 PERF_EVENT_STATE_INACTIVE; 1701 } 1702 1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1704 { 1705 int entry = sizeof(u64); /* value */ 1706 int size = 0; 1707 int nr = 1; 1708 1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1710 size += sizeof(u64); 1711 1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1713 size += sizeof(u64); 1714 1715 if (event->attr.read_format & PERF_FORMAT_ID) 1716 entry += sizeof(u64); 1717 1718 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1719 nr += nr_siblings; 1720 size += sizeof(u64); 1721 } 1722 1723 size += entry * nr; 1724 event->read_size = size; 1725 } 1726 1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1728 { 1729 struct perf_sample_data *data; 1730 u16 size = 0; 1731 1732 if (sample_type & PERF_SAMPLE_IP) 1733 size += sizeof(data->ip); 1734 1735 if (sample_type & PERF_SAMPLE_ADDR) 1736 size += sizeof(data->addr); 1737 1738 if (sample_type & PERF_SAMPLE_PERIOD) 1739 size += sizeof(data->period); 1740 1741 if (sample_type & PERF_SAMPLE_WEIGHT) 1742 size += sizeof(data->weight); 1743 1744 if (sample_type & PERF_SAMPLE_READ) 1745 size += event->read_size; 1746 1747 if (sample_type & PERF_SAMPLE_DATA_SRC) 1748 size += sizeof(data->data_src.val); 1749 1750 if (sample_type & PERF_SAMPLE_TRANSACTION) 1751 size += sizeof(data->txn); 1752 1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1754 size += sizeof(data->phys_addr); 1755 1756 event->header_size = size; 1757 } 1758 1759 /* 1760 * Called at perf_event creation and when events are attached/detached from a 1761 * group. 1762 */ 1763 static void perf_event__header_size(struct perf_event *event) 1764 { 1765 __perf_event_read_size(event, 1766 event->group_leader->nr_siblings); 1767 __perf_event_header_size(event, event->attr.sample_type); 1768 } 1769 1770 static void perf_event__id_header_size(struct perf_event *event) 1771 { 1772 struct perf_sample_data *data; 1773 u64 sample_type = event->attr.sample_type; 1774 u16 size = 0; 1775 1776 if (sample_type & PERF_SAMPLE_TID) 1777 size += sizeof(data->tid_entry); 1778 1779 if (sample_type & PERF_SAMPLE_TIME) 1780 size += sizeof(data->time); 1781 1782 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1783 size += sizeof(data->id); 1784 1785 if (sample_type & PERF_SAMPLE_ID) 1786 size += sizeof(data->id); 1787 1788 if (sample_type & PERF_SAMPLE_STREAM_ID) 1789 size += sizeof(data->stream_id); 1790 1791 if (sample_type & PERF_SAMPLE_CPU) 1792 size += sizeof(data->cpu_entry); 1793 1794 event->id_header_size = size; 1795 } 1796 1797 static bool perf_event_validate_size(struct perf_event *event) 1798 { 1799 /* 1800 * The values computed here will be over-written when we actually 1801 * attach the event. 1802 */ 1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1805 perf_event__id_header_size(event); 1806 1807 /* 1808 * Sum the lot; should not exceed the 64k limit we have on records. 1809 * Conservative limit to allow for callchains and other variable fields. 1810 */ 1811 if (event->read_size + event->header_size + 1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1813 return false; 1814 1815 return true; 1816 } 1817 1818 static void perf_group_attach(struct perf_event *event) 1819 { 1820 struct perf_event *group_leader = event->group_leader, *pos; 1821 1822 lockdep_assert_held(&event->ctx->lock); 1823 1824 /* 1825 * We can have double attach due to group movement in perf_event_open. 1826 */ 1827 if (event->attach_state & PERF_ATTACH_GROUP) 1828 return; 1829 1830 event->attach_state |= PERF_ATTACH_GROUP; 1831 1832 if (group_leader == event) 1833 return; 1834 1835 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1836 1837 group_leader->group_caps &= event->event_caps; 1838 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1840 group_leader->nr_siblings++; 1841 1842 perf_event__header_size(group_leader); 1843 1844 for_each_sibling_event(pos, group_leader) 1845 perf_event__header_size(pos); 1846 } 1847 1848 /* 1849 * Remove an event from the lists for its context. 1850 * Must be called with ctx->mutex and ctx->lock held. 1851 */ 1852 static void 1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1854 { 1855 WARN_ON_ONCE(event->ctx != ctx); 1856 lockdep_assert_held(&ctx->lock); 1857 1858 /* 1859 * We can have double detach due to exit/hot-unplug + close. 1860 */ 1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1862 return; 1863 1864 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1865 1866 list_update_cgroup_event(event, ctx, false); 1867 1868 ctx->nr_events--; 1869 if (event->attr.inherit_stat) 1870 ctx->nr_stat--; 1871 1872 list_del_rcu(&event->event_entry); 1873 1874 if (event->group_leader == event) 1875 del_event_from_groups(event, ctx); 1876 1877 /* 1878 * If event was in error state, then keep it 1879 * that way, otherwise bogus counts will be 1880 * returned on read(). The only way to get out 1881 * of error state is by explicit re-enabling 1882 * of the event 1883 */ 1884 if (event->state > PERF_EVENT_STATE_OFF) 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1886 1887 ctx->generation++; 1888 } 1889 1890 static void perf_group_detach(struct perf_event *event) 1891 { 1892 struct perf_event *sibling, *tmp; 1893 struct perf_event_context *ctx = event->ctx; 1894 1895 lockdep_assert_held(&ctx->lock); 1896 1897 /* 1898 * We can have double detach due to exit/hot-unplug + close. 1899 */ 1900 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1901 return; 1902 1903 event->attach_state &= ~PERF_ATTACH_GROUP; 1904 1905 /* 1906 * If this is a sibling, remove it from its group. 1907 */ 1908 if (event->group_leader != event) { 1909 list_del_init(&event->sibling_list); 1910 event->group_leader->nr_siblings--; 1911 goto out; 1912 } 1913 1914 /* 1915 * If this was a group event with sibling events then 1916 * upgrade the siblings to singleton events by adding them 1917 * to whatever list we are on. 1918 */ 1919 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 1920 1921 sibling->group_leader = sibling; 1922 list_del_init(&sibling->sibling_list); 1923 1924 /* Inherit group flags from the previous leader */ 1925 sibling->group_caps = event->group_caps; 1926 1927 if (!RB_EMPTY_NODE(&event->group_node)) { 1928 add_event_to_groups(sibling, event->ctx); 1929 1930 if (sibling->state == PERF_EVENT_STATE_ACTIVE) { 1931 struct list_head *list = sibling->attr.pinned ? 1932 &ctx->pinned_active : &ctx->flexible_active; 1933 1934 list_add_tail(&sibling->active_list, list); 1935 } 1936 } 1937 1938 WARN_ON_ONCE(sibling->ctx != event->ctx); 1939 } 1940 1941 out: 1942 perf_event__header_size(event->group_leader); 1943 1944 for_each_sibling_event(tmp, event->group_leader) 1945 perf_event__header_size(tmp); 1946 } 1947 1948 static bool is_orphaned_event(struct perf_event *event) 1949 { 1950 return event->state == PERF_EVENT_STATE_DEAD; 1951 } 1952 1953 static inline int __pmu_filter_match(struct perf_event *event) 1954 { 1955 struct pmu *pmu = event->pmu; 1956 return pmu->filter_match ? pmu->filter_match(event) : 1; 1957 } 1958 1959 /* 1960 * Check whether we should attempt to schedule an event group based on 1961 * PMU-specific filtering. An event group can consist of HW and SW events, 1962 * potentially with a SW leader, so we must check all the filters, to 1963 * determine whether a group is schedulable: 1964 */ 1965 static inline int pmu_filter_match(struct perf_event *event) 1966 { 1967 struct perf_event *sibling; 1968 1969 if (!__pmu_filter_match(event)) 1970 return 0; 1971 1972 for_each_sibling_event(sibling, event) { 1973 if (!__pmu_filter_match(sibling)) 1974 return 0; 1975 } 1976 1977 return 1; 1978 } 1979 1980 static inline int 1981 event_filter_match(struct perf_event *event) 1982 { 1983 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1984 perf_cgroup_match(event) && pmu_filter_match(event); 1985 } 1986 1987 static void 1988 event_sched_out(struct perf_event *event, 1989 struct perf_cpu_context *cpuctx, 1990 struct perf_event_context *ctx) 1991 { 1992 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 1993 1994 WARN_ON_ONCE(event->ctx != ctx); 1995 lockdep_assert_held(&ctx->lock); 1996 1997 if (event->state != PERF_EVENT_STATE_ACTIVE) 1998 return; 1999 2000 /* 2001 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2002 * we can schedule events _OUT_ individually through things like 2003 * __perf_remove_from_context(). 2004 */ 2005 list_del_init(&event->active_list); 2006 2007 perf_pmu_disable(event->pmu); 2008 2009 event->pmu->del(event, 0); 2010 event->oncpu = -1; 2011 2012 if (READ_ONCE(event->pending_disable) >= 0) { 2013 WRITE_ONCE(event->pending_disable, -1); 2014 state = PERF_EVENT_STATE_OFF; 2015 } 2016 perf_event_set_state(event, state); 2017 2018 if (!is_software_event(event)) 2019 cpuctx->active_oncpu--; 2020 if (!--ctx->nr_active) 2021 perf_event_ctx_deactivate(ctx); 2022 if (event->attr.freq && event->attr.sample_freq) 2023 ctx->nr_freq--; 2024 if (event->attr.exclusive || !cpuctx->active_oncpu) 2025 cpuctx->exclusive = 0; 2026 2027 perf_pmu_enable(event->pmu); 2028 } 2029 2030 static void 2031 group_sched_out(struct perf_event *group_event, 2032 struct perf_cpu_context *cpuctx, 2033 struct perf_event_context *ctx) 2034 { 2035 struct perf_event *event; 2036 2037 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2038 return; 2039 2040 perf_pmu_disable(ctx->pmu); 2041 2042 event_sched_out(group_event, cpuctx, ctx); 2043 2044 /* 2045 * Schedule out siblings (if any): 2046 */ 2047 for_each_sibling_event(event, group_event) 2048 event_sched_out(event, cpuctx, ctx); 2049 2050 perf_pmu_enable(ctx->pmu); 2051 2052 if (group_event->attr.exclusive) 2053 cpuctx->exclusive = 0; 2054 } 2055 2056 #define DETACH_GROUP 0x01UL 2057 2058 /* 2059 * Cross CPU call to remove a performance event 2060 * 2061 * We disable the event on the hardware level first. After that we 2062 * remove it from the context list. 2063 */ 2064 static void 2065 __perf_remove_from_context(struct perf_event *event, 2066 struct perf_cpu_context *cpuctx, 2067 struct perf_event_context *ctx, 2068 void *info) 2069 { 2070 unsigned long flags = (unsigned long)info; 2071 2072 if (ctx->is_active & EVENT_TIME) { 2073 update_context_time(ctx); 2074 update_cgrp_time_from_cpuctx(cpuctx); 2075 } 2076 2077 event_sched_out(event, cpuctx, ctx); 2078 if (flags & DETACH_GROUP) 2079 perf_group_detach(event); 2080 list_del_event(event, ctx); 2081 2082 if (!ctx->nr_events && ctx->is_active) { 2083 ctx->is_active = 0; 2084 if (ctx->task) { 2085 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2086 cpuctx->task_ctx = NULL; 2087 } 2088 } 2089 } 2090 2091 /* 2092 * Remove the event from a task's (or a CPU's) list of events. 2093 * 2094 * If event->ctx is a cloned context, callers must make sure that 2095 * every task struct that event->ctx->task could possibly point to 2096 * remains valid. This is OK when called from perf_release since 2097 * that only calls us on the top-level context, which can't be a clone. 2098 * When called from perf_event_exit_task, it's OK because the 2099 * context has been detached from its task. 2100 */ 2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2102 { 2103 struct perf_event_context *ctx = event->ctx; 2104 2105 lockdep_assert_held(&ctx->mutex); 2106 2107 event_function_call(event, __perf_remove_from_context, (void *)flags); 2108 2109 /* 2110 * The above event_function_call() can NO-OP when it hits 2111 * TASK_TOMBSTONE. In that case we must already have been detached 2112 * from the context (by perf_event_exit_event()) but the grouping 2113 * might still be in-tact. 2114 */ 2115 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2116 if ((flags & DETACH_GROUP) && 2117 (event->attach_state & PERF_ATTACH_GROUP)) { 2118 /* 2119 * Since in that case we cannot possibly be scheduled, simply 2120 * detach now. 2121 */ 2122 raw_spin_lock_irq(&ctx->lock); 2123 perf_group_detach(event); 2124 raw_spin_unlock_irq(&ctx->lock); 2125 } 2126 } 2127 2128 /* 2129 * Cross CPU call to disable a performance event 2130 */ 2131 static void __perf_event_disable(struct perf_event *event, 2132 struct perf_cpu_context *cpuctx, 2133 struct perf_event_context *ctx, 2134 void *info) 2135 { 2136 if (event->state < PERF_EVENT_STATE_INACTIVE) 2137 return; 2138 2139 if (ctx->is_active & EVENT_TIME) { 2140 update_context_time(ctx); 2141 update_cgrp_time_from_event(event); 2142 } 2143 2144 if (event == event->group_leader) 2145 group_sched_out(event, cpuctx, ctx); 2146 else 2147 event_sched_out(event, cpuctx, ctx); 2148 2149 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2150 } 2151 2152 /* 2153 * Disable an event. 2154 * 2155 * If event->ctx is a cloned context, callers must make sure that 2156 * every task struct that event->ctx->task could possibly point to 2157 * remains valid. This condition is satisifed when called through 2158 * perf_event_for_each_child or perf_event_for_each because they 2159 * hold the top-level event's child_mutex, so any descendant that 2160 * goes to exit will block in perf_event_exit_event(). 2161 * 2162 * When called from perf_pending_event it's OK because event->ctx 2163 * is the current context on this CPU and preemption is disabled, 2164 * hence we can't get into perf_event_task_sched_out for this context. 2165 */ 2166 static void _perf_event_disable(struct perf_event *event) 2167 { 2168 struct perf_event_context *ctx = event->ctx; 2169 2170 raw_spin_lock_irq(&ctx->lock); 2171 if (event->state <= PERF_EVENT_STATE_OFF) { 2172 raw_spin_unlock_irq(&ctx->lock); 2173 return; 2174 } 2175 raw_spin_unlock_irq(&ctx->lock); 2176 2177 event_function_call(event, __perf_event_disable, NULL); 2178 } 2179 2180 void perf_event_disable_local(struct perf_event *event) 2181 { 2182 event_function_local(event, __perf_event_disable, NULL); 2183 } 2184 2185 /* 2186 * Strictly speaking kernel users cannot create groups and therefore this 2187 * interface does not need the perf_event_ctx_lock() magic. 2188 */ 2189 void perf_event_disable(struct perf_event *event) 2190 { 2191 struct perf_event_context *ctx; 2192 2193 ctx = perf_event_ctx_lock(event); 2194 _perf_event_disable(event); 2195 perf_event_ctx_unlock(event, ctx); 2196 } 2197 EXPORT_SYMBOL_GPL(perf_event_disable); 2198 2199 void perf_event_disable_inatomic(struct perf_event *event) 2200 { 2201 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2202 /* can fail, see perf_pending_event_disable() */ 2203 irq_work_queue(&event->pending); 2204 } 2205 2206 static void perf_set_shadow_time(struct perf_event *event, 2207 struct perf_event_context *ctx) 2208 { 2209 /* 2210 * use the correct time source for the time snapshot 2211 * 2212 * We could get by without this by leveraging the 2213 * fact that to get to this function, the caller 2214 * has most likely already called update_context_time() 2215 * and update_cgrp_time_xx() and thus both timestamp 2216 * are identical (or very close). Given that tstamp is, 2217 * already adjusted for cgroup, we could say that: 2218 * tstamp - ctx->timestamp 2219 * is equivalent to 2220 * tstamp - cgrp->timestamp. 2221 * 2222 * Then, in perf_output_read(), the calculation would 2223 * work with no changes because: 2224 * - event is guaranteed scheduled in 2225 * - no scheduled out in between 2226 * - thus the timestamp would be the same 2227 * 2228 * But this is a bit hairy. 2229 * 2230 * So instead, we have an explicit cgroup call to remain 2231 * within the time time source all along. We believe it 2232 * is cleaner and simpler to understand. 2233 */ 2234 if (is_cgroup_event(event)) 2235 perf_cgroup_set_shadow_time(event, event->tstamp); 2236 else 2237 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2238 } 2239 2240 #define MAX_INTERRUPTS (~0ULL) 2241 2242 static void perf_log_throttle(struct perf_event *event, int enable); 2243 static void perf_log_itrace_start(struct perf_event *event); 2244 2245 static int 2246 event_sched_in(struct perf_event *event, 2247 struct perf_cpu_context *cpuctx, 2248 struct perf_event_context *ctx) 2249 { 2250 int ret = 0; 2251 2252 lockdep_assert_held(&ctx->lock); 2253 2254 if (event->state <= PERF_EVENT_STATE_OFF) 2255 return 0; 2256 2257 WRITE_ONCE(event->oncpu, smp_processor_id()); 2258 /* 2259 * Order event::oncpu write to happen before the ACTIVE state is 2260 * visible. This allows perf_event_{stop,read}() to observe the correct 2261 * ->oncpu if it sees ACTIVE. 2262 */ 2263 smp_wmb(); 2264 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2265 2266 /* 2267 * Unthrottle events, since we scheduled we might have missed several 2268 * ticks already, also for a heavily scheduling task there is little 2269 * guarantee it'll get a tick in a timely manner. 2270 */ 2271 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2272 perf_log_throttle(event, 1); 2273 event->hw.interrupts = 0; 2274 } 2275 2276 perf_pmu_disable(event->pmu); 2277 2278 perf_set_shadow_time(event, ctx); 2279 2280 perf_log_itrace_start(event); 2281 2282 if (event->pmu->add(event, PERF_EF_START)) { 2283 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2284 event->oncpu = -1; 2285 ret = -EAGAIN; 2286 goto out; 2287 } 2288 2289 if (!is_software_event(event)) 2290 cpuctx->active_oncpu++; 2291 if (!ctx->nr_active++) 2292 perf_event_ctx_activate(ctx); 2293 if (event->attr.freq && event->attr.sample_freq) 2294 ctx->nr_freq++; 2295 2296 if (event->attr.exclusive) 2297 cpuctx->exclusive = 1; 2298 2299 out: 2300 perf_pmu_enable(event->pmu); 2301 2302 return ret; 2303 } 2304 2305 static int 2306 group_sched_in(struct perf_event *group_event, 2307 struct perf_cpu_context *cpuctx, 2308 struct perf_event_context *ctx) 2309 { 2310 struct perf_event *event, *partial_group = NULL; 2311 struct pmu *pmu = ctx->pmu; 2312 2313 if (group_event->state == PERF_EVENT_STATE_OFF) 2314 return 0; 2315 2316 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2317 2318 if (event_sched_in(group_event, cpuctx, ctx)) { 2319 pmu->cancel_txn(pmu); 2320 perf_mux_hrtimer_restart(cpuctx); 2321 return -EAGAIN; 2322 } 2323 2324 /* 2325 * Schedule in siblings as one group (if any): 2326 */ 2327 for_each_sibling_event(event, group_event) { 2328 if (event_sched_in(event, cpuctx, ctx)) { 2329 partial_group = event; 2330 goto group_error; 2331 } 2332 } 2333 2334 if (!pmu->commit_txn(pmu)) 2335 return 0; 2336 2337 group_error: 2338 /* 2339 * Groups can be scheduled in as one unit only, so undo any 2340 * partial group before returning: 2341 * The events up to the failed event are scheduled out normally. 2342 */ 2343 for_each_sibling_event(event, group_event) { 2344 if (event == partial_group) 2345 break; 2346 2347 event_sched_out(event, cpuctx, ctx); 2348 } 2349 event_sched_out(group_event, cpuctx, ctx); 2350 2351 pmu->cancel_txn(pmu); 2352 2353 perf_mux_hrtimer_restart(cpuctx); 2354 2355 return -EAGAIN; 2356 } 2357 2358 /* 2359 * Work out whether we can put this event group on the CPU now. 2360 */ 2361 static int group_can_go_on(struct perf_event *event, 2362 struct perf_cpu_context *cpuctx, 2363 int can_add_hw) 2364 { 2365 /* 2366 * Groups consisting entirely of software events can always go on. 2367 */ 2368 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2369 return 1; 2370 /* 2371 * If an exclusive group is already on, no other hardware 2372 * events can go on. 2373 */ 2374 if (cpuctx->exclusive) 2375 return 0; 2376 /* 2377 * If this group is exclusive and there are already 2378 * events on the CPU, it can't go on. 2379 */ 2380 if (event->attr.exclusive && cpuctx->active_oncpu) 2381 return 0; 2382 /* 2383 * Otherwise, try to add it if all previous groups were able 2384 * to go on. 2385 */ 2386 return can_add_hw; 2387 } 2388 2389 static void add_event_to_ctx(struct perf_event *event, 2390 struct perf_event_context *ctx) 2391 { 2392 list_add_event(event, ctx); 2393 perf_group_attach(event); 2394 } 2395 2396 static void ctx_sched_out(struct perf_event_context *ctx, 2397 struct perf_cpu_context *cpuctx, 2398 enum event_type_t event_type); 2399 static void 2400 ctx_sched_in(struct perf_event_context *ctx, 2401 struct perf_cpu_context *cpuctx, 2402 enum event_type_t event_type, 2403 struct task_struct *task); 2404 2405 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2406 struct perf_event_context *ctx, 2407 enum event_type_t event_type) 2408 { 2409 if (!cpuctx->task_ctx) 2410 return; 2411 2412 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2413 return; 2414 2415 ctx_sched_out(ctx, cpuctx, event_type); 2416 } 2417 2418 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2419 struct perf_event_context *ctx, 2420 struct task_struct *task) 2421 { 2422 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2423 if (ctx) 2424 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2425 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2426 if (ctx) 2427 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2428 } 2429 2430 /* 2431 * We want to maintain the following priority of scheduling: 2432 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2433 * - task pinned (EVENT_PINNED) 2434 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2435 * - task flexible (EVENT_FLEXIBLE). 2436 * 2437 * In order to avoid unscheduling and scheduling back in everything every 2438 * time an event is added, only do it for the groups of equal priority and 2439 * below. 2440 * 2441 * This can be called after a batch operation on task events, in which case 2442 * event_type is a bit mask of the types of events involved. For CPU events, 2443 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2444 */ 2445 static void ctx_resched(struct perf_cpu_context *cpuctx, 2446 struct perf_event_context *task_ctx, 2447 enum event_type_t event_type) 2448 { 2449 enum event_type_t ctx_event_type; 2450 bool cpu_event = !!(event_type & EVENT_CPU); 2451 2452 /* 2453 * If pinned groups are involved, flexible groups also need to be 2454 * scheduled out. 2455 */ 2456 if (event_type & EVENT_PINNED) 2457 event_type |= EVENT_FLEXIBLE; 2458 2459 ctx_event_type = event_type & EVENT_ALL; 2460 2461 perf_pmu_disable(cpuctx->ctx.pmu); 2462 if (task_ctx) 2463 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2464 2465 /* 2466 * Decide which cpu ctx groups to schedule out based on the types 2467 * of events that caused rescheduling: 2468 * - EVENT_CPU: schedule out corresponding groups; 2469 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2470 * - otherwise, do nothing more. 2471 */ 2472 if (cpu_event) 2473 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2474 else if (ctx_event_type & EVENT_PINNED) 2475 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2476 2477 perf_event_sched_in(cpuctx, task_ctx, current); 2478 perf_pmu_enable(cpuctx->ctx.pmu); 2479 } 2480 2481 void perf_pmu_resched(struct pmu *pmu) 2482 { 2483 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2484 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2485 2486 perf_ctx_lock(cpuctx, task_ctx); 2487 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2488 perf_ctx_unlock(cpuctx, task_ctx); 2489 } 2490 2491 /* 2492 * Cross CPU call to install and enable a performance event 2493 * 2494 * Very similar to remote_function() + event_function() but cannot assume that 2495 * things like ctx->is_active and cpuctx->task_ctx are set. 2496 */ 2497 static int __perf_install_in_context(void *info) 2498 { 2499 struct perf_event *event = info; 2500 struct perf_event_context *ctx = event->ctx; 2501 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2502 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2503 bool reprogram = true; 2504 int ret = 0; 2505 2506 raw_spin_lock(&cpuctx->ctx.lock); 2507 if (ctx->task) { 2508 raw_spin_lock(&ctx->lock); 2509 task_ctx = ctx; 2510 2511 reprogram = (ctx->task == current); 2512 2513 /* 2514 * If the task is running, it must be running on this CPU, 2515 * otherwise we cannot reprogram things. 2516 * 2517 * If its not running, we don't care, ctx->lock will 2518 * serialize against it becoming runnable. 2519 */ 2520 if (task_curr(ctx->task) && !reprogram) { 2521 ret = -ESRCH; 2522 goto unlock; 2523 } 2524 2525 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2526 } else if (task_ctx) { 2527 raw_spin_lock(&task_ctx->lock); 2528 } 2529 2530 #ifdef CONFIG_CGROUP_PERF 2531 if (is_cgroup_event(event)) { 2532 /* 2533 * If the current cgroup doesn't match the event's 2534 * cgroup, we should not try to schedule it. 2535 */ 2536 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2537 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2538 event->cgrp->css.cgroup); 2539 } 2540 #endif 2541 2542 if (reprogram) { 2543 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2544 add_event_to_ctx(event, ctx); 2545 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2546 } else { 2547 add_event_to_ctx(event, ctx); 2548 } 2549 2550 unlock: 2551 perf_ctx_unlock(cpuctx, task_ctx); 2552 2553 return ret; 2554 } 2555 2556 static bool exclusive_event_installable(struct perf_event *event, 2557 struct perf_event_context *ctx); 2558 2559 /* 2560 * Attach a performance event to a context. 2561 * 2562 * Very similar to event_function_call, see comment there. 2563 */ 2564 static void 2565 perf_install_in_context(struct perf_event_context *ctx, 2566 struct perf_event *event, 2567 int cpu) 2568 { 2569 struct task_struct *task = READ_ONCE(ctx->task); 2570 2571 lockdep_assert_held(&ctx->mutex); 2572 2573 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2574 2575 if (event->cpu != -1) 2576 event->cpu = cpu; 2577 2578 /* 2579 * Ensures that if we can observe event->ctx, both the event and ctx 2580 * will be 'complete'. See perf_iterate_sb_cpu(). 2581 */ 2582 smp_store_release(&event->ctx, ctx); 2583 2584 if (!task) { 2585 cpu_function_call(cpu, __perf_install_in_context, event); 2586 return; 2587 } 2588 2589 /* 2590 * Should not happen, we validate the ctx is still alive before calling. 2591 */ 2592 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2593 return; 2594 2595 /* 2596 * Installing events is tricky because we cannot rely on ctx->is_active 2597 * to be set in case this is the nr_events 0 -> 1 transition. 2598 * 2599 * Instead we use task_curr(), which tells us if the task is running. 2600 * However, since we use task_curr() outside of rq::lock, we can race 2601 * against the actual state. This means the result can be wrong. 2602 * 2603 * If we get a false positive, we retry, this is harmless. 2604 * 2605 * If we get a false negative, things are complicated. If we are after 2606 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2607 * value must be correct. If we're before, it doesn't matter since 2608 * perf_event_context_sched_in() will program the counter. 2609 * 2610 * However, this hinges on the remote context switch having observed 2611 * our task->perf_event_ctxp[] store, such that it will in fact take 2612 * ctx::lock in perf_event_context_sched_in(). 2613 * 2614 * We do this by task_function_call(), if the IPI fails to hit the task 2615 * we know any future context switch of task must see the 2616 * perf_event_ctpx[] store. 2617 */ 2618 2619 /* 2620 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2621 * task_cpu() load, such that if the IPI then does not find the task 2622 * running, a future context switch of that task must observe the 2623 * store. 2624 */ 2625 smp_mb(); 2626 again: 2627 if (!task_function_call(task, __perf_install_in_context, event)) 2628 return; 2629 2630 raw_spin_lock_irq(&ctx->lock); 2631 task = ctx->task; 2632 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2633 /* 2634 * Cannot happen because we already checked above (which also 2635 * cannot happen), and we hold ctx->mutex, which serializes us 2636 * against perf_event_exit_task_context(). 2637 */ 2638 raw_spin_unlock_irq(&ctx->lock); 2639 return; 2640 } 2641 /* 2642 * If the task is not running, ctx->lock will avoid it becoming so, 2643 * thus we can safely install the event. 2644 */ 2645 if (task_curr(task)) { 2646 raw_spin_unlock_irq(&ctx->lock); 2647 goto again; 2648 } 2649 add_event_to_ctx(event, ctx); 2650 raw_spin_unlock_irq(&ctx->lock); 2651 } 2652 2653 /* 2654 * Cross CPU call to enable a performance event 2655 */ 2656 static void __perf_event_enable(struct perf_event *event, 2657 struct perf_cpu_context *cpuctx, 2658 struct perf_event_context *ctx, 2659 void *info) 2660 { 2661 struct perf_event *leader = event->group_leader; 2662 struct perf_event_context *task_ctx; 2663 2664 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2665 event->state <= PERF_EVENT_STATE_ERROR) 2666 return; 2667 2668 if (ctx->is_active) 2669 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2670 2671 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2672 2673 if (!ctx->is_active) 2674 return; 2675 2676 if (!event_filter_match(event)) { 2677 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2678 return; 2679 } 2680 2681 /* 2682 * If the event is in a group and isn't the group leader, 2683 * then don't put it on unless the group is on. 2684 */ 2685 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2686 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2687 return; 2688 } 2689 2690 task_ctx = cpuctx->task_ctx; 2691 if (ctx->task) 2692 WARN_ON_ONCE(task_ctx != ctx); 2693 2694 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2695 } 2696 2697 /* 2698 * Enable an event. 2699 * 2700 * If event->ctx is a cloned context, callers must make sure that 2701 * every task struct that event->ctx->task could possibly point to 2702 * remains valid. This condition is satisfied when called through 2703 * perf_event_for_each_child or perf_event_for_each as described 2704 * for perf_event_disable. 2705 */ 2706 static void _perf_event_enable(struct perf_event *event) 2707 { 2708 struct perf_event_context *ctx = event->ctx; 2709 2710 raw_spin_lock_irq(&ctx->lock); 2711 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2712 event->state < PERF_EVENT_STATE_ERROR) { 2713 raw_spin_unlock_irq(&ctx->lock); 2714 return; 2715 } 2716 2717 /* 2718 * If the event is in error state, clear that first. 2719 * 2720 * That way, if we see the event in error state below, we know that it 2721 * has gone back into error state, as distinct from the task having 2722 * been scheduled away before the cross-call arrived. 2723 */ 2724 if (event->state == PERF_EVENT_STATE_ERROR) 2725 event->state = PERF_EVENT_STATE_OFF; 2726 raw_spin_unlock_irq(&ctx->lock); 2727 2728 event_function_call(event, __perf_event_enable, NULL); 2729 } 2730 2731 /* 2732 * See perf_event_disable(); 2733 */ 2734 void perf_event_enable(struct perf_event *event) 2735 { 2736 struct perf_event_context *ctx; 2737 2738 ctx = perf_event_ctx_lock(event); 2739 _perf_event_enable(event); 2740 perf_event_ctx_unlock(event, ctx); 2741 } 2742 EXPORT_SYMBOL_GPL(perf_event_enable); 2743 2744 struct stop_event_data { 2745 struct perf_event *event; 2746 unsigned int restart; 2747 }; 2748 2749 static int __perf_event_stop(void *info) 2750 { 2751 struct stop_event_data *sd = info; 2752 struct perf_event *event = sd->event; 2753 2754 /* if it's already INACTIVE, do nothing */ 2755 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2756 return 0; 2757 2758 /* matches smp_wmb() in event_sched_in() */ 2759 smp_rmb(); 2760 2761 /* 2762 * There is a window with interrupts enabled before we get here, 2763 * so we need to check again lest we try to stop another CPU's event. 2764 */ 2765 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2766 return -EAGAIN; 2767 2768 event->pmu->stop(event, PERF_EF_UPDATE); 2769 2770 /* 2771 * May race with the actual stop (through perf_pmu_output_stop()), 2772 * but it is only used for events with AUX ring buffer, and such 2773 * events will refuse to restart because of rb::aux_mmap_count==0, 2774 * see comments in perf_aux_output_begin(). 2775 * 2776 * Since this is happening on an event-local CPU, no trace is lost 2777 * while restarting. 2778 */ 2779 if (sd->restart) 2780 event->pmu->start(event, 0); 2781 2782 return 0; 2783 } 2784 2785 static int perf_event_stop(struct perf_event *event, int restart) 2786 { 2787 struct stop_event_data sd = { 2788 .event = event, 2789 .restart = restart, 2790 }; 2791 int ret = 0; 2792 2793 do { 2794 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2795 return 0; 2796 2797 /* matches smp_wmb() in event_sched_in() */ 2798 smp_rmb(); 2799 2800 /* 2801 * We only want to restart ACTIVE events, so if the event goes 2802 * inactive here (event->oncpu==-1), there's nothing more to do; 2803 * fall through with ret==-ENXIO. 2804 */ 2805 ret = cpu_function_call(READ_ONCE(event->oncpu), 2806 __perf_event_stop, &sd); 2807 } while (ret == -EAGAIN); 2808 2809 return ret; 2810 } 2811 2812 /* 2813 * In order to contain the amount of racy and tricky in the address filter 2814 * configuration management, it is a two part process: 2815 * 2816 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2817 * we update the addresses of corresponding vmas in 2818 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 2819 * (p2) when an event is scheduled in (pmu::add), it calls 2820 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2821 * if the generation has changed since the previous call. 2822 * 2823 * If (p1) happens while the event is active, we restart it to force (p2). 2824 * 2825 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2826 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2827 * ioctl; 2828 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2829 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2830 * for reading; 2831 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2832 * of exec. 2833 */ 2834 void perf_event_addr_filters_sync(struct perf_event *event) 2835 { 2836 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2837 2838 if (!has_addr_filter(event)) 2839 return; 2840 2841 raw_spin_lock(&ifh->lock); 2842 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2843 event->pmu->addr_filters_sync(event); 2844 event->hw.addr_filters_gen = event->addr_filters_gen; 2845 } 2846 raw_spin_unlock(&ifh->lock); 2847 } 2848 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2849 2850 static int _perf_event_refresh(struct perf_event *event, int refresh) 2851 { 2852 /* 2853 * not supported on inherited events 2854 */ 2855 if (event->attr.inherit || !is_sampling_event(event)) 2856 return -EINVAL; 2857 2858 atomic_add(refresh, &event->event_limit); 2859 _perf_event_enable(event); 2860 2861 return 0; 2862 } 2863 2864 /* 2865 * See perf_event_disable() 2866 */ 2867 int perf_event_refresh(struct perf_event *event, int refresh) 2868 { 2869 struct perf_event_context *ctx; 2870 int ret; 2871 2872 ctx = perf_event_ctx_lock(event); 2873 ret = _perf_event_refresh(event, refresh); 2874 perf_event_ctx_unlock(event, ctx); 2875 2876 return ret; 2877 } 2878 EXPORT_SYMBOL_GPL(perf_event_refresh); 2879 2880 static int perf_event_modify_breakpoint(struct perf_event *bp, 2881 struct perf_event_attr *attr) 2882 { 2883 int err; 2884 2885 _perf_event_disable(bp); 2886 2887 err = modify_user_hw_breakpoint_check(bp, attr, true); 2888 2889 if (!bp->attr.disabled) 2890 _perf_event_enable(bp); 2891 2892 return err; 2893 } 2894 2895 static int perf_event_modify_attr(struct perf_event *event, 2896 struct perf_event_attr *attr) 2897 { 2898 if (event->attr.type != attr->type) 2899 return -EINVAL; 2900 2901 switch (event->attr.type) { 2902 case PERF_TYPE_BREAKPOINT: 2903 return perf_event_modify_breakpoint(event, attr); 2904 default: 2905 /* Place holder for future additions. */ 2906 return -EOPNOTSUPP; 2907 } 2908 } 2909 2910 static void ctx_sched_out(struct perf_event_context *ctx, 2911 struct perf_cpu_context *cpuctx, 2912 enum event_type_t event_type) 2913 { 2914 struct perf_event *event, *tmp; 2915 int is_active = ctx->is_active; 2916 2917 lockdep_assert_held(&ctx->lock); 2918 2919 if (likely(!ctx->nr_events)) { 2920 /* 2921 * See __perf_remove_from_context(). 2922 */ 2923 WARN_ON_ONCE(ctx->is_active); 2924 if (ctx->task) 2925 WARN_ON_ONCE(cpuctx->task_ctx); 2926 return; 2927 } 2928 2929 ctx->is_active &= ~event_type; 2930 if (!(ctx->is_active & EVENT_ALL)) 2931 ctx->is_active = 0; 2932 2933 if (ctx->task) { 2934 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2935 if (!ctx->is_active) 2936 cpuctx->task_ctx = NULL; 2937 } 2938 2939 /* 2940 * Always update time if it was set; not only when it changes. 2941 * Otherwise we can 'forget' to update time for any but the last 2942 * context we sched out. For example: 2943 * 2944 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2945 * ctx_sched_out(.event_type = EVENT_PINNED) 2946 * 2947 * would only update time for the pinned events. 2948 */ 2949 if (is_active & EVENT_TIME) { 2950 /* update (and stop) ctx time */ 2951 update_context_time(ctx); 2952 update_cgrp_time_from_cpuctx(cpuctx); 2953 } 2954 2955 is_active ^= ctx->is_active; /* changed bits */ 2956 2957 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2958 return; 2959 2960 /* 2961 * If we had been multiplexing, no rotations are necessary, now no events 2962 * are active. 2963 */ 2964 ctx->rotate_necessary = 0; 2965 2966 perf_pmu_disable(ctx->pmu); 2967 if (is_active & EVENT_PINNED) { 2968 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 2969 group_sched_out(event, cpuctx, ctx); 2970 } 2971 2972 if (is_active & EVENT_FLEXIBLE) { 2973 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 2974 group_sched_out(event, cpuctx, ctx); 2975 } 2976 perf_pmu_enable(ctx->pmu); 2977 } 2978 2979 /* 2980 * Test whether two contexts are equivalent, i.e. whether they have both been 2981 * cloned from the same version of the same context. 2982 * 2983 * Equivalence is measured using a generation number in the context that is 2984 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2985 * and list_del_event(). 2986 */ 2987 static int context_equiv(struct perf_event_context *ctx1, 2988 struct perf_event_context *ctx2) 2989 { 2990 lockdep_assert_held(&ctx1->lock); 2991 lockdep_assert_held(&ctx2->lock); 2992 2993 /* Pinning disables the swap optimization */ 2994 if (ctx1->pin_count || ctx2->pin_count) 2995 return 0; 2996 2997 /* If ctx1 is the parent of ctx2 */ 2998 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2999 return 1; 3000 3001 /* If ctx2 is the parent of ctx1 */ 3002 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3003 return 1; 3004 3005 /* 3006 * If ctx1 and ctx2 have the same parent; we flatten the parent 3007 * hierarchy, see perf_event_init_context(). 3008 */ 3009 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3010 ctx1->parent_gen == ctx2->parent_gen) 3011 return 1; 3012 3013 /* Unmatched */ 3014 return 0; 3015 } 3016 3017 static void __perf_event_sync_stat(struct perf_event *event, 3018 struct perf_event *next_event) 3019 { 3020 u64 value; 3021 3022 if (!event->attr.inherit_stat) 3023 return; 3024 3025 /* 3026 * Update the event value, we cannot use perf_event_read() 3027 * because we're in the middle of a context switch and have IRQs 3028 * disabled, which upsets smp_call_function_single(), however 3029 * we know the event must be on the current CPU, therefore we 3030 * don't need to use it. 3031 */ 3032 if (event->state == PERF_EVENT_STATE_ACTIVE) 3033 event->pmu->read(event); 3034 3035 perf_event_update_time(event); 3036 3037 /* 3038 * In order to keep per-task stats reliable we need to flip the event 3039 * values when we flip the contexts. 3040 */ 3041 value = local64_read(&next_event->count); 3042 value = local64_xchg(&event->count, value); 3043 local64_set(&next_event->count, value); 3044 3045 swap(event->total_time_enabled, next_event->total_time_enabled); 3046 swap(event->total_time_running, next_event->total_time_running); 3047 3048 /* 3049 * Since we swizzled the values, update the user visible data too. 3050 */ 3051 perf_event_update_userpage(event); 3052 perf_event_update_userpage(next_event); 3053 } 3054 3055 static void perf_event_sync_stat(struct perf_event_context *ctx, 3056 struct perf_event_context *next_ctx) 3057 { 3058 struct perf_event *event, *next_event; 3059 3060 if (!ctx->nr_stat) 3061 return; 3062 3063 update_context_time(ctx); 3064 3065 event = list_first_entry(&ctx->event_list, 3066 struct perf_event, event_entry); 3067 3068 next_event = list_first_entry(&next_ctx->event_list, 3069 struct perf_event, event_entry); 3070 3071 while (&event->event_entry != &ctx->event_list && 3072 &next_event->event_entry != &next_ctx->event_list) { 3073 3074 __perf_event_sync_stat(event, next_event); 3075 3076 event = list_next_entry(event, event_entry); 3077 next_event = list_next_entry(next_event, event_entry); 3078 } 3079 } 3080 3081 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3082 struct task_struct *next) 3083 { 3084 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3085 struct perf_event_context *next_ctx; 3086 struct perf_event_context *parent, *next_parent; 3087 struct perf_cpu_context *cpuctx; 3088 int do_switch = 1; 3089 3090 if (likely(!ctx)) 3091 return; 3092 3093 cpuctx = __get_cpu_context(ctx); 3094 if (!cpuctx->task_ctx) 3095 return; 3096 3097 rcu_read_lock(); 3098 next_ctx = next->perf_event_ctxp[ctxn]; 3099 if (!next_ctx) 3100 goto unlock; 3101 3102 parent = rcu_dereference(ctx->parent_ctx); 3103 next_parent = rcu_dereference(next_ctx->parent_ctx); 3104 3105 /* If neither context have a parent context; they cannot be clones. */ 3106 if (!parent && !next_parent) 3107 goto unlock; 3108 3109 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3110 /* 3111 * Looks like the two contexts are clones, so we might be 3112 * able to optimize the context switch. We lock both 3113 * contexts and check that they are clones under the 3114 * lock (including re-checking that neither has been 3115 * uncloned in the meantime). It doesn't matter which 3116 * order we take the locks because no other cpu could 3117 * be trying to lock both of these tasks. 3118 */ 3119 raw_spin_lock(&ctx->lock); 3120 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3121 if (context_equiv(ctx, next_ctx)) { 3122 WRITE_ONCE(ctx->task, next); 3123 WRITE_ONCE(next_ctx->task, task); 3124 3125 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3126 3127 /* 3128 * RCU_INIT_POINTER here is safe because we've not 3129 * modified the ctx and the above modification of 3130 * ctx->task and ctx->task_ctx_data are immaterial 3131 * since those values are always verified under 3132 * ctx->lock which we're now holding. 3133 */ 3134 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3135 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3136 3137 do_switch = 0; 3138 3139 perf_event_sync_stat(ctx, next_ctx); 3140 } 3141 raw_spin_unlock(&next_ctx->lock); 3142 raw_spin_unlock(&ctx->lock); 3143 } 3144 unlock: 3145 rcu_read_unlock(); 3146 3147 if (do_switch) { 3148 raw_spin_lock(&ctx->lock); 3149 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3150 raw_spin_unlock(&ctx->lock); 3151 } 3152 } 3153 3154 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3155 3156 void perf_sched_cb_dec(struct pmu *pmu) 3157 { 3158 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3159 3160 this_cpu_dec(perf_sched_cb_usages); 3161 3162 if (!--cpuctx->sched_cb_usage) 3163 list_del(&cpuctx->sched_cb_entry); 3164 } 3165 3166 3167 void perf_sched_cb_inc(struct pmu *pmu) 3168 { 3169 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3170 3171 if (!cpuctx->sched_cb_usage++) 3172 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3173 3174 this_cpu_inc(perf_sched_cb_usages); 3175 } 3176 3177 /* 3178 * This function provides the context switch callback to the lower code 3179 * layer. It is invoked ONLY when the context switch callback is enabled. 3180 * 3181 * This callback is relevant even to per-cpu events; for example multi event 3182 * PEBS requires this to provide PID/TID information. This requires we flush 3183 * all queued PEBS records before we context switch to a new task. 3184 */ 3185 static void perf_pmu_sched_task(struct task_struct *prev, 3186 struct task_struct *next, 3187 bool sched_in) 3188 { 3189 struct perf_cpu_context *cpuctx; 3190 struct pmu *pmu; 3191 3192 if (prev == next) 3193 return; 3194 3195 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3196 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3197 3198 if (WARN_ON_ONCE(!pmu->sched_task)) 3199 continue; 3200 3201 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3202 perf_pmu_disable(pmu); 3203 3204 pmu->sched_task(cpuctx->task_ctx, sched_in); 3205 3206 perf_pmu_enable(pmu); 3207 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3208 } 3209 } 3210 3211 static void perf_event_switch(struct task_struct *task, 3212 struct task_struct *next_prev, bool sched_in); 3213 3214 #define for_each_task_context_nr(ctxn) \ 3215 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3216 3217 /* 3218 * Called from scheduler to remove the events of the current task, 3219 * with interrupts disabled. 3220 * 3221 * We stop each event and update the event value in event->count. 3222 * 3223 * This does not protect us against NMI, but disable() 3224 * sets the disabled bit in the control field of event _before_ 3225 * accessing the event control register. If a NMI hits, then it will 3226 * not restart the event. 3227 */ 3228 void __perf_event_task_sched_out(struct task_struct *task, 3229 struct task_struct *next) 3230 { 3231 int ctxn; 3232 3233 if (__this_cpu_read(perf_sched_cb_usages)) 3234 perf_pmu_sched_task(task, next, false); 3235 3236 if (atomic_read(&nr_switch_events)) 3237 perf_event_switch(task, next, false); 3238 3239 for_each_task_context_nr(ctxn) 3240 perf_event_context_sched_out(task, ctxn, next); 3241 3242 /* 3243 * if cgroup events exist on this CPU, then we need 3244 * to check if we have to switch out PMU state. 3245 * cgroup event are system-wide mode only 3246 */ 3247 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3248 perf_cgroup_sched_out(task, next); 3249 } 3250 3251 /* 3252 * Called with IRQs disabled 3253 */ 3254 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3255 enum event_type_t event_type) 3256 { 3257 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3258 } 3259 3260 static int visit_groups_merge(struct perf_event_groups *groups, int cpu, 3261 int (*func)(struct perf_event *, void *), void *data) 3262 { 3263 struct perf_event **evt, *evt1, *evt2; 3264 int ret; 3265 3266 evt1 = perf_event_groups_first(groups, -1); 3267 evt2 = perf_event_groups_first(groups, cpu); 3268 3269 while (evt1 || evt2) { 3270 if (evt1 && evt2) { 3271 if (evt1->group_index < evt2->group_index) 3272 evt = &evt1; 3273 else 3274 evt = &evt2; 3275 } else if (evt1) { 3276 evt = &evt1; 3277 } else { 3278 evt = &evt2; 3279 } 3280 3281 ret = func(*evt, data); 3282 if (ret) 3283 return ret; 3284 3285 *evt = perf_event_groups_next(*evt); 3286 } 3287 3288 return 0; 3289 } 3290 3291 struct sched_in_data { 3292 struct perf_event_context *ctx; 3293 struct perf_cpu_context *cpuctx; 3294 int can_add_hw; 3295 }; 3296 3297 static int pinned_sched_in(struct perf_event *event, void *data) 3298 { 3299 struct sched_in_data *sid = data; 3300 3301 if (event->state <= PERF_EVENT_STATE_OFF) 3302 return 0; 3303 3304 if (!event_filter_match(event)) 3305 return 0; 3306 3307 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3308 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3309 list_add_tail(&event->active_list, &sid->ctx->pinned_active); 3310 } 3311 3312 /* 3313 * If this pinned group hasn't been scheduled, 3314 * put it in error state. 3315 */ 3316 if (event->state == PERF_EVENT_STATE_INACTIVE) 3317 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3318 3319 return 0; 3320 } 3321 3322 static int flexible_sched_in(struct perf_event *event, void *data) 3323 { 3324 struct sched_in_data *sid = data; 3325 3326 if (event->state <= PERF_EVENT_STATE_OFF) 3327 return 0; 3328 3329 if (!event_filter_match(event)) 3330 return 0; 3331 3332 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3333 int ret = group_sched_in(event, sid->cpuctx, sid->ctx); 3334 if (ret) { 3335 sid->can_add_hw = 0; 3336 sid->ctx->rotate_necessary = 1; 3337 return 0; 3338 } 3339 list_add_tail(&event->active_list, &sid->ctx->flexible_active); 3340 } 3341 3342 return 0; 3343 } 3344 3345 static void 3346 ctx_pinned_sched_in(struct perf_event_context *ctx, 3347 struct perf_cpu_context *cpuctx) 3348 { 3349 struct sched_in_data sid = { 3350 .ctx = ctx, 3351 .cpuctx = cpuctx, 3352 .can_add_hw = 1, 3353 }; 3354 3355 visit_groups_merge(&ctx->pinned_groups, 3356 smp_processor_id(), 3357 pinned_sched_in, &sid); 3358 } 3359 3360 static void 3361 ctx_flexible_sched_in(struct perf_event_context *ctx, 3362 struct perf_cpu_context *cpuctx) 3363 { 3364 struct sched_in_data sid = { 3365 .ctx = ctx, 3366 .cpuctx = cpuctx, 3367 .can_add_hw = 1, 3368 }; 3369 3370 visit_groups_merge(&ctx->flexible_groups, 3371 smp_processor_id(), 3372 flexible_sched_in, &sid); 3373 } 3374 3375 static void 3376 ctx_sched_in(struct perf_event_context *ctx, 3377 struct perf_cpu_context *cpuctx, 3378 enum event_type_t event_type, 3379 struct task_struct *task) 3380 { 3381 int is_active = ctx->is_active; 3382 u64 now; 3383 3384 lockdep_assert_held(&ctx->lock); 3385 3386 if (likely(!ctx->nr_events)) 3387 return; 3388 3389 ctx->is_active |= (event_type | EVENT_TIME); 3390 if (ctx->task) { 3391 if (!is_active) 3392 cpuctx->task_ctx = ctx; 3393 else 3394 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3395 } 3396 3397 is_active ^= ctx->is_active; /* changed bits */ 3398 3399 if (is_active & EVENT_TIME) { 3400 /* start ctx time */ 3401 now = perf_clock(); 3402 ctx->timestamp = now; 3403 perf_cgroup_set_timestamp(task, ctx); 3404 } 3405 3406 /* 3407 * First go through the list and put on any pinned groups 3408 * in order to give them the best chance of going on. 3409 */ 3410 if (is_active & EVENT_PINNED) 3411 ctx_pinned_sched_in(ctx, cpuctx); 3412 3413 /* Then walk through the lower prio flexible groups */ 3414 if (is_active & EVENT_FLEXIBLE) 3415 ctx_flexible_sched_in(ctx, cpuctx); 3416 } 3417 3418 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3419 enum event_type_t event_type, 3420 struct task_struct *task) 3421 { 3422 struct perf_event_context *ctx = &cpuctx->ctx; 3423 3424 ctx_sched_in(ctx, cpuctx, event_type, task); 3425 } 3426 3427 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3428 struct task_struct *task) 3429 { 3430 struct perf_cpu_context *cpuctx; 3431 3432 cpuctx = __get_cpu_context(ctx); 3433 if (cpuctx->task_ctx == ctx) 3434 return; 3435 3436 perf_ctx_lock(cpuctx, ctx); 3437 /* 3438 * We must check ctx->nr_events while holding ctx->lock, such 3439 * that we serialize against perf_install_in_context(). 3440 */ 3441 if (!ctx->nr_events) 3442 goto unlock; 3443 3444 perf_pmu_disable(ctx->pmu); 3445 /* 3446 * We want to keep the following priority order: 3447 * cpu pinned (that don't need to move), task pinned, 3448 * cpu flexible, task flexible. 3449 * 3450 * However, if task's ctx is not carrying any pinned 3451 * events, no need to flip the cpuctx's events around. 3452 */ 3453 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3454 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3455 perf_event_sched_in(cpuctx, ctx, task); 3456 perf_pmu_enable(ctx->pmu); 3457 3458 unlock: 3459 perf_ctx_unlock(cpuctx, ctx); 3460 } 3461 3462 /* 3463 * Called from scheduler to add the events of the current task 3464 * with interrupts disabled. 3465 * 3466 * We restore the event value and then enable it. 3467 * 3468 * This does not protect us against NMI, but enable() 3469 * sets the enabled bit in the control field of event _before_ 3470 * accessing the event control register. If a NMI hits, then it will 3471 * keep the event running. 3472 */ 3473 void __perf_event_task_sched_in(struct task_struct *prev, 3474 struct task_struct *task) 3475 { 3476 struct perf_event_context *ctx; 3477 int ctxn; 3478 3479 /* 3480 * If cgroup events exist on this CPU, then we need to check if we have 3481 * to switch in PMU state; cgroup event are system-wide mode only. 3482 * 3483 * Since cgroup events are CPU events, we must schedule these in before 3484 * we schedule in the task events. 3485 */ 3486 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3487 perf_cgroup_sched_in(prev, task); 3488 3489 for_each_task_context_nr(ctxn) { 3490 ctx = task->perf_event_ctxp[ctxn]; 3491 if (likely(!ctx)) 3492 continue; 3493 3494 perf_event_context_sched_in(ctx, task); 3495 } 3496 3497 if (atomic_read(&nr_switch_events)) 3498 perf_event_switch(task, prev, true); 3499 3500 if (__this_cpu_read(perf_sched_cb_usages)) 3501 perf_pmu_sched_task(prev, task, true); 3502 } 3503 3504 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3505 { 3506 u64 frequency = event->attr.sample_freq; 3507 u64 sec = NSEC_PER_SEC; 3508 u64 divisor, dividend; 3509 3510 int count_fls, nsec_fls, frequency_fls, sec_fls; 3511 3512 count_fls = fls64(count); 3513 nsec_fls = fls64(nsec); 3514 frequency_fls = fls64(frequency); 3515 sec_fls = 30; 3516 3517 /* 3518 * We got @count in @nsec, with a target of sample_freq HZ 3519 * the target period becomes: 3520 * 3521 * @count * 10^9 3522 * period = ------------------- 3523 * @nsec * sample_freq 3524 * 3525 */ 3526 3527 /* 3528 * Reduce accuracy by one bit such that @a and @b converge 3529 * to a similar magnitude. 3530 */ 3531 #define REDUCE_FLS(a, b) \ 3532 do { \ 3533 if (a##_fls > b##_fls) { \ 3534 a >>= 1; \ 3535 a##_fls--; \ 3536 } else { \ 3537 b >>= 1; \ 3538 b##_fls--; \ 3539 } \ 3540 } while (0) 3541 3542 /* 3543 * Reduce accuracy until either term fits in a u64, then proceed with 3544 * the other, so that finally we can do a u64/u64 division. 3545 */ 3546 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3547 REDUCE_FLS(nsec, frequency); 3548 REDUCE_FLS(sec, count); 3549 } 3550 3551 if (count_fls + sec_fls > 64) { 3552 divisor = nsec * frequency; 3553 3554 while (count_fls + sec_fls > 64) { 3555 REDUCE_FLS(count, sec); 3556 divisor >>= 1; 3557 } 3558 3559 dividend = count * sec; 3560 } else { 3561 dividend = count * sec; 3562 3563 while (nsec_fls + frequency_fls > 64) { 3564 REDUCE_FLS(nsec, frequency); 3565 dividend >>= 1; 3566 } 3567 3568 divisor = nsec * frequency; 3569 } 3570 3571 if (!divisor) 3572 return dividend; 3573 3574 return div64_u64(dividend, divisor); 3575 } 3576 3577 static DEFINE_PER_CPU(int, perf_throttled_count); 3578 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3579 3580 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3581 { 3582 struct hw_perf_event *hwc = &event->hw; 3583 s64 period, sample_period; 3584 s64 delta; 3585 3586 period = perf_calculate_period(event, nsec, count); 3587 3588 delta = (s64)(period - hwc->sample_period); 3589 delta = (delta + 7) / 8; /* low pass filter */ 3590 3591 sample_period = hwc->sample_period + delta; 3592 3593 if (!sample_period) 3594 sample_period = 1; 3595 3596 hwc->sample_period = sample_period; 3597 3598 if (local64_read(&hwc->period_left) > 8*sample_period) { 3599 if (disable) 3600 event->pmu->stop(event, PERF_EF_UPDATE); 3601 3602 local64_set(&hwc->period_left, 0); 3603 3604 if (disable) 3605 event->pmu->start(event, PERF_EF_RELOAD); 3606 } 3607 } 3608 3609 /* 3610 * combine freq adjustment with unthrottling to avoid two passes over the 3611 * events. At the same time, make sure, having freq events does not change 3612 * the rate of unthrottling as that would introduce bias. 3613 */ 3614 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3615 int needs_unthr) 3616 { 3617 struct perf_event *event; 3618 struct hw_perf_event *hwc; 3619 u64 now, period = TICK_NSEC; 3620 s64 delta; 3621 3622 /* 3623 * only need to iterate over all events iff: 3624 * - context have events in frequency mode (needs freq adjust) 3625 * - there are events to unthrottle on this cpu 3626 */ 3627 if (!(ctx->nr_freq || needs_unthr)) 3628 return; 3629 3630 raw_spin_lock(&ctx->lock); 3631 perf_pmu_disable(ctx->pmu); 3632 3633 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3634 if (event->state != PERF_EVENT_STATE_ACTIVE) 3635 continue; 3636 3637 if (!event_filter_match(event)) 3638 continue; 3639 3640 perf_pmu_disable(event->pmu); 3641 3642 hwc = &event->hw; 3643 3644 if (hwc->interrupts == MAX_INTERRUPTS) { 3645 hwc->interrupts = 0; 3646 perf_log_throttle(event, 1); 3647 event->pmu->start(event, 0); 3648 } 3649 3650 if (!event->attr.freq || !event->attr.sample_freq) 3651 goto next; 3652 3653 /* 3654 * stop the event and update event->count 3655 */ 3656 event->pmu->stop(event, PERF_EF_UPDATE); 3657 3658 now = local64_read(&event->count); 3659 delta = now - hwc->freq_count_stamp; 3660 hwc->freq_count_stamp = now; 3661 3662 /* 3663 * restart the event 3664 * reload only if value has changed 3665 * we have stopped the event so tell that 3666 * to perf_adjust_period() to avoid stopping it 3667 * twice. 3668 */ 3669 if (delta > 0) 3670 perf_adjust_period(event, period, delta, false); 3671 3672 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3673 next: 3674 perf_pmu_enable(event->pmu); 3675 } 3676 3677 perf_pmu_enable(ctx->pmu); 3678 raw_spin_unlock(&ctx->lock); 3679 } 3680 3681 /* 3682 * Move @event to the tail of the @ctx's elegible events. 3683 */ 3684 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3685 { 3686 /* 3687 * Rotate the first entry last of non-pinned groups. Rotation might be 3688 * disabled by the inheritance code. 3689 */ 3690 if (ctx->rotate_disable) 3691 return; 3692 3693 perf_event_groups_delete(&ctx->flexible_groups, event); 3694 perf_event_groups_insert(&ctx->flexible_groups, event); 3695 } 3696 3697 static inline struct perf_event * 3698 ctx_first_active(struct perf_event_context *ctx) 3699 { 3700 return list_first_entry_or_null(&ctx->flexible_active, 3701 struct perf_event, active_list); 3702 } 3703 3704 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 3705 { 3706 struct perf_event *cpu_event = NULL, *task_event = NULL; 3707 struct perf_event_context *task_ctx = NULL; 3708 int cpu_rotate, task_rotate; 3709 3710 /* 3711 * Since we run this from IRQ context, nobody can install new 3712 * events, thus the event count values are stable. 3713 */ 3714 3715 cpu_rotate = cpuctx->ctx.rotate_necessary; 3716 task_ctx = cpuctx->task_ctx; 3717 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 3718 3719 if (!(cpu_rotate || task_rotate)) 3720 return false; 3721 3722 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3723 perf_pmu_disable(cpuctx->ctx.pmu); 3724 3725 if (task_rotate) 3726 task_event = ctx_first_active(task_ctx); 3727 if (cpu_rotate) 3728 cpu_event = ctx_first_active(&cpuctx->ctx); 3729 3730 /* 3731 * As per the order given at ctx_resched() first 'pop' task flexible 3732 * and then, if needed CPU flexible. 3733 */ 3734 if (task_event || (task_ctx && cpu_event)) 3735 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 3736 if (cpu_event) 3737 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3738 3739 if (task_event) 3740 rotate_ctx(task_ctx, task_event); 3741 if (cpu_event) 3742 rotate_ctx(&cpuctx->ctx, cpu_event); 3743 3744 perf_event_sched_in(cpuctx, task_ctx, current); 3745 3746 perf_pmu_enable(cpuctx->ctx.pmu); 3747 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3748 3749 return true; 3750 } 3751 3752 void perf_event_task_tick(void) 3753 { 3754 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3755 struct perf_event_context *ctx, *tmp; 3756 int throttled; 3757 3758 lockdep_assert_irqs_disabled(); 3759 3760 __this_cpu_inc(perf_throttled_seq); 3761 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3762 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3763 3764 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3765 perf_adjust_freq_unthr_context(ctx, throttled); 3766 } 3767 3768 static int event_enable_on_exec(struct perf_event *event, 3769 struct perf_event_context *ctx) 3770 { 3771 if (!event->attr.enable_on_exec) 3772 return 0; 3773 3774 event->attr.enable_on_exec = 0; 3775 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3776 return 0; 3777 3778 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3779 3780 return 1; 3781 } 3782 3783 /* 3784 * Enable all of a task's events that have been marked enable-on-exec. 3785 * This expects task == current. 3786 */ 3787 static void perf_event_enable_on_exec(int ctxn) 3788 { 3789 struct perf_event_context *ctx, *clone_ctx = NULL; 3790 enum event_type_t event_type = 0; 3791 struct perf_cpu_context *cpuctx; 3792 struct perf_event *event; 3793 unsigned long flags; 3794 int enabled = 0; 3795 3796 local_irq_save(flags); 3797 ctx = current->perf_event_ctxp[ctxn]; 3798 if (!ctx || !ctx->nr_events) 3799 goto out; 3800 3801 cpuctx = __get_cpu_context(ctx); 3802 perf_ctx_lock(cpuctx, ctx); 3803 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3804 list_for_each_entry(event, &ctx->event_list, event_entry) { 3805 enabled |= event_enable_on_exec(event, ctx); 3806 event_type |= get_event_type(event); 3807 } 3808 3809 /* 3810 * Unclone and reschedule this context if we enabled any event. 3811 */ 3812 if (enabled) { 3813 clone_ctx = unclone_ctx(ctx); 3814 ctx_resched(cpuctx, ctx, event_type); 3815 } else { 3816 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3817 } 3818 perf_ctx_unlock(cpuctx, ctx); 3819 3820 out: 3821 local_irq_restore(flags); 3822 3823 if (clone_ctx) 3824 put_ctx(clone_ctx); 3825 } 3826 3827 struct perf_read_data { 3828 struct perf_event *event; 3829 bool group; 3830 int ret; 3831 }; 3832 3833 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3834 { 3835 u16 local_pkg, event_pkg; 3836 3837 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3838 int local_cpu = smp_processor_id(); 3839 3840 event_pkg = topology_physical_package_id(event_cpu); 3841 local_pkg = topology_physical_package_id(local_cpu); 3842 3843 if (event_pkg == local_pkg) 3844 return local_cpu; 3845 } 3846 3847 return event_cpu; 3848 } 3849 3850 /* 3851 * Cross CPU call to read the hardware event 3852 */ 3853 static void __perf_event_read(void *info) 3854 { 3855 struct perf_read_data *data = info; 3856 struct perf_event *sub, *event = data->event; 3857 struct perf_event_context *ctx = event->ctx; 3858 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3859 struct pmu *pmu = event->pmu; 3860 3861 /* 3862 * If this is a task context, we need to check whether it is 3863 * the current task context of this cpu. If not it has been 3864 * scheduled out before the smp call arrived. In that case 3865 * event->count would have been updated to a recent sample 3866 * when the event was scheduled out. 3867 */ 3868 if (ctx->task && cpuctx->task_ctx != ctx) 3869 return; 3870 3871 raw_spin_lock(&ctx->lock); 3872 if (ctx->is_active & EVENT_TIME) { 3873 update_context_time(ctx); 3874 update_cgrp_time_from_event(event); 3875 } 3876 3877 perf_event_update_time(event); 3878 if (data->group) 3879 perf_event_update_sibling_time(event); 3880 3881 if (event->state != PERF_EVENT_STATE_ACTIVE) 3882 goto unlock; 3883 3884 if (!data->group) { 3885 pmu->read(event); 3886 data->ret = 0; 3887 goto unlock; 3888 } 3889 3890 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3891 3892 pmu->read(event); 3893 3894 for_each_sibling_event(sub, event) { 3895 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3896 /* 3897 * Use sibling's PMU rather than @event's since 3898 * sibling could be on different (eg: software) PMU. 3899 */ 3900 sub->pmu->read(sub); 3901 } 3902 } 3903 3904 data->ret = pmu->commit_txn(pmu); 3905 3906 unlock: 3907 raw_spin_unlock(&ctx->lock); 3908 } 3909 3910 static inline u64 perf_event_count(struct perf_event *event) 3911 { 3912 return local64_read(&event->count) + atomic64_read(&event->child_count); 3913 } 3914 3915 /* 3916 * NMI-safe method to read a local event, that is an event that 3917 * is: 3918 * - either for the current task, or for this CPU 3919 * - does not have inherit set, for inherited task events 3920 * will not be local and we cannot read them atomically 3921 * - must not have a pmu::count method 3922 */ 3923 int perf_event_read_local(struct perf_event *event, u64 *value, 3924 u64 *enabled, u64 *running) 3925 { 3926 unsigned long flags; 3927 int ret = 0; 3928 3929 /* 3930 * Disabling interrupts avoids all counter scheduling (context 3931 * switches, timer based rotation and IPIs). 3932 */ 3933 local_irq_save(flags); 3934 3935 /* 3936 * It must not be an event with inherit set, we cannot read 3937 * all child counters from atomic context. 3938 */ 3939 if (event->attr.inherit) { 3940 ret = -EOPNOTSUPP; 3941 goto out; 3942 } 3943 3944 /* If this is a per-task event, it must be for current */ 3945 if ((event->attach_state & PERF_ATTACH_TASK) && 3946 event->hw.target != current) { 3947 ret = -EINVAL; 3948 goto out; 3949 } 3950 3951 /* If this is a per-CPU event, it must be for this CPU */ 3952 if (!(event->attach_state & PERF_ATTACH_TASK) && 3953 event->cpu != smp_processor_id()) { 3954 ret = -EINVAL; 3955 goto out; 3956 } 3957 3958 /* If this is a pinned event it must be running on this CPU */ 3959 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 3960 ret = -EBUSY; 3961 goto out; 3962 } 3963 3964 /* 3965 * If the event is currently on this CPU, its either a per-task event, 3966 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3967 * oncpu == -1). 3968 */ 3969 if (event->oncpu == smp_processor_id()) 3970 event->pmu->read(event); 3971 3972 *value = local64_read(&event->count); 3973 if (enabled || running) { 3974 u64 now = event->shadow_ctx_time + perf_clock(); 3975 u64 __enabled, __running; 3976 3977 __perf_update_times(event, now, &__enabled, &__running); 3978 if (enabled) 3979 *enabled = __enabled; 3980 if (running) 3981 *running = __running; 3982 } 3983 out: 3984 local_irq_restore(flags); 3985 3986 return ret; 3987 } 3988 3989 static int perf_event_read(struct perf_event *event, bool group) 3990 { 3991 enum perf_event_state state = READ_ONCE(event->state); 3992 int event_cpu, ret = 0; 3993 3994 /* 3995 * If event is enabled and currently active on a CPU, update the 3996 * value in the event structure: 3997 */ 3998 again: 3999 if (state == PERF_EVENT_STATE_ACTIVE) { 4000 struct perf_read_data data; 4001 4002 /* 4003 * Orders the ->state and ->oncpu loads such that if we see 4004 * ACTIVE we must also see the right ->oncpu. 4005 * 4006 * Matches the smp_wmb() from event_sched_in(). 4007 */ 4008 smp_rmb(); 4009 4010 event_cpu = READ_ONCE(event->oncpu); 4011 if ((unsigned)event_cpu >= nr_cpu_ids) 4012 return 0; 4013 4014 data = (struct perf_read_data){ 4015 .event = event, 4016 .group = group, 4017 .ret = 0, 4018 }; 4019 4020 preempt_disable(); 4021 event_cpu = __perf_event_read_cpu(event, event_cpu); 4022 4023 /* 4024 * Purposely ignore the smp_call_function_single() return 4025 * value. 4026 * 4027 * If event_cpu isn't a valid CPU it means the event got 4028 * scheduled out and that will have updated the event count. 4029 * 4030 * Therefore, either way, we'll have an up-to-date event count 4031 * after this. 4032 */ 4033 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4034 preempt_enable(); 4035 ret = data.ret; 4036 4037 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4038 struct perf_event_context *ctx = event->ctx; 4039 unsigned long flags; 4040 4041 raw_spin_lock_irqsave(&ctx->lock, flags); 4042 state = event->state; 4043 if (state != PERF_EVENT_STATE_INACTIVE) { 4044 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4045 goto again; 4046 } 4047 4048 /* 4049 * May read while context is not active (e.g., thread is 4050 * blocked), in that case we cannot update context time 4051 */ 4052 if (ctx->is_active & EVENT_TIME) { 4053 update_context_time(ctx); 4054 update_cgrp_time_from_event(event); 4055 } 4056 4057 perf_event_update_time(event); 4058 if (group) 4059 perf_event_update_sibling_time(event); 4060 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4061 } 4062 4063 return ret; 4064 } 4065 4066 /* 4067 * Initialize the perf_event context in a task_struct: 4068 */ 4069 static void __perf_event_init_context(struct perf_event_context *ctx) 4070 { 4071 raw_spin_lock_init(&ctx->lock); 4072 mutex_init(&ctx->mutex); 4073 INIT_LIST_HEAD(&ctx->active_ctx_list); 4074 perf_event_groups_init(&ctx->pinned_groups); 4075 perf_event_groups_init(&ctx->flexible_groups); 4076 INIT_LIST_HEAD(&ctx->event_list); 4077 INIT_LIST_HEAD(&ctx->pinned_active); 4078 INIT_LIST_HEAD(&ctx->flexible_active); 4079 refcount_set(&ctx->refcount, 1); 4080 } 4081 4082 static struct perf_event_context * 4083 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4084 { 4085 struct perf_event_context *ctx; 4086 4087 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4088 if (!ctx) 4089 return NULL; 4090 4091 __perf_event_init_context(ctx); 4092 if (task) { 4093 ctx->task = task; 4094 get_task_struct(task); 4095 } 4096 ctx->pmu = pmu; 4097 4098 return ctx; 4099 } 4100 4101 static struct task_struct * 4102 find_lively_task_by_vpid(pid_t vpid) 4103 { 4104 struct task_struct *task; 4105 4106 rcu_read_lock(); 4107 if (!vpid) 4108 task = current; 4109 else 4110 task = find_task_by_vpid(vpid); 4111 if (task) 4112 get_task_struct(task); 4113 rcu_read_unlock(); 4114 4115 if (!task) 4116 return ERR_PTR(-ESRCH); 4117 4118 return task; 4119 } 4120 4121 /* 4122 * Returns a matching context with refcount and pincount. 4123 */ 4124 static struct perf_event_context * 4125 find_get_context(struct pmu *pmu, struct task_struct *task, 4126 struct perf_event *event) 4127 { 4128 struct perf_event_context *ctx, *clone_ctx = NULL; 4129 struct perf_cpu_context *cpuctx; 4130 void *task_ctx_data = NULL; 4131 unsigned long flags; 4132 int ctxn, err; 4133 int cpu = event->cpu; 4134 4135 if (!task) { 4136 /* Must be root to operate on a CPU event: */ 4137 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 4138 return ERR_PTR(-EACCES); 4139 4140 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4141 ctx = &cpuctx->ctx; 4142 get_ctx(ctx); 4143 ++ctx->pin_count; 4144 4145 return ctx; 4146 } 4147 4148 err = -EINVAL; 4149 ctxn = pmu->task_ctx_nr; 4150 if (ctxn < 0) 4151 goto errout; 4152 4153 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4154 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4155 if (!task_ctx_data) { 4156 err = -ENOMEM; 4157 goto errout; 4158 } 4159 } 4160 4161 retry: 4162 ctx = perf_lock_task_context(task, ctxn, &flags); 4163 if (ctx) { 4164 clone_ctx = unclone_ctx(ctx); 4165 ++ctx->pin_count; 4166 4167 if (task_ctx_data && !ctx->task_ctx_data) { 4168 ctx->task_ctx_data = task_ctx_data; 4169 task_ctx_data = NULL; 4170 } 4171 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4172 4173 if (clone_ctx) 4174 put_ctx(clone_ctx); 4175 } else { 4176 ctx = alloc_perf_context(pmu, task); 4177 err = -ENOMEM; 4178 if (!ctx) 4179 goto errout; 4180 4181 if (task_ctx_data) { 4182 ctx->task_ctx_data = task_ctx_data; 4183 task_ctx_data = NULL; 4184 } 4185 4186 err = 0; 4187 mutex_lock(&task->perf_event_mutex); 4188 /* 4189 * If it has already passed perf_event_exit_task(). 4190 * we must see PF_EXITING, it takes this mutex too. 4191 */ 4192 if (task->flags & PF_EXITING) 4193 err = -ESRCH; 4194 else if (task->perf_event_ctxp[ctxn]) 4195 err = -EAGAIN; 4196 else { 4197 get_ctx(ctx); 4198 ++ctx->pin_count; 4199 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4200 } 4201 mutex_unlock(&task->perf_event_mutex); 4202 4203 if (unlikely(err)) { 4204 put_ctx(ctx); 4205 4206 if (err == -EAGAIN) 4207 goto retry; 4208 goto errout; 4209 } 4210 } 4211 4212 kfree(task_ctx_data); 4213 return ctx; 4214 4215 errout: 4216 kfree(task_ctx_data); 4217 return ERR_PTR(err); 4218 } 4219 4220 static void perf_event_free_filter(struct perf_event *event); 4221 static void perf_event_free_bpf_prog(struct perf_event *event); 4222 4223 static void free_event_rcu(struct rcu_head *head) 4224 { 4225 struct perf_event *event; 4226 4227 event = container_of(head, struct perf_event, rcu_head); 4228 if (event->ns) 4229 put_pid_ns(event->ns); 4230 perf_event_free_filter(event); 4231 kfree(event); 4232 } 4233 4234 static void ring_buffer_attach(struct perf_event *event, 4235 struct ring_buffer *rb); 4236 4237 static void detach_sb_event(struct perf_event *event) 4238 { 4239 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4240 4241 raw_spin_lock(&pel->lock); 4242 list_del_rcu(&event->sb_list); 4243 raw_spin_unlock(&pel->lock); 4244 } 4245 4246 static bool is_sb_event(struct perf_event *event) 4247 { 4248 struct perf_event_attr *attr = &event->attr; 4249 4250 if (event->parent) 4251 return false; 4252 4253 if (event->attach_state & PERF_ATTACH_TASK) 4254 return false; 4255 4256 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4257 attr->comm || attr->comm_exec || 4258 attr->task || attr->ksymbol || 4259 attr->context_switch || 4260 attr->bpf_event) 4261 return true; 4262 return false; 4263 } 4264 4265 static void unaccount_pmu_sb_event(struct perf_event *event) 4266 { 4267 if (is_sb_event(event)) 4268 detach_sb_event(event); 4269 } 4270 4271 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4272 { 4273 if (event->parent) 4274 return; 4275 4276 if (is_cgroup_event(event)) 4277 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4278 } 4279 4280 #ifdef CONFIG_NO_HZ_FULL 4281 static DEFINE_SPINLOCK(nr_freq_lock); 4282 #endif 4283 4284 static void unaccount_freq_event_nohz(void) 4285 { 4286 #ifdef CONFIG_NO_HZ_FULL 4287 spin_lock(&nr_freq_lock); 4288 if (atomic_dec_and_test(&nr_freq_events)) 4289 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4290 spin_unlock(&nr_freq_lock); 4291 #endif 4292 } 4293 4294 static void unaccount_freq_event(void) 4295 { 4296 if (tick_nohz_full_enabled()) 4297 unaccount_freq_event_nohz(); 4298 else 4299 atomic_dec(&nr_freq_events); 4300 } 4301 4302 static void unaccount_event(struct perf_event *event) 4303 { 4304 bool dec = false; 4305 4306 if (event->parent) 4307 return; 4308 4309 if (event->attach_state & PERF_ATTACH_TASK) 4310 dec = true; 4311 if (event->attr.mmap || event->attr.mmap_data) 4312 atomic_dec(&nr_mmap_events); 4313 if (event->attr.comm) 4314 atomic_dec(&nr_comm_events); 4315 if (event->attr.namespaces) 4316 atomic_dec(&nr_namespaces_events); 4317 if (event->attr.task) 4318 atomic_dec(&nr_task_events); 4319 if (event->attr.freq) 4320 unaccount_freq_event(); 4321 if (event->attr.context_switch) { 4322 dec = true; 4323 atomic_dec(&nr_switch_events); 4324 } 4325 if (is_cgroup_event(event)) 4326 dec = true; 4327 if (has_branch_stack(event)) 4328 dec = true; 4329 if (event->attr.ksymbol) 4330 atomic_dec(&nr_ksymbol_events); 4331 if (event->attr.bpf_event) 4332 atomic_dec(&nr_bpf_events); 4333 4334 if (dec) { 4335 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4336 schedule_delayed_work(&perf_sched_work, HZ); 4337 } 4338 4339 unaccount_event_cpu(event, event->cpu); 4340 4341 unaccount_pmu_sb_event(event); 4342 } 4343 4344 static void perf_sched_delayed(struct work_struct *work) 4345 { 4346 mutex_lock(&perf_sched_mutex); 4347 if (atomic_dec_and_test(&perf_sched_count)) 4348 static_branch_disable(&perf_sched_events); 4349 mutex_unlock(&perf_sched_mutex); 4350 } 4351 4352 /* 4353 * The following implement mutual exclusion of events on "exclusive" pmus 4354 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4355 * at a time, so we disallow creating events that might conflict, namely: 4356 * 4357 * 1) cpu-wide events in the presence of per-task events, 4358 * 2) per-task events in the presence of cpu-wide events, 4359 * 3) two matching events on the same context. 4360 * 4361 * The former two cases are handled in the allocation path (perf_event_alloc(), 4362 * _free_event()), the latter -- before the first perf_install_in_context(). 4363 */ 4364 static int exclusive_event_init(struct perf_event *event) 4365 { 4366 struct pmu *pmu = event->pmu; 4367 4368 if (!is_exclusive_pmu(pmu)) 4369 return 0; 4370 4371 /* 4372 * Prevent co-existence of per-task and cpu-wide events on the 4373 * same exclusive pmu. 4374 * 4375 * Negative pmu::exclusive_cnt means there are cpu-wide 4376 * events on this "exclusive" pmu, positive means there are 4377 * per-task events. 4378 * 4379 * Since this is called in perf_event_alloc() path, event::ctx 4380 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4381 * to mean "per-task event", because unlike other attach states it 4382 * never gets cleared. 4383 */ 4384 if (event->attach_state & PERF_ATTACH_TASK) { 4385 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4386 return -EBUSY; 4387 } else { 4388 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4389 return -EBUSY; 4390 } 4391 4392 return 0; 4393 } 4394 4395 static void exclusive_event_destroy(struct perf_event *event) 4396 { 4397 struct pmu *pmu = event->pmu; 4398 4399 if (!is_exclusive_pmu(pmu)) 4400 return; 4401 4402 /* see comment in exclusive_event_init() */ 4403 if (event->attach_state & PERF_ATTACH_TASK) 4404 atomic_dec(&pmu->exclusive_cnt); 4405 else 4406 atomic_inc(&pmu->exclusive_cnt); 4407 } 4408 4409 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4410 { 4411 if ((e1->pmu == e2->pmu) && 4412 (e1->cpu == e2->cpu || 4413 e1->cpu == -1 || 4414 e2->cpu == -1)) 4415 return true; 4416 return false; 4417 } 4418 4419 static bool exclusive_event_installable(struct perf_event *event, 4420 struct perf_event_context *ctx) 4421 { 4422 struct perf_event *iter_event; 4423 struct pmu *pmu = event->pmu; 4424 4425 lockdep_assert_held(&ctx->mutex); 4426 4427 if (!is_exclusive_pmu(pmu)) 4428 return true; 4429 4430 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4431 if (exclusive_event_match(iter_event, event)) 4432 return false; 4433 } 4434 4435 return true; 4436 } 4437 4438 static void perf_addr_filters_splice(struct perf_event *event, 4439 struct list_head *head); 4440 4441 static void _free_event(struct perf_event *event) 4442 { 4443 irq_work_sync(&event->pending); 4444 4445 unaccount_event(event); 4446 4447 if (event->rb) { 4448 /* 4449 * Can happen when we close an event with re-directed output. 4450 * 4451 * Since we have a 0 refcount, perf_mmap_close() will skip 4452 * over us; possibly making our ring_buffer_put() the last. 4453 */ 4454 mutex_lock(&event->mmap_mutex); 4455 ring_buffer_attach(event, NULL); 4456 mutex_unlock(&event->mmap_mutex); 4457 } 4458 4459 if (is_cgroup_event(event)) 4460 perf_detach_cgroup(event); 4461 4462 if (!event->parent) { 4463 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4464 put_callchain_buffers(); 4465 } 4466 4467 perf_event_free_bpf_prog(event); 4468 perf_addr_filters_splice(event, NULL); 4469 kfree(event->addr_filter_ranges); 4470 4471 if (event->destroy) 4472 event->destroy(event); 4473 4474 /* 4475 * Must be after ->destroy(), due to uprobe_perf_close() using 4476 * hw.target. 4477 */ 4478 if (event->hw.target) 4479 put_task_struct(event->hw.target); 4480 4481 /* 4482 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4483 * all task references must be cleaned up. 4484 */ 4485 if (event->ctx) 4486 put_ctx(event->ctx); 4487 4488 exclusive_event_destroy(event); 4489 module_put(event->pmu->module); 4490 4491 call_rcu(&event->rcu_head, free_event_rcu); 4492 } 4493 4494 /* 4495 * Used to free events which have a known refcount of 1, such as in error paths 4496 * where the event isn't exposed yet and inherited events. 4497 */ 4498 static void free_event(struct perf_event *event) 4499 { 4500 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4501 "unexpected event refcount: %ld; ptr=%p\n", 4502 atomic_long_read(&event->refcount), event)) { 4503 /* leak to avoid use-after-free */ 4504 return; 4505 } 4506 4507 _free_event(event); 4508 } 4509 4510 /* 4511 * Remove user event from the owner task. 4512 */ 4513 static void perf_remove_from_owner(struct perf_event *event) 4514 { 4515 struct task_struct *owner; 4516 4517 rcu_read_lock(); 4518 /* 4519 * Matches the smp_store_release() in perf_event_exit_task(). If we 4520 * observe !owner it means the list deletion is complete and we can 4521 * indeed free this event, otherwise we need to serialize on 4522 * owner->perf_event_mutex. 4523 */ 4524 owner = READ_ONCE(event->owner); 4525 if (owner) { 4526 /* 4527 * Since delayed_put_task_struct() also drops the last 4528 * task reference we can safely take a new reference 4529 * while holding the rcu_read_lock(). 4530 */ 4531 get_task_struct(owner); 4532 } 4533 rcu_read_unlock(); 4534 4535 if (owner) { 4536 /* 4537 * If we're here through perf_event_exit_task() we're already 4538 * holding ctx->mutex which would be an inversion wrt. the 4539 * normal lock order. 4540 * 4541 * However we can safely take this lock because its the child 4542 * ctx->mutex. 4543 */ 4544 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4545 4546 /* 4547 * We have to re-check the event->owner field, if it is cleared 4548 * we raced with perf_event_exit_task(), acquiring the mutex 4549 * ensured they're done, and we can proceed with freeing the 4550 * event. 4551 */ 4552 if (event->owner) { 4553 list_del_init(&event->owner_entry); 4554 smp_store_release(&event->owner, NULL); 4555 } 4556 mutex_unlock(&owner->perf_event_mutex); 4557 put_task_struct(owner); 4558 } 4559 } 4560 4561 static void put_event(struct perf_event *event) 4562 { 4563 if (!atomic_long_dec_and_test(&event->refcount)) 4564 return; 4565 4566 _free_event(event); 4567 } 4568 4569 /* 4570 * Kill an event dead; while event:refcount will preserve the event 4571 * object, it will not preserve its functionality. Once the last 'user' 4572 * gives up the object, we'll destroy the thing. 4573 */ 4574 int perf_event_release_kernel(struct perf_event *event) 4575 { 4576 struct perf_event_context *ctx = event->ctx; 4577 struct perf_event *child, *tmp; 4578 LIST_HEAD(free_list); 4579 4580 /* 4581 * If we got here through err_file: fput(event_file); we will not have 4582 * attached to a context yet. 4583 */ 4584 if (!ctx) { 4585 WARN_ON_ONCE(event->attach_state & 4586 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4587 goto no_ctx; 4588 } 4589 4590 if (!is_kernel_event(event)) 4591 perf_remove_from_owner(event); 4592 4593 ctx = perf_event_ctx_lock(event); 4594 WARN_ON_ONCE(ctx->parent_ctx); 4595 perf_remove_from_context(event, DETACH_GROUP); 4596 4597 raw_spin_lock_irq(&ctx->lock); 4598 /* 4599 * Mark this event as STATE_DEAD, there is no external reference to it 4600 * anymore. 4601 * 4602 * Anybody acquiring event->child_mutex after the below loop _must_ 4603 * also see this, most importantly inherit_event() which will avoid 4604 * placing more children on the list. 4605 * 4606 * Thus this guarantees that we will in fact observe and kill _ALL_ 4607 * child events. 4608 */ 4609 event->state = PERF_EVENT_STATE_DEAD; 4610 raw_spin_unlock_irq(&ctx->lock); 4611 4612 perf_event_ctx_unlock(event, ctx); 4613 4614 again: 4615 mutex_lock(&event->child_mutex); 4616 list_for_each_entry(child, &event->child_list, child_list) { 4617 4618 /* 4619 * Cannot change, child events are not migrated, see the 4620 * comment with perf_event_ctx_lock_nested(). 4621 */ 4622 ctx = READ_ONCE(child->ctx); 4623 /* 4624 * Since child_mutex nests inside ctx::mutex, we must jump 4625 * through hoops. We start by grabbing a reference on the ctx. 4626 * 4627 * Since the event cannot get freed while we hold the 4628 * child_mutex, the context must also exist and have a !0 4629 * reference count. 4630 */ 4631 get_ctx(ctx); 4632 4633 /* 4634 * Now that we have a ctx ref, we can drop child_mutex, and 4635 * acquire ctx::mutex without fear of it going away. Then we 4636 * can re-acquire child_mutex. 4637 */ 4638 mutex_unlock(&event->child_mutex); 4639 mutex_lock(&ctx->mutex); 4640 mutex_lock(&event->child_mutex); 4641 4642 /* 4643 * Now that we hold ctx::mutex and child_mutex, revalidate our 4644 * state, if child is still the first entry, it didn't get freed 4645 * and we can continue doing so. 4646 */ 4647 tmp = list_first_entry_or_null(&event->child_list, 4648 struct perf_event, child_list); 4649 if (tmp == child) { 4650 perf_remove_from_context(child, DETACH_GROUP); 4651 list_move(&child->child_list, &free_list); 4652 /* 4653 * This matches the refcount bump in inherit_event(); 4654 * this can't be the last reference. 4655 */ 4656 put_event(event); 4657 } 4658 4659 mutex_unlock(&event->child_mutex); 4660 mutex_unlock(&ctx->mutex); 4661 put_ctx(ctx); 4662 goto again; 4663 } 4664 mutex_unlock(&event->child_mutex); 4665 4666 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4667 void *var = &child->ctx->refcount; 4668 4669 list_del(&child->child_list); 4670 free_event(child); 4671 4672 /* 4673 * Wake any perf_event_free_task() waiting for this event to be 4674 * freed. 4675 */ 4676 smp_mb(); /* pairs with wait_var_event() */ 4677 wake_up_var(var); 4678 } 4679 4680 no_ctx: 4681 put_event(event); /* Must be the 'last' reference */ 4682 return 0; 4683 } 4684 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4685 4686 /* 4687 * Called when the last reference to the file is gone. 4688 */ 4689 static int perf_release(struct inode *inode, struct file *file) 4690 { 4691 perf_event_release_kernel(file->private_data); 4692 return 0; 4693 } 4694 4695 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4696 { 4697 struct perf_event *child; 4698 u64 total = 0; 4699 4700 *enabled = 0; 4701 *running = 0; 4702 4703 mutex_lock(&event->child_mutex); 4704 4705 (void)perf_event_read(event, false); 4706 total += perf_event_count(event); 4707 4708 *enabled += event->total_time_enabled + 4709 atomic64_read(&event->child_total_time_enabled); 4710 *running += event->total_time_running + 4711 atomic64_read(&event->child_total_time_running); 4712 4713 list_for_each_entry(child, &event->child_list, child_list) { 4714 (void)perf_event_read(child, false); 4715 total += perf_event_count(child); 4716 *enabled += child->total_time_enabled; 4717 *running += child->total_time_running; 4718 } 4719 mutex_unlock(&event->child_mutex); 4720 4721 return total; 4722 } 4723 4724 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4725 { 4726 struct perf_event_context *ctx; 4727 u64 count; 4728 4729 ctx = perf_event_ctx_lock(event); 4730 count = __perf_event_read_value(event, enabled, running); 4731 perf_event_ctx_unlock(event, ctx); 4732 4733 return count; 4734 } 4735 EXPORT_SYMBOL_GPL(perf_event_read_value); 4736 4737 static int __perf_read_group_add(struct perf_event *leader, 4738 u64 read_format, u64 *values) 4739 { 4740 struct perf_event_context *ctx = leader->ctx; 4741 struct perf_event *sub; 4742 unsigned long flags; 4743 int n = 1; /* skip @nr */ 4744 int ret; 4745 4746 ret = perf_event_read(leader, true); 4747 if (ret) 4748 return ret; 4749 4750 raw_spin_lock_irqsave(&ctx->lock, flags); 4751 4752 /* 4753 * Since we co-schedule groups, {enabled,running} times of siblings 4754 * will be identical to those of the leader, so we only publish one 4755 * set. 4756 */ 4757 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4758 values[n++] += leader->total_time_enabled + 4759 atomic64_read(&leader->child_total_time_enabled); 4760 } 4761 4762 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4763 values[n++] += leader->total_time_running + 4764 atomic64_read(&leader->child_total_time_running); 4765 } 4766 4767 /* 4768 * Write {count,id} tuples for every sibling. 4769 */ 4770 values[n++] += perf_event_count(leader); 4771 if (read_format & PERF_FORMAT_ID) 4772 values[n++] = primary_event_id(leader); 4773 4774 for_each_sibling_event(sub, leader) { 4775 values[n++] += perf_event_count(sub); 4776 if (read_format & PERF_FORMAT_ID) 4777 values[n++] = primary_event_id(sub); 4778 } 4779 4780 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4781 return 0; 4782 } 4783 4784 static int perf_read_group(struct perf_event *event, 4785 u64 read_format, char __user *buf) 4786 { 4787 struct perf_event *leader = event->group_leader, *child; 4788 struct perf_event_context *ctx = leader->ctx; 4789 int ret; 4790 u64 *values; 4791 4792 lockdep_assert_held(&ctx->mutex); 4793 4794 values = kzalloc(event->read_size, GFP_KERNEL); 4795 if (!values) 4796 return -ENOMEM; 4797 4798 values[0] = 1 + leader->nr_siblings; 4799 4800 /* 4801 * By locking the child_mutex of the leader we effectively 4802 * lock the child list of all siblings.. XXX explain how. 4803 */ 4804 mutex_lock(&leader->child_mutex); 4805 4806 ret = __perf_read_group_add(leader, read_format, values); 4807 if (ret) 4808 goto unlock; 4809 4810 list_for_each_entry(child, &leader->child_list, child_list) { 4811 ret = __perf_read_group_add(child, read_format, values); 4812 if (ret) 4813 goto unlock; 4814 } 4815 4816 mutex_unlock(&leader->child_mutex); 4817 4818 ret = event->read_size; 4819 if (copy_to_user(buf, values, event->read_size)) 4820 ret = -EFAULT; 4821 goto out; 4822 4823 unlock: 4824 mutex_unlock(&leader->child_mutex); 4825 out: 4826 kfree(values); 4827 return ret; 4828 } 4829 4830 static int perf_read_one(struct perf_event *event, 4831 u64 read_format, char __user *buf) 4832 { 4833 u64 enabled, running; 4834 u64 values[4]; 4835 int n = 0; 4836 4837 values[n++] = __perf_event_read_value(event, &enabled, &running); 4838 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4839 values[n++] = enabled; 4840 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4841 values[n++] = running; 4842 if (read_format & PERF_FORMAT_ID) 4843 values[n++] = primary_event_id(event); 4844 4845 if (copy_to_user(buf, values, n * sizeof(u64))) 4846 return -EFAULT; 4847 4848 return n * sizeof(u64); 4849 } 4850 4851 static bool is_event_hup(struct perf_event *event) 4852 { 4853 bool no_children; 4854 4855 if (event->state > PERF_EVENT_STATE_EXIT) 4856 return false; 4857 4858 mutex_lock(&event->child_mutex); 4859 no_children = list_empty(&event->child_list); 4860 mutex_unlock(&event->child_mutex); 4861 return no_children; 4862 } 4863 4864 /* 4865 * Read the performance event - simple non blocking version for now 4866 */ 4867 static ssize_t 4868 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4869 { 4870 u64 read_format = event->attr.read_format; 4871 int ret; 4872 4873 /* 4874 * Return end-of-file for a read on an event that is in 4875 * error state (i.e. because it was pinned but it couldn't be 4876 * scheduled on to the CPU at some point). 4877 */ 4878 if (event->state == PERF_EVENT_STATE_ERROR) 4879 return 0; 4880 4881 if (count < event->read_size) 4882 return -ENOSPC; 4883 4884 WARN_ON_ONCE(event->ctx->parent_ctx); 4885 if (read_format & PERF_FORMAT_GROUP) 4886 ret = perf_read_group(event, read_format, buf); 4887 else 4888 ret = perf_read_one(event, read_format, buf); 4889 4890 return ret; 4891 } 4892 4893 static ssize_t 4894 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4895 { 4896 struct perf_event *event = file->private_data; 4897 struct perf_event_context *ctx; 4898 int ret; 4899 4900 ctx = perf_event_ctx_lock(event); 4901 ret = __perf_read(event, buf, count); 4902 perf_event_ctx_unlock(event, ctx); 4903 4904 return ret; 4905 } 4906 4907 static __poll_t perf_poll(struct file *file, poll_table *wait) 4908 { 4909 struct perf_event *event = file->private_data; 4910 struct ring_buffer *rb; 4911 __poll_t events = EPOLLHUP; 4912 4913 poll_wait(file, &event->waitq, wait); 4914 4915 if (is_event_hup(event)) 4916 return events; 4917 4918 /* 4919 * Pin the event->rb by taking event->mmap_mutex; otherwise 4920 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4921 */ 4922 mutex_lock(&event->mmap_mutex); 4923 rb = event->rb; 4924 if (rb) 4925 events = atomic_xchg(&rb->poll, 0); 4926 mutex_unlock(&event->mmap_mutex); 4927 return events; 4928 } 4929 4930 static void _perf_event_reset(struct perf_event *event) 4931 { 4932 (void)perf_event_read(event, false); 4933 local64_set(&event->count, 0); 4934 perf_event_update_userpage(event); 4935 } 4936 4937 /* 4938 * Holding the top-level event's child_mutex means that any 4939 * descendant process that has inherited this event will block 4940 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4941 * task existence requirements of perf_event_enable/disable. 4942 */ 4943 static void perf_event_for_each_child(struct perf_event *event, 4944 void (*func)(struct perf_event *)) 4945 { 4946 struct perf_event *child; 4947 4948 WARN_ON_ONCE(event->ctx->parent_ctx); 4949 4950 mutex_lock(&event->child_mutex); 4951 func(event); 4952 list_for_each_entry(child, &event->child_list, child_list) 4953 func(child); 4954 mutex_unlock(&event->child_mutex); 4955 } 4956 4957 static void perf_event_for_each(struct perf_event *event, 4958 void (*func)(struct perf_event *)) 4959 { 4960 struct perf_event_context *ctx = event->ctx; 4961 struct perf_event *sibling; 4962 4963 lockdep_assert_held(&ctx->mutex); 4964 4965 event = event->group_leader; 4966 4967 perf_event_for_each_child(event, func); 4968 for_each_sibling_event(sibling, event) 4969 perf_event_for_each_child(sibling, func); 4970 } 4971 4972 static void __perf_event_period(struct perf_event *event, 4973 struct perf_cpu_context *cpuctx, 4974 struct perf_event_context *ctx, 4975 void *info) 4976 { 4977 u64 value = *((u64 *)info); 4978 bool active; 4979 4980 if (event->attr.freq) { 4981 event->attr.sample_freq = value; 4982 } else { 4983 event->attr.sample_period = value; 4984 event->hw.sample_period = value; 4985 } 4986 4987 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4988 if (active) { 4989 perf_pmu_disable(ctx->pmu); 4990 /* 4991 * We could be throttled; unthrottle now to avoid the tick 4992 * trying to unthrottle while we already re-started the event. 4993 */ 4994 if (event->hw.interrupts == MAX_INTERRUPTS) { 4995 event->hw.interrupts = 0; 4996 perf_log_throttle(event, 1); 4997 } 4998 event->pmu->stop(event, PERF_EF_UPDATE); 4999 } 5000 5001 local64_set(&event->hw.period_left, 0); 5002 5003 if (active) { 5004 event->pmu->start(event, PERF_EF_RELOAD); 5005 perf_pmu_enable(ctx->pmu); 5006 } 5007 } 5008 5009 static int perf_event_check_period(struct perf_event *event, u64 value) 5010 { 5011 return event->pmu->check_period(event, value); 5012 } 5013 5014 static int perf_event_period(struct perf_event *event, u64 __user *arg) 5015 { 5016 u64 value; 5017 5018 if (!is_sampling_event(event)) 5019 return -EINVAL; 5020 5021 if (copy_from_user(&value, arg, sizeof(value))) 5022 return -EFAULT; 5023 5024 if (!value) 5025 return -EINVAL; 5026 5027 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5028 return -EINVAL; 5029 5030 if (perf_event_check_period(event, value)) 5031 return -EINVAL; 5032 5033 if (!event->attr.freq && (value & (1ULL << 63))) 5034 return -EINVAL; 5035 5036 event_function_call(event, __perf_event_period, &value); 5037 5038 return 0; 5039 } 5040 5041 static const struct file_operations perf_fops; 5042 5043 static inline int perf_fget_light(int fd, struct fd *p) 5044 { 5045 struct fd f = fdget(fd); 5046 if (!f.file) 5047 return -EBADF; 5048 5049 if (f.file->f_op != &perf_fops) { 5050 fdput(f); 5051 return -EBADF; 5052 } 5053 *p = f; 5054 return 0; 5055 } 5056 5057 static int perf_event_set_output(struct perf_event *event, 5058 struct perf_event *output_event); 5059 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5060 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5061 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5062 struct perf_event_attr *attr); 5063 5064 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5065 { 5066 void (*func)(struct perf_event *); 5067 u32 flags = arg; 5068 5069 switch (cmd) { 5070 case PERF_EVENT_IOC_ENABLE: 5071 func = _perf_event_enable; 5072 break; 5073 case PERF_EVENT_IOC_DISABLE: 5074 func = _perf_event_disable; 5075 break; 5076 case PERF_EVENT_IOC_RESET: 5077 func = _perf_event_reset; 5078 break; 5079 5080 case PERF_EVENT_IOC_REFRESH: 5081 return _perf_event_refresh(event, arg); 5082 5083 case PERF_EVENT_IOC_PERIOD: 5084 return perf_event_period(event, (u64 __user *)arg); 5085 5086 case PERF_EVENT_IOC_ID: 5087 { 5088 u64 id = primary_event_id(event); 5089 5090 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5091 return -EFAULT; 5092 return 0; 5093 } 5094 5095 case PERF_EVENT_IOC_SET_OUTPUT: 5096 { 5097 int ret; 5098 if (arg != -1) { 5099 struct perf_event *output_event; 5100 struct fd output; 5101 ret = perf_fget_light(arg, &output); 5102 if (ret) 5103 return ret; 5104 output_event = output.file->private_data; 5105 ret = perf_event_set_output(event, output_event); 5106 fdput(output); 5107 } else { 5108 ret = perf_event_set_output(event, NULL); 5109 } 5110 return ret; 5111 } 5112 5113 case PERF_EVENT_IOC_SET_FILTER: 5114 return perf_event_set_filter(event, (void __user *)arg); 5115 5116 case PERF_EVENT_IOC_SET_BPF: 5117 return perf_event_set_bpf_prog(event, arg); 5118 5119 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5120 struct ring_buffer *rb; 5121 5122 rcu_read_lock(); 5123 rb = rcu_dereference(event->rb); 5124 if (!rb || !rb->nr_pages) { 5125 rcu_read_unlock(); 5126 return -EINVAL; 5127 } 5128 rb_toggle_paused(rb, !!arg); 5129 rcu_read_unlock(); 5130 return 0; 5131 } 5132 5133 case PERF_EVENT_IOC_QUERY_BPF: 5134 return perf_event_query_prog_array(event, (void __user *)arg); 5135 5136 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5137 struct perf_event_attr new_attr; 5138 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5139 &new_attr); 5140 5141 if (err) 5142 return err; 5143 5144 return perf_event_modify_attr(event, &new_attr); 5145 } 5146 default: 5147 return -ENOTTY; 5148 } 5149 5150 if (flags & PERF_IOC_FLAG_GROUP) 5151 perf_event_for_each(event, func); 5152 else 5153 perf_event_for_each_child(event, func); 5154 5155 return 0; 5156 } 5157 5158 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5159 { 5160 struct perf_event *event = file->private_data; 5161 struct perf_event_context *ctx; 5162 long ret; 5163 5164 ctx = perf_event_ctx_lock(event); 5165 ret = _perf_ioctl(event, cmd, arg); 5166 perf_event_ctx_unlock(event, ctx); 5167 5168 return ret; 5169 } 5170 5171 #ifdef CONFIG_COMPAT 5172 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5173 unsigned long arg) 5174 { 5175 switch (_IOC_NR(cmd)) { 5176 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5177 case _IOC_NR(PERF_EVENT_IOC_ID): 5178 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5179 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5180 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5181 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5182 cmd &= ~IOCSIZE_MASK; 5183 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5184 } 5185 break; 5186 } 5187 return perf_ioctl(file, cmd, arg); 5188 } 5189 #else 5190 # define perf_compat_ioctl NULL 5191 #endif 5192 5193 int perf_event_task_enable(void) 5194 { 5195 struct perf_event_context *ctx; 5196 struct perf_event *event; 5197 5198 mutex_lock(¤t->perf_event_mutex); 5199 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5200 ctx = perf_event_ctx_lock(event); 5201 perf_event_for_each_child(event, _perf_event_enable); 5202 perf_event_ctx_unlock(event, ctx); 5203 } 5204 mutex_unlock(¤t->perf_event_mutex); 5205 5206 return 0; 5207 } 5208 5209 int perf_event_task_disable(void) 5210 { 5211 struct perf_event_context *ctx; 5212 struct perf_event *event; 5213 5214 mutex_lock(¤t->perf_event_mutex); 5215 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5216 ctx = perf_event_ctx_lock(event); 5217 perf_event_for_each_child(event, _perf_event_disable); 5218 perf_event_ctx_unlock(event, ctx); 5219 } 5220 mutex_unlock(¤t->perf_event_mutex); 5221 5222 return 0; 5223 } 5224 5225 static int perf_event_index(struct perf_event *event) 5226 { 5227 if (event->hw.state & PERF_HES_STOPPED) 5228 return 0; 5229 5230 if (event->state != PERF_EVENT_STATE_ACTIVE) 5231 return 0; 5232 5233 return event->pmu->event_idx(event); 5234 } 5235 5236 static void calc_timer_values(struct perf_event *event, 5237 u64 *now, 5238 u64 *enabled, 5239 u64 *running) 5240 { 5241 u64 ctx_time; 5242 5243 *now = perf_clock(); 5244 ctx_time = event->shadow_ctx_time + *now; 5245 __perf_update_times(event, ctx_time, enabled, running); 5246 } 5247 5248 static void perf_event_init_userpage(struct perf_event *event) 5249 { 5250 struct perf_event_mmap_page *userpg; 5251 struct ring_buffer *rb; 5252 5253 rcu_read_lock(); 5254 rb = rcu_dereference(event->rb); 5255 if (!rb) 5256 goto unlock; 5257 5258 userpg = rb->user_page; 5259 5260 /* Allow new userspace to detect that bit 0 is deprecated */ 5261 userpg->cap_bit0_is_deprecated = 1; 5262 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5263 userpg->data_offset = PAGE_SIZE; 5264 userpg->data_size = perf_data_size(rb); 5265 5266 unlock: 5267 rcu_read_unlock(); 5268 } 5269 5270 void __weak arch_perf_update_userpage( 5271 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5272 { 5273 } 5274 5275 /* 5276 * Callers need to ensure there can be no nesting of this function, otherwise 5277 * the seqlock logic goes bad. We can not serialize this because the arch 5278 * code calls this from NMI context. 5279 */ 5280 void perf_event_update_userpage(struct perf_event *event) 5281 { 5282 struct perf_event_mmap_page *userpg; 5283 struct ring_buffer *rb; 5284 u64 enabled, running, now; 5285 5286 rcu_read_lock(); 5287 rb = rcu_dereference(event->rb); 5288 if (!rb) 5289 goto unlock; 5290 5291 /* 5292 * compute total_time_enabled, total_time_running 5293 * based on snapshot values taken when the event 5294 * was last scheduled in. 5295 * 5296 * we cannot simply called update_context_time() 5297 * because of locking issue as we can be called in 5298 * NMI context 5299 */ 5300 calc_timer_values(event, &now, &enabled, &running); 5301 5302 userpg = rb->user_page; 5303 /* 5304 * Disable preemption to guarantee consistent time stamps are stored to 5305 * the user page. 5306 */ 5307 preempt_disable(); 5308 ++userpg->lock; 5309 barrier(); 5310 userpg->index = perf_event_index(event); 5311 userpg->offset = perf_event_count(event); 5312 if (userpg->index) 5313 userpg->offset -= local64_read(&event->hw.prev_count); 5314 5315 userpg->time_enabled = enabled + 5316 atomic64_read(&event->child_total_time_enabled); 5317 5318 userpg->time_running = running + 5319 atomic64_read(&event->child_total_time_running); 5320 5321 arch_perf_update_userpage(event, userpg, now); 5322 5323 barrier(); 5324 ++userpg->lock; 5325 preempt_enable(); 5326 unlock: 5327 rcu_read_unlock(); 5328 } 5329 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5330 5331 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5332 { 5333 struct perf_event *event = vmf->vma->vm_file->private_data; 5334 struct ring_buffer *rb; 5335 vm_fault_t ret = VM_FAULT_SIGBUS; 5336 5337 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5338 if (vmf->pgoff == 0) 5339 ret = 0; 5340 return ret; 5341 } 5342 5343 rcu_read_lock(); 5344 rb = rcu_dereference(event->rb); 5345 if (!rb) 5346 goto unlock; 5347 5348 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5349 goto unlock; 5350 5351 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5352 if (!vmf->page) 5353 goto unlock; 5354 5355 get_page(vmf->page); 5356 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5357 vmf->page->index = vmf->pgoff; 5358 5359 ret = 0; 5360 unlock: 5361 rcu_read_unlock(); 5362 5363 return ret; 5364 } 5365 5366 static void ring_buffer_attach(struct perf_event *event, 5367 struct ring_buffer *rb) 5368 { 5369 struct ring_buffer *old_rb = NULL; 5370 unsigned long flags; 5371 5372 if (event->rb) { 5373 /* 5374 * Should be impossible, we set this when removing 5375 * event->rb_entry and wait/clear when adding event->rb_entry. 5376 */ 5377 WARN_ON_ONCE(event->rcu_pending); 5378 5379 old_rb = event->rb; 5380 spin_lock_irqsave(&old_rb->event_lock, flags); 5381 list_del_rcu(&event->rb_entry); 5382 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5383 5384 event->rcu_batches = get_state_synchronize_rcu(); 5385 event->rcu_pending = 1; 5386 } 5387 5388 if (rb) { 5389 if (event->rcu_pending) { 5390 cond_synchronize_rcu(event->rcu_batches); 5391 event->rcu_pending = 0; 5392 } 5393 5394 spin_lock_irqsave(&rb->event_lock, flags); 5395 list_add_rcu(&event->rb_entry, &rb->event_list); 5396 spin_unlock_irqrestore(&rb->event_lock, flags); 5397 } 5398 5399 /* 5400 * Avoid racing with perf_mmap_close(AUX): stop the event 5401 * before swizzling the event::rb pointer; if it's getting 5402 * unmapped, its aux_mmap_count will be 0 and it won't 5403 * restart. See the comment in __perf_pmu_output_stop(). 5404 * 5405 * Data will inevitably be lost when set_output is done in 5406 * mid-air, but then again, whoever does it like this is 5407 * not in for the data anyway. 5408 */ 5409 if (has_aux(event)) 5410 perf_event_stop(event, 0); 5411 5412 rcu_assign_pointer(event->rb, rb); 5413 5414 if (old_rb) { 5415 ring_buffer_put(old_rb); 5416 /* 5417 * Since we detached before setting the new rb, so that we 5418 * could attach the new rb, we could have missed a wakeup. 5419 * Provide it now. 5420 */ 5421 wake_up_all(&event->waitq); 5422 } 5423 } 5424 5425 static void ring_buffer_wakeup(struct perf_event *event) 5426 { 5427 struct ring_buffer *rb; 5428 5429 rcu_read_lock(); 5430 rb = rcu_dereference(event->rb); 5431 if (rb) { 5432 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5433 wake_up_all(&event->waitq); 5434 } 5435 rcu_read_unlock(); 5436 } 5437 5438 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5439 { 5440 struct ring_buffer *rb; 5441 5442 rcu_read_lock(); 5443 rb = rcu_dereference(event->rb); 5444 if (rb) { 5445 if (!refcount_inc_not_zero(&rb->refcount)) 5446 rb = NULL; 5447 } 5448 rcu_read_unlock(); 5449 5450 return rb; 5451 } 5452 5453 void ring_buffer_put(struct ring_buffer *rb) 5454 { 5455 if (!refcount_dec_and_test(&rb->refcount)) 5456 return; 5457 5458 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5459 5460 call_rcu(&rb->rcu_head, rb_free_rcu); 5461 } 5462 5463 static void perf_mmap_open(struct vm_area_struct *vma) 5464 { 5465 struct perf_event *event = vma->vm_file->private_data; 5466 5467 atomic_inc(&event->mmap_count); 5468 atomic_inc(&event->rb->mmap_count); 5469 5470 if (vma->vm_pgoff) 5471 atomic_inc(&event->rb->aux_mmap_count); 5472 5473 if (event->pmu->event_mapped) 5474 event->pmu->event_mapped(event, vma->vm_mm); 5475 } 5476 5477 static void perf_pmu_output_stop(struct perf_event *event); 5478 5479 /* 5480 * A buffer can be mmap()ed multiple times; either directly through the same 5481 * event, or through other events by use of perf_event_set_output(). 5482 * 5483 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5484 * the buffer here, where we still have a VM context. This means we need 5485 * to detach all events redirecting to us. 5486 */ 5487 static void perf_mmap_close(struct vm_area_struct *vma) 5488 { 5489 struct perf_event *event = vma->vm_file->private_data; 5490 5491 struct ring_buffer *rb = ring_buffer_get(event); 5492 struct user_struct *mmap_user = rb->mmap_user; 5493 int mmap_locked = rb->mmap_locked; 5494 unsigned long size = perf_data_size(rb); 5495 5496 if (event->pmu->event_unmapped) 5497 event->pmu->event_unmapped(event, vma->vm_mm); 5498 5499 /* 5500 * rb->aux_mmap_count will always drop before rb->mmap_count and 5501 * event->mmap_count, so it is ok to use event->mmap_mutex to 5502 * serialize with perf_mmap here. 5503 */ 5504 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5505 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5506 /* 5507 * Stop all AUX events that are writing to this buffer, 5508 * so that we can free its AUX pages and corresponding PMU 5509 * data. Note that after rb::aux_mmap_count dropped to zero, 5510 * they won't start any more (see perf_aux_output_begin()). 5511 */ 5512 perf_pmu_output_stop(event); 5513 5514 /* now it's safe to free the pages */ 5515 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5516 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5517 5518 /* this has to be the last one */ 5519 rb_free_aux(rb); 5520 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5521 5522 mutex_unlock(&event->mmap_mutex); 5523 } 5524 5525 atomic_dec(&rb->mmap_count); 5526 5527 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5528 goto out_put; 5529 5530 ring_buffer_attach(event, NULL); 5531 mutex_unlock(&event->mmap_mutex); 5532 5533 /* If there's still other mmap()s of this buffer, we're done. */ 5534 if (atomic_read(&rb->mmap_count)) 5535 goto out_put; 5536 5537 /* 5538 * No other mmap()s, detach from all other events that might redirect 5539 * into the now unreachable buffer. Somewhat complicated by the 5540 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5541 */ 5542 again: 5543 rcu_read_lock(); 5544 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5545 if (!atomic_long_inc_not_zero(&event->refcount)) { 5546 /* 5547 * This event is en-route to free_event() which will 5548 * detach it and remove it from the list. 5549 */ 5550 continue; 5551 } 5552 rcu_read_unlock(); 5553 5554 mutex_lock(&event->mmap_mutex); 5555 /* 5556 * Check we didn't race with perf_event_set_output() which can 5557 * swizzle the rb from under us while we were waiting to 5558 * acquire mmap_mutex. 5559 * 5560 * If we find a different rb; ignore this event, a next 5561 * iteration will no longer find it on the list. We have to 5562 * still restart the iteration to make sure we're not now 5563 * iterating the wrong list. 5564 */ 5565 if (event->rb == rb) 5566 ring_buffer_attach(event, NULL); 5567 5568 mutex_unlock(&event->mmap_mutex); 5569 put_event(event); 5570 5571 /* 5572 * Restart the iteration; either we're on the wrong list or 5573 * destroyed its integrity by doing a deletion. 5574 */ 5575 goto again; 5576 } 5577 rcu_read_unlock(); 5578 5579 /* 5580 * It could be there's still a few 0-ref events on the list; they'll 5581 * get cleaned up by free_event() -- they'll also still have their 5582 * ref on the rb and will free it whenever they are done with it. 5583 * 5584 * Aside from that, this buffer is 'fully' detached and unmapped, 5585 * undo the VM accounting. 5586 */ 5587 5588 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5589 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 5590 free_uid(mmap_user); 5591 5592 out_put: 5593 ring_buffer_put(rb); /* could be last */ 5594 } 5595 5596 static const struct vm_operations_struct perf_mmap_vmops = { 5597 .open = perf_mmap_open, 5598 .close = perf_mmap_close, /* non mergeable */ 5599 .fault = perf_mmap_fault, 5600 .page_mkwrite = perf_mmap_fault, 5601 }; 5602 5603 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5604 { 5605 struct perf_event *event = file->private_data; 5606 unsigned long user_locked, user_lock_limit; 5607 struct user_struct *user = current_user(); 5608 unsigned long locked, lock_limit; 5609 struct ring_buffer *rb = NULL; 5610 unsigned long vma_size; 5611 unsigned long nr_pages; 5612 long user_extra = 0, extra = 0; 5613 int ret = 0, flags = 0; 5614 5615 /* 5616 * Don't allow mmap() of inherited per-task counters. This would 5617 * create a performance issue due to all children writing to the 5618 * same rb. 5619 */ 5620 if (event->cpu == -1 && event->attr.inherit) 5621 return -EINVAL; 5622 5623 if (!(vma->vm_flags & VM_SHARED)) 5624 return -EINVAL; 5625 5626 vma_size = vma->vm_end - vma->vm_start; 5627 5628 if (vma->vm_pgoff == 0) { 5629 nr_pages = (vma_size / PAGE_SIZE) - 1; 5630 } else { 5631 /* 5632 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5633 * mapped, all subsequent mappings should have the same size 5634 * and offset. Must be above the normal perf buffer. 5635 */ 5636 u64 aux_offset, aux_size; 5637 5638 if (!event->rb) 5639 return -EINVAL; 5640 5641 nr_pages = vma_size / PAGE_SIZE; 5642 5643 mutex_lock(&event->mmap_mutex); 5644 ret = -EINVAL; 5645 5646 rb = event->rb; 5647 if (!rb) 5648 goto aux_unlock; 5649 5650 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5651 aux_size = READ_ONCE(rb->user_page->aux_size); 5652 5653 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5654 goto aux_unlock; 5655 5656 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5657 goto aux_unlock; 5658 5659 /* already mapped with a different offset */ 5660 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5661 goto aux_unlock; 5662 5663 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5664 goto aux_unlock; 5665 5666 /* already mapped with a different size */ 5667 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5668 goto aux_unlock; 5669 5670 if (!is_power_of_2(nr_pages)) 5671 goto aux_unlock; 5672 5673 if (!atomic_inc_not_zero(&rb->mmap_count)) 5674 goto aux_unlock; 5675 5676 if (rb_has_aux(rb)) { 5677 atomic_inc(&rb->aux_mmap_count); 5678 ret = 0; 5679 goto unlock; 5680 } 5681 5682 atomic_set(&rb->aux_mmap_count, 1); 5683 user_extra = nr_pages; 5684 5685 goto accounting; 5686 } 5687 5688 /* 5689 * If we have rb pages ensure they're a power-of-two number, so we 5690 * can do bitmasks instead of modulo. 5691 */ 5692 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5693 return -EINVAL; 5694 5695 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5696 return -EINVAL; 5697 5698 WARN_ON_ONCE(event->ctx->parent_ctx); 5699 again: 5700 mutex_lock(&event->mmap_mutex); 5701 if (event->rb) { 5702 if (event->rb->nr_pages != nr_pages) { 5703 ret = -EINVAL; 5704 goto unlock; 5705 } 5706 5707 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5708 /* 5709 * Raced against perf_mmap_close() through 5710 * perf_event_set_output(). Try again, hope for better 5711 * luck. 5712 */ 5713 mutex_unlock(&event->mmap_mutex); 5714 goto again; 5715 } 5716 5717 goto unlock; 5718 } 5719 5720 user_extra = nr_pages + 1; 5721 5722 accounting: 5723 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5724 5725 /* 5726 * Increase the limit linearly with more CPUs: 5727 */ 5728 user_lock_limit *= num_online_cpus(); 5729 5730 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5731 5732 if (user_locked > user_lock_limit) 5733 extra = user_locked - user_lock_limit; 5734 5735 lock_limit = rlimit(RLIMIT_MEMLOCK); 5736 lock_limit >>= PAGE_SHIFT; 5737 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 5738 5739 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5740 !capable(CAP_IPC_LOCK)) { 5741 ret = -EPERM; 5742 goto unlock; 5743 } 5744 5745 WARN_ON(!rb && event->rb); 5746 5747 if (vma->vm_flags & VM_WRITE) 5748 flags |= RING_BUFFER_WRITABLE; 5749 5750 if (!rb) { 5751 rb = rb_alloc(nr_pages, 5752 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5753 event->cpu, flags); 5754 5755 if (!rb) { 5756 ret = -ENOMEM; 5757 goto unlock; 5758 } 5759 5760 atomic_set(&rb->mmap_count, 1); 5761 rb->mmap_user = get_current_user(); 5762 rb->mmap_locked = extra; 5763 5764 ring_buffer_attach(event, rb); 5765 5766 perf_event_init_userpage(event); 5767 perf_event_update_userpage(event); 5768 } else { 5769 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5770 event->attr.aux_watermark, flags); 5771 if (!ret) 5772 rb->aux_mmap_locked = extra; 5773 } 5774 5775 unlock: 5776 if (!ret) { 5777 atomic_long_add(user_extra, &user->locked_vm); 5778 atomic64_add(extra, &vma->vm_mm->pinned_vm); 5779 5780 atomic_inc(&event->mmap_count); 5781 } else if (rb) { 5782 atomic_dec(&rb->mmap_count); 5783 } 5784 aux_unlock: 5785 mutex_unlock(&event->mmap_mutex); 5786 5787 /* 5788 * Since pinned accounting is per vm we cannot allow fork() to copy our 5789 * vma. 5790 */ 5791 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5792 vma->vm_ops = &perf_mmap_vmops; 5793 5794 if (event->pmu->event_mapped) 5795 event->pmu->event_mapped(event, vma->vm_mm); 5796 5797 return ret; 5798 } 5799 5800 static int perf_fasync(int fd, struct file *filp, int on) 5801 { 5802 struct inode *inode = file_inode(filp); 5803 struct perf_event *event = filp->private_data; 5804 int retval; 5805 5806 inode_lock(inode); 5807 retval = fasync_helper(fd, filp, on, &event->fasync); 5808 inode_unlock(inode); 5809 5810 if (retval < 0) 5811 return retval; 5812 5813 return 0; 5814 } 5815 5816 static const struct file_operations perf_fops = { 5817 .llseek = no_llseek, 5818 .release = perf_release, 5819 .read = perf_read, 5820 .poll = perf_poll, 5821 .unlocked_ioctl = perf_ioctl, 5822 .compat_ioctl = perf_compat_ioctl, 5823 .mmap = perf_mmap, 5824 .fasync = perf_fasync, 5825 }; 5826 5827 /* 5828 * Perf event wakeup 5829 * 5830 * If there's data, ensure we set the poll() state and publish everything 5831 * to user-space before waking everybody up. 5832 */ 5833 5834 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5835 { 5836 /* only the parent has fasync state */ 5837 if (event->parent) 5838 event = event->parent; 5839 return &event->fasync; 5840 } 5841 5842 void perf_event_wakeup(struct perf_event *event) 5843 { 5844 ring_buffer_wakeup(event); 5845 5846 if (event->pending_kill) { 5847 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5848 event->pending_kill = 0; 5849 } 5850 } 5851 5852 static void perf_pending_event_disable(struct perf_event *event) 5853 { 5854 int cpu = READ_ONCE(event->pending_disable); 5855 5856 if (cpu < 0) 5857 return; 5858 5859 if (cpu == smp_processor_id()) { 5860 WRITE_ONCE(event->pending_disable, -1); 5861 perf_event_disable_local(event); 5862 return; 5863 } 5864 5865 /* 5866 * CPU-A CPU-B 5867 * 5868 * perf_event_disable_inatomic() 5869 * @pending_disable = CPU-A; 5870 * irq_work_queue(); 5871 * 5872 * sched-out 5873 * @pending_disable = -1; 5874 * 5875 * sched-in 5876 * perf_event_disable_inatomic() 5877 * @pending_disable = CPU-B; 5878 * irq_work_queue(); // FAILS 5879 * 5880 * irq_work_run() 5881 * perf_pending_event() 5882 * 5883 * But the event runs on CPU-B and wants disabling there. 5884 */ 5885 irq_work_queue_on(&event->pending, cpu); 5886 } 5887 5888 static void perf_pending_event(struct irq_work *entry) 5889 { 5890 struct perf_event *event = container_of(entry, struct perf_event, pending); 5891 int rctx; 5892 5893 rctx = perf_swevent_get_recursion_context(); 5894 /* 5895 * If we 'fail' here, that's OK, it means recursion is already disabled 5896 * and we won't recurse 'further'. 5897 */ 5898 5899 perf_pending_event_disable(event); 5900 5901 if (event->pending_wakeup) { 5902 event->pending_wakeup = 0; 5903 perf_event_wakeup(event); 5904 } 5905 5906 if (rctx >= 0) 5907 perf_swevent_put_recursion_context(rctx); 5908 } 5909 5910 /* 5911 * We assume there is only KVM supporting the callbacks. 5912 * Later on, we might change it to a list if there is 5913 * another virtualization implementation supporting the callbacks. 5914 */ 5915 struct perf_guest_info_callbacks *perf_guest_cbs; 5916 5917 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5918 { 5919 perf_guest_cbs = cbs; 5920 return 0; 5921 } 5922 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5923 5924 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5925 { 5926 perf_guest_cbs = NULL; 5927 return 0; 5928 } 5929 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5930 5931 static void 5932 perf_output_sample_regs(struct perf_output_handle *handle, 5933 struct pt_regs *regs, u64 mask) 5934 { 5935 int bit; 5936 DECLARE_BITMAP(_mask, 64); 5937 5938 bitmap_from_u64(_mask, mask); 5939 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5940 u64 val; 5941 5942 val = perf_reg_value(regs, bit); 5943 perf_output_put(handle, val); 5944 } 5945 } 5946 5947 static void perf_sample_regs_user(struct perf_regs *regs_user, 5948 struct pt_regs *regs, 5949 struct pt_regs *regs_user_copy) 5950 { 5951 if (user_mode(regs)) { 5952 regs_user->abi = perf_reg_abi(current); 5953 regs_user->regs = regs; 5954 } else if (!(current->flags & PF_KTHREAD)) { 5955 perf_get_regs_user(regs_user, regs, regs_user_copy); 5956 } else { 5957 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5958 regs_user->regs = NULL; 5959 } 5960 } 5961 5962 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5963 struct pt_regs *regs) 5964 { 5965 regs_intr->regs = regs; 5966 regs_intr->abi = perf_reg_abi(current); 5967 } 5968 5969 5970 /* 5971 * Get remaining task size from user stack pointer. 5972 * 5973 * It'd be better to take stack vma map and limit this more 5974 * precisly, but there's no way to get it safely under interrupt, 5975 * so using TASK_SIZE as limit. 5976 */ 5977 static u64 perf_ustack_task_size(struct pt_regs *regs) 5978 { 5979 unsigned long addr = perf_user_stack_pointer(regs); 5980 5981 if (!addr || addr >= TASK_SIZE) 5982 return 0; 5983 5984 return TASK_SIZE - addr; 5985 } 5986 5987 static u16 5988 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5989 struct pt_regs *regs) 5990 { 5991 u64 task_size; 5992 5993 /* No regs, no stack pointer, no dump. */ 5994 if (!regs) 5995 return 0; 5996 5997 /* 5998 * Check if we fit in with the requested stack size into the: 5999 * - TASK_SIZE 6000 * If we don't, we limit the size to the TASK_SIZE. 6001 * 6002 * - remaining sample size 6003 * If we don't, we customize the stack size to 6004 * fit in to the remaining sample size. 6005 */ 6006 6007 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6008 stack_size = min(stack_size, (u16) task_size); 6009 6010 /* Current header size plus static size and dynamic size. */ 6011 header_size += 2 * sizeof(u64); 6012 6013 /* Do we fit in with the current stack dump size? */ 6014 if ((u16) (header_size + stack_size) < header_size) { 6015 /* 6016 * If we overflow the maximum size for the sample, 6017 * we customize the stack dump size to fit in. 6018 */ 6019 stack_size = USHRT_MAX - header_size - sizeof(u64); 6020 stack_size = round_up(stack_size, sizeof(u64)); 6021 } 6022 6023 return stack_size; 6024 } 6025 6026 static void 6027 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6028 struct pt_regs *regs) 6029 { 6030 /* Case of a kernel thread, nothing to dump */ 6031 if (!regs) { 6032 u64 size = 0; 6033 perf_output_put(handle, size); 6034 } else { 6035 unsigned long sp; 6036 unsigned int rem; 6037 u64 dyn_size; 6038 mm_segment_t fs; 6039 6040 /* 6041 * We dump: 6042 * static size 6043 * - the size requested by user or the best one we can fit 6044 * in to the sample max size 6045 * data 6046 * - user stack dump data 6047 * dynamic size 6048 * - the actual dumped size 6049 */ 6050 6051 /* Static size. */ 6052 perf_output_put(handle, dump_size); 6053 6054 /* Data. */ 6055 sp = perf_user_stack_pointer(regs); 6056 fs = get_fs(); 6057 set_fs(USER_DS); 6058 rem = __output_copy_user(handle, (void *) sp, dump_size); 6059 set_fs(fs); 6060 dyn_size = dump_size - rem; 6061 6062 perf_output_skip(handle, rem); 6063 6064 /* Dynamic size. */ 6065 perf_output_put(handle, dyn_size); 6066 } 6067 } 6068 6069 static void __perf_event_header__init_id(struct perf_event_header *header, 6070 struct perf_sample_data *data, 6071 struct perf_event *event) 6072 { 6073 u64 sample_type = event->attr.sample_type; 6074 6075 data->type = sample_type; 6076 header->size += event->id_header_size; 6077 6078 if (sample_type & PERF_SAMPLE_TID) { 6079 /* namespace issues */ 6080 data->tid_entry.pid = perf_event_pid(event, current); 6081 data->tid_entry.tid = perf_event_tid(event, current); 6082 } 6083 6084 if (sample_type & PERF_SAMPLE_TIME) 6085 data->time = perf_event_clock(event); 6086 6087 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6088 data->id = primary_event_id(event); 6089 6090 if (sample_type & PERF_SAMPLE_STREAM_ID) 6091 data->stream_id = event->id; 6092 6093 if (sample_type & PERF_SAMPLE_CPU) { 6094 data->cpu_entry.cpu = raw_smp_processor_id(); 6095 data->cpu_entry.reserved = 0; 6096 } 6097 } 6098 6099 void perf_event_header__init_id(struct perf_event_header *header, 6100 struct perf_sample_data *data, 6101 struct perf_event *event) 6102 { 6103 if (event->attr.sample_id_all) 6104 __perf_event_header__init_id(header, data, event); 6105 } 6106 6107 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6108 struct perf_sample_data *data) 6109 { 6110 u64 sample_type = data->type; 6111 6112 if (sample_type & PERF_SAMPLE_TID) 6113 perf_output_put(handle, data->tid_entry); 6114 6115 if (sample_type & PERF_SAMPLE_TIME) 6116 perf_output_put(handle, data->time); 6117 6118 if (sample_type & PERF_SAMPLE_ID) 6119 perf_output_put(handle, data->id); 6120 6121 if (sample_type & PERF_SAMPLE_STREAM_ID) 6122 perf_output_put(handle, data->stream_id); 6123 6124 if (sample_type & PERF_SAMPLE_CPU) 6125 perf_output_put(handle, data->cpu_entry); 6126 6127 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6128 perf_output_put(handle, data->id); 6129 } 6130 6131 void perf_event__output_id_sample(struct perf_event *event, 6132 struct perf_output_handle *handle, 6133 struct perf_sample_data *sample) 6134 { 6135 if (event->attr.sample_id_all) 6136 __perf_event__output_id_sample(handle, sample); 6137 } 6138 6139 static void perf_output_read_one(struct perf_output_handle *handle, 6140 struct perf_event *event, 6141 u64 enabled, u64 running) 6142 { 6143 u64 read_format = event->attr.read_format; 6144 u64 values[4]; 6145 int n = 0; 6146 6147 values[n++] = perf_event_count(event); 6148 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6149 values[n++] = enabled + 6150 atomic64_read(&event->child_total_time_enabled); 6151 } 6152 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6153 values[n++] = running + 6154 atomic64_read(&event->child_total_time_running); 6155 } 6156 if (read_format & PERF_FORMAT_ID) 6157 values[n++] = primary_event_id(event); 6158 6159 __output_copy(handle, values, n * sizeof(u64)); 6160 } 6161 6162 static void perf_output_read_group(struct perf_output_handle *handle, 6163 struct perf_event *event, 6164 u64 enabled, u64 running) 6165 { 6166 struct perf_event *leader = event->group_leader, *sub; 6167 u64 read_format = event->attr.read_format; 6168 u64 values[5]; 6169 int n = 0; 6170 6171 values[n++] = 1 + leader->nr_siblings; 6172 6173 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6174 values[n++] = enabled; 6175 6176 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6177 values[n++] = running; 6178 6179 if ((leader != event) && 6180 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6181 leader->pmu->read(leader); 6182 6183 values[n++] = perf_event_count(leader); 6184 if (read_format & PERF_FORMAT_ID) 6185 values[n++] = primary_event_id(leader); 6186 6187 __output_copy(handle, values, n * sizeof(u64)); 6188 6189 for_each_sibling_event(sub, leader) { 6190 n = 0; 6191 6192 if ((sub != event) && 6193 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6194 sub->pmu->read(sub); 6195 6196 values[n++] = perf_event_count(sub); 6197 if (read_format & PERF_FORMAT_ID) 6198 values[n++] = primary_event_id(sub); 6199 6200 __output_copy(handle, values, n * sizeof(u64)); 6201 } 6202 } 6203 6204 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6205 PERF_FORMAT_TOTAL_TIME_RUNNING) 6206 6207 /* 6208 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6209 * 6210 * The problem is that its both hard and excessively expensive to iterate the 6211 * child list, not to mention that its impossible to IPI the children running 6212 * on another CPU, from interrupt/NMI context. 6213 */ 6214 static void perf_output_read(struct perf_output_handle *handle, 6215 struct perf_event *event) 6216 { 6217 u64 enabled = 0, running = 0, now; 6218 u64 read_format = event->attr.read_format; 6219 6220 /* 6221 * compute total_time_enabled, total_time_running 6222 * based on snapshot values taken when the event 6223 * was last scheduled in. 6224 * 6225 * we cannot simply called update_context_time() 6226 * because of locking issue as we are called in 6227 * NMI context 6228 */ 6229 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6230 calc_timer_values(event, &now, &enabled, &running); 6231 6232 if (event->attr.read_format & PERF_FORMAT_GROUP) 6233 perf_output_read_group(handle, event, enabled, running); 6234 else 6235 perf_output_read_one(handle, event, enabled, running); 6236 } 6237 6238 void perf_output_sample(struct perf_output_handle *handle, 6239 struct perf_event_header *header, 6240 struct perf_sample_data *data, 6241 struct perf_event *event) 6242 { 6243 u64 sample_type = data->type; 6244 6245 perf_output_put(handle, *header); 6246 6247 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6248 perf_output_put(handle, data->id); 6249 6250 if (sample_type & PERF_SAMPLE_IP) 6251 perf_output_put(handle, data->ip); 6252 6253 if (sample_type & PERF_SAMPLE_TID) 6254 perf_output_put(handle, data->tid_entry); 6255 6256 if (sample_type & PERF_SAMPLE_TIME) 6257 perf_output_put(handle, data->time); 6258 6259 if (sample_type & PERF_SAMPLE_ADDR) 6260 perf_output_put(handle, data->addr); 6261 6262 if (sample_type & PERF_SAMPLE_ID) 6263 perf_output_put(handle, data->id); 6264 6265 if (sample_type & PERF_SAMPLE_STREAM_ID) 6266 perf_output_put(handle, data->stream_id); 6267 6268 if (sample_type & PERF_SAMPLE_CPU) 6269 perf_output_put(handle, data->cpu_entry); 6270 6271 if (sample_type & PERF_SAMPLE_PERIOD) 6272 perf_output_put(handle, data->period); 6273 6274 if (sample_type & PERF_SAMPLE_READ) 6275 perf_output_read(handle, event); 6276 6277 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6278 int size = 1; 6279 6280 size += data->callchain->nr; 6281 size *= sizeof(u64); 6282 __output_copy(handle, data->callchain, size); 6283 } 6284 6285 if (sample_type & PERF_SAMPLE_RAW) { 6286 struct perf_raw_record *raw = data->raw; 6287 6288 if (raw) { 6289 struct perf_raw_frag *frag = &raw->frag; 6290 6291 perf_output_put(handle, raw->size); 6292 do { 6293 if (frag->copy) { 6294 __output_custom(handle, frag->copy, 6295 frag->data, frag->size); 6296 } else { 6297 __output_copy(handle, frag->data, 6298 frag->size); 6299 } 6300 if (perf_raw_frag_last(frag)) 6301 break; 6302 frag = frag->next; 6303 } while (1); 6304 if (frag->pad) 6305 __output_skip(handle, NULL, frag->pad); 6306 } else { 6307 struct { 6308 u32 size; 6309 u32 data; 6310 } raw = { 6311 .size = sizeof(u32), 6312 .data = 0, 6313 }; 6314 perf_output_put(handle, raw); 6315 } 6316 } 6317 6318 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6319 if (data->br_stack) { 6320 size_t size; 6321 6322 size = data->br_stack->nr 6323 * sizeof(struct perf_branch_entry); 6324 6325 perf_output_put(handle, data->br_stack->nr); 6326 perf_output_copy(handle, data->br_stack->entries, size); 6327 } else { 6328 /* 6329 * we always store at least the value of nr 6330 */ 6331 u64 nr = 0; 6332 perf_output_put(handle, nr); 6333 } 6334 } 6335 6336 if (sample_type & PERF_SAMPLE_REGS_USER) { 6337 u64 abi = data->regs_user.abi; 6338 6339 /* 6340 * If there are no regs to dump, notice it through 6341 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6342 */ 6343 perf_output_put(handle, abi); 6344 6345 if (abi) { 6346 u64 mask = event->attr.sample_regs_user; 6347 perf_output_sample_regs(handle, 6348 data->regs_user.regs, 6349 mask); 6350 } 6351 } 6352 6353 if (sample_type & PERF_SAMPLE_STACK_USER) { 6354 perf_output_sample_ustack(handle, 6355 data->stack_user_size, 6356 data->regs_user.regs); 6357 } 6358 6359 if (sample_type & PERF_SAMPLE_WEIGHT) 6360 perf_output_put(handle, data->weight); 6361 6362 if (sample_type & PERF_SAMPLE_DATA_SRC) 6363 perf_output_put(handle, data->data_src.val); 6364 6365 if (sample_type & PERF_SAMPLE_TRANSACTION) 6366 perf_output_put(handle, data->txn); 6367 6368 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6369 u64 abi = data->regs_intr.abi; 6370 /* 6371 * If there are no regs to dump, notice it through 6372 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6373 */ 6374 perf_output_put(handle, abi); 6375 6376 if (abi) { 6377 u64 mask = event->attr.sample_regs_intr; 6378 6379 perf_output_sample_regs(handle, 6380 data->regs_intr.regs, 6381 mask); 6382 } 6383 } 6384 6385 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6386 perf_output_put(handle, data->phys_addr); 6387 6388 if (!event->attr.watermark) { 6389 int wakeup_events = event->attr.wakeup_events; 6390 6391 if (wakeup_events) { 6392 struct ring_buffer *rb = handle->rb; 6393 int events = local_inc_return(&rb->events); 6394 6395 if (events >= wakeup_events) { 6396 local_sub(wakeup_events, &rb->events); 6397 local_inc(&rb->wakeup); 6398 } 6399 } 6400 } 6401 } 6402 6403 static u64 perf_virt_to_phys(u64 virt) 6404 { 6405 u64 phys_addr = 0; 6406 struct page *p = NULL; 6407 6408 if (!virt) 6409 return 0; 6410 6411 if (virt >= TASK_SIZE) { 6412 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6413 if (virt_addr_valid((void *)(uintptr_t)virt) && 6414 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6415 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6416 } else { 6417 /* 6418 * Walking the pages tables for user address. 6419 * Interrupts are disabled, so it prevents any tear down 6420 * of the page tables. 6421 * Try IRQ-safe __get_user_pages_fast first. 6422 * If failed, leave phys_addr as 0. 6423 */ 6424 if ((current->mm != NULL) && 6425 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6426 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6427 6428 if (p) 6429 put_page(p); 6430 } 6431 6432 return phys_addr; 6433 } 6434 6435 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6436 6437 struct perf_callchain_entry * 6438 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6439 { 6440 bool kernel = !event->attr.exclude_callchain_kernel; 6441 bool user = !event->attr.exclude_callchain_user; 6442 /* Disallow cross-task user callchains. */ 6443 bool crosstask = event->ctx->task && event->ctx->task != current; 6444 const u32 max_stack = event->attr.sample_max_stack; 6445 struct perf_callchain_entry *callchain; 6446 6447 if (!kernel && !user) 6448 return &__empty_callchain; 6449 6450 callchain = get_perf_callchain(regs, 0, kernel, user, 6451 max_stack, crosstask, true); 6452 return callchain ?: &__empty_callchain; 6453 } 6454 6455 void perf_prepare_sample(struct perf_event_header *header, 6456 struct perf_sample_data *data, 6457 struct perf_event *event, 6458 struct pt_regs *regs) 6459 { 6460 u64 sample_type = event->attr.sample_type; 6461 6462 header->type = PERF_RECORD_SAMPLE; 6463 header->size = sizeof(*header) + event->header_size; 6464 6465 header->misc = 0; 6466 header->misc |= perf_misc_flags(regs); 6467 6468 __perf_event_header__init_id(header, data, event); 6469 6470 if (sample_type & PERF_SAMPLE_IP) 6471 data->ip = perf_instruction_pointer(regs); 6472 6473 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6474 int size = 1; 6475 6476 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6477 data->callchain = perf_callchain(event, regs); 6478 6479 size += data->callchain->nr; 6480 6481 header->size += size * sizeof(u64); 6482 } 6483 6484 if (sample_type & PERF_SAMPLE_RAW) { 6485 struct perf_raw_record *raw = data->raw; 6486 int size; 6487 6488 if (raw) { 6489 struct perf_raw_frag *frag = &raw->frag; 6490 u32 sum = 0; 6491 6492 do { 6493 sum += frag->size; 6494 if (perf_raw_frag_last(frag)) 6495 break; 6496 frag = frag->next; 6497 } while (1); 6498 6499 size = round_up(sum + sizeof(u32), sizeof(u64)); 6500 raw->size = size - sizeof(u32); 6501 frag->pad = raw->size - sum; 6502 } else { 6503 size = sizeof(u64); 6504 } 6505 6506 header->size += size; 6507 } 6508 6509 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6510 int size = sizeof(u64); /* nr */ 6511 if (data->br_stack) { 6512 size += data->br_stack->nr 6513 * sizeof(struct perf_branch_entry); 6514 } 6515 header->size += size; 6516 } 6517 6518 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6519 perf_sample_regs_user(&data->regs_user, regs, 6520 &data->regs_user_copy); 6521 6522 if (sample_type & PERF_SAMPLE_REGS_USER) { 6523 /* regs dump ABI info */ 6524 int size = sizeof(u64); 6525 6526 if (data->regs_user.regs) { 6527 u64 mask = event->attr.sample_regs_user; 6528 size += hweight64(mask) * sizeof(u64); 6529 } 6530 6531 header->size += size; 6532 } 6533 6534 if (sample_type & PERF_SAMPLE_STACK_USER) { 6535 /* 6536 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6537 * processed as the last one or have additional check added 6538 * in case new sample type is added, because we could eat 6539 * up the rest of the sample size. 6540 */ 6541 u16 stack_size = event->attr.sample_stack_user; 6542 u16 size = sizeof(u64); 6543 6544 stack_size = perf_sample_ustack_size(stack_size, header->size, 6545 data->regs_user.regs); 6546 6547 /* 6548 * If there is something to dump, add space for the dump 6549 * itself and for the field that tells the dynamic size, 6550 * which is how many have been actually dumped. 6551 */ 6552 if (stack_size) 6553 size += sizeof(u64) + stack_size; 6554 6555 data->stack_user_size = stack_size; 6556 header->size += size; 6557 } 6558 6559 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6560 /* regs dump ABI info */ 6561 int size = sizeof(u64); 6562 6563 perf_sample_regs_intr(&data->regs_intr, regs); 6564 6565 if (data->regs_intr.regs) { 6566 u64 mask = event->attr.sample_regs_intr; 6567 6568 size += hweight64(mask) * sizeof(u64); 6569 } 6570 6571 header->size += size; 6572 } 6573 6574 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6575 data->phys_addr = perf_virt_to_phys(data->addr); 6576 } 6577 6578 static __always_inline int 6579 __perf_event_output(struct perf_event *event, 6580 struct perf_sample_data *data, 6581 struct pt_regs *regs, 6582 int (*output_begin)(struct perf_output_handle *, 6583 struct perf_event *, 6584 unsigned int)) 6585 { 6586 struct perf_output_handle handle; 6587 struct perf_event_header header; 6588 int err; 6589 6590 /* protect the callchain buffers */ 6591 rcu_read_lock(); 6592 6593 perf_prepare_sample(&header, data, event, regs); 6594 6595 err = output_begin(&handle, event, header.size); 6596 if (err) 6597 goto exit; 6598 6599 perf_output_sample(&handle, &header, data, event); 6600 6601 perf_output_end(&handle); 6602 6603 exit: 6604 rcu_read_unlock(); 6605 return err; 6606 } 6607 6608 void 6609 perf_event_output_forward(struct perf_event *event, 6610 struct perf_sample_data *data, 6611 struct pt_regs *regs) 6612 { 6613 __perf_event_output(event, data, regs, perf_output_begin_forward); 6614 } 6615 6616 void 6617 perf_event_output_backward(struct perf_event *event, 6618 struct perf_sample_data *data, 6619 struct pt_regs *regs) 6620 { 6621 __perf_event_output(event, data, regs, perf_output_begin_backward); 6622 } 6623 6624 int 6625 perf_event_output(struct perf_event *event, 6626 struct perf_sample_data *data, 6627 struct pt_regs *regs) 6628 { 6629 return __perf_event_output(event, data, regs, perf_output_begin); 6630 } 6631 6632 /* 6633 * read event_id 6634 */ 6635 6636 struct perf_read_event { 6637 struct perf_event_header header; 6638 6639 u32 pid; 6640 u32 tid; 6641 }; 6642 6643 static void 6644 perf_event_read_event(struct perf_event *event, 6645 struct task_struct *task) 6646 { 6647 struct perf_output_handle handle; 6648 struct perf_sample_data sample; 6649 struct perf_read_event read_event = { 6650 .header = { 6651 .type = PERF_RECORD_READ, 6652 .misc = 0, 6653 .size = sizeof(read_event) + event->read_size, 6654 }, 6655 .pid = perf_event_pid(event, task), 6656 .tid = perf_event_tid(event, task), 6657 }; 6658 int ret; 6659 6660 perf_event_header__init_id(&read_event.header, &sample, event); 6661 ret = perf_output_begin(&handle, event, read_event.header.size); 6662 if (ret) 6663 return; 6664 6665 perf_output_put(&handle, read_event); 6666 perf_output_read(&handle, event); 6667 perf_event__output_id_sample(event, &handle, &sample); 6668 6669 perf_output_end(&handle); 6670 } 6671 6672 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6673 6674 static void 6675 perf_iterate_ctx(struct perf_event_context *ctx, 6676 perf_iterate_f output, 6677 void *data, bool all) 6678 { 6679 struct perf_event *event; 6680 6681 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6682 if (!all) { 6683 if (event->state < PERF_EVENT_STATE_INACTIVE) 6684 continue; 6685 if (!event_filter_match(event)) 6686 continue; 6687 } 6688 6689 output(event, data); 6690 } 6691 } 6692 6693 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6694 { 6695 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6696 struct perf_event *event; 6697 6698 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6699 /* 6700 * Skip events that are not fully formed yet; ensure that 6701 * if we observe event->ctx, both event and ctx will be 6702 * complete enough. See perf_install_in_context(). 6703 */ 6704 if (!smp_load_acquire(&event->ctx)) 6705 continue; 6706 6707 if (event->state < PERF_EVENT_STATE_INACTIVE) 6708 continue; 6709 if (!event_filter_match(event)) 6710 continue; 6711 output(event, data); 6712 } 6713 } 6714 6715 /* 6716 * Iterate all events that need to receive side-band events. 6717 * 6718 * For new callers; ensure that account_pmu_sb_event() includes 6719 * your event, otherwise it might not get delivered. 6720 */ 6721 static void 6722 perf_iterate_sb(perf_iterate_f output, void *data, 6723 struct perf_event_context *task_ctx) 6724 { 6725 struct perf_event_context *ctx; 6726 int ctxn; 6727 6728 rcu_read_lock(); 6729 preempt_disable(); 6730 6731 /* 6732 * If we have task_ctx != NULL we only notify the task context itself. 6733 * The task_ctx is set only for EXIT events before releasing task 6734 * context. 6735 */ 6736 if (task_ctx) { 6737 perf_iterate_ctx(task_ctx, output, data, false); 6738 goto done; 6739 } 6740 6741 perf_iterate_sb_cpu(output, data); 6742 6743 for_each_task_context_nr(ctxn) { 6744 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6745 if (ctx) 6746 perf_iterate_ctx(ctx, output, data, false); 6747 } 6748 done: 6749 preempt_enable(); 6750 rcu_read_unlock(); 6751 } 6752 6753 /* 6754 * Clear all file-based filters at exec, they'll have to be 6755 * re-instated when/if these objects are mmapped again. 6756 */ 6757 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6758 { 6759 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6760 struct perf_addr_filter *filter; 6761 unsigned int restart = 0, count = 0; 6762 unsigned long flags; 6763 6764 if (!has_addr_filter(event)) 6765 return; 6766 6767 raw_spin_lock_irqsave(&ifh->lock, flags); 6768 list_for_each_entry(filter, &ifh->list, entry) { 6769 if (filter->path.dentry) { 6770 event->addr_filter_ranges[count].start = 0; 6771 event->addr_filter_ranges[count].size = 0; 6772 restart++; 6773 } 6774 6775 count++; 6776 } 6777 6778 if (restart) 6779 event->addr_filters_gen++; 6780 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6781 6782 if (restart) 6783 perf_event_stop(event, 1); 6784 } 6785 6786 void perf_event_exec(void) 6787 { 6788 struct perf_event_context *ctx; 6789 int ctxn; 6790 6791 rcu_read_lock(); 6792 for_each_task_context_nr(ctxn) { 6793 ctx = current->perf_event_ctxp[ctxn]; 6794 if (!ctx) 6795 continue; 6796 6797 perf_event_enable_on_exec(ctxn); 6798 6799 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6800 true); 6801 } 6802 rcu_read_unlock(); 6803 } 6804 6805 struct remote_output { 6806 struct ring_buffer *rb; 6807 int err; 6808 }; 6809 6810 static void __perf_event_output_stop(struct perf_event *event, void *data) 6811 { 6812 struct perf_event *parent = event->parent; 6813 struct remote_output *ro = data; 6814 struct ring_buffer *rb = ro->rb; 6815 struct stop_event_data sd = { 6816 .event = event, 6817 }; 6818 6819 if (!has_aux(event)) 6820 return; 6821 6822 if (!parent) 6823 parent = event; 6824 6825 /* 6826 * In case of inheritance, it will be the parent that links to the 6827 * ring-buffer, but it will be the child that's actually using it. 6828 * 6829 * We are using event::rb to determine if the event should be stopped, 6830 * however this may race with ring_buffer_attach() (through set_output), 6831 * which will make us skip the event that actually needs to be stopped. 6832 * So ring_buffer_attach() has to stop an aux event before re-assigning 6833 * its rb pointer. 6834 */ 6835 if (rcu_dereference(parent->rb) == rb) 6836 ro->err = __perf_event_stop(&sd); 6837 } 6838 6839 static int __perf_pmu_output_stop(void *info) 6840 { 6841 struct perf_event *event = info; 6842 struct pmu *pmu = event->pmu; 6843 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6844 struct remote_output ro = { 6845 .rb = event->rb, 6846 }; 6847 6848 rcu_read_lock(); 6849 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6850 if (cpuctx->task_ctx) 6851 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6852 &ro, false); 6853 rcu_read_unlock(); 6854 6855 return ro.err; 6856 } 6857 6858 static void perf_pmu_output_stop(struct perf_event *event) 6859 { 6860 struct perf_event *iter; 6861 int err, cpu; 6862 6863 restart: 6864 rcu_read_lock(); 6865 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6866 /* 6867 * For per-CPU events, we need to make sure that neither they 6868 * nor their children are running; for cpu==-1 events it's 6869 * sufficient to stop the event itself if it's active, since 6870 * it can't have children. 6871 */ 6872 cpu = iter->cpu; 6873 if (cpu == -1) 6874 cpu = READ_ONCE(iter->oncpu); 6875 6876 if (cpu == -1) 6877 continue; 6878 6879 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6880 if (err == -EAGAIN) { 6881 rcu_read_unlock(); 6882 goto restart; 6883 } 6884 } 6885 rcu_read_unlock(); 6886 } 6887 6888 /* 6889 * task tracking -- fork/exit 6890 * 6891 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6892 */ 6893 6894 struct perf_task_event { 6895 struct task_struct *task; 6896 struct perf_event_context *task_ctx; 6897 6898 struct { 6899 struct perf_event_header header; 6900 6901 u32 pid; 6902 u32 ppid; 6903 u32 tid; 6904 u32 ptid; 6905 u64 time; 6906 } event_id; 6907 }; 6908 6909 static int perf_event_task_match(struct perf_event *event) 6910 { 6911 return event->attr.comm || event->attr.mmap || 6912 event->attr.mmap2 || event->attr.mmap_data || 6913 event->attr.task; 6914 } 6915 6916 static void perf_event_task_output(struct perf_event *event, 6917 void *data) 6918 { 6919 struct perf_task_event *task_event = data; 6920 struct perf_output_handle handle; 6921 struct perf_sample_data sample; 6922 struct task_struct *task = task_event->task; 6923 int ret, size = task_event->event_id.header.size; 6924 6925 if (!perf_event_task_match(event)) 6926 return; 6927 6928 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6929 6930 ret = perf_output_begin(&handle, event, 6931 task_event->event_id.header.size); 6932 if (ret) 6933 goto out; 6934 6935 task_event->event_id.pid = perf_event_pid(event, task); 6936 task_event->event_id.ppid = perf_event_pid(event, current); 6937 6938 task_event->event_id.tid = perf_event_tid(event, task); 6939 task_event->event_id.ptid = perf_event_tid(event, current); 6940 6941 task_event->event_id.time = perf_event_clock(event); 6942 6943 perf_output_put(&handle, task_event->event_id); 6944 6945 perf_event__output_id_sample(event, &handle, &sample); 6946 6947 perf_output_end(&handle); 6948 out: 6949 task_event->event_id.header.size = size; 6950 } 6951 6952 static void perf_event_task(struct task_struct *task, 6953 struct perf_event_context *task_ctx, 6954 int new) 6955 { 6956 struct perf_task_event task_event; 6957 6958 if (!atomic_read(&nr_comm_events) && 6959 !atomic_read(&nr_mmap_events) && 6960 !atomic_read(&nr_task_events)) 6961 return; 6962 6963 task_event = (struct perf_task_event){ 6964 .task = task, 6965 .task_ctx = task_ctx, 6966 .event_id = { 6967 .header = { 6968 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6969 .misc = 0, 6970 .size = sizeof(task_event.event_id), 6971 }, 6972 /* .pid */ 6973 /* .ppid */ 6974 /* .tid */ 6975 /* .ptid */ 6976 /* .time */ 6977 }, 6978 }; 6979 6980 perf_iterate_sb(perf_event_task_output, 6981 &task_event, 6982 task_ctx); 6983 } 6984 6985 void perf_event_fork(struct task_struct *task) 6986 { 6987 perf_event_task(task, NULL, 1); 6988 perf_event_namespaces(task); 6989 } 6990 6991 /* 6992 * comm tracking 6993 */ 6994 6995 struct perf_comm_event { 6996 struct task_struct *task; 6997 char *comm; 6998 int comm_size; 6999 7000 struct { 7001 struct perf_event_header header; 7002 7003 u32 pid; 7004 u32 tid; 7005 } event_id; 7006 }; 7007 7008 static int perf_event_comm_match(struct perf_event *event) 7009 { 7010 return event->attr.comm; 7011 } 7012 7013 static void perf_event_comm_output(struct perf_event *event, 7014 void *data) 7015 { 7016 struct perf_comm_event *comm_event = data; 7017 struct perf_output_handle handle; 7018 struct perf_sample_data sample; 7019 int size = comm_event->event_id.header.size; 7020 int ret; 7021 7022 if (!perf_event_comm_match(event)) 7023 return; 7024 7025 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7026 ret = perf_output_begin(&handle, event, 7027 comm_event->event_id.header.size); 7028 7029 if (ret) 7030 goto out; 7031 7032 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7033 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7034 7035 perf_output_put(&handle, comm_event->event_id); 7036 __output_copy(&handle, comm_event->comm, 7037 comm_event->comm_size); 7038 7039 perf_event__output_id_sample(event, &handle, &sample); 7040 7041 perf_output_end(&handle); 7042 out: 7043 comm_event->event_id.header.size = size; 7044 } 7045 7046 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7047 { 7048 char comm[TASK_COMM_LEN]; 7049 unsigned int size; 7050 7051 memset(comm, 0, sizeof(comm)); 7052 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7053 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7054 7055 comm_event->comm = comm; 7056 comm_event->comm_size = size; 7057 7058 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7059 7060 perf_iterate_sb(perf_event_comm_output, 7061 comm_event, 7062 NULL); 7063 } 7064 7065 void perf_event_comm(struct task_struct *task, bool exec) 7066 { 7067 struct perf_comm_event comm_event; 7068 7069 if (!atomic_read(&nr_comm_events)) 7070 return; 7071 7072 comm_event = (struct perf_comm_event){ 7073 .task = task, 7074 /* .comm */ 7075 /* .comm_size */ 7076 .event_id = { 7077 .header = { 7078 .type = PERF_RECORD_COMM, 7079 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7080 /* .size */ 7081 }, 7082 /* .pid */ 7083 /* .tid */ 7084 }, 7085 }; 7086 7087 perf_event_comm_event(&comm_event); 7088 } 7089 7090 /* 7091 * namespaces tracking 7092 */ 7093 7094 struct perf_namespaces_event { 7095 struct task_struct *task; 7096 7097 struct { 7098 struct perf_event_header header; 7099 7100 u32 pid; 7101 u32 tid; 7102 u64 nr_namespaces; 7103 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7104 } event_id; 7105 }; 7106 7107 static int perf_event_namespaces_match(struct perf_event *event) 7108 { 7109 return event->attr.namespaces; 7110 } 7111 7112 static void perf_event_namespaces_output(struct perf_event *event, 7113 void *data) 7114 { 7115 struct perf_namespaces_event *namespaces_event = data; 7116 struct perf_output_handle handle; 7117 struct perf_sample_data sample; 7118 u16 header_size = namespaces_event->event_id.header.size; 7119 int ret; 7120 7121 if (!perf_event_namespaces_match(event)) 7122 return; 7123 7124 perf_event_header__init_id(&namespaces_event->event_id.header, 7125 &sample, event); 7126 ret = perf_output_begin(&handle, event, 7127 namespaces_event->event_id.header.size); 7128 if (ret) 7129 goto out; 7130 7131 namespaces_event->event_id.pid = perf_event_pid(event, 7132 namespaces_event->task); 7133 namespaces_event->event_id.tid = perf_event_tid(event, 7134 namespaces_event->task); 7135 7136 perf_output_put(&handle, namespaces_event->event_id); 7137 7138 perf_event__output_id_sample(event, &handle, &sample); 7139 7140 perf_output_end(&handle); 7141 out: 7142 namespaces_event->event_id.header.size = header_size; 7143 } 7144 7145 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7146 struct task_struct *task, 7147 const struct proc_ns_operations *ns_ops) 7148 { 7149 struct path ns_path; 7150 struct inode *ns_inode; 7151 void *error; 7152 7153 error = ns_get_path(&ns_path, task, ns_ops); 7154 if (!error) { 7155 ns_inode = ns_path.dentry->d_inode; 7156 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7157 ns_link_info->ino = ns_inode->i_ino; 7158 path_put(&ns_path); 7159 } 7160 } 7161 7162 void perf_event_namespaces(struct task_struct *task) 7163 { 7164 struct perf_namespaces_event namespaces_event; 7165 struct perf_ns_link_info *ns_link_info; 7166 7167 if (!atomic_read(&nr_namespaces_events)) 7168 return; 7169 7170 namespaces_event = (struct perf_namespaces_event){ 7171 .task = task, 7172 .event_id = { 7173 .header = { 7174 .type = PERF_RECORD_NAMESPACES, 7175 .misc = 0, 7176 .size = sizeof(namespaces_event.event_id), 7177 }, 7178 /* .pid */ 7179 /* .tid */ 7180 .nr_namespaces = NR_NAMESPACES, 7181 /* .link_info[NR_NAMESPACES] */ 7182 }, 7183 }; 7184 7185 ns_link_info = namespaces_event.event_id.link_info; 7186 7187 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7188 task, &mntns_operations); 7189 7190 #ifdef CONFIG_USER_NS 7191 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7192 task, &userns_operations); 7193 #endif 7194 #ifdef CONFIG_NET_NS 7195 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7196 task, &netns_operations); 7197 #endif 7198 #ifdef CONFIG_UTS_NS 7199 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7200 task, &utsns_operations); 7201 #endif 7202 #ifdef CONFIG_IPC_NS 7203 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7204 task, &ipcns_operations); 7205 #endif 7206 #ifdef CONFIG_PID_NS 7207 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7208 task, &pidns_operations); 7209 #endif 7210 #ifdef CONFIG_CGROUPS 7211 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7212 task, &cgroupns_operations); 7213 #endif 7214 7215 perf_iterate_sb(perf_event_namespaces_output, 7216 &namespaces_event, 7217 NULL); 7218 } 7219 7220 /* 7221 * mmap tracking 7222 */ 7223 7224 struct perf_mmap_event { 7225 struct vm_area_struct *vma; 7226 7227 const char *file_name; 7228 int file_size; 7229 int maj, min; 7230 u64 ino; 7231 u64 ino_generation; 7232 u32 prot, flags; 7233 7234 struct { 7235 struct perf_event_header header; 7236 7237 u32 pid; 7238 u32 tid; 7239 u64 start; 7240 u64 len; 7241 u64 pgoff; 7242 } event_id; 7243 }; 7244 7245 static int perf_event_mmap_match(struct perf_event *event, 7246 void *data) 7247 { 7248 struct perf_mmap_event *mmap_event = data; 7249 struct vm_area_struct *vma = mmap_event->vma; 7250 int executable = vma->vm_flags & VM_EXEC; 7251 7252 return (!executable && event->attr.mmap_data) || 7253 (executable && (event->attr.mmap || event->attr.mmap2)); 7254 } 7255 7256 static void perf_event_mmap_output(struct perf_event *event, 7257 void *data) 7258 { 7259 struct perf_mmap_event *mmap_event = data; 7260 struct perf_output_handle handle; 7261 struct perf_sample_data sample; 7262 int size = mmap_event->event_id.header.size; 7263 u32 type = mmap_event->event_id.header.type; 7264 int ret; 7265 7266 if (!perf_event_mmap_match(event, data)) 7267 return; 7268 7269 if (event->attr.mmap2) { 7270 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7271 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7272 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7273 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7274 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7275 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7276 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7277 } 7278 7279 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7280 ret = perf_output_begin(&handle, event, 7281 mmap_event->event_id.header.size); 7282 if (ret) 7283 goto out; 7284 7285 mmap_event->event_id.pid = perf_event_pid(event, current); 7286 mmap_event->event_id.tid = perf_event_tid(event, current); 7287 7288 perf_output_put(&handle, mmap_event->event_id); 7289 7290 if (event->attr.mmap2) { 7291 perf_output_put(&handle, mmap_event->maj); 7292 perf_output_put(&handle, mmap_event->min); 7293 perf_output_put(&handle, mmap_event->ino); 7294 perf_output_put(&handle, mmap_event->ino_generation); 7295 perf_output_put(&handle, mmap_event->prot); 7296 perf_output_put(&handle, mmap_event->flags); 7297 } 7298 7299 __output_copy(&handle, mmap_event->file_name, 7300 mmap_event->file_size); 7301 7302 perf_event__output_id_sample(event, &handle, &sample); 7303 7304 perf_output_end(&handle); 7305 out: 7306 mmap_event->event_id.header.size = size; 7307 mmap_event->event_id.header.type = type; 7308 } 7309 7310 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7311 { 7312 struct vm_area_struct *vma = mmap_event->vma; 7313 struct file *file = vma->vm_file; 7314 int maj = 0, min = 0; 7315 u64 ino = 0, gen = 0; 7316 u32 prot = 0, flags = 0; 7317 unsigned int size; 7318 char tmp[16]; 7319 char *buf = NULL; 7320 char *name; 7321 7322 if (vma->vm_flags & VM_READ) 7323 prot |= PROT_READ; 7324 if (vma->vm_flags & VM_WRITE) 7325 prot |= PROT_WRITE; 7326 if (vma->vm_flags & VM_EXEC) 7327 prot |= PROT_EXEC; 7328 7329 if (vma->vm_flags & VM_MAYSHARE) 7330 flags = MAP_SHARED; 7331 else 7332 flags = MAP_PRIVATE; 7333 7334 if (vma->vm_flags & VM_DENYWRITE) 7335 flags |= MAP_DENYWRITE; 7336 if (vma->vm_flags & VM_MAYEXEC) 7337 flags |= MAP_EXECUTABLE; 7338 if (vma->vm_flags & VM_LOCKED) 7339 flags |= MAP_LOCKED; 7340 if (vma->vm_flags & VM_HUGETLB) 7341 flags |= MAP_HUGETLB; 7342 7343 if (file) { 7344 struct inode *inode; 7345 dev_t dev; 7346 7347 buf = kmalloc(PATH_MAX, GFP_KERNEL); 7348 if (!buf) { 7349 name = "//enomem"; 7350 goto cpy_name; 7351 } 7352 /* 7353 * d_path() works from the end of the rb backwards, so we 7354 * need to add enough zero bytes after the string to handle 7355 * the 64bit alignment we do later. 7356 */ 7357 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 7358 if (IS_ERR(name)) { 7359 name = "//toolong"; 7360 goto cpy_name; 7361 } 7362 inode = file_inode(vma->vm_file); 7363 dev = inode->i_sb->s_dev; 7364 ino = inode->i_ino; 7365 gen = inode->i_generation; 7366 maj = MAJOR(dev); 7367 min = MINOR(dev); 7368 7369 goto got_name; 7370 } else { 7371 if (vma->vm_ops && vma->vm_ops->name) { 7372 name = (char *) vma->vm_ops->name(vma); 7373 if (name) 7374 goto cpy_name; 7375 } 7376 7377 name = (char *)arch_vma_name(vma); 7378 if (name) 7379 goto cpy_name; 7380 7381 if (vma->vm_start <= vma->vm_mm->start_brk && 7382 vma->vm_end >= vma->vm_mm->brk) { 7383 name = "[heap]"; 7384 goto cpy_name; 7385 } 7386 if (vma->vm_start <= vma->vm_mm->start_stack && 7387 vma->vm_end >= vma->vm_mm->start_stack) { 7388 name = "[stack]"; 7389 goto cpy_name; 7390 } 7391 7392 name = "//anon"; 7393 goto cpy_name; 7394 } 7395 7396 cpy_name: 7397 strlcpy(tmp, name, sizeof(tmp)); 7398 name = tmp; 7399 got_name: 7400 /* 7401 * Since our buffer works in 8 byte units we need to align our string 7402 * size to a multiple of 8. However, we must guarantee the tail end is 7403 * zero'd out to avoid leaking random bits to userspace. 7404 */ 7405 size = strlen(name)+1; 7406 while (!IS_ALIGNED(size, sizeof(u64))) 7407 name[size++] = '\0'; 7408 7409 mmap_event->file_name = name; 7410 mmap_event->file_size = size; 7411 mmap_event->maj = maj; 7412 mmap_event->min = min; 7413 mmap_event->ino = ino; 7414 mmap_event->ino_generation = gen; 7415 mmap_event->prot = prot; 7416 mmap_event->flags = flags; 7417 7418 if (!(vma->vm_flags & VM_EXEC)) 7419 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7420 7421 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7422 7423 perf_iterate_sb(perf_event_mmap_output, 7424 mmap_event, 7425 NULL); 7426 7427 kfree(buf); 7428 } 7429 7430 /* 7431 * Check whether inode and address range match filter criteria. 7432 */ 7433 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7434 struct file *file, unsigned long offset, 7435 unsigned long size) 7436 { 7437 /* d_inode(NULL) won't be equal to any mapped user-space file */ 7438 if (!filter->path.dentry) 7439 return false; 7440 7441 if (d_inode(filter->path.dentry) != file_inode(file)) 7442 return false; 7443 7444 if (filter->offset > offset + size) 7445 return false; 7446 7447 if (filter->offset + filter->size < offset) 7448 return false; 7449 7450 return true; 7451 } 7452 7453 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 7454 struct vm_area_struct *vma, 7455 struct perf_addr_filter_range *fr) 7456 { 7457 unsigned long vma_size = vma->vm_end - vma->vm_start; 7458 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7459 struct file *file = vma->vm_file; 7460 7461 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7462 return false; 7463 7464 if (filter->offset < off) { 7465 fr->start = vma->vm_start; 7466 fr->size = min(vma_size, filter->size - (off - filter->offset)); 7467 } else { 7468 fr->start = vma->vm_start + filter->offset - off; 7469 fr->size = min(vma->vm_end - fr->start, filter->size); 7470 } 7471 7472 return true; 7473 } 7474 7475 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7476 { 7477 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7478 struct vm_area_struct *vma = data; 7479 struct perf_addr_filter *filter; 7480 unsigned int restart = 0, count = 0; 7481 unsigned long flags; 7482 7483 if (!has_addr_filter(event)) 7484 return; 7485 7486 if (!vma->vm_file) 7487 return; 7488 7489 raw_spin_lock_irqsave(&ifh->lock, flags); 7490 list_for_each_entry(filter, &ifh->list, entry) { 7491 if (perf_addr_filter_vma_adjust(filter, vma, 7492 &event->addr_filter_ranges[count])) 7493 restart++; 7494 7495 count++; 7496 } 7497 7498 if (restart) 7499 event->addr_filters_gen++; 7500 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7501 7502 if (restart) 7503 perf_event_stop(event, 1); 7504 } 7505 7506 /* 7507 * Adjust all task's events' filters to the new vma 7508 */ 7509 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7510 { 7511 struct perf_event_context *ctx; 7512 int ctxn; 7513 7514 /* 7515 * Data tracing isn't supported yet and as such there is no need 7516 * to keep track of anything that isn't related to executable code: 7517 */ 7518 if (!(vma->vm_flags & VM_EXEC)) 7519 return; 7520 7521 rcu_read_lock(); 7522 for_each_task_context_nr(ctxn) { 7523 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7524 if (!ctx) 7525 continue; 7526 7527 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7528 } 7529 rcu_read_unlock(); 7530 } 7531 7532 void perf_event_mmap(struct vm_area_struct *vma) 7533 { 7534 struct perf_mmap_event mmap_event; 7535 7536 if (!atomic_read(&nr_mmap_events)) 7537 return; 7538 7539 mmap_event = (struct perf_mmap_event){ 7540 .vma = vma, 7541 /* .file_name */ 7542 /* .file_size */ 7543 .event_id = { 7544 .header = { 7545 .type = PERF_RECORD_MMAP, 7546 .misc = PERF_RECORD_MISC_USER, 7547 /* .size */ 7548 }, 7549 /* .pid */ 7550 /* .tid */ 7551 .start = vma->vm_start, 7552 .len = vma->vm_end - vma->vm_start, 7553 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7554 }, 7555 /* .maj (attr_mmap2 only) */ 7556 /* .min (attr_mmap2 only) */ 7557 /* .ino (attr_mmap2 only) */ 7558 /* .ino_generation (attr_mmap2 only) */ 7559 /* .prot (attr_mmap2 only) */ 7560 /* .flags (attr_mmap2 only) */ 7561 }; 7562 7563 perf_addr_filters_adjust(vma); 7564 perf_event_mmap_event(&mmap_event); 7565 } 7566 7567 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7568 unsigned long size, u64 flags) 7569 { 7570 struct perf_output_handle handle; 7571 struct perf_sample_data sample; 7572 struct perf_aux_event { 7573 struct perf_event_header header; 7574 u64 offset; 7575 u64 size; 7576 u64 flags; 7577 } rec = { 7578 .header = { 7579 .type = PERF_RECORD_AUX, 7580 .misc = 0, 7581 .size = sizeof(rec), 7582 }, 7583 .offset = head, 7584 .size = size, 7585 .flags = flags, 7586 }; 7587 int ret; 7588 7589 perf_event_header__init_id(&rec.header, &sample, event); 7590 ret = perf_output_begin(&handle, event, rec.header.size); 7591 7592 if (ret) 7593 return; 7594 7595 perf_output_put(&handle, rec); 7596 perf_event__output_id_sample(event, &handle, &sample); 7597 7598 perf_output_end(&handle); 7599 } 7600 7601 /* 7602 * Lost/dropped samples logging 7603 */ 7604 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7605 { 7606 struct perf_output_handle handle; 7607 struct perf_sample_data sample; 7608 int ret; 7609 7610 struct { 7611 struct perf_event_header header; 7612 u64 lost; 7613 } lost_samples_event = { 7614 .header = { 7615 .type = PERF_RECORD_LOST_SAMPLES, 7616 .misc = 0, 7617 .size = sizeof(lost_samples_event), 7618 }, 7619 .lost = lost, 7620 }; 7621 7622 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7623 7624 ret = perf_output_begin(&handle, event, 7625 lost_samples_event.header.size); 7626 if (ret) 7627 return; 7628 7629 perf_output_put(&handle, lost_samples_event); 7630 perf_event__output_id_sample(event, &handle, &sample); 7631 perf_output_end(&handle); 7632 } 7633 7634 /* 7635 * context_switch tracking 7636 */ 7637 7638 struct perf_switch_event { 7639 struct task_struct *task; 7640 struct task_struct *next_prev; 7641 7642 struct { 7643 struct perf_event_header header; 7644 u32 next_prev_pid; 7645 u32 next_prev_tid; 7646 } event_id; 7647 }; 7648 7649 static int perf_event_switch_match(struct perf_event *event) 7650 { 7651 return event->attr.context_switch; 7652 } 7653 7654 static void perf_event_switch_output(struct perf_event *event, void *data) 7655 { 7656 struct perf_switch_event *se = data; 7657 struct perf_output_handle handle; 7658 struct perf_sample_data sample; 7659 int ret; 7660 7661 if (!perf_event_switch_match(event)) 7662 return; 7663 7664 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7665 if (event->ctx->task) { 7666 se->event_id.header.type = PERF_RECORD_SWITCH; 7667 se->event_id.header.size = sizeof(se->event_id.header); 7668 } else { 7669 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7670 se->event_id.header.size = sizeof(se->event_id); 7671 se->event_id.next_prev_pid = 7672 perf_event_pid(event, se->next_prev); 7673 se->event_id.next_prev_tid = 7674 perf_event_tid(event, se->next_prev); 7675 } 7676 7677 perf_event_header__init_id(&se->event_id.header, &sample, event); 7678 7679 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7680 if (ret) 7681 return; 7682 7683 if (event->ctx->task) 7684 perf_output_put(&handle, se->event_id.header); 7685 else 7686 perf_output_put(&handle, se->event_id); 7687 7688 perf_event__output_id_sample(event, &handle, &sample); 7689 7690 perf_output_end(&handle); 7691 } 7692 7693 static void perf_event_switch(struct task_struct *task, 7694 struct task_struct *next_prev, bool sched_in) 7695 { 7696 struct perf_switch_event switch_event; 7697 7698 /* N.B. caller checks nr_switch_events != 0 */ 7699 7700 switch_event = (struct perf_switch_event){ 7701 .task = task, 7702 .next_prev = next_prev, 7703 .event_id = { 7704 .header = { 7705 /* .type */ 7706 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7707 /* .size */ 7708 }, 7709 /* .next_prev_pid */ 7710 /* .next_prev_tid */ 7711 }, 7712 }; 7713 7714 if (!sched_in && task->state == TASK_RUNNING) 7715 switch_event.event_id.header.misc |= 7716 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 7717 7718 perf_iterate_sb(perf_event_switch_output, 7719 &switch_event, 7720 NULL); 7721 } 7722 7723 /* 7724 * IRQ throttle logging 7725 */ 7726 7727 static void perf_log_throttle(struct perf_event *event, int enable) 7728 { 7729 struct perf_output_handle handle; 7730 struct perf_sample_data sample; 7731 int ret; 7732 7733 struct { 7734 struct perf_event_header header; 7735 u64 time; 7736 u64 id; 7737 u64 stream_id; 7738 } throttle_event = { 7739 .header = { 7740 .type = PERF_RECORD_THROTTLE, 7741 .misc = 0, 7742 .size = sizeof(throttle_event), 7743 }, 7744 .time = perf_event_clock(event), 7745 .id = primary_event_id(event), 7746 .stream_id = event->id, 7747 }; 7748 7749 if (enable) 7750 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7751 7752 perf_event_header__init_id(&throttle_event.header, &sample, event); 7753 7754 ret = perf_output_begin(&handle, event, 7755 throttle_event.header.size); 7756 if (ret) 7757 return; 7758 7759 perf_output_put(&handle, throttle_event); 7760 perf_event__output_id_sample(event, &handle, &sample); 7761 perf_output_end(&handle); 7762 } 7763 7764 /* 7765 * ksymbol register/unregister tracking 7766 */ 7767 7768 struct perf_ksymbol_event { 7769 const char *name; 7770 int name_len; 7771 struct { 7772 struct perf_event_header header; 7773 u64 addr; 7774 u32 len; 7775 u16 ksym_type; 7776 u16 flags; 7777 } event_id; 7778 }; 7779 7780 static int perf_event_ksymbol_match(struct perf_event *event) 7781 { 7782 return event->attr.ksymbol; 7783 } 7784 7785 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 7786 { 7787 struct perf_ksymbol_event *ksymbol_event = data; 7788 struct perf_output_handle handle; 7789 struct perf_sample_data sample; 7790 int ret; 7791 7792 if (!perf_event_ksymbol_match(event)) 7793 return; 7794 7795 perf_event_header__init_id(&ksymbol_event->event_id.header, 7796 &sample, event); 7797 ret = perf_output_begin(&handle, event, 7798 ksymbol_event->event_id.header.size); 7799 if (ret) 7800 return; 7801 7802 perf_output_put(&handle, ksymbol_event->event_id); 7803 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 7804 perf_event__output_id_sample(event, &handle, &sample); 7805 7806 perf_output_end(&handle); 7807 } 7808 7809 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 7810 const char *sym) 7811 { 7812 struct perf_ksymbol_event ksymbol_event; 7813 char name[KSYM_NAME_LEN]; 7814 u16 flags = 0; 7815 int name_len; 7816 7817 if (!atomic_read(&nr_ksymbol_events)) 7818 return; 7819 7820 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 7821 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 7822 goto err; 7823 7824 strlcpy(name, sym, KSYM_NAME_LEN); 7825 name_len = strlen(name) + 1; 7826 while (!IS_ALIGNED(name_len, sizeof(u64))) 7827 name[name_len++] = '\0'; 7828 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 7829 7830 if (unregister) 7831 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 7832 7833 ksymbol_event = (struct perf_ksymbol_event){ 7834 .name = name, 7835 .name_len = name_len, 7836 .event_id = { 7837 .header = { 7838 .type = PERF_RECORD_KSYMBOL, 7839 .size = sizeof(ksymbol_event.event_id) + 7840 name_len, 7841 }, 7842 .addr = addr, 7843 .len = len, 7844 .ksym_type = ksym_type, 7845 .flags = flags, 7846 }, 7847 }; 7848 7849 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 7850 return; 7851 err: 7852 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 7853 } 7854 7855 /* 7856 * bpf program load/unload tracking 7857 */ 7858 7859 struct perf_bpf_event { 7860 struct bpf_prog *prog; 7861 struct { 7862 struct perf_event_header header; 7863 u16 type; 7864 u16 flags; 7865 u32 id; 7866 u8 tag[BPF_TAG_SIZE]; 7867 } event_id; 7868 }; 7869 7870 static int perf_event_bpf_match(struct perf_event *event) 7871 { 7872 return event->attr.bpf_event; 7873 } 7874 7875 static void perf_event_bpf_output(struct perf_event *event, void *data) 7876 { 7877 struct perf_bpf_event *bpf_event = data; 7878 struct perf_output_handle handle; 7879 struct perf_sample_data sample; 7880 int ret; 7881 7882 if (!perf_event_bpf_match(event)) 7883 return; 7884 7885 perf_event_header__init_id(&bpf_event->event_id.header, 7886 &sample, event); 7887 ret = perf_output_begin(&handle, event, 7888 bpf_event->event_id.header.size); 7889 if (ret) 7890 return; 7891 7892 perf_output_put(&handle, bpf_event->event_id); 7893 perf_event__output_id_sample(event, &handle, &sample); 7894 7895 perf_output_end(&handle); 7896 } 7897 7898 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 7899 enum perf_bpf_event_type type) 7900 { 7901 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 7902 char sym[KSYM_NAME_LEN]; 7903 int i; 7904 7905 if (prog->aux->func_cnt == 0) { 7906 bpf_get_prog_name(prog, sym); 7907 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 7908 (u64)(unsigned long)prog->bpf_func, 7909 prog->jited_len, unregister, sym); 7910 } else { 7911 for (i = 0; i < prog->aux->func_cnt; i++) { 7912 struct bpf_prog *subprog = prog->aux->func[i]; 7913 7914 bpf_get_prog_name(subprog, sym); 7915 perf_event_ksymbol( 7916 PERF_RECORD_KSYMBOL_TYPE_BPF, 7917 (u64)(unsigned long)subprog->bpf_func, 7918 subprog->jited_len, unregister, sym); 7919 } 7920 } 7921 } 7922 7923 void perf_event_bpf_event(struct bpf_prog *prog, 7924 enum perf_bpf_event_type type, 7925 u16 flags) 7926 { 7927 struct perf_bpf_event bpf_event; 7928 7929 if (type <= PERF_BPF_EVENT_UNKNOWN || 7930 type >= PERF_BPF_EVENT_MAX) 7931 return; 7932 7933 switch (type) { 7934 case PERF_BPF_EVENT_PROG_LOAD: 7935 case PERF_BPF_EVENT_PROG_UNLOAD: 7936 if (atomic_read(&nr_ksymbol_events)) 7937 perf_event_bpf_emit_ksymbols(prog, type); 7938 break; 7939 default: 7940 break; 7941 } 7942 7943 if (!atomic_read(&nr_bpf_events)) 7944 return; 7945 7946 bpf_event = (struct perf_bpf_event){ 7947 .prog = prog, 7948 .event_id = { 7949 .header = { 7950 .type = PERF_RECORD_BPF_EVENT, 7951 .size = sizeof(bpf_event.event_id), 7952 }, 7953 .type = type, 7954 .flags = flags, 7955 .id = prog->aux->id, 7956 }, 7957 }; 7958 7959 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 7960 7961 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 7962 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 7963 } 7964 7965 void perf_event_itrace_started(struct perf_event *event) 7966 { 7967 event->attach_state |= PERF_ATTACH_ITRACE; 7968 } 7969 7970 static void perf_log_itrace_start(struct perf_event *event) 7971 { 7972 struct perf_output_handle handle; 7973 struct perf_sample_data sample; 7974 struct perf_aux_event { 7975 struct perf_event_header header; 7976 u32 pid; 7977 u32 tid; 7978 } rec; 7979 int ret; 7980 7981 if (event->parent) 7982 event = event->parent; 7983 7984 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7985 event->attach_state & PERF_ATTACH_ITRACE) 7986 return; 7987 7988 rec.header.type = PERF_RECORD_ITRACE_START; 7989 rec.header.misc = 0; 7990 rec.header.size = sizeof(rec); 7991 rec.pid = perf_event_pid(event, current); 7992 rec.tid = perf_event_tid(event, current); 7993 7994 perf_event_header__init_id(&rec.header, &sample, event); 7995 ret = perf_output_begin(&handle, event, rec.header.size); 7996 7997 if (ret) 7998 return; 7999 8000 perf_output_put(&handle, rec); 8001 perf_event__output_id_sample(event, &handle, &sample); 8002 8003 perf_output_end(&handle); 8004 } 8005 8006 static int 8007 __perf_event_account_interrupt(struct perf_event *event, int throttle) 8008 { 8009 struct hw_perf_event *hwc = &event->hw; 8010 int ret = 0; 8011 u64 seq; 8012 8013 seq = __this_cpu_read(perf_throttled_seq); 8014 if (seq != hwc->interrupts_seq) { 8015 hwc->interrupts_seq = seq; 8016 hwc->interrupts = 1; 8017 } else { 8018 hwc->interrupts++; 8019 if (unlikely(throttle 8020 && hwc->interrupts >= max_samples_per_tick)) { 8021 __this_cpu_inc(perf_throttled_count); 8022 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 8023 hwc->interrupts = MAX_INTERRUPTS; 8024 perf_log_throttle(event, 0); 8025 ret = 1; 8026 } 8027 } 8028 8029 if (event->attr.freq) { 8030 u64 now = perf_clock(); 8031 s64 delta = now - hwc->freq_time_stamp; 8032 8033 hwc->freq_time_stamp = now; 8034 8035 if (delta > 0 && delta < 2*TICK_NSEC) 8036 perf_adjust_period(event, delta, hwc->last_period, true); 8037 } 8038 8039 return ret; 8040 } 8041 8042 int perf_event_account_interrupt(struct perf_event *event) 8043 { 8044 return __perf_event_account_interrupt(event, 1); 8045 } 8046 8047 /* 8048 * Generic event overflow handling, sampling. 8049 */ 8050 8051 static int __perf_event_overflow(struct perf_event *event, 8052 int throttle, struct perf_sample_data *data, 8053 struct pt_regs *regs) 8054 { 8055 int events = atomic_read(&event->event_limit); 8056 int ret = 0; 8057 8058 /* 8059 * Non-sampling counters might still use the PMI to fold short 8060 * hardware counters, ignore those. 8061 */ 8062 if (unlikely(!is_sampling_event(event))) 8063 return 0; 8064 8065 ret = __perf_event_account_interrupt(event, throttle); 8066 8067 /* 8068 * XXX event_limit might not quite work as expected on inherited 8069 * events 8070 */ 8071 8072 event->pending_kill = POLL_IN; 8073 if (events && atomic_dec_and_test(&event->event_limit)) { 8074 ret = 1; 8075 event->pending_kill = POLL_HUP; 8076 8077 perf_event_disable_inatomic(event); 8078 } 8079 8080 READ_ONCE(event->overflow_handler)(event, data, regs); 8081 8082 if (*perf_event_fasync(event) && event->pending_kill) { 8083 event->pending_wakeup = 1; 8084 irq_work_queue(&event->pending); 8085 } 8086 8087 return ret; 8088 } 8089 8090 int perf_event_overflow(struct perf_event *event, 8091 struct perf_sample_data *data, 8092 struct pt_regs *regs) 8093 { 8094 return __perf_event_overflow(event, 1, data, regs); 8095 } 8096 8097 /* 8098 * Generic software event infrastructure 8099 */ 8100 8101 struct swevent_htable { 8102 struct swevent_hlist *swevent_hlist; 8103 struct mutex hlist_mutex; 8104 int hlist_refcount; 8105 8106 /* Recursion avoidance in each contexts */ 8107 int recursion[PERF_NR_CONTEXTS]; 8108 }; 8109 8110 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 8111 8112 /* 8113 * We directly increment event->count and keep a second value in 8114 * event->hw.period_left to count intervals. This period event 8115 * is kept in the range [-sample_period, 0] so that we can use the 8116 * sign as trigger. 8117 */ 8118 8119 u64 perf_swevent_set_period(struct perf_event *event) 8120 { 8121 struct hw_perf_event *hwc = &event->hw; 8122 u64 period = hwc->last_period; 8123 u64 nr, offset; 8124 s64 old, val; 8125 8126 hwc->last_period = hwc->sample_period; 8127 8128 again: 8129 old = val = local64_read(&hwc->period_left); 8130 if (val < 0) 8131 return 0; 8132 8133 nr = div64_u64(period + val, period); 8134 offset = nr * period; 8135 val -= offset; 8136 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 8137 goto again; 8138 8139 return nr; 8140 } 8141 8142 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 8143 struct perf_sample_data *data, 8144 struct pt_regs *regs) 8145 { 8146 struct hw_perf_event *hwc = &event->hw; 8147 int throttle = 0; 8148 8149 if (!overflow) 8150 overflow = perf_swevent_set_period(event); 8151 8152 if (hwc->interrupts == MAX_INTERRUPTS) 8153 return; 8154 8155 for (; overflow; overflow--) { 8156 if (__perf_event_overflow(event, throttle, 8157 data, regs)) { 8158 /* 8159 * We inhibit the overflow from happening when 8160 * hwc->interrupts == MAX_INTERRUPTS. 8161 */ 8162 break; 8163 } 8164 throttle = 1; 8165 } 8166 } 8167 8168 static void perf_swevent_event(struct perf_event *event, u64 nr, 8169 struct perf_sample_data *data, 8170 struct pt_regs *regs) 8171 { 8172 struct hw_perf_event *hwc = &event->hw; 8173 8174 local64_add(nr, &event->count); 8175 8176 if (!regs) 8177 return; 8178 8179 if (!is_sampling_event(event)) 8180 return; 8181 8182 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 8183 data->period = nr; 8184 return perf_swevent_overflow(event, 1, data, regs); 8185 } else 8186 data->period = event->hw.last_period; 8187 8188 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 8189 return perf_swevent_overflow(event, 1, data, regs); 8190 8191 if (local64_add_negative(nr, &hwc->period_left)) 8192 return; 8193 8194 perf_swevent_overflow(event, 0, data, regs); 8195 } 8196 8197 static int perf_exclude_event(struct perf_event *event, 8198 struct pt_regs *regs) 8199 { 8200 if (event->hw.state & PERF_HES_STOPPED) 8201 return 1; 8202 8203 if (regs) { 8204 if (event->attr.exclude_user && user_mode(regs)) 8205 return 1; 8206 8207 if (event->attr.exclude_kernel && !user_mode(regs)) 8208 return 1; 8209 } 8210 8211 return 0; 8212 } 8213 8214 static int perf_swevent_match(struct perf_event *event, 8215 enum perf_type_id type, 8216 u32 event_id, 8217 struct perf_sample_data *data, 8218 struct pt_regs *regs) 8219 { 8220 if (event->attr.type != type) 8221 return 0; 8222 8223 if (event->attr.config != event_id) 8224 return 0; 8225 8226 if (perf_exclude_event(event, regs)) 8227 return 0; 8228 8229 return 1; 8230 } 8231 8232 static inline u64 swevent_hash(u64 type, u32 event_id) 8233 { 8234 u64 val = event_id | (type << 32); 8235 8236 return hash_64(val, SWEVENT_HLIST_BITS); 8237 } 8238 8239 static inline struct hlist_head * 8240 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 8241 { 8242 u64 hash = swevent_hash(type, event_id); 8243 8244 return &hlist->heads[hash]; 8245 } 8246 8247 /* For the read side: events when they trigger */ 8248 static inline struct hlist_head * 8249 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 8250 { 8251 struct swevent_hlist *hlist; 8252 8253 hlist = rcu_dereference(swhash->swevent_hlist); 8254 if (!hlist) 8255 return NULL; 8256 8257 return __find_swevent_head(hlist, type, event_id); 8258 } 8259 8260 /* For the event head insertion and removal in the hlist */ 8261 static inline struct hlist_head * 8262 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 8263 { 8264 struct swevent_hlist *hlist; 8265 u32 event_id = event->attr.config; 8266 u64 type = event->attr.type; 8267 8268 /* 8269 * Event scheduling is always serialized against hlist allocation 8270 * and release. Which makes the protected version suitable here. 8271 * The context lock guarantees that. 8272 */ 8273 hlist = rcu_dereference_protected(swhash->swevent_hlist, 8274 lockdep_is_held(&event->ctx->lock)); 8275 if (!hlist) 8276 return NULL; 8277 8278 return __find_swevent_head(hlist, type, event_id); 8279 } 8280 8281 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 8282 u64 nr, 8283 struct perf_sample_data *data, 8284 struct pt_regs *regs) 8285 { 8286 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8287 struct perf_event *event; 8288 struct hlist_head *head; 8289 8290 rcu_read_lock(); 8291 head = find_swevent_head_rcu(swhash, type, event_id); 8292 if (!head) 8293 goto end; 8294 8295 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8296 if (perf_swevent_match(event, type, event_id, data, regs)) 8297 perf_swevent_event(event, nr, data, regs); 8298 } 8299 end: 8300 rcu_read_unlock(); 8301 } 8302 8303 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 8304 8305 int perf_swevent_get_recursion_context(void) 8306 { 8307 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8308 8309 return get_recursion_context(swhash->recursion); 8310 } 8311 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 8312 8313 void perf_swevent_put_recursion_context(int rctx) 8314 { 8315 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8316 8317 put_recursion_context(swhash->recursion, rctx); 8318 } 8319 8320 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8321 { 8322 struct perf_sample_data data; 8323 8324 if (WARN_ON_ONCE(!regs)) 8325 return; 8326 8327 perf_sample_data_init(&data, addr, 0); 8328 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8329 } 8330 8331 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8332 { 8333 int rctx; 8334 8335 preempt_disable_notrace(); 8336 rctx = perf_swevent_get_recursion_context(); 8337 if (unlikely(rctx < 0)) 8338 goto fail; 8339 8340 ___perf_sw_event(event_id, nr, regs, addr); 8341 8342 perf_swevent_put_recursion_context(rctx); 8343 fail: 8344 preempt_enable_notrace(); 8345 } 8346 8347 static void perf_swevent_read(struct perf_event *event) 8348 { 8349 } 8350 8351 static int perf_swevent_add(struct perf_event *event, int flags) 8352 { 8353 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8354 struct hw_perf_event *hwc = &event->hw; 8355 struct hlist_head *head; 8356 8357 if (is_sampling_event(event)) { 8358 hwc->last_period = hwc->sample_period; 8359 perf_swevent_set_period(event); 8360 } 8361 8362 hwc->state = !(flags & PERF_EF_START); 8363 8364 head = find_swevent_head(swhash, event); 8365 if (WARN_ON_ONCE(!head)) 8366 return -EINVAL; 8367 8368 hlist_add_head_rcu(&event->hlist_entry, head); 8369 perf_event_update_userpage(event); 8370 8371 return 0; 8372 } 8373 8374 static void perf_swevent_del(struct perf_event *event, int flags) 8375 { 8376 hlist_del_rcu(&event->hlist_entry); 8377 } 8378 8379 static void perf_swevent_start(struct perf_event *event, int flags) 8380 { 8381 event->hw.state = 0; 8382 } 8383 8384 static void perf_swevent_stop(struct perf_event *event, int flags) 8385 { 8386 event->hw.state = PERF_HES_STOPPED; 8387 } 8388 8389 /* Deref the hlist from the update side */ 8390 static inline struct swevent_hlist * 8391 swevent_hlist_deref(struct swevent_htable *swhash) 8392 { 8393 return rcu_dereference_protected(swhash->swevent_hlist, 8394 lockdep_is_held(&swhash->hlist_mutex)); 8395 } 8396 8397 static void swevent_hlist_release(struct swevent_htable *swhash) 8398 { 8399 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 8400 8401 if (!hlist) 8402 return; 8403 8404 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 8405 kfree_rcu(hlist, rcu_head); 8406 } 8407 8408 static void swevent_hlist_put_cpu(int cpu) 8409 { 8410 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8411 8412 mutex_lock(&swhash->hlist_mutex); 8413 8414 if (!--swhash->hlist_refcount) 8415 swevent_hlist_release(swhash); 8416 8417 mutex_unlock(&swhash->hlist_mutex); 8418 } 8419 8420 static void swevent_hlist_put(void) 8421 { 8422 int cpu; 8423 8424 for_each_possible_cpu(cpu) 8425 swevent_hlist_put_cpu(cpu); 8426 } 8427 8428 static int swevent_hlist_get_cpu(int cpu) 8429 { 8430 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8431 int err = 0; 8432 8433 mutex_lock(&swhash->hlist_mutex); 8434 if (!swevent_hlist_deref(swhash) && 8435 cpumask_test_cpu(cpu, perf_online_mask)) { 8436 struct swevent_hlist *hlist; 8437 8438 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 8439 if (!hlist) { 8440 err = -ENOMEM; 8441 goto exit; 8442 } 8443 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8444 } 8445 swhash->hlist_refcount++; 8446 exit: 8447 mutex_unlock(&swhash->hlist_mutex); 8448 8449 return err; 8450 } 8451 8452 static int swevent_hlist_get(void) 8453 { 8454 int err, cpu, failed_cpu; 8455 8456 mutex_lock(&pmus_lock); 8457 for_each_possible_cpu(cpu) { 8458 err = swevent_hlist_get_cpu(cpu); 8459 if (err) { 8460 failed_cpu = cpu; 8461 goto fail; 8462 } 8463 } 8464 mutex_unlock(&pmus_lock); 8465 return 0; 8466 fail: 8467 for_each_possible_cpu(cpu) { 8468 if (cpu == failed_cpu) 8469 break; 8470 swevent_hlist_put_cpu(cpu); 8471 } 8472 mutex_unlock(&pmus_lock); 8473 return err; 8474 } 8475 8476 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 8477 8478 static void sw_perf_event_destroy(struct perf_event *event) 8479 { 8480 u64 event_id = event->attr.config; 8481 8482 WARN_ON(event->parent); 8483 8484 static_key_slow_dec(&perf_swevent_enabled[event_id]); 8485 swevent_hlist_put(); 8486 } 8487 8488 static int perf_swevent_init(struct perf_event *event) 8489 { 8490 u64 event_id = event->attr.config; 8491 8492 if (event->attr.type != PERF_TYPE_SOFTWARE) 8493 return -ENOENT; 8494 8495 /* 8496 * no branch sampling for software events 8497 */ 8498 if (has_branch_stack(event)) 8499 return -EOPNOTSUPP; 8500 8501 switch (event_id) { 8502 case PERF_COUNT_SW_CPU_CLOCK: 8503 case PERF_COUNT_SW_TASK_CLOCK: 8504 return -ENOENT; 8505 8506 default: 8507 break; 8508 } 8509 8510 if (event_id >= PERF_COUNT_SW_MAX) 8511 return -ENOENT; 8512 8513 if (!event->parent) { 8514 int err; 8515 8516 err = swevent_hlist_get(); 8517 if (err) 8518 return err; 8519 8520 static_key_slow_inc(&perf_swevent_enabled[event_id]); 8521 event->destroy = sw_perf_event_destroy; 8522 } 8523 8524 return 0; 8525 } 8526 8527 static struct pmu perf_swevent = { 8528 .task_ctx_nr = perf_sw_context, 8529 8530 .capabilities = PERF_PMU_CAP_NO_NMI, 8531 8532 .event_init = perf_swevent_init, 8533 .add = perf_swevent_add, 8534 .del = perf_swevent_del, 8535 .start = perf_swevent_start, 8536 .stop = perf_swevent_stop, 8537 .read = perf_swevent_read, 8538 }; 8539 8540 #ifdef CONFIG_EVENT_TRACING 8541 8542 static int perf_tp_filter_match(struct perf_event *event, 8543 struct perf_sample_data *data) 8544 { 8545 void *record = data->raw->frag.data; 8546 8547 /* only top level events have filters set */ 8548 if (event->parent) 8549 event = event->parent; 8550 8551 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 8552 return 1; 8553 return 0; 8554 } 8555 8556 static int perf_tp_event_match(struct perf_event *event, 8557 struct perf_sample_data *data, 8558 struct pt_regs *regs) 8559 { 8560 if (event->hw.state & PERF_HES_STOPPED) 8561 return 0; 8562 /* 8563 * If exclude_kernel, only trace user-space tracepoints (uprobes) 8564 */ 8565 if (event->attr.exclude_kernel && !user_mode(regs)) 8566 return 0; 8567 8568 if (!perf_tp_filter_match(event, data)) 8569 return 0; 8570 8571 return 1; 8572 } 8573 8574 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 8575 struct trace_event_call *call, u64 count, 8576 struct pt_regs *regs, struct hlist_head *head, 8577 struct task_struct *task) 8578 { 8579 if (bpf_prog_array_valid(call)) { 8580 *(struct pt_regs **)raw_data = regs; 8581 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 8582 perf_swevent_put_recursion_context(rctx); 8583 return; 8584 } 8585 } 8586 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 8587 rctx, task); 8588 } 8589 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 8590 8591 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 8592 struct pt_regs *regs, struct hlist_head *head, int rctx, 8593 struct task_struct *task) 8594 { 8595 struct perf_sample_data data; 8596 struct perf_event *event; 8597 8598 struct perf_raw_record raw = { 8599 .frag = { 8600 .size = entry_size, 8601 .data = record, 8602 }, 8603 }; 8604 8605 perf_sample_data_init(&data, 0, 0); 8606 data.raw = &raw; 8607 8608 perf_trace_buf_update(record, event_type); 8609 8610 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8611 if (perf_tp_event_match(event, &data, regs)) 8612 perf_swevent_event(event, count, &data, regs); 8613 } 8614 8615 /* 8616 * If we got specified a target task, also iterate its context and 8617 * deliver this event there too. 8618 */ 8619 if (task && task != current) { 8620 struct perf_event_context *ctx; 8621 struct trace_entry *entry = record; 8622 8623 rcu_read_lock(); 8624 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8625 if (!ctx) 8626 goto unlock; 8627 8628 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8629 if (event->cpu != smp_processor_id()) 8630 continue; 8631 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8632 continue; 8633 if (event->attr.config != entry->type) 8634 continue; 8635 if (perf_tp_event_match(event, &data, regs)) 8636 perf_swevent_event(event, count, &data, regs); 8637 } 8638 unlock: 8639 rcu_read_unlock(); 8640 } 8641 8642 perf_swevent_put_recursion_context(rctx); 8643 } 8644 EXPORT_SYMBOL_GPL(perf_tp_event); 8645 8646 static void tp_perf_event_destroy(struct perf_event *event) 8647 { 8648 perf_trace_destroy(event); 8649 } 8650 8651 static int perf_tp_event_init(struct perf_event *event) 8652 { 8653 int err; 8654 8655 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8656 return -ENOENT; 8657 8658 /* 8659 * no branch sampling for tracepoint events 8660 */ 8661 if (has_branch_stack(event)) 8662 return -EOPNOTSUPP; 8663 8664 err = perf_trace_init(event); 8665 if (err) 8666 return err; 8667 8668 event->destroy = tp_perf_event_destroy; 8669 8670 return 0; 8671 } 8672 8673 static struct pmu perf_tracepoint = { 8674 .task_ctx_nr = perf_sw_context, 8675 8676 .event_init = perf_tp_event_init, 8677 .add = perf_trace_add, 8678 .del = perf_trace_del, 8679 .start = perf_swevent_start, 8680 .stop = perf_swevent_stop, 8681 .read = perf_swevent_read, 8682 }; 8683 8684 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 8685 /* 8686 * Flags in config, used by dynamic PMU kprobe and uprobe 8687 * The flags should match following PMU_FORMAT_ATTR(). 8688 * 8689 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 8690 * if not set, create kprobe/uprobe 8691 * 8692 * The following values specify a reference counter (or semaphore in the 8693 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 8694 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 8695 * 8696 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 8697 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 8698 */ 8699 enum perf_probe_config { 8700 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 8701 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 8702 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 8703 }; 8704 8705 PMU_FORMAT_ATTR(retprobe, "config:0"); 8706 #endif 8707 8708 #ifdef CONFIG_KPROBE_EVENTS 8709 static struct attribute *kprobe_attrs[] = { 8710 &format_attr_retprobe.attr, 8711 NULL, 8712 }; 8713 8714 static struct attribute_group kprobe_format_group = { 8715 .name = "format", 8716 .attrs = kprobe_attrs, 8717 }; 8718 8719 static const struct attribute_group *kprobe_attr_groups[] = { 8720 &kprobe_format_group, 8721 NULL, 8722 }; 8723 8724 static int perf_kprobe_event_init(struct perf_event *event); 8725 static struct pmu perf_kprobe = { 8726 .task_ctx_nr = perf_sw_context, 8727 .event_init = perf_kprobe_event_init, 8728 .add = perf_trace_add, 8729 .del = perf_trace_del, 8730 .start = perf_swevent_start, 8731 .stop = perf_swevent_stop, 8732 .read = perf_swevent_read, 8733 .attr_groups = kprobe_attr_groups, 8734 }; 8735 8736 static int perf_kprobe_event_init(struct perf_event *event) 8737 { 8738 int err; 8739 bool is_retprobe; 8740 8741 if (event->attr.type != perf_kprobe.type) 8742 return -ENOENT; 8743 8744 if (!capable(CAP_SYS_ADMIN)) 8745 return -EACCES; 8746 8747 /* 8748 * no branch sampling for probe events 8749 */ 8750 if (has_branch_stack(event)) 8751 return -EOPNOTSUPP; 8752 8753 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8754 err = perf_kprobe_init(event, is_retprobe); 8755 if (err) 8756 return err; 8757 8758 event->destroy = perf_kprobe_destroy; 8759 8760 return 0; 8761 } 8762 #endif /* CONFIG_KPROBE_EVENTS */ 8763 8764 #ifdef CONFIG_UPROBE_EVENTS 8765 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 8766 8767 static struct attribute *uprobe_attrs[] = { 8768 &format_attr_retprobe.attr, 8769 &format_attr_ref_ctr_offset.attr, 8770 NULL, 8771 }; 8772 8773 static struct attribute_group uprobe_format_group = { 8774 .name = "format", 8775 .attrs = uprobe_attrs, 8776 }; 8777 8778 static const struct attribute_group *uprobe_attr_groups[] = { 8779 &uprobe_format_group, 8780 NULL, 8781 }; 8782 8783 static int perf_uprobe_event_init(struct perf_event *event); 8784 static struct pmu perf_uprobe = { 8785 .task_ctx_nr = perf_sw_context, 8786 .event_init = perf_uprobe_event_init, 8787 .add = perf_trace_add, 8788 .del = perf_trace_del, 8789 .start = perf_swevent_start, 8790 .stop = perf_swevent_stop, 8791 .read = perf_swevent_read, 8792 .attr_groups = uprobe_attr_groups, 8793 }; 8794 8795 static int perf_uprobe_event_init(struct perf_event *event) 8796 { 8797 int err; 8798 unsigned long ref_ctr_offset; 8799 bool is_retprobe; 8800 8801 if (event->attr.type != perf_uprobe.type) 8802 return -ENOENT; 8803 8804 if (!capable(CAP_SYS_ADMIN)) 8805 return -EACCES; 8806 8807 /* 8808 * no branch sampling for probe events 8809 */ 8810 if (has_branch_stack(event)) 8811 return -EOPNOTSUPP; 8812 8813 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8814 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 8815 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 8816 if (err) 8817 return err; 8818 8819 event->destroy = perf_uprobe_destroy; 8820 8821 return 0; 8822 } 8823 #endif /* CONFIG_UPROBE_EVENTS */ 8824 8825 static inline void perf_tp_register(void) 8826 { 8827 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8828 #ifdef CONFIG_KPROBE_EVENTS 8829 perf_pmu_register(&perf_kprobe, "kprobe", -1); 8830 #endif 8831 #ifdef CONFIG_UPROBE_EVENTS 8832 perf_pmu_register(&perf_uprobe, "uprobe", -1); 8833 #endif 8834 } 8835 8836 static void perf_event_free_filter(struct perf_event *event) 8837 { 8838 ftrace_profile_free_filter(event); 8839 } 8840 8841 #ifdef CONFIG_BPF_SYSCALL 8842 static void bpf_overflow_handler(struct perf_event *event, 8843 struct perf_sample_data *data, 8844 struct pt_regs *regs) 8845 { 8846 struct bpf_perf_event_data_kern ctx = { 8847 .data = data, 8848 .event = event, 8849 }; 8850 int ret = 0; 8851 8852 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 8853 preempt_disable(); 8854 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8855 goto out; 8856 rcu_read_lock(); 8857 ret = BPF_PROG_RUN(event->prog, &ctx); 8858 rcu_read_unlock(); 8859 out: 8860 __this_cpu_dec(bpf_prog_active); 8861 preempt_enable(); 8862 if (!ret) 8863 return; 8864 8865 event->orig_overflow_handler(event, data, regs); 8866 } 8867 8868 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8869 { 8870 struct bpf_prog *prog; 8871 8872 if (event->overflow_handler_context) 8873 /* hw breakpoint or kernel counter */ 8874 return -EINVAL; 8875 8876 if (event->prog) 8877 return -EEXIST; 8878 8879 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8880 if (IS_ERR(prog)) 8881 return PTR_ERR(prog); 8882 8883 event->prog = prog; 8884 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8885 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8886 return 0; 8887 } 8888 8889 static void perf_event_free_bpf_handler(struct perf_event *event) 8890 { 8891 struct bpf_prog *prog = event->prog; 8892 8893 if (!prog) 8894 return; 8895 8896 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8897 event->prog = NULL; 8898 bpf_prog_put(prog); 8899 } 8900 #else 8901 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8902 { 8903 return -EOPNOTSUPP; 8904 } 8905 static void perf_event_free_bpf_handler(struct perf_event *event) 8906 { 8907 } 8908 #endif 8909 8910 /* 8911 * returns true if the event is a tracepoint, or a kprobe/upprobe created 8912 * with perf_event_open() 8913 */ 8914 static inline bool perf_event_is_tracing(struct perf_event *event) 8915 { 8916 if (event->pmu == &perf_tracepoint) 8917 return true; 8918 #ifdef CONFIG_KPROBE_EVENTS 8919 if (event->pmu == &perf_kprobe) 8920 return true; 8921 #endif 8922 #ifdef CONFIG_UPROBE_EVENTS 8923 if (event->pmu == &perf_uprobe) 8924 return true; 8925 #endif 8926 return false; 8927 } 8928 8929 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8930 { 8931 bool is_kprobe, is_tracepoint, is_syscall_tp; 8932 struct bpf_prog *prog; 8933 int ret; 8934 8935 if (!perf_event_is_tracing(event)) 8936 return perf_event_set_bpf_handler(event, prog_fd); 8937 8938 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8939 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8940 is_syscall_tp = is_syscall_trace_event(event->tp_event); 8941 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 8942 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8943 return -EINVAL; 8944 8945 prog = bpf_prog_get(prog_fd); 8946 if (IS_ERR(prog)) 8947 return PTR_ERR(prog); 8948 8949 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8950 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 8951 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8952 /* valid fd, but invalid bpf program type */ 8953 bpf_prog_put(prog); 8954 return -EINVAL; 8955 } 8956 8957 /* Kprobe override only works for kprobes, not uprobes. */ 8958 if (prog->kprobe_override && 8959 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 8960 bpf_prog_put(prog); 8961 return -EINVAL; 8962 } 8963 8964 if (is_tracepoint || is_syscall_tp) { 8965 int off = trace_event_get_offsets(event->tp_event); 8966 8967 if (prog->aux->max_ctx_offset > off) { 8968 bpf_prog_put(prog); 8969 return -EACCES; 8970 } 8971 } 8972 8973 ret = perf_event_attach_bpf_prog(event, prog); 8974 if (ret) 8975 bpf_prog_put(prog); 8976 return ret; 8977 } 8978 8979 static void perf_event_free_bpf_prog(struct perf_event *event) 8980 { 8981 if (!perf_event_is_tracing(event)) { 8982 perf_event_free_bpf_handler(event); 8983 return; 8984 } 8985 perf_event_detach_bpf_prog(event); 8986 } 8987 8988 #else 8989 8990 static inline void perf_tp_register(void) 8991 { 8992 } 8993 8994 static void perf_event_free_filter(struct perf_event *event) 8995 { 8996 } 8997 8998 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8999 { 9000 return -ENOENT; 9001 } 9002 9003 static void perf_event_free_bpf_prog(struct perf_event *event) 9004 { 9005 } 9006 #endif /* CONFIG_EVENT_TRACING */ 9007 9008 #ifdef CONFIG_HAVE_HW_BREAKPOINT 9009 void perf_bp_event(struct perf_event *bp, void *data) 9010 { 9011 struct perf_sample_data sample; 9012 struct pt_regs *regs = data; 9013 9014 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 9015 9016 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 9017 perf_swevent_event(bp, 1, &sample, regs); 9018 } 9019 #endif 9020 9021 /* 9022 * Allocate a new address filter 9023 */ 9024 static struct perf_addr_filter * 9025 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 9026 { 9027 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 9028 struct perf_addr_filter *filter; 9029 9030 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 9031 if (!filter) 9032 return NULL; 9033 9034 INIT_LIST_HEAD(&filter->entry); 9035 list_add_tail(&filter->entry, filters); 9036 9037 return filter; 9038 } 9039 9040 static void free_filters_list(struct list_head *filters) 9041 { 9042 struct perf_addr_filter *filter, *iter; 9043 9044 list_for_each_entry_safe(filter, iter, filters, entry) { 9045 path_put(&filter->path); 9046 list_del(&filter->entry); 9047 kfree(filter); 9048 } 9049 } 9050 9051 /* 9052 * Free existing address filters and optionally install new ones 9053 */ 9054 static void perf_addr_filters_splice(struct perf_event *event, 9055 struct list_head *head) 9056 { 9057 unsigned long flags; 9058 LIST_HEAD(list); 9059 9060 if (!has_addr_filter(event)) 9061 return; 9062 9063 /* don't bother with children, they don't have their own filters */ 9064 if (event->parent) 9065 return; 9066 9067 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 9068 9069 list_splice_init(&event->addr_filters.list, &list); 9070 if (head) 9071 list_splice(head, &event->addr_filters.list); 9072 9073 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9074 9075 free_filters_list(&list); 9076 } 9077 9078 /* 9079 * Scan through mm's vmas and see if one of them matches the 9080 * @filter; if so, adjust filter's address range. 9081 * Called with mm::mmap_sem down for reading. 9082 */ 9083 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 9084 struct mm_struct *mm, 9085 struct perf_addr_filter_range *fr) 9086 { 9087 struct vm_area_struct *vma; 9088 9089 for (vma = mm->mmap; vma; vma = vma->vm_next) { 9090 if (!vma->vm_file) 9091 continue; 9092 9093 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 9094 return; 9095 } 9096 } 9097 9098 /* 9099 * Update event's address range filters based on the 9100 * task's existing mappings, if any. 9101 */ 9102 static void perf_event_addr_filters_apply(struct perf_event *event) 9103 { 9104 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9105 struct task_struct *task = READ_ONCE(event->ctx->task); 9106 struct perf_addr_filter *filter; 9107 struct mm_struct *mm = NULL; 9108 unsigned int count = 0; 9109 unsigned long flags; 9110 9111 /* 9112 * We may observe TASK_TOMBSTONE, which means that the event tear-down 9113 * will stop on the parent's child_mutex that our caller is also holding 9114 */ 9115 if (task == TASK_TOMBSTONE) 9116 return; 9117 9118 if (ifh->nr_file_filters) { 9119 mm = get_task_mm(event->ctx->task); 9120 if (!mm) 9121 goto restart; 9122 9123 down_read(&mm->mmap_sem); 9124 } 9125 9126 raw_spin_lock_irqsave(&ifh->lock, flags); 9127 list_for_each_entry(filter, &ifh->list, entry) { 9128 if (filter->path.dentry) { 9129 /* 9130 * Adjust base offset if the filter is associated to a 9131 * binary that needs to be mapped: 9132 */ 9133 event->addr_filter_ranges[count].start = 0; 9134 event->addr_filter_ranges[count].size = 0; 9135 9136 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 9137 } else { 9138 event->addr_filter_ranges[count].start = filter->offset; 9139 event->addr_filter_ranges[count].size = filter->size; 9140 } 9141 9142 count++; 9143 } 9144 9145 event->addr_filters_gen++; 9146 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9147 9148 if (ifh->nr_file_filters) { 9149 up_read(&mm->mmap_sem); 9150 9151 mmput(mm); 9152 } 9153 9154 restart: 9155 perf_event_stop(event, 1); 9156 } 9157 9158 /* 9159 * Address range filtering: limiting the data to certain 9160 * instruction address ranges. Filters are ioctl()ed to us from 9161 * userspace as ascii strings. 9162 * 9163 * Filter string format: 9164 * 9165 * ACTION RANGE_SPEC 9166 * where ACTION is one of the 9167 * * "filter": limit the trace to this region 9168 * * "start": start tracing from this address 9169 * * "stop": stop tracing at this address/region; 9170 * RANGE_SPEC is 9171 * * for kernel addresses: <start address>[/<size>] 9172 * * for object files: <start address>[/<size>]@</path/to/object/file> 9173 * 9174 * if <size> is not specified or is zero, the range is treated as a single 9175 * address; not valid for ACTION=="filter". 9176 */ 9177 enum { 9178 IF_ACT_NONE = -1, 9179 IF_ACT_FILTER, 9180 IF_ACT_START, 9181 IF_ACT_STOP, 9182 IF_SRC_FILE, 9183 IF_SRC_KERNEL, 9184 IF_SRC_FILEADDR, 9185 IF_SRC_KERNELADDR, 9186 }; 9187 9188 enum { 9189 IF_STATE_ACTION = 0, 9190 IF_STATE_SOURCE, 9191 IF_STATE_END, 9192 }; 9193 9194 static const match_table_t if_tokens = { 9195 { IF_ACT_FILTER, "filter" }, 9196 { IF_ACT_START, "start" }, 9197 { IF_ACT_STOP, "stop" }, 9198 { IF_SRC_FILE, "%u/%u@%s" }, 9199 { IF_SRC_KERNEL, "%u/%u" }, 9200 { IF_SRC_FILEADDR, "%u@%s" }, 9201 { IF_SRC_KERNELADDR, "%u" }, 9202 { IF_ACT_NONE, NULL }, 9203 }; 9204 9205 /* 9206 * Address filter string parser 9207 */ 9208 static int 9209 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 9210 struct list_head *filters) 9211 { 9212 struct perf_addr_filter *filter = NULL; 9213 char *start, *orig, *filename = NULL; 9214 substring_t args[MAX_OPT_ARGS]; 9215 int state = IF_STATE_ACTION, token; 9216 unsigned int kernel = 0; 9217 int ret = -EINVAL; 9218 9219 orig = fstr = kstrdup(fstr, GFP_KERNEL); 9220 if (!fstr) 9221 return -ENOMEM; 9222 9223 while ((start = strsep(&fstr, " ,\n")) != NULL) { 9224 static const enum perf_addr_filter_action_t actions[] = { 9225 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 9226 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 9227 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 9228 }; 9229 ret = -EINVAL; 9230 9231 if (!*start) 9232 continue; 9233 9234 /* filter definition begins */ 9235 if (state == IF_STATE_ACTION) { 9236 filter = perf_addr_filter_new(event, filters); 9237 if (!filter) 9238 goto fail; 9239 } 9240 9241 token = match_token(start, if_tokens, args); 9242 switch (token) { 9243 case IF_ACT_FILTER: 9244 case IF_ACT_START: 9245 case IF_ACT_STOP: 9246 if (state != IF_STATE_ACTION) 9247 goto fail; 9248 9249 filter->action = actions[token]; 9250 state = IF_STATE_SOURCE; 9251 break; 9252 9253 case IF_SRC_KERNELADDR: 9254 case IF_SRC_KERNEL: 9255 kernel = 1; 9256 /* fall through */ 9257 9258 case IF_SRC_FILEADDR: 9259 case IF_SRC_FILE: 9260 if (state != IF_STATE_SOURCE) 9261 goto fail; 9262 9263 *args[0].to = 0; 9264 ret = kstrtoul(args[0].from, 0, &filter->offset); 9265 if (ret) 9266 goto fail; 9267 9268 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 9269 *args[1].to = 0; 9270 ret = kstrtoul(args[1].from, 0, &filter->size); 9271 if (ret) 9272 goto fail; 9273 } 9274 9275 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 9276 int fpos = token == IF_SRC_FILE ? 2 : 1; 9277 9278 filename = match_strdup(&args[fpos]); 9279 if (!filename) { 9280 ret = -ENOMEM; 9281 goto fail; 9282 } 9283 } 9284 9285 state = IF_STATE_END; 9286 break; 9287 9288 default: 9289 goto fail; 9290 } 9291 9292 /* 9293 * Filter definition is fully parsed, validate and install it. 9294 * Make sure that it doesn't contradict itself or the event's 9295 * attribute. 9296 */ 9297 if (state == IF_STATE_END) { 9298 ret = -EINVAL; 9299 if (kernel && event->attr.exclude_kernel) 9300 goto fail; 9301 9302 /* 9303 * ACTION "filter" must have a non-zero length region 9304 * specified. 9305 */ 9306 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 9307 !filter->size) 9308 goto fail; 9309 9310 if (!kernel) { 9311 if (!filename) 9312 goto fail; 9313 9314 /* 9315 * For now, we only support file-based filters 9316 * in per-task events; doing so for CPU-wide 9317 * events requires additional context switching 9318 * trickery, since same object code will be 9319 * mapped at different virtual addresses in 9320 * different processes. 9321 */ 9322 ret = -EOPNOTSUPP; 9323 if (!event->ctx->task) 9324 goto fail_free_name; 9325 9326 /* look up the path and grab its inode */ 9327 ret = kern_path(filename, LOOKUP_FOLLOW, 9328 &filter->path); 9329 if (ret) 9330 goto fail_free_name; 9331 9332 kfree(filename); 9333 filename = NULL; 9334 9335 ret = -EINVAL; 9336 if (!filter->path.dentry || 9337 !S_ISREG(d_inode(filter->path.dentry) 9338 ->i_mode)) 9339 goto fail; 9340 9341 event->addr_filters.nr_file_filters++; 9342 } 9343 9344 /* ready to consume more filters */ 9345 state = IF_STATE_ACTION; 9346 filter = NULL; 9347 } 9348 } 9349 9350 if (state != IF_STATE_ACTION) 9351 goto fail; 9352 9353 kfree(orig); 9354 9355 return 0; 9356 9357 fail_free_name: 9358 kfree(filename); 9359 fail: 9360 free_filters_list(filters); 9361 kfree(orig); 9362 9363 return ret; 9364 } 9365 9366 static int 9367 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 9368 { 9369 LIST_HEAD(filters); 9370 int ret; 9371 9372 /* 9373 * Since this is called in perf_ioctl() path, we're already holding 9374 * ctx::mutex. 9375 */ 9376 lockdep_assert_held(&event->ctx->mutex); 9377 9378 if (WARN_ON_ONCE(event->parent)) 9379 return -EINVAL; 9380 9381 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 9382 if (ret) 9383 goto fail_clear_files; 9384 9385 ret = event->pmu->addr_filters_validate(&filters); 9386 if (ret) 9387 goto fail_free_filters; 9388 9389 /* remove existing filters, if any */ 9390 perf_addr_filters_splice(event, &filters); 9391 9392 /* install new filters */ 9393 perf_event_for_each_child(event, perf_event_addr_filters_apply); 9394 9395 return ret; 9396 9397 fail_free_filters: 9398 free_filters_list(&filters); 9399 9400 fail_clear_files: 9401 event->addr_filters.nr_file_filters = 0; 9402 9403 return ret; 9404 } 9405 9406 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 9407 { 9408 int ret = -EINVAL; 9409 char *filter_str; 9410 9411 filter_str = strndup_user(arg, PAGE_SIZE); 9412 if (IS_ERR(filter_str)) 9413 return PTR_ERR(filter_str); 9414 9415 #ifdef CONFIG_EVENT_TRACING 9416 if (perf_event_is_tracing(event)) { 9417 struct perf_event_context *ctx = event->ctx; 9418 9419 /* 9420 * Beware, here be dragons!! 9421 * 9422 * the tracepoint muck will deadlock against ctx->mutex, but 9423 * the tracepoint stuff does not actually need it. So 9424 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 9425 * already have a reference on ctx. 9426 * 9427 * This can result in event getting moved to a different ctx, 9428 * but that does not affect the tracepoint state. 9429 */ 9430 mutex_unlock(&ctx->mutex); 9431 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 9432 mutex_lock(&ctx->mutex); 9433 } else 9434 #endif 9435 if (has_addr_filter(event)) 9436 ret = perf_event_set_addr_filter(event, filter_str); 9437 9438 kfree(filter_str); 9439 return ret; 9440 } 9441 9442 /* 9443 * hrtimer based swevent callback 9444 */ 9445 9446 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 9447 { 9448 enum hrtimer_restart ret = HRTIMER_RESTART; 9449 struct perf_sample_data data; 9450 struct pt_regs *regs; 9451 struct perf_event *event; 9452 u64 period; 9453 9454 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 9455 9456 if (event->state != PERF_EVENT_STATE_ACTIVE) 9457 return HRTIMER_NORESTART; 9458 9459 event->pmu->read(event); 9460 9461 perf_sample_data_init(&data, 0, event->hw.last_period); 9462 regs = get_irq_regs(); 9463 9464 if (regs && !perf_exclude_event(event, regs)) { 9465 if (!(event->attr.exclude_idle && is_idle_task(current))) 9466 if (__perf_event_overflow(event, 1, &data, regs)) 9467 ret = HRTIMER_NORESTART; 9468 } 9469 9470 period = max_t(u64, 10000, event->hw.sample_period); 9471 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 9472 9473 return ret; 9474 } 9475 9476 static void perf_swevent_start_hrtimer(struct perf_event *event) 9477 { 9478 struct hw_perf_event *hwc = &event->hw; 9479 s64 period; 9480 9481 if (!is_sampling_event(event)) 9482 return; 9483 9484 period = local64_read(&hwc->period_left); 9485 if (period) { 9486 if (period < 0) 9487 period = 10000; 9488 9489 local64_set(&hwc->period_left, 0); 9490 } else { 9491 period = max_t(u64, 10000, hwc->sample_period); 9492 } 9493 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 9494 HRTIMER_MODE_REL_PINNED); 9495 } 9496 9497 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 9498 { 9499 struct hw_perf_event *hwc = &event->hw; 9500 9501 if (is_sampling_event(event)) { 9502 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 9503 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 9504 9505 hrtimer_cancel(&hwc->hrtimer); 9506 } 9507 } 9508 9509 static void perf_swevent_init_hrtimer(struct perf_event *event) 9510 { 9511 struct hw_perf_event *hwc = &event->hw; 9512 9513 if (!is_sampling_event(event)) 9514 return; 9515 9516 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 9517 hwc->hrtimer.function = perf_swevent_hrtimer; 9518 9519 /* 9520 * Since hrtimers have a fixed rate, we can do a static freq->period 9521 * mapping and avoid the whole period adjust feedback stuff. 9522 */ 9523 if (event->attr.freq) { 9524 long freq = event->attr.sample_freq; 9525 9526 event->attr.sample_period = NSEC_PER_SEC / freq; 9527 hwc->sample_period = event->attr.sample_period; 9528 local64_set(&hwc->period_left, hwc->sample_period); 9529 hwc->last_period = hwc->sample_period; 9530 event->attr.freq = 0; 9531 } 9532 } 9533 9534 /* 9535 * Software event: cpu wall time clock 9536 */ 9537 9538 static void cpu_clock_event_update(struct perf_event *event) 9539 { 9540 s64 prev; 9541 u64 now; 9542 9543 now = local_clock(); 9544 prev = local64_xchg(&event->hw.prev_count, now); 9545 local64_add(now - prev, &event->count); 9546 } 9547 9548 static void cpu_clock_event_start(struct perf_event *event, int flags) 9549 { 9550 local64_set(&event->hw.prev_count, local_clock()); 9551 perf_swevent_start_hrtimer(event); 9552 } 9553 9554 static void cpu_clock_event_stop(struct perf_event *event, int flags) 9555 { 9556 perf_swevent_cancel_hrtimer(event); 9557 cpu_clock_event_update(event); 9558 } 9559 9560 static int cpu_clock_event_add(struct perf_event *event, int flags) 9561 { 9562 if (flags & PERF_EF_START) 9563 cpu_clock_event_start(event, flags); 9564 perf_event_update_userpage(event); 9565 9566 return 0; 9567 } 9568 9569 static void cpu_clock_event_del(struct perf_event *event, int flags) 9570 { 9571 cpu_clock_event_stop(event, flags); 9572 } 9573 9574 static void cpu_clock_event_read(struct perf_event *event) 9575 { 9576 cpu_clock_event_update(event); 9577 } 9578 9579 static int cpu_clock_event_init(struct perf_event *event) 9580 { 9581 if (event->attr.type != PERF_TYPE_SOFTWARE) 9582 return -ENOENT; 9583 9584 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 9585 return -ENOENT; 9586 9587 /* 9588 * no branch sampling for software events 9589 */ 9590 if (has_branch_stack(event)) 9591 return -EOPNOTSUPP; 9592 9593 perf_swevent_init_hrtimer(event); 9594 9595 return 0; 9596 } 9597 9598 static struct pmu perf_cpu_clock = { 9599 .task_ctx_nr = perf_sw_context, 9600 9601 .capabilities = PERF_PMU_CAP_NO_NMI, 9602 9603 .event_init = cpu_clock_event_init, 9604 .add = cpu_clock_event_add, 9605 .del = cpu_clock_event_del, 9606 .start = cpu_clock_event_start, 9607 .stop = cpu_clock_event_stop, 9608 .read = cpu_clock_event_read, 9609 }; 9610 9611 /* 9612 * Software event: task time clock 9613 */ 9614 9615 static void task_clock_event_update(struct perf_event *event, u64 now) 9616 { 9617 u64 prev; 9618 s64 delta; 9619 9620 prev = local64_xchg(&event->hw.prev_count, now); 9621 delta = now - prev; 9622 local64_add(delta, &event->count); 9623 } 9624 9625 static void task_clock_event_start(struct perf_event *event, int flags) 9626 { 9627 local64_set(&event->hw.prev_count, event->ctx->time); 9628 perf_swevent_start_hrtimer(event); 9629 } 9630 9631 static void task_clock_event_stop(struct perf_event *event, int flags) 9632 { 9633 perf_swevent_cancel_hrtimer(event); 9634 task_clock_event_update(event, event->ctx->time); 9635 } 9636 9637 static int task_clock_event_add(struct perf_event *event, int flags) 9638 { 9639 if (flags & PERF_EF_START) 9640 task_clock_event_start(event, flags); 9641 perf_event_update_userpage(event); 9642 9643 return 0; 9644 } 9645 9646 static void task_clock_event_del(struct perf_event *event, int flags) 9647 { 9648 task_clock_event_stop(event, PERF_EF_UPDATE); 9649 } 9650 9651 static void task_clock_event_read(struct perf_event *event) 9652 { 9653 u64 now = perf_clock(); 9654 u64 delta = now - event->ctx->timestamp; 9655 u64 time = event->ctx->time + delta; 9656 9657 task_clock_event_update(event, time); 9658 } 9659 9660 static int task_clock_event_init(struct perf_event *event) 9661 { 9662 if (event->attr.type != PERF_TYPE_SOFTWARE) 9663 return -ENOENT; 9664 9665 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 9666 return -ENOENT; 9667 9668 /* 9669 * no branch sampling for software events 9670 */ 9671 if (has_branch_stack(event)) 9672 return -EOPNOTSUPP; 9673 9674 perf_swevent_init_hrtimer(event); 9675 9676 return 0; 9677 } 9678 9679 static struct pmu perf_task_clock = { 9680 .task_ctx_nr = perf_sw_context, 9681 9682 .capabilities = PERF_PMU_CAP_NO_NMI, 9683 9684 .event_init = task_clock_event_init, 9685 .add = task_clock_event_add, 9686 .del = task_clock_event_del, 9687 .start = task_clock_event_start, 9688 .stop = task_clock_event_stop, 9689 .read = task_clock_event_read, 9690 }; 9691 9692 static void perf_pmu_nop_void(struct pmu *pmu) 9693 { 9694 } 9695 9696 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 9697 { 9698 } 9699 9700 static int perf_pmu_nop_int(struct pmu *pmu) 9701 { 9702 return 0; 9703 } 9704 9705 static int perf_event_nop_int(struct perf_event *event, u64 value) 9706 { 9707 return 0; 9708 } 9709 9710 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 9711 9712 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 9713 { 9714 __this_cpu_write(nop_txn_flags, flags); 9715 9716 if (flags & ~PERF_PMU_TXN_ADD) 9717 return; 9718 9719 perf_pmu_disable(pmu); 9720 } 9721 9722 static int perf_pmu_commit_txn(struct pmu *pmu) 9723 { 9724 unsigned int flags = __this_cpu_read(nop_txn_flags); 9725 9726 __this_cpu_write(nop_txn_flags, 0); 9727 9728 if (flags & ~PERF_PMU_TXN_ADD) 9729 return 0; 9730 9731 perf_pmu_enable(pmu); 9732 return 0; 9733 } 9734 9735 static void perf_pmu_cancel_txn(struct pmu *pmu) 9736 { 9737 unsigned int flags = __this_cpu_read(nop_txn_flags); 9738 9739 __this_cpu_write(nop_txn_flags, 0); 9740 9741 if (flags & ~PERF_PMU_TXN_ADD) 9742 return; 9743 9744 perf_pmu_enable(pmu); 9745 } 9746 9747 static int perf_event_idx_default(struct perf_event *event) 9748 { 9749 return 0; 9750 } 9751 9752 /* 9753 * Ensures all contexts with the same task_ctx_nr have the same 9754 * pmu_cpu_context too. 9755 */ 9756 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 9757 { 9758 struct pmu *pmu; 9759 9760 if (ctxn < 0) 9761 return NULL; 9762 9763 list_for_each_entry(pmu, &pmus, entry) { 9764 if (pmu->task_ctx_nr == ctxn) 9765 return pmu->pmu_cpu_context; 9766 } 9767 9768 return NULL; 9769 } 9770 9771 static void free_pmu_context(struct pmu *pmu) 9772 { 9773 /* 9774 * Static contexts such as perf_sw_context have a global lifetime 9775 * and may be shared between different PMUs. Avoid freeing them 9776 * when a single PMU is going away. 9777 */ 9778 if (pmu->task_ctx_nr > perf_invalid_context) 9779 return; 9780 9781 free_percpu(pmu->pmu_cpu_context); 9782 } 9783 9784 /* 9785 * Let userspace know that this PMU supports address range filtering: 9786 */ 9787 static ssize_t nr_addr_filters_show(struct device *dev, 9788 struct device_attribute *attr, 9789 char *page) 9790 { 9791 struct pmu *pmu = dev_get_drvdata(dev); 9792 9793 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 9794 } 9795 DEVICE_ATTR_RO(nr_addr_filters); 9796 9797 static struct idr pmu_idr; 9798 9799 static ssize_t 9800 type_show(struct device *dev, struct device_attribute *attr, char *page) 9801 { 9802 struct pmu *pmu = dev_get_drvdata(dev); 9803 9804 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 9805 } 9806 static DEVICE_ATTR_RO(type); 9807 9808 static ssize_t 9809 perf_event_mux_interval_ms_show(struct device *dev, 9810 struct device_attribute *attr, 9811 char *page) 9812 { 9813 struct pmu *pmu = dev_get_drvdata(dev); 9814 9815 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 9816 } 9817 9818 static DEFINE_MUTEX(mux_interval_mutex); 9819 9820 static ssize_t 9821 perf_event_mux_interval_ms_store(struct device *dev, 9822 struct device_attribute *attr, 9823 const char *buf, size_t count) 9824 { 9825 struct pmu *pmu = dev_get_drvdata(dev); 9826 int timer, cpu, ret; 9827 9828 ret = kstrtoint(buf, 0, &timer); 9829 if (ret) 9830 return ret; 9831 9832 if (timer < 1) 9833 return -EINVAL; 9834 9835 /* same value, noting to do */ 9836 if (timer == pmu->hrtimer_interval_ms) 9837 return count; 9838 9839 mutex_lock(&mux_interval_mutex); 9840 pmu->hrtimer_interval_ms = timer; 9841 9842 /* update all cpuctx for this PMU */ 9843 cpus_read_lock(); 9844 for_each_online_cpu(cpu) { 9845 struct perf_cpu_context *cpuctx; 9846 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9847 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 9848 9849 cpu_function_call(cpu, 9850 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 9851 } 9852 cpus_read_unlock(); 9853 mutex_unlock(&mux_interval_mutex); 9854 9855 return count; 9856 } 9857 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 9858 9859 static struct attribute *pmu_dev_attrs[] = { 9860 &dev_attr_type.attr, 9861 &dev_attr_perf_event_mux_interval_ms.attr, 9862 NULL, 9863 }; 9864 ATTRIBUTE_GROUPS(pmu_dev); 9865 9866 static int pmu_bus_running; 9867 static struct bus_type pmu_bus = { 9868 .name = "event_source", 9869 .dev_groups = pmu_dev_groups, 9870 }; 9871 9872 static void pmu_dev_release(struct device *dev) 9873 { 9874 kfree(dev); 9875 } 9876 9877 static int pmu_dev_alloc(struct pmu *pmu) 9878 { 9879 int ret = -ENOMEM; 9880 9881 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9882 if (!pmu->dev) 9883 goto out; 9884 9885 pmu->dev->groups = pmu->attr_groups; 9886 device_initialize(pmu->dev); 9887 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9888 if (ret) 9889 goto free_dev; 9890 9891 dev_set_drvdata(pmu->dev, pmu); 9892 pmu->dev->bus = &pmu_bus; 9893 pmu->dev->release = pmu_dev_release; 9894 ret = device_add(pmu->dev); 9895 if (ret) 9896 goto free_dev; 9897 9898 /* For PMUs with address filters, throw in an extra attribute: */ 9899 if (pmu->nr_addr_filters) 9900 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9901 9902 if (ret) 9903 goto del_dev; 9904 9905 if (pmu->attr_update) 9906 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 9907 9908 if (ret) 9909 goto del_dev; 9910 9911 out: 9912 return ret; 9913 9914 del_dev: 9915 device_del(pmu->dev); 9916 9917 free_dev: 9918 put_device(pmu->dev); 9919 goto out; 9920 } 9921 9922 static struct lock_class_key cpuctx_mutex; 9923 static struct lock_class_key cpuctx_lock; 9924 9925 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9926 { 9927 int cpu, ret; 9928 9929 mutex_lock(&pmus_lock); 9930 ret = -ENOMEM; 9931 pmu->pmu_disable_count = alloc_percpu(int); 9932 if (!pmu->pmu_disable_count) 9933 goto unlock; 9934 9935 pmu->type = -1; 9936 if (!name) 9937 goto skip_type; 9938 pmu->name = name; 9939 9940 if (type < 0) { 9941 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9942 if (type < 0) { 9943 ret = type; 9944 goto free_pdc; 9945 } 9946 } 9947 pmu->type = type; 9948 9949 if (pmu_bus_running) { 9950 ret = pmu_dev_alloc(pmu); 9951 if (ret) 9952 goto free_idr; 9953 } 9954 9955 skip_type: 9956 if (pmu->task_ctx_nr == perf_hw_context) { 9957 static int hw_context_taken = 0; 9958 9959 /* 9960 * Other than systems with heterogeneous CPUs, it never makes 9961 * sense for two PMUs to share perf_hw_context. PMUs which are 9962 * uncore must use perf_invalid_context. 9963 */ 9964 if (WARN_ON_ONCE(hw_context_taken && 9965 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9966 pmu->task_ctx_nr = perf_invalid_context; 9967 9968 hw_context_taken = 1; 9969 } 9970 9971 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9972 if (pmu->pmu_cpu_context) 9973 goto got_cpu_context; 9974 9975 ret = -ENOMEM; 9976 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9977 if (!pmu->pmu_cpu_context) 9978 goto free_dev; 9979 9980 for_each_possible_cpu(cpu) { 9981 struct perf_cpu_context *cpuctx; 9982 9983 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9984 __perf_event_init_context(&cpuctx->ctx); 9985 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9986 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9987 cpuctx->ctx.pmu = pmu; 9988 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9989 9990 __perf_mux_hrtimer_init(cpuctx, cpu); 9991 } 9992 9993 got_cpu_context: 9994 if (!pmu->start_txn) { 9995 if (pmu->pmu_enable) { 9996 /* 9997 * If we have pmu_enable/pmu_disable calls, install 9998 * transaction stubs that use that to try and batch 9999 * hardware accesses. 10000 */ 10001 pmu->start_txn = perf_pmu_start_txn; 10002 pmu->commit_txn = perf_pmu_commit_txn; 10003 pmu->cancel_txn = perf_pmu_cancel_txn; 10004 } else { 10005 pmu->start_txn = perf_pmu_nop_txn; 10006 pmu->commit_txn = perf_pmu_nop_int; 10007 pmu->cancel_txn = perf_pmu_nop_void; 10008 } 10009 } 10010 10011 if (!pmu->pmu_enable) { 10012 pmu->pmu_enable = perf_pmu_nop_void; 10013 pmu->pmu_disable = perf_pmu_nop_void; 10014 } 10015 10016 if (!pmu->check_period) 10017 pmu->check_period = perf_event_nop_int; 10018 10019 if (!pmu->event_idx) 10020 pmu->event_idx = perf_event_idx_default; 10021 10022 list_add_rcu(&pmu->entry, &pmus); 10023 atomic_set(&pmu->exclusive_cnt, 0); 10024 ret = 0; 10025 unlock: 10026 mutex_unlock(&pmus_lock); 10027 10028 return ret; 10029 10030 free_dev: 10031 device_del(pmu->dev); 10032 put_device(pmu->dev); 10033 10034 free_idr: 10035 if (pmu->type >= PERF_TYPE_MAX) 10036 idr_remove(&pmu_idr, pmu->type); 10037 10038 free_pdc: 10039 free_percpu(pmu->pmu_disable_count); 10040 goto unlock; 10041 } 10042 EXPORT_SYMBOL_GPL(perf_pmu_register); 10043 10044 void perf_pmu_unregister(struct pmu *pmu) 10045 { 10046 mutex_lock(&pmus_lock); 10047 list_del_rcu(&pmu->entry); 10048 10049 /* 10050 * We dereference the pmu list under both SRCU and regular RCU, so 10051 * synchronize against both of those. 10052 */ 10053 synchronize_srcu(&pmus_srcu); 10054 synchronize_rcu(); 10055 10056 free_percpu(pmu->pmu_disable_count); 10057 if (pmu->type >= PERF_TYPE_MAX) 10058 idr_remove(&pmu_idr, pmu->type); 10059 if (pmu_bus_running) { 10060 if (pmu->nr_addr_filters) 10061 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 10062 device_del(pmu->dev); 10063 put_device(pmu->dev); 10064 } 10065 free_pmu_context(pmu); 10066 mutex_unlock(&pmus_lock); 10067 } 10068 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 10069 10070 static inline bool has_extended_regs(struct perf_event *event) 10071 { 10072 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 10073 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 10074 } 10075 10076 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 10077 { 10078 struct perf_event_context *ctx = NULL; 10079 int ret; 10080 10081 if (!try_module_get(pmu->module)) 10082 return -ENODEV; 10083 10084 /* 10085 * A number of pmu->event_init() methods iterate the sibling_list to, 10086 * for example, validate if the group fits on the PMU. Therefore, 10087 * if this is a sibling event, acquire the ctx->mutex to protect 10088 * the sibling_list. 10089 */ 10090 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 10091 /* 10092 * This ctx->mutex can nest when we're called through 10093 * inheritance. See the perf_event_ctx_lock_nested() comment. 10094 */ 10095 ctx = perf_event_ctx_lock_nested(event->group_leader, 10096 SINGLE_DEPTH_NESTING); 10097 BUG_ON(!ctx); 10098 } 10099 10100 event->pmu = pmu; 10101 ret = pmu->event_init(event); 10102 10103 if (ctx) 10104 perf_event_ctx_unlock(event->group_leader, ctx); 10105 10106 if (!ret) { 10107 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 10108 has_extended_regs(event)) 10109 ret = -EOPNOTSUPP; 10110 10111 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 10112 event_has_any_exclude_flag(event)) 10113 ret = -EINVAL; 10114 10115 if (ret && event->destroy) 10116 event->destroy(event); 10117 } 10118 10119 if (ret) 10120 module_put(pmu->module); 10121 10122 return ret; 10123 } 10124 10125 static struct pmu *perf_init_event(struct perf_event *event) 10126 { 10127 struct pmu *pmu; 10128 int idx; 10129 int ret; 10130 10131 idx = srcu_read_lock(&pmus_srcu); 10132 10133 /* Try parent's PMU first: */ 10134 if (event->parent && event->parent->pmu) { 10135 pmu = event->parent->pmu; 10136 ret = perf_try_init_event(pmu, event); 10137 if (!ret) 10138 goto unlock; 10139 } 10140 10141 rcu_read_lock(); 10142 pmu = idr_find(&pmu_idr, event->attr.type); 10143 rcu_read_unlock(); 10144 if (pmu) { 10145 ret = perf_try_init_event(pmu, event); 10146 if (ret) 10147 pmu = ERR_PTR(ret); 10148 goto unlock; 10149 } 10150 10151 list_for_each_entry_rcu(pmu, &pmus, entry) { 10152 ret = perf_try_init_event(pmu, event); 10153 if (!ret) 10154 goto unlock; 10155 10156 if (ret != -ENOENT) { 10157 pmu = ERR_PTR(ret); 10158 goto unlock; 10159 } 10160 } 10161 pmu = ERR_PTR(-ENOENT); 10162 unlock: 10163 srcu_read_unlock(&pmus_srcu, idx); 10164 10165 return pmu; 10166 } 10167 10168 static void attach_sb_event(struct perf_event *event) 10169 { 10170 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 10171 10172 raw_spin_lock(&pel->lock); 10173 list_add_rcu(&event->sb_list, &pel->list); 10174 raw_spin_unlock(&pel->lock); 10175 } 10176 10177 /* 10178 * We keep a list of all !task (and therefore per-cpu) events 10179 * that need to receive side-band records. 10180 * 10181 * This avoids having to scan all the various PMU per-cpu contexts 10182 * looking for them. 10183 */ 10184 static void account_pmu_sb_event(struct perf_event *event) 10185 { 10186 if (is_sb_event(event)) 10187 attach_sb_event(event); 10188 } 10189 10190 static void account_event_cpu(struct perf_event *event, int cpu) 10191 { 10192 if (event->parent) 10193 return; 10194 10195 if (is_cgroup_event(event)) 10196 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 10197 } 10198 10199 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 10200 static void account_freq_event_nohz(void) 10201 { 10202 #ifdef CONFIG_NO_HZ_FULL 10203 /* Lock so we don't race with concurrent unaccount */ 10204 spin_lock(&nr_freq_lock); 10205 if (atomic_inc_return(&nr_freq_events) == 1) 10206 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 10207 spin_unlock(&nr_freq_lock); 10208 #endif 10209 } 10210 10211 static void account_freq_event(void) 10212 { 10213 if (tick_nohz_full_enabled()) 10214 account_freq_event_nohz(); 10215 else 10216 atomic_inc(&nr_freq_events); 10217 } 10218 10219 10220 static void account_event(struct perf_event *event) 10221 { 10222 bool inc = false; 10223 10224 if (event->parent) 10225 return; 10226 10227 if (event->attach_state & PERF_ATTACH_TASK) 10228 inc = true; 10229 if (event->attr.mmap || event->attr.mmap_data) 10230 atomic_inc(&nr_mmap_events); 10231 if (event->attr.comm) 10232 atomic_inc(&nr_comm_events); 10233 if (event->attr.namespaces) 10234 atomic_inc(&nr_namespaces_events); 10235 if (event->attr.task) 10236 atomic_inc(&nr_task_events); 10237 if (event->attr.freq) 10238 account_freq_event(); 10239 if (event->attr.context_switch) { 10240 atomic_inc(&nr_switch_events); 10241 inc = true; 10242 } 10243 if (has_branch_stack(event)) 10244 inc = true; 10245 if (is_cgroup_event(event)) 10246 inc = true; 10247 if (event->attr.ksymbol) 10248 atomic_inc(&nr_ksymbol_events); 10249 if (event->attr.bpf_event) 10250 atomic_inc(&nr_bpf_events); 10251 10252 if (inc) { 10253 /* 10254 * We need the mutex here because static_branch_enable() 10255 * must complete *before* the perf_sched_count increment 10256 * becomes visible. 10257 */ 10258 if (atomic_inc_not_zero(&perf_sched_count)) 10259 goto enabled; 10260 10261 mutex_lock(&perf_sched_mutex); 10262 if (!atomic_read(&perf_sched_count)) { 10263 static_branch_enable(&perf_sched_events); 10264 /* 10265 * Guarantee that all CPUs observe they key change and 10266 * call the perf scheduling hooks before proceeding to 10267 * install events that need them. 10268 */ 10269 synchronize_rcu(); 10270 } 10271 /* 10272 * Now that we have waited for the sync_sched(), allow further 10273 * increments to by-pass the mutex. 10274 */ 10275 atomic_inc(&perf_sched_count); 10276 mutex_unlock(&perf_sched_mutex); 10277 } 10278 enabled: 10279 10280 account_event_cpu(event, event->cpu); 10281 10282 account_pmu_sb_event(event); 10283 } 10284 10285 /* 10286 * Allocate and initialize an event structure 10287 */ 10288 static struct perf_event * 10289 perf_event_alloc(struct perf_event_attr *attr, int cpu, 10290 struct task_struct *task, 10291 struct perf_event *group_leader, 10292 struct perf_event *parent_event, 10293 perf_overflow_handler_t overflow_handler, 10294 void *context, int cgroup_fd) 10295 { 10296 struct pmu *pmu; 10297 struct perf_event *event; 10298 struct hw_perf_event *hwc; 10299 long err = -EINVAL; 10300 10301 if ((unsigned)cpu >= nr_cpu_ids) { 10302 if (!task || cpu != -1) 10303 return ERR_PTR(-EINVAL); 10304 } 10305 10306 event = kzalloc(sizeof(*event), GFP_KERNEL); 10307 if (!event) 10308 return ERR_PTR(-ENOMEM); 10309 10310 /* 10311 * Single events are their own group leaders, with an 10312 * empty sibling list: 10313 */ 10314 if (!group_leader) 10315 group_leader = event; 10316 10317 mutex_init(&event->child_mutex); 10318 INIT_LIST_HEAD(&event->child_list); 10319 10320 INIT_LIST_HEAD(&event->event_entry); 10321 INIT_LIST_HEAD(&event->sibling_list); 10322 INIT_LIST_HEAD(&event->active_list); 10323 init_event_group(event); 10324 INIT_LIST_HEAD(&event->rb_entry); 10325 INIT_LIST_HEAD(&event->active_entry); 10326 INIT_LIST_HEAD(&event->addr_filters.list); 10327 INIT_HLIST_NODE(&event->hlist_entry); 10328 10329 10330 init_waitqueue_head(&event->waitq); 10331 event->pending_disable = -1; 10332 init_irq_work(&event->pending, perf_pending_event); 10333 10334 mutex_init(&event->mmap_mutex); 10335 raw_spin_lock_init(&event->addr_filters.lock); 10336 10337 atomic_long_set(&event->refcount, 1); 10338 event->cpu = cpu; 10339 event->attr = *attr; 10340 event->group_leader = group_leader; 10341 event->pmu = NULL; 10342 event->oncpu = -1; 10343 10344 event->parent = parent_event; 10345 10346 event->ns = get_pid_ns(task_active_pid_ns(current)); 10347 event->id = atomic64_inc_return(&perf_event_id); 10348 10349 event->state = PERF_EVENT_STATE_INACTIVE; 10350 10351 if (task) { 10352 event->attach_state = PERF_ATTACH_TASK; 10353 /* 10354 * XXX pmu::event_init needs to know what task to account to 10355 * and we cannot use the ctx information because we need the 10356 * pmu before we get a ctx. 10357 */ 10358 get_task_struct(task); 10359 event->hw.target = task; 10360 } 10361 10362 event->clock = &local_clock; 10363 if (parent_event) 10364 event->clock = parent_event->clock; 10365 10366 if (!overflow_handler && parent_event) { 10367 overflow_handler = parent_event->overflow_handler; 10368 context = parent_event->overflow_handler_context; 10369 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 10370 if (overflow_handler == bpf_overflow_handler) { 10371 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 10372 10373 if (IS_ERR(prog)) { 10374 err = PTR_ERR(prog); 10375 goto err_ns; 10376 } 10377 event->prog = prog; 10378 event->orig_overflow_handler = 10379 parent_event->orig_overflow_handler; 10380 } 10381 #endif 10382 } 10383 10384 if (overflow_handler) { 10385 event->overflow_handler = overflow_handler; 10386 event->overflow_handler_context = context; 10387 } else if (is_write_backward(event)){ 10388 event->overflow_handler = perf_event_output_backward; 10389 event->overflow_handler_context = NULL; 10390 } else { 10391 event->overflow_handler = perf_event_output_forward; 10392 event->overflow_handler_context = NULL; 10393 } 10394 10395 perf_event__state_init(event); 10396 10397 pmu = NULL; 10398 10399 hwc = &event->hw; 10400 hwc->sample_period = attr->sample_period; 10401 if (attr->freq && attr->sample_freq) 10402 hwc->sample_period = 1; 10403 hwc->last_period = hwc->sample_period; 10404 10405 local64_set(&hwc->period_left, hwc->sample_period); 10406 10407 /* 10408 * We currently do not support PERF_SAMPLE_READ on inherited events. 10409 * See perf_output_read(). 10410 */ 10411 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 10412 goto err_ns; 10413 10414 if (!has_branch_stack(event)) 10415 event->attr.branch_sample_type = 0; 10416 10417 if (cgroup_fd != -1) { 10418 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 10419 if (err) 10420 goto err_ns; 10421 } 10422 10423 pmu = perf_init_event(event); 10424 if (IS_ERR(pmu)) { 10425 err = PTR_ERR(pmu); 10426 goto err_ns; 10427 } 10428 10429 err = exclusive_event_init(event); 10430 if (err) 10431 goto err_pmu; 10432 10433 if (has_addr_filter(event)) { 10434 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 10435 sizeof(struct perf_addr_filter_range), 10436 GFP_KERNEL); 10437 if (!event->addr_filter_ranges) { 10438 err = -ENOMEM; 10439 goto err_per_task; 10440 } 10441 10442 /* 10443 * Clone the parent's vma offsets: they are valid until exec() 10444 * even if the mm is not shared with the parent. 10445 */ 10446 if (event->parent) { 10447 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10448 10449 raw_spin_lock_irq(&ifh->lock); 10450 memcpy(event->addr_filter_ranges, 10451 event->parent->addr_filter_ranges, 10452 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 10453 raw_spin_unlock_irq(&ifh->lock); 10454 } 10455 10456 /* force hw sync on the address filters */ 10457 event->addr_filters_gen = 1; 10458 } 10459 10460 if (!event->parent) { 10461 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 10462 err = get_callchain_buffers(attr->sample_max_stack); 10463 if (err) 10464 goto err_addr_filters; 10465 } 10466 } 10467 10468 /* symmetric to unaccount_event() in _free_event() */ 10469 account_event(event); 10470 10471 return event; 10472 10473 err_addr_filters: 10474 kfree(event->addr_filter_ranges); 10475 10476 err_per_task: 10477 exclusive_event_destroy(event); 10478 10479 err_pmu: 10480 if (event->destroy) 10481 event->destroy(event); 10482 module_put(pmu->module); 10483 err_ns: 10484 if (is_cgroup_event(event)) 10485 perf_detach_cgroup(event); 10486 if (event->ns) 10487 put_pid_ns(event->ns); 10488 if (event->hw.target) 10489 put_task_struct(event->hw.target); 10490 kfree(event); 10491 10492 return ERR_PTR(err); 10493 } 10494 10495 static int perf_copy_attr(struct perf_event_attr __user *uattr, 10496 struct perf_event_attr *attr) 10497 { 10498 u32 size; 10499 int ret; 10500 10501 if (!access_ok(uattr, PERF_ATTR_SIZE_VER0)) 10502 return -EFAULT; 10503 10504 /* 10505 * zero the full structure, so that a short copy will be nice. 10506 */ 10507 memset(attr, 0, sizeof(*attr)); 10508 10509 ret = get_user(size, &uattr->size); 10510 if (ret) 10511 return ret; 10512 10513 if (size > PAGE_SIZE) /* silly large */ 10514 goto err_size; 10515 10516 if (!size) /* abi compat */ 10517 size = PERF_ATTR_SIZE_VER0; 10518 10519 if (size < PERF_ATTR_SIZE_VER0) 10520 goto err_size; 10521 10522 /* 10523 * If we're handed a bigger struct than we know of, 10524 * ensure all the unknown bits are 0 - i.e. new 10525 * user-space does not rely on any kernel feature 10526 * extensions we dont know about yet. 10527 */ 10528 if (size > sizeof(*attr)) { 10529 unsigned char __user *addr; 10530 unsigned char __user *end; 10531 unsigned char val; 10532 10533 addr = (void __user *)uattr + sizeof(*attr); 10534 end = (void __user *)uattr + size; 10535 10536 for (; addr < end; addr++) { 10537 ret = get_user(val, addr); 10538 if (ret) 10539 return ret; 10540 if (val) 10541 goto err_size; 10542 } 10543 size = sizeof(*attr); 10544 } 10545 10546 ret = copy_from_user(attr, uattr, size); 10547 if (ret) 10548 return -EFAULT; 10549 10550 attr->size = size; 10551 10552 if (attr->__reserved_1) 10553 return -EINVAL; 10554 10555 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 10556 return -EINVAL; 10557 10558 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 10559 return -EINVAL; 10560 10561 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 10562 u64 mask = attr->branch_sample_type; 10563 10564 /* only using defined bits */ 10565 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 10566 return -EINVAL; 10567 10568 /* at least one branch bit must be set */ 10569 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 10570 return -EINVAL; 10571 10572 /* propagate priv level, when not set for branch */ 10573 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 10574 10575 /* exclude_kernel checked on syscall entry */ 10576 if (!attr->exclude_kernel) 10577 mask |= PERF_SAMPLE_BRANCH_KERNEL; 10578 10579 if (!attr->exclude_user) 10580 mask |= PERF_SAMPLE_BRANCH_USER; 10581 10582 if (!attr->exclude_hv) 10583 mask |= PERF_SAMPLE_BRANCH_HV; 10584 /* 10585 * adjust user setting (for HW filter setup) 10586 */ 10587 attr->branch_sample_type = mask; 10588 } 10589 /* privileged levels capture (kernel, hv): check permissions */ 10590 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 10591 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10592 return -EACCES; 10593 } 10594 10595 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 10596 ret = perf_reg_validate(attr->sample_regs_user); 10597 if (ret) 10598 return ret; 10599 } 10600 10601 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 10602 if (!arch_perf_have_user_stack_dump()) 10603 return -ENOSYS; 10604 10605 /* 10606 * We have __u32 type for the size, but so far 10607 * we can only use __u16 as maximum due to the 10608 * __u16 sample size limit. 10609 */ 10610 if (attr->sample_stack_user >= USHRT_MAX) 10611 return -EINVAL; 10612 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 10613 return -EINVAL; 10614 } 10615 10616 if (!attr->sample_max_stack) 10617 attr->sample_max_stack = sysctl_perf_event_max_stack; 10618 10619 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 10620 ret = perf_reg_validate(attr->sample_regs_intr); 10621 out: 10622 return ret; 10623 10624 err_size: 10625 put_user(sizeof(*attr), &uattr->size); 10626 ret = -E2BIG; 10627 goto out; 10628 } 10629 10630 static int 10631 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 10632 { 10633 struct ring_buffer *rb = NULL; 10634 int ret = -EINVAL; 10635 10636 if (!output_event) 10637 goto set; 10638 10639 /* don't allow circular references */ 10640 if (event == output_event) 10641 goto out; 10642 10643 /* 10644 * Don't allow cross-cpu buffers 10645 */ 10646 if (output_event->cpu != event->cpu) 10647 goto out; 10648 10649 /* 10650 * If its not a per-cpu rb, it must be the same task. 10651 */ 10652 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 10653 goto out; 10654 10655 /* 10656 * Mixing clocks in the same buffer is trouble you don't need. 10657 */ 10658 if (output_event->clock != event->clock) 10659 goto out; 10660 10661 /* 10662 * Either writing ring buffer from beginning or from end. 10663 * Mixing is not allowed. 10664 */ 10665 if (is_write_backward(output_event) != is_write_backward(event)) 10666 goto out; 10667 10668 /* 10669 * If both events generate aux data, they must be on the same PMU 10670 */ 10671 if (has_aux(event) && has_aux(output_event) && 10672 event->pmu != output_event->pmu) 10673 goto out; 10674 10675 set: 10676 mutex_lock(&event->mmap_mutex); 10677 /* Can't redirect output if we've got an active mmap() */ 10678 if (atomic_read(&event->mmap_count)) 10679 goto unlock; 10680 10681 if (output_event) { 10682 /* get the rb we want to redirect to */ 10683 rb = ring_buffer_get(output_event); 10684 if (!rb) 10685 goto unlock; 10686 } 10687 10688 ring_buffer_attach(event, rb); 10689 10690 ret = 0; 10691 unlock: 10692 mutex_unlock(&event->mmap_mutex); 10693 10694 out: 10695 return ret; 10696 } 10697 10698 static void mutex_lock_double(struct mutex *a, struct mutex *b) 10699 { 10700 if (b < a) 10701 swap(a, b); 10702 10703 mutex_lock(a); 10704 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 10705 } 10706 10707 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 10708 { 10709 bool nmi_safe = false; 10710 10711 switch (clk_id) { 10712 case CLOCK_MONOTONIC: 10713 event->clock = &ktime_get_mono_fast_ns; 10714 nmi_safe = true; 10715 break; 10716 10717 case CLOCK_MONOTONIC_RAW: 10718 event->clock = &ktime_get_raw_fast_ns; 10719 nmi_safe = true; 10720 break; 10721 10722 case CLOCK_REALTIME: 10723 event->clock = &ktime_get_real_ns; 10724 break; 10725 10726 case CLOCK_BOOTTIME: 10727 event->clock = &ktime_get_boottime_ns; 10728 break; 10729 10730 case CLOCK_TAI: 10731 event->clock = &ktime_get_clocktai_ns; 10732 break; 10733 10734 default: 10735 return -EINVAL; 10736 } 10737 10738 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 10739 return -EINVAL; 10740 10741 return 0; 10742 } 10743 10744 /* 10745 * Variation on perf_event_ctx_lock_nested(), except we take two context 10746 * mutexes. 10747 */ 10748 static struct perf_event_context * 10749 __perf_event_ctx_lock_double(struct perf_event *group_leader, 10750 struct perf_event_context *ctx) 10751 { 10752 struct perf_event_context *gctx; 10753 10754 again: 10755 rcu_read_lock(); 10756 gctx = READ_ONCE(group_leader->ctx); 10757 if (!refcount_inc_not_zero(&gctx->refcount)) { 10758 rcu_read_unlock(); 10759 goto again; 10760 } 10761 rcu_read_unlock(); 10762 10763 mutex_lock_double(&gctx->mutex, &ctx->mutex); 10764 10765 if (group_leader->ctx != gctx) { 10766 mutex_unlock(&ctx->mutex); 10767 mutex_unlock(&gctx->mutex); 10768 put_ctx(gctx); 10769 goto again; 10770 } 10771 10772 return gctx; 10773 } 10774 10775 /** 10776 * sys_perf_event_open - open a performance event, associate it to a task/cpu 10777 * 10778 * @attr_uptr: event_id type attributes for monitoring/sampling 10779 * @pid: target pid 10780 * @cpu: target cpu 10781 * @group_fd: group leader event fd 10782 */ 10783 SYSCALL_DEFINE5(perf_event_open, 10784 struct perf_event_attr __user *, attr_uptr, 10785 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 10786 { 10787 struct perf_event *group_leader = NULL, *output_event = NULL; 10788 struct perf_event *event, *sibling; 10789 struct perf_event_attr attr; 10790 struct perf_event_context *ctx, *uninitialized_var(gctx); 10791 struct file *event_file = NULL; 10792 struct fd group = {NULL, 0}; 10793 struct task_struct *task = NULL; 10794 struct pmu *pmu; 10795 int event_fd; 10796 int move_group = 0; 10797 int err; 10798 int f_flags = O_RDWR; 10799 int cgroup_fd = -1; 10800 10801 /* for future expandability... */ 10802 if (flags & ~PERF_FLAG_ALL) 10803 return -EINVAL; 10804 10805 err = perf_copy_attr(attr_uptr, &attr); 10806 if (err) 10807 return err; 10808 10809 if (!attr.exclude_kernel) { 10810 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10811 return -EACCES; 10812 } 10813 10814 if (attr.namespaces) { 10815 if (!capable(CAP_SYS_ADMIN)) 10816 return -EACCES; 10817 } 10818 10819 if (attr.freq) { 10820 if (attr.sample_freq > sysctl_perf_event_sample_rate) 10821 return -EINVAL; 10822 } else { 10823 if (attr.sample_period & (1ULL << 63)) 10824 return -EINVAL; 10825 } 10826 10827 /* Only privileged users can get physical addresses */ 10828 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 10829 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10830 return -EACCES; 10831 10832 /* 10833 * In cgroup mode, the pid argument is used to pass the fd 10834 * opened to the cgroup directory in cgroupfs. The cpu argument 10835 * designates the cpu on which to monitor threads from that 10836 * cgroup. 10837 */ 10838 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 10839 return -EINVAL; 10840 10841 if (flags & PERF_FLAG_FD_CLOEXEC) 10842 f_flags |= O_CLOEXEC; 10843 10844 event_fd = get_unused_fd_flags(f_flags); 10845 if (event_fd < 0) 10846 return event_fd; 10847 10848 if (group_fd != -1) { 10849 err = perf_fget_light(group_fd, &group); 10850 if (err) 10851 goto err_fd; 10852 group_leader = group.file->private_data; 10853 if (flags & PERF_FLAG_FD_OUTPUT) 10854 output_event = group_leader; 10855 if (flags & PERF_FLAG_FD_NO_GROUP) 10856 group_leader = NULL; 10857 } 10858 10859 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 10860 task = find_lively_task_by_vpid(pid); 10861 if (IS_ERR(task)) { 10862 err = PTR_ERR(task); 10863 goto err_group_fd; 10864 } 10865 } 10866 10867 if (task && group_leader && 10868 group_leader->attr.inherit != attr.inherit) { 10869 err = -EINVAL; 10870 goto err_task; 10871 } 10872 10873 if (task) { 10874 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 10875 if (err) 10876 goto err_task; 10877 10878 /* 10879 * Reuse ptrace permission checks for now. 10880 * 10881 * We must hold cred_guard_mutex across this and any potential 10882 * perf_install_in_context() call for this new event to 10883 * serialize against exec() altering our credentials (and the 10884 * perf_event_exit_task() that could imply). 10885 */ 10886 err = -EACCES; 10887 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 10888 goto err_cred; 10889 } 10890 10891 if (flags & PERF_FLAG_PID_CGROUP) 10892 cgroup_fd = pid; 10893 10894 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 10895 NULL, NULL, cgroup_fd); 10896 if (IS_ERR(event)) { 10897 err = PTR_ERR(event); 10898 goto err_cred; 10899 } 10900 10901 if (is_sampling_event(event)) { 10902 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 10903 err = -EOPNOTSUPP; 10904 goto err_alloc; 10905 } 10906 } 10907 10908 /* 10909 * Special case software events and allow them to be part of 10910 * any hardware group. 10911 */ 10912 pmu = event->pmu; 10913 10914 if (attr.use_clockid) { 10915 err = perf_event_set_clock(event, attr.clockid); 10916 if (err) 10917 goto err_alloc; 10918 } 10919 10920 if (pmu->task_ctx_nr == perf_sw_context) 10921 event->event_caps |= PERF_EV_CAP_SOFTWARE; 10922 10923 if (group_leader) { 10924 if (is_software_event(event) && 10925 !in_software_context(group_leader)) { 10926 /* 10927 * If the event is a sw event, but the group_leader 10928 * is on hw context. 10929 * 10930 * Allow the addition of software events to hw 10931 * groups, this is safe because software events 10932 * never fail to schedule. 10933 */ 10934 pmu = group_leader->ctx->pmu; 10935 } else if (!is_software_event(event) && 10936 is_software_event(group_leader) && 10937 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10938 /* 10939 * In case the group is a pure software group, and we 10940 * try to add a hardware event, move the whole group to 10941 * the hardware context. 10942 */ 10943 move_group = 1; 10944 } 10945 } 10946 10947 /* 10948 * Get the target context (task or percpu): 10949 */ 10950 ctx = find_get_context(pmu, task, event); 10951 if (IS_ERR(ctx)) { 10952 err = PTR_ERR(ctx); 10953 goto err_alloc; 10954 } 10955 10956 /* 10957 * Look up the group leader (we will attach this event to it): 10958 */ 10959 if (group_leader) { 10960 err = -EINVAL; 10961 10962 /* 10963 * Do not allow a recursive hierarchy (this new sibling 10964 * becoming part of another group-sibling): 10965 */ 10966 if (group_leader->group_leader != group_leader) 10967 goto err_context; 10968 10969 /* All events in a group should have the same clock */ 10970 if (group_leader->clock != event->clock) 10971 goto err_context; 10972 10973 /* 10974 * Make sure we're both events for the same CPU; 10975 * grouping events for different CPUs is broken; since 10976 * you can never concurrently schedule them anyhow. 10977 */ 10978 if (group_leader->cpu != event->cpu) 10979 goto err_context; 10980 10981 /* 10982 * Make sure we're both on the same task, or both 10983 * per-CPU events. 10984 */ 10985 if (group_leader->ctx->task != ctx->task) 10986 goto err_context; 10987 10988 /* 10989 * Do not allow to attach to a group in a different task 10990 * or CPU context. If we're moving SW events, we'll fix 10991 * this up later, so allow that. 10992 */ 10993 if (!move_group && group_leader->ctx != ctx) 10994 goto err_context; 10995 10996 /* 10997 * Only a group leader can be exclusive or pinned 10998 */ 10999 if (attr.exclusive || attr.pinned) 11000 goto err_context; 11001 } 11002 11003 if (output_event) { 11004 err = perf_event_set_output(event, output_event); 11005 if (err) 11006 goto err_context; 11007 } 11008 11009 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 11010 f_flags); 11011 if (IS_ERR(event_file)) { 11012 err = PTR_ERR(event_file); 11013 event_file = NULL; 11014 goto err_context; 11015 } 11016 11017 if (move_group) { 11018 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 11019 11020 if (gctx->task == TASK_TOMBSTONE) { 11021 err = -ESRCH; 11022 goto err_locked; 11023 } 11024 11025 /* 11026 * Check if we raced against another sys_perf_event_open() call 11027 * moving the software group underneath us. 11028 */ 11029 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11030 /* 11031 * If someone moved the group out from under us, check 11032 * if this new event wound up on the same ctx, if so 11033 * its the regular !move_group case, otherwise fail. 11034 */ 11035 if (gctx != ctx) { 11036 err = -EINVAL; 11037 goto err_locked; 11038 } else { 11039 perf_event_ctx_unlock(group_leader, gctx); 11040 move_group = 0; 11041 } 11042 } 11043 11044 /* 11045 * Failure to create exclusive events returns -EBUSY. 11046 */ 11047 err = -EBUSY; 11048 if (!exclusive_event_installable(group_leader, ctx)) 11049 goto err_locked; 11050 11051 for_each_sibling_event(sibling, group_leader) { 11052 if (!exclusive_event_installable(sibling, ctx)) 11053 goto err_locked; 11054 } 11055 } else { 11056 mutex_lock(&ctx->mutex); 11057 } 11058 11059 if (ctx->task == TASK_TOMBSTONE) { 11060 err = -ESRCH; 11061 goto err_locked; 11062 } 11063 11064 if (!perf_event_validate_size(event)) { 11065 err = -E2BIG; 11066 goto err_locked; 11067 } 11068 11069 if (!task) { 11070 /* 11071 * Check if the @cpu we're creating an event for is online. 11072 * 11073 * We use the perf_cpu_context::ctx::mutex to serialize against 11074 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11075 */ 11076 struct perf_cpu_context *cpuctx = 11077 container_of(ctx, struct perf_cpu_context, ctx); 11078 11079 if (!cpuctx->online) { 11080 err = -ENODEV; 11081 goto err_locked; 11082 } 11083 } 11084 11085 11086 /* 11087 * Must be under the same ctx::mutex as perf_install_in_context(), 11088 * because we need to serialize with concurrent event creation. 11089 */ 11090 if (!exclusive_event_installable(event, ctx)) { 11091 err = -EBUSY; 11092 goto err_locked; 11093 } 11094 11095 WARN_ON_ONCE(ctx->parent_ctx); 11096 11097 /* 11098 * This is the point on no return; we cannot fail hereafter. This is 11099 * where we start modifying current state. 11100 */ 11101 11102 if (move_group) { 11103 /* 11104 * See perf_event_ctx_lock() for comments on the details 11105 * of swizzling perf_event::ctx. 11106 */ 11107 perf_remove_from_context(group_leader, 0); 11108 put_ctx(gctx); 11109 11110 for_each_sibling_event(sibling, group_leader) { 11111 perf_remove_from_context(sibling, 0); 11112 put_ctx(gctx); 11113 } 11114 11115 /* 11116 * Wait for everybody to stop referencing the events through 11117 * the old lists, before installing it on new lists. 11118 */ 11119 synchronize_rcu(); 11120 11121 /* 11122 * Install the group siblings before the group leader. 11123 * 11124 * Because a group leader will try and install the entire group 11125 * (through the sibling list, which is still in-tact), we can 11126 * end up with siblings installed in the wrong context. 11127 * 11128 * By installing siblings first we NO-OP because they're not 11129 * reachable through the group lists. 11130 */ 11131 for_each_sibling_event(sibling, group_leader) { 11132 perf_event__state_init(sibling); 11133 perf_install_in_context(ctx, sibling, sibling->cpu); 11134 get_ctx(ctx); 11135 } 11136 11137 /* 11138 * Removing from the context ends up with disabled 11139 * event. What we want here is event in the initial 11140 * startup state, ready to be add into new context. 11141 */ 11142 perf_event__state_init(group_leader); 11143 perf_install_in_context(ctx, group_leader, group_leader->cpu); 11144 get_ctx(ctx); 11145 } 11146 11147 /* 11148 * Precalculate sample_data sizes; do while holding ctx::mutex such 11149 * that we're serialized against further additions and before 11150 * perf_install_in_context() which is the point the event is active and 11151 * can use these values. 11152 */ 11153 perf_event__header_size(event); 11154 perf_event__id_header_size(event); 11155 11156 event->owner = current; 11157 11158 perf_install_in_context(ctx, event, event->cpu); 11159 perf_unpin_context(ctx); 11160 11161 if (move_group) 11162 perf_event_ctx_unlock(group_leader, gctx); 11163 mutex_unlock(&ctx->mutex); 11164 11165 if (task) { 11166 mutex_unlock(&task->signal->cred_guard_mutex); 11167 put_task_struct(task); 11168 } 11169 11170 mutex_lock(¤t->perf_event_mutex); 11171 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 11172 mutex_unlock(¤t->perf_event_mutex); 11173 11174 /* 11175 * Drop the reference on the group_event after placing the 11176 * new event on the sibling_list. This ensures destruction 11177 * of the group leader will find the pointer to itself in 11178 * perf_group_detach(). 11179 */ 11180 fdput(group); 11181 fd_install(event_fd, event_file); 11182 return event_fd; 11183 11184 err_locked: 11185 if (move_group) 11186 perf_event_ctx_unlock(group_leader, gctx); 11187 mutex_unlock(&ctx->mutex); 11188 /* err_file: */ 11189 fput(event_file); 11190 err_context: 11191 perf_unpin_context(ctx); 11192 put_ctx(ctx); 11193 err_alloc: 11194 /* 11195 * If event_file is set, the fput() above will have called ->release() 11196 * and that will take care of freeing the event. 11197 */ 11198 if (!event_file) 11199 free_event(event); 11200 err_cred: 11201 if (task) 11202 mutex_unlock(&task->signal->cred_guard_mutex); 11203 err_task: 11204 if (task) 11205 put_task_struct(task); 11206 err_group_fd: 11207 fdput(group); 11208 err_fd: 11209 put_unused_fd(event_fd); 11210 return err; 11211 } 11212 11213 /** 11214 * perf_event_create_kernel_counter 11215 * 11216 * @attr: attributes of the counter to create 11217 * @cpu: cpu in which the counter is bound 11218 * @task: task to profile (NULL for percpu) 11219 */ 11220 struct perf_event * 11221 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 11222 struct task_struct *task, 11223 perf_overflow_handler_t overflow_handler, 11224 void *context) 11225 { 11226 struct perf_event_context *ctx; 11227 struct perf_event *event; 11228 int err; 11229 11230 /* 11231 * Get the target context (task or percpu): 11232 */ 11233 11234 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 11235 overflow_handler, context, -1); 11236 if (IS_ERR(event)) { 11237 err = PTR_ERR(event); 11238 goto err; 11239 } 11240 11241 /* Mark owner so we could distinguish it from user events. */ 11242 event->owner = TASK_TOMBSTONE; 11243 11244 ctx = find_get_context(event->pmu, task, event); 11245 if (IS_ERR(ctx)) { 11246 err = PTR_ERR(ctx); 11247 goto err_free; 11248 } 11249 11250 WARN_ON_ONCE(ctx->parent_ctx); 11251 mutex_lock(&ctx->mutex); 11252 if (ctx->task == TASK_TOMBSTONE) { 11253 err = -ESRCH; 11254 goto err_unlock; 11255 } 11256 11257 if (!task) { 11258 /* 11259 * Check if the @cpu we're creating an event for is online. 11260 * 11261 * We use the perf_cpu_context::ctx::mutex to serialize against 11262 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11263 */ 11264 struct perf_cpu_context *cpuctx = 11265 container_of(ctx, struct perf_cpu_context, ctx); 11266 if (!cpuctx->online) { 11267 err = -ENODEV; 11268 goto err_unlock; 11269 } 11270 } 11271 11272 if (!exclusive_event_installable(event, ctx)) { 11273 err = -EBUSY; 11274 goto err_unlock; 11275 } 11276 11277 perf_install_in_context(ctx, event, event->cpu); 11278 perf_unpin_context(ctx); 11279 mutex_unlock(&ctx->mutex); 11280 11281 return event; 11282 11283 err_unlock: 11284 mutex_unlock(&ctx->mutex); 11285 perf_unpin_context(ctx); 11286 put_ctx(ctx); 11287 err_free: 11288 free_event(event); 11289 err: 11290 return ERR_PTR(err); 11291 } 11292 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 11293 11294 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 11295 { 11296 struct perf_event_context *src_ctx; 11297 struct perf_event_context *dst_ctx; 11298 struct perf_event *event, *tmp; 11299 LIST_HEAD(events); 11300 11301 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 11302 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 11303 11304 /* 11305 * See perf_event_ctx_lock() for comments on the details 11306 * of swizzling perf_event::ctx. 11307 */ 11308 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 11309 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 11310 event_entry) { 11311 perf_remove_from_context(event, 0); 11312 unaccount_event_cpu(event, src_cpu); 11313 put_ctx(src_ctx); 11314 list_add(&event->migrate_entry, &events); 11315 } 11316 11317 /* 11318 * Wait for the events to quiesce before re-instating them. 11319 */ 11320 synchronize_rcu(); 11321 11322 /* 11323 * Re-instate events in 2 passes. 11324 * 11325 * Skip over group leaders and only install siblings on this first 11326 * pass, siblings will not get enabled without a leader, however a 11327 * leader will enable its siblings, even if those are still on the old 11328 * context. 11329 */ 11330 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11331 if (event->group_leader == event) 11332 continue; 11333 11334 list_del(&event->migrate_entry); 11335 if (event->state >= PERF_EVENT_STATE_OFF) 11336 event->state = PERF_EVENT_STATE_INACTIVE; 11337 account_event_cpu(event, dst_cpu); 11338 perf_install_in_context(dst_ctx, event, dst_cpu); 11339 get_ctx(dst_ctx); 11340 } 11341 11342 /* 11343 * Once all the siblings are setup properly, install the group leaders 11344 * to make it go. 11345 */ 11346 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11347 list_del(&event->migrate_entry); 11348 if (event->state >= PERF_EVENT_STATE_OFF) 11349 event->state = PERF_EVENT_STATE_INACTIVE; 11350 account_event_cpu(event, dst_cpu); 11351 perf_install_in_context(dst_ctx, event, dst_cpu); 11352 get_ctx(dst_ctx); 11353 } 11354 mutex_unlock(&dst_ctx->mutex); 11355 mutex_unlock(&src_ctx->mutex); 11356 } 11357 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 11358 11359 static void sync_child_event(struct perf_event *child_event, 11360 struct task_struct *child) 11361 { 11362 struct perf_event *parent_event = child_event->parent; 11363 u64 child_val; 11364 11365 if (child_event->attr.inherit_stat) 11366 perf_event_read_event(child_event, child); 11367 11368 child_val = perf_event_count(child_event); 11369 11370 /* 11371 * Add back the child's count to the parent's count: 11372 */ 11373 atomic64_add(child_val, &parent_event->child_count); 11374 atomic64_add(child_event->total_time_enabled, 11375 &parent_event->child_total_time_enabled); 11376 atomic64_add(child_event->total_time_running, 11377 &parent_event->child_total_time_running); 11378 } 11379 11380 static void 11381 perf_event_exit_event(struct perf_event *child_event, 11382 struct perf_event_context *child_ctx, 11383 struct task_struct *child) 11384 { 11385 struct perf_event *parent_event = child_event->parent; 11386 11387 /* 11388 * Do not destroy the 'original' grouping; because of the context 11389 * switch optimization the original events could've ended up in a 11390 * random child task. 11391 * 11392 * If we were to destroy the original group, all group related 11393 * operations would cease to function properly after this random 11394 * child dies. 11395 * 11396 * Do destroy all inherited groups, we don't care about those 11397 * and being thorough is better. 11398 */ 11399 raw_spin_lock_irq(&child_ctx->lock); 11400 WARN_ON_ONCE(child_ctx->is_active); 11401 11402 if (parent_event) 11403 perf_group_detach(child_event); 11404 list_del_event(child_event, child_ctx); 11405 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 11406 raw_spin_unlock_irq(&child_ctx->lock); 11407 11408 /* 11409 * Parent events are governed by their filedesc, retain them. 11410 */ 11411 if (!parent_event) { 11412 perf_event_wakeup(child_event); 11413 return; 11414 } 11415 /* 11416 * Child events can be cleaned up. 11417 */ 11418 11419 sync_child_event(child_event, child); 11420 11421 /* 11422 * Remove this event from the parent's list 11423 */ 11424 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 11425 mutex_lock(&parent_event->child_mutex); 11426 list_del_init(&child_event->child_list); 11427 mutex_unlock(&parent_event->child_mutex); 11428 11429 /* 11430 * Kick perf_poll() for is_event_hup(). 11431 */ 11432 perf_event_wakeup(parent_event); 11433 free_event(child_event); 11434 put_event(parent_event); 11435 } 11436 11437 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 11438 { 11439 struct perf_event_context *child_ctx, *clone_ctx = NULL; 11440 struct perf_event *child_event, *next; 11441 11442 WARN_ON_ONCE(child != current); 11443 11444 child_ctx = perf_pin_task_context(child, ctxn); 11445 if (!child_ctx) 11446 return; 11447 11448 /* 11449 * In order to reduce the amount of tricky in ctx tear-down, we hold 11450 * ctx::mutex over the entire thing. This serializes against almost 11451 * everything that wants to access the ctx. 11452 * 11453 * The exception is sys_perf_event_open() / 11454 * perf_event_create_kernel_count() which does find_get_context() 11455 * without ctx::mutex (it cannot because of the move_group double mutex 11456 * lock thing). See the comments in perf_install_in_context(). 11457 */ 11458 mutex_lock(&child_ctx->mutex); 11459 11460 /* 11461 * In a single ctx::lock section, de-schedule the events and detach the 11462 * context from the task such that we cannot ever get it scheduled back 11463 * in. 11464 */ 11465 raw_spin_lock_irq(&child_ctx->lock); 11466 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 11467 11468 /* 11469 * Now that the context is inactive, destroy the task <-> ctx relation 11470 * and mark the context dead. 11471 */ 11472 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 11473 put_ctx(child_ctx); /* cannot be last */ 11474 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 11475 put_task_struct(current); /* cannot be last */ 11476 11477 clone_ctx = unclone_ctx(child_ctx); 11478 raw_spin_unlock_irq(&child_ctx->lock); 11479 11480 if (clone_ctx) 11481 put_ctx(clone_ctx); 11482 11483 /* 11484 * Report the task dead after unscheduling the events so that we 11485 * won't get any samples after PERF_RECORD_EXIT. We can however still 11486 * get a few PERF_RECORD_READ events. 11487 */ 11488 perf_event_task(child, child_ctx, 0); 11489 11490 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 11491 perf_event_exit_event(child_event, child_ctx, child); 11492 11493 mutex_unlock(&child_ctx->mutex); 11494 11495 put_ctx(child_ctx); 11496 } 11497 11498 /* 11499 * When a child task exits, feed back event values to parent events. 11500 * 11501 * Can be called with cred_guard_mutex held when called from 11502 * install_exec_creds(). 11503 */ 11504 void perf_event_exit_task(struct task_struct *child) 11505 { 11506 struct perf_event *event, *tmp; 11507 int ctxn; 11508 11509 mutex_lock(&child->perf_event_mutex); 11510 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 11511 owner_entry) { 11512 list_del_init(&event->owner_entry); 11513 11514 /* 11515 * Ensure the list deletion is visible before we clear 11516 * the owner, closes a race against perf_release() where 11517 * we need to serialize on the owner->perf_event_mutex. 11518 */ 11519 smp_store_release(&event->owner, NULL); 11520 } 11521 mutex_unlock(&child->perf_event_mutex); 11522 11523 for_each_task_context_nr(ctxn) 11524 perf_event_exit_task_context(child, ctxn); 11525 11526 /* 11527 * The perf_event_exit_task_context calls perf_event_task 11528 * with child's task_ctx, which generates EXIT events for 11529 * child contexts and sets child->perf_event_ctxp[] to NULL. 11530 * At this point we need to send EXIT events to cpu contexts. 11531 */ 11532 perf_event_task(child, NULL, 0); 11533 } 11534 11535 static void perf_free_event(struct perf_event *event, 11536 struct perf_event_context *ctx) 11537 { 11538 struct perf_event *parent = event->parent; 11539 11540 if (WARN_ON_ONCE(!parent)) 11541 return; 11542 11543 mutex_lock(&parent->child_mutex); 11544 list_del_init(&event->child_list); 11545 mutex_unlock(&parent->child_mutex); 11546 11547 put_event(parent); 11548 11549 raw_spin_lock_irq(&ctx->lock); 11550 perf_group_detach(event); 11551 list_del_event(event, ctx); 11552 raw_spin_unlock_irq(&ctx->lock); 11553 free_event(event); 11554 } 11555 11556 /* 11557 * Free a context as created by inheritance by perf_event_init_task() below, 11558 * used by fork() in case of fail. 11559 * 11560 * Even though the task has never lived, the context and events have been 11561 * exposed through the child_list, so we must take care tearing it all down. 11562 */ 11563 void perf_event_free_task(struct task_struct *task) 11564 { 11565 struct perf_event_context *ctx; 11566 struct perf_event *event, *tmp; 11567 int ctxn; 11568 11569 for_each_task_context_nr(ctxn) { 11570 ctx = task->perf_event_ctxp[ctxn]; 11571 if (!ctx) 11572 continue; 11573 11574 mutex_lock(&ctx->mutex); 11575 raw_spin_lock_irq(&ctx->lock); 11576 /* 11577 * Destroy the task <-> ctx relation and mark the context dead. 11578 * 11579 * This is important because even though the task hasn't been 11580 * exposed yet the context has been (through child_list). 11581 */ 11582 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 11583 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 11584 put_task_struct(task); /* cannot be last */ 11585 raw_spin_unlock_irq(&ctx->lock); 11586 11587 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 11588 perf_free_event(event, ctx); 11589 11590 mutex_unlock(&ctx->mutex); 11591 11592 /* 11593 * perf_event_release_kernel() could've stolen some of our 11594 * child events and still have them on its free_list. In that 11595 * case we must wait for these events to have been freed (in 11596 * particular all their references to this task must've been 11597 * dropped). 11598 * 11599 * Without this copy_process() will unconditionally free this 11600 * task (irrespective of its reference count) and 11601 * _free_event()'s put_task_struct(event->hw.target) will be a 11602 * use-after-free. 11603 * 11604 * Wait for all events to drop their context reference. 11605 */ 11606 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 11607 put_ctx(ctx); /* must be last */ 11608 } 11609 } 11610 11611 void perf_event_delayed_put(struct task_struct *task) 11612 { 11613 int ctxn; 11614 11615 for_each_task_context_nr(ctxn) 11616 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 11617 } 11618 11619 struct file *perf_event_get(unsigned int fd) 11620 { 11621 struct file *file = fget(fd); 11622 if (!file) 11623 return ERR_PTR(-EBADF); 11624 11625 if (file->f_op != &perf_fops) { 11626 fput(file); 11627 return ERR_PTR(-EBADF); 11628 } 11629 11630 return file; 11631 } 11632 11633 const struct perf_event *perf_get_event(struct file *file) 11634 { 11635 if (file->f_op != &perf_fops) 11636 return ERR_PTR(-EINVAL); 11637 11638 return file->private_data; 11639 } 11640 11641 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 11642 { 11643 if (!event) 11644 return ERR_PTR(-EINVAL); 11645 11646 return &event->attr; 11647 } 11648 11649 /* 11650 * Inherit an event from parent task to child task. 11651 * 11652 * Returns: 11653 * - valid pointer on success 11654 * - NULL for orphaned events 11655 * - IS_ERR() on error 11656 */ 11657 static struct perf_event * 11658 inherit_event(struct perf_event *parent_event, 11659 struct task_struct *parent, 11660 struct perf_event_context *parent_ctx, 11661 struct task_struct *child, 11662 struct perf_event *group_leader, 11663 struct perf_event_context *child_ctx) 11664 { 11665 enum perf_event_state parent_state = parent_event->state; 11666 struct perf_event *child_event; 11667 unsigned long flags; 11668 11669 /* 11670 * Instead of creating recursive hierarchies of events, 11671 * we link inherited events back to the original parent, 11672 * which has a filp for sure, which we use as the reference 11673 * count: 11674 */ 11675 if (parent_event->parent) 11676 parent_event = parent_event->parent; 11677 11678 child_event = perf_event_alloc(&parent_event->attr, 11679 parent_event->cpu, 11680 child, 11681 group_leader, parent_event, 11682 NULL, NULL, -1); 11683 if (IS_ERR(child_event)) 11684 return child_event; 11685 11686 11687 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 11688 !child_ctx->task_ctx_data) { 11689 struct pmu *pmu = child_event->pmu; 11690 11691 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 11692 GFP_KERNEL); 11693 if (!child_ctx->task_ctx_data) { 11694 free_event(child_event); 11695 return NULL; 11696 } 11697 } 11698 11699 /* 11700 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 11701 * must be under the same lock in order to serialize against 11702 * perf_event_release_kernel(), such that either we must observe 11703 * is_orphaned_event() or they will observe us on the child_list. 11704 */ 11705 mutex_lock(&parent_event->child_mutex); 11706 if (is_orphaned_event(parent_event) || 11707 !atomic_long_inc_not_zero(&parent_event->refcount)) { 11708 mutex_unlock(&parent_event->child_mutex); 11709 /* task_ctx_data is freed with child_ctx */ 11710 free_event(child_event); 11711 return NULL; 11712 } 11713 11714 get_ctx(child_ctx); 11715 11716 /* 11717 * Make the child state follow the state of the parent event, 11718 * not its attr.disabled bit. We hold the parent's mutex, 11719 * so we won't race with perf_event_{en, dis}able_family. 11720 */ 11721 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 11722 child_event->state = PERF_EVENT_STATE_INACTIVE; 11723 else 11724 child_event->state = PERF_EVENT_STATE_OFF; 11725 11726 if (parent_event->attr.freq) { 11727 u64 sample_period = parent_event->hw.sample_period; 11728 struct hw_perf_event *hwc = &child_event->hw; 11729 11730 hwc->sample_period = sample_period; 11731 hwc->last_period = sample_period; 11732 11733 local64_set(&hwc->period_left, sample_period); 11734 } 11735 11736 child_event->ctx = child_ctx; 11737 child_event->overflow_handler = parent_event->overflow_handler; 11738 child_event->overflow_handler_context 11739 = parent_event->overflow_handler_context; 11740 11741 /* 11742 * Precalculate sample_data sizes 11743 */ 11744 perf_event__header_size(child_event); 11745 perf_event__id_header_size(child_event); 11746 11747 /* 11748 * Link it up in the child's context: 11749 */ 11750 raw_spin_lock_irqsave(&child_ctx->lock, flags); 11751 add_event_to_ctx(child_event, child_ctx); 11752 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 11753 11754 /* 11755 * Link this into the parent event's child list 11756 */ 11757 list_add_tail(&child_event->child_list, &parent_event->child_list); 11758 mutex_unlock(&parent_event->child_mutex); 11759 11760 return child_event; 11761 } 11762 11763 /* 11764 * Inherits an event group. 11765 * 11766 * This will quietly suppress orphaned events; !inherit_event() is not an error. 11767 * This matches with perf_event_release_kernel() removing all child events. 11768 * 11769 * Returns: 11770 * - 0 on success 11771 * - <0 on error 11772 */ 11773 static int inherit_group(struct perf_event *parent_event, 11774 struct task_struct *parent, 11775 struct perf_event_context *parent_ctx, 11776 struct task_struct *child, 11777 struct perf_event_context *child_ctx) 11778 { 11779 struct perf_event *leader; 11780 struct perf_event *sub; 11781 struct perf_event *child_ctr; 11782 11783 leader = inherit_event(parent_event, parent, parent_ctx, 11784 child, NULL, child_ctx); 11785 if (IS_ERR(leader)) 11786 return PTR_ERR(leader); 11787 /* 11788 * @leader can be NULL here because of is_orphaned_event(). In this 11789 * case inherit_event() will create individual events, similar to what 11790 * perf_group_detach() would do anyway. 11791 */ 11792 for_each_sibling_event(sub, parent_event) { 11793 child_ctr = inherit_event(sub, parent, parent_ctx, 11794 child, leader, child_ctx); 11795 if (IS_ERR(child_ctr)) 11796 return PTR_ERR(child_ctr); 11797 } 11798 return 0; 11799 } 11800 11801 /* 11802 * Creates the child task context and tries to inherit the event-group. 11803 * 11804 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 11805 * inherited_all set when we 'fail' to inherit an orphaned event; this is 11806 * consistent with perf_event_release_kernel() removing all child events. 11807 * 11808 * Returns: 11809 * - 0 on success 11810 * - <0 on error 11811 */ 11812 static int 11813 inherit_task_group(struct perf_event *event, struct task_struct *parent, 11814 struct perf_event_context *parent_ctx, 11815 struct task_struct *child, int ctxn, 11816 int *inherited_all) 11817 { 11818 int ret; 11819 struct perf_event_context *child_ctx; 11820 11821 if (!event->attr.inherit) { 11822 *inherited_all = 0; 11823 return 0; 11824 } 11825 11826 child_ctx = child->perf_event_ctxp[ctxn]; 11827 if (!child_ctx) { 11828 /* 11829 * This is executed from the parent task context, so 11830 * inherit events that have been marked for cloning. 11831 * First allocate and initialize a context for the 11832 * child. 11833 */ 11834 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 11835 if (!child_ctx) 11836 return -ENOMEM; 11837 11838 child->perf_event_ctxp[ctxn] = child_ctx; 11839 } 11840 11841 ret = inherit_group(event, parent, parent_ctx, 11842 child, child_ctx); 11843 11844 if (ret) 11845 *inherited_all = 0; 11846 11847 return ret; 11848 } 11849 11850 /* 11851 * Initialize the perf_event context in task_struct 11852 */ 11853 static int perf_event_init_context(struct task_struct *child, int ctxn) 11854 { 11855 struct perf_event_context *child_ctx, *parent_ctx; 11856 struct perf_event_context *cloned_ctx; 11857 struct perf_event *event; 11858 struct task_struct *parent = current; 11859 int inherited_all = 1; 11860 unsigned long flags; 11861 int ret = 0; 11862 11863 if (likely(!parent->perf_event_ctxp[ctxn])) 11864 return 0; 11865 11866 /* 11867 * If the parent's context is a clone, pin it so it won't get 11868 * swapped under us. 11869 */ 11870 parent_ctx = perf_pin_task_context(parent, ctxn); 11871 if (!parent_ctx) 11872 return 0; 11873 11874 /* 11875 * No need to check if parent_ctx != NULL here; since we saw 11876 * it non-NULL earlier, the only reason for it to become NULL 11877 * is if we exit, and since we're currently in the middle of 11878 * a fork we can't be exiting at the same time. 11879 */ 11880 11881 /* 11882 * Lock the parent list. No need to lock the child - not PID 11883 * hashed yet and not running, so nobody can access it. 11884 */ 11885 mutex_lock(&parent_ctx->mutex); 11886 11887 /* 11888 * We dont have to disable NMIs - we are only looking at 11889 * the list, not manipulating it: 11890 */ 11891 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 11892 ret = inherit_task_group(event, parent, parent_ctx, 11893 child, ctxn, &inherited_all); 11894 if (ret) 11895 goto out_unlock; 11896 } 11897 11898 /* 11899 * We can't hold ctx->lock when iterating the ->flexible_group list due 11900 * to allocations, but we need to prevent rotation because 11901 * rotate_ctx() will change the list from interrupt context. 11902 */ 11903 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11904 parent_ctx->rotate_disable = 1; 11905 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11906 11907 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 11908 ret = inherit_task_group(event, parent, parent_ctx, 11909 child, ctxn, &inherited_all); 11910 if (ret) 11911 goto out_unlock; 11912 } 11913 11914 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11915 parent_ctx->rotate_disable = 0; 11916 11917 child_ctx = child->perf_event_ctxp[ctxn]; 11918 11919 if (child_ctx && inherited_all) { 11920 /* 11921 * Mark the child context as a clone of the parent 11922 * context, or of whatever the parent is a clone of. 11923 * 11924 * Note that if the parent is a clone, the holding of 11925 * parent_ctx->lock avoids it from being uncloned. 11926 */ 11927 cloned_ctx = parent_ctx->parent_ctx; 11928 if (cloned_ctx) { 11929 child_ctx->parent_ctx = cloned_ctx; 11930 child_ctx->parent_gen = parent_ctx->parent_gen; 11931 } else { 11932 child_ctx->parent_ctx = parent_ctx; 11933 child_ctx->parent_gen = parent_ctx->generation; 11934 } 11935 get_ctx(child_ctx->parent_ctx); 11936 } 11937 11938 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11939 out_unlock: 11940 mutex_unlock(&parent_ctx->mutex); 11941 11942 perf_unpin_context(parent_ctx); 11943 put_ctx(parent_ctx); 11944 11945 return ret; 11946 } 11947 11948 /* 11949 * Initialize the perf_event context in task_struct 11950 */ 11951 int perf_event_init_task(struct task_struct *child) 11952 { 11953 int ctxn, ret; 11954 11955 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 11956 mutex_init(&child->perf_event_mutex); 11957 INIT_LIST_HEAD(&child->perf_event_list); 11958 11959 for_each_task_context_nr(ctxn) { 11960 ret = perf_event_init_context(child, ctxn); 11961 if (ret) { 11962 perf_event_free_task(child); 11963 return ret; 11964 } 11965 } 11966 11967 return 0; 11968 } 11969 11970 static void __init perf_event_init_all_cpus(void) 11971 { 11972 struct swevent_htable *swhash; 11973 int cpu; 11974 11975 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 11976 11977 for_each_possible_cpu(cpu) { 11978 swhash = &per_cpu(swevent_htable, cpu); 11979 mutex_init(&swhash->hlist_mutex); 11980 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 11981 11982 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 11983 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 11984 11985 #ifdef CONFIG_CGROUP_PERF 11986 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 11987 #endif 11988 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 11989 } 11990 } 11991 11992 static void perf_swevent_init_cpu(unsigned int cpu) 11993 { 11994 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11995 11996 mutex_lock(&swhash->hlist_mutex); 11997 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 11998 struct swevent_hlist *hlist; 11999 12000 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 12001 WARN_ON(!hlist); 12002 rcu_assign_pointer(swhash->swevent_hlist, hlist); 12003 } 12004 mutex_unlock(&swhash->hlist_mutex); 12005 } 12006 12007 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 12008 static void __perf_event_exit_context(void *__info) 12009 { 12010 struct perf_event_context *ctx = __info; 12011 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 12012 struct perf_event *event; 12013 12014 raw_spin_lock(&ctx->lock); 12015 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 12016 list_for_each_entry(event, &ctx->event_list, event_entry) 12017 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 12018 raw_spin_unlock(&ctx->lock); 12019 } 12020 12021 static void perf_event_exit_cpu_context(int cpu) 12022 { 12023 struct perf_cpu_context *cpuctx; 12024 struct perf_event_context *ctx; 12025 struct pmu *pmu; 12026 12027 mutex_lock(&pmus_lock); 12028 list_for_each_entry(pmu, &pmus, entry) { 12029 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12030 ctx = &cpuctx->ctx; 12031 12032 mutex_lock(&ctx->mutex); 12033 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 12034 cpuctx->online = 0; 12035 mutex_unlock(&ctx->mutex); 12036 } 12037 cpumask_clear_cpu(cpu, perf_online_mask); 12038 mutex_unlock(&pmus_lock); 12039 } 12040 #else 12041 12042 static void perf_event_exit_cpu_context(int cpu) { } 12043 12044 #endif 12045 12046 int perf_event_init_cpu(unsigned int cpu) 12047 { 12048 struct perf_cpu_context *cpuctx; 12049 struct perf_event_context *ctx; 12050 struct pmu *pmu; 12051 12052 perf_swevent_init_cpu(cpu); 12053 12054 mutex_lock(&pmus_lock); 12055 cpumask_set_cpu(cpu, perf_online_mask); 12056 list_for_each_entry(pmu, &pmus, entry) { 12057 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12058 ctx = &cpuctx->ctx; 12059 12060 mutex_lock(&ctx->mutex); 12061 cpuctx->online = 1; 12062 mutex_unlock(&ctx->mutex); 12063 } 12064 mutex_unlock(&pmus_lock); 12065 12066 return 0; 12067 } 12068 12069 int perf_event_exit_cpu(unsigned int cpu) 12070 { 12071 perf_event_exit_cpu_context(cpu); 12072 return 0; 12073 } 12074 12075 static int 12076 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 12077 { 12078 int cpu; 12079 12080 for_each_online_cpu(cpu) 12081 perf_event_exit_cpu(cpu); 12082 12083 return NOTIFY_OK; 12084 } 12085 12086 /* 12087 * Run the perf reboot notifier at the very last possible moment so that 12088 * the generic watchdog code runs as long as possible. 12089 */ 12090 static struct notifier_block perf_reboot_notifier = { 12091 .notifier_call = perf_reboot, 12092 .priority = INT_MIN, 12093 }; 12094 12095 void __init perf_event_init(void) 12096 { 12097 int ret; 12098 12099 idr_init(&pmu_idr); 12100 12101 perf_event_init_all_cpus(); 12102 init_srcu_struct(&pmus_srcu); 12103 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 12104 perf_pmu_register(&perf_cpu_clock, NULL, -1); 12105 perf_pmu_register(&perf_task_clock, NULL, -1); 12106 perf_tp_register(); 12107 perf_event_init_cpu(smp_processor_id()); 12108 register_reboot_notifier(&perf_reboot_notifier); 12109 12110 ret = init_hw_breakpoint(); 12111 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 12112 12113 /* 12114 * Build time assertion that we keep the data_head at the intended 12115 * location. IOW, validation we got the __reserved[] size right. 12116 */ 12117 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 12118 != 1024); 12119 } 12120 12121 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 12122 char *page) 12123 { 12124 struct perf_pmu_events_attr *pmu_attr = 12125 container_of(attr, struct perf_pmu_events_attr, attr); 12126 12127 if (pmu_attr->event_str) 12128 return sprintf(page, "%s\n", pmu_attr->event_str); 12129 12130 return 0; 12131 } 12132 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 12133 12134 static int __init perf_event_sysfs_init(void) 12135 { 12136 struct pmu *pmu; 12137 int ret; 12138 12139 mutex_lock(&pmus_lock); 12140 12141 ret = bus_register(&pmu_bus); 12142 if (ret) 12143 goto unlock; 12144 12145 list_for_each_entry(pmu, &pmus, entry) { 12146 if (!pmu->name || pmu->type < 0) 12147 continue; 12148 12149 ret = pmu_dev_alloc(pmu); 12150 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 12151 } 12152 pmu_bus_running = 1; 12153 ret = 0; 12154 12155 unlock: 12156 mutex_unlock(&pmus_lock); 12157 12158 return ret; 12159 } 12160 device_initcall(perf_event_sysfs_init); 12161 12162 #ifdef CONFIG_CGROUP_PERF 12163 static struct cgroup_subsys_state * 12164 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 12165 { 12166 struct perf_cgroup *jc; 12167 12168 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 12169 if (!jc) 12170 return ERR_PTR(-ENOMEM); 12171 12172 jc->info = alloc_percpu(struct perf_cgroup_info); 12173 if (!jc->info) { 12174 kfree(jc); 12175 return ERR_PTR(-ENOMEM); 12176 } 12177 12178 return &jc->css; 12179 } 12180 12181 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 12182 { 12183 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 12184 12185 free_percpu(jc->info); 12186 kfree(jc); 12187 } 12188 12189 static int __perf_cgroup_move(void *info) 12190 { 12191 struct task_struct *task = info; 12192 rcu_read_lock(); 12193 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 12194 rcu_read_unlock(); 12195 return 0; 12196 } 12197 12198 static void perf_cgroup_attach(struct cgroup_taskset *tset) 12199 { 12200 struct task_struct *task; 12201 struct cgroup_subsys_state *css; 12202 12203 cgroup_taskset_for_each(task, css, tset) 12204 task_function_call(task, __perf_cgroup_move, task); 12205 } 12206 12207 struct cgroup_subsys perf_event_cgrp_subsys = { 12208 .css_alloc = perf_cgroup_css_alloc, 12209 .css_free = perf_cgroup_css_free, 12210 .attach = perf_cgroup_attach, 12211 /* 12212 * Implicitly enable on dfl hierarchy so that perf events can 12213 * always be filtered by cgroup2 path as long as perf_event 12214 * controller is not mounted on a legacy hierarchy. 12215 */ 12216 .implicit_on_dfl = true, 12217 .threaded = true, 12218 }; 12219 #endif /* CONFIG_CGROUP_PERF */ 12220