1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/perf_event.h> 38 #include <linux/ftrace_event.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/cgroup.h> 42 43 #include "internal.h" 44 45 #include <asm/irq_regs.h> 46 47 struct remote_function_call { 48 struct task_struct *p; 49 int (*func)(void *info); 50 void *info; 51 int ret; 52 }; 53 54 static void remote_function(void *data) 55 { 56 struct remote_function_call *tfc = data; 57 struct task_struct *p = tfc->p; 58 59 if (p) { 60 tfc->ret = -EAGAIN; 61 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 62 return; 63 } 64 65 tfc->ret = tfc->func(tfc->info); 66 } 67 68 /** 69 * task_function_call - call a function on the cpu on which a task runs 70 * @p: the task to evaluate 71 * @func: the function to be called 72 * @info: the function call argument 73 * 74 * Calls the function @func when the task is currently running. This might 75 * be on the current CPU, which just calls the function directly 76 * 77 * returns: @func return value, or 78 * -ESRCH - when the process isn't running 79 * -EAGAIN - when the process moved away 80 */ 81 static int 82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 83 { 84 struct remote_function_call data = { 85 .p = p, 86 .func = func, 87 .info = info, 88 .ret = -ESRCH, /* No such (running) process */ 89 }; 90 91 if (task_curr(p)) 92 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 93 94 return data.ret; 95 } 96 97 /** 98 * cpu_function_call - call a function on the cpu 99 * @func: the function to be called 100 * @info: the function call argument 101 * 102 * Calls the function @func on the remote cpu. 103 * 104 * returns: @func return value or -ENXIO when the cpu is offline 105 */ 106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 107 { 108 struct remote_function_call data = { 109 .p = NULL, 110 .func = func, 111 .info = info, 112 .ret = -ENXIO, /* No such CPU */ 113 }; 114 115 smp_call_function_single(cpu, remote_function, &data, 1); 116 117 return data.ret; 118 } 119 120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 121 PERF_FLAG_FD_OUTPUT |\ 122 PERF_FLAG_PID_CGROUP) 123 124 /* 125 * branch priv levels that need permission checks 126 */ 127 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 128 (PERF_SAMPLE_BRANCH_KERNEL |\ 129 PERF_SAMPLE_BRANCH_HV) 130 131 enum event_type_t { 132 EVENT_FLEXIBLE = 0x1, 133 EVENT_PINNED = 0x2, 134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 135 }; 136 137 /* 138 * perf_sched_events : >0 events exist 139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 140 */ 141 struct static_key_deferred perf_sched_events __read_mostly; 142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); 144 145 static atomic_t nr_mmap_events __read_mostly; 146 static atomic_t nr_comm_events __read_mostly; 147 static atomic_t nr_task_events __read_mostly; 148 static atomic_t nr_freq_events __read_mostly; 149 150 static LIST_HEAD(pmus); 151 static DEFINE_MUTEX(pmus_lock); 152 static struct srcu_struct pmus_srcu; 153 154 /* 155 * perf event paranoia level: 156 * -1 - not paranoid at all 157 * 0 - disallow raw tracepoint access for unpriv 158 * 1 - disallow cpu events for unpriv 159 * 2 - disallow kernel profiling for unpriv 160 */ 161 int sysctl_perf_event_paranoid __read_mostly = 1; 162 163 /* Minimum for 512 kiB + 1 user control page */ 164 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 165 166 /* 167 * max perf event sample rate 168 */ 169 #define DEFAULT_MAX_SAMPLE_RATE 100000 170 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 171 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 172 173 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 174 175 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 176 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 177 178 static atomic_t perf_sample_allowed_ns __read_mostly = 179 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100); 180 181 void update_perf_cpu_limits(void) 182 { 183 u64 tmp = perf_sample_period_ns; 184 185 tmp *= sysctl_perf_cpu_time_max_percent; 186 do_div(tmp, 100); 187 atomic_set(&perf_sample_allowed_ns, tmp); 188 } 189 190 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 191 192 int perf_proc_update_handler(struct ctl_table *table, int write, 193 void __user *buffer, size_t *lenp, 194 loff_t *ppos) 195 { 196 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 197 198 if (ret || !write) 199 return ret; 200 201 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 202 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 203 update_perf_cpu_limits(); 204 205 return 0; 206 } 207 208 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 209 210 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 211 void __user *buffer, size_t *lenp, 212 loff_t *ppos) 213 { 214 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 215 216 if (ret || !write) 217 return ret; 218 219 update_perf_cpu_limits(); 220 221 return 0; 222 } 223 224 /* 225 * perf samples are done in some very critical code paths (NMIs). 226 * If they take too much CPU time, the system can lock up and not 227 * get any real work done. This will drop the sample rate when 228 * we detect that events are taking too long. 229 */ 230 #define NR_ACCUMULATED_SAMPLES 128 231 DEFINE_PER_CPU(u64, running_sample_length); 232 233 void perf_sample_event_took(u64 sample_len_ns) 234 { 235 u64 avg_local_sample_len; 236 u64 local_samples_len; 237 238 if (atomic_read(&perf_sample_allowed_ns) == 0) 239 return; 240 241 /* decay the counter by 1 average sample */ 242 local_samples_len = __get_cpu_var(running_sample_length); 243 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 244 local_samples_len += sample_len_ns; 245 __get_cpu_var(running_sample_length) = local_samples_len; 246 247 /* 248 * note: this will be biased artifically low until we have 249 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 250 * from having to maintain a count. 251 */ 252 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 253 254 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns)) 255 return; 256 257 if (max_samples_per_tick <= 1) 258 return; 259 260 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 261 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 262 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 263 264 printk_ratelimited(KERN_WARNING 265 "perf samples too long (%lld > %d), lowering " 266 "kernel.perf_event_max_sample_rate to %d\n", 267 avg_local_sample_len, 268 atomic_read(&perf_sample_allowed_ns), 269 sysctl_perf_event_sample_rate); 270 271 update_perf_cpu_limits(); 272 } 273 274 static atomic64_t perf_event_id; 275 276 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 277 enum event_type_t event_type); 278 279 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 280 enum event_type_t event_type, 281 struct task_struct *task); 282 283 static void update_context_time(struct perf_event_context *ctx); 284 static u64 perf_event_time(struct perf_event *event); 285 286 void __weak perf_event_print_debug(void) { } 287 288 extern __weak const char *perf_pmu_name(void) 289 { 290 return "pmu"; 291 } 292 293 static inline u64 perf_clock(void) 294 { 295 return local_clock(); 296 } 297 298 static inline struct perf_cpu_context * 299 __get_cpu_context(struct perf_event_context *ctx) 300 { 301 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 302 } 303 304 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 305 struct perf_event_context *ctx) 306 { 307 raw_spin_lock(&cpuctx->ctx.lock); 308 if (ctx) 309 raw_spin_lock(&ctx->lock); 310 } 311 312 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 313 struct perf_event_context *ctx) 314 { 315 if (ctx) 316 raw_spin_unlock(&ctx->lock); 317 raw_spin_unlock(&cpuctx->ctx.lock); 318 } 319 320 #ifdef CONFIG_CGROUP_PERF 321 322 /* 323 * perf_cgroup_info keeps track of time_enabled for a cgroup. 324 * This is a per-cpu dynamically allocated data structure. 325 */ 326 struct perf_cgroup_info { 327 u64 time; 328 u64 timestamp; 329 }; 330 331 struct perf_cgroup { 332 struct cgroup_subsys_state css; 333 struct perf_cgroup_info __percpu *info; 334 }; 335 336 /* 337 * Must ensure cgroup is pinned (css_get) before calling 338 * this function. In other words, we cannot call this function 339 * if there is no cgroup event for the current CPU context. 340 */ 341 static inline struct perf_cgroup * 342 perf_cgroup_from_task(struct task_struct *task) 343 { 344 return container_of(task_css(task, perf_subsys_id), 345 struct perf_cgroup, css); 346 } 347 348 static inline bool 349 perf_cgroup_match(struct perf_event *event) 350 { 351 struct perf_event_context *ctx = event->ctx; 352 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 353 354 /* @event doesn't care about cgroup */ 355 if (!event->cgrp) 356 return true; 357 358 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 359 if (!cpuctx->cgrp) 360 return false; 361 362 /* 363 * Cgroup scoping is recursive. An event enabled for a cgroup is 364 * also enabled for all its descendant cgroups. If @cpuctx's 365 * cgroup is a descendant of @event's (the test covers identity 366 * case), it's a match. 367 */ 368 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 369 event->cgrp->css.cgroup); 370 } 371 372 static inline bool perf_tryget_cgroup(struct perf_event *event) 373 { 374 return css_tryget(&event->cgrp->css); 375 } 376 377 static inline void perf_put_cgroup(struct perf_event *event) 378 { 379 css_put(&event->cgrp->css); 380 } 381 382 static inline void perf_detach_cgroup(struct perf_event *event) 383 { 384 perf_put_cgroup(event); 385 event->cgrp = NULL; 386 } 387 388 static inline int is_cgroup_event(struct perf_event *event) 389 { 390 return event->cgrp != NULL; 391 } 392 393 static inline u64 perf_cgroup_event_time(struct perf_event *event) 394 { 395 struct perf_cgroup_info *t; 396 397 t = per_cpu_ptr(event->cgrp->info, event->cpu); 398 return t->time; 399 } 400 401 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 402 { 403 struct perf_cgroup_info *info; 404 u64 now; 405 406 now = perf_clock(); 407 408 info = this_cpu_ptr(cgrp->info); 409 410 info->time += now - info->timestamp; 411 info->timestamp = now; 412 } 413 414 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 415 { 416 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 417 if (cgrp_out) 418 __update_cgrp_time(cgrp_out); 419 } 420 421 static inline void update_cgrp_time_from_event(struct perf_event *event) 422 { 423 struct perf_cgroup *cgrp; 424 425 /* 426 * ensure we access cgroup data only when needed and 427 * when we know the cgroup is pinned (css_get) 428 */ 429 if (!is_cgroup_event(event)) 430 return; 431 432 cgrp = perf_cgroup_from_task(current); 433 /* 434 * Do not update time when cgroup is not active 435 */ 436 if (cgrp == event->cgrp) 437 __update_cgrp_time(event->cgrp); 438 } 439 440 static inline void 441 perf_cgroup_set_timestamp(struct task_struct *task, 442 struct perf_event_context *ctx) 443 { 444 struct perf_cgroup *cgrp; 445 struct perf_cgroup_info *info; 446 447 /* 448 * ctx->lock held by caller 449 * ensure we do not access cgroup data 450 * unless we have the cgroup pinned (css_get) 451 */ 452 if (!task || !ctx->nr_cgroups) 453 return; 454 455 cgrp = perf_cgroup_from_task(task); 456 info = this_cpu_ptr(cgrp->info); 457 info->timestamp = ctx->timestamp; 458 } 459 460 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 461 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 462 463 /* 464 * reschedule events based on the cgroup constraint of task. 465 * 466 * mode SWOUT : schedule out everything 467 * mode SWIN : schedule in based on cgroup for next 468 */ 469 void perf_cgroup_switch(struct task_struct *task, int mode) 470 { 471 struct perf_cpu_context *cpuctx; 472 struct pmu *pmu; 473 unsigned long flags; 474 475 /* 476 * disable interrupts to avoid geting nr_cgroup 477 * changes via __perf_event_disable(). Also 478 * avoids preemption. 479 */ 480 local_irq_save(flags); 481 482 /* 483 * we reschedule only in the presence of cgroup 484 * constrained events. 485 */ 486 rcu_read_lock(); 487 488 list_for_each_entry_rcu(pmu, &pmus, entry) { 489 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 490 if (cpuctx->unique_pmu != pmu) 491 continue; /* ensure we process each cpuctx once */ 492 493 /* 494 * perf_cgroup_events says at least one 495 * context on this CPU has cgroup events. 496 * 497 * ctx->nr_cgroups reports the number of cgroup 498 * events for a context. 499 */ 500 if (cpuctx->ctx.nr_cgroups > 0) { 501 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 502 perf_pmu_disable(cpuctx->ctx.pmu); 503 504 if (mode & PERF_CGROUP_SWOUT) { 505 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 506 /* 507 * must not be done before ctxswout due 508 * to event_filter_match() in event_sched_out() 509 */ 510 cpuctx->cgrp = NULL; 511 } 512 513 if (mode & PERF_CGROUP_SWIN) { 514 WARN_ON_ONCE(cpuctx->cgrp); 515 /* 516 * set cgrp before ctxsw in to allow 517 * event_filter_match() to not have to pass 518 * task around 519 */ 520 cpuctx->cgrp = perf_cgroup_from_task(task); 521 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 522 } 523 perf_pmu_enable(cpuctx->ctx.pmu); 524 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 525 } 526 } 527 528 rcu_read_unlock(); 529 530 local_irq_restore(flags); 531 } 532 533 static inline void perf_cgroup_sched_out(struct task_struct *task, 534 struct task_struct *next) 535 { 536 struct perf_cgroup *cgrp1; 537 struct perf_cgroup *cgrp2 = NULL; 538 539 /* 540 * we come here when we know perf_cgroup_events > 0 541 */ 542 cgrp1 = perf_cgroup_from_task(task); 543 544 /* 545 * next is NULL when called from perf_event_enable_on_exec() 546 * that will systematically cause a cgroup_switch() 547 */ 548 if (next) 549 cgrp2 = perf_cgroup_from_task(next); 550 551 /* 552 * only schedule out current cgroup events if we know 553 * that we are switching to a different cgroup. Otherwise, 554 * do no touch the cgroup events. 555 */ 556 if (cgrp1 != cgrp2) 557 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 558 } 559 560 static inline void perf_cgroup_sched_in(struct task_struct *prev, 561 struct task_struct *task) 562 { 563 struct perf_cgroup *cgrp1; 564 struct perf_cgroup *cgrp2 = NULL; 565 566 /* 567 * we come here when we know perf_cgroup_events > 0 568 */ 569 cgrp1 = perf_cgroup_from_task(task); 570 571 /* prev can never be NULL */ 572 cgrp2 = perf_cgroup_from_task(prev); 573 574 /* 575 * only need to schedule in cgroup events if we are changing 576 * cgroup during ctxsw. Cgroup events were not scheduled 577 * out of ctxsw out if that was not the case. 578 */ 579 if (cgrp1 != cgrp2) 580 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 581 } 582 583 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 584 struct perf_event_attr *attr, 585 struct perf_event *group_leader) 586 { 587 struct perf_cgroup *cgrp; 588 struct cgroup_subsys_state *css; 589 struct fd f = fdget(fd); 590 int ret = 0; 591 592 if (!f.file) 593 return -EBADF; 594 595 rcu_read_lock(); 596 597 css = css_from_dir(f.file->f_dentry, &perf_subsys); 598 if (IS_ERR(css)) { 599 ret = PTR_ERR(css); 600 goto out; 601 } 602 603 cgrp = container_of(css, struct perf_cgroup, css); 604 event->cgrp = cgrp; 605 606 /* must be done before we fput() the file */ 607 if (!perf_tryget_cgroup(event)) { 608 event->cgrp = NULL; 609 ret = -ENOENT; 610 goto out; 611 } 612 613 /* 614 * all events in a group must monitor 615 * the same cgroup because a task belongs 616 * to only one perf cgroup at a time 617 */ 618 if (group_leader && group_leader->cgrp != cgrp) { 619 perf_detach_cgroup(event); 620 ret = -EINVAL; 621 } 622 out: 623 rcu_read_unlock(); 624 fdput(f); 625 return ret; 626 } 627 628 static inline void 629 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 630 { 631 struct perf_cgroup_info *t; 632 t = per_cpu_ptr(event->cgrp->info, event->cpu); 633 event->shadow_ctx_time = now - t->timestamp; 634 } 635 636 static inline void 637 perf_cgroup_defer_enabled(struct perf_event *event) 638 { 639 /* 640 * when the current task's perf cgroup does not match 641 * the event's, we need to remember to call the 642 * perf_mark_enable() function the first time a task with 643 * a matching perf cgroup is scheduled in. 644 */ 645 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 646 event->cgrp_defer_enabled = 1; 647 } 648 649 static inline void 650 perf_cgroup_mark_enabled(struct perf_event *event, 651 struct perf_event_context *ctx) 652 { 653 struct perf_event *sub; 654 u64 tstamp = perf_event_time(event); 655 656 if (!event->cgrp_defer_enabled) 657 return; 658 659 event->cgrp_defer_enabled = 0; 660 661 event->tstamp_enabled = tstamp - event->total_time_enabled; 662 list_for_each_entry(sub, &event->sibling_list, group_entry) { 663 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 664 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 665 sub->cgrp_defer_enabled = 0; 666 } 667 } 668 } 669 #else /* !CONFIG_CGROUP_PERF */ 670 671 static inline bool 672 perf_cgroup_match(struct perf_event *event) 673 { 674 return true; 675 } 676 677 static inline void perf_detach_cgroup(struct perf_event *event) 678 {} 679 680 static inline int is_cgroup_event(struct perf_event *event) 681 { 682 return 0; 683 } 684 685 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 686 { 687 return 0; 688 } 689 690 static inline void update_cgrp_time_from_event(struct perf_event *event) 691 { 692 } 693 694 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 695 { 696 } 697 698 static inline void perf_cgroup_sched_out(struct task_struct *task, 699 struct task_struct *next) 700 { 701 } 702 703 static inline void perf_cgroup_sched_in(struct task_struct *prev, 704 struct task_struct *task) 705 { 706 } 707 708 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 709 struct perf_event_attr *attr, 710 struct perf_event *group_leader) 711 { 712 return -EINVAL; 713 } 714 715 static inline void 716 perf_cgroup_set_timestamp(struct task_struct *task, 717 struct perf_event_context *ctx) 718 { 719 } 720 721 void 722 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 723 { 724 } 725 726 static inline void 727 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 728 { 729 } 730 731 static inline u64 perf_cgroup_event_time(struct perf_event *event) 732 { 733 return 0; 734 } 735 736 static inline void 737 perf_cgroup_defer_enabled(struct perf_event *event) 738 { 739 } 740 741 static inline void 742 perf_cgroup_mark_enabled(struct perf_event *event, 743 struct perf_event_context *ctx) 744 { 745 } 746 #endif 747 748 /* 749 * set default to be dependent on timer tick just 750 * like original code 751 */ 752 #define PERF_CPU_HRTIMER (1000 / HZ) 753 /* 754 * function must be called with interrupts disbled 755 */ 756 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr) 757 { 758 struct perf_cpu_context *cpuctx; 759 enum hrtimer_restart ret = HRTIMER_NORESTART; 760 int rotations = 0; 761 762 WARN_ON(!irqs_disabled()); 763 764 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 765 766 rotations = perf_rotate_context(cpuctx); 767 768 /* 769 * arm timer if needed 770 */ 771 if (rotations) { 772 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 773 ret = HRTIMER_RESTART; 774 } 775 776 return ret; 777 } 778 779 /* CPU is going down */ 780 void perf_cpu_hrtimer_cancel(int cpu) 781 { 782 struct perf_cpu_context *cpuctx; 783 struct pmu *pmu; 784 unsigned long flags; 785 786 if (WARN_ON(cpu != smp_processor_id())) 787 return; 788 789 local_irq_save(flags); 790 791 rcu_read_lock(); 792 793 list_for_each_entry_rcu(pmu, &pmus, entry) { 794 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 795 796 if (pmu->task_ctx_nr == perf_sw_context) 797 continue; 798 799 hrtimer_cancel(&cpuctx->hrtimer); 800 } 801 802 rcu_read_unlock(); 803 804 local_irq_restore(flags); 805 } 806 807 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 808 { 809 struct hrtimer *hr = &cpuctx->hrtimer; 810 struct pmu *pmu = cpuctx->ctx.pmu; 811 int timer; 812 813 /* no multiplexing needed for SW PMU */ 814 if (pmu->task_ctx_nr == perf_sw_context) 815 return; 816 817 /* 818 * check default is sane, if not set then force to 819 * default interval (1/tick) 820 */ 821 timer = pmu->hrtimer_interval_ms; 822 if (timer < 1) 823 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 824 825 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 826 827 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 828 hr->function = perf_cpu_hrtimer_handler; 829 } 830 831 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx) 832 { 833 struct hrtimer *hr = &cpuctx->hrtimer; 834 struct pmu *pmu = cpuctx->ctx.pmu; 835 836 /* not for SW PMU */ 837 if (pmu->task_ctx_nr == perf_sw_context) 838 return; 839 840 if (hrtimer_active(hr)) 841 return; 842 843 if (!hrtimer_callback_running(hr)) 844 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval, 845 0, HRTIMER_MODE_REL_PINNED, 0); 846 } 847 848 void perf_pmu_disable(struct pmu *pmu) 849 { 850 int *count = this_cpu_ptr(pmu->pmu_disable_count); 851 if (!(*count)++) 852 pmu->pmu_disable(pmu); 853 } 854 855 void perf_pmu_enable(struct pmu *pmu) 856 { 857 int *count = this_cpu_ptr(pmu->pmu_disable_count); 858 if (!--(*count)) 859 pmu->pmu_enable(pmu); 860 } 861 862 static DEFINE_PER_CPU(struct list_head, rotation_list); 863 864 /* 865 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 866 * because they're strictly cpu affine and rotate_start is called with IRQs 867 * disabled, while rotate_context is called from IRQ context. 868 */ 869 static void perf_pmu_rotate_start(struct pmu *pmu) 870 { 871 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 872 struct list_head *head = &__get_cpu_var(rotation_list); 873 874 WARN_ON(!irqs_disabled()); 875 876 if (list_empty(&cpuctx->rotation_list)) 877 list_add(&cpuctx->rotation_list, head); 878 } 879 880 static void get_ctx(struct perf_event_context *ctx) 881 { 882 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 883 } 884 885 static void put_ctx(struct perf_event_context *ctx) 886 { 887 if (atomic_dec_and_test(&ctx->refcount)) { 888 if (ctx->parent_ctx) 889 put_ctx(ctx->parent_ctx); 890 if (ctx->task) 891 put_task_struct(ctx->task); 892 kfree_rcu(ctx, rcu_head); 893 } 894 } 895 896 static void unclone_ctx(struct perf_event_context *ctx) 897 { 898 if (ctx->parent_ctx) { 899 put_ctx(ctx->parent_ctx); 900 ctx->parent_ctx = NULL; 901 } 902 } 903 904 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 905 { 906 /* 907 * only top level events have the pid namespace they were created in 908 */ 909 if (event->parent) 910 event = event->parent; 911 912 return task_tgid_nr_ns(p, event->ns); 913 } 914 915 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 916 { 917 /* 918 * only top level events have the pid namespace they were created in 919 */ 920 if (event->parent) 921 event = event->parent; 922 923 return task_pid_nr_ns(p, event->ns); 924 } 925 926 /* 927 * If we inherit events we want to return the parent event id 928 * to userspace. 929 */ 930 static u64 primary_event_id(struct perf_event *event) 931 { 932 u64 id = event->id; 933 934 if (event->parent) 935 id = event->parent->id; 936 937 return id; 938 } 939 940 /* 941 * Get the perf_event_context for a task and lock it. 942 * This has to cope with with the fact that until it is locked, 943 * the context could get moved to another task. 944 */ 945 static struct perf_event_context * 946 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 947 { 948 struct perf_event_context *ctx; 949 950 retry: 951 /* 952 * One of the few rules of preemptible RCU is that one cannot do 953 * rcu_read_unlock() while holding a scheduler (or nested) lock when 954 * part of the read side critical section was preemptible -- see 955 * rcu_read_unlock_special(). 956 * 957 * Since ctx->lock nests under rq->lock we must ensure the entire read 958 * side critical section is non-preemptible. 959 */ 960 preempt_disable(); 961 rcu_read_lock(); 962 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 963 if (ctx) { 964 /* 965 * If this context is a clone of another, it might 966 * get swapped for another underneath us by 967 * perf_event_task_sched_out, though the 968 * rcu_read_lock() protects us from any context 969 * getting freed. Lock the context and check if it 970 * got swapped before we could get the lock, and retry 971 * if so. If we locked the right context, then it 972 * can't get swapped on us any more. 973 */ 974 raw_spin_lock_irqsave(&ctx->lock, *flags); 975 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 976 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 977 rcu_read_unlock(); 978 preempt_enable(); 979 goto retry; 980 } 981 982 if (!atomic_inc_not_zero(&ctx->refcount)) { 983 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 984 ctx = NULL; 985 } 986 } 987 rcu_read_unlock(); 988 preempt_enable(); 989 return ctx; 990 } 991 992 /* 993 * Get the context for a task and increment its pin_count so it 994 * can't get swapped to another task. This also increments its 995 * reference count so that the context can't get freed. 996 */ 997 static struct perf_event_context * 998 perf_pin_task_context(struct task_struct *task, int ctxn) 999 { 1000 struct perf_event_context *ctx; 1001 unsigned long flags; 1002 1003 ctx = perf_lock_task_context(task, ctxn, &flags); 1004 if (ctx) { 1005 ++ctx->pin_count; 1006 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1007 } 1008 return ctx; 1009 } 1010 1011 static void perf_unpin_context(struct perf_event_context *ctx) 1012 { 1013 unsigned long flags; 1014 1015 raw_spin_lock_irqsave(&ctx->lock, flags); 1016 --ctx->pin_count; 1017 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1018 } 1019 1020 /* 1021 * Update the record of the current time in a context. 1022 */ 1023 static void update_context_time(struct perf_event_context *ctx) 1024 { 1025 u64 now = perf_clock(); 1026 1027 ctx->time += now - ctx->timestamp; 1028 ctx->timestamp = now; 1029 } 1030 1031 static u64 perf_event_time(struct perf_event *event) 1032 { 1033 struct perf_event_context *ctx = event->ctx; 1034 1035 if (is_cgroup_event(event)) 1036 return perf_cgroup_event_time(event); 1037 1038 return ctx ? ctx->time : 0; 1039 } 1040 1041 /* 1042 * Update the total_time_enabled and total_time_running fields for a event. 1043 * The caller of this function needs to hold the ctx->lock. 1044 */ 1045 static void update_event_times(struct perf_event *event) 1046 { 1047 struct perf_event_context *ctx = event->ctx; 1048 u64 run_end; 1049 1050 if (event->state < PERF_EVENT_STATE_INACTIVE || 1051 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1052 return; 1053 /* 1054 * in cgroup mode, time_enabled represents 1055 * the time the event was enabled AND active 1056 * tasks were in the monitored cgroup. This is 1057 * independent of the activity of the context as 1058 * there may be a mix of cgroup and non-cgroup events. 1059 * 1060 * That is why we treat cgroup events differently 1061 * here. 1062 */ 1063 if (is_cgroup_event(event)) 1064 run_end = perf_cgroup_event_time(event); 1065 else if (ctx->is_active) 1066 run_end = ctx->time; 1067 else 1068 run_end = event->tstamp_stopped; 1069 1070 event->total_time_enabled = run_end - event->tstamp_enabled; 1071 1072 if (event->state == PERF_EVENT_STATE_INACTIVE) 1073 run_end = event->tstamp_stopped; 1074 else 1075 run_end = perf_event_time(event); 1076 1077 event->total_time_running = run_end - event->tstamp_running; 1078 1079 } 1080 1081 /* 1082 * Update total_time_enabled and total_time_running for all events in a group. 1083 */ 1084 static void update_group_times(struct perf_event *leader) 1085 { 1086 struct perf_event *event; 1087 1088 update_event_times(leader); 1089 list_for_each_entry(event, &leader->sibling_list, group_entry) 1090 update_event_times(event); 1091 } 1092 1093 static struct list_head * 1094 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1095 { 1096 if (event->attr.pinned) 1097 return &ctx->pinned_groups; 1098 else 1099 return &ctx->flexible_groups; 1100 } 1101 1102 /* 1103 * Add a event from the lists for its context. 1104 * Must be called with ctx->mutex and ctx->lock held. 1105 */ 1106 static void 1107 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1108 { 1109 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1110 event->attach_state |= PERF_ATTACH_CONTEXT; 1111 1112 /* 1113 * If we're a stand alone event or group leader, we go to the context 1114 * list, group events are kept attached to the group so that 1115 * perf_group_detach can, at all times, locate all siblings. 1116 */ 1117 if (event->group_leader == event) { 1118 struct list_head *list; 1119 1120 if (is_software_event(event)) 1121 event->group_flags |= PERF_GROUP_SOFTWARE; 1122 1123 list = ctx_group_list(event, ctx); 1124 list_add_tail(&event->group_entry, list); 1125 } 1126 1127 if (is_cgroup_event(event)) 1128 ctx->nr_cgroups++; 1129 1130 if (has_branch_stack(event)) 1131 ctx->nr_branch_stack++; 1132 1133 list_add_rcu(&event->event_entry, &ctx->event_list); 1134 if (!ctx->nr_events) 1135 perf_pmu_rotate_start(ctx->pmu); 1136 ctx->nr_events++; 1137 if (event->attr.inherit_stat) 1138 ctx->nr_stat++; 1139 } 1140 1141 /* 1142 * Initialize event state based on the perf_event_attr::disabled. 1143 */ 1144 static inline void perf_event__state_init(struct perf_event *event) 1145 { 1146 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1147 PERF_EVENT_STATE_INACTIVE; 1148 } 1149 1150 /* 1151 * Called at perf_event creation and when events are attached/detached from a 1152 * group. 1153 */ 1154 static void perf_event__read_size(struct perf_event *event) 1155 { 1156 int entry = sizeof(u64); /* value */ 1157 int size = 0; 1158 int nr = 1; 1159 1160 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1161 size += sizeof(u64); 1162 1163 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1164 size += sizeof(u64); 1165 1166 if (event->attr.read_format & PERF_FORMAT_ID) 1167 entry += sizeof(u64); 1168 1169 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1170 nr += event->group_leader->nr_siblings; 1171 size += sizeof(u64); 1172 } 1173 1174 size += entry * nr; 1175 event->read_size = size; 1176 } 1177 1178 static void perf_event__header_size(struct perf_event *event) 1179 { 1180 struct perf_sample_data *data; 1181 u64 sample_type = event->attr.sample_type; 1182 u16 size = 0; 1183 1184 perf_event__read_size(event); 1185 1186 if (sample_type & PERF_SAMPLE_IP) 1187 size += sizeof(data->ip); 1188 1189 if (sample_type & PERF_SAMPLE_ADDR) 1190 size += sizeof(data->addr); 1191 1192 if (sample_type & PERF_SAMPLE_PERIOD) 1193 size += sizeof(data->period); 1194 1195 if (sample_type & PERF_SAMPLE_WEIGHT) 1196 size += sizeof(data->weight); 1197 1198 if (sample_type & PERF_SAMPLE_READ) 1199 size += event->read_size; 1200 1201 if (sample_type & PERF_SAMPLE_DATA_SRC) 1202 size += sizeof(data->data_src.val); 1203 1204 event->header_size = size; 1205 } 1206 1207 static void perf_event__id_header_size(struct perf_event *event) 1208 { 1209 struct perf_sample_data *data; 1210 u64 sample_type = event->attr.sample_type; 1211 u16 size = 0; 1212 1213 if (sample_type & PERF_SAMPLE_TID) 1214 size += sizeof(data->tid_entry); 1215 1216 if (sample_type & PERF_SAMPLE_TIME) 1217 size += sizeof(data->time); 1218 1219 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1220 size += sizeof(data->id); 1221 1222 if (sample_type & PERF_SAMPLE_ID) 1223 size += sizeof(data->id); 1224 1225 if (sample_type & PERF_SAMPLE_STREAM_ID) 1226 size += sizeof(data->stream_id); 1227 1228 if (sample_type & PERF_SAMPLE_CPU) 1229 size += sizeof(data->cpu_entry); 1230 1231 event->id_header_size = size; 1232 } 1233 1234 static void perf_group_attach(struct perf_event *event) 1235 { 1236 struct perf_event *group_leader = event->group_leader, *pos; 1237 1238 /* 1239 * We can have double attach due to group movement in perf_event_open. 1240 */ 1241 if (event->attach_state & PERF_ATTACH_GROUP) 1242 return; 1243 1244 event->attach_state |= PERF_ATTACH_GROUP; 1245 1246 if (group_leader == event) 1247 return; 1248 1249 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1250 !is_software_event(event)) 1251 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1252 1253 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1254 group_leader->nr_siblings++; 1255 1256 perf_event__header_size(group_leader); 1257 1258 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1259 perf_event__header_size(pos); 1260 } 1261 1262 /* 1263 * Remove a event from the lists for its context. 1264 * Must be called with ctx->mutex and ctx->lock held. 1265 */ 1266 static void 1267 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1268 { 1269 struct perf_cpu_context *cpuctx; 1270 /* 1271 * We can have double detach due to exit/hot-unplug + close. 1272 */ 1273 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1274 return; 1275 1276 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1277 1278 if (is_cgroup_event(event)) { 1279 ctx->nr_cgroups--; 1280 cpuctx = __get_cpu_context(ctx); 1281 /* 1282 * if there are no more cgroup events 1283 * then cler cgrp to avoid stale pointer 1284 * in update_cgrp_time_from_cpuctx() 1285 */ 1286 if (!ctx->nr_cgroups) 1287 cpuctx->cgrp = NULL; 1288 } 1289 1290 if (has_branch_stack(event)) 1291 ctx->nr_branch_stack--; 1292 1293 ctx->nr_events--; 1294 if (event->attr.inherit_stat) 1295 ctx->nr_stat--; 1296 1297 list_del_rcu(&event->event_entry); 1298 1299 if (event->group_leader == event) 1300 list_del_init(&event->group_entry); 1301 1302 update_group_times(event); 1303 1304 /* 1305 * If event was in error state, then keep it 1306 * that way, otherwise bogus counts will be 1307 * returned on read(). The only way to get out 1308 * of error state is by explicit re-enabling 1309 * of the event 1310 */ 1311 if (event->state > PERF_EVENT_STATE_OFF) 1312 event->state = PERF_EVENT_STATE_OFF; 1313 } 1314 1315 static void perf_group_detach(struct perf_event *event) 1316 { 1317 struct perf_event *sibling, *tmp; 1318 struct list_head *list = NULL; 1319 1320 /* 1321 * We can have double detach due to exit/hot-unplug + close. 1322 */ 1323 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1324 return; 1325 1326 event->attach_state &= ~PERF_ATTACH_GROUP; 1327 1328 /* 1329 * If this is a sibling, remove it from its group. 1330 */ 1331 if (event->group_leader != event) { 1332 list_del_init(&event->group_entry); 1333 event->group_leader->nr_siblings--; 1334 goto out; 1335 } 1336 1337 if (!list_empty(&event->group_entry)) 1338 list = &event->group_entry; 1339 1340 /* 1341 * If this was a group event with sibling events then 1342 * upgrade the siblings to singleton events by adding them 1343 * to whatever list we are on. 1344 */ 1345 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1346 if (list) 1347 list_move_tail(&sibling->group_entry, list); 1348 sibling->group_leader = sibling; 1349 1350 /* Inherit group flags from the previous leader */ 1351 sibling->group_flags = event->group_flags; 1352 } 1353 1354 out: 1355 perf_event__header_size(event->group_leader); 1356 1357 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1358 perf_event__header_size(tmp); 1359 } 1360 1361 static inline int 1362 event_filter_match(struct perf_event *event) 1363 { 1364 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1365 && perf_cgroup_match(event); 1366 } 1367 1368 static void 1369 event_sched_out(struct perf_event *event, 1370 struct perf_cpu_context *cpuctx, 1371 struct perf_event_context *ctx) 1372 { 1373 u64 tstamp = perf_event_time(event); 1374 u64 delta; 1375 /* 1376 * An event which could not be activated because of 1377 * filter mismatch still needs to have its timings 1378 * maintained, otherwise bogus information is return 1379 * via read() for time_enabled, time_running: 1380 */ 1381 if (event->state == PERF_EVENT_STATE_INACTIVE 1382 && !event_filter_match(event)) { 1383 delta = tstamp - event->tstamp_stopped; 1384 event->tstamp_running += delta; 1385 event->tstamp_stopped = tstamp; 1386 } 1387 1388 if (event->state != PERF_EVENT_STATE_ACTIVE) 1389 return; 1390 1391 event->state = PERF_EVENT_STATE_INACTIVE; 1392 if (event->pending_disable) { 1393 event->pending_disable = 0; 1394 event->state = PERF_EVENT_STATE_OFF; 1395 } 1396 event->tstamp_stopped = tstamp; 1397 event->pmu->del(event, 0); 1398 event->oncpu = -1; 1399 1400 if (!is_software_event(event)) 1401 cpuctx->active_oncpu--; 1402 ctx->nr_active--; 1403 if (event->attr.freq && event->attr.sample_freq) 1404 ctx->nr_freq--; 1405 if (event->attr.exclusive || !cpuctx->active_oncpu) 1406 cpuctx->exclusive = 0; 1407 } 1408 1409 static void 1410 group_sched_out(struct perf_event *group_event, 1411 struct perf_cpu_context *cpuctx, 1412 struct perf_event_context *ctx) 1413 { 1414 struct perf_event *event; 1415 int state = group_event->state; 1416 1417 event_sched_out(group_event, cpuctx, ctx); 1418 1419 /* 1420 * Schedule out siblings (if any): 1421 */ 1422 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1423 event_sched_out(event, cpuctx, ctx); 1424 1425 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1426 cpuctx->exclusive = 0; 1427 } 1428 1429 /* 1430 * Cross CPU call to remove a performance event 1431 * 1432 * We disable the event on the hardware level first. After that we 1433 * remove it from the context list. 1434 */ 1435 static int __perf_remove_from_context(void *info) 1436 { 1437 struct perf_event *event = info; 1438 struct perf_event_context *ctx = event->ctx; 1439 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1440 1441 raw_spin_lock(&ctx->lock); 1442 event_sched_out(event, cpuctx, ctx); 1443 list_del_event(event, ctx); 1444 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1445 ctx->is_active = 0; 1446 cpuctx->task_ctx = NULL; 1447 } 1448 raw_spin_unlock(&ctx->lock); 1449 1450 return 0; 1451 } 1452 1453 1454 /* 1455 * Remove the event from a task's (or a CPU's) list of events. 1456 * 1457 * CPU events are removed with a smp call. For task events we only 1458 * call when the task is on a CPU. 1459 * 1460 * If event->ctx is a cloned context, callers must make sure that 1461 * every task struct that event->ctx->task could possibly point to 1462 * remains valid. This is OK when called from perf_release since 1463 * that only calls us on the top-level context, which can't be a clone. 1464 * When called from perf_event_exit_task, it's OK because the 1465 * context has been detached from its task. 1466 */ 1467 static void perf_remove_from_context(struct perf_event *event) 1468 { 1469 struct perf_event_context *ctx = event->ctx; 1470 struct task_struct *task = ctx->task; 1471 1472 lockdep_assert_held(&ctx->mutex); 1473 1474 if (!task) { 1475 /* 1476 * Per cpu events are removed via an smp call and 1477 * the removal is always successful. 1478 */ 1479 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1480 return; 1481 } 1482 1483 retry: 1484 if (!task_function_call(task, __perf_remove_from_context, event)) 1485 return; 1486 1487 raw_spin_lock_irq(&ctx->lock); 1488 /* 1489 * If we failed to find a running task, but find the context active now 1490 * that we've acquired the ctx->lock, retry. 1491 */ 1492 if (ctx->is_active) { 1493 raw_spin_unlock_irq(&ctx->lock); 1494 goto retry; 1495 } 1496 1497 /* 1498 * Since the task isn't running, its safe to remove the event, us 1499 * holding the ctx->lock ensures the task won't get scheduled in. 1500 */ 1501 list_del_event(event, ctx); 1502 raw_spin_unlock_irq(&ctx->lock); 1503 } 1504 1505 /* 1506 * Cross CPU call to disable a performance event 1507 */ 1508 int __perf_event_disable(void *info) 1509 { 1510 struct perf_event *event = info; 1511 struct perf_event_context *ctx = event->ctx; 1512 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1513 1514 /* 1515 * If this is a per-task event, need to check whether this 1516 * event's task is the current task on this cpu. 1517 * 1518 * Can trigger due to concurrent perf_event_context_sched_out() 1519 * flipping contexts around. 1520 */ 1521 if (ctx->task && cpuctx->task_ctx != ctx) 1522 return -EINVAL; 1523 1524 raw_spin_lock(&ctx->lock); 1525 1526 /* 1527 * If the event is on, turn it off. 1528 * If it is in error state, leave it in error state. 1529 */ 1530 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1531 update_context_time(ctx); 1532 update_cgrp_time_from_event(event); 1533 update_group_times(event); 1534 if (event == event->group_leader) 1535 group_sched_out(event, cpuctx, ctx); 1536 else 1537 event_sched_out(event, cpuctx, ctx); 1538 event->state = PERF_EVENT_STATE_OFF; 1539 } 1540 1541 raw_spin_unlock(&ctx->lock); 1542 1543 return 0; 1544 } 1545 1546 /* 1547 * Disable a event. 1548 * 1549 * If event->ctx is a cloned context, callers must make sure that 1550 * every task struct that event->ctx->task could possibly point to 1551 * remains valid. This condition is satisifed when called through 1552 * perf_event_for_each_child or perf_event_for_each because they 1553 * hold the top-level event's child_mutex, so any descendant that 1554 * goes to exit will block in sync_child_event. 1555 * When called from perf_pending_event it's OK because event->ctx 1556 * is the current context on this CPU and preemption is disabled, 1557 * hence we can't get into perf_event_task_sched_out for this context. 1558 */ 1559 void perf_event_disable(struct perf_event *event) 1560 { 1561 struct perf_event_context *ctx = event->ctx; 1562 struct task_struct *task = ctx->task; 1563 1564 if (!task) { 1565 /* 1566 * Disable the event on the cpu that it's on 1567 */ 1568 cpu_function_call(event->cpu, __perf_event_disable, event); 1569 return; 1570 } 1571 1572 retry: 1573 if (!task_function_call(task, __perf_event_disable, event)) 1574 return; 1575 1576 raw_spin_lock_irq(&ctx->lock); 1577 /* 1578 * If the event is still active, we need to retry the cross-call. 1579 */ 1580 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1581 raw_spin_unlock_irq(&ctx->lock); 1582 /* 1583 * Reload the task pointer, it might have been changed by 1584 * a concurrent perf_event_context_sched_out(). 1585 */ 1586 task = ctx->task; 1587 goto retry; 1588 } 1589 1590 /* 1591 * Since we have the lock this context can't be scheduled 1592 * in, so we can change the state safely. 1593 */ 1594 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1595 update_group_times(event); 1596 event->state = PERF_EVENT_STATE_OFF; 1597 } 1598 raw_spin_unlock_irq(&ctx->lock); 1599 } 1600 EXPORT_SYMBOL_GPL(perf_event_disable); 1601 1602 static void perf_set_shadow_time(struct perf_event *event, 1603 struct perf_event_context *ctx, 1604 u64 tstamp) 1605 { 1606 /* 1607 * use the correct time source for the time snapshot 1608 * 1609 * We could get by without this by leveraging the 1610 * fact that to get to this function, the caller 1611 * has most likely already called update_context_time() 1612 * and update_cgrp_time_xx() and thus both timestamp 1613 * are identical (or very close). Given that tstamp is, 1614 * already adjusted for cgroup, we could say that: 1615 * tstamp - ctx->timestamp 1616 * is equivalent to 1617 * tstamp - cgrp->timestamp. 1618 * 1619 * Then, in perf_output_read(), the calculation would 1620 * work with no changes because: 1621 * - event is guaranteed scheduled in 1622 * - no scheduled out in between 1623 * - thus the timestamp would be the same 1624 * 1625 * But this is a bit hairy. 1626 * 1627 * So instead, we have an explicit cgroup call to remain 1628 * within the time time source all along. We believe it 1629 * is cleaner and simpler to understand. 1630 */ 1631 if (is_cgroup_event(event)) 1632 perf_cgroup_set_shadow_time(event, tstamp); 1633 else 1634 event->shadow_ctx_time = tstamp - ctx->timestamp; 1635 } 1636 1637 #define MAX_INTERRUPTS (~0ULL) 1638 1639 static void perf_log_throttle(struct perf_event *event, int enable); 1640 1641 static int 1642 event_sched_in(struct perf_event *event, 1643 struct perf_cpu_context *cpuctx, 1644 struct perf_event_context *ctx) 1645 { 1646 u64 tstamp = perf_event_time(event); 1647 1648 if (event->state <= PERF_EVENT_STATE_OFF) 1649 return 0; 1650 1651 event->state = PERF_EVENT_STATE_ACTIVE; 1652 event->oncpu = smp_processor_id(); 1653 1654 /* 1655 * Unthrottle events, since we scheduled we might have missed several 1656 * ticks already, also for a heavily scheduling task there is little 1657 * guarantee it'll get a tick in a timely manner. 1658 */ 1659 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1660 perf_log_throttle(event, 1); 1661 event->hw.interrupts = 0; 1662 } 1663 1664 /* 1665 * The new state must be visible before we turn it on in the hardware: 1666 */ 1667 smp_wmb(); 1668 1669 if (event->pmu->add(event, PERF_EF_START)) { 1670 event->state = PERF_EVENT_STATE_INACTIVE; 1671 event->oncpu = -1; 1672 return -EAGAIN; 1673 } 1674 1675 event->tstamp_running += tstamp - event->tstamp_stopped; 1676 1677 perf_set_shadow_time(event, ctx, tstamp); 1678 1679 if (!is_software_event(event)) 1680 cpuctx->active_oncpu++; 1681 ctx->nr_active++; 1682 if (event->attr.freq && event->attr.sample_freq) 1683 ctx->nr_freq++; 1684 1685 if (event->attr.exclusive) 1686 cpuctx->exclusive = 1; 1687 1688 return 0; 1689 } 1690 1691 static int 1692 group_sched_in(struct perf_event *group_event, 1693 struct perf_cpu_context *cpuctx, 1694 struct perf_event_context *ctx) 1695 { 1696 struct perf_event *event, *partial_group = NULL; 1697 struct pmu *pmu = group_event->pmu; 1698 u64 now = ctx->time; 1699 bool simulate = false; 1700 1701 if (group_event->state == PERF_EVENT_STATE_OFF) 1702 return 0; 1703 1704 pmu->start_txn(pmu); 1705 1706 if (event_sched_in(group_event, cpuctx, ctx)) { 1707 pmu->cancel_txn(pmu); 1708 perf_cpu_hrtimer_restart(cpuctx); 1709 return -EAGAIN; 1710 } 1711 1712 /* 1713 * Schedule in siblings as one group (if any): 1714 */ 1715 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1716 if (event_sched_in(event, cpuctx, ctx)) { 1717 partial_group = event; 1718 goto group_error; 1719 } 1720 } 1721 1722 if (!pmu->commit_txn(pmu)) 1723 return 0; 1724 1725 group_error: 1726 /* 1727 * Groups can be scheduled in as one unit only, so undo any 1728 * partial group before returning: 1729 * The events up to the failed event are scheduled out normally, 1730 * tstamp_stopped will be updated. 1731 * 1732 * The failed events and the remaining siblings need to have 1733 * their timings updated as if they had gone thru event_sched_in() 1734 * and event_sched_out(). This is required to get consistent timings 1735 * across the group. This also takes care of the case where the group 1736 * could never be scheduled by ensuring tstamp_stopped is set to mark 1737 * the time the event was actually stopped, such that time delta 1738 * calculation in update_event_times() is correct. 1739 */ 1740 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1741 if (event == partial_group) 1742 simulate = true; 1743 1744 if (simulate) { 1745 event->tstamp_running += now - event->tstamp_stopped; 1746 event->tstamp_stopped = now; 1747 } else { 1748 event_sched_out(event, cpuctx, ctx); 1749 } 1750 } 1751 event_sched_out(group_event, cpuctx, ctx); 1752 1753 pmu->cancel_txn(pmu); 1754 1755 perf_cpu_hrtimer_restart(cpuctx); 1756 1757 return -EAGAIN; 1758 } 1759 1760 /* 1761 * Work out whether we can put this event group on the CPU now. 1762 */ 1763 static int group_can_go_on(struct perf_event *event, 1764 struct perf_cpu_context *cpuctx, 1765 int can_add_hw) 1766 { 1767 /* 1768 * Groups consisting entirely of software events can always go on. 1769 */ 1770 if (event->group_flags & PERF_GROUP_SOFTWARE) 1771 return 1; 1772 /* 1773 * If an exclusive group is already on, no other hardware 1774 * events can go on. 1775 */ 1776 if (cpuctx->exclusive) 1777 return 0; 1778 /* 1779 * If this group is exclusive and there are already 1780 * events on the CPU, it can't go on. 1781 */ 1782 if (event->attr.exclusive && cpuctx->active_oncpu) 1783 return 0; 1784 /* 1785 * Otherwise, try to add it if all previous groups were able 1786 * to go on. 1787 */ 1788 return can_add_hw; 1789 } 1790 1791 static void add_event_to_ctx(struct perf_event *event, 1792 struct perf_event_context *ctx) 1793 { 1794 u64 tstamp = perf_event_time(event); 1795 1796 list_add_event(event, ctx); 1797 perf_group_attach(event); 1798 event->tstamp_enabled = tstamp; 1799 event->tstamp_running = tstamp; 1800 event->tstamp_stopped = tstamp; 1801 } 1802 1803 static void task_ctx_sched_out(struct perf_event_context *ctx); 1804 static void 1805 ctx_sched_in(struct perf_event_context *ctx, 1806 struct perf_cpu_context *cpuctx, 1807 enum event_type_t event_type, 1808 struct task_struct *task); 1809 1810 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1811 struct perf_event_context *ctx, 1812 struct task_struct *task) 1813 { 1814 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1815 if (ctx) 1816 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1817 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1818 if (ctx) 1819 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1820 } 1821 1822 /* 1823 * Cross CPU call to install and enable a performance event 1824 * 1825 * Must be called with ctx->mutex held 1826 */ 1827 static int __perf_install_in_context(void *info) 1828 { 1829 struct perf_event *event = info; 1830 struct perf_event_context *ctx = event->ctx; 1831 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1832 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1833 struct task_struct *task = current; 1834 1835 perf_ctx_lock(cpuctx, task_ctx); 1836 perf_pmu_disable(cpuctx->ctx.pmu); 1837 1838 /* 1839 * If there was an active task_ctx schedule it out. 1840 */ 1841 if (task_ctx) 1842 task_ctx_sched_out(task_ctx); 1843 1844 /* 1845 * If the context we're installing events in is not the 1846 * active task_ctx, flip them. 1847 */ 1848 if (ctx->task && task_ctx != ctx) { 1849 if (task_ctx) 1850 raw_spin_unlock(&task_ctx->lock); 1851 raw_spin_lock(&ctx->lock); 1852 task_ctx = ctx; 1853 } 1854 1855 if (task_ctx) { 1856 cpuctx->task_ctx = task_ctx; 1857 task = task_ctx->task; 1858 } 1859 1860 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1861 1862 update_context_time(ctx); 1863 /* 1864 * update cgrp time only if current cgrp 1865 * matches event->cgrp. Must be done before 1866 * calling add_event_to_ctx() 1867 */ 1868 update_cgrp_time_from_event(event); 1869 1870 add_event_to_ctx(event, ctx); 1871 1872 /* 1873 * Schedule everything back in 1874 */ 1875 perf_event_sched_in(cpuctx, task_ctx, task); 1876 1877 perf_pmu_enable(cpuctx->ctx.pmu); 1878 perf_ctx_unlock(cpuctx, task_ctx); 1879 1880 return 0; 1881 } 1882 1883 /* 1884 * Attach a performance event to a context 1885 * 1886 * First we add the event to the list with the hardware enable bit 1887 * in event->hw_config cleared. 1888 * 1889 * If the event is attached to a task which is on a CPU we use a smp 1890 * call to enable it in the task context. The task might have been 1891 * scheduled away, but we check this in the smp call again. 1892 */ 1893 static void 1894 perf_install_in_context(struct perf_event_context *ctx, 1895 struct perf_event *event, 1896 int cpu) 1897 { 1898 struct task_struct *task = ctx->task; 1899 1900 lockdep_assert_held(&ctx->mutex); 1901 1902 event->ctx = ctx; 1903 if (event->cpu != -1) 1904 event->cpu = cpu; 1905 1906 if (!task) { 1907 /* 1908 * Per cpu events are installed via an smp call and 1909 * the install is always successful. 1910 */ 1911 cpu_function_call(cpu, __perf_install_in_context, event); 1912 return; 1913 } 1914 1915 retry: 1916 if (!task_function_call(task, __perf_install_in_context, event)) 1917 return; 1918 1919 raw_spin_lock_irq(&ctx->lock); 1920 /* 1921 * If we failed to find a running task, but find the context active now 1922 * that we've acquired the ctx->lock, retry. 1923 */ 1924 if (ctx->is_active) { 1925 raw_spin_unlock_irq(&ctx->lock); 1926 goto retry; 1927 } 1928 1929 /* 1930 * Since the task isn't running, its safe to add the event, us holding 1931 * the ctx->lock ensures the task won't get scheduled in. 1932 */ 1933 add_event_to_ctx(event, ctx); 1934 raw_spin_unlock_irq(&ctx->lock); 1935 } 1936 1937 /* 1938 * Put a event into inactive state and update time fields. 1939 * Enabling the leader of a group effectively enables all 1940 * the group members that aren't explicitly disabled, so we 1941 * have to update their ->tstamp_enabled also. 1942 * Note: this works for group members as well as group leaders 1943 * since the non-leader members' sibling_lists will be empty. 1944 */ 1945 static void __perf_event_mark_enabled(struct perf_event *event) 1946 { 1947 struct perf_event *sub; 1948 u64 tstamp = perf_event_time(event); 1949 1950 event->state = PERF_EVENT_STATE_INACTIVE; 1951 event->tstamp_enabled = tstamp - event->total_time_enabled; 1952 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1953 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1954 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1955 } 1956 } 1957 1958 /* 1959 * Cross CPU call to enable a performance event 1960 */ 1961 static int __perf_event_enable(void *info) 1962 { 1963 struct perf_event *event = info; 1964 struct perf_event_context *ctx = event->ctx; 1965 struct perf_event *leader = event->group_leader; 1966 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1967 int err; 1968 1969 /* 1970 * There's a time window between 'ctx->is_active' check 1971 * in perf_event_enable function and this place having: 1972 * - IRQs on 1973 * - ctx->lock unlocked 1974 * 1975 * where the task could be killed and 'ctx' deactivated 1976 * by perf_event_exit_task. 1977 */ 1978 if (!ctx->is_active) 1979 return -EINVAL; 1980 1981 raw_spin_lock(&ctx->lock); 1982 update_context_time(ctx); 1983 1984 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1985 goto unlock; 1986 1987 /* 1988 * set current task's cgroup time reference point 1989 */ 1990 perf_cgroup_set_timestamp(current, ctx); 1991 1992 __perf_event_mark_enabled(event); 1993 1994 if (!event_filter_match(event)) { 1995 if (is_cgroup_event(event)) 1996 perf_cgroup_defer_enabled(event); 1997 goto unlock; 1998 } 1999 2000 /* 2001 * If the event is in a group and isn't the group leader, 2002 * then don't put it on unless the group is on. 2003 */ 2004 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 2005 goto unlock; 2006 2007 if (!group_can_go_on(event, cpuctx, 1)) { 2008 err = -EEXIST; 2009 } else { 2010 if (event == leader) 2011 err = group_sched_in(event, cpuctx, ctx); 2012 else 2013 err = event_sched_in(event, cpuctx, ctx); 2014 } 2015 2016 if (err) { 2017 /* 2018 * If this event can't go on and it's part of a 2019 * group, then the whole group has to come off. 2020 */ 2021 if (leader != event) { 2022 group_sched_out(leader, cpuctx, ctx); 2023 perf_cpu_hrtimer_restart(cpuctx); 2024 } 2025 if (leader->attr.pinned) { 2026 update_group_times(leader); 2027 leader->state = PERF_EVENT_STATE_ERROR; 2028 } 2029 } 2030 2031 unlock: 2032 raw_spin_unlock(&ctx->lock); 2033 2034 return 0; 2035 } 2036 2037 /* 2038 * Enable a event. 2039 * 2040 * If event->ctx is a cloned context, callers must make sure that 2041 * every task struct that event->ctx->task could possibly point to 2042 * remains valid. This condition is satisfied when called through 2043 * perf_event_for_each_child or perf_event_for_each as described 2044 * for perf_event_disable. 2045 */ 2046 void perf_event_enable(struct perf_event *event) 2047 { 2048 struct perf_event_context *ctx = event->ctx; 2049 struct task_struct *task = ctx->task; 2050 2051 if (!task) { 2052 /* 2053 * Enable the event on the cpu that it's on 2054 */ 2055 cpu_function_call(event->cpu, __perf_event_enable, event); 2056 return; 2057 } 2058 2059 raw_spin_lock_irq(&ctx->lock); 2060 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2061 goto out; 2062 2063 /* 2064 * If the event is in error state, clear that first. 2065 * That way, if we see the event in error state below, we 2066 * know that it has gone back into error state, as distinct 2067 * from the task having been scheduled away before the 2068 * cross-call arrived. 2069 */ 2070 if (event->state == PERF_EVENT_STATE_ERROR) 2071 event->state = PERF_EVENT_STATE_OFF; 2072 2073 retry: 2074 if (!ctx->is_active) { 2075 __perf_event_mark_enabled(event); 2076 goto out; 2077 } 2078 2079 raw_spin_unlock_irq(&ctx->lock); 2080 2081 if (!task_function_call(task, __perf_event_enable, event)) 2082 return; 2083 2084 raw_spin_lock_irq(&ctx->lock); 2085 2086 /* 2087 * If the context is active and the event is still off, 2088 * we need to retry the cross-call. 2089 */ 2090 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 2091 /* 2092 * task could have been flipped by a concurrent 2093 * perf_event_context_sched_out() 2094 */ 2095 task = ctx->task; 2096 goto retry; 2097 } 2098 2099 out: 2100 raw_spin_unlock_irq(&ctx->lock); 2101 } 2102 EXPORT_SYMBOL_GPL(perf_event_enable); 2103 2104 int perf_event_refresh(struct perf_event *event, int refresh) 2105 { 2106 /* 2107 * not supported on inherited events 2108 */ 2109 if (event->attr.inherit || !is_sampling_event(event)) 2110 return -EINVAL; 2111 2112 atomic_add(refresh, &event->event_limit); 2113 perf_event_enable(event); 2114 2115 return 0; 2116 } 2117 EXPORT_SYMBOL_GPL(perf_event_refresh); 2118 2119 static void ctx_sched_out(struct perf_event_context *ctx, 2120 struct perf_cpu_context *cpuctx, 2121 enum event_type_t event_type) 2122 { 2123 struct perf_event *event; 2124 int is_active = ctx->is_active; 2125 2126 ctx->is_active &= ~event_type; 2127 if (likely(!ctx->nr_events)) 2128 return; 2129 2130 update_context_time(ctx); 2131 update_cgrp_time_from_cpuctx(cpuctx); 2132 if (!ctx->nr_active) 2133 return; 2134 2135 perf_pmu_disable(ctx->pmu); 2136 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 2137 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2138 group_sched_out(event, cpuctx, ctx); 2139 } 2140 2141 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 2142 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2143 group_sched_out(event, cpuctx, ctx); 2144 } 2145 perf_pmu_enable(ctx->pmu); 2146 } 2147 2148 /* 2149 * Test whether two contexts are equivalent, i.e. whether they 2150 * have both been cloned from the same version of the same context 2151 * and they both have the same number of enabled events. 2152 * If the number of enabled events is the same, then the set 2153 * of enabled events should be the same, because these are both 2154 * inherited contexts, therefore we can't access individual events 2155 * in them directly with an fd; we can only enable/disable all 2156 * events via prctl, or enable/disable all events in a family 2157 * via ioctl, which will have the same effect on both contexts. 2158 */ 2159 static int context_equiv(struct perf_event_context *ctx1, 2160 struct perf_event_context *ctx2) 2161 { 2162 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 2163 && ctx1->parent_gen == ctx2->parent_gen 2164 && !ctx1->pin_count && !ctx2->pin_count; 2165 } 2166 2167 static void __perf_event_sync_stat(struct perf_event *event, 2168 struct perf_event *next_event) 2169 { 2170 u64 value; 2171 2172 if (!event->attr.inherit_stat) 2173 return; 2174 2175 /* 2176 * Update the event value, we cannot use perf_event_read() 2177 * because we're in the middle of a context switch and have IRQs 2178 * disabled, which upsets smp_call_function_single(), however 2179 * we know the event must be on the current CPU, therefore we 2180 * don't need to use it. 2181 */ 2182 switch (event->state) { 2183 case PERF_EVENT_STATE_ACTIVE: 2184 event->pmu->read(event); 2185 /* fall-through */ 2186 2187 case PERF_EVENT_STATE_INACTIVE: 2188 update_event_times(event); 2189 break; 2190 2191 default: 2192 break; 2193 } 2194 2195 /* 2196 * In order to keep per-task stats reliable we need to flip the event 2197 * values when we flip the contexts. 2198 */ 2199 value = local64_read(&next_event->count); 2200 value = local64_xchg(&event->count, value); 2201 local64_set(&next_event->count, value); 2202 2203 swap(event->total_time_enabled, next_event->total_time_enabled); 2204 swap(event->total_time_running, next_event->total_time_running); 2205 2206 /* 2207 * Since we swizzled the values, update the user visible data too. 2208 */ 2209 perf_event_update_userpage(event); 2210 perf_event_update_userpage(next_event); 2211 } 2212 2213 #define list_next_entry(pos, member) \ 2214 list_entry(pos->member.next, typeof(*pos), member) 2215 2216 static void perf_event_sync_stat(struct perf_event_context *ctx, 2217 struct perf_event_context *next_ctx) 2218 { 2219 struct perf_event *event, *next_event; 2220 2221 if (!ctx->nr_stat) 2222 return; 2223 2224 update_context_time(ctx); 2225 2226 event = list_first_entry(&ctx->event_list, 2227 struct perf_event, event_entry); 2228 2229 next_event = list_first_entry(&next_ctx->event_list, 2230 struct perf_event, event_entry); 2231 2232 while (&event->event_entry != &ctx->event_list && 2233 &next_event->event_entry != &next_ctx->event_list) { 2234 2235 __perf_event_sync_stat(event, next_event); 2236 2237 event = list_next_entry(event, event_entry); 2238 next_event = list_next_entry(next_event, event_entry); 2239 } 2240 } 2241 2242 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2243 struct task_struct *next) 2244 { 2245 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2246 struct perf_event_context *next_ctx; 2247 struct perf_event_context *parent; 2248 struct perf_cpu_context *cpuctx; 2249 int do_switch = 1; 2250 2251 if (likely(!ctx)) 2252 return; 2253 2254 cpuctx = __get_cpu_context(ctx); 2255 if (!cpuctx->task_ctx) 2256 return; 2257 2258 rcu_read_lock(); 2259 parent = rcu_dereference(ctx->parent_ctx); 2260 next_ctx = next->perf_event_ctxp[ctxn]; 2261 if (parent && next_ctx && 2262 rcu_dereference(next_ctx->parent_ctx) == parent) { 2263 /* 2264 * Looks like the two contexts are clones, so we might be 2265 * able to optimize the context switch. We lock both 2266 * contexts and check that they are clones under the 2267 * lock (including re-checking that neither has been 2268 * uncloned in the meantime). It doesn't matter which 2269 * order we take the locks because no other cpu could 2270 * be trying to lock both of these tasks. 2271 */ 2272 raw_spin_lock(&ctx->lock); 2273 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2274 if (context_equiv(ctx, next_ctx)) { 2275 /* 2276 * XXX do we need a memory barrier of sorts 2277 * wrt to rcu_dereference() of perf_event_ctxp 2278 */ 2279 task->perf_event_ctxp[ctxn] = next_ctx; 2280 next->perf_event_ctxp[ctxn] = ctx; 2281 ctx->task = next; 2282 next_ctx->task = task; 2283 do_switch = 0; 2284 2285 perf_event_sync_stat(ctx, next_ctx); 2286 } 2287 raw_spin_unlock(&next_ctx->lock); 2288 raw_spin_unlock(&ctx->lock); 2289 } 2290 rcu_read_unlock(); 2291 2292 if (do_switch) { 2293 raw_spin_lock(&ctx->lock); 2294 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2295 cpuctx->task_ctx = NULL; 2296 raw_spin_unlock(&ctx->lock); 2297 } 2298 } 2299 2300 #define for_each_task_context_nr(ctxn) \ 2301 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2302 2303 /* 2304 * Called from scheduler to remove the events of the current task, 2305 * with interrupts disabled. 2306 * 2307 * We stop each event and update the event value in event->count. 2308 * 2309 * This does not protect us against NMI, but disable() 2310 * sets the disabled bit in the control field of event _before_ 2311 * accessing the event control register. If a NMI hits, then it will 2312 * not restart the event. 2313 */ 2314 void __perf_event_task_sched_out(struct task_struct *task, 2315 struct task_struct *next) 2316 { 2317 int ctxn; 2318 2319 for_each_task_context_nr(ctxn) 2320 perf_event_context_sched_out(task, ctxn, next); 2321 2322 /* 2323 * if cgroup events exist on this CPU, then we need 2324 * to check if we have to switch out PMU state. 2325 * cgroup event are system-wide mode only 2326 */ 2327 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2328 perf_cgroup_sched_out(task, next); 2329 } 2330 2331 static void task_ctx_sched_out(struct perf_event_context *ctx) 2332 { 2333 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2334 2335 if (!cpuctx->task_ctx) 2336 return; 2337 2338 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2339 return; 2340 2341 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2342 cpuctx->task_ctx = NULL; 2343 } 2344 2345 /* 2346 * Called with IRQs disabled 2347 */ 2348 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2349 enum event_type_t event_type) 2350 { 2351 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2352 } 2353 2354 static void 2355 ctx_pinned_sched_in(struct perf_event_context *ctx, 2356 struct perf_cpu_context *cpuctx) 2357 { 2358 struct perf_event *event; 2359 2360 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2361 if (event->state <= PERF_EVENT_STATE_OFF) 2362 continue; 2363 if (!event_filter_match(event)) 2364 continue; 2365 2366 /* may need to reset tstamp_enabled */ 2367 if (is_cgroup_event(event)) 2368 perf_cgroup_mark_enabled(event, ctx); 2369 2370 if (group_can_go_on(event, cpuctx, 1)) 2371 group_sched_in(event, cpuctx, ctx); 2372 2373 /* 2374 * If this pinned group hasn't been scheduled, 2375 * put it in error state. 2376 */ 2377 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2378 update_group_times(event); 2379 event->state = PERF_EVENT_STATE_ERROR; 2380 } 2381 } 2382 } 2383 2384 static void 2385 ctx_flexible_sched_in(struct perf_event_context *ctx, 2386 struct perf_cpu_context *cpuctx) 2387 { 2388 struct perf_event *event; 2389 int can_add_hw = 1; 2390 2391 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2392 /* Ignore events in OFF or ERROR state */ 2393 if (event->state <= PERF_EVENT_STATE_OFF) 2394 continue; 2395 /* 2396 * Listen to the 'cpu' scheduling filter constraint 2397 * of events: 2398 */ 2399 if (!event_filter_match(event)) 2400 continue; 2401 2402 /* may need to reset tstamp_enabled */ 2403 if (is_cgroup_event(event)) 2404 perf_cgroup_mark_enabled(event, ctx); 2405 2406 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2407 if (group_sched_in(event, cpuctx, ctx)) 2408 can_add_hw = 0; 2409 } 2410 } 2411 } 2412 2413 static void 2414 ctx_sched_in(struct perf_event_context *ctx, 2415 struct perf_cpu_context *cpuctx, 2416 enum event_type_t event_type, 2417 struct task_struct *task) 2418 { 2419 u64 now; 2420 int is_active = ctx->is_active; 2421 2422 ctx->is_active |= event_type; 2423 if (likely(!ctx->nr_events)) 2424 return; 2425 2426 now = perf_clock(); 2427 ctx->timestamp = now; 2428 perf_cgroup_set_timestamp(task, ctx); 2429 /* 2430 * First go through the list and put on any pinned groups 2431 * in order to give them the best chance of going on. 2432 */ 2433 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2434 ctx_pinned_sched_in(ctx, cpuctx); 2435 2436 /* Then walk through the lower prio flexible groups */ 2437 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2438 ctx_flexible_sched_in(ctx, cpuctx); 2439 } 2440 2441 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2442 enum event_type_t event_type, 2443 struct task_struct *task) 2444 { 2445 struct perf_event_context *ctx = &cpuctx->ctx; 2446 2447 ctx_sched_in(ctx, cpuctx, event_type, task); 2448 } 2449 2450 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2451 struct task_struct *task) 2452 { 2453 struct perf_cpu_context *cpuctx; 2454 2455 cpuctx = __get_cpu_context(ctx); 2456 if (cpuctx->task_ctx == ctx) 2457 return; 2458 2459 perf_ctx_lock(cpuctx, ctx); 2460 perf_pmu_disable(ctx->pmu); 2461 /* 2462 * We want to keep the following priority order: 2463 * cpu pinned (that don't need to move), task pinned, 2464 * cpu flexible, task flexible. 2465 */ 2466 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2467 2468 if (ctx->nr_events) 2469 cpuctx->task_ctx = ctx; 2470 2471 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2472 2473 perf_pmu_enable(ctx->pmu); 2474 perf_ctx_unlock(cpuctx, ctx); 2475 2476 /* 2477 * Since these rotations are per-cpu, we need to ensure the 2478 * cpu-context we got scheduled on is actually rotating. 2479 */ 2480 perf_pmu_rotate_start(ctx->pmu); 2481 } 2482 2483 /* 2484 * When sampling the branck stack in system-wide, it may be necessary 2485 * to flush the stack on context switch. This happens when the branch 2486 * stack does not tag its entries with the pid of the current task. 2487 * Otherwise it becomes impossible to associate a branch entry with a 2488 * task. This ambiguity is more likely to appear when the branch stack 2489 * supports priv level filtering and the user sets it to monitor only 2490 * at the user level (which could be a useful measurement in system-wide 2491 * mode). In that case, the risk is high of having a branch stack with 2492 * branch from multiple tasks. Flushing may mean dropping the existing 2493 * entries or stashing them somewhere in the PMU specific code layer. 2494 * 2495 * This function provides the context switch callback to the lower code 2496 * layer. It is invoked ONLY when there is at least one system-wide context 2497 * with at least one active event using taken branch sampling. 2498 */ 2499 static void perf_branch_stack_sched_in(struct task_struct *prev, 2500 struct task_struct *task) 2501 { 2502 struct perf_cpu_context *cpuctx; 2503 struct pmu *pmu; 2504 unsigned long flags; 2505 2506 /* no need to flush branch stack if not changing task */ 2507 if (prev == task) 2508 return; 2509 2510 local_irq_save(flags); 2511 2512 rcu_read_lock(); 2513 2514 list_for_each_entry_rcu(pmu, &pmus, entry) { 2515 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2516 2517 /* 2518 * check if the context has at least one 2519 * event using PERF_SAMPLE_BRANCH_STACK 2520 */ 2521 if (cpuctx->ctx.nr_branch_stack > 0 2522 && pmu->flush_branch_stack) { 2523 2524 pmu = cpuctx->ctx.pmu; 2525 2526 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2527 2528 perf_pmu_disable(pmu); 2529 2530 pmu->flush_branch_stack(); 2531 2532 perf_pmu_enable(pmu); 2533 2534 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2535 } 2536 } 2537 2538 rcu_read_unlock(); 2539 2540 local_irq_restore(flags); 2541 } 2542 2543 /* 2544 * Called from scheduler to add the events of the current task 2545 * with interrupts disabled. 2546 * 2547 * We restore the event value and then enable it. 2548 * 2549 * This does not protect us against NMI, but enable() 2550 * sets the enabled bit in the control field of event _before_ 2551 * accessing the event control register. If a NMI hits, then it will 2552 * keep the event running. 2553 */ 2554 void __perf_event_task_sched_in(struct task_struct *prev, 2555 struct task_struct *task) 2556 { 2557 struct perf_event_context *ctx; 2558 int ctxn; 2559 2560 for_each_task_context_nr(ctxn) { 2561 ctx = task->perf_event_ctxp[ctxn]; 2562 if (likely(!ctx)) 2563 continue; 2564 2565 perf_event_context_sched_in(ctx, task); 2566 } 2567 /* 2568 * if cgroup events exist on this CPU, then we need 2569 * to check if we have to switch in PMU state. 2570 * cgroup event are system-wide mode only 2571 */ 2572 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2573 perf_cgroup_sched_in(prev, task); 2574 2575 /* check for system-wide branch_stack events */ 2576 if (atomic_read(&__get_cpu_var(perf_branch_stack_events))) 2577 perf_branch_stack_sched_in(prev, task); 2578 } 2579 2580 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2581 { 2582 u64 frequency = event->attr.sample_freq; 2583 u64 sec = NSEC_PER_SEC; 2584 u64 divisor, dividend; 2585 2586 int count_fls, nsec_fls, frequency_fls, sec_fls; 2587 2588 count_fls = fls64(count); 2589 nsec_fls = fls64(nsec); 2590 frequency_fls = fls64(frequency); 2591 sec_fls = 30; 2592 2593 /* 2594 * We got @count in @nsec, with a target of sample_freq HZ 2595 * the target period becomes: 2596 * 2597 * @count * 10^9 2598 * period = ------------------- 2599 * @nsec * sample_freq 2600 * 2601 */ 2602 2603 /* 2604 * Reduce accuracy by one bit such that @a and @b converge 2605 * to a similar magnitude. 2606 */ 2607 #define REDUCE_FLS(a, b) \ 2608 do { \ 2609 if (a##_fls > b##_fls) { \ 2610 a >>= 1; \ 2611 a##_fls--; \ 2612 } else { \ 2613 b >>= 1; \ 2614 b##_fls--; \ 2615 } \ 2616 } while (0) 2617 2618 /* 2619 * Reduce accuracy until either term fits in a u64, then proceed with 2620 * the other, so that finally we can do a u64/u64 division. 2621 */ 2622 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2623 REDUCE_FLS(nsec, frequency); 2624 REDUCE_FLS(sec, count); 2625 } 2626 2627 if (count_fls + sec_fls > 64) { 2628 divisor = nsec * frequency; 2629 2630 while (count_fls + sec_fls > 64) { 2631 REDUCE_FLS(count, sec); 2632 divisor >>= 1; 2633 } 2634 2635 dividend = count * sec; 2636 } else { 2637 dividend = count * sec; 2638 2639 while (nsec_fls + frequency_fls > 64) { 2640 REDUCE_FLS(nsec, frequency); 2641 dividend >>= 1; 2642 } 2643 2644 divisor = nsec * frequency; 2645 } 2646 2647 if (!divisor) 2648 return dividend; 2649 2650 return div64_u64(dividend, divisor); 2651 } 2652 2653 static DEFINE_PER_CPU(int, perf_throttled_count); 2654 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2655 2656 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2657 { 2658 struct hw_perf_event *hwc = &event->hw; 2659 s64 period, sample_period; 2660 s64 delta; 2661 2662 period = perf_calculate_period(event, nsec, count); 2663 2664 delta = (s64)(period - hwc->sample_period); 2665 delta = (delta + 7) / 8; /* low pass filter */ 2666 2667 sample_period = hwc->sample_period + delta; 2668 2669 if (!sample_period) 2670 sample_period = 1; 2671 2672 hwc->sample_period = sample_period; 2673 2674 if (local64_read(&hwc->period_left) > 8*sample_period) { 2675 if (disable) 2676 event->pmu->stop(event, PERF_EF_UPDATE); 2677 2678 local64_set(&hwc->period_left, 0); 2679 2680 if (disable) 2681 event->pmu->start(event, PERF_EF_RELOAD); 2682 } 2683 } 2684 2685 /* 2686 * combine freq adjustment with unthrottling to avoid two passes over the 2687 * events. At the same time, make sure, having freq events does not change 2688 * the rate of unthrottling as that would introduce bias. 2689 */ 2690 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2691 int needs_unthr) 2692 { 2693 struct perf_event *event; 2694 struct hw_perf_event *hwc; 2695 u64 now, period = TICK_NSEC; 2696 s64 delta; 2697 2698 /* 2699 * only need to iterate over all events iff: 2700 * - context have events in frequency mode (needs freq adjust) 2701 * - there are events to unthrottle on this cpu 2702 */ 2703 if (!(ctx->nr_freq || needs_unthr)) 2704 return; 2705 2706 raw_spin_lock(&ctx->lock); 2707 perf_pmu_disable(ctx->pmu); 2708 2709 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2710 if (event->state != PERF_EVENT_STATE_ACTIVE) 2711 continue; 2712 2713 if (!event_filter_match(event)) 2714 continue; 2715 2716 hwc = &event->hw; 2717 2718 if (hwc->interrupts == MAX_INTERRUPTS) { 2719 hwc->interrupts = 0; 2720 perf_log_throttle(event, 1); 2721 event->pmu->start(event, 0); 2722 } 2723 2724 if (!event->attr.freq || !event->attr.sample_freq) 2725 continue; 2726 2727 /* 2728 * stop the event and update event->count 2729 */ 2730 event->pmu->stop(event, PERF_EF_UPDATE); 2731 2732 now = local64_read(&event->count); 2733 delta = now - hwc->freq_count_stamp; 2734 hwc->freq_count_stamp = now; 2735 2736 /* 2737 * restart the event 2738 * reload only if value has changed 2739 * we have stopped the event so tell that 2740 * to perf_adjust_period() to avoid stopping it 2741 * twice. 2742 */ 2743 if (delta > 0) 2744 perf_adjust_period(event, period, delta, false); 2745 2746 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2747 } 2748 2749 perf_pmu_enable(ctx->pmu); 2750 raw_spin_unlock(&ctx->lock); 2751 } 2752 2753 /* 2754 * Round-robin a context's events: 2755 */ 2756 static void rotate_ctx(struct perf_event_context *ctx) 2757 { 2758 /* 2759 * Rotate the first entry last of non-pinned groups. Rotation might be 2760 * disabled by the inheritance code. 2761 */ 2762 if (!ctx->rotate_disable) 2763 list_rotate_left(&ctx->flexible_groups); 2764 } 2765 2766 /* 2767 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2768 * because they're strictly cpu affine and rotate_start is called with IRQs 2769 * disabled, while rotate_context is called from IRQ context. 2770 */ 2771 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 2772 { 2773 struct perf_event_context *ctx = NULL; 2774 int rotate = 0, remove = 1; 2775 2776 if (cpuctx->ctx.nr_events) { 2777 remove = 0; 2778 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2779 rotate = 1; 2780 } 2781 2782 ctx = cpuctx->task_ctx; 2783 if (ctx && ctx->nr_events) { 2784 remove = 0; 2785 if (ctx->nr_events != ctx->nr_active) 2786 rotate = 1; 2787 } 2788 2789 if (!rotate) 2790 goto done; 2791 2792 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2793 perf_pmu_disable(cpuctx->ctx.pmu); 2794 2795 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2796 if (ctx) 2797 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2798 2799 rotate_ctx(&cpuctx->ctx); 2800 if (ctx) 2801 rotate_ctx(ctx); 2802 2803 perf_event_sched_in(cpuctx, ctx, current); 2804 2805 perf_pmu_enable(cpuctx->ctx.pmu); 2806 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2807 done: 2808 if (remove) 2809 list_del_init(&cpuctx->rotation_list); 2810 2811 return rotate; 2812 } 2813 2814 #ifdef CONFIG_NO_HZ_FULL 2815 bool perf_event_can_stop_tick(void) 2816 { 2817 if (atomic_read(&nr_freq_events) || 2818 __this_cpu_read(perf_throttled_count)) 2819 return false; 2820 else 2821 return true; 2822 } 2823 #endif 2824 2825 void perf_event_task_tick(void) 2826 { 2827 struct list_head *head = &__get_cpu_var(rotation_list); 2828 struct perf_cpu_context *cpuctx, *tmp; 2829 struct perf_event_context *ctx; 2830 int throttled; 2831 2832 WARN_ON(!irqs_disabled()); 2833 2834 __this_cpu_inc(perf_throttled_seq); 2835 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2836 2837 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2838 ctx = &cpuctx->ctx; 2839 perf_adjust_freq_unthr_context(ctx, throttled); 2840 2841 ctx = cpuctx->task_ctx; 2842 if (ctx) 2843 perf_adjust_freq_unthr_context(ctx, throttled); 2844 } 2845 } 2846 2847 static int event_enable_on_exec(struct perf_event *event, 2848 struct perf_event_context *ctx) 2849 { 2850 if (!event->attr.enable_on_exec) 2851 return 0; 2852 2853 event->attr.enable_on_exec = 0; 2854 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2855 return 0; 2856 2857 __perf_event_mark_enabled(event); 2858 2859 return 1; 2860 } 2861 2862 /* 2863 * Enable all of a task's events that have been marked enable-on-exec. 2864 * This expects task == current. 2865 */ 2866 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2867 { 2868 struct perf_event *event; 2869 unsigned long flags; 2870 int enabled = 0; 2871 int ret; 2872 2873 local_irq_save(flags); 2874 if (!ctx || !ctx->nr_events) 2875 goto out; 2876 2877 /* 2878 * We must ctxsw out cgroup events to avoid conflict 2879 * when invoking perf_task_event_sched_in() later on 2880 * in this function. Otherwise we end up trying to 2881 * ctxswin cgroup events which are already scheduled 2882 * in. 2883 */ 2884 perf_cgroup_sched_out(current, NULL); 2885 2886 raw_spin_lock(&ctx->lock); 2887 task_ctx_sched_out(ctx); 2888 2889 list_for_each_entry(event, &ctx->event_list, event_entry) { 2890 ret = event_enable_on_exec(event, ctx); 2891 if (ret) 2892 enabled = 1; 2893 } 2894 2895 /* 2896 * Unclone this context if we enabled any event. 2897 */ 2898 if (enabled) 2899 unclone_ctx(ctx); 2900 2901 raw_spin_unlock(&ctx->lock); 2902 2903 /* 2904 * Also calls ctxswin for cgroup events, if any: 2905 */ 2906 perf_event_context_sched_in(ctx, ctx->task); 2907 out: 2908 local_irq_restore(flags); 2909 } 2910 2911 /* 2912 * Cross CPU call to read the hardware event 2913 */ 2914 static void __perf_event_read(void *info) 2915 { 2916 struct perf_event *event = info; 2917 struct perf_event_context *ctx = event->ctx; 2918 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2919 2920 /* 2921 * If this is a task context, we need to check whether it is 2922 * the current task context of this cpu. If not it has been 2923 * scheduled out before the smp call arrived. In that case 2924 * event->count would have been updated to a recent sample 2925 * when the event was scheduled out. 2926 */ 2927 if (ctx->task && cpuctx->task_ctx != ctx) 2928 return; 2929 2930 raw_spin_lock(&ctx->lock); 2931 if (ctx->is_active) { 2932 update_context_time(ctx); 2933 update_cgrp_time_from_event(event); 2934 } 2935 update_event_times(event); 2936 if (event->state == PERF_EVENT_STATE_ACTIVE) 2937 event->pmu->read(event); 2938 raw_spin_unlock(&ctx->lock); 2939 } 2940 2941 static inline u64 perf_event_count(struct perf_event *event) 2942 { 2943 return local64_read(&event->count) + atomic64_read(&event->child_count); 2944 } 2945 2946 static u64 perf_event_read(struct perf_event *event) 2947 { 2948 /* 2949 * If event is enabled and currently active on a CPU, update the 2950 * value in the event structure: 2951 */ 2952 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2953 smp_call_function_single(event->oncpu, 2954 __perf_event_read, event, 1); 2955 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2956 struct perf_event_context *ctx = event->ctx; 2957 unsigned long flags; 2958 2959 raw_spin_lock_irqsave(&ctx->lock, flags); 2960 /* 2961 * may read while context is not active 2962 * (e.g., thread is blocked), in that case 2963 * we cannot update context time 2964 */ 2965 if (ctx->is_active) { 2966 update_context_time(ctx); 2967 update_cgrp_time_from_event(event); 2968 } 2969 update_event_times(event); 2970 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2971 } 2972 2973 return perf_event_count(event); 2974 } 2975 2976 /* 2977 * Initialize the perf_event context in a task_struct: 2978 */ 2979 static void __perf_event_init_context(struct perf_event_context *ctx) 2980 { 2981 raw_spin_lock_init(&ctx->lock); 2982 mutex_init(&ctx->mutex); 2983 INIT_LIST_HEAD(&ctx->pinned_groups); 2984 INIT_LIST_HEAD(&ctx->flexible_groups); 2985 INIT_LIST_HEAD(&ctx->event_list); 2986 atomic_set(&ctx->refcount, 1); 2987 } 2988 2989 static struct perf_event_context * 2990 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2991 { 2992 struct perf_event_context *ctx; 2993 2994 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2995 if (!ctx) 2996 return NULL; 2997 2998 __perf_event_init_context(ctx); 2999 if (task) { 3000 ctx->task = task; 3001 get_task_struct(task); 3002 } 3003 ctx->pmu = pmu; 3004 3005 return ctx; 3006 } 3007 3008 static struct task_struct * 3009 find_lively_task_by_vpid(pid_t vpid) 3010 { 3011 struct task_struct *task; 3012 int err; 3013 3014 rcu_read_lock(); 3015 if (!vpid) 3016 task = current; 3017 else 3018 task = find_task_by_vpid(vpid); 3019 if (task) 3020 get_task_struct(task); 3021 rcu_read_unlock(); 3022 3023 if (!task) 3024 return ERR_PTR(-ESRCH); 3025 3026 /* Reuse ptrace permission checks for now. */ 3027 err = -EACCES; 3028 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 3029 goto errout; 3030 3031 return task; 3032 errout: 3033 put_task_struct(task); 3034 return ERR_PTR(err); 3035 3036 } 3037 3038 /* 3039 * Returns a matching context with refcount and pincount. 3040 */ 3041 static struct perf_event_context * 3042 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 3043 { 3044 struct perf_event_context *ctx; 3045 struct perf_cpu_context *cpuctx; 3046 unsigned long flags; 3047 int ctxn, err; 3048 3049 if (!task) { 3050 /* Must be root to operate on a CPU event: */ 3051 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3052 return ERR_PTR(-EACCES); 3053 3054 /* 3055 * We could be clever and allow to attach a event to an 3056 * offline CPU and activate it when the CPU comes up, but 3057 * that's for later. 3058 */ 3059 if (!cpu_online(cpu)) 3060 return ERR_PTR(-ENODEV); 3061 3062 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3063 ctx = &cpuctx->ctx; 3064 get_ctx(ctx); 3065 ++ctx->pin_count; 3066 3067 return ctx; 3068 } 3069 3070 err = -EINVAL; 3071 ctxn = pmu->task_ctx_nr; 3072 if (ctxn < 0) 3073 goto errout; 3074 3075 retry: 3076 ctx = perf_lock_task_context(task, ctxn, &flags); 3077 if (ctx) { 3078 unclone_ctx(ctx); 3079 ++ctx->pin_count; 3080 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3081 } else { 3082 ctx = alloc_perf_context(pmu, task); 3083 err = -ENOMEM; 3084 if (!ctx) 3085 goto errout; 3086 3087 err = 0; 3088 mutex_lock(&task->perf_event_mutex); 3089 /* 3090 * If it has already passed perf_event_exit_task(). 3091 * we must see PF_EXITING, it takes this mutex too. 3092 */ 3093 if (task->flags & PF_EXITING) 3094 err = -ESRCH; 3095 else if (task->perf_event_ctxp[ctxn]) 3096 err = -EAGAIN; 3097 else { 3098 get_ctx(ctx); 3099 ++ctx->pin_count; 3100 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3101 } 3102 mutex_unlock(&task->perf_event_mutex); 3103 3104 if (unlikely(err)) { 3105 put_ctx(ctx); 3106 3107 if (err == -EAGAIN) 3108 goto retry; 3109 goto errout; 3110 } 3111 } 3112 3113 return ctx; 3114 3115 errout: 3116 return ERR_PTR(err); 3117 } 3118 3119 static void perf_event_free_filter(struct perf_event *event); 3120 3121 static void free_event_rcu(struct rcu_head *head) 3122 { 3123 struct perf_event *event; 3124 3125 event = container_of(head, struct perf_event, rcu_head); 3126 if (event->ns) 3127 put_pid_ns(event->ns); 3128 perf_event_free_filter(event); 3129 kfree(event); 3130 } 3131 3132 static void ring_buffer_put(struct ring_buffer *rb); 3133 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb); 3134 3135 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3136 { 3137 if (event->parent) 3138 return; 3139 3140 if (has_branch_stack(event)) { 3141 if (!(event->attach_state & PERF_ATTACH_TASK)) 3142 atomic_dec(&per_cpu(perf_branch_stack_events, cpu)); 3143 } 3144 if (is_cgroup_event(event)) 3145 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3146 } 3147 3148 static void unaccount_event(struct perf_event *event) 3149 { 3150 if (event->parent) 3151 return; 3152 3153 if (event->attach_state & PERF_ATTACH_TASK) 3154 static_key_slow_dec_deferred(&perf_sched_events); 3155 if (event->attr.mmap || event->attr.mmap_data) 3156 atomic_dec(&nr_mmap_events); 3157 if (event->attr.comm) 3158 atomic_dec(&nr_comm_events); 3159 if (event->attr.task) 3160 atomic_dec(&nr_task_events); 3161 if (event->attr.freq) 3162 atomic_dec(&nr_freq_events); 3163 if (is_cgroup_event(event)) 3164 static_key_slow_dec_deferred(&perf_sched_events); 3165 if (has_branch_stack(event)) 3166 static_key_slow_dec_deferred(&perf_sched_events); 3167 3168 unaccount_event_cpu(event, event->cpu); 3169 } 3170 3171 static void __free_event(struct perf_event *event) 3172 { 3173 if (!event->parent) { 3174 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3175 put_callchain_buffers(); 3176 } 3177 3178 if (event->destroy) 3179 event->destroy(event); 3180 3181 if (event->ctx) 3182 put_ctx(event->ctx); 3183 3184 call_rcu(&event->rcu_head, free_event_rcu); 3185 } 3186 static void free_event(struct perf_event *event) 3187 { 3188 irq_work_sync(&event->pending); 3189 3190 unaccount_event(event); 3191 3192 if (event->rb) { 3193 struct ring_buffer *rb; 3194 3195 /* 3196 * Can happen when we close an event with re-directed output. 3197 * 3198 * Since we have a 0 refcount, perf_mmap_close() will skip 3199 * over us; possibly making our ring_buffer_put() the last. 3200 */ 3201 mutex_lock(&event->mmap_mutex); 3202 rb = event->rb; 3203 if (rb) { 3204 rcu_assign_pointer(event->rb, NULL); 3205 ring_buffer_detach(event, rb); 3206 ring_buffer_put(rb); /* could be last */ 3207 } 3208 mutex_unlock(&event->mmap_mutex); 3209 } 3210 3211 if (is_cgroup_event(event)) 3212 perf_detach_cgroup(event); 3213 3214 3215 __free_event(event); 3216 } 3217 3218 int perf_event_release_kernel(struct perf_event *event) 3219 { 3220 struct perf_event_context *ctx = event->ctx; 3221 3222 WARN_ON_ONCE(ctx->parent_ctx); 3223 /* 3224 * There are two ways this annotation is useful: 3225 * 3226 * 1) there is a lock recursion from perf_event_exit_task 3227 * see the comment there. 3228 * 3229 * 2) there is a lock-inversion with mmap_sem through 3230 * perf_event_read_group(), which takes faults while 3231 * holding ctx->mutex, however this is called after 3232 * the last filedesc died, so there is no possibility 3233 * to trigger the AB-BA case. 3234 */ 3235 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 3236 raw_spin_lock_irq(&ctx->lock); 3237 perf_group_detach(event); 3238 raw_spin_unlock_irq(&ctx->lock); 3239 perf_remove_from_context(event); 3240 mutex_unlock(&ctx->mutex); 3241 3242 free_event(event); 3243 3244 return 0; 3245 } 3246 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3247 3248 /* 3249 * Called when the last reference to the file is gone. 3250 */ 3251 static void put_event(struct perf_event *event) 3252 { 3253 struct task_struct *owner; 3254 3255 if (!atomic_long_dec_and_test(&event->refcount)) 3256 return; 3257 3258 rcu_read_lock(); 3259 owner = ACCESS_ONCE(event->owner); 3260 /* 3261 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3262 * !owner it means the list deletion is complete and we can indeed 3263 * free this event, otherwise we need to serialize on 3264 * owner->perf_event_mutex. 3265 */ 3266 smp_read_barrier_depends(); 3267 if (owner) { 3268 /* 3269 * Since delayed_put_task_struct() also drops the last 3270 * task reference we can safely take a new reference 3271 * while holding the rcu_read_lock(). 3272 */ 3273 get_task_struct(owner); 3274 } 3275 rcu_read_unlock(); 3276 3277 if (owner) { 3278 mutex_lock(&owner->perf_event_mutex); 3279 /* 3280 * We have to re-check the event->owner field, if it is cleared 3281 * we raced with perf_event_exit_task(), acquiring the mutex 3282 * ensured they're done, and we can proceed with freeing the 3283 * event. 3284 */ 3285 if (event->owner) 3286 list_del_init(&event->owner_entry); 3287 mutex_unlock(&owner->perf_event_mutex); 3288 put_task_struct(owner); 3289 } 3290 3291 perf_event_release_kernel(event); 3292 } 3293 3294 static int perf_release(struct inode *inode, struct file *file) 3295 { 3296 put_event(file->private_data); 3297 return 0; 3298 } 3299 3300 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3301 { 3302 struct perf_event *child; 3303 u64 total = 0; 3304 3305 *enabled = 0; 3306 *running = 0; 3307 3308 mutex_lock(&event->child_mutex); 3309 total += perf_event_read(event); 3310 *enabled += event->total_time_enabled + 3311 atomic64_read(&event->child_total_time_enabled); 3312 *running += event->total_time_running + 3313 atomic64_read(&event->child_total_time_running); 3314 3315 list_for_each_entry(child, &event->child_list, child_list) { 3316 total += perf_event_read(child); 3317 *enabled += child->total_time_enabled; 3318 *running += child->total_time_running; 3319 } 3320 mutex_unlock(&event->child_mutex); 3321 3322 return total; 3323 } 3324 EXPORT_SYMBOL_GPL(perf_event_read_value); 3325 3326 static int perf_event_read_group(struct perf_event *event, 3327 u64 read_format, char __user *buf) 3328 { 3329 struct perf_event *leader = event->group_leader, *sub; 3330 int n = 0, size = 0, ret = -EFAULT; 3331 struct perf_event_context *ctx = leader->ctx; 3332 u64 values[5]; 3333 u64 count, enabled, running; 3334 3335 mutex_lock(&ctx->mutex); 3336 count = perf_event_read_value(leader, &enabled, &running); 3337 3338 values[n++] = 1 + leader->nr_siblings; 3339 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3340 values[n++] = enabled; 3341 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3342 values[n++] = running; 3343 values[n++] = count; 3344 if (read_format & PERF_FORMAT_ID) 3345 values[n++] = primary_event_id(leader); 3346 3347 size = n * sizeof(u64); 3348 3349 if (copy_to_user(buf, values, size)) 3350 goto unlock; 3351 3352 ret = size; 3353 3354 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3355 n = 0; 3356 3357 values[n++] = perf_event_read_value(sub, &enabled, &running); 3358 if (read_format & PERF_FORMAT_ID) 3359 values[n++] = primary_event_id(sub); 3360 3361 size = n * sizeof(u64); 3362 3363 if (copy_to_user(buf + ret, values, size)) { 3364 ret = -EFAULT; 3365 goto unlock; 3366 } 3367 3368 ret += size; 3369 } 3370 unlock: 3371 mutex_unlock(&ctx->mutex); 3372 3373 return ret; 3374 } 3375 3376 static int perf_event_read_one(struct perf_event *event, 3377 u64 read_format, char __user *buf) 3378 { 3379 u64 enabled, running; 3380 u64 values[4]; 3381 int n = 0; 3382 3383 values[n++] = perf_event_read_value(event, &enabled, &running); 3384 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3385 values[n++] = enabled; 3386 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3387 values[n++] = running; 3388 if (read_format & PERF_FORMAT_ID) 3389 values[n++] = primary_event_id(event); 3390 3391 if (copy_to_user(buf, values, n * sizeof(u64))) 3392 return -EFAULT; 3393 3394 return n * sizeof(u64); 3395 } 3396 3397 /* 3398 * Read the performance event - simple non blocking version for now 3399 */ 3400 static ssize_t 3401 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3402 { 3403 u64 read_format = event->attr.read_format; 3404 int ret; 3405 3406 /* 3407 * Return end-of-file for a read on a event that is in 3408 * error state (i.e. because it was pinned but it couldn't be 3409 * scheduled on to the CPU at some point). 3410 */ 3411 if (event->state == PERF_EVENT_STATE_ERROR) 3412 return 0; 3413 3414 if (count < event->read_size) 3415 return -ENOSPC; 3416 3417 WARN_ON_ONCE(event->ctx->parent_ctx); 3418 if (read_format & PERF_FORMAT_GROUP) 3419 ret = perf_event_read_group(event, read_format, buf); 3420 else 3421 ret = perf_event_read_one(event, read_format, buf); 3422 3423 return ret; 3424 } 3425 3426 static ssize_t 3427 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3428 { 3429 struct perf_event *event = file->private_data; 3430 3431 return perf_read_hw(event, buf, count); 3432 } 3433 3434 static unsigned int perf_poll(struct file *file, poll_table *wait) 3435 { 3436 struct perf_event *event = file->private_data; 3437 struct ring_buffer *rb; 3438 unsigned int events = POLL_HUP; 3439 3440 /* 3441 * Pin the event->rb by taking event->mmap_mutex; otherwise 3442 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 3443 */ 3444 mutex_lock(&event->mmap_mutex); 3445 rb = event->rb; 3446 if (rb) 3447 events = atomic_xchg(&rb->poll, 0); 3448 mutex_unlock(&event->mmap_mutex); 3449 3450 poll_wait(file, &event->waitq, wait); 3451 3452 return events; 3453 } 3454 3455 static void perf_event_reset(struct perf_event *event) 3456 { 3457 (void)perf_event_read(event); 3458 local64_set(&event->count, 0); 3459 perf_event_update_userpage(event); 3460 } 3461 3462 /* 3463 * Holding the top-level event's child_mutex means that any 3464 * descendant process that has inherited this event will block 3465 * in sync_child_event if it goes to exit, thus satisfying the 3466 * task existence requirements of perf_event_enable/disable. 3467 */ 3468 static void perf_event_for_each_child(struct perf_event *event, 3469 void (*func)(struct perf_event *)) 3470 { 3471 struct perf_event *child; 3472 3473 WARN_ON_ONCE(event->ctx->parent_ctx); 3474 mutex_lock(&event->child_mutex); 3475 func(event); 3476 list_for_each_entry(child, &event->child_list, child_list) 3477 func(child); 3478 mutex_unlock(&event->child_mutex); 3479 } 3480 3481 static void perf_event_for_each(struct perf_event *event, 3482 void (*func)(struct perf_event *)) 3483 { 3484 struct perf_event_context *ctx = event->ctx; 3485 struct perf_event *sibling; 3486 3487 WARN_ON_ONCE(ctx->parent_ctx); 3488 mutex_lock(&ctx->mutex); 3489 event = event->group_leader; 3490 3491 perf_event_for_each_child(event, func); 3492 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3493 perf_event_for_each_child(sibling, func); 3494 mutex_unlock(&ctx->mutex); 3495 } 3496 3497 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3498 { 3499 struct perf_event_context *ctx = event->ctx; 3500 int ret = 0; 3501 u64 value; 3502 3503 if (!is_sampling_event(event)) 3504 return -EINVAL; 3505 3506 if (copy_from_user(&value, arg, sizeof(value))) 3507 return -EFAULT; 3508 3509 if (!value) 3510 return -EINVAL; 3511 3512 raw_spin_lock_irq(&ctx->lock); 3513 if (event->attr.freq) { 3514 if (value > sysctl_perf_event_sample_rate) { 3515 ret = -EINVAL; 3516 goto unlock; 3517 } 3518 3519 event->attr.sample_freq = value; 3520 } else { 3521 event->attr.sample_period = value; 3522 event->hw.sample_period = value; 3523 } 3524 unlock: 3525 raw_spin_unlock_irq(&ctx->lock); 3526 3527 return ret; 3528 } 3529 3530 static const struct file_operations perf_fops; 3531 3532 static inline int perf_fget_light(int fd, struct fd *p) 3533 { 3534 struct fd f = fdget(fd); 3535 if (!f.file) 3536 return -EBADF; 3537 3538 if (f.file->f_op != &perf_fops) { 3539 fdput(f); 3540 return -EBADF; 3541 } 3542 *p = f; 3543 return 0; 3544 } 3545 3546 static int perf_event_set_output(struct perf_event *event, 3547 struct perf_event *output_event); 3548 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3549 3550 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3551 { 3552 struct perf_event *event = file->private_data; 3553 void (*func)(struct perf_event *); 3554 u32 flags = arg; 3555 3556 switch (cmd) { 3557 case PERF_EVENT_IOC_ENABLE: 3558 func = perf_event_enable; 3559 break; 3560 case PERF_EVENT_IOC_DISABLE: 3561 func = perf_event_disable; 3562 break; 3563 case PERF_EVENT_IOC_RESET: 3564 func = perf_event_reset; 3565 break; 3566 3567 case PERF_EVENT_IOC_REFRESH: 3568 return perf_event_refresh(event, arg); 3569 3570 case PERF_EVENT_IOC_PERIOD: 3571 return perf_event_period(event, (u64 __user *)arg); 3572 3573 case PERF_EVENT_IOC_ID: 3574 { 3575 u64 id = primary_event_id(event); 3576 3577 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 3578 return -EFAULT; 3579 return 0; 3580 } 3581 3582 case PERF_EVENT_IOC_SET_OUTPUT: 3583 { 3584 int ret; 3585 if (arg != -1) { 3586 struct perf_event *output_event; 3587 struct fd output; 3588 ret = perf_fget_light(arg, &output); 3589 if (ret) 3590 return ret; 3591 output_event = output.file->private_data; 3592 ret = perf_event_set_output(event, output_event); 3593 fdput(output); 3594 } else { 3595 ret = perf_event_set_output(event, NULL); 3596 } 3597 return ret; 3598 } 3599 3600 case PERF_EVENT_IOC_SET_FILTER: 3601 return perf_event_set_filter(event, (void __user *)arg); 3602 3603 default: 3604 return -ENOTTY; 3605 } 3606 3607 if (flags & PERF_IOC_FLAG_GROUP) 3608 perf_event_for_each(event, func); 3609 else 3610 perf_event_for_each_child(event, func); 3611 3612 return 0; 3613 } 3614 3615 int perf_event_task_enable(void) 3616 { 3617 struct perf_event *event; 3618 3619 mutex_lock(¤t->perf_event_mutex); 3620 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3621 perf_event_for_each_child(event, perf_event_enable); 3622 mutex_unlock(¤t->perf_event_mutex); 3623 3624 return 0; 3625 } 3626 3627 int perf_event_task_disable(void) 3628 { 3629 struct perf_event *event; 3630 3631 mutex_lock(¤t->perf_event_mutex); 3632 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3633 perf_event_for_each_child(event, perf_event_disable); 3634 mutex_unlock(¤t->perf_event_mutex); 3635 3636 return 0; 3637 } 3638 3639 static int perf_event_index(struct perf_event *event) 3640 { 3641 if (event->hw.state & PERF_HES_STOPPED) 3642 return 0; 3643 3644 if (event->state != PERF_EVENT_STATE_ACTIVE) 3645 return 0; 3646 3647 return event->pmu->event_idx(event); 3648 } 3649 3650 static void calc_timer_values(struct perf_event *event, 3651 u64 *now, 3652 u64 *enabled, 3653 u64 *running) 3654 { 3655 u64 ctx_time; 3656 3657 *now = perf_clock(); 3658 ctx_time = event->shadow_ctx_time + *now; 3659 *enabled = ctx_time - event->tstamp_enabled; 3660 *running = ctx_time - event->tstamp_running; 3661 } 3662 3663 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) 3664 { 3665 } 3666 3667 /* 3668 * Callers need to ensure there can be no nesting of this function, otherwise 3669 * the seqlock logic goes bad. We can not serialize this because the arch 3670 * code calls this from NMI context. 3671 */ 3672 void perf_event_update_userpage(struct perf_event *event) 3673 { 3674 struct perf_event_mmap_page *userpg; 3675 struct ring_buffer *rb; 3676 u64 enabled, running, now; 3677 3678 rcu_read_lock(); 3679 rb = rcu_dereference(event->rb); 3680 if (!rb) 3681 goto unlock; 3682 3683 /* 3684 * compute total_time_enabled, total_time_running 3685 * based on snapshot values taken when the event 3686 * was last scheduled in. 3687 * 3688 * we cannot simply called update_context_time() 3689 * because of locking issue as we can be called in 3690 * NMI context 3691 */ 3692 calc_timer_values(event, &now, &enabled, &running); 3693 3694 userpg = rb->user_page; 3695 /* 3696 * Disable preemption so as to not let the corresponding user-space 3697 * spin too long if we get preempted. 3698 */ 3699 preempt_disable(); 3700 ++userpg->lock; 3701 barrier(); 3702 userpg->index = perf_event_index(event); 3703 userpg->offset = perf_event_count(event); 3704 if (userpg->index) 3705 userpg->offset -= local64_read(&event->hw.prev_count); 3706 3707 userpg->time_enabled = enabled + 3708 atomic64_read(&event->child_total_time_enabled); 3709 3710 userpg->time_running = running + 3711 atomic64_read(&event->child_total_time_running); 3712 3713 arch_perf_update_userpage(userpg, now); 3714 3715 barrier(); 3716 ++userpg->lock; 3717 preempt_enable(); 3718 unlock: 3719 rcu_read_unlock(); 3720 } 3721 3722 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3723 { 3724 struct perf_event *event = vma->vm_file->private_data; 3725 struct ring_buffer *rb; 3726 int ret = VM_FAULT_SIGBUS; 3727 3728 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3729 if (vmf->pgoff == 0) 3730 ret = 0; 3731 return ret; 3732 } 3733 3734 rcu_read_lock(); 3735 rb = rcu_dereference(event->rb); 3736 if (!rb) 3737 goto unlock; 3738 3739 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3740 goto unlock; 3741 3742 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3743 if (!vmf->page) 3744 goto unlock; 3745 3746 get_page(vmf->page); 3747 vmf->page->mapping = vma->vm_file->f_mapping; 3748 vmf->page->index = vmf->pgoff; 3749 3750 ret = 0; 3751 unlock: 3752 rcu_read_unlock(); 3753 3754 return ret; 3755 } 3756 3757 static void ring_buffer_attach(struct perf_event *event, 3758 struct ring_buffer *rb) 3759 { 3760 unsigned long flags; 3761 3762 if (!list_empty(&event->rb_entry)) 3763 return; 3764 3765 spin_lock_irqsave(&rb->event_lock, flags); 3766 if (list_empty(&event->rb_entry)) 3767 list_add(&event->rb_entry, &rb->event_list); 3768 spin_unlock_irqrestore(&rb->event_lock, flags); 3769 } 3770 3771 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb) 3772 { 3773 unsigned long flags; 3774 3775 if (list_empty(&event->rb_entry)) 3776 return; 3777 3778 spin_lock_irqsave(&rb->event_lock, flags); 3779 list_del_init(&event->rb_entry); 3780 wake_up_all(&event->waitq); 3781 spin_unlock_irqrestore(&rb->event_lock, flags); 3782 } 3783 3784 static void ring_buffer_wakeup(struct perf_event *event) 3785 { 3786 struct ring_buffer *rb; 3787 3788 rcu_read_lock(); 3789 rb = rcu_dereference(event->rb); 3790 if (rb) { 3791 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3792 wake_up_all(&event->waitq); 3793 } 3794 rcu_read_unlock(); 3795 } 3796 3797 static void rb_free_rcu(struct rcu_head *rcu_head) 3798 { 3799 struct ring_buffer *rb; 3800 3801 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3802 rb_free(rb); 3803 } 3804 3805 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3806 { 3807 struct ring_buffer *rb; 3808 3809 rcu_read_lock(); 3810 rb = rcu_dereference(event->rb); 3811 if (rb) { 3812 if (!atomic_inc_not_zero(&rb->refcount)) 3813 rb = NULL; 3814 } 3815 rcu_read_unlock(); 3816 3817 return rb; 3818 } 3819 3820 static void ring_buffer_put(struct ring_buffer *rb) 3821 { 3822 if (!atomic_dec_and_test(&rb->refcount)) 3823 return; 3824 3825 WARN_ON_ONCE(!list_empty(&rb->event_list)); 3826 3827 call_rcu(&rb->rcu_head, rb_free_rcu); 3828 } 3829 3830 static void perf_mmap_open(struct vm_area_struct *vma) 3831 { 3832 struct perf_event *event = vma->vm_file->private_data; 3833 3834 atomic_inc(&event->mmap_count); 3835 atomic_inc(&event->rb->mmap_count); 3836 } 3837 3838 /* 3839 * A buffer can be mmap()ed multiple times; either directly through the same 3840 * event, or through other events by use of perf_event_set_output(). 3841 * 3842 * In order to undo the VM accounting done by perf_mmap() we need to destroy 3843 * the buffer here, where we still have a VM context. This means we need 3844 * to detach all events redirecting to us. 3845 */ 3846 static void perf_mmap_close(struct vm_area_struct *vma) 3847 { 3848 struct perf_event *event = vma->vm_file->private_data; 3849 3850 struct ring_buffer *rb = event->rb; 3851 struct user_struct *mmap_user = rb->mmap_user; 3852 int mmap_locked = rb->mmap_locked; 3853 unsigned long size = perf_data_size(rb); 3854 3855 atomic_dec(&rb->mmap_count); 3856 3857 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 3858 return; 3859 3860 /* Detach current event from the buffer. */ 3861 rcu_assign_pointer(event->rb, NULL); 3862 ring_buffer_detach(event, rb); 3863 mutex_unlock(&event->mmap_mutex); 3864 3865 /* If there's still other mmap()s of this buffer, we're done. */ 3866 if (atomic_read(&rb->mmap_count)) { 3867 ring_buffer_put(rb); /* can't be last */ 3868 return; 3869 } 3870 3871 /* 3872 * No other mmap()s, detach from all other events that might redirect 3873 * into the now unreachable buffer. Somewhat complicated by the 3874 * fact that rb::event_lock otherwise nests inside mmap_mutex. 3875 */ 3876 again: 3877 rcu_read_lock(); 3878 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 3879 if (!atomic_long_inc_not_zero(&event->refcount)) { 3880 /* 3881 * This event is en-route to free_event() which will 3882 * detach it and remove it from the list. 3883 */ 3884 continue; 3885 } 3886 rcu_read_unlock(); 3887 3888 mutex_lock(&event->mmap_mutex); 3889 /* 3890 * Check we didn't race with perf_event_set_output() which can 3891 * swizzle the rb from under us while we were waiting to 3892 * acquire mmap_mutex. 3893 * 3894 * If we find a different rb; ignore this event, a next 3895 * iteration will no longer find it on the list. We have to 3896 * still restart the iteration to make sure we're not now 3897 * iterating the wrong list. 3898 */ 3899 if (event->rb == rb) { 3900 rcu_assign_pointer(event->rb, NULL); 3901 ring_buffer_detach(event, rb); 3902 ring_buffer_put(rb); /* can't be last, we still have one */ 3903 } 3904 mutex_unlock(&event->mmap_mutex); 3905 put_event(event); 3906 3907 /* 3908 * Restart the iteration; either we're on the wrong list or 3909 * destroyed its integrity by doing a deletion. 3910 */ 3911 goto again; 3912 } 3913 rcu_read_unlock(); 3914 3915 /* 3916 * It could be there's still a few 0-ref events on the list; they'll 3917 * get cleaned up by free_event() -- they'll also still have their 3918 * ref on the rb and will free it whenever they are done with it. 3919 * 3920 * Aside from that, this buffer is 'fully' detached and unmapped, 3921 * undo the VM accounting. 3922 */ 3923 3924 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 3925 vma->vm_mm->pinned_vm -= mmap_locked; 3926 free_uid(mmap_user); 3927 3928 ring_buffer_put(rb); /* could be last */ 3929 } 3930 3931 static const struct vm_operations_struct perf_mmap_vmops = { 3932 .open = perf_mmap_open, 3933 .close = perf_mmap_close, 3934 .fault = perf_mmap_fault, 3935 .page_mkwrite = perf_mmap_fault, 3936 }; 3937 3938 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3939 { 3940 struct perf_event *event = file->private_data; 3941 unsigned long user_locked, user_lock_limit; 3942 struct user_struct *user = current_user(); 3943 unsigned long locked, lock_limit; 3944 struct ring_buffer *rb; 3945 unsigned long vma_size; 3946 unsigned long nr_pages; 3947 long user_extra, extra; 3948 int ret = 0, flags = 0; 3949 3950 /* 3951 * Don't allow mmap() of inherited per-task counters. This would 3952 * create a performance issue due to all children writing to the 3953 * same rb. 3954 */ 3955 if (event->cpu == -1 && event->attr.inherit) 3956 return -EINVAL; 3957 3958 if (!(vma->vm_flags & VM_SHARED)) 3959 return -EINVAL; 3960 3961 vma_size = vma->vm_end - vma->vm_start; 3962 nr_pages = (vma_size / PAGE_SIZE) - 1; 3963 3964 /* 3965 * If we have rb pages ensure they're a power-of-two number, so we 3966 * can do bitmasks instead of modulo. 3967 */ 3968 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3969 return -EINVAL; 3970 3971 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3972 return -EINVAL; 3973 3974 if (vma->vm_pgoff != 0) 3975 return -EINVAL; 3976 3977 WARN_ON_ONCE(event->ctx->parent_ctx); 3978 again: 3979 mutex_lock(&event->mmap_mutex); 3980 if (event->rb) { 3981 if (event->rb->nr_pages != nr_pages) { 3982 ret = -EINVAL; 3983 goto unlock; 3984 } 3985 3986 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 3987 /* 3988 * Raced against perf_mmap_close() through 3989 * perf_event_set_output(). Try again, hope for better 3990 * luck. 3991 */ 3992 mutex_unlock(&event->mmap_mutex); 3993 goto again; 3994 } 3995 3996 goto unlock; 3997 } 3998 3999 user_extra = nr_pages + 1; 4000 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4001 4002 /* 4003 * Increase the limit linearly with more CPUs: 4004 */ 4005 user_lock_limit *= num_online_cpus(); 4006 4007 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4008 4009 extra = 0; 4010 if (user_locked > user_lock_limit) 4011 extra = user_locked - user_lock_limit; 4012 4013 lock_limit = rlimit(RLIMIT_MEMLOCK); 4014 lock_limit >>= PAGE_SHIFT; 4015 locked = vma->vm_mm->pinned_vm + extra; 4016 4017 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4018 !capable(CAP_IPC_LOCK)) { 4019 ret = -EPERM; 4020 goto unlock; 4021 } 4022 4023 WARN_ON(event->rb); 4024 4025 if (vma->vm_flags & VM_WRITE) 4026 flags |= RING_BUFFER_WRITABLE; 4027 4028 rb = rb_alloc(nr_pages, 4029 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4030 event->cpu, flags); 4031 4032 if (!rb) { 4033 ret = -ENOMEM; 4034 goto unlock; 4035 } 4036 4037 atomic_set(&rb->mmap_count, 1); 4038 rb->mmap_locked = extra; 4039 rb->mmap_user = get_current_user(); 4040 4041 atomic_long_add(user_extra, &user->locked_vm); 4042 vma->vm_mm->pinned_vm += extra; 4043 4044 ring_buffer_attach(event, rb); 4045 rcu_assign_pointer(event->rb, rb); 4046 4047 perf_event_update_userpage(event); 4048 4049 unlock: 4050 if (!ret) 4051 atomic_inc(&event->mmap_count); 4052 mutex_unlock(&event->mmap_mutex); 4053 4054 /* 4055 * Since pinned accounting is per vm we cannot allow fork() to copy our 4056 * vma. 4057 */ 4058 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4059 vma->vm_ops = &perf_mmap_vmops; 4060 4061 return ret; 4062 } 4063 4064 static int perf_fasync(int fd, struct file *filp, int on) 4065 { 4066 struct inode *inode = file_inode(filp); 4067 struct perf_event *event = filp->private_data; 4068 int retval; 4069 4070 mutex_lock(&inode->i_mutex); 4071 retval = fasync_helper(fd, filp, on, &event->fasync); 4072 mutex_unlock(&inode->i_mutex); 4073 4074 if (retval < 0) 4075 return retval; 4076 4077 return 0; 4078 } 4079 4080 static const struct file_operations perf_fops = { 4081 .llseek = no_llseek, 4082 .release = perf_release, 4083 .read = perf_read, 4084 .poll = perf_poll, 4085 .unlocked_ioctl = perf_ioctl, 4086 .compat_ioctl = perf_ioctl, 4087 .mmap = perf_mmap, 4088 .fasync = perf_fasync, 4089 }; 4090 4091 /* 4092 * Perf event wakeup 4093 * 4094 * If there's data, ensure we set the poll() state and publish everything 4095 * to user-space before waking everybody up. 4096 */ 4097 4098 void perf_event_wakeup(struct perf_event *event) 4099 { 4100 ring_buffer_wakeup(event); 4101 4102 if (event->pending_kill) { 4103 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 4104 event->pending_kill = 0; 4105 } 4106 } 4107 4108 static void perf_pending_event(struct irq_work *entry) 4109 { 4110 struct perf_event *event = container_of(entry, 4111 struct perf_event, pending); 4112 4113 if (event->pending_disable) { 4114 event->pending_disable = 0; 4115 __perf_event_disable(event); 4116 } 4117 4118 if (event->pending_wakeup) { 4119 event->pending_wakeup = 0; 4120 perf_event_wakeup(event); 4121 } 4122 } 4123 4124 /* 4125 * We assume there is only KVM supporting the callbacks. 4126 * Later on, we might change it to a list if there is 4127 * another virtualization implementation supporting the callbacks. 4128 */ 4129 struct perf_guest_info_callbacks *perf_guest_cbs; 4130 4131 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4132 { 4133 perf_guest_cbs = cbs; 4134 return 0; 4135 } 4136 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 4137 4138 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4139 { 4140 perf_guest_cbs = NULL; 4141 return 0; 4142 } 4143 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 4144 4145 static void 4146 perf_output_sample_regs(struct perf_output_handle *handle, 4147 struct pt_regs *regs, u64 mask) 4148 { 4149 int bit; 4150 4151 for_each_set_bit(bit, (const unsigned long *) &mask, 4152 sizeof(mask) * BITS_PER_BYTE) { 4153 u64 val; 4154 4155 val = perf_reg_value(regs, bit); 4156 perf_output_put(handle, val); 4157 } 4158 } 4159 4160 static void perf_sample_regs_user(struct perf_regs_user *regs_user, 4161 struct pt_regs *regs) 4162 { 4163 if (!user_mode(regs)) { 4164 if (current->mm) 4165 regs = task_pt_regs(current); 4166 else 4167 regs = NULL; 4168 } 4169 4170 if (regs) { 4171 regs_user->regs = regs; 4172 regs_user->abi = perf_reg_abi(current); 4173 } 4174 } 4175 4176 /* 4177 * Get remaining task size from user stack pointer. 4178 * 4179 * It'd be better to take stack vma map and limit this more 4180 * precisly, but there's no way to get it safely under interrupt, 4181 * so using TASK_SIZE as limit. 4182 */ 4183 static u64 perf_ustack_task_size(struct pt_regs *regs) 4184 { 4185 unsigned long addr = perf_user_stack_pointer(regs); 4186 4187 if (!addr || addr >= TASK_SIZE) 4188 return 0; 4189 4190 return TASK_SIZE - addr; 4191 } 4192 4193 static u16 4194 perf_sample_ustack_size(u16 stack_size, u16 header_size, 4195 struct pt_regs *regs) 4196 { 4197 u64 task_size; 4198 4199 /* No regs, no stack pointer, no dump. */ 4200 if (!regs) 4201 return 0; 4202 4203 /* 4204 * Check if we fit in with the requested stack size into the: 4205 * - TASK_SIZE 4206 * If we don't, we limit the size to the TASK_SIZE. 4207 * 4208 * - remaining sample size 4209 * If we don't, we customize the stack size to 4210 * fit in to the remaining sample size. 4211 */ 4212 4213 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 4214 stack_size = min(stack_size, (u16) task_size); 4215 4216 /* Current header size plus static size and dynamic size. */ 4217 header_size += 2 * sizeof(u64); 4218 4219 /* Do we fit in with the current stack dump size? */ 4220 if ((u16) (header_size + stack_size) < header_size) { 4221 /* 4222 * If we overflow the maximum size for the sample, 4223 * we customize the stack dump size to fit in. 4224 */ 4225 stack_size = USHRT_MAX - header_size - sizeof(u64); 4226 stack_size = round_up(stack_size, sizeof(u64)); 4227 } 4228 4229 return stack_size; 4230 } 4231 4232 static void 4233 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 4234 struct pt_regs *regs) 4235 { 4236 /* Case of a kernel thread, nothing to dump */ 4237 if (!regs) { 4238 u64 size = 0; 4239 perf_output_put(handle, size); 4240 } else { 4241 unsigned long sp; 4242 unsigned int rem; 4243 u64 dyn_size; 4244 4245 /* 4246 * We dump: 4247 * static size 4248 * - the size requested by user or the best one we can fit 4249 * in to the sample max size 4250 * data 4251 * - user stack dump data 4252 * dynamic size 4253 * - the actual dumped size 4254 */ 4255 4256 /* Static size. */ 4257 perf_output_put(handle, dump_size); 4258 4259 /* Data. */ 4260 sp = perf_user_stack_pointer(regs); 4261 rem = __output_copy_user(handle, (void *) sp, dump_size); 4262 dyn_size = dump_size - rem; 4263 4264 perf_output_skip(handle, rem); 4265 4266 /* Dynamic size. */ 4267 perf_output_put(handle, dyn_size); 4268 } 4269 } 4270 4271 static void __perf_event_header__init_id(struct perf_event_header *header, 4272 struct perf_sample_data *data, 4273 struct perf_event *event) 4274 { 4275 u64 sample_type = event->attr.sample_type; 4276 4277 data->type = sample_type; 4278 header->size += event->id_header_size; 4279 4280 if (sample_type & PERF_SAMPLE_TID) { 4281 /* namespace issues */ 4282 data->tid_entry.pid = perf_event_pid(event, current); 4283 data->tid_entry.tid = perf_event_tid(event, current); 4284 } 4285 4286 if (sample_type & PERF_SAMPLE_TIME) 4287 data->time = perf_clock(); 4288 4289 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 4290 data->id = primary_event_id(event); 4291 4292 if (sample_type & PERF_SAMPLE_STREAM_ID) 4293 data->stream_id = event->id; 4294 4295 if (sample_type & PERF_SAMPLE_CPU) { 4296 data->cpu_entry.cpu = raw_smp_processor_id(); 4297 data->cpu_entry.reserved = 0; 4298 } 4299 } 4300 4301 void perf_event_header__init_id(struct perf_event_header *header, 4302 struct perf_sample_data *data, 4303 struct perf_event *event) 4304 { 4305 if (event->attr.sample_id_all) 4306 __perf_event_header__init_id(header, data, event); 4307 } 4308 4309 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 4310 struct perf_sample_data *data) 4311 { 4312 u64 sample_type = data->type; 4313 4314 if (sample_type & PERF_SAMPLE_TID) 4315 perf_output_put(handle, data->tid_entry); 4316 4317 if (sample_type & PERF_SAMPLE_TIME) 4318 perf_output_put(handle, data->time); 4319 4320 if (sample_type & PERF_SAMPLE_ID) 4321 perf_output_put(handle, data->id); 4322 4323 if (sample_type & PERF_SAMPLE_STREAM_ID) 4324 perf_output_put(handle, data->stream_id); 4325 4326 if (sample_type & PERF_SAMPLE_CPU) 4327 perf_output_put(handle, data->cpu_entry); 4328 4329 if (sample_type & PERF_SAMPLE_IDENTIFIER) 4330 perf_output_put(handle, data->id); 4331 } 4332 4333 void perf_event__output_id_sample(struct perf_event *event, 4334 struct perf_output_handle *handle, 4335 struct perf_sample_data *sample) 4336 { 4337 if (event->attr.sample_id_all) 4338 __perf_event__output_id_sample(handle, sample); 4339 } 4340 4341 static void perf_output_read_one(struct perf_output_handle *handle, 4342 struct perf_event *event, 4343 u64 enabled, u64 running) 4344 { 4345 u64 read_format = event->attr.read_format; 4346 u64 values[4]; 4347 int n = 0; 4348 4349 values[n++] = perf_event_count(event); 4350 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4351 values[n++] = enabled + 4352 atomic64_read(&event->child_total_time_enabled); 4353 } 4354 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4355 values[n++] = running + 4356 atomic64_read(&event->child_total_time_running); 4357 } 4358 if (read_format & PERF_FORMAT_ID) 4359 values[n++] = primary_event_id(event); 4360 4361 __output_copy(handle, values, n * sizeof(u64)); 4362 } 4363 4364 /* 4365 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 4366 */ 4367 static void perf_output_read_group(struct perf_output_handle *handle, 4368 struct perf_event *event, 4369 u64 enabled, u64 running) 4370 { 4371 struct perf_event *leader = event->group_leader, *sub; 4372 u64 read_format = event->attr.read_format; 4373 u64 values[5]; 4374 int n = 0; 4375 4376 values[n++] = 1 + leader->nr_siblings; 4377 4378 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4379 values[n++] = enabled; 4380 4381 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4382 values[n++] = running; 4383 4384 if (leader != event) 4385 leader->pmu->read(leader); 4386 4387 values[n++] = perf_event_count(leader); 4388 if (read_format & PERF_FORMAT_ID) 4389 values[n++] = primary_event_id(leader); 4390 4391 __output_copy(handle, values, n * sizeof(u64)); 4392 4393 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4394 n = 0; 4395 4396 if ((sub != event) && 4397 (sub->state == PERF_EVENT_STATE_ACTIVE)) 4398 sub->pmu->read(sub); 4399 4400 values[n++] = perf_event_count(sub); 4401 if (read_format & PERF_FORMAT_ID) 4402 values[n++] = primary_event_id(sub); 4403 4404 __output_copy(handle, values, n * sizeof(u64)); 4405 } 4406 } 4407 4408 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 4409 PERF_FORMAT_TOTAL_TIME_RUNNING) 4410 4411 static void perf_output_read(struct perf_output_handle *handle, 4412 struct perf_event *event) 4413 { 4414 u64 enabled = 0, running = 0, now; 4415 u64 read_format = event->attr.read_format; 4416 4417 /* 4418 * compute total_time_enabled, total_time_running 4419 * based on snapshot values taken when the event 4420 * was last scheduled in. 4421 * 4422 * we cannot simply called update_context_time() 4423 * because of locking issue as we are called in 4424 * NMI context 4425 */ 4426 if (read_format & PERF_FORMAT_TOTAL_TIMES) 4427 calc_timer_values(event, &now, &enabled, &running); 4428 4429 if (event->attr.read_format & PERF_FORMAT_GROUP) 4430 perf_output_read_group(handle, event, enabled, running); 4431 else 4432 perf_output_read_one(handle, event, enabled, running); 4433 } 4434 4435 void perf_output_sample(struct perf_output_handle *handle, 4436 struct perf_event_header *header, 4437 struct perf_sample_data *data, 4438 struct perf_event *event) 4439 { 4440 u64 sample_type = data->type; 4441 4442 perf_output_put(handle, *header); 4443 4444 if (sample_type & PERF_SAMPLE_IDENTIFIER) 4445 perf_output_put(handle, data->id); 4446 4447 if (sample_type & PERF_SAMPLE_IP) 4448 perf_output_put(handle, data->ip); 4449 4450 if (sample_type & PERF_SAMPLE_TID) 4451 perf_output_put(handle, data->tid_entry); 4452 4453 if (sample_type & PERF_SAMPLE_TIME) 4454 perf_output_put(handle, data->time); 4455 4456 if (sample_type & PERF_SAMPLE_ADDR) 4457 perf_output_put(handle, data->addr); 4458 4459 if (sample_type & PERF_SAMPLE_ID) 4460 perf_output_put(handle, data->id); 4461 4462 if (sample_type & PERF_SAMPLE_STREAM_ID) 4463 perf_output_put(handle, data->stream_id); 4464 4465 if (sample_type & PERF_SAMPLE_CPU) 4466 perf_output_put(handle, data->cpu_entry); 4467 4468 if (sample_type & PERF_SAMPLE_PERIOD) 4469 perf_output_put(handle, data->period); 4470 4471 if (sample_type & PERF_SAMPLE_READ) 4472 perf_output_read(handle, event); 4473 4474 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4475 if (data->callchain) { 4476 int size = 1; 4477 4478 if (data->callchain) 4479 size += data->callchain->nr; 4480 4481 size *= sizeof(u64); 4482 4483 __output_copy(handle, data->callchain, size); 4484 } else { 4485 u64 nr = 0; 4486 perf_output_put(handle, nr); 4487 } 4488 } 4489 4490 if (sample_type & PERF_SAMPLE_RAW) { 4491 if (data->raw) { 4492 perf_output_put(handle, data->raw->size); 4493 __output_copy(handle, data->raw->data, 4494 data->raw->size); 4495 } else { 4496 struct { 4497 u32 size; 4498 u32 data; 4499 } raw = { 4500 .size = sizeof(u32), 4501 .data = 0, 4502 }; 4503 perf_output_put(handle, raw); 4504 } 4505 } 4506 4507 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4508 if (data->br_stack) { 4509 size_t size; 4510 4511 size = data->br_stack->nr 4512 * sizeof(struct perf_branch_entry); 4513 4514 perf_output_put(handle, data->br_stack->nr); 4515 perf_output_copy(handle, data->br_stack->entries, size); 4516 } else { 4517 /* 4518 * we always store at least the value of nr 4519 */ 4520 u64 nr = 0; 4521 perf_output_put(handle, nr); 4522 } 4523 } 4524 4525 if (sample_type & PERF_SAMPLE_REGS_USER) { 4526 u64 abi = data->regs_user.abi; 4527 4528 /* 4529 * If there are no regs to dump, notice it through 4530 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 4531 */ 4532 perf_output_put(handle, abi); 4533 4534 if (abi) { 4535 u64 mask = event->attr.sample_regs_user; 4536 perf_output_sample_regs(handle, 4537 data->regs_user.regs, 4538 mask); 4539 } 4540 } 4541 4542 if (sample_type & PERF_SAMPLE_STACK_USER) { 4543 perf_output_sample_ustack(handle, 4544 data->stack_user_size, 4545 data->regs_user.regs); 4546 } 4547 4548 if (sample_type & PERF_SAMPLE_WEIGHT) 4549 perf_output_put(handle, data->weight); 4550 4551 if (sample_type & PERF_SAMPLE_DATA_SRC) 4552 perf_output_put(handle, data->data_src.val); 4553 4554 if (!event->attr.watermark) { 4555 int wakeup_events = event->attr.wakeup_events; 4556 4557 if (wakeup_events) { 4558 struct ring_buffer *rb = handle->rb; 4559 int events = local_inc_return(&rb->events); 4560 4561 if (events >= wakeup_events) { 4562 local_sub(wakeup_events, &rb->events); 4563 local_inc(&rb->wakeup); 4564 } 4565 } 4566 } 4567 } 4568 4569 void perf_prepare_sample(struct perf_event_header *header, 4570 struct perf_sample_data *data, 4571 struct perf_event *event, 4572 struct pt_regs *regs) 4573 { 4574 u64 sample_type = event->attr.sample_type; 4575 4576 header->type = PERF_RECORD_SAMPLE; 4577 header->size = sizeof(*header) + event->header_size; 4578 4579 header->misc = 0; 4580 header->misc |= perf_misc_flags(regs); 4581 4582 __perf_event_header__init_id(header, data, event); 4583 4584 if (sample_type & PERF_SAMPLE_IP) 4585 data->ip = perf_instruction_pointer(regs); 4586 4587 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4588 int size = 1; 4589 4590 data->callchain = perf_callchain(event, regs); 4591 4592 if (data->callchain) 4593 size += data->callchain->nr; 4594 4595 header->size += size * sizeof(u64); 4596 } 4597 4598 if (sample_type & PERF_SAMPLE_RAW) { 4599 int size = sizeof(u32); 4600 4601 if (data->raw) 4602 size += data->raw->size; 4603 else 4604 size += sizeof(u32); 4605 4606 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4607 header->size += size; 4608 } 4609 4610 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4611 int size = sizeof(u64); /* nr */ 4612 if (data->br_stack) { 4613 size += data->br_stack->nr 4614 * sizeof(struct perf_branch_entry); 4615 } 4616 header->size += size; 4617 } 4618 4619 if (sample_type & PERF_SAMPLE_REGS_USER) { 4620 /* regs dump ABI info */ 4621 int size = sizeof(u64); 4622 4623 perf_sample_regs_user(&data->regs_user, regs); 4624 4625 if (data->regs_user.regs) { 4626 u64 mask = event->attr.sample_regs_user; 4627 size += hweight64(mask) * sizeof(u64); 4628 } 4629 4630 header->size += size; 4631 } 4632 4633 if (sample_type & PERF_SAMPLE_STACK_USER) { 4634 /* 4635 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 4636 * processed as the last one or have additional check added 4637 * in case new sample type is added, because we could eat 4638 * up the rest of the sample size. 4639 */ 4640 struct perf_regs_user *uregs = &data->regs_user; 4641 u16 stack_size = event->attr.sample_stack_user; 4642 u16 size = sizeof(u64); 4643 4644 if (!uregs->abi) 4645 perf_sample_regs_user(uregs, regs); 4646 4647 stack_size = perf_sample_ustack_size(stack_size, header->size, 4648 uregs->regs); 4649 4650 /* 4651 * If there is something to dump, add space for the dump 4652 * itself and for the field that tells the dynamic size, 4653 * which is how many have been actually dumped. 4654 */ 4655 if (stack_size) 4656 size += sizeof(u64) + stack_size; 4657 4658 data->stack_user_size = stack_size; 4659 header->size += size; 4660 } 4661 } 4662 4663 static void perf_event_output(struct perf_event *event, 4664 struct perf_sample_data *data, 4665 struct pt_regs *regs) 4666 { 4667 struct perf_output_handle handle; 4668 struct perf_event_header header; 4669 4670 /* protect the callchain buffers */ 4671 rcu_read_lock(); 4672 4673 perf_prepare_sample(&header, data, event, regs); 4674 4675 if (perf_output_begin(&handle, event, header.size)) 4676 goto exit; 4677 4678 perf_output_sample(&handle, &header, data, event); 4679 4680 perf_output_end(&handle); 4681 4682 exit: 4683 rcu_read_unlock(); 4684 } 4685 4686 /* 4687 * read event_id 4688 */ 4689 4690 struct perf_read_event { 4691 struct perf_event_header header; 4692 4693 u32 pid; 4694 u32 tid; 4695 }; 4696 4697 static void 4698 perf_event_read_event(struct perf_event *event, 4699 struct task_struct *task) 4700 { 4701 struct perf_output_handle handle; 4702 struct perf_sample_data sample; 4703 struct perf_read_event read_event = { 4704 .header = { 4705 .type = PERF_RECORD_READ, 4706 .misc = 0, 4707 .size = sizeof(read_event) + event->read_size, 4708 }, 4709 .pid = perf_event_pid(event, task), 4710 .tid = perf_event_tid(event, task), 4711 }; 4712 int ret; 4713 4714 perf_event_header__init_id(&read_event.header, &sample, event); 4715 ret = perf_output_begin(&handle, event, read_event.header.size); 4716 if (ret) 4717 return; 4718 4719 perf_output_put(&handle, read_event); 4720 perf_output_read(&handle, event); 4721 perf_event__output_id_sample(event, &handle, &sample); 4722 4723 perf_output_end(&handle); 4724 } 4725 4726 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 4727 4728 static void 4729 perf_event_aux_ctx(struct perf_event_context *ctx, 4730 perf_event_aux_output_cb output, 4731 void *data) 4732 { 4733 struct perf_event *event; 4734 4735 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4736 if (event->state < PERF_EVENT_STATE_INACTIVE) 4737 continue; 4738 if (!event_filter_match(event)) 4739 continue; 4740 output(event, data); 4741 } 4742 } 4743 4744 static void 4745 perf_event_aux(perf_event_aux_output_cb output, void *data, 4746 struct perf_event_context *task_ctx) 4747 { 4748 struct perf_cpu_context *cpuctx; 4749 struct perf_event_context *ctx; 4750 struct pmu *pmu; 4751 int ctxn; 4752 4753 rcu_read_lock(); 4754 list_for_each_entry_rcu(pmu, &pmus, entry) { 4755 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4756 if (cpuctx->unique_pmu != pmu) 4757 goto next; 4758 perf_event_aux_ctx(&cpuctx->ctx, output, data); 4759 if (task_ctx) 4760 goto next; 4761 ctxn = pmu->task_ctx_nr; 4762 if (ctxn < 0) 4763 goto next; 4764 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4765 if (ctx) 4766 perf_event_aux_ctx(ctx, output, data); 4767 next: 4768 put_cpu_ptr(pmu->pmu_cpu_context); 4769 } 4770 4771 if (task_ctx) { 4772 preempt_disable(); 4773 perf_event_aux_ctx(task_ctx, output, data); 4774 preempt_enable(); 4775 } 4776 rcu_read_unlock(); 4777 } 4778 4779 /* 4780 * task tracking -- fork/exit 4781 * 4782 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 4783 */ 4784 4785 struct perf_task_event { 4786 struct task_struct *task; 4787 struct perf_event_context *task_ctx; 4788 4789 struct { 4790 struct perf_event_header header; 4791 4792 u32 pid; 4793 u32 ppid; 4794 u32 tid; 4795 u32 ptid; 4796 u64 time; 4797 } event_id; 4798 }; 4799 4800 static int perf_event_task_match(struct perf_event *event) 4801 { 4802 return event->attr.comm || event->attr.mmap || 4803 event->attr.mmap2 || event->attr.mmap_data || 4804 event->attr.task; 4805 } 4806 4807 static void perf_event_task_output(struct perf_event *event, 4808 void *data) 4809 { 4810 struct perf_task_event *task_event = data; 4811 struct perf_output_handle handle; 4812 struct perf_sample_data sample; 4813 struct task_struct *task = task_event->task; 4814 int ret, size = task_event->event_id.header.size; 4815 4816 if (!perf_event_task_match(event)) 4817 return; 4818 4819 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4820 4821 ret = perf_output_begin(&handle, event, 4822 task_event->event_id.header.size); 4823 if (ret) 4824 goto out; 4825 4826 task_event->event_id.pid = perf_event_pid(event, task); 4827 task_event->event_id.ppid = perf_event_pid(event, current); 4828 4829 task_event->event_id.tid = perf_event_tid(event, task); 4830 task_event->event_id.ptid = perf_event_tid(event, current); 4831 4832 perf_output_put(&handle, task_event->event_id); 4833 4834 perf_event__output_id_sample(event, &handle, &sample); 4835 4836 perf_output_end(&handle); 4837 out: 4838 task_event->event_id.header.size = size; 4839 } 4840 4841 static void perf_event_task(struct task_struct *task, 4842 struct perf_event_context *task_ctx, 4843 int new) 4844 { 4845 struct perf_task_event task_event; 4846 4847 if (!atomic_read(&nr_comm_events) && 4848 !atomic_read(&nr_mmap_events) && 4849 !atomic_read(&nr_task_events)) 4850 return; 4851 4852 task_event = (struct perf_task_event){ 4853 .task = task, 4854 .task_ctx = task_ctx, 4855 .event_id = { 4856 .header = { 4857 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4858 .misc = 0, 4859 .size = sizeof(task_event.event_id), 4860 }, 4861 /* .pid */ 4862 /* .ppid */ 4863 /* .tid */ 4864 /* .ptid */ 4865 .time = perf_clock(), 4866 }, 4867 }; 4868 4869 perf_event_aux(perf_event_task_output, 4870 &task_event, 4871 task_ctx); 4872 } 4873 4874 void perf_event_fork(struct task_struct *task) 4875 { 4876 perf_event_task(task, NULL, 1); 4877 } 4878 4879 /* 4880 * comm tracking 4881 */ 4882 4883 struct perf_comm_event { 4884 struct task_struct *task; 4885 char *comm; 4886 int comm_size; 4887 4888 struct { 4889 struct perf_event_header header; 4890 4891 u32 pid; 4892 u32 tid; 4893 } event_id; 4894 }; 4895 4896 static int perf_event_comm_match(struct perf_event *event) 4897 { 4898 return event->attr.comm; 4899 } 4900 4901 static void perf_event_comm_output(struct perf_event *event, 4902 void *data) 4903 { 4904 struct perf_comm_event *comm_event = data; 4905 struct perf_output_handle handle; 4906 struct perf_sample_data sample; 4907 int size = comm_event->event_id.header.size; 4908 int ret; 4909 4910 if (!perf_event_comm_match(event)) 4911 return; 4912 4913 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4914 ret = perf_output_begin(&handle, event, 4915 comm_event->event_id.header.size); 4916 4917 if (ret) 4918 goto out; 4919 4920 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4921 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4922 4923 perf_output_put(&handle, comm_event->event_id); 4924 __output_copy(&handle, comm_event->comm, 4925 comm_event->comm_size); 4926 4927 perf_event__output_id_sample(event, &handle, &sample); 4928 4929 perf_output_end(&handle); 4930 out: 4931 comm_event->event_id.header.size = size; 4932 } 4933 4934 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4935 { 4936 char comm[TASK_COMM_LEN]; 4937 unsigned int size; 4938 4939 memset(comm, 0, sizeof(comm)); 4940 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4941 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4942 4943 comm_event->comm = comm; 4944 comm_event->comm_size = size; 4945 4946 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4947 4948 perf_event_aux(perf_event_comm_output, 4949 comm_event, 4950 NULL); 4951 } 4952 4953 void perf_event_comm(struct task_struct *task) 4954 { 4955 struct perf_comm_event comm_event; 4956 struct perf_event_context *ctx; 4957 int ctxn; 4958 4959 rcu_read_lock(); 4960 for_each_task_context_nr(ctxn) { 4961 ctx = task->perf_event_ctxp[ctxn]; 4962 if (!ctx) 4963 continue; 4964 4965 perf_event_enable_on_exec(ctx); 4966 } 4967 rcu_read_unlock(); 4968 4969 if (!atomic_read(&nr_comm_events)) 4970 return; 4971 4972 comm_event = (struct perf_comm_event){ 4973 .task = task, 4974 /* .comm */ 4975 /* .comm_size */ 4976 .event_id = { 4977 .header = { 4978 .type = PERF_RECORD_COMM, 4979 .misc = 0, 4980 /* .size */ 4981 }, 4982 /* .pid */ 4983 /* .tid */ 4984 }, 4985 }; 4986 4987 perf_event_comm_event(&comm_event); 4988 } 4989 4990 /* 4991 * mmap tracking 4992 */ 4993 4994 struct perf_mmap_event { 4995 struct vm_area_struct *vma; 4996 4997 const char *file_name; 4998 int file_size; 4999 int maj, min; 5000 u64 ino; 5001 u64 ino_generation; 5002 5003 struct { 5004 struct perf_event_header header; 5005 5006 u32 pid; 5007 u32 tid; 5008 u64 start; 5009 u64 len; 5010 u64 pgoff; 5011 } event_id; 5012 }; 5013 5014 static int perf_event_mmap_match(struct perf_event *event, 5015 void *data) 5016 { 5017 struct perf_mmap_event *mmap_event = data; 5018 struct vm_area_struct *vma = mmap_event->vma; 5019 int executable = vma->vm_flags & VM_EXEC; 5020 5021 return (!executable && event->attr.mmap_data) || 5022 (executable && (event->attr.mmap || event->attr.mmap2)); 5023 } 5024 5025 static void perf_event_mmap_output(struct perf_event *event, 5026 void *data) 5027 { 5028 struct perf_mmap_event *mmap_event = data; 5029 struct perf_output_handle handle; 5030 struct perf_sample_data sample; 5031 int size = mmap_event->event_id.header.size; 5032 int ret; 5033 5034 if (!perf_event_mmap_match(event, data)) 5035 return; 5036 5037 if (event->attr.mmap2) { 5038 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 5039 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 5040 mmap_event->event_id.header.size += sizeof(mmap_event->min); 5041 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 5042 } 5043 5044 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 5045 ret = perf_output_begin(&handle, event, 5046 mmap_event->event_id.header.size); 5047 if (ret) 5048 goto out; 5049 5050 mmap_event->event_id.pid = perf_event_pid(event, current); 5051 mmap_event->event_id.tid = perf_event_tid(event, current); 5052 5053 perf_output_put(&handle, mmap_event->event_id); 5054 5055 if (event->attr.mmap2) { 5056 perf_output_put(&handle, mmap_event->maj); 5057 perf_output_put(&handle, mmap_event->min); 5058 perf_output_put(&handle, mmap_event->ino); 5059 perf_output_put(&handle, mmap_event->ino_generation); 5060 } 5061 5062 __output_copy(&handle, mmap_event->file_name, 5063 mmap_event->file_size); 5064 5065 perf_event__output_id_sample(event, &handle, &sample); 5066 5067 perf_output_end(&handle); 5068 out: 5069 mmap_event->event_id.header.size = size; 5070 } 5071 5072 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 5073 { 5074 struct vm_area_struct *vma = mmap_event->vma; 5075 struct file *file = vma->vm_file; 5076 int maj = 0, min = 0; 5077 u64 ino = 0, gen = 0; 5078 unsigned int size; 5079 char tmp[16]; 5080 char *buf = NULL; 5081 const char *name; 5082 5083 memset(tmp, 0, sizeof(tmp)); 5084 5085 if (file) { 5086 struct inode *inode; 5087 dev_t dev; 5088 /* 5089 * d_path works from the end of the rb backwards, so we 5090 * need to add enough zero bytes after the string to handle 5091 * the 64bit alignment we do later. 5092 */ 5093 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 5094 if (!buf) { 5095 name = strncpy(tmp, "//enomem", sizeof(tmp)); 5096 goto got_name; 5097 } 5098 name = d_path(&file->f_path, buf, PATH_MAX); 5099 if (IS_ERR(name)) { 5100 name = strncpy(tmp, "//toolong", sizeof(tmp)); 5101 goto got_name; 5102 } 5103 inode = file_inode(vma->vm_file); 5104 dev = inode->i_sb->s_dev; 5105 ino = inode->i_ino; 5106 gen = inode->i_generation; 5107 maj = MAJOR(dev); 5108 min = MINOR(dev); 5109 5110 } else { 5111 if (arch_vma_name(mmap_event->vma)) { 5112 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 5113 sizeof(tmp) - 1); 5114 tmp[sizeof(tmp) - 1] = '\0'; 5115 goto got_name; 5116 } 5117 5118 if (!vma->vm_mm) { 5119 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 5120 goto got_name; 5121 } else if (vma->vm_start <= vma->vm_mm->start_brk && 5122 vma->vm_end >= vma->vm_mm->brk) { 5123 name = strncpy(tmp, "[heap]", sizeof(tmp)); 5124 goto got_name; 5125 } else if (vma->vm_start <= vma->vm_mm->start_stack && 5126 vma->vm_end >= vma->vm_mm->start_stack) { 5127 name = strncpy(tmp, "[stack]", sizeof(tmp)); 5128 goto got_name; 5129 } 5130 5131 name = strncpy(tmp, "//anon", sizeof(tmp)); 5132 goto got_name; 5133 } 5134 5135 got_name: 5136 size = ALIGN(strlen(name)+1, sizeof(u64)); 5137 5138 mmap_event->file_name = name; 5139 mmap_event->file_size = size; 5140 mmap_event->maj = maj; 5141 mmap_event->min = min; 5142 mmap_event->ino = ino; 5143 mmap_event->ino_generation = gen; 5144 5145 if (!(vma->vm_flags & VM_EXEC)) 5146 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 5147 5148 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 5149 5150 perf_event_aux(perf_event_mmap_output, 5151 mmap_event, 5152 NULL); 5153 5154 kfree(buf); 5155 } 5156 5157 void perf_event_mmap(struct vm_area_struct *vma) 5158 { 5159 struct perf_mmap_event mmap_event; 5160 5161 if (!atomic_read(&nr_mmap_events)) 5162 return; 5163 5164 mmap_event = (struct perf_mmap_event){ 5165 .vma = vma, 5166 /* .file_name */ 5167 /* .file_size */ 5168 .event_id = { 5169 .header = { 5170 .type = PERF_RECORD_MMAP, 5171 .misc = PERF_RECORD_MISC_USER, 5172 /* .size */ 5173 }, 5174 /* .pid */ 5175 /* .tid */ 5176 .start = vma->vm_start, 5177 .len = vma->vm_end - vma->vm_start, 5178 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 5179 }, 5180 /* .maj (attr_mmap2 only) */ 5181 /* .min (attr_mmap2 only) */ 5182 /* .ino (attr_mmap2 only) */ 5183 /* .ino_generation (attr_mmap2 only) */ 5184 }; 5185 5186 perf_event_mmap_event(&mmap_event); 5187 } 5188 5189 /* 5190 * IRQ throttle logging 5191 */ 5192 5193 static void perf_log_throttle(struct perf_event *event, int enable) 5194 { 5195 struct perf_output_handle handle; 5196 struct perf_sample_data sample; 5197 int ret; 5198 5199 struct { 5200 struct perf_event_header header; 5201 u64 time; 5202 u64 id; 5203 u64 stream_id; 5204 } throttle_event = { 5205 .header = { 5206 .type = PERF_RECORD_THROTTLE, 5207 .misc = 0, 5208 .size = sizeof(throttle_event), 5209 }, 5210 .time = perf_clock(), 5211 .id = primary_event_id(event), 5212 .stream_id = event->id, 5213 }; 5214 5215 if (enable) 5216 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 5217 5218 perf_event_header__init_id(&throttle_event.header, &sample, event); 5219 5220 ret = perf_output_begin(&handle, event, 5221 throttle_event.header.size); 5222 if (ret) 5223 return; 5224 5225 perf_output_put(&handle, throttle_event); 5226 perf_event__output_id_sample(event, &handle, &sample); 5227 perf_output_end(&handle); 5228 } 5229 5230 /* 5231 * Generic event overflow handling, sampling. 5232 */ 5233 5234 static int __perf_event_overflow(struct perf_event *event, 5235 int throttle, struct perf_sample_data *data, 5236 struct pt_regs *regs) 5237 { 5238 int events = atomic_read(&event->event_limit); 5239 struct hw_perf_event *hwc = &event->hw; 5240 u64 seq; 5241 int ret = 0; 5242 5243 /* 5244 * Non-sampling counters might still use the PMI to fold short 5245 * hardware counters, ignore those. 5246 */ 5247 if (unlikely(!is_sampling_event(event))) 5248 return 0; 5249 5250 seq = __this_cpu_read(perf_throttled_seq); 5251 if (seq != hwc->interrupts_seq) { 5252 hwc->interrupts_seq = seq; 5253 hwc->interrupts = 1; 5254 } else { 5255 hwc->interrupts++; 5256 if (unlikely(throttle 5257 && hwc->interrupts >= max_samples_per_tick)) { 5258 __this_cpu_inc(perf_throttled_count); 5259 hwc->interrupts = MAX_INTERRUPTS; 5260 perf_log_throttle(event, 0); 5261 tick_nohz_full_kick(); 5262 ret = 1; 5263 } 5264 } 5265 5266 if (event->attr.freq) { 5267 u64 now = perf_clock(); 5268 s64 delta = now - hwc->freq_time_stamp; 5269 5270 hwc->freq_time_stamp = now; 5271 5272 if (delta > 0 && delta < 2*TICK_NSEC) 5273 perf_adjust_period(event, delta, hwc->last_period, true); 5274 } 5275 5276 /* 5277 * XXX event_limit might not quite work as expected on inherited 5278 * events 5279 */ 5280 5281 event->pending_kill = POLL_IN; 5282 if (events && atomic_dec_and_test(&event->event_limit)) { 5283 ret = 1; 5284 event->pending_kill = POLL_HUP; 5285 event->pending_disable = 1; 5286 irq_work_queue(&event->pending); 5287 } 5288 5289 if (event->overflow_handler) 5290 event->overflow_handler(event, data, regs); 5291 else 5292 perf_event_output(event, data, regs); 5293 5294 if (event->fasync && event->pending_kill) { 5295 event->pending_wakeup = 1; 5296 irq_work_queue(&event->pending); 5297 } 5298 5299 return ret; 5300 } 5301 5302 int perf_event_overflow(struct perf_event *event, 5303 struct perf_sample_data *data, 5304 struct pt_regs *regs) 5305 { 5306 return __perf_event_overflow(event, 1, data, regs); 5307 } 5308 5309 /* 5310 * Generic software event infrastructure 5311 */ 5312 5313 struct swevent_htable { 5314 struct swevent_hlist *swevent_hlist; 5315 struct mutex hlist_mutex; 5316 int hlist_refcount; 5317 5318 /* Recursion avoidance in each contexts */ 5319 int recursion[PERF_NR_CONTEXTS]; 5320 }; 5321 5322 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 5323 5324 /* 5325 * We directly increment event->count and keep a second value in 5326 * event->hw.period_left to count intervals. This period event 5327 * is kept in the range [-sample_period, 0] so that we can use the 5328 * sign as trigger. 5329 */ 5330 5331 u64 perf_swevent_set_period(struct perf_event *event) 5332 { 5333 struct hw_perf_event *hwc = &event->hw; 5334 u64 period = hwc->last_period; 5335 u64 nr, offset; 5336 s64 old, val; 5337 5338 hwc->last_period = hwc->sample_period; 5339 5340 again: 5341 old = val = local64_read(&hwc->period_left); 5342 if (val < 0) 5343 return 0; 5344 5345 nr = div64_u64(period + val, period); 5346 offset = nr * period; 5347 val -= offset; 5348 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 5349 goto again; 5350 5351 return nr; 5352 } 5353 5354 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 5355 struct perf_sample_data *data, 5356 struct pt_regs *regs) 5357 { 5358 struct hw_perf_event *hwc = &event->hw; 5359 int throttle = 0; 5360 5361 if (!overflow) 5362 overflow = perf_swevent_set_period(event); 5363 5364 if (hwc->interrupts == MAX_INTERRUPTS) 5365 return; 5366 5367 for (; overflow; overflow--) { 5368 if (__perf_event_overflow(event, throttle, 5369 data, regs)) { 5370 /* 5371 * We inhibit the overflow from happening when 5372 * hwc->interrupts == MAX_INTERRUPTS. 5373 */ 5374 break; 5375 } 5376 throttle = 1; 5377 } 5378 } 5379 5380 static void perf_swevent_event(struct perf_event *event, u64 nr, 5381 struct perf_sample_data *data, 5382 struct pt_regs *regs) 5383 { 5384 struct hw_perf_event *hwc = &event->hw; 5385 5386 local64_add(nr, &event->count); 5387 5388 if (!regs) 5389 return; 5390 5391 if (!is_sampling_event(event)) 5392 return; 5393 5394 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 5395 data->period = nr; 5396 return perf_swevent_overflow(event, 1, data, regs); 5397 } else 5398 data->period = event->hw.last_period; 5399 5400 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 5401 return perf_swevent_overflow(event, 1, data, regs); 5402 5403 if (local64_add_negative(nr, &hwc->period_left)) 5404 return; 5405 5406 perf_swevent_overflow(event, 0, data, regs); 5407 } 5408 5409 static int perf_exclude_event(struct perf_event *event, 5410 struct pt_regs *regs) 5411 { 5412 if (event->hw.state & PERF_HES_STOPPED) 5413 return 1; 5414 5415 if (regs) { 5416 if (event->attr.exclude_user && user_mode(regs)) 5417 return 1; 5418 5419 if (event->attr.exclude_kernel && !user_mode(regs)) 5420 return 1; 5421 } 5422 5423 return 0; 5424 } 5425 5426 static int perf_swevent_match(struct perf_event *event, 5427 enum perf_type_id type, 5428 u32 event_id, 5429 struct perf_sample_data *data, 5430 struct pt_regs *regs) 5431 { 5432 if (event->attr.type != type) 5433 return 0; 5434 5435 if (event->attr.config != event_id) 5436 return 0; 5437 5438 if (perf_exclude_event(event, regs)) 5439 return 0; 5440 5441 return 1; 5442 } 5443 5444 static inline u64 swevent_hash(u64 type, u32 event_id) 5445 { 5446 u64 val = event_id | (type << 32); 5447 5448 return hash_64(val, SWEVENT_HLIST_BITS); 5449 } 5450 5451 static inline struct hlist_head * 5452 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 5453 { 5454 u64 hash = swevent_hash(type, event_id); 5455 5456 return &hlist->heads[hash]; 5457 } 5458 5459 /* For the read side: events when they trigger */ 5460 static inline struct hlist_head * 5461 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 5462 { 5463 struct swevent_hlist *hlist; 5464 5465 hlist = rcu_dereference(swhash->swevent_hlist); 5466 if (!hlist) 5467 return NULL; 5468 5469 return __find_swevent_head(hlist, type, event_id); 5470 } 5471 5472 /* For the event head insertion and removal in the hlist */ 5473 static inline struct hlist_head * 5474 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 5475 { 5476 struct swevent_hlist *hlist; 5477 u32 event_id = event->attr.config; 5478 u64 type = event->attr.type; 5479 5480 /* 5481 * Event scheduling is always serialized against hlist allocation 5482 * and release. Which makes the protected version suitable here. 5483 * The context lock guarantees that. 5484 */ 5485 hlist = rcu_dereference_protected(swhash->swevent_hlist, 5486 lockdep_is_held(&event->ctx->lock)); 5487 if (!hlist) 5488 return NULL; 5489 5490 return __find_swevent_head(hlist, type, event_id); 5491 } 5492 5493 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 5494 u64 nr, 5495 struct perf_sample_data *data, 5496 struct pt_regs *regs) 5497 { 5498 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5499 struct perf_event *event; 5500 struct hlist_head *head; 5501 5502 rcu_read_lock(); 5503 head = find_swevent_head_rcu(swhash, type, event_id); 5504 if (!head) 5505 goto end; 5506 5507 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5508 if (perf_swevent_match(event, type, event_id, data, regs)) 5509 perf_swevent_event(event, nr, data, regs); 5510 } 5511 end: 5512 rcu_read_unlock(); 5513 } 5514 5515 int perf_swevent_get_recursion_context(void) 5516 { 5517 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5518 5519 return get_recursion_context(swhash->recursion); 5520 } 5521 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 5522 5523 inline void perf_swevent_put_recursion_context(int rctx) 5524 { 5525 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5526 5527 put_recursion_context(swhash->recursion, rctx); 5528 } 5529 5530 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 5531 { 5532 struct perf_sample_data data; 5533 int rctx; 5534 5535 preempt_disable_notrace(); 5536 rctx = perf_swevent_get_recursion_context(); 5537 if (rctx < 0) 5538 return; 5539 5540 perf_sample_data_init(&data, addr, 0); 5541 5542 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 5543 5544 perf_swevent_put_recursion_context(rctx); 5545 preempt_enable_notrace(); 5546 } 5547 5548 static void perf_swevent_read(struct perf_event *event) 5549 { 5550 } 5551 5552 static int perf_swevent_add(struct perf_event *event, int flags) 5553 { 5554 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5555 struct hw_perf_event *hwc = &event->hw; 5556 struct hlist_head *head; 5557 5558 if (is_sampling_event(event)) { 5559 hwc->last_period = hwc->sample_period; 5560 perf_swevent_set_period(event); 5561 } 5562 5563 hwc->state = !(flags & PERF_EF_START); 5564 5565 head = find_swevent_head(swhash, event); 5566 if (WARN_ON_ONCE(!head)) 5567 return -EINVAL; 5568 5569 hlist_add_head_rcu(&event->hlist_entry, head); 5570 5571 return 0; 5572 } 5573 5574 static void perf_swevent_del(struct perf_event *event, int flags) 5575 { 5576 hlist_del_rcu(&event->hlist_entry); 5577 } 5578 5579 static void perf_swevent_start(struct perf_event *event, int flags) 5580 { 5581 event->hw.state = 0; 5582 } 5583 5584 static void perf_swevent_stop(struct perf_event *event, int flags) 5585 { 5586 event->hw.state = PERF_HES_STOPPED; 5587 } 5588 5589 /* Deref the hlist from the update side */ 5590 static inline struct swevent_hlist * 5591 swevent_hlist_deref(struct swevent_htable *swhash) 5592 { 5593 return rcu_dereference_protected(swhash->swevent_hlist, 5594 lockdep_is_held(&swhash->hlist_mutex)); 5595 } 5596 5597 static void swevent_hlist_release(struct swevent_htable *swhash) 5598 { 5599 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5600 5601 if (!hlist) 5602 return; 5603 5604 rcu_assign_pointer(swhash->swevent_hlist, NULL); 5605 kfree_rcu(hlist, rcu_head); 5606 } 5607 5608 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5609 { 5610 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5611 5612 mutex_lock(&swhash->hlist_mutex); 5613 5614 if (!--swhash->hlist_refcount) 5615 swevent_hlist_release(swhash); 5616 5617 mutex_unlock(&swhash->hlist_mutex); 5618 } 5619 5620 static void swevent_hlist_put(struct perf_event *event) 5621 { 5622 int cpu; 5623 5624 if (event->cpu != -1) { 5625 swevent_hlist_put_cpu(event, event->cpu); 5626 return; 5627 } 5628 5629 for_each_possible_cpu(cpu) 5630 swevent_hlist_put_cpu(event, cpu); 5631 } 5632 5633 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5634 { 5635 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5636 int err = 0; 5637 5638 mutex_lock(&swhash->hlist_mutex); 5639 5640 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5641 struct swevent_hlist *hlist; 5642 5643 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5644 if (!hlist) { 5645 err = -ENOMEM; 5646 goto exit; 5647 } 5648 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5649 } 5650 swhash->hlist_refcount++; 5651 exit: 5652 mutex_unlock(&swhash->hlist_mutex); 5653 5654 return err; 5655 } 5656 5657 static int swevent_hlist_get(struct perf_event *event) 5658 { 5659 int err; 5660 int cpu, failed_cpu; 5661 5662 if (event->cpu != -1) 5663 return swevent_hlist_get_cpu(event, event->cpu); 5664 5665 get_online_cpus(); 5666 for_each_possible_cpu(cpu) { 5667 err = swevent_hlist_get_cpu(event, cpu); 5668 if (err) { 5669 failed_cpu = cpu; 5670 goto fail; 5671 } 5672 } 5673 put_online_cpus(); 5674 5675 return 0; 5676 fail: 5677 for_each_possible_cpu(cpu) { 5678 if (cpu == failed_cpu) 5679 break; 5680 swevent_hlist_put_cpu(event, cpu); 5681 } 5682 5683 put_online_cpus(); 5684 return err; 5685 } 5686 5687 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5688 5689 static void sw_perf_event_destroy(struct perf_event *event) 5690 { 5691 u64 event_id = event->attr.config; 5692 5693 WARN_ON(event->parent); 5694 5695 static_key_slow_dec(&perf_swevent_enabled[event_id]); 5696 swevent_hlist_put(event); 5697 } 5698 5699 static int perf_swevent_init(struct perf_event *event) 5700 { 5701 u64 event_id = event->attr.config; 5702 5703 if (event->attr.type != PERF_TYPE_SOFTWARE) 5704 return -ENOENT; 5705 5706 /* 5707 * no branch sampling for software events 5708 */ 5709 if (has_branch_stack(event)) 5710 return -EOPNOTSUPP; 5711 5712 switch (event_id) { 5713 case PERF_COUNT_SW_CPU_CLOCK: 5714 case PERF_COUNT_SW_TASK_CLOCK: 5715 return -ENOENT; 5716 5717 default: 5718 break; 5719 } 5720 5721 if (event_id >= PERF_COUNT_SW_MAX) 5722 return -ENOENT; 5723 5724 if (!event->parent) { 5725 int err; 5726 5727 err = swevent_hlist_get(event); 5728 if (err) 5729 return err; 5730 5731 static_key_slow_inc(&perf_swevent_enabled[event_id]); 5732 event->destroy = sw_perf_event_destroy; 5733 } 5734 5735 return 0; 5736 } 5737 5738 static int perf_swevent_event_idx(struct perf_event *event) 5739 { 5740 return 0; 5741 } 5742 5743 static struct pmu perf_swevent = { 5744 .task_ctx_nr = perf_sw_context, 5745 5746 .event_init = perf_swevent_init, 5747 .add = perf_swevent_add, 5748 .del = perf_swevent_del, 5749 .start = perf_swevent_start, 5750 .stop = perf_swevent_stop, 5751 .read = perf_swevent_read, 5752 5753 .event_idx = perf_swevent_event_idx, 5754 }; 5755 5756 #ifdef CONFIG_EVENT_TRACING 5757 5758 static int perf_tp_filter_match(struct perf_event *event, 5759 struct perf_sample_data *data) 5760 { 5761 void *record = data->raw->data; 5762 5763 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5764 return 1; 5765 return 0; 5766 } 5767 5768 static int perf_tp_event_match(struct perf_event *event, 5769 struct perf_sample_data *data, 5770 struct pt_regs *regs) 5771 { 5772 if (event->hw.state & PERF_HES_STOPPED) 5773 return 0; 5774 /* 5775 * All tracepoints are from kernel-space. 5776 */ 5777 if (event->attr.exclude_kernel) 5778 return 0; 5779 5780 if (!perf_tp_filter_match(event, data)) 5781 return 0; 5782 5783 return 1; 5784 } 5785 5786 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5787 struct pt_regs *regs, struct hlist_head *head, int rctx, 5788 struct task_struct *task) 5789 { 5790 struct perf_sample_data data; 5791 struct perf_event *event; 5792 5793 struct perf_raw_record raw = { 5794 .size = entry_size, 5795 .data = record, 5796 }; 5797 5798 perf_sample_data_init(&data, addr, 0); 5799 data.raw = &raw; 5800 5801 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5802 if (perf_tp_event_match(event, &data, regs)) 5803 perf_swevent_event(event, count, &data, regs); 5804 } 5805 5806 /* 5807 * If we got specified a target task, also iterate its context and 5808 * deliver this event there too. 5809 */ 5810 if (task && task != current) { 5811 struct perf_event_context *ctx; 5812 struct trace_entry *entry = record; 5813 5814 rcu_read_lock(); 5815 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 5816 if (!ctx) 5817 goto unlock; 5818 5819 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5820 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5821 continue; 5822 if (event->attr.config != entry->type) 5823 continue; 5824 if (perf_tp_event_match(event, &data, regs)) 5825 perf_swevent_event(event, count, &data, regs); 5826 } 5827 unlock: 5828 rcu_read_unlock(); 5829 } 5830 5831 perf_swevent_put_recursion_context(rctx); 5832 } 5833 EXPORT_SYMBOL_GPL(perf_tp_event); 5834 5835 static void tp_perf_event_destroy(struct perf_event *event) 5836 { 5837 perf_trace_destroy(event); 5838 } 5839 5840 static int perf_tp_event_init(struct perf_event *event) 5841 { 5842 int err; 5843 5844 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5845 return -ENOENT; 5846 5847 /* 5848 * no branch sampling for tracepoint events 5849 */ 5850 if (has_branch_stack(event)) 5851 return -EOPNOTSUPP; 5852 5853 err = perf_trace_init(event); 5854 if (err) 5855 return err; 5856 5857 event->destroy = tp_perf_event_destroy; 5858 5859 return 0; 5860 } 5861 5862 static struct pmu perf_tracepoint = { 5863 .task_ctx_nr = perf_sw_context, 5864 5865 .event_init = perf_tp_event_init, 5866 .add = perf_trace_add, 5867 .del = perf_trace_del, 5868 .start = perf_swevent_start, 5869 .stop = perf_swevent_stop, 5870 .read = perf_swevent_read, 5871 5872 .event_idx = perf_swevent_event_idx, 5873 }; 5874 5875 static inline void perf_tp_register(void) 5876 { 5877 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5878 } 5879 5880 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5881 { 5882 char *filter_str; 5883 int ret; 5884 5885 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5886 return -EINVAL; 5887 5888 filter_str = strndup_user(arg, PAGE_SIZE); 5889 if (IS_ERR(filter_str)) 5890 return PTR_ERR(filter_str); 5891 5892 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5893 5894 kfree(filter_str); 5895 return ret; 5896 } 5897 5898 static void perf_event_free_filter(struct perf_event *event) 5899 { 5900 ftrace_profile_free_filter(event); 5901 } 5902 5903 #else 5904 5905 static inline void perf_tp_register(void) 5906 { 5907 } 5908 5909 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5910 { 5911 return -ENOENT; 5912 } 5913 5914 static void perf_event_free_filter(struct perf_event *event) 5915 { 5916 } 5917 5918 #endif /* CONFIG_EVENT_TRACING */ 5919 5920 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5921 void perf_bp_event(struct perf_event *bp, void *data) 5922 { 5923 struct perf_sample_data sample; 5924 struct pt_regs *regs = data; 5925 5926 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 5927 5928 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5929 perf_swevent_event(bp, 1, &sample, regs); 5930 } 5931 #endif 5932 5933 /* 5934 * hrtimer based swevent callback 5935 */ 5936 5937 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5938 { 5939 enum hrtimer_restart ret = HRTIMER_RESTART; 5940 struct perf_sample_data data; 5941 struct pt_regs *regs; 5942 struct perf_event *event; 5943 u64 period; 5944 5945 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5946 5947 if (event->state != PERF_EVENT_STATE_ACTIVE) 5948 return HRTIMER_NORESTART; 5949 5950 event->pmu->read(event); 5951 5952 perf_sample_data_init(&data, 0, event->hw.last_period); 5953 regs = get_irq_regs(); 5954 5955 if (regs && !perf_exclude_event(event, regs)) { 5956 if (!(event->attr.exclude_idle && is_idle_task(current))) 5957 if (__perf_event_overflow(event, 1, &data, regs)) 5958 ret = HRTIMER_NORESTART; 5959 } 5960 5961 period = max_t(u64, 10000, event->hw.sample_period); 5962 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5963 5964 return ret; 5965 } 5966 5967 static void perf_swevent_start_hrtimer(struct perf_event *event) 5968 { 5969 struct hw_perf_event *hwc = &event->hw; 5970 s64 period; 5971 5972 if (!is_sampling_event(event)) 5973 return; 5974 5975 period = local64_read(&hwc->period_left); 5976 if (period) { 5977 if (period < 0) 5978 period = 10000; 5979 5980 local64_set(&hwc->period_left, 0); 5981 } else { 5982 period = max_t(u64, 10000, hwc->sample_period); 5983 } 5984 __hrtimer_start_range_ns(&hwc->hrtimer, 5985 ns_to_ktime(period), 0, 5986 HRTIMER_MODE_REL_PINNED, 0); 5987 } 5988 5989 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5990 { 5991 struct hw_perf_event *hwc = &event->hw; 5992 5993 if (is_sampling_event(event)) { 5994 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5995 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5996 5997 hrtimer_cancel(&hwc->hrtimer); 5998 } 5999 } 6000 6001 static void perf_swevent_init_hrtimer(struct perf_event *event) 6002 { 6003 struct hw_perf_event *hwc = &event->hw; 6004 6005 if (!is_sampling_event(event)) 6006 return; 6007 6008 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6009 hwc->hrtimer.function = perf_swevent_hrtimer; 6010 6011 /* 6012 * Since hrtimers have a fixed rate, we can do a static freq->period 6013 * mapping and avoid the whole period adjust feedback stuff. 6014 */ 6015 if (event->attr.freq) { 6016 long freq = event->attr.sample_freq; 6017 6018 event->attr.sample_period = NSEC_PER_SEC / freq; 6019 hwc->sample_period = event->attr.sample_period; 6020 local64_set(&hwc->period_left, hwc->sample_period); 6021 hwc->last_period = hwc->sample_period; 6022 event->attr.freq = 0; 6023 } 6024 } 6025 6026 /* 6027 * Software event: cpu wall time clock 6028 */ 6029 6030 static void cpu_clock_event_update(struct perf_event *event) 6031 { 6032 s64 prev; 6033 u64 now; 6034 6035 now = local_clock(); 6036 prev = local64_xchg(&event->hw.prev_count, now); 6037 local64_add(now - prev, &event->count); 6038 } 6039 6040 static void cpu_clock_event_start(struct perf_event *event, int flags) 6041 { 6042 local64_set(&event->hw.prev_count, local_clock()); 6043 perf_swevent_start_hrtimer(event); 6044 } 6045 6046 static void cpu_clock_event_stop(struct perf_event *event, int flags) 6047 { 6048 perf_swevent_cancel_hrtimer(event); 6049 cpu_clock_event_update(event); 6050 } 6051 6052 static int cpu_clock_event_add(struct perf_event *event, int flags) 6053 { 6054 if (flags & PERF_EF_START) 6055 cpu_clock_event_start(event, flags); 6056 6057 return 0; 6058 } 6059 6060 static void cpu_clock_event_del(struct perf_event *event, int flags) 6061 { 6062 cpu_clock_event_stop(event, flags); 6063 } 6064 6065 static void cpu_clock_event_read(struct perf_event *event) 6066 { 6067 cpu_clock_event_update(event); 6068 } 6069 6070 static int cpu_clock_event_init(struct perf_event *event) 6071 { 6072 if (event->attr.type != PERF_TYPE_SOFTWARE) 6073 return -ENOENT; 6074 6075 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 6076 return -ENOENT; 6077 6078 /* 6079 * no branch sampling for software events 6080 */ 6081 if (has_branch_stack(event)) 6082 return -EOPNOTSUPP; 6083 6084 perf_swevent_init_hrtimer(event); 6085 6086 return 0; 6087 } 6088 6089 static struct pmu perf_cpu_clock = { 6090 .task_ctx_nr = perf_sw_context, 6091 6092 .event_init = cpu_clock_event_init, 6093 .add = cpu_clock_event_add, 6094 .del = cpu_clock_event_del, 6095 .start = cpu_clock_event_start, 6096 .stop = cpu_clock_event_stop, 6097 .read = cpu_clock_event_read, 6098 6099 .event_idx = perf_swevent_event_idx, 6100 }; 6101 6102 /* 6103 * Software event: task time clock 6104 */ 6105 6106 static void task_clock_event_update(struct perf_event *event, u64 now) 6107 { 6108 u64 prev; 6109 s64 delta; 6110 6111 prev = local64_xchg(&event->hw.prev_count, now); 6112 delta = now - prev; 6113 local64_add(delta, &event->count); 6114 } 6115 6116 static void task_clock_event_start(struct perf_event *event, int flags) 6117 { 6118 local64_set(&event->hw.prev_count, event->ctx->time); 6119 perf_swevent_start_hrtimer(event); 6120 } 6121 6122 static void task_clock_event_stop(struct perf_event *event, int flags) 6123 { 6124 perf_swevent_cancel_hrtimer(event); 6125 task_clock_event_update(event, event->ctx->time); 6126 } 6127 6128 static int task_clock_event_add(struct perf_event *event, int flags) 6129 { 6130 if (flags & PERF_EF_START) 6131 task_clock_event_start(event, flags); 6132 6133 return 0; 6134 } 6135 6136 static void task_clock_event_del(struct perf_event *event, int flags) 6137 { 6138 task_clock_event_stop(event, PERF_EF_UPDATE); 6139 } 6140 6141 static void task_clock_event_read(struct perf_event *event) 6142 { 6143 u64 now = perf_clock(); 6144 u64 delta = now - event->ctx->timestamp; 6145 u64 time = event->ctx->time + delta; 6146 6147 task_clock_event_update(event, time); 6148 } 6149 6150 static int task_clock_event_init(struct perf_event *event) 6151 { 6152 if (event->attr.type != PERF_TYPE_SOFTWARE) 6153 return -ENOENT; 6154 6155 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 6156 return -ENOENT; 6157 6158 /* 6159 * no branch sampling for software events 6160 */ 6161 if (has_branch_stack(event)) 6162 return -EOPNOTSUPP; 6163 6164 perf_swevent_init_hrtimer(event); 6165 6166 return 0; 6167 } 6168 6169 static struct pmu perf_task_clock = { 6170 .task_ctx_nr = perf_sw_context, 6171 6172 .event_init = task_clock_event_init, 6173 .add = task_clock_event_add, 6174 .del = task_clock_event_del, 6175 .start = task_clock_event_start, 6176 .stop = task_clock_event_stop, 6177 .read = task_clock_event_read, 6178 6179 .event_idx = perf_swevent_event_idx, 6180 }; 6181 6182 static void perf_pmu_nop_void(struct pmu *pmu) 6183 { 6184 } 6185 6186 static int perf_pmu_nop_int(struct pmu *pmu) 6187 { 6188 return 0; 6189 } 6190 6191 static void perf_pmu_start_txn(struct pmu *pmu) 6192 { 6193 perf_pmu_disable(pmu); 6194 } 6195 6196 static int perf_pmu_commit_txn(struct pmu *pmu) 6197 { 6198 perf_pmu_enable(pmu); 6199 return 0; 6200 } 6201 6202 static void perf_pmu_cancel_txn(struct pmu *pmu) 6203 { 6204 perf_pmu_enable(pmu); 6205 } 6206 6207 static int perf_event_idx_default(struct perf_event *event) 6208 { 6209 return event->hw.idx + 1; 6210 } 6211 6212 /* 6213 * Ensures all contexts with the same task_ctx_nr have the same 6214 * pmu_cpu_context too. 6215 */ 6216 static void *find_pmu_context(int ctxn) 6217 { 6218 struct pmu *pmu; 6219 6220 if (ctxn < 0) 6221 return NULL; 6222 6223 list_for_each_entry(pmu, &pmus, entry) { 6224 if (pmu->task_ctx_nr == ctxn) 6225 return pmu->pmu_cpu_context; 6226 } 6227 6228 return NULL; 6229 } 6230 6231 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 6232 { 6233 int cpu; 6234 6235 for_each_possible_cpu(cpu) { 6236 struct perf_cpu_context *cpuctx; 6237 6238 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6239 6240 if (cpuctx->unique_pmu == old_pmu) 6241 cpuctx->unique_pmu = pmu; 6242 } 6243 } 6244 6245 static void free_pmu_context(struct pmu *pmu) 6246 { 6247 struct pmu *i; 6248 6249 mutex_lock(&pmus_lock); 6250 /* 6251 * Like a real lame refcount. 6252 */ 6253 list_for_each_entry(i, &pmus, entry) { 6254 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 6255 update_pmu_context(i, pmu); 6256 goto out; 6257 } 6258 } 6259 6260 free_percpu(pmu->pmu_cpu_context); 6261 out: 6262 mutex_unlock(&pmus_lock); 6263 } 6264 static struct idr pmu_idr; 6265 6266 static ssize_t 6267 type_show(struct device *dev, struct device_attribute *attr, char *page) 6268 { 6269 struct pmu *pmu = dev_get_drvdata(dev); 6270 6271 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 6272 } 6273 6274 static ssize_t 6275 perf_event_mux_interval_ms_show(struct device *dev, 6276 struct device_attribute *attr, 6277 char *page) 6278 { 6279 struct pmu *pmu = dev_get_drvdata(dev); 6280 6281 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 6282 } 6283 6284 static ssize_t 6285 perf_event_mux_interval_ms_store(struct device *dev, 6286 struct device_attribute *attr, 6287 const char *buf, size_t count) 6288 { 6289 struct pmu *pmu = dev_get_drvdata(dev); 6290 int timer, cpu, ret; 6291 6292 ret = kstrtoint(buf, 0, &timer); 6293 if (ret) 6294 return ret; 6295 6296 if (timer < 1) 6297 return -EINVAL; 6298 6299 /* same value, noting to do */ 6300 if (timer == pmu->hrtimer_interval_ms) 6301 return count; 6302 6303 pmu->hrtimer_interval_ms = timer; 6304 6305 /* update all cpuctx for this PMU */ 6306 for_each_possible_cpu(cpu) { 6307 struct perf_cpu_context *cpuctx; 6308 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6309 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 6310 6311 if (hrtimer_active(&cpuctx->hrtimer)) 6312 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval); 6313 } 6314 6315 return count; 6316 } 6317 6318 static struct device_attribute pmu_dev_attrs[] = { 6319 __ATTR_RO(type), 6320 __ATTR_RW(perf_event_mux_interval_ms), 6321 __ATTR_NULL, 6322 }; 6323 6324 static int pmu_bus_running; 6325 static struct bus_type pmu_bus = { 6326 .name = "event_source", 6327 .dev_attrs = pmu_dev_attrs, 6328 }; 6329 6330 static void pmu_dev_release(struct device *dev) 6331 { 6332 kfree(dev); 6333 } 6334 6335 static int pmu_dev_alloc(struct pmu *pmu) 6336 { 6337 int ret = -ENOMEM; 6338 6339 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 6340 if (!pmu->dev) 6341 goto out; 6342 6343 pmu->dev->groups = pmu->attr_groups; 6344 device_initialize(pmu->dev); 6345 ret = dev_set_name(pmu->dev, "%s", pmu->name); 6346 if (ret) 6347 goto free_dev; 6348 6349 dev_set_drvdata(pmu->dev, pmu); 6350 pmu->dev->bus = &pmu_bus; 6351 pmu->dev->release = pmu_dev_release; 6352 ret = device_add(pmu->dev); 6353 if (ret) 6354 goto free_dev; 6355 6356 out: 6357 return ret; 6358 6359 free_dev: 6360 put_device(pmu->dev); 6361 goto out; 6362 } 6363 6364 static struct lock_class_key cpuctx_mutex; 6365 static struct lock_class_key cpuctx_lock; 6366 6367 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 6368 { 6369 int cpu, ret; 6370 6371 mutex_lock(&pmus_lock); 6372 ret = -ENOMEM; 6373 pmu->pmu_disable_count = alloc_percpu(int); 6374 if (!pmu->pmu_disable_count) 6375 goto unlock; 6376 6377 pmu->type = -1; 6378 if (!name) 6379 goto skip_type; 6380 pmu->name = name; 6381 6382 if (type < 0) { 6383 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 6384 if (type < 0) { 6385 ret = type; 6386 goto free_pdc; 6387 } 6388 } 6389 pmu->type = type; 6390 6391 if (pmu_bus_running) { 6392 ret = pmu_dev_alloc(pmu); 6393 if (ret) 6394 goto free_idr; 6395 } 6396 6397 skip_type: 6398 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 6399 if (pmu->pmu_cpu_context) 6400 goto got_cpu_context; 6401 6402 ret = -ENOMEM; 6403 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 6404 if (!pmu->pmu_cpu_context) 6405 goto free_dev; 6406 6407 for_each_possible_cpu(cpu) { 6408 struct perf_cpu_context *cpuctx; 6409 6410 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6411 __perf_event_init_context(&cpuctx->ctx); 6412 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 6413 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 6414 cpuctx->ctx.type = cpu_context; 6415 cpuctx->ctx.pmu = pmu; 6416 6417 __perf_cpu_hrtimer_init(cpuctx, cpu); 6418 6419 INIT_LIST_HEAD(&cpuctx->rotation_list); 6420 cpuctx->unique_pmu = pmu; 6421 } 6422 6423 got_cpu_context: 6424 if (!pmu->start_txn) { 6425 if (pmu->pmu_enable) { 6426 /* 6427 * If we have pmu_enable/pmu_disable calls, install 6428 * transaction stubs that use that to try and batch 6429 * hardware accesses. 6430 */ 6431 pmu->start_txn = perf_pmu_start_txn; 6432 pmu->commit_txn = perf_pmu_commit_txn; 6433 pmu->cancel_txn = perf_pmu_cancel_txn; 6434 } else { 6435 pmu->start_txn = perf_pmu_nop_void; 6436 pmu->commit_txn = perf_pmu_nop_int; 6437 pmu->cancel_txn = perf_pmu_nop_void; 6438 } 6439 } 6440 6441 if (!pmu->pmu_enable) { 6442 pmu->pmu_enable = perf_pmu_nop_void; 6443 pmu->pmu_disable = perf_pmu_nop_void; 6444 } 6445 6446 if (!pmu->event_idx) 6447 pmu->event_idx = perf_event_idx_default; 6448 6449 list_add_rcu(&pmu->entry, &pmus); 6450 ret = 0; 6451 unlock: 6452 mutex_unlock(&pmus_lock); 6453 6454 return ret; 6455 6456 free_dev: 6457 device_del(pmu->dev); 6458 put_device(pmu->dev); 6459 6460 free_idr: 6461 if (pmu->type >= PERF_TYPE_MAX) 6462 idr_remove(&pmu_idr, pmu->type); 6463 6464 free_pdc: 6465 free_percpu(pmu->pmu_disable_count); 6466 goto unlock; 6467 } 6468 6469 void perf_pmu_unregister(struct pmu *pmu) 6470 { 6471 mutex_lock(&pmus_lock); 6472 list_del_rcu(&pmu->entry); 6473 mutex_unlock(&pmus_lock); 6474 6475 /* 6476 * We dereference the pmu list under both SRCU and regular RCU, so 6477 * synchronize against both of those. 6478 */ 6479 synchronize_srcu(&pmus_srcu); 6480 synchronize_rcu(); 6481 6482 free_percpu(pmu->pmu_disable_count); 6483 if (pmu->type >= PERF_TYPE_MAX) 6484 idr_remove(&pmu_idr, pmu->type); 6485 device_del(pmu->dev); 6486 put_device(pmu->dev); 6487 free_pmu_context(pmu); 6488 } 6489 6490 struct pmu *perf_init_event(struct perf_event *event) 6491 { 6492 struct pmu *pmu = NULL; 6493 int idx; 6494 int ret; 6495 6496 idx = srcu_read_lock(&pmus_srcu); 6497 6498 rcu_read_lock(); 6499 pmu = idr_find(&pmu_idr, event->attr.type); 6500 rcu_read_unlock(); 6501 if (pmu) { 6502 event->pmu = pmu; 6503 ret = pmu->event_init(event); 6504 if (ret) 6505 pmu = ERR_PTR(ret); 6506 goto unlock; 6507 } 6508 6509 list_for_each_entry_rcu(pmu, &pmus, entry) { 6510 event->pmu = pmu; 6511 ret = pmu->event_init(event); 6512 if (!ret) 6513 goto unlock; 6514 6515 if (ret != -ENOENT) { 6516 pmu = ERR_PTR(ret); 6517 goto unlock; 6518 } 6519 } 6520 pmu = ERR_PTR(-ENOENT); 6521 unlock: 6522 srcu_read_unlock(&pmus_srcu, idx); 6523 6524 return pmu; 6525 } 6526 6527 static void account_event_cpu(struct perf_event *event, int cpu) 6528 { 6529 if (event->parent) 6530 return; 6531 6532 if (has_branch_stack(event)) { 6533 if (!(event->attach_state & PERF_ATTACH_TASK)) 6534 atomic_inc(&per_cpu(perf_branch_stack_events, cpu)); 6535 } 6536 if (is_cgroup_event(event)) 6537 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 6538 } 6539 6540 static void account_event(struct perf_event *event) 6541 { 6542 if (event->parent) 6543 return; 6544 6545 if (event->attach_state & PERF_ATTACH_TASK) 6546 static_key_slow_inc(&perf_sched_events.key); 6547 if (event->attr.mmap || event->attr.mmap_data) 6548 atomic_inc(&nr_mmap_events); 6549 if (event->attr.comm) 6550 atomic_inc(&nr_comm_events); 6551 if (event->attr.task) 6552 atomic_inc(&nr_task_events); 6553 if (event->attr.freq) { 6554 if (atomic_inc_return(&nr_freq_events) == 1) 6555 tick_nohz_full_kick_all(); 6556 } 6557 if (has_branch_stack(event)) 6558 static_key_slow_inc(&perf_sched_events.key); 6559 if (is_cgroup_event(event)) 6560 static_key_slow_inc(&perf_sched_events.key); 6561 6562 account_event_cpu(event, event->cpu); 6563 } 6564 6565 /* 6566 * Allocate and initialize a event structure 6567 */ 6568 static struct perf_event * 6569 perf_event_alloc(struct perf_event_attr *attr, int cpu, 6570 struct task_struct *task, 6571 struct perf_event *group_leader, 6572 struct perf_event *parent_event, 6573 perf_overflow_handler_t overflow_handler, 6574 void *context) 6575 { 6576 struct pmu *pmu; 6577 struct perf_event *event; 6578 struct hw_perf_event *hwc; 6579 long err = -EINVAL; 6580 6581 if ((unsigned)cpu >= nr_cpu_ids) { 6582 if (!task || cpu != -1) 6583 return ERR_PTR(-EINVAL); 6584 } 6585 6586 event = kzalloc(sizeof(*event), GFP_KERNEL); 6587 if (!event) 6588 return ERR_PTR(-ENOMEM); 6589 6590 /* 6591 * Single events are their own group leaders, with an 6592 * empty sibling list: 6593 */ 6594 if (!group_leader) 6595 group_leader = event; 6596 6597 mutex_init(&event->child_mutex); 6598 INIT_LIST_HEAD(&event->child_list); 6599 6600 INIT_LIST_HEAD(&event->group_entry); 6601 INIT_LIST_HEAD(&event->event_entry); 6602 INIT_LIST_HEAD(&event->sibling_list); 6603 INIT_LIST_HEAD(&event->rb_entry); 6604 6605 init_waitqueue_head(&event->waitq); 6606 init_irq_work(&event->pending, perf_pending_event); 6607 6608 mutex_init(&event->mmap_mutex); 6609 6610 atomic_long_set(&event->refcount, 1); 6611 event->cpu = cpu; 6612 event->attr = *attr; 6613 event->group_leader = group_leader; 6614 event->pmu = NULL; 6615 event->oncpu = -1; 6616 6617 event->parent = parent_event; 6618 6619 event->ns = get_pid_ns(task_active_pid_ns(current)); 6620 event->id = atomic64_inc_return(&perf_event_id); 6621 6622 event->state = PERF_EVENT_STATE_INACTIVE; 6623 6624 if (task) { 6625 event->attach_state = PERF_ATTACH_TASK; 6626 6627 if (attr->type == PERF_TYPE_TRACEPOINT) 6628 event->hw.tp_target = task; 6629 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6630 /* 6631 * hw_breakpoint is a bit difficult here.. 6632 */ 6633 else if (attr->type == PERF_TYPE_BREAKPOINT) 6634 event->hw.bp_target = task; 6635 #endif 6636 } 6637 6638 if (!overflow_handler && parent_event) { 6639 overflow_handler = parent_event->overflow_handler; 6640 context = parent_event->overflow_handler_context; 6641 } 6642 6643 event->overflow_handler = overflow_handler; 6644 event->overflow_handler_context = context; 6645 6646 perf_event__state_init(event); 6647 6648 pmu = NULL; 6649 6650 hwc = &event->hw; 6651 hwc->sample_period = attr->sample_period; 6652 if (attr->freq && attr->sample_freq) 6653 hwc->sample_period = 1; 6654 hwc->last_period = hwc->sample_period; 6655 6656 local64_set(&hwc->period_left, hwc->sample_period); 6657 6658 /* 6659 * we currently do not support PERF_FORMAT_GROUP on inherited events 6660 */ 6661 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 6662 goto err_ns; 6663 6664 pmu = perf_init_event(event); 6665 if (!pmu) 6666 goto err_ns; 6667 else if (IS_ERR(pmu)) { 6668 err = PTR_ERR(pmu); 6669 goto err_ns; 6670 } 6671 6672 if (!event->parent) { 6673 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 6674 err = get_callchain_buffers(); 6675 if (err) 6676 goto err_pmu; 6677 } 6678 } 6679 6680 return event; 6681 6682 err_pmu: 6683 if (event->destroy) 6684 event->destroy(event); 6685 err_ns: 6686 if (event->ns) 6687 put_pid_ns(event->ns); 6688 kfree(event); 6689 6690 return ERR_PTR(err); 6691 } 6692 6693 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6694 struct perf_event_attr *attr) 6695 { 6696 u32 size; 6697 int ret; 6698 6699 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 6700 return -EFAULT; 6701 6702 /* 6703 * zero the full structure, so that a short copy will be nice. 6704 */ 6705 memset(attr, 0, sizeof(*attr)); 6706 6707 ret = get_user(size, &uattr->size); 6708 if (ret) 6709 return ret; 6710 6711 if (size > PAGE_SIZE) /* silly large */ 6712 goto err_size; 6713 6714 if (!size) /* abi compat */ 6715 size = PERF_ATTR_SIZE_VER0; 6716 6717 if (size < PERF_ATTR_SIZE_VER0) 6718 goto err_size; 6719 6720 /* 6721 * If we're handed a bigger struct than we know of, 6722 * ensure all the unknown bits are 0 - i.e. new 6723 * user-space does not rely on any kernel feature 6724 * extensions we dont know about yet. 6725 */ 6726 if (size > sizeof(*attr)) { 6727 unsigned char __user *addr; 6728 unsigned char __user *end; 6729 unsigned char val; 6730 6731 addr = (void __user *)uattr + sizeof(*attr); 6732 end = (void __user *)uattr + size; 6733 6734 for (; addr < end; addr++) { 6735 ret = get_user(val, addr); 6736 if (ret) 6737 return ret; 6738 if (val) 6739 goto err_size; 6740 } 6741 size = sizeof(*attr); 6742 } 6743 6744 ret = copy_from_user(attr, uattr, size); 6745 if (ret) 6746 return -EFAULT; 6747 6748 if (attr->__reserved_1) 6749 return -EINVAL; 6750 6751 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 6752 return -EINVAL; 6753 6754 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 6755 return -EINVAL; 6756 6757 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 6758 u64 mask = attr->branch_sample_type; 6759 6760 /* only using defined bits */ 6761 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 6762 return -EINVAL; 6763 6764 /* at least one branch bit must be set */ 6765 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 6766 return -EINVAL; 6767 6768 /* propagate priv level, when not set for branch */ 6769 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 6770 6771 /* exclude_kernel checked on syscall entry */ 6772 if (!attr->exclude_kernel) 6773 mask |= PERF_SAMPLE_BRANCH_KERNEL; 6774 6775 if (!attr->exclude_user) 6776 mask |= PERF_SAMPLE_BRANCH_USER; 6777 6778 if (!attr->exclude_hv) 6779 mask |= PERF_SAMPLE_BRANCH_HV; 6780 /* 6781 * adjust user setting (for HW filter setup) 6782 */ 6783 attr->branch_sample_type = mask; 6784 } 6785 /* privileged levels capture (kernel, hv): check permissions */ 6786 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 6787 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6788 return -EACCES; 6789 } 6790 6791 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 6792 ret = perf_reg_validate(attr->sample_regs_user); 6793 if (ret) 6794 return ret; 6795 } 6796 6797 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 6798 if (!arch_perf_have_user_stack_dump()) 6799 return -ENOSYS; 6800 6801 /* 6802 * We have __u32 type for the size, but so far 6803 * we can only use __u16 as maximum due to the 6804 * __u16 sample size limit. 6805 */ 6806 if (attr->sample_stack_user >= USHRT_MAX) 6807 ret = -EINVAL; 6808 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 6809 ret = -EINVAL; 6810 } 6811 6812 out: 6813 return ret; 6814 6815 err_size: 6816 put_user(sizeof(*attr), &uattr->size); 6817 ret = -E2BIG; 6818 goto out; 6819 } 6820 6821 static int 6822 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 6823 { 6824 struct ring_buffer *rb = NULL, *old_rb = NULL; 6825 int ret = -EINVAL; 6826 6827 if (!output_event) 6828 goto set; 6829 6830 /* don't allow circular references */ 6831 if (event == output_event) 6832 goto out; 6833 6834 /* 6835 * Don't allow cross-cpu buffers 6836 */ 6837 if (output_event->cpu != event->cpu) 6838 goto out; 6839 6840 /* 6841 * If its not a per-cpu rb, it must be the same task. 6842 */ 6843 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6844 goto out; 6845 6846 set: 6847 mutex_lock(&event->mmap_mutex); 6848 /* Can't redirect output if we've got an active mmap() */ 6849 if (atomic_read(&event->mmap_count)) 6850 goto unlock; 6851 6852 old_rb = event->rb; 6853 6854 if (output_event) { 6855 /* get the rb we want to redirect to */ 6856 rb = ring_buffer_get(output_event); 6857 if (!rb) 6858 goto unlock; 6859 } 6860 6861 if (old_rb) 6862 ring_buffer_detach(event, old_rb); 6863 6864 if (rb) 6865 ring_buffer_attach(event, rb); 6866 6867 rcu_assign_pointer(event->rb, rb); 6868 6869 if (old_rb) { 6870 ring_buffer_put(old_rb); 6871 /* 6872 * Since we detached before setting the new rb, so that we 6873 * could attach the new rb, we could have missed a wakeup. 6874 * Provide it now. 6875 */ 6876 wake_up_all(&event->waitq); 6877 } 6878 6879 ret = 0; 6880 unlock: 6881 mutex_unlock(&event->mmap_mutex); 6882 6883 out: 6884 return ret; 6885 } 6886 6887 /** 6888 * sys_perf_event_open - open a performance event, associate it to a task/cpu 6889 * 6890 * @attr_uptr: event_id type attributes for monitoring/sampling 6891 * @pid: target pid 6892 * @cpu: target cpu 6893 * @group_fd: group leader event fd 6894 */ 6895 SYSCALL_DEFINE5(perf_event_open, 6896 struct perf_event_attr __user *, attr_uptr, 6897 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6898 { 6899 struct perf_event *group_leader = NULL, *output_event = NULL; 6900 struct perf_event *event, *sibling; 6901 struct perf_event_attr attr; 6902 struct perf_event_context *ctx; 6903 struct file *event_file = NULL; 6904 struct fd group = {NULL, 0}; 6905 struct task_struct *task = NULL; 6906 struct pmu *pmu; 6907 int event_fd; 6908 int move_group = 0; 6909 int err; 6910 6911 /* for future expandability... */ 6912 if (flags & ~PERF_FLAG_ALL) 6913 return -EINVAL; 6914 6915 err = perf_copy_attr(attr_uptr, &attr); 6916 if (err) 6917 return err; 6918 6919 if (!attr.exclude_kernel) { 6920 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6921 return -EACCES; 6922 } 6923 6924 if (attr.freq) { 6925 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6926 return -EINVAL; 6927 } 6928 6929 /* 6930 * In cgroup mode, the pid argument is used to pass the fd 6931 * opened to the cgroup directory in cgroupfs. The cpu argument 6932 * designates the cpu on which to monitor threads from that 6933 * cgroup. 6934 */ 6935 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6936 return -EINVAL; 6937 6938 event_fd = get_unused_fd(); 6939 if (event_fd < 0) 6940 return event_fd; 6941 6942 if (group_fd != -1) { 6943 err = perf_fget_light(group_fd, &group); 6944 if (err) 6945 goto err_fd; 6946 group_leader = group.file->private_data; 6947 if (flags & PERF_FLAG_FD_OUTPUT) 6948 output_event = group_leader; 6949 if (flags & PERF_FLAG_FD_NO_GROUP) 6950 group_leader = NULL; 6951 } 6952 6953 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6954 task = find_lively_task_by_vpid(pid); 6955 if (IS_ERR(task)) { 6956 err = PTR_ERR(task); 6957 goto err_group_fd; 6958 } 6959 } 6960 6961 get_online_cpus(); 6962 6963 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 6964 NULL, NULL); 6965 if (IS_ERR(event)) { 6966 err = PTR_ERR(event); 6967 goto err_task; 6968 } 6969 6970 if (flags & PERF_FLAG_PID_CGROUP) { 6971 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6972 if (err) { 6973 __free_event(event); 6974 goto err_task; 6975 } 6976 } 6977 6978 account_event(event); 6979 6980 /* 6981 * Special case software events and allow them to be part of 6982 * any hardware group. 6983 */ 6984 pmu = event->pmu; 6985 6986 if (group_leader && 6987 (is_software_event(event) != is_software_event(group_leader))) { 6988 if (is_software_event(event)) { 6989 /* 6990 * If event and group_leader are not both a software 6991 * event, and event is, then group leader is not. 6992 * 6993 * Allow the addition of software events to !software 6994 * groups, this is safe because software events never 6995 * fail to schedule. 6996 */ 6997 pmu = group_leader->pmu; 6998 } else if (is_software_event(group_leader) && 6999 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 7000 /* 7001 * In case the group is a pure software group, and we 7002 * try to add a hardware event, move the whole group to 7003 * the hardware context. 7004 */ 7005 move_group = 1; 7006 } 7007 } 7008 7009 /* 7010 * Get the target context (task or percpu): 7011 */ 7012 ctx = find_get_context(pmu, task, event->cpu); 7013 if (IS_ERR(ctx)) { 7014 err = PTR_ERR(ctx); 7015 goto err_alloc; 7016 } 7017 7018 if (task) { 7019 put_task_struct(task); 7020 task = NULL; 7021 } 7022 7023 /* 7024 * Look up the group leader (we will attach this event to it): 7025 */ 7026 if (group_leader) { 7027 err = -EINVAL; 7028 7029 /* 7030 * Do not allow a recursive hierarchy (this new sibling 7031 * becoming part of another group-sibling): 7032 */ 7033 if (group_leader->group_leader != group_leader) 7034 goto err_context; 7035 /* 7036 * Do not allow to attach to a group in a different 7037 * task or CPU context: 7038 */ 7039 if (move_group) { 7040 if (group_leader->ctx->type != ctx->type) 7041 goto err_context; 7042 } else { 7043 if (group_leader->ctx != ctx) 7044 goto err_context; 7045 } 7046 7047 /* 7048 * Only a group leader can be exclusive or pinned 7049 */ 7050 if (attr.exclusive || attr.pinned) 7051 goto err_context; 7052 } 7053 7054 if (output_event) { 7055 err = perf_event_set_output(event, output_event); 7056 if (err) 7057 goto err_context; 7058 } 7059 7060 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 7061 if (IS_ERR(event_file)) { 7062 err = PTR_ERR(event_file); 7063 goto err_context; 7064 } 7065 7066 if (move_group) { 7067 struct perf_event_context *gctx = group_leader->ctx; 7068 7069 mutex_lock(&gctx->mutex); 7070 perf_remove_from_context(group_leader); 7071 7072 /* 7073 * Removing from the context ends up with disabled 7074 * event. What we want here is event in the initial 7075 * startup state, ready to be add into new context. 7076 */ 7077 perf_event__state_init(group_leader); 7078 list_for_each_entry(sibling, &group_leader->sibling_list, 7079 group_entry) { 7080 perf_remove_from_context(sibling); 7081 perf_event__state_init(sibling); 7082 put_ctx(gctx); 7083 } 7084 mutex_unlock(&gctx->mutex); 7085 put_ctx(gctx); 7086 } 7087 7088 WARN_ON_ONCE(ctx->parent_ctx); 7089 mutex_lock(&ctx->mutex); 7090 7091 if (move_group) { 7092 synchronize_rcu(); 7093 perf_install_in_context(ctx, group_leader, event->cpu); 7094 get_ctx(ctx); 7095 list_for_each_entry(sibling, &group_leader->sibling_list, 7096 group_entry) { 7097 perf_install_in_context(ctx, sibling, event->cpu); 7098 get_ctx(ctx); 7099 } 7100 } 7101 7102 perf_install_in_context(ctx, event, event->cpu); 7103 ++ctx->generation; 7104 perf_unpin_context(ctx); 7105 mutex_unlock(&ctx->mutex); 7106 7107 put_online_cpus(); 7108 7109 event->owner = current; 7110 7111 mutex_lock(¤t->perf_event_mutex); 7112 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 7113 mutex_unlock(¤t->perf_event_mutex); 7114 7115 /* 7116 * Precalculate sample_data sizes 7117 */ 7118 perf_event__header_size(event); 7119 perf_event__id_header_size(event); 7120 7121 /* 7122 * Drop the reference on the group_event after placing the 7123 * new event on the sibling_list. This ensures destruction 7124 * of the group leader will find the pointer to itself in 7125 * perf_group_detach(). 7126 */ 7127 fdput(group); 7128 fd_install(event_fd, event_file); 7129 return event_fd; 7130 7131 err_context: 7132 perf_unpin_context(ctx); 7133 put_ctx(ctx); 7134 err_alloc: 7135 free_event(event); 7136 err_task: 7137 put_online_cpus(); 7138 if (task) 7139 put_task_struct(task); 7140 err_group_fd: 7141 fdput(group); 7142 err_fd: 7143 put_unused_fd(event_fd); 7144 return err; 7145 } 7146 7147 /** 7148 * perf_event_create_kernel_counter 7149 * 7150 * @attr: attributes of the counter to create 7151 * @cpu: cpu in which the counter is bound 7152 * @task: task to profile (NULL for percpu) 7153 */ 7154 struct perf_event * 7155 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 7156 struct task_struct *task, 7157 perf_overflow_handler_t overflow_handler, 7158 void *context) 7159 { 7160 struct perf_event_context *ctx; 7161 struct perf_event *event; 7162 int err; 7163 7164 /* 7165 * Get the target context (task or percpu): 7166 */ 7167 7168 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 7169 overflow_handler, context); 7170 if (IS_ERR(event)) { 7171 err = PTR_ERR(event); 7172 goto err; 7173 } 7174 7175 account_event(event); 7176 7177 ctx = find_get_context(event->pmu, task, cpu); 7178 if (IS_ERR(ctx)) { 7179 err = PTR_ERR(ctx); 7180 goto err_free; 7181 } 7182 7183 WARN_ON_ONCE(ctx->parent_ctx); 7184 mutex_lock(&ctx->mutex); 7185 perf_install_in_context(ctx, event, cpu); 7186 ++ctx->generation; 7187 perf_unpin_context(ctx); 7188 mutex_unlock(&ctx->mutex); 7189 7190 return event; 7191 7192 err_free: 7193 free_event(event); 7194 err: 7195 return ERR_PTR(err); 7196 } 7197 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 7198 7199 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 7200 { 7201 struct perf_event_context *src_ctx; 7202 struct perf_event_context *dst_ctx; 7203 struct perf_event *event, *tmp; 7204 LIST_HEAD(events); 7205 7206 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 7207 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 7208 7209 mutex_lock(&src_ctx->mutex); 7210 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 7211 event_entry) { 7212 perf_remove_from_context(event); 7213 unaccount_event_cpu(event, src_cpu); 7214 put_ctx(src_ctx); 7215 list_add(&event->event_entry, &events); 7216 } 7217 mutex_unlock(&src_ctx->mutex); 7218 7219 synchronize_rcu(); 7220 7221 mutex_lock(&dst_ctx->mutex); 7222 list_for_each_entry_safe(event, tmp, &events, event_entry) { 7223 list_del(&event->event_entry); 7224 if (event->state >= PERF_EVENT_STATE_OFF) 7225 event->state = PERF_EVENT_STATE_INACTIVE; 7226 account_event_cpu(event, dst_cpu); 7227 perf_install_in_context(dst_ctx, event, dst_cpu); 7228 get_ctx(dst_ctx); 7229 } 7230 mutex_unlock(&dst_ctx->mutex); 7231 } 7232 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 7233 7234 static void sync_child_event(struct perf_event *child_event, 7235 struct task_struct *child) 7236 { 7237 struct perf_event *parent_event = child_event->parent; 7238 u64 child_val; 7239 7240 if (child_event->attr.inherit_stat) 7241 perf_event_read_event(child_event, child); 7242 7243 child_val = perf_event_count(child_event); 7244 7245 /* 7246 * Add back the child's count to the parent's count: 7247 */ 7248 atomic64_add(child_val, &parent_event->child_count); 7249 atomic64_add(child_event->total_time_enabled, 7250 &parent_event->child_total_time_enabled); 7251 atomic64_add(child_event->total_time_running, 7252 &parent_event->child_total_time_running); 7253 7254 /* 7255 * Remove this event from the parent's list 7256 */ 7257 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7258 mutex_lock(&parent_event->child_mutex); 7259 list_del_init(&child_event->child_list); 7260 mutex_unlock(&parent_event->child_mutex); 7261 7262 /* 7263 * Release the parent event, if this was the last 7264 * reference to it. 7265 */ 7266 put_event(parent_event); 7267 } 7268 7269 static void 7270 __perf_event_exit_task(struct perf_event *child_event, 7271 struct perf_event_context *child_ctx, 7272 struct task_struct *child) 7273 { 7274 if (child_event->parent) { 7275 raw_spin_lock_irq(&child_ctx->lock); 7276 perf_group_detach(child_event); 7277 raw_spin_unlock_irq(&child_ctx->lock); 7278 } 7279 7280 perf_remove_from_context(child_event); 7281 7282 /* 7283 * It can happen that the parent exits first, and has events 7284 * that are still around due to the child reference. These 7285 * events need to be zapped. 7286 */ 7287 if (child_event->parent) { 7288 sync_child_event(child_event, child); 7289 free_event(child_event); 7290 } 7291 } 7292 7293 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 7294 { 7295 struct perf_event *child_event, *tmp; 7296 struct perf_event_context *child_ctx; 7297 unsigned long flags; 7298 7299 if (likely(!child->perf_event_ctxp[ctxn])) { 7300 perf_event_task(child, NULL, 0); 7301 return; 7302 } 7303 7304 local_irq_save(flags); 7305 /* 7306 * We can't reschedule here because interrupts are disabled, 7307 * and either child is current or it is a task that can't be 7308 * scheduled, so we are now safe from rescheduling changing 7309 * our context. 7310 */ 7311 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 7312 7313 /* 7314 * Take the context lock here so that if find_get_context is 7315 * reading child->perf_event_ctxp, we wait until it has 7316 * incremented the context's refcount before we do put_ctx below. 7317 */ 7318 raw_spin_lock(&child_ctx->lock); 7319 task_ctx_sched_out(child_ctx); 7320 child->perf_event_ctxp[ctxn] = NULL; 7321 /* 7322 * If this context is a clone; unclone it so it can't get 7323 * swapped to another process while we're removing all 7324 * the events from it. 7325 */ 7326 unclone_ctx(child_ctx); 7327 update_context_time(child_ctx); 7328 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7329 7330 /* 7331 * Report the task dead after unscheduling the events so that we 7332 * won't get any samples after PERF_RECORD_EXIT. We can however still 7333 * get a few PERF_RECORD_READ events. 7334 */ 7335 perf_event_task(child, child_ctx, 0); 7336 7337 /* 7338 * We can recurse on the same lock type through: 7339 * 7340 * __perf_event_exit_task() 7341 * sync_child_event() 7342 * put_event() 7343 * mutex_lock(&ctx->mutex) 7344 * 7345 * But since its the parent context it won't be the same instance. 7346 */ 7347 mutex_lock(&child_ctx->mutex); 7348 7349 again: 7350 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 7351 group_entry) 7352 __perf_event_exit_task(child_event, child_ctx, child); 7353 7354 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 7355 group_entry) 7356 __perf_event_exit_task(child_event, child_ctx, child); 7357 7358 /* 7359 * If the last event was a group event, it will have appended all 7360 * its siblings to the list, but we obtained 'tmp' before that which 7361 * will still point to the list head terminating the iteration. 7362 */ 7363 if (!list_empty(&child_ctx->pinned_groups) || 7364 !list_empty(&child_ctx->flexible_groups)) 7365 goto again; 7366 7367 mutex_unlock(&child_ctx->mutex); 7368 7369 put_ctx(child_ctx); 7370 } 7371 7372 /* 7373 * When a child task exits, feed back event values to parent events. 7374 */ 7375 void perf_event_exit_task(struct task_struct *child) 7376 { 7377 struct perf_event *event, *tmp; 7378 int ctxn; 7379 7380 mutex_lock(&child->perf_event_mutex); 7381 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 7382 owner_entry) { 7383 list_del_init(&event->owner_entry); 7384 7385 /* 7386 * Ensure the list deletion is visible before we clear 7387 * the owner, closes a race against perf_release() where 7388 * we need to serialize on the owner->perf_event_mutex. 7389 */ 7390 smp_wmb(); 7391 event->owner = NULL; 7392 } 7393 mutex_unlock(&child->perf_event_mutex); 7394 7395 for_each_task_context_nr(ctxn) 7396 perf_event_exit_task_context(child, ctxn); 7397 } 7398 7399 static void perf_free_event(struct perf_event *event, 7400 struct perf_event_context *ctx) 7401 { 7402 struct perf_event *parent = event->parent; 7403 7404 if (WARN_ON_ONCE(!parent)) 7405 return; 7406 7407 mutex_lock(&parent->child_mutex); 7408 list_del_init(&event->child_list); 7409 mutex_unlock(&parent->child_mutex); 7410 7411 put_event(parent); 7412 7413 perf_group_detach(event); 7414 list_del_event(event, ctx); 7415 free_event(event); 7416 } 7417 7418 /* 7419 * free an unexposed, unused context as created by inheritance by 7420 * perf_event_init_task below, used by fork() in case of fail. 7421 */ 7422 void perf_event_free_task(struct task_struct *task) 7423 { 7424 struct perf_event_context *ctx; 7425 struct perf_event *event, *tmp; 7426 int ctxn; 7427 7428 for_each_task_context_nr(ctxn) { 7429 ctx = task->perf_event_ctxp[ctxn]; 7430 if (!ctx) 7431 continue; 7432 7433 mutex_lock(&ctx->mutex); 7434 again: 7435 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 7436 group_entry) 7437 perf_free_event(event, ctx); 7438 7439 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 7440 group_entry) 7441 perf_free_event(event, ctx); 7442 7443 if (!list_empty(&ctx->pinned_groups) || 7444 !list_empty(&ctx->flexible_groups)) 7445 goto again; 7446 7447 mutex_unlock(&ctx->mutex); 7448 7449 put_ctx(ctx); 7450 } 7451 } 7452 7453 void perf_event_delayed_put(struct task_struct *task) 7454 { 7455 int ctxn; 7456 7457 for_each_task_context_nr(ctxn) 7458 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 7459 } 7460 7461 /* 7462 * inherit a event from parent task to child task: 7463 */ 7464 static struct perf_event * 7465 inherit_event(struct perf_event *parent_event, 7466 struct task_struct *parent, 7467 struct perf_event_context *parent_ctx, 7468 struct task_struct *child, 7469 struct perf_event *group_leader, 7470 struct perf_event_context *child_ctx) 7471 { 7472 struct perf_event *child_event; 7473 unsigned long flags; 7474 7475 /* 7476 * Instead of creating recursive hierarchies of events, 7477 * we link inherited events back to the original parent, 7478 * which has a filp for sure, which we use as the reference 7479 * count: 7480 */ 7481 if (parent_event->parent) 7482 parent_event = parent_event->parent; 7483 7484 child_event = perf_event_alloc(&parent_event->attr, 7485 parent_event->cpu, 7486 child, 7487 group_leader, parent_event, 7488 NULL, NULL); 7489 if (IS_ERR(child_event)) 7490 return child_event; 7491 7492 if (!atomic_long_inc_not_zero(&parent_event->refcount)) { 7493 free_event(child_event); 7494 return NULL; 7495 } 7496 7497 get_ctx(child_ctx); 7498 7499 /* 7500 * Make the child state follow the state of the parent event, 7501 * not its attr.disabled bit. We hold the parent's mutex, 7502 * so we won't race with perf_event_{en, dis}able_family. 7503 */ 7504 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 7505 child_event->state = PERF_EVENT_STATE_INACTIVE; 7506 else 7507 child_event->state = PERF_EVENT_STATE_OFF; 7508 7509 if (parent_event->attr.freq) { 7510 u64 sample_period = parent_event->hw.sample_period; 7511 struct hw_perf_event *hwc = &child_event->hw; 7512 7513 hwc->sample_period = sample_period; 7514 hwc->last_period = sample_period; 7515 7516 local64_set(&hwc->period_left, sample_period); 7517 } 7518 7519 child_event->ctx = child_ctx; 7520 child_event->overflow_handler = parent_event->overflow_handler; 7521 child_event->overflow_handler_context 7522 = parent_event->overflow_handler_context; 7523 7524 /* 7525 * Precalculate sample_data sizes 7526 */ 7527 perf_event__header_size(child_event); 7528 perf_event__id_header_size(child_event); 7529 7530 /* 7531 * Link it up in the child's context: 7532 */ 7533 raw_spin_lock_irqsave(&child_ctx->lock, flags); 7534 add_event_to_ctx(child_event, child_ctx); 7535 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7536 7537 /* 7538 * Link this into the parent event's child list 7539 */ 7540 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7541 mutex_lock(&parent_event->child_mutex); 7542 list_add_tail(&child_event->child_list, &parent_event->child_list); 7543 mutex_unlock(&parent_event->child_mutex); 7544 7545 return child_event; 7546 } 7547 7548 static int inherit_group(struct perf_event *parent_event, 7549 struct task_struct *parent, 7550 struct perf_event_context *parent_ctx, 7551 struct task_struct *child, 7552 struct perf_event_context *child_ctx) 7553 { 7554 struct perf_event *leader; 7555 struct perf_event *sub; 7556 struct perf_event *child_ctr; 7557 7558 leader = inherit_event(parent_event, parent, parent_ctx, 7559 child, NULL, child_ctx); 7560 if (IS_ERR(leader)) 7561 return PTR_ERR(leader); 7562 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 7563 child_ctr = inherit_event(sub, parent, parent_ctx, 7564 child, leader, child_ctx); 7565 if (IS_ERR(child_ctr)) 7566 return PTR_ERR(child_ctr); 7567 } 7568 return 0; 7569 } 7570 7571 static int 7572 inherit_task_group(struct perf_event *event, struct task_struct *parent, 7573 struct perf_event_context *parent_ctx, 7574 struct task_struct *child, int ctxn, 7575 int *inherited_all) 7576 { 7577 int ret; 7578 struct perf_event_context *child_ctx; 7579 7580 if (!event->attr.inherit) { 7581 *inherited_all = 0; 7582 return 0; 7583 } 7584 7585 child_ctx = child->perf_event_ctxp[ctxn]; 7586 if (!child_ctx) { 7587 /* 7588 * This is executed from the parent task context, so 7589 * inherit events that have been marked for cloning. 7590 * First allocate and initialize a context for the 7591 * child. 7592 */ 7593 7594 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 7595 if (!child_ctx) 7596 return -ENOMEM; 7597 7598 child->perf_event_ctxp[ctxn] = child_ctx; 7599 } 7600 7601 ret = inherit_group(event, parent, parent_ctx, 7602 child, child_ctx); 7603 7604 if (ret) 7605 *inherited_all = 0; 7606 7607 return ret; 7608 } 7609 7610 /* 7611 * Initialize the perf_event context in task_struct 7612 */ 7613 int perf_event_init_context(struct task_struct *child, int ctxn) 7614 { 7615 struct perf_event_context *child_ctx, *parent_ctx; 7616 struct perf_event_context *cloned_ctx; 7617 struct perf_event *event; 7618 struct task_struct *parent = current; 7619 int inherited_all = 1; 7620 unsigned long flags; 7621 int ret = 0; 7622 7623 if (likely(!parent->perf_event_ctxp[ctxn])) 7624 return 0; 7625 7626 /* 7627 * If the parent's context is a clone, pin it so it won't get 7628 * swapped under us. 7629 */ 7630 parent_ctx = perf_pin_task_context(parent, ctxn); 7631 7632 /* 7633 * No need to check if parent_ctx != NULL here; since we saw 7634 * it non-NULL earlier, the only reason for it to become NULL 7635 * is if we exit, and since we're currently in the middle of 7636 * a fork we can't be exiting at the same time. 7637 */ 7638 7639 /* 7640 * Lock the parent list. No need to lock the child - not PID 7641 * hashed yet and not running, so nobody can access it. 7642 */ 7643 mutex_lock(&parent_ctx->mutex); 7644 7645 /* 7646 * We dont have to disable NMIs - we are only looking at 7647 * the list, not manipulating it: 7648 */ 7649 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 7650 ret = inherit_task_group(event, parent, parent_ctx, 7651 child, ctxn, &inherited_all); 7652 if (ret) 7653 break; 7654 } 7655 7656 /* 7657 * We can't hold ctx->lock when iterating the ->flexible_group list due 7658 * to allocations, but we need to prevent rotation because 7659 * rotate_ctx() will change the list from interrupt context. 7660 */ 7661 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7662 parent_ctx->rotate_disable = 1; 7663 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7664 7665 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 7666 ret = inherit_task_group(event, parent, parent_ctx, 7667 child, ctxn, &inherited_all); 7668 if (ret) 7669 break; 7670 } 7671 7672 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7673 parent_ctx->rotate_disable = 0; 7674 7675 child_ctx = child->perf_event_ctxp[ctxn]; 7676 7677 if (child_ctx && inherited_all) { 7678 /* 7679 * Mark the child context as a clone of the parent 7680 * context, or of whatever the parent is a clone of. 7681 * 7682 * Note that if the parent is a clone, the holding of 7683 * parent_ctx->lock avoids it from being uncloned. 7684 */ 7685 cloned_ctx = parent_ctx->parent_ctx; 7686 if (cloned_ctx) { 7687 child_ctx->parent_ctx = cloned_ctx; 7688 child_ctx->parent_gen = parent_ctx->parent_gen; 7689 } else { 7690 child_ctx->parent_ctx = parent_ctx; 7691 child_ctx->parent_gen = parent_ctx->generation; 7692 } 7693 get_ctx(child_ctx->parent_ctx); 7694 } 7695 7696 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7697 mutex_unlock(&parent_ctx->mutex); 7698 7699 perf_unpin_context(parent_ctx); 7700 put_ctx(parent_ctx); 7701 7702 return ret; 7703 } 7704 7705 /* 7706 * Initialize the perf_event context in task_struct 7707 */ 7708 int perf_event_init_task(struct task_struct *child) 7709 { 7710 int ctxn, ret; 7711 7712 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 7713 mutex_init(&child->perf_event_mutex); 7714 INIT_LIST_HEAD(&child->perf_event_list); 7715 7716 for_each_task_context_nr(ctxn) { 7717 ret = perf_event_init_context(child, ctxn); 7718 if (ret) 7719 return ret; 7720 } 7721 7722 return 0; 7723 } 7724 7725 static void __init perf_event_init_all_cpus(void) 7726 { 7727 struct swevent_htable *swhash; 7728 int cpu; 7729 7730 for_each_possible_cpu(cpu) { 7731 swhash = &per_cpu(swevent_htable, cpu); 7732 mutex_init(&swhash->hlist_mutex); 7733 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 7734 } 7735 } 7736 7737 static void perf_event_init_cpu(int cpu) 7738 { 7739 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7740 7741 mutex_lock(&swhash->hlist_mutex); 7742 if (swhash->hlist_refcount > 0) { 7743 struct swevent_hlist *hlist; 7744 7745 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 7746 WARN_ON(!hlist); 7747 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7748 } 7749 mutex_unlock(&swhash->hlist_mutex); 7750 } 7751 7752 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 7753 static void perf_pmu_rotate_stop(struct pmu *pmu) 7754 { 7755 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7756 7757 WARN_ON(!irqs_disabled()); 7758 7759 list_del_init(&cpuctx->rotation_list); 7760 } 7761 7762 static void __perf_event_exit_context(void *__info) 7763 { 7764 struct perf_event_context *ctx = __info; 7765 struct perf_event *event, *tmp; 7766 7767 perf_pmu_rotate_stop(ctx->pmu); 7768 7769 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 7770 __perf_remove_from_context(event); 7771 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 7772 __perf_remove_from_context(event); 7773 } 7774 7775 static void perf_event_exit_cpu_context(int cpu) 7776 { 7777 struct perf_event_context *ctx; 7778 struct pmu *pmu; 7779 int idx; 7780 7781 idx = srcu_read_lock(&pmus_srcu); 7782 list_for_each_entry_rcu(pmu, &pmus, entry) { 7783 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 7784 7785 mutex_lock(&ctx->mutex); 7786 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 7787 mutex_unlock(&ctx->mutex); 7788 } 7789 srcu_read_unlock(&pmus_srcu, idx); 7790 } 7791 7792 static void perf_event_exit_cpu(int cpu) 7793 { 7794 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7795 7796 mutex_lock(&swhash->hlist_mutex); 7797 swevent_hlist_release(swhash); 7798 mutex_unlock(&swhash->hlist_mutex); 7799 7800 perf_event_exit_cpu_context(cpu); 7801 } 7802 #else 7803 static inline void perf_event_exit_cpu(int cpu) { } 7804 #endif 7805 7806 static int 7807 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 7808 { 7809 int cpu; 7810 7811 for_each_online_cpu(cpu) 7812 perf_event_exit_cpu(cpu); 7813 7814 return NOTIFY_OK; 7815 } 7816 7817 /* 7818 * Run the perf reboot notifier at the very last possible moment so that 7819 * the generic watchdog code runs as long as possible. 7820 */ 7821 static struct notifier_block perf_reboot_notifier = { 7822 .notifier_call = perf_reboot, 7823 .priority = INT_MIN, 7824 }; 7825 7826 static int 7827 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 7828 { 7829 unsigned int cpu = (long)hcpu; 7830 7831 switch (action & ~CPU_TASKS_FROZEN) { 7832 7833 case CPU_UP_PREPARE: 7834 case CPU_DOWN_FAILED: 7835 perf_event_init_cpu(cpu); 7836 break; 7837 7838 case CPU_UP_CANCELED: 7839 case CPU_DOWN_PREPARE: 7840 perf_event_exit_cpu(cpu); 7841 break; 7842 default: 7843 break; 7844 } 7845 7846 return NOTIFY_OK; 7847 } 7848 7849 void __init perf_event_init(void) 7850 { 7851 int ret; 7852 7853 idr_init(&pmu_idr); 7854 7855 perf_event_init_all_cpus(); 7856 init_srcu_struct(&pmus_srcu); 7857 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 7858 perf_pmu_register(&perf_cpu_clock, NULL, -1); 7859 perf_pmu_register(&perf_task_clock, NULL, -1); 7860 perf_tp_register(); 7861 perf_cpu_notifier(perf_cpu_notify); 7862 register_reboot_notifier(&perf_reboot_notifier); 7863 7864 ret = init_hw_breakpoint(); 7865 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 7866 7867 /* do not patch jump label more than once per second */ 7868 jump_label_rate_limit(&perf_sched_events, HZ); 7869 7870 /* 7871 * Build time assertion that we keep the data_head at the intended 7872 * location. IOW, validation we got the __reserved[] size right. 7873 */ 7874 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 7875 != 1024); 7876 } 7877 7878 static int __init perf_event_sysfs_init(void) 7879 { 7880 struct pmu *pmu; 7881 int ret; 7882 7883 mutex_lock(&pmus_lock); 7884 7885 ret = bus_register(&pmu_bus); 7886 if (ret) 7887 goto unlock; 7888 7889 list_for_each_entry(pmu, &pmus, entry) { 7890 if (!pmu->name || pmu->type < 0) 7891 continue; 7892 7893 ret = pmu_dev_alloc(pmu); 7894 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 7895 } 7896 pmu_bus_running = 1; 7897 ret = 0; 7898 7899 unlock: 7900 mutex_unlock(&pmus_lock); 7901 7902 return ret; 7903 } 7904 device_initcall(perf_event_sysfs_init); 7905 7906 #ifdef CONFIG_CGROUP_PERF 7907 static struct cgroup_subsys_state * 7908 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7909 { 7910 struct perf_cgroup *jc; 7911 7912 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 7913 if (!jc) 7914 return ERR_PTR(-ENOMEM); 7915 7916 jc->info = alloc_percpu(struct perf_cgroup_info); 7917 if (!jc->info) { 7918 kfree(jc); 7919 return ERR_PTR(-ENOMEM); 7920 } 7921 7922 return &jc->css; 7923 } 7924 7925 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 7926 { 7927 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 7928 7929 free_percpu(jc->info); 7930 kfree(jc); 7931 } 7932 7933 static int __perf_cgroup_move(void *info) 7934 { 7935 struct task_struct *task = info; 7936 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 7937 return 0; 7938 } 7939 7940 static void perf_cgroup_attach(struct cgroup_subsys_state *css, 7941 struct cgroup_taskset *tset) 7942 { 7943 struct task_struct *task; 7944 7945 cgroup_taskset_for_each(task, css, tset) 7946 task_function_call(task, __perf_cgroup_move, task); 7947 } 7948 7949 static void perf_cgroup_exit(struct cgroup_subsys_state *css, 7950 struct cgroup_subsys_state *old_css, 7951 struct task_struct *task) 7952 { 7953 /* 7954 * cgroup_exit() is called in the copy_process() failure path. 7955 * Ignore this case since the task hasn't ran yet, this avoids 7956 * trying to poke a half freed task state from generic code. 7957 */ 7958 if (!(task->flags & PF_EXITING)) 7959 return; 7960 7961 task_function_call(task, __perf_cgroup_move, task); 7962 } 7963 7964 struct cgroup_subsys perf_subsys = { 7965 .name = "perf_event", 7966 .subsys_id = perf_subsys_id, 7967 .css_alloc = perf_cgroup_css_alloc, 7968 .css_free = perf_cgroup_css_free, 7969 .exit = perf_cgroup_exit, 7970 .attach = perf_cgroup_attach, 7971 }; 7972 #endif /* CONFIG_CGROUP_PERF */ 7973