xref: /openbmc/linux/kernel/events/core.c (revision b34081f1)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 
43 #include "internal.h"
44 
45 #include <asm/irq_regs.h>
46 
47 struct remote_function_call {
48 	struct task_struct	*p;
49 	int			(*func)(void *info);
50 	void			*info;
51 	int			ret;
52 };
53 
54 static void remote_function(void *data)
55 {
56 	struct remote_function_call *tfc = data;
57 	struct task_struct *p = tfc->p;
58 
59 	if (p) {
60 		tfc->ret = -EAGAIN;
61 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 			return;
63 	}
64 
65 	tfc->ret = tfc->func(tfc->info);
66 }
67 
68 /**
69  * task_function_call - call a function on the cpu on which a task runs
70  * @p:		the task to evaluate
71  * @func:	the function to be called
72  * @info:	the function call argument
73  *
74  * Calls the function @func when the task is currently running. This might
75  * be on the current CPU, which just calls the function directly
76  *
77  * returns: @func return value, or
78  *	    -ESRCH  - when the process isn't running
79  *	    -EAGAIN - when the process moved away
80  */
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84 	struct remote_function_call data = {
85 		.p	= p,
86 		.func	= func,
87 		.info	= info,
88 		.ret	= -ESRCH, /* No such (running) process */
89 	};
90 
91 	if (task_curr(p))
92 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93 
94 	return data.ret;
95 }
96 
97 /**
98  * cpu_function_call - call a function on the cpu
99  * @func:	the function to be called
100  * @info:	the function call argument
101  *
102  * Calls the function @func on the remote cpu.
103  *
104  * returns: @func return value or -ENXIO when the cpu is offline
105  */
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108 	struct remote_function_call data = {
109 		.p	= NULL,
110 		.func	= func,
111 		.info	= info,
112 		.ret	= -ENXIO, /* No such CPU */
113 	};
114 
115 	smp_call_function_single(cpu, remote_function, &data, 1);
116 
117 	return data.ret;
118 }
119 
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 		       PERF_FLAG_FD_OUTPUT  |\
122 		       PERF_FLAG_PID_CGROUP)
123 
124 /*
125  * branch priv levels that need permission checks
126  */
127 #define PERF_SAMPLE_BRANCH_PERM_PLM \
128 	(PERF_SAMPLE_BRANCH_KERNEL |\
129 	 PERF_SAMPLE_BRANCH_HV)
130 
131 enum event_type_t {
132 	EVENT_FLEXIBLE = 0x1,
133 	EVENT_PINNED = 0x2,
134 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135 };
136 
137 /*
138  * perf_sched_events : >0 events exist
139  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140  */
141 struct static_key_deferred perf_sched_events __read_mostly;
142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
144 
145 static atomic_t nr_mmap_events __read_mostly;
146 static atomic_t nr_comm_events __read_mostly;
147 static atomic_t nr_task_events __read_mostly;
148 static atomic_t nr_freq_events __read_mostly;
149 
150 static LIST_HEAD(pmus);
151 static DEFINE_MUTEX(pmus_lock);
152 static struct srcu_struct pmus_srcu;
153 
154 /*
155  * perf event paranoia level:
156  *  -1 - not paranoid at all
157  *   0 - disallow raw tracepoint access for unpriv
158  *   1 - disallow cpu events for unpriv
159  *   2 - disallow kernel profiling for unpriv
160  */
161 int sysctl_perf_event_paranoid __read_mostly = 1;
162 
163 /* Minimum for 512 kiB + 1 user control page */
164 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
165 
166 /*
167  * max perf event sample rate
168  */
169 #define DEFAULT_MAX_SAMPLE_RATE		100000
170 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
172 
173 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
174 
175 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
177 
178 static atomic_t perf_sample_allowed_ns __read_mostly =
179 	ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
180 
181 void update_perf_cpu_limits(void)
182 {
183 	u64 tmp = perf_sample_period_ns;
184 
185 	tmp *= sysctl_perf_cpu_time_max_percent;
186 	do_div(tmp, 100);
187 	atomic_set(&perf_sample_allowed_ns, tmp);
188 }
189 
190 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
191 
192 int perf_proc_update_handler(struct ctl_table *table, int write,
193 		void __user *buffer, size_t *lenp,
194 		loff_t *ppos)
195 {
196 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
197 
198 	if (ret || !write)
199 		return ret;
200 
201 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
202 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
203 	update_perf_cpu_limits();
204 
205 	return 0;
206 }
207 
208 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
209 
210 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
211 				void __user *buffer, size_t *lenp,
212 				loff_t *ppos)
213 {
214 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
215 
216 	if (ret || !write)
217 		return ret;
218 
219 	update_perf_cpu_limits();
220 
221 	return 0;
222 }
223 
224 /*
225  * perf samples are done in some very critical code paths (NMIs).
226  * If they take too much CPU time, the system can lock up and not
227  * get any real work done.  This will drop the sample rate when
228  * we detect that events are taking too long.
229  */
230 #define NR_ACCUMULATED_SAMPLES 128
231 DEFINE_PER_CPU(u64, running_sample_length);
232 
233 void perf_sample_event_took(u64 sample_len_ns)
234 {
235 	u64 avg_local_sample_len;
236 	u64 local_samples_len;
237 
238 	if (atomic_read(&perf_sample_allowed_ns) == 0)
239 		return;
240 
241 	/* decay the counter by 1 average sample */
242 	local_samples_len = __get_cpu_var(running_sample_length);
243 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
244 	local_samples_len += sample_len_ns;
245 	__get_cpu_var(running_sample_length) = local_samples_len;
246 
247 	/*
248 	 * note: this will be biased artifically low until we have
249 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
250 	 * from having to maintain a count.
251 	 */
252 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
253 
254 	if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
255 		return;
256 
257 	if (max_samples_per_tick <= 1)
258 		return;
259 
260 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
261 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
262 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
263 
264 	printk_ratelimited(KERN_WARNING
265 			"perf samples too long (%lld > %d), lowering "
266 			"kernel.perf_event_max_sample_rate to %d\n",
267 			avg_local_sample_len,
268 			atomic_read(&perf_sample_allowed_ns),
269 			sysctl_perf_event_sample_rate);
270 
271 	update_perf_cpu_limits();
272 }
273 
274 static atomic64_t perf_event_id;
275 
276 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
277 			      enum event_type_t event_type);
278 
279 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
280 			     enum event_type_t event_type,
281 			     struct task_struct *task);
282 
283 static void update_context_time(struct perf_event_context *ctx);
284 static u64 perf_event_time(struct perf_event *event);
285 
286 void __weak perf_event_print_debug(void)	{ }
287 
288 extern __weak const char *perf_pmu_name(void)
289 {
290 	return "pmu";
291 }
292 
293 static inline u64 perf_clock(void)
294 {
295 	return local_clock();
296 }
297 
298 static inline struct perf_cpu_context *
299 __get_cpu_context(struct perf_event_context *ctx)
300 {
301 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
302 }
303 
304 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
305 			  struct perf_event_context *ctx)
306 {
307 	raw_spin_lock(&cpuctx->ctx.lock);
308 	if (ctx)
309 		raw_spin_lock(&ctx->lock);
310 }
311 
312 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
313 			    struct perf_event_context *ctx)
314 {
315 	if (ctx)
316 		raw_spin_unlock(&ctx->lock);
317 	raw_spin_unlock(&cpuctx->ctx.lock);
318 }
319 
320 #ifdef CONFIG_CGROUP_PERF
321 
322 /*
323  * perf_cgroup_info keeps track of time_enabled for a cgroup.
324  * This is a per-cpu dynamically allocated data structure.
325  */
326 struct perf_cgroup_info {
327 	u64				time;
328 	u64				timestamp;
329 };
330 
331 struct perf_cgroup {
332 	struct cgroup_subsys_state	css;
333 	struct perf_cgroup_info	__percpu *info;
334 };
335 
336 /*
337  * Must ensure cgroup is pinned (css_get) before calling
338  * this function. In other words, we cannot call this function
339  * if there is no cgroup event for the current CPU context.
340  */
341 static inline struct perf_cgroup *
342 perf_cgroup_from_task(struct task_struct *task)
343 {
344 	return container_of(task_css(task, perf_subsys_id),
345 			    struct perf_cgroup, css);
346 }
347 
348 static inline bool
349 perf_cgroup_match(struct perf_event *event)
350 {
351 	struct perf_event_context *ctx = event->ctx;
352 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
353 
354 	/* @event doesn't care about cgroup */
355 	if (!event->cgrp)
356 		return true;
357 
358 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
359 	if (!cpuctx->cgrp)
360 		return false;
361 
362 	/*
363 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
364 	 * also enabled for all its descendant cgroups.  If @cpuctx's
365 	 * cgroup is a descendant of @event's (the test covers identity
366 	 * case), it's a match.
367 	 */
368 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
369 				    event->cgrp->css.cgroup);
370 }
371 
372 static inline bool perf_tryget_cgroup(struct perf_event *event)
373 {
374 	return css_tryget(&event->cgrp->css);
375 }
376 
377 static inline void perf_put_cgroup(struct perf_event *event)
378 {
379 	css_put(&event->cgrp->css);
380 }
381 
382 static inline void perf_detach_cgroup(struct perf_event *event)
383 {
384 	perf_put_cgroup(event);
385 	event->cgrp = NULL;
386 }
387 
388 static inline int is_cgroup_event(struct perf_event *event)
389 {
390 	return event->cgrp != NULL;
391 }
392 
393 static inline u64 perf_cgroup_event_time(struct perf_event *event)
394 {
395 	struct perf_cgroup_info *t;
396 
397 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
398 	return t->time;
399 }
400 
401 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
402 {
403 	struct perf_cgroup_info *info;
404 	u64 now;
405 
406 	now = perf_clock();
407 
408 	info = this_cpu_ptr(cgrp->info);
409 
410 	info->time += now - info->timestamp;
411 	info->timestamp = now;
412 }
413 
414 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
415 {
416 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
417 	if (cgrp_out)
418 		__update_cgrp_time(cgrp_out);
419 }
420 
421 static inline void update_cgrp_time_from_event(struct perf_event *event)
422 {
423 	struct perf_cgroup *cgrp;
424 
425 	/*
426 	 * ensure we access cgroup data only when needed and
427 	 * when we know the cgroup is pinned (css_get)
428 	 */
429 	if (!is_cgroup_event(event))
430 		return;
431 
432 	cgrp = perf_cgroup_from_task(current);
433 	/*
434 	 * Do not update time when cgroup is not active
435 	 */
436 	if (cgrp == event->cgrp)
437 		__update_cgrp_time(event->cgrp);
438 }
439 
440 static inline void
441 perf_cgroup_set_timestamp(struct task_struct *task,
442 			  struct perf_event_context *ctx)
443 {
444 	struct perf_cgroup *cgrp;
445 	struct perf_cgroup_info *info;
446 
447 	/*
448 	 * ctx->lock held by caller
449 	 * ensure we do not access cgroup data
450 	 * unless we have the cgroup pinned (css_get)
451 	 */
452 	if (!task || !ctx->nr_cgroups)
453 		return;
454 
455 	cgrp = perf_cgroup_from_task(task);
456 	info = this_cpu_ptr(cgrp->info);
457 	info->timestamp = ctx->timestamp;
458 }
459 
460 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
461 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
462 
463 /*
464  * reschedule events based on the cgroup constraint of task.
465  *
466  * mode SWOUT : schedule out everything
467  * mode SWIN : schedule in based on cgroup for next
468  */
469 void perf_cgroup_switch(struct task_struct *task, int mode)
470 {
471 	struct perf_cpu_context *cpuctx;
472 	struct pmu *pmu;
473 	unsigned long flags;
474 
475 	/*
476 	 * disable interrupts to avoid geting nr_cgroup
477 	 * changes via __perf_event_disable(). Also
478 	 * avoids preemption.
479 	 */
480 	local_irq_save(flags);
481 
482 	/*
483 	 * we reschedule only in the presence of cgroup
484 	 * constrained events.
485 	 */
486 	rcu_read_lock();
487 
488 	list_for_each_entry_rcu(pmu, &pmus, entry) {
489 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
490 		if (cpuctx->unique_pmu != pmu)
491 			continue; /* ensure we process each cpuctx once */
492 
493 		/*
494 		 * perf_cgroup_events says at least one
495 		 * context on this CPU has cgroup events.
496 		 *
497 		 * ctx->nr_cgroups reports the number of cgroup
498 		 * events for a context.
499 		 */
500 		if (cpuctx->ctx.nr_cgroups > 0) {
501 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
502 			perf_pmu_disable(cpuctx->ctx.pmu);
503 
504 			if (mode & PERF_CGROUP_SWOUT) {
505 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
506 				/*
507 				 * must not be done before ctxswout due
508 				 * to event_filter_match() in event_sched_out()
509 				 */
510 				cpuctx->cgrp = NULL;
511 			}
512 
513 			if (mode & PERF_CGROUP_SWIN) {
514 				WARN_ON_ONCE(cpuctx->cgrp);
515 				/*
516 				 * set cgrp before ctxsw in to allow
517 				 * event_filter_match() to not have to pass
518 				 * task around
519 				 */
520 				cpuctx->cgrp = perf_cgroup_from_task(task);
521 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
522 			}
523 			perf_pmu_enable(cpuctx->ctx.pmu);
524 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
525 		}
526 	}
527 
528 	rcu_read_unlock();
529 
530 	local_irq_restore(flags);
531 }
532 
533 static inline void perf_cgroup_sched_out(struct task_struct *task,
534 					 struct task_struct *next)
535 {
536 	struct perf_cgroup *cgrp1;
537 	struct perf_cgroup *cgrp2 = NULL;
538 
539 	/*
540 	 * we come here when we know perf_cgroup_events > 0
541 	 */
542 	cgrp1 = perf_cgroup_from_task(task);
543 
544 	/*
545 	 * next is NULL when called from perf_event_enable_on_exec()
546 	 * that will systematically cause a cgroup_switch()
547 	 */
548 	if (next)
549 		cgrp2 = perf_cgroup_from_task(next);
550 
551 	/*
552 	 * only schedule out current cgroup events if we know
553 	 * that we are switching to a different cgroup. Otherwise,
554 	 * do no touch the cgroup events.
555 	 */
556 	if (cgrp1 != cgrp2)
557 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
558 }
559 
560 static inline void perf_cgroup_sched_in(struct task_struct *prev,
561 					struct task_struct *task)
562 {
563 	struct perf_cgroup *cgrp1;
564 	struct perf_cgroup *cgrp2 = NULL;
565 
566 	/*
567 	 * we come here when we know perf_cgroup_events > 0
568 	 */
569 	cgrp1 = perf_cgroup_from_task(task);
570 
571 	/* prev can never be NULL */
572 	cgrp2 = perf_cgroup_from_task(prev);
573 
574 	/*
575 	 * only need to schedule in cgroup events if we are changing
576 	 * cgroup during ctxsw. Cgroup events were not scheduled
577 	 * out of ctxsw out if that was not the case.
578 	 */
579 	if (cgrp1 != cgrp2)
580 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
581 }
582 
583 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
584 				      struct perf_event_attr *attr,
585 				      struct perf_event *group_leader)
586 {
587 	struct perf_cgroup *cgrp;
588 	struct cgroup_subsys_state *css;
589 	struct fd f = fdget(fd);
590 	int ret = 0;
591 
592 	if (!f.file)
593 		return -EBADF;
594 
595 	rcu_read_lock();
596 
597 	css = css_from_dir(f.file->f_dentry, &perf_subsys);
598 	if (IS_ERR(css)) {
599 		ret = PTR_ERR(css);
600 		goto out;
601 	}
602 
603 	cgrp = container_of(css, struct perf_cgroup, css);
604 	event->cgrp = cgrp;
605 
606 	/* must be done before we fput() the file */
607 	if (!perf_tryget_cgroup(event)) {
608 		event->cgrp = NULL;
609 		ret = -ENOENT;
610 		goto out;
611 	}
612 
613 	/*
614 	 * all events in a group must monitor
615 	 * the same cgroup because a task belongs
616 	 * to only one perf cgroup at a time
617 	 */
618 	if (group_leader && group_leader->cgrp != cgrp) {
619 		perf_detach_cgroup(event);
620 		ret = -EINVAL;
621 	}
622 out:
623 	rcu_read_unlock();
624 	fdput(f);
625 	return ret;
626 }
627 
628 static inline void
629 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
630 {
631 	struct perf_cgroup_info *t;
632 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
633 	event->shadow_ctx_time = now - t->timestamp;
634 }
635 
636 static inline void
637 perf_cgroup_defer_enabled(struct perf_event *event)
638 {
639 	/*
640 	 * when the current task's perf cgroup does not match
641 	 * the event's, we need to remember to call the
642 	 * perf_mark_enable() function the first time a task with
643 	 * a matching perf cgroup is scheduled in.
644 	 */
645 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
646 		event->cgrp_defer_enabled = 1;
647 }
648 
649 static inline void
650 perf_cgroup_mark_enabled(struct perf_event *event,
651 			 struct perf_event_context *ctx)
652 {
653 	struct perf_event *sub;
654 	u64 tstamp = perf_event_time(event);
655 
656 	if (!event->cgrp_defer_enabled)
657 		return;
658 
659 	event->cgrp_defer_enabled = 0;
660 
661 	event->tstamp_enabled = tstamp - event->total_time_enabled;
662 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
663 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
664 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
665 			sub->cgrp_defer_enabled = 0;
666 		}
667 	}
668 }
669 #else /* !CONFIG_CGROUP_PERF */
670 
671 static inline bool
672 perf_cgroup_match(struct perf_event *event)
673 {
674 	return true;
675 }
676 
677 static inline void perf_detach_cgroup(struct perf_event *event)
678 {}
679 
680 static inline int is_cgroup_event(struct perf_event *event)
681 {
682 	return 0;
683 }
684 
685 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
686 {
687 	return 0;
688 }
689 
690 static inline void update_cgrp_time_from_event(struct perf_event *event)
691 {
692 }
693 
694 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
695 {
696 }
697 
698 static inline void perf_cgroup_sched_out(struct task_struct *task,
699 					 struct task_struct *next)
700 {
701 }
702 
703 static inline void perf_cgroup_sched_in(struct task_struct *prev,
704 					struct task_struct *task)
705 {
706 }
707 
708 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
709 				      struct perf_event_attr *attr,
710 				      struct perf_event *group_leader)
711 {
712 	return -EINVAL;
713 }
714 
715 static inline void
716 perf_cgroup_set_timestamp(struct task_struct *task,
717 			  struct perf_event_context *ctx)
718 {
719 }
720 
721 void
722 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
723 {
724 }
725 
726 static inline void
727 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
728 {
729 }
730 
731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
732 {
733 	return 0;
734 }
735 
736 static inline void
737 perf_cgroup_defer_enabled(struct perf_event *event)
738 {
739 }
740 
741 static inline void
742 perf_cgroup_mark_enabled(struct perf_event *event,
743 			 struct perf_event_context *ctx)
744 {
745 }
746 #endif
747 
748 /*
749  * set default to be dependent on timer tick just
750  * like original code
751  */
752 #define PERF_CPU_HRTIMER (1000 / HZ)
753 /*
754  * function must be called with interrupts disbled
755  */
756 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
757 {
758 	struct perf_cpu_context *cpuctx;
759 	enum hrtimer_restart ret = HRTIMER_NORESTART;
760 	int rotations = 0;
761 
762 	WARN_ON(!irqs_disabled());
763 
764 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
765 
766 	rotations = perf_rotate_context(cpuctx);
767 
768 	/*
769 	 * arm timer if needed
770 	 */
771 	if (rotations) {
772 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
773 		ret = HRTIMER_RESTART;
774 	}
775 
776 	return ret;
777 }
778 
779 /* CPU is going down */
780 void perf_cpu_hrtimer_cancel(int cpu)
781 {
782 	struct perf_cpu_context *cpuctx;
783 	struct pmu *pmu;
784 	unsigned long flags;
785 
786 	if (WARN_ON(cpu != smp_processor_id()))
787 		return;
788 
789 	local_irq_save(flags);
790 
791 	rcu_read_lock();
792 
793 	list_for_each_entry_rcu(pmu, &pmus, entry) {
794 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
795 
796 		if (pmu->task_ctx_nr == perf_sw_context)
797 			continue;
798 
799 		hrtimer_cancel(&cpuctx->hrtimer);
800 	}
801 
802 	rcu_read_unlock();
803 
804 	local_irq_restore(flags);
805 }
806 
807 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
808 {
809 	struct hrtimer *hr = &cpuctx->hrtimer;
810 	struct pmu *pmu = cpuctx->ctx.pmu;
811 	int timer;
812 
813 	/* no multiplexing needed for SW PMU */
814 	if (pmu->task_ctx_nr == perf_sw_context)
815 		return;
816 
817 	/*
818 	 * check default is sane, if not set then force to
819 	 * default interval (1/tick)
820 	 */
821 	timer = pmu->hrtimer_interval_ms;
822 	if (timer < 1)
823 		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
824 
825 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
826 
827 	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
828 	hr->function = perf_cpu_hrtimer_handler;
829 }
830 
831 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
832 {
833 	struct hrtimer *hr = &cpuctx->hrtimer;
834 	struct pmu *pmu = cpuctx->ctx.pmu;
835 
836 	/* not for SW PMU */
837 	if (pmu->task_ctx_nr == perf_sw_context)
838 		return;
839 
840 	if (hrtimer_active(hr))
841 		return;
842 
843 	if (!hrtimer_callback_running(hr))
844 		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
845 					 0, HRTIMER_MODE_REL_PINNED, 0);
846 }
847 
848 void perf_pmu_disable(struct pmu *pmu)
849 {
850 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
851 	if (!(*count)++)
852 		pmu->pmu_disable(pmu);
853 }
854 
855 void perf_pmu_enable(struct pmu *pmu)
856 {
857 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
858 	if (!--(*count))
859 		pmu->pmu_enable(pmu);
860 }
861 
862 static DEFINE_PER_CPU(struct list_head, rotation_list);
863 
864 /*
865  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
866  * because they're strictly cpu affine and rotate_start is called with IRQs
867  * disabled, while rotate_context is called from IRQ context.
868  */
869 static void perf_pmu_rotate_start(struct pmu *pmu)
870 {
871 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
872 	struct list_head *head = &__get_cpu_var(rotation_list);
873 
874 	WARN_ON(!irqs_disabled());
875 
876 	if (list_empty(&cpuctx->rotation_list))
877 		list_add(&cpuctx->rotation_list, head);
878 }
879 
880 static void get_ctx(struct perf_event_context *ctx)
881 {
882 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
883 }
884 
885 static void put_ctx(struct perf_event_context *ctx)
886 {
887 	if (atomic_dec_and_test(&ctx->refcount)) {
888 		if (ctx->parent_ctx)
889 			put_ctx(ctx->parent_ctx);
890 		if (ctx->task)
891 			put_task_struct(ctx->task);
892 		kfree_rcu(ctx, rcu_head);
893 	}
894 }
895 
896 static void unclone_ctx(struct perf_event_context *ctx)
897 {
898 	if (ctx->parent_ctx) {
899 		put_ctx(ctx->parent_ctx);
900 		ctx->parent_ctx = NULL;
901 	}
902 }
903 
904 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
905 {
906 	/*
907 	 * only top level events have the pid namespace they were created in
908 	 */
909 	if (event->parent)
910 		event = event->parent;
911 
912 	return task_tgid_nr_ns(p, event->ns);
913 }
914 
915 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
916 {
917 	/*
918 	 * only top level events have the pid namespace they were created in
919 	 */
920 	if (event->parent)
921 		event = event->parent;
922 
923 	return task_pid_nr_ns(p, event->ns);
924 }
925 
926 /*
927  * If we inherit events we want to return the parent event id
928  * to userspace.
929  */
930 static u64 primary_event_id(struct perf_event *event)
931 {
932 	u64 id = event->id;
933 
934 	if (event->parent)
935 		id = event->parent->id;
936 
937 	return id;
938 }
939 
940 /*
941  * Get the perf_event_context for a task and lock it.
942  * This has to cope with with the fact that until it is locked,
943  * the context could get moved to another task.
944  */
945 static struct perf_event_context *
946 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
947 {
948 	struct perf_event_context *ctx;
949 
950 retry:
951 	/*
952 	 * One of the few rules of preemptible RCU is that one cannot do
953 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
954 	 * part of the read side critical section was preemptible -- see
955 	 * rcu_read_unlock_special().
956 	 *
957 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
958 	 * side critical section is non-preemptible.
959 	 */
960 	preempt_disable();
961 	rcu_read_lock();
962 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
963 	if (ctx) {
964 		/*
965 		 * If this context is a clone of another, it might
966 		 * get swapped for another underneath us by
967 		 * perf_event_task_sched_out, though the
968 		 * rcu_read_lock() protects us from any context
969 		 * getting freed.  Lock the context and check if it
970 		 * got swapped before we could get the lock, and retry
971 		 * if so.  If we locked the right context, then it
972 		 * can't get swapped on us any more.
973 		 */
974 		raw_spin_lock_irqsave(&ctx->lock, *flags);
975 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
976 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
977 			rcu_read_unlock();
978 			preempt_enable();
979 			goto retry;
980 		}
981 
982 		if (!atomic_inc_not_zero(&ctx->refcount)) {
983 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
984 			ctx = NULL;
985 		}
986 	}
987 	rcu_read_unlock();
988 	preempt_enable();
989 	return ctx;
990 }
991 
992 /*
993  * Get the context for a task and increment its pin_count so it
994  * can't get swapped to another task.  This also increments its
995  * reference count so that the context can't get freed.
996  */
997 static struct perf_event_context *
998 perf_pin_task_context(struct task_struct *task, int ctxn)
999 {
1000 	struct perf_event_context *ctx;
1001 	unsigned long flags;
1002 
1003 	ctx = perf_lock_task_context(task, ctxn, &flags);
1004 	if (ctx) {
1005 		++ctx->pin_count;
1006 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1007 	}
1008 	return ctx;
1009 }
1010 
1011 static void perf_unpin_context(struct perf_event_context *ctx)
1012 {
1013 	unsigned long flags;
1014 
1015 	raw_spin_lock_irqsave(&ctx->lock, flags);
1016 	--ctx->pin_count;
1017 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1018 }
1019 
1020 /*
1021  * Update the record of the current time in a context.
1022  */
1023 static void update_context_time(struct perf_event_context *ctx)
1024 {
1025 	u64 now = perf_clock();
1026 
1027 	ctx->time += now - ctx->timestamp;
1028 	ctx->timestamp = now;
1029 }
1030 
1031 static u64 perf_event_time(struct perf_event *event)
1032 {
1033 	struct perf_event_context *ctx = event->ctx;
1034 
1035 	if (is_cgroup_event(event))
1036 		return perf_cgroup_event_time(event);
1037 
1038 	return ctx ? ctx->time : 0;
1039 }
1040 
1041 /*
1042  * Update the total_time_enabled and total_time_running fields for a event.
1043  * The caller of this function needs to hold the ctx->lock.
1044  */
1045 static void update_event_times(struct perf_event *event)
1046 {
1047 	struct perf_event_context *ctx = event->ctx;
1048 	u64 run_end;
1049 
1050 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1051 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1052 		return;
1053 	/*
1054 	 * in cgroup mode, time_enabled represents
1055 	 * the time the event was enabled AND active
1056 	 * tasks were in the monitored cgroup. This is
1057 	 * independent of the activity of the context as
1058 	 * there may be a mix of cgroup and non-cgroup events.
1059 	 *
1060 	 * That is why we treat cgroup events differently
1061 	 * here.
1062 	 */
1063 	if (is_cgroup_event(event))
1064 		run_end = perf_cgroup_event_time(event);
1065 	else if (ctx->is_active)
1066 		run_end = ctx->time;
1067 	else
1068 		run_end = event->tstamp_stopped;
1069 
1070 	event->total_time_enabled = run_end - event->tstamp_enabled;
1071 
1072 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1073 		run_end = event->tstamp_stopped;
1074 	else
1075 		run_end = perf_event_time(event);
1076 
1077 	event->total_time_running = run_end - event->tstamp_running;
1078 
1079 }
1080 
1081 /*
1082  * Update total_time_enabled and total_time_running for all events in a group.
1083  */
1084 static void update_group_times(struct perf_event *leader)
1085 {
1086 	struct perf_event *event;
1087 
1088 	update_event_times(leader);
1089 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1090 		update_event_times(event);
1091 }
1092 
1093 static struct list_head *
1094 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1095 {
1096 	if (event->attr.pinned)
1097 		return &ctx->pinned_groups;
1098 	else
1099 		return &ctx->flexible_groups;
1100 }
1101 
1102 /*
1103  * Add a event from the lists for its context.
1104  * Must be called with ctx->mutex and ctx->lock held.
1105  */
1106 static void
1107 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1108 {
1109 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1110 	event->attach_state |= PERF_ATTACH_CONTEXT;
1111 
1112 	/*
1113 	 * If we're a stand alone event or group leader, we go to the context
1114 	 * list, group events are kept attached to the group so that
1115 	 * perf_group_detach can, at all times, locate all siblings.
1116 	 */
1117 	if (event->group_leader == event) {
1118 		struct list_head *list;
1119 
1120 		if (is_software_event(event))
1121 			event->group_flags |= PERF_GROUP_SOFTWARE;
1122 
1123 		list = ctx_group_list(event, ctx);
1124 		list_add_tail(&event->group_entry, list);
1125 	}
1126 
1127 	if (is_cgroup_event(event))
1128 		ctx->nr_cgroups++;
1129 
1130 	if (has_branch_stack(event))
1131 		ctx->nr_branch_stack++;
1132 
1133 	list_add_rcu(&event->event_entry, &ctx->event_list);
1134 	if (!ctx->nr_events)
1135 		perf_pmu_rotate_start(ctx->pmu);
1136 	ctx->nr_events++;
1137 	if (event->attr.inherit_stat)
1138 		ctx->nr_stat++;
1139 }
1140 
1141 /*
1142  * Initialize event state based on the perf_event_attr::disabled.
1143  */
1144 static inline void perf_event__state_init(struct perf_event *event)
1145 {
1146 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1147 					      PERF_EVENT_STATE_INACTIVE;
1148 }
1149 
1150 /*
1151  * Called at perf_event creation and when events are attached/detached from a
1152  * group.
1153  */
1154 static void perf_event__read_size(struct perf_event *event)
1155 {
1156 	int entry = sizeof(u64); /* value */
1157 	int size = 0;
1158 	int nr = 1;
1159 
1160 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1161 		size += sizeof(u64);
1162 
1163 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1164 		size += sizeof(u64);
1165 
1166 	if (event->attr.read_format & PERF_FORMAT_ID)
1167 		entry += sizeof(u64);
1168 
1169 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1170 		nr += event->group_leader->nr_siblings;
1171 		size += sizeof(u64);
1172 	}
1173 
1174 	size += entry * nr;
1175 	event->read_size = size;
1176 }
1177 
1178 static void perf_event__header_size(struct perf_event *event)
1179 {
1180 	struct perf_sample_data *data;
1181 	u64 sample_type = event->attr.sample_type;
1182 	u16 size = 0;
1183 
1184 	perf_event__read_size(event);
1185 
1186 	if (sample_type & PERF_SAMPLE_IP)
1187 		size += sizeof(data->ip);
1188 
1189 	if (sample_type & PERF_SAMPLE_ADDR)
1190 		size += sizeof(data->addr);
1191 
1192 	if (sample_type & PERF_SAMPLE_PERIOD)
1193 		size += sizeof(data->period);
1194 
1195 	if (sample_type & PERF_SAMPLE_WEIGHT)
1196 		size += sizeof(data->weight);
1197 
1198 	if (sample_type & PERF_SAMPLE_READ)
1199 		size += event->read_size;
1200 
1201 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1202 		size += sizeof(data->data_src.val);
1203 
1204 	event->header_size = size;
1205 }
1206 
1207 static void perf_event__id_header_size(struct perf_event *event)
1208 {
1209 	struct perf_sample_data *data;
1210 	u64 sample_type = event->attr.sample_type;
1211 	u16 size = 0;
1212 
1213 	if (sample_type & PERF_SAMPLE_TID)
1214 		size += sizeof(data->tid_entry);
1215 
1216 	if (sample_type & PERF_SAMPLE_TIME)
1217 		size += sizeof(data->time);
1218 
1219 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1220 		size += sizeof(data->id);
1221 
1222 	if (sample_type & PERF_SAMPLE_ID)
1223 		size += sizeof(data->id);
1224 
1225 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1226 		size += sizeof(data->stream_id);
1227 
1228 	if (sample_type & PERF_SAMPLE_CPU)
1229 		size += sizeof(data->cpu_entry);
1230 
1231 	event->id_header_size = size;
1232 }
1233 
1234 static void perf_group_attach(struct perf_event *event)
1235 {
1236 	struct perf_event *group_leader = event->group_leader, *pos;
1237 
1238 	/*
1239 	 * We can have double attach due to group movement in perf_event_open.
1240 	 */
1241 	if (event->attach_state & PERF_ATTACH_GROUP)
1242 		return;
1243 
1244 	event->attach_state |= PERF_ATTACH_GROUP;
1245 
1246 	if (group_leader == event)
1247 		return;
1248 
1249 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1250 			!is_software_event(event))
1251 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1252 
1253 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1254 	group_leader->nr_siblings++;
1255 
1256 	perf_event__header_size(group_leader);
1257 
1258 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1259 		perf_event__header_size(pos);
1260 }
1261 
1262 /*
1263  * Remove a event from the lists for its context.
1264  * Must be called with ctx->mutex and ctx->lock held.
1265  */
1266 static void
1267 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1268 {
1269 	struct perf_cpu_context *cpuctx;
1270 	/*
1271 	 * We can have double detach due to exit/hot-unplug + close.
1272 	 */
1273 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1274 		return;
1275 
1276 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1277 
1278 	if (is_cgroup_event(event)) {
1279 		ctx->nr_cgroups--;
1280 		cpuctx = __get_cpu_context(ctx);
1281 		/*
1282 		 * if there are no more cgroup events
1283 		 * then cler cgrp to avoid stale pointer
1284 		 * in update_cgrp_time_from_cpuctx()
1285 		 */
1286 		if (!ctx->nr_cgroups)
1287 			cpuctx->cgrp = NULL;
1288 	}
1289 
1290 	if (has_branch_stack(event))
1291 		ctx->nr_branch_stack--;
1292 
1293 	ctx->nr_events--;
1294 	if (event->attr.inherit_stat)
1295 		ctx->nr_stat--;
1296 
1297 	list_del_rcu(&event->event_entry);
1298 
1299 	if (event->group_leader == event)
1300 		list_del_init(&event->group_entry);
1301 
1302 	update_group_times(event);
1303 
1304 	/*
1305 	 * If event was in error state, then keep it
1306 	 * that way, otherwise bogus counts will be
1307 	 * returned on read(). The only way to get out
1308 	 * of error state is by explicit re-enabling
1309 	 * of the event
1310 	 */
1311 	if (event->state > PERF_EVENT_STATE_OFF)
1312 		event->state = PERF_EVENT_STATE_OFF;
1313 }
1314 
1315 static void perf_group_detach(struct perf_event *event)
1316 {
1317 	struct perf_event *sibling, *tmp;
1318 	struct list_head *list = NULL;
1319 
1320 	/*
1321 	 * We can have double detach due to exit/hot-unplug + close.
1322 	 */
1323 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1324 		return;
1325 
1326 	event->attach_state &= ~PERF_ATTACH_GROUP;
1327 
1328 	/*
1329 	 * If this is a sibling, remove it from its group.
1330 	 */
1331 	if (event->group_leader != event) {
1332 		list_del_init(&event->group_entry);
1333 		event->group_leader->nr_siblings--;
1334 		goto out;
1335 	}
1336 
1337 	if (!list_empty(&event->group_entry))
1338 		list = &event->group_entry;
1339 
1340 	/*
1341 	 * If this was a group event with sibling events then
1342 	 * upgrade the siblings to singleton events by adding them
1343 	 * to whatever list we are on.
1344 	 */
1345 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1346 		if (list)
1347 			list_move_tail(&sibling->group_entry, list);
1348 		sibling->group_leader = sibling;
1349 
1350 		/* Inherit group flags from the previous leader */
1351 		sibling->group_flags = event->group_flags;
1352 	}
1353 
1354 out:
1355 	perf_event__header_size(event->group_leader);
1356 
1357 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1358 		perf_event__header_size(tmp);
1359 }
1360 
1361 static inline int
1362 event_filter_match(struct perf_event *event)
1363 {
1364 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1365 	    && perf_cgroup_match(event);
1366 }
1367 
1368 static void
1369 event_sched_out(struct perf_event *event,
1370 		  struct perf_cpu_context *cpuctx,
1371 		  struct perf_event_context *ctx)
1372 {
1373 	u64 tstamp = perf_event_time(event);
1374 	u64 delta;
1375 	/*
1376 	 * An event which could not be activated because of
1377 	 * filter mismatch still needs to have its timings
1378 	 * maintained, otherwise bogus information is return
1379 	 * via read() for time_enabled, time_running:
1380 	 */
1381 	if (event->state == PERF_EVENT_STATE_INACTIVE
1382 	    && !event_filter_match(event)) {
1383 		delta = tstamp - event->tstamp_stopped;
1384 		event->tstamp_running += delta;
1385 		event->tstamp_stopped = tstamp;
1386 	}
1387 
1388 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1389 		return;
1390 
1391 	event->state = PERF_EVENT_STATE_INACTIVE;
1392 	if (event->pending_disable) {
1393 		event->pending_disable = 0;
1394 		event->state = PERF_EVENT_STATE_OFF;
1395 	}
1396 	event->tstamp_stopped = tstamp;
1397 	event->pmu->del(event, 0);
1398 	event->oncpu = -1;
1399 
1400 	if (!is_software_event(event))
1401 		cpuctx->active_oncpu--;
1402 	ctx->nr_active--;
1403 	if (event->attr.freq && event->attr.sample_freq)
1404 		ctx->nr_freq--;
1405 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1406 		cpuctx->exclusive = 0;
1407 }
1408 
1409 static void
1410 group_sched_out(struct perf_event *group_event,
1411 		struct perf_cpu_context *cpuctx,
1412 		struct perf_event_context *ctx)
1413 {
1414 	struct perf_event *event;
1415 	int state = group_event->state;
1416 
1417 	event_sched_out(group_event, cpuctx, ctx);
1418 
1419 	/*
1420 	 * Schedule out siblings (if any):
1421 	 */
1422 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1423 		event_sched_out(event, cpuctx, ctx);
1424 
1425 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1426 		cpuctx->exclusive = 0;
1427 }
1428 
1429 /*
1430  * Cross CPU call to remove a performance event
1431  *
1432  * We disable the event on the hardware level first. After that we
1433  * remove it from the context list.
1434  */
1435 static int __perf_remove_from_context(void *info)
1436 {
1437 	struct perf_event *event = info;
1438 	struct perf_event_context *ctx = event->ctx;
1439 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1440 
1441 	raw_spin_lock(&ctx->lock);
1442 	event_sched_out(event, cpuctx, ctx);
1443 	list_del_event(event, ctx);
1444 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1445 		ctx->is_active = 0;
1446 		cpuctx->task_ctx = NULL;
1447 	}
1448 	raw_spin_unlock(&ctx->lock);
1449 
1450 	return 0;
1451 }
1452 
1453 
1454 /*
1455  * Remove the event from a task's (or a CPU's) list of events.
1456  *
1457  * CPU events are removed with a smp call. For task events we only
1458  * call when the task is on a CPU.
1459  *
1460  * If event->ctx is a cloned context, callers must make sure that
1461  * every task struct that event->ctx->task could possibly point to
1462  * remains valid.  This is OK when called from perf_release since
1463  * that only calls us on the top-level context, which can't be a clone.
1464  * When called from perf_event_exit_task, it's OK because the
1465  * context has been detached from its task.
1466  */
1467 static void perf_remove_from_context(struct perf_event *event)
1468 {
1469 	struct perf_event_context *ctx = event->ctx;
1470 	struct task_struct *task = ctx->task;
1471 
1472 	lockdep_assert_held(&ctx->mutex);
1473 
1474 	if (!task) {
1475 		/*
1476 		 * Per cpu events are removed via an smp call and
1477 		 * the removal is always successful.
1478 		 */
1479 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1480 		return;
1481 	}
1482 
1483 retry:
1484 	if (!task_function_call(task, __perf_remove_from_context, event))
1485 		return;
1486 
1487 	raw_spin_lock_irq(&ctx->lock);
1488 	/*
1489 	 * If we failed to find a running task, but find the context active now
1490 	 * that we've acquired the ctx->lock, retry.
1491 	 */
1492 	if (ctx->is_active) {
1493 		raw_spin_unlock_irq(&ctx->lock);
1494 		goto retry;
1495 	}
1496 
1497 	/*
1498 	 * Since the task isn't running, its safe to remove the event, us
1499 	 * holding the ctx->lock ensures the task won't get scheduled in.
1500 	 */
1501 	list_del_event(event, ctx);
1502 	raw_spin_unlock_irq(&ctx->lock);
1503 }
1504 
1505 /*
1506  * Cross CPU call to disable a performance event
1507  */
1508 int __perf_event_disable(void *info)
1509 {
1510 	struct perf_event *event = info;
1511 	struct perf_event_context *ctx = event->ctx;
1512 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1513 
1514 	/*
1515 	 * If this is a per-task event, need to check whether this
1516 	 * event's task is the current task on this cpu.
1517 	 *
1518 	 * Can trigger due to concurrent perf_event_context_sched_out()
1519 	 * flipping contexts around.
1520 	 */
1521 	if (ctx->task && cpuctx->task_ctx != ctx)
1522 		return -EINVAL;
1523 
1524 	raw_spin_lock(&ctx->lock);
1525 
1526 	/*
1527 	 * If the event is on, turn it off.
1528 	 * If it is in error state, leave it in error state.
1529 	 */
1530 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1531 		update_context_time(ctx);
1532 		update_cgrp_time_from_event(event);
1533 		update_group_times(event);
1534 		if (event == event->group_leader)
1535 			group_sched_out(event, cpuctx, ctx);
1536 		else
1537 			event_sched_out(event, cpuctx, ctx);
1538 		event->state = PERF_EVENT_STATE_OFF;
1539 	}
1540 
1541 	raw_spin_unlock(&ctx->lock);
1542 
1543 	return 0;
1544 }
1545 
1546 /*
1547  * Disable a event.
1548  *
1549  * If event->ctx is a cloned context, callers must make sure that
1550  * every task struct that event->ctx->task could possibly point to
1551  * remains valid.  This condition is satisifed when called through
1552  * perf_event_for_each_child or perf_event_for_each because they
1553  * hold the top-level event's child_mutex, so any descendant that
1554  * goes to exit will block in sync_child_event.
1555  * When called from perf_pending_event it's OK because event->ctx
1556  * is the current context on this CPU and preemption is disabled,
1557  * hence we can't get into perf_event_task_sched_out for this context.
1558  */
1559 void perf_event_disable(struct perf_event *event)
1560 {
1561 	struct perf_event_context *ctx = event->ctx;
1562 	struct task_struct *task = ctx->task;
1563 
1564 	if (!task) {
1565 		/*
1566 		 * Disable the event on the cpu that it's on
1567 		 */
1568 		cpu_function_call(event->cpu, __perf_event_disable, event);
1569 		return;
1570 	}
1571 
1572 retry:
1573 	if (!task_function_call(task, __perf_event_disable, event))
1574 		return;
1575 
1576 	raw_spin_lock_irq(&ctx->lock);
1577 	/*
1578 	 * If the event is still active, we need to retry the cross-call.
1579 	 */
1580 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1581 		raw_spin_unlock_irq(&ctx->lock);
1582 		/*
1583 		 * Reload the task pointer, it might have been changed by
1584 		 * a concurrent perf_event_context_sched_out().
1585 		 */
1586 		task = ctx->task;
1587 		goto retry;
1588 	}
1589 
1590 	/*
1591 	 * Since we have the lock this context can't be scheduled
1592 	 * in, so we can change the state safely.
1593 	 */
1594 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1595 		update_group_times(event);
1596 		event->state = PERF_EVENT_STATE_OFF;
1597 	}
1598 	raw_spin_unlock_irq(&ctx->lock);
1599 }
1600 EXPORT_SYMBOL_GPL(perf_event_disable);
1601 
1602 static void perf_set_shadow_time(struct perf_event *event,
1603 				 struct perf_event_context *ctx,
1604 				 u64 tstamp)
1605 {
1606 	/*
1607 	 * use the correct time source for the time snapshot
1608 	 *
1609 	 * We could get by without this by leveraging the
1610 	 * fact that to get to this function, the caller
1611 	 * has most likely already called update_context_time()
1612 	 * and update_cgrp_time_xx() and thus both timestamp
1613 	 * are identical (or very close). Given that tstamp is,
1614 	 * already adjusted for cgroup, we could say that:
1615 	 *    tstamp - ctx->timestamp
1616 	 * is equivalent to
1617 	 *    tstamp - cgrp->timestamp.
1618 	 *
1619 	 * Then, in perf_output_read(), the calculation would
1620 	 * work with no changes because:
1621 	 * - event is guaranteed scheduled in
1622 	 * - no scheduled out in between
1623 	 * - thus the timestamp would be the same
1624 	 *
1625 	 * But this is a bit hairy.
1626 	 *
1627 	 * So instead, we have an explicit cgroup call to remain
1628 	 * within the time time source all along. We believe it
1629 	 * is cleaner and simpler to understand.
1630 	 */
1631 	if (is_cgroup_event(event))
1632 		perf_cgroup_set_shadow_time(event, tstamp);
1633 	else
1634 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1635 }
1636 
1637 #define MAX_INTERRUPTS (~0ULL)
1638 
1639 static void perf_log_throttle(struct perf_event *event, int enable);
1640 
1641 static int
1642 event_sched_in(struct perf_event *event,
1643 		 struct perf_cpu_context *cpuctx,
1644 		 struct perf_event_context *ctx)
1645 {
1646 	u64 tstamp = perf_event_time(event);
1647 
1648 	if (event->state <= PERF_EVENT_STATE_OFF)
1649 		return 0;
1650 
1651 	event->state = PERF_EVENT_STATE_ACTIVE;
1652 	event->oncpu = smp_processor_id();
1653 
1654 	/*
1655 	 * Unthrottle events, since we scheduled we might have missed several
1656 	 * ticks already, also for a heavily scheduling task there is little
1657 	 * guarantee it'll get a tick in a timely manner.
1658 	 */
1659 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1660 		perf_log_throttle(event, 1);
1661 		event->hw.interrupts = 0;
1662 	}
1663 
1664 	/*
1665 	 * The new state must be visible before we turn it on in the hardware:
1666 	 */
1667 	smp_wmb();
1668 
1669 	if (event->pmu->add(event, PERF_EF_START)) {
1670 		event->state = PERF_EVENT_STATE_INACTIVE;
1671 		event->oncpu = -1;
1672 		return -EAGAIN;
1673 	}
1674 
1675 	event->tstamp_running += tstamp - event->tstamp_stopped;
1676 
1677 	perf_set_shadow_time(event, ctx, tstamp);
1678 
1679 	if (!is_software_event(event))
1680 		cpuctx->active_oncpu++;
1681 	ctx->nr_active++;
1682 	if (event->attr.freq && event->attr.sample_freq)
1683 		ctx->nr_freq++;
1684 
1685 	if (event->attr.exclusive)
1686 		cpuctx->exclusive = 1;
1687 
1688 	return 0;
1689 }
1690 
1691 static int
1692 group_sched_in(struct perf_event *group_event,
1693 	       struct perf_cpu_context *cpuctx,
1694 	       struct perf_event_context *ctx)
1695 {
1696 	struct perf_event *event, *partial_group = NULL;
1697 	struct pmu *pmu = group_event->pmu;
1698 	u64 now = ctx->time;
1699 	bool simulate = false;
1700 
1701 	if (group_event->state == PERF_EVENT_STATE_OFF)
1702 		return 0;
1703 
1704 	pmu->start_txn(pmu);
1705 
1706 	if (event_sched_in(group_event, cpuctx, ctx)) {
1707 		pmu->cancel_txn(pmu);
1708 		perf_cpu_hrtimer_restart(cpuctx);
1709 		return -EAGAIN;
1710 	}
1711 
1712 	/*
1713 	 * Schedule in siblings as one group (if any):
1714 	 */
1715 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1716 		if (event_sched_in(event, cpuctx, ctx)) {
1717 			partial_group = event;
1718 			goto group_error;
1719 		}
1720 	}
1721 
1722 	if (!pmu->commit_txn(pmu))
1723 		return 0;
1724 
1725 group_error:
1726 	/*
1727 	 * Groups can be scheduled in as one unit only, so undo any
1728 	 * partial group before returning:
1729 	 * The events up to the failed event are scheduled out normally,
1730 	 * tstamp_stopped will be updated.
1731 	 *
1732 	 * The failed events and the remaining siblings need to have
1733 	 * their timings updated as if they had gone thru event_sched_in()
1734 	 * and event_sched_out(). This is required to get consistent timings
1735 	 * across the group. This also takes care of the case where the group
1736 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1737 	 * the time the event was actually stopped, such that time delta
1738 	 * calculation in update_event_times() is correct.
1739 	 */
1740 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1741 		if (event == partial_group)
1742 			simulate = true;
1743 
1744 		if (simulate) {
1745 			event->tstamp_running += now - event->tstamp_stopped;
1746 			event->tstamp_stopped = now;
1747 		} else {
1748 			event_sched_out(event, cpuctx, ctx);
1749 		}
1750 	}
1751 	event_sched_out(group_event, cpuctx, ctx);
1752 
1753 	pmu->cancel_txn(pmu);
1754 
1755 	perf_cpu_hrtimer_restart(cpuctx);
1756 
1757 	return -EAGAIN;
1758 }
1759 
1760 /*
1761  * Work out whether we can put this event group on the CPU now.
1762  */
1763 static int group_can_go_on(struct perf_event *event,
1764 			   struct perf_cpu_context *cpuctx,
1765 			   int can_add_hw)
1766 {
1767 	/*
1768 	 * Groups consisting entirely of software events can always go on.
1769 	 */
1770 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1771 		return 1;
1772 	/*
1773 	 * If an exclusive group is already on, no other hardware
1774 	 * events can go on.
1775 	 */
1776 	if (cpuctx->exclusive)
1777 		return 0;
1778 	/*
1779 	 * If this group is exclusive and there are already
1780 	 * events on the CPU, it can't go on.
1781 	 */
1782 	if (event->attr.exclusive && cpuctx->active_oncpu)
1783 		return 0;
1784 	/*
1785 	 * Otherwise, try to add it if all previous groups were able
1786 	 * to go on.
1787 	 */
1788 	return can_add_hw;
1789 }
1790 
1791 static void add_event_to_ctx(struct perf_event *event,
1792 			       struct perf_event_context *ctx)
1793 {
1794 	u64 tstamp = perf_event_time(event);
1795 
1796 	list_add_event(event, ctx);
1797 	perf_group_attach(event);
1798 	event->tstamp_enabled = tstamp;
1799 	event->tstamp_running = tstamp;
1800 	event->tstamp_stopped = tstamp;
1801 }
1802 
1803 static void task_ctx_sched_out(struct perf_event_context *ctx);
1804 static void
1805 ctx_sched_in(struct perf_event_context *ctx,
1806 	     struct perf_cpu_context *cpuctx,
1807 	     enum event_type_t event_type,
1808 	     struct task_struct *task);
1809 
1810 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1811 				struct perf_event_context *ctx,
1812 				struct task_struct *task)
1813 {
1814 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1815 	if (ctx)
1816 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1817 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1818 	if (ctx)
1819 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1820 }
1821 
1822 /*
1823  * Cross CPU call to install and enable a performance event
1824  *
1825  * Must be called with ctx->mutex held
1826  */
1827 static int  __perf_install_in_context(void *info)
1828 {
1829 	struct perf_event *event = info;
1830 	struct perf_event_context *ctx = event->ctx;
1831 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1832 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1833 	struct task_struct *task = current;
1834 
1835 	perf_ctx_lock(cpuctx, task_ctx);
1836 	perf_pmu_disable(cpuctx->ctx.pmu);
1837 
1838 	/*
1839 	 * If there was an active task_ctx schedule it out.
1840 	 */
1841 	if (task_ctx)
1842 		task_ctx_sched_out(task_ctx);
1843 
1844 	/*
1845 	 * If the context we're installing events in is not the
1846 	 * active task_ctx, flip them.
1847 	 */
1848 	if (ctx->task && task_ctx != ctx) {
1849 		if (task_ctx)
1850 			raw_spin_unlock(&task_ctx->lock);
1851 		raw_spin_lock(&ctx->lock);
1852 		task_ctx = ctx;
1853 	}
1854 
1855 	if (task_ctx) {
1856 		cpuctx->task_ctx = task_ctx;
1857 		task = task_ctx->task;
1858 	}
1859 
1860 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1861 
1862 	update_context_time(ctx);
1863 	/*
1864 	 * update cgrp time only if current cgrp
1865 	 * matches event->cgrp. Must be done before
1866 	 * calling add_event_to_ctx()
1867 	 */
1868 	update_cgrp_time_from_event(event);
1869 
1870 	add_event_to_ctx(event, ctx);
1871 
1872 	/*
1873 	 * Schedule everything back in
1874 	 */
1875 	perf_event_sched_in(cpuctx, task_ctx, task);
1876 
1877 	perf_pmu_enable(cpuctx->ctx.pmu);
1878 	perf_ctx_unlock(cpuctx, task_ctx);
1879 
1880 	return 0;
1881 }
1882 
1883 /*
1884  * Attach a performance event to a context
1885  *
1886  * First we add the event to the list with the hardware enable bit
1887  * in event->hw_config cleared.
1888  *
1889  * If the event is attached to a task which is on a CPU we use a smp
1890  * call to enable it in the task context. The task might have been
1891  * scheduled away, but we check this in the smp call again.
1892  */
1893 static void
1894 perf_install_in_context(struct perf_event_context *ctx,
1895 			struct perf_event *event,
1896 			int cpu)
1897 {
1898 	struct task_struct *task = ctx->task;
1899 
1900 	lockdep_assert_held(&ctx->mutex);
1901 
1902 	event->ctx = ctx;
1903 	if (event->cpu != -1)
1904 		event->cpu = cpu;
1905 
1906 	if (!task) {
1907 		/*
1908 		 * Per cpu events are installed via an smp call and
1909 		 * the install is always successful.
1910 		 */
1911 		cpu_function_call(cpu, __perf_install_in_context, event);
1912 		return;
1913 	}
1914 
1915 retry:
1916 	if (!task_function_call(task, __perf_install_in_context, event))
1917 		return;
1918 
1919 	raw_spin_lock_irq(&ctx->lock);
1920 	/*
1921 	 * If we failed to find a running task, but find the context active now
1922 	 * that we've acquired the ctx->lock, retry.
1923 	 */
1924 	if (ctx->is_active) {
1925 		raw_spin_unlock_irq(&ctx->lock);
1926 		goto retry;
1927 	}
1928 
1929 	/*
1930 	 * Since the task isn't running, its safe to add the event, us holding
1931 	 * the ctx->lock ensures the task won't get scheduled in.
1932 	 */
1933 	add_event_to_ctx(event, ctx);
1934 	raw_spin_unlock_irq(&ctx->lock);
1935 }
1936 
1937 /*
1938  * Put a event into inactive state and update time fields.
1939  * Enabling the leader of a group effectively enables all
1940  * the group members that aren't explicitly disabled, so we
1941  * have to update their ->tstamp_enabled also.
1942  * Note: this works for group members as well as group leaders
1943  * since the non-leader members' sibling_lists will be empty.
1944  */
1945 static void __perf_event_mark_enabled(struct perf_event *event)
1946 {
1947 	struct perf_event *sub;
1948 	u64 tstamp = perf_event_time(event);
1949 
1950 	event->state = PERF_EVENT_STATE_INACTIVE;
1951 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1952 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1953 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1954 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1955 	}
1956 }
1957 
1958 /*
1959  * Cross CPU call to enable a performance event
1960  */
1961 static int __perf_event_enable(void *info)
1962 {
1963 	struct perf_event *event = info;
1964 	struct perf_event_context *ctx = event->ctx;
1965 	struct perf_event *leader = event->group_leader;
1966 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1967 	int err;
1968 
1969 	/*
1970 	 * There's a time window between 'ctx->is_active' check
1971 	 * in perf_event_enable function and this place having:
1972 	 *   - IRQs on
1973 	 *   - ctx->lock unlocked
1974 	 *
1975 	 * where the task could be killed and 'ctx' deactivated
1976 	 * by perf_event_exit_task.
1977 	 */
1978 	if (!ctx->is_active)
1979 		return -EINVAL;
1980 
1981 	raw_spin_lock(&ctx->lock);
1982 	update_context_time(ctx);
1983 
1984 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1985 		goto unlock;
1986 
1987 	/*
1988 	 * set current task's cgroup time reference point
1989 	 */
1990 	perf_cgroup_set_timestamp(current, ctx);
1991 
1992 	__perf_event_mark_enabled(event);
1993 
1994 	if (!event_filter_match(event)) {
1995 		if (is_cgroup_event(event))
1996 			perf_cgroup_defer_enabled(event);
1997 		goto unlock;
1998 	}
1999 
2000 	/*
2001 	 * If the event is in a group and isn't the group leader,
2002 	 * then don't put it on unless the group is on.
2003 	 */
2004 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2005 		goto unlock;
2006 
2007 	if (!group_can_go_on(event, cpuctx, 1)) {
2008 		err = -EEXIST;
2009 	} else {
2010 		if (event == leader)
2011 			err = group_sched_in(event, cpuctx, ctx);
2012 		else
2013 			err = event_sched_in(event, cpuctx, ctx);
2014 	}
2015 
2016 	if (err) {
2017 		/*
2018 		 * If this event can't go on and it's part of a
2019 		 * group, then the whole group has to come off.
2020 		 */
2021 		if (leader != event) {
2022 			group_sched_out(leader, cpuctx, ctx);
2023 			perf_cpu_hrtimer_restart(cpuctx);
2024 		}
2025 		if (leader->attr.pinned) {
2026 			update_group_times(leader);
2027 			leader->state = PERF_EVENT_STATE_ERROR;
2028 		}
2029 	}
2030 
2031 unlock:
2032 	raw_spin_unlock(&ctx->lock);
2033 
2034 	return 0;
2035 }
2036 
2037 /*
2038  * Enable a event.
2039  *
2040  * If event->ctx is a cloned context, callers must make sure that
2041  * every task struct that event->ctx->task could possibly point to
2042  * remains valid.  This condition is satisfied when called through
2043  * perf_event_for_each_child or perf_event_for_each as described
2044  * for perf_event_disable.
2045  */
2046 void perf_event_enable(struct perf_event *event)
2047 {
2048 	struct perf_event_context *ctx = event->ctx;
2049 	struct task_struct *task = ctx->task;
2050 
2051 	if (!task) {
2052 		/*
2053 		 * Enable the event on the cpu that it's on
2054 		 */
2055 		cpu_function_call(event->cpu, __perf_event_enable, event);
2056 		return;
2057 	}
2058 
2059 	raw_spin_lock_irq(&ctx->lock);
2060 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2061 		goto out;
2062 
2063 	/*
2064 	 * If the event is in error state, clear that first.
2065 	 * That way, if we see the event in error state below, we
2066 	 * know that it has gone back into error state, as distinct
2067 	 * from the task having been scheduled away before the
2068 	 * cross-call arrived.
2069 	 */
2070 	if (event->state == PERF_EVENT_STATE_ERROR)
2071 		event->state = PERF_EVENT_STATE_OFF;
2072 
2073 retry:
2074 	if (!ctx->is_active) {
2075 		__perf_event_mark_enabled(event);
2076 		goto out;
2077 	}
2078 
2079 	raw_spin_unlock_irq(&ctx->lock);
2080 
2081 	if (!task_function_call(task, __perf_event_enable, event))
2082 		return;
2083 
2084 	raw_spin_lock_irq(&ctx->lock);
2085 
2086 	/*
2087 	 * If the context is active and the event is still off,
2088 	 * we need to retry the cross-call.
2089 	 */
2090 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2091 		/*
2092 		 * task could have been flipped by a concurrent
2093 		 * perf_event_context_sched_out()
2094 		 */
2095 		task = ctx->task;
2096 		goto retry;
2097 	}
2098 
2099 out:
2100 	raw_spin_unlock_irq(&ctx->lock);
2101 }
2102 EXPORT_SYMBOL_GPL(perf_event_enable);
2103 
2104 int perf_event_refresh(struct perf_event *event, int refresh)
2105 {
2106 	/*
2107 	 * not supported on inherited events
2108 	 */
2109 	if (event->attr.inherit || !is_sampling_event(event))
2110 		return -EINVAL;
2111 
2112 	atomic_add(refresh, &event->event_limit);
2113 	perf_event_enable(event);
2114 
2115 	return 0;
2116 }
2117 EXPORT_SYMBOL_GPL(perf_event_refresh);
2118 
2119 static void ctx_sched_out(struct perf_event_context *ctx,
2120 			  struct perf_cpu_context *cpuctx,
2121 			  enum event_type_t event_type)
2122 {
2123 	struct perf_event *event;
2124 	int is_active = ctx->is_active;
2125 
2126 	ctx->is_active &= ~event_type;
2127 	if (likely(!ctx->nr_events))
2128 		return;
2129 
2130 	update_context_time(ctx);
2131 	update_cgrp_time_from_cpuctx(cpuctx);
2132 	if (!ctx->nr_active)
2133 		return;
2134 
2135 	perf_pmu_disable(ctx->pmu);
2136 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2137 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2138 			group_sched_out(event, cpuctx, ctx);
2139 	}
2140 
2141 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2142 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2143 			group_sched_out(event, cpuctx, ctx);
2144 	}
2145 	perf_pmu_enable(ctx->pmu);
2146 }
2147 
2148 /*
2149  * Test whether two contexts are equivalent, i.e. whether they
2150  * have both been cloned from the same version of the same context
2151  * and they both have the same number of enabled events.
2152  * If the number of enabled events is the same, then the set
2153  * of enabled events should be the same, because these are both
2154  * inherited contexts, therefore we can't access individual events
2155  * in them directly with an fd; we can only enable/disable all
2156  * events via prctl, or enable/disable all events in a family
2157  * via ioctl, which will have the same effect on both contexts.
2158  */
2159 static int context_equiv(struct perf_event_context *ctx1,
2160 			 struct perf_event_context *ctx2)
2161 {
2162 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2163 		&& ctx1->parent_gen == ctx2->parent_gen
2164 		&& !ctx1->pin_count && !ctx2->pin_count;
2165 }
2166 
2167 static void __perf_event_sync_stat(struct perf_event *event,
2168 				     struct perf_event *next_event)
2169 {
2170 	u64 value;
2171 
2172 	if (!event->attr.inherit_stat)
2173 		return;
2174 
2175 	/*
2176 	 * Update the event value, we cannot use perf_event_read()
2177 	 * because we're in the middle of a context switch and have IRQs
2178 	 * disabled, which upsets smp_call_function_single(), however
2179 	 * we know the event must be on the current CPU, therefore we
2180 	 * don't need to use it.
2181 	 */
2182 	switch (event->state) {
2183 	case PERF_EVENT_STATE_ACTIVE:
2184 		event->pmu->read(event);
2185 		/* fall-through */
2186 
2187 	case PERF_EVENT_STATE_INACTIVE:
2188 		update_event_times(event);
2189 		break;
2190 
2191 	default:
2192 		break;
2193 	}
2194 
2195 	/*
2196 	 * In order to keep per-task stats reliable we need to flip the event
2197 	 * values when we flip the contexts.
2198 	 */
2199 	value = local64_read(&next_event->count);
2200 	value = local64_xchg(&event->count, value);
2201 	local64_set(&next_event->count, value);
2202 
2203 	swap(event->total_time_enabled, next_event->total_time_enabled);
2204 	swap(event->total_time_running, next_event->total_time_running);
2205 
2206 	/*
2207 	 * Since we swizzled the values, update the user visible data too.
2208 	 */
2209 	perf_event_update_userpage(event);
2210 	perf_event_update_userpage(next_event);
2211 }
2212 
2213 #define list_next_entry(pos, member) \
2214 	list_entry(pos->member.next, typeof(*pos), member)
2215 
2216 static void perf_event_sync_stat(struct perf_event_context *ctx,
2217 				   struct perf_event_context *next_ctx)
2218 {
2219 	struct perf_event *event, *next_event;
2220 
2221 	if (!ctx->nr_stat)
2222 		return;
2223 
2224 	update_context_time(ctx);
2225 
2226 	event = list_first_entry(&ctx->event_list,
2227 				   struct perf_event, event_entry);
2228 
2229 	next_event = list_first_entry(&next_ctx->event_list,
2230 					struct perf_event, event_entry);
2231 
2232 	while (&event->event_entry != &ctx->event_list &&
2233 	       &next_event->event_entry != &next_ctx->event_list) {
2234 
2235 		__perf_event_sync_stat(event, next_event);
2236 
2237 		event = list_next_entry(event, event_entry);
2238 		next_event = list_next_entry(next_event, event_entry);
2239 	}
2240 }
2241 
2242 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2243 					 struct task_struct *next)
2244 {
2245 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2246 	struct perf_event_context *next_ctx;
2247 	struct perf_event_context *parent;
2248 	struct perf_cpu_context *cpuctx;
2249 	int do_switch = 1;
2250 
2251 	if (likely(!ctx))
2252 		return;
2253 
2254 	cpuctx = __get_cpu_context(ctx);
2255 	if (!cpuctx->task_ctx)
2256 		return;
2257 
2258 	rcu_read_lock();
2259 	parent = rcu_dereference(ctx->parent_ctx);
2260 	next_ctx = next->perf_event_ctxp[ctxn];
2261 	if (parent && next_ctx &&
2262 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
2263 		/*
2264 		 * Looks like the two contexts are clones, so we might be
2265 		 * able to optimize the context switch.  We lock both
2266 		 * contexts and check that they are clones under the
2267 		 * lock (including re-checking that neither has been
2268 		 * uncloned in the meantime).  It doesn't matter which
2269 		 * order we take the locks because no other cpu could
2270 		 * be trying to lock both of these tasks.
2271 		 */
2272 		raw_spin_lock(&ctx->lock);
2273 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2274 		if (context_equiv(ctx, next_ctx)) {
2275 			/*
2276 			 * XXX do we need a memory barrier of sorts
2277 			 * wrt to rcu_dereference() of perf_event_ctxp
2278 			 */
2279 			task->perf_event_ctxp[ctxn] = next_ctx;
2280 			next->perf_event_ctxp[ctxn] = ctx;
2281 			ctx->task = next;
2282 			next_ctx->task = task;
2283 			do_switch = 0;
2284 
2285 			perf_event_sync_stat(ctx, next_ctx);
2286 		}
2287 		raw_spin_unlock(&next_ctx->lock);
2288 		raw_spin_unlock(&ctx->lock);
2289 	}
2290 	rcu_read_unlock();
2291 
2292 	if (do_switch) {
2293 		raw_spin_lock(&ctx->lock);
2294 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2295 		cpuctx->task_ctx = NULL;
2296 		raw_spin_unlock(&ctx->lock);
2297 	}
2298 }
2299 
2300 #define for_each_task_context_nr(ctxn)					\
2301 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2302 
2303 /*
2304  * Called from scheduler to remove the events of the current task,
2305  * with interrupts disabled.
2306  *
2307  * We stop each event and update the event value in event->count.
2308  *
2309  * This does not protect us against NMI, but disable()
2310  * sets the disabled bit in the control field of event _before_
2311  * accessing the event control register. If a NMI hits, then it will
2312  * not restart the event.
2313  */
2314 void __perf_event_task_sched_out(struct task_struct *task,
2315 				 struct task_struct *next)
2316 {
2317 	int ctxn;
2318 
2319 	for_each_task_context_nr(ctxn)
2320 		perf_event_context_sched_out(task, ctxn, next);
2321 
2322 	/*
2323 	 * if cgroup events exist on this CPU, then we need
2324 	 * to check if we have to switch out PMU state.
2325 	 * cgroup event are system-wide mode only
2326 	 */
2327 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2328 		perf_cgroup_sched_out(task, next);
2329 }
2330 
2331 static void task_ctx_sched_out(struct perf_event_context *ctx)
2332 {
2333 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2334 
2335 	if (!cpuctx->task_ctx)
2336 		return;
2337 
2338 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2339 		return;
2340 
2341 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2342 	cpuctx->task_ctx = NULL;
2343 }
2344 
2345 /*
2346  * Called with IRQs disabled
2347  */
2348 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2349 			      enum event_type_t event_type)
2350 {
2351 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2352 }
2353 
2354 static void
2355 ctx_pinned_sched_in(struct perf_event_context *ctx,
2356 		    struct perf_cpu_context *cpuctx)
2357 {
2358 	struct perf_event *event;
2359 
2360 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2361 		if (event->state <= PERF_EVENT_STATE_OFF)
2362 			continue;
2363 		if (!event_filter_match(event))
2364 			continue;
2365 
2366 		/* may need to reset tstamp_enabled */
2367 		if (is_cgroup_event(event))
2368 			perf_cgroup_mark_enabled(event, ctx);
2369 
2370 		if (group_can_go_on(event, cpuctx, 1))
2371 			group_sched_in(event, cpuctx, ctx);
2372 
2373 		/*
2374 		 * If this pinned group hasn't been scheduled,
2375 		 * put it in error state.
2376 		 */
2377 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2378 			update_group_times(event);
2379 			event->state = PERF_EVENT_STATE_ERROR;
2380 		}
2381 	}
2382 }
2383 
2384 static void
2385 ctx_flexible_sched_in(struct perf_event_context *ctx,
2386 		      struct perf_cpu_context *cpuctx)
2387 {
2388 	struct perf_event *event;
2389 	int can_add_hw = 1;
2390 
2391 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2392 		/* Ignore events in OFF or ERROR state */
2393 		if (event->state <= PERF_EVENT_STATE_OFF)
2394 			continue;
2395 		/*
2396 		 * Listen to the 'cpu' scheduling filter constraint
2397 		 * of events:
2398 		 */
2399 		if (!event_filter_match(event))
2400 			continue;
2401 
2402 		/* may need to reset tstamp_enabled */
2403 		if (is_cgroup_event(event))
2404 			perf_cgroup_mark_enabled(event, ctx);
2405 
2406 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2407 			if (group_sched_in(event, cpuctx, ctx))
2408 				can_add_hw = 0;
2409 		}
2410 	}
2411 }
2412 
2413 static void
2414 ctx_sched_in(struct perf_event_context *ctx,
2415 	     struct perf_cpu_context *cpuctx,
2416 	     enum event_type_t event_type,
2417 	     struct task_struct *task)
2418 {
2419 	u64 now;
2420 	int is_active = ctx->is_active;
2421 
2422 	ctx->is_active |= event_type;
2423 	if (likely(!ctx->nr_events))
2424 		return;
2425 
2426 	now = perf_clock();
2427 	ctx->timestamp = now;
2428 	perf_cgroup_set_timestamp(task, ctx);
2429 	/*
2430 	 * First go through the list and put on any pinned groups
2431 	 * in order to give them the best chance of going on.
2432 	 */
2433 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2434 		ctx_pinned_sched_in(ctx, cpuctx);
2435 
2436 	/* Then walk through the lower prio flexible groups */
2437 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2438 		ctx_flexible_sched_in(ctx, cpuctx);
2439 }
2440 
2441 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2442 			     enum event_type_t event_type,
2443 			     struct task_struct *task)
2444 {
2445 	struct perf_event_context *ctx = &cpuctx->ctx;
2446 
2447 	ctx_sched_in(ctx, cpuctx, event_type, task);
2448 }
2449 
2450 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2451 					struct task_struct *task)
2452 {
2453 	struct perf_cpu_context *cpuctx;
2454 
2455 	cpuctx = __get_cpu_context(ctx);
2456 	if (cpuctx->task_ctx == ctx)
2457 		return;
2458 
2459 	perf_ctx_lock(cpuctx, ctx);
2460 	perf_pmu_disable(ctx->pmu);
2461 	/*
2462 	 * We want to keep the following priority order:
2463 	 * cpu pinned (that don't need to move), task pinned,
2464 	 * cpu flexible, task flexible.
2465 	 */
2466 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2467 
2468 	if (ctx->nr_events)
2469 		cpuctx->task_ctx = ctx;
2470 
2471 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2472 
2473 	perf_pmu_enable(ctx->pmu);
2474 	perf_ctx_unlock(cpuctx, ctx);
2475 
2476 	/*
2477 	 * Since these rotations are per-cpu, we need to ensure the
2478 	 * cpu-context we got scheduled on is actually rotating.
2479 	 */
2480 	perf_pmu_rotate_start(ctx->pmu);
2481 }
2482 
2483 /*
2484  * When sampling the branck stack in system-wide, it may be necessary
2485  * to flush the stack on context switch. This happens when the branch
2486  * stack does not tag its entries with the pid of the current task.
2487  * Otherwise it becomes impossible to associate a branch entry with a
2488  * task. This ambiguity is more likely to appear when the branch stack
2489  * supports priv level filtering and the user sets it to monitor only
2490  * at the user level (which could be a useful measurement in system-wide
2491  * mode). In that case, the risk is high of having a branch stack with
2492  * branch from multiple tasks. Flushing may mean dropping the existing
2493  * entries or stashing them somewhere in the PMU specific code layer.
2494  *
2495  * This function provides the context switch callback to the lower code
2496  * layer. It is invoked ONLY when there is at least one system-wide context
2497  * with at least one active event using taken branch sampling.
2498  */
2499 static void perf_branch_stack_sched_in(struct task_struct *prev,
2500 				       struct task_struct *task)
2501 {
2502 	struct perf_cpu_context *cpuctx;
2503 	struct pmu *pmu;
2504 	unsigned long flags;
2505 
2506 	/* no need to flush branch stack if not changing task */
2507 	if (prev == task)
2508 		return;
2509 
2510 	local_irq_save(flags);
2511 
2512 	rcu_read_lock();
2513 
2514 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2515 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2516 
2517 		/*
2518 		 * check if the context has at least one
2519 		 * event using PERF_SAMPLE_BRANCH_STACK
2520 		 */
2521 		if (cpuctx->ctx.nr_branch_stack > 0
2522 		    && pmu->flush_branch_stack) {
2523 
2524 			pmu = cpuctx->ctx.pmu;
2525 
2526 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2527 
2528 			perf_pmu_disable(pmu);
2529 
2530 			pmu->flush_branch_stack();
2531 
2532 			perf_pmu_enable(pmu);
2533 
2534 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2535 		}
2536 	}
2537 
2538 	rcu_read_unlock();
2539 
2540 	local_irq_restore(flags);
2541 }
2542 
2543 /*
2544  * Called from scheduler to add the events of the current task
2545  * with interrupts disabled.
2546  *
2547  * We restore the event value and then enable it.
2548  *
2549  * This does not protect us against NMI, but enable()
2550  * sets the enabled bit in the control field of event _before_
2551  * accessing the event control register. If a NMI hits, then it will
2552  * keep the event running.
2553  */
2554 void __perf_event_task_sched_in(struct task_struct *prev,
2555 				struct task_struct *task)
2556 {
2557 	struct perf_event_context *ctx;
2558 	int ctxn;
2559 
2560 	for_each_task_context_nr(ctxn) {
2561 		ctx = task->perf_event_ctxp[ctxn];
2562 		if (likely(!ctx))
2563 			continue;
2564 
2565 		perf_event_context_sched_in(ctx, task);
2566 	}
2567 	/*
2568 	 * if cgroup events exist on this CPU, then we need
2569 	 * to check if we have to switch in PMU state.
2570 	 * cgroup event are system-wide mode only
2571 	 */
2572 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2573 		perf_cgroup_sched_in(prev, task);
2574 
2575 	/* check for system-wide branch_stack events */
2576 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2577 		perf_branch_stack_sched_in(prev, task);
2578 }
2579 
2580 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2581 {
2582 	u64 frequency = event->attr.sample_freq;
2583 	u64 sec = NSEC_PER_SEC;
2584 	u64 divisor, dividend;
2585 
2586 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2587 
2588 	count_fls = fls64(count);
2589 	nsec_fls = fls64(nsec);
2590 	frequency_fls = fls64(frequency);
2591 	sec_fls = 30;
2592 
2593 	/*
2594 	 * We got @count in @nsec, with a target of sample_freq HZ
2595 	 * the target period becomes:
2596 	 *
2597 	 *             @count * 10^9
2598 	 * period = -------------------
2599 	 *          @nsec * sample_freq
2600 	 *
2601 	 */
2602 
2603 	/*
2604 	 * Reduce accuracy by one bit such that @a and @b converge
2605 	 * to a similar magnitude.
2606 	 */
2607 #define REDUCE_FLS(a, b)		\
2608 do {					\
2609 	if (a##_fls > b##_fls) {	\
2610 		a >>= 1;		\
2611 		a##_fls--;		\
2612 	} else {			\
2613 		b >>= 1;		\
2614 		b##_fls--;		\
2615 	}				\
2616 } while (0)
2617 
2618 	/*
2619 	 * Reduce accuracy until either term fits in a u64, then proceed with
2620 	 * the other, so that finally we can do a u64/u64 division.
2621 	 */
2622 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2623 		REDUCE_FLS(nsec, frequency);
2624 		REDUCE_FLS(sec, count);
2625 	}
2626 
2627 	if (count_fls + sec_fls > 64) {
2628 		divisor = nsec * frequency;
2629 
2630 		while (count_fls + sec_fls > 64) {
2631 			REDUCE_FLS(count, sec);
2632 			divisor >>= 1;
2633 		}
2634 
2635 		dividend = count * sec;
2636 	} else {
2637 		dividend = count * sec;
2638 
2639 		while (nsec_fls + frequency_fls > 64) {
2640 			REDUCE_FLS(nsec, frequency);
2641 			dividend >>= 1;
2642 		}
2643 
2644 		divisor = nsec * frequency;
2645 	}
2646 
2647 	if (!divisor)
2648 		return dividend;
2649 
2650 	return div64_u64(dividend, divisor);
2651 }
2652 
2653 static DEFINE_PER_CPU(int, perf_throttled_count);
2654 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2655 
2656 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2657 {
2658 	struct hw_perf_event *hwc = &event->hw;
2659 	s64 period, sample_period;
2660 	s64 delta;
2661 
2662 	period = perf_calculate_period(event, nsec, count);
2663 
2664 	delta = (s64)(period - hwc->sample_period);
2665 	delta = (delta + 7) / 8; /* low pass filter */
2666 
2667 	sample_period = hwc->sample_period + delta;
2668 
2669 	if (!sample_period)
2670 		sample_period = 1;
2671 
2672 	hwc->sample_period = sample_period;
2673 
2674 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2675 		if (disable)
2676 			event->pmu->stop(event, PERF_EF_UPDATE);
2677 
2678 		local64_set(&hwc->period_left, 0);
2679 
2680 		if (disable)
2681 			event->pmu->start(event, PERF_EF_RELOAD);
2682 	}
2683 }
2684 
2685 /*
2686  * combine freq adjustment with unthrottling to avoid two passes over the
2687  * events. At the same time, make sure, having freq events does not change
2688  * the rate of unthrottling as that would introduce bias.
2689  */
2690 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2691 					   int needs_unthr)
2692 {
2693 	struct perf_event *event;
2694 	struct hw_perf_event *hwc;
2695 	u64 now, period = TICK_NSEC;
2696 	s64 delta;
2697 
2698 	/*
2699 	 * only need to iterate over all events iff:
2700 	 * - context have events in frequency mode (needs freq adjust)
2701 	 * - there are events to unthrottle on this cpu
2702 	 */
2703 	if (!(ctx->nr_freq || needs_unthr))
2704 		return;
2705 
2706 	raw_spin_lock(&ctx->lock);
2707 	perf_pmu_disable(ctx->pmu);
2708 
2709 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2710 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2711 			continue;
2712 
2713 		if (!event_filter_match(event))
2714 			continue;
2715 
2716 		hwc = &event->hw;
2717 
2718 		if (hwc->interrupts == MAX_INTERRUPTS) {
2719 			hwc->interrupts = 0;
2720 			perf_log_throttle(event, 1);
2721 			event->pmu->start(event, 0);
2722 		}
2723 
2724 		if (!event->attr.freq || !event->attr.sample_freq)
2725 			continue;
2726 
2727 		/*
2728 		 * stop the event and update event->count
2729 		 */
2730 		event->pmu->stop(event, PERF_EF_UPDATE);
2731 
2732 		now = local64_read(&event->count);
2733 		delta = now - hwc->freq_count_stamp;
2734 		hwc->freq_count_stamp = now;
2735 
2736 		/*
2737 		 * restart the event
2738 		 * reload only if value has changed
2739 		 * we have stopped the event so tell that
2740 		 * to perf_adjust_period() to avoid stopping it
2741 		 * twice.
2742 		 */
2743 		if (delta > 0)
2744 			perf_adjust_period(event, period, delta, false);
2745 
2746 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2747 	}
2748 
2749 	perf_pmu_enable(ctx->pmu);
2750 	raw_spin_unlock(&ctx->lock);
2751 }
2752 
2753 /*
2754  * Round-robin a context's events:
2755  */
2756 static void rotate_ctx(struct perf_event_context *ctx)
2757 {
2758 	/*
2759 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2760 	 * disabled by the inheritance code.
2761 	 */
2762 	if (!ctx->rotate_disable)
2763 		list_rotate_left(&ctx->flexible_groups);
2764 }
2765 
2766 /*
2767  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2768  * because they're strictly cpu affine and rotate_start is called with IRQs
2769  * disabled, while rotate_context is called from IRQ context.
2770  */
2771 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2772 {
2773 	struct perf_event_context *ctx = NULL;
2774 	int rotate = 0, remove = 1;
2775 
2776 	if (cpuctx->ctx.nr_events) {
2777 		remove = 0;
2778 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2779 			rotate = 1;
2780 	}
2781 
2782 	ctx = cpuctx->task_ctx;
2783 	if (ctx && ctx->nr_events) {
2784 		remove = 0;
2785 		if (ctx->nr_events != ctx->nr_active)
2786 			rotate = 1;
2787 	}
2788 
2789 	if (!rotate)
2790 		goto done;
2791 
2792 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2793 	perf_pmu_disable(cpuctx->ctx.pmu);
2794 
2795 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2796 	if (ctx)
2797 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2798 
2799 	rotate_ctx(&cpuctx->ctx);
2800 	if (ctx)
2801 		rotate_ctx(ctx);
2802 
2803 	perf_event_sched_in(cpuctx, ctx, current);
2804 
2805 	perf_pmu_enable(cpuctx->ctx.pmu);
2806 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2807 done:
2808 	if (remove)
2809 		list_del_init(&cpuctx->rotation_list);
2810 
2811 	return rotate;
2812 }
2813 
2814 #ifdef CONFIG_NO_HZ_FULL
2815 bool perf_event_can_stop_tick(void)
2816 {
2817 	if (atomic_read(&nr_freq_events) ||
2818 	    __this_cpu_read(perf_throttled_count))
2819 		return false;
2820 	else
2821 		return true;
2822 }
2823 #endif
2824 
2825 void perf_event_task_tick(void)
2826 {
2827 	struct list_head *head = &__get_cpu_var(rotation_list);
2828 	struct perf_cpu_context *cpuctx, *tmp;
2829 	struct perf_event_context *ctx;
2830 	int throttled;
2831 
2832 	WARN_ON(!irqs_disabled());
2833 
2834 	__this_cpu_inc(perf_throttled_seq);
2835 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2836 
2837 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2838 		ctx = &cpuctx->ctx;
2839 		perf_adjust_freq_unthr_context(ctx, throttled);
2840 
2841 		ctx = cpuctx->task_ctx;
2842 		if (ctx)
2843 			perf_adjust_freq_unthr_context(ctx, throttled);
2844 	}
2845 }
2846 
2847 static int event_enable_on_exec(struct perf_event *event,
2848 				struct perf_event_context *ctx)
2849 {
2850 	if (!event->attr.enable_on_exec)
2851 		return 0;
2852 
2853 	event->attr.enable_on_exec = 0;
2854 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2855 		return 0;
2856 
2857 	__perf_event_mark_enabled(event);
2858 
2859 	return 1;
2860 }
2861 
2862 /*
2863  * Enable all of a task's events that have been marked enable-on-exec.
2864  * This expects task == current.
2865  */
2866 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2867 {
2868 	struct perf_event *event;
2869 	unsigned long flags;
2870 	int enabled = 0;
2871 	int ret;
2872 
2873 	local_irq_save(flags);
2874 	if (!ctx || !ctx->nr_events)
2875 		goto out;
2876 
2877 	/*
2878 	 * We must ctxsw out cgroup events to avoid conflict
2879 	 * when invoking perf_task_event_sched_in() later on
2880 	 * in this function. Otherwise we end up trying to
2881 	 * ctxswin cgroup events which are already scheduled
2882 	 * in.
2883 	 */
2884 	perf_cgroup_sched_out(current, NULL);
2885 
2886 	raw_spin_lock(&ctx->lock);
2887 	task_ctx_sched_out(ctx);
2888 
2889 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2890 		ret = event_enable_on_exec(event, ctx);
2891 		if (ret)
2892 			enabled = 1;
2893 	}
2894 
2895 	/*
2896 	 * Unclone this context if we enabled any event.
2897 	 */
2898 	if (enabled)
2899 		unclone_ctx(ctx);
2900 
2901 	raw_spin_unlock(&ctx->lock);
2902 
2903 	/*
2904 	 * Also calls ctxswin for cgroup events, if any:
2905 	 */
2906 	perf_event_context_sched_in(ctx, ctx->task);
2907 out:
2908 	local_irq_restore(flags);
2909 }
2910 
2911 /*
2912  * Cross CPU call to read the hardware event
2913  */
2914 static void __perf_event_read(void *info)
2915 {
2916 	struct perf_event *event = info;
2917 	struct perf_event_context *ctx = event->ctx;
2918 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2919 
2920 	/*
2921 	 * If this is a task context, we need to check whether it is
2922 	 * the current task context of this cpu.  If not it has been
2923 	 * scheduled out before the smp call arrived.  In that case
2924 	 * event->count would have been updated to a recent sample
2925 	 * when the event was scheduled out.
2926 	 */
2927 	if (ctx->task && cpuctx->task_ctx != ctx)
2928 		return;
2929 
2930 	raw_spin_lock(&ctx->lock);
2931 	if (ctx->is_active) {
2932 		update_context_time(ctx);
2933 		update_cgrp_time_from_event(event);
2934 	}
2935 	update_event_times(event);
2936 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2937 		event->pmu->read(event);
2938 	raw_spin_unlock(&ctx->lock);
2939 }
2940 
2941 static inline u64 perf_event_count(struct perf_event *event)
2942 {
2943 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2944 }
2945 
2946 static u64 perf_event_read(struct perf_event *event)
2947 {
2948 	/*
2949 	 * If event is enabled and currently active on a CPU, update the
2950 	 * value in the event structure:
2951 	 */
2952 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2953 		smp_call_function_single(event->oncpu,
2954 					 __perf_event_read, event, 1);
2955 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2956 		struct perf_event_context *ctx = event->ctx;
2957 		unsigned long flags;
2958 
2959 		raw_spin_lock_irqsave(&ctx->lock, flags);
2960 		/*
2961 		 * may read while context is not active
2962 		 * (e.g., thread is blocked), in that case
2963 		 * we cannot update context time
2964 		 */
2965 		if (ctx->is_active) {
2966 			update_context_time(ctx);
2967 			update_cgrp_time_from_event(event);
2968 		}
2969 		update_event_times(event);
2970 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2971 	}
2972 
2973 	return perf_event_count(event);
2974 }
2975 
2976 /*
2977  * Initialize the perf_event context in a task_struct:
2978  */
2979 static void __perf_event_init_context(struct perf_event_context *ctx)
2980 {
2981 	raw_spin_lock_init(&ctx->lock);
2982 	mutex_init(&ctx->mutex);
2983 	INIT_LIST_HEAD(&ctx->pinned_groups);
2984 	INIT_LIST_HEAD(&ctx->flexible_groups);
2985 	INIT_LIST_HEAD(&ctx->event_list);
2986 	atomic_set(&ctx->refcount, 1);
2987 }
2988 
2989 static struct perf_event_context *
2990 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2991 {
2992 	struct perf_event_context *ctx;
2993 
2994 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2995 	if (!ctx)
2996 		return NULL;
2997 
2998 	__perf_event_init_context(ctx);
2999 	if (task) {
3000 		ctx->task = task;
3001 		get_task_struct(task);
3002 	}
3003 	ctx->pmu = pmu;
3004 
3005 	return ctx;
3006 }
3007 
3008 static struct task_struct *
3009 find_lively_task_by_vpid(pid_t vpid)
3010 {
3011 	struct task_struct *task;
3012 	int err;
3013 
3014 	rcu_read_lock();
3015 	if (!vpid)
3016 		task = current;
3017 	else
3018 		task = find_task_by_vpid(vpid);
3019 	if (task)
3020 		get_task_struct(task);
3021 	rcu_read_unlock();
3022 
3023 	if (!task)
3024 		return ERR_PTR(-ESRCH);
3025 
3026 	/* Reuse ptrace permission checks for now. */
3027 	err = -EACCES;
3028 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3029 		goto errout;
3030 
3031 	return task;
3032 errout:
3033 	put_task_struct(task);
3034 	return ERR_PTR(err);
3035 
3036 }
3037 
3038 /*
3039  * Returns a matching context with refcount and pincount.
3040  */
3041 static struct perf_event_context *
3042 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3043 {
3044 	struct perf_event_context *ctx;
3045 	struct perf_cpu_context *cpuctx;
3046 	unsigned long flags;
3047 	int ctxn, err;
3048 
3049 	if (!task) {
3050 		/* Must be root to operate on a CPU event: */
3051 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3052 			return ERR_PTR(-EACCES);
3053 
3054 		/*
3055 		 * We could be clever and allow to attach a event to an
3056 		 * offline CPU and activate it when the CPU comes up, but
3057 		 * that's for later.
3058 		 */
3059 		if (!cpu_online(cpu))
3060 			return ERR_PTR(-ENODEV);
3061 
3062 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3063 		ctx = &cpuctx->ctx;
3064 		get_ctx(ctx);
3065 		++ctx->pin_count;
3066 
3067 		return ctx;
3068 	}
3069 
3070 	err = -EINVAL;
3071 	ctxn = pmu->task_ctx_nr;
3072 	if (ctxn < 0)
3073 		goto errout;
3074 
3075 retry:
3076 	ctx = perf_lock_task_context(task, ctxn, &flags);
3077 	if (ctx) {
3078 		unclone_ctx(ctx);
3079 		++ctx->pin_count;
3080 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3081 	} else {
3082 		ctx = alloc_perf_context(pmu, task);
3083 		err = -ENOMEM;
3084 		if (!ctx)
3085 			goto errout;
3086 
3087 		err = 0;
3088 		mutex_lock(&task->perf_event_mutex);
3089 		/*
3090 		 * If it has already passed perf_event_exit_task().
3091 		 * we must see PF_EXITING, it takes this mutex too.
3092 		 */
3093 		if (task->flags & PF_EXITING)
3094 			err = -ESRCH;
3095 		else if (task->perf_event_ctxp[ctxn])
3096 			err = -EAGAIN;
3097 		else {
3098 			get_ctx(ctx);
3099 			++ctx->pin_count;
3100 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3101 		}
3102 		mutex_unlock(&task->perf_event_mutex);
3103 
3104 		if (unlikely(err)) {
3105 			put_ctx(ctx);
3106 
3107 			if (err == -EAGAIN)
3108 				goto retry;
3109 			goto errout;
3110 		}
3111 	}
3112 
3113 	return ctx;
3114 
3115 errout:
3116 	return ERR_PTR(err);
3117 }
3118 
3119 static void perf_event_free_filter(struct perf_event *event);
3120 
3121 static void free_event_rcu(struct rcu_head *head)
3122 {
3123 	struct perf_event *event;
3124 
3125 	event = container_of(head, struct perf_event, rcu_head);
3126 	if (event->ns)
3127 		put_pid_ns(event->ns);
3128 	perf_event_free_filter(event);
3129 	kfree(event);
3130 }
3131 
3132 static void ring_buffer_put(struct ring_buffer *rb);
3133 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3134 
3135 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3136 {
3137 	if (event->parent)
3138 		return;
3139 
3140 	if (has_branch_stack(event)) {
3141 		if (!(event->attach_state & PERF_ATTACH_TASK))
3142 			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3143 	}
3144 	if (is_cgroup_event(event))
3145 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3146 }
3147 
3148 static void unaccount_event(struct perf_event *event)
3149 {
3150 	if (event->parent)
3151 		return;
3152 
3153 	if (event->attach_state & PERF_ATTACH_TASK)
3154 		static_key_slow_dec_deferred(&perf_sched_events);
3155 	if (event->attr.mmap || event->attr.mmap_data)
3156 		atomic_dec(&nr_mmap_events);
3157 	if (event->attr.comm)
3158 		atomic_dec(&nr_comm_events);
3159 	if (event->attr.task)
3160 		atomic_dec(&nr_task_events);
3161 	if (event->attr.freq)
3162 		atomic_dec(&nr_freq_events);
3163 	if (is_cgroup_event(event))
3164 		static_key_slow_dec_deferred(&perf_sched_events);
3165 	if (has_branch_stack(event))
3166 		static_key_slow_dec_deferred(&perf_sched_events);
3167 
3168 	unaccount_event_cpu(event, event->cpu);
3169 }
3170 
3171 static void __free_event(struct perf_event *event)
3172 {
3173 	if (!event->parent) {
3174 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3175 			put_callchain_buffers();
3176 	}
3177 
3178 	if (event->destroy)
3179 		event->destroy(event);
3180 
3181 	if (event->ctx)
3182 		put_ctx(event->ctx);
3183 
3184 	call_rcu(&event->rcu_head, free_event_rcu);
3185 }
3186 static void free_event(struct perf_event *event)
3187 {
3188 	irq_work_sync(&event->pending);
3189 
3190 	unaccount_event(event);
3191 
3192 	if (event->rb) {
3193 		struct ring_buffer *rb;
3194 
3195 		/*
3196 		 * Can happen when we close an event with re-directed output.
3197 		 *
3198 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3199 		 * over us; possibly making our ring_buffer_put() the last.
3200 		 */
3201 		mutex_lock(&event->mmap_mutex);
3202 		rb = event->rb;
3203 		if (rb) {
3204 			rcu_assign_pointer(event->rb, NULL);
3205 			ring_buffer_detach(event, rb);
3206 			ring_buffer_put(rb); /* could be last */
3207 		}
3208 		mutex_unlock(&event->mmap_mutex);
3209 	}
3210 
3211 	if (is_cgroup_event(event))
3212 		perf_detach_cgroup(event);
3213 
3214 
3215 	__free_event(event);
3216 }
3217 
3218 int perf_event_release_kernel(struct perf_event *event)
3219 {
3220 	struct perf_event_context *ctx = event->ctx;
3221 
3222 	WARN_ON_ONCE(ctx->parent_ctx);
3223 	/*
3224 	 * There are two ways this annotation is useful:
3225 	 *
3226 	 *  1) there is a lock recursion from perf_event_exit_task
3227 	 *     see the comment there.
3228 	 *
3229 	 *  2) there is a lock-inversion with mmap_sem through
3230 	 *     perf_event_read_group(), which takes faults while
3231 	 *     holding ctx->mutex, however this is called after
3232 	 *     the last filedesc died, so there is no possibility
3233 	 *     to trigger the AB-BA case.
3234 	 */
3235 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3236 	raw_spin_lock_irq(&ctx->lock);
3237 	perf_group_detach(event);
3238 	raw_spin_unlock_irq(&ctx->lock);
3239 	perf_remove_from_context(event);
3240 	mutex_unlock(&ctx->mutex);
3241 
3242 	free_event(event);
3243 
3244 	return 0;
3245 }
3246 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3247 
3248 /*
3249  * Called when the last reference to the file is gone.
3250  */
3251 static void put_event(struct perf_event *event)
3252 {
3253 	struct task_struct *owner;
3254 
3255 	if (!atomic_long_dec_and_test(&event->refcount))
3256 		return;
3257 
3258 	rcu_read_lock();
3259 	owner = ACCESS_ONCE(event->owner);
3260 	/*
3261 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3262 	 * !owner it means the list deletion is complete and we can indeed
3263 	 * free this event, otherwise we need to serialize on
3264 	 * owner->perf_event_mutex.
3265 	 */
3266 	smp_read_barrier_depends();
3267 	if (owner) {
3268 		/*
3269 		 * Since delayed_put_task_struct() also drops the last
3270 		 * task reference we can safely take a new reference
3271 		 * while holding the rcu_read_lock().
3272 		 */
3273 		get_task_struct(owner);
3274 	}
3275 	rcu_read_unlock();
3276 
3277 	if (owner) {
3278 		mutex_lock(&owner->perf_event_mutex);
3279 		/*
3280 		 * We have to re-check the event->owner field, if it is cleared
3281 		 * we raced with perf_event_exit_task(), acquiring the mutex
3282 		 * ensured they're done, and we can proceed with freeing the
3283 		 * event.
3284 		 */
3285 		if (event->owner)
3286 			list_del_init(&event->owner_entry);
3287 		mutex_unlock(&owner->perf_event_mutex);
3288 		put_task_struct(owner);
3289 	}
3290 
3291 	perf_event_release_kernel(event);
3292 }
3293 
3294 static int perf_release(struct inode *inode, struct file *file)
3295 {
3296 	put_event(file->private_data);
3297 	return 0;
3298 }
3299 
3300 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3301 {
3302 	struct perf_event *child;
3303 	u64 total = 0;
3304 
3305 	*enabled = 0;
3306 	*running = 0;
3307 
3308 	mutex_lock(&event->child_mutex);
3309 	total += perf_event_read(event);
3310 	*enabled += event->total_time_enabled +
3311 			atomic64_read(&event->child_total_time_enabled);
3312 	*running += event->total_time_running +
3313 			atomic64_read(&event->child_total_time_running);
3314 
3315 	list_for_each_entry(child, &event->child_list, child_list) {
3316 		total += perf_event_read(child);
3317 		*enabled += child->total_time_enabled;
3318 		*running += child->total_time_running;
3319 	}
3320 	mutex_unlock(&event->child_mutex);
3321 
3322 	return total;
3323 }
3324 EXPORT_SYMBOL_GPL(perf_event_read_value);
3325 
3326 static int perf_event_read_group(struct perf_event *event,
3327 				   u64 read_format, char __user *buf)
3328 {
3329 	struct perf_event *leader = event->group_leader, *sub;
3330 	int n = 0, size = 0, ret = -EFAULT;
3331 	struct perf_event_context *ctx = leader->ctx;
3332 	u64 values[5];
3333 	u64 count, enabled, running;
3334 
3335 	mutex_lock(&ctx->mutex);
3336 	count = perf_event_read_value(leader, &enabled, &running);
3337 
3338 	values[n++] = 1 + leader->nr_siblings;
3339 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3340 		values[n++] = enabled;
3341 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3342 		values[n++] = running;
3343 	values[n++] = count;
3344 	if (read_format & PERF_FORMAT_ID)
3345 		values[n++] = primary_event_id(leader);
3346 
3347 	size = n * sizeof(u64);
3348 
3349 	if (copy_to_user(buf, values, size))
3350 		goto unlock;
3351 
3352 	ret = size;
3353 
3354 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3355 		n = 0;
3356 
3357 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3358 		if (read_format & PERF_FORMAT_ID)
3359 			values[n++] = primary_event_id(sub);
3360 
3361 		size = n * sizeof(u64);
3362 
3363 		if (copy_to_user(buf + ret, values, size)) {
3364 			ret = -EFAULT;
3365 			goto unlock;
3366 		}
3367 
3368 		ret += size;
3369 	}
3370 unlock:
3371 	mutex_unlock(&ctx->mutex);
3372 
3373 	return ret;
3374 }
3375 
3376 static int perf_event_read_one(struct perf_event *event,
3377 				 u64 read_format, char __user *buf)
3378 {
3379 	u64 enabled, running;
3380 	u64 values[4];
3381 	int n = 0;
3382 
3383 	values[n++] = perf_event_read_value(event, &enabled, &running);
3384 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3385 		values[n++] = enabled;
3386 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3387 		values[n++] = running;
3388 	if (read_format & PERF_FORMAT_ID)
3389 		values[n++] = primary_event_id(event);
3390 
3391 	if (copy_to_user(buf, values, n * sizeof(u64)))
3392 		return -EFAULT;
3393 
3394 	return n * sizeof(u64);
3395 }
3396 
3397 /*
3398  * Read the performance event - simple non blocking version for now
3399  */
3400 static ssize_t
3401 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3402 {
3403 	u64 read_format = event->attr.read_format;
3404 	int ret;
3405 
3406 	/*
3407 	 * Return end-of-file for a read on a event that is in
3408 	 * error state (i.e. because it was pinned but it couldn't be
3409 	 * scheduled on to the CPU at some point).
3410 	 */
3411 	if (event->state == PERF_EVENT_STATE_ERROR)
3412 		return 0;
3413 
3414 	if (count < event->read_size)
3415 		return -ENOSPC;
3416 
3417 	WARN_ON_ONCE(event->ctx->parent_ctx);
3418 	if (read_format & PERF_FORMAT_GROUP)
3419 		ret = perf_event_read_group(event, read_format, buf);
3420 	else
3421 		ret = perf_event_read_one(event, read_format, buf);
3422 
3423 	return ret;
3424 }
3425 
3426 static ssize_t
3427 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3428 {
3429 	struct perf_event *event = file->private_data;
3430 
3431 	return perf_read_hw(event, buf, count);
3432 }
3433 
3434 static unsigned int perf_poll(struct file *file, poll_table *wait)
3435 {
3436 	struct perf_event *event = file->private_data;
3437 	struct ring_buffer *rb;
3438 	unsigned int events = POLL_HUP;
3439 
3440 	/*
3441 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3442 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3443 	 */
3444 	mutex_lock(&event->mmap_mutex);
3445 	rb = event->rb;
3446 	if (rb)
3447 		events = atomic_xchg(&rb->poll, 0);
3448 	mutex_unlock(&event->mmap_mutex);
3449 
3450 	poll_wait(file, &event->waitq, wait);
3451 
3452 	return events;
3453 }
3454 
3455 static void perf_event_reset(struct perf_event *event)
3456 {
3457 	(void)perf_event_read(event);
3458 	local64_set(&event->count, 0);
3459 	perf_event_update_userpage(event);
3460 }
3461 
3462 /*
3463  * Holding the top-level event's child_mutex means that any
3464  * descendant process that has inherited this event will block
3465  * in sync_child_event if it goes to exit, thus satisfying the
3466  * task existence requirements of perf_event_enable/disable.
3467  */
3468 static void perf_event_for_each_child(struct perf_event *event,
3469 					void (*func)(struct perf_event *))
3470 {
3471 	struct perf_event *child;
3472 
3473 	WARN_ON_ONCE(event->ctx->parent_ctx);
3474 	mutex_lock(&event->child_mutex);
3475 	func(event);
3476 	list_for_each_entry(child, &event->child_list, child_list)
3477 		func(child);
3478 	mutex_unlock(&event->child_mutex);
3479 }
3480 
3481 static void perf_event_for_each(struct perf_event *event,
3482 				  void (*func)(struct perf_event *))
3483 {
3484 	struct perf_event_context *ctx = event->ctx;
3485 	struct perf_event *sibling;
3486 
3487 	WARN_ON_ONCE(ctx->parent_ctx);
3488 	mutex_lock(&ctx->mutex);
3489 	event = event->group_leader;
3490 
3491 	perf_event_for_each_child(event, func);
3492 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3493 		perf_event_for_each_child(sibling, func);
3494 	mutex_unlock(&ctx->mutex);
3495 }
3496 
3497 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3498 {
3499 	struct perf_event_context *ctx = event->ctx;
3500 	int ret = 0;
3501 	u64 value;
3502 
3503 	if (!is_sampling_event(event))
3504 		return -EINVAL;
3505 
3506 	if (copy_from_user(&value, arg, sizeof(value)))
3507 		return -EFAULT;
3508 
3509 	if (!value)
3510 		return -EINVAL;
3511 
3512 	raw_spin_lock_irq(&ctx->lock);
3513 	if (event->attr.freq) {
3514 		if (value > sysctl_perf_event_sample_rate) {
3515 			ret = -EINVAL;
3516 			goto unlock;
3517 		}
3518 
3519 		event->attr.sample_freq = value;
3520 	} else {
3521 		event->attr.sample_period = value;
3522 		event->hw.sample_period = value;
3523 	}
3524 unlock:
3525 	raw_spin_unlock_irq(&ctx->lock);
3526 
3527 	return ret;
3528 }
3529 
3530 static const struct file_operations perf_fops;
3531 
3532 static inline int perf_fget_light(int fd, struct fd *p)
3533 {
3534 	struct fd f = fdget(fd);
3535 	if (!f.file)
3536 		return -EBADF;
3537 
3538 	if (f.file->f_op != &perf_fops) {
3539 		fdput(f);
3540 		return -EBADF;
3541 	}
3542 	*p = f;
3543 	return 0;
3544 }
3545 
3546 static int perf_event_set_output(struct perf_event *event,
3547 				 struct perf_event *output_event);
3548 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3549 
3550 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3551 {
3552 	struct perf_event *event = file->private_data;
3553 	void (*func)(struct perf_event *);
3554 	u32 flags = arg;
3555 
3556 	switch (cmd) {
3557 	case PERF_EVENT_IOC_ENABLE:
3558 		func = perf_event_enable;
3559 		break;
3560 	case PERF_EVENT_IOC_DISABLE:
3561 		func = perf_event_disable;
3562 		break;
3563 	case PERF_EVENT_IOC_RESET:
3564 		func = perf_event_reset;
3565 		break;
3566 
3567 	case PERF_EVENT_IOC_REFRESH:
3568 		return perf_event_refresh(event, arg);
3569 
3570 	case PERF_EVENT_IOC_PERIOD:
3571 		return perf_event_period(event, (u64 __user *)arg);
3572 
3573 	case PERF_EVENT_IOC_ID:
3574 	{
3575 		u64 id = primary_event_id(event);
3576 
3577 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3578 			return -EFAULT;
3579 		return 0;
3580 	}
3581 
3582 	case PERF_EVENT_IOC_SET_OUTPUT:
3583 	{
3584 		int ret;
3585 		if (arg != -1) {
3586 			struct perf_event *output_event;
3587 			struct fd output;
3588 			ret = perf_fget_light(arg, &output);
3589 			if (ret)
3590 				return ret;
3591 			output_event = output.file->private_data;
3592 			ret = perf_event_set_output(event, output_event);
3593 			fdput(output);
3594 		} else {
3595 			ret = perf_event_set_output(event, NULL);
3596 		}
3597 		return ret;
3598 	}
3599 
3600 	case PERF_EVENT_IOC_SET_FILTER:
3601 		return perf_event_set_filter(event, (void __user *)arg);
3602 
3603 	default:
3604 		return -ENOTTY;
3605 	}
3606 
3607 	if (flags & PERF_IOC_FLAG_GROUP)
3608 		perf_event_for_each(event, func);
3609 	else
3610 		perf_event_for_each_child(event, func);
3611 
3612 	return 0;
3613 }
3614 
3615 int perf_event_task_enable(void)
3616 {
3617 	struct perf_event *event;
3618 
3619 	mutex_lock(&current->perf_event_mutex);
3620 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3621 		perf_event_for_each_child(event, perf_event_enable);
3622 	mutex_unlock(&current->perf_event_mutex);
3623 
3624 	return 0;
3625 }
3626 
3627 int perf_event_task_disable(void)
3628 {
3629 	struct perf_event *event;
3630 
3631 	mutex_lock(&current->perf_event_mutex);
3632 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3633 		perf_event_for_each_child(event, perf_event_disable);
3634 	mutex_unlock(&current->perf_event_mutex);
3635 
3636 	return 0;
3637 }
3638 
3639 static int perf_event_index(struct perf_event *event)
3640 {
3641 	if (event->hw.state & PERF_HES_STOPPED)
3642 		return 0;
3643 
3644 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3645 		return 0;
3646 
3647 	return event->pmu->event_idx(event);
3648 }
3649 
3650 static void calc_timer_values(struct perf_event *event,
3651 				u64 *now,
3652 				u64 *enabled,
3653 				u64 *running)
3654 {
3655 	u64 ctx_time;
3656 
3657 	*now = perf_clock();
3658 	ctx_time = event->shadow_ctx_time + *now;
3659 	*enabled = ctx_time - event->tstamp_enabled;
3660 	*running = ctx_time - event->tstamp_running;
3661 }
3662 
3663 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3664 {
3665 }
3666 
3667 /*
3668  * Callers need to ensure there can be no nesting of this function, otherwise
3669  * the seqlock logic goes bad. We can not serialize this because the arch
3670  * code calls this from NMI context.
3671  */
3672 void perf_event_update_userpage(struct perf_event *event)
3673 {
3674 	struct perf_event_mmap_page *userpg;
3675 	struct ring_buffer *rb;
3676 	u64 enabled, running, now;
3677 
3678 	rcu_read_lock();
3679 	rb = rcu_dereference(event->rb);
3680 	if (!rb)
3681 		goto unlock;
3682 
3683 	/*
3684 	 * compute total_time_enabled, total_time_running
3685 	 * based on snapshot values taken when the event
3686 	 * was last scheduled in.
3687 	 *
3688 	 * we cannot simply called update_context_time()
3689 	 * because of locking issue as we can be called in
3690 	 * NMI context
3691 	 */
3692 	calc_timer_values(event, &now, &enabled, &running);
3693 
3694 	userpg = rb->user_page;
3695 	/*
3696 	 * Disable preemption so as to not let the corresponding user-space
3697 	 * spin too long if we get preempted.
3698 	 */
3699 	preempt_disable();
3700 	++userpg->lock;
3701 	barrier();
3702 	userpg->index = perf_event_index(event);
3703 	userpg->offset = perf_event_count(event);
3704 	if (userpg->index)
3705 		userpg->offset -= local64_read(&event->hw.prev_count);
3706 
3707 	userpg->time_enabled = enabled +
3708 			atomic64_read(&event->child_total_time_enabled);
3709 
3710 	userpg->time_running = running +
3711 			atomic64_read(&event->child_total_time_running);
3712 
3713 	arch_perf_update_userpage(userpg, now);
3714 
3715 	barrier();
3716 	++userpg->lock;
3717 	preempt_enable();
3718 unlock:
3719 	rcu_read_unlock();
3720 }
3721 
3722 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3723 {
3724 	struct perf_event *event = vma->vm_file->private_data;
3725 	struct ring_buffer *rb;
3726 	int ret = VM_FAULT_SIGBUS;
3727 
3728 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3729 		if (vmf->pgoff == 0)
3730 			ret = 0;
3731 		return ret;
3732 	}
3733 
3734 	rcu_read_lock();
3735 	rb = rcu_dereference(event->rb);
3736 	if (!rb)
3737 		goto unlock;
3738 
3739 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3740 		goto unlock;
3741 
3742 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3743 	if (!vmf->page)
3744 		goto unlock;
3745 
3746 	get_page(vmf->page);
3747 	vmf->page->mapping = vma->vm_file->f_mapping;
3748 	vmf->page->index   = vmf->pgoff;
3749 
3750 	ret = 0;
3751 unlock:
3752 	rcu_read_unlock();
3753 
3754 	return ret;
3755 }
3756 
3757 static void ring_buffer_attach(struct perf_event *event,
3758 			       struct ring_buffer *rb)
3759 {
3760 	unsigned long flags;
3761 
3762 	if (!list_empty(&event->rb_entry))
3763 		return;
3764 
3765 	spin_lock_irqsave(&rb->event_lock, flags);
3766 	if (list_empty(&event->rb_entry))
3767 		list_add(&event->rb_entry, &rb->event_list);
3768 	spin_unlock_irqrestore(&rb->event_lock, flags);
3769 }
3770 
3771 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3772 {
3773 	unsigned long flags;
3774 
3775 	if (list_empty(&event->rb_entry))
3776 		return;
3777 
3778 	spin_lock_irqsave(&rb->event_lock, flags);
3779 	list_del_init(&event->rb_entry);
3780 	wake_up_all(&event->waitq);
3781 	spin_unlock_irqrestore(&rb->event_lock, flags);
3782 }
3783 
3784 static void ring_buffer_wakeup(struct perf_event *event)
3785 {
3786 	struct ring_buffer *rb;
3787 
3788 	rcu_read_lock();
3789 	rb = rcu_dereference(event->rb);
3790 	if (rb) {
3791 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3792 			wake_up_all(&event->waitq);
3793 	}
3794 	rcu_read_unlock();
3795 }
3796 
3797 static void rb_free_rcu(struct rcu_head *rcu_head)
3798 {
3799 	struct ring_buffer *rb;
3800 
3801 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3802 	rb_free(rb);
3803 }
3804 
3805 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3806 {
3807 	struct ring_buffer *rb;
3808 
3809 	rcu_read_lock();
3810 	rb = rcu_dereference(event->rb);
3811 	if (rb) {
3812 		if (!atomic_inc_not_zero(&rb->refcount))
3813 			rb = NULL;
3814 	}
3815 	rcu_read_unlock();
3816 
3817 	return rb;
3818 }
3819 
3820 static void ring_buffer_put(struct ring_buffer *rb)
3821 {
3822 	if (!atomic_dec_and_test(&rb->refcount))
3823 		return;
3824 
3825 	WARN_ON_ONCE(!list_empty(&rb->event_list));
3826 
3827 	call_rcu(&rb->rcu_head, rb_free_rcu);
3828 }
3829 
3830 static void perf_mmap_open(struct vm_area_struct *vma)
3831 {
3832 	struct perf_event *event = vma->vm_file->private_data;
3833 
3834 	atomic_inc(&event->mmap_count);
3835 	atomic_inc(&event->rb->mmap_count);
3836 }
3837 
3838 /*
3839  * A buffer can be mmap()ed multiple times; either directly through the same
3840  * event, or through other events by use of perf_event_set_output().
3841  *
3842  * In order to undo the VM accounting done by perf_mmap() we need to destroy
3843  * the buffer here, where we still have a VM context. This means we need
3844  * to detach all events redirecting to us.
3845  */
3846 static void perf_mmap_close(struct vm_area_struct *vma)
3847 {
3848 	struct perf_event *event = vma->vm_file->private_data;
3849 
3850 	struct ring_buffer *rb = event->rb;
3851 	struct user_struct *mmap_user = rb->mmap_user;
3852 	int mmap_locked = rb->mmap_locked;
3853 	unsigned long size = perf_data_size(rb);
3854 
3855 	atomic_dec(&rb->mmap_count);
3856 
3857 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3858 		return;
3859 
3860 	/* Detach current event from the buffer. */
3861 	rcu_assign_pointer(event->rb, NULL);
3862 	ring_buffer_detach(event, rb);
3863 	mutex_unlock(&event->mmap_mutex);
3864 
3865 	/* If there's still other mmap()s of this buffer, we're done. */
3866 	if (atomic_read(&rb->mmap_count)) {
3867 		ring_buffer_put(rb); /* can't be last */
3868 		return;
3869 	}
3870 
3871 	/*
3872 	 * No other mmap()s, detach from all other events that might redirect
3873 	 * into the now unreachable buffer. Somewhat complicated by the
3874 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3875 	 */
3876 again:
3877 	rcu_read_lock();
3878 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3879 		if (!atomic_long_inc_not_zero(&event->refcount)) {
3880 			/*
3881 			 * This event is en-route to free_event() which will
3882 			 * detach it and remove it from the list.
3883 			 */
3884 			continue;
3885 		}
3886 		rcu_read_unlock();
3887 
3888 		mutex_lock(&event->mmap_mutex);
3889 		/*
3890 		 * Check we didn't race with perf_event_set_output() which can
3891 		 * swizzle the rb from under us while we were waiting to
3892 		 * acquire mmap_mutex.
3893 		 *
3894 		 * If we find a different rb; ignore this event, a next
3895 		 * iteration will no longer find it on the list. We have to
3896 		 * still restart the iteration to make sure we're not now
3897 		 * iterating the wrong list.
3898 		 */
3899 		if (event->rb == rb) {
3900 			rcu_assign_pointer(event->rb, NULL);
3901 			ring_buffer_detach(event, rb);
3902 			ring_buffer_put(rb); /* can't be last, we still have one */
3903 		}
3904 		mutex_unlock(&event->mmap_mutex);
3905 		put_event(event);
3906 
3907 		/*
3908 		 * Restart the iteration; either we're on the wrong list or
3909 		 * destroyed its integrity by doing a deletion.
3910 		 */
3911 		goto again;
3912 	}
3913 	rcu_read_unlock();
3914 
3915 	/*
3916 	 * It could be there's still a few 0-ref events on the list; they'll
3917 	 * get cleaned up by free_event() -- they'll also still have their
3918 	 * ref on the rb and will free it whenever they are done with it.
3919 	 *
3920 	 * Aside from that, this buffer is 'fully' detached and unmapped,
3921 	 * undo the VM accounting.
3922 	 */
3923 
3924 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3925 	vma->vm_mm->pinned_vm -= mmap_locked;
3926 	free_uid(mmap_user);
3927 
3928 	ring_buffer_put(rb); /* could be last */
3929 }
3930 
3931 static const struct vm_operations_struct perf_mmap_vmops = {
3932 	.open		= perf_mmap_open,
3933 	.close		= perf_mmap_close,
3934 	.fault		= perf_mmap_fault,
3935 	.page_mkwrite	= perf_mmap_fault,
3936 };
3937 
3938 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3939 {
3940 	struct perf_event *event = file->private_data;
3941 	unsigned long user_locked, user_lock_limit;
3942 	struct user_struct *user = current_user();
3943 	unsigned long locked, lock_limit;
3944 	struct ring_buffer *rb;
3945 	unsigned long vma_size;
3946 	unsigned long nr_pages;
3947 	long user_extra, extra;
3948 	int ret = 0, flags = 0;
3949 
3950 	/*
3951 	 * Don't allow mmap() of inherited per-task counters. This would
3952 	 * create a performance issue due to all children writing to the
3953 	 * same rb.
3954 	 */
3955 	if (event->cpu == -1 && event->attr.inherit)
3956 		return -EINVAL;
3957 
3958 	if (!(vma->vm_flags & VM_SHARED))
3959 		return -EINVAL;
3960 
3961 	vma_size = vma->vm_end - vma->vm_start;
3962 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3963 
3964 	/*
3965 	 * If we have rb pages ensure they're a power-of-two number, so we
3966 	 * can do bitmasks instead of modulo.
3967 	 */
3968 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3969 		return -EINVAL;
3970 
3971 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3972 		return -EINVAL;
3973 
3974 	if (vma->vm_pgoff != 0)
3975 		return -EINVAL;
3976 
3977 	WARN_ON_ONCE(event->ctx->parent_ctx);
3978 again:
3979 	mutex_lock(&event->mmap_mutex);
3980 	if (event->rb) {
3981 		if (event->rb->nr_pages != nr_pages) {
3982 			ret = -EINVAL;
3983 			goto unlock;
3984 		}
3985 
3986 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3987 			/*
3988 			 * Raced against perf_mmap_close() through
3989 			 * perf_event_set_output(). Try again, hope for better
3990 			 * luck.
3991 			 */
3992 			mutex_unlock(&event->mmap_mutex);
3993 			goto again;
3994 		}
3995 
3996 		goto unlock;
3997 	}
3998 
3999 	user_extra = nr_pages + 1;
4000 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4001 
4002 	/*
4003 	 * Increase the limit linearly with more CPUs:
4004 	 */
4005 	user_lock_limit *= num_online_cpus();
4006 
4007 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4008 
4009 	extra = 0;
4010 	if (user_locked > user_lock_limit)
4011 		extra = user_locked - user_lock_limit;
4012 
4013 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4014 	lock_limit >>= PAGE_SHIFT;
4015 	locked = vma->vm_mm->pinned_vm + extra;
4016 
4017 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4018 		!capable(CAP_IPC_LOCK)) {
4019 		ret = -EPERM;
4020 		goto unlock;
4021 	}
4022 
4023 	WARN_ON(event->rb);
4024 
4025 	if (vma->vm_flags & VM_WRITE)
4026 		flags |= RING_BUFFER_WRITABLE;
4027 
4028 	rb = rb_alloc(nr_pages,
4029 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
4030 		event->cpu, flags);
4031 
4032 	if (!rb) {
4033 		ret = -ENOMEM;
4034 		goto unlock;
4035 	}
4036 
4037 	atomic_set(&rb->mmap_count, 1);
4038 	rb->mmap_locked = extra;
4039 	rb->mmap_user = get_current_user();
4040 
4041 	atomic_long_add(user_extra, &user->locked_vm);
4042 	vma->vm_mm->pinned_vm += extra;
4043 
4044 	ring_buffer_attach(event, rb);
4045 	rcu_assign_pointer(event->rb, rb);
4046 
4047 	perf_event_update_userpage(event);
4048 
4049 unlock:
4050 	if (!ret)
4051 		atomic_inc(&event->mmap_count);
4052 	mutex_unlock(&event->mmap_mutex);
4053 
4054 	/*
4055 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4056 	 * vma.
4057 	 */
4058 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4059 	vma->vm_ops = &perf_mmap_vmops;
4060 
4061 	return ret;
4062 }
4063 
4064 static int perf_fasync(int fd, struct file *filp, int on)
4065 {
4066 	struct inode *inode = file_inode(filp);
4067 	struct perf_event *event = filp->private_data;
4068 	int retval;
4069 
4070 	mutex_lock(&inode->i_mutex);
4071 	retval = fasync_helper(fd, filp, on, &event->fasync);
4072 	mutex_unlock(&inode->i_mutex);
4073 
4074 	if (retval < 0)
4075 		return retval;
4076 
4077 	return 0;
4078 }
4079 
4080 static const struct file_operations perf_fops = {
4081 	.llseek			= no_llseek,
4082 	.release		= perf_release,
4083 	.read			= perf_read,
4084 	.poll			= perf_poll,
4085 	.unlocked_ioctl		= perf_ioctl,
4086 	.compat_ioctl		= perf_ioctl,
4087 	.mmap			= perf_mmap,
4088 	.fasync			= perf_fasync,
4089 };
4090 
4091 /*
4092  * Perf event wakeup
4093  *
4094  * If there's data, ensure we set the poll() state and publish everything
4095  * to user-space before waking everybody up.
4096  */
4097 
4098 void perf_event_wakeup(struct perf_event *event)
4099 {
4100 	ring_buffer_wakeup(event);
4101 
4102 	if (event->pending_kill) {
4103 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4104 		event->pending_kill = 0;
4105 	}
4106 }
4107 
4108 static void perf_pending_event(struct irq_work *entry)
4109 {
4110 	struct perf_event *event = container_of(entry,
4111 			struct perf_event, pending);
4112 
4113 	if (event->pending_disable) {
4114 		event->pending_disable = 0;
4115 		__perf_event_disable(event);
4116 	}
4117 
4118 	if (event->pending_wakeup) {
4119 		event->pending_wakeup = 0;
4120 		perf_event_wakeup(event);
4121 	}
4122 }
4123 
4124 /*
4125  * We assume there is only KVM supporting the callbacks.
4126  * Later on, we might change it to a list if there is
4127  * another virtualization implementation supporting the callbacks.
4128  */
4129 struct perf_guest_info_callbacks *perf_guest_cbs;
4130 
4131 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4132 {
4133 	perf_guest_cbs = cbs;
4134 	return 0;
4135 }
4136 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4137 
4138 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4139 {
4140 	perf_guest_cbs = NULL;
4141 	return 0;
4142 }
4143 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4144 
4145 static void
4146 perf_output_sample_regs(struct perf_output_handle *handle,
4147 			struct pt_regs *regs, u64 mask)
4148 {
4149 	int bit;
4150 
4151 	for_each_set_bit(bit, (const unsigned long *) &mask,
4152 			 sizeof(mask) * BITS_PER_BYTE) {
4153 		u64 val;
4154 
4155 		val = perf_reg_value(regs, bit);
4156 		perf_output_put(handle, val);
4157 	}
4158 }
4159 
4160 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4161 				  struct pt_regs *regs)
4162 {
4163 	if (!user_mode(regs)) {
4164 		if (current->mm)
4165 			regs = task_pt_regs(current);
4166 		else
4167 			regs = NULL;
4168 	}
4169 
4170 	if (regs) {
4171 		regs_user->regs = regs;
4172 		regs_user->abi  = perf_reg_abi(current);
4173 	}
4174 }
4175 
4176 /*
4177  * Get remaining task size from user stack pointer.
4178  *
4179  * It'd be better to take stack vma map and limit this more
4180  * precisly, but there's no way to get it safely under interrupt,
4181  * so using TASK_SIZE as limit.
4182  */
4183 static u64 perf_ustack_task_size(struct pt_regs *regs)
4184 {
4185 	unsigned long addr = perf_user_stack_pointer(regs);
4186 
4187 	if (!addr || addr >= TASK_SIZE)
4188 		return 0;
4189 
4190 	return TASK_SIZE - addr;
4191 }
4192 
4193 static u16
4194 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4195 			struct pt_regs *regs)
4196 {
4197 	u64 task_size;
4198 
4199 	/* No regs, no stack pointer, no dump. */
4200 	if (!regs)
4201 		return 0;
4202 
4203 	/*
4204 	 * Check if we fit in with the requested stack size into the:
4205 	 * - TASK_SIZE
4206 	 *   If we don't, we limit the size to the TASK_SIZE.
4207 	 *
4208 	 * - remaining sample size
4209 	 *   If we don't, we customize the stack size to
4210 	 *   fit in to the remaining sample size.
4211 	 */
4212 
4213 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4214 	stack_size = min(stack_size, (u16) task_size);
4215 
4216 	/* Current header size plus static size and dynamic size. */
4217 	header_size += 2 * sizeof(u64);
4218 
4219 	/* Do we fit in with the current stack dump size? */
4220 	if ((u16) (header_size + stack_size) < header_size) {
4221 		/*
4222 		 * If we overflow the maximum size for the sample,
4223 		 * we customize the stack dump size to fit in.
4224 		 */
4225 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4226 		stack_size = round_up(stack_size, sizeof(u64));
4227 	}
4228 
4229 	return stack_size;
4230 }
4231 
4232 static void
4233 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4234 			  struct pt_regs *regs)
4235 {
4236 	/* Case of a kernel thread, nothing to dump */
4237 	if (!regs) {
4238 		u64 size = 0;
4239 		perf_output_put(handle, size);
4240 	} else {
4241 		unsigned long sp;
4242 		unsigned int rem;
4243 		u64 dyn_size;
4244 
4245 		/*
4246 		 * We dump:
4247 		 * static size
4248 		 *   - the size requested by user or the best one we can fit
4249 		 *     in to the sample max size
4250 		 * data
4251 		 *   - user stack dump data
4252 		 * dynamic size
4253 		 *   - the actual dumped size
4254 		 */
4255 
4256 		/* Static size. */
4257 		perf_output_put(handle, dump_size);
4258 
4259 		/* Data. */
4260 		sp = perf_user_stack_pointer(regs);
4261 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4262 		dyn_size = dump_size - rem;
4263 
4264 		perf_output_skip(handle, rem);
4265 
4266 		/* Dynamic size. */
4267 		perf_output_put(handle, dyn_size);
4268 	}
4269 }
4270 
4271 static void __perf_event_header__init_id(struct perf_event_header *header,
4272 					 struct perf_sample_data *data,
4273 					 struct perf_event *event)
4274 {
4275 	u64 sample_type = event->attr.sample_type;
4276 
4277 	data->type = sample_type;
4278 	header->size += event->id_header_size;
4279 
4280 	if (sample_type & PERF_SAMPLE_TID) {
4281 		/* namespace issues */
4282 		data->tid_entry.pid = perf_event_pid(event, current);
4283 		data->tid_entry.tid = perf_event_tid(event, current);
4284 	}
4285 
4286 	if (sample_type & PERF_SAMPLE_TIME)
4287 		data->time = perf_clock();
4288 
4289 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4290 		data->id = primary_event_id(event);
4291 
4292 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4293 		data->stream_id = event->id;
4294 
4295 	if (sample_type & PERF_SAMPLE_CPU) {
4296 		data->cpu_entry.cpu	 = raw_smp_processor_id();
4297 		data->cpu_entry.reserved = 0;
4298 	}
4299 }
4300 
4301 void perf_event_header__init_id(struct perf_event_header *header,
4302 				struct perf_sample_data *data,
4303 				struct perf_event *event)
4304 {
4305 	if (event->attr.sample_id_all)
4306 		__perf_event_header__init_id(header, data, event);
4307 }
4308 
4309 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4310 					   struct perf_sample_data *data)
4311 {
4312 	u64 sample_type = data->type;
4313 
4314 	if (sample_type & PERF_SAMPLE_TID)
4315 		perf_output_put(handle, data->tid_entry);
4316 
4317 	if (sample_type & PERF_SAMPLE_TIME)
4318 		perf_output_put(handle, data->time);
4319 
4320 	if (sample_type & PERF_SAMPLE_ID)
4321 		perf_output_put(handle, data->id);
4322 
4323 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4324 		perf_output_put(handle, data->stream_id);
4325 
4326 	if (sample_type & PERF_SAMPLE_CPU)
4327 		perf_output_put(handle, data->cpu_entry);
4328 
4329 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4330 		perf_output_put(handle, data->id);
4331 }
4332 
4333 void perf_event__output_id_sample(struct perf_event *event,
4334 				  struct perf_output_handle *handle,
4335 				  struct perf_sample_data *sample)
4336 {
4337 	if (event->attr.sample_id_all)
4338 		__perf_event__output_id_sample(handle, sample);
4339 }
4340 
4341 static void perf_output_read_one(struct perf_output_handle *handle,
4342 				 struct perf_event *event,
4343 				 u64 enabled, u64 running)
4344 {
4345 	u64 read_format = event->attr.read_format;
4346 	u64 values[4];
4347 	int n = 0;
4348 
4349 	values[n++] = perf_event_count(event);
4350 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4351 		values[n++] = enabled +
4352 			atomic64_read(&event->child_total_time_enabled);
4353 	}
4354 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4355 		values[n++] = running +
4356 			atomic64_read(&event->child_total_time_running);
4357 	}
4358 	if (read_format & PERF_FORMAT_ID)
4359 		values[n++] = primary_event_id(event);
4360 
4361 	__output_copy(handle, values, n * sizeof(u64));
4362 }
4363 
4364 /*
4365  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4366  */
4367 static void perf_output_read_group(struct perf_output_handle *handle,
4368 			    struct perf_event *event,
4369 			    u64 enabled, u64 running)
4370 {
4371 	struct perf_event *leader = event->group_leader, *sub;
4372 	u64 read_format = event->attr.read_format;
4373 	u64 values[5];
4374 	int n = 0;
4375 
4376 	values[n++] = 1 + leader->nr_siblings;
4377 
4378 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4379 		values[n++] = enabled;
4380 
4381 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4382 		values[n++] = running;
4383 
4384 	if (leader != event)
4385 		leader->pmu->read(leader);
4386 
4387 	values[n++] = perf_event_count(leader);
4388 	if (read_format & PERF_FORMAT_ID)
4389 		values[n++] = primary_event_id(leader);
4390 
4391 	__output_copy(handle, values, n * sizeof(u64));
4392 
4393 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4394 		n = 0;
4395 
4396 		if ((sub != event) &&
4397 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4398 			sub->pmu->read(sub);
4399 
4400 		values[n++] = perf_event_count(sub);
4401 		if (read_format & PERF_FORMAT_ID)
4402 			values[n++] = primary_event_id(sub);
4403 
4404 		__output_copy(handle, values, n * sizeof(u64));
4405 	}
4406 }
4407 
4408 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4409 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4410 
4411 static void perf_output_read(struct perf_output_handle *handle,
4412 			     struct perf_event *event)
4413 {
4414 	u64 enabled = 0, running = 0, now;
4415 	u64 read_format = event->attr.read_format;
4416 
4417 	/*
4418 	 * compute total_time_enabled, total_time_running
4419 	 * based on snapshot values taken when the event
4420 	 * was last scheduled in.
4421 	 *
4422 	 * we cannot simply called update_context_time()
4423 	 * because of locking issue as we are called in
4424 	 * NMI context
4425 	 */
4426 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4427 		calc_timer_values(event, &now, &enabled, &running);
4428 
4429 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4430 		perf_output_read_group(handle, event, enabled, running);
4431 	else
4432 		perf_output_read_one(handle, event, enabled, running);
4433 }
4434 
4435 void perf_output_sample(struct perf_output_handle *handle,
4436 			struct perf_event_header *header,
4437 			struct perf_sample_data *data,
4438 			struct perf_event *event)
4439 {
4440 	u64 sample_type = data->type;
4441 
4442 	perf_output_put(handle, *header);
4443 
4444 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4445 		perf_output_put(handle, data->id);
4446 
4447 	if (sample_type & PERF_SAMPLE_IP)
4448 		perf_output_put(handle, data->ip);
4449 
4450 	if (sample_type & PERF_SAMPLE_TID)
4451 		perf_output_put(handle, data->tid_entry);
4452 
4453 	if (sample_type & PERF_SAMPLE_TIME)
4454 		perf_output_put(handle, data->time);
4455 
4456 	if (sample_type & PERF_SAMPLE_ADDR)
4457 		perf_output_put(handle, data->addr);
4458 
4459 	if (sample_type & PERF_SAMPLE_ID)
4460 		perf_output_put(handle, data->id);
4461 
4462 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4463 		perf_output_put(handle, data->stream_id);
4464 
4465 	if (sample_type & PERF_SAMPLE_CPU)
4466 		perf_output_put(handle, data->cpu_entry);
4467 
4468 	if (sample_type & PERF_SAMPLE_PERIOD)
4469 		perf_output_put(handle, data->period);
4470 
4471 	if (sample_type & PERF_SAMPLE_READ)
4472 		perf_output_read(handle, event);
4473 
4474 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4475 		if (data->callchain) {
4476 			int size = 1;
4477 
4478 			if (data->callchain)
4479 				size += data->callchain->nr;
4480 
4481 			size *= sizeof(u64);
4482 
4483 			__output_copy(handle, data->callchain, size);
4484 		} else {
4485 			u64 nr = 0;
4486 			perf_output_put(handle, nr);
4487 		}
4488 	}
4489 
4490 	if (sample_type & PERF_SAMPLE_RAW) {
4491 		if (data->raw) {
4492 			perf_output_put(handle, data->raw->size);
4493 			__output_copy(handle, data->raw->data,
4494 					   data->raw->size);
4495 		} else {
4496 			struct {
4497 				u32	size;
4498 				u32	data;
4499 			} raw = {
4500 				.size = sizeof(u32),
4501 				.data = 0,
4502 			};
4503 			perf_output_put(handle, raw);
4504 		}
4505 	}
4506 
4507 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4508 		if (data->br_stack) {
4509 			size_t size;
4510 
4511 			size = data->br_stack->nr
4512 			     * sizeof(struct perf_branch_entry);
4513 
4514 			perf_output_put(handle, data->br_stack->nr);
4515 			perf_output_copy(handle, data->br_stack->entries, size);
4516 		} else {
4517 			/*
4518 			 * we always store at least the value of nr
4519 			 */
4520 			u64 nr = 0;
4521 			perf_output_put(handle, nr);
4522 		}
4523 	}
4524 
4525 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4526 		u64 abi = data->regs_user.abi;
4527 
4528 		/*
4529 		 * If there are no regs to dump, notice it through
4530 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4531 		 */
4532 		perf_output_put(handle, abi);
4533 
4534 		if (abi) {
4535 			u64 mask = event->attr.sample_regs_user;
4536 			perf_output_sample_regs(handle,
4537 						data->regs_user.regs,
4538 						mask);
4539 		}
4540 	}
4541 
4542 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4543 		perf_output_sample_ustack(handle,
4544 					  data->stack_user_size,
4545 					  data->regs_user.regs);
4546 	}
4547 
4548 	if (sample_type & PERF_SAMPLE_WEIGHT)
4549 		perf_output_put(handle, data->weight);
4550 
4551 	if (sample_type & PERF_SAMPLE_DATA_SRC)
4552 		perf_output_put(handle, data->data_src.val);
4553 
4554 	if (!event->attr.watermark) {
4555 		int wakeup_events = event->attr.wakeup_events;
4556 
4557 		if (wakeup_events) {
4558 			struct ring_buffer *rb = handle->rb;
4559 			int events = local_inc_return(&rb->events);
4560 
4561 			if (events >= wakeup_events) {
4562 				local_sub(wakeup_events, &rb->events);
4563 				local_inc(&rb->wakeup);
4564 			}
4565 		}
4566 	}
4567 }
4568 
4569 void perf_prepare_sample(struct perf_event_header *header,
4570 			 struct perf_sample_data *data,
4571 			 struct perf_event *event,
4572 			 struct pt_regs *regs)
4573 {
4574 	u64 sample_type = event->attr.sample_type;
4575 
4576 	header->type = PERF_RECORD_SAMPLE;
4577 	header->size = sizeof(*header) + event->header_size;
4578 
4579 	header->misc = 0;
4580 	header->misc |= perf_misc_flags(regs);
4581 
4582 	__perf_event_header__init_id(header, data, event);
4583 
4584 	if (sample_type & PERF_SAMPLE_IP)
4585 		data->ip = perf_instruction_pointer(regs);
4586 
4587 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4588 		int size = 1;
4589 
4590 		data->callchain = perf_callchain(event, regs);
4591 
4592 		if (data->callchain)
4593 			size += data->callchain->nr;
4594 
4595 		header->size += size * sizeof(u64);
4596 	}
4597 
4598 	if (sample_type & PERF_SAMPLE_RAW) {
4599 		int size = sizeof(u32);
4600 
4601 		if (data->raw)
4602 			size += data->raw->size;
4603 		else
4604 			size += sizeof(u32);
4605 
4606 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4607 		header->size += size;
4608 	}
4609 
4610 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4611 		int size = sizeof(u64); /* nr */
4612 		if (data->br_stack) {
4613 			size += data->br_stack->nr
4614 			      * sizeof(struct perf_branch_entry);
4615 		}
4616 		header->size += size;
4617 	}
4618 
4619 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4620 		/* regs dump ABI info */
4621 		int size = sizeof(u64);
4622 
4623 		perf_sample_regs_user(&data->regs_user, regs);
4624 
4625 		if (data->regs_user.regs) {
4626 			u64 mask = event->attr.sample_regs_user;
4627 			size += hweight64(mask) * sizeof(u64);
4628 		}
4629 
4630 		header->size += size;
4631 	}
4632 
4633 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4634 		/*
4635 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4636 		 * processed as the last one or have additional check added
4637 		 * in case new sample type is added, because we could eat
4638 		 * up the rest of the sample size.
4639 		 */
4640 		struct perf_regs_user *uregs = &data->regs_user;
4641 		u16 stack_size = event->attr.sample_stack_user;
4642 		u16 size = sizeof(u64);
4643 
4644 		if (!uregs->abi)
4645 			perf_sample_regs_user(uregs, regs);
4646 
4647 		stack_size = perf_sample_ustack_size(stack_size, header->size,
4648 						     uregs->regs);
4649 
4650 		/*
4651 		 * If there is something to dump, add space for the dump
4652 		 * itself and for the field that tells the dynamic size,
4653 		 * which is how many have been actually dumped.
4654 		 */
4655 		if (stack_size)
4656 			size += sizeof(u64) + stack_size;
4657 
4658 		data->stack_user_size = stack_size;
4659 		header->size += size;
4660 	}
4661 }
4662 
4663 static void perf_event_output(struct perf_event *event,
4664 				struct perf_sample_data *data,
4665 				struct pt_regs *regs)
4666 {
4667 	struct perf_output_handle handle;
4668 	struct perf_event_header header;
4669 
4670 	/* protect the callchain buffers */
4671 	rcu_read_lock();
4672 
4673 	perf_prepare_sample(&header, data, event, regs);
4674 
4675 	if (perf_output_begin(&handle, event, header.size))
4676 		goto exit;
4677 
4678 	perf_output_sample(&handle, &header, data, event);
4679 
4680 	perf_output_end(&handle);
4681 
4682 exit:
4683 	rcu_read_unlock();
4684 }
4685 
4686 /*
4687  * read event_id
4688  */
4689 
4690 struct perf_read_event {
4691 	struct perf_event_header	header;
4692 
4693 	u32				pid;
4694 	u32				tid;
4695 };
4696 
4697 static void
4698 perf_event_read_event(struct perf_event *event,
4699 			struct task_struct *task)
4700 {
4701 	struct perf_output_handle handle;
4702 	struct perf_sample_data sample;
4703 	struct perf_read_event read_event = {
4704 		.header = {
4705 			.type = PERF_RECORD_READ,
4706 			.misc = 0,
4707 			.size = sizeof(read_event) + event->read_size,
4708 		},
4709 		.pid = perf_event_pid(event, task),
4710 		.tid = perf_event_tid(event, task),
4711 	};
4712 	int ret;
4713 
4714 	perf_event_header__init_id(&read_event.header, &sample, event);
4715 	ret = perf_output_begin(&handle, event, read_event.header.size);
4716 	if (ret)
4717 		return;
4718 
4719 	perf_output_put(&handle, read_event);
4720 	perf_output_read(&handle, event);
4721 	perf_event__output_id_sample(event, &handle, &sample);
4722 
4723 	perf_output_end(&handle);
4724 }
4725 
4726 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4727 
4728 static void
4729 perf_event_aux_ctx(struct perf_event_context *ctx,
4730 		   perf_event_aux_output_cb output,
4731 		   void *data)
4732 {
4733 	struct perf_event *event;
4734 
4735 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4736 		if (event->state < PERF_EVENT_STATE_INACTIVE)
4737 			continue;
4738 		if (!event_filter_match(event))
4739 			continue;
4740 		output(event, data);
4741 	}
4742 }
4743 
4744 static void
4745 perf_event_aux(perf_event_aux_output_cb output, void *data,
4746 	       struct perf_event_context *task_ctx)
4747 {
4748 	struct perf_cpu_context *cpuctx;
4749 	struct perf_event_context *ctx;
4750 	struct pmu *pmu;
4751 	int ctxn;
4752 
4753 	rcu_read_lock();
4754 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4755 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4756 		if (cpuctx->unique_pmu != pmu)
4757 			goto next;
4758 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4759 		if (task_ctx)
4760 			goto next;
4761 		ctxn = pmu->task_ctx_nr;
4762 		if (ctxn < 0)
4763 			goto next;
4764 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4765 		if (ctx)
4766 			perf_event_aux_ctx(ctx, output, data);
4767 next:
4768 		put_cpu_ptr(pmu->pmu_cpu_context);
4769 	}
4770 
4771 	if (task_ctx) {
4772 		preempt_disable();
4773 		perf_event_aux_ctx(task_ctx, output, data);
4774 		preempt_enable();
4775 	}
4776 	rcu_read_unlock();
4777 }
4778 
4779 /*
4780  * task tracking -- fork/exit
4781  *
4782  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4783  */
4784 
4785 struct perf_task_event {
4786 	struct task_struct		*task;
4787 	struct perf_event_context	*task_ctx;
4788 
4789 	struct {
4790 		struct perf_event_header	header;
4791 
4792 		u32				pid;
4793 		u32				ppid;
4794 		u32				tid;
4795 		u32				ptid;
4796 		u64				time;
4797 	} event_id;
4798 };
4799 
4800 static int perf_event_task_match(struct perf_event *event)
4801 {
4802 	return event->attr.comm  || event->attr.mmap ||
4803 	       event->attr.mmap2 || event->attr.mmap_data ||
4804 	       event->attr.task;
4805 }
4806 
4807 static void perf_event_task_output(struct perf_event *event,
4808 				   void *data)
4809 {
4810 	struct perf_task_event *task_event = data;
4811 	struct perf_output_handle handle;
4812 	struct perf_sample_data	sample;
4813 	struct task_struct *task = task_event->task;
4814 	int ret, size = task_event->event_id.header.size;
4815 
4816 	if (!perf_event_task_match(event))
4817 		return;
4818 
4819 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4820 
4821 	ret = perf_output_begin(&handle, event,
4822 				task_event->event_id.header.size);
4823 	if (ret)
4824 		goto out;
4825 
4826 	task_event->event_id.pid = perf_event_pid(event, task);
4827 	task_event->event_id.ppid = perf_event_pid(event, current);
4828 
4829 	task_event->event_id.tid = perf_event_tid(event, task);
4830 	task_event->event_id.ptid = perf_event_tid(event, current);
4831 
4832 	perf_output_put(&handle, task_event->event_id);
4833 
4834 	perf_event__output_id_sample(event, &handle, &sample);
4835 
4836 	perf_output_end(&handle);
4837 out:
4838 	task_event->event_id.header.size = size;
4839 }
4840 
4841 static void perf_event_task(struct task_struct *task,
4842 			      struct perf_event_context *task_ctx,
4843 			      int new)
4844 {
4845 	struct perf_task_event task_event;
4846 
4847 	if (!atomic_read(&nr_comm_events) &&
4848 	    !atomic_read(&nr_mmap_events) &&
4849 	    !atomic_read(&nr_task_events))
4850 		return;
4851 
4852 	task_event = (struct perf_task_event){
4853 		.task	  = task,
4854 		.task_ctx = task_ctx,
4855 		.event_id    = {
4856 			.header = {
4857 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4858 				.misc = 0,
4859 				.size = sizeof(task_event.event_id),
4860 			},
4861 			/* .pid  */
4862 			/* .ppid */
4863 			/* .tid  */
4864 			/* .ptid */
4865 			.time = perf_clock(),
4866 		},
4867 	};
4868 
4869 	perf_event_aux(perf_event_task_output,
4870 		       &task_event,
4871 		       task_ctx);
4872 }
4873 
4874 void perf_event_fork(struct task_struct *task)
4875 {
4876 	perf_event_task(task, NULL, 1);
4877 }
4878 
4879 /*
4880  * comm tracking
4881  */
4882 
4883 struct perf_comm_event {
4884 	struct task_struct	*task;
4885 	char			*comm;
4886 	int			comm_size;
4887 
4888 	struct {
4889 		struct perf_event_header	header;
4890 
4891 		u32				pid;
4892 		u32				tid;
4893 	} event_id;
4894 };
4895 
4896 static int perf_event_comm_match(struct perf_event *event)
4897 {
4898 	return event->attr.comm;
4899 }
4900 
4901 static void perf_event_comm_output(struct perf_event *event,
4902 				   void *data)
4903 {
4904 	struct perf_comm_event *comm_event = data;
4905 	struct perf_output_handle handle;
4906 	struct perf_sample_data sample;
4907 	int size = comm_event->event_id.header.size;
4908 	int ret;
4909 
4910 	if (!perf_event_comm_match(event))
4911 		return;
4912 
4913 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4914 	ret = perf_output_begin(&handle, event,
4915 				comm_event->event_id.header.size);
4916 
4917 	if (ret)
4918 		goto out;
4919 
4920 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4921 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4922 
4923 	perf_output_put(&handle, comm_event->event_id);
4924 	__output_copy(&handle, comm_event->comm,
4925 				   comm_event->comm_size);
4926 
4927 	perf_event__output_id_sample(event, &handle, &sample);
4928 
4929 	perf_output_end(&handle);
4930 out:
4931 	comm_event->event_id.header.size = size;
4932 }
4933 
4934 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4935 {
4936 	char comm[TASK_COMM_LEN];
4937 	unsigned int size;
4938 
4939 	memset(comm, 0, sizeof(comm));
4940 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4941 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4942 
4943 	comm_event->comm = comm;
4944 	comm_event->comm_size = size;
4945 
4946 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4947 
4948 	perf_event_aux(perf_event_comm_output,
4949 		       comm_event,
4950 		       NULL);
4951 }
4952 
4953 void perf_event_comm(struct task_struct *task)
4954 {
4955 	struct perf_comm_event comm_event;
4956 	struct perf_event_context *ctx;
4957 	int ctxn;
4958 
4959 	rcu_read_lock();
4960 	for_each_task_context_nr(ctxn) {
4961 		ctx = task->perf_event_ctxp[ctxn];
4962 		if (!ctx)
4963 			continue;
4964 
4965 		perf_event_enable_on_exec(ctx);
4966 	}
4967 	rcu_read_unlock();
4968 
4969 	if (!atomic_read(&nr_comm_events))
4970 		return;
4971 
4972 	comm_event = (struct perf_comm_event){
4973 		.task	= task,
4974 		/* .comm      */
4975 		/* .comm_size */
4976 		.event_id  = {
4977 			.header = {
4978 				.type = PERF_RECORD_COMM,
4979 				.misc = 0,
4980 				/* .size */
4981 			},
4982 			/* .pid */
4983 			/* .tid */
4984 		},
4985 	};
4986 
4987 	perf_event_comm_event(&comm_event);
4988 }
4989 
4990 /*
4991  * mmap tracking
4992  */
4993 
4994 struct perf_mmap_event {
4995 	struct vm_area_struct	*vma;
4996 
4997 	const char		*file_name;
4998 	int			file_size;
4999 	int			maj, min;
5000 	u64			ino;
5001 	u64			ino_generation;
5002 
5003 	struct {
5004 		struct perf_event_header	header;
5005 
5006 		u32				pid;
5007 		u32				tid;
5008 		u64				start;
5009 		u64				len;
5010 		u64				pgoff;
5011 	} event_id;
5012 };
5013 
5014 static int perf_event_mmap_match(struct perf_event *event,
5015 				 void *data)
5016 {
5017 	struct perf_mmap_event *mmap_event = data;
5018 	struct vm_area_struct *vma = mmap_event->vma;
5019 	int executable = vma->vm_flags & VM_EXEC;
5020 
5021 	return (!executable && event->attr.mmap_data) ||
5022 	       (executable && (event->attr.mmap || event->attr.mmap2));
5023 }
5024 
5025 static void perf_event_mmap_output(struct perf_event *event,
5026 				   void *data)
5027 {
5028 	struct perf_mmap_event *mmap_event = data;
5029 	struct perf_output_handle handle;
5030 	struct perf_sample_data sample;
5031 	int size = mmap_event->event_id.header.size;
5032 	int ret;
5033 
5034 	if (!perf_event_mmap_match(event, data))
5035 		return;
5036 
5037 	if (event->attr.mmap2) {
5038 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5039 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5040 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5041 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5042 	}
5043 
5044 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5045 	ret = perf_output_begin(&handle, event,
5046 				mmap_event->event_id.header.size);
5047 	if (ret)
5048 		goto out;
5049 
5050 	mmap_event->event_id.pid = perf_event_pid(event, current);
5051 	mmap_event->event_id.tid = perf_event_tid(event, current);
5052 
5053 	perf_output_put(&handle, mmap_event->event_id);
5054 
5055 	if (event->attr.mmap2) {
5056 		perf_output_put(&handle, mmap_event->maj);
5057 		perf_output_put(&handle, mmap_event->min);
5058 		perf_output_put(&handle, mmap_event->ino);
5059 		perf_output_put(&handle, mmap_event->ino_generation);
5060 	}
5061 
5062 	__output_copy(&handle, mmap_event->file_name,
5063 				   mmap_event->file_size);
5064 
5065 	perf_event__output_id_sample(event, &handle, &sample);
5066 
5067 	perf_output_end(&handle);
5068 out:
5069 	mmap_event->event_id.header.size = size;
5070 }
5071 
5072 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5073 {
5074 	struct vm_area_struct *vma = mmap_event->vma;
5075 	struct file *file = vma->vm_file;
5076 	int maj = 0, min = 0;
5077 	u64 ino = 0, gen = 0;
5078 	unsigned int size;
5079 	char tmp[16];
5080 	char *buf = NULL;
5081 	const char *name;
5082 
5083 	memset(tmp, 0, sizeof(tmp));
5084 
5085 	if (file) {
5086 		struct inode *inode;
5087 		dev_t dev;
5088 		/*
5089 		 * d_path works from the end of the rb backwards, so we
5090 		 * need to add enough zero bytes after the string to handle
5091 		 * the 64bit alignment we do later.
5092 		 */
5093 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
5094 		if (!buf) {
5095 			name = strncpy(tmp, "//enomem", sizeof(tmp));
5096 			goto got_name;
5097 		}
5098 		name = d_path(&file->f_path, buf, PATH_MAX);
5099 		if (IS_ERR(name)) {
5100 			name = strncpy(tmp, "//toolong", sizeof(tmp));
5101 			goto got_name;
5102 		}
5103 		inode = file_inode(vma->vm_file);
5104 		dev = inode->i_sb->s_dev;
5105 		ino = inode->i_ino;
5106 		gen = inode->i_generation;
5107 		maj = MAJOR(dev);
5108 		min = MINOR(dev);
5109 
5110 	} else {
5111 		if (arch_vma_name(mmap_event->vma)) {
5112 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
5113 				       sizeof(tmp) - 1);
5114 			tmp[sizeof(tmp) - 1] = '\0';
5115 			goto got_name;
5116 		}
5117 
5118 		if (!vma->vm_mm) {
5119 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
5120 			goto got_name;
5121 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
5122 				vma->vm_end >= vma->vm_mm->brk) {
5123 			name = strncpy(tmp, "[heap]", sizeof(tmp));
5124 			goto got_name;
5125 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
5126 				vma->vm_end >= vma->vm_mm->start_stack) {
5127 			name = strncpy(tmp, "[stack]", sizeof(tmp));
5128 			goto got_name;
5129 		}
5130 
5131 		name = strncpy(tmp, "//anon", sizeof(tmp));
5132 		goto got_name;
5133 	}
5134 
5135 got_name:
5136 	size = ALIGN(strlen(name)+1, sizeof(u64));
5137 
5138 	mmap_event->file_name = name;
5139 	mmap_event->file_size = size;
5140 	mmap_event->maj = maj;
5141 	mmap_event->min = min;
5142 	mmap_event->ino = ino;
5143 	mmap_event->ino_generation = gen;
5144 
5145 	if (!(vma->vm_flags & VM_EXEC))
5146 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5147 
5148 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5149 
5150 	perf_event_aux(perf_event_mmap_output,
5151 		       mmap_event,
5152 		       NULL);
5153 
5154 	kfree(buf);
5155 }
5156 
5157 void perf_event_mmap(struct vm_area_struct *vma)
5158 {
5159 	struct perf_mmap_event mmap_event;
5160 
5161 	if (!atomic_read(&nr_mmap_events))
5162 		return;
5163 
5164 	mmap_event = (struct perf_mmap_event){
5165 		.vma	= vma,
5166 		/* .file_name */
5167 		/* .file_size */
5168 		.event_id  = {
5169 			.header = {
5170 				.type = PERF_RECORD_MMAP,
5171 				.misc = PERF_RECORD_MISC_USER,
5172 				/* .size */
5173 			},
5174 			/* .pid */
5175 			/* .tid */
5176 			.start  = vma->vm_start,
5177 			.len    = vma->vm_end - vma->vm_start,
5178 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5179 		},
5180 		/* .maj (attr_mmap2 only) */
5181 		/* .min (attr_mmap2 only) */
5182 		/* .ino (attr_mmap2 only) */
5183 		/* .ino_generation (attr_mmap2 only) */
5184 	};
5185 
5186 	perf_event_mmap_event(&mmap_event);
5187 }
5188 
5189 /*
5190  * IRQ throttle logging
5191  */
5192 
5193 static void perf_log_throttle(struct perf_event *event, int enable)
5194 {
5195 	struct perf_output_handle handle;
5196 	struct perf_sample_data sample;
5197 	int ret;
5198 
5199 	struct {
5200 		struct perf_event_header	header;
5201 		u64				time;
5202 		u64				id;
5203 		u64				stream_id;
5204 	} throttle_event = {
5205 		.header = {
5206 			.type = PERF_RECORD_THROTTLE,
5207 			.misc = 0,
5208 			.size = sizeof(throttle_event),
5209 		},
5210 		.time		= perf_clock(),
5211 		.id		= primary_event_id(event),
5212 		.stream_id	= event->id,
5213 	};
5214 
5215 	if (enable)
5216 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5217 
5218 	perf_event_header__init_id(&throttle_event.header, &sample, event);
5219 
5220 	ret = perf_output_begin(&handle, event,
5221 				throttle_event.header.size);
5222 	if (ret)
5223 		return;
5224 
5225 	perf_output_put(&handle, throttle_event);
5226 	perf_event__output_id_sample(event, &handle, &sample);
5227 	perf_output_end(&handle);
5228 }
5229 
5230 /*
5231  * Generic event overflow handling, sampling.
5232  */
5233 
5234 static int __perf_event_overflow(struct perf_event *event,
5235 				   int throttle, struct perf_sample_data *data,
5236 				   struct pt_regs *regs)
5237 {
5238 	int events = atomic_read(&event->event_limit);
5239 	struct hw_perf_event *hwc = &event->hw;
5240 	u64 seq;
5241 	int ret = 0;
5242 
5243 	/*
5244 	 * Non-sampling counters might still use the PMI to fold short
5245 	 * hardware counters, ignore those.
5246 	 */
5247 	if (unlikely(!is_sampling_event(event)))
5248 		return 0;
5249 
5250 	seq = __this_cpu_read(perf_throttled_seq);
5251 	if (seq != hwc->interrupts_seq) {
5252 		hwc->interrupts_seq = seq;
5253 		hwc->interrupts = 1;
5254 	} else {
5255 		hwc->interrupts++;
5256 		if (unlikely(throttle
5257 			     && hwc->interrupts >= max_samples_per_tick)) {
5258 			__this_cpu_inc(perf_throttled_count);
5259 			hwc->interrupts = MAX_INTERRUPTS;
5260 			perf_log_throttle(event, 0);
5261 			tick_nohz_full_kick();
5262 			ret = 1;
5263 		}
5264 	}
5265 
5266 	if (event->attr.freq) {
5267 		u64 now = perf_clock();
5268 		s64 delta = now - hwc->freq_time_stamp;
5269 
5270 		hwc->freq_time_stamp = now;
5271 
5272 		if (delta > 0 && delta < 2*TICK_NSEC)
5273 			perf_adjust_period(event, delta, hwc->last_period, true);
5274 	}
5275 
5276 	/*
5277 	 * XXX event_limit might not quite work as expected on inherited
5278 	 * events
5279 	 */
5280 
5281 	event->pending_kill = POLL_IN;
5282 	if (events && atomic_dec_and_test(&event->event_limit)) {
5283 		ret = 1;
5284 		event->pending_kill = POLL_HUP;
5285 		event->pending_disable = 1;
5286 		irq_work_queue(&event->pending);
5287 	}
5288 
5289 	if (event->overflow_handler)
5290 		event->overflow_handler(event, data, regs);
5291 	else
5292 		perf_event_output(event, data, regs);
5293 
5294 	if (event->fasync && event->pending_kill) {
5295 		event->pending_wakeup = 1;
5296 		irq_work_queue(&event->pending);
5297 	}
5298 
5299 	return ret;
5300 }
5301 
5302 int perf_event_overflow(struct perf_event *event,
5303 			  struct perf_sample_data *data,
5304 			  struct pt_regs *regs)
5305 {
5306 	return __perf_event_overflow(event, 1, data, regs);
5307 }
5308 
5309 /*
5310  * Generic software event infrastructure
5311  */
5312 
5313 struct swevent_htable {
5314 	struct swevent_hlist		*swevent_hlist;
5315 	struct mutex			hlist_mutex;
5316 	int				hlist_refcount;
5317 
5318 	/* Recursion avoidance in each contexts */
5319 	int				recursion[PERF_NR_CONTEXTS];
5320 };
5321 
5322 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5323 
5324 /*
5325  * We directly increment event->count and keep a second value in
5326  * event->hw.period_left to count intervals. This period event
5327  * is kept in the range [-sample_period, 0] so that we can use the
5328  * sign as trigger.
5329  */
5330 
5331 u64 perf_swevent_set_period(struct perf_event *event)
5332 {
5333 	struct hw_perf_event *hwc = &event->hw;
5334 	u64 period = hwc->last_period;
5335 	u64 nr, offset;
5336 	s64 old, val;
5337 
5338 	hwc->last_period = hwc->sample_period;
5339 
5340 again:
5341 	old = val = local64_read(&hwc->period_left);
5342 	if (val < 0)
5343 		return 0;
5344 
5345 	nr = div64_u64(period + val, period);
5346 	offset = nr * period;
5347 	val -= offset;
5348 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5349 		goto again;
5350 
5351 	return nr;
5352 }
5353 
5354 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5355 				    struct perf_sample_data *data,
5356 				    struct pt_regs *regs)
5357 {
5358 	struct hw_perf_event *hwc = &event->hw;
5359 	int throttle = 0;
5360 
5361 	if (!overflow)
5362 		overflow = perf_swevent_set_period(event);
5363 
5364 	if (hwc->interrupts == MAX_INTERRUPTS)
5365 		return;
5366 
5367 	for (; overflow; overflow--) {
5368 		if (__perf_event_overflow(event, throttle,
5369 					    data, regs)) {
5370 			/*
5371 			 * We inhibit the overflow from happening when
5372 			 * hwc->interrupts == MAX_INTERRUPTS.
5373 			 */
5374 			break;
5375 		}
5376 		throttle = 1;
5377 	}
5378 }
5379 
5380 static void perf_swevent_event(struct perf_event *event, u64 nr,
5381 			       struct perf_sample_data *data,
5382 			       struct pt_regs *regs)
5383 {
5384 	struct hw_perf_event *hwc = &event->hw;
5385 
5386 	local64_add(nr, &event->count);
5387 
5388 	if (!regs)
5389 		return;
5390 
5391 	if (!is_sampling_event(event))
5392 		return;
5393 
5394 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5395 		data->period = nr;
5396 		return perf_swevent_overflow(event, 1, data, regs);
5397 	} else
5398 		data->period = event->hw.last_period;
5399 
5400 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5401 		return perf_swevent_overflow(event, 1, data, regs);
5402 
5403 	if (local64_add_negative(nr, &hwc->period_left))
5404 		return;
5405 
5406 	perf_swevent_overflow(event, 0, data, regs);
5407 }
5408 
5409 static int perf_exclude_event(struct perf_event *event,
5410 			      struct pt_regs *regs)
5411 {
5412 	if (event->hw.state & PERF_HES_STOPPED)
5413 		return 1;
5414 
5415 	if (regs) {
5416 		if (event->attr.exclude_user && user_mode(regs))
5417 			return 1;
5418 
5419 		if (event->attr.exclude_kernel && !user_mode(regs))
5420 			return 1;
5421 	}
5422 
5423 	return 0;
5424 }
5425 
5426 static int perf_swevent_match(struct perf_event *event,
5427 				enum perf_type_id type,
5428 				u32 event_id,
5429 				struct perf_sample_data *data,
5430 				struct pt_regs *regs)
5431 {
5432 	if (event->attr.type != type)
5433 		return 0;
5434 
5435 	if (event->attr.config != event_id)
5436 		return 0;
5437 
5438 	if (perf_exclude_event(event, regs))
5439 		return 0;
5440 
5441 	return 1;
5442 }
5443 
5444 static inline u64 swevent_hash(u64 type, u32 event_id)
5445 {
5446 	u64 val = event_id | (type << 32);
5447 
5448 	return hash_64(val, SWEVENT_HLIST_BITS);
5449 }
5450 
5451 static inline struct hlist_head *
5452 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5453 {
5454 	u64 hash = swevent_hash(type, event_id);
5455 
5456 	return &hlist->heads[hash];
5457 }
5458 
5459 /* For the read side: events when they trigger */
5460 static inline struct hlist_head *
5461 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5462 {
5463 	struct swevent_hlist *hlist;
5464 
5465 	hlist = rcu_dereference(swhash->swevent_hlist);
5466 	if (!hlist)
5467 		return NULL;
5468 
5469 	return __find_swevent_head(hlist, type, event_id);
5470 }
5471 
5472 /* For the event head insertion and removal in the hlist */
5473 static inline struct hlist_head *
5474 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5475 {
5476 	struct swevent_hlist *hlist;
5477 	u32 event_id = event->attr.config;
5478 	u64 type = event->attr.type;
5479 
5480 	/*
5481 	 * Event scheduling is always serialized against hlist allocation
5482 	 * and release. Which makes the protected version suitable here.
5483 	 * The context lock guarantees that.
5484 	 */
5485 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5486 					  lockdep_is_held(&event->ctx->lock));
5487 	if (!hlist)
5488 		return NULL;
5489 
5490 	return __find_swevent_head(hlist, type, event_id);
5491 }
5492 
5493 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5494 				    u64 nr,
5495 				    struct perf_sample_data *data,
5496 				    struct pt_regs *regs)
5497 {
5498 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5499 	struct perf_event *event;
5500 	struct hlist_head *head;
5501 
5502 	rcu_read_lock();
5503 	head = find_swevent_head_rcu(swhash, type, event_id);
5504 	if (!head)
5505 		goto end;
5506 
5507 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5508 		if (perf_swevent_match(event, type, event_id, data, regs))
5509 			perf_swevent_event(event, nr, data, regs);
5510 	}
5511 end:
5512 	rcu_read_unlock();
5513 }
5514 
5515 int perf_swevent_get_recursion_context(void)
5516 {
5517 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5518 
5519 	return get_recursion_context(swhash->recursion);
5520 }
5521 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5522 
5523 inline void perf_swevent_put_recursion_context(int rctx)
5524 {
5525 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5526 
5527 	put_recursion_context(swhash->recursion, rctx);
5528 }
5529 
5530 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5531 {
5532 	struct perf_sample_data data;
5533 	int rctx;
5534 
5535 	preempt_disable_notrace();
5536 	rctx = perf_swevent_get_recursion_context();
5537 	if (rctx < 0)
5538 		return;
5539 
5540 	perf_sample_data_init(&data, addr, 0);
5541 
5542 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5543 
5544 	perf_swevent_put_recursion_context(rctx);
5545 	preempt_enable_notrace();
5546 }
5547 
5548 static void perf_swevent_read(struct perf_event *event)
5549 {
5550 }
5551 
5552 static int perf_swevent_add(struct perf_event *event, int flags)
5553 {
5554 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5555 	struct hw_perf_event *hwc = &event->hw;
5556 	struct hlist_head *head;
5557 
5558 	if (is_sampling_event(event)) {
5559 		hwc->last_period = hwc->sample_period;
5560 		perf_swevent_set_period(event);
5561 	}
5562 
5563 	hwc->state = !(flags & PERF_EF_START);
5564 
5565 	head = find_swevent_head(swhash, event);
5566 	if (WARN_ON_ONCE(!head))
5567 		return -EINVAL;
5568 
5569 	hlist_add_head_rcu(&event->hlist_entry, head);
5570 
5571 	return 0;
5572 }
5573 
5574 static void perf_swevent_del(struct perf_event *event, int flags)
5575 {
5576 	hlist_del_rcu(&event->hlist_entry);
5577 }
5578 
5579 static void perf_swevent_start(struct perf_event *event, int flags)
5580 {
5581 	event->hw.state = 0;
5582 }
5583 
5584 static void perf_swevent_stop(struct perf_event *event, int flags)
5585 {
5586 	event->hw.state = PERF_HES_STOPPED;
5587 }
5588 
5589 /* Deref the hlist from the update side */
5590 static inline struct swevent_hlist *
5591 swevent_hlist_deref(struct swevent_htable *swhash)
5592 {
5593 	return rcu_dereference_protected(swhash->swevent_hlist,
5594 					 lockdep_is_held(&swhash->hlist_mutex));
5595 }
5596 
5597 static void swevent_hlist_release(struct swevent_htable *swhash)
5598 {
5599 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5600 
5601 	if (!hlist)
5602 		return;
5603 
5604 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5605 	kfree_rcu(hlist, rcu_head);
5606 }
5607 
5608 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5609 {
5610 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5611 
5612 	mutex_lock(&swhash->hlist_mutex);
5613 
5614 	if (!--swhash->hlist_refcount)
5615 		swevent_hlist_release(swhash);
5616 
5617 	mutex_unlock(&swhash->hlist_mutex);
5618 }
5619 
5620 static void swevent_hlist_put(struct perf_event *event)
5621 {
5622 	int cpu;
5623 
5624 	if (event->cpu != -1) {
5625 		swevent_hlist_put_cpu(event, event->cpu);
5626 		return;
5627 	}
5628 
5629 	for_each_possible_cpu(cpu)
5630 		swevent_hlist_put_cpu(event, cpu);
5631 }
5632 
5633 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5634 {
5635 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5636 	int err = 0;
5637 
5638 	mutex_lock(&swhash->hlist_mutex);
5639 
5640 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5641 		struct swevent_hlist *hlist;
5642 
5643 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5644 		if (!hlist) {
5645 			err = -ENOMEM;
5646 			goto exit;
5647 		}
5648 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5649 	}
5650 	swhash->hlist_refcount++;
5651 exit:
5652 	mutex_unlock(&swhash->hlist_mutex);
5653 
5654 	return err;
5655 }
5656 
5657 static int swevent_hlist_get(struct perf_event *event)
5658 {
5659 	int err;
5660 	int cpu, failed_cpu;
5661 
5662 	if (event->cpu != -1)
5663 		return swevent_hlist_get_cpu(event, event->cpu);
5664 
5665 	get_online_cpus();
5666 	for_each_possible_cpu(cpu) {
5667 		err = swevent_hlist_get_cpu(event, cpu);
5668 		if (err) {
5669 			failed_cpu = cpu;
5670 			goto fail;
5671 		}
5672 	}
5673 	put_online_cpus();
5674 
5675 	return 0;
5676 fail:
5677 	for_each_possible_cpu(cpu) {
5678 		if (cpu == failed_cpu)
5679 			break;
5680 		swevent_hlist_put_cpu(event, cpu);
5681 	}
5682 
5683 	put_online_cpus();
5684 	return err;
5685 }
5686 
5687 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5688 
5689 static void sw_perf_event_destroy(struct perf_event *event)
5690 {
5691 	u64 event_id = event->attr.config;
5692 
5693 	WARN_ON(event->parent);
5694 
5695 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5696 	swevent_hlist_put(event);
5697 }
5698 
5699 static int perf_swevent_init(struct perf_event *event)
5700 {
5701 	u64 event_id = event->attr.config;
5702 
5703 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5704 		return -ENOENT;
5705 
5706 	/*
5707 	 * no branch sampling for software events
5708 	 */
5709 	if (has_branch_stack(event))
5710 		return -EOPNOTSUPP;
5711 
5712 	switch (event_id) {
5713 	case PERF_COUNT_SW_CPU_CLOCK:
5714 	case PERF_COUNT_SW_TASK_CLOCK:
5715 		return -ENOENT;
5716 
5717 	default:
5718 		break;
5719 	}
5720 
5721 	if (event_id >= PERF_COUNT_SW_MAX)
5722 		return -ENOENT;
5723 
5724 	if (!event->parent) {
5725 		int err;
5726 
5727 		err = swevent_hlist_get(event);
5728 		if (err)
5729 			return err;
5730 
5731 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5732 		event->destroy = sw_perf_event_destroy;
5733 	}
5734 
5735 	return 0;
5736 }
5737 
5738 static int perf_swevent_event_idx(struct perf_event *event)
5739 {
5740 	return 0;
5741 }
5742 
5743 static struct pmu perf_swevent = {
5744 	.task_ctx_nr	= perf_sw_context,
5745 
5746 	.event_init	= perf_swevent_init,
5747 	.add		= perf_swevent_add,
5748 	.del		= perf_swevent_del,
5749 	.start		= perf_swevent_start,
5750 	.stop		= perf_swevent_stop,
5751 	.read		= perf_swevent_read,
5752 
5753 	.event_idx	= perf_swevent_event_idx,
5754 };
5755 
5756 #ifdef CONFIG_EVENT_TRACING
5757 
5758 static int perf_tp_filter_match(struct perf_event *event,
5759 				struct perf_sample_data *data)
5760 {
5761 	void *record = data->raw->data;
5762 
5763 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5764 		return 1;
5765 	return 0;
5766 }
5767 
5768 static int perf_tp_event_match(struct perf_event *event,
5769 				struct perf_sample_data *data,
5770 				struct pt_regs *regs)
5771 {
5772 	if (event->hw.state & PERF_HES_STOPPED)
5773 		return 0;
5774 	/*
5775 	 * All tracepoints are from kernel-space.
5776 	 */
5777 	if (event->attr.exclude_kernel)
5778 		return 0;
5779 
5780 	if (!perf_tp_filter_match(event, data))
5781 		return 0;
5782 
5783 	return 1;
5784 }
5785 
5786 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5787 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5788 		   struct task_struct *task)
5789 {
5790 	struct perf_sample_data data;
5791 	struct perf_event *event;
5792 
5793 	struct perf_raw_record raw = {
5794 		.size = entry_size,
5795 		.data = record,
5796 	};
5797 
5798 	perf_sample_data_init(&data, addr, 0);
5799 	data.raw = &raw;
5800 
5801 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5802 		if (perf_tp_event_match(event, &data, regs))
5803 			perf_swevent_event(event, count, &data, regs);
5804 	}
5805 
5806 	/*
5807 	 * If we got specified a target task, also iterate its context and
5808 	 * deliver this event there too.
5809 	 */
5810 	if (task && task != current) {
5811 		struct perf_event_context *ctx;
5812 		struct trace_entry *entry = record;
5813 
5814 		rcu_read_lock();
5815 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5816 		if (!ctx)
5817 			goto unlock;
5818 
5819 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5820 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
5821 				continue;
5822 			if (event->attr.config != entry->type)
5823 				continue;
5824 			if (perf_tp_event_match(event, &data, regs))
5825 				perf_swevent_event(event, count, &data, regs);
5826 		}
5827 unlock:
5828 		rcu_read_unlock();
5829 	}
5830 
5831 	perf_swevent_put_recursion_context(rctx);
5832 }
5833 EXPORT_SYMBOL_GPL(perf_tp_event);
5834 
5835 static void tp_perf_event_destroy(struct perf_event *event)
5836 {
5837 	perf_trace_destroy(event);
5838 }
5839 
5840 static int perf_tp_event_init(struct perf_event *event)
5841 {
5842 	int err;
5843 
5844 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5845 		return -ENOENT;
5846 
5847 	/*
5848 	 * no branch sampling for tracepoint events
5849 	 */
5850 	if (has_branch_stack(event))
5851 		return -EOPNOTSUPP;
5852 
5853 	err = perf_trace_init(event);
5854 	if (err)
5855 		return err;
5856 
5857 	event->destroy = tp_perf_event_destroy;
5858 
5859 	return 0;
5860 }
5861 
5862 static struct pmu perf_tracepoint = {
5863 	.task_ctx_nr	= perf_sw_context,
5864 
5865 	.event_init	= perf_tp_event_init,
5866 	.add		= perf_trace_add,
5867 	.del		= perf_trace_del,
5868 	.start		= perf_swevent_start,
5869 	.stop		= perf_swevent_stop,
5870 	.read		= perf_swevent_read,
5871 
5872 	.event_idx	= perf_swevent_event_idx,
5873 };
5874 
5875 static inline void perf_tp_register(void)
5876 {
5877 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5878 }
5879 
5880 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5881 {
5882 	char *filter_str;
5883 	int ret;
5884 
5885 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5886 		return -EINVAL;
5887 
5888 	filter_str = strndup_user(arg, PAGE_SIZE);
5889 	if (IS_ERR(filter_str))
5890 		return PTR_ERR(filter_str);
5891 
5892 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5893 
5894 	kfree(filter_str);
5895 	return ret;
5896 }
5897 
5898 static void perf_event_free_filter(struct perf_event *event)
5899 {
5900 	ftrace_profile_free_filter(event);
5901 }
5902 
5903 #else
5904 
5905 static inline void perf_tp_register(void)
5906 {
5907 }
5908 
5909 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5910 {
5911 	return -ENOENT;
5912 }
5913 
5914 static void perf_event_free_filter(struct perf_event *event)
5915 {
5916 }
5917 
5918 #endif /* CONFIG_EVENT_TRACING */
5919 
5920 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5921 void perf_bp_event(struct perf_event *bp, void *data)
5922 {
5923 	struct perf_sample_data sample;
5924 	struct pt_regs *regs = data;
5925 
5926 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5927 
5928 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5929 		perf_swevent_event(bp, 1, &sample, regs);
5930 }
5931 #endif
5932 
5933 /*
5934  * hrtimer based swevent callback
5935  */
5936 
5937 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5938 {
5939 	enum hrtimer_restart ret = HRTIMER_RESTART;
5940 	struct perf_sample_data data;
5941 	struct pt_regs *regs;
5942 	struct perf_event *event;
5943 	u64 period;
5944 
5945 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5946 
5947 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5948 		return HRTIMER_NORESTART;
5949 
5950 	event->pmu->read(event);
5951 
5952 	perf_sample_data_init(&data, 0, event->hw.last_period);
5953 	regs = get_irq_regs();
5954 
5955 	if (regs && !perf_exclude_event(event, regs)) {
5956 		if (!(event->attr.exclude_idle && is_idle_task(current)))
5957 			if (__perf_event_overflow(event, 1, &data, regs))
5958 				ret = HRTIMER_NORESTART;
5959 	}
5960 
5961 	period = max_t(u64, 10000, event->hw.sample_period);
5962 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5963 
5964 	return ret;
5965 }
5966 
5967 static void perf_swevent_start_hrtimer(struct perf_event *event)
5968 {
5969 	struct hw_perf_event *hwc = &event->hw;
5970 	s64 period;
5971 
5972 	if (!is_sampling_event(event))
5973 		return;
5974 
5975 	period = local64_read(&hwc->period_left);
5976 	if (period) {
5977 		if (period < 0)
5978 			period = 10000;
5979 
5980 		local64_set(&hwc->period_left, 0);
5981 	} else {
5982 		period = max_t(u64, 10000, hwc->sample_period);
5983 	}
5984 	__hrtimer_start_range_ns(&hwc->hrtimer,
5985 				ns_to_ktime(period), 0,
5986 				HRTIMER_MODE_REL_PINNED, 0);
5987 }
5988 
5989 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5990 {
5991 	struct hw_perf_event *hwc = &event->hw;
5992 
5993 	if (is_sampling_event(event)) {
5994 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5995 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5996 
5997 		hrtimer_cancel(&hwc->hrtimer);
5998 	}
5999 }
6000 
6001 static void perf_swevent_init_hrtimer(struct perf_event *event)
6002 {
6003 	struct hw_perf_event *hwc = &event->hw;
6004 
6005 	if (!is_sampling_event(event))
6006 		return;
6007 
6008 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6009 	hwc->hrtimer.function = perf_swevent_hrtimer;
6010 
6011 	/*
6012 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6013 	 * mapping and avoid the whole period adjust feedback stuff.
6014 	 */
6015 	if (event->attr.freq) {
6016 		long freq = event->attr.sample_freq;
6017 
6018 		event->attr.sample_period = NSEC_PER_SEC / freq;
6019 		hwc->sample_period = event->attr.sample_period;
6020 		local64_set(&hwc->period_left, hwc->sample_period);
6021 		hwc->last_period = hwc->sample_period;
6022 		event->attr.freq = 0;
6023 	}
6024 }
6025 
6026 /*
6027  * Software event: cpu wall time clock
6028  */
6029 
6030 static void cpu_clock_event_update(struct perf_event *event)
6031 {
6032 	s64 prev;
6033 	u64 now;
6034 
6035 	now = local_clock();
6036 	prev = local64_xchg(&event->hw.prev_count, now);
6037 	local64_add(now - prev, &event->count);
6038 }
6039 
6040 static void cpu_clock_event_start(struct perf_event *event, int flags)
6041 {
6042 	local64_set(&event->hw.prev_count, local_clock());
6043 	perf_swevent_start_hrtimer(event);
6044 }
6045 
6046 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6047 {
6048 	perf_swevent_cancel_hrtimer(event);
6049 	cpu_clock_event_update(event);
6050 }
6051 
6052 static int cpu_clock_event_add(struct perf_event *event, int flags)
6053 {
6054 	if (flags & PERF_EF_START)
6055 		cpu_clock_event_start(event, flags);
6056 
6057 	return 0;
6058 }
6059 
6060 static void cpu_clock_event_del(struct perf_event *event, int flags)
6061 {
6062 	cpu_clock_event_stop(event, flags);
6063 }
6064 
6065 static void cpu_clock_event_read(struct perf_event *event)
6066 {
6067 	cpu_clock_event_update(event);
6068 }
6069 
6070 static int cpu_clock_event_init(struct perf_event *event)
6071 {
6072 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6073 		return -ENOENT;
6074 
6075 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6076 		return -ENOENT;
6077 
6078 	/*
6079 	 * no branch sampling for software events
6080 	 */
6081 	if (has_branch_stack(event))
6082 		return -EOPNOTSUPP;
6083 
6084 	perf_swevent_init_hrtimer(event);
6085 
6086 	return 0;
6087 }
6088 
6089 static struct pmu perf_cpu_clock = {
6090 	.task_ctx_nr	= perf_sw_context,
6091 
6092 	.event_init	= cpu_clock_event_init,
6093 	.add		= cpu_clock_event_add,
6094 	.del		= cpu_clock_event_del,
6095 	.start		= cpu_clock_event_start,
6096 	.stop		= cpu_clock_event_stop,
6097 	.read		= cpu_clock_event_read,
6098 
6099 	.event_idx	= perf_swevent_event_idx,
6100 };
6101 
6102 /*
6103  * Software event: task time clock
6104  */
6105 
6106 static void task_clock_event_update(struct perf_event *event, u64 now)
6107 {
6108 	u64 prev;
6109 	s64 delta;
6110 
6111 	prev = local64_xchg(&event->hw.prev_count, now);
6112 	delta = now - prev;
6113 	local64_add(delta, &event->count);
6114 }
6115 
6116 static void task_clock_event_start(struct perf_event *event, int flags)
6117 {
6118 	local64_set(&event->hw.prev_count, event->ctx->time);
6119 	perf_swevent_start_hrtimer(event);
6120 }
6121 
6122 static void task_clock_event_stop(struct perf_event *event, int flags)
6123 {
6124 	perf_swevent_cancel_hrtimer(event);
6125 	task_clock_event_update(event, event->ctx->time);
6126 }
6127 
6128 static int task_clock_event_add(struct perf_event *event, int flags)
6129 {
6130 	if (flags & PERF_EF_START)
6131 		task_clock_event_start(event, flags);
6132 
6133 	return 0;
6134 }
6135 
6136 static void task_clock_event_del(struct perf_event *event, int flags)
6137 {
6138 	task_clock_event_stop(event, PERF_EF_UPDATE);
6139 }
6140 
6141 static void task_clock_event_read(struct perf_event *event)
6142 {
6143 	u64 now = perf_clock();
6144 	u64 delta = now - event->ctx->timestamp;
6145 	u64 time = event->ctx->time + delta;
6146 
6147 	task_clock_event_update(event, time);
6148 }
6149 
6150 static int task_clock_event_init(struct perf_event *event)
6151 {
6152 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6153 		return -ENOENT;
6154 
6155 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6156 		return -ENOENT;
6157 
6158 	/*
6159 	 * no branch sampling for software events
6160 	 */
6161 	if (has_branch_stack(event))
6162 		return -EOPNOTSUPP;
6163 
6164 	perf_swevent_init_hrtimer(event);
6165 
6166 	return 0;
6167 }
6168 
6169 static struct pmu perf_task_clock = {
6170 	.task_ctx_nr	= perf_sw_context,
6171 
6172 	.event_init	= task_clock_event_init,
6173 	.add		= task_clock_event_add,
6174 	.del		= task_clock_event_del,
6175 	.start		= task_clock_event_start,
6176 	.stop		= task_clock_event_stop,
6177 	.read		= task_clock_event_read,
6178 
6179 	.event_idx	= perf_swevent_event_idx,
6180 };
6181 
6182 static void perf_pmu_nop_void(struct pmu *pmu)
6183 {
6184 }
6185 
6186 static int perf_pmu_nop_int(struct pmu *pmu)
6187 {
6188 	return 0;
6189 }
6190 
6191 static void perf_pmu_start_txn(struct pmu *pmu)
6192 {
6193 	perf_pmu_disable(pmu);
6194 }
6195 
6196 static int perf_pmu_commit_txn(struct pmu *pmu)
6197 {
6198 	perf_pmu_enable(pmu);
6199 	return 0;
6200 }
6201 
6202 static void perf_pmu_cancel_txn(struct pmu *pmu)
6203 {
6204 	perf_pmu_enable(pmu);
6205 }
6206 
6207 static int perf_event_idx_default(struct perf_event *event)
6208 {
6209 	return event->hw.idx + 1;
6210 }
6211 
6212 /*
6213  * Ensures all contexts with the same task_ctx_nr have the same
6214  * pmu_cpu_context too.
6215  */
6216 static void *find_pmu_context(int ctxn)
6217 {
6218 	struct pmu *pmu;
6219 
6220 	if (ctxn < 0)
6221 		return NULL;
6222 
6223 	list_for_each_entry(pmu, &pmus, entry) {
6224 		if (pmu->task_ctx_nr == ctxn)
6225 			return pmu->pmu_cpu_context;
6226 	}
6227 
6228 	return NULL;
6229 }
6230 
6231 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6232 {
6233 	int cpu;
6234 
6235 	for_each_possible_cpu(cpu) {
6236 		struct perf_cpu_context *cpuctx;
6237 
6238 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6239 
6240 		if (cpuctx->unique_pmu == old_pmu)
6241 			cpuctx->unique_pmu = pmu;
6242 	}
6243 }
6244 
6245 static void free_pmu_context(struct pmu *pmu)
6246 {
6247 	struct pmu *i;
6248 
6249 	mutex_lock(&pmus_lock);
6250 	/*
6251 	 * Like a real lame refcount.
6252 	 */
6253 	list_for_each_entry(i, &pmus, entry) {
6254 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6255 			update_pmu_context(i, pmu);
6256 			goto out;
6257 		}
6258 	}
6259 
6260 	free_percpu(pmu->pmu_cpu_context);
6261 out:
6262 	mutex_unlock(&pmus_lock);
6263 }
6264 static struct idr pmu_idr;
6265 
6266 static ssize_t
6267 type_show(struct device *dev, struct device_attribute *attr, char *page)
6268 {
6269 	struct pmu *pmu = dev_get_drvdata(dev);
6270 
6271 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6272 }
6273 
6274 static ssize_t
6275 perf_event_mux_interval_ms_show(struct device *dev,
6276 				struct device_attribute *attr,
6277 				char *page)
6278 {
6279 	struct pmu *pmu = dev_get_drvdata(dev);
6280 
6281 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6282 }
6283 
6284 static ssize_t
6285 perf_event_mux_interval_ms_store(struct device *dev,
6286 				 struct device_attribute *attr,
6287 				 const char *buf, size_t count)
6288 {
6289 	struct pmu *pmu = dev_get_drvdata(dev);
6290 	int timer, cpu, ret;
6291 
6292 	ret = kstrtoint(buf, 0, &timer);
6293 	if (ret)
6294 		return ret;
6295 
6296 	if (timer < 1)
6297 		return -EINVAL;
6298 
6299 	/* same value, noting to do */
6300 	if (timer == pmu->hrtimer_interval_ms)
6301 		return count;
6302 
6303 	pmu->hrtimer_interval_ms = timer;
6304 
6305 	/* update all cpuctx for this PMU */
6306 	for_each_possible_cpu(cpu) {
6307 		struct perf_cpu_context *cpuctx;
6308 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6309 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6310 
6311 		if (hrtimer_active(&cpuctx->hrtimer))
6312 			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6313 	}
6314 
6315 	return count;
6316 }
6317 
6318 static struct device_attribute pmu_dev_attrs[] = {
6319 	__ATTR_RO(type),
6320 	__ATTR_RW(perf_event_mux_interval_ms),
6321 	__ATTR_NULL,
6322 };
6323 
6324 static int pmu_bus_running;
6325 static struct bus_type pmu_bus = {
6326 	.name		= "event_source",
6327 	.dev_attrs	= pmu_dev_attrs,
6328 };
6329 
6330 static void pmu_dev_release(struct device *dev)
6331 {
6332 	kfree(dev);
6333 }
6334 
6335 static int pmu_dev_alloc(struct pmu *pmu)
6336 {
6337 	int ret = -ENOMEM;
6338 
6339 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6340 	if (!pmu->dev)
6341 		goto out;
6342 
6343 	pmu->dev->groups = pmu->attr_groups;
6344 	device_initialize(pmu->dev);
6345 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
6346 	if (ret)
6347 		goto free_dev;
6348 
6349 	dev_set_drvdata(pmu->dev, pmu);
6350 	pmu->dev->bus = &pmu_bus;
6351 	pmu->dev->release = pmu_dev_release;
6352 	ret = device_add(pmu->dev);
6353 	if (ret)
6354 		goto free_dev;
6355 
6356 out:
6357 	return ret;
6358 
6359 free_dev:
6360 	put_device(pmu->dev);
6361 	goto out;
6362 }
6363 
6364 static struct lock_class_key cpuctx_mutex;
6365 static struct lock_class_key cpuctx_lock;
6366 
6367 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6368 {
6369 	int cpu, ret;
6370 
6371 	mutex_lock(&pmus_lock);
6372 	ret = -ENOMEM;
6373 	pmu->pmu_disable_count = alloc_percpu(int);
6374 	if (!pmu->pmu_disable_count)
6375 		goto unlock;
6376 
6377 	pmu->type = -1;
6378 	if (!name)
6379 		goto skip_type;
6380 	pmu->name = name;
6381 
6382 	if (type < 0) {
6383 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6384 		if (type < 0) {
6385 			ret = type;
6386 			goto free_pdc;
6387 		}
6388 	}
6389 	pmu->type = type;
6390 
6391 	if (pmu_bus_running) {
6392 		ret = pmu_dev_alloc(pmu);
6393 		if (ret)
6394 			goto free_idr;
6395 	}
6396 
6397 skip_type:
6398 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6399 	if (pmu->pmu_cpu_context)
6400 		goto got_cpu_context;
6401 
6402 	ret = -ENOMEM;
6403 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6404 	if (!pmu->pmu_cpu_context)
6405 		goto free_dev;
6406 
6407 	for_each_possible_cpu(cpu) {
6408 		struct perf_cpu_context *cpuctx;
6409 
6410 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6411 		__perf_event_init_context(&cpuctx->ctx);
6412 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6413 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6414 		cpuctx->ctx.type = cpu_context;
6415 		cpuctx->ctx.pmu = pmu;
6416 
6417 		__perf_cpu_hrtimer_init(cpuctx, cpu);
6418 
6419 		INIT_LIST_HEAD(&cpuctx->rotation_list);
6420 		cpuctx->unique_pmu = pmu;
6421 	}
6422 
6423 got_cpu_context:
6424 	if (!pmu->start_txn) {
6425 		if (pmu->pmu_enable) {
6426 			/*
6427 			 * If we have pmu_enable/pmu_disable calls, install
6428 			 * transaction stubs that use that to try and batch
6429 			 * hardware accesses.
6430 			 */
6431 			pmu->start_txn  = perf_pmu_start_txn;
6432 			pmu->commit_txn = perf_pmu_commit_txn;
6433 			pmu->cancel_txn = perf_pmu_cancel_txn;
6434 		} else {
6435 			pmu->start_txn  = perf_pmu_nop_void;
6436 			pmu->commit_txn = perf_pmu_nop_int;
6437 			pmu->cancel_txn = perf_pmu_nop_void;
6438 		}
6439 	}
6440 
6441 	if (!pmu->pmu_enable) {
6442 		pmu->pmu_enable  = perf_pmu_nop_void;
6443 		pmu->pmu_disable = perf_pmu_nop_void;
6444 	}
6445 
6446 	if (!pmu->event_idx)
6447 		pmu->event_idx = perf_event_idx_default;
6448 
6449 	list_add_rcu(&pmu->entry, &pmus);
6450 	ret = 0;
6451 unlock:
6452 	mutex_unlock(&pmus_lock);
6453 
6454 	return ret;
6455 
6456 free_dev:
6457 	device_del(pmu->dev);
6458 	put_device(pmu->dev);
6459 
6460 free_idr:
6461 	if (pmu->type >= PERF_TYPE_MAX)
6462 		idr_remove(&pmu_idr, pmu->type);
6463 
6464 free_pdc:
6465 	free_percpu(pmu->pmu_disable_count);
6466 	goto unlock;
6467 }
6468 
6469 void perf_pmu_unregister(struct pmu *pmu)
6470 {
6471 	mutex_lock(&pmus_lock);
6472 	list_del_rcu(&pmu->entry);
6473 	mutex_unlock(&pmus_lock);
6474 
6475 	/*
6476 	 * We dereference the pmu list under both SRCU and regular RCU, so
6477 	 * synchronize against both of those.
6478 	 */
6479 	synchronize_srcu(&pmus_srcu);
6480 	synchronize_rcu();
6481 
6482 	free_percpu(pmu->pmu_disable_count);
6483 	if (pmu->type >= PERF_TYPE_MAX)
6484 		idr_remove(&pmu_idr, pmu->type);
6485 	device_del(pmu->dev);
6486 	put_device(pmu->dev);
6487 	free_pmu_context(pmu);
6488 }
6489 
6490 struct pmu *perf_init_event(struct perf_event *event)
6491 {
6492 	struct pmu *pmu = NULL;
6493 	int idx;
6494 	int ret;
6495 
6496 	idx = srcu_read_lock(&pmus_srcu);
6497 
6498 	rcu_read_lock();
6499 	pmu = idr_find(&pmu_idr, event->attr.type);
6500 	rcu_read_unlock();
6501 	if (pmu) {
6502 		event->pmu = pmu;
6503 		ret = pmu->event_init(event);
6504 		if (ret)
6505 			pmu = ERR_PTR(ret);
6506 		goto unlock;
6507 	}
6508 
6509 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6510 		event->pmu = pmu;
6511 		ret = pmu->event_init(event);
6512 		if (!ret)
6513 			goto unlock;
6514 
6515 		if (ret != -ENOENT) {
6516 			pmu = ERR_PTR(ret);
6517 			goto unlock;
6518 		}
6519 	}
6520 	pmu = ERR_PTR(-ENOENT);
6521 unlock:
6522 	srcu_read_unlock(&pmus_srcu, idx);
6523 
6524 	return pmu;
6525 }
6526 
6527 static void account_event_cpu(struct perf_event *event, int cpu)
6528 {
6529 	if (event->parent)
6530 		return;
6531 
6532 	if (has_branch_stack(event)) {
6533 		if (!(event->attach_state & PERF_ATTACH_TASK))
6534 			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6535 	}
6536 	if (is_cgroup_event(event))
6537 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6538 }
6539 
6540 static void account_event(struct perf_event *event)
6541 {
6542 	if (event->parent)
6543 		return;
6544 
6545 	if (event->attach_state & PERF_ATTACH_TASK)
6546 		static_key_slow_inc(&perf_sched_events.key);
6547 	if (event->attr.mmap || event->attr.mmap_data)
6548 		atomic_inc(&nr_mmap_events);
6549 	if (event->attr.comm)
6550 		atomic_inc(&nr_comm_events);
6551 	if (event->attr.task)
6552 		atomic_inc(&nr_task_events);
6553 	if (event->attr.freq) {
6554 		if (atomic_inc_return(&nr_freq_events) == 1)
6555 			tick_nohz_full_kick_all();
6556 	}
6557 	if (has_branch_stack(event))
6558 		static_key_slow_inc(&perf_sched_events.key);
6559 	if (is_cgroup_event(event))
6560 		static_key_slow_inc(&perf_sched_events.key);
6561 
6562 	account_event_cpu(event, event->cpu);
6563 }
6564 
6565 /*
6566  * Allocate and initialize a event structure
6567  */
6568 static struct perf_event *
6569 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6570 		 struct task_struct *task,
6571 		 struct perf_event *group_leader,
6572 		 struct perf_event *parent_event,
6573 		 perf_overflow_handler_t overflow_handler,
6574 		 void *context)
6575 {
6576 	struct pmu *pmu;
6577 	struct perf_event *event;
6578 	struct hw_perf_event *hwc;
6579 	long err = -EINVAL;
6580 
6581 	if ((unsigned)cpu >= nr_cpu_ids) {
6582 		if (!task || cpu != -1)
6583 			return ERR_PTR(-EINVAL);
6584 	}
6585 
6586 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6587 	if (!event)
6588 		return ERR_PTR(-ENOMEM);
6589 
6590 	/*
6591 	 * Single events are their own group leaders, with an
6592 	 * empty sibling list:
6593 	 */
6594 	if (!group_leader)
6595 		group_leader = event;
6596 
6597 	mutex_init(&event->child_mutex);
6598 	INIT_LIST_HEAD(&event->child_list);
6599 
6600 	INIT_LIST_HEAD(&event->group_entry);
6601 	INIT_LIST_HEAD(&event->event_entry);
6602 	INIT_LIST_HEAD(&event->sibling_list);
6603 	INIT_LIST_HEAD(&event->rb_entry);
6604 
6605 	init_waitqueue_head(&event->waitq);
6606 	init_irq_work(&event->pending, perf_pending_event);
6607 
6608 	mutex_init(&event->mmap_mutex);
6609 
6610 	atomic_long_set(&event->refcount, 1);
6611 	event->cpu		= cpu;
6612 	event->attr		= *attr;
6613 	event->group_leader	= group_leader;
6614 	event->pmu		= NULL;
6615 	event->oncpu		= -1;
6616 
6617 	event->parent		= parent_event;
6618 
6619 	event->ns		= get_pid_ns(task_active_pid_ns(current));
6620 	event->id		= atomic64_inc_return(&perf_event_id);
6621 
6622 	event->state		= PERF_EVENT_STATE_INACTIVE;
6623 
6624 	if (task) {
6625 		event->attach_state = PERF_ATTACH_TASK;
6626 
6627 		if (attr->type == PERF_TYPE_TRACEPOINT)
6628 			event->hw.tp_target = task;
6629 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6630 		/*
6631 		 * hw_breakpoint is a bit difficult here..
6632 		 */
6633 		else if (attr->type == PERF_TYPE_BREAKPOINT)
6634 			event->hw.bp_target = task;
6635 #endif
6636 	}
6637 
6638 	if (!overflow_handler && parent_event) {
6639 		overflow_handler = parent_event->overflow_handler;
6640 		context = parent_event->overflow_handler_context;
6641 	}
6642 
6643 	event->overflow_handler	= overflow_handler;
6644 	event->overflow_handler_context = context;
6645 
6646 	perf_event__state_init(event);
6647 
6648 	pmu = NULL;
6649 
6650 	hwc = &event->hw;
6651 	hwc->sample_period = attr->sample_period;
6652 	if (attr->freq && attr->sample_freq)
6653 		hwc->sample_period = 1;
6654 	hwc->last_period = hwc->sample_period;
6655 
6656 	local64_set(&hwc->period_left, hwc->sample_period);
6657 
6658 	/*
6659 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6660 	 */
6661 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6662 		goto err_ns;
6663 
6664 	pmu = perf_init_event(event);
6665 	if (!pmu)
6666 		goto err_ns;
6667 	else if (IS_ERR(pmu)) {
6668 		err = PTR_ERR(pmu);
6669 		goto err_ns;
6670 	}
6671 
6672 	if (!event->parent) {
6673 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6674 			err = get_callchain_buffers();
6675 			if (err)
6676 				goto err_pmu;
6677 		}
6678 	}
6679 
6680 	return event;
6681 
6682 err_pmu:
6683 	if (event->destroy)
6684 		event->destroy(event);
6685 err_ns:
6686 	if (event->ns)
6687 		put_pid_ns(event->ns);
6688 	kfree(event);
6689 
6690 	return ERR_PTR(err);
6691 }
6692 
6693 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6694 			  struct perf_event_attr *attr)
6695 {
6696 	u32 size;
6697 	int ret;
6698 
6699 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6700 		return -EFAULT;
6701 
6702 	/*
6703 	 * zero the full structure, so that a short copy will be nice.
6704 	 */
6705 	memset(attr, 0, sizeof(*attr));
6706 
6707 	ret = get_user(size, &uattr->size);
6708 	if (ret)
6709 		return ret;
6710 
6711 	if (size > PAGE_SIZE)	/* silly large */
6712 		goto err_size;
6713 
6714 	if (!size)		/* abi compat */
6715 		size = PERF_ATTR_SIZE_VER0;
6716 
6717 	if (size < PERF_ATTR_SIZE_VER0)
6718 		goto err_size;
6719 
6720 	/*
6721 	 * If we're handed a bigger struct than we know of,
6722 	 * ensure all the unknown bits are 0 - i.e. new
6723 	 * user-space does not rely on any kernel feature
6724 	 * extensions we dont know about yet.
6725 	 */
6726 	if (size > sizeof(*attr)) {
6727 		unsigned char __user *addr;
6728 		unsigned char __user *end;
6729 		unsigned char val;
6730 
6731 		addr = (void __user *)uattr + sizeof(*attr);
6732 		end  = (void __user *)uattr + size;
6733 
6734 		for (; addr < end; addr++) {
6735 			ret = get_user(val, addr);
6736 			if (ret)
6737 				return ret;
6738 			if (val)
6739 				goto err_size;
6740 		}
6741 		size = sizeof(*attr);
6742 	}
6743 
6744 	ret = copy_from_user(attr, uattr, size);
6745 	if (ret)
6746 		return -EFAULT;
6747 
6748 	if (attr->__reserved_1)
6749 		return -EINVAL;
6750 
6751 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6752 		return -EINVAL;
6753 
6754 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6755 		return -EINVAL;
6756 
6757 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6758 		u64 mask = attr->branch_sample_type;
6759 
6760 		/* only using defined bits */
6761 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6762 			return -EINVAL;
6763 
6764 		/* at least one branch bit must be set */
6765 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6766 			return -EINVAL;
6767 
6768 		/* propagate priv level, when not set for branch */
6769 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6770 
6771 			/* exclude_kernel checked on syscall entry */
6772 			if (!attr->exclude_kernel)
6773 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6774 
6775 			if (!attr->exclude_user)
6776 				mask |= PERF_SAMPLE_BRANCH_USER;
6777 
6778 			if (!attr->exclude_hv)
6779 				mask |= PERF_SAMPLE_BRANCH_HV;
6780 			/*
6781 			 * adjust user setting (for HW filter setup)
6782 			 */
6783 			attr->branch_sample_type = mask;
6784 		}
6785 		/* privileged levels capture (kernel, hv): check permissions */
6786 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6787 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6788 			return -EACCES;
6789 	}
6790 
6791 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6792 		ret = perf_reg_validate(attr->sample_regs_user);
6793 		if (ret)
6794 			return ret;
6795 	}
6796 
6797 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6798 		if (!arch_perf_have_user_stack_dump())
6799 			return -ENOSYS;
6800 
6801 		/*
6802 		 * We have __u32 type for the size, but so far
6803 		 * we can only use __u16 as maximum due to the
6804 		 * __u16 sample size limit.
6805 		 */
6806 		if (attr->sample_stack_user >= USHRT_MAX)
6807 			ret = -EINVAL;
6808 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6809 			ret = -EINVAL;
6810 	}
6811 
6812 out:
6813 	return ret;
6814 
6815 err_size:
6816 	put_user(sizeof(*attr), &uattr->size);
6817 	ret = -E2BIG;
6818 	goto out;
6819 }
6820 
6821 static int
6822 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6823 {
6824 	struct ring_buffer *rb = NULL, *old_rb = NULL;
6825 	int ret = -EINVAL;
6826 
6827 	if (!output_event)
6828 		goto set;
6829 
6830 	/* don't allow circular references */
6831 	if (event == output_event)
6832 		goto out;
6833 
6834 	/*
6835 	 * Don't allow cross-cpu buffers
6836 	 */
6837 	if (output_event->cpu != event->cpu)
6838 		goto out;
6839 
6840 	/*
6841 	 * If its not a per-cpu rb, it must be the same task.
6842 	 */
6843 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6844 		goto out;
6845 
6846 set:
6847 	mutex_lock(&event->mmap_mutex);
6848 	/* Can't redirect output if we've got an active mmap() */
6849 	if (atomic_read(&event->mmap_count))
6850 		goto unlock;
6851 
6852 	old_rb = event->rb;
6853 
6854 	if (output_event) {
6855 		/* get the rb we want to redirect to */
6856 		rb = ring_buffer_get(output_event);
6857 		if (!rb)
6858 			goto unlock;
6859 	}
6860 
6861 	if (old_rb)
6862 		ring_buffer_detach(event, old_rb);
6863 
6864 	if (rb)
6865 		ring_buffer_attach(event, rb);
6866 
6867 	rcu_assign_pointer(event->rb, rb);
6868 
6869 	if (old_rb) {
6870 		ring_buffer_put(old_rb);
6871 		/*
6872 		 * Since we detached before setting the new rb, so that we
6873 		 * could attach the new rb, we could have missed a wakeup.
6874 		 * Provide it now.
6875 		 */
6876 		wake_up_all(&event->waitq);
6877 	}
6878 
6879 	ret = 0;
6880 unlock:
6881 	mutex_unlock(&event->mmap_mutex);
6882 
6883 out:
6884 	return ret;
6885 }
6886 
6887 /**
6888  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6889  *
6890  * @attr_uptr:	event_id type attributes for monitoring/sampling
6891  * @pid:		target pid
6892  * @cpu:		target cpu
6893  * @group_fd:		group leader event fd
6894  */
6895 SYSCALL_DEFINE5(perf_event_open,
6896 		struct perf_event_attr __user *, attr_uptr,
6897 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6898 {
6899 	struct perf_event *group_leader = NULL, *output_event = NULL;
6900 	struct perf_event *event, *sibling;
6901 	struct perf_event_attr attr;
6902 	struct perf_event_context *ctx;
6903 	struct file *event_file = NULL;
6904 	struct fd group = {NULL, 0};
6905 	struct task_struct *task = NULL;
6906 	struct pmu *pmu;
6907 	int event_fd;
6908 	int move_group = 0;
6909 	int err;
6910 
6911 	/* for future expandability... */
6912 	if (flags & ~PERF_FLAG_ALL)
6913 		return -EINVAL;
6914 
6915 	err = perf_copy_attr(attr_uptr, &attr);
6916 	if (err)
6917 		return err;
6918 
6919 	if (!attr.exclude_kernel) {
6920 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6921 			return -EACCES;
6922 	}
6923 
6924 	if (attr.freq) {
6925 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6926 			return -EINVAL;
6927 	}
6928 
6929 	/*
6930 	 * In cgroup mode, the pid argument is used to pass the fd
6931 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6932 	 * designates the cpu on which to monitor threads from that
6933 	 * cgroup.
6934 	 */
6935 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6936 		return -EINVAL;
6937 
6938 	event_fd = get_unused_fd();
6939 	if (event_fd < 0)
6940 		return event_fd;
6941 
6942 	if (group_fd != -1) {
6943 		err = perf_fget_light(group_fd, &group);
6944 		if (err)
6945 			goto err_fd;
6946 		group_leader = group.file->private_data;
6947 		if (flags & PERF_FLAG_FD_OUTPUT)
6948 			output_event = group_leader;
6949 		if (flags & PERF_FLAG_FD_NO_GROUP)
6950 			group_leader = NULL;
6951 	}
6952 
6953 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6954 		task = find_lively_task_by_vpid(pid);
6955 		if (IS_ERR(task)) {
6956 			err = PTR_ERR(task);
6957 			goto err_group_fd;
6958 		}
6959 	}
6960 
6961 	get_online_cpus();
6962 
6963 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6964 				 NULL, NULL);
6965 	if (IS_ERR(event)) {
6966 		err = PTR_ERR(event);
6967 		goto err_task;
6968 	}
6969 
6970 	if (flags & PERF_FLAG_PID_CGROUP) {
6971 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6972 		if (err) {
6973 			__free_event(event);
6974 			goto err_task;
6975 		}
6976 	}
6977 
6978 	account_event(event);
6979 
6980 	/*
6981 	 * Special case software events and allow them to be part of
6982 	 * any hardware group.
6983 	 */
6984 	pmu = event->pmu;
6985 
6986 	if (group_leader &&
6987 	    (is_software_event(event) != is_software_event(group_leader))) {
6988 		if (is_software_event(event)) {
6989 			/*
6990 			 * If event and group_leader are not both a software
6991 			 * event, and event is, then group leader is not.
6992 			 *
6993 			 * Allow the addition of software events to !software
6994 			 * groups, this is safe because software events never
6995 			 * fail to schedule.
6996 			 */
6997 			pmu = group_leader->pmu;
6998 		} else if (is_software_event(group_leader) &&
6999 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7000 			/*
7001 			 * In case the group is a pure software group, and we
7002 			 * try to add a hardware event, move the whole group to
7003 			 * the hardware context.
7004 			 */
7005 			move_group = 1;
7006 		}
7007 	}
7008 
7009 	/*
7010 	 * Get the target context (task or percpu):
7011 	 */
7012 	ctx = find_get_context(pmu, task, event->cpu);
7013 	if (IS_ERR(ctx)) {
7014 		err = PTR_ERR(ctx);
7015 		goto err_alloc;
7016 	}
7017 
7018 	if (task) {
7019 		put_task_struct(task);
7020 		task = NULL;
7021 	}
7022 
7023 	/*
7024 	 * Look up the group leader (we will attach this event to it):
7025 	 */
7026 	if (group_leader) {
7027 		err = -EINVAL;
7028 
7029 		/*
7030 		 * Do not allow a recursive hierarchy (this new sibling
7031 		 * becoming part of another group-sibling):
7032 		 */
7033 		if (group_leader->group_leader != group_leader)
7034 			goto err_context;
7035 		/*
7036 		 * Do not allow to attach to a group in a different
7037 		 * task or CPU context:
7038 		 */
7039 		if (move_group) {
7040 			if (group_leader->ctx->type != ctx->type)
7041 				goto err_context;
7042 		} else {
7043 			if (group_leader->ctx != ctx)
7044 				goto err_context;
7045 		}
7046 
7047 		/*
7048 		 * Only a group leader can be exclusive or pinned
7049 		 */
7050 		if (attr.exclusive || attr.pinned)
7051 			goto err_context;
7052 	}
7053 
7054 	if (output_event) {
7055 		err = perf_event_set_output(event, output_event);
7056 		if (err)
7057 			goto err_context;
7058 	}
7059 
7060 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
7061 	if (IS_ERR(event_file)) {
7062 		err = PTR_ERR(event_file);
7063 		goto err_context;
7064 	}
7065 
7066 	if (move_group) {
7067 		struct perf_event_context *gctx = group_leader->ctx;
7068 
7069 		mutex_lock(&gctx->mutex);
7070 		perf_remove_from_context(group_leader);
7071 
7072 		/*
7073 		 * Removing from the context ends up with disabled
7074 		 * event. What we want here is event in the initial
7075 		 * startup state, ready to be add into new context.
7076 		 */
7077 		perf_event__state_init(group_leader);
7078 		list_for_each_entry(sibling, &group_leader->sibling_list,
7079 				    group_entry) {
7080 			perf_remove_from_context(sibling);
7081 			perf_event__state_init(sibling);
7082 			put_ctx(gctx);
7083 		}
7084 		mutex_unlock(&gctx->mutex);
7085 		put_ctx(gctx);
7086 	}
7087 
7088 	WARN_ON_ONCE(ctx->parent_ctx);
7089 	mutex_lock(&ctx->mutex);
7090 
7091 	if (move_group) {
7092 		synchronize_rcu();
7093 		perf_install_in_context(ctx, group_leader, event->cpu);
7094 		get_ctx(ctx);
7095 		list_for_each_entry(sibling, &group_leader->sibling_list,
7096 				    group_entry) {
7097 			perf_install_in_context(ctx, sibling, event->cpu);
7098 			get_ctx(ctx);
7099 		}
7100 	}
7101 
7102 	perf_install_in_context(ctx, event, event->cpu);
7103 	++ctx->generation;
7104 	perf_unpin_context(ctx);
7105 	mutex_unlock(&ctx->mutex);
7106 
7107 	put_online_cpus();
7108 
7109 	event->owner = current;
7110 
7111 	mutex_lock(&current->perf_event_mutex);
7112 	list_add_tail(&event->owner_entry, &current->perf_event_list);
7113 	mutex_unlock(&current->perf_event_mutex);
7114 
7115 	/*
7116 	 * Precalculate sample_data sizes
7117 	 */
7118 	perf_event__header_size(event);
7119 	perf_event__id_header_size(event);
7120 
7121 	/*
7122 	 * Drop the reference on the group_event after placing the
7123 	 * new event on the sibling_list. This ensures destruction
7124 	 * of the group leader will find the pointer to itself in
7125 	 * perf_group_detach().
7126 	 */
7127 	fdput(group);
7128 	fd_install(event_fd, event_file);
7129 	return event_fd;
7130 
7131 err_context:
7132 	perf_unpin_context(ctx);
7133 	put_ctx(ctx);
7134 err_alloc:
7135 	free_event(event);
7136 err_task:
7137 	put_online_cpus();
7138 	if (task)
7139 		put_task_struct(task);
7140 err_group_fd:
7141 	fdput(group);
7142 err_fd:
7143 	put_unused_fd(event_fd);
7144 	return err;
7145 }
7146 
7147 /**
7148  * perf_event_create_kernel_counter
7149  *
7150  * @attr: attributes of the counter to create
7151  * @cpu: cpu in which the counter is bound
7152  * @task: task to profile (NULL for percpu)
7153  */
7154 struct perf_event *
7155 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7156 				 struct task_struct *task,
7157 				 perf_overflow_handler_t overflow_handler,
7158 				 void *context)
7159 {
7160 	struct perf_event_context *ctx;
7161 	struct perf_event *event;
7162 	int err;
7163 
7164 	/*
7165 	 * Get the target context (task or percpu):
7166 	 */
7167 
7168 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7169 				 overflow_handler, context);
7170 	if (IS_ERR(event)) {
7171 		err = PTR_ERR(event);
7172 		goto err;
7173 	}
7174 
7175 	account_event(event);
7176 
7177 	ctx = find_get_context(event->pmu, task, cpu);
7178 	if (IS_ERR(ctx)) {
7179 		err = PTR_ERR(ctx);
7180 		goto err_free;
7181 	}
7182 
7183 	WARN_ON_ONCE(ctx->parent_ctx);
7184 	mutex_lock(&ctx->mutex);
7185 	perf_install_in_context(ctx, event, cpu);
7186 	++ctx->generation;
7187 	perf_unpin_context(ctx);
7188 	mutex_unlock(&ctx->mutex);
7189 
7190 	return event;
7191 
7192 err_free:
7193 	free_event(event);
7194 err:
7195 	return ERR_PTR(err);
7196 }
7197 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7198 
7199 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7200 {
7201 	struct perf_event_context *src_ctx;
7202 	struct perf_event_context *dst_ctx;
7203 	struct perf_event *event, *tmp;
7204 	LIST_HEAD(events);
7205 
7206 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7207 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7208 
7209 	mutex_lock(&src_ctx->mutex);
7210 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7211 				 event_entry) {
7212 		perf_remove_from_context(event);
7213 		unaccount_event_cpu(event, src_cpu);
7214 		put_ctx(src_ctx);
7215 		list_add(&event->event_entry, &events);
7216 	}
7217 	mutex_unlock(&src_ctx->mutex);
7218 
7219 	synchronize_rcu();
7220 
7221 	mutex_lock(&dst_ctx->mutex);
7222 	list_for_each_entry_safe(event, tmp, &events, event_entry) {
7223 		list_del(&event->event_entry);
7224 		if (event->state >= PERF_EVENT_STATE_OFF)
7225 			event->state = PERF_EVENT_STATE_INACTIVE;
7226 		account_event_cpu(event, dst_cpu);
7227 		perf_install_in_context(dst_ctx, event, dst_cpu);
7228 		get_ctx(dst_ctx);
7229 	}
7230 	mutex_unlock(&dst_ctx->mutex);
7231 }
7232 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7233 
7234 static void sync_child_event(struct perf_event *child_event,
7235 			       struct task_struct *child)
7236 {
7237 	struct perf_event *parent_event = child_event->parent;
7238 	u64 child_val;
7239 
7240 	if (child_event->attr.inherit_stat)
7241 		perf_event_read_event(child_event, child);
7242 
7243 	child_val = perf_event_count(child_event);
7244 
7245 	/*
7246 	 * Add back the child's count to the parent's count:
7247 	 */
7248 	atomic64_add(child_val, &parent_event->child_count);
7249 	atomic64_add(child_event->total_time_enabled,
7250 		     &parent_event->child_total_time_enabled);
7251 	atomic64_add(child_event->total_time_running,
7252 		     &parent_event->child_total_time_running);
7253 
7254 	/*
7255 	 * Remove this event from the parent's list
7256 	 */
7257 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7258 	mutex_lock(&parent_event->child_mutex);
7259 	list_del_init(&child_event->child_list);
7260 	mutex_unlock(&parent_event->child_mutex);
7261 
7262 	/*
7263 	 * Release the parent event, if this was the last
7264 	 * reference to it.
7265 	 */
7266 	put_event(parent_event);
7267 }
7268 
7269 static void
7270 __perf_event_exit_task(struct perf_event *child_event,
7271 			 struct perf_event_context *child_ctx,
7272 			 struct task_struct *child)
7273 {
7274 	if (child_event->parent) {
7275 		raw_spin_lock_irq(&child_ctx->lock);
7276 		perf_group_detach(child_event);
7277 		raw_spin_unlock_irq(&child_ctx->lock);
7278 	}
7279 
7280 	perf_remove_from_context(child_event);
7281 
7282 	/*
7283 	 * It can happen that the parent exits first, and has events
7284 	 * that are still around due to the child reference. These
7285 	 * events need to be zapped.
7286 	 */
7287 	if (child_event->parent) {
7288 		sync_child_event(child_event, child);
7289 		free_event(child_event);
7290 	}
7291 }
7292 
7293 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7294 {
7295 	struct perf_event *child_event, *tmp;
7296 	struct perf_event_context *child_ctx;
7297 	unsigned long flags;
7298 
7299 	if (likely(!child->perf_event_ctxp[ctxn])) {
7300 		perf_event_task(child, NULL, 0);
7301 		return;
7302 	}
7303 
7304 	local_irq_save(flags);
7305 	/*
7306 	 * We can't reschedule here because interrupts are disabled,
7307 	 * and either child is current or it is a task that can't be
7308 	 * scheduled, so we are now safe from rescheduling changing
7309 	 * our context.
7310 	 */
7311 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7312 
7313 	/*
7314 	 * Take the context lock here so that if find_get_context is
7315 	 * reading child->perf_event_ctxp, we wait until it has
7316 	 * incremented the context's refcount before we do put_ctx below.
7317 	 */
7318 	raw_spin_lock(&child_ctx->lock);
7319 	task_ctx_sched_out(child_ctx);
7320 	child->perf_event_ctxp[ctxn] = NULL;
7321 	/*
7322 	 * If this context is a clone; unclone it so it can't get
7323 	 * swapped to another process while we're removing all
7324 	 * the events from it.
7325 	 */
7326 	unclone_ctx(child_ctx);
7327 	update_context_time(child_ctx);
7328 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7329 
7330 	/*
7331 	 * Report the task dead after unscheduling the events so that we
7332 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
7333 	 * get a few PERF_RECORD_READ events.
7334 	 */
7335 	perf_event_task(child, child_ctx, 0);
7336 
7337 	/*
7338 	 * We can recurse on the same lock type through:
7339 	 *
7340 	 *   __perf_event_exit_task()
7341 	 *     sync_child_event()
7342 	 *       put_event()
7343 	 *         mutex_lock(&ctx->mutex)
7344 	 *
7345 	 * But since its the parent context it won't be the same instance.
7346 	 */
7347 	mutex_lock(&child_ctx->mutex);
7348 
7349 again:
7350 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7351 				 group_entry)
7352 		__perf_event_exit_task(child_event, child_ctx, child);
7353 
7354 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7355 				 group_entry)
7356 		__perf_event_exit_task(child_event, child_ctx, child);
7357 
7358 	/*
7359 	 * If the last event was a group event, it will have appended all
7360 	 * its siblings to the list, but we obtained 'tmp' before that which
7361 	 * will still point to the list head terminating the iteration.
7362 	 */
7363 	if (!list_empty(&child_ctx->pinned_groups) ||
7364 	    !list_empty(&child_ctx->flexible_groups))
7365 		goto again;
7366 
7367 	mutex_unlock(&child_ctx->mutex);
7368 
7369 	put_ctx(child_ctx);
7370 }
7371 
7372 /*
7373  * When a child task exits, feed back event values to parent events.
7374  */
7375 void perf_event_exit_task(struct task_struct *child)
7376 {
7377 	struct perf_event *event, *tmp;
7378 	int ctxn;
7379 
7380 	mutex_lock(&child->perf_event_mutex);
7381 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7382 				 owner_entry) {
7383 		list_del_init(&event->owner_entry);
7384 
7385 		/*
7386 		 * Ensure the list deletion is visible before we clear
7387 		 * the owner, closes a race against perf_release() where
7388 		 * we need to serialize on the owner->perf_event_mutex.
7389 		 */
7390 		smp_wmb();
7391 		event->owner = NULL;
7392 	}
7393 	mutex_unlock(&child->perf_event_mutex);
7394 
7395 	for_each_task_context_nr(ctxn)
7396 		perf_event_exit_task_context(child, ctxn);
7397 }
7398 
7399 static void perf_free_event(struct perf_event *event,
7400 			    struct perf_event_context *ctx)
7401 {
7402 	struct perf_event *parent = event->parent;
7403 
7404 	if (WARN_ON_ONCE(!parent))
7405 		return;
7406 
7407 	mutex_lock(&parent->child_mutex);
7408 	list_del_init(&event->child_list);
7409 	mutex_unlock(&parent->child_mutex);
7410 
7411 	put_event(parent);
7412 
7413 	perf_group_detach(event);
7414 	list_del_event(event, ctx);
7415 	free_event(event);
7416 }
7417 
7418 /*
7419  * free an unexposed, unused context as created by inheritance by
7420  * perf_event_init_task below, used by fork() in case of fail.
7421  */
7422 void perf_event_free_task(struct task_struct *task)
7423 {
7424 	struct perf_event_context *ctx;
7425 	struct perf_event *event, *tmp;
7426 	int ctxn;
7427 
7428 	for_each_task_context_nr(ctxn) {
7429 		ctx = task->perf_event_ctxp[ctxn];
7430 		if (!ctx)
7431 			continue;
7432 
7433 		mutex_lock(&ctx->mutex);
7434 again:
7435 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7436 				group_entry)
7437 			perf_free_event(event, ctx);
7438 
7439 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7440 				group_entry)
7441 			perf_free_event(event, ctx);
7442 
7443 		if (!list_empty(&ctx->pinned_groups) ||
7444 				!list_empty(&ctx->flexible_groups))
7445 			goto again;
7446 
7447 		mutex_unlock(&ctx->mutex);
7448 
7449 		put_ctx(ctx);
7450 	}
7451 }
7452 
7453 void perf_event_delayed_put(struct task_struct *task)
7454 {
7455 	int ctxn;
7456 
7457 	for_each_task_context_nr(ctxn)
7458 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7459 }
7460 
7461 /*
7462  * inherit a event from parent task to child task:
7463  */
7464 static struct perf_event *
7465 inherit_event(struct perf_event *parent_event,
7466 	      struct task_struct *parent,
7467 	      struct perf_event_context *parent_ctx,
7468 	      struct task_struct *child,
7469 	      struct perf_event *group_leader,
7470 	      struct perf_event_context *child_ctx)
7471 {
7472 	struct perf_event *child_event;
7473 	unsigned long flags;
7474 
7475 	/*
7476 	 * Instead of creating recursive hierarchies of events,
7477 	 * we link inherited events back to the original parent,
7478 	 * which has a filp for sure, which we use as the reference
7479 	 * count:
7480 	 */
7481 	if (parent_event->parent)
7482 		parent_event = parent_event->parent;
7483 
7484 	child_event = perf_event_alloc(&parent_event->attr,
7485 					   parent_event->cpu,
7486 					   child,
7487 					   group_leader, parent_event,
7488 				           NULL, NULL);
7489 	if (IS_ERR(child_event))
7490 		return child_event;
7491 
7492 	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7493 		free_event(child_event);
7494 		return NULL;
7495 	}
7496 
7497 	get_ctx(child_ctx);
7498 
7499 	/*
7500 	 * Make the child state follow the state of the parent event,
7501 	 * not its attr.disabled bit.  We hold the parent's mutex,
7502 	 * so we won't race with perf_event_{en, dis}able_family.
7503 	 */
7504 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7505 		child_event->state = PERF_EVENT_STATE_INACTIVE;
7506 	else
7507 		child_event->state = PERF_EVENT_STATE_OFF;
7508 
7509 	if (parent_event->attr.freq) {
7510 		u64 sample_period = parent_event->hw.sample_period;
7511 		struct hw_perf_event *hwc = &child_event->hw;
7512 
7513 		hwc->sample_period = sample_period;
7514 		hwc->last_period   = sample_period;
7515 
7516 		local64_set(&hwc->period_left, sample_period);
7517 	}
7518 
7519 	child_event->ctx = child_ctx;
7520 	child_event->overflow_handler = parent_event->overflow_handler;
7521 	child_event->overflow_handler_context
7522 		= parent_event->overflow_handler_context;
7523 
7524 	/*
7525 	 * Precalculate sample_data sizes
7526 	 */
7527 	perf_event__header_size(child_event);
7528 	perf_event__id_header_size(child_event);
7529 
7530 	/*
7531 	 * Link it up in the child's context:
7532 	 */
7533 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7534 	add_event_to_ctx(child_event, child_ctx);
7535 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7536 
7537 	/*
7538 	 * Link this into the parent event's child list
7539 	 */
7540 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7541 	mutex_lock(&parent_event->child_mutex);
7542 	list_add_tail(&child_event->child_list, &parent_event->child_list);
7543 	mutex_unlock(&parent_event->child_mutex);
7544 
7545 	return child_event;
7546 }
7547 
7548 static int inherit_group(struct perf_event *parent_event,
7549 	      struct task_struct *parent,
7550 	      struct perf_event_context *parent_ctx,
7551 	      struct task_struct *child,
7552 	      struct perf_event_context *child_ctx)
7553 {
7554 	struct perf_event *leader;
7555 	struct perf_event *sub;
7556 	struct perf_event *child_ctr;
7557 
7558 	leader = inherit_event(parent_event, parent, parent_ctx,
7559 				 child, NULL, child_ctx);
7560 	if (IS_ERR(leader))
7561 		return PTR_ERR(leader);
7562 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7563 		child_ctr = inherit_event(sub, parent, parent_ctx,
7564 					    child, leader, child_ctx);
7565 		if (IS_ERR(child_ctr))
7566 			return PTR_ERR(child_ctr);
7567 	}
7568 	return 0;
7569 }
7570 
7571 static int
7572 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7573 		   struct perf_event_context *parent_ctx,
7574 		   struct task_struct *child, int ctxn,
7575 		   int *inherited_all)
7576 {
7577 	int ret;
7578 	struct perf_event_context *child_ctx;
7579 
7580 	if (!event->attr.inherit) {
7581 		*inherited_all = 0;
7582 		return 0;
7583 	}
7584 
7585 	child_ctx = child->perf_event_ctxp[ctxn];
7586 	if (!child_ctx) {
7587 		/*
7588 		 * This is executed from the parent task context, so
7589 		 * inherit events that have been marked for cloning.
7590 		 * First allocate and initialize a context for the
7591 		 * child.
7592 		 */
7593 
7594 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7595 		if (!child_ctx)
7596 			return -ENOMEM;
7597 
7598 		child->perf_event_ctxp[ctxn] = child_ctx;
7599 	}
7600 
7601 	ret = inherit_group(event, parent, parent_ctx,
7602 			    child, child_ctx);
7603 
7604 	if (ret)
7605 		*inherited_all = 0;
7606 
7607 	return ret;
7608 }
7609 
7610 /*
7611  * Initialize the perf_event context in task_struct
7612  */
7613 int perf_event_init_context(struct task_struct *child, int ctxn)
7614 {
7615 	struct perf_event_context *child_ctx, *parent_ctx;
7616 	struct perf_event_context *cloned_ctx;
7617 	struct perf_event *event;
7618 	struct task_struct *parent = current;
7619 	int inherited_all = 1;
7620 	unsigned long flags;
7621 	int ret = 0;
7622 
7623 	if (likely(!parent->perf_event_ctxp[ctxn]))
7624 		return 0;
7625 
7626 	/*
7627 	 * If the parent's context is a clone, pin it so it won't get
7628 	 * swapped under us.
7629 	 */
7630 	parent_ctx = perf_pin_task_context(parent, ctxn);
7631 
7632 	/*
7633 	 * No need to check if parent_ctx != NULL here; since we saw
7634 	 * it non-NULL earlier, the only reason for it to become NULL
7635 	 * is if we exit, and since we're currently in the middle of
7636 	 * a fork we can't be exiting at the same time.
7637 	 */
7638 
7639 	/*
7640 	 * Lock the parent list. No need to lock the child - not PID
7641 	 * hashed yet and not running, so nobody can access it.
7642 	 */
7643 	mutex_lock(&parent_ctx->mutex);
7644 
7645 	/*
7646 	 * We dont have to disable NMIs - we are only looking at
7647 	 * the list, not manipulating it:
7648 	 */
7649 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7650 		ret = inherit_task_group(event, parent, parent_ctx,
7651 					 child, ctxn, &inherited_all);
7652 		if (ret)
7653 			break;
7654 	}
7655 
7656 	/*
7657 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
7658 	 * to allocations, but we need to prevent rotation because
7659 	 * rotate_ctx() will change the list from interrupt context.
7660 	 */
7661 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7662 	parent_ctx->rotate_disable = 1;
7663 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7664 
7665 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7666 		ret = inherit_task_group(event, parent, parent_ctx,
7667 					 child, ctxn, &inherited_all);
7668 		if (ret)
7669 			break;
7670 	}
7671 
7672 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7673 	parent_ctx->rotate_disable = 0;
7674 
7675 	child_ctx = child->perf_event_ctxp[ctxn];
7676 
7677 	if (child_ctx && inherited_all) {
7678 		/*
7679 		 * Mark the child context as a clone of the parent
7680 		 * context, or of whatever the parent is a clone of.
7681 		 *
7682 		 * Note that if the parent is a clone, the holding of
7683 		 * parent_ctx->lock avoids it from being uncloned.
7684 		 */
7685 		cloned_ctx = parent_ctx->parent_ctx;
7686 		if (cloned_ctx) {
7687 			child_ctx->parent_ctx = cloned_ctx;
7688 			child_ctx->parent_gen = parent_ctx->parent_gen;
7689 		} else {
7690 			child_ctx->parent_ctx = parent_ctx;
7691 			child_ctx->parent_gen = parent_ctx->generation;
7692 		}
7693 		get_ctx(child_ctx->parent_ctx);
7694 	}
7695 
7696 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7697 	mutex_unlock(&parent_ctx->mutex);
7698 
7699 	perf_unpin_context(parent_ctx);
7700 	put_ctx(parent_ctx);
7701 
7702 	return ret;
7703 }
7704 
7705 /*
7706  * Initialize the perf_event context in task_struct
7707  */
7708 int perf_event_init_task(struct task_struct *child)
7709 {
7710 	int ctxn, ret;
7711 
7712 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7713 	mutex_init(&child->perf_event_mutex);
7714 	INIT_LIST_HEAD(&child->perf_event_list);
7715 
7716 	for_each_task_context_nr(ctxn) {
7717 		ret = perf_event_init_context(child, ctxn);
7718 		if (ret)
7719 			return ret;
7720 	}
7721 
7722 	return 0;
7723 }
7724 
7725 static void __init perf_event_init_all_cpus(void)
7726 {
7727 	struct swevent_htable *swhash;
7728 	int cpu;
7729 
7730 	for_each_possible_cpu(cpu) {
7731 		swhash = &per_cpu(swevent_htable, cpu);
7732 		mutex_init(&swhash->hlist_mutex);
7733 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7734 	}
7735 }
7736 
7737 static void perf_event_init_cpu(int cpu)
7738 {
7739 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7740 
7741 	mutex_lock(&swhash->hlist_mutex);
7742 	if (swhash->hlist_refcount > 0) {
7743 		struct swevent_hlist *hlist;
7744 
7745 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7746 		WARN_ON(!hlist);
7747 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7748 	}
7749 	mutex_unlock(&swhash->hlist_mutex);
7750 }
7751 
7752 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7753 static void perf_pmu_rotate_stop(struct pmu *pmu)
7754 {
7755 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7756 
7757 	WARN_ON(!irqs_disabled());
7758 
7759 	list_del_init(&cpuctx->rotation_list);
7760 }
7761 
7762 static void __perf_event_exit_context(void *__info)
7763 {
7764 	struct perf_event_context *ctx = __info;
7765 	struct perf_event *event, *tmp;
7766 
7767 	perf_pmu_rotate_stop(ctx->pmu);
7768 
7769 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7770 		__perf_remove_from_context(event);
7771 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7772 		__perf_remove_from_context(event);
7773 }
7774 
7775 static void perf_event_exit_cpu_context(int cpu)
7776 {
7777 	struct perf_event_context *ctx;
7778 	struct pmu *pmu;
7779 	int idx;
7780 
7781 	idx = srcu_read_lock(&pmus_srcu);
7782 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7783 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7784 
7785 		mutex_lock(&ctx->mutex);
7786 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7787 		mutex_unlock(&ctx->mutex);
7788 	}
7789 	srcu_read_unlock(&pmus_srcu, idx);
7790 }
7791 
7792 static void perf_event_exit_cpu(int cpu)
7793 {
7794 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7795 
7796 	mutex_lock(&swhash->hlist_mutex);
7797 	swevent_hlist_release(swhash);
7798 	mutex_unlock(&swhash->hlist_mutex);
7799 
7800 	perf_event_exit_cpu_context(cpu);
7801 }
7802 #else
7803 static inline void perf_event_exit_cpu(int cpu) { }
7804 #endif
7805 
7806 static int
7807 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7808 {
7809 	int cpu;
7810 
7811 	for_each_online_cpu(cpu)
7812 		perf_event_exit_cpu(cpu);
7813 
7814 	return NOTIFY_OK;
7815 }
7816 
7817 /*
7818  * Run the perf reboot notifier at the very last possible moment so that
7819  * the generic watchdog code runs as long as possible.
7820  */
7821 static struct notifier_block perf_reboot_notifier = {
7822 	.notifier_call = perf_reboot,
7823 	.priority = INT_MIN,
7824 };
7825 
7826 static int
7827 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7828 {
7829 	unsigned int cpu = (long)hcpu;
7830 
7831 	switch (action & ~CPU_TASKS_FROZEN) {
7832 
7833 	case CPU_UP_PREPARE:
7834 	case CPU_DOWN_FAILED:
7835 		perf_event_init_cpu(cpu);
7836 		break;
7837 
7838 	case CPU_UP_CANCELED:
7839 	case CPU_DOWN_PREPARE:
7840 		perf_event_exit_cpu(cpu);
7841 		break;
7842 	default:
7843 		break;
7844 	}
7845 
7846 	return NOTIFY_OK;
7847 }
7848 
7849 void __init perf_event_init(void)
7850 {
7851 	int ret;
7852 
7853 	idr_init(&pmu_idr);
7854 
7855 	perf_event_init_all_cpus();
7856 	init_srcu_struct(&pmus_srcu);
7857 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7858 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7859 	perf_pmu_register(&perf_task_clock, NULL, -1);
7860 	perf_tp_register();
7861 	perf_cpu_notifier(perf_cpu_notify);
7862 	register_reboot_notifier(&perf_reboot_notifier);
7863 
7864 	ret = init_hw_breakpoint();
7865 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7866 
7867 	/* do not patch jump label more than once per second */
7868 	jump_label_rate_limit(&perf_sched_events, HZ);
7869 
7870 	/*
7871 	 * Build time assertion that we keep the data_head at the intended
7872 	 * location.  IOW, validation we got the __reserved[] size right.
7873 	 */
7874 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7875 		     != 1024);
7876 }
7877 
7878 static int __init perf_event_sysfs_init(void)
7879 {
7880 	struct pmu *pmu;
7881 	int ret;
7882 
7883 	mutex_lock(&pmus_lock);
7884 
7885 	ret = bus_register(&pmu_bus);
7886 	if (ret)
7887 		goto unlock;
7888 
7889 	list_for_each_entry(pmu, &pmus, entry) {
7890 		if (!pmu->name || pmu->type < 0)
7891 			continue;
7892 
7893 		ret = pmu_dev_alloc(pmu);
7894 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7895 	}
7896 	pmu_bus_running = 1;
7897 	ret = 0;
7898 
7899 unlock:
7900 	mutex_unlock(&pmus_lock);
7901 
7902 	return ret;
7903 }
7904 device_initcall(perf_event_sysfs_init);
7905 
7906 #ifdef CONFIG_CGROUP_PERF
7907 static struct cgroup_subsys_state *
7908 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7909 {
7910 	struct perf_cgroup *jc;
7911 
7912 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7913 	if (!jc)
7914 		return ERR_PTR(-ENOMEM);
7915 
7916 	jc->info = alloc_percpu(struct perf_cgroup_info);
7917 	if (!jc->info) {
7918 		kfree(jc);
7919 		return ERR_PTR(-ENOMEM);
7920 	}
7921 
7922 	return &jc->css;
7923 }
7924 
7925 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
7926 {
7927 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
7928 
7929 	free_percpu(jc->info);
7930 	kfree(jc);
7931 }
7932 
7933 static int __perf_cgroup_move(void *info)
7934 {
7935 	struct task_struct *task = info;
7936 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7937 	return 0;
7938 }
7939 
7940 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
7941 			       struct cgroup_taskset *tset)
7942 {
7943 	struct task_struct *task;
7944 
7945 	cgroup_taskset_for_each(task, css, tset)
7946 		task_function_call(task, __perf_cgroup_move, task);
7947 }
7948 
7949 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
7950 			     struct cgroup_subsys_state *old_css,
7951 			     struct task_struct *task)
7952 {
7953 	/*
7954 	 * cgroup_exit() is called in the copy_process() failure path.
7955 	 * Ignore this case since the task hasn't ran yet, this avoids
7956 	 * trying to poke a half freed task state from generic code.
7957 	 */
7958 	if (!(task->flags & PF_EXITING))
7959 		return;
7960 
7961 	task_function_call(task, __perf_cgroup_move, task);
7962 }
7963 
7964 struct cgroup_subsys perf_subsys = {
7965 	.name		= "perf_event",
7966 	.subsys_id	= perf_subsys_id,
7967 	.css_alloc	= perf_cgroup_css_alloc,
7968 	.css_free	= perf_cgroup_css_free,
7969 	.exit		= perf_cgroup_exit,
7970 	.attach		= perf_cgroup_attach,
7971 };
7972 #endif /* CONFIG_CGROUP_PERF */
7973