xref: /openbmc/linux/kernel/events/core.c (revision ac84bac4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 
55 #include "internal.h"
56 
57 #include <asm/irq_regs.h>
58 
59 typedef int (*remote_function_f)(void *);
60 
61 struct remote_function_call {
62 	struct task_struct	*p;
63 	remote_function_f	func;
64 	void			*info;
65 	int			ret;
66 };
67 
68 static void remote_function(void *data)
69 {
70 	struct remote_function_call *tfc = data;
71 	struct task_struct *p = tfc->p;
72 
73 	if (p) {
74 		/* -EAGAIN */
75 		if (task_cpu(p) != smp_processor_id())
76 			return;
77 
78 		/*
79 		 * Now that we're on right CPU with IRQs disabled, we can test
80 		 * if we hit the right task without races.
81 		 */
82 
83 		tfc->ret = -ESRCH; /* No such (running) process */
84 		if (p != current)
85 			return;
86 	}
87 
88 	tfc->ret = tfc->func(tfc->info);
89 }
90 
91 /**
92  * task_function_call - call a function on the cpu on which a task runs
93  * @p:		the task to evaluate
94  * @func:	the function to be called
95  * @info:	the function call argument
96  *
97  * Calls the function @func when the task is currently running. This might
98  * be on the current CPU, which just calls the function directly
99  *
100  * returns: @func return value, or
101  *	    -ESRCH  - when the process isn't running
102  *	    -EAGAIN - when the process moved away
103  */
104 static int
105 task_function_call(struct task_struct *p, remote_function_f func, void *info)
106 {
107 	struct remote_function_call data = {
108 		.p	= p,
109 		.func	= func,
110 		.info	= info,
111 		.ret	= -EAGAIN,
112 	};
113 	int ret;
114 
115 	do {
116 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
117 		if (!ret)
118 			ret = data.ret;
119 	} while (ret == -EAGAIN);
120 
121 	return ret;
122 }
123 
124 /**
125  * cpu_function_call - call a function on the cpu
126  * @func:	the function to be called
127  * @info:	the function call argument
128  *
129  * Calls the function @func on the remote cpu.
130  *
131  * returns: @func return value or -ENXIO when the cpu is offline
132  */
133 static int cpu_function_call(int cpu, remote_function_f func, void *info)
134 {
135 	struct remote_function_call data = {
136 		.p	= NULL,
137 		.func	= func,
138 		.info	= info,
139 		.ret	= -ENXIO, /* No such CPU */
140 	};
141 
142 	smp_call_function_single(cpu, remote_function, &data, 1);
143 
144 	return data.ret;
145 }
146 
147 static inline struct perf_cpu_context *
148 __get_cpu_context(struct perf_event_context *ctx)
149 {
150 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
151 }
152 
153 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
154 			  struct perf_event_context *ctx)
155 {
156 	raw_spin_lock(&cpuctx->ctx.lock);
157 	if (ctx)
158 		raw_spin_lock(&ctx->lock);
159 }
160 
161 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
162 			    struct perf_event_context *ctx)
163 {
164 	if (ctx)
165 		raw_spin_unlock(&ctx->lock);
166 	raw_spin_unlock(&cpuctx->ctx.lock);
167 }
168 
169 #define TASK_TOMBSTONE ((void *)-1L)
170 
171 static bool is_kernel_event(struct perf_event *event)
172 {
173 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
174 }
175 
176 /*
177  * On task ctx scheduling...
178  *
179  * When !ctx->nr_events a task context will not be scheduled. This means
180  * we can disable the scheduler hooks (for performance) without leaving
181  * pending task ctx state.
182  *
183  * This however results in two special cases:
184  *
185  *  - removing the last event from a task ctx; this is relatively straight
186  *    forward and is done in __perf_remove_from_context.
187  *
188  *  - adding the first event to a task ctx; this is tricky because we cannot
189  *    rely on ctx->is_active and therefore cannot use event_function_call().
190  *    See perf_install_in_context().
191  *
192  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
193  */
194 
195 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
196 			struct perf_event_context *, void *);
197 
198 struct event_function_struct {
199 	struct perf_event *event;
200 	event_f func;
201 	void *data;
202 };
203 
204 static int event_function(void *info)
205 {
206 	struct event_function_struct *efs = info;
207 	struct perf_event *event = efs->event;
208 	struct perf_event_context *ctx = event->ctx;
209 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
210 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
211 	int ret = 0;
212 
213 	lockdep_assert_irqs_disabled();
214 
215 	perf_ctx_lock(cpuctx, task_ctx);
216 	/*
217 	 * Since we do the IPI call without holding ctx->lock things can have
218 	 * changed, double check we hit the task we set out to hit.
219 	 */
220 	if (ctx->task) {
221 		if (ctx->task != current) {
222 			ret = -ESRCH;
223 			goto unlock;
224 		}
225 
226 		/*
227 		 * We only use event_function_call() on established contexts,
228 		 * and event_function() is only ever called when active (or
229 		 * rather, we'll have bailed in task_function_call() or the
230 		 * above ctx->task != current test), therefore we must have
231 		 * ctx->is_active here.
232 		 */
233 		WARN_ON_ONCE(!ctx->is_active);
234 		/*
235 		 * And since we have ctx->is_active, cpuctx->task_ctx must
236 		 * match.
237 		 */
238 		WARN_ON_ONCE(task_ctx != ctx);
239 	} else {
240 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
241 	}
242 
243 	efs->func(event, cpuctx, ctx, efs->data);
244 unlock:
245 	perf_ctx_unlock(cpuctx, task_ctx);
246 
247 	return ret;
248 }
249 
250 static void event_function_call(struct perf_event *event, event_f func, void *data)
251 {
252 	struct perf_event_context *ctx = event->ctx;
253 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
254 	struct event_function_struct efs = {
255 		.event = event,
256 		.func = func,
257 		.data = data,
258 	};
259 
260 	if (!event->parent) {
261 		/*
262 		 * If this is a !child event, we must hold ctx::mutex to
263 		 * stabilize the the event->ctx relation. See
264 		 * perf_event_ctx_lock().
265 		 */
266 		lockdep_assert_held(&ctx->mutex);
267 	}
268 
269 	if (!task) {
270 		cpu_function_call(event->cpu, event_function, &efs);
271 		return;
272 	}
273 
274 	if (task == TASK_TOMBSTONE)
275 		return;
276 
277 again:
278 	if (!task_function_call(task, event_function, &efs))
279 		return;
280 
281 	raw_spin_lock_irq(&ctx->lock);
282 	/*
283 	 * Reload the task pointer, it might have been changed by
284 	 * a concurrent perf_event_context_sched_out().
285 	 */
286 	task = ctx->task;
287 	if (task == TASK_TOMBSTONE) {
288 		raw_spin_unlock_irq(&ctx->lock);
289 		return;
290 	}
291 	if (ctx->is_active) {
292 		raw_spin_unlock_irq(&ctx->lock);
293 		goto again;
294 	}
295 	func(event, NULL, ctx, data);
296 	raw_spin_unlock_irq(&ctx->lock);
297 }
298 
299 /*
300  * Similar to event_function_call() + event_function(), but hard assumes IRQs
301  * are already disabled and we're on the right CPU.
302  */
303 static void event_function_local(struct perf_event *event, event_f func, void *data)
304 {
305 	struct perf_event_context *ctx = event->ctx;
306 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
307 	struct task_struct *task = READ_ONCE(ctx->task);
308 	struct perf_event_context *task_ctx = NULL;
309 
310 	lockdep_assert_irqs_disabled();
311 
312 	if (task) {
313 		if (task == TASK_TOMBSTONE)
314 			return;
315 
316 		task_ctx = ctx;
317 	}
318 
319 	perf_ctx_lock(cpuctx, task_ctx);
320 
321 	task = ctx->task;
322 	if (task == TASK_TOMBSTONE)
323 		goto unlock;
324 
325 	if (task) {
326 		/*
327 		 * We must be either inactive or active and the right task,
328 		 * otherwise we're screwed, since we cannot IPI to somewhere
329 		 * else.
330 		 */
331 		if (ctx->is_active) {
332 			if (WARN_ON_ONCE(task != current))
333 				goto unlock;
334 
335 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
336 				goto unlock;
337 		}
338 	} else {
339 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
340 	}
341 
342 	func(event, cpuctx, ctx, data);
343 unlock:
344 	perf_ctx_unlock(cpuctx, task_ctx);
345 }
346 
347 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
348 		       PERF_FLAG_FD_OUTPUT  |\
349 		       PERF_FLAG_PID_CGROUP |\
350 		       PERF_FLAG_FD_CLOEXEC)
351 
352 /*
353  * branch priv levels that need permission checks
354  */
355 #define PERF_SAMPLE_BRANCH_PERM_PLM \
356 	(PERF_SAMPLE_BRANCH_KERNEL |\
357 	 PERF_SAMPLE_BRANCH_HV)
358 
359 enum event_type_t {
360 	EVENT_FLEXIBLE = 0x1,
361 	EVENT_PINNED = 0x2,
362 	EVENT_TIME = 0x4,
363 	/* see ctx_resched() for details */
364 	EVENT_CPU = 0x8,
365 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
366 };
367 
368 /*
369  * perf_sched_events : >0 events exist
370  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
371  */
372 
373 static void perf_sched_delayed(struct work_struct *work);
374 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
375 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
376 static DEFINE_MUTEX(perf_sched_mutex);
377 static atomic_t perf_sched_count;
378 
379 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
380 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
381 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
382 
383 static atomic_t nr_mmap_events __read_mostly;
384 static atomic_t nr_comm_events __read_mostly;
385 static atomic_t nr_namespaces_events __read_mostly;
386 static atomic_t nr_task_events __read_mostly;
387 static atomic_t nr_freq_events __read_mostly;
388 static atomic_t nr_switch_events __read_mostly;
389 static atomic_t nr_ksymbol_events __read_mostly;
390 static atomic_t nr_bpf_events __read_mostly;
391 static atomic_t nr_cgroup_events __read_mostly;
392 
393 static LIST_HEAD(pmus);
394 static DEFINE_MUTEX(pmus_lock);
395 static struct srcu_struct pmus_srcu;
396 static cpumask_var_t perf_online_mask;
397 
398 /*
399  * perf event paranoia level:
400  *  -1 - not paranoid at all
401  *   0 - disallow raw tracepoint access for unpriv
402  *   1 - disallow cpu events for unpriv
403  *   2 - disallow kernel profiling for unpriv
404  */
405 int sysctl_perf_event_paranoid __read_mostly = 2;
406 
407 /* Minimum for 512 kiB + 1 user control page */
408 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
409 
410 /*
411  * max perf event sample rate
412  */
413 #define DEFAULT_MAX_SAMPLE_RATE		100000
414 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
415 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
416 
417 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
418 
419 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
420 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
421 
422 static int perf_sample_allowed_ns __read_mostly =
423 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
424 
425 static void update_perf_cpu_limits(void)
426 {
427 	u64 tmp = perf_sample_period_ns;
428 
429 	tmp *= sysctl_perf_cpu_time_max_percent;
430 	tmp = div_u64(tmp, 100);
431 	if (!tmp)
432 		tmp = 1;
433 
434 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
435 }
436 
437 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
438 
439 int perf_proc_update_handler(struct ctl_table *table, int write,
440 		void __user *buffer, size_t *lenp,
441 		loff_t *ppos)
442 {
443 	int ret;
444 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
445 	/*
446 	 * If throttling is disabled don't allow the write:
447 	 */
448 	if (write && (perf_cpu == 100 || perf_cpu == 0))
449 		return -EINVAL;
450 
451 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
452 	if (ret || !write)
453 		return ret;
454 
455 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
456 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
457 	update_perf_cpu_limits();
458 
459 	return 0;
460 }
461 
462 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
463 
464 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
465 				void __user *buffer, size_t *lenp,
466 				loff_t *ppos)
467 {
468 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
469 
470 	if (ret || !write)
471 		return ret;
472 
473 	if (sysctl_perf_cpu_time_max_percent == 100 ||
474 	    sysctl_perf_cpu_time_max_percent == 0) {
475 		printk(KERN_WARNING
476 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
477 		WRITE_ONCE(perf_sample_allowed_ns, 0);
478 	} else {
479 		update_perf_cpu_limits();
480 	}
481 
482 	return 0;
483 }
484 
485 /*
486  * perf samples are done in some very critical code paths (NMIs).
487  * If they take too much CPU time, the system can lock up and not
488  * get any real work done.  This will drop the sample rate when
489  * we detect that events are taking too long.
490  */
491 #define NR_ACCUMULATED_SAMPLES 128
492 static DEFINE_PER_CPU(u64, running_sample_length);
493 
494 static u64 __report_avg;
495 static u64 __report_allowed;
496 
497 static void perf_duration_warn(struct irq_work *w)
498 {
499 	printk_ratelimited(KERN_INFO
500 		"perf: interrupt took too long (%lld > %lld), lowering "
501 		"kernel.perf_event_max_sample_rate to %d\n",
502 		__report_avg, __report_allowed,
503 		sysctl_perf_event_sample_rate);
504 }
505 
506 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
507 
508 void perf_sample_event_took(u64 sample_len_ns)
509 {
510 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
511 	u64 running_len;
512 	u64 avg_len;
513 	u32 max;
514 
515 	if (max_len == 0)
516 		return;
517 
518 	/* Decay the counter by 1 average sample. */
519 	running_len = __this_cpu_read(running_sample_length);
520 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
521 	running_len += sample_len_ns;
522 	__this_cpu_write(running_sample_length, running_len);
523 
524 	/*
525 	 * Note: this will be biased artifically low until we have
526 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
527 	 * from having to maintain a count.
528 	 */
529 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
530 	if (avg_len <= max_len)
531 		return;
532 
533 	__report_avg = avg_len;
534 	__report_allowed = max_len;
535 
536 	/*
537 	 * Compute a throttle threshold 25% below the current duration.
538 	 */
539 	avg_len += avg_len / 4;
540 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
541 	if (avg_len < max)
542 		max /= (u32)avg_len;
543 	else
544 		max = 1;
545 
546 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
547 	WRITE_ONCE(max_samples_per_tick, max);
548 
549 	sysctl_perf_event_sample_rate = max * HZ;
550 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
551 
552 	if (!irq_work_queue(&perf_duration_work)) {
553 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
554 			     "kernel.perf_event_max_sample_rate to %d\n",
555 			     __report_avg, __report_allowed,
556 			     sysctl_perf_event_sample_rate);
557 	}
558 }
559 
560 static atomic64_t perf_event_id;
561 
562 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
563 			      enum event_type_t event_type);
564 
565 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
566 			     enum event_type_t event_type,
567 			     struct task_struct *task);
568 
569 static void update_context_time(struct perf_event_context *ctx);
570 static u64 perf_event_time(struct perf_event *event);
571 
572 void __weak perf_event_print_debug(void)	{ }
573 
574 extern __weak const char *perf_pmu_name(void)
575 {
576 	return "pmu";
577 }
578 
579 static inline u64 perf_clock(void)
580 {
581 	return local_clock();
582 }
583 
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586 	return event->clock();
587 }
588 
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610 
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614 	struct perf_event *leader = event->group_leader;
615 
616 	if (leader->state <= PERF_EVENT_STATE_OFF)
617 		return leader->state;
618 
619 	return event->state;
620 }
621 
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625 	enum perf_event_state state = __perf_effective_state(event);
626 	u64 delta = now - event->tstamp;
627 
628 	*enabled = event->total_time_enabled;
629 	if (state >= PERF_EVENT_STATE_INACTIVE)
630 		*enabled += delta;
631 
632 	*running = event->total_time_running;
633 	if (state >= PERF_EVENT_STATE_ACTIVE)
634 		*running += delta;
635 }
636 
637 static void perf_event_update_time(struct perf_event *event)
638 {
639 	u64 now = perf_event_time(event);
640 
641 	__perf_update_times(event, now, &event->total_time_enabled,
642 					&event->total_time_running);
643 	event->tstamp = now;
644 }
645 
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648 	struct perf_event *sibling;
649 
650 	for_each_sibling_event(sibling, leader)
651 		perf_event_update_time(sibling);
652 }
653 
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657 	if (event->state == state)
658 		return;
659 
660 	perf_event_update_time(event);
661 	/*
662 	 * If a group leader gets enabled/disabled all its siblings
663 	 * are affected too.
664 	 */
665 	if ((event->state < 0) ^ (state < 0))
666 		perf_event_update_sibling_time(event);
667 
668 	WRITE_ONCE(event->state, state);
669 }
670 
671 #ifdef CONFIG_CGROUP_PERF
672 
673 static inline bool
674 perf_cgroup_match(struct perf_event *event)
675 {
676 	struct perf_event_context *ctx = event->ctx;
677 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
678 
679 	/* @event doesn't care about cgroup */
680 	if (!event->cgrp)
681 		return true;
682 
683 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
684 	if (!cpuctx->cgrp)
685 		return false;
686 
687 	/*
688 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
689 	 * also enabled for all its descendant cgroups.  If @cpuctx's
690 	 * cgroup is a descendant of @event's (the test covers identity
691 	 * case), it's a match.
692 	 */
693 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
694 				    event->cgrp->css.cgroup);
695 }
696 
697 static inline void perf_detach_cgroup(struct perf_event *event)
698 {
699 	css_put(&event->cgrp->css);
700 	event->cgrp = NULL;
701 }
702 
703 static inline int is_cgroup_event(struct perf_event *event)
704 {
705 	return event->cgrp != NULL;
706 }
707 
708 static inline u64 perf_cgroup_event_time(struct perf_event *event)
709 {
710 	struct perf_cgroup_info *t;
711 
712 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
713 	return t->time;
714 }
715 
716 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
717 {
718 	struct perf_cgroup_info *info;
719 	u64 now;
720 
721 	now = perf_clock();
722 
723 	info = this_cpu_ptr(cgrp->info);
724 
725 	info->time += now - info->timestamp;
726 	info->timestamp = now;
727 }
728 
729 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
730 {
731 	struct perf_cgroup *cgrp = cpuctx->cgrp;
732 	struct cgroup_subsys_state *css;
733 
734 	if (cgrp) {
735 		for (css = &cgrp->css; css; css = css->parent) {
736 			cgrp = container_of(css, struct perf_cgroup, css);
737 			__update_cgrp_time(cgrp);
738 		}
739 	}
740 }
741 
742 static inline void update_cgrp_time_from_event(struct perf_event *event)
743 {
744 	struct perf_cgroup *cgrp;
745 
746 	/*
747 	 * ensure we access cgroup data only when needed and
748 	 * when we know the cgroup is pinned (css_get)
749 	 */
750 	if (!is_cgroup_event(event))
751 		return;
752 
753 	cgrp = perf_cgroup_from_task(current, event->ctx);
754 	/*
755 	 * Do not update time when cgroup is not active
756 	 */
757 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
758 		__update_cgrp_time(event->cgrp);
759 }
760 
761 static inline void
762 perf_cgroup_set_timestamp(struct task_struct *task,
763 			  struct perf_event_context *ctx)
764 {
765 	struct perf_cgroup *cgrp;
766 	struct perf_cgroup_info *info;
767 	struct cgroup_subsys_state *css;
768 
769 	/*
770 	 * ctx->lock held by caller
771 	 * ensure we do not access cgroup data
772 	 * unless we have the cgroup pinned (css_get)
773 	 */
774 	if (!task || !ctx->nr_cgroups)
775 		return;
776 
777 	cgrp = perf_cgroup_from_task(task, ctx);
778 
779 	for (css = &cgrp->css; css; css = css->parent) {
780 		cgrp = container_of(css, struct perf_cgroup, css);
781 		info = this_cpu_ptr(cgrp->info);
782 		info->timestamp = ctx->timestamp;
783 	}
784 }
785 
786 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
787 
788 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
789 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
790 
791 /*
792  * reschedule events based on the cgroup constraint of task.
793  *
794  * mode SWOUT : schedule out everything
795  * mode SWIN : schedule in based on cgroup for next
796  */
797 static void perf_cgroup_switch(struct task_struct *task, int mode)
798 {
799 	struct perf_cpu_context *cpuctx;
800 	struct list_head *list;
801 	unsigned long flags;
802 
803 	/*
804 	 * Disable interrupts and preemption to avoid this CPU's
805 	 * cgrp_cpuctx_entry to change under us.
806 	 */
807 	local_irq_save(flags);
808 
809 	list = this_cpu_ptr(&cgrp_cpuctx_list);
810 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
811 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
812 
813 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
814 		perf_pmu_disable(cpuctx->ctx.pmu);
815 
816 		if (mode & PERF_CGROUP_SWOUT) {
817 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
818 			/*
819 			 * must not be done before ctxswout due
820 			 * to event_filter_match() in event_sched_out()
821 			 */
822 			cpuctx->cgrp = NULL;
823 		}
824 
825 		if (mode & PERF_CGROUP_SWIN) {
826 			WARN_ON_ONCE(cpuctx->cgrp);
827 			/*
828 			 * set cgrp before ctxsw in to allow
829 			 * event_filter_match() to not have to pass
830 			 * task around
831 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
832 			 * because cgorup events are only per-cpu
833 			 */
834 			cpuctx->cgrp = perf_cgroup_from_task(task,
835 							     &cpuctx->ctx);
836 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
837 		}
838 		perf_pmu_enable(cpuctx->ctx.pmu);
839 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
840 	}
841 
842 	local_irq_restore(flags);
843 }
844 
845 static inline void perf_cgroup_sched_out(struct task_struct *task,
846 					 struct task_struct *next)
847 {
848 	struct perf_cgroup *cgrp1;
849 	struct perf_cgroup *cgrp2 = NULL;
850 
851 	rcu_read_lock();
852 	/*
853 	 * we come here when we know perf_cgroup_events > 0
854 	 * we do not need to pass the ctx here because we know
855 	 * we are holding the rcu lock
856 	 */
857 	cgrp1 = perf_cgroup_from_task(task, NULL);
858 	cgrp2 = perf_cgroup_from_task(next, NULL);
859 
860 	/*
861 	 * only schedule out current cgroup events if we know
862 	 * that we are switching to a different cgroup. Otherwise,
863 	 * do no touch the cgroup events.
864 	 */
865 	if (cgrp1 != cgrp2)
866 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
867 
868 	rcu_read_unlock();
869 }
870 
871 static inline void perf_cgroup_sched_in(struct task_struct *prev,
872 					struct task_struct *task)
873 {
874 	struct perf_cgroup *cgrp1;
875 	struct perf_cgroup *cgrp2 = NULL;
876 
877 	rcu_read_lock();
878 	/*
879 	 * we come here when we know perf_cgroup_events > 0
880 	 * we do not need to pass the ctx here because we know
881 	 * we are holding the rcu lock
882 	 */
883 	cgrp1 = perf_cgroup_from_task(task, NULL);
884 	cgrp2 = perf_cgroup_from_task(prev, NULL);
885 
886 	/*
887 	 * only need to schedule in cgroup events if we are changing
888 	 * cgroup during ctxsw. Cgroup events were not scheduled
889 	 * out of ctxsw out if that was not the case.
890 	 */
891 	if (cgrp1 != cgrp2)
892 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
893 
894 	rcu_read_unlock();
895 }
896 
897 static int perf_cgroup_ensure_storage(struct perf_event *event,
898 				struct cgroup_subsys_state *css)
899 {
900 	struct perf_cpu_context *cpuctx;
901 	struct perf_event **storage;
902 	int cpu, heap_size, ret = 0;
903 
904 	/*
905 	 * Allow storage to have sufficent space for an iterator for each
906 	 * possibly nested cgroup plus an iterator for events with no cgroup.
907 	 */
908 	for (heap_size = 1; css; css = css->parent)
909 		heap_size++;
910 
911 	for_each_possible_cpu(cpu) {
912 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
913 		if (heap_size <= cpuctx->heap_size)
914 			continue;
915 
916 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
917 				       GFP_KERNEL, cpu_to_node(cpu));
918 		if (!storage) {
919 			ret = -ENOMEM;
920 			break;
921 		}
922 
923 		raw_spin_lock_irq(&cpuctx->ctx.lock);
924 		if (cpuctx->heap_size < heap_size) {
925 			swap(cpuctx->heap, storage);
926 			if (storage == cpuctx->heap_default)
927 				storage = NULL;
928 			cpuctx->heap_size = heap_size;
929 		}
930 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
931 
932 		kfree(storage);
933 	}
934 
935 	return ret;
936 }
937 
938 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
939 				      struct perf_event_attr *attr,
940 				      struct perf_event *group_leader)
941 {
942 	struct perf_cgroup *cgrp;
943 	struct cgroup_subsys_state *css;
944 	struct fd f = fdget(fd);
945 	int ret = 0;
946 
947 	if (!f.file)
948 		return -EBADF;
949 
950 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
951 					 &perf_event_cgrp_subsys);
952 	if (IS_ERR(css)) {
953 		ret = PTR_ERR(css);
954 		goto out;
955 	}
956 
957 	ret = perf_cgroup_ensure_storage(event, css);
958 	if (ret)
959 		goto out;
960 
961 	cgrp = container_of(css, struct perf_cgroup, css);
962 	event->cgrp = cgrp;
963 
964 	/*
965 	 * all events in a group must monitor
966 	 * the same cgroup because a task belongs
967 	 * to only one perf cgroup at a time
968 	 */
969 	if (group_leader && group_leader->cgrp != cgrp) {
970 		perf_detach_cgroup(event);
971 		ret = -EINVAL;
972 	}
973 out:
974 	fdput(f);
975 	return ret;
976 }
977 
978 static inline void
979 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
980 {
981 	struct perf_cgroup_info *t;
982 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
983 	event->shadow_ctx_time = now - t->timestamp;
984 }
985 
986 static inline void
987 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
988 {
989 	struct perf_cpu_context *cpuctx;
990 
991 	if (!is_cgroup_event(event))
992 		return;
993 
994 	/*
995 	 * Because cgroup events are always per-cpu events,
996 	 * @ctx == &cpuctx->ctx.
997 	 */
998 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
999 
1000 	/*
1001 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1002 	 * matching the event's cgroup, we must do this for every new event,
1003 	 * because if the first would mismatch, the second would not try again
1004 	 * and we would leave cpuctx->cgrp unset.
1005 	 */
1006 	if (ctx->is_active && !cpuctx->cgrp) {
1007 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1008 
1009 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1010 			cpuctx->cgrp = cgrp;
1011 	}
1012 
1013 	if (ctx->nr_cgroups++)
1014 		return;
1015 
1016 	list_add(&cpuctx->cgrp_cpuctx_entry,
1017 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1018 }
1019 
1020 static inline void
1021 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1022 {
1023 	struct perf_cpu_context *cpuctx;
1024 
1025 	if (!is_cgroup_event(event))
1026 		return;
1027 
1028 	/*
1029 	 * Because cgroup events are always per-cpu events,
1030 	 * @ctx == &cpuctx->ctx.
1031 	 */
1032 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1033 
1034 	if (--ctx->nr_cgroups)
1035 		return;
1036 
1037 	if (ctx->is_active && cpuctx->cgrp)
1038 		cpuctx->cgrp = NULL;
1039 
1040 	list_del(&cpuctx->cgrp_cpuctx_entry);
1041 }
1042 
1043 #else /* !CONFIG_CGROUP_PERF */
1044 
1045 static inline bool
1046 perf_cgroup_match(struct perf_event *event)
1047 {
1048 	return true;
1049 }
1050 
1051 static inline void perf_detach_cgroup(struct perf_event *event)
1052 {}
1053 
1054 static inline int is_cgroup_event(struct perf_event *event)
1055 {
1056 	return 0;
1057 }
1058 
1059 static inline void update_cgrp_time_from_event(struct perf_event *event)
1060 {
1061 }
1062 
1063 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1064 {
1065 }
1066 
1067 static inline void perf_cgroup_sched_out(struct task_struct *task,
1068 					 struct task_struct *next)
1069 {
1070 }
1071 
1072 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1073 					struct task_struct *task)
1074 {
1075 }
1076 
1077 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1078 				      struct perf_event_attr *attr,
1079 				      struct perf_event *group_leader)
1080 {
1081 	return -EINVAL;
1082 }
1083 
1084 static inline void
1085 perf_cgroup_set_timestamp(struct task_struct *task,
1086 			  struct perf_event_context *ctx)
1087 {
1088 }
1089 
1090 static inline void
1091 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1092 {
1093 }
1094 
1095 static inline void
1096 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1097 {
1098 }
1099 
1100 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1101 {
1102 	return 0;
1103 }
1104 
1105 static inline void
1106 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1107 {
1108 }
1109 
1110 static inline void
1111 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1112 {
1113 }
1114 #endif
1115 
1116 /*
1117  * set default to be dependent on timer tick just
1118  * like original code
1119  */
1120 #define PERF_CPU_HRTIMER (1000 / HZ)
1121 /*
1122  * function must be called with interrupts disabled
1123  */
1124 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1125 {
1126 	struct perf_cpu_context *cpuctx;
1127 	bool rotations;
1128 
1129 	lockdep_assert_irqs_disabled();
1130 
1131 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1132 	rotations = perf_rotate_context(cpuctx);
1133 
1134 	raw_spin_lock(&cpuctx->hrtimer_lock);
1135 	if (rotations)
1136 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1137 	else
1138 		cpuctx->hrtimer_active = 0;
1139 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1140 
1141 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1142 }
1143 
1144 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1145 {
1146 	struct hrtimer *timer = &cpuctx->hrtimer;
1147 	struct pmu *pmu = cpuctx->ctx.pmu;
1148 	u64 interval;
1149 
1150 	/* no multiplexing needed for SW PMU */
1151 	if (pmu->task_ctx_nr == perf_sw_context)
1152 		return;
1153 
1154 	/*
1155 	 * check default is sane, if not set then force to
1156 	 * default interval (1/tick)
1157 	 */
1158 	interval = pmu->hrtimer_interval_ms;
1159 	if (interval < 1)
1160 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1161 
1162 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1163 
1164 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1165 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1166 	timer->function = perf_mux_hrtimer_handler;
1167 }
1168 
1169 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1170 {
1171 	struct hrtimer *timer = &cpuctx->hrtimer;
1172 	struct pmu *pmu = cpuctx->ctx.pmu;
1173 	unsigned long flags;
1174 
1175 	/* not for SW PMU */
1176 	if (pmu->task_ctx_nr == perf_sw_context)
1177 		return 0;
1178 
1179 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1180 	if (!cpuctx->hrtimer_active) {
1181 		cpuctx->hrtimer_active = 1;
1182 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1183 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1184 	}
1185 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1186 
1187 	return 0;
1188 }
1189 
1190 void perf_pmu_disable(struct pmu *pmu)
1191 {
1192 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1193 	if (!(*count)++)
1194 		pmu->pmu_disable(pmu);
1195 }
1196 
1197 void perf_pmu_enable(struct pmu *pmu)
1198 {
1199 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1200 	if (!--(*count))
1201 		pmu->pmu_enable(pmu);
1202 }
1203 
1204 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1205 
1206 /*
1207  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1208  * perf_event_task_tick() are fully serialized because they're strictly cpu
1209  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1210  * disabled, while perf_event_task_tick is called from IRQ context.
1211  */
1212 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1213 {
1214 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1215 
1216 	lockdep_assert_irqs_disabled();
1217 
1218 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1219 
1220 	list_add(&ctx->active_ctx_list, head);
1221 }
1222 
1223 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1224 {
1225 	lockdep_assert_irqs_disabled();
1226 
1227 	WARN_ON(list_empty(&ctx->active_ctx_list));
1228 
1229 	list_del_init(&ctx->active_ctx_list);
1230 }
1231 
1232 static void get_ctx(struct perf_event_context *ctx)
1233 {
1234 	refcount_inc(&ctx->refcount);
1235 }
1236 
1237 static void free_ctx(struct rcu_head *head)
1238 {
1239 	struct perf_event_context *ctx;
1240 
1241 	ctx = container_of(head, struct perf_event_context, rcu_head);
1242 	kfree(ctx->task_ctx_data);
1243 	kfree(ctx);
1244 }
1245 
1246 static void put_ctx(struct perf_event_context *ctx)
1247 {
1248 	if (refcount_dec_and_test(&ctx->refcount)) {
1249 		if (ctx->parent_ctx)
1250 			put_ctx(ctx->parent_ctx);
1251 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1252 			put_task_struct(ctx->task);
1253 		call_rcu(&ctx->rcu_head, free_ctx);
1254 	}
1255 }
1256 
1257 /*
1258  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1259  * perf_pmu_migrate_context() we need some magic.
1260  *
1261  * Those places that change perf_event::ctx will hold both
1262  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1263  *
1264  * Lock ordering is by mutex address. There are two other sites where
1265  * perf_event_context::mutex nests and those are:
1266  *
1267  *  - perf_event_exit_task_context()	[ child , 0 ]
1268  *      perf_event_exit_event()
1269  *        put_event()			[ parent, 1 ]
1270  *
1271  *  - perf_event_init_context()		[ parent, 0 ]
1272  *      inherit_task_group()
1273  *        inherit_group()
1274  *          inherit_event()
1275  *            perf_event_alloc()
1276  *              perf_init_event()
1277  *                perf_try_init_event()	[ child , 1 ]
1278  *
1279  * While it appears there is an obvious deadlock here -- the parent and child
1280  * nesting levels are inverted between the two. This is in fact safe because
1281  * life-time rules separate them. That is an exiting task cannot fork, and a
1282  * spawning task cannot (yet) exit.
1283  *
1284  * But remember that that these are parent<->child context relations, and
1285  * migration does not affect children, therefore these two orderings should not
1286  * interact.
1287  *
1288  * The change in perf_event::ctx does not affect children (as claimed above)
1289  * because the sys_perf_event_open() case will install a new event and break
1290  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1291  * concerned with cpuctx and that doesn't have children.
1292  *
1293  * The places that change perf_event::ctx will issue:
1294  *
1295  *   perf_remove_from_context();
1296  *   synchronize_rcu();
1297  *   perf_install_in_context();
1298  *
1299  * to affect the change. The remove_from_context() + synchronize_rcu() should
1300  * quiesce the event, after which we can install it in the new location. This
1301  * means that only external vectors (perf_fops, prctl) can perturb the event
1302  * while in transit. Therefore all such accessors should also acquire
1303  * perf_event_context::mutex to serialize against this.
1304  *
1305  * However; because event->ctx can change while we're waiting to acquire
1306  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1307  * function.
1308  *
1309  * Lock order:
1310  *    exec_update_mutex
1311  *	task_struct::perf_event_mutex
1312  *	  perf_event_context::mutex
1313  *	    perf_event::child_mutex;
1314  *	      perf_event_context::lock
1315  *	    perf_event::mmap_mutex
1316  *	    mmap_sem
1317  *	      perf_addr_filters_head::lock
1318  *
1319  *    cpu_hotplug_lock
1320  *      pmus_lock
1321  *	  cpuctx->mutex / perf_event_context::mutex
1322  */
1323 static struct perf_event_context *
1324 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1325 {
1326 	struct perf_event_context *ctx;
1327 
1328 again:
1329 	rcu_read_lock();
1330 	ctx = READ_ONCE(event->ctx);
1331 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1332 		rcu_read_unlock();
1333 		goto again;
1334 	}
1335 	rcu_read_unlock();
1336 
1337 	mutex_lock_nested(&ctx->mutex, nesting);
1338 	if (event->ctx != ctx) {
1339 		mutex_unlock(&ctx->mutex);
1340 		put_ctx(ctx);
1341 		goto again;
1342 	}
1343 
1344 	return ctx;
1345 }
1346 
1347 static inline struct perf_event_context *
1348 perf_event_ctx_lock(struct perf_event *event)
1349 {
1350 	return perf_event_ctx_lock_nested(event, 0);
1351 }
1352 
1353 static void perf_event_ctx_unlock(struct perf_event *event,
1354 				  struct perf_event_context *ctx)
1355 {
1356 	mutex_unlock(&ctx->mutex);
1357 	put_ctx(ctx);
1358 }
1359 
1360 /*
1361  * This must be done under the ctx->lock, such as to serialize against
1362  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1363  * calling scheduler related locks and ctx->lock nests inside those.
1364  */
1365 static __must_check struct perf_event_context *
1366 unclone_ctx(struct perf_event_context *ctx)
1367 {
1368 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1369 
1370 	lockdep_assert_held(&ctx->lock);
1371 
1372 	if (parent_ctx)
1373 		ctx->parent_ctx = NULL;
1374 	ctx->generation++;
1375 
1376 	return parent_ctx;
1377 }
1378 
1379 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1380 				enum pid_type type)
1381 {
1382 	u32 nr;
1383 	/*
1384 	 * only top level events have the pid namespace they were created in
1385 	 */
1386 	if (event->parent)
1387 		event = event->parent;
1388 
1389 	nr = __task_pid_nr_ns(p, type, event->ns);
1390 	/* avoid -1 if it is idle thread or runs in another ns */
1391 	if (!nr && !pid_alive(p))
1392 		nr = -1;
1393 	return nr;
1394 }
1395 
1396 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1397 {
1398 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1399 }
1400 
1401 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1402 {
1403 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1404 }
1405 
1406 /*
1407  * If we inherit events we want to return the parent event id
1408  * to userspace.
1409  */
1410 static u64 primary_event_id(struct perf_event *event)
1411 {
1412 	u64 id = event->id;
1413 
1414 	if (event->parent)
1415 		id = event->parent->id;
1416 
1417 	return id;
1418 }
1419 
1420 /*
1421  * Get the perf_event_context for a task and lock it.
1422  *
1423  * This has to cope with with the fact that until it is locked,
1424  * the context could get moved to another task.
1425  */
1426 static struct perf_event_context *
1427 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1428 {
1429 	struct perf_event_context *ctx;
1430 
1431 retry:
1432 	/*
1433 	 * One of the few rules of preemptible RCU is that one cannot do
1434 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1435 	 * part of the read side critical section was irqs-enabled -- see
1436 	 * rcu_read_unlock_special().
1437 	 *
1438 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1439 	 * side critical section has interrupts disabled.
1440 	 */
1441 	local_irq_save(*flags);
1442 	rcu_read_lock();
1443 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1444 	if (ctx) {
1445 		/*
1446 		 * If this context is a clone of another, it might
1447 		 * get swapped for another underneath us by
1448 		 * perf_event_task_sched_out, though the
1449 		 * rcu_read_lock() protects us from any context
1450 		 * getting freed.  Lock the context and check if it
1451 		 * got swapped before we could get the lock, and retry
1452 		 * if so.  If we locked the right context, then it
1453 		 * can't get swapped on us any more.
1454 		 */
1455 		raw_spin_lock(&ctx->lock);
1456 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1457 			raw_spin_unlock(&ctx->lock);
1458 			rcu_read_unlock();
1459 			local_irq_restore(*flags);
1460 			goto retry;
1461 		}
1462 
1463 		if (ctx->task == TASK_TOMBSTONE ||
1464 		    !refcount_inc_not_zero(&ctx->refcount)) {
1465 			raw_spin_unlock(&ctx->lock);
1466 			ctx = NULL;
1467 		} else {
1468 			WARN_ON_ONCE(ctx->task != task);
1469 		}
1470 	}
1471 	rcu_read_unlock();
1472 	if (!ctx)
1473 		local_irq_restore(*flags);
1474 	return ctx;
1475 }
1476 
1477 /*
1478  * Get the context for a task and increment its pin_count so it
1479  * can't get swapped to another task.  This also increments its
1480  * reference count so that the context can't get freed.
1481  */
1482 static struct perf_event_context *
1483 perf_pin_task_context(struct task_struct *task, int ctxn)
1484 {
1485 	struct perf_event_context *ctx;
1486 	unsigned long flags;
1487 
1488 	ctx = perf_lock_task_context(task, ctxn, &flags);
1489 	if (ctx) {
1490 		++ctx->pin_count;
1491 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1492 	}
1493 	return ctx;
1494 }
1495 
1496 static void perf_unpin_context(struct perf_event_context *ctx)
1497 {
1498 	unsigned long flags;
1499 
1500 	raw_spin_lock_irqsave(&ctx->lock, flags);
1501 	--ctx->pin_count;
1502 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1503 }
1504 
1505 /*
1506  * Update the record of the current time in a context.
1507  */
1508 static void update_context_time(struct perf_event_context *ctx)
1509 {
1510 	u64 now = perf_clock();
1511 
1512 	ctx->time += now - ctx->timestamp;
1513 	ctx->timestamp = now;
1514 }
1515 
1516 static u64 perf_event_time(struct perf_event *event)
1517 {
1518 	struct perf_event_context *ctx = event->ctx;
1519 
1520 	if (is_cgroup_event(event))
1521 		return perf_cgroup_event_time(event);
1522 
1523 	return ctx ? ctx->time : 0;
1524 }
1525 
1526 static enum event_type_t get_event_type(struct perf_event *event)
1527 {
1528 	struct perf_event_context *ctx = event->ctx;
1529 	enum event_type_t event_type;
1530 
1531 	lockdep_assert_held(&ctx->lock);
1532 
1533 	/*
1534 	 * It's 'group type', really, because if our group leader is
1535 	 * pinned, so are we.
1536 	 */
1537 	if (event->group_leader != event)
1538 		event = event->group_leader;
1539 
1540 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1541 	if (!ctx->task)
1542 		event_type |= EVENT_CPU;
1543 
1544 	return event_type;
1545 }
1546 
1547 /*
1548  * Helper function to initialize event group nodes.
1549  */
1550 static void init_event_group(struct perf_event *event)
1551 {
1552 	RB_CLEAR_NODE(&event->group_node);
1553 	event->group_index = 0;
1554 }
1555 
1556 /*
1557  * Extract pinned or flexible groups from the context
1558  * based on event attrs bits.
1559  */
1560 static struct perf_event_groups *
1561 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1562 {
1563 	if (event->attr.pinned)
1564 		return &ctx->pinned_groups;
1565 	else
1566 		return &ctx->flexible_groups;
1567 }
1568 
1569 /*
1570  * Helper function to initializes perf_event_group trees.
1571  */
1572 static void perf_event_groups_init(struct perf_event_groups *groups)
1573 {
1574 	groups->tree = RB_ROOT;
1575 	groups->index = 0;
1576 }
1577 
1578 /*
1579  * Compare function for event groups;
1580  *
1581  * Implements complex key that first sorts by CPU and then by virtual index
1582  * which provides ordering when rotating groups for the same CPU.
1583  */
1584 static bool
1585 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1586 {
1587 	if (left->cpu < right->cpu)
1588 		return true;
1589 	if (left->cpu > right->cpu)
1590 		return false;
1591 
1592 #ifdef CONFIG_CGROUP_PERF
1593 	if (left->cgrp != right->cgrp) {
1594 		if (!left->cgrp || !left->cgrp->css.cgroup) {
1595 			/*
1596 			 * Left has no cgroup but right does, no cgroups come
1597 			 * first.
1598 			 */
1599 			return true;
1600 		}
1601 		if (!right->cgrp || !right->cgrp->css.cgroup) {
1602 			/*
1603 			 * Right has no cgroup but left does, no cgroups come
1604 			 * first.
1605 			 */
1606 			return false;
1607 		}
1608 		/* Two dissimilar cgroups, order by id. */
1609 		if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1610 			return true;
1611 
1612 		return false;
1613 	}
1614 #endif
1615 
1616 	if (left->group_index < right->group_index)
1617 		return true;
1618 	if (left->group_index > right->group_index)
1619 		return false;
1620 
1621 	return false;
1622 }
1623 
1624 /*
1625  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1626  * key (see perf_event_groups_less). This places it last inside the CPU
1627  * subtree.
1628  */
1629 static void
1630 perf_event_groups_insert(struct perf_event_groups *groups,
1631 			 struct perf_event *event)
1632 {
1633 	struct perf_event *node_event;
1634 	struct rb_node *parent;
1635 	struct rb_node **node;
1636 
1637 	event->group_index = ++groups->index;
1638 
1639 	node = &groups->tree.rb_node;
1640 	parent = *node;
1641 
1642 	while (*node) {
1643 		parent = *node;
1644 		node_event = container_of(*node, struct perf_event, group_node);
1645 
1646 		if (perf_event_groups_less(event, node_event))
1647 			node = &parent->rb_left;
1648 		else
1649 			node = &parent->rb_right;
1650 	}
1651 
1652 	rb_link_node(&event->group_node, parent, node);
1653 	rb_insert_color(&event->group_node, &groups->tree);
1654 }
1655 
1656 /*
1657  * Helper function to insert event into the pinned or flexible groups.
1658  */
1659 static void
1660 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1661 {
1662 	struct perf_event_groups *groups;
1663 
1664 	groups = get_event_groups(event, ctx);
1665 	perf_event_groups_insert(groups, event);
1666 }
1667 
1668 /*
1669  * Delete a group from a tree.
1670  */
1671 static void
1672 perf_event_groups_delete(struct perf_event_groups *groups,
1673 			 struct perf_event *event)
1674 {
1675 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1676 		     RB_EMPTY_ROOT(&groups->tree));
1677 
1678 	rb_erase(&event->group_node, &groups->tree);
1679 	init_event_group(event);
1680 }
1681 
1682 /*
1683  * Helper function to delete event from its groups.
1684  */
1685 static void
1686 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1687 {
1688 	struct perf_event_groups *groups;
1689 
1690 	groups = get_event_groups(event, ctx);
1691 	perf_event_groups_delete(groups, event);
1692 }
1693 
1694 /*
1695  * Get the leftmost event in the cpu/cgroup subtree.
1696  */
1697 static struct perf_event *
1698 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1699 			struct cgroup *cgrp)
1700 {
1701 	struct perf_event *node_event = NULL, *match = NULL;
1702 	struct rb_node *node = groups->tree.rb_node;
1703 #ifdef CONFIG_CGROUP_PERF
1704 	u64 node_cgrp_id, cgrp_id = 0;
1705 
1706 	if (cgrp)
1707 		cgrp_id = cgrp->kn->id;
1708 #endif
1709 
1710 	while (node) {
1711 		node_event = container_of(node, struct perf_event, group_node);
1712 
1713 		if (cpu < node_event->cpu) {
1714 			node = node->rb_left;
1715 			continue;
1716 		}
1717 		if (cpu > node_event->cpu) {
1718 			node = node->rb_right;
1719 			continue;
1720 		}
1721 #ifdef CONFIG_CGROUP_PERF
1722 		node_cgrp_id = 0;
1723 		if (node_event->cgrp && node_event->cgrp->css.cgroup)
1724 			node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1725 
1726 		if (cgrp_id < node_cgrp_id) {
1727 			node = node->rb_left;
1728 			continue;
1729 		}
1730 		if (cgrp_id > node_cgrp_id) {
1731 			node = node->rb_right;
1732 			continue;
1733 		}
1734 #endif
1735 		match = node_event;
1736 		node = node->rb_left;
1737 	}
1738 
1739 	return match;
1740 }
1741 
1742 /*
1743  * Like rb_entry_next_safe() for the @cpu subtree.
1744  */
1745 static struct perf_event *
1746 perf_event_groups_next(struct perf_event *event)
1747 {
1748 	struct perf_event *next;
1749 #ifdef CONFIG_CGROUP_PERF
1750 	u64 curr_cgrp_id = 0;
1751 	u64 next_cgrp_id = 0;
1752 #endif
1753 
1754 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1755 	if (next == NULL || next->cpu != event->cpu)
1756 		return NULL;
1757 
1758 #ifdef CONFIG_CGROUP_PERF
1759 	if (event->cgrp && event->cgrp->css.cgroup)
1760 		curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1761 
1762 	if (next->cgrp && next->cgrp->css.cgroup)
1763 		next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1764 
1765 	if (curr_cgrp_id != next_cgrp_id)
1766 		return NULL;
1767 #endif
1768 	return next;
1769 }
1770 
1771 /*
1772  * Iterate through the whole groups tree.
1773  */
1774 #define perf_event_groups_for_each(event, groups)			\
1775 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1776 				typeof(*event), group_node); event;	\
1777 		event = rb_entry_safe(rb_next(&event->group_node),	\
1778 				typeof(*event), group_node))
1779 
1780 /*
1781  * Add an event from the lists for its context.
1782  * Must be called with ctx->mutex and ctx->lock held.
1783  */
1784 static void
1785 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1786 {
1787 	lockdep_assert_held(&ctx->lock);
1788 
1789 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1790 	event->attach_state |= PERF_ATTACH_CONTEXT;
1791 
1792 	event->tstamp = perf_event_time(event);
1793 
1794 	/*
1795 	 * If we're a stand alone event or group leader, we go to the context
1796 	 * list, group events are kept attached to the group so that
1797 	 * perf_group_detach can, at all times, locate all siblings.
1798 	 */
1799 	if (event->group_leader == event) {
1800 		event->group_caps = event->event_caps;
1801 		add_event_to_groups(event, ctx);
1802 	}
1803 
1804 	list_add_rcu(&event->event_entry, &ctx->event_list);
1805 	ctx->nr_events++;
1806 	if (event->attr.inherit_stat)
1807 		ctx->nr_stat++;
1808 
1809 	if (event->state > PERF_EVENT_STATE_OFF)
1810 		perf_cgroup_event_enable(event, ctx);
1811 
1812 	ctx->generation++;
1813 }
1814 
1815 /*
1816  * Initialize event state based on the perf_event_attr::disabled.
1817  */
1818 static inline void perf_event__state_init(struct perf_event *event)
1819 {
1820 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1821 					      PERF_EVENT_STATE_INACTIVE;
1822 }
1823 
1824 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1825 {
1826 	int entry = sizeof(u64); /* value */
1827 	int size = 0;
1828 	int nr = 1;
1829 
1830 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1831 		size += sizeof(u64);
1832 
1833 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1834 		size += sizeof(u64);
1835 
1836 	if (event->attr.read_format & PERF_FORMAT_ID)
1837 		entry += sizeof(u64);
1838 
1839 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1840 		nr += nr_siblings;
1841 		size += sizeof(u64);
1842 	}
1843 
1844 	size += entry * nr;
1845 	event->read_size = size;
1846 }
1847 
1848 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1849 {
1850 	struct perf_sample_data *data;
1851 	u16 size = 0;
1852 
1853 	if (sample_type & PERF_SAMPLE_IP)
1854 		size += sizeof(data->ip);
1855 
1856 	if (sample_type & PERF_SAMPLE_ADDR)
1857 		size += sizeof(data->addr);
1858 
1859 	if (sample_type & PERF_SAMPLE_PERIOD)
1860 		size += sizeof(data->period);
1861 
1862 	if (sample_type & PERF_SAMPLE_WEIGHT)
1863 		size += sizeof(data->weight);
1864 
1865 	if (sample_type & PERF_SAMPLE_READ)
1866 		size += event->read_size;
1867 
1868 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1869 		size += sizeof(data->data_src.val);
1870 
1871 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1872 		size += sizeof(data->txn);
1873 
1874 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1875 		size += sizeof(data->phys_addr);
1876 
1877 	if (sample_type & PERF_SAMPLE_CGROUP)
1878 		size += sizeof(data->cgroup);
1879 
1880 	event->header_size = size;
1881 }
1882 
1883 /*
1884  * Called at perf_event creation and when events are attached/detached from a
1885  * group.
1886  */
1887 static void perf_event__header_size(struct perf_event *event)
1888 {
1889 	__perf_event_read_size(event,
1890 			       event->group_leader->nr_siblings);
1891 	__perf_event_header_size(event, event->attr.sample_type);
1892 }
1893 
1894 static void perf_event__id_header_size(struct perf_event *event)
1895 {
1896 	struct perf_sample_data *data;
1897 	u64 sample_type = event->attr.sample_type;
1898 	u16 size = 0;
1899 
1900 	if (sample_type & PERF_SAMPLE_TID)
1901 		size += sizeof(data->tid_entry);
1902 
1903 	if (sample_type & PERF_SAMPLE_TIME)
1904 		size += sizeof(data->time);
1905 
1906 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1907 		size += sizeof(data->id);
1908 
1909 	if (sample_type & PERF_SAMPLE_ID)
1910 		size += sizeof(data->id);
1911 
1912 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1913 		size += sizeof(data->stream_id);
1914 
1915 	if (sample_type & PERF_SAMPLE_CPU)
1916 		size += sizeof(data->cpu_entry);
1917 
1918 	event->id_header_size = size;
1919 }
1920 
1921 static bool perf_event_validate_size(struct perf_event *event)
1922 {
1923 	/*
1924 	 * The values computed here will be over-written when we actually
1925 	 * attach the event.
1926 	 */
1927 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1928 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1929 	perf_event__id_header_size(event);
1930 
1931 	/*
1932 	 * Sum the lot; should not exceed the 64k limit we have on records.
1933 	 * Conservative limit to allow for callchains and other variable fields.
1934 	 */
1935 	if (event->read_size + event->header_size +
1936 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1937 		return false;
1938 
1939 	return true;
1940 }
1941 
1942 static void perf_group_attach(struct perf_event *event)
1943 {
1944 	struct perf_event *group_leader = event->group_leader, *pos;
1945 
1946 	lockdep_assert_held(&event->ctx->lock);
1947 
1948 	/*
1949 	 * We can have double attach due to group movement in perf_event_open.
1950 	 */
1951 	if (event->attach_state & PERF_ATTACH_GROUP)
1952 		return;
1953 
1954 	event->attach_state |= PERF_ATTACH_GROUP;
1955 
1956 	if (group_leader == event)
1957 		return;
1958 
1959 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1960 
1961 	group_leader->group_caps &= event->event_caps;
1962 
1963 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1964 	group_leader->nr_siblings++;
1965 
1966 	perf_event__header_size(group_leader);
1967 
1968 	for_each_sibling_event(pos, group_leader)
1969 		perf_event__header_size(pos);
1970 }
1971 
1972 /*
1973  * Remove an event from the lists for its context.
1974  * Must be called with ctx->mutex and ctx->lock held.
1975  */
1976 static void
1977 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1978 {
1979 	WARN_ON_ONCE(event->ctx != ctx);
1980 	lockdep_assert_held(&ctx->lock);
1981 
1982 	/*
1983 	 * We can have double detach due to exit/hot-unplug + close.
1984 	 */
1985 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1986 		return;
1987 
1988 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1989 
1990 	ctx->nr_events--;
1991 	if (event->attr.inherit_stat)
1992 		ctx->nr_stat--;
1993 
1994 	list_del_rcu(&event->event_entry);
1995 
1996 	if (event->group_leader == event)
1997 		del_event_from_groups(event, ctx);
1998 
1999 	/*
2000 	 * If event was in error state, then keep it
2001 	 * that way, otherwise bogus counts will be
2002 	 * returned on read(). The only way to get out
2003 	 * of error state is by explicit re-enabling
2004 	 * of the event
2005 	 */
2006 	if (event->state > PERF_EVENT_STATE_OFF) {
2007 		perf_cgroup_event_disable(event, ctx);
2008 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2009 	}
2010 
2011 	ctx->generation++;
2012 }
2013 
2014 static int
2015 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2016 {
2017 	if (!has_aux(aux_event))
2018 		return 0;
2019 
2020 	if (!event->pmu->aux_output_match)
2021 		return 0;
2022 
2023 	return event->pmu->aux_output_match(aux_event);
2024 }
2025 
2026 static void put_event(struct perf_event *event);
2027 static void event_sched_out(struct perf_event *event,
2028 			    struct perf_cpu_context *cpuctx,
2029 			    struct perf_event_context *ctx);
2030 
2031 static void perf_put_aux_event(struct perf_event *event)
2032 {
2033 	struct perf_event_context *ctx = event->ctx;
2034 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2035 	struct perf_event *iter;
2036 
2037 	/*
2038 	 * If event uses aux_event tear down the link
2039 	 */
2040 	if (event->aux_event) {
2041 		iter = event->aux_event;
2042 		event->aux_event = NULL;
2043 		put_event(iter);
2044 		return;
2045 	}
2046 
2047 	/*
2048 	 * If the event is an aux_event, tear down all links to
2049 	 * it from other events.
2050 	 */
2051 	for_each_sibling_event(iter, event->group_leader) {
2052 		if (iter->aux_event != event)
2053 			continue;
2054 
2055 		iter->aux_event = NULL;
2056 		put_event(event);
2057 
2058 		/*
2059 		 * If it's ACTIVE, schedule it out and put it into ERROR
2060 		 * state so that we don't try to schedule it again. Note
2061 		 * that perf_event_enable() will clear the ERROR status.
2062 		 */
2063 		event_sched_out(iter, cpuctx, ctx);
2064 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2065 	}
2066 }
2067 
2068 static bool perf_need_aux_event(struct perf_event *event)
2069 {
2070 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2071 }
2072 
2073 static int perf_get_aux_event(struct perf_event *event,
2074 			      struct perf_event *group_leader)
2075 {
2076 	/*
2077 	 * Our group leader must be an aux event if we want to be
2078 	 * an aux_output. This way, the aux event will precede its
2079 	 * aux_output events in the group, and therefore will always
2080 	 * schedule first.
2081 	 */
2082 	if (!group_leader)
2083 		return 0;
2084 
2085 	/*
2086 	 * aux_output and aux_sample_size are mutually exclusive.
2087 	 */
2088 	if (event->attr.aux_output && event->attr.aux_sample_size)
2089 		return 0;
2090 
2091 	if (event->attr.aux_output &&
2092 	    !perf_aux_output_match(event, group_leader))
2093 		return 0;
2094 
2095 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2096 		return 0;
2097 
2098 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2099 		return 0;
2100 
2101 	/*
2102 	 * Link aux_outputs to their aux event; this is undone in
2103 	 * perf_group_detach() by perf_put_aux_event(). When the
2104 	 * group in torn down, the aux_output events loose their
2105 	 * link to the aux_event and can't schedule any more.
2106 	 */
2107 	event->aux_event = group_leader;
2108 
2109 	return 1;
2110 }
2111 
2112 static inline struct list_head *get_event_list(struct perf_event *event)
2113 {
2114 	struct perf_event_context *ctx = event->ctx;
2115 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2116 }
2117 
2118 static void perf_group_detach(struct perf_event *event)
2119 {
2120 	struct perf_event *sibling, *tmp;
2121 	struct perf_event_context *ctx = event->ctx;
2122 
2123 	lockdep_assert_held(&ctx->lock);
2124 
2125 	/*
2126 	 * We can have double detach due to exit/hot-unplug + close.
2127 	 */
2128 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2129 		return;
2130 
2131 	event->attach_state &= ~PERF_ATTACH_GROUP;
2132 
2133 	perf_put_aux_event(event);
2134 
2135 	/*
2136 	 * If this is a sibling, remove it from its group.
2137 	 */
2138 	if (event->group_leader != event) {
2139 		list_del_init(&event->sibling_list);
2140 		event->group_leader->nr_siblings--;
2141 		goto out;
2142 	}
2143 
2144 	/*
2145 	 * If this was a group event with sibling events then
2146 	 * upgrade the siblings to singleton events by adding them
2147 	 * to whatever list we are on.
2148 	 */
2149 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2150 
2151 		sibling->group_leader = sibling;
2152 		list_del_init(&sibling->sibling_list);
2153 
2154 		/* Inherit group flags from the previous leader */
2155 		sibling->group_caps = event->group_caps;
2156 
2157 		if (!RB_EMPTY_NODE(&event->group_node)) {
2158 			add_event_to_groups(sibling, event->ctx);
2159 
2160 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2161 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2162 		}
2163 
2164 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2165 	}
2166 
2167 out:
2168 	perf_event__header_size(event->group_leader);
2169 
2170 	for_each_sibling_event(tmp, event->group_leader)
2171 		perf_event__header_size(tmp);
2172 }
2173 
2174 static bool is_orphaned_event(struct perf_event *event)
2175 {
2176 	return event->state == PERF_EVENT_STATE_DEAD;
2177 }
2178 
2179 static inline int __pmu_filter_match(struct perf_event *event)
2180 {
2181 	struct pmu *pmu = event->pmu;
2182 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2183 }
2184 
2185 /*
2186  * Check whether we should attempt to schedule an event group based on
2187  * PMU-specific filtering. An event group can consist of HW and SW events,
2188  * potentially with a SW leader, so we must check all the filters, to
2189  * determine whether a group is schedulable:
2190  */
2191 static inline int pmu_filter_match(struct perf_event *event)
2192 {
2193 	struct perf_event *sibling;
2194 
2195 	if (!__pmu_filter_match(event))
2196 		return 0;
2197 
2198 	for_each_sibling_event(sibling, event) {
2199 		if (!__pmu_filter_match(sibling))
2200 			return 0;
2201 	}
2202 
2203 	return 1;
2204 }
2205 
2206 static inline int
2207 event_filter_match(struct perf_event *event)
2208 {
2209 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2210 	       perf_cgroup_match(event) && pmu_filter_match(event);
2211 }
2212 
2213 static void
2214 event_sched_out(struct perf_event *event,
2215 		  struct perf_cpu_context *cpuctx,
2216 		  struct perf_event_context *ctx)
2217 {
2218 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2219 
2220 	WARN_ON_ONCE(event->ctx != ctx);
2221 	lockdep_assert_held(&ctx->lock);
2222 
2223 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2224 		return;
2225 
2226 	/*
2227 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2228 	 * we can schedule events _OUT_ individually through things like
2229 	 * __perf_remove_from_context().
2230 	 */
2231 	list_del_init(&event->active_list);
2232 
2233 	perf_pmu_disable(event->pmu);
2234 
2235 	event->pmu->del(event, 0);
2236 	event->oncpu = -1;
2237 
2238 	if (READ_ONCE(event->pending_disable) >= 0) {
2239 		WRITE_ONCE(event->pending_disable, -1);
2240 		perf_cgroup_event_disable(event, ctx);
2241 		state = PERF_EVENT_STATE_OFF;
2242 	}
2243 	perf_event_set_state(event, state);
2244 
2245 	if (!is_software_event(event))
2246 		cpuctx->active_oncpu--;
2247 	if (!--ctx->nr_active)
2248 		perf_event_ctx_deactivate(ctx);
2249 	if (event->attr.freq && event->attr.sample_freq)
2250 		ctx->nr_freq--;
2251 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2252 		cpuctx->exclusive = 0;
2253 
2254 	perf_pmu_enable(event->pmu);
2255 }
2256 
2257 static void
2258 group_sched_out(struct perf_event *group_event,
2259 		struct perf_cpu_context *cpuctx,
2260 		struct perf_event_context *ctx)
2261 {
2262 	struct perf_event *event;
2263 
2264 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2265 		return;
2266 
2267 	perf_pmu_disable(ctx->pmu);
2268 
2269 	event_sched_out(group_event, cpuctx, ctx);
2270 
2271 	/*
2272 	 * Schedule out siblings (if any):
2273 	 */
2274 	for_each_sibling_event(event, group_event)
2275 		event_sched_out(event, cpuctx, ctx);
2276 
2277 	perf_pmu_enable(ctx->pmu);
2278 
2279 	if (group_event->attr.exclusive)
2280 		cpuctx->exclusive = 0;
2281 }
2282 
2283 #define DETACH_GROUP	0x01UL
2284 
2285 /*
2286  * Cross CPU call to remove a performance event
2287  *
2288  * We disable the event on the hardware level first. After that we
2289  * remove it from the context list.
2290  */
2291 static void
2292 __perf_remove_from_context(struct perf_event *event,
2293 			   struct perf_cpu_context *cpuctx,
2294 			   struct perf_event_context *ctx,
2295 			   void *info)
2296 {
2297 	unsigned long flags = (unsigned long)info;
2298 
2299 	if (ctx->is_active & EVENT_TIME) {
2300 		update_context_time(ctx);
2301 		update_cgrp_time_from_cpuctx(cpuctx);
2302 	}
2303 
2304 	event_sched_out(event, cpuctx, ctx);
2305 	if (flags & DETACH_GROUP)
2306 		perf_group_detach(event);
2307 	list_del_event(event, ctx);
2308 
2309 	if (!ctx->nr_events && ctx->is_active) {
2310 		ctx->is_active = 0;
2311 		ctx->rotate_necessary = 0;
2312 		if (ctx->task) {
2313 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2314 			cpuctx->task_ctx = NULL;
2315 		}
2316 	}
2317 }
2318 
2319 /*
2320  * Remove the event from a task's (or a CPU's) list of events.
2321  *
2322  * If event->ctx is a cloned context, callers must make sure that
2323  * every task struct that event->ctx->task could possibly point to
2324  * remains valid.  This is OK when called from perf_release since
2325  * that only calls us on the top-level context, which can't be a clone.
2326  * When called from perf_event_exit_task, it's OK because the
2327  * context has been detached from its task.
2328  */
2329 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2330 {
2331 	struct perf_event_context *ctx = event->ctx;
2332 
2333 	lockdep_assert_held(&ctx->mutex);
2334 
2335 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2336 
2337 	/*
2338 	 * The above event_function_call() can NO-OP when it hits
2339 	 * TASK_TOMBSTONE. In that case we must already have been detached
2340 	 * from the context (by perf_event_exit_event()) but the grouping
2341 	 * might still be in-tact.
2342 	 */
2343 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2344 	if ((flags & DETACH_GROUP) &&
2345 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2346 		/*
2347 		 * Since in that case we cannot possibly be scheduled, simply
2348 		 * detach now.
2349 		 */
2350 		raw_spin_lock_irq(&ctx->lock);
2351 		perf_group_detach(event);
2352 		raw_spin_unlock_irq(&ctx->lock);
2353 	}
2354 }
2355 
2356 /*
2357  * Cross CPU call to disable a performance event
2358  */
2359 static void __perf_event_disable(struct perf_event *event,
2360 				 struct perf_cpu_context *cpuctx,
2361 				 struct perf_event_context *ctx,
2362 				 void *info)
2363 {
2364 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2365 		return;
2366 
2367 	if (ctx->is_active & EVENT_TIME) {
2368 		update_context_time(ctx);
2369 		update_cgrp_time_from_event(event);
2370 	}
2371 
2372 	if (event == event->group_leader)
2373 		group_sched_out(event, cpuctx, ctx);
2374 	else
2375 		event_sched_out(event, cpuctx, ctx);
2376 
2377 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2378 	perf_cgroup_event_disable(event, ctx);
2379 }
2380 
2381 /*
2382  * Disable an event.
2383  *
2384  * If event->ctx is a cloned context, callers must make sure that
2385  * every task struct that event->ctx->task could possibly point to
2386  * remains valid.  This condition is satisfied when called through
2387  * perf_event_for_each_child or perf_event_for_each because they
2388  * hold the top-level event's child_mutex, so any descendant that
2389  * goes to exit will block in perf_event_exit_event().
2390  *
2391  * When called from perf_pending_event it's OK because event->ctx
2392  * is the current context on this CPU and preemption is disabled,
2393  * hence we can't get into perf_event_task_sched_out for this context.
2394  */
2395 static void _perf_event_disable(struct perf_event *event)
2396 {
2397 	struct perf_event_context *ctx = event->ctx;
2398 
2399 	raw_spin_lock_irq(&ctx->lock);
2400 	if (event->state <= PERF_EVENT_STATE_OFF) {
2401 		raw_spin_unlock_irq(&ctx->lock);
2402 		return;
2403 	}
2404 	raw_spin_unlock_irq(&ctx->lock);
2405 
2406 	event_function_call(event, __perf_event_disable, NULL);
2407 }
2408 
2409 void perf_event_disable_local(struct perf_event *event)
2410 {
2411 	event_function_local(event, __perf_event_disable, NULL);
2412 }
2413 
2414 /*
2415  * Strictly speaking kernel users cannot create groups and therefore this
2416  * interface does not need the perf_event_ctx_lock() magic.
2417  */
2418 void perf_event_disable(struct perf_event *event)
2419 {
2420 	struct perf_event_context *ctx;
2421 
2422 	ctx = perf_event_ctx_lock(event);
2423 	_perf_event_disable(event);
2424 	perf_event_ctx_unlock(event, ctx);
2425 }
2426 EXPORT_SYMBOL_GPL(perf_event_disable);
2427 
2428 void perf_event_disable_inatomic(struct perf_event *event)
2429 {
2430 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2431 	/* can fail, see perf_pending_event_disable() */
2432 	irq_work_queue(&event->pending);
2433 }
2434 
2435 static void perf_set_shadow_time(struct perf_event *event,
2436 				 struct perf_event_context *ctx)
2437 {
2438 	/*
2439 	 * use the correct time source for the time snapshot
2440 	 *
2441 	 * We could get by without this by leveraging the
2442 	 * fact that to get to this function, the caller
2443 	 * has most likely already called update_context_time()
2444 	 * and update_cgrp_time_xx() and thus both timestamp
2445 	 * are identical (or very close). Given that tstamp is,
2446 	 * already adjusted for cgroup, we could say that:
2447 	 *    tstamp - ctx->timestamp
2448 	 * is equivalent to
2449 	 *    tstamp - cgrp->timestamp.
2450 	 *
2451 	 * Then, in perf_output_read(), the calculation would
2452 	 * work with no changes because:
2453 	 * - event is guaranteed scheduled in
2454 	 * - no scheduled out in between
2455 	 * - thus the timestamp would be the same
2456 	 *
2457 	 * But this is a bit hairy.
2458 	 *
2459 	 * So instead, we have an explicit cgroup call to remain
2460 	 * within the time time source all along. We believe it
2461 	 * is cleaner and simpler to understand.
2462 	 */
2463 	if (is_cgroup_event(event))
2464 		perf_cgroup_set_shadow_time(event, event->tstamp);
2465 	else
2466 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2467 }
2468 
2469 #define MAX_INTERRUPTS (~0ULL)
2470 
2471 static void perf_log_throttle(struct perf_event *event, int enable);
2472 static void perf_log_itrace_start(struct perf_event *event);
2473 
2474 static int
2475 event_sched_in(struct perf_event *event,
2476 		 struct perf_cpu_context *cpuctx,
2477 		 struct perf_event_context *ctx)
2478 {
2479 	int ret = 0;
2480 
2481 	WARN_ON_ONCE(event->ctx != ctx);
2482 
2483 	lockdep_assert_held(&ctx->lock);
2484 
2485 	if (event->state <= PERF_EVENT_STATE_OFF)
2486 		return 0;
2487 
2488 	WRITE_ONCE(event->oncpu, smp_processor_id());
2489 	/*
2490 	 * Order event::oncpu write to happen before the ACTIVE state is
2491 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2492 	 * ->oncpu if it sees ACTIVE.
2493 	 */
2494 	smp_wmb();
2495 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2496 
2497 	/*
2498 	 * Unthrottle events, since we scheduled we might have missed several
2499 	 * ticks already, also for a heavily scheduling task there is little
2500 	 * guarantee it'll get a tick in a timely manner.
2501 	 */
2502 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2503 		perf_log_throttle(event, 1);
2504 		event->hw.interrupts = 0;
2505 	}
2506 
2507 	perf_pmu_disable(event->pmu);
2508 
2509 	perf_set_shadow_time(event, ctx);
2510 
2511 	perf_log_itrace_start(event);
2512 
2513 	if (event->pmu->add(event, PERF_EF_START)) {
2514 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2515 		event->oncpu = -1;
2516 		ret = -EAGAIN;
2517 		goto out;
2518 	}
2519 
2520 	if (!is_software_event(event))
2521 		cpuctx->active_oncpu++;
2522 	if (!ctx->nr_active++)
2523 		perf_event_ctx_activate(ctx);
2524 	if (event->attr.freq && event->attr.sample_freq)
2525 		ctx->nr_freq++;
2526 
2527 	if (event->attr.exclusive)
2528 		cpuctx->exclusive = 1;
2529 
2530 out:
2531 	perf_pmu_enable(event->pmu);
2532 
2533 	return ret;
2534 }
2535 
2536 static int
2537 group_sched_in(struct perf_event *group_event,
2538 	       struct perf_cpu_context *cpuctx,
2539 	       struct perf_event_context *ctx)
2540 {
2541 	struct perf_event *event, *partial_group = NULL;
2542 	struct pmu *pmu = ctx->pmu;
2543 
2544 	if (group_event->state == PERF_EVENT_STATE_OFF)
2545 		return 0;
2546 
2547 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2548 
2549 	if (event_sched_in(group_event, cpuctx, ctx)) {
2550 		pmu->cancel_txn(pmu);
2551 		perf_mux_hrtimer_restart(cpuctx);
2552 		return -EAGAIN;
2553 	}
2554 
2555 	/*
2556 	 * Schedule in siblings as one group (if any):
2557 	 */
2558 	for_each_sibling_event(event, group_event) {
2559 		if (event_sched_in(event, cpuctx, ctx)) {
2560 			partial_group = event;
2561 			goto group_error;
2562 		}
2563 	}
2564 
2565 	if (!pmu->commit_txn(pmu))
2566 		return 0;
2567 
2568 group_error:
2569 	/*
2570 	 * Groups can be scheduled in as one unit only, so undo any
2571 	 * partial group before returning:
2572 	 * The events up to the failed event are scheduled out normally.
2573 	 */
2574 	for_each_sibling_event(event, group_event) {
2575 		if (event == partial_group)
2576 			break;
2577 
2578 		event_sched_out(event, cpuctx, ctx);
2579 	}
2580 	event_sched_out(group_event, cpuctx, ctx);
2581 
2582 	pmu->cancel_txn(pmu);
2583 
2584 	perf_mux_hrtimer_restart(cpuctx);
2585 
2586 	return -EAGAIN;
2587 }
2588 
2589 /*
2590  * Work out whether we can put this event group on the CPU now.
2591  */
2592 static int group_can_go_on(struct perf_event *event,
2593 			   struct perf_cpu_context *cpuctx,
2594 			   int can_add_hw)
2595 {
2596 	/*
2597 	 * Groups consisting entirely of software events can always go on.
2598 	 */
2599 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2600 		return 1;
2601 	/*
2602 	 * If an exclusive group is already on, no other hardware
2603 	 * events can go on.
2604 	 */
2605 	if (cpuctx->exclusive)
2606 		return 0;
2607 	/*
2608 	 * If this group is exclusive and there are already
2609 	 * events on the CPU, it can't go on.
2610 	 */
2611 	if (event->attr.exclusive && cpuctx->active_oncpu)
2612 		return 0;
2613 	/*
2614 	 * Otherwise, try to add it if all previous groups were able
2615 	 * to go on.
2616 	 */
2617 	return can_add_hw;
2618 }
2619 
2620 static void add_event_to_ctx(struct perf_event *event,
2621 			       struct perf_event_context *ctx)
2622 {
2623 	list_add_event(event, ctx);
2624 	perf_group_attach(event);
2625 }
2626 
2627 static void ctx_sched_out(struct perf_event_context *ctx,
2628 			  struct perf_cpu_context *cpuctx,
2629 			  enum event_type_t event_type);
2630 static void
2631 ctx_sched_in(struct perf_event_context *ctx,
2632 	     struct perf_cpu_context *cpuctx,
2633 	     enum event_type_t event_type,
2634 	     struct task_struct *task);
2635 
2636 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2637 			       struct perf_event_context *ctx,
2638 			       enum event_type_t event_type)
2639 {
2640 	if (!cpuctx->task_ctx)
2641 		return;
2642 
2643 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2644 		return;
2645 
2646 	ctx_sched_out(ctx, cpuctx, event_type);
2647 }
2648 
2649 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2650 				struct perf_event_context *ctx,
2651 				struct task_struct *task)
2652 {
2653 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2654 	if (ctx)
2655 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2656 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2657 	if (ctx)
2658 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2659 }
2660 
2661 /*
2662  * We want to maintain the following priority of scheduling:
2663  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2664  *  - task pinned (EVENT_PINNED)
2665  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2666  *  - task flexible (EVENT_FLEXIBLE).
2667  *
2668  * In order to avoid unscheduling and scheduling back in everything every
2669  * time an event is added, only do it for the groups of equal priority and
2670  * below.
2671  *
2672  * This can be called after a batch operation on task events, in which case
2673  * event_type is a bit mask of the types of events involved. For CPU events,
2674  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2675  */
2676 static void ctx_resched(struct perf_cpu_context *cpuctx,
2677 			struct perf_event_context *task_ctx,
2678 			enum event_type_t event_type)
2679 {
2680 	enum event_type_t ctx_event_type;
2681 	bool cpu_event = !!(event_type & EVENT_CPU);
2682 
2683 	/*
2684 	 * If pinned groups are involved, flexible groups also need to be
2685 	 * scheduled out.
2686 	 */
2687 	if (event_type & EVENT_PINNED)
2688 		event_type |= EVENT_FLEXIBLE;
2689 
2690 	ctx_event_type = event_type & EVENT_ALL;
2691 
2692 	perf_pmu_disable(cpuctx->ctx.pmu);
2693 	if (task_ctx)
2694 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2695 
2696 	/*
2697 	 * Decide which cpu ctx groups to schedule out based on the types
2698 	 * of events that caused rescheduling:
2699 	 *  - EVENT_CPU: schedule out corresponding groups;
2700 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2701 	 *  - otherwise, do nothing more.
2702 	 */
2703 	if (cpu_event)
2704 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2705 	else if (ctx_event_type & EVENT_PINNED)
2706 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2707 
2708 	perf_event_sched_in(cpuctx, task_ctx, current);
2709 	perf_pmu_enable(cpuctx->ctx.pmu);
2710 }
2711 
2712 void perf_pmu_resched(struct pmu *pmu)
2713 {
2714 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2715 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2716 
2717 	perf_ctx_lock(cpuctx, task_ctx);
2718 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2719 	perf_ctx_unlock(cpuctx, task_ctx);
2720 }
2721 
2722 /*
2723  * Cross CPU call to install and enable a performance event
2724  *
2725  * Very similar to remote_function() + event_function() but cannot assume that
2726  * things like ctx->is_active and cpuctx->task_ctx are set.
2727  */
2728 static int  __perf_install_in_context(void *info)
2729 {
2730 	struct perf_event *event = info;
2731 	struct perf_event_context *ctx = event->ctx;
2732 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2733 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2734 	bool reprogram = true;
2735 	int ret = 0;
2736 
2737 	raw_spin_lock(&cpuctx->ctx.lock);
2738 	if (ctx->task) {
2739 		raw_spin_lock(&ctx->lock);
2740 		task_ctx = ctx;
2741 
2742 		reprogram = (ctx->task == current);
2743 
2744 		/*
2745 		 * If the task is running, it must be running on this CPU,
2746 		 * otherwise we cannot reprogram things.
2747 		 *
2748 		 * If its not running, we don't care, ctx->lock will
2749 		 * serialize against it becoming runnable.
2750 		 */
2751 		if (task_curr(ctx->task) && !reprogram) {
2752 			ret = -ESRCH;
2753 			goto unlock;
2754 		}
2755 
2756 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2757 	} else if (task_ctx) {
2758 		raw_spin_lock(&task_ctx->lock);
2759 	}
2760 
2761 #ifdef CONFIG_CGROUP_PERF
2762 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2763 		/*
2764 		 * If the current cgroup doesn't match the event's
2765 		 * cgroup, we should not try to schedule it.
2766 		 */
2767 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2768 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2769 					event->cgrp->css.cgroup);
2770 	}
2771 #endif
2772 
2773 	if (reprogram) {
2774 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2775 		add_event_to_ctx(event, ctx);
2776 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2777 	} else {
2778 		add_event_to_ctx(event, ctx);
2779 	}
2780 
2781 unlock:
2782 	perf_ctx_unlock(cpuctx, task_ctx);
2783 
2784 	return ret;
2785 }
2786 
2787 static bool exclusive_event_installable(struct perf_event *event,
2788 					struct perf_event_context *ctx);
2789 
2790 /*
2791  * Attach a performance event to a context.
2792  *
2793  * Very similar to event_function_call, see comment there.
2794  */
2795 static void
2796 perf_install_in_context(struct perf_event_context *ctx,
2797 			struct perf_event *event,
2798 			int cpu)
2799 {
2800 	struct task_struct *task = READ_ONCE(ctx->task);
2801 
2802 	lockdep_assert_held(&ctx->mutex);
2803 
2804 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2805 
2806 	if (event->cpu != -1)
2807 		event->cpu = cpu;
2808 
2809 	/*
2810 	 * Ensures that if we can observe event->ctx, both the event and ctx
2811 	 * will be 'complete'. See perf_iterate_sb_cpu().
2812 	 */
2813 	smp_store_release(&event->ctx, ctx);
2814 
2815 	/*
2816 	 * perf_event_attr::disabled events will not run and can be initialized
2817 	 * without IPI. Except when this is the first event for the context, in
2818 	 * that case we need the magic of the IPI to set ctx->is_active.
2819 	 *
2820 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2821 	 * event will issue the IPI and reprogram the hardware.
2822 	 */
2823 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2824 		raw_spin_lock_irq(&ctx->lock);
2825 		if (ctx->task == TASK_TOMBSTONE) {
2826 			raw_spin_unlock_irq(&ctx->lock);
2827 			return;
2828 		}
2829 		add_event_to_ctx(event, ctx);
2830 		raw_spin_unlock_irq(&ctx->lock);
2831 		return;
2832 	}
2833 
2834 	if (!task) {
2835 		cpu_function_call(cpu, __perf_install_in_context, event);
2836 		return;
2837 	}
2838 
2839 	/*
2840 	 * Should not happen, we validate the ctx is still alive before calling.
2841 	 */
2842 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2843 		return;
2844 
2845 	/*
2846 	 * Installing events is tricky because we cannot rely on ctx->is_active
2847 	 * to be set in case this is the nr_events 0 -> 1 transition.
2848 	 *
2849 	 * Instead we use task_curr(), which tells us if the task is running.
2850 	 * However, since we use task_curr() outside of rq::lock, we can race
2851 	 * against the actual state. This means the result can be wrong.
2852 	 *
2853 	 * If we get a false positive, we retry, this is harmless.
2854 	 *
2855 	 * If we get a false negative, things are complicated. If we are after
2856 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2857 	 * value must be correct. If we're before, it doesn't matter since
2858 	 * perf_event_context_sched_in() will program the counter.
2859 	 *
2860 	 * However, this hinges on the remote context switch having observed
2861 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2862 	 * ctx::lock in perf_event_context_sched_in().
2863 	 *
2864 	 * We do this by task_function_call(), if the IPI fails to hit the task
2865 	 * we know any future context switch of task must see the
2866 	 * perf_event_ctpx[] store.
2867 	 */
2868 
2869 	/*
2870 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2871 	 * task_cpu() load, such that if the IPI then does not find the task
2872 	 * running, a future context switch of that task must observe the
2873 	 * store.
2874 	 */
2875 	smp_mb();
2876 again:
2877 	if (!task_function_call(task, __perf_install_in_context, event))
2878 		return;
2879 
2880 	raw_spin_lock_irq(&ctx->lock);
2881 	task = ctx->task;
2882 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2883 		/*
2884 		 * Cannot happen because we already checked above (which also
2885 		 * cannot happen), and we hold ctx->mutex, which serializes us
2886 		 * against perf_event_exit_task_context().
2887 		 */
2888 		raw_spin_unlock_irq(&ctx->lock);
2889 		return;
2890 	}
2891 	/*
2892 	 * If the task is not running, ctx->lock will avoid it becoming so,
2893 	 * thus we can safely install the event.
2894 	 */
2895 	if (task_curr(task)) {
2896 		raw_spin_unlock_irq(&ctx->lock);
2897 		goto again;
2898 	}
2899 	add_event_to_ctx(event, ctx);
2900 	raw_spin_unlock_irq(&ctx->lock);
2901 }
2902 
2903 /*
2904  * Cross CPU call to enable a performance event
2905  */
2906 static void __perf_event_enable(struct perf_event *event,
2907 				struct perf_cpu_context *cpuctx,
2908 				struct perf_event_context *ctx,
2909 				void *info)
2910 {
2911 	struct perf_event *leader = event->group_leader;
2912 	struct perf_event_context *task_ctx;
2913 
2914 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2915 	    event->state <= PERF_EVENT_STATE_ERROR)
2916 		return;
2917 
2918 	if (ctx->is_active)
2919 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2920 
2921 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2922 	perf_cgroup_event_enable(event, ctx);
2923 
2924 	if (!ctx->is_active)
2925 		return;
2926 
2927 	if (!event_filter_match(event)) {
2928 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2929 		return;
2930 	}
2931 
2932 	/*
2933 	 * If the event is in a group and isn't the group leader,
2934 	 * then don't put it on unless the group is on.
2935 	 */
2936 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2937 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2938 		return;
2939 	}
2940 
2941 	task_ctx = cpuctx->task_ctx;
2942 	if (ctx->task)
2943 		WARN_ON_ONCE(task_ctx != ctx);
2944 
2945 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2946 }
2947 
2948 /*
2949  * Enable an event.
2950  *
2951  * If event->ctx is a cloned context, callers must make sure that
2952  * every task struct that event->ctx->task could possibly point to
2953  * remains valid.  This condition is satisfied when called through
2954  * perf_event_for_each_child or perf_event_for_each as described
2955  * for perf_event_disable.
2956  */
2957 static void _perf_event_enable(struct perf_event *event)
2958 {
2959 	struct perf_event_context *ctx = event->ctx;
2960 
2961 	raw_spin_lock_irq(&ctx->lock);
2962 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2963 	    event->state <  PERF_EVENT_STATE_ERROR) {
2964 		raw_spin_unlock_irq(&ctx->lock);
2965 		return;
2966 	}
2967 
2968 	/*
2969 	 * If the event is in error state, clear that first.
2970 	 *
2971 	 * That way, if we see the event in error state below, we know that it
2972 	 * has gone back into error state, as distinct from the task having
2973 	 * been scheduled away before the cross-call arrived.
2974 	 */
2975 	if (event->state == PERF_EVENT_STATE_ERROR)
2976 		event->state = PERF_EVENT_STATE_OFF;
2977 	raw_spin_unlock_irq(&ctx->lock);
2978 
2979 	event_function_call(event, __perf_event_enable, NULL);
2980 }
2981 
2982 /*
2983  * See perf_event_disable();
2984  */
2985 void perf_event_enable(struct perf_event *event)
2986 {
2987 	struct perf_event_context *ctx;
2988 
2989 	ctx = perf_event_ctx_lock(event);
2990 	_perf_event_enable(event);
2991 	perf_event_ctx_unlock(event, ctx);
2992 }
2993 EXPORT_SYMBOL_GPL(perf_event_enable);
2994 
2995 struct stop_event_data {
2996 	struct perf_event	*event;
2997 	unsigned int		restart;
2998 };
2999 
3000 static int __perf_event_stop(void *info)
3001 {
3002 	struct stop_event_data *sd = info;
3003 	struct perf_event *event = sd->event;
3004 
3005 	/* if it's already INACTIVE, do nothing */
3006 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3007 		return 0;
3008 
3009 	/* matches smp_wmb() in event_sched_in() */
3010 	smp_rmb();
3011 
3012 	/*
3013 	 * There is a window with interrupts enabled before we get here,
3014 	 * so we need to check again lest we try to stop another CPU's event.
3015 	 */
3016 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3017 		return -EAGAIN;
3018 
3019 	event->pmu->stop(event, PERF_EF_UPDATE);
3020 
3021 	/*
3022 	 * May race with the actual stop (through perf_pmu_output_stop()),
3023 	 * but it is only used for events with AUX ring buffer, and such
3024 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3025 	 * see comments in perf_aux_output_begin().
3026 	 *
3027 	 * Since this is happening on an event-local CPU, no trace is lost
3028 	 * while restarting.
3029 	 */
3030 	if (sd->restart)
3031 		event->pmu->start(event, 0);
3032 
3033 	return 0;
3034 }
3035 
3036 static int perf_event_stop(struct perf_event *event, int restart)
3037 {
3038 	struct stop_event_data sd = {
3039 		.event		= event,
3040 		.restart	= restart,
3041 	};
3042 	int ret = 0;
3043 
3044 	do {
3045 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3046 			return 0;
3047 
3048 		/* matches smp_wmb() in event_sched_in() */
3049 		smp_rmb();
3050 
3051 		/*
3052 		 * We only want to restart ACTIVE events, so if the event goes
3053 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3054 		 * fall through with ret==-ENXIO.
3055 		 */
3056 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3057 					__perf_event_stop, &sd);
3058 	} while (ret == -EAGAIN);
3059 
3060 	return ret;
3061 }
3062 
3063 /*
3064  * In order to contain the amount of racy and tricky in the address filter
3065  * configuration management, it is a two part process:
3066  *
3067  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3068  *      we update the addresses of corresponding vmas in
3069  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3070  * (p2) when an event is scheduled in (pmu::add), it calls
3071  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3072  *      if the generation has changed since the previous call.
3073  *
3074  * If (p1) happens while the event is active, we restart it to force (p2).
3075  *
3076  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3077  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3078  *     ioctl;
3079  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3080  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
3081  *     for reading;
3082  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3083  *     of exec.
3084  */
3085 void perf_event_addr_filters_sync(struct perf_event *event)
3086 {
3087 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3088 
3089 	if (!has_addr_filter(event))
3090 		return;
3091 
3092 	raw_spin_lock(&ifh->lock);
3093 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3094 		event->pmu->addr_filters_sync(event);
3095 		event->hw.addr_filters_gen = event->addr_filters_gen;
3096 	}
3097 	raw_spin_unlock(&ifh->lock);
3098 }
3099 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3100 
3101 static int _perf_event_refresh(struct perf_event *event, int refresh)
3102 {
3103 	/*
3104 	 * not supported on inherited events
3105 	 */
3106 	if (event->attr.inherit || !is_sampling_event(event))
3107 		return -EINVAL;
3108 
3109 	atomic_add(refresh, &event->event_limit);
3110 	_perf_event_enable(event);
3111 
3112 	return 0;
3113 }
3114 
3115 /*
3116  * See perf_event_disable()
3117  */
3118 int perf_event_refresh(struct perf_event *event, int refresh)
3119 {
3120 	struct perf_event_context *ctx;
3121 	int ret;
3122 
3123 	ctx = perf_event_ctx_lock(event);
3124 	ret = _perf_event_refresh(event, refresh);
3125 	perf_event_ctx_unlock(event, ctx);
3126 
3127 	return ret;
3128 }
3129 EXPORT_SYMBOL_GPL(perf_event_refresh);
3130 
3131 static int perf_event_modify_breakpoint(struct perf_event *bp,
3132 					 struct perf_event_attr *attr)
3133 {
3134 	int err;
3135 
3136 	_perf_event_disable(bp);
3137 
3138 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3139 
3140 	if (!bp->attr.disabled)
3141 		_perf_event_enable(bp);
3142 
3143 	return err;
3144 }
3145 
3146 static int perf_event_modify_attr(struct perf_event *event,
3147 				  struct perf_event_attr *attr)
3148 {
3149 	if (event->attr.type != attr->type)
3150 		return -EINVAL;
3151 
3152 	switch (event->attr.type) {
3153 	case PERF_TYPE_BREAKPOINT:
3154 		return perf_event_modify_breakpoint(event, attr);
3155 	default:
3156 		/* Place holder for future additions. */
3157 		return -EOPNOTSUPP;
3158 	}
3159 }
3160 
3161 static void ctx_sched_out(struct perf_event_context *ctx,
3162 			  struct perf_cpu_context *cpuctx,
3163 			  enum event_type_t event_type)
3164 {
3165 	struct perf_event *event, *tmp;
3166 	int is_active = ctx->is_active;
3167 
3168 	lockdep_assert_held(&ctx->lock);
3169 
3170 	if (likely(!ctx->nr_events)) {
3171 		/*
3172 		 * See __perf_remove_from_context().
3173 		 */
3174 		WARN_ON_ONCE(ctx->is_active);
3175 		if (ctx->task)
3176 			WARN_ON_ONCE(cpuctx->task_ctx);
3177 		return;
3178 	}
3179 
3180 	ctx->is_active &= ~event_type;
3181 	if (!(ctx->is_active & EVENT_ALL))
3182 		ctx->is_active = 0;
3183 
3184 	if (ctx->task) {
3185 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3186 		if (!ctx->is_active)
3187 			cpuctx->task_ctx = NULL;
3188 	}
3189 
3190 	/*
3191 	 * Always update time if it was set; not only when it changes.
3192 	 * Otherwise we can 'forget' to update time for any but the last
3193 	 * context we sched out. For example:
3194 	 *
3195 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3196 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3197 	 *
3198 	 * would only update time for the pinned events.
3199 	 */
3200 	if (is_active & EVENT_TIME) {
3201 		/* update (and stop) ctx time */
3202 		update_context_time(ctx);
3203 		update_cgrp_time_from_cpuctx(cpuctx);
3204 	}
3205 
3206 	is_active ^= ctx->is_active; /* changed bits */
3207 
3208 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3209 		return;
3210 
3211 	perf_pmu_disable(ctx->pmu);
3212 	if (is_active & EVENT_PINNED) {
3213 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3214 			group_sched_out(event, cpuctx, ctx);
3215 	}
3216 
3217 	if (is_active & EVENT_FLEXIBLE) {
3218 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3219 			group_sched_out(event, cpuctx, ctx);
3220 
3221 		/*
3222 		 * Since we cleared EVENT_FLEXIBLE, also clear
3223 		 * rotate_necessary, is will be reset by
3224 		 * ctx_flexible_sched_in() when needed.
3225 		 */
3226 		ctx->rotate_necessary = 0;
3227 	}
3228 	perf_pmu_enable(ctx->pmu);
3229 }
3230 
3231 /*
3232  * Test whether two contexts are equivalent, i.e. whether they have both been
3233  * cloned from the same version of the same context.
3234  *
3235  * Equivalence is measured using a generation number in the context that is
3236  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3237  * and list_del_event().
3238  */
3239 static int context_equiv(struct perf_event_context *ctx1,
3240 			 struct perf_event_context *ctx2)
3241 {
3242 	lockdep_assert_held(&ctx1->lock);
3243 	lockdep_assert_held(&ctx2->lock);
3244 
3245 	/* Pinning disables the swap optimization */
3246 	if (ctx1->pin_count || ctx2->pin_count)
3247 		return 0;
3248 
3249 	/* If ctx1 is the parent of ctx2 */
3250 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3251 		return 1;
3252 
3253 	/* If ctx2 is the parent of ctx1 */
3254 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3255 		return 1;
3256 
3257 	/*
3258 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3259 	 * hierarchy, see perf_event_init_context().
3260 	 */
3261 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3262 			ctx1->parent_gen == ctx2->parent_gen)
3263 		return 1;
3264 
3265 	/* Unmatched */
3266 	return 0;
3267 }
3268 
3269 static void __perf_event_sync_stat(struct perf_event *event,
3270 				     struct perf_event *next_event)
3271 {
3272 	u64 value;
3273 
3274 	if (!event->attr.inherit_stat)
3275 		return;
3276 
3277 	/*
3278 	 * Update the event value, we cannot use perf_event_read()
3279 	 * because we're in the middle of a context switch and have IRQs
3280 	 * disabled, which upsets smp_call_function_single(), however
3281 	 * we know the event must be on the current CPU, therefore we
3282 	 * don't need to use it.
3283 	 */
3284 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3285 		event->pmu->read(event);
3286 
3287 	perf_event_update_time(event);
3288 
3289 	/*
3290 	 * In order to keep per-task stats reliable we need to flip the event
3291 	 * values when we flip the contexts.
3292 	 */
3293 	value = local64_read(&next_event->count);
3294 	value = local64_xchg(&event->count, value);
3295 	local64_set(&next_event->count, value);
3296 
3297 	swap(event->total_time_enabled, next_event->total_time_enabled);
3298 	swap(event->total_time_running, next_event->total_time_running);
3299 
3300 	/*
3301 	 * Since we swizzled the values, update the user visible data too.
3302 	 */
3303 	perf_event_update_userpage(event);
3304 	perf_event_update_userpage(next_event);
3305 }
3306 
3307 static void perf_event_sync_stat(struct perf_event_context *ctx,
3308 				   struct perf_event_context *next_ctx)
3309 {
3310 	struct perf_event *event, *next_event;
3311 
3312 	if (!ctx->nr_stat)
3313 		return;
3314 
3315 	update_context_time(ctx);
3316 
3317 	event = list_first_entry(&ctx->event_list,
3318 				   struct perf_event, event_entry);
3319 
3320 	next_event = list_first_entry(&next_ctx->event_list,
3321 					struct perf_event, event_entry);
3322 
3323 	while (&event->event_entry != &ctx->event_list &&
3324 	       &next_event->event_entry != &next_ctx->event_list) {
3325 
3326 		__perf_event_sync_stat(event, next_event);
3327 
3328 		event = list_next_entry(event, event_entry);
3329 		next_event = list_next_entry(next_event, event_entry);
3330 	}
3331 }
3332 
3333 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3334 					 struct task_struct *next)
3335 {
3336 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3337 	struct perf_event_context *next_ctx;
3338 	struct perf_event_context *parent, *next_parent;
3339 	struct perf_cpu_context *cpuctx;
3340 	int do_switch = 1;
3341 
3342 	if (likely(!ctx))
3343 		return;
3344 
3345 	cpuctx = __get_cpu_context(ctx);
3346 	if (!cpuctx->task_ctx)
3347 		return;
3348 
3349 	rcu_read_lock();
3350 	next_ctx = next->perf_event_ctxp[ctxn];
3351 	if (!next_ctx)
3352 		goto unlock;
3353 
3354 	parent = rcu_dereference(ctx->parent_ctx);
3355 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3356 
3357 	/* If neither context have a parent context; they cannot be clones. */
3358 	if (!parent && !next_parent)
3359 		goto unlock;
3360 
3361 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3362 		/*
3363 		 * Looks like the two contexts are clones, so we might be
3364 		 * able to optimize the context switch.  We lock both
3365 		 * contexts and check that they are clones under the
3366 		 * lock (including re-checking that neither has been
3367 		 * uncloned in the meantime).  It doesn't matter which
3368 		 * order we take the locks because no other cpu could
3369 		 * be trying to lock both of these tasks.
3370 		 */
3371 		raw_spin_lock(&ctx->lock);
3372 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3373 		if (context_equiv(ctx, next_ctx)) {
3374 			struct pmu *pmu = ctx->pmu;
3375 
3376 			WRITE_ONCE(ctx->task, next);
3377 			WRITE_ONCE(next_ctx->task, task);
3378 
3379 			/*
3380 			 * PMU specific parts of task perf context can require
3381 			 * additional synchronization. As an example of such
3382 			 * synchronization see implementation details of Intel
3383 			 * LBR call stack data profiling;
3384 			 */
3385 			if (pmu->swap_task_ctx)
3386 				pmu->swap_task_ctx(ctx, next_ctx);
3387 			else
3388 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3389 
3390 			/*
3391 			 * RCU_INIT_POINTER here is safe because we've not
3392 			 * modified the ctx and the above modification of
3393 			 * ctx->task and ctx->task_ctx_data are immaterial
3394 			 * since those values are always verified under
3395 			 * ctx->lock which we're now holding.
3396 			 */
3397 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3398 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3399 
3400 			do_switch = 0;
3401 
3402 			perf_event_sync_stat(ctx, next_ctx);
3403 		}
3404 		raw_spin_unlock(&next_ctx->lock);
3405 		raw_spin_unlock(&ctx->lock);
3406 	}
3407 unlock:
3408 	rcu_read_unlock();
3409 
3410 	if (do_switch) {
3411 		raw_spin_lock(&ctx->lock);
3412 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3413 		raw_spin_unlock(&ctx->lock);
3414 	}
3415 }
3416 
3417 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3418 
3419 void perf_sched_cb_dec(struct pmu *pmu)
3420 {
3421 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3422 
3423 	this_cpu_dec(perf_sched_cb_usages);
3424 
3425 	if (!--cpuctx->sched_cb_usage)
3426 		list_del(&cpuctx->sched_cb_entry);
3427 }
3428 
3429 
3430 void perf_sched_cb_inc(struct pmu *pmu)
3431 {
3432 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3433 
3434 	if (!cpuctx->sched_cb_usage++)
3435 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3436 
3437 	this_cpu_inc(perf_sched_cb_usages);
3438 }
3439 
3440 /*
3441  * This function provides the context switch callback to the lower code
3442  * layer. It is invoked ONLY when the context switch callback is enabled.
3443  *
3444  * This callback is relevant even to per-cpu events; for example multi event
3445  * PEBS requires this to provide PID/TID information. This requires we flush
3446  * all queued PEBS records before we context switch to a new task.
3447  */
3448 static void perf_pmu_sched_task(struct task_struct *prev,
3449 				struct task_struct *next,
3450 				bool sched_in)
3451 {
3452 	struct perf_cpu_context *cpuctx;
3453 	struct pmu *pmu;
3454 
3455 	if (prev == next)
3456 		return;
3457 
3458 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3459 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3460 
3461 		if (WARN_ON_ONCE(!pmu->sched_task))
3462 			continue;
3463 
3464 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3465 		perf_pmu_disable(pmu);
3466 
3467 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3468 
3469 		perf_pmu_enable(pmu);
3470 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3471 	}
3472 }
3473 
3474 static void perf_event_switch(struct task_struct *task,
3475 			      struct task_struct *next_prev, bool sched_in);
3476 
3477 #define for_each_task_context_nr(ctxn)					\
3478 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3479 
3480 /*
3481  * Called from scheduler to remove the events of the current task,
3482  * with interrupts disabled.
3483  *
3484  * We stop each event and update the event value in event->count.
3485  *
3486  * This does not protect us against NMI, but disable()
3487  * sets the disabled bit in the control field of event _before_
3488  * accessing the event control register. If a NMI hits, then it will
3489  * not restart the event.
3490  */
3491 void __perf_event_task_sched_out(struct task_struct *task,
3492 				 struct task_struct *next)
3493 {
3494 	int ctxn;
3495 
3496 	if (__this_cpu_read(perf_sched_cb_usages))
3497 		perf_pmu_sched_task(task, next, false);
3498 
3499 	if (atomic_read(&nr_switch_events))
3500 		perf_event_switch(task, next, false);
3501 
3502 	for_each_task_context_nr(ctxn)
3503 		perf_event_context_sched_out(task, ctxn, next);
3504 
3505 	/*
3506 	 * if cgroup events exist on this CPU, then we need
3507 	 * to check if we have to switch out PMU state.
3508 	 * cgroup event are system-wide mode only
3509 	 */
3510 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3511 		perf_cgroup_sched_out(task, next);
3512 }
3513 
3514 /*
3515  * Called with IRQs disabled
3516  */
3517 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3518 			      enum event_type_t event_type)
3519 {
3520 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3521 }
3522 
3523 static bool perf_less_group_idx(const void *l, const void *r)
3524 {
3525 	const struct perf_event *le = *(const struct perf_event **)l;
3526 	const struct perf_event *re = *(const struct perf_event **)r;
3527 
3528 	return le->group_index < re->group_index;
3529 }
3530 
3531 static void swap_ptr(void *l, void *r)
3532 {
3533 	void **lp = l, **rp = r;
3534 
3535 	swap(*lp, *rp);
3536 }
3537 
3538 static const struct min_heap_callbacks perf_min_heap = {
3539 	.elem_size = sizeof(struct perf_event *),
3540 	.less = perf_less_group_idx,
3541 	.swp = swap_ptr,
3542 };
3543 
3544 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3545 {
3546 	struct perf_event **itrs = heap->data;
3547 
3548 	if (event) {
3549 		itrs[heap->nr] = event;
3550 		heap->nr++;
3551 	}
3552 }
3553 
3554 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3555 				struct perf_event_groups *groups, int cpu,
3556 				int (*func)(struct perf_event *, void *),
3557 				void *data)
3558 {
3559 #ifdef CONFIG_CGROUP_PERF
3560 	struct cgroup_subsys_state *css = NULL;
3561 #endif
3562 	/* Space for per CPU and/or any CPU event iterators. */
3563 	struct perf_event *itrs[2];
3564 	struct min_heap event_heap;
3565 	struct perf_event **evt;
3566 	int ret;
3567 
3568 	if (cpuctx) {
3569 		event_heap = (struct min_heap){
3570 			.data = cpuctx->heap,
3571 			.nr = 0,
3572 			.size = cpuctx->heap_size,
3573 		};
3574 
3575 		lockdep_assert_held(&cpuctx->ctx.lock);
3576 
3577 #ifdef CONFIG_CGROUP_PERF
3578 		if (cpuctx->cgrp)
3579 			css = &cpuctx->cgrp->css;
3580 #endif
3581 	} else {
3582 		event_heap = (struct min_heap){
3583 			.data = itrs,
3584 			.nr = 0,
3585 			.size = ARRAY_SIZE(itrs),
3586 		};
3587 		/* Events not within a CPU context may be on any CPU. */
3588 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3589 	}
3590 	evt = event_heap.data;
3591 
3592 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3593 
3594 #ifdef CONFIG_CGROUP_PERF
3595 	for (; css; css = css->parent)
3596 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3597 #endif
3598 
3599 	min_heapify_all(&event_heap, &perf_min_heap);
3600 
3601 	while (event_heap.nr) {
3602 		ret = func(*evt, data);
3603 		if (ret)
3604 			return ret;
3605 
3606 		*evt = perf_event_groups_next(*evt);
3607 		if (*evt)
3608 			min_heapify(&event_heap, 0, &perf_min_heap);
3609 		else
3610 			min_heap_pop(&event_heap, &perf_min_heap);
3611 	}
3612 
3613 	return 0;
3614 }
3615 
3616 static int merge_sched_in(struct perf_event *event, void *data)
3617 {
3618 	struct perf_event_context *ctx = event->ctx;
3619 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3620 	int *can_add_hw = data;
3621 
3622 	if (event->state <= PERF_EVENT_STATE_OFF)
3623 		return 0;
3624 
3625 	if (!event_filter_match(event))
3626 		return 0;
3627 
3628 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3629 		if (!group_sched_in(event, cpuctx, ctx))
3630 			list_add_tail(&event->active_list, get_event_list(event));
3631 	}
3632 
3633 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3634 		if (event->attr.pinned) {
3635 			perf_cgroup_event_disable(event, ctx);
3636 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3637 		}
3638 
3639 		*can_add_hw = 0;
3640 		ctx->rotate_necessary = 1;
3641 	}
3642 
3643 	return 0;
3644 }
3645 
3646 static void
3647 ctx_pinned_sched_in(struct perf_event_context *ctx,
3648 		    struct perf_cpu_context *cpuctx)
3649 {
3650 	int can_add_hw = 1;
3651 
3652 	if (ctx != &cpuctx->ctx)
3653 		cpuctx = NULL;
3654 
3655 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3656 			   smp_processor_id(),
3657 			   merge_sched_in, &can_add_hw);
3658 }
3659 
3660 static void
3661 ctx_flexible_sched_in(struct perf_event_context *ctx,
3662 		      struct perf_cpu_context *cpuctx)
3663 {
3664 	int can_add_hw = 1;
3665 
3666 	if (ctx != &cpuctx->ctx)
3667 		cpuctx = NULL;
3668 
3669 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3670 			   smp_processor_id(),
3671 			   merge_sched_in, &can_add_hw);
3672 }
3673 
3674 static void
3675 ctx_sched_in(struct perf_event_context *ctx,
3676 	     struct perf_cpu_context *cpuctx,
3677 	     enum event_type_t event_type,
3678 	     struct task_struct *task)
3679 {
3680 	int is_active = ctx->is_active;
3681 	u64 now;
3682 
3683 	lockdep_assert_held(&ctx->lock);
3684 
3685 	if (likely(!ctx->nr_events))
3686 		return;
3687 
3688 	ctx->is_active |= (event_type | EVENT_TIME);
3689 	if (ctx->task) {
3690 		if (!is_active)
3691 			cpuctx->task_ctx = ctx;
3692 		else
3693 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3694 	}
3695 
3696 	is_active ^= ctx->is_active; /* changed bits */
3697 
3698 	if (is_active & EVENT_TIME) {
3699 		/* start ctx time */
3700 		now = perf_clock();
3701 		ctx->timestamp = now;
3702 		perf_cgroup_set_timestamp(task, ctx);
3703 	}
3704 
3705 	/*
3706 	 * First go through the list and put on any pinned groups
3707 	 * in order to give them the best chance of going on.
3708 	 */
3709 	if (is_active & EVENT_PINNED)
3710 		ctx_pinned_sched_in(ctx, cpuctx);
3711 
3712 	/* Then walk through the lower prio flexible groups */
3713 	if (is_active & EVENT_FLEXIBLE)
3714 		ctx_flexible_sched_in(ctx, cpuctx);
3715 }
3716 
3717 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3718 			     enum event_type_t event_type,
3719 			     struct task_struct *task)
3720 {
3721 	struct perf_event_context *ctx = &cpuctx->ctx;
3722 
3723 	ctx_sched_in(ctx, cpuctx, event_type, task);
3724 }
3725 
3726 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3727 					struct task_struct *task)
3728 {
3729 	struct perf_cpu_context *cpuctx;
3730 
3731 	cpuctx = __get_cpu_context(ctx);
3732 	if (cpuctx->task_ctx == ctx)
3733 		return;
3734 
3735 	perf_ctx_lock(cpuctx, ctx);
3736 	/*
3737 	 * We must check ctx->nr_events while holding ctx->lock, such
3738 	 * that we serialize against perf_install_in_context().
3739 	 */
3740 	if (!ctx->nr_events)
3741 		goto unlock;
3742 
3743 	perf_pmu_disable(ctx->pmu);
3744 	/*
3745 	 * We want to keep the following priority order:
3746 	 * cpu pinned (that don't need to move), task pinned,
3747 	 * cpu flexible, task flexible.
3748 	 *
3749 	 * However, if task's ctx is not carrying any pinned
3750 	 * events, no need to flip the cpuctx's events around.
3751 	 */
3752 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3753 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3754 	perf_event_sched_in(cpuctx, ctx, task);
3755 	perf_pmu_enable(ctx->pmu);
3756 
3757 unlock:
3758 	perf_ctx_unlock(cpuctx, ctx);
3759 }
3760 
3761 /*
3762  * Called from scheduler to add the events of the current task
3763  * with interrupts disabled.
3764  *
3765  * We restore the event value and then enable it.
3766  *
3767  * This does not protect us against NMI, but enable()
3768  * sets the enabled bit in the control field of event _before_
3769  * accessing the event control register. If a NMI hits, then it will
3770  * keep the event running.
3771  */
3772 void __perf_event_task_sched_in(struct task_struct *prev,
3773 				struct task_struct *task)
3774 {
3775 	struct perf_event_context *ctx;
3776 	int ctxn;
3777 
3778 	/*
3779 	 * If cgroup events exist on this CPU, then we need to check if we have
3780 	 * to switch in PMU state; cgroup event are system-wide mode only.
3781 	 *
3782 	 * Since cgroup events are CPU events, we must schedule these in before
3783 	 * we schedule in the task events.
3784 	 */
3785 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3786 		perf_cgroup_sched_in(prev, task);
3787 
3788 	for_each_task_context_nr(ctxn) {
3789 		ctx = task->perf_event_ctxp[ctxn];
3790 		if (likely(!ctx))
3791 			continue;
3792 
3793 		perf_event_context_sched_in(ctx, task);
3794 	}
3795 
3796 	if (atomic_read(&nr_switch_events))
3797 		perf_event_switch(task, prev, true);
3798 
3799 	if (__this_cpu_read(perf_sched_cb_usages))
3800 		perf_pmu_sched_task(prev, task, true);
3801 }
3802 
3803 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3804 {
3805 	u64 frequency = event->attr.sample_freq;
3806 	u64 sec = NSEC_PER_SEC;
3807 	u64 divisor, dividend;
3808 
3809 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3810 
3811 	count_fls = fls64(count);
3812 	nsec_fls = fls64(nsec);
3813 	frequency_fls = fls64(frequency);
3814 	sec_fls = 30;
3815 
3816 	/*
3817 	 * We got @count in @nsec, with a target of sample_freq HZ
3818 	 * the target period becomes:
3819 	 *
3820 	 *             @count * 10^9
3821 	 * period = -------------------
3822 	 *          @nsec * sample_freq
3823 	 *
3824 	 */
3825 
3826 	/*
3827 	 * Reduce accuracy by one bit such that @a and @b converge
3828 	 * to a similar magnitude.
3829 	 */
3830 #define REDUCE_FLS(a, b)		\
3831 do {					\
3832 	if (a##_fls > b##_fls) {	\
3833 		a >>= 1;		\
3834 		a##_fls--;		\
3835 	} else {			\
3836 		b >>= 1;		\
3837 		b##_fls--;		\
3838 	}				\
3839 } while (0)
3840 
3841 	/*
3842 	 * Reduce accuracy until either term fits in a u64, then proceed with
3843 	 * the other, so that finally we can do a u64/u64 division.
3844 	 */
3845 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3846 		REDUCE_FLS(nsec, frequency);
3847 		REDUCE_FLS(sec, count);
3848 	}
3849 
3850 	if (count_fls + sec_fls > 64) {
3851 		divisor = nsec * frequency;
3852 
3853 		while (count_fls + sec_fls > 64) {
3854 			REDUCE_FLS(count, sec);
3855 			divisor >>= 1;
3856 		}
3857 
3858 		dividend = count * sec;
3859 	} else {
3860 		dividend = count * sec;
3861 
3862 		while (nsec_fls + frequency_fls > 64) {
3863 			REDUCE_FLS(nsec, frequency);
3864 			dividend >>= 1;
3865 		}
3866 
3867 		divisor = nsec * frequency;
3868 	}
3869 
3870 	if (!divisor)
3871 		return dividend;
3872 
3873 	return div64_u64(dividend, divisor);
3874 }
3875 
3876 static DEFINE_PER_CPU(int, perf_throttled_count);
3877 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3878 
3879 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3880 {
3881 	struct hw_perf_event *hwc = &event->hw;
3882 	s64 period, sample_period;
3883 	s64 delta;
3884 
3885 	period = perf_calculate_period(event, nsec, count);
3886 
3887 	delta = (s64)(period - hwc->sample_period);
3888 	delta = (delta + 7) / 8; /* low pass filter */
3889 
3890 	sample_period = hwc->sample_period + delta;
3891 
3892 	if (!sample_period)
3893 		sample_period = 1;
3894 
3895 	hwc->sample_period = sample_period;
3896 
3897 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3898 		if (disable)
3899 			event->pmu->stop(event, PERF_EF_UPDATE);
3900 
3901 		local64_set(&hwc->period_left, 0);
3902 
3903 		if (disable)
3904 			event->pmu->start(event, PERF_EF_RELOAD);
3905 	}
3906 }
3907 
3908 /*
3909  * combine freq adjustment with unthrottling to avoid two passes over the
3910  * events. At the same time, make sure, having freq events does not change
3911  * the rate of unthrottling as that would introduce bias.
3912  */
3913 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3914 					   int needs_unthr)
3915 {
3916 	struct perf_event *event;
3917 	struct hw_perf_event *hwc;
3918 	u64 now, period = TICK_NSEC;
3919 	s64 delta;
3920 
3921 	/*
3922 	 * only need to iterate over all events iff:
3923 	 * - context have events in frequency mode (needs freq adjust)
3924 	 * - there are events to unthrottle on this cpu
3925 	 */
3926 	if (!(ctx->nr_freq || needs_unthr))
3927 		return;
3928 
3929 	raw_spin_lock(&ctx->lock);
3930 	perf_pmu_disable(ctx->pmu);
3931 
3932 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3933 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3934 			continue;
3935 
3936 		if (!event_filter_match(event))
3937 			continue;
3938 
3939 		perf_pmu_disable(event->pmu);
3940 
3941 		hwc = &event->hw;
3942 
3943 		if (hwc->interrupts == MAX_INTERRUPTS) {
3944 			hwc->interrupts = 0;
3945 			perf_log_throttle(event, 1);
3946 			event->pmu->start(event, 0);
3947 		}
3948 
3949 		if (!event->attr.freq || !event->attr.sample_freq)
3950 			goto next;
3951 
3952 		/*
3953 		 * stop the event and update event->count
3954 		 */
3955 		event->pmu->stop(event, PERF_EF_UPDATE);
3956 
3957 		now = local64_read(&event->count);
3958 		delta = now - hwc->freq_count_stamp;
3959 		hwc->freq_count_stamp = now;
3960 
3961 		/*
3962 		 * restart the event
3963 		 * reload only if value has changed
3964 		 * we have stopped the event so tell that
3965 		 * to perf_adjust_period() to avoid stopping it
3966 		 * twice.
3967 		 */
3968 		if (delta > 0)
3969 			perf_adjust_period(event, period, delta, false);
3970 
3971 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3972 	next:
3973 		perf_pmu_enable(event->pmu);
3974 	}
3975 
3976 	perf_pmu_enable(ctx->pmu);
3977 	raw_spin_unlock(&ctx->lock);
3978 }
3979 
3980 /*
3981  * Move @event to the tail of the @ctx's elegible events.
3982  */
3983 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3984 {
3985 	/*
3986 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3987 	 * disabled by the inheritance code.
3988 	 */
3989 	if (ctx->rotate_disable)
3990 		return;
3991 
3992 	perf_event_groups_delete(&ctx->flexible_groups, event);
3993 	perf_event_groups_insert(&ctx->flexible_groups, event);
3994 }
3995 
3996 /* pick an event from the flexible_groups to rotate */
3997 static inline struct perf_event *
3998 ctx_event_to_rotate(struct perf_event_context *ctx)
3999 {
4000 	struct perf_event *event;
4001 
4002 	/* pick the first active flexible event */
4003 	event = list_first_entry_or_null(&ctx->flexible_active,
4004 					 struct perf_event, active_list);
4005 
4006 	/* if no active flexible event, pick the first event */
4007 	if (!event) {
4008 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4009 				      typeof(*event), group_node);
4010 	}
4011 
4012 	/*
4013 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4014 	 * finds there are unschedulable events, it will set it again.
4015 	 */
4016 	ctx->rotate_necessary = 0;
4017 
4018 	return event;
4019 }
4020 
4021 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4022 {
4023 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4024 	struct perf_event_context *task_ctx = NULL;
4025 	int cpu_rotate, task_rotate;
4026 
4027 	/*
4028 	 * Since we run this from IRQ context, nobody can install new
4029 	 * events, thus the event count values are stable.
4030 	 */
4031 
4032 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4033 	task_ctx = cpuctx->task_ctx;
4034 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4035 
4036 	if (!(cpu_rotate || task_rotate))
4037 		return false;
4038 
4039 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4040 	perf_pmu_disable(cpuctx->ctx.pmu);
4041 
4042 	if (task_rotate)
4043 		task_event = ctx_event_to_rotate(task_ctx);
4044 	if (cpu_rotate)
4045 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4046 
4047 	/*
4048 	 * As per the order given at ctx_resched() first 'pop' task flexible
4049 	 * and then, if needed CPU flexible.
4050 	 */
4051 	if (task_event || (task_ctx && cpu_event))
4052 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4053 	if (cpu_event)
4054 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4055 
4056 	if (task_event)
4057 		rotate_ctx(task_ctx, task_event);
4058 	if (cpu_event)
4059 		rotate_ctx(&cpuctx->ctx, cpu_event);
4060 
4061 	perf_event_sched_in(cpuctx, task_ctx, current);
4062 
4063 	perf_pmu_enable(cpuctx->ctx.pmu);
4064 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4065 
4066 	return true;
4067 }
4068 
4069 void perf_event_task_tick(void)
4070 {
4071 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4072 	struct perf_event_context *ctx, *tmp;
4073 	int throttled;
4074 
4075 	lockdep_assert_irqs_disabled();
4076 
4077 	__this_cpu_inc(perf_throttled_seq);
4078 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4079 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4080 
4081 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4082 		perf_adjust_freq_unthr_context(ctx, throttled);
4083 }
4084 
4085 static int event_enable_on_exec(struct perf_event *event,
4086 				struct perf_event_context *ctx)
4087 {
4088 	if (!event->attr.enable_on_exec)
4089 		return 0;
4090 
4091 	event->attr.enable_on_exec = 0;
4092 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4093 		return 0;
4094 
4095 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4096 
4097 	return 1;
4098 }
4099 
4100 /*
4101  * Enable all of a task's events that have been marked enable-on-exec.
4102  * This expects task == current.
4103  */
4104 static void perf_event_enable_on_exec(int ctxn)
4105 {
4106 	struct perf_event_context *ctx, *clone_ctx = NULL;
4107 	enum event_type_t event_type = 0;
4108 	struct perf_cpu_context *cpuctx;
4109 	struct perf_event *event;
4110 	unsigned long flags;
4111 	int enabled = 0;
4112 
4113 	local_irq_save(flags);
4114 	ctx = current->perf_event_ctxp[ctxn];
4115 	if (!ctx || !ctx->nr_events)
4116 		goto out;
4117 
4118 	cpuctx = __get_cpu_context(ctx);
4119 	perf_ctx_lock(cpuctx, ctx);
4120 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4121 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4122 		enabled |= event_enable_on_exec(event, ctx);
4123 		event_type |= get_event_type(event);
4124 	}
4125 
4126 	/*
4127 	 * Unclone and reschedule this context if we enabled any event.
4128 	 */
4129 	if (enabled) {
4130 		clone_ctx = unclone_ctx(ctx);
4131 		ctx_resched(cpuctx, ctx, event_type);
4132 	} else {
4133 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4134 	}
4135 	perf_ctx_unlock(cpuctx, ctx);
4136 
4137 out:
4138 	local_irq_restore(flags);
4139 
4140 	if (clone_ctx)
4141 		put_ctx(clone_ctx);
4142 }
4143 
4144 struct perf_read_data {
4145 	struct perf_event *event;
4146 	bool group;
4147 	int ret;
4148 };
4149 
4150 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4151 {
4152 	u16 local_pkg, event_pkg;
4153 
4154 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4155 		int local_cpu = smp_processor_id();
4156 
4157 		event_pkg = topology_physical_package_id(event_cpu);
4158 		local_pkg = topology_physical_package_id(local_cpu);
4159 
4160 		if (event_pkg == local_pkg)
4161 			return local_cpu;
4162 	}
4163 
4164 	return event_cpu;
4165 }
4166 
4167 /*
4168  * Cross CPU call to read the hardware event
4169  */
4170 static void __perf_event_read(void *info)
4171 {
4172 	struct perf_read_data *data = info;
4173 	struct perf_event *sub, *event = data->event;
4174 	struct perf_event_context *ctx = event->ctx;
4175 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4176 	struct pmu *pmu = event->pmu;
4177 
4178 	/*
4179 	 * If this is a task context, we need to check whether it is
4180 	 * the current task context of this cpu.  If not it has been
4181 	 * scheduled out before the smp call arrived.  In that case
4182 	 * event->count would have been updated to a recent sample
4183 	 * when the event was scheduled out.
4184 	 */
4185 	if (ctx->task && cpuctx->task_ctx != ctx)
4186 		return;
4187 
4188 	raw_spin_lock(&ctx->lock);
4189 	if (ctx->is_active & EVENT_TIME) {
4190 		update_context_time(ctx);
4191 		update_cgrp_time_from_event(event);
4192 	}
4193 
4194 	perf_event_update_time(event);
4195 	if (data->group)
4196 		perf_event_update_sibling_time(event);
4197 
4198 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4199 		goto unlock;
4200 
4201 	if (!data->group) {
4202 		pmu->read(event);
4203 		data->ret = 0;
4204 		goto unlock;
4205 	}
4206 
4207 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4208 
4209 	pmu->read(event);
4210 
4211 	for_each_sibling_event(sub, event) {
4212 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4213 			/*
4214 			 * Use sibling's PMU rather than @event's since
4215 			 * sibling could be on different (eg: software) PMU.
4216 			 */
4217 			sub->pmu->read(sub);
4218 		}
4219 	}
4220 
4221 	data->ret = pmu->commit_txn(pmu);
4222 
4223 unlock:
4224 	raw_spin_unlock(&ctx->lock);
4225 }
4226 
4227 static inline u64 perf_event_count(struct perf_event *event)
4228 {
4229 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4230 }
4231 
4232 /*
4233  * NMI-safe method to read a local event, that is an event that
4234  * is:
4235  *   - either for the current task, or for this CPU
4236  *   - does not have inherit set, for inherited task events
4237  *     will not be local and we cannot read them atomically
4238  *   - must not have a pmu::count method
4239  */
4240 int perf_event_read_local(struct perf_event *event, u64 *value,
4241 			  u64 *enabled, u64 *running)
4242 {
4243 	unsigned long flags;
4244 	int ret = 0;
4245 
4246 	/*
4247 	 * Disabling interrupts avoids all counter scheduling (context
4248 	 * switches, timer based rotation and IPIs).
4249 	 */
4250 	local_irq_save(flags);
4251 
4252 	/*
4253 	 * It must not be an event with inherit set, we cannot read
4254 	 * all child counters from atomic context.
4255 	 */
4256 	if (event->attr.inherit) {
4257 		ret = -EOPNOTSUPP;
4258 		goto out;
4259 	}
4260 
4261 	/* If this is a per-task event, it must be for current */
4262 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4263 	    event->hw.target != current) {
4264 		ret = -EINVAL;
4265 		goto out;
4266 	}
4267 
4268 	/* If this is a per-CPU event, it must be for this CPU */
4269 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4270 	    event->cpu != smp_processor_id()) {
4271 		ret = -EINVAL;
4272 		goto out;
4273 	}
4274 
4275 	/* If this is a pinned event it must be running on this CPU */
4276 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4277 		ret = -EBUSY;
4278 		goto out;
4279 	}
4280 
4281 	/*
4282 	 * If the event is currently on this CPU, its either a per-task event,
4283 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4284 	 * oncpu == -1).
4285 	 */
4286 	if (event->oncpu == smp_processor_id())
4287 		event->pmu->read(event);
4288 
4289 	*value = local64_read(&event->count);
4290 	if (enabled || running) {
4291 		u64 now = event->shadow_ctx_time + perf_clock();
4292 		u64 __enabled, __running;
4293 
4294 		__perf_update_times(event, now, &__enabled, &__running);
4295 		if (enabled)
4296 			*enabled = __enabled;
4297 		if (running)
4298 			*running = __running;
4299 	}
4300 out:
4301 	local_irq_restore(flags);
4302 
4303 	return ret;
4304 }
4305 
4306 static int perf_event_read(struct perf_event *event, bool group)
4307 {
4308 	enum perf_event_state state = READ_ONCE(event->state);
4309 	int event_cpu, ret = 0;
4310 
4311 	/*
4312 	 * If event is enabled and currently active on a CPU, update the
4313 	 * value in the event structure:
4314 	 */
4315 again:
4316 	if (state == PERF_EVENT_STATE_ACTIVE) {
4317 		struct perf_read_data data;
4318 
4319 		/*
4320 		 * Orders the ->state and ->oncpu loads such that if we see
4321 		 * ACTIVE we must also see the right ->oncpu.
4322 		 *
4323 		 * Matches the smp_wmb() from event_sched_in().
4324 		 */
4325 		smp_rmb();
4326 
4327 		event_cpu = READ_ONCE(event->oncpu);
4328 		if ((unsigned)event_cpu >= nr_cpu_ids)
4329 			return 0;
4330 
4331 		data = (struct perf_read_data){
4332 			.event = event,
4333 			.group = group,
4334 			.ret = 0,
4335 		};
4336 
4337 		preempt_disable();
4338 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4339 
4340 		/*
4341 		 * Purposely ignore the smp_call_function_single() return
4342 		 * value.
4343 		 *
4344 		 * If event_cpu isn't a valid CPU it means the event got
4345 		 * scheduled out and that will have updated the event count.
4346 		 *
4347 		 * Therefore, either way, we'll have an up-to-date event count
4348 		 * after this.
4349 		 */
4350 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4351 		preempt_enable();
4352 		ret = data.ret;
4353 
4354 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4355 		struct perf_event_context *ctx = event->ctx;
4356 		unsigned long flags;
4357 
4358 		raw_spin_lock_irqsave(&ctx->lock, flags);
4359 		state = event->state;
4360 		if (state != PERF_EVENT_STATE_INACTIVE) {
4361 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4362 			goto again;
4363 		}
4364 
4365 		/*
4366 		 * May read while context is not active (e.g., thread is
4367 		 * blocked), in that case we cannot update context time
4368 		 */
4369 		if (ctx->is_active & EVENT_TIME) {
4370 			update_context_time(ctx);
4371 			update_cgrp_time_from_event(event);
4372 		}
4373 
4374 		perf_event_update_time(event);
4375 		if (group)
4376 			perf_event_update_sibling_time(event);
4377 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4378 	}
4379 
4380 	return ret;
4381 }
4382 
4383 /*
4384  * Initialize the perf_event context in a task_struct:
4385  */
4386 static void __perf_event_init_context(struct perf_event_context *ctx)
4387 {
4388 	raw_spin_lock_init(&ctx->lock);
4389 	mutex_init(&ctx->mutex);
4390 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4391 	perf_event_groups_init(&ctx->pinned_groups);
4392 	perf_event_groups_init(&ctx->flexible_groups);
4393 	INIT_LIST_HEAD(&ctx->event_list);
4394 	INIT_LIST_HEAD(&ctx->pinned_active);
4395 	INIT_LIST_HEAD(&ctx->flexible_active);
4396 	refcount_set(&ctx->refcount, 1);
4397 }
4398 
4399 static struct perf_event_context *
4400 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4401 {
4402 	struct perf_event_context *ctx;
4403 
4404 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4405 	if (!ctx)
4406 		return NULL;
4407 
4408 	__perf_event_init_context(ctx);
4409 	if (task)
4410 		ctx->task = get_task_struct(task);
4411 	ctx->pmu = pmu;
4412 
4413 	return ctx;
4414 }
4415 
4416 static struct task_struct *
4417 find_lively_task_by_vpid(pid_t vpid)
4418 {
4419 	struct task_struct *task;
4420 
4421 	rcu_read_lock();
4422 	if (!vpid)
4423 		task = current;
4424 	else
4425 		task = find_task_by_vpid(vpid);
4426 	if (task)
4427 		get_task_struct(task);
4428 	rcu_read_unlock();
4429 
4430 	if (!task)
4431 		return ERR_PTR(-ESRCH);
4432 
4433 	return task;
4434 }
4435 
4436 /*
4437  * Returns a matching context with refcount and pincount.
4438  */
4439 static struct perf_event_context *
4440 find_get_context(struct pmu *pmu, struct task_struct *task,
4441 		struct perf_event *event)
4442 {
4443 	struct perf_event_context *ctx, *clone_ctx = NULL;
4444 	struct perf_cpu_context *cpuctx;
4445 	void *task_ctx_data = NULL;
4446 	unsigned long flags;
4447 	int ctxn, err;
4448 	int cpu = event->cpu;
4449 
4450 	if (!task) {
4451 		/* Must be root to operate on a CPU event: */
4452 		err = perf_allow_cpu(&event->attr);
4453 		if (err)
4454 			return ERR_PTR(err);
4455 
4456 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4457 		ctx = &cpuctx->ctx;
4458 		get_ctx(ctx);
4459 		++ctx->pin_count;
4460 
4461 		return ctx;
4462 	}
4463 
4464 	err = -EINVAL;
4465 	ctxn = pmu->task_ctx_nr;
4466 	if (ctxn < 0)
4467 		goto errout;
4468 
4469 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4470 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4471 		if (!task_ctx_data) {
4472 			err = -ENOMEM;
4473 			goto errout;
4474 		}
4475 	}
4476 
4477 retry:
4478 	ctx = perf_lock_task_context(task, ctxn, &flags);
4479 	if (ctx) {
4480 		clone_ctx = unclone_ctx(ctx);
4481 		++ctx->pin_count;
4482 
4483 		if (task_ctx_data && !ctx->task_ctx_data) {
4484 			ctx->task_ctx_data = task_ctx_data;
4485 			task_ctx_data = NULL;
4486 		}
4487 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4488 
4489 		if (clone_ctx)
4490 			put_ctx(clone_ctx);
4491 	} else {
4492 		ctx = alloc_perf_context(pmu, task);
4493 		err = -ENOMEM;
4494 		if (!ctx)
4495 			goto errout;
4496 
4497 		if (task_ctx_data) {
4498 			ctx->task_ctx_data = task_ctx_data;
4499 			task_ctx_data = NULL;
4500 		}
4501 
4502 		err = 0;
4503 		mutex_lock(&task->perf_event_mutex);
4504 		/*
4505 		 * If it has already passed perf_event_exit_task().
4506 		 * we must see PF_EXITING, it takes this mutex too.
4507 		 */
4508 		if (task->flags & PF_EXITING)
4509 			err = -ESRCH;
4510 		else if (task->perf_event_ctxp[ctxn])
4511 			err = -EAGAIN;
4512 		else {
4513 			get_ctx(ctx);
4514 			++ctx->pin_count;
4515 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4516 		}
4517 		mutex_unlock(&task->perf_event_mutex);
4518 
4519 		if (unlikely(err)) {
4520 			put_ctx(ctx);
4521 
4522 			if (err == -EAGAIN)
4523 				goto retry;
4524 			goto errout;
4525 		}
4526 	}
4527 
4528 	kfree(task_ctx_data);
4529 	return ctx;
4530 
4531 errout:
4532 	kfree(task_ctx_data);
4533 	return ERR_PTR(err);
4534 }
4535 
4536 static void perf_event_free_filter(struct perf_event *event);
4537 static void perf_event_free_bpf_prog(struct perf_event *event);
4538 
4539 static void free_event_rcu(struct rcu_head *head)
4540 {
4541 	struct perf_event *event;
4542 
4543 	event = container_of(head, struct perf_event, rcu_head);
4544 	if (event->ns)
4545 		put_pid_ns(event->ns);
4546 	perf_event_free_filter(event);
4547 	kfree(event);
4548 }
4549 
4550 static void ring_buffer_attach(struct perf_event *event,
4551 			       struct perf_buffer *rb);
4552 
4553 static void detach_sb_event(struct perf_event *event)
4554 {
4555 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4556 
4557 	raw_spin_lock(&pel->lock);
4558 	list_del_rcu(&event->sb_list);
4559 	raw_spin_unlock(&pel->lock);
4560 }
4561 
4562 static bool is_sb_event(struct perf_event *event)
4563 {
4564 	struct perf_event_attr *attr = &event->attr;
4565 
4566 	if (event->parent)
4567 		return false;
4568 
4569 	if (event->attach_state & PERF_ATTACH_TASK)
4570 		return false;
4571 
4572 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4573 	    attr->comm || attr->comm_exec ||
4574 	    attr->task || attr->ksymbol ||
4575 	    attr->context_switch ||
4576 	    attr->bpf_event)
4577 		return true;
4578 	return false;
4579 }
4580 
4581 static void unaccount_pmu_sb_event(struct perf_event *event)
4582 {
4583 	if (is_sb_event(event))
4584 		detach_sb_event(event);
4585 }
4586 
4587 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4588 {
4589 	if (event->parent)
4590 		return;
4591 
4592 	if (is_cgroup_event(event))
4593 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4594 }
4595 
4596 #ifdef CONFIG_NO_HZ_FULL
4597 static DEFINE_SPINLOCK(nr_freq_lock);
4598 #endif
4599 
4600 static void unaccount_freq_event_nohz(void)
4601 {
4602 #ifdef CONFIG_NO_HZ_FULL
4603 	spin_lock(&nr_freq_lock);
4604 	if (atomic_dec_and_test(&nr_freq_events))
4605 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4606 	spin_unlock(&nr_freq_lock);
4607 #endif
4608 }
4609 
4610 static void unaccount_freq_event(void)
4611 {
4612 	if (tick_nohz_full_enabled())
4613 		unaccount_freq_event_nohz();
4614 	else
4615 		atomic_dec(&nr_freq_events);
4616 }
4617 
4618 static void unaccount_event(struct perf_event *event)
4619 {
4620 	bool dec = false;
4621 
4622 	if (event->parent)
4623 		return;
4624 
4625 	if (event->attach_state & PERF_ATTACH_TASK)
4626 		dec = true;
4627 	if (event->attr.mmap || event->attr.mmap_data)
4628 		atomic_dec(&nr_mmap_events);
4629 	if (event->attr.comm)
4630 		atomic_dec(&nr_comm_events);
4631 	if (event->attr.namespaces)
4632 		atomic_dec(&nr_namespaces_events);
4633 	if (event->attr.cgroup)
4634 		atomic_dec(&nr_cgroup_events);
4635 	if (event->attr.task)
4636 		atomic_dec(&nr_task_events);
4637 	if (event->attr.freq)
4638 		unaccount_freq_event();
4639 	if (event->attr.context_switch) {
4640 		dec = true;
4641 		atomic_dec(&nr_switch_events);
4642 	}
4643 	if (is_cgroup_event(event))
4644 		dec = true;
4645 	if (has_branch_stack(event))
4646 		dec = true;
4647 	if (event->attr.ksymbol)
4648 		atomic_dec(&nr_ksymbol_events);
4649 	if (event->attr.bpf_event)
4650 		atomic_dec(&nr_bpf_events);
4651 
4652 	if (dec) {
4653 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4654 			schedule_delayed_work(&perf_sched_work, HZ);
4655 	}
4656 
4657 	unaccount_event_cpu(event, event->cpu);
4658 
4659 	unaccount_pmu_sb_event(event);
4660 }
4661 
4662 static void perf_sched_delayed(struct work_struct *work)
4663 {
4664 	mutex_lock(&perf_sched_mutex);
4665 	if (atomic_dec_and_test(&perf_sched_count))
4666 		static_branch_disable(&perf_sched_events);
4667 	mutex_unlock(&perf_sched_mutex);
4668 }
4669 
4670 /*
4671  * The following implement mutual exclusion of events on "exclusive" pmus
4672  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4673  * at a time, so we disallow creating events that might conflict, namely:
4674  *
4675  *  1) cpu-wide events in the presence of per-task events,
4676  *  2) per-task events in the presence of cpu-wide events,
4677  *  3) two matching events on the same context.
4678  *
4679  * The former two cases are handled in the allocation path (perf_event_alloc(),
4680  * _free_event()), the latter -- before the first perf_install_in_context().
4681  */
4682 static int exclusive_event_init(struct perf_event *event)
4683 {
4684 	struct pmu *pmu = event->pmu;
4685 
4686 	if (!is_exclusive_pmu(pmu))
4687 		return 0;
4688 
4689 	/*
4690 	 * Prevent co-existence of per-task and cpu-wide events on the
4691 	 * same exclusive pmu.
4692 	 *
4693 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4694 	 * events on this "exclusive" pmu, positive means there are
4695 	 * per-task events.
4696 	 *
4697 	 * Since this is called in perf_event_alloc() path, event::ctx
4698 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4699 	 * to mean "per-task event", because unlike other attach states it
4700 	 * never gets cleared.
4701 	 */
4702 	if (event->attach_state & PERF_ATTACH_TASK) {
4703 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4704 			return -EBUSY;
4705 	} else {
4706 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4707 			return -EBUSY;
4708 	}
4709 
4710 	return 0;
4711 }
4712 
4713 static void exclusive_event_destroy(struct perf_event *event)
4714 {
4715 	struct pmu *pmu = event->pmu;
4716 
4717 	if (!is_exclusive_pmu(pmu))
4718 		return;
4719 
4720 	/* see comment in exclusive_event_init() */
4721 	if (event->attach_state & PERF_ATTACH_TASK)
4722 		atomic_dec(&pmu->exclusive_cnt);
4723 	else
4724 		atomic_inc(&pmu->exclusive_cnt);
4725 }
4726 
4727 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4728 {
4729 	if ((e1->pmu == e2->pmu) &&
4730 	    (e1->cpu == e2->cpu ||
4731 	     e1->cpu == -1 ||
4732 	     e2->cpu == -1))
4733 		return true;
4734 	return false;
4735 }
4736 
4737 static bool exclusive_event_installable(struct perf_event *event,
4738 					struct perf_event_context *ctx)
4739 {
4740 	struct perf_event *iter_event;
4741 	struct pmu *pmu = event->pmu;
4742 
4743 	lockdep_assert_held(&ctx->mutex);
4744 
4745 	if (!is_exclusive_pmu(pmu))
4746 		return true;
4747 
4748 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4749 		if (exclusive_event_match(iter_event, event))
4750 			return false;
4751 	}
4752 
4753 	return true;
4754 }
4755 
4756 static void perf_addr_filters_splice(struct perf_event *event,
4757 				       struct list_head *head);
4758 
4759 static void _free_event(struct perf_event *event)
4760 {
4761 	irq_work_sync(&event->pending);
4762 
4763 	unaccount_event(event);
4764 
4765 	security_perf_event_free(event);
4766 
4767 	if (event->rb) {
4768 		/*
4769 		 * Can happen when we close an event with re-directed output.
4770 		 *
4771 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4772 		 * over us; possibly making our ring_buffer_put() the last.
4773 		 */
4774 		mutex_lock(&event->mmap_mutex);
4775 		ring_buffer_attach(event, NULL);
4776 		mutex_unlock(&event->mmap_mutex);
4777 	}
4778 
4779 	if (is_cgroup_event(event))
4780 		perf_detach_cgroup(event);
4781 
4782 	if (!event->parent) {
4783 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4784 			put_callchain_buffers();
4785 	}
4786 
4787 	perf_event_free_bpf_prog(event);
4788 	perf_addr_filters_splice(event, NULL);
4789 	kfree(event->addr_filter_ranges);
4790 
4791 	if (event->destroy)
4792 		event->destroy(event);
4793 
4794 	/*
4795 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4796 	 * hw.target.
4797 	 */
4798 	if (event->hw.target)
4799 		put_task_struct(event->hw.target);
4800 
4801 	/*
4802 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4803 	 * all task references must be cleaned up.
4804 	 */
4805 	if (event->ctx)
4806 		put_ctx(event->ctx);
4807 
4808 	exclusive_event_destroy(event);
4809 	module_put(event->pmu->module);
4810 
4811 	call_rcu(&event->rcu_head, free_event_rcu);
4812 }
4813 
4814 /*
4815  * Used to free events which have a known refcount of 1, such as in error paths
4816  * where the event isn't exposed yet and inherited events.
4817  */
4818 static void free_event(struct perf_event *event)
4819 {
4820 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4821 				"unexpected event refcount: %ld; ptr=%p\n",
4822 				atomic_long_read(&event->refcount), event)) {
4823 		/* leak to avoid use-after-free */
4824 		return;
4825 	}
4826 
4827 	_free_event(event);
4828 }
4829 
4830 /*
4831  * Remove user event from the owner task.
4832  */
4833 static void perf_remove_from_owner(struct perf_event *event)
4834 {
4835 	struct task_struct *owner;
4836 
4837 	rcu_read_lock();
4838 	/*
4839 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4840 	 * observe !owner it means the list deletion is complete and we can
4841 	 * indeed free this event, otherwise we need to serialize on
4842 	 * owner->perf_event_mutex.
4843 	 */
4844 	owner = READ_ONCE(event->owner);
4845 	if (owner) {
4846 		/*
4847 		 * Since delayed_put_task_struct() also drops the last
4848 		 * task reference we can safely take a new reference
4849 		 * while holding the rcu_read_lock().
4850 		 */
4851 		get_task_struct(owner);
4852 	}
4853 	rcu_read_unlock();
4854 
4855 	if (owner) {
4856 		/*
4857 		 * If we're here through perf_event_exit_task() we're already
4858 		 * holding ctx->mutex which would be an inversion wrt. the
4859 		 * normal lock order.
4860 		 *
4861 		 * However we can safely take this lock because its the child
4862 		 * ctx->mutex.
4863 		 */
4864 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4865 
4866 		/*
4867 		 * We have to re-check the event->owner field, if it is cleared
4868 		 * we raced with perf_event_exit_task(), acquiring the mutex
4869 		 * ensured they're done, and we can proceed with freeing the
4870 		 * event.
4871 		 */
4872 		if (event->owner) {
4873 			list_del_init(&event->owner_entry);
4874 			smp_store_release(&event->owner, NULL);
4875 		}
4876 		mutex_unlock(&owner->perf_event_mutex);
4877 		put_task_struct(owner);
4878 	}
4879 }
4880 
4881 static void put_event(struct perf_event *event)
4882 {
4883 	if (!atomic_long_dec_and_test(&event->refcount))
4884 		return;
4885 
4886 	_free_event(event);
4887 }
4888 
4889 /*
4890  * Kill an event dead; while event:refcount will preserve the event
4891  * object, it will not preserve its functionality. Once the last 'user'
4892  * gives up the object, we'll destroy the thing.
4893  */
4894 int perf_event_release_kernel(struct perf_event *event)
4895 {
4896 	struct perf_event_context *ctx = event->ctx;
4897 	struct perf_event *child, *tmp;
4898 	LIST_HEAD(free_list);
4899 
4900 	/*
4901 	 * If we got here through err_file: fput(event_file); we will not have
4902 	 * attached to a context yet.
4903 	 */
4904 	if (!ctx) {
4905 		WARN_ON_ONCE(event->attach_state &
4906 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4907 		goto no_ctx;
4908 	}
4909 
4910 	if (!is_kernel_event(event))
4911 		perf_remove_from_owner(event);
4912 
4913 	ctx = perf_event_ctx_lock(event);
4914 	WARN_ON_ONCE(ctx->parent_ctx);
4915 	perf_remove_from_context(event, DETACH_GROUP);
4916 
4917 	raw_spin_lock_irq(&ctx->lock);
4918 	/*
4919 	 * Mark this event as STATE_DEAD, there is no external reference to it
4920 	 * anymore.
4921 	 *
4922 	 * Anybody acquiring event->child_mutex after the below loop _must_
4923 	 * also see this, most importantly inherit_event() which will avoid
4924 	 * placing more children on the list.
4925 	 *
4926 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4927 	 * child events.
4928 	 */
4929 	event->state = PERF_EVENT_STATE_DEAD;
4930 	raw_spin_unlock_irq(&ctx->lock);
4931 
4932 	perf_event_ctx_unlock(event, ctx);
4933 
4934 again:
4935 	mutex_lock(&event->child_mutex);
4936 	list_for_each_entry(child, &event->child_list, child_list) {
4937 
4938 		/*
4939 		 * Cannot change, child events are not migrated, see the
4940 		 * comment with perf_event_ctx_lock_nested().
4941 		 */
4942 		ctx = READ_ONCE(child->ctx);
4943 		/*
4944 		 * Since child_mutex nests inside ctx::mutex, we must jump
4945 		 * through hoops. We start by grabbing a reference on the ctx.
4946 		 *
4947 		 * Since the event cannot get freed while we hold the
4948 		 * child_mutex, the context must also exist and have a !0
4949 		 * reference count.
4950 		 */
4951 		get_ctx(ctx);
4952 
4953 		/*
4954 		 * Now that we have a ctx ref, we can drop child_mutex, and
4955 		 * acquire ctx::mutex without fear of it going away. Then we
4956 		 * can re-acquire child_mutex.
4957 		 */
4958 		mutex_unlock(&event->child_mutex);
4959 		mutex_lock(&ctx->mutex);
4960 		mutex_lock(&event->child_mutex);
4961 
4962 		/*
4963 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4964 		 * state, if child is still the first entry, it didn't get freed
4965 		 * and we can continue doing so.
4966 		 */
4967 		tmp = list_first_entry_or_null(&event->child_list,
4968 					       struct perf_event, child_list);
4969 		if (tmp == child) {
4970 			perf_remove_from_context(child, DETACH_GROUP);
4971 			list_move(&child->child_list, &free_list);
4972 			/*
4973 			 * This matches the refcount bump in inherit_event();
4974 			 * this can't be the last reference.
4975 			 */
4976 			put_event(event);
4977 		}
4978 
4979 		mutex_unlock(&event->child_mutex);
4980 		mutex_unlock(&ctx->mutex);
4981 		put_ctx(ctx);
4982 		goto again;
4983 	}
4984 	mutex_unlock(&event->child_mutex);
4985 
4986 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4987 		void *var = &child->ctx->refcount;
4988 
4989 		list_del(&child->child_list);
4990 		free_event(child);
4991 
4992 		/*
4993 		 * Wake any perf_event_free_task() waiting for this event to be
4994 		 * freed.
4995 		 */
4996 		smp_mb(); /* pairs with wait_var_event() */
4997 		wake_up_var(var);
4998 	}
4999 
5000 no_ctx:
5001 	put_event(event); /* Must be the 'last' reference */
5002 	return 0;
5003 }
5004 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5005 
5006 /*
5007  * Called when the last reference to the file is gone.
5008  */
5009 static int perf_release(struct inode *inode, struct file *file)
5010 {
5011 	perf_event_release_kernel(file->private_data);
5012 	return 0;
5013 }
5014 
5015 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5016 {
5017 	struct perf_event *child;
5018 	u64 total = 0;
5019 
5020 	*enabled = 0;
5021 	*running = 0;
5022 
5023 	mutex_lock(&event->child_mutex);
5024 
5025 	(void)perf_event_read(event, false);
5026 	total += perf_event_count(event);
5027 
5028 	*enabled += event->total_time_enabled +
5029 			atomic64_read(&event->child_total_time_enabled);
5030 	*running += event->total_time_running +
5031 			atomic64_read(&event->child_total_time_running);
5032 
5033 	list_for_each_entry(child, &event->child_list, child_list) {
5034 		(void)perf_event_read(child, false);
5035 		total += perf_event_count(child);
5036 		*enabled += child->total_time_enabled;
5037 		*running += child->total_time_running;
5038 	}
5039 	mutex_unlock(&event->child_mutex);
5040 
5041 	return total;
5042 }
5043 
5044 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5045 {
5046 	struct perf_event_context *ctx;
5047 	u64 count;
5048 
5049 	ctx = perf_event_ctx_lock(event);
5050 	count = __perf_event_read_value(event, enabled, running);
5051 	perf_event_ctx_unlock(event, ctx);
5052 
5053 	return count;
5054 }
5055 EXPORT_SYMBOL_GPL(perf_event_read_value);
5056 
5057 static int __perf_read_group_add(struct perf_event *leader,
5058 					u64 read_format, u64 *values)
5059 {
5060 	struct perf_event_context *ctx = leader->ctx;
5061 	struct perf_event *sub;
5062 	unsigned long flags;
5063 	int n = 1; /* skip @nr */
5064 	int ret;
5065 
5066 	ret = perf_event_read(leader, true);
5067 	if (ret)
5068 		return ret;
5069 
5070 	raw_spin_lock_irqsave(&ctx->lock, flags);
5071 
5072 	/*
5073 	 * Since we co-schedule groups, {enabled,running} times of siblings
5074 	 * will be identical to those of the leader, so we only publish one
5075 	 * set.
5076 	 */
5077 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5078 		values[n++] += leader->total_time_enabled +
5079 			atomic64_read(&leader->child_total_time_enabled);
5080 	}
5081 
5082 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5083 		values[n++] += leader->total_time_running +
5084 			atomic64_read(&leader->child_total_time_running);
5085 	}
5086 
5087 	/*
5088 	 * Write {count,id} tuples for every sibling.
5089 	 */
5090 	values[n++] += perf_event_count(leader);
5091 	if (read_format & PERF_FORMAT_ID)
5092 		values[n++] = primary_event_id(leader);
5093 
5094 	for_each_sibling_event(sub, leader) {
5095 		values[n++] += perf_event_count(sub);
5096 		if (read_format & PERF_FORMAT_ID)
5097 			values[n++] = primary_event_id(sub);
5098 	}
5099 
5100 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5101 	return 0;
5102 }
5103 
5104 static int perf_read_group(struct perf_event *event,
5105 				   u64 read_format, char __user *buf)
5106 {
5107 	struct perf_event *leader = event->group_leader, *child;
5108 	struct perf_event_context *ctx = leader->ctx;
5109 	int ret;
5110 	u64 *values;
5111 
5112 	lockdep_assert_held(&ctx->mutex);
5113 
5114 	values = kzalloc(event->read_size, GFP_KERNEL);
5115 	if (!values)
5116 		return -ENOMEM;
5117 
5118 	values[0] = 1 + leader->nr_siblings;
5119 
5120 	/*
5121 	 * By locking the child_mutex of the leader we effectively
5122 	 * lock the child list of all siblings.. XXX explain how.
5123 	 */
5124 	mutex_lock(&leader->child_mutex);
5125 
5126 	ret = __perf_read_group_add(leader, read_format, values);
5127 	if (ret)
5128 		goto unlock;
5129 
5130 	list_for_each_entry(child, &leader->child_list, child_list) {
5131 		ret = __perf_read_group_add(child, read_format, values);
5132 		if (ret)
5133 			goto unlock;
5134 	}
5135 
5136 	mutex_unlock(&leader->child_mutex);
5137 
5138 	ret = event->read_size;
5139 	if (copy_to_user(buf, values, event->read_size))
5140 		ret = -EFAULT;
5141 	goto out;
5142 
5143 unlock:
5144 	mutex_unlock(&leader->child_mutex);
5145 out:
5146 	kfree(values);
5147 	return ret;
5148 }
5149 
5150 static int perf_read_one(struct perf_event *event,
5151 				 u64 read_format, char __user *buf)
5152 {
5153 	u64 enabled, running;
5154 	u64 values[4];
5155 	int n = 0;
5156 
5157 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5158 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5159 		values[n++] = enabled;
5160 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5161 		values[n++] = running;
5162 	if (read_format & PERF_FORMAT_ID)
5163 		values[n++] = primary_event_id(event);
5164 
5165 	if (copy_to_user(buf, values, n * sizeof(u64)))
5166 		return -EFAULT;
5167 
5168 	return n * sizeof(u64);
5169 }
5170 
5171 static bool is_event_hup(struct perf_event *event)
5172 {
5173 	bool no_children;
5174 
5175 	if (event->state > PERF_EVENT_STATE_EXIT)
5176 		return false;
5177 
5178 	mutex_lock(&event->child_mutex);
5179 	no_children = list_empty(&event->child_list);
5180 	mutex_unlock(&event->child_mutex);
5181 	return no_children;
5182 }
5183 
5184 /*
5185  * Read the performance event - simple non blocking version for now
5186  */
5187 static ssize_t
5188 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5189 {
5190 	u64 read_format = event->attr.read_format;
5191 	int ret;
5192 
5193 	/*
5194 	 * Return end-of-file for a read on an event that is in
5195 	 * error state (i.e. because it was pinned but it couldn't be
5196 	 * scheduled on to the CPU at some point).
5197 	 */
5198 	if (event->state == PERF_EVENT_STATE_ERROR)
5199 		return 0;
5200 
5201 	if (count < event->read_size)
5202 		return -ENOSPC;
5203 
5204 	WARN_ON_ONCE(event->ctx->parent_ctx);
5205 	if (read_format & PERF_FORMAT_GROUP)
5206 		ret = perf_read_group(event, read_format, buf);
5207 	else
5208 		ret = perf_read_one(event, read_format, buf);
5209 
5210 	return ret;
5211 }
5212 
5213 static ssize_t
5214 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5215 {
5216 	struct perf_event *event = file->private_data;
5217 	struct perf_event_context *ctx;
5218 	int ret;
5219 
5220 	ret = security_perf_event_read(event);
5221 	if (ret)
5222 		return ret;
5223 
5224 	ctx = perf_event_ctx_lock(event);
5225 	ret = __perf_read(event, buf, count);
5226 	perf_event_ctx_unlock(event, ctx);
5227 
5228 	return ret;
5229 }
5230 
5231 static __poll_t perf_poll(struct file *file, poll_table *wait)
5232 {
5233 	struct perf_event *event = file->private_data;
5234 	struct perf_buffer *rb;
5235 	__poll_t events = EPOLLHUP;
5236 
5237 	poll_wait(file, &event->waitq, wait);
5238 
5239 	if (is_event_hup(event))
5240 		return events;
5241 
5242 	/*
5243 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5244 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5245 	 */
5246 	mutex_lock(&event->mmap_mutex);
5247 	rb = event->rb;
5248 	if (rb)
5249 		events = atomic_xchg(&rb->poll, 0);
5250 	mutex_unlock(&event->mmap_mutex);
5251 	return events;
5252 }
5253 
5254 static void _perf_event_reset(struct perf_event *event)
5255 {
5256 	(void)perf_event_read(event, false);
5257 	local64_set(&event->count, 0);
5258 	perf_event_update_userpage(event);
5259 }
5260 
5261 /* Assume it's not an event with inherit set. */
5262 u64 perf_event_pause(struct perf_event *event, bool reset)
5263 {
5264 	struct perf_event_context *ctx;
5265 	u64 count;
5266 
5267 	ctx = perf_event_ctx_lock(event);
5268 	WARN_ON_ONCE(event->attr.inherit);
5269 	_perf_event_disable(event);
5270 	count = local64_read(&event->count);
5271 	if (reset)
5272 		local64_set(&event->count, 0);
5273 	perf_event_ctx_unlock(event, ctx);
5274 
5275 	return count;
5276 }
5277 EXPORT_SYMBOL_GPL(perf_event_pause);
5278 
5279 /*
5280  * Holding the top-level event's child_mutex means that any
5281  * descendant process that has inherited this event will block
5282  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5283  * task existence requirements of perf_event_enable/disable.
5284  */
5285 static void perf_event_for_each_child(struct perf_event *event,
5286 					void (*func)(struct perf_event *))
5287 {
5288 	struct perf_event *child;
5289 
5290 	WARN_ON_ONCE(event->ctx->parent_ctx);
5291 
5292 	mutex_lock(&event->child_mutex);
5293 	func(event);
5294 	list_for_each_entry(child, &event->child_list, child_list)
5295 		func(child);
5296 	mutex_unlock(&event->child_mutex);
5297 }
5298 
5299 static void perf_event_for_each(struct perf_event *event,
5300 				  void (*func)(struct perf_event *))
5301 {
5302 	struct perf_event_context *ctx = event->ctx;
5303 	struct perf_event *sibling;
5304 
5305 	lockdep_assert_held(&ctx->mutex);
5306 
5307 	event = event->group_leader;
5308 
5309 	perf_event_for_each_child(event, func);
5310 	for_each_sibling_event(sibling, event)
5311 		perf_event_for_each_child(sibling, func);
5312 }
5313 
5314 static void __perf_event_period(struct perf_event *event,
5315 				struct perf_cpu_context *cpuctx,
5316 				struct perf_event_context *ctx,
5317 				void *info)
5318 {
5319 	u64 value = *((u64 *)info);
5320 	bool active;
5321 
5322 	if (event->attr.freq) {
5323 		event->attr.sample_freq = value;
5324 	} else {
5325 		event->attr.sample_period = value;
5326 		event->hw.sample_period = value;
5327 	}
5328 
5329 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5330 	if (active) {
5331 		perf_pmu_disable(ctx->pmu);
5332 		/*
5333 		 * We could be throttled; unthrottle now to avoid the tick
5334 		 * trying to unthrottle while we already re-started the event.
5335 		 */
5336 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5337 			event->hw.interrupts = 0;
5338 			perf_log_throttle(event, 1);
5339 		}
5340 		event->pmu->stop(event, PERF_EF_UPDATE);
5341 	}
5342 
5343 	local64_set(&event->hw.period_left, 0);
5344 
5345 	if (active) {
5346 		event->pmu->start(event, PERF_EF_RELOAD);
5347 		perf_pmu_enable(ctx->pmu);
5348 	}
5349 }
5350 
5351 static int perf_event_check_period(struct perf_event *event, u64 value)
5352 {
5353 	return event->pmu->check_period(event, value);
5354 }
5355 
5356 static int _perf_event_period(struct perf_event *event, u64 value)
5357 {
5358 	if (!is_sampling_event(event))
5359 		return -EINVAL;
5360 
5361 	if (!value)
5362 		return -EINVAL;
5363 
5364 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5365 		return -EINVAL;
5366 
5367 	if (perf_event_check_period(event, value))
5368 		return -EINVAL;
5369 
5370 	if (!event->attr.freq && (value & (1ULL << 63)))
5371 		return -EINVAL;
5372 
5373 	event_function_call(event, __perf_event_period, &value);
5374 
5375 	return 0;
5376 }
5377 
5378 int perf_event_period(struct perf_event *event, u64 value)
5379 {
5380 	struct perf_event_context *ctx;
5381 	int ret;
5382 
5383 	ctx = perf_event_ctx_lock(event);
5384 	ret = _perf_event_period(event, value);
5385 	perf_event_ctx_unlock(event, ctx);
5386 
5387 	return ret;
5388 }
5389 EXPORT_SYMBOL_GPL(perf_event_period);
5390 
5391 static const struct file_operations perf_fops;
5392 
5393 static inline int perf_fget_light(int fd, struct fd *p)
5394 {
5395 	struct fd f = fdget(fd);
5396 	if (!f.file)
5397 		return -EBADF;
5398 
5399 	if (f.file->f_op != &perf_fops) {
5400 		fdput(f);
5401 		return -EBADF;
5402 	}
5403 	*p = f;
5404 	return 0;
5405 }
5406 
5407 static int perf_event_set_output(struct perf_event *event,
5408 				 struct perf_event *output_event);
5409 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5410 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5411 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5412 			  struct perf_event_attr *attr);
5413 
5414 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5415 {
5416 	void (*func)(struct perf_event *);
5417 	u32 flags = arg;
5418 
5419 	switch (cmd) {
5420 	case PERF_EVENT_IOC_ENABLE:
5421 		func = _perf_event_enable;
5422 		break;
5423 	case PERF_EVENT_IOC_DISABLE:
5424 		func = _perf_event_disable;
5425 		break;
5426 	case PERF_EVENT_IOC_RESET:
5427 		func = _perf_event_reset;
5428 		break;
5429 
5430 	case PERF_EVENT_IOC_REFRESH:
5431 		return _perf_event_refresh(event, arg);
5432 
5433 	case PERF_EVENT_IOC_PERIOD:
5434 	{
5435 		u64 value;
5436 
5437 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5438 			return -EFAULT;
5439 
5440 		return _perf_event_period(event, value);
5441 	}
5442 	case PERF_EVENT_IOC_ID:
5443 	{
5444 		u64 id = primary_event_id(event);
5445 
5446 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5447 			return -EFAULT;
5448 		return 0;
5449 	}
5450 
5451 	case PERF_EVENT_IOC_SET_OUTPUT:
5452 	{
5453 		int ret;
5454 		if (arg != -1) {
5455 			struct perf_event *output_event;
5456 			struct fd output;
5457 			ret = perf_fget_light(arg, &output);
5458 			if (ret)
5459 				return ret;
5460 			output_event = output.file->private_data;
5461 			ret = perf_event_set_output(event, output_event);
5462 			fdput(output);
5463 		} else {
5464 			ret = perf_event_set_output(event, NULL);
5465 		}
5466 		return ret;
5467 	}
5468 
5469 	case PERF_EVENT_IOC_SET_FILTER:
5470 		return perf_event_set_filter(event, (void __user *)arg);
5471 
5472 	case PERF_EVENT_IOC_SET_BPF:
5473 		return perf_event_set_bpf_prog(event, arg);
5474 
5475 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5476 		struct perf_buffer *rb;
5477 
5478 		rcu_read_lock();
5479 		rb = rcu_dereference(event->rb);
5480 		if (!rb || !rb->nr_pages) {
5481 			rcu_read_unlock();
5482 			return -EINVAL;
5483 		}
5484 		rb_toggle_paused(rb, !!arg);
5485 		rcu_read_unlock();
5486 		return 0;
5487 	}
5488 
5489 	case PERF_EVENT_IOC_QUERY_BPF:
5490 		return perf_event_query_prog_array(event, (void __user *)arg);
5491 
5492 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5493 		struct perf_event_attr new_attr;
5494 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5495 					 &new_attr);
5496 
5497 		if (err)
5498 			return err;
5499 
5500 		return perf_event_modify_attr(event,  &new_attr);
5501 	}
5502 	default:
5503 		return -ENOTTY;
5504 	}
5505 
5506 	if (flags & PERF_IOC_FLAG_GROUP)
5507 		perf_event_for_each(event, func);
5508 	else
5509 		perf_event_for_each_child(event, func);
5510 
5511 	return 0;
5512 }
5513 
5514 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5515 {
5516 	struct perf_event *event = file->private_data;
5517 	struct perf_event_context *ctx;
5518 	long ret;
5519 
5520 	/* Treat ioctl like writes as it is likely a mutating operation. */
5521 	ret = security_perf_event_write(event);
5522 	if (ret)
5523 		return ret;
5524 
5525 	ctx = perf_event_ctx_lock(event);
5526 	ret = _perf_ioctl(event, cmd, arg);
5527 	perf_event_ctx_unlock(event, ctx);
5528 
5529 	return ret;
5530 }
5531 
5532 #ifdef CONFIG_COMPAT
5533 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5534 				unsigned long arg)
5535 {
5536 	switch (_IOC_NR(cmd)) {
5537 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5538 	case _IOC_NR(PERF_EVENT_IOC_ID):
5539 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5540 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5541 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5542 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5543 			cmd &= ~IOCSIZE_MASK;
5544 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5545 		}
5546 		break;
5547 	}
5548 	return perf_ioctl(file, cmd, arg);
5549 }
5550 #else
5551 # define perf_compat_ioctl NULL
5552 #endif
5553 
5554 int perf_event_task_enable(void)
5555 {
5556 	struct perf_event_context *ctx;
5557 	struct perf_event *event;
5558 
5559 	mutex_lock(&current->perf_event_mutex);
5560 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5561 		ctx = perf_event_ctx_lock(event);
5562 		perf_event_for_each_child(event, _perf_event_enable);
5563 		perf_event_ctx_unlock(event, ctx);
5564 	}
5565 	mutex_unlock(&current->perf_event_mutex);
5566 
5567 	return 0;
5568 }
5569 
5570 int perf_event_task_disable(void)
5571 {
5572 	struct perf_event_context *ctx;
5573 	struct perf_event *event;
5574 
5575 	mutex_lock(&current->perf_event_mutex);
5576 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5577 		ctx = perf_event_ctx_lock(event);
5578 		perf_event_for_each_child(event, _perf_event_disable);
5579 		perf_event_ctx_unlock(event, ctx);
5580 	}
5581 	mutex_unlock(&current->perf_event_mutex);
5582 
5583 	return 0;
5584 }
5585 
5586 static int perf_event_index(struct perf_event *event)
5587 {
5588 	if (event->hw.state & PERF_HES_STOPPED)
5589 		return 0;
5590 
5591 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5592 		return 0;
5593 
5594 	return event->pmu->event_idx(event);
5595 }
5596 
5597 static void calc_timer_values(struct perf_event *event,
5598 				u64 *now,
5599 				u64 *enabled,
5600 				u64 *running)
5601 {
5602 	u64 ctx_time;
5603 
5604 	*now = perf_clock();
5605 	ctx_time = event->shadow_ctx_time + *now;
5606 	__perf_update_times(event, ctx_time, enabled, running);
5607 }
5608 
5609 static void perf_event_init_userpage(struct perf_event *event)
5610 {
5611 	struct perf_event_mmap_page *userpg;
5612 	struct perf_buffer *rb;
5613 
5614 	rcu_read_lock();
5615 	rb = rcu_dereference(event->rb);
5616 	if (!rb)
5617 		goto unlock;
5618 
5619 	userpg = rb->user_page;
5620 
5621 	/* Allow new userspace to detect that bit 0 is deprecated */
5622 	userpg->cap_bit0_is_deprecated = 1;
5623 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5624 	userpg->data_offset = PAGE_SIZE;
5625 	userpg->data_size = perf_data_size(rb);
5626 
5627 unlock:
5628 	rcu_read_unlock();
5629 }
5630 
5631 void __weak arch_perf_update_userpage(
5632 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5633 {
5634 }
5635 
5636 /*
5637  * Callers need to ensure there can be no nesting of this function, otherwise
5638  * the seqlock logic goes bad. We can not serialize this because the arch
5639  * code calls this from NMI context.
5640  */
5641 void perf_event_update_userpage(struct perf_event *event)
5642 {
5643 	struct perf_event_mmap_page *userpg;
5644 	struct perf_buffer *rb;
5645 	u64 enabled, running, now;
5646 
5647 	rcu_read_lock();
5648 	rb = rcu_dereference(event->rb);
5649 	if (!rb)
5650 		goto unlock;
5651 
5652 	/*
5653 	 * compute total_time_enabled, total_time_running
5654 	 * based on snapshot values taken when the event
5655 	 * was last scheduled in.
5656 	 *
5657 	 * we cannot simply called update_context_time()
5658 	 * because of locking issue as we can be called in
5659 	 * NMI context
5660 	 */
5661 	calc_timer_values(event, &now, &enabled, &running);
5662 
5663 	userpg = rb->user_page;
5664 	/*
5665 	 * Disable preemption to guarantee consistent time stamps are stored to
5666 	 * the user page.
5667 	 */
5668 	preempt_disable();
5669 	++userpg->lock;
5670 	barrier();
5671 	userpg->index = perf_event_index(event);
5672 	userpg->offset = perf_event_count(event);
5673 	if (userpg->index)
5674 		userpg->offset -= local64_read(&event->hw.prev_count);
5675 
5676 	userpg->time_enabled = enabled +
5677 			atomic64_read(&event->child_total_time_enabled);
5678 
5679 	userpg->time_running = running +
5680 			atomic64_read(&event->child_total_time_running);
5681 
5682 	arch_perf_update_userpage(event, userpg, now);
5683 
5684 	barrier();
5685 	++userpg->lock;
5686 	preempt_enable();
5687 unlock:
5688 	rcu_read_unlock();
5689 }
5690 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5691 
5692 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5693 {
5694 	struct perf_event *event = vmf->vma->vm_file->private_data;
5695 	struct perf_buffer *rb;
5696 	vm_fault_t ret = VM_FAULT_SIGBUS;
5697 
5698 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5699 		if (vmf->pgoff == 0)
5700 			ret = 0;
5701 		return ret;
5702 	}
5703 
5704 	rcu_read_lock();
5705 	rb = rcu_dereference(event->rb);
5706 	if (!rb)
5707 		goto unlock;
5708 
5709 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5710 		goto unlock;
5711 
5712 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5713 	if (!vmf->page)
5714 		goto unlock;
5715 
5716 	get_page(vmf->page);
5717 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5718 	vmf->page->index   = vmf->pgoff;
5719 
5720 	ret = 0;
5721 unlock:
5722 	rcu_read_unlock();
5723 
5724 	return ret;
5725 }
5726 
5727 static void ring_buffer_attach(struct perf_event *event,
5728 			       struct perf_buffer *rb)
5729 {
5730 	struct perf_buffer *old_rb = NULL;
5731 	unsigned long flags;
5732 
5733 	if (event->rb) {
5734 		/*
5735 		 * Should be impossible, we set this when removing
5736 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5737 		 */
5738 		WARN_ON_ONCE(event->rcu_pending);
5739 
5740 		old_rb = event->rb;
5741 		spin_lock_irqsave(&old_rb->event_lock, flags);
5742 		list_del_rcu(&event->rb_entry);
5743 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5744 
5745 		event->rcu_batches = get_state_synchronize_rcu();
5746 		event->rcu_pending = 1;
5747 	}
5748 
5749 	if (rb) {
5750 		if (event->rcu_pending) {
5751 			cond_synchronize_rcu(event->rcu_batches);
5752 			event->rcu_pending = 0;
5753 		}
5754 
5755 		spin_lock_irqsave(&rb->event_lock, flags);
5756 		list_add_rcu(&event->rb_entry, &rb->event_list);
5757 		spin_unlock_irqrestore(&rb->event_lock, flags);
5758 	}
5759 
5760 	/*
5761 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5762 	 * before swizzling the event::rb pointer; if it's getting
5763 	 * unmapped, its aux_mmap_count will be 0 and it won't
5764 	 * restart. See the comment in __perf_pmu_output_stop().
5765 	 *
5766 	 * Data will inevitably be lost when set_output is done in
5767 	 * mid-air, but then again, whoever does it like this is
5768 	 * not in for the data anyway.
5769 	 */
5770 	if (has_aux(event))
5771 		perf_event_stop(event, 0);
5772 
5773 	rcu_assign_pointer(event->rb, rb);
5774 
5775 	if (old_rb) {
5776 		ring_buffer_put(old_rb);
5777 		/*
5778 		 * Since we detached before setting the new rb, so that we
5779 		 * could attach the new rb, we could have missed a wakeup.
5780 		 * Provide it now.
5781 		 */
5782 		wake_up_all(&event->waitq);
5783 	}
5784 }
5785 
5786 static void ring_buffer_wakeup(struct perf_event *event)
5787 {
5788 	struct perf_buffer *rb;
5789 
5790 	rcu_read_lock();
5791 	rb = rcu_dereference(event->rb);
5792 	if (rb) {
5793 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5794 			wake_up_all(&event->waitq);
5795 	}
5796 	rcu_read_unlock();
5797 }
5798 
5799 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5800 {
5801 	struct perf_buffer *rb;
5802 
5803 	rcu_read_lock();
5804 	rb = rcu_dereference(event->rb);
5805 	if (rb) {
5806 		if (!refcount_inc_not_zero(&rb->refcount))
5807 			rb = NULL;
5808 	}
5809 	rcu_read_unlock();
5810 
5811 	return rb;
5812 }
5813 
5814 void ring_buffer_put(struct perf_buffer *rb)
5815 {
5816 	if (!refcount_dec_and_test(&rb->refcount))
5817 		return;
5818 
5819 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5820 
5821 	call_rcu(&rb->rcu_head, rb_free_rcu);
5822 }
5823 
5824 static void perf_mmap_open(struct vm_area_struct *vma)
5825 {
5826 	struct perf_event *event = vma->vm_file->private_data;
5827 
5828 	atomic_inc(&event->mmap_count);
5829 	atomic_inc(&event->rb->mmap_count);
5830 
5831 	if (vma->vm_pgoff)
5832 		atomic_inc(&event->rb->aux_mmap_count);
5833 
5834 	if (event->pmu->event_mapped)
5835 		event->pmu->event_mapped(event, vma->vm_mm);
5836 }
5837 
5838 static void perf_pmu_output_stop(struct perf_event *event);
5839 
5840 /*
5841  * A buffer can be mmap()ed multiple times; either directly through the same
5842  * event, or through other events by use of perf_event_set_output().
5843  *
5844  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5845  * the buffer here, where we still have a VM context. This means we need
5846  * to detach all events redirecting to us.
5847  */
5848 static void perf_mmap_close(struct vm_area_struct *vma)
5849 {
5850 	struct perf_event *event = vma->vm_file->private_data;
5851 
5852 	struct perf_buffer *rb = ring_buffer_get(event);
5853 	struct user_struct *mmap_user = rb->mmap_user;
5854 	int mmap_locked = rb->mmap_locked;
5855 	unsigned long size = perf_data_size(rb);
5856 
5857 	if (event->pmu->event_unmapped)
5858 		event->pmu->event_unmapped(event, vma->vm_mm);
5859 
5860 	/*
5861 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5862 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5863 	 * serialize with perf_mmap here.
5864 	 */
5865 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5866 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5867 		/*
5868 		 * Stop all AUX events that are writing to this buffer,
5869 		 * so that we can free its AUX pages and corresponding PMU
5870 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5871 		 * they won't start any more (see perf_aux_output_begin()).
5872 		 */
5873 		perf_pmu_output_stop(event);
5874 
5875 		/* now it's safe to free the pages */
5876 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5877 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5878 
5879 		/* this has to be the last one */
5880 		rb_free_aux(rb);
5881 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5882 
5883 		mutex_unlock(&event->mmap_mutex);
5884 	}
5885 
5886 	atomic_dec(&rb->mmap_count);
5887 
5888 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5889 		goto out_put;
5890 
5891 	ring_buffer_attach(event, NULL);
5892 	mutex_unlock(&event->mmap_mutex);
5893 
5894 	/* If there's still other mmap()s of this buffer, we're done. */
5895 	if (atomic_read(&rb->mmap_count))
5896 		goto out_put;
5897 
5898 	/*
5899 	 * No other mmap()s, detach from all other events that might redirect
5900 	 * into the now unreachable buffer. Somewhat complicated by the
5901 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5902 	 */
5903 again:
5904 	rcu_read_lock();
5905 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5906 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5907 			/*
5908 			 * This event is en-route to free_event() which will
5909 			 * detach it and remove it from the list.
5910 			 */
5911 			continue;
5912 		}
5913 		rcu_read_unlock();
5914 
5915 		mutex_lock(&event->mmap_mutex);
5916 		/*
5917 		 * Check we didn't race with perf_event_set_output() which can
5918 		 * swizzle the rb from under us while we were waiting to
5919 		 * acquire mmap_mutex.
5920 		 *
5921 		 * If we find a different rb; ignore this event, a next
5922 		 * iteration will no longer find it on the list. We have to
5923 		 * still restart the iteration to make sure we're not now
5924 		 * iterating the wrong list.
5925 		 */
5926 		if (event->rb == rb)
5927 			ring_buffer_attach(event, NULL);
5928 
5929 		mutex_unlock(&event->mmap_mutex);
5930 		put_event(event);
5931 
5932 		/*
5933 		 * Restart the iteration; either we're on the wrong list or
5934 		 * destroyed its integrity by doing a deletion.
5935 		 */
5936 		goto again;
5937 	}
5938 	rcu_read_unlock();
5939 
5940 	/*
5941 	 * It could be there's still a few 0-ref events on the list; they'll
5942 	 * get cleaned up by free_event() -- they'll also still have their
5943 	 * ref on the rb and will free it whenever they are done with it.
5944 	 *
5945 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5946 	 * undo the VM accounting.
5947 	 */
5948 
5949 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5950 			&mmap_user->locked_vm);
5951 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5952 	free_uid(mmap_user);
5953 
5954 out_put:
5955 	ring_buffer_put(rb); /* could be last */
5956 }
5957 
5958 static const struct vm_operations_struct perf_mmap_vmops = {
5959 	.open		= perf_mmap_open,
5960 	.close		= perf_mmap_close, /* non mergeable */
5961 	.fault		= perf_mmap_fault,
5962 	.page_mkwrite	= perf_mmap_fault,
5963 };
5964 
5965 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5966 {
5967 	struct perf_event *event = file->private_data;
5968 	unsigned long user_locked, user_lock_limit;
5969 	struct user_struct *user = current_user();
5970 	struct perf_buffer *rb = NULL;
5971 	unsigned long locked, lock_limit;
5972 	unsigned long vma_size;
5973 	unsigned long nr_pages;
5974 	long user_extra = 0, extra = 0;
5975 	int ret = 0, flags = 0;
5976 
5977 	/*
5978 	 * Don't allow mmap() of inherited per-task counters. This would
5979 	 * create a performance issue due to all children writing to the
5980 	 * same rb.
5981 	 */
5982 	if (event->cpu == -1 && event->attr.inherit)
5983 		return -EINVAL;
5984 
5985 	if (!(vma->vm_flags & VM_SHARED))
5986 		return -EINVAL;
5987 
5988 	ret = security_perf_event_read(event);
5989 	if (ret)
5990 		return ret;
5991 
5992 	vma_size = vma->vm_end - vma->vm_start;
5993 
5994 	if (vma->vm_pgoff == 0) {
5995 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5996 	} else {
5997 		/*
5998 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5999 		 * mapped, all subsequent mappings should have the same size
6000 		 * and offset. Must be above the normal perf buffer.
6001 		 */
6002 		u64 aux_offset, aux_size;
6003 
6004 		if (!event->rb)
6005 			return -EINVAL;
6006 
6007 		nr_pages = vma_size / PAGE_SIZE;
6008 
6009 		mutex_lock(&event->mmap_mutex);
6010 		ret = -EINVAL;
6011 
6012 		rb = event->rb;
6013 		if (!rb)
6014 			goto aux_unlock;
6015 
6016 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6017 		aux_size = READ_ONCE(rb->user_page->aux_size);
6018 
6019 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6020 			goto aux_unlock;
6021 
6022 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6023 			goto aux_unlock;
6024 
6025 		/* already mapped with a different offset */
6026 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6027 			goto aux_unlock;
6028 
6029 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6030 			goto aux_unlock;
6031 
6032 		/* already mapped with a different size */
6033 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6034 			goto aux_unlock;
6035 
6036 		if (!is_power_of_2(nr_pages))
6037 			goto aux_unlock;
6038 
6039 		if (!atomic_inc_not_zero(&rb->mmap_count))
6040 			goto aux_unlock;
6041 
6042 		if (rb_has_aux(rb)) {
6043 			atomic_inc(&rb->aux_mmap_count);
6044 			ret = 0;
6045 			goto unlock;
6046 		}
6047 
6048 		atomic_set(&rb->aux_mmap_count, 1);
6049 		user_extra = nr_pages;
6050 
6051 		goto accounting;
6052 	}
6053 
6054 	/*
6055 	 * If we have rb pages ensure they're a power-of-two number, so we
6056 	 * can do bitmasks instead of modulo.
6057 	 */
6058 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6059 		return -EINVAL;
6060 
6061 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6062 		return -EINVAL;
6063 
6064 	WARN_ON_ONCE(event->ctx->parent_ctx);
6065 again:
6066 	mutex_lock(&event->mmap_mutex);
6067 	if (event->rb) {
6068 		if (event->rb->nr_pages != nr_pages) {
6069 			ret = -EINVAL;
6070 			goto unlock;
6071 		}
6072 
6073 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6074 			/*
6075 			 * Raced against perf_mmap_close() through
6076 			 * perf_event_set_output(). Try again, hope for better
6077 			 * luck.
6078 			 */
6079 			mutex_unlock(&event->mmap_mutex);
6080 			goto again;
6081 		}
6082 
6083 		goto unlock;
6084 	}
6085 
6086 	user_extra = nr_pages + 1;
6087 
6088 accounting:
6089 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6090 
6091 	/*
6092 	 * Increase the limit linearly with more CPUs:
6093 	 */
6094 	user_lock_limit *= num_online_cpus();
6095 
6096 	user_locked = atomic_long_read(&user->locked_vm);
6097 
6098 	/*
6099 	 * sysctl_perf_event_mlock may have changed, so that
6100 	 *     user->locked_vm > user_lock_limit
6101 	 */
6102 	if (user_locked > user_lock_limit)
6103 		user_locked = user_lock_limit;
6104 	user_locked += user_extra;
6105 
6106 	if (user_locked > user_lock_limit) {
6107 		/*
6108 		 * charge locked_vm until it hits user_lock_limit;
6109 		 * charge the rest from pinned_vm
6110 		 */
6111 		extra = user_locked - user_lock_limit;
6112 		user_extra -= extra;
6113 	}
6114 
6115 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6116 	lock_limit >>= PAGE_SHIFT;
6117 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6118 
6119 	if ((locked > lock_limit) && perf_is_paranoid() &&
6120 		!capable(CAP_IPC_LOCK)) {
6121 		ret = -EPERM;
6122 		goto unlock;
6123 	}
6124 
6125 	WARN_ON(!rb && event->rb);
6126 
6127 	if (vma->vm_flags & VM_WRITE)
6128 		flags |= RING_BUFFER_WRITABLE;
6129 
6130 	if (!rb) {
6131 		rb = rb_alloc(nr_pages,
6132 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6133 			      event->cpu, flags);
6134 
6135 		if (!rb) {
6136 			ret = -ENOMEM;
6137 			goto unlock;
6138 		}
6139 
6140 		atomic_set(&rb->mmap_count, 1);
6141 		rb->mmap_user = get_current_user();
6142 		rb->mmap_locked = extra;
6143 
6144 		ring_buffer_attach(event, rb);
6145 
6146 		perf_event_init_userpage(event);
6147 		perf_event_update_userpage(event);
6148 	} else {
6149 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6150 				   event->attr.aux_watermark, flags);
6151 		if (!ret)
6152 			rb->aux_mmap_locked = extra;
6153 	}
6154 
6155 unlock:
6156 	if (!ret) {
6157 		atomic_long_add(user_extra, &user->locked_vm);
6158 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6159 
6160 		atomic_inc(&event->mmap_count);
6161 	} else if (rb) {
6162 		atomic_dec(&rb->mmap_count);
6163 	}
6164 aux_unlock:
6165 	mutex_unlock(&event->mmap_mutex);
6166 
6167 	/*
6168 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6169 	 * vma.
6170 	 */
6171 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6172 	vma->vm_ops = &perf_mmap_vmops;
6173 
6174 	if (event->pmu->event_mapped)
6175 		event->pmu->event_mapped(event, vma->vm_mm);
6176 
6177 	return ret;
6178 }
6179 
6180 static int perf_fasync(int fd, struct file *filp, int on)
6181 {
6182 	struct inode *inode = file_inode(filp);
6183 	struct perf_event *event = filp->private_data;
6184 	int retval;
6185 
6186 	inode_lock(inode);
6187 	retval = fasync_helper(fd, filp, on, &event->fasync);
6188 	inode_unlock(inode);
6189 
6190 	if (retval < 0)
6191 		return retval;
6192 
6193 	return 0;
6194 }
6195 
6196 static const struct file_operations perf_fops = {
6197 	.llseek			= no_llseek,
6198 	.release		= perf_release,
6199 	.read			= perf_read,
6200 	.poll			= perf_poll,
6201 	.unlocked_ioctl		= perf_ioctl,
6202 	.compat_ioctl		= perf_compat_ioctl,
6203 	.mmap			= perf_mmap,
6204 	.fasync			= perf_fasync,
6205 };
6206 
6207 /*
6208  * Perf event wakeup
6209  *
6210  * If there's data, ensure we set the poll() state and publish everything
6211  * to user-space before waking everybody up.
6212  */
6213 
6214 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6215 {
6216 	/* only the parent has fasync state */
6217 	if (event->parent)
6218 		event = event->parent;
6219 	return &event->fasync;
6220 }
6221 
6222 void perf_event_wakeup(struct perf_event *event)
6223 {
6224 	ring_buffer_wakeup(event);
6225 
6226 	if (event->pending_kill) {
6227 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6228 		event->pending_kill = 0;
6229 	}
6230 }
6231 
6232 static void perf_pending_event_disable(struct perf_event *event)
6233 {
6234 	int cpu = READ_ONCE(event->pending_disable);
6235 
6236 	if (cpu < 0)
6237 		return;
6238 
6239 	if (cpu == smp_processor_id()) {
6240 		WRITE_ONCE(event->pending_disable, -1);
6241 		perf_event_disable_local(event);
6242 		return;
6243 	}
6244 
6245 	/*
6246 	 *  CPU-A			CPU-B
6247 	 *
6248 	 *  perf_event_disable_inatomic()
6249 	 *    @pending_disable = CPU-A;
6250 	 *    irq_work_queue();
6251 	 *
6252 	 *  sched-out
6253 	 *    @pending_disable = -1;
6254 	 *
6255 	 *				sched-in
6256 	 *				perf_event_disable_inatomic()
6257 	 *				  @pending_disable = CPU-B;
6258 	 *				  irq_work_queue(); // FAILS
6259 	 *
6260 	 *  irq_work_run()
6261 	 *    perf_pending_event()
6262 	 *
6263 	 * But the event runs on CPU-B and wants disabling there.
6264 	 */
6265 	irq_work_queue_on(&event->pending, cpu);
6266 }
6267 
6268 static void perf_pending_event(struct irq_work *entry)
6269 {
6270 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6271 	int rctx;
6272 
6273 	rctx = perf_swevent_get_recursion_context();
6274 	/*
6275 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6276 	 * and we won't recurse 'further'.
6277 	 */
6278 
6279 	perf_pending_event_disable(event);
6280 
6281 	if (event->pending_wakeup) {
6282 		event->pending_wakeup = 0;
6283 		perf_event_wakeup(event);
6284 	}
6285 
6286 	if (rctx >= 0)
6287 		perf_swevent_put_recursion_context(rctx);
6288 }
6289 
6290 /*
6291  * We assume there is only KVM supporting the callbacks.
6292  * Later on, we might change it to a list if there is
6293  * another virtualization implementation supporting the callbacks.
6294  */
6295 struct perf_guest_info_callbacks *perf_guest_cbs;
6296 
6297 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6298 {
6299 	perf_guest_cbs = cbs;
6300 	return 0;
6301 }
6302 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6303 
6304 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6305 {
6306 	perf_guest_cbs = NULL;
6307 	return 0;
6308 }
6309 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6310 
6311 static void
6312 perf_output_sample_regs(struct perf_output_handle *handle,
6313 			struct pt_regs *regs, u64 mask)
6314 {
6315 	int bit;
6316 	DECLARE_BITMAP(_mask, 64);
6317 
6318 	bitmap_from_u64(_mask, mask);
6319 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6320 		u64 val;
6321 
6322 		val = perf_reg_value(regs, bit);
6323 		perf_output_put(handle, val);
6324 	}
6325 }
6326 
6327 static void perf_sample_regs_user(struct perf_regs *regs_user,
6328 				  struct pt_regs *regs,
6329 				  struct pt_regs *regs_user_copy)
6330 {
6331 	if (user_mode(regs)) {
6332 		regs_user->abi = perf_reg_abi(current);
6333 		regs_user->regs = regs;
6334 	} else if (!(current->flags & PF_KTHREAD)) {
6335 		perf_get_regs_user(regs_user, regs, regs_user_copy);
6336 	} else {
6337 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6338 		regs_user->regs = NULL;
6339 	}
6340 }
6341 
6342 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6343 				  struct pt_regs *regs)
6344 {
6345 	regs_intr->regs = regs;
6346 	regs_intr->abi  = perf_reg_abi(current);
6347 }
6348 
6349 
6350 /*
6351  * Get remaining task size from user stack pointer.
6352  *
6353  * It'd be better to take stack vma map and limit this more
6354  * precisely, but there's no way to get it safely under interrupt,
6355  * so using TASK_SIZE as limit.
6356  */
6357 static u64 perf_ustack_task_size(struct pt_regs *regs)
6358 {
6359 	unsigned long addr = perf_user_stack_pointer(regs);
6360 
6361 	if (!addr || addr >= TASK_SIZE)
6362 		return 0;
6363 
6364 	return TASK_SIZE - addr;
6365 }
6366 
6367 static u16
6368 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6369 			struct pt_regs *regs)
6370 {
6371 	u64 task_size;
6372 
6373 	/* No regs, no stack pointer, no dump. */
6374 	if (!regs)
6375 		return 0;
6376 
6377 	/*
6378 	 * Check if we fit in with the requested stack size into the:
6379 	 * - TASK_SIZE
6380 	 *   If we don't, we limit the size to the TASK_SIZE.
6381 	 *
6382 	 * - remaining sample size
6383 	 *   If we don't, we customize the stack size to
6384 	 *   fit in to the remaining sample size.
6385 	 */
6386 
6387 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6388 	stack_size = min(stack_size, (u16) task_size);
6389 
6390 	/* Current header size plus static size and dynamic size. */
6391 	header_size += 2 * sizeof(u64);
6392 
6393 	/* Do we fit in with the current stack dump size? */
6394 	if ((u16) (header_size + stack_size) < header_size) {
6395 		/*
6396 		 * If we overflow the maximum size for the sample,
6397 		 * we customize the stack dump size to fit in.
6398 		 */
6399 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6400 		stack_size = round_up(stack_size, sizeof(u64));
6401 	}
6402 
6403 	return stack_size;
6404 }
6405 
6406 static void
6407 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6408 			  struct pt_regs *regs)
6409 {
6410 	/* Case of a kernel thread, nothing to dump */
6411 	if (!regs) {
6412 		u64 size = 0;
6413 		perf_output_put(handle, size);
6414 	} else {
6415 		unsigned long sp;
6416 		unsigned int rem;
6417 		u64 dyn_size;
6418 		mm_segment_t fs;
6419 
6420 		/*
6421 		 * We dump:
6422 		 * static size
6423 		 *   - the size requested by user or the best one we can fit
6424 		 *     in to the sample max size
6425 		 * data
6426 		 *   - user stack dump data
6427 		 * dynamic size
6428 		 *   - the actual dumped size
6429 		 */
6430 
6431 		/* Static size. */
6432 		perf_output_put(handle, dump_size);
6433 
6434 		/* Data. */
6435 		sp = perf_user_stack_pointer(regs);
6436 		fs = get_fs();
6437 		set_fs(USER_DS);
6438 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6439 		set_fs(fs);
6440 		dyn_size = dump_size - rem;
6441 
6442 		perf_output_skip(handle, rem);
6443 
6444 		/* Dynamic size. */
6445 		perf_output_put(handle, dyn_size);
6446 	}
6447 }
6448 
6449 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6450 					  struct perf_sample_data *data,
6451 					  size_t size)
6452 {
6453 	struct perf_event *sampler = event->aux_event;
6454 	struct perf_buffer *rb;
6455 
6456 	data->aux_size = 0;
6457 
6458 	if (!sampler)
6459 		goto out;
6460 
6461 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6462 		goto out;
6463 
6464 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6465 		goto out;
6466 
6467 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6468 	if (!rb)
6469 		goto out;
6470 
6471 	/*
6472 	 * If this is an NMI hit inside sampling code, don't take
6473 	 * the sample. See also perf_aux_sample_output().
6474 	 */
6475 	if (READ_ONCE(rb->aux_in_sampling)) {
6476 		data->aux_size = 0;
6477 	} else {
6478 		size = min_t(size_t, size, perf_aux_size(rb));
6479 		data->aux_size = ALIGN(size, sizeof(u64));
6480 	}
6481 	ring_buffer_put(rb);
6482 
6483 out:
6484 	return data->aux_size;
6485 }
6486 
6487 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6488 			   struct perf_event *event,
6489 			   struct perf_output_handle *handle,
6490 			   unsigned long size)
6491 {
6492 	unsigned long flags;
6493 	long ret;
6494 
6495 	/*
6496 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6497 	 * paths. If we start calling them in NMI context, they may race with
6498 	 * the IRQ ones, that is, for example, re-starting an event that's just
6499 	 * been stopped, which is why we're using a separate callback that
6500 	 * doesn't change the event state.
6501 	 *
6502 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6503 	 */
6504 	local_irq_save(flags);
6505 	/*
6506 	 * Guard against NMI hits inside the critical section;
6507 	 * see also perf_prepare_sample_aux().
6508 	 */
6509 	WRITE_ONCE(rb->aux_in_sampling, 1);
6510 	barrier();
6511 
6512 	ret = event->pmu->snapshot_aux(event, handle, size);
6513 
6514 	barrier();
6515 	WRITE_ONCE(rb->aux_in_sampling, 0);
6516 	local_irq_restore(flags);
6517 
6518 	return ret;
6519 }
6520 
6521 static void perf_aux_sample_output(struct perf_event *event,
6522 				   struct perf_output_handle *handle,
6523 				   struct perf_sample_data *data)
6524 {
6525 	struct perf_event *sampler = event->aux_event;
6526 	struct perf_buffer *rb;
6527 	unsigned long pad;
6528 	long size;
6529 
6530 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6531 		return;
6532 
6533 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6534 	if (!rb)
6535 		return;
6536 
6537 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6538 
6539 	/*
6540 	 * An error here means that perf_output_copy() failed (returned a
6541 	 * non-zero surplus that it didn't copy), which in its current
6542 	 * enlightened implementation is not possible. If that changes, we'd
6543 	 * like to know.
6544 	 */
6545 	if (WARN_ON_ONCE(size < 0))
6546 		goto out_put;
6547 
6548 	/*
6549 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6550 	 * perf_prepare_sample_aux(), so should not be more than that.
6551 	 */
6552 	pad = data->aux_size - size;
6553 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6554 		pad = 8;
6555 
6556 	if (pad) {
6557 		u64 zero = 0;
6558 		perf_output_copy(handle, &zero, pad);
6559 	}
6560 
6561 out_put:
6562 	ring_buffer_put(rb);
6563 }
6564 
6565 static void __perf_event_header__init_id(struct perf_event_header *header,
6566 					 struct perf_sample_data *data,
6567 					 struct perf_event *event)
6568 {
6569 	u64 sample_type = event->attr.sample_type;
6570 
6571 	data->type = sample_type;
6572 	header->size += event->id_header_size;
6573 
6574 	if (sample_type & PERF_SAMPLE_TID) {
6575 		/* namespace issues */
6576 		data->tid_entry.pid = perf_event_pid(event, current);
6577 		data->tid_entry.tid = perf_event_tid(event, current);
6578 	}
6579 
6580 	if (sample_type & PERF_SAMPLE_TIME)
6581 		data->time = perf_event_clock(event);
6582 
6583 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6584 		data->id = primary_event_id(event);
6585 
6586 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6587 		data->stream_id = event->id;
6588 
6589 	if (sample_type & PERF_SAMPLE_CPU) {
6590 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6591 		data->cpu_entry.reserved = 0;
6592 	}
6593 }
6594 
6595 void perf_event_header__init_id(struct perf_event_header *header,
6596 				struct perf_sample_data *data,
6597 				struct perf_event *event)
6598 {
6599 	if (event->attr.sample_id_all)
6600 		__perf_event_header__init_id(header, data, event);
6601 }
6602 
6603 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6604 					   struct perf_sample_data *data)
6605 {
6606 	u64 sample_type = data->type;
6607 
6608 	if (sample_type & PERF_SAMPLE_TID)
6609 		perf_output_put(handle, data->tid_entry);
6610 
6611 	if (sample_type & PERF_SAMPLE_TIME)
6612 		perf_output_put(handle, data->time);
6613 
6614 	if (sample_type & PERF_SAMPLE_ID)
6615 		perf_output_put(handle, data->id);
6616 
6617 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6618 		perf_output_put(handle, data->stream_id);
6619 
6620 	if (sample_type & PERF_SAMPLE_CPU)
6621 		perf_output_put(handle, data->cpu_entry);
6622 
6623 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6624 		perf_output_put(handle, data->id);
6625 }
6626 
6627 void perf_event__output_id_sample(struct perf_event *event,
6628 				  struct perf_output_handle *handle,
6629 				  struct perf_sample_data *sample)
6630 {
6631 	if (event->attr.sample_id_all)
6632 		__perf_event__output_id_sample(handle, sample);
6633 }
6634 
6635 static void perf_output_read_one(struct perf_output_handle *handle,
6636 				 struct perf_event *event,
6637 				 u64 enabled, u64 running)
6638 {
6639 	u64 read_format = event->attr.read_format;
6640 	u64 values[4];
6641 	int n = 0;
6642 
6643 	values[n++] = perf_event_count(event);
6644 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6645 		values[n++] = enabled +
6646 			atomic64_read(&event->child_total_time_enabled);
6647 	}
6648 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6649 		values[n++] = running +
6650 			atomic64_read(&event->child_total_time_running);
6651 	}
6652 	if (read_format & PERF_FORMAT_ID)
6653 		values[n++] = primary_event_id(event);
6654 
6655 	__output_copy(handle, values, n * sizeof(u64));
6656 }
6657 
6658 static void perf_output_read_group(struct perf_output_handle *handle,
6659 			    struct perf_event *event,
6660 			    u64 enabled, u64 running)
6661 {
6662 	struct perf_event *leader = event->group_leader, *sub;
6663 	u64 read_format = event->attr.read_format;
6664 	u64 values[5];
6665 	int n = 0;
6666 
6667 	values[n++] = 1 + leader->nr_siblings;
6668 
6669 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6670 		values[n++] = enabled;
6671 
6672 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6673 		values[n++] = running;
6674 
6675 	if ((leader != event) &&
6676 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6677 		leader->pmu->read(leader);
6678 
6679 	values[n++] = perf_event_count(leader);
6680 	if (read_format & PERF_FORMAT_ID)
6681 		values[n++] = primary_event_id(leader);
6682 
6683 	__output_copy(handle, values, n * sizeof(u64));
6684 
6685 	for_each_sibling_event(sub, leader) {
6686 		n = 0;
6687 
6688 		if ((sub != event) &&
6689 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6690 			sub->pmu->read(sub);
6691 
6692 		values[n++] = perf_event_count(sub);
6693 		if (read_format & PERF_FORMAT_ID)
6694 			values[n++] = primary_event_id(sub);
6695 
6696 		__output_copy(handle, values, n * sizeof(u64));
6697 	}
6698 }
6699 
6700 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6701 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6702 
6703 /*
6704  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6705  *
6706  * The problem is that its both hard and excessively expensive to iterate the
6707  * child list, not to mention that its impossible to IPI the children running
6708  * on another CPU, from interrupt/NMI context.
6709  */
6710 static void perf_output_read(struct perf_output_handle *handle,
6711 			     struct perf_event *event)
6712 {
6713 	u64 enabled = 0, running = 0, now;
6714 	u64 read_format = event->attr.read_format;
6715 
6716 	/*
6717 	 * compute total_time_enabled, total_time_running
6718 	 * based on snapshot values taken when the event
6719 	 * was last scheduled in.
6720 	 *
6721 	 * we cannot simply called update_context_time()
6722 	 * because of locking issue as we are called in
6723 	 * NMI context
6724 	 */
6725 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6726 		calc_timer_values(event, &now, &enabled, &running);
6727 
6728 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6729 		perf_output_read_group(handle, event, enabled, running);
6730 	else
6731 		perf_output_read_one(handle, event, enabled, running);
6732 }
6733 
6734 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6735 {
6736 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6737 }
6738 
6739 void perf_output_sample(struct perf_output_handle *handle,
6740 			struct perf_event_header *header,
6741 			struct perf_sample_data *data,
6742 			struct perf_event *event)
6743 {
6744 	u64 sample_type = data->type;
6745 
6746 	perf_output_put(handle, *header);
6747 
6748 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6749 		perf_output_put(handle, data->id);
6750 
6751 	if (sample_type & PERF_SAMPLE_IP)
6752 		perf_output_put(handle, data->ip);
6753 
6754 	if (sample_type & PERF_SAMPLE_TID)
6755 		perf_output_put(handle, data->tid_entry);
6756 
6757 	if (sample_type & PERF_SAMPLE_TIME)
6758 		perf_output_put(handle, data->time);
6759 
6760 	if (sample_type & PERF_SAMPLE_ADDR)
6761 		perf_output_put(handle, data->addr);
6762 
6763 	if (sample_type & PERF_SAMPLE_ID)
6764 		perf_output_put(handle, data->id);
6765 
6766 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6767 		perf_output_put(handle, data->stream_id);
6768 
6769 	if (sample_type & PERF_SAMPLE_CPU)
6770 		perf_output_put(handle, data->cpu_entry);
6771 
6772 	if (sample_type & PERF_SAMPLE_PERIOD)
6773 		perf_output_put(handle, data->period);
6774 
6775 	if (sample_type & PERF_SAMPLE_READ)
6776 		perf_output_read(handle, event);
6777 
6778 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6779 		int size = 1;
6780 
6781 		size += data->callchain->nr;
6782 		size *= sizeof(u64);
6783 		__output_copy(handle, data->callchain, size);
6784 	}
6785 
6786 	if (sample_type & PERF_SAMPLE_RAW) {
6787 		struct perf_raw_record *raw = data->raw;
6788 
6789 		if (raw) {
6790 			struct perf_raw_frag *frag = &raw->frag;
6791 
6792 			perf_output_put(handle, raw->size);
6793 			do {
6794 				if (frag->copy) {
6795 					__output_custom(handle, frag->copy,
6796 							frag->data, frag->size);
6797 				} else {
6798 					__output_copy(handle, frag->data,
6799 						      frag->size);
6800 				}
6801 				if (perf_raw_frag_last(frag))
6802 					break;
6803 				frag = frag->next;
6804 			} while (1);
6805 			if (frag->pad)
6806 				__output_skip(handle, NULL, frag->pad);
6807 		} else {
6808 			struct {
6809 				u32	size;
6810 				u32	data;
6811 			} raw = {
6812 				.size = sizeof(u32),
6813 				.data = 0,
6814 			};
6815 			perf_output_put(handle, raw);
6816 		}
6817 	}
6818 
6819 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6820 		if (data->br_stack) {
6821 			size_t size;
6822 
6823 			size = data->br_stack->nr
6824 			     * sizeof(struct perf_branch_entry);
6825 
6826 			perf_output_put(handle, data->br_stack->nr);
6827 			if (perf_sample_save_hw_index(event))
6828 				perf_output_put(handle, data->br_stack->hw_idx);
6829 			perf_output_copy(handle, data->br_stack->entries, size);
6830 		} else {
6831 			/*
6832 			 * we always store at least the value of nr
6833 			 */
6834 			u64 nr = 0;
6835 			perf_output_put(handle, nr);
6836 		}
6837 	}
6838 
6839 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6840 		u64 abi = data->regs_user.abi;
6841 
6842 		/*
6843 		 * If there are no regs to dump, notice it through
6844 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6845 		 */
6846 		perf_output_put(handle, abi);
6847 
6848 		if (abi) {
6849 			u64 mask = event->attr.sample_regs_user;
6850 			perf_output_sample_regs(handle,
6851 						data->regs_user.regs,
6852 						mask);
6853 		}
6854 	}
6855 
6856 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6857 		perf_output_sample_ustack(handle,
6858 					  data->stack_user_size,
6859 					  data->regs_user.regs);
6860 	}
6861 
6862 	if (sample_type & PERF_SAMPLE_WEIGHT)
6863 		perf_output_put(handle, data->weight);
6864 
6865 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6866 		perf_output_put(handle, data->data_src.val);
6867 
6868 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6869 		perf_output_put(handle, data->txn);
6870 
6871 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6872 		u64 abi = data->regs_intr.abi;
6873 		/*
6874 		 * If there are no regs to dump, notice it through
6875 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6876 		 */
6877 		perf_output_put(handle, abi);
6878 
6879 		if (abi) {
6880 			u64 mask = event->attr.sample_regs_intr;
6881 
6882 			perf_output_sample_regs(handle,
6883 						data->regs_intr.regs,
6884 						mask);
6885 		}
6886 	}
6887 
6888 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6889 		perf_output_put(handle, data->phys_addr);
6890 
6891 	if (sample_type & PERF_SAMPLE_CGROUP)
6892 		perf_output_put(handle, data->cgroup);
6893 
6894 	if (sample_type & PERF_SAMPLE_AUX) {
6895 		perf_output_put(handle, data->aux_size);
6896 
6897 		if (data->aux_size)
6898 			perf_aux_sample_output(event, handle, data);
6899 	}
6900 
6901 	if (!event->attr.watermark) {
6902 		int wakeup_events = event->attr.wakeup_events;
6903 
6904 		if (wakeup_events) {
6905 			struct perf_buffer *rb = handle->rb;
6906 			int events = local_inc_return(&rb->events);
6907 
6908 			if (events >= wakeup_events) {
6909 				local_sub(wakeup_events, &rb->events);
6910 				local_inc(&rb->wakeup);
6911 			}
6912 		}
6913 	}
6914 }
6915 
6916 static u64 perf_virt_to_phys(u64 virt)
6917 {
6918 	u64 phys_addr = 0;
6919 	struct page *p = NULL;
6920 
6921 	if (!virt)
6922 		return 0;
6923 
6924 	if (virt >= TASK_SIZE) {
6925 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6926 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6927 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6928 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6929 	} else {
6930 		/*
6931 		 * Walking the pages tables for user address.
6932 		 * Interrupts are disabled, so it prevents any tear down
6933 		 * of the page tables.
6934 		 * Try IRQ-safe __get_user_pages_fast first.
6935 		 * If failed, leave phys_addr as 0.
6936 		 */
6937 		if (current->mm != NULL) {
6938 			pagefault_disable();
6939 			if (__get_user_pages_fast(virt, 1, 0, &p) == 1)
6940 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6941 			pagefault_enable();
6942 		}
6943 
6944 		if (p)
6945 			put_page(p);
6946 	}
6947 
6948 	return phys_addr;
6949 }
6950 
6951 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6952 
6953 struct perf_callchain_entry *
6954 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6955 {
6956 	bool kernel = !event->attr.exclude_callchain_kernel;
6957 	bool user   = !event->attr.exclude_callchain_user;
6958 	/* Disallow cross-task user callchains. */
6959 	bool crosstask = event->ctx->task && event->ctx->task != current;
6960 	const u32 max_stack = event->attr.sample_max_stack;
6961 	struct perf_callchain_entry *callchain;
6962 
6963 	if (!kernel && !user)
6964 		return &__empty_callchain;
6965 
6966 	callchain = get_perf_callchain(regs, 0, kernel, user,
6967 				       max_stack, crosstask, true);
6968 	return callchain ?: &__empty_callchain;
6969 }
6970 
6971 void perf_prepare_sample(struct perf_event_header *header,
6972 			 struct perf_sample_data *data,
6973 			 struct perf_event *event,
6974 			 struct pt_regs *regs)
6975 {
6976 	u64 sample_type = event->attr.sample_type;
6977 
6978 	header->type = PERF_RECORD_SAMPLE;
6979 	header->size = sizeof(*header) + event->header_size;
6980 
6981 	header->misc = 0;
6982 	header->misc |= perf_misc_flags(regs);
6983 
6984 	__perf_event_header__init_id(header, data, event);
6985 
6986 	if (sample_type & PERF_SAMPLE_IP)
6987 		data->ip = perf_instruction_pointer(regs);
6988 
6989 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6990 		int size = 1;
6991 
6992 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6993 			data->callchain = perf_callchain(event, regs);
6994 
6995 		size += data->callchain->nr;
6996 
6997 		header->size += size * sizeof(u64);
6998 	}
6999 
7000 	if (sample_type & PERF_SAMPLE_RAW) {
7001 		struct perf_raw_record *raw = data->raw;
7002 		int size;
7003 
7004 		if (raw) {
7005 			struct perf_raw_frag *frag = &raw->frag;
7006 			u32 sum = 0;
7007 
7008 			do {
7009 				sum += frag->size;
7010 				if (perf_raw_frag_last(frag))
7011 					break;
7012 				frag = frag->next;
7013 			} while (1);
7014 
7015 			size = round_up(sum + sizeof(u32), sizeof(u64));
7016 			raw->size = size - sizeof(u32);
7017 			frag->pad = raw->size - sum;
7018 		} else {
7019 			size = sizeof(u64);
7020 		}
7021 
7022 		header->size += size;
7023 	}
7024 
7025 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7026 		int size = sizeof(u64); /* nr */
7027 		if (data->br_stack) {
7028 			if (perf_sample_save_hw_index(event))
7029 				size += sizeof(u64);
7030 
7031 			size += data->br_stack->nr
7032 			      * sizeof(struct perf_branch_entry);
7033 		}
7034 		header->size += size;
7035 	}
7036 
7037 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7038 		perf_sample_regs_user(&data->regs_user, regs,
7039 				      &data->regs_user_copy);
7040 
7041 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7042 		/* regs dump ABI info */
7043 		int size = sizeof(u64);
7044 
7045 		if (data->regs_user.regs) {
7046 			u64 mask = event->attr.sample_regs_user;
7047 			size += hweight64(mask) * sizeof(u64);
7048 		}
7049 
7050 		header->size += size;
7051 	}
7052 
7053 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7054 		/*
7055 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7056 		 * processed as the last one or have additional check added
7057 		 * in case new sample type is added, because we could eat
7058 		 * up the rest of the sample size.
7059 		 */
7060 		u16 stack_size = event->attr.sample_stack_user;
7061 		u16 size = sizeof(u64);
7062 
7063 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7064 						     data->regs_user.regs);
7065 
7066 		/*
7067 		 * If there is something to dump, add space for the dump
7068 		 * itself and for the field that tells the dynamic size,
7069 		 * which is how many have been actually dumped.
7070 		 */
7071 		if (stack_size)
7072 			size += sizeof(u64) + stack_size;
7073 
7074 		data->stack_user_size = stack_size;
7075 		header->size += size;
7076 	}
7077 
7078 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7079 		/* regs dump ABI info */
7080 		int size = sizeof(u64);
7081 
7082 		perf_sample_regs_intr(&data->regs_intr, regs);
7083 
7084 		if (data->regs_intr.regs) {
7085 			u64 mask = event->attr.sample_regs_intr;
7086 
7087 			size += hweight64(mask) * sizeof(u64);
7088 		}
7089 
7090 		header->size += size;
7091 	}
7092 
7093 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7094 		data->phys_addr = perf_virt_to_phys(data->addr);
7095 
7096 #ifdef CONFIG_CGROUP_PERF
7097 	if (sample_type & PERF_SAMPLE_CGROUP) {
7098 		struct cgroup *cgrp;
7099 
7100 		/* protected by RCU */
7101 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7102 		data->cgroup = cgroup_id(cgrp);
7103 	}
7104 #endif
7105 
7106 	if (sample_type & PERF_SAMPLE_AUX) {
7107 		u64 size;
7108 
7109 		header->size += sizeof(u64); /* size */
7110 
7111 		/*
7112 		 * Given the 16bit nature of header::size, an AUX sample can
7113 		 * easily overflow it, what with all the preceding sample bits.
7114 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7115 		 * per sample in total (rounded down to 8 byte boundary).
7116 		 */
7117 		size = min_t(size_t, U16_MAX - header->size,
7118 			     event->attr.aux_sample_size);
7119 		size = rounddown(size, 8);
7120 		size = perf_prepare_sample_aux(event, data, size);
7121 
7122 		WARN_ON_ONCE(size + header->size > U16_MAX);
7123 		header->size += size;
7124 	}
7125 	/*
7126 	 * If you're adding more sample types here, you likely need to do
7127 	 * something about the overflowing header::size, like repurpose the
7128 	 * lowest 3 bits of size, which should be always zero at the moment.
7129 	 * This raises a more important question, do we really need 512k sized
7130 	 * samples and why, so good argumentation is in order for whatever you
7131 	 * do here next.
7132 	 */
7133 	WARN_ON_ONCE(header->size & 7);
7134 }
7135 
7136 static __always_inline int
7137 __perf_event_output(struct perf_event *event,
7138 		    struct perf_sample_data *data,
7139 		    struct pt_regs *regs,
7140 		    int (*output_begin)(struct perf_output_handle *,
7141 					struct perf_event *,
7142 					unsigned int))
7143 {
7144 	struct perf_output_handle handle;
7145 	struct perf_event_header header;
7146 	int err;
7147 
7148 	/* protect the callchain buffers */
7149 	rcu_read_lock();
7150 
7151 	perf_prepare_sample(&header, data, event, regs);
7152 
7153 	err = output_begin(&handle, event, header.size);
7154 	if (err)
7155 		goto exit;
7156 
7157 	perf_output_sample(&handle, &header, data, event);
7158 
7159 	perf_output_end(&handle);
7160 
7161 exit:
7162 	rcu_read_unlock();
7163 	return err;
7164 }
7165 
7166 void
7167 perf_event_output_forward(struct perf_event *event,
7168 			 struct perf_sample_data *data,
7169 			 struct pt_regs *regs)
7170 {
7171 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7172 }
7173 
7174 void
7175 perf_event_output_backward(struct perf_event *event,
7176 			   struct perf_sample_data *data,
7177 			   struct pt_regs *regs)
7178 {
7179 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7180 }
7181 
7182 int
7183 perf_event_output(struct perf_event *event,
7184 		  struct perf_sample_data *data,
7185 		  struct pt_regs *regs)
7186 {
7187 	return __perf_event_output(event, data, regs, perf_output_begin);
7188 }
7189 
7190 /*
7191  * read event_id
7192  */
7193 
7194 struct perf_read_event {
7195 	struct perf_event_header	header;
7196 
7197 	u32				pid;
7198 	u32				tid;
7199 };
7200 
7201 static void
7202 perf_event_read_event(struct perf_event *event,
7203 			struct task_struct *task)
7204 {
7205 	struct perf_output_handle handle;
7206 	struct perf_sample_data sample;
7207 	struct perf_read_event read_event = {
7208 		.header = {
7209 			.type = PERF_RECORD_READ,
7210 			.misc = 0,
7211 			.size = sizeof(read_event) + event->read_size,
7212 		},
7213 		.pid = perf_event_pid(event, task),
7214 		.tid = perf_event_tid(event, task),
7215 	};
7216 	int ret;
7217 
7218 	perf_event_header__init_id(&read_event.header, &sample, event);
7219 	ret = perf_output_begin(&handle, event, read_event.header.size);
7220 	if (ret)
7221 		return;
7222 
7223 	perf_output_put(&handle, read_event);
7224 	perf_output_read(&handle, event);
7225 	perf_event__output_id_sample(event, &handle, &sample);
7226 
7227 	perf_output_end(&handle);
7228 }
7229 
7230 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7231 
7232 static void
7233 perf_iterate_ctx(struct perf_event_context *ctx,
7234 		   perf_iterate_f output,
7235 		   void *data, bool all)
7236 {
7237 	struct perf_event *event;
7238 
7239 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7240 		if (!all) {
7241 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7242 				continue;
7243 			if (!event_filter_match(event))
7244 				continue;
7245 		}
7246 
7247 		output(event, data);
7248 	}
7249 }
7250 
7251 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7252 {
7253 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7254 	struct perf_event *event;
7255 
7256 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7257 		/*
7258 		 * Skip events that are not fully formed yet; ensure that
7259 		 * if we observe event->ctx, both event and ctx will be
7260 		 * complete enough. See perf_install_in_context().
7261 		 */
7262 		if (!smp_load_acquire(&event->ctx))
7263 			continue;
7264 
7265 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7266 			continue;
7267 		if (!event_filter_match(event))
7268 			continue;
7269 		output(event, data);
7270 	}
7271 }
7272 
7273 /*
7274  * Iterate all events that need to receive side-band events.
7275  *
7276  * For new callers; ensure that account_pmu_sb_event() includes
7277  * your event, otherwise it might not get delivered.
7278  */
7279 static void
7280 perf_iterate_sb(perf_iterate_f output, void *data,
7281 	       struct perf_event_context *task_ctx)
7282 {
7283 	struct perf_event_context *ctx;
7284 	int ctxn;
7285 
7286 	rcu_read_lock();
7287 	preempt_disable();
7288 
7289 	/*
7290 	 * If we have task_ctx != NULL we only notify the task context itself.
7291 	 * The task_ctx is set only for EXIT events before releasing task
7292 	 * context.
7293 	 */
7294 	if (task_ctx) {
7295 		perf_iterate_ctx(task_ctx, output, data, false);
7296 		goto done;
7297 	}
7298 
7299 	perf_iterate_sb_cpu(output, data);
7300 
7301 	for_each_task_context_nr(ctxn) {
7302 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7303 		if (ctx)
7304 			perf_iterate_ctx(ctx, output, data, false);
7305 	}
7306 done:
7307 	preempt_enable();
7308 	rcu_read_unlock();
7309 }
7310 
7311 /*
7312  * Clear all file-based filters at exec, they'll have to be
7313  * re-instated when/if these objects are mmapped again.
7314  */
7315 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7316 {
7317 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7318 	struct perf_addr_filter *filter;
7319 	unsigned int restart = 0, count = 0;
7320 	unsigned long flags;
7321 
7322 	if (!has_addr_filter(event))
7323 		return;
7324 
7325 	raw_spin_lock_irqsave(&ifh->lock, flags);
7326 	list_for_each_entry(filter, &ifh->list, entry) {
7327 		if (filter->path.dentry) {
7328 			event->addr_filter_ranges[count].start = 0;
7329 			event->addr_filter_ranges[count].size = 0;
7330 			restart++;
7331 		}
7332 
7333 		count++;
7334 	}
7335 
7336 	if (restart)
7337 		event->addr_filters_gen++;
7338 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7339 
7340 	if (restart)
7341 		perf_event_stop(event, 1);
7342 }
7343 
7344 void perf_event_exec(void)
7345 {
7346 	struct perf_event_context *ctx;
7347 	int ctxn;
7348 
7349 	rcu_read_lock();
7350 	for_each_task_context_nr(ctxn) {
7351 		ctx = current->perf_event_ctxp[ctxn];
7352 		if (!ctx)
7353 			continue;
7354 
7355 		perf_event_enable_on_exec(ctxn);
7356 
7357 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7358 				   true);
7359 	}
7360 	rcu_read_unlock();
7361 }
7362 
7363 struct remote_output {
7364 	struct perf_buffer	*rb;
7365 	int			err;
7366 };
7367 
7368 static void __perf_event_output_stop(struct perf_event *event, void *data)
7369 {
7370 	struct perf_event *parent = event->parent;
7371 	struct remote_output *ro = data;
7372 	struct perf_buffer *rb = ro->rb;
7373 	struct stop_event_data sd = {
7374 		.event	= event,
7375 	};
7376 
7377 	if (!has_aux(event))
7378 		return;
7379 
7380 	if (!parent)
7381 		parent = event;
7382 
7383 	/*
7384 	 * In case of inheritance, it will be the parent that links to the
7385 	 * ring-buffer, but it will be the child that's actually using it.
7386 	 *
7387 	 * We are using event::rb to determine if the event should be stopped,
7388 	 * however this may race with ring_buffer_attach() (through set_output),
7389 	 * which will make us skip the event that actually needs to be stopped.
7390 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7391 	 * its rb pointer.
7392 	 */
7393 	if (rcu_dereference(parent->rb) == rb)
7394 		ro->err = __perf_event_stop(&sd);
7395 }
7396 
7397 static int __perf_pmu_output_stop(void *info)
7398 {
7399 	struct perf_event *event = info;
7400 	struct pmu *pmu = event->ctx->pmu;
7401 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7402 	struct remote_output ro = {
7403 		.rb	= event->rb,
7404 	};
7405 
7406 	rcu_read_lock();
7407 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7408 	if (cpuctx->task_ctx)
7409 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7410 				   &ro, false);
7411 	rcu_read_unlock();
7412 
7413 	return ro.err;
7414 }
7415 
7416 static void perf_pmu_output_stop(struct perf_event *event)
7417 {
7418 	struct perf_event *iter;
7419 	int err, cpu;
7420 
7421 restart:
7422 	rcu_read_lock();
7423 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7424 		/*
7425 		 * For per-CPU events, we need to make sure that neither they
7426 		 * nor their children are running; for cpu==-1 events it's
7427 		 * sufficient to stop the event itself if it's active, since
7428 		 * it can't have children.
7429 		 */
7430 		cpu = iter->cpu;
7431 		if (cpu == -1)
7432 			cpu = READ_ONCE(iter->oncpu);
7433 
7434 		if (cpu == -1)
7435 			continue;
7436 
7437 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7438 		if (err == -EAGAIN) {
7439 			rcu_read_unlock();
7440 			goto restart;
7441 		}
7442 	}
7443 	rcu_read_unlock();
7444 }
7445 
7446 /*
7447  * task tracking -- fork/exit
7448  *
7449  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7450  */
7451 
7452 struct perf_task_event {
7453 	struct task_struct		*task;
7454 	struct perf_event_context	*task_ctx;
7455 
7456 	struct {
7457 		struct perf_event_header	header;
7458 
7459 		u32				pid;
7460 		u32				ppid;
7461 		u32				tid;
7462 		u32				ptid;
7463 		u64				time;
7464 	} event_id;
7465 };
7466 
7467 static int perf_event_task_match(struct perf_event *event)
7468 {
7469 	return event->attr.comm  || event->attr.mmap ||
7470 	       event->attr.mmap2 || event->attr.mmap_data ||
7471 	       event->attr.task;
7472 }
7473 
7474 static void perf_event_task_output(struct perf_event *event,
7475 				   void *data)
7476 {
7477 	struct perf_task_event *task_event = data;
7478 	struct perf_output_handle handle;
7479 	struct perf_sample_data	sample;
7480 	struct task_struct *task = task_event->task;
7481 	int ret, size = task_event->event_id.header.size;
7482 
7483 	if (!perf_event_task_match(event))
7484 		return;
7485 
7486 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7487 
7488 	ret = perf_output_begin(&handle, event,
7489 				task_event->event_id.header.size);
7490 	if (ret)
7491 		goto out;
7492 
7493 	task_event->event_id.pid = perf_event_pid(event, task);
7494 	task_event->event_id.ppid = perf_event_pid(event, current);
7495 
7496 	task_event->event_id.tid = perf_event_tid(event, task);
7497 	task_event->event_id.ptid = perf_event_tid(event, current);
7498 
7499 	task_event->event_id.time = perf_event_clock(event);
7500 
7501 	perf_output_put(&handle, task_event->event_id);
7502 
7503 	perf_event__output_id_sample(event, &handle, &sample);
7504 
7505 	perf_output_end(&handle);
7506 out:
7507 	task_event->event_id.header.size = size;
7508 }
7509 
7510 static void perf_event_task(struct task_struct *task,
7511 			      struct perf_event_context *task_ctx,
7512 			      int new)
7513 {
7514 	struct perf_task_event task_event;
7515 
7516 	if (!atomic_read(&nr_comm_events) &&
7517 	    !atomic_read(&nr_mmap_events) &&
7518 	    !atomic_read(&nr_task_events))
7519 		return;
7520 
7521 	task_event = (struct perf_task_event){
7522 		.task	  = task,
7523 		.task_ctx = task_ctx,
7524 		.event_id    = {
7525 			.header = {
7526 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7527 				.misc = 0,
7528 				.size = sizeof(task_event.event_id),
7529 			},
7530 			/* .pid  */
7531 			/* .ppid */
7532 			/* .tid  */
7533 			/* .ptid */
7534 			/* .time */
7535 		},
7536 	};
7537 
7538 	perf_iterate_sb(perf_event_task_output,
7539 		       &task_event,
7540 		       task_ctx);
7541 }
7542 
7543 void perf_event_fork(struct task_struct *task)
7544 {
7545 	perf_event_task(task, NULL, 1);
7546 	perf_event_namespaces(task);
7547 }
7548 
7549 /*
7550  * comm tracking
7551  */
7552 
7553 struct perf_comm_event {
7554 	struct task_struct	*task;
7555 	char			*comm;
7556 	int			comm_size;
7557 
7558 	struct {
7559 		struct perf_event_header	header;
7560 
7561 		u32				pid;
7562 		u32				tid;
7563 	} event_id;
7564 };
7565 
7566 static int perf_event_comm_match(struct perf_event *event)
7567 {
7568 	return event->attr.comm;
7569 }
7570 
7571 static void perf_event_comm_output(struct perf_event *event,
7572 				   void *data)
7573 {
7574 	struct perf_comm_event *comm_event = data;
7575 	struct perf_output_handle handle;
7576 	struct perf_sample_data sample;
7577 	int size = comm_event->event_id.header.size;
7578 	int ret;
7579 
7580 	if (!perf_event_comm_match(event))
7581 		return;
7582 
7583 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7584 	ret = perf_output_begin(&handle, event,
7585 				comm_event->event_id.header.size);
7586 
7587 	if (ret)
7588 		goto out;
7589 
7590 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7591 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7592 
7593 	perf_output_put(&handle, comm_event->event_id);
7594 	__output_copy(&handle, comm_event->comm,
7595 				   comm_event->comm_size);
7596 
7597 	perf_event__output_id_sample(event, &handle, &sample);
7598 
7599 	perf_output_end(&handle);
7600 out:
7601 	comm_event->event_id.header.size = size;
7602 }
7603 
7604 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7605 {
7606 	char comm[TASK_COMM_LEN];
7607 	unsigned int size;
7608 
7609 	memset(comm, 0, sizeof(comm));
7610 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7611 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7612 
7613 	comm_event->comm = comm;
7614 	comm_event->comm_size = size;
7615 
7616 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7617 
7618 	perf_iterate_sb(perf_event_comm_output,
7619 		       comm_event,
7620 		       NULL);
7621 }
7622 
7623 void perf_event_comm(struct task_struct *task, bool exec)
7624 {
7625 	struct perf_comm_event comm_event;
7626 
7627 	if (!atomic_read(&nr_comm_events))
7628 		return;
7629 
7630 	comm_event = (struct perf_comm_event){
7631 		.task	= task,
7632 		/* .comm      */
7633 		/* .comm_size */
7634 		.event_id  = {
7635 			.header = {
7636 				.type = PERF_RECORD_COMM,
7637 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7638 				/* .size */
7639 			},
7640 			/* .pid */
7641 			/* .tid */
7642 		},
7643 	};
7644 
7645 	perf_event_comm_event(&comm_event);
7646 }
7647 
7648 /*
7649  * namespaces tracking
7650  */
7651 
7652 struct perf_namespaces_event {
7653 	struct task_struct		*task;
7654 
7655 	struct {
7656 		struct perf_event_header	header;
7657 
7658 		u32				pid;
7659 		u32				tid;
7660 		u64				nr_namespaces;
7661 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7662 	} event_id;
7663 };
7664 
7665 static int perf_event_namespaces_match(struct perf_event *event)
7666 {
7667 	return event->attr.namespaces;
7668 }
7669 
7670 static void perf_event_namespaces_output(struct perf_event *event,
7671 					 void *data)
7672 {
7673 	struct perf_namespaces_event *namespaces_event = data;
7674 	struct perf_output_handle handle;
7675 	struct perf_sample_data sample;
7676 	u16 header_size = namespaces_event->event_id.header.size;
7677 	int ret;
7678 
7679 	if (!perf_event_namespaces_match(event))
7680 		return;
7681 
7682 	perf_event_header__init_id(&namespaces_event->event_id.header,
7683 				   &sample, event);
7684 	ret = perf_output_begin(&handle, event,
7685 				namespaces_event->event_id.header.size);
7686 	if (ret)
7687 		goto out;
7688 
7689 	namespaces_event->event_id.pid = perf_event_pid(event,
7690 							namespaces_event->task);
7691 	namespaces_event->event_id.tid = perf_event_tid(event,
7692 							namespaces_event->task);
7693 
7694 	perf_output_put(&handle, namespaces_event->event_id);
7695 
7696 	perf_event__output_id_sample(event, &handle, &sample);
7697 
7698 	perf_output_end(&handle);
7699 out:
7700 	namespaces_event->event_id.header.size = header_size;
7701 }
7702 
7703 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7704 				   struct task_struct *task,
7705 				   const struct proc_ns_operations *ns_ops)
7706 {
7707 	struct path ns_path;
7708 	struct inode *ns_inode;
7709 	int error;
7710 
7711 	error = ns_get_path(&ns_path, task, ns_ops);
7712 	if (!error) {
7713 		ns_inode = ns_path.dentry->d_inode;
7714 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7715 		ns_link_info->ino = ns_inode->i_ino;
7716 		path_put(&ns_path);
7717 	}
7718 }
7719 
7720 void perf_event_namespaces(struct task_struct *task)
7721 {
7722 	struct perf_namespaces_event namespaces_event;
7723 	struct perf_ns_link_info *ns_link_info;
7724 
7725 	if (!atomic_read(&nr_namespaces_events))
7726 		return;
7727 
7728 	namespaces_event = (struct perf_namespaces_event){
7729 		.task	= task,
7730 		.event_id  = {
7731 			.header = {
7732 				.type = PERF_RECORD_NAMESPACES,
7733 				.misc = 0,
7734 				.size = sizeof(namespaces_event.event_id),
7735 			},
7736 			/* .pid */
7737 			/* .tid */
7738 			.nr_namespaces = NR_NAMESPACES,
7739 			/* .link_info[NR_NAMESPACES] */
7740 		},
7741 	};
7742 
7743 	ns_link_info = namespaces_event.event_id.link_info;
7744 
7745 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7746 			       task, &mntns_operations);
7747 
7748 #ifdef CONFIG_USER_NS
7749 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7750 			       task, &userns_operations);
7751 #endif
7752 #ifdef CONFIG_NET_NS
7753 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7754 			       task, &netns_operations);
7755 #endif
7756 #ifdef CONFIG_UTS_NS
7757 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7758 			       task, &utsns_operations);
7759 #endif
7760 #ifdef CONFIG_IPC_NS
7761 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7762 			       task, &ipcns_operations);
7763 #endif
7764 #ifdef CONFIG_PID_NS
7765 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7766 			       task, &pidns_operations);
7767 #endif
7768 #ifdef CONFIG_CGROUPS
7769 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7770 			       task, &cgroupns_operations);
7771 #endif
7772 
7773 	perf_iterate_sb(perf_event_namespaces_output,
7774 			&namespaces_event,
7775 			NULL);
7776 }
7777 
7778 /*
7779  * cgroup tracking
7780  */
7781 #ifdef CONFIG_CGROUP_PERF
7782 
7783 struct perf_cgroup_event {
7784 	char				*path;
7785 	int				path_size;
7786 	struct {
7787 		struct perf_event_header	header;
7788 		u64				id;
7789 		char				path[];
7790 	} event_id;
7791 };
7792 
7793 static int perf_event_cgroup_match(struct perf_event *event)
7794 {
7795 	return event->attr.cgroup;
7796 }
7797 
7798 static void perf_event_cgroup_output(struct perf_event *event, void *data)
7799 {
7800 	struct perf_cgroup_event *cgroup_event = data;
7801 	struct perf_output_handle handle;
7802 	struct perf_sample_data sample;
7803 	u16 header_size = cgroup_event->event_id.header.size;
7804 	int ret;
7805 
7806 	if (!perf_event_cgroup_match(event))
7807 		return;
7808 
7809 	perf_event_header__init_id(&cgroup_event->event_id.header,
7810 				   &sample, event);
7811 	ret = perf_output_begin(&handle, event,
7812 				cgroup_event->event_id.header.size);
7813 	if (ret)
7814 		goto out;
7815 
7816 	perf_output_put(&handle, cgroup_event->event_id);
7817 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7818 
7819 	perf_event__output_id_sample(event, &handle, &sample);
7820 
7821 	perf_output_end(&handle);
7822 out:
7823 	cgroup_event->event_id.header.size = header_size;
7824 }
7825 
7826 static void perf_event_cgroup(struct cgroup *cgrp)
7827 {
7828 	struct perf_cgroup_event cgroup_event;
7829 	char path_enomem[16] = "//enomem";
7830 	char *pathname;
7831 	size_t size;
7832 
7833 	if (!atomic_read(&nr_cgroup_events))
7834 		return;
7835 
7836 	cgroup_event = (struct perf_cgroup_event){
7837 		.event_id  = {
7838 			.header = {
7839 				.type = PERF_RECORD_CGROUP,
7840 				.misc = 0,
7841 				.size = sizeof(cgroup_event.event_id),
7842 			},
7843 			.id = cgroup_id(cgrp),
7844 		},
7845 	};
7846 
7847 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
7848 	if (pathname == NULL) {
7849 		cgroup_event.path = path_enomem;
7850 	} else {
7851 		/* just to be sure to have enough space for alignment */
7852 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
7853 		cgroup_event.path = pathname;
7854 	}
7855 
7856 	/*
7857 	 * Since our buffer works in 8 byte units we need to align our string
7858 	 * size to a multiple of 8. However, we must guarantee the tail end is
7859 	 * zero'd out to avoid leaking random bits to userspace.
7860 	 */
7861 	size = strlen(cgroup_event.path) + 1;
7862 	while (!IS_ALIGNED(size, sizeof(u64)))
7863 		cgroup_event.path[size++] = '\0';
7864 
7865 	cgroup_event.event_id.header.size += size;
7866 	cgroup_event.path_size = size;
7867 
7868 	perf_iterate_sb(perf_event_cgroup_output,
7869 			&cgroup_event,
7870 			NULL);
7871 
7872 	kfree(pathname);
7873 }
7874 
7875 #endif
7876 
7877 /*
7878  * mmap tracking
7879  */
7880 
7881 struct perf_mmap_event {
7882 	struct vm_area_struct	*vma;
7883 
7884 	const char		*file_name;
7885 	int			file_size;
7886 	int			maj, min;
7887 	u64			ino;
7888 	u64			ino_generation;
7889 	u32			prot, flags;
7890 
7891 	struct {
7892 		struct perf_event_header	header;
7893 
7894 		u32				pid;
7895 		u32				tid;
7896 		u64				start;
7897 		u64				len;
7898 		u64				pgoff;
7899 	} event_id;
7900 };
7901 
7902 static int perf_event_mmap_match(struct perf_event *event,
7903 				 void *data)
7904 {
7905 	struct perf_mmap_event *mmap_event = data;
7906 	struct vm_area_struct *vma = mmap_event->vma;
7907 	int executable = vma->vm_flags & VM_EXEC;
7908 
7909 	return (!executable && event->attr.mmap_data) ||
7910 	       (executable && (event->attr.mmap || event->attr.mmap2));
7911 }
7912 
7913 static void perf_event_mmap_output(struct perf_event *event,
7914 				   void *data)
7915 {
7916 	struct perf_mmap_event *mmap_event = data;
7917 	struct perf_output_handle handle;
7918 	struct perf_sample_data sample;
7919 	int size = mmap_event->event_id.header.size;
7920 	u32 type = mmap_event->event_id.header.type;
7921 	int ret;
7922 
7923 	if (!perf_event_mmap_match(event, data))
7924 		return;
7925 
7926 	if (event->attr.mmap2) {
7927 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7928 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7929 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7930 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7931 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7932 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7933 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7934 	}
7935 
7936 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7937 	ret = perf_output_begin(&handle, event,
7938 				mmap_event->event_id.header.size);
7939 	if (ret)
7940 		goto out;
7941 
7942 	mmap_event->event_id.pid = perf_event_pid(event, current);
7943 	mmap_event->event_id.tid = perf_event_tid(event, current);
7944 
7945 	perf_output_put(&handle, mmap_event->event_id);
7946 
7947 	if (event->attr.mmap2) {
7948 		perf_output_put(&handle, mmap_event->maj);
7949 		perf_output_put(&handle, mmap_event->min);
7950 		perf_output_put(&handle, mmap_event->ino);
7951 		perf_output_put(&handle, mmap_event->ino_generation);
7952 		perf_output_put(&handle, mmap_event->prot);
7953 		perf_output_put(&handle, mmap_event->flags);
7954 	}
7955 
7956 	__output_copy(&handle, mmap_event->file_name,
7957 				   mmap_event->file_size);
7958 
7959 	perf_event__output_id_sample(event, &handle, &sample);
7960 
7961 	perf_output_end(&handle);
7962 out:
7963 	mmap_event->event_id.header.size = size;
7964 	mmap_event->event_id.header.type = type;
7965 }
7966 
7967 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7968 {
7969 	struct vm_area_struct *vma = mmap_event->vma;
7970 	struct file *file = vma->vm_file;
7971 	int maj = 0, min = 0;
7972 	u64 ino = 0, gen = 0;
7973 	u32 prot = 0, flags = 0;
7974 	unsigned int size;
7975 	char tmp[16];
7976 	char *buf = NULL;
7977 	char *name;
7978 
7979 	if (vma->vm_flags & VM_READ)
7980 		prot |= PROT_READ;
7981 	if (vma->vm_flags & VM_WRITE)
7982 		prot |= PROT_WRITE;
7983 	if (vma->vm_flags & VM_EXEC)
7984 		prot |= PROT_EXEC;
7985 
7986 	if (vma->vm_flags & VM_MAYSHARE)
7987 		flags = MAP_SHARED;
7988 	else
7989 		flags = MAP_PRIVATE;
7990 
7991 	if (vma->vm_flags & VM_DENYWRITE)
7992 		flags |= MAP_DENYWRITE;
7993 	if (vma->vm_flags & VM_MAYEXEC)
7994 		flags |= MAP_EXECUTABLE;
7995 	if (vma->vm_flags & VM_LOCKED)
7996 		flags |= MAP_LOCKED;
7997 	if (is_vm_hugetlb_page(vma))
7998 		flags |= MAP_HUGETLB;
7999 
8000 	if (file) {
8001 		struct inode *inode;
8002 		dev_t dev;
8003 
8004 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8005 		if (!buf) {
8006 			name = "//enomem";
8007 			goto cpy_name;
8008 		}
8009 		/*
8010 		 * d_path() works from the end of the rb backwards, so we
8011 		 * need to add enough zero bytes after the string to handle
8012 		 * the 64bit alignment we do later.
8013 		 */
8014 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8015 		if (IS_ERR(name)) {
8016 			name = "//toolong";
8017 			goto cpy_name;
8018 		}
8019 		inode = file_inode(vma->vm_file);
8020 		dev = inode->i_sb->s_dev;
8021 		ino = inode->i_ino;
8022 		gen = inode->i_generation;
8023 		maj = MAJOR(dev);
8024 		min = MINOR(dev);
8025 
8026 		goto got_name;
8027 	} else {
8028 		if (vma->vm_ops && vma->vm_ops->name) {
8029 			name = (char *) vma->vm_ops->name(vma);
8030 			if (name)
8031 				goto cpy_name;
8032 		}
8033 
8034 		name = (char *)arch_vma_name(vma);
8035 		if (name)
8036 			goto cpy_name;
8037 
8038 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8039 				vma->vm_end >= vma->vm_mm->brk) {
8040 			name = "[heap]";
8041 			goto cpy_name;
8042 		}
8043 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8044 				vma->vm_end >= vma->vm_mm->start_stack) {
8045 			name = "[stack]";
8046 			goto cpy_name;
8047 		}
8048 
8049 		name = "//anon";
8050 		goto cpy_name;
8051 	}
8052 
8053 cpy_name:
8054 	strlcpy(tmp, name, sizeof(tmp));
8055 	name = tmp;
8056 got_name:
8057 	/*
8058 	 * Since our buffer works in 8 byte units we need to align our string
8059 	 * size to a multiple of 8. However, we must guarantee the tail end is
8060 	 * zero'd out to avoid leaking random bits to userspace.
8061 	 */
8062 	size = strlen(name)+1;
8063 	while (!IS_ALIGNED(size, sizeof(u64)))
8064 		name[size++] = '\0';
8065 
8066 	mmap_event->file_name = name;
8067 	mmap_event->file_size = size;
8068 	mmap_event->maj = maj;
8069 	mmap_event->min = min;
8070 	mmap_event->ino = ino;
8071 	mmap_event->ino_generation = gen;
8072 	mmap_event->prot = prot;
8073 	mmap_event->flags = flags;
8074 
8075 	if (!(vma->vm_flags & VM_EXEC))
8076 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8077 
8078 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8079 
8080 	perf_iterate_sb(perf_event_mmap_output,
8081 		       mmap_event,
8082 		       NULL);
8083 
8084 	kfree(buf);
8085 }
8086 
8087 /*
8088  * Check whether inode and address range match filter criteria.
8089  */
8090 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8091 				     struct file *file, unsigned long offset,
8092 				     unsigned long size)
8093 {
8094 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8095 	if (!filter->path.dentry)
8096 		return false;
8097 
8098 	if (d_inode(filter->path.dentry) != file_inode(file))
8099 		return false;
8100 
8101 	if (filter->offset > offset + size)
8102 		return false;
8103 
8104 	if (filter->offset + filter->size < offset)
8105 		return false;
8106 
8107 	return true;
8108 }
8109 
8110 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8111 					struct vm_area_struct *vma,
8112 					struct perf_addr_filter_range *fr)
8113 {
8114 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8115 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8116 	struct file *file = vma->vm_file;
8117 
8118 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8119 		return false;
8120 
8121 	if (filter->offset < off) {
8122 		fr->start = vma->vm_start;
8123 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8124 	} else {
8125 		fr->start = vma->vm_start + filter->offset - off;
8126 		fr->size = min(vma->vm_end - fr->start, filter->size);
8127 	}
8128 
8129 	return true;
8130 }
8131 
8132 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8133 {
8134 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8135 	struct vm_area_struct *vma = data;
8136 	struct perf_addr_filter *filter;
8137 	unsigned int restart = 0, count = 0;
8138 	unsigned long flags;
8139 
8140 	if (!has_addr_filter(event))
8141 		return;
8142 
8143 	if (!vma->vm_file)
8144 		return;
8145 
8146 	raw_spin_lock_irqsave(&ifh->lock, flags);
8147 	list_for_each_entry(filter, &ifh->list, entry) {
8148 		if (perf_addr_filter_vma_adjust(filter, vma,
8149 						&event->addr_filter_ranges[count]))
8150 			restart++;
8151 
8152 		count++;
8153 	}
8154 
8155 	if (restart)
8156 		event->addr_filters_gen++;
8157 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8158 
8159 	if (restart)
8160 		perf_event_stop(event, 1);
8161 }
8162 
8163 /*
8164  * Adjust all task's events' filters to the new vma
8165  */
8166 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8167 {
8168 	struct perf_event_context *ctx;
8169 	int ctxn;
8170 
8171 	/*
8172 	 * Data tracing isn't supported yet and as such there is no need
8173 	 * to keep track of anything that isn't related to executable code:
8174 	 */
8175 	if (!(vma->vm_flags & VM_EXEC))
8176 		return;
8177 
8178 	rcu_read_lock();
8179 	for_each_task_context_nr(ctxn) {
8180 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8181 		if (!ctx)
8182 			continue;
8183 
8184 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8185 	}
8186 	rcu_read_unlock();
8187 }
8188 
8189 void perf_event_mmap(struct vm_area_struct *vma)
8190 {
8191 	struct perf_mmap_event mmap_event;
8192 
8193 	if (!atomic_read(&nr_mmap_events))
8194 		return;
8195 
8196 	mmap_event = (struct perf_mmap_event){
8197 		.vma	= vma,
8198 		/* .file_name */
8199 		/* .file_size */
8200 		.event_id  = {
8201 			.header = {
8202 				.type = PERF_RECORD_MMAP,
8203 				.misc = PERF_RECORD_MISC_USER,
8204 				/* .size */
8205 			},
8206 			/* .pid */
8207 			/* .tid */
8208 			.start  = vma->vm_start,
8209 			.len    = vma->vm_end - vma->vm_start,
8210 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8211 		},
8212 		/* .maj (attr_mmap2 only) */
8213 		/* .min (attr_mmap2 only) */
8214 		/* .ino (attr_mmap2 only) */
8215 		/* .ino_generation (attr_mmap2 only) */
8216 		/* .prot (attr_mmap2 only) */
8217 		/* .flags (attr_mmap2 only) */
8218 	};
8219 
8220 	perf_addr_filters_adjust(vma);
8221 	perf_event_mmap_event(&mmap_event);
8222 }
8223 
8224 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8225 			  unsigned long size, u64 flags)
8226 {
8227 	struct perf_output_handle handle;
8228 	struct perf_sample_data sample;
8229 	struct perf_aux_event {
8230 		struct perf_event_header	header;
8231 		u64				offset;
8232 		u64				size;
8233 		u64				flags;
8234 	} rec = {
8235 		.header = {
8236 			.type = PERF_RECORD_AUX,
8237 			.misc = 0,
8238 			.size = sizeof(rec),
8239 		},
8240 		.offset		= head,
8241 		.size		= size,
8242 		.flags		= flags,
8243 	};
8244 	int ret;
8245 
8246 	perf_event_header__init_id(&rec.header, &sample, event);
8247 	ret = perf_output_begin(&handle, event, rec.header.size);
8248 
8249 	if (ret)
8250 		return;
8251 
8252 	perf_output_put(&handle, rec);
8253 	perf_event__output_id_sample(event, &handle, &sample);
8254 
8255 	perf_output_end(&handle);
8256 }
8257 
8258 /*
8259  * Lost/dropped samples logging
8260  */
8261 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8262 {
8263 	struct perf_output_handle handle;
8264 	struct perf_sample_data sample;
8265 	int ret;
8266 
8267 	struct {
8268 		struct perf_event_header	header;
8269 		u64				lost;
8270 	} lost_samples_event = {
8271 		.header = {
8272 			.type = PERF_RECORD_LOST_SAMPLES,
8273 			.misc = 0,
8274 			.size = sizeof(lost_samples_event),
8275 		},
8276 		.lost		= lost,
8277 	};
8278 
8279 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8280 
8281 	ret = perf_output_begin(&handle, event,
8282 				lost_samples_event.header.size);
8283 	if (ret)
8284 		return;
8285 
8286 	perf_output_put(&handle, lost_samples_event);
8287 	perf_event__output_id_sample(event, &handle, &sample);
8288 	perf_output_end(&handle);
8289 }
8290 
8291 /*
8292  * context_switch tracking
8293  */
8294 
8295 struct perf_switch_event {
8296 	struct task_struct	*task;
8297 	struct task_struct	*next_prev;
8298 
8299 	struct {
8300 		struct perf_event_header	header;
8301 		u32				next_prev_pid;
8302 		u32				next_prev_tid;
8303 	} event_id;
8304 };
8305 
8306 static int perf_event_switch_match(struct perf_event *event)
8307 {
8308 	return event->attr.context_switch;
8309 }
8310 
8311 static void perf_event_switch_output(struct perf_event *event, void *data)
8312 {
8313 	struct perf_switch_event *se = data;
8314 	struct perf_output_handle handle;
8315 	struct perf_sample_data sample;
8316 	int ret;
8317 
8318 	if (!perf_event_switch_match(event))
8319 		return;
8320 
8321 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8322 	if (event->ctx->task) {
8323 		se->event_id.header.type = PERF_RECORD_SWITCH;
8324 		se->event_id.header.size = sizeof(se->event_id.header);
8325 	} else {
8326 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8327 		se->event_id.header.size = sizeof(se->event_id);
8328 		se->event_id.next_prev_pid =
8329 					perf_event_pid(event, se->next_prev);
8330 		se->event_id.next_prev_tid =
8331 					perf_event_tid(event, se->next_prev);
8332 	}
8333 
8334 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8335 
8336 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
8337 	if (ret)
8338 		return;
8339 
8340 	if (event->ctx->task)
8341 		perf_output_put(&handle, se->event_id.header);
8342 	else
8343 		perf_output_put(&handle, se->event_id);
8344 
8345 	perf_event__output_id_sample(event, &handle, &sample);
8346 
8347 	perf_output_end(&handle);
8348 }
8349 
8350 static void perf_event_switch(struct task_struct *task,
8351 			      struct task_struct *next_prev, bool sched_in)
8352 {
8353 	struct perf_switch_event switch_event;
8354 
8355 	/* N.B. caller checks nr_switch_events != 0 */
8356 
8357 	switch_event = (struct perf_switch_event){
8358 		.task		= task,
8359 		.next_prev	= next_prev,
8360 		.event_id	= {
8361 			.header = {
8362 				/* .type */
8363 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8364 				/* .size */
8365 			},
8366 			/* .next_prev_pid */
8367 			/* .next_prev_tid */
8368 		},
8369 	};
8370 
8371 	if (!sched_in && task->state == TASK_RUNNING)
8372 		switch_event.event_id.header.misc |=
8373 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8374 
8375 	perf_iterate_sb(perf_event_switch_output,
8376 		       &switch_event,
8377 		       NULL);
8378 }
8379 
8380 /*
8381  * IRQ throttle logging
8382  */
8383 
8384 static void perf_log_throttle(struct perf_event *event, int enable)
8385 {
8386 	struct perf_output_handle handle;
8387 	struct perf_sample_data sample;
8388 	int ret;
8389 
8390 	struct {
8391 		struct perf_event_header	header;
8392 		u64				time;
8393 		u64				id;
8394 		u64				stream_id;
8395 	} throttle_event = {
8396 		.header = {
8397 			.type = PERF_RECORD_THROTTLE,
8398 			.misc = 0,
8399 			.size = sizeof(throttle_event),
8400 		},
8401 		.time		= perf_event_clock(event),
8402 		.id		= primary_event_id(event),
8403 		.stream_id	= event->id,
8404 	};
8405 
8406 	if (enable)
8407 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8408 
8409 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8410 
8411 	ret = perf_output_begin(&handle, event,
8412 				throttle_event.header.size);
8413 	if (ret)
8414 		return;
8415 
8416 	perf_output_put(&handle, throttle_event);
8417 	perf_event__output_id_sample(event, &handle, &sample);
8418 	perf_output_end(&handle);
8419 }
8420 
8421 /*
8422  * ksymbol register/unregister tracking
8423  */
8424 
8425 struct perf_ksymbol_event {
8426 	const char	*name;
8427 	int		name_len;
8428 	struct {
8429 		struct perf_event_header        header;
8430 		u64				addr;
8431 		u32				len;
8432 		u16				ksym_type;
8433 		u16				flags;
8434 	} event_id;
8435 };
8436 
8437 static int perf_event_ksymbol_match(struct perf_event *event)
8438 {
8439 	return event->attr.ksymbol;
8440 }
8441 
8442 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8443 {
8444 	struct perf_ksymbol_event *ksymbol_event = data;
8445 	struct perf_output_handle handle;
8446 	struct perf_sample_data sample;
8447 	int ret;
8448 
8449 	if (!perf_event_ksymbol_match(event))
8450 		return;
8451 
8452 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8453 				   &sample, event);
8454 	ret = perf_output_begin(&handle, event,
8455 				ksymbol_event->event_id.header.size);
8456 	if (ret)
8457 		return;
8458 
8459 	perf_output_put(&handle, ksymbol_event->event_id);
8460 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8461 	perf_event__output_id_sample(event, &handle, &sample);
8462 
8463 	perf_output_end(&handle);
8464 }
8465 
8466 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8467 			const char *sym)
8468 {
8469 	struct perf_ksymbol_event ksymbol_event;
8470 	char name[KSYM_NAME_LEN];
8471 	u16 flags = 0;
8472 	int name_len;
8473 
8474 	if (!atomic_read(&nr_ksymbol_events))
8475 		return;
8476 
8477 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8478 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8479 		goto err;
8480 
8481 	strlcpy(name, sym, KSYM_NAME_LEN);
8482 	name_len = strlen(name) + 1;
8483 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8484 		name[name_len++] = '\0';
8485 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8486 
8487 	if (unregister)
8488 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8489 
8490 	ksymbol_event = (struct perf_ksymbol_event){
8491 		.name = name,
8492 		.name_len = name_len,
8493 		.event_id = {
8494 			.header = {
8495 				.type = PERF_RECORD_KSYMBOL,
8496 				.size = sizeof(ksymbol_event.event_id) +
8497 					name_len,
8498 			},
8499 			.addr = addr,
8500 			.len = len,
8501 			.ksym_type = ksym_type,
8502 			.flags = flags,
8503 		},
8504 	};
8505 
8506 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8507 	return;
8508 err:
8509 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8510 }
8511 
8512 /*
8513  * bpf program load/unload tracking
8514  */
8515 
8516 struct perf_bpf_event {
8517 	struct bpf_prog	*prog;
8518 	struct {
8519 		struct perf_event_header        header;
8520 		u16				type;
8521 		u16				flags;
8522 		u32				id;
8523 		u8				tag[BPF_TAG_SIZE];
8524 	} event_id;
8525 };
8526 
8527 static int perf_event_bpf_match(struct perf_event *event)
8528 {
8529 	return event->attr.bpf_event;
8530 }
8531 
8532 static void perf_event_bpf_output(struct perf_event *event, void *data)
8533 {
8534 	struct perf_bpf_event *bpf_event = data;
8535 	struct perf_output_handle handle;
8536 	struct perf_sample_data sample;
8537 	int ret;
8538 
8539 	if (!perf_event_bpf_match(event))
8540 		return;
8541 
8542 	perf_event_header__init_id(&bpf_event->event_id.header,
8543 				   &sample, event);
8544 	ret = perf_output_begin(&handle, event,
8545 				bpf_event->event_id.header.size);
8546 	if (ret)
8547 		return;
8548 
8549 	perf_output_put(&handle, bpf_event->event_id);
8550 	perf_event__output_id_sample(event, &handle, &sample);
8551 
8552 	perf_output_end(&handle);
8553 }
8554 
8555 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8556 					 enum perf_bpf_event_type type)
8557 {
8558 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8559 	int i;
8560 
8561 	if (prog->aux->func_cnt == 0) {
8562 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8563 				   (u64)(unsigned long)prog->bpf_func,
8564 				   prog->jited_len, unregister,
8565 				   prog->aux->ksym.name);
8566 	} else {
8567 		for (i = 0; i < prog->aux->func_cnt; i++) {
8568 			struct bpf_prog *subprog = prog->aux->func[i];
8569 
8570 			perf_event_ksymbol(
8571 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8572 				(u64)(unsigned long)subprog->bpf_func,
8573 				subprog->jited_len, unregister,
8574 				prog->aux->ksym.name);
8575 		}
8576 	}
8577 }
8578 
8579 void perf_event_bpf_event(struct bpf_prog *prog,
8580 			  enum perf_bpf_event_type type,
8581 			  u16 flags)
8582 {
8583 	struct perf_bpf_event bpf_event;
8584 
8585 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8586 	    type >= PERF_BPF_EVENT_MAX)
8587 		return;
8588 
8589 	switch (type) {
8590 	case PERF_BPF_EVENT_PROG_LOAD:
8591 	case PERF_BPF_EVENT_PROG_UNLOAD:
8592 		if (atomic_read(&nr_ksymbol_events))
8593 			perf_event_bpf_emit_ksymbols(prog, type);
8594 		break;
8595 	default:
8596 		break;
8597 	}
8598 
8599 	if (!atomic_read(&nr_bpf_events))
8600 		return;
8601 
8602 	bpf_event = (struct perf_bpf_event){
8603 		.prog = prog,
8604 		.event_id = {
8605 			.header = {
8606 				.type = PERF_RECORD_BPF_EVENT,
8607 				.size = sizeof(bpf_event.event_id),
8608 			},
8609 			.type = type,
8610 			.flags = flags,
8611 			.id = prog->aux->id,
8612 		},
8613 	};
8614 
8615 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8616 
8617 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8618 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8619 }
8620 
8621 void perf_event_itrace_started(struct perf_event *event)
8622 {
8623 	event->attach_state |= PERF_ATTACH_ITRACE;
8624 }
8625 
8626 static void perf_log_itrace_start(struct perf_event *event)
8627 {
8628 	struct perf_output_handle handle;
8629 	struct perf_sample_data sample;
8630 	struct perf_aux_event {
8631 		struct perf_event_header        header;
8632 		u32				pid;
8633 		u32				tid;
8634 	} rec;
8635 	int ret;
8636 
8637 	if (event->parent)
8638 		event = event->parent;
8639 
8640 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8641 	    event->attach_state & PERF_ATTACH_ITRACE)
8642 		return;
8643 
8644 	rec.header.type	= PERF_RECORD_ITRACE_START;
8645 	rec.header.misc	= 0;
8646 	rec.header.size	= sizeof(rec);
8647 	rec.pid	= perf_event_pid(event, current);
8648 	rec.tid	= perf_event_tid(event, current);
8649 
8650 	perf_event_header__init_id(&rec.header, &sample, event);
8651 	ret = perf_output_begin(&handle, event, rec.header.size);
8652 
8653 	if (ret)
8654 		return;
8655 
8656 	perf_output_put(&handle, rec);
8657 	perf_event__output_id_sample(event, &handle, &sample);
8658 
8659 	perf_output_end(&handle);
8660 }
8661 
8662 static int
8663 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8664 {
8665 	struct hw_perf_event *hwc = &event->hw;
8666 	int ret = 0;
8667 	u64 seq;
8668 
8669 	seq = __this_cpu_read(perf_throttled_seq);
8670 	if (seq != hwc->interrupts_seq) {
8671 		hwc->interrupts_seq = seq;
8672 		hwc->interrupts = 1;
8673 	} else {
8674 		hwc->interrupts++;
8675 		if (unlikely(throttle
8676 			     && hwc->interrupts >= max_samples_per_tick)) {
8677 			__this_cpu_inc(perf_throttled_count);
8678 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8679 			hwc->interrupts = MAX_INTERRUPTS;
8680 			perf_log_throttle(event, 0);
8681 			ret = 1;
8682 		}
8683 	}
8684 
8685 	if (event->attr.freq) {
8686 		u64 now = perf_clock();
8687 		s64 delta = now - hwc->freq_time_stamp;
8688 
8689 		hwc->freq_time_stamp = now;
8690 
8691 		if (delta > 0 && delta < 2*TICK_NSEC)
8692 			perf_adjust_period(event, delta, hwc->last_period, true);
8693 	}
8694 
8695 	return ret;
8696 }
8697 
8698 int perf_event_account_interrupt(struct perf_event *event)
8699 {
8700 	return __perf_event_account_interrupt(event, 1);
8701 }
8702 
8703 /*
8704  * Generic event overflow handling, sampling.
8705  */
8706 
8707 static int __perf_event_overflow(struct perf_event *event,
8708 				   int throttle, struct perf_sample_data *data,
8709 				   struct pt_regs *regs)
8710 {
8711 	int events = atomic_read(&event->event_limit);
8712 	int ret = 0;
8713 
8714 	/*
8715 	 * Non-sampling counters might still use the PMI to fold short
8716 	 * hardware counters, ignore those.
8717 	 */
8718 	if (unlikely(!is_sampling_event(event)))
8719 		return 0;
8720 
8721 	ret = __perf_event_account_interrupt(event, throttle);
8722 
8723 	/*
8724 	 * XXX event_limit might not quite work as expected on inherited
8725 	 * events
8726 	 */
8727 
8728 	event->pending_kill = POLL_IN;
8729 	if (events && atomic_dec_and_test(&event->event_limit)) {
8730 		ret = 1;
8731 		event->pending_kill = POLL_HUP;
8732 
8733 		perf_event_disable_inatomic(event);
8734 	}
8735 
8736 	READ_ONCE(event->overflow_handler)(event, data, regs);
8737 
8738 	if (*perf_event_fasync(event) && event->pending_kill) {
8739 		event->pending_wakeup = 1;
8740 		irq_work_queue(&event->pending);
8741 	}
8742 
8743 	return ret;
8744 }
8745 
8746 int perf_event_overflow(struct perf_event *event,
8747 			  struct perf_sample_data *data,
8748 			  struct pt_regs *regs)
8749 {
8750 	return __perf_event_overflow(event, 1, data, regs);
8751 }
8752 
8753 /*
8754  * Generic software event infrastructure
8755  */
8756 
8757 struct swevent_htable {
8758 	struct swevent_hlist		*swevent_hlist;
8759 	struct mutex			hlist_mutex;
8760 	int				hlist_refcount;
8761 
8762 	/* Recursion avoidance in each contexts */
8763 	int				recursion[PERF_NR_CONTEXTS];
8764 };
8765 
8766 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8767 
8768 /*
8769  * We directly increment event->count and keep a second value in
8770  * event->hw.period_left to count intervals. This period event
8771  * is kept in the range [-sample_period, 0] so that we can use the
8772  * sign as trigger.
8773  */
8774 
8775 u64 perf_swevent_set_period(struct perf_event *event)
8776 {
8777 	struct hw_perf_event *hwc = &event->hw;
8778 	u64 period = hwc->last_period;
8779 	u64 nr, offset;
8780 	s64 old, val;
8781 
8782 	hwc->last_period = hwc->sample_period;
8783 
8784 again:
8785 	old = val = local64_read(&hwc->period_left);
8786 	if (val < 0)
8787 		return 0;
8788 
8789 	nr = div64_u64(period + val, period);
8790 	offset = nr * period;
8791 	val -= offset;
8792 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8793 		goto again;
8794 
8795 	return nr;
8796 }
8797 
8798 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8799 				    struct perf_sample_data *data,
8800 				    struct pt_regs *regs)
8801 {
8802 	struct hw_perf_event *hwc = &event->hw;
8803 	int throttle = 0;
8804 
8805 	if (!overflow)
8806 		overflow = perf_swevent_set_period(event);
8807 
8808 	if (hwc->interrupts == MAX_INTERRUPTS)
8809 		return;
8810 
8811 	for (; overflow; overflow--) {
8812 		if (__perf_event_overflow(event, throttle,
8813 					    data, regs)) {
8814 			/*
8815 			 * We inhibit the overflow from happening when
8816 			 * hwc->interrupts == MAX_INTERRUPTS.
8817 			 */
8818 			break;
8819 		}
8820 		throttle = 1;
8821 	}
8822 }
8823 
8824 static void perf_swevent_event(struct perf_event *event, u64 nr,
8825 			       struct perf_sample_data *data,
8826 			       struct pt_regs *regs)
8827 {
8828 	struct hw_perf_event *hwc = &event->hw;
8829 
8830 	local64_add(nr, &event->count);
8831 
8832 	if (!regs)
8833 		return;
8834 
8835 	if (!is_sampling_event(event))
8836 		return;
8837 
8838 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8839 		data->period = nr;
8840 		return perf_swevent_overflow(event, 1, data, regs);
8841 	} else
8842 		data->period = event->hw.last_period;
8843 
8844 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8845 		return perf_swevent_overflow(event, 1, data, regs);
8846 
8847 	if (local64_add_negative(nr, &hwc->period_left))
8848 		return;
8849 
8850 	perf_swevent_overflow(event, 0, data, regs);
8851 }
8852 
8853 static int perf_exclude_event(struct perf_event *event,
8854 			      struct pt_regs *regs)
8855 {
8856 	if (event->hw.state & PERF_HES_STOPPED)
8857 		return 1;
8858 
8859 	if (regs) {
8860 		if (event->attr.exclude_user && user_mode(regs))
8861 			return 1;
8862 
8863 		if (event->attr.exclude_kernel && !user_mode(regs))
8864 			return 1;
8865 	}
8866 
8867 	return 0;
8868 }
8869 
8870 static int perf_swevent_match(struct perf_event *event,
8871 				enum perf_type_id type,
8872 				u32 event_id,
8873 				struct perf_sample_data *data,
8874 				struct pt_regs *regs)
8875 {
8876 	if (event->attr.type != type)
8877 		return 0;
8878 
8879 	if (event->attr.config != event_id)
8880 		return 0;
8881 
8882 	if (perf_exclude_event(event, regs))
8883 		return 0;
8884 
8885 	return 1;
8886 }
8887 
8888 static inline u64 swevent_hash(u64 type, u32 event_id)
8889 {
8890 	u64 val = event_id | (type << 32);
8891 
8892 	return hash_64(val, SWEVENT_HLIST_BITS);
8893 }
8894 
8895 static inline struct hlist_head *
8896 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8897 {
8898 	u64 hash = swevent_hash(type, event_id);
8899 
8900 	return &hlist->heads[hash];
8901 }
8902 
8903 /* For the read side: events when they trigger */
8904 static inline struct hlist_head *
8905 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8906 {
8907 	struct swevent_hlist *hlist;
8908 
8909 	hlist = rcu_dereference(swhash->swevent_hlist);
8910 	if (!hlist)
8911 		return NULL;
8912 
8913 	return __find_swevent_head(hlist, type, event_id);
8914 }
8915 
8916 /* For the event head insertion and removal in the hlist */
8917 static inline struct hlist_head *
8918 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8919 {
8920 	struct swevent_hlist *hlist;
8921 	u32 event_id = event->attr.config;
8922 	u64 type = event->attr.type;
8923 
8924 	/*
8925 	 * Event scheduling is always serialized against hlist allocation
8926 	 * and release. Which makes the protected version suitable here.
8927 	 * The context lock guarantees that.
8928 	 */
8929 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
8930 					  lockdep_is_held(&event->ctx->lock));
8931 	if (!hlist)
8932 		return NULL;
8933 
8934 	return __find_swevent_head(hlist, type, event_id);
8935 }
8936 
8937 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8938 				    u64 nr,
8939 				    struct perf_sample_data *data,
8940 				    struct pt_regs *regs)
8941 {
8942 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8943 	struct perf_event *event;
8944 	struct hlist_head *head;
8945 
8946 	rcu_read_lock();
8947 	head = find_swevent_head_rcu(swhash, type, event_id);
8948 	if (!head)
8949 		goto end;
8950 
8951 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8952 		if (perf_swevent_match(event, type, event_id, data, regs))
8953 			perf_swevent_event(event, nr, data, regs);
8954 	}
8955 end:
8956 	rcu_read_unlock();
8957 }
8958 
8959 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8960 
8961 int perf_swevent_get_recursion_context(void)
8962 {
8963 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8964 
8965 	return get_recursion_context(swhash->recursion);
8966 }
8967 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8968 
8969 void perf_swevent_put_recursion_context(int rctx)
8970 {
8971 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8972 
8973 	put_recursion_context(swhash->recursion, rctx);
8974 }
8975 
8976 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8977 {
8978 	struct perf_sample_data data;
8979 
8980 	if (WARN_ON_ONCE(!regs))
8981 		return;
8982 
8983 	perf_sample_data_init(&data, addr, 0);
8984 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8985 }
8986 
8987 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8988 {
8989 	int rctx;
8990 
8991 	preempt_disable_notrace();
8992 	rctx = perf_swevent_get_recursion_context();
8993 	if (unlikely(rctx < 0))
8994 		goto fail;
8995 
8996 	___perf_sw_event(event_id, nr, regs, addr);
8997 
8998 	perf_swevent_put_recursion_context(rctx);
8999 fail:
9000 	preempt_enable_notrace();
9001 }
9002 
9003 static void perf_swevent_read(struct perf_event *event)
9004 {
9005 }
9006 
9007 static int perf_swevent_add(struct perf_event *event, int flags)
9008 {
9009 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9010 	struct hw_perf_event *hwc = &event->hw;
9011 	struct hlist_head *head;
9012 
9013 	if (is_sampling_event(event)) {
9014 		hwc->last_period = hwc->sample_period;
9015 		perf_swevent_set_period(event);
9016 	}
9017 
9018 	hwc->state = !(flags & PERF_EF_START);
9019 
9020 	head = find_swevent_head(swhash, event);
9021 	if (WARN_ON_ONCE(!head))
9022 		return -EINVAL;
9023 
9024 	hlist_add_head_rcu(&event->hlist_entry, head);
9025 	perf_event_update_userpage(event);
9026 
9027 	return 0;
9028 }
9029 
9030 static void perf_swevent_del(struct perf_event *event, int flags)
9031 {
9032 	hlist_del_rcu(&event->hlist_entry);
9033 }
9034 
9035 static void perf_swevent_start(struct perf_event *event, int flags)
9036 {
9037 	event->hw.state = 0;
9038 }
9039 
9040 static void perf_swevent_stop(struct perf_event *event, int flags)
9041 {
9042 	event->hw.state = PERF_HES_STOPPED;
9043 }
9044 
9045 /* Deref the hlist from the update side */
9046 static inline struct swevent_hlist *
9047 swevent_hlist_deref(struct swevent_htable *swhash)
9048 {
9049 	return rcu_dereference_protected(swhash->swevent_hlist,
9050 					 lockdep_is_held(&swhash->hlist_mutex));
9051 }
9052 
9053 static void swevent_hlist_release(struct swevent_htable *swhash)
9054 {
9055 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9056 
9057 	if (!hlist)
9058 		return;
9059 
9060 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9061 	kfree_rcu(hlist, rcu_head);
9062 }
9063 
9064 static void swevent_hlist_put_cpu(int cpu)
9065 {
9066 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9067 
9068 	mutex_lock(&swhash->hlist_mutex);
9069 
9070 	if (!--swhash->hlist_refcount)
9071 		swevent_hlist_release(swhash);
9072 
9073 	mutex_unlock(&swhash->hlist_mutex);
9074 }
9075 
9076 static void swevent_hlist_put(void)
9077 {
9078 	int cpu;
9079 
9080 	for_each_possible_cpu(cpu)
9081 		swevent_hlist_put_cpu(cpu);
9082 }
9083 
9084 static int swevent_hlist_get_cpu(int cpu)
9085 {
9086 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9087 	int err = 0;
9088 
9089 	mutex_lock(&swhash->hlist_mutex);
9090 	if (!swevent_hlist_deref(swhash) &&
9091 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9092 		struct swevent_hlist *hlist;
9093 
9094 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9095 		if (!hlist) {
9096 			err = -ENOMEM;
9097 			goto exit;
9098 		}
9099 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9100 	}
9101 	swhash->hlist_refcount++;
9102 exit:
9103 	mutex_unlock(&swhash->hlist_mutex);
9104 
9105 	return err;
9106 }
9107 
9108 static int swevent_hlist_get(void)
9109 {
9110 	int err, cpu, failed_cpu;
9111 
9112 	mutex_lock(&pmus_lock);
9113 	for_each_possible_cpu(cpu) {
9114 		err = swevent_hlist_get_cpu(cpu);
9115 		if (err) {
9116 			failed_cpu = cpu;
9117 			goto fail;
9118 		}
9119 	}
9120 	mutex_unlock(&pmus_lock);
9121 	return 0;
9122 fail:
9123 	for_each_possible_cpu(cpu) {
9124 		if (cpu == failed_cpu)
9125 			break;
9126 		swevent_hlist_put_cpu(cpu);
9127 	}
9128 	mutex_unlock(&pmus_lock);
9129 	return err;
9130 }
9131 
9132 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9133 
9134 static void sw_perf_event_destroy(struct perf_event *event)
9135 {
9136 	u64 event_id = event->attr.config;
9137 
9138 	WARN_ON(event->parent);
9139 
9140 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9141 	swevent_hlist_put();
9142 }
9143 
9144 static int perf_swevent_init(struct perf_event *event)
9145 {
9146 	u64 event_id = event->attr.config;
9147 
9148 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9149 		return -ENOENT;
9150 
9151 	/*
9152 	 * no branch sampling for software events
9153 	 */
9154 	if (has_branch_stack(event))
9155 		return -EOPNOTSUPP;
9156 
9157 	switch (event_id) {
9158 	case PERF_COUNT_SW_CPU_CLOCK:
9159 	case PERF_COUNT_SW_TASK_CLOCK:
9160 		return -ENOENT;
9161 
9162 	default:
9163 		break;
9164 	}
9165 
9166 	if (event_id >= PERF_COUNT_SW_MAX)
9167 		return -ENOENT;
9168 
9169 	if (!event->parent) {
9170 		int err;
9171 
9172 		err = swevent_hlist_get();
9173 		if (err)
9174 			return err;
9175 
9176 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9177 		event->destroy = sw_perf_event_destroy;
9178 	}
9179 
9180 	return 0;
9181 }
9182 
9183 static struct pmu perf_swevent = {
9184 	.task_ctx_nr	= perf_sw_context,
9185 
9186 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9187 
9188 	.event_init	= perf_swevent_init,
9189 	.add		= perf_swevent_add,
9190 	.del		= perf_swevent_del,
9191 	.start		= perf_swevent_start,
9192 	.stop		= perf_swevent_stop,
9193 	.read		= perf_swevent_read,
9194 };
9195 
9196 #ifdef CONFIG_EVENT_TRACING
9197 
9198 static int perf_tp_filter_match(struct perf_event *event,
9199 				struct perf_sample_data *data)
9200 {
9201 	void *record = data->raw->frag.data;
9202 
9203 	/* only top level events have filters set */
9204 	if (event->parent)
9205 		event = event->parent;
9206 
9207 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9208 		return 1;
9209 	return 0;
9210 }
9211 
9212 static int perf_tp_event_match(struct perf_event *event,
9213 				struct perf_sample_data *data,
9214 				struct pt_regs *regs)
9215 {
9216 	if (event->hw.state & PERF_HES_STOPPED)
9217 		return 0;
9218 	/*
9219 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9220 	 */
9221 	if (event->attr.exclude_kernel && !user_mode(regs))
9222 		return 0;
9223 
9224 	if (!perf_tp_filter_match(event, data))
9225 		return 0;
9226 
9227 	return 1;
9228 }
9229 
9230 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9231 			       struct trace_event_call *call, u64 count,
9232 			       struct pt_regs *regs, struct hlist_head *head,
9233 			       struct task_struct *task)
9234 {
9235 	if (bpf_prog_array_valid(call)) {
9236 		*(struct pt_regs **)raw_data = regs;
9237 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9238 			perf_swevent_put_recursion_context(rctx);
9239 			return;
9240 		}
9241 	}
9242 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9243 		      rctx, task);
9244 }
9245 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9246 
9247 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9248 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9249 		   struct task_struct *task)
9250 {
9251 	struct perf_sample_data data;
9252 	struct perf_event *event;
9253 
9254 	struct perf_raw_record raw = {
9255 		.frag = {
9256 			.size = entry_size,
9257 			.data = record,
9258 		},
9259 	};
9260 
9261 	perf_sample_data_init(&data, 0, 0);
9262 	data.raw = &raw;
9263 
9264 	perf_trace_buf_update(record, event_type);
9265 
9266 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9267 		if (perf_tp_event_match(event, &data, regs))
9268 			perf_swevent_event(event, count, &data, regs);
9269 	}
9270 
9271 	/*
9272 	 * If we got specified a target task, also iterate its context and
9273 	 * deliver this event there too.
9274 	 */
9275 	if (task && task != current) {
9276 		struct perf_event_context *ctx;
9277 		struct trace_entry *entry = record;
9278 
9279 		rcu_read_lock();
9280 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9281 		if (!ctx)
9282 			goto unlock;
9283 
9284 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9285 			if (event->cpu != smp_processor_id())
9286 				continue;
9287 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9288 				continue;
9289 			if (event->attr.config != entry->type)
9290 				continue;
9291 			if (perf_tp_event_match(event, &data, regs))
9292 				perf_swevent_event(event, count, &data, regs);
9293 		}
9294 unlock:
9295 		rcu_read_unlock();
9296 	}
9297 
9298 	perf_swevent_put_recursion_context(rctx);
9299 }
9300 EXPORT_SYMBOL_GPL(perf_tp_event);
9301 
9302 static void tp_perf_event_destroy(struct perf_event *event)
9303 {
9304 	perf_trace_destroy(event);
9305 }
9306 
9307 static int perf_tp_event_init(struct perf_event *event)
9308 {
9309 	int err;
9310 
9311 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9312 		return -ENOENT;
9313 
9314 	/*
9315 	 * no branch sampling for tracepoint events
9316 	 */
9317 	if (has_branch_stack(event))
9318 		return -EOPNOTSUPP;
9319 
9320 	err = perf_trace_init(event);
9321 	if (err)
9322 		return err;
9323 
9324 	event->destroy = tp_perf_event_destroy;
9325 
9326 	return 0;
9327 }
9328 
9329 static struct pmu perf_tracepoint = {
9330 	.task_ctx_nr	= perf_sw_context,
9331 
9332 	.event_init	= perf_tp_event_init,
9333 	.add		= perf_trace_add,
9334 	.del		= perf_trace_del,
9335 	.start		= perf_swevent_start,
9336 	.stop		= perf_swevent_stop,
9337 	.read		= perf_swevent_read,
9338 };
9339 
9340 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9341 /*
9342  * Flags in config, used by dynamic PMU kprobe and uprobe
9343  * The flags should match following PMU_FORMAT_ATTR().
9344  *
9345  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9346  *                               if not set, create kprobe/uprobe
9347  *
9348  * The following values specify a reference counter (or semaphore in the
9349  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9350  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9351  *
9352  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9353  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9354  */
9355 enum perf_probe_config {
9356 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9357 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9358 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9359 };
9360 
9361 PMU_FORMAT_ATTR(retprobe, "config:0");
9362 #endif
9363 
9364 #ifdef CONFIG_KPROBE_EVENTS
9365 static struct attribute *kprobe_attrs[] = {
9366 	&format_attr_retprobe.attr,
9367 	NULL,
9368 };
9369 
9370 static struct attribute_group kprobe_format_group = {
9371 	.name = "format",
9372 	.attrs = kprobe_attrs,
9373 };
9374 
9375 static const struct attribute_group *kprobe_attr_groups[] = {
9376 	&kprobe_format_group,
9377 	NULL,
9378 };
9379 
9380 static int perf_kprobe_event_init(struct perf_event *event);
9381 static struct pmu perf_kprobe = {
9382 	.task_ctx_nr	= perf_sw_context,
9383 	.event_init	= perf_kprobe_event_init,
9384 	.add		= perf_trace_add,
9385 	.del		= perf_trace_del,
9386 	.start		= perf_swevent_start,
9387 	.stop		= perf_swevent_stop,
9388 	.read		= perf_swevent_read,
9389 	.attr_groups	= kprobe_attr_groups,
9390 };
9391 
9392 static int perf_kprobe_event_init(struct perf_event *event)
9393 {
9394 	int err;
9395 	bool is_retprobe;
9396 
9397 	if (event->attr.type != perf_kprobe.type)
9398 		return -ENOENT;
9399 
9400 	if (!capable(CAP_SYS_ADMIN))
9401 		return -EACCES;
9402 
9403 	/*
9404 	 * no branch sampling for probe events
9405 	 */
9406 	if (has_branch_stack(event))
9407 		return -EOPNOTSUPP;
9408 
9409 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9410 	err = perf_kprobe_init(event, is_retprobe);
9411 	if (err)
9412 		return err;
9413 
9414 	event->destroy = perf_kprobe_destroy;
9415 
9416 	return 0;
9417 }
9418 #endif /* CONFIG_KPROBE_EVENTS */
9419 
9420 #ifdef CONFIG_UPROBE_EVENTS
9421 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9422 
9423 static struct attribute *uprobe_attrs[] = {
9424 	&format_attr_retprobe.attr,
9425 	&format_attr_ref_ctr_offset.attr,
9426 	NULL,
9427 };
9428 
9429 static struct attribute_group uprobe_format_group = {
9430 	.name = "format",
9431 	.attrs = uprobe_attrs,
9432 };
9433 
9434 static const struct attribute_group *uprobe_attr_groups[] = {
9435 	&uprobe_format_group,
9436 	NULL,
9437 };
9438 
9439 static int perf_uprobe_event_init(struct perf_event *event);
9440 static struct pmu perf_uprobe = {
9441 	.task_ctx_nr	= perf_sw_context,
9442 	.event_init	= perf_uprobe_event_init,
9443 	.add		= perf_trace_add,
9444 	.del		= perf_trace_del,
9445 	.start		= perf_swevent_start,
9446 	.stop		= perf_swevent_stop,
9447 	.read		= perf_swevent_read,
9448 	.attr_groups	= uprobe_attr_groups,
9449 };
9450 
9451 static int perf_uprobe_event_init(struct perf_event *event)
9452 {
9453 	int err;
9454 	unsigned long ref_ctr_offset;
9455 	bool is_retprobe;
9456 
9457 	if (event->attr.type != perf_uprobe.type)
9458 		return -ENOENT;
9459 
9460 	if (!capable(CAP_SYS_ADMIN))
9461 		return -EACCES;
9462 
9463 	/*
9464 	 * no branch sampling for probe events
9465 	 */
9466 	if (has_branch_stack(event))
9467 		return -EOPNOTSUPP;
9468 
9469 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9470 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9471 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9472 	if (err)
9473 		return err;
9474 
9475 	event->destroy = perf_uprobe_destroy;
9476 
9477 	return 0;
9478 }
9479 #endif /* CONFIG_UPROBE_EVENTS */
9480 
9481 static inline void perf_tp_register(void)
9482 {
9483 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9484 #ifdef CONFIG_KPROBE_EVENTS
9485 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9486 #endif
9487 #ifdef CONFIG_UPROBE_EVENTS
9488 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9489 #endif
9490 }
9491 
9492 static void perf_event_free_filter(struct perf_event *event)
9493 {
9494 	ftrace_profile_free_filter(event);
9495 }
9496 
9497 #ifdef CONFIG_BPF_SYSCALL
9498 static void bpf_overflow_handler(struct perf_event *event,
9499 				 struct perf_sample_data *data,
9500 				 struct pt_regs *regs)
9501 {
9502 	struct bpf_perf_event_data_kern ctx = {
9503 		.data = data,
9504 		.event = event,
9505 	};
9506 	int ret = 0;
9507 
9508 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9509 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9510 		goto out;
9511 	rcu_read_lock();
9512 	ret = BPF_PROG_RUN(event->prog, &ctx);
9513 	rcu_read_unlock();
9514 out:
9515 	__this_cpu_dec(bpf_prog_active);
9516 	if (!ret)
9517 		return;
9518 
9519 	event->orig_overflow_handler(event, data, regs);
9520 }
9521 
9522 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9523 {
9524 	struct bpf_prog *prog;
9525 
9526 	if (event->overflow_handler_context)
9527 		/* hw breakpoint or kernel counter */
9528 		return -EINVAL;
9529 
9530 	if (event->prog)
9531 		return -EEXIST;
9532 
9533 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9534 	if (IS_ERR(prog))
9535 		return PTR_ERR(prog);
9536 
9537 	event->prog = prog;
9538 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9539 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9540 	return 0;
9541 }
9542 
9543 static void perf_event_free_bpf_handler(struct perf_event *event)
9544 {
9545 	struct bpf_prog *prog = event->prog;
9546 
9547 	if (!prog)
9548 		return;
9549 
9550 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9551 	event->prog = NULL;
9552 	bpf_prog_put(prog);
9553 }
9554 #else
9555 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9556 {
9557 	return -EOPNOTSUPP;
9558 }
9559 static void perf_event_free_bpf_handler(struct perf_event *event)
9560 {
9561 }
9562 #endif
9563 
9564 /*
9565  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9566  * with perf_event_open()
9567  */
9568 static inline bool perf_event_is_tracing(struct perf_event *event)
9569 {
9570 	if (event->pmu == &perf_tracepoint)
9571 		return true;
9572 #ifdef CONFIG_KPROBE_EVENTS
9573 	if (event->pmu == &perf_kprobe)
9574 		return true;
9575 #endif
9576 #ifdef CONFIG_UPROBE_EVENTS
9577 	if (event->pmu == &perf_uprobe)
9578 		return true;
9579 #endif
9580 	return false;
9581 }
9582 
9583 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9584 {
9585 	bool is_kprobe, is_tracepoint, is_syscall_tp;
9586 	struct bpf_prog *prog;
9587 	int ret;
9588 
9589 	if (!perf_event_is_tracing(event))
9590 		return perf_event_set_bpf_handler(event, prog_fd);
9591 
9592 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9593 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9594 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
9595 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9596 		/* bpf programs can only be attached to u/kprobe or tracepoint */
9597 		return -EINVAL;
9598 
9599 	prog = bpf_prog_get(prog_fd);
9600 	if (IS_ERR(prog))
9601 		return PTR_ERR(prog);
9602 
9603 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9604 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9605 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9606 		/* valid fd, but invalid bpf program type */
9607 		bpf_prog_put(prog);
9608 		return -EINVAL;
9609 	}
9610 
9611 	/* Kprobe override only works for kprobes, not uprobes. */
9612 	if (prog->kprobe_override &&
9613 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9614 		bpf_prog_put(prog);
9615 		return -EINVAL;
9616 	}
9617 
9618 	if (is_tracepoint || is_syscall_tp) {
9619 		int off = trace_event_get_offsets(event->tp_event);
9620 
9621 		if (prog->aux->max_ctx_offset > off) {
9622 			bpf_prog_put(prog);
9623 			return -EACCES;
9624 		}
9625 	}
9626 
9627 	ret = perf_event_attach_bpf_prog(event, prog);
9628 	if (ret)
9629 		bpf_prog_put(prog);
9630 	return ret;
9631 }
9632 
9633 static void perf_event_free_bpf_prog(struct perf_event *event)
9634 {
9635 	if (!perf_event_is_tracing(event)) {
9636 		perf_event_free_bpf_handler(event);
9637 		return;
9638 	}
9639 	perf_event_detach_bpf_prog(event);
9640 }
9641 
9642 #else
9643 
9644 static inline void perf_tp_register(void)
9645 {
9646 }
9647 
9648 static void perf_event_free_filter(struct perf_event *event)
9649 {
9650 }
9651 
9652 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9653 {
9654 	return -ENOENT;
9655 }
9656 
9657 static void perf_event_free_bpf_prog(struct perf_event *event)
9658 {
9659 }
9660 #endif /* CONFIG_EVENT_TRACING */
9661 
9662 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9663 void perf_bp_event(struct perf_event *bp, void *data)
9664 {
9665 	struct perf_sample_data sample;
9666 	struct pt_regs *regs = data;
9667 
9668 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9669 
9670 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
9671 		perf_swevent_event(bp, 1, &sample, regs);
9672 }
9673 #endif
9674 
9675 /*
9676  * Allocate a new address filter
9677  */
9678 static struct perf_addr_filter *
9679 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9680 {
9681 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9682 	struct perf_addr_filter *filter;
9683 
9684 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9685 	if (!filter)
9686 		return NULL;
9687 
9688 	INIT_LIST_HEAD(&filter->entry);
9689 	list_add_tail(&filter->entry, filters);
9690 
9691 	return filter;
9692 }
9693 
9694 static void free_filters_list(struct list_head *filters)
9695 {
9696 	struct perf_addr_filter *filter, *iter;
9697 
9698 	list_for_each_entry_safe(filter, iter, filters, entry) {
9699 		path_put(&filter->path);
9700 		list_del(&filter->entry);
9701 		kfree(filter);
9702 	}
9703 }
9704 
9705 /*
9706  * Free existing address filters and optionally install new ones
9707  */
9708 static void perf_addr_filters_splice(struct perf_event *event,
9709 				     struct list_head *head)
9710 {
9711 	unsigned long flags;
9712 	LIST_HEAD(list);
9713 
9714 	if (!has_addr_filter(event))
9715 		return;
9716 
9717 	/* don't bother with children, they don't have their own filters */
9718 	if (event->parent)
9719 		return;
9720 
9721 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9722 
9723 	list_splice_init(&event->addr_filters.list, &list);
9724 	if (head)
9725 		list_splice(head, &event->addr_filters.list);
9726 
9727 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9728 
9729 	free_filters_list(&list);
9730 }
9731 
9732 /*
9733  * Scan through mm's vmas and see if one of them matches the
9734  * @filter; if so, adjust filter's address range.
9735  * Called with mm::mmap_sem down for reading.
9736  */
9737 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9738 				   struct mm_struct *mm,
9739 				   struct perf_addr_filter_range *fr)
9740 {
9741 	struct vm_area_struct *vma;
9742 
9743 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
9744 		if (!vma->vm_file)
9745 			continue;
9746 
9747 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
9748 			return;
9749 	}
9750 }
9751 
9752 /*
9753  * Update event's address range filters based on the
9754  * task's existing mappings, if any.
9755  */
9756 static void perf_event_addr_filters_apply(struct perf_event *event)
9757 {
9758 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9759 	struct task_struct *task = READ_ONCE(event->ctx->task);
9760 	struct perf_addr_filter *filter;
9761 	struct mm_struct *mm = NULL;
9762 	unsigned int count = 0;
9763 	unsigned long flags;
9764 
9765 	/*
9766 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9767 	 * will stop on the parent's child_mutex that our caller is also holding
9768 	 */
9769 	if (task == TASK_TOMBSTONE)
9770 		return;
9771 
9772 	if (ifh->nr_file_filters) {
9773 		mm = get_task_mm(event->ctx->task);
9774 		if (!mm)
9775 			goto restart;
9776 
9777 		down_read(&mm->mmap_sem);
9778 	}
9779 
9780 	raw_spin_lock_irqsave(&ifh->lock, flags);
9781 	list_for_each_entry(filter, &ifh->list, entry) {
9782 		if (filter->path.dentry) {
9783 			/*
9784 			 * Adjust base offset if the filter is associated to a
9785 			 * binary that needs to be mapped:
9786 			 */
9787 			event->addr_filter_ranges[count].start = 0;
9788 			event->addr_filter_ranges[count].size = 0;
9789 
9790 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9791 		} else {
9792 			event->addr_filter_ranges[count].start = filter->offset;
9793 			event->addr_filter_ranges[count].size  = filter->size;
9794 		}
9795 
9796 		count++;
9797 	}
9798 
9799 	event->addr_filters_gen++;
9800 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9801 
9802 	if (ifh->nr_file_filters) {
9803 		up_read(&mm->mmap_sem);
9804 
9805 		mmput(mm);
9806 	}
9807 
9808 restart:
9809 	perf_event_stop(event, 1);
9810 }
9811 
9812 /*
9813  * Address range filtering: limiting the data to certain
9814  * instruction address ranges. Filters are ioctl()ed to us from
9815  * userspace as ascii strings.
9816  *
9817  * Filter string format:
9818  *
9819  * ACTION RANGE_SPEC
9820  * where ACTION is one of the
9821  *  * "filter": limit the trace to this region
9822  *  * "start": start tracing from this address
9823  *  * "stop": stop tracing at this address/region;
9824  * RANGE_SPEC is
9825  *  * for kernel addresses: <start address>[/<size>]
9826  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9827  *
9828  * if <size> is not specified or is zero, the range is treated as a single
9829  * address; not valid for ACTION=="filter".
9830  */
9831 enum {
9832 	IF_ACT_NONE = -1,
9833 	IF_ACT_FILTER,
9834 	IF_ACT_START,
9835 	IF_ACT_STOP,
9836 	IF_SRC_FILE,
9837 	IF_SRC_KERNEL,
9838 	IF_SRC_FILEADDR,
9839 	IF_SRC_KERNELADDR,
9840 };
9841 
9842 enum {
9843 	IF_STATE_ACTION = 0,
9844 	IF_STATE_SOURCE,
9845 	IF_STATE_END,
9846 };
9847 
9848 static const match_table_t if_tokens = {
9849 	{ IF_ACT_FILTER,	"filter" },
9850 	{ IF_ACT_START,		"start" },
9851 	{ IF_ACT_STOP,		"stop" },
9852 	{ IF_SRC_FILE,		"%u/%u@%s" },
9853 	{ IF_SRC_KERNEL,	"%u/%u" },
9854 	{ IF_SRC_FILEADDR,	"%u@%s" },
9855 	{ IF_SRC_KERNELADDR,	"%u" },
9856 	{ IF_ACT_NONE,		NULL },
9857 };
9858 
9859 /*
9860  * Address filter string parser
9861  */
9862 static int
9863 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9864 			     struct list_head *filters)
9865 {
9866 	struct perf_addr_filter *filter = NULL;
9867 	char *start, *orig, *filename = NULL;
9868 	substring_t args[MAX_OPT_ARGS];
9869 	int state = IF_STATE_ACTION, token;
9870 	unsigned int kernel = 0;
9871 	int ret = -EINVAL;
9872 
9873 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
9874 	if (!fstr)
9875 		return -ENOMEM;
9876 
9877 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
9878 		static const enum perf_addr_filter_action_t actions[] = {
9879 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
9880 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
9881 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
9882 		};
9883 		ret = -EINVAL;
9884 
9885 		if (!*start)
9886 			continue;
9887 
9888 		/* filter definition begins */
9889 		if (state == IF_STATE_ACTION) {
9890 			filter = perf_addr_filter_new(event, filters);
9891 			if (!filter)
9892 				goto fail;
9893 		}
9894 
9895 		token = match_token(start, if_tokens, args);
9896 		switch (token) {
9897 		case IF_ACT_FILTER:
9898 		case IF_ACT_START:
9899 		case IF_ACT_STOP:
9900 			if (state != IF_STATE_ACTION)
9901 				goto fail;
9902 
9903 			filter->action = actions[token];
9904 			state = IF_STATE_SOURCE;
9905 			break;
9906 
9907 		case IF_SRC_KERNELADDR:
9908 		case IF_SRC_KERNEL:
9909 			kernel = 1;
9910 			/* fall through */
9911 
9912 		case IF_SRC_FILEADDR:
9913 		case IF_SRC_FILE:
9914 			if (state != IF_STATE_SOURCE)
9915 				goto fail;
9916 
9917 			*args[0].to = 0;
9918 			ret = kstrtoul(args[0].from, 0, &filter->offset);
9919 			if (ret)
9920 				goto fail;
9921 
9922 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9923 				*args[1].to = 0;
9924 				ret = kstrtoul(args[1].from, 0, &filter->size);
9925 				if (ret)
9926 					goto fail;
9927 			}
9928 
9929 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9930 				int fpos = token == IF_SRC_FILE ? 2 : 1;
9931 
9932 				filename = match_strdup(&args[fpos]);
9933 				if (!filename) {
9934 					ret = -ENOMEM;
9935 					goto fail;
9936 				}
9937 			}
9938 
9939 			state = IF_STATE_END;
9940 			break;
9941 
9942 		default:
9943 			goto fail;
9944 		}
9945 
9946 		/*
9947 		 * Filter definition is fully parsed, validate and install it.
9948 		 * Make sure that it doesn't contradict itself or the event's
9949 		 * attribute.
9950 		 */
9951 		if (state == IF_STATE_END) {
9952 			ret = -EINVAL;
9953 			if (kernel && event->attr.exclude_kernel)
9954 				goto fail;
9955 
9956 			/*
9957 			 * ACTION "filter" must have a non-zero length region
9958 			 * specified.
9959 			 */
9960 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9961 			    !filter->size)
9962 				goto fail;
9963 
9964 			if (!kernel) {
9965 				if (!filename)
9966 					goto fail;
9967 
9968 				/*
9969 				 * For now, we only support file-based filters
9970 				 * in per-task events; doing so for CPU-wide
9971 				 * events requires additional context switching
9972 				 * trickery, since same object code will be
9973 				 * mapped at different virtual addresses in
9974 				 * different processes.
9975 				 */
9976 				ret = -EOPNOTSUPP;
9977 				if (!event->ctx->task)
9978 					goto fail_free_name;
9979 
9980 				/* look up the path and grab its inode */
9981 				ret = kern_path(filename, LOOKUP_FOLLOW,
9982 						&filter->path);
9983 				if (ret)
9984 					goto fail_free_name;
9985 
9986 				kfree(filename);
9987 				filename = NULL;
9988 
9989 				ret = -EINVAL;
9990 				if (!filter->path.dentry ||
9991 				    !S_ISREG(d_inode(filter->path.dentry)
9992 					     ->i_mode))
9993 					goto fail;
9994 
9995 				event->addr_filters.nr_file_filters++;
9996 			}
9997 
9998 			/* ready to consume more filters */
9999 			state = IF_STATE_ACTION;
10000 			filter = NULL;
10001 		}
10002 	}
10003 
10004 	if (state != IF_STATE_ACTION)
10005 		goto fail;
10006 
10007 	kfree(orig);
10008 
10009 	return 0;
10010 
10011 fail_free_name:
10012 	kfree(filename);
10013 fail:
10014 	free_filters_list(filters);
10015 	kfree(orig);
10016 
10017 	return ret;
10018 }
10019 
10020 static int
10021 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10022 {
10023 	LIST_HEAD(filters);
10024 	int ret;
10025 
10026 	/*
10027 	 * Since this is called in perf_ioctl() path, we're already holding
10028 	 * ctx::mutex.
10029 	 */
10030 	lockdep_assert_held(&event->ctx->mutex);
10031 
10032 	if (WARN_ON_ONCE(event->parent))
10033 		return -EINVAL;
10034 
10035 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10036 	if (ret)
10037 		goto fail_clear_files;
10038 
10039 	ret = event->pmu->addr_filters_validate(&filters);
10040 	if (ret)
10041 		goto fail_free_filters;
10042 
10043 	/* remove existing filters, if any */
10044 	perf_addr_filters_splice(event, &filters);
10045 
10046 	/* install new filters */
10047 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10048 
10049 	return ret;
10050 
10051 fail_free_filters:
10052 	free_filters_list(&filters);
10053 
10054 fail_clear_files:
10055 	event->addr_filters.nr_file_filters = 0;
10056 
10057 	return ret;
10058 }
10059 
10060 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10061 {
10062 	int ret = -EINVAL;
10063 	char *filter_str;
10064 
10065 	filter_str = strndup_user(arg, PAGE_SIZE);
10066 	if (IS_ERR(filter_str))
10067 		return PTR_ERR(filter_str);
10068 
10069 #ifdef CONFIG_EVENT_TRACING
10070 	if (perf_event_is_tracing(event)) {
10071 		struct perf_event_context *ctx = event->ctx;
10072 
10073 		/*
10074 		 * Beware, here be dragons!!
10075 		 *
10076 		 * the tracepoint muck will deadlock against ctx->mutex, but
10077 		 * the tracepoint stuff does not actually need it. So
10078 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10079 		 * already have a reference on ctx.
10080 		 *
10081 		 * This can result in event getting moved to a different ctx,
10082 		 * but that does not affect the tracepoint state.
10083 		 */
10084 		mutex_unlock(&ctx->mutex);
10085 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10086 		mutex_lock(&ctx->mutex);
10087 	} else
10088 #endif
10089 	if (has_addr_filter(event))
10090 		ret = perf_event_set_addr_filter(event, filter_str);
10091 
10092 	kfree(filter_str);
10093 	return ret;
10094 }
10095 
10096 /*
10097  * hrtimer based swevent callback
10098  */
10099 
10100 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10101 {
10102 	enum hrtimer_restart ret = HRTIMER_RESTART;
10103 	struct perf_sample_data data;
10104 	struct pt_regs *regs;
10105 	struct perf_event *event;
10106 	u64 period;
10107 
10108 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10109 
10110 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10111 		return HRTIMER_NORESTART;
10112 
10113 	event->pmu->read(event);
10114 
10115 	perf_sample_data_init(&data, 0, event->hw.last_period);
10116 	regs = get_irq_regs();
10117 
10118 	if (regs && !perf_exclude_event(event, regs)) {
10119 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10120 			if (__perf_event_overflow(event, 1, &data, regs))
10121 				ret = HRTIMER_NORESTART;
10122 	}
10123 
10124 	period = max_t(u64, 10000, event->hw.sample_period);
10125 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10126 
10127 	return ret;
10128 }
10129 
10130 static void perf_swevent_start_hrtimer(struct perf_event *event)
10131 {
10132 	struct hw_perf_event *hwc = &event->hw;
10133 	s64 period;
10134 
10135 	if (!is_sampling_event(event))
10136 		return;
10137 
10138 	period = local64_read(&hwc->period_left);
10139 	if (period) {
10140 		if (period < 0)
10141 			period = 10000;
10142 
10143 		local64_set(&hwc->period_left, 0);
10144 	} else {
10145 		period = max_t(u64, 10000, hwc->sample_period);
10146 	}
10147 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10148 		      HRTIMER_MODE_REL_PINNED_HARD);
10149 }
10150 
10151 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10152 {
10153 	struct hw_perf_event *hwc = &event->hw;
10154 
10155 	if (is_sampling_event(event)) {
10156 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10157 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10158 
10159 		hrtimer_cancel(&hwc->hrtimer);
10160 	}
10161 }
10162 
10163 static void perf_swevent_init_hrtimer(struct perf_event *event)
10164 {
10165 	struct hw_perf_event *hwc = &event->hw;
10166 
10167 	if (!is_sampling_event(event))
10168 		return;
10169 
10170 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10171 	hwc->hrtimer.function = perf_swevent_hrtimer;
10172 
10173 	/*
10174 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10175 	 * mapping and avoid the whole period adjust feedback stuff.
10176 	 */
10177 	if (event->attr.freq) {
10178 		long freq = event->attr.sample_freq;
10179 
10180 		event->attr.sample_period = NSEC_PER_SEC / freq;
10181 		hwc->sample_period = event->attr.sample_period;
10182 		local64_set(&hwc->period_left, hwc->sample_period);
10183 		hwc->last_period = hwc->sample_period;
10184 		event->attr.freq = 0;
10185 	}
10186 }
10187 
10188 /*
10189  * Software event: cpu wall time clock
10190  */
10191 
10192 static void cpu_clock_event_update(struct perf_event *event)
10193 {
10194 	s64 prev;
10195 	u64 now;
10196 
10197 	now = local_clock();
10198 	prev = local64_xchg(&event->hw.prev_count, now);
10199 	local64_add(now - prev, &event->count);
10200 }
10201 
10202 static void cpu_clock_event_start(struct perf_event *event, int flags)
10203 {
10204 	local64_set(&event->hw.prev_count, local_clock());
10205 	perf_swevent_start_hrtimer(event);
10206 }
10207 
10208 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10209 {
10210 	perf_swevent_cancel_hrtimer(event);
10211 	cpu_clock_event_update(event);
10212 }
10213 
10214 static int cpu_clock_event_add(struct perf_event *event, int flags)
10215 {
10216 	if (flags & PERF_EF_START)
10217 		cpu_clock_event_start(event, flags);
10218 	perf_event_update_userpage(event);
10219 
10220 	return 0;
10221 }
10222 
10223 static void cpu_clock_event_del(struct perf_event *event, int flags)
10224 {
10225 	cpu_clock_event_stop(event, flags);
10226 }
10227 
10228 static void cpu_clock_event_read(struct perf_event *event)
10229 {
10230 	cpu_clock_event_update(event);
10231 }
10232 
10233 static int cpu_clock_event_init(struct perf_event *event)
10234 {
10235 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10236 		return -ENOENT;
10237 
10238 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10239 		return -ENOENT;
10240 
10241 	/*
10242 	 * no branch sampling for software events
10243 	 */
10244 	if (has_branch_stack(event))
10245 		return -EOPNOTSUPP;
10246 
10247 	perf_swevent_init_hrtimer(event);
10248 
10249 	return 0;
10250 }
10251 
10252 static struct pmu perf_cpu_clock = {
10253 	.task_ctx_nr	= perf_sw_context,
10254 
10255 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10256 
10257 	.event_init	= cpu_clock_event_init,
10258 	.add		= cpu_clock_event_add,
10259 	.del		= cpu_clock_event_del,
10260 	.start		= cpu_clock_event_start,
10261 	.stop		= cpu_clock_event_stop,
10262 	.read		= cpu_clock_event_read,
10263 };
10264 
10265 /*
10266  * Software event: task time clock
10267  */
10268 
10269 static void task_clock_event_update(struct perf_event *event, u64 now)
10270 {
10271 	u64 prev;
10272 	s64 delta;
10273 
10274 	prev = local64_xchg(&event->hw.prev_count, now);
10275 	delta = now - prev;
10276 	local64_add(delta, &event->count);
10277 }
10278 
10279 static void task_clock_event_start(struct perf_event *event, int flags)
10280 {
10281 	local64_set(&event->hw.prev_count, event->ctx->time);
10282 	perf_swevent_start_hrtimer(event);
10283 }
10284 
10285 static void task_clock_event_stop(struct perf_event *event, int flags)
10286 {
10287 	perf_swevent_cancel_hrtimer(event);
10288 	task_clock_event_update(event, event->ctx->time);
10289 }
10290 
10291 static int task_clock_event_add(struct perf_event *event, int flags)
10292 {
10293 	if (flags & PERF_EF_START)
10294 		task_clock_event_start(event, flags);
10295 	perf_event_update_userpage(event);
10296 
10297 	return 0;
10298 }
10299 
10300 static void task_clock_event_del(struct perf_event *event, int flags)
10301 {
10302 	task_clock_event_stop(event, PERF_EF_UPDATE);
10303 }
10304 
10305 static void task_clock_event_read(struct perf_event *event)
10306 {
10307 	u64 now = perf_clock();
10308 	u64 delta = now - event->ctx->timestamp;
10309 	u64 time = event->ctx->time + delta;
10310 
10311 	task_clock_event_update(event, time);
10312 }
10313 
10314 static int task_clock_event_init(struct perf_event *event)
10315 {
10316 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10317 		return -ENOENT;
10318 
10319 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10320 		return -ENOENT;
10321 
10322 	/*
10323 	 * no branch sampling for software events
10324 	 */
10325 	if (has_branch_stack(event))
10326 		return -EOPNOTSUPP;
10327 
10328 	perf_swevent_init_hrtimer(event);
10329 
10330 	return 0;
10331 }
10332 
10333 static struct pmu perf_task_clock = {
10334 	.task_ctx_nr	= perf_sw_context,
10335 
10336 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10337 
10338 	.event_init	= task_clock_event_init,
10339 	.add		= task_clock_event_add,
10340 	.del		= task_clock_event_del,
10341 	.start		= task_clock_event_start,
10342 	.stop		= task_clock_event_stop,
10343 	.read		= task_clock_event_read,
10344 };
10345 
10346 static void perf_pmu_nop_void(struct pmu *pmu)
10347 {
10348 }
10349 
10350 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10351 {
10352 }
10353 
10354 static int perf_pmu_nop_int(struct pmu *pmu)
10355 {
10356 	return 0;
10357 }
10358 
10359 static int perf_event_nop_int(struct perf_event *event, u64 value)
10360 {
10361 	return 0;
10362 }
10363 
10364 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10365 
10366 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10367 {
10368 	__this_cpu_write(nop_txn_flags, flags);
10369 
10370 	if (flags & ~PERF_PMU_TXN_ADD)
10371 		return;
10372 
10373 	perf_pmu_disable(pmu);
10374 }
10375 
10376 static int perf_pmu_commit_txn(struct pmu *pmu)
10377 {
10378 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10379 
10380 	__this_cpu_write(nop_txn_flags, 0);
10381 
10382 	if (flags & ~PERF_PMU_TXN_ADD)
10383 		return 0;
10384 
10385 	perf_pmu_enable(pmu);
10386 	return 0;
10387 }
10388 
10389 static void perf_pmu_cancel_txn(struct pmu *pmu)
10390 {
10391 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10392 
10393 	__this_cpu_write(nop_txn_flags, 0);
10394 
10395 	if (flags & ~PERF_PMU_TXN_ADD)
10396 		return;
10397 
10398 	perf_pmu_enable(pmu);
10399 }
10400 
10401 static int perf_event_idx_default(struct perf_event *event)
10402 {
10403 	return 0;
10404 }
10405 
10406 /*
10407  * Ensures all contexts with the same task_ctx_nr have the same
10408  * pmu_cpu_context too.
10409  */
10410 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10411 {
10412 	struct pmu *pmu;
10413 
10414 	if (ctxn < 0)
10415 		return NULL;
10416 
10417 	list_for_each_entry(pmu, &pmus, entry) {
10418 		if (pmu->task_ctx_nr == ctxn)
10419 			return pmu->pmu_cpu_context;
10420 	}
10421 
10422 	return NULL;
10423 }
10424 
10425 static void free_pmu_context(struct pmu *pmu)
10426 {
10427 	/*
10428 	 * Static contexts such as perf_sw_context have a global lifetime
10429 	 * and may be shared between different PMUs. Avoid freeing them
10430 	 * when a single PMU is going away.
10431 	 */
10432 	if (pmu->task_ctx_nr > perf_invalid_context)
10433 		return;
10434 
10435 	free_percpu(pmu->pmu_cpu_context);
10436 }
10437 
10438 /*
10439  * Let userspace know that this PMU supports address range filtering:
10440  */
10441 static ssize_t nr_addr_filters_show(struct device *dev,
10442 				    struct device_attribute *attr,
10443 				    char *page)
10444 {
10445 	struct pmu *pmu = dev_get_drvdata(dev);
10446 
10447 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10448 }
10449 DEVICE_ATTR_RO(nr_addr_filters);
10450 
10451 static struct idr pmu_idr;
10452 
10453 static ssize_t
10454 type_show(struct device *dev, struct device_attribute *attr, char *page)
10455 {
10456 	struct pmu *pmu = dev_get_drvdata(dev);
10457 
10458 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10459 }
10460 static DEVICE_ATTR_RO(type);
10461 
10462 static ssize_t
10463 perf_event_mux_interval_ms_show(struct device *dev,
10464 				struct device_attribute *attr,
10465 				char *page)
10466 {
10467 	struct pmu *pmu = dev_get_drvdata(dev);
10468 
10469 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10470 }
10471 
10472 static DEFINE_MUTEX(mux_interval_mutex);
10473 
10474 static ssize_t
10475 perf_event_mux_interval_ms_store(struct device *dev,
10476 				 struct device_attribute *attr,
10477 				 const char *buf, size_t count)
10478 {
10479 	struct pmu *pmu = dev_get_drvdata(dev);
10480 	int timer, cpu, ret;
10481 
10482 	ret = kstrtoint(buf, 0, &timer);
10483 	if (ret)
10484 		return ret;
10485 
10486 	if (timer < 1)
10487 		return -EINVAL;
10488 
10489 	/* same value, noting to do */
10490 	if (timer == pmu->hrtimer_interval_ms)
10491 		return count;
10492 
10493 	mutex_lock(&mux_interval_mutex);
10494 	pmu->hrtimer_interval_ms = timer;
10495 
10496 	/* update all cpuctx for this PMU */
10497 	cpus_read_lock();
10498 	for_each_online_cpu(cpu) {
10499 		struct perf_cpu_context *cpuctx;
10500 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10501 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10502 
10503 		cpu_function_call(cpu,
10504 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10505 	}
10506 	cpus_read_unlock();
10507 	mutex_unlock(&mux_interval_mutex);
10508 
10509 	return count;
10510 }
10511 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10512 
10513 static struct attribute *pmu_dev_attrs[] = {
10514 	&dev_attr_type.attr,
10515 	&dev_attr_perf_event_mux_interval_ms.attr,
10516 	NULL,
10517 };
10518 ATTRIBUTE_GROUPS(pmu_dev);
10519 
10520 static int pmu_bus_running;
10521 static struct bus_type pmu_bus = {
10522 	.name		= "event_source",
10523 	.dev_groups	= pmu_dev_groups,
10524 };
10525 
10526 static void pmu_dev_release(struct device *dev)
10527 {
10528 	kfree(dev);
10529 }
10530 
10531 static int pmu_dev_alloc(struct pmu *pmu)
10532 {
10533 	int ret = -ENOMEM;
10534 
10535 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10536 	if (!pmu->dev)
10537 		goto out;
10538 
10539 	pmu->dev->groups = pmu->attr_groups;
10540 	device_initialize(pmu->dev);
10541 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10542 	if (ret)
10543 		goto free_dev;
10544 
10545 	dev_set_drvdata(pmu->dev, pmu);
10546 	pmu->dev->bus = &pmu_bus;
10547 	pmu->dev->release = pmu_dev_release;
10548 	ret = device_add(pmu->dev);
10549 	if (ret)
10550 		goto free_dev;
10551 
10552 	/* For PMUs with address filters, throw in an extra attribute: */
10553 	if (pmu->nr_addr_filters)
10554 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10555 
10556 	if (ret)
10557 		goto del_dev;
10558 
10559 	if (pmu->attr_update)
10560 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10561 
10562 	if (ret)
10563 		goto del_dev;
10564 
10565 out:
10566 	return ret;
10567 
10568 del_dev:
10569 	device_del(pmu->dev);
10570 
10571 free_dev:
10572 	put_device(pmu->dev);
10573 	goto out;
10574 }
10575 
10576 static struct lock_class_key cpuctx_mutex;
10577 static struct lock_class_key cpuctx_lock;
10578 
10579 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10580 {
10581 	int cpu, ret, max = PERF_TYPE_MAX;
10582 
10583 	mutex_lock(&pmus_lock);
10584 	ret = -ENOMEM;
10585 	pmu->pmu_disable_count = alloc_percpu(int);
10586 	if (!pmu->pmu_disable_count)
10587 		goto unlock;
10588 
10589 	pmu->type = -1;
10590 	if (!name)
10591 		goto skip_type;
10592 	pmu->name = name;
10593 
10594 	if (type != PERF_TYPE_SOFTWARE) {
10595 		if (type >= 0)
10596 			max = type;
10597 
10598 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10599 		if (ret < 0)
10600 			goto free_pdc;
10601 
10602 		WARN_ON(type >= 0 && ret != type);
10603 
10604 		type = ret;
10605 	}
10606 	pmu->type = type;
10607 
10608 	if (pmu_bus_running) {
10609 		ret = pmu_dev_alloc(pmu);
10610 		if (ret)
10611 			goto free_idr;
10612 	}
10613 
10614 skip_type:
10615 	if (pmu->task_ctx_nr == perf_hw_context) {
10616 		static int hw_context_taken = 0;
10617 
10618 		/*
10619 		 * Other than systems with heterogeneous CPUs, it never makes
10620 		 * sense for two PMUs to share perf_hw_context. PMUs which are
10621 		 * uncore must use perf_invalid_context.
10622 		 */
10623 		if (WARN_ON_ONCE(hw_context_taken &&
10624 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10625 			pmu->task_ctx_nr = perf_invalid_context;
10626 
10627 		hw_context_taken = 1;
10628 	}
10629 
10630 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10631 	if (pmu->pmu_cpu_context)
10632 		goto got_cpu_context;
10633 
10634 	ret = -ENOMEM;
10635 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10636 	if (!pmu->pmu_cpu_context)
10637 		goto free_dev;
10638 
10639 	for_each_possible_cpu(cpu) {
10640 		struct perf_cpu_context *cpuctx;
10641 
10642 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10643 		__perf_event_init_context(&cpuctx->ctx);
10644 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10645 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10646 		cpuctx->ctx.pmu = pmu;
10647 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10648 
10649 		__perf_mux_hrtimer_init(cpuctx, cpu);
10650 
10651 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10652 		cpuctx->heap = cpuctx->heap_default;
10653 	}
10654 
10655 got_cpu_context:
10656 	if (!pmu->start_txn) {
10657 		if (pmu->pmu_enable) {
10658 			/*
10659 			 * If we have pmu_enable/pmu_disable calls, install
10660 			 * transaction stubs that use that to try and batch
10661 			 * hardware accesses.
10662 			 */
10663 			pmu->start_txn  = perf_pmu_start_txn;
10664 			pmu->commit_txn = perf_pmu_commit_txn;
10665 			pmu->cancel_txn = perf_pmu_cancel_txn;
10666 		} else {
10667 			pmu->start_txn  = perf_pmu_nop_txn;
10668 			pmu->commit_txn = perf_pmu_nop_int;
10669 			pmu->cancel_txn = perf_pmu_nop_void;
10670 		}
10671 	}
10672 
10673 	if (!pmu->pmu_enable) {
10674 		pmu->pmu_enable  = perf_pmu_nop_void;
10675 		pmu->pmu_disable = perf_pmu_nop_void;
10676 	}
10677 
10678 	if (!pmu->check_period)
10679 		pmu->check_period = perf_event_nop_int;
10680 
10681 	if (!pmu->event_idx)
10682 		pmu->event_idx = perf_event_idx_default;
10683 
10684 	/*
10685 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10686 	 * since these cannot be in the IDR. This way the linear search
10687 	 * is fast, provided a valid software event is provided.
10688 	 */
10689 	if (type == PERF_TYPE_SOFTWARE || !name)
10690 		list_add_rcu(&pmu->entry, &pmus);
10691 	else
10692 		list_add_tail_rcu(&pmu->entry, &pmus);
10693 
10694 	atomic_set(&pmu->exclusive_cnt, 0);
10695 	ret = 0;
10696 unlock:
10697 	mutex_unlock(&pmus_lock);
10698 
10699 	return ret;
10700 
10701 free_dev:
10702 	device_del(pmu->dev);
10703 	put_device(pmu->dev);
10704 
10705 free_idr:
10706 	if (pmu->type != PERF_TYPE_SOFTWARE)
10707 		idr_remove(&pmu_idr, pmu->type);
10708 
10709 free_pdc:
10710 	free_percpu(pmu->pmu_disable_count);
10711 	goto unlock;
10712 }
10713 EXPORT_SYMBOL_GPL(perf_pmu_register);
10714 
10715 void perf_pmu_unregister(struct pmu *pmu)
10716 {
10717 	mutex_lock(&pmus_lock);
10718 	list_del_rcu(&pmu->entry);
10719 
10720 	/*
10721 	 * We dereference the pmu list under both SRCU and regular RCU, so
10722 	 * synchronize against both of those.
10723 	 */
10724 	synchronize_srcu(&pmus_srcu);
10725 	synchronize_rcu();
10726 
10727 	free_percpu(pmu->pmu_disable_count);
10728 	if (pmu->type != PERF_TYPE_SOFTWARE)
10729 		idr_remove(&pmu_idr, pmu->type);
10730 	if (pmu_bus_running) {
10731 		if (pmu->nr_addr_filters)
10732 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10733 		device_del(pmu->dev);
10734 		put_device(pmu->dev);
10735 	}
10736 	free_pmu_context(pmu);
10737 	mutex_unlock(&pmus_lock);
10738 }
10739 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10740 
10741 static inline bool has_extended_regs(struct perf_event *event)
10742 {
10743 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10744 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10745 }
10746 
10747 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10748 {
10749 	struct perf_event_context *ctx = NULL;
10750 	int ret;
10751 
10752 	if (!try_module_get(pmu->module))
10753 		return -ENODEV;
10754 
10755 	/*
10756 	 * A number of pmu->event_init() methods iterate the sibling_list to,
10757 	 * for example, validate if the group fits on the PMU. Therefore,
10758 	 * if this is a sibling event, acquire the ctx->mutex to protect
10759 	 * the sibling_list.
10760 	 */
10761 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10762 		/*
10763 		 * This ctx->mutex can nest when we're called through
10764 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
10765 		 */
10766 		ctx = perf_event_ctx_lock_nested(event->group_leader,
10767 						 SINGLE_DEPTH_NESTING);
10768 		BUG_ON(!ctx);
10769 	}
10770 
10771 	event->pmu = pmu;
10772 	ret = pmu->event_init(event);
10773 
10774 	if (ctx)
10775 		perf_event_ctx_unlock(event->group_leader, ctx);
10776 
10777 	if (!ret) {
10778 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10779 		    has_extended_regs(event))
10780 			ret = -EOPNOTSUPP;
10781 
10782 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10783 		    event_has_any_exclude_flag(event))
10784 			ret = -EINVAL;
10785 
10786 		if (ret && event->destroy)
10787 			event->destroy(event);
10788 	}
10789 
10790 	if (ret)
10791 		module_put(pmu->module);
10792 
10793 	return ret;
10794 }
10795 
10796 static struct pmu *perf_init_event(struct perf_event *event)
10797 {
10798 	int idx, type, ret;
10799 	struct pmu *pmu;
10800 
10801 	idx = srcu_read_lock(&pmus_srcu);
10802 
10803 	/* Try parent's PMU first: */
10804 	if (event->parent && event->parent->pmu) {
10805 		pmu = event->parent->pmu;
10806 		ret = perf_try_init_event(pmu, event);
10807 		if (!ret)
10808 			goto unlock;
10809 	}
10810 
10811 	/*
10812 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10813 	 * are often aliases for PERF_TYPE_RAW.
10814 	 */
10815 	type = event->attr.type;
10816 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10817 		type = PERF_TYPE_RAW;
10818 
10819 again:
10820 	rcu_read_lock();
10821 	pmu = idr_find(&pmu_idr, type);
10822 	rcu_read_unlock();
10823 	if (pmu) {
10824 		ret = perf_try_init_event(pmu, event);
10825 		if (ret == -ENOENT && event->attr.type != type) {
10826 			type = event->attr.type;
10827 			goto again;
10828 		}
10829 
10830 		if (ret)
10831 			pmu = ERR_PTR(ret);
10832 
10833 		goto unlock;
10834 	}
10835 
10836 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10837 		ret = perf_try_init_event(pmu, event);
10838 		if (!ret)
10839 			goto unlock;
10840 
10841 		if (ret != -ENOENT) {
10842 			pmu = ERR_PTR(ret);
10843 			goto unlock;
10844 		}
10845 	}
10846 	pmu = ERR_PTR(-ENOENT);
10847 unlock:
10848 	srcu_read_unlock(&pmus_srcu, idx);
10849 
10850 	return pmu;
10851 }
10852 
10853 static void attach_sb_event(struct perf_event *event)
10854 {
10855 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10856 
10857 	raw_spin_lock(&pel->lock);
10858 	list_add_rcu(&event->sb_list, &pel->list);
10859 	raw_spin_unlock(&pel->lock);
10860 }
10861 
10862 /*
10863  * We keep a list of all !task (and therefore per-cpu) events
10864  * that need to receive side-band records.
10865  *
10866  * This avoids having to scan all the various PMU per-cpu contexts
10867  * looking for them.
10868  */
10869 static void account_pmu_sb_event(struct perf_event *event)
10870 {
10871 	if (is_sb_event(event))
10872 		attach_sb_event(event);
10873 }
10874 
10875 static void account_event_cpu(struct perf_event *event, int cpu)
10876 {
10877 	if (event->parent)
10878 		return;
10879 
10880 	if (is_cgroup_event(event))
10881 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10882 }
10883 
10884 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10885 static void account_freq_event_nohz(void)
10886 {
10887 #ifdef CONFIG_NO_HZ_FULL
10888 	/* Lock so we don't race with concurrent unaccount */
10889 	spin_lock(&nr_freq_lock);
10890 	if (atomic_inc_return(&nr_freq_events) == 1)
10891 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10892 	spin_unlock(&nr_freq_lock);
10893 #endif
10894 }
10895 
10896 static void account_freq_event(void)
10897 {
10898 	if (tick_nohz_full_enabled())
10899 		account_freq_event_nohz();
10900 	else
10901 		atomic_inc(&nr_freq_events);
10902 }
10903 
10904 
10905 static void account_event(struct perf_event *event)
10906 {
10907 	bool inc = false;
10908 
10909 	if (event->parent)
10910 		return;
10911 
10912 	if (event->attach_state & PERF_ATTACH_TASK)
10913 		inc = true;
10914 	if (event->attr.mmap || event->attr.mmap_data)
10915 		atomic_inc(&nr_mmap_events);
10916 	if (event->attr.comm)
10917 		atomic_inc(&nr_comm_events);
10918 	if (event->attr.namespaces)
10919 		atomic_inc(&nr_namespaces_events);
10920 	if (event->attr.cgroup)
10921 		atomic_inc(&nr_cgroup_events);
10922 	if (event->attr.task)
10923 		atomic_inc(&nr_task_events);
10924 	if (event->attr.freq)
10925 		account_freq_event();
10926 	if (event->attr.context_switch) {
10927 		atomic_inc(&nr_switch_events);
10928 		inc = true;
10929 	}
10930 	if (has_branch_stack(event))
10931 		inc = true;
10932 	if (is_cgroup_event(event))
10933 		inc = true;
10934 	if (event->attr.ksymbol)
10935 		atomic_inc(&nr_ksymbol_events);
10936 	if (event->attr.bpf_event)
10937 		atomic_inc(&nr_bpf_events);
10938 
10939 	if (inc) {
10940 		/*
10941 		 * We need the mutex here because static_branch_enable()
10942 		 * must complete *before* the perf_sched_count increment
10943 		 * becomes visible.
10944 		 */
10945 		if (atomic_inc_not_zero(&perf_sched_count))
10946 			goto enabled;
10947 
10948 		mutex_lock(&perf_sched_mutex);
10949 		if (!atomic_read(&perf_sched_count)) {
10950 			static_branch_enable(&perf_sched_events);
10951 			/*
10952 			 * Guarantee that all CPUs observe they key change and
10953 			 * call the perf scheduling hooks before proceeding to
10954 			 * install events that need them.
10955 			 */
10956 			synchronize_rcu();
10957 		}
10958 		/*
10959 		 * Now that we have waited for the sync_sched(), allow further
10960 		 * increments to by-pass the mutex.
10961 		 */
10962 		atomic_inc(&perf_sched_count);
10963 		mutex_unlock(&perf_sched_mutex);
10964 	}
10965 enabled:
10966 
10967 	account_event_cpu(event, event->cpu);
10968 
10969 	account_pmu_sb_event(event);
10970 }
10971 
10972 /*
10973  * Allocate and initialize an event structure
10974  */
10975 static struct perf_event *
10976 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10977 		 struct task_struct *task,
10978 		 struct perf_event *group_leader,
10979 		 struct perf_event *parent_event,
10980 		 perf_overflow_handler_t overflow_handler,
10981 		 void *context, int cgroup_fd)
10982 {
10983 	struct pmu *pmu;
10984 	struct perf_event *event;
10985 	struct hw_perf_event *hwc;
10986 	long err = -EINVAL;
10987 
10988 	if ((unsigned)cpu >= nr_cpu_ids) {
10989 		if (!task || cpu != -1)
10990 			return ERR_PTR(-EINVAL);
10991 	}
10992 
10993 	event = kzalloc(sizeof(*event), GFP_KERNEL);
10994 	if (!event)
10995 		return ERR_PTR(-ENOMEM);
10996 
10997 	/*
10998 	 * Single events are their own group leaders, with an
10999 	 * empty sibling list:
11000 	 */
11001 	if (!group_leader)
11002 		group_leader = event;
11003 
11004 	mutex_init(&event->child_mutex);
11005 	INIT_LIST_HEAD(&event->child_list);
11006 
11007 	INIT_LIST_HEAD(&event->event_entry);
11008 	INIT_LIST_HEAD(&event->sibling_list);
11009 	INIT_LIST_HEAD(&event->active_list);
11010 	init_event_group(event);
11011 	INIT_LIST_HEAD(&event->rb_entry);
11012 	INIT_LIST_HEAD(&event->active_entry);
11013 	INIT_LIST_HEAD(&event->addr_filters.list);
11014 	INIT_HLIST_NODE(&event->hlist_entry);
11015 
11016 
11017 	init_waitqueue_head(&event->waitq);
11018 	event->pending_disable = -1;
11019 	init_irq_work(&event->pending, perf_pending_event);
11020 
11021 	mutex_init(&event->mmap_mutex);
11022 	raw_spin_lock_init(&event->addr_filters.lock);
11023 
11024 	atomic_long_set(&event->refcount, 1);
11025 	event->cpu		= cpu;
11026 	event->attr		= *attr;
11027 	event->group_leader	= group_leader;
11028 	event->pmu		= NULL;
11029 	event->oncpu		= -1;
11030 
11031 	event->parent		= parent_event;
11032 
11033 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11034 	event->id		= atomic64_inc_return(&perf_event_id);
11035 
11036 	event->state		= PERF_EVENT_STATE_INACTIVE;
11037 
11038 	if (task) {
11039 		event->attach_state = PERF_ATTACH_TASK;
11040 		/*
11041 		 * XXX pmu::event_init needs to know what task to account to
11042 		 * and we cannot use the ctx information because we need the
11043 		 * pmu before we get a ctx.
11044 		 */
11045 		event->hw.target = get_task_struct(task);
11046 	}
11047 
11048 	event->clock = &local_clock;
11049 	if (parent_event)
11050 		event->clock = parent_event->clock;
11051 
11052 	if (!overflow_handler && parent_event) {
11053 		overflow_handler = parent_event->overflow_handler;
11054 		context = parent_event->overflow_handler_context;
11055 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11056 		if (overflow_handler == bpf_overflow_handler) {
11057 			struct bpf_prog *prog = parent_event->prog;
11058 
11059 			bpf_prog_inc(prog);
11060 			event->prog = prog;
11061 			event->orig_overflow_handler =
11062 				parent_event->orig_overflow_handler;
11063 		}
11064 #endif
11065 	}
11066 
11067 	if (overflow_handler) {
11068 		event->overflow_handler	= overflow_handler;
11069 		event->overflow_handler_context = context;
11070 	} else if (is_write_backward(event)){
11071 		event->overflow_handler = perf_event_output_backward;
11072 		event->overflow_handler_context = NULL;
11073 	} else {
11074 		event->overflow_handler = perf_event_output_forward;
11075 		event->overflow_handler_context = NULL;
11076 	}
11077 
11078 	perf_event__state_init(event);
11079 
11080 	pmu = NULL;
11081 
11082 	hwc = &event->hw;
11083 	hwc->sample_period = attr->sample_period;
11084 	if (attr->freq && attr->sample_freq)
11085 		hwc->sample_period = 1;
11086 	hwc->last_period = hwc->sample_period;
11087 
11088 	local64_set(&hwc->period_left, hwc->sample_period);
11089 
11090 	/*
11091 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11092 	 * See perf_output_read().
11093 	 */
11094 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11095 		goto err_ns;
11096 
11097 	if (!has_branch_stack(event))
11098 		event->attr.branch_sample_type = 0;
11099 
11100 	pmu = perf_init_event(event);
11101 	if (IS_ERR(pmu)) {
11102 		err = PTR_ERR(pmu);
11103 		goto err_ns;
11104 	}
11105 
11106 	/*
11107 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11108 	 * be different on other CPUs in the uncore mask.
11109 	 */
11110 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11111 		err = -EINVAL;
11112 		goto err_pmu;
11113 	}
11114 
11115 	if (event->attr.aux_output &&
11116 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11117 		err = -EOPNOTSUPP;
11118 		goto err_pmu;
11119 	}
11120 
11121 	if (cgroup_fd != -1) {
11122 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11123 		if (err)
11124 			goto err_pmu;
11125 	}
11126 
11127 	err = exclusive_event_init(event);
11128 	if (err)
11129 		goto err_pmu;
11130 
11131 	if (has_addr_filter(event)) {
11132 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11133 						    sizeof(struct perf_addr_filter_range),
11134 						    GFP_KERNEL);
11135 		if (!event->addr_filter_ranges) {
11136 			err = -ENOMEM;
11137 			goto err_per_task;
11138 		}
11139 
11140 		/*
11141 		 * Clone the parent's vma offsets: they are valid until exec()
11142 		 * even if the mm is not shared with the parent.
11143 		 */
11144 		if (event->parent) {
11145 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11146 
11147 			raw_spin_lock_irq(&ifh->lock);
11148 			memcpy(event->addr_filter_ranges,
11149 			       event->parent->addr_filter_ranges,
11150 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11151 			raw_spin_unlock_irq(&ifh->lock);
11152 		}
11153 
11154 		/* force hw sync on the address filters */
11155 		event->addr_filters_gen = 1;
11156 	}
11157 
11158 	if (!event->parent) {
11159 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11160 			err = get_callchain_buffers(attr->sample_max_stack);
11161 			if (err)
11162 				goto err_addr_filters;
11163 		}
11164 	}
11165 
11166 	err = security_perf_event_alloc(event);
11167 	if (err)
11168 		goto err_callchain_buffer;
11169 
11170 	/* symmetric to unaccount_event() in _free_event() */
11171 	account_event(event);
11172 
11173 	return event;
11174 
11175 err_callchain_buffer:
11176 	if (!event->parent) {
11177 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11178 			put_callchain_buffers();
11179 	}
11180 err_addr_filters:
11181 	kfree(event->addr_filter_ranges);
11182 
11183 err_per_task:
11184 	exclusive_event_destroy(event);
11185 
11186 err_pmu:
11187 	if (is_cgroup_event(event))
11188 		perf_detach_cgroup(event);
11189 	if (event->destroy)
11190 		event->destroy(event);
11191 	module_put(pmu->module);
11192 err_ns:
11193 	if (event->ns)
11194 		put_pid_ns(event->ns);
11195 	if (event->hw.target)
11196 		put_task_struct(event->hw.target);
11197 	kfree(event);
11198 
11199 	return ERR_PTR(err);
11200 }
11201 
11202 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11203 			  struct perf_event_attr *attr)
11204 {
11205 	u32 size;
11206 	int ret;
11207 
11208 	/* Zero the full structure, so that a short copy will be nice. */
11209 	memset(attr, 0, sizeof(*attr));
11210 
11211 	ret = get_user(size, &uattr->size);
11212 	if (ret)
11213 		return ret;
11214 
11215 	/* ABI compatibility quirk: */
11216 	if (!size)
11217 		size = PERF_ATTR_SIZE_VER0;
11218 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11219 		goto err_size;
11220 
11221 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11222 	if (ret) {
11223 		if (ret == -E2BIG)
11224 			goto err_size;
11225 		return ret;
11226 	}
11227 
11228 	attr->size = size;
11229 
11230 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11231 		return -EINVAL;
11232 
11233 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11234 		return -EINVAL;
11235 
11236 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11237 		return -EINVAL;
11238 
11239 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11240 		u64 mask = attr->branch_sample_type;
11241 
11242 		/* only using defined bits */
11243 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11244 			return -EINVAL;
11245 
11246 		/* at least one branch bit must be set */
11247 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11248 			return -EINVAL;
11249 
11250 		/* propagate priv level, when not set for branch */
11251 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11252 
11253 			/* exclude_kernel checked on syscall entry */
11254 			if (!attr->exclude_kernel)
11255 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11256 
11257 			if (!attr->exclude_user)
11258 				mask |= PERF_SAMPLE_BRANCH_USER;
11259 
11260 			if (!attr->exclude_hv)
11261 				mask |= PERF_SAMPLE_BRANCH_HV;
11262 			/*
11263 			 * adjust user setting (for HW filter setup)
11264 			 */
11265 			attr->branch_sample_type = mask;
11266 		}
11267 		/* privileged levels capture (kernel, hv): check permissions */
11268 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11269 			ret = perf_allow_kernel(attr);
11270 			if (ret)
11271 				return ret;
11272 		}
11273 	}
11274 
11275 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11276 		ret = perf_reg_validate(attr->sample_regs_user);
11277 		if (ret)
11278 			return ret;
11279 	}
11280 
11281 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11282 		if (!arch_perf_have_user_stack_dump())
11283 			return -ENOSYS;
11284 
11285 		/*
11286 		 * We have __u32 type for the size, but so far
11287 		 * we can only use __u16 as maximum due to the
11288 		 * __u16 sample size limit.
11289 		 */
11290 		if (attr->sample_stack_user >= USHRT_MAX)
11291 			return -EINVAL;
11292 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11293 			return -EINVAL;
11294 	}
11295 
11296 	if (!attr->sample_max_stack)
11297 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11298 
11299 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11300 		ret = perf_reg_validate(attr->sample_regs_intr);
11301 
11302 #ifndef CONFIG_CGROUP_PERF
11303 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11304 		return -EINVAL;
11305 #endif
11306 
11307 out:
11308 	return ret;
11309 
11310 err_size:
11311 	put_user(sizeof(*attr), &uattr->size);
11312 	ret = -E2BIG;
11313 	goto out;
11314 }
11315 
11316 static int
11317 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11318 {
11319 	struct perf_buffer *rb = NULL;
11320 	int ret = -EINVAL;
11321 
11322 	if (!output_event)
11323 		goto set;
11324 
11325 	/* don't allow circular references */
11326 	if (event == output_event)
11327 		goto out;
11328 
11329 	/*
11330 	 * Don't allow cross-cpu buffers
11331 	 */
11332 	if (output_event->cpu != event->cpu)
11333 		goto out;
11334 
11335 	/*
11336 	 * If its not a per-cpu rb, it must be the same task.
11337 	 */
11338 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11339 		goto out;
11340 
11341 	/*
11342 	 * Mixing clocks in the same buffer is trouble you don't need.
11343 	 */
11344 	if (output_event->clock != event->clock)
11345 		goto out;
11346 
11347 	/*
11348 	 * Either writing ring buffer from beginning or from end.
11349 	 * Mixing is not allowed.
11350 	 */
11351 	if (is_write_backward(output_event) != is_write_backward(event))
11352 		goto out;
11353 
11354 	/*
11355 	 * If both events generate aux data, they must be on the same PMU
11356 	 */
11357 	if (has_aux(event) && has_aux(output_event) &&
11358 	    event->pmu != output_event->pmu)
11359 		goto out;
11360 
11361 set:
11362 	mutex_lock(&event->mmap_mutex);
11363 	/* Can't redirect output if we've got an active mmap() */
11364 	if (atomic_read(&event->mmap_count))
11365 		goto unlock;
11366 
11367 	if (output_event) {
11368 		/* get the rb we want to redirect to */
11369 		rb = ring_buffer_get(output_event);
11370 		if (!rb)
11371 			goto unlock;
11372 	}
11373 
11374 	ring_buffer_attach(event, rb);
11375 
11376 	ret = 0;
11377 unlock:
11378 	mutex_unlock(&event->mmap_mutex);
11379 
11380 out:
11381 	return ret;
11382 }
11383 
11384 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11385 {
11386 	if (b < a)
11387 		swap(a, b);
11388 
11389 	mutex_lock(a);
11390 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11391 }
11392 
11393 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11394 {
11395 	bool nmi_safe = false;
11396 
11397 	switch (clk_id) {
11398 	case CLOCK_MONOTONIC:
11399 		event->clock = &ktime_get_mono_fast_ns;
11400 		nmi_safe = true;
11401 		break;
11402 
11403 	case CLOCK_MONOTONIC_RAW:
11404 		event->clock = &ktime_get_raw_fast_ns;
11405 		nmi_safe = true;
11406 		break;
11407 
11408 	case CLOCK_REALTIME:
11409 		event->clock = &ktime_get_real_ns;
11410 		break;
11411 
11412 	case CLOCK_BOOTTIME:
11413 		event->clock = &ktime_get_boottime_ns;
11414 		break;
11415 
11416 	case CLOCK_TAI:
11417 		event->clock = &ktime_get_clocktai_ns;
11418 		break;
11419 
11420 	default:
11421 		return -EINVAL;
11422 	}
11423 
11424 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11425 		return -EINVAL;
11426 
11427 	return 0;
11428 }
11429 
11430 /*
11431  * Variation on perf_event_ctx_lock_nested(), except we take two context
11432  * mutexes.
11433  */
11434 static struct perf_event_context *
11435 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11436 			     struct perf_event_context *ctx)
11437 {
11438 	struct perf_event_context *gctx;
11439 
11440 again:
11441 	rcu_read_lock();
11442 	gctx = READ_ONCE(group_leader->ctx);
11443 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11444 		rcu_read_unlock();
11445 		goto again;
11446 	}
11447 	rcu_read_unlock();
11448 
11449 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11450 
11451 	if (group_leader->ctx != gctx) {
11452 		mutex_unlock(&ctx->mutex);
11453 		mutex_unlock(&gctx->mutex);
11454 		put_ctx(gctx);
11455 		goto again;
11456 	}
11457 
11458 	return gctx;
11459 }
11460 
11461 /**
11462  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11463  *
11464  * @attr_uptr:	event_id type attributes for monitoring/sampling
11465  * @pid:		target pid
11466  * @cpu:		target cpu
11467  * @group_fd:		group leader event fd
11468  */
11469 SYSCALL_DEFINE5(perf_event_open,
11470 		struct perf_event_attr __user *, attr_uptr,
11471 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11472 {
11473 	struct perf_event *group_leader = NULL, *output_event = NULL;
11474 	struct perf_event *event, *sibling;
11475 	struct perf_event_attr attr;
11476 	struct perf_event_context *ctx, *uninitialized_var(gctx);
11477 	struct file *event_file = NULL;
11478 	struct fd group = {NULL, 0};
11479 	struct task_struct *task = NULL;
11480 	struct pmu *pmu;
11481 	int event_fd;
11482 	int move_group = 0;
11483 	int err;
11484 	int f_flags = O_RDWR;
11485 	int cgroup_fd = -1;
11486 
11487 	/* for future expandability... */
11488 	if (flags & ~PERF_FLAG_ALL)
11489 		return -EINVAL;
11490 
11491 	/* Do we allow access to perf_event_open(2) ? */
11492 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11493 	if (err)
11494 		return err;
11495 
11496 	err = perf_copy_attr(attr_uptr, &attr);
11497 	if (err)
11498 		return err;
11499 
11500 	if (!attr.exclude_kernel) {
11501 		err = perf_allow_kernel(&attr);
11502 		if (err)
11503 			return err;
11504 	}
11505 
11506 	if (attr.namespaces) {
11507 		if (!capable(CAP_SYS_ADMIN))
11508 			return -EACCES;
11509 	}
11510 
11511 	if (attr.freq) {
11512 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
11513 			return -EINVAL;
11514 	} else {
11515 		if (attr.sample_period & (1ULL << 63))
11516 			return -EINVAL;
11517 	}
11518 
11519 	/* Only privileged users can get physical addresses */
11520 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11521 		err = perf_allow_kernel(&attr);
11522 		if (err)
11523 			return err;
11524 	}
11525 
11526 	err = security_locked_down(LOCKDOWN_PERF);
11527 	if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11528 		/* REGS_INTR can leak data, lockdown must prevent this */
11529 		return err;
11530 
11531 	err = 0;
11532 
11533 	/*
11534 	 * In cgroup mode, the pid argument is used to pass the fd
11535 	 * opened to the cgroup directory in cgroupfs. The cpu argument
11536 	 * designates the cpu on which to monitor threads from that
11537 	 * cgroup.
11538 	 */
11539 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11540 		return -EINVAL;
11541 
11542 	if (flags & PERF_FLAG_FD_CLOEXEC)
11543 		f_flags |= O_CLOEXEC;
11544 
11545 	event_fd = get_unused_fd_flags(f_flags);
11546 	if (event_fd < 0)
11547 		return event_fd;
11548 
11549 	if (group_fd != -1) {
11550 		err = perf_fget_light(group_fd, &group);
11551 		if (err)
11552 			goto err_fd;
11553 		group_leader = group.file->private_data;
11554 		if (flags & PERF_FLAG_FD_OUTPUT)
11555 			output_event = group_leader;
11556 		if (flags & PERF_FLAG_FD_NO_GROUP)
11557 			group_leader = NULL;
11558 	}
11559 
11560 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11561 		task = find_lively_task_by_vpid(pid);
11562 		if (IS_ERR(task)) {
11563 			err = PTR_ERR(task);
11564 			goto err_group_fd;
11565 		}
11566 	}
11567 
11568 	if (task && group_leader &&
11569 	    group_leader->attr.inherit != attr.inherit) {
11570 		err = -EINVAL;
11571 		goto err_task;
11572 	}
11573 
11574 	if (task) {
11575 		err = mutex_lock_interruptible(&task->signal->exec_update_mutex);
11576 		if (err)
11577 			goto err_task;
11578 
11579 		/*
11580 		 * Reuse ptrace permission checks for now.
11581 		 *
11582 		 * We must hold exec_update_mutex across this and any potential
11583 		 * perf_install_in_context() call for this new event to
11584 		 * serialize against exec() altering our credentials (and the
11585 		 * perf_event_exit_task() that could imply).
11586 		 */
11587 		err = -EACCES;
11588 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11589 			goto err_cred;
11590 	}
11591 
11592 	if (flags & PERF_FLAG_PID_CGROUP)
11593 		cgroup_fd = pid;
11594 
11595 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11596 				 NULL, NULL, cgroup_fd);
11597 	if (IS_ERR(event)) {
11598 		err = PTR_ERR(event);
11599 		goto err_cred;
11600 	}
11601 
11602 	if (is_sampling_event(event)) {
11603 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11604 			err = -EOPNOTSUPP;
11605 			goto err_alloc;
11606 		}
11607 	}
11608 
11609 	/*
11610 	 * Special case software events and allow them to be part of
11611 	 * any hardware group.
11612 	 */
11613 	pmu = event->pmu;
11614 
11615 	if (attr.use_clockid) {
11616 		err = perf_event_set_clock(event, attr.clockid);
11617 		if (err)
11618 			goto err_alloc;
11619 	}
11620 
11621 	if (pmu->task_ctx_nr == perf_sw_context)
11622 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
11623 
11624 	if (group_leader) {
11625 		if (is_software_event(event) &&
11626 		    !in_software_context(group_leader)) {
11627 			/*
11628 			 * If the event is a sw event, but the group_leader
11629 			 * is on hw context.
11630 			 *
11631 			 * Allow the addition of software events to hw
11632 			 * groups, this is safe because software events
11633 			 * never fail to schedule.
11634 			 */
11635 			pmu = group_leader->ctx->pmu;
11636 		} else if (!is_software_event(event) &&
11637 			   is_software_event(group_leader) &&
11638 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11639 			/*
11640 			 * In case the group is a pure software group, and we
11641 			 * try to add a hardware event, move the whole group to
11642 			 * the hardware context.
11643 			 */
11644 			move_group = 1;
11645 		}
11646 	}
11647 
11648 	/*
11649 	 * Get the target context (task or percpu):
11650 	 */
11651 	ctx = find_get_context(pmu, task, event);
11652 	if (IS_ERR(ctx)) {
11653 		err = PTR_ERR(ctx);
11654 		goto err_alloc;
11655 	}
11656 
11657 	/*
11658 	 * Look up the group leader (we will attach this event to it):
11659 	 */
11660 	if (group_leader) {
11661 		err = -EINVAL;
11662 
11663 		/*
11664 		 * Do not allow a recursive hierarchy (this new sibling
11665 		 * becoming part of another group-sibling):
11666 		 */
11667 		if (group_leader->group_leader != group_leader)
11668 			goto err_context;
11669 
11670 		/* All events in a group should have the same clock */
11671 		if (group_leader->clock != event->clock)
11672 			goto err_context;
11673 
11674 		/*
11675 		 * Make sure we're both events for the same CPU;
11676 		 * grouping events for different CPUs is broken; since
11677 		 * you can never concurrently schedule them anyhow.
11678 		 */
11679 		if (group_leader->cpu != event->cpu)
11680 			goto err_context;
11681 
11682 		/*
11683 		 * Make sure we're both on the same task, or both
11684 		 * per-CPU events.
11685 		 */
11686 		if (group_leader->ctx->task != ctx->task)
11687 			goto err_context;
11688 
11689 		/*
11690 		 * Do not allow to attach to a group in a different task
11691 		 * or CPU context. If we're moving SW events, we'll fix
11692 		 * this up later, so allow that.
11693 		 */
11694 		if (!move_group && group_leader->ctx != ctx)
11695 			goto err_context;
11696 
11697 		/*
11698 		 * Only a group leader can be exclusive or pinned
11699 		 */
11700 		if (attr.exclusive || attr.pinned)
11701 			goto err_context;
11702 	}
11703 
11704 	if (output_event) {
11705 		err = perf_event_set_output(event, output_event);
11706 		if (err)
11707 			goto err_context;
11708 	}
11709 
11710 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11711 					f_flags);
11712 	if (IS_ERR(event_file)) {
11713 		err = PTR_ERR(event_file);
11714 		event_file = NULL;
11715 		goto err_context;
11716 	}
11717 
11718 	if (move_group) {
11719 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11720 
11721 		if (gctx->task == TASK_TOMBSTONE) {
11722 			err = -ESRCH;
11723 			goto err_locked;
11724 		}
11725 
11726 		/*
11727 		 * Check if we raced against another sys_perf_event_open() call
11728 		 * moving the software group underneath us.
11729 		 */
11730 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11731 			/*
11732 			 * If someone moved the group out from under us, check
11733 			 * if this new event wound up on the same ctx, if so
11734 			 * its the regular !move_group case, otherwise fail.
11735 			 */
11736 			if (gctx != ctx) {
11737 				err = -EINVAL;
11738 				goto err_locked;
11739 			} else {
11740 				perf_event_ctx_unlock(group_leader, gctx);
11741 				move_group = 0;
11742 			}
11743 		}
11744 
11745 		/*
11746 		 * Failure to create exclusive events returns -EBUSY.
11747 		 */
11748 		err = -EBUSY;
11749 		if (!exclusive_event_installable(group_leader, ctx))
11750 			goto err_locked;
11751 
11752 		for_each_sibling_event(sibling, group_leader) {
11753 			if (!exclusive_event_installable(sibling, ctx))
11754 				goto err_locked;
11755 		}
11756 	} else {
11757 		mutex_lock(&ctx->mutex);
11758 	}
11759 
11760 	if (ctx->task == TASK_TOMBSTONE) {
11761 		err = -ESRCH;
11762 		goto err_locked;
11763 	}
11764 
11765 	if (!perf_event_validate_size(event)) {
11766 		err = -E2BIG;
11767 		goto err_locked;
11768 	}
11769 
11770 	if (!task) {
11771 		/*
11772 		 * Check if the @cpu we're creating an event for is online.
11773 		 *
11774 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11775 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11776 		 */
11777 		struct perf_cpu_context *cpuctx =
11778 			container_of(ctx, struct perf_cpu_context, ctx);
11779 
11780 		if (!cpuctx->online) {
11781 			err = -ENODEV;
11782 			goto err_locked;
11783 		}
11784 	}
11785 
11786 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11787 		err = -EINVAL;
11788 		goto err_locked;
11789 	}
11790 
11791 	/*
11792 	 * Must be under the same ctx::mutex as perf_install_in_context(),
11793 	 * because we need to serialize with concurrent event creation.
11794 	 */
11795 	if (!exclusive_event_installable(event, ctx)) {
11796 		err = -EBUSY;
11797 		goto err_locked;
11798 	}
11799 
11800 	WARN_ON_ONCE(ctx->parent_ctx);
11801 
11802 	/*
11803 	 * This is the point on no return; we cannot fail hereafter. This is
11804 	 * where we start modifying current state.
11805 	 */
11806 
11807 	if (move_group) {
11808 		/*
11809 		 * See perf_event_ctx_lock() for comments on the details
11810 		 * of swizzling perf_event::ctx.
11811 		 */
11812 		perf_remove_from_context(group_leader, 0);
11813 		put_ctx(gctx);
11814 
11815 		for_each_sibling_event(sibling, group_leader) {
11816 			perf_remove_from_context(sibling, 0);
11817 			put_ctx(gctx);
11818 		}
11819 
11820 		/*
11821 		 * Wait for everybody to stop referencing the events through
11822 		 * the old lists, before installing it on new lists.
11823 		 */
11824 		synchronize_rcu();
11825 
11826 		/*
11827 		 * Install the group siblings before the group leader.
11828 		 *
11829 		 * Because a group leader will try and install the entire group
11830 		 * (through the sibling list, which is still in-tact), we can
11831 		 * end up with siblings installed in the wrong context.
11832 		 *
11833 		 * By installing siblings first we NO-OP because they're not
11834 		 * reachable through the group lists.
11835 		 */
11836 		for_each_sibling_event(sibling, group_leader) {
11837 			perf_event__state_init(sibling);
11838 			perf_install_in_context(ctx, sibling, sibling->cpu);
11839 			get_ctx(ctx);
11840 		}
11841 
11842 		/*
11843 		 * Removing from the context ends up with disabled
11844 		 * event. What we want here is event in the initial
11845 		 * startup state, ready to be add into new context.
11846 		 */
11847 		perf_event__state_init(group_leader);
11848 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
11849 		get_ctx(ctx);
11850 	}
11851 
11852 	/*
11853 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
11854 	 * that we're serialized against further additions and before
11855 	 * perf_install_in_context() which is the point the event is active and
11856 	 * can use these values.
11857 	 */
11858 	perf_event__header_size(event);
11859 	perf_event__id_header_size(event);
11860 
11861 	event->owner = current;
11862 
11863 	perf_install_in_context(ctx, event, event->cpu);
11864 	perf_unpin_context(ctx);
11865 
11866 	if (move_group)
11867 		perf_event_ctx_unlock(group_leader, gctx);
11868 	mutex_unlock(&ctx->mutex);
11869 
11870 	if (task) {
11871 		mutex_unlock(&task->signal->exec_update_mutex);
11872 		put_task_struct(task);
11873 	}
11874 
11875 	mutex_lock(&current->perf_event_mutex);
11876 	list_add_tail(&event->owner_entry, &current->perf_event_list);
11877 	mutex_unlock(&current->perf_event_mutex);
11878 
11879 	/*
11880 	 * Drop the reference on the group_event after placing the
11881 	 * new event on the sibling_list. This ensures destruction
11882 	 * of the group leader will find the pointer to itself in
11883 	 * perf_group_detach().
11884 	 */
11885 	fdput(group);
11886 	fd_install(event_fd, event_file);
11887 	return event_fd;
11888 
11889 err_locked:
11890 	if (move_group)
11891 		perf_event_ctx_unlock(group_leader, gctx);
11892 	mutex_unlock(&ctx->mutex);
11893 /* err_file: */
11894 	fput(event_file);
11895 err_context:
11896 	perf_unpin_context(ctx);
11897 	put_ctx(ctx);
11898 err_alloc:
11899 	/*
11900 	 * If event_file is set, the fput() above will have called ->release()
11901 	 * and that will take care of freeing the event.
11902 	 */
11903 	if (!event_file)
11904 		free_event(event);
11905 err_cred:
11906 	if (task)
11907 		mutex_unlock(&task->signal->exec_update_mutex);
11908 err_task:
11909 	if (task)
11910 		put_task_struct(task);
11911 err_group_fd:
11912 	fdput(group);
11913 err_fd:
11914 	put_unused_fd(event_fd);
11915 	return err;
11916 }
11917 
11918 /**
11919  * perf_event_create_kernel_counter
11920  *
11921  * @attr: attributes of the counter to create
11922  * @cpu: cpu in which the counter is bound
11923  * @task: task to profile (NULL for percpu)
11924  */
11925 struct perf_event *
11926 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11927 				 struct task_struct *task,
11928 				 perf_overflow_handler_t overflow_handler,
11929 				 void *context)
11930 {
11931 	struct perf_event_context *ctx;
11932 	struct perf_event *event;
11933 	int err;
11934 
11935 	/*
11936 	 * Grouping is not supported for kernel events, neither is 'AUX',
11937 	 * make sure the caller's intentions are adjusted.
11938 	 */
11939 	if (attr->aux_output)
11940 		return ERR_PTR(-EINVAL);
11941 
11942 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11943 				 overflow_handler, context, -1);
11944 	if (IS_ERR(event)) {
11945 		err = PTR_ERR(event);
11946 		goto err;
11947 	}
11948 
11949 	/* Mark owner so we could distinguish it from user events. */
11950 	event->owner = TASK_TOMBSTONE;
11951 
11952 	/*
11953 	 * Get the target context (task or percpu):
11954 	 */
11955 	ctx = find_get_context(event->pmu, task, event);
11956 	if (IS_ERR(ctx)) {
11957 		err = PTR_ERR(ctx);
11958 		goto err_free;
11959 	}
11960 
11961 	WARN_ON_ONCE(ctx->parent_ctx);
11962 	mutex_lock(&ctx->mutex);
11963 	if (ctx->task == TASK_TOMBSTONE) {
11964 		err = -ESRCH;
11965 		goto err_unlock;
11966 	}
11967 
11968 	if (!task) {
11969 		/*
11970 		 * Check if the @cpu we're creating an event for is online.
11971 		 *
11972 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11973 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11974 		 */
11975 		struct perf_cpu_context *cpuctx =
11976 			container_of(ctx, struct perf_cpu_context, ctx);
11977 		if (!cpuctx->online) {
11978 			err = -ENODEV;
11979 			goto err_unlock;
11980 		}
11981 	}
11982 
11983 	if (!exclusive_event_installable(event, ctx)) {
11984 		err = -EBUSY;
11985 		goto err_unlock;
11986 	}
11987 
11988 	perf_install_in_context(ctx, event, event->cpu);
11989 	perf_unpin_context(ctx);
11990 	mutex_unlock(&ctx->mutex);
11991 
11992 	return event;
11993 
11994 err_unlock:
11995 	mutex_unlock(&ctx->mutex);
11996 	perf_unpin_context(ctx);
11997 	put_ctx(ctx);
11998 err_free:
11999 	free_event(event);
12000 err:
12001 	return ERR_PTR(err);
12002 }
12003 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12004 
12005 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12006 {
12007 	struct perf_event_context *src_ctx;
12008 	struct perf_event_context *dst_ctx;
12009 	struct perf_event *event, *tmp;
12010 	LIST_HEAD(events);
12011 
12012 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12013 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12014 
12015 	/*
12016 	 * See perf_event_ctx_lock() for comments on the details
12017 	 * of swizzling perf_event::ctx.
12018 	 */
12019 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12020 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12021 				 event_entry) {
12022 		perf_remove_from_context(event, 0);
12023 		unaccount_event_cpu(event, src_cpu);
12024 		put_ctx(src_ctx);
12025 		list_add(&event->migrate_entry, &events);
12026 	}
12027 
12028 	/*
12029 	 * Wait for the events to quiesce before re-instating them.
12030 	 */
12031 	synchronize_rcu();
12032 
12033 	/*
12034 	 * Re-instate events in 2 passes.
12035 	 *
12036 	 * Skip over group leaders and only install siblings on this first
12037 	 * pass, siblings will not get enabled without a leader, however a
12038 	 * leader will enable its siblings, even if those are still on the old
12039 	 * context.
12040 	 */
12041 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12042 		if (event->group_leader == event)
12043 			continue;
12044 
12045 		list_del(&event->migrate_entry);
12046 		if (event->state >= PERF_EVENT_STATE_OFF)
12047 			event->state = PERF_EVENT_STATE_INACTIVE;
12048 		account_event_cpu(event, dst_cpu);
12049 		perf_install_in_context(dst_ctx, event, dst_cpu);
12050 		get_ctx(dst_ctx);
12051 	}
12052 
12053 	/*
12054 	 * Once all the siblings are setup properly, install the group leaders
12055 	 * to make it go.
12056 	 */
12057 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12058 		list_del(&event->migrate_entry);
12059 		if (event->state >= PERF_EVENT_STATE_OFF)
12060 			event->state = PERF_EVENT_STATE_INACTIVE;
12061 		account_event_cpu(event, dst_cpu);
12062 		perf_install_in_context(dst_ctx, event, dst_cpu);
12063 		get_ctx(dst_ctx);
12064 	}
12065 	mutex_unlock(&dst_ctx->mutex);
12066 	mutex_unlock(&src_ctx->mutex);
12067 }
12068 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12069 
12070 static void sync_child_event(struct perf_event *child_event,
12071 			       struct task_struct *child)
12072 {
12073 	struct perf_event *parent_event = child_event->parent;
12074 	u64 child_val;
12075 
12076 	if (child_event->attr.inherit_stat)
12077 		perf_event_read_event(child_event, child);
12078 
12079 	child_val = perf_event_count(child_event);
12080 
12081 	/*
12082 	 * Add back the child's count to the parent's count:
12083 	 */
12084 	atomic64_add(child_val, &parent_event->child_count);
12085 	atomic64_add(child_event->total_time_enabled,
12086 		     &parent_event->child_total_time_enabled);
12087 	atomic64_add(child_event->total_time_running,
12088 		     &parent_event->child_total_time_running);
12089 }
12090 
12091 static void
12092 perf_event_exit_event(struct perf_event *child_event,
12093 		      struct perf_event_context *child_ctx,
12094 		      struct task_struct *child)
12095 {
12096 	struct perf_event *parent_event = child_event->parent;
12097 
12098 	/*
12099 	 * Do not destroy the 'original' grouping; because of the context
12100 	 * switch optimization the original events could've ended up in a
12101 	 * random child task.
12102 	 *
12103 	 * If we were to destroy the original group, all group related
12104 	 * operations would cease to function properly after this random
12105 	 * child dies.
12106 	 *
12107 	 * Do destroy all inherited groups, we don't care about those
12108 	 * and being thorough is better.
12109 	 */
12110 	raw_spin_lock_irq(&child_ctx->lock);
12111 	WARN_ON_ONCE(child_ctx->is_active);
12112 
12113 	if (parent_event)
12114 		perf_group_detach(child_event);
12115 	list_del_event(child_event, child_ctx);
12116 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12117 	raw_spin_unlock_irq(&child_ctx->lock);
12118 
12119 	/*
12120 	 * Parent events are governed by their filedesc, retain them.
12121 	 */
12122 	if (!parent_event) {
12123 		perf_event_wakeup(child_event);
12124 		return;
12125 	}
12126 	/*
12127 	 * Child events can be cleaned up.
12128 	 */
12129 
12130 	sync_child_event(child_event, child);
12131 
12132 	/*
12133 	 * Remove this event from the parent's list
12134 	 */
12135 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12136 	mutex_lock(&parent_event->child_mutex);
12137 	list_del_init(&child_event->child_list);
12138 	mutex_unlock(&parent_event->child_mutex);
12139 
12140 	/*
12141 	 * Kick perf_poll() for is_event_hup().
12142 	 */
12143 	perf_event_wakeup(parent_event);
12144 	free_event(child_event);
12145 	put_event(parent_event);
12146 }
12147 
12148 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12149 {
12150 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12151 	struct perf_event *child_event, *next;
12152 
12153 	WARN_ON_ONCE(child != current);
12154 
12155 	child_ctx = perf_pin_task_context(child, ctxn);
12156 	if (!child_ctx)
12157 		return;
12158 
12159 	/*
12160 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12161 	 * ctx::mutex over the entire thing. This serializes against almost
12162 	 * everything that wants to access the ctx.
12163 	 *
12164 	 * The exception is sys_perf_event_open() /
12165 	 * perf_event_create_kernel_count() which does find_get_context()
12166 	 * without ctx::mutex (it cannot because of the move_group double mutex
12167 	 * lock thing). See the comments in perf_install_in_context().
12168 	 */
12169 	mutex_lock(&child_ctx->mutex);
12170 
12171 	/*
12172 	 * In a single ctx::lock section, de-schedule the events and detach the
12173 	 * context from the task such that we cannot ever get it scheduled back
12174 	 * in.
12175 	 */
12176 	raw_spin_lock_irq(&child_ctx->lock);
12177 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12178 
12179 	/*
12180 	 * Now that the context is inactive, destroy the task <-> ctx relation
12181 	 * and mark the context dead.
12182 	 */
12183 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12184 	put_ctx(child_ctx); /* cannot be last */
12185 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12186 	put_task_struct(current); /* cannot be last */
12187 
12188 	clone_ctx = unclone_ctx(child_ctx);
12189 	raw_spin_unlock_irq(&child_ctx->lock);
12190 
12191 	if (clone_ctx)
12192 		put_ctx(clone_ctx);
12193 
12194 	/*
12195 	 * Report the task dead after unscheduling the events so that we
12196 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12197 	 * get a few PERF_RECORD_READ events.
12198 	 */
12199 	perf_event_task(child, child_ctx, 0);
12200 
12201 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12202 		perf_event_exit_event(child_event, child_ctx, child);
12203 
12204 	mutex_unlock(&child_ctx->mutex);
12205 
12206 	put_ctx(child_ctx);
12207 }
12208 
12209 /*
12210  * When a child task exits, feed back event values to parent events.
12211  *
12212  * Can be called with exec_update_mutex held when called from
12213  * install_exec_creds().
12214  */
12215 void perf_event_exit_task(struct task_struct *child)
12216 {
12217 	struct perf_event *event, *tmp;
12218 	int ctxn;
12219 
12220 	mutex_lock(&child->perf_event_mutex);
12221 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12222 				 owner_entry) {
12223 		list_del_init(&event->owner_entry);
12224 
12225 		/*
12226 		 * Ensure the list deletion is visible before we clear
12227 		 * the owner, closes a race against perf_release() where
12228 		 * we need to serialize on the owner->perf_event_mutex.
12229 		 */
12230 		smp_store_release(&event->owner, NULL);
12231 	}
12232 	mutex_unlock(&child->perf_event_mutex);
12233 
12234 	for_each_task_context_nr(ctxn)
12235 		perf_event_exit_task_context(child, ctxn);
12236 
12237 	/*
12238 	 * The perf_event_exit_task_context calls perf_event_task
12239 	 * with child's task_ctx, which generates EXIT events for
12240 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12241 	 * At this point we need to send EXIT events to cpu contexts.
12242 	 */
12243 	perf_event_task(child, NULL, 0);
12244 }
12245 
12246 static void perf_free_event(struct perf_event *event,
12247 			    struct perf_event_context *ctx)
12248 {
12249 	struct perf_event *parent = event->parent;
12250 
12251 	if (WARN_ON_ONCE(!parent))
12252 		return;
12253 
12254 	mutex_lock(&parent->child_mutex);
12255 	list_del_init(&event->child_list);
12256 	mutex_unlock(&parent->child_mutex);
12257 
12258 	put_event(parent);
12259 
12260 	raw_spin_lock_irq(&ctx->lock);
12261 	perf_group_detach(event);
12262 	list_del_event(event, ctx);
12263 	raw_spin_unlock_irq(&ctx->lock);
12264 	free_event(event);
12265 }
12266 
12267 /*
12268  * Free a context as created by inheritance by perf_event_init_task() below,
12269  * used by fork() in case of fail.
12270  *
12271  * Even though the task has never lived, the context and events have been
12272  * exposed through the child_list, so we must take care tearing it all down.
12273  */
12274 void perf_event_free_task(struct task_struct *task)
12275 {
12276 	struct perf_event_context *ctx;
12277 	struct perf_event *event, *tmp;
12278 	int ctxn;
12279 
12280 	for_each_task_context_nr(ctxn) {
12281 		ctx = task->perf_event_ctxp[ctxn];
12282 		if (!ctx)
12283 			continue;
12284 
12285 		mutex_lock(&ctx->mutex);
12286 		raw_spin_lock_irq(&ctx->lock);
12287 		/*
12288 		 * Destroy the task <-> ctx relation and mark the context dead.
12289 		 *
12290 		 * This is important because even though the task hasn't been
12291 		 * exposed yet the context has been (through child_list).
12292 		 */
12293 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12294 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12295 		put_task_struct(task); /* cannot be last */
12296 		raw_spin_unlock_irq(&ctx->lock);
12297 
12298 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12299 			perf_free_event(event, ctx);
12300 
12301 		mutex_unlock(&ctx->mutex);
12302 
12303 		/*
12304 		 * perf_event_release_kernel() could've stolen some of our
12305 		 * child events and still have them on its free_list. In that
12306 		 * case we must wait for these events to have been freed (in
12307 		 * particular all their references to this task must've been
12308 		 * dropped).
12309 		 *
12310 		 * Without this copy_process() will unconditionally free this
12311 		 * task (irrespective of its reference count) and
12312 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12313 		 * use-after-free.
12314 		 *
12315 		 * Wait for all events to drop their context reference.
12316 		 */
12317 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12318 		put_ctx(ctx); /* must be last */
12319 	}
12320 }
12321 
12322 void perf_event_delayed_put(struct task_struct *task)
12323 {
12324 	int ctxn;
12325 
12326 	for_each_task_context_nr(ctxn)
12327 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12328 }
12329 
12330 struct file *perf_event_get(unsigned int fd)
12331 {
12332 	struct file *file = fget(fd);
12333 	if (!file)
12334 		return ERR_PTR(-EBADF);
12335 
12336 	if (file->f_op != &perf_fops) {
12337 		fput(file);
12338 		return ERR_PTR(-EBADF);
12339 	}
12340 
12341 	return file;
12342 }
12343 
12344 const struct perf_event *perf_get_event(struct file *file)
12345 {
12346 	if (file->f_op != &perf_fops)
12347 		return ERR_PTR(-EINVAL);
12348 
12349 	return file->private_data;
12350 }
12351 
12352 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12353 {
12354 	if (!event)
12355 		return ERR_PTR(-EINVAL);
12356 
12357 	return &event->attr;
12358 }
12359 
12360 /*
12361  * Inherit an event from parent task to child task.
12362  *
12363  * Returns:
12364  *  - valid pointer on success
12365  *  - NULL for orphaned events
12366  *  - IS_ERR() on error
12367  */
12368 static struct perf_event *
12369 inherit_event(struct perf_event *parent_event,
12370 	      struct task_struct *parent,
12371 	      struct perf_event_context *parent_ctx,
12372 	      struct task_struct *child,
12373 	      struct perf_event *group_leader,
12374 	      struct perf_event_context *child_ctx)
12375 {
12376 	enum perf_event_state parent_state = parent_event->state;
12377 	struct perf_event *child_event;
12378 	unsigned long flags;
12379 
12380 	/*
12381 	 * Instead of creating recursive hierarchies of events,
12382 	 * we link inherited events back to the original parent,
12383 	 * which has a filp for sure, which we use as the reference
12384 	 * count:
12385 	 */
12386 	if (parent_event->parent)
12387 		parent_event = parent_event->parent;
12388 
12389 	child_event = perf_event_alloc(&parent_event->attr,
12390 					   parent_event->cpu,
12391 					   child,
12392 					   group_leader, parent_event,
12393 					   NULL, NULL, -1);
12394 	if (IS_ERR(child_event))
12395 		return child_event;
12396 
12397 
12398 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12399 	    !child_ctx->task_ctx_data) {
12400 		struct pmu *pmu = child_event->pmu;
12401 
12402 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12403 						   GFP_KERNEL);
12404 		if (!child_ctx->task_ctx_data) {
12405 			free_event(child_event);
12406 			return ERR_PTR(-ENOMEM);
12407 		}
12408 	}
12409 
12410 	/*
12411 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12412 	 * must be under the same lock in order to serialize against
12413 	 * perf_event_release_kernel(), such that either we must observe
12414 	 * is_orphaned_event() or they will observe us on the child_list.
12415 	 */
12416 	mutex_lock(&parent_event->child_mutex);
12417 	if (is_orphaned_event(parent_event) ||
12418 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12419 		mutex_unlock(&parent_event->child_mutex);
12420 		/* task_ctx_data is freed with child_ctx */
12421 		free_event(child_event);
12422 		return NULL;
12423 	}
12424 
12425 	get_ctx(child_ctx);
12426 
12427 	/*
12428 	 * Make the child state follow the state of the parent event,
12429 	 * not its attr.disabled bit.  We hold the parent's mutex,
12430 	 * so we won't race with perf_event_{en, dis}able_family.
12431 	 */
12432 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12433 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12434 	else
12435 		child_event->state = PERF_EVENT_STATE_OFF;
12436 
12437 	if (parent_event->attr.freq) {
12438 		u64 sample_period = parent_event->hw.sample_period;
12439 		struct hw_perf_event *hwc = &child_event->hw;
12440 
12441 		hwc->sample_period = sample_period;
12442 		hwc->last_period   = sample_period;
12443 
12444 		local64_set(&hwc->period_left, sample_period);
12445 	}
12446 
12447 	child_event->ctx = child_ctx;
12448 	child_event->overflow_handler = parent_event->overflow_handler;
12449 	child_event->overflow_handler_context
12450 		= parent_event->overflow_handler_context;
12451 
12452 	/*
12453 	 * Precalculate sample_data sizes
12454 	 */
12455 	perf_event__header_size(child_event);
12456 	perf_event__id_header_size(child_event);
12457 
12458 	/*
12459 	 * Link it up in the child's context:
12460 	 */
12461 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
12462 	add_event_to_ctx(child_event, child_ctx);
12463 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12464 
12465 	/*
12466 	 * Link this into the parent event's child list
12467 	 */
12468 	list_add_tail(&child_event->child_list, &parent_event->child_list);
12469 	mutex_unlock(&parent_event->child_mutex);
12470 
12471 	return child_event;
12472 }
12473 
12474 /*
12475  * Inherits an event group.
12476  *
12477  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12478  * This matches with perf_event_release_kernel() removing all child events.
12479  *
12480  * Returns:
12481  *  - 0 on success
12482  *  - <0 on error
12483  */
12484 static int inherit_group(struct perf_event *parent_event,
12485 	      struct task_struct *parent,
12486 	      struct perf_event_context *parent_ctx,
12487 	      struct task_struct *child,
12488 	      struct perf_event_context *child_ctx)
12489 {
12490 	struct perf_event *leader;
12491 	struct perf_event *sub;
12492 	struct perf_event *child_ctr;
12493 
12494 	leader = inherit_event(parent_event, parent, parent_ctx,
12495 				 child, NULL, child_ctx);
12496 	if (IS_ERR(leader))
12497 		return PTR_ERR(leader);
12498 	/*
12499 	 * @leader can be NULL here because of is_orphaned_event(). In this
12500 	 * case inherit_event() will create individual events, similar to what
12501 	 * perf_group_detach() would do anyway.
12502 	 */
12503 	for_each_sibling_event(sub, parent_event) {
12504 		child_ctr = inherit_event(sub, parent, parent_ctx,
12505 					    child, leader, child_ctx);
12506 		if (IS_ERR(child_ctr))
12507 			return PTR_ERR(child_ctr);
12508 
12509 		if (sub->aux_event == parent_event && child_ctr &&
12510 		    !perf_get_aux_event(child_ctr, leader))
12511 			return -EINVAL;
12512 	}
12513 	return 0;
12514 }
12515 
12516 /*
12517  * Creates the child task context and tries to inherit the event-group.
12518  *
12519  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12520  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12521  * consistent with perf_event_release_kernel() removing all child events.
12522  *
12523  * Returns:
12524  *  - 0 on success
12525  *  - <0 on error
12526  */
12527 static int
12528 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12529 		   struct perf_event_context *parent_ctx,
12530 		   struct task_struct *child, int ctxn,
12531 		   int *inherited_all)
12532 {
12533 	int ret;
12534 	struct perf_event_context *child_ctx;
12535 
12536 	if (!event->attr.inherit) {
12537 		*inherited_all = 0;
12538 		return 0;
12539 	}
12540 
12541 	child_ctx = child->perf_event_ctxp[ctxn];
12542 	if (!child_ctx) {
12543 		/*
12544 		 * This is executed from the parent task context, so
12545 		 * inherit events that have been marked for cloning.
12546 		 * First allocate and initialize a context for the
12547 		 * child.
12548 		 */
12549 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12550 		if (!child_ctx)
12551 			return -ENOMEM;
12552 
12553 		child->perf_event_ctxp[ctxn] = child_ctx;
12554 	}
12555 
12556 	ret = inherit_group(event, parent, parent_ctx,
12557 			    child, child_ctx);
12558 
12559 	if (ret)
12560 		*inherited_all = 0;
12561 
12562 	return ret;
12563 }
12564 
12565 /*
12566  * Initialize the perf_event context in task_struct
12567  */
12568 static int perf_event_init_context(struct task_struct *child, int ctxn)
12569 {
12570 	struct perf_event_context *child_ctx, *parent_ctx;
12571 	struct perf_event_context *cloned_ctx;
12572 	struct perf_event *event;
12573 	struct task_struct *parent = current;
12574 	int inherited_all = 1;
12575 	unsigned long flags;
12576 	int ret = 0;
12577 
12578 	if (likely(!parent->perf_event_ctxp[ctxn]))
12579 		return 0;
12580 
12581 	/*
12582 	 * If the parent's context is a clone, pin it so it won't get
12583 	 * swapped under us.
12584 	 */
12585 	parent_ctx = perf_pin_task_context(parent, ctxn);
12586 	if (!parent_ctx)
12587 		return 0;
12588 
12589 	/*
12590 	 * No need to check if parent_ctx != NULL here; since we saw
12591 	 * it non-NULL earlier, the only reason for it to become NULL
12592 	 * is if we exit, and since we're currently in the middle of
12593 	 * a fork we can't be exiting at the same time.
12594 	 */
12595 
12596 	/*
12597 	 * Lock the parent list. No need to lock the child - not PID
12598 	 * hashed yet and not running, so nobody can access it.
12599 	 */
12600 	mutex_lock(&parent_ctx->mutex);
12601 
12602 	/*
12603 	 * We dont have to disable NMIs - we are only looking at
12604 	 * the list, not manipulating it:
12605 	 */
12606 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12607 		ret = inherit_task_group(event, parent, parent_ctx,
12608 					 child, ctxn, &inherited_all);
12609 		if (ret)
12610 			goto out_unlock;
12611 	}
12612 
12613 	/*
12614 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
12615 	 * to allocations, but we need to prevent rotation because
12616 	 * rotate_ctx() will change the list from interrupt context.
12617 	 */
12618 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12619 	parent_ctx->rotate_disable = 1;
12620 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12621 
12622 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12623 		ret = inherit_task_group(event, parent, parent_ctx,
12624 					 child, ctxn, &inherited_all);
12625 		if (ret)
12626 			goto out_unlock;
12627 	}
12628 
12629 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12630 	parent_ctx->rotate_disable = 0;
12631 
12632 	child_ctx = child->perf_event_ctxp[ctxn];
12633 
12634 	if (child_ctx && inherited_all) {
12635 		/*
12636 		 * Mark the child context as a clone of the parent
12637 		 * context, or of whatever the parent is a clone of.
12638 		 *
12639 		 * Note that if the parent is a clone, the holding of
12640 		 * parent_ctx->lock avoids it from being uncloned.
12641 		 */
12642 		cloned_ctx = parent_ctx->parent_ctx;
12643 		if (cloned_ctx) {
12644 			child_ctx->parent_ctx = cloned_ctx;
12645 			child_ctx->parent_gen = parent_ctx->parent_gen;
12646 		} else {
12647 			child_ctx->parent_ctx = parent_ctx;
12648 			child_ctx->parent_gen = parent_ctx->generation;
12649 		}
12650 		get_ctx(child_ctx->parent_ctx);
12651 	}
12652 
12653 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12654 out_unlock:
12655 	mutex_unlock(&parent_ctx->mutex);
12656 
12657 	perf_unpin_context(parent_ctx);
12658 	put_ctx(parent_ctx);
12659 
12660 	return ret;
12661 }
12662 
12663 /*
12664  * Initialize the perf_event context in task_struct
12665  */
12666 int perf_event_init_task(struct task_struct *child)
12667 {
12668 	int ctxn, ret;
12669 
12670 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12671 	mutex_init(&child->perf_event_mutex);
12672 	INIT_LIST_HEAD(&child->perf_event_list);
12673 
12674 	for_each_task_context_nr(ctxn) {
12675 		ret = perf_event_init_context(child, ctxn);
12676 		if (ret) {
12677 			perf_event_free_task(child);
12678 			return ret;
12679 		}
12680 	}
12681 
12682 	return 0;
12683 }
12684 
12685 static void __init perf_event_init_all_cpus(void)
12686 {
12687 	struct swevent_htable *swhash;
12688 	int cpu;
12689 
12690 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12691 
12692 	for_each_possible_cpu(cpu) {
12693 		swhash = &per_cpu(swevent_htable, cpu);
12694 		mutex_init(&swhash->hlist_mutex);
12695 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12696 
12697 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12698 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12699 
12700 #ifdef CONFIG_CGROUP_PERF
12701 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12702 #endif
12703 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12704 	}
12705 }
12706 
12707 static void perf_swevent_init_cpu(unsigned int cpu)
12708 {
12709 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12710 
12711 	mutex_lock(&swhash->hlist_mutex);
12712 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12713 		struct swevent_hlist *hlist;
12714 
12715 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12716 		WARN_ON(!hlist);
12717 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
12718 	}
12719 	mutex_unlock(&swhash->hlist_mutex);
12720 }
12721 
12722 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12723 static void __perf_event_exit_context(void *__info)
12724 {
12725 	struct perf_event_context *ctx = __info;
12726 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12727 	struct perf_event *event;
12728 
12729 	raw_spin_lock(&ctx->lock);
12730 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12731 	list_for_each_entry(event, &ctx->event_list, event_entry)
12732 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12733 	raw_spin_unlock(&ctx->lock);
12734 }
12735 
12736 static void perf_event_exit_cpu_context(int cpu)
12737 {
12738 	struct perf_cpu_context *cpuctx;
12739 	struct perf_event_context *ctx;
12740 	struct pmu *pmu;
12741 
12742 	mutex_lock(&pmus_lock);
12743 	list_for_each_entry(pmu, &pmus, entry) {
12744 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12745 		ctx = &cpuctx->ctx;
12746 
12747 		mutex_lock(&ctx->mutex);
12748 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12749 		cpuctx->online = 0;
12750 		mutex_unlock(&ctx->mutex);
12751 	}
12752 	cpumask_clear_cpu(cpu, perf_online_mask);
12753 	mutex_unlock(&pmus_lock);
12754 }
12755 #else
12756 
12757 static void perf_event_exit_cpu_context(int cpu) { }
12758 
12759 #endif
12760 
12761 int perf_event_init_cpu(unsigned int cpu)
12762 {
12763 	struct perf_cpu_context *cpuctx;
12764 	struct perf_event_context *ctx;
12765 	struct pmu *pmu;
12766 
12767 	perf_swevent_init_cpu(cpu);
12768 
12769 	mutex_lock(&pmus_lock);
12770 	cpumask_set_cpu(cpu, perf_online_mask);
12771 	list_for_each_entry(pmu, &pmus, entry) {
12772 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12773 		ctx = &cpuctx->ctx;
12774 
12775 		mutex_lock(&ctx->mutex);
12776 		cpuctx->online = 1;
12777 		mutex_unlock(&ctx->mutex);
12778 	}
12779 	mutex_unlock(&pmus_lock);
12780 
12781 	return 0;
12782 }
12783 
12784 int perf_event_exit_cpu(unsigned int cpu)
12785 {
12786 	perf_event_exit_cpu_context(cpu);
12787 	return 0;
12788 }
12789 
12790 static int
12791 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12792 {
12793 	int cpu;
12794 
12795 	for_each_online_cpu(cpu)
12796 		perf_event_exit_cpu(cpu);
12797 
12798 	return NOTIFY_OK;
12799 }
12800 
12801 /*
12802  * Run the perf reboot notifier at the very last possible moment so that
12803  * the generic watchdog code runs as long as possible.
12804  */
12805 static struct notifier_block perf_reboot_notifier = {
12806 	.notifier_call = perf_reboot,
12807 	.priority = INT_MIN,
12808 };
12809 
12810 void __init perf_event_init(void)
12811 {
12812 	int ret;
12813 
12814 	idr_init(&pmu_idr);
12815 
12816 	perf_event_init_all_cpus();
12817 	init_srcu_struct(&pmus_srcu);
12818 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12819 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
12820 	perf_pmu_register(&perf_task_clock, NULL, -1);
12821 	perf_tp_register();
12822 	perf_event_init_cpu(smp_processor_id());
12823 	register_reboot_notifier(&perf_reboot_notifier);
12824 
12825 	ret = init_hw_breakpoint();
12826 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12827 
12828 	/*
12829 	 * Build time assertion that we keep the data_head at the intended
12830 	 * location.  IOW, validation we got the __reserved[] size right.
12831 	 */
12832 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12833 		     != 1024);
12834 }
12835 
12836 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12837 			      char *page)
12838 {
12839 	struct perf_pmu_events_attr *pmu_attr =
12840 		container_of(attr, struct perf_pmu_events_attr, attr);
12841 
12842 	if (pmu_attr->event_str)
12843 		return sprintf(page, "%s\n", pmu_attr->event_str);
12844 
12845 	return 0;
12846 }
12847 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12848 
12849 static int __init perf_event_sysfs_init(void)
12850 {
12851 	struct pmu *pmu;
12852 	int ret;
12853 
12854 	mutex_lock(&pmus_lock);
12855 
12856 	ret = bus_register(&pmu_bus);
12857 	if (ret)
12858 		goto unlock;
12859 
12860 	list_for_each_entry(pmu, &pmus, entry) {
12861 		if (!pmu->name || pmu->type < 0)
12862 			continue;
12863 
12864 		ret = pmu_dev_alloc(pmu);
12865 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12866 	}
12867 	pmu_bus_running = 1;
12868 	ret = 0;
12869 
12870 unlock:
12871 	mutex_unlock(&pmus_lock);
12872 
12873 	return ret;
12874 }
12875 device_initcall(perf_event_sysfs_init);
12876 
12877 #ifdef CONFIG_CGROUP_PERF
12878 static struct cgroup_subsys_state *
12879 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12880 {
12881 	struct perf_cgroup *jc;
12882 
12883 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12884 	if (!jc)
12885 		return ERR_PTR(-ENOMEM);
12886 
12887 	jc->info = alloc_percpu(struct perf_cgroup_info);
12888 	if (!jc->info) {
12889 		kfree(jc);
12890 		return ERR_PTR(-ENOMEM);
12891 	}
12892 
12893 	return &jc->css;
12894 }
12895 
12896 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12897 {
12898 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12899 
12900 	free_percpu(jc->info);
12901 	kfree(jc);
12902 }
12903 
12904 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
12905 {
12906 	perf_event_cgroup(css->cgroup);
12907 	return 0;
12908 }
12909 
12910 static int __perf_cgroup_move(void *info)
12911 {
12912 	struct task_struct *task = info;
12913 	rcu_read_lock();
12914 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12915 	rcu_read_unlock();
12916 	return 0;
12917 }
12918 
12919 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12920 {
12921 	struct task_struct *task;
12922 	struct cgroup_subsys_state *css;
12923 
12924 	cgroup_taskset_for_each(task, css, tset)
12925 		task_function_call(task, __perf_cgroup_move, task);
12926 }
12927 
12928 struct cgroup_subsys perf_event_cgrp_subsys = {
12929 	.css_alloc	= perf_cgroup_css_alloc,
12930 	.css_free	= perf_cgroup_css_free,
12931 	.css_online	= perf_cgroup_css_online,
12932 	.attach		= perf_cgroup_attach,
12933 	/*
12934 	 * Implicitly enable on dfl hierarchy so that perf events can
12935 	 * always be filtered by cgroup2 path as long as perf_event
12936 	 * controller is not mounted on a legacy hierarchy.
12937 	 */
12938 	.implicit_on_dfl = true,
12939 	.threaded	= true,
12940 };
12941 #endif /* CONFIG_CGROUP_PERF */
12942