1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 48 #include "internal.h" 49 50 #include <asm/irq_regs.h> 51 52 static struct workqueue_struct *perf_wq; 53 54 typedef int (*remote_function_f)(void *); 55 56 struct remote_function_call { 57 struct task_struct *p; 58 remote_function_f func; 59 void *info; 60 int ret; 61 }; 62 63 static void remote_function(void *data) 64 { 65 struct remote_function_call *tfc = data; 66 struct task_struct *p = tfc->p; 67 68 if (p) { 69 tfc->ret = -EAGAIN; 70 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 71 return; 72 } 73 74 tfc->ret = tfc->func(tfc->info); 75 } 76 77 /** 78 * task_function_call - call a function on the cpu on which a task runs 79 * @p: the task to evaluate 80 * @func: the function to be called 81 * @info: the function call argument 82 * 83 * Calls the function @func when the task is currently running. This might 84 * be on the current CPU, which just calls the function directly 85 * 86 * returns: @func return value, or 87 * -ESRCH - when the process isn't running 88 * -EAGAIN - when the process moved away 89 */ 90 static int 91 task_function_call(struct task_struct *p, remote_function_f func, void *info) 92 { 93 struct remote_function_call data = { 94 .p = p, 95 .func = func, 96 .info = info, 97 .ret = -ESRCH, /* No such (running) process */ 98 }; 99 100 if (task_curr(p)) 101 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 102 103 return data.ret; 104 } 105 106 /** 107 * cpu_function_call - call a function on the cpu 108 * @func: the function to be called 109 * @info: the function call argument 110 * 111 * Calls the function @func on the remote cpu. 112 * 113 * returns: @func return value or -ENXIO when the cpu is offline 114 */ 115 static int cpu_function_call(int cpu, remote_function_f func, void *info) 116 { 117 struct remote_function_call data = { 118 .p = NULL, 119 .func = func, 120 .info = info, 121 .ret = -ENXIO, /* No such CPU */ 122 }; 123 124 smp_call_function_single(cpu, remote_function, &data, 1); 125 126 return data.ret; 127 } 128 129 #define EVENT_OWNER_KERNEL ((void *) -1) 130 131 static bool is_kernel_event(struct perf_event *event) 132 { 133 return event->owner == EVENT_OWNER_KERNEL; 134 } 135 136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 137 PERF_FLAG_FD_OUTPUT |\ 138 PERF_FLAG_PID_CGROUP |\ 139 PERF_FLAG_FD_CLOEXEC) 140 141 /* 142 * branch priv levels that need permission checks 143 */ 144 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 145 (PERF_SAMPLE_BRANCH_KERNEL |\ 146 PERF_SAMPLE_BRANCH_HV) 147 148 enum event_type_t { 149 EVENT_FLEXIBLE = 0x1, 150 EVENT_PINNED = 0x2, 151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 152 }; 153 154 /* 155 * perf_sched_events : >0 events exist 156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 157 */ 158 struct static_key_deferred perf_sched_events __read_mostly; 159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 160 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 161 162 static atomic_t nr_mmap_events __read_mostly; 163 static atomic_t nr_comm_events __read_mostly; 164 static atomic_t nr_task_events __read_mostly; 165 static atomic_t nr_freq_events __read_mostly; 166 static atomic_t nr_switch_events __read_mostly; 167 168 static LIST_HEAD(pmus); 169 static DEFINE_MUTEX(pmus_lock); 170 static struct srcu_struct pmus_srcu; 171 172 /* 173 * perf event paranoia level: 174 * -1 - not paranoid at all 175 * 0 - disallow raw tracepoint access for unpriv 176 * 1 - disallow cpu events for unpriv 177 * 2 - disallow kernel profiling for unpriv 178 */ 179 int sysctl_perf_event_paranoid __read_mostly = 1; 180 181 /* Minimum for 512 kiB + 1 user control page */ 182 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 183 184 /* 185 * max perf event sample rate 186 */ 187 #define DEFAULT_MAX_SAMPLE_RATE 100000 188 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 189 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 190 191 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 192 193 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 194 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 195 196 static int perf_sample_allowed_ns __read_mostly = 197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 198 199 static void update_perf_cpu_limits(void) 200 { 201 u64 tmp = perf_sample_period_ns; 202 203 tmp *= sysctl_perf_cpu_time_max_percent; 204 do_div(tmp, 100); 205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp; 206 } 207 208 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 209 210 int perf_proc_update_handler(struct ctl_table *table, int write, 211 void __user *buffer, size_t *lenp, 212 loff_t *ppos) 213 { 214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 215 216 if (ret || !write) 217 return ret; 218 219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 221 update_perf_cpu_limits(); 222 223 return 0; 224 } 225 226 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 227 228 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 229 void __user *buffer, size_t *lenp, 230 loff_t *ppos) 231 { 232 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 233 234 if (ret || !write) 235 return ret; 236 237 update_perf_cpu_limits(); 238 239 return 0; 240 } 241 242 /* 243 * perf samples are done in some very critical code paths (NMIs). 244 * If they take too much CPU time, the system can lock up and not 245 * get any real work done. This will drop the sample rate when 246 * we detect that events are taking too long. 247 */ 248 #define NR_ACCUMULATED_SAMPLES 128 249 static DEFINE_PER_CPU(u64, running_sample_length); 250 251 static void perf_duration_warn(struct irq_work *w) 252 { 253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 254 u64 avg_local_sample_len; 255 u64 local_samples_len; 256 257 local_samples_len = __this_cpu_read(running_sample_length); 258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 259 260 printk_ratelimited(KERN_WARNING 261 "perf interrupt took too long (%lld > %lld), lowering " 262 "kernel.perf_event_max_sample_rate to %d\n", 263 avg_local_sample_len, allowed_ns >> 1, 264 sysctl_perf_event_sample_rate); 265 } 266 267 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 268 269 void perf_sample_event_took(u64 sample_len_ns) 270 { 271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 272 u64 avg_local_sample_len; 273 u64 local_samples_len; 274 275 if (allowed_ns == 0) 276 return; 277 278 /* decay the counter by 1 average sample */ 279 local_samples_len = __this_cpu_read(running_sample_length); 280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 281 local_samples_len += sample_len_ns; 282 __this_cpu_write(running_sample_length, local_samples_len); 283 284 /* 285 * note: this will be biased artifically low until we have 286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 287 * from having to maintain a count. 288 */ 289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 290 291 if (avg_local_sample_len <= allowed_ns) 292 return; 293 294 if (max_samples_per_tick <= 1) 295 return; 296 297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 300 301 update_perf_cpu_limits(); 302 303 if (!irq_work_queue(&perf_duration_work)) { 304 early_printk("perf interrupt took too long (%lld > %lld), lowering " 305 "kernel.perf_event_max_sample_rate to %d\n", 306 avg_local_sample_len, allowed_ns >> 1, 307 sysctl_perf_event_sample_rate); 308 } 309 } 310 311 static atomic64_t perf_event_id; 312 313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 314 enum event_type_t event_type); 315 316 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 317 enum event_type_t event_type, 318 struct task_struct *task); 319 320 static void update_context_time(struct perf_event_context *ctx); 321 static u64 perf_event_time(struct perf_event *event); 322 323 void __weak perf_event_print_debug(void) { } 324 325 extern __weak const char *perf_pmu_name(void) 326 { 327 return "pmu"; 328 } 329 330 static inline u64 perf_clock(void) 331 { 332 return local_clock(); 333 } 334 335 static inline u64 perf_event_clock(struct perf_event *event) 336 { 337 return event->clock(); 338 } 339 340 static inline struct perf_cpu_context * 341 __get_cpu_context(struct perf_event_context *ctx) 342 { 343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 344 } 345 346 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 347 struct perf_event_context *ctx) 348 { 349 raw_spin_lock(&cpuctx->ctx.lock); 350 if (ctx) 351 raw_spin_lock(&ctx->lock); 352 } 353 354 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 355 struct perf_event_context *ctx) 356 { 357 if (ctx) 358 raw_spin_unlock(&ctx->lock); 359 raw_spin_unlock(&cpuctx->ctx.lock); 360 } 361 362 #ifdef CONFIG_CGROUP_PERF 363 364 static inline bool 365 perf_cgroup_match(struct perf_event *event) 366 { 367 struct perf_event_context *ctx = event->ctx; 368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 369 370 /* @event doesn't care about cgroup */ 371 if (!event->cgrp) 372 return true; 373 374 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 375 if (!cpuctx->cgrp) 376 return false; 377 378 /* 379 * Cgroup scoping is recursive. An event enabled for a cgroup is 380 * also enabled for all its descendant cgroups. If @cpuctx's 381 * cgroup is a descendant of @event's (the test covers identity 382 * case), it's a match. 383 */ 384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 385 event->cgrp->css.cgroup); 386 } 387 388 static inline void perf_detach_cgroup(struct perf_event *event) 389 { 390 css_put(&event->cgrp->css); 391 event->cgrp = NULL; 392 } 393 394 static inline int is_cgroup_event(struct perf_event *event) 395 { 396 return event->cgrp != NULL; 397 } 398 399 static inline u64 perf_cgroup_event_time(struct perf_event *event) 400 { 401 struct perf_cgroup_info *t; 402 403 t = per_cpu_ptr(event->cgrp->info, event->cpu); 404 return t->time; 405 } 406 407 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 408 { 409 struct perf_cgroup_info *info; 410 u64 now; 411 412 now = perf_clock(); 413 414 info = this_cpu_ptr(cgrp->info); 415 416 info->time += now - info->timestamp; 417 info->timestamp = now; 418 } 419 420 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 421 { 422 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 423 if (cgrp_out) 424 __update_cgrp_time(cgrp_out); 425 } 426 427 static inline void update_cgrp_time_from_event(struct perf_event *event) 428 { 429 struct perf_cgroup *cgrp; 430 431 /* 432 * ensure we access cgroup data only when needed and 433 * when we know the cgroup is pinned (css_get) 434 */ 435 if (!is_cgroup_event(event)) 436 return; 437 438 cgrp = perf_cgroup_from_task(current, event->ctx); 439 /* 440 * Do not update time when cgroup is not active 441 */ 442 if (cgrp == event->cgrp) 443 __update_cgrp_time(event->cgrp); 444 } 445 446 static inline void 447 perf_cgroup_set_timestamp(struct task_struct *task, 448 struct perf_event_context *ctx) 449 { 450 struct perf_cgroup *cgrp; 451 struct perf_cgroup_info *info; 452 453 /* 454 * ctx->lock held by caller 455 * ensure we do not access cgroup data 456 * unless we have the cgroup pinned (css_get) 457 */ 458 if (!task || !ctx->nr_cgroups) 459 return; 460 461 cgrp = perf_cgroup_from_task(task, ctx); 462 info = this_cpu_ptr(cgrp->info); 463 info->timestamp = ctx->timestamp; 464 } 465 466 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 467 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 468 469 /* 470 * reschedule events based on the cgroup constraint of task. 471 * 472 * mode SWOUT : schedule out everything 473 * mode SWIN : schedule in based on cgroup for next 474 */ 475 static void perf_cgroup_switch(struct task_struct *task, int mode) 476 { 477 struct perf_cpu_context *cpuctx; 478 struct pmu *pmu; 479 unsigned long flags; 480 481 /* 482 * disable interrupts to avoid geting nr_cgroup 483 * changes via __perf_event_disable(). Also 484 * avoids preemption. 485 */ 486 local_irq_save(flags); 487 488 /* 489 * we reschedule only in the presence of cgroup 490 * constrained events. 491 */ 492 493 list_for_each_entry_rcu(pmu, &pmus, entry) { 494 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 495 if (cpuctx->unique_pmu != pmu) 496 continue; /* ensure we process each cpuctx once */ 497 498 /* 499 * perf_cgroup_events says at least one 500 * context on this CPU has cgroup events. 501 * 502 * ctx->nr_cgroups reports the number of cgroup 503 * events for a context. 504 */ 505 if (cpuctx->ctx.nr_cgroups > 0) { 506 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 507 perf_pmu_disable(cpuctx->ctx.pmu); 508 509 if (mode & PERF_CGROUP_SWOUT) { 510 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 511 /* 512 * must not be done before ctxswout due 513 * to event_filter_match() in event_sched_out() 514 */ 515 cpuctx->cgrp = NULL; 516 } 517 518 if (mode & PERF_CGROUP_SWIN) { 519 WARN_ON_ONCE(cpuctx->cgrp); 520 /* 521 * set cgrp before ctxsw in to allow 522 * event_filter_match() to not have to pass 523 * task around 524 * we pass the cpuctx->ctx to perf_cgroup_from_task() 525 * because cgorup events are only per-cpu 526 */ 527 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx); 528 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 529 } 530 perf_pmu_enable(cpuctx->ctx.pmu); 531 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 532 } 533 } 534 535 local_irq_restore(flags); 536 } 537 538 static inline void perf_cgroup_sched_out(struct task_struct *task, 539 struct task_struct *next) 540 { 541 struct perf_cgroup *cgrp1; 542 struct perf_cgroup *cgrp2 = NULL; 543 544 rcu_read_lock(); 545 /* 546 * we come here when we know perf_cgroup_events > 0 547 * we do not need to pass the ctx here because we know 548 * we are holding the rcu lock 549 */ 550 cgrp1 = perf_cgroup_from_task(task, NULL); 551 552 /* 553 * next is NULL when called from perf_event_enable_on_exec() 554 * that will systematically cause a cgroup_switch() 555 */ 556 if (next) 557 cgrp2 = perf_cgroup_from_task(next, NULL); 558 559 /* 560 * only schedule out current cgroup events if we know 561 * that we are switching to a different cgroup. Otherwise, 562 * do no touch the cgroup events. 563 */ 564 if (cgrp1 != cgrp2) 565 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 566 567 rcu_read_unlock(); 568 } 569 570 static inline void perf_cgroup_sched_in(struct task_struct *prev, 571 struct task_struct *task) 572 { 573 struct perf_cgroup *cgrp1; 574 struct perf_cgroup *cgrp2 = NULL; 575 576 rcu_read_lock(); 577 /* 578 * we come here when we know perf_cgroup_events > 0 579 * we do not need to pass the ctx here because we know 580 * we are holding the rcu lock 581 */ 582 cgrp1 = perf_cgroup_from_task(task, NULL); 583 584 /* prev can never be NULL */ 585 cgrp2 = perf_cgroup_from_task(prev, NULL); 586 587 /* 588 * only need to schedule in cgroup events if we are changing 589 * cgroup during ctxsw. Cgroup events were not scheduled 590 * out of ctxsw out if that was not the case. 591 */ 592 if (cgrp1 != cgrp2) 593 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 594 595 rcu_read_unlock(); 596 } 597 598 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 599 struct perf_event_attr *attr, 600 struct perf_event *group_leader) 601 { 602 struct perf_cgroup *cgrp; 603 struct cgroup_subsys_state *css; 604 struct fd f = fdget(fd); 605 int ret = 0; 606 607 if (!f.file) 608 return -EBADF; 609 610 css = css_tryget_online_from_dir(f.file->f_path.dentry, 611 &perf_event_cgrp_subsys); 612 if (IS_ERR(css)) { 613 ret = PTR_ERR(css); 614 goto out; 615 } 616 617 cgrp = container_of(css, struct perf_cgroup, css); 618 event->cgrp = cgrp; 619 620 /* 621 * all events in a group must monitor 622 * the same cgroup because a task belongs 623 * to only one perf cgroup at a time 624 */ 625 if (group_leader && group_leader->cgrp != cgrp) { 626 perf_detach_cgroup(event); 627 ret = -EINVAL; 628 } 629 out: 630 fdput(f); 631 return ret; 632 } 633 634 static inline void 635 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 636 { 637 struct perf_cgroup_info *t; 638 t = per_cpu_ptr(event->cgrp->info, event->cpu); 639 event->shadow_ctx_time = now - t->timestamp; 640 } 641 642 static inline void 643 perf_cgroup_defer_enabled(struct perf_event *event) 644 { 645 /* 646 * when the current task's perf cgroup does not match 647 * the event's, we need to remember to call the 648 * perf_mark_enable() function the first time a task with 649 * a matching perf cgroup is scheduled in. 650 */ 651 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 652 event->cgrp_defer_enabled = 1; 653 } 654 655 static inline void 656 perf_cgroup_mark_enabled(struct perf_event *event, 657 struct perf_event_context *ctx) 658 { 659 struct perf_event *sub; 660 u64 tstamp = perf_event_time(event); 661 662 if (!event->cgrp_defer_enabled) 663 return; 664 665 event->cgrp_defer_enabled = 0; 666 667 event->tstamp_enabled = tstamp - event->total_time_enabled; 668 list_for_each_entry(sub, &event->sibling_list, group_entry) { 669 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 670 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 671 sub->cgrp_defer_enabled = 0; 672 } 673 } 674 } 675 #else /* !CONFIG_CGROUP_PERF */ 676 677 static inline bool 678 perf_cgroup_match(struct perf_event *event) 679 { 680 return true; 681 } 682 683 static inline void perf_detach_cgroup(struct perf_event *event) 684 {} 685 686 static inline int is_cgroup_event(struct perf_event *event) 687 { 688 return 0; 689 } 690 691 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 692 { 693 return 0; 694 } 695 696 static inline void update_cgrp_time_from_event(struct perf_event *event) 697 { 698 } 699 700 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 701 { 702 } 703 704 static inline void perf_cgroup_sched_out(struct task_struct *task, 705 struct task_struct *next) 706 { 707 } 708 709 static inline void perf_cgroup_sched_in(struct task_struct *prev, 710 struct task_struct *task) 711 { 712 } 713 714 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 715 struct perf_event_attr *attr, 716 struct perf_event *group_leader) 717 { 718 return -EINVAL; 719 } 720 721 static inline void 722 perf_cgroup_set_timestamp(struct task_struct *task, 723 struct perf_event_context *ctx) 724 { 725 } 726 727 void 728 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 729 { 730 } 731 732 static inline void 733 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 734 { 735 } 736 737 static inline u64 perf_cgroup_event_time(struct perf_event *event) 738 { 739 return 0; 740 } 741 742 static inline void 743 perf_cgroup_defer_enabled(struct perf_event *event) 744 { 745 } 746 747 static inline void 748 perf_cgroup_mark_enabled(struct perf_event *event, 749 struct perf_event_context *ctx) 750 { 751 } 752 #endif 753 754 /* 755 * set default to be dependent on timer tick just 756 * like original code 757 */ 758 #define PERF_CPU_HRTIMER (1000 / HZ) 759 /* 760 * function must be called with interrupts disbled 761 */ 762 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 763 { 764 struct perf_cpu_context *cpuctx; 765 int rotations = 0; 766 767 WARN_ON(!irqs_disabled()); 768 769 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 770 rotations = perf_rotate_context(cpuctx); 771 772 raw_spin_lock(&cpuctx->hrtimer_lock); 773 if (rotations) 774 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 775 else 776 cpuctx->hrtimer_active = 0; 777 raw_spin_unlock(&cpuctx->hrtimer_lock); 778 779 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 780 } 781 782 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 783 { 784 struct hrtimer *timer = &cpuctx->hrtimer; 785 struct pmu *pmu = cpuctx->ctx.pmu; 786 u64 interval; 787 788 /* no multiplexing needed for SW PMU */ 789 if (pmu->task_ctx_nr == perf_sw_context) 790 return; 791 792 /* 793 * check default is sane, if not set then force to 794 * default interval (1/tick) 795 */ 796 interval = pmu->hrtimer_interval_ms; 797 if (interval < 1) 798 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 799 800 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 801 802 raw_spin_lock_init(&cpuctx->hrtimer_lock); 803 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 804 timer->function = perf_mux_hrtimer_handler; 805 } 806 807 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 808 { 809 struct hrtimer *timer = &cpuctx->hrtimer; 810 struct pmu *pmu = cpuctx->ctx.pmu; 811 unsigned long flags; 812 813 /* not for SW PMU */ 814 if (pmu->task_ctx_nr == perf_sw_context) 815 return 0; 816 817 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 818 if (!cpuctx->hrtimer_active) { 819 cpuctx->hrtimer_active = 1; 820 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 821 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 822 } 823 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 824 825 return 0; 826 } 827 828 void perf_pmu_disable(struct pmu *pmu) 829 { 830 int *count = this_cpu_ptr(pmu->pmu_disable_count); 831 if (!(*count)++) 832 pmu->pmu_disable(pmu); 833 } 834 835 void perf_pmu_enable(struct pmu *pmu) 836 { 837 int *count = this_cpu_ptr(pmu->pmu_disable_count); 838 if (!--(*count)) 839 pmu->pmu_enable(pmu); 840 } 841 842 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 843 844 /* 845 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 846 * perf_event_task_tick() are fully serialized because they're strictly cpu 847 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 848 * disabled, while perf_event_task_tick is called from IRQ context. 849 */ 850 static void perf_event_ctx_activate(struct perf_event_context *ctx) 851 { 852 struct list_head *head = this_cpu_ptr(&active_ctx_list); 853 854 WARN_ON(!irqs_disabled()); 855 856 WARN_ON(!list_empty(&ctx->active_ctx_list)); 857 858 list_add(&ctx->active_ctx_list, head); 859 } 860 861 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 862 { 863 WARN_ON(!irqs_disabled()); 864 865 WARN_ON(list_empty(&ctx->active_ctx_list)); 866 867 list_del_init(&ctx->active_ctx_list); 868 } 869 870 static void get_ctx(struct perf_event_context *ctx) 871 { 872 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 873 } 874 875 static void free_ctx(struct rcu_head *head) 876 { 877 struct perf_event_context *ctx; 878 879 ctx = container_of(head, struct perf_event_context, rcu_head); 880 kfree(ctx->task_ctx_data); 881 kfree(ctx); 882 } 883 884 static void put_ctx(struct perf_event_context *ctx) 885 { 886 if (atomic_dec_and_test(&ctx->refcount)) { 887 if (ctx->parent_ctx) 888 put_ctx(ctx->parent_ctx); 889 if (ctx->task) 890 put_task_struct(ctx->task); 891 call_rcu(&ctx->rcu_head, free_ctx); 892 } 893 } 894 895 /* 896 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 897 * perf_pmu_migrate_context() we need some magic. 898 * 899 * Those places that change perf_event::ctx will hold both 900 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 901 * 902 * Lock ordering is by mutex address. There are two other sites where 903 * perf_event_context::mutex nests and those are: 904 * 905 * - perf_event_exit_task_context() [ child , 0 ] 906 * __perf_event_exit_task() 907 * sync_child_event() 908 * put_event() [ parent, 1 ] 909 * 910 * - perf_event_init_context() [ parent, 0 ] 911 * inherit_task_group() 912 * inherit_group() 913 * inherit_event() 914 * perf_event_alloc() 915 * perf_init_event() 916 * perf_try_init_event() [ child , 1 ] 917 * 918 * While it appears there is an obvious deadlock here -- the parent and child 919 * nesting levels are inverted between the two. This is in fact safe because 920 * life-time rules separate them. That is an exiting task cannot fork, and a 921 * spawning task cannot (yet) exit. 922 * 923 * But remember that that these are parent<->child context relations, and 924 * migration does not affect children, therefore these two orderings should not 925 * interact. 926 * 927 * The change in perf_event::ctx does not affect children (as claimed above) 928 * because the sys_perf_event_open() case will install a new event and break 929 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 930 * concerned with cpuctx and that doesn't have children. 931 * 932 * The places that change perf_event::ctx will issue: 933 * 934 * perf_remove_from_context(); 935 * synchronize_rcu(); 936 * perf_install_in_context(); 937 * 938 * to affect the change. The remove_from_context() + synchronize_rcu() should 939 * quiesce the event, after which we can install it in the new location. This 940 * means that only external vectors (perf_fops, prctl) can perturb the event 941 * while in transit. Therefore all such accessors should also acquire 942 * perf_event_context::mutex to serialize against this. 943 * 944 * However; because event->ctx can change while we're waiting to acquire 945 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 946 * function. 947 * 948 * Lock order: 949 * task_struct::perf_event_mutex 950 * perf_event_context::mutex 951 * perf_event_context::lock 952 * perf_event::child_mutex; 953 * perf_event::mmap_mutex 954 * mmap_sem 955 */ 956 static struct perf_event_context * 957 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 958 { 959 struct perf_event_context *ctx; 960 961 again: 962 rcu_read_lock(); 963 ctx = ACCESS_ONCE(event->ctx); 964 if (!atomic_inc_not_zero(&ctx->refcount)) { 965 rcu_read_unlock(); 966 goto again; 967 } 968 rcu_read_unlock(); 969 970 mutex_lock_nested(&ctx->mutex, nesting); 971 if (event->ctx != ctx) { 972 mutex_unlock(&ctx->mutex); 973 put_ctx(ctx); 974 goto again; 975 } 976 977 return ctx; 978 } 979 980 static inline struct perf_event_context * 981 perf_event_ctx_lock(struct perf_event *event) 982 { 983 return perf_event_ctx_lock_nested(event, 0); 984 } 985 986 static void perf_event_ctx_unlock(struct perf_event *event, 987 struct perf_event_context *ctx) 988 { 989 mutex_unlock(&ctx->mutex); 990 put_ctx(ctx); 991 } 992 993 /* 994 * This must be done under the ctx->lock, such as to serialize against 995 * context_equiv(), therefore we cannot call put_ctx() since that might end up 996 * calling scheduler related locks and ctx->lock nests inside those. 997 */ 998 static __must_check struct perf_event_context * 999 unclone_ctx(struct perf_event_context *ctx) 1000 { 1001 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1002 1003 lockdep_assert_held(&ctx->lock); 1004 1005 if (parent_ctx) 1006 ctx->parent_ctx = NULL; 1007 ctx->generation++; 1008 1009 return parent_ctx; 1010 } 1011 1012 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1013 { 1014 /* 1015 * only top level events have the pid namespace they were created in 1016 */ 1017 if (event->parent) 1018 event = event->parent; 1019 1020 return task_tgid_nr_ns(p, event->ns); 1021 } 1022 1023 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1024 { 1025 /* 1026 * only top level events have the pid namespace they were created in 1027 */ 1028 if (event->parent) 1029 event = event->parent; 1030 1031 return task_pid_nr_ns(p, event->ns); 1032 } 1033 1034 /* 1035 * If we inherit events we want to return the parent event id 1036 * to userspace. 1037 */ 1038 static u64 primary_event_id(struct perf_event *event) 1039 { 1040 u64 id = event->id; 1041 1042 if (event->parent) 1043 id = event->parent->id; 1044 1045 return id; 1046 } 1047 1048 /* 1049 * Get the perf_event_context for a task and lock it. 1050 * This has to cope with with the fact that until it is locked, 1051 * the context could get moved to another task. 1052 */ 1053 static struct perf_event_context * 1054 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1055 { 1056 struct perf_event_context *ctx; 1057 1058 retry: 1059 /* 1060 * One of the few rules of preemptible RCU is that one cannot do 1061 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1062 * part of the read side critical section was irqs-enabled -- see 1063 * rcu_read_unlock_special(). 1064 * 1065 * Since ctx->lock nests under rq->lock we must ensure the entire read 1066 * side critical section has interrupts disabled. 1067 */ 1068 local_irq_save(*flags); 1069 rcu_read_lock(); 1070 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1071 if (ctx) { 1072 /* 1073 * If this context is a clone of another, it might 1074 * get swapped for another underneath us by 1075 * perf_event_task_sched_out, though the 1076 * rcu_read_lock() protects us from any context 1077 * getting freed. Lock the context and check if it 1078 * got swapped before we could get the lock, and retry 1079 * if so. If we locked the right context, then it 1080 * can't get swapped on us any more. 1081 */ 1082 raw_spin_lock(&ctx->lock); 1083 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1084 raw_spin_unlock(&ctx->lock); 1085 rcu_read_unlock(); 1086 local_irq_restore(*flags); 1087 goto retry; 1088 } 1089 1090 if (!atomic_inc_not_zero(&ctx->refcount)) { 1091 raw_spin_unlock(&ctx->lock); 1092 ctx = NULL; 1093 } 1094 } 1095 rcu_read_unlock(); 1096 if (!ctx) 1097 local_irq_restore(*flags); 1098 return ctx; 1099 } 1100 1101 /* 1102 * Get the context for a task and increment its pin_count so it 1103 * can't get swapped to another task. This also increments its 1104 * reference count so that the context can't get freed. 1105 */ 1106 static struct perf_event_context * 1107 perf_pin_task_context(struct task_struct *task, int ctxn) 1108 { 1109 struct perf_event_context *ctx; 1110 unsigned long flags; 1111 1112 ctx = perf_lock_task_context(task, ctxn, &flags); 1113 if (ctx) { 1114 ++ctx->pin_count; 1115 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1116 } 1117 return ctx; 1118 } 1119 1120 static void perf_unpin_context(struct perf_event_context *ctx) 1121 { 1122 unsigned long flags; 1123 1124 raw_spin_lock_irqsave(&ctx->lock, flags); 1125 --ctx->pin_count; 1126 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1127 } 1128 1129 /* 1130 * Update the record of the current time in a context. 1131 */ 1132 static void update_context_time(struct perf_event_context *ctx) 1133 { 1134 u64 now = perf_clock(); 1135 1136 ctx->time += now - ctx->timestamp; 1137 ctx->timestamp = now; 1138 } 1139 1140 static u64 perf_event_time(struct perf_event *event) 1141 { 1142 struct perf_event_context *ctx = event->ctx; 1143 1144 if (is_cgroup_event(event)) 1145 return perf_cgroup_event_time(event); 1146 1147 return ctx ? ctx->time : 0; 1148 } 1149 1150 /* 1151 * Update the total_time_enabled and total_time_running fields for a event. 1152 * The caller of this function needs to hold the ctx->lock. 1153 */ 1154 static void update_event_times(struct perf_event *event) 1155 { 1156 struct perf_event_context *ctx = event->ctx; 1157 u64 run_end; 1158 1159 if (event->state < PERF_EVENT_STATE_INACTIVE || 1160 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1161 return; 1162 /* 1163 * in cgroup mode, time_enabled represents 1164 * the time the event was enabled AND active 1165 * tasks were in the monitored cgroup. This is 1166 * independent of the activity of the context as 1167 * there may be a mix of cgroup and non-cgroup events. 1168 * 1169 * That is why we treat cgroup events differently 1170 * here. 1171 */ 1172 if (is_cgroup_event(event)) 1173 run_end = perf_cgroup_event_time(event); 1174 else if (ctx->is_active) 1175 run_end = ctx->time; 1176 else 1177 run_end = event->tstamp_stopped; 1178 1179 event->total_time_enabled = run_end - event->tstamp_enabled; 1180 1181 if (event->state == PERF_EVENT_STATE_INACTIVE) 1182 run_end = event->tstamp_stopped; 1183 else 1184 run_end = perf_event_time(event); 1185 1186 event->total_time_running = run_end - event->tstamp_running; 1187 1188 } 1189 1190 /* 1191 * Update total_time_enabled and total_time_running for all events in a group. 1192 */ 1193 static void update_group_times(struct perf_event *leader) 1194 { 1195 struct perf_event *event; 1196 1197 update_event_times(leader); 1198 list_for_each_entry(event, &leader->sibling_list, group_entry) 1199 update_event_times(event); 1200 } 1201 1202 static struct list_head * 1203 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1204 { 1205 if (event->attr.pinned) 1206 return &ctx->pinned_groups; 1207 else 1208 return &ctx->flexible_groups; 1209 } 1210 1211 /* 1212 * Add a event from the lists for its context. 1213 * Must be called with ctx->mutex and ctx->lock held. 1214 */ 1215 static void 1216 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1217 { 1218 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1219 event->attach_state |= PERF_ATTACH_CONTEXT; 1220 1221 /* 1222 * If we're a stand alone event or group leader, we go to the context 1223 * list, group events are kept attached to the group so that 1224 * perf_group_detach can, at all times, locate all siblings. 1225 */ 1226 if (event->group_leader == event) { 1227 struct list_head *list; 1228 1229 if (is_software_event(event)) 1230 event->group_flags |= PERF_GROUP_SOFTWARE; 1231 1232 list = ctx_group_list(event, ctx); 1233 list_add_tail(&event->group_entry, list); 1234 } 1235 1236 if (is_cgroup_event(event)) 1237 ctx->nr_cgroups++; 1238 1239 list_add_rcu(&event->event_entry, &ctx->event_list); 1240 ctx->nr_events++; 1241 if (event->attr.inherit_stat) 1242 ctx->nr_stat++; 1243 1244 ctx->generation++; 1245 } 1246 1247 /* 1248 * Initialize event state based on the perf_event_attr::disabled. 1249 */ 1250 static inline void perf_event__state_init(struct perf_event *event) 1251 { 1252 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1253 PERF_EVENT_STATE_INACTIVE; 1254 } 1255 1256 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1257 { 1258 int entry = sizeof(u64); /* value */ 1259 int size = 0; 1260 int nr = 1; 1261 1262 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1263 size += sizeof(u64); 1264 1265 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1266 size += sizeof(u64); 1267 1268 if (event->attr.read_format & PERF_FORMAT_ID) 1269 entry += sizeof(u64); 1270 1271 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1272 nr += nr_siblings; 1273 size += sizeof(u64); 1274 } 1275 1276 size += entry * nr; 1277 event->read_size = size; 1278 } 1279 1280 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1281 { 1282 struct perf_sample_data *data; 1283 u16 size = 0; 1284 1285 if (sample_type & PERF_SAMPLE_IP) 1286 size += sizeof(data->ip); 1287 1288 if (sample_type & PERF_SAMPLE_ADDR) 1289 size += sizeof(data->addr); 1290 1291 if (sample_type & PERF_SAMPLE_PERIOD) 1292 size += sizeof(data->period); 1293 1294 if (sample_type & PERF_SAMPLE_WEIGHT) 1295 size += sizeof(data->weight); 1296 1297 if (sample_type & PERF_SAMPLE_READ) 1298 size += event->read_size; 1299 1300 if (sample_type & PERF_SAMPLE_DATA_SRC) 1301 size += sizeof(data->data_src.val); 1302 1303 if (sample_type & PERF_SAMPLE_TRANSACTION) 1304 size += sizeof(data->txn); 1305 1306 event->header_size = size; 1307 } 1308 1309 /* 1310 * Called at perf_event creation and when events are attached/detached from a 1311 * group. 1312 */ 1313 static void perf_event__header_size(struct perf_event *event) 1314 { 1315 __perf_event_read_size(event, 1316 event->group_leader->nr_siblings); 1317 __perf_event_header_size(event, event->attr.sample_type); 1318 } 1319 1320 static void perf_event__id_header_size(struct perf_event *event) 1321 { 1322 struct perf_sample_data *data; 1323 u64 sample_type = event->attr.sample_type; 1324 u16 size = 0; 1325 1326 if (sample_type & PERF_SAMPLE_TID) 1327 size += sizeof(data->tid_entry); 1328 1329 if (sample_type & PERF_SAMPLE_TIME) 1330 size += sizeof(data->time); 1331 1332 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1333 size += sizeof(data->id); 1334 1335 if (sample_type & PERF_SAMPLE_ID) 1336 size += sizeof(data->id); 1337 1338 if (sample_type & PERF_SAMPLE_STREAM_ID) 1339 size += sizeof(data->stream_id); 1340 1341 if (sample_type & PERF_SAMPLE_CPU) 1342 size += sizeof(data->cpu_entry); 1343 1344 event->id_header_size = size; 1345 } 1346 1347 static bool perf_event_validate_size(struct perf_event *event) 1348 { 1349 /* 1350 * The values computed here will be over-written when we actually 1351 * attach the event. 1352 */ 1353 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1354 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1355 perf_event__id_header_size(event); 1356 1357 /* 1358 * Sum the lot; should not exceed the 64k limit we have on records. 1359 * Conservative limit to allow for callchains and other variable fields. 1360 */ 1361 if (event->read_size + event->header_size + 1362 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1363 return false; 1364 1365 return true; 1366 } 1367 1368 static void perf_group_attach(struct perf_event *event) 1369 { 1370 struct perf_event *group_leader = event->group_leader, *pos; 1371 1372 /* 1373 * We can have double attach due to group movement in perf_event_open. 1374 */ 1375 if (event->attach_state & PERF_ATTACH_GROUP) 1376 return; 1377 1378 event->attach_state |= PERF_ATTACH_GROUP; 1379 1380 if (group_leader == event) 1381 return; 1382 1383 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1384 1385 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1386 !is_software_event(event)) 1387 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1388 1389 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1390 group_leader->nr_siblings++; 1391 1392 perf_event__header_size(group_leader); 1393 1394 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1395 perf_event__header_size(pos); 1396 } 1397 1398 /* 1399 * Remove a event from the lists for its context. 1400 * Must be called with ctx->mutex and ctx->lock held. 1401 */ 1402 static void 1403 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1404 { 1405 struct perf_cpu_context *cpuctx; 1406 1407 WARN_ON_ONCE(event->ctx != ctx); 1408 lockdep_assert_held(&ctx->lock); 1409 1410 /* 1411 * We can have double detach due to exit/hot-unplug + close. 1412 */ 1413 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1414 return; 1415 1416 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1417 1418 if (is_cgroup_event(event)) { 1419 ctx->nr_cgroups--; 1420 cpuctx = __get_cpu_context(ctx); 1421 /* 1422 * if there are no more cgroup events 1423 * then cler cgrp to avoid stale pointer 1424 * in update_cgrp_time_from_cpuctx() 1425 */ 1426 if (!ctx->nr_cgroups) 1427 cpuctx->cgrp = NULL; 1428 } 1429 1430 ctx->nr_events--; 1431 if (event->attr.inherit_stat) 1432 ctx->nr_stat--; 1433 1434 list_del_rcu(&event->event_entry); 1435 1436 if (event->group_leader == event) 1437 list_del_init(&event->group_entry); 1438 1439 update_group_times(event); 1440 1441 /* 1442 * If event was in error state, then keep it 1443 * that way, otherwise bogus counts will be 1444 * returned on read(). The only way to get out 1445 * of error state is by explicit re-enabling 1446 * of the event 1447 */ 1448 if (event->state > PERF_EVENT_STATE_OFF) 1449 event->state = PERF_EVENT_STATE_OFF; 1450 1451 ctx->generation++; 1452 } 1453 1454 static void perf_group_detach(struct perf_event *event) 1455 { 1456 struct perf_event *sibling, *tmp; 1457 struct list_head *list = NULL; 1458 1459 /* 1460 * We can have double detach due to exit/hot-unplug + close. 1461 */ 1462 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1463 return; 1464 1465 event->attach_state &= ~PERF_ATTACH_GROUP; 1466 1467 /* 1468 * If this is a sibling, remove it from its group. 1469 */ 1470 if (event->group_leader != event) { 1471 list_del_init(&event->group_entry); 1472 event->group_leader->nr_siblings--; 1473 goto out; 1474 } 1475 1476 if (!list_empty(&event->group_entry)) 1477 list = &event->group_entry; 1478 1479 /* 1480 * If this was a group event with sibling events then 1481 * upgrade the siblings to singleton events by adding them 1482 * to whatever list we are on. 1483 */ 1484 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1485 if (list) 1486 list_move_tail(&sibling->group_entry, list); 1487 sibling->group_leader = sibling; 1488 1489 /* Inherit group flags from the previous leader */ 1490 sibling->group_flags = event->group_flags; 1491 1492 WARN_ON_ONCE(sibling->ctx != event->ctx); 1493 } 1494 1495 out: 1496 perf_event__header_size(event->group_leader); 1497 1498 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1499 perf_event__header_size(tmp); 1500 } 1501 1502 /* 1503 * User event without the task. 1504 */ 1505 static bool is_orphaned_event(struct perf_event *event) 1506 { 1507 return event && !is_kernel_event(event) && !event->owner; 1508 } 1509 1510 /* 1511 * Event has a parent but parent's task finished and it's 1512 * alive only because of children holding refference. 1513 */ 1514 static bool is_orphaned_child(struct perf_event *event) 1515 { 1516 return is_orphaned_event(event->parent); 1517 } 1518 1519 static void orphans_remove_work(struct work_struct *work); 1520 1521 static void schedule_orphans_remove(struct perf_event_context *ctx) 1522 { 1523 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq) 1524 return; 1525 1526 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) { 1527 get_ctx(ctx); 1528 ctx->orphans_remove_sched = true; 1529 } 1530 } 1531 1532 static int __init perf_workqueue_init(void) 1533 { 1534 perf_wq = create_singlethread_workqueue("perf"); 1535 WARN(!perf_wq, "failed to create perf workqueue\n"); 1536 return perf_wq ? 0 : -1; 1537 } 1538 1539 core_initcall(perf_workqueue_init); 1540 1541 static inline int pmu_filter_match(struct perf_event *event) 1542 { 1543 struct pmu *pmu = event->pmu; 1544 return pmu->filter_match ? pmu->filter_match(event) : 1; 1545 } 1546 1547 static inline int 1548 event_filter_match(struct perf_event *event) 1549 { 1550 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1551 && perf_cgroup_match(event) && pmu_filter_match(event); 1552 } 1553 1554 static void 1555 event_sched_out(struct perf_event *event, 1556 struct perf_cpu_context *cpuctx, 1557 struct perf_event_context *ctx) 1558 { 1559 u64 tstamp = perf_event_time(event); 1560 u64 delta; 1561 1562 WARN_ON_ONCE(event->ctx != ctx); 1563 lockdep_assert_held(&ctx->lock); 1564 1565 /* 1566 * An event which could not be activated because of 1567 * filter mismatch still needs to have its timings 1568 * maintained, otherwise bogus information is return 1569 * via read() for time_enabled, time_running: 1570 */ 1571 if (event->state == PERF_EVENT_STATE_INACTIVE 1572 && !event_filter_match(event)) { 1573 delta = tstamp - event->tstamp_stopped; 1574 event->tstamp_running += delta; 1575 event->tstamp_stopped = tstamp; 1576 } 1577 1578 if (event->state != PERF_EVENT_STATE_ACTIVE) 1579 return; 1580 1581 perf_pmu_disable(event->pmu); 1582 1583 event->state = PERF_EVENT_STATE_INACTIVE; 1584 if (event->pending_disable) { 1585 event->pending_disable = 0; 1586 event->state = PERF_EVENT_STATE_OFF; 1587 } 1588 event->tstamp_stopped = tstamp; 1589 event->pmu->del(event, 0); 1590 event->oncpu = -1; 1591 1592 if (!is_software_event(event)) 1593 cpuctx->active_oncpu--; 1594 if (!--ctx->nr_active) 1595 perf_event_ctx_deactivate(ctx); 1596 if (event->attr.freq && event->attr.sample_freq) 1597 ctx->nr_freq--; 1598 if (event->attr.exclusive || !cpuctx->active_oncpu) 1599 cpuctx->exclusive = 0; 1600 1601 if (is_orphaned_child(event)) 1602 schedule_orphans_remove(ctx); 1603 1604 perf_pmu_enable(event->pmu); 1605 } 1606 1607 static void 1608 group_sched_out(struct perf_event *group_event, 1609 struct perf_cpu_context *cpuctx, 1610 struct perf_event_context *ctx) 1611 { 1612 struct perf_event *event; 1613 int state = group_event->state; 1614 1615 event_sched_out(group_event, cpuctx, ctx); 1616 1617 /* 1618 * Schedule out siblings (if any): 1619 */ 1620 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1621 event_sched_out(event, cpuctx, ctx); 1622 1623 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1624 cpuctx->exclusive = 0; 1625 } 1626 1627 struct remove_event { 1628 struct perf_event *event; 1629 bool detach_group; 1630 }; 1631 1632 /* 1633 * Cross CPU call to remove a performance event 1634 * 1635 * We disable the event on the hardware level first. After that we 1636 * remove it from the context list. 1637 */ 1638 static int __perf_remove_from_context(void *info) 1639 { 1640 struct remove_event *re = info; 1641 struct perf_event *event = re->event; 1642 struct perf_event_context *ctx = event->ctx; 1643 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1644 1645 raw_spin_lock(&ctx->lock); 1646 event_sched_out(event, cpuctx, ctx); 1647 if (re->detach_group) 1648 perf_group_detach(event); 1649 list_del_event(event, ctx); 1650 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1651 ctx->is_active = 0; 1652 cpuctx->task_ctx = NULL; 1653 } 1654 raw_spin_unlock(&ctx->lock); 1655 1656 return 0; 1657 } 1658 1659 1660 /* 1661 * Remove the event from a task's (or a CPU's) list of events. 1662 * 1663 * CPU events are removed with a smp call. For task events we only 1664 * call when the task is on a CPU. 1665 * 1666 * If event->ctx is a cloned context, callers must make sure that 1667 * every task struct that event->ctx->task could possibly point to 1668 * remains valid. This is OK when called from perf_release since 1669 * that only calls us on the top-level context, which can't be a clone. 1670 * When called from perf_event_exit_task, it's OK because the 1671 * context has been detached from its task. 1672 */ 1673 static void perf_remove_from_context(struct perf_event *event, bool detach_group) 1674 { 1675 struct perf_event_context *ctx = event->ctx; 1676 struct task_struct *task = ctx->task; 1677 struct remove_event re = { 1678 .event = event, 1679 .detach_group = detach_group, 1680 }; 1681 1682 lockdep_assert_held(&ctx->mutex); 1683 1684 if (!task) { 1685 /* 1686 * Per cpu events are removed via an smp call. The removal can 1687 * fail if the CPU is currently offline, but in that case we 1688 * already called __perf_remove_from_context from 1689 * perf_event_exit_cpu. 1690 */ 1691 cpu_function_call(event->cpu, __perf_remove_from_context, &re); 1692 return; 1693 } 1694 1695 retry: 1696 if (!task_function_call(task, __perf_remove_from_context, &re)) 1697 return; 1698 1699 raw_spin_lock_irq(&ctx->lock); 1700 /* 1701 * If we failed to find a running task, but find the context active now 1702 * that we've acquired the ctx->lock, retry. 1703 */ 1704 if (ctx->is_active) { 1705 raw_spin_unlock_irq(&ctx->lock); 1706 /* 1707 * Reload the task pointer, it might have been changed by 1708 * a concurrent perf_event_context_sched_out(). 1709 */ 1710 task = ctx->task; 1711 goto retry; 1712 } 1713 1714 /* 1715 * Since the task isn't running, its safe to remove the event, us 1716 * holding the ctx->lock ensures the task won't get scheduled in. 1717 */ 1718 if (detach_group) 1719 perf_group_detach(event); 1720 list_del_event(event, ctx); 1721 raw_spin_unlock_irq(&ctx->lock); 1722 } 1723 1724 /* 1725 * Cross CPU call to disable a performance event 1726 */ 1727 int __perf_event_disable(void *info) 1728 { 1729 struct perf_event *event = info; 1730 struct perf_event_context *ctx = event->ctx; 1731 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1732 1733 /* 1734 * If this is a per-task event, need to check whether this 1735 * event's task is the current task on this cpu. 1736 * 1737 * Can trigger due to concurrent perf_event_context_sched_out() 1738 * flipping contexts around. 1739 */ 1740 if (ctx->task && cpuctx->task_ctx != ctx) 1741 return -EINVAL; 1742 1743 raw_spin_lock(&ctx->lock); 1744 1745 /* 1746 * If the event is on, turn it off. 1747 * If it is in error state, leave it in error state. 1748 */ 1749 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1750 update_context_time(ctx); 1751 update_cgrp_time_from_event(event); 1752 update_group_times(event); 1753 if (event == event->group_leader) 1754 group_sched_out(event, cpuctx, ctx); 1755 else 1756 event_sched_out(event, cpuctx, ctx); 1757 event->state = PERF_EVENT_STATE_OFF; 1758 } 1759 1760 raw_spin_unlock(&ctx->lock); 1761 1762 return 0; 1763 } 1764 1765 /* 1766 * Disable a event. 1767 * 1768 * If event->ctx is a cloned context, callers must make sure that 1769 * every task struct that event->ctx->task could possibly point to 1770 * remains valid. This condition is satisifed when called through 1771 * perf_event_for_each_child or perf_event_for_each because they 1772 * hold the top-level event's child_mutex, so any descendant that 1773 * goes to exit will block in sync_child_event. 1774 * When called from perf_pending_event it's OK because event->ctx 1775 * is the current context on this CPU and preemption is disabled, 1776 * hence we can't get into perf_event_task_sched_out for this context. 1777 */ 1778 static void _perf_event_disable(struct perf_event *event) 1779 { 1780 struct perf_event_context *ctx = event->ctx; 1781 struct task_struct *task = ctx->task; 1782 1783 if (!task) { 1784 /* 1785 * Disable the event on the cpu that it's on 1786 */ 1787 cpu_function_call(event->cpu, __perf_event_disable, event); 1788 return; 1789 } 1790 1791 retry: 1792 if (!task_function_call(task, __perf_event_disable, event)) 1793 return; 1794 1795 raw_spin_lock_irq(&ctx->lock); 1796 /* 1797 * If the event is still active, we need to retry the cross-call. 1798 */ 1799 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1800 raw_spin_unlock_irq(&ctx->lock); 1801 /* 1802 * Reload the task pointer, it might have been changed by 1803 * a concurrent perf_event_context_sched_out(). 1804 */ 1805 task = ctx->task; 1806 goto retry; 1807 } 1808 1809 /* 1810 * Since we have the lock this context can't be scheduled 1811 * in, so we can change the state safely. 1812 */ 1813 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1814 update_group_times(event); 1815 event->state = PERF_EVENT_STATE_OFF; 1816 } 1817 raw_spin_unlock_irq(&ctx->lock); 1818 } 1819 1820 /* 1821 * Strictly speaking kernel users cannot create groups and therefore this 1822 * interface does not need the perf_event_ctx_lock() magic. 1823 */ 1824 void perf_event_disable(struct perf_event *event) 1825 { 1826 struct perf_event_context *ctx; 1827 1828 ctx = perf_event_ctx_lock(event); 1829 _perf_event_disable(event); 1830 perf_event_ctx_unlock(event, ctx); 1831 } 1832 EXPORT_SYMBOL_GPL(perf_event_disable); 1833 1834 static void perf_set_shadow_time(struct perf_event *event, 1835 struct perf_event_context *ctx, 1836 u64 tstamp) 1837 { 1838 /* 1839 * use the correct time source for the time snapshot 1840 * 1841 * We could get by without this by leveraging the 1842 * fact that to get to this function, the caller 1843 * has most likely already called update_context_time() 1844 * and update_cgrp_time_xx() and thus both timestamp 1845 * are identical (or very close). Given that tstamp is, 1846 * already adjusted for cgroup, we could say that: 1847 * tstamp - ctx->timestamp 1848 * is equivalent to 1849 * tstamp - cgrp->timestamp. 1850 * 1851 * Then, in perf_output_read(), the calculation would 1852 * work with no changes because: 1853 * - event is guaranteed scheduled in 1854 * - no scheduled out in between 1855 * - thus the timestamp would be the same 1856 * 1857 * But this is a bit hairy. 1858 * 1859 * So instead, we have an explicit cgroup call to remain 1860 * within the time time source all along. We believe it 1861 * is cleaner and simpler to understand. 1862 */ 1863 if (is_cgroup_event(event)) 1864 perf_cgroup_set_shadow_time(event, tstamp); 1865 else 1866 event->shadow_ctx_time = tstamp - ctx->timestamp; 1867 } 1868 1869 #define MAX_INTERRUPTS (~0ULL) 1870 1871 static void perf_log_throttle(struct perf_event *event, int enable); 1872 static void perf_log_itrace_start(struct perf_event *event); 1873 1874 static int 1875 event_sched_in(struct perf_event *event, 1876 struct perf_cpu_context *cpuctx, 1877 struct perf_event_context *ctx) 1878 { 1879 u64 tstamp = perf_event_time(event); 1880 int ret = 0; 1881 1882 lockdep_assert_held(&ctx->lock); 1883 1884 if (event->state <= PERF_EVENT_STATE_OFF) 1885 return 0; 1886 1887 event->state = PERF_EVENT_STATE_ACTIVE; 1888 event->oncpu = smp_processor_id(); 1889 1890 /* 1891 * Unthrottle events, since we scheduled we might have missed several 1892 * ticks already, also for a heavily scheduling task there is little 1893 * guarantee it'll get a tick in a timely manner. 1894 */ 1895 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1896 perf_log_throttle(event, 1); 1897 event->hw.interrupts = 0; 1898 } 1899 1900 /* 1901 * The new state must be visible before we turn it on in the hardware: 1902 */ 1903 smp_wmb(); 1904 1905 perf_pmu_disable(event->pmu); 1906 1907 perf_set_shadow_time(event, ctx, tstamp); 1908 1909 perf_log_itrace_start(event); 1910 1911 if (event->pmu->add(event, PERF_EF_START)) { 1912 event->state = PERF_EVENT_STATE_INACTIVE; 1913 event->oncpu = -1; 1914 ret = -EAGAIN; 1915 goto out; 1916 } 1917 1918 event->tstamp_running += tstamp - event->tstamp_stopped; 1919 1920 if (!is_software_event(event)) 1921 cpuctx->active_oncpu++; 1922 if (!ctx->nr_active++) 1923 perf_event_ctx_activate(ctx); 1924 if (event->attr.freq && event->attr.sample_freq) 1925 ctx->nr_freq++; 1926 1927 if (event->attr.exclusive) 1928 cpuctx->exclusive = 1; 1929 1930 if (is_orphaned_child(event)) 1931 schedule_orphans_remove(ctx); 1932 1933 out: 1934 perf_pmu_enable(event->pmu); 1935 1936 return ret; 1937 } 1938 1939 static int 1940 group_sched_in(struct perf_event *group_event, 1941 struct perf_cpu_context *cpuctx, 1942 struct perf_event_context *ctx) 1943 { 1944 struct perf_event *event, *partial_group = NULL; 1945 struct pmu *pmu = ctx->pmu; 1946 u64 now = ctx->time; 1947 bool simulate = false; 1948 1949 if (group_event->state == PERF_EVENT_STATE_OFF) 1950 return 0; 1951 1952 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 1953 1954 if (event_sched_in(group_event, cpuctx, ctx)) { 1955 pmu->cancel_txn(pmu); 1956 perf_mux_hrtimer_restart(cpuctx); 1957 return -EAGAIN; 1958 } 1959 1960 /* 1961 * Schedule in siblings as one group (if any): 1962 */ 1963 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1964 if (event_sched_in(event, cpuctx, ctx)) { 1965 partial_group = event; 1966 goto group_error; 1967 } 1968 } 1969 1970 if (!pmu->commit_txn(pmu)) 1971 return 0; 1972 1973 group_error: 1974 /* 1975 * Groups can be scheduled in as one unit only, so undo any 1976 * partial group before returning: 1977 * The events up to the failed event are scheduled out normally, 1978 * tstamp_stopped will be updated. 1979 * 1980 * The failed events and the remaining siblings need to have 1981 * their timings updated as if they had gone thru event_sched_in() 1982 * and event_sched_out(). This is required to get consistent timings 1983 * across the group. This also takes care of the case where the group 1984 * could never be scheduled by ensuring tstamp_stopped is set to mark 1985 * the time the event was actually stopped, such that time delta 1986 * calculation in update_event_times() is correct. 1987 */ 1988 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1989 if (event == partial_group) 1990 simulate = true; 1991 1992 if (simulate) { 1993 event->tstamp_running += now - event->tstamp_stopped; 1994 event->tstamp_stopped = now; 1995 } else { 1996 event_sched_out(event, cpuctx, ctx); 1997 } 1998 } 1999 event_sched_out(group_event, cpuctx, ctx); 2000 2001 pmu->cancel_txn(pmu); 2002 2003 perf_mux_hrtimer_restart(cpuctx); 2004 2005 return -EAGAIN; 2006 } 2007 2008 /* 2009 * Work out whether we can put this event group on the CPU now. 2010 */ 2011 static int group_can_go_on(struct perf_event *event, 2012 struct perf_cpu_context *cpuctx, 2013 int can_add_hw) 2014 { 2015 /* 2016 * Groups consisting entirely of software events can always go on. 2017 */ 2018 if (event->group_flags & PERF_GROUP_SOFTWARE) 2019 return 1; 2020 /* 2021 * If an exclusive group is already on, no other hardware 2022 * events can go on. 2023 */ 2024 if (cpuctx->exclusive) 2025 return 0; 2026 /* 2027 * If this group is exclusive and there are already 2028 * events on the CPU, it can't go on. 2029 */ 2030 if (event->attr.exclusive && cpuctx->active_oncpu) 2031 return 0; 2032 /* 2033 * Otherwise, try to add it if all previous groups were able 2034 * to go on. 2035 */ 2036 return can_add_hw; 2037 } 2038 2039 static void add_event_to_ctx(struct perf_event *event, 2040 struct perf_event_context *ctx) 2041 { 2042 u64 tstamp = perf_event_time(event); 2043 2044 list_add_event(event, ctx); 2045 perf_group_attach(event); 2046 event->tstamp_enabled = tstamp; 2047 event->tstamp_running = tstamp; 2048 event->tstamp_stopped = tstamp; 2049 } 2050 2051 static void task_ctx_sched_out(struct perf_event_context *ctx); 2052 static void 2053 ctx_sched_in(struct perf_event_context *ctx, 2054 struct perf_cpu_context *cpuctx, 2055 enum event_type_t event_type, 2056 struct task_struct *task); 2057 2058 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2059 struct perf_event_context *ctx, 2060 struct task_struct *task) 2061 { 2062 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2063 if (ctx) 2064 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2065 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2066 if (ctx) 2067 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2068 } 2069 2070 /* 2071 * Cross CPU call to install and enable a performance event 2072 * 2073 * Must be called with ctx->mutex held 2074 */ 2075 static int __perf_install_in_context(void *info) 2076 { 2077 struct perf_event *event = info; 2078 struct perf_event_context *ctx = event->ctx; 2079 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2080 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2081 struct task_struct *task = current; 2082 2083 perf_ctx_lock(cpuctx, task_ctx); 2084 perf_pmu_disable(cpuctx->ctx.pmu); 2085 2086 /* 2087 * If there was an active task_ctx schedule it out. 2088 */ 2089 if (task_ctx) 2090 task_ctx_sched_out(task_ctx); 2091 2092 /* 2093 * If the context we're installing events in is not the 2094 * active task_ctx, flip them. 2095 */ 2096 if (ctx->task && task_ctx != ctx) { 2097 if (task_ctx) 2098 raw_spin_unlock(&task_ctx->lock); 2099 raw_spin_lock(&ctx->lock); 2100 task_ctx = ctx; 2101 } 2102 2103 if (task_ctx) { 2104 cpuctx->task_ctx = task_ctx; 2105 task = task_ctx->task; 2106 } 2107 2108 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2109 2110 update_context_time(ctx); 2111 /* 2112 * update cgrp time only if current cgrp 2113 * matches event->cgrp. Must be done before 2114 * calling add_event_to_ctx() 2115 */ 2116 update_cgrp_time_from_event(event); 2117 2118 add_event_to_ctx(event, ctx); 2119 2120 /* 2121 * Schedule everything back in 2122 */ 2123 perf_event_sched_in(cpuctx, task_ctx, task); 2124 2125 perf_pmu_enable(cpuctx->ctx.pmu); 2126 perf_ctx_unlock(cpuctx, task_ctx); 2127 2128 return 0; 2129 } 2130 2131 /* 2132 * Attach a performance event to a context 2133 * 2134 * First we add the event to the list with the hardware enable bit 2135 * in event->hw_config cleared. 2136 * 2137 * If the event is attached to a task which is on a CPU we use a smp 2138 * call to enable it in the task context. The task might have been 2139 * scheduled away, but we check this in the smp call again. 2140 */ 2141 static void 2142 perf_install_in_context(struct perf_event_context *ctx, 2143 struct perf_event *event, 2144 int cpu) 2145 { 2146 struct task_struct *task = ctx->task; 2147 2148 lockdep_assert_held(&ctx->mutex); 2149 2150 event->ctx = ctx; 2151 if (event->cpu != -1) 2152 event->cpu = cpu; 2153 2154 if (!task) { 2155 /* 2156 * Per cpu events are installed via an smp call and 2157 * the install is always successful. 2158 */ 2159 cpu_function_call(cpu, __perf_install_in_context, event); 2160 return; 2161 } 2162 2163 retry: 2164 if (!task_function_call(task, __perf_install_in_context, event)) 2165 return; 2166 2167 raw_spin_lock_irq(&ctx->lock); 2168 /* 2169 * If we failed to find a running task, but find the context active now 2170 * that we've acquired the ctx->lock, retry. 2171 */ 2172 if (ctx->is_active) { 2173 raw_spin_unlock_irq(&ctx->lock); 2174 /* 2175 * Reload the task pointer, it might have been changed by 2176 * a concurrent perf_event_context_sched_out(). 2177 */ 2178 task = ctx->task; 2179 goto retry; 2180 } 2181 2182 /* 2183 * Since the task isn't running, its safe to add the event, us holding 2184 * the ctx->lock ensures the task won't get scheduled in. 2185 */ 2186 add_event_to_ctx(event, ctx); 2187 raw_spin_unlock_irq(&ctx->lock); 2188 } 2189 2190 /* 2191 * Put a event into inactive state and update time fields. 2192 * Enabling the leader of a group effectively enables all 2193 * the group members that aren't explicitly disabled, so we 2194 * have to update their ->tstamp_enabled also. 2195 * Note: this works for group members as well as group leaders 2196 * since the non-leader members' sibling_lists will be empty. 2197 */ 2198 static void __perf_event_mark_enabled(struct perf_event *event) 2199 { 2200 struct perf_event *sub; 2201 u64 tstamp = perf_event_time(event); 2202 2203 event->state = PERF_EVENT_STATE_INACTIVE; 2204 event->tstamp_enabled = tstamp - event->total_time_enabled; 2205 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2206 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2207 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2208 } 2209 } 2210 2211 /* 2212 * Cross CPU call to enable a performance event 2213 */ 2214 static int __perf_event_enable(void *info) 2215 { 2216 struct perf_event *event = info; 2217 struct perf_event_context *ctx = event->ctx; 2218 struct perf_event *leader = event->group_leader; 2219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2220 int err; 2221 2222 /* 2223 * There's a time window between 'ctx->is_active' check 2224 * in perf_event_enable function and this place having: 2225 * - IRQs on 2226 * - ctx->lock unlocked 2227 * 2228 * where the task could be killed and 'ctx' deactivated 2229 * by perf_event_exit_task. 2230 */ 2231 if (!ctx->is_active) 2232 return -EINVAL; 2233 2234 raw_spin_lock(&ctx->lock); 2235 update_context_time(ctx); 2236 2237 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2238 goto unlock; 2239 2240 /* 2241 * set current task's cgroup time reference point 2242 */ 2243 perf_cgroup_set_timestamp(current, ctx); 2244 2245 __perf_event_mark_enabled(event); 2246 2247 if (!event_filter_match(event)) { 2248 if (is_cgroup_event(event)) 2249 perf_cgroup_defer_enabled(event); 2250 goto unlock; 2251 } 2252 2253 /* 2254 * If the event is in a group and isn't the group leader, 2255 * then don't put it on unless the group is on. 2256 */ 2257 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 2258 goto unlock; 2259 2260 if (!group_can_go_on(event, cpuctx, 1)) { 2261 err = -EEXIST; 2262 } else { 2263 if (event == leader) 2264 err = group_sched_in(event, cpuctx, ctx); 2265 else 2266 err = event_sched_in(event, cpuctx, ctx); 2267 } 2268 2269 if (err) { 2270 /* 2271 * If this event can't go on and it's part of a 2272 * group, then the whole group has to come off. 2273 */ 2274 if (leader != event) { 2275 group_sched_out(leader, cpuctx, ctx); 2276 perf_mux_hrtimer_restart(cpuctx); 2277 } 2278 if (leader->attr.pinned) { 2279 update_group_times(leader); 2280 leader->state = PERF_EVENT_STATE_ERROR; 2281 } 2282 } 2283 2284 unlock: 2285 raw_spin_unlock(&ctx->lock); 2286 2287 return 0; 2288 } 2289 2290 /* 2291 * Enable a event. 2292 * 2293 * If event->ctx is a cloned context, callers must make sure that 2294 * every task struct that event->ctx->task could possibly point to 2295 * remains valid. This condition is satisfied when called through 2296 * perf_event_for_each_child or perf_event_for_each as described 2297 * for perf_event_disable. 2298 */ 2299 static void _perf_event_enable(struct perf_event *event) 2300 { 2301 struct perf_event_context *ctx = event->ctx; 2302 struct task_struct *task = ctx->task; 2303 2304 if (!task) { 2305 /* 2306 * Enable the event on the cpu that it's on 2307 */ 2308 cpu_function_call(event->cpu, __perf_event_enable, event); 2309 return; 2310 } 2311 2312 raw_spin_lock_irq(&ctx->lock); 2313 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2314 goto out; 2315 2316 /* 2317 * If the event is in error state, clear that first. 2318 * That way, if we see the event in error state below, we 2319 * know that it has gone back into error state, as distinct 2320 * from the task having been scheduled away before the 2321 * cross-call arrived. 2322 */ 2323 if (event->state == PERF_EVENT_STATE_ERROR) 2324 event->state = PERF_EVENT_STATE_OFF; 2325 2326 retry: 2327 if (!ctx->is_active) { 2328 __perf_event_mark_enabled(event); 2329 goto out; 2330 } 2331 2332 raw_spin_unlock_irq(&ctx->lock); 2333 2334 if (!task_function_call(task, __perf_event_enable, event)) 2335 return; 2336 2337 raw_spin_lock_irq(&ctx->lock); 2338 2339 /* 2340 * If the context is active and the event is still off, 2341 * we need to retry the cross-call. 2342 */ 2343 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 2344 /* 2345 * task could have been flipped by a concurrent 2346 * perf_event_context_sched_out() 2347 */ 2348 task = ctx->task; 2349 goto retry; 2350 } 2351 2352 out: 2353 raw_spin_unlock_irq(&ctx->lock); 2354 } 2355 2356 /* 2357 * See perf_event_disable(); 2358 */ 2359 void perf_event_enable(struct perf_event *event) 2360 { 2361 struct perf_event_context *ctx; 2362 2363 ctx = perf_event_ctx_lock(event); 2364 _perf_event_enable(event); 2365 perf_event_ctx_unlock(event, ctx); 2366 } 2367 EXPORT_SYMBOL_GPL(perf_event_enable); 2368 2369 static int _perf_event_refresh(struct perf_event *event, int refresh) 2370 { 2371 /* 2372 * not supported on inherited events 2373 */ 2374 if (event->attr.inherit || !is_sampling_event(event)) 2375 return -EINVAL; 2376 2377 atomic_add(refresh, &event->event_limit); 2378 _perf_event_enable(event); 2379 2380 return 0; 2381 } 2382 2383 /* 2384 * See perf_event_disable() 2385 */ 2386 int perf_event_refresh(struct perf_event *event, int refresh) 2387 { 2388 struct perf_event_context *ctx; 2389 int ret; 2390 2391 ctx = perf_event_ctx_lock(event); 2392 ret = _perf_event_refresh(event, refresh); 2393 perf_event_ctx_unlock(event, ctx); 2394 2395 return ret; 2396 } 2397 EXPORT_SYMBOL_GPL(perf_event_refresh); 2398 2399 static void ctx_sched_out(struct perf_event_context *ctx, 2400 struct perf_cpu_context *cpuctx, 2401 enum event_type_t event_type) 2402 { 2403 struct perf_event *event; 2404 int is_active = ctx->is_active; 2405 2406 ctx->is_active &= ~event_type; 2407 if (likely(!ctx->nr_events)) 2408 return; 2409 2410 update_context_time(ctx); 2411 update_cgrp_time_from_cpuctx(cpuctx); 2412 if (!ctx->nr_active) 2413 return; 2414 2415 perf_pmu_disable(ctx->pmu); 2416 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 2417 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2418 group_sched_out(event, cpuctx, ctx); 2419 } 2420 2421 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 2422 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2423 group_sched_out(event, cpuctx, ctx); 2424 } 2425 perf_pmu_enable(ctx->pmu); 2426 } 2427 2428 /* 2429 * Test whether two contexts are equivalent, i.e. whether they have both been 2430 * cloned from the same version of the same context. 2431 * 2432 * Equivalence is measured using a generation number in the context that is 2433 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2434 * and list_del_event(). 2435 */ 2436 static int context_equiv(struct perf_event_context *ctx1, 2437 struct perf_event_context *ctx2) 2438 { 2439 lockdep_assert_held(&ctx1->lock); 2440 lockdep_assert_held(&ctx2->lock); 2441 2442 /* Pinning disables the swap optimization */ 2443 if (ctx1->pin_count || ctx2->pin_count) 2444 return 0; 2445 2446 /* If ctx1 is the parent of ctx2 */ 2447 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2448 return 1; 2449 2450 /* If ctx2 is the parent of ctx1 */ 2451 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2452 return 1; 2453 2454 /* 2455 * If ctx1 and ctx2 have the same parent; we flatten the parent 2456 * hierarchy, see perf_event_init_context(). 2457 */ 2458 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2459 ctx1->parent_gen == ctx2->parent_gen) 2460 return 1; 2461 2462 /* Unmatched */ 2463 return 0; 2464 } 2465 2466 static void __perf_event_sync_stat(struct perf_event *event, 2467 struct perf_event *next_event) 2468 { 2469 u64 value; 2470 2471 if (!event->attr.inherit_stat) 2472 return; 2473 2474 /* 2475 * Update the event value, we cannot use perf_event_read() 2476 * because we're in the middle of a context switch and have IRQs 2477 * disabled, which upsets smp_call_function_single(), however 2478 * we know the event must be on the current CPU, therefore we 2479 * don't need to use it. 2480 */ 2481 switch (event->state) { 2482 case PERF_EVENT_STATE_ACTIVE: 2483 event->pmu->read(event); 2484 /* fall-through */ 2485 2486 case PERF_EVENT_STATE_INACTIVE: 2487 update_event_times(event); 2488 break; 2489 2490 default: 2491 break; 2492 } 2493 2494 /* 2495 * In order to keep per-task stats reliable we need to flip the event 2496 * values when we flip the contexts. 2497 */ 2498 value = local64_read(&next_event->count); 2499 value = local64_xchg(&event->count, value); 2500 local64_set(&next_event->count, value); 2501 2502 swap(event->total_time_enabled, next_event->total_time_enabled); 2503 swap(event->total_time_running, next_event->total_time_running); 2504 2505 /* 2506 * Since we swizzled the values, update the user visible data too. 2507 */ 2508 perf_event_update_userpage(event); 2509 perf_event_update_userpage(next_event); 2510 } 2511 2512 static void perf_event_sync_stat(struct perf_event_context *ctx, 2513 struct perf_event_context *next_ctx) 2514 { 2515 struct perf_event *event, *next_event; 2516 2517 if (!ctx->nr_stat) 2518 return; 2519 2520 update_context_time(ctx); 2521 2522 event = list_first_entry(&ctx->event_list, 2523 struct perf_event, event_entry); 2524 2525 next_event = list_first_entry(&next_ctx->event_list, 2526 struct perf_event, event_entry); 2527 2528 while (&event->event_entry != &ctx->event_list && 2529 &next_event->event_entry != &next_ctx->event_list) { 2530 2531 __perf_event_sync_stat(event, next_event); 2532 2533 event = list_next_entry(event, event_entry); 2534 next_event = list_next_entry(next_event, event_entry); 2535 } 2536 } 2537 2538 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2539 struct task_struct *next) 2540 { 2541 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2542 struct perf_event_context *next_ctx; 2543 struct perf_event_context *parent, *next_parent; 2544 struct perf_cpu_context *cpuctx; 2545 int do_switch = 1; 2546 2547 if (likely(!ctx)) 2548 return; 2549 2550 cpuctx = __get_cpu_context(ctx); 2551 if (!cpuctx->task_ctx) 2552 return; 2553 2554 rcu_read_lock(); 2555 next_ctx = next->perf_event_ctxp[ctxn]; 2556 if (!next_ctx) 2557 goto unlock; 2558 2559 parent = rcu_dereference(ctx->parent_ctx); 2560 next_parent = rcu_dereference(next_ctx->parent_ctx); 2561 2562 /* If neither context have a parent context; they cannot be clones. */ 2563 if (!parent && !next_parent) 2564 goto unlock; 2565 2566 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2567 /* 2568 * Looks like the two contexts are clones, so we might be 2569 * able to optimize the context switch. We lock both 2570 * contexts and check that they are clones under the 2571 * lock (including re-checking that neither has been 2572 * uncloned in the meantime). It doesn't matter which 2573 * order we take the locks because no other cpu could 2574 * be trying to lock both of these tasks. 2575 */ 2576 raw_spin_lock(&ctx->lock); 2577 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2578 if (context_equiv(ctx, next_ctx)) { 2579 /* 2580 * XXX do we need a memory barrier of sorts 2581 * wrt to rcu_dereference() of perf_event_ctxp 2582 */ 2583 task->perf_event_ctxp[ctxn] = next_ctx; 2584 next->perf_event_ctxp[ctxn] = ctx; 2585 ctx->task = next; 2586 next_ctx->task = task; 2587 2588 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2589 2590 do_switch = 0; 2591 2592 perf_event_sync_stat(ctx, next_ctx); 2593 } 2594 raw_spin_unlock(&next_ctx->lock); 2595 raw_spin_unlock(&ctx->lock); 2596 } 2597 unlock: 2598 rcu_read_unlock(); 2599 2600 if (do_switch) { 2601 raw_spin_lock(&ctx->lock); 2602 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2603 cpuctx->task_ctx = NULL; 2604 raw_spin_unlock(&ctx->lock); 2605 } 2606 } 2607 2608 void perf_sched_cb_dec(struct pmu *pmu) 2609 { 2610 this_cpu_dec(perf_sched_cb_usages); 2611 } 2612 2613 void perf_sched_cb_inc(struct pmu *pmu) 2614 { 2615 this_cpu_inc(perf_sched_cb_usages); 2616 } 2617 2618 /* 2619 * This function provides the context switch callback to the lower code 2620 * layer. It is invoked ONLY when the context switch callback is enabled. 2621 */ 2622 static void perf_pmu_sched_task(struct task_struct *prev, 2623 struct task_struct *next, 2624 bool sched_in) 2625 { 2626 struct perf_cpu_context *cpuctx; 2627 struct pmu *pmu; 2628 unsigned long flags; 2629 2630 if (prev == next) 2631 return; 2632 2633 local_irq_save(flags); 2634 2635 rcu_read_lock(); 2636 2637 list_for_each_entry_rcu(pmu, &pmus, entry) { 2638 if (pmu->sched_task) { 2639 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2640 2641 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2642 2643 perf_pmu_disable(pmu); 2644 2645 pmu->sched_task(cpuctx->task_ctx, sched_in); 2646 2647 perf_pmu_enable(pmu); 2648 2649 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2650 } 2651 } 2652 2653 rcu_read_unlock(); 2654 2655 local_irq_restore(flags); 2656 } 2657 2658 static void perf_event_switch(struct task_struct *task, 2659 struct task_struct *next_prev, bool sched_in); 2660 2661 #define for_each_task_context_nr(ctxn) \ 2662 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2663 2664 /* 2665 * Called from scheduler to remove the events of the current task, 2666 * with interrupts disabled. 2667 * 2668 * We stop each event and update the event value in event->count. 2669 * 2670 * This does not protect us against NMI, but disable() 2671 * sets the disabled bit in the control field of event _before_ 2672 * accessing the event control register. If a NMI hits, then it will 2673 * not restart the event. 2674 */ 2675 void __perf_event_task_sched_out(struct task_struct *task, 2676 struct task_struct *next) 2677 { 2678 int ctxn; 2679 2680 if (__this_cpu_read(perf_sched_cb_usages)) 2681 perf_pmu_sched_task(task, next, false); 2682 2683 if (atomic_read(&nr_switch_events)) 2684 perf_event_switch(task, next, false); 2685 2686 for_each_task_context_nr(ctxn) 2687 perf_event_context_sched_out(task, ctxn, next); 2688 2689 /* 2690 * if cgroup events exist on this CPU, then we need 2691 * to check if we have to switch out PMU state. 2692 * cgroup event are system-wide mode only 2693 */ 2694 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2695 perf_cgroup_sched_out(task, next); 2696 } 2697 2698 static void task_ctx_sched_out(struct perf_event_context *ctx) 2699 { 2700 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2701 2702 if (!cpuctx->task_ctx) 2703 return; 2704 2705 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2706 return; 2707 2708 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2709 cpuctx->task_ctx = NULL; 2710 } 2711 2712 /* 2713 * Called with IRQs disabled 2714 */ 2715 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2716 enum event_type_t event_type) 2717 { 2718 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2719 } 2720 2721 static void 2722 ctx_pinned_sched_in(struct perf_event_context *ctx, 2723 struct perf_cpu_context *cpuctx) 2724 { 2725 struct perf_event *event; 2726 2727 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2728 if (event->state <= PERF_EVENT_STATE_OFF) 2729 continue; 2730 if (!event_filter_match(event)) 2731 continue; 2732 2733 /* may need to reset tstamp_enabled */ 2734 if (is_cgroup_event(event)) 2735 perf_cgroup_mark_enabled(event, ctx); 2736 2737 if (group_can_go_on(event, cpuctx, 1)) 2738 group_sched_in(event, cpuctx, ctx); 2739 2740 /* 2741 * If this pinned group hasn't been scheduled, 2742 * put it in error state. 2743 */ 2744 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2745 update_group_times(event); 2746 event->state = PERF_EVENT_STATE_ERROR; 2747 } 2748 } 2749 } 2750 2751 static void 2752 ctx_flexible_sched_in(struct perf_event_context *ctx, 2753 struct perf_cpu_context *cpuctx) 2754 { 2755 struct perf_event *event; 2756 int can_add_hw = 1; 2757 2758 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2759 /* Ignore events in OFF or ERROR state */ 2760 if (event->state <= PERF_EVENT_STATE_OFF) 2761 continue; 2762 /* 2763 * Listen to the 'cpu' scheduling filter constraint 2764 * of events: 2765 */ 2766 if (!event_filter_match(event)) 2767 continue; 2768 2769 /* may need to reset tstamp_enabled */ 2770 if (is_cgroup_event(event)) 2771 perf_cgroup_mark_enabled(event, ctx); 2772 2773 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2774 if (group_sched_in(event, cpuctx, ctx)) 2775 can_add_hw = 0; 2776 } 2777 } 2778 } 2779 2780 static void 2781 ctx_sched_in(struct perf_event_context *ctx, 2782 struct perf_cpu_context *cpuctx, 2783 enum event_type_t event_type, 2784 struct task_struct *task) 2785 { 2786 u64 now; 2787 int is_active = ctx->is_active; 2788 2789 ctx->is_active |= event_type; 2790 if (likely(!ctx->nr_events)) 2791 return; 2792 2793 now = perf_clock(); 2794 ctx->timestamp = now; 2795 perf_cgroup_set_timestamp(task, ctx); 2796 /* 2797 * First go through the list and put on any pinned groups 2798 * in order to give them the best chance of going on. 2799 */ 2800 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2801 ctx_pinned_sched_in(ctx, cpuctx); 2802 2803 /* Then walk through the lower prio flexible groups */ 2804 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2805 ctx_flexible_sched_in(ctx, cpuctx); 2806 } 2807 2808 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2809 enum event_type_t event_type, 2810 struct task_struct *task) 2811 { 2812 struct perf_event_context *ctx = &cpuctx->ctx; 2813 2814 ctx_sched_in(ctx, cpuctx, event_type, task); 2815 } 2816 2817 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2818 struct task_struct *task) 2819 { 2820 struct perf_cpu_context *cpuctx; 2821 2822 cpuctx = __get_cpu_context(ctx); 2823 if (cpuctx->task_ctx == ctx) 2824 return; 2825 2826 perf_ctx_lock(cpuctx, ctx); 2827 perf_pmu_disable(ctx->pmu); 2828 /* 2829 * We want to keep the following priority order: 2830 * cpu pinned (that don't need to move), task pinned, 2831 * cpu flexible, task flexible. 2832 */ 2833 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2834 2835 if (ctx->nr_events) 2836 cpuctx->task_ctx = ctx; 2837 2838 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2839 2840 perf_pmu_enable(ctx->pmu); 2841 perf_ctx_unlock(cpuctx, ctx); 2842 } 2843 2844 /* 2845 * Called from scheduler to add the events of the current task 2846 * with interrupts disabled. 2847 * 2848 * We restore the event value and then enable it. 2849 * 2850 * This does not protect us against NMI, but enable() 2851 * sets the enabled bit in the control field of event _before_ 2852 * accessing the event control register. If a NMI hits, then it will 2853 * keep the event running. 2854 */ 2855 void __perf_event_task_sched_in(struct task_struct *prev, 2856 struct task_struct *task) 2857 { 2858 struct perf_event_context *ctx; 2859 int ctxn; 2860 2861 for_each_task_context_nr(ctxn) { 2862 ctx = task->perf_event_ctxp[ctxn]; 2863 if (likely(!ctx)) 2864 continue; 2865 2866 perf_event_context_sched_in(ctx, task); 2867 } 2868 /* 2869 * if cgroup events exist on this CPU, then we need 2870 * to check if we have to switch in PMU state. 2871 * cgroup event are system-wide mode only 2872 */ 2873 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2874 perf_cgroup_sched_in(prev, task); 2875 2876 if (atomic_read(&nr_switch_events)) 2877 perf_event_switch(task, prev, true); 2878 2879 if (__this_cpu_read(perf_sched_cb_usages)) 2880 perf_pmu_sched_task(prev, task, true); 2881 } 2882 2883 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2884 { 2885 u64 frequency = event->attr.sample_freq; 2886 u64 sec = NSEC_PER_SEC; 2887 u64 divisor, dividend; 2888 2889 int count_fls, nsec_fls, frequency_fls, sec_fls; 2890 2891 count_fls = fls64(count); 2892 nsec_fls = fls64(nsec); 2893 frequency_fls = fls64(frequency); 2894 sec_fls = 30; 2895 2896 /* 2897 * We got @count in @nsec, with a target of sample_freq HZ 2898 * the target period becomes: 2899 * 2900 * @count * 10^9 2901 * period = ------------------- 2902 * @nsec * sample_freq 2903 * 2904 */ 2905 2906 /* 2907 * Reduce accuracy by one bit such that @a and @b converge 2908 * to a similar magnitude. 2909 */ 2910 #define REDUCE_FLS(a, b) \ 2911 do { \ 2912 if (a##_fls > b##_fls) { \ 2913 a >>= 1; \ 2914 a##_fls--; \ 2915 } else { \ 2916 b >>= 1; \ 2917 b##_fls--; \ 2918 } \ 2919 } while (0) 2920 2921 /* 2922 * Reduce accuracy until either term fits in a u64, then proceed with 2923 * the other, so that finally we can do a u64/u64 division. 2924 */ 2925 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2926 REDUCE_FLS(nsec, frequency); 2927 REDUCE_FLS(sec, count); 2928 } 2929 2930 if (count_fls + sec_fls > 64) { 2931 divisor = nsec * frequency; 2932 2933 while (count_fls + sec_fls > 64) { 2934 REDUCE_FLS(count, sec); 2935 divisor >>= 1; 2936 } 2937 2938 dividend = count * sec; 2939 } else { 2940 dividend = count * sec; 2941 2942 while (nsec_fls + frequency_fls > 64) { 2943 REDUCE_FLS(nsec, frequency); 2944 dividend >>= 1; 2945 } 2946 2947 divisor = nsec * frequency; 2948 } 2949 2950 if (!divisor) 2951 return dividend; 2952 2953 return div64_u64(dividend, divisor); 2954 } 2955 2956 static DEFINE_PER_CPU(int, perf_throttled_count); 2957 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2958 2959 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2960 { 2961 struct hw_perf_event *hwc = &event->hw; 2962 s64 period, sample_period; 2963 s64 delta; 2964 2965 period = perf_calculate_period(event, nsec, count); 2966 2967 delta = (s64)(period - hwc->sample_period); 2968 delta = (delta + 7) / 8; /* low pass filter */ 2969 2970 sample_period = hwc->sample_period + delta; 2971 2972 if (!sample_period) 2973 sample_period = 1; 2974 2975 hwc->sample_period = sample_period; 2976 2977 if (local64_read(&hwc->period_left) > 8*sample_period) { 2978 if (disable) 2979 event->pmu->stop(event, PERF_EF_UPDATE); 2980 2981 local64_set(&hwc->period_left, 0); 2982 2983 if (disable) 2984 event->pmu->start(event, PERF_EF_RELOAD); 2985 } 2986 } 2987 2988 /* 2989 * combine freq adjustment with unthrottling to avoid two passes over the 2990 * events. At the same time, make sure, having freq events does not change 2991 * the rate of unthrottling as that would introduce bias. 2992 */ 2993 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2994 int needs_unthr) 2995 { 2996 struct perf_event *event; 2997 struct hw_perf_event *hwc; 2998 u64 now, period = TICK_NSEC; 2999 s64 delta; 3000 3001 /* 3002 * only need to iterate over all events iff: 3003 * - context have events in frequency mode (needs freq adjust) 3004 * - there are events to unthrottle on this cpu 3005 */ 3006 if (!(ctx->nr_freq || needs_unthr)) 3007 return; 3008 3009 raw_spin_lock(&ctx->lock); 3010 perf_pmu_disable(ctx->pmu); 3011 3012 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3013 if (event->state != PERF_EVENT_STATE_ACTIVE) 3014 continue; 3015 3016 if (!event_filter_match(event)) 3017 continue; 3018 3019 perf_pmu_disable(event->pmu); 3020 3021 hwc = &event->hw; 3022 3023 if (hwc->interrupts == MAX_INTERRUPTS) { 3024 hwc->interrupts = 0; 3025 perf_log_throttle(event, 1); 3026 event->pmu->start(event, 0); 3027 } 3028 3029 if (!event->attr.freq || !event->attr.sample_freq) 3030 goto next; 3031 3032 /* 3033 * stop the event and update event->count 3034 */ 3035 event->pmu->stop(event, PERF_EF_UPDATE); 3036 3037 now = local64_read(&event->count); 3038 delta = now - hwc->freq_count_stamp; 3039 hwc->freq_count_stamp = now; 3040 3041 /* 3042 * restart the event 3043 * reload only if value has changed 3044 * we have stopped the event so tell that 3045 * to perf_adjust_period() to avoid stopping it 3046 * twice. 3047 */ 3048 if (delta > 0) 3049 perf_adjust_period(event, period, delta, false); 3050 3051 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3052 next: 3053 perf_pmu_enable(event->pmu); 3054 } 3055 3056 perf_pmu_enable(ctx->pmu); 3057 raw_spin_unlock(&ctx->lock); 3058 } 3059 3060 /* 3061 * Round-robin a context's events: 3062 */ 3063 static void rotate_ctx(struct perf_event_context *ctx) 3064 { 3065 /* 3066 * Rotate the first entry last of non-pinned groups. Rotation might be 3067 * disabled by the inheritance code. 3068 */ 3069 if (!ctx->rotate_disable) 3070 list_rotate_left(&ctx->flexible_groups); 3071 } 3072 3073 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3074 { 3075 struct perf_event_context *ctx = NULL; 3076 int rotate = 0; 3077 3078 if (cpuctx->ctx.nr_events) { 3079 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3080 rotate = 1; 3081 } 3082 3083 ctx = cpuctx->task_ctx; 3084 if (ctx && ctx->nr_events) { 3085 if (ctx->nr_events != ctx->nr_active) 3086 rotate = 1; 3087 } 3088 3089 if (!rotate) 3090 goto done; 3091 3092 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3093 perf_pmu_disable(cpuctx->ctx.pmu); 3094 3095 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3096 if (ctx) 3097 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3098 3099 rotate_ctx(&cpuctx->ctx); 3100 if (ctx) 3101 rotate_ctx(ctx); 3102 3103 perf_event_sched_in(cpuctx, ctx, current); 3104 3105 perf_pmu_enable(cpuctx->ctx.pmu); 3106 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3107 done: 3108 3109 return rotate; 3110 } 3111 3112 #ifdef CONFIG_NO_HZ_FULL 3113 bool perf_event_can_stop_tick(void) 3114 { 3115 if (atomic_read(&nr_freq_events) || 3116 __this_cpu_read(perf_throttled_count)) 3117 return false; 3118 else 3119 return true; 3120 } 3121 #endif 3122 3123 void perf_event_task_tick(void) 3124 { 3125 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3126 struct perf_event_context *ctx, *tmp; 3127 int throttled; 3128 3129 WARN_ON(!irqs_disabled()); 3130 3131 __this_cpu_inc(perf_throttled_seq); 3132 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3133 3134 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3135 perf_adjust_freq_unthr_context(ctx, throttled); 3136 } 3137 3138 static int event_enable_on_exec(struct perf_event *event, 3139 struct perf_event_context *ctx) 3140 { 3141 if (!event->attr.enable_on_exec) 3142 return 0; 3143 3144 event->attr.enable_on_exec = 0; 3145 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3146 return 0; 3147 3148 __perf_event_mark_enabled(event); 3149 3150 return 1; 3151 } 3152 3153 /* 3154 * Enable all of a task's events that have been marked enable-on-exec. 3155 * This expects task == current. 3156 */ 3157 static void perf_event_enable_on_exec(int ctxn) 3158 { 3159 struct perf_event_context *ctx, *clone_ctx = NULL; 3160 struct perf_event *event; 3161 unsigned long flags; 3162 int enabled = 0; 3163 int ret; 3164 3165 local_irq_save(flags); 3166 ctx = current->perf_event_ctxp[ctxn]; 3167 if (!ctx || !ctx->nr_events) 3168 goto out; 3169 3170 /* 3171 * We must ctxsw out cgroup events to avoid conflict 3172 * when invoking perf_task_event_sched_in() later on 3173 * in this function. Otherwise we end up trying to 3174 * ctxswin cgroup events which are already scheduled 3175 * in. 3176 */ 3177 perf_cgroup_sched_out(current, NULL); 3178 3179 raw_spin_lock(&ctx->lock); 3180 task_ctx_sched_out(ctx); 3181 3182 list_for_each_entry(event, &ctx->event_list, event_entry) { 3183 ret = event_enable_on_exec(event, ctx); 3184 if (ret) 3185 enabled = 1; 3186 } 3187 3188 /* 3189 * Unclone this context if we enabled any event. 3190 */ 3191 if (enabled) 3192 clone_ctx = unclone_ctx(ctx); 3193 3194 raw_spin_unlock(&ctx->lock); 3195 3196 /* 3197 * Also calls ctxswin for cgroup events, if any: 3198 */ 3199 perf_event_context_sched_in(ctx, ctx->task); 3200 out: 3201 local_irq_restore(flags); 3202 3203 if (clone_ctx) 3204 put_ctx(clone_ctx); 3205 } 3206 3207 void perf_event_exec(void) 3208 { 3209 int ctxn; 3210 3211 rcu_read_lock(); 3212 for_each_task_context_nr(ctxn) 3213 perf_event_enable_on_exec(ctxn); 3214 rcu_read_unlock(); 3215 } 3216 3217 struct perf_read_data { 3218 struct perf_event *event; 3219 bool group; 3220 int ret; 3221 }; 3222 3223 /* 3224 * Cross CPU call to read the hardware event 3225 */ 3226 static void __perf_event_read(void *info) 3227 { 3228 struct perf_read_data *data = info; 3229 struct perf_event *sub, *event = data->event; 3230 struct perf_event_context *ctx = event->ctx; 3231 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3232 struct pmu *pmu = event->pmu; 3233 3234 /* 3235 * If this is a task context, we need to check whether it is 3236 * the current task context of this cpu. If not it has been 3237 * scheduled out before the smp call arrived. In that case 3238 * event->count would have been updated to a recent sample 3239 * when the event was scheduled out. 3240 */ 3241 if (ctx->task && cpuctx->task_ctx != ctx) 3242 return; 3243 3244 raw_spin_lock(&ctx->lock); 3245 if (ctx->is_active) { 3246 update_context_time(ctx); 3247 update_cgrp_time_from_event(event); 3248 } 3249 3250 update_event_times(event); 3251 if (event->state != PERF_EVENT_STATE_ACTIVE) 3252 goto unlock; 3253 3254 if (!data->group) { 3255 pmu->read(event); 3256 data->ret = 0; 3257 goto unlock; 3258 } 3259 3260 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3261 3262 pmu->read(event); 3263 3264 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3265 update_event_times(sub); 3266 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3267 /* 3268 * Use sibling's PMU rather than @event's since 3269 * sibling could be on different (eg: software) PMU. 3270 */ 3271 sub->pmu->read(sub); 3272 } 3273 } 3274 3275 data->ret = pmu->commit_txn(pmu); 3276 3277 unlock: 3278 raw_spin_unlock(&ctx->lock); 3279 } 3280 3281 static inline u64 perf_event_count(struct perf_event *event) 3282 { 3283 if (event->pmu->count) 3284 return event->pmu->count(event); 3285 3286 return __perf_event_count(event); 3287 } 3288 3289 /* 3290 * NMI-safe method to read a local event, that is an event that 3291 * is: 3292 * - either for the current task, or for this CPU 3293 * - does not have inherit set, for inherited task events 3294 * will not be local and we cannot read them atomically 3295 * - must not have a pmu::count method 3296 */ 3297 u64 perf_event_read_local(struct perf_event *event) 3298 { 3299 unsigned long flags; 3300 u64 val; 3301 3302 /* 3303 * Disabling interrupts avoids all counter scheduling (context 3304 * switches, timer based rotation and IPIs). 3305 */ 3306 local_irq_save(flags); 3307 3308 /* If this is a per-task event, it must be for current */ 3309 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3310 event->hw.target != current); 3311 3312 /* If this is a per-CPU event, it must be for this CPU */ 3313 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3314 event->cpu != smp_processor_id()); 3315 3316 /* 3317 * It must not be an event with inherit set, we cannot read 3318 * all child counters from atomic context. 3319 */ 3320 WARN_ON_ONCE(event->attr.inherit); 3321 3322 /* 3323 * It must not have a pmu::count method, those are not 3324 * NMI safe. 3325 */ 3326 WARN_ON_ONCE(event->pmu->count); 3327 3328 /* 3329 * If the event is currently on this CPU, its either a per-task event, 3330 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3331 * oncpu == -1). 3332 */ 3333 if (event->oncpu == smp_processor_id()) 3334 event->pmu->read(event); 3335 3336 val = local64_read(&event->count); 3337 local_irq_restore(flags); 3338 3339 return val; 3340 } 3341 3342 static int perf_event_read(struct perf_event *event, bool group) 3343 { 3344 int ret = 0; 3345 3346 /* 3347 * If event is enabled and currently active on a CPU, update the 3348 * value in the event structure: 3349 */ 3350 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3351 struct perf_read_data data = { 3352 .event = event, 3353 .group = group, 3354 .ret = 0, 3355 }; 3356 smp_call_function_single(event->oncpu, 3357 __perf_event_read, &data, 1); 3358 ret = data.ret; 3359 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3360 struct perf_event_context *ctx = event->ctx; 3361 unsigned long flags; 3362 3363 raw_spin_lock_irqsave(&ctx->lock, flags); 3364 /* 3365 * may read while context is not active 3366 * (e.g., thread is blocked), in that case 3367 * we cannot update context time 3368 */ 3369 if (ctx->is_active) { 3370 update_context_time(ctx); 3371 update_cgrp_time_from_event(event); 3372 } 3373 if (group) 3374 update_group_times(event); 3375 else 3376 update_event_times(event); 3377 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3378 } 3379 3380 return ret; 3381 } 3382 3383 /* 3384 * Initialize the perf_event context in a task_struct: 3385 */ 3386 static void __perf_event_init_context(struct perf_event_context *ctx) 3387 { 3388 raw_spin_lock_init(&ctx->lock); 3389 mutex_init(&ctx->mutex); 3390 INIT_LIST_HEAD(&ctx->active_ctx_list); 3391 INIT_LIST_HEAD(&ctx->pinned_groups); 3392 INIT_LIST_HEAD(&ctx->flexible_groups); 3393 INIT_LIST_HEAD(&ctx->event_list); 3394 atomic_set(&ctx->refcount, 1); 3395 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work); 3396 } 3397 3398 static struct perf_event_context * 3399 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3400 { 3401 struct perf_event_context *ctx; 3402 3403 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3404 if (!ctx) 3405 return NULL; 3406 3407 __perf_event_init_context(ctx); 3408 if (task) { 3409 ctx->task = task; 3410 get_task_struct(task); 3411 } 3412 ctx->pmu = pmu; 3413 3414 return ctx; 3415 } 3416 3417 static struct task_struct * 3418 find_lively_task_by_vpid(pid_t vpid) 3419 { 3420 struct task_struct *task; 3421 int err; 3422 3423 rcu_read_lock(); 3424 if (!vpid) 3425 task = current; 3426 else 3427 task = find_task_by_vpid(vpid); 3428 if (task) 3429 get_task_struct(task); 3430 rcu_read_unlock(); 3431 3432 if (!task) 3433 return ERR_PTR(-ESRCH); 3434 3435 /* Reuse ptrace permission checks for now. */ 3436 err = -EACCES; 3437 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 3438 goto errout; 3439 3440 return task; 3441 errout: 3442 put_task_struct(task); 3443 return ERR_PTR(err); 3444 3445 } 3446 3447 /* 3448 * Returns a matching context with refcount and pincount. 3449 */ 3450 static struct perf_event_context * 3451 find_get_context(struct pmu *pmu, struct task_struct *task, 3452 struct perf_event *event) 3453 { 3454 struct perf_event_context *ctx, *clone_ctx = NULL; 3455 struct perf_cpu_context *cpuctx; 3456 void *task_ctx_data = NULL; 3457 unsigned long flags; 3458 int ctxn, err; 3459 int cpu = event->cpu; 3460 3461 if (!task) { 3462 /* Must be root to operate on a CPU event: */ 3463 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3464 return ERR_PTR(-EACCES); 3465 3466 /* 3467 * We could be clever and allow to attach a event to an 3468 * offline CPU and activate it when the CPU comes up, but 3469 * that's for later. 3470 */ 3471 if (!cpu_online(cpu)) 3472 return ERR_PTR(-ENODEV); 3473 3474 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3475 ctx = &cpuctx->ctx; 3476 get_ctx(ctx); 3477 ++ctx->pin_count; 3478 3479 return ctx; 3480 } 3481 3482 err = -EINVAL; 3483 ctxn = pmu->task_ctx_nr; 3484 if (ctxn < 0) 3485 goto errout; 3486 3487 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3488 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3489 if (!task_ctx_data) { 3490 err = -ENOMEM; 3491 goto errout; 3492 } 3493 } 3494 3495 retry: 3496 ctx = perf_lock_task_context(task, ctxn, &flags); 3497 if (ctx) { 3498 clone_ctx = unclone_ctx(ctx); 3499 ++ctx->pin_count; 3500 3501 if (task_ctx_data && !ctx->task_ctx_data) { 3502 ctx->task_ctx_data = task_ctx_data; 3503 task_ctx_data = NULL; 3504 } 3505 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3506 3507 if (clone_ctx) 3508 put_ctx(clone_ctx); 3509 } else { 3510 ctx = alloc_perf_context(pmu, task); 3511 err = -ENOMEM; 3512 if (!ctx) 3513 goto errout; 3514 3515 if (task_ctx_data) { 3516 ctx->task_ctx_data = task_ctx_data; 3517 task_ctx_data = NULL; 3518 } 3519 3520 err = 0; 3521 mutex_lock(&task->perf_event_mutex); 3522 /* 3523 * If it has already passed perf_event_exit_task(). 3524 * we must see PF_EXITING, it takes this mutex too. 3525 */ 3526 if (task->flags & PF_EXITING) 3527 err = -ESRCH; 3528 else if (task->perf_event_ctxp[ctxn]) 3529 err = -EAGAIN; 3530 else { 3531 get_ctx(ctx); 3532 ++ctx->pin_count; 3533 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3534 } 3535 mutex_unlock(&task->perf_event_mutex); 3536 3537 if (unlikely(err)) { 3538 put_ctx(ctx); 3539 3540 if (err == -EAGAIN) 3541 goto retry; 3542 goto errout; 3543 } 3544 } 3545 3546 kfree(task_ctx_data); 3547 return ctx; 3548 3549 errout: 3550 kfree(task_ctx_data); 3551 return ERR_PTR(err); 3552 } 3553 3554 static void perf_event_free_filter(struct perf_event *event); 3555 static void perf_event_free_bpf_prog(struct perf_event *event); 3556 3557 static void free_event_rcu(struct rcu_head *head) 3558 { 3559 struct perf_event *event; 3560 3561 event = container_of(head, struct perf_event, rcu_head); 3562 if (event->ns) 3563 put_pid_ns(event->ns); 3564 perf_event_free_filter(event); 3565 kfree(event); 3566 } 3567 3568 static void ring_buffer_attach(struct perf_event *event, 3569 struct ring_buffer *rb); 3570 3571 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3572 { 3573 if (event->parent) 3574 return; 3575 3576 if (is_cgroup_event(event)) 3577 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3578 } 3579 3580 static void unaccount_event(struct perf_event *event) 3581 { 3582 if (event->parent) 3583 return; 3584 3585 if (event->attach_state & PERF_ATTACH_TASK) 3586 static_key_slow_dec_deferred(&perf_sched_events); 3587 if (event->attr.mmap || event->attr.mmap_data) 3588 atomic_dec(&nr_mmap_events); 3589 if (event->attr.comm) 3590 atomic_dec(&nr_comm_events); 3591 if (event->attr.task) 3592 atomic_dec(&nr_task_events); 3593 if (event->attr.freq) 3594 atomic_dec(&nr_freq_events); 3595 if (event->attr.context_switch) { 3596 static_key_slow_dec_deferred(&perf_sched_events); 3597 atomic_dec(&nr_switch_events); 3598 } 3599 if (is_cgroup_event(event)) 3600 static_key_slow_dec_deferred(&perf_sched_events); 3601 if (has_branch_stack(event)) 3602 static_key_slow_dec_deferred(&perf_sched_events); 3603 3604 unaccount_event_cpu(event, event->cpu); 3605 } 3606 3607 /* 3608 * The following implement mutual exclusion of events on "exclusive" pmus 3609 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3610 * at a time, so we disallow creating events that might conflict, namely: 3611 * 3612 * 1) cpu-wide events in the presence of per-task events, 3613 * 2) per-task events in the presence of cpu-wide events, 3614 * 3) two matching events on the same context. 3615 * 3616 * The former two cases are handled in the allocation path (perf_event_alloc(), 3617 * __free_event()), the latter -- before the first perf_install_in_context(). 3618 */ 3619 static int exclusive_event_init(struct perf_event *event) 3620 { 3621 struct pmu *pmu = event->pmu; 3622 3623 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3624 return 0; 3625 3626 /* 3627 * Prevent co-existence of per-task and cpu-wide events on the 3628 * same exclusive pmu. 3629 * 3630 * Negative pmu::exclusive_cnt means there are cpu-wide 3631 * events on this "exclusive" pmu, positive means there are 3632 * per-task events. 3633 * 3634 * Since this is called in perf_event_alloc() path, event::ctx 3635 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3636 * to mean "per-task event", because unlike other attach states it 3637 * never gets cleared. 3638 */ 3639 if (event->attach_state & PERF_ATTACH_TASK) { 3640 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3641 return -EBUSY; 3642 } else { 3643 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3644 return -EBUSY; 3645 } 3646 3647 return 0; 3648 } 3649 3650 static void exclusive_event_destroy(struct perf_event *event) 3651 { 3652 struct pmu *pmu = event->pmu; 3653 3654 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3655 return; 3656 3657 /* see comment in exclusive_event_init() */ 3658 if (event->attach_state & PERF_ATTACH_TASK) 3659 atomic_dec(&pmu->exclusive_cnt); 3660 else 3661 atomic_inc(&pmu->exclusive_cnt); 3662 } 3663 3664 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3665 { 3666 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3667 (e1->cpu == e2->cpu || 3668 e1->cpu == -1 || 3669 e2->cpu == -1)) 3670 return true; 3671 return false; 3672 } 3673 3674 /* Called under the same ctx::mutex as perf_install_in_context() */ 3675 static bool exclusive_event_installable(struct perf_event *event, 3676 struct perf_event_context *ctx) 3677 { 3678 struct perf_event *iter_event; 3679 struct pmu *pmu = event->pmu; 3680 3681 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3682 return true; 3683 3684 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3685 if (exclusive_event_match(iter_event, event)) 3686 return false; 3687 } 3688 3689 return true; 3690 } 3691 3692 static void __free_event(struct perf_event *event) 3693 { 3694 if (!event->parent) { 3695 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3696 put_callchain_buffers(); 3697 } 3698 3699 perf_event_free_bpf_prog(event); 3700 3701 if (event->destroy) 3702 event->destroy(event); 3703 3704 if (event->ctx) 3705 put_ctx(event->ctx); 3706 3707 if (event->pmu) { 3708 exclusive_event_destroy(event); 3709 module_put(event->pmu->module); 3710 } 3711 3712 call_rcu(&event->rcu_head, free_event_rcu); 3713 } 3714 3715 static void _free_event(struct perf_event *event) 3716 { 3717 irq_work_sync(&event->pending); 3718 3719 unaccount_event(event); 3720 3721 if (event->rb) { 3722 /* 3723 * Can happen when we close an event with re-directed output. 3724 * 3725 * Since we have a 0 refcount, perf_mmap_close() will skip 3726 * over us; possibly making our ring_buffer_put() the last. 3727 */ 3728 mutex_lock(&event->mmap_mutex); 3729 ring_buffer_attach(event, NULL); 3730 mutex_unlock(&event->mmap_mutex); 3731 } 3732 3733 if (is_cgroup_event(event)) 3734 perf_detach_cgroup(event); 3735 3736 __free_event(event); 3737 } 3738 3739 /* 3740 * Used to free events which have a known refcount of 1, such as in error paths 3741 * where the event isn't exposed yet and inherited events. 3742 */ 3743 static void free_event(struct perf_event *event) 3744 { 3745 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3746 "unexpected event refcount: %ld; ptr=%p\n", 3747 atomic_long_read(&event->refcount), event)) { 3748 /* leak to avoid use-after-free */ 3749 return; 3750 } 3751 3752 _free_event(event); 3753 } 3754 3755 /* 3756 * Remove user event from the owner task. 3757 */ 3758 static void perf_remove_from_owner(struct perf_event *event) 3759 { 3760 struct task_struct *owner; 3761 3762 rcu_read_lock(); 3763 owner = ACCESS_ONCE(event->owner); 3764 /* 3765 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3766 * !owner it means the list deletion is complete and we can indeed 3767 * free this event, otherwise we need to serialize on 3768 * owner->perf_event_mutex. 3769 */ 3770 smp_read_barrier_depends(); 3771 if (owner) { 3772 /* 3773 * Since delayed_put_task_struct() also drops the last 3774 * task reference we can safely take a new reference 3775 * while holding the rcu_read_lock(). 3776 */ 3777 get_task_struct(owner); 3778 } 3779 rcu_read_unlock(); 3780 3781 if (owner) { 3782 /* 3783 * If we're here through perf_event_exit_task() we're already 3784 * holding ctx->mutex which would be an inversion wrt. the 3785 * normal lock order. 3786 * 3787 * However we can safely take this lock because its the child 3788 * ctx->mutex. 3789 */ 3790 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 3791 3792 /* 3793 * We have to re-check the event->owner field, if it is cleared 3794 * we raced with perf_event_exit_task(), acquiring the mutex 3795 * ensured they're done, and we can proceed with freeing the 3796 * event. 3797 */ 3798 if (event->owner) 3799 list_del_init(&event->owner_entry); 3800 mutex_unlock(&owner->perf_event_mutex); 3801 put_task_struct(owner); 3802 } 3803 } 3804 3805 static void put_event(struct perf_event *event) 3806 { 3807 struct perf_event_context *ctx; 3808 3809 if (!atomic_long_dec_and_test(&event->refcount)) 3810 return; 3811 3812 if (!is_kernel_event(event)) 3813 perf_remove_from_owner(event); 3814 3815 /* 3816 * There are two ways this annotation is useful: 3817 * 3818 * 1) there is a lock recursion from perf_event_exit_task 3819 * see the comment there. 3820 * 3821 * 2) there is a lock-inversion with mmap_sem through 3822 * perf_read_group(), which takes faults while 3823 * holding ctx->mutex, however this is called after 3824 * the last filedesc died, so there is no possibility 3825 * to trigger the AB-BA case. 3826 */ 3827 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING); 3828 WARN_ON_ONCE(ctx->parent_ctx); 3829 perf_remove_from_context(event, true); 3830 perf_event_ctx_unlock(event, ctx); 3831 3832 _free_event(event); 3833 } 3834 3835 int perf_event_release_kernel(struct perf_event *event) 3836 { 3837 put_event(event); 3838 return 0; 3839 } 3840 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3841 3842 /* 3843 * Called when the last reference to the file is gone. 3844 */ 3845 static int perf_release(struct inode *inode, struct file *file) 3846 { 3847 put_event(file->private_data); 3848 return 0; 3849 } 3850 3851 /* 3852 * Remove all orphanes events from the context. 3853 */ 3854 static void orphans_remove_work(struct work_struct *work) 3855 { 3856 struct perf_event_context *ctx; 3857 struct perf_event *event, *tmp; 3858 3859 ctx = container_of(work, struct perf_event_context, 3860 orphans_remove.work); 3861 3862 mutex_lock(&ctx->mutex); 3863 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) { 3864 struct perf_event *parent_event = event->parent; 3865 3866 if (!is_orphaned_child(event)) 3867 continue; 3868 3869 perf_remove_from_context(event, true); 3870 3871 mutex_lock(&parent_event->child_mutex); 3872 list_del_init(&event->child_list); 3873 mutex_unlock(&parent_event->child_mutex); 3874 3875 free_event(event); 3876 put_event(parent_event); 3877 } 3878 3879 raw_spin_lock_irq(&ctx->lock); 3880 ctx->orphans_remove_sched = false; 3881 raw_spin_unlock_irq(&ctx->lock); 3882 mutex_unlock(&ctx->mutex); 3883 3884 put_ctx(ctx); 3885 } 3886 3887 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3888 { 3889 struct perf_event *child; 3890 u64 total = 0; 3891 3892 *enabled = 0; 3893 *running = 0; 3894 3895 mutex_lock(&event->child_mutex); 3896 3897 (void)perf_event_read(event, false); 3898 total += perf_event_count(event); 3899 3900 *enabled += event->total_time_enabled + 3901 atomic64_read(&event->child_total_time_enabled); 3902 *running += event->total_time_running + 3903 atomic64_read(&event->child_total_time_running); 3904 3905 list_for_each_entry(child, &event->child_list, child_list) { 3906 (void)perf_event_read(child, false); 3907 total += perf_event_count(child); 3908 *enabled += child->total_time_enabled; 3909 *running += child->total_time_running; 3910 } 3911 mutex_unlock(&event->child_mutex); 3912 3913 return total; 3914 } 3915 EXPORT_SYMBOL_GPL(perf_event_read_value); 3916 3917 static int __perf_read_group_add(struct perf_event *leader, 3918 u64 read_format, u64 *values) 3919 { 3920 struct perf_event *sub; 3921 int n = 1; /* skip @nr */ 3922 int ret; 3923 3924 ret = perf_event_read(leader, true); 3925 if (ret) 3926 return ret; 3927 3928 /* 3929 * Since we co-schedule groups, {enabled,running} times of siblings 3930 * will be identical to those of the leader, so we only publish one 3931 * set. 3932 */ 3933 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3934 values[n++] += leader->total_time_enabled + 3935 atomic64_read(&leader->child_total_time_enabled); 3936 } 3937 3938 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 3939 values[n++] += leader->total_time_running + 3940 atomic64_read(&leader->child_total_time_running); 3941 } 3942 3943 /* 3944 * Write {count,id} tuples for every sibling. 3945 */ 3946 values[n++] += perf_event_count(leader); 3947 if (read_format & PERF_FORMAT_ID) 3948 values[n++] = primary_event_id(leader); 3949 3950 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3951 values[n++] += perf_event_count(sub); 3952 if (read_format & PERF_FORMAT_ID) 3953 values[n++] = primary_event_id(sub); 3954 } 3955 3956 return 0; 3957 } 3958 3959 static int perf_read_group(struct perf_event *event, 3960 u64 read_format, char __user *buf) 3961 { 3962 struct perf_event *leader = event->group_leader, *child; 3963 struct perf_event_context *ctx = leader->ctx; 3964 int ret; 3965 u64 *values; 3966 3967 lockdep_assert_held(&ctx->mutex); 3968 3969 values = kzalloc(event->read_size, GFP_KERNEL); 3970 if (!values) 3971 return -ENOMEM; 3972 3973 values[0] = 1 + leader->nr_siblings; 3974 3975 /* 3976 * By locking the child_mutex of the leader we effectively 3977 * lock the child list of all siblings.. XXX explain how. 3978 */ 3979 mutex_lock(&leader->child_mutex); 3980 3981 ret = __perf_read_group_add(leader, read_format, values); 3982 if (ret) 3983 goto unlock; 3984 3985 list_for_each_entry(child, &leader->child_list, child_list) { 3986 ret = __perf_read_group_add(child, read_format, values); 3987 if (ret) 3988 goto unlock; 3989 } 3990 3991 mutex_unlock(&leader->child_mutex); 3992 3993 ret = event->read_size; 3994 if (copy_to_user(buf, values, event->read_size)) 3995 ret = -EFAULT; 3996 goto out; 3997 3998 unlock: 3999 mutex_unlock(&leader->child_mutex); 4000 out: 4001 kfree(values); 4002 return ret; 4003 } 4004 4005 static int perf_read_one(struct perf_event *event, 4006 u64 read_format, char __user *buf) 4007 { 4008 u64 enabled, running; 4009 u64 values[4]; 4010 int n = 0; 4011 4012 values[n++] = perf_event_read_value(event, &enabled, &running); 4013 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4014 values[n++] = enabled; 4015 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4016 values[n++] = running; 4017 if (read_format & PERF_FORMAT_ID) 4018 values[n++] = primary_event_id(event); 4019 4020 if (copy_to_user(buf, values, n * sizeof(u64))) 4021 return -EFAULT; 4022 4023 return n * sizeof(u64); 4024 } 4025 4026 static bool is_event_hup(struct perf_event *event) 4027 { 4028 bool no_children; 4029 4030 if (event->state != PERF_EVENT_STATE_EXIT) 4031 return false; 4032 4033 mutex_lock(&event->child_mutex); 4034 no_children = list_empty(&event->child_list); 4035 mutex_unlock(&event->child_mutex); 4036 return no_children; 4037 } 4038 4039 /* 4040 * Read the performance event - simple non blocking version for now 4041 */ 4042 static ssize_t 4043 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4044 { 4045 u64 read_format = event->attr.read_format; 4046 int ret; 4047 4048 /* 4049 * Return end-of-file for a read on a event that is in 4050 * error state (i.e. because it was pinned but it couldn't be 4051 * scheduled on to the CPU at some point). 4052 */ 4053 if (event->state == PERF_EVENT_STATE_ERROR) 4054 return 0; 4055 4056 if (count < event->read_size) 4057 return -ENOSPC; 4058 4059 WARN_ON_ONCE(event->ctx->parent_ctx); 4060 if (read_format & PERF_FORMAT_GROUP) 4061 ret = perf_read_group(event, read_format, buf); 4062 else 4063 ret = perf_read_one(event, read_format, buf); 4064 4065 return ret; 4066 } 4067 4068 static ssize_t 4069 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4070 { 4071 struct perf_event *event = file->private_data; 4072 struct perf_event_context *ctx; 4073 int ret; 4074 4075 ctx = perf_event_ctx_lock(event); 4076 ret = __perf_read(event, buf, count); 4077 perf_event_ctx_unlock(event, ctx); 4078 4079 return ret; 4080 } 4081 4082 static unsigned int perf_poll(struct file *file, poll_table *wait) 4083 { 4084 struct perf_event *event = file->private_data; 4085 struct ring_buffer *rb; 4086 unsigned int events = POLLHUP; 4087 4088 poll_wait(file, &event->waitq, wait); 4089 4090 if (is_event_hup(event)) 4091 return events; 4092 4093 /* 4094 * Pin the event->rb by taking event->mmap_mutex; otherwise 4095 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4096 */ 4097 mutex_lock(&event->mmap_mutex); 4098 rb = event->rb; 4099 if (rb) 4100 events = atomic_xchg(&rb->poll, 0); 4101 mutex_unlock(&event->mmap_mutex); 4102 return events; 4103 } 4104 4105 static void _perf_event_reset(struct perf_event *event) 4106 { 4107 (void)perf_event_read(event, false); 4108 local64_set(&event->count, 0); 4109 perf_event_update_userpage(event); 4110 } 4111 4112 /* 4113 * Holding the top-level event's child_mutex means that any 4114 * descendant process that has inherited this event will block 4115 * in sync_child_event if it goes to exit, thus satisfying the 4116 * task existence requirements of perf_event_enable/disable. 4117 */ 4118 static void perf_event_for_each_child(struct perf_event *event, 4119 void (*func)(struct perf_event *)) 4120 { 4121 struct perf_event *child; 4122 4123 WARN_ON_ONCE(event->ctx->parent_ctx); 4124 4125 mutex_lock(&event->child_mutex); 4126 func(event); 4127 list_for_each_entry(child, &event->child_list, child_list) 4128 func(child); 4129 mutex_unlock(&event->child_mutex); 4130 } 4131 4132 static void perf_event_for_each(struct perf_event *event, 4133 void (*func)(struct perf_event *)) 4134 { 4135 struct perf_event_context *ctx = event->ctx; 4136 struct perf_event *sibling; 4137 4138 lockdep_assert_held(&ctx->mutex); 4139 4140 event = event->group_leader; 4141 4142 perf_event_for_each_child(event, func); 4143 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4144 perf_event_for_each_child(sibling, func); 4145 } 4146 4147 struct period_event { 4148 struct perf_event *event; 4149 u64 value; 4150 }; 4151 4152 static int __perf_event_period(void *info) 4153 { 4154 struct period_event *pe = info; 4155 struct perf_event *event = pe->event; 4156 struct perf_event_context *ctx = event->ctx; 4157 u64 value = pe->value; 4158 bool active; 4159 4160 raw_spin_lock(&ctx->lock); 4161 if (event->attr.freq) { 4162 event->attr.sample_freq = value; 4163 } else { 4164 event->attr.sample_period = value; 4165 event->hw.sample_period = value; 4166 } 4167 4168 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4169 if (active) { 4170 perf_pmu_disable(ctx->pmu); 4171 event->pmu->stop(event, PERF_EF_UPDATE); 4172 } 4173 4174 local64_set(&event->hw.period_left, 0); 4175 4176 if (active) { 4177 event->pmu->start(event, PERF_EF_RELOAD); 4178 perf_pmu_enable(ctx->pmu); 4179 } 4180 raw_spin_unlock(&ctx->lock); 4181 4182 return 0; 4183 } 4184 4185 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4186 { 4187 struct period_event pe = { .event = event, }; 4188 struct perf_event_context *ctx = event->ctx; 4189 struct task_struct *task; 4190 u64 value; 4191 4192 if (!is_sampling_event(event)) 4193 return -EINVAL; 4194 4195 if (copy_from_user(&value, arg, sizeof(value))) 4196 return -EFAULT; 4197 4198 if (!value) 4199 return -EINVAL; 4200 4201 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4202 return -EINVAL; 4203 4204 task = ctx->task; 4205 pe.value = value; 4206 4207 if (!task) { 4208 cpu_function_call(event->cpu, __perf_event_period, &pe); 4209 return 0; 4210 } 4211 4212 retry: 4213 if (!task_function_call(task, __perf_event_period, &pe)) 4214 return 0; 4215 4216 raw_spin_lock_irq(&ctx->lock); 4217 if (ctx->is_active) { 4218 raw_spin_unlock_irq(&ctx->lock); 4219 task = ctx->task; 4220 goto retry; 4221 } 4222 4223 if (event->attr.freq) { 4224 event->attr.sample_freq = value; 4225 } else { 4226 event->attr.sample_period = value; 4227 event->hw.sample_period = value; 4228 } 4229 4230 local64_set(&event->hw.period_left, 0); 4231 raw_spin_unlock_irq(&ctx->lock); 4232 4233 return 0; 4234 } 4235 4236 static const struct file_operations perf_fops; 4237 4238 static inline int perf_fget_light(int fd, struct fd *p) 4239 { 4240 struct fd f = fdget(fd); 4241 if (!f.file) 4242 return -EBADF; 4243 4244 if (f.file->f_op != &perf_fops) { 4245 fdput(f); 4246 return -EBADF; 4247 } 4248 *p = f; 4249 return 0; 4250 } 4251 4252 static int perf_event_set_output(struct perf_event *event, 4253 struct perf_event *output_event); 4254 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4255 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4256 4257 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4258 { 4259 void (*func)(struct perf_event *); 4260 u32 flags = arg; 4261 4262 switch (cmd) { 4263 case PERF_EVENT_IOC_ENABLE: 4264 func = _perf_event_enable; 4265 break; 4266 case PERF_EVENT_IOC_DISABLE: 4267 func = _perf_event_disable; 4268 break; 4269 case PERF_EVENT_IOC_RESET: 4270 func = _perf_event_reset; 4271 break; 4272 4273 case PERF_EVENT_IOC_REFRESH: 4274 return _perf_event_refresh(event, arg); 4275 4276 case PERF_EVENT_IOC_PERIOD: 4277 return perf_event_period(event, (u64 __user *)arg); 4278 4279 case PERF_EVENT_IOC_ID: 4280 { 4281 u64 id = primary_event_id(event); 4282 4283 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4284 return -EFAULT; 4285 return 0; 4286 } 4287 4288 case PERF_EVENT_IOC_SET_OUTPUT: 4289 { 4290 int ret; 4291 if (arg != -1) { 4292 struct perf_event *output_event; 4293 struct fd output; 4294 ret = perf_fget_light(arg, &output); 4295 if (ret) 4296 return ret; 4297 output_event = output.file->private_data; 4298 ret = perf_event_set_output(event, output_event); 4299 fdput(output); 4300 } else { 4301 ret = perf_event_set_output(event, NULL); 4302 } 4303 return ret; 4304 } 4305 4306 case PERF_EVENT_IOC_SET_FILTER: 4307 return perf_event_set_filter(event, (void __user *)arg); 4308 4309 case PERF_EVENT_IOC_SET_BPF: 4310 return perf_event_set_bpf_prog(event, arg); 4311 4312 default: 4313 return -ENOTTY; 4314 } 4315 4316 if (flags & PERF_IOC_FLAG_GROUP) 4317 perf_event_for_each(event, func); 4318 else 4319 perf_event_for_each_child(event, func); 4320 4321 return 0; 4322 } 4323 4324 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4325 { 4326 struct perf_event *event = file->private_data; 4327 struct perf_event_context *ctx; 4328 long ret; 4329 4330 ctx = perf_event_ctx_lock(event); 4331 ret = _perf_ioctl(event, cmd, arg); 4332 perf_event_ctx_unlock(event, ctx); 4333 4334 return ret; 4335 } 4336 4337 #ifdef CONFIG_COMPAT 4338 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4339 unsigned long arg) 4340 { 4341 switch (_IOC_NR(cmd)) { 4342 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4343 case _IOC_NR(PERF_EVENT_IOC_ID): 4344 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4345 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4346 cmd &= ~IOCSIZE_MASK; 4347 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4348 } 4349 break; 4350 } 4351 return perf_ioctl(file, cmd, arg); 4352 } 4353 #else 4354 # define perf_compat_ioctl NULL 4355 #endif 4356 4357 int perf_event_task_enable(void) 4358 { 4359 struct perf_event_context *ctx; 4360 struct perf_event *event; 4361 4362 mutex_lock(¤t->perf_event_mutex); 4363 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4364 ctx = perf_event_ctx_lock(event); 4365 perf_event_for_each_child(event, _perf_event_enable); 4366 perf_event_ctx_unlock(event, ctx); 4367 } 4368 mutex_unlock(¤t->perf_event_mutex); 4369 4370 return 0; 4371 } 4372 4373 int perf_event_task_disable(void) 4374 { 4375 struct perf_event_context *ctx; 4376 struct perf_event *event; 4377 4378 mutex_lock(¤t->perf_event_mutex); 4379 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4380 ctx = perf_event_ctx_lock(event); 4381 perf_event_for_each_child(event, _perf_event_disable); 4382 perf_event_ctx_unlock(event, ctx); 4383 } 4384 mutex_unlock(¤t->perf_event_mutex); 4385 4386 return 0; 4387 } 4388 4389 static int perf_event_index(struct perf_event *event) 4390 { 4391 if (event->hw.state & PERF_HES_STOPPED) 4392 return 0; 4393 4394 if (event->state != PERF_EVENT_STATE_ACTIVE) 4395 return 0; 4396 4397 return event->pmu->event_idx(event); 4398 } 4399 4400 static void calc_timer_values(struct perf_event *event, 4401 u64 *now, 4402 u64 *enabled, 4403 u64 *running) 4404 { 4405 u64 ctx_time; 4406 4407 *now = perf_clock(); 4408 ctx_time = event->shadow_ctx_time + *now; 4409 *enabled = ctx_time - event->tstamp_enabled; 4410 *running = ctx_time - event->tstamp_running; 4411 } 4412 4413 static void perf_event_init_userpage(struct perf_event *event) 4414 { 4415 struct perf_event_mmap_page *userpg; 4416 struct ring_buffer *rb; 4417 4418 rcu_read_lock(); 4419 rb = rcu_dereference(event->rb); 4420 if (!rb) 4421 goto unlock; 4422 4423 userpg = rb->user_page; 4424 4425 /* Allow new userspace to detect that bit 0 is deprecated */ 4426 userpg->cap_bit0_is_deprecated = 1; 4427 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4428 userpg->data_offset = PAGE_SIZE; 4429 userpg->data_size = perf_data_size(rb); 4430 4431 unlock: 4432 rcu_read_unlock(); 4433 } 4434 4435 void __weak arch_perf_update_userpage( 4436 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4437 { 4438 } 4439 4440 /* 4441 * Callers need to ensure there can be no nesting of this function, otherwise 4442 * the seqlock logic goes bad. We can not serialize this because the arch 4443 * code calls this from NMI context. 4444 */ 4445 void perf_event_update_userpage(struct perf_event *event) 4446 { 4447 struct perf_event_mmap_page *userpg; 4448 struct ring_buffer *rb; 4449 u64 enabled, running, now; 4450 4451 rcu_read_lock(); 4452 rb = rcu_dereference(event->rb); 4453 if (!rb) 4454 goto unlock; 4455 4456 /* 4457 * compute total_time_enabled, total_time_running 4458 * based on snapshot values taken when the event 4459 * was last scheduled in. 4460 * 4461 * we cannot simply called update_context_time() 4462 * because of locking issue as we can be called in 4463 * NMI context 4464 */ 4465 calc_timer_values(event, &now, &enabled, &running); 4466 4467 userpg = rb->user_page; 4468 /* 4469 * Disable preemption so as to not let the corresponding user-space 4470 * spin too long if we get preempted. 4471 */ 4472 preempt_disable(); 4473 ++userpg->lock; 4474 barrier(); 4475 userpg->index = perf_event_index(event); 4476 userpg->offset = perf_event_count(event); 4477 if (userpg->index) 4478 userpg->offset -= local64_read(&event->hw.prev_count); 4479 4480 userpg->time_enabled = enabled + 4481 atomic64_read(&event->child_total_time_enabled); 4482 4483 userpg->time_running = running + 4484 atomic64_read(&event->child_total_time_running); 4485 4486 arch_perf_update_userpage(event, userpg, now); 4487 4488 barrier(); 4489 ++userpg->lock; 4490 preempt_enable(); 4491 unlock: 4492 rcu_read_unlock(); 4493 } 4494 4495 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4496 { 4497 struct perf_event *event = vma->vm_file->private_data; 4498 struct ring_buffer *rb; 4499 int ret = VM_FAULT_SIGBUS; 4500 4501 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4502 if (vmf->pgoff == 0) 4503 ret = 0; 4504 return ret; 4505 } 4506 4507 rcu_read_lock(); 4508 rb = rcu_dereference(event->rb); 4509 if (!rb) 4510 goto unlock; 4511 4512 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4513 goto unlock; 4514 4515 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4516 if (!vmf->page) 4517 goto unlock; 4518 4519 get_page(vmf->page); 4520 vmf->page->mapping = vma->vm_file->f_mapping; 4521 vmf->page->index = vmf->pgoff; 4522 4523 ret = 0; 4524 unlock: 4525 rcu_read_unlock(); 4526 4527 return ret; 4528 } 4529 4530 static void ring_buffer_attach(struct perf_event *event, 4531 struct ring_buffer *rb) 4532 { 4533 struct ring_buffer *old_rb = NULL; 4534 unsigned long flags; 4535 4536 if (event->rb) { 4537 /* 4538 * Should be impossible, we set this when removing 4539 * event->rb_entry and wait/clear when adding event->rb_entry. 4540 */ 4541 WARN_ON_ONCE(event->rcu_pending); 4542 4543 old_rb = event->rb; 4544 spin_lock_irqsave(&old_rb->event_lock, flags); 4545 list_del_rcu(&event->rb_entry); 4546 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4547 4548 event->rcu_batches = get_state_synchronize_rcu(); 4549 event->rcu_pending = 1; 4550 } 4551 4552 if (rb) { 4553 if (event->rcu_pending) { 4554 cond_synchronize_rcu(event->rcu_batches); 4555 event->rcu_pending = 0; 4556 } 4557 4558 spin_lock_irqsave(&rb->event_lock, flags); 4559 list_add_rcu(&event->rb_entry, &rb->event_list); 4560 spin_unlock_irqrestore(&rb->event_lock, flags); 4561 } 4562 4563 rcu_assign_pointer(event->rb, rb); 4564 4565 if (old_rb) { 4566 ring_buffer_put(old_rb); 4567 /* 4568 * Since we detached before setting the new rb, so that we 4569 * could attach the new rb, we could have missed a wakeup. 4570 * Provide it now. 4571 */ 4572 wake_up_all(&event->waitq); 4573 } 4574 } 4575 4576 static void ring_buffer_wakeup(struct perf_event *event) 4577 { 4578 struct ring_buffer *rb; 4579 4580 rcu_read_lock(); 4581 rb = rcu_dereference(event->rb); 4582 if (rb) { 4583 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4584 wake_up_all(&event->waitq); 4585 } 4586 rcu_read_unlock(); 4587 } 4588 4589 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4590 { 4591 struct ring_buffer *rb; 4592 4593 rcu_read_lock(); 4594 rb = rcu_dereference(event->rb); 4595 if (rb) { 4596 if (!atomic_inc_not_zero(&rb->refcount)) 4597 rb = NULL; 4598 } 4599 rcu_read_unlock(); 4600 4601 return rb; 4602 } 4603 4604 void ring_buffer_put(struct ring_buffer *rb) 4605 { 4606 if (!atomic_dec_and_test(&rb->refcount)) 4607 return; 4608 4609 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4610 4611 call_rcu(&rb->rcu_head, rb_free_rcu); 4612 } 4613 4614 static void perf_mmap_open(struct vm_area_struct *vma) 4615 { 4616 struct perf_event *event = vma->vm_file->private_data; 4617 4618 atomic_inc(&event->mmap_count); 4619 atomic_inc(&event->rb->mmap_count); 4620 4621 if (vma->vm_pgoff) 4622 atomic_inc(&event->rb->aux_mmap_count); 4623 4624 if (event->pmu->event_mapped) 4625 event->pmu->event_mapped(event); 4626 } 4627 4628 /* 4629 * A buffer can be mmap()ed multiple times; either directly through the same 4630 * event, or through other events by use of perf_event_set_output(). 4631 * 4632 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4633 * the buffer here, where we still have a VM context. This means we need 4634 * to detach all events redirecting to us. 4635 */ 4636 static void perf_mmap_close(struct vm_area_struct *vma) 4637 { 4638 struct perf_event *event = vma->vm_file->private_data; 4639 4640 struct ring_buffer *rb = ring_buffer_get(event); 4641 struct user_struct *mmap_user = rb->mmap_user; 4642 int mmap_locked = rb->mmap_locked; 4643 unsigned long size = perf_data_size(rb); 4644 4645 if (event->pmu->event_unmapped) 4646 event->pmu->event_unmapped(event); 4647 4648 /* 4649 * rb->aux_mmap_count will always drop before rb->mmap_count and 4650 * event->mmap_count, so it is ok to use event->mmap_mutex to 4651 * serialize with perf_mmap here. 4652 */ 4653 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4654 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4655 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4656 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4657 4658 rb_free_aux(rb); 4659 mutex_unlock(&event->mmap_mutex); 4660 } 4661 4662 atomic_dec(&rb->mmap_count); 4663 4664 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4665 goto out_put; 4666 4667 ring_buffer_attach(event, NULL); 4668 mutex_unlock(&event->mmap_mutex); 4669 4670 /* If there's still other mmap()s of this buffer, we're done. */ 4671 if (atomic_read(&rb->mmap_count)) 4672 goto out_put; 4673 4674 /* 4675 * No other mmap()s, detach from all other events that might redirect 4676 * into the now unreachable buffer. Somewhat complicated by the 4677 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4678 */ 4679 again: 4680 rcu_read_lock(); 4681 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4682 if (!atomic_long_inc_not_zero(&event->refcount)) { 4683 /* 4684 * This event is en-route to free_event() which will 4685 * detach it and remove it from the list. 4686 */ 4687 continue; 4688 } 4689 rcu_read_unlock(); 4690 4691 mutex_lock(&event->mmap_mutex); 4692 /* 4693 * Check we didn't race with perf_event_set_output() which can 4694 * swizzle the rb from under us while we were waiting to 4695 * acquire mmap_mutex. 4696 * 4697 * If we find a different rb; ignore this event, a next 4698 * iteration will no longer find it on the list. We have to 4699 * still restart the iteration to make sure we're not now 4700 * iterating the wrong list. 4701 */ 4702 if (event->rb == rb) 4703 ring_buffer_attach(event, NULL); 4704 4705 mutex_unlock(&event->mmap_mutex); 4706 put_event(event); 4707 4708 /* 4709 * Restart the iteration; either we're on the wrong list or 4710 * destroyed its integrity by doing a deletion. 4711 */ 4712 goto again; 4713 } 4714 rcu_read_unlock(); 4715 4716 /* 4717 * It could be there's still a few 0-ref events on the list; they'll 4718 * get cleaned up by free_event() -- they'll also still have their 4719 * ref on the rb and will free it whenever they are done with it. 4720 * 4721 * Aside from that, this buffer is 'fully' detached and unmapped, 4722 * undo the VM accounting. 4723 */ 4724 4725 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4726 vma->vm_mm->pinned_vm -= mmap_locked; 4727 free_uid(mmap_user); 4728 4729 out_put: 4730 ring_buffer_put(rb); /* could be last */ 4731 } 4732 4733 static const struct vm_operations_struct perf_mmap_vmops = { 4734 .open = perf_mmap_open, 4735 .close = perf_mmap_close, /* non mergable */ 4736 .fault = perf_mmap_fault, 4737 .page_mkwrite = perf_mmap_fault, 4738 }; 4739 4740 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4741 { 4742 struct perf_event *event = file->private_data; 4743 unsigned long user_locked, user_lock_limit; 4744 struct user_struct *user = current_user(); 4745 unsigned long locked, lock_limit; 4746 struct ring_buffer *rb = NULL; 4747 unsigned long vma_size; 4748 unsigned long nr_pages; 4749 long user_extra = 0, extra = 0; 4750 int ret = 0, flags = 0; 4751 4752 /* 4753 * Don't allow mmap() of inherited per-task counters. This would 4754 * create a performance issue due to all children writing to the 4755 * same rb. 4756 */ 4757 if (event->cpu == -1 && event->attr.inherit) 4758 return -EINVAL; 4759 4760 if (!(vma->vm_flags & VM_SHARED)) 4761 return -EINVAL; 4762 4763 vma_size = vma->vm_end - vma->vm_start; 4764 4765 if (vma->vm_pgoff == 0) { 4766 nr_pages = (vma_size / PAGE_SIZE) - 1; 4767 } else { 4768 /* 4769 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 4770 * mapped, all subsequent mappings should have the same size 4771 * and offset. Must be above the normal perf buffer. 4772 */ 4773 u64 aux_offset, aux_size; 4774 4775 if (!event->rb) 4776 return -EINVAL; 4777 4778 nr_pages = vma_size / PAGE_SIZE; 4779 4780 mutex_lock(&event->mmap_mutex); 4781 ret = -EINVAL; 4782 4783 rb = event->rb; 4784 if (!rb) 4785 goto aux_unlock; 4786 4787 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 4788 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 4789 4790 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 4791 goto aux_unlock; 4792 4793 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 4794 goto aux_unlock; 4795 4796 /* already mapped with a different offset */ 4797 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 4798 goto aux_unlock; 4799 4800 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 4801 goto aux_unlock; 4802 4803 /* already mapped with a different size */ 4804 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 4805 goto aux_unlock; 4806 4807 if (!is_power_of_2(nr_pages)) 4808 goto aux_unlock; 4809 4810 if (!atomic_inc_not_zero(&rb->mmap_count)) 4811 goto aux_unlock; 4812 4813 if (rb_has_aux(rb)) { 4814 atomic_inc(&rb->aux_mmap_count); 4815 ret = 0; 4816 goto unlock; 4817 } 4818 4819 atomic_set(&rb->aux_mmap_count, 1); 4820 user_extra = nr_pages; 4821 4822 goto accounting; 4823 } 4824 4825 /* 4826 * If we have rb pages ensure they're a power-of-two number, so we 4827 * can do bitmasks instead of modulo. 4828 */ 4829 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4830 return -EINVAL; 4831 4832 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4833 return -EINVAL; 4834 4835 WARN_ON_ONCE(event->ctx->parent_ctx); 4836 again: 4837 mutex_lock(&event->mmap_mutex); 4838 if (event->rb) { 4839 if (event->rb->nr_pages != nr_pages) { 4840 ret = -EINVAL; 4841 goto unlock; 4842 } 4843 4844 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4845 /* 4846 * Raced against perf_mmap_close() through 4847 * perf_event_set_output(). Try again, hope for better 4848 * luck. 4849 */ 4850 mutex_unlock(&event->mmap_mutex); 4851 goto again; 4852 } 4853 4854 goto unlock; 4855 } 4856 4857 user_extra = nr_pages + 1; 4858 4859 accounting: 4860 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4861 4862 /* 4863 * Increase the limit linearly with more CPUs: 4864 */ 4865 user_lock_limit *= num_online_cpus(); 4866 4867 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4868 4869 if (user_locked > user_lock_limit) 4870 extra = user_locked - user_lock_limit; 4871 4872 lock_limit = rlimit(RLIMIT_MEMLOCK); 4873 lock_limit >>= PAGE_SHIFT; 4874 locked = vma->vm_mm->pinned_vm + extra; 4875 4876 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4877 !capable(CAP_IPC_LOCK)) { 4878 ret = -EPERM; 4879 goto unlock; 4880 } 4881 4882 WARN_ON(!rb && event->rb); 4883 4884 if (vma->vm_flags & VM_WRITE) 4885 flags |= RING_BUFFER_WRITABLE; 4886 4887 if (!rb) { 4888 rb = rb_alloc(nr_pages, 4889 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4890 event->cpu, flags); 4891 4892 if (!rb) { 4893 ret = -ENOMEM; 4894 goto unlock; 4895 } 4896 4897 atomic_set(&rb->mmap_count, 1); 4898 rb->mmap_user = get_current_user(); 4899 rb->mmap_locked = extra; 4900 4901 ring_buffer_attach(event, rb); 4902 4903 perf_event_init_userpage(event); 4904 perf_event_update_userpage(event); 4905 } else { 4906 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 4907 event->attr.aux_watermark, flags); 4908 if (!ret) 4909 rb->aux_mmap_locked = extra; 4910 } 4911 4912 unlock: 4913 if (!ret) { 4914 atomic_long_add(user_extra, &user->locked_vm); 4915 vma->vm_mm->pinned_vm += extra; 4916 4917 atomic_inc(&event->mmap_count); 4918 } else if (rb) { 4919 atomic_dec(&rb->mmap_count); 4920 } 4921 aux_unlock: 4922 mutex_unlock(&event->mmap_mutex); 4923 4924 /* 4925 * Since pinned accounting is per vm we cannot allow fork() to copy our 4926 * vma. 4927 */ 4928 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4929 vma->vm_ops = &perf_mmap_vmops; 4930 4931 if (event->pmu->event_mapped) 4932 event->pmu->event_mapped(event); 4933 4934 return ret; 4935 } 4936 4937 static int perf_fasync(int fd, struct file *filp, int on) 4938 { 4939 struct inode *inode = file_inode(filp); 4940 struct perf_event *event = filp->private_data; 4941 int retval; 4942 4943 mutex_lock(&inode->i_mutex); 4944 retval = fasync_helper(fd, filp, on, &event->fasync); 4945 mutex_unlock(&inode->i_mutex); 4946 4947 if (retval < 0) 4948 return retval; 4949 4950 return 0; 4951 } 4952 4953 static const struct file_operations perf_fops = { 4954 .llseek = no_llseek, 4955 .release = perf_release, 4956 .read = perf_read, 4957 .poll = perf_poll, 4958 .unlocked_ioctl = perf_ioctl, 4959 .compat_ioctl = perf_compat_ioctl, 4960 .mmap = perf_mmap, 4961 .fasync = perf_fasync, 4962 }; 4963 4964 /* 4965 * Perf event wakeup 4966 * 4967 * If there's data, ensure we set the poll() state and publish everything 4968 * to user-space before waking everybody up. 4969 */ 4970 4971 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 4972 { 4973 /* only the parent has fasync state */ 4974 if (event->parent) 4975 event = event->parent; 4976 return &event->fasync; 4977 } 4978 4979 void perf_event_wakeup(struct perf_event *event) 4980 { 4981 ring_buffer_wakeup(event); 4982 4983 if (event->pending_kill) { 4984 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 4985 event->pending_kill = 0; 4986 } 4987 } 4988 4989 static void perf_pending_event(struct irq_work *entry) 4990 { 4991 struct perf_event *event = container_of(entry, 4992 struct perf_event, pending); 4993 int rctx; 4994 4995 rctx = perf_swevent_get_recursion_context(); 4996 /* 4997 * If we 'fail' here, that's OK, it means recursion is already disabled 4998 * and we won't recurse 'further'. 4999 */ 5000 5001 if (event->pending_disable) { 5002 event->pending_disable = 0; 5003 __perf_event_disable(event); 5004 } 5005 5006 if (event->pending_wakeup) { 5007 event->pending_wakeup = 0; 5008 perf_event_wakeup(event); 5009 } 5010 5011 if (rctx >= 0) 5012 perf_swevent_put_recursion_context(rctx); 5013 } 5014 5015 /* 5016 * We assume there is only KVM supporting the callbacks. 5017 * Later on, we might change it to a list if there is 5018 * another virtualization implementation supporting the callbacks. 5019 */ 5020 struct perf_guest_info_callbacks *perf_guest_cbs; 5021 5022 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5023 { 5024 perf_guest_cbs = cbs; 5025 return 0; 5026 } 5027 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5028 5029 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5030 { 5031 perf_guest_cbs = NULL; 5032 return 0; 5033 } 5034 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5035 5036 static void 5037 perf_output_sample_regs(struct perf_output_handle *handle, 5038 struct pt_regs *regs, u64 mask) 5039 { 5040 int bit; 5041 5042 for_each_set_bit(bit, (const unsigned long *) &mask, 5043 sizeof(mask) * BITS_PER_BYTE) { 5044 u64 val; 5045 5046 val = perf_reg_value(regs, bit); 5047 perf_output_put(handle, val); 5048 } 5049 } 5050 5051 static void perf_sample_regs_user(struct perf_regs *regs_user, 5052 struct pt_regs *regs, 5053 struct pt_regs *regs_user_copy) 5054 { 5055 if (user_mode(regs)) { 5056 regs_user->abi = perf_reg_abi(current); 5057 regs_user->regs = regs; 5058 } else if (current->mm) { 5059 perf_get_regs_user(regs_user, regs, regs_user_copy); 5060 } else { 5061 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5062 regs_user->regs = NULL; 5063 } 5064 } 5065 5066 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5067 struct pt_regs *regs) 5068 { 5069 regs_intr->regs = regs; 5070 regs_intr->abi = perf_reg_abi(current); 5071 } 5072 5073 5074 /* 5075 * Get remaining task size from user stack pointer. 5076 * 5077 * It'd be better to take stack vma map and limit this more 5078 * precisly, but there's no way to get it safely under interrupt, 5079 * so using TASK_SIZE as limit. 5080 */ 5081 static u64 perf_ustack_task_size(struct pt_regs *regs) 5082 { 5083 unsigned long addr = perf_user_stack_pointer(regs); 5084 5085 if (!addr || addr >= TASK_SIZE) 5086 return 0; 5087 5088 return TASK_SIZE - addr; 5089 } 5090 5091 static u16 5092 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5093 struct pt_regs *regs) 5094 { 5095 u64 task_size; 5096 5097 /* No regs, no stack pointer, no dump. */ 5098 if (!regs) 5099 return 0; 5100 5101 /* 5102 * Check if we fit in with the requested stack size into the: 5103 * - TASK_SIZE 5104 * If we don't, we limit the size to the TASK_SIZE. 5105 * 5106 * - remaining sample size 5107 * If we don't, we customize the stack size to 5108 * fit in to the remaining sample size. 5109 */ 5110 5111 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5112 stack_size = min(stack_size, (u16) task_size); 5113 5114 /* Current header size plus static size and dynamic size. */ 5115 header_size += 2 * sizeof(u64); 5116 5117 /* Do we fit in with the current stack dump size? */ 5118 if ((u16) (header_size + stack_size) < header_size) { 5119 /* 5120 * If we overflow the maximum size for the sample, 5121 * we customize the stack dump size to fit in. 5122 */ 5123 stack_size = USHRT_MAX - header_size - sizeof(u64); 5124 stack_size = round_up(stack_size, sizeof(u64)); 5125 } 5126 5127 return stack_size; 5128 } 5129 5130 static void 5131 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5132 struct pt_regs *regs) 5133 { 5134 /* Case of a kernel thread, nothing to dump */ 5135 if (!regs) { 5136 u64 size = 0; 5137 perf_output_put(handle, size); 5138 } else { 5139 unsigned long sp; 5140 unsigned int rem; 5141 u64 dyn_size; 5142 5143 /* 5144 * We dump: 5145 * static size 5146 * - the size requested by user or the best one we can fit 5147 * in to the sample max size 5148 * data 5149 * - user stack dump data 5150 * dynamic size 5151 * - the actual dumped size 5152 */ 5153 5154 /* Static size. */ 5155 perf_output_put(handle, dump_size); 5156 5157 /* Data. */ 5158 sp = perf_user_stack_pointer(regs); 5159 rem = __output_copy_user(handle, (void *) sp, dump_size); 5160 dyn_size = dump_size - rem; 5161 5162 perf_output_skip(handle, rem); 5163 5164 /* Dynamic size. */ 5165 perf_output_put(handle, dyn_size); 5166 } 5167 } 5168 5169 static void __perf_event_header__init_id(struct perf_event_header *header, 5170 struct perf_sample_data *data, 5171 struct perf_event *event) 5172 { 5173 u64 sample_type = event->attr.sample_type; 5174 5175 data->type = sample_type; 5176 header->size += event->id_header_size; 5177 5178 if (sample_type & PERF_SAMPLE_TID) { 5179 /* namespace issues */ 5180 data->tid_entry.pid = perf_event_pid(event, current); 5181 data->tid_entry.tid = perf_event_tid(event, current); 5182 } 5183 5184 if (sample_type & PERF_SAMPLE_TIME) 5185 data->time = perf_event_clock(event); 5186 5187 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5188 data->id = primary_event_id(event); 5189 5190 if (sample_type & PERF_SAMPLE_STREAM_ID) 5191 data->stream_id = event->id; 5192 5193 if (sample_type & PERF_SAMPLE_CPU) { 5194 data->cpu_entry.cpu = raw_smp_processor_id(); 5195 data->cpu_entry.reserved = 0; 5196 } 5197 } 5198 5199 void perf_event_header__init_id(struct perf_event_header *header, 5200 struct perf_sample_data *data, 5201 struct perf_event *event) 5202 { 5203 if (event->attr.sample_id_all) 5204 __perf_event_header__init_id(header, data, event); 5205 } 5206 5207 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5208 struct perf_sample_data *data) 5209 { 5210 u64 sample_type = data->type; 5211 5212 if (sample_type & PERF_SAMPLE_TID) 5213 perf_output_put(handle, data->tid_entry); 5214 5215 if (sample_type & PERF_SAMPLE_TIME) 5216 perf_output_put(handle, data->time); 5217 5218 if (sample_type & PERF_SAMPLE_ID) 5219 perf_output_put(handle, data->id); 5220 5221 if (sample_type & PERF_SAMPLE_STREAM_ID) 5222 perf_output_put(handle, data->stream_id); 5223 5224 if (sample_type & PERF_SAMPLE_CPU) 5225 perf_output_put(handle, data->cpu_entry); 5226 5227 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5228 perf_output_put(handle, data->id); 5229 } 5230 5231 void perf_event__output_id_sample(struct perf_event *event, 5232 struct perf_output_handle *handle, 5233 struct perf_sample_data *sample) 5234 { 5235 if (event->attr.sample_id_all) 5236 __perf_event__output_id_sample(handle, sample); 5237 } 5238 5239 static void perf_output_read_one(struct perf_output_handle *handle, 5240 struct perf_event *event, 5241 u64 enabled, u64 running) 5242 { 5243 u64 read_format = event->attr.read_format; 5244 u64 values[4]; 5245 int n = 0; 5246 5247 values[n++] = perf_event_count(event); 5248 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5249 values[n++] = enabled + 5250 atomic64_read(&event->child_total_time_enabled); 5251 } 5252 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5253 values[n++] = running + 5254 atomic64_read(&event->child_total_time_running); 5255 } 5256 if (read_format & PERF_FORMAT_ID) 5257 values[n++] = primary_event_id(event); 5258 5259 __output_copy(handle, values, n * sizeof(u64)); 5260 } 5261 5262 /* 5263 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5264 */ 5265 static void perf_output_read_group(struct perf_output_handle *handle, 5266 struct perf_event *event, 5267 u64 enabled, u64 running) 5268 { 5269 struct perf_event *leader = event->group_leader, *sub; 5270 u64 read_format = event->attr.read_format; 5271 u64 values[5]; 5272 int n = 0; 5273 5274 values[n++] = 1 + leader->nr_siblings; 5275 5276 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5277 values[n++] = enabled; 5278 5279 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5280 values[n++] = running; 5281 5282 if (leader != event) 5283 leader->pmu->read(leader); 5284 5285 values[n++] = perf_event_count(leader); 5286 if (read_format & PERF_FORMAT_ID) 5287 values[n++] = primary_event_id(leader); 5288 5289 __output_copy(handle, values, n * sizeof(u64)); 5290 5291 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5292 n = 0; 5293 5294 if ((sub != event) && 5295 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5296 sub->pmu->read(sub); 5297 5298 values[n++] = perf_event_count(sub); 5299 if (read_format & PERF_FORMAT_ID) 5300 values[n++] = primary_event_id(sub); 5301 5302 __output_copy(handle, values, n * sizeof(u64)); 5303 } 5304 } 5305 5306 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5307 PERF_FORMAT_TOTAL_TIME_RUNNING) 5308 5309 static void perf_output_read(struct perf_output_handle *handle, 5310 struct perf_event *event) 5311 { 5312 u64 enabled = 0, running = 0, now; 5313 u64 read_format = event->attr.read_format; 5314 5315 /* 5316 * compute total_time_enabled, total_time_running 5317 * based on snapshot values taken when the event 5318 * was last scheduled in. 5319 * 5320 * we cannot simply called update_context_time() 5321 * because of locking issue as we are called in 5322 * NMI context 5323 */ 5324 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5325 calc_timer_values(event, &now, &enabled, &running); 5326 5327 if (event->attr.read_format & PERF_FORMAT_GROUP) 5328 perf_output_read_group(handle, event, enabled, running); 5329 else 5330 perf_output_read_one(handle, event, enabled, running); 5331 } 5332 5333 void perf_output_sample(struct perf_output_handle *handle, 5334 struct perf_event_header *header, 5335 struct perf_sample_data *data, 5336 struct perf_event *event) 5337 { 5338 u64 sample_type = data->type; 5339 5340 perf_output_put(handle, *header); 5341 5342 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5343 perf_output_put(handle, data->id); 5344 5345 if (sample_type & PERF_SAMPLE_IP) 5346 perf_output_put(handle, data->ip); 5347 5348 if (sample_type & PERF_SAMPLE_TID) 5349 perf_output_put(handle, data->tid_entry); 5350 5351 if (sample_type & PERF_SAMPLE_TIME) 5352 perf_output_put(handle, data->time); 5353 5354 if (sample_type & PERF_SAMPLE_ADDR) 5355 perf_output_put(handle, data->addr); 5356 5357 if (sample_type & PERF_SAMPLE_ID) 5358 perf_output_put(handle, data->id); 5359 5360 if (sample_type & PERF_SAMPLE_STREAM_ID) 5361 perf_output_put(handle, data->stream_id); 5362 5363 if (sample_type & PERF_SAMPLE_CPU) 5364 perf_output_put(handle, data->cpu_entry); 5365 5366 if (sample_type & PERF_SAMPLE_PERIOD) 5367 perf_output_put(handle, data->period); 5368 5369 if (sample_type & PERF_SAMPLE_READ) 5370 perf_output_read(handle, event); 5371 5372 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5373 if (data->callchain) { 5374 int size = 1; 5375 5376 if (data->callchain) 5377 size += data->callchain->nr; 5378 5379 size *= sizeof(u64); 5380 5381 __output_copy(handle, data->callchain, size); 5382 } else { 5383 u64 nr = 0; 5384 perf_output_put(handle, nr); 5385 } 5386 } 5387 5388 if (sample_type & PERF_SAMPLE_RAW) { 5389 if (data->raw) { 5390 u32 raw_size = data->raw->size; 5391 u32 real_size = round_up(raw_size + sizeof(u32), 5392 sizeof(u64)) - sizeof(u32); 5393 u64 zero = 0; 5394 5395 perf_output_put(handle, real_size); 5396 __output_copy(handle, data->raw->data, raw_size); 5397 if (real_size - raw_size) 5398 __output_copy(handle, &zero, real_size - raw_size); 5399 } else { 5400 struct { 5401 u32 size; 5402 u32 data; 5403 } raw = { 5404 .size = sizeof(u32), 5405 .data = 0, 5406 }; 5407 perf_output_put(handle, raw); 5408 } 5409 } 5410 5411 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5412 if (data->br_stack) { 5413 size_t size; 5414 5415 size = data->br_stack->nr 5416 * sizeof(struct perf_branch_entry); 5417 5418 perf_output_put(handle, data->br_stack->nr); 5419 perf_output_copy(handle, data->br_stack->entries, size); 5420 } else { 5421 /* 5422 * we always store at least the value of nr 5423 */ 5424 u64 nr = 0; 5425 perf_output_put(handle, nr); 5426 } 5427 } 5428 5429 if (sample_type & PERF_SAMPLE_REGS_USER) { 5430 u64 abi = data->regs_user.abi; 5431 5432 /* 5433 * If there are no regs to dump, notice it through 5434 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5435 */ 5436 perf_output_put(handle, abi); 5437 5438 if (abi) { 5439 u64 mask = event->attr.sample_regs_user; 5440 perf_output_sample_regs(handle, 5441 data->regs_user.regs, 5442 mask); 5443 } 5444 } 5445 5446 if (sample_type & PERF_SAMPLE_STACK_USER) { 5447 perf_output_sample_ustack(handle, 5448 data->stack_user_size, 5449 data->regs_user.regs); 5450 } 5451 5452 if (sample_type & PERF_SAMPLE_WEIGHT) 5453 perf_output_put(handle, data->weight); 5454 5455 if (sample_type & PERF_SAMPLE_DATA_SRC) 5456 perf_output_put(handle, data->data_src.val); 5457 5458 if (sample_type & PERF_SAMPLE_TRANSACTION) 5459 perf_output_put(handle, data->txn); 5460 5461 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5462 u64 abi = data->regs_intr.abi; 5463 /* 5464 * If there are no regs to dump, notice it through 5465 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5466 */ 5467 perf_output_put(handle, abi); 5468 5469 if (abi) { 5470 u64 mask = event->attr.sample_regs_intr; 5471 5472 perf_output_sample_regs(handle, 5473 data->regs_intr.regs, 5474 mask); 5475 } 5476 } 5477 5478 if (!event->attr.watermark) { 5479 int wakeup_events = event->attr.wakeup_events; 5480 5481 if (wakeup_events) { 5482 struct ring_buffer *rb = handle->rb; 5483 int events = local_inc_return(&rb->events); 5484 5485 if (events >= wakeup_events) { 5486 local_sub(wakeup_events, &rb->events); 5487 local_inc(&rb->wakeup); 5488 } 5489 } 5490 } 5491 } 5492 5493 void perf_prepare_sample(struct perf_event_header *header, 5494 struct perf_sample_data *data, 5495 struct perf_event *event, 5496 struct pt_regs *regs) 5497 { 5498 u64 sample_type = event->attr.sample_type; 5499 5500 header->type = PERF_RECORD_SAMPLE; 5501 header->size = sizeof(*header) + event->header_size; 5502 5503 header->misc = 0; 5504 header->misc |= perf_misc_flags(regs); 5505 5506 __perf_event_header__init_id(header, data, event); 5507 5508 if (sample_type & PERF_SAMPLE_IP) 5509 data->ip = perf_instruction_pointer(regs); 5510 5511 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5512 int size = 1; 5513 5514 data->callchain = perf_callchain(event, regs); 5515 5516 if (data->callchain) 5517 size += data->callchain->nr; 5518 5519 header->size += size * sizeof(u64); 5520 } 5521 5522 if (sample_type & PERF_SAMPLE_RAW) { 5523 int size = sizeof(u32); 5524 5525 if (data->raw) 5526 size += data->raw->size; 5527 else 5528 size += sizeof(u32); 5529 5530 header->size += round_up(size, sizeof(u64)); 5531 } 5532 5533 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5534 int size = sizeof(u64); /* nr */ 5535 if (data->br_stack) { 5536 size += data->br_stack->nr 5537 * sizeof(struct perf_branch_entry); 5538 } 5539 header->size += size; 5540 } 5541 5542 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5543 perf_sample_regs_user(&data->regs_user, regs, 5544 &data->regs_user_copy); 5545 5546 if (sample_type & PERF_SAMPLE_REGS_USER) { 5547 /* regs dump ABI info */ 5548 int size = sizeof(u64); 5549 5550 if (data->regs_user.regs) { 5551 u64 mask = event->attr.sample_regs_user; 5552 size += hweight64(mask) * sizeof(u64); 5553 } 5554 5555 header->size += size; 5556 } 5557 5558 if (sample_type & PERF_SAMPLE_STACK_USER) { 5559 /* 5560 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5561 * processed as the last one or have additional check added 5562 * in case new sample type is added, because we could eat 5563 * up the rest of the sample size. 5564 */ 5565 u16 stack_size = event->attr.sample_stack_user; 5566 u16 size = sizeof(u64); 5567 5568 stack_size = perf_sample_ustack_size(stack_size, header->size, 5569 data->regs_user.regs); 5570 5571 /* 5572 * If there is something to dump, add space for the dump 5573 * itself and for the field that tells the dynamic size, 5574 * which is how many have been actually dumped. 5575 */ 5576 if (stack_size) 5577 size += sizeof(u64) + stack_size; 5578 5579 data->stack_user_size = stack_size; 5580 header->size += size; 5581 } 5582 5583 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5584 /* regs dump ABI info */ 5585 int size = sizeof(u64); 5586 5587 perf_sample_regs_intr(&data->regs_intr, regs); 5588 5589 if (data->regs_intr.regs) { 5590 u64 mask = event->attr.sample_regs_intr; 5591 5592 size += hweight64(mask) * sizeof(u64); 5593 } 5594 5595 header->size += size; 5596 } 5597 } 5598 5599 void perf_event_output(struct perf_event *event, 5600 struct perf_sample_data *data, 5601 struct pt_regs *regs) 5602 { 5603 struct perf_output_handle handle; 5604 struct perf_event_header header; 5605 5606 /* protect the callchain buffers */ 5607 rcu_read_lock(); 5608 5609 perf_prepare_sample(&header, data, event, regs); 5610 5611 if (perf_output_begin(&handle, event, header.size)) 5612 goto exit; 5613 5614 perf_output_sample(&handle, &header, data, event); 5615 5616 perf_output_end(&handle); 5617 5618 exit: 5619 rcu_read_unlock(); 5620 } 5621 5622 /* 5623 * read event_id 5624 */ 5625 5626 struct perf_read_event { 5627 struct perf_event_header header; 5628 5629 u32 pid; 5630 u32 tid; 5631 }; 5632 5633 static void 5634 perf_event_read_event(struct perf_event *event, 5635 struct task_struct *task) 5636 { 5637 struct perf_output_handle handle; 5638 struct perf_sample_data sample; 5639 struct perf_read_event read_event = { 5640 .header = { 5641 .type = PERF_RECORD_READ, 5642 .misc = 0, 5643 .size = sizeof(read_event) + event->read_size, 5644 }, 5645 .pid = perf_event_pid(event, task), 5646 .tid = perf_event_tid(event, task), 5647 }; 5648 int ret; 5649 5650 perf_event_header__init_id(&read_event.header, &sample, event); 5651 ret = perf_output_begin(&handle, event, read_event.header.size); 5652 if (ret) 5653 return; 5654 5655 perf_output_put(&handle, read_event); 5656 perf_output_read(&handle, event); 5657 perf_event__output_id_sample(event, &handle, &sample); 5658 5659 perf_output_end(&handle); 5660 } 5661 5662 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 5663 5664 static void 5665 perf_event_aux_ctx(struct perf_event_context *ctx, 5666 perf_event_aux_output_cb output, 5667 void *data) 5668 { 5669 struct perf_event *event; 5670 5671 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5672 if (event->state < PERF_EVENT_STATE_INACTIVE) 5673 continue; 5674 if (!event_filter_match(event)) 5675 continue; 5676 output(event, data); 5677 } 5678 } 5679 5680 static void 5681 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data, 5682 struct perf_event_context *task_ctx) 5683 { 5684 rcu_read_lock(); 5685 preempt_disable(); 5686 perf_event_aux_ctx(task_ctx, output, data); 5687 preempt_enable(); 5688 rcu_read_unlock(); 5689 } 5690 5691 static void 5692 perf_event_aux(perf_event_aux_output_cb output, void *data, 5693 struct perf_event_context *task_ctx) 5694 { 5695 struct perf_cpu_context *cpuctx; 5696 struct perf_event_context *ctx; 5697 struct pmu *pmu; 5698 int ctxn; 5699 5700 /* 5701 * If we have task_ctx != NULL we only notify 5702 * the task context itself. The task_ctx is set 5703 * only for EXIT events before releasing task 5704 * context. 5705 */ 5706 if (task_ctx) { 5707 perf_event_aux_task_ctx(output, data, task_ctx); 5708 return; 5709 } 5710 5711 rcu_read_lock(); 5712 list_for_each_entry_rcu(pmu, &pmus, entry) { 5713 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 5714 if (cpuctx->unique_pmu != pmu) 5715 goto next; 5716 perf_event_aux_ctx(&cpuctx->ctx, output, data); 5717 ctxn = pmu->task_ctx_nr; 5718 if (ctxn < 0) 5719 goto next; 5720 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 5721 if (ctx) 5722 perf_event_aux_ctx(ctx, output, data); 5723 next: 5724 put_cpu_ptr(pmu->pmu_cpu_context); 5725 } 5726 rcu_read_unlock(); 5727 } 5728 5729 /* 5730 * task tracking -- fork/exit 5731 * 5732 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 5733 */ 5734 5735 struct perf_task_event { 5736 struct task_struct *task; 5737 struct perf_event_context *task_ctx; 5738 5739 struct { 5740 struct perf_event_header header; 5741 5742 u32 pid; 5743 u32 ppid; 5744 u32 tid; 5745 u32 ptid; 5746 u64 time; 5747 } event_id; 5748 }; 5749 5750 static int perf_event_task_match(struct perf_event *event) 5751 { 5752 return event->attr.comm || event->attr.mmap || 5753 event->attr.mmap2 || event->attr.mmap_data || 5754 event->attr.task; 5755 } 5756 5757 static void perf_event_task_output(struct perf_event *event, 5758 void *data) 5759 { 5760 struct perf_task_event *task_event = data; 5761 struct perf_output_handle handle; 5762 struct perf_sample_data sample; 5763 struct task_struct *task = task_event->task; 5764 int ret, size = task_event->event_id.header.size; 5765 5766 if (!perf_event_task_match(event)) 5767 return; 5768 5769 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 5770 5771 ret = perf_output_begin(&handle, event, 5772 task_event->event_id.header.size); 5773 if (ret) 5774 goto out; 5775 5776 task_event->event_id.pid = perf_event_pid(event, task); 5777 task_event->event_id.ppid = perf_event_pid(event, current); 5778 5779 task_event->event_id.tid = perf_event_tid(event, task); 5780 task_event->event_id.ptid = perf_event_tid(event, current); 5781 5782 task_event->event_id.time = perf_event_clock(event); 5783 5784 perf_output_put(&handle, task_event->event_id); 5785 5786 perf_event__output_id_sample(event, &handle, &sample); 5787 5788 perf_output_end(&handle); 5789 out: 5790 task_event->event_id.header.size = size; 5791 } 5792 5793 static void perf_event_task(struct task_struct *task, 5794 struct perf_event_context *task_ctx, 5795 int new) 5796 { 5797 struct perf_task_event task_event; 5798 5799 if (!atomic_read(&nr_comm_events) && 5800 !atomic_read(&nr_mmap_events) && 5801 !atomic_read(&nr_task_events)) 5802 return; 5803 5804 task_event = (struct perf_task_event){ 5805 .task = task, 5806 .task_ctx = task_ctx, 5807 .event_id = { 5808 .header = { 5809 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 5810 .misc = 0, 5811 .size = sizeof(task_event.event_id), 5812 }, 5813 /* .pid */ 5814 /* .ppid */ 5815 /* .tid */ 5816 /* .ptid */ 5817 /* .time */ 5818 }, 5819 }; 5820 5821 perf_event_aux(perf_event_task_output, 5822 &task_event, 5823 task_ctx); 5824 } 5825 5826 void perf_event_fork(struct task_struct *task) 5827 { 5828 perf_event_task(task, NULL, 1); 5829 } 5830 5831 /* 5832 * comm tracking 5833 */ 5834 5835 struct perf_comm_event { 5836 struct task_struct *task; 5837 char *comm; 5838 int comm_size; 5839 5840 struct { 5841 struct perf_event_header header; 5842 5843 u32 pid; 5844 u32 tid; 5845 } event_id; 5846 }; 5847 5848 static int perf_event_comm_match(struct perf_event *event) 5849 { 5850 return event->attr.comm; 5851 } 5852 5853 static void perf_event_comm_output(struct perf_event *event, 5854 void *data) 5855 { 5856 struct perf_comm_event *comm_event = data; 5857 struct perf_output_handle handle; 5858 struct perf_sample_data sample; 5859 int size = comm_event->event_id.header.size; 5860 int ret; 5861 5862 if (!perf_event_comm_match(event)) 5863 return; 5864 5865 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 5866 ret = perf_output_begin(&handle, event, 5867 comm_event->event_id.header.size); 5868 5869 if (ret) 5870 goto out; 5871 5872 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 5873 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 5874 5875 perf_output_put(&handle, comm_event->event_id); 5876 __output_copy(&handle, comm_event->comm, 5877 comm_event->comm_size); 5878 5879 perf_event__output_id_sample(event, &handle, &sample); 5880 5881 perf_output_end(&handle); 5882 out: 5883 comm_event->event_id.header.size = size; 5884 } 5885 5886 static void perf_event_comm_event(struct perf_comm_event *comm_event) 5887 { 5888 char comm[TASK_COMM_LEN]; 5889 unsigned int size; 5890 5891 memset(comm, 0, sizeof(comm)); 5892 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 5893 size = ALIGN(strlen(comm)+1, sizeof(u64)); 5894 5895 comm_event->comm = comm; 5896 comm_event->comm_size = size; 5897 5898 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5899 5900 perf_event_aux(perf_event_comm_output, 5901 comm_event, 5902 NULL); 5903 } 5904 5905 void perf_event_comm(struct task_struct *task, bool exec) 5906 { 5907 struct perf_comm_event comm_event; 5908 5909 if (!atomic_read(&nr_comm_events)) 5910 return; 5911 5912 comm_event = (struct perf_comm_event){ 5913 .task = task, 5914 /* .comm */ 5915 /* .comm_size */ 5916 .event_id = { 5917 .header = { 5918 .type = PERF_RECORD_COMM, 5919 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 5920 /* .size */ 5921 }, 5922 /* .pid */ 5923 /* .tid */ 5924 }, 5925 }; 5926 5927 perf_event_comm_event(&comm_event); 5928 } 5929 5930 /* 5931 * mmap tracking 5932 */ 5933 5934 struct perf_mmap_event { 5935 struct vm_area_struct *vma; 5936 5937 const char *file_name; 5938 int file_size; 5939 int maj, min; 5940 u64 ino; 5941 u64 ino_generation; 5942 u32 prot, flags; 5943 5944 struct { 5945 struct perf_event_header header; 5946 5947 u32 pid; 5948 u32 tid; 5949 u64 start; 5950 u64 len; 5951 u64 pgoff; 5952 } event_id; 5953 }; 5954 5955 static int perf_event_mmap_match(struct perf_event *event, 5956 void *data) 5957 { 5958 struct perf_mmap_event *mmap_event = data; 5959 struct vm_area_struct *vma = mmap_event->vma; 5960 int executable = vma->vm_flags & VM_EXEC; 5961 5962 return (!executable && event->attr.mmap_data) || 5963 (executable && (event->attr.mmap || event->attr.mmap2)); 5964 } 5965 5966 static void perf_event_mmap_output(struct perf_event *event, 5967 void *data) 5968 { 5969 struct perf_mmap_event *mmap_event = data; 5970 struct perf_output_handle handle; 5971 struct perf_sample_data sample; 5972 int size = mmap_event->event_id.header.size; 5973 int ret; 5974 5975 if (!perf_event_mmap_match(event, data)) 5976 return; 5977 5978 if (event->attr.mmap2) { 5979 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 5980 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 5981 mmap_event->event_id.header.size += sizeof(mmap_event->min); 5982 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 5983 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 5984 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 5985 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 5986 } 5987 5988 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 5989 ret = perf_output_begin(&handle, event, 5990 mmap_event->event_id.header.size); 5991 if (ret) 5992 goto out; 5993 5994 mmap_event->event_id.pid = perf_event_pid(event, current); 5995 mmap_event->event_id.tid = perf_event_tid(event, current); 5996 5997 perf_output_put(&handle, mmap_event->event_id); 5998 5999 if (event->attr.mmap2) { 6000 perf_output_put(&handle, mmap_event->maj); 6001 perf_output_put(&handle, mmap_event->min); 6002 perf_output_put(&handle, mmap_event->ino); 6003 perf_output_put(&handle, mmap_event->ino_generation); 6004 perf_output_put(&handle, mmap_event->prot); 6005 perf_output_put(&handle, mmap_event->flags); 6006 } 6007 6008 __output_copy(&handle, mmap_event->file_name, 6009 mmap_event->file_size); 6010 6011 perf_event__output_id_sample(event, &handle, &sample); 6012 6013 perf_output_end(&handle); 6014 out: 6015 mmap_event->event_id.header.size = size; 6016 } 6017 6018 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6019 { 6020 struct vm_area_struct *vma = mmap_event->vma; 6021 struct file *file = vma->vm_file; 6022 int maj = 0, min = 0; 6023 u64 ino = 0, gen = 0; 6024 u32 prot = 0, flags = 0; 6025 unsigned int size; 6026 char tmp[16]; 6027 char *buf = NULL; 6028 char *name; 6029 6030 if (file) { 6031 struct inode *inode; 6032 dev_t dev; 6033 6034 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6035 if (!buf) { 6036 name = "//enomem"; 6037 goto cpy_name; 6038 } 6039 /* 6040 * d_path() works from the end of the rb backwards, so we 6041 * need to add enough zero bytes after the string to handle 6042 * the 64bit alignment we do later. 6043 */ 6044 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6045 if (IS_ERR(name)) { 6046 name = "//toolong"; 6047 goto cpy_name; 6048 } 6049 inode = file_inode(vma->vm_file); 6050 dev = inode->i_sb->s_dev; 6051 ino = inode->i_ino; 6052 gen = inode->i_generation; 6053 maj = MAJOR(dev); 6054 min = MINOR(dev); 6055 6056 if (vma->vm_flags & VM_READ) 6057 prot |= PROT_READ; 6058 if (vma->vm_flags & VM_WRITE) 6059 prot |= PROT_WRITE; 6060 if (vma->vm_flags & VM_EXEC) 6061 prot |= PROT_EXEC; 6062 6063 if (vma->vm_flags & VM_MAYSHARE) 6064 flags = MAP_SHARED; 6065 else 6066 flags = MAP_PRIVATE; 6067 6068 if (vma->vm_flags & VM_DENYWRITE) 6069 flags |= MAP_DENYWRITE; 6070 if (vma->vm_flags & VM_MAYEXEC) 6071 flags |= MAP_EXECUTABLE; 6072 if (vma->vm_flags & VM_LOCKED) 6073 flags |= MAP_LOCKED; 6074 if (vma->vm_flags & VM_HUGETLB) 6075 flags |= MAP_HUGETLB; 6076 6077 goto got_name; 6078 } else { 6079 if (vma->vm_ops && vma->vm_ops->name) { 6080 name = (char *) vma->vm_ops->name(vma); 6081 if (name) 6082 goto cpy_name; 6083 } 6084 6085 name = (char *)arch_vma_name(vma); 6086 if (name) 6087 goto cpy_name; 6088 6089 if (vma->vm_start <= vma->vm_mm->start_brk && 6090 vma->vm_end >= vma->vm_mm->brk) { 6091 name = "[heap]"; 6092 goto cpy_name; 6093 } 6094 if (vma->vm_start <= vma->vm_mm->start_stack && 6095 vma->vm_end >= vma->vm_mm->start_stack) { 6096 name = "[stack]"; 6097 goto cpy_name; 6098 } 6099 6100 name = "//anon"; 6101 goto cpy_name; 6102 } 6103 6104 cpy_name: 6105 strlcpy(tmp, name, sizeof(tmp)); 6106 name = tmp; 6107 got_name: 6108 /* 6109 * Since our buffer works in 8 byte units we need to align our string 6110 * size to a multiple of 8. However, we must guarantee the tail end is 6111 * zero'd out to avoid leaking random bits to userspace. 6112 */ 6113 size = strlen(name)+1; 6114 while (!IS_ALIGNED(size, sizeof(u64))) 6115 name[size++] = '\0'; 6116 6117 mmap_event->file_name = name; 6118 mmap_event->file_size = size; 6119 mmap_event->maj = maj; 6120 mmap_event->min = min; 6121 mmap_event->ino = ino; 6122 mmap_event->ino_generation = gen; 6123 mmap_event->prot = prot; 6124 mmap_event->flags = flags; 6125 6126 if (!(vma->vm_flags & VM_EXEC)) 6127 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6128 6129 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6130 6131 perf_event_aux(perf_event_mmap_output, 6132 mmap_event, 6133 NULL); 6134 6135 kfree(buf); 6136 } 6137 6138 void perf_event_mmap(struct vm_area_struct *vma) 6139 { 6140 struct perf_mmap_event mmap_event; 6141 6142 if (!atomic_read(&nr_mmap_events)) 6143 return; 6144 6145 mmap_event = (struct perf_mmap_event){ 6146 .vma = vma, 6147 /* .file_name */ 6148 /* .file_size */ 6149 .event_id = { 6150 .header = { 6151 .type = PERF_RECORD_MMAP, 6152 .misc = PERF_RECORD_MISC_USER, 6153 /* .size */ 6154 }, 6155 /* .pid */ 6156 /* .tid */ 6157 .start = vma->vm_start, 6158 .len = vma->vm_end - vma->vm_start, 6159 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6160 }, 6161 /* .maj (attr_mmap2 only) */ 6162 /* .min (attr_mmap2 only) */ 6163 /* .ino (attr_mmap2 only) */ 6164 /* .ino_generation (attr_mmap2 only) */ 6165 /* .prot (attr_mmap2 only) */ 6166 /* .flags (attr_mmap2 only) */ 6167 }; 6168 6169 perf_event_mmap_event(&mmap_event); 6170 } 6171 6172 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6173 unsigned long size, u64 flags) 6174 { 6175 struct perf_output_handle handle; 6176 struct perf_sample_data sample; 6177 struct perf_aux_event { 6178 struct perf_event_header header; 6179 u64 offset; 6180 u64 size; 6181 u64 flags; 6182 } rec = { 6183 .header = { 6184 .type = PERF_RECORD_AUX, 6185 .misc = 0, 6186 .size = sizeof(rec), 6187 }, 6188 .offset = head, 6189 .size = size, 6190 .flags = flags, 6191 }; 6192 int ret; 6193 6194 perf_event_header__init_id(&rec.header, &sample, event); 6195 ret = perf_output_begin(&handle, event, rec.header.size); 6196 6197 if (ret) 6198 return; 6199 6200 perf_output_put(&handle, rec); 6201 perf_event__output_id_sample(event, &handle, &sample); 6202 6203 perf_output_end(&handle); 6204 } 6205 6206 /* 6207 * Lost/dropped samples logging 6208 */ 6209 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6210 { 6211 struct perf_output_handle handle; 6212 struct perf_sample_data sample; 6213 int ret; 6214 6215 struct { 6216 struct perf_event_header header; 6217 u64 lost; 6218 } lost_samples_event = { 6219 .header = { 6220 .type = PERF_RECORD_LOST_SAMPLES, 6221 .misc = 0, 6222 .size = sizeof(lost_samples_event), 6223 }, 6224 .lost = lost, 6225 }; 6226 6227 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6228 6229 ret = perf_output_begin(&handle, event, 6230 lost_samples_event.header.size); 6231 if (ret) 6232 return; 6233 6234 perf_output_put(&handle, lost_samples_event); 6235 perf_event__output_id_sample(event, &handle, &sample); 6236 perf_output_end(&handle); 6237 } 6238 6239 /* 6240 * context_switch tracking 6241 */ 6242 6243 struct perf_switch_event { 6244 struct task_struct *task; 6245 struct task_struct *next_prev; 6246 6247 struct { 6248 struct perf_event_header header; 6249 u32 next_prev_pid; 6250 u32 next_prev_tid; 6251 } event_id; 6252 }; 6253 6254 static int perf_event_switch_match(struct perf_event *event) 6255 { 6256 return event->attr.context_switch; 6257 } 6258 6259 static void perf_event_switch_output(struct perf_event *event, void *data) 6260 { 6261 struct perf_switch_event *se = data; 6262 struct perf_output_handle handle; 6263 struct perf_sample_data sample; 6264 int ret; 6265 6266 if (!perf_event_switch_match(event)) 6267 return; 6268 6269 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6270 if (event->ctx->task) { 6271 se->event_id.header.type = PERF_RECORD_SWITCH; 6272 se->event_id.header.size = sizeof(se->event_id.header); 6273 } else { 6274 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6275 se->event_id.header.size = sizeof(se->event_id); 6276 se->event_id.next_prev_pid = 6277 perf_event_pid(event, se->next_prev); 6278 se->event_id.next_prev_tid = 6279 perf_event_tid(event, se->next_prev); 6280 } 6281 6282 perf_event_header__init_id(&se->event_id.header, &sample, event); 6283 6284 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6285 if (ret) 6286 return; 6287 6288 if (event->ctx->task) 6289 perf_output_put(&handle, se->event_id.header); 6290 else 6291 perf_output_put(&handle, se->event_id); 6292 6293 perf_event__output_id_sample(event, &handle, &sample); 6294 6295 perf_output_end(&handle); 6296 } 6297 6298 static void perf_event_switch(struct task_struct *task, 6299 struct task_struct *next_prev, bool sched_in) 6300 { 6301 struct perf_switch_event switch_event; 6302 6303 /* N.B. caller checks nr_switch_events != 0 */ 6304 6305 switch_event = (struct perf_switch_event){ 6306 .task = task, 6307 .next_prev = next_prev, 6308 .event_id = { 6309 .header = { 6310 /* .type */ 6311 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 6312 /* .size */ 6313 }, 6314 /* .next_prev_pid */ 6315 /* .next_prev_tid */ 6316 }, 6317 }; 6318 6319 perf_event_aux(perf_event_switch_output, 6320 &switch_event, 6321 NULL); 6322 } 6323 6324 /* 6325 * IRQ throttle logging 6326 */ 6327 6328 static void perf_log_throttle(struct perf_event *event, int enable) 6329 { 6330 struct perf_output_handle handle; 6331 struct perf_sample_data sample; 6332 int ret; 6333 6334 struct { 6335 struct perf_event_header header; 6336 u64 time; 6337 u64 id; 6338 u64 stream_id; 6339 } throttle_event = { 6340 .header = { 6341 .type = PERF_RECORD_THROTTLE, 6342 .misc = 0, 6343 .size = sizeof(throttle_event), 6344 }, 6345 .time = perf_event_clock(event), 6346 .id = primary_event_id(event), 6347 .stream_id = event->id, 6348 }; 6349 6350 if (enable) 6351 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6352 6353 perf_event_header__init_id(&throttle_event.header, &sample, event); 6354 6355 ret = perf_output_begin(&handle, event, 6356 throttle_event.header.size); 6357 if (ret) 6358 return; 6359 6360 perf_output_put(&handle, throttle_event); 6361 perf_event__output_id_sample(event, &handle, &sample); 6362 perf_output_end(&handle); 6363 } 6364 6365 static void perf_log_itrace_start(struct perf_event *event) 6366 { 6367 struct perf_output_handle handle; 6368 struct perf_sample_data sample; 6369 struct perf_aux_event { 6370 struct perf_event_header header; 6371 u32 pid; 6372 u32 tid; 6373 } rec; 6374 int ret; 6375 6376 if (event->parent) 6377 event = event->parent; 6378 6379 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6380 event->hw.itrace_started) 6381 return; 6382 6383 rec.header.type = PERF_RECORD_ITRACE_START; 6384 rec.header.misc = 0; 6385 rec.header.size = sizeof(rec); 6386 rec.pid = perf_event_pid(event, current); 6387 rec.tid = perf_event_tid(event, current); 6388 6389 perf_event_header__init_id(&rec.header, &sample, event); 6390 ret = perf_output_begin(&handle, event, rec.header.size); 6391 6392 if (ret) 6393 return; 6394 6395 perf_output_put(&handle, rec); 6396 perf_event__output_id_sample(event, &handle, &sample); 6397 6398 perf_output_end(&handle); 6399 } 6400 6401 /* 6402 * Generic event overflow handling, sampling. 6403 */ 6404 6405 static int __perf_event_overflow(struct perf_event *event, 6406 int throttle, struct perf_sample_data *data, 6407 struct pt_regs *regs) 6408 { 6409 int events = atomic_read(&event->event_limit); 6410 struct hw_perf_event *hwc = &event->hw; 6411 u64 seq; 6412 int ret = 0; 6413 6414 /* 6415 * Non-sampling counters might still use the PMI to fold short 6416 * hardware counters, ignore those. 6417 */ 6418 if (unlikely(!is_sampling_event(event))) 6419 return 0; 6420 6421 seq = __this_cpu_read(perf_throttled_seq); 6422 if (seq != hwc->interrupts_seq) { 6423 hwc->interrupts_seq = seq; 6424 hwc->interrupts = 1; 6425 } else { 6426 hwc->interrupts++; 6427 if (unlikely(throttle 6428 && hwc->interrupts >= max_samples_per_tick)) { 6429 __this_cpu_inc(perf_throttled_count); 6430 hwc->interrupts = MAX_INTERRUPTS; 6431 perf_log_throttle(event, 0); 6432 tick_nohz_full_kick(); 6433 ret = 1; 6434 } 6435 } 6436 6437 if (event->attr.freq) { 6438 u64 now = perf_clock(); 6439 s64 delta = now - hwc->freq_time_stamp; 6440 6441 hwc->freq_time_stamp = now; 6442 6443 if (delta > 0 && delta < 2*TICK_NSEC) 6444 perf_adjust_period(event, delta, hwc->last_period, true); 6445 } 6446 6447 /* 6448 * XXX event_limit might not quite work as expected on inherited 6449 * events 6450 */ 6451 6452 event->pending_kill = POLL_IN; 6453 if (events && atomic_dec_and_test(&event->event_limit)) { 6454 ret = 1; 6455 event->pending_kill = POLL_HUP; 6456 event->pending_disable = 1; 6457 irq_work_queue(&event->pending); 6458 } 6459 6460 if (event->overflow_handler) 6461 event->overflow_handler(event, data, regs); 6462 else 6463 perf_event_output(event, data, regs); 6464 6465 if (*perf_event_fasync(event) && event->pending_kill) { 6466 event->pending_wakeup = 1; 6467 irq_work_queue(&event->pending); 6468 } 6469 6470 return ret; 6471 } 6472 6473 int perf_event_overflow(struct perf_event *event, 6474 struct perf_sample_data *data, 6475 struct pt_regs *regs) 6476 { 6477 return __perf_event_overflow(event, 1, data, regs); 6478 } 6479 6480 /* 6481 * Generic software event infrastructure 6482 */ 6483 6484 struct swevent_htable { 6485 struct swevent_hlist *swevent_hlist; 6486 struct mutex hlist_mutex; 6487 int hlist_refcount; 6488 6489 /* Recursion avoidance in each contexts */ 6490 int recursion[PERF_NR_CONTEXTS]; 6491 }; 6492 6493 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 6494 6495 /* 6496 * We directly increment event->count and keep a second value in 6497 * event->hw.period_left to count intervals. This period event 6498 * is kept in the range [-sample_period, 0] so that we can use the 6499 * sign as trigger. 6500 */ 6501 6502 u64 perf_swevent_set_period(struct perf_event *event) 6503 { 6504 struct hw_perf_event *hwc = &event->hw; 6505 u64 period = hwc->last_period; 6506 u64 nr, offset; 6507 s64 old, val; 6508 6509 hwc->last_period = hwc->sample_period; 6510 6511 again: 6512 old = val = local64_read(&hwc->period_left); 6513 if (val < 0) 6514 return 0; 6515 6516 nr = div64_u64(period + val, period); 6517 offset = nr * period; 6518 val -= offset; 6519 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 6520 goto again; 6521 6522 return nr; 6523 } 6524 6525 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 6526 struct perf_sample_data *data, 6527 struct pt_regs *regs) 6528 { 6529 struct hw_perf_event *hwc = &event->hw; 6530 int throttle = 0; 6531 6532 if (!overflow) 6533 overflow = perf_swevent_set_period(event); 6534 6535 if (hwc->interrupts == MAX_INTERRUPTS) 6536 return; 6537 6538 for (; overflow; overflow--) { 6539 if (__perf_event_overflow(event, throttle, 6540 data, regs)) { 6541 /* 6542 * We inhibit the overflow from happening when 6543 * hwc->interrupts == MAX_INTERRUPTS. 6544 */ 6545 break; 6546 } 6547 throttle = 1; 6548 } 6549 } 6550 6551 static void perf_swevent_event(struct perf_event *event, u64 nr, 6552 struct perf_sample_data *data, 6553 struct pt_regs *regs) 6554 { 6555 struct hw_perf_event *hwc = &event->hw; 6556 6557 local64_add(nr, &event->count); 6558 6559 if (!regs) 6560 return; 6561 6562 if (!is_sampling_event(event)) 6563 return; 6564 6565 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 6566 data->period = nr; 6567 return perf_swevent_overflow(event, 1, data, regs); 6568 } else 6569 data->period = event->hw.last_period; 6570 6571 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 6572 return perf_swevent_overflow(event, 1, data, regs); 6573 6574 if (local64_add_negative(nr, &hwc->period_left)) 6575 return; 6576 6577 perf_swevent_overflow(event, 0, data, regs); 6578 } 6579 6580 static int perf_exclude_event(struct perf_event *event, 6581 struct pt_regs *regs) 6582 { 6583 if (event->hw.state & PERF_HES_STOPPED) 6584 return 1; 6585 6586 if (regs) { 6587 if (event->attr.exclude_user && user_mode(regs)) 6588 return 1; 6589 6590 if (event->attr.exclude_kernel && !user_mode(regs)) 6591 return 1; 6592 } 6593 6594 return 0; 6595 } 6596 6597 static int perf_swevent_match(struct perf_event *event, 6598 enum perf_type_id type, 6599 u32 event_id, 6600 struct perf_sample_data *data, 6601 struct pt_regs *regs) 6602 { 6603 if (event->attr.type != type) 6604 return 0; 6605 6606 if (event->attr.config != event_id) 6607 return 0; 6608 6609 if (perf_exclude_event(event, regs)) 6610 return 0; 6611 6612 return 1; 6613 } 6614 6615 static inline u64 swevent_hash(u64 type, u32 event_id) 6616 { 6617 u64 val = event_id | (type << 32); 6618 6619 return hash_64(val, SWEVENT_HLIST_BITS); 6620 } 6621 6622 static inline struct hlist_head * 6623 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 6624 { 6625 u64 hash = swevent_hash(type, event_id); 6626 6627 return &hlist->heads[hash]; 6628 } 6629 6630 /* For the read side: events when they trigger */ 6631 static inline struct hlist_head * 6632 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 6633 { 6634 struct swevent_hlist *hlist; 6635 6636 hlist = rcu_dereference(swhash->swevent_hlist); 6637 if (!hlist) 6638 return NULL; 6639 6640 return __find_swevent_head(hlist, type, event_id); 6641 } 6642 6643 /* For the event head insertion and removal in the hlist */ 6644 static inline struct hlist_head * 6645 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 6646 { 6647 struct swevent_hlist *hlist; 6648 u32 event_id = event->attr.config; 6649 u64 type = event->attr.type; 6650 6651 /* 6652 * Event scheduling is always serialized against hlist allocation 6653 * and release. Which makes the protected version suitable here. 6654 * The context lock guarantees that. 6655 */ 6656 hlist = rcu_dereference_protected(swhash->swevent_hlist, 6657 lockdep_is_held(&event->ctx->lock)); 6658 if (!hlist) 6659 return NULL; 6660 6661 return __find_swevent_head(hlist, type, event_id); 6662 } 6663 6664 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 6665 u64 nr, 6666 struct perf_sample_data *data, 6667 struct pt_regs *regs) 6668 { 6669 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6670 struct perf_event *event; 6671 struct hlist_head *head; 6672 6673 rcu_read_lock(); 6674 head = find_swevent_head_rcu(swhash, type, event_id); 6675 if (!head) 6676 goto end; 6677 6678 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6679 if (perf_swevent_match(event, type, event_id, data, regs)) 6680 perf_swevent_event(event, nr, data, regs); 6681 } 6682 end: 6683 rcu_read_unlock(); 6684 } 6685 6686 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 6687 6688 int perf_swevent_get_recursion_context(void) 6689 { 6690 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6691 6692 return get_recursion_context(swhash->recursion); 6693 } 6694 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 6695 6696 inline void perf_swevent_put_recursion_context(int rctx) 6697 { 6698 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6699 6700 put_recursion_context(swhash->recursion, rctx); 6701 } 6702 6703 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6704 { 6705 struct perf_sample_data data; 6706 6707 if (WARN_ON_ONCE(!regs)) 6708 return; 6709 6710 perf_sample_data_init(&data, addr, 0); 6711 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 6712 } 6713 6714 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6715 { 6716 int rctx; 6717 6718 preempt_disable_notrace(); 6719 rctx = perf_swevent_get_recursion_context(); 6720 if (unlikely(rctx < 0)) 6721 goto fail; 6722 6723 ___perf_sw_event(event_id, nr, regs, addr); 6724 6725 perf_swevent_put_recursion_context(rctx); 6726 fail: 6727 preempt_enable_notrace(); 6728 } 6729 6730 static void perf_swevent_read(struct perf_event *event) 6731 { 6732 } 6733 6734 static int perf_swevent_add(struct perf_event *event, int flags) 6735 { 6736 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6737 struct hw_perf_event *hwc = &event->hw; 6738 struct hlist_head *head; 6739 6740 if (is_sampling_event(event)) { 6741 hwc->last_period = hwc->sample_period; 6742 perf_swevent_set_period(event); 6743 } 6744 6745 hwc->state = !(flags & PERF_EF_START); 6746 6747 head = find_swevent_head(swhash, event); 6748 if (WARN_ON_ONCE(!head)) 6749 return -EINVAL; 6750 6751 hlist_add_head_rcu(&event->hlist_entry, head); 6752 perf_event_update_userpage(event); 6753 6754 return 0; 6755 } 6756 6757 static void perf_swevent_del(struct perf_event *event, int flags) 6758 { 6759 hlist_del_rcu(&event->hlist_entry); 6760 } 6761 6762 static void perf_swevent_start(struct perf_event *event, int flags) 6763 { 6764 event->hw.state = 0; 6765 } 6766 6767 static void perf_swevent_stop(struct perf_event *event, int flags) 6768 { 6769 event->hw.state = PERF_HES_STOPPED; 6770 } 6771 6772 /* Deref the hlist from the update side */ 6773 static inline struct swevent_hlist * 6774 swevent_hlist_deref(struct swevent_htable *swhash) 6775 { 6776 return rcu_dereference_protected(swhash->swevent_hlist, 6777 lockdep_is_held(&swhash->hlist_mutex)); 6778 } 6779 6780 static void swevent_hlist_release(struct swevent_htable *swhash) 6781 { 6782 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 6783 6784 if (!hlist) 6785 return; 6786 6787 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 6788 kfree_rcu(hlist, rcu_head); 6789 } 6790 6791 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 6792 { 6793 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6794 6795 mutex_lock(&swhash->hlist_mutex); 6796 6797 if (!--swhash->hlist_refcount) 6798 swevent_hlist_release(swhash); 6799 6800 mutex_unlock(&swhash->hlist_mutex); 6801 } 6802 6803 static void swevent_hlist_put(struct perf_event *event) 6804 { 6805 int cpu; 6806 6807 for_each_possible_cpu(cpu) 6808 swevent_hlist_put_cpu(event, cpu); 6809 } 6810 6811 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 6812 { 6813 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6814 int err = 0; 6815 6816 mutex_lock(&swhash->hlist_mutex); 6817 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 6818 struct swevent_hlist *hlist; 6819 6820 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 6821 if (!hlist) { 6822 err = -ENOMEM; 6823 goto exit; 6824 } 6825 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6826 } 6827 swhash->hlist_refcount++; 6828 exit: 6829 mutex_unlock(&swhash->hlist_mutex); 6830 6831 return err; 6832 } 6833 6834 static int swevent_hlist_get(struct perf_event *event) 6835 { 6836 int err; 6837 int cpu, failed_cpu; 6838 6839 get_online_cpus(); 6840 for_each_possible_cpu(cpu) { 6841 err = swevent_hlist_get_cpu(event, cpu); 6842 if (err) { 6843 failed_cpu = cpu; 6844 goto fail; 6845 } 6846 } 6847 put_online_cpus(); 6848 6849 return 0; 6850 fail: 6851 for_each_possible_cpu(cpu) { 6852 if (cpu == failed_cpu) 6853 break; 6854 swevent_hlist_put_cpu(event, cpu); 6855 } 6856 6857 put_online_cpus(); 6858 return err; 6859 } 6860 6861 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 6862 6863 static void sw_perf_event_destroy(struct perf_event *event) 6864 { 6865 u64 event_id = event->attr.config; 6866 6867 WARN_ON(event->parent); 6868 6869 static_key_slow_dec(&perf_swevent_enabled[event_id]); 6870 swevent_hlist_put(event); 6871 } 6872 6873 static int perf_swevent_init(struct perf_event *event) 6874 { 6875 u64 event_id = event->attr.config; 6876 6877 if (event->attr.type != PERF_TYPE_SOFTWARE) 6878 return -ENOENT; 6879 6880 /* 6881 * no branch sampling for software events 6882 */ 6883 if (has_branch_stack(event)) 6884 return -EOPNOTSUPP; 6885 6886 switch (event_id) { 6887 case PERF_COUNT_SW_CPU_CLOCK: 6888 case PERF_COUNT_SW_TASK_CLOCK: 6889 return -ENOENT; 6890 6891 default: 6892 break; 6893 } 6894 6895 if (event_id >= PERF_COUNT_SW_MAX) 6896 return -ENOENT; 6897 6898 if (!event->parent) { 6899 int err; 6900 6901 err = swevent_hlist_get(event); 6902 if (err) 6903 return err; 6904 6905 static_key_slow_inc(&perf_swevent_enabled[event_id]); 6906 event->destroy = sw_perf_event_destroy; 6907 } 6908 6909 return 0; 6910 } 6911 6912 static struct pmu perf_swevent = { 6913 .task_ctx_nr = perf_sw_context, 6914 6915 .capabilities = PERF_PMU_CAP_NO_NMI, 6916 6917 .event_init = perf_swevent_init, 6918 .add = perf_swevent_add, 6919 .del = perf_swevent_del, 6920 .start = perf_swevent_start, 6921 .stop = perf_swevent_stop, 6922 .read = perf_swevent_read, 6923 }; 6924 6925 #ifdef CONFIG_EVENT_TRACING 6926 6927 static int perf_tp_filter_match(struct perf_event *event, 6928 struct perf_sample_data *data) 6929 { 6930 void *record = data->raw->data; 6931 6932 /* only top level events have filters set */ 6933 if (event->parent) 6934 event = event->parent; 6935 6936 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 6937 return 1; 6938 return 0; 6939 } 6940 6941 static int perf_tp_event_match(struct perf_event *event, 6942 struct perf_sample_data *data, 6943 struct pt_regs *regs) 6944 { 6945 if (event->hw.state & PERF_HES_STOPPED) 6946 return 0; 6947 /* 6948 * All tracepoints are from kernel-space. 6949 */ 6950 if (event->attr.exclude_kernel) 6951 return 0; 6952 6953 if (!perf_tp_filter_match(event, data)) 6954 return 0; 6955 6956 return 1; 6957 } 6958 6959 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 6960 struct pt_regs *regs, struct hlist_head *head, int rctx, 6961 struct task_struct *task) 6962 { 6963 struct perf_sample_data data; 6964 struct perf_event *event; 6965 6966 struct perf_raw_record raw = { 6967 .size = entry_size, 6968 .data = record, 6969 }; 6970 6971 perf_sample_data_init(&data, addr, 0); 6972 data.raw = &raw; 6973 6974 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6975 if (perf_tp_event_match(event, &data, regs)) 6976 perf_swevent_event(event, count, &data, regs); 6977 } 6978 6979 /* 6980 * If we got specified a target task, also iterate its context and 6981 * deliver this event there too. 6982 */ 6983 if (task && task != current) { 6984 struct perf_event_context *ctx; 6985 struct trace_entry *entry = record; 6986 6987 rcu_read_lock(); 6988 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 6989 if (!ctx) 6990 goto unlock; 6991 6992 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6993 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6994 continue; 6995 if (event->attr.config != entry->type) 6996 continue; 6997 if (perf_tp_event_match(event, &data, regs)) 6998 perf_swevent_event(event, count, &data, regs); 6999 } 7000 unlock: 7001 rcu_read_unlock(); 7002 } 7003 7004 perf_swevent_put_recursion_context(rctx); 7005 } 7006 EXPORT_SYMBOL_GPL(perf_tp_event); 7007 7008 static void tp_perf_event_destroy(struct perf_event *event) 7009 { 7010 perf_trace_destroy(event); 7011 } 7012 7013 static int perf_tp_event_init(struct perf_event *event) 7014 { 7015 int err; 7016 7017 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7018 return -ENOENT; 7019 7020 /* 7021 * no branch sampling for tracepoint events 7022 */ 7023 if (has_branch_stack(event)) 7024 return -EOPNOTSUPP; 7025 7026 err = perf_trace_init(event); 7027 if (err) 7028 return err; 7029 7030 event->destroy = tp_perf_event_destroy; 7031 7032 return 0; 7033 } 7034 7035 static struct pmu perf_tracepoint = { 7036 .task_ctx_nr = perf_sw_context, 7037 7038 .event_init = perf_tp_event_init, 7039 .add = perf_trace_add, 7040 .del = perf_trace_del, 7041 .start = perf_swevent_start, 7042 .stop = perf_swevent_stop, 7043 .read = perf_swevent_read, 7044 }; 7045 7046 static inline void perf_tp_register(void) 7047 { 7048 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7049 } 7050 7051 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 7052 { 7053 char *filter_str; 7054 int ret; 7055 7056 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7057 return -EINVAL; 7058 7059 filter_str = strndup_user(arg, PAGE_SIZE); 7060 if (IS_ERR(filter_str)) 7061 return PTR_ERR(filter_str); 7062 7063 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 7064 7065 kfree(filter_str); 7066 return ret; 7067 } 7068 7069 static void perf_event_free_filter(struct perf_event *event) 7070 { 7071 ftrace_profile_free_filter(event); 7072 } 7073 7074 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7075 { 7076 struct bpf_prog *prog; 7077 7078 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7079 return -EINVAL; 7080 7081 if (event->tp_event->prog) 7082 return -EEXIST; 7083 7084 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE)) 7085 /* bpf programs can only be attached to u/kprobes */ 7086 return -EINVAL; 7087 7088 prog = bpf_prog_get(prog_fd); 7089 if (IS_ERR(prog)) 7090 return PTR_ERR(prog); 7091 7092 if (prog->type != BPF_PROG_TYPE_KPROBE) { 7093 /* valid fd, but invalid bpf program type */ 7094 bpf_prog_put(prog); 7095 return -EINVAL; 7096 } 7097 7098 event->tp_event->prog = prog; 7099 7100 return 0; 7101 } 7102 7103 static void perf_event_free_bpf_prog(struct perf_event *event) 7104 { 7105 struct bpf_prog *prog; 7106 7107 if (!event->tp_event) 7108 return; 7109 7110 prog = event->tp_event->prog; 7111 if (prog) { 7112 event->tp_event->prog = NULL; 7113 bpf_prog_put(prog); 7114 } 7115 } 7116 7117 #else 7118 7119 static inline void perf_tp_register(void) 7120 { 7121 } 7122 7123 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 7124 { 7125 return -ENOENT; 7126 } 7127 7128 static void perf_event_free_filter(struct perf_event *event) 7129 { 7130 } 7131 7132 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7133 { 7134 return -ENOENT; 7135 } 7136 7137 static void perf_event_free_bpf_prog(struct perf_event *event) 7138 { 7139 } 7140 #endif /* CONFIG_EVENT_TRACING */ 7141 7142 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7143 void perf_bp_event(struct perf_event *bp, void *data) 7144 { 7145 struct perf_sample_data sample; 7146 struct pt_regs *regs = data; 7147 7148 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7149 7150 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7151 perf_swevent_event(bp, 1, &sample, regs); 7152 } 7153 #endif 7154 7155 /* 7156 * hrtimer based swevent callback 7157 */ 7158 7159 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 7160 { 7161 enum hrtimer_restart ret = HRTIMER_RESTART; 7162 struct perf_sample_data data; 7163 struct pt_regs *regs; 7164 struct perf_event *event; 7165 u64 period; 7166 7167 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 7168 7169 if (event->state != PERF_EVENT_STATE_ACTIVE) 7170 return HRTIMER_NORESTART; 7171 7172 event->pmu->read(event); 7173 7174 perf_sample_data_init(&data, 0, event->hw.last_period); 7175 regs = get_irq_regs(); 7176 7177 if (regs && !perf_exclude_event(event, regs)) { 7178 if (!(event->attr.exclude_idle && is_idle_task(current))) 7179 if (__perf_event_overflow(event, 1, &data, regs)) 7180 ret = HRTIMER_NORESTART; 7181 } 7182 7183 period = max_t(u64, 10000, event->hw.sample_period); 7184 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 7185 7186 return ret; 7187 } 7188 7189 static void perf_swevent_start_hrtimer(struct perf_event *event) 7190 { 7191 struct hw_perf_event *hwc = &event->hw; 7192 s64 period; 7193 7194 if (!is_sampling_event(event)) 7195 return; 7196 7197 period = local64_read(&hwc->period_left); 7198 if (period) { 7199 if (period < 0) 7200 period = 10000; 7201 7202 local64_set(&hwc->period_left, 0); 7203 } else { 7204 period = max_t(u64, 10000, hwc->sample_period); 7205 } 7206 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 7207 HRTIMER_MODE_REL_PINNED); 7208 } 7209 7210 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 7211 { 7212 struct hw_perf_event *hwc = &event->hw; 7213 7214 if (is_sampling_event(event)) { 7215 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 7216 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 7217 7218 hrtimer_cancel(&hwc->hrtimer); 7219 } 7220 } 7221 7222 static void perf_swevent_init_hrtimer(struct perf_event *event) 7223 { 7224 struct hw_perf_event *hwc = &event->hw; 7225 7226 if (!is_sampling_event(event)) 7227 return; 7228 7229 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 7230 hwc->hrtimer.function = perf_swevent_hrtimer; 7231 7232 /* 7233 * Since hrtimers have a fixed rate, we can do a static freq->period 7234 * mapping and avoid the whole period adjust feedback stuff. 7235 */ 7236 if (event->attr.freq) { 7237 long freq = event->attr.sample_freq; 7238 7239 event->attr.sample_period = NSEC_PER_SEC / freq; 7240 hwc->sample_period = event->attr.sample_period; 7241 local64_set(&hwc->period_left, hwc->sample_period); 7242 hwc->last_period = hwc->sample_period; 7243 event->attr.freq = 0; 7244 } 7245 } 7246 7247 /* 7248 * Software event: cpu wall time clock 7249 */ 7250 7251 static void cpu_clock_event_update(struct perf_event *event) 7252 { 7253 s64 prev; 7254 u64 now; 7255 7256 now = local_clock(); 7257 prev = local64_xchg(&event->hw.prev_count, now); 7258 local64_add(now - prev, &event->count); 7259 } 7260 7261 static void cpu_clock_event_start(struct perf_event *event, int flags) 7262 { 7263 local64_set(&event->hw.prev_count, local_clock()); 7264 perf_swevent_start_hrtimer(event); 7265 } 7266 7267 static void cpu_clock_event_stop(struct perf_event *event, int flags) 7268 { 7269 perf_swevent_cancel_hrtimer(event); 7270 cpu_clock_event_update(event); 7271 } 7272 7273 static int cpu_clock_event_add(struct perf_event *event, int flags) 7274 { 7275 if (flags & PERF_EF_START) 7276 cpu_clock_event_start(event, flags); 7277 perf_event_update_userpage(event); 7278 7279 return 0; 7280 } 7281 7282 static void cpu_clock_event_del(struct perf_event *event, int flags) 7283 { 7284 cpu_clock_event_stop(event, flags); 7285 } 7286 7287 static void cpu_clock_event_read(struct perf_event *event) 7288 { 7289 cpu_clock_event_update(event); 7290 } 7291 7292 static int cpu_clock_event_init(struct perf_event *event) 7293 { 7294 if (event->attr.type != PERF_TYPE_SOFTWARE) 7295 return -ENOENT; 7296 7297 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 7298 return -ENOENT; 7299 7300 /* 7301 * no branch sampling for software events 7302 */ 7303 if (has_branch_stack(event)) 7304 return -EOPNOTSUPP; 7305 7306 perf_swevent_init_hrtimer(event); 7307 7308 return 0; 7309 } 7310 7311 static struct pmu perf_cpu_clock = { 7312 .task_ctx_nr = perf_sw_context, 7313 7314 .capabilities = PERF_PMU_CAP_NO_NMI, 7315 7316 .event_init = cpu_clock_event_init, 7317 .add = cpu_clock_event_add, 7318 .del = cpu_clock_event_del, 7319 .start = cpu_clock_event_start, 7320 .stop = cpu_clock_event_stop, 7321 .read = cpu_clock_event_read, 7322 }; 7323 7324 /* 7325 * Software event: task time clock 7326 */ 7327 7328 static void task_clock_event_update(struct perf_event *event, u64 now) 7329 { 7330 u64 prev; 7331 s64 delta; 7332 7333 prev = local64_xchg(&event->hw.prev_count, now); 7334 delta = now - prev; 7335 local64_add(delta, &event->count); 7336 } 7337 7338 static void task_clock_event_start(struct perf_event *event, int flags) 7339 { 7340 local64_set(&event->hw.prev_count, event->ctx->time); 7341 perf_swevent_start_hrtimer(event); 7342 } 7343 7344 static void task_clock_event_stop(struct perf_event *event, int flags) 7345 { 7346 perf_swevent_cancel_hrtimer(event); 7347 task_clock_event_update(event, event->ctx->time); 7348 } 7349 7350 static int task_clock_event_add(struct perf_event *event, int flags) 7351 { 7352 if (flags & PERF_EF_START) 7353 task_clock_event_start(event, flags); 7354 perf_event_update_userpage(event); 7355 7356 return 0; 7357 } 7358 7359 static void task_clock_event_del(struct perf_event *event, int flags) 7360 { 7361 task_clock_event_stop(event, PERF_EF_UPDATE); 7362 } 7363 7364 static void task_clock_event_read(struct perf_event *event) 7365 { 7366 u64 now = perf_clock(); 7367 u64 delta = now - event->ctx->timestamp; 7368 u64 time = event->ctx->time + delta; 7369 7370 task_clock_event_update(event, time); 7371 } 7372 7373 static int task_clock_event_init(struct perf_event *event) 7374 { 7375 if (event->attr.type != PERF_TYPE_SOFTWARE) 7376 return -ENOENT; 7377 7378 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 7379 return -ENOENT; 7380 7381 /* 7382 * no branch sampling for software events 7383 */ 7384 if (has_branch_stack(event)) 7385 return -EOPNOTSUPP; 7386 7387 perf_swevent_init_hrtimer(event); 7388 7389 return 0; 7390 } 7391 7392 static struct pmu perf_task_clock = { 7393 .task_ctx_nr = perf_sw_context, 7394 7395 .capabilities = PERF_PMU_CAP_NO_NMI, 7396 7397 .event_init = task_clock_event_init, 7398 .add = task_clock_event_add, 7399 .del = task_clock_event_del, 7400 .start = task_clock_event_start, 7401 .stop = task_clock_event_stop, 7402 .read = task_clock_event_read, 7403 }; 7404 7405 static void perf_pmu_nop_void(struct pmu *pmu) 7406 { 7407 } 7408 7409 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 7410 { 7411 } 7412 7413 static int perf_pmu_nop_int(struct pmu *pmu) 7414 { 7415 return 0; 7416 } 7417 7418 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 7419 7420 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 7421 { 7422 __this_cpu_write(nop_txn_flags, flags); 7423 7424 if (flags & ~PERF_PMU_TXN_ADD) 7425 return; 7426 7427 perf_pmu_disable(pmu); 7428 } 7429 7430 static int perf_pmu_commit_txn(struct pmu *pmu) 7431 { 7432 unsigned int flags = __this_cpu_read(nop_txn_flags); 7433 7434 __this_cpu_write(nop_txn_flags, 0); 7435 7436 if (flags & ~PERF_PMU_TXN_ADD) 7437 return 0; 7438 7439 perf_pmu_enable(pmu); 7440 return 0; 7441 } 7442 7443 static void perf_pmu_cancel_txn(struct pmu *pmu) 7444 { 7445 unsigned int flags = __this_cpu_read(nop_txn_flags); 7446 7447 __this_cpu_write(nop_txn_flags, 0); 7448 7449 if (flags & ~PERF_PMU_TXN_ADD) 7450 return; 7451 7452 perf_pmu_enable(pmu); 7453 } 7454 7455 static int perf_event_idx_default(struct perf_event *event) 7456 { 7457 return 0; 7458 } 7459 7460 /* 7461 * Ensures all contexts with the same task_ctx_nr have the same 7462 * pmu_cpu_context too. 7463 */ 7464 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 7465 { 7466 struct pmu *pmu; 7467 7468 if (ctxn < 0) 7469 return NULL; 7470 7471 list_for_each_entry(pmu, &pmus, entry) { 7472 if (pmu->task_ctx_nr == ctxn) 7473 return pmu->pmu_cpu_context; 7474 } 7475 7476 return NULL; 7477 } 7478 7479 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 7480 { 7481 int cpu; 7482 7483 for_each_possible_cpu(cpu) { 7484 struct perf_cpu_context *cpuctx; 7485 7486 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7487 7488 if (cpuctx->unique_pmu == old_pmu) 7489 cpuctx->unique_pmu = pmu; 7490 } 7491 } 7492 7493 static void free_pmu_context(struct pmu *pmu) 7494 { 7495 struct pmu *i; 7496 7497 mutex_lock(&pmus_lock); 7498 /* 7499 * Like a real lame refcount. 7500 */ 7501 list_for_each_entry(i, &pmus, entry) { 7502 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 7503 update_pmu_context(i, pmu); 7504 goto out; 7505 } 7506 } 7507 7508 free_percpu(pmu->pmu_cpu_context); 7509 out: 7510 mutex_unlock(&pmus_lock); 7511 } 7512 static struct idr pmu_idr; 7513 7514 static ssize_t 7515 type_show(struct device *dev, struct device_attribute *attr, char *page) 7516 { 7517 struct pmu *pmu = dev_get_drvdata(dev); 7518 7519 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 7520 } 7521 static DEVICE_ATTR_RO(type); 7522 7523 static ssize_t 7524 perf_event_mux_interval_ms_show(struct device *dev, 7525 struct device_attribute *attr, 7526 char *page) 7527 { 7528 struct pmu *pmu = dev_get_drvdata(dev); 7529 7530 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 7531 } 7532 7533 static DEFINE_MUTEX(mux_interval_mutex); 7534 7535 static ssize_t 7536 perf_event_mux_interval_ms_store(struct device *dev, 7537 struct device_attribute *attr, 7538 const char *buf, size_t count) 7539 { 7540 struct pmu *pmu = dev_get_drvdata(dev); 7541 int timer, cpu, ret; 7542 7543 ret = kstrtoint(buf, 0, &timer); 7544 if (ret) 7545 return ret; 7546 7547 if (timer < 1) 7548 return -EINVAL; 7549 7550 /* same value, noting to do */ 7551 if (timer == pmu->hrtimer_interval_ms) 7552 return count; 7553 7554 mutex_lock(&mux_interval_mutex); 7555 pmu->hrtimer_interval_ms = timer; 7556 7557 /* update all cpuctx for this PMU */ 7558 get_online_cpus(); 7559 for_each_online_cpu(cpu) { 7560 struct perf_cpu_context *cpuctx; 7561 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7562 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 7563 7564 cpu_function_call(cpu, 7565 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 7566 } 7567 put_online_cpus(); 7568 mutex_unlock(&mux_interval_mutex); 7569 7570 return count; 7571 } 7572 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 7573 7574 static struct attribute *pmu_dev_attrs[] = { 7575 &dev_attr_type.attr, 7576 &dev_attr_perf_event_mux_interval_ms.attr, 7577 NULL, 7578 }; 7579 ATTRIBUTE_GROUPS(pmu_dev); 7580 7581 static int pmu_bus_running; 7582 static struct bus_type pmu_bus = { 7583 .name = "event_source", 7584 .dev_groups = pmu_dev_groups, 7585 }; 7586 7587 static void pmu_dev_release(struct device *dev) 7588 { 7589 kfree(dev); 7590 } 7591 7592 static int pmu_dev_alloc(struct pmu *pmu) 7593 { 7594 int ret = -ENOMEM; 7595 7596 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 7597 if (!pmu->dev) 7598 goto out; 7599 7600 pmu->dev->groups = pmu->attr_groups; 7601 device_initialize(pmu->dev); 7602 ret = dev_set_name(pmu->dev, "%s", pmu->name); 7603 if (ret) 7604 goto free_dev; 7605 7606 dev_set_drvdata(pmu->dev, pmu); 7607 pmu->dev->bus = &pmu_bus; 7608 pmu->dev->release = pmu_dev_release; 7609 ret = device_add(pmu->dev); 7610 if (ret) 7611 goto free_dev; 7612 7613 out: 7614 return ret; 7615 7616 free_dev: 7617 put_device(pmu->dev); 7618 goto out; 7619 } 7620 7621 static struct lock_class_key cpuctx_mutex; 7622 static struct lock_class_key cpuctx_lock; 7623 7624 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 7625 { 7626 int cpu, ret; 7627 7628 mutex_lock(&pmus_lock); 7629 ret = -ENOMEM; 7630 pmu->pmu_disable_count = alloc_percpu(int); 7631 if (!pmu->pmu_disable_count) 7632 goto unlock; 7633 7634 pmu->type = -1; 7635 if (!name) 7636 goto skip_type; 7637 pmu->name = name; 7638 7639 if (type < 0) { 7640 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 7641 if (type < 0) { 7642 ret = type; 7643 goto free_pdc; 7644 } 7645 } 7646 pmu->type = type; 7647 7648 if (pmu_bus_running) { 7649 ret = pmu_dev_alloc(pmu); 7650 if (ret) 7651 goto free_idr; 7652 } 7653 7654 skip_type: 7655 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 7656 if (pmu->pmu_cpu_context) 7657 goto got_cpu_context; 7658 7659 ret = -ENOMEM; 7660 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 7661 if (!pmu->pmu_cpu_context) 7662 goto free_dev; 7663 7664 for_each_possible_cpu(cpu) { 7665 struct perf_cpu_context *cpuctx; 7666 7667 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7668 __perf_event_init_context(&cpuctx->ctx); 7669 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 7670 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 7671 cpuctx->ctx.pmu = pmu; 7672 7673 __perf_mux_hrtimer_init(cpuctx, cpu); 7674 7675 cpuctx->unique_pmu = pmu; 7676 } 7677 7678 got_cpu_context: 7679 if (!pmu->start_txn) { 7680 if (pmu->pmu_enable) { 7681 /* 7682 * If we have pmu_enable/pmu_disable calls, install 7683 * transaction stubs that use that to try and batch 7684 * hardware accesses. 7685 */ 7686 pmu->start_txn = perf_pmu_start_txn; 7687 pmu->commit_txn = perf_pmu_commit_txn; 7688 pmu->cancel_txn = perf_pmu_cancel_txn; 7689 } else { 7690 pmu->start_txn = perf_pmu_nop_txn; 7691 pmu->commit_txn = perf_pmu_nop_int; 7692 pmu->cancel_txn = perf_pmu_nop_void; 7693 } 7694 } 7695 7696 if (!pmu->pmu_enable) { 7697 pmu->pmu_enable = perf_pmu_nop_void; 7698 pmu->pmu_disable = perf_pmu_nop_void; 7699 } 7700 7701 if (!pmu->event_idx) 7702 pmu->event_idx = perf_event_idx_default; 7703 7704 list_add_rcu(&pmu->entry, &pmus); 7705 atomic_set(&pmu->exclusive_cnt, 0); 7706 ret = 0; 7707 unlock: 7708 mutex_unlock(&pmus_lock); 7709 7710 return ret; 7711 7712 free_dev: 7713 device_del(pmu->dev); 7714 put_device(pmu->dev); 7715 7716 free_idr: 7717 if (pmu->type >= PERF_TYPE_MAX) 7718 idr_remove(&pmu_idr, pmu->type); 7719 7720 free_pdc: 7721 free_percpu(pmu->pmu_disable_count); 7722 goto unlock; 7723 } 7724 EXPORT_SYMBOL_GPL(perf_pmu_register); 7725 7726 void perf_pmu_unregister(struct pmu *pmu) 7727 { 7728 mutex_lock(&pmus_lock); 7729 list_del_rcu(&pmu->entry); 7730 mutex_unlock(&pmus_lock); 7731 7732 /* 7733 * We dereference the pmu list under both SRCU and regular RCU, so 7734 * synchronize against both of those. 7735 */ 7736 synchronize_srcu(&pmus_srcu); 7737 synchronize_rcu(); 7738 7739 free_percpu(pmu->pmu_disable_count); 7740 if (pmu->type >= PERF_TYPE_MAX) 7741 idr_remove(&pmu_idr, pmu->type); 7742 device_del(pmu->dev); 7743 put_device(pmu->dev); 7744 free_pmu_context(pmu); 7745 } 7746 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 7747 7748 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 7749 { 7750 struct perf_event_context *ctx = NULL; 7751 int ret; 7752 7753 if (!try_module_get(pmu->module)) 7754 return -ENODEV; 7755 7756 if (event->group_leader != event) { 7757 /* 7758 * This ctx->mutex can nest when we're called through 7759 * inheritance. See the perf_event_ctx_lock_nested() comment. 7760 */ 7761 ctx = perf_event_ctx_lock_nested(event->group_leader, 7762 SINGLE_DEPTH_NESTING); 7763 BUG_ON(!ctx); 7764 } 7765 7766 event->pmu = pmu; 7767 ret = pmu->event_init(event); 7768 7769 if (ctx) 7770 perf_event_ctx_unlock(event->group_leader, ctx); 7771 7772 if (ret) 7773 module_put(pmu->module); 7774 7775 return ret; 7776 } 7777 7778 static struct pmu *perf_init_event(struct perf_event *event) 7779 { 7780 struct pmu *pmu = NULL; 7781 int idx; 7782 int ret; 7783 7784 idx = srcu_read_lock(&pmus_srcu); 7785 7786 rcu_read_lock(); 7787 pmu = idr_find(&pmu_idr, event->attr.type); 7788 rcu_read_unlock(); 7789 if (pmu) { 7790 ret = perf_try_init_event(pmu, event); 7791 if (ret) 7792 pmu = ERR_PTR(ret); 7793 goto unlock; 7794 } 7795 7796 list_for_each_entry_rcu(pmu, &pmus, entry) { 7797 ret = perf_try_init_event(pmu, event); 7798 if (!ret) 7799 goto unlock; 7800 7801 if (ret != -ENOENT) { 7802 pmu = ERR_PTR(ret); 7803 goto unlock; 7804 } 7805 } 7806 pmu = ERR_PTR(-ENOENT); 7807 unlock: 7808 srcu_read_unlock(&pmus_srcu, idx); 7809 7810 return pmu; 7811 } 7812 7813 static void account_event_cpu(struct perf_event *event, int cpu) 7814 { 7815 if (event->parent) 7816 return; 7817 7818 if (is_cgroup_event(event)) 7819 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 7820 } 7821 7822 static void account_event(struct perf_event *event) 7823 { 7824 if (event->parent) 7825 return; 7826 7827 if (event->attach_state & PERF_ATTACH_TASK) 7828 static_key_slow_inc(&perf_sched_events.key); 7829 if (event->attr.mmap || event->attr.mmap_data) 7830 atomic_inc(&nr_mmap_events); 7831 if (event->attr.comm) 7832 atomic_inc(&nr_comm_events); 7833 if (event->attr.task) 7834 atomic_inc(&nr_task_events); 7835 if (event->attr.freq) { 7836 if (atomic_inc_return(&nr_freq_events) == 1) 7837 tick_nohz_full_kick_all(); 7838 } 7839 if (event->attr.context_switch) { 7840 atomic_inc(&nr_switch_events); 7841 static_key_slow_inc(&perf_sched_events.key); 7842 } 7843 if (has_branch_stack(event)) 7844 static_key_slow_inc(&perf_sched_events.key); 7845 if (is_cgroup_event(event)) 7846 static_key_slow_inc(&perf_sched_events.key); 7847 7848 account_event_cpu(event, event->cpu); 7849 } 7850 7851 /* 7852 * Allocate and initialize a event structure 7853 */ 7854 static struct perf_event * 7855 perf_event_alloc(struct perf_event_attr *attr, int cpu, 7856 struct task_struct *task, 7857 struct perf_event *group_leader, 7858 struct perf_event *parent_event, 7859 perf_overflow_handler_t overflow_handler, 7860 void *context, int cgroup_fd) 7861 { 7862 struct pmu *pmu; 7863 struct perf_event *event; 7864 struct hw_perf_event *hwc; 7865 long err = -EINVAL; 7866 7867 if ((unsigned)cpu >= nr_cpu_ids) { 7868 if (!task || cpu != -1) 7869 return ERR_PTR(-EINVAL); 7870 } 7871 7872 event = kzalloc(sizeof(*event), GFP_KERNEL); 7873 if (!event) 7874 return ERR_PTR(-ENOMEM); 7875 7876 /* 7877 * Single events are their own group leaders, with an 7878 * empty sibling list: 7879 */ 7880 if (!group_leader) 7881 group_leader = event; 7882 7883 mutex_init(&event->child_mutex); 7884 INIT_LIST_HEAD(&event->child_list); 7885 7886 INIT_LIST_HEAD(&event->group_entry); 7887 INIT_LIST_HEAD(&event->event_entry); 7888 INIT_LIST_HEAD(&event->sibling_list); 7889 INIT_LIST_HEAD(&event->rb_entry); 7890 INIT_LIST_HEAD(&event->active_entry); 7891 INIT_HLIST_NODE(&event->hlist_entry); 7892 7893 7894 init_waitqueue_head(&event->waitq); 7895 init_irq_work(&event->pending, perf_pending_event); 7896 7897 mutex_init(&event->mmap_mutex); 7898 7899 atomic_long_set(&event->refcount, 1); 7900 event->cpu = cpu; 7901 event->attr = *attr; 7902 event->group_leader = group_leader; 7903 event->pmu = NULL; 7904 event->oncpu = -1; 7905 7906 event->parent = parent_event; 7907 7908 event->ns = get_pid_ns(task_active_pid_ns(current)); 7909 event->id = atomic64_inc_return(&perf_event_id); 7910 7911 event->state = PERF_EVENT_STATE_INACTIVE; 7912 7913 if (task) { 7914 event->attach_state = PERF_ATTACH_TASK; 7915 /* 7916 * XXX pmu::event_init needs to know what task to account to 7917 * and we cannot use the ctx information because we need the 7918 * pmu before we get a ctx. 7919 */ 7920 event->hw.target = task; 7921 } 7922 7923 event->clock = &local_clock; 7924 if (parent_event) 7925 event->clock = parent_event->clock; 7926 7927 if (!overflow_handler && parent_event) { 7928 overflow_handler = parent_event->overflow_handler; 7929 context = parent_event->overflow_handler_context; 7930 } 7931 7932 event->overflow_handler = overflow_handler; 7933 event->overflow_handler_context = context; 7934 7935 perf_event__state_init(event); 7936 7937 pmu = NULL; 7938 7939 hwc = &event->hw; 7940 hwc->sample_period = attr->sample_period; 7941 if (attr->freq && attr->sample_freq) 7942 hwc->sample_period = 1; 7943 hwc->last_period = hwc->sample_period; 7944 7945 local64_set(&hwc->period_left, hwc->sample_period); 7946 7947 /* 7948 * we currently do not support PERF_FORMAT_GROUP on inherited events 7949 */ 7950 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 7951 goto err_ns; 7952 7953 if (!has_branch_stack(event)) 7954 event->attr.branch_sample_type = 0; 7955 7956 if (cgroup_fd != -1) { 7957 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 7958 if (err) 7959 goto err_ns; 7960 } 7961 7962 pmu = perf_init_event(event); 7963 if (!pmu) 7964 goto err_ns; 7965 else if (IS_ERR(pmu)) { 7966 err = PTR_ERR(pmu); 7967 goto err_ns; 7968 } 7969 7970 err = exclusive_event_init(event); 7971 if (err) 7972 goto err_pmu; 7973 7974 if (!event->parent) { 7975 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 7976 err = get_callchain_buffers(); 7977 if (err) 7978 goto err_per_task; 7979 } 7980 } 7981 7982 return event; 7983 7984 err_per_task: 7985 exclusive_event_destroy(event); 7986 7987 err_pmu: 7988 if (event->destroy) 7989 event->destroy(event); 7990 module_put(pmu->module); 7991 err_ns: 7992 if (is_cgroup_event(event)) 7993 perf_detach_cgroup(event); 7994 if (event->ns) 7995 put_pid_ns(event->ns); 7996 kfree(event); 7997 7998 return ERR_PTR(err); 7999 } 8000 8001 static int perf_copy_attr(struct perf_event_attr __user *uattr, 8002 struct perf_event_attr *attr) 8003 { 8004 u32 size; 8005 int ret; 8006 8007 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 8008 return -EFAULT; 8009 8010 /* 8011 * zero the full structure, so that a short copy will be nice. 8012 */ 8013 memset(attr, 0, sizeof(*attr)); 8014 8015 ret = get_user(size, &uattr->size); 8016 if (ret) 8017 return ret; 8018 8019 if (size > PAGE_SIZE) /* silly large */ 8020 goto err_size; 8021 8022 if (!size) /* abi compat */ 8023 size = PERF_ATTR_SIZE_VER0; 8024 8025 if (size < PERF_ATTR_SIZE_VER0) 8026 goto err_size; 8027 8028 /* 8029 * If we're handed a bigger struct than we know of, 8030 * ensure all the unknown bits are 0 - i.e. new 8031 * user-space does not rely on any kernel feature 8032 * extensions we dont know about yet. 8033 */ 8034 if (size > sizeof(*attr)) { 8035 unsigned char __user *addr; 8036 unsigned char __user *end; 8037 unsigned char val; 8038 8039 addr = (void __user *)uattr + sizeof(*attr); 8040 end = (void __user *)uattr + size; 8041 8042 for (; addr < end; addr++) { 8043 ret = get_user(val, addr); 8044 if (ret) 8045 return ret; 8046 if (val) 8047 goto err_size; 8048 } 8049 size = sizeof(*attr); 8050 } 8051 8052 ret = copy_from_user(attr, uattr, size); 8053 if (ret) 8054 return -EFAULT; 8055 8056 if (attr->__reserved_1) 8057 return -EINVAL; 8058 8059 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 8060 return -EINVAL; 8061 8062 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 8063 return -EINVAL; 8064 8065 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 8066 u64 mask = attr->branch_sample_type; 8067 8068 /* only using defined bits */ 8069 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 8070 return -EINVAL; 8071 8072 /* at least one branch bit must be set */ 8073 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 8074 return -EINVAL; 8075 8076 /* propagate priv level, when not set for branch */ 8077 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 8078 8079 /* exclude_kernel checked on syscall entry */ 8080 if (!attr->exclude_kernel) 8081 mask |= PERF_SAMPLE_BRANCH_KERNEL; 8082 8083 if (!attr->exclude_user) 8084 mask |= PERF_SAMPLE_BRANCH_USER; 8085 8086 if (!attr->exclude_hv) 8087 mask |= PERF_SAMPLE_BRANCH_HV; 8088 /* 8089 * adjust user setting (for HW filter setup) 8090 */ 8091 attr->branch_sample_type = mask; 8092 } 8093 /* privileged levels capture (kernel, hv): check permissions */ 8094 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 8095 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 8096 return -EACCES; 8097 } 8098 8099 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 8100 ret = perf_reg_validate(attr->sample_regs_user); 8101 if (ret) 8102 return ret; 8103 } 8104 8105 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 8106 if (!arch_perf_have_user_stack_dump()) 8107 return -ENOSYS; 8108 8109 /* 8110 * We have __u32 type for the size, but so far 8111 * we can only use __u16 as maximum due to the 8112 * __u16 sample size limit. 8113 */ 8114 if (attr->sample_stack_user >= USHRT_MAX) 8115 ret = -EINVAL; 8116 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 8117 ret = -EINVAL; 8118 } 8119 8120 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 8121 ret = perf_reg_validate(attr->sample_regs_intr); 8122 out: 8123 return ret; 8124 8125 err_size: 8126 put_user(sizeof(*attr), &uattr->size); 8127 ret = -E2BIG; 8128 goto out; 8129 } 8130 8131 static int 8132 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 8133 { 8134 struct ring_buffer *rb = NULL; 8135 int ret = -EINVAL; 8136 8137 if (!output_event) 8138 goto set; 8139 8140 /* don't allow circular references */ 8141 if (event == output_event) 8142 goto out; 8143 8144 /* 8145 * Don't allow cross-cpu buffers 8146 */ 8147 if (output_event->cpu != event->cpu) 8148 goto out; 8149 8150 /* 8151 * If its not a per-cpu rb, it must be the same task. 8152 */ 8153 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 8154 goto out; 8155 8156 /* 8157 * Mixing clocks in the same buffer is trouble you don't need. 8158 */ 8159 if (output_event->clock != event->clock) 8160 goto out; 8161 8162 /* 8163 * If both events generate aux data, they must be on the same PMU 8164 */ 8165 if (has_aux(event) && has_aux(output_event) && 8166 event->pmu != output_event->pmu) 8167 goto out; 8168 8169 set: 8170 mutex_lock(&event->mmap_mutex); 8171 /* Can't redirect output if we've got an active mmap() */ 8172 if (atomic_read(&event->mmap_count)) 8173 goto unlock; 8174 8175 if (output_event) { 8176 /* get the rb we want to redirect to */ 8177 rb = ring_buffer_get(output_event); 8178 if (!rb) 8179 goto unlock; 8180 } 8181 8182 ring_buffer_attach(event, rb); 8183 8184 ret = 0; 8185 unlock: 8186 mutex_unlock(&event->mmap_mutex); 8187 8188 out: 8189 return ret; 8190 } 8191 8192 static void mutex_lock_double(struct mutex *a, struct mutex *b) 8193 { 8194 if (b < a) 8195 swap(a, b); 8196 8197 mutex_lock(a); 8198 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 8199 } 8200 8201 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 8202 { 8203 bool nmi_safe = false; 8204 8205 switch (clk_id) { 8206 case CLOCK_MONOTONIC: 8207 event->clock = &ktime_get_mono_fast_ns; 8208 nmi_safe = true; 8209 break; 8210 8211 case CLOCK_MONOTONIC_RAW: 8212 event->clock = &ktime_get_raw_fast_ns; 8213 nmi_safe = true; 8214 break; 8215 8216 case CLOCK_REALTIME: 8217 event->clock = &ktime_get_real_ns; 8218 break; 8219 8220 case CLOCK_BOOTTIME: 8221 event->clock = &ktime_get_boot_ns; 8222 break; 8223 8224 case CLOCK_TAI: 8225 event->clock = &ktime_get_tai_ns; 8226 break; 8227 8228 default: 8229 return -EINVAL; 8230 } 8231 8232 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 8233 return -EINVAL; 8234 8235 return 0; 8236 } 8237 8238 /** 8239 * sys_perf_event_open - open a performance event, associate it to a task/cpu 8240 * 8241 * @attr_uptr: event_id type attributes for monitoring/sampling 8242 * @pid: target pid 8243 * @cpu: target cpu 8244 * @group_fd: group leader event fd 8245 */ 8246 SYSCALL_DEFINE5(perf_event_open, 8247 struct perf_event_attr __user *, attr_uptr, 8248 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 8249 { 8250 struct perf_event *group_leader = NULL, *output_event = NULL; 8251 struct perf_event *event, *sibling; 8252 struct perf_event_attr attr; 8253 struct perf_event_context *ctx, *uninitialized_var(gctx); 8254 struct file *event_file = NULL; 8255 struct fd group = {NULL, 0}; 8256 struct task_struct *task = NULL; 8257 struct pmu *pmu; 8258 int event_fd; 8259 int move_group = 0; 8260 int err; 8261 int f_flags = O_RDWR; 8262 int cgroup_fd = -1; 8263 8264 /* for future expandability... */ 8265 if (flags & ~PERF_FLAG_ALL) 8266 return -EINVAL; 8267 8268 err = perf_copy_attr(attr_uptr, &attr); 8269 if (err) 8270 return err; 8271 8272 if (!attr.exclude_kernel) { 8273 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 8274 return -EACCES; 8275 } 8276 8277 if (attr.freq) { 8278 if (attr.sample_freq > sysctl_perf_event_sample_rate) 8279 return -EINVAL; 8280 } else { 8281 if (attr.sample_period & (1ULL << 63)) 8282 return -EINVAL; 8283 } 8284 8285 /* 8286 * In cgroup mode, the pid argument is used to pass the fd 8287 * opened to the cgroup directory in cgroupfs. The cpu argument 8288 * designates the cpu on which to monitor threads from that 8289 * cgroup. 8290 */ 8291 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 8292 return -EINVAL; 8293 8294 if (flags & PERF_FLAG_FD_CLOEXEC) 8295 f_flags |= O_CLOEXEC; 8296 8297 event_fd = get_unused_fd_flags(f_flags); 8298 if (event_fd < 0) 8299 return event_fd; 8300 8301 if (group_fd != -1) { 8302 err = perf_fget_light(group_fd, &group); 8303 if (err) 8304 goto err_fd; 8305 group_leader = group.file->private_data; 8306 if (flags & PERF_FLAG_FD_OUTPUT) 8307 output_event = group_leader; 8308 if (flags & PERF_FLAG_FD_NO_GROUP) 8309 group_leader = NULL; 8310 } 8311 8312 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 8313 task = find_lively_task_by_vpid(pid); 8314 if (IS_ERR(task)) { 8315 err = PTR_ERR(task); 8316 goto err_group_fd; 8317 } 8318 } 8319 8320 if (task && group_leader && 8321 group_leader->attr.inherit != attr.inherit) { 8322 err = -EINVAL; 8323 goto err_task; 8324 } 8325 8326 get_online_cpus(); 8327 8328 if (flags & PERF_FLAG_PID_CGROUP) 8329 cgroup_fd = pid; 8330 8331 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 8332 NULL, NULL, cgroup_fd); 8333 if (IS_ERR(event)) { 8334 err = PTR_ERR(event); 8335 goto err_cpus; 8336 } 8337 8338 if (is_sampling_event(event)) { 8339 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 8340 err = -ENOTSUPP; 8341 goto err_alloc; 8342 } 8343 } 8344 8345 account_event(event); 8346 8347 /* 8348 * Special case software events and allow them to be part of 8349 * any hardware group. 8350 */ 8351 pmu = event->pmu; 8352 8353 if (attr.use_clockid) { 8354 err = perf_event_set_clock(event, attr.clockid); 8355 if (err) 8356 goto err_alloc; 8357 } 8358 8359 if (group_leader && 8360 (is_software_event(event) != is_software_event(group_leader))) { 8361 if (is_software_event(event)) { 8362 /* 8363 * If event and group_leader are not both a software 8364 * event, and event is, then group leader is not. 8365 * 8366 * Allow the addition of software events to !software 8367 * groups, this is safe because software events never 8368 * fail to schedule. 8369 */ 8370 pmu = group_leader->pmu; 8371 } else if (is_software_event(group_leader) && 8372 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 8373 /* 8374 * In case the group is a pure software group, and we 8375 * try to add a hardware event, move the whole group to 8376 * the hardware context. 8377 */ 8378 move_group = 1; 8379 } 8380 } 8381 8382 /* 8383 * Get the target context (task or percpu): 8384 */ 8385 ctx = find_get_context(pmu, task, event); 8386 if (IS_ERR(ctx)) { 8387 err = PTR_ERR(ctx); 8388 goto err_alloc; 8389 } 8390 8391 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 8392 err = -EBUSY; 8393 goto err_context; 8394 } 8395 8396 if (task) { 8397 put_task_struct(task); 8398 task = NULL; 8399 } 8400 8401 /* 8402 * Look up the group leader (we will attach this event to it): 8403 */ 8404 if (group_leader) { 8405 err = -EINVAL; 8406 8407 /* 8408 * Do not allow a recursive hierarchy (this new sibling 8409 * becoming part of another group-sibling): 8410 */ 8411 if (group_leader->group_leader != group_leader) 8412 goto err_context; 8413 8414 /* All events in a group should have the same clock */ 8415 if (group_leader->clock != event->clock) 8416 goto err_context; 8417 8418 /* 8419 * Do not allow to attach to a group in a different 8420 * task or CPU context: 8421 */ 8422 if (move_group) { 8423 /* 8424 * Make sure we're both on the same task, or both 8425 * per-cpu events. 8426 */ 8427 if (group_leader->ctx->task != ctx->task) 8428 goto err_context; 8429 8430 /* 8431 * Make sure we're both events for the same CPU; 8432 * grouping events for different CPUs is broken; since 8433 * you can never concurrently schedule them anyhow. 8434 */ 8435 if (group_leader->cpu != event->cpu) 8436 goto err_context; 8437 } else { 8438 if (group_leader->ctx != ctx) 8439 goto err_context; 8440 } 8441 8442 /* 8443 * Only a group leader can be exclusive or pinned 8444 */ 8445 if (attr.exclusive || attr.pinned) 8446 goto err_context; 8447 } 8448 8449 if (output_event) { 8450 err = perf_event_set_output(event, output_event); 8451 if (err) 8452 goto err_context; 8453 } 8454 8455 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 8456 f_flags); 8457 if (IS_ERR(event_file)) { 8458 err = PTR_ERR(event_file); 8459 goto err_context; 8460 } 8461 8462 if (move_group) { 8463 gctx = group_leader->ctx; 8464 mutex_lock_double(&gctx->mutex, &ctx->mutex); 8465 } else { 8466 mutex_lock(&ctx->mutex); 8467 } 8468 8469 if (!perf_event_validate_size(event)) { 8470 err = -E2BIG; 8471 goto err_locked; 8472 } 8473 8474 /* 8475 * Must be under the same ctx::mutex as perf_install_in_context(), 8476 * because we need to serialize with concurrent event creation. 8477 */ 8478 if (!exclusive_event_installable(event, ctx)) { 8479 /* exclusive and group stuff are assumed mutually exclusive */ 8480 WARN_ON_ONCE(move_group); 8481 8482 err = -EBUSY; 8483 goto err_locked; 8484 } 8485 8486 WARN_ON_ONCE(ctx->parent_ctx); 8487 8488 if (move_group) { 8489 /* 8490 * See perf_event_ctx_lock() for comments on the details 8491 * of swizzling perf_event::ctx. 8492 */ 8493 perf_remove_from_context(group_leader, false); 8494 8495 list_for_each_entry(sibling, &group_leader->sibling_list, 8496 group_entry) { 8497 perf_remove_from_context(sibling, false); 8498 put_ctx(gctx); 8499 } 8500 8501 /* 8502 * Wait for everybody to stop referencing the events through 8503 * the old lists, before installing it on new lists. 8504 */ 8505 synchronize_rcu(); 8506 8507 /* 8508 * Install the group siblings before the group leader. 8509 * 8510 * Because a group leader will try and install the entire group 8511 * (through the sibling list, which is still in-tact), we can 8512 * end up with siblings installed in the wrong context. 8513 * 8514 * By installing siblings first we NO-OP because they're not 8515 * reachable through the group lists. 8516 */ 8517 list_for_each_entry(sibling, &group_leader->sibling_list, 8518 group_entry) { 8519 perf_event__state_init(sibling); 8520 perf_install_in_context(ctx, sibling, sibling->cpu); 8521 get_ctx(ctx); 8522 } 8523 8524 /* 8525 * Removing from the context ends up with disabled 8526 * event. What we want here is event in the initial 8527 * startup state, ready to be add into new context. 8528 */ 8529 perf_event__state_init(group_leader); 8530 perf_install_in_context(ctx, group_leader, group_leader->cpu); 8531 get_ctx(ctx); 8532 8533 /* 8534 * Now that all events are installed in @ctx, nothing 8535 * references @gctx anymore, so drop the last reference we have 8536 * on it. 8537 */ 8538 put_ctx(gctx); 8539 } 8540 8541 /* 8542 * Precalculate sample_data sizes; do while holding ctx::mutex such 8543 * that we're serialized against further additions and before 8544 * perf_install_in_context() which is the point the event is active and 8545 * can use these values. 8546 */ 8547 perf_event__header_size(event); 8548 perf_event__id_header_size(event); 8549 8550 perf_install_in_context(ctx, event, event->cpu); 8551 perf_unpin_context(ctx); 8552 8553 if (move_group) 8554 mutex_unlock(&gctx->mutex); 8555 mutex_unlock(&ctx->mutex); 8556 8557 put_online_cpus(); 8558 8559 event->owner = current; 8560 8561 mutex_lock(¤t->perf_event_mutex); 8562 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 8563 mutex_unlock(¤t->perf_event_mutex); 8564 8565 /* 8566 * Drop the reference on the group_event after placing the 8567 * new event on the sibling_list. This ensures destruction 8568 * of the group leader will find the pointer to itself in 8569 * perf_group_detach(). 8570 */ 8571 fdput(group); 8572 fd_install(event_fd, event_file); 8573 return event_fd; 8574 8575 err_locked: 8576 if (move_group) 8577 mutex_unlock(&gctx->mutex); 8578 mutex_unlock(&ctx->mutex); 8579 /* err_file: */ 8580 fput(event_file); 8581 err_context: 8582 perf_unpin_context(ctx); 8583 put_ctx(ctx); 8584 err_alloc: 8585 free_event(event); 8586 err_cpus: 8587 put_online_cpus(); 8588 err_task: 8589 if (task) 8590 put_task_struct(task); 8591 err_group_fd: 8592 fdput(group); 8593 err_fd: 8594 put_unused_fd(event_fd); 8595 return err; 8596 } 8597 8598 /** 8599 * perf_event_create_kernel_counter 8600 * 8601 * @attr: attributes of the counter to create 8602 * @cpu: cpu in which the counter is bound 8603 * @task: task to profile (NULL for percpu) 8604 */ 8605 struct perf_event * 8606 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 8607 struct task_struct *task, 8608 perf_overflow_handler_t overflow_handler, 8609 void *context) 8610 { 8611 struct perf_event_context *ctx; 8612 struct perf_event *event; 8613 int err; 8614 8615 /* 8616 * Get the target context (task or percpu): 8617 */ 8618 8619 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 8620 overflow_handler, context, -1); 8621 if (IS_ERR(event)) { 8622 err = PTR_ERR(event); 8623 goto err; 8624 } 8625 8626 /* Mark owner so we could distinguish it from user events. */ 8627 event->owner = EVENT_OWNER_KERNEL; 8628 8629 account_event(event); 8630 8631 ctx = find_get_context(event->pmu, task, event); 8632 if (IS_ERR(ctx)) { 8633 err = PTR_ERR(ctx); 8634 goto err_free; 8635 } 8636 8637 WARN_ON_ONCE(ctx->parent_ctx); 8638 mutex_lock(&ctx->mutex); 8639 if (!exclusive_event_installable(event, ctx)) { 8640 mutex_unlock(&ctx->mutex); 8641 perf_unpin_context(ctx); 8642 put_ctx(ctx); 8643 err = -EBUSY; 8644 goto err_free; 8645 } 8646 8647 perf_install_in_context(ctx, event, cpu); 8648 perf_unpin_context(ctx); 8649 mutex_unlock(&ctx->mutex); 8650 8651 return event; 8652 8653 err_free: 8654 free_event(event); 8655 err: 8656 return ERR_PTR(err); 8657 } 8658 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 8659 8660 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 8661 { 8662 struct perf_event_context *src_ctx; 8663 struct perf_event_context *dst_ctx; 8664 struct perf_event *event, *tmp; 8665 LIST_HEAD(events); 8666 8667 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 8668 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 8669 8670 /* 8671 * See perf_event_ctx_lock() for comments on the details 8672 * of swizzling perf_event::ctx. 8673 */ 8674 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 8675 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 8676 event_entry) { 8677 perf_remove_from_context(event, false); 8678 unaccount_event_cpu(event, src_cpu); 8679 put_ctx(src_ctx); 8680 list_add(&event->migrate_entry, &events); 8681 } 8682 8683 /* 8684 * Wait for the events to quiesce before re-instating them. 8685 */ 8686 synchronize_rcu(); 8687 8688 /* 8689 * Re-instate events in 2 passes. 8690 * 8691 * Skip over group leaders and only install siblings on this first 8692 * pass, siblings will not get enabled without a leader, however a 8693 * leader will enable its siblings, even if those are still on the old 8694 * context. 8695 */ 8696 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8697 if (event->group_leader == event) 8698 continue; 8699 8700 list_del(&event->migrate_entry); 8701 if (event->state >= PERF_EVENT_STATE_OFF) 8702 event->state = PERF_EVENT_STATE_INACTIVE; 8703 account_event_cpu(event, dst_cpu); 8704 perf_install_in_context(dst_ctx, event, dst_cpu); 8705 get_ctx(dst_ctx); 8706 } 8707 8708 /* 8709 * Once all the siblings are setup properly, install the group leaders 8710 * to make it go. 8711 */ 8712 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8713 list_del(&event->migrate_entry); 8714 if (event->state >= PERF_EVENT_STATE_OFF) 8715 event->state = PERF_EVENT_STATE_INACTIVE; 8716 account_event_cpu(event, dst_cpu); 8717 perf_install_in_context(dst_ctx, event, dst_cpu); 8718 get_ctx(dst_ctx); 8719 } 8720 mutex_unlock(&dst_ctx->mutex); 8721 mutex_unlock(&src_ctx->mutex); 8722 } 8723 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 8724 8725 static void sync_child_event(struct perf_event *child_event, 8726 struct task_struct *child) 8727 { 8728 struct perf_event *parent_event = child_event->parent; 8729 u64 child_val; 8730 8731 if (child_event->attr.inherit_stat) 8732 perf_event_read_event(child_event, child); 8733 8734 child_val = perf_event_count(child_event); 8735 8736 /* 8737 * Add back the child's count to the parent's count: 8738 */ 8739 atomic64_add(child_val, &parent_event->child_count); 8740 atomic64_add(child_event->total_time_enabled, 8741 &parent_event->child_total_time_enabled); 8742 atomic64_add(child_event->total_time_running, 8743 &parent_event->child_total_time_running); 8744 8745 /* 8746 * Remove this event from the parent's list 8747 */ 8748 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 8749 mutex_lock(&parent_event->child_mutex); 8750 list_del_init(&child_event->child_list); 8751 mutex_unlock(&parent_event->child_mutex); 8752 8753 /* 8754 * Make sure user/parent get notified, that we just 8755 * lost one event. 8756 */ 8757 perf_event_wakeup(parent_event); 8758 8759 /* 8760 * Release the parent event, if this was the last 8761 * reference to it. 8762 */ 8763 put_event(parent_event); 8764 } 8765 8766 static void 8767 __perf_event_exit_task(struct perf_event *child_event, 8768 struct perf_event_context *child_ctx, 8769 struct task_struct *child) 8770 { 8771 /* 8772 * Do not destroy the 'original' grouping; because of the context 8773 * switch optimization the original events could've ended up in a 8774 * random child task. 8775 * 8776 * If we were to destroy the original group, all group related 8777 * operations would cease to function properly after this random 8778 * child dies. 8779 * 8780 * Do destroy all inherited groups, we don't care about those 8781 * and being thorough is better. 8782 */ 8783 perf_remove_from_context(child_event, !!child_event->parent); 8784 8785 /* 8786 * It can happen that the parent exits first, and has events 8787 * that are still around due to the child reference. These 8788 * events need to be zapped. 8789 */ 8790 if (child_event->parent) { 8791 sync_child_event(child_event, child); 8792 free_event(child_event); 8793 } else { 8794 child_event->state = PERF_EVENT_STATE_EXIT; 8795 perf_event_wakeup(child_event); 8796 } 8797 } 8798 8799 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 8800 { 8801 struct perf_event *child_event, *next; 8802 struct perf_event_context *child_ctx, *clone_ctx = NULL; 8803 unsigned long flags; 8804 8805 if (likely(!child->perf_event_ctxp[ctxn])) 8806 return; 8807 8808 local_irq_save(flags); 8809 /* 8810 * We can't reschedule here because interrupts are disabled, 8811 * and either child is current or it is a task that can't be 8812 * scheduled, so we are now safe from rescheduling changing 8813 * our context. 8814 */ 8815 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 8816 8817 /* 8818 * Take the context lock here so that if find_get_context is 8819 * reading child->perf_event_ctxp, we wait until it has 8820 * incremented the context's refcount before we do put_ctx below. 8821 */ 8822 raw_spin_lock(&child_ctx->lock); 8823 task_ctx_sched_out(child_ctx); 8824 child->perf_event_ctxp[ctxn] = NULL; 8825 8826 /* 8827 * If this context is a clone; unclone it so it can't get 8828 * swapped to another process while we're removing all 8829 * the events from it. 8830 */ 8831 clone_ctx = unclone_ctx(child_ctx); 8832 update_context_time(child_ctx); 8833 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 8834 8835 if (clone_ctx) 8836 put_ctx(clone_ctx); 8837 8838 /* 8839 * Report the task dead after unscheduling the events so that we 8840 * won't get any samples after PERF_RECORD_EXIT. We can however still 8841 * get a few PERF_RECORD_READ events. 8842 */ 8843 perf_event_task(child, child_ctx, 0); 8844 8845 /* 8846 * We can recurse on the same lock type through: 8847 * 8848 * __perf_event_exit_task() 8849 * sync_child_event() 8850 * put_event() 8851 * mutex_lock(&ctx->mutex) 8852 * 8853 * But since its the parent context it won't be the same instance. 8854 */ 8855 mutex_lock(&child_ctx->mutex); 8856 8857 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 8858 __perf_event_exit_task(child_event, child_ctx, child); 8859 8860 mutex_unlock(&child_ctx->mutex); 8861 8862 put_ctx(child_ctx); 8863 } 8864 8865 /* 8866 * When a child task exits, feed back event values to parent events. 8867 */ 8868 void perf_event_exit_task(struct task_struct *child) 8869 { 8870 struct perf_event *event, *tmp; 8871 int ctxn; 8872 8873 mutex_lock(&child->perf_event_mutex); 8874 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 8875 owner_entry) { 8876 list_del_init(&event->owner_entry); 8877 8878 /* 8879 * Ensure the list deletion is visible before we clear 8880 * the owner, closes a race against perf_release() where 8881 * we need to serialize on the owner->perf_event_mutex. 8882 */ 8883 smp_wmb(); 8884 event->owner = NULL; 8885 } 8886 mutex_unlock(&child->perf_event_mutex); 8887 8888 for_each_task_context_nr(ctxn) 8889 perf_event_exit_task_context(child, ctxn); 8890 8891 /* 8892 * The perf_event_exit_task_context calls perf_event_task 8893 * with child's task_ctx, which generates EXIT events for 8894 * child contexts and sets child->perf_event_ctxp[] to NULL. 8895 * At this point we need to send EXIT events to cpu contexts. 8896 */ 8897 perf_event_task(child, NULL, 0); 8898 } 8899 8900 static void perf_free_event(struct perf_event *event, 8901 struct perf_event_context *ctx) 8902 { 8903 struct perf_event *parent = event->parent; 8904 8905 if (WARN_ON_ONCE(!parent)) 8906 return; 8907 8908 mutex_lock(&parent->child_mutex); 8909 list_del_init(&event->child_list); 8910 mutex_unlock(&parent->child_mutex); 8911 8912 put_event(parent); 8913 8914 raw_spin_lock_irq(&ctx->lock); 8915 perf_group_detach(event); 8916 list_del_event(event, ctx); 8917 raw_spin_unlock_irq(&ctx->lock); 8918 free_event(event); 8919 } 8920 8921 /* 8922 * Free an unexposed, unused context as created by inheritance by 8923 * perf_event_init_task below, used by fork() in case of fail. 8924 * 8925 * Not all locks are strictly required, but take them anyway to be nice and 8926 * help out with the lockdep assertions. 8927 */ 8928 void perf_event_free_task(struct task_struct *task) 8929 { 8930 struct perf_event_context *ctx; 8931 struct perf_event *event, *tmp; 8932 int ctxn; 8933 8934 for_each_task_context_nr(ctxn) { 8935 ctx = task->perf_event_ctxp[ctxn]; 8936 if (!ctx) 8937 continue; 8938 8939 mutex_lock(&ctx->mutex); 8940 again: 8941 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 8942 group_entry) 8943 perf_free_event(event, ctx); 8944 8945 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 8946 group_entry) 8947 perf_free_event(event, ctx); 8948 8949 if (!list_empty(&ctx->pinned_groups) || 8950 !list_empty(&ctx->flexible_groups)) 8951 goto again; 8952 8953 mutex_unlock(&ctx->mutex); 8954 8955 put_ctx(ctx); 8956 } 8957 } 8958 8959 void perf_event_delayed_put(struct task_struct *task) 8960 { 8961 int ctxn; 8962 8963 for_each_task_context_nr(ctxn) 8964 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 8965 } 8966 8967 struct perf_event *perf_event_get(unsigned int fd) 8968 { 8969 int err; 8970 struct fd f; 8971 struct perf_event *event; 8972 8973 err = perf_fget_light(fd, &f); 8974 if (err) 8975 return ERR_PTR(err); 8976 8977 event = f.file->private_data; 8978 atomic_long_inc(&event->refcount); 8979 fdput(f); 8980 8981 return event; 8982 } 8983 8984 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 8985 { 8986 if (!event) 8987 return ERR_PTR(-EINVAL); 8988 8989 return &event->attr; 8990 } 8991 8992 /* 8993 * inherit a event from parent task to child task: 8994 */ 8995 static struct perf_event * 8996 inherit_event(struct perf_event *parent_event, 8997 struct task_struct *parent, 8998 struct perf_event_context *parent_ctx, 8999 struct task_struct *child, 9000 struct perf_event *group_leader, 9001 struct perf_event_context *child_ctx) 9002 { 9003 enum perf_event_active_state parent_state = parent_event->state; 9004 struct perf_event *child_event; 9005 unsigned long flags; 9006 9007 /* 9008 * Instead of creating recursive hierarchies of events, 9009 * we link inherited events back to the original parent, 9010 * which has a filp for sure, which we use as the reference 9011 * count: 9012 */ 9013 if (parent_event->parent) 9014 parent_event = parent_event->parent; 9015 9016 child_event = perf_event_alloc(&parent_event->attr, 9017 parent_event->cpu, 9018 child, 9019 group_leader, parent_event, 9020 NULL, NULL, -1); 9021 if (IS_ERR(child_event)) 9022 return child_event; 9023 9024 if (is_orphaned_event(parent_event) || 9025 !atomic_long_inc_not_zero(&parent_event->refcount)) { 9026 free_event(child_event); 9027 return NULL; 9028 } 9029 9030 get_ctx(child_ctx); 9031 9032 /* 9033 * Make the child state follow the state of the parent event, 9034 * not its attr.disabled bit. We hold the parent's mutex, 9035 * so we won't race with perf_event_{en, dis}able_family. 9036 */ 9037 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 9038 child_event->state = PERF_EVENT_STATE_INACTIVE; 9039 else 9040 child_event->state = PERF_EVENT_STATE_OFF; 9041 9042 if (parent_event->attr.freq) { 9043 u64 sample_period = parent_event->hw.sample_period; 9044 struct hw_perf_event *hwc = &child_event->hw; 9045 9046 hwc->sample_period = sample_period; 9047 hwc->last_period = sample_period; 9048 9049 local64_set(&hwc->period_left, sample_period); 9050 } 9051 9052 child_event->ctx = child_ctx; 9053 child_event->overflow_handler = parent_event->overflow_handler; 9054 child_event->overflow_handler_context 9055 = parent_event->overflow_handler_context; 9056 9057 /* 9058 * Precalculate sample_data sizes 9059 */ 9060 perf_event__header_size(child_event); 9061 perf_event__id_header_size(child_event); 9062 9063 /* 9064 * Link it up in the child's context: 9065 */ 9066 raw_spin_lock_irqsave(&child_ctx->lock, flags); 9067 add_event_to_ctx(child_event, child_ctx); 9068 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 9069 9070 /* 9071 * Link this into the parent event's child list 9072 */ 9073 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 9074 mutex_lock(&parent_event->child_mutex); 9075 list_add_tail(&child_event->child_list, &parent_event->child_list); 9076 mutex_unlock(&parent_event->child_mutex); 9077 9078 return child_event; 9079 } 9080 9081 static int inherit_group(struct perf_event *parent_event, 9082 struct task_struct *parent, 9083 struct perf_event_context *parent_ctx, 9084 struct task_struct *child, 9085 struct perf_event_context *child_ctx) 9086 { 9087 struct perf_event *leader; 9088 struct perf_event *sub; 9089 struct perf_event *child_ctr; 9090 9091 leader = inherit_event(parent_event, parent, parent_ctx, 9092 child, NULL, child_ctx); 9093 if (IS_ERR(leader)) 9094 return PTR_ERR(leader); 9095 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 9096 child_ctr = inherit_event(sub, parent, parent_ctx, 9097 child, leader, child_ctx); 9098 if (IS_ERR(child_ctr)) 9099 return PTR_ERR(child_ctr); 9100 } 9101 return 0; 9102 } 9103 9104 static int 9105 inherit_task_group(struct perf_event *event, struct task_struct *parent, 9106 struct perf_event_context *parent_ctx, 9107 struct task_struct *child, int ctxn, 9108 int *inherited_all) 9109 { 9110 int ret; 9111 struct perf_event_context *child_ctx; 9112 9113 if (!event->attr.inherit) { 9114 *inherited_all = 0; 9115 return 0; 9116 } 9117 9118 child_ctx = child->perf_event_ctxp[ctxn]; 9119 if (!child_ctx) { 9120 /* 9121 * This is executed from the parent task context, so 9122 * inherit events that have been marked for cloning. 9123 * First allocate and initialize a context for the 9124 * child. 9125 */ 9126 9127 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 9128 if (!child_ctx) 9129 return -ENOMEM; 9130 9131 child->perf_event_ctxp[ctxn] = child_ctx; 9132 } 9133 9134 ret = inherit_group(event, parent, parent_ctx, 9135 child, child_ctx); 9136 9137 if (ret) 9138 *inherited_all = 0; 9139 9140 return ret; 9141 } 9142 9143 /* 9144 * Initialize the perf_event context in task_struct 9145 */ 9146 static int perf_event_init_context(struct task_struct *child, int ctxn) 9147 { 9148 struct perf_event_context *child_ctx, *parent_ctx; 9149 struct perf_event_context *cloned_ctx; 9150 struct perf_event *event; 9151 struct task_struct *parent = current; 9152 int inherited_all = 1; 9153 unsigned long flags; 9154 int ret = 0; 9155 9156 if (likely(!parent->perf_event_ctxp[ctxn])) 9157 return 0; 9158 9159 /* 9160 * If the parent's context is a clone, pin it so it won't get 9161 * swapped under us. 9162 */ 9163 parent_ctx = perf_pin_task_context(parent, ctxn); 9164 if (!parent_ctx) 9165 return 0; 9166 9167 /* 9168 * No need to check if parent_ctx != NULL here; since we saw 9169 * it non-NULL earlier, the only reason for it to become NULL 9170 * is if we exit, and since we're currently in the middle of 9171 * a fork we can't be exiting at the same time. 9172 */ 9173 9174 /* 9175 * Lock the parent list. No need to lock the child - not PID 9176 * hashed yet and not running, so nobody can access it. 9177 */ 9178 mutex_lock(&parent_ctx->mutex); 9179 9180 /* 9181 * We dont have to disable NMIs - we are only looking at 9182 * the list, not manipulating it: 9183 */ 9184 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 9185 ret = inherit_task_group(event, parent, parent_ctx, 9186 child, ctxn, &inherited_all); 9187 if (ret) 9188 break; 9189 } 9190 9191 /* 9192 * We can't hold ctx->lock when iterating the ->flexible_group list due 9193 * to allocations, but we need to prevent rotation because 9194 * rotate_ctx() will change the list from interrupt context. 9195 */ 9196 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 9197 parent_ctx->rotate_disable = 1; 9198 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 9199 9200 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 9201 ret = inherit_task_group(event, parent, parent_ctx, 9202 child, ctxn, &inherited_all); 9203 if (ret) 9204 break; 9205 } 9206 9207 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 9208 parent_ctx->rotate_disable = 0; 9209 9210 child_ctx = child->perf_event_ctxp[ctxn]; 9211 9212 if (child_ctx && inherited_all) { 9213 /* 9214 * Mark the child context as a clone of the parent 9215 * context, or of whatever the parent is a clone of. 9216 * 9217 * Note that if the parent is a clone, the holding of 9218 * parent_ctx->lock avoids it from being uncloned. 9219 */ 9220 cloned_ctx = parent_ctx->parent_ctx; 9221 if (cloned_ctx) { 9222 child_ctx->parent_ctx = cloned_ctx; 9223 child_ctx->parent_gen = parent_ctx->parent_gen; 9224 } else { 9225 child_ctx->parent_ctx = parent_ctx; 9226 child_ctx->parent_gen = parent_ctx->generation; 9227 } 9228 get_ctx(child_ctx->parent_ctx); 9229 } 9230 9231 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 9232 mutex_unlock(&parent_ctx->mutex); 9233 9234 perf_unpin_context(parent_ctx); 9235 put_ctx(parent_ctx); 9236 9237 return ret; 9238 } 9239 9240 /* 9241 * Initialize the perf_event context in task_struct 9242 */ 9243 int perf_event_init_task(struct task_struct *child) 9244 { 9245 int ctxn, ret; 9246 9247 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 9248 mutex_init(&child->perf_event_mutex); 9249 INIT_LIST_HEAD(&child->perf_event_list); 9250 9251 for_each_task_context_nr(ctxn) { 9252 ret = perf_event_init_context(child, ctxn); 9253 if (ret) { 9254 perf_event_free_task(child); 9255 return ret; 9256 } 9257 } 9258 9259 return 0; 9260 } 9261 9262 static void __init perf_event_init_all_cpus(void) 9263 { 9264 struct swevent_htable *swhash; 9265 int cpu; 9266 9267 for_each_possible_cpu(cpu) { 9268 swhash = &per_cpu(swevent_htable, cpu); 9269 mutex_init(&swhash->hlist_mutex); 9270 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 9271 } 9272 } 9273 9274 static void perf_event_init_cpu(int cpu) 9275 { 9276 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9277 9278 mutex_lock(&swhash->hlist_mutex); 9279 if (swhash->hlist_refcount > 0) { 9280 struct swevent_hlist *hlist; 9281 9282 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 9283 WARN_ON(!hlist); 9284 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9285 } 9286 mutex_unlock(&swhash->hlist_mutex); 9287 } 9288 9289 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 9290 static void __perf_event_exit_context(void *__info) 9291 { 9292 struct remove_event re = { .detach_group = true }; 9293 struct perf_event_context *ctx = __info; 9294 9295 rcu_read_lock(); 9296 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry) 9297 __perf_remove_from_context(&re); 9298 rcu_read_unlock(); 9299 } 9300 9301 static void perf_event_exit_cpu_context(int cpu) 9302 { 9303 struct perf_event_context *ctx; 9304 struct pmu *pmu; 9305 int idx; 9306 9307 idx = srcu_read_lock(&pmus_srcu); 9308 list_for_each_entry_rcu(pmu, &pmus, entry) { 9309 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 9310 9311 mutex_lock(&ctx->mutex); 9312 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 9313 mutex_unlock(&ctx->mutex); 9314 } 9315 srcu_read_unlock(&pmus_srcu, idx); 9316 } 9317 9318 static void perf_event_exit_cpu(int cpu) 9319 { 9320 perf_event_exit_cpu_context(cpu); 9321 } 9322 #else 9323 static inline void perf_event_exit_cpu(int cpu) { } 9324 #endif 9325 9326 static int 9327 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 9328 { 9329 int cpu; 9330 9331 for_each_online_cpu(cpu) 9332 perf_event_exit_cpu(cpu); 9333 9334 return NOTIFY_OK; 9335 } 9336 9337 /* 9338 * Run the perf reboot notifier at the very last possible moment so that 9339 * the generic watchdog code runs as long as possible. 9340 */ 9341 static struct notifier_block perf_reboot_notifier = { 9342 .notifier_call = perf_reboot, 9343 .priority = INT_MIN, 9344 }; 9345 9346 static int 9347 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 9348 { 9349 unsigned int cpu = (long)hcpu; 9350 9351 switch (action & ~CPU_TASKS_FROZEN) { 9352 9353 case CPU_UP_PREPARE: 9354 case CPU_DOWN_FAILED: 9355 perf_event_init_cpu(cpu); 9356 break; 9357 9358 case CPU_UP_CANCELED: 9359 case CPU_DOWN_PREPARE: 9360 perf_event_exit_cpu(cpu); 9361 break; 9362 default: 9363 break; 9364 } 9365 9366 return NOTIFY_OK; 9367 } 9368 9369 void __init perf_event_init(void) 9370 { 9371 int ret; 9372 9373 idr_init(&pmu_idr); 9374 9375 perf_event_init_all_cpus(); 9376 init_srcu_struct(&pmus_srcu); 9377 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 9378 perf_pmu_register(&perf_cpu_clock, NULL, -1); 9379 perf_pmu_register(&perf_task_clock, NULL, -1); 9380 perf_tp_register(); 9381 perf_cpu_notifier(perf_cpu_notify); 9382 register_reboot_notifier(&perf_reboot_notifier); 9383 9384 ret = init_hw_breakpoint(); 9385 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 9386 9387 /* do not patch jump label more than once per second */ 9388 jump_label_rate_limit(&perf_sched_events, HZ); 9389 9390 /* 9391 * Build time assertion that we keep the data_head at the intended 9392 * location. IOW, validation we got the __reserved[] size right. 9393 */ 9394 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 9395 != 1024); 9396 } 9397 9398 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 9399 char *page) 9400 { 9401 struct perf_pmu_events_attr *pmu_attr = 9402 container_of(attr, struct perf_pmu_events_attr, attr); 9403 9404 if (pmu_attr->event_str) 9405 return sprintf(page, "%s\n", pmu_attr->event_str); 9406 9407 return 0; 9408 } 9409 9410 static int __init perf_event_sysfs_init(void) 9411 { 9412 struct pmu *pmu; 9413 int ret; 9414 9415 mutex_lock(&pmus_lock); 9416 9417 ret = bus_register(&pmu_bus); 9418 if (ret) 9419 goto unlock; 9420 9421 list_for_each_entry(pmu, &pmus, entry) { 9422 if (!pmu->name || pmu->type < 0) 9423 continue; 9424 9425 ret = pmu_dev_alloc(pmu); 9426 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 9427 } 9428 pmu_bus_running = 1; 9429 ret = 0; 9430 9431 unlock: 9432 mutex_unlock(&pmus_lock); 9433 9434 return ret; 9435 } 9436 device_initcall(perf_event_sysfs_init); 9437 9438 #ifdef CONFIG_CGROUP_PERF 9439 static struct cgroup_subsys_state * 9440 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9441 { 9442 struct perf_cgroup *jc; 9443 9444 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 9445 if (!jc) 9446 return ERR_PTR(-ENOMEM); 9447 9448 jc->info = alloc_percpu(struct perf_cgroup_info); 9449 if (!jc->info) { 9450 kfree(jc); 9451 return ERR_PTR(-ENOMEM); 9452 } 9453 9454 return &jc->css; 9455 } 9456 9457 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 9458 { 9459 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 9460 9461 free_percpu(jc->info); 9462 kfree(jc); 9463 } 9464 9465 static int __perf_cgroup_move(void *info) 9466 { 9467 struct task_struct *task = info; 9468 rcu_read_lock(); 9469 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 9470 rcu_read_unlock(); 9471 return 0; 9472 } 9473 9474 static void perf_cgroup_attach(struct cgroup_taskset *tset) 9475 { 9476 struct task_struct *task; 9477 struct cgroup_subsys_state *css; 9478 9479 cgroup_taskset_for_each(task, css, tset) 9480 task_function_call(task, __perf_cgroup_move, task); 9481 } 9482 9483 struct cgroup_subsys perf_event_cgrp_subsys = { 9484 .css_alloc = perf_cgroup_css_alloc, 9485 .css_free = perf_cgroup_css_free, 9486 .attach = perf_cgroup_attach, 9487 }; 9488 #endif /* CONFIG_CGROUP_PERF */ 9489