xref: /openbmc/linux/kernel/events/core.c (revision abfbd895)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 static struct workqueue_struct *perf_wq;
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		tfc->ret = -EAGAIN;
70 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 			return;
72 	}
73 
74 	tfc->ret = tfc->func(tfc->info);
75 }
76 
77 /**
78  * task_function_call - call a function on the cpu on which a task runs
79  * @p:		the task to evaluate
80  * @func:	the function to be called
81  * @info:	the function call argument
82  *
83  * Calls the function @func when the task is currently running. This might
84  * be on the current CPU, which just calls the function directly
85  *
86  * returns: @func return value, or
87  *	    -ESRCH  - when the process isn't running
88  *	    -EAGAIN - when the process moved away
89  */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 	struct remote_function_call data = {
94 		.p	= p,
95 		.func	= func,
96 		.info	= info,
97 		.ret	= -ESRCH, /* No such (running) process */
98 	};
99 
100 	if (task_curr(p))
101 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102 
103 	return data.ret;
104 }
105 
106 /**
107  * cpu_function_call - call a function on the cpu
108  * @func:	the function to be called
109  * @info:	the function call argument
110  *
111  * Calls the function @func on the remote cpu.
112  *
113  * returns: @func return value or -ENXIO when the cpu is offline
114  */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 	struct remote_function_call data = {
118 		.p	= NULL,
119 		.func	= func,
120 		.info	= info,
121 		.ret	= -ENXIO, /* No such CPU */
122 	};
123 
124 	smp_call_function_single(cpu, remote_function, &data, 1);
125 
126 	return data.ret;
127 }
128 
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130 
131 static bool is_kernel_event(struct perf_event *event)
132 {
133 	return event->owner == EVENT_OWNER_KERNEL;
134 }
135 
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 		       PERF_FLAG_FD_OUTPUT  |\
138 		       PERF_FLAG_PID_CGROUP |\
139 		       PERF_FLAG_FD_CLOEXEC)
140 
141 /*
142  * branch priv levels that need permission checks
143  */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 	(PERF_SAMPLE_BRANCH_KERNEL |\
146 	 PERF_SAMPLE_BRANCH_HV)
147 
148 enum event_type_t {
149 	EVENT_FLEXIBLE = 0x1,
150 	EVENT_PINNED = 0x2,
151 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153 
154 /*
155  * perf_sched_events : >0 events exist
156  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157  */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161 
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166 static atomic_t nr_switch_events __read_mostly;
167 
168 static LIST_HEAD(pmus);
169 static DEFINE_MUTEX(pmus_lock);
170 static struct srcu_struct pmus_srcu;
171 
172 /*
173  * perf event paranoia level:
174  *  -1 - not paranoid at all
175  *   0 - disallow raw tracepoint access for unpriv
176  *   1 - disallow cpu events for unpriv
177  *   2 - disallow kernel profiling for unpriv
178  */
179 int sysctl_perf_event_paranoid __read_mostly = 1;
180 
181 /* Minimum for 512 kiB + 1 user control page */
182 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183 
184 /*
185  * max perf event sample rate
186  */
187 #define DEFAULT_MAX_SAMPLE_RATE		100000
188 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
190 
191 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
192 
193 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
195 
196 static int perf_sample_allowed_ns __read_mostly =
197 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198 
199 static void update_perf_cpu_limits(void)
200 {
201 	u64 tmp = perf_sample_period_ns;
202 
203 	tmp *= sysctl_perf_cpu_time_max_percent;
204 	do_div(tmp, 100);
205 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206 }
207 
208 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209 
210 int perf_proc_update_handler(struct ctl_table *table, int write,
211 		void __user *buffer, size_t *lenp,
212 		loff_t *ppos)
213 {
214 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
215 
216 	if (ret || !write)
217 		return ret;
218 
219 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 	update_perf_cpu_limits();
222 
223 	return 0;
224 }
225 
226 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227 
228 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 				void __user *buffer, size_t *lenp,
230 				loff_t *ppos)
231 {
232 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233 
234 	if (ret || !write)
235 		return ret;
236 
237 	update_perf_cpu_limits();
238 
239 	return 0;
240 }
241 
242 /*
243  * perf samples are done in some very critical code paths (NMIs).
244  * If they take too much CPU time, the system can lock up and not
245  * get any real work done.  This will drop the sample rate when
246  * we detect that events are taking too long.
247  */
248 #define NR_ACCUMULATED_SAMPLES 128
249 static DEFINE_PER_CPU(u64, running_sample_length);
250 
251 static void perf_duration_warn(struct irq_work *w)
252 {
253 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254 	u64 avg_local_sample_len;
255 	u64 local_samples_len;
256 
257 	local_samples_len = __this_cpu_read(running_sample_length);
258 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259 
260 	printk_ratelimited(KERN_WARNING
261 			"perf interrupt took too long (%lld > %lld), lowering "
262 			"kernel.perf_event_max_sample_rate to %d\n",
263 			avg_local_sample_len, allowed_ns >> 1,
264 			sysctl_perf_event_sample_rate);
265 }
266 
267 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268 
269 void perf_sample_event_took(u64 sample_len_ns)
270 {
271 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 	u64 avg_local_sample_len;
273 	u64 local_samples_len;
274 
275 	if (allowed_ns == 0)
276 		return;
277 
278 	/* decay the counter by 1 average sample */
279 	local_samples_len = __this_cpu_read(running_sample_length);
280 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 	local_samples_len += sample_len_ns;
282 	__this_cpu_write(running_sample_length, local_samples_len);
283 
284 	/*
285 	 * note: this will be biased artifically low until we have
286 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
287 	 * from having to maintain a count.
288 	 */
289 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290 
291 	if (avg_local_sample_len <= allowed_ns)
292 		return;
293 
294 	if (max_samples_per_tick <= 1)
295 		return;
296 
297 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300 
301 	update_perf_cpu_limits();
302 
303 	if (!irq_work_queue(&perf_duration_work)) {
304 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 			     "kernel.perf_event_max_sample_rate to %d\n",
306 			     avg_local_sample_len, allowed_ns >> 1,
307 			     sysctl_perf_event_sample_rate);
308 	}
309 }
310 
311 static atomic64_t perf_event_id;
312 
313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 			      enum event_type_t event_type);
315 
316 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
317 			     enum event_type_t event_type,
318 			     struct task_struct *task);
319 
320 static void update_context_time(struct perf_event_context *ctx);
321 static u64 perf_event_time(struct perf_event *event);
322 
323 void __weak perf_event_print_debug(void)	{ }
324 
325 extern __weak const char *perf_pmu_name(void)
326 {
327 	return "pmu";
328 }
329 
330 static inline u64 perf_clock(void)
331 {
332 	return local_clock();
333 }
334 
335 static inline u64 perf_event_clock(struct perf_event *event)
336 {
337 	return event->clock();
338 }
339 
340 static inline struct perf_cpu_context *
341 __get_cpu_context(struct perf_event_context *ctx)
342 {
343 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344 }
345 
346 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 			  struct perf_event_context *ctx)
348 {
349 	raw_spin_lock(&cpuctx->ctx.lock);
350 	if (ctx)
351 		raw_spin_lock(&ctx->lock);
352 }
353 
354 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 			    struct perf_event_context *ctx)
356 {
357 	if (ctx)
358 		raw_spin_unlock(&ctx->lock);
359 	raw_spin_unlock(&cpuctx->ctx.lock);
360 }
361 
362 #ifdef CONFIG_CGROUP_PERF
363 
364 static inline bool
365 perf_cgroup_match(struct perf_event *event)
366 {
367 	struct perf_event_context *ctx = event->ctx;
368 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369 
370 	/* @event doesn't care about cgroup */
371 	if (!event->cgrp)
372 		return true;
373 
374 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
375 	if (!cpuctx->cgrp)
376 		return false;
377 
378 	/*
379 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
380 	 * also enabled for all its descendant cgroups.  If @cpuctx's
381 	 * cgroup is a descendant of @event's (the test covers identity
382 	 * case), it's a match.
383 	 */
384 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 				    event->cgrp->css.cgroup);
386 }
387 
388 static inline void perf_detach_cgroup(struct perf_event *event)
389 {
390 	css_put(&event->cgrp->css);
391 	event->cgrp = NULL;
392 }
393 
394 static inline int is_cgroup_event(struct perf_event *event)
395 {
396 	return event->cgrp != NULL;
397 }
398 
399 static inline u64 perf_cgroup_event_time(struct perf_event *event)
400 {
401 	struct perf_cgroup_info *t;
402 
403 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 	return t->time;
405 }
406 
407 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408 {
409 	struct perf_cgroup_info *info;
410 	u64 now;
411 
412 	now = perf_clock();
413 
414 	info = this_cpu_ptr(cgrp->info);
415 
416 	info->time += now - info->timestamp;
417 	info->timestamp = now;
418 }
419 
420 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421 {
422 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 	if (cgrp_out)
424 		__update_cgrp_time(cgrp_out);
425 }
426 
427 static inline void update_cgrp_time_from_event(struct perf_event *event)
428 {
429 	struct perf_cgroup *cgrp;
430 
431 	/*
432 	 * ensure we access cgroup data only when needed and
433 	 * when we know the cgroup is pinned (css_get)
434 	 */
435 	if (!is_cgroup_event(event))
436 		return;
437 
438 	cgrp = perf_cgroup_from_task(current, event->ctx);
439 	/*
440 	 * Do not update time when cgroup is not active
441 	 */
442 	if (cgrp == event->cgrp)
443 		__update_cgrp_time(event->cgrp);
444 }
445 
446 static inline void
447 perf_cgroup_set_timestamp(struct task_struct *task,
448 			  struct perf_event_context *ctx)
449 {
450 	struct perf_cgroup *cgrp;
451 	struct perf_cgroup_info *info;
452 
453 	/*
454 	 * ctx->lock held by caller
455 	 * ensure we do not access cgroup data
456 	 * unless we have the cgroup pinned (css_get)
457 	 */
458 	if (!task || !ctx->nr_cgroups)
459 		return;
460 
461 	cgrp = perf_cgroup_from_task(task, ctx);
462 	info = this_cpu_ptr(cgrp->info);
463 	info->timestamp = ctx->timestamp;
464 }
465 
466 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
467 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
468 
469 /*
470  * reschedule events based on the cgroup constraint of task.
471  *
472  * mode SWOUT : schedule out everything
473  * mode SWIN : schedule in based on cgroup for next
474  */
475 static void perf_cgroup_switch(struct task_struct *task, int mode)
476 {
477 	struct perf_cpu_context *cpuctx;
478 	struct pmu *pmu;
479 	unsigned long flags;
480 
481 	/*
482 	 * disable interrupts to avoid geting nr_cgroup
483 	 * changes via __perf_event_disable(). Also
484 	 * avoids preemption.
485 	 */
486 	local_irq_save(flags);
487 
488 	/*
489 	 * we reschedule only in the presence of cgroup
490 	 * constrained events.
491 	 */
492 
493 	list_for_each_entry_rcu(pmu, &pmus, entry) {
494 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
495 		if (cpuctx->unique_pmu != pmu)
496 			continue; /* ensure we process each cpuctx once */
497 
498 		/*
499 		 * perf_cgroup_events says at least one
500 		 * context on this CPU has cgroup events.
501 		 *
502 		 * ctx->nr_cgroups reports the number of cgroup
503 		 * events for a context.
504 		 */
505 		if (cpuctx->ctx.nr_cgroups > 0) {
506 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
507 			perf_pmu_disable(cpuctx->ctx.pmu);
508 
509 			if (mode & PERF_CGROUP_SWOUT) {
510 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
511 				/*
512 				 * must not be done before ctxswout due
513 				 * to event_filter_match() in event_sched_out()
514 				 */
515 				cpuctx->cgrp = NULL;
516 			}
517 
518 			if (mode & PERF_CGROUP_SWIN) {
519 				WARN_ON_ONCE(cpuctx->cgrp);
520 				/*
521 				 * set cgrp before ctxsw in to allow
522 				 * event_filter_match() to not have to pass
523 				 * task around
524 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
525 				 * because cgorup events are only per-cpu
526 				 */
527 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
528 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
529 			}
530 			perf_pmu_enable(cpuctx->ctx.pmu);
531 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
532 		}
533 	}
534 
535 	local_irq_restore(flags);
536 }
537 
538 static inline void perf_cgroup_sched_out(struct task_struct *task,
539 					 struct task_struct *next)
540 {
541 	struct perf_cgroup *cgrp1;
542 	struct perf_cgroup *cgrp2 = NULL;
543 
544 	rcu_read_lock();
545 	/*
546 	 * we come here when we know perf_cgroup_events > 0
547 	 * we do not need to pass the ctx here because we know
548 	 * we are holding the rcu lock
549 	 */
550 	cgrp1 = perf_cgroup_from_task(task, NULL);
551 
552 	/*
553 	 * next is NULL when called from perf_event_enable_on_exec()
554 	 * that will systematically cause a cgroup_switch()
555 	 */
556 	if (next)
557 		cgrp2 = perf_cgroup_from_task(next, NULL);
558 
559 	/*
560 	 * only schedule out current cgroup events if we know
561 	 * that we are switching to a different cgroup. Otherwise,
562 	 * do no touch the cgroup events.
563 	 */
564 	if (cgrp1 != cgrp2)
565 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
566 
567 	rcu_read_unlock();
568 }
569 
570 static inline void perf_cgroup_sched_in(struct task_struct *prev,
571 					struct task_struct *task)
572 {
573 	struct perf_cgroup *cgrp1;
574 	struct perf_cgroup *cgrp2 = NULL;
575 
576 	rcu_read_lock();
577 	/*
578 	 * we come here when we know perf_cgroup_events > 0
579 	 * we do not need to pass the ctx here because we know
580 	 * we are holding the rcu lock
581 	 */
582 	cgrp1 = perf_cgroup_from_task(task, NULL);
583 
584 	/* prev can never be NULL */
585 	cgrp2 = perf_cgroup_from_task(prev, NULL);
586 
587 	/*
588 	 * only need to schedule in cgroup events if we are changing
589 	 * cgroup during ctxsw. Cgroup events were not scheduled
590 	 * out of ctxsw out if that was not the case.
591 	 */
592 	if (cgrp1 != cgrp2)
593 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
594 
595 	rcu_read_unlock();
596 }
597 
598 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
599 				      struct perf_event_attr *attr,
600 				      struct perf_event *group_leader)
601 {
602 	struct perf_cgroup *cgrp;
603 	struct cgroup_subsys_state *css;
604 	struct fd f = fdget(fd);
605 	int ret = 0;
606 
607 	if (!f.file)
608 		return -EBADF;
609 
610 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
611 					 &perf_event_cgrp_subsys);
612 	if (IS_ERR(css)) {
613 		ret = PTR_ERR(css);
614 		goto out;
615 	}
616 
617 	cgrp = container_of(css, struct perf_cgroup, css);
618 	event->cgrp = cgrp;
619 
620 	/*
621 	 * all events in a group must monitor
622 	 * the same cgroup because a task belongs
623 	 * to only one perf cgroup at a time
624 	 */
625 	if (group_leader && group_leader->cgrp != cgrp) {
626 		perf_detach_cgroup(event);
627 		ret = -EINVAL;
628 	}
629 out:
630 	fdput(f);
631 	return ret;
632 }
633 
634 static inline void
635 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
636 {
637 	struct perf_cgroup_info *t;
638 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
639 	event->shadow_ctx_time = now - t->timestamp;
640 }
641 
642 static inline void
643 perf_cgroup_defer_enabled(struct perf_event *event)
644 {
645 	/*
646 	 * when the current task's perf cgroup does not match
647 	 * the event's, we need to remember to call the
648 	 * perf_mark_enable() function the first time a task with
649 	 * a matching perf cgroup is scheduled in.
650 	 */
651 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
652 		event->cgrp_defer_enabled = 1;
653 }
654 
655 static inline void
656 perf_cgroup_mark_enabled(struct perf_event *event,
657 			 struct perf_event_context *ctx)
658 {
659 	struct perf_event *sub;
660 	u64 tstamp = perf_event_time(event);
661 
662 	if (!event->cgrp_defer_enabled)
663 		return;
664 
665 	event->cgrp_defer_enabled = 0;
666 
667 	event->tstamp_enabled = tstamp - event->total_time_enabled;
668 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
669 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
670 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
671 			sub->cgrp_defer_enabled = 0;
672 		}
673 	}
674 }
675 #else /* !CONFIG_CGROUP_PERF */
676 
677 static inline bool
678 perf_cgroup_match(struct perf_event *event)
679 {
680 	return true;
681 }
682 
683 static inline void perf_detach_cgroup(struct perf_event *event)
684 {}
685 
686 static inline int is_cgroup_event(struct perf_event *event)
687 {
688 	return 0;
689 }
690 
691 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
692 {
693 	return 0;
694 }
695 
696 static inline void update_cgrp_time_from_event(struct perf_event *event)
697 {
698 }
699 
700 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
701 {
702 }
703 
704 static inline void perf_cgroup_sched_out(struct task_struct *task,
705 					 struct task_struct *next)
706 {
707 }
708 
709 static inline void perf_cgroup_sched_in(struct task_struct *prev,
710 					struct task_struct *task)
711 {
712 }
713 
714 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
715 				      struct perf_event_attr *attr,
716 				      struct perf_event *group_leader)
717 {
718 	return -EINVAL;
719 }
720 
721 static inline void
722 perf_cgroup_set_timestamp(struct task_struct *task,
723 			  struct perf_event_context *ctx)
724 {
725 }
726 
727 void
728 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
729 {
730 }
731 
732 static inline void
733 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
734 {
735 }
736 
737 static inline u64 perf_cgroup_event_time(struct perf_event *event)
738 {
739 	return 0;
740 }
741 
742 static inline void
743 perf_cgroup_defer_enabled(struct perf_event *event)
744 {
745 }
746 
747 static inline void
748 perf_cgroup_mark_enabled(struct perf_event *event,
749 			 struct perf_event_context *ctx)
750 {
751 }
752 #endif
753 
754 /*
755  * set default to be dependent on timer tick just
756  * like original code
757  */
758 #define PERF_CPU_HRTIMER (1000 / HZ)
759 /*
760  * function must be called with interrupts disbled
761  */
762 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
763 {
764 	struct perf_cpu_context *cpuctx;
765 	int rotations = 0;
766 
767 	WARN_ON(!irqs_disabled());
768 
769 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
770 	rotations = perf_rotate_context(cpuctx);
771 
772 	raw_spin_lock(&cpuctx->hrtimer_lock);
773 	if (rotations)
774 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
775 	else
776 		cpuctx->hrtimer_active = 0;
777 	raw_spin_unlock(&cpuctx->hrtimer_lock);
778 
779 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
780 }
781 
782 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
783 {
784 	struct hrtimer *timer = &cpuctx->hrtimer;
785 	struct pmu *pmu = cpuctx->ctx.pmu;
786 	u64 interval;
787 
788 	/* no multiplexing needed for SW PMU */
789 	if (pmu->task_ctx_nr == perf_sw_context)
790 		return;
791 
792 	/*
793 	 * check default is sane, if not set then force to
794 	 * default interval (1/tick)
795 	 */
796 	interval = pmu->hrtimer_interval_ms;
797 	if (interval < 1)
798 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
799 
800 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
801 
802 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
803 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
804 	timer->function = perf_mux_hrtimer_handler;
805 }
806 
807 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
808 {
809 	struct hrtimer *timer = &cpuctx->hrtimer;
810 	struct pmu *pmu = cpuctx->ctx.pmu;
811 	unsigned long flags;
812 
813 	/* not for SW PMU */
814 	if (pmu->task_ctx_nr == perf_sw_context)
815 		return 0;
816 
817 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
818 	if (!cpuctx->hrtimer_active) {
819 		cpuctx->hrtimer_active = 1;
820 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
821 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
822 	}
823 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
824 
825 	return 0;
826 }
827 
828 void perf_pmu_disable(struct pmu *pmu)
829 {
830 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
831 	if (!(*count)++)
832 		pmu->pmu_disable(pmu);
833 }
834 
835 void perf_pmu_enable(struct pmu *pmu)
836 {
837 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
838 	if (!--(*count))
839 		pmu->pmu_enable(pmu);
840 }
841 
842 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
843 
844 /*
845  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
846  * perf_event_task_tick() are fully serialized because they're strictly cpu
847  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
848  * disabled, while perf_event_task_tick is called from IRQ context.
849  */
850 static void perf_event_ctx_activate(struct perf_event_context *ctx)
851 {
852 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
853 
854 	WARN_ON(!irqs_disabled());
855 
856 	WARN_ON(!list_empty(&ctx->active_ctx_list));
857 
858 	list_add(&ctx->active_ctx_list, head);
859 }
860 
861 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
862 {
863 	WARN_ON(!irqs_disabled());
864 
865 	WARN_ON(list_empty(&ctx->active_ctx_list));
866 
867 	list_del_init(&ctx->active_ctx_list);
868 }
869 
870 static void get_ctx(struct perf_event_context *ctx)
871 {
872 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
873 }
874 
875 static void free_ctx(struct rcu_head *head)
876 {
877 	struct perf_event_context *ctx;
878 
879 	ctx = container_of(head, struct perf_event_context, rcu_head);
880 	kfree(ctx->task_ctx_data);
881 	kfree(ctx);
882 }
883 
884 static void put_ctx(struct perf_event_context *ctx)
885 {
886 	if (atomic_dec_and_test(&ctx->refcount)) {
887 		if (ctx->parent_ctx)
888 			put_ctx(ctx->parent_ctx);
889 		if (ctx->task)
890 			put_task_struct(ctx->task);
891 		call_rcu(&ctx->rcu_head, free_ctx);
892 	}
893 }
894 
895 /*
896  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
897  * perf_pmu_migrate_context() we need some magic.
898  *
899  * Those places that change perf_event::ctx will hold both
900  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
901  *
902  * Lock ordering is by mutex address. There are two other sites where
903  * perf_event_context::mutex nests and those are:
904  *
905  *  - perf_event_exit_task_context()	[ child , 0 ]
906  *      __perf_event_exit_task()
907  *        sync_child_event()
908  *          put_event()			[ parent, 1 ]
909  *
910  *  - perf_event_init_context()		[ parent, 0 ]
911  *      inherit_task_group()
912  *        inherit_group()
913  *          inherit_event()
914  *            perf_event_alloc()
915  *              perf_init_event()
916  *                perf_try_init_event()	[ child , 1 ]
917  *
918  * While it appears there is an obvious deadlock here -- the parent and child
919  * nesting levels are inverted between the two. This is in fact safe because
920  * life-time rules separate them. That is an exiting task cannot fork, and a
921  * spawning task cannot (yet) exit.
922  *
923  * But remember that that these are parent<->child context relations, and
924  * migration does not affect children, therefore these two orderings should not
925  * interact.
926  *
927  * The change in perf_event::ctx does not affect children (as claimed above)
928  * because the sys_perf_event_open() case will install a new event and break
929  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
930  * concerned with cpuctx and that doesn't have children.
931  *
932  * The places that change perf_event::ctx will issue:
933  *
934  *   perf_remove_from_context();
935  *   synchronize_rcu();
936  *   perf_install_in_context();
937  *
938  * to affect the change. The remove_from_context() + synchronize_rcu() should
939  * quiesce the event, after which we can install it in the new location. This
940  * means that only external vectors (perf_fops, prctl) can perturb the event
941  * while in transit. Therefore all such accessors should also acquire
942  * perf_event_context::mutex to serialize against this.
943  *
944  * However; because event->ctx can change while we're waiting to acquire
945  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
946  * function.
947  *
948  * Lock order:
949  *	task_struct::perf_event_mutex
950  *	  perf_event_context::mutex
951  *	    perf_event_context::lock
952  *	    perf_event::child_mutex;
953  *	    perf_event::mmap_mutex
954  *	    mmap_sem
955  */
956 static struct perf_event_context *
957 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
958 {
959 	struct perf_event_context *ctx;
960 
961 again:
962 	rcu_read_lock();
963 	ctx = ACCESS_ONCE(event->ctx);
964 	if (!atomic_inc_not_zero(&ctx->refcount)) {
965 		rcu_read_unlock();
966 		goto again;
967 	}
968 	rcu_read_unlock();
969 
970 	mutex_lock_nested(&ctx->mutex, nesting);
971 	if (event->ctx != ctx) {
972 		mutex_unlock(&ctx->mutex);
973 		put_ctx(ctx);
974 		goto again;
975 	}
976 
977 	return ctx;
978 }
979 
980 static inline struct perf_event_context *
981 perf_event_ctx_lock(struct perf_event *event)
982 {
983 	return perf_event_ctx_lock_nested(event, 0);
984 }
985 
986 static void perf_event_ctx_unlock(struct perf_event *event,
987 				  struct perf_event_context *ctx)
988 {
989 	mutex_unlock(&ctx->mutex);
990 	put_ctx(ctx);
991 }
992 
993 /*
994  * This must be done under the ctx->lock, such as to serialize against
995  * context_equiv(), therefore we cannot call put_ctx() since that might end up
996  * calling scheduler related locks and ctx->lock nests inside those.
997  */
998 static __must_check struct perf_event_context *
999 unclone_ctx(struct perf_event_context *ctx)
1000 {
1001 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1002 
1003 	lockdep_assert_held(&ctx->lock);
1004 
1005 	if (parent_ctx)
1006 		ctx->parent_ctx = NULL;
1007 	ctx->generation++;
1008 
1009 	return parent_ctx;
1010 }
1011 
1012 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1013 {
1014 	/*
1015 	 * only top level events have the pid namespace they were created in
1016 	 */
1017 	if (event->parent)
1018 		event = event->parent;
1019 
1020 	return task_tgid_nr_ns(p, event->ns);
1021 }
1022 
1023 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1024 {
1025 	/*
1026 	 * only top level events have the pid namespace they were created in
1027 	 */
1028 	if (event->parent)
1029 		event = event->parent;
1030 
1031 	return task_pid_nr_ns(p, event->ns);
1032 }
1033 
1034 /*
1035  * If we inherit events we want to return the parent event id
1036  * to userspace.
1037  */
1038 static u64 primary_event_id(struct perf_event *event)
1039 {
1040 	u64 id = event->id;
1041 
1042 	if (event->parent)
1043 		id = event->parent->id;
1044 
1045 	return id;
1046 }
1047 
1048 /*
1049  * Get the perf_event_context for a task and lock it.
1050  * This has to cope with with the fact that until it is locked,
1051  * the context could get moved to another task.
1052  */
1053 static struct perf_event_context *
1054 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1055 {
1056 	struct perf_event_context *ctx;
1057 
1058 retry:
1059 	/*
1060 	 * One of the few rules of preemptible RCU is that one cannot do
1061 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1062 	 * part of the read side critical section was irqs-enabled -- see
1063 	 * rcu_read_unlock_special().
1064 	 *
1065 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1066 	 * side critical section has interrupts disabled.
1067 	 */
1068 	local_irq_save(*flags);
1069 	rcu_read_lock();
1070 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1071 	if (ctx) {
1072 		/*
1073 		 * If this context is a clone of another, it might
1074 		 * get swapped for another underneath us by
1075 		 * perf_event_task_sched_out, though the
1076 		 * rcu_read_lock() protects us from any context
1077 		 * getting freed.  Lock the context and check if it
1078 		 * got swapped before we could get the lock, and retry
1079 		 * if so.  If we locked the right context, then it
1080 		 * can't get swapped on us any more.
1081 		 */
1082 		raw_spin_lock(&ctx->lock);
1083 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1084 			raw_spin_unlock(&ctx->lock);
1085 			rcu_read_unlock();
1086 			local_irq_restore(*flags);
1087 			goto retry;
1088 		}
1089 
1090 		if (!atomic_inc_not_zero(&ctx->refcount)) {
1091 			raw_spin_unlock(&ctx->lock);
1092 			ctx = NULL;
1093 		}
1094 	}
1095 	rcu_read_unlock();
1096 	if (!ctx)
1097 		local_irq_restore(*flags);
1098 	return ctx;
1099 }
1100 
1101 /*
1102  * Get the context for a task and increment its pin_count so it
1103  * can't get swapped to another task.  This also increments its
1104  * reference count so that the context can't get freed.
1105  */
1106 static struct perf_event_context *
1107 perf_pin_task_context(struct task_struct *task, int ctxn)
1108 {
1109 	struct perf_event_context *ctx;
1110 	unsigned long flags;
1111 
1112 	ctx = perf_lock_task_context(task, ctxn, &flags);
1113 	if (ctx) {
1114 		++ctx->pin_count;
1115 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1116 	}
1117 	return ctx;
1118 }
1119 
1120 static void perf_unpin_context(struct perf_event_context *ctx)
1121 {
1122 	unsigned long flags;
1123 
1124 	raw_spin_lock_irqsave(&ctx->lock, flags);
1125 	--ctx->pin_count;
1126 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1127 }
1128 
1129 /*
1130  * Update the record of the current time in a context.
1131  */
1132 static void update_context_time(struct perf_event_context *ctx)
1133 {
1134 	u64 now = perf_clock();
1135 
1136 	ctx->time += now - ctx->timestamp;
1137 	ctx->timestamp = now;
1138 }
1139 
1140 static u64 perf_event_time(struct perf_event *event)
1141 {
1142 	struct perf_event_context *ctx = event->ctx;
1143 
1144 	if (is_cgroup_event(event))
1145 		return perf_cgroup_event_time(event);
1146 
1147 	return ctx ? ctx->time : 0;
1148 }
1149 
1150 /*
1151  * Update the total_time_enabled and total_time_running fields for a event.
1152  * The caller of this function needs to hold the ctx->lock.
1153  */
1154 static void update_event_times(struct perf_event *event)
1155 {
1156 	struct perf_event_context *ctx = event->ctx;
1157 	u64 run_end;
1158 
1159 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1160 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1161 		return;
1162 	/*
1163 	 * in cgroup mode, time_enabled represents
1164 	 * the time the event was enabled AND active
1165 	 * tasks were in the monitored cgroup. This is
1166 	 * independent of the activity of the context as
1167 	 * there may be a mix of cgroup and non-cgroup events.
1168 	 *
1169 	 * That is why we treat cgroup events differently
1170 	 * here.
1171 	 */
1172 	if (is_cgroup_event(event))
1173 		run_end = perf_cgroup_event_time(event);
1174 	else if (ctx->is_active)
1175 		run_end = ctx->time;
1176 	else
1177 		run_end = event->tstamp_stopped;
1178 
1179 	event->total_time_enabled = run_end - event->tstamp_enabled;
1180 
1181 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1182 		run_end = event->tstamp_stopped;
1183 	else
1184 		run_end = perf_event_time(event);
1185 
1186 	event->total_time_running = run_end - event->tstamp_running;
1187 
1188 }
1189 
1190 /*
1191  * Update total_time_enabled and total_time_running for all events in a group.
1192  */
1193 static void update_group_times(struct perf_event *leader)
1194 {
1195 	struct perf_event *event;
1196 
1197 	update_event_times(leader);
1198 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1199 		update_event_times(event);
1200 }
1201 
1202 static struct list_head *
1203 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1204 {
1205 	if (event->attr.pinned)
1206 		return &ctx->pinned_groups;
1207 	else
1208 		return &ctx->flexible_groups;
1209 }
1210 
1211 /*
1212  * Add a event from the lists for its context.
1213  * Must be called with ctx->mutex and ctx->lock held.
1214  */
1215 static void
1216 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1217 {
1218 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1219 	event->attach_state |= PERF_ATTACH_CONTEXT;
1220 
1221 	/*
1222 	 * If we're a stand alone event or group leader, we go to the context
1223 	 * list, group events are kept attached to the group so that
1224 	 * perf_group_detach can, at all times, locate all siblings.
1225 	 */
1226 	if (event->group_leader == event) {
1227 		struct list_head *list;
1228 
1229 		if (is_software_event(event))
1230 			event->group_flags |= PERF_GROUP_SOFTWARE;
1231 
1232 		list = ctx_group_list(event, ctx);
1233 		list_add_tail(&event->group_entry, list);
1234 	}
1235 
1236 	if (is_cgroup_event(event))
1237 		ctx->nr_cgroups++;
1238 
1239 	list_add_rcu(&event->event_entry, &ctx->event_list);
1240 	ctx->nr_events++;
1241 	if (event->attr.inherit_stat)
1242 		ctx->nr_stat++;
1243 
1244 	ctx->generation++;
1245 }
1246 
1247 /*
1248  * Initialize event state based on the perf_event_attr::disabled.
1249  */
1250 static inline void perf_event__state_init(struct perf_event *event)
1251 {
1252 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1253 					      PERF_EVENT_STATE_INACTIVE;
1254 }
1255 
1256 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1257 {
1258 	int entry = sizeof(u64); /* value */
1259 	int size = 0;
1260 	int nr = 1;
1261 
1262 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1263 		size += sizeof(u64);
1264 
1265 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1266 		size += sizeof(u64);
1267 
1268 	if (event->attr.read_format & PERF_FORMAT_ID)
1269 		entry += sizeof(u64);
1270 
1271 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1272 		nr += nr_siblings;
1273 		size += sizeof(u64);
1274 	}
1275 
1276 	size += entry * nr;
1277 	event->read_size = size;
1278 }
1279 
1280 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1281 {
1282 	struct perf_sample_data *data;
1283 	u16 size = 0;
1284 
1285 	if (sample_type & PERF_SAMPLE_IP)
1286 		size += sizeof(data->ip);
1287 
1288 	if (sample_type & PERF_SAMPLE_ADDR)
1289 		size += sizeof(data->addr);
1290 
1291 	if (sample_type & PERF_SAMPLE_PERIOD)
1292 		size += sizeof(data->period);
1293 
1294 	if (sample_type & PERF_SAMPLE_WEIGHT)
1295 		size += sizeof(data->weight);
1296 
1297 	if (sample_type & PERF_SAMPLE_READ)
1298 		size += event->read_size;
1299 
1300 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1301 		size += sizeof(data->data_src.val);
1302 
1303 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1304 		size += sizeof(data->txn);
1305 
1306 	event->header_size = size;
1307 }
1308 
1309 /*
1310  * Called at perf_event creation and when events are attached/detached from a
1311  * group.
1312  */
1313 static void perf_event__header_size(struct perf_event *event)
1314 {
1315 	__perf_event_read_size(event,
1316 			       event->group_leader->nr_siblings);
1317 	__perf_event_header_size(event, event->attr.sample_type);
1318 }
1319 
1320 static void perf_event__id_header_size(struct perf_event *event)
1321 {
1322 	struct perf_sample_data *data;
1323 	u64 sample_type = event->attr.sample_type;
1324 	u16 size = 0;
1325 
1326 	if (sample_type & PERF_SAMPLE_TID)
1327 		size += sizeof(data->tid_entry);
1328 
1329 	if (sample_type & PERF_SAMPLE_TIME)
1330 		size += sizeof(data->time);
1331 
1332 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1333 		size += sizeof(data->id);
1334 
1335 	if (sample_type & PERF_SAMPLE_ID)
1336 		size += sizeof(data->id);
1337 
1338 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1339 		size += sizeof(data->stream_id);
1340 
1341 	if (sample_type & PERF_SAMPLE_CPU)
1342 		size += sizeof(data->cpu_entry);
1343 
1344 	event->id_header_size = size;
1345 }
1346 
1347 static bool perf_event_validate_size(struct perf_event *event)
1348 {
1349 	/*
1350 	 * The values computed here will be over-written when we actually
1351 	 * attach the event.
1352 	 */
1353 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1354 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1355 	perf_event__id_header_size(event);
1356 
1357 	/*
1358 	 * Sum the lot; should not exceed the 64k limit we have on records.
1359 	 * Conservative limit to allow for callchains and other variable fields.
1360 	 */
1361 	if (event->read_size + event->header_size +
1362 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1363 		return false;
1364 
1365 	return true;
1366 }
1367 
1368 static void perf_group_attach(struct perf_event *event)
1369 {
1370 	struct perf_event *group_leader = event->group_leader, *pos;
1371 
1372 	/*
1373 	 * We can have double attach due to group movement in perf_event_open.
1374 	 */
1375 	if (event->attach_state & PERF_ATTACH_GROUP)
1376 		return;
1377 
1378 	event->attach_state |= PERF_ATTACH_GROUP;
1379 
1380 	if (group_leader == event)
1381 		return;
1382 
1383 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1384 
1385 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1386 			!is_software_event(event))
1387 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1388 
1389 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1390 	group_leader->nr_siblings++;
1391 
1392 	perf_event__header_size(group_leader);
1393 
1394 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1395 		perf_event__header_size(pos);
1396 }
1397 
1398 /*
1399  * Remove a event from the lists for its context.
1400  * Must be called with ctx->mutex and ctx->lock held.
1401  */
1402 static void
1403 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1404 {
1405 	struct perf_cpu_context *cpuctx;
1406 
1407 	WARN_ON_ONCE(event->ctx != ctx);
1408 	lockdep_assert_held(&ctx->lock);
1409 
1410 	/*
1411 	 * We can have double detach due to exit/hot-unplug + close.
1412 	 */
1413 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1414 		return;
1415 
1416 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1417 
1418 	if (is_cgroup_event(event)) {
1419 		ctx->nr_cgroups--;
1420 		cpuctx = __get_cpu_context(ctx);
1421 		/*
1422 		 * if there are no more cgroup events
1423 		 * then cler cgrp to avoid stale pointer
1424 		 * in update_cgrp_time_from_cpuctx()
1425 		 */
1426 		if (!ctx->nr_cgroups)
1427 			cpuctx->cgrp = NULL;
1428 	}
1429 
1430 	ctx->nr_events--;
1431 	if (event->attr.inherit_stat)
1432 		ctx->nr_stat--;
1433 
1434 	list_del_rcu(&event->event_entry);
1435 
1436 	if (event->group_leader == event)
1437 		list_del_init(&event->group_entry);
1438 
1439 	update_group_times(event);
1440 
1441 	/*
1442 	 * If event was in error state, then keep it
1443 	 * that way, otherwise bogus counts will be
1444 	 * returned on read(). The only way to get out
1445 	 * of error state is by explicit re-enabling
1446 	 * of the event
1447 	 */
1448 	if (event->state > PERF_EVENT_STATE_OFF)
1449 		event->state = PERF_EVENT_STATE_OFF;
1450 
1451 	ctx->generation++;
1452 }
1453 
1454 static void perf_group_detach(struct perf_event *event)
1455 {
1456 	struct perf_event *sibling, *tmp;
1457 	struct list_head *list = NULL;
1458 
1459 	/*
1460 	 * We can have double detach due to exit/hot-unplug + close.
1461 	 */
1462 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1463 		return;
1464 
1465 	event->attach_state &= ~PERF_ATTACH_GROUP;
1466 
1467 	/*
1468 	 * If this is a sibling, remove it from its group.
1469 	 */
1470 	if (event->group_leader != event) {
1471 		list_del_init(&event->group_entry);
1472 		event->group_leader->nr_siblings--;
1473 		goto out;
1474 	}
1475 
1476 	if (!list_empty(&event->group_entry))
1477 		list = &event->group_entry;
1478 
1479 	/*
1480 	 * If this was a group event with sibling events then
1481 	 * upgrade the siblings to singleton events by adding them
1482 	 * to whatever list we are on.
1483 	 */
1484 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1485 		if (list)
1486 			list_move_tail(&sibling->group_entry, list);
1487 		sibling->group_leader = sibling;
1488 
1489 		/* Inherit group flags from the previous leader */
1490 		sibling->group_flags = event->group_flags;
1491 
1492 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1493 	}
1494 
1495 out:
1496 	perf_event__header_size(event->group_leader);
1497 
1498 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1499 		perf_event__header_size(tmp);
1500 }
1501 
1502 /*
1503  * User event without the task.
1504  */
1505 static bool is_orphaned_event(struct perf_event *event)
1506 {
1507 	return event && !is_kernel_event(event) && !event->owner;
1508 }
1509 
1510 /*
1511  * Event has a parent but parent's task finished and it's
1512  * alive only because of children holding refference.
1513  */
1514 static bool is_orphaned_child(struct perf_event *event)
1515 {
1516 	return is_orphaned_event(event->parent);
1517 }
1518 
1519 static void orphans_remove_work(struct work_struct *work);
1520 
1521 static void schedule_orphans_remove(struct perf_event_context *ctx)
1522 {
1523 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1524 		return;
1525 
1526 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1527 		get_ctx(ctx);
1528 		ctx->orphans_remove_sched = true;
1529 	}
1530 }
1531 
1532 static int __init perf_workqueue_init(void)
1533 {
1534 	perf_wq = create_singlethread_workqueue("perf");
1535 	WARN(!perf_wq, "failed to create perf workqueue\n");
1536 	return perf_wq ? 0 : -1;
1537 }
1538 
1539 core_initcall(perf_workqueue_init);
1540 
1541 static inline int pmu_filter_match(struct perf_event *event)
1542 {
1543 	struct pmu *pmu = event->pmu;
1544 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1545 }
1546 
1547 static inline int
1548 event_filter_match(struct perf_event *event)
1549 {
1550 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1551 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1552 }
1553 
1554 static void
1555 event_sched_out(struct perf_event *event,
1556 		  struct perf_cpu_context *cpuctx,
1557 		  struct perf_event_context *ctx)
1558 {
1559 	u64 tstamp = perf_event_time(event);
1560 	u64 delta;
1561 
1562 	WARN_ON_ONCE(event->ctx != ctx);
1563 	lockdep_assert_held(&ctx->lock);
1564 
1565 	/*
1566 	 * An event which could not be activated because of
1567 	 * filter mismatch still needs to have its timings
1568 	 * maintained, otherwise bogus information is return
1569 	 * via read() for time_enabled, time_running:
1570 	 */
1571 	if (event->state == PERF_EVENT_STATE_INACTIVE
1572 	    && !event_filter_match(event)) {
1573 		delta = tstamp - event->tstamp_stopped;
1574 		event->tstamp_running += delta;
1575 		event->tstamp_stopped = tstamp;
1576 	}
1577 
1578 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1579 		return;
1580 
1581 	perf_pmu_disable(event->pmu);
1582 
1583 	event->state = PERF_EVENT_STATE_INACTIVE;
1584 	if (event->pending_disable) {
1585 		event->pending_disable = 0;
1586 		event->state = PERF_EVENT_STATE_OFF;
1587 	}
1588 	event->tstamp_stopped = tstamp;
1589 	event->pmu->del(event, 0);
1590 	event->oncpu = -1;
1591 
1592 	if (!is_software_event(event))
1593 		cpuctx->active_oncpu--;
1594 	if (!--ctx->nr_active)
1595 		perf_event_ctx_deactivate(ctx);
1596 	if (event->attr.freq && event->attr.sample_freq)
1597 		ctx->nr_freq--;
1598 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1599 		cpuctx->exclusive = 0;
1600 
1601 	if (is_orphaned_child(event))
1602 		schedule_orphans_remove(ctx);
1603 
1604 	perf_pmu_enable(event->pmu);
1605 }
1606 
1607 static void
1608 group_sched_out(struct perf_event *group_event,
1609 		struct perf_cpu_context *cpuctx,
1610 		struct perf_event_context *ctx)
1611 {
1612 	struct perf_event *event;
1613 	int state = group_event->state;
1614 
1615 	event_sched_out(group_event, cpuctx, ctx);
1616 
1617 	/*
1618 	 * Schedule out siblings (if any):
1619 	 */
1620 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1621 		event_sched_out(event, cpuctx, ctx);
1622 
1623 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1624 		cpuctx->exclusive = 0;
1625 }
1626 
1627 struct remove_event {
1628 	struct perf_event *event;
1629 	bool detach_group;
1630 };
1631 
1632 /*
1633  * Cross CPU call to remove a performance event
1634  *
1635  * We disable the event on the hardware level first. After that we
1636  * remove it from the context list.
1637  */
1638 static int __perf_remove_from_context(void *info)
1639 {
1640 	struct remove_event *re = info;
1641 	struct perf_event *event = re->event;
1642 	struct perf_event_context *ctx = event->ctx;
1643 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1644 
1645 	raw_spin_lock(&ctx->lock);
1646 	event_sched_out(event, cpuctx, ctx);
1647 	if (re->detach_group)
1648 		perf_group_detach(event);
1649 	list_del_event(event, ctx);
1650 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1651 		ctx->is_active = 0;
1652 		cpuctx->task_ctx = NULL;
1653 	}
1654 	raw_spin_unlock(&ctx->lock);
1655 
1656 	return 0;
1657 }
1658 
1659 
1660 /*
1661  * Remove the event from a task's (or a CPU's) list of events.
1662  *
1663  * CPU events are removed with a smp call. For task events we only
1664  * call when the task is on a CPU.
1665  *
1666  * If event->ctx is a cloned context, callers must make sure that
1667  * every task struct that event->ctx->task could possibly point to
1668  * remains valid.  This is OK when called from perf_release since
1669  * that only calls us on the top-level context, which can't be a clone.
1670  * When called from perf_event_exit_task, it's OK because the
1671  * context has been detached from its task.
1672  */
1673 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1674 {
1675 	struct perf_event_context *ctx = event->ctx;
1676 	struct task_struct *task = ctx->task;
1677 	struct remove_event re = {
1678 		.event = event,
1679 		.detach_group = detach_group,
1680 	};
1681 
1682 	lockdep_assert_held(&ctx->mutex);
1683 
1684 	if (!task) {
1685 		/*
1686 		 * Per cpu events are removed via an smp call. The removal can
1687 		 * fail if the CPU is currently offline, but in that case we
1688 		 * already called __perf_remove_from_context from
1689 		 * perf_event_exit_cpu.
1690 		 */
1691 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1692 		return;
1693 	}
1694 
1695 retry:
1696 	if (!task_function_call(task, __perf_remove_from_context, &re))
1697 		return;
1698 
1699 	raw_spin_lock_irq(&ctx->lock);
1700 	/*
1701 	 * If we failed to find a running task, but find the context active now
1702 	 * that we've acquired the ctx->lock, retry.
1703 	 */
1704 	if (ctx->is_active) {
1705 		raw_spin_unlock_irq(&ctx->lock);
1706 		/*
1707 		 * Reload the task pointer, it might have been changed by
1708 		 * a concurrent perf_event_context_sched_out().
1709 		 */
1710 		task = ctx->task;
1711 		goto retry;
1712 	}
1713 
1714 	/*
1715 	 * Since the task isn't running, its safe to remove the event, us
1716 	 * holding the ctx->lock ensures the task won't get scheduled in.
1717 	 */
1718 	if (detach_group)
1719 		perf_group_detach(event);
1720 	list_del_event(event, ctx);
1721 	raw_spin_unlock_irq(&ctx->lock);
1722 }
1723 
1724 /*
1725  * Cross CPU call to disable a performance event
1726  */
1727 int __perf_event_disable(void *info)
1728 {
1729 	struct perf_event *event = info;
1730 	struct perf_event_context *ctx = event->ctx;
1731 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1732 
1733 	/*
1734 	 * If this is a per-task event, need to check whether this
1735 	 * event's task is the current task on this cpu.
1736 	 *
1737 	 * Can trigger due to concurrent perf_event_context_sched_out()
1738 	 * flipping contexts around.
1739 	 */
1740 	if (ctx->task && cpuctx->task_ctx != ctx)
1741 		return -EINVAL;
1742 
1743 	raw_spin_lock(&ctx->lock);
1744 
1745 	/*
1746 	 * If the event is on, turn it off.
1747 	 * If it is in error state, leave it in error state.
1748 	 */
1749 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1750 		update_context_time(ctx);
1751 		update_cgrp_time_from_event(event);
1752 		update_group_times(event);
1753 		if (event == event->group_leader)
1754 			group_sched_out(event, cpuctx, ctx);
1755 		else
1756 			event_sched_out(event, cpuctx, ctx);
1757 		event->state = PERF_EVENT_STATE_OFF;
1758 	}
1759 
1760 	raw_spin_unlock(&ctx->lock);
1761 
1762 	return 0;
1763 }
1764 
1765 /*
1766  * Disable a event.
1767  *
1768  * If event->ctx is a cloned context, callers must make sure that
1769  * every task struct that event->ctx->task could possibly point to
1770  * remains valid.  This condition is satisifed when called through
1771  * perf_event_for_each_child or perf_event_for_each because they
1772  * hold the top-level event's child_mutex, so any descendant that
1773  * goes to exit will block in sync_child_event.
1774  * When called from perf_pending_event it's OK because event->ctx
1775  * is the current context on this CPU and preemption is disabled,
1776  * hence we can't get into perf_event_task_sched_out for this context.
1777  */
1778 static void _perf_event_disable(struct perf_event *event)
1779 {
1780 	struct perf_event_context *ctx = event->ctx;
1781 	struct task_struct *task = ctx->task;
1782 
1783 	if (!task) {
1784 		/*
1785 		 * Disable the event on the cpu that it's on
1786 		 */
1787 		cpu_function_call(event->cpu, __perf_event_disable, event);
1788 		return;
1789 	}
1790 
1791 retry:
1792 	if (!task_function_call(task, __perf_event_disable, event))
1793 		return;
1794 
1795 	raw_spin_lock_irq(&ctx->lock);
1796 	/*
1797 	 * If the event is still active, we need to retry the cross-call.
1798 	 */
1799 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1800 		raw_spin_unlock_irq(&ctx->lock);
1801 		/*
1802 		 * Reload the task pointer, it might have been changed by
1803 		 * a concurrent perf_event_context_sched_out().
1804 		 */
1805 		task = ctx->task;
1806 		goto retry;
1807 	}
1808 
1809 	/*
1810 	 * Since we have the lock this context can't be scheduled
1811 	 * in, so we can change the state safely.
1812 	 */
1813 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1814 		update_group_times(event);
1815 		event->state = PERF_EVENT_STATE_OFF;
1816 	}
1817 	raw_spin_unlock_irq(&ctx->lock);
1818 }
1819 
1820 /*
1821  * Strictly speaking kernel users cannot create groups and therefore this
1822  * interface does not need the perf_event_ctx_lock() magic.
1823  */
1824 void perf_event_disable(struct perf_event *event)
1825 {
1826 	struct perf_event_context *ctx;
1827 
1828 	ctx = perf_event_ctx_lock(event);
1829 	_perf_event_disable(event);
1830 	perf_event_ctx_unlock(event, ctx);
1831 }
1832 EXPORT_SYMBOL_GPL(perf_event_disable);
1833 
1834 static void perf_set_shadow_time(struct perf_event *event,
1835 				 struct perf_event_context *ctx,
1836 				 u64 tstamp)
1837 {
1838 	/*
1839 	 * use the correct time source for the time snapshot
1840 	 *
1841 	 * We could get by without this by leveraging the
1842 	 * fact that to get to this function, the caller
1843 	 * has most likely already called update_context_time()
1844 	 * and update_cgrp_time_xx() and thus both timestamp
1845 	 * are identical (or very close). Given that tstamp is,
1846 	 * already adjusted for cgroup, we could say that:
1847 	 *    tstamp - ctx->timestamp
1848 	 * is equivalent to
1849 	 *    tstamp - cgrp->timestamp.
1850 	 *
1851 	 * Then, in perf_output_read(), the calculation would
1852 	 * work with no changes because:
1853 	 * - event is guaranteed scheduled in
1854 	 * - no scheduled out in between
1855 	 * - thus the timestamp would be the same
1856 	 *
1857 	 * But this is a bit hairy.
1858 	 *
1859 	 * So instead, we have an explicit cgroup call to remain
1860 	 * within the time time source all along. We believe it
1861 	 * is cleaner and simpler to understand.
1862 	 */
1863 	if (is_cgroup_event(event))
1864 		perf_cgroup_set_shadow_time(event, tstamp);
1865 	else
1866 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1867 }
1868 
1869 #define MAX_INTERRUPTS (~0ULL)
1870 
1871 static void perf_log_throttle(struct perf_event *event, int enable);
1872 static void perf_log_itrace_start(struct perf_event *event);
1873 
1874 static int
1875 event_sched_in(struct perf_event *event,
1876 		 struct perf_cpu_context *cpuctx,
1877 		 struct perf_event_context *ctx)
1878 {
1879 	u64 tstamp = perf_event_time(event);
1880 	int ret = 0;
1881 
1882 	lockdep_assert_held(&ctx->lock);
1883 
1884 	if (event->state <= PERF_EVENT_STATE_OFF)
1885 		return 0;
1886 
1887 	event->state = PERF_EVENT_STATE_ACTIVE;
1888 	event->oncpu = smp_processor_id();
1889 
1890 	/*
1891 	 * Unthrottle events, since we scheduled we might have missed several
1892 	 * ticks already, also for a heavily scheduling task there is little
1893 	 * guarantee it'll get a tick in a timely manner.
1894 	 */
1895 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1896 		perf_log_throttle(event, 1);
1897 		event->hw.interrupts = 0;
1898 	}
1899 
1900 	/*
1901 	 * The new state must be visible before we turn it on in the hardware:
1902 	 */
1903 	smp_wmb();
1904 
1905 	perf_pmu_disable(event->pmu);
1906 
1907 	perf_set_shadow_time(event, ctx, tstamp);
1908 
1909 	perf_log_itrace_start(event);
1910 
1911 	if (event->pmu->add(event, PERF_EF_START)) {
1912 		event->state = PERF_EVENT_STATE_INACTIVE;
1913 		event->oncpu = -1;
1914 		ret = -EAGAIN;
1915 		goto out;
1916 	}
1917 
1918 	event->tstamp_running += tstamp - event->tstamp_stopped;
1919 
1920 	if (!is_software_event(event))
1921 		cpuctx->active_oncpu++;
1922 	if (!ctx->nr_active++)
1923 		perf_event_ctx_activate(ctx);
1924 	if (event->attr.freq && event->attr.sample_freq)
1925 		ctx->nr_freq++;
1926 
1927 	if (event->attr.exclusive)
1928 		cpuctx->exclusive = 1;
1929 
1930 	if (is_orphaned_child(event))
1931 		schedule_orphans_remove(ctx);
1932 
1933 out:
1934 	perf_pmu_enable(event->pmu);
1935 
1936 	return ret;
1937 }
1938 
1939 static int
1940 group_sched_in(struct perf_event *group_event,
1941 	       struct perf_cpu_context *cpuctx,
1942 	       struct perf_event_context *ctx)
1943 {
1944 	struct perf_event *event, *partial_group = NULL;
1945 	struct pmu *pmu = ctx->pmu;
1946 	u64 now = ctx->time;
1947 	bool simulate = false;
1948 
1949 	if (group_event->state == PERF_EVENT_STATE_OFF)
1950 		return 0;
1951 
1952 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1953 
1954 	if (event_sched_in(group_event, cpuctx, ctx)) {
1955 		pmu->cancel_txn(pmu);
1956 		perf_mux_hrtimer_restart(cpuctx);
1957 		return -EAGAIN;
1958 	}
1959 
1960 	/*
1961 	 * Schedule in siblings as one group (if any):
1962 	 */
1963 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1964 		if (event_sched_in(event, cpuctx, ctx)) {
1965 			partial_group = event;
1966 			goto group_error;
1967 		}
1968 	}
1969 
1970 	if (!pmu->commit_txn(pmu))
1971 		return 0;
1972 
1973 group_error:
1974 	/*
1975 	 * Groups can be scheduled in as one unit only, so undo any
1976 	 * partial group before returning:
1977 	 * The events up to the failed event are scheduled out normally,
1978 	 * tstamp_stopped will be updated.
1979 	 *
1980 	 * The failed events and the remaining siblings need to have
1981 	 * their timings updated as if they had gone thru event_sched_in()
1982 	 * and event_sched_out(). This is required to get consistent timings
1983 	 * across the group. This also takes care of the case where the group
1984 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1985 	 * the time the event was actually stopped, such that time delta
1986 	 * calculation in update_event_times() is correct.
1987 	 */
1988 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1989 		if (event == partial_group)
1990 			simulate = true;
1991 
1992 		if (simulate) {
1993 			event->tstamp_running += now - event->tstamp_stopped;
1994 			event->tstamp_stopped = now;
1995 		} else {
1996 			event_sched_out(event, cpuctx, ctx);
1997 		}
1998 	}
1999 	event_sched_out(group_event, cpuctx, ctx);
2000 
2001 	pmu->cancel_txn(pmu);
2002 
2003 	perf_mux_hrtimer_restart(cpuctx);
2004 
2005 	return -EAGAIN;
2006 }
2007 
2008 /*
2009  * Work out whether we can put this event group on the CPU now.
2010  */
2011 static int group_can_go_on(struct perf_event *event,
2012 			   struct perf_cpu_context *cpuctx,
2013 			   int can_add_hw)
2014 {
2015 	/*
2016 	 * Groups consisting entirely of software events can always go on.
2017 	 */
2018 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2019 		return 1;
2020 	/*
2021 	 * If an exclusive group is already on, no other hardware
2022 	 * events can go on.
2023 	 */
2024 	if (cpuctx->exclusive)
2025 		return 0;
2026 	/*
2027 	 * If this group is exclusive and there are already
2028 	 * events on the CPU, it can't go on.
2029 	 */
2030 	if (event->attr.exclusive && cpuctx->active_oncpu)
2031 		return 0;
2032 	/*
2033 	 * Otherwise, try to add it if all previous groups were able
2034 	 * to go on.
2035 	 */
2036 	return can_add_hw;
2037 }
2038 
2039 static void add_event_to_ctx(struct perf_event *event,
2040 			       struct perf_event_context *ctx)
2041 {
2042 	u64 tstamp = perf_event_time(event);
2043 
2044 	list_add_event(event, ctx);
2045 	perf_group_attach(event);
2046 	event->tstamp_enabled = tstamp;
2047 	event->tstamp_running = tstamp;
2048 	event->tstamp_stopped = tstamp;
2049 }
2050 
2051 static void task_ctx_sched_out(struct perf_event_context *ctx);
2052 static void
2053 ctx_sched_in(struct perf_event_context *ctx,
2054 	     struct perf_cpu_context *cpuctx,
2055 	     enum event_type_t event_type,
2056 	     struct task_struct *task);
2057 
2058 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2059 				struct perf_event_context *ctx,
2060 				struct task_struct *task)
2061 {
2062 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2063 	if (ctx)
2064 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2065 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2066 	if (ctx)
2067 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2068 }
2069 
2070 /*
2071  * Cross CPU call to install and enable a performance event
2072  *
2073  * Must be called with ctx->mutex held
2074  */
2075 static int  __perf_install_in_context(void *info)
2076 {
2077 	struct perf_event *event = info;
2078 	struct perf_event_context *ctx = event->ctx;
2079 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2080 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2081 	struct task_struct *task = current;
2082 
2083 	perf_ctx_lock(cpuctx, task_ctx);
2084 	perf_pmu_disable(cpuctx->ctx.pmu);
2085 
2086 	/*
2087 	 * If there was an active task_ctx schedule it out.
2088 	 */
2089 	if (task_ctx)
2090 		task_ctx_sched_out(task_ctx);
2091 
2092 	/*
2093 	 * If the context we're installing events in is not the
2094 	 * active task_ctx, flip them.
2095 	 */
2096 	if (ctx->task && task_ctx != ctx) {
2097 		if (task_ctx)
2098 			raw_spin_unlock(&task_ctx->lock);
2099 		raw_spin_lock(&ctx->lock);
2100 		task_ctx = ctx;
2101 	}
2102 
2103 	if (task_ctx) {
2104 		cpuctx->task_ctx = task_ctx;
2105 		task = task_ctx->task;
2106 	}
2107 
2108 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2109 
2110 	update_context_time(ctx);
2111 	/*
2112 	 * update cgrp time only if current cgrp
2113 	 * matches event->cgrp. Must be done before
2114 	 * calling add_event_to_ctx()
2115 	 */
2116 	update_cgrp_time_from_event(event);
2117 
2118 	add_event_to_ctx(event, ctx);
2119 
2120 	/*
2121 	 * Schedule everything back in
2122 	 */
2123 	perf_event_sched_in(cpuctx, task_ctx, task);
2124 
2125 	perf_pmu_enable(cpuctx->ctx.pmu);
2126 	perf_ctx_unlock(cpuctx, task_ctx);
2127 
2128 	return 0;
2129 }
2130 
2131 /*
2132  * Attach a performance event to a context
2133  *
2134  * First we add the event to the list with the hardware enable bit
2135  * in event->hw_config cleared.
2136  *
2137  * If the event is attached to a task which is on a CPU we use a smp
2138  * call to enable it in the task context. The task might have been
2139  * scheduled away, but we check this in the smp call again.
2140  */
2141 static void
2142 perf_install_in_context(struct perf_event_context *ctx,
2143 			struct perf_event *event,
2144 			int cpu)
2145 {
2146 	struct task_struct *task = ctx->task;
2147 
2148 	lockdep_assert_held(&ctx->mutex);
2149 
2150 	event->ctx = ctx;
2151 	if (event->cpu != -1)
2152 		event->cpu = cpu;
2153 
2154 	if (!task) {
2155 		/*
2156 		 * Per cpu events are installed via an smp call and
2157 		 * the install is always successful.
2158 		 */
2159 		cpu_function_call(cpu, __perf_install_in_context, event);
2160 		return;
2161 	}
2162 
2163 retry:
2164 	if (!task_function_call(task, __perf_install_in_context, event))
2165 		return;
2166 
2167 	raw_spin_lock_irq(&ctx->lock);
2168 	/*
2169 	 * If we failed to find a running task, but find the context active now
2170 	 * that we've acquired the ctx->lock, retry.
2171 	 */
2172 	if (ctx->is_active) {
2173 		raw_spin_unlock_irq(&ctx->lock);
2174 		/*
2175 		 * Reload the task pointer, it might have been changed by
2176 		 * a concurrent perf_event_context_sched_out().
2177 		 */
2178 		task = ctx->task;
2179 		goto retry;
2180 	}
2181 
2182 	/*
2183 	 * Since the task isn't running, its safe to add the event, us holding
2184 	 * the ctx->lock ensures the task won't get scheduled in.
2185 	 */
2186 	add_event_to_ctx(event, ctx);
2187 	raw_spin_unlock_irq(&ctx->lock);
2188 }
2189 
2190 /*
2191  * Put a event into inactive state and update time fields.
2192  * Enabling the leader of a group effectively enables all
2193  * the group members that aren't explicitly disabled, so we
2194  * have to update their ->tstamp_enabled also.
2195  * Note: this works for group members as well as group leaders
2196  * since the non-leader members' sibling_lists will be empty.
2197  */
2198 static void __perf_event_mark_enabled(struct perf_event *event)
2199 {
2200 	struct perf_event *sub;
2201 	u64 tstamp = perf_event_time(event);
2202 
2203 	event->state = PERF_EVENT_STATE_INACTIVE;
2204 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2205 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2206 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2207 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2208 	}
2209 }
2210 
2211 /*
2212  * Cross CPU call to enable a performance event
2213  */
2214 static int __perf_event_enable(void *info)
2215 {
2216 	struct perf_event *event = info;
2217 	struct perf_event_context *ctx = event->ctx;
2218 	struct perf_event *leader = event->group_leader;
2219 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2220 	int err;
2221 
2222 	/*
2223 	 * There's a time window between 'ctx->is_active' check
2224 	 * in perf_event_enable function and this place having:
2225 	 *   - IRQs on
2226 	 *   - ctx->lock unlocked
2227 	 *
2228 	 * where the task could be killed and 'ctx' deactivated
2229 	 * by perf_event_exit_task.
2230 	 */
2231 	if (!ctx->is_active)
2232 		return -EINVAL;
2233 
2234 	raw_spin_lock(&ctx->lock);
2235 	update_context_time(ctx);
2236 
2237 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2238 		goto unlock;
2239 
2240 	/*
2241 	 * set current task's cgroup time reference point
2242 	 */
2243 	perf_cgroup_set_timestamp(current, ctx);
2244 
2245 	__perf_event_mark_enabled(event);
2246 
2247 	if (!event_filter_match(event)) {
2248 		if (is_cgroup_event(event))
2249 			perf_cgroup_defer_enabled(event);
2250 		goto unlock;
2251 	}
2252 
2253 	/*
2254 	 * If the event is in a group and isn't the group leader,
2255 	 * then don't put it on unless the group is on.
2256 	 */
2257 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2258 		goto unlock;
2259 
2260 	if (!group_can_go_on(event, cpuctx, 1)) {
2261 		err = -EEXIST;
2262 	} else {
2263 		if (event == leader)
2264 			err = group_sched_in(event, cpuctx, ctx);
2265 		else
2266 			err = event_sched_in(event, cpuctx, ctx);
2267 	}
2268 
2269 	if (err) {
2270 		/*
2271 		 * If this event can't go on and it's part of a
2272 		 * group, then the whole group has to come off.
2273 		 */
2274 		if (leader != event) {
2275 			group_sched_out(leader, cpuctx, ctx);
2276 			perf_mux_hrtimer_restart(cpuctx);
2277 		}
2278 		if (leader->attr.pinned) {
2279 			update_group_times(leader);
2280 			leader->state = PERF_EVENT_STATE_ERROR;
2281 		}
2282 	}
2283 
2284 unlock:
2285 	raw_spin_unlock(&ctx->lock);
2286 
2287 	return 0;
2288 }
2289 
2290 /*
2291  * Enable a event.
2292  *
2293  * If event->ctx is a cloned context, callers must make sure that
2294  * every task struct that event->ctx->task could possibly point to
2295  * remains valid.  This condition is satisfied when called through
2296  * perf_event_for_each_child or perf_event_for_each as described
2297  * for perf_event_disable.
2298  */
2299 static void _perf_event_enable(struct perf_event *event)
2300 {
2301 	struct perf_event_context *ctx = event->ctx;
2302 	struct task_struct *task = ctx->task;
2303 
2304 	if (!task) {
2305 		/*
2306 		 * Enable the event on the cpu that it's on
2307 		 */
2308 		cpu_function_call(event->cpu, __perf_event_enable, event);
2309 		return;
2310 	}
2311 
2312 	raw_spin_lock_irq(&ctx->lock);
2313 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2314 		goto out;
2315 
2316 	/*
2317 	 * If the event is in error state, clear that first.
2318 	 * That way, if we see the event in error state below, we
2319 	 * know that it has gone back into error state, as distinct
2320 	 * from the task having been scheduled away before the
2321 	 * cross-call arrived.
2322 	 */
2323 	if (event->state == PERF_EVENT_STATE_ERROR)
2324 		event->state = PERF_EVENT_STATE_OFF;
2325 
2326 retry:
2327 	if (!ctx->is_active) {
2328 		__perf_event_mark_enabled(event);
2329 		goto out;
2330 	}
2331 
2332 	raw_spin_unlock_irq(&ctx->lock);
2333 
2334 	if (!task_function_call(task, __perf_event_enable, event))
2335 		return;
2336 
2337 	raw_spin_lock_irq(&ctx->lock);
2338 
2339 	/*
2340 	 * If the context is active and the event is still off,
2341 	 * we need to retry the cross-call.
2342 	 */
2343 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2344 		/*
2345 		 * task could have been flipped by a concurrent
2346 		 * perf_event_context_sched_out()
2347 		 */
2348 		task = ctx->task;
2349 		goto retry;
2350 	}
2351 
2352 out:
2353 	raw_spin_unlock_irq(&ctx->lock);
2354 }
2355 
2356 /*
2357  * See perf_event_disable();
2358  */
2359 void perf_event_enable(struct perf_event *event)
2360 {
2361 	struct perf_event_context *ctx;
2362 
2363 	ctx = perf_event_ctx_lock(event);
2364 	_perf_event_enable(event);
2365 	perf_event_ctx_unlock(event, ctx);
2366 }
2367 EXPORT_SYMBOL_GPL(perf_event_enable);
2368 
2369 static int _perf_event_refresh(struct perf_event *event, int refresh)
2370 {
2371 	/*
2372 	 * not supported on inherited events
2373 	 */
2374 	if (event->attr.inherit || !is_sampling_event(event))
2375 		return -EINVAL;
2376 
2377 	atomic_add(refresh, &event->event_limit);
2378 	_perf_event_enable(event);
2379 
2380 	return 0;
2381 }
2382 
2383 /*
2384  * See perf_event_disable()
2385  */
2386 int perf_event_refresh(struct perf_event *event, int refresh)
2387 {
2388 	struct perf_event_context *ctx;
2389 	int ret;
2390 
2391 	ctx = perf_event_ctx_lock(event);
2392 	ret = _perf_event_refresh(event, refresh);
2393 	perf_event_ctx_unlock(event, ctx);
2394 
2395 	return ret;
2396 }
2397 EXPORT_SYMBOL_GPL(perf_event_refresh);
2398 
2399 static void ctx_sched_out(struct perf_event_context *ctx,
2400 			  struct perf_cpu_context *cpuctx,
2401 			  enum event_type_t event_type)
2402 {
2403 	struct perf_event *event;
2404 	int is_active = ctx->is_active;
2405 
2406 	ctx->is_active &= ~event_type;
2407 	if (likely(!ctx->nr_events))
2408 		return;
2409 
2410 	update_context_time(ctx);
2411 	update_cgrp_time_from_cpuctx(cpuctx);
2412 	if (!ctx->nr_active)
2413 		return;
2414 
2415 	perf_pmu_disable(ctx->pmu);
2416 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2417 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2418 			group_sched_out(event, cpuctx, ctx);
2419 	}
2420 
2421 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2422 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2423 			group_sched_out(event, cpuctx, ctx);
2424 	}
2425 	perf_pmu_enable(ctx->pmu);
2426 }
2427 
2428 /*
2429  * Test whether two contexts are equivalent, i.e. whether they have both been
2430  * cloned from the same version of the same context.
2431  *
2432  * Equivalence is measured using a generation number in the context that is
2433  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2434  * and list_del_event().
2435  */
2436 static int context_equiv(struct perf_event_context *ctx1,
2437 			 struct perf_event_context *ctx2)
2438 {
2439 	lockdep_assert_held(&ctx1->lock);
2440 	lockdep_assert_held(&ctx2->lock);
2441 
2442 	/* Pinning disables the swap optimization */
2443 	if (ctx1->pin_count || ctx2->pin_count)
2444 		return 0;
2445 
2446 	/* If ctx1 is the parent of ctx2 */
2447 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2448 		return 1;
2449 
2450 	/* If ctx2 is the parent of ctx1 */
2451 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2452 		return 1;
2453 
2454 	/*
2455 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2456 	 * hierarchy, see perf_event_init_context().
2457 	 */
2458 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2459 			ctx1->parent_gen == ctx2->parent_gen)
2460 		return 1;
2461 
2462 	/* Unmatched */
2463 	return 0;
2464 }
2465 
2466 static void __perf_event_sync_stat(struct perf_event *event,
2467 				     struct perf_event *next_event)
2468 {
2469 	u64 value;
2470 
2471 	if (!event->attr.inherit_stat)
2472 		return;
2473 
2474 	/*
2475 	 * Update the event value, we cannot use perf_event_read()
2476 	 * because we're in the middle of a context switch and have IRQs
2477 	 * disabled, which upsets smp_call_function_single(), however
2478 	 * we know the event must be on the current CPU, therefore we
2479 	 * don't need to use it.
2480 	 */
2481 	switch (event->state) {
2482 	case PERF_EVENT_STATE_ACTIVE:
2483 		event->pmu->read(event);
2484 		/* fall-through */
2485 
2486 	case PERF_EVENT_STATE_INACTIVE:
2487 		update_event_times(event);
2488 		break;
2489 
2490 	default:
2491 		break;
2492 	}
2493 
2494 	/*
2495 	 * In order to keep per-task stats reliable we need to flip the event
2496 	 * values when we flip the contexts.
2497 	 */
2498 	value = local64_read(&next_event->count);
2499 	value = local64_xchg(&event->count, value);
2500 	local64_set(&next_event->count, value);
2501 
2502 	swap(event->total_time_enabled, next_event->total_time_enabled);
2503 	swap(event->total_time_running, next_event->total_time_running);
2504 
2505 	/*
2506 	 * Since we swizzled the values, update the user visible data too.
2507 	 */
2508 	perf_event_update_userpage(event);
2509 	perf_event_update_userpage(next_event);
2510 }
2511 
2512 static void perf_event_sync_stat(struct perf_event_context *ctx,
2513 				   struct perf_event_context *next_ctx)
2514 {
2515 	struct perf_event *event, *next_event;
2516 
2517 	if (!ctx->nr_stat)
2518 		return;
2519 
2520 	update_context_time(ctx);
2521 
2522 	event = list_first_entry(&ctx->event_list,
2523 				   struct perf_event, event_entry);
2524 
2525 	next_event = list_first_entry(&next_ctx->event_list,
2526 					struct perf_event, event_entry);
2527 
2528 	while (&event->event_entry != &ctx->event_list &&
2529 	       &next_event->event_entry != &next_ctx->event_list) {
2530 
2531 		__perf_event_sync_stat(event, next_event);
2532 
2533 		event = list_next_entry(event, event_entry);
2534 		next_event = list_next_entry(next_event, event_entry);
2535 	}
2536 }
2537 
2538 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2539 					 struct task_struct *next)
2540 {
2541 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2542 	struct perf_event_context *next_ctx;
2543 	struct perf_event_context *parent, *next_parent;
2544 	struct perf_cpu_context *cpuctx;
2545 	int do_switch = 1;
2546 
2547 	if (likely(!ctx))
2548 		return;
2549 
2550 	cpuctx = __get_cpu_context(ctx);
2551 	if (!cpuctx->task_ctx)
2552 		return;
2553 
2554 	rcu_read_lock();
2555 	next_ctx = next->perf_event_ctxp[ctxn];
2556 	if (!next_ctx)
2557 		goto unlock;
2558 
2559 	parent = rcu_dereference(ctx->parent_ctx);
2560 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2561 
2562 	/* If neither context have a parent context; they cannot be clones. */
2563 	if (!parent && !next_parent)
2564 		goto unlock;
2565 
2566 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2567 		/*
2568 		 * Looks like the two contexts are clones, so we might be
2569 		 * able to optimize the context switch.  We lock both
2570 		 * contexts and check that they are clones under the
2571 		 * lock (including re-checking that neither has been
2572 		 * uncloned in the meantime).  It doesn't matter which
2573 		 * order we take the locks because no other cpu could
2574 		 * be trying to lock both of these tasks.
2575 		 */
2576 		raw_spin_lock(&ctx->lock);
2577 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2578 		if (context_equiv(ctx, next_ctx)) {
2579 			/*
2580 			 * XXX do we need a memory barrier of sorts
2581 			 * wrt to rcu_dereference() of perf_event_ctxp
2582 			 */
2583 			task->perf_event_ctxp[ctxn] = next_ctx;
2584 			next->perf_event_ctxp[ctxn] = ctx;
2585 			ctx->task = next;
2586 			next_ctx->task = task;
2587 
2588 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2589 
2590 			do_switch = 0;
2591 
2592 			perf_event_sync_stat(ctx, next_ctx);
2593 		}
2594 		raw_spin_unlock(&next_ctx->lock);
2595 		raw_spin_unlock(&ctx->lock);
2596 	}
2597 unlock:
2598 	rcu_read_unlock();
2599 
2600 	if (do_switch) {
2601 		raw_spin_lock(&ctx->lock);
2602 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2603 		cpuctx->task_ctx = NULL;
2604 		raw_spin_unlock(&ctx->lock);
2605 	}
2606 }
2607 
2608 void perf_sched_cb_dec(struct pmu *pmu)
2609 {
2610 	this_cpu_dec(perf_sched_cb_usages);
2611 }
2612 
2613 void perf_sched_cb_inc(struct pmu *pmu)
2614 {
2615 	this_cpu_inc(perf_sched_cb_usages);
2616 }
2617 
2618 /*
2619  * This function provides the context switch callback to the lower code
2620  * layer. It is invoked ONLY when the context switch callback is enabled.
2621  */
2622 static void perf_pmu_sched_task(struct task_struct *prev,
2623 				struct task_struct *next,
2624 				bool sched_in)
2625 {
2626 	struct perf_cpu_context *cpuctx;
2627 	struct pmu *pmu;
2628 	unsigned long flags;
2629 
2630 	if (prev == next)
2631 		return;
2632 
2633 	local_irq_save(flags);
2634 
2635 	rcu_read_lock();
2636 
2637 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2638 		if (pmu->sched_task) {
2639 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2640 
2641 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2642 
2643 			perf_pmu_disable(pmu);
2644 
2645 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2646 
2647 			perf_pmu_enable(pmu);
2648 
2649 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2650 		}
2651 	}
2652 
2653 	rcu_read_unlock();
2654 
2655 	local_irq_restore(flags);
2656 }
2657 
2658 static void perf_event_switch(struct task_struct *task,
2659 			      struct task_struct *next_prev, bool sched_in);
2660 
2661 #define for_each_task_context_nr(ctxn)					\
2662 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2663 
2664 /*
2665  * Called from scheduler to remove the events of the current task,
2666  * with interrupts disabled.
2667  *
2668  * We stop each event and update the event value in event->count.
2669  *
2670  * This does not protect us against NMI, but disable()
2671  * sets the disabled bit in the control field of event _before_
2672  * accessing the event control register. If a NMI hits, then it will
2673  * not restart the event.
2674  */
2675 void __perf_event_task_sched_out(struct task_struct *task,
2676 				 struct task_struct *next)
2677 {
2678 	int ctxn;
2679 
2680 	if (__this_cpu_read(perf_sched_cb_usages))
2681 		perf_pmu_sched_task(task, next, false);
2682 
2683 	if (atomic_read(&nr_switch_events))
2684 		perf_event_switch(task, next, false);
2685 
2686 	for_each_task_context_nr(ctxn)
2687 		perf_event_context_sched_out(task, ctxn, next);
2688 
2689 	/*
2690 	 * if cgroup events exist on this CPU, then we need
2691 	 * to check if we have to switch out PMU state.
2692 	 * cgroup event are system-wide mode only
2693 	 */
2694 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2695 		perf_cgroup_sched_out(task, next);
2696 }
2697 
2698 static void task_ctx_sched_out(struct perf_event_context *ctx)
2699 {
2700 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2701 
2702 	if (!cpuctx->task_ctx)
2703 		return;
2704 
2705 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2706 		return;
2707 
2708 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2709 	cpuctx->task_ctx = NULL;
2710 }
2711 
2712 /*
2713  * Called with IRQs disabled
2714  */
2715 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2716 			      enum event_type_t event_type)
2717 {
2718 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2719 }
2720 
2721 static void
2722 ctx_pinned_sched_in(struct perf_event_context *ctx,
2723 		    struct perf_cpu_context *cpuctx)
2724 {
2725 	struct perf_event *event;
2726 
2727 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2728 		if (event->state <= PERF_EVENT_STATE_OFF)
2729 			continue;
2730 		if (!event_filter_match(event))
2731 			continue;
2732 
2733 		/* may need to reset tstamp_enabled */
2734 		if (is_cgroup_event(event))
2735 			perf_cgroup_mark_enabled(event, ctx);
2736 
2737 		if (group_can_go_on(event, cpuctx, 1))
2738 			group_sched_in(event, cpuctx, ctx);
2739 
2740 		/*
2741 		 * If this pinned group hasn't been scheduled,
2742 		 * put it in error state.
2743 		 */
2744 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2745 			update_group_times(event);
2746 			event->state = PERF_EVENT_STATE_ERROR;
2747 		}
2748 	}
2749 }
2750 
2751 static void
2752 ctx_flexible_sched_in(struct perf_event_context *ctx,
2753 		      struct perf_cpu_context *cpuctx)
2754 {
2755 	struct perf_event *event;
2756 	int can_add_hw = 1;
2757 
2758 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2759 		/* Ignore events in OFF or ERROR state */
2760 		if (event->state <= PERF_EVENT_STATE_OFF)
2761 			continue;
2762 		/*
2763 		 * Listen to the 'cpu' scheduling filter constraint
2764 		 * of events:
2765 		 */
2766 		if (!event_filter_match(event))
2767 			continue;
2768 
2769 		/* may need to reset tstamp_enabled */
2770 		if (is_cgroup_event(event))
2771 			perf_cgroup_mark_enabled(event, ctx);
2772 
2773 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2774 			if (group_sched_in(event, cpuctx, ctx))
2775 				can_add_hw = 0;
2776 		}
2777 	}
2778 }
2779 
2780 static void
2781 ctx_sched_in(struct perf_event_context *ctx,
2782 	     struct perf_cpu_context *cpuctx,
2783 	     enum event_type_t event_type,
2784 	     struct task_struct *task)
2785 {
2786 	u64 now;
2787 	int is_active = ctx->is_active;
2788 
2789 	ctx->is_active |= event_type;
2790 	if (likely(!ctx->nr_events))
2791 		return;
2792 
2793 	now = perf_clock();
2794 	ctx->timestamp = now;
2795 	perf_cgroup_set_timestamp(task, ctx);
2796 	/*
2797 	 * First go through the list and put on any pinned groups
2798 	 * in order to give them the best chance of going on.
2799 	 */
2800 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2801 		ctx_pinned_sched_in(ctx, cpuctx);
2802 
2803 	/* Then walk through the lower prio flexible groups */
2804 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2805 		ctx_flexible_sched_in(ctx, cpuctx);
2806 }
2807 
2808 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2809 			     enum event_type_t event_type,
2810 			     struct task_struct *task)
2811 {
2812 	struct perf_event_context *ctx = &cpuctx->ctx;
2813 
2814 	ctx_sched_in(ctx, cpuctx, event_type, task);
2815 }
2816 
2817 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2818 					struct task_struct *task)
2819 {
2820 	struct perf_cpu_context *cpuctx;
2821 
2822 	cpuctx = __get_cpu_context(ctx);
2823 	if (cpuctx->task_ctx == ctx)
2824 		return;
2825 
2826 	perf_ctx_lock(cpuctx, ctx);
2827 	perf_pmu_disable(ctx->pmu);
2828 	/*
2829 	 * We want to keep the following priority order:
2830 	 * cpu pinned (that don't need to move), task pinned,
2831 	 * cpu flexible, task flexible.
2832 	 */
2833 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2834 
2835 	if (ctx->nr_events)
2836 		cpuctx->task_ctx = ctx;
2837 
2838 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2839 
2840 	perf_pmu_enable(ctx->pmu);
2841 	perf_ctx_unlock(cpuctx, ctx);
2842 }
2843 
2844 /*
2845  * Called from scheduler to add the events of the current task
2846  * with interrupts disabled.
2847  *
2848  * We restore the event value and then enable it.
2849  *
2850  * This does not protect us against NMI, but enable()
2851  * sets the enabled bit in the control field of event _before_
2852  * accessing the event control register. If a NMI hits, then it will
2853  * keep the event running.
2854  */
2855 void __perf_event_task_sched_in(struct task_struct *prev,
2856 				struct task_struct *task)
2857 {
2858 	struct perf_event_context *ctx;
2859 	int ctxn;
2860 
2861 	for_each_task_context_nr(ctxn) {
2862 		ctx = task->perf_event_ctxp[ctxn];
2863 		if (likely(!ctx))
2864 			continue;
2865 
2866 		perf_event_context_sched_in(ctx, task);
2867 	}
2868 	/*
2869 	 * if cgroup events exist on this CPU, then we need
2870 	 * to check if we have to switch in PMU state.
2871 	 * cgroup event are system-wide mode only
2872 	 */
2873 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2874 		perf_cgroup_sched_in(prev, task);
2875 
2876 	if (atomic_read(&nr_switch_events))
2877 		perf_event_switch(task, prev, true);
2878 
2879 	if (__this_cpu_read(perf_sched_cb_usages))
2880 		perf_pmu_sched_task(prev, task, true);
2881 }
2882 
2883 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2884 {
2885 	u64 frequency = event->attr.sample_freq;
2886 	u64 sec = NSEC_PER_SEC;
2887 	u64 divisor, dividend;
2888 
2889 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2890 
2891 	count_fls = fls64(count);
2892 	nsec_fls = fls64(nsec);
2893 	frequency_fls = fls64(frequency);
2894 	sec_fls = 30;
2895 
2896 	/*
2897 	 * We got @count in @nsec, with a target of sample_freq HZ
2898 	 * the target period becomes:
2899 	 *
2900 	 *             @count * 10^9
2901 	 * period = -------------------
2902 	 *          @nsec * sample_freq
2903 	 *
2904 	 */
2905 
2906 	/*
2907 	 * Reduce accuracy by one bit such that @a and @b converge
2908 	 * to a similar magnitude.
2909 	 */
2910 #define REDUCE_FLS(a, b)		\
2911 do {					\
2912 	if (a##_fls > b##_fls) {	\
2913 		a >>= 1;		\
2914 		a##_fls--;		\
2915 	} else {			\
2916 		b >>= 1;		\
2917 		b##_fls--;		\
2918 	}				\
2919 } while (0)
2920 
2921 	/*
2922 	 * Reduce accuracy until either term fits in a u64, then proceed with
2923 	 * the other, so that finally we can do a u64/u64 division.
2924 	 */
2925 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2926 		REDUCE_FLS(nsec, frequency);
2927 		REDUCE_FLS(sec, count);
2928 	}
2929 
2930 	if (count_fls + sec_fls > 64) {
2931 		divisor = nsec * frequency;
2932 
2933 		while (count_fls + sec_fls > 64) {
2934 			REDUCE_FLS(count, sec);
2935 			divisor >>= 1;
2936 		}
2937 
2938 		dividend = count * sec;
2939 	} else {
2940 		dividend = count * sec;
2941 
2942 		while (nsec_fls + frequency_fls > 64) {
2943 			REDUCE_FLS(nsec, frequency);
2944 			dividend >>= 1;
2945 		}
2946 
2947 		divisor = nsec * frequency;
2948 	}
2949 
2950 	if (!divisor)
2951 		return dividend;
2952 
2953 	return div64_u64(dividend, divisor);
2954 }
2955 
2956 static DEFINE_PER_CPU(int, perf_throttled_count);
2957 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2958 
2959 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2960 {
2961 	struct hw_perf_event *hwc = &event->hw;
2962 	s64 period, sample_period;
2963 	s64 delta;
2964 
2965 	period = perf_calculate_period(event, nsec, count);
2966 
2967 	delta = (s64)(period - hwc->sample_period);
2968 	delta = (delta + 7) / 8; /* low pass filter */
2969 
2970 	sample_period = hwc->sample_period + delta;
2971 
2972 	if (!sample_period)
2973 		sample_period = 1;
2974 
2975 	hwc->sample_period = sample_period;
2976 
2977 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2978 		if (disable)
2979 			event->pmu->stop(event, PERF_EF_UPDATE);
2980 
2981 		local64_set(&hwc->period_left, 0);
2982 
2983 		if (disable)
2984 			event->pmu->start(event, PERF_EF_RELOAD);
2985 	}
2986 }
2987 
2988 /*
2989  * combine freq adjustment with unthrottling to avoid two passes over the
2990  * events. At the same time, make sure, having freq events does not change
2991  * the rate of unthrottling as that would introduce bias.
2992  */
2993 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2994 					   int needs_unthr)
2995 {
2996 	struct perf_event *event;
2997 	struct hw_perf_event *hwc;
2998 	u64 now, period = TICK_NSEC;
2999 	s64 delta;
3000 
3001 	/*
3002 	 * only need to iterate over all events iff:
3003 	 * - context have events in frequency mode (needs freq adjust)
3004 	 * - there are events to unthrottle on this cpu
3005 	 */
3006 	if (!(ctx->nr_freq || needs_unthr))
3007 		return;
3008 
3009 	raw_spin_lock(&ctx->lock);
3010 	perf_pmu_disable(ctx->pmu);
3011 
3012 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3013 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3014 			continue;
3015 
3016 		if (!event_filter_match(event))
3017 			continue;
3018 
3019 		perf_pmu_disable(event->pmu);
3020 
3021 		hwc = &event->hw;
3022 
3023 		if (hwc->interrupts == MAX_INTERRUPTS) {
3024 			hwc->interrupts = 0;
3025 			perf_log_throttle(event, 1);
3026 			event->pmu->start(event, 0);
3027 		}
3028 
3029 		if (!event->attr.freq || !event->attr.sample_freq)
3030 			goto next;
3031 
3032 		/*
3033 		 * stop the event and update event->count
3034 		 */
3035 		event->pmu->stop(event, PERF_EF_UPDATE);
3036 
3037 		now = local64_read(&event->count);
3038 		delta = now - hwc->freq_count_stamp;
3039 		hwc->freq_count_stamp = now;
3040 
3041 		/*
3042 		 * restart the event
3043 		 * reload only if value has changed
3044 		 * we have stopped the event so tell that
3045 		 * to perf_adjust_period() to avoid stopping it
3046 		 * twice.
3047 		 */
3048 		if (delta > 0)
3049 			perf_adjust_period(event, period, delta, false);
3050 
3051 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3052 	next:
3053 		perf_pmu_enable(event->pmu);
3054 	}
3055 
3056 	perf_pmu_enable(ctx->pmu);
3057 	raw_spin_unlock(&ctx->lock);
3058 }
3059 
3060 /*
3061  * Round-robin a context's events:
3062  */
3063 static void rotate_ctx(struct perf_event_context *ctx)
3064 {
3065 	/*
3066 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3067 	 * disabled by the inheritance code.
3068 	 */
3069 	if (!ctx->rotate_disable)
3070 		list_rotate_left(&ctx->flexible_groups);
3071 }
3072 
3073 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3074 {
3075 	struct perf_event_context *ctx = NULL;
3076 	int rotate = 0;
3077 
3078 	if (cpuctx->ctx.nr_events) {
3079 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3080 			rotate = 1;
3081 	}
3082 
3083 	ctx = cpuctx->task_ctx;
3084 	if (ctx && ctx->nr_events) {
3085 		if (ctx->nr_events != ctx->nr_active)
3086 			rotate = 1;
3087 	}
3088 
3089 	if (!rotate)
3090 		goto done;
3091 
3092 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3093 	perf_pmu_disable(cpuctx->ctx.pmu);
3094 
3095 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3096 	if (ctx)
3097 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3098 
3099 	rotate_ctx(&cpuctx->ctx);
3100 	if (ctx)
3101 		rotate_ctx(ctx);
3102 
3103 	perf_event_sched_in(cpuctx, ctx, current);
3104 
3105 	perf_pmu_enable(cpuctx->ctx.pmu);
3106 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3107 done:
3108 
3109 	return rotate;
3110 }
3111 
3112 #ifdef CONFIG_NO_HZ_FULL
3113 bool perf_event_can_stop_tick(void)
3114 {
3115 	if (atomic_read(&nr_freq_events) ||
3116 	    __this_cpu_read(perf_throttled_count))
3117 		return false;
3118 	else
3119 		return true;
3120 }
3121 #endif
3122 
3123 void perf_event_task_tick(void)
3124 {
3125 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3126 	struct perf_event_context *ctx, *tmp;
3127 	int throttled;
3128 
3129 	WARN_ON(!irqs_disabled());
3130 
3131 	__this_cpu_inc(perf_throttled_seq);
3132 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3133 
3134 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3135 		perf_adjust_freq_unthr_context(ctx, throttled);
3136 }
3137 
3138 static int event_enable_on_exec(struct perf_event *event,
3139 				struct perf_event_context *ctx)
3140 {
3141 	if (!event->attr.enable_on_exec)
3142 		return 0;
3143 
3144 	event->attr.enable_on_exec = 0;
3145 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3146 		return 0;
3147 
3148 	__perf_event_mark_enabled(event);
3149 
3150 	return 1;
3151 }
3152 
3153 /*
3154  * Enable all of a task's events that have been marked enable-on-exec.
3155  * This expects task == current.
3156  */
3157 static void perf_event_enable_on_exec(int ctxn)
3158 {
3159 	struct perf_event_context *ctx, *clone_ctx = NULL;
3160 	struct perf_event *event;
3161 	unsigned long flags;
3162 	int enabled = 0;
3163 	int ret;
3164 
3165 	local_irq_save(flags);
3166 	ctx = current->perf_event_ctxp[ctxn];
3167 	if (!ctx || !ctx->nr_events)
3168 		goto out;
3169 
3170 	/*
3171 	 * We must ctxsw out cgroup events to avoid conflict
3172 	 * when invoking perf_task_event_sched_in() later on
3173 	 * in this function. Otherwise we end up trying to
3174 	 * ctxswin cgroup events which are already scheduled
3175 	 * in.
3176 	 */
3177 	perf_cgroup_sched_out(current, NULL);
3178 
3179 	raw_spin_lock(&ctx->lock);
3180 	task_ctx_sched_out(ctx);
3181 
3182 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3183 		ret = event_enable_on_exec(event, ctx);
3184 		if (ret)
3185 			enabled = 1;
3186 	}
3187 
3188 	/*
3189 	 * Unclone this context if we enabled any event.
3190 	 */
3191 	if (enabled)
3192 		clone_ctx = unclone_ctx(ctx);
3193 
3194 	raw_spin_unlock(&ctx->lock);
3195 
3196 	/*
3197 	 * Also calls ctxswin for cgroup events, if any:
3198 	 */
3199 	perf_event_context_sched_in(ctx, ctx->task);
3200 out:
3201 	local_irq_restore(flags);
3202 
3203 	if (clone_ctx)
3204 		put_ctx(clone_ctx);
3205 }
3206 
3207 void perf_event_exec(void)
3208 {
3209 	int ctxn;
3210 
3211 	rcu_read_lock();
3212 	for_each_task_context_nr(ctxn)
3213 		perf_event_enable_on_exec(ctxn);
3214 	rcu_read_unlock();
3215 }
3216 
3217 struct perf_read_data {
3218 	struct perf_event *event;
3219 	bool group;
3220 	int ret;
3221 };
3222 
3223 /*
3224  * Cross CPU call to read the hardware event
3225  */
3226 static void __perf_event_read(void *info)
3227 {
3228 	struct perf_read_data *data = info;
3229 	struct perf_event *sub, *event = data->event;
3230 	struct perf_event_context *ctx = event->ctx;
3231 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3232 	struct pmu *pmu = event->pmu;
3233 
3234 	/*
3235 	 * If this is a task context, we need to check whether it is
3236 	 * the current task context of this cpu.  If not it has been
3237 	 * scheduled out before the smp call arrived.  In that case
3238 	 * event->count would have been updated to a recent sample
3239 	 * when the event was scheduled out.
3240 	 */
3241 	if (ctx->task && cpuctx->task_ctx != ctx)
3242 		return;
3243 
3244 	raw_spin_lock(&ctx->lock);
3245 	if (ctx->is_active) {
3246 		update_context_time(ctx);
3247 		update_cgrp_time_from_event(event);
3248 	}
3249 
3250 	update_event_times(event);
3251 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3252 		goto unlock;
3253 
3254 	if (!data->group) {
3255 		pmu->read(event);
3256 		data->ret = 0;
3257 		goto unlock;
3258 	}
3259 
3260 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3261 
3262 	pmu->read(event);
3263 
3264 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3265 		update_event_times(sub);
3266 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3267 			/*
3268 			 * Use sibling's PMU rather than @event's since
3269 			 * sibling could be on different (eg: software) PMU.
3270 			 */
3271 			sub->pmu->read(sub);
3272 		}
3273 	}
3274 
3275 	data->ret = pmu->commit_txn(pmu);
3276 
3277 unlock:
3278 	raw_spin_unlock(&ctx->lock);
3279 }
3280 
3281 static inline u64 perf_event_count(struct perf_event *event)
3282 {
3283 	if (event->pmu->count)
3284 		return event->pmu->count(event);
3285 
3286 	return __perf_event_count(event);
3287 }
3288 
3289 /*
3290  * NMI-safe method to read a local event, that is an event that
3291  * is:
3292  *   - either for the current task, or for this CPU
3293  *   - does not have inherit set, for inherited task events
3294  *     will not be local and we cannot read them atomically
3295  *   - must not have a pmu::count method
3296  */
3297 u64 perf_event_read_local(struct perf_event *event)
3298 {
3299 	unsigned long flags;
3300 	u64 val;
3301 
3302 	/*
3303 	 * Disabling interrupts avoids all counter scheduling (context
3304 	 * switches, timer based rotation and IPIs).
3305 	 */
3306 	local_irq_save(flags);
3307 
3308 	/* If this is a per-task event, it must be for current */
3309 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3310 		     event->hw.target != current);
3311 
3312 	/* If this is a per-CPU event, it must be for this CPU */
3313 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3314 		     event->cpu != smp_processor_id());
3315 
3316 	/*
3317 	 * It must not be an event with inherit set, we cannot read
3318 	 * all child counters from atomic context.
3319 	 */
3320 	WARN_ON_ONCE(event->attr.inherit);
3321 
3322 	/*
3323 	 * It must not have a pmu::count method, those are not
3324 	 * NMI safe.
3325 	 */
3326 	WARN_ON_ONCE(event->pmu->count);
3327 
3328 	/*
3329 	 * If the event is currently on this CPU, its either a per-task event,
3330 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3331 	 * oncpu == -1).
3332 	 */
3333 	if (event->oncpu == smp_processor_id())
3334 		event->pmu->read(event);
3335 
3336 	val = local64_read(&event->count);
3337 	local_irq_restore(flags);
3338 
3339 	return val;
3340 }
3341 
3342 static int perf_event_read(struct perf_event *event, bool group)
3343 {
3344 	int ret = 0;
3345 
3346 	/*
3347 	 * If event is enabled and currently active on a CPU, update the
3348 	 * value in the event structure:
3349 	 */
3350 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3351 		struct perf_read_data data = {
3352 			.event = event,
3353 			.group = group,
3354 			.ret = 0,
3355 		};
3356 		smp_call_function_single(event->oncpu,
3357 					 __perf_event_read, &data, 1);
3358 		ret = data.ret;
3359 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3360 		struct perf_event_context *ctx = event->ctx;
3361 		unsigned long flags;
3362 
3363 		raw_spin_lock_irqsave(&ctx->lock, flags);
3364 		/*
3365 		 * may read while context is not active
3366 		 * (e.g., thread is blocked), in that case
3367 		 * we cannot update context time
3368 		 */
3369 		if (ctx->is_active) {
3370 			update_context_time(ctx);
3371 			update_cgrp_time_from_event(event);
3372 		}
3373 		if (group)
3374 			update_group_times(event);
3375 		else
3376 			update_event_times(event);
3377 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3378 	}
3379 
3380 	return ret;
3381 }
3382 
3383 /*
3384  * Initialize the perf_event context in a task_struct:
3385  */
3386 static void __perf_event_init_context(struct perf_event_context *ctx)
3387 {
3388 	raw_spin_lock_init(&ctx->lock);
3389 	mutex_init(&ctx->mutex);
3390 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3391 	INIT_LIST_HEAD(&ctx->pinned_groups);
3392 	INIT_LIST_HEAD(&ctx->flexible_groups);
3393 	INIT_LIST_HEAD(&ctx->event_list);
3394 	atomic_set(&ctx->refcount, 1);
3395 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3396 }
3397 
3398 static struct perf_event_context *
3399 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3400 {
3401 	struct perf_event_context *ctx;
3402 
3403 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3404 	if (!ctx)
3405 		return NULL;
3406 
3407 	__perf_event_init_context(ctx);
3408 	if (task) {
3409 		ctx->task = task;
3410 		get_task_struct(task);
3411 	}
3412 	ctx->pmu = pmu;
3413 
3414 	return ctx;
3415 }
3416 
3417 static struct task_struct *
3418 find_lively_task_by_vpid(pid_t vpid)
3419 {
3420 	struct task_struct *task;
3421 	int err;
3422 
3423 	rcu_read_lock();
3424 	if (!vpid)
3425 		task = current;
3426 	else
3427 		task = find_task_by_vpid(vpid);
3428 	if (task)
3429 		get_task_struct(task);
3430 	rcu_read_unlock();
3431 
3432 	if (!task)
3433 		return ERR_PTR(-ESRCH);
3434 
3435 	/* Reuse ptrace permission checks for now. */
3436 	err = -EACCES;
3437 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3438 		goto errout;
3439 
3440 	return task;
3441 errout:
3442 	put_task_struct(task);
3443 	return ERR_PTR(err);
3444 
3445 }
3446 
3447 /*
3448  * Returns a matching context with refcount and pincount.
3449  */
3450 static struct perf_event_context *
3451 find_get_context(struct pmu *pmu, struct task_struct *task,
3452 		struct perf_event *event)
3453 {
3454 	struct perf_event_context *ctx, *clone_ctx = NULL;
3455 	struct perf_cpu_context *cpuctx;
3456 	void *task_ctx_data = NULL;
3457 	unsigned long flags;
3458 	int ctxn, err;
3459 	int cpu = event->cpu;
3460 
3461 	if (!task) {
3462 		/* Must be root to operate on a CPU event: */
3463 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3464 			return ERR_PTR(-EACCES);
3465 
3466 		/*
3467 		 * We could be clever and allow to attach a event to an
3468 		 * offline CPU and activate it when the CPU comes up, but
3469 		 * that's for later.
3470 		 */
3471 		if (!cpu_online(cpu))
3472 			return ERR_PTR(-ENODEV);
3473 
3474 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3475 		ctx = &cpuctx->ctx;
3476 		get_ctx(ctx);
3477 		++ctx->pin_count;
3478 
3479 		return ctx;
3480 	}
3481 
3482 	err = -EINVAL;
3483 	ctxn = pmu->task_ctx_nr;
3484 	if (ctxn < 0)
3485 		goto errout;
3486 
3487 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3488 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3489 		if (!task_ctx_data) {
3490 			err = -ENOMEM;
3491 			goto errout;
3492 		}
3493 	}
3494 
3495 retry:
3496 	ctx = perf_lock_task_context(task, ctxn, &flags);
3497 	if (ctx) {
3498 		clone_ctx = unclone_ctx(ctx);
3499 		++ctx->pin_count;
3500 
3501 		if (task_ctx_data && !ctx->task_ctx_data) {
3502 			ctx->task_ctx_data = task_ctx_data;
3503 			task_ctx_data = NULL;
3504 		}
3505 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3506 
3507 		if (clone_ctx)
3508 			put_ctx(clone_ctx);
3509 	} else {
3510 		ctx = alloc_perf_context(pmu, task);
3511 		err = -ENOMEM;
3512 		if (!ctx)
3513 			goto errout;
3514 
3515 		if (task_ctx_data) {
3516 			ctx->task_ctx_data = task_ctx_data;
3517 			task_ctx_data = NULL;
3518 		}
3519 
3520 		err = 0;
3521 		mutex_lock(&task->perf_event_mutex);
3522 		/*
3523 		 * If it has already passed perf_event_exit_task().
3524 		 * we must see PF_EXITING, it takes this mutex too.
3525 		 */
3526 		if (task->flags & PF_EXITING)
3527 			err = -ESRCH;
3528 		else if (task->perf_event_ctxp[ctxn])
3529 			err = -EAGAIN;
3530 		else {
3531 			get_ctx(ctx);
3532 			++ctx->pin_count;
3533 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3534 		}
3535 		mutex_unlock(&task->perf_event_mutex);
3536 
3537 		if (unlikely(err)) {
3538 			put_ctx(ctx);
3539 
3540 			if (err == -EAGAIN)
3541 				goto retry;
3542 			goto errout;
3543 		}
3544 	}
3545 
3546 	kfree(task_ctx_data);
3547 	return ctx;
3548 
3549 errout:
3550 	kfree(task_ctx_data);
3551 	return ERR_PTR(err);
3552 }
3553 
3554 static void perf_event_free_filter(struct perf_event *event);
3555 static void perf_event_free_bpf_prog(struct perf_event *event);
3556 
3557 static void free_event_rcu(struct rcu_head *head)
3558 {
3559 	struct perf_event *event;
3560 
3561 	event = container_of(head, struct perf_event, rcu_head);
3562 	if (event->ns)
3563 		put_pid_ns(event->ns);
3564 	perf_event_free_filter(event);
3565 	kfree(event);
3566 }
3567 
3568 static void ring_buffer_attach(struct perf_event *event,
3569 			       struct ring_buffer *rb);
3570 
3571 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3572 {
3573 	if (event->parent)
3574 		return;
3575 
3576 	if (is_cgroup_event(event))
3577 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3578 }
3579 
3580 static void unaccount_event(struct perf_event *event)
3581 {
3582 	if (event->parent)
3583 		return;
3584 
3585 	if (event->attach_state & PERF_ATTACH_TASK)
3586 		static_key_slow_dec_deferred(&perf_sched_events);
3587 	if (event->attr.mmap || event->attr.mmap_data)
3588 		atomic_dec(&nr_mmap_events);
3589 	if (event->attr.comm)
3590 		atomic_dec(&nr_comm_events);
3591 	if (event->attr.task)
3592 		atomic_dec(&nr_task_events);
3593 	if (event->attr.freq)
3594 		atomic_dec(&nr_freq_events);
3595 	if (event->attr.context_switch) {
3596 		static_key_slow_dec_deferred(&perf_sched_events);
3597 		atomic_dec(&nr_switch_events);
3598 	}
3599 	if (is_cgroup_event(event))
3600 		static_key_slow_dec_deferred(&perf_sched_events);
3601 	if (has_branch_stack(event))
3602 		static_key_slow_dec_deferred(&perf_sched_events);
3603 
3604 	unaccount_event_cpu(event, event->cpu);
3605 }
3606 
3607 /*
3608  * The following implement mutual exclusion of events on "exclusive" pmus
3609  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3610  * at a time, so we disallow creating events that might conflict, namely:
3611  *
3612  *  1) cpu-wide events in the presence of per-task events,
3613  *  2) per-task events in the presence of cpu-wide events,
3614  *  3) two matching events on the same context.
3615  *
3616  * The former two cases are handled in the allocation path (perf_event_alloc(),
3617  * __free_event()), the latter -- before the first perf_install_in_context().
3618  */
3619 static int exclusive_event_init(struct perf_event *event)
3620 {
3621 	struct pmu *pmu = event->pmu;
3622 
3623 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3624 		return 0;
3625 
3626 	/*
3627 	 * Prevent co-existence of per-task and cpu-wide events on the
3628 	 * same exclusive pmu.
3629 	 *
3630 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3631 	 * events on this "exclusive" pmu, positive means there are
3632 	 * per-task events.
3633 	 *
3634 	 * Since this is called in perf_event_alloc() path, event::ctx
3635 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3636 	 * to mean "per-task event", because unlike other attach states it
3637 	 * never gets cleared.
3638 	 */
3639 	if (event->attach_state & PERF_ATTACH_TASK) {
3640 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3641 			return -EBUSY;
3642 	} else {
3643 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3644 			return -EBUSY;
3645 	}
3646 
3647 	return 0;
3648 }
3649 
3650 static void exclusive_event_destroy(struct perf_event *event)
3651 {
3652 	struct pmu *pmu = event->pmu;
3653 
3654 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3655 		return;
3656 
3657 	/* see comment in exclusive_event_init() */
3658 	if (event->attach_state & PERF_ATTACH_TASK)
3659 		atomic_dec(&pmu->exclusive_cnt);
3660 	else
3661 		atomic_inc(&pmu->exclusive_cnt);
3662 }
3663 
3664 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3665 {
3666 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3667 	    (e1->cpu == e2->cpu ||
3668 	     e1->cpu == -1 ||
3669 	     e2->cpu == -1))
3670 		return true;
3671 	return false;
3672 }
3673 
3674 /* Called under the same ctx::mutex as perf_install_in_context() */
3675 static bool exclusive_event_installable(struct perf_event *event,
3676 					struct perf_event_context *ctx)
3677 {
3678 	struct perf_event *iter_event;
3679 	struct pmu *pmu = event->pmu;
3680 
3681 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3682 		return true;
3683 
3684 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3685 		if (exclusive_event_match(iter_event, event))
3686 			return false;
3687 	}
3688 
3689 	return true;
3690 }
3691 
3692 static void __free_event(struct perf_event *event)
3693 {
3694 	if (!event->parent) {
3695 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3696 			put_callchain_buffers();
3697 	}
3698 
3699 	perf_event_free_bpf_prog(event);
3700 
3701 	if (event->destroy)
3702 		event->destroy(event);
3703 
3704 	if (event->ctx)
3705 		put_ctx(event->ctx);
3706 
3707 	if (event->pmu) {
3708 		exclusive_event_destroy(event);
3709 		module_put(event->pmu->module);
3710 	}
3711 
3712 	call_rcu(&event->rcu_head, free_event_rcu);
3713 }
3714 
3715 static void _free_event(struct perf_event *event)
3716 {
3717 	irq_work_sync(&event->pending);
3718 
3719 	unaccount_event(event);
3720 
3721 	if (event->rb) {
3722 		/*
3723 		 * Can happen when we close an event with re-directed output.
3724 		 *
3725 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3726 		 * over us; possibly making our ring_buffer_put() the last.
3727 		 */
3728 		mutex_lock(&event->mmap_mutex);
3729 		ring_buffer_attach(event, NULL);
3730 		mutex_unlock(&event->mmap_mutex);
3731 	}
3732 
3733 	if (is_cgroup_event(event))
3734 		perf_detach_cgroup(event);
3735 
3736 	__free_event(event);
3737 }
3738 
3739 /*
3740  * Used to free events which have a known refcount of 1, such as in error paths
3741  * where the event isn't exposed yet and inherited events.
3742  */
3743 static void free_event(struct perf_event *event)
3744 {
3745 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3746 				"unexpected event refcount: %ld; ptr=%p\n",
3747 				atomic_long_read(&event->refcount), event)) {
3748 		/* leak to avoid use-after-free */
3749 		return;
3750 	}
3751 
3752 	_free_event(event);
3753 }
3754 
3755 /*
3756  * Remove user event from the owner task.
3757  */
3758 static void perf_remove_from_owner(struct perf_event *event)
3759 {
3760 	struct task_struct *owner;
3761 
3762 	rcu_read_lock();
3763 	owner = ACCESS_ONCE(event->owner);
3764 	/*
3765 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3766 	 * !owner it means the list deletion is complete and we can indeed
3767 	 * free this event, otherwise we need to serialize on
3768 	 * owner->perf_event_mutex.
3769 	 */
3770 	smp_read_barrier_depends();
3771 	if (owner) {
3772 		/*
3773 		 * Since delayed_put_task_struct() also drops the last
3774 		 * task reference we can safely take a new reference
3775 		 * while holding the rcu_read_lock().
3776 		 */
3777 		get_task_struct(owner);
3778 	}
3779 	rcu_read_unlock();
3780 
3781 	if (owner) {
3782 		/*
3783 		 * If we're here through perf_event_exit_task() we're already
3784 		 * holding ctx->mutex which would be an inversion wrt. the
3785 		 * normal lock order.
3786 		 *
3787 		 * However we can safely take this lock because its the child
3788 		 * ctx->mutex.
3789 		 */
3790 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3791 
3792 		/*
3793 		 * We have to re-check the event->owner field, if it is cleared
3794 		 * we raced with perf_event_exit_task(), acquiring the mutex
3795 		 * ensured they're done, and we can proceed with freeing the
3796 		 * event.
3797 		 */
3798 		if (event->owner)
3799 			list_del_init(&event->owner_entry);
3800 		mutex_unlock(&owner->perf_event_mutex);
3801 		put_task_struct(owner);
3802 	}
3803 }
3804 
3805 static void put_event(struct perf_event *event)
3806 {
3807 	struct perf_event_context *ctx;
3808 
3809 	if (!atomic_long_dec_and_test(&event->refcount))
3810 		return;
3811 
3812 	if (!is_kernel_event(event))
3813 		perf_remove_from_owner(event);
3814 
3815 	/*
3816 	 * There are two ways this annotation is useful:
3817 	 *
3818 	 *  1) there is a lock recursion from perf_event_exit_task
3819 	 *     see the comment there.
3820 	 *
3821 	 *  2) there is a lock-inversion with mmap_sem through
3822 	 *     perf_read_group(), which takes faults while
3823 	 *     holding ctx->mutex, however this is called after
3824 	 *     the last filedesc died, so there is no possibility
3825 	 *     to trigger the AB-BA case.
3826 	 */
3827 	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3828 	WARN_ON_ONCE(ctx->parent_ctx);
3829 	perf_remove_from_context(event, true);
3830 	perf_event_ctx_unlock(event, ctx);
3831 
3832 	_free_event(event);
3833 }
3834 
3835 int perf_event_release_kernel(struct perf_event *event)
3836 {
3837 	put_event(event);
3838 	return 0;
3839 }
3840 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3841 
3842 /*
3843  * Called when the last reference to the file is gone.
3844  */
3845 static int perf_release(struct inode *inode, struct file *file)
3846 {
3847 	put_event(file->private_data);
3848 	return 0;
3849 }
3850 
3851 /*
3852  * Remove all orphanes events from the context.
3853  */
3854 static void orphans_remove_work(struct work_struct *work)
3855 {
3856 	struct perf_event_context *ctx;
3857 	struct perf_event *event, *tmp;
3858 
3859 	ctx = container_of(work, struct perf_event_context,
3860 			   orphans_remove.work);
3861 
3862 	mutex_lock(&ctx->mutex);
3863 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3864 		struct perf_event *parent_event = event->parent;
3865 
3866 		if (!is_orphaned_child(event))
3867 			continue;
3868 
3869 		perf_remove_from_context(event, true);
3870 
3871 		mutex_lock(&parent_event->child_mutex);
3872 		list_del_init(&event->child_list);
3873 		mutex_unlock(&parent_event->child_mutex);
3874 
3875 		free_event(event);
3876 		put_event(parent_event);
3877 	}
3878 
3879 	raw_spin_lock_irq(&ctx->lock);
3880 	ctx->orphans_remove_sched = false;
3881 	raw_spin_unlock_irq(&ctx->lock);
3882 	mutex_unlock(&ctx->mutex);
3883 
3884 	put_ctx(ctx);
3885 }
3886 
3887 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3888 {
3889 	struct perf_event *child;
3890 	u64 total = 0;
3891 
3892 	*enabled = 0;
3893 	*running = 0;
3894 
3895 	mutex_lock(&event->child_mutex);
3896 
3897 	(void)perf_event_read(event, false);
3898 	total += perf_event_count(event);
3899 
3900 	*enabled += event->total_time_enabled +
3901 			atomic64_read(&event->child_total_time_enabled);
3902 	*running += event->total_time_running +
3903 			atomic64_read(&event->child_total_time_running);
3904 
3905 	list_for_each_entry(child, &event->child_list, child_list) {
3906 		(void)perf_event_read(child, false);
3907 		total += perf_event_count(child);
3908 		*enabled += child->total_time_enabled;
3909 		*running += child->total_time_running;
3910 	}
3911 	mutex_unlock(&event->child_mutex);
3912 
3913 	return total;
3914 }
3915 EXPORT_SYMBOL_GPL(perf_event_read_value);
3916 
3917 static int __perf_read_group_add(struct perf_event *leader,
3918 					u64 read_format, u64 *values)
3919 {
3920 	struct perf_event *sub;
3921 	int n = 1; /* skip @nr */
3922 	int ret;
3923 
3924 	ret = perf_event_read(leader, true);
3925 	if (ret)
3926 		return ret;
3927 
3928 	/*
3929 	 * Since we co-schedule groups, {enabled,running} times of siblings
3930 	 * will be identical to those of the leader, so we only publish one
3931 	 * set.
3932 	 */
3933 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3934 		values[n++] += leader->total_time_enabled +
3935 			atomic64_read(&leader->child_total_time_enabled);
3936 	}
3937 
3938 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3939 		values[n++] += leader->total_time_running +
3940 			atomic64_read(&leader->child_total_time_running);
3941 	}
3942 
3943 	/*
3944 	 * Write {count,id} tuples for every sibling.
3945 	 */
3946 	values[n++] += perf_event_count(leader);
3947 	if (read_format & PERF_FORMAT_ID)
3948 		values[n++] = primary_event_id(leader);
3949 
3950 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3951 		values[n++] += perf_event_count(sub);
3952 		if (read_format & PERF_FORMAT_ID)
3953 			values[n++] = primary_event_id(sub);
3954 	}
3955 
3956 	return 0;
3957 }
3958 
3959 static int perf_read_group(struct perf_event *event,
3960 				   u64 read_format, char __user *buf)
3961 {
3962 	struct perf_event *leader = event->group_leader, *child;
3963 	struct perf_event_context *ctx = leader->ctx;
3964 	int ret;
3965 	u64 *values;
3966 
3967 	lockdep_assert_held(&ctx->mutex);
3968 
3969 	values = kzalloc(event->read_size, GFP_KERNEL);
3970 	if (!values)
3971 		return -ENOMEM;
3972 
3973 	values[0] = 1 + leader->nr_siblings;
3974 
3975 	/*
3976 	 * By locking the child_mutex of the leader we effectively
3977 	 * lock the child list of all siblings.. XXX explain how.
3978 	 */
3979 	mutex_lock(&leader->child_mutex);
3980 
3981 	ret = __perf_read_group_add(leader, read_format, values);
3982 	if (ret)
3983 		goto unlock;
3984 
3985 	list_for_each_entry(child, &leader->child_list, child_list) {
3986 		ret = __perf_read_group_add(child, read_format, values);
3987 		if (ret)
3988 			goto unlock;
3989 	}
3990 
3991 	mutex_unlock(&leader->child_mutex);
3992 
3993 	ret = event->read_size;
3994 	if (copy_to_user(buf, values, event->read_size))
3995 		ret = -EFAULT;
3996 	goto out;
3997 
3998 unlock:
3999 	mutex_unlock(&leader->child_mutex);
4000 out:
4001 	kfree(values);
4002 	return ret;
4003 }
4004 
4005 static int perf_read_one(struct perf_event *event,
4006 				 u64 read_format, char __user *buf)
4007 {
4008 	u64 enabled, running;
4009 	u64 values[4];
4010 	int n = 0;
4011 
4012 	values[n++] = perf_event_read_value(event, &enabled, &running);
4013 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4014 		values[n++] = enabled;
4015 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4016 		values[n++] = running;
4017 	if (read_format & PERF_FORMAT_ID)
4018 		values[n++] = primary_event_id(event);
4019 
4020 	if (copy_to_user(buf, values, n * sizeof(u64)))
4021 		return -EFAULT;
4022 
4023 	return n * sizeof(u64);
4024 }
4025 
4026 static bool is_event_hup(struct perf_event *event)
4027 {
4028 	bool no_children;
4029 
4030 	if (event->state != PERF_EVENT_STATE_EXIT)
4031 		return false;
4032 
4033 	mutex_lock(&event->child_mutex);
4034 	no_children = list_empty(&event->child_list);
4035 	mutex_unlock(&event->child_mutex);
4036 	return no_children;
4037 }
4038 
4039 /*
4040  * Read the performance event - simple non blocking version for now
4041  */
4042 static ssize_t
4043 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4044 {
4045 	u64 read_format = event->attr.read_format;
4046 	int ret;
4047 
4048 	/*
4049 	 * Return end-of-file for a read on a event that is in
4050 	 * error state (i.e. because it was pinned but it couldn't be
4051 	 * scheduled on to the CPU at some point).
4052 	 */
4053 	if (event->state == PERF_EVENT_STATE_ERROR)
4054 		return 0;
4055 
4056 	if (count < event->read_size)
4057 		return -ENOSPC;
4058 
4059 	WARN_ON_ONCE(event->ctx->parent_ctx);
4060 	if (read_format & PERF_FORMAT_GROUP)
4061 		ret = perf_read_group(event, read_format, buf);
4062 	else
4063 		ret = perf_read_one(event, read_format, buf);
4064 
4065 	return ret;
4066 }
4067 
4068 static ssize_t
4069 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4070 {
4071 	struct perf_event *event = file->private_data;
4072 	struct perf_event_context *ctx;
4073 	int ret;
4074 
4075 	ctx = perf_event_ctx_lock(event);
4076 	ret = __perf_read(event, buf, count);
4077 	perf_event_ctx_unlock(event, ctx);
4078 
4079 	return ret;
4080 }
4081 
4082 static unsigned int perf_poll(struct file *file, poll_table *wait)
4083 {
4084 	struct perf_event *event = file->private_data;
4085 	struct ring_buffer *rb;
4086 	unsigned int events = POLLHUP;
4087 
4088 	poll_wait(file, &event->waitq, wait);
4089 
4090 	if (is_event_hup(event))
4091 		return events;
4092 
4093 	/*
4094 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4095 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4096 	 */
4097 	mutex_lock(&event->mmap_mutex);
4098 	rb = event->rb;
4099 	if (rb)
4100 		events = atomic_xchg(&rb->poll, 0);
4101 	mutex_unlock(&event->mmap_mutex);
4102 	return events;
4103 }
4104 
4105 static void _perf_event_reset(struct perf_event *event)
4106 {
4107 	(void)perf_event_read(event, false);
4108 	local64_set(&event->count, 0);
4109 	perf_event_update_userpage(event);
4110 }
4111 
4112 /*
4113  * Holding the top-level event's child_mutex means that any
4114  * descendant process that has inherited this event will block
4115  * in sync_child_event if it goes to exit, thus satisfying the
4116  * task existence requirements of perf_event_enable/disable.
4117  */
4118 static void perf_event_for_each_child(struct perf_event *event,
4119 					void (*func)(struct perf_event *))
4120 {
4121 	struct perf_event *child;
4122 
4123 	WARN_ON_ONCE(event->ctx->parent_ctx);
4124 
4125 	mutex_lock(&event->child_mutex);
4126 	func(event);
4127 	list_for_each_entry(child, &event->child_list, child_list)
4128 		func(child);
4129 	mutex_unlock(&event->child_mutex);
4130 }
4131 
4132 static void perf_event_for_each(struct perf_event *event,
4133 				  void (*func)(struct perf_event *))
4134 {
4135 	struct perf_event_context *ctx = event->ctx;
4136 	struct perf_event *sibling;
4137 
4138 	lockdep_assert_held(&ctx->mutex);
4139 
4140 	event = event->group_leader;
4141 
4142 	perf_event_for_each_child(event, func);
4143 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4144 		perf_event_for_each_child(sibling, func);
4145 }
4146 
4147 struct period_event {
4148 	struct perf_event *event;
4149 	u64 value;
4150 };
4151 
4152 static int __perf_event_period(void *info)
4153 {
4154 	struct period_event *pe = info;
4155 	struct perf_event *event = pe->event;
4156 	struct perf_event_context *ctx = event->ctx;
4157 	u64 value = pe->value;
4158 	bool active;
4159 
4160 	raw_spin_lock(&ctx->lock);
4161 	if (event->attr.freq) {
4162 		event->attr.sample_freq = value;
4163 	} else {
4164 		event->attr.sample_period = value;
4165 		event->hw.sample_period = value;
4166 	}
4167 
4168 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4169 	if (active) {
4170 		perf_pmu_disable(ctx->pmu);
4171 		event->pmu->stop(event, PERF_EF_UPDATE);
4172 	}
4173 
4174 	local64_set(&event->hw.period_left, 0);
4175 
4176 	if (active) {
4177 		event->pmu->start(event, PERF_EF_RELOAD);
4178 		perf_pmu_enable(ctx->pmu);
4179 	}
4180 	raw_spin_unlock(&ctx->lock);
4181 
4182 	return 0;
4183 }
4184 
4185 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4186 {
4187 	struct period_event pe = { .event = event, };
4188 	struct perf_event_context *ctx = event->ctx;
4189 	struct task_struct *task;
4190 	u64 value;
4191 
4192 	if (!is_sampling_event(event))
4193 		return -EINVAL;
4194 
4195 	if (copy_from_user(&value, arg, sizeof(value)))
4196 		return -EFAULT;
4197 
4198 	if (!value)
4199 		return -EINVAL;
4200 
4201 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4202 		return -EINVAL;
4203 
4204 	task = ctx->task;
4205 	pe.value = value;
4206 
4207 	if (!task) {
4208 		cpu_function_call(event->cpu, __perf_event_period, &pe);
4209 		return 0;
4210 	}
4211 
4212 retry:
4213 	if (!task_function_call(task, __perf_event_period, &pe))
4214 		return 0;
4215 
4216 	raw_spin_lock_irq(&ctx->lock);
4217 	if (ctx->is_active) {
4218 		raw_spin_unlock_irq(&ctx->lock);
4219 		task = ctx->task;
4220 		goto retry;
4221 	}
4222 
4223 	if (event->attr.freq) {
4224 		event->attr.sample_freq = value;
4225 	} else {
4226 		event->attr.sample_period = value;
4227 		event->hw.sample_period = value;
4228 	}
4229 
4230 	local64_set(&event->hw.period_left, 0);
4231 	raw_spin_unlock_irq(&ctx->lock);
4232 
4233 	return 0;
4234 }
4235 
4236 static const struct file_operations perf_fops;
4237 
4238 static inline int perf_fget_light(int fd, struct fd *p)
4239 {
4240 	struct fd f = fdget(fd);
4241 	if (!f.file)
4242 		return -EBADF;
4243 
4244 	if (f.file->f_op != &perf_fops) {
4245 		fdput(f);
4246 		return -EBADF;
4247 	}
4248 	*p = f;
4249 	return 0;
4250 }
4251 
4252 static int perf_event_set_output(struct perf_event *event,
4253 				 struct perf_event *output_event);
4254 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4255 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4256 
4257 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4258 {
4259 	void (*func)(struct perf_event *);
4260 	u32 flags = arg;
4261 
4262 	switch (cmd) {
4263 	case PERF_EVENT_IOC_ENABLE:
4264 		func = _perf_event_enable;
4265 		break;
4266 	case PERF_EVENT_IOC_DISABLE:
4267 		func = _perf_event_disable;
4268 		break;
4269 	case PERF_EVENT_IOC_RESET:
4270 		func = _perf_event_reset;
4271 		break;
4272 
4273 	case PERF_EVENT_IOC_REFRESH:
4274 		return _perf_event_refresh(event, arg);
4275 
4276 	case PERF_EVENT_IOC_PERIOD:
4277 		return perf_event_period(event, (u64 __user *)arg);
4278 
4279 	case PERF_EVENT_IOC_ID:
4280 	{
4281 		u64 id = primary_event_id(event);
4282 
4283 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4284 			return -EFAULT;
4285 		return 0;
4286 	}
4287 
4288 	case PERF_EVENT_IOC_SET_OUTPUT:
4289 	{
4290 		int ret;
4291 		if (arg != -1) {
4292 			struct perf_event *output_event;
4293 			struct fd output;
4294 			ret = perf_fget_light(arg, &output);
4295 			if (ret)
4296 				return ret;
4297 			output_event = output.file->private_data;
4298 			ret = perf_event_set_output(event, output_event);
4299 			fdput(output);
4300 		} else {
4301 			ret = perf_event_set_output(event, NULL);
4302 		}
4303 		return ret;
4304 	}
4305 
4306 	case PERF_EVENT_IOC_SET_FILTER:
4307 		return perf_event_set_filter(event, (void __user *)arg);
4308 
4309 	case PERF_EVENT_IOC_SET_BPF:
4310 		return perf_event_set_bpf_prog(event, arg);
4311 
4312 	default:
4313 		return -ENOTTY;
4314 	}
4315 
4316 	if (flags & PERF_IOC_FLAG_GROUP)
4317 		perf_event_for_each(event, func);
4318 	else
4319 		perf_event_for_each_child(event, func);
4320 
4321 	return 0;
4322 }
4323 
4324 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4325 {
4326 	struct perf_event *event = file->private_data;
4327 	struct perf_event_context *ctx;
4328 	long ret;
4329 
4330 	ctx = perf_event_ctx_lock(event);
4331 	ret = _perf_ioctl(event, cmd, arg);
4332 	perf_event_ctx_unlock(event, ctx);
4333 
4334 	return ret;
4335 }
4336 
4337 #ifdef CONFIG_COMPAT
4338 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4339 				unsigned long arg)
4340 {
4341 	switch (_IOC_NR(cmd)) {
4342 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4343 	case _IOC_NR(PERF_EVENT_IOC_ID):
4344 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4345 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4346 			cmd &= ~IOCSIZE_MASK;
4347 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4348 		}
4349 		break;
4350 	}
4351 	return perf_ioctl(file, cmd, arg);
4352 }
4353 #else
4354 # define perf_compat_ioctl NULL
4355 #endif
4356 
4357 int perf_event_task_enable(void)
4358 {
4359 	struct perf_event_context *ctx;
4360 	struct perf_event *event;
4361 
4362 	mutex_lock(&current->perf_event_mutex);
4363 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4364 		ctx = perf_event_ctx_lock(event);
4365 		perf_event_for_each_child(event, _perf_event_enable);
4366 		perf_event_ctx_unlock(event, ctx);
4367 	}
4368 	mutex_unlock(&current->perf_event_mutex);
4369 
4370 	return 0;
4371 }
4372 
4373 int perf_event_task_disable(void)
4374 {
4375 	struct perf_event_context *ctx;
4376 	struct perf_event *event;
4377 
4378 	mutex_lock(&current->perf_event_mutex);
4379 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4380 		ctx = perf_event_ctx_lock(event);
4381 		perf_event_for_each_child(event, _perf_event_disable);
4382 		perf_event_ctx_unlock(event, ctx);
4383 	}
4384 	mutex_unlock(&current->perf_event_mutex);
4385 
4386 	return 0;
4387 }
4388 
4389 static int perf_event_index(struct perf_event *event)
4390 {
4391 	if (event->hw.state & PERF_HES_STOPPED)
4392 		return 0;
4393 
4394 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4395 		return 0;
4396 
4397 	return event->pmu->event_idx(event);
4398 }
4399 
4400 static void calc_timer_values(struct perf_event *event,
4401 				u64 *now,
4402 				u64 *enabled,
4403 				u64 *running)
4404 {
4405 	u64 ctx_time;
4406 
4407 	*now = perf_clock();
4408 	ctx_time = event->shadow_ctx_time + *now;
4409 	*enabled = ctx_time - event->tstamp_enabled;
4410 	*running = ctx_time - event->tstamp_running;
4411 }
4412 
4413 static void perf_event_init_userpage(struct perf_event *event)
4414 {
4415 	struct perf_event_mmap_page *userpg;
4416 	struct ring_buffer *rb;
4417 
4418 	rcu_read_lock();
4419 	rb = rcu_dereference(event->rb);
4420 	if (!rb)
4421 		goto unlock;
4422 
4423 	userpg = rb->user_page;
4424 
4425 	/* Allow new userspace to detect that bit 0 is deprecated */
4426 	userpg->cap_bit0_is_deprecated = 1;
4427 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4428 	userpg->data_offset = PAGE_SIZE;
4429 	userpg->data_size = perf_data_size(rb);
4430 
4431 unlock:
4432 	rcu_read_unlock();
4433 }
4434 
4435 void __weak arch_perf_update_userpage(
4436 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4437 {
4438 }
4439 
4440 /*
4441  * Callers need to ensure there can be no nesting of this function, otherwise
4442  * the seqlock logic goes bad. We can not serialize this because the arch
4443  * code calls this from NMI context.
4444  */
4445 void perf_event_update_userpage(struct perf_event *event)
4446 {
4447 	struct perf_event_mmap_page *userpg;
4448 	struct ring_buffer *rb;
4449 	u64 enabled, running, now;
4450 
4451 	rcu_read_lock();
4452 	rb = rcu_dereference(event->rb);
4453 	if (!rb)
4454 		goto unlock;
4455 
4456 	/*
4457 	 * compute total_time_enabled, total_time_running
4458 	 * based on snapshot values taken when the event
4459 	 * was last scheduled in.
4460 	 *
4461 	 * we cannot simply called update_context_time()
4462 	 * because of locking issue as we can be called in
4463 	 * NMI context
4464 	 */
4465 	calc_timer_values(event, &now, &enabled, &running);
4466 
4467 	userpg = rb->user_page;
4468 	/*
4469 	 * Disable preemption so as to not let the corresponding user-space
4470 	 * spin too long if we get preempted.
4471 	 */
4472 	preempt_disable();
4473 	++userpg->lock;
4474 	barrier();
4475 	userpg->index = perf_event_index(event);
4476 	userpg->offset = perf_event_count(event);
4477 	if (userpg->index)
4478 		userpg->offset -= local64_read(&event->hw.prev_count);
4479 
4480 	userpg->time_enabled = enabled +
4481 			atomic64_read(&event->child_total_time_enabled);
4482 
4483 	userpg->time_running = running +
4484 			atomic64_read(&event->child_total_time_running);
4485 
4486 	arch_perf_update_userpage(event, userpg, now);
4487 
4488 	barrier();
4489 	++userpg->lock;
4490 	preempt_enable();
4491 unlock:
4492 	rcu_read_unlock();
4493 }
4494 
4495 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4496 {
4497 	struct perf_event *event = vma->vm_file->private_data;
4498 	struct ring_buffer *rb;
4499 	int ret = VM_FAULT_SIGBUS;
4500 
4501 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4502 		if (vmf->pgoff == 0)
4503 			ret = 0;
4504 		return ret;
4505 	}
4506 
4507 	rcu_read_lock();
4508 	rb = rcu_dereference(event->rb);
4509 	if (!rb)
4510 		goto unlock;
4511 
4512 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4513 		goto unlock;
4514 
4515 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4516 	if (!vmf->page)
4517 		goto unlock;
4518 
4519 	get_page(vmf->page);
4520 	vmf->page->mapping = vma->vm_file->f_mapping;
4521 	vmf->page->index   = vmf->pgoff;
4522 
4523 	ret = 0;
4524 unlock:
4525 	rcu_read_unlock();
4526 
4527 	return ret;
4528 }
4529 
4530 static void ring_buffer_attach(struct perf_event *event,
4531 			       struct ring_buffer *rb)
4532 {
4533 	struct ring_buffer *old_rb = NULL;
4534 	unsigned long flags;
4535 
4536 	if (event->rb) {
4537 		/*
4538 		 * Should be impossible, we set this when removing
4539 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4540 		 */
4541 		WARN_ON_ONCE(event->rcu_pending);
4542 
4543 		old_rb = event->rb;
4544 		spin_lock_irqsave(&old_rb->event_lock, flags);
4545 		list_del_rcu(&event->rb_entry);
4546 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4547 
4548 		event->rcu_batches = get_state_synchronize_rcu();
4549 		event->rcu_pending = 1;
4550 	}
4551 
4552 	if (rb) {
4553 		if (event->rcu_pending) {
4554 			cond_synchronize_rcu(event->rcu_batches);
4555 			event->rcu_pending = 0;
4556 		}
4557 
4558 		spin_lock_irqsave(&rb->event_lock, flags);
4559 		list_add_rcu(&event->rb_entry, &rb->event_list);
4560 		spin_unlock_irqrestore(&rb->event_lock, flags);
4561 	}
4562 
4563 	rcu_assign_pointer(event->rb, rb);
4564 
4565 	if (old_rb) {
4566 		ring_buffer_put(old_rb);
4567 		/*
4568 		 * Since we detached before setting the new rb, so that we
4569 		 * could attach the new rb, we could have missed a wakeup.
4570 		 * Provide it now.
4571 		 */
4572 		wake_up_all(&event->waitq);
4573 	}
4574 }
4575 
4576 static void ring_buffer_wakeup(struct perf_event *event)
4577 {
4578 	struct ring_buffer *rb;
4579 
4580 	rcu_read_lock();
4581 	rb = rcu_dereference(event->rb);
4582 	if (rb) {
4583 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4584 			wake_up_all(&event->waitq);
4585 	}
4586 	rcu_read_unlock();
4587 }
4588 
4589 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4590 {
4591 	struct ring_buffer *rb;
4592 
4593 	rcu_read_lock();
4594 	rb = rcu_dereference(event->rb);
4595 	if (rb) {
4596 		if (!atomic_inc_not_zero(&rb->refcount))
4597 			rb = NULL;
4598 	}
4599 	rcu_read_unlock();
4600 
4601 	return rb;
4602 }
4603 
4604 void ring_buffer_put(struct ring_buffer *rb)
4605 {
4606 	if (!atomic_dec_and_test(&rb->refcount))
4607 		return;
4608 
4609 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4610 
4611 	call_rcu(&rb->rcu_head, rb_free_rcu);
4612 }
4613 
4614 static void perf_mmap_open(struct vm_area_struct *vma)
4615 {
4616 	struct perf_event *event = vma->vm_file->private_data;
4617 
4618 	atomic_inc(&event->mmap_count);
4619 	atomic_inc(&event->rb->mmap_count);
4620 
4621 	if (vma->vm_pgoff)
4622 		atomic_inc(&event->rb->aux_mmap_count);
4623 
4624 	if (event->pmu->event_mapped)
4625 		event->pmu->event_mapped(event);
4626 }
4627 
4628 /*
4629  * A buffer can be mmap()ed multiple times; either directly through the same
4630  * event, or through other events by use of perf_event_set_output().
4631  *
4632  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4633  * the buffer here, where we still have a VM context. This means we need
4634  * to detach all events redirecting to us.
4635  */
4636 static void perf_mmap_close(struct vm_area_struct *vma)
4637 {
4638 	struct perf_event *event = vma->vm_file->private_data;
4639 
4640 	struct ring_buffer *rb = ring_buffer_get(event);
4641 	struct user_struct *mmap_user = rb->mmap_user;
4642 	int mmap_locked = rb->mmap_locked;
4643 	unsigned long size = perf_data_size(rb);
4644 
4645 	if (event->pmu->event_unmapped)
4646 		event->pmu->event_unmapped(event);
4647 
4648 	/*
4649 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4650 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4651 	 * serialize with perf_mmap here.
4652 	 */
4653 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4654 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4655 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4656 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4657 
4658 		rb_free_aux(rb);
4659 		mutex_unlock(&event->mmap_mutex);
4660 	}
4661 
4662 	atomic_dec(&rb->mmap_count);
4663 
4664 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4665 		goto out_put;
4666 
4667 	ring_buffer_attach(event, NULL);
4668 	mutex_unlock(&event->mmap_mutex);
4669 
4670 	/* If there's still other mmap()s of this buffer, we're done. */
4671 	if (atomic_read(&rb->mmap_count))
4672 		goto out_put;
4673 
4674 	/*
4675 	 * No other mmap()s, detach from all other events that might redirect
4676 	 * into the now unreachable buffer. Somewhat complicated by the
4677 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4678 	 */
4679 again:
4680 	rcu_read_lock();
4681 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4682 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4683 			/*
4684 			 * This event is en-route to free_event() which will
4685 			 * detach it and remove it from the list.
4686 			 */
4687 			continue;
4688 		}
4689 		rcu_read_unlock();
4690 
4691 		mutex_lock(&event->mmap_mutex);
4692 		/*
4693 		 * Check we didn't race with perf_event_set_output() which can
4694 		 * swizzle the rb from under us while we were waiting to
4695 		 * acquire mmap_mutex.
4696 		 *
4697 		 * If we find a different rb; ignore this event, a next
4698 		 * iteration will no longer find it on the list. We have to
4699 		 * still restart the iteration to make sure we're not now
4700 		 * iterating the wrong list.
4701 		 */
4702 		if (event->rb == rb)
4703 			ring_buffer_attach(event, NULL);
4704 
4705 		mutex_unlock(&event->mmap_mutex);
4706 		put_event(event);
4707 
4708 		/*
4709 		 * Restart the iteration; either we're on the wrong list or
4710 		 * destroyed its integrity by doing a deletion.
4711 		 */
4712 		goto again;
4713 	}
4714 	rcu_read_unlock();
4715 
4716 	/*
4717 	 * It could be there's still a few 0-ref events on the list; they'll
4718 	 * get cleaned up by free_event() -- they'll also still have their
4719 	 * ref on the rb and will free it whenever they are done with it.
4720 	 *
4721 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4722 	 * undo the VM accounting.
4723 	 */
4724 
4725 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4726 	vma->vm_mm->pinned_vm -= mmap_locked;
4727 	free_uid(mmap_user);
4728 
4729 out_put:
4730 	ring_buffer_put(rb); /* could be last */
4731 }
4732 
4733 static const struct vm_operations_struct perf_mmap_vmops = {
4734 	.open		= perf_mmap_open,
4735 	.close		= perf_mmap_close, /* non mergable */
4736 	.fault		= perf_mmap_fault,
4737 	.page_mkwrite	= perf_mmap_fault,
4738 };
4739 
4740 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4741 {
4742 	struct perf_event *event = file->private_data;
4743 	unsigned long user_locked, user_lock_limit;
4744 	struct user_struct *user = current_user();
4745 	unsigned long locked, lock_limit;
4746 	struct ring_buffer *rb = NULL;
4747 	unsigned long vma_size;
4748 	unsigned long nr_pages;
4749 	long user_extra = 0, extra = 0;
4750 	int ret = 0, flags = 0;
4751 
4752 	/*
4753 	 * Don't allow mmap() of inherited per-task counters. This would
4754 	 * create a performance issue due to all children writing to the
4755 	 * same rb.
4756 	 */
4757 	if (event->cpu == -1 && event->attr.inherit)
4758 		return -EINVAL;
4759 
4760 	if (!(vma->vm_flags & VM_SHARED))
4761 		return -EINVAL;
4762 
4763 	vma_size = vma->vm_end - vma->vm_start;
4764 
4765 	if (vma->vm_pgoff == 0) {
4766 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4767 	} else {
4768 		/*
4769 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4770 		 * mapped, all subsequent mappings should have the same size
4771 		 * and offset. Must be above the normal perf buffer.
4772 		 */
4773 		u64 aux_offset, aux_size;
4774 
4775 		if (!event->rb)
4776 			return -EINVAL;
4777 
4778 		nr_pages = vma_size / PAGE_SIZE;
4779 
4780 		mutex_lock(&event->mmap_mutex);
4781 		ret = -EINVAL;
4782 
4783 		rb = event->rb;
4784 		if (!rb)
4785 			goto aux_unlock;
4786 
4787 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4788 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4789 
4790 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4791 			goto aux_unlock;
4792 
4793 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4794 			goto aux_unlock;
4795 
4796 		/* already mapped with a different offset */
4797 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4798 			goto aux_unlock;
4799 
4800 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4801 			goto aux_unlock;
4802 
4803 		/* already mapped with a different size */
4804 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4805 			goto aux_unlock;
4806 
4807 		if (!is_power_of_2(nr_pages))
4808 			goto aux_unlock;
4809 
4810 		if (!atomic_inc_not_zero(&rb->mmap_count))
4811 			goto aux_unlock;
4812 
4813 		if (rb_has_aux(rb)) {
4814 			atomic_inc(&rb->aux_mmap_count);
4815 			ret = 0;
4816 			goto unlock;
4817 		}
4818 
4819 		atomic_set(&rb->aux_mmap_count, 1);
4820 		user_extra = nr_pages;
4821 
4822 		goto accounting;
4823 	}
4824 
4825 	/*
4826 	 * If we have rb pages ensure they're a power-of-two number, so we
4827 	 * can do bitmasks instead of modulo.
4828 	 */
4829 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4830 		return -EINVAL;
4831 
4832 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4833 		return -EINVAL;
4834 
4835 	WARN_ON_ONCE(event->ctx->parent_ctx);
4836 again:
4837 	mutex_lock(&event->mmap_mutex);
4838 	if (event->rb) {
4839 		if (event->rb->nr_pages != nr_pages) {
4840 			ret = -EINVAL;
4841 			goto unlock;
4842 		}
4843 
4844 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4845 			/*
4846 			 * Raced against perf_mmap_close() through
4847 			 * perf_event_set_output(). Try again, hope for better
4848 			 * luck.
4849 			 */
4850 			mutex_unlock(&event->mmap_mutex);
4851 			goto again;
4852 		}
4853 
4854 		goto unlock;
4855 	}
4856 
4857 	user_extra = nr_pages + 1;
4858 
4859 accounting:
4860 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4861 
4862 	/*
4863 	 * Increase the limit linearly with more CPUs:
4864 	 */
4865 	user_lock_limit *= num_online_cpus();
4866 
4867 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4868 
4869 	if (user_locked > user_lock_limit)
4870 		extra = user_locked - user_lock_limit;
4871 
4872 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4873 	lock_limit >>= PAGE_SHIFT;
4874 	locked = vma->vm_mm->pinned_vm + extra;
4875 
4876 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4877 		!capable(CAP_IPC_LOCK)) {
4878 		ret = -EPERM;
4879 		goto unlock;
4880 	}
4881 
4882 	WARN_ON(!rb && event->rb);
4883 
4884 	if (vma->vm_flags & VM_WRITE)
4885 		flags |= RING_BUFFER_WRITABLE;
4886 
4887 	if (!rb) {
4888 		rb = rb_alloc(nr_pages,
4889 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4890 			      event->cpu, flags);
4891 
4892 		if (!rb) {
4893 			ret = -ENOMEM;
4894 			goto unlock;
4895 		}
4896 
4897 		atomic_set(&rb->mmap_count, 1);
4898 		rb->mmap_user = get_current_user();
4899 		rb->mmap_locked = extra;
4900 
4901 		ring_buffer_attach(event, rb);
4902 
4903 		perf_event_init_userpage(event);
4904 		perf_event_update_userpage(event);
4905 	} else {
4906 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4907 				   event->attr.aux_watermark, flags);
4908 		if (!ret)
4909 			rb->aux_mmap_locked = extra;
4910 	}
4911 
4912 unlock:
4913 	if (!ret) {
4914 		atomic_long_add(user_extra, &user->locked_vm);
4915 		vma->vm_mm->pinned_vm += extra;
4916 
4917 		atomic_inc(&event->mmap_count);
4918 	} else if (rb) {
4919 		atomic_dec(&rb->mmap_count);
4920 	}
4921 aux_unlock:
4922 	mutex_unlock(&event->mmap_mutex);
4923 
4924 	/*
4925 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4926 	 * vma.
4927 	 */
4928 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4929 	vma->vm_ops = &perf_mmap_vmops;
4930 
4931 	if (event->pmu->event_mapped)
4932 		event->pmu->event_mapped(event);
4933 
4934 	return ret;
4935 }
4936 
4937 static int perf_fasync(int fd, struct file *filp, int on)
4938 {
4939 	struct inode *inode = file_inode(filp);
4940 	struct perf_event *event = filp->private_data;
4941 	int retval;
4942 
4943 	mutex_lock(&inode->i_mutex);
4944 	retval = fasync_helper(fd, filp, on, &event->fasync);
4945 	mutex_unlock(&inode->i_mutex);
4946 
4947 	if (retval < 0)
4948 		return retval;
4949 
4950 	return 0;
4951 }
4952 
4953 static const struct file_operations perf_fops = {
4954 	.llseek			= no_llseek,
4955 	.release		= perf_release,
4956 	.read			= perf_read,
4957 	.poll			= perf_poll,
4958 	.unlocked_ioctl		= perf_ioctl,
4959 	.compat_ioctl		= perf_compat_ioctl,
4960 	.mmap			= perf_mmap,
4961 	.fasync			= perf_fasync,
4962 };
4963 
4964 /*
4965  * Perf event wakeup
4966  *
4967  * If there's data, ensure we set the poll() state and publish everything
4968  * to user-space before waking everybody up.
4969  */
4970 
4971 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4972 {
4973 	/* only the parent has fasync state */
4974 	if (event->parent)
4975 		event = event->parent;
4976 	return &event->fasync;
4977 }
4978 
4979 void perf_event_wakeup(struct perf_event *event)
4980 {
4981 	ring_buffer_wakeup(event);
4982 
4983 	if (event->pending_kill) {
4984 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4985 		event->pending_kill = 0;
4986 	}
4987 }
4988 
4989 static void perf_pending_event(struct irq_work *entry)
4990 {
4991 	struct perf_event *event = container_of(entry,
4992 			struct perf_event, pending);
4993 	int rctx;
4994 
4995 	rctx = perf_swevent_get_recursion_context();
4996 	/*
4997 	 * If we 'fail' here, that's OK, it means recursion is already disabled
4998 	 * and we won't recurse 'further'.
4999 	 */
5000 
5001 	if (event->pending_disable) {
5002 		event->pending_disable = 0;
5003 		__perf_event_disable(event);
5004 	}
5005 
5006 	if (event->pending_wakeup) {
5007 		event->pending_wakeup = 0;
5008 		perf_event_wakeup(event);
5009 	}
5010 
5011 	if (rctx >= 0)
5012 		perf_swevent_put_recursion_context(rctx);
5013 }
5014 
5015 /*
5016  * We assume there is only KVM supporting the callbacks.
5017  * Later on, we might change it to a list if there is
5018  * another virtualization implementation supporting the callbacks.
5019  */
5020 struct perf_guest_info_callbacks *perf_guest_cbs;
5021 
5022 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5023 {
5024 	perf_guest_cbs = cbs;
5025 	return 0;
5026 }
5027 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5028 
5029 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5030 {
5031 	perf_guest_cbs = NULL;
5032 	return 0;
5033 }
5034 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5035 
5036 static void
5037 perf_output_sample_regs(struct perf_output_handle *handle,
5038 			struct pt_regs *regs, u64 mask)
5039 {
5040 	int bit;
5041 
5042 	for_each_set_bit(bit, (const unsigned long *) &mask,
5043 			 sizeof(mask) * BITS_PER_BYTE) {
5044 		u64 val;
5045 
5046 		val = perf_reg_value(regs, bit);
5047 		perf_output_put(handle, val);
5048 	}
5049 }
5050 
5051 static void perf_sample_regs_user(struct perf_regs *regs_user,
5052 				  struct pt_regs *regs,
5053 				  struct pt_regs *regs_user_copy)
5054 {
5055 	if (user_mode(regs)) {
5056 		regs_user->abi = perf_reg_abi(current);
5057 		regs_user->regs = regs;
5058 	} else if (current->mm) {
5059 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5060 	} else {
5061 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5062 		regs_user->regs = NULL;
5063 	}
5064 }
5065 
5066 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5067 				  struct pt_regs *regs)
5068 {
5069 	regs_intr->regs = regs;
5070 	regs_intr->abi  = perf_reg_abi(current);
5071 }
5072 
5073 
5074 /*
5075  * Get remaining task size from user stack pointer.
5076  *
5077  * It'd be better to take stack vma map and limit this more
5078  * precisly, but there's no way to get it safely under interrupt,
5079  * so using TASK_SIZE as limit.
5080  */
5081 static u64 perf_ustack_task_size(struct pt_regs *regs)
5082 {
5083 	unsigned long addr = perf_user_stack_pointer(regs);
5084 
5085 	if (!addr || addr >= TASK_SIZE)
5086 		return 0;
5087 
5088 	return TASK_SIZE - addr;
5089 }
5090 
5091 static u16
5092 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5093 			struct pt_regs *regs)
5094 {
5095 	u64 task_size;
5096 
5097 	/* No regs, no stack pointer, no dump. */
5098 	if (!regs)
5099 		return 0;
5100 
5101 	/*
5102 	 * Check if we fit in with the requested stack size into the:
5103 	 * - TASK_SIZE
5104 	 *   If we don't, we limit the size to the TASK_SIZE.
5105 	 *
5106 	 * - remaining sample size
5107 	 *   If we don't, we customize the stack size to
5108 	 *   fit in to the remaining sample size.
5109 	 */
5110 
5111 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5112 	stack_size = min(stack_size, (u16) task_size);
5113 
5114 	/* Current header size plus static size and dynamic size. */
5115 	header_size += 2 * sizeof(u64);
5116 
5117 	/* Do we fit in with the current stack dump size? */
5118 	if ((u16) (header_size + stack_size) < header_size) {
5119 		/*
5120 		 * If we overflow the maximum size for the sample,
5121 		 * we customize the stack dump size to fit in.
5122 		 */
5123 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5124 		stack_size = round_up(stack_size, sizeof(u64));
5125 	}
5126 
5127 	return stack_size;
5128 }
5129 
5130 static void
5131 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5132 			  struct pt_regs *regs)
5133 {
5134 	/* Case of a kernel thread, nothing to dump */
5135 	if (!regs) {
5136 		u64 size = 0;
5137 		perf_output_put(handle, size);
5138 	} else {
5139 		unsigned long sp;
5140 		unsigned int rem;
5141 		u64 dyn_size;
5142 
5143 		/*
5144 		 * We dump:
5145 		 * static size
5146 		 *   - the size requested by user or the best one we can fit
5147 		 *     in to the sample max size
5148 		 * data
5149 		 *   - user stack dump data
5150 		 * dynamic size
5151 		 *   - the actual dumped size
5152 		 */
5153 
5154 		/* Static size. */
5155 		perf_output_put(handle, dump_size);
5156 
5157 		/* Data. */
5158 		sp = perf_user_stack_pointer(regs);
5159 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5160 		dyn_size = dump_size - rem;
5161 
5162 		perf_output_skip(handle, rem);
5163 
5164 		/* Dynamic size. */
5165 		perf_output_put(handle, dyn_size);
5166 	}
5167 }
5168 
5169 static void __perf_event_header__init_id(struct perf_event_header *header,
5170 					 struct perf_sample_data *data,
5171 					 struct perf_event *event)
5172 {
5173 	u64 sample_type = event->attr.sample_type;
5174 
5175 	data->type = sample_type;
5176 	header->size += event->id_header_size;
5177 
5178 	if (sample_type & PERF_SAMPLE_TID) {
5179 		/* namespace issues */
5180 		data->tid_entry.pid = perf_event_pid(event, current);
5181 		data->tid_entry.tid = perf_event_tid(event, current);
5182 	}
5183 
5184 	if (sample_type & PERF_SAMPLE_TIME)
5185 		data->time = perf_event_clock(event);
5186 
5187 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5188 		data->id = primary_event_id(event);
5189 
5190 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5191 		data->stream_id = event->id;
5192 
5193 	if (sample_type & PERF_SAMPLE_CPU) {
5194 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5195 		data->cpu_entry.reserved = 0;
5196 	}
5197 }
5198 
5199 void perf_event_header__init_id(struct perf_event_header *header,
5200 				struct perf_sample_data *data,
5201 				struct perf_event *event)
5202 {
5203 	if (event->attr.sample_id_all)
5204 		__perf_event_header__init_id(header, data, event);
5205 }
5206 
5207 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5208 					   struct perf_sample_data *data)
5209 {
5210 	u64 sample_type = data->type;
5211 
5212 	if (sample_type & PERF_SAMPLE_TID)
5213 		perf_output_put(handle, data->tid_entry);
5214 
5215 	if (sample_type & PERF_SAMPLE_TIME)
5216 		perf_output_put(handle, data->time);
5217 
5218 	if (sample_type & PERF_SAMPLE_ID)
5219 		perf_output_put(handle, data->id);
5220 
5221 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5222 		perf_output_put(handle, data->stream_id);
5223 
5224 	if (sample_type & PERF_SAMPLE_CPU)
5225 		perf_output_put(handle, data->cpu_entry);
5226 
5227 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5228 		perf_output_put(handle, data->id);
5229 }
5230 
5231 void perf_event__output_id_sample(struct perf_event *event,
5232 				  struct perf_output_handle *handle,
5233 				  struct perf_sample_data *sample)
5234 {
5235 	if (event->attr.sample_id_all)
5236 		__perf_event__output_id_sample(handle, sample);
5237 }
5238 
5239 static void perf_output_read_one(struct perf_output_handle *handle,
5240 				 struct perf_event *event,
5241 				 u64 enabled, u64 running)
5242 {
5243 	u64 read_format = event->attr.read_format;
5244 	u64 values[4];
5245 	int n = 0;
5246 
5247 	values[n++] = perf_event_count(event);
5248 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5249 		values[n++] = enabled +
5250 			atomic64_read(&event->child_total_time_enabled);
5251 	}
5252 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5253 		values[n++] = running +
5254 			atomic64_read(&event->child_total_time_running);
5255 	}
5256 	if (read_format & PERF_FORMAT_ID)
5257 		values[n++] = primary_event_id(event);
5258 
5259 	__output_copy(handle, values, n * sizeof(u64));
5260 }
5261 
5262 /*
5263  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5264  */
5265 static void perf_output_read_group(struct perf_output_handle *handle,
5266 			    struct perf_event *event,
5267 			    u64 enabled, u64 running)
5268 {
5269 	struct perf_event *leader = event->group_leader, *sub;
5270 	u64 read_format = event->attr.read_format;
5271 	u64 values[5];
5272 	int n = 0;
5273 
5274 	values[n++] = 1 + leader->nr_siblings;
5275 
5276 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5277 		values[n++] = enabled;
5278 
5279 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5280 		values[n++] = running;
5281 
5282 	if (leader != event)
5283 		leader->pmu->read(leader);
5284 
5285 	values[n++] = perf_event_count(leader);
5286 	if (read_format & PERF_FORMAT_ID)
5287 		values[n++] = primary_event_id(leader);
5288 
5289 	__output_copy(handle, values, n * sizeof(u64));
5290 
5291 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5292 		n = 0;
5293 
5294 		if ((sub != event) &&
5295 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5296 			sub->pmu->read(sub);
5297 
5298 		values[n++] = perf_event_count(sub);
5299 		if (read_format & PERF_FORMAT_ID)
5300 			values[n++] = primary_event_id(sub);
5301 
5302 		__output_copy(handle, values, n * sizeof(u64));
5303 	}
5304 }
5305 
5306 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5307 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5308 
5309 static void perf_output_read(struct perf_output_handle *handle,
5310 			     struct perf_event *event)
5311 {
5312 	u64 enabled = 0, running = 0, now;
5313 	u64 read_format = event->attr.read_format;
5314 
5315 	/*
5316 	 * compute total_time_enabled, total_time_running
5317 	 * based on snapshot values taken when the event
5318 	 * was last scheduled in.
5319 	 *
5320 	 * we cannot simply called update_context_time()
5321 	 * because of locking issue as we are called in
5322 	 * NMI context
5323 	 */
5324 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5325 		calc_timer_values(event, &now, &enabled, &running);
5326 
5327 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5328 		perf_output_read_group(handle, event, enabled, running);
5329 	else
5330 		perf_output_read_one(handle, event, enabled, running);
5331 }
5332 
5333 void perf_output_sample(struct perf_output_handle *handle,
5334 			struct perf_event_header *header,
5335 			struct perf_sample_data *data,
5336 			struct perf_event *event)
5337 {
5338 	u64 sample_type = data->type;
5339 
5340 	perf_output_put(handle, *header);
5341 
5342 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5343 		perf_output_put(handle, data->id);
5344 
5345 	if (sample_type & PERF_SAMPLE_IP)
5346 		perf_output_put(handle, data->ip);
5347 
5348 	if (sample_type & PERF_SAMPLE_TID)
5349 		perf_output_put(handle, data->tid_entry);
5350 
5351 	if (sample_type & PERF_SAMPLE_TIME)
5352 		perf_output_put(handle, data->time);
5353 
5354 	if (sample_type & PERF_SAMPLE_ADDR)
5355 		perf_output_put(handle, data->addr);
5356 
5357 	if (sample_type & PERF_SAMPLE_ID)
5358 		perf_output_put(handle, data->id);
5359 
5360 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5361 		perf_output_put(handle, data->stream_id);
5362 
5363 	if (sample_type & PERF_SAMPLE_CPU)
5364 		perf_output_put(handle, data->cpu_entry);
5365 
5366 	if (sample_type & PERF_SAMPLE_PERIOD)
5367 		perf_output_put(handle, data->period);
5368 
5369 	if (sample_type & PERF_SAMPLE_READ)
5370 		perf_output_read(handle, event);
5371 
5372 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5373 		if (data->callchain) {
5374 			int size = 1;
5375 
5376 			if (data->callchain)
5377 				size += data->callchain->nr;
5378 
5379 			size *= sizeof(u64);
5380 
5381 			__output_copy(handle, data->callchain, size);
5382 		} else {
5383 			u64 nr = 0;
5384 			perf_output_put(handle, nr);
5385 		}
5386 	}
5387 
5388 	if (sample_type & PERF_SAMPLE_RAW) {
5389 		if (data->raw) {
5390 			u32 raw_size = data->raw->size;
5391 			u32 real_size = round_up(raw_size + sizeof(u32),
5392 						 sizeof(u64)) - sizeof(u32);
5393 			u64 zero = 0;
5394 
5395 			perf_output_put(handle, real_size);
5396 			__output_copy(handle, data->raw->data, raw_size);
5397 			if (real_size - raw_size)
5398 				__output_copy(handle, &zero, real_size - raw_size);
5399 		} else {
5400 			struct {
5401 				u32	size;
5402 				u32	data;
5403 			} raw = {
5404 				.size = sizeof(u32),
5405 				.data = 0,
5406 			};
5407 			perf_output_put(handle, raw);
5408 		}
5409 	}
5410 
5411 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5412 		if (data->br_stack) {
5413 			size_t size;
5414 
5415 			size = data->br_stack->nr
5416 			     * sizeof(struct perf_branch_entry);
5417 
5418 			perf_output_put(handle, data->br_stack->nr);
5419 			perf_output_copy(handle, data->br_stack->entries, size);
5420 		} else {
5421 			/*
5422 			 * we always store at least the value of nr
5423 			 */
5424 			u64 nr = 0;
5425 			perf_output_put(handle, nr);
5426 		}
5427 	}
5428 
5429 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5430 		u64 abi = data->regs_user.abi;
5431 
5432 		/*
5433 		 * If there are no regs to dump, notice it through
5434 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5435 		 */
5436 		perf_output_put(handle, abi);
5437 
5438 		if (abi) {
5439 			u64 mask = event->attr.sample_regs_user;
5440 			perf_output_sample_regs(handle,
5441 						data->regs_user.regs,
5442 						mask);
5443 		}
5444 	}
5445 
5446 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5447 		perf_output_sample_ustack(handle,
5448 					  data->stack_user_size,
5449 					  data->regs_user.regs);
5450 	}
5451 
5452 	if (sample_type & PERF_SAMPLE_WEIGHT)
5453 		perf_output_put(handle, data->weight);
5454 
5455 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5456 		perf_output_put(handle, data->data_src.val);
5457 
5458 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5459 		perf_output_put(handle, data->txn);
5460 
5461 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5462 		u64 abi = data->regs_intr.abi;
5463 		/*
5464 		 * If there are no regs to dump, notice it through
5465 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5466 		 */
5467 		perf_output_put(handle, abi);
5468 
5469 		if (abi) {
5470 			u64 mask = event->attr.sample_regs_intr;
5471 
5472 			perf_output_sample_regs(handle,
5473 						data->regs_intr.regs,
5474 						mask);
5475 		}
5476 	}
5477 
5478 	if (!event->attr.watermark) {
5479 		int wakeup_events = event->attr.wakeup_events;
5480 
5481 		if (wakeup_events) {
5482 			struct ring_buffer *rb = handle->rb;
5483 			int events = local_inc_return(&rb->events);
5484 
5485 			if (events >= wakeup_events) {
5486 				local_sub(wakeup_events, &rb->events);
5487 				local_inc(&rb->wakeup);
5488 			}
5489 		}
5490 	}
5491 }
5492 
5493 void perf_prepare_sample(struct perf_event_header *header,
5494 			 struct perf_sample_data *data,
5495 			 struct perf_event *event,
5496 			 struct pt_regs *regs)
5497 {
5498 	u64 sample_type = event->attr.sample_type;
5499 
5500 	header->type = PERF_RECORD_SAMPLE;
5501 	header->size = sizeof(*header) + event->header_size;
5502 
5503 	header->misc = 0;
5504 	header->misc |= perf_misc_flags(regs);
5505 
5506 	__perf_event_header__init_id(header, data, event);
5507 
5508 	if (sample_type & PERF_SAMPLE_IP)
5509 		data->ip = perf_instruction_pointer(regs);
5510 
5511 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5512 		int size = 1;
5513 
5514 		data->callchain = perf_callchain(event, regs);
5515 
5516 		if (data->callchain)
5517 			size += data->callchain->nr;
5518 
5519 		header->size += size * sizeof(u64);
5520 	}
5521 
5522 	if (sample_type & PERF_SAMPLE_RAW) {
5523 		int size = sizeof(u32);
5524 
5525 		if (data->raw)
5526 			size += data->raw->size;
5527 		else
5528 			size += sizeof(u32);
5529 
5530 		header->size += round_up(size, sizeof(u64));
5531 	}
5532 
5533 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5534 		int size = sizeof(u64); /* nr */
5535 		if (data->br_stack) {
5536 			size += data->br_stack->nr
5537 			      * sizeof(struct perf_branch_entry);
5538 		}
5539 		header->size += size;
5540 	}
5541 
5542 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5543 		perf_sample_regs_user(&data->regs_user, regs,
5544 				      &data->regs_user_copy);
5545 
5546 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5547 		/* regs dump ABI info */
5548 		int size = sizeof(u64);
5549 
5550 		if (data->regs_user.regs) {
5551 			u64 mask = event->attr.sample_regs_user;
5552 			size += hweight64(mask) * sizeof(u64);
5553 		}
5554 
5555 		header->size += size;
5556 	}
5557 
5558 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5559 		/*
5560 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5561 		 * processed as the last one or have additional check added
5562 		 * in case new sample type is added, because we could eat
5563 		 * up the rest of the sample size.
5564 		 */
5565 		u16 stack_size = event->attr.sample_stack_user;
5566 		u16 size = sizeof(u64);
5567 
5568 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5569 						     data->regs_user.regs);
5570 
5571 		/*
5572 		 * If there is something to dump, add space for the dump
5573 		 * itself and for the field that tells the dynamic size,
5574 		 * which is how many have been actually dumped.
5575 		 */
5576 		if (stack_size)
5577 			size += sizeof(u64) + stack_size;
5578 
5579 		data->stack_user_size = stack_size;
5580 		header->size += size;
5581 	}
5582 
5583 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5584 		/* regs dump ABI info */
5585 		int size = sizeof(u64);
5586 
5587 		perf_sample_regs_intr(&data->regs_intr, regs);
5588 
5589 		if (data->regs_intr.regs) {
5590 			u64 mask = event->attr.sample_regs_intr;
5591 
5592 			size += hweight64(mask) * sizeof(u64);
5593 		}
5594 
5595 		header->size += size;
5596 	}
5597 }
5598 
5599 void perf_event_output(struct perf_event *event,
5600 			struct perf_sample_data *data,
5601 			struct pt_regs *regs)
5602 {
5603 	struct perf_output_handle handle;
5604 	struct perf_event_header header;
5605 
5606 	/* protect the callchain buffers */
5607 	rcu_read_lock();
5608 
5609 	perf_prepare_sample(&header, data, event, regs);
5610 
5611 	if (perf_output_begin(&handle, event, header.size))
5612 		goto exit;
5613 
5614 	perf_output_sample(&handle, &header, data, event);
5615 
5616 	perf_output_end(&handle);
5617 
5618 exit:
5619 	rcu_read_unlock();
5620 }
5621 
5622 /*
5623  * read event_id
5624  */
5625 
5626 struct perf_read_event {
5627 	struct perf_event_header	header;
5628 
5629 	u32				pid;
5630 	u32				tid;
5631 };
5632 
5633 static void
5634 perf_event_read_event(struct perf_event *event,
5635 			struct task_struct *task)
5636 {
5637 	struct perf_output_handle handle;
5638 	struct perf_sample_data sample;
5639 	struct perf_read_event read_event = {
5640 		.header = {
5641 			.type = PERF_RECORD_READ,
5642 			.misc = 0,
5643 			.size = sizeof(read_event) + event->read_size,
5644 		},
5645 		.pid = perf_event_pid(event, task),
5646 		.tid = perf_event_tid(event, task),
5647 	};
5648 	int ret;
5649 
5650 	perf_event_header__init_id(&read_event.header, &sample, event);
5651 	ret = perf_output_begin(&handle, event, read_event.header.size);
5652 	if (ret)
5653 		return;
5654 
5655 	perf_output_put(&handle, read_event);
5656 	perf_output_read(&handle, event);
5657 	perf_event__output_id_sample(event, &handle, &sample);
5658 
5659 	perf_output_end(&handle);
5660 }
5661 
5662 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5663 
5664 static void
5665 perf_event_aux_ctx(struct perf_event_context *ctx,
5666 		   perf_event_aux_output_cb output,
5667 		   void *data)
5668 {
5669 	struct perf_event *event;
5670 
5671 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5672 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5673 			continue;
5674 		if (!event_filter_match(event))
5675 			continue;
5676 		output(event, data);
5677 	}
5678 }
5679 
5680 static void
5681 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5682 			struct perf_event_context *task_ctx)
5683 {
5684 	rcu_read_lock();
5685 	preempt_disable();
5686 	perf_event_aux_ctx(task_ctx, output, data);
5687 	preempt_enable();
5688 	rcu_read_unlock();
5689 }
5690 
5691 static void
5692 perf_event_aux(perf_event_aux_output_cb output, void *data,
5693 	       struct perf_event_context *task_ctx)
5694 {
5695 	struct perf_cpu_context *cpuctx;
5696 	struct perf_event_context *ctx;
5697 	struct pmu *pmu;
5698 	int ctxn;
5699 
5700 	/*
5701 	 * If we have task_ctx != NULL we only notify
5702 	 * the task context itself. The task_ctx is set
5703 	 * only for EXIT events before releasing task
5704 	 * context.
5705 	 */
5706 	if (task_ctx) {
5707 		perf_event_aux_task_ctx(output, data, task_ctx);
5708 		return;
5709 	}
5710 
5711 	rcu_read_lock();
5712 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5713 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5714 		if (cpuctx->unique_pmu != pmu)
5715 			goto next;
5716 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5717 		ctxn = pmu->task_ctx_nr;
5718 		if (ctxn < 0)
5719 			goto next;
5720 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5721 		if (ctx)
5722 			perf_event_aux_ctx(ctx, output, data);
5723 next:
5724 		put_cpu_ptr(pmu->pmu_cpu_context);
5725 	}
5726 	rcu_read_unlock();
5727 }
5728 
5729 /*
5730  * task tracking -- fork/exit
5731  *
5732  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5733  */
5734 
5735 struct perf_task_event {
5736 	struct task_struct		*task;
5737 	struct perf_event_context	*task_ctx;
5738 
5739 	struct {
5740 		struct perf_event_header	header;
5741 
5742 		u32				pid;
5743 		u32				ppid;
5744 		u32				tid;
5745 		u32				ptid;
5746 		u64				time;
5747 	} event_id;
5748 };
5749 
5750 static int perf_event_task_match(struct perf_event *event)
5751 {
5752 	return event->attr.comm  || event->attr.mmap ||
5753 	       event->attr.mmap2 || event->attr.mmap_data ||
5754 	       event->attr.task;
5755 }
5756 
5757 static void perf_event_task_output(struct perf_event *event,
5758 				   void *data)
5759 {
5760 	struct perf_task_event *task_event = data;
5761 	struct perf_output_handle handle;
5762 	struct perf_sample_data	sample;
5763 	struct task_struct *task = task_event->task;
5764 	int ret, size = task_event->event_id.header.size;
5765 
5766 	if (!perf_event_task_match(event))
5767 		return;
5768 
5769 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5770 
5771 	ret = perf_output_begin(&handle, event,
5772 				task_event->event_id.header.size);
5773 	if (ret)
5774 		goto out;
5775 
5776 	task_event->event_id.pid = perf_event_pid(event, task);
5777 	task_event->event_id.ppid = perf_event_pid(event, current);
5778 
5779 	task_event->event_id.tid = perf_event_tid(event, task);
5780 	task_event->event_id.ptid = perf_event_tid(event, current);
5781 
5782 	task_event->event_id.time = perf_event_clock(event);
5783 
5784 	perf_output_put(&handle, task_event->event_id);
5785 
5786 	perf_event__output_id_sample(event, &handle, &sample);
5787 
5788 	perf_output_end(&handle);
5789 out:
5790 	task_event->event_id.header.size = size;
5791 }
5792 
5793 static void perf_event_task(struct task_struct *task,
5794 			      struct perf_event_context *task_ctx,
5795 			      int new)
5796 {
5797 	struct perf_task_event task_event;
5798 
5799 	if (!atomic_read(&nr_comm_events) &&
5800 	    !atomic_read(&nr_mmap_events) &&
5801 	    !atomic_read(&nr_task_events))
5802 		return;
5803 
5804 	task_event = (struct perf_task_event){
5805 		.task	  = task,
5806 		.task_ctx = task_ctx,
5807 		.event_id    = {
5808 			.header = {
5809 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5810 				.misc = 0,
5811 				.size = sizeof(task_event.event_id),
5812 			},
5813 			/* .pid  */
5814 			/* .ppid */
5815 			/* .tid  */
5816 			/* .ptid */
5817 			/* .time */
5818 		},
5819 	};
5820 
5821 	perf_event_aux(perf_event_task_output,
5822 		       &task_event,
5823 		       task_ctx);
5824 }
5825 
5826 void perf_event_fork(struct task_struct *task)
5827 {
5828 	perf_event_task(task, NULL, 1);
5829 }
5830 
5831 /*
5832  * comm tracking
5833  */
5834 
5835 struct perf_comm_event {
5836 	struct task_struct	*task;
5837 	char			*comm;
5838 	int			comm_size;
5839 
5840 	struct {
5841 		struct perf_event_header	header;
5842 
5843 		u32				pid;
5844 		u32				tid;
5845 	} event_id;
5846 };
5847 
5848 static int perf_event_comm_match(struct perf_event *event)
5849 {
5850 	return event->attr.comm;
5851 }
5852 
5853 static void perf_event_comm_output(struct perf_event *event,
5854 				   void *data)
5855 {
5856 	struct perf_comm_event *comm_event = data;
5857 	struct perf_output_handle handle;
5858 	struct perf_sample_data sample;
5859 	int size = comm_event->event_id.header.size;
5860 	int ret;
5861 
5862 	if (!perf_event_comm_match(event))
5863 		return;
5864 
5865 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5866 	ret = perf_output_begin(&handle, event,
5867 				comm_event->event_id.header.size);
5868 
5869 	if (ret)
5870 		goto out;
5871 
5872 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5873 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5874 
5875 	perf_output_put(&handle, comm_event->event_id);
5876 	__output_copy(&handle, comm_event->comm,
5877 				   comm_event->comm_size);
5878 
5879 	perf_event__output_id_sample(event, &handle, &sample);
5880 
5881 	perf_output_end(&handle);
5882 out:
5883 	comm_event->event_id.header.size = size;
5884 }
5885 
5886 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5887 {
5888 	char comm[TASK_COMM_LEN];
5889 	unsigned int size;
5890 
5891 	memset(comm, 0, sizeof(comm));
5892 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5893 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5894 
5895 	comm_event->comm = comm;
5896 	comm_event->comm_size = size;
5897 
5898 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5899 
5900 	perf_event_aux(perf_event_comm_output,
5901 		       comm_event,
5902 		       NULL);
5903 }
5904 
5905 void perf_event_comm(struct task_struct *task, bool exec)
5906 {
5907 	struct perf_comm_event comm_event;
5908 
5909 	if (!atomic_read(&nr_comm_events))
5910 		return;
5911 
5912 	comm_event = (struct perf_comm_event){
5913 		.task	= task,
5914 		/* .comm      */
5915 		/* .comm_size */
5916 		.event_id  = {
5917 			.header = {
5918 				.type = PERF_RECORD_COMM,
5919 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5920 				/* .size */
5921 			},
5922 			/* .pid */
5923 			/* .tid */
5924 		},
5925 	};
5926 
5927 	perf_event_comm_event(&comm_event);
5928 }
5929 
5930 /*
5931  * mmap tracking
5932  */
5933 
5934 struct perf_mmap_event {
5935 	struct vm_area_struct	*vma;
5936 
5937 	const char		*file_name;
5938 	int			file_size;
5939 	int			maj, min;
5940 	u64			ino;
5941 	u64			ino_generation;
5942 	u32			prot, flags;
5943 
5944 	struct {
5945 		struct perf_event_header	header;
5946 
5947 		u32				pid;
5948 		u32				tid;
5949 		u64				start;
5950 		u64				len;
5951 		u64				pgoff;
5952 	} event_id;
5953 };
5954 
5955 static int perf_event_mmap_match(struct perf_event *event,
5956 				 void *data)
5957 {
5958 	struct perf_mmap_event *mmap_event = data;
5959 	struct vm_area_struct *vma = mmap_event->vma;
5960 	int executable = vma->vm_flags & VM_EXEC;
5961 
5962 	return (!executable && event->attr.mmap_data) ||
5963 	       (executable && (event->attr.mmap || event->attr.mmap2));
5964 }
5965 
5966 static void perf_event_mmap_output(struct perf_event *event,
5967 				   void *data)
5968 {
5969 	struct perf_mmap_event *mmap_event = data;
5970 	struct perf_output_handle handle;
5971 	struct perf_sample_data sample;
5972 	int size = mmap_event->event_id.header.size;
5973 	int ret;
5974 
5975 	if (!perf_event_mmap_match(event, data))
5976 		return;
5977 
5978 	if (event->attr.mmap2) {
5979 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5980 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5981 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5982 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5983 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5984 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5985 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5986 	}
5987 
5988 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5989 	ret = perf_output_begin(&handle, event,
5990 				mmap_event->event_id.header.size);
5991 	if (ret)
5992 		goto out;
5993 
5994 	mmap_event->event_id.pid = perf_event_pid(event, current);
5995 	mmap_event->event_id.tid = perf_event_tid(event, current);
5996 
5997 	perf_output_put(&handle, mmap_event->event_id);
5998 
5999 	if (event->attr.mmap2) {
6000 		perf_output_put(&handle, mmap_event->maj);
6001 		perf_output_put(&handle, mmap_event->min);
6002 		perf_output_put(&handle, mmap_event->ino);
6003 		perf_output_put(&handle, mmap_event->ino_generation);
6004 		perf_output_put(&handle, mmap_event->prot);
6005 		perf_output_put(&handle, mmap_event->flags);
6006 	}
6007 
6008 	__output_copy(&handle, mmap_event->file_name,
6009 				   mmap_event->file_size);
6010 
6011 	perf_event__output_id_sample(event, &handle, &sample);
6012 
6013 	perf_output_end(&handle);
6014 out:
6015 	mmap_event->event_id.header.size = size;
6016 }
6017 
6018 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6019 {
6020 	struct vm_area_struct *vma = mmap_event->vma;
6021 	struct file *file = vma->vm_file;
6022 	int maj = 0, min = 0;
6023 	u64 ino = 0, gen = 0;
6024 	u32 prot = 0, flags = 0;
6025 	unsigned int size;
6026 	char tmp[16];
6027 	char *buf = NULL;
6028 	char *name;
6029 
6030 	if (file) {
6031 		struct inode *inode;
6032 		dev_t dev;
6033 
6034 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6035 		if (!buf) {
6036 			name = "//enomem";
6037 			goto cpy_name;
6038 		}
6039 		/*
6040 		 * d_path() works from the end of the rb backwards, so we
6041 		 * need to add enough zero bytes after the string to handle
6042 		 * the 64bit alignment we do later.
6043 		 */
6044 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6045 		if (IS_ERR(name)) {
6046 			name = "//toolong";
6047 			goto cpy_name;
6048 		}
6049 		inode = file_inode(vma->vm_file);
6050 		dev = inode->i_sb->s_dev;
6051 		ino = inode->i_ino;
6052 		gen = inode->i_generation;
6053 		maj = MAJOR(dev);
6054 		min = MINOR(dev);
6055 
6056 		if (vma->vm_flags & VM_READ)
6057 			prot |= PROT_READ;
6058 		if (vma->vm_flags & VM_WRITE)
6059 			prot |= PROT_WRITE;
6060 		if (vma->vm_flags & VM_EXEC)
6061 			prot |= PROT_EXEC;
6062 
6063 		if (vma->vm_flags & VM_MAYSHARE)
6064 			flags = MAP_SHARED;
6065 		else
6066 			flags = MAP_PRIVATE;
6067 
6068 		if (vma->vm_flags & VM_DENYWRITE)
6069 			flags |= MAP_DENYWRITE;
6070 		if (vma->vm_flags & VM_MAYEXEC)
6071 			flags |= MAP_EXECUTABLE;
6072 		if (vma->vm_flags & VM_LOCKED)
6073 			flags |= MAP_LOCKED;
6074 		if (vma->vm_flags & VM_HUGETLB)
6075 			flags |= MAP_HUGETLB;
6076 
6077 		goto got_name;
6078 	} else {
6079 		if (vma->vm_ops && vma->vm_ops->name) {
6080 			name = (char *) vma->vm_ops->name(vma);
6081 			if (name)
6082 				goto cpy_name;
6083 		}
6084 
6085 		name = (char *)arch_vma_name(vma);
6086 		if (name)
6087 			goto cpy_name;
6088 
6089 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6090 				vma->vm_end >= vma->vm_mm->brk) {
6091 			name = "[heap]";
6092 			goto cpy_name;
6093 		}
6094 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6095 				vma->vm_end >= vma->vm_mm->start_stack) {
6096 			name = "[stack]";
6097 			goto cpy_name;
6098 		}
6099 
6100 		name = "//anon";
6101 		goto cpy_name;
6102 	}
6103 
6104 cpy_name:
6105 	strlcpy(tmp, name, sizeof(tmp));
6106 	name = tmp;
6107 got_name:
6108 	/*
6109 	 * Since our buffer works in 8 byte units we need to align our string
6110 	 * size to a multiple of 8. However, we must guarantee the tail end is
6111 	 * zero'd out to avoid leaking random bits to userspace.
6112 	 */
6113 	size = strlen(name)+1;
6114 	while (!IS_ALIGNED(size, sizeof(u64)))
6115 		name[size++] = '\0';
6116 
6117 	mmap_event->file_name = name;
6118 	mmap_event->file_size = size;
6119 	mmap_event->maj = maj;
6120 	mmap_event->min = min;
6121 	mmap_event->ino = ino;
6122 	mmap_event->ino_generation = gen;
6123 	mmap_event->prot = prot;
6124 	mmap_event->flags = flags;
6125 
6126 	if (!(vma->vm_flags & VM_EXEC))
6127 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6128 
6129 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6130 
6131 	perf_event_aux(perf_event_mmap_output,
6132 		       mmap_event,
6133 		       NULL);
6134 
6135 	kfree(buf);
6136 }
6137 
6138 void perf_event_mmap(struct vm_area_struct *vma)
6139 {
6140 	struct perf_mmap_event mmap_event;
6141 
6142 	if (!atomic_read(&nr_mmap_events))
6143 		return;
6144 
6145 	mmap_event = (struct perf_mmap_event){
6146 		.vma	= vma,
6147 		/* .file_name */
6148 		/* .file_size */
6149 		.event_id  = {
6150 			.header = {
6151 				.type = PERF_RECORD_MMAP,
6152 				.misc = PERF_RECORD_MISC_USER,
6153 				/* .size */
6154 			},
6155 			/* .pid */
6156 			/* .tid */
6157 			.start  = vma->vm_start,
6158 			.len    = vma->vm_end - vma->vm_start,
6159 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6160 		},
6161 		/* .maj (attr_mmap2 only) */
6162 		/* .min (attr_mmap2 only) */
6163 		/* .ino (attr_mmap2 only) */
6164 		/* .ino_generation (attr_mmap2 only) */
6165 		/* .prot (attr_mmap2 only) */
6166 		/* .flags (attr_mmap2 only) */
6167 	};
6168 
6169 	perf_event_mmap_event(&mmap_event);
6170 }
6171 
6172 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6173 			  unsigned long size, u64 flags)
6174 {
6175 	struct perf_output_handle handle;
6176 	struct perf_sample_data sample;
6177 	struct perf_aux_event {
6178 		struct perf_event_header	header;
6179 		u64				offset;
6180 		u64				size;
6181 		u64				flags;
6182 	} rec = {
6183 		.header = {
6184 			.type = PERF_RECORD_AUX,
6185 			.misc = 0,
6186 			.size = sizeof(rec),
6187 		},
6188 		.offset		= head,
6189 		.size		= size,
6190 		.flags		= flags,
6191 	};
6192 	int ret;
6193 
6194 	perf_event_header__init_id(&rec.header, &sample, event);
6195 	ret = perf_output_begin(&handle, event, rec.header.size);
6196 
6197 	if (ret)
6198 		return;
6199 
6200 	perf_output_put(&handle, rec);
6201 	perf_event__output_id_sample(event, &handle, &sample);
6202 
6203 	perf_output_end(&handle);
6204 }
6205 
6206 /*
6207  * Lost/dropped samples logging
6208  */
6209 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6210 {
6211 	struct perf_output_handle handle;
6212 	struct perf_sample_data sample;
6213 	int ret;
6214 
6215 	struct {
6216 		struct perf_event_header	header;
6217 		u64				lost;
6218 	} lost_samples_event = {
6219 		.header = {
6220 			.type = PERF_RECORD_LOST_SAMPLES,
6221 			.misc = 0,
6222 			.size = sizeof(lost_samples_event),
6223 		},
6224 		.lost		= lost,
6225 	};
6226 
6227 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6228 
6229 	ret = perf_output_begin(&handle, event,
6230 				lost_samples_event.header.size);
6231 	if (ret)
6232 		return;
6233 
6234 	perf_output_put(&handle, lost_samples_event);
6235 	perf_event__output_id_sample(event, &handle, &sample);
6236 	perf_output_end(&handle);
6237 }
6238 
6239 /*
6240  * context_switch tracking
6241  */
6242 
6243 struct perf_switch_event {
6244 	struct task_struct	*task;
6245 	struct task_struct	*next_prev;
6246 
6247 	struct {
6248 		struct perf_event_header	header;
6249 		u32				next_prev_pid;
6250 		u32				next_prev_tid;
6251 	} event_id;
6252 };
6253 
6254 static int perf_event_switch_match(struct perf_event *event)
6255 {
6256 	return event->attr.context_switch;
6257 }
6258 
6259 static void perf_event_switch_output(struct perf_event *event, void *data)
6260 {
6261 	struct perf_switch_event *se = data;
6262 	struct perf_output_handle handle;
6263 	struct perf_sample_data sample;
6264 	int ret;
6265 
6266 	if (!perf_event_switch_match(event))
6267 		return;
6268 
6269 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6270 	if (event->ctx->task) {
6271 		se->event_id.header.type = PERF_RECORD_SWITCH;
6272 		se->event_id.header.size = sizeof(se->event_id.header);
6273 	} else {
6274 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6275 		se->event_id.header.size = sizeof(se->event_id);
6276 		se->event_id.next_prev_pid =
6277 					perf_event_pid(event, se->next_prev);
6278 		se->event_id.next_prev_tid =
6279 					perf_event_tid(event, se->next_prev);
6280 	}
6281 
6282 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6283 
6284 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6285 	if (ret)
6286 		return;
6287 
6288 	if (event->ctx->task)
6289 		perf_output_put(&handle, se->event_id.header);
6290 	else
6291 		perf_output_put(&handle, se->event_id);
6292 
6293 	perf_event__output_id_sample(event, &handle, &sample);
6294 
6295 	perf_output_end(&handle);
6296 }
6297 
6298 static void perf_event_switch(struct task_struct *task,
6299 			      struct task_struct *next_prev, bool sched_in)
6300 {
6301 	struct perf_switch_event switch_event;
6302 
6303 	/* N.B. caller checks nr_switch_events != 0 */
6304 
6305 	switch_event = (struct perf_switch_event){
6306 		.task		= task,
6307 		.next_prev	= next_prev,
6308 		.event_id	= {
6309 			.header = {
6310 				/* .type */
6311 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6312 				/* .size */
6313 			},
6314 			/* .next_prev_pid */
6315 			/* .next_prev_tid */
6316 		},
6317 	};
6318 
6319 	perf_event_aux(perf_event_switch_output,
6320 		       &switch_event,
6321 		       NULL);
6322 }
6323 
6324 /*
6325  * IRQ throttle logging
6326  */
6327 
6328 static void perf_log_throttle(struct perf_event *event, int enable)
6329 {
6330 	struct perf_output_handle handle;
6331 	struct perf_sample_data sample;
6332 	int ret;
6333 
6334 	struct {
6335 		struct perf_event_header	header;
6336 		u64				time;
6337 		u64				id;
6338 		u64				stream_id;
6339 	} throttle_event = {
6340 		.header = {
6341 			.type = PERF_RECORD_THROTTLE,
6342 			.misc = 0,
6343 			.size = sizeof(throttle_event),
6344 		},
6345 		.time		= perf_event_clock(event),
6346 		.id		= primary_event_id(event),
6347 		.stream_id	= event->id,
6348 	};
6349 
6350 	if (enable)
6351 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6352 
6353 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6354 
6355 	ret = perf_output_begin(&handle, event,
6356 				throttle_event.header.size);
6357 	if (ret)
6358 		return;
6359 
6360 	perf_output_put(&handle, throttle_event);
6361 	perf_event__output_id_sample(event, &handle, &sample);
6362 	perf_output_end(&handle);
6363 }
6364 
6365 static void perf_log_itrace_start(struct perf_event *event)
6366 {
6367 	struct perf_output_handle handle;
6368 	struct perf_sample_data sample;
6369 	struct perf_aux_event {
6370 		struct perf_event_header        header;
6371 		u32				pid;
6372 		u32				tid;
6373 	} rec;
6374 	int ret;
6375 
6376 	if (event->parent)
6377 		event = event->parent;
6378 
6379 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6380 	    event->hw.itrace_started)
6381 		return;
6382 
6383 	rec.header.type	= PERF_RECORD_ITRACE_START;
6384 	rec.header.misc	= 0;
6385 	rec.header.size	= sizeof(rec);
6386 	rec.pid	= perf_event_pid(event, current);
6387 	rec.tid	= perf_event_tid(event, current);
6388 
6389 	perf_event_header__init_id(&rec.header, &sample, event);
6390 	ret = perf_output_begin(&handle, event, rec.header.size);
6391 
6392 	if (ret)
6393 		return;
6394 
6395 	perf_output_put(&handle, rec);
6396 	perf_event__output_id_sample(event, &handle, &sample);
6397 
6398 	perf_output_end(&handle);
6399 }
6400 
6401 /*
6402  * Generic event overflow handling, sampling.
6403  */
6404 
6405 static int __perf_event_overflow(struct perf_event *event,
6406 				   int throttle, struct perf_sample_data *data,
6407 				   struct pt_regs *regs)
6408 {
6409 	int events = atomic_read(&event->event_limit);
6410 	struct hw_perf_event *hwc = &event->hw;
6411 	u64 seq;
6412 	int ret = 0;
6413 
6414 	/*
6415 	 * Non-sampling counters might still use the PMI to fold short
6416 	 * hardware counters, ignore those.
6417 	 */
6418 	if (unlikely(!is_sampling_event(event)))
6419 		return 0;
6420 
6421 	seq = __this_cpu_read(perf_throttled_seq);
6422 	if (seq != hwc->interrupts_seq) {
6423 		hwc->interrupts_seq = seq;
6424 		hwc->interrupts = 1;
6425 	} else {
6426 		hwc->interrupts++;
6427 		if (unlikely(throttle
6428 			     && hwc->interrupts >= max_samples_per_tick)) {
6429 			__this_cpu_inc(perf_throttled_count);
6430 			hwc->interrupts = MAX_INTERRUPTS;
6431 			perf_log_throttle(event, 0);
6432 			tick_nohz_full_kick();
6433 			ret = 1;
6434 		}
6435 	}
6436 
6437 	if (event->attr.freq) {
6438 		u64 now = perf_clock();
6439 		s64 delta = now - hwc->freq_time_stamp;
6440 
6441 		hwc->freq_time_stamp = now;
6442 
6443 		if (delta > 0 && delta < 2*TICK_NSEC)
6444 			perf_adjust_period(event, delta, hwc->last_period, true);
6445 	}
6446 
6447 	/*
6448 	 * XXX event_limit might not quite work as expected on inherited
6449 	 * events
6450 	 */
6451 
6452 	event->pending_kill = POLL_IN;
6453 	if (events && atomic_dec_and_test(&event->event_limit)) {
6454 		ret = 1;
6455 		event->pending_kill = POLL_HUP;
6456 		event->pending_disable = 1;
6457 		irq_work_queue(&event->pending);
6458 	}
6459 
6460 	if (event->overflow_handler)
6461 		event->overflow_handler(event, data, regs);
6462 	else
6463 		perf_event_output(event, data, regs);
6464 
6465 	if (*perf_event_fasync(event) && event->pending_kill) {
6466 		event->pending_wakeup = 1;
6467 		irq_work_queue(&event->pending);
6468 	}
6469 
6470 	return ret;
6471 }
6472 
6473 int perf_event_overflow(struct perf_event *event,
6474 			  struct perf_sample_data *data,
6475 			  struct pt_regs *regs)
6476 {
6477 	return __perf_event_overflow(event, 1, data, regs);
6478 }
6479 
6480 /*
6481  * Generic software event infrastructure
6482  */
6483 
6484 struct swevent_htable {
6485 	struct swevent_hlist		*swevent_hlist;
6486 	struct mutex			hlist_mutex;
6487 	int				hlist_refcount;
6488 
6489 	/* Recursion avoidance in each contexts */
6490 	int				recursion[PERF_NR_CONTEXTS];
6491 };
6492 
6493 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6494 
6495 /*
6496  * We directly increment event->count and keep a second value in
6497  * event->hw.period_left to count intervals. This period event
6498  * is kept in the range [-sample_period, 0] so that we can use the
6499  * sign as trigger.
6500  */
6501 
6502 u64 perf_swevent_set_period(struct perf_event *event)
6503 {
6504 	struct hw_perf_event *hwc = &event->hw;
6505 	u64 period = hwc->last_period;
6506 	u64 nr, offset;
6507 	s64 old, val;
6508 
6509 	hwc->last_period = hwc->sample_period;
6510 
6511 again:
6512 	old = val = local64_read(&hwc->period_left);
6513 	if (val < 0)
6514 		return 0;
6515 
6516 	nr = div64_u64(period + val, period);
6517 	offset = nr * period;
6518 	val -= offset;
6519 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6520 		goto again;
6521 
6522 	return nr;
6523 }
6524 
6525 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6526 				    struct perf_sample_data *data,
6527 				    struct pt_regs *regs)
6528 {
6529 	struct hw_perf_event *hwc = &event->hw;
6530 	int throttle = 0;
6531 
6532 	if (!overflow)
6533 		overflow = perf_swevent_set_period(event);
6534 
6535 	if (hwc->interrupts == MAX_INTERRUPTS)
6536 		return;
6537 
6538 	for (; overflow; overflow--) {
6539 		if (__perf_event_overflow(event, throttle,
6540 					    data, regs)) {
6541 			/*
6542 			 * We inhibit the overflow from happening when
6543 			 * hwc->interrupts == MAX_INTERRUPTS.
6544 			 */
6545 			break;
6546 		}
6547 		throttle = 1;
6548 	}
6549 }
6550 
6551 static void perf_swevent_event(struct perf_event *event, u64 nr,
6552 			       struct perf_sample_data *data,
6553 			       struct pt_regs *regs)
6554 {
6555 	struct hw_perf_event *hwc = &event->hw;
6556 
6557 	local64_add(nr, &event->count);
6558 
6559 	if (!regs)
6560 		return;
6561 
6562 	if (!is_sampling_event(event))
6563 		return;
6564 
6565 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6566 		data->period = nr;
6567 		return perf_swevent_overflow(event, 1, data, regs);
6568 	} else
6569 		data->period = event->hw.last_period;
6570 
6571 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6572 		return perf_swevent_overflow(event, 1, data, regs);
6573 
6574 	if (local64_add_negative(nr, &hwc->period_left))
6575 		return;
6576 
6577 	perf_swevent_overflow(event, 0, data, regs);
6578 }
6579 
6580 static int perf_exclude_event(struct perf_event *event,
6581 			      struct pt_regs *regs)
6582 {
6583 	if (event->hw.state & PERF_HES_STOPPED)
6584 		return 1;
6585 
6586 	if (regs) {
6587 		if (event->attr.exclude_user && user_mode(regs))
6588 			return 1;
6589 
6590 		if (event->attr.exclude_kernel && !user_mode(regs))
6591 			return 1;
6592 	}
6593 
6594 	return 0;
6595 }
6596 
6597 static int perf_swevent_match(struct perf_event *event,
6598 				enum perf_type_id type,
6599 				u32 event_id,
6600 				struct perf_sample_data *data,
6601 				struct pt_regs *regs)
6602 {
6603 	if (event->attr.type != type)
6604 		return 0;
6605 
6606 	if (event->attr.config != event_id)
6607 		return 0;
6608 
6609 	if (perf_exclude_event(event, regs))
6610 		return 0;
6611 
6612 	return 1;
6613 }
6614 
6615 static inline u64 swevent_hash(u64 type, u32 event_id)
6616 {
6617 	u64 val = event_id | (type << 32);
6618 
6619 	return hash_64(val, SWEVENT_HLIST_BITS);
6620 }
6621 
6622 static inline struct hlist_head *
6623 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6624 {
6625 	u64 hash = swevent_hash(type, event_id);
6626 
6627 	return &hlist->heads[hash];
6628 }
6629 
6630 /* For the read side: events when they trigger */
6631 static inline struct hlist_head *
6632 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6633 {
6634 	struct swevent_hlist *hlist;
6635 
6636 	hlist = rcu_dereference(swhash->swevent_hlist);
6637 	if (!hlist)
6638 		return NULL;
6639 
6640 	return __find_swevent_head(hlist, type, event_id);
6641 }
6642 
6643 /* For the event head insertion and removal in the hlist */
6644 static inline struct hlist_head *
6645 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6646 {
6647 	struct swevent_hlist *hlist;
6648 	u32 event_id = event->attr.config;
6649 	u64 type = event->attr.type;
6650 
6651 	/*
6652 	 * Event scheduling is always serialized against hlist allocation
6653 	 * and release. Which makes the protected version suitable here.
6654 	 * The context lock guarantees that.
6655 	 */
6656 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6657 					  lockdep_is_held(&event->ctx->lock));
6658 	if (!hlist)
6659 		return NULL;
6660 
6661 	return __find_swevent_head(hlist, type, event_id);
6662 }
6663 
6664 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6665 				    u64 nr,
6666 				    struct perf_sample_data *data,
6667 				    struct pt_regs *regs)
6668 {
6669 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6670 	struct perf_event *event;
6671 	struct hlist_head *head;
6672 
6673 	rcu_read_lock();
6674 	head = find_swevent_head_rcu(swhash, type, event_id);
6675 	if (!head)
6676 		goto end;
6677 
6678 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6679 		if (perf_swevent_match(event, type, event_id, data, regs))
6680 			perf_swevent_event(event, nr, data, regs);
6681 	}
6682 end:
6683 	rcu_read_unlock();
6684 }
6685 
6686 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6687 
6688 int perf_swevent_get_recursion_context(void)
6689 {
6690 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6691 
6692 	return get_recursion_context(swhash->recursion);
6693 }
6694 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6695 
6696 inline void perf_swevent_put_recursion_context(int rctx)
6697 {
6698 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6699 
6700 	put_recursion_context(swhash->recursion, rctx);
6701 }
6702 
6703 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6704 {
6705 	struct perf_sample_data data;
6706 
6707 	if (WARN_ON_ONCE(!regs))
6708 		return;
6709 
6710 	perf_sample_data_init(&data, addr, 0);
6711 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6712 }
6713 
6714 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6715 {
6716 	int rctx;
6717 
6718 	preempt_disable_notrace();
6719 	rctx = perf_swevent_get_recursion_context();
6720 	if (unlikely(rctx < 0))
6721 		goto fail;
6722 
6723 	___perf_sw_event(event_id, nr, regs, addr);
6724 
6725 	perf_swevent_put_recursion_context(rctx);
6726 fail:
6727 	preempt_enable_notrace();
6728 }
6729 
6730 static void perf_swevent_read(struct perf_event *event)
6731 {
6732 }
6733 
6734 static int perf_swevent_add(struct perf_event *event, int flags)
6735 {
6736 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6737 	struct hw_perf_event *hwc = &event->hw;
6738 	struct hlist_head *head;
6739 
6740 	if (is_sampling_event(event)) {
6741 		hwc->last_period = hwc->sample_period;
6742 		perf_swevent_set_period(event);
6743 	}
6744 
6745 	hwc->state = !(flags & PERF_EF_START);
6746 
6747 	head = find_swevent_head(swhash, event);
6748 	if (WARN_ON_ONCE(!head))
6749 		return -EINVAL;
6750 
6751 	hlist_add_head_rcu(&event->hlist_entry, head);
6752 	perf_event_update_userpage(event);
6753 
6754 	return 0;
6755 }
6756 
6757 static void perf_swevent_del(struct perf_event *event, int flags)
6758 {
6759 	hlist_del_rcu(&event->hlist_entry);
6760 }
6761 
6762 static void perf_swevent_start(struct perf_event *event, int flags)
6763 {
6764 	event->hw.state = 0;
6765 }
6766 
6767 static void perf_swevent_stop(struct perf_event *event, int flags)
6768 {
6769 	event->hw.state = PERF_HES_STOPPED;
6770 }
6771 
6772 /* Deref the hlist from the update side */
6773 static inline struct swevent_hlist *
6774 swevent_hlist_deref(struct swevent_htable *swhash)
6775 {
6776 	return rcu_dereference_protected(swhash->swevent_hlist,
6777 					 lockdep_is_held(&swhash->hlist_mutex));
6778 }
6779 
6780 static void swevent_hlist_release(struct swevent_htable *swhash)
6781 {
6782 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6783 
6784 	if (!hlist)
6785 		return;
6786 
6787 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6788 	kfree_rcu(hlist, rcu_head);
6789 }
6790 
6791 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6792 {
6793 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6794 
6795 	mutex_lock(&swhash->hlist_mutex);
6796 
6797 	if (!--swhash->hlist_refcount)
6798 		swevent_hlist_release(swhash);
6799 
6800 	mutex_unlock(&swhash->hlist_mutex);
6801 }
6802 
6803 static void swevent_hlist_put(struct perf_event *event)
6804 {
6805 	int cpu;
6806 
6807 	for_each_possible_cpu(cpu)
6808 		swevent_hlist_put_cpu(event, cpu);
6809 }
6810 
6811 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6812 {
6813 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6814 	int err = 0;
6815 
6816 	mutex_lock(&swhash->hlist_mutex);
6817 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6818 		struct swevent_hlist *hlist;
6819 
6820 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6821 		if (!hlist) {
6822 			err = -ENOMEM;
6823 			goto exit;
6824 		}
6825 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6826 	}
6827 	swhash->hlist_refcount++;
6828 exit:
6829 	mutex_unlock(&swhash->hlist_mutex);
6830 
6831 	return err;
6832 }
6833 
6834 static int swevent_hlist_get(struct perf_event *event)
6835 {
6836 	int err;
6837 	int cpu, failed_cpu;
6838 
6839 	get_online_cpus();
6840 	for_each_possible_cpu(cpu) {
6841 		err = swevent_hlist_get_cpu(event, cpu);
6842 		if (err) {
6843 			failed_cpu = cpu;
6844 			goto fail;
6845 		}
6846 	}
6847 	put_online_cpus();
6848 
6849 	return 0;
6850 fail:
6851 	for_each_possible_cpu(cpu) {
6852 		if (cpu == failed_cpu)
6853 			break;
6854 		swevent_hlist_put_cpu(event, cpu);
6855 	}
6856 
6857 	put_online_cpus();
6858 	return err;
6859 }
6860 
6861 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6862 
6863 static void sw_perf_event_destroy(struct perf_event *event)
6864 {
6865 	u64 event_id = event->attr.config;
6866 
6867 	WARN_ON(event->parent);
6868 
6869 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6870 	swevent_hlist_put(event);
6871 }
6872 
6873 static int perf_swevent_init(struct perf_event *event)
6874 {
6875 	u64 event_id = event->attr.config;
6876 
6877 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6878 		return -ENOENT;
6879 
6880 	/*
6881 	 * no branch sampling for software events
6882 	 */
6883 	if (has_branch_stack(event))
6884 		return -EOPNOTSUPP;
6885 
6886 	switch (event_id) {
6887 	case PERF_COUNT_SW_CPU_CLOCK:
6888 	case PERF_COUNT_SW_TASK_CLOCK:
6889 		return -ENOENT;
6890 
6891 	default:
6892 		break;
6893 	}
6894 
6895 	if (event_id >= PERF_COUNT_SW_MAX)
6896 		return -ENOENT;
6897 
6898 	if (!event->parent) {
6899 		int err;
6900 
6901 		err = swevent_hlist_get(event);
6902 		if (err)
6903 			return err;
6904 
6905 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6906 		event->destroy = sw_perf_event_destroy;
6907 	}
6908 
6909 	return 0;
6910 }
6911 
6912 static struct pmu perf_swevent = {
6913 	.task_ctx_nr	= perf_sw_context,
6914 
6915 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6916 
6917 	.event_init	= perf_swevent_init,
6918 	.add		= perf_swevent_add,
6919 	.del		= perf_swevent_del,
6920 	.start		= perf_swevent_start,
6921 	.stop		= perf_swevent_stop,
6922 	.read		= perf_swevent_read,
6923 };
6924 
6925 #ifdef CONFIG_EVENT_TRACING
6926 
6927 static int perf_tp_filter_match(struct perf_event *event,
6928 				struct perf_sample_data *data)
6929 {
6930 	void *record = data->raw->data;
6931 
6932 	/* only top level events have filters set */
6933 	if (event->parent)
6934 		event = event->parent;
6935 
6936 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6937 		return 1;
6938 	return 0;
6939 }
6940 
6941 static int perf_tp_event_match(struct perf_event *event,
6942 				struct perf_sample_data *data,
6943 				struct pt_regs *regs)
6944 {
6945 	if (event->hw.state & PERF_HES_STOPPED)
6946 		return 0;
6947 	/*
6948 	 * All tracepoints are from kernel-space.
6949 	 */
6950 	if (event->attr.exclude_kernel)
6951 		return 0;
6952 
6953 	if (!perf_tp_filter_match(event, data))
6954 		return 0;
6955 
6956 	return 1;
6957 }
6958 
6959 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6960 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6961 		   struct task_struct *task)
6962 {
6963 	struct perf_sample_data data;
6964 	struct perf_event *event;
6965 
6966 	struct perf_raw_record raw = {
6967 		.size = entry_size,
6968 		.data = record,
6969 	};
6970 
6971 	perf_sample_data_init(&data, addr, 0);
6972 	data.raw = &raw;
6973 
6974 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6975 		if (perf_tp_event_match(event, &data, regs))
6976 			perf_swevent_event(event, count, &data, regs);
6977 	}
6978 
6979 	/*
6980 	 * If we got specified a target task, also iterate its context and
6981 	 * deliver this event there too.
6982 	 */
6983 	if (task && task != current) {
6984 		struct perf_event_context *ctx;
6985 		struct trace_entry *entry = record;
6986 
6987 		rcu_read_lock();
6988 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6989 		if (!ctx)
6990 			goto unlock;
6991 
6992 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6993 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6994 				continue;
6995 			if (event->attr.config != entry->type)
6996 				continue;
6997 			if (perf_tp_event_match(event, &data, regs))
6998 				perf_swevent_event(event, count, &data, regs);
6999 		}
7000 unlock:
7001 		rcu_read_unlock();
7002 	}
7003 
7004 	perf_swevent_put_recursion_context(rctx);
7005 }
7006 EXPORT_SYMBOL_GPL(perf_tp_event);
7007 
7008 static void tp_perf_event_destroy(struct perf_event *event)
7009 {
7010 	perf_trace_destroy(event);
7011 }
7012 
7013 static int perf_tp_event_init(struct perf_event *event)
7014 {
7015 	int err;
7016 
7017 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7018 		return -ENOENT;
7019 
7020 	/*
7021 	 * no branch sampling for tracepoint events
7022 	 */
7023 	if (has_branch_stack(event))
7024 		return -EOPNOTSUPP;
7025 
7026 	err = perf_trace_init(event);
7027 	if (err)
7028 		return err;
7029 
7030 	event->destroy = tp_perf_event_destroy;
7031 
7032 	return 0;
7033 }
7034 
7035 static struct pmu perf_tracepoint = {
7036 	.task_ctx_nr	= perf_sw_context,
7037 
7038 	.event_init	= perf_tp_event_init,
7039 	.add		= perf_trace_add,
7040 	.del		= perf_trace_del,
7041 	.start		= perf_swevent_start,
7042 	.stop		= perf_swevent_stop,
7043 	.read		= perf_swevent_read,
7044 };
7045 
7046 static inline void perf_tp_register(void)
7047 {
7048 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7049 }
7050 
7051 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7052 {
7053 	char *filter_str;
7054 	int ret;
7055 
7056 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7057 		return -EINVAL;
7058 
7059 	filter_str = strndup_user(arg, PAGE_SIZE);
7060 	if (IS_ERR(filter_str))
7061 		return PTR_ERR(filter_str);
7062 
7063 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7064 
7065 	kfree(filter_str);
7066 	return ret;
7067 }
7068 
7069 static void perf_event_free_filter(struct perf_event *event)
7070 {
7071 	ftrace_profile_free_filter(event);
7072 }
7073 
7074 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7075 {
7076 	struct bpf_prog *prog;
7077 
7078 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7079 		return -EINVAL;
7080 
7081 	if (event->tp_event->prog)
7082 		return -EEXIST;
7083 
7084 	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7085 		/* bpf programs can only be attached to u/kprobes */
7086 		return -EINVAL;
7087 
7088 	prog = bpf_prog_get(prog_fd);
7089 	if (IS_ERR(prog))
7090 		return PTR_ERR(prog);
7091 
7092 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7093 		/* valid fd, but invalid bpf program type */
7094 		bpf_prog_put(prog);
7095 		return -EINVAL;
7096 	}
7097 
7098 	event->tp_event->prog = prog;
7099 
7100 	return 0;
7101 }
7102 
7103 static void perf_event_free_bpf_prog(struct perf_event *event)
7104 {
7105 	struct bpf_prog *prog;
7106 
7107 	if (!event->tp_event)
7108 		return;
7109 
7110 	prog = event->tp_event->prog;
7111 	if (prog) {
7112 		event->tp_event->prog = NULL;
7113 		bpf_prog_put(prog);
7114 	}
7115 }
7116 
7117 #else
7118 
7119 static inline void perf_tp_register(void)
7120 {
7121 }
7122 
7123 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7124 {
7125 	return -ENOENT;
7126 }
7127 
7128 static void perf_event_free_filter(struct perf_event *event)
7129 {
7130 }
7131 
7132 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7133 {
7134 	return -ENOENT;
7135 }
7136 
7137 static void perf_event_free_bpf_prog(struct perf_event *event)
7138 {
7139 }
7140 #endif /* CONFIG_EVENT_TRACING */
7141 
7142 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7143 void perf_bp_event(struct perf_event *bp, void *data)
7144 {
7145 	struct perf_sample_data sample;
7146 	struct pt_regs *regs = data;
7147 
7148 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7149 
7150 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7151 		perf_swevent_event(bp, 1, &sample, regs);
7152 }
7153 #endif
7154 
7155 /*
7156  * hrtimer based swevent callback
7157  */
7158 
7159 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7160 {
7161 	enum hrtimer_restart ret = HRTIMER_RESTART;
7162 	struct perf_sample_data data;
7163 	struct pt_regs *regs;
7164 	struct perf_event *event;
7165 	u64 period;
7166 
7167 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7168 
7169 	if (event->state != PERF_EVENT_STATE_ACTIVE)
7170 		return HRTIMER_NORESTART;
7171 
7172 	event->pmu->read(event);
7173 
7174 	perf_sample_data_init(&data, 0, event->hw.last_period);
7175 	regs = get_irq_regs();
7176 
7177 	if (regs && !perf_exclude_event(event, regs)) {
7178 		if (!(event->attr.exclude_idle && is_idle_task(current)))
7179 			if (__perf_event_overflow(event, 1, &data, regs))
7180 				ret = HRTIMER_NORESTART;
7181 	}
7182 
7183 	period = max_t(u64, 10000, event->hw.sample_period);
7184 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7185 
7186 	return ret;
7187 }
7188 
7189 static void perf_swevent_start_hrtimer(struct perf_event *event)
7190 {
7191 	struct hw_perf_event *hwc = &event->hw;
7192 	s64 period;
7193 
7194 	if (!is_sampling_event(event))
7195 		return;
7196 
7197 	period = local64_read(&hwc->period_left);
7198 	if (period) {
7199 		if (period < 0)
7200 			period = 10000;
7201 
7202 		local64_set(&hwc->period_left, 0);
7203 	} else {
7204 		period = max_t(u64, 10000, hwc->sample_period);
7205 	}
7206 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7207 		      HRTIMER_MODE_REL_PINNED);
7208 }
7209 
7210 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7211 {
7212 	struct hw_perf_event *hwc = &event->hw;
7213 
7214 	if (is_sampling_event(event)) {
7215 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7216 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7217 
7218 		hrtimer_cancel(&hwc->hrtimer);
7219 	}
7220 }
7221 
7222 static void perf_swevent_init_hrtimer(struct perf_event *event)
7223 {
7224 	struct hw_perf_event *hwc = &event->hw;
7225 
7226 	if (!is_sampling_event(event))
7227 		return;
7228 
7229 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7230 	hwc->hrtimer.function = perf_swevent_hrtimer;
7231 
7232 	/*
7233 	 * Since hrtimers have a fixed rate, we can do a static freq->period
7234 	 * mapping and avoid the whole period adjust feedback stuff.
7235 	 */
7236 	if (event->attr.freq) {
7237 		long freq = event->attr.sample_freq;
7238 
7239 		event->attr.sample_period = NSEC_PER_SEC / freq;
7240 		hwc->sample_period = event->attr.sample_period;
7241 		local64_set(&hwc->period_left, hwc->sample_period);
7242 		hwc->last_period = hwc->sample_period;
7243 		event->attr.freq = 0;
7244 	}
7245 }
7246 
7247 /*
7248  * Software event: cpu wall time clock
7249  */
7250 
7251 static void cpu_clock_event_update(struct perf_event *event)
7252 {
7253 	s64 prev;
7254 	u64 now;
7255 
7256 	now = local_clock();
7257 	prev = local64_xchg(&event->hw.prev_count, now);
7258 	local64_add(now - prev, &event->count);
7259 }
7260 
7261 static void cpu_clock_event_start(struct perf_event *event, int flags)
7262 {
7263 	local64_set(&event->hw.prev_count, local_clock());
7264 	perf_swevent_start_hrtimer(event);
7265 }
7266 
7267 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7268 {
7269 	perf_swevent_cancel_hrtimer(event);
7270 	cpu_clock_event_update(event);
7271 }
7272 
7273 static int cpu_clock_event_add(struct perf_event *event, int flags)
7274 {
7275 	if (flags & PERF_EF_START)
7276 		cpu_clock_event_start(event, flags);
7277 	perf_event_update_userpage(event);
7278 
7279 	return 0;
7280 }
7281 
7282 static void cpu_clock_event_del(struct perf_event *event, int flags)
7283 {
7284 	cpu_clock_event_stop(event, flags);
7285 }
7286 
7287 static void cpu_clock_event_read(struct perf_event *event)
7288 {
7289 	cpu_clock_event_update(event);
7290 }
7291 
7292 static int cpu_clock_event_init(struct perf_event *event)
7293 {
7294 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7295 		return -ENOENT;
7296 
7297 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7298 		return -ENOENT;
7299 
7300 	/*
7301 	 * no branch sampling for software events
7302 	 */
7303 	if (has_branch_stack(event))
7304 		return -EOPNOTSUPP;
7305 
7306 	perf_swevent_init_hrtimer(event);
7307 
7308 	return 0;
7309 }
7310 
7311 static struct pmu perf_cpu_clock = {
7312 	.task_ctx_nr	= perf_sw_context,
7313 
7314 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7315 
7316 	.event_init	= cpu_clock_event_init,
7317 	.add		= cpu_clock_event_add,
7318 	.del		= cpu_clock_event_del,
7319 	.start		= cpu_clock_event_start,
7320 	.stop		= cpu_clock_event_stop,
7321 	.read		= cpu_clock_event_read,
7322 };
7323 
7324 /*
7325  * Software event: task time clock
7326  */
7327 
7328 static void task_clock_event_update(struct perf_event *event, u64 now)
7329 {
7330 	u64 prev;
7331 	s64 delta;
7332 
7333 	prev = local64_xchg(&event->hw.prev_count, now);
7334 	delta = now - prev;
7335 	local64_add(delta, &event->count);
7336 }
7337 
7338 static void task_clock_event_start(struct perf_event *event, int flags)
7339 {
7340 	local64_set(&event->hw.prev_count, event->ctx->time);
7341 	perf_swevent_start_hrtimer(event);
7342 }
7343 
7344 static void task_clock_event_stop(struct perf_event *event, int flags)
7345 {
7346 	perf_swevent_cancel_hrtimer(event);
7347 	task_clock_event_update(event, event->ctx->time);
7348 }
7349 
7350 static int task_clock_event_add(struct perf_event *event, int flags)
7351 {
7352 	if (flags & PERF_EF_START)
7353 		task_clock_event_start(event, flags);
7354 	perf_event_update_userpage(event);
7355 
7356 	return 0;
7357 }
7358 
7359 static void task_clock_event_del(struct perf_event *event, int flags)
7360 {
7361 	task_clock_event_stop(event, PERF_EF_UPDATE);
7362 }
7363 
7364 static void task_clock_event_read(struct perf_event *event)
7365 {
7366 	u64 now = perf_clock();
7367 	u64 delta = now - event->ctx->timestamp;
7368 	u64 time = event->ctx->time + delta;
7369 
7370 	task_clock_event_update(event, time);
7371 }
7372 
7373 static int task_clock_event_init(struct perf_event *event)
7374 {
7375 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7376 		return -ENOENT;
7377 
7378 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7379 		return -ENOENT;
7380 
7381 	/*
7382 	 * no branch sampling for software events
7383 	 */
7384 	if (has_branch_stack(event))
7385 		return -EOPNOTSUPP;
7386 
7387 	perf_swevent_init_hrtimer(event);
7388 
7389 	return 0;
7390 }
7391 
7392 static struct pmu perf_task_clock = {
7393 	.task_ctx_nr	= perf_sw_context,
7394 
7395 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7396 
7397 	.event_init	= task_clock_event_init,
7398 	.add		= task_clock_event_add,
7399 	.del		= task_clock_event_del,
7400 	.start		= task_clock_event_start,
7401 	.stop		= task_clock_event_stop,
7402 	.read		= task_clock_event_read,
7403 };
7404 
7405 static void perf_pmu_nop_void(struct pmu *pmu)
7406 {
7407 }
7408 
7409 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7410 {
7411 }
7412 
7413 static int perf_pmu_nop_int(struct pmu *pmu)
7414 {
7415 	return 0;
7416 }
7417 
7418 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7419 
7420 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7421 {
7422 	__this_cpu_write(nop_txn_flags, flags);
7423 
7424 	if (flags & ~PERF_PMU_TXN_ADD)
7425 		return;
7426 
7427 	perf_pmu_disable(pmu);
7428 }
7429 
7430 static int perf_pmu_commit_txn(struct pmu *pmu)
7431 {
7432 	unsigned int flags = __this_cpu_read(nop_txn_flags);
7433 
7434 	__this_cpu_write(nop_txn_flags, 0);
7435 
7436 	if (flags & ~PERF_PMU_TXN_ADD)
7437 		return 0;
7438 
7439 	perf_pmu_enable(pmu);
7440 	return 0;
7441 }
7442 
7443 static void perf_pmu_cancel_txn(struct pmu *pmu)
7444 {
7445 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
7446 
7447 	__this_cpu_write(nop_txn_flags, 0);
7448 
7449 	if (flags & ~PERF_PMU_TXN_ADD)
7450 		return;
7451 
7452 	perf_pmu_enable(pmu);
7453 }
7454 
7455 static int perf_event_idx_default(struct perf_event *event)
7456 {
7457 	return 0;
7458 }
7459 
7460 /*
7461  * Ensures all contexts with the same task_ctx_nr have the same
7462  * pmu_cpu_context too.
7463  */
7464 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7465 {
7466 	struct pmu *pmu;
7467 
7468 	if (ctxn < 0)
7469 		return NULL;
7470 
7471 	list_for_each_entry(pmu, &pmus, entry) {
7472 		if (pmu->task_ctx_nr == ctxn)
7473 			return pmu->pmu_cpu_context;
7474 	}
7475 
7476 	return NULL;
7477 }
7478 
7479 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7480 {
7481 	int cpu;
7482 
7483 	for_each_possible_cpu(cpu) {
7484 		struct perf_cpu_context *cpuctx;
7485 
7486 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7487 
7488 		if (cpuctx->unique_pmu == old_pmu)
7489 			cpuctx->unique_pmu = pmu;
7490 	}
7491 }
7492 
7493 static void free_pmu_context(struct pmu *pmu)
7494 {
7495 	struct pmu *i;
7496 
7497 	mutex_lock(&pmus_lock);
7498 	/*
7499 	 * Like a real lame refcount.
7500 	 */
7501 	list_for_each_entry(i, &pmus, entry) {
7502 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7503 			update_pmu_context(i, pmu);
7504 			goto out;
7505 		}
7506 	}
7507 
7508 	free_percpu(pmu->pmu_cpu_context);
7509 out:
7510 	mutex_unlock(&pmus_lock);
7511 }
7512 static struct idr pmu_idr;
7513 
7514 static ssize_t
7515 type_show(struct device *dev, struct device_attribute *attr, char *page)
7516 {
7517 	struct pmu *pmu = dev_get_drvdata(dev);
7518 
7519 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7520 }
7521 static DEVICE_ATTR_RO(type);
7522 
7523 static ssize_t
7524 perf_event_mux_interval_ms_show(struct device *dev,
7525 				struct device_attribute *attr,
7526 				char *page)
7527 {
7528 	struct pmu *pmu = dev_get_drvdata(dev);
7529 
7530 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7531 }
7532 
7533 static DEFINE_MUTEX(mux_interval_mutex);
7534 
7535 static ssize_t
7536 perf_event_mux_interval_ms_store(struct device *dev,
7537 				 struct device_attribute *attr,
7538 				 const char *buf, size_t count)
7539 {
7540 	struct pmu *pmu = dev_get_drvdata(dev);
7541 	int timer, cpu, ret;
7542 
7543 	ret = kstrtoint(buf, 0, &timer);
7544 	if (ret)
7545 		return ret;
7546 
7547 	if (timer < 1)
7548 		return -EINVAL;
7549 
7550 	/* same value, noting to do */
7551 	if (timer == pmu->hrtimer_interval_ms)
7552 		return count;
7553 
7554 	mutex_lock(&mux_interval_mutex);
7555 	pmu->hrtimer_interval_ms = timer;
7556 
7557 	/* update all cpuctx for this PMU */
7558 	get_online_cpus();
7559 	for_each_online_cpu(cpu) {
7560 		struct perf_cpu_context *cpuctx;
7561 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7562 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7563 
7564 		cpu_function_call(cpu,
7565 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7566 	}
7567 	put_online_cpus();
7568 	mutex_unlock(&mux_interval_mutex);
7569 
7570 	return count;
7571 }
7572 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7573 
7574 static struct attribute *pmu_dev_attrs[] = {
7575 	&dev_attr_type.attr,
7576 	&dev_attr_perf_event_mux_interval_ms.attr,
7577 	NULL,
7578 };
7579 ATTRIBUTE_GROUPS(pmu_dev);
7580 
7581 static int pmu_bus_running;
7582 static struct bus_type pmu_bus = {
7583 	.name		= "event_source",
7584 	.dev_groups	= pmu_dev_groups,
7585 };
7586 
7587 static void pmu_dev_release(struct device *dev)
7588 {
7589 	kfree(dev);
7590 }
7591 
7592 static int pmu_dev_alloc(struct pmu *pmu)
7593 {
7594 	int ret = -ENOMEM;
7595 
7596 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7597 	if (!pmu->dev)
7598 		goto out;
7599 
7600 	pmu->dev->groups = pmu->attr_groups;
7601 	device_initialize(pmu->dev);
7602 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7603 	if (ret)
7604 		goto free_dev;
7605 
7606 	dev_set_drvdata(pmu->dev, pmu);
7607 	pmu->dev->bus = &pmu_bus;
7608 	pmu->dev->release = pmu_dev_release;
7609 	ret = device_add(pmu->dev);
7610 	if (ret)
7611 		goto free_dev;
7612 
7613 out:
7614 	return ret;
7615 
7616 free_dev:
7617 	put_device(pmu->dev);
7618 	goto out;
7619 }
7620 
7621 static struct lock_class_key cpuctx_mutex;
7622 static struct lock_class_key cpuctx_lock;
7623 
7624 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7625 {
7626 	int cpu, ret;
7627 
7628 	mutex_lock(&pmus_lock);
7629 	ret = -ENOMEM;
7630 	pmu->pmu_disable_count = alloc_percpu(int);
7631 	if (!pmu->pmu_disable_count)
7632 		goto unlock;
7633 
7634 	pmu->type = -1;
7635 	if (!name)
7636 		goto skip_type;
7637 	pmu->name = name;
7638 
7639 	if (type < 0) {
7640 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7641 		if (type < 0) {
7642 			ret = type;
7643 			goto free_pdc;
7644 		}
7645 	}
7646 	pmu->type = type;
7647 
7648 	if (pmu_bus_running) {
7649 		ret = pmu_dev_alloc(pmu);
7650 		if (ret)
7651 			goto free_idr;
7652 	}
7653 
7654 skip_type:
7655 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7656 	if (pmu->pmu_cpu_context)
7657 		goto got_cpu_context;
7658 
7659 	ret = -ENOMEM;
7660 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7661 	if (!pmu->pmu_cpu_context)
7662 		goto free_dev;
7663 
7664 	for_each_possible_cpu(cpu) {
7665 		struct perf_cpu_context *cpuctx;
7666 
7667 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7668 		__perf_event_init_context(&cpuctx->ctx);
7669 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7670 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7671 		cpuctx->ctx.pmu = pmu;
7672 
7673 		__perf_mux_hrtimer_init(cpuctx, cpu);
7674 
7675 		cpuctx->unique_pmu = pmu;
7676 	}
7677 
7678 got_cpu_context:
7679 	if (!pmu->start_txn) {
7680 		if (pmu->pmu_enable) {
7681 			/*
7682 			 * If we have pmu_enable/pmu_disable calls, install
7683 			 * transaction stubs that use that to try and batch
7684 			 * hardware accesses.
7685 			 */
7686 			pmu->start_txn  = perf_pmu_start_txn;
7687 			pmu->commit_txn = perf_pmu_commit_txn;
7688 			pmu->cancel_txn = perf_pmu_cancel_txn;
7689 		} else {
7690 			pmu->start_txn  = perf_pmu_nop_txn;
7691 			pmu->commit_txn = perf_pmu_nop_int;
7692 			pmu->cancel_txn = perf_pmu_nop_void;
7693 		}
7694 	}
7695 
7696 	if (!pmu->pmu_enable) {
7697 		pmu->pmu_enable  = perf_pmu_nop_void;
7698 		pmu->pmu_disable = perf_pmu_nop_void;
7699 	}
7700 
7701 	if (!pmu->event_idx)
7702 		pmu->event_idx = perf_event_idx_default;
7703 
7704 	list_add_rcu(&pmu->entry, &pmus);
7705 	atomic_set(&pmu->exclusive_cnt, 0);
7706 	ret = 0;
7707 unlock:
7708 	mutex_unlock(&pmus_lock);
7709 
7710 	return ret;
7711 
7712 free_dev:
7713 	device_del(pmu->dev);
7714 	put_device(pmu->dev);
7715 
7716 free_idr:
7717 	if (pmu->type >= PERF_TYPE_MAX)
7718 		idr_remove(&pmu_idr, pmu->type);
7719 
7720 free_pdc:
7721 	free_percpu(pmu->pmu_disable_count);
7722 	goto unlock;
7723 }
7724 EXPORT_SYMBOL_GPL(perf_pmu_register);
7725 
7726 void perf_pmu_unregister(struct pmu *pmu)
7727 {
7728 	mutex_lock(&pmus_lock);
7729 	list_del_rcu(&pmu->entry);
7730 	mutex_unlock(&pmus_lock);
7731 
7732 	/*
7733 	 * We dereference the pmu list under both SRCU and regular RCU, so
7734 	 * synchronize against both of those.
7735 	 */
7736 	synchronize_srcu(&pmus_srcu);
7737 	synchronize_rcu();
7738 
7739 	free_percpu(pmu->pmu_disable_count);
7740 	if (pmu->type >= PERF_TYPE_MAX)
7741 		idr_remove(&pmu_idr, pmu->type);
7742 	device_del(pmu->dev);
7743 	put_device(pmu->dev);
7744 	free_pmu_context(pmu);
7745 }
7746 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7747 
7748 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7749 {
7750 	struct perf_event_context *ctx = NULL;
7751 	int ret;
7752 
7753 	if (!try_module_get(pmu->module))
7754 		return -ENODEV;
7755 
7756 	if (event->group_leader != event) {
7757 		/*
7758 		 * This ctx->mutex can nest when we're called through
7759 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7760 		 */
7761 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7762 						 SINGLE_DEPTH_NESTING);
7763 		BUG_ON(!ctx);
7764 	}
7765 
7766 	event->pmu = pmu;
7767 	ret = pmu->event_init(event);
7768 
7769 	if (ctx)
7770 		perf_event_ctx_unlock(event->group_leader, ctx);
7771 
7772 	if (ret)
7773 		module_put(pmu->module);
7774 
7775 	return ret;
7776 }
7777 
7778 static struct pmu *perf_init_event(struct perf_event *event)
7779 {
7780 	struct pmu *pmu = NULL;
7781 	int idx;
7782 	int ret;
7783 
7784 	idx = srcu_read_lock(&pmus_srcu);
7785 
7786 	rcu_read_lock();
7787 	pmu = idr_find(&pmu_idr, event->attr.type);
7788 	rcu_read_unlock();
7789 	if (pmu) {
7790 		ret = perf_try_init_event(pmu, event);
7791 		if (ret)
7792 			pmu = ERR_PTR(ret);
7793 		goto unlock;
7794 	}
7795 
7796 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7797 		ret = perf_try_init_event(pmu, event);
7798 		if (!ret)
7799 			goto unlock;
7800 
7801 		if (ret != -ENOENT) {
7802 			pmu = ERR_PTR(ret);
7803 			goto unlock;
7804 		}
7805 	}
7806 	pmu = ERR_PTR(-ENOENT);
7807 unlock:
7808 	srcu_read_unlock(&pmus_srcu, idx);
7809 
7810 	return pmu;
7811 }
7812 
7813 static void account_event_cpu(struct perf_event *event, int cpu)
7814 {
7815 	if (event->parent)
7816 		return;
7817 
7818 	if (is_cgroup_event(event))
7819 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7820 }
7821 
7822 static void account_event(struct perf_event *event)
7823 {
7824 	if (event->parent)
7825 		return;
7826 
7827 	if (event->attach_state & PERF_ATTACH_TASK)
7828 		static_key_slow_inc(&perf_sched_events.key);
7829 	if (event->attr.mmap || event->attr.mmap_data)
7830 		atomic_inc(&nr_mmap_events);
7831 	if (event->attr.comm)
7832 		atomic_inc(&nr_comm_events);
7833 	if (event->attr.task)
7834 		atomic_inc(&nr_task_events);
7835 	if (event->attr.freq) {
7836 		if (atomic_inc_return(&nr_freq_events) == 1)
7837 			tick_nohz_full_kick_all();
7838 	}
7839 	if (event->attr.context_switch) {
7840 		atomic_inc(&nr_switch_events);
7841 		static_key_slow_inc(&perf_sched_events.key);
7842 	}
7843 	if (has_branch_stack(event))
7844 		static_key_slow_inc(&perf_sched_events.key);
7845 	if (is_cgroup_event(event))
7846 		static_key_slow_inc(&perf_sched_events.key);
7847 
7848 	account_event_cpu(event, event->cpu);
7849 }
7850 
7851 /*
7852  * Allocate and initialize a event structure
7853  */
7854 static struct perf_event *
7855 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7856 		 struct task_struct *task,
7857 		 struct perf_event *group_leader,
7858 		 struct perf_event *parent_event,
7859 		 perf_overflow_handler_t overflow_handler,
7860 		 void *context, int cgroup_fd)
7861 {
7862 	struct pmu *pmu;
7863 	struct perf_event *event;
7864 	struct hw_perf_event *hwc;
7865 	long err = -EINVAL;
7866 
7867 	if ((unsigned)cpu >= nr_cpu_ids) {
7868 		if (!task || cpu != -1)
7869 			return ERR_PTR(-EINVAL);
7870 	}
7871 
7872 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7873 	if (!event)
7874 		return ERR_PTR(-ENOMEM);
7875 
7876 	/*
7877 	 * Single events are their own group leaders, with an
7878 	 * empty sibling list:
7879 	 */
7880 	if (!group_leader)
7881 		group_leader = event;
7882 
7883 	mutex_init(&event->child_mutex);
7884 	INIT_LIST_HEAD(&event->child_list);
7885 
7886 	INIT_LIST_HEAD(&event->group_entry);
7887 	INIT_LIST_HEAD(&event->event_entry);
7888 	INIT_LIST_HEAD(&event->sibling_list);
7889 	INIT_LIST_HEAD(&event->rb_entry);
7890 	INIT_LIST_HEAD(&event->active_entry);
7891 	INIT_HLIST_NODE(&event->hlist_entry);
7892 
7893 
7894 	init_waitqueue_head(&event->waitq);
7895 	init_irq_work(&event->pending, perf_pending_event);
7896 
7897 	mutex_init(&event->mmap_mutex);
7898 
7899 	atomic_long_set(&event->refcount, 1);
7900 	event->cpu		= cpu;
7901 	event->attr		= *attr;
7902 	event->group_leader	= group_leader;
7903 	event->pmu		= NULL;
7904 	event->oncpu		= -1;
7905 
7906 	event->parent		= parent_event;
7907 
7908 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7909 	event->id		= atomic64_inc_return(&perf_event_id);
7910 
7911 	event->state		= PERF_EVENT_STATE_INACTIVE;
7912 
7913 	if (task) {
7914 		event->attach_state = PERF_ATTACH_TASK;
7915 		/*
7916 		 * XXX pmu::event_init needs to know what task to account to
7917 		 * and we cannot use the ctx information because we need the
7918 		 * pmu before we get a ctx.
7919 		 */
7920 		event->hw.target = task;
7921 	}
7922 
7923 	event->clock = &local_clock;
7924 	if (parent_event)
7925 		event->clock = parent_event->clock;
7926 
7927 	if (!overflow_handler && parent_event) {
7928 		overflow_handler = parent_event->overflow_handler;
7929 		context = parent_event->overflow_handler_context;
7930 	}
7931 
7932 	event->overflow_handler	= overflow_handler;
7933 	event->overflow_handler_context = context;
7934 
7935 	perf_event__state_init(event);
7936 
7937 	pmu = NULL;
7938 
7939 	hwc = &event->hw;
7940 	hwc->sample_period = attr->sample_period;
7941 	if (attr->freq && attr->sample_freq)
7942 		hwc->sample_period = 1;
7943 	hwc->last_period = hwc->sample_period;
7944 
7945 	local64_set(&hwc->period_left, hwc->sample_period);
7946 
7947 	/*
7948 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7949 	 */
7950 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7951 		goto err_ns;
7952 
7953 	if (!has_branch_stack(event))
7954 		event->attr.branch_sample_type = 0;
7955 
7956 	if (cgroup_fd != -1) {
7957 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7958 		if (err)
7959 			goto err_ns;
7960 	}
7961 
7962 	pmu = perf_init_event(event);
7963 	if (!pmu)
7964 		goto err_ns;
7965 	else if (IS_ERR(pmu)) {
7966 		err = PTR_ERR(pmu);
7967 		goto err_ns;
7968 	}
7969 
7970 	err = exclusive_event_init(event);
7971 	if (err)
7972 		goto err_pmu;
7973 
7974 	if (!event->parent) {
7975 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7976 			err = get_callchain_buffers();
7977 			if (err)
7978 				goto err_per_task;
7979 		}
7980 	}
7981 
7982 	return event;
7983 
7984 err_per_task:
7985 	exclusive_event_destroy(event);
7986 
7987 err_pmu:
7988 	if (event->destroy)
7989 		event->destroy(event);
7990 	module_put(pmu->module);
7991 err_ns:
7992 	if (is_cgroup_event(event))
7993 		perf_detach_cgroup(event);
7994 	if (event->ns)
7995 		put_pid_ns(event->ns);
7996 	kfree(event);
7997 
7998 	return ERR_PTR(err);
7999 }
8000 
8001 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8002 			  struct perf_event_attr *attr)
8003 {
8004 	u32 size;
8005 	int ret;
8006 
8007 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8008 		return -EFAULT;
8009 
8010 	/*
8011 	 * zero the full structure, so that a short copy will be nice.
8012 	 */
8013 	memset(attr, 0, sizeof(*attr));
8014 
8015 	ret = get_user(size, &uattr->size);
8016 	if (ret)
8017 		return ret;
8018 
8019 	if (size > PAGE_SIZE)	/* silly large */
8020 		goto err_size;
8021 
8022 	if (!size)		/* abi compat */
8023 		size = PERF_ATTR_SIZE_VER0;
8024 
8025 	if (size < PERF_ATTR_SIZE_VER0)
8026 		goto err_size;
8027 
8028 	/*
8029 	 * If we're handed a bigger struct than we know of,
8030 	 * ensure all the unknown bits are 0 - i.e. new
8031 	 * user-space does not rely on any kernel feature
8032 	 * extensions we dont know about yet.
8033 	 */
8034 	if (size > sizeof(*attr)) {
8035 		unsigned char __user *addr;
8036 		unsigned char __user *end;
8037 		unsigned char val;
8038 
8039 		addr = (void __user *)uattr + sizeof(*attr);
8040 		end  = (void __user *)uattr + size;
8041 
8042 		for (; addr < end; addr++) {
8043 			ret = get_user(val, addr);
8044 			if (ret)
8045 				return ret;
8046 			if (val)
8047 				goto err_size;
8048 		}
8049 		size = sizeof(*attr);
8050 	}
8051 
8052 	ret = copy_from_user(attr, uattr, size);
8053 	if (ret)
8054 		return -EFAULT;
8055 
8056 	if (attr->__reserved_1)
8057 		return -EINVAL;
8058 
8059 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8060 		return -EINVAL;
8061 
8062 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8063 		return -EINVAL;
8064 
8065 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8066 		u64 mask = attr->branch_sample_type;
8067 
8068 		/* only using defined bits */
8069 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8070 			return -EINVAL;
8071 
8072 		/* at least one branch bit must be set */
8073 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8074 			return -EINVAL;
8075 
8076 		/* propagate priv level, when not set for branch */
8077 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8078 
8079 			/* exclude_kernel checked on syscall entry */
8080 			if (!attr->exclude_kernel)
8081 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
8082 
8083 			if (!attr->exclude_user)
8084 				mask |= PERF_SAMPLE_BRANCH_USER;
8085 
8086 			if (!attr->exclude_hv)
8087 				mask |= PERF_SAMPLE_BRANCH_HV;
8088 			/*
8089 			 * adjust user setting (for HW filter setup)
8090 			 */
8091 			attr->branch_sample_type = mask;
8092 		}
8093 		/* privileged levels capture (kernel, hv): check permissions */
8094 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8095 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8096 			return -EACCES;
8097 	}
8098 
8099 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8100 		ret = perf_reg_validate(attr->sample_regs_user);
8101 		if (ret)
8102 			return ret;
8103 	}
8104 
8105 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8106 		if (!arch_perf_have_user_stack_dump())
8107 			return -ENOSYS;
8108 
8109 		/*
8110 		 * We have __u32 type for the size, but so far
8111 		 * we can only use __u16 as maximum due to the
8112 		 * __u16 sample size limit.
8113 		 */
8114 		if (attr->sample_stack_user >= USHRT_MAX)
8115 			ret = -EINVAL;
8116 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8117 			ret = -EINVAL;
8118 	}
8119 
8120 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8121 		ret = perf_reg_validate(attr->sample_regs_intr);
8122 out:
8123 	return ret;
8124 
8125 err_size:
8126 	put_user(sizeof(*attr), &uattr->size);
8127 	ret = -E2BIG;
8128 	goto out;
8129 }
8130 
8131 static int
8132 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8133 {
8134 	struct ring_buffer *rb = NULL;
8135 	int ret = -EINVAL;
8136 
8137 	if (!output_event)
8138 		goto set;
8139 
8140 	/* don't allow circular references */
8141 	if (event == output_event)
8142 		goto out;
8143 
8144 	/*
8145 	 * Don't allow cross-cpu buffers
8146 	 */
8147 	if (output_event->cpu != event->cpu)
8148 		goto out;
8149 
8150 	/*
8151 	 * If its not a per-cpu rb, it must be the same task.
8152 	 */
8153 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8154 		goto out;
8155 
8156 	/*
8157 	 * Mixing clocks in the same buffer is trouble you don't need.
8158 	 */
8159 	if (output_event->clock != event->clock)
8160 		goto out;
8161 
8162 	/*
8163 	 * If both events generate aux data, they must be on the same PMU
8164 	 */
8165 	if (has_aux(event) && has_aux(output_event) &&
8166 	    event->pmu != output_event->pmu)
8167 		goto out;
8168 
8169 set:
8170 	mutex_lock(&event->mmap_mutex);
8171 	/* Can't redirect output if we've got an active mmap() */
8172 	if (atomic_read(&event->mmap_count))
8173 		goto unlock;
8174 
8175 	if (output_event) {
8176 		/* get the rb we want to redirect to */
8177 		rb = ring_buffer_get(output_event);
8178 		if (!rb)
8179 			goto unlock;
8180 	}
8181 
8182 	ring_buffer_attach(event, rb);
8183 
8184 	ret = 0;
8185 unlock:
8186 	mutex_unlock(&event->mmap_mutex);
8187 
8188 out:
8189 	return ret;
8190 }
8191 
8192 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8193 {
8194 	if (b < a)
8195 		swap(a, b);
8196 
8197 	mutex_lock(a);
8198 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8199 }
8200 
8201 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8202 {
8203 	bool nmi_safe = false;
8204 
8205 	switch (clk_id) {
8206 	case CLOCK_MONOTONIC:
8207 		event->clock = &ktime_get_mono_fast_ns;
8208 		nmi_safe = true;
8209 		break;
8210 
8211 	case CLOCK_MONOTONIC_RAW:
8212 		event->clock = &ktime_get_raw_fast_ns;
8213 		nmi_safe = true;
8214 		break;
8215 
8216 	case CLOCK_REALTIME:
8217 		event->clock = &ktime_get_real_ns;
8218 		break;
8219 
8220 	case CLOCK_BOOTTIME:
8221 		event->clock = &ktime_get_boot_ns;
8222 		break;
8223 
8224 	case CLOCK_TAI:
8225 		event->clock = &ktime_get_tai_ns;
8226 		break;
8227 
8228 	default:
8229 		return -EINVAL;
8230 	}
8231 
8232 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8233 		return -EINVAL;
8234 
8235 	return 0;
8236 }
8237 
8238 /**
8239  * sys_perf_event_open - open a performance event, associate it to a task/cpu
8240  *
8241  * @attr_uptr:	event_id type attributes for monitoring/sampling
8242  * @pid:		target pid
8243  * @cpu:		target cpu
8244  * @group_fd:		group leader event fd
8245  */
8246 SYSCALL_DEFINE5(perf_event_open,
8247 		struct perf_event_attr __user *, attr_uptr,
8248 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8249 {
8250 	struct perf_event *group_leader = NULL, *output_event = NULL;
8251 	struct perf_event *event, *sibling;
8252 	struct perf_event_attr attr;
8253 	struct perf_event_context *ctx, *uninitialized_var(gctx);
8254 	struct file *event_file = NULL;
8255 	struct fd group = {NULL, 0};
8256 	struct task_struct *task = NULL;
8257 	struct pmu *pmu;
8258 	int event_fd;
8259 	int move_group = 0;
8260 	int err;
8261 	int f_flags = O_RDWR;
8262 	int cgroup_fd = -1;
8263 
8264 	/* for future expandability... */
8265 	if (flags & ~PERF_FLAG_ALL)
8266 		return -EINVAL;
8267 
8268 	err = perf_copy_attr(attr_uptr, &attr);
8269 	if (err)
8270 		return err;
8271 
8272 	if (!attr.exclude_kernel) {
8273 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8274 			return -EACCES;
8275 	}
8276 
8277 	if (attr.freq) {
8278 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8279 			return -EINVAL;
8280 	} else {
8281 		if (attr.sample_period & (1ULL << 63))
8282 			return -EINVAL;
8283 	}
8284 
8285 	/*
8286 	 * In cgroup mode, the pid argument is used to pass the fd
8287 	 * opened to the cgroup directory in cgroupfs. The cpu argument
8288 	 * designates the cpu on which to monitor threads from that
8289 	 * cgroup.
8290 	 */
8291 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8292 		return -EINVAL;
8293 
8294 	if (flags & PERF_FLAG_FD_CLOEXEC)
8295 		f_flags |= O_CLOEXEC;
8296 
8297 	event_fd = get_unused_fd_flags(f_flags);
8298 	if (event_fd < 0)
8299 		return event_fd;
8300 
8301 	if (group_fd != -1) {
8302 		err = perf_fget_light(group_fd, &group);
8303 		if (err)
8304 			goto err_fd;
8305 		group_leader = group.file->private_data;
8306 		if (flags & PERF_FLAG_FD_OUTPUT)
8307 			output_event = group_leader;
8308 		if (flags & PERF_FLAG_FD_NO_GROUP)
8309 			group_leader = NULL;
8310 	}
8311 
8312 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8313 		task = find_lively_task_by_vpid(pid);
8314 		if (IS_ERR(task)) {
8315 			err = PTR_ERR(task);
8316 			goto err_group_fd;
8317 		}
8318 	}
8319 
8320 	if (task && group_leader &&
8321 	    group_leader->attr.inherit != attr.inherit) {
8322 		err = -EINVAL;
8323 		goto err_task;
8324 	}
8325 
8326 	get_online_cpus();
8327 
8328 	if (flags & PERF_FLAG_PID_CGROUP)
8329 		cgroup_fd = pid;
8330 
8331 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8332 				 NULL, NULL, cgroup_fd);
8333 	if (IS_ERR(event)) {
8334 		err = PTR_ERR(event);
8335 		goto err_cpus;
8336 	}
8337 
8338 	if (is_sampling_event(event)) {
8339 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8340 			err = -ENOTSUPP;
8341 			goto err_alloc;
8342 		}
8343 	}
8344 
8345 	account_event(event);
8346 
8347 	/*
8348 	 * Special case software events and allow them to be part of
8349 	 * any hardware group.
8350 	 */
8351 	pmu = event->pmu;
8352 
8353 	if (attr.use_clockid) {
8354 		err = perf_event_set_clock(event, attr.clockid);
8355 		if (err)
8356 			goto err_alloc;
8357 	}
8358 
8359 	if (group_leader &&
8360 	    (is_software_event(event) != is_software_event(group_leader))) {
8361 		if (is_software_event(event)) {
8362 			/*
8363 			 * If event and group_leader are not both a software
8364 			 * event, and event is, then group leader is not.
8365 			 *
8366 			 * Allow the addition of software events to !software
8367 			 * groups, this is safe because software events never
8368 			 * fail to schedule.
8369 			 */
8370 			pmu = group_leader->pmu;
8371 		} else if (is_software_event(group_leader) &&
8372 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8373 			/*
8374 			 * In case the group is a pure software group, and we
8375 			 * try to add a hardware event, move the whole group to
8376 			 * the hardware context.
8377 			 */
8378 			move_group = 1;
8379 		}
8380 	}
8381 
8382 	/*
8383 	 * Get the target context (task or percpu):
8384 	 */
8385 	ctx = find_get_context(pmu, task, event);
8386 	if (IS_ERR(ctx)) {
8387 		err = PTR_ERR(ctx);
8388 		goto err_alloc;
8389 	}
8390 
8391 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8392 		err = -EBUSY;
8393 		goto err_context;
8394 	}
8395 
8396 	if (task) {
8397 		put_task_struct(task);
8398 		task = NULL;
8399 	}
8400 
8401 	/*
8402 	 * Look up the group leader (we will attach this event to it):
8403 	 */
8404 	if (group_leader) {
8405 		err = -EINVAL;
8406 
8407 		/*
8408 		 * Do not allow a recursive hierarchy (this new sibling
8409 		 * becoming part of another group-sibling):
8410 		 */
8411 		if (group_leader->group_leader != group_leader)
8412 			goto err_context;
8413 
8414 		/* All events in a group should have the same clock */
8415 		if (group_leader->clock != event->clock)
8416 			goto err_context;
8417 
8418 		/*
8419 		 * Do not allow to attach to a group in a different
8420 		 * task or CPU context:
8421 		 */
8422 		if (move_group) {
8423 			/*
8424 			 * Make sure we're both on the same task, or both
8425 			 * per-cpu events.
8426 			 */
8427 			if (group_leader->ctx->task != ctx->task)
8428 				goto err_context;
8429 
8430 			/*
8431 			 * Make sure we're both events for the same CPU;
8432 			 * grouping events for different CPUs is broken; since
8433 			 * you can never concurrently schedule them anyhow.
8434 			 */
8435 			if (group_leader->cpu != event->cpu)
8436 				goto err_context;
8437 		} else {
8438 			if (group_leader->ctx != ctx)
8439 				goto err_context;
8440 		}
8441 
8442 		/*
8443 		 * Only a group leader can be exclusive or pinned
8444 		 */
8445 		if (attr.exclusive || attr.pinned)
8446 			goto err_context;
8447 	}
8448 
8449 	if (output_event) {
8450 		err = perf_event_set_output(event, output_event);
8451 		if (err)
8452 			goto err_context;
8453 	}
8454 
8455 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8456 					f_flags);
8457 	if (IS_ERR(event_file)) {
8458 		err = PTR_ERR(event_file);
8459 		goto err_context;
8460 	}
8461 
8462 	if (move_group) {
8463 		gctx = group_leader->ctx;
8464 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8465 	} else {
8466 		mutex_lock(&ctx->mutex);
8467 	}
8468 
8469 	if (!perf_event_validate_size(event)) {
8470 		err = -E2BIG;
8471 		goto err_locked;
8472 	}
8473 
8474 	/*
8475 	 * Must be under the same ctx::mutex as perf_install_in_context(),
8476 	 * because we need to serialize with concurrent event creation.
8477 	 */
8478 	if (!exclusive_event_installable(event, ctx)) {
8479 		/* exclusive and group stuff are assumed mutually exclusive */
8480 		WARN_ON_ONCE(move_group);
8481 
8482 		err = -EBUSY;
8483 		goto err_locked;
8484 	}
8485 
8486 	WARN_ON_ONCE(ctx->parent_ctx);
8487 
8488 	if (move_group) {
8489 		/*
8490 		 * See perf_event_ctx_lock() for comments on the details
8491 		 * of swizzling perf_event::ctx.
8492 		 */
8493 		perf_remove_from_context(group_leader, false);
8494 
8495 		list_for_each_entry(sibling, &group_leader->sibling_list,
8496 				    group_entry) {
8497 			perf_remove_from_context(sibling, false);
8498 			put_ctx(gctx);
8499 		}
8500 
8501 		/*
8502 		 * Wait for everybody to stop referencing the events through
8503 		 * the old lists, before installing it on new lists.
8504 		 */
8505 		synchronize_rcu();
8506 
8507 		/*
8508 		 * Install the group siblings before the group leader.
8509 		 *
8510 		 * Because a group leader will try and install the entire group
8511 		 * (through the sibling list, which is still in-tact), we can
8512 		 * end up with siblings installed in the wrong context.
8513 		 *
8514 		 * By installing siblings first we NO-OP because they're not
8515 		 * reachable through the group lists.
8516 		 */
8517 		list_for_each_entry(sibling, &group_leader->sibling_list,
8518 				    group_entry) {
8519 			perf_event__state_init(sibling);
8520 			perf_install_in_context(ctx, sibling, sibling->cpu);
8521 			get_ctx(ctx);
8522 		}
8523 
8524 		/*
8525 		 * Removing from the context ends up with disabled
8526 		 * event. What we want here is event in the initial
8527 		 * startup state, ready to be add into new context.
8528 		 */
8529 		perf_event__state_init(group_leader);
8530 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8531 		get_ctx(ctx);
8532 
8533 		/*
8534 		 * Now that all events are installed in @ctx, nothing
8535 		 * references @gctx anymore, so drop the last reference we have
8536 		 * on it.
8537 		 */
8538 		put_ctx(gctx);
8539 	}
8540 
8541 	/*
8542 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
8543 	 * that we're serialized against further additions and before
8544 	 * perf_install_in_context() which is the point the event is active and
8545 	 * can use these values.
8546 	 */
8547 	perf_event__header_size(event);
8548 	perf_event__id_header_size(event);
8549 
8550 	perf_install_in_context(ctx, event, event->cpu);
8551 	perf_unpin_context(ctx);
8552 
8553 	if (move_group)
8554 		mutex_unlock(&gctx->mutex);
8555 	mutex_unlock(&ctx->mutex);
8556 
8557 	put_online_cpus();
8558 
8559 	event->owner = current;
8560 
8561 	mutex_lock(&current->perf_event_mutex);
8562 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8563 	mutex_unlock(&current->perf_event_mutex);
8564 
8565 	/*
8566 	 * Drop the reference on the group_event after placing the
8567 	 * new event on the sibling_list. This ensures destruction
8568 	 * of the group leader will find the pointer to itself in
8569 	 * perf_group_detach().
8570 	 */
8571 	fdput(group);
8572 	fd_install(event_fd, event_file);
8573 	return event_fd;
8574 
8575 err_locked:
8576 	if (move_group)
8577 		mutex_unlock(&gctx->mutex);
8578 	mutex_unlock(&ctx->mutex);
8579 /* err_file: */
8580 	fput(event_file);
8581 err_context:
8582 	perf_unpin_context(ctx);
8583 	put_ctx(ctx);
8584 err_alloc:
8585 	free_event(event);
8586 err_cpus:
8587 	put_online_cpus();
8588 err_task:
8589 	if (task)
8590 		put_task_struct(task);
8591 err_group_fd:
8592 	fdput(group);
8593 err_fd:
8594 	put_unused_fd(event_fd);
8595 	return err;
8596 }
8597 
8598 /**
8599  * perf_event_create_kernel_counter
8600  *
8601  * @attr: attributes of the counter to create
8602  * @cpu: cpu in which the counter is bound
8603  * @task: task to profile (NULL for percpu)
8604  */
8605 struct perf_event *
8606 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8607 				 struct task_struct *task,
8608 				 perf_overflow_handler_t overflow_handler,
8609 				 void *context)
8610 {
8611 	struct perf_event_context *ctx;
8612 	struct perf_event *event;
8613 	int err;
8614 
8615 	/*
8616 	 * Get the target context (task or percpu):
8617 	 */
8618 
8619 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8620 				 overflow_handler, context, -1);
8621 	if (IS_ERR(event)) {
8622 		err = PTR_ERR(event);
8623 		goto err;
8624 	}
8625 
8626 	/* Mark owner so we could distinguish it from user events. */
8627 	event->owner = EVENT_OWNER_KERNEL;
8628 
8629 	account_event(event);
8630 
8631 	ctx = find_get_context(event->pmu, task, event);
8632 	if (IS_ERR(ctx)) {
8633 		err = PTR_ERR(ctx);
8634 		goto err_free;
8635 	}
8636 
8637 	WARN_ON_ONCE(ctx->parent_ctx);
8638 	mutex_lock(&ctx->mutex);
8639 	if (!exclusive_event_installable(event, ctx)) {
8640 		mutex_unlock(&ctx->mutex);
8641 		perf_unpin_context(ctx);
8642 		put_ctx(ctx);
8643 		err = -EBUSY;
8644 		goto err_free;
8645 	}
8646 
8647 	perf_install_in_context(ctx, event, cpu);
8648 	perf_unpin_context(ctx);
8649 	mutex_unlock(&ctx->mutex);
8650 
8651 	return event;
8652 
8653 err_free:
8654 	free_event(event);
8655 err:
8656 	return ERR_PTR(err);
8657 }
8658 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8659 
8660 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8661 {
8662 	struct perf_event_context *src_ctx;
8663 	struct perf_event_context *dst_ctx;
8664 	struct perf_event *event, *tmp;
8665 	LIST_HEAD(events);
8666 
8667 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8668 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8669 
8670 	/*
8671 	 * See perf_event_ctx_lock() for comments on the details
8672 	 * of swizzling perf_event::ctx.
8673 	 */
8674 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8675 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8676 				 event_entry) {
8677 		perf_remove_from_context(event, false);
8678 		unaccount_event_cpu(event, src_cpu);
8679 		put_ctx(src_ctx);
8680 		list_add(&event->migrate_entry, &events);
8681 	}
8682 
8683 	/*
8684 	 * Wait for the events to quiesce before re-instating them.
8685 	 */
8686 	synchronize_rcu();
8687 
8688 	/*
8689 	 * Re-instate events in 2 passes.
8690 	 *
8691 	 * Skip over group leaders and only install siblings on this first
8692 	 * pass, siblings will not get enabled without a leader, however a
8693 	 * leader will enable its siblings, even if those are still on the old
8694 	 * context.
8695 	 */
8696 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8697 		if (event->group_leader == event)
8698 			continue;
8699 
8700 		list_del(&event->migrate_entry);
8701 		if (event->state >= PERF_EVENT_STATE_OFF)
8702 			event->state = PERF_EVENT_STATE_INACTIVE;
8703 		account_event_cpu(event, dst_cpu);
8704 		perf_install_in_context(dst_ctx, event, dst_cpu);
8705 		get_ctx(dst_ctx);
8706 	}
8707 
8708 	/*
8709 	 * Once all the siblings are setup properly, install the group leaders
8710 	 * to make it go.
8711 	 */
8712 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8713 		list_del(&event->migrate_entry);
8714 		if (event->state >= PERF_EVENT_STATE_OFF)
8715 			event->state = PERF_EVENT_STATE_INACTIVE;
8716 		account_event_cpu(event, dst_cpu);
8717 		perf_install_in_context(dst_ctx, event, dst_cpu);
8718 		get_ctx(dst_ctx);
8719 	}
8720 	mutex_unlock(&dst_ctx->mutex);
8721 	mutex_unlock(&src_ctx->mutex);
8722 }
8723 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8724 
8725 static void sync_child_event(struct perf_event *child_event,
8726 			       struct task_struct *child)
8727 {
8728 	struct perf_event *parent_event = child_event->parent;
8729 	u64 child_val;
8730 
8731 	if (child_event->attr.inherit_stat)
8732 		perf_event_read_event(child_event, child);
8733 
8734 	child_val = perf_event_count(child_event);
8735 
8736 	/*
8737 	 * Add back the child's count to the parent's count:
8738 	 */
8739 	atomic64_add(child_val, &parent_event->child_count);
8740 	atomic64_add(child_event->total_time_enabled,
8741 		     &parent_event->child_total_time_enabled);
8742 	atomic64_add(child_event->total_time_running,
8743 		     &parent_event->child_total_time_running);
8744 
8745 	/*
8746 	 * Remove this event from the parent's list
8747 	 */
8748 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8749 	mutex_lock(&parent_event->child_mutex);
8750 	list_del_init(&child_event->child_list);
8751 	mutex_unlock(&parent_event->child_mutex);
8752 
8753 	/*
8754 	 * Make sure user/parent get notified, that we just
8755 	 * lost one event.
8756 	 */
8757 	perf_event_wakeup(parent_event);
8758 
8759 	/*
8760 	 * Release the parent event, if this was the last
8761 	 * reference to it.
8762 	 */
8763 	put_event(parent_event);
8764 }
8765 
8766 static void
8767 __perf_event_exit_task(struct perf_event *child_event,
8768 			 struct perf_event_context *child_ctx,
8769 			 struct task_struct *child)
8770 {
8771 	/*
8772 	 * Do not destroy the 'original' grouping; because of the context
8773 	 * switch optimization the original events could've ended up in a
8774 	 * random child task.
8775 	 *
8776 	 * If we were to destroy the original group, all group related
8777 	 * operations would cease to function properly after this random
8778 	 * child dies.
8779 	 *
8780 	 * Do destroy all inherited groups, we don't care about those
8781 	 * and being thorough is better.
8782 	 */
8783 	perf_remove_from_context(child_event, !!child_event->parent);
8784 
8785 	/*
8786 	 * It can happen that the parent exits first, and has events
8787 	 * that are still around due to the child reference. These
8788 	 * events need to be zapped.
8789 	 */
8790 	if (child_event->parent) {
8791 		sync_child_event(child_event, child);
8792 		free_event(child_event);
8793 	} else {
8794 		child_event->state = PERF_EVENT_STATE_EXIT;
8795 		perf_event_wakeup(child_event);
8796 	}
8797 }
8798 
8799 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8800 {
8801 	struct perf_event *child_event, *next;
8802 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8803 	unsigned long flags;
8804 
8805 	if (likely(!child->perf_event_ctxp[ctxn]))
8806 		return;
8807 
8808 	local_irq_save(flags);
8809 	/*
8810 	 * We can't reschedule here because interrupts are disabled,
8811 	 * and either child is current or it is a task that can't be
8812 	 * scheduled, so we are now safe from rescheduling changing
8813 	 * our context.
8814 	 */
8815 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8816 
8817 	/*
8818 	 * Take the context lock here so that if find_get_context is
8819 	 * reading child->perf_event_ctxp, we wait until it has
8820 	 * incremented the context's refcount before we do put_ctx below.
8821 	 */
8822 	raw_spin_lock(&child_ctx->lock);
8823 	task_ctx_sched_out(child_ctx);
8824 	child->perf_event_ctxp[ctxn] = NULL;
8825 
8826 	/*
8827 	 * If this context is a clone; unclone it so it can't get
8828 	 * swapped to another process while we're removing all
8829 	 * the events from it.
8830 	 */
8831 	clone_ctx = unclone_ctx(child_ctx);
8832 	update_context_time(child_ctx);
8833 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8834 
8835 	if (clone_ctx)
8836 		put_ctx(clone_ctx);
8837 
8838 	/*
8839 	 * Report the task dead after unscheduling the events so that we
8840 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8841 	 * get a few PERF_RECORD_READ events.
8842 	 */
8843 	perf_event_task(child, child_ctx, 0);
8844 
8845 	/*
8846 	 * We can recurse on the same lock type through:
8847 	 *
8848 	 *   __perf_event_exit_task()
8849 	 *     sync_child_event()
8850 	 *       put_event()
8851 	 *         mutex_lock(&ctx->mutex)
8852 	 *
8853 	 * But since its the parent context it won't be the same instance.
8854 	 */
8855 	mutex_lock(&child_ctx->mutex);
8856 
8857 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8858 		__perf_event_exit_task(child_event, child_ctx, child);
8859 
8860 	mutex_unlock(&child_ctx->mutex);
8861 
8862 	put_ctx(child_ctx);
8863 }
8864 
8865 /*
8866  * When a child task exits, feed back event values to parent events.
8867  */
8868 void perf_event_exit_task(struct task_struct *child)
8869 {
8870 	struct perf_event *event, *tmp;
8871 	int ctxn;
8872 
8873 	mutex_lock(&child->perf_event_mutex);
8874 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8875 				 owner_entry) {
8876 		list_del_init(&event->owner_entry);
8877 
8878 		/*
8879 		 * Ensure the list deletion is visible before we clear
8880 		 * the owner, closes a race against perf_release() where
8881 		 * we need to serialize on the owner->perf_event_mutex.
8882 		 */
8883 		smp_wmb();
8884 		event->owner = NULL;
8885 	}
8886 	mutex_unlock(&child->perf_event_mutex);
8887 
8888 	for_each_task_context_nr(ctxn)
8889 		perf_event_exit_task_context(child, ctxn);
8890 
8891 	/*
8892 	 * The perf_event_exit_task_context calls perf_event_task
8893 	 * with child's task_ctx, which generates EXIT events for
8894 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
8895 	 * At this point we need to send EXIT events to cpu contexts.
8896 	 */
8897 	perf_event_task(child, NULL, 0);
8898 }
8899 
8900 static void perf_free_event(struct perf_event *event,
8901 			    struct perf_event_context *ctx)
8902 {
8903 	struct perf_event *parent = event->parent;
8904 
8905 	if (WARN_ON_ONCE(!parent))
8906 		return;
8907 
8908 	mutex_lock(&parent->child_mutex);
8909 	list_del_init(&event->child_list);
8910 	mutex_unlock(&parent->child_mutex);
8911 
8912 	put_event(parent);
8913 
8914 	raw_spin_lock_irq(&ctx->lock);
8915 	perf_group_detach(event);
8916 	list_del_event(event, ctx);
8917 	raw_spin_unlock_irq(&ctx->lock);
8918 	free_event(event);
8919 }
8920 
8921 /*
8922  * Free an unexposed, unused context as created by inheritance by
8923  * perf_event_init_task below, used by fork() in case of fail.
8924  *
8925  * Not all locks are strictly required, but take them anyway to be nice and
8926  * help out with the lockdep assertions.
8927  */
8928 void perf_event_free_task(struct task_struct *task)
8929 {
8930 	struct perf_event_context *ctx;
8931 	struct perf_event *event, *tmp;
8932 	int ctxn;
8933 
8934 	for_each_task_context_nr(ctxn) {
8935 		ctx = task->perf_event_ctxp[ctxn];
8936 		if (!ctx)
8937 			continue;
8938 
8939 		mutex_lock(&ctx->mutex);
8940 again:
8941 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8942 				group_entry)
8943 			perf_free_event(event, ctx);
8944 
8945 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8946 				group_entry)
8947 			perf_free_event(event, ctx);
8948 
8949 		if (!list_empty(&ctx->pinned_groups) ||
8950 				!list_empty(&ctx->flexible_groups))
8951 			goto again;
8952 
8953 		mutex_unlock(&ctx->mutex);
8954 
8955 		put_ctx(ctx);
8956 	}
8957 }
8958 
8959 void perf_event_delayed_put(struct task_struct *task)
8960 {
8961 	int ctxn;
8962 
8963 	for_each_task_context_nr(ctxn)
8964 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8965 }
8966 
8967 struct perf_event *perf_event_get(unsigned int fd)
8968 {
8969 	int err;
8970 	struct fd f;
8971 	struct perf_event *event;
8972 
8973 	err = perf_fget_light(fd, &f);
8974 	if (err)
8975 		return ERR_PTR(err);
8976 
8977 	event = f.file->private_data;
8978 	atomic_long_inc(&event->refcount);
8979 	fdput(f);
8980 
8981 	return event;
8982 }
8983 
8984 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8985 {
8986 	if (!event)
8987 		return ERR_PTR(-EINVAL);
8988 
8989 	return &event->attr;
8990 }
8991 
8992 /*
8993  * inherit a event from parent task to child task:
8994  */
8995 static struct perf_event *
8996 inherit_event(struct perf_event *parent_event,
8997 	      struct task_struct *parent,
8998 	      struct perf_event_context *parent_ctx,
8999 	      struct task_struct *child,
9000 	      struct perf_event *group_leader,
9001 	      struct perf_event_context *child_ctx)
9002 {
9003 	enum perf_event_active_state parent_state = parent_event->state;
9004 	struct perf_event *child_event;
9005 	unsigned long flags;
9006 
9007 	/*
9008 	 * Instead of creating recursive hierarchies of events,
9009 	 * we link inherited events back to the original parent,
9010 	 * which has a filp for sure, which we use as the reference
9011 	 * count:
9012 	 */
9013 	if (parent_event->parent)
9014 		parent_event = parent_event->parent;
9015 
9016 	child_event = perf_event_alloc(&parent_event->attr,
9017 					   parent_event->cpu,
9018 					   child,
9019 					   group_leader, parent_event,
9020 					   NULL, NULL, -1);
9021 	if (IS_ERR(child_event))
9022 		return child_event;
9023 
9024 	if (is_orphaned_event(parent_event) ||
9025 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9026 		free_event(child_event);
9027 		return NULL;
9028 	}
9029 
9030 	get_ctx(child_ctx);
9031 
9032 	/*
9033 	 * Make the child state follow the state of the parent event,
9034 	 * not its attr.disabled bit.  We hold the parent's mutex,
9035 	 * so we won't race with perf_event_{en, dis}able_family.
9036 	 */
9037 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
9038 		child_event->state = PERF_EVENT_STATE_INACTIVE;
9039 	else
9040 		child_event->state = PERF_EVENT_STATE_OFF;
9041 
9042 	if (parent_event->attr.freq) {
9043 		u64 sample_period = parent_event->hw.sample_period;
9044 		struct hw_perf_event *hwc = &child_event->hw;
9045 
9046 		hwc->sample_period = sample_period;
9047 		hwc->last_period   = sample_period;
9048 
9049 		local64_set(&hwc->period_left, sample_period);
9050 	}
9051 
9052 	child_event->ctx = child_ctx;
9053 	child_event->overflow_handler = parent_event->overflow_handler;
9054 	child_event->overflow_handler_context
9055 		= parent_event->overflow_handler_context;
9056 
9057 	/*
9058 	 * Precalculate sample_data sizes
9059 	 */
9060 	perf_event__header_size(child_event);
9061 	perf_event__id_header_size(child_event);
9062 
9063 	/*
9064 	 * Link it up in the child's context:
9065 	 */
9066 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
9067 	add_event_to_ctx(child_event, child_ctx);
9068 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9069 
9070 	/*
9071 	 * Link this into the parent event's child list
9072 	 */
9073 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9074 	mutex_lock(&parent_event->child_mutex);
9075 	list_add_tail(&child_event->child_list, &parent_event->child_list);
9076 	mutex_unlock(&parent_event->child_mutex);
9077 
9078 	return child_event;
9079 }
9080 
9081 static int inherit_group(struct perf_event *parent_event,
9082 	      struct task_struct *parent,
9083 	      struct perf_event_context *parent_ctx,
9084 	      struct task_struct *child,
9085 	      struct perf_event_context *child_ctx)
9086 {
9087 	struct perf_event *leader;
9088 	struct perf_event *sub;
9089 	struct perf_event *child_ctr;
9090 
9091 	leader = inherit_event(parent_event, parent, parent_ctx,
9092 				 child, NULL, child_ctx);
9093 	if (IS_ERR(leader))
9094 		return PTR_ERR(leader);
9095 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9096 		child_ctr = inherit_event(sub, parent, parent_ctx,
9097 					    child, leader, child_ctx);
9098 		if (IS_ERR(child_ctr))
9099 			return PTR_ERR(child_ctr);
9100 	}
9101 	return 0;
9102 }
9103 
9104 static int
9105 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9106 		   struct perf_event_context *parent_ctx,
9107 		   struct task_struct *child, int ctxn,
9108 		   int *inherited_all)
9109 {
9110 	int ret;
9111 	struct perf_event_context *child_ctx;
9112 
9113 	if (!event->attr.inherit) {
9114 		*inherited_all = 0;
9115 		return 0;
9116 	}
9117 
9118 	child_ctx = child->perf_event_ctxp[ctxn];
9119 	if (!child_ctx) {
9120 		/*
9121 		 * This is executed from the parent task context, so
9122 		 * inherit events that have been marked for cloning.
9123 		 * First allocate and initialize a context for the
9124 		 * child.
9125 		 */
9126 
9127 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9128 		if (!child_ctx)
9129 			return -ENOMEM;
9130 
9131 		child->perf_event_ctxp[ctxn] = child_ctx;
9132 	}
9133 
9134 	ret = inherit_group(event, parent, parent_ctx,
9135 			    child, child_ctx);
9136 
9137 	if (ret)
9138 		*inherited_all = 0;
9139 
9140 	return ret;
9141 }
9142 
9143 /*
9144  * Initialize the perf_event context in task_struct
9145  */
9146 static int perf_event_init_context(struct task_struct *child, int ctxn)
9147 {
9148 	struct perf_event_context *child_ctx, *parent_ctx;
9149 	struct perf_event_context *cloned_ctx;
9150 	struct perf_event *event;
9151 	struct task_struct *parent = current;
9152 	int inherited_all = 1;
9153 	unsigned long flags;
9154 	int ret = 0;
9155 
9156 	if (likely(!parent->perf_event_ctxp[ctxn]))
9157 		return 0;
9158 
9159 	/*
9160 	 * If the parent's context is a clone, pin it so it won't get
9161 	 * swapped under us.
9162 	 */
9163 	parent_ctx = perf_pin_task_context(parent, ctxn);
9164 	if (!parent_ctx)
9165 		return 0;
9166 
9167 	/*
9168 	 * No need to check if parent_ctx != NULL here; since we saw
9169 	 * it non-NULL earlier, the only reason for it to become NULL
9170 	 * is if we exit, and since we're currently in the middle of
9171 	 * a fork we can't be exiting at the same time.
9172 	 */
9173 
9174 	/*
9175 	 * Lock the parent list. No need to lock the child - not PID
9176 	 * hashed yet and not running, so nobody can access it.
9177 	 */
9178 	mutex_lock(&parent_ctx->mutex);
9179 
9180 	/*
9181 	 * We dont have to disable NMIs - we are only looking at
9182 	 * the list, not manipulating it:
9183 	 */
9184 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9185 		ret = inherit_task_group(event, parent, parent_ctx,
9186 					 child, ctxn, &inherited_all);
9187 		if (ret)
9188 			break;
9189 	}
9190 
9191 	/*
9192 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
9193 	 * to allocations, but we need to prevent rotation because
9194 	 * rotate_ctx() will change the list from interrupt context.
9195 	 */
9196 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9197 	parent_ctx->rotate_disable = 1;
9198 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9199 
9200 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9201 		ret = inherit_task_group(event, parent, parent_ctx,
9202 					 child, ctxn, &inherited_all);
9203 		if (ret)
9204 			break;
9205 	}
9206 
9207 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9208 	parent_ctx->rotate_disable = 0;
9209 
9210 	child_ctx = child->perf_event_ctxp[ctxn];
9211 
9212 	if (child_ctx && inherited_all) {
9213 		/*
9214 		 * Mark the child context as a clone of the parent
9215 		 * context, or of whatever the parent is a clone of.
9216 		 *
9217 		 * Note that if the parent is a clone, the holding of
9218 		 * parent_ctx->lock avoids it from being uncloned.
9219 		 */
9220 		cloned_ctx = parent_ctx->parent_ctx;
9221 		if (cloned_ctx) {
9222 			child_ctx->parent_ctx = cloned_ctx;
9223 			child_ctx->parent_gen = parent_ctx->parent_gen;
9224 		} else {
9225 			child_ctx->parent_ctx = parent_ctx;
9226 			child_ctx->parent_gen = parent_ctx->generation;
9227 		}
9228 		get_ctx(child_ctx->parent_ctx);
9229 	}
9230 
9231 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9232 	mutex_unlock(&parent_ctx->mutex);
9233 
9234 	perf_unpin_context(parent_ctx);
9235 	put_ctx(parent_ctx);
9236 
9237 	return ret;
9238 }
9239 
9240 /*
9241  * Initialize the perf_event context in task_struct
9242  */
9243 int perf_event_init_task(struct task_struct *child)
9244 {
9245 	int ctxn, ret;
9246 
9247 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9248 	mutex_init(&child->perf_event_mutex);
9249 	INIT_LIST_HEAD(&child->perf_event_list);
9250 
9251 	for_each_task_context_nr(ctxn) {
9252 		ret = perf_event_init_context(child, ctxn);
9253 		if (ret) {
9254 			perf_event_free_task(child);
9255 			return ret;
9256 		}
9257 	}
9258 
9259 	return 0;
9260 }
9261 
9262 static void __init perf_event_init_all_cpus(void)
9263 {
9264 	struct swevent_htable *swhash;
9265 	int cpu;
9266 
9267 	for_each_possible_cpu(cpu) {
9268 		swhash = &per_cpu(swevent_htable, cpu);
9269 		mutex_init(&swhash->hlist_mutex);
9270 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9271 	}
9272 }
9273 
9274 static void perf_event_init_cpu(int cpu)
9275 {
9276 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9277 
9278 	mutex_lock(&swhash->hlist_mutex);
9279 	if (swhash->hlist_refcount > 0) {
9280 		struct swevent_hlist *hlist;
9281 
9282 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9283 		WARN_ON(!hlist);
9284 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9285 	}
9286 	mutex_unlock(&swhash->hlist_mutex);
9287 }
9288 
9289 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9290 static void __perf_event_exit_context(void *__info)
9291 {
9292 	struct remove_event re = { .detach_group = true };
9293 	struct perf_event_context *ctx = __info;
9294 
9295 	rcu_read_lock();
9296 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9297 		__perf_remove_from_context(&re);
9298 	rcu_read_unlock();
9299 }
9300 
9301 static void perf_event_exit_cpu_context(int cpu)
9302 {
9303 	struct perf_event_context *ctx;
9304 	struct pmu *pmu;
9305 	int idx;
9306 
9307 	idx = srcu_read_lock(&pmus_srcu);
9308 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9309 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9310 
9311 		mutex_lock(&ctx->mutex);
9312 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9313 		mutex_unlock(&ctx->mutex);
9314 	}
9315 	srcu_read_unlock(&pmus_srcu, idx);
9316 }
9317 
9318 static void perf_event_exit_cpu(int cpu)
9319 {
9320 	perf_event_exit_cpu_context(cpu);
9321 }
9322 #else
9323 static inline void perf_event_exit_cpu(int cpu) { }
9324 #endif
9325 
9326 static int
9327 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9328 {
9329 	int cpu;
9330 
9331 	for_each_online_cpu(cpu)
9332 		perf_event_exit_cpu(cpu);
9333 
9334 	return NOTIFY_OK;
9335 }
9336 
9337 /*
9338  * Run the perf reboot notifier at the very last possible moment so that
9339  * the generic watchdog code runs as long as possible.
9340  */
9341 static struct notifier_block perf_reboot_notifier = {
9342 	.notifier_call = perf_reboot,
9343 	.priority = INT_MIN,
9344 };
9345 
9346 static int
9347 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9348 {
9349 	unsigned int cpu = (long)hcpu;
9350 
9351 	switch (action & ~CPU_TASKS_FROZEN) {
9352 
9353 	case CPU_UP_PREPARE:
9354 	case CPU_DOWN_FAILED:
9355 		perf_event_init_cpu(cpu);
9356 		break;
9357 
9358 	case CPU_UP_CANCELED:
9359 	case CPU_DOWN_PREPARE:
9360 		perf_event_exit_cpu(cpu);
9361 		break;
9362 	default:
9363 		break;
9364 	}
9365 
9366 	return NOTIFY_OK;
9367 }
9368 
9369 void __init perf_event_init(void)
9370 {
9371 	int ret;
9372 
9373 	idr_init(&pmu_idr);
9374 
9375 	perf_event_init_all_cpus();
9376 	init_srcu_struct(&pmus_srcu);
9377 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9378 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
9379 	perf_pmu_register(&perf_task_clock, NULL, -1);
9380 	perf_tp_register();
9381 	perf_cpu_notifier(perf_cpu_notify);
9382 	register_reboot_notifier(&perf_reboot_notifier);
9383 
9384 	ret = init_hw_breakpoint();
9385 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9386 
9387 	/* do not patch jump label more than once per second */
9388 	jump_label_rate_limit(&perf_sched_events, HZ);
9389 
9390 	/*
9391 	 * Build time assertion that we keep the data_head at the intended
9392 	 * location.  IOW, validation we got the __reserved[] size right.
9393 	 */
9394 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9395 		     != 1024);
9396 }
9397 
9398 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9399 			      char *page)
9400 {
9401 	struct perf_pmu_events_attr *pmu_attr =
9402 		container_of(attr, struct perf_pmu_events_attr, attr);
9403 
9404 	if (pmu_attr->event_str)
9405 		return sprintf(page, "%s\n", pmu_attr->event_str);
9406 
9407 	return 0;
9408 }
9409 
9410 static int __init perf_event_sysfs_init(void)
9411 {
9412 	struct pmu *pmu;
9413 	int ret;
9414 
9415 	mutex_lock(&pmus_lock);
9416 
9417 	ret = bus_register(&pmu_bus);
9418 	if (ret)
9419 		goto unlock;
9420 
9421 	list_for_each_entry(pmu, &pmus, entry) {
9422 		if (!pmu->name || pmu->type < 0)
9423 			continue;
9424 
9425 		ret = pmu_dev_alloc(pmu);
9426 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9427 	}
9428 	pmu_bus_running = 1;
9429 	ret = 0;
9430 
9431 unlock:
9432 	mutex_unlock(&pmus_lock);
9433 
9434 	return ret;
9435 }
9436 device_initcall(perf_event_sysfs_init);
9437 
9438 #ifdef CONFIG_CGROUP_PERF
9439 static struct cgroup_subsys_state *
9440 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9441 {
9442 	struct perf_cgroup *jc;
9443 
9444 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9445 	if (!jc)
9446 		return ERR_PTR(-ENOMEM);
9447 
9448 	jc->info = alloc_percpu(struct perf_cgroup_info);
9449 	if (!jc->info) {
9450 		kfree(jc);
9451 		return ERR_PTR(-ENOMEM);
9452 	}
9453 
9454 	return &jc->css;
9455 }
9456 
9457 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9458 {
9459 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9460 
9461 	free_percpu(jc->info);
9462 	kfree(jc);
9463 }
9464 
9465 static int __perf_cgroup_move(void *info)
9466 {
9467 	struct task_struct *task = info;
9468 	rcu_read_lock();
9469 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9470 	rcu_read_unlock();
9471 	return 0;
9472 }
9473 
9474 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9475 {
9476 	struct task_struct *task;
9477 	struct cgroup_subsys_state *css;
9478 
9479 	cgroup_taskset_for_each(task, css, tset)
9480 		task_function_call(task, __perf_cgroup_move, task);
9481 }
9482 
9483 struct cgroup_subsys perf_event_cgrp_subsys = {
9484 	.css_alloc	= perf_cgroup_css_alloc,
9485 	.css_free	= perf_cgroup_css_free,
9486 	.attach		= perf_cgroup_attach,
9487 };
9488 #endif /* CONFIG_CGROUP_PERF */
9489