xref: /openbmc/linux/kernel/events/core.c (revision ab87cc97)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52 
53 #include "internal.h"
54 
55 #include <asm/irq_regs.h>
56 
57 typedef int (*remote_function_f)(void *);
58 
59 struct remote_function_call {
60 	struct task_struct	*p;
61 	remote_function_f	func;
62 	void			*info;
63 	int			ret;
64 };
65 
66 static void remote_function(void *data)
67 {
68 	struct remote_function_call *tfc = data;
69 	struct task_struct *p = tfc->p;
70 
71 	if (p) {
72 		/* -EAGAIN */
73 		if (task_cpu(p) != smp_processor_id())
74 			return;
75 
76 		/*
77 		 * Now that we're on right CPU with IRQs disabled, we can test
78 		 * if we hit the right task without races.
79 		 */
80 
81 		tfc->ret = -ESRCH; /* No such (running) process */
82 		if (p != current)
83 			return;
84 	}
85 
86 	tfc->ret = tfc->func(tfc->info);
87 }
88 
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:		the task to evaluate
92  * @func:	the function to be called
93  * @info:	the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *	    -ESRCH  - when the process isn't running
100  *	    -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= p,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -EAGAIN,
110 	};
111 	int ret;
112 
113 	do {
114 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 		if (!ret)
116 			ret = data.ret;
117 	} while (ret == -EAGAIN);
118 
119 	return ret;
120 }
121 
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:	the function to be called
125  * @info:	the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133 	struct remote_function_call data = {
134 		.p	= NULL,
135 		.func	= func,
136 		.info	= info,
137 		.ret	= -ENXIO, /* No such CPU */
138 	};
139 
140 	smp_call_function_single(cpu, remote_function, &data, 1);
141 
142 	return data.ret;
143 }
144 
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150 
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 			  struct perf_event_context *ctx)
153 {
154 	raw_spin_lock(&cpuctx->ctx.lock);
155 	if (ctx)
156 		raw_spin_lock(&ctx->lock);
157 }
158 
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 			    struct perf_event_context *ctx)
161 {
162 	if (ctx)
163 		raw_spin_unlock(&ctx->lock);
164 	raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166 
167 #define TASK_TOMBSTONE ((void *)-1L)
168 
169 static bool is_kernel_event(struct perf_event *event)
170 {
171 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173 
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192 
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 			struct perf_event_context *, void *);
195 
196 struct event_function_struct {
197 	struct perf_event *event;
198 	event_f func;
199 	void *data;
200 };
201 
202 static int event_function(void *info)
203 {
204 	struct event_function_struct *efs = info;
205 	struct perf_event *event = efs->event;
206 	struct perf_event_context *ctx = event->ctx;
207 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
209 	int ret = 0;
210 
211 	lockdep_assert_irqs_disabled();
212 
213 	perf_ctx_lock(cpuctx, task_ctx);
214 	/*
215 	 * Since we do the IPI call without holding ctx->lock things can have
216 	 * changed, double check we hit the task we set out to hit.
217 	 */
218 	if (ctx->task) {
219 		if (ctx->task != current) {
220 			ret = -ESRCH;
221 			goto unlock;
222 		}
223 
224 		/*
225 		 * We only use event_function_call() on established contexts,
226 		 * and event_function() is only ever called when active (or
227 		 * rather, we'll have bailed in task_function_call() or the
228 		 * above ctx->task != current test), therefore we must have
229 		 * ctx->is_active here.
230 		 */
231 		WARN_ON_ONCE(!ctx->is_active);
232 		/*
233 		 * And since we have ctx->is_active, cpuctx->task_ctx must
234 		 * match.
235 		 */
236 		WARN_ON_ONCE(task_ctx != ctx);
237 	} else {
238 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
239 	}
240 
241 	efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243 	perf_ctx_unlock(cpuctx, task_ctx);
244 
245 	return ret;
246 }
247 
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250 	struct perf_event_context *ctx = event->ctx;
251 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252 	struct event_function_struct efs = {
253 		.event = event,
254 		.func = func,
255 		.data = data,
256 	};
257 
258 	if (!event->parent) {
259 		/*
260 		 * If this is a !child event, we must hold ctx::mutex to
261 		 * stabilize the the event->ctx relation. See
262 		 * perf_event_ctx_lock().
263 		 */
264 		lockdep_assert_held(&ctx->mutex);
265 	}
266 
267 	if (!task) {
268 		cpu_function_call(event->cpu, event_function, &efs);
269 		return;
270 	}
271 
272 	if (task == TASK_TOMBSTONE)
273 		return;
274 
275 again:
276 	if (!task_function_call(task, event_function, &efs))
277 		return;
278 
279 	raw_spin_lock_irq(&ctx->lock);
280 	/*
281 	 * Reload the task pointer, it might have been changed by
282 	 * a concurrent perf_event_context_sched_out().
283 	 */
284 	task = ctx->task;
285 	if (task == TASK_TOMBSTONE) {
286 		raw_spin_unlock_irq(&ctx->lock);
287 		return;
288 	}
289 	if (ctx->is_active) {
290 		raw_spin_unlock_irq(&ctx->lock);
291 		goto again;
292 	}
293 	func(event, NULL, ctx, data);
294 	raw_spin_unlock_irq(&ctx->lock);
295 }
296 
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303 	struct perf_event_context *ctx = event->ctx;
304 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 	struct task_struct *task = READ_ONCE(ctx->task);
306 	struct perf_event_context *task_ctx = NULL;
307 
308 	lockdep_assert_irqs_disabled();
309 
310 	if (task) {
311 		if (task == TASK_TOMBSTONE)
312 			return;
313 
314 		task_ctx = ctx;
315 	}
316 
317 	perf_ctx_lock(cpuctx, task_ctx);
318 
319 	task = ctx->task;
320 	if (task == TASK_TOMBSTONE)
321 		goto unlock;
322 
323 	if (task) {
324 		/*
325 		 * We must be either inactive or active and the right task,
326 		 * otherwise we're screwed, since we cannot IPI to somewhere
327 		 * else.
328 		 */
329 		if (ctx->is_active) {
330 			if (WARN_ON_ONCE(task != current))
331 				goto unlock;
332 
333 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 				goto unlock;
335 		}
336 	} else {
337 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 	}
339 
340 	func(event, cpuctx, ctx, data);
341 unlock:
342 	perf_ctx_unlock(cpuctx, task_ctx);
343 }
344 
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 		       PERF_FLAG_FD_OUTPUT  |\
347 		       PERF_FLAG_PID_CGROUP |\
348 		       PERF_FLAG_FD_CLOEXEC)
349 
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354 	(PERF_SAMPLE_BRANCH_KERNEL |\
355 	 PERF_SAMPLE_BRANCH_HV)
356 
357 enum event_type_t {
358 	EVENT_FLEXIBLE = 0x1,
359 	EVENT_PINNED = 0x2,
360 	EVENT_TIME = 0x4,
361 	/* see ctx_resched() for details */
362 	EVENT_CPU = 0x8,
363 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365 
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370 
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376 
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380 
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389 
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394 
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403 
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406 
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE		100000
411 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
413 
414 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
415 
416 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
418 
419 static int perf_sample_allowed_ns __read_mostly =
420 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421 
422 static void update_perf_cpu_limits(void)
423 {
424 	u64 tmp = perf_sample_period_ns;
425 
426 	tmp *= sysctl_perf_cpu_time_max_percent;
427 	tmp = div_u64(tmp, 100);
428 	if (!tmp)
429 		tmp = 1;
430 
431 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433 
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435 
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437 		void __user *buffer, size_t *lenp,
438 		loff_t *ppos)
439 {
440 	int ret;
441 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
442 	/*
443 	 * If throttling is disabled don't allow the write:
444 	 */
445 	if (write && (perf_cpu == 100 || perf_cpu == 0))
446 		return -EINVAL;
447 
448 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 	if (ret || !write)
450 		return ret;
451 
452 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 	update_perf_cpu_limits();
455 
456 	return 0;
457 }
458 
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460 
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 				void __user *buffer, size_t *lenp,
463 				loff_t *ppos)
464 {
465 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466 
467 	if (ret || !write)
468 		return ret;
469 
470 	if (sysctl_perf_cpu_time_max_percent == 100 ||
471 	    sysctl_perf_cpu_time_max_percent == 0) {
472 		printk(KERN_WARNING
473 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 		WRITE_ONCE(perf_sample_allowed_ns, 0);
475 	} else {
476 		update_perf_cpu_limits();
477 	}
478 
479 	return 0;
480 }
481 
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490 
491 static u64 __report_avg;
492 static u64 __report_allowed;
493 
494 static void perf_duration_warn(struct irq_work *w)
495 {
496 	printk_ratelimited(KERN_INFO
497 		"perf: interrupt took too long (%lld > %lld), lowering "
498 		"kernel.perf_event_max_sample_rate to %d\n",
499 		__report_avg, __report_allowed,
500 		sysctl_perf_event_sample_rate);
501 }
502 
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504 
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 	u64 running_len;
509 	u64 avg_len;
510 	u32 max;
511 
512 	if (max_len == 0)
513 		return;
514 
515 	/* Decay the counter by 1 average sample. */
516 	running_len = __this_cpu_read(running_sample_length);
517 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 	running_len += sample_len_ns;
519 	__this_cpu_write(running_sample_length, running_len);
520 
521 	/*
522 	 * Note: this will be biased artifically low until we have
523 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 	 * from having to maintain a count.
525 	 */
526 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 	if (avg_len <= max_len)
528 		return;
529 
530 	__report_avg = avg_len;
531 	__report_allowed = max_len;
532 
533 	/*
534 	 * Compute a throttle threshold 25% below the current duration.
535 	 */
536 	avg_len += avg_len / 4;
537 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 	if (avg_len < max)
539 		max /= (u32)avg_len;
540 	else
541 		max = 1;
542 
543 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 	WRITE_ONCE(max_samples_per_tick, max);
545 
546 	sysctl_perf_event_sample_rate = max * HZ;
547 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548 
549 	if (!irq_work_queue(&perf_duration_work)) {
550 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 			     "kernel.perf_event_max_sample_rate to %d\n",
552 			     __report_avg, __report_allowed,
553 			     sysctl_perf_event_sample_rate);
554 	}
555 }
556 
557 static atomic64_t perf_event_id;
558 
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 			      enum event_type_t event_type);
561 
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563 			     enum event_type_t event_type,
564 			     struct task_struct *task);
565 
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568 
569 void __weak perf_event_print_debug(void)	{ }
570 
571 extern __weak const char *perf_pmu_name(void)
572 {
573 	return "pmu";
574 }
575 
576 static inline u64 perf_clock(void)
577 {
578 	return local_clock();
579 }
580 
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583 	return event->clock();
584 }
585 
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607 
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611 	struct perf_event *leader = event->group_leader;
612 
613 	if (leader->state <= PERF_EVENT_STATE_OFF)
614 		return leader->state;
615 
616 	return event->state;
617 }
618 
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622 	enum perf_event_state state = __perf_effective_state(event);
623 	u64 delta = now - event->tstamp;
624 
625 	*enabled = event->total_time_enabled;
626 	if (state >= PERF_EVENT_STATE_INACTIVE)
627 		*enabled += delta;
628 
629 	*running = event->total_time_running;
630 	if (state >= PERF_EVENT_STATE_ACTIVE)
631 		*running += delta;
632 }
633 
634 static void perf_event_update_time(struct perf_event *event)
635 {
636 	u64 now = perf_event_time(event);
637 
638 	__perf_update_times(event, now, &event->total_time_enabled,
639 					&event->total_time_running);
640 	event->tstamp = now;
641 }
642 
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645 	struct perf_event *sibling;
646 
647 	for_each_sibling_event(sibling, leader)
648 		perf_event_update_time(sibling);
649 }
650 
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654 	if (event->state == state)
655 		return;
656 
657 	perf_event_update_time(event);
658 	/*
659 	 * If a group leader gets enabled/disabled all its siblings
660 	 * are affected too.
661 	 */
662 	if ((event->state < 0) ^ (state < 0))
663 		perf_event_update_sibling_time(event);
664 
665 	WRITE_ONCE(event->state, state);
666 }
667 
668 #ifdef CONFIG_CGROUP_PERF
669 
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673 	struct perf_event_context *ctx = event->ctx;
674 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675 
676 	/* @event doesn't care about cgroup */
677 	if (!event->cgrp)
678 		return true;
679 
680 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
681 	if (!cpuctx->cgrp)
682 		return false;
683 
684 	/*
685 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
686 	 * also enabled for all its descendant cgroups.  If @cpuctx's
687 	 * cgroup is a descendant of @event's (the test covers identity
688 	 * case), it's a match.
689 	 */
690 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 				    event->cgrp->css.cgroup);
692 }
693 
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696 	css_put(&event->cgrp->css);
697 	event->cgrp = NULL;
698 }
699 
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702 	return event->cgrp != NULL;
703 }
704 
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707 	struct perf_cgroup_info *t;
708 
709 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 	return t->time;
711 }
712 
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715 	struct perf_cgroup_info *info;
716 	u64 now;
717 
718 	now = perf_clock();
719 
720 	info = this_cpu_ptr(cgrp->info);
721 
722 	info->time += now - info->timestamp;
723 	info->timestamp = now;
724 }
725 
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728 	struct perf_cgroup *cgrp = cpuctx->cgrp;
729 	struct cgroup_subsys_state *css;
730 
731 	if (cgrp) {
732 		for (css = &cgrp->css; css; css = css->parent) {
733 			cgrp = container_of(css, struct perf_cgroup, css);
734 			__update_cgrp_time(cgrp);
735 		}
736 	}
737 }
738 
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741 	struct perf_cgroup *cgrp;
742 
743 	/*
744 	 * ensure we access cgroup data only when needed and
745 	 * when we know the cgroup is pinned (css_get)
746 	 */
747 	if (!is_cgroup_event(event))
748 		return;
749 
750 	cgrp = perf_cgroup_from_task(current, event->ctx);
751 	/*
752 	 * Do not update time when cgroup is not active
753 	 */
754 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755 		__update_cgrp_time(event->cgrp);
756 }
757 
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760 			  struct perf_event_context *ctx)
761 {
762 	struct perf_cgroup *cgrp;
763 	struct perf_cgroup_info *info;
764 	struct cgroup_subsys_state *css;
765 
766 	/*
767 	 * ctx->lock held by caller
768 	 * ensure we do not access cgroup data
769 	 * unless we have the cgroup pinned (css_get)
770 	 */
771 	if (!task || !ctx->nr_cgroups)
772 		return;
773 
774 	cgrp = perf_cgroup_from_task(task, ctx);
775 
776 	for (css = &cgrp->css; css; css = css->parent) {
777 		cgrp = container_of(css, struct perf_cgroup, css);
778 		info = this_cpu_ptr(cgrp->info);
779 		info->timestamp = ctx->timestamp;
780 	}
781 }
782 
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784 
785 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
787 
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796 	struct perf_cpu_context *cpuctx;
797 	struct list_head *list;
798 	unsigned long flags;
799 
800 	/*
801 	 * Disable interrupts and preemption to avoid this CPU's
802 	 * cgrp_cpuctx_entry to change under us.
803 	 */
804 	local_irq_save(flags);
805 
806 	list = this_cpu_ptr(&cgrp_cpuctx_list);
807 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809 
810 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 		perf_pmu_disable(cpuctx->ctx.pmu);
812 
813 		if (mode & PERF_CGROUP_SWOUT) {
814 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 			/*
816 			 * must not be done before ctxswout due
817 			 * to event_filter_match() in event_sched_out()
818 			 */
819 			cpuctx->cgrp = NULL;
820 		}
821 
822 		if (mode & PERF_CGROUP_SWIN) {
823 			WARN_ON_ONCE(cpuctx->cgrp);
824 			/*
825 			 * set cgrp before ctxsw in to allow
826 			 * event_filter_match() to not have to pass
827 			 * task around
828 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 			 * because cgorup events are only per-cpu
830 			 */
831 			cpuctx->cgrp = perf_cgroup_from_task(task,
832 							     &cpuctx->ctx);
833 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834 		}
835 		perf_pmu_enable(cpuctx->ctx.pmu);
836 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837 	}
838 
839 	local_irq_restore(flags);
840 }
841 
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843 					 struct task_struct *next)
844 {
845 	struct perf_cgroup *cgrp1;
846 	struct perf_cgroup *cgrp2 = NULL;
847 
848 	rcu_read_lock();
849 	/*
850 	 * we come here when we know perf_cgroup_events > 0
851 	 * we do not need to pass the ctx here because we know
852 	 * we are holding the rcu lock
853 	 */
854 	cgrp1 = perf_cgroup_from_task(task, NULL);
855 	cgrp2 = perf_cgroup_from_task(next, NULL);
856 
857 	/*
858 	 * only schedule out current cgroup events if we know
859 	 * that we are switching to a different cgroup. Otherwise,
860 	 * do no touch the cgroup events.
861 	 */
862 	if (cgrp1 != cgrp2)
863 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864 
865 	rcu_read_unlock();
866 }
867 
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 					struct task_struct *task)
870 {
871 	struct perf_cgroup *cgrp1;
872 	struct perf_cgroup *cgrp2 = NULL;
873 
874 	rcu_read_lock();
875 	/*
876 	 * we come here when we know perf_cgroup_events > 0
877 	 * we do not need to pass the ctx here because we know
878 	 * we are holding the rcu lock
879 	 */
880 	cgrp1 = perf_cgroup_from_task(task, NULL);
881 	cgrp2 = perf_cgroup_from_task(prev, NULL);
882 
883 	/*
884 	 * only need to schedule in cgroup events if we are changing
885 	 * cgroup during ctxsw. Cgroup events were not scheduled
886 	 * out of ctxsw out if that was not the case.
887 	 */
888 	if (cgrp1 != cgrp2)
889 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890 
891 	rcu_read_unlock();
892 }
893 
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 				      struct perf_event_attr *attr,
896 				      struct perf_event *group_leader)
897 {
898 	struct perf_cgroup *cgrp;
899 	struct cgroup_subsys_state *css;
900 	struct fd f = fdget(fd);
901 	int ret = 0;
902 
903 	if (!f.file)
904 		return -EBADF;
905 
906 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
907 					 &perf_event_cgrp_subsys);
908 	if (IS_ERR(css)) {
909 		ret = PTR_ERR(css);
910 		goto out;
911 	}
912 
913 	cgrp = container_of(css, struct perf_cgroup, css);
914 	event->cgrp = cgrp;
915 
916 	/*
917 	 * all events in a group must monitor
918 	 * the same cgroup because a task belongs
919 	 * to only one perf cgroup at a time
920 	 */
921 	if (group_leader && group_leader->cgrp != cgrp) {
922 		perf_detach_cgroup(event);
923 		ret = -EINVAL;
924 	}
925 out:
926 	fdput(f);
927 	return ret;
928 }
929 
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933 	struct perf_cgroup_info *t;
934 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 	event->shadow_ctx_time = now - t->timestamp;
936 }
937 
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944 			 struct perf_event_context *ctx, bool add)
945 {
946 	struct perf_cpu_context *cpuctx;
947 	struct list_head *cpuctx_entry;
948 
949 	if (!is_cgroup_event(event))
950 		return;
951 
952 	/*
953 	 * Because cgroup events are always per-cpu events,
954 	 * this will always be called from the right CPU.
955 	 */
956 	cpuctx = __get_cpu_context(ctx);
957 
958 	/*
959 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 	 * matching the event's cgroup, we must do this for every new event,
961 	 * because if the first would mismatch, the second would not try again
962 	 * and we would leave cpuctx->cgrp unset.
963 	 */
964 	if (add && !cpuctx->cgrp) {
965 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966 
967 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 			cpuctx->cgrp = cgrp;
969 	}
970 
971 	if (add && ctx->nr_cgroups++)
972 		return;
973 	else if (!add && --ctx->nr_cgroups)
974 		return;
975 
976 	/* no cgroup running */
977 	if (!add)
978 		cpuctx->cgrp = NULL;
979 
980 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 	if (add)
982 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 	else
984 		list_del(cpuctx_entry);
985 }
986 
987 #else /* !CONFIG_CGROUP_PERF */
988 
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992 	return true;
993 }
994 
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997 
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000 	return 0;
1001 }
1002 
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006 
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010 
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 					 struct task_struct *next)
1013 {
1014 }
1015 
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 					struct task_struct *task)
1018 {
1019 }
1020 
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 				      struct perf_event_attr *attr,
1023 				      struct perf_event *group_leader)
1024 {
1025 	return -EINVAL;
1026 }
1027 
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030 			  struct perf_event_context *ctx)
1031 {
1032 }
1033 
1034 void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038 
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043 
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046 	return 0;
1047 }
1048 
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051 			 struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054 
1055 #endif
1056 
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067 	struct perf_cpu_context *cpuctx;
1068 	bool rotations;
1069 
1070 	lockdep_assert_irqs_disabled();
1071 
1072 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073 	rotations = perf_rotate_context(cpuctx);
1074 
1075 	raw_spin_lock(&cpuctx->hrtimer_lock);
1076 	if (rotations)
1077 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078 	else
1079 		cpuctx->hrtimer_active = 0;
1080 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1081 
1082 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084 
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087 	struct hrtimer *timer = &cpuctx->hrtimer;
1088 	struct pmu *pmu = cpuctx->ctx.pmu;
1089 	u64 interval;
1090 
1091 	/* no multiplexing needed for SW PMU */
1092 	if (pmu->task_ctx_nr == perf_sw_context)
1093 		return;
1094 
1095 	/*
1096 	 * check default is sane, if not set then force to
1097 	 * default interval (1/tick)
1098 	 */
1099 	interval = pmu->hrtimer_interval_ms;
1100 	if (interval < 1)
1101 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102 
1103 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104 
1105 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1107 	timer->function = perf_mux_hrtimer_handler;
1108 }
1109 
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112 	struct hrtimer *timer = &cpuctx->hrtimer;
1113 	struct pmu *pmu = cpuctx->ctx.pmu;
1114 	unsigned long flags;
1115 
1116 	/* not for SW PMU */
1117 	if (pmu->task_ctx_nr == perf_sw_context)
1118 		return 0;
1119 
1120 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 	if (!cpuctx->hrtimer_active) {
1122 		cpuctx->hrtimer_active = 1;
1123 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1125 	}
1126 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127 
1128 	return 0;
1129 }
1130 
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 	if (!(*count)++)
1135 		pmu->pmu_disable(pmu);
1136 }
1137 
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 	if (!--(*count))
1142 		pmu->pmu_enable(pmu);
1143 }
1144 
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146 
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156 
1157 	lockdep_assert_irqs_disabled();
1158 
1159 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1160 
1161 	list_add(&ctx->active_ctx_list, head);
1162 }
1163 
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166 	lockdep_assert_irqs_disabled();
1167 
1168 	WARN_ON(list_empty(&ctx->active_ctx_list));
1169 
1170 	list_del_init(&ctx->active_ctx_list);
1171 }
1172 
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175 	refcount_inc(&ctx->refcount);
1176 }
1177 
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180 	struct perf_event_context *ctx;
1181 
1182 	ctx = container_of(head, struct perf_event_context, rcu_head);
1183 	kfree(ctx->task_ctx_data);
1184 	kfree(ctx);
1185 }
1186 
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189 	if (refcount_dec_and_test(&ctx->refcount)) {
1190 		if (ctx->parent_ctx)
1191 			put_ctx(ctx->parent_ctx);
1192 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193 			put_task_struct(ctx->task);
1194 		call_rcu(&ctx->rcu_head, free_ctx);
1195 	}
1196 }
1197 
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()	[ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()			[ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()		[ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event()	[ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *	task_struct::perf_event_mutex
1253  *	  perf_event_context::mutex
1254  *	    perf_event::child_mutex;
1255  *	      perf_event_context::lock
1256  *	    perf_event::mmap_mutex
1257  *	    mmap_sem
1258  *	      perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *	  cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267 	struct perf_event_context *ctx;
1268 
1269 again:
1270 	rcu_read_lock();
1271 	ctx = READ_ONCE(event->ctx);
1272 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1273 		rcu_read_unlock();
1274 		goto again;
1275 	}
1276 	rcu_read_unlock();
1277 
1278 	mutex_lock_nested(&ctx->mutex, nesting);
1279 	if (event->ctx != ctx) {
1280 		mutex_unlock(&ctx->mutex);
1281 		put_ctx(ctx);
1282 		goto again;
1283 	}
1284 
1285 	return ctx;
1286 }
1287 
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291 	return perf_event_ctx_lock_nested(event, 0);
1292 }
1293 
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295 				  struct perf_event_context *ctx)
1296 {
1297 	mutex_unlock(&ctx->mutex);
1298 	put_ctx(ctx);
1299 }
1300 
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310 
1311 	lockdep_assert_held(&ctx->lock);
1312 
1313 	if (parent_ctx)
1314 		ctx->parent_ctx = NULL;
1315 	ctx->generation++;
1316 
1317 	return parent_ctx;
1318 }
1319 
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 				enum pid_type type)
1322 {
1323 	u32 nr;
1324 	/*
1325 	 * only top level events have the pid namespace they were created in
1326 	 */
1327 	if (event->parent)
1328 		event = event->parent;
1329 
1330 	nr = __task_pid_nr_ns(p, type, event->ns);
1331 	/* avoid -1 if it is idle thread or runs in another ns */
1332 	if (!nr && !pid_alive(p))
1333 		nr = -1;
1334 	return nr;
1335 }
1336 
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341 
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346 
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353 	u64 id = event->id;
1354 
1355 	if (event->parent)
1356 		id = event->parent->id;
1357 
1358 	return id;
1359 }
1360 
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370 	struct perf_event_context *ctx;
1371 
1372 retry:
1373 	/*
1374 	 * One of the few rules of preemptible RCU is that one cannot do
1375 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376 	 * part of the read side critical section was irqs-enabled -- see
1377 	 * rcu_read_unlock_special().
1378 	 *
1379 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1380 	 * side critical section has interrupts disabled.
1381 	 */
1382 	local_irq_save(*flags);
1383 	rcu_read_lock();
1384 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385 	if (ctx) {
1386 		/*
1387 		 * If this context is a clone of another, it might
1388 		 * get swapped for another underneath us by
1389 		 * perf_event_task_sched_out, though the
1390 		 * rcu_read_lock() protects us from any context
1391 		 * getting freed.  Lock the context and check if it
1392 		 * got swapped before we could get the lock, and retry
1393 		 * if so.  If we locked the right context, then it
1394 		 * can't get swapped on us any more.
1395 		 */
1396 		raw_spin_lock(&ctx->lock);
1397 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398 			raw_spin_unlock(&ctx->lock);
1399 			rcu_read_unlock();
1400 			local_irq_restore(*flags);
1401 			goto retry;
1402 		}
1403 
1404 		if (ctx->task == TASK_TOMBSTONE ||
1405 		    !refcount_inc_not_zero(&ctx->refcount)) {
1406 			raw_spin_unlock(&ctx->lock);
1407 			ctx = NULL;
1408 		} else {
1409 			WARN_ON_ONCE(ctx->task != task);
1410 		}
1411 	}
1412 	rcu_read_unlock();
1413 	if (!ctx)
1414 		local_irq_restore(*flags);
1415 	return ctx;
1416 }
1417 
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426 	struct perf_event_context *ctx;
1427 	unsigned long flags;
1428 
1429 	ctx = perf_lock_task_context(task, ctxn, &flags);
1430 	if (ctx) {
1431 		++ctx->pin_count;
1432 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433 	}
1434 	return ctx;
1435 }
1436 
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439 	unsigned long flags;
1440 
1441 	raw_spin_lock_irqsave(&ctx->lock, flags);
1442 	--ctx->pin_count;
1443 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445 
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451 	u64 now = perf_clock();
1452 
1453 	ctx->time += now - ctx->timestamp;
1454 	ctx->timestamp = now;
1455 }
1456 
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459 	struct perf_event_context *ctx = event->ctx;
1460 
1461 	if (is_cgroup_event(event))
1462 		return perf_cgroup_event_time(event);
1463 
1464 	return ctx ? ctx->time : 0;
1465 }
1466 
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469 	struct perf_event_context *ctx = event->ctx;
1470 	enum event_type_t event_type;
1471 
1472 	lockdep_assert_held(&ctx->lock);
1473 
1474 	/*
1475 	 * It's 'group type', really, because if our group leader is
1476 	 * pinned, so are we.
1477 	 */
1478 	if (event->group_leader != event)
1479 		event = event->group_leader;
1480 
1481 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 	if (!ctx->task)
1483 		event_type |= EVENT_CPU;
1484 
1485 	return event_type;
1486 }
1487 
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493 	RB_CLEAR_NODE(&event->group_node);
1494 	event->group_index = 0;
1495 }
1496 
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504 	if (event->attr.pinned)
1505 		return &ctx->pinned_groups;
1506 	else
1507 		return &ctx->flexible_groups;
1508 }
1509 
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515 	groups->tree = RB_ROOT;
1516 	groups->index = 0;
1517 }
1518 
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528 	if (left->cpu < right->cpu)
1529 		return true;
1530 	if (left->cpu > right->cpu)
1531 		return false;
1532 
1533 	if (left->group_index < right->group_index)
1534 		return true;
1535 	if (left->group_index > right->group_index)
1536 		return false;
1537 
1538 	return false;
1539 }
1540 
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548 			 struct perf_event *event)
1549 {
1550 	struct perf_event *node_event;
1551 	struct rb_node *parent;
1552 	struct rb_node **node;
1553 
1554 	event->group_index = ++groups->index;
1555 
1556 	node = &groups->tree.rb_node;
1557 	parent = *node;
1558 
1559 	while (*node) {
1560 		parent = *node;
1561 		node_event = container_of(*node, struct perf_event, group_node);
1562 
1563 		if (perf_event_groups_less(event, node_event))
1564 			node = &parent->rb_left;
1565 		else
1566 			node = &parent->rb_right;
1567 	}
1568 
1569 	rb_link_node(&event->group_node, parent, node);
1570 	rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572 
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579 	struct perf_event_groups *groups;
1580 
1581 	groups = get_event_groups(event, ctx);
1582 	perf_event_groups_insert(groups, event);
1583 }
1584 
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590 			 struct perf_event *event)
1591 {
1592 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 		     RB_EMPTY_ROOT(&groups->tree));
1594 
1595 	rb_erase(&event->group_node, &groups->tree);
1596 	init_event_group(event);
1597 }
1598 
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605 	struct perf_event_groups *groups;
1606 
1607 	groups = get_event_groups(event, ctx);
1608 	perf_event_groups_delete(groups, event);
1609 }
1610 
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617 	struct perf_event *node_event = NULL, *match = NULL;
1618 	struct rb_node *node = groups->tree.rb_node;
1619 
1620 	while (node) {
1621 		node_event = container_of(node, struct perf_event, group_node);
1622 
1623 		if (cpu < node_event->cpu) {
1624 			node = node->rb_left;
1625 		} else if (cpu > node_event->cpu) {
1626 			node = node->rb_right;
1627 		} else {
1628 			match = node_event;
1629 			node = node->rb_left;
1630 		}
1631 	}
1632 
1633 	return match;
1634 }
1635 
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642 	struct perf_event *next;
1643 
1644 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 	if (next && next->cpu == event->cpu)
1646 		return next;
1647 
1648 	return NULL;
1649 }
1650 
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)			\
1655 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1656 				typeof(*event), group_node); event;	\
1657 		event = rb_entry_safe(rb_next(&event->group_node),	\
1658 				typeof(*event), group_node))
1659 
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667 	lockdep_assert_held(&ctx->lock);
1668 
1669 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 	event->attach_state |= PERF_ATTACH_CONTEXT;
1671 
1672 	event->tstamp = perf_event_time(event);
1673 
1674 	/*
1675 	 * If we're a stand alone event or group leader, we go to the context
1676 	 * list, group events are kept attached to the group so that
1677 	 * perf_group_detach can, at all times, locate all siblings.
1678 	 */
1679 	if (event->group_leader == event) {
1680 		event->group_caps = event->event_caps;
1681 		add_event_to_groups(event, ctx);
1682 	}
1683 
1684 	list_update_cgroup_event(event, ctx, true);
1685 
1686 	list_add_rcu(&event->event_entry, &ctx->event_list);
1687 	ctx->nr_events++;
1688 	if (event->attr.inherit_stat)
1689 		ctx->nr_stat++;
1690 
1691 	ctx->generation++;
1692 }
1693 
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 					      PERF_EVENT_STATE_INACTIVE;
1701 }
1702 
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705 	int entry = sizeof(u64); /* value */
1706 	int size = 0;
1707 	int nr = 1;
1708 
1709 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 		size += sizeof(u64);
1711 
1712 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 		size += sizeof(u64);
1714 
1715 	if (event->attr.read_format & PERF_FORMAT_ID)
1716 		entry += sizeof(u64);
1717 
1718 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719 		nr += nr_siblings;
1720 		size += sizeof(u64);
1721 	}
1722 
1723 	size += entry * nr;
1724 	event->read_size = size;
1725 }
1726 
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729 	struct perf_sample_data *data;
1730 	u16 size = 0;
1731 
1732 	if (sample_type & PERF_SAMPLE_IP)
1733 		size += sizeof(data->ip);
1734 
1735 	if (sample_type & PERF_SAMPLE_ADDR)
1736 		size += sizeof(data->addr);
1737 
1738 	if (sample_type & PERF_SAMPLE_PERIOD)
1739 		size += sizeof(data->period);
1740 
1741 	if (sample_type & PERF_SAMPLE_WEIGHT)
1742 		size += sizeof(data->weight);
1743 
1744 	if (sample_type & PERF_SAMPLE_READ)
1745 		size += event->read_size;
1746 
1747 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 		size += sizeof(data->data_src.val);
1749 
1750 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 		size += sizeof(data->txn);
1752 
1753 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 		size += sizeof(data->phys_addr);
1755 
1756 	event->header_size = size;
1757 }
1758 
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765 	__perf_event_read_size(event,
1766 			       event->group_leader->nr_siblings);
1767 	__perf_event_header_size(event, event->attr.sample_type);
1768 }
1769 
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772 	struct perf_sample_data *data;
1773 	u64 sample_type = event->attr.sample_type;
1774 	u16 size = 0;
1775 
1776 	if (sample_type & PERF_SAMPLE_TID)
1777 		size += sizeof(data->tid_entry);
1778 
1779 	if (sample_type & PERF_SAMPLE_TIME)
1780 		size += sizeof(data->time);
1781 
1782 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 		size += sizeof(data->id);
1784 
1785 	if (sample_type & PERF_SAMPLE_ID)
1786 		size += sizeof(data->id);
1787 
1788 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 		size += sizeof(data->stream_id);
1790 
1791 	if (sample_type & PERF_SAMPLE_CPU)
1792 		size += sizeof(data->cpu_entry);
1793 
1794 	event->id_header_size = size;
1795 }
1796 
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799 	/*
1800 	 * The values computed here will be over-written when we actually
1801 	 * attach the event.
1802 	 */
1803 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 	perf_event__id_header_size(event);
1806 
1807 	/*
1808 	 * Sum the lot; should not exceed the 64k limit we have on records.
1809 	 * Conservative limit to allow for callchains and other variable fields.
1810 	 */
1811 	if (event->read_size + event->header_size +
1812 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 		return false;
1814 
1815 	return true;
1816 }
1817 
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820 	struct perf_event *group_leader = event->group_leader, *pos;
1821 
1822 	lockdep_assert_held(&event->ctx->lock);
1823 
1824 	/*
1825 	 * We can have double attach due to group movement in perf_event_open.
1826 	 */
1827 	if (event->attach_state & PERF_ATTACH_GROUP)
1828 		return;
1829 
1830 	event->attach_state |= PERF_ATTACH_GROUP;
1831 
1832 	if (group_leader == event)
1833 		return;
1834 
1835 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836 
1837 	group_leader->group_caps &= event->event_caps;
1838 
1839 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840 	group_leader->nr_siblings++;
1841 
1842 	perf_event__header_size(group_leader);
1843 
1844 	for_each_sibling_event(pos, group_leader)
1845 		perf_event__header_size(pos);
1846 }
1847 
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855 	WARN_ON_ONCE(event->ctx != ctx);
1856 	lockdep_assert_held(&ctx->lock);
1857 
1858 	/*
1859 	 * We can have double detach due to exit/hot-unplug + close.
1860 	 */
1861 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862 		return;
1863 
1864 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865 
1866 	list_update_cgroup_event(event, ctx, false);
1867 
1868 	ctx->nr_events--;
1869 	if (event->attr.inherit_stat)
1870 		ctx->nr_stat--;
1871 
1872 	list_del_rcu(&event->event_entry);
1873 
1874 	if (event->group_leader == event)
1875 		del_event_from_groups(event, ctx);
1876 
1877 	/*
1878 	 * If event was in error state, then keep it
1879 	 * that way, otherwise bogus counts will be
1880 	 * returned on read(). The only way to get out
1881 	 * of error state is by explicit re-enabling
1882 	 * of the event
1883 	 */
1884 	if (event->state > PERF_EVENT_STATE_OFF)
1885 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886 
1887 	ctx->generation++;
1888 }
1889 
1890 static int
1891 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1892 {
1893 	if (!has_aux(aux_event))
1894 		return 0;
1895 
1896 	if (!event->pmu->aux_output_match)
1897 		return 0;
1898 
1899 	return event->pmu->aux_output_match(aux_event);
1900 }
1901 
1902 static void put_event(struct perf_event *event);
1903 static void event_sched_out(struct perf_event *event,
1904 			    struct perf_cpu_context *cpuctx,
1905 			    struct perf_event_context *ctx);
1906 
1907 static void perf_put_aux_event(struct perf_event *event)
1908 {
1909 	struct perf_event_context *ctx = event->ctx;
1910 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1911 	struct perf_event *iter;
1912 
1913 	/*
1914 	 * If event uses aux_event tear down the link
1915 	 */
1916 	if (event->aux_event) {
1917 		iter = event->aux_event;
1918 		event->aux_event = NULL;
1919 		put_event(iter);
1920 		return;
1921 	}
1922 
1923 	/*
1924 	 * If the event is an aux_event, tear down all links to
1925 	 * it from other events.
1926 	 */
1927 	for_each_sibling_event(iter, event->group_leader) {
1928 		if (iter->aux_event != event)
1929 			continue;
1930 
1931 		iter->aux_event = NULL;
1932 		put_event(event);
1933 
1934 		/*
1935 		 * If it's ACTIVE, schedule it out and put it into ERROR
1936 		 * state so that we don't try to schedule it again. Note
1937 		 * that perf_event_enable() will clear the ERROR status.
1938 		 */
1939 		event_sched_out(iter, cpuctx, ctx);
1940 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1941 	}
1942 }
1943 
1944 static int perf_get_aux_event(struct perf_event *event,
1945 			      struct perf_event *group_leader)
1946 {
1947 	/*
1948 	 * Our group leader must be an aux event if we want to be
1949 	 * an aux_output. This way, the aux event will precede its
1950 	 * aux_output events in the group, and therefore will always
1951 	 * schedule first.
1952 	 */
1953 	if (!group_leader)
1954 		return 0;
1955 
1956 	if (!perf_aux_output_match(event, group_leader))
1957 		return 0;
1958 
1959 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
1960 		return 0;
1961 
1962 	/*
1963 	 * Link aux_outputs to their aux event; this is undone in
1964 	 * perf_group_detach() by perf_put_aux_event(). When the
1965 	 * group in torn down, the aux_output events loose their
1966 	 * link to the aux_event and can't schedule any more.
1967 	 */
1968 	event->aux_event = group_leader;
1969 
1970 	return 1;
1971 }
1972 
1973 static void perf_group_detach(struct perf_event *event)
1974 {
1975 	struct perf_event *sibling, *tmp;
1976 	struct perf_event_context *ctx = event->ctx;
1977 
1978 	lockdep_assert_held(&ctx->lock);
1979 
1980 	/*
1981 	 * We can have double detach due to exit/hot-unplug + close.
1982 	 */
1983 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1984 		return;
1985 
1986 	event->attach_state &= ~PERF_ATTACH_GROUP;
1987 
1988 	perf_put_aux_event(event);
1989 
1990 	/*
1991 	 * If this is a sibling, remove it from its group.
1992 	 */
1993 	if (event->group_leader != event) {
1994 		list_del_init(&event->sibling_list);
1995 		event->group_leader->nr_siblings--;
1996 		goto out;
1997 	}
1998 
1999 	/*
2000 	 * If this was a group event with sibling events then
2001 	 * upgrade the siblings to singleton events by adding them
2002 	 * to whatever list we are on.
2003 	 */
2004 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2005 
2006 		sibling->group_leader = sibling;
2007 		list_del_init(&sibling->sibling_list);
2008 
2009 		/* Inherit group flags from the previous leader */
2010 		sibling->group_caps = event->group_caps;
2011 
2012 		if (!RB_EMPTY_NODE(&event->group_node)) {
2013 			add_event_to_groups(sibling, event->ctx);
2014 
2015 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2016 				struct list_head *list = sibling->attr.pinned ?
2017 					&ctx->pinned_active : &ctx->flexible_active;
2018 
2019 				list_add_tail(&sibling->active_list, list);
2020 			}
2021 		}
2022 
2023 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2024 	}
2025 
2026 out:
2027 	perf_event__header_size(event->group_leader);
2028 
2029 	for_each_sibling_event(tmp, event->group_leader)
2030 		perf_event__header_size(tmp);
2031 }
2032 
2033 static bool is_orphaned_event(struct perf_event *event)
2034 {
2035 	return event->state == PERF_EVENT_STATE_DEAD;
2036 }
2037 
2038 static inline int __pmu_filter_match(struct perf_event *event)
2039 {
2040 	struct pmu *pmu = event->pmu;
2041 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2042 }
2043 
2044 /*
2045  * Check whether we should attempt to schedule an event group based on
2046  * PMU-specific filtering. An event group can consist of HW and SW events,
2047  * potentially with a SW leader, so we must check all the filters, to
2048  * determine whether a group is schedulable:
2049  */
2050 static inline int pmu_filter_match(struct perf_event *event)
2051 {
2052 	struct perf_event *sibling;
2053 
2054 	if (!__pmu_filter_match(event))
2055 		return 0;
2056 
2057 	for_each_sibling_event(sibling, event) {
2058 		if (!__pmu_filter_match(sibling))
2059 			return 0;
2060 	}
2061 
2062 	return 1;
2063 }
2064 
2065 static inline int
2066 event_filter_match(struct perf_event *event)
2067 {
2068 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2069 	       perf_cgroup_match(event) && pmu_filter_match(event);
2070 }
2071 
2072 static void
2073 event_sched_out(struct perf_event *event,
2074 		  struct perf_cpu_context *cpuctx,
2075 		  struct perf_event_context *ctx)
2076 {
2077 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2078 
2079 	WARN_ON_ONCE(event->ctx != ctx);
2080 	lockdep_assert_held(&ctx->lock);
2081 
2082 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2083 		return;
2084 
2085 	/*
2086 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2087 	 * we can schedule events _OUT_ individually through things like
2088 	 * __perf_remove_from_context().
2089 	 */
2090 	list_del_init(&event->active_list);
2091 
2092 	perf_pmu_disable(event->pmu);
2093 
2094 	event->pmu->del(event, 0);
2095 	event->oncpu = -1;
2096 
2097 	if (READ_ONCE(event->pending_disable) >= 0) {
2098 		WRITE_ONCE(event->pending_disable, -1);
2099 		state = PERF_EVENT_STATE_OFF;
2100 	}
2101 	perf_event_set_state(event, state);
2102 
2103 	if (!is_software_event(event))
2104 		cpuctx->active_oncpu--;
2105 	if (!--ctx->nr_active)
2106 		perf_event_ctx_deactivate(ctx);
2107 	if (event->attr.freq && event->attr.sample_freq)
2108 		ctx->nr_freq--;
2109 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2110 		cpuctx->exclusive = 0;
2111 
2112 	perf_pmu_enable(event->pmu);
2113 }
2114 
2115 static void
2116 group_sched_out(struct perf_event *group_event,
2117 		struct perf_cpu_context *cpuctx,
2118 		struct perf_event_context *ctx)
2119 {
2120 	struct perf_event *event;
2121 
2122 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2123 		return;
2124 
2125 	perf_pmu_disable(ctx->pmu);
2126 
2127 	event_sched_out(group_event, cpuctx, ctx);
2128 
2129 	/*
2130 	 * Schedule out siblings (if any):
2131 	 */
2132 	for_each_sibling_event(event, group_event)
2133 		event_sched_out(event, cpuctx, ctx);
2134 
2135 	perf_pmu_enable(ctx->pmu);
2136 
2137 	if (group_event->attr.exclusive)
2138 		cpuctx->exclusive = 0;
2139 }
2140 
2141 #define DETACH_GROUP	0x01UL
2142 
2143 /*
2144  * Cross CPU call to remove a performance event
2145  *
2146  * We disable the event on the hardware level first. After that we
2147  * remove it from the context list.
2148  */
2149 static void
2150 __perf_remove_from_context(struct perf_event *event,
2151 			   struct perf_cpu_context *cpuctx,
2152 			   struct perf_event_context *ctx,
2153 			   void *info)
2154 {
2155 	unsigned long flags = (unsigned long)info;
2156 
2157 	if (ctx->is_active & EVENT_TIME) {
2158 		update_context_time(ctx);
2159 		update_cgrp_time_from_cpuctx(cpuctx);
2160 	}
2161 
2162 	event_sched_out(event, cpuctx, ctx);
2163 	if (flags & DETACH_GROUP)
2164 		perf_group_detach(event);
2165 	list_del_event(event, ctx);
2166 
2167 	if (!ctx->nr_events && ctx->is_active) {
2168 		ctx->is_active = 0;
2169 		if (ctx->task) {
2170 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2171 			cpuctx->task_ctx = NULL;
2172 		}
2173 	}
2174 }
2175 
2176 /*
2177  * Remove the event from a task's (or a CPU's) list of events.
2178  *
2179  * If event->ctx is a cloned context, callers must make sure that
2180  * every task struct that event->ctx->task could possibly point to
2181  * remains valid.  This is OK when called from perf_release since
2182  * that only calls us on the top-level context, which can't be a clone.
2183  * When called from perf_event_exit_task, it's OK because the
2184  * context has been detached from its task.
2185  */
2186 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2187 {
2188 	struct perf_event_context *ctx = event->ctx;
2189 
2190 	lockdep_assert_held(&ctx->mutex);
2191 
2192 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2193 
2194 	/*
2195 	 * The above event_function_call() can NO-OP when it hits
2196 	 * TASK_TOMBSTONE. In that case we must already have been detached
2197 	 * from the context (by perf_event_exit_event()) but the grouping
2198 	 * might still be in-tact.
2199 	 */
2200 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2201 	if ((flags & DETACH_GROUP) &&
2202 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2203 		/*
2204 		 * Since in that case we cannot possibly be scheduled, simply
2205 		 * detach now.
2206 		 */
2207 		raw_spin_lock_irq(&ctx->lock);
2208 		perf_group_detach(event);
2209 		raw_spin_unlock_irq(&ctx->lock);
2210 	}
2211 }
2212 
2213 /*
2214  * Cross CPU call to disable a performance event
2215  */
2216 static void __perf_event_disable(struct perf_event *event,
2217 				 struct perf_cpu_context *cpuctx,
2218 				 struct perf_event_context *ctx,
2219 				 void *info)
2220 {
2221 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2222 		return;
2223 
2224 	if (ctx->is_active & EVENT_TIME) {
2225 		update_context_time(ctx);
2226 		update_cgrp_time_from_event(event);
2227 	}
2228 
2229 	if (event == event->group_leader)
2230 		group_sched_out(event, cpuctx, ctx);
2231 	else
2232 		event_sched_out(event, cpuctx, ctx);
2233 
2234 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2235 }
2236 
2237 /*
2238  * Disable an event.
2239  *
2240  * If event->ctx is a cloned context, callers must make sure that
2241  * every task struct that event->ctx->task could possibly point to
2242  * remains valid.  This condition is satisfied when called through
2243  * perf_event_for_each_child or perf_event_for_each because they
2244  * hold the top-level event's child_mutex, so any descendant that
2245  * goes to exit will block in perf_event_exit_event().
2246  *
2247  * When called from perf_pending_event it's OK because event->ctx
2248  * is the current context on this CPU and preemption is disabled,
2249  * hence we can't get into perf_event_task_sched_out for this context.
2250  */
2251 static void _perf_event_disable(struct perf_event *event)
2252 {
2253 	struct perf_event_context *ctx = event->ctx;
2254 
2255 	raw_spin_lock_irq(&ctx->lock);
2256 	if (event->state <= PERF_EVENT_STATE_OFF) {
2257 		raw_spin_unlock_irq(&ctx->lock);
2258 		return;
2259 	}
2260 	raw_spin_unlock_irq(&ctx->lock);
2261 
2262 	event_function_call(event, __perf_event_disable, NULL);
2263 }
2264 
2265 void perf_event_disable_local(struct perf_event *event)
2266 {
2267 	event_function_local(event, __perf_event_disable, NULL);
2268 }
2269 
2270 /*
2271  * Strictly speaking kernel users cannot create groups and therefore this
2272  * interface does not need the perf_event_ctx_lock() magic.
2273  */
2274 void perf_event_disable(struct perf_event *event)
2275 {
2276 	struct perf_event_context *ctx;
2277 
2278 	ctx = perf_event_ctx_lock(event);
2279 	_perf_event_disable(event);
2280 	perf_event_ctx_unlock(event, ctx);
2281 }
2282 EXPORT_SYMBOL_GPL(perf_event_disable);
2283 
2284 void perf_event_disable_inatomic(struct perf_event *event)
2285 {
2286 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2287 	/* can fail, see perf_pending_event_disable() */
2288 	irq_work_queue(&event->pending);
2289 }
2290 
2291 static void perf_set_shadow_time(struct perf_event *event,
2292 				 struct perf_event_context *ctx)
2293 {
2294 	/*
2295 	 * use the correct time source for the time snapshot
2296 	 *
2297 	 * We could get by without this by leveraging the
2298 	 * fact that to get to this function, the caller
2299 	 * has most likely already called update_context_time()
2300 	 * and update_cgrp_time_xx() and thus both timestamp
2301 	 * are identical (or very close). Given that tstamp is,
2302 	 * already adjusted for cgroup, we could say that:
2303 	 *    tstamp - ctx->timestamp
2304 	 * is equivalent to
2305 	 *    tstamp - cgrp->timestamp.
2306 	 *
2307 	 * Then, in perf_output_read(), the calculation would
2308 	 * work with no changes because:
2309 	 * - event is guaranteed scheduled in
2310 	 * - no scheduled out in between
2311 	 * - thus the timestamp would be the same
2312 	 *
2313 	 * But this is a bit hairy.
2314 	 *
2315 	 * So instead, we have an explicit cgroup call to remain
2316 	 * within the time time source all along. We believe it
2317 	 * is cleaner and simpler to understand.
2318 	 */
2319 	if (is_cgroup_event(event))
2320 		perf_cgroup_set_shadow_time(event, event->tstamp);
2321 	else
2322 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2323 }
2324 
2325 #define MAX_INTERRUPTS (~0ULL)
2326 
2327 static void perf_log_throttle(struct perf_event *event, int enable);
2328 static void perf_log_itrace_start(struct perf_event *event);
2329 
2330 static int
2331 event_sched_in(struct perf_event *event,
2332 		 struct perf_cpu_context *cpuctx,
2333 		 struct perf_event_context *ctx)
2334 {
2335 	int ret = 0;
2336 
2337 	lockdep_assert_held(&ctx->lock);
2338 
2339 	if (event->state <= PERF_EVENT_STATE_OFF)
2340 		return 0;
2341 
2342 	WRITE_ONCE(event->oncpu, smp_processor_id());
2343 	/*
2344 	 * Order event::oncpu write to happen before the ACTIVE state is
2345 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2346 	 * ->oncpu if it sees ACTIVE.
2347 	 */
2348 	smp_wmb();
2349 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2350 
2351 	/*
2352 	 * Unthrottle events, since we scheduled we might have missed several
2353 	 * ticks already, also for a heavily scheduling task there is little
2354 	 * guarantee it'll get a tick in a timely manner.
2355 	 */
2356 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2357 		perf_log_throttle(event, 1);
2358 		event->hw.interrupts = 0;
2359 	}
2360 
2361 	perf_pmu_disable(event->pmu);
2362 
2363 	perf_set_shadow_time(event, ctx);
2364 
2365 	perf_log_itrace_start(event);
2366 
2367 	if (event->pmu->add(event, PERF_EF_START)) {
2368 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2369 		event->oncpu = -1;
2370 		ret = -EAGAIN;
2371 		goto out;
2372 	}
2373 
2374 	if (!is_software_event(event))
2375 		cpuctx->active_oncpu++;
2376 	if (!ctx->nr_active++)
2377 		perf_event_ctx_activate(ctx);
2378 	if (event->attr.freq && event->attr.sample_freq)
2379 		ctx->nr_freq++;
2380 
2381 	if (event->attr.exclusive)
2382 		cpuctx->exclusive = 1;
2383 
2384 out:
2385 	perf_pmu_enable(event->pmu);
2386 
2387 	return ret;
2388 }
2389 
2390 static int
2391 group_sched_in(struct perf_event *group_event,
2392 	       struct perf_cpu_context *cpuctx,
2393 	       struct perf_event_context *ctx)
2394 {
2395 	struct perf_event *event, *partial_group = NULL;
2396 	struct pmu *pmu = ctx->pmu;
2397 
2398 	if (group_event->state == PERF_EVENT_STATE_OFF)
2399 		return 0;
2400 
2401 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2402 
2403 	if (event_sched_in(group_event, cpuctx, ctx)) {
2404 		pmu->cancel_txn(pmu);
2405 		perf_mux_hrtimer_restart(cpuctx);
2406 		return -EAGAIN;
2407 	}
2408 
2409 	/*
2410 	 * Schedule in siblings as one group (if any):
2411 	 */
2412 	for_each_sibling_event(event, group_event) {
2413 		if (event_sched_in(event, cpuctx, ctx)) {
2414 			partial_group = event;
2415 			goto group_error;
2416 		}
2417 	}
2418 
2419 	if (!pmu->commit_txn(pmu))
2420 		return 0;
2421 
2422 group_error:
2423 	/*
2424 	 * Groups can be scheduled in as one unit only, so undo any
2425 	 * partial group before returning:
2426 	 * The events up to the failed event are scheduled out normally.
2427 	 */
2428 	for_each_sibling_event(event, group_event) {
2429 		if (event == partial_group)
2430 			break;
2431 
2432 		event_sched_out(event, cpuctx, ctx);
2433 	}
2434 	event_sched_out(group_event, cpuctx, ctx);
2435 
2436 	pmu->cancel_txn(pmu);
2437 
2438 	perf_mux_hrtimer_restart(cpuctx);
2439 
2440 	return -EAGAIN;
2441 }
2442 
2443 /*
2444  * Work out whether we can put this event group on the CPU now.
2445  */
2446 static int group_can_go_on(struct perf_event *event,
2447 			   struct perf_cpu_context *cpuctx,
2448 			   int can_add_hw)
2449 {
2450 	/*
2451 	 * Groups consisting entirely of software events can always go on.
2452 	 */
2453 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2454 		return 1;
2455 	/*
2456 	 * If an exclusive group is already on, no other hardware
2457 	 * events can go on.
2458 	 */
2459 	if (cpuctx->exclusive)
2460 		return 0;
2461 	/*
2462 	 * If this group is exclusive and there are already
2463 	 * events on the CPU, it can't go on.
2464 	 */
2465 	if (event->attr.exclusive && cpuctx->active_oncpu)
2466 		return 0;
2467 	/*
2468 	 * Otherwise, try to add it if all previous groups were able
2469 	 * to go on.
2470 	 */
2471 	return can_add_hw;
2472 }
2473 
2474 static void add_event_to_ctx(struct perf_event *event,
2475 			       struct perf_event_context *ctx)
2476 {
2477 	list_add_event(event, ctx);
2478 	perf_group_attach(event);
2479 }
2480 
2481 static void ctx_sched_out(struct perf_event_context *ctx,
2482 			  struct perf_cpu_context *cpuctx,
2483 			  enum event_type_t event_type);
2484 static void
2485 ctx_sched_in(struct perf_event_context *ctx,
2486 	     struct perf_cpu_context *cpuctx,
2487 	     enum event_type_t event_type,
2488 	     struct task_struct *task);
2489 
2490 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2491 			       struct perf_event_context *ctx,
2492 			       enum event_type_t event_type)
2493 {
2494 	if (!cpuctx->task_ctx)
2495 		return;
2496 
2497 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2498 		return;
2499 
2500 	ctx_sched_out(ctx, cpuctx, event_type);
2501 }
2502 
2503 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2504 				struct perf_event_context *ctx,
2505 				struct task_struct *task)
2506 {
2507 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2508 	if (ctx)
2509 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2510 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2511 	if (ctx)
2512 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2513 }
2514 
2515 /*
2516  * We want to maintain the following priority of scheduling:
2517  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2518  *  - task pinned (EVENT_PINNED)
2519  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2520  *  - task flexible (EVENT_FLEXIBLE).
2521  *
2522  * In order to avoid unscheduling and scheduling back in everything every
2523  * time an event is added, only do it for the groups of equal priority and
2524  * below.
2525  *
2526  * This can be called after a batch operation on task events, in which case
2527  * event_type is a bit mask of the types of events involved. For CPU events,
2528  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2529  */
2530 static void ctx_resched(struct perf_cpu_context *cpuctx,
2531 			struct perf_event_context *task_ctx,
2532 			enum event_type_t event_type)
2533 {
2534 	enum event_type_t ctx_event_type;
2535 	bool cpu_event = !!(event_type & EVENT_CPU);
2536 
2537 	/*
2538 	 * If pinned groups are involved, flexible groups also need to be
2539 	 * scheduled out.
2540 	 */
2541 	if (event_type & EVENT_PINNED)
2542 		event_type |= EVENT_FLEXIBLE;
2543 
2544 	ctx_event_type = event_type & EVENT_ALL;
2545 
2546 	perf_pmu_disable(cpuctx->ctx.pmu);
2547 	if (task_ctx)
2548 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2549 
2550 	/*
2551 	 * Decide which cpu ctx groups to schedule out based on the types
2552 	 * of events that caused rescheduling:
2553 	 *  - EVENT_CPU: schedule out corresponding groups;
2554 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2555 	 *  - otherwise, do nothing more.
2556 	 */
2557 	if (cpu_event)
2558 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2559 	else if (ctx_event_type & EVENT_PINNED)
2560 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2561 
2562 	perf_event_sched_in(cpuctx, task_ctx, current);
2563 	perf_pmu_enable(cpuctx->ctx.pmu);
2564 }
2565 
2566 void perf_pmu_resched(struct pmu *pmu)
2567 {
2568 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2569 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2570 
2571 	perf_ctx_lock(cpuctx, task_ctx);
2572 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2573 	perf_ctx_unlock(cpuctx, task_ctx);
2574 }
2575 
2576 /*
2577  * Cross CPU call to install and enable a performance event
2578  *
2579  * Very similar to remote_function() + event_function() but cannot assume that
2580  * things like ctx->is_active and cpuctx->task_ctx are set.
2581  */
2582 static int  __perf_install_in_context(void *info)
2583 {
2584 	struct perf_event *event = info;
2585 	struct perf_event_context *ctx = event->ctx;
2586 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2587 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2588 	bool reprogram = true;
2589 	int ret = 0;
2590 
2591 	raw_spin_lock(&cpuctx->ctx.lock);
2592 	if (ctx->task) {
2593 		raw_spin_lock(&ctx->lock);
2594 		task_ctx = ctx;
2595 
2596 		reprogram = (ctx->task == current);
2597 
2598 		/*
2599 		 * If the task is running, it must be running on this CPU,
2600 		 * otherwise we cannot reprogram things.
2601 		 *
2602 		 * If its not running, we don't care, ctx->lock will
2603 		 * serialize against it becoming runnable.
2604 		 */
2605 		if (task_curr(ctx->task) && !reprogram) {
2606 			ret = -ESRCH;
2607 			goto unlock;
2608 		}
2609 
2610 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2611 	} else if (task_ctx) {
2612 		raw_spin_lock(&task_ctx->lock);
2613 	}
2614 
2615 #ifdef CONFIG_CGROUP_PERF
2616 	if (is_cgroup_event(event)) {
2617 		/*
2618 		 * If the current cgroup doesn't match the event's
2619 		 * cgroup, we should not try to schedule it.
2620 		 */
2621 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2622 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2623 					event->cgrp->css.cgroup);
2624 	}
2625 #endif
2626 
2627 	if (reprogram) {
2628 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2629 		add_event_to_ctx(event, ctx);
2630 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2631 	} else {
2632 		add_event_to_ctx(event, ctx);
2633 	}
2634 
2635 unlock:
2636 	perf_ctx_unlock(cpuctx, task_ctx);
2637 
2638 	return ret;
2639 }
2640 
2641 static bool exclusive_event_installable(struct perf_event *event,
2642 					struct perf_event_context *ctx);
2643 
2644 /*
2645  * Attach a performance event to a context.
2646  *
2647  * Very similar to event_function_call, see comment there.
2648  */
2649 static void
2650 perf_install_in_context(struct perf_event_context *ctx,
2651 			struct perf_event *event,
2652 			int cpu)
2653 {
2654 	struct task_struct *task = READ_ONCE(ctx->task);
2655 
2656 	lockdep_assert_held(&ctx->mutex);
2657 
2658 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2659 
2660 	if (event->cpu != -1)
2661 		event->cpu = cpu;
2662 
2663 	/*
2664 	 * Ensures that if we can observe event->ctx, both the event and ctx
2665 	 * will be 'complete'. See perf_iterate_sb_cpu().
2666 	 */
2667 	smp_store_release(&event->ctx, ctx);
2668 
2669 	if (!task) {
2670 		cpu_function_call(cpu, __perf_install_in_context, event);
2671 		return;
2672 	}
2673 
2674 	/*
2675 	 * Should not happen, we validate the ctx is still alive before calling.
2676 	 */
2677 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2678 		return;
2679 
2680 	/*
2681 	 * Installing events is tricky because we cannot rely on ctx->is_active
2682 	 * to be set in case this is the nr_events 0 -> 1 transition.
2683 	 *
2684 	 * Instead we use task_curr(), which tells us if the task is running.
2685 	 * However, since we use task_curr() outside of rq::lock, we can race
2686 	 * against the actual state. This means the result can be wrong.
2687 	 *
2688 	 * If we get a false positive, we retry, this is harmless.
2689 	 *
2690 	 * If we get a false negative, things are complicated. If we are after
2691 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2692 	 * value must be correct. If we're before, it doesn't matter since
2693 	 * perf_event_context_sched_in() will program the counter.
2694 	 *
2695 	 * However, this hinges on the remote context switch having observed
2696 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2697 	 * ctx::lock in perf_event_context_sched_in().
2698 	 *
2699 	 * We do this by task_function_call(), if the IPI fails to hit the task
2700 	 * we know any future context switch of task must see the
2701 	 * perf_event_ctpx[] store.
2702 	 */
2703 
2704 	/*
2705 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2706 	 * task_cpu() load, such that if the IPI then does not find the task
2707 	 * running, a future context switch of that task must observe the
2708 	 * store.
2709 	 */
2710 	smp_mb();
2711 again:
2712 	if (!task_function_call(task, __perf_install_in_context, event))
2713 		return;
2714 
2715 	raw_spin_lock_irq(&ctx->lock);
2716 	task = ctx->task;
2717 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2718 		/*
2719 		 * Cannot happen because we already checked above (which also
2720 		 * cannot happen), and we hold ctx->mutex, which serializes us
2721 		 * against perf_event_exit_task_context().
2722 		 */
2723 		raw_spin_unlock_irq(&ctx->lock);
2724 		return;
2725 	}
2726 	/*
2727 	 * If the task is not running, ctx->lock will avoid it becoming so,
2728 	 * thus we can safely install the event.
2729 	 */
2730 	if (task_curr(task)) {
2731 		raw_spin_unlock_irq(&ctx->lock);
2732 		goto again;
2733 	}
2734 	add_event_to_ctx(event, ctx);
2735 	raw_spin_unlock_irq(&ctx->lock);
2736 }
2737 
2738 /*
2739  * Cross CPU call to enable a performance event
2740  */
2741 static void __perf_event_enable(struct perf_event *event,
2742 				struct perf_cpu_context *cpuctx,
2743 				struct perf_event_context *ctx,
2744 				void *info)
2745 {
2746 	struct perf_event *leader = event->group_leader;
2747 	struct perf_event_context *task_ctx;
2748 
2749 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2750 	    event->state <= PERF_EVENT_STATE_ERROR)
2751 		return;
2752 
2753 	if (ctx->is_active)
2754 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2755 
2756 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2757 
2758 	if (!ctx->is_active)
2759 		return;
2760 
2761 	if (!event_filter_match(event)) {
2762 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2763 		return;
2764 	}
2765 
2766 	/*
2767 	 * If the event is in a group and isn't the group leader,
2768 	 * then don't put it on unless the group is on.
2769 	 */
2770 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2771 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2772 		return;
2773 	}
2774 
2775 	task_ctx = cpuctx->task_ctx;
2776 	if (ctx->task)
2777 		WARN_ON_ONCE(task_ctx != ctx);
2778 
2779 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2780 }
2781 
2782 /*
2783  * Enable an event.
2784  *
2785  * If event->ctx is a cloned context, callers must make sure that
2786  * every task struct that event->ctx->task could possibly point to
2787  * remains valid.  This condition is satisfied when called through
2788  * perf_event_for_each_child or perf_event_for_each as described
2789  * for perf_event_disable.
2790  */
2791 static void _perf_event_enable(struct perf_event *event)
2792 {
2793 	struct perf_event_context *ctx = event->ctx;
2794 
2795 	raw_spin_lock_irq(&ctx->lock);
2796 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2797 	    event->state <  PERF_EVENT_STATE_ERROR) {
2798 		raw_spin_unlock_irq(&ctx->lock);
2799 		return;
2800 	}
2801 
2802 	/*
2803 	 * If the event is in error state, clear that first.
2804 	 *
2805 	 * That way, if we see the event in error state below, we know that it
2806 	 * has gone back into error state, as distinct from the task having
2807 	 * been scheduled away before the cross-call arrived.
2808 	 */
2809 	if (event->state == PERF_EVENT_STATE_ERROR)
2810 		event->state = PERF_EVENT_STATE_OFF;
2811 	raw_spin_unlock_irq(&ctx->lock);
2812 
2813 	event_function_call(event, __perf_event_enable, NULL);
2814 }
2815 
2816 /*
2817  * See perf_event_disable();
2818  */
2819 void perf_event_enable(struct perf_event *event)
2820 {
2821 	struct perf_event_context *ctx;
2822 
2823 	ctx = perf_event_ctx_lock(event);
2824 	_perf_event_enable(event);
2825 	perf_event_ctx_unlock(event, ctx);
2826 }
2827 EXPORT_SYMBOL_GPL(perf_event_enable);
2828 
2829 struct stop_event_data {
2830 	struct perf_event	*event;
2831 	unsigned int		restart;
2832 };
2833 
2834 static int __perf_event_stop(void *info)
2835 {
2836 	struct stop_event_data *sd = info;
2837 	struct perf_event *event = sd->event;
2838 
2839 	/* if it's already INACTIVE, do nothing */
2840 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2841 		return 0;
2842 
2843 	/* matches smp_wmb() in event_sched_in() */
2844 	smp_rmb();
2845 
2846 	/*
2847 	 * There is a window with interrupts enabled before we get here,
2848 	 * so we need to check again lest we try to stop another CPU's event.
2849 	 */
2850 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2851 		return -EAGAIN;
2852 
2853 	event->pmu->stop(event, PERF_EF_UPDATE);
2854 
2855 	/*
2856 	 * May race with the actual stop (through perf_pmu_output_stop()),
2857 	 * but it is only used for events with AUX ring buffer, and such
2858 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2859 	 * see comments in perf_aux_output_begin().
2860 	 *
2861 	 * Since this is happening on an event-local CPU, no trace is lost
2862 	 * while restarting.
2863 	 */
2864 	if (sd->restart)
2865 		event->pmu->start(event, 0);
2866 
2867 	return 0;
2868 }
2869 
2870 static int perf_event_stop(struct perf_event *event, int restart)
2871 {
2872 	struct stop_event_data sd = {
2873 		.event		= event,
2874 		.restart	= restart,
2875 	};
2876 	int ret = 0;
2877 
2878 	do {
2879 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2880 			return 0;
2881 
2882 		/* matches smp_wmb() in event_sched_in() */
2883 		smp_rmb();
2884 
2885 		/*
2886 		 * We only want to restart ACTIVE events, so if the event goes
2887 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2888 		 * fall through with ret==-ENXIO.
2889 		 */
2890 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2891 					__perf_event_stop, &sd);
2892 	} while (ret == -EAGAIN);
2893 
2894 	return ret;
2895 }
2896 
2897 /*
2898  * In order to contain the amount of racy and tricky in the address filter
2899  * configuration management, it is a two part process:
2900  *
2901  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2902  *      we update the addresses of corresponding vmas in
2903  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
2904  * (p2) when an event is scheduled in (pmu::add), it calls
2905  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2906  *      if the generation has changed since the previous call.
2907  *
2908  * If (p1) happens while the event is active, we restart it to force (p2).
2909  *
2910  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2911  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2912  *     ioctl;
2913  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2914  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2915  *     for reading;
2916  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2917  *     of exec.
2918  */
2919 void perf_event_addr_filters_sync(struct perf_event *event)
2920 {
2921 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2922 
2923 	if (!has_addr_filter(event))
2924 		return;
2925 
2926 	raw_spin_lock(&ifh->lock);
2927 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2928 		event->pmu->addr_filters_sync(event);
2929 		event->hw.addr_filters_gen = event->addr_filters_gen;
2930 	}
2931 	raw_spin_unlock(&ifh->lock);
2932 }
2933 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2934 
2935 static int _perf_event_refresh(struct perf_event *event, int refresh)
2936 {
2937 	/*
2938 	 * not supported on inherited events
2939 	 */
2940 	if (event->attr.inherit || !is_sampling_event(event))
2941 		return -EINVAL;
2942 
2943 	atomic_add(refresh, &event->event_limit);
2944 	_perf_event_enable(event);
2945 
2946 	return 0;
2947 }
2948 
2949 /*
2950  * See perf_event_disable()
2951  */
2952 int perf_event_refresh(struct perf_event *event, int refresh)
2953 {
2954 	struct perf_event_context *ctx;
2955 	int ret;
2956 
2957 	ctx = perf_event_ctx_lock(event);
2958 	ret = _perf_event_refresh(event, refresh);
2959 	perf_event_ctx_unlock(event, ctx);
2960 
2961 	return ret;
2962 }
2963 EXPORT_SYMBOL_GPL(perf_event_refresh);
2964 
2965 static int perf_event_modify_breakpoint(struct perf_event *bp,
2966 					 struct perf_event_attr *attr)
2967 {
2968 	int err;
2969 
2970 	_perf_event_disable(bp);
2971 
2972 	err = modify_user_hw_breakpoint_check(bp, attr, true);
2973 
2974 	if (!bp->attr.disabled)
2975 		_perf_event_enable(bp);
2976 
2977 	return err;
2978 }
2979 
2980 static int perf_event_modify_attr(struct perf_event *event,
2981 				  struct perf_event_attr *attr)
2982 {
2983 	if (event->attr.type != attr->type)
2984 		return -EINVAL;
2985 
2986 	switch (event->attr.type) {
2987 	case PERF_TYPE_BREAKPOINT:
2988 		return perf_event_modify_breakpoint(event, attr);
2989 	default:
2990 		/* Place holder for future additions. */
2991 		return -EOPNOTSUPP;
2992 	}
2993 }
2994 
2995 static void ctx_sched_out(struct perf_event_context *ctx,
2996 			  struct perf_cpu_context *cpuctx,
2997 			  enum event_type_t event_type)
2998 {
2999 	struct perf_event *event, *tmp;
3000 	int is_active = ctx->is_active;
3001 
3002 	lockdep_assert_held(&ctx->lock);
3003 
3004 	if (likely(!ctx->nr_events)) {
3005 		/*
3006 		 * See __perf_remove_from_context().
3007 		 */
3008 		WARN_ON_ONCE(ctx->is_active);
3009 		if (ctx->task)
3010 			WARN_ON_ONCE(cpuctx->task_ctx);
3011 		return;
3012 	}
3013 
3014 	ctx->is_active &= ~event_type;
3015 	if (!(ctx->is_active & EVENT_ALL))
3016 		ctx->is_active = 0;
3017 
3018 	if (ctx->task) {
3019 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3020 		if (!ctx->is_active)
3021 			cpuctx->task_ctx = NULL;
3022 	}
3023 
3024 	/*
3025 	 * Always update time if it was set; not only when it changes.
3026 	 * Otherwise we can 'forget' to update time for any but the last
3027 	 * context we sched out. For example:
3028 	 *
3029 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3030 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3031 	 *
3032 	 * would only update time for the pinned events.
3033 	 */
3034 	if (is_active & EVENT_TIME) {
3035 		/* update (and stop) ctx time */
3036 		update_context_time(ctx);
3037 		update_cgrp_time_from_cpuctx(cpuctx);
3038 	}
3039 
3040 	is_active ^= ctx->is_active; /* changed bits */
3041 
3042 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3043 		return;
3044 
3045 	/*
3046 	 * If we had been multiplexing, no rotations are necessary, now no events
3047 	 * are active.
3048 	 */
3049 	ctx->rotate_necessary = 0;
3050 
3051 	perf_pmu_disable(ctx->pmu);
3052 	if (is_active & EVENT_PINNED) {
3053 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3054 			group_sched_out(event, cpuctx, ctx);
3055 	}
3056 
3057 	if (is_active & EVENT_FLEXIBLE) {
3058 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3059 			group_sched_out(event, cpuctx, ctx);
3060 	}
3061 	perf_pmu_enable(ctx->pmu);
3062 }
3063 
3064 /*
3065  * Test whether two contexts are equivalent, i.e. whether they have both been
3066  * cloned from the same version of the same context.
3067  *
3068  * Equivalence is measured using a generation number in the context that is
3069  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3070  * and list_del_event().
3071  */
3072 static int context_equiv(struct perf_event_context *ctx1,
3073 			 struct perf_event_context *ctx2)
3074 {
3075 	lockdep_assert_held(&ctx1->lock);
3076 	lockdep_assert_held(&ctx2->lock);
3077 
3078 	/* Pinning disables the swap optimization */
3079 	if (ctx1->pin_count || ctx2->pin_count)
3080 		return 0;
3081 
3082 	/* If ctx1 is the parent of ctx2 */
3083 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3084 		return 1;
3085 
3086 	/* If ctx2 is the parent of ctx1 */
3087 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3088 		return 1;
3089 
3090 	/*
3091 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3092 	 * hierarchy, see perf_event_init_context().
3093 	 */
3094 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3095 			ctx1->parent_gen == ctx2->parent_gen)
3096 		return 1;
3097 
3098 	/* Unmatched */
3099 	return 0;
3100 }
3101 
3102 static void __perf_event_sync_stat(struct perf_event *event,
3103 				     struct perf_event *next_event)
3104 {
3105 	u64 value;
3106 
3107 	if (!event->attr.inherit_stat)
3108 		return;
3109 
3110 	/*
3111 	 * Update the event value, we cannot use perf_event_read()
3112 	 * because we're in the middle of a context switch and have IRQs
3113 	 * disabled, which upsets smp_call_function_single(), however
3114 	 * we know the event must be on the current CPU, therefore we
3115 	 * don't need to use it.
3116 	 */
3117 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3118 		event->pmu->read(event);
3119 
3120 	perf_event_update_time(event);
3121 
3122 	/*
3123 	 * In order to keep per-task stats reliable we need to flip the event
3124 	 * values when we flip the contexts.
3125 	 */
3126 	value = local64_read(&next_event->count);
3127 	value = local64_xchg(&event->count, value);
3128 	local64_set(&next_event->count, value);
3129 
3130 	swap(event->total_time_enabled, next_event->total_time_enabled);
3131 	swap(event->total_time_running, next_event->total_time_running);
3132 
3133 	/*
3134 	 * Since we swizzled the values, update the user visible data too.
3135 	 */
3136 	perf_event_update_userpage(event);
3137 	perf_event_update_userpage(next_event);
3138 }
3139 
3140 static void perf_event_sync_stat(struct perf_event_context *ctx,
3141 				   struct perf_event_context *next_ctx)
3142 {
3143 	struct perf_event *event, *next_event;
3144 
3145 	if (!ctx->nr_stat)
3146 		return;
3147 
3148 	update_context_time(ctx);
3149 
3150 	event = list_first_entry(&ctx->event_list,
3151 				   struct perf_event, event_entry);
3152 
3153 	next_event = list_first_entry(&next_ctx->event_list,
3154 					struct perf_event, event_entry);
3155 
3156 	while (&event->event_entry != &ctx->event_list &&
3157 	       &next_event->event_entry != &next_ctx->event_list) {
3158 
3159 		__perf_event_sync_stat(event, next_event);
3160 
3161 		event = list_next_entry(event, event_entry);
3162 		next_event = list_next_entry(next_event, event_entry);
3163 	}
3164 }
3165 
3166 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3167 					 struct task_struct *next)
3168 {
3169 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3170 	struct perf_event_context *next_ctx;
3171 	struct perf_event_context *parent, *next_parent;
3172 	struct perf_cpu_context *cpuctx;
3173 	int do_switch = 1;
3174 
3175 	if (likely(!ctx))
3176 		return;
3177 
3178 	cpuctx = __get_cpu_context(ctx);
3179 	if (!cpuctx->task_ctx)
3180 		return;
3181 
3182 	rcu_read_lock();
3183 	next_ctx = next->perf_event_ctxp[ctxn];
3184 	if (!next_ctx)
3185 		goto unlock;
3186 
3187 	parent = rcu_dereference(ctx->parent_ctx);
3188 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3189 
3190 	/* If neither context have a parent context; they cannot be clones. */
3191 	if (!parent && !next_parent)
3192 		goto unlock;
3193 
3194 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3195 		/*
3196 		 * Looks like the two contexts are clones, so we might be
3197 		 * able to optimize the context switch.  We lock both
3198 		 * contexts and check that they are clones under the
3199 		 * lock (including re-checking that neither has been
3200 		 * uncloned in the meantime).  It doesn't matter which
3201 		 * order we take the locks because no other cpu could
3202 		 * be trying to lock both of these tasks.
3203 		 */
3204 		raw_spin_lock(&ctx->lock);
3205 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3206 		if (context_equiv(ctx, next_ctx)) {
3207 			WRITE_ONCE(ctx->task, next);
3208 			WRITE_ONCE(next_ctx->task, task);
3209 
3210 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3211 
3212 			/*
3213 			 * RCU_INIT_POINTER here is safe because we've not
3214 			 * modified the ctx and the above modification of
3215 			 * ctx->task and ctx->task_ctx_data are immaterial
3216 			 * since those values are always verified under
3217 			 * ctx->lock which we're now holding.
3218 			 */
3219 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3220 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3221 
3222 			do_switch = 0;
3223 
3224 			perf_event_sync_stat(ctx, next_ctx);
3225 		}
3226 		raw_spin_unlock(&next_ctx->lock);
3227 		raw_spin_unlock(&ctx->lock);
3228 	}
3229 unlock:
3230 	rcu_read_unlock();
3231 
3232 	if (do_switch) {
3233 		raw_spin_lock(&ctx->lock);
3234 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3235 		raw_spin_unlock(&ctx->lock);
3236 	}
3237 }
3238 
3239 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3240 
3241 void perf_sched_cb_dec(struct pmu *pmu)
3242 {
3243 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3244 
3245 	this_cpu_dec(perf_sched_cb_usages);
3246 
3247 	if (!--cpuctx->sched_cb_usage)
3248 		list_del(&cpuctx->sched_cb_entry);
3249 }
3250 
3251 
3252 void perf_sched_cb_inc(struct pmu *pmu)
3253 {
3254 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3255 
3256 	if (!cpuctx->sched_cb_usage++)
3257 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3258 
3259 	this_cpu_inc(perf_sched_cb_usages);
3260 }
3261 
3262 /*
3263  * This function provides the context switch callback to the lower code
3264  * layer. It is invoked ONLY when the context switch callback is enabled.
3265  *
3266  * This callback is relevant even to per-cpu events; for example multi event
3267  * PEBS requires this to provide PID/TID information. This requires we flush
3268  * all queued PEBS records before we context switch to a new task.
3269  */
3270 static void perf_pmu_sched_task(struct task_struct *prev,
3271 				struct task_struct *next,
3272 				bool sched_in)
3273 {
3274 	struct perf_cpu_context *cpuctx;
3275 	struct pmu *pmu;
3276 
3277 	if (prev == next)
3278 		return;
3279 
3280 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3281 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3282 
3283 		if (WARN_ON_ONCE(!pmu->sched_task))
3284 			continue;
3285 
3286 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3287 		perf_pmu_disable(pmu);
3288 
3289 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3290 
3291 		perf_pmu_enable(pmu);
3292 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3293 	}
3294 }
3295 
3296 static void perf_event_switch(struct task_struct *task,
3297 			      struct task_struct *next_prev, bool sched_in);
3298 
3299 #define for_each_task_context_nr(ctxn)					\
3300 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3301 
3302 /*
3303  * Called from scheduler to remove the events of the current task,
3304  * with interrupts disabled.
3305  *
3306  * We stop each event and update the event value in event->count.
3307  *
3308  * This does not protect us against NMI, but disable()
3309  * sets the disabled bit in the control field of event _before_
3310  * accessing the event control register. If a NMI hits, then it will
3311  * not restart the event.
3312  */
3313 void __perf_event_task_sched_out(struct task_struct *task,
3314 				 struct task_struct *next)
3315 {
3316 	int ctxn;
3317 
3318 	if (__this_cpu_read(perf_sched_cb_usages))
3319 		perf_pmu_sched_task(task, next, false);
3320 
3321 	if (atomic_read(&nr_switch_events))
3322 		perf_event_switch(task, next, false);
3323 
3324 	for_each_task_context_nr(ctxn)
3325 		perf_event_context_sched_out(task, ctxn, next);
3326 
3327 	/*
3328 	 * if cgroup events exist on this CPU, then we need
3329 	 * to check if we have to switch out PMU state.
3330 	 * cgroup event are system-wide mode only
3331 	 */
3332 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3333 		perf_cgroup_sched_out(task, next);
3334 }
3335 
3336 /*
3337  * Called with IRQs disabled
3338  */
3339 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3340 			      enum event_type_t event_type)
3341 {
3342 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3343 }
3344 
3345 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3346 			      int (*func)(struct perf_event *, void *), void *data)
3347 {
3348 	struct perf_event **evt, *evt1, *evt2;
3349 	int ret;
3350 
3351 	evt1 = perf_event_groups_first(groups, -1);
3352 	evt2 = perf_event_groups_first(groups, cpu);
3353 
3354 	while (evt1 || evt2) {
3355 		if (evt1 && evt2) {
3356 			if (evt1->group_index < evt2->group_index)
3357 				evt = &evt1;
3358 			else
3359 				evt = &evt2;
3360 		} else if (evt1) {
3361 			evt = &evt1;
3362 		} else {
3363 			evt = &evt2;
3364 		}
3365 
3366 		ret = func(*evt, data);
3367 		if (ret)
3368 			return ret;
3369 
3370 		*evt = perf_event_groups_next(*evt);
3371 	}
3372 
3373 	return 0;
3374 }
3375 
3376 struct sched_in_data {
3377 	struct perf_event_context *ctx;
3378 	struct perf_cpu_context *cpuctx;
3379 	int can_add_hw;
3380 };
3381 
3382 static int pinned_sched_in(struct perf_event *event, void *data)
3383 {
3384 	struct sched_in_data *sid = data;
3385 
3386 	if (event->state <= PERF_EVENT_STATE_OFF)
3387 		return 0;
3388 
3389 	if (!event_filter_match(event))
3390 		return 0;
3391 
3392 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3393 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3394 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3395 	}
3396 
3397 	/*
3398 	 * If this pinned group hasn't been scheduled,
3399 	 * put it in error state.
3400 	 */
3401 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3402 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3403 
3404 	return 0;
3405 }
3406 
3407 static int flexible_sched_in(struct perf_event *event, void *data)
3408 {
3409 	struct sched_in_data *sid = data;
3410 
3411 	if (event->state <= PERF_EVENT_STATE_OFF)
3412 		return 0;
3413 
3414 	if (!event_filter_match(event))
3415 		return 0;
3416 
3417 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3418 		int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3419 		if (ret) {
3420 			sid->can_add_hw = 0;
3421 			sid->ctx->rotate_necessary = 1;
3422 			return 0;
3423 		}
3424 		list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3425 	}
3426 
3427 	return 0;
3428 }
3429 
3430 static void
3431 ctx_pinned_sched_in(struct perf_event_context *ctx,
3432 		    struct perf_cpu_context *cpuctx)
3433 {
3434 	struct sched_in_data sid = {
3435 		.ctx = ctx,
3436 		.cpuctx = cpuctx,
3437 		.can_add_hw = 1,
3438 	};
3439 
3440 	visit_groups_merge(&ctx->pinned_groups,
3441 			   smp_processor_id(),
3442 			   pinned_sched_in, &sid);
3443 }
3444 
3445 static void
3446 ctx_flexible_sched_in(struct perf_event_context *ctx,
3447 		      struct perf_cpu_context *cpuctx)
3448 {
3449 	struct sched_in_data sid = {
3450 		.ctx = ctx,
3451 		.cpuctx = cpuctx,
3452 		.can_add_hw = 1,
3453 	};
3454 
3455 	visit_groups_merge(&ctx->flexible_groups,
3456 			   smp_processor_id(),
3457 			   flexible_sched_in, &sid);
3458 }
3459 
3460 static void
3461 ctx_sched_in(struct perf_event_context *ctx,
3462 	     struct perf_cpu_context *cpuctx,
3463 	     enum event_type_t event_type,
3464 	     struct task_struct *task)
3465 {
3466 	int is_active = ctx->is_active;
3467 	u64 now;
3468 
3469 	lockdep_assert_held(&ctx->lock);
3470 
3471 	if (likely(!ctx->nr_events))
3472 		return;
3473 
3474 	ctx->is_active |= (event_type | EVENT_TIME);
3475 	if (ctx->task) {
3476 		if (!is_active)
3477 			cpuctx->task_ctx = ctx;
3478 		else
3479 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3480 	}
3481 
3482 	is_active ^= ctx->is_active; /* changed bits */
3483 
3484 	if (is_active & EVENT_TIME) {
3485 		/* start ctx time */
3486 		now = perf_clock();
3487 		ctx->timestamp = now;
3488 		perf_cgroup_set_timestamp(task, ctx);
3489 	}
3490 
3491 	/*
3492 	 * First go through the list and put on any pinned groups
3493 	 * in order to give them the best chance of going on.
3494 	 */
3495 	if (is_active & EVENT_PINNED)
3496 		ctx_pinned_sched_in(ctx, cpuctx);
3497 
3498 	/* Then walk through the lower prio flexible groups */
3499 	if (is_active & EVENT_FLEXIBLE)
3500 		ctx_flexible_sched_in(ctx, cpuctx);
3501 }
3502 
3503 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3504 			     enum event_type_t event_type,
3505 			     struct task_struct *task)
3506 {
3507 	struct perf_event_context *ctx = &cpuctx->ctx;
3508 
3509 	ctx_sched_in(ctx, cpuctx, event_type, task);
3510 }
3511 
3512 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3513 					struct task_struct *task)
3514 {
3515 	struct perf_cpu_context *cpuctx;
3516 
3517 	cpuctx = __get_cpu_context(ctx);
3518 	if (cpuctx->task_ctx == ctx)
3519 		return;
3520 
3521 	perf_ctx_lock(cpuctx, ctx);
3522 	/*
3523 	 * We must check ctx->nr_events while holding ctx->lock, such
3524 	 * that we serialize against perf_install_in_context().
3525 	 */
3526 	if (!ctx->nr_events)
3527 		goto unlock;
3528 
3529 	perf_pmu_disable(ctx->pmu);
3530 	/*
3531 	 * We want to keep the following priority order:
3532 	 * cpu pinned (that don't need to move), task pinned,
3533 	 * cpu flexible, task flexible.
3534 	 *
3535 	 * However, if task's ctx is not carrying any pinned
3536 	 * events, no need to flip the cpuctx's events around.
3537 	 */
3538 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3539 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3540 	perf_event_sched_in(cpuctx, ctx, task);
3541 	perf_pmu_enable(ctx->pmu);
3542 
3543 unlock:
3544 	perf_ctx_unlock(cpuctx, ctx);
3545 }
3546 
3547 /*
3548  * Called from scheduler to add the events of the current task
3549  * with interrupts disabled.
3550  *
3551  * We restore the event value and then enable it.
3552  *
3553  * This does not protect us against NMI, but enable()
3554  * sets the enabled bit in the control field of event _before_
3555  * accessing the event control register. If a NMI hits, then it will
3556  * keep the event running.
3557  */
3558 void __perf_event_task_sched_in(struct task_struct *prev,
3559 				struct task_struct *task)
3560 {
3561 	struct perf_event_context *ctx;
3562 	int ctxn;
3563 
3564 	/*
3565 	 * If cgroup events exist on this CPU, then we need to check if we have
3566 	 * to switch in PMU state; cgroup event are system-wide mode only.
3567 	 *
3568 	 * Since cgroup events are CPU events, we must schedule these in before
3569 	 * we schedule in the task events.
3570 	 */
3571 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3572 		perf_cgroup_sched_in(prev, task);
3573 
3574 	for_each_task_context_nr(ctxn) {
3575 		ctx = task->perf_event_ctxp[ctxn];
3576 		if (likely(!ctx))
3577 			continue;
3578 
3579 		perf_event_context_sched_in(ctx, task);
3580 	}
3581 
3582 	if (atomic_read(&nr_switch_events))
3583 		perf_event_switch(task, prev, true);
3584 
3585 	if (__this_cpu_read(perf_sched_cb_usages))
3586 		perf_pmu_sched_task(prev, task, true);
3587 }
3588 
3589 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3590 {
3591 	u64 frequency = event->attr.sample_freq;
3592 	u64 sec = NSEC_PER_SEC;
3593 	u64 divisor, dividend;
3594 
3595 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3596 
3597 	count_fls = fls64(count);
3598 	nsec_fls = fls64(nsec);
3599 	frequency_fls = fls64(frequency);
3600 	sec_fls = 30;
3601 
3602 	/*
3603 	 * We got @count in @nsec, with a target of sample_freq HZ
3604 	 * the target period becomes:
3605 	 *
3606 	 *             @count * 10^9
3607 	 * period = -------------------
3608 	 *          @nsec * sample_freq
3609 	 *
3610 	 */
3611 
3612 	/*
3613 	 * Reduce accuracy by one bit such that @a and @b converge
3614 	 * to a similar magnitude.
3615 	 */
3616 #define REDUCE_FLS(a, b)		\
3617 do {					\
3618 	if (a##_fls > b##_fls) {	\
3619 		a >>= 1;		\
3620 		a##_fls--;		\
3621 	} else {			\
3622 		b >>= 1;		\
3623 		b##_fls--;		\
3624 	}				\
3625 } while (0)
3626 
3627 	/*
3628 	 * Reduce accuracy until either term fits in a u64, then proceed with
3629 	 * the other, so that finally we can do a u64/u64 division.
3630 	 */
3631 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3632 		REDUCE_FLS(nsec, frequency);
3633 		REDUCE_FLS(sec, count);
3634 	}
3635 
3636 	if (count_fls + sec_fls > 64) {
3637 		divisor = nsec * frequency;
3638 
3639 		while (count_fls + sec_fls > 64) {
3640 			REDUCE_FLS(count, sec);
3641 			divisor >>= 1;
3642 		}
3643 
3644 		dividend = count * sec;
3645 	} else {
3646 		dividend = count * sec;
3647 
3648 		while (nsec_fls + frequency_fls > 64) {
3649 			REDUCE_FLS(nsec, frequency);
3650 			dividend >>= 1;
3651 		}
3652 
3653 		divisor = nsec * frequency;
3654 	}
3655 
3656 	if (!divisor)
3657 		return dividend;
3658 
3659 	return div64_u64(dividend, divisor);
3660 }
3661 
3662 static DEFINE_PER_CPU(int, perf_throttled_count);
3663 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3664 
3665 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3666 {
3667 	struct hw_perf_event *hwc = &event->hw;
3668 	s64 period, sample_period;
3669 	s64 delta;
3670 
3671 	period = perf_calculate_period(event, nsec, count);
3672 
3673 	delta = (s64)(period - hwc->sample_period);
3674 	delta = (delta + 7) / 8; /* low pass filter */
3675 
3676 	sample_period = hwc->sample_period + delta;
3677 
3678 	if (!sample_period)
3679 		sample_period = 1;
3680 
3681 	hwc->sample_period = sample_period;
3682 
3683 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3684 		if (disable)
3685 			event->pmu->stop(event, PERF_EF_UPDATE);
3686 
3687 		local64_set(&hwc->period_left, 0);
3688 
3689 		if (disable)
3690 			event->pmu->start(event, PERF_EF_RELOAD);
3691 	}
3692 }
3693 
3694 /*
3695  * combine freq adjustment with unthrottling to avoid two passes over the
3696  * events. At the same time, make sure, having freq events does not change
3697  * the rate of unthrottling as that would introduce bias.
3698  */
3699 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3700 					   int needs_unthr)
3701 {
3702 	struct perf_event *event;
3703 	struct hw_perf_event *hwc;
3704 	u64 now, period = TICK_NSEC;
3705 	s64 delta;
3706 
3707 	/*
3708 	 * only need to iterate over all events iff:
3709 	 * - context have events in frequency mode (needs freq adjust)
3710 	 * - there are events to unthrottle on this cpu
3711 	 */
3712 	if (!(ctx->nr_freq || needs_unthr))
3713 		return;
3714 
3715 	raw_spin_lock(&ctx->lock);
3716 	perf_pmu_disable(ctx->pmu);
3717 
3718 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3719 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3720 			continue;
3721 
3722 		if (!event_filter_match(event))
3723 			continue;
3724 
3725 		perf_pmu_disable(event->pmu);
3726 
3727 		hwc = &event->hw;
3728 
3729 		if (hwc->interrupts == MAX_INTERRUPTS) {
3730 			hwc->interrupts = 0;
3731 			perf_log_throttle(event, 1);
3732 			event->pmu->start(event, 0);
3733 		}
3734 
3735 		if (!event->attr.freq || !event->attr.sample_freq)
3736 			goto next;
3737 
3738 		/*
3739 		 * stop the event and update event->count
3740 		 */
3741 		event->pmu->stop(event, PERF_EF_UPDATE);
3742 
3743 		now = local64_read(&event->count);
3744 		delta = now - hwc->freq_count_stamp;
3745 		hwc->freq_count_stamp = now;
3746 
3747 		/*
3748 		 * restart the event
3749 		 * reload only if value has changed
3750 		 * we have stopped the event so tell that
3751 		 * to perf_adjust_period() to avoid stopping it
3752 		 * twice.
3753 		 */
3754 		if (delta > 0)
3755 			perf_adjust_period(event, period, delta, false);
3756 
3757 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3758 	next:
3759 		perf_pmu_enable(event->pmu);
3760 	}
3761 
3762 	perf_pmu_enable(ctx->pmu);
3763 	raw_spin_unlock(&ctx->lock);
3764 }
3765 
3766 /*
3767  * Move @event to the tail of the @ctx's elegible events.
3768  */
3769 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3770 {
3771 	/*
3772 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3773 	 * disabled by the inheritance code.
3774 	 */
3775 	if (ctx->rotate_disable)
3776 		return;
3777 
3778 	perf_event_groups_delete(&ctx->flexible_groups, event);
3779 	perf_event_groups_insert(&ctx->flexible_groups, event);
3780 }
3781 
3782 /* pick an event from the flexible_groups to rotate */
3783 static inline struct perf_event *
3784 ctx_event_to_rotate(struct perf_event_context *ctx)
3785 {
3786 	struct perf_event *event;
3787 
3788 	/* pick the first active flexible event */
3789 	event = list_first_entry_or_null(&ctx->flexible_active,
3790 					 struct perf_event, active_list);
3791 
3792 	/* if no active flexible event, pick the first event */
3793 	if (!event) {
3794 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3795 				      typeof(*event), group_node);
3796 	}
3797 
3798 	return event;
3799 }
3800 
3801 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3802 {
3803 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3804 	struct perf_event_context *task_ctx = NULL;
3805 	int cpu_rotate, task_rotate;
3806 
3807 	/*
3808 	 * Since we run this from IRQ context, nobody can install new
3809 	 * events, thus the event count values are stable.
3810 	 */
3811 
3812 	cpu_rotate = cpuctx->ctx.rotate_necessary;
3813 	task_ctx = cpuctx->task_ctx;
3814 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3815 
3816 	if (!(cpu_rotate || task_rotate))
3817 		return false;
3818 
3819 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3820 	perf_pmu_disable(cpuctx->ctx.pmu);
3821 
3822 	if (task_rotate)
3823 		task_event = ctx_event_to_rotate(task_ctx);
3824 	if (cpu_rotate)
3825 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
3826 
3827 	/*
3828 	 * As per the order given at ctx_resched() first 'pop' task flexible
3829 	 * and then, if needed CPU flexible.
3830 	 */
3831 	if (task_event || (task_ctx && cpu_event))
3832 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3833 	if (cpu_event)
3834 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3835 
3836 	if (task_event)
3837 		rotate_ctx(task_ctx, task_event);
3838 	if (cpu_event)
3839 		rotate_ctx(&cpuctx->ctx, cpu_event);
3840 
3841 	perf_event_sched_in(cpuctx, task_ctx, current);
3842 
3843 	perf_pmu_enable(cpuctx->ctx.pmu);
3844 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3845 
3846 	return true;
3847 }
3848 
3849 void perf_event_task_tick(void)
3850 {
3851 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3852 	struct perf_event_context *ctx, *tmp;
3853 	int throttled;
3854 
3855 	lockdep_assert_irqs_disabled();
3856 
3857 	__this_cpu_inc(perf_throttled_seq);
3858 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3859 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3860 
3861 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3862 		perf_adjust_freq_unthr_context(ctx, throttled);
3863 }
3864 
3865 static int event_enable_on_exec(struct perf_event *event,
3866 				struct perf_event_context *ctx)
3867 {
3868 	if (!event->attr.enable_on_exec)
3869 		return 0;
3870 
3871 	event->attr.enable_on_exec = 0;
3872 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3873 		return 0;
3874 
3875 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3876 
3877 	return 1;
3878 }
3879 
3880 /*
3881  * Enable all of a task's events that have been marked enable-on-exec.
3882  * This expects task == current.
3883  */
3884 static void perf_event_enable_on_exec(int ctxn)
3885 {
3886 	struct perf_event_context *ctx, *clone_ctx = NULL;
3887 	enum event_type_t event_type = 0;
3888 	struct perf_cpu_context *cpuctx;
3889 	struct perf_event *event;
3890 	unsigned long flags;
3891 	int enabled = 0;
3892 
3893 	local_irq_save(flags);
3894 	ctx = current->perf_event_ctxp[ctxn];
3895 	if (!ctx || !ctx->nr_events)
3896 		goto out;
3897 
3898 	cpuctx = __get_cpu_context(ctx);
3899 	perf_ctx_lock(cpuctx, ctx);
3900 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3901 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3902 		enabled |= event_enable_on_exec(event, ctx);
3903 		event_type |= get_event_type(event);
3904 	}
3905 
3906 	/*
3907 	 * Unclone and reschedule this context if we enabled any event.
3908 	 */
3909 	if (enabled) {
3910 		clone_ctx = unclone_ctx(ctx);
3911 		ctx_resched(cpuctx, ctx, event_type);
3912 	} else {
3913 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3914 	}
3915 	perf_ctx_unlock(cpuctx, ctx);
3916 
3917 out:
3918 	local_irq_restore(flags);
3919 
3920 	if (clone_ctx)
3921 		put_ctx(clone_ctx);
3922 }
3923 
3924 struct perf_read_data {
3925 	struct perf_event *event;
3926 	bool group;
3927 	int ret;
3928 };
3929 
3930 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3931 {
3932 	u16 local_pkg, event_pkg;
3933 
3934 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3935 		int local_cpu = smp_processor_id();
3936 
3937 		event_pkg = topology_physical_package_id(event_cpu);
3938 		local_pkg = topology_physical_package_id(local_cpu);
3939 
3940 		if (event_pkg == local_pkg)
3941 			return local_cpu;
3942 	}
3943 
3944 	return event_cpu;
3945 }
3946 
3947 /*
3948  * Cross CPU call to read the hardware event
3949  */
3950 static void __perf_event_read(void *info)
3951 {
3952 	struct perf_read_data *data = info;
3953 	struct perf_event *sub, *event = data->event;
3954 	struct perf_event_context *ctx = event->ctx;
3955 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3956 	struct pmu *pmu = event->pmu;
3957 
3958 	/*
3959 	 * If this is a task context, we need to check whether it is
3960 	 * the current task context of this cpu.  If not it has been
3961 	 * scheduled out before the smp call arrived.  In that case
3962 	 * event->count would have been updated to a recent sample
3963 	 * when the event was scheduled out.
3964 	 */
3965 	if (ctx->task && cpuctx->task_ctx != ctx)
3966 		return;
3967 
3968 	raw_spin_lock(&ctx->lock);
3969 	if (ctx->is_active & EVENT_TIME) {
3970 		update_context_time(ctx);
3971 		update_cgrp_time_from_event(event);
3972 	}
3973 
3974 	perf_event_update_time(event);
3975 	if (data->group)
3976 		perf_event_update_sibling_time(event);
3977 
3978 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3979 		goto unlock;
3980 
3981 	if (!data->group) {
3982 		pmu->read(event);
3983 		data->ret = 0;
3984 		goto unlock;
3985 	}
3986 
3987 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3988 
3989 	pmu->read(event);
3990 
3991 	for_each_sibling_event(sub, event) {
3992 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3993 			/*
3994 			 * Use sibling's PMU rather than @event's since
3995 			 * sibling could be on different (eg: software) PMU.
3996 			 */
3997 			sub->pmu->read(sub);
3998 		}
3999 	}
4000 
4001 	data->ret = pmu->commit_txn(pmu);
4002 
4003 unlock:
4004 	raw_spin_unlock(&ctx->lock);
4005 }
4006 
4007 static inline u64 perf_event_count(struct perf_event *event)
4008 {
4009 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4010 }
4011 
4012 /*
4013  * NMI-safe method to read a local event, that is an event that
4014  * is:
4015  *   - either for the current task, or for this CPU
4016  *   - does not have inherit set, for inherited task events
4017  *     will not be local and we cannot read them atomically
4018  *   - must not have a pmu::count method
4019  */
4020 int perf_event_read_local(struct perf_event *event, u64 *value,
4021 			  u64 *enabled, u64 *running)
4022 {
4023 	unsigned long flags;
4024 	int ret = 0;
4025 
4026 	/*
4027 	 * Disabling interrupts avoids all counter scheduling (context
4028 	 * switches, timer based rotation and IPIs).
4029 	 */
4030 	local_irq_save(flags);
4031 
4032 	/*
4033 	 * It must not be an event with inherit set, we cannot read
4034 	 * all child counters from atomic context.
4035 	 */
4036 	if (event->attr.inherit) {
4037 		ret = -EOPNOTSUPP;
4038 		goto out;
4039 	}
4040 
4041 	/* If this is a per-task event, it must be for current */
4042 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4043 	    event->hw.target != current) {
4044 		ret = -EINVAL;
4045 		goto out;
4046 	}
4047 
4048 	/* If this is a per-CPU event, it must be for this CPU */
4049 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4050 	    event->cpu != smp_processor_id()) {
4051 		ret = -EINVAL;
4052 		goto out;
4053 	}
4054 
4055 	/* If this is a pinned event it must be running on this CPU */
4056 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4057 		ret = -EBUSY;
4058 		goto out;
4059 	}
4060 
4061 	/*
4062 	 * If the event is currently on this CPU, its either a per-task event,
4063 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4064 	 * oncpu == -1).
4065 	 */
4066 	if (event->oncpu == smp_processor_id())
4067 		event->pmu->read(event);
4068 
4069 	*value = local64_read(&event->count);
4070 	if (enabled || running) {
4071 		u64 now = event->shadow_ctx_time + perf_clock();
4072 		u64 __enabled, __running;
4073 
4074 		__perf_update_times(event, now, &__enabled, &__running);
4075 		if (enabled)
4076 			*enabled = __enabled;
4077 		if (running)
4078 			*running = __running;
4079 	}
4080 out:
4081 	local_irq_restore(flags);
4082 
4083 	return ret;
4084 }
4085 
4086 static int perf_event_read(struct perf_event *event, bool group)
4087 {
4088 	enum perf_event_state state = READ_ONCE(event->state);
4089 	int event_cpu, ret = 0;
4090 
4091 	/*
4092 	 * If event is enabled and currently active on a CPU, update the
4093 	 * value in the event structure:
4094 	 */
4095 again:
4096 	if (state == PERF_EVENT_STATE_ACTIVE) {
4097 		struct perf_read_data data;
4098 
4099 		/*
4100 		 * Orders the ->state and ->oncpu loads such that if we see
4101 		 * ACTIVE we must also see the right ->oncpu.
4102 		 *
4103 		 * Matches the smp_wmb() from event_sched_in().
4104 		 */
4105 		smp_rmb();
4106 
4107 		event_cpu = READ_ONCE(event->oncpu);
4108 		if ((unsigned)event_cpu >= nr_cpu_ids)
4109 			return 0;
4110 
4111 		data = (struct perf_read_data){
4112 			.event = event,
4113 			.group = group,
4114 			.ret = 0,
4115 		};
4116 
4117 		preempt_disable();
4118 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4119 
4120 		/*
4121 		 * Purposely ignore the smp_call_function_single() return
4122 		 * value.
4123 		 *
4124 		 * If event_cpu isn't a valid CPU it means the event got
4125 		 * scheduled out and that will have updated the event count.
4126 		 *
4127 		 * Therefore, either way, we'll have an up-to-date event count
4128 		 * after this.
4129 		 */
4130 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4131 		preempt_enable();
4132 		ret = data.ret;
4133 
4134 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4135 		struct perf_event_context *ctx = event->ctx;
4136 		unsigned long flags;
4137 
4138 		raw_spin_lock_irqsave(&ctx->lock, flags);
4139 		state = event->state;
4140 		if (state != PERF_EVENT_STATE_INACTIVE) {
4141 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4142 			goto again;
4143 		}
4144 
4145 		/*
4146 		 * May read while context is not active (e.g., thread is
4147 		 * blocked), in that case we cannot update context time
4148 		 */
4149 		if (ctx->is_active & EVENT_TIME) {
4150 			update_context_time(ctx);
4151 			update_cgrp_time_from_event(event);
4152 		}
4153 
4154 		perf_event_update_time(event);
4155 		if (group)
4156 			perf_event_update_sibling_time(event);
4157 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4158 	}
4159 
4160 	return ret;
4161 }
4162 
4163 /*
4164  * Initialize the perf_event context in a task_struct:
4165  */
4166 static void __perf_event_init_context(struct perf_event_context *ctx)
4167 {
4168 	raw_spin_lock_init(&ctx->lock);
4169 	mutex_init(&ctx->mutex);
4170 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4171 	perf_event_groups_init(&ctx->pinned_groups);
4172 	perf_event_groups_init(&ctx->flexible_groups);
4173 	INIT_LIST_HEAD(&ctx->event_list);
4174 	INIT_LIST_HEAD(&ctx->pinned_active);
4175 	INIT_LIST_HEAD(&ctx->flexible_active);
4176 	refcount_set(&ctx->refcount, 1);
4177 }
4178 
4179 static struct perf_event_context *
4180 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4181 {
4182 	struct perf_event_context *ctx;
4183 
4184 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4185 	if (!ctx)
4186 		return NULL;
4187 
4188 	__perf_event_init_context(ctx);
4189 	if (task)
4190 		ctx->task = get_task_struct(task);
4191 	ctx->pmu = pmu;
4192 
4193 	return ctx;
4194 }
4195 
4196 static struct task_struct *
4197 find_lively_task_by_vpid(pid_t vpid)
4198 {
4199 	struct task_struct *task;
4200 
4201 	rcu_read_lock();
4202 	if (!vpid)
4203 		task = current;
4204 	else
4205 		task = find_task_by_vpid(vpid);
4206 	if (task)
4207 		get_task_struct(task);
4208 	rcu_read_unlock();
4209 
4210 	if (!task)
4211 		return ERR_PTR(-ESRCH);
4212 
4213 	return task;
4214 }
4215 
4216 /*
4217  * Returns a matching context with refcount and pincount.
4218  */
4219 static struct perf_event_context *
4220 find_get_context(struct pmu *pmu, struct task_struct *task,
4221 		struct perf_event *event)
4222 {
4223 	struct perf_event_context *ctx, *clone_ctx = NULL;
4224 	struct perf_cpu_context *cpuctx;
4225 	void *task_ctx_data = NULL;
4226 	unsigned long flags;
4227 	int ctxn, err;
4228 	int cpu = event->cpu;
4229 
4230 	if (!task) {
4231 		/* Must be root to operate on a CPU event: */
4232 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4233 			return ERR_PTR(-EACCES);
4234 
4235 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4236 		ctx = &cpuctx->ctx;
4237 		get_ctx(ctx);
4238 		++ctx->pin_count;
4239 
4240 		return ctx;
4241 	}
4242 
4243 	err = -EINVAL;
4244 	ctxn = pmu->task_ctx_nr;
4245 	if (ctxn < 0)
4246 		goto errout;
4247 
4248 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4249 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4250 		if (!task_ctx_data) {
4251 			err = -ENOMEM;
4252 			goto errout;
4253 		}
4254 	}
4255 
4256 retry:
4257 	ctx = perf_lock_task_context(task, ctxn, &flags);
4258 	if (ctx) {
4259 		clone_ctx = unclone_ctx(ctx);
4260 		++ctx->pin_count;
4261 
4262 		if (task_ctx_data && !ctx->task_ctx_data) {
4263 			ctx->task_ctx_data = task_ctx_data;
4264 			task_ctx_data = NULL;
4265 		}
4266 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4267 
4268 		if (clone_ctx)
4269 			put_ctx(clone_ctx);
4270 	} else {
4271 		ctx = alloc_perf_context(pmu, task);
4272 		err = -ENOMEM;
4273 		if (!ctx)
4274 			goto errout;
4275 
4276 		if (task_ctx_data) {
4277 			ctx->task_ctx_data = task_ctx_data;
4278 			task_ctx_data = NULL;
4279 		}
4280 
4281 		err = 0;
4282 		mutex_lock(&task->perf_event_mutex);
4283 		/*
4284 		 * If it has already passed perf_event_exit_task().
4285 		 * we must see PF_EXITING, it takes this mutex too.
4286 		 */
4287 		if (task->flags & PF_EXITING)
4288 			err = -ESRCH;
4289 		else if (task->perf_event_ctxp[ctxn])
4290 			err = -EAGAIN;
4291 		else {
4292 			get_ctx(ctx);
4293 			++ctx->pin_count;
4294 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4295 		}
4296 		mutex_unlock(&task->perf_event_mutex);
4297 
4298 		if (unlikely(err)) {
4299 			put_ctx(ctx);
4300 
4301 			if (err == -EAGAIN)
4302 				goto retry;
4303 			goto errout;
4304 		}
4305 	}
4306 
4307 	kfree(task_ctx_data);
4308 	return ctx;
4309 
4310 errout:
4311 	kfree(task_ctx_data);
4312 	return ERR_PTR(err);
4313 }
4314 
4315 static void perf_event_free_filter(struct perf_event *event);
4316 static void perf_event_free_bpf_prog(struct perf_event *event);
4317 
4318 static void free_event_rcu(struct rcu_head *head)
4319 {
4320 	struct perf_event *event;
4321 
4322 	event = container_of(head, struct perf_event, rcu_head);
4323 	if (event->ns)
4324 		put_pid_ns(event->ns);
4325 	perf_event_free_filter(event);
4326 	kfree(event);
4327 }
4328 
4329 static void ring_buffer_attach(struct perf_event *event,
4330 			       struct ring_buffer *rb);
4331 
4332 static void detach_sb_event(struct perf_event *event)
4333 {
4334 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4335 
4336 	raw_spin_lock(&pel->lock);
4337 	list_del_rcu(&event->sb_list);
4338 	raw_spin_unlock(&pel->lock);
4339 }
4340 
4341 static bool is_sb_event(struct perf_event *event)
4342 {
4343 	struct perf_event_attr *attr = &event->attr;
4344 
4345 	if (event->parent)
4346 		return false;
4347 
4348 	if (event->attach_state & PERF_ATTACH_TASK)
4349 		return false;
4350 
4351 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4352 	    attr->comm || attr->comm_exec ||
4353 	    attr->task || attr->ksymbol ||
4354 	    attr->context_switch ||
4355 	    attr->bpf_event)
4356 		return true;
4357 	return false;
4358 }
4359 
4360 static void unaccount_pmu_sb_event(struct perf_event *event)
4361 {
4362 	if (is_sb_event(event))
4363 		detach_sb_event(event);
4364 }
4365 
4366 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4367 {
4368 	if (event->parent)
4369 		return;
4370 
4371 	if (is_cgroup_event(event))
4372 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4373 }
4374 
4375 #ifdef CONFIG_NO_HZ_FULL
4376 static DEFINE_SPINLOCK(nr_freq_lock);
4377 #endif
4378 
4379 static void unaccount_freq_event_nohz(void)
4380 {
4381 #ifdef CONFIG_NO_HZ_FULL
4382 	spin_lock(&nr_freq_lock);
4383 	if (atomic_dec_and_test(&nr_freq_events))
4384 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4385 	spin_unlock(&nr_freq_lock);
4386 #endif
4387 }
4388 
4389 static void unaccount_freq_event(void)
4390 {
4391 	if (tick_nohz_full_enabled())
4392 		unaccount_freq_event_nohz();
4393 	else
4394 		atomic_dec(&nr_freq_events);
4395 }
4396 
4397 static void unaccount_event(struct perf_event *event)
4398 {
4399 	bool dec = false;
4400 
4401 	if (event->parent)
4402 		return;
4403 
4404 	if (event->attach_state & PERF_ATTACH_TASK)
4405 		dec = true;
4406 	if (event->attr.mmap || event->attr.mmap_data)
4407 		atomic_dec(&nr_mmap_events);
4408 	if (event->attr.comm)
4409 		atomic_dec(&nr_comm_events);
4410 	if (event->attr.namespaces)
4411 		atomic_dec(&nr_namespaces_events);
4412 	if (event->attr.task)
4413 		atomic_dec(&nr_task_events);
4414 	if (event->attr.freq)
4415 		unaccount_freq_event();
4416 	if (event->attr.context_switch) {
4417 		dec = true;
4418 		atomic_dec(&nr_switch_events);
4419 	}
4420 	if (is_cgroup_event(event))
4421 		dec = true;
4422 	if (has_branch_stack(event))
4423 		dec = true;
4424 	if (event->attr.ksymbol)
4425 		atomic_dec(&nr_ksymbol_events);
4426 	if (event->attr.bpf_event)
4427 		atomic_dec(&nr_bpf_events);
4428 
4429 	if (dec) {
4430 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4431 			schedule_delayed_work(&perf_sched_work, HZ);
4432 	}
4433 
4434 	unaccount_event_cpu(event, event->cpu);
4435 
4436 	unaccount_pmu_sb_event(event);
4437 }
4438 
4439 static void perf_sched_delayed(struct work_struct *work)
4440 {
4441 	mutex_lock(&perf_sched_mutex);
4442 	if (atomic_dec_and_test(&perf_sched_count))
4443 		static_branch_disable(&perf_sched_events);
4444 	mutex_unlock(&perf_sched_mutex);
4445 }
4446 
4447 /*
4448  * The following implement mutual exclusion of events on "exclusive" pmus
4449  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4450  * at a time, so we disallow creating events that might conflict, namely:
4451  *
4452  *  1) cpu-wide events in the presence of per-task events,
4453  *  2) per-task events in the presence of cpu-wide events,
4454  *  3) two matching events on the same context.
4455  *
4456  * The former two cases are handled in the allocation path (perf_event_alloc(),
4457  * _free_event()), the latter -- before the first perf_install_in_context().
4458  */
4459 static int exclusive_event_init(struct perf_event *event)
4460 {
4461 	struct pmu *pmu = event->pmu;
4462 
4463 	if (!is_exclusive_pmu(pmu))
4464 		return 0;
4465 
4466 	/*
4467 	 * Prevent co-existence of per-task and cpu-wide events on the
4468 	 * same exclusive pmu.
4469 	 *
4470 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4471 	 * events on this "exclusive" pmu, positive means there are
4472 	 * per-task events.
4473 	 *
4474 	 * Since this is called in perf_event_alloc() path, event::ctx
4475 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4476 	 * to mean "per-task event", because unlike other attach states it
4477 	 * never gets cleared.
4478 	 */
4479 	if (event->attach_state & PERF_ATTACH_TASK) {
4480 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4481 			return -EBUSY;
4482 	} else {
4483 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4484 			return -EBUSY;
4485 	}
4486 
4487 	return 0;
4488 }
4489 
4490 static void exclusive_event_destroy(struct perf_event *event)
4491 {
4492 	struct pmu *pmu = event->pmu;
4493 
4494 	if (!is_exclusive_pmu(pmu))
4495 		return;
4496 
4497 	/* see comment in exclusive_event_init() */
4498 	if (event->attach_state & PERF_ATTACH_TASK)
4499 		atomic_dec(&pmu->exclusive_cnt);
4500 	else
4501 		atomic_inc(&pmu->exclusive_cnt);
4502 }
4503 
4504 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4505 {
4506 	if ((e1->pmu == e2->pmu) &&
4507 	    (e1->cpu == e2->cpu ||
4508 	     e1->cpu == -1 ||
4509 	     e2->cpu == -1))
4510 		return true;
4511 	return false;
4512 }
4513 
4514 static bool exclusive_event_installable(struct perf_event *event,
4515 					struct perf_event_context *ctx)
4516 {
4517 	struct perf_event *iter_event;
4518 	struct pmu *pmu = event->pmu;
4519 
4520 	lockdep_assert_held(&ctx->mutex);
4521 
4522 	if (!is_exclusive_pmu(pmu))
4523 		return true;
4524 
4525 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4526 		if (exclusive_event_match(iter_event, event))
4527 			return false;
4528 	}
4529 
4530 	return true;
4531 }
4532 
4533 static void perf_addr_filters_splice(struct perf_event *event,
4534 				       struct list_head *head);
4535 
4536 static void _free_event(struct perf_event *event)
4537 {
4538 	irq_work_sync(&event->pending);
4539 
4540 	unaccount_event(event);
4541 
4542 	if (event->rb) {
4543 		/*
4544 		 * Can happen when we close an event with re-directed output.
4545 		 *
4546 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4547 		 * over us; possibly making our ring_buffer_put() the last.
4548 		 */
4549 		mutex_lock(&event->mmap_mutex);
4550 		ring_buffer_attach(event, NULL);
4551 		mutex_unlock(&event->mmap_mutex);
4552 	}
4553 
4554 	if (is_cgroup_event(event))
4555 		perf_detach_cgroup(event);
4556 
4557 	if (!event->parent) {
4558 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4559 			put_callchain_buffers();
4560 	}
4561 
4562 	perf_event_free_bpf_prog(event);
4563 	perf_addr_filters_splice(event, NULL);
4564 	kfree(event->addr_filter_ranges);
4565 
4566 	if (event->destroy)
4567 		event->destroy(event);
4568 
4569 	/*
4570 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4571 	 * hw.target.
4572 	 */
4573 	if (event->hw.target)
4574 		put_task_struct(event->hw.target);
4575 
4576 	/*
4577 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4578 	 * all task references must be cleaned up.
4579 	 */
4580 	if (event->ctx)
4581 		put_ctx(event->ctx);
4582 
4583 	exclusive_event_destroy(event);
4584 	module_put(event->pmu->module);
4585 
4586 	call_rcu(&event->rcu_head, free_event_rcu);
4587 }
4588 
4589 /*
4590  * Used to free events which have a known refcount of 1, such as in error paths
4591  * where the event isn't exposed yet and inherited events.
4592  */
4593 static void free_event(struct perf_event *event)
4594 {
4595 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4596 				"unexpected event refcount: %ld; ptr=%p\n",
4597 				atomic_long_read(&event->refcount), event)) {
4598 		/* leak to avoid use-after-free */
4599 		return;
4600 	}
4601 
4602 	_free_event(event);
4603 }
4604 
4605 /*
4606  * Remove user event from the owner task.
4607  */
4608 static void perf_remove_from_owner(struct perf_event *event)
4609 {
4610 	struct task_struct *owner;
4611 
4612 	rcu_read_lock();
4613 	/*
4614 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4615 	 * observe !owner it means the list deletion is complete and we can
4616 	 * indeed free this event, otherwise we need to serialize on
4617 	 * owner->perf_event_mutex.
4618 	 */
4619 	owner = READ_ONCE(event->owner);
4620 	if (owner) {
4621 		/*
4622 		 * Since delayed_put_task_struct() also drops the last
4623 		 * task reference we can safely take a new reference
4624 		 * while holding the rcu_read_lock().
4625 		 */
4626 		get_task_struct(owner);
4627 	}
4628 	rcu_read_unlock();
4629 
4630 	if (owner) {
4631 		/*
4632 		 * If we're here through perf_event_exit_task() we're already
4633 		 * holding ctx->mutex which would be an inversion wrt. the
4634 		 * normal lock order.
4635 		 *
4636 		 * However we can safely take this lock because its the child
4637 		 * ctx->mutex.
4638 		 */
4639 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4640 
4641 		/*
4642 		 * We have to re-check the event->owner field, if it is cleared
4643 		 * we raced with perf_event_exit_task(), acquiring the mutex
4644 		 * ensured they're done, and we can proceed with freeing the
4645 		 * event.
4646 		 */
4647 		if (event->owner) {
4648 			list_del_init(&event->owner_entry);
4649 			smp_store_release(&event->owner, NULL);
4650 		}
4651 		mutex_unlock(&owner->perf_event_mutex);
4652 		put_task_struct(owner);
4653 	}
4654 }
4655 
4656 static void put_event(struct perf_event *event)
4657 {
4658 	if (!atomic_long_dec_and_test(&event->refcount))
4659 		return;
4660 
4661 	_free_event(event);
4662 }
4663 
4664 /*
4665  * Kill an event dead; while event:refcount will preserve the event
4666  * object, it will not preserve its functionality. Once the last 'user'
4667  * gives up the object, we'll destroy the thing.
4668  */
4669 int perf_event_release_kernel(struct perf_event *event)
4670 {
4671 	struct perf_event_context *ctx = event->ctx;
4672 	struct perf_event *child, *tmp;
4673 	LIST_HEAD(free_list);
4674 
4675 	/*
4676 	 * If we got here through err_file: fput(event_file); we will not have
4677 	 * attached to a context yet.
4678 	 */
4679 	if (!ctx) {
4680 		WARN_ON_ONCE(event->attach_state &
4681 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4682 		goto no_ctx;
4683 	}
4684 
4685 	if (!is_kernel_event(event))
4686 		perf_remove_from_owner(event);
4687 
4688 	ctx = perf_event_ctx_lock(event);
4689 	WARN_ON_ONCE(ctx->parent_ctx);
4690 	perf_remove_from_context(event, DETACH_GROUP);
4691 
4692 	raw_spin_lock_irq(&ctx->lock);
4693 	/*
4694 	 * Mark this event as STATE_DEAD, there is no external reference to it
4695 	 * anymore.
4696 	 *
4697 	 * Anybody acquiring event->child_mutex after the below loop _must_
4698 	 * also see this, most importantly inherit_event() which will avoid
4699 	 * placing more children on the list.
4700 	 *
4701 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4702 	 * child events.
4703 	 */
4704 	event->state = PERF_EVENT_STATE_DEAD;
4705 	raw_spin_unlock_irq(&ctx->lock);
4706 
4707 	perf_event_ctx_unlock(event, ctx);
4708 
4709 again:
4710 	mutex_lock(&event->child_mutex);
4711 	list_for_each_entry(child, &event->child_list, child_list) {
4712 
4713 		/*
4714 		 * Cannot change, child events are not migrated, see the
4715 		 * comment with perf_event_ctx_lock_nested().
4716 		 */
4717 		ctx = READ_ONCE(child->ctx);
4718 		/*
4719 		 * Since child_mutex nests inside ctx::mutex, we must jump
4720 		 * through hoops. We start by grabbing a reference on the ctx.
4721 		 *
4722 		 * Since the event cannot get freed while we hold the
4723 		 * child_mutex, the context must also exist and have a !0
4724 		 * reference count.
4725 		 */
4726 		get_ctx(ctx);
4727 
4728 		/*
4729 		 * Now that we have a ctx ref, we can drop child_mutex, and
4730 		 * acquire ctx::mutex without fear of it going away. Then we
4731 		 * can re-acquire child_mutex.
4732 		 */
4733 		mutex_unlock(&event->child_mutex);
4734 		mutex_lock(&ctx->mutex);
4735 		mutex_lock(&event->child_mutex);
4736 
4737 		/*
4738 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4739 		 * state, if child is still the first entry, it didn't get freed
4740 		 * and we can continue doing so.
4741 		 */
4742 		tmp = list_first_entry_or_null(&event->child_list,
4743 					       struct perf_event, child_list);
4744 		if (tmp == child) {
4745 			perf_remove_from_context(child, DETACH_GROUP);
4746 			list_move(&child->child_list, &free_list);
4747 			/*
4748 			 * This matches the refcount bump in inherit_event();
4749 			 * this can't be the last reference.
4750 			 */
4751 			put_event(event);
4752 		}
4753 
4754 		mutex_unlock(&event->child_mutex);
4755 		mutex_unlock(&ctx->mutex);
4756 		put_ctx(ctx);
4757 		goto again;
4758 	}
4759 	mutex_unlock(&event->child_mutex);
4760 
4761 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4762 		void *var = &child->ctx->refcount;
4763 
4764 		list_del(&child->child_list);
4765 		free_event(child);
4766 
4767 		/*
4768 		 * Wake any perf_event_free_task() waiting for this event to be
4769 		 * freed.
4770 		 */
4771 		smp_mb(); /* pairs with wait_var_event() */
4772 		wake_up_var(var);
4773 	}
4774 
4775 no_ctx:
4776 	put_event(event); /* Must be the 'last' reference */
4777 	return 0;
4778 }
4779 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4780 
4781 /*
4782  * Called when the last reference to the file is gone.
4783  */
4784 static int perf_release(struct inode *inode, struct file *file)
4785 {
4786 	perf_event_release_kernel(file->private_data);
4787 	return 0;
4788 }
4789 
4790 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4791 {
4792 	struct perf_event *child;
4793 	u64 total = 0;
4794 
4795 	*enabled = 0;
4796 	*running = 0;
4797 
4798 	mutex_lock(&event->child_mutex);
4799 
4800 	(void)perf_event_read(event, false);
4801 	total += perf_event_count(event);
4802 
4803 	*enabled += event->total_time_enabled +
4804 			atomic64_read(&event->child_total_time_enabled);
4805 	*running += event->total_time_running +
4806 			atomic64_read(&event->child_total_time_running);
4807 
4808 	list_for_each_entry(child, &event->child_list, child_list) {
4809 		(void)perf_event_read(child, false);
4810 		total += perf_event_count(child);
4811 		*enabled += child->total_time_enabled;
4812 		*running += child->total_time_running;
4813 	}
4814 	mutex_unlock(&event->child_mutex);
4815 
4816 	return total;
4817 }
4818 
4819 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4820 {
4821 	struct perf_event_context *ctx;
4822 	u64 count;
4823 
4824 	ctx = perf_event_ctx_lock(event);
4825 	count = __perf_event_read_value(event, enabled, running);
4826 	perf_event_ctx_unlock(event, ctx);
4827 
4828 	return count;
4829 }
4830 EXPORT_SYMBOL_GPL(perf_event_read_value);
4831 
4832 static int __perf_read_group_add(struct perf_event *leader,
4833 					u64 read_format, u64 *values)
4834 {
4835 	struct perf_event_context *ctx = leader->ctx;
4836 	struct perf_event *sub;
4837 	unsigned long flags;
4838 	int n = 1; /* skip @nr */
4839 	int ret;
4840 
4841 	ret = perf_event_read(leader, true);
4842 	if (ret)
4843 		return ret;
4844 
4845 	raw_spin_lock_irqsave(&ctx->lock, flags);
4846 
4847 	/*
4848 	 * Since we co-schedule groups, {enabled,running} times of siblings
4849 	 * will be identical to those of the leader, so we only publish one
4850 	 * set.
4851 	 */
4852 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4853 		values[n++] += leader->total_time_enabled +
4854 			atomic64_read(&leader->child_total_time_enabled);
4855 	}
4856 
4857 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4858 		values[n++] += leader->total_time_running +
4859 			atomic64_read(&leader->child_total_time_running);
4860 	}
4861 
4862 	/*
4863 	 * Write {count,id} tuples for every sibling.
4864 	 */
4865 	values[n++] += perf_event_count(leader);
4866 	if (read_format & PERF_FORMAT_ID)
4867 		values[n++] = primary_event_id(leader);
4868 
4869 	for_each_sibling_event(sub, leader) {
4870 		values[n++] += perf_event_count(sub);
4871 		if (read_format & PERF_FORMAT_ID)
4872 			values[n++] = primary_event_id(sub);
4873 	}
4874 
4875 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4876 	return 0;
4877 }
4878 
4879 static int perf_read_group(struct perf_event *event,
4880 				   u64 read_format, char __user *buf)
4881 {
4882 	struct perf_event *leader = event->group_leader, *child;
4883 	struct perf_event_context *ctx = leader->ctx;
4884 	int ret;
4885 	u64 *values;
4886 
4887 	lockdep_assert_held(&ctx->mutex);
4888 
4889 	values = kzalloc(event->read_size, GFP_KERNEL);
4890 	if (!values)
4891 		return -ENOMEM;
4892 
4893 	values[0] = 1 + leader->nr_siblings;
4894 
4895 	/*
4896 	 * By locking the child_mutex of the leader we effectively
4897 	 * lock the child list of all siblings.. XXX explain how.
4898 	 */
4899 	mutex_lock(&leader->child_mutex);
4900 
4901 	ret = __perf_read_group_add(leader, read_format, values);
4902 	if (ret)
4903 		goto unlock;
4904 
4905 	list_for_each_entry(child, &leader->child_list, child_list) {
4906 		ret = __perf_read_group_add(child, read_format, values);
4907 		if (ret)
4908 			goto unlock;
4909 	}
4910 
4911 	mutex_unlock(&leader->child_mutex);
4912 
4913 	ret = event->read_size;
4914 	if (copy_to_user(buf, values, event->read_size))
4915 		ret = -EFAULT;
4916 	goto out;
4917 
4918 unlock:
4919 	mutex_unlock(&leader->child_mutex);
4920 out:
4921 	kfree(values);
4922 	return ret;
4923 }
4924 
4925 static int perf_read_one(struct perf_event *event,
4926 				 u64 read_format, char __user *buf)
4927 {
4928 	u64 enabled, running;
4929 	u64 values[4];
4930 	int n = 0;
4931 
4932 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4933 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4934 		values[n++] = enabled;
4935 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4936 		values[n++] = running;
4937 	if (read_format & PERF_FORMAT_ID)
4938 		values[n++] = primary_event_id(event);
4939 
4940 	if (copy_to_user(buf, values, n * sizeof(u64)))
4941 		return -EFAULT;
4942 
4943 	return n * sizeof(u64);
4944 }
4945 
4946 static bool is_event_hup(struct perf_event *event)
4947 {
4948 	bool no_children;
4949 
4950 	if (event->state > PERF_EVENT_STATE_EXIT)
4951 		return false;
4952 
4953 	mutex_lock(&event->child_mutex);
4954 	no_children = list_empty(&event->child_list);
4955 	mutex_unlock(&event->child_mutex);
4956 	return no_children;
4957 }
4958 
4959 /*
4960  * Read the performance event - simple non blocking version for now
4961  */
4962 static ssize_t
4963 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4964 {
4965 	u64 read_format = event->attr.read_format;
4966 	int ret;
4967 
4968 	/*
4969 	 * Return end-of-file for a read on an event that is in
4970 	 * error state (i.e. because it was pinned but it couldn't be
4971 	 * scheduled on to the CPU at some point).
4972 	 */
4973 	if (event->state == PERF_EVENT_STATE_ERROR)
4974 		return 0;
4975 
4976 	if (count < event->read_size)
4977 		return -ENOSPC;
4978 
4979 	WARN_ON_ONCE(event->ctx->parent_ctx);
4980 	if (read_format & PERF_FORMAT_GROUP)
4981 		ret = perf_read_group(event, read_format, buf);
4982 	else
4983 		ret = perf_read_one(event, read_format, buf);
4984 
4985 	return ret;
4986 }
4987 
4988 static ssize_t
4989 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4990 {
4991 	struct perf_event *event = file->private_data;
4992 	struct perf_event_context *ctx;
4993 	int ret;
4994 
4995 	ctx = perf_event_ctx_lock(event);
4996 	ret = __perf_read(event, buf, count);
4997 	perf_event_ctx_unlock(event, ctx);
4998 
4999 	return ret;
5000 }
5001 
5002 static __poll_t perf_poll(struct file *file, poll_table *wait)
5003 {
5004 	struct perf_event *event = file->private_data;
5005 	struct ring_buffer *rb;
5006 	__poll_t events = EPOLLHUP;
5007 
5008 	poll_wait(file, &event->waitq, wait);
5009 
5010 	if (is_event_hup(event))
5011 		return events;
5012 
5013 	/*
5014 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5015 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5016 	 */
5017 	mutex_lock(&event->mmap_mutex);
5018 	rb = event->rb;
5019 	if (rb)
5020 		events = atomic_xchg(&rb->poll, 0);
5021 	mutex_unlock(&event->mmap_mutex);
5022 	return events;
5023 }
5024 
5025 static void _perf_event_reset(struct perf_event *event)
5026 {
5027 	(void)perf_event_read(event, false);
5028 	local64_set(&event->count, 0);
5029 	perf_event_update_userpage(event);
5030 }
5031 
5032 /*
5033  * Holding the top-level event's child_mutex means that any
5034  * descendant process that has inherited this event will block
5035  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5036  * task existence requirements of perf_event_enable/disable.
5037  */
5038 static void perf_event_for_each_child(struct perf_event *event,
5039 					void (*func)(struct perf_event *))
5040 {
5041 	struct perf_event *child;
5042 
5043 	WARN_ON_ONCE(event->ctx->parent_ctx);
5044 
5045 	mutex_lock(&event->child_mutex);
5046 	func(event);
5047 	list_for_each_entry(child, &event->child_list, child_list)
5048 		func(child);
5049 	mutex_unlock(&event->child_mutex);
5050 }
5051 
5052 static void perf_event_for_each(struct perf_event *event,
5053 				  void (*func)(struct perf_event *))
5054 {
5055 	struct perf_event_context *ctx = event->ctx;
5056 	struct perf_event *sibling;
5057 
5058 	lockdep_assert_held(&ctx->mutex);
5059 
5060 	event = event->group_leader;
5061 
5062 	perf_event_for_each_child(event, func);
5063 	for_each_sibling_event(sibling, event)
5064 		perf_event_for_each_child(sibling, func);
5065 }
5066 
5067 static void __perf_event_period(struct perf_event *event,
5068 				struct perf_cpu_context *cpuctx,
5069 				struct perf_event_context *ctx,
5070 				void *info)
5071 {
5072 	u64 value = *((u64 *)info);
5073 	bool active;
5074 
5075 	if (event->attr.freq) {
5076 		event->attr.sample_freq = value;
5077 	} else {
5078 		event->attr.sample_period = value;
5079 		event->hw.sample_period = value;
5080 	}
5081 
5082 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5083 	if (active) {
5084 		perf_pmu_disable(ctx->pmu);
5085 		/*
5086 		 * We could be throttled; unthrottle now to avoid the tick
5087 		 * trying to unthrottle while we already re-started the event.
5088 		 */
5089 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5090 			event->hw.interrupts = 0;
5091 			perf_log_throttle(event, 1);
5092 		}
5093 		event->pmu->stop(event, PERF_EF_UPDATE);
5094 	}
5095 
5096 	local64_set(&event->hw.period_left, 0);
5097 
5098 	if (active) {
5099 		event->pmu->start(event, PERF_EF_RELOAD);
5100 		perf_pmu_enable(ctx->pmu);
5101 	}
5102 }
5103 
5104 static int perf_event_check_period(struct perf_event *event, u64 value)
5105 {
5106 	return event->pmu->check_period(event, value);
5107 }
5108 
5109 static int perf_event_period(struct perf_event *event, u64 __user *arg)
5110 {
5111 	u64 value;
5112 
5113 	if (!is_sampling_event(event))
5114 		return -EINVAL;
5115 
5116 	if (copy_from_user(&value, arg, sizeof(value)))
5117 		return -EFAULT;
5118 
5119 	if (!value)
5120 		return -EINVAL;
5121 
5122 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5123 		return -EINVAL;
5124 
5125 	if (perf_event_check_period(event, value))
5126 		return -EINVAL;
5127 
5128 	if (!event->attr.freq && (value & (1ULL << 63)))
5129 		return -EINVAL;
5130 
5131 	event_function_call(event, __perf_event_period, &value);
5132 
5133 	return 0;
5134 }
5135 
5136 static const struct file_operations perf_fops;
5137 
5138 static inline int perf_fget_light(int fd, struct fd *p)
5139 {
5140 	struct fd f = fdget(fd);
5141 	if (!f.file)
5142 		return -EBADF;
5143 
5144 	if (f.file->f_op != &perf_fops) {
5145 		fdput(f);
5146 		return -EBADF;
5147 	}
5148 	*p = f;
5149 	return 0;
5150 }
5151 
5152 static int perf_event_set_output(struct perf_event *event,
5153 				 struct perf_event *output_event);
5154 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5155 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5156 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5157 			  struct perf_event_attr *attr);
5158 
5159 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5160 {
5161 	void (*func)(struct perf_event *);
5162 	u32 flags = arg;
5163 
5164 	switch (cmd) {
5165 	case PERF_EVENT_IOC_ENABLE:
5166 		func = _perf_event_enable;
5167 		break;
5168 	case PERF_EVENT_IOC_DISABLE:
5169 		func = _perf_event_disable;
5170 		break;
5171 	case PERF_EVENT_IOC_RESET:
5172 		func = _perf_event_reset;
5173 		break;
5174 
5175 	case PERF_EVENT_IOC_REFRESH:
5176 		return _perf_event_refresh(event, arg);
5177 
5178 	case PERF_EVENT_IOC_PERIOD:
5179 		return perf_event_period(event, (u64 __user *)arg);
5180 
5181 	case PERF_EVENT_IOC_ID:
5182 	{
5183 		u64 id = primary_event_id(event);
5184 
5185 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5186 			return -EFAULT;
5187 		return 0;
5188 	}
5189 
5190 	case PERF_EVENT_IOC_SET_OUTPUT:
5191 	{
5192 		int ret;
5193 		if (arg != -1) {
5194 			struct perf_event *output_event;
5195 			struct fd output;
5196 			ret = perf_fget_light(arg, &output);
5197 			if (ret)
5198 				return ret;
5199 			output_event = output.file->private_data;
5200 			ret = perf_event_set_output(event, output_event);
5201 			fdput(output);
5202 		} else {
5203 			ret = perf_event_set_output(event, NULL);
5204 		}
5205 		return ret;
5206 	}
5207 
5208 	case PERF_EVENT_IOC_SET_FILTER:
5209 		return perf_event_set_filter(event, (void __user *)arg);
5210 
5211 	case PERF_EVENT_IOC_SET_BPF:
5212 		return perf_event_set_bpf_prog(event, arg);
5213 
5214 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5215 		struct ring_buffer *rb;
5216 
5217 		rcu_read_lock();
5218 		rb = rcu_dereference(event->rb);
5219 		if (!rb || !rb->nr_pages) {
5220 			rcu_read_unlock();
5221 			return -EINVAL;
5222 		}
5223 		rb_toggle_paused(rb, !!arg);
5224 		rcu_read_unlock();
5225 		return 0;
5226 	}
5227 
5228 	case PERF_EVENT_IOC_QUERY_BPF:
5229 		return perf_event_query_prog_array(event, (void __user *)arg);
5230 
5231 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5232 		struct perf_event_attr new_attr;
5233 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5234 					 &new_attr);
5235 
5236 		if (err)
5237 			return err;
5238 
5239 		return perf_event_modify_attr(event,  &new_attr);
5240 	}
5241 	default:
5242 		return -ENOTTY;
5243 	}
5244 
5245 	if (flags & PERF_IOC_FLAG_GROUP)
5246 		perf_event_for_each(event, func);
5247 	else
5248 		perf_event_for_each_child(event, func);
5249 
5250 	return 0;
5251 }
5252 
5253 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5254 {
5255 	struct perf_event *event = file->private_data;
5256 	struct perf_event_context *ctx;
5257 	long ret;
5258 
5259 	ctx = perf_event_ctx_lock(event);
5260 	ret = _perf_ioctl(event, cmd, arg);
5261 	perf_event_ctx_unlock(event, ctx);
5262 
5263 	return ret;
5264 }
5265 
5266 #ifdef CONFIG_COMPAT
5267 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5268 				unsigned long arg)
5269 {
5270 	switch (_IOC_NR(cmd)) {
5271 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5272 	case _IOC_NR(PERF_EVENT_IOC_ID):
5273 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5274 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5275 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5276 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5277 			cmd &= ~IOCSIZE_MASK;
5278 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5279 		}
5280 		break;
5281 	}
5282 	return perf_ioctl(file, cmd, arg);
5283 }
5284 #else
5285 # define perf_compat_ioctl NULL
5286 #endif
5287 
5288 int perf_event_task_enable(void)
5289 {
5290 	struct perf_event_context *ctx;
5291 	struct perf_event *event;
5292 
5293 	mutex_lock(&current->perf_event_mutex);
5294 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5295 		ctx = perf_event_ctx_lock(event);
5296 		perf_event_for_each_child(event, _perf_event_enable);
5297 		perf_event_ctx_unlock(event, ctx);
5298 	}
5299 	mutex_unlock(&current->perf_event_mutex);
5300 
5301 	return 0;
5302 }
5303 
5304 int perf_event_task_disable(void)
5305 {
5306 	struct perf_event_context *ctx;
5307 	struct perf_event *event;
5308 
5309 	mutex_lock(&current->perf_event_mutex);
5310 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5311 		ctx = perf_event_ctx_lock(event);
5312 		perf_event_for_each_child(event, _perf_event_disable);
5313 		perf_event_ctx_unlock(event, ctx);
5314 	}
5315 	mutex_unlock(&current->perf_event_mutex);
5316 
5317 	return 0;
5318 }
5319 
5320 static int perf_event_index(struct perf_event *event)
5321 {
5322 	if (event->hw.state & PERF_HES_STOPPED)
5323 		return 0;
5324 
5325 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5326 		return 0;
5327 
5328 	return event->pmu->event_idx(event);
5329 }
5330 
5331 static void calc_timer_values(struct perf_event *event,
5332 				u64 *now,
5333 				u64 *enabled,
5334 				u64 *running)
5335 {
5336 	u64 ctx_time;
5337 
5338 	*now = perf_clock();
5339 	ctx_time = event->shadow_ctx_time + *now;
5340 	__perf_update_times(event, ctx_time, enabled, running);
5341 }
5342 
5343 static void perf_event_init_userpage(struct perf_event *event)
5344 {
5345 	struct perf_event_mmap_page *userpg;
5346 	struct ring_buffer *rb;
5347 
5348 	rcu_read_lock();
5349 	rb = rcu_dereference(event->rb);
5350 	if (!rb)
5351 		goto unlock;
5352 
5353 	userpg = rb->user_page;
5354 
5355 	/* Allow new userspace to detect that bit 0 is deprecated */
5356 	userpg->cap_bit0_is_deprecated = 1;
5357 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5358 	userpg->data_offset = PAGE_SIZE;
5359 	userpg->data_size = perf_data_size(rb);
5360 
5361 unlock:
5362 	rcu_read_unlock();
5363 }
5364 
5365 void __weak arch_perf_update_userpage(
5366 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5367 {
5368 }
5369 
5370 /*
5371  * Callers need to ensure there can be no nesting of this function, otherwise
5372  * the seqlock logic goes bad. We can not serialize this because the arch
5373  * code calls this from NMI context.
5374  */
5375 void perf_event_update_userpage(struct perf_event *event)
5376 {
5377 	struct perf_event_mmap_page *userpg;
5378 	struct ring_buffer *rb;
5379 	u64 enabled, running, now;
5380 
5381 	rcu_read_lock();
5382 	rb = rcu_dereference(event->rb);
5383 	if (!rb)
5384 		goto unlock;
5385 
5386 	/*
5387 	 * compute total_time_enabled, total_time_running
5388 	 * based on snapshot values taken when the event
5389 	 * was last scheduled in.
5390 	 *
5391 	 * we cannot simply called update_context_time()
5392 	 * because of locking issue as we can be called in
5393 	 * NMI context
5394 	 */
5395 	calc_timer_values(event, &now, &enabled, &running);
5396 
5397 	userpg = rb->user_page;
5398 	/*
5399 	 * Disable preemption to guarantee consistent time stamps are stored to
5400 	 * the user page.
5401 	 */
5402 	preempt_disable();
5403 	++userpg->lock;
5404 	barrier();
5405 	userpg->index = perf_event_index(event);
5406 	userpg->offset = perf_event_count(event);
5407 	if (userpg->index)
5408 		userpg->offset -= local64_read(&event->hw.prev_count);
5409 
5410 	userpg->time_enabled = enabled +
5411 			atomic64_read(&event->child_total_time_enabled);
5412 
5413 	userpg->time_running = running +
5414 			atomic64_read(&event->child_total_time_running);
5415 
5416 	arch_perf_update_userpage(event, userpg, now);
5417 
5418 	barrier();
5419 	++userpg->lock;
5420 	preempt_enable();
5421 unlock:
5422 	rcu_read_unlock();
5423 }
5424 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5425 
5426 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5427 {
5428 	struct perf_event *event = vmf->vma->vm_file->private_data;
5429 	struct ring_buffer *rb;
5430 	vm_fault_t ret = VM_FAULT_SIGBUS;
5431 
5432 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5433 		if (vmf->pgoff == 0)
5434 			ret = 0;
5435 		return ret;
5436 	}
5437 
5438 	rcu_read_lock();
5439 	rb = rcu_dereference(event->rb);
5440 	if (!rb)
5441 		goto unlock;
5442 
5443 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5444 		goto unlock;
5445 
5446 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5447 	if (!vmf->page)
5448 		goto unlock;
5449 
5450 	get_page(vmf->page);
5451 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5452 	vmf->page->index   = vmf->pgoff;
5453 
5454 	ret = 0;
5455 unlock:
5456 	rcu_read_unlock();
5457 
5458 	return ret;
5459 }
5460 
5461 static void ring_buffer_attach(struct perf_event *event,
5462 			       struct ring_buffer *rb)
5463 {
5464 	struct ring_buffer *old_rb = NULL;
5465 	unsigned long flags;
5466 
5467 	if (event->rb) {
5468 		/*
5469 		 * Should be impossible, we set this when removing
5470 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5471 		 */
5472 		WARN_ON_ONCE(event->rcu_pending);
5473 
5474 		old_rb = event->rb;
5475 		spin_lock_irqsave(&old_rb->event_lock, flags);
5476 		list_del_rcu(&event->rb_entry);
5477 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5478 
5479 		event->rcu_batches = get_state_synchronize_rcu();
5480 		event->rcu_pending = 1;
5481 	}
5482 
5483 	if (rb) {
5484 		if (event->rcu_pending) {
5485 			cond_synchronize_rcu(event->rcu_batches);
5486 			event->rcu_pending = 0;
5487 		}
5488 
5489 		spin_lock_irqsave(&rb->event_lock, flags);
5490 		list_add_rcu(&event->rb_entry, &rb->event_list);
5491 		spin_unlock_irqrestore(&rb->event_lock, flags);
5492 	}
5493 
5494 	/*
5495 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5496 	 * before swizzling the event::rb pointer; if it's getting
5497 	 * unmapped, its aux_mmap_count will be 0 and it won't
5498 	 * restart. See the comment in __perf_pmu_output_stop().
5499 	 *
5500 	 * Data will inevitably be lost when set_output is done in
5501 	 * mid-air, but then again, whoever does it like this is
5502 	 * not in for the data anyway.
5503 	 */
5504 	if (has_aux(event))
5505 		perf_event_stop(event, 0);
5506 
5507 	rcu_assign_pointer(event->rb, rb);
5508 
5509 	if (old_rb) {
5510 		ring_buffer_put(old_rb);
5511 		/*
5512 		 * Since we detached before setting the new rb, so that we
5513 		 * could attach the new rb, we could have missed a wakeup.
5514 		 * Provide it now.
5515 		 */
5516 		wake_up_all(&event->waitq);
5517 	}
5518 }
5519 
5520 static void ring_buffer_wakeup(struct perf_event *event)
5521 {
5522 	struct ring_buffer *rb;
5523 
5524 	rcu_read_lock();
5525 	rb = rcu_dereference(event->rb);
5526 	if (rb) {
5527 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5528 			wake_up_all(&event->waitq);
5529 	}
5530 	rcu_read_unlock();
5531 }
5532 
5533 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5534 {
5535 	struct ring_buffer *rb;
5536 
5537 	rcu_read_lock();
5538 	rb = rcu_dereference(event->rb);
5539 	if (rb) {
5540 		if (!refcount_inc_not_zero(&rb->refcount))
5541 			rb = NULL;
5542 	}
5543 	rcu_read_unlock();
5544 
5545 	return rb;
5546 }
5547 
5548 void ring_buffer_put(struct ring_buffer *rb)
5549 {
5550 	if (!refcount_dec_and_test(&rb->refcount))
5551 		return;
5552 
5553 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5554 
5555 	call_rcu(&rb->rcu_head, rb_free_rcu);
5556 }
5557 
5558 static void perf_mmap_open(struct vm_area_struct *vma)
5559 {
5560 	struct perf_event *event = vma->vm_file->private_data;
5561 
5562 	atomic_inc(&event->mmap_count);
5563 	atomic_inc(&event->rb->mmap_count);
5564 
5565 	if (vma->vm_pgoff)
5566 		atomic_inc(&event->rb->aux_mmap_count);
5567 
5568 	if (event->pmu->event_mapped)
5569 		event->pmu->event_mapped(event, vma->vm_mm);
5570 }
5571 
5572 static void perf_pmu_output_stop(struct perf_event *event);
5573 
5574 /*
5575  * A buffer can be mmap()ed multiple times; either directly through the same
5576  * event, or through other events by use of perf_event_set_output().
5577  *
5578  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5579  * the buffer here, where we still have a VM context. This means we need
5580  * to detach all events redirecting to us.
5581  */
5582 static void perf_mmap_close(struct vm_area_struct *vma)
5583 {
5584 	struct perf_event *event = vma->vm_file->private_data;
5585 
5586 	struct ring_buffer *rb = ring_buffer_get(event);
5587 	struct user_struct *mmap_user = rb->mmap_user;
5588 	int mmap_locked = rb->mmap_locked;
5589 	unsigned long size = perf_data_size(rb);
5590 
5591 	if (event->pmu->event_unmapped)
5592 		event->pmu->event_unmapped(event, vma->vm_mm);
5593 
5594 	/*
5595 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5596 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5597 	 * serialize with perf_mmap here.
5598 	 */
5599 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5600 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5601 		/*
5602 		 * Stop all AUX events that are writing to this buffer,
5603 		 * so that we can free its AUX pages and corresponding PMU
5604 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5605 		 * they won't start any more (see perf_aux_output_begin()).
5606 		 */
5607 		perf_pmu_output_stop(event);
5608 
5609 		/* now it's safe to free the pages */
5610 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5611 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5612 
5613 		/* this has to be the last one */
5614 		rb_free_aux(rb);
5615 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5616 
5617 		mutex_unlock(&event->mmap_mutex);
5618 	}
5619 
5620 	atomic_dec(&rb->mmap_count);
5621 
5622 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5623 		goto out_put;
5624 
5625 	ring_buffer_attach(event, NULL);
5626 	mutex_unlock(&event->mmap_mutex);
5627 
5628 	/* If there's still other mmap()s of this buffer, we're done. */
5629 	if (atomic_read(&rb->mmap_count))
5630 		goto out_put;
5631 
5632 	/*
5633 	 * No other mmap()s, detach from all other events that might redirect
5634 	 * into the now unreachable buffer. Somewhat complicated by the
5635 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5636 	 */
5637 again:
5638 	rcu_read_lock();
5639 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5640 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5641 			/*
5642 			 * This event is en-route to free_event() which will
5643 			 * detach it and remove it from the list.
5644 			 */
5645 			continue;
5646 		}
5647 		rcu_read_unlock();
5648 
5649 		mutex_lock(&event->mmap_mutex);
5650 		/*
5651 		 * Check we didn't race with perf_event_set_output() which can
5652 		 * swizzle the rb from under us while we were waiting to
5653 		 * acquire mmap_mutex.
5654 		 *
5655 		 * If we find a different rb; ignore this event, a next
5656 		 * iteration will no longer find it on the list. We have to
5657 		 * still restart the iteration to make sure we're not now
5658 		 * iterating the wrong list.
5659 		 */
5660 		if (event->rb == rb)
5661 			ring_buffer_attach(event, NULL);
5662 
5663 		mutex_unlock(&event->mmap_mutex);
5664 		put_event(event);
5665 
5666 		/*
5667 		 * Restart the iteration; either we're on the wrong list or
5668 		 * destroyed its integrity by doing a deletion.
5669 		 */
5670 		goto again;
5671 	}
5672 	rcu_read_unlock();
5673 
5674 	/*
5675 	 * It could be there's still a few 0-ref events on the list; they'll
5676 	 * get cleaned up by free_event() -- they'll also still have their
5677 	 * ref on the rb and will free it whenever they are done with it.
5678 	 *
5679 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5680 	 * undo the VM accounting.
5681 	 */
5682 
5683 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5684 			&mmap_user->locked_vm);
5685 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5686 	free_uid(mmap_user);
5687 
5688 out_put:
5689 	ring_buffer_put(rb); /* could be last */
5690 }
5691 
5692 static const struct vm_operations_struct perf_mmap_vmops = {
5693 	.open		= perf_mmap_open,
5694 	.close		= perf_mmap_close, /* non mergeable */
5695 	.fault		= perf_mmap_fault,
5696 	.page_mkwrite	= perf_mmap_fault,
5697 };
5698 
5699 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5700 {
5701 	struct perf_event *event = file->private_data;
5702 	unsigned long user_locked, user_lock_limit;
5703 	struct user_struct *user = current_user();
5704 	unsigned long locked, lock_limit;
5705 	struct ring_buffer *rb = NULL;
5706 	unsigned long vma_size;
5707 	unsigned long nr_pages;
5708 	long user_extra = 0, extra = 0;
5709 	int ret = 0, flags = 0;
5710 
5711 	/*
5712 	 * Don't allow mmap() of inherited per-task counters. This would
5713 	 * create a performance issue due to all children writing to the
5714 	 * same rb.
5715 	 */
5716 	if (event->cpu == -1 && event->attr.inherit)
5717 		return -EINVAL;
5718 
5719 	if (!(vma->vm_flags & VM_SHARED))
5720 		return -EINVAL;
5721 
5722 	vma_size = vma->vm_end - vma->vm_start;
5723 
5724 	if (vma->vm_pgoff == 0) {
5725 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5726 	} else {
5727 		/*
5728 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5729 		 * mapped, all subsequent mappings should have the same size
5730 		 * and offset. Must be above the normal perf buffer.
5731 		 */
5732 		u64 aux_offset, aux_size;
5733 
5734 		if (!event->rb)
5735 			return -EINVAL;
5736 
5737 		nr_pages = vma_size / PAGE_SIZE;
5738 
5739 		mutex_lock(&event->mmap_mutex);
5740 		ret = -EINVAL;
5741 
5742 		rb = event->rb;
5743 		if (!rb)
5744 			goto aux_unlock;
5745 
5746 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5747 		aux_size = READ_ONCE(rb->user_page->aux_size);
5748 
5749 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5750 			goto aux_unlock;
5751 
5752 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5753 			goto aux_unlock;
5754 
5755 		/* already mapped with a different offset */
5756 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5757 			goto aux_unlock;
5758 
5759 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5760 			goto aux_unlock;
5761 
5762 		/* already mapped with a different size */
5763 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5764 			goto aux_unlock;
5765 
5766 		if (!is_power_of_2(nr_pages))
5767 			goto aux_unlock;
5768 
5769 		if (!atomic_inc_not_zero(&rb->mmap_count))
5770 			goto aux_unlock;
5771 
5772 		if (rb_has_aux(rb)) {
5773 			atomic_inc(&rb->aux_mmap_count);
5774 			ret = 0;
5775 			goto unlock;
5776 		}
5777 
5778 		atomic_set(&rb->aux_mmap_count, 1);
5779 		user_extra = nr_pages;
5780 
5781 		goto accounting;
5782 	}
5783 
5784 	/*
5785 	 * If we have rb pages ensure they're a power-of-two number, so we
5786 	 * can do bitmasks instead of modulo.
5787 	 */
5788 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5789 		return -EINVAL;
5790 
5791 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5792 		return -EINVAL;
5793 
5794 	WARN_ON_ONCE(event->ctx->parent_ctx);
5795 again:
5796 	mutex_lock(&event->mmap_mutex);
5797 	if (event->rb) {
5798 		if (event->rb->nr_pages != nr_pages) {
5799 			ret = -EINVAL;
5800 			goto unlock;
5801 		}
5802 
5803 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5804 			/*
5805 			 * Raced against perf_mmap_close() through
5806 			 * perf_event_set_output(). Try again, hope for better
5807 			 * luck.
5808 			 */
5809 			mutex_unlock(&event->mmap_mutex);
5810 			goto again;
5811 		}
5812 
5813 		goto unlock;
5814 	}
5815 
5816 	user_extra = nr_pages + 1;
5817 
5818 accounting:
5819 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5820 
5821 	/*
5822 	 * Increase the limit linearly with more CPUs:
5823 	 */
5824 	user_lock_limit *= num_online_cpus();
5825 
5826 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5827 
5828 	if (user_locked <= user_lock_limit) {
5829 		/* charge all to locked_vm */
5830 	} else if (atomic_long_read(&user->locked_vm) >= user_lock_limit) {
5831 		/* charge all to pinned_vm */
5832 		extra = user_extra;
5833 		user_extra = 0;
5834 	} else {
5835 		/*
5836 		 * charge locked_vm until it hits user_lock_limit;
5837 		 * charge the rest from pinned_vm
5838 		 */
5839 		extra = user_locked - user_lock_limit;
5840 		user_extra -= extra;
5841 	}
5842 
5843 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5844 	lock_limit >>= PAGE_SHIFT;
5845 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5846 
5847 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5848 		!capable(CAP_IPC_LOCK)) {
5849 		ret = -EPERM;
5850 		goto unlock;
5851 	}
5852 
5853 	WARN_ON(!rb && event->rb);
5854 
5855 	if (vma->vm_flags & VM_WRITE)
5856 		flags |= RING_BUFFER_WRITABLE;
5857 
5858 	if (!rb) {
5859 		rb = rb_alloc(nr_pages,
5860 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5861 			      event->cpu, flags);
5862 
5863 		if (!rb) {
5864 			ret = -ENOMEM;
5865 			goto unlock;
5866 		}
5867 
5868 		atomic_set(&rb->mmap_count, 1);
5869 		rb->mmap_user = get_current_user();
5870 		rb->mmap_locked = extra;
5871 
5872 		ring_buffer_attach(event, rb);
5873 
5874 		perf_event_init_userpage(event);
5875 		perf_event_update_userpage(event);
5876 	} else {
5877 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5878 				   event->attr.aux_watermark, flags);
5879 		if (!ret)
5880 			rb->aux_mmap_locked = extra;
5881 	}
5882 
5883 unlock:
5884 	if (!ret) {
5885 		atomic_long_add(user_extra, &user->locked_vm);
5886 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
5887 
5888 		atomic_inc(&event->mmap_count);
5889 	} else if (rb) {
5890 		atomic_dec(&rb->mmap_count);
5891 	}
5892 aux_unlock:
5893 	mutex_unlock(&event->mmap_mutex);
5894 
5895 	/*
5896 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5897 	 * vma.
5898 	 */
5899 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5900 	vma->vm_ops = &perf_mmap_vmops;
5901 
5902 	if (event->pmu->event_mapped)
5903 		event->pmu->event_mapped(event, vma->vm_mm);
5904 
5905 	return ret;
5906 }
5907 
5908 static int perf_fasync(int fd, struct file *filp, int on)
5909 {
5910 	struct inode *inode = file_inode(filp);
5911 	struct perf_event *event = filp->private_data;
5912 	int retval;
5913 
5914 	inode_lock(inode);
5915 	retval = fasync_helper(fd, filp, on, &event->fasync);
5916 	inode_unlock(inode);
5917 
5918 	if (retval < 0)
5919 		return retval;
5920 
5921 	return 0;
5922 }
5923 
5924 static const struct file_operations perf_fops = {
5925 	.llseek			= no_llseek,
5926 	.release		= perf_release,
5927 	.read			= perf_read,
5928 	.poll			= perf_poll,
5929 	.unlocked_ioctl		= perf_ioctl,
5930 	.compat_ioctl		= perf_compat_ioctl,
5931 	.mmap			= perf_mmap,
5932 	.fasync			= perf_fasync,
5933 };
5934 
5935 /*
5936  * Perf event wakeup
5937  *
5938  * If there's data, ensure we set the poll() state and publish everything
5939  * to user-space before waking everybody up.
5940  */
5941 
5942 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5943 {
5944 	/* only the parent has fasync state */
5945 	if (event->parent)
5946 		event = event->parent;
5947 	return &event->fasync;
5948 }
5949 
5950 void perf_event_wakeup(struct perf_event *event)
5951 {
5952 	ring_buffer_wakeup(event);
5953 
5954 	if (event->pending_kill) {
5955 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5956 		event->pending_kill = 0;
5957 	}
5958 }
5959 
5960 static void perf_pending_event_disable(struct perf_event *event)
5961 {
5962 	int cpu = READ_ONCE(event->pending_disable);
5963 
5964 	if (cpu < 0)
5965 		return;
5966 
5967 	if (cpu == smp_processor_id()) {
5968 		WRITE_ONCE(event->pending_disable, -1);
5969 		perf_event_disable_local(event);
5970 		return;
5971 	}
5972 
5973 	/*
5974 	 *  CPU-A			CPU-B
5975 	 *
5976 	 *  perf_event_disable_inatomic()
5977 	 *    @pending_disable = CPU-A;
5978 	 *    irq_work_queue();
5979 	 *
5980 	 *  sched-out
5981 	 *    @pending_disable = -1;
5982 	 *
5983 	 *				sched-in
5984 	 *				perf_event_disable_inatomic()
5985 	 *				  @pending_disable = CPU-B;
5986 	 *				  irq_work_queue(); // FAILS
5987 	 *
5988 	 *  irq_work_run()
5989 	 *    perf_pending_event()
5990 	 *
5991 	 * But the event runs on CPU-B and wants disabling there.
5992 	 */
5993 	irq_work_queue_on(&event->pending, cpu);
5994 }
5995 
5996 static void perf_pending_event(struct irq_work *entry)
5997 {
5998 	struct perf_event *event = container_of(entry, struct perf_event, pending);
5999 	int rctx;
6000 
6001 	rctx = perf_swevent_get_recursion_context();
6002 	/*
6003 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6004 	 * and we won't recurse 'further'.
6005 	 */
6006 
6007 	perf_pending_event_disable(event);
6008 
6009 	if (event->pending_wakeup) {
6010 		event->pending_wakeup = 0;
6011 		perf_event_wakeup(event);
6012 	}
6013 
6014 	if (rctx >= 0)
6015 		perf_swevent_put_recursion_context(rctx);
6016 }
6017 
6018 /*
6019  * We assume there is only KVM supporting the callbacks.
6020  * Later on, we might change it to a list if there is
6021  * another virtualization implementation supporting the callbacks.
6022  */
6023 struct perf_guest_info_callbacks *perf_guest_cbs;
6024 
6025 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6026 {
6027 	perf_guest_cbs = cbs;
6028 	return 0;
6029 }
6030 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6031 
6032 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6033 {
6034 	perf_guest_cbs = NULL;
6035 	return 0;
6036 }
6037 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6038 
6039 static void
6040 perf_output_sample_regs(struct perf_output_handle *handle,
6041 			struct pt_regs *regs, u64 mask)
6042 {
6043 	int bit;
6044 	DECLARE_BITMAP(_mask, 64);
6045 
6046 	bitmap_from_u64(_mask, mask);
6047 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6048 		u64 val;
6049 
6050 		val = perf_reg_value(regs, bit);
6051 		perf_output_put(handle, val);
6052 	}
6053 }
6054 
6055 static void perf_sample_regs_user(struct perf_regs *regs_user,
6056 				  struct pt_regs *regs,
6057 				  struct pt_regs *regs_user_copy)
6058 {
6059 	if (user_mode(regs)) {
6060 		regs_user->abi = perf_reg_abi(current);
6061 		regs_user->regs = regs;
6062 	} else if (!(current->flags & PF_KTHREAD)) {
6063 		perf_get_regs_user(regs_user, regs, regs_user_copy);
6064 	} else {
6065 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6066 		regs_user->regs = NULL;
6067 	}
6068 }
6069 
6070 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6071 				  struct pt_regs *regs)
6072 {
6073 	regs_intr->regs = regs;
6074 	regs_intr->abi  = perf_reg_abi(current);
6075 }
6076 
6077 
6078 /*
6079  * Get remaining task size from user stack pointer.
6080  *
6081  * It'd be better to take stack vma map and limit this more
6082  * precisely, but there's no way to get it safely under interrupt,
6083  * so using TASK_SIZE as limit.
6084  */
6085 static u64 perf_ustack_task_size(struct pt_regs *regs)
6086 {
6087 	unsigned long addr = perf_user_stack_pointer(regs);
6088 
6089 	if (!addr || addr >= TASK_SIZE)
6090 		return 0;
6091 
6092 	return TASK_SIZE - addr;
6093 }
6094 
6095 static u16
6096 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6097 			struct pt_regs *regs)
6098 {
6099 	u64 task_size;
6100 
6101 	/* No regs, no stack pointer, no dump. */
6102 	if (!regs)
6103 		return 0;
6104 
6105 	/*
6106 	 * Check if we fit in with the requested stack size into the:
6107 	 * - TASK_SIZE
6108 	 *   If we don't, we limit the size to the TASK_SIZE.
6109 	 *
6110 	 * - remaining sample size
6111 	 *   If we don't, we customize the stack size to
6112 	 *   fit in to the remaining sample size.
6113 	 */
6114 
6115 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6116 	stack_size = min(stack_size, (u16) task_size);
6117 
6118 	/* Current header size plus static size and dynamic size. */
6119 	header_size += 2 * sizeof(u64);
6120 
6121 	/* Do we fit in with the current stack dump size? */
6122 	if ((u16) (header_size + stack_size) < header_size) {
6123 		/*
6124 		 * If we overflow the maximum size for the sample,
6125 		 * we customize the stack dump size to fit in.
6126 		 */
6127 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6128 		stack_size = round_up(stack_size, sizeof(u64));
6129 	}
6130 
6131 	return stack_size;
6132 }
6133 
6134 static void
6135 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6136 			  struct pt_regs *regs)
6137 {
6138 	/* Case of a kernel thread, nothing to dump */
6139 	if (!regs) {
6140 		u64 size = 0;
6141 		perf_output_put(handle, size);
6142 	} else {
6143 		unsigned long sp;
6144 		unsigned int rem;
6145 		u64 dyn_size;
6146 		mm_segment_t fs;
6147 
6148 		/*
6149 		 * We dump:
6150 		 * static size
6151 		 *   - the size requested by user or the best one we can fit
6152 		 *     in to the sample max size
6153 		 * data
6154 		 *   - user stack dump data
6155 		 * dynamic size
6156 		 *   - the actual dumped size
6157 		 */
6158 
6159 		/* Static size. */
6160 		perf_output_put(handle, dump_size);
6161 
6162 		/* Data. */
6163 		sp = perf_user_stack_pointer(regs);
6164 		fs = get_fs();
6165 		set_fs(USER_DS);
6166 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6167 		set_fs(fs);
6168 		dyn_size = dump_size - rem;
6169 
6170 		perf_output_skip(handle, rem);
6171 
6172 		/* Dynamic size. */
6173 		perf_output_put(handle, dyn_size);
6174 	}
6175 }
6176 
6177 static void __perf_event_header__init_id(struct perf_event_header *header,
6178 					 struct perf_sample_data *data,
6179 					 struct perf_event *event)
6180 {
6181 	u64 sample_type = event->attr.sample_type;
6182 
6183 	data->type = sample_type;
6184 	header->size += event->id_header_size;
6185 
6186 	if (sample_type & PERF_SAMPLE_TID) {
6187 		/* namespace issues */
6188 		data->tid_entry.pid = perf_event_pid(event, current);
6189 		data->tid_entry.tid = perf_event_tid(event, current);
6190 	}
6191 
6192 	if (sample_type & PERF_SAMPLE_TIME)
6193 		data->time = perf_event_clock(event);
6194 
6195 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6196 		data->id = primary_event_id(event);
6197 
6198 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6199 		data->stream_id = event->id;
6200 
6201 	if (sample_type & PERF_SAMPLE_CPU) {
6202 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6203 		data->cpu_entry.reserved = 0;
6204 	}
6205 }
6206 
6207 void perf_event_header__init_id(struct perf_event_header *header,
6208 				struct perf_sample_data *data,
6209 				struct perf_event *event)
6210 {
6211 	if (event->attr.sample_id_all)
6212 		__perf_event_header__init_id(header, data, event);
6213 }
6214 
6215 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6216 					   struct perf_sample_data *data)
6217 {
6218 	u64 sample_type = data->type;
6219 
6220 	if (sample_type & PERF_SAMPLE_TID)
6221 		perf_output_put(handle, data->tid_entry);
6222 
6223 	if (sample_type & PERF_SAMPLE_TIME)
6224 		perf_output_put(handle, data->time);
6225 
6226 	if (sample_type & PERF_SAMPLE_ID)
6227 		perf_output_put(handle, data->id);
6228 
6229 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6230 		perf_output_put(handle, data->stream_id);
6231 
6232 	if (sample_type & PERF_SAMPLE_CPU)
6233 		perf_output_put(handle, data->cpu_entry);
6234 
6235 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6236 		perf_output_put(handle, data->id);
6237 }
6238 
6239 void perf_event__output_id_sample(struct perf_event *event,
6240 				  struct perf_output_handle *handle,
6241 				  struct perf_sample_data *sample)
6242 {
6243 	if (event->attr.sample_id_all)
6244 		__perf_event__output_id_sample(handle, sample);
6245 }
6246 
6247 static void perf_output_read_one(struct perf_output_handle *handle,
6248 				 struct perf_event *event,
6249 				 u64 enabled, u64 running)
6250 {
6251 	u64 read_format = event->attr.read_format;
6252 	u64 values[4];
6253 	int n = 0;
6254 
6255 	values[n++] = perf_event_count(event);
6256 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6257 		values[n++] = enabled +
6258 			atomic64_read(&event->child_total_time_enabled);
6259 	}
6260 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6261 		values[n++] = running +
6262 			atomic64_read(&event->child_total_time_running);
6263 	}
6264 	if (read_format & PERF_FORMAT_ID)
6265 		values[n++] = primary_event_id(event);
6266 
6267 	__output_copy(handle, values, n * sizeof(u64));
6268 }
6269 
6270 static void perf_output_read_group(struct perf_output_handle *handle,
6271 			    struct perf_event *event,
6272 			    u64 enabled, u64 running)
6273 {
6274 	struct perf_event *leader = event->group_leader, *sub;
6275 	u64 read_format = event->attr.read_format;
6276 	u64 values[5];
6277 	int n = 0;
6278 
6279 	values[n++] = 1 + leader->nr_siblings;
6280 
6281 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6282 		values[n++] = enabled;
6283 
6284 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6285 		values[n++] = running;
6286 
6287 	if ((leader != event) &&
6288 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6289 		leader->pmu->read(leader);
6290 
6291 	values[n++] = perf_event_count(leader);
6292 	if (read_format & PERF_FORMAT_ID)
6293 		values[n++] = primary_event_id(leader);
6294 
6295 	__output_copy(handle, values, n * sizeof(u64));
6296 
6297 	for_each_sibling_event(sub, leader) {
6298 		n = 0;
6299 
6300 		if ((sub != event) &&
6301 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6302 			sub->pmu->read(sub);
6303 
6304 		values[n++] = perf_event_count(sub);
6305 		if (read_format & PERF_FORMAT_ID)
6306 			values[n++] = primary_event_id(sub);
6307 
6308 		__output_copy(handle, values, n * sizeof(u64));
6309 	}
6310 }
6311 
6312 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6313 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6314 
6315 /*
6316  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6317  *
6318  * The problem is that its both hard and excessively expensive to iterate the
6319  * child list, not to mention that its impossible to IPI the children running
6320  * on another CPU, from interrupt/NMI context.
6321  */
6322 static void perf_output_read(struct perf_output_handle *handle,
6323 			     struct perf_event *event)
6324 {
6325 	u64 enabled = 0, running = 0, now;
6326 	u64 read_format = event->attr.read_format;
6327 
6328 	/*
6329 	 * compute total_time_enabled, total_time_running
6330 	 * based on snapshot values taken when the event
6331 	 * was last scheduled in.
6332 	 *
6333 	 * we cannot simply called update_context_time()
6334 	 * because of locking issue as we are called in
6335 	 * NMI context
6336 	 */
6337 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6338 		calc_timer_values(event, &now, &enabled, &running);
6339 
6340 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6341 		perf_output_read_group(handle, event, enabled, running);
6342 	else
6343 		perf_output_read_one(handle, event, enabled, running);
6344 }
6345 
6346 void perf_output_sample(struct perf_output_handle *handle,
6347 			struct perf_event_header *header,
6348 			struct perf_sample_data *data,
6349 			struct perf_event *event)
6350 {
6351 	u64 sample_type = data->type;
6352 
6353 	perf_output_put(handle, *header);
6354 
6355 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6356 		perf_output_put(handle, data->id);
6357 
6358 	if (sample_type & PERF_SAMPLE_IP)
6359 		perf_output_put(handle, data->ip);
6360 
6361 	if (sample_type & PERF_SAMPLE_TID)
6362 		perf_output_put(handle, data->tid_entry);
6363 
6364 	if (sample_type & PERF_SAMPLE_TIME)
6365 		perf_output_put(handle, data->time);
6366 
6367 	if (sample_type & PERF_SAMPLE_ADDR)
6368 		perf_output_put(handle, data->addr);
6369 
6370 	if (sample_type & PERF_SAMPLE_ID)
6371 		perf_output_put(handle, data->id);
6372 
6373 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6374 		perf_output_put(handle, data->stream_id);
6375 
6376 	if (sample_type & PERF_SAMPLE_CPU)
6377 		perf_output_put(handle, data->cpu_entry);
6378 
6379 	if (sample_type & PERF_SAMPLE_PERIOD)
6380 		perf_output_put(handle, data->period);
6381 
6382 	if (sample_type & PERF_SAMPLE_READ)
6383 		perf_output_read(handle, event);
6384 
6385 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6386 		int size = 1;
6387 
6388 		size += data->callchain->nr;
6389 		size *= sizeof(u64);
6390 		__output_copy(handle, data->callchain, size);
6391 	}
6392 
6393 	if (sample_type & PERF_SAMPLE_RAW) {
6394 		struct perf_raw_record *raw = data->raw;
6395 
6396 		if (raw) {
6397 			struct perf_raw_frag *frag = &raw->frag;
6398 
6399 			perf_output_put(handle, raw->size);
6400 			do {
6401 				if (frag->copy) {
6402 					__output_custom(handle, frag->copy,
6403 							frag->data, frag->size);
6404 				} else {
6405 					__output_copy(handle, frag->data,
6406 						      frag->size);
6407 				}
6408 				if (perf_raw_frag_last(frag))
6409 					break;
6410 				frag = frag->next;
6411 			} while (1);
6412 			if (frag->pad)
6413 				__output_skip(handle, NULL, frag->pad);
6414 		} else {
6415 			struct {
6416 				u32	size;
6417 				u32	data;
6418 			} raw = {
6419 				.size = sizeof(u32),
6420 				.data = 0,
6421 			};
6422 			perf_output_put(handle, raw);
6423 		}
6424 	}
6425 
6426 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6427 		if (data->br_stack) {
6428 			size_t size;
6429 
6430 			size = data->br_stack->nr
6431 			     * sizeof(struct perf_branch_entry);
6432 
6433 			perf_output_put(handle, data->br_stack->nr);
6434 			perf_output_copy(handle, data->br_stack->entries, size);
6435 		} else {
6436 			/*
6437 			 * we always store at least the value of nr
6438 			 */
6439 			u64 nr = 0;
6440 			perf_output_put(handle, nr);
6441 		}
6442 	}
6443 
6444 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6445 		u64 abi = data->regs_user.abi;
6446 
6447 		/*
6448 		 * If there are no regs to dump, notice it through
6449 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6450 		 */
6451 		perf_output_put(handle, abi);
6452 
6453 		if (abi) {
6454 			u64 mask = event->attr.sample_regs_user;
6455 			perf_output_sample_regs(handle,
6456 						data->regs_user.regs,
6457 						mask);
6458 		}
6459 	}
6460 
6461 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6462 		perf_output_sample_ustack(handle,
6463 					  data->stack_user_size,
6464 					  data->regs_user.regs);
6465 	}
6466 
6467 	if (sample_type & PERF_SAMPLE_WEIGHT)
6468 		perf_output_put(handle, data->weight);
6469 
6470 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6471 		perf_output_put(handle, data->data_src.val);
6472 
6473 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6474 		perf_output_put(handle, data->txn);
6475 
6476 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6477 		u64 abi = data->regs_intr.abi;
6478 		/*
6479 		 * If there are no regs to dump, notice it through
6480 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6481 		 */
6482 		perf_output_put(handle, abi);
6483 
6484 		if (abi) {
6485 			u64 mask = event->attr.sample_regs_intr;
6486 
6487 			perf_output_sample_regs(handle,
6488 						data->regs_intr.regs,
6489 						mask);
6490 		}
6491 	}
6492 
6493 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6494 		perf_output_put(handle, data->phys_addr);
6495 
6496 	if (!event->attr.watermark) {
6497 		int wakeup_events = event->attr.wakeup_events;
6498 
6499 		if (wakeup_events) {
6500 			struct ring_buffer *rb = handle->rb;
6501 			int events = local_inc_return(&rb->events);
6502 
6503 			if (events >= wakeup_events) {
6504 				local_sub(wakeup_events, &rb->events);
6505 				local_inc(&rb->wakeup);
6506 			}
6507 		}
6508 	}
6509 }
6510 
6511 static u64 perf_virt_to_phys(u64 virt)
6512 {
6513 	u64 phys_addr = 0;
6514 	struct page *p = NULL;
6515 
6516 	if (!virt)
6517 		return 0;
6518 
6519 	if (virt >= TASK_SIZE) {
6520 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6521 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6522 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6523 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6524 	} else {
6525 		/*
6526 		 * Walking the pages tables for user address.
6527 		 * Interrupts are disabled, so it prevents any tear down
6528 		 * of the page tables.
6529 		 * Try IRQ-safe __get_user_pages_fast first.
6530 		 * If failed, leave phys_addr as 0.
6531 		 */
6532 		if ((current->mm != NULL) &&
6533 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6534 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6535 
6536 		if (p)
6537 			put_page(p);
6538 	}
6539 
6540 	return phys_addr;
6541 }
6542 
6543 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6544 
6545 struct perf_callchain_entry *
6546 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6547 {
6548 	bool kernel = !event->attr.exclude_callchain_kernel;
6549 	bool user   = !event->attr.exclude_callchain_user;
6550 	/* Disallow cross-task user callchains. */
6551 	bool crosstask = event->ctx->task && event->ctx->task != current;
6552 	const u32 max_stack = event->attr.sample_max_stack;
6553 	struct perf_callchain_entry *callchain;
6554 
6555 	if (!kernel && !user)
6556 		return &__empty_callchain;
6557 
6558 	callchain = get_perf_callchain(regs, 0, kernel, user,
6559 				       max_stack, crosstask, true);
6560 	return callchain ?: &__empty_callchain;
6561 }
6562 
6563 void perf_prepare_sample(struct perf_event_header *header,
6564 			 struct perf_sample_data *data,
6565 			 struct perf_event *event,
6566 			 struct pt_regs *regs)
6567 {
6568 	u64 sample_type = event->attr.sample_type;
6569 
6570 	header->type = PERF_RECORD_SAMPLE;
6571 	header->size = sizeof(*header) + event->header_size;
6572 
6573 	header->misc = 0;
6574 	header->misc |= perf_misc_flags(regs);
6575 
6576 	__perf_event_header__init_id(header, data, event);
6577 
6578 	if (sample_type & PERF_SAMPLE_IP)
6579 		data->ip = perf_instruction_pointer(regs);
6580 
6581 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6582 		int size = 1;
6583 
6584 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6585 			data->callchain = perf_callchain(event, regs);
6586 
6587 		size += data->callchain->nr;
6588 
6589 		header->size += size * sizeof(u64);
6590 	}
6591 
6592 	if (sample_type & PERF_SAMPLE_RAW) {
6593 		struct perf_raw_record *raw = data->raw;
6594 		int size;
6595 
6596 		if (raw) {
6597 			struct perf_raw_frag *frag = &raw->frag;
6598 			u32 sum = 0;
6599 
6600 			do {
6601 				sum += frag->size;
6602 				if (perf_raw_frag_last(frag))
6603 					break;
6604 				frag = frag->next;
6605 			} while (1);
6606 
6607 			size = round_up(sum + sizeof(u32), sizeof(u64));
6608 			raw->size = size - sizeof(u32);
6609 			frag->pad = raw->size - sum;
6610 		} else {
6611 			size = sizeof(u64);
6612 		}
6613 
6614 		header->size += size;
6615 	}
6616 
6617 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6618 		int size = sizeof(u64); /* nr */
6619 		if (data->br_stack) {
6620 			size += data->br_stack->nr
6621 			      * sizeof(struct perf_branch_entry);
6622 		}
6623 		header->size += size;
6624 	}
6625 
6626 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6627 		perf_sample_regs_user(&data->regs_user, regs,
6628 				      &data->regs_user_copy);
6629 
6630 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6631 		/* regs dump ABI info */
6632 		int size = sizeof(u64);
6633 
6634 		if (data->regs_user.regs) {
6635 			u64 mask = event->attr.sample_regs_user;
6636 			size += hweight64(mask) * sizeof(u64);
6637 		}
6638 
6639 		header->size += size;
6640 	}
6641 
6642 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6643 		/*
6644 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
6645 		 * processed as the last one or have additional check added
6646 		 * in case new sample type is added, because we could eat
6647 		 * up the rest of the sample size.
6648 		 */
6649 		u16 stack_size = event->attr.sample_stack_user;
6650 		u16 size = sizeof(u64);
6651 
6652 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6653 						     data->regs_user.regs);
6654 
6655 		/*
6656 		 * If there is something to dump, add space for the dump
6657 		 * itself and for the field that tells the dynamic size,
6658 		 * which is how many have been actually dumped.
6659 		 */
6660 		if (stack_size)
6661 			size += sizeof(u64) + stack_size;
6662 
6663 		data->stack_user_size = stack_size;
6664 		header->size += size;
6665 	}
6666 
6667 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6668 		/* regs dump ABI info */
6669 		int size = sizeof(u64);
6670 
6671 		perf_sample_regs_intr(&data->regs_intr, regs);
6672 
6673 		if (data->regs_intr.regs) {
6674 			u64 mask = event->attr.sample_regs_intr;
6675 
6676 			size += hweight64(mask) * sizeof(u64);
6677 		}
6678 
6679 		header->size += size;
6680 	}
6681 
6682 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6683 		data->phys_addr = perf_virt_to_phys(data->addr);
6684 }
6685 
6686 static __always_inline int
6687 __perf_event_output(struct perf_event *event,
6688 		    struct perf_sample_data *data,
6689 		    struct pt_regs *regs,
6690 		    int (*output_begin)(struct perf_output_handle *,
6691 					struct perf_event *,
6692 					unsigned int))
6693 {
6694 	struct perf_output_handle handle;
6695 	struct perf_event_header header;
6696 	int err;
6697 
6698 	/* protect the callchain buffers */
6699 	rcu_read_lock();
6700 
6701 	perf_prepare_sample(&header, data, event, regs);
6702 
6703 	err = output_begin(&handle, event, header.size);
6704 	if (err)
6705 		goto exit;
6706 
6707 	perf_output_sample(&handle, &header, data, event);
6708 
6709 	perf_output_end(&handle);
6710 
6711 exit:
6712 	rcu_read_unlock();
6713 	return err;
6714 }
6715 
6716 void
6717 perf_event_output_forward(struct perf_event *event,
6718 			 struct perf_sample_data *data,
6719 			 struct pt_regs *regs)
6720 {
6721 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6722 }
6723 
6724 void
6725 perf_event_output_backward(struct perf_event *event,
6726 			   struct perf_sample_data *data,
6727 			   struct pt_regs *regs)
6728 {
6729 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6730 }
6731 
6732 int
6733 perf_event_output(struct perf_event *event,
6734 		  struct perf_sample_data *data,
6735 		  struct pt_regs *regs)
6736 {
6737 	return __perf_event_output(event, data, regs, perf_output_begin);
6738 }
6739 
6740 /*
6741  * read event_id
6742  */
6743 
6744 struct perf_read_event {
6745 	struct perf_event_header	header;
6746 
6747 	u32				pid;
6748 	u32				tid;
6749 };
6750 
6751 static void
6752 perf_event_read_event(struct perf_event *event,
6753 			struct task_struct *task)
6754 {
6755 	struct perf_output_handle handle;
6756 	struct perf_sample_data sample;
6757 	struct perf_read_event read_event = {
6758 		.header = {
6759 			.type = PERF_RECORD_READ,
6760 			.misc = 0,
6761 			.size = sizeof(read_event) + event->read_size,
6762 		},
6763 		.pid = perf_event_pid(event, task),
6764 		.tid = perf_event_tid(event, task),
6765 	};
6766 	int ret;
6767 
6768 	perf_event_header__init_id(&read_event.header, &sample, event);
6769 	ret = perf_output_begin(&handle, event, read_event.header.size);
6770 	if (ret)
6771 		return;
6772 
6773 	perf_output_put(&handle, read_event);
6774 	perf_output_read(&handle, event);
6775 	perf_event__output_id_sample(event, &handle, &sample);
6776 
6777 	perf_output_end(&handle);
6778 }
6779 
6780 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6781 
6782 static void
6783 perf_iterate_ctx(struct perf_event_context *ctx,
6784 		   perf_iterate_f output,
6785 		   void *data, bool all)
6786 {
6787 	struct perf_event *event;
6788 
6789 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6790 		if (!all) {
6791 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6792 				continue;
6793 			if (!event_filter_match(event))
6794 				continue;
6795 		}
6796 
6797 		output(event, data);
6798 	}
6799 }
6800 
6801 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6802 {
6803 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6804 	struct perf_event *event;
6805 
6806 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6807 		/*
6808 		 * Skip events that are not fully formed yet; ensure that
6809 		 * if we observe event->ctx, both event and ctx will be
6810 		 * complete enough. See perf_install_in_context().
6811 		 */
6812 		if (!smp_load_acquire(&event->ctx))
6813 			continue;
6814 
6815 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6816 			continue;
6817 		if (!event_filter_match(event))
6818 			continue;
6819 		output(event, data);
6820 	}
6821 }
6822 
6823 /*
6824  * Iterate all events that need to receive side-band events.
6825  *
6826  * For new callers; ensure that account_pmu_sb_event() includes
6827  * your event, otherwise it might not get delivered.
6828  */
6829 static void
6830 perf_iterate_sb(perf_iterate_f output, void *data,
6831 	       struct perf_event_context *task_ctx)
6832 {
6833 	struct perf_event_context *ctx;
6834 	int ctxn;
6835 
6836 	rcu_read_lock();
6837 	preempt_disable();
6838 
6839 	/*
6840 	 * If we have task_ctx != NULL we only notify the task context itself.
6841 	 * The task_ctx is set only for EXIT events before releasing task
6842 	 * context.
6843 	 */
6844 	if (task_ctx) {
6845 		perf_iterate_ctx(task_ctx, output, data, false);
6846 		goto done;
6847 	}
6848 
6849 	perf_iterate_sb_cpu(output, data);
6850 
6851 	for_each_task_context_nr(ctxn) {
6852 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6853 		if (ctx)
6854 			perf_iterate_ctx(ctx, output, data, false);
6855 	}
6856 done:
6857 	preempt_enable();
6858 	rcu_read_unlock();
6859 }
6860 
6861 /*
6862  * Clear all file-based filters at exec, they'll have to be
6863  * re-instated when/if these objects are mmapped again.
6864  */
6865 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6866 {
6867 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6868 	struct perf_addr_filter *filter;
6869 	unsigned int restart = 0, count = 0;
6870 	unsigned long flags;
6871 
6872 	if (!has_addr_filter(event))
6873 		return;
6874 
6875 	raw_spin_lock_irqsave(&ifh->lock, flags);
6876 	list_for_each_entry(filter, &ifh->list, entry) {
6877 		if (filter->path.dentry) {
6878 			event->addr_filter_ranges[count].start = 0;
6879 			event->addr_filter_ranges[count].size = 0;
6880 			restart++;
6881 		}
6882 
6883 		count++;
6884 	}
6885 
6886 	if (restart)
6887 		event->addr_filters_gen++;
6888 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6889 
6890 	if (restart)
6891 		perf_event_stop(event, 1);
6892 }
6893 
6894 void perf_event_exec(void)
6895 {
6896 	struct perf_event_context *ctx;
6897 	int ctxn;
6898 
6899 	rcu_read_lock();
6900 	for_each_task_context_nr(ctxn) {
6901 		ctx = current->perf_event_ctxp[ctxn];
6902 		if (!ctx)
6903 			continue;
6904 
6905 		perf_event_enable_on_exec(ctxn);
6906 
6907 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6908 				   true);
6909 	}
6910 	rcu_read_unlock();
6911 }
6912 
6913 struct remote_output {
6914 	struct ring_buffer	*rb;
6915 	int			err;
6916 };
6917 
6918 static void __perf_event_output_stop(struct perf_event *event, void *data)
6919 {
6920 	struct perf_event *parent = event->parent;
6921 	struct remote_output *ro = data;
6922 	struct ring_buffer *rb = ro->rb;
6923 	struct stop_event_data sd = {
6924 		.event	= event,
6925 	};
6926 
6927 	if (!has_aux(event))
6928 		return;
6929 
6930 	if (!parent)
6931 		parent = event;
6932 
6933 	/*
6934 	 * In case of inheritance, it will be the parent that links to the
6935 	 * ring-buffer, but it will be the child that's actually using it.
6936 	 *
6937 	 * We are using event::rb to determine if the event should be stopped,
6938 	 * however this may race with ring_buffer_attach() (through set_output),
6939 	 * which will make us skip the event that actually needs to be stopped.
6940 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6941 	 * its rb pointer.
6942 	 */
6943 	if (rcu_dereference(parent->rb) == rb)
6944 		ro->err = __perf_event_stop(&sd);
6945 }
6946 
6947 static int __perf_pmu_output_stop(void *info)
6948 {
6949 	struct perf_event *event = info;
6950 	struct pmu *pmu = event->pmu;
6951 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6952 	struct remote_output ro = {
6953 		.rb	= event->rb,
6954 	};
6955 
6956 	rcu_read_lock();
6957 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6958 	if (cpuctx->task_ctx)
6959 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6960 				   &ro, false);
6961 	rcu_read_unlock();
6962 
6963 	return ro.err;
6964 }
6965 
6966 static void perf_pmu_output_stop(struct perf_event *event)
6967 {
6968 	struct perf_event *iter;
6969 	int err, cpu;
6970 
6971 restart:
6972 	rcu_read_lock();
6973 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6974 		/*
6975 		 * For per-CPU events, we need to make sure that neither they
6976 		 * nor their children are running; for cpu==-1 events it's
6977 		 * sufficient to stop the event itself if it's active, since
6978 		 * it can't have children.
6979 		 */
6980 		cpu = iter->cpu;
6981 		if (cpu == -1)
6982 			cpu = READ_ONCE(iter->oncpu);
6983 
6984 		if (cpu == -1)
6985 			continue;
6986 
6987 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6988 		if (err == -EAGAIN) {
6989 			rcu_read_unlock();
6990 			goto restart;
6991 		}
6992 	}
6993 	rcu_read_unlock();
6994 }
6995 
6996 /*
6997  * task tracking -- fork/exit
6998  *
6999  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7000  */
7001 
7002 struct perf_task_event {
7003 	struct task_struct		*task;
7004 	struct perf_event_context	*task_ctx;
7005 
7006 	struct {
7007 		struct perf_event_header	header;
7008 
7009 		u32				pid;
7010 		u32				ppid;
7011 		u32				tid;
7012 		u32				ptid;
7013 		u64				time;
7014 	} event_id;
7015 };
7016 
7017 static int perf_event_task_match(struct perf_event *event)
7018 {
7019 	return event->attr.comm  || event->attr.mmap ||
7020 	       event->attr.mmap2 || event->attr.mmap_data ||
7021 	       event->attr.task;
7022 }
7023 
7024 static void perf_event_task_output(struct perf_event *event,
7025 				   void *data)
7026 {
7027 	struct perf_task_event *task_event = data;
7028 	struct perf_output_handle handle;
7029 	struct perf_sample_data	sample;
7030 	struct task_struct *task = task_event->task;
7031 	int ret, size = task_event->event_id.header.size;
7032 
7033 	if (!perf_event_task_match(event))
7034 		return;
7035 
7036 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7037 
7038 	ret = perf_output_begin(&handle, event,
7039 				task_event->event_id.header.size);
7040 	if (ret)
7041 		goto out;
7042 
7043 	task_event->event_id.pid = perf_event_pid(event, task);
7044 	task_event->event_id.ppid = perf_event_pid(event, current);
7045 
7046 	task_event->event_id.tid = perf_event_tid(event, task);
7047 	task_event->event_id.ptid = perf_event_tid(event, current);
7048 
7049 	task_event->event_id.time = perf_event_clock(event);
7050 
7051 	perf_output_put(&handle, task_event->event_id);
7052 
7053 	perf_event__output_id_sample(event, &handle, &sample);
7054 
7055 	perf_output_end(&handle);
7056 out:
7057 	task_event->event_id.header.size = size;
7058 }
7059 
7060 static void perf_event_task(struct task_struct *task,
7061 			      struct perf_event_context *task_ctx,
7062 			      int new)
7063 {
7064 	struct perf_task_event task_event;
7065 
7066 	if (!atomic_read(&nr_comm_events) &&
7067 	    !atomic_read(&nr_mmap_events) &&
7068 	    !atomic_read(&nr_task_events))
7069 		return;
7070 
7071 	task_event = (struct perf_task_event){
7072 		.task	  = task,
7073 		.task_ctx = task_ctx,
7074 		.event_id    = {
7075 			.header = {
7076 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7077 				.misc = 0,
7078 				.size = sizeof(task_event.event_id),
7079 			},
7080 			/* .pid  */
7081 			/* .ppid */
7082 			/* .tid  */
7083 			/* .ptid */
7084 			/* .time */
7085 		},
7086 	};
7087 
7088 	perf_iterate_sb(perf_event_task_output,
7089 		       &task_event,
7090 		       task_ctx);
7091 }
7092 
7093 void perf_event_fork(struct task_struct *task)
7094 {
7095 	perf_event_task(task, NULL, 1);
7096 	perf_event_namespaces(task);
7097 }
7098 
7099 /*
7100  * comm tracking
7101  */
7102 
7103 struct perf_comm_event {
7104 	struct task_struct	*task;
7105 	char			*comm;
7106 	int			comm_size;
7107 
7108 	struct {
7109 		struct perf_event_header	header;
7110 
7111 		u32				pid;
7112 		u32				tid;
7113 	} event_id;
7114 };
7115 
7116 static int perf_event_comm_match(struct perf_event *event)
7117 {
7118 	return event->attr.comm;
7119 }
7120 
7121 static void perf_event_comm_output(struct perf_event *event,
7122 				   void *data)
7123 {
7124 	struct perf_comm_event *comm_event = data;
7125 	struct perf_output_handle handle;
7126 	struct perf_sample_data sample;
7127 	int size = comm_event->event_id.header.size;
7128 	int ret;
7129 
7130 	if (!perf_event_comm_match(event))
7131 		return;
7132 
7133 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7134 	ret = perf_output_begin(&handle, event,
7135 				comm_event->event_id.header.size);
7136 
7137 	if (ret)
7138 		goto out;
7139 
7140 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7141 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7142 
7143 	perf_output_put(&handle, comm_event->event_id);
7144 	__output_copy(&handle, comm_event->comm,
7145 				   comm_event->comm_size);
7146 
7147 	perf_event__output_id_sample(event, &handle, &sample);
7148 
7149 	perf_output_end(&handle);
7150 out:
7151 	comm_event->event_id.header.size = size;
7152 }
7153 
7154 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7155 {
7156 	char comm[TASK_COMM_LEN];
7157 	unsigned int size;
7158 
7159 	memset(comm, 0, sizeof(comm));
7160 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7161 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7162 
7163 	comm_event->comm = comm;
7164 	comm_event->comm_size = size;
7165 
7166 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7167 
7168 	perf_iterate_sb(perf_event_comm_output,
7169 		       comm_event,
7170 		       NULL);
7171 }
7172 
7173 void perf_event_comm(struct task_struct *task, bool exec)
7174 {
7175 	struct perf_comm_event comm_event;
7176 
7177 	if (!atomic_read(&nr_comm_events))
7178 		return;
7179 
7180 	comm_event = (struct perf_comm_event){
7181 		.task	= task,
7182 		/* .comm      */
7183 		/* .comm_size */
7184 		.event_id  = {
7185 			.header = {
7186 				.type = PERF_RECORD_COMM,
7187 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7188 				/* .size */
7189 			},
7190 			/* .pid */
7191 			/* .tid */
7192 		},
7193 	};
7194 
7195 	perf_event_comm_event(&comm_event);
7196 }
7197 
7198 /*
7199  * namespaces tracking
7200  */
7201 
7202 struct perf_namespaces_event {
7203 	struct task_struct		*task;
7204 
7205 	struct {
7206 		struct perf_event_header	header;
7207 
7208 		u32				pid;
7209 		u32				tid;
7210 		u64				nr_namespaces;
7211 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7212 	} event_id;
7213 };
7214 
7215 static int perf_event_namespaces_match(struct perf_event *event)
7216 {
7217 	return event->attr.namespaces;
7218 }
7219 
7220 static void perf_event_namespaces_output(struct perf_event *event,
7221 					 void *data)
7222 {
7223 	struct perf_namespaces_event *namespaces_event = data;
7224 	struct perf_output_handle handle;
7225 	struct perf_sample_data sample;
7226 	u16 header_size = namespaces_event->event_id.header.size;
7227 	int ret;
7228 
7229 	if (!perf_event_namespaces_match(event))
7230 		return;
7231 
7232 	perf_event_header__init_id(&namespaces_event->event_id.header,
7233 				   &sample, event);
7234 	ret = perf_output_begin(&handle, event,
7235 				namespaces_event->event_id.header.size);
7236 	if (ret)
7237 		goto out;
7238 
7239 	namespaces_event->event_id.pid = perf_event_pid(event,
7240 							namespaces_event->task);
7241 	namespaces_event->event_id.tid = perf_event_tid(event,
7242 							namespaces_event->task);
7243 
7244 	perf_output_put(&handle, namespaces_event->event_id);
7245 
7246 	perf_event__output_id_sample(event, &handle, &sample);
7247 
7248 	perf_output_end(&handle);
7249 out:
7250 	namespaces_event->event_id.header.size = header_size;
7251 }
7252 
7253 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7254 				   struct task_struct *task,
7255 				   const struct proc_ns_operations *ns_ops)
7256 {
7257 	struct path ns_path;
7258 	struct inode *ns_inode;
7259 	void *error;
7260 
7261 	error = ns_get_path(&ns_path, task, ns_ops);
7262 	if (!error) {
7263 		ns_inode = ns_path.dentry->d_inode;
7264 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7265 		ns_link_info->ino = ns_inode->i_ino;
7266 		path_put(&ns_path);
7267 	}
7268 }
7269 
7270 void perf_event_namespaces(struct task_struct *task)
7271 {
7272 	struct perf_namespaces_event namespaces_event;
7273 	struct perf_ns_link_info *ns_link_info;
7274 
7275 	if (!atomic_read(&nr_namespaces_events))
7276 		return;
7277 
7278 	namespaces_event = (struct perf_namespaces_event){
7279 		.task	= task,
7280 		.event_id  = {
7281 			.header = {
7282 				.type = PERF_RECORD_NAMESPACES,
7283 				.misc = 0,
7284 				.size = sizeof(namespaces_event.event_id),
7285 			},
7286 			/* .pid */
7287 			/* .tid */
7288 			.nr_namespaces = NR_NAMESPACES,
7289 			/* .link_info[NR_NAMESPACES] */
7290 		},
7291 	};
7292 
7293 	ns_link_info = namespaces_event.event_id.link_info;
7294 
7295 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7296 			       task, &mntns_operations);
7297 
7298 #ifdef CONFIG_USER_NS
7299 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7300 			       task, &userns_operations);
7301 #endif
7302 #ifdef CONFIG_NET_NS
7303 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7304 			       task, &netns_operations);
7305 #endif
7306 #ifdef CONFIG_UTS_NS
7307 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7308 			       task, &utsns_operations);
7309 #endif
7310 #ifdef CONFIG_IPC_NS
7311 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7312 			       task, &ipcns_operations);
7313 #endif
7314 #ifdef CONFIG_PID_NS
7315 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7316 			       task, &pidns_operations);
7317 #endif
7318 #ifdef CONFIG_CGROUPS
7319 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7320 			       task, &cgroupns_operations);
7321 #endif
7322 
7323 	perf_iterate_sb(perf_event_namespaces_output,
7324 			&namespaces_event,
7325 			NULL);
7326 }
7327 
7328 /*
7329  * mmap tracking
7330  */
7331 
7332 struct perf_mmap_event {
7333 	struct vm_area_struct	*vma;
7334 
7335 	const char		*file_name;
7336 	int			file_size;
7337 	int			maj, min;
7338 	u64			ino;
7339 	u64			ino_generation;
7340 	u32			prot, flags;
7341 
7342 	struct {
7343 		struct perf_event_header	header;
7344 
7345 		u32				pid;
7346 		u32				tid;
7347 		u64				start;
7348 		u64				len;
7349 		u64				pgoff;
7350 	} event_id;
7351 };
7352 
7353 static int perf_event_mmap_match(struct perf_event *event,
7354 				 void *data)
7355 {
7356 	struct perf_mmap_event *mmap_event = data;
7357 	struct vm_area_struct *vma = mmap_event->vma;
7358 	int executable = vma->vm_flags & VM_EXEC;
7359 
7360 	return (!executable && event->attr.mmap_data) ||
7361 	       (executable && (event->attr.mmap || event->attr.mmap2));
7362 }
7363 
7364 static void perf_event_mmap_output(struct perf_event *event,
7365 				   void *data)
7366 {
7367 	struct perf_mmap_event *mmap_event = data;
7368 	struct perf_output_handle handle;
7369 	struct perf_sample_data sample;
7370 	int size = mmap_event->event_id.header.size;
7371 	u32 type = mmap_event->event_id.header.type;
7372 	int ret;
7373 
7374 	if (!perf_event_mmap_match(event, data))
7375 		return;
7376 
7377 	if (event->attr.mmap2) {
7378 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7379 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7380 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7381 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7382 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7383 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7384 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7385 	}
7386 
7387 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7388 	ret = perf_output_begin(&handle, event,
7389 				mmap_event->event_id.header.size);
7390 	if (ret)
7391 		goto out;
7392 
7393 	mmap_event->event_id.pid = perf_event_pid(event, current);
7394 	mmap_event->event_id.tid = perf_event_tid(event, current);
7395 
7396 	perf_output_put(&handle, mmap_event->event_id);
7397 
7398 	if (event->attr.mmap2) {
7399 		perf_output_put(&handle, mmap_event->maj);
7400 		perf_output_put(&handle, mmap_event->min);
7401 		perf_output_put(&handle, mmap_event->ino);
7402 		perf_output_put(&handle, mmap_event->ino_generation);
7403 		perf_output_put(&handle, mmap_event->prot);
7404 		perf_output_put(&handle, mmap_event->flags);
7405 	}
7406 
7407 	__output_copy(&handle, mmap_event->file_name,
7408 				   mmap_event->file_size);
7409 
7410 	perf_event__output_id_sample(event, &handle, &sample);
7411 
7412 	perf_output_end(&handle);
7413 out:
7414 	mmap_event->event_id.header.size = size;
7415 	mmap_event->event_id.header.type = type;
7416 }
7417 
7418 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7419 {
7420 	struct vm_area_struct *vma = mmap_event->vma;
7421 	struct file *file = vma->vm_file;
7422 	int maj = 0, min = 0;
7423 	u64 ino = 0, gen = 0;
7424 	u32 prot = 0, flags = 0;
7425 	unsigned int size;
7426 	char tmp[16];
7427 	char *buf = NULL;
7428 	char *name;
7429 
7430 	if (vma->vm_flags & VM_READ)
7431 		prot |= PROT_READ;
7432 	if (vma->vm_flags & VM_WRITE)
7433 		prot |= PROT_WRITE;
7434 	if (vma->vm_flags & VM_EXEC)
7435 		prot |= PROT_EXEC;
7436 
7437 	if (vma->vm_flags & VM_MAYSHARE)
7438 		flags = MAP_SHARED;
7439 	else
7440 		flags = MAP_PRIVATE;
7441 
7442 	if (vma->vm_flags & VM_DENYWRITE)
7443 		flags |= MAP_DENYWRITE;
7444 	if (vma->vm_flags & VM_MAYEXEC)
7445 		flags |= MAP_EXECUTABLE;
7446 	if (vma->vm_flags & VM_LOCKED)
7447 		flags |= MAP_LOCKED;
7448 	if (vma->vm_flags & VM_HUGETLB)
7449 		flags |= MAP_HUGETLB;
7450 
7451 	if (file) {
7452 		struct inode *inode;
7453 		dev_t dev;
7454 
7455 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7456 		if (!buf) {
7457 			name = "//enomem";
7458 			goto cpy_name;
7459 		}
7460 		/*
7461 		 * d_path() works from the end of the rb backwards, so we
7462 		 * need to add enough zero bytes after the string to handle
7463 		 * the 64bit alignment we do later.
7464 		 */
7465 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7466 		if (IS_ERR(name)) {
7467 			name = "//toolong";
7468 			goto cpy_name;
7469 		}
7470 		inode = file_inode(vma->vm_file);
7471 		dev = inode->i_sb->s_dev;
7472 		ino = inode->i_ino;
7473 		gen = inode->i_generation;
7474 		maj = MAJOR(dev);
7475 		min = MINOR(dev);
7476 
7477 		goto got_name;
7478 	} else {
7479 		if (vma->vm_ops && vma->vm_ops->name) {
7480 			name = (char *) vma->vm_ops->name(vma);
7481 			if (name)
7482 				goto cpy_name;
7483 		}
7484 
7485 		name = (char *)arch_vma_name(vma);
7486 		if (name)
7487 			goto cpy_name;
7488 
7489 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7490 				vma->vm_end >= vma->vm_mm->brk) {
7491 			name = "[heap]";
7492 			goto cpy_name;
7493 		}
7494 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7495 				vma->vm_end >= vma->vm_mm->start_stack) {
7496 			name = "[stack]";
7497 			goto cpy_name;
7498 		}
7499 
7500 		name = "//anon";
7501 		goto cpy_name;
7502 	}
7503 
7504 cpy_name:
7505 	strlcpy(tmp, name, sizeof(tmp));
7506 	name = tmp;
7507 got_name:
7508 	/*
7509 	 * Since our buffer works in 8 byte units we need to align our string
7510 	 * size to a multiple of 8. However, we must guarantee the tail end is
7511 	 * zero'd out to avoid leaking random bits to userspace.
7512 	 */
7513 	size = strlen(name)+1;
7514 	while (!IS_ALIGNED(size, sizeof(u64)))
7515 		name[size++] = '\0';
7516 
7517 	mmap_event->file_name = name;
7518 	mmap_event->file_size = size;
7519 	mmap_event->maj = maj;
7520 	mmap_event->min = min;
7521 	mmap_event->ino = ino;
7522 	mmap_event->ino_generation = gen;
7523 	mmap_event->prot = prot;
7524 	mmap_event->flags = flags;
7525 
7526 	if (!(vma->vm_flags & VM_EXEC))
7527 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7528 
7529 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7530 
7531 	perf_iterate_sb(perf_event_mmap_output,
7532 		       mmap_event,
7533 		       NULL);
7534 
7535 	kfree(buf);
7536 }
7537 
7538 /*
7539  * Check whether inode and address range match filter criteria.
7540  */
7541 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7542 				     struct file *file, unsigned long offset,
7543 				     unsigned long size)
7544 {
7545 	/* d_inode(NULL) won't be equal to any mapped user-space file */
7546 	if (!filter->path.dentry)
7547 		return false;
7548 
7549 	if (d_inode(filter->path.dentry) != file_inode(file))
7550 		return false;
7551 
7552 	if (filter->offset > offset + size)
7553 		return false;
7554 
7555 	if (filter->offset + filter->size < offset)
7556 		return false;
7557 
7558 	return true;
7559 }
7560 
7561 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7562 					struct vm_area_struct *vma,
7563 					struct perf_addr_filter_range *fr)
7564 {
7565 	unsigned long vma_size = vma->vm_end - vma->vm_start;
7566 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7567 	struct file *file = vma->vm_file;
7568 
7569 	if (!perf_addr_filter_match(filter, file, off, vma_size))
7570 		return false;
7571 
7572 	if (filter->offset < off) {
7573 		fr->start = vma->vm_start;
7574 		fr->size = min(vma_size, filter->size - (off - filter->offset));
7575 	} else {
7576 		fr->start = vma->vm_start + filter->offset - off;
7577 		fr->size = min(vma->vm_end - fr->start, filter->size);
7578 	}
7579 
7580 	return true;
7581 }
7582 
7583 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7584 {
7585 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7586 	struct vm_area_struct *vma = data;
7587 	struct perf_addr_filter *filter;
7588 	unsigned int restart = 0, count = 0;
7589 	unsigned long flags;
7590 
7591 	if (!has_addr_filter(event))
7592 		return;
7593 
7594 	if (!vma->vm_file)
7595 		return;
7596 
7597 	raw_spin_lock_irqsave(&ifh->lock, flags);
7598 	list_for_each_entry(filter, &ifh->list, entry) {
7599 		if (perf_addr_filter_vma_adjust(filter, vma,
7600 						&event->addr_filter_ranges[count]))
7601 			restart++;
7602 
7603 		count++;
7604 	}
7605 
7606 	if (restart)
7607 		event->addr_filters_gen++;
7608 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7609 
7610 	if (restart)
7611 		perf_event_stop(event, 1);
7612 }
7613 
7614 /*
7615  * Adjust all task's events' filters to the new vma
7616  */
7617 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7618 {
7619 	struct perf_event_context *ctx;
7620 	int ctxn;
7621 
7622 	/*
7623 	 * Data tracing isn't supported yet and as such there is no need
7624 	 * to keep track of anything that isn't related to executable code:
7625 	 */
7626 	if (!(vma->vm_flags & VM_EXEC))
7627 		return;
7628 
7629 	rcu_read_lock();
7630 	for_each_task_context_nr(ctxn) {
7631 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7632 		if (!ctx)
7633 			continue;
7634 
7635 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7636 	}
7637 	rcu_read_unlock();
7638 }
7639 
7640 void perf_event_mmap(struct vm_area_struct *vma)
7641 {
7642 	struct perf_mmap_event mmap_event;
7643 
7644 	if (!atomic_read(&nr_mmap_events))
7645 		return;
7646 
7647 	mmap_event = (struct perf_mmap_event){
7648 		.vma	= vma,
7649 		/* .file_name */
7650 		/* .file_size */
7651 		.event_id  = {
7652 			.header = {
7653 				.type = PERF_RECORD_MMAP,
7654 				.misc = PERF_RECORD_MISC_USER,
7655 				/* .size */
7656 			},
7657 			/* .pid */
7658 			/* .tid */
7659 			.start  = vma->vm_start,
7660 			.len    = vma->vm_end - vma->vm_start,
7661 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7662 		},
7663 		/* .maj (attr_mmap2 only) */
7664 		/* .min (attr_mmap2 only) */
7665 		/* .ino (attr_mmap2 only) */
7666 		/* .ino_generation (attr_mmap2 only) */
7667 		/* .prot (attr_mmap2 only) */
7668 		/* .flags (attr_mmap2 only) */
7669 	};
7670 
7671 	perf_addr_filters_adjust(vma);
7672 	perf_event_mmap_event(&mmap_event);
7673 }
7674 
7675 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7676 			  unsigned long size, u64 flags)
7677 {
7678 	struct perf_output_handle handle;
7679 	struct perf_sample_data sample;
7680 	struct perf_aux_event {
7681 		struct perf_event_header	header;
7682 		u64				offset;
7683 		u64				size;
7684 		u64				flags;
7685 	} rec = {
7686 		.header = {
7687 			.type = PERF_RECORD_AUX,
7688 			.misc = 0,
7689 			.size = sizeof(rec),
7690 		},
7691 		.offset		= head,
7692 		.size		= size,
7693 		.flags		= flags,
7694 	};
7695 	int ret;
7696 
7697 	perf_event_header__init_id(&rec.header, &sample, event);
7698 	ret = perf_output_begin(&handle, event, rec.header.size);
7699 
7700 	if (ret)
7701 		return;
7702 
7703 	perf_output_put(&handle, rec);
7704 	perf_event__output_id_sample(event, &handle, &sample);
7705 
7706 	perf_output_end(&handle);
7707 }
7708 
7709 /*
7710  * Lost/dropped samples logging
7711  */
7712 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7713 {
7714 	struct perf_output_handle handle;
7715 	struct perf_sample_data sample;
7716 	int ret;
7717 
7718 	struct {
7719 		struct perf_event_header	header;
7720 		u64				lost;
7721 	} lost_samples_event = {
7722 		.header = {
7723 			.type = PERF_RECORD_LOST_SAMPLES,
7724 			.misc = 0,
7725 			.size = sizeof(lost_samples_event),
7726 		},
7727 		.lost		= lost,
7728 	};
7729 
7730 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7731 
7732 	ret = perf_output_begin(&handle, event,
7733 				lost_samples_event.header.size);
7734 	if (ret)
7735 		return;
7736 
7737 	perf_output_put(&handle, lost_samples_event);
7738 	perf_event__output_id_sample(event, &handle, &sample);
7739 	perf_output_end(&handle);
7740 }
7741 
7742 /*
7743  * context_switch tracking
7744  */
7745 
7746 struct perf_switch_event {
7747 	struct task_struct	*task;
7748 	struct task_struct	*next_prev;
7749 
7750 	struct {
7751 		struct perf_event_header	header;
7752 		u32				next_prev_pid;
7753 		u32				next_prev_tid;
7754 	} event_id;
7755 };
7756 
7757 static int perf_event_switch_match(struct perf_event *event)
7758 {
7759 	return event->attr.context_switch;
7760 }
7761 
7762 static void perf_event_switch_output(struct perf_event *event, void *data)
7763 {
7764 	struct perf_switch_event *se = data;
7765 	struct perf_output_handle handle;
7766 	struct perf_sample_data sample;
7767 	int ret;
7768 
7769 	if (!perf_event_switch_match(event))
7770 		return;
7771 
7772 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7773 	if (event->ctx->task) {
7774 		se->event_id.header.type = PERF_RECORD_SWITCH;
7775 		se->event_id.header.size = sizeof(se->event_id.header);
7776 	} else {
7777 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7778 		se->event_id.header.size = sizeof(se->event_id);
7779 		se->event_id.next_prev_pid =
7780 					perf_event_pid(event, se->next_prev);
7781 		se->event_id.next_prev_tid =
7782 					perf_event_tid(event, se->next_prev);
7783 	}
7784 
7785 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7786 
7787 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7788 	if (ret)
7789 		return;
7790 
7791 	if (event->ctx->task)
7792 		perf_output_put(&handle, se->event_id.header);
7793 	else
7794 		perf_output_put(&handle, se->event_id);
7795 
7796 	perf_event__output_id_sample(event, &handle, &sample);
7797 
7798 	perf_output_end(&handle);
7799 }
7800 
7801 static void perf_event_switch(struct task_struct *task,
7802 			      struct task_struct *next_prev, bool sched_in)
7803 {
7804 	struct perf_switch_event switch_event;
7805 
7806 	/* N.B. caller checks nr_switch_events != 0 */
7807 
7808 	switch_event = (struct perf_switch_event){
7809 		.task		= task,
7810 		.next_prev	= next_prev,
7811 		.event_id	= {
7812 			.header = {
7813 				/* .type */
7814 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7815 				/* .size */
7816 			},
7817 			/* .next_prev_pid */
7818 			/* .next_prev_tid */
7819 		},
7820 	};
7821 
7822 	if (!sched_in && task->state == TASK_RUNNING)
7823 		switch_event.event_id.header.misc |=
7824 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7825 
7826 	perf_iterate_sb(perf_event_switch_output,
7827 		       &switch_event,
7828 		       NULL);
7829 }
7830 
7831 /*
7832  * IRQ throttle logging
7833  */
7834 
7835 static void perf_log_throttle(struct perf_event *event, int enable)
7836 {
7837 	struct perf_output_handle handle;
7838 	struct perf_sample_data sample;
7839 	int ret;
7840 
7841 	struct {
7842 		struct perf_event_header	header;
7843 		u64				time;
7844 		u64				id;
7845 		u64				stream_id;
7846 	} throttle_event = {
7847 		.header = {
7848 			.type = PERF_RECORD_THROTTLE,
7849 			.misc = 0,
7850 			.size = sizeof(throttle_event),
7851 		},
7852 		.time		= perf_event_clock(event),
7853 		.id		= primary_event_id(event),
7854 		.stream_id	= event->id,
7855 	};
7856 
7857 	if (enable)
7858 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7859 
7860 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7861 
7862 	ret = perf_output_begin(&handle, event,
7863 				throttle_event.header.size);
7864 	if (ret)
7865 		return;
7866 
7867 	perf_output_put(&handle, throttle_event);
7868 	perf_event__output_id_sample(event, &handle, &sample);
7869 	perf_output_end(&handle);
7870 }
7871 
7872 /*
7873  * ksymbol register/unregister tracking
7874  */
7875 
7876 struct perf_ksymbol_event {
7877 	const char	*name;
7878 	int		name_len;
7879 	struct {
7880 		struct perf_event_header        header;
7881 		u64				addr;
7882 		u32				len;
7883 		u16				ksym_type;
7884 		u16				flags;
7885 	} event_id;
7886 };
7887 
7888 static int perf_event_ksymbol_match(struct perf_event *event)
7889 {
7890 	return event->attr.ksymbol;
7891 }
7892 
7893 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7894 {
7895 	struct perf_ksymbol_event *ksymbol_event = data;
7896 	struct perf_output_handle handle;
7897 	struct perf_sample_data sample;
7898 	int ret;
7899 
7900 	if (!perf_event_ksymbol_match(event))
7901 		return;
7902 
7903 	perf_event_header__init_id(&ksymbol_event->event_id.header,
7904 				   &sample, event);
7905 	ret = perf_output_begin(&handle, event,
7906 				ksymbol_event->event_id.header.size);
7907 	if (ret)
7908 		return;
7909 
7910 	perf_output_put(&handle, ksymbol_event->event_id);
7911 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7912 	perf_event__output_id_sample(event, &handle, &sample);
7913 
7914 	perf_output_end(&handle);
7915 }
7916 
7917 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7918 			const char *sym)
7919 {
7920 	struct perf_ksymbol_event ksymbol_event;
7921 	char name[KSYM_NAME_LEN];
7922 	u16 flags = 0;
7923 	int name_len;
7924 
7925 	if (!atomic_read(&nr_ksymbol_events))
7926 		return;
7927 
7928 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7929 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7930 		goto err;
7931 
7932 	strlcpy(name, sym, KSYM_NAME_LEN);
7933 	name_len = strlen(name) + 1;
7934 	while (!IS_ALIGNED(name_len, sizeof(u64)))
7935 		name[name_len++] = '\0';
7936 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7937 
7938 	if (unregister)
7939 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7940 
7941 	ksymbol_event = (struct perf_ksymbol_event){
7942 		.name = name,
7943 		.name_len = name_len,
7944 		.event_id = {
7945 			.header = {
7946 				.type = PERF_RECORD_KSYMBOL,
7947 				.size = sizeof(ksymbol_event.event_id) +
7948 					name_len,
7949 			},
7950 			.addr = addr,
7951 			.len = len,
7952 			.ksym_type = ksym_type,
7953 			.flags = flags,
7954 		},
7955 	};
7956 
7957 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7958 	return;
7959 err:
7960 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7961 }
7962 
7963 /*
7964  * bpf program load/unload tracking
7965  */
7966 
7967 struct perf_bpf_event {
7968 	struct bpf_prog	*prog;
7969 	struct {
7970 		struct perf_event_header        header;
7971 		u16				type;
7972 		u16				flags;
7973 		u32				id;
7974 		u8				tag[BPF_TAG_SIZE];
7975 	} event_id;
7976 };
7977 
7978 static int perf_event_bpf_match(struct perf_event *event)
7979 {
7980 	return event->attr.bpf_event;
7981 }
7982 
7983 static void perf_event_bpf_output(struct perf_event *event, void *data)
7984 {
7985 	struct perf_bpf_event *bpf_event = data;
7986 	struct perf_output_handle handle;
7987 	struct perf_sample_data sample;
7988 	int ret;
7989 
7990 	if (!perf_event_bpf_match(event))
7991 		return;
7992 
7993 	perf_event_header__init_id(&bpf_event->event_id.header,
7994 				   &sample, event);
7995 	ret = perf_output_begin(&handle, event,
7996 				bpf_event->event_id.header.size);
7997 	if (ret)
7998 		return;
7999 
8000 	perf_output_put(&handle, bpf_event->event_id);
8001 	perf_event__output_id_sample(event, &handle, &sample);
8002 
8003 	perf_output_end(&handle);
8004 }
8005 
8006 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8007 					 enum perf_bpf_event_type type)
8008 {
8009 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8010 	char sym[KSYM_NAME_LEN];
8011 	int i;
8012 
8013 	if (prog->aux->func_cnt == 0) {
8014 		bpf_get_prog_name(prog, sym);
8015 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8016 				   (u64)(unsigned long)prog->bpf_func,
8017 				   prog->jited_len, unregister, sym);
8018 	} else {
8019 		for (i = 0; i < prog->aux->func_cnt; i++) {
8020 			struct bpf_prog *subprog = prog->aux->func[i];
8021 
8022 			bpf_get_prog_name(subprog, sym);
8023 			perf_event_ksymbol(
8024 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8025 				(u64)(unsigned long)subprog->bpf_func,
8026 				subprog->jited_len, unregister, sym);
8027 		}
8028 	}
8029 }
8030 
8031 void perf_event_bpf_event(struct bpf_prog *prog,
8032 			  enum perf_bpf_event_type type,
8033 			  u16 flags)
8034 {
8035 	struct perf_bpf_event bpf_event;
8036 
8037 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8038 	    type >= PERF_BPF_EVENT_MAX)
8039 		return;
8040 
8041 	switch (type) {
8042 	case PERF_BPF_EVENT_PROG_LOAD:
8043 	case PERF_BPF_EVENT_PROG_UNLOAD:
8044 		if (atomic_read(&nr_ksymbol_events))
8045 			perf_event_bpf_emit_ksymbols(prog, type);
8046 		break;
8047 	default:
8048 		break;
8049 	}
8050 
8051 	if (!atomic_read(&nr_bpf_events))
8052 		return;
8053 
8054 	bpf_event = (struct perf_bpf_event){
8055 		.prog = prog,
8056 		.event_id = {
8057 			.header = {
8058 				.type = PERF_RECORD_BPF_EVENT,
8059 				.size = sizeof(bpf_event.event_id),
8060 			},
8061 			.type = type,
8062 			.flags = flags,
8063 			.id = prog->aux->id,
8064 		},
8065 	};
8066 
8067 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8068 
8069 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8070 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8071 }
8072 
8073 void perf_event_itrace_started(struct perf_event *event)
8074 {
8075 	event->attach_state |= PERF_ATTACH_ITRACE;
8076 }
8077 
8078 static void perf_log_itrace_start(struct perf_event *event)
8079 {
8080 	struct perf_output_handle handle;
8081 	struct perf_sample_data sample;
8082 	struct perf_aux_event {
8083 		struct perf_event_header        header;
8084 		u32				pid;
8085 		u32				tid;
8086 	} rec;
8087 	int ret;
8088 
8089 	if (event->parent)
8090 		event = event->parent;
8091 
8092 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8093 	    event->attach_state & PERF_ATTACH_ITRACE)
8094 		return;
8095 
8096 	rec.header.type	= PERF_RECORD_ITRACE_START;
8097 	rec.header.misc	= 0;
8098 	rec.header.size	= sizeof(rec);
8099 	rec.pid	= perf_event_pid(event, current);
8100 	rec.tid	= perf_event_tid(event, current);
8101 
8102 	perf_event_header__init_id(&rec.header, &sample, event);
8103 	ret = perf_output_begin(&handle, event, rec.header.size);
8104 
8105 	if (ret)
8106 		return;
8107 
8108 	perf_output_put(&handle, rec);
8109 	perf_event__output_id_sample(event, &handle, &sample);
8110 
8111 	perf_output_end(&handle);
8112 }
8113 
8114 static int
8115 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8116 {
8117 	struct hw_perf_event *hwc = &event->hw;
8118 	int ret = 0;
8119 	u64 seq;
8120 
8121 	seq = __this_cpu_read(perf_throttled_seq);
8122 	if (seq != hwc->interrupts_seq) {
8123 		hwc->interrupts_seq = seq;
8124 		hwc->interrupts = 1;
8125 	} else {
8126 		hwc->interrupts++;
8127 		if (unlikely(throttle
8128 			     && hwc->interrupts >= max_samples_per_tick)) {
8129 			__this_cpu_inc(perf_throttled_count);
8130 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8131 			hwc->interrupts = MAX_INTERRUPTS;
8132 			perf_log_throttle(event, 0);
8133 			ret = 1;
8134 		}
8135 	}
8136 
8137 	if (event->attr.freq) {
8138 		u64 now = perf_clock();
8139 		s64 delta = now - hwc->freq_time_stamp;
8140 
8141 		hwc->freq_time_stamp = now;
8142 
8143 		if (delta > 0 && delta < 2*TICK_NSEC)
8144 			perf_adjust_period(event, delta, hwc->last_period, true);
8145 	}
8146 
8147 	return ret;
8148 }
8149 
8150 int perf_event_account_interrupt(struct perf_event *event)
8151 {
8152 	return __perf_event_account_interrupt(event, 1);
8153 }
8154 
8155 /*
8156  * Generic event overflow handling, sampling.
8157  */
8158 
8159 static int __perf_event_overflow(struct perf_event *event,
8160 				   int throttle, struct perf_sample_data *data,
8161 				   struct pt_regs *regs)
8162 {
8163 	int events = atomic_read(&event->event_limit);
8164 	int ret = 0;
8165 
8166 	/*
8167 	 * Non-sampling counters might still use the PMI to fold short
8168 	 * hardware counters, ignore those.
8169 	 */
8170 	if (unlikely(!is_sampling_event(event)))
8171 		return 0;
8172 
8173 	ret = __perf_event_account_interrupt(event, throttle);
8174 
8175 	/*
8176 	 * XXX event_limit might not quite work as expected on inherited
8177 	 * events
8178 	 */
8179 
8180 	event->pending_kill = POLL_IN;
8181 	if (events && atomic_dec_and_test(&event->event_limit)) {
8182 		ret = 1;
8183 		event->pending_kill = POLL_HUP;
8184 
8185 		perf_event_disable_inatomic(event);
8186 	}
8187 
8188 	READ_ONCE(event->overflow_handler)(event, data, regs);
8189 
8190 	if (*perf_event_fasync(event) && event->pending_kill) {
8191 		event->pending_wakeup = 1;
8192 		irq_work_queue(&event->pending);
8193 	}
8194 
8195 	return ret;
8196 }
8197 
8198 int perf_event_overflow(struct perf_event *event,
8199 			  struct perf_sample_data *data,
8200 			  struct pt_regs *regs)
8201 {
8202 	return __perf_event_overflow(event, 1, data, regs);
8203 }
8204 
8205 /*
8206  * Generic software event infrastructure
8207  */
8208 
8209 struct swevent_htable {
8210 	struct swevent_hlist		*swevent_hlist;
8211 	struct mutex			hlist_mutex;
8212 	int				hlist_refcount;
8213 
8214 	/* Recursion avoidance in each contexts */
8215 	int				recursion[PERF_NR_CONTEXTS];
8216 };
8217 
8218 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8219 
8220 /*
8221  * We directly increment event->count and keep a second value in
8222  * event->hw.period_left to count intervals. This period event
8223  * is kept in the range [-sample_period, 0] so that we can use the
8224  * sign as trigger.
8225  */
8226 
8227 u64 perf_swevent_set_period(struct perf_event *event)
8228 {
8229 	struct hw_perf_event *hwc = &event->hw;
8230 	u64 period = hwc->last_period;
8231 	u64 nr, offset;
8232 	s64 old, val;
8233 
8234 	hwc->last_period = hwc->sample_period;
8235 
8236 again:
8237 	old = val = local64_read(&hwc->period_left);
8238 	if (val < 0)
8239 		return 0;
8240 
8241 	nr = div64_u64(period + val, period);
8242 	offset = nr * period;
8243 	val -= offset;
8244 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8245 		goto again;
8246 
8247 	return nr;
8248 }
8249 
8250 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8251 				    struct perf_sample_data *data,
8252 				    struct pt_regs *regs)
8253 {
8254 	struct hw_perf_event *hwc = &event->hw;
8255 	int throttle = 0;
8256 
8257 	if (!overflow)
8258 		overflow = perf_swevent_set_period(event);
8259 
8260 	if (hwc->interrupts == MAX_INTERRUPTS)
8261 		return;
8262 
8263 	for (; overflow; overflow--) {
8264 		if (__perf_event_overflow(event, throttle,
8265 					    data, regs)) {
8266 			/*
8267 			 * We inhibit the overflow from happening when
8268 			 * hwc->interrupts == MAX_INTERRUPTS.
8269 			 */
8270 			break;
8271 		}
8272 		throttle = 1;
8273 	}
8274 }
8275 
8276 static void perf_swevent_event(struct perf_event *event, u64 nr,
8277 			       struct perf_sample_data *data,
8278 			       struct pt_regs *regs)
8279 {
8280 	struct hw_perf_event *hwc = &event->hw;
8281 
8282 	local64_add(nr, &event->count);
8283 
8284 	if (!regs)
8285 		return;
8286 
8287 	if (!is_sampling_event(event))
8288 		return;
8289 
8290 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8291 		data->period = nr;
8292 		return perf_swevent_overflow(event, 1, data, regs);
8293 	} else
8294 		data->period = event->hw.last_period;
8295 
8296 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8297 		return perf_swevent_overflow(event, 1, data, regs);
8298 
8299 	if (local64_add_negative(nr, &hwc->period_left))
8300 		return;
8301 
8302 	perf_swevent_overflow(event, 0, data, regs);
8303 }
8304 
8305 static int perf_exclude_event(struct perf_event *event,
8306 			      struct pt_regs *regs)
8307 {
8308 	if (event->hw.state & PERF_HES_STOPPED)
8309 		return 1;
8310 
8311 	if (regs) {
8312 		if (event->attr.exclude_user && user_mode(regs))
8313 			return 1;
8314 
8315 		if (event->attr.exclude_kernel && !user_mode(regs))
8316 			return 1;
8317 	}
8318 
8319 	return 0;
8320 }
8321 
8322 static int perf_swevent_match(struct perf_event *event,
8323 				enum perf_type_id type,
8324 				u32 event_id,
8325 				struct perf_sample_data *data,
8326 				struct pt_regs *regs)
8327 {
8328 	if (event->attr.type != type)
8329 		return 0;
8330 
8331 	if (event->attr.config != event_id)
8332 		return 0;
8333 
8334 	if (perf_exclude_event(event, regs))
8335 		return 0;
8336 
8337 	return 1;
8338 }
8339 
8340 static inline u64 swevent_hash(u64 type, u32 event_id)
8341 {
8342 	u64 val = event_id | (type << 32);
8343 
8344 	return hash_64(val, SWEVENT_HLIST_BITS);
8345 }
8346 
8347 static inline struct hlist_head *
8348 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8349 {
8350 	u64 hash = swevent_hash(type, event_id);
8351 
8352 	return &hlist->heads[hash];
8353 }
8354 
8355 /* For the read side: events when they trigger */
8356 static inline struct hlist_head *
8357 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8358 {
8359 	struct swevent_hlist *hlist;
8360 
8361 	hlist = rcu_dereference(swhash->swevent_hlist);
8362 	if (!hlist)
8363 		return NULL;
8364 
8365 	return __find_swevent_head(hlist, type, event_id);
8366 }
8367 
8368 /* For the event head insertion and removal in the hlist */
8369 static inline struct hlist_head *
8370 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8371 {
8372 	struct swevent_hlist *hlist;
8373 	u32 event_id = event->attr.config;
8374 	u64 type = event->attr.type;
8375 
8376 	/*
8377 	 * Event scheduling is always serialized against hlist allocation
8378 	 * and release. Which makes the protected version suitable here.
8379 	 * The context lock guarantees that.
8380 	 */
8381 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
8382 					  lockdep_is_held(&event->ctx->lock));
8383 	if (!hlist)
8384 		return NULL;
8385 
8386 	return __find_swevent_head(hlist, type, event_id);
8387 }
8388 
8389 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8390 				    u64 nr,
8391 				    struct perf_sample_data *data,
8392 				    struct pt_regs *regs)
8393 {
8394 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8395 	struct perf_event *event;
8396 	struct hlist_head *head;
8397 
8398 	rcu_read_lock();
8399 	head = find_swevent_head_rcu(swhash, type, event_id);
8400 	if (!head)
8401 		goto end;
8402 
8403 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8404 		if (perf_swevent_match(event, type, event_id, data, regs))
8405 			perf_swevent_event(event, nr, data, regs);
8406 	}
8407 end:
8408 	rcu_read_unlock();
8409 }
8410 
8411 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8412 
8413 int perf_swevent_get_recursion_context(void)
8414 {
8415 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8416 
8417 	return get_recursion_context(swhash->recursion);
8418 }
8419 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8420 
8421 void perf_swevent_put_recursion_context(int rctx)
8422 {
8423 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8424 
8425 	put_recursion_context(swhash->recursion, rctx);
8426 }
8427 
8428 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8429 {
8430 	struct perf_sample_data data;
8431 
8432 	if (WARN_ON_ONCE(!regs))
8433 		return;
8434 
8435 	perf_sample_data_init(&data, addr, 0);
8436 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8437 }
8438 
8439 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8440 {
8441 	int rctx;
8442 
8443 	preempt_disable_notrace();
8444 	rctx = perf_swevent_get_recursion_context();
8445 	if (unlikely(rctx < 0))
8446 		goto fail;
8447 
8448 	___perf_sw_event(event_id, nr, regs, addr);
8449 
8450 	perf_swevent_put_recursion_context(rctx);
8451 fail:
8452 	preempt_enable_notrace();
8453 }
8454 
8455 static void perf_swevent_read(struct perf_event *event)
8456 {
8457 }
8458 
8459 static int perf_swevent_add(struct perf_event *event, int flags)
8460 {
8461 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8462 	struct hw_perf_event *hwc = &event->hw;
8463 	struct hlist_head *head;
8464 
8465 	if (is_sampling_event(event)) {
8466 		hwc->last_period = hwc->sample_period;
8467 		perf_swevent_set_period(event);
8468 	}
8469 
8470 	hwc->state = !(flags & PERF_EF_START);
8471 
8472 	head = find_swevent_head(swhash, event);
8473 	if (WARN_ON_ONCE(!head))
8474 		return -EINVAL;
8475 
8476 	hlist_add_head_rcu(&event->hlist_entry, head);
8477 	perf_event_update_userpage(event);
8478 
8479 	return 0;
8480 }
8481 
8482 static void perf_swevent_del(struct perf_event *event, int flags)
8483 {
8484 	hlist_del_rcu(&event->hlist_entry);
8485 }
8486 
8487 static void perf_swevent_start(struct perf_event *event, int flags)
8488 {
8489 	event->hw.state = 0;
8490 }
8491 
8492 static void perf_swevent_stop(struct perf_event *event, int flags)
8493 {
8494 	event->hw.state = PERF_HES_STOPPED;
8495 }
8496 
8497 /* Deref the hlist from the update side */
8498 static inline struct swevent_hlist *
8499 swevent_hlist_deref(struct swevent_htable *swhash)
8500 {
8501 	return rcu_dereference_protected(swhash->swevent_hlist,
8502 					 lockdep_is_held(&swhash->hlist_mutex));
8503 }
8504 
8505 static void swevent_hlist_release(struct swevent_htable *swhash)
8506 {
8507 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8508 
8509 	if (!hlist)
8510 		return;
8511 
8512 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8513 	kfree_rcu(hlist, rcu_head);
8514 }
8515 
8516 static void swevent_hlist_put_cpu(int cpu)
8517 {
8518 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8519 
8520 	mutex_lock(&swhash->hlist_mutex);
8521 
8522 	if (!--swhash->hlist_refcount)
8523 		swevent_hlist_release(swhash);
8524 
8525 	mutex_unlock(&swhash->hlist_mutex);
8526 }
8527 
8528 static void swevent_hlist_put(void)
8529 {
8530 	int cpu;
8531 
8532 	for_each_possible_cpu(cpu)
8533 		swevent_hlist_put_cpu(cpu);
8534 }
8535 
8536 static int swevent_hlist_get_cpu(int cpu)
8537 {
8538 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8539 	int err = 0;
8540 
8541 	mutex_lock(&swhash->hlist_mutex);
8542 	if (!swevent_hlist_deref(swhash) &&
8543 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8544 		struct swevent_hlist *hlist;
8545 
8546 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8547 		if (!hlist) {
8548 			err = -ENOMEM;
8549 			goto exit;
8550 		}
8551 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8552 	}
8553 	swhash->hlist_refcount++;
8554 exit:
8555 	mutex_unlock(&swhash->hlist_mutex);
8556 
8557 	return err;
8558 }
8559 
8560 static int swevent_hlist_get(void)
8561 {
8562 	int err, cpu, failed_cpu;
8563 
8564 	mutex_lock(&pmus_lock);
8565 	for_each_possible_cpu(cpu) {
8566 		err = swevent_hlist_get_cpu(cpu);
8567 		if (err) {
8568 			failed_cpu = cpu;
8569 			goto fail;
8570 		}
8571 	}
8572 	mutex_unlock(&pmus_lock);
8573 	return 0;
8574 fail:
8575 	for_each_possible_cpu(cpu) {
8576 		if (cpu == failed_cpu)
8577 			break;
8578 		swevent_hlist_put_cpu(cpu);
8579 	}
8580 	mutex_unlock(&pmus_lock);
8581 	return err;
8582 }
8583 
8584 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8585 
8586 static void sw_perf_event_destroy(struct perf_event *event)
8587 {
8588 	u64 event_id = event->attr.config;
8589 
8590 	WARN_ON(event->parent);
8591 
8592 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8593 	swevent_hlist_put();
8594 }
8595 
8596 static int perf_swevent_init(struct perf_event *event)
8597 {
8598 	u64 event_id = event->attr.config;
8599 
8600 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8601 		return -ENOENT;
8602 
8603 	/*
8604 	 * no branch sampling for software events
8605 	 */
8606 	if (has_branch_stack(event))
8607 		return -EOPNOTSUPP;
8608 
8609 	switch (event_id) {
8610 	case PERF_COUNT_SW_CPU_CLOCK:
8611 	case PERF_COUNT_SW_TASK_CLOCK:
8612 		return -ENOENT;
8613 
8614 	default:
8615 		break;
8616 	}
8617 
8618 	if (event_id >= PERF_COUNT_SW_MAX)
8619 		return -ENOENT;
8620 
8621 	if (!event->parent) {
8622 		int err;
8623 
8624 		err = swevent_hlist_get();
8625 		if (err)
8626 			return err;
8627 
8628 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8629 		event->destroy = sw_perf_event_destroy;
8630 	}
8631 
8632 	return 0;
8633 }
8634 
8635 static struct pmu perf_swevent = {
8636 	.task_ctx_nr	= perf_sw_context,
8637 
8638 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8639 
8640 	.event_init	= perf_swevent_init,
8641 	.add		= perf_swevent_add,
8642 	.del		= perf_swevent_del,
8643 	.start		= perf_swevent_start,
8644 	.stop		= perf_swevent_stop,
8645 	.read		= perf_swevent_read,
8646 };
8647 
8648 #ifdef CONFIG_EVENT_TRACING
8649 
8650 static int perf_tp_filter_match(struct perf_event *event,
8651 				struct perf_sample_data *data)
8652 {
8653 	void *record = data->raw->frag.data;
8654 
8655 	/* only top level events have filters set */
8656 	if (event->parent)
8657 		event = event->parent;
8658 
8659 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8660 		return 1;
8661 	return 0;
8662 }
8663 
8664 static int perf_tp_event_match(struct perf_event *event,
8665 				struct perf_sample_data *data,
8666 				struct pt_regs *regs)
8667 {
8668 	if (event->hw.state & PERF_HES_STOPPED)
8669 		return 0;
8670 	/*
8671 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
8672 	 */
8673 	if (event->attr.exclude_kernel && !user_mode(regs))
8674 		return 0;
8675 
8676 	if (!perf_tp_filter_match(event, data))
8677 		return 0;
8678 
8679 	return 1;
8680 }
8681 
8682 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8683 			       struct trace_event_call *call, u64 count,
8684 			       struct pt_regs *regs, struct hlist_head *head,
8685 			       struct task_struct *task)
8686 {
8687 	if (bpf_prog_array_valid(call)) {
8688 		*(struct pt_regs **)raw_data = regs;
8689 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8690 			perf_swevent_put_recursion_context(rctx);
8691 			return;
8692 		}
8693 	}
8694 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8695 		      rctx, task);
8696 }
8697 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8698 
8699 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8700 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8701 		   struct task_struct *task)
8702 {
8703 	struct perf_sample_data data;
8704 	struct perf_event *event;
8705 
8706 	struct perf_raw_record raw = {
8707 		.frag = {
8708 			.size = entry_size,
8709 			.data = record,
8710 		},
8711 	};
8712 
8713 	perf_sample_data_init(&data, 0, 0);
8714 	data.raw = &raw;
8715 
8716 	perf_trace_buf_update(record, event_type);
8717 
8718 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8719 		if (perf_tp_event_match(event, &data, regs))
8720 			perf_swevent_event(event, count, &data, regs);
8721 	}
8722 
8723 	/*
8724 	 * If we got specified a target task, also iterate its context and
8725 	 * deliver this event there too.
8726 	 */
8727 	if (task && task != current) {
8728 		struct perf_event_context *ctx;
8729 		struct trace_entry *entry = record;
8730 
8731 		rcu_read_lock();
8732 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8733 		if (!ctx)
8734 			goto unlock;
8735 
8736 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8737 			if (event->cpu != smp_processor_id())
8738 				continue;
8739 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8740 				continue;
8741 			if (event->attr.config != entry->type)
8742 				continue;
8743 			if (perf_tp_event_match(event, &data, regs))
8744 				perf_swevent_event(event, count, &data, regs);
8745 		}
8746 unlock:
8747 		rcu_read_unlock();
8748 	}
8749 
8750 	perf_swevent_put_recursion_context(rctx);
8751 }
8752 EXPORT_SYMBOL_GPL(perf_tp_event);
8753 
8754 static void tp_perf_event_destroy(struct perf_event *event)
8755 {
8756 	perf_trace_destroy(event);
8757 }
8758 
8759 static int perf_tp_event_init(struct perf_event *event)
8760 {
8761 	int err;
8762 
8763 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8764 		return -ENOENT;
8765 
8766 	/*
8767 	 * no branch sampling for tracepoint events
8768 	 */
8769 	if (has_branch_stack(event))
8770 		return -EOPNOTSUPP;
8771 
8772 	err = perf_trace_init(event);
8773 	if (err)
8774 		return err;
8775 
8776 	event->destroy = tp_perf_event_destroy;
8777 
8778 	return 0;
8779 }
8780 
8781 static struct pmu perf_tracepoint = {
8782 	.task_ctx_nr	= perf_sw_context,
8783 
8784 	.event_init	= perf_tp_event_init,
8785 	.add		= perf_trace_add,
8786 	.del		= perf_trace_del,
8787 	.start		= perf_swevent_start,
8788 	.stop		= perf_swevent_stop,
8789 	.read		= perf_swevent_read,
8790 };
8791 
8792 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8793 /*
8794  * Flags in config, used by dynamic PMU kprobe and uprobe
8795  * The flags should match following PMU_FORMAT_ATTR().
8796  *
8797  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8798  *                               if not set, create kprobe/uprobe
8799  *
8800  * The following values specify a reference counter (or semaphore in the
8801  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8802  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8803  *
8804  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
8805  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
8806  */
8807 enum perf_probe_config {
8808 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8809 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8810 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8811 };
8812 
8813 PMU_FORMAT_ATTR(retprobe, "config:0");
8814 #endif
8815 
8816 #ifdef CONFIG_KPROBE_EVENTS
8817 static struct attribute *kprobe_attrs[] = {
8818 	&format_attr_retprobe.attr,
8819 	NULL,
8820 };
8821 
8822 static struct attribute_group kprobe_format_group = {
8823 	.name = "format",
8824 	.attrs = kprobe_attrs,
8825 };
8826 
8827 static const struct attribute_group *kprobe_attr_groups[] = {
8828 	&kprobe_format_group,
8829 	NULL,
8830 };
8831 
8832 static int perf_kprobe_event_init(struct perf_event *event);
8833 static struct pmu perf_kprobe = {
8834 	.task_ctx_nr	= perf_sw_context,
8835 	.event_init	= perf_kprobe_event_init,
8836 	.add		= perf_trace_add,
8837 	.del		= perf_trace_del,
8838 	.start		= perf_swevent_start,
8839 	.stop		= perf_swevent_stop,
8840 	.read		= perf_swevent_read,
8841 	.attr_groups	= kprobe_attr_groups,
8842 };
8843 
8844 static int perf_kprobe_event_init(struct perf_event *event)
8845 {
8846 	int err;
8847 	bool is_retprobe;
8848 
8849 	if (event->attr.type != perf_kprobe.type)
8850 		return -ENOENT;
8851 
8852 	if (!capable(CAP_SYS_ADMIN))
8853 		return -EACCES;
8854 
8855 	/*
8856 	 * no branch sampling for probe events
8857 	 */
8858 	if (has_branch_stack(event))
8859 		return -EOPNOTSUPP;
8860 
8861 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8862 	err = perf_kprobe_init(event, is_retprobe);
8863 	if (err)
8864 		return err;
8865 
8866 	event->destroy = perf_kprobe_destroy;
8867 
8868 	return 0;
8869 }
8870 #endif /* CONFIG_KPROBE_EVENTS */
8871 
8872 #ifdef CONFIG_UPROBE_EVENTS
8873 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8874 
8875 static struct attribute *uprobe_attrs[] = {
8876 	&format_attr_retprobe.attr,
8877 	&format_attr_ref_ctr_offset.attr,
8878 	NULL,
8879 };
8880 
8881 static struct attribute_group uprobe_format_group = {
8882 	.name = "format",
8883 	.attrs = uprobe_attrs,
8884 };
8885 
8886 static const struct attribute_group *uprobe_attr_groups[] = {
8887 	&uprobe_format_group,
8888 	NULL,
8889 };
8890 
8891 static int perf_uprobe_event_init(struct perf_event *event);
8892 static struct pmu perf_uprobe = {
8893 	.task_ctx_nr	= perf_sw_context,
8894 	.event_init	= perf_uprobe_event_init,
8895 	.add		= perf_trace_add,
8896 	.del		= perf_trace_del,
8897 	.start		= perf_swevent_start,
8898 	.stop		= perf_swevent_stop,
8899 	.read		= perf_swevent_read,
8900 	.attr_groups	= uprobe_attr_groups,
8901 };
8902 
8903 static int perf_uprobe_event_init(struct perf_event *event)
8904 {
8905 	int err;
8906 	unsigned long ref_ctr_offset;
8907 	bool is_retprobe;
8908 
8909 	if (event->attr.type != perf_uprobe.type)
8910 		return -ENOENT;
8911 
8912 	if (!capable(CAP_SYS_ADMIN))
8913 		return -EACCES;
8914 
8915 	/*
8916 	 * no branch sampling for probe events
8917 	 */
8918 	if (has_branch_stack(event))
8919 		return -EOPNOTSUPP;
8920 
8921 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8922 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8923 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8924 	if (err)
8925 		return err;
8926 
8927 	event->destroy = perf_uprobe_destroy;
8928 
8929 	return 0;
8930 }
8931 #endif /* CONFIG_UPROBE_EVENTS */
8932 
8933 static inline void perf_tp_register(void)
8934 {
8935 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8936 #ifdef CONFIG_KPROBE_EVENTS
8937 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
8938 #endif
8939 #ifdef CONFIG_UPROBE_EVENTS
8940 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
8941 #endif
8942 }
8943 
8944 static void perf_event_free_filter(struct perf_event *event)
8945 {
8946 	ftrace_profile_free_filter(event);
8947 }
8948 
8949 #ifdef CONFIG_BPF_SYSCALL
8950 static void bpf_overflow_handler(struct perf_event *event,
8951 				 struct perf_sample_data *data,
8952 				 struct pt_regs *regs)
8953 {
8954 	struct bpf_perf_event_data_kern ctx = {
8955 		.data = data,
8956 		.event = event,
8957 	};
8958 	int ret = 0;
8959 
8960 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8961 	preempt_disable();
8962 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8963 		goto out;
8964 	rcu_read_lock();
8965 	ret = BPF_PROG_RUN(event->prog, &ctx);
8966 	rcu_read_unlock();
8967 out:
8968 	__this_cpu_dec(bpf_prog_active);
8969 	preempt_enable();
8970 	if (!ret)
8971 		return;
8972 
8973 	event->orig_overflow_handler(event, data, regs);
8974 }
8975 
8976 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8977 {
8978 	struct bpf_prog *prog;
8979 
8980 	if (event->overflow_handler_context)
8981 		/* hw breakpoint or kernel counter */
8982 		return -EINVAL;
8983 
8984 	if (event->prog)
8985 		return -EEXIST;
8986 
8987 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8988 	if (IS_ERR(prog))
8989 		return PTR_ERR(prog);
8990 
8991 	event->prog = prog;
8992 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8993 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8994 	return 0;
8995 }
8996 
8997 static void perf_event_free_bpf_handler(struct perf_event *event)
8998 {
8999 	struct bpf_prog *prog = event->prog;
9000 
9001 	if (!prog)
9002 		return;
9003 
9004 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9005 	event->prog = NULL;
9006 	bpf_prog_put(prog);
9007 }
9008 #else
9009 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9010 {
9011 	return -EOPNOTSUPP;
9012 }
9013 static void perf_event_free_bpf_handler(struct perf_event *event)
9014 {
9015 }
9016 #endif
9017 
9018 /*
9019  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9020  * with perf_event_open()
9021  */
9022 static inline bool perf_event_is_tracing(struct perf_event *event)
9023 {
9024 	if (event->pmu == &perf_tracepoint)
9025 		return true;
9026 #ifdef CONFIG_KPROBE_EVENTS
9027 	if (event->pmu == &perf_kprobe)
9028 		return true;
9029 #endif
9030 #ifdef CONFIG_UPROBE_EVENTS
9031 	if (event->pmu == &perf_uprobe)
9032 		return true;
9033 #endif
9034 	return false;
9035 }
9036 
9037 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9038 {
9039 	bool is_kprobe, is_tracepoint, is_syscall_tp;
9040 	struct bpf_prog *prog;
9041 	int ret;
9042 
9043 	if (!perf_event_is_tracing(event))
9044 		return perf_event_set_bpf_handler(event, prog_fd);
9045 
9046 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9047 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9048 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
9049 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9050 		/* bpf programs can only be attached to u/kprobe or tracepoint */
9051 		return -EINVAL;
9052 
9053 	prog = bpf_prog_get(prog_fd);
9054 	if (IS_ERR(prog))
9055 		return PTR_ERR(prog);
9056 
9057 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9058 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9059 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9060 		/* valid fd, but invalid bpf program type */
9061 		bpf_prog_put(prog);
9062 		return -EINVAL;
9063 	}
9064 
9065 	/* Kprobe override only works for kprobes, not uprobes. */
9066 	if (prog->kprobe_override &&
9067 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9068 		bpf_prog_put(prog);
9069 		return -EINVAL;
9070 	}
9071 
9072 	if (is_tracepoint || is_syscall_tp) {
9073 		int off = trace_event_get_offsets(event->tp_event);
9074 
9075 		if (prog->aux->max_ctx_offset > off) {
9076 			bpf_prog_put(prog);
9077 			return -EACCES;
9078 		}
9079 	}
9080 
9081 	ret = perf_event_attach_bpf_prog(event, prog);
9082 	if (ret)
9083 		bpf_prog_put(prog);
9084 	return ret;
9085 }
9086 
9087 static void perf_event_free_bpf_prog(struct perf_event *event)
9088 {
9089 	if (!perf_event_is_tracing(event)) {
9090 		perf_event_free_bpf_handler(event);
9091 		return;
9092 	}
9093 	perf_event_detach_bpf_prog(event);
9094 }
9095 
9096 #else
9097 
9098 static inline void perf_tp_register(void)
9099 {
9100 }
9101 
9102 static void perf_event_free_filter(struct perf_event *event)
9103 {
9104 }
9105 
9106 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9107 {
9108 	return -ENOENT;
9109 }
9110 
9111 static void perf_event_free_bpf_prog(struct perf_event *event)
9112 {
9113 }
9114 #endif /* CONFIG_EVENT_TRACING */
9115 
9116 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9117 void perf_bp_event(struct perf_event *bp, void *data)
9118 {
9119 	struct perf_sample_data sample;
9120 	struct pt_regs *regs = data;
9121 
9122 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9123 
9124 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
9125 		perf_swevent_event(bp, 1, &sample, regs);
9126 }
9127 #endif
9128 
9129 /*
9130  * Allocate a new address filter
9131  */
9132 static struct perf_addr_filter *
9133 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9134 {
9135 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9136 	struct perf_addr_filter *filter;
9137 
9138 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9139 	if (!filter)
9140 		return NULL;
9141 
9142 	INIT_LIST_HEAD(&filter->entry);
9143 	list_add_tail(&filter->entry, filters);
9144 
9145 	return filter;
9146 }
9147 
9148 static void free_filters_list(struct list_head *filters)
9149 {
9150 	struct perf_addr_filter *filter, *iter;
9151 
9152 	list_for_each_entry_safe(filter, iter, filters, entry) {
9153 		path_put(&filter->path);
9154 		list_del(&filter->entry);
9155 		kfree(filter);
9156 	}
9157 }
9158 
9159 /*
9160  * Free existing address filters and optionally install new ones
9161  */
9162 static void perf_addr_filters_splice(struct perf_event *event,
9163 				     struct list_head *head)
9164 {
9165 	unsigned long flags;
9166 	LIST_HEAD(list);
9167 
9168 	if (!has_addr_filter(event))
9169 		return;
9170 
9171 	/* don't bother with children, they don't have their own filters */
9172 	if (event->parent)
9173 		return;
9174 
9175 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9176 
9177 	list_splice_init(&event->addr_filters.list, &list);
9178 	if (head)
9179 		list_splice(head, &event->addr_filters.list);
9180 
9181 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9182 
9183 	free_filters_list(&list);
9184 }
9185 
9186 /*
9187  * Scan through mm's vmas and see if one of them matches the
9188  * @filter; if so, adjust filter's address range.
9189  * Called with mm::mmap_sem down for reading.
9190  */
9191 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9192 				   struct mm_struct *mm,
9193 				   struct perf_addr_filter_range *fr)
9194 {
9195 	struct vm_area_struct *vma;
9196 
9197 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
9198 		if (!vma->vm_file)
9199 			continue;
9200 
9201 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
9202 			return;
9203 	}
9204 }
9205 
9206 /*
9207  * Update event's address range filters based on the
9208  * task's existing mappings, if any.
9209  */
9210 static void perf_event_addr_filters_apply(struct perf_event *event)
9211 {
9212 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9213 	struct task_struct *task = READ_ONCE(event->ctx->task);
9214 	struct perf_addr_filter *filter;
9215 	struct mm_struct *mm = NULL;
9216 	unsigned int count = 0;
9217 	unsigned long flags;
9218 
9219 	/*
9220 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9221 	 * will stop on the parent's child_mutex that our caller is also holding
9222 	 */
9223 	if (task == TASK_TOMBSTONE)
9224 		return;
9225 
9226 	if (ifh->nr_file_filters) {
9227 		mm = get_task_mm(event->ctx->task);
9228 		if (!mm)
9229 			goto restart;
9230 
9231 		down_read(&mm->mmap_sem);
9232 	}
9233 
9234 	raw_spin_lock_irqsave(&ifh->lock, flags);
9235 	list_for_each_entry(filter, &ifh->list, entry) {
9236 		if (filter->path.dentry) {
9237 			/*
9238 			 * Adjust base offset if the filter is associated to a
9239 			 * binary that needs to be mapped:
9240 			 */
9241 			event->addr_filter_ranges[count].start = 0;
9242 			event->addr_filter_ranges[count].size = 0;
9243 
9244 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9245 		} else {
9246 			event->addr_filter_ranges[count].start = filter->offset;
9247 			event->addr_filter_ranges[count].size  = filter->size;
9248 		}
9249 
9250 		count++;
9251 	}
9252 
9253 	event->addr_filters_gen++;
9254 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9255 
9256 	if (ifh->nr_file_filters) {
9257 		up_read(&mm->mmap_sem);
9258 
9259 		mmput(mm);
9260 	}
9261 
9262 restart:
9263 	perf_event_stop(event, 1);
9264 }
9265 
9266 /*
9267  * Address range filtering: limiting the data to certain
9268  * instruction address ranges. Filters are ioctl()ed to us from
9269  * userspace as ascii strings.
9270  *
9271  * Filter string format:
9272  *
9273  * ACTION RANGE_SPEC
9274  * where ACTION is one of the
9275  *  * "filter": limit the trace to this region
9276  *  * "start": start tracing from this address
9277  *  * "stop": stop tracing at this address/region;
9278  * RANGE_SPEC is
9279  *  * for kernel addresses: <start address>[/<size>]
9280  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9281  *
9282  * if <size> is not specified or is zero, the range is treated as a single
9283  * address; not valid for ACTION=="filter".
9284  */
9285 enum {
9286 	IF_ACT_NONE = -1,
9287 	IF_ACT_FILTER,
9288 	IF_ACT_START,
9289 	IF_ACT_STOP,
9290 	IF_SRC_FILE,
9291 	IF_SRC_KERNEL,
9292 	IF_SRC_FILEADDR,
9293 	IF_SRC_KERNELADDR,
9294 };
9295 
9296 enum {
9297 	IF_STATE_ACTION = 0,
9298 	IF_STATE_SOURCE,
9299 	IF_STATE_END,
9300 };
9301 
9302 static const match_table_t if_tokens = {
9303 	{ IF_ACT_FILTER,	"filter" },
9304 	{ IF_ACT_START,		"start" },
9305 	{ IF_ACT_STOP,		"stop" },
9306 	{ IF_SRC_FILE,		"%u/%u@%s" },
9307 	{ IF_SRC_KERNEL,	"%u/%u" },
9308 	{ IF_SRC_FILEADDR,	"%u@%s" },
9309 	{ IF_SRC_KERNELADDR,	"%u" },
9310 	{ IF_ACT_NONE,		NULL },
9311 };
9312 
9313 /*
9314  * Address filter string parser
9315  */
9316 static int
9317 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9318 			     struct list_head *filters)
9319 {
9320 	struct perf_addr_filter *filter = NULL;
9321 	char *start, *orig, *filename = NULL;
9322 	substring_t args[MAX_OPT_ARGS];
9323 	int state = IF_STATE_ACTION, token;
9324 	unsigned int kernel = 0;
9325 	int ret = -EINVAL;
9326 
9327 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
9328 	if (!fstr)
9329 		return -ENOMEM;
9330 
9331 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
9332 		static const enum perf_addr_filter_action_t actions[] = {
9333 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
9334 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
9335 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
9336 		};
9337 		ret = -EINVAL;
9338 
9339 		if (!*start)
9340 			continue;
9341 
9342 		/* filter definition begins */
9343 		if (state == IF_STATE_ACTION) {
9344 			filter = perf_addr_filter_new(event, filters);
9345 			if (!filter)
9346 				goto fail;
9347 		}
9348 
9349 		token = match_token(start, if_tokens, args);
9350 		switch (token) {
9351 		case IF_ACT_FILTER:
9352 		case IF_ACT_START:
9353 		case IF_ACT_STOP:
9354 			if (state != IF_STATE_ACTION)
9355 				goto fail;
9356 
9357 			filter->action = actions[token];
9358 			state = IF_STATE_SOURCE;
9359 			break;
9360 
9361 		case IF_SRC_KERNELADDR:
9362 		case IF_SRC_KERNEL:
9363 			kernel = 1;
9364 			/* fall through */
9365 
9366 		case IF_SRC_FILEADDR:
9367 		case IF_SRC_FILE:
9368 			if (state != IF_STATE_SOURCE)
9369 				goto fail;
9370 
9371 			*args[0].to = 0;
9372 			ret = kstrtoul(args[0].from, 0, &filter->offset);
9373 			if (ret)
9374 				goto fail;
9375 
9376 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9377 				*args[1].to = 0;
9378 				ret = kstrtoul(args[1].from, 0, &filter->size);
9379 				if (ret)
9380 					goto fail;
9381 			}
9382 
9383 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9384 				int fpos = token == IF_SRC_FILE ? 2 : 1;
9385 
9386 				filename = match_strdup(&args[fpos]);
9387 				if (!filename) {
9388 					ret = -ENOMEM;
9389 					goto fail;
9390 				}
9391 			}
9392 
9393 			state = IF_STATE_END;
9394 			break;
9395 
9396 		default:
9397 			goto fail;
9398 		}
9399 
9400 		/*
9401 		 * Filter definition is fully parsed, validate and install it.
9402 		 * Make sure that it doesn't contradict itself or the event's
9403 		 * attribute.
9404 		 */
9405 		if (state == IF_STATE_END) {
9406 			ret = -EINVAL;
9407 			if (kernel && event->attr.exclude_kernel)
9408 				goto fail;
9409 
9410 			/*
9411 			 * ACTION "filter" must have a non-zero length region
9412 			 * specified.
9413 			 */
9414 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9415 			    !filter->size)
9416 				goto fail;
9417 
9418 			if (!kernel) {
9419 				if (!filename)
9420 					goto fail;
9421 
9422 				/*
9423 				 * For now, we only support file-based filters
9424 				 * in per-task events; doing so for CPU-wide
9425 				 * events requires additional context switching
9426 				 * trickery, since same object code will be
9427 				 * mapped at different virtual addresses in
9428 				 * different processes.
9429 				 */
9430 				ret = -EOPNOTSUPP;
9431 				if (!event->ctx->task)
9432 					goto fail_free_name;
9433 
9434 				/* look up the path and grab its inode */
9435 				ret = kern_path(filename, LOOKUP_FOLLOW,
9436 						&filter->path);
9437 				if (ret)
9438 					goto fail_free_name;
9439 
9440 				kfree(filename);
9441 				filename = NULL;
9442 
9443 				ret = -EINVAL;
9444 				if (!filter->path.dentry ||
9445 				    !S_ISREG(d_inode(filter->path.dentry)
9446 					     ->i_mode))
9447 					goto fail;
9448 
9449 				event->addr_filters.nr_file_filters++;
9450 			}
9451 
9452 			/* ready to consume more filters */
9453 			state = IF_STATE_ACTION;
9454 			filter = NULL;
9455 		}
9456 	}
9457 
9458 	if (state != IF_STATE_ACTION)
9459 		goto fail;
9460 
9461 	kfree(orig);
9462 
9463 	return 0;
9464 
9465 fail_free_name:
9466 	kfree(filename);
9467 fail:
9468 	free_filters_list(filters);
9469 	kfree(orig);
9470 
9471 	return ret;
9472 }
9473 
9474 static int
9475 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9476 {
9477 	LIST_HEAD(filters);
9478 	int ret;
9479 
9480 	/*
9481 	 * Since this is called in perf_ioctl() path, we're already holding
9482 	 * ctx::mutex.
9483 	 */
9484 	lockdep_assert_held(&event->ctx->mutex);
9485 
9486 	if (WARN_ON_ONCE(event->parent))
9487 		return -EINVAL;
9488 
9489 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9490 	if (ret)
9491 		goto fail_clear_files;
9492 
9493 	ret = event->pmu->addr_filters_validate(&filters);
9494 	if (ret)
9495 		goto fail_free_filters;
9496 
9497 	/* remove existing filters, if any */
9498 	perf_addr_filters_splice(event, &filters);
9499 
9500 	/* install new filters */
9501 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9502 
9503 	return ret;
9504 
9505 fail_free_filters:
9506 	free_filters_list(&filters);
9507 
9508 fail_clear_files:
9509 	event->addr_filters.nr_file_filters = 0;
9510 
9511 	return ret;
9512 }
9513 
9514 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9515 {
9516 	int ret = -EINVAL;
9517 	char *filter_str;
9518 
9519 	filter_str = strndup_user(arg, PAGE_SIZE);
9520 	if (IS_ERR(filter_str))
9521 		return PTR_ERR(filter_str);
9522 
9523 #ifdef CONFIG_EVENT_TRACING
9524 	if (perf_event_is_tracing(event)) {
9525 		struct perf_event_context *ctx = event->ctx;
9526 
9527 		/*
9528 		 * Beware, here be dragons!!
9529 		 *
9530 		 * the tracepoint muck will deadlock against ctx->mutex, but
9531 		 * the tracepoint stuff does not actually need it. So
9532 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9533 		 * already have a reference on ctx.
9534 		 *
9535 		 * This can result in event getting moved to a different ctx,
9536 		 * but that does not affect the tracepoint state.
9537 		 */
9538 		mutex_unlock(&ctx->mutex);
9539 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9540 		mutex_lock(&ctx->mutex);
9541 	} else
9542 #endif
9543 	if (has_addr_filter(event))
9544 		ret = perf_event_set_addr_filter(event, filter_str);
9545 
9546 	kfree(filter_str);
9547 	return ret;
9548 }
9549 
9550 /*
9551  * hrtimer based swevent callback
9552  */
9553 
9554 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9555 {
9556 	enum hrtimer_restart ret = HRTIMER_RESTART;
9557 	struct perf_sample_data data;
9558 	struct pt_regs *regs;
9559 	struct perf_event *event;
9560 	u64 period;
9561 
9562 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9563 
9564 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9565 		return HRTIMER_NORESTART;
9566 
9567 	event->pmu->read(event);
9568 
9569 	perf_sample_data_init(&data, 0, event->hw.last_period);
9570 	regs = get_irq_regs();
9571 
9572 	if (regs && !perf_exclude_event(event, regs)) {
9573 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9574 			if (__perf_event_overflow(event, 1, &data, regs))
9575 				ret = HRTIMER_NORESTART;
9576 	}
9577 
9578 	period = max_t(u64, 10000, event->hw.sample_period);
9579 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9580 
9581 	return ret;
9582 }
9583 
9584 static void perf_swevent_start_hrtimer(struct perf_event *event)
9585 {
9586 	struct hw_perf_event *hwc = &event->hw;
9587 	s64 period;
9588 
9589 	if (!is_sampling_event(event))
9590 		return;
9591 
9592 	period = local64_read(&hwc->period_left);
9593 	if (period) {
9594 		if (period < 0)
9595 			period = 10000;
9596 
9597 		local64_set(&hwc->period_left, 0);
9598 	} else {
9599 		period = max_t(u64, 10000, hwc->sample_period);
9600 	}
9601 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9602 		      HRTIMER_MODE_REL_PINNED_HARD);
9603 }
9604 
9605 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9606 {
9607 	struct hw_perf_event *hwc = &event->hw;
9608 
9609 	if (is_sampling_event(event)) {
9610 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9611 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9612 
9613 		hrtimer_cancel(&hwc->hrtimer);
9614 	}
9615 }
9616 
9617 static void perf_swevent_init_hrtimer(struct perf_event *event)
9618 {
9619 	struct hw_perf_event *hwc = &event->hw;
9620 
9621 	if (!is_sampling_event(event))
9622 		return;
9623 
9624 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
9625 	hwc->hrtimer.function = perf_swevent_hrtimer;
9626 
9627 	/*
9628 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9629 	 * mapping and avoid the whole period adjust feedback stuff.
9630 	 */
9631 	if (event->attr.freq) {
9632 		long freq = event->attr.sample_freq;
9633 
9634 		event->attr.sample_period = NSEC_PER_SEC / freq;
9635 		hwc->sample_period = event->attr.sample_period;
9636 		local64_set(&hwc->period_left, hwc->sample_period);
9637 		hwc->last_period = hwc->sample_period;
9638 		event->attr.freq = 0;
9639 	}
9640 }
9641 
9642 /*
9643  * Software event: cpu wall time clock
9644  */
9645 
9646 static void cpu_clock_event_update(struct perf_event *event)
9647 {
9648 	s64 prev;
9649 	u64 now;
9650 
9651 	now = local_clock();
9652 	prev = local64_xchg(&event->hw.prev_count, now);
9653 	local64_add(now - prev, &event->count);
9654 }
9655 
9656 static void cpu_clock_event_start(struct perf_event *event, int flags)
9657 {
9658 	local64_set(&event->hw.prev_count, local_clock());
9659 	perf_swevent_start_hrtimer(event);
9660 }
9661 
9662 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9663 {
9664 	perf_swevent_cancel_hrtimer(event);
9665 	cpu_clock_event_update(event);
9666 }
9667 
9668 static int cpu_clock_event_add(struct perf_event *event, int flags)
9669 {
9670 	if (flags & PERF_EF_START)
9671 		cpu_clock_event_start(event, flags);
9672 	perf_event_update_userpage(event);
9673 
9674 	return 0;
9675 }
9676 
9677 static void cpu_clock_event_del(struct perf_event *event, int flags)
9678 {
9679 	cpu_clock_event_stop(event, flags);
9680 }
9681 
9682 static void cpu_clock_event_read(struct perf_event *event)
9683 {
9684 	cpu_clock_event_update(event);
9685 }
9686 
9687 static int cpu_clock_event_init(struct perf_event *event)
9688 {
9689 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9690 		return -ENOENT;
9691 
9692 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9693 		return -ENOENT;
9694 
9695 	/*
9696 	 * no branch sampling for software events
9697 	 */
9698 	if (has_branch_stack(event))
9699 		return -EOPNOTSUPP;
9700 
9701 	perf_swevent_init_hrtimer(event);
9702 
9703 	return 0;
9704 }
9705 
9706 static struct pmu perf_cpu_clock = {
9707 	.task_ctx_nr	= perf_sw_context,
9708 
9709 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9710 
9711 	.event_init	= cpu_clock_event_init,
9712 	.add		= cpu_clock_event_add,
9713 	.del		= cpu_clock_event_del,
9714 	.start		= cpu_clock_event_start,
9715 	.stop		= cpu_clock_event_stop,
9716 	.read		= cpu_clock_event_read,
9717 };
9718 
9719 /*
9720  * Software event: task time clock
9721  */
9722 
9723 static void task_clock_event_update(struct perf_event *event, u64 now)
9724 {
9725 	u64 prev;
9726 	s64 delta;
9727 
9728 	prev = local64_xchg(&event->hw.prev_count, now);
9729 	delta = now - prev;
9730 	local64_add(delta, &event->count);
9731 }
9732 
9733 static void task_clock_event_start(struct perf_event *event, int flags)
9734 {
9735 	local64_set(&event->hw.prev_count, event->ctx->time);
9736 	perf_swevent_start_hrtimer(event);
9737 }
9738 
9739 static void task_clock_event_stop(struct perf_event *event, int flags)
9740 {
9741 	perf_swevent_cancel_hrtimer(event);
9742 	task_clock_event_update(event, event->ctx->time);
9743 }
9744 
9745 static int task_clock_event_add(struct perf_event *event, int flags)
9746 {
9747 	if (flags & PERF_EF_START)
9748 		task_clock_event_start(event, flags);
9749 	perf_event_update_userpage(event);
9750 
9751 	return 0;
9752 }
9753 
9754 static void task_clock_event_del(struct perf_event *event, int flags)
9755 {
9756 	task_clock_event_stop(event, PERF_EF_UPDATE);
9757 }
9758 
9759 static void task_clock_event_read(struct perf_event *event)
9760 {
9761 	u64 now = perf_clock();
9762 	u64 delta = now - event->ctx->timestamp;
9763 	u64 time = event->ctx->time + delta;
9764 
9765 	task_clock_event_update(event, time);
9766 }
9767 
9768 static int task_clock_event_init(struct perf_event *event)
9769 {
9770 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9771 		return -ENOENT;
9772 
9773 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9774 		return -ENOENT;
9775 
9776 	/*
9777 	 * no branch sampling for software events
9778 	 */
9779 	if (has_branch_stack(event))
9780 		return -EOPNOTSUPP;
9781 
9782 	perf_swevent_init_hrtimer(event);
9783 
9784 	return 0;
9785 }
9786 
9787 static struct pmu perf_task_clock = {
9788 	.task_ctx_nr	= perf_sw_context,
9789 
9790 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9791 
9792 	.event_init	= task_clock_event_init,
9793 	.add		= task_clock_event_add,
9794 	.del		= task_clock_event_del,
9795 	.start		= task_clock_event_start,
9796 	.stop		= task_clock_event_stop,
9797 	.read		= task_clock_event_read,
9798 };
9799 
9800 static void perf_pmu_nop_void(struct pmu *pmu)
9801 {
9802 }
9803 
9804 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9805 {
9806 }
9807 
9808 static int perf_pmu_nop_int(struct pmu *pmu)
9809 {
9810 	return 0;
9811 }
9812 
9813 static int perf_event_nop_int(struct perf_event *event, u64 value)
9814 {
9815 	return 0;
9816 }
9817 
9818 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9819 
9820 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9821 {
9822 	__this_cpu_write(nop_txn_flags, flags);
9823 
9824 	if (flags & ~PERF_PMU_TXN_ADD)
9825 		return;
9826 
9827 	perf_pmu_disable(pmu);
9828 }
9829 
9830 static int perf_pmu_commit_txn(struct pmu *pmu)
9831 {
9832 	unsigned int flags = __this_cpu_read(nop_txn_flags);
9833 
9834 	__this_cpu_write(nop_txn_flags, 0);
9835 
9836 	if (flags & ~PERF_PMU_TXN_ADD)
9837 		return 0;
9838 
9839 	perf_pmu_enable(pmu);
9840 	return 0;
9841 }
9842 
9843 static void perf_pmu_cancel_txn(struct pmu *pmu)
9844 {
9845 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
9846 
9847 	__this_cpu_write(nop_txn_flags, 0);
9848 
9849 	if (flags & ~PERF_PMU_TXN_ADD)
9850 		return;
9851 
9852 	perf_pmu_enable(pmu);
9853 }
9854 
9855 static int perf_event_idx_default(struct perf_event *event)
9856 {
9857 	return 0;
9858 }
9859 
9860 /*
9861  * Ensures all contexts with the same task_ctx_nr have the same
9862  * pmu_cpu_context too.
9863  */
9864 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9865 {
9866 	struct pmu *pmu;
9867 
9868 	if (ctxn < 0)
9869 		return NULL;
9870 
9871 	list_for_each_entry(pmu, &pmus, entry) {
9872 		if (pmu->task_ctx_nr == ctxn)
9873 			return pmu->pmu_cpu_context;
9874 	}
9875 
9876 	return NULL;
9877 }
9878 
9879 static void free_pmu_context(struct pmu *pmu)
9880 {
9881 	/*
9882 	 * Static contexts such as perf_sw_context have a global lifetime
9883 	 * and may be shared between different PMUs. Avoid freeing them
9884 	 * when a single PMU is going away.
9885 	 */
9886 	if (pmu->task_ctx_nr > perf_invalid_context)
9887 		return;
9888 
9889 	free_percpu(pmu->pmu_cpu_context);
9890 }
9891 
9892 /*
9893  * Let userspace know that this PMU supports address range filtering:
9894  */
9895 static ssize_t nr_addr_filters_show(struct device *dev,
9896 				    struct device_attribute *attr,
9897 				    char *page)
9898 {
9899 	struct pmu *pmu = dev_get_drvdata(dev);
9900 
9901 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9902 }
9903 DEVICE_ATTR_RO(nr_addr_filters);
9904 
9905 static struct idr pmu_idr;
9906 
9907 static ssize_t
9908 type_show(struct device *dev, struct device_attribute *attr, char *page)
9909 {
9910 	struct pmu *pmu = dev_get_drvdata(dev);
9911 
9912 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9913 }
9914 static DEVICE_ATTR_RO(type);
9915 
9916 static ssize_t
9917 perf_event_mux_interval_ms_show(struct device *dev,
9918 				struct device_attribute *attr,
9919 				char *page)
9920 {
9921 	struct pmu *pmu = dev_get_drvdata(dev);
9922 
9923 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9924 }
9925 
9926 static DEFINE_MUTEX(mux_interval_mutex);
9927 
9928 static ssize_t
9929 perf_event_mux_interval_ms_store(struct device *dev,
9930 				 struct device_attribute *attr,
9931 				 const char *buf, size_t count)
9932 {
9933 	struct pmu *pmu = dev_get_drvdata(dev);
9934 	int timer, cpu, ret;
9935 
9936 	ret = kstrtoint(buf, 0, &timer);
9937 	if (ret)
9938 		return ret;
9939 
9940 	if (timer < 1)
9941 		return -EINVAL;
9942 
9943 	/* same value, noting to do */
9944 	if (timer == pmu->hrtimer_interval_ms)
9945 		return count;
9946 
9947 	mutex_lock(&mux_interval_mutex);
9948 	pmu->hrtimer_interval_ms = timer;
9949 
9950 	/* update all cpuctx for this PMU */
9951 	cpus_read_lock();
9952 	for_each_online_cpu(cpu) {
9953 		struct perf_cpu_context *cpuctx;
9954 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9955 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9956 
9957 		cpu_function_call(cpu,
9958 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9959 	}
9960 	cpus_read_unlock();
9961 	mutex_unlock(&mux_interval_mutex);
9962 
9963 	return count;
9964 }
9965 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9966 
9967 static struct attribute *pmu_dev_attrs[] = {
9968 	&dev_attr_type.attr,
9969 	&dev_attr_perf_event_mux_interval_ms.attr,
9970 	NULL,
9971 };
9972 ATTRIBUTE_GROUPS(pmu_dev);
9973 
9974 static int pmu_bus_running;
9975 static struct bus_type pmu_bus = {
9976 	.name		= "event_source",
9977 	.dev_groups	= pmu_dev_groups,
9978 };
9979 
9980 static void pmu_dev_release(struct device *dev)
9981 {
9982 	kfree(dev);
9983 }
9984 
9985 static int pmu_dev_alloc(struct pmu *pmu)
9986 {
9987 	int ret = -ENOMEM;
9988 
9989 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9990 	if (!pmu->dev)
9991 		goto out;
9992 
9993 	pmu->dev->groups = pmu->attr_groups;
9994 	device_initialize(pmu->dev);
9995 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9996 	if (ret)
9997 		goto free_dev;
9998 
9999 	dev_set_drvdata(pmu->dev, pmu);
10000 	pmu->dev->bus = &pmu_bus;
10001 	pmu->dev->release = pmu_dev_release;
10002 	ret = device_add(pmu->dev);
10003 	if (ret)
10004 		goto free_dev;
10005 
10006 	/* For PMUs with address filters, throw in an extra attribute: */
10007 	if (pmu->nr_addr_filters)
10008 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10009 
10010 	if (ret)
10011 		goto del_dev;
10012 
10013 	if (pmu->attr_update)
10014 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10015 
10016 	if (ret)
10017 		goto del_dev;
10018 
10019 out:
10020 	return ret;
10021 
10022 del_dev:
10023 	device_del(pmu->dev);
10024 
10025 free_dev:
10026 	put_device(pmu->dev);
10027 	goto out;
10028 }
10029 
10030 static struct lock_class_key cpuctx_mutex;
10031 static struct lock_class_key cpuctx_lock;
10032 
10033 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10034 {
10035 	int cpu, ret;
10036 
10037 	mutex_lock(&pmus_lock);
10038 	ret = -ENOMEM;
10039 	pmu->pmu_disable_count = alloc_percpu(int);
10040 	if (!pmu->pmu_disable_count)
10041 		goto unlock;
10042 
10043 	pmu->type = -1;
10044 	if (!name)
10045 		goto skip_type;
10046 	pmu->name = name;
10047 
10048 	if (type < 0) {
10049 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
10050 		if (type < 0) {
10051 			ret = type;
10052 			goto free_pdc;
10053 		}
10054 	}
10055 	pmu->type = type;
10056 
10057 	if (pmu_bus_running) {
10058 		ret = pmu_dev_alloc(pmu);
10059 		if (ret)
10060 			goto free_idr;
10061 	}
10062 
10063 skip_type:
10064 	if (pmu->task_ctx_nr == perf_hw_context) {
10065 		static int hw_context_taken = 0;
10066 
10067 		/*
10068 		 * Other than systems with heterogeneous CPUs, it never makes
10069 		 * sense for two PMUs to share perf_hw_context. PMUs which are
10070 		 * uncore must use perf_invalid_context.
10071 		 */
10072 		if (WARN_ON_ONCE(hw_context_taken &&
10073 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10074 			pmu->task_ctx_nr = perf_invalid_context;
10075 
10076 		hw_context_taken = 1;
10077 	}
10078 
10079 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10080 	if (pmu->pmu_cpu_context)
10081 		goto got_cpu_context;
10082 
10083 	ret = -ENOMEM;
10084 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10085 	if (!pmu->pmu_cpu_context)
10086 		goto free_dev;
10087 
10088 	for_each_possible_cpu(cpu) {
10089 		struct perf_cpu_context *cpuctx;
10090 
10091 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10092 		__perf_event_init_context(&cpuctx->ctx);
10093 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10094 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10095 		cpuctx->ctx.pmu = pmu;
10096 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10097 
10098 		__perf_mux_hrtimer_init(cpuctx, cpu);
10099 	}
10100 
10101 got_cpu_context:
10102 	if (!pmu->start_txn) {
10103 		if (pmu->pmu_enable) {
10104 			/*
10105 			 * If we have pmu_enable/pmu_disable calls, install
10106 			 * transaction stubs that use that to try and batch
10107 			 * hardware accesses.
10108 			 */
10109 			pmu->start_txn  = perf_pmu_start_txn;
10110 			pmu->commit_txn = perf_pmu_commit_txn;
10111 			pmu->cancel_txn = perf_pmu_cancel_txn;
10112 		} else {
10113 			pmu->start_txn  = perf_pmu_nop_txn;
10114 			pmu->commit_txn = perf_pmu_nop_int;
10115 			pmu->cancel_txn = perf_pmu_nop_void;
10116 		}
10117 	}
10118 
10119 	if (!pmu->pmu_enable) {
10120 		pmu->pmu_enable  = perf_pmu_nop_void;
10121 		pmu->pmu_disable = perf_pmu_nop_void;
10122 	}
10123 
10124 	if (!pmu->check_period)
10125 		pmu->check_period = perf_event_nop_int;
10126 
10127 	if (!pmu->event_idx)
10128 		pmu->event_idx = perf_event_idx_default;
10129 
10130 	list_add_rcu(&pmu->entry, &pmus);
10131 	atomic_set(&pmu->exclusive_cnt, 0);
10132 	ret = 0;
10133 unlock:
10134 	mutex_unlock(&pmus_lock);
10135 
10136 	return ret;
10137 
10138 free_dev:
10139 	device_del(pmu->dev);
10140 	put_device(pmu->dev);
10141 
10142 free_idr:
10143 	if (pmu->type >= PERF_TYPE_MAX)
10144 		idr_remove(&pmu_idr, pmu->type);
10145 
10146 free_pdc:
10147 	free_percpu(pmu->pmu_disable_count);
10148 	goto unlock;
10149 }
10150 EXPORT_SYMBOL_GPL(perf_pmu_register);
10151 
10152 void perf_pmu_unregister(struct pmu *pmu)
10153 {
10154 	mutex_lock(&pmus_lock);
10155 	list_del_rcu(&pmu->entry);
10156 
10157 	/*
10158 	 * We dereference the pmu list under both SRCU and regular RCU, so
10159 	 * synchronize against both of those.
10160 	 */
10161 	synchronize_srcu(&pmus_srcu);
10162 	synchronize_rcu();
10163 
10164 	free_percpu(pmu->pmu_disable_count);
10165 	if (pmu->type >= PERF_TYPE_MAX)
10166 		idr_remove(&pmu_idr, pmu->type);
10167 	if (pmu_bus_running) {
10168 		if (pmu->nr_addr_filters)
10169 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10170 		device_del(pmu->dev);
10171 		put_device(pmu->dev);
10172 	}
10173 	free_pmu_context(pmu);
10174 	mutex_unlock(&pmus_lock);
10175 }
10176 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10177 
10178 static inline bool has_extended_regs(struct perf_event *event)
10179 {
10180 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10181 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10182 }
10183 
10184 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10185 {
10186 	struct perf_event_context *ctx = NULL;
10187 	int ret;
10188 
10189 	if (!try_module_get(pmu->module))
10190 		return -ENODEV;
10191 
10192 	/*
10193 	 * A number of pmu->event_init() methods iterate the sibling_list to,
10194 	 * for example, validate if the group fits on the PMU. Therefore,
10195 	 * if this is a sibling event, acquire the ctx->mutex to protect
10196 	 * the sibling_list.
10197 	 */
10198 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10199 		/*
10200 		 * This ctx->mutex can nest when we're called through
10201 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
10202 		 */
10203 		ctx = perf_event_ctx_lock_nested(event->group_leader,
10204 						 SINGLE_DEPTH_NESTING);
10205 		BUG_ON(!ctx);
10206 	}
10207 
10208 	event->pmu = pmu;
10209 	ret = pmu->event_init(event);
10210 
10211 	if (ctx)
10212 		perf_event_ctx_unlock(event->group_leader, ctx);
10213 
10214 	if (!ret) {
10215 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10216 		    has_extended_regs(event))
10217 			ret = -EOPNOTSUPP;
10218 
10219 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10220 		    event_has_any_exclude_flag(event))
10221 			ret = -EINVAL;
10222 
10223 		if (ret && event->destroy)
10224 			event->destroy(event);
10225 	}
10226 
10227 	if (ret)
10228 		module_put(pmu->module);
10229 
10230 	return ret;
10231 }
10232 
10233 static struct pmu *perf_init_event(struct perf_event *event)
10234 {
10235 	struct pmu *pmu;
10236 	int idx;
10237 	int ret;
10238 
10239 	idx = srcu_read_lock(&pmus_srcu);
10240 
10241 	/* Try parent's PMU first: */
10242 	if (event->parent && event->parent->pmu) {
10243 		pmu = event->parent->pmu;
10244 		ret = perf_try_init_event(pmu, event);
10245 		if (!ret)
10246 			goto unlock;
10247 	}
10248 
10249 	rcu_read_lock();
10250 	pmu = idr_find(&pmu_idr, event->attr.type);
10251 	rcu_read_unlock();
10252 	if (pmu) {
10253 		ret = perf_try_init_event(pmu, event);
10254 		if (ret)
10255 			pmu = ERR_PTR(ret);
10256 		goto unlock;
10257 	}
10258 
10259 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10260 		ret = perf_try_init_event(pmu, event);
10261 		if (!ret)
10262 			goto unlock;
10263 
10264 		if (ret != -ENOENT) {
10265 			pmu = ERR_PTR(ret);
10266 			goto unlock;
10267 		}
10268 	}
10269 	pmu = ERR_PTR(-ENOENT);
10270 unlock:
10271 	srcu_read_unlock(&pmus_srcu, idx);
10272 
10273 	return pmu;
10274 }
10275 
10276 static void attach_sb_event(struct perf_event *event)
10277 {
10278 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10279 
10280 	raw_spin_lock(&pel->lock);
10281 	list_add_rcu(&event->sb_list, &pel->list);
10282 	raw_spin_unlock(&pel->lock);
10283 }
10284 
10285 /*
10286  * We keep a list of all !task (and therefore per-cpu) events
10287  * that need to receive side-band records.
10288  *
10289  * This avoids having to scan all the various PMU per-cpu contexts
10290  * looking for them.
10291  */
10292 static void account_pmu_sb_event(struct perf_event *event)
10293 {
10294 	if (is_sb_event(event))
10295 		attach_sb_event(event);
10296 }
10297 
10298 static void account_event_cpu(struct perf_event *event, int cpu)
10299 {
10300 	if (event->parent)
10301 		return;
10302 
10303 	if (is_cgroup_event(event))
10304 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10305 }
10306 
10307 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10308 static void account_freq_event_nohz(void)
10309 {
10310 #ifdef CONFIG_NO_HZ_FULL
10311 	/* Lock so we don't race with concurrent unaccount */
10312 	spin_lock(&nr_freq_lock);
10313 	if (atomic_inc_return(&nr_freq_events) == 1)
10314 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10315 	spin_unlock(&nr_freq_lock);
10316 #endif
10317 }
10318 
10319 static void account_freq_event(void)
10320 {
10321 	if (tick_nohz_full_enabled())
10322 		account_freq_event_nohz();
10323 	else
10324 		atomic_inc(&nr_freq_events);
10325 }
10326 
10327 
10328 static void account_event(struct perf_event *event)
10329 {
10330 	bool inc = false;
10331 
10332 	if (event->parent)
10333 		return;
10334 
10335 	if (event->attach_state & PERF_ATTACH_TASK)
10336 		inc = true;
10337 	if (event->attr.mmap || event->attr.mmap_data)
10338 		atomic_inc(&nr_mmap_events);
10339 	if (event->attr.comm)
10340 		atomic_inc(&nr_comm_events);
10341 	if (event->attr.namespaces)
10342 		atomic_inc(&nr_namespaces_events);
10343 	if (event->attr.task)
10344 		atomic_inc(&nr_task_events);
10345 	if (event->attr.freq)
10346 		account_freq_event();
10347 	if (event->attr.context_switch) {
10348 		atomic_inc(&nr_switch_events);
10349 		inc = true;
10350 	}
10351 	if (has_branch_stack(event))
10352 		inc = true;
10353 	if (is_cgroup_event(event))
10354 		inc = true;
10355 	if (event->attr.ksymbol)
10356 		atomic_inc(&nr_ksymbol_events);
10357 	if (event->attr.bpf_event)
10358 		atomic_inc(&nr_bpf_events);
10359 
10360 	if (inc) {
10361 		/*
10362 		 * We need the mutex here because static_branch_enable()
10363 		 * must complete *before* the perf_sched_count increment
10364 		 * becomes visible.
10365 		 */
10366 		if (atomic_inc_not_zero(&perf_sched_count))
10367 			goto enabled;
10368 
10369 		mutex_lock(&perf_sched_mutex);
10370 		if (!atomic_read(&perf_sched_count)) {
10371 			static_branch_enable(&perf_sched_events);
10372 			/*
10373 			 * Guarantee that all CPUs observe they key change and
10374 			 * call the perf scheduling hooks before proceeding to
10375 			 * install events that need them.
10376 			 */
10377 			synchronize_rcu();
10378 		}
10379 		/*
10380 		 * Now that we have waited for the sync_sched(), allow further
10381 		 * increments to by-pass the mutex.
10382 		 */
10383 		atomic_inc(&perf_sched_count);
10384 		mutex_unlock(&perf_sched_mutex);
10385 	}
10386 enabled:
10387 
10388 	account_event_cpu(event, event->cpu);
10389 
10390 	account_pmu_sb_event(event);
10391 }
10392 
10393 /*
10394  * Allocate and initialize an event structure
10395  */
10396 static struct perf_event *
10397 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10398 		 struct task_struct *task,
10399 		 struct perf_event *group_leader,
10400 		 struct perf_event *parent_event,
10401 		 perf_overflow_handler_t overflow_handler,
10402 		 void *context, int cgroup_fd)
10403 {
10404 	struct pmu *pmu;
10405 	struct perf_event *event;
10406 	struct hw_perf_event *hwc;
10407 	long err = -EINVAL;
10408 
10409 	if ((unsigned)cpu >= nr_cpu_ids) {
10410 		if (!task || cpu != -1)
10411 			return ERR_PTR(-EINVAL);
10412 	}
10413 
10414 	event = kzalloc(sizeof(*event), GFP_KERNEL);
10415 	if (!event)
10416 		return ERR_PTR(-ENOMEM);
10417 
10418 	/*
10419 	 * Single events are their own group leaders, with an
10420 	 * empty sibling list:
10421 	 */
10422 	if (!group_leader)
10423 		group_leader = event;
10424 
10425 	mutex_init(&event->child_mutex);
10426 	INIT_LIST_HEAD(&event->child_list);
10427 
10428 	INIT_LIST_HEAD(&event->event_entry);
10429 	INIT_LIST_HEAD(&event->sibling_list);
10430 	INIT_LIST_HEAD(&event->active_list);
10431 	init_event_group(event);
10432 	INIT_LIST_HEAD(&event->rb_entry);
10433 	INIT_LIST_HEAD(&event->active_entry);
10434 	INIT_LIST_HEAD(&event->addr_filters.list);
10435 	INIT_HLIST_NODE(&event->hlist_entry);
10436 
10437 
10438 	init_waitqueue_head(&event->waitq);
10439 	event->pending_disable = -1;
10440 	init_irq_work(&event->pending, perf_pending_event);
10441 
10442 	mutex_init(&event->mmap_mutex);
10443 	raw_spin_lock_init(&event->addr_filters.lock);
10444 
10445 	atomic_long_set(&event->refcount, 1);
10446 	event->cpu		= cpu;
10447 	event->attr		= *attr;
10448 	event->group_leader	= group_leader;
10449 	event->pmu		= NULL;
10450 	event->oncpu		= -1;
10451 
10452 	event->parent		= parent_event;
10453 
10454 	event->ns		= get_pid_ns(task_active_pid_ns(current));
10455 	event->id		= atomic64_inc_return(&perf_event_id);
10456 
10457 	event->state		= PERF_EVENT_STATE_INACTIVE;
10458 
10459 	if (task) {
10460 		event->attach_state = PERF_ATTACH_TASK;
10461 		/*
10462 		 * XXX pmu::event_init needs to know what task to account to
10463 		 * and we cannot use the ctx information because we need the
10464 		 * pmu before we get a ctx.
10465 		 */
10466 		event->hw.target = get_task_struct(task);
10467 	}
10468 
10469 	event->clock = &local_clock;
10470 	if (parent_event)
10471 		event->clock = parent_event->clock;
10472 
10473 	if (!overflow_handler && parent_event) {
10474 		overflow_handler = parent_event->overflow_handler;
10475 		context = parent_event->overflow_handler_context;
10476 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10477 		if (overflow_handler == bpf_overflow_handler) {
10478 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10479 
10480 			if (IS_ERR(prog)) {
10481 				err = PTR_ERR(prog);
10482 				goto err_ns;
10483 			}
10484 			event->prog = prog;
10485 			event->orig_overflow_handler =
10486 				parent_event->orig_overflow_handler;
10487 		}
10488 #endif
10489 	}
10490 
10491 	if (overflow_handler) {
10492 		event->overflow_handler	= overflow_handler;
10493 		event->overflow_handler_context = context;
10494 	} else if (is_write_backward(event)){
10495 		event->overflow_handler = perf_event_output_backward;
10496 		event->overflow_handler_context = NULL;
10497 	} else {
10498 		event->overflow_handler = perf_event_output_forward;
10499 		event->overflow_handler_context = NULL;
10500 	}
10501 
10502 	perf_event__state_init(event);
10503 
10504 	pmu = NULL;
10505 
10506 	hwc = &event->hw;
10507 	hwc->sample_period = attr->sample_period;
10508 	if (attr->freq && attr->sample_freq)
10509 		hwc->sample_period = 1;
10510 	hwc->last_period = hwc->sample_period;
10511 
10512 	local64_set(&hwc->period_left, hwc->sample_period);
10513 
10514 	/*
10515 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10516 	 * See perf_output_read().
10517 	 */
10518 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10519 		goto err_ns;
10520 
10521 	if (!has_branch_stack(event))
10522 		event->attr.branch_sample_type = 0;
10523 
10524 	if (cgroup_fd != -1) {
10525 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10526 		if (err)
10527 			goto err_ns;
10528 	}
10529 
10530 	pmu = perf_init_event(event);
10531 	if (IS_ERR(pmu)) {
10532 		err = PTR_ERR(pmu);
10533 		goto err_ns;
10534 	}
10535 
10536 	if (event->attr.aux_output &&
10537 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10538 		err = -EOPNOTSUPP;
10539 		goto err_pmu;
10540 	}
10541 
10542 	err = exclusive_event_init(event);
10543 	if (err)
10544 		goto err_pmu;
10545 
10546 	if (has_addr_filter(event)) {
10547 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10548 						    sizeof(struct perf_addr_filter_range),
10549 						    GFP_KERNEL);
10550 		if (!event->addr_filter_ranges) {
10551 			err = -ENOMEM;
10552 			goto err_per_task;
10553 		}
10554 
10555 		/*
10556 		 * Clone the parent's vma offsets: they are valid until exec()
10557 		 * even if the mm is not shared with the parent.
10558 		 */
10559 		if (event->parent) {
10560 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10561 
10562 			raw_spin_lock_irq(&ifh->lock);
10563 			memcpy(event->addr_filter_ranges,
10564 			       event->parent->addr_filter_ranges,
10565 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10566 			raw_spin_unlock_irq(&ifh->lock);
10567 		}
10568 
10569 		/* force hw sync on the address filters */
10570 		event->addr_filters_gen = 1;
10571 	}
10572 
10573 	if (!event->parent) {
10574 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10575 			err = get_callchain_buffers(attr->sample_max_stack);
10576 			if (err)
10577 				goto err_addr_filters;
10578 		}
10579 	}
10580 
10581 	/* symmetric to unaccount_event() in _free_event() */
10582 	account_event(event);
10583 
10584 	return event;
10585 
10586 err_addr_filters:
10587 	kfree(event->addr_filter_ranges);
10588 
10589 err_per_task:
10590 	exclusive_event_destroy(event);
10591 
10592 err_pmu:
10593 	if (event->destroy)
10594 		event->destroy(event);
10595 	module_put(pmu->module);
10596 err_ns:
10597 	if (is_cgroup_event(event))
10598 		perf_detach_cgroup(event);
10599 	if (event->ns)
10600 		put_pid_ns(event->ns);
10601 	if (event->hw.target)
10602 		put_task_struct(event->hw.target);
10603 	kfree(event);
10604 
10605 	return ERR_PTR(err);
10606 }
10607 
10608 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10609 			  struct perf_event_attr *attr)
10610 {
10611 	u32 size;
10612 	int ret;
10613 
10614 	/* Zero the full structure, so that a short copy will be nice. */
10615 	memset(attr, 0, sizeof(*attr));
10616 
10617 	ret = get_user(size, &uattr->size);
10618 	if (ret)
10619 		return ret;
10620 
10621 	/* ABI compatibility quirk: */
10622 	if (!size)
10623 		size = PERF_ATTR_SIZE_VER0;
10624 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
10625 		goto err_size;
10626 
10627 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10628 	if (ret) {
10629 		if (ret == -E2BIG)
10630 			goto err_size;
10631 		return ret;
10632 	}
10633 
10634 	attr->size = size;
10635 
10636 	if (attr->__reserved_1)
10637 		return -EINVAL;
10638 
10639 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10640 		return -EINVAL;
10641 
10642 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10643 		return -EINVAL;
10644 
10645 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10646 		u64 mask = attr->branch_sample_type;
10647 
10648 		/* only using defined bits */
10649 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10650 			return -EINVAL;
10651 
10652 		/* at least one branch bit must be set */
10653 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10654 			return -EINVAL;
10655 
10656 		/* propagate priv level, when not set for branch */
10657 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10658 
10659 			/* exclude_kernel checked on syscall entry */
10660 			if (!attr->exclude_kernel)
10661 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10662 
10663 			if (!attr->exclude_user)
10664 				mask |= PERF_SAMPLE_BRANCH_USER;
10665 
10666 			if (!attr->exclude_hv)
10667 				mask |= PERF_SAMPLE_BRANCH_HV;
10668 			/*
10669 			 * adjust user setting (for HW filter setup)
10670 			 */
10671 			attr->branch_sample_type = mask;
10672 		}
10673 		/* privileged levels capture (kernel, hv): check permissions */
10674 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10675 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10676 			return -EACCES;
10677 	}
10678 
10679 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10680 		ret = perf_reg_validate(attr->sample_regs_user);
10681 		if (ret)
10682 			return ret;
10683 	}
10684 
10685 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10686 		if (!arch_perf_have_user_stack_dump())
10687 			return -ENOSYS;
10688 
10689 		/*
10690 		 * We have __u32 type for the size, but so far
10691 		 * we can only use __u16 as maximum due to the
10692 		 * __u16 sample size limit.
10693 		 */
10694 		if (attr->sample_stack_user >= USHRT_MAX)
10695 			return -EINVAL;
10696 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10697 			return -EINVAL;
10698 	}
10699 
10700 	if (!attr->sample_max_stack)
10701 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10702 
10703 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10704 		ret = perf_reg_validate(attr->sample_regs_intr);
10705 out:
10706 	return ret;
10707 
10708 err_size:
10709 	put_user(sizeof(*attr), &uattr->size);
10710 	ret = -E2BIG;
10711 	goto out;
10712 }
10713 
10714 static int
10715 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10716 {
10717 	struct ring_buffer *rb = NULL;
10718 	int ret = -EINVAL;
10719 
10720 	if (!output_event)
10721 		goto set;
10722 
10723 	/* don't allow circular references */
10724 	if (event == output_event)
10725 		goto out;
10726 
10727 	/*
10728 	 * Don't allow cross-cpu buffers
10729 	 */
10730 	if (output_event->cpu != event->cpu)
10731 		goto out;
10732 
10733 	/*
10734 	 * If its not a per-cpu rb, it must be the same task.
10735 	 */
10736 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10737 		goto out;
10738 
10739 	/*
10740 	 * Mixing clocks in the same buffer is trouble you don't need.
10741 	 */
10742 	if (output_event->clock != event->clock)
10743 		goto out;
10744 
10745 	/*
10746 	 * Either writing ring buffer from beginning or from end.
10747 	 * Mixing is not allowed.
10748 	 */
10749 	if (is_write_backward(output_event) != is_write_backward(event))
10750 		goto out;
10751 
10752 	/*
10753 	 * If both events generate aux data, they must be on the same PMU
10754 	 */
10755 	if (has_aux(event) && has_aux(output_event) &&
10756 	    event->pmu != output_event->pmu)
10757 		goto out;
10758 
10759 set:
10760 	mutex_lock(&event->mmap_mutex);
10761 	/* Can't redirect output if we've got an active mmap() */
10762 	if (atomic_read(&event->mmap_count))
10763 		goto unlock;
10764 
10765 	if (output_event) {
10766 		/* get the rb we want to redirect to */
10767 		rb = ring_buffer_get(output_event);
10768 		if (!rb)
10769 			goto unlock;
10770 	}
10771 
10772 	ring_buffer_attach(event, rb);
10773 
10774 	ret = 0;
10775 unlock:
10776 	mutex_unlock(&event->mmap_mutex);
10777 
10778 out:
10779 	return ret;
10780 }
10781 
10782 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10783 {
10784 	if (b < a)
10785 		swap(a, b);
10786 
10787 	mutex_lock(a);
10788 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10789 }
10790 
10791 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10792 {
10793 	bool nmi_safe = false;
10794 
10795 	switch (clk_id) {
10796 	case CLOCK_MONOTONIC:
10797 		event->clock = &ktime_get_mono_fast_ns;
10798 		nmi_safe = true;
10799 		break;
10800 
10801 	case CLOCK_MONOTONIC_RAW:
10802 		event->clock = &ktime_get_raw_fast_ns;
10803 		nmi_safe = true;
10804 		break;
10805 
10806 	case CLOCK_REALTIME:
10807 		event->clock = &ktime_get_real_ns;
10808 		break;
10809 
10810 	case CLOCK_BOOTTIME:
10811 		event->clock = &ktime_get_boottime_ns;
10812 		break;
10813 
10814 	case CLOCK_TAI:
10815 		event->clock = &ktime_get_clocktai_ns;
10816 		break;
10817 
10818 	default:
10819 		return -EINVAL;
10820 	}
10821 
10822 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10823 		return -EINVAL;
10824 
10825 	return 0;
10826 }
10827 
10828 /*
10829  * Variation on perf_event_ctx_lock_nested(), except we take two context
10830  * mutexes.
10831  */
10832 static struct perf_event_context *
10833 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10834 			     struct perf_event_context *ctx)
10835 {
10836 	struct perf_event_context *gctx;
10837 
10838 again:
10839 	rcu_read_lock();
10840 	gctx = READ_ONCE(group_leader->ctx);
10841 	if (!refcount_inc_not_zero(&gctx->refcount)) {
10842 		rcu_read_unlock();
10843 		goto again;
10844 	}
10845 	rcu_read_unlock();
10846 
10847 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
10848 
10849 	if (group_leader->ctx != gctx) {
10850 		mutex_unlock(&ctx->mutex);
10851 		mutex_unlock(&gctx->mutex);
10852 		put_ctx(gctx);
10853 		goto again;
10854 	}
10855 
10856 	return gctx;
10857 }
10858 
10859 /**
10860  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10861  *
10862  * @attr_uptr:	event_id type attributes for monitoring/sampling
10863  * @pid:		target pid
10864  * @cpu:		target cpu
10865  * @group_fd:		group leader event fd
10866  */
10867 SYSCALL_DEFINE5(perf_event_open,
10868 		struct perf_event_attr __user *, attr_uptr,
10869 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10870 {
10871 	struct perf_event *group_leader = NULL, *output_event = NULL;
10872 	struct perf_event *event, *sibling;
10873 	struct perf_event_attr attr;
10874 	struct perf_event_context *ctx, *uninitialized_var(gctx);
10875 	struct file *event_file = NULL;
10876 	struct fd group = {NULL, 0};
10877 	struct task_struct *task = NULL;
10878 	struct pmu *pmu;
10879 	int event_fd;
10880 	int move_group = 0;
10881 	int err;
10882 	int f_flags = O_RDWR;
10883 	int cgroup_fd = -1;
10884 
10885 	/* for future expandability... */
10886 	if (flags & ~PERF_FLAG_ALL)
10887 		return -EINVAL;
10888 
10889 	err = perf_copy_attr(attr_uptr, &attr);
10890 	if (err)
10891 		return err;
10892 
10893 	if (!attr.exclude_kernel) {
10894 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10895 			return -EACCES;
10896 	}
10897 
10898 	if (attr.namespaces) {
10899 		if (!capable(CAP_SYS_ADMIN))
10900 			return -EACCES;
10901 	}
10902 
10903 	if (attr.freq) {
10904 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10905 			return -EINVAL;
10906 	} else {
10907 		if (attr.sample_period & (1ULL << 63))
10908 			return -EINVAL;
10909 	}
10910 
10911 	/* Only privileged users can get physical addresses */
10912 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10913 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10914 		return -EACCES;
10915 
10916 	err = security_locked_down(LOCKDOWN_PERF);
10917 	if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
10918 		/* REGS_INTR can leak data, lockdown must prevent this */
10919 		return err;
10920 
10921 	err = 0;
10922 
10923 	/*
10924 	 * In cgroup mode, the pid argument is used to pass the fd
10925 	 * opened to the cgroup directory in cgroupfs. The cpu argument
10926 	 * designates the cpu on which to monitor threads from that
10927 	 * cgroup.
10928 	 */
10929 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10930 		return -EINVAL;
10931 
10932 	if (flags & PERF_FLAG_FD_CLOEXEC)
10933 		f_flags |= O_CLOEXEC;
10934 
10935 	event_fd = get_unused_fd_flags(f_flags);
10936 	if (event_fd < 0)
10937 		return event_fd;
10938 
10939 	if (group_fd != -1) {
10940 		err = perf_fget_light(group_fd, &group);
10941 		if (err)
10942 			goto err_fd;
10943 		group_leader = group.file->private_data;
10944 		if (flags & PERF_FLAG_FD_OUTPUT)
10945 			output_event = group_leader;
10946 		if (flags & PERF_FLAG_FD_NO_GROUP)
10947 			group_leader = NULL;
10948 	}
10949 
10950 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10951 		task = find_lively_task_by_vpid(pid);
10952 		if (IS_ERR(task)) {
10953 			err = PTR_ERR(task);
10954 			goto err_group_fd;
10955 		}
10956 	}
10957 
10958 	if (task && group_leader &&
10959 	    group_leader->attr.inherit != attr.inherit) {
10960 		err = -EINVAL;
10961 		goto err_task;
10962 	}
10963 
10964 	if (task) {
10965 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10966 		if (err)
10967 			goto err_task;
10968 
10969 		/*
10970 		 * Reuse ptrace permission checks for now.
10971 		 *
10972 		 * We must hold cred_guard_mutex across this and any potential
10973 		 * perf_install_in_context() call for this new event to
10974 		 * serialize against exec() altering our credentials (and the
10975 		 * perf_event_exit_task() that could imply).
10976 		 */
10977 		err = -EACCES;
10978 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10979 			goto err_cred;
10980 	}
10981 
10982 	if (flags & PERF_FLAG_PID_CGROUP)
10983 		cgroup_fd = pid;
10984 
10985 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10986 				 NULL, NULL, cgroup_fd);
10987 	if (IS_ERR(event)) {
10988 		err = PTR_ERR(event);
10989 		goto err_cred;
10990 	}
10991 
10992 	if (is_sampling_event(event)) {
10993 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10994 			err = -EOPNOTSUPP;
10995 			goto err_alloc;
10996 		}
10997 	}
10998 
10999 	/*
11000 	 * Special case software events and allow them to be part of
11001 	 * any hardware group.
11002 	 */
11003 	pmu = event->pmu;
11004 
11005 	if (attr.use_clockid) {
11006 		err = perf_event_set_clock(event, attr.clockid);
11007 		if (err)
11008 			goto err_alloc;
11009 	}
11010 
11011 	if (pmu->task_ctx_nr == perf_sw_context)
11012 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
11013 
11014 	if (group_leader) {
11015 		if (is_software_event(event) &&
11016 		    !in_software_context(group_leader)) {
11017 			/*
11018 			 * If the event is a sw event, but the group_leader
11019 			 * is on hw context.
11020 			 *
11021 			 * Allow the addition of software events to hw
11022 			 * groups, this is safe because software events
11023 			 * never fail to schedule.
11024 			 */
11025 			pmu = group_leader->ctx->pmu;
11026 		} else if (!is_software_event(event) &&
11027 			   is_software_event(group_leader) &&
11028 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11029 			/*
11030 			 * In case the group is a pure software group, and we
11031 			 * try to add a hardware event, move the whole group to
11032 			 * the hardware context.
11033 			 */
11034 			move_group = 1;
11035 		}
11036 	}
11037 
11038 	/*
11039 	 * Get the target context (task or percpu):
11040 	 */
11041 	ctx = find_get_context(pmu, task, event);
11042 	if (IS_ERR(ctx)) {
11043 		err = PTR_ERR(ctx);
11044 		goto err_alloc;
11045 	}
11046 
11047 	/*
11048 	 * Look up the group leader (we will attach this event to it):
11049 	 */
11050 	if (group_leader) {
11051 		err = -EINVAL;
11052 
11053 		/*
11054 		 * Do not allow a recursive hierarchy (this new sibling
11055 		 * becoming part of another group-sibling):
11056 		 */
11057 		if (group_leader->group_leader != group_leader)
11058 			goto err_context;
11059 
11060 		/* All events in a group should have the same clock */
11061 		if (group_leader->clock != event->clock)
11062 			goto err_context;
11063 
11064 		/*
11065 		 * Make sure we're both events for the same CPU;
11066 		 * grouping events for different CPUs is broken; since
11067 		 * you can never concurrently schedule them anyhow.
11068 		 */
11069 		if (group_leader->cpu != event->cpu)
11070 			goto err_context;
11071 
11072 		/*
11073 		 * Make sure we're both on the same task, or both
11074 		 * per-CPU events.
11075 		 */
11076 		if (group_leader->ctx->task != ctx->task)
11077 			goto err_context;
11078 
11079 		/*
11080 		 * Do not allow to attach to a group in a different task
11081 		 * or CPU context. If we're moving SW events, we'll fix
11082 		 * this up later, so allow that.
11083 		 */
11084 		if (!move_group && group_leader->ctx != ctx)
11085 			goto err_context;
11086 
11087 		/*
11088 		 * Only a group leader can be exclusive or pinned
11089 		 */
11090 		if (attr.exclusive || attr.pinned)
11091 			goto err_context;
11092 	}
11093 
11094 	if (output_event) {
11095 		err = perf_event_set_output(event, output_event);
11096 		if (err)
11097 			goto err_context;
11098 	}
11099 
11100 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11101 					f_flags);
11102 	if (IS_ERR(event_file)) {
11103 		err = PTR_ERR(event_file);
11104 		event_file = NULL;
11105 		goto err_context;
11106 	}
11107 
11108 	if (move_group) {
11109 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11110 
11111 		if (gctx->task == TASK_TOMBSTONE) {
11112 			err = -ESRCH;
11113 			goto err_locked;
11114 		}
11115 
11116 		/*
11117 		 * Check if we raced against another sys_perf_event_open() call
11118 		 * moving the software group underneath us.
11119 		 */
11120 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11121 			/*
11122 			 * If someone moved the group out from under us, check
11123 			 * if this new event wound up on the same ctx, if so
11124 			 * its the regular !move_group case, otherwise fail.
11125 			 */
11126 			if (gctx != ctx) {
11127 				err = -EINVAL;
11128 				goto err_locked;
11129 			} else {
11130 				perf_event_ctx_unlock(group_leader, gctx);
11131 				move_group = 0;
11132 			}
11133 		}
11134 
11135 		/*
11136 		 * Failure to create exclusive events returns -EBUSY.
11137 		 */
11138 		err = -EBUSY;
11139 		if (!exclusive_event_installable(group_leader, ctx))
11140 			goto err_locked;
11141 
11142 		for_each_sibling_event(sibling, group_leader) {
11143 			if (!exclusive_event_installable(sibling, ctx))
11144 				goto err_locked;
11145 		}
11146 	} else {
11147 		mutex_lock(&ctx->mutex);
11148 	}
11149 
11150 	if (ctx->task == TASK_TOMBSTONE) {
11151 		err = -ESRCH;
11152 		goto err_locked;
11153 	}
11154 
11155 	if (!perf_event_validate_size(event)) {
11156 		err = -E2BIG;
11157 		goto err_locked;
11158 	}
11159 
11160 	if (!task) {
11161 		/*
11162 		 * Check if the @cpu we're creating an event for is online.
11163 		 *
11164 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11165 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11166 		 */
11167 		struct perf_cpu_context *cpuctx =
11168 			container_of(ctx, struct perf_cpu_context, ctx);
11169 
11170 		if (!cpuctx->online) {
11171 			err = -ENODEV;
11172 			goto err_locked;
11173 		}
11174 	}
11175 
11176 	if (event->attr.aux_output && !perf_get_aux_event(event, group_leader))
11177 		goto err_locked;
11178 
11179 	/*
11180 	 * Must be under the same ctx::mutex as perf_install_in_context(),
11181 	 * because we need to serialize with concurrent event creation.
11182 	 */
11183 	if (!exclusive_event_installable(event, ctx)) {
11184 		err = -EBUSY;
11185 		goto err_locked;
11186 	}
11187 
11188 	WARN_ON_ONCE(ctx->parent_ctx);
11189 
11190 	/*
11191 	 * This is the point on no return; we cannot fail hereafter. This is
11192 	 * where we start modifying current state.
11193 	 */
11194 
11195 	if (move_group) {
11196 		/*
11197 		 * See perf_event_ctx_lock() for comments on the details
11198 		 * of swizzling perf_event::ctx.
11199 		 */
11200 		perf_remove_from_context(group_leader, 0);
11201 		put_ctx(gctx);
11202 
11203 		for_each_sibling_event(sibling, group_leader) {
11204 			perf_remove_from_context(sibling, 0);
11205 			put_ctx(gctx);
11206 		}
11207 
11208 		/*
11209 		 * Wait for everybody to stop referencing the events through
11210 		 * the old lists, before installing it on new lists.
11211 		 */
11212 		synchronize_rcu();
11213 
11214 		/*
11215 		 * Install the group siblings before the group leader.
11216 		 *
11217 		 * Because a group leader will try and install the entire group
11218 		 * (through the sibling list, which is still in-tact), we can
11219 		 * end up with siblings installed in the wrong context.
11220 		 *
11221 		 * By installing siblings first we NO-OP because they're not
11222 		 * reachable through the group lists.
11223 		 */
11224 		for_each_sibling_event(sibling, group_leader) {
11225 			perf_event__state_init(sibling);
11226 			perf_install_in_context(ctx, sibling, sibling->cpu);
11227 			get_ctx(ctx);
11228 		}
11229 
11230 		/*
11231 		 * Removing from the context ends up with disabled
11232 		 * event. What we want here is event in the initial
11233 		 * startup state, ready to be add into new context.
11234 		 */
11235 		perf_event__state_init(group_leader);
11236 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
11237 		get_ctx(ctx);
11238 	}
11239 
11240 	/*
11241 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
11242 	 * that we're serialized against further additions and before
11243 	 * perf_install_in_context() which is the point the event is active and
11244 	 * can use these values.
11245 	 */
11246 	perf_event__header_size(event);
11247 	perf_event__id_header_size(event);
11248 
11249 	event->owner = current;
11250 
11251 	perf_install_in_context(ctx, event, event->cpu);
11252 	perf_unpin_context(ctx);
11253 
11254 	if (move_group)
11255 		perf_event_ctx_unlock(group_leader, gctx);
11256 	mutex_unlock(&ctx->mutex);
11257 
11258 	if (task) {
11259 		mutex_unlock(&task->signal->cred_guard_mutex);
11260 		put_task_struct(task);
11261 	}
11262 
11263 	mutex_lock(&current->perf_event_mutex);
11264 	list_add_tail(&event->owner_entry, &current->perf_event_list);
11265 	mutex_unlock(&current->perf_event_mutex);
11266 
11267 	/*
11268 	 * Drop the reference on the group_event after placing the
11269 	 * new event on the sibling_list. This ensures destruction
11270 	 * of the group leader will find the pointer to itself in
11271 	 * perf_group_detach().
11272 	 */
11273 	fdput(group);
11274 	fd_install(event_fd, event_file);
11275 	return event_fd;
11276 
11277 err_locked:
11278 	if (move_group)
11279 		perf_event_ctx_unlock(group_leader, gctx);
11280 	mutex_unlock(&ctx->mutex);
11281 /* err_file: */
11282 	fput(event_file);
11283 err_context:
11284 	perf_unpin_context(ctx);
11285 	put_ctx(ctx);
11286 err_alloc:
11287 	/*
11288 	 * If event_file is set, the fput() above will have called ->release()
11289 	 * and that will take care of freeing the event.
11290 	 */
11291 	if (!event_file)
11292 		free_event(event);
11293 err_cred:
11294 	if (task)
11295 		mutex_unlock(&task->signal->cred_guard_mutex);
11296 err_task:
11297 	if (task)
11298 		put_task_struct(task);
11299 err_group_fd:
11300 	fdput(group);
11301 err_fd:
11302 	put_unused_fd(event_fd);
11303 	return err;
11304 }
11305 
11306 /**
11307  * perf_event_create_kernel_counter
11308  *
11309  * @attr: attributes of the counter to create
11310  * @cpu: cpu in which the counter is bound
11311  * @task: task to profile (NULL for percpu)
11312  */
11313 struct perf_event *
11314 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11315 				 struct task_struct *task,
11316 				 perf_overflow_handler_t overflow_handler,
11317 				 void *context)
11318 {
11319 	struct perf_event_context *ctx;
11320 	struct perf_event *event;
11321 	int err;
11322 
11323 	/*
11324 	 * Get the target context (task or percpu):
11325 	 */
11326 
11327 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11328 				 overflow_handler, context, -1);
11329 	if (IS_ERR(event)) {
11330 		err = PTR_ERR(event);
11331 		goto err;
11332 	}
11333 
11334 	/* Mark owner so we could distinguish it from user events. */
11335 	event->owner = TASK_TOMBSTONE;
11336 
11337 	ctx = find_get_context(event->pmu, task, event);
11338 	if (IS_ERR(ctx)) {
11339 		err = PTR_ERR(ctx);
11340 		goto err_free;
11341 	}
11342 
11343 	WARN_ON_ONCE(ctx->parent_ctx);
11344 	mutex_lock(&ctx->mutex);
11345 	if (ctx->task == TASK_TOMBSTONE) {
11346 		err = -ESRCH;
11347 		goto err_unlock;
11348 	}
11349 
11350 	if (!task) {
11351 		/*
11352 		 * Check if the @cpu we're creating an event for is online.
11353 		 *
11354 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11355 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11356 		 */
11357 		struct perf_cpu_context *cpuctx =
11358 			container_of(ctx, struct perf_cpu_context, ctx);
11359 		if (!cpuctx->online) {
11360 			err = -ENODEV;
11361 			goto err_unlock;
11362 		}
11363 	}
11364 
11365 	if (!exclusive_event_installable(event, ctx)) {
11366 		err = -EBUSY;
11367 		goto err_unlock;
11368 	}
11369 
11370 	perf_install_in_context(ctx, event, event->cpu);
11371 	perf_unpin_context(ctx);
11372 	mutex_unlock(&ctx->mutex);
11373 
11374 	return event;
11375 
11376 err_unlock:
11377 	mutex_unlock(&ctx->mutex);
11378 	perf_unpin_context(ctx);
11379 	put_ctx(ctx);
11380 err_free:
11381 	free_event(event);
11382 err:
11383 	return ERR_PTR(err);
11384 }
11385 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11386 
11387 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11388 {
11389 	struct perf_event_context *src_ctx;
11390 	struct perf_event_context *dst_ctx;
11391 	struct perf_event *event, *tmp;
11392 	LIST_HEAD(events);
11393 
11394 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11395 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11396 
11397 	/*
11398 	 * See perf_event_ctx_lock() for comments on the details
11399 	 * of swizzling perf_event::ctx.
11400 	 */
11401 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11402 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11403 				 event_entry) {
11404 		perf_remove_from_context(event, 0);
11405 		unaccount_event_cpu(event, src_cpu);
11406 		put_ctx(src_ctx);
11407 		list_add(&event->migrate_entry, &events);
11408 	}
11409 
11410 	/*
11411 	 * Wait for the events to quiesce before re-instating them.
11412 	 */
11413 	synchronize_rcu();
11414 
11415 	/*
11416 	 * Re-instate events in 2 passes.
11417 	 *
11418 	 * Skip over group leaders and only install siblings on this first
11419 	 * pass, siblings will not get enabled without a leader, however a
11420 	 * leader will enable its siblings, even if those are still on the old
11421 	 * context.
11422 	 */
11423 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11424 		if (event->group_leader == event)
11425 			continue;
11426 
11427 		list_del(&event->migrate_entry);
11428 		if (event->state >= PERF_EVENT_STATE_OFF)
11429 			event->state = PERF_EVENT_STATE_INACTIVE;
11430 		account_event_cpu(event, dst_cpu);
11431 		perf_install_in_context(dst_ctx, event, dst_cpu);
11432 		get_ctx(dst_ctx);
11433 	}
11434 
11435 	/*
11436 	 * Once all the siblings are setup properly, install the group leaders
11437 	 * to make it go.
11438 	 */
11439 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11440 		list_del(&event->migrate_entry);
11441 		if (event->state >= PERF_EVENT_STATE_OFF)
11442 			event->state = PERF_EVENT_STATE_INACTIVE;
11443 		account_event_cpu(event, dst_cpu);
11444 		perf_install_in_context(dst_ctx, event, dst_cpu);
11445 		get_ctx(dst_ctx);
11446 	}
11447 	mutex_unlock(&dst_ctx->mutex);
11448 	mutex_unlock(&src_ctx->mutex);
11449 }
11450 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11451 
11452 static void sync_child_event(struct perf_event *child_event,
11453 			       struct task_struct *child)
11454 {
11455 	struct perf_event *parent_event = child_event->parent;
11456 	u64 child_val;
11457 
11458 	if (child_event->attr.inherit_stat)
11459 		perf_event_read_event(child_event, child);
11460 
11461 	child_val = perf_event_count(child_event);
11462 
11463 	/*
11464 	 * Add back the child's count to the parent's count:
11465 	 */
11466 	atomic64_add(child_val, &parent_event->child_count);
11467 	atomic64_add(child_event->total_time_enabled,
11468 		     &parent_event->child_total_time_enabled);
11469 	atomic64_add(child_event->total_time_running,
11470 		     &parent_event->child_total_time_running);
11471 }
11472 
11473 static void
11474 perf_event_exit_event(struct perf_event *child_event,
11475 		      struct perf_event_context *child_ctx,
11476 		      struct task_struct *child)
11477 {
11478 	struct perf_event *parent_event = child_event->parent;
11479 
11480 	/*
11481 	 * Do not destroy the 'original' grouping; because of the context
11482 	 * switch optimization the original events could've ended up in a
11483 	 * random child task.
11484 	 *
11485 	 * If we were to destroy the original group, all group related
11486 	 * operations would cease to function properly after this random
11487 	 * child dies.
11488 	 *
11489 	 * Do destroy all inherited groups, we don't care about those
11490 	 * and being thorough is better.
11491 	 */
11492 	raw_spin_lock_irq(&child_ctx->lock);
11493 	WARN_ON_ONCE(child_ctx->is_active);
11494 
11495 	if (parent_event)
11496 		perf_group_detach(child_event);
11497 	list_del_event(child_event, child_ctx);
11498 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11499 	raw_spin_unlock_irq(&child_ctx->lock);
11500 
11501 	/*
11502 	 * Parent events are governed by their filedesc, retain them.
11503 	 */
11504 	if (!parent_event) {
11505 		perf_event_wakeup(child_event);
11506 		return;
11507 	}
11508 	/*
11509 	 * Child events can be cleaned up.
11510 	 */
11511 
11512 	sync_child_event(child_event, child);
11513 
11514 	/*
11515 	 * Remove this event from the parent's list
11516 	 */
11517 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11518 	mutex_lock(&parent_event->child_mutex);
11519 	list_del_init(&child_event->child_list);
11520 	mutex_unlock(&parent_event->child_mutex);
11521 
11522 	/*
11523 	 * Kick perf_poll() for is_event_hup().
11524 	 */
11525 	perf_event_wakeup(parent_event);
11526 	free_event(child_event);
11527 	put_event(parent_event);
11528 }
11529 
11530 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11531 {
11532 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11533 	struct perf_event *child_event, *next;
11534 
11535 	WARN_ON_ONCE(child != current);
11536 
11537 	child_ctx = perf_pin_task_context(child, ctxn);
11538 	if (!child_ctx)
11539 		return;
11540 
11541 	/*
11542 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11543 	 * ctx::mutex over the entire thing. This serializes against almost
11544 	 * everything that wants to access the ctx.
11545 	 *
11546 	 * The exception is sys_perf_event_open() /
11547 	 * perf_event_create_kernel_count() which does find_get_context()
11548 	 * without ctx::mutex (it cannot because of the move_group double mutex
11549 	 * lock thing). See the comments in perf_install_in_context().
11550 	 */
11551 	mutex_lock(&child_ctx->mutex);
11552 
11553 	/*
11554 	 * In a single ctx::lock section, de-schedule the events and detach the
11555 	 * context from the task such that we cannot ever get it scheduled back
11556 	 * in.
11557 	 */
11558 	raw_spin_lock_irq(&child_ctx->lock);
11559 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11560 
11561 	/*
11562 	 * Now that the context is inactive, destroy the task <-> ctx relation
11563 	 * and mark the context dead.
11564 	 */
11565 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11566 	put_ctx(child_ctx); /* cannot be last */
11567 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11568 	put_task_struct(current); /* cannot be last */
11569 
11570 	clone_ctx = unclone_ctx(child_ctx);
11571 	raw_spin_unlock_irq(&child_ctx->lock);
11572 
11573 	if (clone_ctx)
11574 		put_ctx(clone_ctx);
11575 
11576 	/*
11577 	 * Report the task dead after unscheduling the events so that we
11578 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11579 	 * get a few PERF_RECORD_READ events.
11580 	 */
11581 	perf_event_task(child, child_ctx, 0);
11582 
11583 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11584 		perf_event_exit_event(child_event, child_ctx, child);
11585 
11586 	mutex_unlock(&child_ctx->mutex);
11587 
11588 	put_ctx(child_ctx);
11589 }
11590 
11591 /*
11592  * When a child task exits, feed back event values to parent events.
11593  *
11594  * Can be called with cred_guard_mutex held when called from
11595  * install_exec_creds().
11596  */
11597 void perf_event_exit_task(struct task_struct *child)
11598 {
11599 	struct perf_event *event, *tmp;
11600 	int ctxn;
11601 
11602 	mutex_lock(&child->perf_event_mutex);
11603 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11604 				 owner_entry) {
11605 		list_del_init(&event->owner_entry);
11606 
11607 		/*
11608 		 * Ensure the list deletion is visible before we clear
11609 		 * the owner, closes a race against perf_release() where
11610 		 * we need to serialize on the owner->perf_event_mutex.
11611 		 */
11612 		smp_store_release(&event->owner, NULL);
11613 	}
11614 	mutex_unlock(&child->perf_event_mutex);
11615 
11616 	for_each_task_context_nr(ctxn)
11617 		perf_event_exit_task_context(child, ctxn);
11618 
11619 	/*
11620 	 * The perf_event_exit_task_context calls perf_event_task
11621 	 * with child's task_ctx, which generates EXIT events for
11622 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11623 	 * At this point we need to send EXIT events to cpu contexts.
11624 	 */
11625 	perf_event_task(child, NULL, 0);
11626 }
11627 
11628 static void perf_free_event(struct perf_event *event,
11629 			    struct perf_event_context *ctx)
11630 {
11631 	struct perf_event *parent = event->parent;
11632 
11633 	if (WARN_ON_ONCE(!parent))
11634 		return;
11635 
11636 	mutex_lock(&parent->child_mutex);
11637 	list_del_init(&event->child_list);
11638 	mutex_unlock(&parent->child_mutex);
11639 
11640 	put_event(parent);
11641 
11642 	raw_spin_lock_irq(&ctx->lock);
11643 	perf_group_detach(event);
11644 	list_del_event(event, ctx);
11645 	raw_spin_unlock_irq(&ctx->lock);
11646 	free_event(event);
11647 }
11648 
11649 /*
11650  * Free a context as created by inheritance by perf_event_init_task() below,
11651  * used by fork() in case of fail.
11652  *
11653  * Even though the task has never lived, the context and events have been
11654  * exposed through the child_list, so we must take care tearing it all down.
11655  */
11656 void perf_event_free_task(struct task_struct *task)
11657 {
11658 	struct perf_event_context *ctx;
11659 	struct perf_event *event, *tmp;
11660 	int ctxn;
11661 
11662 	for_each_task_context_nr(ctxn) {
11663 		ctx = task->perf_event_ctxp[ctxn];
11664 		if (!ctx)
11665 			continue;
11666 
11667 		mutex_lock(&ctx->mutex);
11668 		raw_spin_lock_irq(&ctx->lock);
11669 		/*
11670 		 * Destroy the task <-> ctx relation and mark the context dead.
11671 		 *
11672 		 * This is important because even though the task hasn't been
11673 		 * exposed yet the context has been (through child_list).
11674 		 */
11675 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11676 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11677 		put_task_struct(task); /* cannot be last */
11678 		raw_spin_unlock_irq(&ctx->lock);
11679 
11680 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11681 			perf_free_event(event, ctx);
11682 
11683 		mutex_unlock(&ctx->mutex);
11684 
11685 		/*
11686 		 * perf_event_release_kernel() could've stolen some of our
11687 		 * child events and still have them on its free_list. In that
11688 		 * case we must wait for these events to have been freed (in
11689 		 * particular all their references to this task must've been
11690 		 * dropped).
11691 		 *
11692 		 * Without this copy_process() will unconditionally free this
11693 		 * task (irrespective of its reference count) and
11694 		 * _free_event()'s put_task_struct(event->hw.target) will be a
11695 		 * use-after-free.
11696 		 *
11697 		 * Wait for all events to drop their context reference.
11698 		 */
11699 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11700 		put_ctx(ctx); /* must be last */
11701 	}
11702 }
11703 
11704 void perf_event_delayed_put(struct task_struct *task)
11705 {
11706 	int ctxn;
11707 
11708 	for_each_task_context_nr(ctxn)
11709 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11710 }
11711 
11712 struct file *perf_event_get(unsigned int fd)
11713 {
11714 	struct file *file = fget(fd);
11715 	if (!file)
11716 		return ERR_PTR(-EBADF);
11717 
11718 	if (file->f_op != &perf_fops) {
11719 		fput(file);
11720 		return ERR_PTR(-EBADF);
11721 	}
11722 
11723 	return file;
11724 }
11725 
11726 const struct perf_event *perf_get_event(struct file *file)
11727 {
11728 	if (file->f_op != &perf_fops)
11729 		return ERR_PTR(-EINVAL);
11730 
11731 	return file->private_data;
11732 }
11733 
11734 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11735 {
11736 	if (!event)
11737 		return ERR_PTR(-EINVAL);
11738 
11739 	return &event->attr;
11740 }
11741 
11742 /*
11743  * Inherit an event from parent task to child task.
11744  *
11745  * Returns:
11746  *  - valid pointer on success
11747  *  - NULL for orphaned events
11748  *  - IS_ERR() on error
11749  */
11750 static struct perf_event *
11751 inherit_event(struct perf_event *parent_event,
11752 	      struct task_struct *parent,
11753 	      struct perf_event_context *parent_ctx,
11754 	      struct task_struct *child,
11755 	      struct perf_event *group_leader,
11756 	      struct perf_event_context *child_ctx)
11757 {
11758 	enum perf_event_state parent_state = parent_event->state;
11759 	struct perf_event *child_event;
11760 	unsigned long flags;
11761 
11762 	/*
11763 	 * Instead of creating recursive hierarchies of events,
11764 	 * we link inherited events back to the original parent,
11765 	 * which has a filp for sure, which we use as the reference
11766 	 * count:
11767 	 */
11768 	if (parent_event->parent)
11769 		parent_event = parent_event->parent;
11770 
11771 	child_event = perf_event_alloc(&parent_event->attr,
11772 					   parent_event->cpu,
11773 					   child,
11774 					   group_leader, parent_event,
11775 					   NULL, NULL, -1);
11776 	if (IS_ERR(child_event))
11777 		return child_event;
11778 
11779 
11780 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11781 	    !child_ctx->task_ctx_data) {
11782 		struct pmu *pmu = child_event->pmu;
11783 
11784 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11785 						   GFP_KERNEL);
11786 		if (!child_ctx->task_ctx_data) {
11787 			free_event(child_event);
11788 			return NULL;
11789 		}
11790 	}
11791 
11792 	/*
11793 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11794 	 * must be under the same lock in order to serialize against
11795 	 * perf_event_release_kernel(), such that either we must observe
11796 	 * is_orphaned_event() or they will observe us on the child_list.
11797 	 */
11798 	mutex_lock(&parent_event->child_mutex);
11799 	if (is_orphaned_event(parent_event) ||
11800 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11801 		mutex_unlock(&parent_event->child_mutex);
11802 		/* task_ctx_data is freed with child_ctx */
11803 		free_event(child_event);
11804 		return NULL;
11805 	}
11806 
11807 	get_ctx(child_ctx);
11808 
11809 	/*
11810 	 * Make the child state follow the state of the parent event,
11811 	 * not its attr.disabled bit.  We hold the parent's mutex,
11812 	 * so we won't race with perf_event_{en, dis}able_family.
11813 	 */
11814 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11815 		child_event->state = PERF_EVENT_STATE_INACTIVE;
11816 	else
11817 		child_event->state = PERF_EVENT_STATE_OFF;
11818 
11819 	if (parent_event->attr.freq) {
11820 		u64 sample_period = parent_event->hw.sample_period;
11821 		struct hw_perf_event *hwc = &child_event->hw;
11822 
11823 		hwc->sample_period = sample_period;
11824 		hwc->last_period   = sample_period;
11825 
11826 		local64_set(&hwc->period_left, sample_period);
11827 	}
11828 
11829 	child_event->ctx = child_ctx;
11830 	child_event->overflow_handler = parent_event->overflow_handler;
11831 	child_event->overflow_handler_context
11832 		= parent_event->overflow_handler_context;
11833 
11834 	/*
11835 	 * Precalculate sample_data sizes
11836 	 */
11837 	perf_event__header_size(child_event);
11838 	perf_event__id_header_size(child_event);
11839 
11840 	/*
11841 	 * Link it up in the child's context:
11842 	 */
11843 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
11844 	add_event_to_ctx(child_event, child_ctx);
11845 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11846 
11847 	/*
11848 	 * Link this into the parent event's child list
11849 	 */
11850 	list_add_tail(&child_event->child_list, &parent_event->child_list);
11851 	mutex_unlock(&parent_event->child_mutex);
11852 
11853 	return child_event;
11854 }
11855 
11856 /*
11857  * Inherits an event group.
11858  *
11859  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11860  * This matches with perf_event_release_kernel() removing all child events.
11861  *
11862  * Returns:
11863  *  - 0 on success
11864  *  - <0 on error
11865  */
11866 static int inherit_group(struct perf_event *parent_event,
11867 	      struct task_struct *parent,
11868 	      struct perf_event_context *parent_ctx,
11869 	      struct task_struct *child,
11870 	      struct perf_event_context *child_ctx)
11871 {
11872 	struct perf_event *leader;
11873 	struct perf_event *sub;
11874 	struct perf_event *child_ctr;
11875 
11876 	leader = inherit_event(parent_event, parent, parent_ctx,
11877 				 child, NULL, child_ctx);
11878 	if (IS_ERR(leader))
11879 		return PTR_ERR(leader);
11880 	/*
11881 	 * @leader can be NULL here because of is_orphaned_event(). In this
11882 	 * case inherit_event() will create individual events, similar to what
11883 	 * perf_group_detach() would do anyway.
11884 	 */
11885 	for_each_sibling_event(sub, parent_event) {
11886 		child_ctr = inherit_event(sub, parent, parent_ctx,
11887 					    child, leader, child_ctx);
11888 		if (IS_ERR(child_ctr))
11889 			return PTR_ERR(child_ctr);
11890 
11891 		if (sub->aux_event == parent_event &&
11892 		    !perf_get_aux_event(child_ctr, leader))
11893 			return -EINVAL;
11894 	}
11895 	return 0;
11896 }
11897 
11898 /*
11899  * Creates the child task context and tries to inherit the event-group.
11900  *
11901  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11902  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11903  * consistent with perf_event_release_kernel() removing all child events.
11904  *
11905  * Returns:
11906  *  - 0 on success
11907  *  - <0 on error
11908  */
11909 static int
11910 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11911 		   struct perf_event_context *parent_ctx,
11912 		   struct task_struct *child, int ctxn,
11913 		   int *inherited_all)
11914 {
11915 	int ret;
11916 	struct perf_event_context *child_ctx;
11917 
11918 	if (!event->attr.inherit) {
11919 		*inherited_all = 0;
11920 		return 0;
11921 	}
11922 
11923 	child_ctx = child->perf_event_ctxp[ctxn];
11924 	if (!child_ctx) {
11925 		/*
11926 		 * This is executed from the parent task context, so
11927 		 * inherit events that have been marked for cloning.
11928 		 * First allocate and initialize a context for the
11929 		 * child.
11930 		 */
11931 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11932 		if (!child_ctx)
11933 			return -ENOMEM;
11934 
11935 		child->perf_event_ctxp[ctxn] = child_ctx;
11936 	}
11937 
11938 	ret = inherit_group(event, parent, parent_ctx,
11939 			    child, child_ctx);
11940 
11941 	if (ret)
11942 		*inherited_all = 0;
11943 
11944 	return ret;
11945 }
11946 
11947 /*
11948  * Initialize the perf_event context in task_struct
11949  */
11950 static int perf_event_init_context(struct task_struct *child, int ctxn)
11951 {
11952 	struct perf_event_context *child_ctx, *parent_ctx;
11953 	struct perf_event_context *cloned_ctx;
11954 	struct perf_event *event;
11955 	struct task_struct *parent = current;
11956 	int inherited_all = 1;
11957 	unsigned long flags;
11958 	int ret = 0;
11959 
11960 	if (likely(!parent->perf_event_ctxp[ctxn]))
11961 		return 0;
11962 
11963 	/*
11964 	 * If the parent's context is a clone, pin it so it won't get
11965 	 * swapped under us.
11966 	 */
11967 	parent_ctx = perf_pin_task_context(parent, ctxn);
11968 	if (!parent_ctx)
11969 		return 0;
11970 
11971 	/*
11972 	 * No need to check if parent_ctx != NULL here; since we saw
11973 	 * it non-NULL earlier, the only reason for it to become NULL
11974 	 * is if we exit, and since we're currently in the middle of
11975 	 * a fork we can't be exiting at the same time.
11976 	 */
11977 
11978 	/*
11979 	 * Lock the parent list. No need to lock the child - not PID
11980 	 * hashed yet and not running, so nobody can access it.
11981 	 */
11982 	mutex_lock(&parent_ctx->mutex);
11983 
11984 	/*
11985 	 * We dont have to disable NMIs - we are only looking at
11986 	 * the list, not manipulating it:
11987 	 */
11988 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11989 		ret = inherit_task_group(event, parent, parent_ctx,
11990 					 child, ctxn, &inherited_all);
11991 		if (ret)
11992 			goto out_unlock;
11993 	}
11994 
11995 	/*
11996 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
11997 	 * to allocations, but we need to prevent rotation because
11998 	 * rotate_ctx() will change the list from interrupt context.
11999 	 */
12000 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12001 	parent_ctx->rotate_disable = 1;
12002 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12003 
12004 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12005 		ret = inherit_task_group(event, parent, parent_ctx,
12006 					 child, ctxn, &inherited_all);
12007 		if (ret)
12008 			goto out_unlock;
12009 	}
12010 
12011 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12012 	parent_ctx->rotate_disable = 0;
12013 
12014 	child_ctx = child->perf_event_ctxp[ctxn];
12015 
12016 	if (child_ctx && inherited_all) {
12017 		/*
12018 		 * Mark the child context as a clone of the parent
12019 		 * context, or of whatever the parent is a clone of.
12020 		 *
12021 		 * Note that if the parent is a clone, the holding of
12022 		 * parent_ctx->lock avoids it from being uncloned.
12023 		 */
12024 		cloned_ctx = parent_ctx->parent_ctx;
12025 		if (cloned_ctx) {
12026 			child_ctx->parent_ctx = cloned_ctx;
12027 			child_ctx->parent_gen = parent_ctx->parent_gen;
12028 		} else {
12029 			child_ctx->parent_ctx = parent_ctx;
12030 			child_ctx->parent_gen = parent_ctx->generation;
12031 		}
12032 		get_ctx(child_ctx->parent_ctx);
12033 	}
12034 
12035 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12036 out_unlock:
12037 	mutex_unlock(&parent_ctx->mutex);
12038 
12039 	perf_unpin_context(parent_ctx);
12040 	put_ctx(parent_ctx);
12041 
12042 	return ret;
12043 }
12044 
12045 /*
12046  * Initialize the perf_event context in task_struct
12047  */
12048 int perf_event_init_task(struct task_struct *child)
12049 {
12050 	int ctxn, ret;
12051 
12052 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12053 	mutex_init(&child->perf_event_mutex);
12054 	INIT_LIST_HEAD(&child->perf_event_list);
12055 
12056 	for_each_task_context_nr(ctxn) {
12057 		ret = perf_event_init_context(child, ctxn);
12058 		if (ret) {
12059 			perf_event_free_task(child);
12060 			return ret;
12061 		}
12062 	}
12063 
12064 	return 0;
12065 }
12066 
12067 static void __init perf_event_init_all_cpus(void)
12068 {
12069 	struct swevent_htable *swhash;
12070 	int cpu;
12071 
12072 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12073 
12074 	for_each_possible_cpu(cpu) {
12075 		swhash = &per_cpu(swevent_htable, cpu);
12076 		mutex_init(&swhash->hlist_mutex);
12077 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12078 
12079 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12080 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12081 
12082 #ifdef CONFIG_CGROUP_PERF
12083 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12084 #endif
12085 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12086 	}
12087 }
12088 
12089 static void perf_swevent_init_cpu(unsigned int cpu)
12090 {
12091 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12092 
12093 	mutex_lock(&swhash->hlist_mutex);
12094 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12095 		struct swevent_hlist *hlist;
12096 
12097 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12098 		WARN_ON(!hlist);
12099 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
12100 	}
12101 	mutex_unlock(&swhash->hlist_mutex);
12102 }
12103 
12104 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12105 static void __perf_event_exit_context(void *__info)
12106 {
12107 	struct perf_event_context *ctx = __info;
12108 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12109 	struct perf_event *event;
12110 
12111 	raw_spin_lock(&ctx->lock);
12112 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12113 	list_for_each_entry(event, &ctx->event_list, event_entry)
12114 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12115 	raw_spin_unlock(&ctx->lock);
12116 }
12117 
12118 static void perf_event_exit_cpu_context(int cpu)
12119 {
12120 	struct perf_cpu_context *cpuctx;
12121 	struct perf_event_context *ctx;
12122 	struct pmu *pmu;
12123 
12124 	mutex_lock(&pmus_lock);
12125 	list_for_each_entry(pmu, &pmus, entry) {
12126 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12127 		ctx = &cpuctx->ctx;
12128 
12129 		mutex_lock(&ctx->mutex);
12130 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12131 		cpuctx->online = 0;
12132 		mutex_unlock(&ctx->mutex);
12133 	}
12134 	cpumask_clear_cpu(cpu, perf_online_mask);
12135 	mutex_unlock(&pmus_lock);
12136 }
12137 #else
12138 
12139 static void perf_event_exit_cpu_context(int cpu) { }
12140 
12141 #endif
12142 
12143 int perf_event_init_cpu(unsigned int cpu)
12144 {
12145 	struct perf_cpu_context *cpuctx;
12146 	struct perf_event_context *ctx;
12147 	struct pmu *pmu;
12148 
12149 	perf_swevent_init_cpu(cpu);
12150 
12151 	mutex_lock(&pmus_lock);
12152 	cpumask_set_cpu(cpu, perf_online_mask);
12153 	list_for_each_entry(pmu, &pmus, entry) {
12154 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12155 		ctx = &cpuctx->ctx;
12156 
12157 		mutex_lock(&ctx->mutex);
12158 		cpuctx->online = 1;
12159 		mutex_unlock(&ctx->mutex);
12160 	}
12161 	mutex_unlock(&pmus_lock);
12162 
12163 	return 0;
12164 }
12165 
12166 int perf_event_exit_cpu(unsigned int cpu)
12167 {
12168 	perf_event_exit_cpu_context(cpu);
12169 	return 0;
12170 }
12171 
12172 static int
12173 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12174 {
12175 	int cpu;
12176 
12177 	for_each_online_cpu(cpu)
12178 		perf_event_exit_cpu(cpu);
12179 
12180 	return NOTIFY_OK;
12181 }
12182 
12183 /*
12184  * Run the perf reboot notifier at the very last possible moment so that
12185  * the generic watchdog code runs as long as possible.
12186  */
12187 static struct notifier_block perf_reboot_notifier = {
12188 	.notifier_call = perf_reboot,
12189 	.priority = INT_MIN,
12190 };
12191 
12192 void __init perf_event_init(void)
12193 {
12194 	int ret;
12195 
12196 	idr_init(&pmu_idr);
12197 
12198 	perf_event_init_all_cpus();
12199 	init_srcu_struct(&pmus_srcu);
12200 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12201 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
12202 	perf_pmu_register(&perf_task_clock, NULL, -1);
12203 	perf_tp_register();
12204 	perf_event_init_cpu(smp_processor_id());
12205 	register_reboot_notifier(&perf_reboot_notifier);
12206 
12207 	ret = init_hw_breakpoint();
12208 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12209 
12210 	/*
12211 	 * Build time assertion that we keep the data_head at the intended
12212 	 * location.  IOW, validation we got the __reserved[] size right.
12213 	 */
12214 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12215 		     != 1024);
12216 }
12217 
12218 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12219 			      char *page)
12220 {
12221 	struct perf_pmu_events_attr *pmu_attr =
12222 		container_of(attr, struct perf_pmu_events_attr, attr);
12223 
12224 	if (pmu_attr->event_str)
12225 		return sprintf(page, "%s\n", pmu_attr->event_str);
12226 
12227 	return 0;
12228 }
12229 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12230 
12231 static int __init perf_event_sysfs_init(void)
12232 {
12233 	struct pmu *pmu;
12234 	int ret;
12235 
12236 	mutex_lock(&pmus_lock);
12237 
12238 	ret = bus_register(&pmu_bus);
12239 	if (ret)
12240 		goto unlock;
12241 
12242 	list_for_each_entry(pmu, &pmus, entry) {
12243 		if (!pmu->name || pmu->type < 0)
12244 			continue;
12245 
12246 		ret = pmu_dev_alloc(pmu);
12247 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12248 	}
12249 	pmu_bus_running = 1;
12250 	ret = 0;
12251 
12252 unlock:
12253 	mutex_unlock(&pmus_lock);
12254 
12255 	return ret;
12256 }
12257 device_initcall(perf_event_sysfs_init);
12258 
12259 #ifdef CONFIG_CGROUP_PERF
12260 static struct cgroup_subsys_state *
12261 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12262 {
12263 	struct perf_cgroup *jc;
12264 
12265 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12266 	if (!jc)
12267 		return ERR_PTR(-ENOMEM);
12268 
12269 	jc->info = alloc_percpu(struct perf_cgroup_info);
12270 	if (!jc->info) {
12271 		kfree(jc);
12272 		return ERR_PTR(-ENOMEM);
12273 	}
12274 
12275 	return &jc->css;
12276 }
12277 
12278 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12279 {
12280 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12281 
12282 	free_percpu(jc->info);
12283 	kfree(jc);
12284 }
12285 
12286 static int __perf_cgroup_move(void *info)
12287 {
12288 	struct task_struct *task = info;
12289 	rcu_read_lock();
12290 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12291 	rcu_read_unlock();
12292 	return 0;
12293 }
12294 
12295 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12296 {
12297 	struct task_struct *task;
12298 	struct cgroup_subsys_state *css;
12299 
12300 	cgroup_taskset_for_each(task, css, tset)
12301 		task_function_call(task, __perf_cgroup_move, task);
12302 }
12303 
12304 struct cgroup_subsys perf_event_cgrp_subsys = {
12305 	.css_alloc	= perf_cgroup_css_alloc,
12306 	.css_free	= perf_cgroup_css_free,
12307 	.attach		= perf_cgroup_attach,
12308 	/*
12309 	 * Implicitly enable on dfl hierarchy so that perf events can
12310 	 * always be filtered by cgroup2 path as long as perf_event
12311 	 * controller is not mounted on a legacy hierarchy.
12312 	 */
12313 	.implicit_on_dfl = true,
12314 	.threaded	= true,
12315 };
12316 #endif /* CONFIG_CGROUP_PERF */
12317