xref: /openbmc/linux/kernel/events/core.c (revision aac5987a)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 
52 #include "internal.h"
53 
54 #include <asm/irq_regs.h>
55 
56 typedef int (*remote_function_f)(void *);
57 
58 struct remote_function_call {
59 	struct task_struct	*p;
60 	remote_function_f	func;
61 	void			*info;
62 	int			ret;
63 };
64 
65 static void remote_function(void *data)
66 {
67 	struct remote_function_call *tfc = data;
68 	struct task_struct *p = tfc->p;
69 
70 	if (p) {
71 		/* -EAGAIN */
72 		if (task_cpu(p) != smp_processor_id())
73 			return;
74 
75 		/*
76 		 * Now that we're on right CPU with IRQs disabled, we can test
77 		 * if we hit the right task without races.
78 		 */
79 
80 		tfc->ret = -ESRCH; /* No such (running) process */
81 		if (p != current)
82 			return;
83 	}
84 
85 	tfc->ret = tfc->func(tfc->info);
86 }
87 
88 /**
89  * task_function_call - call a function on the cpu on which a task runs
90  * @p:		the task to evaluate
91  * @func:	the function to be called
92  * @info:	the function call argument
93  *
94  * Calls the function @func when the task is currently running. This might
95  * be on the current CPU, which just calls the function directly
96  *
97  * returns: @func return value, or
98  *	    -ESRCH  - when the process isn't running
99  *	    -EAGAIN - when the process moved away
100  */
101 static int
102 task_function_call(struct task_struct *p, remote_function_f func, void *info)
103 {
104 	struct remote_function_call data = {
105 		.p	= p,
106 		.func	= func,
107 		.info	= info,
108 		.ret	= -EAGAIN,
109 	};
110 	int ret;
111 
112 	do {
113 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
114 		if (!ret)
115 			ret = data.ret;
116 	} while (ret == -EAGAIN);
117 
118 	return ret;
119 }
120 
121 /**
122  * cpu_function_call - call a function on the cpu
123  * @func:	the function to be called
124  * @info:	the function call argument
125  *
126  * Calls the function @func on the remote cpu.
127  *
128  * returns: @func return value or -ENXIO when the cpu is offline
129  */
130 static int cpu_function_call(int cpu, remote_function_f func, void *info)
131 {
132 	struct remote_function_call data = {
133 		.p	= NULL,
134 		.func	= func,
135 		.info	= info,
136 		.ret	= -ENXIO, /* No such CPU */
137 	};
138 
139 	smp_call_function_single(cpu, remote_function, &data, 1);
140 
141 	return data.ret;
142 }
143 
144 static inline struct perf_cpu_context *
145 __get_cpu_context(struct perf_event_context *ctx)
146 {
147 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
148 }
149 
150 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
151 			  struct perf_event_context *ctx)
152 {
153 	raw_spin_lock(&cpuctx->ctx.lock);
154 	if (ctx)
155 		raw_spin_lock(&ctx->lock);
156 }
157 
158 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
159 			    struct perf_event_context *ctx)
160 {
161 	if (ctx)
162 		raw_spin_unlock(&ctx->lock);
163 	raw_spin_unlock(&cpuctx->ctx.lock);
164 }
165 
166 #define TASK_TOMBSTONE ((void *)-1L)
167 
168 static bool is_kernel_event(struct perf_event *event)
169 {
170 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
171 }
172 
173 /*
174  * On task ctx scheduling...
175  *
176  * When !ctx->nr_events a task context will not be scheduled. This means
177  * we can disable the scheduler hooks (for performance) without leaving
178  * pending task ctx state.
179  *
180  * This however results in two special cases:
181  *
182  *  - removing the last event from a task ctx; this is relatively straight
183  *    forward and is done in __perf_remove_from_context.
184  *
185  *  - adding the first event to a task ctx; this is tricky because we cannot
186  *    rely on ctx->is_active and therefore cannot use event_function_call().
187  *    See perf_install_in_context().
188  *
189  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
190  */
191 
192 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
193 			struct perf_event_context *, void *);
194 
195 struct event_function_struct {
196 	struct perf_event *event;
197 	event_f func;
198 	void *data;
199 };
200 
201 static int event_function(void *info)
202 {
203 	struct event_function_struct *efs = info;
204 	struct perf_event *event = efs->event;
205 	struct perf_event_context *ctx = event->ctx;
206 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
207 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
208 	int ret = 0;
209 
210 	WARN_ON_ONCE(!irqs_disabled());
211 
212 	perf_ctx_lock(cpuctx, task_ctx);
213 	/*
214 	 * Since we do the IPI call without holding ctx->lock things can have
215 	 * changed, double check we hit the task we set out to hit.
216 	 */
217 	if (ctx->task) {
218 		if (ctx->task != current) {
219 			ret = -ESRCH;
220 			goto unlock;
221 		}
222 
223 		/*
224 		 * We only use event_function_call() on established contexts,
225 		 * and event_function() is only ever called when active (or
226 		 * rather, we'll have bailed in task_function_call() or the
227 		 * above ctx->task != current test), therefore we must have
228 		 * ctx->is_active here.
229 		 */
230 		WARN_ON_ONCE(!ctx->is_active);
231 		/*
232 		 * And since we have ctx->is_active, cpuctx->task_ctx must
233 		 * match.
234 		 */
235 		WARN_ON_ONCE(task_ctx != ctx);
236 	} else {
237 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
238 	}
239 
240 	efs->func(event, cpuctx, ctx, efs->data);
241 unlock:
242 	perf_ctx_unlock(cpuctx, task_ctx);
243 
244 	return ret;
245 }
246 
247 static void event_function_call(struct perf_event *event, event_f func, void *data)
248 {
249 	struct perf_event_context *ctx = event->ctx;
250 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
251 	struct event_function_struct efs = {
252 		.event = event,
253 		.func = func,
254 		.data = data,
255 	};
256 
257 	if (!event->parent) {
258 		/*
259 		 * If this is a !child event, we must hold ctx::mutex to
260 		 * stabilize the the event->ctx relation. See
261 		 * perf_event_ctx_lock().
262 		 */
263 		lockdep_assert_held(&ctx->mutex);
264 	}
265 
266 	if (!task) {
267 		cpu_function_call(event->cpu, event_function, &efs);
268 		return;
269 	}
270 
271 	if (task == TASK_TOMBSTONE)
272 		return;
273 
274 again:
275 	if (!task_function_call(task, event_function, &efs))
276 		return;
277 
278 	raw_spin_lock_irq(&ctx->lock);
279 	/*
280 	 * Reload the task pointer, it might have been changed by
281 	 * a concurrent perf_event_context_sched_out().
282 	 */
283 	task = ctx->task;
284 	if (task == TASK_TOMBSTONE) {
285 		raw_spin_unlock_irq(&ctx->lock);
286 		return;
287 	}
288 	if (ctx->is_active) {
289 		raw_spin_unlock_irq(&ctx->lock);
290 		goto again;
291 	}
292 	func(event, NULL, ctx, data);
293 	raw_spin_unlock_irq(&ctx->lock);
294 }
295 
296 /*
297  * Similar to event_function_call() + event_function(), but hard assumes IRQs
298  * are already disabled and we're on the right CPU.
299  */
300 static void event_function_local(struct perf_event *event, event_f func, void *data)
301 {
302 	struct perf_event_context *ctx = event->ctx;
303 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
304 	struct task_struct *task = READ_ONCE(ctx->task);
305 	struct perf_event_context *task_ctx = NULL;
306 
307 	WARN_ON_ONCE(!irqs_disabled());
308 
309 	if (task) {
310 		if (task == TASK_TOMBSTONE)
311 			return;
312 
313 		task_ctx = ctx;
314 	}
315 
316 	perf_ctx_lock(cpuctx, task_ctx);
317 
318 	task = ctx->task;
319 	if (task == TASK_TOMBSTONE)
320 		goto unlock;
321 
322 	if (task) {
323 		/*
324 		 * We must be either inactive or active and the right task,
325 		 * otherwise we're screwed, since we cannot IPI to somewhere
326 		 * else.
327 		 */
328 		if (ctx->is_active) {
329 			if (WARN_ON_ONCE(task != current))
330 				goto unlock;
331 
332 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
333 				goto unlock;
334 		}
335 	} else {
336 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
337 	}
338 
339 	func(event, cpuctx, ctx, data);
340 unlock:
341 	perf_ctx_unlock(cpuctx, task_ctx);
342 }
343 
344 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
345 		       PERF_FLAG_FD_OUTPUT  |\
346 		       PERF_FLAG_PID_CGROUP |\
347 		       PERF_FLAG_FD_CLOEXEC)
348 
349 /*
350  * branch priv levels that need permission checks
351  */
352 #define PERF_SAMPLE_BRANCH_PERM_PLM \
353 	(PERF_SAMPLE_BRANCH_KERNEL |\
354 	 PERF_SAMPLE_BRANCH_HV)
355 
356 enum event_type_t {
357 	EVENT_FLEXIBLE = 0x1,
358 	EVENT_PINNED = 0x2,
359 	EVENT_TIME = 0x4,
360 	/* see ctx_resched() for details */
361 	EVENT_CPU = 0x8,
362 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
363 };
364 
365 /*
366  * perf_sched_events : >0 events exist
367  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
368  */
369 
370 static void perf_sched_delayed(struct work_struct *work);
371 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
372 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
373 static DEFINE_MUTEX(perf_sched_mutex);
374 static atomic_t perf_sched_count;
375 
376 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
377 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
378 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
379 
380 static atomic_t nr_mmap_events __read_mostly;
381 static atomic_t nr_comm_events __read_mostly;
382 static atomic_t nr_task_events __read_mostly;
383 static atomic_t nr_freq_events __read_mostly;
384 static atomic_t nr_switch_events __read_mostly;
385 
386 static LIST_HEAD(pmus);
387 static DEFINE_MUTEX(pmus_lock);
388 static struct srcu_struct pmus_srcu;
389 
390 /*
391  * perf event paranoia level:
392  *  -1 - not paranoid at all
393  *   0 - disallow raw tracepoint access for unpriv
394  *   1 - disallow cpu events for unpriv
395  *   2 - disallow kernel profiling for unpriv
396  */
397 int sysctl_perf_event_paranoid __read_mostly = 2;
398 
399 /* Minimum for 512 kiB + 1 user control page */
400 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
401 
402 /*
403  * max perf event sample rate
404  */
405 #define DEFAULT_MAX_SAMPLE_RATE		100000
406 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
407 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
408 
409 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
410 
411 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
412 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
413 
414 static int perf_sample_allowed_ns __read_mostly =
415 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
416 
417 static void update_perf_cpu_limits(void)
418 {
419 	u64 tmp = perf_sample_period_ns;
420 
421 	tmp *= sysctl_perf_cpu_time_max_percent;
422 	tmp = div_u64(tmp, 100);
423 	if (!tmp)
424 		tmp = 1;
425 
426 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
427 }
428 
429 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
430 
431 int perf_proc_update_handler(struct ctl_table *table, int write,
432 		void __user *buffer, size_t *lenp,
433 		loff_t *ppos)
434 {
435 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
436 
437 	if (ret || !write)
438 		return ret;
439 
440 	/*
441 	 * If throttling is disabled don't allow the write:
442 	 */
443 	if (sysctl_perf_cpu_time_max_percent == 100 ||
444 	    sysctl_perf_cpu_time_max_percent == 0)
445 		return -EINVAL;
446 
447 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
448 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
449 	update_perf_cpu_limits();
450 
451 	return 0;
452 }
453 
454 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
455 
456 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
457 				void __user *buffer, size_t *lenp,
458 				loff_t *ppos)
459 {
460 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
461 
462 	if (ret || !write)
463 		return ret;
464 
465 	if (sysctl_perf_cpu_time_max_percent == 100 ||
466 	    sysctl_perf_cpu_time_max_percent == 0) {
467 		printk(KERN_WARNING
468 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
469 		WRITE_ONCE(perf_sample_allowed_ns, 0);
470 	} else {
471 		update_perf_cpu_limits();
472 	}
473 
474 	return 0;
475 }
476 
477 /*
478  * perf samples are done in some very critical code paths (NMIs).
479  * If they take too much CPU time, the system can lock up and not
480  * get any real work done.  This will drop the sample rate when
481  * we detect that events are taking too long.
482  */
483 #define NR_ACCUMULATED_SAMPLES 128
484 static DEFINE_PER_CPU(u64, running_sample_length);
485 
486 static u64 __report_avg;
487 static u64 __report_allowed;
488 
489 static void perf_duration_warn(struct irq_work *w)
490 {
491 	printk_ratelimited(KERN_INFO
492 		"perf: interrupt took too long (%lld > %lld), lowering "
493 		"kernel.perf_event_max_sample_rate to %d\n",
494 		__report_avg, __report_allowed,
495 		sysctl_perf_event_sample_rate);
496 }
497 
498 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
499 
500 void perf_sample_event_took(u64 sample_len_ns)
501 {
502 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
503 	u64 running_len;
504 	u64 avg_len;
505 	u32 max;
506 
507 	if (max_len == 0)
508 		return;
509 
510 	/* Decay the counter by 1 average sample. */
511 	running_len = __this_cpu_read(running_sample_length);
512 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
513 	running_len += sample_len_ns;
514 	__this_cpu_write(running_sample_length, running_len);
515 
516 	/*
517 	 * Note: this will be biased artifically low until we have
518 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
519 	 * from having to maintain a count.
520 	 */
521 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
522 	if (avg_len <= max_len)
523 		return;
524 
525 	__report_avg = avg_len;
526 	__report_allowed = max_len;
527 
528 	/*
529 	 * Compute a throttle threshold 25% below the current duration.
530 	 */
531 	avg_len += avg_len / 4;
532 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
533 	if (avg_len < max)
534 		max /= (u32)avg_len;
535 	else
536 		max = 1;
537 
538 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
539 	WRITE_ONCE(max_samples_per_tick, max);
540 
541 	sysctl_perf_event_sample_rate = max * HZ;
542 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
543 
544 	if (!irq_work_queue(&perf_duration_work)) {
545 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
546 			     "kernel.perf_event_max_sample_rate to %d\n",
547 			     __report_avg, __report_allowed,
548 			     sysctl_perf_event_sample_rate);
549 	}
550 }
551 
552 static atomic64_t perf_event_id;
553 
554 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
555 			      enum event_type_t event_type);
556 
557 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
558 			     enum event_type_t event_type,
559 			     struct task_struct *task);
560 
561 static void update_context_time(struct perf_event_context *ctx);
562 static u64 perf_event_time(struct perf_event *event);
563 
564 void __weak perf_event_print_debug(void)	{ }
565 
566 extern __weak const char *perf_pmu_name(void)
567 {
568 	return "pmu";
569 }
570 
571 static inline u64 perf_clock(void)
572 {
573 	return local_clock();
574 }
575 
576 static inline u64 perf_event_clock(struct perf_event *event)
577 {
578 	return event->clock();
579 }
580 
581 #ifdef CONFIG_CGROUP_PERF
582 
583 static inline bool
584 perf_cgroup_match(struct perf_event *event)
585 {
586 	struct perf_event_context *ctx = event->ctx;
587 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
588 
589 	/* @event doesn't care about cgroup */
590 	if (!event->cgrp)
591 		return true;
592 
593 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
594 	if (!cpuctx->cgrp)
595 		return false;
596 
597 	/*
598 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
599 	 * also enabled for all its descendant cgroups.  If @cpuctx's
600 	 * cgroup is a descendant of @event's (the test covers identity
601 	 * case), it's a match.
602 	 */
603 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
604 				    event->cgrp->css.cgroup);
605 }
606 
607 static inline void perf_detach_cgroup(struct perf_event *event)
608 {
609 	css_put(&event->cgrp->css);
610 	event->cgrp = NULL;
611 }
612 
613 static inline int is_cgroup_event(struct perf_event *event)
614 {
615 	return event->cgrp != NULL;
616 }
617 
618 static inline u64 perf_cgroup_event_time(struct perf_event *event)
619 {
620 	struct perf_cgroup_info *t;
621 
622 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
623 	return t->time;
624 }
625 
626 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
627 {
628 	struct perf_cgroup_info *info;
629 	u64 now;
630 
631 	now = perf_clock();
632 
633 	info = this_cpu_ptr(cgrp->info);
634 
635 	info->time += now - info->timestamp;
636 	info->timestamp = now;
637 }
638 
639 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
640 {
641 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
642 	if (cgrp_out)
643 		__update_cgrp_time(cgrp_out);
644 }
645 
646 static inline void update_cgrp_time_from_event(struct perf_event *event)
647 {
648 	struct perf_cgroup *cgrp;
649 
650 	/*
651 	 * ensure we access cgroup data only when needed and
652 	 * when we know the cgroup is pinned (css_get)
653 	 */
654 	if (!is_cgroup_event(event))
655 		return;
656 
657 	cgrp = perf_cgroup_from_task(current, event->ctx);
658 	/*
659 	 * Do not update time when cgroup is not active
660 	 */
661 	if (cgrp == event->cgrp)
662 		__update_cgrp_time(event->cgrp);
663 }
664 
665 static inline void
666 perf_cgroup_set_timestamp(struct task_struct *task,
667 			  struct perf_event_context *ctx)
668 {
669 	struct perf_cgroup *cgrp;
670 	struct perf_cgroup_info *info;
671 
672 	/*
673 	 * ctx->lock held by caller
674 	 * ensure we do not access cgroup data
675 	 * unless we have the cgroup pinned (css_get)
676 	 */
677 	if (!task || !ctx->nr_cgroups)
678 		return;
679 
680 	cgrp = perf_cgroup_from_task(task, ctx);
681 	info = this_cpu_ptr(cgrp->info);
682 	info->timestamp = ctx->timestamp;
683 }
684 
685 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
686 
687 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
688 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
689 
690 /*
691  * reschedule events based on the cgroup constraint of task.
692  *
693  * mode SWOUT : schedule out everything
694  * mode SWIN : schedule in based on cgroup for next
695  */
696 static void perf_cgroup_switch(struct task_struct *task, int mode)
697 {
698 	struct perf_cpu_context *cpuctx;
699 	struct list_head *list;
700 	unsigned long flags;
701 
702 	/*
703 	 * Disable interrupts and preemption to avoid this CPU's
704 	 * cgrp_cpuctx_entry to change under us.
705 	 */
706 	local_irq_save(flags);
707 
708 	list = this_cpu_ptr(&cgrp_cpuctx_list);
709 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
710 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
711 
712 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
713 		perf_pmu_disable(cpuctx->ctx.pmu);
714 
715 		if (mode & PERF_CGROUP_SWOUT) {
716 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
717 			/*
718 			 * must not be done before ctxswout due
719 			 * to event_filter_match() in event_sched_out()
720 			 */
721 			cpuctx->cgrp = NULL;
722 		}
723 
724 		if (mode & PERF_CGROUP_SWIN) {
725 			WARN_ON_ONCE(cpuctx->cgrp);
726 			/*
727 			 * set cgrp before ctxsw in to allow
728 			 * event_filter_match() to not have to pass
729 			 * task around
730 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
731 			 * because cgorup events are only per-cpu
732 			 */
733 			cpuctx->cgrp = perf_cgroup_from_task(task,
734 							     &cpuctx->ctx);
735 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
736 		}
737 		perf_pmu_enable(cpuctx->ctx.pmu);
738 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
739 	}
740 
741 	local_irq_restore(flags);
742 }
743 
744 static inline void perf_cgroup_sched_out(struct task_struct *task,
745 					 struct task_struct *next)
746 {
747 	struct perf_cgroup *cgrp1;
748 	struct perf_cgroup *cgrp2 = NULL;
749 
750 	rcu_read_lock();
751 	/*
752 	 * we come here when we know perf_cgroup_events > 0
753 	 * we do not need to pass the ctx here because we know
754 	 * we are holding the rcu lock
755 	 */
756 	cgrp1 = perf_cgroup_from_task(task, NULL);
757 	cgrp2 = perf_cgroup_from_task(next, NULL);
758 
759 	/*
760 	 * only schedule out current cgroup events if we know
761 	 * that we are switching to a different cgroup. Otherwise,
762 	 * do no touch the cgroup events.
763 	 */
764 	if (cgrp1 != cgrp2)
765 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
766 
767 	rcu_read_unlock();
768 }
769 
770 static inline void perf_cgroup_sched_in(struct task_struct *prev,
771 					struct task_struct *task)
772 {
773 	struct perf_cgroup *cgrp1;
774 	struct perf_cgroup *cgrp2 = NULL;
775 
776 	rcu_read_lock();
777 	/*
778 	 * we come here when we know perf_cgroup_events > 0
779 	 * we do not need to pass the ctx here because we know
780 	 * we are holding the rcu lock
781 	 */
782 	cgrp1 = perf_cgroup_from_task(task, NULL);
783 	cgrp2 = perf_cgroup_from_task(prev, NULL);
784 
785 	/*
786 	 * only need to schedule in cgroup events if we are changing
787 	 * cgroup during ctxsw. Cgroup events were not scheduled
788 	 * out of ctxsw out if that was not the case.
789 	 */
790 	if (cgrp1 != cgrp2)
791 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
792 
793 	rcu_read_unlock();
794 }
795 
796 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
797 				      struct perf_event_attr *attr,
798 				      struct perf_event *group_leader)
799 {
800 	struct perf_cgroup *cgrp;
801 	struct cgroup_subsys_state *css;
802 	struct fd f = fdget(fd);
803 	int ret = 0;
804 
805 	if (!f.file)
806 		return -EBADF;
807 
808 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
809 					 &perf_event_cgrp_subsys);
810 	if (IS_ERR(css)) {
811 		ret = PTR_ERR(css);
812 		goto out;
813 	}
814 
815 	cgrp = container_of(css, struct perf_cgroup, css);
816 	event->cgrp = cgrp;
817 
818 	/*
819 	 * all events in a group must monitor
820 	 * the same cgroup because a task belongs
821 	 * to only one perf cgroup at a time
822 	 */
823 	if (group_leader && group_leader->cgrp != cgrp) {
824 		perf_detach_cgroup(event);
825 		ret = -EINVAL;
826 	}
827 out:
828 	fdput(f);
829 	return ret;
830 }
831 
832 static inline void
833 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
834 {
835 	struct perf_cgroup_info *t;
836 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
837 	event->shadow_ctx_time = now - t->timestamp;
838 }
839 
840 static inline void
841 perf_cgroup_defer_enabled(struct perf_event *event)
842 {
843 	/*
844 	 * when the current task's perf cgroup does not match
845 	 * the event's, we need to remember to call the
846 	 * perf_mark_enable() function the first time a task with
847 	 * a matching perf cgroup is scheduled in.
848 	 */
849 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
850 		event->cgrp_defer_enabled = 1;
851 }
852 
853 static inline void
854 perf_cgroup_mark_enabled(struct perf_event *event,
855 			 struct perf_event_context *ctx)
856 {
857 	struct perf_event *sub;
858 	u64 tstamp = perf_event_time(event);
859 
860 	if (!event->cgrp_defer_enabled)
861 		return;
862 
863 	event->cgrp_defer_enabled = 0;
864 
865 	event->tstamp_enabled = tstamp - event->total_time_enabled;
866 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
867 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
868 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
869 			sub->cgrp_defer_enabled = 0;
870 		}
871 	}
872 }
873 
874 /*
875  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
876  * cleared when last cgroup event is removed.
877  */
878 static inline void
879 list_update_cgroup_event(struct perf_event *event,
880 			 struct perf_event_context *ctx, bool add)
881 {
882 	struct perf_cpu_context *cpuctx;
883 	struct list_head *cpuctx_entry;
884 
885 	if (!is_cgroup_event(event))
886 		return;
887 
888 	if (add && ctx->nr_cgroups++)
889 		return;
890 	else if (!add && --ctx->nr_cgroups)
891 		return;
892 	/*
893 	 * Because cgroup events are always per-cpu events,
894 	 * this will always be called from the right CPU.
895 	 */
896 	cpuctx = __get_cpu_context(ctx);
897 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
898 	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
899 	if (add) {
900 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
901 		if (perf_cgroup_from_task(current, ctx) == event->cgrp)
902 			cpuctx->cgrp = event->cgrp;
903 	} else {
904 		list_del(cpuctx_entry);
905 		cpuctx->cgrp = NULL;
906 	}
907 }
908 
909 #else /* !CONFIG_CGROUP_PERF */
910 
911 static inline bool
912 perf_cgroup_match(struct perf_event *event)
913 {
914 	return true;
915 }
916 
917 static inline void perf_detach_cgroup(struct perf_event *event)
918 {}
919 
920 static inline int is_cgroup_event(struct perf_event *event)
921 {
922 	return 0;
923 }
924 
925 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
926 {
927 	return 0;
928 }
929 
930 static inline void update_cgrp_time_from_event(struct perf_event *event)
931 {
932 }
933 
934 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
935 {
936 }
937 
938 static inline void perf_cgroup_sched_out(struct task_struct *task,
939 					 struct task_struct *next)
940 {
941 }
942 
943 static inline void perf_cgroup_sched_in(struct task_struct *prev,
944 					struct task_struct *task)
945 {
946 }
947 
948 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
949 				      struct perf_event_attr *attr,
950 				      struct perf_event *group_leader)
951 {
952 	return -EINVAL;
953 }
954 
955 static inline void
956 perf_cgroup_set_timestamp(struct task_struct *task,
957 			  struct perf_event_context *ctx)
958 {
959 }
960 
961 void
962 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
963 {
964 }
965 
966 static inline void
967 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
968 {
969 }
970 
971 static inline u64 perf_cgroup_event_time(struct perf_event *event)
972 {
973 	return 0;
974 }
975 
976 static inline void
977 perf_cgroup_defer_enabled(struct perf_event *event)
978 {
979 }
980 
981 static inline void
982 perf_cgroup_mark_enabled(struct perf_event *event,
983 			 struct perf_event_context *ctx)
984 {
985 }
986 
987 static inline void
988 list_update_cgroup_event(struct perf_event *event,
989 			 struct perf_event_context *ctx, bool add)
990 {
991 }
992 
993 #endif
994 
995 /*
996  * set default to be dependent on timer tick just
997  * like original code
998  */
999 #define PERF_CPU_HRTIMER (1000 / HZ)
1000 /*
1001  * function must be called with interrupts disbled
1002  */
1003 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1004 {
1005 	struct perf_cpu_context *cpuctx;
1006 	int rotations = 0;
1007 
1008 	WARN_ON(!irqs_disabled());
1009 
1010 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1011 	rotations = perf_rotate_context(cpuctx);
1012 
1013 	raw_spin_lock(&cpuctx->hrtimer_lock);
1014 	if (rotations)
1015 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1016 	else
1017 		cpuctx->hrtimer_active = 0;
1018 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1019 
1020 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1021 }
1022 
1023 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1024 {
1025 	struct hrtimer *timer = &cpuctx->hrtimer;
1026 	struct pmu *pmu = cpuctx->ctx.pmu;
1027 	u64 interval;
1028 
1029 	/* no multiplexing needed for SW PMU */
1030 	if (pmu->task_ctx_nr == perf_sw_context)
1031 		return;
1032 
1033 	/*
1034 	 * check default is sane, if not set then force to
1035 	 * default interval (1/tick)
1036 	 */
1037 	interval = pmu->hrtimer_interval_ms;
1038 	if (interval < 1)
1039 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1040 
1041 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1042 
1043 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1044 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1045 	timer->function = perf_mux_hrtimer_handler;
1046 }
1047 
1048 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1049 {
1050 	struct hrtimer *timer = &cpuctx->hrtimer;
1051 	struct pmu *pmu = cpuctx->ctx.pmu;
1052 	unsigned long flags;
1053 
1054 	/* not for SW PMU */
1055 	if (pmu->task_ctx_nr == perf_sw_context)
1056 		return 0;
1057 
1058 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1059 	if (!cpuctx->hrtimer_active) {
1060 		cpuctx->hrtimer_active = 1;
1061 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1062 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1063 	}
1064 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1065 
1066 	return 0;
1067 }
1068 
1069 void perf_pmu_disable(struct pmu *pmu)
1070 {
1071 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1072 	if (!(*count)++)
1073 		pmu->pmu_disable(pmu);
1074 }
1075 
1076 void perf_pmu_enable(struct pmu *pmu)
1077 {
1078 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1079 	if (!--(*count))
1080 		pmu->pmu_enable(pmu);
1081 }
1082 
1083 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1084 
1085 /*
1086  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1087  * perf_event_task_tick() are fully serialized because they're strictly cpu
1088  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1089  * disabled, while perf_event_task_tick is called from IRQ context.
1090  */
1091 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1092 {
1093 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1094 
1095 	WARN_ON(!irqs_disabled());
1096 
1097 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1098 
1099 	list_add(&ctx->active_ctx_list, head);
1100 }
1101 
1102 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1103 {
1104 	WARN_ON(!irqs_disabled());
1105 
1106 	WARN_ON(list_empty(&ctx->active_ctx_list));
1107 
1108 	list_del_init(&ctx->active_ctx_list);
1109 }
1110 
1111 static void get_ctx(struct perf_event_context *ctx)
1112 {
1113 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1114 }
1115 
1116 static void free_ctx(struct rcu_head *head)
1117 {
1118 	struct perf_event_context *ctx;
1119 
1120 	ctx = container_of(head, struct perf_event_context, rcu_head);
1121 	kfree(ctx->task_ctx_data);
1122 	kfree(ctx);
1123 }
1124 
1125 static void put_ctx(struct perf_event_context *ctx)
1126 {
1127 	if (atomic_dec_and_test(&ctx->refcount)) {
1128 		if (ctx->parent_ctx)
1129 			put_ctx(ctx->parent_ctx);
1130 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1131 			put_task_struct(ctx->task);
1132 		call_rcu(&ctx->rcu_head, free_ctx);
1133 	}
1134 }
1135 
1136 /*
1137  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1138  * perf_pmu_migrate_context() we need some magic.
1139  *
1140  * Those places that change perf_event::ctx will hold both
1141  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1142  *
1143  * Lock ordering is by mutex address. There are two other sites where
1144  * perf_event_context::mutex nests and those are:
1145  *
1146  *  - perf_event_exit_task_context()	[ child , 0 ]
1147  *      perf_event_exit_event()
1148  *        put_event()			[ parent, 1 ]
1149  *
1150  *  - perf_event_init_context()		[ parent, 0 ]
1151  *      inherit_task_group()
1152  *        inherit_group()
1153  *          inherit_event()
1154  *            perf_event_alloc()
1155  *              perf_init_event()
1156  *                perf_try_init_event()	[ child , 1 ]
1157  *
1158  * While it appears there is an obvious deadlock here -- the parent and child
1159  * nesting levels are inverted between the two. This is in fact safe because
1160  * life-time rules separate them. That is an exiting task cannot fork, and a
1161  * spawning task cannot (yet) exit.
1162  *
1163  * But remember that that these are parent<->child context relations, and
1164  * migration does not affect children, therefore these two orderings should not
1165  * interact.
1166  *
1167  * The change in perf_event::ctx does not affect children (as claimed above)
1168  * because the sys_perf_event_open() case will install a new event and break
1169  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1170  * concerned with cpuctx and that doesn't have children.
1171  *
1172  * The places that change perf_event::ctx will issue:
1173  *
1174  *   perf_remove_from_context();
1175  *   synchronize_rcu();
1176  *   perf_install_in_context();
1177  *
1178  * to affect the change. The remove_from_context() + synchronize_rcu() should
1179  * quiesce the event, after which we can install it in the new location. This
1180  * means that only external vectors (perf_fops, prctl) can perturb the event
1181  * while in transit. Therefore all such accessors should also acquire
1182  * perf_event_context::mutex to serialize against this.
1183  *
1184  * However; because event->ctx can change while we're waiting to acquire
1185  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1186  * function.
1187  *
1188  * Lock order:
1189  *    cred_guard_mutex
1190  *	task_struct::perf_event_mutex
1191  *	  perf_event_context::mutex
1192  *	    perf_event::child_mutex;
1193  *	      perf_event_context::lock
1194  *	    perf_event::mmap_mutex
1195  *	    mmap_sem
1196  */
1197 static struct perf_event_context *
1198 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1199 {
1200 	struct perf_event_context *ctx;
1201 
1202 again:
1203 	rcu_read_lock();
1204 	ctx = ACCESS_ONCE(event->ctx);
1205 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1206 		rcu_read_unlock();
1207 		goto again;
1208 	}
1209 	rcu_read_unlock();
1210 
1211 	mutex_lock_nested(&ctx->mutex, nesting);
1212 	if (event->ctx != ctx) {
1213 		mutex_unlock(&ctx->mutex);
1214 		put_ctx(ctx);
1215 		goto again;
1216 	}
1217 
1218 	return ctx;
1219 }
1220 
1221 static inline struct perf_event_context *
1222 perf_event_ctx_lock(struct perf_event *event)
1223 {
1224 	return perf_event_ctx_lock_nested(event, 0);
1225 }
1226 
1227 static void perf_event_ctx_unlock(struct perf_event *event,
1228 				  struct perf_event_context *ctx)
1229 {
1230 	mutex_unlock(&ctx->mutex);
1231 	put_ctx(ctx);
1232 }
1233 
1234 /*
1235  * This must be done under the ctx->lock, such as to serialize against
1236  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1237  * calling scheduler related locks and ctx->lock nests inside those.
1238  */
1239 static __must_check struct perf_event_context *
1240 unclone_ctx(struct perf_event_context *ctx)
1241 {
1242 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1243 
1244 	lockdep_assert_held(&ctx->lock);
1245 
1246 	if (parent_ctx)
1247 		ctx->parent_ctx = NULL;
1248 	ctx->generation++;
1249 
1250 	return parent_ctx;
1251 }
1252 
1253 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1254 {
1255 	/*
1256 	 * only top level events have the pid namespace they were created in
1257 	 */
1258 	if (event->parent)
1259 		event = event->parent;
1260 
1261 	return task_tgid_nr_ns(p, event->ns);
1262 }
1263 
1264 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1265 {
1266 	/*
1267 	 * only top level events have the pid namespace they were created in
1268 	 */
1269 	if (event->parent)
1270 		event = event->parent;
1271 
1272 	return task_pid_nr_ns(p, event->ns);
1273 }
1274 
1275 /*
1276  * If we inherit events we want to return the parent event id
1277  * to userspace.
1278  */
1279 static u64 primary_event_id(struct perf_event *event)
1280 {
1281 	u64 id = event->id;
1282 
1283 	if (event->parent)
1284 		id = event->parent->id;
1285 
1286 	return id;
1287 }
1288 
1289 /*
1290  * Get the perf_event_context for a task and lock it.
1291  *
1292  * This has to cope with with the fact that until it is locked,
1293  * the context could get moved to another task.
1294  */
1295 static struct perf_event_context *
1296 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1297 {
1298 	struct perf_event_context *ctx;
1299 
1300 retry:
1301 	/*
1302 	 * One of the few rules of preemptible RCU is that one cannot do
1303 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1304 	 * part of the read side critical section was irqs-enabled -- see
1305 	 * rcu_read_unlock_special().
1306 	 *
1307 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1308 	 * side critical section has interrupts disabled.
1309 	 */
1310 	local_irq_save(*flags);
1311 	rcu_read_lock();
1312 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1313 	if (ctx) {
1314 		/*
1315 		 * If this context is a clone of another, it might
1316 		 * get swapped for another underneath us by
1317 		 * perf_event_task_sched_out, though the
1318 		 * rcu_read_lock() protects us from any context
1319 		 * getting freed.  Lock the context and check if it
1320 		 * got swapped before we could get the lock, and retry
1321 		 * if so.  If we locked the right context, then it
1322 		 * can't get swapped on us any more.
1323 		 */
1324 		raw_spin_lock(&ctx->lock);
1325 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1326 			raw_spin_unlock(&ctx->lock);
1327 			rcu_read_unlock();
1328 			local_irq_restore(*flags);
1329 			goto retry;
1330 		}
1331 
1332 		if (ctx->task == TASK_TOMBSTONE ||
1333 		    !atomic_inc_not_zero(&ctx->refcount)) {
1334 			raw_spin_unlock(&ctx->lock);
1335 			ctx = NULL;
1336 		} else {
1337 			WARN_ON_ONCE(ctx->task != task);
1338 		}
1339 	}
1340 	rcu_read_unlock();
1341 	if (!ctx)
1342 		local_irq_restore(*flags);
1343 	return ctx;
1344 }
1345 
1346 /*
1347  * Get the context for a task and increment its pin_count so it
1348  * can't get swapped to another task.  This also increments its
1349  * reference count so that the context can't get freed.
1350  */
1351 static struct perf_event_context *
1352 perf_pin_task_context(struct task_struct *task, int ctxn)
1353 {
1354 	struct perf_event_context *ctx;
1355 	unsigned long flags;
1356 
1357 	ctx = perf_lock_task_context(task, ctxn, &flags);
1358 	if (ctx) {
1359 		++ctx->pin_count;
1360 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1361 	}
1362 	return ctx;
1363 }
1364 
1365 static void perf_unpin_context(struct perf_event_context *ctx)
1366 {
1367 	unsigned long flags;
1368 
1369 	raw_spin_lock_irqsave(&ctx->lock, flags);
1370 	--ctx->pin_count;
1371 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1372 }
1373 
1374 /*
1375  * Update the record of the current time in a context.
1376  */
1377 static void update_context_time(struct perf_event_context *ctx)
1378 {
1379 	u64 now = perf_clock();
1380 
1381 	ctx->time += now - ctx->timestamp;
1382 	ctx->timestamp = now;
1383 }
1384 
1385 static u64 perf_event_time(struct perf_event *event)
1386 {
1387 	struct perf_event_context *ctx = event->ctx;
1388 
1389 	if (is_cgroup_event(event))
1390 		return perf_cgroup_event_time(event);
1391 
1392 	return ctx ? ctx->time : 0;
1393 }
1394 
1395 /*
1396  * Update the total_time_enabled and total_time_running fields for a event.
1397  */
1398 static void update_event_times(struct perf_event *event)
1399 {
1400 	struct perf_event_context *ctx = event->ctx;
1401 	u64 run_end;
1402 
1403 	lockdep_assert_held(&ctx->lock);
1404 
1405 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1406 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1407 		return;
1408 
1409 	/*
1410 	 * in cgroup mode, time_enabled represents
1411 	 * the time the event was enabled AND active
1412 	 * tasks were in the monitored cgroup. This is
1413 	 * independent of the activity of the context as
1414 	 * there may be a mix of cgroup and non-cgroup events.
1415 	 *
1416 	 * That is why we treat cgroup events differently
1417 	 * here.
1418 	 */
1419 	if (is_cgroup_event(event))
1420 		run_end = perf_cgroup_event_time(event);
1421 	else if (ctx->is_active)
1422 		run_end = ctx->time;
1423 	else
1424 		run_end = event->tstamp_stopped;
1425 
1426 	event->total_time_enabled = run_end - event->tstamp_enabled;
1427 
1428 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1429 		run_end = event->tstamp_stopped;
1430 	else
1431 		run_end = perf_event_time(event);
1432 
1433 	event->total_time_running = run_end - event->tstamp_running;
1434 
1435 }
1436 
1437 /*
1438  * Update total_time_enabled and total_time_running for all events in a group.
1439  */
1440 static void update_group_times(struct perf_event *leader)
1441 {
1442 	struct perf_event *event;
1443 
1444 	update_event_times(leader);
1445 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1446 		update_event_times(event);
1447 }
1448 
1449 static enum event_type_t get_event_type(struct perf_event *event)
1450 {
1451 	struct perf_event_context *ctx = event->ctx;
1452 	enum event_type_t event_type;
1453 
1454 	lockdep_assert_held(&ctx->lock);
1455 
1456 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1457 	if (!ctx->task)
1458 		event_type |= EVENT_CPU;
1459 
1460 	return event_type;
1461 }
1462 
1463 static struct list_head *
1464 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1465 {
1466 	if (event->attr.pinned)
1467 		return &ctx->pinned_groups;
1468 	else
1469 		return &ctx->flexible_groups;
1470 }
1471 
1472 /*
1473  * Add a event from the lists for its context.
1474  * Must be called with ctx->mutex and ctx->lock held.
1475  */
1476 static void
1477 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1478 {
1479 	lockdep_assert_held(&ctx->lock);
1480 
1481 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1482 	event->attach_state |= PERF_ATTACH_CONTEXT;
1483 
1484 	/*
1485 	 * If we're a stand alone event or group leader, we go to the context
1486 	 * list, group events are kept attached to the group so that
1487 	 * perf_group_detach can, at all times, locate all siblings.
1488 	 */
1489 	if (event->group_leader == event) {
1490 		struct list_head *list;
1491 
1492 		event->group_caps = event->event_caps;
1493 
1494 		list = ctx_group_list(event, ctx);
1495 		list_add_tail(&event->group_entry, list);
1496 	}
1497 
1498 	list_update_cgroup_event(event, ctx, true);
1499 
1500 	list_add_rcu(&event->event_entry, &ctx->event_list);
1501 	ctx->nr_events++;
1502 	if (event->attr.inherit_stat)
1503 		ctx->nr_stat++;
1504 
1505 	ctx->generation++;
1506 }
1507 
1508 /*
1509  * Initialize event state based on the perf_event_attr::disabled.
1510  */
1511 static inline void perf_event__state_init(struct perf_event *event)
1512 {
1513 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1514 					      PERF_EVENT_STATE_INACTIVE;
1515 }
1516 
1517 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1518 {
1519 	int entry = sizeof(u64); /* value */
1520 	int size = 0;
1521 	int nr = 1;
1522 
1523 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1524 		size += sizeof(u64);
1525 
1526 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1527 		size += sizeof(u64);
1528 
1529 	if (event->attr.read_format & PERF_FORMAT_ID)
1530 		entry += sizeof(u64);
1531 
1532 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1533 		nr += nr_siblings;
1534 		size += sizeof(u64);
1535 	}
1536 
1537 	size += entry * nr;
1538 	event->read_size = size;
1539 }
1540 
1541 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1542 {
1543 	struct perf_sample_data *data;
1544 	u16 size = 0;
1545 
1546 	if (sample_type & PERF_SAMPLE_IP)
1547 		size += sizeof(data->ip);
1548 
1549 	if (sample_type & PERF_SAMPLE_ADDR)
1550 		size += sizeof(data->addr);
1551 
1552 	if (sample_type & PERF_SAMPLE_PERIOD)
1553 		size += sizeof(data->period);
1554 
1555 	if (sample_type & PERF_SAMPLE_WEIGHT)
1556 		size += sizeof(data->weight);
1557 
1558 	if (sample_type & PERF_SAMPLE_READ)
1559 		size += event->read_size;
1560 
1561 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1562 		size += sizeof(data->data_src.val);
1563 
1564 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1565 		size += sizeof(data->txn);
1566 
1567 	event->header_size = size;
1568 }
1569 
1570 /*
1571  * Called at perf_event creation and when events are attached/detached from a
1572  * group.
1573  */
1574 static void perf_event__header_size(struct perf_event *event)
1575 {
1576 	__perf_event_read_size(event,
1577 			       event->group_leader->nr_siblings);
1578 	__perf_event_header_size(event, event->attr.sample_type);
1579 }
1580 
1581 static void perf_event__id_header_size(struct perf_event *event)
1582 {
1583 	struct perf_sample_data *data;
1584 	u64 sample_type = event->attr.sample_type;
1585 	u16 size = 0;
1586 
1587 	if (sample_type & PERF_SAMPLE_TID)
1588 		size += sizeof(data->tid_entry);
1589 
1590 	if (sample_type & PERF_SAMPLE_TIME)
1591 		size += sizeof(data->time);
1592 
1593 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1594 		size += sizeof(data->id);
1595 
1596 	if (sample_type & PERF_SAMPLE_ID)
1597 		size += sizeof(data->id);
1598 
1599 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1600 		size += sizeof(data->stream_id);
1601 
1602 	if (sample_type & PERF_SAMPLE_CPU)
1603 		size += sizeof(data->cpu_entry);
1604 
1605 	event->id_header_size = size;
1606 }
1607 
1608 static bool perf_event_validate_size(struct perf_event *event)
1609 {
1610 	/*
1611 	 * The values computed here will be over-written when we actually
1612 	 * attach the event.
1613 	 */
1614 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1615 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1616 	perf_event__id_header_size(event);
1617 
1618 	/*
1619 	 * Sum the lot; should not exceed the 64k limit we have on records.
1620 	 * Conservative limit to allow for callchains and other variable fields.
1621 	 */
1622 	if (event->read_size + event->header_size +
1623 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1624 		return false;
1625 
1626 	return true;
1627 }
1628 
1629 static void perf_group_attach(struct perf_event *event)
1630 {
1631 	struct perf_event *group_leader = event->group_leader, *pos;
1632 
1633 	lockdep_assert_held(&event->ctx->lock);
1634 
1635 	/*
1636 	 * We can have double attach due to group movement in perf_event_open.
1637 	 */
1638 	if (event->attach_state & PERF_ATTACH_GROUP)
1639 		return;
1640 
1641 	event->attach_state |= PERF_ATTACH_GROUP;
1642 
1643 	if (group_leader == event)
1644 		return;
1645 
1646 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1647 
1648 	group_leader->group_caps &= event->event_caps;
1649 
1650 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1651 	group_leader->nr_siblings++;
1652 
1653 	perf_event__header_size(group_leader);
1654 
1655 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1656 		perf_event__header_size(pos);
1657 }
1658 
1659 /*
1660  * Remove a event from the lists for its context.
1661  * Must be called with ctx->mutex and ctx->lock held.
1662  */
1663 static void
1664 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1665 {
1666 	WARN_ON_ONCE(event->ctx != ctx);
1667 	lockdep_assert_held(&ctx->lock);
1668 
1669 	/*
1670 	 * We can have double detach due to exit/hot-unplug + close.
1671 	 */
1672 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1673 		return;
1674 
1675 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1676 
1677 	list_update_cgroup_event(event, ctx, false);
1678 
1679 	ctx->nr_events--;
1680 	if (event->attr.inherit_stat)
1681 		ctx->nr_stat--;
1682 
1683 	list_del_rcu(&event->event_entry);
1684 
1685 	if (event->group_leader == event)
1686 		list_del_init(&event->group_entry);
1687 
1688 	update_group_times(event);
1689 
1690 	/*
1691 	 * If event was in error state, then keep it
1692 	 * that way, otherwise bogus counts will be
1693 	 * returned on read(). The only way to get out
1694 	 * of error state is by explicit re-enabling
1695 	 * of the event
1696 	 */
1697 	if (event->state > PERF_EVENT_STATE_OFF)
1698 		event->state = PERF_EVENT_STATE_OFF;
1699 
1700 	ctx->generation++;
1701 }
1702 
1703 static void perf_group_detach(struct perf_event *event)
1704 {
1705 	struct perf_event *sibling, *tmp;
1706 	struct list_head *list = NULL;
1707 
1708 	lockdep_assert_held(&event->ctx->lock);
1709 
1710 	/*
1711 	 * We can have double detach due to exit/hot-unplug + close.
1712 	 */
1713 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1714 		return;
1715 
1716 	event->attach_state &= ~PERF_ATTACH_GROUP;
1717 
1718 	/*
1719 	 * If this is a sibling, remove it from its group.
1720 	 */
1721 	if (event->group_leader != event) {
1722 		list_del_init(&event->group_entry);
1723 		event->group_leader->nr_siblings--;
1724 		goto out;
1725 	}
1726 
1727 	if (!list_empty(&event->group_entry))
1728 		list = &event->group_entry;
1729 
1730 	/*
1731 	 * If this was a group event with sibling events then
1732 	 * upgrade the siblings to singleton events by adding them
1733 	 * to whatever list we are on.
1734 	 */
1735 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1736 		if (list)
1737 			list_move_tail(&sibling->group_entry, list);
1738 		sibling->group_leader = sibling;
1739 
1740 		/* Inherit group flags from the previous leader */
1741 		sibling->group_caps = event->group_caps;
1742 
1743 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1744 	}
1745 
1746 out:
1747 	perf_event__header_size(event->group_leader);
1748 
1749 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1750 		perf_event__header_size(tmp);
1751 }
1752 
1753 static bool is_orphaned_event(struct perf_event *event)
1754 {
1755 	return event->state == PERF_EVENT_STATE_DEAD;
1756 }
1757 
1758 static inline int __pmu_filter_match(struct perf_event *event)
1759 {
1760 	struct pmu *pmu = event->pmu;
1761 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1762 }
1763 
1764 /*
1765  * Check whether we should attempt to schedule an event group based on
1766  * PMU-specific filtering. An event group can consist of HW and SW events,
1767  * potentially with a SW leader, so we must check all the filters, to
1768  * determine whether a group is schedulable:
1769  */
1770 static inline int pmu_filter_match(struct perf_event *event)
1771 {
1772 	struct perf_event *child;
1773 
1774 	if (!__pmu_filter_match(event))
1775 		return 0;
1776 
1777 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1778 		if (!__pmu_filter_match(child))
1779 			return 0;
1780 	}
1781 
1782 	return 1;
1783 }
1784 
1785 static inline int
1786 event_filter_match(struct perf_event *event)
1787 {
1788 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1789 	       perf_cgroup_match(event) && pmu_filter_match(event);
1790 }
1791 
1792 static void
1793 event_sched_out(struct perf_event *event,
1794 		  struct perf_cpu_context *cpuctx,
1795 		  struct perf_event_context *ctx)
1796 {
1797 	u64 tstamp = perf_event_time(event);
1798 	u64 delta;
1799 
1800 	WARN_ON_ONCE(event->ctx != ctx);
1801 	lockdep_assert_held(&ctx->lock);
1802 
1803 	/*
1804 	 * An event which could not be activated because of
1805 	 * filter mismatch still needs to have its timings
1806 	 * maintained, otherwise bogus information is return
1807 	 * via read() for time_enabled, time_running:
1808 	 */
1809 	if (event->state == PERF_EVENT_STATE_INACTIVE &&
1810 	    !event_filter_match(event)) {
1811 		delta = tstamp - event->tstamp_stopped;
1812 		event->tstamp_running += delta;
1813 		event->tstamp_stopped = tstamp;
1814 	}
1815 
1816 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1817 		return;
1818 
1819 	perf_pmu_disable(event->pmu);
1820 
1821 	event->tstamp_stopped = tstamp;
1822 	event->pmu->del(event, 0);
1823 	event->oncpu = -1;
1824 	event->state = PERF_EVENT_STATE_INACTIVE;
1825 	if (event->pending_disable) {
1826 		event->pending_disable = 0;
1827 		event->state = PERF_EVENT_STATE_OFF;
1828 	}
1829 
1830 	if (!is_software_event(event))
1831 		cpuctx->active_oncpu--;
1832 	if (!--ctx->nr_active)
1833 		perf_event_ctx_deactivate(ctx);
1834 	if (event->attr.freq && event->attr.sample_freq)
1835 		ctx->nr_freq--;
1836 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1837 		cpuctx->exclusive = 0;
1838 
1839 	perf_pmu_enable(event->pmu);
1840 }
1841 
1842 static void
1843 group_sched_out(struct perf_event *group_event,
1844 		struct perf_cpu_context *cpuctx,
1845 		struct perf_event_context *ctx)
1846 {
1847 	struct perf_event *event;
1848 	int state = group_event->state;
1849 
1850 	perf_pmu_disable(ctx->pmu);
1851 
1852 	event_sched_out(group_event, cpuctx, ctx);
1853 
1854 	/*
1855 	 * Schedule out siblings (if any):
1856 	 */
1857 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1858 		event_sched_out(event, cpuctx, ctx);
1859 
1860 	perf_pmu_enable(ctx->pmu);
1861 
1862 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1863 		cpuctx->exclusive = 0;
1864 }
1865 
1866 #define DETACH_GROUP	0x01UL
1867 
1868 /*
1869  * Cross CPU call to remove a performance event
1870  *
1871  * We disable the event on the hardware level first. After that we
1872  * remove it from the context list.
1873  */
1874 static void
1875 __perf_remove_from_context(struct perf_event *event,
1876 			   struct perf_cpu_context *cpuctx,
1877 			   struct perf_event_context *ctx,
1878 			   void *info)
1879 {
1880 	unsigned long flags = (unsigned long)info;
1881 
1882 	event_sched_out(event, cpuctx, ctx);
1883 	if (flags & DETACH_GROUP)
1884 		perf_group_detach(event);
1885 	list_del_event(event, ctx);
1886 
1887 	if (!ctx->nr_events && ctx->is_active) {
1888 		ctx->is_active = 0;
1889 		if (ctx->task) {
1890 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1891 			cpuctx->task_ctx = NULL;
1892 		}
1893 	}
1894 }
1895 
1896 /*
1897  * Remove the event from a task's (or a CPU's) list of events.
1898  *
1899  * If event->ctx is a cloned context, callers must make sure that
1900  * every task struct that event->ctx->task could possibly point to
1901  * remains valid.  This is OK when called from perf_release since
1902  * that only calls us on the top-level context, which can't be a clone.
1903  * When called from perf_event_exit_task, it's OK because the
1904  * context has been detached from its task.
1905  */
1906 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1907 {
1908 	struct perf_event_context *ctx = event->ctx;
1909 
1910 	lockdep_assert_held(&ctx->mutex);
1911 
1912 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1913 
1914 	/*
1915 	 * The above event_function_call() can NO-OP when it hits
1916 	 * TASK_TOMBSTONE. In that case we must already have been detached
1917 	 * from the context (by perf_event_exit_event()) but the grouping
1918 	 * might still be in-tact.
1919 	 */
1920 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1921 	if ((flags & DETACH_GROUP) &&
1922 	    (event->attach_state & PERF_ATTACH_GROUP)) {
1923 		/*
1924 		 * Since in that case we cannot possibly be scheduled, simply
1925 		 * detach now.
1926 		 */
1927 		raw_spin_lock_irq(&ctx->lock);
1928 		perf_group_detach(event);
1929 		raw_spin_unlock_irq(&ctx->lock);
1930 	}
1931 }
1932 
1933 /*
1934  * Cross CPU call to disable a performance event
1935  */
1936 static void __perf_event_disable(struct perf_event *event,
1937 				 struct perf_cpu_context *cpuctx,
1938 				 struct perf_event_context *ctx,
1939 				 void *info)
1940 {
1941 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1942 		return;
1943 
1944 	update_context_time(ctx);
1945 	update_cgrp_time_from_event(event);
1946 	update_group_times(event);
1947 	if (event == event->group_leader)
1948 		group_sched_out(event, cpuctx, ctx);
1949 	else
1950 		event_sched_out(event, cpuctx, ctx);
1951 	event->state = PERF_EVENT_STATE_OFF;
1952 }
1953 
1954 /*
1955  * Disable a event.
1956  *
1957  * If event->ctx is a cloned context, callers must make sure that
1958  * every task struct that event->ctx->task could possibly point to
1959  * remains valid.  This condition is satisifed when called through
1960  * perf_event_for_each_child or perf_event_for_each because they
1961  * hold the top-level event's child_mutex, so any descendant that
1962  * goes to exit will block in perf_event_exit_event().
1963  *
1964  * When called from perf_pending_event it's OK because event->ctx
1965  * is the current context on this CPU and preemption is disabled,
1966  * hence we can't get into perf_event_task_sched_out for this context.
1967  */
1968 static void _perf_event_disable(struct perf_event *event)
1969 {
1970 	struct perf_event_context *ctx = event->ctx;
1971 
1972 	raw_spin_lock_irq(&ctx->lock);
1973 	if (event->state <= PERF_EVENT_STATE_OFF) {
1974 		raw_spin_unlock_irq(&ctx->lock);
1975 		return;
1976 	}
1977 	raw_spin_unlock_irq(&ctx->lock);
1978 
1979 	event_function_call(event, __perf_event_disable, NULL);
1980 }
1981 
1982 void perf_event_disable_local(struct perf_event *event)
1983 {
1984 	event_function_local(event, __perf_event_disable, NULL);
1985 }
1986 
1987 /*
1988  * Strictly speaking kernel users cannot create groups and therefore this
1989  * interface does not need the perf_event_ctx_lock() magic.
1990  */
1991 void perf_event_disable(struct perf_event *event)
1992 {
1993 	struct perf_event_context *ctx;
1994 
1995 	ctx = perf_event_ctx_lock(event);
1996 	_perf_event_disable(event);
1997 	perf_event_ctx_unlock(event, ctx);
1998 }
1999 EXPORT_SYMBOL_GPL(perf_event_disable);
2000 
2001 void perf_event_disable_inatomic(struct perf_event *event)
2002 {
2003 	event->pending_disable = 1;
2004 	irq_work_queue(&event->pending);
2005 }
2006 
2007 static void perf_set_shadow_time(struct perf_event *event,
2008 				 struct perf_event_context *ctx,
2009 				 u64 tstamp)
2010 {
2011 	/*
2012 	 * use the correct time source for the time snapshot
2013 	 *
2014 	 * We could get by without this by leveraging the
2015 	 * fact that to get to this function, the caller
2016 	 * has most likely already called update_context_time()
2017 	 * and update_cgrp_time_xx() and thus both timestamp
2018 	 * are identical (or very close). Given that tstamp is,
2019 	 * already adjusted for cgroup, we could say that:
2020 	 *    tstamp - ctx->timestamp
2021 	 * is equivalent to
2022 	 *    tstamp - cgrp->timestamp.
2023 	 *
2024 	 * Then, in perf_output_read(), the calculation would
2025 	 * work with no changes because:
2026 	 * - event is guaranteed scheduled in
2027 	 * - no scheduled out in between
2028 	 * - thus the timestamp would be the same
2029 	 *
2030 	 * But this is a bit hairy.
2031 	 *
2032 	 * So instead, we have an explicit cgroup call to remain
2033 	 * within the time time source all along. We believe it
2034 	 * is cleaner and simpler to understand.
2035 	 */
2036 	if (is_cgroup_event(event))
2037 		perf_cgroup_set_shadow_time(event, tstamp);
2038 	else
2039 		event->shadow_ctx_time = tstamp - ctx->timestamp;
2040 }
2041 
2042 #define MAX_INTERRUPTS (~0ULL)
2043 
2044 static void perf_log_throttle(struct perf_event *event, int enable);
2045 static void perf_log_itrace_start(struct perf_event *event);
2046 
2047 static int
2048 event_sched_in(struct perf_event *event,
2049 		 struct perf_cpu_context *cpuctx,
2050 		 struct perf_event_context *ctx)
2051 {
2052 	u64 tstamp = perf_event_time(event);
2053 	int ret = 0;
2054 
2055 	lockdep_assert_held(&ctx->lock);
2056 
2057 	if (event->state <= PERF_EVENT_STATE_OFF)
2058 		return 0;
2059 
2060 	WRITE_ONCE(event->oncpu, smp_processor_id());
2061 	/*
2062 	 * Order event::oncpu write to happen before the ACTIVE state
2063 	 * is visible.
2064 	 */
2065 	smp_wmb();
2066 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2067 
2068 	/*
2069 	 * Unthrottle events, since we scheduled we might have missed several
2070 	 * ticks already, also for a heavily scheduling task there is little
2071 	 * guarantee it'll get a tick in a timely manner.
2072 	 */
2073 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2074 		perf_log_throttle(event, 1);
2075 		event->hw.interrupts = 0;
2076 	}
2077 
2078 	/*
2079 	 * The new state must be visible before we turn it on in the hardware:
2080 	 */
2081 	smp_wmb();
2082 
2083 	perf_pmu_disable(event->pmu);
2084 
2085 	perf_set_shadow_time(event, ctx, tstamp);
2086 
2087 	perf_log_itrace_start(event);
2088 
2089 	if (event->pmu->add(event, PERF_EF_START)) {
2090 		event->state = PERF_EVENT_STATE_INACTIVE;
2091 		event->oncpu = -1;
2092 		ret = -EAGAIN;
2093 		goto out;
2094 	}
2095 
2096 	event->tstamp_running += tstamp - event->tstamp_stopped;
2097 
2098 	if (!is_software_event(event))
2099 		cpuctx->active_oncpu++;
2100 	if (!ctx->nr_active++)
2101 		perf_event_ctx_activate(ctx);
2102 	if (event->attr.freq && event->attr.sample_freq)
2103 		ctx->nr_freq++;
2104 
2105 	if (event->attr.exclusive)
2106 		cpuctx->exclusive = 1;
2107 
2108 out:
2109 	perf_pmu_enable(event->pmu);
2110 
2111 	return ret;
2112 }
2113 
2114 static int
2115 group_sched_in(struct perf_event *group_event,
2116 	       struct perf_cpu_context *cpuctx,
2117 	       struct perf_event_context *ctx)
2118 {
2119 	struct perf_event *event, *partial_group = NULL;
2120 	struct pmu *pmu = ctx->pmu;
2121 	u64 now = ctx->time;
2122 	bool simulate = false;
2123 
2124 	if (group_event->state == PERF_EVENT_STATE_OFF)
2125 		return 0;
2126 
2127 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2128 
2129 	if (event_sched_in(group_event, cpuctx, ctx)) {
2130 		pmu->cancel_txn(pmu);
2131 		perf_mux_hrtimer_restart(cpuctx);
2132 		return -EAGAIN;
2133 	}
2134 
2135 	/*
2136 	 * Schedule in siblings as one group (if any):
2137 	 */
2138 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2139 		if (event_sched_in(event, cpuctx, ctx)) {
2140 			partial_group = event;
2141 			goto group_error;
2142 		}
2143 	}
2144 
2145 	if (!pmu->commit_txn(pmu))
2146 		return 0;
2147 
2148 group_error:
2149 	/*
2150 	 * Groups can be scheduled in as one unit only, so undo any
2151 	 * partial group before returning:
2152 	 * The events up to the failed event are scheduled out normally,
2153 	 * tstamp_stopped will be updated.
2154 	 *
2155 	 * The failed events and the remaining siblings need to have
2156 	 * their timings updated as if they had gone thru event_sched_in()
2157 	 * and event_sched_out(). This is required to get consistent timings
2158 	 * across the group. This also takes care of the case where the group
2159 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2160 	 * the time the event was actually stopped, such that time delta
2161 	 * calculation in update_event_times() is correct.
2162 	 */
2163 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2164 		if (event == partial_group)
2165 			simulate = true;
2166 
2167 		if (simulate) {
2168 			event->tstamp_running += now - event->tstamp_stopped;
2169 			event->tstamp_stopped = now;
2170 		} else {
2171 			event_sched_out(event, cpuctx, ctx);
2172 		}
2173 	}
2174 	event_sched_out(group_event, cpuctx, ctx);
2175 
2176 	pmu->cancel_txn(pmu);
2177 
2178 	perf_mux_hrtimer_restart(cpuctx);
2179 
2180 	return -EAGAIN;
2181 }
2182 
2183 /*
2184  * Work out whether we can put this event group on the CPU now.
2185  */
2186 static int group_can_go_on(struct perf_event *event,
2187 			   struct perf_cpu_context *cpuctx,
2188 			   int can_add_hw)
2189 {
2190 	/*
2191 	 * Groups consisting entirely of software events can always go on.
2192 	 */
2193 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2194 		return 1;
2195 	/*
2196 	 * If an exclusive group is already on, no other hardware
2197 	 * events can go on.
2198 	 */
2199 	if (cpuctx->exclusive)
2200 		return 0;
2201 	/*
2202 	 * If this group is exclusive and there are already
2203 	 * events on the CPU, it can't go on.
2204 	 */
2205 	if (event->attr.exclusive && cpuctx->active_oncpu)
2206 		return 0;
2207 	/*
2208 	 * Otherwise, try to add it if all previous groups were able
2209 	 * to go on.
2210 	 */
2211 	return can_add_hw;
2212 }
2213 
2214 static void add_event_to_ctx(struct perf_event *event,
2215 			       struct perf_event_context *ctx)
2216 {
2217 	u64 tstamp = perf_event_time(event);
2218 
2219 	list_add_event(event, ctx);
2220 	perf_group_attach(event);
2221 	event->tstamp_enabled = tstamp;
2222 	event->tstamp_running = tstamp;
2223 	event->tstamp_stopped = tstamp;
2224 }
2225 
2226 static void ctx_sched_out(struct perf_event_context *ctx,
2227 			  struct perf_cpu_context *cpuctx,
2228 			  enum event_type_t event_type);
2229 static void
2230 ctx_sched_in(struct perf_event_context *ctx,
2231 	     struct perf_cpu_context *cpuctx,
2232 	     enum event_type_t event_type,
2233 	     struct task_struct *task);
2234 
2235 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2236 			       struct perf_event_context *ctx,
2237 			       enum event_type_t event_type)
2238 {
2239 	if (!cpuctx->task_ctx)
2240 		return;
2241 
2242 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2243 		return;
2244 
2245 	ctx_sched_out(ctx, cpuctx, event_type);
2246 }
2247 
2248 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2249 				struct perf_event_context *ctx,
2250 				struct task_struct *task)
2251 {
2252 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2253 	if (ctx)
2254 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2255 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2256 	if (ctx)
2257 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2258 }
2259 
2260 /*
2261  * We want to maintain the following priority of scheduling:
2262  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2263  *  - task pinned (EVENT_PINNED)
2264  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2265  *  - task flexible (EVENT_FLEXIBLE).
2266  *
2267  * In order to avoid unscheduling and scheduling back in everything every
2268  * time an event is added, only do it for the groups of equal priority and
2269  * below.
2270  *
2271  * This can be called after a batch operation on task events, in which case
2272  * event_type is a bit mask of the types of events involved. For CPU events,
2273  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2274  */
2275 static void ctx_resched(struct perf_cpu_context *cpuctx,
2276 			struct perf_event_context *task_ctx,
2277 			enum event_type_t event_type)
2278 {
2279 	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2280 	bool cpu_event = !!(event_type & EVENT_CPU);
2281 
2282 	/*
2283 	 * If pinned groups are involved, flexible groups also need to be
2284 	 * scheduled out.
2285 	 */
2286 	if (event_type & EVENT_PINNED)
2287 		event_type |= EVENT_FLEXIBLE;
2288 
2289 	perf_pmu_disable(cpuctx->ctx.pmu);
2290 	if (task_ctx)
2291 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2292 
2293 	/*
2294 	 * Decide which cpu ctx groups to schedule out based on the types
2295 	 * of events that caused rescheduling:
2296 	 *  - EVENT_CPU: schedule out corresponding groups;
2297 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2298 	 *  - otherwise, do nothing more.
2299 	 */
2300 	if (cpu_event)
2301 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2302 	else if (ctx_event_type & EVENT_PINNED)
2303 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2304 
2305 	perf_event_sched_in(cpuctx, task_ctx, current);
2306 	perf_pmu_enable(cpuctx->ctx.pmu);
2307 }
2308 
2309 /*
2310  * Cross CPU call to install and enable a performance event
2311  *
2312  * Very similar to remote_function() + event_function() but cannot assume that
2313  * things like ctx->is_active and cpuctx->task_ctx are set.
2314  */
2315 static int  __perf_install_in_context(void *info)
2316 {
2317 	struct perf_event *event = info;
2318 	struct perf_event_context *ctx = event->ctx;
2319 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2320 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2321 	bool reprogram = true;
2322 	int ret = 0;
2323 
2324 	raw_spin_lock(&cpuctx->ctx.lock);
2325 	if (ctx->task) {
2326 		raw_spin_lock(&ctx->lock);
2327 		task_ctx = ctx;
2328 
2329 		reprogram = (ctx->task == current);
2330 
2331 		/*
2332 		 * If the task is running, it must be running on this CPU,
2333 		 * otherwise we cannot reprogram things.
2334 		 *
2335 		 * If its not running, we don't care, ctx->lock will
2336 		 * serialize against it becoming runnable.
2337 		 */
2338 		if (task_curr(ctx->task) && !reprogram) {
2339 			ret = -ESRCH;
2340 			goto unlock;
2341 		}
2342 
2343 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2344 	} else if (task_ctx) {
2345 		raw_spin_lock(&task_ctx->lock);
2346 	}
2347 
2348 	if (reprogram) {
2349 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2350 		add_event_to_ctx(event, ctx);
2351 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2352 	} else {
2353 		add_event_to_ctx(event, ctx);
2354 	}
2355 
2356 unlock:
2357 	perf_ctx_unlock(cpuctx, task_ctx);
2358 
2359 	return ret;
2360 }
2361 
2362 /*
2363  * Attach a performance event to a context.
2364  *
2365  * Very similar to event_function_call, see comment there.
2366  */
2367 static void
2368 perf_install_in_context(struct perf_event_context *ctx,
2369 			struct perf_event *event,
2370 			int cpu)
2371 {
2372 	struct task_struct *task = READ_ONCE(ctx->task);
2373 
2374 	lockdep_assert_held(&ctx->mutex);
2375 
2376 	if (event->cpu != -1)
2377 		event->cpu = cpu;
2378 
2379 	/*
2380 	 * Ensures that if we can observe event->ctx, both the event and ctx
2381 	 * will be 'complete'. See perf_iterate_sb_cpu().
2382 	 */
2383 	smp_store_release(&event->ctx, ctx);
2384 
2385 	if (!task) {
2386 		cpu_function_call(cpu, __perf_install_in_context, event);
2387 		return;
2388 	}
2389 
2390 	/*
2391 	 * Should not happen, we validate the ctx is still alive before calling.
2392 	 */
2393 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2394 		return;
2395 
2396 	/*
2397 	 * Installing events is tricky because we cannot rely on ctx->is_active
2398 	 * to be set in case this is the nr_events 0 -> 1 transition.
2399 	 *
2400 	 * Instead we use task_curr(), which tells us if the task is running.
2401 	 * However, since we use task_curr() outside of rq::lock, we can race
2402 	 * against the actual state. This means the result can be wrong.
2403 	 *
2404 	 * If we get a false positive, we retry, this is harmless.
2405 	 *
2406 	 * If we get a false negative, things are complicated. If we are after
2407 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2408 	 * value must be correct. If we're before, it doesn't matter since
2409 	 * perf_event_context_sched_in() will program the counter.
2410 	 *
2411 	 * However, this hinges on the remote context switch having observed
2412 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2413 	 * ctx::lock in perf_event_context_sched_in().
2414 	 *
2415 	 * We do this by task_function_call(), if the IPI fails to hit the task
2416 	 * we know any future context switch of task must see the
2417 	 * perf_event_ctpx[] store.
2418 	 */
2419 
2420 	/*
2421 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2422 	 * task_cpu() load, such that if the IPI then does not find the task
2423 	 * running, a future context switch of that task must observe the
2424 	 * store.
2425 	 */
2426 	smp_mb();
2427 again:
2428 	if (!task_function_call(task, __perf_install_in_context, event))
2429 		return;
2430 
2431 	raw_spin_lock_irq(&ctx->lock);
2432 	task = ctx->task;
2433 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2434 		/*
2435 		 * Cannot happen because we already checked above (which also
2436 		 * cannot happen), and we hold ctx->mutex, which serializes us
2437 		 * against perf_event_exit_task_context().
2438 		 */
2439 		raw_spin_unlock_irq(&ctx->lock);
2440 		return;
2441 	}
2442 	/*
2443 	 * If the task is not running, ctx->lock will avoid it becoming so,
2444 	 * thus we can safely install the event.
2445 	 */
2446 	if (task_curr(task)) {
2447 		raw_spin_unlock_irq(&ctx->lock);
2448 		goto again;
2449 	}
2450 	add_event_to_ctx(event, ctx);
2451 	raw_spin_unlock_irq(&ctx->lock);
2452 }
2453 
2454 /*
2455  * Put a event into inactive state and update time fields.
2456  * Enabling the leader of a group effectively enables all
2457  * the group members that aren't explicitly disabled, so we
2458  * have to update their ->tstamp_enabled also.
2459  * Note: this works for group members as well as group leaders
2460  * since the non-leader members' sibling_lists will be empty.
2461  */
2462 static void __perf_event_mark_enabled(struct perf_event *event)
2463 {
2464 	struct perf_event *sub;
2465 	u64 tstamp = perf_event_time(event);
2466 
2467 	event->state = PERF_EVENT_STATE_INACTIVE;
2468 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2469 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2470 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2471 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2472 	}
2473 }
2474 
2475 /*
2476  * Cross CPU call to enable a performance event
2477  */
2478 static void __perf_event_enable(struct perf_event *event,
2479 				struct perf_cpu_context *cpuctx,
2480 				struct perf_event_context *ctx,
2481 				void *info)
2482 {
2483 	struct perf_event *leader = event->group_leader;
2484 	struct perf_event_context *task_ctx;
2485 
2486 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2487 	    event->state <= PERF_EVENT_STATE_ERROR)
2488 		return;
2489 
2490 	if (ctx->is_active)
2491 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2492 
2493 	__perf_event_mark_enabled(event);
2494 
2495 	if (!ctx->is_active)
2496 		return;
2497 
2498 	if (!event_filter_match(event)) {
2499 		if (is_cgroup_event(event))
2500 			perf_cgroup_defer_enabled(event);
2501 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2502 		return;
2503 	}
2504 
2505 	/*
2506 	 * If the event is in a group and isn't the group leader,
2507 	 * then don't put it on unless the group is on.
2508 	 */
2509 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2510 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2511 		return;
2512 	}
2513 
2514 	task_ctx = cpuctx->task_ctx;
2515 	if (ctx->task)
2516 		WARN_ON_ONCE(task_ctx != ctx);
2517 
2518 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2519 }
2520 
2521 /*
2522  * Enable a event.
2523  *
2524  * If event->ctx is a cloned context, callers must make sure that
2525  * every task struct that event->ctx->task could possibly point to
2526  * remains valid.  This condition is satisfied when called through
2527  * perf_event_for_each_child or perf_event_for_each as described
2528  * for perf_event_disable.
2529  */
2530 static void _perf_event_enable(struct perf_event *event)
2531 {
2532 	struct perf_event_context *ctx = event->ctx;
2533 
2534 	raw_spin_lock_irq(&ctx->lock);
2535 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2536 	    event->state <  PERF_EVENT_STATE_ERROR) {
2537 		raw_spin_unlock_irq(&ctx->lock);
2538 		return;
2539 	}
2540 
2541 	/*
2542 	 * If the event is in error state, clear that first.
2543 	 *
2544 	 * That way, if we see the event in error state below, we know that it
2545 	 * has gone back into error state, as distinct from the task having
2546 	 * been scheduled away before the cross-call arrived.
2547 	 */
2548 	if (event->state == PERF_EVENT_STATE_ERROR)
2549 		event->state = PERF_EVENT_STATE_OFF;
2550 	raw_spin_unlock_irq(&ctx->lock);
2551 
2552 	event_function_call(event, __perf_event_enable, NULL);
2553 }
2554 
2555 /*
2556  * See perf_event_disable();
2557  */
2558 void perf_event_enable(struct perf_event *event)
2559 {
2560 	struct perf_event_context *ctx;
2561 
2562 	ctx = perf_event_ctx_lock(event);
2563 	_perf_event_enable(event);
2564 	perf_event_ctx_unlock(event, ctx);
2565 }
2566 EXPORT_SYMBOL_GPL(perf_event_enable);
2567 
2568 struct stop_event_data {
2569 	struct perf_event	*event;
2570 	unsigned int		restart;
2571 };
2572 
2573 static int __perf_event_stop(void *info)
2574 {
2575 	struct stop_event_data *sd = info;
2576 	struct perf_event *event = sd->event;
2577 
2578 	/* if it's already INACTIVE, do nothing */
2579 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2580 		return 0;
2581 
2582 	/* matches smp_wmb() in event_sched_in() */
2583 	smp_rmb();
2584 
2585 	/*
2586 	 * There is a window with interrupts enabled before we get here,
2587 	 * so we need to check again lest we try to stop another CPU's event.
2588 	 */
2589 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2590 		return -EAGAIN;
2591 
2592 	event->pmu->stop(event, PERF_EF_UPDATE);
2593 
2594 	/*
2595 	 * May race with the actual stop (through perf_pmu_output_stop()),
2596 	 * but it is only used for events with AUX ring buffer, and such
2597 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2598 	 * see comments in perf_aux_output_begin().
2599 	 *
2600 	 * Since this is happening on a event-local CPU, no trace is lost
2601 	 * while restarting.
2602 	 */
2603 	if (sd->restart)
2604 		event->pmu->start(event, 0);
2605 
2606 	return 0;
2607 }
2608 
2609 static int perf_event_stop(struct perf_event *event, int restart)
2610 {
2611 	struct stop_event_data sd = {
2612 		.event		= event,
2613 		.restart	= restart,
2614 	};
2615 	int ret = 0;
2616 
2617 	do {
2618 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2619 			return 0;
2620 
2621 		/* matches smp_wmb() in event_sched_in() */
2622 		smp_rmb();
2623 
2624 		/*
2625 		 * We only want to restart ACTIVE events, so if the event goes
2626 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2627 		 * fall through with ret==-ENXIO.
2628 		 */
2629 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2630 					__perf_event_stop, &sd);
2631 	} while (ret == -EAGAIN);
2632 
2633 	return ret;
2634 }
2635 
2636 /*
2637  * In order to contain the amount of racy and tricky in the address filter
2638  * configuration management, it is a two part process:
2639  *
2640  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2641  *      we update the addresses of corresponding vmas in
2642  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2643  * (p2) when an event is scheduled in (pmu::add), it calls
2644  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2645  *      if the generation has changed since the previous call.
2646  *
2647  * If (p1) happens while the event is active, we restart it to force (p2).
2648  *
2649  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2650  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2651  *     ioctl;
2652  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2653  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2654  *     for reading;
2655  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2656  *     of exec.
2657  */
2658 void perf_event_addr_filters_sync(struct perf_event *event)
2659 {
2660 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2661 
2662 	if (!has_addr_filter(event))
2663 		return;
2664 
2665 	raw_spin_lock(&ifh->lock);
2666 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2667 		event->pmu->addr_filters_sync(event);
2668 		event->hw.addr_filters_gen = event->addr_filters_gen;
2669 	}
2670 	raw_spin_unlock(&ifh->lock);
2671 }
2672 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2673 
2674 static int _perf_event_refresh(struct perf_event *event, int refresh)
2675 {
2676 	/*
2677 	 * not supported on inherited events
2678 	 */
2679 	if (event->attr.inherit || !is_sampling_event(event))
2680 		return -EINVAL;
2681 
2682 	atomic_add(refresh, &event->event_limit);
2683 	_perf_event_enable(event);
2684 
2685 	return 0;
2686 }
2687 
2688 /*
2689  * See perf_event_disable()
2690  */
2691 int perf_event_refresh(struct perf_event *event, int refresh)
2692 {
2693 	struct perf_event_context *ctx;
2694 	int ret;
2695 
2696 	ctx = perf_event_ctx_lock(event);
2697 	ret = _perf_event_refresh(event, refresh);
2698 	perf_event_ctx_unlock(event, ctx);
2699 
2700 	return ret;
2701 }
2702 EXPORT_SYMBOL_GPL(perf_event_refresh);
2703 
2704 static void ctx_sched_out(struct perf_event_context *ctx,
2705 			  struct perf_cpu_context *cpuctx,
2706 			  enum event_type_t event_type)
2707 {
2708 	int is_active = ctx->is_active;
2709 	struct perf_event *event;
2710 
2711 	lockdep_assert_held(&ctx->lock);
2712 
2713 	if (likely(!ctx->nr_events)) {
2714 		/*
2715 		 * See __perf_remove_from_context().
2716 		 */
2717 		WARN_ON_ONCE(ctx->is_active);
2718 		if (ctx->task)
2719 			WARN_ON_ONCE(cpuctx->task_ctx);
2720 		return;
2721 	}
2722 
2723 	ctx->is_active &= ~event_type;
2724 	if (!(ctx->is_active & EVENT_ALL))
2725 		ctx->is_active = 0;
2726 
2727 	if (ctx->task) {
2728 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2729 		if (!ctx->is_active)
2730 			cpuctx->task_ctx = NULL;
2731 	}
2732 
2733 	/*
2734 	 * Always update time if it was set; not only when it changes.
2735 	 * Otherwise we can 'forget' to update time for any but the last
2736 	 * context we sched out. For example:
2737 	 *
2738 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2739 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2740 	 *
2741 	 * would only update time for the pinned events.
2742 	 */
2743 	if (is_active & EVENT_TIME) {
2744 		/* update (and stop) ctx time */
2745 		update_context_time(ctx);
2746 		update_cgrp_time_from_cpuctx(cpuctx);
2747 	}
2748 
2749 	is_active ^= ctx->is_active; /* changed bits */
2750 
2751 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2752 		return;
2753 
2754 	perf_pmu_disable(ctx->pmu);
2755 	if (is_active & EVENT_PINNED) {
2756 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2757 			group_sched_out(event, cpuctx, ctx);
2758 	}
2759 
2760 	if (is_active & EVENT_FLEXIBLE) {
2761 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2762 			group_sched_out(event, cpuctx, ctx);
2763 	}
2764 	perf_pmu_enable(ctx->pmu);
2765 }
2766 
2767 /*
2768  * Test whether two contexts are equivalent, i.e. whether they have both been
2769  * cloned from the same version of the same context.
2770  *
2771  * Equivalence is measured using a generation number in the context that is
2772  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2773  * and list_del_event().
2774  */
2775 static int context_equiv(struct perf_event_context *ctx1,
2776 			 struct perf_event_context *ctx2)
2777 {
2778 	lockdep_assert_held(&ctx1->lock);
2779 	lockdep_assert_held(&ctx2->lock);
2780 
2781 	/* Pinning disables the swap optimization */
2782 	if (ctx1->pin_count || ctx2->pin_count)
2783 		return 0;
2784 
2785 	/* If ctx1 is the parent of ctx2 */
2786 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2787 		return 1;
2788 
2789 	/* If ctx2 is the parent of ctx1 */
2790 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2791 		return 1;
2792 
2793 	/*
2794 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2795 	 * hierarchy, see perf_event_init_context().
2796 	 */
2797 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2798 			ctx1->parent_gen == ctx2->parent_gen)
2799 		return 1;
2800 
2801 	/* Unmatched */
2802 	return 0;
2803 }
2804 
2805 static void __perf_event_sync_stat(struct perf_event *event,
2806 				     struct perf_event *next_event)
2807 {
2808 	u64 value;
2809 
2810 	if (!event->attr.inherit_stat)
2811 		return;
2812 
2813 	/*
2814 	 * Update the event value, we cannot use perf_event_read()
2815 	 * because we're in the middle of a context switch and have IRQs
2816 	 * disabled, which upsets smp_call_function_single(), however
2817 	 * we know the event must be on the current CPU, therefore we
2818 	 * don't need to use it.
2819 	 */
2820 	switch (event->state) {
2821 	case PERF_EVENT_STATE_ACTIVE:
2822 		event->pmu->read(event);
2823 		/* fall-through */
2824 
2825 	case PERF_EVENT_STATE_INACTIVE:
2826 		update_event_times(event);
2827 		break;
2828 
2829 	default:
2830 		break;
2831 	}
2832 
2833 	/*
2834 	 * In order to keep per-task stats reliable we need to flip the event
2835 	 * values when we flip the contexts.
2836 	 */
2837 	value = local64_read(&next_event->count);
2838 	value = local64_xchg(&event->count, value);
2839 	local64_set(&next_event->count, value);
2840 
2841 	swap(event->total_time_enabled, next_event->total_time_enabled);
2842 	swap(event->total_time_running, next_event->total_time_running);
2843 
2844 	/*
2845 	 * Since we swizzled the values, update the user visible data too.
2846 	 */
2847 	perf_event_update_userpage(event);
2848 	perf_event_update_userpage(next_event);
2849 }
2850 
2851 static void perf_event_sync_stat(struct perf_event_context *ctx,
2852 				   struct perf_event_context *next_ctx)
2853 {
2854 	struct perf_event *event, *next_event;
2855 
2856 	if (!ctx->nr_stat)
2857 		return;
2858 
2859 	update_context_time(ctx);
2860 
2861 	event = list_first_entry(&ctx->event_list,
2862 				   struct perf_event, event_entry);
2863 
2864 	next_event = list_first_entry(&next_ctx->event_list,
2865 					struct perf_event, event_entry);
2866 
2867 	while (&event->event_entry != &ctx->event_list &&
2868 	       &next_event->event_entry != &next_ctx->event_list) {
2869 
2870 		__perf_event_sync_stat(event, next_event);
2871 
2872 		event = list_next_entry(event, event_entry);
2873 		next_event = list_next_entry(next_event, event_entry);
2874 	}
2875 }
2876 
2877 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2878 					 struct task_struct *next)
2879 {
2880 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2881 	struct perf_event_context *next_ctx;
2882 	struct perf_event_context *parent, *next_parent;
2883 	struct perf_cpu_context *cpuctx;
2884 	int do_switch = 1;
2885 
2886 	if (likely(!ctx))
2887 		return;
2888 
2889 	cpuctx = __get_cpu_context(ctx);
2890 	if (!cpuctx->task_ctx)
2891 		return;
2892 
2893 	rcu_read_lock();
2894 	next_ctx = next->perf_event_ctxp[ctxn];
2895 	if (!next_ctx)
2896 		goto unlock;
2897 
2898 	parent = rcu_dereference(ctx->parent_ctx);
2899 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2900 
2901 	/* If neither context have a parent context; they cannot be clones. */
2902 	if (!parent && !next_parent)
2903 		goto unlock;
2904 
2905 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2906 		/*
2907 		 * Looks like the two contexts are clones, so we might be
2908 		 * able to optimize the context switch.  We lock both
2909 		 * contexts and check that they are clones under the
2910 		 * lock (including re-checking that neither has been
2911 		 * uncloned in the meantime).  It doesn't matter which
2912 		 * order we take the locks because no other cpu could
2913 		 * be trying to lock both of these tasks.
2914 		 */
2915 		raw_spin_lock(&ctx->lock);
2916 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2917 		if (context_equiv(ctx, next_ctx)) {
2918 			WRITE_ONCE(ctx->task, next);
2919 			WRITE_ONCE(next_ctx->task, task);
2920 
2921 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2922 
2923 			/*
2924 			 * RCU_INIT_POINTER here is safe because we've not
2925 			 * modified the ctx and the above modification of
2926 			 * ctx->task and ctx->task_ctx_data are immaterial
2927 			 * since those values are always verified under
2928 			 * ctx->lock which we're now holding.
2929 			 */
2930 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2931 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2932 
2933 			do_switch = 0;
2934 
2935 			perf_event_sync_stat(ctx, next_ctx);
2936 		}
2937 		raw_spin_unlock(&next_ctx->lock);
2938 		raw_spin_unlock(&ctx->lock);
2939 	}
2940 unlock:
2941 	rcu_read_unlock();
2942 
2943 	if (do_switch) {
2944 		raw_spin_lock(&ctx->lock);
2945 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2946 		raw_spin_unlock(&ctx->lock);
2947 	}
2948 }
2949 
2950 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2951 
2952 void perf_sched_cb_dec(struct pmu *pmu)
2953 {
2954 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2955 
2956 	this_cpu_dec(perf_sched_cb_usages);
2957 
2958 	if (!--cpuctx->sched_cb_usage)
2959 		list_del(&cpuctx->sched_cb_entry);
2960 }
2961 
2962 
2963 void perf_sched_cb_inc(struct pmu *pmu)
2964 {
2965 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2966 
2967 	if (!cpuctx->sched_cb_usage++)
2968 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2969 
2970 	this_cpu_inc(perf_sched_cb_usages);
2971 }
2972 
2973 /*
2974  * This function provides the context switch callback to the lower code
2975  * layer. It is invoked ONLY when the context switch callback is enabled.
2976  *
2977  * This callback is relevant even to per-cpu events; for example multi event
2978  * PEBS requires this to provide PID/TID information. This requires we flush
2979  * all queued PEBS records before we context switch to a new task.
2980  */
2981 static void perf_pmu_sched_task(struct task_struct *prev,
2982 				struct task_struct *next,
2983 				bool sched_in)
2984 {
2985 	struct perf_cpu_context *cpuctx;
2986 	struct pmu *pmu;
2987 
2988 	if (prev == next)
2989 		return;
2990 
2991 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2992 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2993 
2994 		if (WARN_ON_ONCE(!pmu->sched_task))
2995 			continue;
2996 
2997 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2998 		perf_pmu_disable(pmu);
2999 
3000 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3001 
3002 		perf_pmu_enable(pmu);
3003 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3004 	}
3005 }
3006 
3007 static void perf_event_switch(struct task_struct *task,
3008 			      struct task_struct *next_prev, bool sched_in);
3009 
3010 #define for_each_task_context_nr(ctxn)					\
3011 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3012 
3013 /*
3014  * Called from scheduler to remove the events of the current task,
3015  * with interrupts disabled.
3016  *
3017  * We stop each event and update the event value in event->count.
3018  *
3019  * This does not protect us against NMI, but disable()
3020  * sets the disabled bit in the control field of event _before_
3021  * accessing the event control register. If a NMI hits, then it will
3022  * not restart the event.
3023  */
3024 void __perf_event_task_sched_out(struct task_struct *task,
3025 				 struct task_struct *next)
3026 {
3027 	int ctxn;
3028 
3029 	if (__this_cpu_read(perf_sched_cb_usages))
3030 		perf_pmu_sched_task(task, next, false);
3031 
3032 	if (atomic_read(&nr_switch_events))
3033 		perf_event_switch(task, next, false);
3034 
3035 	for_each_task_context_nr(ctxn)
3036 		perf_event_context_sched_out(task, ctxn, next);
3037 
3038 	/*
3039 	 * if cgroup events exist on this CPU, then we need
3040 	 * to check if we have to switch out PMU state.
3041 	 * cgroup event are system-wide mode only
3042 	 */
3043 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3044 		perf_cgroup_sched_out(task, next);
3045 }
3046 
3047 /*
3048  * Called with IRQs disabled
3049  */
3050 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3051 			      enum event_type_t event_type)
3052 {
3053 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3054 }
3055 
3056 static void
3057 ctx_pinned_sched_in(struct perf_event_context *ctx,
3058 		    struct perf_cpu_context *cpuctx)
3059 {
3060 	struct perf_event *event;
3061 
3062 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3063 		if (event->state <= PERF_EVENT_STATE_OFF)
3064 			continue;
3065 		if (!event_filter_match(event))
3066 			continue;
3067 
3068 		/* may need to reset tstamp_enabled */
3069 		if (is_cgroup_event(event))
3070 			perf_cgroup_mark_enabled(event, ctx);
3071 
3072 		if (group_can_go_on(event, cpuctx, 1))
3073 			group_sched_in(event, cpuctx, ctx);
3074 
3075 		/*
3076 		 * If this pinned group hasn't been scheduled,
3077 		 * put it in error state.
3078 		 */
3079 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
3080 			update_group_times(event);
3081 			event->state = PERF_EVENT_STATE_ERROR;
3082 		}
3083 	}
3084 }
3085 
3086 static void
3087 ctx_flexible_sched_in(struct perf_event_context *ctx,
3088 		      struct perf_cpu_context *cpuctx)
3089 {
3090 	struct perf_event *event;
3091 	int can_add_hw = 1;
3092 
3093 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3094 		/* Ignore events in OFF or ERROR state */
3095 		if (event->state <= PERF_EVENT_STATE_OFF)
3096 			continue;
3097 		/*
3098 		 * Listen to the 'cpu' scheduling filter constraint
3099 		 * of events:
3100 		 */
3101 		if (!event_filter_match(event))
3102 			continue;
3103 
3104 		/* may need to reset tstamp_enabled */
3105 		if (is_cgroup_event(event))
3106 			perf_cgroup_mark_enabled(event, ctx);
3107 
3108 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3109 			if (group_sched_in(event, cpuctx, ctx))
3110 				can_add_hw = 0;
3111 		}
3112 	}
3113 }
3114 
3115 static void
3116 ctx_sched_in(struct perf_event_context *ctx,
3117 	     struct perf_cpu_context *cpuctx,
3118 	     enum event_type_t event_type,
3119 	     struct task_struct *task)
3120 {
3121 	int is_active = ctx->is_active;
3122 	u64 now;
3123 
3124 	lockdep_assert_held(&ctx->lock);
3125 
3126 	if (likely(!ctx->nr_events))
3127 		return;
3128 
3129 	ctx->is_active |= (event_type | EVENT_TIME);
3130 	if (ctx->task) {
3131 		if (!is_active)
3132 			cpuctx->task_ctx = ctx;
3133 		else
3134 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3135 	}
3136 
3137 	is_active ^= ctx->is_active; /* changed bits */
3138 
3139 	if (is_active & EVENT_TIME) {
3140 		/* start ctx time */
3141 		now = perf_clock();
3142 		ctx->timestamp = now;
3143 		perf_cgroup_set_timestamp(task, ctx);
3144 	}
3145 
3146 	/*
3147 	 * First go through the list and put on any pinned groups
3148 	 * in order to give them the best chance of going on.
3149 	 */
3150 	if (is_active & EVENT_PINNED)
3151 		ctx_pinned_sched_in(ctx, cpuctx);
3152 
3153 	/* Then walk through the lower prio flexible groups */
3154 	if (is_active & EVENT_FLEXIBLE)
3155 		ctx_flexible_sched_in(ctx, cpuctx);
3156 }
3157 
3158 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3159 			     enum event_type_t event_type,
3160 			     struct task_struct *task)
3161 {
3162 	struct perf_event_context *ctx = &cpuctx->ctx;
3163 
3164 	ctx_sched_in(ctx, cpuctx, event_type, task);
3165 }
3166 
3167 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3168 					struct task_struct *task)
3169 {
3170 	struct perf_cpu_context *cpuctx;
3171 
3172 	cpuctx = __get_cpu_context(ctx);
3173 	if (cpuctx->task_ctx == ctx)
3174 		return;
3175 
3176 	perf_ctx_lock(cpuctx, ctx);
3177 	perf_pmu_disable(ctx->pmu);
3178 	/*
3179 	 * We want to keep the following priority order:
3180 	 * cpu pinned (that don't need to move), task pinned,
3181 	 * cpu flexible, task flexible.
3182 	 *
3183 	 * However, if task's ctx is not carrying any pinned
3184 	 * events, no need to flip the cpuctx's events around.
3185 	 */
3186 	if (!list_empty(&ctx->pinned_groups))
3187 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3188 	perf_event_sched_in(cpuctx, ctx, task);
3189 	perf_pmu_enable(ctx->pmu);
3190 	perf_ctx_unlock(cpuctx, ctx);
3191 }
3192 
3193 /*
3194  * Called from scheduler to add the events of the current task
3195  * with interrupts disabled.
3196  *
3197  * We restore the event value and then enable it.
3198  *
3199  * This does not protect us against NMI, but enable()
3200  * sets the enabled bit in the control field of event _before_
3201  * accessing the event control register. If a NMI hits, then it will
3202  * keep the event running.
3203  */
3204 void __perf_event_task_sched_in(struct task_struct *prev,
3205 				struct task_struct *task)
3206 {
3207 	struct perf_event_context *ctx;
3208 	int ctxn;
3209 
3210 	/*
3211 	 * If cgroup events exist on this CPU, then we need to check if we have
3212 	 * to switch in PMU state; cgroup event are system-wide mode only.
3213 	 *
3214 	 * Since cgroup events are CPU events, we must schedule these in before
3215 	 * we schedule in the task events.
3216 	 */
3217 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3218 		perf_cgroup_sched_in(prev, task);
3219 
3220 	for_each_task_context_nr(ctxn) {
3221 		ctx = task->perf_event_ctxp[ctxn];
3222 		if (likely(!ctx))
3223 			continue;
3224 
3225 		perf_event_context_sched_in(ctx, task);
3226 	}
3227 
3228 	if (atomic_read(&nr_switch_events))
3229 		perf_event_switch(task, prev, true);
3230 
3231 	if (__this_cpu_read(perf_sched_cb_usages))
3232 		perf_pmu_sched_task(prev, task, true);
3233 }
3234 
3235 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3236 {
3237 	u64 frequency = event->attr.sample_freq;
3238 	u64 sec = NSEC_PER_SEC;
3239 	u64 divisor, dividend;
3240 
3241 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3242 
3243 	count_fls = fls64(count);
3244 	nsec_fls = fls64(nsec);
3245 	frequency_fls = fls64(frequency);
3246 	sec_fls = 30;
3247 
3248 	/*
3249 	 * We got @count in @nsec, with a target of sample_freq HZ
3250 	 * the target period becomes:
3251 	 *
3252 	 *             @count * 10^9
3253 	 * period = -------------------
3254 	 *          @nsec * sample_freq
3255 	 *
3256 	 */
3257 
3258 	/*
3259 	 * Reduce accuracy by one bit such that @a and @b converge
3260 	 * to a similar magnitude.
3261 	 */
3262 #define REDUCE_FLS(a, b)		\
3263 do {					\
3264 	if (a##_fls > b##_fls) {	\
3265 		a >>= 1;		\
3266 		a##_fls--;		\
3267 	} else {			\
3268 		b >>= 1;		\
3269 		b##_fls--;		\
3270 	}				\
3271 } while (0)
3272 
3273 	/*
3274 	 * Reduce accuracy until either term fits in a u64, then proceed with
3275 	 * the other, so that finally we can do a u64/u64 division.
3276 	 */
3277 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3278 		REDUCE_FLS(nsec, frequency);
3279 		REDUCE_FLS(sec, count);
3280 	}
3281 
3282 	if (count_fls + sec_fls > 64) {
3283 		divisor = nsec * frequency;
3284 
3285 		while (count_fls + sec_fls > 64) {
3286 			REDUCE_FLS(count, sec);
3287 			divisor >>= 1;
3288 		}
3289 
3290 		dividend = count * sec;
3291 	} else {
3292 		dividend = count * sec;
3293 
3294 		while (nsec_fls + frequency_fls > 64) {
3295 			REDUCE_FLS(nsec, frequency);
3296 			dividend >>= 1;
3297 		}
3298 
3299 		divisor = nsec * frequency;
3300 	}
3301 
3302 	if (!divisor)
3303 		return dividend;
3304 
3305 	return div64_u64(dividend, divisor);
3306 }
3307 
3308 static DEFINE_PER_CPU(int, perf_throttled_count);
3309 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3310 
3311 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3312 {
3313 	struct hw_perf_event *hwc = &event->hw;
3314 	s64 period, sample_period;
3315 	s64 delta;
3316 
3317 	period = perf_calculate_period(event, nsec, count);
3318 
3319 	delta = (s64)(period - hwc->sample_period);
3320 	delta = (delta + 7) / 8; /* low pass filter */
3321 
3322 	sample_period = hwc->sample_period + delta;
3323 
3324 	if (!sample_period)
3325 		sample_period = 1;
3326 
3327 	hwc->sample_period = sample_period;
3328 
3329 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3330 		if (disable)
3331 			event->pmu->stop(event, PERF_EF_UPDATE);
3332 
3333 		local64_set(&hwc->period_left, 0);
3334 
3335 		if (disable)
3336 			event->pmu->start(event, PERF_EF_RELOAD);
3337 	}
3338 }
3339 
3340 /*
3341  * combine freq adjustment with unthrottling to avoid two passes over the
3342  * events. At the same time, make sure, having freq events does not change
3343  * the rate of unthrottling as that would introduce bias.
3344  */
3345 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3346 					   int needs_unthr)
3347 {
3348 	struct perf_event *event;
3349 	struct hw_perf_event *hwc;
3350 	u64 now, period = TICK_NSEC;
3351 	s64 delta;
3352 
3353 	/*
3354 	 * only need to iterate over all events iff:
3355 	 * - context have events in frequency mode (needs freq adjust)
3356 	 * - there are events to unthrottle on this cpu
3357 	 */
3358 	if (!(ctx->nr_freq || needs_unthr))
3359 		return;
3360 
3361 	raw_spin_lock(&ctx->lock);
3362 	perf_pmu_disable(ctx->pmu);
3363 
3364 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3365 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3366 			continue;
3367 
3368 		if (!event_filter_match(event))
3369 			continue;
3370 
3371 		perf_pmu_disable(event->pmu);
3372 
3373 		hwc = &event->hw;
3374 
3375 		if (hwc->interrupts == MAX_INTERRUPTS) {
3376 			hwc->interrupts = 0;
3377 			perf_log_throttle(event, 1);
3378 			event->pmu->start(event, 0);
3379 		}
3380 
3381 		if (!event->attr.freq || !event->attr.sample_freq)
3382 			goto next;
3383 
3384 		/*
3385 		 * stop the event and update event->count
3386 		 */
3387 		event->pmu->stop(event, PERF_EF_UPDATE);
3388 
3389 		now = local64_read(&event->count);
3390 		delta = now - hwc->freq_count_stamp;
3391 		hwc->freq_count_stamp = now;
3392 
3393 		/*
3394 		 * restart the event
3395 		 * reload only if value has changed
3396 		 * we have stopped the event so tell that
3397 		 * to perf_adjust_period() to avoid stopping it
3398 		 * twice.
3399 		 */
3400 		if (delta > 0)
3401 			perf_adjust_period(event, period, delta, false);
3402 
3403 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3404 	next:
3405 		perf_pmu_enable(event->pmu);
3406 	}
3407 
3408 	perf_pmu_enable(ctx->pmu);
3409 	raw_spin_unlock(&ctx->lock);
3410 }
3411 
3412 /*
3413  * Round-robin a context's events:
3414  */
3415 static void rotate_ctx(struct perf_event_context *ctx)
3416 {
3417 	/*
3418 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3419 	 * disabled by the inheritance code.
3420 	 */
3421 	if (!ctx->rotate_disable)
3422 		list_rotate_left(&ctx->flexible_groups);
3423 }
3424 
3425 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3426 {
3427 	struct perf_event_context *ctx = NULL;
3428 	int rotate = 0;
3429 
3430 	if (cpuctx->ctx.nr_events) {
3431 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3432 			rotate = 1;
3433 	}
3434 
3435 	ctx = cpuctx->task_ctx;
3436 	if (ctx && ctx->nr_events) {
3437 		if (ctx->nr_events != ctx->nr_active)
3438 			rotate = 1;
3439 	}
3440 
3441 	if (!rotate)
3442 		goto done;
3443 
3444 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3445 	perf_pmu_disable(cpuctx->ctx.pmu);
3446 
3447 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3448 	if (ctx)
3449 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3450 
3451 	rotate_ctx(&cpuctx->ctx);
3452 	if (ctx)
3453 		rotate_ctx(ctx);
3454 
3455 	perf_event_sched_in(cpuctx, ctx, current);
3456 
3457 	perf_pmu_enable(cpuctx->ctx.pmu);
3458 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3459 done:
3460 
3461 	return rotate;
3462 }
3463 
3464 void perf_event_task_tick(void)
3465 {
3466 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3467 	struct perf_event_context *ctx, *tmp;
3468 	int throttled;
3469 
3470 	WARN_ON(!irqs_disabled());
3471 
3472 	__this_cpu_inc(perf_throttled_seq);
3473 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3474 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3475 
3476 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3477 		perf_adjust_freq_unthr_context(ctx, throttled);
3478 }
3479 
3480 static int event_enable_on_exec(struct perf_event *event,
3481 				struct perf_event_context *ctx)
3482 {
3483 	if (!event->attr.enable_on_exec)
3484 		return 0;
3485 
3486 	event->attr.enable_on_exec = 0;
3487 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3488 		return 0;
3489 
3490 	__perf_event_mark_enabled(event);
3491 
3492 	return 1;
3493 }
3494 
3495 /*
3496  * Enable all of a task's events that have been marked enable-on-exec.
3497  * This expects task == current.
3498  */
3499 static void perf_event_enable_on_exec(int ctxn)
3500 {
3501 	struct perf_event_context *ctx, *clone_ctx = NULL;
3502 	enum event_type_t event_type = 0;
3503 	struct perf_cpu_context *cpuctx;
3504 	struct perf_event *event;
3505 	unsigned long flags;
3506 	int enabled = 0;
3507 
3508 	local_irq_save(flags);
3509 	ctx = current->perf_event_ctxp[ctxn];
3510 	if (!ctx || !ctx->nr_events)
3511 		goto out;
3512 
3513 	cpuctx = __get_cpu_context(ctx);
3514 	perf_ctx_lock(cpuctx, ctx);
3515 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3516 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3517 		enabled |= event_enable_on_exec(event, ctx);
3518 		event_type |= get_event_type(event);
3519 	}
3520 
3521 	/*
3522 	 * Unclone and reschedule this context if we enabled any event.
3523 	 */
3524 	if (enabled) {
3525 		clone_ctx = unclone_ctx(ctx);
3526 		ctx_resched(cpuctx, ctx, event_type);
3527 	} else {
3528 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3529 	}
3530 	perf_ctx_unlock(cpuctx, ctx);
3531 
3532 out:
3533 	local_irq_restore(flags);
3534 
3535 	if (clone_ctx)
3536 		put_ctx(clone_ctx);
3537 }
3538 
3539 struct perf_read_data {
3540 	struct perf_event *event;
3541 	bool group;
3542 	int ret;
3543 };
3544 
3545 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3546 {
3547 	u16 local_pkg, event_pkg;
3548 
3549 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3550 		int local_cpu = smp_processor_id();
3551 
3552 		event_pkg = topology_physical_package_id(event_cpu);
3553 		local_pkg = topology_physical_package_id(local_cpu);
3554 
3555 		if (event_pkg == local_pkg)
3556 			return local_cpu;
3557 	}
3558 
3559 	return event_cpu;
3560 }
3561 
3562 /*
3563  * Cross CPU call to read the hardware event
3564  */
3565 static void __perf_event_read(void *info)
3566 {
3567 	struct perf_read_data *data = info;
3568 	struct perf_event *sub, *event = data->event;
3569 	struct perf_event_context *ctx = event->ctx;
3570 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3571 	struct pmu *pmu = event->pmu;
3572 
3573 	/*
3574 	 * If this is a task context, we need to check whether it is
3575 	 * the current task context of this cpu.  If not it has been
3576 	 * scheduled out before the smp call arrived.  In that case
3577 	 * event->count would have been updated to a recent sample
3578 	 * when the event was scheduled out.
3579 	 */
3580 	if (ctx->task && cpuctx->task_ctx != ctx)
3581 		return;
3582 
3583 	raw_spin_lock(&ctx->lock);
3584 	if (ctx->is_active) {
3585 		update_context_time(ctx);
3586 		update_cgrp_time_from_event(event);
3587 	}
3588 
3589 	update_event_times(event);
3590 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3591 		goto unlock;
3592 
3593 	if (!data->group) {
3594 		pmu->read(event);
3595 		data->ret = 0;
3596 		goto unlock;
3597 	}
3598 
3599 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3600 
3601 	pmu->read(event);
3602 
3603 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3604 		update_event_times(sub);
3605 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3606 			/*
3607 			 * Use sibling's PMU rather than @event's since
3608 			 * sibling could be on different (eg: software) PMU.
3609 			 */
3610 			sub->pmu->read(sub);
3611 		}
3612 	}
3613 
3614 	data->ret = pmu->commit_txn(pmu);
3615 
3616 unlock:
3617 	raw_spin_unlock(&ctx->lock);
3618 }
3619 
3620 static inline u64 perf_event_count(struct perf_event *event)
3621 {
3622 	if (event->pmu->count)
3623 		return event->pmu->count(event);
3624 
3625 	return __perf_event_count(event);
3626 }
3627 
3628 /*
3629  * NMI-safe method to read a local event, that is an event that
3630  * is:
3631  *   - either for the current task, or for this CPU
3632  *   - does not have inherit set, for inherited task events
3633  *     will not be local and we cannot read them atomically
3634  *   - must not have a pmu::count method
3635  */
3636 u64 perf_event_read_local(struct perf_event *event)
3637 {
3638 	unsigned long flags;
3639 	u64 val;
3640 
3641 	/*
3642 	 * Disabling interrupts avoids all counter scheduling (context
3643 	 * switches, timer based rotation and IPIs).
3644 	 */
3645 	local_irq_save(flags);
3646 
3647 	/* If this is a per-task event, it must be for current */
3648 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3649 		     event->hw.target != current);
3650 
3651 	/* If this is a per-CPU event, it must be for this CPU */
3652 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3653 		     event->cpu != smp_processor_id());
3654 
3655 	/*
3656 	 * It must not be an event with inherit set, we cannot read
3657 	 * all child counters from atomic context.
3658 	 */
3659 	WARN_ON_ONCE(event->attr.inherit);
3660 
3661 	/*
3662 	 * It must not have a pmu::count method, those are not
3663 	 * NMI safe.
3664 	 */
3665 	WARN_ON_ONCE(event->pmu->count);
3666 
3667 	/*
3668 	 * If the event is currently on this CPU, its either a per-task event,
3669 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3670 	 * oncpu == -1).
3671 	 */
3672 	if (event->oncpu == smp_processor_id())
3673 		event->pmu->read(event);
3674 
3675 	val = local64_read(&event->count);
3676 	local_irq_restore(flags);
3677 
3678 	return val;
3679 }
3680 
3681 static int perf_event_read(struct perf_event *event, bool group)
3682 {
3683 	int event_cpu, ret = 0;
3684 
3685 	/*
3686 	 * If event is enabled and currently active on a CPU, update the
3687 	 * value in the event structure:
3688 	 */
3689 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3690 		struct perf_read_data data = {
3691 			.event = event,
3692 			.group = group,
3693 			.ret = 0,
3694 		};
3695 
3696 		event_cpu = READ_ONCE(event->oncpu);
3697 		if ((unsigned)event_cpu >= nr_cpu_ids)
3698 			return 0;
3699 
3700 		preempt_disable();
3701 		event_cpu = __perf_event_read_cpu(event, event_cpu);
3702 
3703 		/*
3704 		 * Purposely ignore the smp_call_function_single() return
3705 		 * value.
3706 		 *
3707 		 * If event_cpu isn't a valid CPU it means the event got
3708 		 * scheduled out and that will have updated the event count.
3709 		 *
3710 		 * Therefore, either way, we'll have an up-to-date event count
3711 		 * after this.
3712 		 */
3713 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3714 		preempt_enable();
3715 		ret = data.ret;
3716 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3717 		struct perf_event_context *ctx = event->ctx;
3718 		unsigned long flags;
3719 
3720 		raw_spin_lock_irqsave(&ctx->lock, flags);
3721 		/*
3722 		 * may read while context is not active
3723 		 * (e.g., thread is blocked), in that case
3724 		 * we cannot update context time
3725 		 */
3726 		if (ctx->is_active) {
3727 			update_context_time(ctx);
3728 			update_cgrp_time_from_event(event);
3729 		}
3730 		if (group)
3731 			update_group_times(event);
3732 		else
3733 			update_event_times(event);
3734 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3735 	}
3736 
3737 	return ret;
3738 }
3739 
3740 /*
3741  * Initialize the perf_event context in a task_struct:
3742  */
3743 static void __perf_event_init_context(struct perf_event_context *ctx)
3744 {
3745 	raw_spin_lock_init(&ctx->lock);
3746 	mutex_init(&ctx->mutex);
3747 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3748 	INIT_LIST_HEAD(&ctx->pinned_groups);
3749 	INIT_LIST_HEAD(&ctx->flexible_groups);
3750 	INIT_LIST_HEAD(&ctx->event_list);
3751 	atomic_set(&ctx->refcount, 1);
3752 }
3753 
3754 static struct perf_event_context *
3755 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3756 {
3757 	struct perf_event_context *ctx;
3758 
3759 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3760 	if (!ctx)
3761 		return NULL;
3762 
3763 	__perf_event_init_context(ctx);
3764 	if (task) {
3765 		ctx->task = task;
3766 		get_task_struct(task);
3767 	}
3768 	ctx->pmu = pmu;
3769 
3770 	return ctx;
3771 }
3772 
3773 static struct task_struct *
3774 find_lively_task_by_vpid(pid_t vpid)
3775 {
3776 	struct task_struct *task;
3777 
3778 	rcu_read_lock();
3779 	if (!vpid)
3780 		task = current;
3781 	else
3782 		task = find_task_by_vpid(vpid);
3783 	if (task)
3784 		get_task_struct(task);
3785 	rcu_read_unlock();
3786 
3787 	if (!task)
3788 		return ERR_PTR(-ESRCH);
3789 
3790 	return task;
3791 }
3792 
3793 /*
3794  * Returns a matching context with refcount and pincount.
3795  */
3796 static struct perf_event_context *
3797 find_get_context(struct pmu *pmu, struct task_struct *task,
3798 		struct perf_event *event)
3799 {
3800 	struct perf_event_context *ctx, *clone_ctx = NULL;
3801 	struct perf_cpu_context *cpuctx;
3802 	void *task_ctx_data = NULL;
3803 	unsigned long flags;
3804 	int ctxn, err;
3805 	int cpu = event->cpu;
3806 
3807 	if (!task) {
3808 		/* Must be root to operate on a CPU event: */
3809 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3810 			return ERR_PTR(-EACCES);
3811 
3812 		/*
3813 		 * We could be clever and allow to attach a event to an
3814 		 * offline CPU and activate it when the CPU comes up, but
3815 		 * that's for later.
3816 		 */
3817 		if (!cpu_online(cpu))
3818 			return ERR_PTR(-ENODEV);
3819 
3820 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3821 		ctx = &cpuctx->ctx;
3822 		get_ctx(ctx);
3823 		++ctx->pin_count;
3824 
3825 		return ctx;
3826 	}
3827 
3828 	err = -EINVAL;
3829 	ctxn = pmu->task_ctx_nr;
3830 	if (ctxn < 0)
3831 		goto errout;
3832 
3833 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3834 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3835 		if (!task_ctx_data) {
3836 			err = -ENOMEM;
3837 			goto errout;
3838 		}
3839 	}
3840 
3841 retry:
3842 	ctx = perf_lock_task_context(task, ctxn, &flags);
3843 	if (ctx) {
3844 		clone_ctx = unclone_ctx(ctx);
3845 		++ctx->pin_count;
3846 
3847 		if (task_ctx_data && !ctx->task_ctx_data) {
3848 			ctx->task_ctx_data = task_ctx_data;
3849 			task_ctx_data = NULL;
3850 		}
3851 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3852 
3853 		if (clone_ctx)
3854 			put_ctx(clone_ctx);
3855 	} else {
3856 		ctx = alloc_perf_context(pmu, task);
3857 		err = -ENOMEM;
3858 		if (!ctx)
3859 			goto errout;
3860 
3861 		if (task_ctx_data) {
3862 			ctx->task_ctx_data = task_ctx_data;
3863 			task_ctx_data = NULL;
3864 		}
3865 
3866 		err = 0;
3867 		mutex_lock(&task->perf_event_mutex);
3868 		/*
3869 		 * If it has already passed perf_event_exit_task().
3870 		 * we must see PF_EXITING, it takes this mutex too.
3871 		 */
3872 		if (task->flags & PF_EXITING)
3873 			err = -ESRCH;
3874 		else if (task->perf_event_ctxp[ctxn])
3875 			err = -EAGAIN;
3876 		else {
3877 			get_ctx(ctx);
3878 			++ctx->pin_count;
3879 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3880 		}
3881 		mutex_unlock(&task->perf_event_mutex);
3882 
3883 		if (unlikely(err)) {
3884 			put_ctx(ctx);
3885 
3886 			if (err == -EAGAIN)
3887 				goto retry;
3888 			goto errout;
3889 		}
3890 	}
3891 
3892 	kfree(task_ctx_data);
3893 	return ctx;
3894 
3895 errout:
3896 	kfree(task_ctx_data);
3897 	return ERR_PTR(err);
3898 }
3899 
3900 static void perf_event_free_filter(struct perf_event *event);
3901 static void perf_event_free_bpf_prog(struct perf_event *event);
3902 
3903 static void free_event_rcu(struct rcu_head *head)
3904 {
3905 	struct perf_event *event;
3906 
3907 	event = container_of(head, struct perf_event, rcu_head);
3908 	if (event->ns)
3909 		put_pid_ns(event->ns);
3910 	perf_event_free_filter(event);
3911 	kfree(event);
3912 }
3913 
3914 static void ring_buffer_attach(struct perf_event *event,
3915 			       struct ring_buffer *rb);
3916 
3917 static void detach_sb_event(struct perf_event *event)
3918 {
3919 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3920 
3921 	raw_spin_lock(&pel->lock);
3922 	list_del_rcu(&event->sb_list);
3923 	raw_spin_unlock(&pel->lock);
3924 }
3925 
3926 static bool is_sb_event(struct perf_event *event)
3927 {
3928 	struct perf_event_attr *attr = &event->attr;
3929 
3930 	if (event->parent)
3931 		return false;
3932 
3933 	if (event->attach_state & PERF_ATTACH_TASK)
3934 		return false;
3935 
3936 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3937 	    attr->comm || attr->comm_exec ||
3938 	    attr->task ||
3939 	    attr->context_switch)
3940 		return true;
3941 	return false;
3942 }
3943 
3944 static void unaccount_pmu_sb_event(struct perf_event *event)
3945 {
3946 	if (is_sb_event(event))
3947 		detach_sb_event(event);
3948 }
3949 
3950 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3951 {
3952 	if (event->parent)
3953 		return;
3954 
3955 	if (is_cgroup_event(event))
3956 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3957 }
3958 
3959 #ifdef CONFIG_NO_HZ_FULL
3960 static DEFINE_SPINLOCK(nr_freq_lock);
3961 #endif
3962 
3963 static void unaccount_freq_event_nohz(void)
3964 {
3965 #ifdef CONFIG_NO_HZ_FULL
3966 	spin_lock(&nr_freq_lock);
3967 	if (atomic_dec_and_test(&nr_freq_events))
3968 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3969 	spin_unlock(&nr_freq_lock);
3970 #endif
3971 }
3972 
3973 static void unaccount_freq_event(void)
3974 {
3975 	if (tick_nohz_full_enabled())
3976 		unaccount_freq_event_nohz();
3977 	else
3978 		atomic_dec(&nr_freq_events);
3979 }
3980 
3981 static void unaccount_event(struct perf_event *event)
3982 {
3983 	bool dec = false;
3984 
3985 	if (event->parent)
3986 		return;
3987 
3988 	if (event->attach_state & PERF_ATTACH_TASK)
3989 		dec = true;
3990 	if (event->attr.mmap || event->attr.mmap_data)
3991 		atomic_dec(&nr_mmap_events);
3992 	if (event->attr.comm)
3993 		atomic_dec(&nr_comm_events);
3994 	if (event->attr.task)
3995 		atomic_dec(&nr_task_events);
3996 	if (event->attr.freq)
3997 		unaccount_freq_event();
3998 	if (event->attr.context_switch) {
3999 		dec = true;
4000 		atomic_dec(&nr_switch_events);
4001 	}
4002 	if (is_cgroup_event(event))
4003 		dec = true;
4004 	if (has_branch_stack(event))
4005 		dec = true;
4006 
4007 	if (dec) {
4008 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4009 			schedule_delayed_work(&perf_sched_work, HZ);
4010 	}
4011 
4012 	unaccount_event_cpu(event, event->cpu);
4013 
4014 	unaccount_pmu_sb_event(event);
4015 }
4016 
4017 static void perf_sched_delayed(struct work_struct *work)
4018 {
4019 	mutex_lock(&perf_sched_mutex);
4020 	if (atomic_dec_and_test(&perf_sched_count))
4021 		static_branch_disable(&perf_sched_events);
4022 	mutex_unlock(&perf_sched_mutex);
4023 }
4024 
4025 /*
4026  * The following implement mutual exclusion of events on "exclusive" pmus
4027  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4028  * at a time, so we disallow creating events that might conflict, namely:
4029  *
4030  *  1) cpu-wide events in the presence of per-task events,
4031  *  2) per-task events in the presence of cpu-wide events,
4032  *  3) two matching events on the same context.
4033  *
4034  * The former two cases are handled in the allocation path (perf_event_alloc(),
4035  * _free_event()), the latter -- before the first perf_install_in_context().
4036  */
4037 static int exclusive_event_init(struct perf_event *event)
4038 {
4039 	struct pmu *pmu = event->pmu;
4040 
4041 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4042 		return 0;
4043 
4044 	/*
4045 	 * Prevent co-existence of per-task and cpu-wide events on the
4046 	 * same exclusive pmu.
4047 	 *
4048 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4049 	 * events on this "exclusive" pmu, positive means there are
4050 	 * per-task events.
4051 	 *
4052 	 * Since this is called in perf_event_alloc() path, event::ctx
4053 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4054 	 * to mean "per-task event", because unlike other attach states it
4055 	 * never gets cleared.
4056 	 */
4057 	if (event->attach_state & PERF_ATTACH_TASK) {
4058 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4059 			return -EBUSY;
4060 	} else {
4061 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4062 			return -EBUSY;
4063 	}
4064 
4065 	return 0;
4066 }
4067 
4068 static void exclusive_event_destroy(struct perf_event *event)
4069 {
4070 	struct pmu *pmu = event->pmu;
4071 
4072 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4073 		return;
4074 
4075 	/* see comment in exclusive_event_init() */
4076 	if (event->attach_state & PERF_ATTACH_TASK)
4077 		atomic_dec(&pmu->exclusive_cnt);
4078 	else
4079 		atomic_inc(&pmu->exclusive_cnt);
4080 }
4081 
4082 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4083 {
4084 	if ((e1->pmu == e2->pmu) &&
4085 	    (e1->cpu == e2->cpu ||
4086 	     e1->cpu == -1 ||
4087 	     e2->cpu == -1))
4088 		return true;
4089 	return false;
4090 }
4091 
4092 /* Called under the same ctx::mutex as perf_install_in_context() */
4093 static bool exclusive_event_installable(struct perf_event *event,
4094 					struct perf_event_context *ctx)
4095 {
4096 	struct perf_event *iter_event;
4097 	struct pmu *pmu = event->pmu;
4098 
4099 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4100 		return true;
4101 
4102 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4103 		if (exclusive_event_match(iter_event, event))
4104 			return false;
4105 	}
4106 
4107 	return true;
4108 }
4109 
4110 static void perf_addr_filters_splice(struct perf_event *event,
4111 				       struct list_head *head);
4112 
4113 static void _free_event(struct perf_event *event)
4114 {
4115 	irq_work_sync(&event->pending);
4116 
4117 	unaccount_event(event);
4118 
4119 	if (event->rb) {
4120 		/*
4121 		 * Can happen when we close an event with re-directed output.
4122 		 *
4123 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4124 		 * over us; possibly making our ring_buffer_put() the last.
4125 		 */
4126 		mutex_lock(&event->mmap_mutex);
4127 		ring_buffer_attach(event, NULL);
4128 		mutex_unlock(&event->mmap_mutex);
4129 	}
4130 
4131 	if (is_cgroup_event(event))
4132 		perf_detach_cgroup(event);
4133 
4134 	if (!event->parent) {
4135 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4136 			put_callchain_buffers();
4137 	}
4138 
4139 	perf_event_free_bpf_prog(event);
4140 	perf_addr_filters_splice(event, NULL);
4141 	kfree(event->addr_filters_offs);
4142 
4143 	if (event->destroy)
4144 		event->destroy(event);
4145 
4146 	if (event->ctx)
4147 		put_ctx(event->ctx);
4148 
4149 	exclusive_event_destroy(event);
4150 	module_put(event->pmu->module);
4151 
4152 	call_rcu(&event->rcu_head, free_event_rcu);
4153 }
4154 
4155 /*
4156  * Used to free events which have a known refcount of 1, such as in error paths
4157  * where the event isn't exposed yet and inherited events.
4158  */
4159 static void free_event(struct perf_event *event)
4160 {
4161 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4162 				"unexpected event refcount: %ld; ptr=%p\n",
4163 				atomic_long_read(&event->refcount), event)) {
4164 		/* leak to avoid use-after-free */
4165 		return;
4166 	}
4167 
4168 	_free_event(event);
4169 }
4170 
4171 /*
4172  * Remove user event from the owner task.
4173  */
4174 static void perf_remove_from_owner(struct perf_event *event)
4175 {
4176 	struct task_struct *owner;
4177 
4178 	rcu_read_lock();
4179 	/*
4180 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4181 	 * observe !owner it means the list deletion is complete and we can
4182 	 * indeed free this event, otherwise we need to serialize on
4183 	 * owner->perf_event_mutex.
4184 	 */
4185 	owner = lockless_dereference(event->owner);
4186 	if (owner) {
4187 		/*
4188 		 * Since delayed_put_task_struct() also drops the last
4189 		 * task reference we can safely take a new reference
4190 		 * while holding the rcu_read_lock().
4191 		 */
4192 		get_task_struct(owner);
4193 	}
4194 	rcu_read_unlock();
4195 
4196 	if (owner) {
4197 		/*
4198 		 * If we're here through perf_event_exit_task() we're already
4199 		 * holding ctx->mutex which would be an inversion wrt. the
4200 		 * normal lock order.
4201 		 *
4202 		 * However we can safely take this lock because its the child
4203 		 * ctx->mutex.
4204 		 */
4205 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4206 
4207 		/*
4208 		 * We have to re-check the event->owner field, if it is cleared
4209 		 * we raced with perf_event_exit_task(), acquiring the mutex
4210 		 * ensured they're done, and we can proceed with freeing the
4211 		 * event.
4212 		 */
4213 		if (event->owner) {
4214 			list_del_init(&event->owner_entry);
4215 			smp_store_release(&event->owner, NULL);
4216 		}
4217 		mutex_unlock(&owner->perf_event_mutex);
4218 		put_task_struct(owner);
4219 	}
4220 }
4221 
4222 static void put_event(struct perf_event *event)
4223 {
4224 	if (!atomic_long_dec_and_test(&event->refcount))
4225 		return;
4226 
4227 	_free_event(event);
4228 }
4229 
4230 /*
4231  * Kill an event dead; while event:refcount will preserve the event
4232  * object, it will not preserve its functionality. Once the last 'user'
4233  * gives up the object, we'll destroy the thing.
4234  */
4235 int perf_event_release_kernel(struct perf_event *event)
4236 {
4237 	struct perf_event_context *ctx = event->ctx;
4238 	struct perf_event *child, *tmp;
4239 
4240 	/*
4241 	 * If we got here through err_file: fput(event_file); we will not have
4242 	 * attached to a context yet.
4243 	 */
4244 	if (!ctx) {
4245 		WARN_ON_ONCE(event->attach_state &
4246 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4247 		goto no_ctx;
4248 	}
4249 
4250 	if (!is_kernel_event(event))
4251 		perf_remove_from_owner(event);
4252 
4253 	ctx = perf_event_ctx_lock(event);
4254 	WARN_ON_ONCE(ctx->parent_ctx);
4255 	perf_remove_from_context(event, DETACH_GROUP);
4256 
4257 	raw_spin_lock_irq(&ctx->lock);
4258 	/*
4259 	 * Mark this even as STATE_DEAD, there is no external reference to it
4260 	 * anymore.
4261 	 *
4262 	 * Anybody acquiring event->child_mutex after the below loop _must_
4263 	 * also see this, most importantly inherit_event() which will avoid
4264 	 * placing more children on the list.
4265 	 *
4266 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4267 	 * child events.
4268 	 */
4269 	event->state = PERF_EVENT_STATE_DEAD;
4270 	raw_spin_unlock_irq(&ctx->lock);
4271 
4272 	perf_event_ctx_unlock(event, ctx);
4273 
4274 again:
4275 	mutex_lock(&event->child_mutex);
4276 	list_for_each_entry(child, &event->child_list, child_list) {
4277 
4278 		/*
4279 		 * Cannot change, child events are not migrated, see the
4280 		 * comment with perf_event_ctx_lock_nested().
4281 		 */
4282 		ctx = lockless_dereference(child->ctx);
4283 		/*
4284 		 * Since child_mutex nests inside ctx::mutex, we must jump
4285 		 * through hoops. We start by grabbing a reference on the ctx.
4286 		 *
4287 		 * Since the event cannot get freed while we hold the
4288 		 * child_mutex, the context must also exist and have a !0
4289 		 * reference count.
4290 		 */
4291 		get_ctx(ctx);
4292 
4293 		/*
4294 		 * Now that we have a ctx ref, we can drop child_mutex, and
4295 		 * acquire ctx::mutex without fear of it going away. Then we
4296 		 * can re-acquire child_mutex.
4297 		 */
4298 		mutex_unlock(&event->child_mutex);
4299 		mutex_lock(&ctx->mutex);
4300 		mutex_lock(&event->child_mutex);
4301 
4302 		/*
4303 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4304 		 * state, if child is still the first entry, it didn't get freed
4305 		 * and we can continue doing so.
4306 		 */
4307 		tmp = list_first_entry_or_null(&event->child_list,
4308 					       struct perf_event, child_list);
4309 		if (tmp == child) {
4310 			perf_remove_from_context(child, DETACH_GROUP);
4311 			list_del(&child->child_list);
4312 			free_event(child);
4313 			/*
4314 			 * This matches the refcount bump in inherit_event();
4315 			 * this can't be the last reference.
4316 			 */
4317 			put_event(event);
4318 		}
4319 
4320 		mutex_unlock(&event->child_mutex);
4321 		mutex_unlock(&ctx->mutex);
4322 		put_ctx(ctx);
4323 		goto again;
4324 	}
4325 	mutex_unlock(&event->child_mutex);
4326 
4327 no_ctx:
4328 	put_event(event); /* Must be the 'last' reference */
4329 	return 0;
4330 }
4331 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4332 
4333 /*
4334  * Called when the last reference to the file is gone.
4335  */
4336 static int perf_release(struct inode *inode, struct file *file)
4337 {
4338 	perf_event_release_kernel(file->private_data);
4339 	return 0;
4340 }
4341 
4342 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4343 {
4344 	struct perf_event *child;
4345 	u64 total = 0;
4346 
4347 	*enabled = 0;
4348 	*running = 0;
4349 
4350 	mutex_lock(&event->child_mutex);
4351 
4352 	(void)perf_event_read(event, false);
4353 	total += perf_event_count(event);
4354 
4355 	*enabled += event->total_time_enabled +
4356 			atomic64_read(&event->child_total_time_enabled);
4357 	*running += event->total_time_running +
4358 			atomic64_read(&event->child_total_time_running);
4359 
4360 	list_for_each_entry(child, &event->child_list, child_list) {
4361 		(void)perf_event_read(child, false);
4362 		total += perf_event_count(child);
4363 		*enabled += child->total_time_enabled;
4364 		*running += child->total_time_running;
4365 	}
4366 	mutex_unlock(&event->child_mutex);
4367 
4368 	return total;
4369 }
4370 EXPORT_SYMBOL_GPL(perf_event_read_value);
4371 
4372 static int __perf_read_group_add(struct perf_event *leader,
4373 					u64 read_format, u64 *values)
4374 {
4375 	struct perf_event *sub;
4376 	int n = 1; /* skip @nr */
4377 	int ret;
4378 
4379 	ret = perf_event_read(leader, true);
4380 	if (ret)
4381 		return ret;
4382 
4383 	/*
4384 	 * Since we co-schedule groups, {enabled,running} times of siblings
4385 	 * will be identical to those of the leader, so we only publish one
4386 	 * set.
4387 	 */
4388 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4389 		values[n++] += leader->total_time_enabled +
4390 			atomic64_read(&leader->child_total_time_enabled);
4391 	}
4392 
4393 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4394 		values[n++] += leader->total_time_running +
4395 			atomic64_read(&leader->child_total_time_running);
4396 	}
4397 
4398 	/*
4399 	 * Write {count,id} tuples for every sibling.
4400 	 */
4401 	values[n++] += perf_event_count(leader);
4402 	if (read_format & PERF_FORMAT_ID)
4403 		values[n++] = primary_event_id(leader);
4404 
4405 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4406 		values[n++] += perf_event_count(sub);
4407 		if (read_format & PERF_FORMAT_ID)
4408 			values[n++] = primary_event_id(sub);
4409 	}
4410 
4411 	return 0;
4412 }
4413 
4414 static int perf_read_group(struct perf_event *event,
4415 				   u64 read_format, char __user *buf)
4416 {
4417 	struct perf_event *leader = event->group_leader, *child;
4418 	struct perf_event_context *ctx = leader->ctx;
4419 	int ret;
4420 	u64 *values;
4421 
4422 	lockdep_assert_held(&ctx->mutex);
4423 
4424 	values = kzalloc(event->read_size, GFP_KERNEL);
4425 	if (!values)
4426 		return -ENOMEM;
4427 
4428 	values[0] = 1 + leader->nr_siblings;
4429 
4430 	/*
4431 	 * By locking the child_mutex of the leader we effectively
4432 	 * lock the child list of all siblings.. XXX explain how.
4433 	 */
4434 	mutex_lock(&leader->child_mutex);
4435 
4436 	ret = __perf_read_group_add(leader, read_format, values);
4437 	if (ret)
4438 		goto unlock;
4439 
4440 	list_for_each_entry(child, &leader->child_list, child_list) {
4441 		ret = __perf_read_group_add(child, read_format, values);
4442 		if (ret)
4443 			goto unlock;
4444 	}
4445 
4446 	mutex_unlock(&leader->child_mutex);
4447 
4448 	ret = event->read_size;
4449 	if (copy_to_user(buf, values, event->read_size))
4450 		ret = -EFAULT;
4451 	goto out;
4452 
4453 unlock:
4454 	mutex_unlock(&leader->child_mutex);
4455 out:
4456 	kfree(values);
4457 	return ret;
4458 }
4459 
4460 static int perf_read_one(struct perf_event *event,
4461 				 u64 read_format, char __user *buf)
4462 {
4463 	u64 enabled, running;
4464 	u64 values[4];
4465 	int n = 0;
4466 
4467 	values[n++] = perf_event_read_value(event, &enabled, &running);
4468 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4469 		values[n++] = enabled;
4470 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4471 		values[n++] = running;
4472 	if (read_format & PERF_FORMAT_ID)
4473 		values[n++] = primary_event_id(event);
4474 
4475 	if (copy_to_user(buf, values, n * sizeof(u64)))
4476 		return -EFAULT;
4477 
4478 	return n * sizeof(u64);
4479 }
4480 
4481 static bool is_event_hup(struct perf_event *event)
4482 {
4483 	bool no_children;
4484 
4485 	if (event->state > PERF_EVENT_STATE_EXIT)
4486 		return false;
4487 
4488 	mutex_lock(&event->child_mutex);
4489 	no_children = list_empty(&event->child_list);
4490 	mutex_unlock(&event->child_mutex);
4491 	return no_children;
4492 }
4493 
4494 /*
4495  * Read the performance event - simple non blocking version for now
4496  */
4497 static ssize_t
4498 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4499 {
4500 	u64 read_format = event->attr.read_format;
4501 	int ret;
4502 
4503 	/*
4504 	 * Return end-of-file for a read on a event that is in
4505 	 * error state (i.e. because it was pinned but it couldn't be
4506 	 * scheduled on to the CPU at some point).
4507 	 */
4508 	if (event->state == PERF_EVENT_STATE_ERROR)
4509 		return 0;
4510 
4511 	if (count < event->read_size)
4512 		return -ENOSPC;
4513 
4514 	WARN_ON_ONCE(event->ctx->parent_ctx);
4515 	if (read_format & PERF_FORMAT_GROUP)
4516 		ret = perf_read_group(event, read_format, buf);
4517 	else
4518 		ret = perf_read_one(event, read_format, buf);
4519 
4520 	return ret;
4521 }
4522 
4523 static ssize_t
4524 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4525 {
4526 	struct perf_event *event = file->private_data;
4527 	struct perf_event_context *ctx;
4528 	int ret;
4529 
4530 	ctx = perf_event_ctx_lock(event);
4531 	ret = __perf_read(event, buf, count);
4532 	perf_event_ctx_unlock(event, ctx);
4533 
4534 	return ret;
4535 }
4536 
4537 static unsigned int perf_poll(struct file *file, poll_table *wait)
4538 {
4539 	struct perf_event *event = file->private_data;
4540 	struct ring_buffer *rb;
4541 	unsigned int events = POLLHUP;
4542 
4543 	poll_wait(file, &event->waitq, wait);
4544 
4545 	if (is_event_hup(event))
4546 		return events;
4547 
4548 	/*
4549 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4550 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4551 	 */
4552 	mutex_lock(&event->mmap_mutex);
4553 	rb = event->rb;
4554 	if (rb)
4555 		events = atomic_xchg(&rb->poll, 0);
4556 	mutex_unlock(&event->mmap_mutex);
4557 	return events;
4558 }
4559 
4560 static void _perf_event_reset(struct perf_event *event)
4561 {
4562 	(void)perf_event_read(event, false);
4563 	local64_set(&event->count, 0);
4564 	perf_event_update_userpage(event);
4565 }
4566 
4567 /*
4568  * Holding the top-level event's child_mutex means that any
4569  * descendant process that has inherited this event will block
4570  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4571  * task existence requirements of perf_event_enable/disable.
4572  */
4573 static void perf_event_for_each_child(struct perf_event *event,
4574 					void (*func)(struct perf_event *))
4575 {
4576 	struct perf_event *child;
4577 
4578 	WARN_ON_ONCE(event->ctx->parent_ctx);
4579 
4580 	mutex_lock(&event->child_mutex);
4581 	func(event);
4582 	list_for_each_entry(child, &event->child_list, child_list)
4583 		func(child);
4584 	mutex_unlock(&event->child_mutex);
4585 }
4586 
4587 static void perf_event_for_each(struct perf_event *event,
4588 				  void (*func)(struct perf_event *))
4589 {
4590 	struct perf_event_context *ctx = event->ctx;
4591 	struct perf_event *sibling;
4592 
4593 	lockdep_assert_held(&ctx->mutex);
4594 
4595 	event = event->group_leader;
4596 
4597 	perf_event_for_each_child(event, func);
4598 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4599 		perf_event_for_each_child(sibling, func);
4600 }
4601 
4602 static void __perf_event_period(struct perf_event *event,
4603 				struct perf_cpu_context *cpuctx,
4604 				struct perf_event_context *ctx,
4605 				void *info)
4606 {
4607 	u64 value = *((u64 *)info);
4608 	bool active;
4609 
4610 	if (event->attr.freq) {
4611 		event->attr.sample_freq = value;
4612 	} else {
4613 		event->attr.sample_period = value;
4614 		event->hw.sample_period = value;
4615 	}
4616 
4617 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4618 	if (active) {
4619 		perf_pmu_disable(ctx->pmu);
4620 		/*
4621 		 * We could be throttled; unthrottle now to avoid the tick
4622 		 * trying to unthrottle while we already re-started the event.
4623 		 */
4624 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4625 			event->hw.interrupts = 0;
4626 			perf_log_throttle(event, 1);
4627 		}
4628 		event->pmu->stop(event, PERF_EF_UPDATE);
4629 	}
4630 
4631 	local64_set(&event->hw.period_left, 0);
4632 
4633 	if (active) {
4634 		event->pmu->start(event, PERF_EF_RELOAD);
4635 		perf_pmu_enable(ctx->pmu);
4636 	}
4637 }
4638 
4639 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4640 {
4641 	u64 value;
4642 
4643 	if (!is_sampling_event(event))
4644 		return -EINVAL;
4645 
4646 	if (copy_from_user(&value, arg, sizeof(value)))
4647 		return -EFAULT;
4648 
4649 	if (!value)
4650 		return -EINVAL;
4651 
4652 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4653 		return -EINVAL;
4654 
4655 	event_function_call(event, __perf_event_period, &value);
4656 
4657 	return 0;
4658 }
4659 
4660 static const struct file_operations perf_fops;
4661 
4662 static inline int perf_fget_light(int fd, struct fd *p)
4663 {
4664 	struct fd f = fdget(fd);
4665 	if (!f.file)
4666 		return -EBADF;
4667 
4668 	if (f.file->f_op != &perf_fops) {
4669 		fdput(f);
4670 		return -EBADF;
4671 	}
4672 	*p = f;
4673 	return 0;
4674 }
4675 
4676 static int perf_event_set_output(struct perf_event *event,
4677 				 struct perf_event *output_event);
4678 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4679 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4680 
4681 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4682 {
4683 	void (*func)(struct perf_event *);
4684 	u32 flags = arg;
4685 
4686 	switch (cmd) {
4687 	case PERF_EVENT_IOC_ENABLE:
4688 		func = _perf_event_enable;
4689 		break;
4690 	case PERF_EVENT_IOC_DISABLE:
4691 		func = _perf_event_disable;
4692 		break;
4693 	case PERF_EVENT_IOC_RESET:
4694 		func = _perf_event_reset;
4695 		break;
4696 
4697 	case PERF_EVENT_IOC_REFRESH:
4698 		return _perf_event_refresh(event, arg);
4699 
4700 	case PERF_EVENT_IOC_PERIOD:
4701 		return perf_event_period(event, (u64 __user *)arg);
4702 
4703 	case PERF_EVENT_IOC_ID:
4704 	{
4705 		u64 id = primary_event_id(event);
4706 
4707 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4708 			return -EFAULT;
4709 		return 0;
4710 	}
4711 
4712 	case PERF_EVENT_IOC_SET_OUTPUT:
4713 	{
4714 		int ret;
4715 		if (arg != -1) {
4716 			struct perf_event *output_event;
4717 			struct fd output;
4718 			ret = perf_fget_light(arg, &output);
4719 			if (ret)
4720 				return ret;
4721 			output_event = output.file->private_data;
4722 			ret = perf_event_set_output(event, output_event);
4723 			fdput(output);
4724 		} else {
4725 			ret = perf_event_set_output(event, NULL);
4726 		}
4727 		return ret;
4728 	}
4729 
4730 	case PERF_EVENT_IOC_SET_FILTER:
4731 		return perf_event_set_filter(event, (void __user *)arg);
4732 
4733 	case PERF_EVENT_IOC_SET_BPF:
4734 		return perf_event_set_bpf_prog(event, arg);
4735 
4736 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4737 		struct ring_buffer *rb;
4738 
4739 		rcu_read_lock();
4740 		rb = rcu_dereference(event->rb);
4741 		if (!rb || !rb->nr_pages) {
4742 			rcu_read_unlock();
4743 			return -EINVAL;
4744 		}
4745 		rb_toggle_paused(rb, !!arg);
4746 		rcu_read_unlock();
4747 		return 0;
4748 	}
4749 	default:
4750 		return -ENOTTY;
4751 	}
4752 
4753 	if (flags & PERF_IOC_FLAG_GROUP)
4754 		perf_event_for_each(event, func);
4755 	else
4756 		perf_event_for_each_child(event, func);
4757 
4758 	return 0;
4759 }
4760 
4761 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4762 {
4763 	struct perf_event *event = file->private_data;
4764 	struct perf_event_context *ctx;
4765 	long ret;
4766 
4767 	ctx = perf_event_ctx_lock(event);
4768 	ret = _perf_ioctl(event, cmd, arg);
4769 	perf_event_ctx_unlock(event, ctx);
4770 
4771 	return ret;
4772 }
4773 
4774 #ifdef CONFIG_COMPAT
4775 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4776 				unsigned long arg)
4777 {
4778 	switch (_IOC_NR(cmd)) {
4779 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4780 	case _IOC_NR(PERF_EVENT_IOC_ID):
4781 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4782 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4783 			cmd &= ~IOCSIZE_MASK;
4784 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4785 		}
4786 		break;
4787 	}
4788 	return perf_ioctl(file, cmd, arg);
4789 }
4790 #else
4791 # define perf_compat_ioctl NULL
4792 #endif
4793 
4794 int perf_event_task_enable(void)
4795 {
4796 	struct perf_event_context *ctx;
4797 	struct perf_event *event;
4798 
4799 	mutex_lock(&current->perf_event_mutex);
4800 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4801 		ctx = perf_event_ctx_lock(event);
4802 		perf_event_for_each_child(event, _perf_event_enable);
4803 		perf_event_ctx_unlock(event, ctx);
4804 	}
4805 	mutex_unlock(&current->perf_event_mutex);
4806 
4807 	return 0;
4808 }
4809 
4810 int perf_event_task_disable(void)
4811 {
4812 	struct perf_event_context *ctx;
4813 	struct perf_event *event;
4814 
4815 	mutex_lock(&current->perf_event_mutex);
4816 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4817 		ctx = perf_event_ctx_lock(event);
4818 		perf_event_for_each_child(event, _perf_event_disable);
4819 		perf_event_ctx_unlock(event, ctx);
4820 	}
4821 	mutex_unlock(&current->perf_event_mutex);
4822 
4823 	return 0;
4824 }
4825 
4826 static int perf_event_index(struct perf_event *event)
4827 {
4828 	if (event->hw.state & PERF_HES_STOPPED)
4829 		return 0;
4830 
4831 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4832 		return 0;
4833 
4834 	return event->pmu->event_idx(event);
4835 }
4836 
4837 static void calc_timer_values(struct perf_event *event,
4838 				u64 *now,
4839 				u64 *enabled,
4840 				u64 *running)
4841 {
4842 	u64 ctx_time;
4843 
4844 	*now = perf_clock();
4845 	ctx_time = event->shadow_ctx_time + *now;
4846 	*enabled = ctx_time - event->tstamp_enabled;
4847 	*running = ctx_time - event->tstamp_running;
4848 }
4849 
4850 static void perf_event_init_userpage(struct perf_event *event)
4851 {
4852 	struct perf_event_mmap_page *userpg;
4853 	struct ring_buffer *rb;
4854 
4855 	rcu_read_lock();
4856 	rb = rcu_dereference(event->rb);
4857 	if (!rb)
4858 		goto unlock;
4859 
4860 	userpg = rb->user_page;
4861 
4862 	/* Allow new userspace to detect that bit 0 is deprecated */
4863 	userpg->cap_bit0_is_deprecated = 1;
4864 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4865 	userpg->data_offset = PAGE_SIZE;
4866 	userpg->data_size = perf_data_size(rb);
4867 
4868 unlock:
4869 	rcu_read_unlock();
4870 }
4871 
4872 void __weak arch_perf_update_userpage(
4873 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4874 {
4875 }
4876 
4877 /*
4878  * Callers need to ensure there can be no nesting of this function, otherwise
4879  * the seqlock logic goes bad. We can not serialize this because the arch
4880  * code calls this from NMI context.
4881  */
4882 void perf_event_update_userpage(struct perf_event *event)
4883 {
4884 	struct perf_event_mmap_page *userpg;
4885 	struct ring_buffer *rb;
4886 	u64 enabled, running, now;
4887 
4888 	rcu_read_lock();
4889 	rb = rcu_dereference(event->rb);
4890 	if (!rb)
4891 		goto unlock;
4892 
4893 	/*
4894 	 * compute total_time_enabled, total_time_running
4895 	 * based on snapshot values taken when the event
4896 	 * was last scheduled in.
4897 	 *
4898 	 * we cannot simply called update_context_time()
4899 	 * because of locking issue as we can be called in
4900 	 * NMI context
4901 	 */
4902 	calc_timer_values(event, &now, &enabled, &running);
4903 
4904 	userpg = rb->user_page;
4905 	/*
4906 	 * Disable preemption so as to not let the corresponding user-space
4907 	 * spin too long if we get preempted.
4908 	 */
4909 	preempt_disable();
4910 	++userpg->lock;
4911 	barrier();
4912 	userpg->index = perf_event_index(event);
4913 	userpg->offset = perf_event_count(event);
4914 	if (userpg->index)
4915 		userpg->offset -= local64_read(&event->hw.prev_count);
4916 
4917 	userpg->time_enabled = enabled +
4918 			atomic64_read(&event->child_total_time_enabled);
4919 
4920 	userpg->time_running = running +
4921 			atomic64_read(&event->child_total_time_running);
4922 
4923 	arch_perf_update_userpage(event, userpg, now);
4924 
4925 	barrier();
4926 	++userpg->lock;
4927 	preempt_enable();
4928 unlock:
4929 	rcu_read_unlock();
4930 }
4931 
4932 static int perf_mmap_fault(struct vm_fault *vmf)
4933 {
4934 	struct perf_event *event = vmf->vma->vm_file->private_data;
4935 	struct ring_buffer *rb;
4936 	int ret = VM_FAULT_SIGBUS;
4937 
4938 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4939 		if (vmf->pgoff == 0)
4940 			ret = 0;
4941 		return ret;
4942 	}
4943 
4944 	rcu_read_lock();
4945 	rb = rcu_dereference(event->rb);
4946 	if (!rb)
4947 		goto unlock;
4948 
4949 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4950 		goto unlock;
4951 
4952 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4953 	if (!vmf->page)
4954 		goto unlock;
4955 
4956 	get_page(vmf->page);
4957 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4958 	vmf->page->index   = vmf->pgoff;
4959 
4960 	ret = 0;
4961 unlock:
4962 	rcu_read_unlock();
4963 
4964 	return ret;
4965 }
4966 
4967 static void ring_buffer_attach(struct perf_event *event,
4968 			       struct ring_buffer *rb)
4969 {
4970 	struct ring_buffer *old_rb = NULL;
4971 	unsigned long flags;
4972 
4973 	if (event->rb) {
4974 		/*
4975 		 * Should be impossible, we set this when removing
4976 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4977 		 */
4978 		WARN_ON_ONCE(event->rcu_pending);
4979 
4980 		old_rb = event->rb;
4981 		spin_lock_irqsave(&old_rb->event_lock, flags);
4982 		list_del_rcu(&event->rb_entry);
4983 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4984 
4985 		event->rcu_batches = get_state_synchronize_rcu();
4986 		event->rcu_pending = 1;
4987 	}
4988 
4989 	if (rb) {
4990 		if (event->rcu_pending) {
4991 			cond_synchronize_rcu(event->rcu_batches);
4992 			event->rcu_pending = 0;
4993 		}
4994 
4995 		spin_lock_irqsave(&rb->event_lock, flags);
4996 		list_add_rcu(&event->rb_entry, &rb->event_list);
4997 		spin_unlock_irqrestore(&rb->event_lock, flags);
4998 	}
4999 
5000 	/*
5001 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5002 	 * before swizzling the event::rb pointer; if it's getting
5003 	 * unmapped, its aux_mmap_count will be 0 and it won't
5004 	 * restart. See the comment in __perf_pmu_output_stop().
5005 	 *
5006 	 * Data will inevitably be lost when set_output is done in
5007 	 * mid-air, but then again, whoever does it like this is
5008 	 * not in for the data anyway.
5009 	 */
5010 	if (has_aux(event))
5011 		perf_event_stop(event, 0);
5012 
5013 	rcu_assign_pointer(event->rb, rb);
5014 
5015 	if (old_rb) {
5016 		ring_buffer_put(old_rb);
5017 		/*
5018 		 * Since we detached before setting the new rb, so that we
5019 		 * could attach the new rb, we could have missed a wakeup.
5020 		 * Provide it now.
5021 		 */
5022 		wake_up_all(&event->waitq);
5023 	}
5024 }
5025 
5026 static void ring_buffer_wakeup(struct perf_event *event)
5027 {
5028 	struct ring_buffer *rb;
5029 
5030 	rcu_read_lock();
5031 	rb = rcu_dereference(event->rb);
5032 	if (rb) {
5033 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5034 			wake_up_all(&event->waitq);
5035 	}
5036 	rcu_read_unlock();
5037 }
5038 
5039 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5040 {
5041 	struct ring_buffer *rb;
5042 
5043 	rcu_read_lock();
5044 	rb = rcu_dereference(event->rb);
5045 	if (rb) {
5046 		if (!atomic_inc_not_zero(&rb->refcount))
5047 			rb = NULL;
5048 	}
5049 	rcu_read_unlock();
5050 
5051 	return rb;
5052 }
5053 
5054 void ring_buffer_put(struct ring_buffer *rb)
5055 {
5056 	if (!atomic_dec_and_test(&rb->refcount))
5057 		return;
5058 
5059 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5060 
5061 	call_rcu(&rb->rcu_head, rb_free_rcu);
5062 }
5063 
5064 static void perf_mmap_open(struct vm_area_struct *vma)
5065 {
5066 	struct perf_event *event = vma->vm_file->private_data;
5067 
5068 	atomic_inc(&event->mmap_count);
5069 	atomic_inc(&event->rb->mmap_count);
5070 
5071 	if (vma->vm_pgoff)
5072 		atomic_inc(&event->rb->aux_mmap_count);
5073 
5074 	if (event->pmu->event_mapped)
5075 		event->pmu->event_mapped(event);
5076 }
5077 
5078 static void perf_pmu_output_stop(struct perf_event *event);
5079 
5080 /*
5081  * A buffer can be mmap()ed multiple times; either directly through the same
5082  * event, or through other events by use of perf_event_set_output().
5083  *
5084  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5085  * the buffer here, where we still have a VM context. This means we need
5086  * to detach all events redirecting to us.
5087  */
5088 static void perf_mmap_close(struct vm_area_struct *vma)
5089 {
5090 	struct perf_event *event = vma->vm_file->private_data;
5091 
5092 	struct ring_buffer *rb = ring_buffer_get(event);
5093 	struct user_struct *mmap_user = rb->mmap_user;
5094 	int mmap_locked = rb->mmap_locked;
5095 	unsigned long size = perf_data_size(rb);
5096 
5097 	if (event->pmu->event_unmapped)
5098 		event->pmu->event_unmapped(event);
5099 
5100 	/*
5101 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5102 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5103 	 * serialize with perf_mmap here.
5104 	 */
5105 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5106 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5107 		/*
5108 		 * Stop all AUX events that are writing to this buffer,
5109 		 * so that we can free its AUX pages and corresponding PMU
5110 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5111 		 * they won't start any more (see perf_aux_output_begin()).
5112 		 */
5113 		perf_pmu_output_stop(event);
5114 
5115 		/* now it's safe to free the pages */
5116 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5117 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5118 
5119 		/* this has to be the last one */
5120 		rb_free_aux(rb);
5121 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5122 
5123 		mutex_unlock(&event->mmap_mutex);
5124 	}
5125 
5126 	atomic_dec(&rb->mmap_count);
5127 
5128 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5129 		goto out_put;
5130 
5131 	ring_buffer_attach(event, NULL);
5132 	mutex_unlock(&event->mmap_mutex);
5133 
5134 	/* If there's still other mmap()s of this buffer, we're done. */
5135 	if (atomic_read(&rb->mmap_count))
5136 		goto out_put;
5137 
5138 	/*
5139 	 * No other mmap()s, detach from all other events that might redirect
5140 	 * into the now unreachable buffer. Somewhat complicated by the
5141 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5142 	 */
5143 again:
5144 	rcu_read_lock();
5145 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5146 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5147 			/*
5148 			 * This event is en-route to free_event() which will
5149 			 * detach it and remove it from the list.
5150 			 */
5151 			continue;
5152 		}
5153 		rcu_read_unlock();
5154 
5155 		mutex_lock(&event->mmap_mutex);
5156 		/*
5157 		 * Check we didn't race with perf_event_set_output() which can
5158 		 * swizzle the rb from under us while we were waiting to
5159 		 * acquire mmap_mutex.
5160 		 *
5161 		 * If we find a different rb; ignore this event, a next
5162 		 * iteration will no longer find it on the list. We have to
5163 		 * still restart the iteration to make sure we're not now
5164 		 * iterating the wrong list.
5165 		 */
5166 		if (event->rb == rb)
5167 			ring_buffer_attach(event, NULL);
5168 
5169 		mutex_unlock(&event->mmap_mutex);
5170 		put_event(event);
5171 
5172 		/*
5173 		 * Restart the iteration; either we're on the wrong list or
5174 		 * destroyed its integrity by doing a deletion.
5175 		 */
5176 		goto again;
5177 	}
5178 	rcu_read_unlock();
5179 
5180 	/*
5181 	 * It could be there's still a few 0-ref events on the list; they'll
5182 	 * get cleaned up by free_event() -- they'll also still have their
5183 	 * ref on the rb and will free it whenever they are done with it.
5184 	 *
5185 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5186 	 * undo the VM accounting.
5187 	 */
5188 
5189 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5190 	vma->vm_mm->pinned_vm -= mmap_locked;
5191 	free_uid(mmap_user);
5192 
5193 out_put:
5194 	ring_buffer_put(rb); /* could be last */
5195 }
5196 
5197 static const struct vm_operations_struct perf_mmap_vmops = {
5198 	.open		= perf_mmap_open,
5199 	.close		= perf_mmap_close, /* non mergable */
5200 	.fault		= perf_mmap_fault,
5201 	.page_mkwrite	= perf_mmap_fault,
5202 };
5203 
5204 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5205 {
5206 	struct perf_event *event = file->private_data;
5207 	unsigned long user_locked, user_lock_limit;
5208 	struct user_struct *user = current_user();
5209 	unsigned long locked, lock_limit;
5210 	struct ring_buffer *rb = NULL;
5211 	unsigned long vma_size;
5212 	unsigned long nr_pages;
5213 	long user_extra = 0, extra = 0;
5214 	int ret = 0, flags = 0;
5215 
5216 	/*
5217 	 * Don't allow mmap() of inherited per-task counters. This would
5218 	 * create a performance issue due to all children writing to the
5219 	 * same rb.
5220 	 */
5221 	if (event->cpu == -1 && event->attr.inherit)
5222 		return -EINVAL;
5223 
5224 	if (!(vma->vm_flags & VM_SHARED))
5225 		return -EINVAL;
5226 
5227 	vma_size = vma->vm_end - vma->vm_start;
5228 
5229 	if (vma->vm_pgoff == 0) {
5230 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5231 	} else {
5232 		/*
5233 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5234 		 * mapped, all subsequent mappings should have the same size
5235 		 * and offset. Must be above the normal perf buffer.
5236 		 */
5237 		u64 aux_offset, aux_size;
5238 
5239 		if (!event->rb)
5240 			return -EINVAL;
5241 
5242 		nr_pages = vma_size / PAGE_SIZE;
5243 
5244 		mutex_lock(&event->mmap_mutex);
5245 		ret = -EINVAL;
5246 
5247 		rb = event->rb;
5248 		if (!rb)
5249 			goto aux_unlock;
5250 
5251 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5252 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5253 
5254 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5255 			goto aux_unlock;
5256 
5257 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5258 			goto aux_unlock;
5259 
5260 		/* already mapped with a different offset */
5261 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5262 			goto aux_unlock;
5263 
5264 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5265 			goto aux_unlock;
5266 
5267 		/* already mapped with a different size */
5268 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5269 			goto aux_unlock;
5270 
5271 		if (!is_power_of_2(nr_pages))
5272 			goto aux_unlock;
5273 
5274 		if (!atomic_inc_not_zero(&rb->mmap_count))
5275 			goto aux_unlock;
5276 
5277 		if (rb_has_aux(rb)) {
5278 			atomic_inc(&rb->aux_mmap_count);
5279 			ret = 0;
5280 			goto unlock;
5281 		}
5282 
5283 		atomic_set(&rb->aux_mmap_count, 1);
5284 		user_extra = nr_pages;
5285 
5286 		goto accounting;
5287 	}
5288 
5289 	/*
5290 	 * If we have rb pages ensure they're a power-of-two number, so we
5291 	 * can do bitmasks instead of modulo.
5292 	 */
5293 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5294 		return -EINVAL;
5295 
5296 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5297 		return -EINVAL;
5298 
5299 	WARN_ON_ONCE(event->ctx->parent_ctx);
5300 again:
5301 	mutex_lock(&event->mmap_mutex);
5302 	if (event->rb) {
5303 		if (event->rb->nr_pages != nr_pages) {
5304 			ret = -EINVAL;
5305 			goto unlock;
5306 		}
5307 
5308 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5309 			/*
5310 			 * Raced against perf_mmap_close() through
5311 			 * perf_event_set_output(). Try again, hope for better
5312 			 * luck.
5313 			 */
5314 			mutex_unlock(&event->mmap_mutex);
5315 			goto again;
5316 		}
5317 
5318 		goto unlock;
5319 	}
5320 
5321 	user_extra = nr_pages + 1;
5322 
5323 accounting:
5324 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5325 
5326 	/*
5327 	 * Increase the limit linearly with more CPUs:
5328 	 */
5329 	user_lock_limit *= num_online_cpus();
5330 
5331 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5332 
5333 	if (user_locked > user_lock_limit)
5334 		extra = user_locked - user_lock_limit;
5335 
5336 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5337 	lock_limit >>= PAGE_SHIFT;
5338 	locked = vma->vm_mm->pinned_vm + extra;
5339 
5340 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5341 		!capable(CAP_IPC_LOCK)) {
5342 		ret = -EPERM;
5343 		goto unlock;
5344 	}
5345 
5346 	WARN_ON(!rb && event->rb);
5347 
5348 	if (vma->vm_flags & VM_WRITE)
5349 		flags |= RING_BUFFER_WRITABLE;
5350 
5351 	if (!rb) {
5352 		rb = rb_alloc(nr_pages,
5353 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5354 			      event->cpu, flags);
5355 
5356 		if (!rb) {
5357 			ret = -ENOMEM;
5358 			goto unlock;
5359 		}
5360 
5361 		atomic_set(&rb->mmap_count, 1);
5362 		rb->mmap_user = get_current_user();
5363 		rb->mmap_locked = extra;
5364 
5365 		ring_buffer_attach(event, rb);
5366 
5367 		perf_event_init_userpage(event);
5368 		perf_event_update_userpage(event);
5369 	} else {
5370 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5371 				   event->attr.aux_watermark, flags);
5372 		if (!ret)
5373 			rb->aux_mmap_locked = extra;
5374 	}
5375 
5376 unlock:
5377 	if (!ret) {
5378 		atomic_long_add(user_extra, &user->locked_vm);
5379 		vma->vm_mm->pinned_vm += extra;
5380 
5381 		atomic_inc(&event->mmap_count);
5382 	} else if (rb) {
5383 		atomic_dec(&rb->mmap_count);
5384 	}
5385 aux_unlock:
5386 	mutex_unlock(&event->mmap_mutex);
5387 
5388 	/*
5389 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5390 	 * vma.
5391 	 */
5392 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5393 	vma->vm_ops = &perf_mmap_vmops;
5394 
5395 	if (event->pmu->event_mapped)
5396 		event->pmu->event_mapped(event);
5397 
5398 	return ret;
5399 }
5400 
5401 static int perf_fasync(int fd, struct file *filp, int on)
5402 {
5403 	struct inode *inode = file_inode(filp);
5404 	struct perf_event *event = filp->private_data;
5405 	int retval;
5406 
5407 	inode_lock(inode);
5408 	retval = fasync_helper(fd, filp, on, &event->fasync);
5409 	inode_unlock(inode);
5410 
5411 	if (retval < 0)
5412 		return retval;
5413 
5414 	return 0;
5415 }
5416 
5417 static const struct file_operations perf_fops = {
5418 	.llseek			= no_llseek,
5419 	.release		= perf_release,
5420 	.read			= perf_read,
5421 	.poll			= perf_poll,
5422 	.unlocked_ioctl		= perf_ioctl,
5423 	.compat_ioctl		= perf_compat_ioctl,
5424 	.mmap			= perf_mmap,
5425 	.fasync			= perf_fasync,
5426 };
5427 
5428 /*
5429  * Perf event wakeup
5430  *
5431  * If there's data, ensure we set the poll() state and publish everything
5432  * to user-space before waking everybody up.
5433  */
5434 
5435 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5436 {
5437 	/* only the parent has fasync state */
5438 	if (event->parent)
5439 		event = event->parent;
5440 	return &event->fasync;
5441 }
5442 
5443 void perf_event_wakeup(struct perf_event *event)
5444 {
5445 	ring_buffer_wakeup(event);
5446 
5447 	if (event->pending_kill) {
5448 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5449 		event->pending_kill = 0;
5450 	}
5451 }
5452 
5453 static void perf_pending_event(struct irq_work *entry)
5454 {
5455 	struct perf_event *event = container_of(entry,
5456 			struct perf_event, pending);
5457 	int rctx;
5458 
5459 	rctx = perf_swevent_get_recursion_context();
5460 	/*
5461 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5462 	 * and we won't recurse 'further'.
5463 	 */
5464 
5465 	if (event->pending_disable) {
5466 		event->pending_disable = 0;
5467 		perf_event_disable_local(event);
5468 	}
5469 
5470 	if (event->pending_wakeup) {
5471 		event->pending_wakeup = 0;
5472 		perf_event_wakeup(event);
5473 	}
5474 
5475 	if (rctx >= 0)
5476 		perf_swevent_put_recursion_context(rctx);
5477 }
5478 
5479 /*
5480  * We assume there is only KVM supporting the callbacks.
5481  * Later on, we might change it to a list if there is
5482  * another virtualization implementation supporting the callbacks.
5483  */
5484 struct perf_guest_info_callbacks *perf_guest_cbs;
5485 
5486 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5487 {
5488 	perf_guest_cbs = cbs;
5489 	return 0;
5490 }
5491 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5492 
5493 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5494 {
5495 	perf_guest_cbs = NULL;
5496 	return 0;
5497 }
5498 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5499 
5500 static void
5501 perf_output_sample_regs(struct perf_output_handle *handle,
5502 			struct pt_regs *regs, u64 mask)
5503 {
5504 	int bit;
5505 	DECLARE_BITMAP(_mask, 64);
5506 
5507 	bitmap_from_u64(_mask, mask);
5508 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5509 		u64 val;
5510 
5511 		val = perf_reg_value(regs, bit);
5512 		perf_output_put(handle, val);
5513 	}
5514 }
5515 
5516 static void perf_sample_regs_user(struct perf_regs *regs_user,
5517 				  struct pt_regs *regs,
5518 				  struct pt_regs *regs_user_copy)
5519 {
5520 	if (user_mode(regs)) {
5521 		regs_user->abi = perf_reg_abi(current);
5522 		regs_user->regs = regs;
5523 	} else if (current->mm) {
5524 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5525 	} else {
5526 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5527 		regs_user->regs = NULL;
5528 	}
5529 }
5530 
5531 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5532 				  struct pt_regs *regs)
5533 {
5534 	regs_intr->regs = regs;
5535 	regs_intr->abi  = perf_reg_abi(current);
5536 }
5537 
5538 
5539 /*
5540  * Get remaining task size from user stack pointer.
5541  *
5542  * It'd be better to take stack vma map and limit this more
5543  * precisly, but there's no way to get it safely under interrupt,
5544  * so using TASK_SIZE as limit.
5545  */
5546 static u64 perf_ustack_task_size(struct pt_regs *regs)
5547 {
5548 	unsigned long addr = perf_user_stack_pointer(regs);
5549 
5550 	if (!addr || addr >= TASK_SIZE)
5551 		return 0;
5552 
5553 	return TASK_SIZE - addr;
5554 }
5555 
5556 static u16
5557 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5558 			struct pt_regs *regs)
5559 {
5560 	u64 task_size;
5561 
5562 	/* No regs, no stack pointer, no dump. */
5563 	if (!regs)
5564 		return 0;
5565 
5566 	/*
5567 	 * Check if we fit in with the requested stack size into the:
5568 	 * - TASK_SIZE
5569 	 *   If we don't, we limit the size to the TASK_SIZE.
5570 	 *
5571 	 * - remaining sample size
5572 	 *   If we don't, we customize the stack size to
5573 	 *   fit in to the remaining sample size.
5574 	 */
5575 
5576 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5577 	stack_size = min(stack_size, (u16) task_size);
5578 
5579 	/* Current header size plus static size and dynamic size. */
5580 	header_size += 2 * sizeof(u64);
5581 
5582 	/* Do we fit in with the current stack dump size? */
5583 	if ((u16) (header_size + stack_size) < header_size) {
5584 		/*
5585 		 * If we overflow the maximum size for the sample,
5586 		 * we customize the stack dump size to fit in.
5587 		 */
5588 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5589 		stack_size = round_up(stack_size, sizeof(u64));
5590 	}
5591 
5592 	return stack_size;
5593 }
5594 
5595 static void
5596 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5597 			  struct pt_regs *regs)
5598 {
5599 	/* Case of a kernel thread, nothing to dump */
5600 	if (!regs) {
5601 		u64 size = 0;
5602 		perf_output_put(handle, size);
5603 	} else {
5604 		unsigned long sp;
5605 		unsigned int rem;
5606 		u64 dyn_size;
5607 
5608 		/*
5609 		 * We dump:
5610 		 * static size
5611 		 *   - the size requested by user or the best one we can fit
5612 		 *     in to the sample max size
5613 		 * data
5614 		 *   - user stack dump data
5615 		 * dynamic size
5616 		 *   - the actual dumped size
5617 		 */
5618 
5619 		/* Static size. */
5620 		perf_output_put(handle, dump_size);
5621 
5622 		/* Data. */
5623 		sp = perf_user_stack_pointer(regs);
5624 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5625 		dyn_size = dump_size - rem;
5626 
5627 		perf_output_skip(handle, rem);
5628 
5629 		/* Dynamic size. */
5630 		perf_output_put(handle, dyn_size);
5631 	}
5632 }
5633 
5634 static void __perf_event_header__init_id(struct perf_event_header *header,
5635 					 struct perf_sample_data *data,
5636 					 struct perf_event *event)
5637 {
5638 	u64 sample_type = event->attr.sample_type;
5639 
5640 	data->type = sample_type;
5641 	header->size += event->id_header_size;
5642 
5643 	if (sample_type & PERF_SAMPLE_TID) {
5644 		/* namespace issues */
5645 		data->tid_entry.pid = perf_event_pid(event, current);
5646 		data->tid_entry.tid = perf_event_tid(event, current);
5647 	}
5648 
5649 	if (sample_type & PERF_SAMPLE_TIME)
5650 		data->time = perf_event_clock(event);
5651 
5652 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5653 		data->id = primary_event_id(event);
5654 
5655 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5656 		data->stream_id = event->id;
5657 
5658 	if (sample_type & PERF_SAMPLE_CPU) {
5659 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5660 		data->cpu_entry.reserved = 0;
5661 	}
5662 }
5663 
5664 void perf_event_header__init_id(struct perf_event_header *header,
5665 				struct perf_sample_data *data,
5666 				struct perf_event *event)
5667 {
5668 	if (event->attr.sample_id_all)
5669 		__perf_event_header__init_id(header, data, event);
5670 }
5671 
5672 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5673 					   struct perf_sample_data *data)
5674 {
5675 	u64 sample_type = data->type;
5676 
5677 	if (sample_type & PERF_SAMPLE_TID)
5678 		perf_output_put(handle, data->tid_entry);
5679 
5680 	if (sample_type & PERF_SAMPLE_TIME)
5681 		perf_output_put(handle, data->time);
5682 
5683 	if (sample_type & PERF_SAMPLE_ID)
5684 		perf_output_put(handle, data->id);
5685 
5686 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5687 		perf_output_put(handle, data->stream_id);
5688 
5689 	if (sample_type & PERF_SAMPLE_CPU)
5690 		perf_output_put(handle, data->cpu_entry);
5691 
5692 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5693 		perf_output_put(handle, data->id);
5694 }
5695 
5696 void perf_event__output_id_sample(struct perf_event *event,
5697 				  struct perf_output_handle *handle,
5698 				  struct perf_sample_data *sample)
5699 {
5700 	if (event->attr.sample_id_all)
5701 		__perf_event__output_id_sample(handle, sample);
5702 }
5703 
5704 static void perf_output_read_one(struct perf_output_handle *handle,
5705 				 struct perf_event *event,
5706 				 u64 enabled, u64 running)
5707 {
5708 	u64 read_format = event->attr.read_format;
5709 	u64 values[4];
5710 	int n = 0;
5711 
5712 	values[n++] = perf_event_count(event);
5713 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5714 		values[n++] = enabled +
5715 			atomic64_read(&event->child_total_time_enabled);
5716 	}
5717 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5718 		values[n++] = running +
5719 			atomic64_read(&event->child_total_time_running);
5720 	}
5721 	if (read_format & PERF_FORMAT_ID)
5722 		values[n++] = primary_event_id(event);
5723 
5724 	__output_copy(handle, values, n * sizeof(u64));
5725 }
5726 
5727 /*
5728  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5729  */
5730 static void perf_output_read_group(struct perf_output_handle *handle,
5731 			    struct perf_event *event,
5732 			    u64 enabled, u64 running)
5733 {
5734 	struct perf_event *leader = event->group_leader, *sub;
5735 	u64 read_format = event->attr.read_format;
5736 	u64 values[5];
5737 	int n = 0;
5738 
5739 	values[n++] = 1 + leader->nr_siblings;
5740 
5741 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5742 		values[n++] = enabled;
5743 
5744 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5745 		values[n++] = running;
5746 
5747 	if (leader != event)
5748 		leader->pmu->read(leader);
5749 
5750 	values[n++] = perf_event_count(leader);
5751 	if (read_format & PERF_FORMAT_ID)
5752 		values[n++] = primary_event_id(leader);
5753 
5754 	__output_copy(handle, values, n * sizeof(u64));
5755 
5756 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5757 		n = 0;
5758 
5759 		if ((sub != event) &&
5760 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5761 			sub->pmu->read(sub);
5762 
5763 		values[n++] = perf_event_count(sub);
5764 		if (read_format & PERF_FORMAT_ID)
5765 			values[n++] = primary_event_id(sub);
5766 
5767 		__output_copy(handle, values, n * sizeof(u64));
5768 	}
5769 }
5770 
5771 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5772 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5773 
5774 static void perf_output_read(struct perf_output_handle *handle,
5775 			     struct perf_event *event)
5776 {
5777 	u64 enabled = 0, running = 0, now;
5778 	u64 read_format = event->attr.read_format;
5779 
5780 	/*
5781 	 * compute total_time_enabled, total_time_running
5782 	 * based on snapshot values taken when the event
5783 	 * was last scheduled in.
5784 	 *
5785 	 * we cannot simply called update_context_time()
5786 	 * because of locking issue as we are called in
5787 	 * NMI context
5788 	 */
5789 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5790 		calc_timer_values(event, &now, &enabled, &running);
5791 
5792 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5793 		perf_output_read_group(handle, event, enabled, running);
5794 	else
5795 		perf_output_read_one(handle, event, enabled, running);
5796 }
5797 
5798 void perf_output_sample(struct perf_output_handle *handle,
5799 			struct perf_event_header *header,
5800 			struct perf_sample_data *data,
5801 			struct perf_event *event)
5802 {
5803 	u64 sample_type = data->type;
5804 
5805 	perf_output_put(handle, *header);
5806 
5807 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5808 		perf_output_put(handle, data->id);
5809 
5810 	if (sample_type & PERF_SAMPLE_IP)
5811 		perf_output_put(handle, data->ip);
5812 
5813 	if (sample_type & PERF_SAMPLE_TID)
5814 		perf_output_put(handle, data->tid_entry);
5815 
5816 	if (sample_type & PERF_SAMPLE_TIME)
5817 		perf_output_put(handle, data->time);
5818 
5819 	if (sample_type & PERF_SAMPLE_ADDR)
5820 		perf_output_put(handle, data->addr);
5821 
5822 	if (sample_type & PERF_SAMPLE_ID)
5823 		perf_output_put(handle, data->id);
5824 
5825 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5826 		perf_output_put(handle, data->stream_id);
5827 
5828 	if (sample_type & PERF_SAMPLE_CPU)
5829 		perf_output_put(handle, data->cpu_entry);
5830 
5831 	if (sample_type & PERF_SAMPLE_PERIOD)
5832 		perf_output_put(handle, data->period);
5833 
5834 	if (sample_type & PERF_SAMPLE_READ)
5835 		perf_output_read(handle, event);
5836 
5837 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5838 		if (data->callchain) {
5839 			int size = 1;
5840 
5841 			if (data->callchain)
5842 				size += data->callchain->nr;
5843 
5844 			size *= sizeof(u64);
5845 
5846 			__output_copy(handle, data->callchain, size);
5847 		} else {
5848 			u64 nr = 0;
5849 			perf_output_put(handle, nr);
5850 		}
5851 	}
5852 
5853 	if (sample_type & PERF_SAMPLE_RAW) {
5854 		struct perf_raw_record *raw = data->raw;
5855 
5856 		if (raw) {
5857 			struct perf_raw_frag *frag = &raw->frag;
5858 
5859 			perf_output_put(handle, raw->size);
5860 			do {
5861 				if (frag->copy) {
5862 					__output_custom(handle, frag->copy,
5863 							frag->data, frag->size);
5864 				} else {
5865 					__output_copy(handle, frag->data,
5866 						      frag->size);
5867 				}
5868 				if (perf_raw_frag_last(frag))
5869 					break;
5870 				frag = frag->next;
5871 			} while (1);
5872 			if (frag->pad)
5873 				__output_skip(handle, NULL, frag->pad);
5874 		} else {
5875 			struct {
5876 				u32	size;
5877 				u32	data;
5878 			} raw = {
5879 				.size = sizeof(u32),
5880 				.data = 0,
5881 			};
5882 			perf_output_put(handle, raw);
5883 		}
5884 	}
5885 
5886 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5887 		if (data->br_stack) {
5888 			size_t size;
5889 
5890 			size = data->br_stack->nr
5891 			     * sizeof(struct perf_branch_entry);
5892 
5893 			perf_output_put(handle, data->br_stack->nr);
5894 			perf_output_copy(handle, data->br_stack->entries, size);
5895 		} else {
5896 			/*
5897 			 * we always store at least the value of nr
5898 			 */
5899 			u64 nr = 0;
5900 			perf_output_put(handle, nr);
5901 		}
5902 	}
5903 
5904 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5905 		u64 abi = data->regs_user.abi;
5906 
5907 		/*
5908 		 * If there are no regs to dump, notice it through
5909 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5910 		 */
5911 		perf_output_put(handle, abi);
5912 
5913 		if (abi) {
5914 			u64 mask = event->attr.sample_regs_user;
5915 			perf_output_sample_regs(handle,
5916 						data->regs_user.regs,
5917 						mask);
5918 		}
5919 	}
5920 
5921 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5922 		perf_output_sample_ustack(handle,
5923 					  data->stack_user_size,
5924 					  data->regs_user.regs);
5925 	}
5926 
5927 	if (sample_type & PERF_SAMPLE_WEIGHT)
5928 		perf_output_put(handle, data->weight);
5929 
5930 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5931 		perf_output_put(handle, data->data_src.val);
5932 
5933 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5934 		perf_output_put(handle, data->txn);
5935 
5936 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5937 		u64 abi = data->regs_intr.abi;
5938 		/*
5939 		 * If there are no regs to dump, notice it through
5940 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5941 		 */
5942 		perf_output_put(handle, abi);
5943 
5944 		if (abi) {
5945 			u64 mask = event->attr.sample_regs_intr;
5946 
5947 			perf_output_sample_regs(handle,
5948 						data->regs_intr.regs,
5949 						mask);
5950 		}
5951 	}
5952 
5953 	if (!event->attr.watermark) {
5954 		int wakeup_events = event->attr.wakeup_events;
5955 
5956 		if (wakeup_events) {
5957 			struct ring_buffer *rb = handle->rb;
5958 			int events = local_inc_return(&rb->events);
5959 
5960 			if (events >= wakeup_events) {
5961 				local_sub(wakeup_events, &rb->events);
5962 				local_inc(&rb->wakeup);
5963 			}
5964 		}
5965 	}
5966 }
5967 
5968 void perf_prepare_sample(struct perf_event_header *header,
5969 			 struct perf_sample_data *data,
5970 			 struct perf_event *event,
5971 			 struct pt_regs *regs)
5972 {
5973 	u64 sample_type = event->attr.sample_type;
5974 
5975 	header->type = PERF_RECORD_SAMPLE;
5976 	header->size = sizeof(*header) + event->header_size;
5977 
5978 	header->misc = 0;
5979 	header->misc |= perf_misc_flags(regs);
5980 
5981 	__perf_event_header__init_id(header, data, event);
5982 
5983 	if (sample_type & PERF_SAMPLE_IP)
5984 		data->ip = perf_instruction_pointer(regs);
5985 
5986 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5987 		int size = 1;
5988 
5989 		data->callchain = perf_callchain(event, regs);
5990 
5991 		if (data->callchain)
5992 			size += data->callchain->nr;
5993 
5994 		header->size += size * sizeof(u64);
5995 	}
5996 
5997 	if (sample_type & PERF_SAMPLE_RAW) {
5998 		struct perf_raw_record *raw = data->raw;
5999 		int size;
6000 
6001 		if (raw) {
6002 			struct perf_raw_frag *frag = &raw->frag;
6003 			u32 sum = 0;
6004 
6005 			do {
6006 				sum += frag->size;
6007 				if (perf_raw_frag_last(frag))
6008 					break;
6009 				frag = frag->next;
6010 			} while (1);
6011 
6012 			size = round_up(sum + sizeof(u32), sizeof(u64));
6013 			raw->size = size - sizeof(u32);
6014 			frag->pad = raw->size - sum;
6015 		} else {
6016 			size = sizeof(u64);
6017 		}
6018 
6019 		header->size += size;
6020 	}
6021 
6022 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6023 		int size = sizeof(u64); /* nr */
6024 		if (data->br_stack) {
6025 			size += data->br_stack->nr
6026 			      * sizeof(struct perf_branch_entry);
6027 		}
6028 		header->size += size;
6029 	}
6030 
6031 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6032 		perf_sample_regs_user(&data->regs_user, regs,
6033 				      &data->regs_user_copy);
6034 
6035 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6036 		/* regs dump ABI info */
6037 		int size = sizeof(u64);
6038 
6039 		if (data->regs_user.regs) {
6040 			u64 mask = event->attr.sample_regs_user;
6041 			size += hweight64(mask) * sizeof(u64);
6042 		}
6043 
6044 		header->size += size;
6045 	}
6046 
6047 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6048 		/*
6049 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6050 		 * processed as the last one or have additional check added
6051 		 * in case new sample type is added, because we could eat
6052 		 * up the rest of the sample size.
6053 		 */
6054 		u16 stack_size = event->attr.sample_stack_user;
6055 		u16 size = sizeof(u64);
6056 
6057 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6058 						     data->regs_user.regs);
6059 
6060 		/*
6061 		 * If there is something to dump, add space for the dump
6062 		 * itself and for the field that tells the dynamic size,
6063 		 * which is how many have been actually dumped.
6064 		 */
6065 		if (stack_size)
6066 			size += sizeof(u64) + stack_size;
6067 
6068 		data->stack_user_size = stack_size;
6069 		header->size += size;
6070 	}
6071 
6072 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6073 		/* regs dump ABI info */
6074 		int size = sizeof(u64);
6075 
6076 		perf_sample_regs_intr(&data->regs_intr, regs);
6077 
6078 		if (data->regs_intr.regs) {
6079 			u64 mask = event->attr.sample_regs_intr;
6080 
6081 			size += hweight64(mask) * sizeof(u64);
6082 		}
6083 
6084 		header->size += size;
6085 	}
6086 }
6087 
6088 static void __always_inline
6089 __perf_event_output(struct perf_event *event,
6090 		    struct perf_sample_data *data,
6091 		    struct pt_regs *regs,
6092 		    int (*output_begin)(struct perf_output_handle *,
6093 					struct perf_event *,
6094 					unsigned int))
6095 {
6096 	struct perf_output_handle handle;
6097 	struct perf_event_header header;
6098 
6099 	/* protect the callchain buffers */
6100 	rcu_read_lock();
6101 
6102 	perf_prepare_sample(&header, data, event, regs);
6103 
6104 	if (output_begin(&handle, event, header.size))
6105 		goto exit;
6106 
6107 	perf_output_sample(&handle, &header, data, event);
6108 
6109 	perf_output_end(&handle);
6110 
6111 exit:
6112 	rcu_read_unlock();
6113 }
6114 
6115 void
6116 perf_event_output_forward(struct perf_event *event,
6117 			 struct perf_sample_data *data,
6118 			 struct pt_regs *regs)
6119 {
6120 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6121 }
6122 
6123 void
6124 perf_event_output_backward(struct perf_event *event,
6125 			   struct perf_sample_data *data,
6126 			   struct pt_regs *regs)
6127 {
6128 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6129 }
6130 
6131 void
6132 perf_event_output(struct perf_event *event,
6133 		  struct perf_sample_data *data,
6134 		  struct pt_regs *regs)
6135 {
6136 	__perf_event_output(event, data, regs, perf_output_begin);
6137 }
6138 
6139 /*
6140  * read event_id
6141  */
6142 
6143 struct perf_read_event {
6144 	struct perf_event_header	header;
6145 
6146 	u32				pid;
6147 	u32				tid;
6148 };
6149 
6150 static void
6151 perf_event_read_event(struct perf_event *event,
6152 			struct task_struct *task)
6153 {
6154 	struct perf_output_handle handle;
6155 	struct perf_sample_data sample;
6156 	struct perf_read_event read_event = {
6157 		.header = {
6158 			.type = PERF_RECORD_READ,
6159 			.misc = 0,
6160 			.size = sizeof(read_event) + event->read_size,
6161 		},
6162 		.pid = perf_event_pid(event, task),
6163 		.tid = perf_event_tid(event, task),
6164 	};
6165 	int ret;
6166 
6167 	perf_event_header__init_id(&read_event.header, &sample, event);
6168 	ret = perf_output_begin(&handle, event, read_event.header.size);
6169 	if (ret)
6170 		return;
6171 
6172 	perf_output_put(&handle, read_event);
6173 	perf_output_read(&handle, event);
6174 	perf_event__output_id_sample(event, &handle, &sample);
6175 
6176 	perf_output_end(&handle);
6177 }
6178 
6179 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6180 
6181 static void
6182 perf_iterate_ctx(struct perf_event_context *ctx,
6183 		   perf_iterate_f output,
6184 		   void *data, bool all)
6185 {
6186 	struct perf_event *event;
6187 
6188 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6189 		if (!all) {
6190 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6191 				continue;
6192 			if (!event_filter_match(event))
6193 				continue;
6194 		}
6195 
6196 		output(event, data);
6197 	}
6198 }
6199 
6200 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6201 {
6202 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6203 	struct perf_event *event;
6204 
6205 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6206 		/*
6207 		 * Skip events that are not fully formed yet; ensure that
6208 		 * if we observe event->ctx, both event and ctx will be
6209 		 * complete enough. See perf_install_in_context().
6210 		 */
6211 		if (!smp_load_acquire(&event->ctx))
6212 			continue;
6213 
6214 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6215 			continue;
6216 		if (!event_filter_match(event))
6217 			continue;
6218 		output(event, data);
6219 	}
6220 }
6221 
6222 /*
6223  * Iterate all events that need to receive side-band events.
6224  *
6225  * For new callers; ensure that account_pmu_sb_event() includes
6226  * your event, otherwise it might not get delivered.
6227  */
6228 static void
6229 perf_iterate_sb(perf_iterate_f output, void *data,
6230 	       struct perf_event_context *task_ctx)
6231 {
6232 	struct perf_event_context *ctx;
6233 	int ctxn;
6234 
6235 	rcu_read_lock();
6236 	preempt_disable();
6237 
6238 	/*
6239 	 * If we have task_ctx != NULL we only notify the task context itself.
6240 	 * The task_ctx is set only for EXIT events before releasing task
6241 	 * context.
6242 	 */
6243 	if (task_ctx) {
6244 		perf_iterate_ctx(task_ctx, output, data, false);
6245 		goto done;
6246 	}
6247 
6248 	perf_iterate_sb_cpu(output, data);
6249 
6250 	for_each_task_context_nr(ctxn) {
6251 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6252 		if (ctx)
6253 			perf_iterate_ctx(ctx, output, data, false);
6254 	}
6255 done:
6256 	preempt_enable();
6257 	rcu_read_unlock();
6258 }
6259 
6260 /*
6261  * Clear all file-based filters at exec, they'll have to be
6262  * re-instated when/if these objects are mmapped again.
6263  */
6264 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6265 {
6266 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6267 	struct perf_addr_filter *filter;
6268 	unsigned int restart = 0, count = 0;
6269 	unsigned long flags;
6270 
6271 	if (!has_addr_filter(event))
6272 		return;
6273 
6274 	raw_spin_lock_irqsave(&ifh->lock, flags);
6275 	list_for_each_entry(filter, &ifh->list, entry) {
6276 		if (filter->inode) {
6277 			event->addr_filters_offs[count] = 0;
6278 			restart++;
6279 		}
6280 
6281 		count++;
6282 	}
6283 
6284 	if (restart)
6285 		event->addr_filters_gen++;
6286 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6287 
6288 	if (restart)
6289 		perf_event_stop(event, 1);
6290 }
6291 
6292 void perf_event_exec(void)
6293 {
6294 	struct perf_event_context *ctx;
6295 	int ctxn;
6296 
6297 	rcu_read_lock();
6298 	for_each_task_context_nr(ctxn) {
6299 		ctx = current->perf_event_ctxp[ctxn];
6300 		if (!ctx)
6301 			continue;
6302 
6303 		perf_event_enable_on_exec(ctxn);
6304 
6305 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6306 				   true);
6307 	}
6308 	rcu_read_unlock();
6309 }
6310 
6311 struct remote_output {
6312 	struct ring_buffer	*rb;
6313 	int			err;
6314 };
6315 
6316 static void __perf_event_output_stop(struct perf_event *event, void *data)
6317 {
6318 	struct perf_event *parent = event->parent;
6319 	struct remote_output *ro = data;
6320 	struct ring_buffer *rb = ro->rb;
6321 	struct stop_event_data sd = {
6322 		.event	= event,
6323 	};
6324 
6325 	if (!has_aux(event))
6326 		return;
6327 
6328 	if (!parent)
6329 		parent = event;
6330 
6331 	/*
6332 	 * In case of inheritance, it will be the parent that links to the
6333 	 * ring-buffer, but it will be the child that's actually using it.
6334 	 *
6335 	 * We are using event::rb to determine if the event should be stopped,
6336 	 * however this may race with ring_buffer_attach() (through set_output),
6337 	 * which will make us skip the event that actually needs to be stopped.
6338 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6339 	 * its rb pointer.
6340 	 */
6341 	if (rcu_dereference(parent->rb) == rb)
6342 		ro->err = __perf_event_stop(&sd);
6343 }
6344 
6345 static int __perf_pmu_output_stop(void *info)
6346 {
6347 	struct perf_event *event = info;
6348 	struct pmu *pmu = event->pmu;
6349 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6350 	struct remote_output ro = {
6351 		.rb	= event->rb,
6352 	};
6353 
6354 	rcu_read_lock();
6355 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6356 	if (cpuctx->task_ctx)
6357 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6358 				   &ro, false);
6359 	rcu_read_unlock();
6360 
6361 	return ro.err;
6362 }
6363 
6364 static void perf_pmu_output_stop(struct perf_event *event)
6365 {
6366 	struct perf_event *iter;
6367 	int err, cpu;
6368 
6369 restart:
6370 	rcu_read_lock();
6371 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6372 		/*
6373 		 * For per-CPU events, we need to make sure that neither they
6374 		 * nor their children are running; for cpu==-1 events it's
6375 		 * sufficient to stop the event itself if it's active, since
6376 		 * it can't have children.
6377 		 */
6378 		cpu = iter->cpu;
6379 		if (cpu == -1)
6380 			cpu = READ_ONCE(iter->oncpu);
6381 
6382 		if (cpu == -1)
6383 			continue;
6384 
6385 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6386 		if (err == -EAGAIN) {
6387 			rcu_read_unlock();
6388 			goto restart;
6389 		}
6390 	}
6391 	rcu_read_unlock();
6392 }
6393 
6394 /*
6395  * task tracking -- fork/exit
6396  *
6397  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6398  */
6399 
6400 struct perf_task_event {
6401 	struct task_struct		*task;
6402 	struct perf_event_context	*task_ctx;
6403 
6404 	struct {
6405 		struct perf_event_header	header;
6406 
6407 		u32				pid;
6408 		u32				ppid;
6409 		u32				tid;
6410 		u32				ptid;
6411 		u64				time;
6412 	} event_id;
6413 };
6414 
6415 static int perf_event_task_match(struct perf_event *event)
6416 {
6417 	return event->attr.comm  || event->attr.mmap ||
6418 	       event->attr.mmap2 || event->attr.mmap_data ||
6419 	       event->attr.task;
6420 }
6421 
6422 static void perf_event_task_output(struct perf_event *event,
6423 				   void *data)
6424 {
6425 	struct perf_task_event *task_event = data;
6426 	struct perf_output_handle handle;
6427 	struct perf_sample_data	sample;
6428 	struct task_struct *task = task_event->task;
6429 	int ret, size = task_event->event_id.header.size;
6430 
6431 	if (!perf_event_task_match(event))
6432 		return;
6433 
6434 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6435 
6436 	ret = perf_output_begin(&handle, event,
6437 				task_event->event_id.header.size);
6438 	if (ret)
6439 		goto out;
6440 
6441 	task_event->event_id.pid = perf_event_pid(event, task);
6442 	task_event->event_id.ppid = perf_event_pid(event, current);
6443 
6444 	task_event->event_id.tid = perf_event_tid(event, task);
6445 	task_event->event_id.ptid = perf_event_tid(event, current);
6446 
6447 	task_event->event_id.time = perf_event_clock(event);
6448 
6449 	perf_output_put(&handle, task_event->event_id);
6450 
6451 	perf_event__output_id_sample(event, &handle, &sample);
6452 
6453 	perf_output_end(&handle);
6454 out:
6455 	task_event->event_id.header.size = size;
6456 }
6457 
6458 static void perf_event_task(struct task_struct *task,
6459 			      struct perf_event_context *task_ctx,
6460 			      int new)
6461 {
6462 	struct perf_task_event task_event;
6463 
6464 	if (!atomic_read(&nr_comm_events) &&
6465 	    !atomic_read(&nr_mmap_events) &&
6466 	    !atomic_read(&nr_task_events))
6467 		return;
6468 
6469 	task_event = (struct perf_task_event){
6470 		.task	  = task,
6471 		.task_ctx = task_ctx,
6472 		.event_id    = {
6473 			.header = {
6474 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6475 				.misc = 0,
6476 				.size = sizeof(task_event.event_id),
6477 			},
6478 			/* .pid  */
6479 			/* .ppid */
6480 			/* .tid  */
6481 			/* .ptid */
6482 			/* .time */
6483 		},
6484 	};
6485 
6486 	perf_iterate_sb(perf_event_task_output,
6487 		       &task_event,
6488 		       task_ctx);
6489 }
6490 
6491 void perf_event_fork(struct task_struct *task)
6492 {
6493 	perf_event_task(task, NULL, 1);
6494 }
6495 
6496 /*
6497  * comm tracking
6498  */
6499 
6500 struct perf_comm_event {
6501 	struct task_struct	*task;
6502 	char			*comm;
6503 	int			comm_size;
6504 
6505 	struct {
6506 		struct perf_event_header	header;
6507 
6508 		u32				pid;
6509 		u32				tid;
6510 	} event_id;
6511 };
6512 
6513 static int perf_event_comm_match(struct perf_event *event)
6514 {
6515 	return event->attr.comm;
6516 }
6517 
6518 static void perf_event_comm_output(struct perf_event *event,
6519 				   void *data)
6520 {
6521 	struct perf_comm_event *comm_event = data;
6522 	struct perf_output_handle handle;
6523 	struct perf_sample_data sample;
6524 	int size = comm_event->event_id.header.size;
6525 	int ret;
6526 
6527 	if (!perf_event_comm_match(event))
6528 		return;
6529 
6530 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6531 	ret = perf_output_begin(&handle, event,
6532 				comm_event->event_id.header.size);
6533 
6534 	if (ret)
6535 		goto out;
6536 
6537 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6538 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6539 
6540 	perf_output_put(&handle, comm_event->event_id);
6541 	__output_copy(&handle, comm_event->comm,
6542 				   comm_event->comm_size);
6543 
6544 	perf_event__output_id_sample(event, &handle, &sample);
6545 
6546 	perf_output_end(&handle);
6547 out:
6548 	comm_event->event_id.header.size = size;
6549 }
6550 
6551 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6552 {
6553 	char comm[TASK_COMM_LEN];
6554 	unsigned int size;
6555 
6556 	memset(comm, 0, sizeof(comm));
6557 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6558 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6559 
6560 	comm_event->comm = comm;
6561 	comm_event->comm_size = size;
6562 
6563 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6564 
6565 	perf_iterate_sb(perf_event_comm_output,
6566 		       comm_event,
6567 		       NULL);
6568 }
6569 
6570 void perf_event_comm(struct task_struct *task, bool exec)
6571 {
6572 	struct perf_comm_event comm_event;
6573 
6574 	if (!atomic_read(&nr_comm_events))
6575 		return;
6576 
6577 	comm_event = (struct perf_comm_event){
6578 		.task	= task,
6579 		/* .comm      */
6580 		/* .comm_size */
6581 		.event_id  = {
6582 			.header = {
6583 				.type = PERF_RECORD_COMM,
6584 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6585 				/* .size */
6586 			},
6587 			/* .pid */
6588 			/* .tid */
6589 		},
6590 	};
6591 
6592 	perf_event_comm_event(&comm_event);
6593 }
6594 
6595 /*
6596  * mmap tracking
6597  */
6598 
6599 struct perf_mmap_event {
6600 	struct vm_area_struct	*vma;
6601 
6602 	const char		*file_name;
6603 	int			file_size;
6604 	int			maj, min;
6605 	u64			ino;
6606 	u64			ino_generation;
6607 	u32			prot, flags;
6608 
6609 	struct {
6610 		struct perf_event_header	header;
6611 
6612 		u32				pid;
6613 		u32				tid;
6614 		u64				start;
6615 		u64				len;
6616 		u64				pgoff;
6617 	} event_id;
6618 };
6619 
6620 static int perf_event_mmap_match(struct perf_event *event,
6621 				 void *data)
6622 {
6623 	struct perf_mmap_event *mmap_event = data;
6624 	struct vm_area_struct *vma = mmap_event->vma;
6625 	int executable = vma->vm_flags & VM_EXEC;
6626 
6627 	return (!executable && event->attr.mmap_data) ||
6628 	       (executable && (event->attr.mmap || event->attr.mmap2));
6629 }
6630 
6631 static void perf_event_mmap_output(struct perf_event *event,
6632 				   void *data)
6633 {
6634 	struct perf_mmap_event *mmap_event = data;
6635 	struct perf_output_handle handle;
6636 	struct perf_sample_data sample;
6637 	int size = mmap_event->event_id.header.size;
6638 	int ret;
6639 
6640 	if (!perf_event_mmap_match(event, data))
6641 		return;
6642 
6643 	if (event->attr.mmap2) {
6644 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6645 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6646 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6647 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6648 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6649 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6650 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6651 	}
6652 
6653 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6654 	ret = perf_output_begin(&handle, event,
6655 				mmap_event->event_id.header.size);
6656 	if (ret)
6657 		goto out;
6658 
6659 	mmap_event->event_id.pid = perf_event_pid(event, current);
6660 	mmap_event->event_id.tid = perf_event_tid(event, current);
6661 
6662 	perf_output_put(&handle, mmap_event->event_id);
6663 
6664 	if (event->attr.mmap2) {
6665 		perf_output_put(&handle, mmap_event->maj);
6666 		perf_output_put(&handle, mmap_event->min);
6667 		perf_output_put(&handle, mmap_event->ino);
6668 		perf_output_put(&handle, mmap_event->ino_generation);
6669 		perf_output_put(&handle, mmap_event->prot);
6670 		perf_output_put(&handle, mmap_event->flags);
6671 	}
6672 
6673 	__output_copy(&handle, mmap_event->file_name,
6674 				   mmap_event->file_size);
6675 
6676 	perf_event__output_id_sample(event, &handle, &sample);
6677 
6678 	perf_output_end(&handle);
6679 out:
6680 	mmap_event->event_id.header.size = size;
6681 }
6682 
6683 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6684 {
6685 	struct vm_area_struct *vma = mmap_event->vma;
6686 	struct file *file = vma->vm_file;
6687 	int maj = 0, min = 0;
6688 	u64 ino = 0, gen = 0;
6689 	u32 prot = 0, flags = 0;
6690 	unsigned int size;
6691 	char tmp[16];
6692 	char *buf = NULL;
6693 	char *name;
6694 
6695 	if (vma->vm_flags & VM_READ)
6696 		prot |= PROT_READ;
6697 	if (vma->vm_flags & VM_WRITE)
6698 		prot |= PROT_WRITE;
6699 	if (vma->vm_flags & VM_EXEC)
6700 		prot |= PROT_EXEC;
6701 
6702 	if (vma->vm_flags & VM_MAYSHARE)
6703 		flags = MAP_SHARED;
6704 	else
6705 		flags = MAP_PRIVATE;
6706 
6707 	if (vma->vm_flags & VM_DENYWRITE)
6708 		flags |= MAP_DENYWRITE;
6709 	if (vma->vm_flags & VM_MAYEXEC)
6710 		flags |= MAP_EXECUTABLE;
6711 	if (vma->vm_flags & VM_LOCKED)
6712 		flags |= MAP_LOCKED;
6713 	if (vma->vm_flags & VM_HUGETLB)
6714 		flags |= MAP_HUGETLB;
6715 
6716 	if (file) {
6717 		struct inode *inode;
6718 		dev_t dev;
6719 
6720 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6721 		if (!buf) {
6722 			name = "//enomem";
6723 			goto cpy_name;
6724 		}
6725 		/*
6726 		 * d_path() works from the end of the rb backwards, so we
6727 		 * need to add enough zero bytes after the string to handle
6728 		 * the 64bit alignment we do later.
6729 		 */
6730 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6731 		if (IS_ERR(name)) {
6732 			name = "//toolong";
6733 			goto cpy_name;
6734 		}
6735 		inode = file_inode(vma->vm_file);
6736 		dev = inode->i_sb->s_dev;
6737 		ino = inode->i_ino;
6738 		gen = inode->i_generation;
6739 		maj = MAJOR(dev);
6740 		min = MINOR(dev);
6741 
6742 		goto got_name;
6743 	} else {
6744 		if (vma->vm_ops && vma->vm_ops->name) {
6745 			name = (char *) vma->vm_ops->name(vma);
6746 			if (name)
6747 				goto cpy_name;
6748 		}
6749 
6750 		name = (char *)arch_vma_name(vma);
6751 		if (name)
6752 			goto cpy_name;
6753 
6754 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6755 				vma->vm_end >= vma->vm_mm->brk) {
6756 			name = "[heap]";
6757 			goto cpy_name;
6758 		}
6759 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6760 				vma->vm_end >= vma->vm_mm->start_stack) {
6761 			name = "[stack]";
6762 			goto cpy_name;
6763 		}
6764 
6765 		name = "//anon";
6766 		goto cpy_name;
6767 	}
6768 
6769 cpy_name:
6770 	strlcpy(tmp, name, sizeof(tmp));
6771 	name = tmp;
6772 got_name:
6773 	/*
6774 	 * Since our buffer works in 8 byte units we need to align our string
6775 	 * size to a multiple of 8. However, we must guarantee the tail end is
6776 	 * zero'd out to avoid leaking random bits to userspace.
6777 	 */
6778 	size = strlen(name)+1;
6779 	while (!IS_ALIGNED(size, sizeof(u64)))
6780 		name[size++] = '\0';
6781 
6782 	mmap_event->file_name = name;
6783 	mmap_event->file_size = size;
6784 	mmap_event->maj = maj;
6785 	mmap_event->min = min;
6786 	mmap_event->ino = ino;
6787 	mmap_event->ino_generation = gen;
6788 	mmap_event->prot = prot;
6789 	mmap_event->flags = flags;
6790 
6791 	if (!(vma->vm_flags & VM_EXEC))
6792 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6793 
6794 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6795 
6796 	perf_iterate_sb(perf_event_mmap_output,
6797 		       mmap_event,
6798 		       NULL);
6799 
6800 	kfree(buf);
6801 }
6802 
6803 /*
6804  * Check whether inode and address range match filter criteria.
6805  */
6806 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6807 				     struct file *file, unsigned long offset,
6808 				     unsigned long size)
6809 {
6810 	if (filter->inode != file_inode(file))
6811 		return false;
6812 
6813 	if (filter->offset > offset + size)
6814 		return false;
6815 
6816 	if (filter->offset + filter->size < offset)
6817 		return false;
6818 
6819 	return true;
6820 }
6821 
6822 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6823 {
6824 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6825 	struct vm_area_struct *vma = data;
6826 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6827 	struct file *file = vma->vm_file;
6828 	struct perf_addr_filter *filter;
6829 	unsigned int restart = 0, count = 0;
6830 
6831 	if (!has_addr_filter(event))
6832 		return;
6833 
6834 	if (!file)
6835 		return;
6836 
6837 	raw_spin_lock_irqsave(&ifh->lock, flags);
6838 	list_for_each_entry(filter, &ifh->list, entry) {
6839 		if (perf_addr_filter_match(filter, file, off,
6840 					     vma->vm_end - vma->vm_start)) {
6841 			event->addr_filters_offs[count] = vma->vm_start;
6842 			restart++;
6843 		}
6844 
6845 		count++;
6846 	}
6847 
6848 	if (restart)
6849 		event->addr_filters_gen++;
6850 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6851 
6852 	if (restart)
6853 		perf_event_stop(event, 1);
6854 }
6855 
6856 /*
6857  * Adjust all task's events' filters to the new vma
6858  */
6859 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6860 {
6861 	struct perf_event_context *ctx;
6862 	int ctxn;
6863 
6864 	/*
6865 	 * Data tracing isn't supported yet and as such there is no need
6866 	 * to keep track of anything that isn't related to executable code:
6867 	 */
6868 	if (!(vma->vm_flags & VM_EXEC))
6869 		return;
6870 
6871 	rcu_read_lock();
6872 	for_each_task_context_nr(ctxn) {
6873 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6874 		if (!ctx)
6875 			continue;
6876 
6877 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6878 	}
6879 	rcu_read_unlock();
6880 }
6881 
6882 void perf_event_mmap(struct vm_area_struct *vma)
6883 {
6884 	struct perf_mmap_event mmap_event;
6885 
6886 	if (!atomic_read(&nr_mmap_events))
6887 		return;
6888 
6889 	mmap_event = (struct perf_mmap_event){
6890 		.vma	= vma,
6891 		/* .file_name */
6892 		/* .file_size */
6893 		.event_id  = {
6894 			.header = {
6895 				.type = PERF_RECORD_MMAP,
6896 				.misc = PERF_RECORD_MISC_USER,
6897 				/* .size */
6898 			},
6899 			/* .pid */
6900 			/* .tid */
6901 			.start  = vma->vm_start,
6902 			.len    = vma->vm_end - vma->vm_start,
6903 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6904 		},
6905 		/* .maj (attr_mmap2 only) */
6906 		/* .min (attr_mmap2 only) */
6907 		/* .ino (attr_mmap2 only) */
6908 		/* .ino_generation (attr_mmap2 only) */
6909 		/* .prot (attr_mmap2 only) */
6910 		/* .flags (attr_mmap2 only) */
6911 	};
6912 
6913 	perf_addr_filters_adjust(vma);
6914 	perf_event_mmap_event(&mmap_event);
6915 }
6916 
6917 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6918 			  unsigned long size, u64 flags)
6919 {
6920 	struct perf_output_handle handle;
6921 	struct perf_sample_data sample;
6922 	struct perf_aux_event {
6923 		struct perf_event_header	header;
6924 		u64				offset;
6925 		u64				size;
6926 		u64				flags;
6927 	} rec = {
6928 		.header = {
6929 			.type = PERF_RECORD_AUX,
6930 			.misc = 0,
6931 			.size = sizeof(rec),
6932 		},
6933 		.offset		= head,
6934 		.size		= size,
6935 		.flags		= flags,
6936 	};
6937 	int ret;
6938 
6939 	perf_event_header__init_id(&rec.header, &sample, event);
6940 	ret = perf_output_begin(&handle, event, rec.header.size);
6941 
6942 	if (ret)
6943 		return;
6944 
6945 	perf_output_put(&handle, rec);
6946 	perf_event__output_id_sample(event, &handle, &sample);
6947 
6948 	perf_output_end(&handle);
6949 }
6950 
6951 /*
6952  * Lost/dropped samples logging
6953  */
6954 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6955 {
6956 	struct perf_output_handle handle;
6957 	struct perf_sample_data sample;
6958 	int ret;
6959 
6960 	struct {
6961 		struct perf_event_header	header;
6962 		u64				lost;
6963 	} lost_samples_event = {
6964 		.header = {
6965 			.type = PERF_RECORD_LOST_SAMPLES,
6966 			.misc = 0,
6967 			.size = sizeof(lost_samples_event),
6968 		},
6969 		.lost		= lost,
6970 	};
6971 
6972 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6973 
6974 	ret = perf_output_begin(&handle, event,
6975 				lost_samples_event.header.size);
6976 	if (ret)
6977 		return;
6978 
6979 	perf_output_put(&handle, lost_samples_event);
6980 	perf_event__output_id_sample(event, &handle, &sample);
6981 	perf_output_end(&handle);
6982 }
6983 
6984 /*
6985  * context_switch tracking
6986  */
6987 
6988 struct perf_switch_event {
6989 	struct task_struct	*task;
6990 	struct task_struct	*next_prev;
6991 
6992 	struct {
6993 		struct perf_event_header	header;
6994 		u32				next_prev_pid;
6995 		u32				next_prev_tid;
6996 	} event_id;
6997 };
6998 
6999 static int perf_event_switch_match(struct perf_event *event)
7000 {
7001 	return event->attr.context_switch;
7002 }
7003 
7004 static void perf_event_switch_output(struct perf_event *event, void *data)
7005 {
7006 	struct perf_switch_event *se = data;
7007 	struct perf_output_handle handle;
7008 	struct perf_sample_data sample;
7009 	int ret;
7010 
7011 	if (!perf_event_switch_match(event))
7012 		return;
7013 
7014 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7015 	if (event->ctx->task) {
7016 		se->event_id.header.type = PERF_RECORD_SWITCH;
7017 		se->event_id.header.size = sizeof(se->event_id.header);
7018 	} else {
7019 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7020 		se->event_id.header.size = sizeof(se->event_id);
7021 		se->event_id.next_prev_pid =
7022 					perf_event_pid(event, se->next_prev);
7023 		se->event_id.next_prev_tid =
7024 					perf_event_tid(event, se->next_prev);
7025 	}
7026 
7027 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7028 
7029 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7030 	if (ret)
7031 		return;
7032 
7033 	if (event->ctx->task)
7034 		perf_output_put(&handle, se->event_id.header);
7035 	else
7036 		perf_output_put(&handle, se->event_id);
7037 
7038 	perf_event__output_id_sample(event, &handle, &sample);
7039 
7040 	perf_output_end(&handle);
7041 }
7042 
7043 static void perf_event_switch(struct task_struct *task,
7044 			      struct task_struct *next_prev, bool sched_in)
7045 {
7046 	struct perf_switch_event switch_event;
7047 
7048 	/* N.B. caller checks nr_switch_events != 0 */
7049 
7050 	switch_event = (struct perf_switch_event){
7051 		.task		= task,
7052 		.next_prev	= next_prev,
7053 		.event_id	= {
7054 			.header = {
7055 				/* .type */
7056 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7057 				/* .size */
7058 			},
7059 			/* .next_prev_pid */
7060 			/* .next_prev_tid */
7061 		},
7062 	};
7063 
7064 	perf_iterate_sb(perf_event_switch_output,
7065 		       &switch_event,
7066 		       NULL);
7067 }
7068 
7069 /*
7070  * IRQ throttle logging
7071  */
7072 
7073 static void perf_log_throttle(struct perf_event *event, int enable)
7074 {
7075 	struct perf_output_handle handle;
7076 	struct perf_sample_data sample;
7077 	int ret;
7078 
7079 	struct {
7080 		struct perf_event_header	header;
7081 		u64				time;
7082 		u64				id;
7083 		u64				stream_id;
7084 	} throttle_event = {
7085 		.header = {
7086 			.type = PERF_RECORD_THROTTLE,
7087 			.misc = 0,
7088 			.size = sizeof(throttle_event),
7089 		},
7090 		.time		= perf_event_clock(event),
7091 		.id		= primary_event_id(event),
7092 		.stream_id	= event->id,
7093 	};
7094 
7095 	if (enable)
7096 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7097 
7098 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7099 
7100 	ret = perf_output_begin(&handle, event,
7101 				throttle_event.header.size);
7102 	if (ret)
7103 		return;
7104 
7105 	perf_output_put(&handle, throttle_event);
7106 	perf_event__output_id_sample(event, &handle, &sample);
7107 	perf_output_end(&handle);
7108 }
7109 
7110 static void perf_log_itrace_start(struct perf_event *event)
7111 {
7112 	struct perf_output_handle handle;
7113 	struct perf_sample_data sample;
7114 	struct perf_aux_event {
7115 		struct perf_event_header        header;
7116 		u32				pid;
7117 		u32				tid;
7118 	} rec;
7119 	int ret;
7120 
7121 	if (event->parent)
7122 		event = event->parent;
7123 
7124 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7125 	    event->hw.itrace_started)
7126 		return;
7127 
7128 	rec.header.type	= PERF_RECORD_ITRACE_START;
7129 	rec.header.misc	= 0;
7130 	rec.header.size	= sizeof(rec);
7131 	rec.pid	= perf_event_pid(event, current);
7132 	rec.tid	= perf_event_tid(event, current);
7133 
7134 	perf_event_header__init_id(&rec.header, &sample, event);
7135 	ret = perf_output_begin(&handle, event, rec.header.size);
7136 
7137 	if (ret)
7138 		return;
7139 
7140 	perf_output_put(&handle, rec);
7141 	perf_event__output_id_sample(event, &handle, &sample);
7142 
7143 	perf_output_end(&handle);
7144 }
7145 
7146 static int
7147 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7148 {
7149 	struct hw_perf_event *hwc = &event->hw;
7150 	int ret = 0;
7151 	u64 seq;
7152 
7153 	seq = __this_cpu_read(perf_throttled_seq);
7154 	if (seq != hwc->interrupts_seq) {
7155 		hwc->interrupts_seq = seq;
7156 		hwc->interrupts = 1;
7157 	} else {
7158 		hwc->interrupts++;
7159 		if (unlikely(throttle
7160 			     && hwc->interrupts >= max_samples_per_tick)) {
7161 			__this_cpu_inc(perf_throttled_count);
7162 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7163 			hwc->interrupts = MAX_INTERRUPTS;
7164 			perf_log_throttle(event, 0);
7165 			ret = 1;
7166 		}
7167 	}
7168 
7169 	if (event->attr.freq) {
7170 		u64 now = perf_clock();
7171 		s64 delta = now - hwc->freq_time_stamp;
7172 
7173 		hwc->freq_time_stamp = now;
7174 
7175 		if (delta > 0 && delta < 2*TICK_NSEC)
7176 			perf_adjust_period(event, delta, hwc->last_period, true);
7177 	}
7178 
7179 	return ret;
7180 }
7181 
7182 int perf_event_account_interrupt(struct perf_event *event)
7183 {
7184 	return __perf_event_account_interrupt(event, 1);
7185 }
7186 
7187 /*
7188  * Generic event overflow handling, sampling.
7189  */
7190 
7191 static int __perf_event_overflow(struct perf_event *event,
7192 				   int throttle, struct perf_sample_data *data,
7193 				   struct pt_regs *regs)
7194 {
7195 	int events = atomic_read(&event->event_limit);
7196 	int ret = 0;
7197 
7198 	/*
7199 	 * Non-sampling counters might still use the PMI to fold short
7200 	 * hardware counters, ignore those.
7201 	 */
7202 	if (unlikely(!is_sampling_event(event)))
7203 		return 0;
7204 
7205 	ret = __perf_event_account_interrupt(event, throttle);
7206 
7207 	/*
7208 	 * XXX event_limit might not quite work as expected on inherited
7209 	 * events
7210 	 */
7211 
7212 	event->pending_kill = POLL_IN;
7213 	if (events && atomic_dec_and_test(&event->event_limit)) {
7214 		ret = 1;
7215 		event->pending_kill = POLL_HUP;
7216 
7217 		perf_event_disable_inatomic(event);
7218 	}
7219 
7220 	READ_ONCE(event->overflow_handler)(event, data, regs);
7221 
7222 	if (*perf_event_fasync(event) && event->pending_kill) {
7223 		event->pending_wakeup = 1;
7224 		irq_work_queue(&event->pending);
7225 	}
7226 
7227 	return ret;
7228 }
7229 
7230 int perf_event_overflow(struct perf_event *event,
7231 			  struct perf_sample_data *data,
7232 			  struct pt_regs *regs)
7233 {
7234 	return __perf_event_overflow(event, 1, data, regs);
7235 }
7236 
7237 /*
7238  * Generic software event infrastructure
7239  */
7240 
7241 struct swevent_htable {
7242 	struct swevent_hlist		*swevent_hlist;
7243 	struct mutex			hlist_mutex;
7244 	int				hlist_refcount;
7245 
7246 	/* Recursion avoidance in each contexts */
7247 	int				recursion[PERF_NR_CONTEXTS];
7248 };
7249 
7250 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7251 
7252 /*
7253  * We directly increment event->count and keep a second value in
7254  * event->hw.period_left to count intervals. This period event
7255  * is kept in the range [-sample_period, 0] so that we can use the
7256  * sign as trigger.
7257  */
7258 
7259 u64 perf_swevent_set_period(struct perf_event *event)
7260 {
7261 	struct hw_perf_event *hwc = &event->hw;
7262 	u64 period = hwc->last_period;
7263 	u64 nr, offset;
7264 	s64 old, val;
7265 
7266 	hwc->last_period = hwc->sample_period;
7267 
7268 again:
7269 	old = val = local64_read(&hwc->period_left);
7270 	if (val < 0)
7271 		return 0;
7272 
7273 	nr = div64_u64(period + val, period);
7274 	offset = nr * period;
7275 	val -= offset;
7276 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7277 		goto again;
7278 
7279 	return nr;
7280 }
7281 
7282 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7283 				    struct perf_sample_data *data,
7284 				    struct pt_regs *regs)
7285 {
7286 	struct hw_perf_event *hwc = &event->hw;
7287 	int throttle = 0;
7288 
7289 	if (!overflow)
7290 		overflow = perf_swevent_set_period(event);
7291 
7292 	if (hwc->interrupts == MAX_INTERRUPTS)
7293 		return;
7294 
7295 	for (; overflow; overflow--) {
7296 		if (__perf_event_overflow(event, throttle,
7297 					    data, regs)) {
7298 			/*
7299 			 * We inhibit the overflow from happening when
7300 			 * hwc->interrupts == MAX_INTERRUPTS.
7301 			 */
7302 			break;
7303 		}
7304 		throttle = 1;
7305 	}
7306 }
7307 
7308 static void perf_swevent_event(struct perf_event *event, u64 nr,
7309 			       struct perf_sample_data *data,
7310 			       struct pt_regs *regs)
7311 {
7312 	struct hw_perf_event *hwc = &event->hw;
7313 
7314 	local64_add(nr, &event->count);
7315 
7316 	if (!regs)
7317 		return;
7318 
7319 	if (!is_sampling_event(event))
7320 		return;
7321 
7322 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7323 		data->period = nr;
7324 		return perf_swevent_overflow(event, 1, data, regs);
7325 	} else
7326 		data->period = event->hw.last_period;
7327 
7328 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7329 		return perf_swevent_overflow(event, 1, data, regs);
7330 
7331 	if (local64_add_negative(nr, &hwc->period_left))
7332 		return;
7333 
7334 	perf_swevent_overflow(event, 0, data, regs);
7335 }
7336 
7337 static int perf_exclude_event(struct perf_event *event,
7338 			      struct pt_regs *regs)
7339 {
7340 	if (event->hw.state & PERF_HES_STOPPED)
7341 		return 1;
7342 
7343 	if (regs) {
7344 		if (event->attr.exclude_user && user_mode(regs))
7345 			return 1;
7346 
7347 		if (event->attr.exclude_kernel && !user_mode(regs))
7348 			return 1;
7349 	}
7350 
7351 	return 0;
7352 }
7353 
7354 static int perf_swevent_match(struct perf_event *event,
7355 				enum perf_type_id type,
7356 				u32 event_id,
7357 				struct perf_sample_data *data,
7358 				struct pt_regs *regs)
7359 {
7360 	if (event->attr.type != type)
7361 		return 0;
7362 
7363 	if (event->attr.config != event_id)
7364 		return 0;
7365 
7366 	if (perf_exclude_event(event, regs))
7367 		return 0;
7368 
7369 	return 1;
7370 }
7371 
7372 static inline u64 swevent_hash(u64 type, u32 event_id)
7373 {
7374 	u64 val = event_id | (type << 32);
7375 
7376 	return hash_64(val, SWEVENT_HLIST_BITS);
7377 }
7378 
7379 static inline struct hlist_head *
7380 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7381 {
7382 	u64 hash = swevent_hash(type, event_id);
7383 
7384 	return &hlist->heads[hash];
7385 }
7386 
7387 /* For the read side: events when they trigger */
7388 static inline struct hlist_head *
7389 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7390 {
7391 	struct swevent_hlist *hlist;
7392 
7393 	hlist = rcu_dereference(swhash->swevent_hlist);
7394 	if (!hlist)
7395 		return NULL;
7396 
7397 	return __find_swevent_head(hlist, type, event_id);
7398 }
7399 
7400 /* For the event head insertion and removal in the hlist */
7401 static inline struct hlist_head *
7402 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7403 {
7404 	struct swevent_hlist *hlist;
7405 	u32 event_id = event->attr.config;
7406 	u64 type = event->attr.type;
7407 
7408 	/*
7409 	 * Event scheduling is always serialized against hlist allocation
7410 	 * and release. Which makes the protected version suitable here.
7411 	 * The context lock guarantees that.
7412 	 */
7413 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7414 					  lockdep_is_held(&event->ctx->lock));
7415 	if (!hlist)
7416 		return NULL;
7417 
7418 	return __find_swevent_head(hlist, type, event_id);
7419 }
7420 
7421 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7422 				    u64 nr,
7423 				    struct perf_sample_data *data,
7424 				    struct pt_regs *regs)
7425 {
7426 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7427 	struct perf_event *event;
7428 	struct hlist_head *head;
7429 
7430 	rcu_read_lock();
7431 	head = find_swevent_head_rcu(swhash, type, event_id);
7432 	if (!head)
7433 		goto end;
7434 
7435 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7436 		if (perf_swevent_match(event, type, event_id, data, regs))
7437 			perf_swevent_event(event, nr, data, regs);
7438 	}
7439 end:
7440 	rcu_read_unlock();
7441 }
7442 
7443 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7444 
7445 int perf_swevent_get_recursion_context(void)
7446 {
7447 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7448 
7449 	return get_recursion_context(swhash->recursion);
7450 }
7451 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7452 
7453 void perf_swevent_put_recursion_context(int rctx)
7454 {
7455 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7456 
7457 	put_recursion_context(swhash->recursion, rctx);
7458 }
7459 
7460 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7461 {
7462 	struct perf_sample_data data;
7463 
7464 	if (WARN_ON_ONCE(!regs))
7465 		return;
7466 
7467 	perf_sample_data_init(&data, addr, 0);
7468 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7469 }
7470 
7471 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7472 {
7473 	int rctx;
7474 
7475 	preempt_disable_notrace();
7476 	rctx = perf_swevent_get_recursion_context();
7477 	if (unlikely(rctx < 0))
7478 		goto fail;
7479 
7480 	___perf_sw_event(event_id, nr, regs, addr);
7481 
7482 	perf_swevent_put_recursion_context(rctx);
7483 fail:
7484 	preempt_enable_notrace();
7485 }
7486 
7487 static void perf_swevent_read(struct perf_event *event)
7488 {
7489 }
7490 
7491 static int perf_swevent_add(struct perf_event *event, int flags)
7492 {
7493 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7494 	struct hw_perf_event *hwc = &event->hw;
7495 	struct hlist_head *head;
7496 
7497 	if (is_sampling_event(event)) {
7498 		hwc->last_period = hwc->sample_period;
7499 		perf_swevent_set_period(event);
7500 	}
7501 
7502 	hwc->state = !(flags & PERF_EF_START);
7503 
7504 	head = find_swevent_head(swhash, event);
7505 	if (WARN_ON_ONCE(!head))
7506 		return -EINVAL;
7507 
7508 	hlist_add_head_rcu(&event->hlist_entry, head);
7509 	perf_event_update_userpage(event);
7510 
7511 	return 0;
7512 }
7513 
7514 static void perf_swevent_del(struct perf_event *event, int flags)
7515 {
7516 	hlist_del_rcu(&event->hlist_entry);
7517 }
7518 
7519 static void perf_swevent_start(struct perf_event *event, int flags)
7520 {
7521 	event->hw.state = 0;
7522 }
7523 
7524 static void perf_swevent_stop(struct perf_event *event, int flags)
7525 {
7526 	event->hw.state = PERF_HES_STOPPED;
7527 }
7528 
7529 /* Deref the hlist from the update side */
7530 static inline struct swevent_hlist *
7531 swevent_hlist_deref(struct swevent_htable *swhash)
7532 {
7533 	return rcu_dereference_protected(swhash->swevent_hlist,
7534 					 lockdep_is_held(&swhash->hlist_mutex));
7535 }
7536 
7537 static void swevent_hlist_release(struct swevent_htable *swhash)
7538 {
7539 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7540 
7541 	if (!hlist)
7542 		return;
7543 
7544 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7545 	kfree_rcu(hlist, rcu_head);
7546 }
7547 
7548 static void swevent_hlist_put_cpu(int cpu)
7549 {
7550 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7551 
7552 	mutex_lock(&swhash->hlist_mutex);
7553 
7554 	if (!--swhash->hlist_refcount)
7555 		swevent_hlist_release(swhash);
7556 
7557 	mutex_unlock(&swhash->hlist_mutex);
7558 }
7559 
7560 static void swevent_hlist_put(void)
7561 {
7562 	int cpu;
7563 
7564 	for_each_possible_cpu(cpu)
7565 		swevent_hlist_put_cpu(cpu);
7566 }
7567 
7568 static int swevent_hlist_get_cpu(int cpu)
7569 {
7570 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7571 	int err = 0;
7572 
7573 	mutex_lock(&swhash->hlist_mutex);
7574 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7575 		struct swevent_hlist *hlist;
7576 
7577 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7578 		if (!hlist) {
7579 			err = -ENOMEM;
7580 			goto exit;
7581 		}
7582 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7583 	}
7584 	swhash->hlist_refcount++;
7585 exit:
7586 	mutex_unlock(&swhash->hlist_mutex);
7587 
7588 	return err;
7589 }
7590 
7591 static int swevent_hlist_get(void)
7592 {
7593 	int err, cpu, failed_cpu;
7594 
7595 	get_online_cpus();
7596 	for_each_possible_cpu(cpu) {
7597 		err = swevent_hlist_get_cpu(cpu);
7598 		if (err) {
7599 			failed_cpu = cpu;
7600 			goto fail;
7601 		}
7602 	}
7603 	put_online_cpus();
7604 
7605 	return 0;
7606 fail:
7607 	for_each_possible_cpu(cpu) {
7608 		if (cpu == failed_cpu)
7609 			break;
7610 		swevent_hlist_put_cpu(cpu);
7611 	}
7612 
7613 	put_online_cpus();
7614 	return err;
7615 }
7616 
7617 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7618 
7619 static void sw_perf_event_destroy(struct perf_event *event)
7620 {
7621 	u64 event_id = event->attr.config;
7622 
7623 	WARN_ON(event->parent);
7624 
7625 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7626 	swevent_hlist_put();
7627 }
7628 
7629 static int perf_swevent_init(struct perf_event *event)
7630 {
7631 	u64 event_id = event->attr.config;
7632 
7633 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7634 		return -ENOENT;
7635 
7636 	/*
7637 	 * no branch sampling for software events
7638 	 */
7639 	if (has_branch_stack(event))
7640 		return -EOPNOTSUPP;
7641 
7642 	switch (event_id) {
7643 	case PERF_COUNT_SW_CPU_CLOCK:
7644 	case PERF_COUNT_SW_TASK_CLOCK:
7645 		return -ENOENT;
7646 
7647 	default:
7648 		break;
7649 	}
7650 
7651 	if (event_id >= PERF_COUNT_SW_MAX)
7652 		return -ENOENT;
7653 
7654 	if (!event->parent) {
7655 		int err;
7656 
7657 		err = swevent_hlist_get();
7658 		if (err)
7659 			return err;
7660 
7661 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7662 		event->destroy = sw_perf_event_destroy;
7663 	}
7664 
7665 	return 0;
7666 }
7667 
7668 static struct pmu perf_swevent = {
7669 	.task_ctx_nr	= perf_sw_context,
7670 
7671 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7672 
7673 	.event_init	= perf_swevent_init,
7674 	.add		= perf_swevent_add,
7675 	.del		= perf_swevent_del,
7676 	.start		= perf_swevent_start,
7677 	.stop		= perf_swevent_stop,
7678 	.read		= perf_swevent_read,
7679 };
7680 
7681 #ifdef CONFIG_EVENT_TRACING
7682 
7683 static int perf_tp_filter_match(struct perf_event *event,
7684 				struct perf_sample_data *data)
7685 {
7686 	void *record = data->raw->frag.data;
7687 
7688 	/* only top level events have filters set */
7689 	if (event->parent)
7690 		event = event->parent;
7691 
7692 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7693 		return 1;
7694 	return 0;
7695 }
7696 
7697 static int perf_tp_event_match(struct perf_event *event,
7698 				struct perf_sample_data *data,
7699 				struct pt_regs *regs)
7700 {
7701 	if (event->hw.state & PERF_HES_STOPPED)
7702 		return 0;
7703 	/*
7704 	 * All tracepoints are from kernel-space.
7705 	 */
7706 	if (event->attr.exclude_kernel)
7707 		return 0;
7708 
7709 	if (!perf_tp_filter_match(event, data))
7710 		return 0;
7711 
7712 	return 1;
7713 }
7714 
7715 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7716 			       struct trace_event_call *call, u64 count,
7717 			       struct pt_regs *regs, struct hlist_head *head,
7718 			       struct task_struct *task)
7719 {
7720 	struct bpf_prog *prog = call->prog;
7721 
7722 	if (prog) {
7723 		*(struct pt_regs **)raw_data = regs;
7724 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7725 			perf_swevent_put_recursion_context(rctx);
7726 			return;
7727 		}
7728 	}
7729 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7730 		      rctx, task);
7731 }
7732 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7733 
7734 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7735 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7736 		   struct task_struct *task)
7737 {
7738 	struct perf_sample_data data;
7739 	struct perf_event *event;
7740 
7741 	struct perf_raw_record raw = {
7742 		.frag = {
7743 			.size = entry_size,
7744 			.data = record,
7745 		},
7746 	};
7747 
7748 	perf_sample_data_init(&data, 0, 0);
7749 	data.raw = &raw;
7750 
7751 	perf_trace_buf_update(record, event_type);
7752 
7753 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7754 		if (perf_tp_event_match(event, &data, regs))
7755 			perf_swevent_event(event, count, &data, regs);
7756 	}
7757 
7758 	/*
7759 	 * If we got specified a target task, also iterate its context and
7760 	 * deliver this event there too.
7761 	 */
7762 	if (task && task != current) {
7763 		struct perf_event_context *ctx;
7764 		struct trace_entry *entry = record;
7765 
7766 		rcu_read_lock();
7767 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7768 		if (!ctx)
7769 			goto unlock;
7770 
7771 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7772 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7773 				continue;
7774 			if (event->attr.config != entry->type)
7775 				continue;
7776 			if (perf_tp_event_match(event, &data, regs))
7777 				perf_swevent_event(event, count, &data, regs);
7778 		}
7779 unlock:
7780 		rcu_read_unlock();
7781 	}
7782 
7783 	perf_swevent_put_recursion_context(rctx);
7784 }
7785 EXPORT_SYMBOL_GPL(perf_tp_event);
7786 
7787 static void tp_perf_event_destroy(struct perf_event *event)
7788 {
7789 	perf_trace_destroy(event);
7790 }
7791 
7792 static int perf_tp_event_init(struct perf_event *event)
7793 {
7794 	int err;
7795 
7796 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7797 		return -ENOENT;
7798 
7799 	/*
7800 	 * no branch sampling for tracepoint events
7801 	 */
7802 	if (has_branch_stack(event))
7803 		return -EOPNOTSUPP;
7804 
7805 	err = perf_trace_init(event);
7806 	if (err)
7807 		return err;
7808 
7809 	event->destroy = tp_perf_event_destroy;
7810 
7811 	return 0;
7812 }
7813 
7814 static struct pmu perf_tracepoint = {
7815 	.task_ctx_nr	= perf_sw_context,
7816 
7817 	.event_init	= perf_tp_event_init,
7818 	.add		= perf_trace_add,
7819 	.del		= perf_trace_del,
7820 	.start		= perf_swevent_start,
7821 	.stop		= perf_swevent_stop,
7822 	.read		= perf_swevent_read,
7823 };
7824 
7825 static inline void perf_tp_register(void)
7826 {
7827 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7828 }
7829 
7830 static void perf_event_free_filter(struct perf_event *event)
7831 {
7832 	ftrace_profile_free_filter(event);
7833 }
7834 
7835 #ifdef CONFIG_BPF_SYSCALL
7836 static void bpf_overflow_handler(struct perf_event *event,
7837 				 struct perf_sample_data *data,
7838 				 struct pt_regs *regs)
7839 {
7840 	struct bpf_perf_event_data_kern ctx = {
7841 		.data = data,
7842 		.regs = regs,
7843 	};
7844 	int ret = 0;
7845 
7846 	preempt_disable();
7847 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7848 		goto out;
7849 	rcu_read_lock();
7850 	ret = BPF_PROG_RUN(event->prog, &ctx);
7851 	rcu_read_unlock();
7852 out:
7853 	__this_cpu_dec(bpf_prog_active);
7854 	preempt_enable();
7855 	if (!ret)
7856 		return;
7857 
7858 	event->orig_overflow_handler(event, data, regs);
7859 }
7860 
7861 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7862 {
7863 	struct bpf_prog *prog;
7864 
7865 	if (event->overflow_handler_context)
7866 		/* hw breakpoint or kernel counter */
7867 		return -EINVAL;
7868 
7869 	if (event->prog)
7870 		return -EEXIST;
7871 
7872 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7873 	if (IS_ERR(prog))
7874 		return PTR_ERR(prog);
7875 
7876 	event->prog = prog;
7877 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7878 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7879 	return 0;
7880 }
7881 
7882 static void perf_event_free_bpf_handler(struct perf_event *event)
7883 {
7884 	struct bpf_prog *prog = event->prog;
7885 
7886 	if (!prog)
7887 		return;
7888 
7889 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7890 	event->prog = NULL;
7891 	bpf_prog_put(prog);
7892 }
7893 #else
7894 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7895 {
7896 	return -EOPNOTSUPP;
7897 }
7898 static void perf_event_free_bpf_handler(struct perf_event *event)
7899 {
7900 }
7901 #endif
7902 
7903 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7904 {
7905 	bool is_kprobe, is_tracepoint;
7906 	struct bpf_prog *prog;
7907 
7908 	if (event->attr.type == PERF_TYPE_HARDWARE ||
7909 	    event->attr.type == PERF_TYPE_SOFTWARE)
7910 		return perf_event_set_bpf_handler(event, prog_fd);
7911 
7912 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7913 		return -EINVAL;
7914 
7915 	if (event->tp_event->prog)
7916 		return -EEXIST;
7917 
7918 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7919 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7920 	if (!is_kprobe && !is_tracepoint)
7921 		/* bpf programs can only be attached to u/kprobe or tracepoint */
7922 		return -EINVAL;
7923 
7924 	prog = bpf_prog_get(prog_fd);
7925 	if (IS_ERR(prog))
7926 		return PTR_ERR(prog);
7927 
7928 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7929 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7930 		/* valid fd, but invalid bpf program type */
7931 		bpf_prog_put(prog);
7932 		return -EINVAL;
7933 	}
7934 
7935 	if (is_tracepoint) {
7936 		int off = trace_event_get_offsets(event->tp_event);
7937 
7938 		if (prog->aux->max_ctx_offset > off) {
7939 			bpf_prog_put(prog);
7940 			return -EACCES;
7941 		}
7942 	}
7943 	event->tp_event->prog = prog;
7944 
7945 	return 0;
7946 }
7947 
7948 static void perf_event_free_bpf_prog(struct perf_event *event)
7949 {
7950 	struct bpf_prog *prog;
7951 
7952 	perf_event_free_bpf_handler(event);
7953 
7954 	if (!event->tp_event)
7955 		return;
7956 
7957 	prog = event->tp_event->prog;
7958 	if (prog) {
7959 		event->tp_event->prog = NULL;
7960 		bpf_prog_put(prog);
7961 	}
7962 }
7963 
7964 #else
7965 
7966 static inline void perf_tp_register(void)
7967 {
7968 }
7969 
7970 static void perf_event_free_filter(struct perf_event *event)
7971 {
7972 }
7973 
7974 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7975 {
7976 	return -ENOENT;
7977 }
7978 
7979 static void perf_event_free_bpf_prog(struct perf_event *event)
7980 {
7981 }
7982 #endif /* CONFIG_EVENT_TRACING */
7983 
7984 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7985 void perf_bp_event(struct perf_event *bp, void *data)
7986 {
7987 	struct perf_sample_data sample;
7988 	struct pt_regs *regs = data;
7989 
7990 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7991 
7992 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7993 		perf_swevent_event(bp, 1, &sample, regs);
7994 }
7995 #endif
7996 
7997 /*
7998  * Allocate a new address filter
7999  */
8000 static struct perf_addr_filter *
8001 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8002 {
8003 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8004 	struct perf_addr_filter *filter;
8005 
8006 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8007 	if (!filter)
8008 		return NULL;
8009 
8010 	INIT_LIST_HEAD(&filter->entry);
8011 	list_add_tail(&filter->entry, filters);
8012 
8013 	return filter;
8014 }
8015 
8016 static void free_filters_list(struct list_head *filters)
8017 {
8018 	struct perf_addr_filter *filter, *iter;
8019 
8020 	list_for_each_entry_safe(filter, iter, filters, entry) {
8021 		if (filter->inode)
8022 			iput(filter->inode);
8023 		list_del(&filter->entry);
8024 		kfree(filter);
8025 	}
8026 }
8027 
8028 /*
8029  * Free existing address filters and optionally install new ones
8030  */
8031 static void perf_addr_filters_splice(struct perf_event *event,
8032 				     struct list_head *head)
8033 {
8034 	unsigned long flags;
8035 	LIST_HEAD(list);
8036 
8037 	if (!has_addr_filter(event))
8038 		return;
8039 
8040 	/* don't bother with children, they don't have their own filters */
8041 	if (event->parent)
8042 		return;
8043 
8044 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8045 
8046 	list_splice_init(&event->addr_filters.list, &list);
8047 	if (head)
8048 		list_splice(head, &event->addr_filters.list);
8049 
8050 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8051 
8052 	free_filters_list(&list);
8053 }
8054 
8055 /*
8056  * Scan through mm's vmas and see if one of them matches the
8057  * @filter; if so, adjust filter's address range.
8058  * Called with mm::mmap_sem down for reading.
8059  */
8060 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8061 					    struct mm_struct *mm)
8062 {
8063 	struct vm_area_struct *vma;
8064 
8065 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8066 		struct file *file = vma->vm_file;
8067 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8068 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8069 
8070 		if (!file)
8071 			continue;
8072 
8073 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8074 			continue;
8075 
8076 		return vma->vm_start;
8077 	}
8078 
8079 	return 0;
8080 }
8081 
8082 /*
8083  * Update event's address range filters based on the
8084  * task's existing mappings, if any.
8085  */
8086 static void perf_event_addr_filters_apply(struct perf_event *event)
8087 {
8088 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8089 	struct task_struct *task = READ_ONCE(event->ctx->task);
8090 	struct perf_addr_filter *filter;
8091 	struct mm_struct *mm = NULL;
8092 	unsigned int count = 0;
8093 	unsigned long flags;
8094 
8095 	/*
8096 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8097 	 * will stop on the parent's child_mutex that our caller is also holding
8098 	 */
8099 	if (task == TASK_TOMBSTONE)
8100 		return;
8101 
8102 	if (!ifh->nr_file_filters)
8103 		return;
8104 
8105 	mm = get_task_mm(event->ctx->task);
8106 	if (!mm)
8107 		goto restart;
8108 
8109 	down_read(&mm->mmap_sem);
8110 
8111 	raw_spin_lock_irqsave(&ifh->lock, flags);
8112 	list_for_each_entry(filter, &ifh->list, entry) {
8113 		event->addr_filters_offs[count] = 0;
8114 
8115 		/*
8116 		 * Adjust base offset if the filter is associated to a binary
8117 		 * that needs to be mapped:
8118 		 */
8119 		if (filter->inode)
8120 			event->addr_filters_offs[count] =
8121 				perf_addr_filter_apply(filter, mm);
8122 
8123 		count++;
8124 	}
8125 
8126 	event->addr_filters_gen++;
8127 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8128 
8129 	up_read(&mm->mmap_sem);
8130 
8131 	mmput(mm);
8132 
8133 restart:
8134 	perf_event_stop(event, 1);
8135 }
8136 
8137 /*
8138  * Address range filtering: limiting the data to certain
8139  * instruction address ranges. Filters are ioctl()ed to us from
8140  * userspace as ascii strings.
8141  *
8142  * Filter string format:
8143  *
8144  * ACTION RANGE_SPEC
8145  * where ACTION is one of the
8146  *  * "filter": limit the trace to this region
8147  *  * "start": start tracing from this address
8148  *  * "stop": stop tracing at this address/region;
8149  * RANGE_SPEC is
8150  *  * for kernel addresses: <start address>[/<size>]
8151  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8152  *
8153  * if <size> is not specified, the range is treated as a single address.
8154  */
8155 enum {
8156 	IF_ACT_NONE = -1,
8157 	IF_ACT_FILTER,
8158 	IF_ACT_START,
8159 	IF_ACT_STOP,
8160 	IF_SRC_FILE,
8161 	IF_SRC_KERNEL,
8162 	IF_SRC_FILEADDR,
8163 	IF_SRC_KERNELADDR,
8164 };
8165 
8166 enum {
8167 	IF_STATE_ACTION = 0,
8168 	IF_STATE_SOURCE,
8169 	IF_STATE_END,
8170 };
8171 
8172 static const match_table_t if_tokens = {
8173 	{ IF_ACT_FILTER,	"filter" },
8174 	{ IF_ACT_START,		"start" },
8175 	{ IF_ACT_STOP,		"stop" },
8176 	{ IF_SRC_FILE,		"%u/%u@%s" },
8177 	{ IF_SRC_KERNEL,	"%u/%u" },
8178 	{ IF_SRC_FILEADDR,	"%u@%s" },
8179 	{ IF_SRC_KERNELADDR,	"%u" },
8180 	{ IF_ACT_NONE,		NULL },
8181 };
8182 
8183 /*
8184  * Address filter string parser
8185  */
8186 static int
8187 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8188 			     struct list_head *filters)
8189 {
8190 	struct perf_addr_filter *filter = NULL;
8191 	char *start, *orig, *filename = NULL;
8192 	struct path path;
8193 	substring_t args[MAX_OPT_ARGS];
8194 	int state = IF_STATE_ACTION, token;
8195 	unsigned int kernel = 0;
8196 	int ret = -EINVAL;
8197 
8198 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8199 	if (!fstr)
8200 		return -ENOMEM;
8201 
8202 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8203 		ret = -EINVAL;
8204 
8205 		if (!*start)
8206 			continue;
8207 
8208 		/* filter definition begins */
8209 		if (state == IF_STATE_ACTION) {
8210 			filter = perf_addr_filter_new(event, filters);
8211 			if (!filter)
8212 				goto fail;
8213 		}
8214 
8215 		token = match_token(start, if_tokens, args);
8216 		switch (token) {
8217 		case IF_ACT_FILTER:
8218 		case IF_ACT_START:
8219 			filter->filter = 1;
8220 
8221 		case IF_ACT_STOP:
8222 			if (state != IF_STATE_ACTION)
8223 				goto fail;
8224 
8225 			state = IF_STATE_SOURCE;
8226 			break;
8227 
8228 		case IF_SRC_KERNELADDR:
8229 		case IF_SRC_KERNEL:
8230 			kernel = 1;
8231 
8232 		case IF_SRC_FILEADDR:
8233 		case IF_SRC_FILE:
8234 			if (state != IF_STATE_SOURCE)
8235 				goto fail;
8236 
8237 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8238 				filter->range = 1;
8239 
8240 			*args[0].to = 0;
8241 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8242 			if (ret)
8243 				goto fail;
8244 
8245 			if (filter->range) {
8246 				*args[1].to = 0;
8247 				ret = kstrtoul(args[1].from, 0, &filter->size);
8248 				if (ret)
8249 					goto fail;
8250 			}
8251 
8252 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8253 				int fpos = filter->range ? 2 : 1;
8254 
8255 				filename = match_strdup(&args[fpos]);
8256 				if (!filename) {
8257 					ret = -ENOMEM;
8258 					goto fail;
8259 				}
8260 			}
8261 
8262 			state = IF_STATE_END;
8263 			break;
8264 
8265 		default:
8266 			goto fail;
8267 		}
8268 
8269 		/*
8270 		 * Filter definition is fully parsed, validate and install it.
8271 		 * Make sure that it doesn't contradict itself or the event's
8272 		 * attribute.
8273 		 */
8274 		if (state == IF_STATE_END) {
8275 			ret = -EINVAL;
8276 			if (kernel && event->attr.exclude_kernel)
8277 				goto fail;
8278 
8279 			if (!kernel) {
8280 				if (!filename)
8281 					goto fail;
8282 
8283 				/*
8284 				 * For now, we only support file-based filters
8285 				 * in per-task events; doing so for CPU-wide
8286 				 * events requires additional context switching
8287 				 * trickery, since same object code will be
8288 				 * mapped at different virtual addresses in
8289 				 * different processes.
8290 				 */
8291 				ret = -EOPNOTSUPP;
8292 				if (!event->ctx->task)
8293 					goto fail_free_name;
8294 
8295 				/* look up the path and grab its inode */
8296 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8297 				if (ret)
8298 					goto fail_free_name;
8299 
8300 				filter->inode = igrab(d_inode(path.dentry));
8301 				path_put(&path);
8302 				kfree(filename);
8303 				filename = NULL;
8304 
8305 				ret = -EINVAL;
8306 				if (!filter->inode ||
8307 				    !S_ISREG(filter->inode->i_mode))
8308 					/* free_filters_list() will iput() */
8309 					goto fail;
8310 
8311 				event->addr_filters.nr_file_filters++;
8312 			}
8313 
8314 			/* ready to consume more filters */
8315 			state = IF_STATE_ACTION;
8316 			filter = NULL;
8317 		}
8318 	}
8319 
8320 	if (state != IF_STATE_ACTION)
8321 		goto fail;
8322 
8323 	kfree(orig);
8324 
8325 	return 0;
8326 
8327 fail_free_name:
8328 	kfree(filename);
8329 fail:
8330 	free_filters_list(filters);
8331 	kfree(orig);
8332 
8333 	return ret;
8334 }
8335 
8336 static int
8337 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8338 {
8339 	LIST_HEAD(filters);
8340 	int ret;
8341 
8342 	/*
8343 	 * Since this is called in perf_ioctl() path, we're already holding
8344 	 * ctx::mutex.
8345 	 */
8346 	lockdep_assert_held(&event->ctx->mutex);
8347 
8348 	if (WARN_ON_ONCE(event->parent))
8349 		return -EINVAL;
8350 
8351 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8352 	if (ret)
8353 		goto fail_clear_files;
8354 
8355 	ret = event->pmu->addr_filters_validate(&filters);
8356 	if (ret)
8357 		goto fail_free_filters;
8358 
8359 	/* remove existing filters, if any */
8360 	perf_addr_filters_splice(event, &filters);
8361 
8362 	/* install new filters */
8363 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8364 
8365 	return ret;
8366 
8367 fail_free_filters:
8368 	free_filters_list(&filters);
8369 
8370 fail_clear_files:
8371 	event->addr_filters.nr_file_filters = 0;
8372 
8373 	return ret;
8374 }
8375 
8376 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8377 {
8378 	char *filter_str;
8379 	int ret = -EINVAL;
8380 
8381 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8382 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8383 	    !has_addr_filter(event))
8384 		return -EINVAL;
8385 
8386 	filter_str = strndup_user(arg, PAGE_SIZE);
8387 	if (IS_ERR(filter_str))
8388 		return PTR_ERR(filter_str);
8389 
8390 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8391 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8392 		ret = ftrace_profile_set_filter(event, event->attr.config,
8393 						filter_str);
8394 	else if (has_addr_filter(event))
8395 		ret = perf_event_set_addr_filter(event, filter_str);
8396 
8397 	kfree(filter_str);
8398 	return ret;
8399 }
8400 
8401 /*
8402  * hrtimer based swevent callback
8403  */
8404 
8405 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8406 {
8407 	enum hrtimer_restart ret = HRTIMER_RESTART;
8408 	struct perf_sample_data data;
8409 	struct pt_regs *regs;
8410 	struct perf_event *event;
8411 	u64 period;
8412 
8413 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8414 
8415 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8416 		return HRTIMER_NORESTART;
8417 
8418 	event->pmu->read(event);
8419 
8420 	perf_sample_data_init(&data, 0, event->hw.last_period);
8421 	regs = get_irq_regs();
8422 
8423 	if (regs && !perf_exclude_event(event, regs)) {
8424 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8425 			if (__perf_event_overflow(event, 1, &data, regs))
8426 				ret = HRTIMER_NORESTART;
8427 	}
8428 
8429 	period = max_t(u64, 10000, event->hw.sample_period);
8430 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8431 
8432 	return ret;
8433 }
8434 
8435 static void perf_swevent_start_hrtimer(struct perf_event *event)
8436 {
8437 	struct hw_perf_event *hwc = &event->hw;
8438 	s64 period;
8439 
8440 	if (!is_sampling_event(event))
8441 		return;
8442 
8443 	period = local64_read(&hwc->period_left);
8444 	if (period) {
8445 		if (period < 0)
8446 			period = 10000;
8447 
8448 		local64_set(&hwc->period_left, 0);
8449 	} else {
8450 		period = max_t(u64, 10000, hwc->sample_period);
8451 	}
8452 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8453 		      HRTIMER_MODE_REL_PINNED);
8454 }
8455 
8456 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8457 {
8458 	struct hw_perf_event *hwc = &event->hw;
8459 
8460 	if (is_sampling_event(event)) {
8461 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8462 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8463 
8464 		hrtimer_cancel(&hwc->hrtimer);
8465 	}
8466 }
8467 
8468 static void perf_swevent_init_hrtimer(struct perf_event *event)
8469 {
8470 	struct hw_perf_event *hwc = &event->hw;
8471 
8472 	if (!is_sampling_event(event))
8473 		return;
8474 
8475 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8476 	hwc->hrtimer.function = perf_swevent_hrtimer;
8477 
8478 	/*
8479 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8480 	 * mapping and avoid the whole period adjust feedback stuff.
8481 	 */
8482 	if (event->attr.freq) {
8483 		long freq = event->attr.sample_freq;
8484 
8485 		event->attr.sample_period = NSEC_PER_SEC / freq;
8486 		hwc->sample_period = event->attr.sample_period;
8487 		local64_set(&hwc->period_left, hwc->sample_period);
8488 		hwc->last_period = hwc->sample_period;
8489 		event->attr.freq = 0;
8490 	}
8491 }
8492 
8493 /*
8494  * Software event: cpu wall time clock
8495  */
8496 
8497 static void cpu_clock_event_update(struct perf_event *event)
8498 {
8499 	s64 prev;
8500 	u64 now;
8501 
8502 	now = local_clock();
8503 	prev = local64_xchg(&event->hw.prev_count, now);
8504 	local64_add(now - prev, &event->count);
8505 }
8506 
8507 static void cpu_clock_event_start(struct perf_event *event, int flags)
8508 {
8509 	local64_set(&event->hw.prev_count, local_clock());
8510 	perf_swevent_start_hrtimer(event);
8511 }
8512 
8513 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8514 {
8515 	perf_swevent_cancel_hrtimer(event);
8516 	cpu_clock_event_update(event);
8517 }
8518 
8519 static int cpu_clock_event_add(struct perf_event *event, int flags)
8520 {
8521 	if (flags & PERF_EF_START)
8522 		cpu_clock_event_start(event, flags);
8523 	perf_event_update_userpage(event);
8524 
8525 	return 0;
8526 }
8527 
8528 static void cpu_clock_event_del(struct perf_event *event, int flags)
8529 {
8530 	cpu_clock_event_stop(event, flags);
8531 }
8532 
8533 static void cpu_clock_event_read(struct perf_event *event)
8534 {
8535 	cpu_clock_event_update(event);
8536 }
8537 
8538 static int cpu_clock_event_init(struct perf_event *event)
8539 {
8540 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8541 		return -ENOENT;
8542 
8543 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8544 		return -ENOENT;
8545 
8546 	/*
8547 	 * no branch sampling for software events
8548 	 */
8549 	if (has_branch_stack(event))
8550 		return -EOPNOTSUPP;
8551 
8552 	perf_swevent_init_hrtimer(event);
8553 
8554 	return 0;
8555 }
8556 
8557 static struct pmu perf_cpu_clock = {
8558 	.task_ctx_nr	= perf_sw_context,
8559 
8560 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8561 
8562 	.event_init	= cpu_clock_event_init,
8563 	.add		= cpu_clock_event_add,
8564 	.del		= cpu_clock_event_del,
8565 	.start		= cpu_clock_event_start,
8566 	.stop		= cpu_clock_event_stop,
8567 	.read		= cpu_clock_event_read,
8568 };
8569 
8570 /*
8571  * Software event: task time clock
8572  */
8573 
8574 static void task_clock_event_update(struct perf_event *event, u64 now)
8575 {
8576 	u64 prev;
8577 	s64 delta;
8578 
8579 	prev = local64_xchg(&event->hw.prev_count, now);
8580 	delta = now - prev;
8581 	local64_add(delta, &event->count);
8582 }
8583 
8584 static void task_clock_event_start(struct perf_event *event, int flags)
8585 {
8586 	local64_set(&event->hw.prev_count, event->ctx->time);
8587 	perf_swevent_start_hrtimer(event);
8588 }
8589 
8590 static void task_clock_event_stop(struct perf_event *event, int flags)
8591 {
8592 	perf_swevent_cancel_hrtimer(event);
8593 	task_clock_event_update(event, event->ctx->time);
8594 }
8595 
8596 static int task_clock_event_add(struct perf_event *event, int flags)
8597 {
8598 	if (flags & PERF_EF_START)
8599 		task_clock_event_start(event, flags);
8600 	perf_event_update_userpage(event);
8601 
8602 	return 0;
8603 }
8604 
8605 static void task_clock_event_del(struct perf_event *event, int flags)
8606 {
8607 	task_clock_event_stop(event, PERF_EF_UPDATE);
8608 }
8609 
8610 static void task_clock_event_read(struct perf_event *event)
8611 {
8612 	u64 now = perf_clock();
8613 	u64 delta = now - event->ctx->timestamp;
8614 	u64 time = event->ctx->time + delta;
8615 
8616 	task_clock_event_update(event, time);
8617 }
8618 
8619 static int task_clock_event_init(struct perf_event *event)
8620 {
8621 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8622 		return -ENOENT;
8623 
8624 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8625 		return -ENOENT;
8626 
8627 	/*
8628 	 * no branch sampling for software events
8629 	 */
8630 	if (has_branch_stack(event))
8631 		return -EOPNOTSUPP;
8632 
8633 	perf_swevent_init_hrtimer(event);
8634 
8635 	return 0;
8636 }
8637 
8638 static struct pmu perf_task_clock = {
8639 	.task_ctx_nr	= perf_sw_context,
8640 
8641 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8642 
8643 	.event_init	= task_clock_event_init,
8644 	.add		= task_clock_event_add,
8645 	.del		= task_clock_event_del,
8646 	.start		= task_clock_event_start,
8647 	.stop		= task_clock_event_stop,
8648 	.read		= task_clock_event_read,
8649 };
8650 
8651 static void perf_pmu_nop_void(struct pmu *pmu)
8652 {
8653 }
8654 
8655 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8656 {
8657 }
8658 
8659 static int perf_pmu_nop_int(struct pmu *pmu)
8660 {
8661 	return 0;
8662 }
8663 
8664 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8665 
8666 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8667 {
8668 	__this_cpu_write(nop_txn_flags, flags);
8669 
8670 	if (flags & ~PERF_PMU_TXN_ADD)
8671 		return;
8672 
8673 	perf_pmu_disable(pmu);
8674 }
8675 
8676 static int perf_pmu_commit_txn(struct pmu *pmu)
8677 {
8678 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8679 
8680 	__this_cpu_write(nop_txn_flags, 0);
8681 
8682 	if (flags & ~PERF_PMU_TXN_ADD)
8683 		return 0;
8684 
8685 	perf_pmu_enable(pmu);
8686 	return 0;
8687 }
8688 
8689 static void perf_pmu_cancel_txn(struct pmu *pmu)
8690 {
8691 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8692 
8693 	__this_cpu_write(nop_txn_flags, 0);
8694 
8695 	if (flags & ~PERF_PMU_TXN_ADD)
8696 		return;
8697 
8698 	perf_pmu_enable(pmu);
8699 }
8700 
8701 static int perf_event_idx_default(struct perf_event *event)
8702 {
8703 	return 0;
8704 }
8705 
8706 /*
8707  * Ensures all contexts with the same task_ctx_nr have the same
8708  * pmu_cpu_context too.
8709  */
8710 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8711 {
8712 	struct pmu *pmu;
8713 
8714 	if (ctxn < 0)
8715 		return NULL;
8716 
8717 	list_for_each_entry(pmu, &pmus, entry) {
8718 		if (pmu->task_ctx_nr == ctxn)
8719 			return pmu->pmu_cpu_context;
8720 	}
8721 
8722 	return NULL;
8723 }
8724 
8725 static void free_pmu_context(struct pmu *pmu)
8726 {
8727 	mutex_lock(&pmus_lock);
8728 	free_percpu(pmu->pmu_cpu_context);
8729 	mutex_unlock(&pmus_lock);
8730 }
8731 
8732 /*
8733  * Let userspace know that this PMU supports address range filtering:
8734  */
8735 static ssize_t nr_addr_filters_show(struct device *dev,
8736 				    struct device_attribute *attr,
8737 				    char *page)
8738 {
8739 	struct pmu *pmu = dev_get_drvdata(dev);
8740 
8741 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8742 }
8743 DEVICE_ATTR_RO(nr_addr_filters);
8744 
8745 static struct idr pmu_idr;
8746 
8747 static ssize_t
8748 type_show(struct device *dev, struct device_attribute *attr, char *page)
8749 {
8750 	struct pmu *pmu = dev_get_drvdata(dev);
8751 
8752 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8753 }
8754 static DEVICE_ATTR_RO(type);
8755 
8756 static ssize_t
8757 perf_event_mux_interval_ms_show(struct device *dev,
8758 				struct device_attribute *attr,
8759 				char *page)
8760 {
8761 	struct pmu *pmu = dev_get_drvdata(dev);
8762 
8763 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8764 }
8765 
8766 static DEFINE_MUTEX(mux_interval_mutex);
8767 
8768 static ssize_t
8769 perf_event_mux_interval_ms_store(struct device *dev,
8770 				 struct device_attribute *attr,
8771 				 const char *buf, size_t count)
8772 {
8773 	struct pmu *pmu = dev_get_drvdata(dev);
8774 	int timer, cpu, ret;
8775 
8776 	ret = kstrtoint(buf, 0, &timer);
8777 	if (ret)
8778 		return ret;
8779 
8780 	if (timer < 1)
8781 		return -EINVAL;
8782 
8783 	/* same value, noting to do */
8784 	if (timer == pmu->hrtimer_interval_ms)
8785 		return count;
8786 
8787 	mutex_lock(&mux_interval_mutex);
8788 	pmu->hrtimer_interval_ms = timer;
8789 
8790 	/* update all cpuctx for this PMU */
8791 	get_online_cpus();
8792 	for_each_online_cpu(cpu) {
8793 		struct perf_cpu_context *cpuctx;
8794 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8795 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8796 
8797 		cpu_function_call(cpu,
8798 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8799 	}
8800 	put_online_cpus();
8801 	mutex_unlock(&mux_interval_mutex);
8802 
8803 	return count;
8804 }
8805 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8806 
8807 static struct attribute *pmu_dev_attrs[] = {
8808 	&dev_attr_type.attr,
8809 	&dev_attr_perf_event_mux_interval_ms.attr,
8810 	NULL,
8811 };
8812 ATTRIBUTE_GROUPS(pmu_dev);
8813 
8814 static int pmu_bus_running;
8815 static struct bus_type pmu_bus = {
8816 	.name		= "event_source",
8817 	.dev_groups	= pmu_dev_groups,
8818 };
8819 
8820 static void pmu_dev_release(struct device *dev)
8821 {
8822 	kfree(dev);
8823 }
8824 
8825 static int pmu_dev_alloc(struct pmu *pmu)
8826 {
8827 	int ret = -ENOMEM;
8828 
8829 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8830 	if (!pmu->dev)
8831 		goto out;
8832 
8833 	pmu->dev->groups = pmu->attr_groups;
8834 	device_initialize(pmu->dev);
8835 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8836 	if (ret)
8837 		goto free_dev;
8838 
8839 	dev_set_drvdata(pmu->dev, pmu);
8840 	pmu->dev->bus = &pmu_bus;
8841 	pmu->dev->release = pmu_dev_release;
8842 	ret = device_add(pmu->dev);
8843 	if (ret)
8844 		goto free_dev;
8845 
8846 	/* For PMUs with address filters, throw in an extra attribute: */
8847 	if (pmu->nr_addr_filters)
8848 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8849 
8850 	if (ret)
8851 		goto del_dev;
8852 
8853 out:
8854 	return ret;
8855 
8856 del_dev:
8857 	device_del(pmu->dev);
8858 
8859 free_dev:
8860 	put_device(pmu->dev);
8861 	goto out;
8862 }
8863 
8864 static struct lock_class_key cpuctx_mutex;
8865 static struct lock_class_key cpuctx_lock;
8866 
8867 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8868 {
8869 	int cpu, ret;
8870 
8871 	mutex_lock(&pmus_lock);
8872 	ret = -ENOMEM;
8873 	pmu->pmu_disable_count = alloc_percpu(int);
8874 	if (!pmu->pmu_disable_count)
8875 		goto unlock;
8876 
8877 	pmu->type = -1;
8878 	if (!name)
8879 		goto skip_type;
8880 	pmu->name = name;
8881 
8882 	if (type < 0) {
8883 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8884 		if (type < 0) {
8885 			ret = type;
8886 			goto free_pdc;
8887 		}
8888 	}
8889 	pmu->type = type;
8890 
8891 	if (pmu_bus_running) {
8892 		ret = pmu_dev_alloc(pmu);
8893 		if (ret)
8894 			goto free_idr;
8895 	}
8896 
8897 skip_type:
8898 	if (pmu->task_ctx_nr == perf_hw_context) {
8899 		static int hw_context_taken = 0;
8900 
8901 		/*
8902 		 * Other than systems with heterogeneous CPUs, it never makes
8903 		 * sense for two PMUs to share perf_hw_context. PMUs which are
8904 		 * uncore must use perf_invalid_context.
8905 		 */
8906 		if (WARN_ON_ONCE(hw_context_taken &&
8907 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8908 			pmu->task_ctx_nr = perf_invalid_context;
8909 
8910 		hw_context_taken = 1;
8911 	}
8912 
8913 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8914 	if (pmu->pmu_cpu_context)
8915 		goto got_cpu_context;
8916 
8917 	ret = -ENOMEM;
8918 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8919 	if (!pmu->pmu_cpu_context)
8920 		goto free_dev;
8921 
8922 	for_each_possible_cpu(cpu) {
8923 		struct perf_cpu_context *cpuctx;
8924 
8925 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8926 		__perf_event_init_context(&cpuctx->ctx);
8927 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8928 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8929 		cpuctx->ctx.pmu = pmu;
8930 
8931 		__perf_mux_hrtimer_init(cpuctx, cpu);
8932 	}
8933 
8934 got_cpu_context:
8935 	if (!pmu->start_txn) {
8936 		if (pmu->pmu_enable) {
8937 			/*
8938 			 * If we have pmu_enable/pmu_disable calls, install
8939 			 * transaction stubs that use that to try and batch
8940 			 * hardware accesses.
8941 			 */
8942 			pmu->start_txn  = perf_pmu_start_txn;
8943 			pmu->commit_txn = perf_pmu_commit_txn;
8944 			pmu->cancel_txn = perf_pmu_cancel_txn;
8945 		} else {
8946 			pmu->start_txn  = perf_pmu_nop_txn;
8947 			pmu->commit_txn = perf_pmu_nop_int;
8948 			pmu->cancel_txn = perf_pmu_nop_void;
8949 		}
8950 	}
8951 
8952 	if (!pmu->pmu_enable) {
8953 		pmu->pmu_enable  = perf_pmu_nop_void;
8954 		pmu->pmu_disable = perf_pmu_nop_void;
8955 	}
8956 
8957 	if (!pmu->event_idx)
8958 		pmu->event_idx = perf_event_idx_default;
8959 
8960 	list_add_rcu(&pmu->entry, &pmus);
8961 	atomic_set(&pmu->exclusive_cnt, 0);
8962 	ret = 0;
8963 unlock:
8964 	mutex_unlock(&pmus_lock);
8965 
8966 	return ret;
8967 
8968 free_dev:
8969 	device_del(pmu->dev);
8970 	put_device(pmu->dev);
8971 
8972 free_idr:
8973 	if (pmu->type >= PERF_TYPE_MAX)
8974 		idr_remove(&pmu_idr, pmu->type);
8975 
8976 free_pdc:
8977 	free_percpu(pmu->pmu_disable_count);
8978 	goto unlock;
8979 }
8980 EXPORT_SYMBOL_GPL(perf_pmu_register);
8981 
8982 void perf_pmu_unregister(struct pmu *pmu)
8983 {
8984 	int remove_device;
8985 
8986 	mutex_lock(&pmus_lock);
8987 	remove_device = pmu_bus_running;
8988 	list_del_rcu(&pmu->entry);
8989 	mutex_unlock(&pmus_lock);
8990 
8991 	/*
8992 	 * We dereference the pmu list under both SRCU and regular RCU, so
8993 	 * synchronize against both of those.
8994 	 */
8995 	synchronize_srcu(&pmus_srcu);
8996 	synchronize_rcu();
8997 
8998 	free_percpu(pmu->pmu_disable_count);
8999 	if (pmu->type >= PERF_TYPE_MAX)
9000 		idr_remove(&pmu_idr, pmu->type);
9001 	if (remove_device) {
9002 		if (pmu->nr_addr_filters)
9003 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9004 		device_del(pmu->dev);
9005 		put_device(pmu->dev);
9006 	}
9007 	free_pmu_context(pmu);
9008 }
9009 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9010 
9011 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9012 {
9013 	struct perf_event_context *ctx = NULL;
9014 	int ret;
9015 
9016 	if (!try_module_get(pmu->module))
9017 		return -ENODEV;
9018 
9019 	if (event->group_leader != event) {
9020 		/*
9021 		 * This ctx->mutex can nest when we're called through
9022 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9023 		 */
9024 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9025 						 SINGLE_DEPTH_NESTING);
9026 		BUG_ON(!ctx);
9027 	}
9028 
9029 	event->pmu = pmu;
9030 	ret = pmu->event_init(event);
9031 
9032 	if (ctx)
9033 		perf_event_ctx_unlock(event->group_leader, ctx);
9034 
9035 	if (ret)
9036 		module_put(pmu->module);
9037 
9038 	return ret;
9039 }
9040 
9041 static struct pmu *perf_init_event(struct perf_event *event)
9042 {
9043 	struct pmu *pmu = NULL;
9044 	int idx;
9045 	int ret;
9046 
9047 	idx = srcu_read_lock(&pmus_srcu);
9048 
9049 	/* Try parent's PMU first: */
9050 	if (event->parent && event->parent->pmu) {
9051 		pmu = event->parent->pmu;
9052 		ret = perf_try_init_event(pmu, event);
9053 		if (!ret)
9054 			goto unlock;
9055 	}
9056 
9057 	rcu_read_lock();
9058 	pmu = idr_find(&pmu_idr, event->attr.type);
9059 	rcu_read_unlock();
9060 	if (pmu) {
9061 		ret = perf_try_init_event(pmu, event);
9062 		if (ret)
9063 			pmu = ERR_PTR(ret);
9064 		goto unlock;
9065 	}
9066 
9067 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9068 		ret = perf_try_init_event(pmu, event);
9069 		if (!ret)
9070 			goto unlock;
9071 
9072 		if (ret != -ENOENT) {
9073 			pmu = ERR_PTR(ret);
9074 			goto unlock;
9075 		}
9076 	}
9077 	pmu = ERR_PTR(-ENOENT);
9078 unlock:
9079 	srcu_read_unlock(&pmus_srcu, idx);
9080 
9081 	return pmu;
9082 }
9083 
9084 static void attach_sb_event(struct perf_event *event)
9085 {
9086 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9087 
9088 	raw_spin_lock(&pel->lock);
9089 	list_add_rcu(&event->sb_list, &pel->list);
9090 	raw_spin_unlock(&pel->lock);
9091 }
9092 
9093 /*
9094  * We keep a list of all !task (and therefore per-cpu) events
9095  * that need to receive side-band records.
9096  *
9097  * This avoids having to scan all the various PMU per-cpu contexts
9098  * looking for them.
9099  */
9100 static void account_pmu_sb_event(struct perf_event *event)
9101 {
9102 	if (is_sb_event(event))
9103 		attach_sb_event(event);
9104 }
9105 
9106 static void account_event_cpu(struct perf_event *event, int cpu)
9107 {
9108 	if (event->parent)
9109 		return;
9110 
9111 	if (is_cgroup_event(event))
9112 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9113 }
9114 
9115 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9116 static void account_freq_event_nohz(void)
9117 {
9118 #ifdef CONFIG_NO_HZ_FULL
9119 	/* Lock so we don't race with concurrent unaccount */
9120 	spin_lock(&nr_freq_lock);
9121 	if (atomic_inc_return(&nr_freq_events) == 1)
9122 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9123 	spin_unlock(&nr_freq_lock);
9124 #endif
9125 }
9126 
9127 static void account_freq_event(void)
9128 {
9129 	if (tick_nohz_full_enabled())
9130 		account_freq_event_nohz();
9131 	else
9132 		atomic_inc(&nr_freq_events);
9133 }
9134 
9135 
9136 static void account_event(struct perf_event *event)
9137 {
9138 	bool inc = false;
9139 
9140 	if (event->parent)
9141 		return;
9142 
9143 	if (event->attach_state & PERF_ATTACH_TASK)
9144 		inc = true;
9145 	if (event->attr.mmap || event->attr.mmap_data)
9146 		atomic_inc(&nr_mmap_events);
9147 	if (event->attr.comm)
9148 		atomic_inc(&nr_comm_events);
9149 	if (event->attr.task)
9150 		atomic_inc(&nr_task_events);
9151 	if (event->attr.freq)
9152 		account_freq_event();
9153 	if (event->attr.context_switch) {
9154 		atomic_inc(&nr_switch_events);
9155 		inc = true;
9156 	}
9157 	if (has_branch_stack(event))
9158 		inc = true;
9159 	if (is_cgroup_event(event))
9160 		inc = true;
9161 
9162 	if (inc) {
9163 		if (atomic_inc_not_zero(&perf_sched_count))
9164 			goto enabled;
9165 
9166 		mutex_lock(&perf_sched_mutex);
9167 		if (!atomic_read(&perf_sched_count)) {
9168 			static_branch_enable(&perf_sched_events);
9169 			/*
9170 			 * Guarantee that all CPUs observe they key change and
9171 			 * call the perf scheduling hooks before proceeding to
9172 			 * install events that need them.
9173 			 */
9174 			synchronize_sched();
9175 		}
9176 		/*
9177 		 * Now that we have waited for the sync_sched(), allow further
9178 		 * increments to by-pass the mutex.
9179 		 */
9180 		atomic_inc(&perf_sched_count);
9181 		mutex_unlock(&perf_sched_mutex);
9182 	}
9183 enabled:
9184 
9185 	account_event_cpu(event, event->cpu);
9186 
9187 	account_pmu_sb_event(event);
9188 }
9189 
9190 /*
9191  * Allocate and initialize a event structure
9192  */
9193 static struct perf_event *
9194 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9195 		 struct task_struct *task,
9196 		 struct perf_event *group_leader,
9197 		 struct perf_event *parent_event,
9198 		 perf_overflow_handler_t overflow_handler,
9199 		 void *context, int cgroup_fd)
9200 {
9201 	struct pmu *pmu;
9202 	struct perf_event *event;
9203 	struct hw_perf_event *hwc;
9204 	long err = -EINVAL;
9205 
9206 	if ((unsigned)cpu >= nr_cpu_ids) {
9207 		if (!task || cpu != -1)
9208 			return ERR_PTR(-EINVAL);
9209 	}
9210 
9211 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9212 	if (!event)
9213 		return ERR_PTR(-ENOMEM);
9214 
9215 	/*
9216 	 * Single events are their own group leaders, with an
9217 	 * empty sibling list:
9218 	 */
9219 	if (!group_leader)
9220 		group_leader = event;
9221 
9222 	mutex_init(&event->child_mutex);
9223 	INIT_LIST_HEAD(&event->child_list);
9224 
9225 	INIT_LIST_HEAD(&event->group_entry);
9226 	INIT_LIST_HEAD(&event->event_entry);
9227 	INIT_LIST_HEAD(&event->sibling_list);
9228 	INIT_LIST_HEAD(&event->rb_entry);
9229 	INIT_LIST_HEAD(&event->active_entry);
9230 	INIT_LIST_HEAD(&event->addr_filters.list);
9231 	INIT_HLIST_NODE(&event->hlist_entry);
9232 
9233 
9234 	init_waitqueue_head(&event->waitq);
9235 	init_irq_work(&event->pending, perf_pending_event);
9236 
9237 	mutex_init(&event->mmap_mutex);
9238 	raw_spin_lock_init(&event->addr_filters.lock);
9239 
9240 	atomic_long_set(&event->refcount, 1);
9241 	event->cpu		= cpu;
9242 	event->attr		= *attr;
9243 	event->group_leader	= group_leader;
9244 	event->pmu		= NULL;
9245 	event->oncpu		= -1;
9246 
9247 	event->parent		= parent_event;
9248 
9249 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9250 	event->id		= atomic64_inc_return(&perf_event_id);
9251 
9252 	event->state		= PERF_EVENT_STATE_INACTIVE;
9253 
9254 	if (task) {
9255 		event->attach_state = PERF_ATTACH_TASK;
9256 		/*
9257 		 * XXX pmu::event_init needs to know what task to account to
9258 		 * and we cannot use the ctx information because we need the
9259 		 * pmu before we get a ctx.
9260 		 */
9261 		event->hw.target = task;
9262 	}
9263 
9264 	event->clock = &local_clock;
9265 	if (parent_event)
9266 		event->clock = parent_event->clock;
9267 
9268 	if (!overflow_handler && parent_event) {
9269 		overflow_handler = parent_event->overflow_handler;
9270 		context = parent_event->overflow_handler_context;
9271 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9272 		if (overflow_handler == bpf_overflow_handler) {
9273 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9274 
9275 			if (IS_ERR(prog)) {
9276 				err = PTR_ERR(prog);
9277 				goto err_ns;
9278 			}
9279 			event->prog = prog;
9280 			event->orig_overflow_handler =
9281 				parent_event->orig_overflow_handler;
9282 		}
9283 #endif
9284 	}
9285 
9286 	if (overflow_handler) {
9287 		event->overflow_handler	= overflow_handler;
9288 		event->overflow_handler_context = context;
9289 	} else if (is_write_backward(event)){
9290 		event->overflow_handler = perf_event_output_backward;
9291 		event->overflow_handler_context = NULL;
9292 	} else {
9293 		event->overflow_handler = perf_event_output_forward;
9294 		event->overflow_handler_context = NULL;
9295 	}
9296 
9297 	perf_event__state_init(event);
9298 
9299 	pmu = NULL;
9300 
9301 	hwc = &event->hw;
9302 	hwc->sample_period = attr->sample_period;
9303 	if (attr->freq && attr->sample_freq)
9304 		hwc->sample_period = 1;
9305 	hwc->last_period = hwc->sample_period;
9306 
9307 	local64_set(&hwc->period_left, hwc->sample_period);
9308 
9309 	/*
9310 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9311 	 */
9312 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9313 		goto err_ns;
9314 
9315 	if (!has_branch_stack(event))
9316 		event->attr.branch_sample_type = 0;
9317 
9318 	if (cgroup_fd != -1) {
9319 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9320 		if (err)
9321 			goto err_ns;
9322 	}
9323 
9324 	pmu = perf_init_event(event);
9325 	if (!pmu)
9326 		goto err_ns;
9327 	else if (IS_ERR(pmu)) {
9328 		err = PTR_ERR(pmu);
9329 		goto err_ns;
9330 	}
9331 
9332 	err = exclusive_event_init(event);
9333 	if (err)
9334 		goto err_pmu;
9335 
9336 	if (has_addr_filter(event)) {
9337 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9338 						   sizeof(unsigned long),
9339 						   GFP_KERNEL);
9340 		if (!event->addr_filters_offs)
9341 			goto err_per_task;
9342 
9343 		/* force hw sync on the address filters */
9344 		event->addr_filters_gen = 1;
9345 	}
9346 
9347 	if (!event->parent) {
9348 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9349 			err = get_callchain_buffers(attr->sample_max_stack);
9350 			if (err)
9351 				goto err_addr_filters;
9352 		}
9353 	}
9354 
9355 	/* symmetric to unaccount_event() in _free_event() */
9356 	account_event(event);
9357 
9358 	return event;
9359 
9360 err_addr_filters:
9361 	kfree(event->addr_filters_offs);
9362 
9363 err_per_task:
9364 	exclusive_event_destroy(event);
9365 
9366 err_pmu:
9367 	if (event->destroy)
9368 		event->destroy(event);
9369 	module_put(pmu->module);
9370 err_ns:
9371 	if (is_cgroup_event(event))
9372 		perf_detach_cgroup(event);
9373 	if (event->ns)
9374 		put_pid_ns(event->ns);
9375 	kfree(event);
9376 
9377 	return ERR_PTR(err);
9378 }
9379 
9380 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9381 			  struct perf_event_attr *attr)
9382 {
9383 	u32 size;
9384 	int ret;
9385 
9386 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9387 		return -EFAULT;
9388 
9389 	/*
9390 	 * zero the full structure, so that a short copy will be nice.
9391 	 */
9392 	memset(attr, 0, sizeof(*attr));
9393 
9394 	ret = get_user(size, &uattr->size);
9395 	if (ret)
9396 		return ret;
9397 
9398 	if (size > PAGE_SIZE)	/* silly large */
9399 		goto err_size;
9400 
9401 	if (!size)		/* abi compat */
9402 		size = PERF_ATTR_SIZE_VER0;
9403 
9404 	if (size < PERF_ATTR_SIZE_VER0)
9405 		goto err_size;
9406 
9407 	/*
9408 	 * If we're handed a bigger struct than we know of,
9409 	 * ensure all the unknown bits are 0 - i.e. new
9410 	 * user-space does not rely on any kernel feature
9411 	 * extensions we dont know about yet.
9412 	 */
9413 	if (size > sizeof(*attr)) {
9414 		unsigned char __user *addr;
9415 		unsigned char __user *end;
9416 		unsigned char val;
9417 
9418 		addr = (void __user *)uattr + sizeof(*attr);
9419 		end  = (void __user *)uattr + size;
9420 
9421 		for (; addr < end; addr++) {
9422 			ret = get_user(val, addr);
9423 			if (ret)
9424 				return ret;
9425 			if (val)
9426 				goto err_size;
9427 		}
9428 		size = sizeof(*attr);
9429 	}
9430 
9431 	ret = copy_from_user(attr, uattr, size);
9432 	if (ret)
9433 		return -EFAULT;
9434 
9435 	if (attr->__reserved_1)
9436 		return -EINVAL;
9437 
9438 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9439 		return -EINVAL;
9440 
9441 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9442 		return -EINVAL;
9443 
9444 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9445 		u64 mask = attr->branch_sample_type;
9446 
9447 		/* only using defined bits */
9448 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9449 			return -EINVAL;
9450 
9451 		/* at least one branch bit must be set */
9452 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9453 			return -EINVAL;
9454 
9455 		/* propagate priv level, when not set for branch */
9456 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9457 
9458 			/* exclude_kernel checked on syscall entry */
9459 			if (!attr->exclude_kernel)
9460 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9461 
9462 			if (!attr->exclude_user)
9463 				mask |= PERF_SAMPLE_BRANCH_USER;
9464 
9465 			if (!attr->exclude_hv)
9466 				mask |= PERF_SAMPLE_BRANCH_HV;
9467 			/*
9468 			 * adjust user setting (for HW filter setup)
9469 			 */
9470 			attr->branch_sample_type = mask;
9471 		}
9472 		/* privileged levels capture (kernel, hv): check permissions */
9473 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9474 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9475 			return -EACCES;
9476 	}
9477 
9478 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9479 		ret = perf_reg_validate(attr->sample_regs_user);
9480 		if (ret)
9481 			return ret;
9482 	}
9483 
9484 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9485 		if (!arch_perf_have_user_stack_dump())
9486 			return -ENOSYS;
9487 
9488 		/*
9489 		 * We have __u32 type for the size, but so far
9490 		 * we can only use __u16 as maximum due to the
9491 		 * __u16 sample size limit.
9492 		 */
9493 		if (attr->sample_stack_user >= USHRT_MAX)
9494 			ret = -EINVAL;
9495 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9496 			ret = -EINVAL;
9497 	}
9498 
9499 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9500 		ret = perf_reg_validate(attr->sample_regs_intr);
9501 out:
9502 	return ret;
9503 
9504 err_size:
9505 	put_user(sizeof(*attr), &uattr->size);
9506 	ret = -E2BIG;
9507 	goto out;
9508 }
9509 
9510 static int
9511 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9512 {
9513 	struct ring_buffer *rb = NULL;
9514 	int ret = -EINVAL;
9515 
9516 	if (!output_event)
9517 		goto set;
9518 
9519 	/* don't allow circular references */
9520 	if (event == output_event)
9521 		goto out;
9522 
9523 	/*
9524 	 * Don't allow cross-cpu buffers
9525 	 */
9526 	if (output_event->cpu != event->cpu)
9527 		goto out;
9528 
9529 	/*
9530 	 * If its not a per-cpu rb, it must be the same task.
9531 	 */
9532 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9533 		goto out;
9534 
9535 	/*
9536 	 * Mixing clocks in the same buffer is trouble you don't need.
9537 	 */
9538 	if (output_event->clock != event->clock)
9539 		goto out;
9540 
9541 	/*
9542 	 * Either writing ring buffer from beginning or from end.
9543 	 * Mixing is not allowed.
9544 	 */
9545 	if (is_write_backward(output_event) != is_write_backward(event))
9546 		goto out;
9547 
9548 	/*
9549 	 * If both events generate aux data, they must be on the same PMU
9550 	 */
9551 	if (has_aux(event) && has_aux(output_event) &&
9552 	    event->pmu != output_event->pmu)
9553 		goto out;
9554 
9555 set:
9556 	mutex_lock(&event->mmap_mutex);
9557 	/* Can't redirect output if we've got an active mmap() */
9558 	if (atomic_read(&event->mmap_count))
9559 		goto unlock;
9560 
9561 	if (output_event) {
9562 		/* get the rb we want to redirect to */
9563 		rb = ring_buffer_get(output_event);
9564 		if (!rb)
9565 			goto unlock;
9566 	}
9567 
9568 	ring_buffer_attach(event, rb);
9569 
9570 	ret = 0;
9571 unlock:
9572 	mutex_unlock(&event->mmap_mutex);
9573 
9574 out:
9575 	return ret;
9576 }
9577 
9578 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9579 {
9580 	if (b < a)
9581 		swap(a, b);
9582 
9583 	mutex_lock(a);
9584 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9585 }
9586 
9587 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9588 {
9589 	bool nmi_safe = false;
9590 
9591 	switch (clk_id) {
9592 	case CLOCK_MONOTONIC:
9593 		event->clock = &ktime_get_mono_fast_ns;
9594 		nmi_safe = true;
9595 		break;
9596 
9597 	case CLOCK_MONOTONIC_RAW:
9598 		event->clock = &ktime_get_raw_fast_ns;
9599 		nmi_safe = true;
9600 		break;
9601 
9602 	case CLOCK_REALTIME:
9603 		event->clock = &ktime_get_real_ns;
9604 		break;
9605 
9606 	case CLOCK_BOOTTIME:
9607 		event->clock = &ktime_get_boot_ns;
9608 		break;
9609 
9610 	case CLOCK_TAI:
9611 		event->clock = &ktime_get_tai_ns;
9612 		break;
9613 
9614 	default:
9615 		return -EINVAL;
9616 	}
9617 
9618 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9619 		return -EINVAL;
9620 
9621 	return 0;
9622 }
9623 
9624 /*
9625  * Variation on perf_event_ctx_lock_nested(), except we take two context
9626  * mutexes.
9627  */
9628 static struct perf_event_context *
9629 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9630 			     struct perf_event_context *ctx)
9631 {
9632 	struct perf_event_context *gctx;
9633 
9634 again:
9635 	rcu_read_lock();
9636 	gctx = READ_ONCE(group_leader->ctx);
9637 	if (!atomic_inc_not_zero(&gctx->refcount)) {
9638 		rcu_read_unlock();
9639 		goto again;
9640 	}
9641 	rcu_read_unlock();
9642 
9643 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
9644 
9645 	if (group_leader->ctx != gctx) {
9646 		mutex_unlock(&ctx->mutex);
9647 		mutex_unlock(&gctx->mutex);
9648 		put_ctx(gctx);
9649 		goto again;
9650 	}
9651 
9652 	return gctx;
9653 }
9654 
9655 /**
9656  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9657  *
9658  * @attr_uptr:	event_id type attributes for monitoring/sampling
9659  * @pid:		target pid
9660  * @cpu:		target cpu
9661  * @group_fd:		group leader event fd
9662  */
9663 SYSCALL_DEFINE5(perf_event_open,
9664 		struct perf_event_attr __user *, attr_uptr,
9665 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9666 {
9667 	struct perf_event *group_leader = NULL, *output_event = NULL;
9668 	struct perf_event *event, *sibling;
9669 	struct perf_event_attr attr;
9670 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9671 	struct file *event_file = NULL;
9672 	struct fd group = {NULL, 0};
9673 	struct task_struct *task = NULL;
9674 	struct pmu *pmu;
9675 	int event_fd;
9676 	int move_group = 0;
9677 	int err;
9678 	int f_flags = O_RDWR;
9679 	int cgroup_fd = -1;
9680 
9681 	/* for future expandability... */
9682 	if (flags & ~PERF_FLAG_ALL)
9683 		return -EINVAL;
9684 
9685 	err = perf_copy_attr(attr_uptr, &attr);
9686 	if (err)
9687 		return err;
9688 
9689 	if (!attr.exclude_kernel) {
9690 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9691 			return -EACCES;
9692 	}
9693 
9694 	if (attr.freq) {
9695 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9696 			return -EINVAL;
9697 	} else {
9698 		if (attr.sample_period & (1ULL << 63))
9699 			return -EINVAL;
9700 	}
9701 
9702 	if (!attr.sample_max_stack)
9703 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9704 
9705 	/*
9706 	 * In cgroup mode, the pid argument is used to pass the fd
9707 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9708 	 * designates the cpu on which to monitor threads from that
9709 	 * cgroup.
9710 	 */
9711 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9712 		return -EINVAL;
9713 
9714 	if (flags & PERF_FLAG_FD_CLOEXEC)
9715 		f_flags |= O_CLOEXEC;
9716 
9717 	event_fd = get_unused_fd_flags(f_flags);
9718 	if (event_fd < 0)
9719 		return event_fd;
9720 
9721 	if (group_fd != -1) {
9722 		err = perf_fget_light(group_fd, &group);
9723 		if (err)
9724 			goto err_fd;
9725 		group_leader = group.file->private_data;
9726 		if (flags & PERF_FLAG_FD_OUTPUT)
9727 			output_event = group_leader;
9728 		if (flags & PERF_FLAG_FD_NO_GROUP)
9729 			group_leader = NULL;
9730 	}
9731 
9732 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9733 		task = find_lively_task_by_vpid(pid);
9734 		if (IS_ERR(task)) {
9735 			err = PTR_ERR(task);
9736 			goto err_group_fd;
9737 		}
9738 	}
9739 
9740 	if (task && group_leader &&
9741 	    group_leader->attr.inherit != attr.inherit) {
9742 		err = -EINVAL;
9743 		goto err_task;
9744 	}
9745 
9746 	get_online_cpus();
9747 
9748 	if (task) {
9749 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9750 		if (err)
9751 			goto err_cpus;
9752 
9753 		/*
9754 		 * Reuse ptrace permission checks for now.
9755 		 *
9756 		 * We must hold cred_guard_mutex across this and any potential
9757 		 * perf_install_in_context() call for this new event to
9758 		 * serialize against exec() altering our credentials (and the
9759 		 * perf_event_exit_task() that could imply).
9760 		 */
9761 		err = -EACCES;
9762 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9763 			goto err_cred;
9764 	}
9765 
9766 	if (flags & PERF_FLAG_PID_CGROUP)
9767 		cgroup_fd = pid;
9768 
9769 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9770 				 NULL, NULL, cgroup_fd);
9771 	if (IS_ERR(event)) {
9772 		err = PTR_ERR(event);
9773 		goto err_cred;
9774 	}
9775 
9776 	if (is_sampling_event(event)) {
9777 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9778 			err = -EOPNOTSUPP;
9779 			goto err_alloc;
9780 		}
9781 	}
9782 
9783 	/*
9784 	 * Special case software events and allow them to be part of
9785 	 * any hardware group.
9786 	 */
9787 	pmu = event->pmu;
9788 
9789 	if (attr.use_clockid) {
9790 		err = perf_event_set_clock(event, attr.clockid);
9791 		if (err)
9792 			goto err_alloc;
9793 	}
9794 
9795 	if (pmu->task_ctx_nr == perf_sw_context)
9796 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
9797 
9798 	if (group_leader &&
9799 	    (is_software_event(event) != is_software_event(group_leader))) {
9800 		if (is_software_event(event)) {
9801 			/*
9802 			 * If event and group_leader are not both a software
9803 			 * event, and event is, then group leader is not.
9804 			 *
9805 			 * Allow the addition of software events to !software
9806 			 * groups, this is safe because software events never
9807 			 * fail to schedule.
9808 			 */
9809 			pmu = group_leader->pmu;
9810 		} else if (is_software_event(group_leader) &&
9811 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9812 			/*
9813 			 * In case the group is a pure software group, and we
9814 			 * try to add a hardware event, move the whole group to
9815 			 * the hardware context.
9816 			 */
9817 			move_group = 1;
9818 		}
9819 	}
9820 
9821 	/*
9822 	 * Get the target context (task or percpu):
9823 	 */
9824 	ctx = find_get_context(pmu, task, event);
9825 	if (IS_ERR(ctx)) {
9826 		err = PTR_ERR(ctx);
9827 		goto err_alloc;
9828 	}
9829 
9830 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9831 		err = -EBUSY;
9832 		goto err_context;
9833 	}
9834 
9835 	/*
9836 	 * Look up the group leader (we will attach this event to it):
9837 	 */
9838 	if (group_leader) {
9839 		err = -EINVAL;
9840 
9841 		/*
9842 		 * Do not allow a recursive hierarchy (this new sibling
9843 		 * becoming part of another group-sibling):
9844 		 */
9845 		if (group_leader->group_leader != group_leader)
9846 			goto err_context;
9847 
9848 		/* All events in a group should have the same clock */
9849 		if (group_leader->clock != event->clock)
9850 			goto err_context;
9851 
9852 		/*
9853 		 * Do not allow to attach to a group in a different
9854 		 * task or CPU context:
9855 		 */
9856 		if (move_group) {
9857 			/*
9858 			 * Make sure we're both on the same task, or both
9859 			 * per-cpu events.
9860 			 */
9861 			if (group_leader->ctx->task != ctx->task)
9862 				goto err_context;
9863 
9864 			/*
9865 			 * Make sure we're both events for the same CPU;
9866 			 * grouping events for different CPUs is broken; since
9867 			 * you can never concurrently schedule them anyhow.
9868 			 */
9869 			if (group_leader->cpu != event->cpu)
9870 				goto err_context;
9871 		} else {
9872 			if (group_leader->ctx != ctx)
9873 				goto err_context;
9874 		}
9875 
9876 		/*
9877 		 * Only a group leader can be exclusive or pinned
9878 		 */
9879 		if (attr.exclusive || attr.pinned)
9880 			goto err_context;
9881 	}
9882 
9883 	if (output_event) {
9884 		err = perf_event_set_output(event, output_event);
9885 		if (err)
9886 			goto err_context;
9887 	}
9888 
9889 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9890 					f_flags);
9891 	if (IS_ERR(event_file)) {
9892 		err = PTR_ERR(event_file);
9893 		event_file = NULL;
9894 		goto err_context;
9895 	}
9896 
9897 	if (move_group) {
9898 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9899 
9900 		if (gctx->task == TASK_TOMBSTONE) {
9901 			err = -ESRCH;
9902 			goto err_locked;
9903 		}
9904 
9905 		/*
9906 		 * Check if we raced against another sys_perf_event_open() call
9907 		 * moving the software group underneath us.
9908 		 */
9909 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9910 			/*
9911 			 * If someone moved the group out from under us, check
9912 			 * if this new event wound up on the same ctx, if so
9913 			 * its the regular !move_group case, otherwise fail.
9914 			 */
9915 			if (gctx != ctx) {
9916 				err = -EINVAL;
9917 				goto err_locked;
9918 			} else {
9919 				perf_event_ctx_unlock(group_leader, gctx);
9920 				move_group = 0;
9921 			}
9922 		}
9923 	} else {
9924 		mutex_lock(&ctx->mutex);
9925 	}
9926 
9927 	if (ctx->task == TASK_TOMBSTONE) {
9928 		err = -ESRCH;
9929 		goto err_locked;
9930 	}
9931 
9932 	if (!perf_event_validate_size(event)) {
9933 		err = -E2BIG;
9934 		goto err_locked;
9935 	}
9936 
9937 	/*
9938 	 * Must be under the same ctx::mutex as perf_install_in_context(),
9939 	 * because we need to serialize with concurrent event creation.
9940 	 */
9941 	if (!exclusive_event_installable(event, ctx)) {
9942 		/* exclusive and group stuff are assumed mutually exclusive */
9943 		WARN_ON_ONCE(move_group);
9944 
9945 		err = -EBUSY;
9946 		goto err_locked;
9947 	}
9948 
9949 	WARN_ON_ONCE(ctx->parent_ctx);
9950 
9951 	/*
9952 	 * This is the point on no return; we cannot fail hereafter. This is
9953 	 * where we start modifying current state.
9954 	 */
9955 
9956 	if (move_group) {
9957 		/*
9958 		 * See perf_event_ctx_lock() for comments on the details
9959 		 * of swizzling perf_event::ctx.
9960 		 */
9961 		perf_remove_from_context(group_leader, 0);
9962 		put_ctx(gctx);
9963 
9964 		list_for_each_entry(sibling, &group_leader->sibling_list,
9965 				    group_entry) {
9966 			perf_remove_from_context(sibling, 0);
9967 			put_ctx(gctx);
9968 		}
9969 
9970 		/*
9971 		 * Wait for everybody to stop referencing the events through
9972 		 * the old lists, before installing it on new lists.
9973 		 */
9974 		synchronize_rcu();
9975 
9976 		/*
9977 		 * Install the group siblings before the group leader.
9978 		 *
9979 		 * Because a group leader will try and install the entire group
9980 		 * (through the sibling list, which is still in-tact), we can
9981 		 * end up with siblings installed in the wrong context.
9982 		 *
9983 		 * By installing siblings first we NO-OP because they're not
9984 		 * reachable through the group lists.
9985 		 */
9986 		list_for_each_entry(sibling, &group_leader->sibling_list,
9987 				    group_entry) {
9988 			perf_event__state_init(sibling);
9989 			perf_install_in_context(ctx, sibling, sibling->cpu);
9990 			get_ctx(ctx);
9991 		}
9992 
9993 		/*
9994 		 * Removing from the context ends up with disabled
9995 		 * event. What we want here is event in the initial
9996 		 * startup state, ready to be add into new context.
9997 		 */
9998 		perf_event__state_init(group_leader);
9999 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10000 		get_ctx(ctx);
10001 	}
10002 
10003 	/*
10004 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10005 	 * that we're serialized against further additions and before
10006 	 * perf_install_in_context() which is the point the event is active and
10007 	 * can use these values.
10008 	 */
10009 	perf_event__header_size(event);
10010 	perf_event__id_header_size(event);
10011 
10012 	event->owner = current;
10013 
10014 	perf_install_in_context(ctx, event, event->cpu);
10015 	perf_unpin_context(ctx);
10016 
10017 	if (move_group)
10018 		perf_event_ctx_unlock(group_leader, gctx);
10019 	mutex_unlock(&ctx->mutex);
10020 
10021 	if (task) {
10022 		mutex_unlock(&task->signal->cred_guard_mutex);
10023 		put_task_struct(task);
10024 	}
10025 
10026 	put_online_cpus();
10027 
10028 	mutex_lock(&current->perf_event_mutex);
10029 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10030 	mutex_unlock(&current->perf_event_mutex);
10031 
10032 	/*
10033 	 * Drop the reference on the group_event after placing the
10034 	 * new event on the sibling_list. This ensures destruction
10035 	 * of the group leader will find the pointer to itself in
10036 	 * perf_group_detach().
10037 	 */
10038 	fdput(group);
10039 	fd_install(event_fd, event_file);
10040 	return event_fd;
10041 
10042 err_locked:
10043 	if (move_group)
10044 		perf_event_ctx_unlock(group_leader, gctx);
10045 	mutex_unlock(&ctx->mutex);
10046 /* err_file: */
10047 	fput(event_file);
10048 err_context:
10049 	perf_unpin_context(ctx);
10050 	put_ctx(ctx);
10051 err_alloc:
10052 	/*
10053 	 * If event_file is set, the fput() above will have called ->release()
10054 	 * and that will take care of freeing the event.
10055 	 */
10056 	if (!event_file)
10057 		free_event(event);
10058 err_cred:
10059 	if (task)
10060 		mutex_unlock(&task->signal->cred_guard_mutex);
10061 err_cpus:
10062 	put_online_cpus();
10063 err_task:
10064 	if (task)
10065 		put_task_struct(task);
10066 err_group_fd:
10067 	fdput(group);
10068 err_fd:
10069 	put_unused_fd(event_fd);
10070 	return err;
10071 }
10072 
10073 /**
10074  * perf_event_create_kernel_counter
10075  *
10076  * @attr: attributes of the counter to create
10077  * @cpu: cpu in which the counter is bound
10078  * @task: task to profile (NULL for percpu)
10079  */
10080 struct perf_event *
10081 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10082 				 struct task_struct *task,
10083 				 perf_overflow_handler_t overflow_handler,
10084 				 void *context)
10085 {
10086 	struct perf_event_context *ctx;
10087 	struct perf_event *event;
10088 	int err;
10089 
10090 	/*
10091 	 * Get the target context (task or percpu):
10092 	 */
10093 
10094 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10095 				 overflow_handler, context, -1);
10096 	if (IS_ERR(event)) {
10097 		err = PTR_ERR(event);
10098 		goto err;
10099 	}
10100 
10101 	/* Mark owner so we could distinguish it from user events. */
10102 	event->owner = TASK_TOMBSTONE;
10103 
10104 	ctx = find_get_context(event->pmu, task, event);
10105 	if (IS_ERR(ctx)) {
10106 		err = PTR_ERR(ctx);
10107 		goto err_free;
10108 	}
10109 
10110 	WARN_ON_ONCE(ctx->parent_ctx);
10111 	mutex_lock(&ctx->mutex);
10112 	if (ctx->task == TASK_TOMBSTONE) {
10113 		err = -ESRCH;
10114 		goto err_unlock;
10115 	}
10116 
10117 	if (!exclusive_event_installable(event, ctx)) {
10118 		err = -EBUSY;
10119 		goto err_unlock;
10120 	}
10121 
10122 	perf_install_in_context(ctx, event, cpu);
10123 	perf_unpin_context(ctx);
10124 	mutex_unlock(&ctx->mutex);
10125 
10126 	return event;
10127 
10128 err_unlock:
10129 	mutex_unlock(&ctx->mutex);
10130 	perf_unpin_context(ctx);
10131 	put_ctx(ctx);
10132 err_free:
10133 	free_event(event);
10134 err:
10135 	return ERR_PTR(err);
10136 }
10137 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10138 
10139 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10140 {
10141 	struct perf_event_context *src_ctx;
10142 	struct perf_event_context *dst_ctx;
10143 	struct perf_event *event, *tmp;
10144 	LIST_HEAD(events);
10145 
10146 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10147 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10148 
10149 	/*
10150 	 * See perf_event_ctx_lock() for comments on the details
10151 	 * of swizzling perf_event::ctx.
10152 	 */
10153 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10154 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10155 				 event_entry) {
10156 		perf_remove_from_context(event, 0);
10157 		unaccount_event_cpu(event, src_cpu);
10158 		put_ctx(src_ctx);
10159 		list_add(&event->migrate_entry, &events);
10160 	}
10161 
10162 	/*
10163 	 * Wait for the events to quiesce before re-instating them.
10164 	 */
10165 	synchronize_rcu();
10166 
10167 	/*
10168 	 * Re-instate events in 2 passes.
10169 	 *
10170 	 * Skip over group leaders and only install siblings on this first
10171 	 * pass, siblings will not get enabled without a leader, however a
10172 	 * leader will enable its siblings, even if those are still on the old
10173 	 * context.
10174 	 */
10175 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10176 		if (event->group_leader == event)
10177 			continue;
10178 
10179 		list_del(&event->migrate_entry);
10180 		if (event->state >= PERF_EVENT_STATE_OFF)
10181 			event->state = PERF_EVENT_STATE_INACTIVE;
10182 		account_event_cpu(event, dst_cpu);
10183 		perf_install_in_context(dst_ctx, event, dst_cpu);
10184 		get_ctx(dst_ctx);
10185 	}
10186 
10187 	/*
10188 	 * Once all the siblings are setup properly, install the group leaders
10189 	 * to make it go.
10190 	 */
10191 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10192 		list_del(&event->migrate_entry);
10193 		if (event->state >= PERF_EVENT_STATE_OFF)
10194 			event->state = PERF_EVENT_STATE_INACTIVE;
10195 		account_event_cpu(event, dst_cpu);
10196 		perf_install_in_context(dst_ctx, event, dst_cpu);
10197 		get_ctx(dst_ctx);
10198 	}
10199 	mutex_unlock(&dst_ctx->mutex);
10200 	mutex_unlock(&src_ctx->mutex);
10201 }
10202 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10203 
10204 static void sync_child_event(struct perf_event *child_event,
10205 			       struct task_struct *child)
10206 {
10207 	struct perf_event *parent_event = child_event->parent;
10208 	u64 child_val;
10209 
10210 	if (child_event->attr.inherit_stat)
10211 		perf_event_read_event(child_event, child);
10212 
10213 	child_val = perf_event_count(child_event);
10214 
10215 	/*
10216 	 * Add back the child's count to the parent's count:
10217 	 */
10218 	atomic64_add(child_val, &parent_event->child_count);
10219 	atomic64_add(child_event->total_time_enabled,
10220 		     &parent_event->child_total_time_enabled);
10221 	atomic64_add(child_event->total_time_running,
10222 		     &parent_event->child_total_time_running);
10223 }
10224 
10225 static void
10226 perf_event_exit_event(struct perf_event *child_event,
10227 		      struct perf_event_context *child_ctx,
10228 		      struct task_struct *child)
10229 {
10230 	struct perf_event *parent_event = child_event->parent;
10231 
10232 	/*
10233 	 * Do not destroy the 'original' grouping; because of the context
10234 	 * switch optimization the original events could've ended up in a
10235 	 * random child task.
10236 	 *
10237 	 * If we were to destroy the original group, all group related
10238 	 * operations would cease to function properly after this random
10239 	 * child dies.
10240 	 *
10241 	 * Do destroy all inherited groups, we don't care about those
10242 	 * and being thorough is better.
10243 	 */
10244 	raw_spin_lock_irq(&child_ctx->lock);
10245 	WARN_ON_ONCE(child_ctx->is_active);
10246 
10247 	if (parent_event)
10248 		perf_group_detach(child_event);
10249 	list_del_event(child_event, child_ctx);
10250 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10251 	raw_spin_unlock_irq(&child_ctx->lock);
10252 
10253 	/*
10254 	 * Parent events are governed by their filedesc, retain them.
10255 	 */
10256 	if (!parent_event) {
10257 		perf_event_wakeup(child_event);
10258 		return;
10259 	}
10260 	/*
10261 	 * Child events can be cleaned up.
10262 	 */
10263 
10264 	sync_child_event(child_event, child);
10265 
10266 	/*
10267 	 * Remove this event from the parent's list
10268 	 */
10269 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10270 	mutex_lock(&parent_event->child_mutex);
10271 	list_del_init(&child_event->child_list);
10272 	mutex_unlock(&parent_event->child_mutex);
10273 
10274 	/*
10275 	 * Kick perf_poll() for is_event_hup().
10276 	 */
10277 	perf_event_wakeup(parent_event);
10278 	free_event(child_event);
10279 	put_event(parent_event);
10280 }
10281 
10282 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10283 {
10284 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10285 	struct perf_event *child_event, *next;
10286 
10287 	WARN_ON_ONCE(child != current);
10288 
10289 	child_ctx = perf_pin_task_context(child, ctxn);
10290 	if (!child_ctx)
10291 		return;
10292 
10293 	/*
10294 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10295 	 * ctx::mutex over the entire thing. This serializes against almost
10296 	 * everything that wants to access the ctx.
10297 	 *
10298 	 * The exception is sys_perf_event_open() /
10299 	 * perf_event_create_kernel_count() which does find_get_context()
10300 	 * without ctx::mutex (it cannot because of the move_group double mutex
10301 	 * lock thing). See the comments in perf_install_in_context().
10302 	 */
10303 	mutex_lock(&child_ctx->mutex);
10304 
10305 	/*
10306 	 * In a single ctx::lock section, de-schedule the events and detach the
10307 	 * context from the task such that we cannot ever get it scheduled back
10308 	 * in.
10309 	 */
10310 	raw_spin_lock_irq(&child_ctx->lock);
10311 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10312 
10313 	/*
10314 	 * Now that the context is inactive, destroy the task <-> ctx relation
10315 	 * and mark the context dead.
10316 	 */
10317 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10318 	put_ctx(child_ctx); /* cannot be last */
10319 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10320 	put_task_struct(current); /* cannot be last */
10321 
10322 	clone_ctx = unclone_ctx(child_ctx);
10323 	raw_spin_unlock_irq(&child_ctx->lock);
10324 
10325 	if (clone_ctx)
10326 		put_ctx(clone_ctx);
10327 
10328 	/*
10329 	 * Report the task dead after unscheduling the events so that we
10330 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10331 	 * get a few PERF_RECORD_READ events.
10332 	 */
10333 	perf_event_task(child, child_ctx, 0);
10334 
10335 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10336 		perf_event_exit_event(child_event, child_ctx, child);
10337 
10338 	mutex_unlock(&child_ctx->mutex);
10339 
10340 	put_ctx(child_ctx);
10341 }
10342 
10343 /*
10344  * When a child task exits, feed back event values to parent events.
10345  *
10346  * Can be called with cred_guard_mutex held when called from
10347  * install_exec_creds().
10348  */
10349 void perf_event_exit_task(struct task_struct *child)
10350 {
10351 	struct perf_event *event, *tmp;
10352 	int ctxn;
10353 
10354 	mutex_lock(&child->perf_event_mutex);
10355 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10356 				 owner_entry) {
10357 		list_del_init(&event->owner_entry);
10358 
10359 		/*
10360 		 * Ensure the list deletion is visible before we clear
10361 		 * the owner, closes a race against perf_release() where
10362 		 * we need to serialize on the owner->perf_event_mutex.
10363 		 */
10364 		smp_store_release(&event->owner, NULL);
10365 	}
10366 	mutex_unlock(&child->perf_event_mutex);
10367 
10368 	for_each_task_context_nr(ctxn)
10369 		perf_event_exit_task_context(child, ctxn);
10370 
10371 	/*
10372 	 * The perf_event_exit_task_context calls perf_event_task
10373 	 * with child's task_ctx, which generates EXIT events for
10374 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10375 	 * At this point we need to send EXIT events to cpu contexts.
10376 	 */
10377 	perf_event_task(child, NULL, 0);
10378 }
10379 
10380 static void perf_free_event(struct perf_event *event,
10381 			    struct perf_event_context *ctx)
10382 {
10383 	struct perf_event *parent = event->parent;
10384 
10385 	if (WARN_ON_ONCE(!parent))
10386 		return;
10387 
10388 	mutex_lock(&parent->child_mutex);
10389 	list_del_init(&event->child_list);
10390 	mutex_unlock(&parent->child_mutex);
10391 
10392 	put_event(parent);
10393 
10394 	raw_spin_lock_irq(&ctx->lock);
10395 	perf_group_detach(event);
10396 	list_del_event(event, ctx);
10397 	raw_spin_unlock_irq(&ctx->lock);
10398 	free_event(event);
10399 }
10400 
10401 /*
10402  * Free an unexposed, unused context as created by inheritance by
10403  * perf_event_init_task below, used by fork() in case of fail.
10404  *
10405  * Not all locks are strictly required, but take them anyway to be nice and
10406  * help out with the lockdep assertions.
10407  */
10408 void perf_event_free_task(struct task_struct *task)
10409 {
10410 	struct perf_event_context *ctx;
10411 	struct perf_event *event, *tmp;
10412 	int ctxn;
10413 
10414 	for_each_task_context_nr(ctxn) {
10415 		ctx = task->perf_event_ctxp[ctxn];
10416 		if (!ctx)
10417 			continue;
10418 
10419 		mutex_lock(&ctx->mutex);
10420 again:
10421 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10422 				group_entry)
10423 			perf_free_event(event, ctx);
10424 
10425 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10426 				group_entry)
10427 			perf_free_event(event, ctx);
10428 
10429 		if (!list_empty(&ctx->pinned_groups) ||
10430 				!list_empty(&ctx->flexible_groups))
10431 			goto again;
10432 
10433 		mutex_unlock(&ctx->mutex);
10434 
10435 		put_ctx(ctx);
10436 	}
10437 }
10438 
10439 void perf_event_delayed_put(struct task_struct *task)
10440 {
10441 	int ctxn;
10442 
10443 	for_each_task_context_nr(ctxn)
10444 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10445 }
10446 
10447 struct file *perf_event_get(unsigned int fd)
10448 {
10449 	struct file *file;
10450 
10451 	file = fget_raw(fd);
10452 	if (!file)
10453 		return ERR_PTR(-EBADF);
10454 
10455 	if (file->f_op != &perf_fops) {
10456 		fput(file);
10457 		return ERR_PTR(-EBADF);
10458 	}
10459 
10460 	return file;
10461 }
10462 
10463 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10464 {
10465 	if (!event)
10466 		return ERR_PTR(-EINVAL);
10467 
10468 	return &event->attr;
10469 }
10470 
10471 /*
10472  * inherit a event from parent task to child task:
10473  */
10474 static struct perf_event *
10475 inherit_event(struct perf_event *parent_event,
10476 	      struct task_struct *parent,
10477 	      struct perf_event_context *parent_ctx,
10478 	      struct task_struct *child,
10479 	      struct perf_event *group_leader,
10480 	      struct perf_event_context *child_ctx)
10481 {
10482 	enum perf_event_active_state parent_state = parent_event->state;
10483 	struct perf_event *child_event;
10484 	unsigned long flags;
10485 
10486 	/*
10487 	 * Instead of creating recursive hierarchies of events,
10488 	 * we link inherited events back to the original parent,
10489 	 * which has a filp for sure, which we use as the reference
10490 	 * count:
10491 	 */
10492 	if (parent_event->parent)
10493 		parent_event = parent_event->parent;
10494 
10495 	child_event = perf_event_alloc(&parent_event->attr,
10496 					   parent_event->cpu,
10497 					   child,
10498 					   group_leader, parent_event,
10499 					   NULL, NULL, -1);
10500 	if (IS_ERR(child_event))
10501 		return child_event;
10502 
10503 	/*
10504 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10505 	 * must be under the same lock in order to serialize against
10506 	 * perf_event_release_kernel(), such that either we must observe
10507 	 * is_orphaned_event() or they will observe us on the child_list.
10508 	 */
10509 	mutex_lock(&parent_event->child_mutex);
10510 	if (is_orphaned_event(parent_event) ||
10511 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10512 		mutex_unlock(&parent_event->child_mutex);
10513 		free_event(child_event);
10514 		return NULL;
10515 	}
10516 
10517 	get_ctx(child_ctx);
10518 
10519 	/*
10520 	 * Make the child state follow the state of the parent event,
10521 	 * not its attr.disabled bit.  We hold the parent's mutex,
10522 	 * so we won't race with perf_event_{en, dis}able_family.
10523 	 */
10524 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10525 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10526 	else
10527 		child_event->state = PERF_EVENT_STATE_OFF;
10528 
10529 	if (parent_event->attr.freq) {
10530 		u64 sample_period = parent_event->hw.sample_period;
10531 		struct hw_perf_event *hwc = &child_event->hw;
10532 
10533 		hwc->sample_period = sample_period;
10534 		hwc->last_period   = sample_period;
10535 
10536 		local64_set(&hwc->period_left, sample_period);
10537 	}
10538 
10539 	child_event->ctx = child_ctx;
10540 	child_event->overflow_handler = parent_event->overflow_handler;
10541 	child_event->overflow_handler_context
10542 		= parent_event->overflow_handler_context;
10543 
10544 	/*
10545 	 * Precalculate sample_data sizes
10546 	 */
10547 	perf_event__header_size(child_event);
10548 	perf_event__id_header_size(child_event);
10549 
10550 	/*
10551 	 * Link it up in the child's context:
10552 	 */
10553 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10554 	add_event_to_ctx(child_event, child_ctx);
10555 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10556 
10557 	/*
10558 	 * Link this into the parent event's child list
10559 	 */
10560 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10561 	mutex_unlock(&parent_event->child_mutex);
10562 
10563 	return child_event;
10564 }
10565 
10566 static int inherit_group(struct perf_event *parent_event,
10567 	      struct task_struct *parent,
10568 	      struct perf_event_context *parent_ctx,
10569 	      struct task_struct *child,
10570 	      struct perf_event_context *child_ctx)
10571 {
10572 	struct perf_event *leader;
10573 	struct perf_event *sub;
10574 	struct perf_event *child_ctr;
10575 
10576 	leader = inherit_event(parent_event, parent, parent_ctx,
10577 				 child, NULL, child_ctx);
10578 	if (IS_ERR(leader))
10579 		return PTR_ERR(leader);
10580 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10581 		child_ctr = inherit_event(sub, parent, parent_ctx,
10582 					    child, leader, child_ctx);
10583 		if (IS_ERR(child_ctr))
10584 			return PTR_ERR(child_ctr);
10585 	}
10586 	return 0;
10587 }
10588 
10589 static int
10590 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10591 		   struct perf_event_context *parent_ctx,
10592 		   struct task_struct *child, int ctxn,
10593 		   int *inherited_all)
10594 {
10595 	int ret;
10596 	struct perf_event_context *child_ctx;
10597 
10598 	if (!event->attr.inherit) {
10599 		*inherited_all = 0;
10600 		return 0;
10601 	}
10602 
10603 	child_ctx = child->perf_event_ctxp[ctxn];
10604 	if (!child_ctx) {
10605 		/*
10606 		 * This is executed from the parent task context, so
10607 		 * inherit events that have been marked for cloning.
10608 		 * First allocate and initialize a context for the
10609 		 * child.
10610 		 */
10611 
10612 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10613 		if (!child_ctx)
10614 			return -ENOMEM;
10615 
10616 		child->perf_event_ctxp[ctxn] = child_ctx;
10617 	}
10618 
10619 	ret = inherit_group(event, parent, parent_ctx,
10620 			    child, child_ctx);
10621 
10622 	if (ret)
10623 		*inherited_all = 0;
10624 
10625 	return ret;
10626 }
10627 
10628 /*
10629  * Initialize the perf_event context in task_struct
10630  */
10631 static int perf_event_init_context(struct task_struct *child, int ctxn)
10632 {
10633 	struct perf_event_context *child_ctx, *parent_ctx;
10634 	struct perf_event_context *cloned_ctx;
10635 	struct perf_event *event;
10636 	struct task_struct *parent = current;
10637 	int inherited_all = 1;
10638 	unsigned long flags;
10639 	int ret = 0;
10640 
10641 	if (likely(!parent->perf_event_ctxp[ctxn]))
10642 		return 0;
10643 
10644 	/*
10645 	 * If the parent's context is a clone, pin it so it won't get
10646 	 * swapped under us.
10647 	 */
10648 	parent_ctx = perf_pin_task_context(parent, ctxn);
10649 	if (!parent_ctx)
10650 		return 0;
10651 
10652 	/*
10653 	 * No need to check if parent_ctx != NULL here; since we saw
10654 	 * it non-NULL earlier, the only reason for it to become NULL
10655 	 * is if we exit, and since we're currently in the middle of
10656 	 * a fork we can't be exiting at the same time.
10657 	 */
10658 
10659 	/*
10660 	 * Lock the parent list. No need to lock the child - not PID
10661 	 * hashed yet and not running, so nobody can access it.
10662 	 */
10663 	mutex_lock(&parent_ctx->mutex);
10664 
10665 	/*
10666 	 * We dont have to disable NMIs - we are only looking at
10667 	 * the list, not manipulating it:
10668 	 */
10669 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10670 		ret = inherit_task_group(event, parent, parent_ctx,
10671 					 child, ctxn, &inherited_all);
10672 		if (ret)
10673 			break;
10674 	}
10675 
10676 	/*
10677 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10678 	 * to allocations, but we need to prevent rotation because
10679 	 * rotate_ctx() will change the list from interrupt context.
10680 	 */
10681 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10682 	parent_ctx->rotate_disable = 1;
10683 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10684 
10685 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10686 		ret = inherit_task_group(event, parent, parent_ctx,
10687 					 child, ctxn, &inherited_all);
10688 		if (ret)
10689 			break;
10690 	}
10691 
10692 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10693 	parent_ctx->rotate_disable = 0;
10694 
10695 	child_ctx = child->perf_event_ctxp[ctxn];
10696 
10697 	if (child_ctx && inherited_all) {
10698 		/*
10699 		 * Mark the child context as a clone of the parent
10700 		 * context, or of whatever the parent is a clone of.
10701 		 *
10702 		 * Note that if the parent is a clone, the holding of
10703 		 * parent_ctx->lock avoids it from being uncloned.
10704 		 */
10705 		cloned_ctx = parent_ctx->parent_ctx;
10706 		if (cloned_ctx) {
10707 			child_ctx->parent_ctx = cloned_ctx;
10708 			child_ctx->parent_gen = parent_ctx->parent_gen;
10709 		} else {
10710 			child_ctx->parent_ctx = parent_ctx;
10711 			child_ctx->parent_gen = parent_ctx->generation;
10712 		}
10713 		get_ctx(child_ctx->parent_ctx);
10714 	}
10715 
10716 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10717 	mutex_unlock(&parent_ctx->mutex);
10718 
10719 	perf_unpin_context(parent_ctx);
10720 	put_ctx(parent_ctx);
10721 
10722 	return ret;
10723 }
10724 
10725 /*
10726  * Initialize the perf_event context in task_struct
10727  */
10728 int perf_event_init_task(struct task_struct *child)
10729 {
10730 	int ctxn, ret;
10731 
10732 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10733 	mutex_init(&child->perf_event_mutex);
10734 	INIT_LIST_HEAD(&child->perf_event_list);
10735 
10736 	for_each_task_context_nr(ctxn) {
10737 		ret = perf_event_init_context(child, ctxn);
10738 		if (ret) {
10739 			perf_event_free_task(child);
10740 			return ret;
10741 		}
10742 	}
10743 
10744 	return 0;
10745 }
10746 
10747 static void __init perf_event_init_all_cpus(void)
10748 {
10749 	struct swevent_htable *swhash;
10750 	int cpu;
10751 
10752 	for_each_possible_cpu(cpu) {
10753 		swhash = &per_cpu(swevent_htable, cpu);
10754 		mutex_init(&swhash->hlist_mutex);
10755 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10756 
10757 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10758 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10759 
10760 #ifdef CONFIG_CGROUP_PERF
10761 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10762 #endif
10763 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10764 	}
10765 }
10766 
10767 int perf_event_init_cpu(unsigned int cpu)
10768 {
10769 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10770 
10771 	mutex_lock(&swhash->hlist_mutex);
10772 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10773 		struct swevent_hlist *hlist;
10774 
10775 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10776 		WARN_ON(!hlist);
10777 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10778 	}
10779 	mutex_unlock(&swhash->hlist_mutex);
10780 	return 0;
10781 }
10782 
10783 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10784 static void __perf_event_exit_context(void *__info)
10785 {
10786 	struct perf_event_context *ctx = __info;
10787 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10788 	struct perf_event *event;
10789 
10790 	raw_spin_lock(&ctx->lock);
10791 	list_for_each_entry(event, &ctx->event_list, event_entry)
10792 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10793 	raw_spin_unlock(&ctx->lock);
10794 }
10795 
10796 static void perf_event_exit_cpu_context(int cpu)
10797 {
10798 	struct perf_event_context *ctx;
10799 	struct pmu *pmu;
10800 	int idx;
10801 
10802 	idx = srcu_read_lock(&pmus_srcu);
10803 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10804 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10805 
10806 		mutex_lock(&ctx->mutex);
10807 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10808 		mutex_unlock(&ctx->mutex);
10809 	}
10810 	srcu_read_unlock(&pmus_srcu, idx);
10811 }
10812 #else
10813 
10814 static void perf_event_exit_cpu_context(int cpu) { }
10815 
10816 #endif
10817 
10818 int perf_event_exit_cpu(unsigned int cpu)
10819 {
10820 	perf_event_exit_cpu_context(cpu);
10821 	return 0;
10822 }
10823 
10824 static int
10825 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10826 {
10827 	int cpu;
10828 
10829 	for_each_online_cpu(cpu)
10830 		perf_event_exit_cpu(cpu);
10831 
10832 	return NOTIFY_OK;
10833 }
10834 
10835 /*
10836  * Run the perf reboot notifier at the very last possible moment so that
10837  * the generic watchdog code runs as long as possible.
10838  */
10839 static struct notifier_block perf_reboot_notifier = {
10840 	.notifier_call = perf_reboot,
10841 	.priority = INT_MIN,
10842 };
10843 
10844 void __init perf_event_init(void)
10845 {
10846 	int ret;
10847 
10848 	idr_init(&pmu_idr);
10849 
10850 	perf_event_init_all_cpus();
10851 	init_srcu_struct(&pmus_srcu);
10852 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10853 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
10854 	perf_pmu_register(&perf_task_clock, NULL, -1);
10855 	perf_tp_register();
10856 	perf_event_init_cpu(smp_processor_id());
10857 	register_reboot_notifier(&perf_reboot_notifier);
10858 
10859 	ret = init_hw_breakpoint();
10860 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10861 
10862 	/*
10863 	 * Build time assertion that we keep the data_head at the intended
10864 	 * location.  IOW, validation we got the __reserved[] size right.
10865 	 */
10866 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10867 		     != 1024);
10868 }
10869 
10870 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10871 			      char *page)
10872 {
10873 	struct perf_pmu_events_attr *pmu_attr =
10874 		container_of(attr, struct perf_pmu_events_attr, attr);
10875 
10876 	if (pmu_attr->event_str)
10877 		return sprintf(page, "%s\n", pmu_attr->event_str);
10878 
10879 	return 0;
10880 }
10881 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10882 
10883 static int __init perf_event_sysfs_init(void)
10884 {
10885 	struct pmu *pmu;
10886 	int ret;
10887 
10888 	mutex_lock(&pmus_lock);
10889 
10890 	ret = bus_register(&pmu_bus);
10891 	if (ret)
10892 		goto unlock;
10893 
10894 	list_for_each_entry(pmu, &pmus, entry) {
10895 		if (!pmu->name || pmu->type < 0)
10896 			continue;
10897 
10898 		ret = pmu_dev_alloc(pmu);
10899 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10900 	}
10901 	pmu_bus_running = 1;
10902 	ret = 0;
10903 
10904 unlock:
10905 	mutex_unlock(&pmus_lock);
10906 
10907 	return ret;
10908 }
10909 device_initcall(perf_event_sysfs_init);
10910 
10911 #ifdef CONFIG_CGROUP_PERF
10912 static struct cgroup_subsys_state *
10913 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10914 {
10915 	struct perf_cgroup *jc;
10916 
10917 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10918 	if (!jc)
10919 		return ERR_PTR(-ENOMEM);
10920 
10921 	jc->info = alloc_percpu(struct perf_cgroup_info);
10922 	if (!jc->info) {
10923 		kfree(jc);
10924 		return ERR_PTR(-ENOMEM);
10925 	}
10926 
10927 	return &jc->css;
10928 }
10929 
10930 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10931 {
10932 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10933 
10934 	free_percpu(jc->info);
10935 	kfree(jc);
10936 }
10937 
10938 static int __perf_cgroup_move(void *info)
10939 {
10940 	struct task_struct *task = info;
10941 	rcu_read_lock();
10942 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10943 	rcu_read_unlock();
10944 	return 0;
10945 }
10946 
10947 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10948 {
10949 	struct task_struct *task;
10950 	struct cgroup_subsys_state *css;
10951 
10952 	cgroup_taskset_for_each(task, css, tset)
10953 		task_function_call(task, __perf_cgroup_move, task);
10954 }
10955 
10956 struct cgroup_subsys perf_event_cgrp_subsys = {
10957 	.css_alloc	= perf_cgroup_css_alloc,
10958 	.css_free	= perf_cgroup_css_free,
10959 	.attach		= perf_cgroup_attach,
10960 	/*
10961 	 * Implicitly enable on dfl hierarchy so that perf events can
10962 	 * always be filtered by cgroup2 path as long as perf_event
10963 	 * controller is not mounted on a legacy hierarchy.
10964 	 */
10965 	.implicit_on_dfl = true,
10966 };
10967 #endif /* CONFIG_CGROUP_PERF */
10968