xref: /openbmc/linux/kernel/events/core.c (revision a8fe58ce)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 typedef int (*remote_function_f)(void *);
53 
54 struct remote_function_call {
55 	struct task_struct	*p;
56 	remote_function_f	func;
57 	void			*info;
58 	int			ret;
59 };
60 
61 static void remote_function(void *data)
62 {
63 	struct remote_function_call *tfc = data;
64 	struct task_struct *p = tfc->p;
65 
66 	if (p) {
67 		tfc->ret = -EAGAIN;
68 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
69 			return;
70 	}
71 
72 	tfc->ret = tfc->func(tfc->info);
73 }
74 
75 /**
76  * task_function_call - call a function on the cpu on which a task runs
77  * @p:		the task to evaluate
78  * @func:	the function to be called
79  * @info:	the function call argument
80  *
81  * Calls the function @func when the task is currently running. This might
82  * be on the current CPU, which just calls the function directly
83  *
84  * returns: @func return value, or
85  *	    -ESRCH  - when the process isn't running
86  *	    -EAGAIN - when the process moved away
87  */
88 static int
89 task_function_call(struct task_struct *p, remote_function_f func, void *info)
90 {
91 	struct remote_function_call data = {
92 		.p	= p,
93 		.func	= func,
94 		.info	= info,
95 		.ret	= -ESRCH, /* No such (running) process */
96 	};
97 
98 	if (task_curr(p))
99 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
100 
101 	return data.ret;
102 }
103 
104 /**
105  * cpu_function_call - call a function on the cpu
106  * @func:	the function to be called
107  * @info:	the function call argument
108  *
109  * Calls the function @func on the remote cpu.
110  *
111  * returns: @func return value or -ENXIO when the cpu is offline
112  */
113 static int cpu_function_call(int cpu, remote_function_f func, void *info)
114 {
115 	struct remote_function_call data = {
116 		.p	= NULL,
117 		.func	= func,
118 		.info	= info,
119 		.ret	= -ENXIO, /* No such CPU */
120 	};
121 
122 	smp_call_function_single(cpu, remote_function, &data, 1);
123 
124 	return data.ret;
125 }
126 
127 static inline struct perf_cpu_context *
128 __get_cpu_context(struct perf_event_context *ctx)
129 {
130 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
131 }
132 
133 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
134 			  struct perf_event_context *ctx)
135 {
136 	raw_spin_lock(&cpuctx->ctx.lock);
137 	if (ctx)
138 		raw_spin_lock(&ctx->lock);
139 }
140 
141 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
142 			    struct perf_event_context *ctx)
143 {
144 	if (ctx)
145 		raw_spin_unlock(&ctx->lock);
146 	raw_spin_unlock(&cpuctx->ctx.lock);
147 }
148 
149 #define TASK_TOMBSTONE ((void *)-1L)
150 
151 static bool is_kernel_event(struct perf_event *event)
152 {
153 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
154 }
155 
156 /*
157  * On task ctx scheduling...
158  *
159  * When !ctx->nr_events a task context will not be scheduled. This means
160  * we can disable the scheduler hooks (for performance) without leaving
161  * pending task ctx state.
162  *
163  * This however results in two special cases:
164  *
165  *  - removing the last event from a task ctx; this is relatively straight
166  *    forward and is done in __perf_remove_from_context.
167  *
168  *  - adding the first event to a task ctx; this is tricky because we cannot
169  *    rely on ctx->is_active and therefore cannot use event_function_call().
170  *    See perf_install_in_context().
171  *
172  * This is because we need a ctx->lock serialized variable (ctx->is_active)
173  * to reliably determine if a particular task/context is scheduled in. The
174  * task_curr() use in task_function_call() is racy in that a remote context
175  * switch is not a single atomic operation.
176  *
177  * As is, the situation is 'safe' because we set rq->curr before we do the
178  * actual context switch. This means that task_curr() will fail early, but
179  * we'll continue spinning on ctx->is_active until we've passed
180  * perf_event_task_sched_out().
181  *
182  * Without this ctx->lock serialized variable we could have race where we find
183  * the task (and hence the context) would not be active while in fact they are.
184  *
185  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186  */
187 
188 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 			struct perf_event_context *, void *);
190 
191 struct event_function_struct {
192 	struct perf_event *event;
193 	event_f func;
194 	void *data;
195 };
196 
197 static int event_function(void *info)
198 {
199 	struct event_function_struct *efs = info;
200 	struct perf_event *event = efs->event;
201 	struct perf_event_context *ctx = event->ctx;
202 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
204 	int ret = 0;
205 
206 	WARN_ON_ONCE(!irqs_disabled());
207 
208 	perf_ctx_lock(cpuctx, task_ctx);
209 	/*
210 	 * Since we do the IPI call without holding ctx->lock things can have
211 	 * changed, double check we hit the task we set out to hit.
212 	 */
213 	if (ctx->task) {
214 		if (ctx->task != current) {
215 			ret = -EAGAIN;
216 			goto unlock;
217 		}
218 
219 		/*
220 		 * We only use event_function_call() on established contexts,
221 		 * and event_function() is only ever called when active (or
222 		 * rather, we'll have bailed in task_function_call() or the
223 		 * above ctx->task != current test), therefore we must have
224 		 * ctx->is_active here.
225 		 */
226 		WARN_ON_ONCE(!ctx->is_active);
227 		/*
228 		 * And since we have ctx->is_active, cpuctx->task_ctx must
229 		 * match.
230 		 */
231 		WARN_ON_ONCE(task_ctx != ctx);
232 	} else {
233 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
234 	}
235 
236 	efs->func(event, cpuctx, ctx, efs->data);
237 unlock:
238 	perf_ctx_unlock(cpuctx, task_ctx);
239 
240 	return ret;
241 }
242 
243 static void event_function_local(struct perf_event *event, event_f func, void *data)
244 {
245 	struct event_function_struct efs = {
246 		.event = event,
247 		.func = func,
248 		.data = data,
249 	};
250 
251 	int ret = event_function(&efs);
252 	WARN_ON_ONCE(ret);
253 }
254 
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257 	struct perf_event_context *ctx = event->ctx;
258 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 	struct event_function_struct efs = {
260 		.event = event,
261 		.func = func,
262 		.data = data,
263 	};
264 
265 	if (!event->parent) {
266 		/*
267 		 * If this is a !child event, we must hold ctx::mutex to
268 		 * stabilize the the event->ctx relation. See
269 		 * perf_event_ctx_lock().
270 		 */
271 		lockdep_assert_held(&ctx->mutex);
272 	}
273 
274 	if (!task) {
275 		cpu_function_call(event->cpu, event_function, &efs);
276 		return;
277 	}
278 
279 again:
280 	if (task == TASK_TOMBSTONE)
281 		return;
282 
283 	if (!task_function_call(task, event_function, &efs))
284 		return;
285 
286 	raw_spin_lock_irq(&ctx->lock);
287 	/*
288 	 * Reload the task pointer, it might have been changed by
289 	 * a concurrent perf_event_context_sched_out().
290 	 */
291 	task = ctx->task;
292 	if (task != TASK_TOMBSTONE) {
293 		if (ctx->is_active) {
294 			raw_spin_unlock_irq(&ctx->lock);
295 			goto again;
296 		}
297 		func(event, NULL, ctx, data);
298 	}
299 	raw_spin_unlock_irq(&ctx->lock);
300 }
301 
302 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
303 		       PERF_FLAG_FD_OUTPUT  |\
304 		       PERF_FLAG_PID_CGROUP |\
305 		       PERF_FLAG_FD_CLOEXEC)
306 
307 /*
308  * branch priv levels that need permission checks
309  */
310 #define PERF_SAMPLE_BRANCH_PERM_PLM \
311 	(PERF_SAMPLE_BRANCH_KERNEL |\
312 	 PERF_SAMPLE_BRANCH_HV)
313 
314 enum event_type_t {
315 	EVENT_FLEXIBLE = 0x1,
316 	EVENT_PINNED = 0x2,
317 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
318 };
319 
320 /*
321  * perf_sched_events : >0 events exist
322  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
323  */
324 struct static_key_deferred perf_sched_events __read_mostly;
325 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
326 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
327 
328 static atomic_t nr_mmap_events __read_mostly;
329 static atomic_t nr_comm_events __read_mostly;
330 static atomic_t nr_task_events __read_mostly;
331 static atomic_t nr_freq_events __read_mostly;
332 static atomic_t nr_switch_events __read_mostly;
333 
334 static LIST_HEAD(pmus);
335 static DEFINE_MUTEX(pmus_lock);
336 static struct srcu_struct pmus_srcu;
337 
338 /*
339  * perf event paranoia level:
340  *  -1 - not paranoid at all
341  *   0 - disallow raw tracepoint access for unpriv
342  *   1 - disallow cpu events for unpriv
343  *   2 - disallow kernel profiling for unpriv
344  */
345 int sysctl_perf_event_paranoid __read_mostly = 1;
346 
347 /* Minimum for 512 kiB + 1 user control page */
348 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
349 
350 /*
351  * max perf event sample rate
352  */
353 #define DEFAULT_MAX_SAMPLE_RATE		100000
354 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
355 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
356 
357 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
358 
359 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
360 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
361 
362 static int perf_sample_allowed_ns __read_mostly =
363 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
364 
365 static void update_perf_cpu_limits(void)
366 {
367 	u64 tmp = perf_sample_period_ns;
368 
369 	tmp *= sysctl_perf_cpu_time_max_percent;
370 	do_div(tmp, 100);
371 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
372 }
373 
374 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
375 
376 int perf_proc_update_handler(struct ctl_table *table, int write,
377 		void __user *buffer, size_t *lenp,
378 		loff_t *ppos)
379 {
380 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
381 
382 	if (ret || !write)
383 		return ret;
384 
385 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
386 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
387 	update_perf_cpu_limits();
388 
389 	return 0;
390 }
391 
392 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
393 
394 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
395 				void __user *buffer, size_t *lenp,
396 				loff_t *ppos)
397 {
398 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
399 
400 	if (ret || !write)
401 		return ret;
402 
403 	update_perf_cpu_limits();
404 
405 	return 0;
406 }
407 
408 /*
409  * perf samples are done in some very critical code paths (NMIs).
410  * If they take too much CPU time, the system can lock up and not
411  * get any real work done.  This will drop the sample rate when
412  * we detect that events are taking too long.
413  */
414 #define NR_ACCUMULATED_SAMPLES 128
415 static DEFINE_PER_CPU(u64, running_sample_length);
416 
417 static void perf_duration_warn(struct irq_work *w)
418 {
419 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
420 	u64 avg_local_sample_len;
421 	u64 local_samples_len;
422 
423 	local_samples_len = __this_cpu_read(running_sample_length);
424 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
425 
426 	printk_ratelimited(KERN_WARNING
427 			"perf interrupt took too long (%lld > %lld), lowering "
428 			"kernel.perf_event_max_sample_rate to %d\n",
429 			avg_local_sample_len, allowed_ns >> 1,
430 			sysctl_perf_event_sample_rate);
431 }
432 
433 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
434 
435 void perf_sample_event_took(u64 sample_len_ns)
436 {
437 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
438 	u64 avg_local_sample_len;
439 	u64 local_samples_len;
440 
441 	if (allowed_ns == 0)
442 		return;
443 
444 	/* decay the counter by 1 average sample */
445 	local_samples_len = __this_cpu_read(running_sample_length);
446 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
447 	local_samples_len += sample_len_ns;
448 	__this_cpu_write(running_sample_length, local_samples_len);
449 
450 	/*
451 	 * note: this will be biased artifically low until we have
452 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
453 	 * from having to maintain a count.
454 	 */
455 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
456 
457 	if (avg_local_sample_len <= allowed_ns)
458 		return;
459 
460 	if (max_samples_per_tick <= 1)
461 		return;
462 
463 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
464 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
465 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
466 
467 	update_perf_cpu_limits();
468 
469 	if (!irq_work_queue(&perf_duration_work)) {
470 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
471 			     "kernel.perf_event_max_sample_rate to %d\n",
472 			     avg_local_sample_len, allowed_ns >> 1,
473 			     sysctl_perf_event_sample_rate);
474 	}
475 }
476 
477 static atomic64_t perf_event_id;
478 
479 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
480 			      enum event_type_t event_type);
481 
482 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
483 			     enum event_type_t event_type,
484 			     struct task_struct *task);
485 
486 static void update_context_time(struct perf_event_context *ctx);
487 static u64 perf_event_time(struct perf_event *event);
488 
489 void __weak perf_event_print_debug(void)	{ }
490 
491 extern __weak const char *perf_pmu_name(void)
492 {
493 	return "pmu";
494 }
495 
496 static inline u64 perf_clock(void)
497 {
498 	return local_clock();
499 }
500 
501 static inline u64 perf_event_clock(struct perf_event *event)
502 {
503 	return event->clock();
504 }
505 
506 #ifdef CONFIG_CGROUP_PERF
507 
508 static inline bool
509 perf_cgroup_match(struct perf_event *event)
510 {
511 	struct perf_event_context *ctx = event->ctx;
512 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
513 
514 	/* @event doesn't care about cgroup */
515 	if (!event->cgrp)
516 		return true;
517 
518 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
519 	if (!cpuctx->cgrp)
520 		return false;
521 
522 	/*
523 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
524 	 * also enabled for all its descendant cgroups.  If @cpuctx's
525 	 * cgroup is a descendant of @event's (the test covers identity
526 	 * case), it's a match.
527 	 */
528 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
529 				    event->cgrp->css.cgroup);
530 }
531 
532 static inline void perf_detach_cgroup(struct perf_event *event)
533 {
534 	css_put(&event->cgrp->css);
535 	event->cgrp = NULL;
536 }
537 
538 static inline int is_cgroup_event(struct perf_event *event)
539 {
540 	return event->cgrp != NULL;
541 }
542 
543 static inline u64 perf_cgroup_event_time(struct perf_event *event)
544 {
545 	struct perf_cgroup_info *t;
546 
547 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
548 	return t->time;
549 }
550 
551 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
552 {
553 	struct perf_cgroup_info *info;
554 	u64 now;
555 
556 	now = perf_clock();
557 
558 	info = this_cpu_ptr(cgrp->info);
559 
560 	info->time += now - info->timestamp;
561 	info->timestamp = now;
562 }
563 
564 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
565 {
566 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
567 	if (cgrp_out)
568 		__update_cgrp_time(cgrp_out);
569 }
570 
571 static inline void update_cgrp_time_from_event(struct perf_event *event)
572 {
573 	struct perf_cgroup *cgrp;
574 
575 	/*
576 	 * ensure we access cgroup data only when needed and
577 	 * when we know the cgroup is pinned (css_get)
578 	 */
579 	if (!is_cgroup_event(event))
580 		return;
581 
582 	cgrp = perf_cgroup_from_task(current, event->ctx);
583 	/*
584 	 * Do not update time when cgroup is not active
585 	 */
586 	if (cgrp == event->cgrp)
587 		__update_cgrp_time(event->cgrp);
588 }
589 
590 static inline void
591 perf_cgroup_set_timestamp(struct task_struct *task,
592 			  struct perf_event_context *ctx)
593 {
594 	struct perf_cgroup *cgrp;
595 	struct perf_cgroup_info *info;
596 
597 	/*
598 	 * ctx->lock held by caller
599 	 * ensure we do not access cgroup data
600 	 * unless we have the cgroup pinned (css_get)
601 	 */
602 	if (!task || !ctx->nr_cgroups)
603 		return;
604 
605 	cgrp = perf_cgroup_from_task(task, ctx);
606 	info = this_cpu_ptr(cgrp->info);
607 	info->timestamp = ctx->timestamp;
608 }
609 
610 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
611 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
612 
613 /*
614  * reschedule events based on the cgroup constraint of task.
615  *
616  * mode SWOUT : schedule out everything
617  * mode SWIN : schedule in based on cgroup for next
618  */
619 static void perf_cgroup_switch(struct task_struct *task, int mode)
620 {
621 	struct perf_cpu_context *cpuctx;
622 	struct pmu *pmu;
623 	unsigned long flags;
624 
625 	/*
626 	 * disable interrupts to avoid geting nr_cgroup
627 	 * changes via __perf_event_disable(). Also
628 	 * avoids preemption.
629 	 */
630 	local_irq_save(flags);
631 
632 	/*
633 	 * we reschedule only in the presence of cgroup
634 	 * constrained events.
635 	 */
636 
637 	list_for_each_entry_rcu(pmu, &pmus, entry) {
638 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
639 		if (cpuctx->unique_pmu != pmu)
640 			continue; /* ensure we process each cpuctx once */
641 
642 		/*
643 		 * perf_cgroup_events says at least one
644 		 * context on this CPU has cgroup events.
645 		 *
646 		 * ctx->nr_cgroups reports the number of cgroup
647 		 * events for a context.
648 		 */
649 		if (cpuctx->ctx.nr_cgroups > 0) {
650 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
651 			perf_pmu_disable(cpuctx->ctx.pmu);
652 
653 			if (mode & PERF_CGROUP_SWOUT) {
654 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
655 				/*
656 				 * must not be done before ctxswout due
657 				 * to event_filter_match() in event_sched_out()
658 				 */
659 				cpuctx->cgrp = NULL;
660 			}
661 
662 			if (mode & PERF_CGROUP_SWIN) {
663 				WARN_ON_ONCE(cpuctx->cgrp);
664 				/*
665 				 * set cgrp before ctxsw in to allow
666 				 * event_filter_match() to not have to pass
667 				 * task around
668 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
669 				 * because cgorup events are only per-cpu
670 				 */
671 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
672 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
673 			}
674 			perf_pmu_enable(cpuctx->ctx.pmu);
675 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
676 		}
677 	}
678 
679 	local_irq_restore(flags);
680 }
681 
682 static inline void perf_cgroup_sched_out(struct task_struct *task,
683 					 struct task_struct *next)
684 {
685 	struct perf_cgroup *cgrp1;
686 	struct perf_cgroup *cgrp2 = NULL;
687 
688 	rcu_read_lock();
689 	/*
690 	 * we come here when we know perf_cgroup_events > 0
691 	 * we do not need to pass the ctx here because we know
692 	 * we are holding the rcu lock
693 	 */
694 	cgrp1 = perf_cgroup_from_task(task, NULL);
695 	cgrp2 = perf_cgroup_from_task(next, NULL);
696 
697 	/*
698 	 * only schedule out current cgroup events if we know
699 	 * that we are switching to a different cgroup. Otherwise,
700 	 * do no touch the cgroup events.
701 	 */
702 	if (cgrp1 != cgrp2)
703 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
704 
705 	rcu_read_unlock();
706 }
707 
708 static inline void perf_cgroup_sched_in(struct task_struct *prev,
709 					struct task_struct *task)
710 {
711 	struct perf_cgroup *cgrp1;
712 	struct perf_cgroup *cgrp2 = NULL;
713 
714 	rcu_read_lock();
715 	/*
716 	 * we come here when we know perf_cgroup_events > 0
717 	 * we do not need to pass the ctx here because we know
718 	 * we are holding the rcu lock
719 	 */
720 	cgrp1 = perf_cgroup_from_task(task, NULL);
721 	cgrp2 = perf_cgroup_from_task(prev, NULL);
722 
723 	/*
724 	 * only need to schedule in cgroup events if we are changing
725 	 * cgroup during ctxsw. Cgroup events were not scheduled
726 	 * out of ctxsw out if that was not the case.
727 	 */
728 	if (cgrp1 != cgrp2)
729 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
730 
731 	rcu_read_unlock();
732 }
733 
734 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
735 				      struct perf_event_attr *attr,
736 				      struct perf_event *group_leader)
737 {
738 	struct perf_cgroup *cgrp;
739 	struct cgroup_subsys_state *css;
740 	struct fd f = fdget(fd);
741 	int ret = 0;
742 
743 	if (!f.file)
744 		return -EBADF;
745 
746 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
747 					 &perf_event_cgrp_subsys);
748 	if (IS_ERR(css)) {
749 		ret = PTR_ERR(css);
750 		goto out;
751 	}
752 
753 	cgrp = container_of(css, struct perf_cgroup, css);
754 	event->cgrp = cgrp;
755 
756 	/*
757 	 * all events in a group must monitor
758 	 * the same cgroup because a task belongs
759 	 * to only one perf cgroup at a time
760 	 */
761 	if (group_leader && group_leader->cgrp != cgrp) {
762 		perf_detach_cgroup(event);
763 		ret = -EINVAL;
764 	}
765 out:
766 	fdput(f);
767 	return ret;
768 }
769 
770 static inline void
771 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
772 {
773 	struct perf_cgroup_info *t;
774 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
775 	event->shadow_ctx_time = now - t->timestamp;
776 }
777 
778 static inline void
779 perf_cgroup_defer_enabled(struct perf_event *event)
780 {
781 	/*
782 	 * when the current task's perf cgroup does not match
783 	 * the event's, we need to remember to call the
784 	 * perf_mark_enable() function the first time a task with
785 	 * a matching perf cgroup is scheduled in.
786 	 */
787 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
788 		event->cgrp_defer_enabled = 1;
789 }
790 
791 static inline void
792 perf_cgroup_mark_enabled(struct perf_event *event,
793 			 struct perf_event_context *ctx)
794 {
795 	struct perf_event *sub;
796 	u64 tstamp = perf_event_time(event);
797 
798 	if (!event->cgrp_defer_enabled)
799 		return;
800 
801 	event->cgrp_defer_enabled = 0;
802 
803 	event->tstamp_enabled = tstamp - event->total_time_enabled;
804 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
805 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
806 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
807 			sub->cgrp_defer_enabled = 0;
808 		}
809 	}
810 }
811 #else /* !CONFIG_CGROUP_PERF */
812 
813 static inline bool
814 perf_cgroup_match(struct perf_event *event)
815 {
816 	return true;
817 }
818 
819 static inline void perf_detach_cgroup(struct perf_event *event)
820 {}
821 
822 static inline int is_cgroup_event(struct perf_event *event)
823 {
824 	return 0;
825 }
826 
827 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
828 {
829 	return 0;
830 }
831 
832 static inline void update_cgrp_time_from_event(struct perf_event *event)
833 {
834 }
835 
836 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
837 {
838 }
839 
840 static inline void perf_cgroup_sched_out(struct task_struct *task,
841 					 struct task_struct *next)
842 {
843 }
844 
845 static inline void perf_cgroup_sched_in(struct task_struct *prev,
846 					struct task_struct *task)
847 {
848 }
849 
850 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
851 				      struct perf_event_attr *attr,
852 				      struct perf_event *group_leader)
853 {
854 	return -EINVAL;
855 }
856 
857 static inline void
858 perf_cgroup_set_timestamp(struct task_struct *task,
859 			  struct perf_event_context *ctx)
860 {
861 }
862 
863 void
864 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
865 {
866 }
867 
868 static inline void
869 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
870 {
871 }
872 
873 static inline u64 perf_cgroup_event_time(struct perf_event *event)
874 {
875 	return 0;
876 }
877 
878 static inline void
879 perf_cgroup_defer_enabled(struct perf_event *event)
880 {
881 }
882 
883 static inline void
884 perf_cgroup_mark_enabled(struct perf_event *event,
885 			 struct perf_event_context *ctx)
886 {
887 }
888 #endif
889 
890 /*
891  * set default to be dependent on timer tick just
892  * like original code
893  */
894 #define PERF_CPU_HRTIMER (1000 / HZ)
895 /*
896  * function must be called with interrupts disbled
897  */
898 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
899 {
900 	struct perf_cpu_context *cpuctx;
901 	int rotations = 0;
902 
903 	WARN_ON(!irqs_disabled());
904 
905 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
906 	rotations = perf_rotate_context(cpuctx);
907 
908 	raw_spin_lock(&cpuctx->hrtimer_lock);
909 	if (rotations)
910 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
911 	else
912 		cpuctx->hrtimer_active = 0;
913 	raw_spin_unlock(&cpuctx->hrtimer_lock);
914 
915 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
916 }
917 
918 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
919 {
920 	struct hrtimer *timer = &cpuctx->hrtimer;
921 	struct pmu *pmu = cpuctx->ctx.pmu;
922 	u64 interval;
923 
924 	/* no multiplexing needed for SW PMU */
925 	if (pmu->task_ctx_nr == perf_sw_context)
926 		return;
927 
928 	/*
929 	 * check default is sane, if not set then force to
930 	 * default interval (1/tick)
931 	 */
932 	interval = pmu->hrtimer_interval_ms;
933 	if (interval < 1)
934 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
935 
936 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
937 
938 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
939 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
940 	timer->function = perf_mux_hrtimer_handler;
941 }
942 
943 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
944 {
945 	struct hrtimer *timer = &cpuctx->hrtimer;
946 	struct pmu *pmu = cpuctx->ctx.pmu;
947 	unsigned long flags;
948 
949 	/* not for SW PMU */
950 	if (pmu->task_ctx_nr == perf_sw_context)
951 		return 0;
952 
953 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
954 	if (!cpuctx->hrtimer_active) {
955 		cpuctx->hrtimer_active = 1;
956 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
957 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
958 	}
959 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
960 
961 	return 0;
962 }
963 
964 void perf_pmu_disable(struct pmu *pmu)
965 {
966 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
967 	if (!(*count)++)
968 		pmu->pmu_disable(pmu);
969 }
970 
971 void perf_pmu_enable(struct pmu *pmu)
972 {
973 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
974 	if (!--(*count))
975 		pmu->pmu_enable(pmu);
976 }
977 
978 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
979 
980 /*
981  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
982  * perf_event_task_tick() are fully serialized because they're strictly cpu
983  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
984  * disabled, while perf_event_task_tick is called from IRQ context.
985  */
986 static void perf_event_ctx_activate(struct perf_event_context *ctx)
987 {
988 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
989 
990 	WARN_ON(!irqs_disabled());
991 
992 	WARN_ON(!list_empty(&ctx->active_ctx_list));
993 
994 	list_add(&ctx->active_ctx_list, head);
995 }
996 
997 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
998 {
999 	WARN_ON(!irqs_disabled());
1000 
1001 	WARN_ON(list_empty(&ctx->active_ctx_list));
1002 
1003 	list_del_init(&ctx->active_ctx_list);
1004 }
1005 
1006 static void get_ctx(struct perf_event_context *ctx)
1007 {
1008 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1009 }
1010 
1011 static void free_ctx(struct rcu_head *head)
1012 {
1013 	struct perf_event_context *ctx;
1014 
1015 	ctx = container_of(head, struct perf_event_context, rcu_head);
1016 	kfree(ctx->task_ctx_data);
1017 	kfree(ctx);
1018 }
1019 
1020 static void put_ctx(struct perf_event_context *ctx)
1021 {
1022 	if (atomic_dec_and_test(&ctx->refcount)) {
1023 		if (ctx->parent_ctx)
1024 			put_ctx(ctx->parent_ctx);
1025 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1026 			put_task_struct(ctx->task);
1027 		call_rcu(&ctx->rcu_head, free_ctx);
1028 	}
1029 }
1030 
1031 /*
1032  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1033  * perf_pmu_migrate_context() we need some magic.
1034  *
1035  * Those places that change perf_event::ctx will hold both
1036  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1037  *
1038  * Lock ordering is by mutex address. There are two other sites where
1039  * perf_event_context::mutex nests and those are:
1040  *
1041  *  - perf_event_exit_task_context()	[ child , 0 ]
1042  *      perf_event_exit_event()
1043  *        put_event()			[ parent, 1 ]
1044  *
1045  *  - perf_event_init_context()		[ parent, 0 ]
1046  *      inherit_task_group()
1047  *        inherit_group()
1048  *          inherit_event()
1049  *            perf_event_alloc()
1050  *              perf_init_event()
1051  *                perf_try_init_event()	[ child , 1 ]
1052  *
1053  * While it appears there is an obvious deadlock here -- the parent and child
1054  * nesting levels are inverted between the two. This is in fact safe because
1055  * life-time rules separate them. That is an exiting task cannot fork, and a
1056  * spawning task cannot (yet) exit.
1057  *
1058  * But remember that that these are parent<->child context relations, and
1059  * migration does not affect children, therefore these two orderings should not
1060  * interact.
1061  *
1062  * The change in perf_event::ctx does not affect children (as claimed above)
1063  * because the sys_perf_event_open() case will install a new event and break
1064  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1065  * concerned with cpuctx and that doesn't have children.
1066  *
1067  * The places that change perf_event::ctx will issue:
1068  *
1069  *   perf_remove_from_context();
1070  *   synchronize_rcu();
1071  *   perf_install_in_context();
1072  *
1073  * to affect the change. The remove_from_context() + synchronize_rcu() should
1074  * quiesce the event, after which we can install it in the new location. This
1075  * means that only external vectors (perf_fops, prctl) can perturb the event
1076  * while in transit. Therefore all such accessors should also acquire
1077  * perf_event_context::mutex to serialize against this.
1078  *
1079  * However; because event->ctx can change while we're waiting to acquire
1080  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1081  * function.
1082  *
1083  * Lock order:
1084  *	task_struct::perf_event_mutex
1085  *	  perf_event_context::mutex
1086  *	    perf_event::child_mutex;
1087  *	      perf_event_context::lock
1088  *	    perf_event::mmap_mutex
1089  *	    mmap_sem
1090  */
1091 static struct perf_event_context *
1092 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1093 {
1094 	struct perf_event_context *ctx;
1095 
1096 again:
1097 	rcu_read_lock();
1098 	ctx = ACCESS_ONCE(event->ctx);
1099 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1100 		rcu_read_unlock();
1101 		goto again;
1102 	}
1103 	rcu_read_unlock();
1104 
1105 	mutex_lock_nested(&ctx->mutex, nesting);
1106 	if (event->ctx != ctx) {
1107 		mutex_unlock(&ctx->mutex);
1108 		put_ctx(ctx);
1109 		goto again;
1110 	}
1111 
1112 	return ctx;
1113 }
1114 
1115 static inline struct perf_event_context *
1116 perf_event_ctx_lock(struct perf_event *event)
1117 {
1118 	return perf_event_ctx_lock_nested(event, 0);
1119 }
1120 
1121 static void perf_event_ctx_unlock(struct perf_event *event,
1122 				  struct perf_event_context *ctx)
1123 {
1124 	mutex_unlock(&ctx->mutex);
1125 	put_ctx(ctx);
1126 }
1127 
1128 /*
1129  * This must be done under the ctx->lock, such as to serialize against
1130  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1131  * calling scheduler related locks and ctx->lock nests inside those.
1132  */
1133 static __must_check struct perf_event_context *
1134 unclone_ctx(struct perf_event_context *ctx)
1135 {
1136 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1137 
1138 	lockdep_assert_held(&ctx->lock);
1139 
1140 	if (parent_ctx)
1141 		ctx->parent_ctx = NULL;
1142 	ctx->generation++;
1143 
1144 	return parent_ctx;
1145 }
1146 
1147 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1148 {
1149 	/*
1150 	 * only top level events have the pid namespace they were created in
1151 	 */
1152 	if (event->parent)
1153 		event = event->parent;
1154 
1155 	return task_tgid_nr_ns(p, event->ns);
1156 }
1157 
1158 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1159 {
1160 	/*
1161 	 * only top level events have the pid namespace they were created in
1162 	 */
1163 	if (event->parent)
1164 		event = event->parent;
1165 
1166 	return task_pid_nr_ns(p, event->ns);
1167 }
1168 
1169 /*
1170  * If we inherit events we want to return the parent event id
1171  * to userspace.
1172  */
1173 static u64 primary_event_id(struct perf_event *event)
1174 {
1175 	u64 id = event->id;
1176 
1177 	if (event->parent)
1178 		id = event->parent->id;
1179 
1180 	return id;
1181 }
1182 
1183 /*
1184  * Get the perf_event_context for a task and lock it.
1185  *
1186  * This has to cope with with the fact that until it is locked,
1187  * the context could get moved to another task.
1188  */
1189 static struct perf_event_context *
1190 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1191 {
1192 	struct perf_event_context *ctx;
1193 
1194 retry:
1195 	/*
1196 	 * One of the few rules of preemptible RCU is that one cannot do
1197 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1198 	 * part of the read side critical section was irqs-enabled -- see
1199 	 * rcu_read_unlock_special().
1200 	 *
1201 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1202 	 * side critical section has interrupts disabled.
1203 	 */
1204 	local_irq_save(*flags);
1205 	rcu_read_lock();
1206 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1207 	if (ctx) {
1208 		/*
1209 		 * If this context is a clone of another, it might
1210 		 * get swapped for another underneath us by
1211 		 * perf_event_task_sched_out, though the
1212 		 * rcu_read_lock() protects us from any context
1213 		 * getting freed.  Lock the context and check if it
1214 		 * got swapped before we could get the lock, and retry
1215 		 * if so.  If we locked the right context, then it
1216 		 * can't get swapped on us any more.
1217 		 */
1218 		raw_spin_lock(&ctx->lock);
1219 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1220 			raw_spin_unlock(&ctx->lock);
1221 			rcu_read_unlock();
1222 			local_irq_restore(*flags);
1223 			goto retry;
1224 		}
1225 
1226 		if (ctx->task == TASK_TOMBSTONE ||
1227 		    !atomic_inc_not_zero(&ctx->refcount)) {
1228 			raw_spin_unlock(&ctx->lock);
1229 			ctx = NULL;
1230 		} else {
1231 			WARN_ON_ONCE(ctx->task != task);
1232 		}
1233 	}
1234 	rcu_read_unlock();
1235 	if (!ctx)
1236 		local_irq_restore(*flags);
1237 	return ctx;
1238 }
1239 
1240 /*
1241  * Get the context for a task and increment its pin_count so it
1242  * can't get swapped to another task.  This also increments its
1243  * reference count so that the context can't get freed.
1244  */
1245 static struct perf_event_context *
1246 perf_pin_task_context(struct task_struct *task, int ctxn)
1247 {
1248 	struct perf_event_context *ctx;
1249 	unsigned long flags;
1250 
1251 	ctx = perf_lock_task_context(task, ctxn, &flags);
1252 	if (ctx) {
1253 		++ctx->pin_count;
1254 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1255 	}
1256 	return ctx;
1257 }
1258 
1259 static void perf_unpin_context(struct perf_event_context *ctx)
1260 {
1261 	unsigned long flags;
1262 
1263 	raw_spin_lock_irqsave(&ctx->lock, flags);
1264 	--ctx->pin_count;
1265 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1266 }
1267 
1268 /*
1269  * Update the record of the current time in a context.
1270  */
1271 static void update_context_time(struct perf_event_context *ctx)
1272 {
1273 	u64 now = perf_clock();
1274 
1275 	ctx->time += now - ctx->timestamp;
1276 	ctx->timestamp = now;
1277 }
1278 
1279 static u64 perf_event_time(struct perf_event *event)
1280 {
1281 	struct perf_event_context *ctx = event->ctx;
1282 
1283 	if (is_cgroup_event(event))
1284 		return perf_cgroup_event_time(event);
1285 
1286 	return ctx ? ctx->time : 0;
1287 }
1288 
1289 /*
1290  * Update the total_time_enabled and total_time_running fields for a event.
1291  * The caller of this function needs to hold the ctx->lock.
1292  */
1293 static void update_event_times(struct perf_event *event)
1294 {
1295 	struct perf_event_context *ctx = event->ctx;
1296 	u64 run_end;
1297 
1298 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1299 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1300 		return;
1301 	/*
1302 	 * in cgroup mode, time_enabled represents
1303 	 * the time the event was enabled AND active
1304 	 * tasks were in the monitored cgroup. This is
1305 	 * independent of the activity of the context as
1306 	 * there may be a mix of cgroup and non-cgroup events.
1307 	 *
1308 	 * That is why we treat cgroup events differently
1309 	 * here.
1310 	 */
1311 	if (is_cgroup_event(event))
1312 		run_end = perf_cgroup_event_time(event);
1313 	else if (ctx->is_active)
1314 		run_end = ctx->time;
1315 	else
1316 		run_end = event->tstamp_stopped;
1317 
1318 	event->total_time_enabled = run_end - event->tstamp_enabled;
1319 
1320 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1321 		run_end = event->tstamp_stopped;
1322 	else
1323 		run_end = perf_event_time(event);
1324 
1325 	event->total_time_running = run_end - event->tstamp_running;
1326 
1327 }
1328 
1329 /*
1330  * Update total_time_enabled and total_time_running for all events in a group.
1331  */
1332 static void update_group_times(struct perf_event *leader)
1333 {
1334 	struct perf_event *event;
1335 
1336 	update_event_times(leader);
1337 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1338 		update_event_times(event);
1339 }
1340 
1341 static struct list_head *
1342 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1343 {
1344 	if (event->attr.pinned)
1345 		return &ctx->pinned_groups;
1346 	else
1347 		return &ctx->flexible_groups;
1348 }
1349 
1350 /*
1351  * Add a event from the lists for its context.
1352  * Must be called with ctx->mutex and ctx->lock held.
1353  */
1354 static void
1355 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1356 {
1357 	lockdep_assert_held(&ctx->lock);
1358 
1359 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1360 	event->attach_state |= PERF_ATTACH_CONTEXT;
1361 
1362 	/*
1363 	 * If we're a stand alone event or group leader, we go to the context
1364 	 * list, group events are kept attached to the group so that
1365 	 * perf_group_detach can, at all times, locate all siblings.
1366 	 */
1367 	if (event->group_leader == event) {
1368 		struct list_head *list;
1369 
1370 		if (is_software_event(event))
1371 			event->group_flags |= PERF_GROUP_SOFTWARE;
1372 
1373 		list = ctx_group_list(event, ctx);
1374 		list_add_tail(&event->group_entry, list);
1375 	}
1376 
1377 	if (is_cgroup_event(event))
1378 		ctx->nr_cgroups++;
1379 
1380 	list_add_rcu(&event->event_entry, &ctx->event_list);
1381 	ctx->nr_events++;
1382 	if (event->attr.inherit_stat)
1383 		ctx->nr_stat++;
1384 
1385 	ctx->generation++;
1386 }
1387 
1388 /*
1389  * Initialize event state based on the perf_event_attr::disabled.
1390  */
1391 static inline void perf_event__state_init(struct perf_event *event)
1392 {
1393 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1394 					      PERF_EVENT_STATE_INACTIVE;
1395 }
1396 
1397 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1398 {
1399 	int entry = sizeof(u64); /* value */
1400 	int size = 0;
1401 	int nr = 1;
1402 
1403 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1404 		size += sizeof(u64);
1405 
1406 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1407 		size += sizeof(u64);
1408 
1409 	if (event->attr.read_format & PERF_FORMAT_ID)
1410 		entry += sizeof(u64);
1411 
1412 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1413 		nr += nr_siblings;
1414 		size += sizeof(u64);
1415 	}
1416 
1417 	size += entry * nr;
1418 	event->read_size = size;
1419 }
1420 
1421 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1422 {
1423 	struct perf_sample_data *data;
1424 	u16 size = 0;
1425 
1426 	if (sample_type & PERF_SAMPLE_IP)
1427 		size += sizeof(data->ip);
1428 
1429 	if (sample_type & PERF_SAMPLE_ADDR)
1430 		size += sizeof(data->addr);
1431 
1432 	if (sample_type & PERF_SAMPLE_PERIOD)
1433 		size += sizeof(data->period);
1434 
1435 	if (sample_type & PERF_SAMPLE_WEIGHT)
1436 		size += sizeof(data->weight);
1437 
1438 	if (sample_type & PERF_SAMPLE_READ)
1439 		size += event->read_size;
1440 
1441 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1442 		size += sizeof(data->data_src.val);
1443 
1444 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1445 		size += sizeof(data->txn);
1446 
1447 	event->header_size = size;
1448 }
1449 
1450 /*
1451  * Called at perf_event creation and when events are attached/detached from a
1452  * group.
1453  */
1454 static void perf_event__header_size(struct perf_event *event)
1455 {
1456 	__perf_event_read_size(event,
1457 			       event->group_leader->nr_siblings);
1458 	__perf_event_header_size(event, event->attr.sample_type);
1459 }
1460 
1461 static void perf_event__id_header_size(struct perf_event *event)
1462 {
1463 	struct perf_sample_data *data;
1464 	u64 sample_type = event->attr.sample_type;
1465 	u16 size = 0;
1466 
1467 	if (sample_type & PERF_SAMPLE_TID)
1468 		size += sizeof(data->tid_entry);
1469 
1470 	if (sample_type & PERF_SAMPLE_TIME)
1471 		size += sizeof(data->time);
1472 
1473 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1474 		size += sizeof(data->id);
1475 
1476 	if (sample_type & PERF_SAMPLE_ID)
1477 		size += sizeof(data->id);
1478 
1479 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1480 		size += sizeof(data->stream_id);
1481 
1482 	if (sample_type & PERF_SAMPLE_CPU)
1483 		size += sizeof(data->cpu_entry);
1484 
1485 	event->id_header_size = size;
1486 }
1487 
1488 static bool perf_event_validate_size(struct perf_event *event)
1489 {
1490 	/*
1491 	 * The values computed here will be over-written when we actually
1492 	 * attach the event.
1493 	 */
1494 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1495 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1496 	perf_event__id_header_size(event);
1497 
1498 	/*
1499 	 * Sum the lot; should not exceed the 64k limit we have on records.
1500 	 * Conservative limit to allow for callchains and other variable fields.
1501 	 */
1502 	if (event->read_size + event->header_size +
1503 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1504 		return false;
1505 
1506 	return true;
1507 }
1508 
1509 static void perf_group_attach(struct perf_event *event)
1510 {
1511 	struct perf_event *group_leader = event->group_leader, *pos;
1512 
1513 	/*
1514 	 * We can have double attach due to group movement in perf_event_open.
1515 	 */
1516 	if (event->attach_state & PERF_ATTACH_GROUP)
1517 		return;
1518 
1519 	event->attach_state |= PERF_ATTACH_GROUP;
1520 
1521 	if (group_leader == event)
1522 		return;
1523 
1524 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1525 
1526 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1527 			!is_software_event(event))
1528 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1529 
1530 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1531 	group_leader->nr_siblings++;
1532 
1533 	perf_event__header_size(group_leader);
1534 
1535 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1536 		perf_event__header_size(pos);
1537 }
1538 
1539 /*
1540  * Remove a event from the lists for its context.
1541  * Must be called with ctx->mutex and ctx->lock held.
1542  */
1543 static void
1544 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1545 {
1546 	struct perf_cpu_context *cpuctx;
1547 
1548 	WARN_ON_ONCE(event->ctx != ctx);
1549 	lockdep_assert_held(&ctx->lock);
1550 
1551 	/*
1552 	 * We can have double detach due to exit/hot-unplug + close.
1553 	 */
1554 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1555 		return;
1556 
1557 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1558 
1559 	if (is_cgroup_event(event)) {
1560 		ctx->nr_cgroups--;
1561 		/*
1562 		 * Because cgroup events are always per-cpu events, this will
1563 		 * always be called from the right CPU.
1564 		 */
1565 		cpuctx = __get_cpu_context(ctx);
1566 		/*
1567 		 * If there are no more cgroup events then clear cgrp to avoid
1568 		 * stale pointer in update_cgrp_time_from_cpuctx().
1569 		 */
1570 		if (!ctx->nr_cgroups)
1571 			cpuctx->cgrp = NULL;
1572 	}
1573 
1574 	ctx->nr_events--;
1575 	if (event->attr.inherit_stat)
1576 		ctx->nr_stat--;
1577 
1578 	list_del_rcu(&event->event_entry);
1579 
1580 	if (event->group_leader == event)
1581 		list_del_init(&event->group_entry);
1582 
1583 	update_group_times(event);
1584 
1585 	/*
1586 	 * If event was in error state, then keep it
1587 	 * that way, otherwise bogus counts will be
1588 	 * returned on read(). The only way to get out
1589 	 * of error state is by explicit re-enabling
1590 	 * of the event
1591 	 */
1592 	if (event->state > PERF_EVENT_STATE_OFF)
1593 		event->state = PERF_EVENT_STATE_OFF;
1594 
1595 	ctx->generation++;
1596 }
1597 
1598 static void perf_group_detach(struct perf_event *event)
1599 {
1600 	struct perf_event *sibling, *tmp;
1601 	struct list_head *list = NULL;
1602 
1603 	/*
1604 	 * We can have double detach due to exit/hot-unplug + close.
1605 	 */
1606 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1607 		return;
1608 
1609 	event->attach_state &= ~PERF_ATTACH_GROUP;
1610 
1611 	/*
1612 	 * If this is a sibling, remove it from its group.
1613 	 */
1614 	if (event->group_leader != event) {
1615 		list_del_init(&event->group_entry);
1616 		event->group_leader->nr_siblings--;
1617 		goto out;
1618 	}
1619 
1620 	if (!list_empty(&event->group_entry))
1621 		list = &event->group_entry;
1622 
1623 	/*
1624 	 * If this was a group event with sibling events then
1625 	 * upgrade the siblings to singleton events by adding them
1626 	 * to whatever list we are on.
1627 	 */
1628 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1629 		if (list)
1630 			list_move_tail(&sibling->group_entry, list);
1631 		sibling->group_leader = sibling;
1632 
1633 		/* Inherit group flags from the previous leader */
1634 		sibling->group_flags = event->group_flags;
1635 
1636 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1637 	}
1638 
1639 out:
1640 	perf_event__header_size(event->group_leader);
1641 
1642 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1643 		perf_event__header_size(tmp);
1644 }
1645 
1646 static bool is_orphaned_event(struct perf_event *event)
1647 {
1648 	return event->state == PERF_EVENT_STATE_EXIT;
1649 }
1650 
1651 static inline int pmu_filter_match(struct perf_event *event)
1652 {
1653 	struct pmu *pmu = event->pmu;
1654 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1655 }
1656 
1657 static inline int
1658 event_filter_match(struct perf_event *event)
1659 {
1660 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1661 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1662 }
1663 
1664 static void
1665 event_sched_out(struct perf_event *event,
1666 		  struct perf_cpu_context *cpuctx,
1667 		  struct perf_event_context *ctx)
1668 {
1669 	u64 tstamp = perf_event_time(event);
1670 	u64 delta;
1671 
1672 	WARN_ON_ONCE(event->ctx != ctx);
1673 	lockdep_assert_held(&ctx->lock);
1674 
1675 	/*
1676 	 * An event which could not be activated because of
1677 	 * filter mismatch still needs to have its timings
1678 	 * maintained, otherwise bogus information is return
1679 	 * via read() for time_enabled, time_running:
1680 	 */
1681 	if (event->state == PERF_EVENT_STATE_INACTIVE
1682 	    && !event_filter_match(event)) {
1683 		delta = tstamp - event->tstamp_stopped;
1684 		event->tstamp_running += delta;
1685 		event->tstamp_stopped = tstamp;
1686 	}
1687 
1688 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1689 		return;
1690 
1691 	perf_pmu_disable(event->pmu);
1692 
1693 	event->state = PERF_EVENT_STATE_INACTIVE;
1694 	if (event->pending_disable) {
1695 		event->pending_disable = 0;
1696 		event->state = PERF_EVENT_STATE_OFF;
1697 	}
1698 	event->tstamp_stopped = tstamp;
1699 	event->pmu->del(event, 0);
1700 	event->oncpu = -1;
1701 
1702 	if (!is_software_event(event))
1703 		cpuctx->active_oncpu--;
1704 	if (!--ctx->nr_active)
1705 		perf_event_ctx_deactivate(ctx);
1706 	if (event->attr.freq && event->attr.sample_freq)
1707 		ctx->nr_freq--;
1708 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1709 		cpuctx->exclusive = 0;
1710 
1711 	perf_pmu_enable(event->pmu);
1712 }
1713 
1714 static void
1715 group_sched_out(struct perf_event *group_event,
1716 		struct perf_cpu_context *cpuctx,
1717 		struct perf_event_context *ctx)
1718 {
1719 	struct perf_event *event;
1720 	int state = group_event->state;
1721 
1722 	event_sched_out(group_event, cpuctx, ctx);
1723 
1724 	/*
1725 	 * Schedule out siblings (if any):
1726 	 */
1727 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1728 		event_sched_out(event, cpuctx, ctx);
1729 
1730 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1731 		cpuctx->exclusive = 0;
1732 }
1733 
1734 #define DETACH_GROUP	0x01UL
1735 #define DETACH_STATE	0x02UL
1736 
1737 /*
1738  * Cross CPU call to remove a performance event
1739  *
1740  * We disable the event on the hardware level first. After that we
1741  * remove it from the context list.
1742  */
1743 static void
1744 __perf_remove_from_context(struct perf_event *event,
1745 			   struct perf_cpu_context *cpuctx,
1746 			   struct perf_event_context *ctx,
1747 			   void *info)
1748 {
1749 	unsigned long flags = (unsigned long)info;
1750 
1751 	event_sched_out(event, cpuctx, ctx);
1752 	if (flags & DETACH_GROUP)
1753 		perf_group_detach(event);
1754 	list_del_event(event, ctx);
1755 	if (flags & DETACH_STATE)
1756 		event->state = PERF_EVENT_STATE_EXIT;
1757 
1758 	if (!ctx->nr_events && ctx->is_active) {
1759 		ctx->is_active = 0;
1760 		if (ctx->task) {
1761 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1762 			cpuctx->task_ctx = NULL;
1763 		}
1764 	}
1765 }
1766 
1767 /*
1768  * Remove the event from a task's (or a CPU's) list of events.
1769  *
1770  * If event->ctx is a cloned context, callers must make sure that
1771  * every task struct that event->ctx->task could possibly point to
1772  * remains valid.  This is OK when called from perf_release since
1773  * that only calls us on the top-level context, which can't be a clone.
1774  * When called from perf_event_exit_task, it's OK because the
1775  * context has been detached from its task.
1776  */
1777 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1778 {
1779 	lockdep_assert_held(&event->ctx->mutex);
1780 
1781 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1782 }
1783 
1784 /*
1785  * Cross CPU call to disable a performance event
1786  */
1787 static void __perf_event_disable(struct perf_event *event,
1788 				 struct perf_cpu_context *cpuctx,
1789 				 struct perf_event_context *ctx,
1790 				 void *info)
1791 {
1792 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1793 		return;
1794 
1795 	update_context_time(ctx);
1796 	update_cgrp_time_from_event(event);
1797 	update_group_times(event);
1798 	if (event == event->group_leader)
1799 		group_sched_out(event, cpuctx, ctx);
1800 	else
1801 		event_sched_out(event, cpuctx, ctx);
1802 	event->state = PERF_EVENT_STATE_OFF;
1803 }
1804 
1805 /*
1806  * Disable a event.
1807  *
1808  * If event->ctx is a cloned context, callers must make sure that
1809  * every task struct that event->ctx->task could possibly point to
1810  * remains valid.  This condition is satisifed when called through
1811  * perf_event_for_each_child or perf_event_for_each because they
1812  * hold the top-level event's child_mutex, so any descendant that
1813  * goes to exit will block in perf_event_exit_event().
1814  *
1815  * When called from perf_pending_event it's OK because event->ctx
1816  * is the current context on this CPU and preemption is disabled,
1817  * hence we can't get into perf_event_task_sched_out for this context.
1818  */
1819 static void _perf_event_disable(struct perf_event *event)
1820 {
1821 	struct perf_event_context *ctx = event->ctx;
1822 
1823 	raw_spin_lock_irq(&ctx->lock);
1824 	if (event->state <= PERF_EVENT_STATE_OFF) {
1825 		raw_spin_unlock_irq(&ctx->lock);
1826 		return;
1827 	}
1828 	raw_spin_unlock_irq(&ctx->lock);
1829 
1830 	event_function_call(event, __perf_event_disable, NULL);
1831 }
1832 
1833 void perf_event_disable_local(struct perf_event *event)
1834 {
1835 	event_function_local(event, __perf_event_disable, NULL);
1836 }
1837 
1838 /*
1839  * Strictly speaking kernel users cannot create groups and therefore this
1840  * interface does not need the perf_event_ctx_lock() magic.
1841  */
1842 void perf_event_disable(struct perf_event *event)
1843 {
1844 	struct perf_event_context *ctx;
1845 
1846 	ctx = perf_event_ctx_lock(event);
1847 	_perf_event_disable(event);
1848 	perf_event_ctx_unlock(event, ctx);
1849 }
1850 EXPORT_SYMBOL_GPL(perf_event_disable);
1851 
1852 static void perf_set_shadow_time(struct perf_event *event,
1853 				 struct perf_event_context *ctx,
1854 				 u64 tstamp)
1855 {
1856 	/*
1857 	 * use the correct time source for the time snapshot
1858 	 *
1859 	 * We could get by without this by leveraging the
1860 	 * fact that to get to this function, the caller
1861 	 * has most likely already called update_context_time()
1862 	 * and update_cgrp_time_xx() and thus both timestamp
1863 	 * are identical (or very close). Given that tstamp is,
1864 	 * already adjusted for cgroup, we could say that:
1865 	 *    tstamp - ctx->timestamp
1866 	 * is equivalent to
1867 	 *    tstamp - cgrp->timestamp.
1868 	 *
1869 	 * Then, in perf_output_read(), the calculation would
1870 	 * work with no changes because:
1871 	 * - event is guaranteed scheduled in
1872 	 * - no scheduled out in between
1873 	 * - thus the timestamp would be the same
1874 	 *
1875 	 * But this is a bit hairy.
1876 	 *
1877 	 * So instead, we have an explicit cgroup call to remain
1878 	 * within the time time source all along. We believe it
1879 	 * is cleaner and simpler to understand.
1880 	 */
1881 	if (is_cgroup_event(event))
1882 		perf_cgroup_set_shadow_time(event, tstamp);
1883 	else
1884 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1885 }
1886 
1887 #define MAX_INTERRUPTS (~0ULL)
1888 
1889 static void perf_log_throttle(struct perf_event *event, int enable);
1890 static void perf_log_itrace_start(struct perf_event *event);
1891 
1892 static int
1893 event_sched_in(struct perf_event *event,
1894 		 struct perf_cpu_context *cpuctx,
1895 		 struct perf_event_context *ctx)
1896 {
1897 	u64 tstamp = perf_event_time(event);
1898 	int ret = 0;
1899 
1900 	lockdep_assert_held(&ctx->lock);
1901 
1902 	if (event->state <= PERF_EVENT_STATE_OFF)
1903 		return 0;
1904 
1905 	event->state = PERF_EVENT_STATE_ACTIVE;
1906 	event->oncpu = smp_processor_id();
1907 
1908 	/*
1909 	 * Unthrottle events, since we scheduled we might have missed several
1910 	 * ticks already, also for a heavily scheduling task there is little
1911 	 * guarantee it'll get a tick in a timely manner.
1912 	 */
1913 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1914 		perf_log_throttle(event, 1);
1915 		event->hw.interrupts = 0;
1916 	}
1917 
1918 	/*
1919 	 * The new state must be visible before we turn it on in the hardware:
1920 	 */
1921 	smp_wmb();
1922 
1923 	perf_pmu_disable(event->pmu);
1924 
1925 	perf_set_shadow_time(event, ctx, tstamp);
1926 
1927 	perf_log_itrace_start(event);
1928 
1929 	if (event->pmu->add(event, PERF_EF_START)) {
1930 		event->state = PERF_EVENT_STATE_INACTIVE;
1931 		event->oncpu = -1;
1932 		ret = -EAGAIN;
1933 		goto out;
1934 	}
1935 
1936 	event->tstamp_running += tstamp - event->tstamp_stopped;
1937 
1938 	if (!is_software_event(event))
1939 		cpuctx->active_oncpu++;
1940 	if (!ctx->nr_active++)
1941 		perf_event_ctx_activate(ctx);
1942 	if (event->attr.freq && event->attr.sample_freq)
1943 		ctx->nr_freq++;
1944 
1945 	if (event->attr.exclusive)
1946 		cpuctx->exclusive = 1;
1947 
1948 out:
1949 	perf_pmu_enable(event->pmu);
1950 
1951 	return ret;
1952 }
1953 
1954 static int
1955 group_sched_in(struct perf_event *group_event,
1956 	       struct perf_cpu_context *cpuctx,
1957 	       struct perf_event_context *ctx)
1958 {
1959 	struct perf_event *event, *partial_group = NULL;
1960 	struct pmu *pmu = ctx->pmu;
1961 	u64 now = ctx->time;
1962 	bool simulate = false;
1963 
1964 	if (group_event->state == PERF_EVENT_STATE_OFF)
1965 		return 0;
1966 
1967 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1968 
1969 	if (event_sched_in(group_event, cpuctx, ctx)) {
1970 		pmu->cancel_txn(pmu);
1971 		perf_mux_hrtimer_restart(cpuctx);
1972 		return -EAGAIN;
1973 	}
1974 
1975 	/*
1976 	 * Schedule in siblings as one group (if any):
1977 	 */
1978 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1979 		if (event_sched_in(event, cpuctx, ctx)) {
1980 			partial_group = event;
1981 			goto group_error;
1982 		}
1983 	}
1984 
1985 	if (!pmu->commit_txn(pmu))
1986 		return 0;
1987 
1988 group_error:
1989 	/*
1990 	 * Groups can be scheduled in as one unit only, so undo any
1991 	 * partial group before returning:
1992 	 * The events up to the failed event are scheduled out normally,
1993 	 * tstamp_stopped will be updated.
1994 	 *
1995 	 * The failed events and the remaining siblings need to have
1996 	 * their timings updated as if they had gone thru event_sched_in()
1997 	 * and event_sched_out(). This is required to get consistent timings
1998 	 * across the group. This also takes care of the case where the group
1999 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2000 	 * the time the event was actually stopped, such that time delta
2001 	 * calculation in update_event_times() is correct.
2002 	 */
2003 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2004 		if (event == partial_group)
2005 			simulate = true;
2006 
2007 		if (simulate) {
2008 			event->tstamp_running += now - event->tstamp_stopped;
2009 			event->tstamp_stopped = now;
2010 		} else {
2011 			event_sched_out(event, cpuctx, ctx);
2012 		}
2013 	}
2014 	event_sched_out(group_event, cpuctx, ctx);
2015 
2016 	pmu->cancel_txn(pmu);
2017 
2018 	perf_mux_hrtimer_restart(cpuctx);
2019 
2020 	return -EAGAIN;
2021 }
2022 
2023 /*
2024  * Work out whether we can put this event group on the CPU now.
2025  */
2026 static int group_can_go_on(struct perf_event *event,
2027 			   struct perf_cpu_context *cpuctx,
2028 			   int can_add_hw)
2029 {
2030 	/*
2031 	 * Groups consisting entirely of software events can always go on.
2032 	 */
2033 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2034 		return 1;
2035 	/*
2036 	 * If an exclusive group is already on, no other hardware
2037 	 * events can go on.
2038 	 */
2039 	if (cpuctx->exclusive)
2040 		return 0;
2041 	/*
2042 	 * If this group is exclusive and there are already
2043 	 * events on the CPU, it can't go on.
2044 	 */
2045 	if (event->attr.exclusive && cpuctx->active_oncpu)
2046 		return 0;
2047 	/*
2048 	 * Otherwise, try to add it if all previous groups were able
2049 	 * to go on.
2050 	 */
2051 	return can_add_hw;
2052 }
2053 
2054 static void add_event_to_ctx(struct perf_event *event,
2055 			       struct perf_event_context *ctx)
2056 {
2057 	u64 tstamp = perf_event_time(event);
2058 
2059 	list_add_event(event, ctx);
2060 	perf_group_attach(event);
2061 	event->tstamp_enabled = tstamp;
2062 	event->tstamp_running = tstamp;
2063 	event->tstamp_stopped = tstamp;
2064 }
2065 
2066 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2067 			       struct perf_event_context *ctx);
2068 static void
2069 ctx_sched_in(struct perf_event_context *ctx,
2070 	     struct perf_cpu_context *cpuctx,
2071 	     enum event_type_t event_type,
2072 	     struct task_struct *task);
2073 
2074 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2075 				struct perf_event_context *ctx,
2076 				struct task_struct *task)
2077 {
2078 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2079 	if (ctx)
2080 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2081 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2082 	if (ctx)
2083 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2084 }
2085 
2086 static void ctx_resched(struct perf_cpu_context *cpuctx,
2087 			struct perf_event_context *task_ctx)
2088 {
2089 	perf_pmu_disable(cpuctx->ctx.pmu);
2090 	if (task_ctx)
2091 		task_ctx_sched_out(cpuctx, task_ctx);
2092 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2093 	perf_event_sched_in(cpuctx, task_ctx, current);
2094 	perf_pmu_enable(cpuctx->ctx.pmu);
2095 }
2096 
2097 /*
2098  * Cross CPU call to install and enable a performance event
2099  *
2100  * Must be called with ctx->mutex held
2101  */
2102 static int  __perf_install_in_context(void *info)
2103 {
2104 	struct perf_event_context *ctx = info;
2105 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2106 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2107 
2108 	raw_spin_lock(&cpuctx->ctx.lock);
2109 	if (ctx->task) {
2110 		raw_spin_lock(&ctx->lock);
2111 		/*
2112 		 * If we hit the 'wrong' task, we've since scheduled and
2113 		 * everything should be sorted, nothing to do!
2114 		 */
2115 		task_ctx = ctx;
2116 		if (ctx->task != current)
2117 			goto unlock;
2118 
2119 		/*
2120 		 * If task_ctx is set, it had better be to us.
2121 		 */
2122 		WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
2123 	} else if (task_ctx) {
2124 		raw_spin_lock(&task_ctx->lock);
2125 	}
2126 
2127 	ctx_resched(cpuctx, task_ctx);
2128 unlock:
2129 	perf_ctx_unlock(cpuctx, task_ctx);
2130 
2131 	return 0;
2132 }
2133 
2134 /*
2135  * Attach a performance event to a context
2136  */
2137 static void
2138 perf_install_in_context(struct perf_event_context *ctx,
2139 			struct perf_event *event,
2140 			int cpu)
2141 {
2142 	struct task_struct *task = NULL;
2143 
2144 	lockdep_assert_held(&ctx->mutex);
2145 
2146 	event->ctx = ctx;
2147 	if (event->cpu != -1)
2148 		event->cpu = cpu;
2149 
2150 	/*
2151 	 * Installing events is tricky because we cannot rely on ctx->is_active
2152 	 * to be set in case this is the nr_events 0 -> 1 transition.
2153 	 *
2154 	 * So what we do is we add the event to the list here, which will allow
2155 	 * a future context switch to DTRT and then send a racy IPI. If the IPI
2156 	 * fails to hit the right task, this means a context switch must have
2157 	 * happened and that will have taken care of business.
2158 	 */
2159 	raw_spin_lock_irq(&ctx->lock);
2160 	task = ctx->task;
2161 	/*
2162 	 * Worse, we cannot even rely on the ctx actually existing anymore. If
2163 	 * between find_get_context() and perf_install_in_context() the task
2164 	 * went through perf_event_exit_task() its dead and we should not be
2165 	 * adding new events.
2166 	 */
2167 	if (task == TASK_TOMBSTONE) {
2168 		raw_spin_unlock_irq(&ctx->lock);
2169 		return;
2170 	}
2171 	update_context_time(ctx);
2172 	/*
2173 	 * Update cgrp time only if current cgrp matches event->cgrp.
2174 	 * Must be done before calling add_event_to_ctx().
2175 	 */
2176 	update_cgrp_time_from_event(event);
2177 	add_event_to_ctx(event, ctx);
2178 	raw_spin_unlock_irq(&ctx->lock);
2179 
2180 	if (task)
2181 		task_function_call(task, __perf_install_in_context, ctx);
2182 	else
2183 		cpu_function_call(cpu, __perf_install_in_context, ctx);
2184 }
2185 
2186 /*
2187  * Put a event into inactive state and update time fields.
2188  * Enabling the leader of a group effectively enables all
2189  * the group members that aren't explicitly disabled, so we
2190  * have to update their ->tstamp_enabled also.
2191  * Note: this works for group members as well as group leaders
2192  * since the non-leader members' sibling_lists will be empty.
2193  */
2194 static void __perf_event_mark_enabled(struct perf_event *event)
2195 {
2196 	struct perf_event *sub;
2197 	u64 tstamp = perf_event_time(event);
2198 
2199 	event->state = PERF_EVENT_STATE_INACTIVE;
2200 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2201 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2202 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2203 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2204 	}
2205 }
2206 
2207 /*
2208  * Cross CPU call to enable a performance event
2209  */
2210 static void __perf_event_enable(struct perf_event *event,
2211 				struct perf_cpu_context *cpuctx,
2212 				struct perf_event_context *ctx,
2213 				void *info)
2214 {
2215 	struct perf_event *leader = event->group_leader;
2216 	struct perf_event_context *task_ctx;
2217 
2218 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2219 	    event->state <= PERF_EVENT_STATE_ERROR)
2220 		return;
2221 
2222 	update_context_time(ctx);
2223 	__perf_event_mark_enabled(event);
2224 
2225 	if (!ctx->is_active)
2226 		return;
2227 
2228 	if (!event_filter_match(event)) {
2229 		if (is_cgroup_event(event)) {
2230 			perf_cgroup_set_timestamp(current, ctx); // XXX ?
2231 			perf_cgroup_defer_enabled(event);
2232 		}
2233 		return;
2234 	}
2235 
2236 	/*
2237 	 * If the event is in a group and isn't the group leader,
2238 	 * then don't put it on unless the group is on.
2239 	 */
2240 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2241 		return;
2242 
2243 	task_ctx = cpuctx->task_ctx;
2244 	if (ctx->task)
2245 		WARN_ON_ONCE(task_ctx != ctx);
2246 
2247 	ctx_resched(cpuctx, task_ctx);
2248 }
2249 
2250 /*
2251  * Enable a event.
2252  *
2253  * If event->ctx is a cloned context, callers must make sure that
2254  * every task struct that event->ctx->task could possibly point to
2255  * remains valid.  This condition is satisfied when called through
2256  * perf_event_for_each_child or perf_event_for_each as described
2257  * for perf_event_disable.
2258  */
2259 static void _perf_event_enable(struct perf_event *event)
2260 {
2261 	struct perf_event_context *ctx = event->ctx;
2262 
2263 	raw_spin_lock_irq(&ctx->lock);
2264 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2265 	    event->state <  PERF_EVENT_STATE_ERROR) {
2266 		raw_spin_unlock_irq(&ctx->lock);
2267 		return;
2268 	}
2269 
2270 	/*
2271 	 * If the event is in error state, clear that first.
2272 	 *
2273 	 * That way, if we see the event in error state below, we know that it
2274 	 * has gone back into error state, as distinct from the task having
2275 	 * been scheduled away before the cross-call arrived.
2276 	 */
2277 	if (event->state == PERF_EVENT_STATE_ERROR)
2278 		event->state = PERF_EVENT_STATE_OFF;
2279 	raw_spin_unlock_irq(&ctx->lock);
2280 
2281 	event_function_call(event, __perf_event_enable, NULL);
2282 }
2283 
2284 /*
2285  * See perf_event_disable();
2286  */
2287 void perf_event_enable(struct perf_event *event)
2288 {
2289 	struct perf_event_context *ctx;
2290 
2291 	ctx = perf_event_ctx_lock(event);
2292 	_perf_event_enable(event);
2293 	perf_event_ctx_unlock(event, ctx);
2294 }
2295 EXPORT_SYMBOL_GPL(perf_event_enable);
2296 
2297 static int _perf_event_refresh(struct perf_event *event, int refresh)
2298 {
2299 	/*
2300 	 * not supported on inherited events
2301 	 */
2302 	if (event->attr.inherit || !is_sampling_event(event))
2303 		return -EINVAL;
2304 
2305 	atomic_add(refresh, &event->event_limit);
2306 	_perf_event_enable(event);
2307 
2308 	return 0;
2309 }
2310 
2311 /*
2312  * See perf_event_disable()
2313  */
2314 int perf_event_refresh(struct perf_event *event, int refresh)
2315 {
2316 	struct perf_event_context *ctx;
2317 	int ret;
2318 
2319 	ctx = perf_event_ctx_lock(event);
2320 	ret = _perf_event_refresh(event, refresh);
2321 	perf_event_ctx_unlock(event, ctx);
2322 
2323 	return ret;
2324 }
2325 EXPORT_SYMBOL_GPL(perf_event_refresh);
2326 
2327 static void ctx_sched_out(struct perf_event_context *ctx,
2328 			  struct perf_cpu_context *cpuctx,
2329 			  enum event_type_t event_type)
2330 {
2331 	int is_active = ctx->is_active;
2332 	struct perf_event *event;
2333 
2334 	lockdep_assert_held(&ctx->lock);
2335 
2336 	if (likely(!ctx->nr_events)) {
2337 		/*
2338 		 * See __perf_remove_from_context().
2339 		 */
2340 		WARN_ON_ONCE(ctx->is_active);
2341 		if (ctx->task)
2342 			WARN_ON_ONCE(cpuctx->task_ctx);
2343 		return;
2344 	}
2345 
2346 	ctx->is_active &= ~event_type;
2347 	if (ctx->task) {
2348 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2349 		if (!ctx->is_active)
2350 			cpuctx->task_ctx = NULL;
2351 	}
2352 
2353 	update_context_time(ctx);
2354 	update_cgrp_time_from_cpuctx(cpuctx);
2355 	if (!ctx->nr_active)
2356 		return;
2357 
2358 	perf_pmu_disable(ctx->pmu);
2359 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2360 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2361 			group_sched_out(event, cpuctx, ctx);
2362 	}
2363 
2364 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2365 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2366 			group_sched_out(event, cpuctx, ctx);
2367 	}
2368 	perf_pmu_enable(ctx->pmu);
2369 }
2370 
2371 /*
2372  * Test whether two contexts are equivalent, i.e. whether they have both been
2373  * cloned from the same version of the same context.
2374  *
2375  * Equivalence is measured using a generation number in the context that is
2376  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2377  * and list_del_event().
2378  */
2379 static int context_equiv(struct perf_event_context *ctx1,
2380 			 struct perf_event_context *ctx2)
2381 {
2382 	lockdep_assert_held(&ctx1->lock);
2383 	lockdep_assert_held(&ctx2->lock);
2384 
2385 	/* Pinning disables the swap optimization */
2386 	if (ctx1->pin_count || ctx2->pin_count)
2387 		return 0;
2388 
2389 	/* If ctx1 is the parent of ctx2 */
2390 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2391 		return 1;
2392 
2393 	/* If ctx2 is the parent of ctx1 */
2394 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2395 		return 1;
2396 
2397 	/*
2398 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2399 	 * hierarchy, see perf_event_init_context().
2400 	 */
2401 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2402 			ctx1->parent_gen == ctx2->parent_gen)
2403 		return 1;
2404 
2405 	/* Unmatched */
2406 	return 0;
2407 }
2408 
2409 static void __perf_event_sync_stat(struct perf_event *event,
2410 				     struct perf_event *next_event)
2411 {
2412 	u64 value;
2413 
2414 	if (!event->attr.inherit_stat)
2415 		return;
2416 
2417 	/*
2418 	 * Update the event value, we cannot use perf_event_read()
2419 	 * because we're in the middle of a context switch and have IRQs
2420 	 * disabled, which upsets smp_call_function_single(), however
2421 	 * we know the event must be on the current CPU, therefore we
2422 	 * don't need to use it.
2423 	 */
2424 	switch (event->state) {
2425 	case PERF_EVENT_STATE_ACTIVE:
2426 		event->pmu->read(event);
2427 		/* fall-through */
2428 
2429 	case PERF_EVENT_STATE_INACTIVE:
2430 		update_event_times(event);
2431 		break;
2432 
2433 	default:
2434 		break;
2435 	}
2436 
2437 	/*
2438 	 * In order to keep per-task stats reliable we need to flip the event
2439 	 * values when we flip the contexts.
2440 	 */
2441 	value = local64_read(&next_event->count);
2442 	value = local64_xchg(&event->count, value);
2443 	local64_set(&next_event->count, value);
2444 
2445 	swap(event->total_time_enabled, next_event->total_time_enabled);
2446 	swap(event->total_time_running, next_event->total_time_running);
2447 
2448 	/*
2449 	 * Since we swizzled the values, update the user visible data too.
2450 	 */
2451 	perf_event_update_userpage(event);
2452 	perf_event_update_userpage(next_event);
2453 }
2454 
2455 static void perf_event_sync_stat(struct perf_event_context *ctx,
2456 				   struct perf_event_context *next_ctx)
2457 {
2458 	struct perf_event *event, *next_event;
2459 
2460 	if (!ctx->nr_stat)
2461 		return;
2462 
2463 	update_context_time(ctx);
2464 
2465 	event = list_first_entry(&ctx->event_list,
2466 				   struct perf_event, event_entry);
2467 
2468 	next_event = list_first_entry(&next_ctx->event_list,
2469 					struct perf_event, event_entry);
2470 
2471 	while (&event->event_entry != &ctx->event_list &&
2472 	       &next_event->event_entry != &next_ctx->event_list) {
2473 
2474 		__perf_event_sync_stat(event, next_event);
2475 
2476 		event = list_next_entry(event, event_entry);
2477 		next_event = list_next_entry(next_event, event_entry);
2478 	}
2479 }
2480 
2481 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2482 					 struct task_struct *next)
2483 {
2484 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2485 	struct perf_event_context *next_ctx;
2486 	struct perf_event_context *parent, *next_parent;
2487 	struct perf_cpu_context *cpuctx;
2488 	int do_switch = 1;
2489 
2490 	if (likely(!ctx))
2491 		return;
2492 
2493 	cpuctx = __get_cpu_context(ctx);
2494 	if (!cpuctx->task_ctx)
2495 		return;
2496 
2497 	rcu_read_lock();
2498 	next_ctx = next->perf_event_ctxp[ctxn];
2499 	if (!next_ctx)
2500 		goto unlock;
2501 
2502 	parent = rcu_dereference(ctx->parent_ctx);
2503 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2504 
2505 	/* If neither context have a parent context; they cannot be clones. */
2506 	if (!parent && !next_parent)
2507 		goto unlock;
2508 
2509 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2510 		/*
2511 		 * Looks like the two contexts are clones, so we might be
2512 		 * able to optimize the context switch.  We lock both
2513 		 * contexts and check that they are clones under the
2514 		 * lock (including re-checking that neither has been
2515 		 * uncloned in the meantime).  It doesn't matter which
2516 		 * order we take the locks because no other cpu could
2517 		 * be trying to lock both of these tasks.
2518 		 */
2519 		raw_spin_lock(&ctx->lock);
2520 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2521 		if (context_equiv(ctx, next_ctx)) {
2522 			WRITE_ONCE(ctx->task, next);
2523 			WRITE_ONCE(next_ctx->task, task);
2524 
2525 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2526 
2527 			/*
2528 			 * RCU_INIT_POINTER here is safe because we've not
2529 			 * modified the ctx and the above modification of
2530 			 * ctx->task and ctx->task_ctx_data are immaterial
2531 			 * since those values are always verified under
2532 			 * ctx->lock which we're now holding.
2533 			 */
2534 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2535 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2536 
2537 			do_switch = 0;
2538 
2539 			perf_event_sync_stat(ctx, next_ctx);
2540 		}
2541 		raw_spin_unlock(&next_ctx->lock);
2542 		raw_spin_unlock(&ctx->lock);
2543 	}
2544 unlock:
2545 	rcu_read_unlock();
2546 
2547 	if (do_switch) {
2548 		raw_spin_lock(&ctx->lock);
2549 		task_ctx_sched_out(cpuctx, ctx);
2550 		raw_spin_unlock(&ctx->lock);
2551 	}
2552 }
2553 
2554 void perf_sched_cb_dec(struct pmu *pmu)
2555 {
2556 	this_cpu_dec(perf_sched_cb_usages);
2557 }
2558 
2559 void perf_sched_cb_inc(struct pmu *pmu)
2560 {
2561 	this_cpu_inc(perf_sched_cb_usages);
2562 }
2563 
2564 /*
2565  * This function provides the context switch callback to the lower code
2566  * layer. It is invoked ONLY when the context switch callback is enabled.
2567  */
2568 static void perf_pmu_sched_task(struct task_struct *prev,
2569 				struct task_struct *next,
2570 				bool sched_in)
2571 {
2572 	struct perf_cpu_context *cpuctx;
2573 	struct pmu *pmu;
2574 	unsigned long flags;
2575 
2576 	if (prev == next)
2577 		return;
2578 
2579 	local_irq_save(flags);
2580 
2581 	rcu_read_lock();
2582 
2583 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2584 		if (pmu->sched_task) {
2585 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2586 
2587 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2588 
2589 			perf_pmu_disable(pmu);
2590 
2591 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2592 
2593 			perf_pmu_enable(pmu);
2594 
2595 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2596 		}
2597 	}
2598 
2599 	rcu_read_unlock();
2600 
2601 	local_irq_restore(flags);
2602 }
2603 
2604 static void perf_event_switch(struct task_struct *task,
2605 			      struct task_struct *next_prev, bool sched_in);
2606 
2607 #define for_each_task_context_nr(ctxn)					\
2608 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2609 
2610 /*
2611  * Called from scheduler to remove the events of the current task,
2612  * with interrupts disabled.
2613  *
2614  * We stop each event and update the event value in event->count.
2615  *
2616  * This does not protect us against NMI, but disable()
2617  * sets the disabled bit in the control field of event _before_
2618  * accessing the event control register. If a NMI hits, then it will
2619  * not restart the event.
2620  */
2621 void __perf_event_task_sched_out(struct task_struct *task,
2622 				 struct task_struct *next)
2623 {
2624 	int ctxn;
2625 
2626 	if (__this_cpu_read(perf_sched_cb_usages))
2627 		perf_pmu_sched_task(task, next, false);
2628 
2629 	if (atomic_read(&nr_switch_events))
2630 		perf_event_switch(task, next, false);
2631 
2632 	for_each_task_context_nr(ctxn)
2633 		perf_event_context_sched_out(task, ctxn, next);
2634 
2635 	/*
2636 	 * if cgroup events exist on this CPU, then we need
2637 	 * to check if we have to switch out PMU state.
2638 	 * cgroup event are system-wide mode only
2639 	 */
2640 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2641 		perf_cgroup_sched_out(task, next);
2642 }
2643 
2644 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2645 			       struct perf_event_context *ctx)
2646 {
2647 	if (!cpuctx->task_ctx)
2648 		return;
2649 
2650 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2651 		return;
2652 
2653 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2654 }
2655 
2656 /*
2657  * Called with IRQs disabled
2658  */
2659 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2660 			      enum event_type_t event_type)
2661 {
2662 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2663 }
2664 
2665 static void
2666 ctx_pinned_sched_in(struct perf_event_context *ctx,
2667 		    struct perf_cpu_context *cpuctx)
2668 {
2669 	struct perf_event *event;
2670 
2671 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2672 		if (event->state <= PERF_EVENT_STATE_OFF)
2673 			continue;
2674 		if (!event_filter_match(event))
2675 			continue;
2676 
2677 		/* may need to reset tstamp_enabled */
2678 		if (is_cgroup_event(event))
2679 			perf_cgroup_mark_enabled(event, ctx);
2680 
2681 		if (group_can_go_on(event, cpuctx, 1))
2682 			group_sched_in(event, cpuctx, ctx);
2683 
2684 		/*
2685 		 * If this pinned group hasn't been scheduled,
2686 		 * put it in error state.
2687 		 */
2688 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2689 			update_group_times(event);
2690 			event->state = PERF_EVENT_STATE_ERROR;
2691 		}
2692 	}
2693 }
2694 
2695 static void
2696 ctx_flexible_sched_in(struct perf_event_context *ctx,
2697 		      struct perf_cpu_context *cpuctx)
2698 {
2699 	struct perf_event *event;
2700 	int can_add_hw = 1;
2701 
2702 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2703 		/* Ignore events in OFF or ERROR state */
2704 		if (event->state <= PERF_EVENT_STATE_OFF)
2705 			continue;
2706 		/*
2707 		 * Listen to the 'cpu' scheduling filter constraint
2708 		 * of events:
2709 		 */
2710 		if (!event_filter_match(event))
2711 			continue;
2712 
2713 		/* may need to reset tstamp_enabled */
2714 		if (is_cgroup_event(event))
2715 			perf_cgroup_mark_enabled(event, ctx);
2716 
2717 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2718 			if (group_sched_in(event, cpuctx, ctx))
2719 				can_add_hw = 0;
2720 		}
2721 	}
2722 }
2723 
2724 static void
2725 ctx_sched_in(struct perf_event_context *ctx,
2726 	     struct perf_cpu_context *cpuctx,
2727 	     enum event_type_t event_type,
2728 	     struct task_struct *task)
2729 {
2730 	int is_active = ctx->is_active;
2731 	u64 now;
2732 
2733 	lockdep_assert_held(&ctx->lock);
2734 
2735 	if (likely(!ctx->nr_events))
2736 		return;
2737 
2738 	ctx->is_active |= event_type;
2739 	if (ctx->task) {
2740 		if (!is_active)
2741 			cpuctx->task_ctx = ctx;
2742 		else
2743 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2744 	}
2745 
2746 	now = perf_clock();
2747 	ctx->timestamp = now;
2748 	perf_cgroup_set_timestamp(task, ctx);
2749 	/*
2750 	 * First go through the list and put on any pinned groups
2751 	 * in order to give them the best chance of going on.
2752 	 */
2753 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2754 		ctx_pinned_sched_in(ctx, cpuctx);
2755 
2756 	/* Then walk through the lower prio flexible groups */
2757 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2758 		ctx_flexible_sched_in(ctx, cpuctx);
2759 }
2760 
2761 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2762 			     enum event_type_t event_type,
2763 			     struct task_struct *task)
2764 {
2765 	struct perf_event_context *ctx = &cpuctx->ctx;
2766 
2767 	ctx_sched_in(ctx, cpuctx, event_type, task);
2768 }
2769 
2770 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2771 					struct task_struct *task)
2772 {
2773 	struct perf_cpu_context *cpuctx;
2774 
2775 	cpuctx = __get_cpu_context(ctx);
2776 	if (cpuctx->task_ctx == ctx)
2777 		return;
2778 
2779 	perf_ctx_lock(cpuctx, ctx);
2780 	perf_pmu_disable(ctx->pmu);
2781 	/*
2782 	 * We want to keep the following priority order:
2783 	 * cpu pinned (that don't need to move), task pinned,
2784 	 * cpu flexible, task flexible.
2785 	 */
2786 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2787 	perf_event_sched_in(cpuctx, ctx, task);
2788 	perf_pmu_enable(ctx->pmu);
2789 	perf_ctx_unlock(cpuctx, ctx);
2790 }
2791 
2792 /*
2793  * Called from scheduler to add the events of the current task
2794  * with interrupts disabled.
2795  *
2796  * We restore the event value and then enable it.
2797  *
2798  * This does not protect us against NMI, but enable()
2799  * sets the enabled bit in the control field of event _before_
2800  * accessing the event control register. If a NMI hits, then it will
2801  * keep the event running.
2802  */
2803 void __perf_event_task_sched_in(struct task_struct *prev,
2804 				struct task_struct *task)
2805 {
2806 	struct perf_event_context *ctx;
2807 	int ctxn;
2808 
2809 	/*
2810 	 * If cgroup events exist on this CPU, then we need to check if we have
2811 	 * to switch in PMU state; cgroup event are system-wide mode only.
2812 	 *
2813 	 * Since cgroup events are CPU events, we must schedule these in before
2814 	 * we schedule in the task events.
2815 	 */
2816 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2817 		perf_cgroup_sched_in(prev, task);
2818 
2819 	for_each_task_context_nr(ctxn) {
2820 		ctx = task->perf_event_ctxp[ctxn];
2821 		if (likely(!ctx))
2822 			continue;
2823 
2824 		perf_event_context_sched_in(ctx, task);
2825 	}
2826 
2827 	if (atomic_read(&nr_switch_events))
2828 		perf_event_switch(task, prev, true);
2829 
2830 	if (__this_cpu_read(perf_sched_cb_usages))
2831 		perf_pmu_sched_task(prev, task, true);
2832 }
2833 
2834 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2835 {
2836 	u64 frequency = event->attr.sample_freq;
2837 	u64 sec = NSEC_PER_SEC;
2838 	u64 divisor, dividend;
2839 
2840 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2841 
2842 	count_fls = fls64(count);
2843 	nsec_fls = fls64(nsec);
2844 	frequency_fls = fls64(frequency);
2845 	sec_fls = 30;
2846 
2847 	/*
2848 	 * We got @count in @nsec, with a target of sample_freq HZ
2849 	 * the target period becomes:
2850 	 *
2851 	 *             @count * 10^9
2852 	 * period = -------------------
2853 	 *          @nsec * sample_freq
2854 	 *
2855 	 */
2856 
2857 	/*
2858 	 * Reduce accuracy by one bit such that @a and @b converge
2859 	 * to a similar magnitude.
2860 	 */
2861 #define REDUCE_FLS(a, b)		\
2862 do {					\
2863 	if (a##_fls > b##_fls) {	\
2864 		a >>= 1;		\
2865 		a##_fls--;		\
2866 	} else {			\
2867 		b >>= 1;		\
2868 		b##_fls--;		\
2869 	}				\
2870 } while (0)
2871 
2872 	/*
2873 	 * Reduce accuracy until either term fits in a u64, then proceed with
2874 	 * the other, so that finally we can do a u64/u64 division.
2875 	 */
2876 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2877 		REDUCE_FLS(nsec, frequency);
2878 		REDUCE_FLS(sec, count);
2879 	}
2880 
2881 	if (count_fls + sec_fls > 64) {
2882 		divisor = nsec * frequency;
2883 
2884 		while (count_fls + sec_fls > 64) {
2885 			REDUCE_FLS(count, sec);
2886 			divisor >>= 1;
2887 		}
2888 
2889 		dividend = count * sec;
2890 	} else {
2891 		dividend = count * sec;
2892 
2893 		while (nsec_fls + frequency_fls > 64) {
2894 			REDUCE_FLS(nsec, frequency);
2895 			dividend >>= 1;
2896 		}
2897 
2898 		divisor = nsec * frequency;
2899 	}
2900 
2901 	if (!divisor)
2902 		return dividend;
2903 
2904 	return div64_u64(dividend, divisor);
2905 }
2906 
2907 static DEFINE_PER_CPU(int, perf_throttled_count);
2908 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2909 
2910 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2911 {
2912 	struct hw_perf_event *hwc = &event->hw;
2913 	s64 period, sample_period;
2914 	s64 delta;
2915 
2916 	period = perf_calculate_period(event, nsec, count);
2917 
2918 	delta = (s64)(period - hwc->sample_period);
2919 	delta = (delta + 7) / 8; /* low pass filter */
2920 
2921 	sample_period = hwc->sample_period + delta;
2922 
2923 	if (!sample_period)
2924 		sample_period = 1;
2925 
2926 	hwc->sample_period = sample_period;
2927 
2928 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2929 		if (disable)
2930 			event->pmu->stop(event, PERF_EF_UPDATE);
2931 
2932 		local64_set(&hwc->period_left, 0);
2933 
2934 		if (disable)
2935 			event->pmu->start(event, PERF_EF_RELOAD);
2936 	}
2937 }
2938 
2939 /*
2940  * combine freq adjustment with unthrottling to avoid two passes over the
2941  * events. At the same time, make sure, having freq events does not change
2942  * the rate of unthrottling as that would introduce bias.
2943  */
2944 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2945 					   int needs_unthr)
2946 {
2947 	struct perf_event *event;
2948 	struct hw_perf_event *hwc;
2949 	u64 now, period = TICK_NSEC;
2950 	s64 delta;
2951 
2952 	/*
2953 	 * only need to iterate over all events iff:
2954 	 * - context have events in frequency mode (needs freq adjust)
2955 	 * - there are events to unthrottle on this cpu
2956 	 */
2957 	if (!(ctx->nr_freq || needs_unthr))
2958 		return;
2959 
2960 	raw_spin_lock(&ctx->lock);
2961 	perf_pmu_disable(ctx->pmu);
2962 
2963 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2964 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2965 			continue;
2966 
2967 		if (!event_filter_match(event))
2968 			continue;
2969 
2970 		perf_pmu_disable(event->pmu);
2971 
2972 		hwc = &event->hw;
2973 
2974 		if (hwc->interrupts == MAX_INTERRUPTS) {
2975 			hwc->interrupts = 0;
2976 			perf_log_throttle(event, 1);
2977 			event->pmu->start(event, 0);
2978 		}
2979 
2980 		if (!event->attr.freq || !event->attr.sample_freq)
2981 			goto next;
2982 
2983 		/*
2984 		 * stop the event and update event->count
2985 		 */
2986 		event->pmu->stop(event, PERF_EF_UPDATE);
2987 
2988 		now = local64_read(&event->count);
2989 		delta = now - hwc->freq_count_stamp;
2990 		hwc->freq_count_stamp = now;
2991 
2992 		/*
2993 		 * restart the event
2994 		 * reload only if value has changed
2995 		 * we have stopped the event so tell that
2996 		 * to perf_adjust_period() to avoid stopping it
2997 		 * twice.
2998 		 */
2999 		if (delta > 0)
3000 			perf_adjust_period(event, period, delta, false);
3001 
3002 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3003 	next:
3004 		perf_pmu_enable(event->pmu);
3005 	}
3006 
3007 	perf_pmu_enable(ctx->pmu);
3008 	raw_spin_unlock(&ctx->lock);
3009 }
3010 
3011 /*
3012  * Round-robin a context's events:
3013  */
3014 static void rotate_ctx(struct perf_event_context *ctx)
3015 {
3016 	/*
3017 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3018 	 * disabled by the inheritance code.
3019 	 */
3020 	if (!ctx->rotate_disable)
3021 		list_rotate_left(&ctx->flexible_groups);
3022 }
3023 
3024 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3025 {
3026 	struct perf_event_context *ctx = NULL;
3027 	int rotate = 0;
3028 
3029 	if (cpuctx->ctx.nr_events) {
3030 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3031 			rotate = 1;
3032 	}
3033 
3034 	ctx = cpuctx->task_ctx;
3035 	if (ctx && ctx->nr_events) {
3036 		if (ctx->nr_events != ctx->nr_active)
3037 			rotate = 1;
3038 	}
3039 
3040 	if (!rotate)
3041 		goto done;
3042 
3043 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3044 	perf_pmu_disable(cpuctx->ctx.pmu);
3045 
3046 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3047 	if (ctx)
3048 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3049 
3050 	rotate_ctx(&cpuctx->ctx);
3051 	if (ctx)
3052 		rotate_ctx(ctx);
3053 
3054 	perf_event_sched_in(cpuctx, ctx, current);
3055 
3056 	perf_pmu_enable(cpuctx->ctx.pmu);
3057 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3058 done:
3059 
3060 	return rotate;
3061 }
3062 
3063 #ifdef CONFIG_NO_HZ_FULL
3064 bool perf_event_can_stop_tick(void)
3065 {
3066 	if (atomic_read(&nr_freq_events) ||
3067 	    __this_cpu_read(perf_throttled_count))
3068 		return false;
3069 	else
3070 		return true;
3071 }
3072 #endif
3073 
3074 void perf_event_task_tick(void)
3075 {
3076 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3077 	struct perf_event_context *ctx, *tmp;
3078 	int throttled;
3079 
3080 	WARN_ON(!irqs_disabled());
3081 
3082 	__this_cpu_inc(perf_throttled_seq);
3083 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3084 
3085 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3086 		perf_adjust_freq_unthr_context(ctx, throttled);
3087 }
3088 
3089 static int event_enable_on_exec(struct perf_event *event,
3090 				struct perf_event_context *ctx)
3091 {
3092 	if (!event->attr.enable_on_exec)
3093 		return 0;
3094 
3095 	event->attr.enable_on_exec = 0;
3096 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3097 		return 0;
3098 
3099 	__perf_event_mark_enabled(event);
3100 
3101 	return 1;
3102 }
3103 
3104 /*
3105  * Enable all of a task's events that have been marked enable-on-exec.
3106  * This expects task == current.
3107  */
3108 static void perf_event_enable_on_exec(int ctxn)
3109 {
3110 	struct perf_event_context *ctx, *clone_ctx = NULL;
3111 	struct perf_cpu_context *cpuctx;
3112 	struct perf_event *event;
3113 	unsigned long flags;
3114 	int enabled = 0;
3115 
3116 	local_irq_save(flags);
3117 	ctx = current->perf_event_ctxp[ctxn];
3118 	if (!ctx || !ctx->nr_events)
3119 		goto out;
3120 
3121 	cpuctx = __get_cpu_context(ctx);
3122 	perf_ctx_lock(cpuctx, ctx);
3123 	list_for_each_entry(event, &ctx->event_list, event_entry)
3124 		enabled |= event_enable_on_exec(event, ctx);
3125 
3126 	/*
3127 	 * Unclone and reschedule this context if we enabled any event.
3128 	 */
3129 	if (enabled) {
3130 		clone_ctx = unclone_ctx(ctx);
3131 		ctx_resched(cpuctx, ctx);
3132 	}
3133 	perf_ctx_unlock(cpuctx, ctx);
3134 
3135 out:
3136 	local_irq_restore(flags);
3137 
3138 	if (clone_ctx)
3139 		put_ctx(clone_ctx);
3140 }
3141 
3142 void perf_event_exec(void)
3143 {
3144 	int ctxn;
3145 
3146 	rcu_read_lock();
3147 	for_each_task_context_nr(ctxn)
3148 		perf_event_enable_on_exec(ctxn);
3149 	rcu_read_unlock();
3150 }
3151 
3152 struct perf_read_data {
3153 	struct perf_event *event;
3154 	bool group;
3155 	int ret;
3156 };
3157 
3158 /*
3159  * Cross CPU call to read the hardware event
3160  */
3161 static void __perf_event_read(void *info)
3162 {
3163 	struct perf_read_data *data = info;
3164 	struct perf_event *sub, *event = data->event;
3165 	struct perf_event_context *ctx = event->ctx;
3166 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3167 	struct pmu *pmu = event->pmu;
3168 
3169 	/*
3170 	 * If this is a task context, we need to check whether it is
3171 	 * the current task context of this cpu.  If not it has been
3172 	 * scheduled out before the smp call arrived.  In that case
3173 	 * event->count would have been updated to a recent sample
3174 	 * when the event was scheduled out.
3175 	 */
3176 	if (ctx->task && cpuctx->task_ctx != ctx)
3177 		return;
3178 
3179 	raw_spin_lock(&ctx->lock);
3180 	if (ctx->is_active) {
3181 		update_context_time(ctx);
3182 		update_cgrp_time_from_event(event);
3183 	}
3184 
3185 	update_event_times(event);
3186 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3187 		goto unlock;
3188 
3189 	if (!data->group) {
3190 		pmu->read(event);
3191 		data->ret = 0;
3192 		goto unlock;
3193 	}
3194 
3195 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3196 
3197 	pmu->read(event);
3198 
3199 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3200 		update_event_times(sub);
3201 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3202 			/*
3203 			 * Use sibling's PMU rather than @event's since
3204 			 * sibling could be on different (eg: software) PMU.
3205 			 */
3206 			sub->pmu->read(sub);
3207 		}
3208 	}
3209 
3210 	data->ret = pmu->commit_txn(pmu);
3211 
3212 unlock:
3213 	raw_spin_unlock(&ctx->lock);
3214 }
3215 
3216 static inline u64 perf_event_count(struct perf_event *event)
3217 {
3218 	if (event->pmu->count)
3219 		return event->pmu->count(event);
3220 
3221 	return __perf_event_count(event);
3222 }
3223 
3224 /*
3225  * NMI-safe method to read a local event, that is an event that
3226  * is:
3227  *   - either for the current task, or for this CPU
3228  *   - does not have inherit set, for inherited task events
3229  *     will not be local and we cannot read them atomically
3230  *   - must not have a pmu::count method
3231  */
3232 u64 perf_event_read_local(struct perf_event *event)
3233 {
3234 	unsigned long flags;
3235 	u64 val;
3236 
3237 	/*
3238 	 * Disabling interrupts avoids all counter scheduling (context
3239 	 * switches, timer based rotation and IPIs).
3240 	 */
3241 	local_irq_save(flags);
3242 
3243 	/* If this is a per-task event, it must be for current */
3244 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3245 		     event->hw.target != current);
3246 
3247 	/* If this is a per-CPU event, it must be for this CPU */
3248 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3249 		     event->cpu != smp_processor_id());
3250 
3251 	/*
3252 	 * It must not be an event with inherit set, we cannot read
3253 	 * all child counters from atomic context.
3254 	 */
3255 	WARN_ON_ONCE(event->attr.inherit);
3256 
3257 	/*
3258 	 * It must not have a pmu::count method, those are not
3259 	 * NMI safe.
3260 	 */
3261 	WARN_ON_ONCE(event->pmu->count);
3262 
3263 	/*
3264 	 * If the event is currently on this CPU, its either a per-task event,
3265 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3266 	 * oncpu == -1).
3267 	 */
3268 	if (event->oncpu == smp_processor_id())
3269 		event->pmu->read(event);
3270 
3271 	val = local64_read(&event->count);
3272 	local_irq_restore(flags);
3273 
3274 	return val;
3275 }
3276 
3277 static int perf_event_read(struct perf_event *event, bool group)
3278 {
3279 	int ret = 0;
3280 
3281 	/*
3282 	 * If event is enabled and currently active on a CPU, update the
3283 	 * value in the event structure:
3284 	 */
3285 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3286 		struct perf_read_data data = {
3287 			.event = event,
3288 			.group = group,
3289 			.ret = 0,
3290 		};
3291 		smp_call_function_single(event->oncpu,
3292 					 __perf_event_read, &data, 1);
3293 		ret = data.ret;
3294 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3295 		struct perf_event_context *ctx = event->ctx;
3296 		unsigned long flags;
3297 
3298 		raw_spin_lock_irqsave(&ctx->lock, flags);
3299 		/*
3300 		 * may read while context is not active
3301 		 * (e.g., thread is blocked), in that case
3302 		 * we cannot update context time
3303 		 */
3304 		if (ctx->is_active) {
3305 			update_context_time(ctx);
3306 			update_cgrp_time_from_event(event);
3307 		}
3308 		if (group)
3309 			update_group_times(event);
3310 		else
3311 			update_event_times(event);
3312 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3313 	}
3314 
3315 	return ret;
3316 }
3317 
3318 /*
3319  * Initialize the perf_event context in a task_struct:
3320  */
3321 static void __perf_event_init_context(struct perf_event_context *ctx)
3322 {
3323 	raw_spin_lock_init(&ctx->lock);
3324 	mutex_init(&ctx->mutex);
3325 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3326 	INIT_LIST_HEAD(&ctx->pinned_groups);
3327 	INIT_LIST_HEAD(&ctx->flexible_groups);
3328 	INIT_LIST_HEAD(&ctx->event_list);
3329 	atomic_set(&ctx->refcount, 1);
3330 }
3331 
3332 static struct perf_event_context *
3333 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3334 {
3335 	struct perf_event_context *ctx;
3336 
3337 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3338 	if (!ctx)
3339 		return NULL;
3340 
3341 	__perf_event_init_context(ctx);
3342 	if (task) {
3343 		ctx->task = task;
3344 		get_task_struct(task);
3345 	}
3346 	ctx->pmu = pmu;
3347 
3348 	return ctx;
3349 }
3350 
3351 static struct task_struct *
3352 find_lively_task_by_vpid(pid_t vpid)
3353 {
3354 	struct task_struct *task;
3355 	int err;
3356 
3357 	rcu_read_lock();
3358 	if (!vpid)
3359 		task = current;
3360 	else
3361 		task = find_task_by_vpid(vpid);
3362 	if (task)
3363 		get_task_struct(task);
3364 	rcu_read_unlock();
3365 
3366 	if (!task)
3367 		return ERR_PTR(-ESRCH);
3368 
3369 	/* Reuse ptrace permission checks for now. */
3370 	err = -EACCES;
3371 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3372 		goto errout;
3373 
3374 	return task;
3375 errout:
3376 	put_task_struct(task);
3377 	return ERR_PTR(err);
3378 
3379 }
3380 
3381 /*
3382  * Returns a matching context with refcount and pincount.
3383  */
3384 static struct perf_event_context *
3385 find_get_context(struct pmu *pmu, struct task_struct *task,
3386 		struct perf_event *event)
3387 {
3388 	struct perf_event_context *ctx, *clone_ctx = NULL;
3389 	struct perf_cpu_context *cpuctx;
3390 	void *task_ctx_data = NULL;
3391 	unsigned long flags;
3392 	int ctxn, err;
3393 	int cpu = event->cpu;
3394 
3395 	if (!task) {
3396 		/* Must be root to operate on a CPU event: */
3397 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3398 			return ERR_PTR(-EACCES);
3399 
3400 		/*
3401 		 * We could be clever and allow to attach a event to an
3402 		 * offline CPU and activate it when the CPU comes up, but
3403 		 * that's for later.
3404 		 */
3405 		if (!cpu_online(cpu))
3406 			return ERR_PTR(-ENODEV);
3407 
3408 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3409 		ctx = &cpuctx->ctx;
3410 		get_ctx(ctx);
3411 		++ctx->pin_count;
3412 
3413 		return ctx;
3414 	}
3415 
3416 	err = -EINVAL;
3417 	ctxn = pmu->task_ctx_nr;
3418 	if (ctxn < 0)
3419 		goto errout;
3420 
3421 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3422 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3423 		if (!task_ctx_data) {
3424 			err = -ENOMEM;
3425 			goto errout;
3426 		}
3427 	}
3428 
3429 retry:
3430 	ctx = perf_lock_task_context(task, ctxn, &flags);
3431 	if (ctx) {
3432 		clone_ctx = unclone_ctx(ctx);
3433 		++ctx->pin_count;
3434 
3435 		if (task_ctx_data && !ctx->task_ctx_data) {
3436 			ctx->task_ctx_data = task_ctx_data;
3437 			task_ctx_data = NULL;
3438 		}
3439 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3440 
3441 		if (clone_ctx)
3442 			put_ctx(clone_ctx);
3443 	} else {
3444 		ctx = alloc_perf_context(pmu, task);
3445 		err = -ENOMEM;
3446 		if (!ctx)
3447 			goto errout;
3448 
3449 		if (task_ctx_data) {
3450 			ctx->task_ctx_data = task_ctx_data;
3451 			task_ctx_data = NULL;
3452 		}
3453 
3454 		err = 0;
3455 		mutex_lock(&task->perf_event_mutex);
3456 		/*
3457 		 * If it has already passed perf_event_exit_task().
3458 		 * we must see PF_EXITING, it takes this mutex too.
3459 		 */
3460 		if (task->flags & PF_EXITING)
3461 			err = -ESRCH;
3462 		else if (task->perf_event_ctxp[ctxn])
3463 			err = -EAGAIN;
3464 		else {
3465 			get_ctx(ctx);
3466 			++ctx->pin_count;
3467 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3468 		}
3469 		mutex_unlock(&task->perf_event_mutex);
3470 
3471 		if (unlikely(err)) {
3472 			put_ctx(ctx);
3473 
3474 			if (err == -EAGAIN)
3475 				goto retry;
3476 			goto errout;
3477 		}
3478 	}
3479 
3480 	kfree(task_ctx_data);
3481 	return ctx;
3482 
3483 errout:
3484 	kfree(task_ctx_data);
3485 	return ERR_PTR(err);
3486 }
3487 
3488 static void perf_event_free_filter(struct perf_event *event);
3489 static void perf_event_free_bpf_prog(struct perf_event *event);
3490 
3491 static void free_event_rcu(struct rcu_head *head)
3492 {
3493 	struct perf_event *event;
3494 
3495 	event = container_of(head, struct perf_event, rcu_head);
3496 	if (event->ns)
3497 		put_pid_ns(event->ns);
3498 	perf_event_free_filter(event);
3499 	kfree(event);
3500 }
3501 
3502 static void ring_buffer_attach(struct perf_event *event,
3503 			       struct ring_buffer *rb);
3504 
3505 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3506 {
3507 	if (event->parent)
3508 		return;
3509 
3510 	if (is_cgroup_event(event))
3511 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3512 }
3513 
3514 static void unaccount_event(struct perf_event *event)
3515 {
3516 	bool dec = false;
3517 
3518 	if (event->parent)
3519 		return;
3520 
3521 	if (event->attach_state & PERF_ATTACH_TASK)
3522 		dec = true;
3523 	if (event->attr.mmap || event->attr.mmap_data)
3524 		atomic_dec(&nr_mmap_events);
3525 	if (event->attr.comm)
3526 		atomic_dec(&nr_comm_events);
3527 	if (event->attr.task)
3528 		atomic_dec(&nr_task_events);
3529 	if (event->attr.freq)
3530 		atomic_dec(&nr_freq_events);
3531 	if (event->attr.context_switch) {
3532 		dec = true;
3533 		atomic_dec(&nr_switch_events);
3534 	}
3535 	if (is_cgroup_event(event))
3536 		dec = true;
3537 	if (has_branch_stack(event))
3538 		dec = true;
3539 
3540 	if (dec)
3541 		static_key_slow_dec_deferred(&perf_sched_events);
3542 
3543 	unaccount_event_cpu(event, event->cpu);
3544 }
3545 
3546 /*
3547  * The following implement mutual exclusion of events on "exclusive" pmus
3548  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3549  * at a time, so we disallow creating events that might conflict, namely:
3550  *
3551  *  1) cpu-wide events in the presence of per-task events,
3552  *  2) per-task events in the presence of cpu-wide events,
3553  *  3) two matching events on the same context.
3554  *
3555  * The former two cases are handled in the allocation path (perf_event_alloc(),
3556  * _free_event()), the latter -- before the first perf_install_in_context().
3557  */
3558 static int exclusive_event_init(struct perf_event *event)
3559 {
3560 	struct pmu *pmu = event->pmu;
3561 
3562 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3563 		return 0;
3564 
3565 	/*
3566 	 * Prevent co-existence of per-task and cpu-wide events on the
3567 	 * same exclusive pmu.
3568 	 *
3569 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3570 	 * events on this "exclusive" pmu, positive means there are
3571 	 * per-task events.
3572 	 *
3573 	 * Since this is called in perf_event_alloc() path, event::ctx
3574 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3575 	 * to mean "per-task event", because unlike other attach states it
3576 	 * never gets cleared.
3577 	 */
3578 	if (event->attach_state & PERF_ATTACH_TASK) {
3579 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3580 			return -EBUSY;
3581 	} else {
3582 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3583 			return -EBUSY;
3584 	}
3585 
3586 	return 0;
3587 }
3588 
3589 static void exclusive_event_destroy(struct perf_event *event)
3590 {
3591 	struct pmu *pmu = event->pmu;
3592 
3593 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3594 		return;
3595 
3596 	/* see comment in exclusive_event_init() */
3597 	if (event->attach_state & PERF_ATTACH_TASK)
3598 		atomic_dec(&pmu->exclusive_cnt);
3599 	else
3600 		atomic_inc(&pmu->exclusive_cnt);
3601 }
3602 
3603 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3604 {
3605 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3606 	    (e1->cpu == e2->cpu ||
3607 	     e1->cpu == -1 ||
3608 	     e2->cpu == -1))
3609 		return true;
3610 	return false;
3611 }
3612 
3613 /* Called under the same ctx::mutex as perf_install_in_context() */
3614 static bool exclusive_event_installable(struct perf_event *event,
3615 					struct perf_event_context *ctx)
3616 {
3617 	struct perf_event *iter_event;
3618 	struct pmu *pmu = event->pmu;
3619 
3620 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3621 		return true;
3622 
3623 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3624 		if (exclusive_event_match(iter_event, event))
3625 			return false;
3626 	}
3627 
3628 	return true;
3629 }
3630 
3631 static void _free_event(struct perf_event *event)
3632 {
3633 	irq_work_sync(&event->pending);
3634 
3635 	unaccount_event(event);
3636 
3637 	if (event->rb) {
3638 		/*
3639 		 * Can happen when we close an event with re-directed output.
3640 		 *
3641 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3642 		 * over us; possibly making our ring_buffer_put() the last.
3643 		 */
3644 		mutex_lock(&event->mmap_mutex);
3645 		ring_buffer_attach(event, NULL);
3646 		mutex_unlock(&event->mmap_mutex);
3647 	}
3648 
3649 	if (is_cgroup_event(event))
3650 		perf_detach_cgroup(event);
3651 
3652 	if (!event->parent) {
3653 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3654 			put_callchain_buffers();
3655 	}
3656 
3657 	perf_event_free_bpf_prog(event);
3658 
3659 	if (event->destroy)
3660 		event->destroy(event);
3661 
3662 	if (event->ctx)
3663 		put_ctx(event->ctx);
3664 
3665 	if (event->pmu) {
3666 		exclusive_event_destroy(event);
3667 		module_put(event->pmu->module);
3668 	}
3669 
3670 	call_rcu(&event->rcu_head, free_event_rcu);
3671 }
3672 
3673 /*
3674  * Used to free events which have a known refcount of 1, such as in error paths
3675  * where the event isn't exposed yet and inherited events.
3676  */
3677 static void free_event(struct perf_event *event)
3678 {
3679 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3680 				"unexpected event refcount: %ld; ptr=%p\n",
3681 				atomic_long_read(&event->refcount), event)) {
3682 		/* leak to avoid use-after-free */
3683 		return;
3684 	}
3685 
3686 	_free_event(event);
3687 }
3688 
3689 /*
3690  * Remove user event from the owner task.
3691  */
3692 static void perf_remove_from_owner(struct perf_event *event)
3693 {
3694 	struct task_struct *owner;
3695 
3696 	rcu_read_lock();
3697 	/*
3698 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
3699 	 * observe !owner it means the list deletion is complete and we can
3700 	 * indeed free this event, otherwise we need to serialize on
3701 	 * owner->perf_event_mutex.
3702 	 */
3703 	owner = lockless_dereference(event->owner);
3704 	if (owner) {
3705 		/*
3706 		 * Since delayed_put_task_struct() also drops the last
3707 		 * task reference we can safely take a new reference
3708 		 * while holding the rcu_read_lock().
3709 		 */
3710 		get_task_struct(owner);
3711 	}
3712 	rcu_read_unlock();
3713 
3714 	if (owner) {
3715 		/*
3716 		 * If we're here through perf_event_exit_task() we're already
3717 		 * holding ctx->mutex which would be an inversion wrt. the
3718 		 * normal lock order.
3719 		 *
3720 		 * However we can safely take this lock because its the child
3721 		 * ctx->mutex.
3722 		 */
3723 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3724 
3725 		/*
3726 		 * We have to re-check the event->owner field, if it is cleared
3727 		 * we raced with perf_event_exit_task(), acquiring the mutex
3728 		 * ensured they're done, and we can proceed with freeing the
3729 		 * event.
3730 		 */
3731 		if (event->owner) {
3732 			list_del_init(&event->owner_entry);
3733 			smp_store_release(&event->owner, NULL);
3734 		}
3735 		mutex_unlock(&owner->perf_event_mutex);
3736 		put_task_struct(owner);
3737 	}
3738 }
3739 
3740 static void put_event(struct perf_event *event)
3741 {
3742 	if (!atomic_long_dec_and_test(&event->refcount))
3743 		return;
3744 
3745 	_free_event(event);
3746 }
3747 
3748 /*
3749  * Kill an event dead; while event:refcount will preserve the event
3750  * object, it will not preserve its functionality. Once the last 'user'
3751  * gives up the object, we'll destroy the thing.
3752  */
3753 int perf_event_release_kernel(struct perf_event *event)
3754 {
3755 	struct perf_event_context *ctx;
3756 	struct perf_event *child, *tmp;
3757 
3758 	if (!is_kernel_event(event))
3759 		perf_remove_from_owner(event);
3760 
3761 	ctx = perf_event_ctx_lock(event);
3762 	WARN_ON_ONCE(ctx->parent_ctx);
3763 	perf_remove_from_context(event, DETACH_GROUP | DETACH_STATE);
3764 	perf_event_ctx_unlock(event, ctx);
3765 
3766 	/*
3767 	 * At this point we must have event->state == PERF_EVENT_STATE_EXIT,
3768 	 * either from the above perf_remove_from_context() or through
3769 	 * perf_event_exit_event().
3770 	 *
3771 	 * Therefore, anybody acquiring event->child_mutex after the below
3772 	 * loop _must_ also see this, most importantly inherit_event() which
3773 	 * will avoid placing more children on the list.
3774 	 *
3775 	 * Thus this guarantees that we will in fact observe and kill _ALL_
3776 	 * child events.
3777 	 */
3778 	WARN_ON_ONCE(event->state != PERF_EVENT_STATE_EXIT);
3779 
3780 again:
3781 	mutex_lock(&event->child_mutex);
3782 	list_for_each_entry(child, &event->child_list, child_list) {
3783 
3784 		/*
3785 		 * Cannot change, child events are not migrated, see the
3786 		 * comment with perf_event_ctx_lock_nested().
3787 		 */
3788 		ctx = lockless_dereference(child->ctx);
3789 		/*
3790 		 * Since child_mutex nests inside ctx::mutex, we must jump
3791 		 * through hoops. We start by grabbing a reference on the ctx.
3792 		 *
3793 		 * Since the event cannot get freed while we hold the
3794 		 * child_mutex, the context must also exist and have a !0
3795 		 * reference count.
3796 		 */
3797 		get_ctx(ctx);
3798 
3799 		/*
3800 		 * Now that we have a ctx ref, we can drop child_mutex, and
3801 		 * acquire ctx::mutex without fear of it going away. Then we
3802 		 * can re-acquire child_mutex.
3803 		 */
3804 		mutex_unlock(&event->child_mutex);
3805 		mutex_lock(&ctx->mutex);
3806 		mutex_lock(&event->child_mutex);
3807 
3808 		/*
3809 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
3810 		 * state, if child is still the first entry, it didn't get freed
3811 		 * and we can continue doing so.
3812 		 */
3813 		tmp = list_first_entry_or_null(&event->child_list,
3814 					       struct perf_event, child_list);
3815 		if (tmp == child) {
3816 			perf_remove_from_context(child, DETACH_GROUP);
3817 			list_del(&child->child_list);
3818 			free_event(child);
3819 			/*
3820 			 * This matches the refcount bump in inherit_event();
3821 			 * this can't be the last reference.
3822 			 */
3823 			put_event(event);
3824 		}
3825 
3826 		mutex_unlock(&event->child_mutex);
3827 		mutex_unlock(&ctx->mutex);
3828 		put_ctx(ctx);
3829 		goto again;
3830 	}
3831 	mutex_unlock(&event->child_mutex);
3832 
3833 	/* Must be the last reference */
3834 	put_event(event);
3835 	return 0;
3836 }
3837 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3838 
3839 /*
3840  * Called when the last reference to the file is gone.
3841  */
3842 static int perf_release(struct inode *inode, struct file *file)
3843 {
3844 	perf_event_release_kernel(file->private_data);
3845 	return 0;
3846 }
3847 
3848 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3849 {
3850 	struct perf_event *child;
3851 	u64 total = 0;
3852 
3853 	*enabled = 0;
3854 	*running = 0;
3855 
3856 	mutex_lock(&event->child_mutex);
3857 
3858 	(void)perf_event_read(event, false);
3859 	total += perf_event_count(event);
3860 
3861 	*enabled += event->total_time_enabled +
3862 			atomic64_read(&event->child_total_time_enabled);
3863 	*running += event->total_time_running +
3864 			atomic64_read(&event->child_total_time_running);
3865 
3866 	list_for_each_entry(child, &event->child_list, child_list) {
3867 		(void)perf_event_read(child, false);
3868 		total += perf_event_count(child);
3869 		*enabled += child->total_time_enabled;
3870 		*running += child->total_time_running;
3871 	}
3872 	mutex_unlock(&event->child_mutex);
3873 
3874 	return total;
3875 }
3876 EXPORT_SYMBOL_GPL(perf_event_read_value);
3877 
3878 static int __perf_read_group_add(struct perf_event *leader,
3879 					u64 read_format, u64 *values)
3880 {
3881 	struct perf_event *sub;
3882 	int n = 1; /* skip @nr */
3883 	int ret;
3884 
3885 	ret = perf_event_read(leader, true);
3886 	if (ret)
3887 		return ret;
3888 
3889 	/*
3890 	 * Since we co-schedule groups, {enabled,running} times of siblings
3891 	 * will be identical to those of the leader, so we only publish one
3892 	 * set.
3893 	 */
3894 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3895 		values[n++] += leader->total_time_enabled +
3896 			atomic64_read(&leader->child_total_time_enabled);
3897 	}
3898 
3899 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3900 		values[n++] += leader->total_time_running +
3901 			atomic64_read(&leader->child_total_time_running);
3902 	}
3903 
3904 	/*
3905 	 * Write {count,id} tuples for every sibling.
3906 	 */
3907 	values[n++] += perf_event_count(leader);
3908 	if (read_format & PERF_FORMAT_ID)
3909 		values[n++] = primary_event_id(leader);
3910 
3911 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3912 		values[n++] += perf_event_count(sub);
3913 		if (read_format & PERF_FORMAT_ID)
3914 			values[n++] = primary_event_id(sub);
3915 	}
3916 
3917 	return 0;
3918 }
3919 
3920 static int perf_read_group(struct perf_event *event,
3921 				   u64 read_format, char __user *buf)
3922 {
3923 	struct perf_event *leader = event->group_leader, *child;
3924 	struct perf_event_context *ctx = leader->ctx;
3925 	int ret;
3926 	u64 *values;
3927 
3928 	lockdep_assert_held(&ctx->mutex);
3929 
3930 	values = kzalloc(event->read_size, GFP_KERNEL);
3931 	if (!values)
3932 		return -ENOMEM;
3933 
3934 	values[0] = 1 + leader->nr_siblings;
3935 
3936 	/*
3937 	 * By locking the child_mutex of the leader we effectively
3938 	 * lock the child list of all siblings.. XXX explain how.
3939 	 */
3940 	mutex_lock(&leader->child_mutex);
3941 
3942 	ret = __perf_read_group_add(leader, read_format, values);
3943 	if (ret)
3944 		goto unlock;
3945 
3946 	list_for_each_entry(child, &leader->child_list, child_list) {
3947 		ret = __perf_read_group_add(child, read_format, values);
3948 		if (ret)
3949 			goto unlock;
3950 	}
3951 
3952 	mutex_unlock(&leader->child_mutex);
3953 
3954 	ret = event->read_size;
3955 	if (copy_to_user(buf, values, event->read_size))
3956 		ret = -EFAULT;
3957 	goto out;
3958 
3959 unlock:
3960 	mutex_unlock(&leader->child_mutex);
3961 out:
3962 	kfree(values);
3963 	return ret;
3964 }
3965 
3966 static int perf_read_one(struct perf_event *event,
3967 				 u64 read_format, char __user *buf)
3968 {
3969 	u64 enabled, running;
3970 	u64 values[4];
3971 	int n = 0;
3972 
3973 	values[n++] = perf_event_read_value(event, &enabled, &running);
3974 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3975 		values[n++] = enabled;
3976 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3977 		values[n++] = running;
3978 	if (read_format & PERF_FORMAT_ID)
3979 		values[n++] = primary_event_id(event);
3980 
3981 	if (copy_to_user(buf, values, n * sizeof(u64)))
3982 		return -EFAULT;
3983 
3984 	return n * sizeof(u64);
3985 }
3986 
3987 static bool is_event_hup(struct perf_event *event)
3988 {
3989 	bool no_children;
3990 
3991 	if (event->state != PERF_EVENT_STATE_EXIT)
3992 		return false;
3993 
3994 	mutex_lock(&event->child_mutex);
3995 	no_children = list_empty(&event->child_list);
3996 	mutex_unlock(&event->child_mutex);
3997 	return no_children;
3998 }
3999 
4000 /*
4001  * Read the performance event - simple non blocking version for now
4002  */
4003 static ssize_t
4004 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4005 {
4006 	u64 read_format = event->attr.read_format;
4007 	int ret;
4008 
4009 	/*
4010 	 * Return end-of-file for a read on a event that is in
4011 	 * error state (i.e. because it was pinned but it couldn't be
4012 	 * scheduled on to the CPU at some point).
4013 	 */
4014 	if (event->state == PERF_EVENT_STATE_ERROR)
4015 		return 0;
4016 
4017 	if (count < event->read_size)
4018 		return -ENOSPC;
4019 
4020 	WARN_ON_ONCE(event->ctx->parent_ctx);
4021 	if (read_format & PERF_FORMAT_GROUP)
4022 		ret = perf_read_group(event, read_format, buf);
4023 	else
4024 		ret = perf_read_one(event, read_format, buf);
4025 
4026 	return ret;
4027 }
4028 
4029 static ssize_t
4030 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4031 {
4032 	struct perf_event *event = file->private_data;
4033 	struct perf_event_context *ctx;
4034 	int ret;
4035 
4036 	ctx = perf_event_ctx_lock(event);
4037 	ret = __perf_read(event, buf, count);
4038 	perf_event_ctx_unlock(event, ctx);
4039 
4040 	return ret;
4041 }
4042 
4043 static unsigned int perf_poll(struct file *file, poll_table *wait)
4044 {
4045 	struct perf_event *event = file->private_data;
4046 	struct ring_buffer *rb;
4047 	unsigned int events = POLLHUP;
4048 
4049 	poll_wait(file, &event->waitq, wait);
4050 
4051 	if (is_event_hup(event))
4052 		return events;
4053 
4054 	/*
4055 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4056 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4057 	 */
4058 	mutex_lock(&event->mmap_mutex);
4059 	rb = event->rb;
4060 	if (rb)
4061 		events = atomic_xchg(&rb->poll, 0);
4062 	mutex_unlock(&event->mmap_mutex);
4063 	return events;
4064 }
4065 
4066 static void _perf_event_reset(struct perf_event *event)
4067 {
4068 	(void)perf_event_read(event, false);
4069 	local64_set(&event->count, 0);
4070 	perf_event_update_userpage(event);
4071 }
4072 
4073 /*
4074  * Holding the top-level event's child_mutex means that any
4075  * descendant process that has inherited this event will block
4076  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4077  * task existence requirements of perf_event_enable/disable.
4078  */
4079 static void perf_event_for_each_child(struct perf_event *event,
4080 					void (*func)(struct perf_event *))
4081 {
4082 	struct perf_event *child;
4083 
4084 	WARN_ON_ONCE(event->ctx->parent_ctx);
4085 
4086 	mutex_lock(&event->child_mutex);
4087 	func(event);
4088 	list_for_each_entry(child, &event->child_list, child_list)
4089 		func(child);
4090 	mutex_unlock(&event->child_mutex);
4091 }
4092 
4093 static void perf_event_for_each(struct perf_event *event,
4094 				  void (*func)(struct perf_event *))
4095 {
4096 	struct perf_event_context *ctx = event->ctx;
4097 	struct perf_event *sibling;
4098 
4099 	lockdep_assert_held(&ctx->mutex);
4100 
4101 	event = event->group_leader;
4102 
4103 	perf_event_for_each_child(event, func);
4104 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4105 		perf_event_for_each_child(sibling, func);
4106 }
4107 
4108 static void __perf_event_period(struct perf_event *event,
4109 				struct perf_cpu_context *cpuctx,
4110 				struct perf_event_context *ctx,
4111 				void *info)
4112 {
4113 	u64 value = *((u64 *)info);
4114 	bool active;
4115 
4116 	if (event->attr.freq) {
4117 		event->attr.sample_freq = value;
4118 	} else {
4119 		event->attr.sample_period = value;
4120 		event->hw.sample_period = value;
4121 	}
4122 
4123 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4124 	if (active) {
4125 		perf_pmu_disable(ctx->pmu);
4126 		event->pmu->stop(event, PERF_EF_UPDATE);
4127 	}
4128 
4129 	local64_set(&event->hw.period_left, 0);
4130 
4131 	if (active) {
4132 		event->pmu->start(event, PERF_EF_RELOAD);
4133 		perf_pmu_enable(ctx->pmu);
4134 	}
4135 }
4136 
4137 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4138 {
4139 	u64 value;
4140 
4141 	if (!is_sampling_event(event))
4142 		return -EINVAL;
4143 
4144 	if (copy_from_user(&value, arg, sizeof(value)))
4145 		return -EFAULT;
4146 
4147 	if (!value)
4148 		return -EINVAL;
4149 
4150 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4151 		return -EINVAL;
4152 
4153 	event_function_call(event, __perf_event_period, &value);
4154 
4155 	return 0;
4156 }
4157 
4158 static const struct file_operations perf_fops;
4159 
4160 static inline int perf_fget_light(int fd, struct fd *p)
4161 {
4162 	struct fd f = fdget(fd);
4163 	if (!f.file)
4164 		return -EBADF;
4165 
4166 	if (f.file->f_op != &perf_fops) {
4167 		fdput(f);
4168 		return -EBADF;
4169 	}
4170 	*p = f;
4171 	return 0;
4172 }
4173 
4174 static int perf_event_set_output(struct perf_event *event,
4175 				 struct perf_event *output_event);
4176 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4177 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4178 
4179 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4180 {
4181 	void (*func)(struct perf_event *);
4182 	u32 flags = arg;
4183 
4184 	switch (cmd) {
4185 	case PERF_EVENT_IOC_ENABLE:
4186 		func = _perf_event_enable;
4187 		break;
4188 	case PERF_EVENT_IOC_DISABLE:
4189 		func = _perf_event_disable;
4190 		break;
4191 	case PERF_EVENT_IOC_RESET:
4192 		func = _perf_event_reset;
4193 		break;
4194 
4195 	case PERF_EVENT_IOC_REFRESH:
4196 		return _perf_event_refresh(event, arg);
4197 
4198 	case PERF_EVENT_IOC_PERIOD:
4199 		return perf_event_period(event, (u64 __user *)arg);
4200 
4201 	case PERF_EVENT_IOC_ID:
4202 	{
4203 		u64 id = primary_event_id(event);
4204 
4205 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4206 			return -EFAULT;
4207 		return 0;
4208 	}
4209 
4210 	case PERF_EVENT_IOC_SET_OUTPUT:
4211 	{
4212 		int ret;
4213 		if (arg != -1) {
4214 			struct perf_event *output_event;
4215 			struct fd output;
4216 			ret = perf_fget_light(arg, &output);
4217 			if (ret)
4218 				return ret;
4219 			output_event = output.file->private_data;
4220 			ret = perf_event_set_output(event, output_event);
4221 			fdput(output);
4222 		} else {
4223 			ret = perf_event_set_output(event, NULL);
4224 		}
4225 		return ret;
4226 	}
4227 
4228 	case PERF_EVENT_IOC_SET_FILTER:
4229 		return perf_event_set_filter(event, (void __user *)arg);
4230 
4231 	case PERF_EVENT_IOC_SET_BPF:
4232 		return perf_event_set_bpf_prog(event, arg);
4233 
4234 	default:
4235 		return -ENOTTY;
4236 	}
4237 
4238 	if (flags & PERF_IOC_FLAG_GROUP)
4239 		perf_event_for_each(event, func);
4240 	else
4241 		perf_event_for_each_child(event, func);
4242 
4243 	return 0;
4244 }
4245 
4246 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4247 {
4248 	struct perf_event *event = file->private_data;
4249 	struct perf_event_context *ctx;
4250 	long ret;
4251 
4252 	ctx = perf_event_ctx_lock(event);
4253 	ret = _perf_ioctl(event, cmd, arg);
4254 	perf_event_ctx_unlock(event, ctx);
4255 
4256 	return ret;
4257 }
4258 
4259 #ifdef CONFIG_COMPAT
4260 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4261 				unsigned long arg)
4262 {
4263 	switch (_IOC_NR(cmd)) {
4264 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4265 	case _IOC_NR(PERF_EVENT_IOC_ID):
4266 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4267 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4268 			cmd &= ~IOCSIZE_MASK;
4269 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4270 		}
4271 		break;
4272 	}
4273 	return perf_ioctl(file, cmd, arg);
4274 }
4275 #else
4276 # define perf_compat_ioctl NULL
4277 #endif
4278 
4279 int perf_event_task_enable(void)
4280 {
4281 	struct perf_event_context *ctx;
4282 	struct perf_event *event;
4283 
4284 	mutex_lock(&current->perf_event_mutex);
4285 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4286 		ctx = perf_event_ctx_lock(event);
4287 		perf_event_for_each_child(event, _perf_event_enable);
4288 		perf_event_ctx_unlock(event, ctx);
4289 	}
4290 	mutex_unlock(&current->perf_event_mutex);
4291 
4292 	return 0;
4293 }
4294 
4295 int perf_event_task_disable(void)
4296 {
4297 	struct perf_event_context *ctx;
4298 	struct perf_event *event;
4299 
4300 	mutex_lock(&current->perf_event_mutex);
4301 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4302 		ctx = perf_event_ctx_lock(event);
4303 		perf_event_for_each_child(event, _perf_event_disable);
4304 		perf_event_ctx_unlock(event, ctx);
4305 	}
4306 	mutex_unlock(&current->perf_event_mutex);
4307 
4308 	return 0;
4309 }
4310 
4311 static int perf_event_index(struct perf_event *event)
4312 {
4313 	if (event->hw.state & PERF_HES_STOPPED)
4314 		return 0;
4315 
4316 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4317 		return 0;
4318 
4319 	return event->pmu->event_idx(event);
4320 }
4321 
4322 static void calc_timer_values(struct perf_event *event,
4323 				u64 *now,
4324 				u64 *enabled,
4325 				u64 *running)
4326 {
4327 	u64 ctx_time;
4328 
4329 	*now = perf_clock();
4330 	ctx_time = event->shadow_ctx_time + *now;
4331 	*enabled = ctx_time - event->tstamp_enabled;
4332 	*running = ctx_time - event->tstamp_running;
4333 }
4334 
4335 static void perf_event_init_userpage(struct perf_event *event)
4336 {
4337 	struct perf_event_mmap_page *userpg;
4338 	struct ring_buffer *rb;
4339 
4340 	rcu_read_lock();
4341 	rb = rcu_dereference(event->rb);
4342 	if (!rb)
4343 		goto unlock;
4344 
4345 	userpg = rb->user_page;
4346 
4347 	/* Allow new userspace to detect that bit 0 is deprecated */
4348 	userpg->cap_bit0_is_deprecated = 1;
4349 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4350 	userpg->data_offset = PAGE_SIZE;
4351 	userpg->data_size = perf_data_size(rb);
4352 
4353 unlock:
4354 	rcu_read_unlock();
4355 }
4356 
4357 void __weak arch_perf_update_userpage(
4358 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4359 {
4360 }
4361 
4362 /*
4363  * Callers need to ensure there can be no nesting of this function, otherwise
4364  * the seqlock logic goes bad. We can not serialize this because the arch
4365  * code calls this from NMI context.
4366  */
4367 void perf_event_update_userpage(struct perf_event *event)
4368 {
4369 	struct perf_event_mmap_page *userpg;
4370 	struct ring_buffer *rb;
4371 	u64 enabled, running, now;
4372 
4373 	rcu_read_lock();
4374 	rb = rcu_dereference(event->rb);
4375 	if (!rb)
4376 		goto unlock;
4377 
4378 	/*
4379 	 * compute total_time_enabled, total_time_running
4380 	 * based on snapshot values taken when the event
4381 	 * was last scheduled in.
4382 	 *
4383 	 * we cannot simply called update_context_time()
4384 	 * because of locking issue as we can be called in
4385 	 * NMI context
4386 	 */
4387 	calc_timer_values(event, &now, &enabled, &running);
4388 
4389 	userpg = rb->user_page;
4390 	/*
4391 	 * Disable preemption so as to not let the corresponding user-space
4392 	 * spin too long if we get preempted.
4393 	 */
4394 	preempt_disable();
4395 	++userpg->lock;
4396 	barrier();
4397 	userpg->index = perf_event_index(event);
4398 	userpg->offset = perf_event_count(event);
4399 	if (userpg->index)
4400 		userpg->offset -= local64_read(&event->hw.prev_count);
4401 
4402 	userpg->time_enabled = enabled +
4403 			atomic64_read(&event->child_total_time_enabled);
4404 
4405 	userpg->time_running = running +
4406 			atomic64_read(&event->child_total_time_running);
4407 
4408 	arch_perf_update_userpage(event, userpg, now);
4409 
4410 	barrier();
4411 	++userpg->lock;
4412 	preempt_enable();
4413 unlock:
4414 	rcu_read_unlock();
4415 }
4416 
4417 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4418 {
4419 	struct perf_event *event = vma->vm_file->private_data;
4420 	struct ring_buffer *rb;
4421 	int ret = VM_FAULT_SIGBUS;
4422 
4423 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4424 		if (vmf->pgoff == 0)
4425 			ret = 0;
4426 		return ret;
4427 	}
4428 
4429 	rcu_read_lock();
4430 	rb = rcu_dereference(event->rb);
4431 	if (!rb)
4432 		goto unlock;
4433 
4434 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4435 		goto unlock;
4436 
4437 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4438 	if (!vmf->page)
4439 		goto unlock;
4440 
4441 	get_page(vmf->page);
4442 	vmf->page->mapping = vma->vm_file->f_mapping;
4443 	vmf->page->index   = vmf->pgoff;
4444 
4445 	ret = 0;
4446 unlock:
4447 	rcu_read_unlock();
4448 
4449 	return ret;
4450 }
4451 
4452 static void ring_buffer_attach(struct perf_event *event,
4453 			       struct ring_buffer *rb)
4454 {
4455 	struct ring_buffer *old_rb = NULL;
4456 	unsigned long flags;
4457 
4458 	if (event->rb) {
4459 		/*
4460 		 * Should be impossible, we set this when removing
4461 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4462 		 */
4463 		WARN_ON_ONCE(event->rcu_pending);
4464 
4465 		old_rb = event->rb;
4466 		spin_lock_irqsave(&old_rb->event_lock, flags);
4467 		list_del_rcu(&event->rb_entry);
4468 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4469 
4470 		event->rcu_batches = get_state_synchronize_rcu();
4471 		event->rcu_pending = 1;
4472 	}
4473 
4474 	if (rb) {
4475 		if (event->rcu_pending) {
4476 			cond_synchronize_rcu(event->rcu_batches);
4477 			event->rcu_pending = 0;
4478 		}
4479 
4480 		spin_lock_irqsave(&rb->event_lock, flags);
4481 		list_add_rcu(&event->rb_entry, &rb->event_list);
4482 		spin_unlock_irqrestore(&rb->event_lock, flags);
4483 	}
4484 
4485 	rcu_assign_pointer(event->rb, rb);
4486 
4487 	if (old_rb) {
4488 		ring_buffer_put(old_rb);
4489 		/*
4490 		 * Since we detached before setting the new rb, so that we
4491 		 * could attach the new rb, we could have missed a wakeup.
4492 		 * Provide it now.
4493 		 */
4494 		wake_up_all(&event->waitq);
4495 	}
4496 }
4497 
4498 static void ring_buffer_wakeup(struct perf_event *event)
4499 {
4500 	struct ring_buffer *rb;
4501 
4502 	rcu_read_lock();
4503 	rb = rcu_dereference(event->rb);
4504 	if (rb) {
4505 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4506 			wake_up_all(&event->waitq);
4507 	}
4508 	rcu_read_unlock();
4509 }
4510 
4511 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4512 {
4513 	struct ring_buffer *rb;
4514 
4515 	rcu_read_lock();
4516 	rb = rcu_dereference(event->rb);
4517 	if (rb) {
4518 		if (!atomic_inc_not_zero(&rb->refcount))
4519 			rb = NULL;
4520 	}
4521 	rcu_read_unlock();
4522 
4523 	return rb;
4524 }
4525 
4526 void ring_buffer_put(struct ring_buffer *rb)
4527 {
4528 	if (!atomic_dec_and_test(&rb->refcount))
4529 		return;
4530 
4531 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4532 
4533 	call_rcu(&rb->rcu_head, rb_free_rcu);
4534 }
4535 
4536 static void perf_mmap_open(struct vm_area_struct *vma)
4537 {
4538 	struct perf_event *event = vma->vm_file->private_data;
4539 
4540 	atomic_inc(&event->mmap_count);
4541 	atomic_inc(&event->rb->mmap_count);
4542 
4543 	if (vma->vm_pgoff)
4544 		atomic_inc(&event->rb->aux_mmap_count);
4545 
4546 	if (event->pmu->event_mapped)
4547 		event->pmu->event_mapped(event);
4548 }
4549 
4550 /*
4551  * A buffer can be mmap()ed multiple times; either directly through the same
4552  * event, or through other events by use of perf_event_set_output().
4553  *
4554  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4555  * the buffer here, where we still have a VM context. This means we need
4556  * to detach all events redirecting to us.
4557  */
4558 static void perf_mmap_close(struct vm_area_struct *vma)
4559 {
4560 	struct perf_event *event = vma->vm_file->private_data;
4561 
4562 	struct ring_buffer *rb = ring_buffer_get(event);
4563 	struct user_struct *mmap_user = rb->mmap_user;
4564 	int mmap_locked = rb->mmap_locked;
4565 	unsigned long size = perf_data_size(rb);
4566 
4567 	if (event->pmu->event_unmapped)
4568 		event->pmu->event_unmapped(event);
4569 
4570 	/*
4571 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4572 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4573 	 * serialize with perf_mmap here.
4574 	 */
4575 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4576 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4577 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4578 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4579 
4580 		rb_free_aux(rb);
4581 		mutex_unlock(&event->mmap_mutex);
4582 	}
4583 
4584 	atomic_dec(&rb->mmap_count);
4585 
4586 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4587 		goto out_put;
4588 
4589 	ring_buffer_attach(event, NULL);
4590 	mutex_unlock(&event->mmap_mutex);
4591 
4592 	/* If there's still other mmap()s of this buffer, we're done. */
4593 	if (atomic_read(&rb->mmap_count))
4594 		goto out_put;
4595 
4596 	/*
4597 	 * No other mmap()s, detach from all other events that might redirect
4598 	 * into the now unreachable buffer. Somewhat complicated by the
4599 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4600 	 */
4601 again:
4602 	rcu_read_lock();
4603 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4604 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4605 			/*
4606 			 * This event is en-route to free_event() which will
4607 			 * detach it and remove it from the list.
4608 			 */
4609 			continue;
4610 		}
4611 		rcu_read_unlock();
4612 
4613 		mutex_lock(&event->mmap_mutex);
4614 		/*
4615 		 * Check we didn't race with perf_event_set_output() which can
4616 		 * swizzle the rb from under us while we were waiting to
4617 		 * acquire mmap_mutex.
4618 		 *
4619 		 * If we find a different rb; ignore this event, a next
4620 		 * iteration will no longer find it on the list. We have to
4621 		 * still restart the iteration to make sure we're not now
4622 		 * iterating the wrong list.
4623 		 */
4624 		if (event->rb == rb)
4625 			ring_buffer_attach(event, NULL);
4626 
4627 		mutex_unlock(&event->mmap_mutex);
4628 		put_event(event);
4629 
4630 		/*
4631 		 * Restart the iteration; either we're on the wrong list or
4632 		 * destroyed its integrity by doing a deletion.
4633 		 */
4634 		goto again;
4635 	}
4636 	rcu_read_unlock();
4637 
4638 	/*
4639 	 * It could be there's still a few 0-ref events on the list; they'll
4640 	 * get cleaned up by free_event() -- they'll also still have their
4641 	 * ref on the rb and will free it whenever they are done with it.
4642 	 *
4643 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4644 	 * undo the VM accounting.
4645 	 */
4646 
4647 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4648 	vma->vm_mm->pinned_vm -= mmap_locked;
4649 	free_uid(mmap_user);
4650 
4651 out_put:
4652 	ring_buffer_put(rb); /* could be last */
4653 }
4654 
4655 static const struct vm_operations_struct perf_mmap_vmops = {
4656 	.open		= perf_mmap_open,
4657 	.close		= perf_mmap_close, /* non mergable */
4658 	.fault		= perf_mmap_fault,
4659 	.page_mkwrite	= perf_mmap_fault,
4660 };
4661 
4662 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4663 {
4664 	struct perf_event *event = file->private_data;
4665 	unsigned long user_locked, user_lock_limit;
4666 	struct user_struct *user = current_user();
4667 	unsigned long locked, lock_limit;
4668 	struct ring_buffer *rb = NULL;
4669 	unsigned long vma_size;
4670 	unsigned long nr_pages;
4671 	long user_extra = 0, extra = 0;
4672 	int ret = 0, flags = 0;
4673 
4674 	/*
4675 	 * Don't allow mmap() of inherited per-task counters. This would
4676 	 * create a performance issue due to all children writing to the
4677 	 * same rb.
4678 	 */
4679 	if (event->cpu == -1 && event->attr.inherit)
4680 		return -EINVAL;
4681 
4682 	if (!(vma->vm_flags & VM_SHARED))
4683 		return -EINVAL;
4684 
4685 	vma_size = vma->vm_end - vma->vm_start;
4686 
4687 	if (vma->vm_pgoff == 0) {
4688 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4689 	} else {
4690 		/*
4691 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4692 		 * mapped, all subsequent mappings should have the same size
4693 		 * and offset. Must be above the normal perf buffer.
4694 		 */
4695 		u64 aux_offset, aux_size;
4696 
4697 		if (!event->rb)
4698 			return -EINVAL;
4699 
4700 		nr_pages = vma_size / PAGE_SIZE;
4701 
4702 		mutex_lock(&event->mmap_mutex);
4703 		ret = -EINVAL;
4704 
4705 		rb = event->rb;
4706 		if (!rb)
4707 			goto aux_unlock;
4708 
4709 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4710 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4711 
4712 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4713 			goto aux_unlock;
4714 
4715 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4716 			goto aux_unlock;
4717 
4718 		/* already mapped with a different offset */
4719 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4720 			goto aux_unlock;
4721 
4722 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4723 			goto aux_unlock;
4724 
4725 		/* already mapped with a different size */
4726 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4727 			goto aux_unlock;
4728 
4729 		if (!is_power_of_2(nr_pages))
4730 			goto aux_unlock;
4731 
4732 		if (!atomic_inc_not_zero(&rb->mmap_count))
4733 			goto aux_unlock;
4734 
4735 		if (rb_has_aux(rb)) {
4736 			atomic_inc(&rb->aux_mmap_count);
4737 			ret = 0;
4738 			goto unlock;
4739 		}
4740 
4741 		atomic_set(&rb->aux_mmap_count, 1);
4742 		user_extra = nr_pages;
4743 
4744 		goto accounting;
4745 	}
4746 
4747 	/*
4748 	 * If we have rb pages ensure they're a power-of-two number, so we
4749 	 * can do bitmasks instead of modulo.
4750 	 */
4751 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4752 		return -EINVAL;
4753 
4754 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4755 		return -EINVAL;
4756 
4757 	WARN_ON_ONCE(event->ctx->parent_ctx);
4758 again:
4759 	mutex_lock(&event->mmap_mutex);
4760 	if (event->rb) {
4761 		if (event->rb->nr_pages != nr_pages) {
4762 			ret = -EINVAL;
4763 			goto unlock;
4764 		}
4765 
4766 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4767 			/*
4768 			 * Raced against perf_mmap_close() through
4769 			 * perf_event_set_output(). Try again, hope for better
4770 			 * luck.
4771 			 */
4772 			mutex_unlock(&event->mmap_mutex);
4773 			goto again;
4774 		}
4775 
4776 		goto unlock;
4777 	}
4778 
4779 	user_extra = nr_pages + 1;
4780 
4781 accounting:
4782 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4783 
4784 	/*
4785 	 * Increase the limit linearly with more CPUs:
4786 	 */
4787 	user_lock_limit *= num_online_cpus();
4788 
4789 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4790 
4791 	if (user_locked > user_lock_limit)
4792 		extra = user_locked - user_lock_limit;
4793 
4794 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4795 	lock_limit >>= PAGE_SHIFT;
4796 	locked = vma->vm_mm->pinned_vm + extra;
4797 
4798 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4799 		!capable(CAP_IPC_LOCK)) {
4800 		ret = -EPERM;
4801 		goto unlock;
4802 	}
4803 
4804 	WARN_ON(!rb && event->rb);
4805 
4806 	if (vma->vm_flags & VM_WRITE)
4807 		flags |= RING_BUFFER_WRITABLE;
4808 
4809 	if (!rb) {
4810 		rb = rb_alloc(nr_pages,
4811 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4812 			      event->cpu, flags);
4813 
4814 		if (!rb) {
4815 			ret = -ENOMEM;
4816 			goto unlock;
4817 		}
4818 
4819 		atomic_set(&rb->mmap_count, 1);
4820 		rb->mmap_user = get_current_user();
4821 		rb->mmap_locked = extra;
4822 
4823 		ring_buffer_attach(event, rb);
4824 
4825 		perf_event_init_userpage(event);
4826 		perf_event_update_userpage(event);
4827 	} else {
4828 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4829 				   event->attr.aux_watermark, flags);
4830 		if (!ret)
4831 			rb->aux_mmap_locked = extra;
4832 	}
4833 
4834 unlock:
4835 	if (!ret) {
4836 		atomic_long_add(user_extra, &user->locked_vm);
4837 		vma->vm_mm->pinned_vm += extra;
4838 
4839 		atomic_inc(&event->mmap_count);
4840 	} else if (rb) {
4841 		atomic_dec(&rb->mmap_count);
4842 	}
4843 aux_unlock:
4844 	mutex_unlock(&event->mmap_mutex);
4845 
4846 	/*
4847 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4848 	 * vma.
4849 	 */
4850 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4851 	vma->vm_ops = &perf_mmap_vmops;
4852 
4853 	if (event->pmu->event_mapped)
4854 		event->pmu->event_mapped(event);
4855 
4856 	return ret;
4857 }
4858 
4859 static int perf_fasync(int fd, struct file *filp, int on)
4860 {
4861 	struct inode *inode = file_inode(filp);
4862 	struct perf_event *event = filp->private_data;
4863 	int retval;
4864 
4865 	inode_lock(inode);
4866 	retval = fasync_helper(fd, filp, on, &event->fasync);
4867 	inode_unlock(inode);
4868 
4869 	if (retval < 0)
4870 		return retval;
4871 
4872 	return 0;
4873 }
4874 
4875 static const struct file_operations perf_fops = {
4876 	.llseek			= no_llseek,
4877 	.release		= perf_release,
4878 	.read			= perf_read,
4879 	.poll			= perf_poll,
4880 	.unlocked_ioctl		= perf_ioctl,
4881 	.compat_ioctl		= perf_compat_ioctl,
4882 	.mmap			= perf_mmap,
4883 	.fasync			= perf_fasync,
4884 };
4885 
4886 /*
4887  * Perf event wakeup
4888  *
4889  * If there's data, ensure we set the poll() state and publish everything
4890  * to user-space before waking everybody up.
4891  */
4892 
4893 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4894 {
4895 	/* only the parent has fasync state */
4896 	if (event->parent)
4897 		event = event->parent;
4898 	return &event->fasync;
4899 }
4900 
4901 void perf_event_wakeup(struct perf_event *event)
4902 {
4903 	ring_buffer_wakeup(event);
4904 
4905 	if (event->pending_kill) {
4906 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4907 		event->pending_kill = 0;
4908 	}
4909 }
4910 
4911 static void perf_pending_event(struct irq_work *entry)
4912 {
4913 	struct perf_event *event = container_of(entry,
4914 			struct perf_event, pending);
4915 	int rctx;
4916 
4917 	rctx = perf_swevent_get_recursion_context();
4918 	/*
4919 	 * If we 'fail' here, that's OK, it means recursion is already disabled
4920 	 * and we won't recurse 'further'.
4921 	 */
4922 
4923 	if (event->pending_disable) {
4924 		event->pending_disable = 0;
4925 		perf_event_disable_local(event);
4926 	}
4927 
4928 	if (event->pending_wakeup) {
4929 		event->pending_wakeup = 0;
4930 		perf_event_wakeup(event);
4931 	}
4932 
4933 	if (rctx >= 0)
4934 		perf_swevent_put_recursion_context(rctx);
4935 }
4936 
4937 /*
4938  * We assume there is only KVM supporting the callbacks.
4939  * Later on, we might change it to a list if there is
4940  * another virtualization implementation supporting the callbacks.
4941  */
4942 struct perf_guest_info_callbacks *perf_guest_cbs;
4943 
4944 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4945 {
4946 	perf_guest_cbs = cbs;
4947 	return 0;
4948 }
4949 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4950 
4951 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4952 {
4953 	perf_guest_cbs = NULL;
4954 	return 0;
4955 }
4956 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4957 
4958 static void
4959 perf_output_sample_regs(struct perf_output_handle *handle,
4960 			struct pt_regs *regs, u64 mask)
4961 {
4962 	int bit;
4963 
4964 	for_each_set_bit(bit, (const unsigned long *) &mask,
4965 			 sizeof(mask) * BITS_PER_BYTE) {
4966 		u64 val;
4967 
4968 		val = perf_reg_value(regs, bit);
4969 		perf_output_put(handle, val);
4970 	}
4971 }
4972 
4973 static void perf_sample_regs_user(struct perf_regs *regs_user,
4974 				  struct pt_regs *regs,
4975 				  struct pt_regs *regs_user_copy)
4976 {
4977 	if (user_mode(regs)) {
4978 		regs_user->abi = perf_reg_abi(current);
4979 		regs_user->regs = regs;
4980 	} else if (current->mm) {
4981 		perf_get_regs_user(regs_user, regs, regs_user_copy);
4982 	} else {
4983 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4984 		regs_user->regs = NULL;
4985 	}
4986 }
4987 
4988 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4989 				  struct pt_regs *regs)
4990 {
4991 	regs_intr->regs = regs;
4992 	regs_intr->abi  = perf_reg_abi(current);
4993 }
4994 
4995 
4996 /*
4997  * Get remaining task size from user stack pointer.
4998  *
4999  * It'd be better to take stack vma map and limit this more
5000  * precisly, but there's no way to get it safely under interrupt,
5001  * so using TASK_SIZE as limit.
5002  */
5003 static u64 perf_ustack_task_size(struct pt_regs *regs)
5004 {
5005 	unsigned long addr = perf_user_stack_pointer(regs);
5006 
5007 	if (!addr || addr >= TASK_SIZE)
5008 		return 0;
5009 
5010 	return TASK_SIZE - addr;
5011 }
5012 
5013 static u16
5014 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5015 			struct pt_regs *regs)
5016 {
5017 	u64 task_size;
5018 
5019 	/* No regs, no stack pointer, no dump. */
5020 	if (!regs)
5021 		return 0;
5022 
5023 	/*
5024 	 * Check if we fit in with the requested stack size into the:
5025 	 * - TASK_SIZE
5026 	 *   If we don't, we limit the size to the TASK_SIZE.
5027 	 *
5028 	 * - remaining sample size
5029 	 *   If we don't, we customize the stack size to
5030 	 *   fit in to the remaining sample size.
5031 	 */
5032 
5033 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5034 	stack_size = min(stack_size, (u16) task_size);
5035 
5036 	/* Current header size plus static size and dynamic size. */
5037 	header_size += 2 * sizeof(u64);
5038 
5039 	/* Do we fit in with the current stack dump size? */
5040 	if ((u16) (header_size + stack_size) < header_size) {
5041 		/*
5042 		 * If we overflow the maximum size for the sample,
5043 		 * we customize the stack dump size to fit in.
5044 		 */
5045 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5046 		stack_size = round_up(stack_size, sizeof(u64));
5047 	}
5048 
5049 	return stack_size;
5050 }
5051 
5052 static void
5053 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5054 			  struct pt_regs *regs)
5055 {
5056 	/* Case of a kernel thread, nothing to dump */
5057 	if (!regs) {
5058 		u64 size = 0;
5059 		perf_output_put(handle, size);
5060 	} else {
5061 		unsigned long sp;
5062 		unsigned int rem;
5063 		u64 dyn_size;
5064 
5065 		/*
5066 		 * We dump:
5067 		 * static size
5068 		 *   - the size requested by user or the best one we can fit
5069 		 *     in to the sample max size
5070 		 * data
5071 		 *   - user stack dump data
5072 		 * dynamic size
5073 		 *   - the actual dumped size
5074 		 */
5075 
5076 		/* Static size. */
5077 		perf_output_put(handle, dump_size);
5078 
5079 		/* Data. */
5080 		sp = perf_user_stack_pointer(regs);
5081 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5082 		dyn_size = dump_size - rem;
5083 
5084 		perf_output_skip(handle, rem);
5085 
5086 		/* Dynamic size. */
5087 		perf_output_put(handle, dyn_size);
5088 	}
5089 }
5090 
5091 static void __perf_event_header__init_id(struct perf_event_header *header,
5092 					 struct perf_sample_data *data,
5093 					 struct perf_event *event)
5094 {
5095 	u64 sample_type = event->attr.sample_type;
5096 
5097 	data->type = sample_type;
5098 	header->size += event->id_header_size;
5099 
5100 	if (sample_type & PERF_SAMPLE_TID) {
5101 		/* namespace issues */
5102 		data->tid_entry.pid = perf_event_pid(event, current);
5103 		data->tid_entry.tid = perf_event_tid(event, current);
5104 	}
5105 
5106 	if (sample_type & PERF_SAMPLE_TIME)
5107 		data->time = perf_event_clock(event);
5108 
5109 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5110 		data->id = primary_event_id(event);
5111 
5112 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5113 		data->stream_id = event->id;
5114 
5115 	if (sample_type & PERF_SAMPLE_CPU) {
5116 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5117 		data->cpu_entry.reserved = 0;
5118 	}
5119 }
5120 
5121 void perf_event_header__init_id(struct perf_event_header *header,
5122 				struct perf_sample_data *data,
5123 				struct perf_event *event)
5124 {
5125 	if (event->attr.sample_id_all)
5126 		__perf_event_header__init_id(header, data, event);
5127 }
5128 
5129 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5130 					   struct perf_sample_data *data)
5131 {
5132 	u64 sample_type = data->type;
5133 
5134 	if (sample_type & PERF_SAMPLE_TID)
5135 		perf_output_put(handle, data->tid_entry);
5136 
5137 	if (sample_type & PERF_SAMPLE_TIME)
5138 		perf_output_put(handle, data->time);
5139 
5140 	if (sample_type & PERF_SAMPLE_ID)
5141 		perf_output_put(handle, data->id);
5142 
5143 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5144 		perf_output_put(handle, data->stream_id);
5145 
5146 	if (sample_type & PERF_SAMPLE_CPU)
5147 		perf_output_put(handle, data->cpu_entry);
5148 
5149 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5150 		perf_output_put(handle, data->id);
5151 }
5152 
5153 void perf_event__output_id_sample(struct perf_event *event,
5154 				  struct perf_output_handle *handle,
5155 				  struct perf_sample_data *sample)
5156 {
5157 	if (event->attr.sample_id_all)
5158 		__perf_event__output_id_sample(handle, sample);
5159 }
5160 
5161 static void perf_output_read_one(struct perf_output_handle *handle,
5162 				 struct perf_event *event,
5163 				 u64 enabled, u64 running)
5164 {
5165 	u64 read_format = event->attr.read_format;
5166 	u64 values[4];
5167 	int n = 0;
5168 
5169 	values[n++] = perf_event_count(event);
5170 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5171 		values[n++] = enabled +
5172 			atomic64_read(&event->child_total_time_enabled);
5173 	}
5174 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5175 		values[n++] = running +
5176 			atomic64_read(&event->child_total_time_running);
5177 	}
5178 	if (read_format & PERF_FORMAT_ID)
5179 		values[n++] = primary_event_id(event);
5180 
5181 	__output_copy(handle, values, n * sizeof(u64));
5182 }
5183 
5184 /*
5185  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5186  */
5187 static void perf_output_read_group(struct perf_output_handle *handle,
5188 			    struct perf_event *event,
5189 			    u64 enabled, u64 running)
5190 {
5191 	struct perf_event *leader = event->group_leader, *sub;
5192 	u64 read_format = event->attr.read_format;
5193 	u64 values[5];
5194 	int n = 0;
5195 
5196 	values[n++] = 1 + leader->nr_siblings;
5197 
5198 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5199 		values[n++] = enabled;
5200 
5201 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5202 		values[n++] = running;
5203 
5204 	if (leader != event)
5205 		leader->pmu->read(leader);
5206 
5207 	values[n++] = perf_event_count(leader);
5208 	if (read_format & PERF_FORMAT_ID)
5209 		values[n++] = primary_event_id(leader);
5210 
5211 	__output_copy(handle, values, n * sizeof(u64));
5212 
5213 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5214 		n = 0;
5215 
5216 		if ((sub != event) &&
5217 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5218 			sub->pmu->read(sub);
5219 
5220 		values[n++] = perf_event_count(sub);
5221 		if (read_format & PERF_FORMAT_ID)
5222 			values[n++] = primary_event_id(sub);
5223 
5224 		__output_copy(handle, values, n * sizeof(u64));
5225 	}
5226 }
5227 
5228 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5229 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5230 
5231 static void perf_output_read(struct perf_output_handle *handle,
5232 			     struct perf_event *event)
5233 {
5234 	u64 enabled = 0, running = 0, now;
5235 	u64 read_format = event->attr.read_format;
5236 
5237 	/*
5238 	 * compute total_time_enabled, total_time_running
5239 	 * based on snapshot values taken when the event
5240 	 * was last scheduled in.
5241 	 *
5242 	 * we cannot simply called update_context_time()
5243 	 * because of locking issue as we are called in
5244 	 * NMI context
5245 	 */
5246 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5247 		calc_timer_values(event, &now, &enabled, &running);
5248 
5249 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5250 		perf_output_read_group(handle, event, enabled, running);
5251 	else
5252 		perf_output_read_one(handle, event, enabled, running);
5253 }
5254 
5255 void perf_output_sample(struct perf_output_handle *handle,
5256 			struct perf_event_header *header,
5257 			struct perf_sample_data *data,
5258 			struct perf_event *event)
5259 {
5260 	u64 sample_type = data->type;
5261 
5262 	perf_output_put(handle, *header);
5263 
5264 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5265 		perf_output_put(handle, data->id);
5266 
5267 	if (sample_type & PERF_SAMPLE_IP)
5268 		perf_output_put(handle, data->ip);
5269 
5270 	if (sample_type & PERF_SAMPLE_TID)
5271 		perf_output_put(handle, data->tid_entry);
5272 
5273 	if (sample_type & PERF_SAMPLE_TIME)
5274 		perf_output_put(handle, data->time);
5275 
5276 	if (sample_type & PERF_SAMPLE_ADDR)
5277 		perf_output_put(handle, data->addr);
5278 
5279 	if (sample_type & PERF_SAMPLE_ID)
5280 		perf_output_put(handle, data->id);
5281 
5282 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5283 		perf_output_put(handle, data->stream_id);
5284 
5285 	if (sample_type & PERF_SAMPLE_CPU)
5286 		perf_output_put(handle, data->cpu_entry);
5287 
5288 	if (sample_type & PERF_SAMPLE_PERIOD)
5289 		perf_output_put(handle, data->period);
5290 
5291 	if (sample_type & PERF_SAMPLE_READ)
5292 		perf_output_read(handle, event);
5293 
5294 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5295 		if (data->callchain) {
5296 			int size = 1;
5297 
5298 			if (data->callchain)
5299 				size += data->callchain->nr;
5300 
5301 			size *= sizeof(u64);
5302 
5303 			__output_copy(handle, data->callchain, size);
5304 		} else {
5305 			u64 nr = 0;
5306 			perf_output_put(handle, nr);
5307 		}
5308 	}
5309 
5310 	if (sample_type & PERF_SAMPLE_RAW) {
5311 		if (data->raw) {
5312 			u32 raw_size = data->raw->size;
5313 			u32 real_size = round_up(raw_size + sizeof(u32),
5314 						 sizeof(u64)) - sizeof(u32);
5315 			u64 zero = 0;
5316 
5317 			perf_output_put(handle, real_size);
5318 			__output_copy(handle, data->raw->data, raw_size);
5319 			if (real_size - raw_size)
5320 				__output_copy(handle, &zero, real_size - raw_size);
5321 		} else {
5322 			struct {
5323 				u32	size;
5324 				u32	data;
5325 			} raw = {
5326 				.size = sizeof(u32),
5327 				.data = 0,
5328 			};
5329 			perf_output_put(handle, raw);
5330 		}
5331 	}
5332 
5333 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5334 		if (data->br_stack) {
5335 			size_t size;
5336 
5337 			size = data->br_stack->nr
5338 			     * sizeof(struct perf_branch_entry);
5339 
5340 			perf_output_put(handle, data->br_stack->nr);
5341 			perf_output_copy(handle, data->br_stack->entries, size);
5342 		} else {
5343 			/*
5344 			 * we always store at least the value of nr
5345 			 */
5346 			u64 nr = 0;
5347 			perf_output_put(handle, nr);
5348 		}
5349 	}
5350 
5351 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5352 		u64 abi = data->regs_user.abi;
5353 
5354 		/*
5355 		 * If there are no regs to dump, notice it through
5356 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5357 		 */
5358 		perf_output_put(handle, abi);
5359 
5360 		if (abi) {
5361 			u64 mask = event->attr.sample_regs_user;
5362 			perf_output_sample_regs(handle,
5363 						data->regs_user.regs,
5364 						mask);
5365 		}
5366 	}
5367 
5368 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5369 		perf_output_sample_ustack(handle,
5370 					  data->stack_user_size,
5371 					  data->regs_user.regs);
5372 	}
5373 
5374 	if (sample_type & PERF_SAMPLE_WEIGHT)
5375 		perf_output_put(handle, data->weight);
5376 
5377 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5378 		perf_output_put(handle, data->data_src.val);
5379 
5380 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5381 		perf_output_put(handle, data->txn);
5382 
5383 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5384 		u64 abi = data->regs_intr.abi;
5385 		/*
5386 		 * If there are no regs to dump, notice it through
5387 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5388 		 */
5389 		perf_output_put(handle, abi);
5390 
5391 		if (abi) {
5392 			u64 mask = event->attr.sample_regs_intr;
5393 
5394 			perf_output_sample_regs(handle,
5395 						data->regs_intr.regs,
5396 						mask);
5397 		}
5398 	}
5399 
5400 	if (!event->attr.watermark) {
5401 		int wakeup_events = event->attr.wakeup_events;
5402 
5403 		if (wakeup_events) {
5404 			struct ring_buffer *rb = handle->rb;
5405 			int events = local_inc_return(&rb->events);
5406 
5407 			if (events >= wakeup_events) {
5408 				local_sub(wakeup_events, &rb->events);
5409 				local_inc(&rb->wakeup);
5410 			}
5411 		}
5412 	}
5413 }
5414 
5415 void perf_prepare_sample(struct perf_event_header *header,
5416 			 struct perf_sample_data *data,
5417 			 struct perf_event *event,
5418 			 struct pt_regs *regs)
5419 {
5420 	u64 sample_type = event->attr.sample_type;
5421 
5422 	header->type = PERF_RECORD_SAMPLE;
5423 	header->size = sizeof(*header) + event->header_size;
5424 
5425 	header->misc = 0;
5426 	header->misc |= perf_misc_flags(regs);
5427 
5428 	__perf_event_header__init_id(header, data, event);
5429 
5430 	if (sample_type & PERF_SAMPLE_IP)
5431 		data->ip = perf_instruction_pointer(regs);
5432 
5433 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5434 		int size = 1;
5435 
5436 		data->callchain = perf_callchain(event, regs);
5437 
5438 		if (data->callchain)
5439 			size += data->callchain->nr;
5440 
5441 		header->size += size * sizeof(u64);
5442 	}
5443 
5444 	if (sample_type & PERF_SAMPLE_RAW) {
5445 		int size = sizeof(u32);
5446 
5447 		if (data->raw)
5448 			size += data->raw->size;
5449 		else
5450 			size += sizeof(u32);
5451 
5452 		header->size += round_up(size, sizeof(u64));
5453 	}
5454 
5455 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5456 		int size = sizeof(u64); /* nr */
5457 		if (data->br_stack) {
5458 			size += data->br_stack->nr
5459 			      * sizeof(struct perf_branch_entry);
5460 		}
5461 		header->size += size;
5462 	}
5463 
5464 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5465 		perf_sample_regs_user(&data->regs_user, regs,
5466 				      &data->regs_user_copy);
5467 
5468 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5469 		/* regs dump ABI info */
5470 		int size = sizeof(u64);
5471 
5472 		if (data->regs_user.regs) {
5473 			u64 mask = event->attr.sample_regs_user;
5474 			size += hweight64(mask) * sizeof(u64);
5475 		}
5476 
5477 		header->size += size;
5478 	}
5479 
5480 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5481 		/*
5482 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5483 		 * processed as the last one or have additional check added
5484 		 * in case new sample type is added, because we could eat
5485 		 * up the rest of the sample size.
5486 		 */
5487 		u16 stack_size = event->attr.sample_stack_user;
5488 		u16 size = sizeof(u64);
5489 
5490 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5491 						     data->regs_user.regs);
5492 
5493 		/*
5494 		 * If there is something to dump, add space for the dump
5495 		 * itself and for the field that tells the dynamic size,
5496 		 * which is how many have been actually dumped.
5497 		 */
5498 		if (stack_size)
5499 			size += sizeof(u64) + stack_size;
5500 
5501 		data->stack_user_size = stack_size;
5502 		header->size += size;
5503 	}
5504 
5505 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5506 		/* regs dump ABI info */
5507 		int size = sizeof(u64);
5508 
5509 		perf_sample_regs_intr(&data->regs_intr, regs);
5510 
5511 		if (data->regs_intr.regs) {
5512 			u64 mask = event->attr.sample_regs_intr;
5513 
5514 			size += hweight64(mask) * sizeof(u64);
5515 		}
5516 
5517 		header->size += size;
5518 	}
5519 }
5520 
5521 void perf_event_output(struct perf_event *event,
5522 			struct perf_sample_data *data,
5523 			struct pt_regs *regs)
5524 {
5525 	struct perf_output_handle handle;
5526 	struct perf_event_header header;
5527 
5528 	/* protect the callchain buffers */
5529 	rcu_read_lock();
5530 
5531 	perf_prepare_sample(&header, data, event, regs);
5532 
5533 	if (perf_output_begin(&handle, event, header.size))
5534 		goto exit;
5535 
5536 	perf_output_sample(&handle, &header, data, event);
5537 
5538 	perf_output_end(&handle);
5539 
5540 exit:
5541 	rcu_read_unlock();
5542 }
5543 
5544 /*
5545  * read event_id
5546  */
5547 
5548 struct perf_read_event {
5549 	struct perf_event_header	header;
5550 
5551 	u32				pid;
5552 	u32				tid;
5553 };
5554 
5555 static void
5556 perf_event_read_event(struct perf_event *event,
5557 			struct task_struct *task)
5558 {
5559 	struct perf_output_handle handle;
5560 	struct perf_sample_data sample;
5561 	struct perf_read_event read_event = {
5562 		.header = {
5563 			.type = PERF_RECORD_READ,
5564 			.misc = 0,
5565 			.size = sizeof(read_event) + event->read_size,
5566 		},
5567 		.pid = perf_event_pid(event, task),
5568 		.tid = perf_event_tid(event, task),
5569 	};
5570 	int ret;
5571 
5572 	perf_event_header__init_id(&read_event.header, &sample, event);
5573 	ret = perf_output_begin(&handle, event, read_event.header.size);
5574 	if (ret)
5575 		return;
5576 
5577 	perf_output_put(&handle, read_event);
5578 	perf_output_read(&handle, event);
5579 	perf_event__output_id_sample(event, &handle, &sample);
5580 
5581 	perf_output_end(&handle);
5582 }
5583 
5584 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5585 
5586 static void
5587 perf_event_aux_ctx(struct perf_event_context *ctx,
5588 		   perf_event_aux_output_cb output,
5589 		   void *data)
5590 {
5591 	struct perf_event *event;
5592 
5593 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5594 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5595 			continue;
5596 		if (!event_filter_match(event))
5597 			continue;
5598 		output(event, data);
5599 	}
5600 }
5601 
5602 static void
5603 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5604 			struct perf_event_context *task_ctx)
5605 {
5606 	rcu_read_lock();
5607 	preempt_disable();
5608 	perf_event_aux_ctx(task_ctx, output, data);
5609 	preempt_enable();
5610 	rcu_read_unlock();
5611 }
5612 
5613 static void
5614 perf_event_aux(perf_event_aux_output_cb output, void *data,
5615 	       struct perf_event_context *task_ctx)
5616 {
5617 	struct perf_cpu_context *cpuctx;
5618 	struct perf_event_context *ctx;
5619 	struct pmu *pmu;
5620 	int ctxn;
5621 
5622 	/*
5623 	 * If we have task_ctx != NULL we only notify
5624 	 * the task context itself. The task_ctx is set
5625 	 * only for EXIT events before releasing task
5626 	 * context.
5627 	 */
5628 	if (task_ctx) {
5629 		perf_event_aux_task_ctx(output, data, task_ctx);
5630 		return;
5631 	}
5632 
5633 	rcu_read_lock();
5634 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5635 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5636 		if (cpuctx->unique_pmu != pmu)
5637 			goto next;
5638 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5639 		ctxn = pmu->task_ctx_nr;
5640 		if (ctxn < 0)
5641 			goto next;
5642 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5643 		if (ctx)
5644 			perf_event_aux_ctx(ctx, output, data);
5645 next:
5646 		put_cpu_ptr(pmu->pmu_cpu_context);
5647 	}
5648 	rcu_read_unlock();
5649 }
5650 
5651 /*
5652  * task tracking -- fork/exit
5653  *
5654  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5655  */
5656 
5657 struct perf_task_event {
5658 	struct task_struct		*task;
5659 	struct perf_event_context	*task_ctx;
5660 
5661 	struct {
5662 		struct perf_event_header	header;
5663 
5664 		u32				pid;
5665 		u32				ppid;
5666 		u32				tid;
5667 		u32				ptid;
5668 		u64				time;
5669 	} event_id;
5670 };
5671 
5672 static int perf_event_task_match(struct perf_event *event)
5673 {
5674 	return event->attr.comm  || event->attr.mmap ||
5675 	       event->attr.mmap2 || event->attr.mmap_data ||
5676 	       event->attr.task;
5677 }
5678 
5679 static void perf_event_task_output(struct perf_event *event,
5680 				   void *data)
5681 {
5682 	struct perf_task_event *task_event = data;
5683 	struct perf_output_handle handle;
5684 	struct perf_sample_data	sample;
5685 	struct task_struct *task = task_event->task;
5686 	int ret, size = task_event->event_id.header.size;
5687 
5688 	if (!perf_event_task_match(event))
5689 		return;
5690 
5691 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5692 
5693 	ret = perf_output_begin(&handle, event,
5694 				task_event->event_id.header.size);
5695 	if (ret)
5696 		goto out;
5697 
5698 	task_event->event_id.pid = perf_event_pid(event, task);
5699 	task_event->event_id.ppid = perf_event_pid(event, current);
5700 
5701 	task_event->event_id.tid = perf_event_tid(event, task);
5702 	task_event->event_id.ptid = perf_event_tid(event, current);
5703 
5704 	task_event->event_id.time = perf_event_clock(event);
5705 
5706 	perf_output_put(&handle, task_event->event_id);
5707 
5708 	perf_event__output_id_sample(event, &handle, &sample);
5709 
5710 	perf_output_end(&handle);
5711 out:
5712 	task_event->event_id.header.size = size;
5713 }
5714 
5715 static void perf_event_task(struct task_struct *task,
5716 			      struct perf_event_context *task_ctx,
5717 			      int new)
5718 {
5719 	struct perf_task_event task_event;
5720 
5721 	if (!atomic_read(&nr_comm_events) &&
5722 	    !atomic_read(&nr_mmap_events) &&
5723 	    !atomic_read(&nr_task_events))
5724 		return;
5725 
5726 	task_event = (struct perf_task_event){
5727 		.task	  = task,
5728 		.task_ctx = task_ctx,
5729 		.event_id    = {
5730 			.header = {
5731 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5732 				.misc = 0,
5733 				.size = sizeof(task_event.event_id),
5734 			},
5735 			/* .pid  */
5736 			/* .ppid */
5737 			/* .tid  */
5738 			/* .ptid */
5739 			/* .time */
5740 		},
5741 	};
5742 
5743 	perf_event_aux(perf_event_task_output,
5744 		       &task_event,
5745 		       task_ctx);
5746 }
5747 
5748 void perf_event_fork(struct task_struct *task)
5749 {
5750 	perf_event_task(task, NULL, 1);
5751 }
5752 
5753 /*
5754  * comm tracking
5755  */
5756 
5757 struct perf_comm_event {
5758 	struct task_struct	*task;
5759 	char			*comm;
5760 	int			comm_size;
5761 
5762 	struct {
5763 		struct perf_event_header	header;
5764 
5765 		u32				pid;
5766 		u32				tid;
5767 	} event_id;
5768 };
5769 
5770 static int perf_event_comm_match(struct perf_event *event)
5771 {
5772 	return event->attr.comm;
5773 }
5774 
5775 static void perf_event_comm_output(struct perf_event *event,
5776 				   void *data)
5777 {
5778 	struct perf_comm_event *comm_event = data;
5779 	struct perf_output_handle handle;
5780 	struct perf_sample_data sample;
5781 	int size = comm_event->event_id.header.size;
5782 	int ret;
5783 
5784 	if (!perf_event_comm_match(event))
5785 		return;
5786 
5787 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5788 	ret = perf_output_begin(&handle, event,
5789 				comm_event->event_id.header.size);
5790 
5791 	if (ret)
5792 		goto out;
5793 
5794 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5795 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5796 
5797 	perf_output_put(&handle, comm_event->event_id);
5798 	__output_copy(&handle, comm_event->comm,
5799 				   comm_event->comm_size);
5800 
5801 	perf_event__output_id_sample(event, &handle, &sample);
5802 
5803 	perf_output_end(&handle);
5804 out:
5805 	comm_event->event_id.header.size = size;
5806 }
5807 
5808 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5809 {
5810 	char comm[TASK_COMM_LEN];
5811 	unsigned int size;
5812 
5813 	memset(comm, 0, sizeof(comm));
5814 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5815 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5816 
5817 	comm_event->comm = comm;
5818 	comm_event->comm_size = size;
5819 
5820 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5821 
5822 	perf_event_aux(perf_event_comm_output,
5823 		       comm_event,
5824 		       NULL);
5825 }
5826 
5827 void perf_event_comm(struct task_struct *task, bool exec)
5828 {
5829 	struct perf_comm_event comm_event;
5830 
5831 	if (!atomic_read(&nr_comm_events))
5832 		return;
5833 
5834 	comm_event = (struct perf_comm_event){
5835 		.task	= task,
5836 		/* .comm      */
5837 		/* .comm_size */
5838 		.event_id  = {
5839 			.header = {
5840 				.type = PERF_RECORD_COMM,
5841 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5842 				/* .size */
5843 			},
5844 			/* .pid */
5845 			/* .tid */
5846 		},
5847 	};
5848 
5849 	perf_event_comm_event(&comm_event);
5850 }
5851 
5852 /*
5853  * mmap tracking
5854  */
5855 
5856 struct perf_mmap_event {
5857 	struct vm_area_struct	*vma;
5858 
5859 	const char		*file_name;
5860 	int			file_size;
5861 	int			maj, min;
5862 	u64			ino;
5863 	u64			ino_generation;
5864 	u32			prot, flags;
5865 
5866 	struct {
5867 		struct perf_event_header	header;
5868 
5869 		u32				pid;
5870 		u32				tid;
5871 		u64				start;
5872 		u64				len;
5873 		u64				pgoff;
5874 	} event_id;
5875 };
5876 
5877 static int perf_event_mmap_match(struct perf_event *event,
5878 				 void *data)
5879 {
5880 	struct perf_mmap_event *mmap_event = data;
5881 	struct vm_area_struct *vma = mmap_event->vma;
5882 	int executable = vma->vm_flags & VM_EXEC;
5883 
5884 	return (!executable && event->attr.mmap_data) ||
5885 	       (executable && (event->attr.mmap || event->attr.mmap2));
5886 }
5887 
5888 static void perf_event_mmap_output(struct perf_event *event,
5889 				   void *data)
5890 {
5891 	struct perf_mmap_event *mmap_event = data;
5892 	struct perf_output_handle handle;
5893 	struct perf_sample_data sample;
5894 	int size = mmap_event->event_id.header.size;
5895 	int ret;
5896 
5897 	if (!perf_event_mmap_match(event, data))
5898 		return;
5899 
5900 	if (event->attr.mmap2) {
5901 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5902 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5903 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5904 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5905 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5906 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5907 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5908 	}
5909 
5910 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5911 	ret = perf_output_begin(&handle, event,
5912 				mmap_event->event_id.header.size);
5913 	if (ret)
5914 		goto out;
5915 
5916 	mmap_event->event_id.pid = perf_event_pid(event, current);
5917 	mmap_event->event_id.tid = perf_event_tid(event, current);
5918 
5919 	perf_output_put(&handle, mmap_event->event_id);
5920 
5921 	if (event->attr.mmap2) {
5922 		perf_output_put(&handle, mmap_event->maj);
5923 		perf_output_put(&handle, mmap_event->min);
5924 		perf_output_put(&handle, mmap_event->ino);
5925 		perf_output_put(&handle, mmap_event->ino_generation);
5926 		perf_output_put(&handle, mmap_event->prot);
5927 		perf_output_put(&handle, mmap_event->flags);
5928 	}
5929 
5930 	__output_copy(&handle, mmap_event->file_name,
5931 				   mmap_event->file_size);
5932 
5933 	perf_event__output_id_sample(event, &handle, &sample);
5934 
5935 	perf_output_end(&handle);
5936 out:
5937 	mmap_event->event_id.header.size = size;
5938 }
5939 
5940 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5941 {
5942 	struct vm_area_struct *vma = mmap_event->vma;
5943 	struct file *file = vma->vm_file;
5944 	int maj = 0, min = 0;
5945 	u64 ino = 0, gen = 0;
5946 	u32 prot = 0, flags = 0;
5947 	unsigned int size;
5948 	char tmp[16];
5949 	char *buf = NULL;
5950 	char *name;
5951 
5952 	if (file) {
5953 		struct inode *inode;
5954 		dev_t dev;
5955 
5956 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5957 		if (!buf) {
5958 			name = "//enomem";
5959 			goto cpy_name;
5960 		}
5961 		/*
5962 		 * d_path() works from the end of the rb backwards, so we
5963 		 * need to add enough zero bytes after the string to handle
5964 		 * the 64bit alignment we do later.
5965 		 */
5966 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5967 		if (IS_ERR(name)) {
5968 			name = "//toolong";
5969 			goto cpy_name;
5970 		}
5971 		inode = file_inode(vma->vm_file);
5972 		dev = inode->i_sb->s_dev;
5973 		ino = inode->i_ino;
5974 		gen = inode->i_generation;
5975 		maj = MAJOR(dev);
5976 		min = MINOR(dev);
5977 
5978 		if (vma->vm_flags & VM_READ)
5979 			prot |= PROT_READ;
5980 		if (vma->vm_flags & VM_WRITE)
5981 			prot |= PROT_WRITE;
5982 		if (vma->vm_flags & VM_EXEC)
5983 			prot |= PROT_EXEC;
5984 
5985 		if (vma->vm_flags & VM_MAYSHARE)
5986 			flags = MAP_SHARED;
5987 		else
5988 			flags = MAP_PRIVATE;
5989 
5990 		if (vma->vm_flags & VM_DENYWRITE)
5991 			flags |= MAP_DENYWRITE;
5992 		if (vma->vm_flags & VM_MAYEXEC)
5993 			flags |= MAP_EXECUTABLE;
5994 		if (vma->vm_flags & VM_LOCKED)
5995 			flags |= MAP_LOCKED;
5996 		if (vma->vm_flags & VM_HUGETLB)
5997 			flags |= MAP_HUGETLB;
5998 
5999 		goto got_name;
6000 	} else {
6001 		if (vma->vm_ops && vma->vm_ops->name) {
6002 			name = (char *) vma->vm_ops->name(vma);
6003 			if (name)
6004 				goto cpy_name;
6005 		}
6006 
6007 		name = (char *)arch_vma_name(vma);
6008 		if (name)
6009 			goto cpy_name;
6010 
6011 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6012 				vma->vm_end >= vma->vm_mm->brk) {
6013 			name = "[heap]";
6014 			goto cpy_name;
6015 		}
6016 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6017 				vma->vm_end >= vma->vm_mm->start_stack) {
6018 			name = "[stack]";
6019 			goto cpy_name;
6020 		}
6021 
6022 		name = "//anon";
6023 		goto cpy_name;
6024 	}
6025 
6026 cpy_name:
6027 	strlcpy(tmp, name, sizeof(tmp));
6028 	name = tmp;
6029 got_name:
6030 	/*
6031 	 * Since our buffer works in 8 byte units we need to align our string
6032 	 * size to a multiple of 8. However, we must guarantee the tail end is
6033 	 * zero'd out to avoid leaking random bits to userspace.
6034 	 */
6035 	size = strlen(name)+1;
6036 	while (!IS_ALIGNED(size, sizeof(u64)))
6037 		name[size++] = '\0';
6038 
6039 	mmap_event->file_name = name;
6040 	mmap_event->file_size = size;
6041 	mmap_event->maj = maj;
6042 	mmap_event->min = min;
6043 	mmap_event->ino = ino;
6044 	mmap_event->ino_generation = gen;
6045 	mmap_event->prot = prot;
6046 	mmap_event->flags = flags;
6047 
6048 	if (!(vma->vm_flags & VM_EXEC))
6049 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6050 
6051 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6052 
6053 	perf_event_aux(perf_event_mmap_output,
6054 		       mmap_event,
6055 		       NULL);
6056 
6057 	kfree(buf);
6058 }
6059 
6060 void perf_event_mmap(struct vm_area_struct *vma)
6061 {
6062 	struct perf_mmap_event mmap_event;
6063 
6064 	if (!atomic_read(&nr_mmap_events))
6065 		return;
6066 
6067 	mmap_event = (struct perf_mmap_event){
6068 		.vma	= vma,
6069 		/* .file_name */
6070 		/* .file_size */
6071 		.event_id  = {
6072 			.header = {
6073 				.type = PERF_RECORD_MMAP,
6074 				.misc = PERF_RECORD_MISC_USER,
6075 				/* .size */
6076 			},
6077 			/* .pid */
6078 			/* .tid */
6079 			.start  = vma->vm_start,
6080 			.len    = vma->vm_end - vma->vm_start,
6081 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6082 		},
6083 		/* .maj (attr_mmap2 only) */
6084 		/* .min (attr_mmap2 only) */
6085 		/* .ino (attr_mmap2 only) */
6086 		/* .ino_generation (attr_mmap2 only) */
6087 		/* .prot (attr_mmap2 only) */
6088 		/* .flags (attr_mmap2 only) */
6089 	};
6090 
6091 	perf_event_mmap_event(&mmap_event);
6092 }
6093 
6094 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6095 			  unsigned long size, u64 flags)
6096 {
6097 	struct perf_output_handle handle;
6098 	struct perf_sample_data sample;
6099 	struct perf_aux_event {
6100 		struct perf_event_header	header;
6101 		u64				offset;
6102 		u64				size;
6103 		u64				flags;
6104 	} rec = {
6105 		.header = {
6106 			.type = PERF_RECORD_AUX,
6107 			.misc = 0,
6108 			.size = sizeof(rec),
6109 		},
6110 		.offset		= head,
6111 		.size		= size,
6112 		.flags		= flags,
6113 	};
6114 	int ret;
6115 
6116 	perf_event_header__init_id(&rec.header, &sample, event);
6117 	ret = perf_output_begin(&handle, event, rec.header.size);
6118 
6119 	if (ret)
6120 		return;
6121 
6122 	perf_output_put(&handle, rec);
6123 	perf_event__output_id_sample(event, &handle, &sample);
6124 
6125 	perf_output_end(&handle);
6126 }
6127 
6128 /*
6129  * Lost/dropped samples logging
6130  */
6131 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6132 {
6133 	struct perf_output_handle handle;
6134 	struct perf_sample_data sample;
6135 	int ret;
6136 
6137 	struct {
6138 		struct perf_event_header	header;
6139 		u64				lost;
6140 	} lost_samples_event = {
6141 		.header = {
6142 			.type = PERF_RECORD_LOST_SAMPLES,
6143 			.misc = 0,
6144 			.size = sizeof(lost_samples_event),
6145 		},
6146 		.lost		= lost,
6147 	};
6148 
6149 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6150 
6151 	ret = perf_output_begin(&handle, event,
6152 				lost_samples_event.header.size);
6153 	if (ret)
6154 		return;
6155 
6156 	perf_output_put(&handle, lost_samples_event);
6157 	perf_event__output_id_sample(event, &handle, &sample);
6158 	perf_output_end(&handle);
6159 }
6160 
6161 /*
6162  * context_switch tracking
6163  */
6164 
6165 struct perf_switch_event {
6166 	struct task_struct	*task;
6167 	struct task_struct	*next_prev;
6168 
6169 	struct {
6170 		struct perf_event_header	header;
6171 		u32				next_prev_pid;
6172 		u32				next_prev_tid;
6173 	} event_id;
6174 };
6175 
6176 static int perf_event_switch_match(struct perf_event *event)
6177 {
6178 	return event->attr.context_switch;
6179 }
6180 
6181 static void perf_event_switch_output(struct perf_event *event, void *data)
6182 {
6183 	struct perf_switch_event *se = data;
6184 	struct perf_output_handle handle;
6185 	struct perf_sample_data sample;
6186 	int ret;
6187 
6188 	if (!perf_event_switch_match(event))
6189 		return;
6190 
6191 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6192 	if (event->ctx->task) {
6193 		se->event_id.header.type = PERF_RECORD_SWITCH;
6194 		se->event_id.header.size = sizeof(se->event_id.header);
6195 	} else {
6196 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6197 		se->event_id.header.size = sizeof(se->event_id);
6198 		se->event_id.next_prev_pid =
6199 					perf_event_pid(event, se->next_prev);
6200 		se->event_id.next_prev_tid =
6201 					perf_event_tid(event, se->next_prev);
6202 	}
6203 
6204 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6205 
6206 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6207 	if (ret)
6208 		return;
6209 
6210 	if (event->ctx->task)
6211 		perf_output_put(&handle, se->event_id.header);
6212 	else
6213 		perf_output_put(&handle, se->event_id);
6214 
6215 	perf_event__output_id_sample(event, &handle, &sample);
6216 
6217 	perf_output_end(&handle);
6218 }
6219 
6220 static void perf_event_switch(struct task_struct *task,
6221 			      struct task_struct *next_prev, bool sched_in)
6222 {
6223 	struct perf_switch_event switch_event;
6224 
6225 	/* N.B. caller checks nr_switch_events != 0 */
6226 
6227 	switch_event = (struct perf_switch_event){
6228 		.task		= task,
6229 		.next_prev	= next_prev,
6230 		.event_id	= {
6231 			.header = {
6232 				/* .type */
6233 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6234 				/* .size */
6235 			},
6236 			/* .next_prev_pid */
6237 			/* .next_prev_tid */
6238 		},
6239 	};
6240 
6241 	perf_event_aux(perf_event_switch_output,
6242 		       &switch_event,
6243 		       NULL);
6244 }
6245 
6246 /*
6247  * IRQ throttle logging
6248  */
6249 
6250 static void perf_log_throttle(struct perf_event *event, int enable)
6251 {
6252 	struct perf_output_handle handle;
6253 	struct perf_sample_data sample;
6254 	int ret;
6255 
6256 	struct {
6257 		struct perf_event_header	header;
6258 		u64				time;
6259 		u64				id;
6260 		u64				stream_id;
6261 	} throttle_event = {
6262 		.header = {
6263 			.type = PERF_RECORD_THROTTLE,
6264 			.misc = 0,
6265 			.size = sizeof(throttle_event),
6266 		},
6267 		.time		= perf_event_clock(event),
6268 		.id		= primary_event_id(event),
6269 		.stream_id	= event->id,
6270 	};
6271 
6272 	if (enable)
6273 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6274 
6275 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6276 
6277 	ret = perf_output_begin(&handle, event,
6278 				throttle_event.header.size);
6279 	if (ret)
6280 		return;
6281 
6282 	perf_output_put(&handle, throttle_event);
6283 	perf_event__output_id_sample(event, &handle, &sample);
6284 	perf_output_end(&handle);
6285 }
6286 
6287 static void perf_log_itrace_start(struct perf_event *event)
6288 {
6289 	struct perf_output_handle handle;
6290 	struct perf_sample_data sample;
6291 	struct perf_aux_event {
6292 		struct perf_event_header        header;
6293 		u32				pid;
6294 		u32				tid;
6295 	} rec;
6296 	int ret;
6297 
6298 	if (event->parent)
6299 		event = event->parent;
6300 
6301 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6302 	    event->hw.itrace_started)
6303 		return;
6304 
6305 	rec.header.type	= PERF_RECORD_ITRACE_START;
6306 	rec.header.misc	= 0;
6307 	rec.header.size	= sizeof(rec);
6308 	rec.pid	= perf_event_pid(event, current);
6309 	rec.tid	= perf_event_tid(event, current);
6310 
6311 	perf_event_header__init_id(&rec.header, &sample, event);
6312 	ret = perf_output_begin(&handle, event, rec.header.size);
6313 
6314 	if (ret)
6315 		return;
6316 
6317 	perf_output_put(&handle, rec);
6318 	perf_event__output_id_sample(event, &handle, &sample);
6319 
6320 	perf_output_end(&handle);
6321 }
6322 
6323 /*
6324  * Generic event overflow handling, sampling.
6325  */
6326 
6327 static int __perf_event_overflow(struct perf_event *event,
6328 				   int throttle, struct perf_sample_data *data,
6329 				   struct pt_regs *regs)
6330 {
6331 	int events = atomic_read(&event->event_limit);
6332 	struct hw_perf_event *hwc = &event->hw;
6333 	u64 seq;
6334 	int ret = 0;
6335 
6336 	/*
6337 	 * Non-sampling counters might still use the PMI to fold short
6338 	 * hardware counters, ignore those.
6339 	 */
6340 	if (unlikely(!is_sampling_event(event)))
6341 		return 0;
6342 
6343 	seq = __this_cpu_read(perf_throttled_seq);
6344 	if (seq != hwc->interrupts_seq) {
6345 		hwc->interrupts_seq = seq;
6346 		hwc->interrupts = 1;
6347 	} else {
6348 		hwc->interrupts++;
6349 		if (unlikely(throttle
6350 			     && hwc->interrupts >= max_samples_per_tick)) {
6351 			__this_cpu_inc(perf_throttled_count);
6352 			hwc->interrupts = MAX_INTERRUPTS;
6353 			perf_log_throttle(event, 0);
6354 			tick_nohz_full_kick();
6355 			ret = 1;
6356 		}
6357 	}
6358 
6359 	if (event->attr.freq) {
6360 		u64 now = perf_clock();
6361 		s64 delta = now - hwc->freq_time_stamp;
6362 
6363 		hwc->freq_time_stamp = now;
6364 
6365 		if (delta > 0 && delta < 2*TICK_NSEC)
6366 			perf_adjust_period(event, delta, hwc->last_period, true);
6367 	}
6368 
6369 	/*
6370 	 * XXX event_limit might not quite work as expected on inherited
6371 	 * events
6372 	 */
6373 
6374 	event->pending_kill = POLL_IN;
6375 	if (events && atomic_dec_and_test(&event->event_limit)) {
6376 		ret = 1;
6377 		event->pending_kill = POLL_HUP;
6378 		event->pending_disable = 1;
6379 		irq_work_queue(&event->pending);
6380 	}
6381 
6382 	if (event->overflow_handler)
6383 		event->overflow_handler(event, data, regs);
6384 	else
6385 		perf_event_output(event, data, regs);
6386 
6387 	if (*perf_event_fasync(event) && event->pending_kill) {
6388 		event->pending_wakeup = 1;
6389 		irq_work_queue(&event->pending);
6390 	}
6391 
6392 	return ret;
6393 }
6394 
6395 int perf_event_overflow(struct perf_event *event,
6396 			  struct perf_sample_data *data,
6397 			  struct pt_regs *regs)
6398 {
6399 	return __perf_event_overflow(event, 1, data, regs);
6400 }
6401 
6402 /*
6403  * Generic software event infrastructure
6404  */
6405 
6406 struct swevent_htable {
6407 	struct swevent_hlist		*swevent_hlist;
6408 	struct mutex			hlist_mutex;
6409 	int				hlist_refcount;
6410 
6411 	/* Recursion avoidance in each contexts */
6412 	int				recursion[PERF_NR_CONTEXTS];
6413 };
6414 
6415 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6416 
6417 /*
6418  * We directly increment event->count and keep a second value in
6419  * event->hw.period_left to count intervals. This period event
6420  * is kept in the range [-sample_period, 0] so that we can use the
6421  * sign as trigger.
6422  */
6423 
6424 u64 perf_swevent_set_period(struct perf_event *event)
6425 {
6426 	struct hw_perf_event *hwc = &event->hw;
6427 	u64 period = hwc->last_period;
6428 	u64 nr, offset;
6429 	s64 old, val;
6430 
6431 	hwc->last_period = hwc->sample_period;
6432 
6433 again:
6434 	old = val = local64_read(&hwc->period_left);
6435 	if (val < 0)
6436 		return 0;
6437 
6438 	nr = div64_u64(period + val, period);
6439 	offset = nr * period;
6440 	val -= offset;
6441 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6442 		goto again;
6443 
6444 	return nr;
6445 }
6446 
6447 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6448 				    struct perf_sample_data *data,
6449 				    struct pt_regs *regs)
6450 {
6451 	struct hw_perf_event *hwc = &event->hw;
6452 	int throttle = 0;
6453 
6454 	if (!overflow)
6455 		overflow = perf_swevent_set_period(event);
6456 
6457 	if (hwc->interrupts == MAX_INTERRUPTS)
6458 		return;
6459 
6460 	for (; overflow; overflow--) {
6461 		if (__perf_event_overflow(event, throttle,
6462 					    data, regs)) {
6463 			/*
6464 			 * We inhibit the overflow from happening when
6465 			 * hwc->interrupts == MAX_INTERRUPTS.
6466 			 */
6467 			break;
6468 		}
6469 		throttle = 1;
6470 	}
6471 }
6472 
6473 static void perf_swevent_event(struct perf_event *event, u64 nr,
6474 			       struct perf_sample_data *data,
6475 			       struct pt_regs *regs)
6476 {
6477 	struct hw_perf_event *hwc = &event->hw;
6478 
6479 	local64_add(nr, &event->count);
6480 
6481 	if (!regs)
6482 		return;
6483 
6484 	if (!is_sampling_event(event))
6485 		return;
6486 
6487 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6488 		data->period = nr;
6489 		return perf_swevent_overflow(event, 1, data, regs);
6490 	} else
6491 		data->period = event->hw.last_period;
6492 
6493 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6494 		return perf_swevent_overflow(event, 1, data, regs);
6495 
6496 	if (local64_add_negative(nr, &hwc->period_left))
6497 		return;
6498 
6499 	perf_swevent_overflow(event, 0, data, regs);
6500 }
6501 
6502 static int perf_exclude_event(struct perf_event *event,
6503 			      struct pt_regs *regs)
6504 {
6505 	if (event->hw.state & PERF_HES_STOPPED)
6506 		return 1;
6507 
6508 	if (regs) {
6509 		if (event->attr.exclude_user && user_mode(regs))
6510 			return 1;
6511 
6512 		if (event->attr.exclude_kernel && !user_mode(regs))
6513 			return 1;
6514 	}
6515 
6516 	return 0;
6517 }
6518 
6519 static int perf_swevent_match(struct perf_event *event,
6520 				enum perf_type_id type,
6521 				u32 event_id,
6522 				struct perf_sample_data *data,
6523 				struct pt_regs *regs)
6524 {
6525 	if (event->attr.type != type)
6526 		return 0;
6527 
6528 	if (event->attr.config != event_id)
6529 		return 0;
6530 
6531 	if (perf_exclude_event(event, regs))
6532 		return 0;
6533 
6534 	return 1;
6535 }
6536 
6537 static inline u64 swevent_hash(u64 type, u32 event_id)
6538 {
6539 	u64 val = event_id | (type << 32);
6540 
6541 	return hash_64(val, SWEVENT_HLIST_BITS);
6542 }
6543 
6544 static inline struct hlist_head *
6545 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6546 {
6547 	u64 hash = swevent_hash(type, event_id);
6548 
6549 	return &hlist->heads[hash];
6550 }
6551 
6552 /* For the read side: events when they trigger */
6553 static inline struct hlist_head *
6554 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6555 {
6556 	struct swevent_hlist *hlist;
6557 
6558 	hlist = rcu_dereference(swhash->swevent_hlist);
6559 	if (!hlist)
6560 		return NULL;
6561 
6562 	return __find_swevent_head(hlist, type, event_id);
6563 }
6564 
6565 /* For the event head insertion and removal in the hlist */
6566 static inline struct hlist_head *
6567 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6568 {
6569 	struct swevent_hlist *hlist;
6570 	u32 event_id = event->attr.config;
6571 	u64 type = event->attr.type;
6572 
6573 	/*
6574 	 * Event scheduling is always serialized against hlist allocation
6575 	 * and release. Which makes the protected version suitable here.
6576 	 * The context lock guarantees that.
6577 	 */
6578 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6579 					  lockdep_is_held(&event->ctx->lock));
6580 	if (!hlist)
6581 		return NULL;
6582 
6583 	return __find_swevent_head(hlist, type, event_id);
6584 }
6585 
6586 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6587 				    u64 nr,
6588 				    struct perf_sample_data *data,
6589 				    struct pt_regs *regs)
6590 {
6591 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6592 	struct perf_event *event;
6593 	struct hlist_head *head;
6594 
6595 	rcu_read_lock();
6596 	head = find_swevent_head_rcu(swhash, type, event_id);
6597 	if (!head)
6598 		goto end;
6599 
6600 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6601 		if (perf_swevent_match(event, type, event_id, data, regs))
6602 			perf_swevent_event(event, nr, data, regs);
6603 	}
6604 end:
6605 	rcu_read_unlock();
6606 }
6607 
6608 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6609 
6610 int perf_swevent_get_recursion_context(void)
6611 {
6612 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6613 
6614 	return get_recursion_context(swhash->recursion);
6615 }
6616 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6617 
6618 inline void perf_swevent_put_recursion_context(int rctx)
6619 {
6620 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6621 
6622 	put_recursion_context(swhash->recursion, rctx);
6623 }
6624 
6625 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6626 {
6627 	struct perf_sample_data data;
6628 
6629 	if (WARN_ON_ONCE(!regs))
6630 		return;
6631 
6632 	perf_sample_data_init(&data, addr, 0);
6633 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6634 }
6635 
6636 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6637 {
6638 	int rctx;
6639 
6640 	preempt_disable_notrace();
6641 	rctx = perf_swevent_get_recursion_context();
6642 	if (unlikely(rctx < 0))
6643 		goto fail;
6644 
6645 	___perf_sw_event(event_id, nr, regs, addr);
6646 
6647 	perf_swevent_put_recursion_context(rctx);
6648 fail:
6649 	preempt_enable_notrace();
6650 }
6651 
6652 static void perf_swevent_read(struct perf_event *event)
6653 {
6654 }
6655 
6656 static int perf_swevent_add(struct perf_event *event, int flags)
6657 {
6658 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6659 	struct hw_perf_event *hwc = &event->hw;
6660 	struct hlist_head *head;
6661 
6662 	if (is_sampling_event(event)) {
6663 		hwc->last_period = hwc->sample_period;
6664 		perf_swevent_set_period(event);
6665 	}
6666 
6667 	hwc->state = !(flags & PERF_EF_START);
6668 
6669 	head = find_swevent_head(swhash, event);
6670 	if (WARN_ON_ONCE(!head))
6671 		return -EINVAL;
6672 
6673 	hlist_add_head_rcu(&event->hlist_entry, head);
6674 	perf_event_update_userpage(event);
6675 
6676 	return 0;
6677 }
6678 
6679 static void perf_swevent_del(struct perf_event *event, int flags)
6680 {
6681 	hlist_del_rcu(&event->hlist_entry);
6682 }
6683 
6684 static void perf_swevent_start(struct perf_event *event, int flags)
6685 {
6686 	event->hw.state = 0;
6687 }
6688 
6689 static void perf_swevent_stop(struct perf_event *event, int flags)
6690 {
6691 	event->hw.state = PERF_HES_STOPPED;
6692 }
6693 
6694 /* Deref the hlist from the update side */
6695 static inline struct swevent_hlist *
6696 swevent_hlist_deref(struct swevent_htable *swhash)
6697 {
6698 	return rcu_dereference_protected(swhash->swevent_hlist,
6699 					 lockdep_is_held(&swhash->hlist_mutex));
6700 }
6701 
6702 static void swevent_hlist_release(struct swevent_htable *swhash)
6703 {
6704 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6705 
6706 	if (!hlist)
6707 		return;
6708 
6709 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6710 	kfree_rcu(hlist, rcu_head);
6711 }
6712 
6713 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6714 {
6715 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6716 
6717 	mutex_lock(&swhash->hlist_mutex);
6718 
6719 	if (!--swhash->hlist_refcount)
6720 		swevent_hlist_release(swhash);
6721 
6722 	mutex_unlock(&swhash->hlist_mutex);
6723 }
6724 
6725 static void swevent_hlist_put(struct perf_event *event)
6726 {
6727 	int cpu;
6728 
6729 	for_each_possible_cpu(cpu)
6730 		swevent_hlist_put_cpu(event, cpu);
6731 }
6732 
6733 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6734 {
6735 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6736 	int err = 0;
6737 
6738 	mutex_lock(&swhash->hlist_mutex);
6739 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6740 		struct swevent_hlist *hlist;
6741 
6742 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6743 		if (!hlist) {
6744 			err = -ENOMEM;
6745 			goto exit;
6746 		}
6747 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6748 	}
6749 	swhash->hlist_refcount++;
6750 exit:
6751 	mutex_unlock(&swhash->hlist_mutex);
6752 
6753 	return err;
6754 }
6755 
6756 static int swevent_hlist_get(struct perf_event *event)
6757 {
6758 	int err;
6759 	int cpu, failed_cpu;
6760 
6761 	get_online_cpus();
6762 	for_each_possible_cpu(cpu) {
6763 		err = swevent_hlist_get_cpu(event, cpu);
6764 		if (err) {
6765 			failed_cpu = cpu;
6766 			goto fail;
6767 		}
6768 	}
6769 	put_online_cpus();
6770 
6771 	return 0;
6772 fail:
6773 	for_each_possible_cpu(cpu) {
6774 		if (cpu == failed_cpu)
6775 			break;
6776 		swevent_hlist_put_cpu(event, cpu);
6777 	}
6778 
6779 	put_online_cpus();
6780 	return err;
6781 }
6782 
6783 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6784 
6785 static void sw_perf_event_destroy(struct perf_event *event)
6786 {
6787 	u64 event_id = event->attr.config;
6788 
6789 	WARN_ON(event->parent);
6790 
6791 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6792 	swevent_hlist_put(event);
6793 }
6794 
6795 static int perf_swevent_init(struct perf_event *event)
6796 {
6797 	u64 event_id = event->attr.config;
6798 
6799 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6800 		return -ENOENT;
6801 
6802 	/*
6803 	 * no branch sampling for software events
6804 	 */
6805 	if (has_branch_stack(event))
6806 		return -EOPNOTSUPP;
6807 
6808 	switch (event_id) {
6809 	case PERF_COUNT_SW_CPU_CLOCK:
6810 	case PERF_COUNT_SW_TASK_CLOCK:
6811 		return -ENOENT;
6812 
6813 	default:
6814 		break;
6815 	}
6816 
6817 	if (event_id >= PERF_COUNT_SW_MAX)
6818 		return -ENOENT;
6819 
6820 	if (!event->parent) {
6821 		int err;
6822 
6823 		err = swevent_hlist_get(event);
6824 		if (err)
6825 			return err;
6826 
6827 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6828 		event->destroy = sw_perf_event_destroy;
6829 	}
6830 
6831 	return 0;
6832 }
6833 
6834 static struct pmu perf_swevent = {
6835 	.task_ctx_nr	= perf_sw_context,
6836 
6837 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6838 
6839 	.event_init	= perf_swevent_init,
6840 	.add		= perf_swevent_add,
6841 	.del		= perf_swevent_del,
6842 	.start		= perf_swevent_start,
6843 	.stop		= perf_swevent_stop,
6844 	.read		= perf_swevent_read,
6845 };
6846 
6847 #ifdef CONFIG_EVENT_TRACING
6848 
6849 static int perf_tp_filter_match(struct perf_event *event,
6850 				struct perf_sample_data *data)
6851 {
6852 	void *record = data->raw->data;
6853 
6854 	/* only top level events have filters set */
6855 	if (event->parent)
6856 		event = event->parent;
6857 
6858 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6859 		return 1;
6860 	return 0;
6861 }
6862 
6863 static int perf_tp_event_match(struct perf_event *event,
6864 				struct perf_sample_data *data,
6865 				struct pt_regs *regs)
6866 {
6867 	if (event->hw.state & PERF_HES_STOPPED)
6868 		return 0;
6869 	/*
6870 	 * All tracepoints are from kernel-space.
6871 	 */
6872 	if (event->attr.exclude_kernel)
6873 		return 0;
6874 
6875 	if (!perf_tp_filter_match(event, data))
6876 		return 0;
6877 
6878 	return 1;
6879 }
6880 
6881 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6882 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6883 		   struct task_struct *task)
6884 {
6885 	struct perf_sample_data data;
6886 	struct perf_event *event;
6887 
6888 	struct perf_raw_record raw = {
6889 		.size = entry_size,
6890 		.data = record,
6891 	};
6892 
6893 	perf_sample_data_init(&data, addr, 0);
6894 	data.raw = &raw;
6895 
6896 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6897 		if (perf_tp_event_match(event, &data, regs))
6898 			perf_swevent_event(event, count, &data, regs);
6899 	}
6900 
6901 	/*
6902 	 * If we got specified a target task, also iterate its context and
6903 	 * deliver this event there too.
6904 	 */
6905 	if (task && task != current) {
6906 		struct perf_event_context *ctx;
6907 		struct trace_entry *entry = record;
6908 
6909 		rcu_read_lock();
6910 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6911 		if (!ctx)
6912 			goto unlock;
6913 
6914 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6915 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6916 				continue;
6917 			if (event->attr.config != entry->type)
6918 				continue;
6919 			if (perf_tp_event_match(event, &data, regs))
6920 				perf_swevent_event(event, count, &data, regs);
6921 		}
6922 unlock:
6923 		rcu_read_unlock();
6924 	}
6925 
6926 	perf_swevent_put_recursion_context(rctx);
6927 }
6928 EXPORT_SYMBOL_GPL(perf_tp_event);
6929 
6930 static void tp_perf_event_destroy(struct perf_event *event)
6931 {
6932 	perf_trace_destroy(event);
6933 }
6934 
6935 static int perf_tp_event_init(struct perf_event *event)
6936 {
6937 	int err;
6938 
6939 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6940 		return -ENOENT;
6941 
6942 	/*
6943 	 * no branch sampling for tracepoint events
6944 	 */
6945 	if (has_branch_stack(event))
6946 		return -EOPNOTSUPP;
6947 
6948 	err = perf_trace_init(event);
6949 	if (err)
6950 		return err;
6951 
6952 	event->destroy = tp_perf_event_destroy;
6953 
6954 	return 0;
6955 }
6956 
6957 static struct pmu perf_tracepoint = {
6958 	.task_ctx_nr	= perf_sw_context,
6959 
6960 	.event_init	= perf_tp_event_init,
6961 	.add		= perf_trace_add,
6962 	.del		= perf_trace_del,
6963 	.start		= perf_swevent_start,
6964 	.stop		= perf_swevent_stop,
6965 	.read		= perf_swevent_read,
6966 };
6967 
6968 static inline void perf_tp_register(void)
6969 {
6970 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6971 }
6972 
6973 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6974 {
6975 	char *filter_str;
6976 	int ret;
6977 
6978 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6979 		return -EINVAL;
6980 
6981 	filter_str = strndup_user(arg, PAGE_SIZE);
6982 	if (IS_ERR(filter_str))
6983 		return PTR_ERR(filter_str);
6984 
6985 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6986 
6987 	kfree(filter_str);
6988 	return ret;
6989 }
6990 
6991 static void perf_event_free_filter(struct perf_event *event)
6992 {
6993 	ftrace_profile_free_filter(event);
6994 }
6995 
6996 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6997 {
6998 	struct bpf_prog *prog;
6999 
7000 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7001 		return -EINVAL;
7002 
7003 	if (event->tp_event->prog)
7004 		return -EEXIST;
7005 
7006 	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7007 		/* bpf programs can only be attached to u/kprobes */
7008 		return -EINVAL;
7009 
7010 	prog = bpf_prog_get(prog_fd);
7011 	if (IS_ERR(prog))
7012 		return PTR_ERR(prog);
7013 
7014 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7015 		/* valid fd, but invalid bpf program type */
7016 		bpf_prog_put(prog);
7017 		return -EINVAL;
7018 	}
7019 
7020 	event->tp_event->prog = prog;
7021 
7022 	return 0;
7023 }
7024 
7025 static void perf_event_free_bpf_prog(struct perf_event *event)
7026 {
7027 	struct bpf_prog *prog;
7028 
7029 	if (!event->tp_event)
7030 		return;
7031 
7032 	prog = event->tp_event->prog;
7033 	if (prog) {
7034 		event->tp_event->prog = NULL;
7035 		bpf_prog_put(prog);
7036 	}
7037 }
7038 
7039 #else
7040 
7041 static inline void perf_tp_register(void)
7042 {
7043 }
7044 
7045 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7046 {
7047 	return -ENOENT;
7048 }
7049 
7050 static void perf_event_free_filter(struct perf_event *event)
7051 {
7052 }
7053 
7054 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7055 {
7056 	return -ENOENT;
7057 }
7058 
7059 static void perf_event_free_bpf_prog(struct perf_event *event)
7060 {
7061 }
7062 #endif /* CONFIG_EVENT_TRACING */
7063 
7064 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7065 void perf_bp_event(struct perf_event *bp, void *data)
7066 {
7067 	struct perf_sample_data sample;
7068 	struct pt_regs *regs = data;
7069 
7070 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7071 
7072 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7073 		perf_swevent_event(bp, 1, &sample, regs);
7074 }
7075 #endif
7076 
7077 /*
7078  * hrtimer based swevent callback
7079  */
7080 
7081 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7082 {
7083 	enum hrtimer_restart ret = HRTIMER_RESTART;
7084 	struct perf_sample_data data;
7085 	struct pt_regs *regs;
7086 	struct perf_event *event;
7087 	u64 period;
7088 
7089 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7090 
7091 	if (event->state != PERF_EVENT_STATE_ACTIVE)
7092 		return HRTIMER_NORESTART;
7093 
7094 	event->pmu->read(event);
7095 
7096 	perf_sample_data_init(&data, 0, event->hw.last_period);
7097 	regs = get_irq_regs();
7098 
7099 	if (regs && !perf_exclude_event(event, regs)) {
7100 		if (!(event->attr.exclude_idle && is_idle_task(current)))
7101 			if (__perf_event_overflow(event, 1, &data, regs))
7102 				ret = HRTIMER_NORESTART;
7103 	}
7104 
7105 	period = max_t(u64, 10000, event->hw.sample_period);
7106 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7107 
7108 	return ret;
7109 }
7110 
7111 static void perf_swevent_start_hrtimer(struct perf_event *event)
7112 {
7113 	struct hw_perf_event *hwc = &event->hw;
7114 	s64 period;
7115 
7116 	if (!is_sampling_event(event))
7117 		return;
7118 
7119 	period = local64_read(&hwc->period_left);
7120 	if (period) {
7121 		if (period < 0)
7122 			period = 10000;
7123 
7124 		local64_set(&hwc->period_left, 0);
7125 	} else {
7126 		period = max_t(u64, 10000, hwc->sample_period);
7127 	}
7128 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7129 		      HRTIMER_MODE_REL_PINNED);
7130 }
7131 
7132 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7133 {
7134 	struct hw_perf_event *hwc = &event->hw;
7135 
7136 	if (is_sampling_event(event)) {
7137 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7138 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7139 
7140 		hrtimer_cancel(&hwc->hrtimer);
7141 	}
7142 }
7143 
7144 static void perf_swevent_init_hrtimer(struct perf_event *event)
7145 {
7146 	struct hw_perf_event *hwc = &event->hw;
7147 
7148 	if (!is_sampling_event(event))
7149 		return;
7150 
7151 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7152 	hwc->hrtimer.function = perf_swevent_hrtimer;
7153 
7154 	/*
7155 	 * Since hrtimers have a fixed rate, we can do a static freq->period
7156 	 * mapping and avoid the whole period adjust feedback stuff.
7157 	 */
7158 	if (event->attr.freq) {
7159 		long freq = event->attr.sample_freq;
7160 
7161 		event->attr.sample_period = NSEC_PER_SEC / freq;
7162 		hwc->sample_period = event->attr.sample_period;
7163 		local64_set(&hwc->period_left, hwc->sample_period);
7164 		hwc->last_period = hwc->sample_period;
7165 		event->attr.freq = 0;
7166 	}
7167 }
7168 
7169 /*
7170  * Software event: cpu wall time clock
7171  */
7172 
7173 static void cpu_clock_event_update(struct perf_event *event)
7174 {
7175 	s64 prev;
7176 	u64 now;
7177 
7178 	now = local_clock();
7179 	prev = local64_xchg(&event->hw.prev_count, now);
7180 	local64_add(now - prev, &event->count);
7181 }
7182 
7183 static void cpu_clock_event_start(struct perf_event *event, int flags)
7184 {
7185 	local64_set(&event->hw.prev_count, local_clock());
7186 	perf_swevent_start_hrtimer(event);
7187 }
7188 
7189 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7190 {
7191 	perf_swevent_cancel_hrtimer(event);
7192 	cpu_clock_event_update(event);
7193 }
7194 
7195 static int cpu_clock_event_add(struct perf_event *event, int flags)
7196 {
7197 	if (flags & PERF_EF_START)
7198 		cpu_clock_event_start(event, flags);
7199 	perf_event_update_userpage(event);
7200 
7201 	return 0;
7202 }
7203 
7204 static void cpu_clock_event_del(struct perf_event *event, int flags)
7205 {
7206 	cpu_clock_event_stop(event, flags);
7207 }
7208 
7209 static void cpu_clock_event_read(struct perf_event *event)
7210 {
7211 	cpu_clock_event_update(event);
7212 }
7213 
7214 static int cpu_clock_event_init(struct perf_event *event)
7215 {
7216 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7217 		return -ENOENT;
7218 
7219 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7220 		return -ENOENT;
7221 
7222 	/*
7223 	 * no branch sampling for software events
7224 	 */
7225 	if (has_branch_stack(event))
7226 		return -EOPNOTSUPP;
7227 
7228 	perf_swevent_init_hrtimer(event);
7229 
7230 	return 0;
7231 }
7232 
7233 static struct pmu perf_cpu_clock = {
7234 	.task_ctx_nr	= perf_sw_context,
7235 
7236 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7237 
7238 	.event_init	= cpu_clock_event_init,
7239 	.add		= cpu_clock_event_add,
7240 	.del		= cpu_clock_event_del,
7241 	.start		= cpu_clock_event_start,
7242 	.stop		= cpu_clock_event_stop,
7243 	.read		= cpu_clock_event_read,
7244 };
7245 
7246 /*
7247  * Software event: task time clock
7248  */
7249 
7250 static void task_clock_event_update(struct perf_event *event, u64 now)
7251 {
7252 	u64 prev;
7253 	s64 delta;
7254 
7255 	prev = local64_xchg(&event->hw.prev_count, now);
7256 	delta = now - prev;
7257 	local64_add(delta, &event->count);
7258 }
7259 
7260 static void task_clock_event_start(struct perf_event *event, int flags)
7261 {
7262 	local64_set(&event->hw.prev_count, event->ctx->time);
7263 	perf_swevent_start_hrtimer(event);
7264 }
7265 
7266 static void task_clock_event_stop(struct perf_event *event, int flags)
7267 {
7268 	perf_swevent_cancel_hrtimer(event);
7269 	task_clock_event_update(event, event->ctx->time);
7270 }
7271 
7272 static int task_clock_event_add(struct perf_event *event, int flags)
7273 {
7274 	if (flags & PERF_EF_START)
7275 		task_clock_event_start(event, flags);
7276 	perf_event_update_userpage(event);
7277 
7278 	return 0;
7279 }
7280 
7281 static void task_clock_event_del(struct perf_event *event, int flags)
7282 {
7283 	task_clock_event_stop(event, PERF_EF_UPDATE);
7284 }
7285 
7286 static void task_clock_event_read(struct perf_event *event)
7287 {
7288 	u64 now = perf_clock();
7289 	u64 delta = now - event->ctx->timestamp;
7290 	u64 time = event->ctx->time + delta;
7291 
7292 	task_clock_event_update(event, time);
7293 }
7294 
7295 static int task_clock_event_init(struct perf_event *event)
7296 {
7297 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7298 		return -ENOENT;
7299 
7300 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7301 		return -ENOENT;
7302 
7303 	/*
7304 	 * no branch sampling for software events
7305 	 */
7306 	if (has_branch_stack(event))
7307 		return -EOPNOTSUPP;
7308 
7309 	perf_swevent_init_hrtimer(event);
7310 
7311 	return 0;
7312 }
7313 
7314 static struct pmu perf_task_clock = {
7315 	.task_ctx_nr	= perf_sw_context,
7316 
7317 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7318 
7319 	.event_init	= task_clock_event_init,
7320 	.add		= task_clock_event_add,
7321 	.del		= task_clock_event_del,
7322 	.start		= task_clock_event_start,
7323 	.stop		= task_clock_event_stop,
7324 	.read		= task_clock_event_read,
7325 };
7326 
7327 static void perf_pmu_nop_void(struct pmu *pmu)
7328 {
7329 }
7330 
7331 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7332 {
7333 }
7334 
7335 static int perf_pmu_nop_int(struct pmu *pmu)
7336 {
7337 	return 0;
7338 }
7339 
7340 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7341 
7342 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7343 {
7344 	__this_cpu_write(nop_txn_flags, flags);
7345 
7346 	if (flags & ~PERF_PMU_TXN_ADD)
7347 		return;
7348 
7349 	perf_pmu_disable(pmu);
7350 }
7351 
7352 static int perf_pmu_commit_txn(struct pmu *pmu)
7353 {
7354 	unsigned int flags = __this_cpu_read(nop_txn_flags);
7355 
7356 	__this_cpu_write(nop_txn_flags, 0);
7357 
7358 	if (flags & ~PERF_PMU_TXN_ADD)
7359 		return 0;
7360 
7361 	perf_pmu_enable(pmu);
7362 	return 0;
7363 }
7364 
7365 static void perf_pmu_cancel_txn(struct pmu *pmu)
7366 {
7367 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
7368 
7369 	__this_cpu_write(nop_txn_flags, 0);
7370 
7371 	if (flags & ~PERF_PMU_TXN_ADD)
7372 		return;
7373 
7374 	perf_pmu_enable(pmu);
7375 }
7376 
7377 static int perf_event_idx_default(struct perf_event *event)
7378 {
7379 	return 0;
7380 }
7381 
7382 /*
7383  * Ensures all contexts with the same task_ctx_nr have the same
7384  * pmu_cpu_context too.
7385  */
7386 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7387 {
7388 	struct pmu *pmu;
7389 
7390 	if (ctxn < 0)
7391 		return NULL;
7392 
7393 	list_for_each_entry(pmu, &pmus, entry) {
7394 		if (pmu->task_ctx_nr == ctxn)
7395 			return pmu->pmu_cpu_context;
7396 	}
7397 
7398 	return NULL;
7399 }
7400 
7401 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7402 {
7403 	int cpu;
7404 
7405 	for_each_possible_cpu(cpu) {
7406 		struct perf_cpu_context *cpuctx;
7407 
7408 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7409 
7410 		if (cpuctx->unique_pmu == old_pmu)
7411 			cpuctx->unique_pmu = pmu;
7412 	}
7413 }
7414 
7415 static void free_pmu_context(struct pmu *pmu)
7416 {
7417 	struct pmu *i;
7418 
7419 	mutex_lock(&pmus_lock);
7420 	/*
7421 	 * Like a real lame refcount.
7422 	 */
7423 	list_for_each_entry(i, &pmus, entry) {
7424 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7425 			update_pmu_context(i, pmu);
7426 			goto out;
7427 		}
7428 	}
7429 
7430 	free_percpu(pmu->pmu_cpu_context);
7431 out:
7432 	mutex_unlock(&pmus_lock);
7433 }
7434 static struct idr pmu_idr;
7435 
7436 static ssize_t
7437 type_show(struct device *dev, struct device_attribute *attr, char *page)
7438 {
7439 	struct pmu *pmu = dev_get_drvdata(dev);
7440 
7441 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7442 }
7443 static DEVICE_ATTR_RO(type);
7444 
7445 static ssize_t
7446 perf_event_mux_interval_ms_show(struct device *dev,
7447 				struct device_attribute *attr,
7448 				char *page)
7449 {
7450 	struct pmu *pmu = dev_get_drvdata(dev);
7451 
7452 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7453 }
7454 
7455 static DEFINE_MUTEX(mux_interval_mutex);
7456 
7457 static ssize_t
7458 perf_event_mux_interval_ms_store(struct device *dev,
7459 				 struct device_attribute *attr,
7460 				 const char *buf, size_t count)
7461 {
7462 	struct pmu *pmu = dev_get_drvdata(dev);
7463 	int timer, cpu, ret;
7464 
7465 	ret = kstrtoint(buf, 0, &timer);
7466 	if (ret)
7467 		return ret;
7468 
7469 	if (timer < 1)
7470 		return -EINVAL;
7471 
7472 	/* same value, noting to do */
7473 	if (timer == pmu->hrtimer_interval_ms)
7474 		return count;
7475 
7476 	mutex_lock(&mux_interval_mutex);
7477 	pmu->hrtimer_interval_ms = timer;
7478 
7479 	/* update all cpuctx for this PMU */
7480 	get_online_cpus();
7481 	for_each_online_cpu(cpu) {
7482 		struct perf_cpu_context *cpuctx;
7483 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7484 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7485 
7486 		cpu_function_call(cpu,
7487 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7488 	}
7489 	put_online_cpus();
7490 	mutex_unlock(&mux_interval_mutex);
7491 
7492 	return count;
7493 }
7494 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7495 
7496 static struct attribute *pmu_dev_attrs[] = {
7497 	&dev_attr_type.attr,
7498 	&dev_attr_perf_event_mux_interval_ms.attr,
7499 	NULL,
7500 };
7501 ATTRIBUTE_GROUPS(pmu_dev);
7502 
7503 static int pmu_bus_running;
7504 static struct bus_type pmu_bus = {
7505 	.name		= "event_source",
7506 	.dev_groups	= pmu_dev_groups,
7507 };
7508 
7509 static void pmu_dev_release(struct device *dev)
7510 {
7511 	kfree(dev);
7512 }
7513 
7514 static int pmu_dev_alloc(struct pmu *pmu)
7515 {
7516 	int ret = -ENOMEM;
7517 
7518 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7519 	if (!pmu->dev)
7520 		goto out;
7521 
7522 	pmu->dev->groups = pmu->attr_groups;
7523 	device_initialize(pmu->dev);
7524 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7525 	if (ret)
7526 		goto free_dev;
7527 
7528 	dev_set_drvdata(pmu->dev, pmu);
7529 	pmu->dev->bus = &pmu_bus;
7530 	pmu->dev->release = pmu_dev_release;
7531 	ret = device_add(pmu->dev);
7532 	if (ret)
7533 		goto free_dev;
7534 
7535 out:
7536 	return ret;
7537 
7538 free_dev:
7539 	put_device(pmu->dev);
7540 	goto out;
7541 }
7542 
7543 static struct lock_class_key cpuctx_mutex;
7544 static struct lock_class_key cpuctx_lock;
7545 
7546 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7547 {
7548 	int cpu, ret;
7549 
7550 	mutex_lock(&pmus_lock);
7551 	ret = -ENOMEM;
7552 	pmu->pmu_disable_count = alloc_percpu(int);
7553 	if (!pmu->pmu_disable_count)
7554 		goto unlock;
7555 
7556 	pmu->type = -1;
7557 	if (!name)
7558 		goto skip_type;
7559 	pmu->name = name;
7560 
7561 	if (type < 0) {
7562 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7563 		if (type < 0) {
7564 			ret = type;
7565 			goto free_pdc;
7566 		}
7567 	}
7568 	pmu->type = type;
7569 
7570 	if (pmu_bus_running) {
7571 		ret = pmu_dev_alloc(pmu);
7572 		if (ret)
7573 			goto free_idr;
7574 	}
7575 
7576 skip_type:
7577 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7578 	if (pmu->pmu_cpu_context)
7579 		goto got_cpu_context;
7580 
7581 	ret = -ENOMEM;
7582 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7583 	if (!pmu->pmu_cpu_context)
7584 		goto free_dev;
7585 
7586 	for_each_possible_cpu(cpu) {
7587 		struct perf_cpu_context *cpuctx;
7588 
7589 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7590 		__perf_event_init_context(&cpuctx->ctx);
7591 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7592 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7593 		cpuctx->ctx.pmu = pmu;
7594 
7595 		__perf_mux_hrtimer_init(cpuctx, cpu);
7596 
7597 		cpuctx->unique_pmu = pmu;
7598 	}
7599 
7600 got_cpu_context:
7601 	if (!pmu->start_txn) {
7602 		if (pmu->pmu_enable) {
7603 			/*
7604 			 * If we have pmu_enable/pmu_disable calls, install
7605 			 * transaction stubs that use that to try and batch
7606 			 * hardware accesses.
7607 			 */
7608 			pmu->start_txn  = perf_pmu_start_txn;
7609 			pmu->commit_txn = perf_pmu_commit_txn;
7610 			pmu->cancel_txn = perf_pmu_cancel_txn;
7611 		} else {
7612 			pmu->start_txn  = perf_pmu_nop_txn;
7613 			pmu->commit_txn = perf_pmu_nop_int;
7614 			pmu->cancel_txn = perf_pmu_nop_void;
7615 		}
7616 	}
7617 
7618 	if (!pmu->pmu_enable) {
7619 		pmu->pmu_enable  = perf_pmu_nop_void;
7620 		pmu->pmu_disable = perf_pmu_nop_void;
7621 	}
7622 
7623 	if (!pmu->event_idx)
7624 		pmu->event_idx = perf_event_idx_default;
7625 
7626 	list_add_rcu(&pmu->entry, &pmus);
7627 	atomic_set(&pmu->exclusive_cnt, 0);
7628 	ret = 0;
7629 unlock:
7630 	mutex_unlock(&pmus_lock);
7631 
7632 	return ret;
7633 
7634 free_dev:
7635 	device_del(pmu->dev);
7636 	put_device(pmu->dev);
7637 
7638 free_idr:
7639 	if (pmu->type >= PERF_TYPE_MAX)
7640 		idr_remove(&pmu_idr, pmu->type);
7641 
7642 free_pdc:
7643 	free_percpu(pmu->pmu_disable_count);
7644 	goto unlock;
7645 }
7646 EXPORT_SYMBOL_GPL(perf_pmu_register);
7647 
7648 void perf_pmu_unregister(struct pmu *pmu)
7649 {
7650 	mutex_lock(&pmus_lock);
7651 	list_del_rcu(&pmu->entry);
7652 	mutex_unlock(&pmus_lock);
7653 
7654 	/*
7655 	 * We dereference the pmu list under both SRCU and regular RCU, so
7656 	 * synchronize against both of those.
7657 	 */
7658 	synchronize_srcu(&pmus_srcu);
7659 	synchronize_rcu();
7660 
7661 	free_percpu(pmu->pmu_disable_count);
7662 	if (pmu->type >= PERF_TYPE_MAX)
7663 		idr_remove(&pmu_idr, pmu->type);
7664 	device_del(pmu->dev);
7665 	put_device(pmu->dev);
7666 	free_pmu_context(pmu);
7667 }
7668 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7669 
7670 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7671 {
7672 	struct perf_event_context *ctx = NULL;
7673 	int ret;
7674 
7675 	if (!try_module_get(pmu->module))
7676 		return -ENODEV;
7677 
7678 	if (event->group_leader != event) {
7679 		/*
7680 		 * This ctx->mutex can nest when we're called through
7681 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7682 		 */
7683 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7684 						 SINGLE_DEPTH_NESTING);
7685 		BUG_ON(!ctx);
7686 	}
7687 
7688 	event->pmu = pmu;
7689 	ret = pmu->event_init(event);
7690 
7691 	if (ctx)
7692 		perf_event_ctx_unlock(event->group_leader, ctx);
7693 
7694 	if (ret)
7695 		module_put(pmu->module);
7696 
7697 	return ret;
7698 }
7699 
7700 static struct pmu *perf_init_event(struct perf_event *event)
7701 {
7702 	struct pmu *pmu = NULL;
7703 	int idx;
7704 	int ret;
7705 
7706 	idx = srcu_read_lock(&pmus_srcu);
7707 
7708 	rcu_read_lock();
7709 	pmu = idr_find(&pmu_idr, event->attr.type);
7710 	rcu_read_unlock();
7711 	if (pmu) {
7712 		ret = perf_try_init_event(pmu, event);
7713 		if (ret)
7714 			pmu = ERR_PTR(ret);
7715 		goto unlock;
7716 	}
7717 
7718 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7719 		ret = perf_try_init_event(pmu, event);
7720 		if (!ret)
7721 			goto unlock;
7722 
7723 		if (ret != -ENOENT) {
7724 			pmu = ERR_PTR(ret);
7725 			goto unlock;
7726 		}
7727 	}
7728 	pmu = ERR_PTR(-ENOENT);
7729 unlock:
7730 	srcu_read_unlock(&pmus_srcu, idx);
7731 
7732 	return pmu;
7733 }
7734 
7735 static void account_event_cpu(struct perf_event *event, int cpu)
7736 {
7737 	if (event->parent)
7738 		return;
7739 
7740 	if (is_cgroup_event(event))
7741 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7742 }
7743 
7744 static void account_event(struct perf_event *event)
7745 {
7746 	bool inc = false;
7747 
7748 	if (event->parent)
7749 		return;
7750 
7751 	if (event->attach_state & PERF_ATTACH_TASK)
7752 		inc = true;
7753 	if (event->attr.mmap || event->attr.mmap_data)
7754 		atomic_inc(&nr_mmap_events);
7755 	if (event->attr.comm)
7756 		atomic_inc(&nr_comm_events);
7757 	if (event->attr.task)
7758 		atomic_inc(&nr_task_events);
7759 	if (event->attr.freq) {
7760 		if (atomic_inc_return(&nr_freq_events) == 1)
7761 			tick_nohz_full_kick_all();
7762 	}
7763 	if (event->attr.context_switch) {
7764 		atomic_inc(&nr_switch_events);
7765 		inc = true;
7766 	}
7767 	if (has_branch_stack(event))
7768 		inc = true;
7769 	if (is_cgroup_event(event))
7770 		inc = true;
7771 
7772 	if (inc)
7773 		static_key_slow_inc(&perf_sched_events.key);
7774 
7775 	account_event_cpu(event, event->cpu);
7776 }
7777 
7778 /*
7779  * Allocate and initialize a event structure
7780  */
7781 static struct perf_event *
7782 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7783 		 struct task_struct *task,
7784 		 struct perf_event *group_leader,
7785 		 struct perf_event *parent_event,
7786 		 perf_overflow_handler_t overflow_handler,
7787 		 void *context, int cgroup_fd)
7788 {
7789 	struct pmu *pmu;
7790 	struct perf_event *event;
7791 	struct hw_perf_event *hwc;
7792 	long err = -EINVAL;
7793 
7794 	if ((unsigned)cpu >= nr_cpu_ids) {
7795 		if (!task || cpu != -1)
7796 			return ERR_PTR(-EINVAL);
7797 	}
7798 
7799 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7800 	if (!event)
7801 		return ERR_PTR(-ENOMEM);
7802 
7803 	/*
7804 	 * Single events are their own group leaders, with an
7805 	 * empty sibling list:
7806 	 */
7807 	if (!group_leader)
7808 		group_leader = event;
7809 
7810 	mutex_init(&event->child_mutex);
7811 	INIT_LIST_HEAD(&event->child_list);
7812 
7813 	INIT_LIST_HEAD(&event->group_entry);
7814 	INIT_LIST_HEAD(&event->event_entry);
7815 	INIT_LIST_HEAD(&event->sibling_list);
7816 	INIT_LIST_HEAD(&event->rb_entry);
7817 	INIT_LIST_HEAD(&event->active_entry);
7818 	INIT_HLIST_NODE(&event->hlist_entry);
7819 
7820 
7821 	init_waitqueue_head(&event->waitq);
7822 	init_irq_work(&event->pending, perf_pending_event);
7823 
7824 	mutex_init(&event->mmap_mutex);
7825 
7826 	atomic_long_set(&event->refcount, 1);
7827 	event->cpu		= cpu;
7828 	event->attr		= *attr;
7829 	event->group_leader	= group_leader;
7830 	event->pmu		= NULL;
7831 	event->oncpu		= -1;
7832 
7833 	event->parent		= parent_event;
7834 
7835 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7836 	event->id		= atomic64_inc_return(&perf_event_id);
7837 
7838 	event->state		= PERF_EVENT_STATE_INACTIVE;
7839 
7840 	if (task) {
7841 		event->attach_state = PERF_ATTACH_TASK;
7842 		/*
7843 		 * XXX pmu::event_init needs to know what task to account to
7844 		 * and we cannot use the ctx information because we need the
7845 		 * pmu before we get a ctx.
7846 		 */
7847 		event->hw.target = task;
7848 	}
7849 
7850 	event->clock = &local_clock;
7851 	if (parent_event)
7852 		event->clock = parent_event->clock;
7853 
7854 	if (!overflow_handler && parent_event) {
7855 		overflow_handler = parent_event->overflow_handler;
7856 		context = parent_event->overflow_handler_context;
7857 	}
7858 
7859 	event->overflow_handler	= overflow_handler;
7860 	event->overflow_handler_context = context;
7861 
7862 	perf_event__state_init(event);
7863 
7864 	pmu = NULL;
7865 
7866 	hwc = &event->hw;
7867 	hwc->sample_period = attr->sample_period;
7868 	if (attr->freq && attr->sample_freq)
7869 		hwc->sample_period = 1;
7870 	hwc->last_period = hwc->sample_period;
7871 
7872 	local64_set(&hwc->period_left, hwc->sample_period);
7873 
7874 	/*
7875 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7876 	 */
7877 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7878 		goto err_ns;
7879 
7880 	if (!has_branch_stack(event))
7881 		event->attr.branch_sample_type = 0;
7882 
7883 	if (cgroup_fd != -1) {
7884 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7885 		if (err)
7886 			goto err_ns;
7887 	}
7888 
7889 	pmu = perf_init_event(event);
7890 	if (!pmu)
7891 		goto err_ns;
7892 	else if (IS_ERR(pmu)) {
7893 		err = PTR_ERR(pmu);
7894 		goto err_ns;
7895 	}
7896 
7897 	err = exclusive_event_init(event);
7898 	if (err)
7899 		goto err_pmu;
7900 
7901 	if (!event->parent) {
7902 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7903 			err = get_callchain_buffers();
7904 			if (err)
7905 				goto err_per_task;
7906 		}
7907 	}
7908 
7909 	return event;
7910 
7911 err_per_task:
7912 	exclusive_event_destroy(event);
7913 
7914 err_pmu:
7915 	if (event->destroy)
7916 		event->destroy(event);
7917 	module_put(pmu->module);
7918 err_ns:
7919 	if (is_cgroup_event(event))
7920 		perf_detach_cgroup(event);
7921 	if (event->ns)
7922 		put_pid_ns(event->ns);
7923 	kfree(event);
7924 
7925 	return ERR_PTR(err);
7926 }
7927 
7928 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7929 			  struct perf_event_attr *attr)
7930 {
7931 	u32 size;
7932 	int ret;
7933 
7934 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7935 		return -EFAULT;
7936 
7937 	/*
7938 	 * zero the full structure, so that a short copy will be nice.
7939 	 */
7940 	memset(attr, 0, sizeof(*attr));
7941 
7942 	ret = get_user(size, &uattr->size);
7943 	if (ret)
7944 		return ret;
7945 
7946 	if (size > PAGE_SIZE)	/* silly large */
7947 		goto err_size;
7948 
7949 	if (!size)		/* abi compat */
7950 		size = PERF_ATTR_SIZE_VER0;
7951 
7952 	if (size < PERF_ATTR_SIZE_VER0)
7953 		goto err_size;
7954 
7955 	/*
7956 	 * If we're handed a bigger struct than we know of,
7957 	 * ensure all the unknown bits are 0 - i.e. new
7958 	 * user-space does not rely on any kernel feature
7959 	 * extensions we dont know about yet.
7960 	 */
7961 	if (size > sizeof(*attr)) {
7962 		unsigned char __user *addr;
7963 		unsigned char __user *end;
7964 		unsigned char val;
7965 
7966 		addr = (void __user *)uattr + sizeof(*attr);
7967 		end  = (void __user *)uattr + size;
7968 
7969 		for (; addr < end; addr++) {
7970 			ret = get_user(val, addr);
7971 			if (ret)
7972 				return ret;
7973 			if (val)
7974 				goto err_size;
7975 		}
7976 		size = sizeof(*attr);
7977 	}
7978 
7979 	ret = copy_from_user(attr, uattr, size);
7980 	if (ret)
7981 		return -EFAULT;
7982 
7983 	if (attr->__reserved_1)
7984 		return -EINVAL;
7985 
7986 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7987 		return -EINVAL;
7988 
7989 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7990 		return -EINVAL;
7991 
7992 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7993 		u64 mask = attr->branch_sample_type;
7994 
7995 		/* only using defined bits */
7996 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7997 			return -EINVAL;
7998 
7999 		/* at least one branch bit must be set */
8000 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8001 			return -EINVAL;
8002 
8003 		/* propagate priv level, when not set for branch */
8004 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8005 
8006 			/* exclude_kernel checked on syscall entry */
8007 			if (!attr->exclude_kernel)
8008 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
8009 
8010 			if (!attr->exclude_user)
8011 				mask |= PERF_SAMPLE_BRANCH_USER;
8012 
8013 			if (!attr->exclude_hv)
8014 				mask |= PERF_SAMPLE_BRANCH_HV;
8015 			/*
8016 			 * adjust user setting (for HW filter setup)
8017 			 */
8018 			attr->branch_sample_type = mask;
8019 		}
8020 		/* privileged levels capture (kernel, hv): check permissions */
8021 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8022 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8023 			return -EACCES;
8024 	}
8025 
8026 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8027 		ret = perf_reg_validate(attr->sample_regs_user);
8028 		if (ret)
8029 			return ret;
8030 	}
8031 
8032 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8033 		if (!arch_perf_have_user_stack_dump())
8034 			return -ENOSYS;
8035 
8036 		/*
8037 		 * We have __u32 type for the size, but so far
8038 		 * we can only use __u16 as maximum due to the
8039 		 * __u16 sample size limit.
8040 		 */
8041 		if (attr->sample_stack_user >= USHRT_MAX)
8042 			ret = -EINVAL;
8043 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8044 			ret = -EINVAL;
8045 	}
8046 
8047 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8048 		ret = perf_reg_validate(attr->sample_regs_intr);
8049 out:
8050 	return ret;
8051 
8052 err_size:
8053 	put_user(sizeof(*attr), &uattr->size);
8054 	ret = -E2BIG;
8055 	goto out;
8056 }
8057 
8058 static int
8059 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8060 {
8061 	struct ring_buffer *rb = NULL;
8062 	int ret = -EINVAL;
8063 
8064 	if (!output_event)
8065 		goto set;
8066 
8067 	/* don't allow circular references */
8068 	if (event == output_event)
8069 		goto out;
8070 
8071 	/*
8072 	 * Don't allow cross-cpu buffers
8073 	 */
8074 	if (output_event->cpu != event->cpu)
8075 		goto out;
8076 
8077 	/*
8078 	 * If its not a per-cpu rb, it must be the same task.
8079 	 */
8080 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8081 		goto out;
8082 
8083 	/*
8084 	 * Mixing clocks in the same buffer is trouble you don't need.
8085 	 */
8086 	if (output_event->clock != event->clock)
8087 		goto out;
8088 
8089 	/*
8090 	 * If both events generate aux data, they must be on the same PMU
8091 	 */
8092 	if (has_aux(event) && has_aux(output_event) &&
8093 	    event->pmu != output_event->pmu)
8094 		goto out;
8095 
8096 set:
8097 	mutex_lock(&event->mmap_mutex);
8098 	/* Can't redirect output if we've got an active mmap() */
8099 	if (atomic_read(&event->mmap_count))
8100 		goto unlock;
8101 
8102 	if (output_event) {
8103 		/* get the rb we want to redirect to */
8104 		rb = ring_buffer_get(output_event);
8105 		if (!rb)
8106 			goto unlock;
8107 	}
8108 
8109 	ring_buffer_attach(event, rb);
8110 
8111 	ret = 0;
8112 unlock:
8113 	mutex_unlock(&event->mmap_mutex);
8114 
8115 out:
8116 	return ret;
8117 }
8118 
8119 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8120 {
8121 	if (b < a)
8122 		swap(a, b);
8123 
8124 	mutex_lock(a);
8125 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8126 }
8127 
8128 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8129 {
8130 	bool nmi_safe = false;
8131 
8132 	switch (clk_id) {
8133 	case CLOCK_MONOTONIC:
8134 		event->clock = &ktime_get_mono_fast_ns;
8135 		nmi_safe = true;
8136 		break;
8137 
8138 	case CLOCK_MONOTONIC_RAW:
8139 		event->clock = &ktime_get_raw_fast_ns;
8140 		nmi_safe = true;
8141 		break;
8142 
8143 	case CLOCK_REALTIME:
8144 		event->clock = &ktime_get_real_ns;
8145 		break;
8146 
8147 	case CLOCK_BOOTTIME:
8148 		event->clock = &ktime_get_boot_ns;
8149 		break;
8150 
8151 	case CLOCK_TAI:
8152 		event->clock = &ktime_get_tai_ns;
8153 		break;
8154 
8155 	default:
8156 		return -EINVAL;
8157 	}
8158 
8159 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8160 		return -EINVAL;
8161 
8162 	return 0;
8163 }
8164 
8165 /**
8166  * sys_perf_event_open - open a performance event, associate it to a task/cpu
8167  *
8168  * @attr_uptr:	event_id type attributes for monitoring/sampling
8169  * @pid:		target pid
8170  * @cpu:		target cpu
8171  * @group_fd:		group leader event fd
8172  */
8173 SYSCALL_DEFINE5(perf_event_open,
8174 		struct perf_event_attr __user *, attr_uptr,
8175 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8176 {
8177 	struct perf_event *group_leader = NULL, *output_event = NULL;
8178 	struct perf_event *event, *sibling;
8179 	struct perf_event_attr attr;
8180 	struct perf_event_context *ctx, *uninitialized_var(gctx);
8181 	struct file *event_file = NULL;
8182 	struct fd group = {NULL, 0};
8183 	struct task_struct *task = NULL;
8184 	struct pmu *pmu;
8185 	int event_fd;
8186 	int move_group = 0;
8187 	int err;
8188 	int f_flags = O_RDWR;
8189 	int cgroup_fd = -1;
8190 
8191 	/* for future expandability... */
8192 	if (flags & ~PERF_FLAG_ALL)
8193 		return -EINVAL;
8194 
8195 	err = perf_copy_attr(attr_uptr, &attr);
8196 	if (err)
8197 		return err;
8198 
8199 	if (!attr.exclude_kernel) {
8200 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8201 			return -EACCES;
8202 	}
8203 
8204 	if (attr.freq) {
8205 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8206 			return -EINVAL;
8207 	} else {
8208 		if (attr.sample_period & (1ULL << 63))
8209 			return -EINVAL;
8210 	}
8211 
8212 	/*
8213 	 * In cgroup mode, the pid argument is used to pass the fd
8214 	 * opened to the cgroup directory in cgroupfs. The cpu argument
8215 	 * designates the cpu on which to monitor threads from that
8216 	 * cgroup.
8217 	 */
8218 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8219 		return -EINVAL;
8220 
8221 	if (flags & PERF_FLAG_FD_CLOEXEC)
8222 		f_flags |= O_CLOEXEC;
8223 
8224 	event_fd = get_unused_fd_flags(f_flags);
8225 	if (event_fd < 0)
8226 		return event_fd;
8227 
8228 	if (group_fd != -1) {
8229 		err = perf_fget_light(group_fd, &group);
8230 		if (err)
8231 			goto err_fd;
8232 		group_leader = group.file->private_data;
8233 		if (flags & PERF_FLAG_FD_OUTPUT)
8234 			output_event = group_leader;
8235 		if (flags & PERF_FLAG_FD_NO_GROUP)
8236 			group_leader = NULL;
8237 	}
8238 
8239 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8240 		task = find_lively_task_by_vpid(pid);
8241 		if (IS_ERR(task)) {
8242 			err = PTR_ERR(task);
8243 			goto err_group_fd;
8244 		}
8245 	}
8246 
8247 	if (task && group_leader &&
8248 	    group_leader->attr.inherit != attr.inherit) {
8249 		err = -EINVAL;
8250 		goto err_task;
8251 	}
8252 
8253 	get_online_cpus();
8254 
8255 	if (flags & PERF_FLAG_PID_CGROUP)
8256 		cgroup_fd = pid;
8257 
8258 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8259 				 NULL, NULL, cgroup_fd);
8260 	if (IS_ERR(event)) {
8261 		err = PTR_ERR(event);
8262 		goto err_cpus;
8263 	}
8264 
8265 	if (is_sampling_event(event)) {
8266 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8267 			err = -ENOTSUPP;
8268 			goto err_alloc;
8269 		}
8270 	}
8271 
8272 	account_event(event);
8273 
8274 	/*
8275 	 * Special case software events and allow them to be part of
8276 	 * any hardware group.
8277 	 */
8278 	pmu = event->pmu;
8279 
8280 	if (attr.use_clockid) {
8281 		err = perf_event_set_clock(event, attr.clockid);
8282 		if (err)
8283 			goto err_alloc;
8284 	}
8285 
8286 	if (group_leader &&
8287 	    (is_software_event(event) != is_software_event(group_leader))) {
8288 		if (is_software_event(event)) {
8289 			/*
8290 			 * If event and group_leader are not both a software
8291 			 * event, and event is, then group leader is not.
8292 			 *
8293 			 * Allow the addition of software events to !software
8294 			 * groups, this is safe because software events never
8295 			 * fail to schedule.
8296 			 */
8297 			pmu = group_leader->pmu;
8298 		} else if (is_software_event(group_leader) &&
8299 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8300 			/*
8301 			 * In case the group is a pure software group, and we
8302 			 * try to add a hardware event, move the whole group to
8303 			 * the hardware context.
8304 			 */
8305 			move_group = 1;
8306 		}
8307 	}
8308 
8309 	/*
8310 	 * Get the target context (task or percpu):
8311 	 */
8312 	ctx = find_get_context(pmu, task, event);
8313 	if (IS_ERR(ctx)) {
8314 		err = PTR_ERR(ctx);
8315 		goto err_alloc;
8316 	}
8317 
8318 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8319 		err = -EBUSY;
8320 		goto err_context;
8321 	}
8322 
8323 	if (task) {
8324 		put_task_struct(task);
8325 		task = NULL;
8326 	}
8327 
8328 	/*
8329 	 * Look up the group leader (we will attach this event to it):
8330 	 */
8331 	if (group_leader) {
8332 		err = -EINVAL;
8333 
8334 		/*
8335 		 * Do not allow a recursive hierarchy (this new sibling
8336 		 * becoming part of another group-sibling):
8337 		 */
8338 		if (group_leader->group_leader != group_leader)
8339 			goto err_context;
8340 
8341 		/* All events in a group should have the same clock */
8342 		if (group_leader->clock != event->clock)
8343 			goto err_context;
8344 
8345 		/*
8346 		 * Do not allow to attach to a group in a different
8347 		 * task or CPU context:
8348 		 */
8349 		if (move_group) {
8350 			/*
8351 			 * Make sure we're both on the same task, or both
8352 			 * per-cpu events.
8353 			 */
8354 			if (group_leader->ctx->task != ctx->task)
8355 				goto err_context;
8356 
8357 			/*
8358 			 * Make sure we're both events for the same CPU;
8359 			 * grouping events for different CPUs is broken; since
8360 			 * you can never concurrently schedule them anyhow.
8361 			 */
8362 			if (group_leader->cpu != event->cpu)
8363 				goto err_context;
8364 		} else {
8365 			if (group_leader->ctx != ctx)
8366 				goto err_context;
8367 		}
8368 
8369 		/*
8370 		 * Only a group leader can be exclusive or pinned
8371 		 */
8372 		if (attr.exclusive || attr.pinned)
8373 			goto err_context;
8374 	}
8375 
8376 	if (output_event) {
8377 		err = perf_event_set_output(event, output_event);
8378 		if (err)
8379 			goto err_context;
8380 	}
8381 
8382 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8383 					f_flags);
8384 	if (IS_ERR(event_file)) {
8385 		err = PTR_ERR(event_file);
8386 		goto err_context;
8387 	}
8388 
8389 	if (move_group) {
8390 		gctx = group_leader->ctx;
8391 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8392 	} else {
8393 		mutex_lock(&ctx->mutex);
8394 	}
8395 
8396 	if (!perf_event_validate_size(event)) {
8397 		err = -E2BIG;
8398 		goto err_locked;
8399 	}
8400 
8401 	/*
8402 	 * Must be under the same ctx::mutex as perf_install_in_context(),
8403 	 * because we need to serialize with concurrent event creation.
8404 	 */
8405 	if (!exclusive_event_installable(event, ctx)) {
8406 		/* exclusive and group stuff are assumed mutually exclusive */
8407 		WARN_ON_ONCE(move_group);
8408 
8409 		err = -EBUSY;
8410 		goto err_locked;
8411 	}
8412 
8413 	WARN_ON_ONCE(ctx->parent_ctx);
8414 
8415 	if (move_group) {
8416 		/*
8417 		 * See perf_event_ctx_lock() for comments on the details
8418 		 * of swizzling perf_event::ctx.
8419 		 */
8420 		perf_remove_from_context(group_leader, 0);
8421 
8422 		list_for_each_entry(sibling, &group_leader->sibling_list,
8423 				    group_entry) {
8424 			perf_remove_from_context(sibling, 0);
8425 			put_ctx(gctx);
8426 		}
8427 
8428 		/*
8429 		 * Wait for everybody to stop referencing the events through
8430 		 * the old lists, before installing it on new lists.
8431 		 */
8432 		synchronize_rcu();
8433 
8434 		/*
8435 		 * Install the group siblings before the group leader.
8436 		 *
8437 		 * Because a group leader will try and install the entire group
8438 		 * (through the sibling list, which is still in-tact), we can
8439 		 * end up with siblings installed in the wrong context.
8440 		 *
8441 		 * By installing siblings first we NO-OP because they're not
8442 		 * reachable through the group lists.
8443 		 */
8444 		list_for_each_entry(sibling, &group_leader->sibling_list,
8445 				    group_entry) {
8446 			perf_event__state_init(sibling);
8447 			perf_install_in_context(ctx, sibling, sibling->cpu);
8448 			get_ctx(ctx);
8449 		}
8450 
8451 		/*
8452 		 * Removing from the context ends up with disabled
8453 		 * event. What we want here is event in the initial
8454 		 * startup state, ready to be add into new context.
8455 		 */
8456 		perf_event__state_init(group_leader);
8457 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8458 		get_ctx(ctx);
8459 
8460 		/*
8461 		 * Now that all events are installed in @ctx, nothing
8462 		 * references @gctx anymore, so drop the last reference we have
8463 		 * on it.
8464 		 */
8465 		put_ctx(gctx);
8466 	}
8467 
8468 	/*
8469 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
8470 	 * that we're serialized against further additions and before
8471 	 * perf_install_in_context() which is the point the event is active and
8472 	 * can use these values.
8473 	 */
8474 	perf_event__header_size(event);
8475 	perf_event__id_header_size(event);
8476 
8477 	event->owner = current;
8478 
8479 	perf_install_in_context(ctx, event, event->cpu);
8480 	perf_unpin_context(ctx);
8481 
8482 	if (move_group)
8483 		mutex_unlock(&gctx->mutex);
8484 	mutex_unlock(&ctx->mutex);
8485 
8486 	put_online_cpus();
8487 
8488 	mutex_lock(&current->perf_event_mutex);
8489 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8490 	mutex_unlock(&current->perf_event_mutex);
8491 
8492 	/*
8493 	 * Drop the reference on the group_event after placing the
8494 	 * new event on the sibling_list. This ensures destruction
8495 	 * of the group leader will find the pointer to itself in
8496 	 * perf_group_detach().
8497 	 */
8498 	fdput(group);
8499 	fd_install(event_fd, event_file);
8500 	return event_fd;
8501 
8502 err_locked:
8503 	if (move_group)
8504 		mutex_unlock(&gctx->mutex);
8505 	mutex_unlock(&ctx->mutex);
8506 /* err_file: */
8507 	fput(event_file);
8508 err_context:
8509 	perf_unpin_context(ctx);
8510 	put_ctx(ctx);
8511 err_alloc:
8512 	free_event(event);
8513 err_cpus:
8514 	put_online_cpus();
8515 err_task:
8516 	if (task)
8517 		put_task_struct(task);
8518 err_group_fd:
8519 	fdput(group);
8520 err_fd:
8521 	put_unused_fd(event_fd);
8522 	return err;
8523 }
8524 
8525 /**
8526  * perf_event_create_kernel_counter
8527  *
8528  * @attr: attributes of the counter to create
8529  * @cpu: cpu in which the counter is bound
8530  * @task: task to profile (NULL for percpu)
8531  */
8532 struct perf_event *
8533 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8534 				 struct task_struct *task,
8535 				 perf_overflow_handler_t overflow_handler,
8536 				 void *context)
8537 {
8538 	struct perf_event_context *ctx;
8539 	struct perf_event *event;
8540 	int err;
8541 
8542 	/*
8543 	 * Get the target context (task or percpu):
8544 	 */
8545 
8546 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8547 				 overflow_handler, context, -1);
8548 	if (IS_ERR(event)) {
8549 		err = PTR_ERR(event);
8550 		goto err;
8551 	}
8552 
8553 	/* Mark owner so we could distinguish it from user events. */
8554 	event->owner = TASK_TOMBSTONE;
8555 
8556 	account_event(event);
8557 
8558 	ctx = find_get_context(event->pmu, task, event);
8559 	if (IS_ERR(ctx)) {
8560 		err = PTR_ERR(ctx);
8561 		goto err_free;
8562 	}
8563 
8564 	WARN_ON_ONCE(ctx->parent_ctx);
8565 	mutex_lock(&ctx->mutex);
8566 	if (!exclusive_event_installable(event, ctx)) {
8567 		mutex_unlock(&ctx->mutex);
8568 		perf_unpin_context(ctx);
8569 		put_ctx(ctx);
8570 		err = -EBUSY;
8571 		goto err_free;
8572 	}
8573 
8574 	perf_install_in_context(ctx, event, cpu);
8575 	perf_unpin_context(ctx);
8576 	mutex_unlock(&ctx->mutex);
8577 
8578 	return event;
8579 
8580 err_free:
8581 	free_event(event);
8582 err:
8583 	return ERR_PTR(err);
8584 }
8585 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8586 
8587 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8588 {
8589 	struct perf_event_context *src_ctx;
8590 	struct perf_event_context *dst_ctx;
8591 	struct perf_event *event, *tmp;
8592 	LIST_HEAD(events);
8593 
8594 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8595 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8596 
8597 	/*
8598 	 * See perf_event_ctx_lock() for comments on the details
8599 	 * of swizzling perf_event::ctx.
8600 	 */
8601 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8602 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8603 				 event_entry) {
8604 		perf_remove_from_context(event, 0);
8605 		unaccount_event_cpu(event, src_cpu);
8606 		put_ctx(src_ctx);
8607 		list_add(&event->migrate_entry, &events);
8608 	}
8609 
8610 	/*
8611 	 * Wait for the events to quiesce before re-instating them.
8612 	 */
8613 	synchronize_rcu();
8614 
8615 	/*
8616 	 * Re-instate events in 2 passes.
8617 	 *
8618 	 * Skip over group leaders and only install siblings on this first
8619 	 * pass, siblings will not get enabled without a leader, however a
8620 	 * leader will enable its siblings, even if those are still on the old
8621 	 * context.
8622 	 */
8623 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8624 		if (event->group_leader == event)
8625 			continue;
8626 
8627 		list_del(&event->migrate_entry);
8628 		if (event->state >= PERF_EVENT_STATE_OFF)
8629 			event->state = PERF_EVENT_STATE_INACTIVE;
8630 		account_event_cpu(event, dst_cpu);
8631 		perf_install_in_context(dst_ctx, event, dst_cpu);
8632 		get_ctx(dst_ctx);
8633 	}
8634 
8635 	/*
8636 	 * Once all the siblings are setup properly, install the group leaders
8637 	 * to make it go.
8638 	 */
8639 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8640 		list_del(&event->migrate_entry);
8641 		if (event->state >= PERF_EVENT_STATE_OFF)
8642 			event->state = PERF_EVENT_STATE_INACTIVE;
8643 		account_event_cpu(event, dst_cpu);
8644 		perf_install_in_context(dst_ctx, event, dst_cpu);
8645 		get_ctx(dst_ctx);
8646 	}
8647 	mutex_unlock(&dst_ctx->mutex);
8648 	mutex_unlock(&src_ctx->mutex);
8649 }
8650 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8651 
8652 static void sync_child_event(struct perf_event *child_event,
8653 			       struct task_struct *child)
8654 {
8655 	struct perf_event *parent_event = child_event->parent;
8656 	u64 child_val;
8657 
8658 	if (child_event->attr.inherit_stat)
8659 		perf_event_read_event(child_event, child);
8660 
8661 	child_val = perf_event_count(child_event);
8662 
8663 	/*
8664 	 * Add back the child's count to the parent's count:
8665 	 */
8666 	atomic64_add(child_val, &parent_event->child_count);
8667 	atomic64_add(child_event->total_time_enabled,
8668 		     &parent_event->child_total_time_enabled);
8669 	atomic64_add(child_event->total_time_running,
8670 		     &parent_event->child_total_time_running);
8671 }
8672 
8673 static void
8674 perf_event_exit_event(struct perf_event *child_event,
8675 		      struct perf_event_context *child_ctx,
8676 		      struct task_struct *child)
8677 {
8678 	struct perf_event *parent_event = child_event->parent;
8679 
8680 	/*
8681 	 * Do not destroy the 'original' grouping; because of the context
8682 	 * switch optimization the original events could've ended up in a
8683 	 * random child task.
8684 	 *
8685 	 * If we were to destroy the original group, all group related
8686 	 * operations would cease to function properly after this random
8687 	 * child dies.
8688 	 *
8689 	 * Do destroy all inherited groups, we don't care about those
8690 	 * and being thorough is better.
8691 	 */
8692 	raw_spin_lock_irq(&child_ctx->lock);
8693 	WARN_ON_ONCE(child_ctx->is_active);
8694 
8695 	if (parent_event)
8696 		perf_group_detach(child_event);
8697 	list_del_event(child_event, child_ctx);
8698 	child_event->state = PERF_EVENT_STATE_EXIT; /* see perf_event_release_kernel() */
8699 	raw_spin_unlock_irq(&child_ctx->lock);
8700 
8701 	/*
8702 	 * Parent events are governed by their filedesc, retain them.
8703 	 */
8704 	if (!parent_event) {
8705 		perf_event_wakeup(child_event);
8706 		return;
8707 	}
8708 	/*
8709 	 * Child events can be cleaned up.
8710 	 */
8711 
8712 	sync_child_event(child_event, child);
8713 
8714 	/*
8715 	 * Remove this event from the parent's list
8716 	 */
8717 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8718 	mutex_lock(&parent_event->child_mutex);
8719 	list_del_init(&child_event->child_list);
8720 	mutex_unlock(&parent_event->child_mutex);
8721 
8722 	/*
8723 	 * Kick perf_poll() for is_event_hup().
8724 	 */
8725 	perf_event_wakeup(parent_event);
8726 	free_event(child_event);
8727 	put_event(parent_event);
8728 }
8729 
8730 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8731 {
8732 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8733 	struct perf_event *child_event, *next;
8734 
8735 	WARN_ON_ONCE(child != current);
8736 
8737 	child_ctx = perf_pin_task_context(child, ctxn);
8738 	if (!child_ctx)
8739 		return;
8740 
8741 	/*
8742 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
8743 	 * ctx::mutex over the entire thing. This serializes against almost
8744 	 * everything that wants to access the ctx.
8745 	 *
8746 	 * The exception is sys_perf_event_open() /
8747 	 * perf_event_create_kernel_count() which does find_get_context()
8748 	 * without ctx::mutex (it cannot because of the move_group double mutex
8749 	 * lock thing). See the comments in perf_install_in_context().
8750 	 */
8751 	mutex_lock(&child_ctx->mutex);
8752 
8753 	/*
8754 	 * In a single ctx::lock section, de-schedule the events and detach the
8755 	 * context from the task such that we cannot ever get it scheduled back
8756 	 * in.
8757 	 */
8758 	raw_spin_lock_irq(&child_ctx->lock);
8759 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8760 
8761 	/*
8762 	 * Now that the context is inactive, destroy the task <-> ctx relation
8763 	 * and mark the context dead.
8764 	 */
8765 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8766 	put_ctx(child_ctx); /* cannot be last */
8767 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8768 	put_task_struct(current); /* cannot be last */
8769 
8770 	clone_ctx = unclone_ctx(child_ctx);
8771 	raw_spin_unlock_irq(&child_ctx->lock);
8772 
8773 	if (clone_ctx)
8774 		put_ctx(clone_ctx);
8775 
8776 	/*
8777 	 * Report the task dead after unscheduling the events so that we
8778 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8779 	 * get a few PERF_RECORD_READ events.
8780 	 */
8781 	perf_event_task(child, child_ctx, 0);
8782 
8783 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8784 		perf_event_exit_event(child_event, child_ctx, child);
8785 
8786 	mutex_unlock(&child_ctx->mutex);
8787 
8788 	put_ctx(child_ctx);
8789 }
8790 
8791 /*
8792  * When a child task exits, feed back event values to parent events.
8793  */
8794 void perf_event_exit_task(struct task_struct *child)
8795 {
8796 	struct perf_event *event, *tmp;
8797 	int ctxn;
8798 
8799 	mutex_lock(&child->perf_event_mutex);
8800 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8801 				 owner_entry) {
8802 		list_del_init(&event->owner_entry);
8803 
8804 		/*
8805 		 * Ensure the list deletion is visible before we clear
8806 		 * the owner, closes a race against perf_release() where
8807 		 * we need to serialize on the owner->perf_event_mutex.
8808 		 */
8809 		smp_store_release(&event->owner, NULL);
8810 	}
8811 	mutex_unlock(&child->perf_event_mutex);
8812 
8813 	for_each_task_context_nr(ctxn)
8814 		perf_event_exit_task_context(child, ctxn);
8815 
8816 	/*
8817 	 * The perf_event_exit_task_context calls perf_event_task
8818 	 * with child's task_ctx, which generates EXIT events for
8819 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
8820 	 * At this point we need to send EXIT events to cpu contexts.
8821 	 */
8822 	perf_event_task(child, NULL, 0);
8823 }
8824 
8825 static void perf_free_event(struct perf_event *event,
8826 			    struct perf_event_context *ctx)
8827 {
8828 	struct perf_event *parent = event->parent;
8829 
8830 	if (WARN_ON_ONCE(!parent))
8831 		return;
8832 
8833 	mutex_lock(&parent->child_mutex);
8834 	list_del_init(&event->child_list);
8835 	mutex_unlock(&parent->child_mutex);
8836 
8837 	put_event(parent);
8838 
8839 	raw_spin_lock_irq(&ctx->lock);
8840 	perf_group_detach(event);
8841 	list_del_event(event, ctx);
8842 	raw_spin_unlock_irq(&ctx->lock);
8843 	free_event(event);
8844 }
8845 
8846 /*
8847  * Free an unexposed, unused context as created by inheritance by
8848  * perf_event_init_task below, used by fork() in case of fail.
8849  *
8850  * Not all locks are strictly required, but take them anyway to be nice and
8851  * help out with the lockdep assertions.
8852  */
8853 void perf_event_free_task(struct task_struct *task)
8854 {
8855 	struct perf_event_context *ctx;
8856 	struct perf_event *event, *tmp;
8857 	int ctxn;
8858 
8859 	for_each_task_context_nr(ctxn) {
8860 		ctx = task->perf_event_ctxp[ctxn];
8861 		if (!ctx)
8862 			continue;
8863 
8864 		mutex_lock(&ctx->mutex);
8865 again:
8866 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8867 				group_entry)
8868 			perf_free_event(event, ctx);
8869 
8870 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8871 				group_entry)
8872 			perf_free_event(event, ctx);
8873 
8874 		if (!list_empty(&ctx->pinned_groups) ||
8875 				!list_empty(&ctx->flexible_groups))
8876 			goto again;
8877 
8878 		mutex_unlock(&ctx->mutex);
8879 
8880 		put_ctx(ctx);
8881 	}
8882 }
8883 
8884 void perf_event_delayed_put(struct task_struct *task)
8885 {
8886 	int ctxn;
8887 
8888 	for_each_task_context_nr(ctxn)
8889 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8890 }
8891 
8892 struct file *perf_event_get(unsigned int fd)
8893 {
8894 	struct file *file;
8895 
8896 	file = fget_raw(fd);
8897 	if (!file)
8898 		return ERR_PTR(-EBADF);
8899 
8900 	if (file->f_op != &perf_fops) {
8901 		fput(file);
8902 		return ERR_PTR(-EBADF);
8903 	}
8904 
8905 	return file;
8906 }
8907 
8908 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8909 {
8910 	if (!event)
8911 		return ERR_PTR(-EINVAL);
8912 
8913 	return &event->attr;
8914 }
8915 
8916 /*
8917  * inherit a event from parent task to child task:
8918  */
8919 static struct perf_event *
8920 inherit_event(struct perf_event *parent_event,
8921 	      struct task_struct *parent,
8922 	      struct perf_event_context *parent_ctx,
8923 	      struct task_struct *child,
8924 	      struct perf_event *group_leader,
8925 	      struct perf_event_context *child_ctx)
8926 {
8927 	enum perf_event_active_state parent_state = parent_event->state;
8928 	struct perf_event *child_event;
8929 	unsigned long flags;
8930 
8931 	/*
8932 	 * Instead of creating recursive hierarchies of events,
8933 	 * we link inherited events back to the original parent,
8934 	 * which has a filp for sure, which we use as the reference
8935 	 * count:
8936 	 */
8937 	if (parent_event->parent)
8938 		parent_event = parent_event->parent;
8939 
8940 	child_event = perf_event_alloc(&parent_event->attr,
8941 					   parent_event->cpu,
8942 					   child,
8943 					   group_leader, parent_event,
8944 					   NULL, NULL, -1);
8945 	if (IS_ERR(child_event))
8946 		return child_event;
8947 
8948 	/*
8949 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
8950 	 * must be under the same lock in order to serialize against
8951 	 * perf_event_release_kernel(), such that either we must observe
8952 	 * is_orphaned_event() or they will observe us on the child_list.
8953 	 */
8954 	mutex_lock(&parent_event->child_mutex);
8955 	if (is_orphaned_event(parent_event) ||
8956 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8957 		mutex_unlock(&parent_event->child_mutex);
8958 		free_event(child_event);
8959 		return NULL;
8960 	}
8961 
8962 	get_ctx(child_ctx);
8963 
8964 	/*
8965 	 * Make the child state follow the state of the parent event,
8966 	 * not its attr.disabled bit.  We hold the parent's mutex,
8967 	 * so we won't race with perf_event_{en, dis}able_family.
8968 	 */
8969 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8970 		child_event->state = PERF_EVENT_STATE_INACTIVE;
8971 	else
8972 		child_event->state = PERF_EVENT_STATE_OFF;
8973 
8974 	if (parent_event->attr.freq) {
8975 		u64 sample_period = parent_event->hw.sample_period;
8976 		struct hw_perf_event *hwc = &child_event->hw;
8977 
8978 		hwc->sample_period = sample_period;
8979 		hwc->last_period   = sample_period;
8980 
8981 		local64_set(&hwc->period_left, sample_period);
8982 	}
8983 
8984 	child_event->ctx = child_ctx;
8985 	child_event->overflow_handler = parent_event->overflow_handler;
8986 	child_event->overflow_handler_context
8987 		= parent_event->overflow_handler_context;
8988 
8989 	/*
8990 	 * Precalculate sample_data sizes
8991 	 */
8992 	perf_event__header_size(child_event);
8993 	perf_event__id_header_size(child_event);
8994 
8995 	/*
8996 	 * Link it up in the child's context:
8997 	 */
8998 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
8999 	add_event_to_ctx(child_event, child_ctx);
9000 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9001 
9002 	/*
9003 	 * Link this into the parent event's child list
9004 	 */
9005 	list_add_tail(&child_event->child_list, &parent_event->child_list);
9006 	mutex_unlock(&parent_event->child_mutex);
9007 
9008 	return child_event;
9009 }
9010 
9011 static int inherit_group(struct perf_event *parent_event,
9012 	      struct task_struct *parent,
9013 	      struct perf_event_context *parent_ctx,
9014 	      struct task_struct *child,
9015 	      struct perf_event_context *child_ctx)
9016 {
9017 	struct perf_event *leader;
9018 	struct perf_event *sub;
9019 	struct perf_event *child_ctr;
9020 
9021 	leader = inherit_event(parent_event, parent, parent_ctx,
9022 				 child, NULL, child_ctx);
9023 	if (IS_ERR(leader))
9024 		return PTR_ERR(leader);
9025 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9026 		child_ctr = inherit_event(sub, parent, parent_ctx,
9027 					    child, leader, child_ctx);
9028 		if (IS_ERR(child_ctr))
9029 			return PTR_ERR(child_ctr);
9030 	}
9031 	return 0;
9032 }
9033 
9034 static int
9035 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9036 		   struct perf_event_context *parent_ctx,
9037 		   struct task_struct *child, int ctxn,
9038 		   int *inherited_all)
9039 {
9040 	int ret;
9041 	struct perf_event_context *child_ctx;
9042 
9043 	if (!event->attr.inherit) {
9044 		*inherited_all = 0;
9045 		return 0;
9046 	}
9047 
9048 	child_ctx = child->perf_event_ctxp[ctxn];
9049 	if (!child_ctx) {
9050 		/*
9051 		 * This is executed from the parent task context, so
9052 		 * inherit events that have been marked for cloning.
9053 		 * First allocate and initialize a context for the
9054 		 * child.
9055 		 */
9056 
9057 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9058 		if (!child_ctx)
9059 			return -ENOMEM;
9060 
9061 		child->perf_event_ctxp[ctxn] = child_ctx;
9062 	}
9063 
9064 	ret = inherit_group(event, parent, parent_ctx,
9065 			    child, child_ctx);
9066 
9067 	if (ret)
9068 		*inherited_all = 0;
9069 
9070 	return ret;
9071 }
9072 
9073 /*
9074  * Initialize the perf_event context in task_struct
9075  */
9076 static int perf_event_init_context(struct task_struct *child, int ctxn)
9077 {
9078 	struct perf_event_context *child_ctx, *parent_ctx;
9079 	struct perf_event_context *cloned_ctx;
9080 	struct perf_event *event;
9081 	struct task_struct *parent = current;
9082 	int inherited_all = 1;
9083 	unsigned long flags;
9084 	int ret = 0;
9085 
9086 	if (likely(!parent->perf_event_ctxp[ctxn]))
9087 		return 0;
9088 
9089 	/*
9090 	 * If the parent's context is a clone, pin it so it won't get
9091 	 * swapped under us.
9092 	 */
9093 	parent_ctx = perf_pin_task_context(parent, ctxn);
9094 	if (!parent_ctx)
9095 		return 0;
9096 
9097 	/*
9098 	 * No need to check if parent_ctx != NULL here; since we saw
9099 	 * it non-NULL earlier, the only reason for it to become NULL
9100 	 * is if we exit, and since we're currently in the middle of
9101 	 * a fork we can't be exiting at the same time.
9102 	 */
9103 
9104 	/*
9105 	 * Lock the parent list. No need to lock the child - not PID
9106 	 * hashed yet and not running, so nobody can access it.
9107 	 */
9108 	mutex_lock(&parent_ctx->mutex);
9109 
9110 	/*
9111 	 * We dont have to disable NMIs - we are only looking at
9112 	 * the list, not manipulating it:
9113 	 */
9114 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9115 		ret = inherit_task_group(event, parent, parent_ctx,
9116 					 child, ctxn, &inherited_all);
9117 		if (ret)
9118 			break;
9119 	}
9120 
9121 	/*
9122 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
9123 	 * to allocations, but we need to prevent rotation because
9124 	 * rotate_ctx() will change the list from interrupt context.
9125 	 */
9126 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9127 	parent_ctx->rotate_disable = 1;
9128 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9129 
9130 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9131 		ret = inherit_task_group(event, parent, parent_ctx,
9132 					 child, ctxn, &inherited_all);
9133 		if (ret)
9134 			break;
9135 	}
9136 
9137 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9138 	parent_ctx->rotate_disable = 0;
9139 
9140 	child_ctx = child->perf_event_ctxp[ctxn];
9141 
9142 	if (child_ctx && inherited_all) {
9143 		/*
9144 		 * Mark the child context as a clone of the parent
9145 		 * context, or of whatever the parent is a clone of.
9146 		 *
9147 		 * Note that if the parent is a clone, the holding of
9148 		 * parent_ctx->lock avoids it from being uncloned.
9149 		 */
9150 		cloned_ctx = parent_ctx->parent_ctx;
9151 		if (cloned_ctx) {
9152 			child_ctx->parent_ctx = cloned_ctx;
9153 			child_ctx->parent_gen = parent_ctx->parent_gen;
9154 		} else {
9155 			child_ctx->parent_ctx = parent_ctx;
9156 			child_ctx->parent_gen = parent_ctx->generation;
9157 		}
9158 		get_ctx(child_ctx->parent_ctx);
9159 	}
9160 
9161 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9162 	mutex_unlock(&parent_ctx->mutex);
9163 
9164 	perf_unpin_context(parent_ctx);
9165 	put_ctx(parent_ctx);
9166 
9167 	return ret;
9168 }
9169 
9170 /*
9171  * Initialize the perf_event context in task_struct
9172  */
9173 int perf_event_init_task(struct task_struct *child)
9174 {
9175 	int ctxn, ret;
9176 
9177 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9178 	mutex_init(&child->perf_event_mutex);
9179 	INIT_LIST_HEAD(&child->perf_event_list);
9180 
9181 	for_each_task_context_nr(ctxn) {
9182 		ret = perf_event_init_context(child, ctxn);
9183 		if (ret) {
9184 			perf_event_free_task(child);
9185 			return ret;
9186 		}
9187 	}
9188 
9189 	return 0;
9190 }
9191 
9192 static void __init perf_event_init_all_cpus(void)
9193 {
9194 	struct swevent_htable *swhash;
9195 	int cpu;
9196 
9197 	for_each_possible_cpu(cpu) {
9198 		swhash = &per_cpu(swevent_htable, cpu);
9199 		mutex_init(&swhash->hlist_mutex);
9200 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9201 	}
9202 }
9203 
9204 static void perf_event_init_cpu(int cpu)
9205 {
9206 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9207 
9208 	mutex_lock(&swhash->hlist_mutex);
9209 	if (swhash->hlist_refcount > 0) {
9210 		struct swevent_hlist *hlist;
9211 
9212 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9213 		WARN_ON(!hlist);
9214 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9215 	}
9216 	mutex_unlock(&swhash->hlist_mutex);
9217 }
9218 
9219 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9220 static void __perf_event_exit_context(void *__info)
9221 {
9222 	struct perf_event_context *ctx = __info;
9223 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9224 	struct perf_event *event;
9225 
9226 	raw_spin_lock(&ctx->lock);
9227 	list_for_each_entry(event, &ctx->event_list, event_entry)
9228 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9229 	raw_spin_unlock(&ctx->lock);
9230 }
9231 
9232 static void perf_event_exit_cpu_context(int cpu)
9233 {
9234 	struct perf_event_context *ctx;
9235 	struct pmu *pmu;
9236 	int idx;
9237 
9238 	idx = srcu_read_lock(&pmus_srcu);
9239 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9240 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9241 
9242 		mutex_lock(&ctx->mutex);
9243 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9244 		mutex_unlock(&ctx->mutex);
9245 	}
9246 	srcu_read_unlock(&pmus_srcu, idx);
9247 }
9248 
9249 static void perf_event_exit_cpu(int cpu)
9250 {
9251 	perf_event_exit_cpu_context(cpu);
9252 }
9253 #else
9254 static inline void perf_event_exit_cpu(int cpu) { }
9255 #endif
9256 
9257 static int
9258 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9259 {
9260 	int cpu;
9261 
9262 	for_each_online_cpu(cpu)
9263 		perf_event_exit_cpu(cpu);
9264 
9265 	return NOTIFY_OK;
9266 }
9267 
9268 /*
9269  * Run the perf reboot notifier at the very last possible moment so that
9270  * the generic watchdog code runs as long as possible.
9271  */
9272 static struct notifier_block perf_reboot_notifier = {
9273 	.notifier_call = perf_reboot,
9274 	.priority = INT_MIN,
9275 };
9276 
9277 static int
9278 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9279 {
9280 	unsigned int cpu = (long)hcpu;
9281 
9282 	switch (action & ~CPU_TASKS_FROZEN) {
9283 
9284 	case CPU_UP_PREPARE:
9285 	case CPU_DOWN_FAILED:
9286 		perf_event_init_cpu(cpu);
9287 		break;
9288 
9289 	case CPU_UP_CANCELED:
9290 	case CPU_DOWN_PREPARE:
9291 		perf_event_exit_cpu(cpu);
9292 		break;
9293 	default:
9294 		break;
9295 	}
9296 
9297 	return NOTIFY_OK;
9298 }
9299 
9300 void __init perf_event_init(void)
9301 {
9302 	int ret;
9303 
9304 	idr_init(&pmu_idr);
9305 
9306 	perf_event_init_all_cpus();
9307 	init_srcu_struct(&pmus_srcu);
9308 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9309 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
9310 	perf_pmu_register(&perf_task_clock, NULL, -1);
9311 	perf_tp_register();
9312 	perf_cpu_notifier(perf_cpu_notify);
9313 	register_reboot_notifier(&perf_reboot_notifier);
9314 
9315 	ret = init_hw_breakpoint();
9316 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9317 
9318 	/* do not patch jump label more than once per second */
9319 	jump_label_rate_limit(&perf_sched_events, HZ);
9320 
9321 	/*
9322 	 * Build time assertion that we keep the data_head at the intended
9323 	 * location.  IOW, validation we got the __reserved[] size right.
9324 	 */
9325 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9326 		     != 1024);
9327 }
9328 
9329 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9330 			      char *page)
9331 {
9332 	struct perf_pmu_events_attr *pmu_attr =
9333 		container_of(attr, struct perf_pmu_events_attr, attr);
9334 
9335 	if (pmu_attr->event_str)
9336 		return sprintf(page, "%s\n", pmu_attr->event_str);
9337 
9338 	return 0;
9339 }
9340 
9341 static int __init perf_event_sysfs_init(void)
9342 {
9343 	struct pmu *pmu;
9344 	int ret;
9345 
9346 	mutex_lock(&pmus_lock);
9347 
9348 	ret = bus_register(&pmu_bus);
9349 	if (ret)
9350 		goto unlock;
9351 
9352 	list_for_each_entry(pmu, &pmus, entry) {
9353 		if (!pmu->name || pmu->type < 0)
9354 			continue;
9355 
9356 		ret = pmu_dev_alloc(pmu);
9357 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9358 	}
9359 	pmu_bus_running = 1;
9360 	ret = 0;
9361 
9362 unlock:
9363 	mutex_unlock(&pmus_lock);
9364 
9365 	return ret;
9366 }
9367 device_initcall(perf_event_sysfs_init);
9368 
9369 #ifdef CONFIG_CGROUP_PERF
9370 static struct cgroup_subsys_state *
9371 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9372 {
9373 	struct perf_cgroup *jc;
9374 
9375 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9376 	if (!jc)
9377 		return ERR_PTR(-ENOMEM);
9378 
9379 	jc->info = alloc_percpu(struct perf_cgroup_info);
9380 	if (!jc->info) {
9381 		kfree(jc);
9382 		return ERR_PTR(-ENOMEM);
9383 	}
9384 
9385 	return &jc->css;
9386 }
9387 
9388 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9389 {
9390 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9391 
9392 	free_percpu(jc->info);
9393 	kfree(jc);
9394 }
9395 
9396 static int __perf_cgroup_move(void *info)
9397 {
9398 	struct task_struct *task = info;
9399 	rcu_read_lock();
9400 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9401 	rcu_read_unlock();
9402 	return 0;
9403 }
9404 
9405 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9406 {
9407 	struct task_struct *task;
9408 	struct cgroup_subsys_state *css;
9409 
9410 	cgroup_taskset_for_each(task, css, tset)
9411 		task_function_call(task, __perf_cgroup_move, task);
9412 }
9413 
9414 struct cgroup_subsys perf_event_cgrp_subsys = {
9415 	.css_alloc	= perf_cgroup_css_alloc,
9416 	.css_free	= perf_cgroup_css_free,
9417 	.attach		= perf_cgroup_attach,
9418 };
9419 #endif /* CONFIG_CGROUP_PERF */
9420